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Objects such as trees, shrubs, and tall grass consist of thousands of small surfaces that

are distributed over a 3D volume. A natural visual task in 3D cluttered scenes is to

estimate the depth of objects that are embedded within the clutter. For example, one

might estimate the distance to a predator or prey, or decide if a fruit is reachable. To

estimate depth in 3D clutter, a visual system can use binocular disparity and motion

parallax cues, but these depth cues are less reliable in 3D clutter because surfaces tend

to be partly occluded. However, occlusions are not necessarily a nuisance for depth

perception in 3D clutter, since occlusions themselves provide depth information. It

is unknown whether visual systems can use occlusion cues in 3D clutter, though, as

previous studies have considered occlusions for simple scene geometries only. Here we

present a set of depth discrimination experiments that examine depth from occlusion

cues in 3D clutter. We identify two probabilistic occlusion cues. The first one, visibility

cue, is based on the fraction of an object that is visible, and the second one, range cue,

is based on the depth range of the occluders. We show the visual system uses both

of these occlusion cues. We also define ideal observers that are based on these cues,

and show that human observer performance is close to ideal using the visibility cue but

far from ideal using the range cue. The reason is that the range cue itself depends

on depth estimation of the occluders from binocular stereopsis or motion parallax cues

which is less reliable in 3D clutter. Our results thus provide fundamental constraints

on the information that is available from occlusions in 3D clutter, and show how the

visual system can discriminate depth by combining these occlusion cues with stereo and

motion cues.
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Les objets tels que les arbres, arbustes et herbes hautes sont composs de milliers de pe-

tites surfaces distribuées dans un volume 3D. Une tâche visuelle naturelle est d’estimer la

profondeur des objets dans une scène encombrée de surfaces en désordre. Par exemple,

un humain peut estimer la distance d’un prédateur ou dune proie, et peut décider si un

fruit, parmi le feuillage, est accessible. Pour estimer la profondeur dans un fouillis 3D, un

système visuel peut utiliser la disparité binoculaire et des mouvement parallaxes, mais

ces indices de profondeur sont moins fiables dans un fouillis 3D parce que les surfaces

sont souvent partiellement occlus. Par contre, les occlusions ne nuisent pas ncessaire-

ment à la perception de profondeur dans un fouillis 3D, puisque les occlusions eux-mêmes

fournissent de l’information sur la profondeur. Des études précédentes ont seulement

examié l’occlusion des géométries dans des scènes simples, mais nous ne savons pas si les

systèmes visuels peuvent utiliser les indices fournis par les occlusions pour déterminer

les profondeurs dans un fouillis 3D. Ici, nous présentons un ensemble d’expériences qui

s’agissent de différencier la profondeur en utilisant les indices visuels fournis par les

occlusions dans un fouillis 3D. Nous identifions deux occlusion repères probabilistes.

La première est basée sur la partie d’un objet qui est visible, les indices de visibilité,

et la seconde, la gamme d’indices, est basée sur la gamme de profondeur des obstruc-

teurs. Nous démontrons que le système visuel utilise les deux indices d’occlusion. Nous

définissons également les observateurs idéaux, basés sur ces indices, et nous montrons

que la performance de l’observation humaine est proche de l’idéal utilisant les indices

de visibilité, mais elle est loin d’être idéale utilisant la gamme d’indices, la raison étant

que la gamme d’indices dépend elle-même de l’estimation de la profondeur des obstruc-

teurs, des indices provenant de la vision stéréoscopique binoculaire ou des mouvements

parallaxe qui sont moins fiables dans un fouillis 3D. Ainsi, nos résultats fournissent des

contraintes fondamentales sur l’information disponible provenant des occlusions dans

un fouillis 3D, et montrent comment le système visuel peut distinguer la profondeur en

combinant les indices d’occlusion et les indices stéréos et de mouvements.
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Preface

This thesis revisits and builds upon experiments and theory that were introduced in the

M.Sc. thesis ”Depth discrimination in cluttered scenes using fishtank virtual reality”

by Shayan Rezvankhah [1]. With similar experiment setup, this thesis focuses on two

occlusion cues. By utilizing different distributions for 3D clutter, we are be able to

isolate and study occlusion cues in more detail. We also developed ideal observers to

run the same tests as human subjects. This also provided new insight into how well

occlusion perform in theory.

This thesis used material from ”Depth discrimination from occlusions in 3D clutter”,

submitted to Journal of Vision in 2016, of which the thesis author is the second author.

Michael S. Langer, the supervisor of the thesis author, is the first author of this paper.

In particular, Abstract, Section 1.1, Section 3.2 to 3.5 and Chapter 6 are taken almost

directly. Section 1.2, 2.3, 4.1, 4.3.1 and 4.4.3 incorporated some material from above

paper. The remaining sections of the thesis are entirely new.

The french version of the abstract is translated by a dear friend, Xoey Zhang.
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Chapter 1

Introduction

1.1 Motivation and Previous Work

The human visual system has evolved over millions of years, predominantly in cluttered

3D environments such as forest and grassland. Such environments consist of objects such

as trees, shrub, and tall grass that contain thousands of individual surfaces scattered in

3D space. One of the common challenges a human would face in this environment is to

estimate depth of a particular target occluded in this clutter scene. When the targets are

fully visible, a human uses visual cues such as binocular disparity and motion parallax

for depth perception. For the last half century, numerous studies have been conducted,

most of them using random dot stereo-grams, to study the underlying mechanics and to

measure performance of human depth perception [2] [3] [4]. It also has been shown that

humans are the most sensitive to sinusoidal depth modulations with a spatial frequency

between 0.2 and 0.5 c/deg, and this is true for either binocular disparity or motion

parallax [5]. These experiments suggest that when the targets are fully visible, these

two visual cues are the primary source of depth information, and they both utilize the

1



Introduction 2

differences in images from different viewpoints. For simplicity, we will refer to both

stereopsis and motion parallax cue as parallax cues in this thesis.

If we put the target of interest inside a cluttered 3D environment, previous work has

shown that such 3D clutter leads to the target being partly occluded, which reduces

visibility [6] and complicates the task of depth perception [7]. Because it is very diffi-

cult, sometimes even impossible, to find correspondences between images from different

viewpoints, the parallax cues would fail. Studies have shown that we are still able to

estimate depth, by using the ”Da Vinci” stereopsis cue [8]. By observing an unpaired

part of the images, we can estimate depth qualitatively [9]. This shows that our depth

perception of targets is mostly hindered by the existence of the clutter, but no study has

shown how much this effect is. In this thesis, we will show that even with the occlusions

and reduced visibility, our depth perception is still fairly accurate because we are also

using the clutter as a source of depth information.

Previous studies of depth perception in 3D clutter have also concentrated on the depth of

the clutter elements themselves. For example, many studies using random dot or random

line stimuli have asked how many discrete depth planes can be perceived using binocular

disparity [10] [11] or motion parallax [12]. Others have asked how well the visual system

can perceive the depth to width ratio of the 3D clutter [13] [14]. These studies have

provided key insights into depth perception from parallax cues in 3D cluttered scenes.

However, we argue that these studies are incomplete since they use only points or lines

for the clutter rather than surfaces. As such, these studies neglect occlusion effects which

are very important in 3D cluttered scenes.
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1.2 Thesis Outline

In this thesis we consider 3D cluttered scenes that consist of 2D surface elements that

are randomly placed in a volume and that produce a significant amount of occlusion.

We examine the depth cues that are provided by the occlusions and how observers use

these cues. Specifically, we examine how well observers can discriminate the depths of

identifiable objects that are located within the 3D clutter.

(a) (b)

Figure 1.1: Each rendered scene consist of two rectangular red targets that are embed-
ded in a 3D field of grey distractors and separated in depth. The targets are (A) short
bars separated horizontally or (B) long bars separated vertically. The target surfaces
always face the Z direction. The short bar targets have a horizontal:vertical aspect ratio
of 2:1. The long bar targets have an aspect ratio of 20:1 and extend beyond the width
of the clutter. The left and right edges of the long bar targets are hidden behind large

flanking vertical occluders to remove binocular disparity and motion parallax cues.

Consider the examples shown in Figure 1.1. These scenes consist of large number of

surface elements (distractors) which define the clutter and two identifiable objects (tar-

gets). The clutter consists of random grey colored square distractors that are distributed

randomly over a cube volume. The two targets are red rectangles that lie at different

depths within the clutter. In Figure 1.1a, the two targets are short bars that are posi-

tioned in the left and right halves of the volume. In Figure 1.1b, the targets are long

bars that are positioned in the upper and lower halves of the volume.
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We present experiments to both human subjects and ideal observers. We study the

depth information that is available from occlusions, and how occlusion cues might be

combined with binocular stereo and motion parallax cues. We identify two occlusion-

based depth cues in 3D clutter. Unlike the classical depth from occlusion cue which

defines an ordinal constraint only, the two new occlusion cues are metric depth cues

which are based on a probabilistic model of 3D clutter.

Our experiments are conducted using Virtual Reality systems. The idea of VR was first

introduced by Sutherland [15] when he developed a research prototype of a head-mounted

display. The underlying motivation in virtual reality is to realistically represent 3D

virtual worlds to users so that he or she perceives and interacts with them naturally. We

first used Oculus Rift DK2 for our experiments, because of its convenience to implement

and it has also been shown that this device can provide accurate 3D perception as well

as simulate motion parallax [16]. We then repeated our experiments on a Fish Tank

VR setup, composed of nVidia 3D display and a head tracking device. It also has been

shown that this setup was a drastic improvement upon 3D display without dynamic

head coupled perspective [17].

We then proceed to use the same experiment setup for ideal observers. We programmed

two algorithms each for one cue, in order to investigate how much information is available

to the test subjects. We also made comparisons with different combination of perspective

cue. These results will show how the visual system can combine information from

occlusion cues with other cues like parallax cues and perspective cues.



Chapter 2

Defining the Occlusion Cues

2.1 Introduction

In a depth discrimination task, it has been shown that human can do extremely well with

fully visible targets, but it is expected that if the targets are inside a densely cluttered

scene, the performance will become worse. This is because we are relying on traditional

cues such as binocular disparity and motion parallax to estimate depth, and occlusion of

targets’ vertical edges will severely hinder our performance. But in reality, and also in

our experiment later, we observe that humans can still do reasonably well with targets in

3D clutter comparing to fully visible targets. We theorize that there are two additional

cues that are provided by the clutter, and they are the cues human rely on to do depth

discrimination task in a cluttered scene.

To establish these two occlusion cues, we used Unity3D to generate a scene with uni-

formly distributed occluders and a single red target, as shown in Figure 2.1. We then

investigate what kind of information is available by analysing the produced image to

determine the correct depth of the target.

5



Defining the Occlusion Cues 6

Figure 2.1: Each scene contains 1331 opaque square occluders, each occluder is 1.2cm
x 1.2cm in dimension, and its orientation is randomized. All occluders are randomly
distributed in a 20cm x 20cm x 20cm axis-aligned cube. We have a single viewpoint
pointing towards z axis at the center of the cube, and is 60 cm away from the cube’s
front face. A target of size 2.4cm x 1.2cm is generated at desired depth in the occluder

cube, and it is always facing z axis.

2.2 Visibility Cue

When observing targets in a cluttered scene, the visual system can easily estimate the

visible area of the targets. In previous work we can see that if the clutter is uniformly

distributed, the visible area of a target decreases as it moves away from the viewing

point [7]. This is in part caused by perspective, because the perspective viewing makes

closer targets appear larger. But in this particular case, this may also be caused by the

clutter distribution, which makes the target appear further away the more it is occluded.

Figure 2.2: As a targets depth increases, the target tends to be more occluded and
hence less visible. Target depth refers to the relative depth between the red target and

the front face of the clutter cube.
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To show that there is a correlation between depth and visible area, we plot the average

number of visible pixels of the target across 10000 trials on various simulated depths,

both when it is non-occluded and when it is inside the clutter scene shown in Figure 2.1.

Figure 2.3: Visible area on different distances. Each data point is an average of 10000
trials.

It is already well known that perspective is a reliable cue to depth. Now we would like to

investigate whether in the absence of perspective, humans will use the visible area of the

target as a reliable cue. To show that this information is indeed consistent, we measure

the average visible percentage of pixels for various depths and its standard deviation.

The result is shown in Figure 2.4.
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Figure 2.4: Visible percentage of pixels of different target depths. Each data point is
an average of 10000 trials, error bars indicate standard deviations.

Here we formally define the visibility cue as the fraction of area that is visible for depth

discrimination. By using the fraction we state that this cue will not use any information

provided by perspective.

As we can see, the average fraction of visible area is very reliable but the error caused by

randomization of the clutter is very significant. Later in the experiments we will further

investigate whether human subjects can use it in practice. Because the perspective cue

is already well established and not the focus of this thesis, in all experiments following

this one, unless stated otherwise, we will eliminate the size cue by resizing the targets

so that they will look identical in size.
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2.3 Range Cue

We hypothesize that there is another cue based on a probabilistic relationship between

the depth of a target and the range of depths of the surfaces that occlude the target.

If the depth of the occluders can be estimated, either using binocular disparity and/or

motion parallax cues, then these occluder depths provide a lower bound on the depth

of the target. For example, consider two targets that are each partly occluded by one

occluder, such as shown in Figure 2.5. Suppose the left target’s occluder is at depth

60 cm and right target’s occluder is at depth 70 cm. Given only this information, the

observer should infer that the right target is more likely to be further, since the left

target could lie at depths from 60 to 70 cm (or beyond) but the right target must lie a

depth beyond 70 cm. More generally, if an observer can perceive the depth ranges of the

occluders of each of two targets, then the observer should infer that the deeper target is

the one with the deepest occluder. From now on we will refer to this cue as range cue.

Figure 2.5: Illustration of range cue.

To show that this cue is also consistent enough, we measure the depth of the furthest

visible occluder that directly occludes the target, and plot the average result for various

depths, as shown in Figure 2.6. As we can see, the occluder always has a shallower

depth than the target, but on average it is still a very good estimator of the depth of

the target. We need to note that this result is based on the assumption that subjects

can estimate depth of each occluder accurately. Whether human subjects can use the

range cue in practice still remains to be proven in experiments.
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Figure 2.6: Range cue by estimating lower bound of target depth from furthest
occluder. Each data point is an average of 10000 trials, error bars indicate standard

deviations.



Chapter 3

Designing the Experiment

3.1 Motivation and Goal

In a previous study of the same area [1], a psychophysics experiment was designed to

measure human subjects’ performance for a depth discrimination task in a cluttered 3D

scene, but the visibility cue was not tested properly. They tried to remove the visibility

cue by removing the clutter near the line of sight to the targets, forming 3D tunnels, but

in the end could not provide conclusive evidence as to whether or not the visibility cue

was used. In this thesis, we will build upon the same psychophysics experiment setup,

and design specific conditions that can isolate the visibility cue. In addition, we will also

design conditions with different combinations of the range cue, which was not discussed

in any previous studies in this area.

11
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3.2 Apparatus

The rendering and control software ran on a Dell Precision T7610 equipped with an

NVIDIA Quadro 4000K graphics card. Scenes were rendered in real-time using VR

systems with a head coupled perspective model of the observers left and right 3D eye

positions [15]. The systems can track head movement in real time and display the virtual

scene rendered from calculated positions of two eyes, in this way the subjects are able

to observe the virtual scene from multiply viewpoints and have a consistent perception.

Binocular stereo and motion parallax cues were enabled separately based on condition

designs, which will be stated in detail in Section 3.3.3.

We used two different display systems. The first system was an Oculus Rift DK2. For

this display, scenes were rendered in stereo using 3D Unity, and using C# as the scripting

language. The Rift comes with a motion sensing camera and accelerometer for position

tracking, and a gyroscope and magnetometer for orientation tracking. For a description

of the Oculus Rift DK1 version, see [18]. Observer position tracking was achieved using

the Unity plugin provided in Oculus Rift SDK. The position update rate for the Rift is

60 Hz and the display refresh rate is 75 Hz.

The Rift has an OLED display with a resolution of 1920 x 1080 pixels (960 x 1080 per

eye), and a nominal horizontal field of view of approximate 100 degrees. This yields

about 11 pixels per degree, or 5.5 arcmin separation between pixels. This resolution

is relatively low as individual pixels are visible in this display. Moreover, chromatic

separation of individual pixels is common. Such limitations would make this display

unsuitable for precise depth discrimination experiments but for our task, this resolution

was sufficient. To be sure though, we repeated the experiment with a higher resolution

display.
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The second display was a 1080p Acer GD235HZ stereo monitor (23.6) viewed through

NVIDIA 3D Vision shutter glasses. At viewing distance of 60cm, the interpixel distance

of the screen was 1.55 arcmin. The screen was refreshed at 120 Hz, so the frame rate

for each eye was 60 fps. Scenes were rendered using OpenGL. To render the scene using

head coupled perspective, we used the fishtank VR method [17]. We tracked head posi-

tion and orientation using a mid-range 3D Guidance trackSTAR transmitter (Ascension

Tech) with magnetic sensors which were attached to the two handles of the 3D glasses.

The position update rate was 80 Hz. Virtual eye position for rendering was set to be

along the line segment connecting the two sensors. For the binocular disparity condi-

tions, an interocular distance of 6.5 cm was used. To achieve head coupled perspective,

we measured the screen position and orientation relative to the trackSTAR coordinate

system which was defined by the magnetic field transmitter. We then combined the

emitter, screen, and glasses coordinate systems and rendered each 3D scene in real time

from the modelled viewpoint of the viewer.

3.3 Stimuli

A simple illustration of the viewer and stimuli setup is shown in Figure 3.1. Scenes were

rendered either with or without binocular disparity cues, and we refer to these as stereo

or mono conditions. For the experiment that used the Oculus Rift display, the mono

condition presented the same image to both eyes in each frame. The image was rendered

from the mid-point between the two eyes. For the experiment that used the fishtank

VR display, the mono condition presented an image to one eye only. This was achieved

by rendering both eye views, but inserting a large black sphere as a virtual eye patch in

front of the scene for one eye, chosen randomly.
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Figure 3.1: The top view of the viewer and stimuli setup. The relative distances and
sizes are not to scale. In the experiment, the clutter is a cube volume with sides of
length 20 cm and the front of the clutter is at a distance 60 cm for the standard observer
(no motion). The uniform grid of distractors illustrates that a uniform probability
distribution was used. In the actual scene, occluders are randomized both in position

and orientation.

Scenes also were rendered either with or without head coupled perspective. We refer

to these as motion or no motion conditions, respectively, although note that the depth

information in the motion parallax condition is not merely due to motion, but more gen-

erally it is due to head coupled perspective. For the no motion conditions, we instructed

observers not to move their heads and in the case they moved their heads by some

arbitrarily chosen threshold they were presented a warning on screen and the result of

that particular trial was discarded. To ensure that no motion information was available

for small head movements below the chosen threshold, we turned off the head coupled

perspective and we fixed the virtual observer’s position and orientation to a standard

view, 60cm from the front and center of the clutter volume.

Scenes were generated as follows. See Figure 1.1. On each trial, the XYZ positions of

the two targets were initialized to be at the center of a bounding XYZ volume of size

20 x 20 x 20 cm. We define the standard observer position to be 70 cm from the center

of this volume. The targets were separated in depth by an interval Z, namely they were

positioned at depths:



Designing the Experiment 15

Znear = 70 − ∆Z/2 Zfar = 70 + ∆Z/2

The value Z was chosen using a staircase procedure that will be described below. The

short bar targets then were separated horizontally (X) by 10 cm, and the XY position

of each was randomly perturbed by up to 1 cm in X direction and up to 1.5 cm in Y

direction. The perturbation is to prevent test subjects from comparing target positions

between two consecutive trials and use this information to infer depths.

The 3D clutter in each trial was defined by generating 113 = 1331 distractors. Each

distractor was a square of width 1.2cm, and was assigned a random grey level and random

3D orientation. The position of each distractor within the XYZ bounding volume was

chosen according to one of the four probability distributions which will be defined below.

The 3D clutter was rendered under perspective projection, with various combinations of

stereo and motion cues as described earlier. As stated in Section 2.2, we removed the size

cue in this experiment. Specifically, the 3D size of each target was rescaled in real time

such that the visual angle of each target was constant, namely it was equal to the visual

angle the unscaled target at a depth Z=70. For example, each short bar was roughly 1 x

2 degrees. Removing the size cue from the targets is a standard manipulation in depth

discrimination experiments e.g. [19].

3.3.1 Clutter design

To examine occlusion cues, we manipulated the distributions of the clutter. The two

cues were visibility and range, as described earlier, and we combined these two cues in

four ways as follow.
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3.3.1.1 With both visibility and range cue

In this basic scenario, all occluders are uniformly distributed in the cube, illustrated in

Figure 3.1. Recall Figure 2.4, in a uniformly distributed clutter, the average fraction of

the visible area depends on the target depth. Also recall Figure 2.6, the lower bound of

target depth is infered from the depth of the furthest occluder, which also depends on

target depth. We expect test subjects to be able to utilize both occlusions cues in this

condition. Figure 3.2 shows an example of such scene using a stereogram.

Figure 3.2: Stereogram for the scene with both visibility and range cue, the images
are for the right-left-right eye, i.e. the pairs on the left should be cross-fused and the
pairs on the right should be viewed divergently. The closer target is on the left, and

∆Z = 8.

3.3.1.2 With neither visibility nor range cue

To eliminate both cues, we modify the distribution so that between the depths of two

targets, occluders are not generated, but we keep the total number of occluders the same

by making the front/back clutter more dense. This is illustrated in Figure 3.3.

We will now analyse the cues present in this distribution. Because the amount of occlud-

ers lying in front of either target are the same, so on average, the visible area of either

target should be the same. This means the subjects can not infer any depth information

from the visibility cue. Also because the occluders lying in front of targets are of the
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Figure 3.3: The top view illustration of the clutter design with neither visibility nor
range cue.

Figure 3.4: Stereogram for the scene with neither visibility nor range cue. The closer
target is on the left, and ∆Z = 8.

same range of depth, subjects cannot use their depth information to infer the relative

target depth either, which eliminates range cue. We expect subjects to perform much

worse in this case than with the uniform distribution.

To achieve the same result, we also have a choice of using the same density of the

occluders as our uniform distribution, or use the same total number of occluders. We

decided against the former because it will make both targets less occluded, leading to

stronger parallax cues, making it hard to compare the results.
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3.3.1.3 With range cue but without visibility cue

To eliminate visibility cue, the simplest way is to modify the distribution so that the

number of occluders in front of a target is always the same no matter the depth of the

target. This way, it always has the same expected average visibility as when it is in

the middle of the clutter. To implement this, we keep the total number of occluders

constant and divide the cube into four sections, left and right, in front of targets and

behind targets. Each section has 25% of total occluders. This is illustrated in Figure

3.5.

Figure 3.5: The top view illustration of the clutter design with the range cue, but
without visibility cue.

Figure 3.6: Stereogram for the scene with range cue, but without visibility cue. The
closer target is on the left, and ∆Z = 8.
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It is clear that the range cue is still present in this distribution, because the occluders

of each target have a different range of depth. Therefore the furthest occluder among

each has a different expected depth. We expect subjects to perform worse than uniform

distribution because of the absence of visibility cue, but better than the distribution

with neither cue.

3.3.1.4 With visibility cue but without range cue

It is quite tricky to eliminate the range cue. Instead of achieving this directly, we started

with the second distribution mentioned above, which contains neither cue, and added

the visibility cue back in. Taking the said distribution, divide it into four sections, and

make the occluders in front of the closer target less dense, and that of the further targets

more dense. The densities depends on the depth of both targets so that the number of

occluders in front of the targets remains the same as in the case of uniform distribution.

This is illustrated in Figure 3.7.

Figure 3.7: The top view illustration of the clutter design with visibility cue, but
without range cue.
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Figure 3.8: Stereogram for the scene with visibility cue, but without range cue. The
closer target is on the left, and ∆Z = 8.

Because the number of occluders in front of the targets is the same as in the uniform

distribution, the visibility cue is unaffected. But because there is still a gap in the depth

range between two targets, the front occluders of each target are randomized within the

same range, so there is no range cue present. We expect subjects to perform worse than

with the uniform distribution but better than the distribution with neither cue.

3.3.2 Target design

In a previous study [1], red squares were used to represent targets, but from preliminary

tests we discovered that small red squares are too often completely occluded. We also

tried the clutter with less density, but we discovered that both visibility cue and occlusion

cue became weaker and less obvious. Because subjects use the targets’ vertical edges

for binocular and motion parallax, we also do not want to increase their height as this

will increase these cues, and perhaps make these cues dominate over the occlusion cues,

which are the cues of interest. In the end, we decided to use a rectangle with a width

height ratio of 2:1.

Even though the design of small targets has more similarity with objects in natural

scenes, e.g. a fruit in a tree full of leaves, a prey hiding in the bush, we are also
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interested to see how subjects will perform without parallax cues like binocular and

motion parallax. To do this, we need to make the vertical edges not visible to the

subjects. We then modified our targets into long bars, both ends extending outside of

the clutter cube. To make sure the subjects are not seeing the targets’ vertical edges,

we put two larger rectangular occluders in front of the clutter cube, covering both ends

of the targets outside of the clutter. The long bar targets can no longer be placed side

by side, so we made them above and below, 6.67 cm (1/3 of the clutter height) away

from each other and from the top down edges. Figure 3.9 shows long bar targets with

all four clutter design stated above.

To discriminate the depth of these long targets, the subjects have to use the visibility

cue and occlusion cue. Also because visual area of the targets increased about seven

times, we expect the effect of both cues to be more consistent. But it is unclear whether

the performances for long targets will exceed that of short targets. We decided to keep

both short and long targets because the results in both cases can provide substantial

insight into occlusion cues.

3.3.3 Combination of conditions

Four depth cues (binocular disparity, i.e. stereo, motion parallax, and the two occlusion

cues) and two different targets were combined to give 32 possible conditions. For several

of these combinations, the task was impossible. We did not test these conditions. For

the short bar targets, there were two impossible conditions, namely when there was no

stereo, motion, and visibility cues (with or without a range cue). The task is impossible

for the condition with the range cue alone (Figure 3.7 with no stereo or motion) because

that range cue requires that the observer can perceive the depth of the occluders to some

extent, which requires either stereo or motion. For the long bar targets, the task was
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impossible for the two conditions just mentioned. In addition, the task was impossible

when both the visibility and range cues were removed, even if there were stereo or

motion cues. The reason is that the stereo and motion cues provide depth information

only about the distractors, but not about the targets.

In addition to the 25 conditions stated above, we also tested a ’baseline’ condition for

the short bar targets in which stereo and motion cues were present, but the cluttered

distractors were removed. This gave a total of 26 conditions. We did not include a

baseline condition for the long bar targets since this condition was designed to not have

any stereo or motion cues about target depth, so it would be impossible for the subjects

to estimate the depth.

Each observer ran all 26 conditions in a blocked design, with one staircase per block.

The staircases will be described below. The ordering of the blocks was randomized for

each subject.

3.4 Test subjects

15 subjects participated in the experiment using the Oculus Rift VR system, and a new

set of 15 for the fish tank VR system. Each subject was a student at McGill University

and was paid $10. Subjects had little or no experience with psychophysics experiments.

Each had normal or corrected-to-normal vision. We required that each subject could

discriminate 50 arcsec of disparity to participate, namely level 6 of the Randot Stereo

Test (Precision Vision). Subjects were unaware of the purpose of the experiments.

Informed consent was obtained using the guidelines of the McGill Research Ethics Board

which is consistent with the Declaration of Helsinki.
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3.5 Procedure

In each trial, subjects indicated which of the two targets was closer to them. They

responded by the pressing keys on the keyboard: left-right arrows for short bar targets,

and up-down arrows for the long bar targets.

As mentioned above, a blocked design was used such that the combination of cues was

fixed for each block. A one-up/one-down staircase was used for each block with different

step sizes for down steps versus up steps. The ratio between the log of the up-step size

and the log of the down-step size was chosen as 0.2845 [20]. Specifically, whenever the

subject answered correctly, we reduced the distance ∆Z between targets by a factor 0.8,

and when the observer answered incorrectly we increased ∆Z by a factor 2.19. This

ratio aims for approximately 78 percent correct. Each staircase began at ∆Z = 12 cm

and terminated after 12 reversals. To compute the threshold for a given staircase, we

averaged the log of the ∆Z values for the last 10 reversals. If ∆Z increased beyond 20

cm which normally would put the targets outside the bounding box of the clutter, we

instead displayed the near target just in front of the front face at Zmin and the far target

just beyond the back face at Zmax. This configuration made the task trivial since the

near target was unoccluded and the far target was highly occluded. If the observer still

answered incorrectly in this case, we used the usual rule for choosing the next staircase

level but in the next trial we again displayed the targets at the same depths just below

Zmin and just beyond Zmax. This gave the same target images anyhow because of how

we scaled the target sizes.

For blocks in which there was a motion cue present, subjects were instructed to move

their heads left and right. If they did not move, then a warning message was displayed

and the trial was discarded. We clipped the rendered observers position to a horizontal
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XYZ line segment of size 30 x 0 x 10 cm which was centered at position (0, 0, 60) relative

to the center of the front face of the clutter cube. This restricted the viewing position

to always have the same Y value, which removed any possibility that the observers

could use vertical motion parallax from the targets upper and lower (horizontal) edges.

For blocks in which there was no motion cue present, a message was presented telling

subjects not to move their heads (see Stimuli section) and the trial at that level was

repeated with a new stimulus.

The response time in each trial was limited to four seconds. If the subject didn’t respond,

then the trial was discarded and another scene was generated using the same target

distance. A prompt was displayed to remind the subject to respond in time. The

experiment typically lasted close to one hour.

Before running the experiment, each observer ran a short practice session with three

conditions, each with stereo present: the short bar targets with and without motion

parallax, and the long bar targets with motion parallax. There was no time limit in

each trial of the practice session. As in the real experiment, the initial ∆Z was 12 cm

and a staircase was used to determine the next level. Since the purpose of the practice

session was merely to familiarize the subjects with the requirements of the task, we kept

the session short: each condition terminated with the first incorrect answer.
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Figure 3.9: Stereogram for the scene with long targets. From top to bottom, the
distributions are, with both visibility and range cues, with neither cues, with range cue

only, with visibility cue only. The closer target is always on the top, and ∆Z = 8.



Chapter 4

Result and Analysis

4.1 Motivation and Goal

The main goal in these experiments was to examine whether the two types of occlusion

cues were used to discriminate depth in 3D clutter and how these cues would interact

with binocular stereo and motion parallax cues. If both types of occlusion cue were used

by human observers, then we would expect performance to be best when both types of

cues are present, and we would expect performance to be better when one of these cues

is present than when neither is present. We also expect that, within any of the four

combinations of the occlusion cues, performance should be best when both stereo and

motion cues are present since previous studies have shown that stereo and motion cues

combine to give better performance. Such studies traditionally use scenes containing

isolated surfaces [21] [22] and some studies also have used scenes containing 3D clutter

[23] [17]. Note that these previous studies have examined interactions between stereo

and motion cues and occlusion cues explicitly, which was the goal of our experiments.

26
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4.2 Results

Figure 4.1 shows the mean of depth differences thresholds (∆Z) for all 3D clutter con-

ditions using the Oculus Rift setup. Figure 4.2 shows the result of the same experiment

but conducted using fish tank VR. For conditions that we did not test, we plotted a

threshold of ∆Z = 20 cm. These were conditions in which the task was impossible

for the subjects for ∆Z values less than 20 cm and the task was trivial when ∆Z was

greater than 20 cm since the near target was out of the occluder distribution cube and

fully visible. More discussion on this topic is continued in Section 4.4.1.

(a) (b)

Figure 4.1: Result data for experiments done using Oculus Rift. Blue line indicates
baseline performance. Lower threshold indicates better performance. A threshold of
20cm was given to conditions we believe impossible for human subjects. Error bars

show standard error of the mean.

(a) (b)

Figure 4.2: Result data for experiments done using fishtank VR (NVidia 3D display
+ Trakstar). Blue line indicates baseline performance. Lower threshold indicates better
performance. A threshold of 20cm was given to conditions we believe impossible for

human subjects. Error bars show standard error of the mean.
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Thresholds are given as ∆Z values in cm. To convert these thresholds to stereo dispar-

ities, we use:

disparity in arcmin ≈ 4.5 arcmin per cm * ∆Z in cm

For example, the min and max thresholds which are roughly ∆Z = 2 and 20 correspond

to 9 and 90 arcmin of disparity respectively. The conversion assumes the observer is at

60 cm from the front face of the clutter.

4.3 Analysing the Importance of Occlusion cues

From the above results, it is easy to see the trend that performance gets worse when

we remove either of the occlusion cues and worst when we remove both. We used the

following two statistic methods to reinforce this claim.

4.3.1 t-test

To analyze the human observer data in Figure 4.1 & 4.2, we compare thresholds across

several conditions. We use paired two-sided t-tests (Microsoft Excel) to test the null

hypothesis that the means of two conditions across 15 observers are the same.

We first discuss the results for baseline conditions (shown with blue line). Recall from

the last chapter, that in the baseline condition we have only short bar targets with

stereo and motion cues but no clutter. For the Oculus Rift display, the mean baseline

threshold was ∆Z = 1.6 cm. This corresponds to a binocular disparity of about 7.3

arcmin, which is slightly greater than the nominal interpixel distance of the Oculus Rift

display (5.5 arcmin), presumably because the resolution for this display is worse than
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the nominal value because of chromatic aberrations. For the fishtank VR display, the

mean Z threshold for the baseline condition was 0.2 cm which corresponds to a binocular

disparity of 0.9 arcmin. This threshold is lower than the interpixel distance for the Acer

monitor (1.55 arcmin at a screen viewing distance of 60 cm).

The baseline thresholds were lower than the 3D clutter thresholds for the short bar

targets and for the clutter condition in which all four cues were present (Fig. 4.1a

leftmost yellow bar). For the Oculus Rift display, the difference was close to significant

(t = 1.94, p = 0.07). For the fishtank VR display the difference was highly significant (t

= 7.4, p = 0.000003). Thus the presence of clutter indeed reduced performance relative

to the baseline.

We next show that, although the 3D clutter reduced performance, observers were still

able to use the information in the 3D clutter through the two occlusion cues we hypoth-

esised. We first consider the visibility cue. We compare the ”Visibility” conditions with

”Neither” conditions, and ”Visibility, Range” conditions with ”Range” conditions, these

comparisons are done with four different parallax cue combinations, along with two dif-

ferent targets, and two display setups. The t and p value for each test is shown in Table

4.1. Note that because we conducted the experiment only using a selected set of con-

ditions (excluding ones we considered impossible for the subjects), several comparisons

will not be shown.

As we can see, most of the differences in Table 4.1 are considered statistically significant.

This shows that among most conditions, the subjects will perform better when the scene

contains the visibility cue, compared to the corresponding scene where the cue is not

available. This serves a significant evidence that the human visual system is indeed

using the visibility cue on many occasions.
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Visibility Cue Test
Oculus Rift Fish Tank

Visibility vs. Neither Both vs. Range Visibility vs. Neither Both vs. Range
S

h
o
rt

T
a
rg

et

Motion + Stereo t=2.38 p=0.032 t=1.39 p=0.186 t=2.31 p=0.037 t=1.22 p=0.243

Motion only t=1.89 p=0.079 t=2.72 p=0.017 t=3.05 p=0.009 t=1.71 p=0.109

Stereo only t=6.13 p=2.62E-05 t=3.58 p=0.003 t=7.88 p=1.64E-06 t=5.29 p=0.0001

Neither N/A N/A N/A N/A

L
o
n

g
T

a
rg

et

Motion + Stereo N/A t=4.89 p=0.0002 N/A t=3.07 p=0.008

Motion only N/A t=4.65 p=0.0004 N/A t=3.21 p=0.006

Stereo only N/A t=5.23 p=0.0001 N/A t=4.51 p=0.0005

Neither N/A N/A N/A N/A

Table 4.1: Statistics for difference between performance with visibility cue and with-
out it, using paired two-sided t-tests. Because our experiment used a selected set of
conditions, some tests can not be done. Yellow colored cell indicates the difference is

statistically significant at p ¡ 0.05 level.

There are four cases where the difference is not considered significant. Other than the

fact that the number of our test subjects is limited, we also argue that this may be

because the thresholds for these cases are very low, meaning they are performing very

well using other cues already. Because the visibility cue is probabilistic in nature, it is

much less reliable with lower ∆Z. We will verify this hypothesis in the ideal observer

chapter later.

Now we examine the range cue. Similar as above, we compare the ”Range” conditions

with ”Neither” conditions, and ”Visibility, Range” with ”Visibility” conditions. These

comparisons are also done with four different parallax cue combinations, along with two

different targets, and two display setups. For the same reason, several comparisons are

not shown here. The t and p value for each test is shown in Table 4.2.

Again, most of the test also indicate a significant difference. We can also come to the

conclusion that the human visual system uses the range cue on many occasions. It is

important to note that there are several tests that we did not expect a difference in

theory (shown with *). These conditions, although they use a clutter distribution that
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Range Cue Test
Oculus Rift Fish Tank

Range vs. Neither Both vs. Visibility Range vs. Neither Both vs. Visibility
S

h
o
rt

T
a
rg

et

Motion + Stereo t=2.90 p=0.012 t=2.64 p=0.019 t=3.06 p=0.008 t=2.17 p=0.048

Motion only t=2.54 p=0.023 t=2.33 p=0.035 t=2.62 p=0.020 t=1.76 p=0.101

Stereo only t=3.78 p=0.002 t=1.56 p=0.142 t=5.57 p=6.95E-05 t=1.44 p=0.171

Neither N/A t=1.92 p=0.076 * N/A t=-1.14 p=0.274 *

L
o
n

g
T

a
rg

et

Motion + Stereo N/A t=2.47 p=0.027 N/A t=3.57 p=0.003

Motion only N/A t=4.64 p=0.0004 N/A t=2.35 p=0.034

Stereo only N/A t=2.43 p=0.029 N/A t=1.61 p=0.130

Neither N/A t=-0.004 p=0.997 * N/A t=0.37 p=0.716 *

Table 4.2: Statistics for difference between performances with range cue and with-
out it, using paired two-sided t-tests. Because our experiment used a selected set of
conditions, some tests can not be done. Yellow colored cell indicates the difference
is statistically significant. * indicates a case where we do not anticipate a difference,
because we expect test subjects not able to make use of range cue even though it is

present.

contains the range cue, human observers are not able to make use of it. The reason

is because the range cue mechanism requires the observer to estimate the depth of the

occluders of the target, but with both stereo and motion parallax absent, i.e. ”Neither”

row in the table, the human observer can not estimate the occluders’ depths at all. As

we can see in entries with * in Table 4.2, these tests indeed do not show a significant

difference.

4.3.2 Multiple linear regression

In our experiment, we assume there are four different cues that are used, two occlusion

cues and two parallax cues, with different combination in each staircase test. Cue

combination can be very complicated to model, and here we attempt to model them

using a simplified linear model. We assume a binary term (Xcue) to indicate whether a

cue is present (1) or not (0), and result threshold (Ythreshold) from each staircase test of

each test subject as output.
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Ythreshold = βintercept+βstereoXstereo+βmotionXmotion+βvisibilityXvisibility +βrangeXrange

We excluded the baseline result because there is no clutter in the scene and parallax cue

is extremely powerful in this case, unlike other conditions. We also excluded the results

from long target experiments, because there is no parallax cue involved even when stereo

or motion parallax is enabled. We used multiple linear regression (Microsoft Excel) to

solve for the coefficient (βcue) of each term, the result is shown in Table 4.3.

Cue Coefficients t Stat P-value

Intercept 12.57 24.40 3.84E-82

Stereo -1.40 -3.68 0.0003

Motion Parallax -4.09 -10.74 6.55E-24

Visibility -4.38 -11.50 9.35E-27

Range -2.14 -5.88 8.57E-09

Table 4.3: Multiple linear regression on all data, using different combinations of cues
as input. Coefficients are negative because each cue will increase the performance

therefore bring down the threshold, which is input Y for the regression analysis.

As we can see, all four cues are shown to have a very significant coefficient. This further

proves that both occlusion cues, visibility and range cue, are used in our experiment

and improved the depth discrimination performance in a cluttered scene by a significant

amount.

It is important to note that, however, this linear model is naive in nature and cannot

represent the complex mechanism of visual cue combination. For instance, range cue is

dependent on the fact that observer can estimate depth of the occluders, i.e. there should

be a coefficient for (range cue AND stereo cue) OR (range cue AND motion cue), which

can not be captured in this linear model. Therefore this model is not sufficient enough

to provide quantitative estimate of cue importance, but we can still make qualitative

conclusion that both occlusion cues are used by subjects in this experiment and their

effects are significant.
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4.4 Further Discussion

4.4.1 Results for conditions not included in the experiment

Because of our design of clutter distributions, we expected several combinations of con-

ditions are impossible for subjects to perform when ∆Z <20 cm. (For ∆Z >= 20 cm

the task is trivial because the front target is outside of the clutter thus entirely visible.)

For these conditions we put 20 cm as placeholders in Figure 4.1 & 4.2. For short targets,

this includes distributions without the visibility cue and when neither of the parallax

cues (stereopsis and motion parallax) are available. Without these three cues, the only

information available is the range cue, but for the range cue to function, observers need

to estimate the depths of the occluders, which is impossible without either parallax cue.

For long targets, in addition to the combination above, the task is impossible if both

occlusion cues are absent. Because long targets do not have visible vertical edges, there-

fore subjects cannot use either of the parallax cues, so without occlusion cues, they can

not estimate the depth at all.

During the preliminary tests, we find that these conditions are frustrating for test sub-

jects and the result is often beyond 20 cm and do not provide interesting data. We

decided it was not meaningful enough to run these conditions, this also shorten the

overall runtime for the subjects. Instead, we programmed a ”dummy” observer to gen-

erate random result for ∆Z <20 cm and correct result for ∆Z >= 20 cm, and uses the

same parameters for the staircases. The mean of 15 staircases from this dummy observer

is 21.33 cm and standard deviation is 1.96 cm. To simplify the matter, we proceed to

use 20 cm as placeholders.
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It is important to note that we did not include 20 cm or the result from dummy observer

for the purpose of significance tests in the previous section. We felt that these are not

actual experiment data and it is unfair to compare generated data with collected data.

4.4.2 Comparing two display setups

If we compare the results from Oculus Rift VR (Figure 4.1) and fish tank VR (Figure

4.2), the latter generally has a better performance across all conditions. Particularly

for baseline condition, its threshold is almost 1/10 of Oculus Rift. To analyse this

statistically, we used the same multiple linear model described above, and added another

input X with 1 indicating Fish Tank and 0 for Rift, this term produced a coeffcient of

-1.16 cm with t=-3.22 and P=0.001. This shows that for our experiment, subjects using

Oculus Rift have a significantly worse performance.

As we stated before, the vast difference for baseline condition can be explained by

interpixel distance in visual angle (5.5 arcmin vs. 1.55 arcmin). This difference is less

significant, however, when we added in the clutter distribution and the subjects are

using occlusion cues addition to parallax cues. This is because the occlusion cues are

using probabilistic model and do not rely on the resolution of the image as much as

parallax cues do.

4.4.3 Comparing the two parallax cues

In most cases, the performance between motion parallax and stereo is very similar. This

is because the information in the image that is provided by these cues is very similar.

However, in the range only conditions, motion parallax performs significantly better

than stereo. The reason for this result may be that stereo is less reliable than motion
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when depth differences are large, because of fusion limits [19] [24]. That is, binocular

stereo suffers beyond Panums fusional area, but motion parallax does not.

4.4.4 Comparing results between long targets and short targets

The initial intent of the long targets is to eliminate parallax cues, but this will also

increase the effectiveness of occlusion cues. Recall that for short targets both visibility

cue and range cue are indeed reliable, but they also have a very high standard deviation.

We argue that by expanding the target area for seven times (long target vs. short target),

the standard deviation should decrease drastically. To illustrate this, we revisit Figure

2.4 & 2.6, and calculated using long targets as well. The result is shown in Figure 4.3

& 4.4.

Figure 4.3: Comparing reliability of visibility cue for short targets and long targets.
Each data point is an average of 10000 trials, error bars indicate standard deviations.

As we can see, the standard deviation for both cue estimation is lower for long targets

than for short targets. Note that this result is based on the assumption that observers

can accurately estimate depth of occluders, and this is obviously not true for human

observers, but we believe this increase of reliability is applicable for human. This is the

reason that, as shown in Figure 4.1 & 4.2, although long bar targets lose both parallax
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Figure 4.4: Comparing reliability of range cue for short targets and long targets.
Each data point is an average of 10000 trials, error bars indicate standard deviations.

Note that for long targets, error bars are extremely small and hardly visible.

cues, their overall performance is not significantly reduced, because the occlusion cues

became more reliable.

4.4.5 Comparing stereo and motion parallax conditions for long tar-

gets

Because there is no direct parallax cue for long targets, the parallax conditions (Stereo

and/or motion parallax) cannot influence the performance directly. However, we hy-

pothesize that they can still influence the performance of long targets through occlusion

cues in the following two ways:

• Parallax cues should improve performance of range cue.

Recall that the mechanism of the range cue requires the observers to correctly

estimate the depth of the occluders of the target. This means that when the

range cue is present, performance should be better when either stereo or motion

parallax is enabled and best when both are enabled. This is keeping with our

result in Figure 4.1b & 4.2b, although not all of the improvements are statistically

significant.
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• Parallax should improve performance of visibility cue.

When stereo and/or motion parallax is enabled, the subject can view the target

and estimate the visibility from more than one viewpoint. This should reduce

the randomness of the visibility cue and make it more reliable compared to the

mono and no-motion-parallax condition. However, this is not reflected in our

results in Figure 4.1b & 4.2b. For visibility only condition, there is no significant

improvement with adding either or both parallax cues. This is further explained in

the next chapter with the result from ideal observer, which can show that multiple

viewpoints from the observer only provide a marginal amount of information and

not enough to improve the performance by a significant amount.
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Ideal Observers

5.1 Motivation

With the results from the human experiments, we can conclude that both the visibility

cue and range cue are used in depth perception in 3D cluttered scenes. This means these

two cues both have reliable information of target depth. To study how much information

these two cues carry, and how much do human subjects make use of them, we developed

ideal observer algorithm for each cue. From this we intend to the investigate the limit

of information available through either of the occlusion cues.

5.2 Implementation

Because of its simplicity for implementation, we chose to develop ideal observers in

Unity3D. We developed two algorithms, one for each cue, that use the information from

the scene, such as ray cast hit and depth of objects, to make judgement on the relative

depth of the two targets. The detailed algorithms are described below.

38
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5.2.1 Visibility cue algorithm

Our model of a human using the visibility cue is by comparing the visible percentage of

the two targets, then choose the larger one as the closer one.

To measure the visibility by algorithm, we first divide the target into a grid of small

squares, each the size of 0.5 mm by 0.5 mm. For each of these small squares, we do

a ray cast from viewing point towards the center of the small square. If this ray cast

hits an occluder before hitting the target, we will mark this small square not visible,

otherwise, mark it visible. After doing ray cast for all of the small squares, we count

the total visible squares and divide by total number of squares on a single target. We

then get our measurement of visible percentage for this target. By comparing the visible

percentage of each target, the ideal observer will select the one with higher percentage

as closer.

5.2.2 Range cue algorithm

Our model using the range cue is to first identify the occluders in front of the target, then

estimate the depth of these occluders using other parallax cues, then find the furthest

point of these occluders, and use it as the lower bound of target depth.

To mimic range cue by algorithm, same as above, we first divide the target into a grid

of small squares, each the size of 0.5 mm by 0.5 mm. For each square, we do a ray cast

from viewing point towards the center of the square. If this ray cast hits an occluder

before hitting the target, we record the distance from the hitting point to the camera

on depth axis, otherwise we record 0. After doing ray cast for all of the small squares,

we find the longest recorded distance, which is the target depth lower bound. Because

there is no other depth information available for this observer, we use this lower bound
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as estimated depth. We then compare the two estimations for two targets and select the

closer one.

Interestingly, one can speculate that humans may use the depths of occluders both in

front and behind the targets. To investigate this speculation, we did a simple experiment

on ourselves with all occluders in front of the targets removed, versus all occluders behind

the targets removed. As observers, we felt that when the behind occluders removed, the

depth perception was mostly unaffected comparing to the uniform distribution. But

when the front occluders were removed, the task became extremely difficult. Following

this, we decided to only include front occluders in the calculation of our range cue ideal

observer. However it is worth noting that the visible front and behind occluders are

obviously different in numbers and we did not have the chance to test on naive subjects.

5.2.3 Long targets

When using the above algorithms for long targets, most of the process stay the same,

except that for the left or right end of the target, raycasts will hit the planes on the side

of the clutter, see Figure 1.1b. In this case, we will not include their raycast result in

the total count, as those point are designed not be visible to human observers.

5.3 Results and Discussion

5.3.1 Results

Using the two ideal observers stated above, we tested under conditions with the com-

bination of long targets and short targets and four clutter distributions. For each ideal

observer and each condition, we tested on 20 different ∆Z. Because the data is more
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interesting on smaller distances, we selected the distances in log units. When ∆Z =

20 cm , the targets are always outside of the clutter distribution. The observer result

is trivial and do not represent the trend of the curve, thus we omitted those results.

For each ∆Z we ran 5000 trials, and record the percentage of correct results from ideal

observer. Figure 5.1 & 5.2 shows the results.

Figure 5.1: Results from visibility ideal observer algorithm, each percentage correct
is from 5000 trials.
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Figure 5.2: Results from range ideal observer algorithm, each percentage correct is
from 5000 trials

5.3.2 Verifying the design of the experiment

First we used the these ideal observers to run the same experiments as the test subjects,

the mean thresholds of 15 runs (same number as number of human test participants)

are indicated with brackets in legends of Figure 5.1 & 5.2. It is easy to see that these

thresholds roughly correspond to 78% of accuracy, in keeping with our design intend of
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the experiment.

Secondly, it is easy to observe that whenever the scene contains the cue on which the

ideal observer is based, the performance is well above 50% (orange and green lines).

When the scene does not contain the right cue, the performance is near random chance

(yellow and blue lines). This shows that our design of clutter distribution can effectively

isolate either of the occlusion cue.

However, we can also see some above 50% performance using range observers on visibility

only distributions, namely the yellow lines in Figure 5.2. This is not our design intent but

can be explained if we go back to the distribution illustrations in Figure 3.7. In visibility

only distribution, the density of occluders in front of the two targets are different. If

we find the furthest occluder among these two, the denser side will be more likely to

have a further front occluder, and this will coincidentally give the correct answer. This

means our design of this particular distributions cannot eliminate range cue completely.

But this effect is very small comparing to other existing cues. For the same clutter

distribution, human performances are between 2 cm and 7 cm (Figure 4.1 & 4.2), and

for these ∆Z, range ideal observer has at most 60% accuracy rate in visibility cue

distributions. Also keep in mind that this range ideal observer has access to the precise

depth of every occluder, for which human observers can only estimate. So it is safe to

assume that this will not affect human subjects’ performance in a significant way, and

the performance in visibility distribution is mostly due to the use of visibility cue.

5.3.3 Comparing to the result of test subjects

For the visibility ideal observer, the result is quite similar to that of human subjects

when neither of the parallax cues are enabled (grey bars in Figure 4.1 & 4.2). More
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specifically, for short targets human achieved 5 cm to 7 cm and the visibility ideal

observer achieved around 5.5 cm. For long targets humans achieved 3 cm to 4 cm and

the ideal observer achieved around 2.2 cm. This indicates that human subjects made

nearly full use of available visibility information, and this might look surprising at first

glance, but it is still reasonable. This is because, unlike other cues such as binocular

disparity, this judgement does not rely on the fine detail of the image, for which ideal

observer algorithm holds an advantage. For visibility cue, the number of red pixels is

only a statistical cue to depth. Because of the randomness of the clutter, one observation

of visibility has very unstable result (recall large error bars from Figure 2.4), making

the difference between visible areas of two targets very obvious in most cases. When

ideal observer observed a small difference which human eye cannot see, the chance of

ideal observer being right is just close to chance. To sum it up, the information of

visibility cue relies on the overall probability, not individual observations, that’s why

human observers can achieve almost as well as ideal observers.

For range ideal observer, however, the performance is very much better than the human

counter parts. More specifically, the range ideal observer achieved below 1.5 cm, better

than human even in the condition where every cue is available. This is expected as the

range ideal observer algorithm is given exact information about nearby occluders’ depth,

whereas human observers need to estimate the depth from parallax cues.

5.3.4 Stereo ideal observer for visibility cue

As mentioned before, by analysing results from human subjects’ performance for long

targets, we can see that parallax cues do not improve performance of visibility cue.

This is somewhat counter-intuitive, because we expect that with multiple viewpoints,

visibility will become less variable and thus there will be more precise predictions. To
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investigate this issue, we developed a binocular version of visibility the ideal observer.

It first calculates the visible percentage of each target from each viewpoint i.e. each eye,

then added the result from left eye to result from right eye, then compared the sum. We

show the performance of the stereo version versus the original mono version on short

targets in Figure 5.3.

Figure 5.3: Performance of binocular and monocular ideal observers, each data point
is from 5000 trials

Here we can see a very slim improvement between binocular observer and monocular

observer. It shows that there is not much additional information from binocular vision,

contrary to our initial thought. Here we will explain why. In stereo, when the observers

try to determine the depth, they use the information from both eyes. In our particular

setup, the generated scene is fairly far from the viewpoint (60 cm away), and the binoc-

ular distance (6.4 cm) is comparably very small. Thus the difference between left and

right eye images are very small. Indeed human eyes are capable of picking up these small

differences for stereo fusion, but for the visibility cue, the observers are merely using

them for the visible area comparison, rather than trying to use the difference to infer
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depth directly. Thus the small difference means it will not help the accuracy very much

(recall large error bars from Figure 2.4). Motion parallax is very similar to binocular

vision, just with more viewpoints, but these viewpoints are still very close to each other,

thus the above argument still works. From these analysis, we can see it is not surprising

that both parallax cues do not improve the visibility cue significantly.

5.3.5 Interaction with perspective cue

To better study the visibility cue by itself, we eliminated the well-known perspective cue

for all of our experiments. However, it is still interesting to see how well the visibility

observer makes use of perspective cues. We modified our visibility ideal observer, so

that it will not just return the visible percentage, but return the raw number of visible

pixels of each target to compare, and we used this observer for short targets with and

without controlled size. In addition, we tested it on a clutter that removed visibility cue

and target size uncontrolled.

Figure 5.4: Comparing results for different size conditions. Each data point is from
5000 trials



Ideal Observers 47

We can see that with target size uncontrolled, the performance improved as much as

10%. If you use this new visibility observer on condition that contains only perspective

cue, the performance is still relatively low.

It is interesting to note that there is more than just the visibility difference from per-

spective cue. Because our targets are regularly shaped rectangles, the observer can

actually try to use the ”visible height” or ”visible width” of the target to estimate its

size more precisely. To investigate this, we developed another perspective ideal observer.

Its algorithm is stated as follow.

To mimic the process of estimate ”visible size”, we first divide the target into a grid of

small squares, each has the size of 0.5 mm by 0.5 mm. For each square, we do a ray cast

from viewing point towards the center of the square. If this ray cast hits an occluder

before hitting the target, we record its y position. After doing ray cast for all of the

small squares, we find the top most and bottom most y position, and use their distance

as the estimation of the height of the target. We then compare the two estimated heights

for two targets and select the one with larger height as closer.

We run this observer on small targets with uncontrolled size, the result is shown in

Figure 5.5

As we can see, this observer performed extremely well, because this cue relies heavily

on the ability to tell very small differences. For this reason, we believe human vision is

not able to make full use of this cue, unlike visibility cue.

Overall, although we did not include perspective cue in our human subjects’ experiment,

we believe its presence can also improve depth discrimination performance in cluttered

scene, either with visibility cue or without. This can be an interesting area to explore

in future studies.
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Figure 5.5: Result from perspective cue ideal observer, each data point is from 5000
trials
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Conclusions

Our experiments and analysis have provided new insights into depth perception in 3D

cluttered scenes, in particular, scenes in which the clutter is dense and so the effects

of occlusions cannot be ignored. We have identified two new metric occlusion cues to

depth in 3D clutter, namely a visibility cue and a range cue. We have shown how

humans combine these depth cues with binocular disparity and motion parallax. One

might have expected that 3D clutter simply interferes with depth perception by reducing

the information from binocular disparity and motion cues. Our experiments show that

the situation is more complicated than that. Occlusions also provide depth information

which observers use to discriminate the depths of identifiable targets that are embedded

within the 3D clutter. The depth information provided by occlusions does not fully

compensate for the loss of information from reduced visibility, but in some situations it

comes close.

More generally, 3D cluttered scenes provide a rich and natural but neglected domain for

studying depth perception. We have concentrated on how occlusion cues are combined

with stereo and motion parallax. But other cues should be examined as well, including

49
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perspective and shading. Finally, 3D clutter is common in natural scenes, but there has

been little work in vision science to quantify how common it is and what the implications

are [6]. We hope that some of the ideas of this thesis could stimulate the community to

address these questions.
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