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Abstract

In recent years, the problem of estimating a sparse inverse covariance matrix in the

moderate-to-large dimensional setting has been an important and challenging task in

many fields, including genomics, finance and earth sciences. To achieve sparsity in the

inverse covariance matrix, methods based on L1 regularization are widely used, but fail

to incorporate rich structural information known a priori. In this thesis, we study the

problem of sparse inverse covariance estimation in three different settings in which L1

penalization is inappropriate and alternative penalties must be considered.

First, we consider the problem of estimating a sparse inverse covariance matrix in

the time-ordered data context. L1-penalized likelihood methods penalize the elements

of the inverse equally and independently of each other without taking into account the

positive-definiteness constraint. We propose a penalized likelihood approach based on

the partial autocorrelation (PAC) parametrization. The novelty of this approach lies in

the use of the PACs, which allow for shrinkage in an unconstrained setting and offer

greater interpretability in the ordered data context. The performance of the proposed

PAC-based penalized likelihood method is assessed in a simulation study and with two

real data sets.

Next, we explore inverse covariance estimation in the case where variables are un-

ordered. Under multivariate normality, estimation of a sparse inverse covariance matrix

can be thought of as a way of estimating a graphical model for the data, where each vari-

able corresponds to a node in the graph and each non-zero element represents an edge

between the corresponding pair of nodes. We focus on the case where the underlying

graphical model has hubs, which are highly connected nodes, and introduce a weighted
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lasso approach that takes into account hub structure. Some asymptotic properties are

established and the finite-sample performance of the method is illustrated with simulated

data and two microbiome data sets.

Finally, we study the problem of estimating time-varying networks in the context of a

longitudinal study. We propose two penalized likelihood approaches for estimating time-

varying networks with a penalty based on a Wishart prior for the precision matrix. We

introduce a sequential approach, where the estimated precision matrix at time point t is

taken to be the maximizer of a penalized log-likelihood that encourages sparsity but also

shrinkage towards the estimated precision matrix at the previous time point. We also

introduce a joint estimation approach, where we estimate multiple graphical models by

jointly maximizing a penalized log-likelihood with an L1 penalty to encourage sparsity

and a Wishart-type penalty to promote similarity between precision matrix estimates at

adjacent time points. We present a computational procedure for solving the resulting

convex optimization problem and assess the performance of the methods in simulation.
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Résumé

Ces dernières années, le problème d’estimation de l’inverse d’une matrice de covariance

en dimension modérée à grande a été une tâche importante et difficile dans de nombreux

domaines, incluant la génomique, la finance et les sciences de la terre. Des méthodes

de régularisation L1 sont souvent utilisées pour obtenir une inverse de la matrice de

covariance creuse, mais elles ne permettent pas d’incorporer les informations structurelles

connues a priori. Dans cette thèse, nous étudions le problème d’estimation éparse de

l’inverse d’une matrice de covariance dans trois contextes différents où la pénalisation L1

n’est pas appropriée et d’autres pénalités doivent être considérées.

Premièrement, nous considérons le problème d’estimation de l’inverse de la matrice

de covariance dans le contexte de données ordonnées dans le temps. Les méthodes de

vraisemblance pénalisée réduisent les éléments de l’inverse également et indépendam-

ment les uns des autres, sans tenir compte de la contrainte que la matrice doit être

définie positive. Nous proposons une approche de vraisemblance pénalisée basée sur la

paramétrisation autocorrélation partielle. La nouveauté de cette approche réside dans

l’utilisation des autocorrélations partielles, qui permettent la pénalisation dans un cadre

sans contrainte et offrent une plus grande interprétabilité dans le contexte de données

ordonnées. Nous évaluous la performance de la méthode proposée à l’aide de simulations

et de l’analyse de deux jeux de données réelles.

Ensuite, nous étudions l’estimation de l’inverse de la matrice de covariance dans le

cas où les variables sont non ordonnées. Dans le cas gaussien, l’estimation éparse de

l’inverse de la matrice de covariance peut être considérée comme un moyen d’estimation

d’un modèle graphique pour les données, où chaque variable correspond à un sommet
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dans le graphe, et chaque élément non nul représente une arête entre la paire de sommets

correspondants. Nous nous concentrons sur le cas où le modèle graphique sous-jacent

possède des supernœuds, qui sont des nœuds avec un grand nombre de liaisons, et nous

introduisons une approche lasso qui tient compte de cette structure. Nous établissons

certaines propriétés asymptotiques et illustrons la performance de la méthode à l’aide de

simulations et de l’analyse de deux jeux de données réelles sur le microbiome.

Finalement, nous étudions le problème d’estimation des modèles graphiques dynamiques

dans le cadre d’une étude longitudinale. Nous proposons deux méthodes de vraisem-

blance pénalisée pour l’estimation des réseaux temporels avec une pénalité basée sur

une loi de Wishart pour l’inverse de la matrice de covariance. Nous présentons une

approche séquentielle, où l’inverse de la matrice de covariance estimée au temps t est

celle qui maximise une log-vraisemblance pénalisée encourageant à la fois l’éparsité et

le rétrécissement vers la matrice de précision estimée au temps précédent. Nous présen-

tons également une approche d’estimation conjointe, où nous estimons plusieurs modèles

graphiques en maximisant conjointement une log-vraisemblance pénalisée avec une pé-

nalité L1 pour encourager l’éparsité et une pénalité de type Wishart pour promouvoir la

similitude entre les estimations de la matrice de précision à des temps adjacents. Nous

présentons un algorithme pour résoudre le problème d’optimisation convexe résultant et

évaluons la performance des méthodes proposées au moyen d’études de simulation.
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Chapter 1

Introduction

Inverse covariance matrix estimation in the high dimensional setting, in which the dimen-

sion of the data p is comparable to or larger than the sample size n, has generated a great

deal of interest among researchers in recent years. This interest has focused in particular

on estimating a sparse inverse covariance matrix, that is, obtaining an estimate of the

inverse covariance matrix, also known as the precision matrix, in which some elements

are equal to zero. With this goal in mind, the penalized likelihood method with an ap-

propriately constructed penalty has emerged as a favourable approach, but still presents

some challenges.

Penalized likelihood methods were first introduced in the regression context as means

of performing variable selection and parameter estimation simultaneously. Popular penal-

ties include the least absolute shrinkage and selection operator (lasso; Tibshirani, 1996),

the adaptive lasso (Zou, 2006) and the smoothly clipped absolute deviation (SCAD; Fan

and Li, 2001). The theoretical properties and computational algorithms of the corre-

sponding penalized likelihood problems have been well studied. In the context of esti-

mating an inverse covariance matrix Θ, additional challenges arise due to the positive-

definiteness constraint on Θ and in the case where Θ is structured. Friedman et al.

(2008) studied L1-penalization of Θ. Under this framework, however, the elements of Θ

are penalized equally and independently of each other without taking into account the

underlying structure of Θ. In this thesis, we study inverse covariance estimation by sparse

selection where this type of penalization is inappropriate and alternative penalties must
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be considered.

For the first part of this thesis, we investigate inverse covariance estimation in the case

where variables have a natural ordering. We propose a penalized likelihood approach to

estimate Θ, based on the partial autocorrelation (PAC) parametrization. The novelty of

this method lies in the use of the PACs, which vary freely over the interval (-1,1), removing

the positive-definiteness constraint on the inverse, and allow for greater interpretation

compared to the partial correlations in the ordered data setting. We consider this PAC-

based penalized likelihood methodology in the context of inverse covariance estimation,

but also for estimating the order of a stationary Gaussian autoregressive (AR) process.

For the second part of this thesis, we investigate estimation of high-dimensional in-

verse covariance matrices in the case where variables are unordered. This is of particular

interest because if X1 . . . ,Xn are independent and identically distributed multivariate

normal random vectors with mean 0 and covariance matrix Σ = Θ−1, a non-zero in the

off-diagonals of Θ corresponds to a pair of variables that are conditionally dependent.

Thus, under multivariate normality, estimation of a sparse inverse covariance matrix can

be thought of as a way of estimating a graphical model for the data, where each variable

corresponds to a node in the graph and each non-zero element of Θ represents an edge

between the corresponding pair of nodes. We focus on the case where the underlying

graphical model has stars or hubs, which are highly connected nodes, inspired by micro-

biome data. We propose a penalized likelihood approach for estimating networks with

hubs, referred to as the hubs weighted graphical lasso (HWGL), and provide a simulation

study, demonstrating its superior finite-sample performance compared to competing net-

work estimation methods. We also establish asymptotic properties for the proposed hubs

weighted graphical lasso estimator.

For the third and final part of this thesis, we consider the problem of estimating

time-varying networks in the context of a longitudinal study, where multiple measure-

ments at each time point taken under similar experimental conditions are available. We

investigate the performance of the method of Zhou et al. (2010) in this context and

also introduce two new penalized likelihood approaches that make use of a Wishart-type
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penalty that encourages similar structure for networks at consecutive time points. The

first is a sequential penalized likelihood approach that allows for the borrowing of strength

from reconstructed networks at previous time points. From a modelling perspective, this

would be suitable for many real-world applications, where data arrive sequentially over

time. The second is a penalized likelihood approach that jointly estimates the T graphical

models by imposing sparsity through the use of an L1 penalty and by shrinking networks

at adajcent time points toward each other through the use of a Wishart-type penalty.

1.1 Thesis Contributions

The specific contributions of this thesis can be summarized as follows.

• When it comes to inverse covariance estimation for ordered data, the modified

Cholesky decomposition (Pourahmadi, 1999) is often used. It converts the con-

strained entries of Θ into unconstrained parameters and reduces the task of mod-

elling a p× p covariance matrix to that of modelling p− 1 regression problems. In

Chapter 3, we consider the PAC parametrization, which is an alternative reparametriza-

tion of a covariance matrix. The PAC parametrization has mainly been used in a

Bayesian setting for constructing priors for the correlation matrix R, but has not

been considered in the frequentist penalized likelihood framework. Therefore, we

introduce a new PAC-based penalized likelihood approach that makes use of the

nested lasso penalty of Levina et al. (2008).

• The PAC-based penalized likelihood methodology developed in Chapter 3 can also

be used for autoregressive process modelling. In Chapter 4, we focus on the specific

task of estimating the order of a stationary Gaussian AR process. For this purpose,

the lasso methodology has been used (Wang et al., 2007b; Nardi and Rinaldo, 2011),

where a lasso penalty is applied to the AR coefficients. However, such a procedure

ignores the temporal dependence information embedded in AR time series. Rather

than imposing shrinkage on the AR coefficients, we instead introduce shrinkage via

the PACs, which vary on the same scale, free of constraints, and better reflect the
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temporal dependence of the AR process.

• There have been a few procedures developed in the literature for estimating graph-

ical models with hubs, such as the hubs graphical lasso (HGL) of Tan et al. (2014)

and the reweighted L1 regularization approach of Liu and Ihler (2011). The former

is designed for estimating networks with very densely connected nodes, while the

latter is designed for estimating scale-free networks, for which there may be no clear

distinction between hub and non-hub nodes. In Chapter 5, we introduce a proce-

dure that allows for more flexible and general modelling of networks with hubs.

The procedure makes use of a weighted lasso approach with novel row/column sum

weights, introduced as a finite-sample correction to the adaptive lasso (Fan et al.,

2009) procedure in the case where the underlying network has hubs. The asymptotic

properties of this weighted lasso estimator are also provided.

• In Chapter 5, we develop methodology for estimating networks with hubs, moti-

vated by an application to microbiome data. While sparse network selection meth-

ods have been widely applied to genomic data sets, the use of such procedures in

microbiome data analysis is relatively recent. Thus, in Section 5.6, we explore a

relatively new application of the statistical methodology developed for estimating

high-dimensional networks.

• In Chapter 6, we introduce two new penalized likelihood approaches for estimating

T time-varying networks in the context of a longitudinal study. The first is a

sequential approach, estimating the precision matrix at each time point t separately,

while the other is a joint approach, but both make use of a Wishart-type penalty

that encourages similar structure for networks at consecutive time points. We also

provide the computational algorithms for solving the resulting convex optimization

problems.
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1.2 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we provide a literature review

of sparsity-based regularization in linear regression and inverse covariance estimation with

a focus on penalized likelihood methodology. This will provide the theoretical basis for our

work in subsequent chapters. In Chapters 3 and 5, we study penalized likelihood methods

in the context of inverse covariance estimation. In particular, in Chapter 3, we introduce

our PAC-based penalized likelihood method for estimating an inverse covariance matrix

in the case where variables are ordered. In Chapter 4, we consider another application

of our PAC-based penalized likelihood methodology, where we consider the problem of

estimating the order of a stationary Gaussian AR process. In Chapter 5, we then study

high-dimensional network estimation in the case where the networks have hubs, and

introduce our HWGL procedure. In Chapter 6, we investigate the problem of estimating

dynamic networks in a longitudinal setting. This thesis then concludes with a discussion

of our results and future research directions in Chapter 7.
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Chapter 2

A Literature Review: Regularization in Regres-

sion and Covariance Estimation

In broad terms, regularization is the class of methods that are used for solving ill-posed

problems, yielding stable solutions of unstable problems. The need for regularization in

statistics arose in large part due to the growing complexity of datasets available. Datasets

with a large number of variables and only a small number of observations have now be-

come a common occurrence in statistics. To accommodate the high-dimensionality of

observations, the tendency is to fit more and more complex models to the data. The fit-

ting of models with a large number of parameters, however, is inherently unstable (Bickel

and Li, 2006, and references therein). This phenomenon, known as overfitting, occurs

when a statistical model captures the noise of the data and thus exhibits low bias but

high variance. This can be remedied by imposing explicit constraints on model complex-

ity, such as bounds on the Lq norm of model parameters. Regularization thus serves

to improve estimation in ill-posed or overparametrized problems by making additional

assumptions or introducing suitable a priori knowledge. From a Bayesian perspective,

many regularization methods correspond to imposing certain prior distributions on model

parameters.

One of the earliest examples of regularization in statistics arose in high-dimensional

regression, where it was suggested to constrain or bound the L2 norm of the regression pa-

rameter. This method is known as ridge regression (Hoerl and Kennard, 1970), and since
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its introduction, a number of other constraints or bounds on the regression parameter

have been considered.

Another statistical problem that has relied heavily on regularization is covariance ma-

trix estimation, as the number of parameters grows rapidly with the number of variables.

As the maximum likelihood estimator (MLE) of the p×p covariance matrix Σ, the sample

covariance matrix behaves optimally if p is smaller than sample size n, converging to Σ

at rate n−1/2. However, when the ratio p/n is large, it is well known that the sample

covariance matrix S is a poor estimator, as its eigenstructure tends to be systematically

distorted; the largest eigenvalue tends to be overestimated and the smallest eigenvalue

tends to be underestimated (see Pourahmadi, 2011 and references therein). Therefore,

regularization in the covariance matrix setting began with the goal of obtaining estimators

that are better-conditioned than the sample covariance matrix.

To this end, regularization by Steinian shrinkage was proposed early on and is achieved

by either shrinking the eigenvalues of S toward a central value (Haff, 1980; Dey and Srini-

vasan, 1985), or by replacing S with a linear combination of itself and the identity matrix

(Ledoit and Wolf, 2004). The proposed estimators affect the eigenvalues of the sample

covariance matrix, but not the eigenvectors, and are also not sparse. Lately, regular-

ization has been employed with parsimony as its guiding principle. Such regularization

procedures are the focus of this thesis.

In the context of inverse covariance estimation, achieving sparsity in Θ is of particular

interest because when the p-dimensional random vector X = (X1, . . . , Xp)
T follows a

multivariate normal distribution with mean zero and covariance matrix Σ = Θ−1, a zero

entry in Θ corresponds to a conditional independence relationship. More precisely, the

(i, j)th entry of Θ is zero if and only if Xi and Xj are conditionally independent, given

the remaining variables. The conditional independence structure of X can represented

by an undirected graph G = (V,E), where V = {1, 2, . . . , p} is the set of vertices and E

is the edge set defined as

E =
{

(i, j) : Xi and Xj are dependent given X−(i,j), 1 ≤ i, j ≤ p
}
,
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where X−(i,j) = {Xk : k 6= i, j, 1 ≤ k ≤ p}. The goal of network selection is then to iden-

tify the edges in the set E.

Methods for sparse (inverse) covariance estimation make use of the machinery devel-

oped for regression analysis. Therefore, in this chapter, we review existing regularization

methods in the literature both for estimating the parameters of linear regression models

with a large number of predictors and large inverse covariance matrices.

In Section 2.1, we begin by reviewing popular penalization methods in the regression

context that perform variable selection and parameter estimation simultaneously, namely

the lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001) and adaptive lasso (Zou, 2006).

In Section 2.2, we then review existing regularization procedures for sparse estimation of

large inverse covariance matrices. We start with a discussion of more general methods,

such as penalized maximum likelihood methods, including the graphical lasso (Friedman

et al., 2008) and the graphical SCAD (Fan et al., 2009) in Section 2.2.1 as well as banding

(Bickel and Levina, 2008a) and thresholding (Bickel and Levina, 2008b) in Section 2.2.2.

The penalization approaches and thresholding work for unordered variables and provide

permutation-invariant inverse covariance estimators. We then review in Section 2.2.3

existing methods in the literature that utilize the modified Cholesky decomposition, where

it is assumed that there is a natural ordering among the variables. In Section 2.2.4, we

focus on Bayesian methods that have been proposed in the literature for estimating

covariance matrices, leading us to the use of the partial autocorrelation parametrization

of the covariance matrix, which will be important in subsequent chapters of this thesis.

2.1 Regularized Linear Regression

Methods for estimating a covariance matrix or its inverse have brought to use the tools

developed for regression analysis (e.g., penalized likelihood estimation, nonparametric

methods, Bayesian analysis). In this section, we provide a literature review of regular-

ization in linear regression with a focus on exisiting penalized likelihood methodology.

Suppose that data (xi, yi), i = 1, . . . , n, is available, where yi is the ith observation of
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the response variable and xi is its associated p-dimensional vector of covariates, typically

assumed to be a random sample from the population (X, Y ), where the conditional mean

of Y given X, E(Y |X), depends on the linear predictor XTβ, where β = (β1, . . . , βp).

The model that links the conditional mean of yi given xi to the linear predictor xTi β is

g {E(yi|xi)} = β1xi1 + . . .+ βpxip, ,

where g(·) is a one-to-one link function. The covariates xij can be continuous, binary or

categorical, and the function g(·) has different forms depending on whether the problem

at hand is one of classification or one of regression. A linear regression model corresponds

to the case where yi is continuous and g(·) is the identity function. A logistic regression

model corresponds to the case where yi is binary and g(·) is the logit function. If yi are

count data, the Poisson regression model is often used with the log function for g(·).

To perform sparse selection, it is assumed that most regression coefficients βj are

zero. The goal of variable selection is then to identify all important variables whose re-

gression coefficients are significant and to provide estimates of those coefficients. Sparsity

is assumed for the following two reasons:

• Model interpretability: By removing irrelevant variables, we retain the variables

that have the strongest effects on the outcome, resulting in a model that is more

easily interpretable.

• Prediction accuracy: Prediction accuracy may be improved by removing insignifi-

cant variables. While shrinking or setting some coefficients to zero may increase the

bias of the estimates, it may reduce the variance of the predicted values. For the

full model, the estimators for the parameters have low bias but large variance. In

contrast, for a parsimonious model, the estimators may have larger bias but smaller

variance. Therefore, by incorporating shrinkage, we sacrifice a little bias to reduce

the prediction variance, which has the net effect of reducing the mean squared error

(MSE) of prediction. This is called the bias-variance tradeoff.

Subset selection methods, such as forward stepwise selection, backward stepwise selec-
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tion, the Akaike information criterion (AIC; Akaike, 1973) and the Bayesian information

criterion (BIC; Schwarz, 1978) were initially proposed for performing variable selection.

These procedures are discrete in the sense that variables are either retained or discarded,

and can often have high variability (Breiman, 1996). AIC and BIC suggest a framework

for performing variable selection that involves maximizing the penalized log-likelihood

`n(β)− λ‖β‖0, (2.1)

where ‖β‖0 =
∑p

j=1 I(βj 6= 0) counts the number of non-zero parameters in β and

λ > 0 is a tuning parameter. In terms of computational complexity, the problem with

the L0 norm, however, is NP-hard. Methods using shrinkage or regularization that use

alternative penalties in (2.1) were thus proposed as more stable procedures that are

computationally efficient when p is large.

A natural generalization of the L0-penalized likelihood is the Lq-penalized likelihood,

called bridge regression (Frank and Friedman, 1993), where pλ(|β|) = λ|β|q for 0 < q ≤ 2.

The bridge penalty includes a few well known penalty functions as special cases. For

q ∈ (0, 1], pλ(·) is known as the soft-thresholding penalty (Donoho and Johnstone, 1994).

For q = 1, it is known as the least absolute shrinkage and selection operator (lasso;

Tibshirani, 1996). For q = 2, it is the penalty in ridge regression (Hoerl and Kennard,

1970).

In this section, we discuss the various penalty functions in (2.1) that were proposed,

including the lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006), and smoothly clipped

absolute deviation (SCAD; Fan and Li, 2001) penalties, as well as the important task of

choosing the tuning parameter in these penalized likelihood methods.
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2.1.1 Shrinkage and Selection Estimators

In this section, we review the various penalty functions pλn(·) used in the penalized

likelihood problem

arg min
β
{−`n(β) + pλn(β)} .

We focus this review on the lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), and adap-

tive lasso (Zou, 2006), which all lead to simultaneous variable selection and parameter

estimation.

When studying the properties of a shrinkage and selection estimator, two important

ideas emerge: (1) whether the estimator can identify the true support, asymptotically,

if the true parameter is sparse, and (2) to assess the performance of the estimator with

respect to the estimates of the true non-zero parameters. In particular, it is of interest

to study whether the penalized estimator behaves as well as the unpenalized estimator

with respect to the non-zero coefficients.

Let A denote the support of the true parameter β∗ = (β∗1 , . . . , β
∗
p) and An denote the

support of the penalized estimator β̂n = (β̂n,1, . . . , β̂n,p). Two important properties that

any penalized estimator β̂n should possess, which make up the so-called oracle property,

are the following:

• Variable selection consistency: limn→∞ P (An = A) = 1 and

•
√
n-estimation consistency:

√
n(β̂n|A−β

∗
|A)

d→ N (0,Σ∗), where Σ∗ is the covariance

matrix knowing the true subset model.

2.1.1.1 Least Absolute Shrinkage and Selection Operator (LASSO)

The least absolute shrinkage and selection operator, called the lasso (Tibshirani, 1996),

is the most widely used shrinkage and selection method. It was originally proposed in

the regression context and has since been used in a variety of settings. Its popularity can

be attributed to two characteristics. Firstly, it performs variable selection and parameter
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estimation simultaneously. Secondly, it leads to a convex optimization problem for which

a number of efficient algorithms have been proposed. We begin by reviewing the lasso

and computational algorithms for solving the lasso optimization problem.

Consider the linear regression model yi = xTi β + εi, where xi = (xi1, . . . , xip)
T , β =

(β1, . . . , βp)
T and ε1, . . . , εn are independent and identically distributed random errors

with mean 0 and variance σ2.

Definition 1. (The lasso estimator) The lasso estimator, denoted by β̂
lasso
n , is defined

as

β̂
lasso
n = arg min

β

{
1

2

n∑
i=1

(yi − xTi β)2 + λn

p∑
j=1

|βj|

}
, (2.2)

or, equivalently,

β̂
lasso
n = arg min

β

1

2

n∑
i=1

(yi − xTi β)2 subject to
p∑
j=1

|βj| ≤ t (2.3)

for some t ≥ 0.

In general, there is no closed form solution to (2.2). However, an analytical formula

exists in the orthonormal design case. To gain further insight into the shrinkage mecha-

nism, we study the lasso in the orthonormal design case in Proposition 1.

Proposition 1. (The lasso estimator in the orthonormal design case) Suppose

that
∑n

i=1 xix
T
i = I, where I is the identity matrix, then the lasso estimator takes the

form

β̂j(λn) = sgn(β̂ols
j )
(
|β̂ols
j | − λn

)
+
, (2.4)

where (z)+ = max (z, 0) and β̂ols
j is the ordinary least squares (OLS) estimator of βj.
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Asymptotic Properties:

The asymptotic properties of the lasso estimator for fixed p were studied in Knight and

Fu (2000), Fan and Li (2001), Zhao and Yu (2006), and Zou (2006). These authors showed

that the lasso estimator is estimation consistent, but the optimal rate of estimation is

available only when λn = O(
√
n). However, this leads to inconsistent variable selection.

The question of interest then becomes whether consistency in variable selection can be

achieved if we are willing to sacrifice the convergence rate in estimation. Zou (2006), Zhao

and Yu (2006), and Meinshausen and Bühlmann (2006) all independently investigated this

issue. It turns out that a slower rate of convergence does not guarantee variable selection

consistency. A necessary condition for the lasso to be variable selection consistent is the

irrepresentable condition (Zhao and Yu, 2006), which concerns the design matrix X.

Zhao and Yu (2006) showed that the irrepresentable condition is almost necessary

and sufficient for lasso to be variable selection consistent both for fixed p and diverg-

ing p as the sample size n increases. We provide definitions for the strong and weak

irrepresentable conditions in Definitions 3 and 4 from Zhao and Yu (2006). We let

β = (β1, . . . , βs, βs+1, . . . , βp)
T , βj 6= 0 for j = 1, . . . , s and βj = 0 for j = s + 1, . . . , p.

Further, we let C(n) = 1
n

∑n
i=1 x

T
i xi,

C(n) =

C(n)
11 C

(n)
12

C
(n)
21 C

(n)
22

 ,

where C(n)
11 is an s× s matrix, and write β = (βT1 ,β

T
2 )T .

Definition 2. (Strong irrepresentable condition; Zhao and Yu, 2006) There

exists a positive constant vector η such that

|C(n)
21 (C

(n)
11 )−1sgn(β1)| ≤ 1− η,

where 1 is a (p− s)× 1 vector of 1’s and the inequality holds componentwise.
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Definition 3. (Weak irrepresentable condition; Zhao and Yu, 2006)

|C(n)
21 (C

(n)
11 )−1sgn(β1)| < 1,

where the inequality holds componentwise.

Zhao and Yu (2006), and Zou (2006) showed that the weak irrepresentable condition

is necessary for variable selection consistency of the lasso, and the strong irrepresentable

condition is sufficient for selection consistency of the lasso. These conditions, however,

can be restrictive in high dimensions. The weak irrepresentable condition states that the

lasso is variable selection consistent if and (almost) only if the variables that are not in

the true model are “irrepresentable” by variables that are in the true model (Zhao and

Yu, 2006). In other words, if an irrelevant variable is highly correlated with variables in

the true model, the lasso may fail to distinguish it from the true variables even with large

n. To improve the performance of the lasso, a variety of penalties have been proposed,

such as the smoothly clipped absolute deviation (SCAD) penalty of Fan and Li (2001),

and the adaptive lasso of Zou (2006), which we discuss in Sections 2.1.1.2 and 2.1.1.3.

Computational Algorithms:

The objective function in the lasso procedure to be optimized is convex. Therefore,

the global minimum can be found efficiently using a variety of algorithms. These algo-

rithms include the quadratic programming algorithm (Tibshirani, 1996), the least angle

regression and shrinkage (LARS; Efron et al., 2004), and coordinate descent (Friedman

et al., 2007). In this section, we focus on the coordinate descent procedure of Friedman

et al. (2007).

By the Karush-Kuhn-Tucker conditions (KKT conditions; see, e.g. Boyd and Van-

denberghe, 2004), a necessary and sufficient condition for β̂λ to be the global minimizer

of the lasso objective function, written as

Qλ(β) =
1

2
‖y −Xβ‖2

2 + λ‖β‖1, (2.5)
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is that the subdifferential of Qλ(β) at β̂λ is zero. Consider the following two cases:

Case 1: β̂j(λ) 6= 0

The first derivative of Qλ(β) at β̂j(λ) must be 0:

∂Qλ(β)

∂βj

∣∣∣∣
β=β̂(λ)

= −XT
j (y −Xβ) + λsgn(βj)

∣∣
β=β̂(λ)

= 0

⇐⇒

Gj(β̂λ) = −XT
j (y −Xβ̂λ) = −λsgn(β̂j(λ)) if β̂j(λ) 6= 0.

Case 2: β̂j(λ) = 0

The subdifferential of Qλ(β) at β̂j(λ) must include the zero element:

Gj(β̂λ) + λγ = 0 for some γ ∈ [−1, 1] ⇐⇒ |Gj(β̂λ)| ≤ λ if β̂j(λ) = 0.

Coordinate Descent: The lasso objective function to be minimized is

f(β) =
1

2

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj| (2.6)

for λ > 0.

With a single predictor, the lasso solution is simply a soft-thresholded version of the

least squares estimate β̂ols:

β̂λ = S(β̂ols, λ) = sgn(β̂ols)(|β̂ols| − λ)+ =


β̂ols − λ if β̂ols > 0 and λ < |β̂ols|,

β̂ols + λ if β̂ols < 0 and λ < |β̂ols|

0 if λ ≥ |β̂ols|.

With more than one predictor in the case where the predictors are uncorrelated, the lasso

solutions are again soft-thresholded versions of the least squares estimates. For general
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predictors, Friedman et al. (2007) write the objective function in (2.6) as follows

f(β̃) =
1

2

n∑
i=1

(
yi −

∑
k 6=j

xikβ̃k − xijβj

)2

+ λ
∑
k 6=j

|β̃j|+ λ|βj|, (2.7)

where all βk’s for k 6= j are held fixed at values β̃k.

Minimizing the objective function in (2.7) with respect to βj yields the update

β̃j,λ ← S

(
n∑
i=1

xij(yi − ỹ(j)
i ), λ

)
, (2.8)

where ỹ(j)
i =

∑
k 6=j xikβ̃k,λ and S(z, λ) = sgn(z)(|z|−λ)+ is the soft-thresholding operator.

At the mth iteration, the update is repeated for j = 1, 2, . . . , p to obtain an estimate β̃
(m)

λ

and this is repeated until convergence. The sequence of estimates
{
β̃

(m)

λ

}
was shown to

converge to the lasso estimate β̂
lasso

.

To find lasso solutions over a range of possible values of λ, Friedman et al. (2007)

begin with a value of λ large enough so that the only optimal solution is the vector of

zeroes. This value is equal to λmax = maxj
∑
xijyi. Then λ is progressively decreased and

each time the coordinate descent procedure is run until convergence, using the previous

solution as a “warm start”. This procedure allows for the efficient computation of solutions

over a grid of λ values and is referred to as pathwise coordinate descent (Friedman et al.,

2007; Hastie et al., 2015).

2.1.1.2 Smoothly Clipped Absolute Deviation (SCAD)

Several alternative penalties have been introduced, designed to remedy some of the draw-

backs of the lasso penalty. The popularity of the lasso can be attributed to its convexity,

but it is known to produce biased estimates of the regression coefficients due to the linear

increase of the penalty function. In this section, we review one such alternative penalty

known as the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001),

but first we present three desirable properties identified by Fan and Li (2001) that any

penalized estimator should possess in the penalized least squares or penalized likelihood
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framework:

(i) Unbiasedness: The resulting estimator is nearly unbiased when the true unknown

parameter is large.

(ii) Sparsity: The estimator is a thresholding rule, which automatically sets small esti-

mated coefficients to zero to reduce model complexity.

(iii) Continuity: The estimator is continuous in the data to avoid instability in predic-

tion.

The Lq, q > 0, penalty functions do not result in estimators that simultaneously satisfy

the mathematical conditions for unbiasedness, sparsity and continuity. The bridge (Frank

and Friedman, 1993) solution is only continuous when 0 < q < 1, but when q > 1, sparse

solutions are not produced. Therefore, Fan and Li (2001) proposed the smoothly clipped

absolute deviation (SCAD) penalty, which is a quadratic spline, given by

pλ(β) =


λ|β| if |β| ≤ λ

−(β2−2aλ|β|+λ2)
2(a−1)

if λ < |β| ≤ aλ

(a+1)λ2

2
if |β| > aλ

(2.9)

with derivative

p′λ(β) = λ · sgn(β)

{
I(|β| ≤ λ) +

(aλ− |β|)+

(a− 1)λ
I(|β| > λ)

}

for some a > 2 and where (·)+ denotes the positive truncation function. The SCAD

penalty function is continuously differentiable everywhere except at 0 and its derivative

vanishes outside [−aλ, aλ]. Thus, it can produce continuous and sparse solutions and

unbiased estimates for large coefficients, satisfying properties (i)-(iii). We provide a plot

of the SCAD penalty function in Figure 2.1 along with the lasso penalty function. The

lasso and SCAD penalty functions behave similarly for small coefficients. For larger

coefficients, SCAD applies a constant penalty, whereas the lasso penalty increases linearly
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with the coefficient. Hence, the SCAD penalty function results in asymptotically unbiased

estimators while the lasso penalty function does not.

The SCAD-penalized least-squares estimator is defined in Definition 4 (2.10). We also

consider the case of an orthonormal design matrix in Proposition 2 to gain some insight

into the shrinkage mechanism.hanism.
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Figure 2.1: Plot of the lasso and SCAD penalty functions with λ = 1 and a = 3.7.

Definition 4. (The SCAD-penalized estimator) The SCAD-penalized estimator,

denoted by β̂
SCAD
n , is defined as

β̂
SCAD
n = argmin

β

{
1

2

n∑
i=1

(yi − xT
i β)

2 +

p∑
j=1

pλn(βj)

}
, (2.10)

where pλn(·) is defined in (2.9).

Proposition 2. (The SCAD-penalized estimator in the orthonormal design

case) Suppose that
∑n

i=1 xix
T
i = I, where I is the identity matrix, then the SCAD-

penalized least-squares estimator takes the form

β̂SCAD
j (λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
sgn(β̂ols

j )(|β̂ols
j | − λ)+ if β̂ols

j ≤ 2λ,{
(a− 1)β̂ols

j − sgn(β̂ols
j )aλ

}
/(a− 2) if 2λ < |β̂ols

j | ≤ aλ,

β̂ols
j if |β̂ols

j | > aλ,
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where (z)+ = max (z, 0), a > 2, and β̂ols
j is the ordinary least squares (OLS) estimator of

βj.

Asymptotic Properties:

Fan and Li (2001) studied the asymptotic properties of nonconcave penalized likeli-

hood estimators, obtained by maximizing

`n(β)− n
p∑
j=1

pλn(|βj|) (2.11)

for fixed p as n→∞, and showed that there exists a penalized likelihood estimator that

converges at the rate

Op(n
−1/2 + an),

where an = max
{
p′λn(|βj0|) : βj0 6= 0

}
. Therefore, for the SCAD penalty function, if

λn → 0, the penalized likelihood estimator is
√
n-consistent. They also showed that

under regularity conditions (A)-(C) in Fan and Li (2001), which are needed to guarantee

asymptotic normality of the ordinary MLEs, if λn → 0 and
√
nλn → ∞ as n → ∞, the

SCAD-penalized estimator has the oracle property. In other words, the
√
n-consistent

estimator β̂ = (β̂
T

1 , β̂
T

2 )T has the sparsity property, that is, if β∗ = (β∗1 , . . . , β
∗
p)
T =

(β∗T1 ,β∗T2 )T denotes the true parameter and β∗2 = 0, then β̂2 = 0 with probability

approaching 1 as n → ∞, and β̂1 is asymptotically normal with the same covariance

matrix knowing the true subset model.

Remarks:

• For the lasso penalty in (2.11), an = λn and λn = Op(n
−1/2) is required for

√
n-

consistency. However, the oracle property requires that
√
nλn →∞. These condi-

tions cannot be simultaneously satisfied.

• The results of Fan and Li (2001) are for the case where p is fixed as n → ∞. Fan

and Peng (2004) extended the results of Fan and Li (2001) to the case where p
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diverges with the sample size n. Under regularity conditions, they established an

oracle property and the asymptotic normality of the nonconcave penalized likelihood

estimator in the moderate dimensional setting with p = o(n1/5) or o(n1/3) (see Fan

and Lv, 2010 for a review of variable selection in this setting).

Computational Algorithm:

Fan and Li (2001) had proposed an algorithm for optimizing the nonconcave penalized

log-likelihood function. Since the L1 and SCAD penalty functions are singular at the

origin and do not have continuous second order derivatives, Fan and Li (2001) used a

local quadratic approximation (LQA) approach. Assuming that β(0) = (β
(0)
1 , . . . , β

(0)
p )T

is an initial value of β, they suggest that the penalty function be locally approximated

by a quadratic function as follows

pλ(|βj|) ≈ pλ(|β(0)
j |) +

1

2

p′λ(|β
(0)
j |)

|β(0)
j |

(β2
j − β

(0)2
j )

for βj ≈ β
(0)
j . If β(0)

j ≈ 0, they set β̂j = 0.

For the penalized least squares problem, the solution can be found by iteratively

minimizing

1

2
‖y −Xβ‖2 + n

p∑
j=1

1

2

p′λ(|β
(m)
j |)

|β(m)
j |

β2
j (2.12)

for m = 1, 2, . . .. Using Newton-Raphson, this amounts to iteratively computing the

following ridge regression

β(m) =
{
XTX + nΣλ(β

(m−1))
}−1

XTy

for m = 1, 2, . . ., where Σλ(β
(m)) = diag

(
p′λ(|β(m)

1 |)
|β(m)

1 |
, . . . ,

p′λ(|β(m)
p |)

|β(m)
p |

)
.

One drawback of LQA is that once a coefficient is set to zero, it remains at zero. As an

improvement over LQA, Zou and Li (2008) suggested using a local linear approximation
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(LLA), where

pλ(|βj|) ≈ pλ(|β(0)
j |) + p′λ(|β

(0)
j |) (βj − β(0)

j ).

2.1.1.3 Adaptive Lasso

In this section, we study another procedure that yields consistent estimators and also

selects variables consistently without stringent conditions on the design matrix, namely

the adaptive lasso (Zou, 2006). The adaptive lasso is a modified version of the lasso, where

the L1 norms on the regression coefficients are reweighted by data-dependent weights. We

review the definition, computational algorithm, and asymptotic properties of the adaptive

lasso.

Definition 5. (The adaptive lasso estimator) The adaptive lasso estimator, denoted

by β̂
alasso
n , is defined as

β̂
alasso
n = arg min

β

{
1

2

n∑
i=1

(yi − xTi β)2 + λn

p∑
j=1

ŵj|βj|

}
,

where ŵj = 1

|β̂j |γ
for some γ > 0 and a

√
n-consistent estimator β̂j of βj.

By allowing larger penalties for zero coefficients and smaller penalties for non-zero

coefficients, the adaptive lasso aims to reduce the estimation bias and improve variable

selection accuracy, compared with the standard lasso.

Remarks:

• As n → ∞, the weights corresponding to insignificant variables tend to infinity,

while the weights corresponding to significant variables converge to a finite constant.

Thus, large coefficients can be estimated unbiasedly (asymptotically) and small

coefficients can be thresholded, simultaneously (Zou, 2006).

• The adaptive lasso solution is continuous. Fan and Li (2001) had identified conti-

nuity as an important property of any variable selection procedure because discon-

tinuities result in instability in model prediction.
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Proposition 3. (The adaptive lasso estimator in the orthonormal design case)

Suppose that
∑n

i=1 xix
T
i = I, where I is the identity matrix, then the adaptive lasso

estimator takes the form

β̂alasso
j (λn) = sgn(β̂ols

j )

(
|β̂ols

j | − λn

|β̂ols
j |γ

)
+

, (2.13)

where (z)+ = max (z, 0), γ > 0 and β̂ols
j is the ordinary least squares (OLS) estimator of

βj.
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Figure 2.2: Plot of thresholding functions with λ = 1 for (a) lasso, (b) SCAD, (c) adaptive lasso with γ = 0.5, and (d)
adaptive lasso with γ = 2.

Figure 2.2 (c)-(d) gives us insight into the shrinkage mechanism of the adaptive lasso.

We observe that the adaptive lasso shrinkage still causes the estimate of a non-zero coef-

ficient to be biased towards zero, but unlike the lasso (Figure 2.2 (a)), the bias becomes
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smaller for coefficients that are larger in magnitude.

Asymptotic Properties:

Zou (2006) studied the asymptotic properties of the adaptive lasso estimator for fixed

p as n → ∞. He showed that, under certain regularity conditions, if λn/
√
n → 0 and

λnn
(γ−1)/2 →∞, then the adaptive lasso estimator possesses the oracle property.

It should be noted that the initial estimator β̂ used in the weights is not required to

be
√
n-consistent; the condition can be weakened. If there is a sequence {an} such that

an → ∞ and an(β̂ − β∗) = Op(1), λn/
√
n → 0 and aγnλn/

√
n → ∞, then the oracle

property still holds.

Computational Algorithm:

Using the adaptive lasso penalty leads to a convex optimization problem and the effi-

cient algorithms for solving the lasso can be used to compute the adaptive lasso estimates.

In what follows, we provide the algorithm of Zou (2006).

Algorithm 1:

1. Define x∗ij = xij/ŵj, i = 1, 2, . . . , n, j = 1, 2, . . . , p.

2. Solve the lasso problem

β̂
∗
n = arg min

β

1

2

n∑
i=1

(
yi −

p∑
j=1

x∗ijβj

)2

+ λn

p∑
j=1

|βj|

 ,

for all λn.

3. Set β̂alasso
j = β̂∗j /ŵj, j = 1, 2, . . . , p.

2.1.1.4 Group Lasso

Yuan and Lin (2006) proposed the group lasso procedure, which allows for whole groups

of covariates to be selected for inclusion or exclusion from the model. A leading example

is when we have dummy variables encoding a multilevel categorical predictor. In this
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case, the lasso would select individual dummy variables instead of including the group of

variables together. There are many biological applications with a natural group structure

among the variables. For example, genes do not work in isolation but rather operate

within known pathways (Sokolov, 2016), and often it is of interest to establish which

pathways are related to a response rather than the individual genes. In what follows, we

provide the definition of the group lasso estimator.

Definition 6. Definition (The group lasso estimator): Consider a linear regression

model with J groups of covariates, where for j = 1, . . . , J , Xj represents the covariates

in group j of size pj. The group lasso estimator is obtained by solving

arg min
β1,...,βJ

{
1

2
‖y −

J∑
j=1

xjβj‖2 + λ
J∑
j=1

√
pj‖βj‖2

}
, (2.14)

where λ > 0 is a tuning parameter and the term √pj accounts for the varying group sizes.

The group lasso procedure acts like the lasso at the group level: a group of covariates

may be knocked out, depending on the choice of λ (Friedman et al., 2010). The group

lasso objective function is convex and can be optimized using a block coordinate descent

procedure. Since the penalty is also block separable, the algorithm is guaranteed to

converge to the optimal solution (Hastie et al., 2015).

2.1.1.5 Criticisms of the Oracle Property

Penalized likelihood methodology, such as lasso and SCAD, have been widely used in high-

dimensional data analysis due to the fact that they perform model selection and parameter

estimation simultaneously. In most existing work, the focus has been on studying their

prediction, estimation and selection consistency properties, but other important questions

remain to be answered. Procedures like lasso and SCAD set a parameter directly to zero

as a result of the optimization of a penalized objective function, which makes challenging

the task of performing statistical inference (e.g. obtaining valid confidence intervals for

the true parameter when model selection precedes parameter estimation). A naive use of

inference procedures that do not take into account the model selection step can be highly
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misleading (see e.g. Leeb and Pötscher, 2005).

Other questions that arise relate to the oracle property, as defined in Fan and Li

(2001). Leeb and Pötscher (2008) related the oracle property of shrinkage estimators to

the superefficiency property of Hodges’ estimator. For X1 . . . , Xn
i.i.d.∼ N (µ, 1), Hodges’

estimator for the mean is Tn = X̄n if |X̄n| > n−1/4 and is 0 otherwise, which is a

hard-thresholding estimator exhibiting the sparsity and oracle property. As the sample

size increases, however, its maximal (scaled) mean squared error grows without bound,

whereas the standard maximum likelihood estimator X̄n has constant finite quadratic

risk. Leeb and Pötscher (2008) showed that the unbounded risk result is true for any

estimator possessing the sparsity property. They showed that any estimator satisfying a

sparsity property has maximal risk that converges to the supremum of the loss function; in

particular, the maximal risk diverges to infinity whenever the loss function is unbounded.

Their result is in the linear regression setting. They find that the SCAD estimator can

perform rather poorly in finite samples and that its worst-case performance relative to

maximum likelihood deteriorates with increasing sample size when the estimator is tuned

to sparsity. The bad risk behaviour is a local phenomenon and occurs at points in the

parameter space that are sparse in the sense that some of the components are equal to 0.

They argue that the oracle property is an asymptotic feature that holds only pointwise in

the parameter space and gives a misleading picture of the actual finite-sample performance

of the estimator.

2.1.2 Tuning Parameter Selection

The asymptotic properties of the penalized likelihood estimators discussed in Section

2.1.1 depend on the choice of the tuning parameter λ > 0, which controls the balance

between model fit and model complexity. In what follows, we provide a literature review

on the selection of the tuning parameter in the penalized maximum likelihood problem

β̂λ = arg max
β

{
`n(β)− n

p∑
j=1

pλ(|βj|)

}
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for some penalty function pλ(·) with tuning parameter λ. First, we discuss two desirable

asymptotic properties of a tuning parameter selection procedure, namely consistency and

efficiency, in Section 2.1.2.1. Then, in Section 2.1.2.2, we review existing tuning param-

eter selection procedures, focusing our discussion on cross-validation (CV), generalized

cross-validation (GCV), and the generalized information criterion (GIC), which has as

special cases the Akaike information criterion (AIC) and the Bayesian information crite-

rion (BIC).

2.1.2.1 Consistency and Efficiency

In model selection, one goal is to identify important predictors that are relevant to the

response. Another goal is to construct a model with strong predictive power. Accord-

ingly, model selection criteria are assessed from two different perspectives: identification

of the true model and accurate prediction. In the literature, the asymptotic properties

of model selection criteria that are studied from these two perspectives are consistency

and efficiency. A tuning parameter selection procedure is said to be consistent if the

true model is identified with probability approaching 1 in large samples when the set of

candidate models contains the true model. A tuning parameter selection procedure is

said to be efficient if it selects the model so that its average squared error is asymptot-

ically equivalent to the minimum among the candidate models when the true model is

approximated by a family of candidate models (Zhang et al., 2010). Both consistency

and efficiency are pointwise asymptotic properties.

To formally define these categories of selection criteria in the context of tuning pa-

rameter selection, we first introduce some notation. Let A denote the collection of all

candidate models α and α0 denote the unique true model. Further, let λ̂ denote the

selected tuning parameter and αλ̂ the corresponding selected model.

Definition 1 (Consistency): A tuning parameter selection procedure is said to be

consistent if

P (αλ̂ = α0)→ 1 as n→∞.
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Definition 2 (Asymptotically loss efficient): A tuning parameter selection procedure

is said to be asymptotically loss efficient if

L(β̂λ̂)

infλ∈[0,λmax] L(β̂λ)
→ 1 (2.15)

as n → ∞ in probability, where β̂λ̂ is associated with the tuning parameter λ̂ selected

by this procedure, and L is some loss function. In the literature, the L2 norm has been

commonly used to assess the efficiency of the classical AIC procedure in linear regression

models.

Asymptotic properties of some model selection criteria have been established in dif-

ferent settings. The traditional model selection criterion AIC is an efficient selection

criterion in that it selects the best finite-dimensional candidate model in terms of predic-

tion accuracy when the true model is only approximated by a family of candidate models

(Wang, 2007a). However, it is an inconsistent selection criterion (Shao, 1997) since it

does not select the correct model with probability approaching 1 in large samples when

the true model is among the set of candidate models. The traditional model selection cri-

terion BIC, on the other hand, is consistent under some assumptions. In Section 2.1.2.2,

we review tuning parameter selectors in the penalized likelihood framework and include

in our discussion their asymptotic properties.

2.1.2.2 Existing Methods for Tuning Parameter Selection

Cross-Validation and Generalized Cross-Validation:

Cross-validation (CV) and generalized cross-validation (GCV) are nonparametric meth-

ods for estimating prediction error, and had been used by Fan and Li (2001) for selecting

the tuning parameter in their nonconcave penalized likelihood methods. In K-fold CV,

part of the available data is used to fit the model, while the remaining part is used to test

it. It first involves randomly splitting the data into K roughly equal-sized parts. Then

for the kth part, the model is fitted to the other K − 1 parts of the data, which make up

the training data set, and the prediction error of the fitted model when predicting the
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kth part of the data, called the test or validation data set, is calculated. This process

is repeated K times, with each of the K parts used exactly once as the validation data,

and the K estimates of prediction error are then combined. The case K = n is called

leave-one-out CV. For the ith observation, the fit is computed using all the data except

the ith. With K = n, the CV estimator is approximately unbiased for the true (expected)

prediction error. See Hastie et al. (2009) for more details.

Fan and Li (2001) had used 5-fold CV for selecting the tuning parameter. In this

case, if D denotes the full data set, and D−k and Dk denote the training and test data

sets, respectively, then the selected λ is then taken to be the minimizer of

CV(λ) =
5∑

k=1

∑
(yk,xk)∈Dk

{
yk − xTk β̂

(−k)

λ

}2

,

where, for each λ and k, β̂
(−k)

λ is the estimator of β using the training set D−k.

Fan and Li (2001) had also used GCV, which provides a convenient approximation to

leave-one-out cross-validation for linear fitting under squared-error loss (Friedman et al,

2009). Viewing

PX(β̂λ) = X
{
XTX + nΣλ(β̂λ)

}−1

XT

as a projection matrix, where Σλ(β̂λ) = diag
{
p′λ(|β̂λ1|)/|β̂λ1|, . . . , p′λ(|β̂λp|)/|β̂λp|

}
, Fan

and Li (2001) defined the number of effective parameters in the penalized least squares

fit to be dfλ = tr
{
PX(β̂λ)

}
so that the GCV statistic is

GCV(λ) =
1

n

‖y −Xβ̂λ‖2(
1− dfλ

n

)2 .

The selected tuning parameter λ is then taken to be the minimizer of GCV. Wang et al.

(2007a) investigated tuning parameter selection for the penalized least squares method

with the SCAD penalty. They found that the resulting model selected by GCV tends to

overfit.
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The Akaike Information Criterion:

Another possible method for selecting the tuning parameter in penalized likelihood

approaches is the Akaike information criterion (Akaike, 1973), which was derived as

an estimator of the Kullback-Leibler information discrepancy. It aims to minimize the

Kullback-Leibler divergence between the true distribution and the estimate from a can-

didate model. In the penalized likelihood framework in the regression setting, AIC is

computed as twice the negative log-likelihood evaluated at the penalized MLE β̂λ, pe-

nalized by the number of non-zero coefficients in β̂λ. When the penalized least squares

function

Qλ(β) =
1

2
‖y −Xβ‖2 + n

p∑
j=1

pλ(|βj|)

is used, AIC becomes

AIC(λ) = log σ̂2
λ +

2dfλ
n

,

where σ̂2
λ = 1

n
‖y − Xβ̂λ‖2 and β̂λ = arg min

β
Qλ(β). The traditional model selection

criterion AIC is an efficient but inconsistent selection criterion. As pointed out in Wang

et al. (2007a), since AIC(λ) can be viewed as an approximation of the log-transformation

of

GCV(λ) =
‖y −Xβ̂λ‖2

n
(
1− dfλ

n

)2 =
σ̂2
λ(

1− dfλ
n

)2 ,

as follows

logGCV(λ) = log σ̂2
λ − 2 log

(
1− dfλ

n

)
≈ log σ̂2

λ +
2dfλ
n

= AIC(λ),

AIC and logGCV are very similar. Thus, AIC also suffers from an overfitting effect and

GCV, like AIC, may not identify the true model consistently.
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The Bayesian Information Criterion:

Shown by Shao (1997) to be a consistent model selection criterion in the classical

regression setting, Wang et al. (2007a) employed the Bayesian information criterion

(Schwarz, 1978) to select the tuning parameter λ in the penalized least squares method

with the SCAD penalty. They selected the optimal tuning parameter by minimizing

BIC(λ) = log σ̂2
λ +

dfλ log n

n
.

The BIC arises from the Bayesian approach to model selection; choosing the model with

minimum BIC is equivalent to choosing the model with largest (approximate) posterior

probability. Wang et al. (2007a) showed that BIC is able to identify the true model

consistently when the penalized least squares approach is used with the SCAD penalty.

Generalized Information Criterion:

When performing classical variable selection for the normal linear regression model

yi = xTi βα + εi with εi ∼ N (0, σ2), i = 1, . . . , n, Nishii (1984) proposed the generalized

information criterion (GIC), which is given by

GICκn(α) = log σ̂2
α +

1

n
κndα,

where βα is the parameter of the candidate model α, σ̂2
α is the MLE of σ2, and κn is a

positive number that controls properties of variable selection. The GIC has AIC and BIC

as special cases; when κn = 2, GIC becomes AIC, while κn = log n leads to BIC.

In the context of linear and generalized linear models with a nonconcave penalty

function, Zhang et al. (2010) proposed to use a GIC-type criterion. Their GIC-type

tuning parameter selector is given by

GICκn(λ) =
1

n

{
G(y, β̂λ) + κndfλ

}
, (2.16)

where G(y, β̂λ) measures the fitting of model αλ and dfλ is the degrees of freedom of

30



model αλ. Fan and Li (2001) proposed that the degrees of freedom in (2.16) be the trace

of the approximate linear projection matrix

dfL,λ = tr
{

(5⊗2
λ Q∗(β̂λ))

−15⊗2
λ `(β̂λ)

}
,

where

Q∗(β) = `(β)− n
p∑
j=1

qλ(|βj|),

and qλ(·) is the LQA of pλ(·),
[
5⊗2
λ Q∗(β)

]
jj′

= ∂2

∂βjβj′
Q∗(β), and

[
5⊗2
λ `(β)

]
jj′

= ∂2

∂βjβj′
`(β)

for j, j′ such that β̂j 6= 0 and β̂j′ 6= 0.

Assuming that the penalized likelihood estimator β̂λ is sparse and consistent, and

under certain conditions on the penalty function, Zhang et al. (2010) showed that

P (dfL,λ = dαλ)→ 1

as n → ∞, where dαλ is the size of model αλ. In linear regression models, Zou et al.

(2007) also suggested using dαλ as an estimator of the degrees of freedom for the lasso.

They showed that dαλ is an asymptotically unbiased estimator.

In (2.16), when κn = 2, GIC is referred to as the AIC selector, while when κn → 2,

GIC is referred to as the AIC-type selector. GIC with κn →∞ and κn/
√
n→ 0 is called

the BIC-type selector. In the linear and generalized linear modelling context, Zhang

et al. (2010) found that when the true model is among a set of candidate models, the

BIC-type selector identifies the true model consistently, whereas the AIC-type selector

tends to overfit. On the other hand, in the linear modelling context, if the true model

is approximated by a set of candidate models, the AIC-type selector is asymptotically

loss-efficient, which is a property not shared by the BIC-type selector in general. Zhang

et al. (2010) focused on the efficiency of linear model selections via the L2 norm.
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2.2 Regularized Inverse Covariance Estimation

In Section 2.1, we reviewed penalized likelihood methods for simultaneously selecting

important variables and estimating parameters in a linear regression model with a large

number of predictors. In this section, we review these same penalized likelihood methods

in the context of inverse covariance estimation as well as discuss other regularization

procedures for estimating a sparse inverse covariance matrix.

2.2.1 Penalized Maximum Likelihood Estimation

When it comes to estimating a precision matrix on the basis of a sample of vectors

drawn from a multivariate Gaussian distribution, the most widely used approach is L1

regularization. Various authors (Yuan and Lin, 2007; Banerjee et al., 2008; Friedman

et al., 2008) have investigated L1-penalized likelihood methods for sparse estimation

of precision matrices. These methods work within the covariance selection framework,

where the goal is to identify the zero elements of Θ. In the graphical modelling context,

neighbourhood selection (Meinshausen and Bühlmann, 2006) is also used. Neighbourhood

selection aims to estimate (individually) the neighbourhood of any given variable (or

node), rather than to produce an estimate of the inverse covariance matrix. It can be

cast as a standard regression problem and be solved efficiently with the lasso. We provide

a review of these penalization methods, but focus our discussion on inverse covariance

selection methods. In Section 2.2.1.3, we also discuss the selection of the tuning parameter

in the penalized maximum likelihood problem.

2.2.1.1 Neighbourhood Selection

Meinshausen and Bühlmann (2006) proposed performing a neighbourhood selection at

each node in the graph using the lasso penalty. The neighbourhood Ni of a node i ∈ V

consists of all nodes j ∈ V \ {i} such that (i, j) ∈ E. Neighbourhood selection aims to

estimate the set of neighbours of a node. It does so by fitting a lasso regression using each

node (variable) as the response and the others as predictors. More specifically, let Xj

32



denote the jth column of X ∈ Rn×p and X−j ∈ Rn×(p−1). For each node j, Meinshausen

and Bühlmann (2006) solve the following optimization problem

β̂
j
(λ) = arg min

β

(
1

n
‖Xj −X−jβ‖2 + λ‖β‖1

)
, (2.17)

where λ > 0. The element θij is then estimated to be nonzero if either the estimated

coefficient of variable i on j is nonzero or the estimated coefficient of variable j on i

is nonzero (Hastie et al., 2009). The authors show that asymptotically this procedure

consistently estimates the support of Θ, even when the number of variables is allowed

to grow as rapidly as the sample size raised to an arbitrarily large power, but it is not

guaranteed to produce a positive definite estimate Θ̂.

2.2.1.2 Sparse Inverse Covariance Selection

While Meinshausen and Bühlmann (2006) only estimate which θij’s are nonzero, Yuan

and Lin (2007), Banerjee et al. (2008) and Friedman et al. (2008) try to estimate the

sparsity pattern of the underlying graph as well as obtain a regularized estimate of the

precision matrix. They consider maximizing the penalized log-likelihood

log det Θ− tr(SΘ)− λ‖Θ‖1 (2.18)

over non-negative definite matrices Θ, and where tr denotes the trace, λ > 0 is a regu-

larization parameter and ‖Θ‖1 =
∑

ij |θij| is the L1 norm. The diagonal entries may also

be omitted from the penalty. The objective function (2.18) was shown to be convex in

Banerjee et al. (2008). Due to the convexity of (2.18), Friedman et al. (2008) solve this

optimization problem using a coordinate descent procedure, which is remarkably fast.

While the L1 penalty is convex and leads to a desirable convex optimization problem

when the log-likelihood function is convex, even in the simple regression setting, the lasso

penalty produces biases in the estimates for large coefficients. This occurs since the L1

penalty increases linearly with the magnitude of its argument. This problem also arises

for precision matrix estimation (see Lam and Fan, 2009).
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As a remedy to the bias issue, Fan et al. (2009) and Lam and Fan (2009) introduce

nonconcave penalties, such as the smoothly clipped absolute deviation (SCAD; Fan and

Li, 2001) penalty. The SCAD penalty is symmetric and a quadratic spline on [0,∞),

whose first order derivative is given by

p′λ(x) = λ

{
I(|x| ≤ λ) +

(aλ− |x|)+

(a− 1)λ
I(|x| > λ)

}
,

where λ > 0 and a > 2 are two tuning parameters. Fan and Li (2001) recommend the

choice a = 3.7, based on an argument of minimizing certain Bayes risk criteria. Therefore,

Fan et al. (2009) seek to solve the following optimization problem:

Θ̂SCAD = arg max
Θ�0

{
log det Θ− tr(SΘ)−

p∑
i=1

p∑
j=1

pλ(|θij|)

}
. (2.19)

To take advantage of the graphical lasso algorithm of Friedman et al. (2008), Fan et al.

(2009) use a local linear approximation (LLA) of the penalty function, proposed by Zou

and Li (2008). Specifically, given the current estimate Θ̂(m) = (θ̂
(m)
ij ), they approximate

pλ(|θij|) in a neighbourhood of |θ̂(m)
ij | as follows:

pλ(|θij|) ≈ pλ(|θ̂(m)
ij |) + p′λ(|θ̂

(m)
ij |)(|θij| − |θ̂

(m)
ij |), (2.20)

where p′λ(x) ≥ 0. Therefore, using this approximation, the expression in (2.19) becomes

arg max
Θ�0

{
log det Θ− tr(SΘ)−

p∑
i=1

p∑
j=1

p′λ(|θ̂
(m)
ij |)|θij|

}
, (2.21)

which is optimized at each iteration m. The penalty term in (2.21) is the adaptive lasso

penalty (Zou, 2006) with weights wij = p′λ(|θ̂
(m)
ij |) specified at each iteration m. In other

words, the weighting scheme is governed by the derivative of the SCAD penalty function,

evaluated at the magnitude of the current estimate θ̂(m)
ij ; the larger the magnitude, the

smaller the weight. This optimization problem can be solved using the graphical lasso

algorithm of Friedman et al. (2008). The objective function in (2.21) was shown in Fan
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et al. (2009) to increase at every iteration.

Fan et al. (2009) also consider the adaptive graphical lasso with weights wij = 1/|θ̃ij|γ

for some γ > 0 and any consistent estimate Θ̃ = (θ̃ij) of Θ. This optimization problem

can be solved by the graphical lasso algorithm proposed by Friedman et al. (2008) as well.

One advantage of the SCAD penalty is that an entry in the precision matrix estimated

as zero can escape from zero in the next iteration, which is not the case for the adaptive

lasso penalty.

Fan et al. (2009) studied the asymptotic properties of their proposed penalized like-

lihood estimators. One desirable property of an estimator is the oracle property. Let

A = {(i, j) : θij 6= 0}. The estimator Θ̂ = (θ̂ij) of the precision matrix Θ = (θij) is said

to possess the oracle property if the following conditions are satisfied.

Oracle Property:

1. Sparsity : If θij = 0, then P(θ̂ij = 0)→ 1 as n→∞.

2. Asymptotic normality: For (i, j) ∈ A, the entries θ̂ij of Θ̂ are
√
n-consistent and

asymptotically normal.

In other words, the true zero entries of the precision matrix are estimated as zero

with probability tending to one, and the estimators of the entries θij for (i, j) ∈ A of the

precision matrix have the same limiting distribution as the maximum likelihood estimator,

knowing the true sparsity pattern. The first property is also referred to as sparsistency

in Lam and Fan (2009).

Under certain conditions and assuming that p is fixed as n → ∞, Fan et al. (2009)

established that for both the SCAD and adaptive lasso penalties, the optimizer of the

penalized likelihood function has the oracle property. Specifically, they showed that if

λ→ 0 and
√
nλ→∞, then the oracle property holds for the SCAD-penalized estimator.

Also, if
√
nλ = Op(1) and λ

√
naγn →∞, then the oracle property holds for the graphical

adaptive lasso estimator with weights wij = 1/|θ̃ij|γ for some γ > 0 and any an-consistent

estimator Θ̃ of Θ, i.e. an(Θ̃−Θ) = Op(1).

In Yuan and Lin (2007), they studied the asymptotic properties of the graphical lasso

estimator as well as the non-negative garrote-type estimator. They assumed that p is
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held fixed as the sample size n → ∞. They showed that the non-negative garrote-type

(Breiman, 1995) estimator possesses the oracle property.

Lam and Fan (2009) studied the rates of convergence for penalized likelihood esti-

mation of sparse precision matrices via the L1 penalty and a general penalty function

satisfying the properties in Fan and Li (2001). They showed that the rate for estimating

Θ under the Frobenius norm is of order (sn log pn/n)1/2, where sn is the number of non-

zero elements, pn is the dimension, and n is the sample size. Their result demonstrates

how the number of non-zero elements and dimensionality affect the convergence rate:

there are sn non-zero parameters and each one of them can be estimated at best with

rate n−1/2. The contribution of high-dimensionality to the convergence rate is merely a

logarithmic factor log pn. They showed that for the L1 penalty to guarantee sparsistency

and the optimal rate of convergence, the number of non-zero elements in Θ should be

small; specifically, the number of non-zero elements in the off-diagonals of Θ should be

at most O(pn), among the O(p2
n) parameters. However, for the SCAD penalty function,

there is no such restriction. Their results allow for pn � n as long as log pn/n = o(1).

Bien and Tibshirani (2011) used the L1 penalty to impose sparsity in the covariance

matrix itself, rather than its inverse. Under the normality assumption, zeros in a co-

variance matrix correspond to marginal independence relationships between variables.

Gaussian graphical models for marginal independence are known as covariance graph

models, which are popular in genomics (Hastie et al., 2009 and references therein).

2.2.1.3 Tuning Parameter Selection

A challenging problem in high-dimensional inverse covariance estimation via the penalized

likelihood method is the data-dependent selection of the tuning parameter λ, which has

the important role of controlling the sparsity of Θ. There are two standard approaches

for selecting the optimal tuning parameter, namely information criteria and resampling

schemes. In what follows, we review these existing methods for selecting the tuning pa-

rameter λ.
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Information Criteria and Resampling Schemes:

Information criteria that have been used in the literature for selecting the tuning pa-

rameter include the Bayesian information criterion (BIC; Gao et al., 2012), the extended

Bayesian information criterion (EBIC; Gao et al., 2012), and the Akaike information cri-

terion (AIC; Lian, 2011). Resampling schemes such as cross-validation (CV; Fan et al.,

2009) and generalized approximate cross-validation (GACV; Lian, 2011) have also been

used.

The two most widely used information criteria for selecting the tuning parameter in

any penalized likelihood method are AIC and BIC. In this context, they are given by

AIC(λ) = −2`n(Θ̂λ) + 2
∑
i<j

I(θ̂ij,λ 6= 0)

and

BIC(λ) = −2`n(Θ̂λ) + log n
∑
i<j

I(θ̂ij,λ 6= 0),

respectively, where `n(Θ̂λ) is the multivariate Gaussian log-likelihood, evaluated at Θ̂λ,

the penalized maximum likelihood estimator of Θ for a given λ. The optimal value of the

tuning parameter in either case is taken to be the minimizer of the criterion.

Gao et al. (2012) studied the BIC-selection of the tuning parameter for penalized

likelihood estimation of Θ. Gao et al. (2012) showed that, for fixed p, the optimal tuning

parameter selected by BIC with either the SCAD or adaptive lasso penalties leads to

consistency in model selection. In other words, the BIC identifies the sparsity pattern of

the true precision matrix with probability approaching one in large samples. They also

showed that if p diverges to infinity with the sample size, a modified BIC with an extra

penalty on the dimension p of the precision matrix is model selection consistent when the

number of true non-zeros is bounded. Their modified BIC is equivalent to the extended

BIC (EBIC) of Foygel and Drton (2010) with γ = 1, adapted from Chen and Chen (2008),

who had studied the EBIC for Gaussian linear models. The theoretical results of Chen

and Chen (2008) implied that the traditional BIC is likely to be inconsistent when p is
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of a larger order than
√
n. The EBIC is given by

EBIC(λ) = −2`n(Θ̂λ) + log n
∑
i<j

I(θ̂ij,λ 6= 0) + 4γ log p
∑
i<j

I(θ̂ij,λ 6= 0)

for some γ > 0. Gao et al. (2012) take γ = 1.

Gao et al. (2012) compared the empirical performance of BIC and EBIC to cross-

validation and demonstrated the advantageous performance of BIC for sparse precision

matrix estimation through simulation studies. It is important to note that, as in the re-

gression context, the tuning parameter selection procedure used should depend on one’s

statistical goal. If the aim is to correctly identify the zeros and non-zeros of the preci-

sion matrix, then BIC and EBIC are appropriate because of their selection consistency

properties. If, on the other hand, one’s concern is prediction performance, then CV and

AIC are better options as they are both estimators of the Kullback-Leibler information

and are equivalent asymptotically under certain assumptions.

Stability Approach to Regularization Selection (StARS):

Procedures AIC, BIC and cross-validation for selecting the tuning parameter λ have

desirable theoretical properties in low dimensions, but they do not perform satisfactorily

for high-dimensional problems. Liu et al. (2010) proposed a stability-based method for

choosing the tuning parameter in the high-dimensional setting. Their method, which

makes use of subsampling and is called Stability Approach to Regularization Selection

(StARS), has the goal of using the least amount of shrinkage that results in a sparse

network (precision matrix) that is reproducible under random sampling. Their method

repeatedly takes random subsamples of the data and estimates for each subsample the

entire solution path indexed by tuning parameter λ. For each tuning parameter, the

selection frequencies of individual edges are calculated and a measure of overall stability

is obtained. StARS then selects the value of λ at which subsampled (non-empty) graphs

are the most stable in terms of edge selection frequencies (Kurtz et al., 2015).

The authors show that StARS is partially sparsistent in terms of graph estimation
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under mild conditions; i.e. StARS selects all true edges with high probability even when

the dimension p diverges with the sample size n.

2.2.2 Banding and Thresholding

The simplest approaches to regularized (inverse) covariance estimation are banding, ta-

pering (Bickel and Levina, 2008a) and thresholding (Bickel and Levina, 2008b). In Bickel

and Levina (2008a), they proposed two methods of regularization for the case where both

p and n tend to infinity. Their first method is to band the sample covariance matrix

S = (sij), given by S = 1
n

∑n
i=1 XiX

T
i , assuming that X̄ = 0 so that the columns of

X are centered. Given any 0 ≤ k ≤ p, they define the k-banded version of the sample

covariance matrix as

Bk(S) = [sijI(|i− j| ≤ k)]1≤i,j≤p ,

where I(·) is the indicator function and estimate Σ = (σij) by Σ̂k = Bk(S). This method

assumes that the indices are such that if |i− j| > k, then σij = 0. However, banding does

not guarantee positive-definiteness of the estimated covariance matrix. Therefore, Bickel

and Levina (2008a) also considered tapering the covariance matrix; that is, replacing S by

S ∗P , where ∗ denotes Schur (coordinate-wise) matrix multiplication and P is a positive

definite symmetric matrix. This would guarantee positive-definiteness of the estimated

covariance matrix since the Schur product of positive definite matrices is also positive

definite. Banding is a special case of tapering, where P = (pij)1≤i,j≤p = [I(|i − j| ≤

k)]1≤i,j≤p, which is not positive definite.

Their second method of regularization involves banding the Cholesky factor of the

inverse covariance matrix. Note the modified Cholesky decomposition of the inverse will

be introduced in Section 2.2.3.1. Given a sample X1, . . . ,Xn, they estimated a k-banded

inverse by taking the elements in the first k bands of the Cholesky factor to be the

ordinary least-squares (OLS) estimates of the coefficients and setting the elements in the

remaining bands to zero. A resampling scheme is used to select the number of non-zero
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bands k for both methods.

Both types of banding yield similar results. The authors showed that in the Gaussian

case, the banded estimators are consistent in the operator norm (also known as the

spectral norm or matrix L2 norm), uniformly over a class of approximately “bandable”

matrices, provided (log p)/n→ 0. The operator norm of a matrix A is the largest singular

value of A, that is, the square root of the largest eigenvalue of the positive-semidefinite

matrix ATA:

‖A‖ = sup {‖Ax‖ : ‖x‖ = 1} =
√
λmax(ATA),

which reduces to ‖A‖ = maxi |λi(A)| for symmetric matrices. Bickel and Levina (2008a)

obtained explicit rates of convergence depending on how fast k →∞. The rate of k that

guarantees convergence of the banded estimator depends not only on n and p, but on

the dependence structure as well. Convergence in the operator norm implies convergence

of eigenvalues and eigenvectors (see Bickel and Levina, 2008b, and references therein),

making this norm important for PCA applications.

Bickel and Levina (2008b) also proposed thresholding the sample covariance matrix

S. They defined the thresholding operator by

Tλ(S) = [sijI(|sij| ≥ λ)]1≤i,j≤p ,

where we see that matrix S is thresholded at λ. Note that Tλ preserves symmetry and is

permutation-invariant. However, it does not necessarily preserve positive-definiteness.

The threshold λ is chosen by cross-validation. The authors showed that for a suit-

ably sparse class of matrices, the estimator is consistent in the operator norm, provided

(log p)/n→ 0. Therefore, the estimator will be positive-definite with probability tending

to 1.
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2.2.3 Cholesky-Based Regularization

In this section, we present methods for estimating a covariance matrix or its inverse

when there is a natural ordering among the variables. These methods make use of the

modified Cholesky decomposition of the inverse and introduce regularization through the

Cholesky factor in this decomposition. We provide a derivation of the modified Cholesky

decomposition in Section 2.2.3.1. We then discuss smoothing-based regularization of the

Cholesky factor in Section 2.2.3.2, followed by penalized maximum likelihood estimation

of the Cholesky factor in Section 2.2.3.3.

2.2.3.1 The Modified Cholesky Decomposition

We begin this section by reviewing the modified Cholesky decomposition of the inverse

covariance matrix Θ = Σ−1, which relies on the assumption that variables have a natural

ordering. A review can also be found in Levina et al. (2008). Let X = (X1, . . . , Xp)
T be a

random vector with mean 0 and covariance matrix Σ. Wu and Pourahmadi (2003) think

of X as the time-ordered observations of one subject in a longitudinal study. The inverse

covariance matrix of X has the following unique modified Cholesky decomposition

Σ−1 = LTD−1L, (2.22)

where L is a lower triangular matrix with ones on its diagonal and D is a diagonal matrix.

The Cholesky factor L and the diagonal matrix D can be constructed by regressing a

variable Xj on its predecessors. Let X1 = ε1 and, for j > 1,

Xj =

j−1∑
t=1

φjtXt + εj, j = 2, . . . , p, (2.23)

where the φjt’s are the coefficients of the linear least-squares predictor ofXj fromX1, . . . , Xj−1

and σ2
j = Var(εj) are the corresponding residual variances. Then −φjt is the (j, t)th entry

of L for j > t and D = diag(σ2
1, . . . , σ

2
p).

To see this, let Φ be the lower triangular matrix with jth row containing the coefficients
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φjt, t = 1, . . . , j − 1 of the jth regression and Φ has zeros on the diagonal. Let ε =

(ε1, . . . , εp)
T . Then converting (2.23) to matrix form,

ε = (I − Φ)X, (2.24)

which is the vector of successive uncorrelated prediction errors with Cov(ε) = D, and

where I is the p× p identity matrix. Therefore, taking covariance of both sides of (2.24),

we have that

D = (I − Φ)Σ(I − Φ)T .

Finally, letting L = I − Φ, we can write Θ = LTD−1L.

Therefore, the modified Cholesky decomposition converts the constrained entries of Θ

into two groups of unconstrained parameters, namely the log of the variance parameters,{
log σ2

1, . . . , log σ2
p

}
, and the subdiagonal entries of L, {φjt : j = 2, . . . , p, t = 1, . . . , j − 1}.

If we denote the estimators of L and D by L̂ and D̂, respectively, an estimator of Θ is

given by Θ̂ = L̂T D̂−1L̂, which is guaranteed to be positive-definite. This approach re-

duces the challenging task of modelling a covariance matrix to that of modelling p − 1

regression problems (Pourahmadi, 2011).

2.2.3.2 Smoothing-Based Regularization of the Cholesky Factor

In this section, we first review the nonparametric smoothing method of Wu and Pourah-

madi (2003) to regularize the estimation of covariance matrices. They proposed to esti-

mate a banded inverse covariance matrix by smoothing along the first few subdiagonals

of L using local polynomial smoothing (Fan and Gijbels, 1996) and setting the rest to

zero. Their two-step estimation procedure proceeds as follows. The first step is to obtain

the ordinary least-squares estimates L̂ and D̂ of L and D in (2.22), respectively. The

second step is to apply local polynomial smoothing to the diagonal elements of D̂ and the

subdiagonals of L̂. The number of diagonals to be smoothed is chosen using an informa-

tion criterion like AIC or BIC. The authors established elementwise consistency of their
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nonparametric estimator, but that is a property also shared by the sample covariance

matrix (Levina et al., 2008).

Huang et al. (2007) proposed regularization of maximum likelihood estimation (MLE)

by applying spline smoothing to the diagonal elements of D and subdiagonals of L. In

their approach, which they call regularized MLE by basis expansion, they model log σ2
j

and φjt as realizations of smooth functions, which are each approximated as spline func-

tions, which in turn are represented by basis expansion, and then maximize the likelihood

with respect to the spline coefficients. In their implementation, they use quadratic splines

and the number of knots and the number of subdiagonals in L to smooth are determined

using BIC. The advantage of their method over that of Wu and Pourahmadi (2003) is

that it does not rely on a first-step estimator of the Cholesky factor. Their estimator can

be computed even when the first-step estimator is not well-defined (for example, when

p > n).

To compare the performance of their covariance matrix estimator to that of Wu and

Pourahmadi (2003), they considered the entropy loss for the covariance matrix and the

quadratic loss for the covariance matrix. Three different covariance structures are con-

sidered. The authors take Σ = Ip for the first case, a varying-coefficient AR(1) covari-

ance structure for the second case, and an inverse covariance matrix with a non-sparse

Cholesky factor that has many small entries for the third case. The authors find that

both smoothed covariance estimators outperform the sample covariance matrix for every

combination of Σ, n and p considered under both loss functions, and the improvement

increases as p increases. They also find that the spline-smoothed covariance estimators

significantly improve upon the two-step local polynomial smoothed estimator of Wu and

Pourahmadi (2003). They reasoned that the two-step method of Wu and Pourahmadi

(2003) does not perform as well as their method because their first-step raw estimator is

too noisy.
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2.2.3.3 Penalized Likelihood Estimation of the Cholesky Factor

To impose sparsity in the Cholesky factor L of the inverse covariance matrix Θ, penal-

ized likelihood methods have also been used. In this section, we review the penalization

schemes of Huang et al. (2006) and Levina et al. (2008) for introducing zeros in the

Cholesky factor L of the inverse.

Penalization via L1 and L2 penalties: The regression interpretation of the Cholesky

factor of the inverse covariance matrix, outlined in Section 2.2.3.1, suggests that the

familiar variable selection techniques in regression analysis can be applied to covariance

matrix estimation. With two such techniques in mind, namely ridge regression (Hoerl

and Kennard, 1970) and the lasso (Tibshirani, 1996), Huang et al. (2006) introduced

shrinkage to the Cholesky factor L by applying to the Gaussian log-likelihood L1 and L2

penalties to the entries φjt, j > t, of L. The Gaussian log-likelihood, up to a constant, is

given by

`(Σ;x1, . . . ,xn) = n log |Σ−1| −
n∑
i=1

xTi Σ−1xi

= n log |D−1| −
n∑
i=1

xTi L
TD−1Lxi

= −

n
p∑
j=1

log σ2
j +

p∑
j=2

n∑
i=1

1

σ2
j

(
xij −

j−1∑
t=1

φjtxit

)2
 .

Therefore, Huang et al. (2006) proposed to estimate Σ by minimizing the following

objective function

−`(Σ;x1, . . . ,xn) + λ

p∑
j=2

P (φj),

where φj = (φj1, . . . , φj,j−1) and P (φj) = ‖φj‖qq with ‖φj‖qq as the Lq vector norm for

q = 1, 2. The L2 penalty (q = 2) results in shrinkage of the Cholesky factor L, but does

not set elements of L to zero. The L1 penalty, on the other hand, introduces zeros in

arbitrary places in L, making their method more flexible than that of Wu and Pourahmadi
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(2003), discussed in Section 2.2.3.2. However, a zero entry in the Cholesky factor L does

not generally imply a zero entry in the inverse Θ, and so even with a sparse Cholesky

factor, the resulting inverse may not be sparse at all.

The authors compared the performance of their penalized maximum likelihood esti-

mator using the L1 penalty to that using the L2 penalty, and they also compared these

methods to the sample covariance matrix and two minimax estimators (Muirhead, 1982).

To gauge the performance of these methods, they considered two loss functions, the

Kullback-Leibler loss and the quadratic loss for the covariance matrix (see Section 3.10

for a detailed discussion of loss functions). In simulation with n = 100 and p = 30, they

observe that when the Cholesky factor L has many zeros, the L1 penalty does better

than the L2 penalty, and that when the Cholesky factor L has many small values, the

L2 penalty does better than the L1 penalty, as expected. To select the tuning parame-

ter, they considered 5-fold cross-validation (CV) and generalized cross-validation (GCV).

They found that both tuning parameter selection procedures perform similarly in the

case of the L2 penalty, while 5-fold CV performs better than GCV in the case of the L1

penalty. Finally, they observed that their penalized likelihood estimators outperform the

sample covariance matrix and the minimax estimator in nearly all cases considered.

Penalization via a nested lasso penalty: When components have a natural ordering,

for longitudinal data or time series, for example, it can be assumed that variables far apart

in the ordering are only weakly correlated. In this case, there is the need to impose some

structure on the covariance matrix. While the penalized likelihood estimator proposed

by Huang et al. (2006) is more stable than the sample covariance matrix, no structure

on the covariance matrix is imposed. Furthermore, any sparsity achieved in the Cholesky

factor due to the L1 penalty may be lost in the inverse.

Levina et al. (2008) thus proposed a penalized likelihood method with a penalty that

imposes a banded structure in the Cholesky factor L, and such a structure is preserved

in the resulting inverse. They introduced a novel penalty, called the nested lasso penalty,
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applied to the entries of the Cholesky factor L. Their nested lasso penalty is given by

J0(φj) = λ

(
|φj,j−1|+

|φj,j−2|
|φj,j−1|

+
|φj,j−3|
|φj,j−2|

+ . . .+
|φj,1|
|φj,2|

)
,

where 0/0 is defined as 0. It can be seen that if φjt = 0, then φj,t−1 = 0. In other words,

if the tth variable is excluded from the jth regression, then all preceding variables are also

excluded from the jth regression. This approach is more flexible than regular banding

of the Cholesky factor (Bickel and Levina, 2008a) since the nested lasso penalty can be

decomposed as separate penalties on each row of the Cholesky factor, allowing varying

row band lengths, where the band length of row j is defined as the smallest integer kj

such that φjt = 0 for all t < j − kj.

Penalizing the coefficient φj,j−1 and the ratios |φj,t|
|φj,t+1| with the same tuning parameter

may be inappropriate if they are on different scales. Therefore, to address the potential

issue of difference of scales, the authors proposed two modified versions J1 and J2 of the

penalty J0:

J1(φj) = λ

(
|φj,j−1|
|φ̂∗j,j−1|

+
|φj,j−2|
|φj,j−1|

+
|φj,j−3|
|φj,j−2|

+ . . .+
|φj,1|
|φj,2|

)
,

and

J2(φj) = λ1

j−1∑
t=1

|φjt|+ λ2

j−2∑
t=1

|φjt|
|φj,t+1|

,

where φ̂∗j,j−1 is the coefficient from regressing Xj on Xj−1 alone. In their simulations,

the authors found that J2 tends to perform better than J0 and J1. We therefore use the

penalty J2 in our simulation studies in Section 3.10. The minimization of the negative

Gaussian log-likelihood, penalized with the nested lasso penalty on the Cholesky factor

is a nonconvex problem and so the authors proposed a two-step iterative procedure that

uses a local quadratic approximation algorithm.

The authors compared their penalized likelihood estimator to the sample covariance

matrix, the L1-penalized likelihood estimator of Huang et al. (2006), the banded estima-
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tor of Bickel and Levina (2008a), and the shrinkage estimator of Ledoit and Wolf (2004),

which is not sensitive to the ordering of the variables. To assess the performance of these

methods in simulation, they used the Kullback-Leibler loss of the precision matrix. They

found that in terms of the Kullback-Leibler loss, banding and adaptive banding, in gen-

eral, outperform the sample covariance matrix, the Ledoit-Wolf estimator, and the lasso

estimator. In the case where the inverse is banded with a fixed band length, banding and

adaptive banding perform similarly, as expected. In the case where the true inverse is

banded with varying band lengths, adaptive banding outperforms regular banding, and

the difference becomes more prominent as p grows. To demonstrate that their method

is able to preserve sparsity in the inverse, unlike the Huang et al. (2006) method, they

computed average percentages of true zeros in the Cholesky factor and in the inverse

that were estimated as zero. For the cases where the true inverse is banded both with

fixed and varying band lengths, adaptive banding, banding and the standard lasso are all

reasonably able to identify the true zeros in the Cholesky factor, but the zeros are lost in

the inverse in the case of the lasso applied to the Cholesky factor. To select the tuning

parameters, the authors used a resampling scheme, such as 5-fold CV.

Levina et al. (2008) did not discuss the theoretical properties of their estimator. While

the nested lasso penalty is not convex, the theory developed by Fan and Li (2001) for

nonconvex penalized maximum likelihood estimation, in the case of fixed p and n→∞,

cannot be directly applied since the penalty cannot be decomposed as the sum of identical

penalties on the individual coefficients (Levina et al., 2008).

Note the nested lasso penalty was also used by Rothman et al. (2010), who presented

a new regression interpretation of the Cholesky factor of the covariance matrix (and

not the inverse) and proposed to estimate a banded covariance matrix by banding the

Cholesky factor of the covariance matrix.

2.2.4 Bayesian Estimation

Bayesian graphical lasso: The graphical lasso (Yuan and Lin, 2007; Banerjee et al.,

2008; Friedman et al., 2008) is a popular method for estimating graphical models (sparse
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precision matrices). Wang (2012) considered the Bayesian version of the graphical lasso.

Since maximum penalized likelihood estimation with the lasso penalty on the elements

of Θ is equivalent to maximum a posteriori estimation when independent, double expo-

nential priors are placed on the elements of the inverse, Wang (2012) had assumed the

following model

p(xi | Θ) = N (xi | 0,Θ−1) for i = 1, . . . , n,

p(Θ|λ) = C−1
∏
i<j

{
DE(θij | λ)

} p∏
i=1

{
Exp

(
θij |

λ

2

)}
1(Θ�0), (2.25)

where N (x | 0,Θ−1) represents the density function of a multivariate normal random

variable with mean 0 and covariance matrix Θ−1, evaluated at x, DE(x | λ) represents

the double exponential density function of the form p(x) = (λ/2) exp (−λ|x|), Exp(x | λ)

represents the exponential density function of the form p(x) = λe−λx, x > 0, and C is a

normalizing constant not involving λ > 0. The posterior mode of Θ is the graphical lasso

estimate with tuning parameter ρ = λ/n for any fixed λ > 0. Wang (2012) developed

a framework for efficient Bayesian inference for the graphical lasso model (2.25). They

introduced a novel block Gibbs sampler for sampling Θ from model (2.25). They then

generalized the Bayesian graphical lasso to the Bayesian adaptive graphical lasso.

Sparsity inducing priors based on the partial autocorrelation parametriza-

tion: In the case where there is an ordering among the variables, Gaskins et al. (2014)

considered the problem of correlation matrix estimation in a Bayesian framework, where

they focused on developing appropriate priors for the correlation matrix R. By consid-

ering the decomposition Θ = MR−1M , where M is diagonal with the partial standard

deviations of X and R−1 is the matrix of full partial correlations, and reparametrizing

R = (ρij) in terms of the matrix of partial autocorrelations Π = (πij), the positive-

definiteness constraint on R is removed. Now rather than imposing sparsity on R−1

directly, the authors imposed sparsity through the PAC’s. A zero entry in the partial

autocorrelation matrix Π implies that Xi and Xj for i < j are uncorrelated given the
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intervening variables (Xi+1, . . . , Xj−1). Under multivariate normality, this implies that

Xi and Xj are conditionally independent, given (Xi+1, . . . , Xj−1). However, this does

not mean that Xi and Xj are uncorrelated given the remaining variables and is thus not

equivalent to conditional independence as in the normal case. The authors proposed two

new prior distributions on the set of correlation matrices for ordered data through the

partial autocorrelations.

Their first prior shrinks PACs toward zero with the strength of the shrinkage de-

pending on lag. They used independent beta priors, shifted to the support (-1,1) with

shape parameters depending on lag. More specifically, if SBeta(α, β) denotes the beta

distribution with support shifted to (-1,1), then the shrinkage priors are formed by taking

πij
indep.∼ SBeta(αij, βij),

where αij = βij so that E(πij) = 0. Then setting

ξij = Var(πij) =
4αijβij

(αij + βij)2(αij + βij + 1)
,

one finds αij = βij = (ξ−1
ij − 1)/2 so that the distribution of πij is determined by ξij. The

authors then parametrized ξij as

ξij = ε0|j − i|−γ (2.26)

for ε0 ∈ (0, 1) and γ > 0. Therefore, ξij is now decreasing in lag so that higher lag terms

will be shrunk toward zero. To complete the Bayesian specification, the authors used a

uniform prior for ε0 and a gamma prior for γ. Since γ is required to be positive, they

take γ ∼ Gamma(5, 5) so that γ has a prior mean of 1 and a prior variance of 1/5.

Their second prior is a selection prior that assigns positive probability to the event that

πij is zero. The selection priors are formed by taking the prior for each πij as a mixture
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of a degenerate distribution δ0 with point mass at zero and a continuous distribution:

πij
indep.∼ εij SBeta(αij, βij) + (1− εij)δ0.

In this case, Gaskins et al. (2014) let α = αij and β = βij so that the shape parameters do

not depend on lag. Structure is imposed through εij instead. The authors recommended

either a uniform distribution on (-1,1) for α and β so α = β = 1 or the triangular

prior of Wang and Daniels (2013) with α = 2 and β = 1. The PAC will be zero with

probability 1 − εij. As the values of the ε’s decrease, more weight will be placed on the

point mass at zero by the selection prior, yielding sparse partial autocorrelation matrices.

Imposing structure through εij, they let εij = ε0|j − i|−γ. Note P(πij = 0) increases with

increasing lag since εij decreases with increasing lag. As with the shrinkage prior, they

chose hyperpriors ε0 ∼ Unif(0, 1) and γ ∼ Gamma(5, 5).

To gain a better understanding of the behaviour of their proposed priors, the authors

assessed through simulation the (frequentist) risk of their posterior estimators. They

considered two loss functions, the Kullback-Leibler loss of the covariance matrix,

L1(R̂, R) = tr(R̂R−1)− log |R̂R−1| − p

and

L2(Π̂,Π) =
∑
i<j

(π̂ij − πij)2.

They compared their shrinkage and selection priors to four competing priors: (1) a flat

prior on R (Barnard et al., 2000), where each ρij is uniform on (-1,1), (2) a flat prior on Π,

where each πij is uniform on (-1,1), (3) the triangular prior of Wang and Daniels (2013),

where each πij ∼ SBeta(2, 1), and (4) a naive shrinkage prior where γ = 0 in (2.26) so that

all πij’s are shrunk independently of the lag. They considered four correlation structures:

an autoregressive (AR) structure of order 1, an independent correlation structure (R =

Ip), a nonzero decaying structure in Π, and a banded structure in Π. They considered
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samples of size n = 20, 50, 200 and considered only low dimensions p = 6, 10. For the

first two correlation structures, which have the most sparsity in Π, they found that their

shrinkage and selection priors outperform the other four priors. In the independence

case, the naive shrinkage prior performs better than the triangular prior and the two

flat priors. For the third correlation structure, which has a non-sparse Π, all priors

perform comparably. Finally, for the fourth correlation structure, which has zero πij’s,

the shrinkage and selection priors outperform the other four priors.

2.3 Conclusion

In this chapter, we provided a review of existing methods in the literature for perform-

ing shrinkage and selection in the regression and inverse covariance estimation context.

Working in the penalized likelihood framework, we reviewed various penalties that have

been proposed, along with computational algorithms for solving the resulting penalized

likelihood problems, as well as asymptotic properties of the penalized likelihood estima-

tors. We also reviewed procedures for selecting the tuning parameter in the penalized

likelihood, which controls the amount of regularization, and studied some asymptotic

properties of these procedures. The material presented in this chapter will help us to

understand the work presented in subsequent chapters.
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Chapter 3

Inverse Covariance Estimation for Ordered Data

via Banding the Partial Autocorrelation Matrix

3.1 Introduction

The problem of (inverse) covariance matrix estimation has been an active area of research,

particularly in the moderate-to-high dimensional setting, where the dimension of the data

p is comparable to or larger than the sample size n. With advancements in computing,

high-dimensional data have become increasingly common in domains such as genetics,

finance, spectroscopy and climatology. Several areas of multivariate statistical analysis

require the estimation of a covariance matrix, including dimensionality reduction by prin-

cipal component analysis (PCA) and establishing conditional independence relationships

between components in graphical models (Bickel and Levina, 2008b). Although the sam-

ple covariance matrix is unbiased and positive definite, it is a poor estimator when p� n

(see Johnstone, 2001, and references therein). In this case, better-conditioned covariance

estimators are desired.

In addition to the issue of high-dimensionality, another major challenge in covariance

matrix estimation is the positive-definiteness constraint, which makes the elements of

the covariance matrix algebraically dependent. Changing one element of the covariance

matrix generally affects the values of the other elements as well.

To address the issue of high-dimensionality, where the number of parameters grows
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quadratically in p, many of the methods that have been proposed thus far have utilized

sparsity assumptions about the covariance matrix Σ or its inverse Θ = Σ−1, known as

the precision matrix. The idea of setting elements of the precision matrix to zero, known

as covariance selection, was discussed by Dempster (1972), who argued that, for the sake

of parsimony and to decrease estimation error, sparsity in Θ is preferred.

Identifying the zero entries of the precision matrix Θ is also of particular importance

in graphical modelling. For Gaussian graphical models, where X = (X1, . . . , Xp)
T is

a p-dimensional random vector having a multivariate normal distribution with mean

vector µ and covariance matrix Σ, a zero in the (i, j)th entry of Θ implies a conditional

independence relationship between the variables Xi and Xj, given all other variables. For

a proof of this result, see Lauritzen (1996). The conditional independence structure can

be represented by an undirected graph G, consisting of a set of vertices V and a set of

edges E, where an edge connects a pair of variables if and only if they are conditionally

dependent. Thus, by identifying the sparsity pattern of Θ, the graph structure is obtained.

To obtain sparse estimates of Θ, the most widely used approach is to penalize the log-

likelihood with an L1 penalty on the elements of the inverse covariance matrix (Banerjee

et al., 2006; Yuan and Lin, 2007; Friedman et al., 2008). While the L1 penalty leads to

an advantageously convex optimization problem, it introduces bias in the estimation (see

Lam and Fan, 2009). As a remedy to the bias issue, Fan et al. (2009) considered

nonconcave penalties, such as the SCAD (Fan and Li, 2001) penalty. The problem

of estimating the precision matrix then becomes equivalent to solving a sequence of

weighted L1-penalized likelihood problems, which can be solved by taking advantage

of the efficient graphical lasso algorithm. While both methods obtain positive definite

solutions, provided that the procedures are initialized with positive definite matrices,

the penalties themselves do not incorporate the dependence between the θij’s arising

from the positive-definiteness constraint on Θ, as they are sums of identical penalties

on the individual entries of Θ. While the L1-penalized likelihood method has become

popular for estimating a precision matrix - in part because of the many efficient algorithms

developed for solving the optimization problem - in this thesis, we hope to highlight
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the deficiencies of penalized likelihood methods that penalize the entries of the precision

matrix independently of each other. Such penalization is often inappropriate for problems

involving estimating a covariance matrix or its inverse, especially when the matrix of

interest is structured. The choice of the appropriate penalty largely depends on the

problem at hand.

To remove the positive-definiteness constraint, reparametrizations of the covariance

matrix or its inverse have been used, but come at the expense of imposing an ordering

among the variables in X. The most commonly used is the modified Cholesky decom-

position of either the covariance matrix or its inverse (Pourahmadi, 1999), reviewed in

Section 2.2.3.1. The modified Cholesky decomposition of the inverse is given by

Θ = LTD−1L,

where lower triangular matrix L and diagonal matrix D are defined in Section 2.2.3.1.

The elements in the subdiagonals of L and the logarithm of the diagonal elements of

D are unconstrained and so any estimate (L̂, D̂−1) yields a positive definite estimated

precision matrix Θ̂ = L̂T D̂−1L̂.

Therefore, in the case where variables have a natural ordering, sparsity in the inverse

is introduced by imposing sparsity in the Cholesky factor L. In particular, some authors

(Wu and Pourahmadi, 2003; Bickel and Levina, 2008a) estimated a banded inverse co-

variance matrix by banding the Cholesky factor L. Huang et al. (2006), on the other

hand, assumed a sparse Cholesky factor without assuming a banded structure in L. They

proposed penalizing the Gaussian log-likelihood by either an L1 or L2 penalty on the el-

ements of the Cholesky factor L, which would help to produce more stable estimators by

introducing shrinkage in L. For the L1 penalty, however, zeros are introduced in arbitrary

locations in the Cholesky factor and the resulting estimated inverse may not be sparse

at all. Therefore, Levina et al. (2008) introduced a method called adaptive banding,

which places a nested lasso penalty on the elements of the Cholesky factor that imposes

a banded structure in L. Their approach is more flexible than regular banding as the

nested lasso penalty allows the rows of the Cholesky factor to have varying band lengths.
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Furthermore, unlike the method of Huang et al. (2006), their method preserves sparsity

in the inverse since the inverse itself is banded if the Cholesky factor is banded.

The modified Cholesky decomposition is not the only reparametrization that removes

the positive-definiteness constraint on a covariance matrix and its inverse. An alternative

reparametrization of the covariance matrix that removes the positive-definiteness con-

straint is the partial autocorrelation (PAC) parametrization. Starting with the variance-

correlation decomposition Σ = V RV , where V is a diagonal matrix with the marginal

standard deviations of X and R is the correlation matrix, the precision matrix can be

decomposed as

Θ = MR−1M (3.1)

so that the diagonal elements of M give the partial standard deviations and R−1 =

(ρij) is the matrix of (full) partial correlations. The covariance selection problem is

thus equivalent to identifying the zero elements of R−1. For a random vector X =

(X1, . . . , Xp)
T , the partial autocorrelation between Xi and Xj for i < j, which we denote

by πij, is the correlation between the two, after controlling for the effects of the intervening

variables Xi+1, . . . , Xj−1. Note that this is in contrast to the (full) partial correlation ρij,

which is defined as the correlation between Xi and Xj, after controlling for the effects of

the remaining variables. The correlation matrix R can be reparametrized in terms of the

symmetric matrix of partial autocorrelations Π = (πij), where πii = 1 and the entries on

the off-diagonals of Π vary freely in the interval (-1,1). With a one-to-one correspondence

between the matrices R and Π (Joe, 2006), the complex constraints on the correlation

matrix can therefore be avoided by considering this alternative parametrization.

The PAC parametrization has been largely used in a Bayesian setting for constructing

priors for the correlation matrix R. In this chapter, we work within the frequentist

penalized likelihood framework and propose to estimate the inverse covariance matrix

for ordered data by maximizing the Gaussian log-likelihood with a nested lasso penalty

(Levina et al., 2008) on the matrix of partial autocorrelations Π. The advantage of the

PACs is that they allow for penalization under a more natural parametrization in an
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unconstrained setting. While an L1 penalty applied to the partial autocorrelation matrix

does not result in the preservation of zeros in the corresponding inverse covariance matrix,

the banded structure in the partial autocorrelation matrix imposed by the nested lasso

penalty corresponds to a banded structure in the resulting inverse so that sparsity is

preserved. A banded structure in Π is a reasonable assumption in the time-ordered

setting that we are considering, where it is expected that PACs of large lags are small.

The remainder of this chapter is organized as follows. In Section 3.2, we discuss our

motivation for considering an alternative parametrization of a covariance matrix. This

will be followed by a review of the PAC parametrization in Section 3.3. We then outline

our proposed penalized maximum likelihood method for estimating Θ in Section 3.4, based

on penalization of the PACs through the use of the nested lasso penalty (Levina et al.,

2008). Section 3.5 provides details of our coordinate descent procedure for maximizing the

penalized log-likelihood. The main competitor of our proposed PAC-based nested lasso

method is the adaptive banding method of Levina et al. (2008) that uses a nested lasso

penalty on the Cholesky factor. In Section 3.6, we thus review the connections established

by Pourahmadi (2001), and Daniels and Pourahmadi (2009) between the PACs and the

parameters in the modified Cholesky decomposition of the inverse. In Section 3.7, we

then identify cases where using the PAC paramaterization would be advantageous over

the modified Cholesky decomposition. In Section 3.8, we discuss the selection of the

tuning parameter in our penalized maximum likelihood method. We then assess the

performance of our method through simulation in Section 3.10 and analyze a real dataset

in Section 3.11 to illustrate the methodology developed in this chapter. We conclude with

a discussion in Section 3.12.
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3.2 Motivation for Alternative Parametrization

Sparsity of the precision matrix Θ is often studied via penalized likelihood methods.

These methods estimate Θ by maximizing the following penalized log-likelihood function

log det Θ− tr(SΘ)−
∑
i6=j

pλij(|θij|) (3.2)

over the set of positive definite matrices Θ. Here S = XTX/n is the sample covariance

matrix, θij is the (i, j)th entry of Θ, and pλij(·) denotes a generic penalty function on θij

with corresponding tuning parameter λij > 0. The tuning parameters λij, i, j = 1, . . . , p,

control the level of sparsity of Θ. The most widely known penalized likelihood method

for estimating the precision matrix Θ is the graphical lasso algorithm of Friedman et al.

(2008). In this case, the penalty function in (3.2) is the L1 penalty function pλ(|x|) = λ|x|

for some λ > 0. To remedy the well-known bias issue resulting from the L1-penalty, Fan

et al. (2009) consider alternative penalty functions, such as the SCAD penalty (Fan and

Li, 2001) and the adaptive lasso penalty (Zou, 2006). Note that some authors consider

a slightly modified version of (3.2), where the diagonal elements of Θ are also penalized.

We focus this discussion on the graphical lasso, where the function in (3.2) becomes

log det Θ− tr(SΘ)− λ
∑
i6=j

|θij|. (3.3)

We make a few observations regarding the graphical lasso. Firstly, the graphical lasso

penalizes the entries of Θ independently. Due to the positive-definite constraint on Θ,

the set of values that any particular element θij can take depends on the choice of the

remaining θij’s. While this constraint is taken into account by the block coordinate

descent algorithm of Friedman et al. (2008) for maximizing (3.3), provided the procedure

is initialized with a positive definite matrix, the complex relationship between the θij’s is

not reflected in the penalty itself.

Secondly, the graphical lasso is not scale-invariant. This can be observed by first

considering the variance-correlation decomposition of Σ, which allows us to write Θ =
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MR−1M , as shown in (3.1) When one applies the graphical lasso with a given tuning

parameter λ > 0 to the sample correlation matrix (in effect standardizing the variables

to unit variance) to obtain R̂−1, the reconstruction Θ̂ = MR̂−1M is not the same as

the estimated precision matrix obtained by the graphical lasso applied to the sample

covariance matrix S (see Section 3.2.1). This suggests that working on the correlation

scale, where all entries lie in the interval [-1,1], would be more appropriate so that the

penalization is done on the same scale.

3.2.1 Using the Sample Correlation Matrix Instead of the Sample

Covariance Matrix in the Graphical Lasso

Let sii for i = 1, . . . , p, be the diagonal elements of the sample covariance matrix S, and

let M̂ = diag(1/
√
s11, . . . , 1/

√
spp) so that R̂ = M̂SM̂ is the sample correlation matrix.

With Ω = R−1, consider maximizing the objective function

log det Ω− tr(R̂Ω)− λ
∑
i6=j

|ωij| (3.4)

to obtain the estimator Ω̂ of Ω and then taking Θ̂ = M̂Ω̂M̂ as an estimator of the

precision matrix Θ. Writing (3.4) as a function of Θ = MΩM and using the fact that for

n large, sii is approximately equal to the diagonal entries of Σ, we find that the objective

function is approximately given by

p∑
i=1

log (sii) + log det Θ− tr(SΘ)− λ
∑
i6=j

√
siisjj |θij|. (3.5)

Therefore, for n large, using the graphical lasso based on the sample correlation matrix

is equivalent to using the graphical adaptive lasso based on the sample covariance matrix

with weights given by wij =
√
siisjj and tuning parameter λ.
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3.3 A Review of the Partial Autocorrelation Parametriza-

tion

One of the main challenges when modelling the p× p correlation matrix R = (ρij) is the

constraint of positive-definiteness. This difficulty can be circumvented by reparametrizing

the correlation matrix in terms of the matrix of partial autocorrelations Π = (πij), which

is a symmetric matrix with πii = 1 and for i < j, πij is the correlation between Xi and

Xj, adjusted for the intervening variables Xi+1, . . . , Xj−1. Note that this is in contrast

to the (full) partial correlation ρij, which is defined as the correlation between Xi and

Xj, conditional on all the other variables. If we let U = {i+ 1, . . . , j − 1} and if we

denote the linear least squares predictor of Xi based on Xt, t ∈ U by X̂i|U , then πij =

Corr(Xi − X̂i|U , Xj − X̂j|U) and so πij can be interpreted as the correlation between Xi

and Xj after correcting for Xt, t ∈ U .

The advantage of working with the partial autocorrelations πij is that they can vary

independently of each other in the interval (−1, 1). With a one-to-one correspondence

between the matrices R and Π found in Joe (2006), which we detail below, the com-

plex constraints on the correlation matrix can be avoided by considering this alternative

parametrization.

Using the following recursion formula (Joe, 2006), the partial autocorrelations (πij)

can be computed in terms of the marginal correlations (ρij). For the lag-1 partial auto-

correlations, πi,i+1 = ρi,i+1 for i = 1, . . . , p − 1. From Joe (2006), higher lag (j − i > 1)

partial autocorrelations can be computed using the expression

πij = D−1
ij

{
ρij − rT1 (i, j)R2(i, j)−1r3(i, j)

}
, (3.6)

where rT1 (i, j) = (ρi,i+1, . . . , ρi,j−1), rT3 (i, j) = (ρj,i+1, . . . , ρj,j−1), R2(i, j) is the correlation

matrix corresponding to the variables (Xi+1, . . . , Xj−1), and

Dij = [1− rT1 (i, j)R2(i, j)−1r1(i, j)]1/2[1− rT3 (i, j)R2(i, j)−1r3(i, j)]1/2.

Note the function in (3.6) that maps the correlation matrix R to the partial autocor-
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relation matrix Π is invertible; one obtains the marginal correlations from the partial

autocorrelations using the expression

ρij = rT1 (i, j)R2(i, j)−1r3(i, j) +Dijπi,j (3.7)

for j − i > 1.

Due to the positive-definiteness constraint on R, each marginal correlation ρij takes

a value from a subset of (-1,1) that depends on the structure of the remaining entries of

R. On the other hand, each πij can take any value in the interval (-1,1) irrespective of

the values of the other partial autocorrelations while maintaining positive-definiteness of

R. Since the parameters πij are restricted to the interval (-1,1), Fisher’s z-transform can

be used to map the πij’s for i 6= j to the entire real line.

3.4 The Proposed Method

In this section, we introduce our proposed PAC-based penalized likelihood method for

estimating the inverse covariance matrix of ordered data. Suppose that we observe a

sample of n independently drawn multivariate Gaussian random vectors, X1, . . . ,Xn ∼

N (0,Σ), where Σ is the unknown p × p covariance matrix. Let Θ = Σ−1, which we

can write as Θ = MΩM , where Ω is the matrix of partial correlations R−1. Further,

let Ω = g(Π), where g maps the partial autocorrelation matrix Π to Ω. We propose

to estimate the matrix of partial autocorrelations Π by maximizing the Gaussian log-

likelihood function subject to penalty pλ(·). In other words, we solve the optimization

problem

Π̂ = arg max
Π∈D

{
log det [g(Π)]− tr[R̂ g(Π)]− pλ(Π)

}
, (3.8)

where D = {Π = (πij) : πii = 1, πij = πji ∈ (−1, 1), i, j = 1, . . . , p}. Various penalty func-

tions have been proposed in the penalized likelihood framework; the most widely used is

the L1 penalty. However, while the L1 penalty on the PACs would help to produce more
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stable estimators by introducing shrinkage to the elements of the partial autocorrelation

matrix, a zero πij does not generally imply a zero partial correlation. Therefore, it would

be best to consider a penalty that would impose some kind of structure, in particular,

a banded structure, on the partial autocorrelation matrix. This would then lead to a

banded structure in the inverse. Wang and Daniels (2014) showed that the precision

matrix corresponding to a k-banded partial autocorrelation matrix is also k-banded. To

impose a banded structure on the partial autocorrelation matrix Π, we use the nested

lasso penalty of Levina et al. (2008). Let πi = (πi,i+1, πi,i+2, . . . , πi,p)
T for i = 1, . . . , p−1.

The nested lasso penalty function is given by pλ(Π) = λ
∑p−1

i=1 q(πi), where

q(πi) =|πi,i+1|+
|πi,i+2|
|πi,i+1|

+
|πi,i+3|
|πi,i+2|

+ . . .+
|πi,p|
|πi,p−1|

=|πi,i+1|+
p∑

j=i+2

|πi,j|
|πi,j−1|

=

p∑
j=i+1

|πi,j|
|πi,j−1|

(3.9)

and the last equality follows since πii = 1 for all i = 1, . . . , p.

Penalizing the PACs instead of the full partial correlations has three main advan-

tages. Firstly, the PACs are functionally independent of each other, allowing the positive-

definiteness constraint on R−1 to be avoided. Secondly, the PACs vary on the same scale,

allowing for them to be penalized with the same tuning parameter. Not only do the πij’s

vary on the same scale, but the ratios ψij = πij/πi,j−1 as well, making the penalization

of the ratios with a single tuning parameter appropriate. Finally, since the PACs are

not conditional on future values, they offer greater interpretability than the full partial

correlations in applications with time-dependent data (Gaskins et al., 2014).

We let Ω̂ = g(Π̂) denote the penalized maximum likelihood estimator of Ω = R−1.

Taking M̂ to be the diagonal matrix with the MLE’s of the marginal variances along its

diagonal, an estimator Θ̂ of the inverse covariance matrix is then Θ̂ = M̂Ω̂M̂ .
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3.5 Computational Considerations

The maximization of (3.8) with the nested lasso penalty in (3.9) is a non-convex prob-

lem. Therefore, rather than finding a global optimum, we seek a local optimum using

an iterative procedure. The algorithm requires the specification of an initial estimate

Π̂(0). For p < n, one could take the sample partial autocorrelation matrix, obtained by

transforming the sample correlation matrix. For p > n, the sample correlation matrix

is singular and so we shrink the inverse sample correlation matrix using the graphical

lasso until a non-singular starting value is obtained, which is then transformed to the

corresponding partial autocorrelation matrix.

To solve the optimization problem in (3.8) with the nested lasso penalty, we use a

coordinate descent procedure, where we optimize the objective function in (3.8) with

respect to one entry πij at a time, while holding the others fixed. We then cycle through

the entries πij several times until convergence. Since the PACs vary independently of

each other in the interval (-1,1), we can update each πij one at a time (while holding the

others fixed) without needing to take into account any positive-definiteness constraint on

R−1. Each update must be done numerically, using an optimization algorithm, such as

optimize in R. Once π̂ij = 0, we set π̂i,j+1 = . . . = π̂ip = 0 because of the nature of the

nested lasso penalty.

Another approach would be to reparametrize the partial autocorrelations πij to the

ratios αij = πi,j+1/πij and view the nested lasso penalty as an L1 penalty on the ratios

αij. The αij’s are not free of constraints because

αii = πi,i+1 ∈ (−1, 1)

αij =
πi,j+1

πij
=⇒ πi,j+1 = αijπij

and since −1 < πi,j+1 < 1, we have that − 1
πij

< αij <
1
πij

. A coordinate descent procedure

can then be used to solve for the αij’s. Each update must also be done numerically. During

the procedure, we track the α̂ij’s and the π̂ij’s and, for row i, once π̂ij = 0 for some j, we
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set π̂i,j+1 = π̂i,j+2 = . . . = π̂i,p = 0.

Since the optimization problem is not convex, it is not guaranteed to converge to

the global optimum, but it is an ascent algorithm in which each iteration increases the

objective. Therefore, if the procedure is initialized with suitable estimates, the algorithm

should still yield good empirical results.

For numerical stability, we threshold the absolute values of the partial autocorrelations

at some pre-specified ε > 0. We take ε = 10−6. Once convergence is achieved, we set all

estimates equal to ε to zero. We also make use of “warm starts” to improve the efficiency

of this procedure.

3.6 Connections Between the Partial Autocorrelation

Parametrization and the Modified Cholesky De-

composition

In Section 2.2.3.1, we presented the modified Cholesky decomposition of the inverse co-

variance matrix Θ. In what follows, we review the connections established in Pourahmadi

(2001) and Daniels and Pourahmadi (2009) between the partial autcorrelations and the

parameters in the modified Cholesky decomposition. Recall, if X is a mean-zero random

vector with covariance matrix Σ and X̂j is the linear least-squares predictor of Xj based

on its predecessors X1, . . . , Xj−1, where εj = Xj− X̂j is its prediction error with variance

σ2
j = Var(εj), then there are unique scalars φjt such that

Xj =

j−1∑
t=1

φjtXt + εj, j = 2, . . . , p.

Now as detailed in Section 2.2.3.1, we can write the modified Cholesky decompositions

of Σ and Σ−1 as

Σ = L−1D(L−1)T , Σ−1 = LTD−1L,
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where D = diag(σ2
1, . . . σ

2
p) and L is the following lower triangular matrix:

L =



1
−φ21 1
−φ31 −φ32 1
−φ41 −φ42 −φ43 1
...

...
... . . .

−φp1 −φp2 −φp3 . . . −φp,p−1 1


.

Lemma 1 and Theorem 1 from Daniels and Pourahmadi (2009), which we reproduce

below, demonstrate that only the entries in the first column of L are multiples of the

partial autocorrelations in the first column of Π (first proved in Pourahmadi, 2001). In

Lemma 1(a), it can be seen that for t > 1, φjt is not of the form of the entries of Π since

it is a multiple of the partial correlation between Xj and Xt, adjusted for {Xi : i ∈ U},

where U = {1, . . . , j − 1} \ {t}.

Lemma 1. (Daniels and Pourahmadi, 2009) Let X = (X1, . . . , Xp)
T be a mean-zero

random vector with covariance matrix Σ that can be decomposed as in (2.22). For j, t

such that j > t, let U = {1, . . . , j − 1} \ {t} and πjt|U stand for the partial correlation

between Xj and Xt adjusted for Xl, l ∈ U . Denote the linear least squares predictor of

Xj based on Xl, l ∈ U by X̂j|U . Then the following results hold.

(a) X̂j|{1,...,j−1} = X̂j|U + φjt

(
Xt − X̂t|U

)
, φjt = πjt|U

√
Var(Xj−X̂j|U )

Var(Xt−X̂t|U )
.

(b) Var(Xj − X̂j|{1,...,j−1}) = (1− π2
jt|U)Var(Xt − X̂t|U).

Theorem 1. (Daniels and Pourahmadi, 2009) Let X = (X1, . . . , Xp)
T be a mean-

zero random vector with covariance matrix Σ = (σij) that can be decomposed as in (2.22).

Then the following results hold.

(a) For j = 2, . . . , p and t = 1, . . . , j − 1, σ2
j = σjj

∏j−1
t=1(1− π2

tj).

(b) The determinant of Σ can be simply expressed in terms of the marginal variances σjj

and the partial autocorrelations πtj:

|Σ| =
(∏p

j=1 σjj

)∏p
j=2

∏j−1
t=1(1− π2

tj).
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(c) For j = 2, . . . , p and U = {2, . . . , j − 1},

φj1 = π1j

√√√√Var(Xj − X̂j|U)

Var(X1 − X̂1|U)
. (3.10)

(d) For t = 2, . . . , j−1, φjt = φjt|U−φj1φ1,j−t|U , where φjt|U and φ1,j−t|U are, respectively,

the forward and backward predictor coefficients of Xj and X1 based on Xk, k ∈ U ,

defined by

X̂j|U =

j−1∑
t=2

φjt|UXt, X̂1|U =

j−1∑
t=2

φ1,j−t|UXt.

It should be noted that the Cholesky factor L and the diagonal matrix D of prediction

variances are not fully unconstrained in the case where Σ = R and R is a stationary

(Toeplitz) correlation matrix. In this case, the diagonal elements of D, given by σ2
j

for j = 1, . . . , p, in the modified Cholesky decomposition of the inverse are monotone

decreasing with σ2
1 = 1. There are also additional constraints on L, for example, φ21 ∈

(−1, 1). When considering the partial autocorrelation parametrization, if R is stationary,

then πi,i+k depends only on the lag k. Therefore, stationarity is a simplifying assumption

in the case of the partial autocorrelation parametrization. It thus seems easier to use

than the Cholesky decomposition when estimating a stationary correlation matrix R.

3.7 A Comparison of the Nested Lasso Penalty on the

Cholesky Factor and the Partial Autocorrelation

Matrix

One drawback of the nested lasso penalty is that it does not allow for the elimination

of weaker signals in between strong signals. Applying the nested lasso penalty to the

Cholesky factor of the inverse would therefore not be suitable in the case where each

Xi follows a stationary subset AR(q) process, where the autoregressive coefficient corre-
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sponding to lag q is non-zero and one or more intermediate AR coefficients are zero. The

Cholesky factor would then be q-banded with one or more of the first q− 1 bands having

entries that are zero, while the corresponding partial autocorrelation matrix would also

be q-banded, but all of its first q bands may be non-zero. For example, suppose that X

is the following stationary Gaussian AR(3) process

Xt = 0.6Xt−1 + 0.3Xt−3 + et, t = 4, . . . , p,

where et ∼ N (0, σ2
e). This implies a Cholesky factor with non-zero elements in the

first and third sub-diagonals and zero elements everywhere else. On the other hand,

the corresponding partial autocorrelation matrix is tri-diagonal with a non-zero constant

along each of the first 3 off-diagonal bands (although the constants are not necessarily

decaying with lag). Applying the nested lasso penalty to the Cholesky factor in this case

would either set all off-diagonal bands after the first three to zero without setting the

second off-diagonal band to zero, or set all off-diagonal bands after the first band to zero,

wrongly eliminating the non-zero entries in the third sub-diagonal. In Figure 3.1, we

plot the theoretical ACF and PACF of this AR(3) process. It can be seen that the first

three lags of the PACF are non-zero and the remaining lags of the PACF are zero, and

therefore applying the nested lasso penalty to the partial autocorrelation matrix would

rightfully set all off-diagonal bands after the first three to zero. It is this observation that

motivated us to consider the penalization of the PACs with the nested lasso penalty in a

likelihood-based method as a means of identifying the order of an autoregressive process

in Chapter 4.

3.8 Tuning Parameter Selection

The tuning parameter in the PAC-based penalized likelihood method can be selected

using standard information criteria, such as AIC and BIC. In this context, AIC and BIC
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Figure 3.1: Theoretical autocorrelations (left) and partial autocorrelations (right) for the AR(3) process Xt = 0.6Xt−1 +
0.3Xt−3 + et for t = 4, . . . , p and et ∼ N (0, σ2

e).

are given by

AIC(λ) = −2�n(Π̂λ) + 2
∑
i<j

I(π̂ij,λ �= 0)

and

BIC(λ) = −2�n(Π̂λ) + log n
∑
i<j

I(π̂ij,λ �= 0),

respectively, where �n(Π̂λ) is the multivariate Gaussian log-likelihood, evaluated at Π̂λ,

the penalized maximum likelihood estimator of Π for a given λ. The optimal value of

the tuning parameter in either case is taken to be the minimizer of the criterion. In our

simulation studies, EBIC was also considered, but was found to be too heavy for the

sample sizes and dimensions considered.

3.9 A Discussion of Loss Functions

Regularization is introduced with the goal of minimizing suitable norms, risks or objective

functions. If the inverse covariance matrix is the parameter of interest, the two most
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commonly used loss functions are

L1(Θ̂,Θ) = tr(Θ̂Θ−1)− log det(Θ̂Θ−1)− p,

L2(Θ̂,Θ) = tr(Θ−1Θ̂− I)2 = ‖Θ−1Θ̂− I‖2
F ,

where ‖A‖F =
√

tr(AAT ) is the Frobenius norm of matrix A. The first loss function, L1,

is the Kullback-Leibler loss for the precision matrix. It is the Kullback-Leibler divergence

of two multivariate Gaussian densities corresponding to the two precision matrices Θ and

Θ̂, and was used in Yuan and Lin (2007), and Levina et al. (2008). Interchanging the roles

of the covariance matrix and its inverse in the Kullback-Leibler loss yields the entropy

loss for the covariance matrix, which was used by Huang et al. (2006) and Gaskins et

al. (2014). The entropy loss is used when the covariance matrix is the primary matrix of

interest. The second loss function, L2, is the quadratic loss function, which is the squared

Frobenius norm of the matrix Θ−1Θ̂− I. It favours “smaller” estimates compared to the

L1 loss.

The corresponding risk functions are

Ri(Θ̂,Θ) = EΘ

[
Li(Θ̂,Θ)

]
, i = 1, 2.

An estimator Θ̂1 is considered better than another estimator Θ̂2 is its risk function is

smaller.

Other loss functions can be used to evaluate the performance of an estimator Θ̂ of Θ.

Considering the Frobenius norm of the difference Θ̂−Θ, one obtains the loss function

L3(Θ̂,Θ) =
1

p
‖Θ̂−Θ‖2

F =
1

p
tr(Θ̂−Θ)2 =

1

p

∑
i,j

(θ̂ij − θij)2.

By dividing by p, the norm of the identity matrix is one. Such a loss function was

considered by Ledoit and Wolf (2004), but with the precision matrix replaced by the

covariance matrix.

We consider these loss functions to evaluate the performance of our proposed penalized
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likelihood estimators in Section 3.10. Even though a precision matrix estimate can be

close to the true precision matrix in terms of the Kullback-Leibler loss, the corresponding

sparsity structure (or graph) can be completely different from the true one. We therefore

assess the performance of the penalized likelihood estimators under consideration in terms

of sensitivity (true positive rate) and specificity (true negative rate) in Section 3.10.

3.10 Simulation Studies

In this section, the performance of our proposed method for inverse covariance estimation

is studied via simulation. We compare our PAC-based penalized likelihood method to

adaptive banding of the Cholesky factor proposed in Levina et al. (2008). As a bench-

mark, we also include the standard graphical lasso of Friedman et al. (2008) and the

graphical SCAD of Fan et al. (2009). In this section, we hope to highlight some of the

shortcomings of the graphical lasso and the graphical SCAD for estimation of structured

inverse covariance matrices.

The performance of the methods are assessed for six different dependence structures.

We focus mainly on AR covariance structures of varying orders. For the AR(1) case, where

correlation matrix R has entries ρij = ρ|i−j| for some ρ > 0 and the corresponding inverse

is tri-diagonal, the partial autocorrelation matrix Π is sparse with πi,i+1 = πi+1,i = ρ

for the lag-1 terms and πij = 0 for |i − j| > 1. In this case, the Cholesky factor L has

φi+1,i = ρ for the terms in the first subdiagonal and φij = 0 for i − j > 1. Therefore,

since the nested lasso penalty is the same when applied to the Cholesky factor L and the

partial autocorrelation matrix Π, the two methods are the same in the AR(1) case. We

thus consider AR covariance structures of orders 2, 4, 8 and 15.

For Simulation 1, we consider an AR(2) model with πi,i+1 = 0.8 for the lag-1 terms

and πi,i+2 = 0.4 for the lag-2 terms, and πij = 0 for |i− j| > 2. For Simulation 2, another

AR(2) model is considered with πi,i+1 = 0.7 for the lag-1 terms and πi,i+2 = −0.5 for the

lag-2 terms, and πij = 0 for |i− j| > 2. The corresponding inverse covariances matrices

are banded with k = 2 non-zero bands. The theoretical autocorrelations for the AR(2)
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process in Simulation 1 are positive and decaying with lag, while those for the AR(2)

process in Simulation 2 are positive and negative, decaying with lag. For Simulations 1

and 2 with p = 10, both correlation matrices are not sparse, but the correlation matrix

in Simulation 2 has a few small entries.

For Simulation 3, we consider a banded, non-stationary partial autocorrelation matrix

with varying band lengths. It is a model taken from Gaskins at al. (2014), where for

p = 10,

Π
(5)
10×10 =



1 0.9 0.3 0 0 0 0 0 0 0
0.9 1 0.8 0.4 0.1 0 0 0 0 0
0.3 0.8 1 0.6 0.2 0 0 0 0 0
0 0.4 0.6 1 0.8 0.3 0 0 0 0
0 0.1 0.2 0.8 1 0.7 0 0 0 0
0 0 0 0.3 0.7 1 0.8 0.4 0.1 0
0 0 0 0 0 0.8 1 0.6 0.2 0
0 0 0 0 0 0.4 0.6 1 0.8 0.3
0 0 0 0 0 0.1 0.2 0.8 1 0.7
0 0 0 0 0 0 0 0.3 0.7 1


.

We also consider dimension p = 30 and take

Π
(5)
30×30 =

(
A B
BT A

)
,

where A = Π
(5)
10×10 and B is a 10× 10 matrix with b10,1 = 0.7 and bij = 0 otherwise.

For Simulation 4, we consider an AR(8) covariance structure with πi,i+1 = 0.5, πi,i+2 =

−0.45, πi,i+3 = −0.4, πi,i+4 = 0.35, πi,i+5 = 0.3, πi,i+6 = −0.25, πi,i+7 = −0.2 and πi+8 =

0.15, while for Simulation 5, we take πi,i+1 = 0.8 and πij = 0.65|i−j| for 1 < |i− j| ≤ 15.

In all simulations, we take σii = 1 for i = 1, . . . , p for the the marginal variances.

For each of the dependence structures, we simulate samples of mean-zero multivariate

Gaussian vectors. We take p = 10, 30, 50 and 100 and consider samples of size n = 50

and 100. We consider both AIC and BIC to select the tuning parameters used in the

methods under consideration. Even though p >
√
n for p = 30, 50 and n = 50, 100,

suggesting that EBIC would be more appropriate, we found in our simulations that

EBIC had the tendency to select models that were too sparse. While Levina et al. (2008)

recommended using 5-fold cross-validation to select the tuning parameters used in their

adaptive banding method, we also found BIC to perform better in practice.
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For the graphical lasso and graphical SCAD, we set θ̂ij = 0 if |θ̂ij| < 10−3 since the

threshold of convergence for all methods is taken to be 10−4, which is also the default

threshold of convergence for the graphical lasso algorithm in R. For both the proposed

method and the adaptive banding method of Levina et al. (2008), we set entries in the

final estimated partial autocorrelation matrix and the final estimated Cholesky factor

that are less than 10−3 in absolute value to 0, and then reconstruct the final estimated

precision matrix Θ̂.

To assess the performance of each of the methods, we evaluate specificity and sensi-

tivity, defined as follows:

specificity =
TN

TN + FP
=

#
{
θ̂ij = 0, θij = 0

}
# {θij = 0}

and

sensitivity =
TP

TP + FN
=

#
{
θ̂ij 6= 0, θij 6= 0

}
# {θij 6= 0}

,

where TP, TN, FP and FN are the numbers of true positives, true negatives (or true zero

entries), false positives, and false negatives. We also compare the performance of our

inverse covariance estimators in terms of the following three loss functions, presented in

Section 3.9:

L1(Θ̂,Θ) = tr(Θ̂Θ−1)− log det(Θ̂Θ−1)− p,

L2(Θ̂,Θ) = tr(Θ−1Θ̂− I)2,

L3(Θ̂,Θ) =
1

p

√∑
i,j

(θ̂ij − θij)2,

where L1 is the Kullback-Leibler loss, L2 is the quadratic loss, and L3 will be referred to

as the Frobenius norm loss. The corresponding risk functions are

Ri(Θ̂,Θ) = EΘ

[
Li(Θ̂,Θ)

]
, i = 1, 2, 3.

An estimator Θ̂1 is considered better than another estimator Θ̂2 is its risk function is

smaller. We approximate the risk function of each estimator by Monte Carlo simulation.
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To produce the results presented in Tables 3.1-3.4, N = 500 simulation runs are used for

each setup and we estimate the risk by averaging the loss over the N = 500 datasets.

The sensitivity and specificity reported are also averaged over the N = 500 datasets. The

standard errors for the means are reported in parentheses.

Discussion of Simulation Results:

For Simulation 1 (see Table 3.1), we find that our PAC-based nested lasso method

using the BIC tuning parameter selector performs the best in terms of correct sparsity

(specificity or true negative rate), Kullback-Leibler loss and the Frobenius norm error.

The graphical lasso with BIC does better in terms of the quadratic loss. All methods

perform comparably in terms of sensitivity (true positive rate). For Simulation 2 (see

Table 3.2), again our PAC-based nested lasso method performs the best in terms of correct

sparsity. It also has the smallest quadratic loss. The graphical lasso performs poorly in

terms of specificity. It is not able to effectively identify the banded structure in the inverse

covariance matrix, setting entries to zero in arbitrary locations in Θ. The graphical SCAD

improves upon the graphical lasso in terms of specificity and Kullback-Leibler loss, but

sets more true positives to zero. As expected, for the PAC-based nested lasso methods,

the BIC-selector results in a higher true negative rate compared to the AIC-selector, but

both tuning parameter selectors perform well in terms of the true positive rate.

For the non-stationary covariance structure in Simulation 3 (see Table 3.3), we see

that the nested lasso penalty applied to the PACs again performs the best in terms

of correct sparsity, Kullback-Leibler loss and Frobenius norm loss. The graphical lasso

with BIC performs the best in terms of quadratic loss, but only sightly compared to our

proposed method with the nested lasso penalty.

For Simulation 4 (see Table 3.3), applying the nested lasso penalty to the PACs yields

the smallest Kullback-Leibler loss and Frobenius norm error among the methods under

consideration. The graphical lasso with BIC again has the best quadratic loss. The nested

lasso methods perform similarly in terms of specificity, but using the PAC parametrization

results in a higher sensitivity, lower Kullback-Leibler loss and lower Frobenius norm error.
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In Simulation 5 (see Table 3.4), we provide an example where the PAC-based nested

lasso method does not perform very well. The graphical lasso performs the best for

all sample sizes and dimensions considered in terms of sensitivity (true positive rate),

Kullback-Leibler loss, quadratic loss and Frobenius norm error (or sum of squared er-

rors). None of the methods perform well in terms of sensitivity (even with the larger

sample size n = 1000). Their poor performance is likely due to the selection of the tuning

parameter. While the BIC-selector was shown to be model selection consistent in Gao

et al. (2012), in finite sample it may still exhibit a high false negative rate. The graph-

ical lasso performs better compared to the other methods in terms of sensitivity, but it

performs the worst in terms of specificity. The nested lasso methods are better able to

identify the zeros in the precision matrix.
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Method Tuning Sensitivity Specificity Kullback-Leibler Quadratic Frobenius
Parameter Loss Loss Norm
Selector

Simulation 1

n = 100, p = 10
S−1 100 (0) 0 (0) 0.69 (0.01) 6.50 (0.13) 3.44 (0.06)

Nested lasso - MCD AIC 100 (0) 71.89 (0.50) 0.36 (0.01) 4.03 (0.08) 1.27 (0.03)
Nested lasso - MCD BIC 100 (0) 84.31 (0.24) 0.35 (0.01) 3.83 (0.08) 1.15 (0.02)
Nested lasso - PAC AIC 100 (0) 92.71 (0.47) 0.31 (0.004) 3.54 (0.07) 0.98 (0.02)
Nested lasso - PAC BIC 99.98 (0.01) 98.67 (0.11) 0.30 (0.004) 3.41 (0.07) 0.93 (0.02)

Lasso AIC 99.84 (0.04) 43.90 (0.72) 0.41 (0.01) 3.86 (0.08) 1.25 (0.02)
Lasso BIC 99.93 (0.02) 61.44 (0.42) 0.39 (0.004) 3.10 (0.06) 1.23 (0.01)
SCAD AIC 97.90 (0.13) 90.11 (0.41) 0.38 (0.01) 4.16 (0.09) 1.18 (0.02)
SCAD BIC 94.69 (0.17) 96.79 (0.18) 0.40 (0.01) 4.31 (0.09) 1.32 (0.02)

n = 100, p = 30
S−1 99.99 (0.01) 0.09 (0.01) 8.50 (0.04) 135.83 (1.70) 25.77 (0.25)

Nested lasso - MCD AIC 100 (0) 93.44 (0.10) 1.15 (0.01) 19.92 (0.27) 1.39 (0.02)
Nested lasso - MCD BIC 100 (0) 96.23 (0.04) 1.13 (0.01) 18.85 (0.25) 1.31 (0.01)
Nested lasso - PAC AIC 100 (0) 98.10 (0.06) 0.98 (0.01) 17.25 (0.23) 1.07 (0.01)
Nested lasso - PAC BIC 99.98 (0.01) 99.63 (0.02) 1.01 (0.01) 16.70 (0.22) 1.08 (0.01)

Lasso AIC 99.88 (0.02) 70.52 (0.24) 1.74 (0.01) 23.27 (0.29) 1.53 (0.01)
Lasso BIC 99.94 (0.01) 79.89 (0.11) 1.87 (0.01) 16.37 (0.19) 2.20 (0.02)
SCAD AIC 98.39 (0.07) 89.05 (0.24) 1.82 (0.02) 32.69 (0.55) 1.60 (0.02)
SCAD BIC 94.07 (0.12) 98.16 (0.05) 1.48 (0.02) 22.76 (0.32) 1.68 (0.02)

n = 50, p = 50
Nested lasso - MCD AIC 99.92 (0.03) 97.61 (0.03) 4.00 (0.03) 84.04 (1.00) 3.15 (0.04)
Nested lasso - MCD BIC 99.88 (0.01) 99.03 (0.02) 4.06 (0.03) 81.03 (0.97) 2.99 (0.03)
Nested lasso - PAC AIC 99.89 (0.01) 98.99 (0.03) 3.29 (0.02) 68.69 (0.83) 2.15 (0.02)
Nested lasso - PAC BIC 99.73 (0.02) 99.65 (0.01) 3.37 (0.02) 66.80 (0.81) 2.16 (0.02)

Lasso AIC 99.08 (0.03) 78.45 (0.14) 6.52 (0.03) 100.55 (1.36) 2.87 (0.02)
Lasso BIC 99.42 (0.03) 85.13 (0.07) 6.85 (0.03) 59.48 (0.69) 4.24 (0.03)
SCAD AIC 92.70 (0.12) 91.09 (0.14) 7.23 (0.09) 172.11 (3.24) 3.54 (0.04)
SCAD BIC 86.87 (0.11) 96.47 (0.05) 6.25 (0.04) 107.67 (1.31) 3.94 (0.03)

n = 100, p = 100
Nested lasso - MCD AIC 100 (0) 99.54 (0.01) 4.08 (0.04) 71.45 (1.05) 1.36 (0.02)
Nested lasso - MCD BIC 100 (0) 99.38 (0.004) 3.73 (0.02) 72.32 (0.49) 1.34 (0.01)
Nested lasso - PAC AIC 100 (0) 99.54 (0.01) 3.35 (0.01) 65.96 (0.47) 1.09 (0.01)
Nested lasso - PAC BIC 100 (0) 99.82 (0.01) 3.46 (0.01) 64.68 (0.45) 1.12 (0.01)

Lasso AIC 99.92 (0.01) 82.72 (0.04) 8.88 (0.02) 156.97 (0.91) 1.97 (0.01)
Lasso BIC 99.97 (0.004) 91.34 (0.02) 10.32 (0.02) 65.00 (0.36) 3.98 (0.01)
SCAD AIC 96.95 (0.08) 95.71 (0.06) 5.28 (0.03) 107.86 (0.72) 1.45 (0.01)
SCAD BIC 93.79 (0.05) 98.15 (0.01) 6.01 (0.03) 97.22 (0.67) 2.03 (0.01)

Table 3.1: Sensitivity, specificity, Kullback-Leibler loss, quadratic loss and Frobenius norm error, averaged over N = 500
replications of size n = 50, 100, for the inverse sample covariance matrix, the nested lasso method of Levina et al. (2008)
based on the modified Cholesky decomposition (MCD), the PAC-based nested lasso, the graphical lasso of Friedman et
al. (2008) and the graphical SCAD of Fan et al. (2009). The standard errors for the means over the 500 replications are
reported in parentheses.
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Method Tuning Sensitivity Specificity Kullback-Leibler Quadratic Frobenius
Parameter Loss Loss Norm
Selector

Simulation 2

n = 100, p = 10
S−1 100 (0) 0 (0) 0.69 (0.01) 8.22 (0.15) 6.35 (0.19)

Nested lasso - MCD AIC 100 (0) 72.81 (0.69) 0.37 (0.01) 3.95 (0.08) 1.97 (0.07)
Nested lasso - MCD BIC 100 (0) 83.08 (0.24) 0.36 (0.01) 3.40 (0.07) 1.56 (0.04)
Nested lasso - PAC AIC 100 (0) 91.78 (0.42) 0.34 (0.01) 3.07 (0.06) 1.78 (0.04)
Nested lasso - PAC BIC 99.99 (0.01) 97.86 (0.14) 0.35 (0.01) 2.82 (0.05) 2.01 (0.04)

Lasso AIC 98.98 (0.09) 20.64 (0.39) 0.55 (0.01) 4.84 (0.09) 3.33 (0.06)
Lasso BIC 95.53 (0.28) 32.22 (0.48) 0.62 (0.01) 3.95 (0.07) 6.12 (0.18)
SCAD AIC 93.34 (0.30) 71.07 (0.64) 0.53 (0.01) 4.74 (0.09) 3.16 (0.08)
SCAD BIC 90.64 (0.34) 82.01 (0.47) 0.57 (0.01) 4.57 (0.08) 4.02 (0.10)

n = 100, p = 30
S−1 100 (0) 0 (0) 8.52 (0.04) 178.58 (1.61) 50.07 (0.61)

Nested lasso - MCD AIC 100 (0) 94.20 (0.09) 1.14 (0.01) 13.33 (0.16) 1.93 (0.03)
Nested Lasso - MCD BIC 100 (0) 96.43 (0.04) 1.13 (0.01) 11.82 (0.12) 1.69 (0.02)
Nested lasso - PAC AIC 100 (0) 97.65 (0.06) 1.09 (0.01) 10.52 (0.11) 2.09 (0.02)
Nested Lasso - PAC BIC 100 (0) 99.29 (0.03) 1.17 (0.01) 9.85 (0.10) 2.59 (0.03)

Lasso AIC 94.89 (0.20) 36.87 (0.39) 3.75 (0.02) 34.12 (0.49) 7.71 (0.15)
Lasso BIC 72.29 (0.14) 67.80 (0.17) 4.77 (0.02) 12.36 (0.07) 23.97 (0.12)
SCAD AIC 89.93 (0.24) 75.28 (0.26) 3.13 (0.03) 33.53 (0.47) 4.61 (0.06)
SCAD BIC 84.48 (0.28) 90.57 (0.13) 2.68 (0.02) 19.92 (0.17) 7.78 (0.11)

n = 50, p = 50
Nested Lasso - MCD AIC 88.19 (1.44) 96.05 (0.13) 4.63 (0.04) 62.66 (0.79) 14.15 (0.96)
Nested Lasso - MCD BIC 93.79 (1.08) 96.79 (0.10) 4.36 (0.03) 58.20 (0.68) 9.65 (0.73)
Nested Lasso - PAC AIC 99.96 (0.01) 98.58 (0.03) 3.89 (0.02) 37.17 (0.34) 4.22 (0.03)
Nested Lasso - PAC BIC 99.88 (0.01) 99.45 (0.01) 4.17 (0.02) 34.95 (0.30) 5.10 (0.04)

Lasso AIC 73.37 (0.15) 62.78 (0.24) 15.05 (0.06) 83.24 (1.30) 22.71 (0.18)
Lasso BIC 67.59 (0.02) 87.90 (0.18) 19.39 (0.09) 32.39 (0.17) 42.70 (0.13)
SCAD AIC 74.81 (0.15) 81.25 (0.15) 9.91 (0.05) 57.73 (0.73) 15.37 (0.09)
SCAD BIC 68.59 (0.07) 87.83 (0.11) 10.56 (0.06) 44.46 (0.31) 21.69 (0.13)

n = 100, p = 100
Nested Lasso - MCD AIC 100 (0) 97.88 (0.05) 4.15 (0.03) 52.51 (0.47) 2.55 (0.04)
Nested Lasso - MCD BIC 100 (0) 98.38 (0.04) 3.92 (0.02) 48.39 (0.40) 2.18 (0.03)
Nested Lasso - PAC AIC 100 (0) 99.31 (0.04) 3.70 (0.03) 36.48 (0.44) 2.21 (0.03)
Nested Lasso - PAC BIC 100 (0) 99.80 (0.01) 4.10 (0.03) 34.34 (0.37) 2.87 (0.05)

Lasso AIC 73.07 (0.12) 69.31 (0.15) 22.97 (0.05) 106.27 (1.06) 21.60 (0.11)
Lasso BIC 67.01 (0.001) 92.90 (0.07) 33.72 (0.09) 45.69 (0.09) 42.46 (0.07)
SCAD AIC 74.78 (0.16) 88.05 (0.11) 13.01 (0.03) 55.97 (0.40) 15.28 (0.06)
SCAD BIC 67.40 (0.02) 94.56 (0.03) 14.61 (0.04) 47.24 (0.19) 20.12 (0.04)

Table 3.2: Sensitivity, specificity, Kullback-Leibler loss, quadratic loss and Frobenius norm error, averaged over N = 500
replications of size n = 50, 100, for the inverse sample covariance matrix, the nested lasso method of Levina et al. (2008)
based on the modified Cholesky decomposition (MCD), the PAC-based nested lasso, the graphical lasso of Friedman et
al. (2008) and the graphical SCAD of Fan et al. (2009). The standard errors for the means over the 500 replications are
reported in parentheses.
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Method Tuning Sensitivity Specificity Kullback-Leibler Quadratic Frobenius
Parameter Loss Loss Norm
Selector

Simulation 3

n = 100, p = 10
S−1 100 (0) 0 (0) 0.68 (0.01) 6.04 (0.13) 3.07 (0.08)

Nested lasso - MCD AIC 96.17 (0.12) 85.69 (0.28) 0.37 (0.01) 3.47 (0.08) 1.04 (0.03)
Nested lasso - MCD BIC 96.04 (0.12) 86.33 (0.26) 0.37 (0.01) 3.46 (0.08) 1.04 (0.03)
Nested lasso - PAC AIC 95.90 (0.16) 93.39 (0.43) 0.31 (0.004) 2.90 (0.07) 0.86 (0.02)
Nested lasso - PAC BIC 91.94 (0.17) 98.70 (0.10) 0.32 (0.004) 2.85 (0.07) 0.83 (0.02)

Lasso AIC 95.59 (0.15) 45.06 (0.73) 0.41 (0.01) 3.31 (0.08) 1.18 (0.02)
Lasso BIC 95.56 (0.15) 62.34 (0.47) 0.41 (0.01) 2.57 (0.05) 1.56 (0.03)
SCAD AIC 87.19 (0.19) 87.42 (0.43) 0.38 (0.01) 3.53 (0.08) 0.96 (0.02)
SCAD BIC 83.59 (0.20) 94.24 (0.23) 0.39 (0.01) 3.54 (0.08) 1.02 (0.02)

n = 100, p = 30
S−1 100 (0) 0 (0) 8.59 (0.05) 124.30 (1.32) 21.70 (0.24)

Nested lasso - MCD AIC 97.66 (0.07) 93.60 (0.09) 1.13 (0.01) 12.67 (0.16) 1.08 (0.02)
Nested lasso - MCD BIC 95.21 (0.08) 96.51 (0.04) 1.17 (0.01) 12.65 (0.16) 1.02 (0.02)
Nested lasso - PAC AIC 96.29 (0.10) 98.01 (0.06) 0.96 (0.01) 10.53 (0.14) 0.85 (0.01)
Nested lasso - PAC BIC 92.36 (0.11) 99.40 (0.02) 1.03 (0.01) 10.43 (0.13) 0.84 (0.01)

Lasso AIC 96.09 (0.08) 68.34 (0.26) 1.90 (0.01) 16.28 (0.20) 1.97 (0.02)
Lasso BIC 96.80 (0.08) 81.45 (0.12) 2.15 (0.01) 10.35 (0.09) 3.57 (0.03)
SCAD AIC 88.47 (0.12) 87.17 (0.24) 1.73 (0.02) 20.58 (0.35) 1.10 (0.01)
SCAD BIC 83.90 (0.12) 96.32 (0.06) 1.37 (0.01) 13.75 (0.17) 1.10 (0.01)

Simulation 4

n = 100, p = 30
S−1 100 (0) 0 (0) 8.51 (0.04) 182.10 (1.87) 59.51 (0.88)

Nested lasso - MCD AIC 82.57 (0.31) 99.57 (0.04) 5.69 (0.04) 33.33 (0.31) 31.38 (0.34)
Nested lasso - MCD BIC 81.48 (0.32) 99.63 (0.04) 5.74 (0.04) 33.19 (0.31) 31.81 (0.34)
Nested lasso - PAC AIC 97.98 (0.08) 93.87 (0.17) 2.86 (0.02) 37.65 (0.37) 6.04 (0.06)
Nested lasso - PAC BIC 90.98 (0.16) 99.47 (0.03) 3.29 (0.02) 33.53 (0.32) 11.55 (0.15)

Lasso AIC 94.94 (0.11) 14.93 (0.25) 5.21 (0.03) 61.50 (0.72) 12.54 (0.14)
Lasso BIC 72.69 (0.42) 56.88 (0.57) 6.81 (0.06) 21.93 (0.32) 49.16 (0.50)
SCAD AIC 78.85 (0.14) 68.65 (0.30) 4.79 (0.03) 60.21 (0.61) 9.56 (0.08)
SCAD BIC 67.79 (0.15) 91.36 (0.15) 4.22 (0.02) 37.49 (0.34) 17.46 (0.16)

n = 50, p = 50
Nested lasso - MCD AIC 50.78 (0.48) 100 (0) 22.79 (0.18) 127.79 (1.30) 63.76 (0.46)
Nested lasso - MCD BIC 50.90 (0.48) 100 (0) 22.60 (0.17) 126.21 (1.09) 63.37 (0.46)
Nested lasso - PAC AIC 91.47 (1.35) 98.05 (0.46) 10.53 (0.25) 75.57 (18.78) 8.20 (2.06)
Nested lasso - PAC BIC 75.23 (1.83) 99.97 (0.02) 12.81 (0.53) 64.47 (16.43) 16.25 (4.21)

Lasso AIC 78.04 (0.41) 44.76 (0.67) 27.06 (0.36) 350.33 (12.64) 47.22 (0.54)
Lasso BIC 51.77 (0.08) 81.31 (0.10) 21.92 (0.05) 56.18 (0.44) 76.26 (0.08)
SCAD AIC 52.56 (0.23) 75.64 (0.25) 20.43 (0.09) 161.15 (2.16) 54.83 (0.17)
SCAD BIC 45.81 (0.07) 84.37 (0.08) 18.70 (0.05) 103.62 (0.87) 62.01 (0.10)

Table 3.3: Sensitivity, specificity, Kullback-Leibler loss, quadratic loss and Frobenius norm error, averaged over N = 500
replications of size n = 50, 100, for the inverse sample covariance matrix, the nested lasso method of Levina et al. (2008)
based on the modified Cholesky decomposition (MCD), the PAC-based nested lasso, the graphical lasso of Friedman et
al. (2008) and the graphical SCAD of Fan et al. (2009). The standard errors for the means over the 500 replications are
reported in parentheses.
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Method Tuning Sensitivity Specificity Kullback-Leibler Quadratic Frobenius
Parameter Loss Loss Norm
Selector

Simulation 5

n = 100, p = 30
S−1 99.92 (0.01) 0.09 (0.01) 8.57 (0.05) 138.08 (2.28) 24.10 (0.22)

Nested lasso - MCD AIC 54.44 (0.45) 99.44 (0.27) 1.74 (0.04) 36.64 (0.93) 2.35 (0.06)
Nested lasso - MCD BIC 44.65 (0.32) 100 (0) 1.89 (0.04) 35.72 (0.88) 2.07 (0.04)
Nested lasso - PAC AIC 49.11 (0.26) 100 (0) 2.03 (0.01) 42.65 (0.61) 2.72 (0.03)
Nested lasso - PAC BIC 36.92 (0.12) 100 (0) 2.34 (0.01) 41.44 (0.57) 2.39 (0.02)

Lasso AIC 58.94 (0.14) 71.16 (0.37) 1.78 (0.01) 34.02 (0.49) 1.54 (0.01)
Lasso BIC 56.53 (0.09) 83.60 (0.21) 1.69 (0.01) 28.53 (0.39) 1.40 (0.01)
SCAD AIC 35.25 (0.10) 94.93 (0.12) 2.53 (0.01) 48.74 (0.68) 3.16 (0.02)
SCAD BIC 31.43 (0.08) 97.14 (0.08) 2.97 (0.02) 51.84 (0.72) 3.83 (0.03)

n = 1000, p = 30
S−1 99.73 (0.01) 0.53 (0.03) 0.49 (0.002) 4.42 (0.04) 0.68 (0.003)

Nested lasso - MCD AIC 69.43 (0.47) 99.64 (0.17) 0.25 (0.002) 3.45 (0.08) 0.31 (0.004)
Nested Lasso - MCD BIC 56.97 (0.09) 100 (0) 0.29 (0.002) 3.67 (0.04) 0.28 (0.002)
Nested lasso - PAC AIC 66.55 (0.57) 99.99 (0.01) 0.25 (0.002) 3.40 (0.08) 0.30 (0.004)
Nested lasso - PAC BIC 52.26 (0.09) 100 (0) 0.33 (0.002) 3.76 (0.04) 0.31 (0.002)

Lasso AIC 71.91 (0.10) 70.20 (0.34) 0.25 (0.001) 3.29 (0.03) 0.27 (0.001)
Lasso BIC 70.02 (0.07) 85.33 (0.34) 0.27 (0.002) 3.06 (0.03) 0.30 (0.002)
SCAD AIC 54.72 (0.10) 95.77 (0.15) 0.29 (0.001) 3.67 (0.04) 0.35 (0.002)
SCAD BIC 47.22 (0.09) 97.86 (0.06) 0.40 (0.003) 4.15 (0.04) 0.51 (0.004)

n = 50, p = 50
Nested lasso - MCD AIC 23.60 (0.35) 100 (0) 12.53 (0.25) 213.16 (3.64) 6.69 (0.10)
Nested lasso - MCD BIC 24.27 (0.43) 100 (0) 12.67 (0.25) 218.24 (3.77) 6.55 (0.09)
Nested lasso - PAC AIC 34.34 (0.05) 100 (0) 6.15 (0.03) 213.80 (3.32) 4.61 (0.04)
Nested lasso - PAC BIC 29.05 (0.11) 100 (0) 7.01 (0.04) 202.33 (3.05) 4.21 (0.03)

Lasso AIC 48.95 (0.07) 82.54 (0.16) 5.61 (0.03) 167.65 (2.65) 2.20 (0.01)
Lasso BIC 48.71 (0.06) 88.74 (0.10) 5.36 (0.02) 131.74 (1.88) 2.14 (0.01)
SCAD AIC 29.55 (0.09) 93.09 (0.11) 9.83 (0.07) 344.91 (5.76) 7.14 (0.07)
SCAD BIC 26.07 (0.06) 96.07 (0.06) 9.61 (0.05) 293.71 (4.28) 7.03 (0.05)

Table 3.4: Sensitivity, specificity, Kullback-Leibler loss, quadratic loss and Frobenius norm error, averaged over N = 500
replications of size n = 50, 100, for the inverse sample covariance matrix, the nested lasso method of Levina et al. (2008)
based on the modified Cholesky decomposition (MCD), the PAC-based nested lasso, the graphical lasso of Friedman et
al. (2008) and the graphical SCAD of Fan et al. (2009). The standard errors for the means over the 500 replications are
reported in parentheses.
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To gain further insight into the selection of the tuning parameter, we plot sensitivity

and specificity against BIC, averaged over 100 samples, for the graphical lasso precision

matrix estimates (see Figure 3.2). The samples were generated from a multivariate normal

distribution with mean zero and covariance structure as specified in Simulation 5 with

n = 1000 and p = 30. It can be seen that the tuning parameter yielding the largest BIC

has the highest specificity, but lowest sensitivity, while the tuning parameter yielding the

smallest BIC has a high sensitivity, but may have a low specificity. In Figure 3.3, we plot

the Kullback-Leibler loss, averaged over 100 samples, against the mean BIC values. It

can be seen that the minimum BIC corresponds to the minimum Kullback-Leibler loss.
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Figure 3.2: Plot of mean sensitivity (left) and mean specificity (right) against mean BIC using the graphical lasso, averaged
over 100 samples generated from a multivariate normal distribution with mean zero and covariance structure as specified
in Simulation 5 with n = 1000 and p = 30.
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Figure 3.3: Plot of Kullback-Leibler loss against mean BIC using the graphical lasso, averaged over 100 samples generated
from a multivariate normal distribution with mean zero and covariance structure as specified in Simulation 5 with n = 1000
and p = 30.
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We also provide similar plots for the graphical SCAD precision matrix estimates (see

Figures 3.4 and 3.5). It can be seen that smaller BIC values tend to correspond to high

specificities but low sensitivities. Therefore, if the goal of the statistical analysis is to

identify the zeros of the precision matrix, then the graphical SCAD with the BIC-selector

would perform satisfactorily. If, on the other hand, the goal of the statistical analysis is to

identify the non-zeros of the precision matrix, then using BIC would not yield satisfactory

results.
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Figure 3.4: Plot of mean sensitivity (left) and mean specificity (right) against mean BIC using the graphical SCAD,
averaged over 100 samples generated from a multivariate normal distribution with mean zero and covariance structure as
specified in Simulation 5 with n = 1000 and p = 30.
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Figure 3.5: Plot of mean Kullback-Leibler loss against mean BIC using the graphical SCAD, averaged over 100 samples
generated from a multivariate normal distribution with mean zero and covariance structure as specified in Simulation 5
with n = 1000 and p = 30.
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3.11 Real Data Analysis

As an illustration of our method for estimating a p×p precision matrix in the case where

n < p, we consider the change in Canadian monthly unemployment rate from January

2005 to December 2012. The data set, obtained from Statistics Canada1, consists of

monthly seasonally adjusted unemployment rates for 55 employment insurance (E.I.)

economic regions across Canada.

The estimated precision matrix can be used for forecasting the change in unemploy-

ment rate. Let xi denote the data for E.I. region i and write xi = (xi1, . . . , xi,95)T . We

form the partition xi = (x
(1)T
i ,x

(2)T
i )T , where x

(1)
i and x

(2)
i are the changes in unemploy-

ment rates in the first 48 months and the last 47 months, respectively, of E.I. region

i.

The corresponding partition of the mean and covariance matrix is

µ =

µ1

µ2

 , Σ =

Σ11 Σ12

Σ21 Σ22

 .

Assuming multivariate normality, the best mean-squared error forecast of x(2)
i using x

(1)
i

is

E(x
(2)
i |x

(1)
i ) = µ2 + Σ21Σ−1

11 (x
(1)
i − µ1), (3.11)

which is also the best linear predictor for non-Gaussian data.

To compare the forecast performance using different precision matrix estimates, we

use 50 splits of the 55 regions into training and test datasets. For each split, 40 regions

will form the training set that is used to estimate the covariance structure. The estimates

are then applied for forecasting using formula (3.11) for the 15 regions in the test set. We

used the changes in unemployment rates in the first 48 months to forecast the changes

in unemployment rates in the last 47 months. For each t = 49, . . . , 95, we can define the
1Statistics Canada. (2015). Monthly Seasonal Adjusted Unemployment Rates by EI Economic Re-

gion. http://open.canada.ca/data/en/dataset/aad2bcd4-9f45-4013-b2a6-8367106dc0b2.
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average absolute forecast error by

AEt =
1

50

50∑
k=1

{
1

15

∑
i∈Mk

|x̂it − xit|

}
, (3.12)

where xit and x̂it are the observed and forecast values, respectively, and Mk is the set

of indices of observations in the kth test data set. The results are reported in Table

3.5. It can be seen that the nested lasso method based on the partial autocorrelation

parametrization yields the smallest prediction error. As expected, the EBIC selector

results in sparser models compared to AIC and BIC.

Method Tuning Parameter Selector
AIC BIC EBIC

Nested lasso - MCD 0.342 0.341 0.340
Nested lasso - PAC 0.294 0.294 0.295

Lasso 0.302 0.340 0.340

Table 3.5: Average absolute forecast error for the graphical lasso, nested lasso (MCD), and nested lasso (PAC) methods,
applied to the changes in monthly unemployment rates in Canada, corresponding to 50 splits of the data into training sets
of size 40 and test sets of size 15.

Method Tuning Parameter Selector
AIC BIC EBIC

Nested lasso - MCD 518.1 (7.54) 376.9 (12.73) 99.1 (0.71)
Nested lasso - PAC 362.3 (3.89) 299.5 (28.40) 170.0 (0.72)

Lasso 764.8 (31.39) 95.7 (0.22) 95.1 (0.045)

Table 3.6: Number of non-zero elements in the upper triangular part (including the diagonal) of the estimated precision
matrix, averaged over 50 training sets for the changes in Canadian monthly unemployment rates, for the graphical lasso,
nested lasso (MCD), and nested lasso (PAC) methods

3.12 Discussion

In this chapter, we proposed a penalized likelihood method that makes use of the partial

autocorrelation (PAC) parametrization for estimating large precision matrices in the case

where variables have a natural ordering. The PAC parametrization allows for shrinkage

in an unconstrained setting and is a more natural parametrization to use in the ordered

data context. Expecting PACs at large lags to be negligible in longitudinal/ordered data

contexts, we imposed a banded structure in the matrix of partial autocorrelations through

the use of a nested lasso penalty, which was introduced by Levina et al. (2008) as a penalty
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on the Cholesky factor of the modified Cholesky decomposition of the inverse covariance

matrix. While the Cholesky decomposition provides a convenient representation of the

inverse covariance matrix in which parameters are also unconstrained, sparsity under the

PAC parametrization is more interpretable. We identified cases where the PAC-based

nested lasso method is advantageous over its Cholesky counterpart. Under the banded

assumption, the PAC-based method was shown to perform well in simulation and with a

real data example. The procedure for optimizing the PAC-based penalized log-likelihood

with the nested lasso penalty, however, is computationally intensive. In Chapter 4, we in-

troduce another application of the PAC-based penalized likelihood methodology in which

the resulting computational problem is more feasible. The asymptotic properties of the

PAC-based method remain for future work.
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Chapter 4

Autoregressive Order Estimation via Penaliza-

tion of the Partial Autocorrelations

In Chapter 3, we introduced our proposed PAC-based penalized likelihood method for

inverse covariance estimation for ordered data. In this chapter, we consider another

application of our PAC-based penalized likelihood methodology, where we consider the

problem of estimating the order of a stationary Gaussian autoregressive (AR) process. To

this end, the lasso methodology has been used (Wang et al., 2007b; Nardi and Rinaldo,

2011), where an L1 penalty is applied to the AR coefficients. However, such a procedure

ignores the temporal dependence information embedded in the AR time series. Rather

than imposing shrinkage on the AR coefficients, we instead introduce shrinkage via the

PACs, which vary on the same scale, free of constraints, and better reflect the character-

istics of underlying AR processes, especially the AR order. For AR processes, it is well

known that the partial autocorrelation function (PACF) identifies the AR order as the

lag beyond which the PACF vanishes. Therefore, for n observations generated from an

AR(p) model, the corresponding partial autocorrelation matrix is p-banded. The PAC-

based penalized likelihood method that applies the nested lasso penalty to the PACs,

introduced in Chapter 3, can thus be used to estimate the bandwidth p of the partial

autocorrelation matrix. The nested lasso penalty applied to the PACs is designed for

the class of stationary AR processes of order p, where the PACs at all intermediate lags

are non-zero. To handle the general class of stationary AR processes, shrinkage is also
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applied to the PACs through the use of the lasso penalty. To solve the resulting max-

imization problems, we adopt a cyclic coordinate descent procedure that was found to

perform well in practice. Empirically, we show that our proposed PAC-based penalized

likelihood methods perform better those based on penalization of the AR coefficients in

terms of AR order estimation. The performance of our proposed AR order estimators

are also compared to a number of other AR order estimators, both in simulation and on

a real data example.

4.1 Introduction

Autoregressive (AR) models have been applied in various fields, including finance, engi-

neering, and the natural sciences, such as geophysics and hydrology. In particular, they

have been used in applications such as spectral estimation, speech processing, and radar

and sonar signal processing (Khorshidi et al., 2011, and references therein), as well as for

the modelling of river flows, sunspot numbers and various other geophysical phenomena

(Hipel and McLeod, 1994).

When the true order p0 of the autoregressive process is given, there are many ways

of estimating the AR coefficients, such as conditional least-squares, maximum likelihood

estimation, where the likelihood function considered is that corresponding to the uncon-

ditional joint distribution of the observed values, and the Burg (1967) and Yule-Walker

methods. In practice, however, the assumption that the AR order is known in advance is

often unrealistic and so p0 must be estimated from the data. It is well known that mak-

ing a model unnecessarily complex can degrade the efficiency of the resulting parameter

estimates, while oversimplifying a model can yield less accurate predictions. Thus, order

estimation is a task of critical importance.

The two most commonly used approaches for order selection are the Akaike informa-

tion criterion (AIC; Akaike, 1973) and the Bayesian information criterion (BIC; Schwarz,

1978). Various authors have applied AIC and BIC for selecting the order of an AR

model, including Brockwell and Davis (2002), Shumway and Stoffer (2006), and Tsay
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(2010). However, for an upper bound q on the AR order p0, AIC and BIC require the

fitting of q candidate AR models.

Exploiting the success of the lasso (Tibshirani, 1996) for performing simultaneous

variable selection and parameter estimation in the context of linear and generalized lin-

ear modelling, Wang et al. (2007b) and Nardi and Rinaldo (2011) applied shrinkage to

the AR coefficients through the L1 penalty, allowing for subset AR models. For autore-

gressive modelling, the lasso features are particularly attractive as the AR order and the

corresponding AR coefficients can be estimated simultaneously.

In this chapter, we propose an alternative penalized likelihood method for estimating

the AR order. Rather than imposing shrinkage on the AR coefficients, we instead intro-

duce shrinkage via the partial autocorrelations, which were shown to vary independently

over the interval (-1,1) and to be in a one-to-one, continuously differentiable correspon-

dence with the AR coefficients (Barndorff-Nielsen and Schou, 1973). The advantage of

using the PAC parametrization is that the partial autocorrelations vary on the same scale,

free of constraints. Furthermore, while the AR coefficients provide a convenient repre-

sentation of the autoregressive process, the structural dependence of the process is better

captured through the PACF. We thus consider regularized maximum likelihood estima-

tion of the partial autocorrelations as a means of selecting the order of an autoregressive

process.

The rest of this chapter is organized as follows. In Section 4.2, we begin with a

brief literature review of existing methods for estimating the order of an AR model.

We then introduce in Section 4.3 our proposed method for AR order estimation, which

involves maximizing the penalized Gaussian log-likelihood using the nested lasso penalty

of Levina et al. (2008) on the partial autocorrelations. The nested lasso penalty applied

to the PACs is designed for the class of stationary AR processes of order p, where the

the PACs at all lags j ≤ p are non-zero. To handle the general class of stationary AR

processes, we also consider applying the lasso (Tibshirani, 1996) penalty to the PACs.

We assess the finite sample performance of our proposed method in simulation studies in

Section 4.5, comparing it to various information criteria as well as the lasso and modified
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lasso methods of Wang et al. (2007b). We then illustrate the methodology developed in

this chapter through an application to a time series of wave heights in Section 4.7.

4.2 Autoregressive Order Estimation

We begin by introducing the autoregressive (AR) model of order p. Suppose that

X1, . . . , Xn are n observations from the AR(p) process

Xt = φ1Xt−1 + . . .+ φpXt−p + et, t = p+ 1, . . . , n,

where φ = (φ1, . . . , φp) is the autoregressive coefficient and et are independent Gaussian

random variables with mean 0 and variance σ2
e . We assume that {Xt} is stationary and

causal. This is equivalent to the condition that all roots of the characteristic polynomial

Φ(B) = 1 − φ1B − . . . − φpB
p, where B is the backshift operator, lie outside the unit

circle. The process {Xt} is said to be an AR(p) process with mean µ if {Xt − µ} is an

AR(p) process. In this section, we assume without loss of generality that µ = 0.

Recall that for a stationary process {Xt}, the autocovariance between Xt and Xt+j is

γ(j) = Cov(Xt, Xt+j) = E [(Xt − µ)(Xt+j − µ)] ,

and the autocorrelation between Xt and Xt+j is ρ(j) = γ(j)/γ(0), where

γ(0) = Var(Xt) =
σ2
e

1− φ1γ(1)− . . .− φpγ(p)
.

The partial autocorrelation coefficient (PAC) at lag j, πj, is the autocorrelation

between Xt and Xt+j after removing their dependency on the intervening variables

Xt+1, . . . , Xt+j−1, that is,

πj = Cor(Xt, Xt+j|Xt+1, . . . , Xt+j−1).

The defining feature of the partial autocorrelation function of an AR process of order
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p is that it cuts off after lag p; in other words, πj = 0 for all j > p. Therefore, the order

of the AR model is identified as the maximal lag j such that πj 6= 0.

There are two standard approaches used for determining the order. For {Xt} follow-

ing an autoregressive process, the first approach involves looking at the sample partial

autocorrelation function (PACF). The sample PACF may be obtained by successively

fitting the following autoregressive models

Xt = φ11Xt−1 + e1t,

Xt = φ12Xt−1 + φ22Xt−2 + e2t,

Xt = φ13Xt−1 + φ23Xt−2 + φ33Xt−3 + e3t,

...

where φij and ejt are the coefficient of Xt−i and the error term of an AR(j) model,

respectively. The estimate φ̂jj of the last coefficient at each stage is the lag-j sample

PACF of Xt.

For a stationary Gaussian AR(p) model, Quenouville (1949) showed that the sample

partial autocorrelations of lags p + 1 and higher are approximately independently and

normally distributed with zero mean and variance 1/n for lags j > p. Thus, the standard

error (SE) of the sample PACF φ̂jj is

SE(φ̂jj) '
1√
n
, j > p,

and so if we observe a sample PACF satisfying |φ̂jj| > 1.96/
√
n for 0 ≤ j ≤ p and

|φ̂jj| < 1.96/
√
n for j > p, this suggests an AR model of order p for the data.

The second approach uses likelihood-based information criteria, such as AIC and BIC.

For a Gaussian AR(j) model, AIC and BIC reduce to

AIC(j) = log (σ̂2
e,j) +

2j

n
and BIC(j) = log (σ̂2

e,j) +
j log (n)

n
,

respectively, where σ̂2
e,j is the maximum likelihood estimate of σ2

e . When considering the
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AIC procedure, Akaike (1969) and Shibata (1976) had used the Yule-Walker estimate

of σ2
e rather than the MLE. While maximum likelihood, Burg (1967) and Yule-Walker

estimation are asymptotically equivalent for finite AR models, it has been established

that for small to moderate sample sizes, the ML and Burg estimates tend to have less

bias than the Yule-Walker estimates. However, Chen et al. (1993) showed, with an

example, that while the Yule-Walker method may not provide the best estimates of the

parameters when the order of the model is known, it can be more reliable for fitting

overparametrized models than ML and Burg estimation, and would therefore be better

suited for order determination. We investigate this further in our simulation studies

in Section 4.5. Comparing AIC and BIC, it is well known that BIC tends to select a

lower order AR model than AIC when the sample size is moderate or large. Shibata

(1976) showed that AIC is not consistent, but rather overestimates the true AR order,

asymptotically, with a non-zero probability. Hannan and Quinn (1979) focused on finding

a criterion of the form log (σ̂2
e,j)+jCn that would be strongly consistent for the true order.

They invoked the law of the iterated logarithm to show that any Cn > 2 log (log n)/n leads

to a strongly consistent order estimate. Therefore, Hannan and Quinn (1979) considered

estimating the AR order by minimizing

HQC(j) = log (σ̂2
e,j) +

2jc log (log n)

n
, c > 1. (4.1)

They showed that if p̂ is chosen to minimize HQC(j) over j ≤ q, then for p0 ≤ q, p̂ is

strongly consistent for p0. Since 2 log (log n)/n < (log n)/n, BIC is strongly consistent.

This also implies that the method of Hannan and Quinn (1979) will underestimate the

order in large samples less than BIC. In practice, the performance of these criteria for

moderately large n is in agreement with the asymptotic theory, but not for small n.

Therefore, Hurvich and Tsai (1989) proposed that the AR order be selected by minimizing

the bias-corrected AIC criterion

AICc(j) = AIC(j) +
2(j + 1)(j + 2)

n− j − 2
. (4.2)
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It can be seen that for j fixed, AICc(j) → AIC(j) as n → ∞ and so AIC and AICc are

asymptotically equivalent.

In the time series context, AIC and BIC have been used for estimating the AR order,

but they are more commonly applied for selecting variables in the linear and generalized

linear modelling context. It has been well documented that the statisical performance of

AIC and BIC in this context can be unstable (Breiman, 1996) as parameter estimation

and model selection are two different processes. Therefore, penalized likelihood meth-

ods, such as the lasso (Tibshirani, 1996) and adaptive lasso (Zou, 2006), which estimate

parameters while simultaneously selecting important variables, emerged to overcome the

deficiencies of traditional methods. These penalization methods have also been consid-

ered in the literature for fitting autoregressive processes. Wang et al. (2007b) studied

linear regression with autoregressive errors. They used the lasso procedure to simulta-

neously estimate the regression coefficients and the autoregressive coefficients under the

assumption that the autoregressive order is fixed. Nardi and Rinaldo (2011), on the other

hand, used the lasso procedure for autoregressive process modelling in the case where the

number of parameters, or equivalently, the maximal possible lag, grows with the sample

size. These methods allow for subset AR models, where the order of the AR model,

which is the maximal lag p of the AR coefficients, does not correspond to the number

of non-zero AR coefficients. To remedy the well-known bias issue of the lasso, Wang

et al. (2007b) also considered a modified lasso penalty that allows for different tuning

parameters for different coefficients. Rather than selecting the p tuning parameters λj,

the authors fix the tuning parameter λ and weight each coefficient by 1/|φ̃j|, where φ̃j

is the unpenalized least squares estimator. This allows a larger amount of shrinkage

to be applied to insignificant coefficients, while a smaller amount of shrinkage can be

applied to the significant coefficients. They show that, for fixed p, the modified lasso

possesses the oracle property under certain conditions on the tuning parameters. Nardi

and Rinaldo (2011) established model selection consistency, estimation consistency, and

prediction consistency for the lasso estimator under the conditions that the maximal lag

p grows with n as p = o(n), p = o(n1/2) and p = o(n1/5), respectively. For selection of the
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tuning parameter, Wang et al. (2007b) had considered both cross-validation (CV) and

BIC, and found that BIC performed better in practice, while Nardi and Rinaldo (2011)

had simply employed CV. The simulations of Wang et al. (2007b) demonstrate that the

lasso with CV as the tuning parameter selector performs the worst, while the modified

lasso with BIC as the tuning parameter selector offers the best performance.

4.3 The Proposed Method for Autoregressive Order

Estimation

We adopt a penalized likelihood approach for estimating the order of an AR model.

Rather than applying shrinkage to the AR coefficients in (4.1), we instead introduce

shrinkage through the partial autocorrelations, defined as the conditional correlation

between Xt and Xs, given the intervening variables Xt+1, . . . , Xs−1. It is well known that

the distinguishing feature of the partial autocorrelation function of an AR(p) process is

that it cuts off after lag p, and so for n observations, generated from a stationary AR(p)

model, their corresponding partial autocorrelation matrix is banded with a non-zero band

at lag p. Therefore, we propose to estimate the AR order by maximizing the Gaussian log-

likelihood subject to a nested lasso penalty on the partial autocorrelations, which would

impose a banded structure on the partial autocorrelation matrix. The estimated order

of the AR model would then correspond to the bandwidth of the penalized maximum

likelihood estimate of the partial autocorrelation matrix. In what follows, we outline the

proposed method.

Suppose that {Xt} is a zero-mean Gaussian stationary process with autocovariance

function γ(|s − t|) = E(XsXt). Let Xn = (X1, . . . , Xn)T and let Σn = E(XnX
T
n ) denote

the covariance matrix. Using the variance-correlation decomposition, we write Σn =

VnRnVn, where Vn is a diagonal matrix with the marginal standard deviations of Xn and

Rn is the correlation matrix.

To remove the positive-definiteness constraint on the correlation matrix, we reparametrize

Rn in terms of the symmetric matrix Πn of partial autocorrelations, which is not required
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to be positive-definite. Since {Xt} is stationary, Πn is a stationary (Toeplitz) matrix. We

let πj denote the constant value along the jth diagonal of Πn. Unlike the marginal cor-

relations, the partial autocorrelations vary freely in the interval (-1,1); each πj can take

any value in (-1,1), regardless of the choice of the remaining partial autocorrelations. If

{Xt} is a stationary Gaussian AR(q) process, then πq+1 = . . . = πn−1 = 0.

Rather than working with the n× n matrix of partial autocorrelations Πn, which for

a stationary AR(q) model, is q-banded with a constant πj along the jth diagonal, we

instead work with the vectorized form of the partial autocorrelations, which we denote

by π = (π1, . . . , πq).

To reparametrize the correlation matrixRn to the partial autocorrelations (π1, . . . , πq),

we use the recursive Levinson-Durbin algorithm. Starting from ρ11 = ρ(1), we compute

recursively

ρjj =
ρ(j)−

∑j−1
k=1 ρj−1,kρ(j − k)

1−
∑j−1

k=1 ρj−1,kρ(k)
,

ρjk = ρj−1,k − ρjjρj−1,j−k, k = 1, . . . , j − 1,

where πj = ρjj for j = 1, . . . , n−1. Note that the function that maps the autocorrelations

to the partial autocorrelations is indeed invertible and its inverse can be easily computed.

Let Yi denote the standardized variable, standardized by the sample variance, which

we take as an estimate of σ2 = γ(0) = Var(Xt). Then given data yn = (y1, . . . , yn), the

log-likelihood function (apart from a constant) is given by

`n(π) = −1

2
log detRn −

1

2
yTnR

−1
n yn.

Therefore, we propose to estimate the AR order by solving

π̂n = arg max
π∈D

{
`n(π)− pλ(π)

}
, (4.3)

where D = {π = (π1, . . . , πq) : πj ∈ (−1, 1)} and λ > 0 is a tuning parameter. The

estimated AR order is then taken to be p̂n = max(j : π̂j 6= 0). We consider two penalties
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for pλ(·) in (4.3). For the first penalty, we take pλ(π) = λ
∑q

j=1
|πj |
|πj−1| , which is the

nested lasso penalty of Levina et al. (2008), where q < n is a known upper bound on

the true order p0, π0 = 1, and 0/0 is defined as 0. The effect of the penalty is that if

πj−1 = 0, then πj = 0. Thus, if the partial autocorrelation at lag j is zero, then the

partial autocorrelations at all subsequent lags are zero.

One drawback of the nested lasso penalty is that if the PAC at lag j is non-zero,

then it cannot set PACs at intermediate lags to zero. McLeod and Zhang (2006, 2008)

distinguished between three types of autoregressive models. The first type is the non-

subset AR(p) model with p non-zero AR coefficients and p non-zero PACs. The second

type is the usual subset AR(p) model, where the AR coefficient of lag p is non-zero with

some intermediate AR coefficients being zero (in this case, all of the PACs at the first

p lags may be non-zero or there may be some PACs at lags j < p that are zero). The

last type is a family of subset AR(p) models, where all the AR coefficients of lags j ≤ p

are non-zero, while the PAC at lag p is non-zero with some PACs at intermediate lags

constrained to zero.

The PAC-based nested lasso method is designed to perform best for identifying the

order of AR models of the first type since then the partial autocorrelation matrix is banded

with p non-zero bands. To estimate the order of AR models of the second and third types,

we use a lasso (Tibshirani, 1996) penalty so that PACs are penalized independently of each

other. That is, we take pλ(π) = λ
∑q

j=1 |πj|. The computational procedure presented

in Section 4.4 for maximizing the penalized log-likelihood (4.3) is general enough to

accommodate both the lasso and nested lasso penalties. The tuning parameter λ > 0 in

(4.3) can be selected using a data-driven method, such as cross-validation, AIC or BIC.

4.4 Computational Procedure

To solve the optimization problem in (4.3), we adopt an iterative procedure, similar to

that in Section 3.5. The procedure requires the specification of the initial estimate π̂(0) =

(π̂
(0)
1 , . . . , π̂

(0)
q ), which we take to be the sample partial autocorrelations with q = n−1. If
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an upper bound q < n− 1 on the true AR order is known, then the MLEs of the partial

autocorrelations corresponding to the AR(q) model may be used. We adopt a cyclic

coordinate descent procedure, which starts with the initial estimate π̂(0) and produces a

sequence
{
π̂(m)

}
. At each iteration m, π̂(m+1) is obtained by sequentially updating each

component of π̂(m) while the other components are held fixed. Componentwise updating

is possible as the PACs are unconstrained. We let f(·) denote the penalized log-likelihood

function in (4.3). Then at iteration m, π̂(m)
j is updated by solving

π̂
(m+1)
j = arg max

πj∈(−1,1)

f(π
(m+1)
1 , . . . , π

(m+1)
j−1 , πj, π

(m)
j+1, . . . , π

(m)
q ).

The first term in the penalized log-likelihood function (4.3) can be simplified by using

the fact that

detRn =
n−1∏
j=1

(1− π2
j )
n−j =

q∏
j=1

(1− π2
j )
n−j

for a stationary AR(q) model, while the second term in (4.3) is a polynomial in the πj’s.

Each component update must be done numerically, using an algorithm such as optimize

in R, which employs Brent’s method.

After each π̂(m)
j is updated to π̂(m+1)

j , we set π̂(m+1) = (π̂
(m+1)
1 , . . . , π̂

(m+1)
q ) and then

repeat the process until the sequence π̂(0), π̂(1), . . . converges. To ensure numerical stabil-

ity when the nested lasso penalty is used, we threshold the absolute values of the partial

autocorrelations at some pre-specified ε > 0. Once convergence is achieved, we set all

estimates equal to ε to zero. The procedure was found to perform well in our simulation

studies (see Section 4.5).

Remark: Note that in this implementation, we standardized the variables by the sample

variance, which was taken as an estimate of σ2 = Var(Xt). In other implementations, σ2

or the prediction variance σ2
e may be estimated.

• Jointly estimating π and σ2: For the former case, we first consider the joint log-
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likelihood function

`(π, σ2) = −1

2
log det Σn −

1

2
xTnΣnxn = −1

2
log det (VnRnVn)− 1

2
xTnV

−1
n R−1

n V −1
n xn

= −1

2
log detRn − log detVn − xTnV

−1
n R−1

n V −1
n xn

= −1

2
log detRn −

n

2
log σ2 − 1

2σ2
xTnR

−1
n xn,

and then maximize the joint log-likelihood function with respect to σ2 to get the

concentrated log-likelihood (after dropping constant terms)

`c(π) = −1

2
log detRn −

n

2
log σ̂2,

where σ̂2 = 1
n
xTnR

−1
n xn. The penalized concentrated log-likelihood can then be

maximized to obtain an estimate of Π.

• Jointly estimating π and σ2
e : In the latter case for the estimation of σ2

e , we first

consider the joint log-likelihood function

`(π, σ2
e) = −1

2
log det Σn −

1

2
xTnΣnxn = −1

2
log σ2

e +
1

2
log detM (p)

n −
1

2σ2
e

xTnM
(p)
n xn,

where M (p)
n = σ2

eΣ
−1
n . Now since σ2

e = σ2
∏p

j=1(1−π2
j ) and |Rn| =

∏p
j=1(1−π2

j )
n−j,

M (p)
n = σ2

eΣ
−1
n =

σ2
e

σ2
R−1
n =

p∏
j=1

(1− π2
j )R

−1
n

and

|M (p)
n | =

p∏
j=1

(1− π2
j )
n|Rn|−1 =

p∏
j=1

(1− π2
j )
j = h(π).

Therefore, as in McLeod and Zhang (2006), letting S(π) = xTnM
(p)
n xn, the log-
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likelihood of (π, σ2
e) is

`(π, σ2
e) = −n

2
log (σ2

e) +
1

2
log h(π)− 1

2σ2
e

S(π).

Then maximizing the joint log-likelihood function with respect to σ2
e , one obtains

the concentrated log-likelihood (after dropping constant terms)

`c(π) =
1

2
log h(π)− n

2
log σ̂2

e ,

where σ̂2
e = 1

n
S(π). The penalized concentrated log-likelihood can then be maxi-

mized to obtain an estimate of π. We use this procedure to implement the lasso

method based on the PAC parametrization.

The maximization of the penalized concentrated log-likelihood in either case may also be

done using a cyclic coordinate descent procedure.

4.5 Simulation Studies

In this section, we provide a simulation study to evaluate the performance of our pro-

posed PAC-based methods for estimating the order of an AR model. We compare their

performance to the standard information criteria AIC and BIC, the bias-corrected AIC

of Hurvich and Tsai (1989), the criterion of Hannan and Quinn (1979) as well as the

lasso and modified lasso methods of Wang et al. (2007b). For the information criteria,

we consider both ML and Yule-Walker parameter estimation. The performance of the

methods will be assessed for the following three Gaussian autoregressive models:

Simulation 1: Xt = 0.48Xt−1 + 0.40Xt−2 + et, t = 3, . . . , n,

Simulation 2: Xt = 0.455Xt−1 − 0.2015Xt−2 − 0.182Xt−3 − 0.30Xt−4 + et, t = 5, . . . , n,

Simulation 3: Xt = 0.52Xt−1 + 0.2078Xt−2 − 0.2526Xt−3 − 0.4707Xt−4 + 0.184Xt−5

+ 0.2Xt−6 + et, t = 7, . . . ,
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where et ∼ N (0, σ2
e) with σ2

e = 0.01. For Simulation 1, the corresponding partial au-

tocorrelations are π1 = 0.8, π2 = 0.4 and πj = 0 for j > 2. For Simulation 2, the

partial autocorrelations are π1 = 0.5, π2 = −0.4, π3 = −0.35, π4 = −0.3 and πj = 0 for

j > 4. For Simulation 3, the partial autocorrelations are π1 = 0.6, π2 = −0.4, π3 = −0.5,

π4 = −0.3, π5 = 0.3, π6 = 0.2 and πj = 0 for j > 6.

To obtain the estimated order for the PAC-based methods, we set π̂j = 0 if |π̂j| < 10−3

for j = 1, . . . , q and take p̂ = max (j : π̂j 6= 0). For the PAC-based nested lasso method,

we did not set an upper bound q < n − 1 on the true AR order. We found that the

method still performs well even when q = n − 1. However, such a large upper bound

does increase the computational burden. For the lasso and modified lasso methods of

Wang et al. (2007b) as well as the lasso method based on the PAC parametrization, we

shrink from AR models of order q = 15 to obtain subset AR models. For the PAC-based

methods, we consider both AIC and BIC for selecting the tuning parameter. For the

lasso and modified lasso methods of Wang et al. (2007b), we also use BIC for tuning

parameter selection as well as 5-fold cross-validation. The simulations corresponding to

the lasso and modified lasso methods were conducted using the R package glmnet. If φ̃j

is the unpenalized least squares estimator of φj, then the weights used in the modified

lasso method of Wang et al. (2007b) are 1/|φ̃j|. We also consider the weights 1/|φ̃j|γ,

where we take γ = 0.5 and 2, and use the value of γ that yields optimal order selection

performance.

For each model, we report the percentage of times out of N = 500 replications that

the estimated order equals a given value of p with sample sizes n = 100 and 200. The

results can be found in Tables 4.1 to 4.4.

For Simulation 1 (see Table 4.1), it was found that the PAC-based nested lasso method

with the BIC-selector and the classical BIC with the MLEs performed the best. For

both sample sizes under consideration, the bias-corrected AIC, AICc, performed slightly

better than AIC, while the HQ criterion overestimated less than AIC and AICc but

overestimated more than BIC. For the methods in Wang et al. (2007b), the modified lasso

method with the BIC-selector performed the best. The lasso had a greater tendency to
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overfit than the modified lasso. This is because each autoregressive coefficient in the lasso

is penalized with the same tuning parameter and so the insignificant coefficients cannot be

effectively shrunk to 0. This was first observed in Wang et al. (2007b), who recommended

using the modified lasso with the BIC-selector. When it comes to estimating the tuning

parameter in the L1-penalized or weighted L1-penalized likelihood, they found that BIC

performs better than cross-validation, which was also observed in our simulation studies.

The PAC-based methods offer improved performance over the lasso methods of Wang et

al. (2007b), which are based on penalization of the AR coefficients.

For Simulation 2 (see Table 4.2) with n = 100, the bias-corrected AIC using Yule-

Walker estimation and HQC using ML estimation performed the best. The methods

of Wang et al. (2007b) performed the worst. The lasso and modified lasso with 5-fold

CV as the tuning parameter selector had strong tendencies to overfit, and they did not

significantly - if at all - improve with an increased sample size. Using instead BIC as the

tuning parameter selector resulted in smaller overestimating rates for both these methods.

The PAC-based lasso method performed better than the modified lasso method; it had a

smaller percentage of overestimated orders. For n = 200, the BIC performed the best with

either Yule-Walker or ML estimation, selecting the correct order at a rate of roughly 95%.

The PAC-based nested lasso method with the BIC-selector was not far behind, selecting

the correct order at a rate of 91.0%.

For Simulation 3 (see Table 4.3) with n = 100, the bias-corrected AIC and the PAC-

based nested lasso method with the AIC selector performed the best. The information

criteria using the Yule-Walker parameter estimates performed very poorly with strong

tendencies to underestimate, while the same information criteria using the MLEs per-

formed satisfactorily. This is not surprising since the Yule-Walker estimates are biased

in small samples. While Yule-Walker estimation was found to be advantageous over ML

estimation for fitting overparametrized models when performing order estimation (Chen

et al., 1993), its advantage disappears when the maximum candidate order q is not very

large relative to the true order p0. For the penalized likelihood methods, the lasso with

either the CV or BIC-selector also performed poorly, with strong tendencies to overes-
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timate. For sample size n = 200, the method of Hannan and Quinn (1979), and the

PAC-based nested lasso method with the BIC-selector performed the best. Comparing

the two tuning parameter selectors for the PAC-based nested lasso method, we see more

underestimation by BIC relative to AIC for smaller n, but better results for the BIC

than AIC for larger n. This is not surprising since AIC was shown to be an inconsistent

criterion in a variety of settings (see, for example, Zhang et al., 2010). The modified

lasso procedure performed much better than the lasso procedure, while the PAC-based

methods performed much better than the modified lasso procedure, which is based on

penalization of the AR coefficients.

As discussed in Section 4.3, the drawback of the nested lasso penalty is that it cannot

eliminate bands of weak signals in between bands of strong signals. We verify this in

simulation by investigating the performance of our method when applied to samples

generated from the following stationary Gaussian AR(3) model

Simulation 4: Xt = 0.80Xt−1 − 0.32Xt−2 + 0.4Xt−3 + et, t = 4, . . . , n,

where et ∼ N (0, σ2
e) with σ2

e = 0.01, which has π1 = 0.8, π2 = 0 and π3 = 0.4. From

Table 4.4 with sample size n = 100, it can be seen that the nested lasso methods do not

perform well in identifying the true order, but neither does the adaptive lasso method.

For n = 100, the PAC-based nested lasso method with the BIC-selector wrongly selects

an AR(1) model 23.2% of the time, but it also overselects quite often. For n = 200,

it appears to be split between AR(3) and AR(4) models. As the sample size increases,

the underestimating rate of the PAC-based nested lasso method decreases, but it still

has a strong tendency to overestimate. It is clear that a lasso penalty applied to the

partial autocorrelations is more appropriate, as the partial autocorrelations in the second

band of the PAC matrix could be shrunk without wrongly shrinking the third band of

partial autocorrelations. For both sample sizes, the PAC-based lasso method with the

BIC-selector performs significantly better than the other methods under consideration.
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Simulation 1 Method Order
1 2* 3 4 >4

n = 100 AIC (YW) 4.0 87.4 6.2 1.8 0.6
AICc (YW) 4.0 88.4 5.6 1.6 0.4
BIC (YW) 12.4 87.0 0.4 0.2 0
HQC (YW) 7.8 88.4 2.4 1.0 0.4

AIC (MLE) 1.4 67.6 12.4 4.8 13.8
AICc (MLE) 1.8 73.2 11.6 3.8 9.6
BIC (MLE) 7.0 89.2 2.6 0.8 0.4
HQC (MLE) 2.8 85.8 6.6 2.6 2.2

Lasso (CV) 0 15.2 3.4 6.0 75.4
Lasso (BIC) 1.2 44.8 8.0 6.4 39.6

Modified lasso (CV) 3.2 28.8 1.4 2.4 64.2
Modified lasso (BIC) 9.2 60.6 2.2 2.2 25.8

Lasso - PAC (AIC) 5.8 49.4 2.0 3.6 39.2
Lasso - PAC (BIC) 22.6 70.8 0.8 0.2 5.6

Nested lasso - PAC (AIC) 1.4 78.0 14.0 2.4 4.2
Nested lasso - PAC (BIC) 2.6 92.8 3.6 0.8 0.2

n = 200 AIC (YW) 0 89.6 6.2 2.4 1.8
AICc (YW) 0 90.2 6.4 2.0 1.4
BIC (YW) 0 99.0 1.0 0 0
HQC (YW) 0 96.8 2.4 0.6 0.2

AIC (MLE) 0 71.6 9.6 5.8 13.0
AICc (MLE) 0 74.0 9.2 5.4 11.4
BIC (MLE) 0 97.6 1.6 0.6 0.2
HQC (MLE) 0 90.8 6.4 1.8 1.0

Lasso (CV) 0 10.6 5.6 3.8 80.0
Lasso (BIC) 0 45.0 12.2 5.6 37.2

Modified lasso (CV) 0.2 44.2 1.0 1.4 53.2
Modified lasso (BIC) 0.4 83.2 1.0 1.4 14.0

Lasso - PAC (AIC) 0 51.2 1.2 2.4 45.2
Lasso - PAC (BIC) 1.2 92.0 0.2 0.6 6.0

Nested lasso - PAC (AIC) 0 75.4 16.4 2.8 5.4
Nested lasso - PAC (BIC) 0 97.4 2.0 0.4 0.2

Table 4.1: The percentage of times in which order p was estimated by AIC, AICc, BIC, HQC, lasso (CV, BIC, q = 15),
modified lasso (CV, BIC, q = 15), PAC-based lasso (AIC, BIC), and PAC-based nested lasso (AIC, BIC), where n = 100, 200
observations are generated from the stationary Gaussian AR(2) modelXt = 0.48Xt−1+0.4Xt−2+et, where et ∼ N (0, 0.01).
The true order is denoted by *.
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Simulation 2 Method Order
1 2 3 4* 5 6 >6

n = 100 AIC (YW) 0.4 0.2 10.2 78.6 6.2 2.6 1.8
AICc (YW) 0.4 0.6 11.4 79.6 5.2 1.8 1.0
BIC (YW) 2.2 4.4 21.0 71.4 1.0 0 0
HQC (YW) 0.4 1.4 16.4 78.4 2.4 0.6 0.4

AIC (MLE) 0 0.2 3.6 68.4 12.4 4.4 11.0
AICc (MLE) 0 0.4 4.4 73.8 11.0 3.6 6.8
BIC (MLE) 0.6 1.4 16.6 78.2 2.2 0.8 0.2
HQC (MLE) 0.4 0.2 8.0 79.6 6.2 2.6 3.0

Lasso (CV) 0 0 0 8.4 2.0 1.0 88.6
Lasso (BIC) 0.4 0 0.8 35.2 3.2 1.2 59.2

Modified lasso (CV) 0.2 0.2 3.6 21.0 2.2 2.6 70.2
Modified lasso (BIC) 1.2 0.6 9.0 51.2 2.0 2.4 33.6

Lasso - PAC (AIC) 0.2 0 5.2 35.0 2.6 2.2 54.8
Lasso - PAC (BIC) 4.0 0.2 17.8 69.0 1.0 0.2 7.8

Nested lasso - PAC (AIC) 0 0 2.6 62.0 24.2 4.8 6.2
Nested lasso - PAC (BIC) 0.6 1.8 8.8 76.4 10.0 1.6 0.4

n = 200 AIC (YW) 0 0 0.6 88.4 6.2 4.2 0.6
AICc (YW) 0 0 0.6 89.4 5.6 3.8 0.6
BIC (YW) 0 0 3.6 95.4 1.0 0 0
HQC (YW) 0 0 1.4 94.0 2.8 1.6 0.2

AIC (MLE) 0 0 0.2 71.6 9.6 8.2 10.4
AICc (MLE) 0 0 0.2 74.4 10.0 7.4 8
BIC (MLE) 0 0 1.8 95.0 2.6 0.6 0
HQC (MLE) 0 0 1.0 89.6 5.2 3.4 0.8

Lasso (CV) 0 0 0 4.8 0.4 1.4 93.4
Lasso (BIC) 0 0 0 33.8 2.0 2.0 62.2

Modified lasso (CV) 0 0 0.8 28.2 1.6 2.4 67.0
Modified lasso (BIC) 0 0 2.8 70.6 1.6 3.0 22.0

Lasso - PAC (AIC) 0 0 0.4 28.8 1.6 2.0 67.2
Lasso - PAC (BIC) 0 0 3.2 69.6 1.2 2.8 23.2

Nested lasso - PAC (AIC) 0 0 0 65.6 23.4 6.8 4.2
Nested lasso - PAC (BIC) 0 0 0.4 91.0 7.4 1.0 0.2

Table 4.2: The percentage of times in which order p was estimated by AIC, AICc, BIC, HQC, lasso (CV, BIC, q = 15),
modified lasso (CV, BIC, q = 15), PAC-based lasso (AIC, BIC), and PAC-based nested lasso (AIC, BIC), where n = 100, 200
observations are generated from the stationary Gaussian AR(4) model Xt = 0.455Xt−1 − 0.2015Xt−2 − 0.182Xt−3 −
0.30Xt−4 + et, where et ∼ N (0, 0.01). The true order is denoted by *.
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Simulation 3 Method Order
<4 4 5 6* 7 8 >8

n = 100 AIC (YW) 3.8 20.8 46.0 26.6 2.0 0.4 0.4
AICc (YW) 4.6 23.8 46.4 23.8 1.2 0.2 0
BIC (YW) 19.2 33.8 40.0 7.0 0 0 0
HQC (YW) 7.8 31.0 44.6 16.2 0.4 0 0

AIC (MLE) 0.2 7.2 28.4 40.6 8.0 4.4 11.2
AICc (MLE) 0.4 9.2 34.6 41.8 5.2 3.8 5.0
BIC (MLE) 6.2 25.2 41.2 25.4 1.2 0.4 0.4
HQC (MLE) 1.8 16.0 37.6 36.6 4.8 1.4 1.8

Lasso (CV) 0 1.0 0 0.8 3.4 2.0 92.8
Lasso (BIC) 0 8.4 0.6 1.8 11.0 9.6 68.6

Modified lasso (CV) 2.2 5.6 5.2 12.4 2.2 2.0 70.4
Modified lasso (BIC) 5.0 23.0 10.2 22.4 3.4 2.6 33.4

Lasso - PAC (AIC) 1.6 7.6 5.8 23.4 4.8 4.6 52.2
Lasso - PAC (BIC) 2.6 15.6 9.6 38.2 5.4 4.4 24.2

Nested lasso - PAC (AIC) 0.4 5.0 21.0 41.2 16.6 5.8 10.0
Nested lasso - PAC (BIC) 5.8 17.6 33.2 31.6 8.6 1.8 1.4

n = 200 AIC (YW) 0 1.2 27.8 63.0 5.2 2.0 0.8
AICc (YW) 0 1.2 29.4 62.0 5.0 1.8 0.6
BIC (YW) 0.6 9.6 52.6 36.6 0.6 0 0
HQC (YW) 0.2 3.8 41.6 51.6 2.0 0.6 0.2

AIC (MLE) 0 0.2 11.4 61.6 10.6 6.6 9.6
AICc (MLE) 0 0.2 12.8 63.8 10.8 5.8 6.6
BIC (MLE) 0.2 5.0 36.2 56.4 1.8 0.4 0
HQC (MLE) 0 1.4 22.4 68.6 4.6 1.8 1.2

Lasso (CV) 0 0 0 0.4 0.8 2.6 96.2
Lasso (BIC) 0 2.4 0 1.8 11.4 11.6 72.8

Modified lasso (CV) 0.2 0.8 5.2 14.4 2.4 3.6 73.4
Modified lasso (BIC) 0.8 7.2 17.4 41.4 5.6 1.6 26.0

Lasso - PAC (AIC) 0 0.4 3.0 25.6 3.8 4.6 62.6
Lasso - PAC (BIC) 0.4 5.2 8.4 63.0 5.6 2.8 14.6

Nested lasso - PAC (AIC) 0 0.2 4.8 53.8 26.2 7.4 7.6
Nested lasso - PAC (BIC) 0 2.2 16.6 66.6 12.4 2.0 0.2

Table 4.3: The percentage of times in which order p was estimated by AIC, AICc, BIC, HQC, lasso (CV, BIC, q = 15),
modified lasso (CV, BIC, q = 15), PAC-based lasso (AIC, BIC), and PAC-based nested lasso (AIC, BIC), where n = 100, 200
observations are generated from the stationary Gaussian AR(6) model Xt = 0.52Xt−1 + 0.2078Xt−2 − 0.2526Xt−3 −
0.4707Xt−4 + 0.184Xt−5 + 0.2Xt−6 + et, where et ∼ N (0, 0.01). The true order is denoted by *.
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Simulation 4 Method Order
1 2 3* 4 5 6 >6

n = 100 Modified lasso (γ = 1, BIC) 20.8 0.8 40.6 4.0 2.6 2.2 29.0
Adaptive lasso (γ = 2, BIC) 21.6 0.8 43.6 3.8 2.6 2.6 25.0

Lasso - PAC (AIC) 8.4 0.2 52.6 2.6 3.2 2.8 30.2
Lasso - PAC (BIC) 13.2 0.2 71.4 2.0 2.0 1.8 9.4

Nested lasso - PAC (AIC) 8.0 1.0 30.8 34.8 13.4 4.0 8.0
Nested lasso - PAC (BIC) 23.2 5.2 40.6 22.8 5.4 1.4 1.4

n = 200 Modified lasso (γ = 1, BIC) 3.0 0 55.2 3.0 1.8 3.6 33.4
Adaptive lasso (γ = 2, BIC) 2.6 0 68.6 2.2 1.4 1.8 23.4

Lasso - PAC (AIC) 0.2 0 57.6 1.4 3.2 2.0 35.6
Lasso - PAC (BIC) 0.2 0 87.2 1.4 0.4 1.0 9.8

Nested lasso - PAC (AIC) 2.2 0 34.0 46.4 10.4 3.2 3.8
Nested lasso - PAC (BIC) 17.4 4.0 51.4 24.4 2.6 0.2 0

Table 4.4: The percentage of times in which order p was estimated by modified lasso (γ = 1, BIC, q = 15), adaptive
lasso (γ = 2, BIC, q = 15), PAC-based lasso (AIC, BIC), and PAC-based nested lasso (AIC, BIC), where n = 100, 200
observations are generated from the stationary Gaussian AR(3) model Xt = 0.80Xt−1 − 0.32Xt−2 + 0.4Xt−3 + et, t =
4, . . . , n, where et ∼ N (0, 0.01). Note that this model has partial autocorrelations π1 = 0.8, π2 = 0, π3 = 0.4, and πj = 0
for j > 3. The true order is denoted by *.

4.6 Standard Errors for Selection-Based Estimators by

Bootstrapping

In this section, we study how to obtain standard error estimates for our maximum pe-

nalized likelihood estimates π̂j by bootstrapping. We refer to the literature on bootstrap

methods for computing standard errors and confidence intervals for selection-based esti-

mators in the linear regression context. In what follows, we review some of these bootstrap

procedures.

Given correct model specification, a number of procedures are available for obtain-

ing reliable parameter estimates along with reliable variance and confidence interval es-

timates. When model selection precedes parameter estimation, however, inference is

usually done conditional on the selected model and does not take into account any un-

certainty in model selection. As a result, variance estimates are too small and confidence

interval estimates have less than nominal coverage. Various authors have discussed the

need to incorporate model selection uncertainty into statistical inference whenever data-
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based model selection precedes parameter estimation (Chatfield, 1995; Buckland et al.,

1997; Leeb and Pötscher, 2006). The bootstrap (Efron, 1979), which is a data resam-

pling procedure, is one approach for estimating variance and generating robust confidence

intervals that avoids conditioning on a selected model. In this setting, the bootstrap in-

volves generating resamples and then applying the model selection procedure separately

to each resample (see, for example, Buckland et al., 1997). The sample variance of the

bootstrap estimates then provides an estimated variance for the original estimate from

the real data. When using AIC to select covariates in a Poisson regression model, Buck-

land et al. (1997) found that the performance of the bootstrap procedure depends on

the resampling method used. Generating the bootstrap resamples from the AIC-selected

model, for example, would bias the results in favour of the model with the smallest AIC

value. When considering estimation accuracy after performing model selection in a regres-

sion context, Efron (2014) suggested generating bootstrap samples not from the selected

model, but from the full model instead. Applying the lasso, for example, to bootstrap

samples generated from the lasso-selected model, would result in double shrinkage.

Even after careful consideration of the manner in which bootstrap samples are gen-

erated, Efron (2014) found that when a model selection procedure is applied to each

bootstrap sample, the resulting bootstrap replications of an estimate can be very dif-

ferent from the original selection-based estimate. He observes that model selection can

produce “jumpy and erratic” estimates, and therefore considers a method called bootstrap

smoothing (Efron and Tibshirani, 1996), which is a form of model averaging that reduces

variability and eliminates discontinuities of selection-based estimators. His paper focuses

on attaching standard error estimates to selection-based estimators of the mean in regres-

sion models. In one of his examples, he uses the lasso to obtain an estimate µ̂λ̂ = Xβ̂λ̂

of mean µ in a standard normal linear regression model and wishes to attach standard

error estimates to µ̂λ̂. His procedure involves two levels of bootstrapping. At the first

level, B1 bootstrap samples are drawn from the full ordinary least squares (OLS) model.

At the second level, for each bootstrap sample b, 1 ≤ b ≤ B1, the parameter estimates

of the full OLS model are obtained, and then another B2 bootstrap samples are drawn
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from the fitted OLS model. The lasso is then applied to each of the B2 bootstrap sam-

ples (including tuning parameter selection) to obtain the lasso-estimated mean µ̂∗
λ̂∗
, and

then a smoothed estimate of the mean is obtained by averaging over the B2 bootstrap

replications µ̂∗
λ̂∗
. However, there is no guarantee that the bootstrap replications β̂

∗
λ̂∗ will

have the same number of zero coordinate estimates as the original lasso estimate β̂λ̂, and

so when attempting to apply this methodology for obtaining standard error estimates of

β̂λ̂, the smoothed estimate β̃ may also have fewer non-zero coordinate estimates than the

original lasso estimate.

One way of eliminating the possibility of having a bootstrap estimate with a different

number of zero coordinate estimates than the original estimate is to use the bootstrap

for both model selection and subsequent inference. In the linear regression context, Shao

(1996) showed that the bootstrap procedure (where the model that minimizes the boot-

strap estimate of mean-squared prediction error is selected) is inconsistent in the sense

that the probability of selecting the optimal subset of variables does not converge to 1 as

the sample size grows. He corrects the inconsistency by modifying the sampling method.

Recently, Gupta and Lahiri (2014) considered a similar idea, where the model is selected

based on the bootstrap resamples. In particular, they proposed a maximum frequency

(MF) method, where bootstrap-based inference is conducted only on a subcollection of B

bootstrap resamples that resulted in the selection of the model with the highest selection

frequency among the B replicates. Since all the replicates in this collection correspond to

the same model, the extra variability arising from model selection in different resamples

is eliminated. This is the approach that we choose to use in our real data application in

Section 4.7.

The other challenge in conducting bootstrap-based inference for the vector of partial

autocorrelations π is in finding the best manner of resampling in the time domain. One

approach is to use model-based resampling. The idea of model-based resampling is to

first fit a suitable model to the data, to construct residuals from the fitted model, and

then to resample from the residuals so that a new series can be obtained by adding

the residual resamples to the fitted values. As discussed, when desiring standard error

104



estimates of selection-based estimators, the residuals from which bootstrap resamples are

drawn should not be obtained from the model with shrinkage, but rather from the full

model so as to avoid double shrinkage when the selection-based procedure is applied to

the bootstrap resample.

Another approach to resampling in the time domain involves resampling not from

residuals, but from blocks of consecutive observations. We re-state the procedure outlined

in Davison and Hinkley (1997). The idea is to divide the data into N non-overlapping

blocks of length L, where we assume that the length of the series is n = NL. Then

taking z1 = (x1, . . . , xl), z2 = (xl+1, . . . , x2l), and so forth, a new series is obtained by

sampling from the blocks z1, . . . , zN with equal probability 1/N , and then placing the

blocks end-to-end. Series obtained by resampling schemes based on blocks, however, are

less dependent than the original data. The hope is that if the blocks are sufficiently

long, then most of the original dependence will be preserved in the resampled series so

that statistics calculated from the bootstrap samples will have approximately the same

distribution as statistics calculated from resamples of the original series (Davison and

Hinkley, 1997). On the other hand, the blocks cannot be too long since then there will be

fewer distinct blocks and not enough variability in the sampled blocks. Various authors

have discussed optimal block lengths (Hall et al., 1995; Lahiri, 2003). Hall et al. (1995)

discuss bootstrap blocking rules and find that the optimal block size depends significantly

on context. For our real data application in Section 4.7, we use a block resampling scheme.

4.7 Real Data Analysis

To illustrate the use of our proposed method for estimating the order of an AR model,

we apply our method to a data set from Cowpertwait and Metcalfe (2009). The data set

consists of the surface height of water, measured in millimetres relative to still water. The

measurements were taken using a capacitance probe, positioned at the centre of a wave

tank. The continuous voltage signal from the capacitance probe was sampled over 39.6

seconds at a rate of 10 samples per second. As discussed in Cowpertwait and Metcalfe
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(2009), there is no trend and no seasonal component and therefore the assumption of

a stationary process is reasonable. The time series plot of wave heights is displayed in

Figure 4.1 along with its ACF and PACF in Figure 4.2. The ACF for wave heights

appears to have a damped cosine wave structure that reflects the behaviour of an AR(p)

process with complex roots. The PACF has values significantly different from zero at

lags 1, 2, 4 to 10, and 12, suggesting an AR model of order at least 2.
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Figure 4.1: Time series plot of the wave heights data, which were sampled at the centre of a wave tank at 0.1 second
intervals over a period of 39.6 seconds.

The goal of the analysis of Cowpertwait and Metcalfe (2009) was to find the best

ARMA(p, q) model to fit to the time series of wave heights, which would then be used

to generate a realistic wave input to a mathematical model in a computer simulation of

an ocean-going tugboat. One model considered by Cowpertwait and Metcalfe (2009) for

the wave heights data is an ARMA(4,4) model, which was selected based on a minimum

variance of residuals. Using their criterion of selection, we find that an ARMA(4,4)

model is indeed selected when p < 6 and q < 6. Rather than using the more general

ARMA(p,q) model, it is common to use a high order AR(p) model. Therefore, we fit

an AR(p) model to the data, allowing for the possible AR order, p, to be large. Using

AIC and BIC to select the AR order results in models of orders 15 and 13, respectively.

Applying the adaptive lasso procedure with γ = 1 yields a model of order 17 with 17
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Figure 4.2: Sample autocorrelations (left) and partial autocorrelations (right) of the wave height series.

non-zero PACs, but 3 zero AR coefficients at lags 14 to 16. We next applied our proposed

method for order estimation and considered both AIC and BIC for the choice of the tuning

parameter. Our method selects an AR model of order 13 with both AIC and BIC agreeing

on the choice of the tuning parameter. The maximum penalized likelihood estimates of

πj for j = 1, . . . 13 are provided in Table 4.7. Their corresponding standard errors were

obtained by bootstrapping. Various authors (Chatterjee and Lahiri, 2010; Efron, 2014)

have discussed variance and confidence interval estimation of selection-based estimators

in the linear regression setting via bootstrapping. See Section 4.6 for a review. However,

there is no definitive bootstrap approach to date for attaching standard error estimates

to penalized likelihood estimates. We use a non-overlapping block bootstrap approach to

generate B = 1000 bootstrap resamples, where we split the time series into consecutive

blocks of length � = 22 and resample blocks with replacement to obtain a new series

by appending blocks end-to-end. The penalized estimates π̂∗
λ̂∗,j

are then found for each

bootstrap resample, where λ̂∗ is the BIC-selected tuning parameter and the standard

errors are obtained by taking the standard deviation of the bootstrap replications π̂∗
λ̂∗,j

for j = 1, . . . , 13, conditional on the selected AR(13) model.

We also employed the maximum frequency (MF) bootstrap (see discussion of Efron,

107



2014) as a means of performing order selection, where bootstrap-based inference is con-

ducted only on the subcollection of bootstrap resamples that resulted in the choice of the

model with the highest selection frequency among the B replicates. The AR model of

order 11 was found to have the highest selection frequency among the B = 1000 repli-

cates (see Table 4.5). In Table 4.6, we provide summaries of the bootstrap replications

of the partial autocorrelations for the AR model of order k based on the subcollection of

bootstrap resamples that resulted in the selection of the model of order k.

AR Order
< 10 10 11 12 13 14 15 16 > 16

Nested lasso - PAC (AIC) 1.0 14.8 23.0 15.1 5.3 5.0 8.9 9.4 17.5
Nested lasso - PAC (BIC) 9.9 24.3 35.7 18.3 3.9 2.8 1.8 1.7 1.6

Table 4.5: Percentage each model was selected by the PAC-based nested lasso method with the tuning parameter chosen
by AIC and BIC among B = 1000 bootstrap resamples, generated using a non-overlapping block bootstrap procedure for
the time series of wave heights.

AR Order
Parameter 10 11 12 13

π1 0.457 (0.028) 0.461 (0.026) 0.446 (0.025) 0.432 (0.023)
π2 -0.615 (0.031) -0.605 (0.030) -0.606 (0.026) -0.596 (0.027)
π3 -0.035 (0.050) -0.026 (0.048) -0.027 (0.044) -0.013 (0.045)
π4 -0.302 (0.048) -0.298 (0.050) -0.293 (0.056) -0.290 (0.052)
π5 -0.264 (0.048) -0.262 (0.044) -0.269 (0.044) -0.292 (0.053)
π6 -0.163 (0.050) -0.178 (0.053) -0.186 (0.048) -0.182 (0.049)
π7 -0.083 (0.040) -0.084 (0.041) -0.086 (0.044) -0.109 (0.046)
π8 -0.101 (0.038) -0.108 (0.039) -0.109 (0.042) -0.106 (0.035)
π9 -0.203 (0.051) -0.223 (0.056) -0.197 (0.051) -0.219 (0.056)
π10 -0.160 (0.064) -0.198 (0.063) -0.196 (0.054) -0.201 (0.057)
π11 0.011 (0.036) -0.028 (0.057) -0.051 (0.053)
π12 -0.064 (0.039) -0.099 (0.048)
π13 -0.010 (0.036)

Table 4.6: Mean and standard deviation of π̂∗j , j = 1, . . . , 13, as a function of the selected order, based on B = 1000
bootstrap resamples, for the time series of wave heights.

To assess the goodness-of-fit of the AR(11), AR(13), AR(15) and ARMA(4,4) models,

fitted by maximum likelihood, as well as the subset AR(17) model with shrinkage, we

partition the n = 396 observations into two groups of 356 (past) and 40 (future) obser-

vations. The first group will be used to refit the models and compute the forecasts of

the next 40 future values. The second group of 40 observations will be used to compute

out-of-sample prediction errors. The empirical performance of the models will be assessed
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Parameter MPLE Standard Error
π1 0.451 0.023
π2 -0.630 0.027
π3 -0.041 0.045
π4 -0.307 0.052
π5 -0.282 0.053
π6 -0.190 0.049
π7 -0.142 0.046
π8 -0.157 0.035
π9 -0.244 0.056
π10 -0.259 0.057
π11 -0.097 0.053
π12 -0.170 0.048
π13 -0.074 0.036

Table 4.7: Maximum penalized likelihood estimates (MPLEs) of the partial autocorrelations πj , j = 1, . . . , 13 along with
their standard errors, obtained from a subcollection of 1000 non-overlapping block bootstrap resamples that resulted in
the selection of an AR model of order 13, for the time series of wave heights.

by computing the standard deviation of the 40 prediction errors, that is,

√√√√ 1

40

396∑
t=357

(yt − ŷt)2, (4.4)

where ŷt are the one-step ahead forecasts. The results are displayed in Table 4.8.

Model Root-Mean-Squared Prediction Error
AR(11) 119.3
AR(13) 116.1

Penalized AR(13) 115.0
AR(15) 118.2

Penalized subset AR(17) 119.0
ARMA(4,4) 119.3

Table 4.8: Root-mean-squared prediction error for the following models, fitted to the time series of wave heights: AR(11)
(using ML estimation), AR(13) (using ML estimation), penalized AR(13) (using PAC-based nested lasso with the BIC-
selector), AR(15) (using ML estimation), subset AR(17) (estimated by adaptive lasso) and ARMA(4,4).

From Table 4.8, it can be seen that the AR(13) model has the smallest root-mean-

squared prediction error, but there is very little difference between the models. This can

also be seen in Figure 4.3, where we plot the one-step-ahead forecasts for the observed

wave heights in the test data set for each of the models. The AR models provide similar

forecasts to the ARMA(4,4) model. As the forecasts corresponding to the AR models

are very similar, the simpler AR(13) model is preferred over the AR(15) and the subset

AR(17) models.
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The estimated coefficients of the AR(13) model, fitted to the n = 396 observed wave

heights, are displayed in Table 4.9 along with their standard errors. The estimated resid-

ual standard deviation is σ̂e = 136.3. An inspection of the ACF, PACF and histogram of

the residuals, displayed in Figure 4.4 confirms the adequacy of the fitted model.

Coefficient Estimate Standard Error
φ1 0.272 0.050
φ2 -0.924 0.051
φ3 -0.430 0.068
φ4 -0.674 0.067
φ5 -0.711 0.072
φ6 -0.714 0.075
φ7 -0.615 0.078
φ8 -0.584 0.075
φ9 -0.444 0.072
φ10 -0.513 0.067
φ11 -0.227 0.069
φ12 -0.194 0.051
φ13 -0.159 0.050

Table 4.9: Estimated coefficients with their corresponding standard errors for the AR(13) model, fitted to the time series
of wave heights of length n = 396.
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Figure 4.3: Plot of the one-step-ahead forecasts for the AR(11), AR(13), AR(15), subset AR(17) and ARMA(4,4) models
over a period of 4 seconds.
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Figure 4.4: Residuals from the fitted AR(13) model to the time series of wave heights: ACF, PACF and histogram.

4.8 Discussion

In this chapter, we proposed penalized likelihood approaches for estimating the order of an

autoregressive process based on the partial autocorrelation (PAC) parametrization. It is

well known that for observations generated from an autoregressive process, the AR order is

identified by the bandwidth of the partial autocorrelation matrix. Therefore, we estimate

the bandwidth of the partial autocorrelation matrix using the nested lasso penalty of

Levina et al. (2008). While the AR coefficients provide a convenient representation of

the autoregressive process, we apply shrinkage to the partial autocorrelations instead as
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they better reflect the temporal dependence structure of the AR process. Our proposed

method with the nested lasso penalty performs best for estimating the order of non-subset

AR models, where partial autocorrelations at all lags j ≤ p are non-zero. To handle the

case where some PACs at intermediate lags are zero, we apply a lasso penalty to the PACs

so that they are penalized independently of each other. Our simulations in Section 4.5

demonstrate that the PAC-based lasso method offers better performance over the lasso

and modified lasso methods of Wang et al. (2007b), which are based on penalization of the

AR coefficients, for both subset and non-subset AR models. Furthermore, when the true

model is a non-subset AR model, it was found in simulation that the PAC-based nested

lasso method performs better than various information criteria as well as the lasso and

modified lasso methods of Wang et al. (2007b) with smaller percentages of overestimated

AR orders. The theoretical properties of the proposed PAC-based methods remain for

future work.
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Chapter 5

Estimating Networks with Hubs from Micro-

biome Data

In Chapter 3 of this thesis, we focused on the problem of estimating a sparse precision

matrix Θ in the case where variables are ordered. In this setting, it is reasonable to

assume that the inverse Θ is banded. In this chapter, we study sparse inverse covariance

estimation in the case where variables are unordered, which under multivariate normality,

corresponds to estimating a graphical model for the data. We focus on the case where

the underlying graphical model has hubs, which are highly connected nodes, inspired by

a microbiome data application. Methods based on L1-regularization are widely used for

graph estimation. However, while the L1 penalty encourages sparsity, it does not take

into account any structural information. In this chapter, we introduce a new method

for estimating networks with hubs that exploits the ability of (inverse) covariance se-

lection methods to include structural information about the underlying network. We

propose a weighted graphical lasso approach with novel row/column sum weights that

take hub structure into account, which we refer to as the hubs weighted graphical lasso

(HWGL). Some asymptotic results are established. Empirically, we then show that the

HWGL procedure outperforms competing methods and illustrate the methodology with

an application to microbiome data.
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5.1 Introduction

A number of biological networks, such as gene regulatory and protein-protein interaction

networks, display high-degree or densely connected nodes, called hubs. In this chapter,

we study the problem of estimating high-dimensional networks with hubs, focusing on

an application to microbiome data. We begin by providing some background on the mi-

crobiome data application in Section 5.1.1. We then introduce the problem of estimating

networks with hubs and briefly review related work in Section 5.1.2.

5.1.1 Motivating Example: Estimating Microbiota Networks

Rapidly developing sequencing technologies and analytical techniques have enhanced our

ability to study the microorganisms (such as bacteria, viruses, archaea and fungi) that

inhabit the human body as well as a wide range of environments. Large-scale initiatives

to analyze microbial communities, such as the Earth Microbiome Project (Gilbert et

al., 2010) and the Human Microbiome Project (Turnbaugh, et al., 2007), have made

available to the public a growing number of samples from soil, marine, plant, animal and

human-associated microbiota.

The microorganisms inhabiting a particular environment do not exist in isolation, but

interact with other microorganisms in a range of mutualistic and antagonistic relation-

ships. Beneficial interactions can arise due to reasons such as cross-feeding (which involves

the exchange of metabolic products between species) and co-colonization, while harmful

interactions can arise due to prey-predator relationships and nutrient competition (Faust

and Raes, 2012). One goal of microbiome studies is to model these microbial interac-

tions from population-level data as a network reflecting co-occurrence and co-exclusion

patterns between microbial taxa. This is of interest not only for predicting individual

relationships between microbes, but the structure of the interaction networks also gives

insight into the organization of complex microbial communities. Accurate inference of

microbial interaction networks will be key to answering several other questions arising

in microbiome studies. In particular, one area of inquiry requiring further elucidation is
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the outcome of host-microbe interactions on human health and disease. Recent studies

have revealed that microbiome composition and structure varies based on health, diet

and environment, and may play a key role in diseases such as obesity (Turnbaugh et al.,

2009) and Crohn’s disease (Gevers et al., 2014) as well as chronic malnutrition among

children (Gough et al., 2015). Therefore, the goal of this chapter is to introduce method-

ology for accurately reconstructing a microbial interaction network that can also be used

in downstream statistical analyses.

In recent studies, networks of pairwise correlations between microbial taxa have been

used to model microbe-microbe interactions (Friedman et al., 2012). In this representa-

tion, nodes are microbial taxa and an edge between two nodes represents a non-zero as-

sociation between two taxa. Under multivariate normality, these links represent marginal

dependence relationships between taxa. As a pairwise measure of dependence, however,

correlation can be limiting in the multivariate setting. As an alternative to computing

pairwise correlations, some authors have utilized an approach that estimates a sparse

inverse covariance matrix from relative abundance data (Gough et al., 2015; Kurtz et al.,

2015), which will also be done in this chapter. Under multivariate normality, non-zero

elements in the inverse represent conditional dependence relationships between two taxa

and correspond to edges in an undirected graphical model.

Statistical challenges in modelling these graphical models of microbial interactions

arise due to data scarcity and the organization of the network’s nodes into groups with

different levels of connectivity. Specifically, microbial association networks tend to display

hubs. In ecology, these hubs can represent a few “keystone” species that are vital in

maintaining stability of the microbial community (Kurtz et al., 2015).

5.1.2 Estimating Networks with Hubs

When it comes to graph estimation in the sample-starved scenario, methods based on L1

regularization are widely used, the most popular being the graphical lasso of Friedman et

al. (2008). The L1 penalty, however, implicitly assumes that each edge is equally likely

and independent of all other edges, and is therefore inadequate for modelling networks
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with a few high-degree nodes in the presence of many low-degree nodes. To accommodate

such structures, Tan et al. (2014) had proposed the hubs graphical lasso (HGL), which is

a penalization method that encourages solutions of the form Θ = Z+V+VT , where Z is a

sparse symmetric matrix capturing edges between non-hub nodes andV is a matrix whose

columns are either entirely zero or almost entirely non-zero with the non-zero elements

of V representing hub edges. Their method applies an L1 penalty to the off-diagonal

elements of Z, and L1 and group lasso (Yuan and Lin, 2007) penalties to the columns of

V. However, their method requires a lot of tuning: three tuning parameters are present in

their penalized likelihood as well as a user-specified parameter in their BIC-type quantity

which is used for tuning parameter selection, and is designed for networks with very

densely connected nodes (referred to as “super hubs”). Other authors have proposed

methods specifically for estimating scale-free networks (e.g., Liu and Ihler, 2011), which

are characterized as having a degree distribution that follows a power law.

In this chapter, we introduce a simpler and more general approach for estimating

networks with hubs that exploits the ability of (inverse) covariance selection methods

to include structural information about the underlying network. Our proposed method,

called the hubs weighted graphical lasso (HWGL), is a weighted graphical lasso approach

with informative row/column sum weights that allow for less penalization of hub edges

compared to non-hub edges.

Sparse network selection methods have been widely applied to genomic data sets,

but are scarcely applied to microbiomic data sets. Thus, this chapter explores a novel

application of the statistical methodology developed for modelling high-dimensional net-

works. In Section 5.2, we continue our discussion of the microbiome data application

and provide a brief literature review of methods for estimating networks with hubs. In

Section 5.3, we then present the hubs weighted graphical lasso procedure and investigate

its theoretical properties in Section 5.4. Simulation studies are provided in Section 5.5,

followed by an application to two microbiome data sets in Section 5.6. We then conclude

with a discussion in Section 5.7.
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5.2 Network Estimation fromMicrobial Abundance Data

The prediction of microbial associations from abundance data is a network inference prob-

lem. These microbe-microbe interactions can be modelled as undirected graphical models.

Therefore, we estimate the inverse correlation structure of (transformed) abundance data

with the rationale that the inverse correlation structure describes the interactions between

microbes that give rise to the observed distribution of abundances.

Estimating graphical models from microbial abundance data poses some technical

challenges. First, the relative abundances are compositional, as the counts are normalized

to the total number of counts in the sample, and performing conventional correlation

analysis may lead to biased results. Second, these networks of microbial interactions

tend to be highly structured. In particular, they exhibit many taxa with only a small

number of connections and a few highly connected taxa (or hubs). Therefore, like social

networks, microbial interaction networks may be scale-free (Faust and Raes, 2012). The

networks can also be partitioned into clusters, which are groups of densely interconnected

nodes, with only a few connections between clusters. Therefore, the procedures used to

model these interaction networks must be able to accommodate highly connected nodes

and clustering.

In Section 5.2.1, we address the first of these challenges by reviewing one transforma-

tion proposed by Aitchison (1981) for dealing with compositional data. In Section 5.2.2,

we then provide a review of existing procedures for estimating networks with hubs.

5.2.1 Transforming Microbial Abundance Data

The collection of samples from microbiomes across a wide range of environments is rou-

tinely done using 16S rRNA gene sequencing. In a typical study, bacterial DNA is

isolated, and 16S rRNA genes are amplified, sequenced and resulting reads are aligned

for the identification of microbial taxa. The 16S rRNA read counts are used as a proxy

for taxon abundance and are set by sequencing depth or the amount of genetic material

extracted from the community (Friedman and Alm, 2012). Counts y1, . . . , yp are then
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normalized by the total number of counts m =
∑p

j=1 yj in the sample and the resulting

proportions w1 = y1/m, . . . , wp = yp/m are compositional as they are constrained to lie

within the unit simplex

Sp =

{
w = (w1, . . . , wp) : wj > 0,

p∑
j=1

wj = 1

}
.

Classical correlation analysis from compositional data, however, can lead to spurious

results as proportions tend to be correlated even if the absolute abundances are indepen-

dent. To overcome the unit-sum constraint of compositional data, log-ratio transforma-

tions, proposed by Aitchison (1981), can be used. Here we apply the centered log-ratio

(clr) transform

x = clr(w) =

(
log

w1

g(w)
, . . . , log

wp
g(w)

)
, (5.1)

where g(x) =
(∏p

j=1wj

)1/p

is the geometric mean of the vector of proportions w and

the components of x are constrained to sum to zero. The clr transform maps the data

isometrically from the unit simplex to a (p− 1)-dimensional Euclidean vector subspace.

The corresponding covariance matrix Σ = Cov {clr(W )} of the clr-transformed rela-

tive abundances is symmetric, but it is also singular. If Γ = Cov(log Y ) is the covariance

matrix of the log-transformed abundances, then Σ is related to Γ as follows

Σ = GΓG,

where G = Ip − 1
p
Jp and Jp is the p× p matrix of units (Aitchison, 2003). Therefore, for

p large, G ≈ Ip and an estimate Σ̂ of Σ can be used as an approximation of Γ̂ (Kurtz et

al., 2015).

5.2.2 Existing Methods for Estimating Networks with Hubs

While maximization of the L1-penalized likelihood has been a widely used approach for

estimating graphical models, it does not typically yield an estimate with hubs. The L1
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penalty applied to the Gaussian log-likelihood can be viewed as an independent double-

exponential prior on each edge. Thus, the use of an L1 penalty assumes that each edge

is equally likely and independent of all other edges (Tan et al., 2014). In what follows,

we discuss existing methods in the literature for estimating graphical models with hubs

that take hub structure into account, such as the hubs graphical lasso (HGL) of Tan et

al. (2014) and the reweighted L1 regularization approach of Liu and Ihler (2011).

Sparse Partial Correlation Estimation (SPACE; Peng et al., 2009):

Peng et al. (2009) proposed a procedure called space (Sparse PArtial Correlation

Estimation) that is an extension of the neighourhood selection approach of Meinshausen

and Bühlmann (2006), where a lasso regression is performed separately for each variable

on the rest of the variables. It is designed to address two limitations of the neighourhood

selection approach of Meinshausen and Bühlmann (2006). First, space employs the sym-

metry among the partial correlations, which is not done so by neighbourhood selection,

resulting in a loss of efficiency. Second, unlike the neighbourhood selection approach of

Meinshausen and Bühlmann (2006), their method uses different tuning parameters for

the p lasso regressions, making it easy to incorporate prior knowledge about network

structure. The authors claim that the degree-reweighted version of space performs well

in estimating scale-free networks. Since the introduction of the space procedure, other

regression-based graphical model selection methods have been proposed, such as the

symmetric lasso (Friedman et al., 2010) and the CONvex CORrelation selection methoD

(CONCORD; Khare et al., 2015).

Power Law Regularization (Liu and Ihler, 2011):

Liu and Ihler (2011) proposed a method for estimating scale-free networks, which are

characterized as having a degree distribution that follows a power law: p(d) ∝ d−α. They

estimate Θ by solving the following non-convex optimization problem

arg min
Θ�0

{
− log det Θ + tr(SΘ) + α

p∑
j=1

log (‖θ\j‖+ εj) +

p∑
j=1

βj|θjj|

}
,
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where θ\j = {θjj′ : j′ 6= j}, and α, εj and βj are tuning parameters. They use ‖θ\j‖1 + εj

as a continuous surrogate of the degree d for εj > 0.

To solve this non-convex optimization problem, they use an MM (majorize-minimization)

algorithm, and recast this problem as a sequence of reweighted L1 regularization problems.

Hub Screening Procedure of Hero and Rajaratnam (2012):

Hero and Rajaratnam (2012) proposed a hub screening procedure that involves thresh-

olding the elements of the sample partial correlation matrix (computed as the Moore-

Penrose pseudo-inverse of the sample correlation matrix when p > n) based on a z-score

representation, where a node is declared a hub if the number of non-zero elements in the

corresponding row/column of the thresholded partial correlation matrix is sufficiently

large. In their hub screening framework, the user must specify both a minimum partial

correlation ρ and a minimum node degree δ. It should be emphasized that this method

is designed for hub screening only and does not estimate the edges of the network. Its

advantage is its low computational complexity when p� n.

Hubs Graphical Lasso (Tan et al., 2014):

Tan et al. (2014) considered the problem of studying high-dimensional networks with

hub nodes. Rather than using an L1 penalty on the elements of the precision matrix Θ,

the authors introduced a new penalty to accommodate these densely connected nodes

and referred to their procedure as the hubs graphical lasso (HGL). They proposed a

penalty that encourages a solution of the form Θ = Z + V + VT , where Z is a sparse

symmetric matrix and V is a matrix whose columns are either entirely zero or almost

entirely non-zero. The non-zero entries in Z represent edges between non-hub nodes,

while the non-zero columns of V correspond to the edges connecting hubs to other nodes

in the network. The authors proposed to estimate Θ by solving the following optimization

problem

arg min
Θ�0: Θ=V+V T+Z

{
`(Θ;X) + ρ1‖Z‖1 + ρ2‖V‖1 + ρ3

p∑
j=1

‖Vj‖2

}
,
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which leads to estimation of a network with dense hubs, and where `(Θ;X) = − log det Θ+

tr(SΘ) is the negative log-likelihood of the data. Therefore, an L1 penalty is imposed on

the elements of Z and V as well as a group lasso penalty on the columns of V so that

each column of V is either very dense or contains all zero elements. Depending on the

tuning parameter ρ3, many elements in the same column may be removed. Thus, sparsity

in Z is controlled by ρ1, ρ2 controls the number of edges connecting hub nodes to other

nodes in the network, and ρ3 controls the selection of hub nodes.

To solve the resulting convex optimization problem, the authors used an alternative

direction method of multipliers (ADMM) algorithm. To select the tuning parameters

(ρ1, ρ2, ρ3), they considered a BIC-type quantity, given by

BIC∗(Θ̂, V̂, Ẑ) = − log det Θ̂ + tr(SΘ̂) +
log n

n
|Ẑ|+ log n

n

{
ν + c(|V̂| − ν)

}
, (5.2)

where ν =
∑p

j=1 1{‖V̂j‖0>0} is the number of estimated hub nodes, |S| denotes the num-

ber of non-zero entries of the matrix S, and 0 < c < 1 is a user-specified parameter,

controlling the number of hub nodes. The set of tuning parameters (ρ1, ρ2, ρ3) for which

BIC∗(Θ̂, V̂, Ẑ) is minimized are then selected.

5.3 A NewMethod for Estimating Networks with Hubs

In this section, we present a new procedure for estimating networks with hub nodes. Let

X1, . . . ,Xn be independent and identically distributed multivariate normal random vec-

tors with mean 0 and covariance matrix Σ = Θ−1. The sparsity pattern of Θ determines

the conditional independence graph. Since the underlying graph has a few hub nodes,

the rows/columns of the precision matrix Θ corresponding to the hub nodes are signif-

icantly denser than those corresponding to the non-hub nodes. We adopt a weighted

lasso approach that uses more informative weights compared to those in the standard

adaptive lasso (Zou, 2006; Fan et al., 2009), based on row/column sums. In what follows,

we outline our proposed estimation procedure.

Let Θ̂0 = (θ̂
(0)
ij ) be any consistent estimate of the inverse covariance matrix Θ. For
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n > p, we take Θ̂0 to be the inverse of the sample covariance matrix S. For n < p, we

use the inverse covariance matrix estimate derived from the graphical lasso. Based on

the consistent estimate Θ̂0, we construct the symmetric matrix W (1) of weights

w
(1)
ij =



1

|θ̂(0)
ij |γ1

 p∑
k=1
k 6=i

|θ̂(0)
ik | ·

p∑
k=1
k 6=j

|θ̂(0)
kj |


γ2 if i 6= j

0 if i = j

for some γ1, γ2 > 0, and define the hubs weighted graphical lasso (HWGL) estimator Θ̂

of Θ to be

Θ̂ = arg max
Θ�0

{
log det Θ− tr(SΘ)− λ‖W (1) ∗Θ‖1

}
, (5.3)

where λ > 0 is a tuning parameter, ∗ denotes Schur matrix product (entrywise multiplica-

tion), and ‖·‖1 is the L1 norm (the sum of the absolute values of the elements ofW (1)∗Θ).

Remarks:

- The weights are designed to allow for less penalization of hub edges compared to non-

hub edges. If nodes i and j are hubs, then both
∑

k 6=i |θ̂
(0)
ik | and

∑
k 6=j |θ̂

(0)
kj | should be

large and therefore the weight w(1)
ij will be small. If nodes i and j are non-hubs, then

both
∑

k 6=i |θ̂
(0)
ik | and

∑
k 6=j |θ̂

(0)
kj | should be small and therefore the weight w(1)

ij will be

large. If either nodes i or j are hubs, then one of
∑

k 6=i |θ̂
(0)
ik | and

∑
k 6=j |θ̂

(0)
kj | should

be large and therefore the weight w(1)
ij will be moderately sized. When γ1 > 0, the

additional term |θ̂(0)
ij |γ1 in the weights is included to allow for zero entries in columns

corresponding to hubs.

- This approach belongs to the family of weighted lasso methods that allow for different

penalties on the entries of Θ, which includes the adaptive lasso (Fan et al., 2009).

Weighted lasso approaches can result in less bias than the standard lasso by adapting

penalties to incorporate information about the location of zeros, based on either an
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initial estimate or background knowledge.

- The weights of the HWGL estimator when p > n are constructed from the graphical

lasso estimator of Θ due to its estimation consistency. In finite sample, we have found

that weights constructed from the ridge-type estimate Σ̂0 = S + νIp of the covariance

matrix for some ν > 0, chosen so that Σ̂0 is positive definite, tend to yield better

performance.

Finite sample improvement through a two-step approach: In Section 5.4, we show that the

HWGL estimator is estimation consistent and selection consistent in the fixed dimensional

setting, and acts as a finite sample correction to the adaptive lasso (Zou, 2006; Fan et

al., 2009) when the true underlying graph has hub nodes. We further observe that better

finite sample performance can be obtained by first identifying a set of candidate hub

nodes Ĥ based on the HWGL estimate Θ̂, allowing for edges to be classified as hub or

non-hub edges, and then penalizing the hub edges separately from the non-hub edges

through a second weighted lasso. We outline this approach in what follows.

Based on the one-step HWGL estimate Θ̂, defined in (5.3), we identify a set of candi-

date hub nodes Ĥ. We then construct a symmetric weight matrix W (2) = (w
(2)
ij ), where

w
(2)
ij =


λ1 if i ∈ Ĥ or j ∈ Ĥ, i 6= j

λ2 if i, j /∈ Ĥ, i 6= j

0 if i = j

for some tuning parameters λ1, λ2 > 0, and solve the weighted lasso optimization problem

Θ̃ = arg max
Θ�0

{
log det Θ− tr(SΘ)− ‖W (2) ∗Θ‖1

}
,

where we refer to Θ̃ as the two-step hubs weighted graphical lasso (HWGL2) estimator

of Θ. The tuning parameter λ1 controls the number of edges connecting a hub node to

any other node in the graph, while the tuning parameter λ2 controls the number of edges

connecting two non-hub nodes.
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The tuning parameters λ, λ1 and λ2 are chosen using a data-dependent approach. In

our simulation studies in Section 5.5, we employ BIC due to its model selection consis-

tency property, which has been established in a variety of settings.

Remarks:

- The set of candidate hub nodes Ĥ can be obtained by setting a cutoff threshold for a

node to be a hub (e.g., in our simulations, we classify a node as a hub if it is connected

to at least 10% of all other nodes). The hub findings will then depend on the choice

of the cutoff threshold used for classifying a node as a hub. To avoid specifying such a

threshold, a clustering approach can be used to classify the nodes based on the first-step

estimate Θ̂ into hub and non-hub groups. From the first-step estimate Θ̂, the degree

of each node can be computed and K-means clustering can then be applied to cluster

the nodes into hub and non-hub groups, where the hub group is characterized as the

group with the larger mean degree. A similar approach was considered by Charbonnier

et al. (2010) in order to cluster nodes in a directed graph as hubs and leaves. They had

used a Gaussian mixture approach based on the L1 norms of the columns of the initial

estimate of the parameters in the vector autoregressive model of order 1.

5.4 Theoretical Properties

In this section, we study the asymptotic properties of the hubs weighted graphical lasso

estimator Θ̂. We assume that X1, . . . ,Xn are p-dimensional multivariate normal random

vectors with mean 0 and true covariance matrix Σ0. The corresponding true precision

matrix is Θ0 = Σ−1
0 and the sample covariance matrix is S =

∑n
i=1 xix

T
i /n. Further, we

define the sets

A = {(i, j) : θij,0 6= 0, i ≤ j} and B = {(i, j) : θij,0 = 0, i ≤ j} .

Therefore, A is the set of indices of the true non-zero elements in Θ0 and B is the set of

indices of the true zero elements of Θ0. We also assume that dimension p is held fixed as

124



the sample size n→∞. We show that the HWGL estimator possesses the oracle property

(Fan and Li, 2001).

Theorem 2. (Oracle property of the hubs weighted graphical lasso estimator)

Let an = n−1/2 min(i,j)∈A

(
|θ̂(0)
ij |γ1D

γ2
ij

)
and bn = n−1/2 max(i,j)∈B

(
|θ̂(0)
ij |γ1D

γ2
ij

)
, where

Dij =
∑

k 6=i |θ̂
(0)
ik | ·

∑
k 6=j |θ̂

(0)
kj |. If λn/an

p→ 0 and λn/bn
p→∞, then Θ̂ = (θ̂ij) must satisfy

(i) Selection Consistency: The HWGL estimator Θ̂ has the same sparsity pattern,

asymptotically, as the true precision matrix Θ0; that is, P
(
θ̂ij = 0

)
→ 1 as n→∞

for (i, j) ∈ B.

(ii) Asymptotic Normality: For (i, j) ∈ A, the entries θ̂ij are
√
n-consistent and asymp-

totically normal.

Proof: Before proving Theorem 2, we introduce some notation. As in Fan et al. (2009),

we write Θ as a vector of length d = p(p + 1)/2 by taking ψ = (ψ1,ψ2), where ψ1 =

(θij : (i, j) ∈ A) and ψ2 = (θij : (i, j) ∈ B). The precision matrix Θ can be viewed as a

function of ψ: Θ = Θ(ψ). We let ψ0 denote the true value of ψ, which we can write as

ψ0 = (ψ10,ψ20) with ψ20 = 0 and where ψ10 6= 0 has length s.

The log-likelihood function of ψ is given by

`n(ψ) =
1

2

n∑
i=1

{
log |Θ(ψ)| − log (2π)− xTi Θ(ψ)xi

}
=
n

2
log |Θ(ψ)| − n

2
log (2π)− 1

2

n∑
i=1

xTi Θ(ψ)xi

and we let I(ψ) = E
[{

∂
∂ψ
`n(ψ)

}{
∂
∂ψ
`n(ψ)

}T]
be the Fisher information matrix of ψ.

We assume regularity conditions as in (A)-(C) of Fan and Li (2001).

(i) Let Rj denote the set of indices k (1 ≤ k ≤ d) of all elements in the row indexed

by the row of the precision matrix entry represented by ψj. Also, let Cj denote the set

of indices k (1 ≤ k ≤ d) of all elements in the column indexed by the column of the
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precision matrix entry represented by ψj. Define the penalized log-likelihood function

Q(ψ) = `n(ψ)− nλn
d∑
j=1

ŵj|ψj|, (5.4)

where ŵj = |ψ̂(0)
j |−γ1D

−γ2
j with Dj =

∑
k∈Cj |ψ̂

(0)
k | ·

∑
k∈Rj |ψ̂

(0)
k | for some initial

√
n-

consistent estimate ψ̂
(0)

= (ψ̂
(0)
1 , . . . , ψ̂

(0)
d ) of ψ.

First, we establish estimation consistency of ψ̂. Following Fan and Li (2001), we want

to show that for any given ε > 0, there exists a large constant C such that

P

{
sup
‖u‖=C

Q(ψ0 + n−1/2u) < Q(ψ0)

}
≥ 1− ε,

which implies that with probability at least 1 − ε there exists a maximum in the ball{
ψ0 + n−1/2u : ‖u‖ ≤ C

}
. Hence, there exists a local maximizer such that ‖ψ̂ − ψ0‖ =

Op(n
−1/2).

Since only the first s elements of ψ0 are non-zero, we find that

Dn(u) = Q(ψ0 + n−1/2u)−Q(ψ0)

= `n(ψ0 + n−1/2u)− `n(ψ0)− nλn
s∑
j=1

ŵj
(
|ψj0 + n−1/2uj| − |ψj0|

)
≤ n−1/2`′n(ψ0)Tu− 1

2
uT I(ψ0)u {1 + op(1)} − nλn

s∑
j=1

ŵj
(
|ψj0 + n−1/2uj| − |ψj0|

)
≤ n−1/2`′n(ψ0)Tu− 1

2
uT I(ψ0)u {1 + op(1)}+ n1/2λn

s∑
j=1

ŵj|uj|. (5.5)

For the first term in (5.5), n−1/2`′n(ψ0) = Op(1). Consider the third term in (5.5),

which can be expressed as

n1/2λn

s∑
j=1

ŵj|uj| = n1/2λn

s∑
j=1

(
|ψ̂(0)
j |−γ1D

−γ2
j |uj|

)
≤ n1/2λn

{
min

1≤j≤s

(
|ψ̂(0)
j |γ1D

γ2
j

)}−1

‖u‖

=
λn
an
‖u‖ = op(1)‖u‖.
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Finally, the second term in (5.5) is a quadratic term in u. Therefore, by choosing a suffi-

ciently large C, the quadratic term will dominate the other terms with probability ≥ 1−ε.

Note: For 1 ≤ j ≤ s, define Sj = {k ∈ Cj : ψk0 6= 0} and Scj = {k ∈ Cj : ψk0 = 0}. Then∑
k∈Cj |ψ̂

(0)
k | =

∑
k∈Sj |ψ̂

(0)
k |+

∑
k∈Scj
|ψ̂(0)
k |. Now since ψ̂(0)

k

p→ ψk0 for each k ∈ Sj, we have

that
∑

k∈Sj |ψ̂
(0)
k | = Op(1). Further, n1/2|ψ̂(0)

k | = Op(1) for k ∈ Scj by
√
n-consistency of

ψ̂
(0)
. Thus,

∑
k∈Cj |ψ̂

(0)
k | = Op(1). Similarly,

∑
k∈Rj |ψ̂

(0)
k | = Op(1). Now since ψ̂(0)

j

p→ ψj0

for 1 ≤ j ≤ s, |ψ̂(0)
j |γ1D

γ2
j = Op(1). Hence, an = n−1/2Op(1) and so the condition

λn/an
p→ 0 holds if the condition n1/2λn

p→ 0 is satisfied. Thus, the graphical lasso, adap-

tive lasso and hubs weighted graphical lasso estimators are able to achieve consistency in

estimation when λn = op(n
−1/2), but their performance in finite sample may differ.

We showed that the local maximizer ψ̂ of the penalized log-likelihood function Q(ψ)

is a
√
n-consistent estimator of ψ. Therefore, the local maximizer ψ̂ = (ψ̂1,0) also has

the property that ‖ψ̂1 −ψ10‖ = Op(n
−1/2).

Now to show sparsity, i.e. ψ̂2 = 0, it suffices to show that with probability approaching

1, for any ψ1 satisfying ‖ψ1 −ψ10‖ = Op(n
−1/2) and any constant C,

Q

{(
ψ1

0

)}
= max
‖ψ2‖≤Cn−1/2

Q

{(
ψ1

ψ2

)}
. (5.6)

To show (5.6), it suffices to show that for any ψ1 satisfying ‖ψ1 − ψ10‖ = Op(n
−1/2),

∂Q(ψ)
∂ψj

and ψj have different signs for ψj ∈ (−Cn−1/2, Cn−1/2) with j = s + 1, . . . , d. We

have that

n1/2λnŵj = λn

(
n1/2|ψ̂(0)

j |−γ1D
−γ2
j

)
≥ λn

max
s+1≤j≤d

(
n−1/2|ψ̂(0)

j |γ1D
γ2
j

)
=
λn
bn

p→∞ for j = s+ 1, . . . , d.
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Thus, n1/2λnŵj
p→∞ for j = s+ 1, . . . , d, and

∂Q(ψ)

∂ψj
=
∂`n(ψ)

∂ψj
− nλnsgn(ψj)ŵj

= Op(n
1/2)

{
Op(1)− n1/2λnŵjsgn(ψj)

}
. (5.7)

Therefore, since n1/2λnŵj
p→ ∞ as n → ∞ for j = s + 1, . . . , d, the sign of ∂Q(ψ)

∂ψj
is

completely determined by that of ψj when n is large.

(ii) Applying Theorem 2 (i), we have that P (ψ̂2 = 0) → 1 as n → ∞. Hence, the

maximizer of Q(ψ) is the same as that of Q
{(

ψ1

0

)}
with probability tending to 1. This

implies that the penalized estimator ψ̂1 satisfies the equation

0 =
∂Q(ψ)

∂ψ1

|
ψ=(ψ̂

T
1 ,0

T )T

=
∂`n(ψ)

∂ψ1

|
ψ=(ψ̂

T
1 ,0

T )T
− nλn

(
ŵ1sgn(ψ̂1), . . . , ŵssgn(ψ̂s)

)T
=
∂`n(ψ0)

∂ψ1

− Î(1)(ψ∗)(ψ̂1 −ψ10)− nλn
(
ŵ1sgn(ψ̂1), . . . , ŵssgn(ψ̂s)

)T
,

where ψ∗ is between ψ̂ and ψ0. Therefore, since

1√
n

∂`n(ψ0)

∂ψ1

d→ N (0, I1(ψ10)),

1

n
Î(1)
n (ψ∗)

p→ I1(ψ10)

and ψ̂(0)
j

p→ ψj0 6= 0 for 1 ≤ j ≤ s, we have

0 =
1√
n

∂`n(ψ0)

∂ψ1

− 1√
n
Î(1)(ψ∗)(ψ̂1 −ψ10)− n1/2λn

(
ŵ1sgn(ψ̂1), . . . , ŵssgn(ψ̂s)

)T
,

=
1√
n

∂`n(ψ0)

∂ψ1

− 1√
n
Î(1)(ψ∗)(ψ̂1 −ψ10) + op(1).
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The last equality follows since

n1/2λnŵj = n1/2λn|ψ̂(0)
j |−γ1D

−γ2
j

=
n1/2λn

|ψ̂(0)
j |γ1D

γ2
j

≤ n1/2λn

min1≤j≤s

(
|ψ̂(0)
j |γ1D

γ2
j

)
=
λn
an

p→ 0 for j = 1, . . . , s.

Thus, by Slutsky’s Theorem,

√
nI1(ψ10)(ψ̂1 −ψ10) =

1√
n

∂`n(ψ0)

∂ψ1

+ op(1)
d→ N (0, I1(ψ10))

and so

√
n(ψ̂1 −ψ10)

d→ N (0, I1(ψ10)−1),

as required.

Note: For s + 1 ≤ j ≤ d, ψj0 = 0. By
√
n-consistency ψ̂

(0)
, we have that n1/2|ψ̂j

(0)
| =

Op(1). Hence, |ψ̂j
(0)
|γ1 = Op(n

−γ1/2) and so n−1/2|ψ̂(0)
j |γ1D

γ2
j = Op(n

−(γ1+1)/2). Now the

oracle property of the adaptive lasso (with γ2 = 0) requires that n(γ1+1)/2λn → ∞ as

n → ∞ (see Fan et al., 2009 or Section 2.2.1) and if this condition is satisfied, then

λn/bn
p→∞.

Remarks:

• The adaptive lasso (Fan et al., 2009) and hubs weighted graphical lasso estimators

both have the oracle property under the same conditions on the tuning parameter

λn, along other regularity conditions. The performance of the two estimators in

finite sample may be very different.
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5.5 Simulation Studies

In this section, we assess the performance of the graphical lasso (Friedman et al., 2008)

using various tuning parameter selection procedures, the graphical adaptive lasso (Fan

et al., 2009), the reweighted L1 regularization approach of Liu and Ihler (2011), the hubs

graphical lasso (HGL) of Tan et al. (2014) as well as our proposed hubs weighted graphical

lasso (HWGL) for estimating large-scale networks with hubs. We provide results for both

the HWGL procedure (HWGL1), the two-step HWGL procedure (HWGL2) as well as the

two-step HWGL procedure in the case where the hubs are known.

We first introduce some notation. Let TP, TN, FP and FN denote the numbers of

true positives, true negatives (or true zero entries), false positives, and false negatives.

Further, let H denote the set of indices of true hub nodes in Θ and Ĥ the set of indices

of estimated hub nodes. In our simulations, we consider a node to be a hub node if it is

connected to more than 10% of all other nodes. The selection methods will be evaluated

using the following performance measures:

• True negative rate (specificity):

TN
TN + FP

=

∑
i<j I

(
θ̂ij = 0, θij = 0

)
∑

i<j I (θij = 0)

• True positive rate (sensitivity):

TP
TP + FN

=

∑
i≤j I

(
θ̂ij 6= 0, θij 6= 0

)
∑

i≤j I (θij 6= 0)

• Percentage of correctly estimated hub edges:

∑
i∈H,i6=j I

(
θ̂ij 6= 0, θij 6= 0

)
∑

i∈H,i6=j I (θij 6= 0)
× 100%
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• Percentage of correctly estimated hub nodes:

|Ĥ ∩ H|
|H|

× 100%

and the percentage of correctly estimated non-hub nodes:

|Ĥc ∩Hc|
|Hc|

× 100%,

where |H| denotes the cardinality of the set H.

• Frobenius norm: 1
p
‖Θ̂−Θ‖2 = 1

p

∑
i6=j(θ̂ij − θij)2

To assess the performance of the methods, we consider four generating mechanisms

for the adjacency matrix A of the graphical model, similar to those in Tan et al. (2014).

(i) First, we randomly select H hub nodes and set the elements of the corresponding

rows and columns of the adjacency matrix A equal to 1 with probability 0.8 and

zero otherwise. Next, we set Aij = Aji = 1 for all i < j with probability 0.01, and

zero otherwise.

(ii) To generate the adjacency matrix A, we use the same setup as in (i) except that

each hub node will be connected to another node with probability 0.3.

(iii) The adjacency matrix will be

A =

A1 B

BT A2

 ,

where A1 and A2 will be generated as in (i), except that all nodes will have a

connection probability of 0.04, and B = (bij) has bij = 1 with probability 0.01 and

bij = 0 otherwise.

(iv) Scale-free networks: The probability that a node has degree k follows a power law

distribution P (k) ∼ k−α. The scale-free network of Barabási and Albert (1999) is
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constructed by progressively adding nodes to an existing network, where each new

node is connected to a node i already present in the network with a probability that

is proportional to the degree ki of node i, i.e.,

P (linking to node i) ∼ ki∑
j kj

.

Therefore, the Barabási and Albert (1999) network model incorporates two im-

portant mechanisms: growth and preferential attachment, which are common to a

number of real-world networks, such as business networks and social networks. We

use the R package igraph to generate scale-free networks with α = 2.3.

For each of the adjacency matrices in (i)-(iv), we then construct a symmetric matrix

C such that Cij = 0 if Aij = 0, and Cij are independent from the uniform distribution

on [−0.8,−0.5] ∪ [0.5, 0.8] if Aij = 1. Finally, we take the precision matrix Θ to be

C + {0.1− λmin(C)} Ip, where λmin(C) is the smallest eigenvalue of C and Ip is the p× p

identity matrix to ensure that all the eigenvalues of Θ are positive.

For adjacency matrices in (i) and (ii), we take the number of hubs to be H = bp/25c.

For Simulation (i), the true network model with p = 100 has 4 hub nodes with 323 hub

edges, 52 non-hub edges and a network density of 7.58%. The true network model with

p = 200 has 8 hub nodes with 483 hub edges, 198 non-hub edges and a network density

of 3.42%. For Simulation (ii), the true network model with p = 100 has 4 hub nodes

with 115 hub edges, 55 non-hub edges and a network density of 3.43%. The true network

model with p = 200 has 8 hub nodes with 504 hub edges, 167 non-hub edges and a

network density of 3.37%. For Simulation (iii), the true network model with p = 100 has

4 hub nodes, 147 hub edges and 96 non-hub edges with a network density of 4.91%. The

true network model with p = 200 has 8 hub nodes with 634 hub edges, 389 non-hub edges

and a network density of 5.14%. Finally, for the scale-free networks in Simulation (iv),

the true network model with p = 100 has 3 hub nodes with 59 hub edges, 40 non-hub

edges and a network density of 2%. The true network model with p = 200 has 3 hub

nodes with 85 hub edges, 114 non-hub edges and a network density of 1%.

132



To implement the graphical lasso, we use the R function glasso and select the tun-

ing parameter λ from a fine grid based on BIC. To implement the graphical lasso using

the StARS procedure for tuning parameter selection, we use the function huge.select,

available in the R package huge. To implement the hubs graphical lasso of Tan et al.

(2014), we use the functions hglassoBIC and hglasso in the R package hglasso. Each

tuning parameter ρi for i = 1, 2, 3 in the hubs graphical lasso will be selected from a fine

grid. We also consider various values of c in the BIC-type quantity (5.2). The simulation

results are displayed in Tables 5.1 to 5.4.

Discussion of Simulation Results:

From Tables 5.1 and 5.2, we see that the two-step HWGL procedure in moderate dimen-

sions outperforms the competitors when the true underlying graph has hub nodes. It is

also clear that when the true hubs are known in advance, which is a reasonable assumption

in many biological applications, using a weighted lasso that takes into account knowledge

of these highly influential nodes, results in substantially better finite-sample performance

compared to the lasso and adaptive lasso procedures. The one-step HWGL procedure

in the case where the hubs are unknown also performs well; it outperforms competitors

in terms of hub edge and hub node identification, better capturing hub structure. As

expected, BIC and StARS perform similarly in the case n = p = 100 in terms of edge

identification, but we observed better performance by StARS in higher dimensions. The

scale-free network approach of Liu and Ihler (2011), which is not designed for estimating

networks with hubs, does not result in significant improvements over the lasso and adap-

tive lasso procedures. The HGL with c = 0.5 and c = 0.75 in the BIC-type quantity for

tuning parameter selection lead to much denser graphs compared to the graphical lasso

with either BIC or StARS. Recall that a smaller c favours more hub nodes. Using the

default value c = 0.2 in the R function hglassoBIC would result in overly dense graphs.

Sensitivity to the user-specified parameter c, which controls the number of hub nodes in

the graph, is a drawback of the HGL of Tan et al. (2014).

From Table 5.3, again we observe that the one-step HWGL procedure outperforms
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the graphical lasso, adaptive lasso, HGL and scale-free network approach of Liu and

Ihler (2011). The two-step procedure in the case where the hubs are unknown performs

better than the one-step HGL procedure. However, it requires setting a cutoff threshold

for a node to be considered a hub. For n = p = 100, the HGL of Tan et al. (2014)

performs better than the standard lasso and adaptive lasso procedures in terms of hub

edge identification. In higher dimensions, the graphical lasso with StARS results in higher

true positive rates compared to other methods except the two-step HWGL procedures,

but its true negative rate is lower on average. This is not surprising as the goal of StARS

is to “overselect”; it allows for false positives but not false negatives.

The scale-free networks generated in Simulation (iv) have hubs that are not as highly

connected as those in Simulations (i)-(iii). Therefore, it is not surprising that the graph-

ical lasso with StARS performs well (see Table 5.4). When n = p = 100, knowing the

true hubs in advance and allowing for different levels of penalization between the hub and

non-hub edges results in better performance compared to the other procedures across all

performance measures. The one-step HWGL procedure performs well in terms of hub

edge identification. When p > n, the graphical lasso with StARS performs better than

the HWGL procedures in terms of the true positive rate, but its true negative rate is lower

on average compared to the HWGL procedures. The results for the HGL of Tan et al.

(2014) are omitted as their procedure is not designed for estimating scale-free networks.
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Figure 5.1: Simulation (i) - Networks with hubs for p = 100 (left) and p = 200 (right), where each hub node is connected
to a different node with probability 0.8. Dashed grey lines correspond to hub edges, dashed purple lines correspond to
non-hub edges, and the size of each node is proportional to its degree. Hub nodes are shown in red.

Method Tuning True Pos. True Neg. Perc. of Correctly Perc. of Correctly Number of Frobenius
Parameter Rate Rate Estimated Hub Estimated Estimated Norm
Selector Edges Hub/Non-Hub Edges

Nodes
Simulation (i)

n = 100, p = 100

Lasso BIC 48.10 (0.26) 94.40 (0.28) 38.28 (0.33) 99.50 (0.35)/73.70 (1.60) 384.73 (13.73) 7.29 (0.05)
Lasso EBIC 21.05 (0) 100 (0) 0 (0) 0 (0)/100 (0) 0 (0) 8.86 (0.06)
Lasso StARS 46.39 (0.18) 96.22 (0.08) 36.32 (0.25) 99.50 (0.35)/84.08 (0.61) 293.07 (4.31) 7.71 (0.06)

Adaptive lasso BIC 58.31 (0.19) 96.55 (0.03) 52.97 (0.26) 100 (0)/99.24 (0.10) 334.78 (1.42) 4.49 (0.02)

SF BIC 53.08 (0.33) 97.94 (0.07) 46.53 (0.46) 99.25 (0.56)/95.05 (0.37) 246.59 (4.50) 5.34 (0.04)
HGL BIC∗

1 56.12 (0.17) 84.26 (0.29) 47.45 (0.20) 100 (0)/19.91 (1.51) 886.60 (13.72) 6.43 (0.02)
HGL BIC∗

2 50.81 (0.31) 92.82 (0.33) 42.05 (0.40) 99.50 (0.50)/65.26 (1.67) 469.76 (16.53) 7.30 (0.04)

HWGL1 BIC 70.55 (0.49) 99.60 (0.01) 72.77 (0.72) 100 (0)/100 (0) 253.23 (2.68) 2.75 (0.03)
HWGL2 BIC 79.24 (0.36) 99.23 (0.01) 85.56 (0.52) 100 (0)/100 (0) 311.58 (2.17) 2.62 (0.03)

HWGL2 - Hubs BIC 79.24 (0.36) 99.23 (0.01) 85.56 (0.52) 100 (0)/100 (0) 311.58 (2.17) 2.62 (0.03)
Known

n = 100, p = 200

Lasso BIC 24.76 (0.22) 99.30 (0.03) 16.01 (0.28) 66.38 (1.11)/99.18 (0.11) 336.06 (9.93) 14.98 (0.09)
Lasso EBIC 12.18 (0) 100 (0) 0 (0) 0 (0)/100 (0) 0 (0) 16.26 (0.10)
Lasso StARS 30.75 (0.09) 96.97 (0.03) 23.27 (0.11) 86.75 (0.30)/91.96 (0.22) 863.51 (7.51) 13.47 (0.06)

Adaptive lasso BIC 27.30 (0.13) 99.00 (0.03) 19.25 (0.16) 78.75 (0.91)/99.99 (0.01) 432.65 (6.94) 13.28 (0.06)

SF BIC 28.54 (0.14) 99.50 (0.02) 20.98 (0.17) 68.12 (0.86)/99.81 (0.03) 361.03 (5.05) 11.19 (0.05)
HGL BIC∗

1 49.69 (0.24) 58.26 (0.35) 41.73 (0.26) 100 (0)/0 (0) 8319.62 (68.81) 73.08 (0.97)
HGL BIC∗

2 33.69 (0.09) 92.95 (0.21) 26.28 (0.10) 93.12 (0.62)/69.73 (1.29) 1654.97 (38.89) 13.14 (0.05)

HWGL1 BIC 31.18 (0.16) 99.81 (0.01) 24.53 (0.21) 83.62 (1.11)/100 (0) 347.32 (3.47) 8.91 (0.03)
HWGL2 BIC 42.15 (0.28) 99.69 (0.001) 38.75 (0.36) 83.62 (1.11)/100 (0) 548.95 (5.10) 8.76 (0.04)

HWGL2 - Hubs BIC 45.18 (0.18) 99.65 (0.005) 42.67 (0.23) 100 (0)/100 (0) 605.59 (3.38) 8.76 (0.04)
Known

Table 5.1: Networks with hub nodes - True positive rate, true negative rate, percentage of correctly estimated hub edges
and hub/non-hub nodes, number of estimated edges and Frobenius norm error, averaged over N = 100 replications of size
n = 100, for the graphical lasso using BIC, EBIC and StARS for tuning parameter selection, the adaptive lasso as well as
the scale-free (SF) network approach of Liu and Ihler (2011), HGL of Tan et al. (2014) with tuning parameter selectors
BIC∗

1 (c = 0.5) and BIC∗
2 (c = 0.75), the HWGL (HWGL1), and the two-step HWGL (HWGL2) with hubs unknown and

known. The standard errors for the means over the 100 replications are reported in parentheses.
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Figure5.2:Simulation(ii)-Networkswithhubsforp=100(left)andp=200(right),whereeachhubnodeisconnected
toadifferentnodewithprobability0.3. Dashedgreylinescorrespondtohubedges,dashedpurplelinescorrespondto
non-hubedges,andthesizeofeachnodeisproportionaltoitsdegree.Hubnodesareshowninred.

Method Tuning TruePos. TrueNeg. Perc.ofCorrectly Perc.ofCorrectly Numberof Frobenius
Parameter Rate Rate EstimatedHub Estimated Estimated Norm
Selector Edges Hub/Non-Hub Edges

Nodes
Simulation(ii)

n=100,p=100

Lasso BIC 66.17(0.36)97.48(0.07) 57.84(0.62) 99.25(0.43)/92.75(0.35) 198.98(4.25) 2.54(0.01)
Lasso EBIC 37.04(0) 100(0) 0(0) 0(0)/100(0) 0(0) 3.12(0.01)
Lasso StARS 70.26(0.21)96.01(0.05) 64.17(0.38) 100(0)/85.24(0.34) 280.63(2.55) 4.08(0.02)

Adaptivelasso BIC 72.86(0.19)98.57(0.02) 72.56(0.37) 99.75(0.25)/100(0) 164.85(0.92) 1.59(0.01)

SF BIC 71.31(0.26)98.38(0.04) 72.86(0.47) 100(0)/97.74(0.15) 169.79(2.34) 1.77(0.01)
HGL BIC∗1 74.01(0.27)94.27(0.16) 69.57(0.39) 100(0)/76.81(0.84) 373.57(8.07) 2.32(0.01)
HGL BIC∗2 68.34(0.33)96.87(0.09) 62.33(0.54) 100(0)/88.56(0.49) 234.09(5.24) 2.52(0.01)

HWGL1 BIC 74.94(0.24)99.11(0.03) 83.49(0.42) 100(0)/100(0) 144.86(1.77) 1.25(0.01)
HWGL2 BIC 75.02(0.16)97.83(0.03) 88.98(0.36) 100(0)/100(0) 206.12(1.93) 1.44(0.01)

HWGL2-Hubs BIC 75.02(0.16)97.83(0.03) 88.98(0.36) 100(0)/100(0) 206.12(1.93) 1.44(0.01)
Known

n=100,p=200

Lasso BIC 36.77(0.24)99.47(0.02) 23.10(0.38) 48.00(1.27)/99.79(0.03) 222.39(6.03) 5.71(0.02)
Lasso EBIC 22.96(0) 100(0) 0(0) 0(0)/100(0) 0(0) 6.15(0.03)
Lasso StARS 48.07(0.12)97.06(0.03) 40.03(0.19) 86.12(0.94)/94.76(0.19) 784.43(6.93) 8.68(0.05)

Adaptivelasso BIC 41.83(0.21)99.30(0.03) 31.27(0.33) 60.25(1.26)/100(0) 299.40(6.88) 5.17(0.02)

SF BIC 43.25(0.22)99.39(0.02) 34.32(0.35) 68.38(1.01)/99.72(0.03) 294.44(4.61) 4.47(0.02)
HGL BIC∗1 73.53(0.21)57.97(0.31) 66.61(0.27) 100(0)/0(0) 8522.47(61.84)30.42(0.41)
HGL BIC∗2 49.11(0.22)96.56(0.10) 41.35(0.28) 92.25(0.94)/92.83(0.43)888.32(21.62) 5.13(0.02)

HWGL1 BIC 50.98(0.29)99.51(0.01) 47.95(0.47) 85.88(0.98)/100(0) 338.71(4.53) 3.43(0.02)
HWGL2 BIC 56.55(0.30)98.95(0.02) 58.04(0.53) 85.88(0.98)/100(0) 493.88(5.16) 3.75(0.02)

HWGL2-Hubs BIC 58.80(0.26)98.92(0.02) 61.92(0.46) 100(0)/100(0) 519.27(5.20) 3.76(0.02)
Known

Table5.2: Networkswithhubnodes-Truepositiverate,truenegativerate,percentageofcorrectlyestimatedhubedges
andhub/non-hubnodes,numberofestimatededgesandFrobeniusnormerror,averagedoverN=100replicationsofsize
n=100,forthegraphicallassousingBIC,EBICandStARSfortuningparameterselection,theadaptivelassoaswellas
thescale-free(SF)networkapproachofLiuandIhler(2011),HGLofTanetal.(2014)withtuningparameterselectors
BIC∗1(c=0.5)andBIC

∗
2(c=0.75),theone-step(HWGL1),andtwo-step(HWGL2)HWGLwithhubsunknownand

known.Thestandarderrorsforthemeansoverthe100replicationsarereportedinparentheses.
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Figure 5.3: Simulation (iii) - Hub networks with clustering for p = 100 (left) and p = 200 (right). Dashed grey lines
correspond to hub edges, dashed purple lines correspond to non-hub edges, and the size of each node is proportional to its
degree. The central red nodes in each network indicate hub nodes.

Method Tuning True Pos. True Neg. Perc. of Correctly Perc. of Correctly Number of Frobenius
Parameter Rate Rate Estimated Hub Estimated Estimated Norm
Selector Edges Hub/Non-Hub Edges

Nodes
Simulation (iii)

n = 100, p = 100

Lasso BIC 51.91 (0.30) 97.41 (0.06) 42.35 (0.46) 66.50 (1.95)/87.89 (0.37) 199.94 (3.78) 3.57 (0.02)
Lasso EBIC 29.15 (0) 100 (0) 0 (0) 0 (0)/100 (0) 0 (0) 4.40 (0.02)
Lasso StARS 53.43 (0.21) 97.18 (0.04) 44.71 (0.34) 73.75 (1.93)/86.98 (0.29) 216.04 (2.46) 3.46 (0.02)

Adaptive lasso BIC 49.45 (0.33) 99.59 (0.03) 43.01 (0.58) 68.50 (1.80)/99.99 (0.01) 88.70 (2.18) 2.54 (0.01)

SF BIC 49.10 (0.41) 98.76 (0.04) 39.98 (0.80) 64.50 (1.92)/97.00 (0.22) 126.91 (3.14) 2.79 (0.02)
HGL BIC∗

1 57.68 (0.29) 95.55 (0.10) 53.82 (0.46) 95.25 (1.11)/79.58 (0.48) 307.45 (5.35) 3.45 (0.01)
HGL BIC∗

2 52.01 (0.49) 96.90 (0.10) 43.84 (0.82) 75.75 (2.29)/85.84 (0.47) 224.18 (6.07) 3.64 (0.02)

HWGL1 BIC 57.97 (0.34) 99.31 (0.03) 63.07 (0.63) 95.25 (0.99)/99.99 (0.01) 131.19 (2.34) 2.10 (0.01)
HWGL2 BIC 61.46 (0.35) 98.77 (0.04) 75.27 (0.82) 95.25 (0.99)/99.99 (0.01) 168.87 (2.68) 2.31 (0.02)

HWGL2 - Hubs BIC 62.65 (0.26) 98.76 (0.04) 78.07 (0.61) 100 (0)/100 (0) 173.14 (2.53) 2.30 (0.02)
Known

n = 100, p = 200

Lasso BIC 33.57 (0.23) 99.04 (0.04) 30.07 (0.36) 65.38 (0.75)/99.74 (0.05) 392.68 (9.40) 8.87 (0.03)
Lasso EBIC 16.35 (0) 100 (0) 0 (0) 0 (0)/100 (0) 0 (0) 9.86 (0.04)
Lasso StARS 39.10 (0.11) 97.67 (0.04) 37.63 (0.17) 75.75 (0.58)/97.57 (0.19) 717.48 (9.20) 8.10 (0.03)

Adaptive lasso BIC 36.13 (0.14) 99.13 (0.03) 34.70 (0.21) 69.12 (1.07)/100 (0) 405.32 (6.17) 6.99 (0.02)

SF BIC 35.82 (0.14) 99.46 (0.02) 35.89 (0.23) 67.25 (0.68)/99.97 (0.01) 340.27 (4.27) 6.73 (0.02)
HGL BIC∗

1 42.27 (0.10) 95.90 (0.09) 40.85 (0.20) 82.00 (0.74)/92.01 (0.32) 1091.75 (17.25) 7.87 (0.02)
HGL BIC∗

2 42.34 (0.07) 95.69 (0.03) 40.50 (0.12) 82.25 (0.69)/91.79 (0.29) 1130.89 (6.53) 7.82 (0.02)

HWGL1 BIC 37.78 (0.17) 99.66 (0.01) 41.03 (0.32) 76.62 (1.25)/100 (0) 325.78 (3.59) 5.37 (0.02)
HWGL2 BIC 43.17 (0.30) 99.26 (0.02) 51.72 (0.58) 76.62 (1.25)/100 (0) 467.41 (5.80) 5.72 (0.03)

HWGL2 - Hubs BIC 47.59 (0.15) 99.25 (0.01) 60.26 (0.29) 100 (0)/100 (0) 524.46 (4.29) 5.68 (0.03)
Known

Table 5.3: Networks with hubs and clustering - True positive rate, true negative rate, percentage of correctly estimated hub
edges and hub/non-hub nodes, number of estimated edges and Frobenius norm error, averaged over N = 100 replications
of size n = 100, for the graphical lasso using BIC, EBIC and StARS for tuning parameter selection, the adaptive lasso
as well as the scale-free (SF) network approach of Liu and Ihler (2011), HGL of Tan et al. (2014) with tuning parameter
selectors BIC∗

1 (c = 0.5) and BIC∗
2 (c = 0.75), the one-step HWGL (HWGL1), and the two-step HWGL (HWGL2) with

hubs unknown and known. The standard errors for the means over the 100 replications are reported in parentheses.
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Figure 5.4: Simulation (iv) - Scale-free networks for p = 100 (left) and p = 200 (right). Grey lines correspond to hub edges,
purple lines correspond to non-hub edges, and red nodes in each network indicate hub nodes.

Method Tuning True Pos. True Neg. Perc. of Correctly Perc. of Correctly Number of Frobenius
Parameter Rate Rate Estimated Hub Estimated Estimated Norm
Selector Edges Hub/Non-Hub Edges

Nodes
Simulation (iv)

n = 100, p = 100

Lasso BIC 70.58 (0.31) 98.34 (0.08) 64.92 (0.84) 83.00 (2.39)/97.04 (0.43) 121.01 (4.38) 1.57 (0.01)
Lasso EBIC 50.25 (0) 100 (0) 0 (0) 0 (0)/100 (0) 0 (0) 1.83 (0.01)
Lasso StARS 78.31 (0.34) 95.52 (0.12) 80.64 (0.68) 100 (0)/81.53 (0.73) 273.05 (6.29) 2.56 (0.02)

Adaptive lasso BIC 78.69 (0.35) 98.85 (0.06) 80.29 (0.71) 79.00 (2.71)/99.99 (0.01) 112.62 (3.28) 0.91 (0.01)

SF BIC 72.25 (0.32) 99.27 (0.03) 72.19 (0.98) 71.00 (2.67)/99.96 (0.03) 79.14 (2.04) 1.10 (0.01)

HWGL1 BIC 76.94 (0.27) 99.29 (0.03) 80.53 (0.67) 80.00 (2.22)/100 (0) 87.66 (1.64) 1.03 (0.01)
HWGL2 BIC 75.01 (0.46) 98.29 (0.03) 83.10 (1.55) 80.33 (2.23)/100 (0) 132.03 (2.35) 0.92 (0.01)

HWGL2 - Hubs BIC 79.01 (0.08) 98.08 (0.03) 96.58 (0.22) 100 (0)/100 (0) 150.42 (1.35) 0.88 (0.01)
Known

n = 100, p = 200

Lasso BIC 64.25 (0.18) 99.64 (0.01) 63.59 (0.75) 52.33 (1.66)/100 (0) 128.12 (3.53) 1.50 (0.01)
Lasso EBIC 50.13 (0) 100 (0) 0 (0) 0 (0)/100 (0) 0 (0) 1.64 (0.01)
Lasso StARS 74.12 (0.19) 97.58 (0.04) 86.48 (0.41) 98.67 (0.66)/97.57 (0.16) 572.30 (9.02) 2.35 (0.01)

Adaptive lasso BIC 70.13 (0.29) 99.64 (0.03) 80.73 (0.64) 62.67 (2.69)/100 (0) 150.55 (6.42) 1.08 (0.01)

SF BIC 67.81 (0.18) 99.74 (0.01) 81.60 (0.79) 80.67 (1.85)/100 (0) 122.53 (2.33) 1.15 (0.01)

HWGL1 BIC 69.47 (0.14) 99.75 (0.01) 86.45 (0.45) 87.33 (1.63)/100 (0) 127.06 (1.74) 0.96 (0.01)
HWGL2 BIC 68.85 (0.27) 99.41 (0.01) 87.81 (1.27) 88.33 (1.60)/100 (0) 191.34 (2.63) 1.07 (0.01)

HWGL2 - Hubs BIC 70.79 (0.05) 99.39 (0.01) 96.86 (0.20) 100 (0)/100 (0) 202.21 (2.38) 1.05 (0.01)
Known

Table 5.4: Scale-free networks - True positive rate, true negative rate, percentage of correctly estimated hub edges and
hub/non-hub nodes, number of estimated edges and Frobenius norm error, averaged over N = 100 replications of size
n = 100, for the graphical lasso using BIC, EBIC and StARS for tuning parameter selection, the adaptive lasso, the scale-
free (SF) network approach of Liu and Ihler (2011), the hubs graphical lasso (HGL) of Tan et al. (2014), and our one-step
(HWGL1) and two-step (HWGL2) HWGL procedures. The standard errors for the means over the 100 replications are
reported in parentheses.
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5.5.1 Recovery of Global Network Structure

We used the R package igraph to graphically display the networks and to compute several

network measures. In what follows, we summarize some of the network properties of

interest, including degree centrality, global clustering coefficient, betweenness centrality,

network diameter, average path length, and network density.

Definition 7. (Network Measures)

- Degree Centrality: The degree of a node is defined as the number of its edges. The

normalized degree divides the degree by the maximum possible degree of the network,

yielding a value between 0 and 1. Scale-free networks are characterized by power law

degree distributions, in which a few nodes have very high degree while most nodes have

low degree. Networks with clusters, on the other hand, have relatively even degree that

depends on cluster size (Newman, 2010).

- Global Clustering Coefficient: The global clustering coefficient measures the degree

to which the nodes’ neighbours are also interconnected. It is the ratio of the number

of closed triplets to the number of connected triplets (both open and closed), ranging

from 0 if the network does not contain triplets to 1 if each two neighbours of all nodes

are directly connected as well. A triplet consists of three nodes that are connected by

either two (open triplet) or three (closed triplet) undirected edges (Newman, 2010).

- Betweenness Centrality: The betweenness centrality of a node is the number of

shortest paths between all other nodes in the network that pass through the given

node. It can be used to measure the relative importance of the node to the network.

Scale-free networks, for example, will have a few nodes with very high betweenness

centrality as those nodes will connect most other nodes to each other (Freeman, 1977;

Newman, 2010).

- Network Diameter: The network diameter is defined as the longest of all the calcu-

lated shortest paths in a network (Dorogovtsev and Mendes, 2003).
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- Average Path Length: The average path length is the average length of all the

shortest paths between any two nodes. It is bounded above by the network diameter

(Dorogovtsev and Mendes, 2003).

- Network Density: The density of a network is defined as the ratio of the number of

edges to the total number of possible edges.

5.6 Microbiome Data Analysis

5.6.1 Analysis of the Saliva Microbiomes of Bonobos and Chim-

panzees

We illustrate the performance of the methodology on saliva microbiome data sets of two

Pan species found in Li et al. (2013). We model microbial interactions using undirected

graphical models, estimated from relative abundances of genera in the saliva microbiomes

of 23 bonobos (Pan paniscus) from the Lola ya Bonobo Sanctuary in the Democratic

Republic of the Congo (DRC), and 22 chimpanzees (Pan troglodytes) from the Tacugama

Chimpanzee Sanctuary in Sierra Leone (SL).

For the bonobos, 69 genera were identified along with 2 unknown/unclassified gen-

era. Enterobacter (20.8%) was the most abundant genus identified, followed by Porphy-

romonas (10.3%) and Neisseria (9.7%). For the chimpanzees, 79 genera were identified

along with 2 unknown/unclassified genera. The most abundant genera identified were

Porphyromonas (16.9%), Fusobacterium (14.0%), Haemophilus (11.4%) and Neisseria

(8.1%).

After replacing zero abundance counts by 0.5, we use a centered log-ratio transforma-

tion of the data. We then estimate undirected graphical models using the graphical lasso

of Friedman et al. (2008). To perform tuning parameter selection, we use StARS (Liu

et al., 2010). In Table 5.5, we provide a list of genera for each data set corresponding

to high-degree nodes identified by the graphical lasso using StARS for tuning parameter

selection.

140



For each network, we use the R package igraph to evaluate several network mea-

sures, including network density, global clustering coefficient, betweenness centrality, and

average path length (Table 5.6). Differences in network measures between the bonobo

and chimpanzee groups are assessed for statistical significance by permutation tests with

1000 randomizations. The apes were randomly reassigned to one of two groups 1000

times. For each permutation, a network is estimated for each group and distributions

of the differences in network indices were generated for statistical inference. No signifi-

cant differences were found in terms of the global network structure (measured by global

clustering coefficient, betweenness centrality and average path length) between the two

groups. Significant differences in degree centrality were found for nodes corresponding

to genera Enterobacter (0.20 v 0.05, p = 0.01), Escherichia (0.14 v 0.03, p = 0.06),

Eubacterium (0.20 v 0, p = 0.05), Granulicatella (0.12 v 0, p = 0.07), Kingella (0 v

0.12, p < 0.01), Klebsiella (0.05 v 0, p = 0.01), Neisseria (0.27 v 0, p < 0.01), Parvi-

monas (0.20 v 0, p < 0.01), Pasteurella (0.05 vs 0.23, p < 0.01), SR1_genera (0.05 v 0,

p = 0.07), Salmonella (0.08 vs 0.4, p < 0.01), and Schwartzia (0.17 v 0.35, p = 0.07).

For both groups, there is a tendency for genera to correlate positively with other genera

from the same phylum, especially within Firmicutes and Proteobacteria, which was also

found in Li et al. (2013).

Assuming a hub structure for the bonobo microbial interaction network and applying

the HWGL procedure, we found nodes corresponding to genera Neisseria, Peptostrepto-

coccaceae and Schwartzia to be highly connected. For the chimpanzee group, nodes cor-

responding to genera Erysipelotrichaceae, Facklamia, Johnsonella, Mogibacterium, Pepto-

coccus, Phocaeicola, Salmonella and Schwartzia had high degree. To obtain hub networks

reproducible under random sampling, we generated 100 bootstrap samples and applied

our HWGL procedure to each sample. Only the edges in the inverse covariance matrix

that were reproduced in at least 50 bootstrap replicates were retained. For the bonobo

group, the graphical lasso with StARS procedure inferred 205 edges; our procedure in-

ferred 212 edges, and 173 edges were common between the two reconstructed networks.

The HWGL-estimated network has 63 nodes. For the chimpanzee group, the graphical
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lasso with StARS inferred 247 edges, while our procedure inferred 198 edges; both meth-

ods agreed on 182 edges. The HWGL-estimated network has 54 nodes. For both data

sets, the HWGL procedures assigned more edges to hubs. The networks produced by

HWGL are displayed in Figures 5.5 and 5.6. The edges common to both networks are

displayed in Figures 5.7 and 5.8 for the bonobo and chimpanzee groups, respectively. For

the bonobo data set, both methods agree on the clusters of nodes corresponding to genera

Actinobacillus, Atopobium, Coprococcus, Eubacterium and Parvimonas as well as Megas-

phaera, Schwartzia, Selenomonas and Solobacterium. For the chimpanzee data set, both

methods agree on the cluster of nodes, including Alloiococcus, Erysipelotrichaceae, Fack-

lamia, Fusobacterium, Johnsonella, Kingella, Peptococcus, Salmonella and Schwartzia.

Bonobo Chimpanzee
Genus Phylum Degree Genus Phylum Degree
Atopobium Actinobacteria 13 Erysipelotrichaceae Firmicutes 21
Coprococcus Firmicutes 13 Facklamia Firmicutes 21
Enterobacter Proteobacteria 13 Faecalibacterium Firmicutes 20
Eubacterium Firmicutes 13 Johnsonella Firmicutes 21
Haemophilus Proteobacteria 16 Peptococcus Firmicutes 21
Lachnospiracea Firmicutes 13 Phocaeicola Bacteroidetes 21
Neisseria Proteobacteria 18 Ruminococcus Firmicutes 20
Parvimonas Firmicutes 13 Salmonella Proteobacteria 24
Peptostreptococcaceae Firmicutes 13 Schwartzia Firmicutes 21
Schwartzia Firmicutes 12
Solobacterium Firmicutes 12

Table 5.5: Genera corresponding to high-degree nodes from the graphical lasso (StARS) reconstruction of the microbial
interaction network for the bonobo and chimpanzee groups.

Network Index Bonobo Chimpanzee
Global Clustering Coefficient 0.50 0.61
Mean Betweenness Centrality 46.52 43.31
Average Path Length 2.85 2.98
Minimum Degree 0 0
Median Degree 5 2
Mean Degree 5.78 6.10
Maximum Degree 18 24
Network Density 8.2% 7.6%
Network Diameter 6 7

Table 5.6: Network measures from the graphical lasso (StARS) reconstruction of the microbial interaction network for the
bonobo and chimpanzee groups.
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Figure 5.5: Reconstructed microbial interaction network for the bonobo data set using HWGL. Positive partial correlations
are displayed in blue and negative partial correlations are displayed in purple.
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Figure 5.6: Reconstructed microbial interaction network for the chimpanzee data set using HWGL. Positive partial corre-
lations are displayed in blue and negative partial correlations are displayed in purple.
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Figure 5.7: Edges inferred by both the graphical lasso with StARS and HWGL for the bonobo data set.
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Figure 5.8: Edges inferred by both the graphical lasso with StARS and HWGL for the chimpanzee data set.
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5.7 Discussion

Estimating microbial interaction networks from microbial taxon abundance data is an

important problem in microbiome studies. Recently, some authors (Faust et al., 2015)

have investigated the performance of widely used network inference schemes, such as

neighbourhood selection (Meinshausen and Bühlmann) and (inverse) covariance selection

(Friedman et al., 2009), in recovering microbial interaction networks from microbiome

data, but have found that networks with hub structures elude accurate inference. In this

chapter, we addressed this challenge and investigated the network recovery performance

of hub network inference schemes, such as the hubs graphical lasso (HGL) of Tan et

al. (2014) and the reweighted L1-regularization approach of Liu and Ihler (2011). The

former is designed for estimating networks with very densely connected nodes, referred

to as super hubs, while the latter is designed for estimating scale-free networks, for which

there may be no clear distinction between hub and non-hub nodes.

In this chapter, we proposed a more general method for estimating networks with hubs

that can accommodate both networks with so-called “super hubs” as well as scale-free

networks. Our proposed method is a weighted lasso approach with informative weights

that take into account hub structure. Empirically, we show that the proposed method

performs significantly better than methods that do not explicitly take hub structure into

account, but it also outperforms network estimation procedures designed for modelling

networks with hubs.

This work focuses on the problem of static network modelling, where the inferred mi-

crobial interaction network provides a “snapshot” of the microbial community structure

at a single time point. However, it is well known that microbial interaction networks un-

dergo changes over time in response to changes in external conditions (e.g. diet, exposure

to antibiotics) and the temporal variation of these networks can be captured with dy-

namic networks (Faust et al., 2015). Techniques developed for static network modelling

will pave the way for the development of new approaches for modelling the dynamics of

microbial communities.
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Chapter 6

Estimation of Time-Varying Networks

6.1 Introduction

In previous chapters of this thesis, we focused on estimating a single inverse covariance

matrix from i.i.d. samples and the static network that it encodes. In many applications,

however, the network undergoes changes over time in response to internal or external

stimuli, and identifying the temporal changes in the network structure is of interest. For

example, gene regulatory networks describing temporal processes, such as cell cycle pro-

gression or the life cycle of an organism, can undergo systematic rewiring to facilitate

regulatory functions changing in response to environmental and genetic stress (Jethava

et al., 2013). As another example, in microbiome studies, the inferred static network pro-

vides a “snapshot” of the microbial community structure at a single time point. However,

microbial interactions evolve over time and numerous phenomena, such as community

stability and perturbation (Faust and Raes, 2012), can be studied only if temporality is

taken into account.

If enough replications are available at each time point, methods for inferring static

networks may be used to estimate the dependence structure of the variables at each time

point. On the other hand, with only a single observation available at each time point,

some authors in previous analyses have pooled observations from all time points to-

gether and inferred a single “average” network (Song et al., 2009, and references therein).

Other authors (Zhou et al., 2010; Song et al., 2009) make the assumption that the time-
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evolving network is smoothly varying, which allows information to be shared across time

by reweighting observations from different time points and then treating those observa-

tions as i.i.d. (Song et al., 2009). The weighting is designed so that observations nearby

time t are assigned larger weights and the weights become smaller for observations further

away from t.

In this chapter, we investigate the problem of estimating time-varying networks. We

assume that we have n replications of a T time point longitudinal study for which p

variables are measured, and seek to estimate at each time point the dependence structure

of the variables. For each replication, the observations are assumed to be independent,

but no longer identically distributed, as the underlying graph evolves over time. While

methods for estimating static networks may be used to infer the dependence structure

at each time point, such methods do not take advantage of the common structure of

networks at nearby time points.

In Section 6.2, we review exisiting methods for estimating time-varying networks.

The first is the method of Zhou et al. (2010), which estimates a sequence of graphs

G(1), . . . ,G(T ) from a single replication of a T time point study. Their procedure makes

use of L1-regularization based on a weighted empirical covariance matrix. The second

is the method of Guo et al. (2011), designed for jointly estimating multiple Gaussian

graphical models that share common structure.

In Section 6.3.1, we then introduce two procedures for estimating time-varying net-

works, where we assume that multiple measurements at each time point obtained under

similar experimental conditions are available. Working within a penalized maximum like-

lihood framework, we impose two penalties on Θt: a weighted L1 penalty to encourage

sparsity in Θt and a Wishart-type penalty that shrinks the network at time point t to-

wards the network at the previous time point. In the literature, an inverse Wishart-type

penalty has been used in the penalized maximum likelihood framework for estimating a

single covariance matrix (Meyer, 2011), but without imposing the additional constraint

of sparsity. We explore two versions of our approach that applies an L1 penalty and

a Wishart-type penalty to Θt. The first is a sequential penalized likelihood approach,
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where the Wishart-type penalty on Θt allows for the “borrowing of strength” from the

reconstructed network at only the previous time point. The second estimates Θ1, . . . ,ΘT

jointly. We provide computional details for solving the resulting optimization problem

in Section 6.3.2.1. We then perform a simulation study in Section 6.4 to investigate the

performance of the proposed methods as well as that of Zhou et al. (2010). The proposed

methodology is then illustrated with a microarray time series data set in Section 6.5. We

conclude with a discussion in Section 6.6.

6.2 Existing Methods for Estimating Time-Varying Net-

works

Estimating Smoothly Varying Networks (Zhou et al., 2010): Zhou et al. (2010)

investigated the problem of estimating time-varying Gaussian graphical models using L1

regularization. They assumed that the observations X1, . . . , XT are independent, but no

longer identically distributed. Each observation Xt is assumed to be independently drawn

from a multivariate normal distribution with mean 0 and covariance matrix Σt with the

elements of Σt changing smoothly over time. Associated with each Xt is its undirected

graph G(t) = (V (t), E(t)), which is determined by the sparsity pattern of Σ−1
t = Θt and

where V (t) and E(t) are the sets of vertices and edges of the graph, respectively.

Zhou et al. (2010) proposed to estimate Σt by

Σ̂(t) = arg min
Σ�0

{
log det Σ + tr(Σ−1Ŝ(t)) + λ‖Σ−1‖1

}
, (6.1)

where Ŝ(t) is a weighted covariance matrix given by

Ŝ(t) =

∑
swstXsX

T
s∑

swst
.

At a given time point t, the weight corresponding to observation at time point s is defined
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using a symmetric non-negative kernel K as

wst =
K (|s− t|/h)∑
sK (|s− t|/h)

.

The optimization problem in (6.1) can be solved using the graphical lasso algorithm of

Friedman et al. (2008). One example of a weighted covariance matrix that can be used

is

Ŝ(t) =
1

2

(
1

2
X(t−1)X(t−1)T +X(t)X(t)T +

1

2
X(t+1)X(t+1)T

)
,

which assigns weight 1/2 to each of observations X(t−1) and X(t+1).

Kolar and Xing (2011) established the model selection consistency of the procedure

in Zhou et al. (2010). They showed that the structure of the undirected graphical model

can be consistently recovered in the high-dimensional setting, under suitable conditions,

when the dimension diverges with the sample size. If Σt = (σ
(t)
ij ), where σ(t)

ij is a smooth

function, denoting the covariance between variables i and j at time point t, then σ
(t)
ij

must have bounded first and second order derivatives at all times:

max
ij

sup
t

∣∣∣∣∣ ∂∂tσ(t)
ij

∣∣∣∣∣ ≤ C1

and

max
ij

sup
t

∣∣∣∣∣ ∂2

∂t2
σ

(t)
ij

∣∣∣∣∣ ≤ C2.

Therefore, each element of the covariance matrix Σt changes smoothly over time.

Estimating Multiple Graphical Models with Common Structure (Guo et al.,

2011): Guo et al. (2011) investigated the problem of jointly estimating multiple graphical

models that share the same variables and have common structure. They reparametrized

each off-diagonal element θ(k)
ij as θ(k)

ij = ωijγ
(k)
ij for 1 ≤ i 6= j ≤ p and 1 ≤ k ≤ K, where

ωij ≥ 0 to avoid sign ambiguity, and ωij = ωji, γ
(k)
ij = γ

(k)
ji to preserve symmetry. For
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diagonal elements, ωii = 1 and γ(k)
ij = θ

(k)
ij . Therefore, if ωij = 0, then no edge is present

between nodes i and j across all networks, and if ωij 6= 0, some networks may have

γ
(k)
ij = 0 while others may have γ(k)

ij 6= 0, allowing for differences in structure between

networks. To estimate this model, they proposed a penalized likelihood approach, which

involves solving the following optimization problem

arg min
Ω,Γ(k)

K∑
k=1

{
tr(S(k)Θ(k))− log det Θ(k) + λ1‖Ω‖1 + λ2

K∑
k=1

‖Γ(k)‖1

}
, (6.2)

where λ1, λ2 are two tuning parameters. The parameter λ1 controls the sparsity of the

common factors ωij.

6.3 Proposed Methods

Suppose that we have n replications of a T time point longitudinal study for which p vari-

ables are measured. The data can be summarized as an n×p×T arrayX = (X1, . . . ,Xn)T ,

where Xi is a p × T matrix with columns X(t)
i = (X

(t)
i1 , . . . , X

(t)
ip )T . We assume that

X
(1)
i , . . . , X

(T )
i are independent but not identically distributed, allowing the distribution,

and hence the underlying graph, to evolve over time. Assuming that X(t)
1 , . . . , X

(t)
n are

independently drawn from a multivariate normal distribution with mean 0 and covariance

matrix Σt, estimating the graph at time point t from the data amounts to estimating a

sparse inverse covariance matrix Θt = Σ−1
t . While static network inference techniques can

be used to infer a network at each time point t, such methods do not leverage information

about recurring edges that appear in the interaction networks at nearby time points.

6.3.1 A Sequential Approach for Estimating Time-Varying Net-

works

The re-scaled log-likelihood of the observations (up to a constant) at time point t is given

by `(Θt;St) = log |Θt| − tr(StΘt), where St = 1
n
X(t)TX(t). One approach is to estimate T

individual networks. For each t = 1, 2, . . . , T , we can compute a separate L1-regularized
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estimator by solving

Θ̂t = arg max
Θt�0

{`(Θt;St)− pλt(Θt)} ,

where pλ(Θt) = ‖Wt ∗Θt‖1 is the weighted L1 penalty for some symmetric weight matrix

Wt (e.g. adaptive lasso weights) with * denoting Schur (coordinate-wise) matrix multi-

plication. Such a procedure, however, does not take advantage of the common structure

between networks at consecutive time points.

Therefore, we propose to estimate Θ1, . . . ,ΘT by solving the following sequential op-

timization problems

Θ̂1 = arg max
Θ1�0

{`(Θ1;S1)− pλ1(Θ1)} (6.3)

and for t = 2, . . . , T ,

Θ̂t = arg max
Θt�0

{
`(Θt;St)− pλt(Θt)− pν1,ν2(Θt | Θ̂t−1)

}
, (6.4)

where pν1,ν2(Θ|Θ̃) = ν1tr(Θ̃−1Θ) − ν2 log det Θ for ν1, ν2 > 0. This type of sequen-

tial prediction approach has many real-world applications, where data become avail-

able sequentially in time. Denote by {dj}pj=1 the eigenvalues of Θ. Then pν1,ν2(Θ|Θ̃) =

ν1tr(Θ̃−1Θ)−ν2 log det Θ = ν1tr(Θ̃−1Θ)−ν2

∑p
j=1 log dj = ν1tr(Θ̃−1Θ)+ν2

∑p
j=1 log

(
1
dj

)
.

Therefore, a positive value of ν2 will keep the eigenvalues of Θ away from 0.

The case λ = 0 corresponds to placing a Wishart prior on Θt with α degrees of freedom

and positive-definite scale matrix 1
α

Θ̂t−1:

Θt|Θ̂t−1 ∼Wishart
(
α,

1

α
Θ̂t−1

)
=⇒ p(Θt) ∝ |Θt|

α−p−1
2 e−

α
2
tr(Θ̂−1

t−1Θt), (6.5)

and E(Θt|Θ̂t−1) = Θ̂t−1. Therefore,

ν1 =
α

n
and ν2 =

α− p− 1

n
= ν1 −

p+ 1

n
,
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which provides guidance for the choice of ν1 and ν2. Further, if λ = 0, then the penalized

maximum likelihood estimator of Θt is
{

1
1+ν2

(
S + ν1Θ̂−1

t−1

)}−1

.

6.3.1.1 Computational Algorithm

The objective function in (6.4) to be optimized can be written as

log det Θ− tr
{
c(S + ν1Θ̂t−1)Θ

}
− λ‖W ∗Θ‖1,

where c = 1
ν2+1

, which can be solved using the efficient graphical lasso algorithm of

Friedman et al. (2008). We set ν1 = ν2 = ν. For each value of ν, we then select λ from a

find grid and choose the value of ν that yields the densest graph from a coarse grid. The

selection of λ is done based on BIC.

6.3.2 Joint Estimation of Time-Varying Networks

In Section 6.3.1, we explored a sequential penalized likelihood approach for estimating

time-varying networks and their corresponding precision matrices Θ1, . . . ,ΘT . We pro-

posed to estimate the network at time point t by encouraging similar structure between

Θt and the reconstructed precision matrix Θ̂t−1 at the previous time point through the

inclusion of a Wishart penalty to the L1-penalized log-likelihood.

Another possible approach would be to jointly estimate Θ1, . . . ,ΘT by maximizing

the following objective function

(Θ̂1, . . . , Θ̂T ) = arg max
Θ1,...,ΘT�0

[
T∑
t=1

`(Θt;St)− λ
T∑
t=1

‖Wt ∗Θt‖1 − ν
T∑
t=2

{
tr(Θ−1

t−1Θt)− log det Θt

}]
,

(6.6)

for some data-dependent, symmetric weight matrixWt, where St is the sample covariance

matrix at time point t, and λ, ν > 0 are two tuning parameters. The tuning parameters

λ and ν will again be selected using BIC. In what follows, we provide the computational

details for solving the optimization problem in (6.6).
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6.3.2.1 Computational Algorithm

We solve (6.6) using a block coordinate descent procedure, maximizing (6.6) with respect

to one Θt at a time, while leaving the rest fixed. Let Θ̂
(0)
1 , . . . , Θ̂

(0)
T be initial estimates of

Θ1, . . . ,ΘT . At iteration k, we solve the following optimization problems

Θ̂
(k+1)
1 = arg max

Θ1�0

{
`(Θ1;S1)− λ‖W1 ∗Θ1‖1 − νtr(Θ−1

1 Θ̂
(k)
2 )
}
, (6.7)

for t = 2, . . . , T − 1,

Θ̂
(k+1)
t = arg max

Θt�0

[
`(Θt;St)− λ‖Wt ∗Θt‖1 − ν

{
tr(Θ̂(k)−1

t−1 Θt)− log det Θt

}
− νtr(Θ−1

t Θ̂
(k)
t+1)
]
,

(6.8)

and

Θ̂
(k+1)
T = arg max

ΘT�0

[
`(ΘT ;ST )− λ‖WT ∗ΘT‖1 − ν

{
tr(Θ̂(k)−1

T−1 ΘT )− log det ΘT

}]
. (6.9)

Each of the optimization problems (6.7)-(6.9) is convex. The optimization problem in

(6.9) can be solved using the efficient graphical lasso algorithm of Friedman et al. (2008).

We use a generalized gradient descent procedure to solve the optimization problems in

(6.7) and (6.8).

The objective functions to be maximized in (6.7) and (6.8) are of the form

log det Θ− tr(S̃Θ)− νtr(Θ−1Θ̃)− λ‖W ∗Θ‖1 (6.10)

for some positive definite matrices S̃ and Θ̃. We let g(Θ) = − log det Θ + tr(S̃Θ) +

νtr(Θ−1Θ̃) and p(Θ) = λ‖W ∗ Θ‖1. Then solving the maximization problems in (6.7)

and (6.8) amount to solving the following minimization problem

MinimizeΘ�0 {g(Θ) + p(Θ)} , (6.11)
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where g is a differentiable function and p is a non-differentiable function. Problem (6.11)

is convex since both g and p are convex. Therefore, any local minimum is guaranteed to

be the global minimum. To solve (6.11), we use a generalized gradient descent algorithm.

In what follows, we provide a description of the general generalized gradient descent al-

gorithm (see Bien and Tibshirani, 2011, and references therein).

Generalized Gradient Descent: Given a non-differentiable function f such that

f(x) = g(x) + p(x), where g is convex and differentiable, and p(x) is convex, not neces-

sarily differentiable, suppose that we wish to solve the problem

Minimizex∈C {g(x) + p(x)} . (6.12)

Define the proximal operator

proxt(x) = arg min
z∈C

{
1

2t
‖x− z‖2 + p(z)

}
. (6.13)

Then generalized gradient descent solves (6.12) by initializing x(0) and then repeatedly

updating x(k) as follows

x(k+1) = proxt
{
x(k) − t∇g(x(k))

}
(6.14)

for k = 1, 2, . . . , until convergence. That is, at each iteration, generalized gradient descent

solves

x = arg min
z∈C

[
1

2t
‖z − {x− t∇g(x)} ‖2 + p(z)

]
. (6.15)
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Bien and Tibshirani (2011) had proposed a generalized gradient descent procedure

for solving a similar optimization problem to the one in (6.10) using a different convex

function g. Following the algorithmic construction of Bien and Tibshirani (2011), if S̃

and Θ̃ are positive definite, we may tighten the constraint Θ � 0 to Θ � δIp for some

δ > 0, which we can compute and will depend on the smallest eigenvalues of S̃ and Θ̃.

We prove this in Proposition 5. Therefore, in our case, we solve

MinimizeΘ�δIp

{
− log det Θ + tr(S̃Θ) + νtr(Θ−1Θ̃) + λ‖W ∗Θ‖1

}
. (6.16)

Since the matrix derivative of g with respect to Θ is

dg(Θ)

dΘ
= −Θ−1 + S̃ − νΘ−1Θ̃Θ−1, (6.17)

the generalized gradient steps are

Θ = arg min
Ω�δIp

{
1

2t
‖Ω−Θ + t(S̃ −Θ−1 − νΘ−1Θ̃Θ−1)‖2

F + λ‖W ∗ Ω‖1

}
. (6.18)

Without the constraint Ω � δIp, this reduces to the update equation

Θ← S
{

Θ− t(S̃ −Θ−1 − νΘ−1Θ̃Θ−1), λtW
}
,

where S is the elementwise soft-thresholding operator S(A,B)ij = sgn(Aij)(|Aij|−Bij)+.

If the solution to (6.18) ignoring the constraint Ω � δIp has minimum eigenvalue greater

than or equal to δ, then the above procedure is valid. However, if the minimum eigenvalue

is less than δ, then we perform the minimization in (6.18) using the alternating direction

method of multipliers (Boyd et al., 2011; Bien and Tibshirani, 2011). The ADMM

algorithm for solving the general problem

arg min
X�δIp

{
‖X − A‖2

F + λ‖W ∗X‖
}

(6.19)

has been implemented in the R package spcov. Note that when p > n, S is not full rank
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and so we set S = S + αIp for some α > 0.

We prove two facts, taken from Bien and Tibshirani (2011), that are needed to es-

tablish a convergence rate of the algorithm. In Proposition 4, we show that dg(Θ)/dΘ is

Lipschitz continuous on Θ � δIp. We then show that the constraint Θ � 0 can indeed be

tightened to Θ � δIp in Proposition 5. Therefore, by Propositions 4 and 5, generalized

gradient descent is guaranteed to get within ε of the optimal value in O(1/ε) steps (Bien

and Tibshirani, 2011, and references therein).

Proposition 4. The function dg(Θ)
dΘ

= −Θ−1 + S̃ − νΘ−1Θ̃Θ−1 is Lipschitz continuous

over the region Θ � δIp.

Proof: We show that dg(Θ)/dΘ is Lipshitz continuous on Θ � δIp by bounding its first

derivative. By the product rule1 for matrix derivatives, we have that

d

dΘ
(−Θ−1 + S̃ − νΘ−1Θ̃Θ−1) = (Θ−1 ⊗Θ−1)−

ν
{

(Θ−1Θ̃⊗ Ip)(−Θ−1 ⊗Θ−1) + (Ip ⊗Θ−1)(Ip ⊗ S̃)(−Θ−1 ⊗Θ−1)
}

= (Θ−1 ⊗Θ−1) + ν
{

(Θ−1Θ̃Θ−1)⊗Θ−1 + Θ−1 ⊗ (Θ−1Θ̃Θ−1)
}
.

Now we obtain a bound on the spectral norm of this matrix as follows

∥∥∥∥∥ d

dΘ

dg

dΘ

∥∥∥∥∥
2

≤ ‖Θ−1 ⊗Θ−1‖2 + ν‖(Θ−1Θ̃Θ−1)⊗Θ−1‖2 + ν‖Θ−1 ⊗ (Θ−1Θ̃Θ−1)‖2

≤ ‖Θ−1‖2
2 + 2ν‖Θ−1Θ̃Θ−1‖2‖Θ−1‖2

≤ ‖Θ−1‖2
2 + 2ν‖Θ̃‖2‖Θ−1‖3

2,

where the first inequality follows from the triangle inequality, the second follows since

‖A ⊗ B‖2 = ‖A‖2‖B‖2, and the third follows from sub-multiplicativity of the spectral

norm. Thus, if Θ � δIp, then Θ−1 � δ−1Ip and so

∥∥∥∥∥ d

dΘ

dg

dΘ

∥∥∥∥∥
2

≤ δ−2 + 2ν‖Θ̃‖2δ
−3.

1Product Rule for Matrix Derivatives: Let F (X) = G(X)H(X), then F ′(X) =
{
I ⊗HT (X)

}
G′(X)+

{G(X)⊗ I}H ′(X).
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Therefore, g is Lipschitz continuous on Θ � δIp with Lipschitz constant δ−2 +2ν‖Θ̃‖2δ
−3.

Proposition 5. Let Θ∗ be an arbitrary positive-definite matrix. The minimization prob-

lem in (6.11) is equivalent to

MinimizeΘ�δIp

{
− log det Θ + tr(S̃Θ) + νtr(Θ−1Θ̃) + λ‖W ∗Θ‖1

}
(6.20)

for some δ > 0 that depends on λmin(S̃), λmin(Θ̃) and f(Θ∗).

Proof: Let f(Θ) = g(Θ) + λ‖W ∗Θ‖1, where g(Θ) = − log det Θ + tr(S̃Θ) + νtr(Θ−1Θ̃)

is the differentiable part of the objective function. Using the eigendecomposition of Θ,

we can write Θ =
∑p

j=1 djuju
T
j , where d1 ≥ . . . ≥ dp are the eigenvalues of Θ.

Given an abitrary Θ∗ with f(Θ∗) < ∞, the problem in (6.20) is equivalent to the

problem

MinimizeΘ�0,f(Θ)≤f(Θ∗)f(Θ).

Therefore, we show that the constraint f(Θ) ≤ f(Θ∗) implies Θ � δIp for some δ > 0.

We have that

g(Θ) =

p∑
j=1

(
− log dj +

νuTj Θ̃uj

dj
+ dju

T
j S̃uj

)
=

p∑
j=1

h(dj; νu
T
j Θ̃uj, u

T
j S̃uj), (6.21)

where h(x; a, b) = − log x+ a/x+ bx. The function h has for a > 0 and b > 0,

lim
x→0+

h(x; a, b) = +∞, lim
x→∞

h(x; a, b) = +∞, (6.22)

and

lim
a→∞

h(x; a, b) = +∞, lim
b→∞

h(x; a, b) = +∞. (6.23)

We also have that h′(x; a, b) = − 1
x
− a

x2
+ b and h′′(x; a, b) = 1

x2
+ 2a

x3
≥ 0 for x > 0.

Therefore, h is convex for all x > 0. Further, h attains its minimum value at (2b)−1(1 +
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√
1 + 4ab), which we denote by d∗.

Also, using the fact that the minimum eigenvalues of S̃ and Θ̃ may be expressed as

dmin(S̃) = min‖u‖2=1 u
T S̃u and dmin(Θ̃) = min‖u‖2=1 u

T Θ̃u, respectively, it follows that

g(Θ) ≥
p∑
j=1

h(dj; νdmin(Θ̃), dmin(S̃)) = h(dp; νdmin(Θ̃), dmin(S̃)) +

p−1∑
j=1

h(dp; νdmin(Θ̃), dmin(S̃))

≥ h(dp; νdmin(Θ̃), dmin(S̃)) + (p− 1)h(d∗; νdmin(Θ̃), dmin(S̃)).

Therefore, f(Θ) = g(Θ) + λ‖W ∗Θ‖1 ≤ f(Θ∗) implies g(Θ) ≤ f(Θ∗) and so

h(dp; νdmin(Θ̃), dmin(S̃)) + (p− 1)h(d∗; νdmin(Θ̃), dmin(S̃)) ≤ f(Θ∗). (6.24)

Hence,

h(dp; νdmin(Θ̃), dmin(S̃)) ≤ f(Θ∗)− (p− 1)h(d∗; νdmin(Θ̃), dmin(S̃)).

Thus, the minimum eigenvalue of Θ, dp, is constrained to lie in an interval [δ−, δ+] ={
d : h(d; νdmin(Θ̃), dmin(S̃)) ≤ c

}
, where c = f(Θ∗)− (p− 1)h(d∗; νdmin(Θ̃), dmin(S̃)) and

δ−, δ+ > 0. Note that δ− > 0 since h is continuous and monotone decreasing on (0, d∗)

and limx→0+ h(x; a, b) = +∞.

6.4 Simulation Studies

In this section, we investigate the performance of our proposed procedure as well as that

of Zhou et al. (2010) using the weighted covariance matrix

Ŝt =
1

2

(
1

2
St−1 + St +

1

2
St+1

)
, (6.25)

where Su = 1
n
X(u)TX(u). In our simulation studies, we consider smaller values of the

number of time points T and only construct the weighted covariance matrix Ŝt at time

point t based on the sample covariance matrices at time points t− 1 and t+ 1. However,
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for larger values of T , the weighted covariance matrix may be constructed by leveraging

information from multiple time points. We also consider the adaptive lasso version of

their method with weights given by wij = 1/|θ̂(0)
ij |γ for some γ > 0, where Θ̂(0) = Ŝ−1

t . We

refer to a penalized likelihood approach that uses the weighted covariance matrix rather

than the standard sample covariance matrix as the ZLW version. The tuning parameter

selection procedure used will be BIC.

We consider two generating mechanisms for the graphs G(1), . . . ,G(T ). Let A(t) denote

the adjacency matrix of the corresponding graph G(t). We take the precision matrix Θ(t)

to be C(t) +
{

0.5− λmin(C(t))
}
, where C(t) = (c

(t)
ij ) is a symmetric matrix whose sparsity

pattern is determined by that of A(t).

- Simulation 1 (p = 50, T = 6): Starting at time t = 1, we generate an Erdös-Rényi

graph G(1) of p = 50 nodes with connection probability 0.1. Therefore, we take A(1)
ij = 1

with probability 0.1. The parameter c(1)
ij is chosen uniformly from [−0.8,−0.5]∪[0.5, 0.8].

Then, we randomly select 10 new edges to be added at each time point t = 2, 3, where

the parameter c(t)
ij is chosen uniformly from [−0.6,−0.5]∪ [0.5, 0.6]. At each time point

t = 4, 5, we then take the 10 smallest values of |c(t−1)
ij | and remove their corresponding

edges to obtain a new graph G(t). Finally, at time t = 6, we add 10 new edges to the

graph with c(t)
ij chosen uniformly from [−0.6,−0.5] ∪ [0.5, 0.6].

- Simulation 2 (p = 50, T = 6): At time t = 1, we generate a network with one hub by

first setting A(1)
ij = 1 with probability 0.05 and then taking Aimax,j = 1 with probability

0.2, where imax is the index of the node with the largest degree. At times = 2, 3, 4, we

set A(t−1)
ij = A

(t)
ij and add more edges by setting A(t)

ij = 1 with probability 0.01. Then

at time t = 5, we introduce clustering by taking A(t)
ij = 1 with probability 0.25 for

1 ≤ i, j ≤ 10. Finally, at time t = 6, we introduce more hubs by adding edges to nodes

with degree larger than the 90th percentile, denoted by q. In particular, we set A(t)
ij = 1

with probability 0.25 for all nodes i with degree larger than q. The parameters c(t)
ij are

chosen uniformly from [−0.8,−0.5] ∪ [0.5, 0.8].

The networks generated for Simulations 1 and 2 are displayed in Figures 6.1 and 6.2. To
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assess the performance of each of the methods, we evaluate the true positive rate (TPR,

sensitivity), true negative rate (TNR, specificity), and F1 score, given by

F1 = 2 · precision · recall
precision+ recall

, (6.26)

where

precision =
TP

TP+ FP
and recall =

TP
TP+ FN

. (6.27)

The F1 score can be interpreted as a weighted average of the precision and recall. It

reaches its best value at 1 and worst value at 0.
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Figure 6.1: Simulation 1 - Networks at time points t = 1, 2, . . . , 6. Edges that are common to all networks are shown in
purple.
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Figure 6.2: Simulation 2 - Networks at time points t = 1, 2, . . . , 6. Edges that are common to all networks are shown in
purple.

Discussion of Simulation Results:

When a large number of replications (n = 50, 100) are available relative to dimension

p, we find that procedures using a weighted covariance matrix, as in (6.25), perform better

than those that use the unweighted version. When only a small number of replications

(n = 25) are available, however, procedures based on the weighted covariance perform

similarly to their unweighted covariance counterparts. In our simulation studies, we only

considered small values of the number of time points T and the weighted covariance

matrix at time t that we used only takes into account information at times t − 1 and

t+1. However, if more measurements were available, then a more informative kernel can

be used to construct the weights in the weighted covariance matrix. For both simulation

settings, we find that the joint penalized likelihood approach that makes use of an L1

penalty and a Wishart-type penalty performs the best, followed closely by the sequential

procedure when the weighted covariance matrix is used. The procedures that make use

of the Wishart-type penalty are also better able to identify the core edges (edges that

occur at all T time points) of the time-evolving network.
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n TPR TNR F1 TPR Sum of Squared
(Core Edges) Errors

Graphical Lasso
25 0.29 1.00 0.45 0.34 1073.82
50 0.31 1.00 0.47 0.35 933.94
100 0.45 0.99 0.60 0.50 808.48

Adaptive Lasso
25 0.36 0.98 0.49 0.40 1031.28
50 0.43 0.98 0.55 0.47 818.23
100 0.55 0.98 0.65 0.60 688.75

Sequential Lasso-Wishart
25 0.36 0.98 0.49 0.41 1029.23
50 0.44 0.98 0.56 0.48 814.66
100 0.57 0.98 0.66 0.62 679.18

Joint Lasso-Wishart
25 0.32 0.99 0.46 0.37 1117.47
50 0.42 0.98 0.54 0.46 845.20
100 0.57 0.98 0.66 0.62 644.49

Graphical Lasso (ZLW)
25 0.29 1.00 0.45 0.34 1070.33
50 0.30 1.00 0.46 0.34 923.31
100 0.40 1.00 0.56 0.45 830.79

Adaptive Lasso (ZLW)
25 0.30 1.00 0.46 0.35 1061.11
50 0.36 1.00 0.53 0.41 859.19
100 0.70 0.99 0.80 0.75 515.18

Sequential Lasso-Wishart (ZLW)
25 0.31 1.00 0.47 0.35 1056.38
50 0.41 1.00 0.57 0.46 822.54
100 0.75 0.99 0.82 0.81 461.81

Joint Lasso-Wishart (ZLW)
25 0.30 1.00 0.46 0.34 1087.55
50 0.45 1.00 0.60 0.50 775.03
100 0.76 0.98 0.81 0.81 443.34

Table 6.1: Simulation 1 (p = 50, T = 6) - Performance as a function of the number of replications n. True positive rate
(TPR), true negative rate (TNR), F1 score, TPR for core edges (edges common across all networks), and sum of squared
errors, averaged over 100 replicates.
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n TPR TNR F1 TPR Sum of Squared
(Core Edges) Errors

Graphical Lasso
25 0.30 1.00 0.46 0.38 934.61
50 0.31 1.00 0.47 0.39 807.70
100 0.46 0.99 0.61 0.54 691.30

Adaptive Lasso
25 0.36 0.99 0.50 0.44 899.25
50 0.43 0.98 0.56 0.50 712.96
100 0.57 0.98 0.66 0.64 582.13

Sequential Lasso-Wishart
25 0.36 0.99 0.50 0.44 897.95
50 0.44 0.98 0.56 0.51 708.90
100 0.59 0.98 0.67 0.66 580.87

Joint Lasso-Wishart
25 0.34 0.99 0.47 0.42 995.76
50 0.42 0.98 0.54 0.50 739.35
100 0.60 0.97 0.68 0.67 551.34

Graphical Lasso (ZLW)
25 0.30 1.00 0.46 0.38 937.05
50 0.30 1.00 0.46 0.38 797.91
100 0.41 1.00 0.57 0.51 704.42

Adaptive Lasso (ZLW)
25 0.31 1.00 0.47 0.39 927.28
50 0.36 1.00 0.53 0.45 752.04
100 0.70 0.99 0.80 0.79 443.866

Sequential Lasso-Wishart (ZLW)
25 0.31 1.00 0.47 0.39 923.41
50 0.42 1.00 0.58 0.51 710.05
100 0.76 0.99 0.82 0.84 389.93

Joint Lasso-Wishart (ZLW)
25 0.30 1.00 0.47 0.38 929.75
50 0.44 1.00 0.60 0.53 672.38
100 0.77 0.98 0.82 0.85 402.26

Table 6.2: Simulation 2 (p = 50, T = 6) - Performance as a function of the number of replications n. True positive rate
(TPR), true negative rate (TNR), F1 score, TPR for core edges (edges common across all networks), and sum of squared
errors, averaged over 100 replicates.
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6.5 Real Data Analysis

We illustrate the proposed methodology with a microarray time series data set, described

in Rangel et al. (2004) and found in the R package longitudinal. The data result from

an experiment investigating the response of human T-cells to phorbol myristate acetate

(PMA) and ionomicin treatment. After preprocessing, the time course data contain the

temporal expression levels of p = 58 genes across T = 10 time points with 44 replications.

The measurements in the experiment were taken at unequally spaced time points: the first

one just before treatment, at time point 0, and 9 time points at 2, 4, 6, 8, 18, 24, 32, 48,

and 72 hours after treatment. Rangel et al. (2004) used a state space model to estimate

a genetic network by combining direct effects and indirect effects via hidden states. Wit

and Abruzzo (2015) applied their proposed autoregressive Gaussian graphical model of

order 1 to the T-cell dataset, which assumes that genes are conditionally uncorrelated

for time lags larger than 1, and which they estimated using an L1-penalized likelihood

approach.

We assume that the observations are independent but not identically distributed

across time, and consider the adaptive lasso and lasso-Wishart procedures for estimat-

ing a network at each time point t. For each of the procedures, we create 40 bootstrap

resamples and retain edges that are reproduced for at least 50% of the resamples.

To estimate the networks and corresponding precision matrices Θ1, . . . ,ΘT , we first

apply the adaptive lasso (Fan et al., 2009). In the reconstructed network (obtained

after retaining only edges reproducible under random sampling), there is no edge that

is common to at least 9 out of the T = 10 networks. We next apply the adaptive lasso

version of the method in Zhou et al. (2010), using the weighted covariance matrix (6.25).

This time we find that common across all T = 10 reconstructed networks (after retaining

only edges reproducible under random sampling) is an edge connecting genes ITGAM

and TCF12. Edges connecting genes APC and PIG3, and IRAK1 and JUNB occur at 9

out of 10 time points.

For the sequential penalized likelihood approach, using the weighted covariance (6.25),
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we find the same edge, connecting genes ITGAM and TCF12, common across all networks.

Two edges occur at 9 out of 10 time points; they connect genes MAP2K4 and IRAK1,

and SMN1 and CCNC. Finally, for the joint estimation approach, none of the edges are

common across all T = 10 time points. However, 5 edges occur at 9 out of 10 time points.

These edges connect genes CD69 and SMN1, ITGAM and TCF12, SMN1 and CCNC,

APC and PIG3, and IRAK1 and JUNB. Therefore, as expected, for the lasso-Wishart

procedures, there is a greater number of recurring edges.

As in Wit and Abbruzzo (2015), we also find that MCL1, a pro-survival BCL2 family

member, is initially a highly connected node, and then loses its connections to other

genes over time. This can be explained by the fact that SCF(FBW7) targets MCL1 for

ubiquitylation and destruction in order to regulate cellular apoptosis (Wit and Abbuzzo,

2015 and references therein).
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Figure 6.3: Mean gene expression level for 16 of the 58 genes as a function of time (in hours) for the time-course T-cell
data set.
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6.6 Discussion

In a Bayesian framework, regularization along with the associated degree of uncertainty

can be incorporated through the specification of a prior. In the maximum likelihood

framework, sparsity and other prior information is incorporated through a penalty ap-

plied to the log-likelihood, and a general approach for selecting a penalty is to specify a

prior distribution for the parameters. In this chapter, we proposed two penalized likeli-

hood approaches for estimating time-varying networks with a penalty based on a Wishart

prior for the precision matrix Θ. We consider a sequential approach, where the estimated

precision matrix at time t is taken to be the maximizer of a penalized log-likelihood that

encourages sparsity but also shrinkage towards the estimated precision matrix at the

previous time point. We also consider a joint estimation approach, where we estimate

(Θ1, . . . ,ΘT ) by jointly maximizing a penalized log-likelihood subject to a penalty that

encourages shrinkage of consecutive precision matrices toward each other. The joint es-

timation approach can be used for estimating multiple graphical models with common

structure that are not time-varying. We also demonstrate the advantage of borrowing

information across time, as suggested by Zhou et al. (2010), through the use of an empir-

ical weighted covariance matrix, constructed by reweighting observations from different

time points and then treating those observations as i.i.d. (Song et al., 2009).
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Chapter 7

Conclusion and Future Research

7.1 Summary of Thesis Contributions

In recent years, penalized likelihood methodology has been widely used for inducing

sparsity in the inverse covariance matrix (or precision matrix) Θ = Σ−1. This has been

of particular interest because, assuming multivariate normality of the observations, the

sparsity pattern of Θ determines conditional dependence relationships between variables.

Typically, sparsity is introduced through an L1 penalty, applied to the elements of the

precision matrix. However, often we would like to incorporate more structural information

beyond sparsity. In this dissertation, we studied three problems in which L1-penalization

is inappropriate and alternative penalties should be considered.

The first contribution of this thesis was presented in Chapter 3, where we studied

the problem of inverse covariance estimation in the case where variables are ordered

and considered an alternative parametrization of a covariance matrix, namely the partial

autocorrelation (PAC) parametrization. The PAC parametrization has mainly been used

in a Bayesian setting for constructing priors for the correlation matrix R, as it removes

the positive-definiteness constraint on R, but it has not been considered in the frequentist

penalized likelihood framework. Taking advantage of the fact that the PACs are free to

vary over the interval (-1,1), we work within the penalized likelihood framework and

apply to the Gaussian log-likelihood a nested lasso (Levina et al., 2008) penalty to the

PACs. The nested lasso penalty imposes a banded structure in the matrix of PACs, which
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corresponds to a banded structure in the inverse covariance matrix, which is appropriate in

the ordered data context as it is expected that PACs of large lags are small. An iterative

procedure was used to solve the resulting non-convex optimization problem. We also

considered another application of the PAC-based methodology in Chapter 4. Specifically,

we employed the PAC-based penalized likelihood approach for estimating the order of an

autoregressive (AR) model. In the literature, shrinkage is typically applied to the AR

coefficients, which provide a convenient representation of the AR process. Rather than

imposing shrinkage on the AR coefficients, we instead introduced shrinkage through the

PACs, which better reflect the temporal dependence of the AR process. In terms of AR

order estimation, we demonstrated the advantage of the PAC-based lasso approach over

the lasso and modified lasso methods of Wang et al. (2007b), which apply (weighted)

L1 penalties to the AR coefficients. We also concluded that the proposed PAC-based

penalized likelihood methodology performs better in the context of AR order estimation,

rather than inverse covariance estimation in the ordered data context.

The conditional dependence relationships between variables determined by the spar-

sity pattern of Θ can be represented as a graphical model, where vertices correspond

to variables and an edge connects two variables if and only if they are conditionally

dependent. Such graphical models have been used to model a number of real-world

networks, including gene regulatory networks, protein-protein interaction networks, and

more recently, microbial interaction networks. The remainder of this thesis focused on

the network inference problem, where we considered both the static case (Chapter 5) and

the dynamic case (Chapter 6).

The second contribution of this thesis is presented in Chapter 5, where we proposed

a method for estimating high-dimensional networks with hubs, inspired by microbiome

data. We introduced a weighted lasso approach with novel weights constructed to magnify

the differences between rows/columns corresponding to hubs and those corresponding to

non-hubs so that hub edges are penalized less compared to non-hub edges. We showed that

the proposed estimator possesses the oracle property for fixed p in the sense of Fan and

Li (2001) and demonstrated its better finite-sample performance compared to competing
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estimators. We then illustrated the performance of the proposed method through a

microbiome data application. This application is also relatively new as penalization

approaches in microbiome data analysis are only now being considered.

The last contribution of this thesis is presented in Chapter 6, where we studied the

problem of estimating time-varying networks from time series or longitudinal data. We

assumed that multiple replications, taken under similar experimental conditions, are avail-

able, and proposed two new penalized likelihood approaches for estimating time-varying

networks in this context, which take into account the common structure between networks

at nearby time points. We provided the computational algorithms for solving each of the

penalized likelihood problems, and assessed their performance via a simulation study.

7.2 Future Research

To conclude, we suggest some other directions for future work:

• Selection of the Tuning Parameter: In a penalized maximum likelihood frame-

work, sparsity is controlled by the tuning parameter. While this thesis does not

address in-depth the issue of model selection, the choice of the tuning parameter is

crucial to the performance of the penalized likelihood method and in the context

of precision matrix estimation has not been adequately addressed in the literature.

There are two standard approaches for selecting the tuning parameter. One is to

use a resampling scheme, such as cross-validation. The other is to use informa-

tion criteria, such as AIC or BIC. The tuning parameter selection procedure used

should depend on the goal of the study. If the goal is to obtain a model with good

predictive power, such as in time series applications, cross-validation and AIC are

recommended. On the other hand, if a parsimonious model is desired, then BIC

would be more appropriate. The asymptotic properties of CV and BIC in the graph-

ical modelling context was studied by Gao et al. (2012). While BIC-selection of the

tuning parameter in the graphical SCAD of Fan et al. (2009) was shown to have

desirable asymptotic properties, namely consistency of selection, this asymptotic
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result is in some cases not reflected in finite sample. If the goal is to obtain a model

reproducible under random sampling, then the stability approach to regularization

selection (StARS) procedure should be used. Liu et al. (2010) showed that StARS

is partially sparsistent, meaning that the true graph will be contained in the esti-

mated graph with high probability. Such a procedure, however, only performs well

(relative to BIC) in high dimensions. Therefore, coming up with a suitable tuning

parameter selection procedure is another nontrivial and open-ended problem.

• Testing for Differences in Graphical Models: Much of the work has focused

on methodology for point estimation of inverse covariance matrices, as studied in

this thesis. These methods are typically based on performing sparse selection, and

the challenge that remains is statistical inference (obtaining p-values and confi-

dence intervals) after selection (post-model selection inference). Post-model selec-

tion methods are two-step procedures resulting from first selecting a model and

estimating the parameters in the selected model by, for example, maximum likeli-

hood, and then constructing confidence intervals using asymptotic normality of the

MLE. However, some concerns (superefficiency phenomenon, non-uniform conver-

gence) have been raised about post-model selection methods, which are discussed

in detail in Leeb and Pötscher (2008).

Recently, there has been alternative work on quantifying inferential uncertainty for

high-dimensional graphical models (e.g. Janková and van de Geer, 2015). In par-

ticular, Janková and van de Geer (2015) proposed a de-sparsified estimator based

on the graphical lasso, obtained by removing the bias term associated with the

penalty, and proved asymptotic normality of the new estimator for sub-Gaussian

observations under certain regularity conditions. Thresholding the new estimator

will then lead to edge selection guarantees (i.e. thresholding the de-sparsified es-

timator at some level depending on α will remove all zero entries with probability

1− α, asymptotically).

The development of methodology for quantifying inferential uncertainty is impor-

tant for instance in differential networks, where the goal is to test equality of net-
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works corresponding to two different populations, and it is possible that this can

be done by building off of the work of Janková and van de Geer (2015). An ap-

plication of this problem can be found in Section 5.6 of this thesis, where we had

instead contrasted reconstructed networks for case and control groups by testing

for significant differences in network indices (e.g. global clustering coefficient, mean

betweenness centrality, network density, degree centrality) via a permutation test.

Such a test is based on the (weighted) graphical lasso network reconstruction and

looks for significant differences in network structure.

• Regression Analysis Using Network-Structured Predictors with Appli-

cations to Microbiome Data: In Chapters 5 and 6, we focused on the network

estimation problem, which has applications to microbiome data. In microbiome

studies, one area of inquiry requiring further elucidation is the relationship between

the time-evolving microbial interaction network and the health of the human host.

The human gut microbiome has been shown to be associated with many diseases,

such as obesity (Turnbaugh et al., 2009) and diabetes (Qin et al., 2012). While there

has been some work recently on regression analysis for microbiome compositional

data (e.g. Shi et al., 2016), where the goal is to identify the microbial taxa that

are associated with a continuous response such as body mass index (BMI), there is

less work on studying the relationship between a response and the structure of the

microbial interaction network.
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