
Dedicated to the memory of my Father 
Seyed Mostafa who dedicated his life to educating the people of our town. 

Though he did not have the opportunity to pursue his education past grade eleven, 
when I explained problems to him during my studies he solved them intuitively 

faster than me. 

And to my mother Fatemeh who has always kept me in her heart. 



Electroviscous Particle-Wall 

Interactions 

by 

Seyed Mahmoud Tabatabaei 

July 2003 

Department of Chemical Engineering 

McGill University 

Montreal, Canada 

A Thesis Submitted to 

the Faculty of Graduate Studies and Research 

in Partial Fulfilment of the Requirements for the Degree of 

Doctor of Philosophy 

© Seyed Mahmoud Tabatabaei (2003) 



Abstract - A theoretical analysis is presented to determine the forces of interaction between 

an electrically charged cylindrical or spherical particle and a charged plane boundary wall 

when the particle translates parallel to the wall and rotates around its axis in a symmetric 

electrolyte at rest. The electroviscous effects, arising from the coupling between the 

electrical and hydrodynamic equations, are determined as a solution of three partial 

differential equations, derived from Cox's general theory, for electroviscous ion 

concentration, electroviscous potential and electroviscous flow field. It is a priori assumed 

that the double layer thickness surrounding each charged surfaces is much smaller than the 

length scale of the problem. Using the matched asymptotic expansion technique, the 

electroviscous forces experienced by the cylinder and by the sphere are explicitly determined 

analytically for low and intermediate Peclet numbers, but small particle-wall distances. The 

solution for the sphere-wall interactions is extended to arbitrary particle-wall distances 

analytically for the tangential component of the force and numerically for the normal 

component of the force by the use of a bipolar coordinate system. The tangential and normal 

components of the electroviscous force experienced by the sphere-wall interactions for both 

arbitrary particle-wall distances and arbitrary Peclet numbers are also determined 

numerically by the use of the finite difference approximation in the bipolar coordinate 

system. It is found that the tangential force usually increases the drag above the purely 

hydrodynamic drag, although for certain conditions the drag can be reduced. Similarly the 

normal force is usually repulsive, i.e. it is an electrokinetic lift force, but under certain 

conditions the normal force can be attractive. 



Resume - Une analyse theorique est presentee afin de determiner les forces d'interaction 

entre une particule cylindrique ou spherique chargee electriquement et une paroi plane 

egalement chargee lorsque la particule est en translation parallelement a la paroi et en 

rotation autour de son axe dans un electrolyte symetrique au repos. Les effets 

electrovisqueux, provenant du couplage entre les equations electriques et hydrodynamiques, 

sont determines par la resolution de trois equations aux derivees partielles, provenant de la 

theorie generale de Cox, pour une concentration ionique electrovisqueuse, un potentiel 

electrovisqueux et un champ d'ecoulement electrovisqueux. On fait Fhypofhese que 

Fepaisseur de la double couche entourant chaque surface chargee est bien plus petite que les 

dimensions du probleme. En utilisant une technique d'expansion asymptotique, les forces 

electrovisqueuses auxquelles sont soumis le cylindre et la sphere sont determinees 

explicitement analytiquement pour de faibles et intermediaires nombres de Peclet et 

distances particule - paroi. La solution pour les interactions sphere - paroi est etendue aux 

distances particule - paroi arbitraires de facon analytique pour la composante tangentielle de 

la force et numerique pour la composante normale en utilisant un systeme de coordormees 

bipolaires. Les composantes tangentielle et normale des forces electrovisqueuses auxquelles 

sont soumises les interactions sphere-paroi pour des distances particule - paroi arbitraires et 

des nombres de Peclet arbitraires sont aussi determinees numeriquement en utilisant 

Fapproximation de la methode des differences finies dans un systeme de coordormees 

bipolaires. Les resultats montrent que la force tangentielle augmente la resistance, en 

generale, au dessus de la valeur purement hydrodynamique, mais, pour certaines conditions, 

la resistance est diminuee. Egalement, la force normale est en generale une force repulsive, 

mais pour certains conditions elle peut etre attractive. 
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Chapter One 

Introduction 



1.1 - Introduction 

Suspensions of colloid particles in Newtonian fluids are well known for their 

complex rheology and their sensitivity to their electrochemical state. For example, 

Freundlich & Jones (1936) had difficulty to distinguish between systems for which the shear 

viscosity increases with increasing rate of strain (shear-thickening) and those for which it 

decreases (shear-thinning), solely based on particle size and shape, concentration and solvent 

type. This failure is due to the fact that these parameters do not characterize all the dominant 

forces. Fryling (1963) demonstrated the critical role of electrical forces by transforming a 

low-viscosity suspension of 0.1 urn polymer latex spheres into a gel by removing free 

electrolyte which screens (or neutralizes) surface charges. Alexander and Prieve (1987) 

observed the change in particle-wall distance of a 9 urn latex particle moving with a velocity 

of 50 um/s parallel to a glass wall in a slit-like flow cell apparatus containing a glycerol-

water solution. These phenomena along with many others appearing in the literature indicate 

that surface charges play a major role in the behavior of suspensions of colloidal particles. 

When a solid surface comes into contact with a liquid it often acquires a charge. In 

a suspension of charged particles containing electrolyte, ions of opposite charge 

(counterions) are attracted toward the surface of the particles and ions of like charge (coions) 

are repelled from the surface. Therefore, each particle is surrounded by a charged cloud 

which total charge is equal in magnitude and opposite in sign to its own. This charged cloud 

together with the surface charge is referred to as electric or diffuse double layer. 

When fluid flow or electric fields are applied to such a system, so-called 

electrokinetic phenomena arise. They owe their unusual character to the interaction among 

viscous, Brownian and electrical forces in the diffuse double layer. For systems subject to 

fluid flow, this behavior has been qualitatively explained for many years in terms of the 

'primary', 'secondary' and 'tertiary' electroviscous effects [Dobry (1953)]. The first or 

primary effect arises from the deformation of the diffuse double layer around a single particle 

by the flow. The secondary effect arises from charged particle interactions and has been 

studied theoretically by Russel (1976, 1978 a). The tertiary effects appears when electrical 

forces cause particles to change their shape, as happens with polyelectrolytes [Sherwood 



(1980)]. 

The first theory for the primary electroviscous effect was presented without any proof 

by Smochulowski (1916) for the limiting case of a thin double layer. Krasny-Ergen (1936) 

calculated the viscous dissipation in the same limit to obtain a result similar to 

Smochulowski's, but differing from it by a numerical factor. Booth (1950b) presented a 

complete analysis of the primary effect for spherical particles with an arbitrary thick charged 

cloud in the limits of weak flow and weak electrical effects, which leads to a modification 

of the Einstein coefficient characterizing viscosity in the dilute limit. Russel (1978b) 

extended the theory to flows with arbitrary strength. Lever (1979) considered the problem 

with the same assumption but for a large deformation of the charged cloud. All these 

theories were developed for small surface potentials. They also assumed that the fluid 

motion around the sphere was changed only slightly by the presence of the charged cloud. 

Sherwood (1980) removed these restriction. Hinch and Sherwood (1983) extended and 

complemented Sherwood's asymptotic results for high surface potential and high Hartmann 

numbers. Oshima et all. (1984) derived the electrokinetic force superimposed on the Stokes 

drag in the sedimentation of a charged sphere in unbounded liquid. Dukhin & van de Ven 

(1993, 1994) studied theoretically the behavior of a charged sphere in a simple shear flow 

in an unbounded medium with a symmetric electrolyte. 

When sliding motion or squeezing flow is present, the unbounded restriction is 

released, and hence the so called electroviscous effects have been an interesting subject for 

study, not only because of the complexity and unusual behavior of the force experienced by 

the particle, but also because of a practical demand for explaining experimental observations. 

Among pioneers who paid attention to this line of investigation we may mention the works 

by Prieve & Bike (1987), Bike (1988), Bike & Prieve (1990), Bike & Prieve (1992), van de 

Ven, Warszynski & Dukhin (1993a, b), Bike & Prieve (1995), Bike, Lazaro & Prieve (1995) 

and Wu,Warszynski & van de Ven (1996). All these papers consider the problem of a 

particle with a thin double layer. With the exception of the numerical work by Wu, 

Warszynski & van de Ven (1996), the common problem encountered in these theories is that 

the Maxwell stress tensor, used to calculate the force, does not seem to be the dominant 



contribution to the force. It was Cox (1997) who pointed out that the main contribution to 

the force experienced by a charged particle comes from the non-zero normal hydrodynamic 

stress originating from the tangential flow of the ions in the diffuse double-layer as a result 

of the streaming potential built up outside it. This contribution is two orders of magnitude 

greater than that predicted from the perturbation of the electrical field due to the presence of 

the flow (the streaming potential). Consequently, he provided a general recipe to calculate 

the normal and tangential components of the force to be applied to different geometries. 

The objective of this research is to calculate the electroviscous force experienced by 

cylindrical and spherical particles under translation and rotation parallel to a wall based on 

Cox's general theory (1997). Thus, following the historical background, Cox's theory 

(1997) is presented in detail. The problem of a cylinder moving near a wall is investigated 

in Chapter two. Analytical solutions for a sphere moving near a wall for low and 

intermediate Peclet numbers (characteristic of the relative importance of hydrodynamic 

motion to Brownian motion), and small clearance of particle-wall are presented in Chapter 

three. In Chapter four the restriction on particle wall distances is released. Analytical-

numerical solutions for low and also arbitrary Peclet numbers are obtained in this chapter. 

Chapter five contains the overall conclusion of this dissertation. 

Throughout this research I tried to present the subjects in a relatively self-contained 

way with the mathematical procedures, containing most details of calculations, as simple as 

to be easily followed. Whenever it was felt needed a figure accompanies the material. Finite 

difference approximations are used in the numerical calculations. For the sake of simplicity 

it is programmed in Matlab. An electric copy of the programs is available upon request. 

Some properties of coordinate systems employed are discussed in Appendix A. Tables of 

theoretical results are located in Appendix B. Finally, Appendix C contains some of the 

analytical calculations of Chapter four. 

1.2 - Historical Background 

1.2.1 - Electrophoretic Mobility 

Many attempts have been made in the past to determine the relation between the 



motion of charged particles, the applied electric field and other relevant physical quantities. 

Helmholtz (1879) was the first to pay attention to this problem. He made a theoretical study 

of electrokinetic phenomena in general. He presented a qualitative discussion of 

cataphoresis, now commonly called electrophoresis. Consequently, he formulated the 

electroosmotic velocity in a single capillary upon imposing an external eclectic field it. He 

also presented a relation for the streaming potential (electroviscous potential) arising from 

the motion of the electrolyte in a simple capillary, upon imposing a pressure drop along it. 

Smoluchowski (1918) improved Helmholtz's theory and derived the relationship 

U 8 m ^ n -> i ^ 
— = (1.2.1a) 
E r\ 

presented without any proof. E is the strength (magnitude) of the applied electric field 

E,i.e. E = | E|, (in modern physics a field is described by an "action-at-distance" theory) 

defined by1 

E = - V > (1.2.1.b) 

in which the gradient, V, is defined as the directional rate of variation (derivation) with 

respect to space, and \\i is a scalar physical quantity known as potential; U is the 

electrophoretic velocity of non-conducting particles (U/E is known as the electrophoretic 

mobility denoted by E.M.). The parameter 8 m is the permittivity of the medium (or dielectric 

permittivity), defined by 

8m = e r s 0 (1.2.1c) 

where s r is the relative permittivity of the liquid (dielectric constant) and 8 0 is the 

permittivity of free space (the vacuum); r\ is the viscosity of the solution surrounding the 

colloid particles; C represents the difference potential between the surface of the solid and 

Throughout this dissertation, the physical quantities or geometry descriptions, which is 
described by a scalar quantity and a direction (vector), such as velocity, force and position 
of a point relative to a reference (coordinate system), are denoted by an arrow (-»), and those 
which is described by a scalar quantity and two directions (tensor of the second rank), such 
as hydrodynamic and electric stress tensor (directional derivative of the force per unit area), 
by two arrows, an arrow rides another arrow. 



the liquid at infinity, known as the electrokinetic potential of the surface, and it is well 

known as the Zeta-potential ((-potential). 

Later works by Hiickel (1924), Henry (1931), Overbeek (1943) and Booth (1948) 

have shown that the validity of Eq. (1.2.1) is rather restricted. In the case of a spherical 

colloid particle, it is valid only when K ~ < < a, in which a is the radius of the particle and 

K is the reciprocal double layer thickness. 

The next major advance was made by Henry (1931). He confined attention to 

spherical particles but generalized Smoluchowski's theory in two ways. He examined both 

conducting and non-conducting particles and did not impose any restrictions on the double 

layer thickness, but assumed that the (-potential is low. For the case of non-conducting 

particles he obtained the relationship 

- = ^ f ( b ) (1.2.2a) 
E r\ 

where b = Ka ; 1/K is known as the double layer thickness and is defined by 

1 
(1.2.2b) 

K 

z is the ion valency of species i, e the charge of a poroton, c; the number concentration of 

ions of type i far from the particle; k is Boltzmann's constant and T the absolute temperature. 

The summation is over the m different ionic species in the electrolyte. The function f(b) is 

plotted by Henry and varies from the value of 2/3 for small b to 1 for large b, that is, % < f(b) 

<1. Hence, for large b (i.e. for thin double layers), Henry's equation reduces to that of 

Smoluchowski. In deriving Eq. (1.2.2), Henry used two main simplifying assumptions. He 

assumed in the first place that the so-called ' inertia terms' in the hydrodynamic equations 

of motion would be negligible, that is the Reynolds number, which describes the relative 

importance of the inertia effects to viscous effects, is low. Secondly, he regarded the field 

near the particle as simply the resultant of the applied field and the field due to the electrical 

double layer in its equilibrium state. The first assumption is almost certainly valid for the 

range of the particle sizes and of velocities encountered experimentally. But, the second 



assumption is open to criticism. As the particle moves through the electrolyte, the ions in 

the double layer will tend to lag behind. In front of the particle we would expect the charge 

density at a given position in the ionic double layer to be less than its equilibrium value, 

whereas behind the particle it will be greater. This behavior is well known as the 'relaxation 

effect' in the Debye-Huckel theory of the conductance of electrolytes. In addition, the 

applied field will modify the charge density in the atmosphere, quite apart from any effects 

due to the finite mobilities of the ions. For moderate values of Ka (say, 0.2 < Ka < 50), the 

so-called relaxation effect leads to important corrections, which increase with increasing 

electrokinetic potential. This was found by Overbeek (1943) and, independently, by Booth 

(1950a). 

Although Komagata (1935) and Hermans (1938) had attempted to improve Henry's 

theory, only Overbeek and Booth's results are in fair agreement with each other, though their 

methods and scope of their studies are different. Both authors expressed the E.M. as a power 

series in the dimensionless (-potential, hereafter denoted by \j7, defined by (1.2.28e), unless 

otherwise stated. 

Overbeek (1943), under the following assumptions, calculated the electrophoretic 

velocity, U, correct to order \|/ : 

a - Interactions between colloid particles are negligible and only a single particle is 

considered (i.e. low concentration of particles, a dilute suspension ). 

b - This particle (plus the adjacent layer of the liquid which remains stationary 

relative to the particle) is treated as a rigid sphere. 

c - The dielectric constant is supposed to be same everywhere in the sphere. 

d - The electric conductivity of the sphere is assumed to be zero. This implies that 

the charge within the surface of shear does not move relative to the particle when a D.C. 

electrical field is applied. 

e - The charge of the sphere is supposed to be uniformly distributed on the surface. 

f - The mobile part of the electric double layer is described by the classical Gouy 

Chapman theory. 



g - Only one type of the positive and one type of negative ions are considered to be 

present in the ionic atmosphere. 

h - The dielectric constant of the liquid surrounding the sphere is supposed to be 

independent of position. 

i - The viscosity of the surrounding liquid is assumed to be independent of position. 

j - Brownian motion of the colloid particle is negligible. 

k - Finally, because colloidal suspensions follow Ohm's law at the moderate field 

strengths (i.e. a few volts per second) which are employed in electrophoresis experiments, 

in the computation only linear terms in the field are taken into account. 

Booth (1950a) analyzed the electrophoresis (cataphoresis) of a spherical, non­

conducting solid particle, suspended in a fluid, under the action of an applied electric field. 

He demonstrated that the steady velocity (U) of the particle may be expressed as: 

00 00 

U=2>nQ n = Z dnV n d.2.3a) 
n=l n=l 

where Q is the number of charges, i.e. Qe is the absolute value of the total charge of the 

sphere and where either of the coefficients cn and oL, is an infinite set of coefficients to be 

determined, proportional to the strength of the applied field, and depending on particle size, 

and the concentrations, valencies and also mobilities of the ions in the electrolyte. Booth 

outlined a general method for calculation of cn or d„ and could calculate the coefficient cn for 

four terms involved in Eq. (1.2.3a) under the following assumptions: 

(1) - The dielectric constant, the viscosity and the ionic mobilities are uniform 

throughout the fluid phase. 

(2) - The cataphoretic velocity is proportional to the field strength; this assumption 

simplifies the theory very much and is generally fulfilled in practice. 

(3) - The electrolyte is incompressible. 

(4) - The inertia terms in the equations of motion of the electrolyte is negligible. It 

can be shown that this is justified provided that (2) is fulfilled. 

(5) - The electrolyte is symmetrical, that is, it contained of equal numbers of ions of 



equal ion valency but with opposite charge. 

(6) - Finally, some extra assumptions on the behavior at the surface of the particle 

are required. By purely thermodynamical arguments, the difference of potential between the 

interior of the particle and the electrolyte far from the interface, \|/, is derived as 

R T 
\|/ - H/0 + — - r l n a , (1.2.3b) 

Z j r r 

in which \\i 0 is a constant potential; R is the gas constant, Fr the Faraday's constant (RT/Fr 

sometimes is refereed to as Nernstpotential and has a value of 25.7 mV at 25°C), and aj is 

the activity of ion of type i. The potential \\i can not be identified with the electrokinetic 

potential, since ( and \\i behave quite differently as the ionic concentrations are varied. It is 

therefore necessary to postulate a region or 'surface phase' on the solid side of the boundary, 

in which the potential varies. The four assumptions on conditions in the surface phase are: 

(i) - The thickness of the surface phase is small compared with the particle radius. 

(ii) - The charge in the surface phase is immobile; there is no surface conductance. 

(iii) - The surface charge density when the field is applied satisfies 

s ( r 0 ) = - - E s s c o s e + S1(r0) (1.2.3c) 

in which S( r ) and S,( ro) represent the density of the surface charge at point O, ( ro is the 

position vector of point O relative to a reference coordinate system) with and without applied 

field ( E ), respectively; 8 s is the permittivity of the solid, and 6 the angle between the 

directions of field E and position vector f0 at the point under consideration, O. The first term 

represents a small charge due to the difference between the conductivities of solid and liquid. 

In fact, this assumption [Eq. (1.2.3c)] was first made by Henry who then concluded that the 

first term is negligible, i.e. field remained unchanged [S( ro) ~ S,( r0)]. 

(iv) - Finally, the potential difference across the surface phase retains its equilibrium 

state when the external field is applied. 

As mentioned by Booth himself, the last two assumptions are open to criticism, since 



both the surface charge and potential jump must depend, somehow, on conditions in the 

electrolyte such as on the ionic concentrations and the local field strength, whilst neither of 

them is taken into account. 

However, because of mathematical complications, both authors [Overbeek (1943) and 

Booth (1950a)], as mentioned above, were able to calculate only a few terms of the series in 

electrokintic potential under the above assumptions. Therefore, quantitative validity of their 

results could be claimed only for small potentials, ( < 25 mV [for ( = 25.7 mV, in a 

univalent electrolyte at the room temperature, vj7 = 1, c.f, relation (1.2.28.e)]. 

Wiersema et al. (1966) considered the problem under the same assumption as 

Overbeek (1943)'s work improving the results by obtaining a more general calculation 

numerically. Comparison of the result with those of Overbeek (1943) and Booth (1950a) 

shows that, for high (together with the double layer thickness, (K)1 , in the range of, 0.2< Ka 

< 50, the preceding calculations generally overestimate the relaxation effect. 

Dukhin & Semenikhin (1970) derived an analytical expression for electro- and 

diffusio-phoresis of spherical particles. 

O'Brien &White (1978) improved the numerical method used by Wiersema et al. 

(1966) and removed its convergence difficulty for high Zeta potentials. They obtained a 

more general calculation for 1:1 and 2:1 electrolytes. 

1.2.2 - Brownian Motion and Diffusion2 

1.2.2.1 - Brownian Motion 

A major characteristic of colloidal dispersion is the perpetual motion of the 

suspended particles. This motion was first observed by Robert Brown (1928), who observed 

the motion of pollen grains suspended in water. The phenomenon is widely known as 

Brownian motion. Initially, it was believed that the particles were alive and their motion 

caused by vital forces. Gouy (1888) observed that the motion decreases with increasing 

The reference of the following discussions is "Colloid Hydrodynamics" by van de Ven 
(1989). 
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viscosity and increasing with the particle size. Consequently, he concluded that the idea of 

the vital force is incorrect. Exner (1900) attempted to measure the velocity of the particles 

and to compare it with the value deduced from the kinetic theory of gases: 

- m < v 2 > = - k T , (1.2.4) 

in which m is mass of the particle. Since the velocity changes, its mean square of its 

magnitude [v = | v| ], denoted by the symbol < >, appears in the mechanical energy. Exner 

observed that the velocity v is about 1000 times smaller than that predicted by Eq. (1.2.4). 

This failure is due to the fact, that the actual path of a particle changes direction so often, that 

the time interval At needed to measure the velocity, v = Ax/At, is extremely small. 

In classical mechanics the motion of the particle is determined from the force balance 

equation. The drag force, F, experienced by a particle may be determined by Stokes' law, 

that is 

F = - f v (1.2.5a) 

in which f is the friction coefficient [for spherical particle of radius a, f = 67r.r|a, c.f, Eq. 

(1.2.17)], and v is the particle velocity. When the velocity is non-uniform (i.e. the particle 

accelerates or decelerates), it experiences a force, F, described by the Newton's second law 

which may be written as 

dMt) 
dt: 

where r is the position vector of the particle, function of time, t, which describes the path of 

the particle. The velocity of the particle [with initial velocity v0 at time t = 0] is determined, 

upon combining Eq.s (1.2.5a, b), i.e. writing down the force balance, and then integrating it 

once: 

, , df -- m 
v(t) = — = v 0 e T , x = j (1.2.6a) 

and the path of the particle [with the initial position f (t) = 0, at time t = 0], upon integrating 

it once more: 

11 

F = m l 2 (1.2.5b) 



f 
:(t) TV, 

t \ 

1-e T 

V J 
(1.2.6b) 

in which the parameter x has a dimension of time and is known as "relaxation time" [i.e. a 

time in which the particle velocity decays to 1/e times its initial value]. Typically, it is of 

order 10"9 sec, depending on the size and mass density of the particle, and its friction 

coefficient in the medium. 

To see how this classical mechanics works for Brownian motion, suppose we would 

film the motion of a Brownian particle with a film speed of n frames per second. Projecting 

the film at low speed (for example 4 frames per second) and observing the trajectory of the 

particle for one second, we would observe the trajectory of the particle at 4 subsequence 

positions, such as that shown in Fig. 1.1a. If we would project this trajectory with a film 

speed of 2n frames (8 frames) per second we would observe a different trajectory, as shown 

in Fig. 1.1b. 

a I n frames per second b: 
n frames per second 
2n frames per second 

Fig. 1.1 -Trajectory of a particle with two speeds of observation 

[after van de Ven(1989)]. 

Thus, increasing the film speed, increases the apparent distance a particle has to 

travel, as can be seen upon comparing the two trajectories for the same particle at the same 

period of time, but with two speeds of observation. This increase in path will continue until 

the film speed reaches about 109 frames per second. In addition, the position of the particle 

also depends on the speed of observation. Stated mathematically, the trajectory of a 
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Brownian motion is non-differentiable curve. It is impossible to fix a tangent at a given 

point, because it changes direction with changing the speed of observation. Since velocity 

in classical mechanics is described as the tangent of the path (which has magnitude and 

direction), given by the relation (1.2.6a), it is clear that the velocity of a Brownian motion 

is a meaningless quantity. What is meaningful, instead, is its displacement from a given 

origin. This was first realized by Einstein (1905), and independently by Smoluchowski 

(1906). 

Therefore, since a Brownian particle is subject to a random displacement, besides the 

forces described by Eq.s (1.2.5a, b), it experiences a "random" forces denoted by A a 

function of time, due to fluctuations in the random motion of the suspending fluid molecules. 

According to quantum mechanics, these fluctuations are truly non-deterministic, only 

statistical averages can be determined: 

< A ( t ) > = 0 (1.2.7a) 

i - / M I - / M kTm / \ 
<|A(tJ |A(t 2) |>=2—p- 5( t , - t 2 ) (1.2.7b) 

in which 6 is Dirac delta function defined by 

/ \ [°° l f t l = t 2 

Eq. (1.2.7b) is a mathematical expression of a Markov-process, which is a process in which 

a future motion is independent of the motion's history. 

Combining Eq.s (1.2.5a, b, 7) yields the following force-balance: 

—J- = - - v + R, R = — A ( t ) (1.2.8a) 
dt2 x m 

known as the Langevin equation. Its solution is 

f t\ xf 

r = x vo 1-e T 

V J 

+ j l -e" T R(t)dt (1.2.8b) 

Statistical averages can be obtained by averaging Eq. (1.2.8b), upon the use of relations 

(1.2.4,7): 

13 



, t |2 2kT 2 

< r(t) >= T2 

m 

t -1 
- - 1 + e T 

x 

(1.2.8c) 

Since T is of order 10"9, in real life t » T, and hence the second and third term in the square 

bracket is much smaller than the first term. Thus, Eq. (1.2.8c) reduces to 

< | r ( t ) | > = 2 — t , f o r t » x (1.2.8d) 

and for t « x, in view of the expansion 

- 1 t i ( t V 
e T = 1 - - + - - — • , (1.2.8e) 

x 2 \\J 
to 

|r(t) |2 kT / Qx 
< L A / L - >=< v2 >= — , for t « x = O(l0"9 (1.2.8f) 

t2 m v ' 

in agreement with the equipartition of energy, given by (1.2.4), so that Exter was right in 

postulating this equation, but the difficulty he encountered was that its condition could not 

be satisfied (as observation times are much larger than x). The above theory also provides 

another interpretation of the relaxation time, T. For times t « x, the motion is correlated 

with the motion at the initial time, t = 0, while for t » x, no correlation between the motion 

at a given time and time t = 0 exist (Markov-process). 

1.2.2.2 - Diffusion 

Diffusion is the spontaneous equalization of the concentration of colloidal (or other) 

particles as a result of the chaotic Brownian motion of each particle. It can be easily 

understood if we consider a container divided in two parts by an imaginary wall. Let each 

part contains a suspension with different concentration (say, c, for the left part and c2 for the 

right, with c, > c2), and let the imaginary wall have no excess resistance to the motion of the 

particles. Each particle on each side of the dividing surface undergoes random Brownian 

displacements. Thus, each particle is equally likely to move to the right or to the left, and 

hence it does not know it must diffuse in a certain direction. But, since there are more 

particle available in the intermediate neighborhood of the left side of the imaginary wall than 

on the right side, on average more particles will move from left to the right than vice versa. 

Hence, there will be a net transport of particles from higher to the lower concentrations. This 
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is quantitatively described by the Fick's first law: 

Pi Pi P) 

J = -DVc, V = i — + T — + T — (1.2.9a) 
dx y dy dz 

in which J = J x i x + J L + J z i z is the flux or number of particles passing a unit area on the 

surface normal to the direction of concentration changes (concentration gradient) per unit 

time. In a Cartesian coordinate system of reference, with unit base vectors (i^, ^ , ^ J, it has 

three component in the (x, y, z)- direction (for concentration changes in the x-direction, d/dx, 

in the y-direction, d/dy, and in the z-direction, d/dz, respectively). D is proportionality 

constant, termed diffusion constant (diffusivity), with a dimension of surface per time 

(length2 time"1). Regarding the mass balance in an element volume of the dispersion, the 

change in the mass with respect to time is equal to the change in the flux of mass in the 

volume. And since the flux of the particles is proportional to the gradient of the 

concentration, the mass balance process is determined by the divergence of the flux (V • J ), 

that is [c.f, Eq. (1.2.9a)] 

5c 2 d2 d2 d2 

— = -V-J = DV2c, V-V = V 2 = — j + —J + -Y (1.2.9b) 
dt ox dy dz 

which is Fick's second Law of diffusion. V2 is known as the Laplacian, defined as the dot 

product of two gradients (or divergence of gradient), and hence it is a scalar operator. Both 

equations (1.2.9a, b) are equally valid for ions in a solution. In fact, Ficks laws were first 

developed for diffusion of molecules in a solvent, and because of the similarity between such 

a system and colloidal dispersions, they have also been applied to the latter. Fick's second 

Law, Eq. (1.2.9b), can either be considered as describing the diffusion of a single particle, 

for which c must be interpreted as the probability of finding the particle at a certain position 

at time t, or for many particle systems, for which c is considered as particle concentration 

at a given time and position. 

Eq. (1.2.9b), is function of both time and position, the solution of which, for particles 

initial at origin at time t = 0, is 
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^-^me~m (L2-9c) 
Here c is the concentration per unit length. From Eq. (1.2.9c) the mean square displacement 

is determined by 

IH2 

< r > 

+00 +00 . f 2 

= j | r |2c( | r | , t )d | r | = Jr2 — < — e ' ^ d r = 2Dt, r = |f | (1.2.9d) 

Now, in view of (1.2.8d, 9d), it is observed that 

kT 
D = —- (1.2.10) 

which is known as Stokes-Einstein (or sometimes as Einstein-Sutherland) equation. This 

equation is a fundamental equation, relating diffusion to the friction coefficient of a particle. 

The Stokes-Einstein equation allows Avogadro's number, NA (= R/k), to be determined from 

diffusion experiments. This was first done by Perrin (1909). In fact, by this experiment he 

proved the reality of atoms and molecules, for which he received a Nobel prize. 

1.2.3 - Rheology of Suspensions 

1.2.3.1 - Viscosity of Suspensions 

The first investigation for the viscosity of suspensions (effective viscosity) was made 

by Albert Einstein (1906). He derived analytically the effective viscosity of a suspension of 

solid spheres in a liquid of viscosity r|0 as 

5 v, f 

*n = *n< 1 + - T 7 - + 0 
2 V T T> 

(1.2.11) 

(VT is the total volume of the mixture; vT is the total volume of the solid particles assumed 

to be much smaller than VT), though he had made a mistake in the coefficient of the volume 

fraction (5/2) in his first calculation which was corrected by himself, after an analysis of 

experimental data by Perrin [Perrin (1913)]. In fact, among others, he developed this theory, 

in his doctoral dissertation (1905) to obtain a model for the resistance to shear of a molecular 

solution in which the dissolved molecules are large enough (compared to solvent molecules) 
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to be considered to be dissolved in a continuous fluid in the macroscopic scale. 

Smoluchowski (1916) pointed out that for a charged particle in an electrolyte, the 

electrical double layer around the particle might be expected to increase the effective 

viscosity of the suspension. Hence, he added a term due to the electroviscous effect to the 

Einstein formula. He assumed that the thickness of the double layer, compared with the 

particle radius, is small and calculated the effective viscosity as 

1 f2sw02 ' 
l l = Tlo 1 + 

5vT 

2VT 
1 + 

Tlo° V a J 
(1.2.12) 

where a is the specific conductivity of the electrolyte, a the radius of the solid particles and 

ew the the permittivity of water. 

Jeffery (1922) extended Einstein's work to ellipsoidal particles, with a different 

approach, and found that for this case the factor 5/2 in the formula (1.2.11) is replaced by a 

coefficient depending on the axial ratio of the particles and their orientation with respect to 

the flow. 

Gouth & Simha (1936) improved the Einstein's approximation and obtained the 

formula correct up to the third power of the volume fraction as 

r| = T|( 1 + 
5vT 

2VT 

109 f v V ' « V 
+ 14 \VJ 

+o Vn 

vv T ; 
(1.2.13) 

Batchelor & Green (1972) proved that the coefficient of the third term in the 

expansion (1.2.13) depends on Peclet number and type of flow which varies from 5.2 to 7.6. 

Krasny & Ergen (1936) improved Smoluchowski's theory, given by (1.2.12), upon 

increasing the electroviscous term by a factor 3/2, which may be written as 

Tl = ^ l o 1 1 + 
5vT 

2V T 

1 + 
6 few02 

Tloa V a J 
(1.2.14) 

Booth (1950b) modified the primary electroviscous effect by combining his theory, 

given by (1.2.3), with the Einstein formula as 
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Tl^oi 1 + 
5v T 

2 V 
1+5X1 

T n=l kTV 
(1.2.15) 

in which bn is an infinite set of constants to be determined (n is an integer). However, He 

computed only the first two terms of the infinite series. 

Dukhin & van de Ven (1993) found a solution for particles with thin double layers, 

but arbitrary (- potentials as 

î = 'noi 1 + 
5vT 

2V^ 
180 

1 + 7 ^ 7 In cosh v|/ [m+ f+ (v|/) + m_ f (u/) - v|/[m+ f+ (\\J) - m_ f_ ({}/)]} 

(1.2.16a) 

in which the mobility of ions, m ± , is related to their diffusion coefficients, D + ,by 
. 2 T - 2 

m. = 
2emk'r 

3V\Q z D ± 

and \\i is the dimensionless (-potential defined by the authors as 

(1.2.16b) 

y 
QzC, 

4kf (1.2.16c) 

1.2.3.2 - Motion of a Single Particle 

The flow field produced by the motion of a single particle in a quiescent liquid has 

attracted considerable attention. When a suspension of colloid particles is dilute, that is each 

particle is far enough from the others not to be influenced by the reflection of the others, the 

rheology of the suspension can be analysed by studying the behavior of a single particle. 

Thus, each particle in the suspension can be considered moving in an unbounded medium. 

Though, this idealization is justified and works for most particles inside such a dilute 

suspension, for those close to the suspension container the particle-wall interactions should 

always be taken into account, and play a major role to predict the behavior of such particles 

in deposition or detachment processes. Particle-wall interactions are discussed in the next 

section. The most common particle shapes encountered in suspensions of colloid particles 

are of a simple geometry or can be approximated to a simple geometry, either sphere, 

cylinder, or ellipsoid. For prescribed translational and angular particle velocities, the 
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macroscopic parameters of primary physical interest are the hydrodynamic forces and torques 

exerted on the particles by the fluid. Once these parameters are known for a particle, one may 

immediately solve the inverse problem of determining the state of motion of such a particle 

from the known gravitational body forces and torques acting on it. Since the problem of the 

motion of a particle in a quiescent liquid is hydrodynamically similar to the problem of the 

flow of the liquid on the fixed particle, in the following discussions, sometimes the former 

is replaced by the latter, or vice versa. 

Many of the early contributions to low Reynolds number hydrodynamics are 

summarized in the book by the Swedish physicist, Carl W. Oseen (1927); of special interest 

are the contributions of Hilding Faxen, his co-worker, the early papers of whom are discussed 

by Oseen. His later papers are discussed in a famous book by Happel & Brenner (1965). 

The problem of the motion of a sphere in a viscous incompressible fluid first received 

attention by Stokes (1851) who derived the force, F, experienced by the particle as 

F = - 6 7 i a r i U (1.2.17) 

(a is the radius of the sphere, U its uniform velocity) which is the well-known Stokes drag 

formula for sedimenting a sphere in an unbounded liquid. For an infinite circular cylinder, 

Stokes equations (the low Reynolds number version of the Navier-Stokes equation) failed to 

give any solution. The non-existence of a Stokes solution for any two dimensional body fixed 

in unbounded flow is usually referred to as Stokes'paradox. 

Oberbeck (1876) considered a spheroid, with semi-axis a and b, aligned along the 

symmetry axis, b, by neglecting the inertia effects too, leading to a value for the force F (also 

along the symmetry axis) of magnitude 

F = -167ir |bU 
IbJ 

IbJ 
+ 

' a ^ 2 

\bJ 

- 1 ^ 2 

\b) 

In 

(-1 + IbJ 1 

(-1 IbJ IbJ 1 

y2 
(1.2.18) 

Whitehead (1889) attempted to improve the Stokes solution for a sphere by obtaining 

higher order approximations to the flow when the Reynolds number is not negligibly small. 
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The method proposed by Whitehead was an iterative procedure to take the inertia effects into 

account. The particular difficulty encountered by Whitehead was that the second 

approximation to the velocity of flow remains finite at infinity in a way which is 

incompatible with the uniform-stream condition. This mathematical phenomenon appears 

to be common to all problems of uniform streaming past bodies of finite length and is 

sometimes referred to as Whitehead's paradox [Proudman & Pearson (1957)]. 

The paradox was resolved by Oseen (1910). Oseen pointed out its physical origin 

and developed a mathematical device for overcoming the difficulties associated with 

Whitehead's paradox. Oseen found a uniformly valid first approximation to the velocity and 

all its derivatives, which is itself a linear problem that can be solved analytically, resulting 

in the Oseen equation. In contrast to Stokes equations, Oseen's equation provided a solution 

for a two dimensional flow past an infinite cylinder of finite cross-sectional length. The first 

such solution to be obtained was by Lamb (1911), for which Lamb retained some of the 

"inertia terms" but omitted the others in his solution. Oseen himself gave a solution for flow 

past a sphere of radius a and an infinite circular cylinder of radius b (placed perpendicular 

to the uniform flow), respectively, as 

3 
1 + - R e , 

8 ' 
F = 67ir|aU 1 + - R e a (1.2.19a) 

and 
47iriTJ 

F = ! (1.2.19b) 
2 1 n 2 - l n R e b - y + l/2 

where Rea and Reb are the Reynolds number based on the characteristic length of a and b, and 

Y is Euler's constant. These parameters are defined by 

aU bU 
Re = — , Reb = — , y = 0.5772- •• (1.2.19c) 

a v v 

Burgers (1938) derived the force on a long slender ellipsoid of revolution with the 

result exactly the same as the asymptotic result of the Oberbeck (1876)'s formula, given by 

(1.2.18), for large b/a. He also applied his method to determine the force acting on a circular 

cylinder of finite length fixed in a uniform stream flowing in the direction of its symmetry 

axis. For this case, he obtained the total force acting on the cylinder as 
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F = 
47ir|aU 

lnl 2 ̂  I - 0.72 
(1.2.20) 

where a and b are, respectively, the semi-length and the cross-sectional radius of the cylinder. 

Lagerstorm & Cole (1955) introduced Oseen and Stokes variables and obtained 

Oseen and Stokes expansions which followed naturally from the limit processes they 

adopted. 

A well-known paper by Proudman & Pearson (1957) considered the problem in more 

detail giving an intensive theoretical study of the subject. Proudman & Pearson (1957) and 

also Kaplun & Lagerstorm (1957) demonstrated that it is possible to obtain higher order 

approximations to the flow past a sphere and a circular cylinder by applying the method of 

Stokes and Oseen expansions, the so called matched asymptotic expansion technique, which 

is also the main tool used in Chapters two and three of this thesis. Proundman & Pearson's 

studies (1957) led to improving the approximation of the Oseen drag force acting on a sphere 

and on an infinite circular cylinder, respectively, as 

F = 6TI ar) U 

and 

F = -4TUT|U 

1 + ^ R e a + ^ R e a 2 l n R e a + 0 K 2 ) (1.2.21) 

f 

In Re, + 
1 Y 

In Re J 
y+--21n2 

( \ 3 

+o 
l nRe t 

(1.2.22) 

Broersma (1960) improved the method outlined by Burgers (1938). He took the 

disturbance produced by a cylindrical body as being that due to a line of force of magnitude 

f(z) = F3 0+B 2 

f(z) = 0 

(A2 

- +B 4 

Va7 

f z\ 
- + • • • 

KaJ 
if|z) < a 

otherwise 
(1.2.23a) 

where B0, B2, B4... are an infinite set of constants to be determined. Broersma computed the 

values of these constants numerically (for the case of a circular cylinder of finite semi-length 

a and cross-sectional radius b being fixed in a fluid with uniform velocity U flowing in the 

direction of the symmetry axis) and obtained the force on the cylinder as 

21 



47iriaTJ 
F = —j r (1.2.23b) 

ln^J-0.81 
which is similar to the formula (1.2.20), but differs from it by a numerical factor. 

Taylor (1969) proved that if the Reynolds number is very small, a slender body of 

revolution falls twice as fast axially as it does transversely. 

Cox (1970), by neglecting inertia effects, derived the force density (force per unit 

length) on a fixed curved slender body of circular cross-sections (the radius may varies along 

the body centerline) with length 1 and with the characteristic dimension of the body cross-

section b by expanding the solution directly in powers of l/ln& (6 is the slendemess 

parameter defined by 6 = b/1) up to 0(1/In S)3. He obtained a solution for the force per unit 

length, for examples involving bodies having a curved centerline. For the special case of 

sedimenting of a torus (with constant circular cross section falling normal to its centre line), 

he derived the total force: 

2 „ „TT f : \ 3 

671 naU 
F = T T ; r + O 

y3-\nY4-\no 

1 

Vln5. 
(1.2.24) 

Batchelor (1970) adopted the slender body theory to a straight non-axisymmetric 

body. From an investigation of the local inner flow field in the vicinity of a section of the 

body, and the condition that it should join smoothly with the outer flow which is determined 

by the body as a whole, Batchelor observed that a given shape and size of the local cross-

section is equivalent, in all cases of transverse relative motion, to an ellipse of certain 

dimensions and orientation, and in all cases of longitudinal relative motion, to a circle of 

certain radius. The equivalent circle and the equivalent ellipse (characteristic tensor) of the 

cross-sectional shape may be found from certain boundary-value problems by solving the 

harmonic and biharmonic equations, respectively [Details of such a solution by complex 

variable method is given in Tabatabaei (1995), Appendix A]. 

Batchelor (1972) devised a method for calculation of the mean velocity of the 

sedimentation of the spherical particles in a dilute dispersion. 

Johnson & Wu (1979) considered the Stokes flow passing a slender torus of circular 
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cross-section. By the method of distribution of singularities (stokeslets, doublets, rotlets, 

sources, stresslets and quadrupoles) on the body centreline, they satisfied the no slip 

boundary condition on the body surface, in closed form, up to an error of 0(e2lne) (e is the 

semi-slenderness parameter, ratio of the radius of cross-section to the half length), and hence 

they obtained the force (correct up to order e2) and/or the torque the torus experienced for the 

individual cases of the broadwise translation (motion along the longitudinal axis), translation 

normal to the longitudinal axis, rotation of a torus on its edge, spinning and expanding of a 

torus. For the case of axial translation of a torus with cross-sectional radius b and body 

centreline radius a, their studies results in 

F = -i^T7 + °(£) (L2'25a) 

in 7e -(- /2 

where e = b/a, and F is the axial component of the force per unit length acting on the torus. 

For the case of transverse motion perpendicular to the torus axis, they obtained the total drag 

as 

^ 2?i2TiaU(31n%-1K) , 2s. 
F=(ln%-^Xln%-2)-2+°(£) (1225b) 

where by neglecting terms of order (1/lne)3 this leads to Cox's result given by (1.2.24). 

Johnson (1980) generalised the method used by Johnson & Wu (1979) (singularity 

method) for flow past slender bodies of finite centreline curvature. He applied his theory to 

a torus of a circular cross-section with the same result as that obtained directly by Jonson & 

Wu (1979), given by (1.2.25a). 

Khayat & Cox (1989) took inertia effects into account and adopted Batchelor 

(1970)'s observation for a non-axisymmetric body to Cox (1970)'s theory. They assumed 

the Reynolds number Re based on the body length is arbitrary and derived the force per unit 

length on a curved slender body of arbitrary transverse cross-section (at rest in unbounded 

fluid undergoing undisturbed uniform velocity U) in terms of the semi slenderness parameter, 

e, correct up to order (1/ln e)3. They applied the force equation to the uniform flow past a 

long straight slender body of arbitrary cross-section, and derived the force density 
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experienced by the body, F(s), as 

F(s) _ 1 ^ 

27ir|U Ins 
(tcosO - 2l)+ I -—j - [2 i cos0 - (2 - cos0 + cos2e)t] X 

1 -XRe(l-cos9)(l+s) 

^Re(l-cos0)(l+s) 

1-e -KRe(l+cos6)(l-s) 

^Re(l+cos9)(l-s) 

- 1 

- 1 

lr -
- -[2!COS0 - (2 + COS0 + cos2 0)t] X 

1/-
(tcos0 - 2J){E,[)2'Re(l- cos0)(l + s)] 

+ ln(l- cos0)} - - ( t cosG - 2i){E1[/KRe(l+ cos0)(l- s)]+ ln(l+ cos0)} 

-( tcos0-2l)( y + In + - t c o s 0 - i + 2i-Q+ tcos01nq+ O 
1 \ 3 

vine/ 
(1.2.26a) 

where e = b/a (b being the characteristic length of the cross-sectional shape and a is the half 

length of the body); t is a unit vector, representing the direction of the body centreline; i is 

the unit vector in the direction of velocity U; 0 is the angle between the unit 

vectors t and i (i.e. i • t = COsO ); y is Euler's constant; Re is the Reynolds number based 

on the body half-length; Xs is the radius of the equivalent circle of the cross-section at the 

point under consideration, s [where s (-1 < s <+l) is the arch length along the body centreline 

measured from its midpoint]; Q is the characteristic tensor of the transverse cross-sectional 

shape; q is the charateristic scalar which depends on the cross-sectional shape (charateristic 

scalar of the cross-section for longitudinal relative motion), for a sphere q = 1, and where 

Ej(x) is the exponential integral defined by 

E1(x)=J—dx 
x X 

(1.2.26b) 

in which the argument x for the formula (1.2.26a) is J / Re(l - cos6)(l + s) and \C Re 

(l + cos9)(l - s)|. While they applied their theory to an infinite straight slender body, with 

large Re, they realized that it fails to give a uniform valid solution, and hence a minor 

modification is needed. They gave a theoretical reason for this violation and pointed out that 

for an infinite slender body together with large Re the force should be expanded in (lnRb)"' 

(Rb being the Reynolds number based on the characteristic length of the cross-sectional 
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shape) instead of (InS)'1 and lengths, in the outer region, should be made dimensionless by 

(v/TJ) (v being the kinematic viscosity of the fluid) rather than a (half length of the body). 

By this modification, their research for the special case of an infinite straight cylinder of 

constant circular cross-section, placed perpendicular to uniform flow, leads to the Proudman 

& Pearson's result, given by (1.2.22). 

Cox (unpublished), in his last sabbatical (1992 or 93), improved the inertia effects 

in the slender body theory of circular cross-section, but with an arbitrary body centreline 

configuration. He derived a force integral equation by considering the Reynold numbers 

based on the body length being of order unity. For low Reynolds number fluid flows, his 

theory leads to the Johnson's theory (1980). He applied his theory to derive the force on the 

sedimentation of a torus which, for low Reynolds number flows, leads to a different result 

than that obtained by Jonson & Wu (1979) and Jonson (1980), given by (1.2.25a). 

Tabatabaei (1995) extended Cox's theory to arbitrary body cross-sectional shapes. 

He applied his theory to a straight slender body of arbitrary cross-section and to a torus of 

uniform arbitrary cross-sectional shape. For the former he obtained a result in a complete 

agreement with the formula (1.2.26), directly obtained by Khayat & Cox (1989). For the 

latter he derived the radial and normal components of the force density (Fp, Fz) experienced 

by the torus correct up to 0(6) as 

F = 
P '271 

— A,+A 2 2Q 1 3 

-8"nu[^A1+A22Q13 

4TT 4TT2 n\3 
A . - 1 - — A , + — - - 2 In——-2Q, 1 Re 2 Re 4 ' 

7lA.t5 

A, + l -21n—^-2Q 33 

(1.2.27a) 

- 8 T C T ] U 
4TC 4 T C 2 7CA. C 5 

F = 
2 ^ 
Re 

A , + A 2 2 Q 1 3 

4TC 4TT Tt X ,5 
A I - I - T Y A ^ — — - 2 i n - A 

1 Re 2 Re 4 
- 2 Q , A, + l-2In——-2Q33 

<1.2.27b) 

in which Q r are the characteristic tensor of the cross-sectional shape, Xs is the radius of its 

equivalent circle (i.e. 2TIA,S is the perimeter of the local cross-section), and (A,, A2) are 

function of Re, determined by the integrals: 

-y2nResm% 

A, = J 
1 

sin 72 sin% 
de, A 2 = Je-^

Resin6/2' dO (1.2.27c) 
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For an elliptical cross-section with semi-diameters a and b (with a > b) and with the 

direction of larger principal axis (2a) given by unit vector t , Q^ are determined by 

Q„ = ln 
a + b a - b 

+ 2X, (a + b) 
cos a,Q13 = 

a - b 
2(a + b) 

sin2a, Q33 = In 
a + b a - b 

+ sin a 2XS (a + b) 

(1.2.27d) 
in which a is the angle between the direction of larger principal axis and uniform velocity 

U (i.e. cosa = t • L,) and Xs is determined by 

, 2 a 

71 

b 2 71 

a 2 ' 2 

7T 

K,-
2 

= \^K 2 • 2 

sin (1.2.27e) 

where E(K, TU/2) is the complete elliptic integral of the second kind the values of which, for 

various values of K = (1 - b2/a2)'/2, are available in tables. For a torus of a circular cross-

section (i.e. a = b and Xs =1), Qy in formula (1.27a, b) vanish [c.f, (1.2.27d)]. For circular 

cross-section, by neglecting the inertia effects, i.e. in the limit as Re - 0, the only non-zero 

component of the force, Fz, leads to Jonson & Wu (1979) and Johnson (1980)'s results, given 

by (1.2.25a), and for Re of order unity to the correction for the Cox's solution. 

Russel (1978a, b) formulated a theory of the rheology of suspensions of charged rigid 

spheres. He calculated the bulk stresses due to the deformation of the electrical double layer 

surrounding a charged sphere. These stresses are derived for a dilute dispersion of spheres 

which have small surface charges and with a thin double layer. 

Lever (1979) studied the large distortion of the electric double layer around a charged 

particle by a shear flow. For weak flows, a second-order-fluid approximation was obtained 

for the stress contribution for a dilute suspension of such particles. For arbitrary strong flows 

an integral representations of the charge density and the numerical calculations of the stress 

contribution are given for three representative flows, simple shear, axisymmetric strain and 

two-dimensional straining motion. 

Sherwood (1980) assumed an arbitrary value for the surface potential of the particles 

and found that for non-dimensional potential value smaller than two, y < 2, the predictions 

are altered by less thanlO %, whilst for higher values, specially when the charge cloud is 

26 



much thinner than the radius of the charged sphere, the differences between linear and non­

linear theory are not negligible. 

Ohshima, Healy, White & O'Brien (1984) did a theoretical study on the 

sedimentation velocity (electroviscous velocity) and potential (streaming potential) in a dilute 

suspension of charged spherical colloidal particles. They derived a general expression for 

the sedimentation velocity (USED) and potential in a dilute suspension of charged spherical 

rigid particles in an electric solution in terms of the liquid flow and the potential of the 

electrolyte ions. They obtained the exact numerical result for the sedimentation velocity and 

potential as functions of the (-potential and Ka. They also derived analytical expressions for 

small \u and for large Ka with arbitrary \j7. For the latter, they formulated the sedimentation 

velocity (USED) as [Eq. (78) in their paper] 

r2 

+ 0 Uc™ = i 1 + 
12 

'SED M' 
r . 2 _ L

m 2 H P 

m,GD + (1 + D 

1 

M; u ST 
SED (1.2.28a) 

where nij and m2 are the scaled ionic mobilities for counterions and coions, respectively, 

given by [c.f, Eq. (1.2.16b)] 

2s kT 
m; = A, (1.2.28b) 

3ri(zie)' 

in which A, is the drag coefficient of the ith ionic species related to the limiting conductance 

of the same ionic species (A0,) or molar conductivity (Af) by 

A , = 
NAe2 |z, NAe' 

(1.2.28c) 

rST 

A" A, 

(NA is Avogadro number); U^D is the Stokes velocity for uncharged particle; G and H are 

defined by relationships (1.2.32c) and I by 

1 = 
Ka 

2e kT m 

v Tl(z2
e) 

X. 2 / v 2 
exp^2 1 (1.2.28d) 

in which vj? is th7e dimensionless electrokinetic potential (particle surface (- potential), 

defined [differently than (1.2.16c)] by 
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ezC 
V = ^ T (1.2.28e) 

Although it was not mentioned by the authors, Cox( 1997) pointed out that this theory is valid 

for low Peclet numbers. 

Schumacher & van de Ven (1987) studied the diffusion coefficients of charged 

colloidal particles surrounded by electrical double layers by the use of photon correlation 

spectroscopy. They found that the diffusion constant equals the value of a neutral sphere at 

high and low electrolyte concentrations, but is reduced by several percent when the electrical 

double layer is comparable to the radius of the particle. The reduction depends on the (-

potential of the particle and the sizes of the ions in the double layer. They also found that 

the diffusion of charged particle can be explained by the Ohshima et al (1984)'s theory, 

assuming that the friction coefficient of a charged sphere in Brownian motion equals the 

equilibrium friction coefficient of a sedimenting sphere. 

van de Ven (1988) studied streamlines around a charged sphere in simple shear flow 

and found that the region of closed streamlines is larger than for a neutral sphere. He 

concluded that a small neutral particle approaching a large charged sphere feels an additional 

repulsion on approach and an additional attraction after the encounter. 

Schumacher & van de Ven (1991), by using photon correlation spectroscopy, 

determined translational diffusion coefficients of electrostatically stabilized rod shaped 

colloidal particles, TMV (tobacco mosaic virus). They found that when the double layer 

thickness is comparable to the radius of an equivalent sphere of the rod, the diffusion 

constant reduces by a few percent, depending on both the sizes of the ions and the charge on 

the rod. The experimental data is found to indicate that, at the salt concentrations used, TMV 

behaves like a model colloidal particle. They also obtained the effective charge on the 

individual TMV particles, as well as an estimate of their (-potential. 

Dukhin & van de Ven (1994) studied the trajectories of charged tracer particles 

around a charged sphere in a simple shear flow. They found several new types of trajectory, 

besides the closed and open trajectories. They concluded that the richness of possible 

trajectories is due to three electrokinetic phenomena: electro-osmotic slip, electrophoretic 
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motion and diffusiophoretic motion. 

1.2.3.3 - Squeezing and Sliding Motion 

The study of hydrodynamic interactions of rigid particles, under the slow motion 

induced by an external force, was initiated by Smoluchowski (1911). He outlined a method, 

known as 'reflections method', to determine the flow field for an array of particles that are 

sufficiently close to each other to be hydrodynamically interacting, and the whole system is 

far enough from the wall to be considered an unbounded flow. An extensive review of such 

solutions is presented in the book by Happel & Brenner (1965). 

Stimpson & Jeffery (1926) obtained the exact solution of Stokes equations for two 

spheres (equal or unequal size) falling parallel to their line of centres (an axisymmetric flow), 

by employing a bipolar coordinate system, upon the use of Jeffery's (1912) solution of 

Laplace's equation. The bipolar coordinates, discussed in Appendix A, best described the 

geometry of the problem of two sphere or a sphere and wall, and hence allows one to 

simultenuously satisfy the boundary conditions on the solid surfaces for such a boundary 

value problem. The details of such a solution for interaction of sphere and wall is presented 

in the hydrodynamic part of Chapter four of this dissertation. 

Oseen (1927) improved the inertia effects, in the Smoluchowski (191 l)'s theory, for 

the case of two sphere, by replacing the Stokes field with Oseen's field. 

Kynch (1952) presented general formulas to provide an analytic analysis for the case 

of three or more spheres. This expressions are so complicated that generalization are only 

possible for a simple geometry of configuration. So far the hydrodynamic interaction of 

particles has been solved for not more than three particles, done by Kynch himself. 

A number of authors have contributed to the development of purely hydrodynamic 

interactions of two particles or in general two surfaces. Among them we may mention the 

work by Dean & O'Neill (1963), O'Neill (1964), Cooley & O'Neill (1967), Goldman, Cox 

& Brenner (1966,67), Darabaner & Raasch & Mason (1967), O'Neilll & Stewartson (1967), 

Cox & Brenner (1967, 68, 71), Cox & Zia & Mason (1968), Curtis & Hocking (1969), Lin 

& Lee & Sather (1969), Batchelor (1972), Batchelor & Green (1972), Cox (1974), van de 

Van & Mason (1976) and Kao & Cox & Mason (1977). 

29 



Darabaner et al. (1967) have investigated both theoretically (by the use of bipolar 

coordinates) and experimentally the interaction of two infinitely long cylinders in a Couette 

flow. They showed that the cylinders move either along open orbits extending to infinity in 

both upstream and downstream directions or in closed orbits around each other forming a 

permanent doublet. They have illustrated that in the limiting case where the radius of one 

cylinder tends to zero while the other remains constant one would expect the orbit of the 

smaller cylinder to be the streamline around the larger one. 

Cox et al. (1968) studied theoretically the streamlines around an infinitely long 

cylinder and around a sphere moving freely in Couette shear flow. For flow around a 

cylinder, they obtained the streamline, ¥ as 

1 

4 
p 2 - l + ( p 2 - 2 + p"2)cos2(|)] (1.2.29a) 

from which the velocity components! u , u. I are obtained by 

1 d"¥ d"? 
U > = P " ^ ' u* = - ^ <L2-29b) 

in which G = 2 Q is the shear rate (Q being angular velocity of the cylinder relative to polar 

axes (p, O). For free spheres, they obtained the streamline which satisfies the following 

relations in spherical polar coordinates (r, 0, <I>) with the origin at the centre of the moving 

sphere: 

— ^ = - G s i n 2 6 s i n 2 ( t ) f 3 r " 5 - 5 r " 3 + 2 l , (1.2.30a) 
r dt 4 

r)Q 1 
— = - - G s i n 2 6 s i n 2 ( t ) [ r " 5 - 1 ] (1.2.30b) 

— = --G[2cos( |>r"5-cos2( |>-l] (1.2.30c) 
dt 4 L 

In both cases, they obtained open and closed streamlines separated by a limiting streamline 

or surface. These correspond to separating and permanent collision doublets of cylinders and 

of spheres in the limiting case in which the ratio of diameters of the two interacting particles 

(two cylinders or two spheres) is zero. Their theory is in complete agreement with Darabaner 
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et al.'s theoretical study (1967) and experimental observation. 

Lin et al. (1969) solved the Stokes equations for two spheres of arbitrary size and 

orientation with respect to the shear field by the use of spherical bipolar coordinates. They 

calculated numerically the trajectory of the free motion of the sphere for the two cases of (1) 

two equal-sized spheres in a simple shear flow, and (2) a sphere near a wall in a rotational 

shear flow between two parallel disks rotating at different rates, where the results for the first 

case agrees fairly well with those observed experimentally. 

Batchelor & Green (1972) studied the purely hydrodynamic interaction of two 

unequal sized spheres in unbounded flow whose velocity at infinity is assumed to be a linear 

function of position. They found the velocity either of each sphere relative to the other 

together with the force dipole strength tensors of the two spheres as a function of the 

position vector of the either sphere relative to the other. Both the velocity and the force 

dipole strengths depend linearly on the rate of strain at infinity which can be expressed as a 

function of scalar quantities r/a and b/a (r being the magnitude of the position vector r ; a and 

b radius of the spheres). They determined the asymptotic solution of the functions for both 

cases of r / (a+b)» 1 and r - ( a + b ) « either a or b whichever is smaller. For the special case 

of two equal spheres in a steady simple shearing motion they analysed the closed trajectories 

of one of them relative to the other both analytically and numerically. 

Kao et al. (1977) investigated a general two dimensional linear flow having pure 

shear flow as one limiting case and pure rotation as the other one, with simple shear flow as 

an intermediate case. They calculated the streamlines around a rigid, neutral sphere in 

creeping flow and found that for flow regimes between pure and simple shear both types of 

closed and open streamlines exist, whilst only closed ones exist between simple shear and 

pure rotation. There is no closed streamlines for pure shear. They also calculated the 

trajectories of interaction of two equal sized spheres for these types of flow and found that 

closed trajectories do not exist in a large regime of flows near pure shear. 

Boluk & van de Ven (1989) studied the deposition of titanium dioxide particles onto 

cellophane and glass surfaces in a stagnation point flow. They concluded that the 
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discrepancies between observations and DLVO theory [after Derjaguin & Landau (1943) and 

Verwey & Overbeek (1948)] can be explained by including ion-size effects in the 

hydrodynamic correction functions which describe hydrodynamic particle-wall interactions. 

Warszynski & van de Ven (1990) did a theoretical study of electroviscous forces in 

a suspension of charged particles. Using the squeezing-flow approximation, they analysed 

the interaction of charged disks, and calculated the total friction coefficient. Using the 

Derjaguin approximation, they also calculated the relative friction coefficient for two charged 

spherical particles to obtain the theoretical rates of the coagulation and/or deposition process. 

They compared the theory with experimental data and found a good agreement between the 

theory and coagulation, but a significant discrepancy for the deposition process. 

Bike & Prieve (1990) applied lubrication theory to study the squeezing motion and 

also sliding motions of two surfaces bearing thin double layers in an electrolyte solution for 

the cases when the double layer is much thinner than the minimum distance separating the 

two bodies. For sliding motion of a spherical particle along a plane wall they obtained a 

general integral expression for the force the fluid exerts on the body in the direction normal 

to the wall (Fz) and evaluated it numerically as 

7tasmU 
F m z —

 T /2 I 3 K z h 

3 T T 2 

(1.2.31) 0.3840.0<;2 + OASlOCfiC, + 0 . 0 2 4 2 ( A < ; ) : 

in which a is the particle radius, h the minimum clearance between the particle and the wall, 

K is the conductivity of the medium, ( the average of (-potentials of the particle and the 

wall, and A( is their differences. They concluded that always Fz ^ 0, regardless of the sign 

and magnitude of (-potential, and so they called Fz the electrokinetic lift force. However, 

experimental observations show that this theory and some other theories which appeared in 

the literature underestimate the force by several orders of magnitude. It was pointed out by 

Cox (1997) that the discrepancy between the experimental observations and these theories 

is due to the fact that the authors a priori assumed that the dominant electroviscous force, 

arising from the coupling between electrical and hydrodynamic equations, would be due to 

the contribution of the Maxwell stress tensor resulting from the streaming potential. In 
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reality the contribution to the electroviscous force from hydrodynamic effects is two orders 

of magnitude greater than that of electric effects. 

Wu, Warszynski & van de Ven (1996) calculated numerically the lift force per unit 

length experienced by a long cylinder in a sliding motion along a plane wall for an arbitrary 

Peclet number and K"1 « h « a. They also conducted experiments on a sphere and a wall 

under the same conditions. Using the Derjaguin approximation, they converted their 

calculation and also Cox's analytical expression for the lift force (reported in the same paper) 

from a cylinder-wall system to a sphere-wall system and observed that there was a good 

agreement between these two theories and their experiment. Cox's formula for the 

electroviscous lift force per unit length experienced by an infinite cylinder under translation 

and rotation parallel to a plane wall in a symmetric electrolyte, obtained from his general 

theory, for low Peclet numbers and K"1 « h « a, is presented as 

a{kTy aVa (GP+GWK9GP+GW) 
+ 

y[2n (sre0) (kT)3 aVa 

~ T (Zie)4
Coo h2Vh D; 

( H P + H W ) ( 9 H P + H W ) 2 ( 9 G P H P + 5GPHW+ 5GWHP+ GWHW) 
~i i 

D2 DA v2+ 

4VaQ 
(GP+GW)(4GP+3GW) ( 8 G P H P + 7 G P H W + 7 G W H P + 6 G W H W ) 

D: 

+ 
(HP+HW)(4HP+3HW) 

D; 
+ 8(aQ): 

D,D2 

Gp+ Gw HP+ Hw 

D D. 
) 

(1.2.32a) 

where a is the radius of the cylinder; Q is its angular velocity with the clockwise direction; 

V is the velocity of the nearest point of the cylinder to the wall, that is 

V = U - a Q (1.2.32b) 

(U is its translation velocity parallel to the wall); c„ is the number ionic bulk concentration, 

z, is ion valency of either species; D, and D 2 are ions diffusion coefficients (diffusivity) of 

counterions and coions, respectively, and where(Gp, H p j a n d ( G w , H w J are defined by 
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1 + exp V \ 

Gj = ln 
2 ; 

1 + exp + 
H J = l n 

2 J 
J = (p, w) (1.2.32c) 

2 ' J ~" 2 

in which \\l and \\l w are the dimensionless particle and wall (-potentials, defined by relation 

(1.2.28e). Cox also obtained the tangential component of the force as 

Fx = -2V27cnJ^(V+aQ) 

_ V27i (srs0)2(kT)3 Va" 

" 2 (Zie)4
Cro h2Vh 

5G2 + 2GpGw + G2
W 5H2 + 2HPHW + H^ 

D, D. 
V 

+ 2 
3GP + 4GPGW + G ; 3H2 + 4HpHw + H^ 

D, D2 

aQ 

(1.2.32d) 

The first term is the purely hydrodynamic drag and the second one is the electroviscous drag. 

Warszynski & van de Ven (2000), applying lubrication theory, obtained, in a direct 

fashion, an analytical expression for the electroviscous forces per unit length experienced by 

an infinite cylinder moving normal to its centerline parallel to a plane wall in a symmetric 

electrolyte with velocity U, for low Peclet numbers and K"1 « h « a. The lift component 

of the force may be expressed as 
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(1.2.33) 
The first term is due to the hydrodynamic effects and the second one is due to the Maxwell 

stress tensor resulting from deformation of the potentials (streaming potential). Warszynski 

& van de Ven (2000) also derived an expression for the drag component of the force 

containing an integral which is evaluated numerically. Their results agree with Wu, et al. 's 
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numerical solution (1996) for arbitrary Peclet numbers. 

1.3 - Cox's General Theory 

1.3.1 - Problem Statement 

Cox considered an electrically charged smooth solid particle P suspended in a liquid 

(such as an aqueous electrolyte solution) containing ionic charges with a charged smooth 

solid boundary wall W being present. The liquid is assumed to be moving due to either the 

motion of the particle P, the motion of the wall W or because there is some prescribed flow 

(such as a planar shear flow) of the liquid at infinity. 

At position r relative to some fixed origin and at time t, the velocity of the liquid is 

taken as v and the pressure as p. The ion concentration of the species i is taken as c; the 

electric potential as \\i and the charge density as p. The concentrations of the ions each 

satisfy the convective diffusion equation which may be written as 

V-[D i Vc i -c i (±v i E +v)] = -^- (1.3.1a) 

(with + sign for counter-ions and - one for co-ions) in which Dj is the diffusion coefficient 

of ion i, and where v i E is the velocity of the ion i, produced by the electric field, E, induced 

by the charged particle and/or wall. Introducing the Lorentz- Stokes-Einstein equation, 

v.F = — = - — J-L- Vvi/ (1.3.1b) 
lE f. kT y 

[ FiE = - (Zje)V V|/, (Lorentz equation) is the electric force experienced by the ion i, f; is 

Stokes friction coefficient, obtained by the relation (1.2.10)], to Eq. (1.3.1a) results in 

V 
( D^e J 

DiVCi + Cil±_kT^VV"V (1.3.1c) 
dt 

For simplicity, there are assumed to be just two species of ion present in the liquid (species 

1 and 2) which have charges + z,e and - z}e for i = 1 and i = 2, respectively, so that only 

symmetric electrolytes are considered, that is electrolytes in which both species of ion have 

the same valency zv 

The variables are made dimensionless by the length scale, L (L being for example 
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the particle size or the distance between the particle and wall), velocity V (an appropriate 

characteristic velocity), the liquid viscosity, r\, and the ion concentration, c„ (where c„ is the 

characteristic value of the ion concentration and is taken to be the value of c, or c2 at 

infinity). Therefore, the independent variables f , t and dependent variables v, p , c p c 2 , 

\\f and p may be expressed in terms of corresponding dimensionless quantities (shown with 

a tilde) as 

f = Lr 

and 

V= V\7 

L ^ 
t = —t 

V 

r|V 

(1.3.2a) 

kT 
V = 

z,e 
V 

(1.3.2b) 

c = c c 

r L r 

( i = l , 2 ) p = 2cwz,ep 

Thus, the concentrations of the ions, given by Eq.s. (1.3.1c), for species 1 may be expressed 

in terms of the dimensionless (tilde) variables as 

V D / | vVcjO + M ) 
L J 

D^efl ~Y 
- V 

kT V L ; 

kT A 

\ZXQ) 
- V v > = 

n ^ ^ C j 

(L/v) iaT 

or 

V • [Vc, + c;Vvff - Pe c,?] = Pe-~r 

in which Pe is a Peclet number defined by 

VL 
Pe = -— 

D, 
and a tilde over the gradient operator denotes evaluation with respect to dimensionless 

position vector f. Similarly, a dimensionless convection diffusion equation for the other 

species, Cj, may be obtained as 

(1.3.3a) 

(1.3.4) 

V Vc 2 - c 2 V\ j / -Pe 
^ 

D-
c2v 

) 

= Pe 
^ D ^ 

IDJ 
dc2 

"a? (1.3.3b) 

In Eq.s. (1.3.3a, b) the first, second and third terms in the brackets represent the negative of 

the flux due, respectively, to diffusion, to convection by the electric field and to convection 
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by the fluid flow. 

The electrostatic relationship between the electric potential and the electric charge 

density is given by Poisson equation as 

m 
It may be expressed in terms of the dimensionless (tilde) variables defined by (1.3.2), as 

iv* 
/ kT \ 

Vz,e J 

(2c0 0z,ep) 

Mo 
But, the characteristic double layer thickness for two species of ions is [c.f, (1.2.2b)] 

K V 2 z 2 e 2 c J 
(1.3.5) 

Therefore, 

V2M/ = - ( L K ) 2 P 

or 

e
2 V2\j/ = - p (1.3.3c) 

in which e defined by 

G = ( K L ) _ 1 (1.3.6) 

is the ratio of the inverse of the Debye-Huckel parameter K to the length scale L. 

The electric charge density (charge per unit volume of the liquid), defined by 

j 

P = £CiZ'e 0 = 2) 
1 

may be written in terms of the our dimensionless (tilde) variables as 

(2cT O Z ]ep)= (cwz1ec1)+ ( - c ^ e c , ) 

or 
1 

P = ^ - c i ) (1.3.3d) 

It is assumed that the liquid is Newtonian and incompressible and that the Reynolds 

number (LV / v) of the flow (where v is the kinematic viscosity of the liquid) is very much 
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smaller than unity, so that inertia effects in the liquid flow may be neglected. Thus, 

momentum and continuity equations for the liquid flow in the presence of the electric body 

force, FE = - p V \ j / , may be written as 

2-* T\Vzv- V p = pVvj/, V-v= 0 

It may be expressed in terms of our dimensionless variables, defined by (1.3.2), as 

P I = ^ c ^ e p 
^ 

V W 

/ kT 
Vz,e j 

( V 
• ( w ) = o 

or 

V 2 v - V p = ^pVvj7 

V-V= 0 

in which the parameter X defined by 

2c kTL 

(1.3.3e) 

(1.3.3f) 

X = 
T}V 

(1.3.7) 

measures the relative importance of the electrical body forces on the flow field. 

Thus, there are eight scalar equations, given by Eq.s (1.3.3a-f), for the eight 

dependent variables (denoted by v, p , c,, <:2, vj7 and p^). It is to be noted that a possible 

solution of these equations for an unbounded liquid with no solid surfaces present, is one 

with no volume charges present, i.e., the solution 

c, = Cj = constant; pT = 0 

with electric potential (j/ satisfying 

V2vj7 = 0 

and with a purely hydrodynamic flow 

V 2 V - V p = 0 ; V ? = 0 

Thus, at large distances we will take a solution of this form with \\i = 0, since it is assumed 

that there is no applied electric field at infinity. If we take the characteristic ion 

concentration c„ to be that at infinity (i.e., c„= the bulk concentration), then the boundary 

conditions will be 
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V -» (given 

c2 —> 1 

flow at infinity) 

(1.3.8a) 

(1.3.8b) 

(1.3.8c) 

as |7 |-» oo. On the surface Sp of the particle P and on the surface Sw of the wall W the no-

slip boundary condition is required to be satisfied, so that if at a general point on Sp the 

velocity of the solid surface isUp (and on Sw i sU w ) , then 

v = U p o n S p ; ^ = U W o n S w (1.3.8d) 

where Up and U w , defined by 

fj U P J ~ U w 

U P = ^ and U w="^f O-3-9) 
are the dimensionless velocities of the solid surface Sp and Sw, respectively. 

It is also assumed that ions (of either species) on reaching a solid surface (Sp or Sw) 

do not give up their electric charge or in any way react with the surface, or mathematically 

stated, the ion flux (of either species) normal to the surface (relative to the surface) must be 

zero, that is 
n- Vc, + cjVuf = 0 on SP and S w (1.3.8e) V q + CjVy 

Vc2 - c2V\\i 

= 0 

= 0 

on SP and Sw 

on SP and S^ n- v c - c v u / = u o n a P ana s w (1.3.8f) 

where ii is the unit vector normal to the surface directed into the liquid. In deriving Eq.s 

(1.3.8e, f), it was noted that, by the aid of Eq. (1.3.8d), the convective flux due to the fluid 

relative to the solid surface is zero. Boundary conditions (1.3.8e, f) are usually referred as 

the no-penetration boundary conditions. 

It is assumed that the surface potential of the particle is everywhere equal to a 

constant on SP, \\f , and that of the wall is everywhere equal to another constant, say \j7 w . 

Then it is required that 

vj/ = vj/P on SP (1.3.8g) 

vj/ = \ j / w on S w (1.3.8h) 

where 
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V| / P = 
VkTV C P ; M>w = 

' z ^ 
c w (1.3.10) 

VkT7 
are the dimensionless surface potentials of the particle P and wall W, respectively. 

The solution of Eq.s (1.3.3a-f) with B.C.s (1.3.8a-h) depend, in addition to the shapes, 

relative positions and motions of the particle and wall (and flow at infinity), on the following 

six parameters: 

Pe = Peclet number for ions of species 1 [c.f, Eq. (1.3.3a, b)]. 

= Ratio of diffusivities of the two species of ion [c.f, Eq. (1.3.3b)]. 

= Ratio of double layer thickness to the length scale, L [c.f, Eq. (1.3.3c)]. 

= Parameter measuring effect of electrical forces on the flow [c.f, Eq.(1.3.3e)]. 

= Dimensionless particle surface potential [c.f, B.C. (1.3.8g)]. 

= Dimensionless wall surface potential [c.f, B.C. (1.3.8h)]. 

Cox considered the problem for small e with all the other five parameters being held 

fixed and of order unity, i.e. there is no restriction on the other parameters. He was interested 

in obtaining a general solution under the above assumptions to determine the force and 

torque experienced by the particle P in the limit as e -> 0. Thus, it is assumed that the 

double layer thickness is very much smaller than the particle size or the distance from 

particle to the wall. 

Since the total stress tensor a {- is the sum of the hydrodynamic and electrostatic 

Maxwell stress tensors, then if one defines a dimensionless stress tensor rj - by 

D,/D 

6 

X 

fw 

T|V_ 

the dimensionless stress tensor may be expressed as1 

/ 1_. . 

(1.3.11) 

*» = - P 5 , + Ki . + V:: 1+A.E' ~2^^M Sij + V.iVjJ, (i,j) = (1,2,3) (1.3.12a) 

were all derivatives are with respect to the I" variables, that is 

Vl'J 5r] f i = 
d\\) 

a? Y,kY> dYj 
+ 

d%) 
+ 

d\\i 

dYj 
e t c - (L3.12b) 

Einstein summation convention is imposed on the repeated index, unless otherwise stated. 
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and where 8 {- is the Kronecker delta defined by 

[1 for i = j 
° ' i ~ | 0 for i * j (13-12c) 

It may then, by using (1.3.3c, e, f), be readily shown that the conservation of total 

momentum defined by 

V - a = 0 or S i j , j = 0 (1.3.13) 

is satisfied. It is noted that the external angular momentum for structureless fluids 

considered here is always satisfied [Happel & Brenner 1975, p. 25]. 

Fig. 1.2 - Surface S enclosing particle P near the wall W. 

The total dimensionless force, F, acting on the particle P may be determined by 

F, = Jrj.jnjdS = { a ^ d S (1.3.14) 

where F is defined by 

F = r | L V F (1.3.15) 

and where d S is a dimensionless infinitesimal element of area; n is the unit vector normal 

to the surface directed outward from the particle and S is any closed surface completely 

surrounding the particle P and containing only liquid and the particle P itself, as shown in 

Fig 1.2, so that no part of the wall W is within S. 
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Similarly the moment of force, G, on the particle P about a reference point O may be 

obtained in terms of the dimensionless moment, G, defined by 

G = r |L2VG (1.3.16) 

as 

6 , = jE i j k ^a k I n,dS = j e ^ r ^ n . d S (1.3.17a) 
sP " s 

in which S -k is the alternating tensor defined by 

F = < 

+ 1 if i, j , k is an even permutation, e. g., 2,3,1 

- 1 if i , j , k is an odd permutation, e.g., 1,3,2 (1.3.17b) 

0 if two or more indices are the same, e.g., 1,2,2 

and 7 is the position of the surface element relative to the reference point O (c.f, Fig. 1.2). 

1.3.2 - Inner and Outer Region 

InsolvingEq.s(1.3.3a-f)withB.C.s(1.3.8a-h)forthelimitas e -> 0, the dependent 

dimensionless (tilde) variables should be expanded in terms of the parameter e . In this 

manner one obtains an outer region solution. Then for the inner region solution an inner 

region expansion in e is required for each point on the solid surfaces Sp and Sw. Therefore, 

at a completely general point Q at position ̂  on the surface Sp (or on the surface Sw), Cox 

defined locally a set of orthogonal coordinates (£,, r\ J lying within the solid surface (c.f. Fig 

1.3) with unit metric tensor in terms of the outer variables. He also employed a local outer 

region Cartesian coordinates (x , y, z j with origin at Q, z being normal to the solid surface 

(S or Sw) and directed into the liquid and with the z and y axes tangent to cj and r\ 

coordinate lines at Q, respectively, (c.f, Fig 1.3 ). 

Inner region variables (denoted as barred variables) at Q are then defined by 

x = e 1 / 2 x , y = e , / 2 y , z = £ Z , T = t (1.3.18) 

V = U + Q x 7 + V, p = p, vj/ = vj7, &, = Ci, p = P (1-3.19) 

where t j here is the dimensionless velocity of the surface under consideration at Q (equal 

to either t j or U w at Q), f2 is the dimensionless angular velocity of the solid surface defined 
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by 

Q —a 
L 

(1.3.20a) 

(Q being the dimensional angular velocity of either the particle or the wall relative to a fixed 

point) and 7 here is the position vector relative to the point Q, the original of the local 

Cartesian coordinate system(x, y, z), in outer variables. Therefore, noting that 

Q x r 

K 
s, 

X 

I 
tiy 
y 

h 
Q 

z 

= ( Q y z - S j ) ^ - ( Q x z - a z x ) T y + (axy-Qyx)i^ 

the three components of the velocity in Eq. (1.3.19), by the use of (1.3.18), may be written 

as 

V 
1/2 Q v-
1/2 

U x + v x - G 1 / 2 Q 2 y + e Q v z 

v = U v +V+G1 '7 Q z x - e Q x z 
y > y * A 

vz = Uz + v z +G 1 / 2 (Q x y-Q y x) 

(1.3.20b) 

Fig. 1.3 - Local orthogonal curvature coordinates (̂ , fj) lying on the solid surface 

showing the local Cartesian coordinates (x, y, z) at the general point Q. 
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The solution procedure would be to solve Eq.s (1.3.3a-f) together with B.C.s (1.3.8a-c) at 

infinity in an expansion in e, as for the outer region solution. Then at each point Q on the 

surfaces Sp and Sw an inner region expansion in e, is made by solving Eq.s (1.3.3a-f) with 

B.C.s (1.3.8d-h) (the boundary conditions on the solid surfaces) written entirely in terms of 

the inner region (barred) variables. These solutions are matched asymptotically by requiring 

that the inner region solution at Q for z -> co be identical to the outer region solution as the 

point Q is approached. 

The general shape of the particle surface Sp (or the wall surface Sw) in the 

neighbourhood of the point Q may, using the local outer coordinates (x , y, 2 ) at Q, be 

written as 

z = a n x 2 + 2a 1 2 xy + a2 2y2 + (cubic terms in x, y ) + • • • (1.3.21a) 

where the constants a t j , a12 and a22 are of order unity and have values dependent on the 

point Q chosen (and on the choice of £, and T| coordinates). For example, for a surface 

geometry as symmetry as an arch surface of a sphere with the dimensionless curvature 

radius R = 1, the equation of particle shape, in the local Cartesian coordinates (x , y, z ) is 

defined by 

z + l = ( l - x 2 - y 2 f , 

which, upon the use of the binomial theorem, 

n n , n (n - l ) n - 2 n ( n - l ) ( n - 2 ) . , 
(a + b)n = a n + - a n " 1 b + V a " - 2 b 2 + - ^ an"3b3+---, (1.3.21b) 

may be expressed as 

z = - | ( x 2 + y 2 ) - ^ 2 + y 2 ) 2 + - " (1.3.21c) 

Within the inner region, for simplicity, Cox solved for the dependent variable only 

on the z -axis (where x = y = 0), since if we have the value of any dependent variable ( f 

say) as a function z of in the inner region at all points Q (so that f is also a function of 

\ and rj), then f and also its x and y derivatives are completely determined. 
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1.3.3 - Electrical Problem 

1.3.3.1 - Outer Region Solution 

A special case of the problem discussed in § 1.3.2 in which the fluid velocity v is zero 

everywhere is considered in this section. This implies that the velocity U of the surfaces Sp 

and Sw of particle and wall must also be zero and that v -> 0 at infinity, so that the problem 

would reduce to a steady state of a purely electrical nature. A subscript E is used to denote 

all dependent variables for this case (i.e., c,E, 'c2E,'pE,y E and p E ) . Thus, letting v = 0 

and d c 1 / d t = 3 c 1 / 3 t = 0 , Eq.s (1.3.3a-e) [with (1.3.3f) automatically satisfied], for 

steady state, may be expressed as 

V2c1 E + V- (c 1 E V( j ; E )=0 (1.3.22a) 

V 2 c 2 E - V • (c2EV\[7E)= 0 (1.3.22b) 

G
2 V2{jTE = - p E (1.3.22c) 

P E = - ( C I E - C 2 E ) (1.3.22d) 

Vp E = -^pEVvjrE (1.3.22e) 

Then B.C.s (1.3.8a-h) [with (1.3.8c, d) automatically satisfied] may be written as 

c1E -> 1 c2E -> 1 (1.3.23a) 

\ j ? E - > 0 (1.3.23b) 

as |7 |-» co, with 

n-[Vc1E + c1EV(j}E] = 0 on SP and Sw (1.3.23c) 

n-[Vc2 E-c2 EV(jrE]-0 onS P and Sw (1.3.23d) 

\j/ E = \ j7 p on Sp (1.3.23e) 
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Y E = Y w on S w (1.3.23f) 

The dimensionless flux of the ions of species 1 denoted by cf]E is defined by 

qfiE = V Cm + c1EVvJ7 (1.3.24a) 

which may be written in Cartesian coordinates(x, y, z) with unit vectors I ix, i , iz) as 

qiExix + qiEviv + qiEziz = { dx + ClE ax 
'IE 5v|/ 

K + 
dc IE 

V Sy 

do 

+ c 
3v|/ 

IE dy J \ 

+ 
IE , ~ ^ E 

— + C1 E — — I L 

5z b dz 

(1.3.24b) 

Then Eq. (1.3.22a) becomes 

v - t 1 E = o (1.3.25) 

Upon multiplying it by \\f E and integrating that over the liquid volume V contained with a 

large sphere SR of radius R (V is bounded by Sp, Svv and SR with R -> <») the energy equation 

for the ions of species 1, by using the divergence theorem, 

Jv • AdV = \A • MS, (1.3.26a) 

(1.3.26b) 

v s 
may be written as 

JV-(vj7Ef1E)dV = - j ^ E q 1 E -ndS 
v sP+sw+sR 

where dS and dV are dimensionless elements of surface area and volume and n is the unit 

vector normal to the surface (Sp, Sw or SR) drawn into the liquid. Using the relationship 

V - ( c A ) = V C - A + C V - A (1.3.26c) 

the integral over the volume may be expressed as 

1V -(MrEf 1 E)dV = j ( V M T E ) - f 1EdV+ JM7E(V • f 1 E)dV (1.3.27a) 
v v V 
and, by the aid of (1.3.23c, e, f, 24a), the surface integral may be evaluated as 

J \ p E t iE -n d S = j v P q iE- n d S+ j ^ w q i E - n d S + jv|/Eq1E-hdS 

= JM^qiE-ndS 
(1.3.27b) 
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But, B.C.s (1.3.23a,b) and Eq. (1.3.25) show that (so long as C,E, C2E, and \f E tend to their 

limits sufficiently rapidly as| 7 | - °o) the last integral in (1.3.27a) and also the integral on 

the right-hand side of (1.3.27b) vanishes giving [c.f, Eq. (1.3.26b, 27a)] 

j? t 1 E -V{j7 E dV=0 (1.3.27c) 
v 

Since the quantity - q1E • V i|/ E is the dimensionless rate of energy conversion into heat per 

unit volume (assuming the species 1 of ions have a positive charge) it must be a strictly non-

negative quantity. If the summation (integral) of strictly positive quantities is equal to zero, 

the only possible evaluation of them is that all individual quantities must be zero, from which 

it follows that 

g i E-V(jr = 0 (1.3.28a) 

everywhere. This may also expressed in the Cartesian coordinate system as 

~ cKj/E 3$ E 3\j/E 
q 1 E x — + q I E y - ^ + q 1 E 2 ^ = 0 (1.3.28b 

Consider now any equipotential surface S given by V|/ E = constant (c.f, Fig. 1.4). If the 

coordinate system is chosen such that its origin lays on the surface 2 with the z -axis being 

normal to the surface, because of equipotential, d l]/ E / dx andalsodlj/ E I dy inEq. (1.3.28) 

vanish, giving q]Ez = 0 (zero component normal to E). Therefore, for the plane 2, Eq. 

(1.3.24) may be expressed as 

I , E = V 2 c , E (1.3.29) 

where V 2 is the two dimensional gradient operator on the surface S. From this Eq.(l .3.25) 

reduces to 

V 2 - V 2 c 1 E = 0 or V2c1E = 0 (1.3.30) 

on the surface S. Multiplying this by C,E and integrating over that part S* of the surface S 

d externally by a closed line L* drawn on E, as shown in Fig. 1.4, one obtains, upon using the 

divergence theorem, 

j c 1 E V 2 c 1 E - n * d T = I |V 2 c ] E | 2 dS (1.3.31) 
L* 2* 
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(\|j = constant) 

Fig. 1.4 - An area E* bounded by the closed line L* on equipotential surface E. 

in which dS is an element area of E*, d 1 an element of length of L* and n a unit vector in 

the plane of E* normal to L*. If the equipotential surface E is closed (so that L* can be shrunk 

to a point as E* - E) or if E is unbounded with C1Eon E tending to a constant value 

sufficiently rapidly at infinity, by the use of (1.3.23a), we see that the integral on the left hand 

side of (1.3.31) tends to zero giving 

j | V 2 c 1 E | 2 d S = 0 (1.3.32) 
y' 

Since the integrand in Eq. (1.3.32) is strictly non-negative, it follows that 

(1.3.33) 

so that C,E is equal to a constant on an equipotential surface E. Thus, the ion flux q1E (and 

by a similar argument the ion flux q2E ) is zero everywhere. From this, Eq.s (1.3.22a, b) may 

be replaced by 

Vc 1 E + c1EV(j7E = 0 (1.3.34a) 

V2c1 E = 0 

V c 2 E - c 2 E V ( j r E = 0 (1.3.34b) 

Then, with B.C.s (1.3.23c, d) being automatically satisfied, Eq.s (1.3.34a, b) may be 

expressed as 

V c IE = - V v j / E , 
V c 2E = +Vvj7 

'IE '2E 
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Its solution is 

l n c 1 E = -vj7E + c, l n c 2 E = +ij7E + c 

Imposing B.C.s (1.3.23a, b) results in 

c1E = e " ^ , c2E = e+^E (1.3.35) 

Eq.s (1.3.22d, e) then give 

= - ( e - * E - e + i i ? E ) = - s i n h -PE = 2 ^ e )=-smh^E (I-3-36) 

and 

J(VpE)-d7 = Ajsinhij7E(Vij7E)-dr 

the integration of which is 

p E = X cosh vj7 E + c 

But, it is assumed, without loss of generality, that pE —» 0 as | 7 | - °°, or equivalently 

as vjT E —> 0. Thus, the pressure p E is determined by 

p E = X (cosh \j7 E - I) (1.3.37) 

which is a well known result first derived by Langmuir (1938) and independently by 

Derjaguin (1940). It should be noted that since Pg is a function of V|/ E the electrical body 

force X pg V \j7 E acting on the liquid [c.f, Eq.(l .3.22e)], is conservative, so that no fluid flow 

is produced (like the gravitation force acting on a liquid). The remaining equation, 

Eq.(1.3.22c), with B.C.s (1.3.23b, e, f) gives vj7 E being determined by 

E 2 V2\j7E = sinh\j7E (1.3.38) 

with 

(j/ -» 0 as 7 ^ oo (1.3.39a) 

y E = vjTp on S p (1.3.39b) 

\jTE = ? w on S w (1.3.39c) 
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Although the solution (1.3.35-39) to the electrical problem considered here is valid even if 

G is large, Cox was interested in this solution in the limit as e -> 0 in the inner and outer 

regions of expansion (see § 1.3.2). 

In the outer region where the above (tilde) variables are used, Eq. (1.3.38) with B.C. 

(1.3.39a) at infinity may be solved by expanding\\f E in a power series of e as1 

Y E = ?E0+ GYE1 + e2 VJTE2
 + " -

Thus, Eq. (1.3.38) may be written as 

_ e ( v l 'E0 + eM'Ei+---) _ e - ( v E o + eH'Ei+---) 

e2 V2((j}E0+e(j/E1+•••) = 

1 
= (\|/E0+e(j}E1+---) + -(vi/E0+Gij/E1+-..)3 + ---

3! 
which indicates that 

VE = 0 (1.3.40a) 

correct to all orders in 6. Consequently, by the aid of Eq.s (1.3.35-37) one may obtain 

c1E = 1 C2E = 1 (1.3.40b) 

p E = 0 (1.3.40c) 

and 

p E = 0 (1.3.40d) 

everywhere in the outer region correct to all orders in e . 

1.3.3.2 - Inner Region Solution Procedure 

By the aid of definition (1.3.18, 19), Eq. (1.3.38) may be written in terms of inner 

variables as 

>2— 32 — 

e2 d > E d\yE d\\tE 
+ / — \ i i = sinh \j/, 

a(Vix)2 a(Viy)2 ^(ez)2 

Thus, in the inner region at a point Q on the particle surface Sp, one observes that \j/"E on the 

xThe last subscript of any dependent variable denotes the order of that variable in e. 
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z -axis (i.e. where x = y = 0) satisfies 

d2wE . J a 2 v j 7 E . a2M7 ^ 
dz2 + e i r r2 dx + dy2 J 

sinh\] /E 

with boundary condition, given by (1.3.39b), as 

vj7E = vj/P at z = 0 

whilst matching onto the outer solution, given by (1.3.40a), requires 

(1.3.41) 

V|/E-> 0 as z-» oo 

.2 — 

(1.3.42) 

(1.3.43) 

Letting\|/E = V|/ E0+ G l|/ E1+ G y E 2 + -"- Eq. (1.3.41) may be expressed as 

f cs2 

17=2 5z 

az â  
+ 

V5x' dy' 
(VEO+^EI +-)= 2 

(vf EO + 6 V E I + - - - ) _ e - ( v E o + eV E i + "-) 

= -[(l+G\i;E1+---)eVE0-(l-GV|/E1+---)e-VE0] = sirihvi/E0+GH/E1coshM/E0+o(G2^ 

Thus, collecting terms of order unity gives 

> 2 — 
d VEO 

az2 3 ^ = s inhi | /E 0 

(1.3.44) 

(1.3.45a) 

with boundary conditions 

vjTE0 = {j7P a t z = 0 

\jTE0 -> 0 as z -> oo 

Terms of order G satisfy 

32rrr ' ^ 2 

^ ^ - - ( C O S I I V I / E O J I I / E ^ -
<7Z 

a2M/E0 + a2v|/E0^ 
V 

irr2 ax dy1 ) 

with boundary conditions 

y E 1 = 0 atz = 0 

ij7E1->0 a s z ^ o o 

(1.3.45b) 

(1.3.45c) 

(1.3.46a) 

(1.3.46b) 

(1.3.46c) 

Upon substitution the expansion of the quantities, c1E, c2 E , pE and p E expressed as 
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C1E — ^'lEO"1" 6 C 1 E 1 " 1 " " C 2E _ C 2 E 0 + ^ ^ E l " 1 " ' 

(1.3.47) 
PE = PEO+

 ePE i+--- , PE = PEO+
 e P E i+ ' - -

into Eq.s (1.3.22a-e) and B.C.s (1.3.23c-f), written entirely in terms of inner variables, 

equations and boundary conditions for(c1E0, c 2 E 0 ,p E 0 ,p E 0 )and for(cIE1, C2E1, p"EI, 

pE 1 j , etc... are so obtained by collecting the terms of the same order in G. This has been 

done by Cox and reported explicitly in his paper [Cox (1997)]. 

1.3.4 - Hydrodynamic Problem 
A purely hydrodynamic problem would be another special case of the problem 

discussed in §1.3.1 in which the liquid is flowing as a result of the motion of the particle P 

and/or the wall W as well as the prescribed flow at infinity. For this case the ion 

concentrations are taken to be zero with no electric field present. This implies that the 

electric potentials of the particle and of the wall are zero. Variables with a subscript H are 

used for this case (i.e., v H , p H ) . Then Eq. (1.3.3) [with (1.3.3a-d) being automatically 

satisfied] and B.C.s (1.3.8c, d) [with (1.3.8a, b, e, f) being automatically satisfied] may be 

expressed as 

V 2 V H - V p H = 0 (1.3.48a) 

V - v H = 0 

and 

(1.3.48b) 

vH —> (given flow at infinity) as —> oo 

V H = U P 

vH = U W 

on 

on 

(1.3.49a) 

(1.3.49b) 

'w 

Thus, the flow field (VH, p H ) is the creeping flow solution to the problem, and does not 

depend on the parameter e. In order to obtain an expansion in G for this flow field in the 

inner region at a point Q (on either the surface of the particle Sp or of the wall Sw) Cox 
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expanded ( v H , p H ) as a Taylor series about Q in the x, y, z coordinates. If the inner 

region hydrodynamic variables VH and p H are defined as in (1.3.19), then one obtains 

av ( 

V H x ~ 

Hy 

Hx 

ax ,Q 

(dv 

x + V ay |Q z 
^ fdv 

y + 

\ 

A 

V 

^av 
dx IQ Z 

a? 
x + 

Hy 

ay IQ y + 

^ 1 - Q 
v az IQ v 
fdvHv „ > 

——I +Q 
I az IQ x 

I a2v 
z + 

z + 

Hx 

2 dx2 lQ 

Hy l A 

V Hz 

/ 
Hz 

v ax IQ +f2. x + 
V ay IQ t2x 

2 dx2 |Q 

i a2 v 
y + az IQ 2 ax2 IQ 

x2 + 

x2 + 

x2 + 

(1.3.50a) 

PH = P H I O + 
^ P H 

x + y + _H_I ~ , l d
 P H . 

az IQZ 2 ax2 IQ x2 + (1.3.50b) 
ax IQ ay IQ 

in which L denotes evaluation at the point Q. From the no-slip boundary condition on the 

solid surface and from the definition of VH in (1.3.19), it follows that 

v= 0 on z = a,,x2 + 2a12xy + a22y2 + (1.3.51) 

for all (x , y )• This, when introducing to (1.3.50a), gives restrictions on the values of the 

derivatives of vH at Q. In addition, further restrictions are obtained from Eq.s (1.3.50a, b) 

and from their derivatives with respect to X, y and z by evaluating them at Q. By writing 

Eq.s (1.3.50a, b) in terms of the inner variables (x, y, z j , defined by (1.3.18), and using the 

above restrictions on the derivatives of VH at Q, Cox obtained the values of vH and p H and 

their x and y derivatives evaluated on the z -axis as expansions in G . 

1.3.5 - Electroviscous Equations 
The solution of the general electrohydrodynamic problem [given by Eq.s (1.3.3.a-h) 

and B.C.s (1.3.8a-h) ] may be considered as the sum of the solution of the purely electrical 

problem (discussed in § 1.3.3), the solution of the purely hydrodynamic problem (discussed 

in §1.3.4) and a new set of electroviscous dependent variables denoted by an asterisk as a 

coupling between the electrical and hydrodynamic equations. Thus, upon introducing 

P = P H + P E + P * ^ = V E + $ * v = vH + v 

C l — C1E + C l 

(1.3.52) 
C 2 — C 2E + C 2 P = PE + P 
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toEq.s(1.3.3a-f)andB.C.s(1.3.8a-h),andnotingthat C1E, C2E, l|/ •• • satisfy Eq.s (1.3.22a-

e) with B.C.s (1.3.23a-f) and v H , p H satisfy Eq.s (1.3.48a,b) with B.C.s (1.3.49a,b), the 

remaining terms including the elctroviscous variables v , p , c{ ••• must satisfy 

V2Cj* +V- (c 1 E V\ | / + c,*Vi|/E + c1Vv|/*) 
( 

Pe 
dc,c 5 c* / i i • 

vH-Vc1E + v H -Vc; + v^Vr51E + v + - V c 1
+ + : : ^ + g = 0 

(1.3.53a) 

V2c2
+ - V-(c2EVi|/+ + C2*VM/E + c;Vvj7*) = 

Pe 
^ D 

1 "^H-vc2E+?H-vc;+^-vc2E+^-vc;+^^+ 2 ac 2 F dc,*^ Q.3.53b) 

at a t ; 

. 2 Y7 2 G ^ V > = - p 

P* = 2 ^ " ^ ) 

V2^* - Vp* = A,(p*VvjTE + pEVvj/* + p*Vvj/*) 

(1.3.53c) 

(1.3.53d) 

(1.3.53e) 

V- v = 0 (1.3.53f) 

with boundary conditions 

C, -> 0 c2 -» 0 

\j/*-> 0 

v -> 0 

(1.3.54a) 

(1.3.54b) 

(1.3.54c) 

as -» oo and 

v = 0 

n [ v c/ + c1EV(jT* + c /Vy E + c,*V\|/ *] = 0 

n - [v c2* - c2EVij7* - c*V\j/E - c^VvjT*] = 0 

(1.3.54d) 

(1.3.54e) 

(1.3.54f) 
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V|/ = 0 (1.3.54g) 

on Sp and on Sw. In deriving (1.3.53a, b) it should be noted that, in general, d c, I dt and 

d c"2 / d t are non-zero and must be included, since the boundaries Sp and Sw move and thus 

the time-independent solutions for c51E and (52E as calculated in § 1.3.3, must be considered 

as functions of t . 

As for the outer region of the expansion, the solution of the purely electrical problem 

is given by (1.3.40) by applying boundary conditions only at infinity (and match onto the inner 

region expansions as the surfaces Sp or Sw are approached). Thus, upon the substitution of this 

solution into Eq.s (1.3.53a-f) and B.C.s (1.3.54 a-g), we see that in this outer region, the 
~ * r~^* ^ ^ * 

electroviscous variables v , p , Cj • • • satisfy 

V 2 c ; + V2vjT + V • (cfVvj/*)- Pe(VH + V*)- Vc,* - P e - ^ r = 0 (1.3.55a) 

V 2 c ; - V 2 ( f ? * - V - ( c ; V y * ) - P e ^ (v^ + v ^ - V c . ' - P e - ^ - O (1.3.55b) 

G
2 V2vj7+ = - p * (1.3.55c) 

p = - ( c , - c 2 ) (1.3.55d) 

V2^* - Vp* = Xp*V\y* (1.3.55e) 

V-V* = 0 (1.3.55f) 

with boundary conditions 

c,*-> 0 c2 -^ 0 (1.3.56a) 

\j7*-> 0 (1.3.56b) 

V* -> 0 (1.3.56c) 

as 7 -> oo. The equations and boundary conditions for v , p , cx , • • • in the inner region of 

expansion at a point Q (on either surface Sp or Sw) may be obtained by writing Eq.s (1.3.53) 

and B.C.s (1.3.54) in terms of the inner variables using (1.3.18,19) and then substituting the 
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known expansions for the purely hydrodynamic problem variables (which are obtained by 

solving the equations and corresponding boundary conditions given in § 1.3.4.) and the 

expansions for the electrical problem variables given in § 1.3.3. However, in the inner 

region, boundary conditions are applied only at the solid boundary (i.e. at z = 0 )and match 

onto the outer region (at Q) as z -> oo. This is so obtained by Cox by applying the rigorous 

procedure of a matched asymptotic expansion of inner and outer expansions up to order e . 

As a consequence of a logical process, he pointed out that the lowest order correction due to 

the electrohydrody namic effects on the velocity and pressure fields appear at order G , on the 

ion concentration of either specie and potential at the order G and on the charge density at 

order G . Therefore, the electroviscous velocity, pressure, ion concentrations, potential and 

charge density may be written, in terms of outer variables, respectively, as 

(1.3.57a) 

(1.3.57b) 

c2 =G2 c22+ ••• (1.3.58a) 

(1.3.58b) 

(1.3.58c) 

Upon substituting these quantities in Eq.s (1.3.55e, f) and B.C. (1.3.56c), it follows that the 

electroviscous flow field satisfy a creeping flow equation 

V 2 ^ - V p 4 * = 0 (1.3.59a) 

(1.3.59b) 

V 

, ,* 
P 

Cl 

, — • * 

p 

= G4 

= G4 

= G2 

= G2 

= G4 

v ; + ••• 

PU + -" 

C , 2 + " 

V 2 + * 

pl 

V • v 4 = 0 

with boundary condition 

V*4 -> 0 as r -> oo (1.3.59c) 

It can be concluded that this flow field resulting from the tangential movement of the ions 

in the diffuse double layer and hence it has the components on the solid surfaces (just outside 

the double layer) only parallel to the plane tangent to the solid surface (i.e. normal to the z -

axis). Therefore, v4 at the point Q (i.e., at z = 0 ) may be written as 
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v4 = B x i x + B y i y (1.3.59d) 

where ^ and \ are unit vectors in the x and y directions in the tangent plane to the surface 

and where B x and B y are the components of velocity which, in general, are function of 

electroviscous parameters and position on the solid surfaces. They are determined by Cox 

upon evaluating v4 at point Q (i.e., by matching v4 as the solid boundary is approached onto 

v*as r 

B„ = X< 

BJy = V 

- > 00 

- 4 In 

- 4 In 

) as 

[COSht 4 JJ 

[C O S h l 4 J J 

5Pn ~ 5pJ2 

ax + M/< a x 

SPn ~ 9P,2 
dy + W' dy 

J = W , P (1.3.59e) 

(1.3.59f) 

in which parameters ((3j,, PJ2 jare the value of the electroviscous ion concentrations and 

potential on the solid surfaces J, just outside the double layer, that is 

(1.3.59h) 

9 

The perturbation of ion concentrations at the lowest order [i.e. at 0( G )] of counter-

ions, c*2,and co-ions, c^, satisfies the same equation which is obtained by Cox as 

V2cl2 = Pe 
' D 1 + D 2

V ac ^ 
~ r 7 ~ - , - 12 
VH -VC i 2 + " T ^ -

H i2 a t j 
2D 2 ; 

with boundary conditions 

h - V c ^ P e F ^ ^ - v X n - v X n - ^ ) 

ii-V^2=PeFcW(n-vXn-vXn-VH) 

(1.3.60a) 

ci2"> 0 

onS, 

onS 

as 

w 

- » 00 

(1.3.60b) 

(1.3.60c) 

(1.3.60d) 

in which FcP and FcW are functions of the diffusivity of ions and surface potential defined by 

1 
F = — 

cj 2D 

Y 
- ( D 2 - D j \ j / J - 4 ( D 2 + Djlnlcosh-^LJ J = (p, w ) (1.3.60e) 
2 L 
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The perturbation in potential at 0(e2), V|/ 2 , satisfies 

\|/ : 

A D 2 - D ^ 
vD2+D,y c i 2 + <|> (1.3.61a) 

in which (j) satisfies Laplace's equation 

v2ijr = o 

together with boundary conditions 

n.V$ = PeF,p(h-vXn-V)(n-VH) onS, 

n-V<|) = PeF4W(n-vXn-vXn-VH) onS w 

4 -> 0 

where we have written 

as —> 00 

(1.3.61b) 

(1.3.61c) 

(1.3.61d) 

(1.3.61e) 

f 
F = 

2D, A 

lD,+Dj 

( 

V p ' F = 
1 < | ) W 

2D, A 

v.D,+Dj 
V w (1.3.61f) 

1.3.6 - Force and Torque on Particle 

The dimensionless force, F, [defined by (1.3.15)] and moment of force, G, [defined 

by (1.3.16)] experienced by the particle P could be calculated by the integrals (1.3.14, 17) 

in § 1.3.1 taken over any chosen surface S completely enclosing the particle. The simplest 

surface would be the particle surface Sp in the outer region (i.e. it is taken to be just outside 

of the double layer surrounding the particle), so that in the integrands (1.3.14,17a) the stress 

tensor rjj is used in terms of outer variables, defined by (1.3.11, 12). In the outer region, by 

the aid of Eq.s (1.3.57a, b) and Eq. (1.3.58b), V, p and vj/\ given by (1.3.52), may be written 

as 

V = V H + G V4 

P = P H + e PA 

(1.3.62a) 

(1.3.62b) 

vj/ = G Z (j72 (1.3.62c) 

Here vH and p H are the pure hydrodynamic velocity and pressure discussed in § 1.3.4. In 

58 



writing Eq.s (1.3.62b, c) it is noted that by the aid of (1.3.40a, d)V|/ E = 0andp E = 0 

throughout the outer region. By introducing the expansion (1.3.62 ) to the stress tensor 

(1.3.12), the dimensionless force on the particle F is determined by 

F = FH+ G4 F4 + ••• (1.3.63) 

The hydrodynamic force, FH may be easily determined by solving the purely hydrodynamic 

problem discuss in § 1.3.4 and then using the relationship (1.3.14). But, as for the 

electroviscous force, the required solution for the electroviscous flow field given by (1.3.59) 

is not an easy task due to imposing the complex boundary conditions on the solid surfaces. 

Fortunately, for a stationary wall there is an alternative way to calculate the force by 

employing the Lorentz reciprocal theorem, which states that instead of solving a complex 

flow field, solve an easier one and from that find the force for the former. 

If we define a disturbance flow field ( vT k , PTk j due to a translation (indices T denotes 

translation without rotation) of the particle P with unit velocity in the kth direction (k = 1, 

2, 3) in a semi-infinite quiescent fluid bounded by an infinite plane wall (c.f, Fig. 1.5), the 

flow field, for each direction k, satisfies Stokes equation, that is 

V 2VTk - V PTk = 0 and V • v ^ = 0 

or in indices notation as 

= 0 ( i , j = l , 2 , 3 ) (1.3.64a) 
^ VTk, dPTk 

dv-dxj aif 

— 5 s - = 0 (1.3.64b) 

al­

together with the corresponding boundary conditions, that is [c.f, definition (1.3.12c)] 

vT O = 5 i k o n S p (1.3.65a) 

vTO = 0 o n S w (1.3.65b) 
v = 0 as|7|-> 0 (1.3.65c) 
vTki v ' ' 

The first boundary condition shows that the velocity of the fluid is equal to unity only in the 
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the direction of the translation of the particle, i.e. when i = k (c.f, Fig.l .5), which is the no-

slip boundary condition. The first boundary condition shows that the velocity of the fluid 

is equal to unity only in the direction of the translation of the particle, i.e. when i = k (c.f, 

Fig.l .5), which is the no slip boundary condition on the particle surface. 

Fig. 1.5 - Flow field ( v T k , pTk ) produced at position F of a general point of the fluid 

due to the pure translation of particle P with unit velocity in the direction of 

either x, y or z -axis corresponding to k = 1, 2 or 3, respectively. 

Then Lorentz reciprocal theorem may be written as [Happel & Brenner (1965)] 

fv^njdSMv^VS (1.3.66) 
S s 

in which a Tki is the stress tensor for the flow field ( v ^ , P ^ ) , nj is the unit vector normal 

and outward to a closed surface S bounded any fluid volume. Surface S may consist of a 
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number of distinct surfaces. Let S include the particle surface SP, the wall surface SWi and 

an imaginary surface of a semi-sphere drawn into fluid with an infinite radius R, SR, (c.f, Fig 

1.6). Thus, the first integral in the Lorentz reciprocal theorem may be expressed as 

J v™a ^ri jdS = Jv T k l a 4 l J n J dS+ f vTklrj; i jn JdS+ J v ^ a ^ d S (1.3.67a) 
O o p ^W R 

The velocity vTki is due to particle translation, and hence it is induced by a point force 

application of the Oseen technique (assuming the force exerted on the fluid, by the particle, 

can be considered as a point force), so that it should be of order R_1 [Happel & Brenner 

(1965), p. 83)]. Like pressure, the stress tensor (force per unit area), noting that the 

magnitude of the force is finite, is of order R and the surface of a sphere is equal to 

471R, so that dS is of order R . Therefore, the integrand of the third integral of the right 

hand side of (1.3.67a) is of order R~ , and hence it tends to zero as R -> oo, from which it 

follows that 

f v ^ r j 4lJnjdS -> 0 as R -> oo (1.3.67b) 

The second term in (1.3.67a) is obviously equal to zero, since by B.C. (1.3.65b) the 

velocity on the wall is equal to zero and the electroviscous stress tensor on the wall is of 

order unity (i.e. it is not too large), resulting in 

I v ^ r i j d S = 0 (1.3.67c) 
sw 

But, the first integral is exactly what we are looking for, the electroviscous force. By 

the aid of B.C. (1.3.65a) the velocity on the particle surface SP is only non-zero and equal to 

unity when i = k [c.f, definition (1.3.12c)]. Thus, letting VTki = 1 and i = k , the first 

integral in the right hand side of Eq. (1.3.67a) becomes 

I lxa^dS 

which represents the electroviscous force F4k [c.f, Eq (1.3.14)]. Therefore, by the aid of 

(1.3.67), the Lorentz reciprocal theorem, given by (1.3.66), may be expressed as 

F4*k = jv; iaT O jn jdS+ jv; iaTklJnJdS+ j v ^ a ^ d S (1.3.68) 
sw 
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By the same argument as for integral (1.3.67b) the third integral of the right hand side of 

(1.3.68) vanishes. Therefore, in view of the definition (1.3.59d), the remaining integrals may 

be expressed as 

F4*k = fBi5"TkijnjdS+ I B.o^njdS (1.3.69) 
>w 

The above analysis is illustrated in Fig. 1.6. 

Lorentz Reciprocal 
Theorem 

s II s 0 O(l) 0(R J) 0(Rt) 0(R2) 
11 II II * || V 

1 
J as R - » oo 

n 

g; sp g: 
II 

0 

t 
I vJ.S^njdS = J v^a^njdS + j v ^ a ^ d S + j v*4i5Tkiin.i 

ssL-^^_> i - ^ — / SR// II A 
"5 || || 0(R ) O(R^) OCR2) 

^ = JB ;a T k i j n j dS + JB :a T k i j n .d§ 

>\v 

Fig. 1.6 - Surface S consist of Sp, Sw and SR bounded a volume of fluid showing 

calculation of electroviscous forces upon application of 

the Lorentz reciprocal theorem. 
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Thus, the advantages of the application of the Lorentz reciprocal theorem is that, in 

order to know the force we require only to obtain the stress tensor corresponding to the flow 

field ( vTk, PTk j , multiplying it by the known boundary conditions of the electroviscous flow 

field and integrating it over the solid surfaces. Whereas, to obtain the force in a direct 

fashion we need to solve the whole electroviscius flow field to obtain the required 

electroviscous stress tensor. 

Similarly, the torque experienced by the particle around a reference point O may be 

expressed as 

G = G H + G4 G* (1.3.70) 

The hydrodynamic torque may be determined upon using Eq. (1.3.17) for the purely 

hydrodynamic problem. The electroviscous torque is so obtained upon applying the Lorentz 

reciprocal theorem as 

G4 k = f B j o R k a n i d 5 + I B . c ^ n . d S (1.3.71) 

W 

n = (0,0,1) 

Q = (1,0,0) 

Fig. 1.7 - Flow field ( v ^ , p ^ ) produced at position? of a general point of the fluid 

due to the pure rotation of the particle P with unit angular velocity around 

either x, y or z -axis corresponding to k = 1, 2 or 3, respectively. 
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in which Bj is given by (1.3.59e, f) and a ^ is the stress tensor for the flow field 

V Rk > PRIC j satisfying the creeping flow equations 

~ ~ - ~ - - T Z ^ = 0 (1.3.72a) 
a r̂ a Tj a i; 
dv Rki 

~~ = 0 (1.3.72b) 
di; 

due to the rotation of the particle with unit angular velocity about an axis in the k-direction 

passing from point O in the quiescent fluid with the wall W being at rest (c.f, Fig 1.7). 

Therefore, it satisfies the following boundary conditions 

^Rki^Skyr- o n S p (1.3.73a) 

^ = 0 o n S w (1.3.73b) 

r |-> oo (1.3.73c) 

where 7 is the position vector relative to the reference point O and s kj: is the alternating 

tensor, defined by (1.3.17b). 

1.3.7 - Force on Sedimenting Sphere 

Cox applied his general theory to the sedimentation of a charged sphere in an 

unbounded electrolyte and derived the total force experienced by the particle, for low Peclet 

numbers, as 

vRlk -> 0 as 

F = - 67tr|a + 
247 i s 2 (kT) 3 fG 2 H2^ 

+ U " (1-3.74) 
(zLe) c^a VD, D J 

in which 8 is the permitivity of the medium, defined by (1.2. lb), (kT) the thermal energy, 

(zje) the charge of an ion of type of counter-ions, cro the number ion bulk concentrations, 

(Dj, D2) the diffusivity of (counter-ions, co-ions), and the surface potential is involved via 

parameters G and H, defined by (1.2.32c). The first term in the formula (1.3.74) is the well 

known Stokes drag formula for the sedimentation of uncharged sphere with velocity 

UsED and radius a, given by (1.2.17). The perturbation in the force (electroviscous force), 

the second term, was obtained by applying the Lorentz reciprocal theorem. Comparisons 
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with the result of Oshima et al. (1984) is given in the next section. 

1.4 - Results and Conclusions 
Electroviscous phenomena for a thin diffuse double layer surrounding charged solid 

surfaces under a motion in a symmetric electrolyte are analysed by Cox general theory 

(1997). The flow field, described by Stokes equations, perturbs the electric field induced by 

a charged solid surface. This is because the flow disturbs the ions in the diffuse double layer 

resulting in a perturbation in the charged density which causes the perturbation in the 

potential, described by the Poisson equation, given by (1.3.3c). The perturbation potential 

known as the streaming potential, in turns, causes a tangential motion of the ions in the 

diffuse double layer [by exerting an electrostatic force on them, described by the Lorentz-

Stokes-Einstein equation, given by (1.3. lb)], resulting in a perturbation in the flow field. Or 

mathematically stated, there is a coupling between the electrical and hydrodynamic equations 

describing the system. Ions are also subject to a motion induced by the Brownian motion as 

a consequence of the difference in their concentrations (the concentration gradients), 

depending on their diffusion coefficients, described by the Fick's second law, given by 

(1.2.9), appearing as the first term in the convective diffusion equation (1.3.1a). Therefore, 

the electroviscous effects arise from the interaction among the flow field, Brownian motion, 

and the electric field originating from the charged boundaries and producing the diffuse 

double layer surrounding charged solid surfaces. 

The streaming potential, with a magnitude of order e2 (e is the ratio of the double 

layer thickness to the length scale of the problem assumed to be small), is a function of the 

perturbation in ion concentration as can be observed by Eq. (1.3.61a, b), in addition to the 

flow field appearing in its boundary conditions, given by (1.3.61 c-f). It is observed from this 

equation that for identical diffusivities of counter-ions and co-ions the streaming potential 

is independent of the perturbation of ion concentration, as it is supposed to be. 

The electroviscous ion concentrations of either species at the leading order, 0(e2), 

satisfy the same equations and boundary conditions, determined by the relations (1.3.60). 

At the second approximation, 0(e3), the perturbation in concentration of counter-ions and 

co-ions are also the same, resulting in a perturbation of the charge density appearing at the 

65 



higher order, 0(e4), [c.f, (1.3.58c]. In addition to the flow, the diffusivity of ions appears 

in both the equation and their boundary conditions. The electroviscous ion concentrations 

also depend on the (-potentials of the solid surfaces appearing on their boundary conditions, 

as it is supposed to be. 

The electroviscous flow field satisfying the creeping flow equations, given by 

(1.3.59a, b), is of order (e4). Because of assumptions of the no-penetration of ions on the 

solid surfaces (non-conducting solid surfaces, and the absence of any chemical reactions) and 

especially the thin double layer thickness assumption, this perturbed flow has only a 

tangential component on the solid surfaces just outside the double layer. These boundary 

conditions, determined by (1.3.59c- h), depend not only on the steaming potential and (-

potentials of the solid surfaces, but also on the electroviscous ion concentrations and the 

diffusivity of counter-ions and co-ions. Though electroviscous flow field is two orders of 

magnitude smaller than the steaming potential, it exerts a force and torque on the particle 

(electroviscous force and torque), which is two orders of magnitude greater than the one 

exerted by the streaming potential, as can be observed from the Maxwell stress tensor, given 

by (1.3.12). The tangential and normal component of the force as well as the torque, 

experienced by the particles are determined upon applying the Lorentz reciprocal theorem, 

outlined in § 3.6. The contribution to the force from this perturbed flow has been neglected 

in a number of publications in favor of the Maxwell stress tensor resulting from the 

streaming potential. 

Ohshima, et al. (1984) derived the electroviscous velocity for the sedimentation of 

a charged sphere which is sufficiently far from other solid surfaces for interactionns to be 

absent, or mathematically stated in unbounded electrolyte, given by (1.2.28). Cox applied 

his general theory to obtain the drag force experienced by such a particle, given by (1.3.74). 

The Peclet number in both theories is assumed to be much smaller than unity. For the 

interaction of two solid surfaces, Wu, Warszynski & van de Ven (1996) calculated 

numerically the normal component of the force per unit length experienced by a long charged 

cylinder under translation near and parallel to a charged plane wall, for arbitrary Peclet 

numbers. Cox obtained an analytical expression for normal component of the force 
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[presented in Wu, et al. (1996)'s paper] and also the tangential component of the force 

experienced by a charged cylinder under both translation and rotation parallel and near to a 

charged wall, for low Peclet numbers, given by (1.2.32). Warszynski & van de Ven (2000) 

reconsidered the translation problem of the cylinder-wall to obtain an analytical expression 

for the normal component of the force, given by (1.2.33). 

To compare Cox's theory with the Oshima, Healy, White & O'Brien (1984)'s theory, 

the molar conductivity (Aj) which is related to the ion diffusion coefficient (D() via the 

mobility of the ions (v,) [upon using the Nernst-Einstein equation (D, = NAkT V;)] may be 

written as 

a 

(1.4.1a) A 1 - F 2 z 2 o i ^ ( N A e ) z i
2 u 1 ^ A } j ' D. 

kT 

Thus, mi? defined by relationships (1.2.28b, c), may be expressed in terms of ion diffusion 

coefficients as 

m. = 
2smkT NAe2kT 2sm(kT)2 

3r,(z,e)2 D,NA(z,e)2 3r,(z1e)2z1
2D1 

(1.4.1b) 

which is similar but different from that defined by (1.2.16b) by a factorzf. From this and 

from the definition of the reciprocal double layer thickness, K, given by (1.2.2b), the Oshima 

et al. 's theory (1984) for the sedimentation velocity may be written as 

USED — 1 + 
8e2

m(kT): 

Tie4(c,zf+c2Z2)a 

G' IT 
+ z2D, z2D2(l + l) 2-^2' 

+ U: ST 
SED (1.4.2) 

Using Stokes' law, given by (1.2.17), the force, F, the fluid exerts on the particle P may be 

determined from it as 

487is2
m(kT) 

F = -<J 6 7 i r l a + 4/ _2 _ _ _2 
' ( e c,z, +c7z, a M^I 2^2 > 

G' W 
+ z2D, z2D2(l + l) 

2-^2 

^U: ST 
SED (1.4.3.a) 

But, in view of the definition (1.2.2b) (noting that the length scale L here is taken to be 

identical to the sphere radius a), the parameter I, appearing in the dominator of (1.4.3a), 
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defined by the relationship (1.2.28d), may be evaluated in a general form as 

I = 0 ( E ) + 0 ( G 3 ) (1.4.3.b) 

Thus, upon applying the binomial theorem, given by (1.3.21b), Oshima et a/.'s theory may 

be expressed as 

F = - i67m,a + — 
487i82(kT)3 f G 

(< Q^\Cxz] +C2Z2 >{Jrik [ l~° (£ )-° (£3H >u ST 
SED 

(1.4.3c) 
from which it follows that the electroviscous force at the first approximation for a symmetric 

electrolyte considered in the Cox theory (z, = z2 and hence c, = c2= c„) is exactly the same 

as that obtained by Oshima et al. Although the formula (1.4.3c) has terms of order G5 and 

those of order e • • •, it is not obvious to determine its order [c.f, formula (1.2.28a)], whilst 

Cox's theory is valid up to order e , the order considered in his general theory. Since Cox 

obtained the force for low Peclet numbers, he concluded that the Oshima et al.'s theory is 

valid for low Peclet numbers, though it is not mentioned by the authors in their paper. 

As for the cylinder-wall problem, Cox's theory, given by (1.2.32a), for identical 

particle and wall potentials predicts 

V 
(1.4.4) F z = 

V27is2
m(kT)3 aVa" 

( z i e ) 

- T 7 = 5U 2 + 4 U a Q - ( a Q ) 2 — + —-
h2VhL \D, D2 

Whereas, Warszynski & van de Ven's theory (2000), given by (1.2.33), for the identical ( 

potential predicts 

5V2TI s2
m(kT)3 aVa" ( 

F ' = 4 (Zie)
4

Coo h2Vh 
G_ 11 

vD, + D2 

\ 2 

Û  

+ 
3V2TI s3(kT)4 Va" ( G H^ 

ID, D: 

(1.4.5) 

4 (z i e) 6ci h3Vh 
Û  

From this it follows that for the translation of the cylinder the magnitude of the force obtained 

from Cox's theory is two times larger than that predicted by Warszynski & van de Ven 's 
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theory (2000). For translation of a particle, both Cox's formula and Warszynski & van de 

Ven's predict a positive, zero or negative value for the normal component of the force, 

depending on the magnitude of the particle and wall (-potentials and the ratio of diffusivity 

of ions. Warszynski & van de Ven's theory (2000) also predicts the second approximation 

term due to the contribution of the tangential electric field resulting from the streaming 

potential appeared at O (e6), which agrees with that obtained by Bike and Prieve (1987). Bike 

and Prieve considered only this term to calculate the force which obviously is not the 

dominant contribution to it. The tangential component of the force is of order Pe and the 

normal component of O (Pe2). Thus, because of the proportionality to U2the change in the 

direction of the flow does not reverse the direction of the normal component of the force. 

Therefore, it is concluded that for a sedimentation of an spherical charged particle in 

an unbounded electrolyte, the electroviscous drag force, arising from the interaction among 

viscous, Brownian and electrical forces, obtained by Cox (1997) is in complete agreement 

with the Oshima et al. 's theory (1984). Whereas, Cox's theory [presented in Wu etal. 's paper 

(1996)] and Warszynski & van de Ven's theory (2000) for the motion of a charged cylinder 

near and parallel to a charged wall, obtained for low Peclet numbers, predict different values 

for the magnitude of the force and by a factor of two for identical (-potentials of the wall and 

cylinder surfaces. Warszynski & van de Ven (2000)'s results agree with Wu et al.'s 

numerical solution (1996) for arbitrary Peclet numbers. The authors speak of a lift force, 

presumably not realizing that under certain conditions the normal force can be negative. 
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Chapter Two 

Electroviscous Cylinder-Wall 

Interactions 
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2.1 - Introduction 

The problem of a long charged cylinder moving parallel to a charged plane wall for 

translation and rotation of the particle has been solved analytically by Raymond Cox and 

reported in a paper by Wu, Warszynski & van de Ven (1996) and for the translation of a 

cylinder by Warszynski & van de Ven (2000). In both theories the Peclet number and the 

clearance between the cylinder and wall are assumed to be small. Cox obtained the 

electroviscous force by applying the Lorentz reciprocal theorem as outlined in his general 

theory. Warszynski & van de Ven (2000) assumed the same orders for the perturbation in 

ion concentrations and potential as those given in Cox's general theory (1997), but obtained 

the force directly from stress tensors resulting from the perturbation in both hydrodynamic 

and electrical fields. Cox obtained both tangential and normal components of the force 

analytically. Warszynski & van de Ven (2000) obtained the lift component of the force 

analytically, but derived an analytical expression for the tangential component of the force 

containing an integral which is evaluated numerically. These only two available theories, 

given by (1.2.32, 33), predict different values for the magnitude of the force. It is the 

purpose of this chapter to reconsider the problem with the above assumptions to investigate 

the validity of either solution. 

The analytical approach to the problem is based on the matched asymptotic expansion 

technique, which is a powerful technique to solve partial differential equations involving a 

small parameter. The idea is that the domain of interest is divided into two regions, the so-

called inner and outer regions. The inner region is taken to be a small portion of the domain 

in the neighbourhood of the nearby contact point, and the outer region is the region 

everywhere outside the gap. For the inner region, variables are expanded in terms of the 

small parameter in a way that only dominant terms are being considered in the equations, so 

to simplify them for an easier solution. Moreover, a solution which is valid for the outer 

region, known as the outer solution, is required. At the boundary of the inner and outer 

regions these two solutions must predict the same value for those variables. Thus, the outer 

solution as it approaches the gap, should match smoothly to the inner solution as it 
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approaches to the outer region. This is called the matching condition. With this procedure, 

one obtains the solution (inner plus outer solution) for the problem which is valid for all the 

domain of interest. Here, we are concerned with the inner solution, bearing in mind that the 

matching condition must be satisfied. 

Thus, following the problem statement, the inner solution of the purely hydrodynamic 

problem, in an expansion of the normalized clearance, 6, (for 6 « 1) is presented in § 2.3. 

The perturbation of ion concentrations, in an expansion of the Peclet number, Pe, (for Pe « 

1) is given in § 2.4. It contains outer and inner regions with inner region solutions of orders 

Pe and Pe2, respectively. The perturbation of the potential is determined in § 2.5. The 

electroviscous force is obtained in § 2.6. It includes the tangential derivative of the 

electroviscous ion concentrations and potential, the determination of the stress tensor for 

translation of the particle parallel and normal to the wall and applying them to obtain the 

tangential and normal components of the force, upon the use of the Lorentz reciprocal 

theorem. The matching condition and the existence of the outer solution are discussed in § 

2.7. Finally, results and conclusions are given in § 2.8. 

2.2 - Problem Statement 

Consider an electrically charged smooth cylindrical particle P moving in an 

electrolyte solution with a stationary charged plane wall W being present. The liquid is 

assumed to contain a symmetric electrolyte with two species of ions with charges + z,e and -

z,e. For the sake of simplicity we consider a long cylinder parallel to the wall in order to 

reduce the problem to a two dimensional one. The radius of the cylinder is denoted by a and 

the gap width between cylinder and wall by h. 

The double layer thickness (Debye length), denoted by K1 , is assumed to be much 

smaller than the gap width, and the gap width is much smaller than the radius of the cylinder. 

Thus, e << 5 << 1 where 

h 1 
8 = - , € = — (2-2.1) 

a Ka 

This condition fulfills the thin double layer condition considered in Cox's general theory 

(1997). It is further assumed that the Peclet number, Pe, entering the electroviscous 
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equations, defined by relationship (1.3.4), is much smaller than unity. 

A right-handed Cartesian coordinate system (x, y, z) is chosen such that the center 

of the circular cross section of the cylinder coincides with the point (x = 0, z = h + a) with 

the y coordinate being parallel to its axis (c.f, Fig 2.1). 

. .... 

Fig. 2.1 - A charged cylinder translates and rotates parallel to a charged wall. 

The cylinder is assumed to be translating perpendicular to its axis with velocity 

u = (U, 0, 0)and rotating around it with angular velocity Q = (0, Q , Ojin a fluid at rest. 

By taking the coordinate system to translate along with the cylinder, the problem reduces to 

a steady state one. That is, the flow field (u, p), the ion concentrations of either species and 

the electric potential at position f relative to the moving coordinate system (x, z) remain 

unchanged during the motion of the particle. As a consequence, since the electroviscous ion 

concentrations and potential arise from the coupling between electrical and hydrodynamic 

equations (hereafter denoted by c2 and v|/ 2 )', would be time independent. The problem is 

equivalent to the one in which the particle is only rotating with angular velocity Q in a fluid 

in which both wall and liquid are under translation with velocity u = (- TJ, 0, 0) for the wall 

and the fluid at infinity. Thus, the velocity u of the liquid on the cylinder surface in this 

'For simplicity we use the notation c2 and V|/ 2 instead of c i2 and l[/ 2 in Cox's general theory 
(1997), with the indices 2 denoting their orders in e. 
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coordinate system is determined by 

Q x r = 

onS, (2.2.3) 

0 Q 0 =Q(z-h -a )T x -QxT z (2.2.2) 

x y z - a - h 

where ik(k = x, y, z) are the unit base vectors coinciding with the (x,y,z) coordinates. The 

surface of the wall, denoted by Sw, and that of the cylinder, SP may be written as 

x= asinO 
z = 0 , o n S w , 

z= h+ a - acosO 

where 0 is the polar angle associated with the cylinder cross section measured from the point 

Q (the nearest point of the cylinder to the wall) in the counter clockwise sense, as shown in 

Fig 2.1. 

For the outer region we use variables made dimensionless by the length scale a, 

characteristic velocity U and the characteristic ion concentrations c„. Thus, the outer 

variables denoted by a tilde are defined by the relationship (1.3.2) in which L is taken to be 

a and V to be U. From this it follows that [c.f, (1.3.9, 20a, 4, 7, 15, 6, 5)] 

- , 1 / 

U = L Q = 
af2 aU 2 c a k T - ~ 
— , Pe = — , A, = - * - — , F = nUF, e = 
U D, n U 2(az,e) c 

(2.2.4a) 
Here, F is the force per unit length of the cylinder. The (-potential of the solid surfaces 

denoted by\C?, ^w ) ,are made dimensionless by relation (1.3.10) as 

\ | / P = 
Z j e 

K Vw = \kTJ c w 
(2.2.4b) 

By eliminating the azimuth angle 0 in (2.2.3), the solid surfaces, SP and Sw, may be 

expressed in terms of the outer variables as 

z = 0 o n S w , z = l + 8 ± ( l - x 2 ) K o n S , (2.2.5) 

(where the ± signs account for the upper and lower parts of the cylinder, respectively), and 

the normal unit vectors outward to them, denoted by hP and n w , as 

n w = \-. rip = s i n e ^ - c o s O i ^ = xi x + ( z - 1 - 8 ) ^ (2.2.6) 
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2.3 - Hydrodynamics 

2.3.1 - Flow in Outer Region 

It is assumed that the liquid is incompressible, that is the fluid density, p, is constant 

everywhere. In addition, the Reynolds number, Re, based on the cylinder radius defined by 

Re = apU/r) which is characteristic of the hydrodynamics in the outer region, is assumed to 

be small enough so that inertia effects can be negligible. As its definition indicates, this 

condition is achieved when either the kinematic viscosity, v, (v = n/p) of the liquid is high 

(highly viscous liquid), the particle size is small or the characteristic velocity is small. The 

second and third condition (for the size of colloidal particles and its velocity close to the 

wall) are certainly fulfilled in experiments. Thus, the purely hydrodynamic flow satisfies the 

creeping flow equations (Stokes equations) 

V 2 T J - V p = 0 (2.3.1) 

V T i = 0 (2.3.2) 

with boundary conditions on the solid surfaces [c.f, (2.2.2, 5)] 

ux = - l , uz = 0 o n z = 0 (2.3.3) 

ux = S ( z - l - 8 ) , uz = - Q x o n z = l + 8 ± ^ / ( l - x 2 ) (2.3.4) 

and at infinity 

ux = - l , uz = 0 as |f | ̂ o o (2.3.5) 

This produces a flow field which is bounded, or mathematically stated, it is of order unity 

(i.e. it is neither very small nor very large as observed from its boundary conditions). Since 

the small parameter 6 appears in the boundary condition (2.3.4a) (as a consequence of the 

geometry of the problem) the outer solution can be constructed upon the expansion of the 

flow field in 6 as1 

ux = u x 0 + 8 ux l + 52 u x 2 . . . , p = p 0 + 5 p ! + 5 2 p2 

u, = TJLA + 5 u„, + 5 2 u, 
(2.3.6) 

The last indices of any variable denotes the order of that variable in 6. 
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The leading term in the right-hand side of the expansion (2.3.6) is of order unity, 0(6°), as 

it is supposed to be, the second term is much smaller than the first one, the third one is much 

smaller than the second one, and so on, since 8 is assumed to be much smaller than unity. 

Thus, a solution of the problem up to two or three terms gives a very good approximation for 

the flow field when 8 < 1, even if 8 is not very small. 

To solve this problem at the first approximation, we neglect the terms beyond order 

unity. In other words, in the expansion (2.3.6) 6 should be taken to be equal to zero. Thus, 

for this limiting case, the cylinder would be in contact with the wall since 6 is the gap width 

between the cylinder and the wall. For this case, both B.C.s (2.3.3a, 4a) cannot 

simultaneously be satisfied at the origin. Thus, a first approximation to the flow for the outer 

region would be the solution of Eq.s (2.3.1, 2) with B.C.s (2.3.3-5) in which 6 = 0 which is 

valid throughout the fluid except in the neighbourhood of the origin, because of the 

singularity at this point. Thus, an individual solution must be constructed for the small 

portion of the domain around the neighbourhood of the nearby contact point (inner solution) 

which is valid for this region that is, the equations of motion as well as the boundary 

conditions on both solid surfaces bounding this region must be satisfied. By the way, for the 

inner region solution, the boundary condition at infinity, given by (2.3.5), is not imposed 

since this region only includes (and hence the solution of which is only valid for) a small 

portion of the neighbourhood of the nearby contact point. Instead, it has to satisfy the 

matching condition asymptote by requiring that the inner solution, as it approaches the outer 

edge of the inner region, being matched to the outer solution as it approaches the origin i.e. 

as x - 0. 

2.3.2 - Flow in Inner Region 
Since the clearance between the particle and wall is assumed to be very small, it is 

justified to apply lubrication theory to analyze the flow field within the gap. Thus, to solve 

the flow field for this region we expand the independent variables (the two dimensions, x 

and z) and the dependent variables (u*, uz, p) in terms of the parameter 6 according to their 

magnitudes in order to consider only the dominant terms (at each order in 6) in the equations 

of the motion to be solved for either order in 6. It is obvious that in the inner region the 

z dimension has a lower magnitude than the x dimension and hence the space in this 
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direction is too tight for the fluid to manoeuver, so that the lower magnitude of the velocity 

would be the velocity in this direction, uz. In the gap the flow is subject to the strong shear. 

This is because in the gap the velocity field falls from its maximum value (on the particle 

surface) to its minimum value (zero on the wall) in a shorter distance than in any other part 

of the medium. In other words the derivative of the velocity field with respect to the z-axis 

reaches its highest value in the gap. Thus, the derivative of the pressure with respect to z 

reaches its lowest value in the gap, according to Bernoulli's law. Therefore, we may define 

the inner variables denoted by a hat Q as 

x = 81/2x, z = 8 z 
(2 3 7) 

~ ~ c 1/2 ^ ~ s: -3/2 ~ v • • / 

ux = ux, uz = S uz, p = 8 p 

Thus, the cylinder shape for the gap, (i.e., the lowest part of the cylinder) may be expressed 

in terms of the inner variables as (c.f, Fig. 2.2) 
i_ 

S ( l - z ) = - l + ( l - 8 x 2 ) 2 (2.3.8) 

or upon expansion of the bracket by the binomial theorem as 

z = l + - x 2 + S ^ - + --- (2-3.9) 
2 8 

Then, upon introducing the expansion (2.3.7) in (2.3.1-4), the equations of motion for the 

inner region are determined by 

^ _ | + 5 ^ = 0 (2.3.10) 
dz dx dx 

- ^ + 8 ^ + 5 2 ^ = 0 (2.3.11) 
dz dz ox 

dp d2uz e 2 d2u2 

^ + ̂  = 0 (2-3.12) 
dx dz 

The boundary conditions are [c.f, B.C.s (2.3.3, 4)] 

ux = - l , uz = 0 onz = 0 

ux = - Q + 8Q(z - l ) , uz = -Qx o n z = l + ^ 
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Fig. 2.2-Inner and outer regions - Inner region expansion. 
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Since 8 is very small, the expansion x = 8 l / 2x in (2.3.7) indicates that, for x of order 

unity, x has to be large enough to satisfy this matching location asymptote (i.e., as 6 -> 0, x 

- ± °°, c.f, Fig. 2.2) . Because the flow field in the outer region is of order unity, the 

dependent inner variables at the first approximation has also to match onto the outer 

variables at order 6° that is, 

uo = uo x->±« P o (2.3.15) 
x->0 

in which °° for the inner dimension means the location of the outer edge of the inner region, 

as shown in Fig. 2.2. Thus, the expansion of the independent variables in (2.3.7) indicates 

that for the solution to satisfy the matching condition (2.3.15), we require 

ux = O(x0), uz = o(x+1), p = o(x~3) as x -> ±oo (2.3.16) 

2.3.2.1- Inner Solution at Lowest Order in 6 

The inner solution may be constructed upon introducing an expansion of the flow 

field as 

ux = u x 0 +Su x l + ---, uz = u z 0 +5u z l + ---, p = Po+6p I + ---

to the equations of motion given by (2.3.10-16). Doing so, and collecting the terms of the 

same order in 6, at order unity they satisfy 

^ 2 -
^ U x 0 ^ C 

dz2 dx 

dz 
dux0 auz0 

ox oz 

with boundary conditions 

ux0 = -l>> uz0 = 

ux0 = -Q, uz0 = 

0 

- x Q 

(2.3.18) 

(2.3.19) 

(2.3.20) 

o n z = 0 (2.3.21) 

o n z = l + - x z (2.3.22) .".2 

and with matching condition 
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u O(l), uz0 = O(x), p0 = o(x"3) a sx ->± 00 xO — v - ' VVJ " z o — w W > Po ~~ ^ V ^ / ao A. —7 J-^J (2.3.23) 

Eq. (2.3.19) indicates that to the leading term the pressure is independent ofz,so that Eq. 

(2.3.18) may easily be integrated twice with respect to zto give 

U*° = 2^kZ +AZ + B 

Imposing B.C.s (2.3.21a, 22a) results in 

1 dp 

(2.3.24) 

'0 

2 dx 
H + ( I - Q ) H " B = - l , A = -

where we have written 

1 ~2 

H = l + - x 2 

2 
The x-component of the velocity is obtained as 

(2.3.25) 

(2.3.26) 

(2.3.27) 

Introducing its derivative with respect to x into the continuity equation (2.3.20) gives the 

equation for the z-component of the velocity: 

du z0 l d 2 p 0 

2 dx2 

1 dp 
( z 2 - f e ) + ^ x z + ( l - Q ) x z H - 2 

dz 2 dx z v ' 2 dx 

Integrating it with respect to z and imposing B.C. (2.3.21b) results in 

(2.3.28) 

l d 2 p ( 
Uz0 — o j .~2 

2 dx' 
~2 ~ 3 T T ~ 

— z - —Hz 
3 2 

1 
+ 1 2 % ^ + A ( I _ Q ) X H - ^ 2 

4 dx 2V ' 
(2.3.29) 

Imposing B.C. (2.3.22b) gives the equation for the pressure: 

l ^ f t 3 i d e . ^ , + I ( i+f i )x=o 
12 dx' 4 dx 

or 

dx 
A 3 d P o 
H ~dk 

= -6(l + Q)x (2.3.30) 
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which is equivalent to the Reynolds equation occurring in the classical lubrication theory. 

It may be integrated to give 

% = - 3 ( l + Q ) ( x 2 + c)H 
dx v A ; (2.3.31) 

But the matching condition (2.3.23c) implies that the pressure tends to zero as both x - + 

and x - - °°. Thus, the constant C is determined by 

Po 
X - > 00 

X - » - 0 0 
= - 3 ( l + Q ) r ( x 2 + c)H-3dx=0 (2.3.32) 

By the use of [c.f, (2.3.26)] 

x2 = 2 H - 2 

and the integrals 

(2.3.33) 

1 x 42 r» , „ ix 
H"2dx = - - ^ + 

2 H 2 
tan" 

(x_ 

lV2^' 

Jir3dx = 
x 3x 3V2 

+ ̂ ^ + 4H2 8H 8 

Eq. (2.3.32) may be evaluated as 

tan" 

X r- _, X 
— + V2 tan -7= 
H IV2, + (C-2) 

X 

x 3x 3V2 

(2.3.34) 

(2.3.35) 

+ ——+ 
4H2 8H 8 

tan" 
x 

V2. 
= 0(2.3.36) 

from which C is obtained to be equal to - 2/3. Thus, the pressure is determined by 

p 0 = - 3 ( l + Q ) \ l ( x 2 - | j H - 3 d x = 2(l + Q ) x H - 2 (2.3.37) 

To see how the matching condition is satisfied, for large value of x , H" may be expressed 

as [c.f, (2.3.26)] 

H 2 = 
1 

1 + 2 X 

-> 4x"4 asx-> ±co (2.3.38) 
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Therefore, the pressure, determined by (2.3.37), for large distances from the origin (i.e. for 

the outer edges of the inner region, c.f, Fig. 2.2) may be written as 

p -> 8(l + Q)x"3 as x -> ±00 (2.3.39) 

which satisfies the matching condition (2.3.23c). Now, from the first and second derivatives 

of the pressure, the x and z-components of the velocity, given by (2.3.27, 29), are obtained: 

1 
u x 0=(l + Q ) ( 4 H - 3 - 3 H - 2 ) ( z 2 - H z ) - - +( l - f i ) H"'z — 

2 
(2.3.40) 

uz0 = (l + Q)x ( 4 H - 4 - 2 H - 3 ) z 3 - f 4 H - 3 - ^ H - 2 ) z 2 + ^ ( l - Q ) x i r 2 z 2 

(2.3.41) 
In this manner, the inner solution of the flow field is determined by (2.3. 37, 40, 41), valid 

up to order 6 [i.e. with an error term of 0(6)], so that the smaller the gap width, the more 

accurate the result. If we are interested in improving the approximation of the flow field, we 

may solve the equations along with boundary conditions as well as matching conditions 

constructed at the second, third, ... order in 6 for (u x l , Uzl, Pj j , ( u x 2 , u z 2 p 2 l , . . . in the 

expansion (2.3.17), by the use of the solution at the lower order (for each order), i.e. by an 

iterative procedure. 

2.4 - Electroviscous Ion Concentrations 

2.4.1 - Outer Region 

The perturbation in ion concentrations, here denoted by Z2 , for low Peclet numbers 

may be expanded in this parameter as1 

D, +D, _ 
c2 = Pe°c20 + Pec21 + Pe' 2D. c22+- (2.4.1) 

This expansion may be introduced to the equation and boundary condition (1.3.60): 

D,+D, -2 D 1 +D 2 
c,n + Pec^+Pe 
-IO -21 2D, 

c22+- = Pe 
2D. 

u-V[c20 + Pec21+---] 

'The last indices of the electroviscous variables denote the order of those variables in Pe. 
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and 

~ r, ~ ~ 2 D 1 + D 2 

c,n + Pec,, + Pe2 —] 2 "20 ' x ^^2\ 2D2
 n = PeFCJ(nJ-V)(nJ-v)(nJ-a)|Sj 

J s , 

2 D , + D 2 

c20 + Pec21+Pe — ^ — c 2 2 + - ->0 as r —» 0 

in which FcJ (J = P, W) is defined by (1.3.60e). Collecting terms, of the same order, in Pe 

results, at order Pe°, in 

V2 c20 = 0 (2.4.2) 

with boundary conditions 

(2.4.3) rij • V c20 Sj = °, 
At order Pe: 

2 D , + D 2 -
21 2D2

 20 

with boundary conditions 

r i j -Vc, , 

c2l -> 0 

Sj=Fc(fij-vXfij 

c 2 0 ^ 0 

or 

- V X H J - S ) | S J 

as r -> 0 

a2c21 a2c21 
dx2 dz2 

J = (P, 

as 

0 (2.4.4) 

(2.4.5) 

as | r | - » oo (2.4.6) 

The normal derivative and the normal component of the velocity may be written as [c.f, 

(2.2.6)] 

f - a - a -r a \ 
fivV=i,- i ^ + i y - ^ r + i , 

V dx y dy dz) dz 

np-V = x—; + ( z - l - 8 ) — 
ax az 

and 

n w u = u z , n p u = xu + ( z - l - 8 ) u z 

(2.4.7) 

(2.4.8) 

(2.4.9) 

and at order Pe 2 . 
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V2c22 = u-Vc21 = 
t d 

U 
V 

with boundary conditions 

do, 
sw 

nw-Vc2 2 
"22 

az 

^ + U z 

= o 

_a_ 
azJ°21 (2.4.10) 

hP -Vc22 

and 

c22 - » 0 

= x 
a c 2 2 + ( 2 _ 1 _ 5 ) a ^ 

dx dz 
= 0 

as - > oo 

(2.4.11) 

(2.4.12) 

(2.4.13) 

The equation and boundary condition (2.4.2, 3) guaranties that C20 = 0 everywhere. Since 

B.C. (2.4.3a) indicates that Curias n 0 singularity at the origin and since it satisfies the 

homogenous Eq. (2.4.2) it follows thatC^is bounded everywhere. By the aid of the 

divergence theorem, we may write 

Jc20(n : • V c J d S , = |c20V2c20dV+ J|Vc20|2dV 
v 

Since CJO ^s bounded and iij • V C^ = 0 on all surfaces, it follows that the integral on the 

left-hand side is equal to zero and so is the first integral on the right-hand side. In addition, 

the integrand of the second integral on the right-hand side is always positive, so that the only 

possible value for V c^ is to be equal to zero, or equivalently Ĉ Q is a constant. And since 

it has to satisfy B.C. (2.4.3b) too, it follows that C20 = 0 everywhere. Thus, it remains to 

determine c21 and c 2̂ , the perturbation of ion concentrations, at order Pe and Pe2. 

In order to solve the corresponding equations together with the boundary conditions, 

one should obtain a solution as an outer solution in the parameter 6 at each order in Pe. But 

for the first approximation (at any order in Pe), the purely hydrodynamic velocity appears 

in the equation and boundary conditions, as mentioned in § 2.3, has a singularity at the 

origin. Therefore, for the electroviscous ion concentrations and equivalently for the 

electroviscous potential, a solution for the inner region is required. Because of this 

singularity (as we observed for the case of the purely hydrodynamic problem), the main 

contribution to the perturbation of ion concentrations comes from this region. By the way, 
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for the inner region solution of the electroviscous effects (as for the case of the purely 

hydrodynamic), the boundary conditions at infinity given by (2.4.6, 13) are not imposed 

since this region only includes (and hence the solution of which is only valid for) a small 

portion of the neighbourhood of the nearby contact point. Instead, it has to satisfy the 

matching condition 

x->0 ~ C 2 X-»+oo (2.4.14) 

2.4.2 - Inner Region 

In view of expansion (2.3.7) and identities (2.4.7-9), the normal derivative of the 

normal derivative of the normal component of the purely hydrodynamic velocity appeared 

in B.C. (2.4.5) for the inner region are 

(nPv)(npv)(fiPc) = x _ + ( _ 5 + z _ 1 ) _ 

8»(xu, -u I ) + 8^(z-l)u I = 5 ^ ( x u , - u J + 0 5 ^ 

x— + (-o^ + z - l — 
dz 

dz! 

/ w x/ -\ ( a V a V 1 ^ 
V J 

) dz dz) V dz) 

the second derivatives in which are obtained as [c.f,(2.3.40, 41)] 

a2a: 
dz2 

a2 

= (l + Q)x[l2(2H"4 - ft-3)z-(8H-3 - 3FT2)] + ( l - Q)XFT2 (2.4.15) 

CL2 
dz 

(xux0) = (l + Q)x(8H-3-6H-2) (2.4.16) 

Thus, if we expand the electroviscous ion concentrations for the inner region as 

~ ?-3/2~ 

c2 = 8 c2 

for the inner region, at order Pe it satisfies [c.f, (2.4.4, 5)]: 

a2c. 

(2.4.17) 

'21 
+ 5 

a2e 21 - 0 az2 ' v dx2 

with boundary conditions 

(2.4.18) 
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ae 21 

3z 

dz 

z=o = 8 Few[(l + S)x(-8H-3 + 3H-2) + (l - Q)xH"2] 

ae 21 + (z - l ) 
dc 21 

-J£=H 
ax ai 

5 FcP [(l + Q)x(-8H-3 + 3FT2) - (l + Q)xH 

(2.4.19) 

(2.4.20) 

and at order Pe2 [c.f, (2.4.10-12)]: 

a2c77 „a 2 c„ ^nf dc 
dzL ' ~ dx1 ~ lUx0 dx 

'22 + 5 '22 = 5 
dc ^ 

21 , - u^2\ 

—+ u 
lz0 dz) 

(2.4.21) 

with boundary condition 

dCr '22 

dz z=0 = 0, 
dc 22 

dz 
+ 6 x 

a 6 2 2+(z-l)-a 6 2 2 

ax a z 
z=H = 0 (2.4.22) 

2.4.2.1 - Inner Solution at Order Pe 
The equation and boundary conditions at the first order in Pe, given by (2.4.18-20), 

suggest an expansion forc21 in 6 as 

(2.4.23) 

Upon substitution of this expansion in Eq. (3.4.18) and B.C.s (2.4.19,20), it is observed that 

cm satisfies 

a2e. 

C91 = cm + 8 cn + 
21 m n 

m 
CLI dz 

= o (2.4.24) 

with boundary conditions 

dz 

dc 

z=0 = 0 

m 

dz z=H = 0 

(2.4.25) 

(2.4.26) 

Whereas cn satisfies 

d2c„ a2c. 
3~2 • + m 

azz dx! 
= 0 (2.4.27) 

86 



with boundary conditions 

dc. 

dz 
=o = Fcw [(l + S)x(-8H"3 + 3H"2) + (l - Q)XH" 

and 

dcn „ dc 

dz + x-
m 

dx 
. =FcP[(l + Q)x(-8H- 3 +3H- 2 ) - ( l + Q)xH-

Eq. (2.4.24) together with B.C.s (2.4.25, 26) guaranties that 

cm = Func (x) 

Thus, Eq. (2.4.27) may easily be integrated with respect to z to give 

dc. d 2~ c 
m ; + A(x) 

dz dx2 

Imposing B.C. (2.4.28) results in 

A = R cW [(l+ fi)x(-8H_3 + 3H"2)+ ( l - Q)xH 

Imposing B.C. (2.4.29) leads to the following differential equation for cn 

a c„ 

d x + FcW [(l + Q)x(-8H-3 + 3H"2) + (l - Q)XH" 2 ] = 

dc 
m 

dx 
- FcW [(l + Q)x(-8H-3 + 3FT2) - (l - Q)xH 

or 

(2.4.28) 

(2.4.29) 

(2.4.30) 

(2.4.31) 

(2.4.32) 

(2.4.33) 

| (H^)=(Fc P +FcJ(l + a ) x ( - 8 H - + 3 H - ) - ( F c P - F e W ) ( l - Q ) x H -

(2.4.34) 

Integrating it once and then dividing it by H results in 

dc 
m 

dx 
= (FcP + FcW)(l + n) (4H^-3H- 2 ) + (FcP-FcW)(l-Q)H-2+CH-1 (2.4.35) 

Now, in view of the integrals (2.3.34, 35) and 

Jft" =V2tan x (2.4.36) 
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Eq. (2.3.35) may be integrated to give 

(FCP +FcW)(l + Q)xH-2 +CV2 tan"1 - ^ 

+ (FcP-FcWXl-") 
4i 1 ^ , 

- x H ] + 
2 2 

tan 
x 

(2.4.37) 

+ D 

But, since 

tan 
x 71 1 n 
v2=±i-r°Uv as x —> ±co (2.4.38) 

and since for large value of x any constants do not satisfy the matching condition (2.4.17), 

D = 0, and C must be determined in a way that Cm does not include the term tan - 1 X/ 

that is 
2 ' 

(2.4.39) 

C = - ^ (F C P -F C W ) ( I -Q) 

From this it follows that 

c^l^p+F^Xl + QJxH^+^F^-F^Xl-^xH1 

2.4.2.2 - Inner Solution at Order Pe2 

Equation (2.4.21) implies an expansion in 6 for c22 in the form of 

c22 = 5'/2cp + 63/2cq + -

Upon substitution of this expansion in Eq. (2.4.21) and corresponding boundary conditions 

given by (2.4.22) we see that cp satisfies the same equation and boundary conditions as those 

for cm given by (2.4.24-26), so that cp such as cm is independent of z. Whereas cq has to 

satisfy 

(2.4.40) 

a2c„ d2c. dc 
+ 

m 
,.2 UxQ d £ dz2 dx 

with boundary conditions 

aa„ 

(2.4.41) 

dz z=0 = 0 (2.4.42) 
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dc. 

dz 
~ p 

£=A ~ X dx 
= 0 (2.4.43) 

Integration of Eq. (2.4.41) with respect to z yields 

dc. d c. dc r i + ^ f K d z + C(x) az dx2 

Imposing B.C. (2.4.42) gives the value of C as 

dc. 

(2.4.44) 

C = - in 

dx 
jux0dz 2=0 (2.4.45) 

Imposing B.C. (2.4.43) leads to 

d ( . dc ^ 

dx 
H 

dx 
dc H 

m 

dx juxodz (2.4.46) 

the integral in which is evaluated as [c.f, (2.3.40)] 

Ju„0dz= (l+ Q ) [ ( - 3 F T 2 + 4H- 3 ) ( | z 3 - i-Hz2) - 1 
o L v j 2 / 2 

1/1 
+ ( I - Q ) ( I H - ' Z 2 - ± Z ; 

Thus, by the use of (2.4.39), Eq. (2.4.46) is integrated as 

dx 3 

H 2 , ~x 
(2.4.47) 

9 1 
= - T(FCP + FcW)(l + S ) xFT3 - -(Fc P - FcW)(l - n2)xH"2 + CH-'(2.4.48) 

Its second integration is [c.f, (2.4.36)] 

cp = ^(FcP + FcW)(l + Q)2H-2 + J ( F C P -FcW)(l-Q2)H-' +CV2 tan"' - | + D 

But, electroviscous ion concentrations at 0(Pe2) are symmetric with respect to the z-axis (i.e. 

since they are proportional to U2 by reversing the direction of the flow from U to -U and the 

coordinate from x to -x, we expect to have the same electroviscous effects) and hence an odd 

function of x cannot be included in the electroviscous ion concentration at this order 

resulting in C = 0. The constant D is also taken to be zero since, in view of (2.4.17, 40), it 

does not satisfy the matching condition at order unity, either. Thus,cp is reduced to 
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T(FcP + FcW)(l + ")2H-2 + ^(F c P-F c W)( l-n2)H- (2.4.49) P *2 \ t r t v v / \ / ' o 

Therefore, in view of (2.4.1,17,23,40,39,49), the electroviscous ion concentrations 

for the inner region at the lowest order in 6 in the expansion (2.4.1) are determined by 

(FCP + FcW)(l + 0 ) x H " 2 + ^ (F c P - F c W ) ( l - Q ) x H - ' c, =5"2Pe 

+5 
D.+D-- i ^ i 

2D, 
Pe' 

1 1 
T(FCP + FCW)(I + Q) 2 H- 2 +- (F C P-F C W XI-Q 2 )H 

(2.4.50) 

in which F p and F w are defined by (1.3.60e) as 

1 F = cj 2D 2 L 

(D2-DI)vj/J-4(D2+D1)ln(cosh-^ J = ( P , W ) (2-4.51) 

2.5 - Electroviscous Potential 

The equation and boundary conditions for the electroviscous potential denoted here 

by \\i 2 aregivenbyrelationships(1.3.61). The perturbation in ion concentrations also present 

in this equation is already determined. The second term in this equation, (j), satisfies the 

same equation and boundary conditions as those for the electroviscous ion concentrations of 

order Pe, given by (2.4.4, 6), in which FcP andFcWare respectively replaced byF p and 

F ^ , defined by (1.3.61f) . Thus, as for the case of electroviscous ion concentrations, if we 

expand the electroviscous potential as 

lj72=5 2\J/2 

by the aid of relationships (2.4.39, 50) for the inner region, it is determined by 

(2.5.1) 

W: = 5 2Pe 

- 1 . 2 ^ - D 

(F¥P +FvW)(l + Q)xH-2
 + ^ ( F V P -FvW)(l-Q)xH" 

+5_1Pe 
2 D . 

(FCP + F C W X I + ^ ) 2 H - 2 + ^ ( F C P - F C W X I - Q 2 ) H -

-. (2.5.2) 

in which, in view of relationships (1.3.60, 61), FvP and FvW are defined by 
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D ? - D , 2D. 
F = — LF + •—\17 D 2+D, D2+D! 

J = (P, w) (2.5.3) 

2.6 - Force on Cylinder 
The force per unit length, F experienced by the particle is the sum of the purely 

hydrodynamic force, FH , of order unity and the electroviscous force, F 4 , of order e , that 

is 

^x — ^Hx"1" e M x ' Fz = FHz + 8 F4z ( 2 - 6 1 ) 

2.6.1 - Hydrodynamic Force 

The hydrodynamic force is determined from the relationship (1.3.14). It may be 

expressed in vectorial form as 

FH = Jo-.npdSr (2.6.2) 

n p is the unit vector normal and outward to the cylinder surface, given by (2.2.6), as 

np = x\ + (z-l-b)\ (2.6.3) 

In view of the expansion (2.3.7), it may be expressed in terms of the inner variables as 

n P x =5 2 x, nPz = [-l + 5(z-l)] (2.6.4) 

G , the stress tensor, is defined by 

aux aux auz 5zz = - p + 2 
ar^ 
az 

For the inner region it is determined by [c.f, expansion (2.3.7)] 

(2.6.5) 

Sxx = -S"2p + 25 
dx di dx 

, 5 z z = -6~2p + 25" 

Thus, at the lowest order in 6 we may write 

a-np = - o xp0 + 
du xO 

dz Jx + 
i J u 

5 2 p 0 +5 2x-
xO 

az \ + 0(8°) 

az 
(2.6.6) 

(2.6.7) 
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where p 0 and Ux0 are given by (2.3.37, 40), from which 

aa. 
az 

and 

^ = (l + Q)(4FT3 - 3H-2X2Z - ft) + (l - Q)H (2.6.8) 

xp0 = 2(l + QX2H - 2)rT2 = 4(l + Q X - H " 2 + H-1) 

Thus, the x-component of a • n p may be evaluated on the cylinder surface as 

(2.6.9) 

- 5 -1 
xp0 + 

duv xO 

dz -lz=H 

= -5" , [ ( I + Q ) H ~ 1 + ( I - Q ) H " • 1 T T - 1 = -25- 1 H~ 1 (2.6.10) 

At the first approximation the cylinder surface bounding the inner region is parallel to the 

wall, and hence dS p = d S w = dx = 81/2dx. Therefore, the contribution to the force from 

the inner region is obtained, upon the integration of the integrand and evaluating it from left 

to the right edge of inner region (-°°, +°°) as 

+00 

FR x--28"1 jft-162dx=-25"2 V2 tan" 
V2~ 

X=+oo 

= -2y[2nb 2 (2.6.11) 
x=-oo 

Thus, in view of (2.2.1, 4) the dimensional x-component of the force is determined by 

(2.6.12) Fftt = -2V27CTlJ~U 

FHz = 0 

But, as for the z-component of the force, upon the comparison of the x and z-components of G • n p , 

it follows that the z-component contains terms of an odd function of x so that its integration 

with respect to X would be an even function of x and hence its evaluation between - «> and 

+ 00 vanishes, resulting in 

(2.6.13) 

The flow field in the outer region is bounded, and hence a • iip is of order unity. 

Therefore, the contribution to the force from the outer region is of order unity and hence 

should be added to the force. But even though it is not small by itself it is much smaller than 

that of the inner region (which is of order 61/2, as 6 - 0) and hence can be neglected in 

comparison with the leading term. 
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2.6.2 - Electroviscous Force 

The electroviscous force, F4 is determined by applying the Lorentz reciprocal 

theorem, given by Eq.(l .3.69), which may be written in a vectorial form 

F4 = J B p - a p - d S p + J r 3 w - a w - d S w (2.6.14) 

>w 

in which B j , given by (1.3.59), can be expressed as 

l ^ V - r i ^ i v V ) } -4 In cosh 
V 4 

(c2|J) + \|/J(\|/2|J) >,J = P,W(2.6.15) 

which represent the tangential derivatives [i.e. the total derivative, V, minus the normal 

derivative, iij (rij • V JI of the electroviscous ion concentrations and potential (times 

physicochemical properties of the system) evaluated on the solid surfaces J. &} is the stress 

tensor due to the translation of a particle with unit velocity in the direction of force under 

determination evaluated on the surfaces J. 

The integrand of the integrals of the force in (2.6.2) may be expressed as 

Bj rjj dSj = [BJX(aJxxnJX + aJxznJZ)+ Bjz(ajzxnjx + a j2ZnJZ)]dSj (2.6.16) 

The unit vector normal to the wall is iz and that of the cylinder is given by (2.6.3), from 

which the integrand (2.6.16) evaluated on each solid surfaces is determined by 

Bw • fj w • dSw = (BWxa Wxz + BWza Wzz)dSw 
(2.6.17) 

Bp-rJp-dSP={BPx[aPxxx+apJ^ 
(2.6.18) 

2.6.2.1 - Determination of Bj 

The normal derivative involved in the relationship (2.6.15) is determined by 

fiw(fiw'v)= iz 
(- d - d) 
K^ dx z dz) 

- d . - a 
= L—-= 5-!i dz dz 

(2.6.19) 
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n p (n pv)=[xl x + ( z - l -5) ] z ] 

— < 

ax 

52x2^+52x[-5-' + (z-l)]|:k 

d , . d 
x — + ( z - l - § ) dz 

dx dz 
(2.6.20) 

+ (x[-l + 5(z- l ) ]^+8- 1 [ - l+5(z- l ) ] 2 ^}i z 
dx L J dzj 

Introducing this in (2.6.15) and noting that c, and \\i 2 (c.f, 2.4.50, 5.2) are independent of 

z (and hence their values on the solid surfaces are the same and their derivatives with respect 

to z vanish) results in 

^ -i- a 
BW = X5 2 i x — ^-4 In 

B p — A 

dx 

--- a 

cosh T W 

6 "") " • VS 

ax ax 

C 2 + ^ W ^ 2 

4 In cosh \ 4 ) 

(2.6.21) 

c 2 + \|/ p\|/ 2 (2.6.22) 

Introducing C2, given by (2.4.50, 51), and\|/ 2 , given by (2.5.2, 3), to (2.6.21, 22) results in 

BWx = M 5"2Pe 

2 D . 2 
+ 5 2Pe 

LX+w(l + ̂ )(-3H-2+4H-3) + LX-w(l-^)[-^ft"1+ft 

-3LX+w(l + ̂ )2^"3-3L2Wp_w(l-Q2)xH-2 

-2 

BPx = X< 5~2Pe I 

3 

+ 5 2Pe2 

B P z ^ < 8~2Pe L 

3 

+ 8~2Pe2 

BWz = 0 

L1PP+w(l + Q)(-3H-2+4H-3) + LVw(l-^)[-^H- 1+H 

(2.6.23) 
Y 

J 

-L2PP + W(I + Q) 2 XH- 3 - -L 2 P P _ W ( I -Q 2 )XH- 2 

L%^(\+ Q)x(-3H"2 + 4H"3)+ L'Pp.^1- fi)x[- ^H"1 + ft 

(2.6.24) 

J 

- ^ p P t W ( i + Q ) 2 ( H - 2 - ft-)- | L 2 P P _ W ( I - n 2 ) (H- - ft"2) 

(2.6.25) 
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Here L1 J p ± w [i = (1, 2) denote the order in Pe, and J = (P, W) denote the evaluation on the 

solid surfaces J] are defined by 

L J p±w = - 4 In 
/ 

cosh M>. 
V 4 

(F C P ±F C W )+VJ / J (F V P ±F V | / W ) , (J = P,W) (2.6.26) 

L2JP±W = i -41n coshl —-
D 2 +D, D 2 - D , 

2D, +X¥} 2D 
<FcP±FcW) (2.6.27) 

2.6.2.1.1 - Value of Lj J 
p±\v 

The constants - 4 ln(cosh \\f; /4J appearing in (2.6.26, 27) may be expressed as 

- 4 In cosh 
I 4 J 

- 4 In 

e + 2 +1 
v j 

-4 In 

v±( v>\ 

= vjTj -41n 
1 + e 2 

1+e 

- i f / j - 4 1 n 
1+e 2 

(2.6.29) 

Subtracting and adding these two identities results in 

M> , = -2(0,-^), -41n cosh (1±) 
I 4 J ^ ( G J + H , ) (2.6.30) 

in which G j and H j are define by 

G, = In 
1+e" 2 

V j 

1+e 
H, = In J 2 

From this F r I and F„, , defined by (2.4.51, 5.3), are determined by 
CJ Vj/J 

-1 -2 

(2.6.31) 

FC I=^[(D2-D IXG J-H J)+(D2 +D1XG J +H J)] = — [ D ^ + D ^ ] 

(2.6.32) 
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F = 
D. (D^+D,)^0 ' + D 2 ° l G j " ° 2 D , H j " D ' H j ] = i ^ t D 2 G j " D]Hj 1 

(2.6.33) 

Thus, L1JP+W and L2JP±W , given by (2.6.26, 27), may be expressed as 

Lljp±w = ^ { ( G j + Hj)[D2(Gp ± Gw)+ D^Hp ± Hw)] + (G, - H;)x 

[ D 2 ( G P ± G w ) - D^Hp ± Hw)]} = ^ - [ D 2 G ; ( G P ± Gw)+ D.H^H, ± Hw)] 

(DA + D^fD^GpfGj+D^Hp + H 
D; w 

(2.6.34) 

(2.6.35) 

2.6.2.2 - Stress Tensor for Translation Parallel to Wall 

The flow field for the translation of a particle with unit velocity parallel to a wall 

is determined by (2.3.37, 40, 41) in whichQ is taken to be equal to zero. From them the 

components of the stress tensor, determined by (2.6.6), evaluated on the solid surface J, at 

the lowest order in 6 are obtained as 

i ( r 
£jxx = - 5 2 2 x F T 2 + 0 5 2 

S j 

5? ta = S „ - 5-1(4H-3 - 3 H - 2 ) ( 2 z - H ) + H-1 +O(5 0 ) 

- - ( --
rjJzz = - 5 ~ 2 2 x H " 2 + 0 5 2 

S j 
(2.6.360) 

S; 

2.6.2.3 - Stress Tensor for Translation Normal to Wall 

A suitable expansion of the variables for the flow field, produced by the translation 

of the particle with unit velocity normal to and away from wall, is 

X = 0 2 X, 

u =6 _ i u 
X ' 

z- 8z 

u =u z , p = § p 2- (2.6.37) 
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Introducing this expansion to the Stokes equations, given by (2.3.1, 2), results in 

-3 a2ax A a2ux A dp 
5 2 ^ ^ + 5 2 — r = 5 2 - ^ 

dx ~2 CL2 
dz dx 

, a2uz 2 a2uz 
0 ~ZT^~ + 0 _ . , = o 

dx 
.",2 a^ 

-3^P 
dz 

dux duA 
= 0 

dx dz) 

The boundary conditions are 

ux = uz = 0 

u =0, 

on z = 0 

u z = l on z- H 

(2.6.38) 

(2.6.39) 

(2.6.40) 

(2.6.41) 

(2.6.42) 

Introducing the expansion (2.3.17) in this flow field leads to the same equations for the 

leading term as those obtained for the flow field for the translation of the particle parallel to 

the wall, given by (2.3.18-20), with boundary conditions 

on Z = 0 (2.6.43) Ux0 = Uz0 = 0 

uxo = 0» U z 0 = 1 on z- H (2.6.44) 

In view of equation (2.3.19), the pressure is independent of z. Thus, integrating Eq. (2.3.18) 

twice with respect to z and imposing B.C.s (2.6.43a, 44a) results in 

dp0 

2 v ' dx 
ux0 = Uz2-Bz) (2.6.45) 

Differentiating it with respect to x and introducing the result to the continuity equation 

(2.3.20), leads to the following differential equation for u^: 

I 2 : 
du z0 

az 2 
l A ( z 2 - H z ) - x ^ z 

dx 
(2.6.46) 

Its integration is 

U z 0 = 2 
d2Pofl 

C-.2 
dx \3 z -

1 ^ 
-HI2 

2 ) 

1 - # 0 ~2 
2 X ^x" Z + C (2.6.47) 
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Imposing B.C.s (2.6.43b, 44b) results in the following differential equation for the pressure: 

ft3-^) = 1 2 (2-6.48) dx V dx 

Its integration is 

dp0 

dx 
= 1 2 x H ^ + C H J (2.6.49) 

The flow field is symmetric with respect to the z -axis. Thus, the pressure must be an even 

function of x which indicates that C = 0. In view of the expansion (2.6.37e), any constants 

can not be included in the pressure either to satisfy the matching condition. In this way, upon 

integration of (2.6.49), the pressure is obtained as 

p 0 = -6 f t " 2 (2.6.50) 

Now, introducing (2.6.49) and its derivative in (2.4.45, 47) and noting that the constant C 

in either of the equations is equal to zero, yields the components of the velocity as 

ux 0 = 6xft"3(z2 - Hz) (2.6.51) 

u z 0 = -2 (6FT 4 - 5ft-3 )z3 + 3(4FT3 - 3ft"2 )z2 (2.6.52) 

Introducing the flow field (2.6.50-52), to the stress tensor, given by (2.6.5), written in terms 

of the inner variable [by the use of the expansion (2.6.37)], leads to 

^xx = +S-26H-2+0(5-1)|Sj 

a J x z ^ J z x . 8 ^ 6 x H - 3 ( 2 z - H ) + 0(8^) |S j (2-6-53) 

aJzz = +5-26H-2+0(5-1)0(8)|Sj 

2.6.2.4 - Force Parallel to Wall 

The integrand of the force, given by (2.6.17,18), for the tangential component of the 

force, is determined by the use of (2.6.23-25, 36). The stress tensor for the translation of a 

particle parallel to the wall, given by (2.6.36), is evaluated on the wall(z = 0) as 
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3 ( 1 
-2 

Wxx 

G 

G 

Wxz 

Wzz 

- 8 22xH"2 + 0 8 2 

^wzX3 = §- ,4(-ft-2 + ft-1)+0(80) 

-8~22xft"2 + 0 8"2 

(2.6.54) 

and on the cylinder surface z = H as 

3 
r-2 aPxx = -6 22xH"2 + 0 

( -) 
8 2 

^PX Z^PZ X^-12(2ft-2-ft-1)+0(60) 
3 ( \\ 

(2.6.55) 

G?zz = -b 22xH"2 + 0 8 2 

v ; 

The integrand of the force, given by (2.6.17,18), is obtained as [c.f, (2.6.23-25, 54, 55)] 

Bw -a w dSw = xj 8"2pe[L
1WP+w(l + n)(-12H"3 + 28ft"4 - 16PT5) 

L1WP_w(l- Q)(-2ft-2 + 6IT3 - 4ft"4)] + 8"2Pe2[odd function of x]} dx 

(2.6.56) 

+ 

B p - a P -dS P =A/{8 2Pe jJPp+w (l + Q)(-6ft-3 + 20ft-4 -16f t - 5 ) 
(2.6.57) 

+L 1P p_w ( l -Q)(-f t" 2+4ft- 3 -4f t - 4 ) ]+6" 2Pe 2 [odd function of x]}dx 

The force is obtained by the sum of the contribution from all individual points on the solid 

surfaces bounded the inner region, upon the integration from the left edge(x = -00 ) to the 

right edge(x = +00) of the inner region. Thus, in view of integrals (2.3.34, 35, 2.4.38), 

7* A * x f U , 5 . . l A l l 5>/2 
FT"4dx=- -H"3 + —H"2 + -H- ' J 2V3 12 8 / 16 

tan" 
-00 

J H - d x . -
35 

' X ^ 

\42J 

35V2 

-co 16 

A"4 + !ft-3 + i f t -2 + f ^ - ' J + 128 tan -1 

V2> 

1-00 r l 
j I odd functions of xjdx = even functions of x 

+00 

= 0 

(2.6.58) 

+°o 35V2~7r 

(2.6.60) 
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the x-component of the force, given by (2.6.14), is obtained as 
5+QO 

F4; = ̂ Pe8"2
 J[L'PP+W(I + Q)(-6ft"3 + 20ft"4 - 16ft"5) 
- 0 0 

+ lJPP_w(l- S)(-ft~2 + 4ft"3 - 4ft-4) dx 

+ A,Pe8~2
 |[L1WP+W(I+ Q)(- 12ft-3 + 28ft"4 - 16ft"5) 
- 0 0 

+ TJWp_w(l- Q)(-2ft"2 + 6ft"3 - 4ft-4) 

= XPe8 

+ X?eh 

L'R p+w (l+S) 

dx 
\ -9 25 35 

v 4 + 4 ~ 8 y 
+ U P P-W Ml 

. / ~X| -9 35 35 
L'WP+W l+Q — + — - — p+wV K 2 4 8^ 

1± 1 1 
2 + 2 ~ 4 , 

+ L1WP-w(l-S)(-1+r£ 

V2TI 

V271 

(2.6.61) 
By the use of definition (2.2.5e, f), the dimensional force per unit length experienced by the 

particle, given by (2.6.1), is 

f 
F = FH + 

srs0kT Y 
o 2 2 v2z ie c^ay TIUF; (2.6.62) 

Thus, the x-component of the total force is determined by [c.f, (2.6.12, 61, 62, 2.2.1, 5)] 

a Fx=-2V27rnA/-U-V27i 

1 

S r g O k T 

2(az,e) c 
r|U: 2c a k T a U f a ^ 

TIU D, \h) 

8(3L1PP+w+L,Wp+w)[l u ; + 
aQ^ 1 . 

+ -L 1 P, p-w 

X 

f aDN 

1 

(2.6.63) 

V U 

or, in view of (2.6.34), by 

a 
Fv = -2V27Trw-U-

V2TI (8rs0)2(kT)3 V^ 

h U " 2 (Zie)4
Coo h2Vh 

^ ^ ( G P + G J + ( ^ ( H P + HW) (U+aQ) (2.6.64) 

+ 
2GP / \ 2Hp / \ 

( U - a Q ) 
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It is of interest to note that for small but equal surface potentials and equal ion mobilities 

(e.g. K+ and Cl"), the second term in square brackets on the right-hand side vanishes. The 

first term in square brackets, in view of the relation between the ion radius, ai, and diffusion 

constant, 

kT 
4nr\ai 

reduces to 

47iT](z1e) a £ 2 

(kT)3 ' 
In deriving (2.6.65b) the expansion (1.2.8e) and 

, , x2 x3 x4 

ln(l + x) = X - y + y - — + • • • 

(2.6.65a) 

(2.6.65b) 

(2.6.65c) 

have been used. Thus, the electroviscous drag is proportional to ion size, similar to 

electroviscous drag on an isolated sphere, and scales with viscosity and (f. 

2.6.2.5 - Force Normal to Wall 

The integrand of the force given by (2.6.17, 18), for the normal component of the 

force, is determined by the use of (2.6.23-25, 53). The stress tensor for translation of a 

particle normal to the wall, given by (2.6.53), is evaluated on the solid surfaces as 

°PXX = °PZZ = ̂ wxx = ̂ wzz = +8~26rT2 + 0(8_1) 
3 / l \ 

6 ^ = 6 ^ = 8 26xH"2
 + 0 

ffw« = °w» = -8 26xH" + 0 

8 2 

v J 
( \\ 

8 2 

V J 

(2.6.66) 

From this, and (2.6.23-25) the integrand (2.6.17, 18) is evaluated on each solid surfaces 

with the result 

Bw • a w • d§w = 115 "3Pe[odd function of x 

+8 2Pe : 8L2WP+W(l+ £)2(rT4 - ft5)+4L2Wp_w(l- Q2)(ft-3 - ft"4) dx 

(2.6.67a) 
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Bp • G p • dSp = X |S 3Pe[odd function of x] 

+ 8 2Pe : 8L2PP+W(l+ Q)2(ft- _ H-5)+4L2Pp_w(l- Q2)(ft-3 - ft"4) dx 

(2.6.67b) 
Thus, the normal component of the force is determined by [c.f, (2.6.13, 62, 58-60] 

^ V2TT (srs0) (kT)3 aVa 
K = — : r~A , , r- x 

16 

2 ( z ^ D ^ h2Vh 

(L2PP+W + L2WP+W)(U+ aQ)2+ j(L2Pp_w + L2WP_w)(u2 - a2(22) 
1 

or, in view of (2.6.35), by 

V27i (s rs0) (kT)3 aVa 

(2.6.68) 

8 (z,e) 

+ 4 

h2Vh 

G^ Hp^ 

D, +D2J 

V GP HP 

+ 

\ 

VD. DJ 
/ G„, H 'W 

^ D , + 
w 

D. 

(U + aQ): 

(2.6.69) 
in which (GP, Gw) and (HP , H w ) , given by (2.6.31), in view of definition (2.2.4b), may be 

expressed as 

G^ln 
l + e~2kT 

H,=ln-
l + e2kT 

J = (P,W) (2.6.70) 

In the formula (2.6.64, 69, 70),Eris the relative permitivity of the medium (dielectric 

constant), 8 0the permitivity of the vacuum (E r s 0 is the permitivity of the medium), r\ the 

viscosity of liquid, (kT) the thermal energy, z{ the ion valency of either species, e the charge 

of a proton, c^ the number ion bulk concentrations, C, P and ̂  w the (-potentials of the particle 

and wall, D, and D2 the diffusivity of counterions and coions, respectively; a is the cylinder 

radius, h the clearance between cylinder and wall; U is the translation velocity of the cylinder 

and Q its angular velocity for its rotation in the clockwise direction. 

It is of interest to note that for ions with the same mobility and for small but equal 

surface potentials of the wall and the particle, Eq. (2.6.69) reduces to 

102 



^ 5V27I3 (e re0) n2a2<;4 aVa , ,2 
F-= 8 c . W CT(U+an) (26'71) 

It can be seen that the normal component force varies linearly with ion size squared! ai J. 

It also varies linearly withr] and it proportional to the fourth power in (-potential. 

2.7 - Discussion 

2.7.1 - Matching Conditions 

The inner solution of the perturbation of ion concentrations obtained in § 2.4 has to 

match to the outer solution by requiring that 

x - ± . (2.7-D C2 x->0 ~ C 2 

To investigate how it works, for large values of x, the perturbation of ion concentrations of 

order Pe, given by (2.4.23, 39,) and of order Pe2, given by (2.4.40, 49), may be written as 

^(FcP-FcwXl-^ )* - 1 (2.7.2) c21 X->-+co 

and 
2 

c22 * - * • ^ ( F C P - F C W X 1 - " 2 ) * " 2 ( 2 " > 

Thus, in view of (2.3.7, 4.17), the matching condition (2.7.1) gives 

C21 x-»0 - * S " ' ( F c P - F c w ) ( l - « ) x - ' (2.7.4) 

and 

2 
C22 

^ „ ^ 3 0 ° ( F c P - F c W ) ( l - n 2 ) x - 2 (2.7.5) 

But, the electroviscous ion concentrations for both orders in Pe in the outer region must be 

of the same order in 8, since otherwise (noting that the flow field in the outer region is of 

order unity) Eq.s (2.4.10-13) for the perturbation in ion concentrations at order Pe2 does not 

work anymore. In other words, the expansion (2.4.1) breaks down (i.e. it is not uniformly 

valid). From this it follows that for the matching condition to be satisfied at order 8"1, in 
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deriving Eq. (2.4.49), fore , the constant of integration, D, must be included, resulting in 

c22 *_>„-> 8"^D (2-7.6) 

By the way, evaluating this constant is not required, since in deriving the electroviscous force 

only the derivatives of the electroviscous ion concentrations [c.f, (2.6.21, 22)] are needed 

and hence the derivative of the constant D vanishes. 

2.7.2 - Existence of Outer Solution 

To investigate for the existence of an outer solution that satisfies the matching 

condition (2.7.4) we may use a tangent circle coordinate system ((, p.) which best describes 

the geometry of the problem for the outer region (c.f, Fig. Al). This coordinate system is 

discussed in Appendix A with the transformation 

x= 2 ^ 2 , z = 2 ^ 2 , 0 < C < 1 , -oo<LX<+oo (2.7.7) 

or equivalently, 

u = ^ 2 * L 2 , C = ~ 2 Z~2> 0 < C < 1 , - o o < p : < + o o (2.7.8) 
X + Z X + z 

The cylinder surface is given byC, = 1 and the wall surface by^ = 0,the origin by(^ = 0, 

|i = oo j , and the far distances from the origin by C, = \i = 0 . The normal unit vector 

outward to the cylinder is - L and that of the wall is + i,. Thus, the electroviscous ion 

concentrations of order Pe, given by (2.4.4-6), may be written in this coordinate system as 

[c.f, (A.30)] 

<92cY S2cY 
- ^ f + - T T - = 0 (2-7-9) 
dCf d\x 

with boundary condition on the solid surfaces [c.f, (A.29)] 

^ L = 0 onC = 0, % - = ° o n C = l (2-7.10) 
dC, c\> 

and at infinity 

c 2 1 - > 0 a s ( t , | i ) - > 0 (2.7.11) 
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and with the matching condition [c.f, (2.7.4, 7)] 

C21 ^ o o - ^ F c P - F e w X l - S ) , (2.7.12) 

Its solution is 

c 2 l =^(F c P -F c W ) ( l -QV (2.7.13) 

which may be expressed in Cartesian coordinates as [c.f, (2.7.8)] 

C0 = 5 P e ( F c P - F c W ) ( l - Q ) ^ 3 2 - + o(Pe2) (2.7.14) 
x + z 

To determine the outer solution at order Pe2 the solution of the flow field for the outer region 

involved in Eq. (2.4.10) is required. It is easily observed that this solution satisfies the 

matching condition (2.7.4). 

From the above discussion, it follows that the contribution from the outer region in 

electroviscous ion concentrations and equally the electroviscous potential is of order 6"1 for 

non-identical particle and wall surface potential, otherwise it is of order unity. 

2.8 - Results and Conclusions 
For a charged system, the cylinder experiences an electroviscous force of order 

G4 ( e is the ratio of the double layer thickness to the cylinder radius), resulting from the 

tangential movement of the ions in the diffuse double layers on the solid surfaces caused by 

perturbation of the electrical field. For an uncharged system, Stokes equations predict no 

force on the cylinder in the direction normal to the wall [c.f, (2.6.13)]. Whereas, for the 

charged system the cylinder experiences a normal component of the force, determined by the 

formula (2.6.69). The drag component of the purely hydrodynamic force for the inner region 

is of order 6"1/2 [c.f, (2.6.12)]. Because of symmetry, as a first approximation, it is 

independent of the rotation of the particle. For a charged system, the particle experiences an 

additional force (tangential component of electroviscous force) of order e , determined by the 

formula (2.6.64). The tangential component of the electroviscous force is of order Pe (Pe is 

the Peclet number based on the radius and translation velocity of the cylinder, and diffusity 

of counter-ions), or linearly depends on the velocity, and it is of 0(5"5/2) in terms of the 
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dimensionless clearance [i.e. 0(PeS )]. The normal component of the force is of order (Pe 

S"5/2) 

The normal component of the force may be written in dimensionless form as 

V27r, 
e4 APe'S-^f. (2.8.1a) 

where fz is a function of (-potentials, the ratio of diffusivity of ions, and the linear and angular 

velocity of the particle, defined by 

fz = 5 
D2 j 

(l+Q.) 

D 
Gw + D^ Hw 

(2.8.1b) 

( i -o 1 ) 

The function fz is plotted versus the ratio of the diffusivity of ions in Fig. 2.3 for the 

translation and in Fig. 2.4 for the rotation of the particle for three different ratios of (-

potentials, (p=0.5(w, (p=(w, and (p=2(w. The valency of the ions is assumed to be one, the 

temperature of the medium is room temperature and (w is taken to be -100 mV. Each curve 

has a minimum. The location of the minimum depends on the magnitudes of the (-potentials. 

The minimum can be either zero or negative. For identical (-potentials the minimum is zero 

for any combination of the linear and angular velocities, and for this example it occurred at 

D,/D2=2.4791. For the curve (p=0.5(w, f^ = -0.1434 for translation and fzMin = -0.1037 for 

rotation of the particle and they correspond to D,/D2=l .9344 and D,/D2= 2.2788 for the former 

and latter, respectively. For the curve (p=2(w these values are ( f ^ —1.4846, D1/D2=4.1662) 

for translation and (fzMm =-1.7199, D,/D2=3.2453) for rotation of the particle. The tangential 

component of the force depends linearly on the ratio of the diffusivity of ions. For small (-

potentials and for equal mobilities of ions, as a first approximation, the tangential component 

of the force, is linearly proportional to viscosity of mediunvn, ion radius, ai? and (2, whereas 

the lift component is proportional to n2, a{ and (4. For two special hydrodynamic cases, 

namely for U = - a£l and U = aQ, for the normal component of the force, the present theory 

[c.f, (2.6. 69)] predicts no force for the former and four times the force (because of the 
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proportionality to the square of the velocity) produced by either the rotation or translation of 

the particle for the latter. 

For identical particle and wall (-potentials, the present theory predicts the normal 

component of the electroviscous force of magnitude [c.f, (2.6.69)] 

5V27t(srs0)2(kT)3 aVa" (G? H 
— _ / \ A . 1 r~ "r 

Y 

( z l e ) 
h2VhVD, D 

(U + aQ): (2.8.2) 

Warszynski & van de Ven (2000)'s theory for the same conditions, given by (1.4.5), predicts 

a force half as large. Their theory, given by (1.2.33), at the leading order [i.e. at 0 ( e 4 ) ] for 

an uncharged particle but with the charged wall predicts a normal component of the force of 

magnitude 

Fz = 
V2TT (s rs0) ( k T ) 3 aVa r 

8 (Z|6)4
Cw h2V^ 

G„, H 'W 

vD, 
+ • w 

Dj 
U2 (2.8.3) 

which is the same as that predicted by the present theory for the same conditions [c.f, 

(2.6.69)]. For an uncharged wall but with a charged particle the present theory for the 

translation of the particle predicts a force of order e of magnitude 

F = 
9V2TI (e rs0) ( k T ) 3 Va ( G, f, 

8 
( z i e ) 

H, 
\ 2 

+ h2VhVD, D 
U2 (2.8.4) 

J 

but, Warszynski & van de Ven (2000)'s theory predicts no force of order € , only a force of 

order G6 (i.e. just the contribution from the perturbation in potential) of magnitude 

Fz = 
7V27T (e rs0) (kT)4 aVa ( 

16 
( z i e ) e 

h 3 Vh\D 
GD H A 

Dw 
LP (2.8.5) 

which makes no physical sense, since for both cases [i.e. (\|ip= 0, t|iw * 0) and (t|rp * 0, t|fw = 

0)] we expect to have a perturbation in the flow field, which must result in a lift force of order 

G4. From these three comparisons it follows that they obtained the force by considering only 

the tangential movement of the ions in the diffuse double layer on the wall. This is clearly 
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verified by the relationships (2.6.67a, b) which indicate that for identical (-potentials half of 

the contribution to the force comes from the wall and the other half comes from the particle 

surface and hence by neglecting the latter they obtained only half the force for identical (-

potentials, the exact value for the case when \\i p = 0, and no force for y w = 0. 

The drag component of the force, given by (2.6.64), is exactly the same as that 

obtained by Cox, given by (1.2.32d). For the normal component, Cox's theory, presented in 

Wu et al. (1996), given by (1.2.32a), for the translation of a particle predicts a force of 

magnitude 

,2 

F' = 
V27i (£r£0) (kT)3 aVa 

8 (Zle)4
Coo h V h 

GD H, G 
D, + D. + w H 

\ 2 

D, + w 

DJ 
+ 10 

GD H, 
D. + D J 

Gw H 'w + w 
D, D 2 / 

(2.8.6) 

U' 

which is the same as that determined by (2.6.69). But, for the rotation of a particle his theory 

predicts a different value for the force as can be seen (for a special case of the problem) by 

comparing formals (1.4.4) and (2.8.2). Cox's theory for just rotation of a particle predicts 

^ V2TI (srs0) (kT)3 aVa 
F, = —" ; 71 T-r=X 

8 (Zle)4
Coo h2Vh 

GD H, 
D, + D. 

- 3 
G w H 

D, + w 
DJ 

- 2 
GD H, 
D, + DJ 

G w H 
+ w 

D, D 2 ^ 

(2.8.7) 

(a(2): 

which indicates that for a charged particle but uncharged wall (i.e. Gw = 0, Hw = 0) the force 

is positive, for an uncharged particle and charged wall the force is negative, and also for 

identical (-potentials the force is negative, which does not make sense. 

In deriving the present theory, in all calculations from the beginning to the end, the 

dimensionless linear velocity (1) and angular one!QJ appeared combined [i.e. either as 

(l - Q, j , ( l + Q ) or their product], and hence if the derived coefficient of the linear velocity 

in the force is correct, the coefficient of the angular velocity must be correct, if at the first step 

(i.e. in the hydrodynamic part) they combined together correctly and in addition if the new 
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combination of them, (l + Cl), which is involved in the calculation after the integral (2.4.47) 

is correct. It is easily verified by observing that the boundary conditions (2.3.13, 14) are true 

and they are also satisfied by the flow field, given by (2.3.40,41), and the integration (2.4.47) 

is correct. In Cox's original formula, presented in Wu et al. (1996), instead of the linear and 

angular velocity, U and aQ, the velocity of the nearest point of the cylinder to the wall, V (V 

= U - aQ), and its angular velocity, aQ, appeared. Therefore, this discrepancy may be 

explained by the possibility that Cox obtained the hydrodynamics of the problem in a fixed 

coordinate system instead of the moving coordinate system used here, but to remove the time 

dependency of the electroviscous ion concentrations which appeared at 0(Pe2) [c.f, Eq.s 

(1.3.60a, 2.4.10)] instead of subtracting the linear velocity of the particle, U, from the x-

component of the velocity, he subtracted the velocity of the cylinder at the closest point to the 

wall, V = U-aQ, which is obviously not correct. In other words, his calculation up to 0(Pe2) 

is correct, and hence the derived drag component of the force is valid for both translation and 

rotation, but for the normal component, in addition to the linear velocity, an excess angular 

velocity (for removing the time dependency) is involved in the Eq. (2.4.46) to be accounted 

for the invalidity of the normal component of the force for the rotation of the particle. This 

is verified by recalculating the problem after adding the termQ in the x-component of 

velocity appearing in the integral (2.4.47). 

The purely hydrodynamic force determined by (2.6.12,13) is the same as that obtained 

by Cox and Warszynski & van de Ven (2000). 

From the above discussion it can be concluded that Cox's theory for the drag 

component of the electroviscous force is valid for both translation and rotation of a cylinder 

parallel to the wall, but its normal component, reported in Wu, et al. (1996), is valid only for 

translation of a cylinder. Warszynski & van de Ven's theory (2000) is valid only for a 

charged wall, but with an uncharged cylinder under translation parallel to a wall. 
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Chapter Three 

Electroviscous Sphere-Wall 

Interactions 

in 



3.1 - Introduction 

Observations by Alexander and Prieve (1987) of the change in the distance to the 

wall of a 9 urn spherical latex particle moving parallel to a glass wall (with velocity 50 |im/s) 

in a slit-like flow cell apparatus containing a glycerol-water solution attracted the attention 

of scientists to explain this interesting phenomenon. The pioneering work was by Prieve & 

Bike (1987) who attempted to formulate a theory based on the lubrication approximation. 

They concluded that the discrepancy between experiment and their theory was due to the 

invalidity of the lubrication theory. In their latest papers which appeared in the literature 

in 1995, they released the lubrication theory, and obtained a complete solution of the 

problem. Although they could improve their results, the theory underestimated the force by 

several orders of magnitude. Many other theories appeared in the literature in the late 

eighties and early nineties, none of which could predict the right order of the force. As 

mentioned in Chapter one, the common problem encountered in these theories is that it is 

assumed that the perturbation of potential determines the force by applying the Maxwell 

stress tensor, however this is not the dominant contribution to the force. Although Cox 

predicted the right order of magnitude of the force in his general theory(1997), the problem 

of the sphere-wall interactions remained unsolved. The objective of this chapter is to present 

a solution for the problem of a sphere which is under translation and rotation with a small 

clearance between particle and wall for low Peclet numbers. As for the case of cylinder-wall 

interactions, the assumption of a small clearance allows an easier analytical approach to 

solve the hydrodynamic part of the problem and equally the low Peclet number assumption 

allows one to analyze the electroviscous part by applying the usual procedure of matched 

asymptotic expansions. Since hydrodynamics is involved in the electroviscous equations, 

the electoviscous effects are determined in the expansion of both the clearance parameter and 

the Peclect number. 

Following the problem statement, the inner solution of the purely hydrodynamic 

problem in an expansion of the small clearance is presented in § 3.3. The perturbation of ion 

concentrations in an expansion of low Peclet number is given in § 3.4. It contains outer and 
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inner regions, and inner region solutions at orders Pe and Pe2, respectively. The perturbation 

of potential is determined in § 3.5. The ectroviscous force is obtained in § 3.6. It includes 

the tangential derivative of the electroviscous ion concentrations and potential, the 

determination of the stress tensor for the translation of the particle parallel and normal to the 

wall and applying them to obtain the drag and lift components of the force. Finally, results 

and conclusions are given in § 3.7 

3.2 - Problem Statement 

Consider a charged spherical particle translating parallel to a charged stationary plane 

wall with velocity U, and rotating around its diameter, parallel to the wall and normal to U, 

with angular velocity Q, in a symmetric electrolyte at rest, as shown in Fig. 3.1. The radius 

of the sphere is a, and the gap width between the sphere and wall is denoted by h. The 

surface of the particle is given by Sp and that of the wall by Sw, the particle surface potential 

by ̂  p and that of the wall by ̂  w . The purely hydrodynamic problem is denoted by the flow 

field (u, p), the electroviscous ion concentration (of either of co-and counter-ions) by c2 and 

the electroviscous potential by \\i 2 . 

Fig. 3.1- A charged sphere under translation and rotation near a charged plane wall. 
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The (x, y, z) coordinates with unit base vectors ( ^ , i , L, J constitute a right-handed 

rectangular Cartesian coordinate system having their origin on the wall, defined by z = 0. 

The z-axis passes through the sphere center, O, whose coordinates are (x = 0, y = 0, z = a + 

h). The particle surface and that of the wall may be written in this coordinate system as 

z - a - h = ± ^/a 2 - (x 2 + y2) onSp , z = 0 onS w (3.2.1) 

The + sign corresponds to the upper part of the sphere and the - one to the lower part. 

Associated with this coordinate system is a cylindrical coordinate system (p, 6, z), described 

in Appendix A. 

In order to make quantities dimensionless, shown with a tilde, the length scale is 

taken to be identical to the radius of sphere and the characteristic velocity is taken to be the 

particle translation velocity. Thus, quantities are made dimensionless according to the 

relation (1.3.2) in which L = a and V = U. From this it follows that 

(3.2.2) 
~ aQ h all 2c00akT - TT~ 

U = l , f l = — , 8 = - , P e = — , A , = " ,F=r i aUF ,g = 
TJ a D, T|U 

Sr e okT 
2 

c„ 2(az,e) 

where 6 is the dimensionless gap width between particle and wall. 

The surfaces of the particle and wall, given by (3.2.1), may be expressed in the 

dimensionless coordinate system as 

z-1-6 - ±^\-(x2 + y2) onS p , z = 0 onS w (3.2.3) 

and the unit vector outward to them, rij (J = P, W), as [c.f, (A. 13)] 

iip = xl^ + y ^ + ( z - 1 - 5 ) ^ o n S p , n w = i± o n S w (3.2.4) 

It is assumed that the Reynolds number based on the velocity U, the sphere radius, 

a, and the fluid viscosity, v, defined by (2.3.1), is much smaller than unity. Therefore, the 

governing equation of motion around the particle may be considered the Stokes equations 

which may be written in dimensionless form as 

V 2 t l - V p = 0 (3.2.5) 

V - 3 = 0 (3.2.6) 
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By translating the coordinate system (x, y, z) with velocity ^ the problem reduces to a steady 

state one in which the particle just rotates, with angular velocity Q ,and the undisturbed fluid 

and wall translate with velocity - ^ . Doing so, the corresponding boundary conditions on 

the sphere may be written as 

u = uxix + uyiy + uzi2 = Q x f = Q x Q y Q z = o n S . 

x y ( z - 1 - 8 ) 

[ (z- 1- 8)Oy - yQz]Tx - [(z- 1- 8)SX - xQz}\ + [yQx - m 

Letting 

(3.2.7) 

ci = nxix + ciyiy + nziz = oix + niy + oiz 

it may be expressed as 

ux = ( z - 1 - 8 ) Q , uy = 0, uz = - x Q 

and those on the wall (fL - 0) and at far distances (as | T| -> oo ) may be expressed as 

(3.2.8) 

o n S , (3.2.9) 

u = - 1 , 

u. 1, 

uy = 0, 

uy = 0, 

uz = 0 

u = 0 

o n S 
w 

(3.2.10) 

as | r | —> oo (3.2.11) 

A search for a solution of the problem for the case when the particle is very close to 

the wall but the double layer thickness is much smaller than the gap width, that is 

1 h 
— « § = — « l 
Ka a 

(3.2.12) 

along with the condition of low Peclet number, Pe « 1, is considered in this chapter. 

3.3 - Hydrodynamics 

3.3.1 - Flow in Inner Region 

As for the problem of cylinder-wall interactions, since the clearance between the 

sphere and wall is very small, it is justified to apply the lubrication theory to analyze the flow 

field within the gap (the inner region). Therefore, we may define the inner variables denoted 

by a hat Q as 
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~ c 1/2 ^ — o 1/2 ~ / ~ c l / 2 ~ \ ~ o ~ 

x = 5 x, y = 8 y,\p = 5 pj, z = 5z 
ux = ux, uy = uy,(up = up, ue = ue), uz = 51/2 uz, p = 5~3/2p 

(3.3.1) 

Thus, the creeping flow equations for the outer region written in the Cartesian coordinate 

system are 

a2ux a2ux a2ux dp 
dx2 + dy2 + dz2 ~ dx ' 

a2uy a2uy a2uy dp 
dx - + + dy2 dz2 dy ' 
a2uz a2uz a2u2 

dxz dy' dzz dz 
auY du du7 

dx dy dz 
And for the inner region they are 

(3.3.2a) 

(3.3.2b) 

(3.3.2c) 

(3.3.3) 

dz2 

dz2 

+ 5 

+ 5 

fa2Gx . a 2 0 ap 
+ v, dx1 dy1 J dx 

^a2u, a 2 0 

V 
+ • 

dx1 dy - 2 
/ 

5p 
dy 

5+^ + 82 
C.2 dz 

fd2uz d2u} 
+ 

V dx! dy1 ) 

dp 
dz 

(3.3.4) 

(3.3.5) 

(3.3.6) 

dux du duz n 

ox oy oz 

The corresponding boundary conditions, given by (3.2.9, 10), for the inner region are 

(3.3.7) 

ux =-[1 + 8(1-z)]Q, u y=0, uz = - x Q onz= Fl (3.3.8) 

K = -l uy = 0, u =0 on z= 0 

where we have written [cfi, Eq. (3.2.1)] 

p = l + ^ ( x 2 + y2)+0(8)|S p = H + 0 ( 8 ) 

(3.3.9) 

(3.3.10a) 
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in which H defined by 

H = l + ^ ( x 2 + y 2 ) = l + i-, (3.3.10b) 
2 v * > - • 2 

is the surface of the particle for the inner region. The flow field in the outer region (outside 

of the gap) is bounded (i.e. it is of order unity) as 6 - 0, so that the inner flow field has to 

match onto the outer flow at order 6° as (x, y) -* °°. This means that the matching condition 

is required to satisfy [c.f, (3.3.1)] 

u, = 0( l ) , uy = 0( l ) uz = o(p), p=o[p" 3 ] 

Expanding the flow field in 6 as 

as (p) 00 

U x = U x O + § U x l + 
uz = uz0 + 5u z l + 

uy = uy0 + 5uy l + 

P = Po + S P i + 

the equations of motion at the lowest order satisfy 

a2u xO 

dz2 

a2a y0 

di2 

dz 

du 

dp0 

dx 

dp0 

dy 

xo + dUyo + au z0 = 0 
dx dy oz 

with boundary conditions 

ux 0 = - Q , uy 0 = 0, 

Ux 0 = " 1, Uy0 = 0» 

uz0 = - x Q 

uz0 = 0 

onz= H 

on z = 0 

as M 

(3.3.11) 

(3.3.12) 

(3.3.13) 

(3.3.14) 

(3.3.15) 

(3.3.16) 

(3.3.17) 

(3.3.18) 

and with matching condition 

u,0 = O (1), uy0 = O (1), u20 = O (x, y), p0 = O [(x, y)~ 

Eq. (3.3.15) indicates that p0 is independent of z, so that Eq. (3.3.13) may easily be integrated 

twice with respect to z to give 

-» oo (3.3.19) 
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UxO = 

\ dp, 
z2 + A z + B 

2 V dx 
Imposing B.C.s (3.3.17a, 18a) gives the value of A and B: 

B = - l . A = - H 
lfdrV 
2\ dx) 

H + ( I - Q ) H -1 

From this uxo is obtained as 

Similarly, u is obtained from Eq. (3.3.14) as 

l f a p o 

(3.3.20) 

u y o = 2 V dy 
(z2 - H z ) (3.3.21) 

Differentiating Eq. (3.3.20) with respect to x, Eq.(3.3.21) with respect to y and introducing 

them to the continuity equation (3.3.16) yields a differential equation foruzo: 

du zO 

dz 

i(d2p0 a2p0V2 ~x \(dpQ ap0 .V / p;Vu-2- /,, w 

from which and upon imposing B.C. (3.3.18c),uzo is obtained as 

( - j2.^ ^ 2 ~ \ / i 1 \ 1 f -m * * \ 
l 52p0 , a 2 p 0 Vi 

dx ~2 + ay2 J 
z 3 - -Hz 2 ^ l 

V3 2 / 
+ — 

4 

dPo . dp0 . 
7TX + — y 

V ox dy ) 

z2 + '2z2 ( l - Q ) x H 

(3.3.23) 

Imposing B.C. (3.3.17c) leads to a differential equation for the pressurep0: 

H3 + i f s 2 p 0 + aV 
6 

or 

I dx1 dy1 ) 
l^Po,.3Po,)ft2 + ( l + ^ = 0 

V dx 
•x + 

dy J 

d ( ~ 3 5p0 |̂ a / 

ax 
H + H 

5p 
dx/ ay V ay J 

1 +6( l + Q)x = 0 (3.3.24) 

which is similar to the Reynold's equation in the lubrication theory. The matching condition 

(3.3.19d) suggests to seek for a solution of the form 

p0 = a xH2 + p yH (3.3.25) 
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But, since the flow field is symmetric with respect to the (x, y)-plane, the pressure cannot be 

an odd function of y, so that the second term on the right hand side is rejected. Differentiating 

(3.3.25) with respect to x and y results in [c.f, (3.3.10b)] 

a ^ = a ( f t - 2 - 2 x 2 H - 3 ) (3.3.26) 
dx 

2a xyH"J (3.3.27) 
dp0 . _ - 3 

ay 

Substituting these in Eq. (3.3.24) leads to the following expression: 

- 3 a x - 2 a x + 6 ( l + ft)x=0 

from which it follows that 

a = - ( l + Q ) , P = 0 

Thus, the particular solution of the pressure and its derivatives are determined by 

p0 = - ( l + Q ) x H " 2 (3.3.28) 

f = | ( l + fi)(H--2x^). ^ = -f(l + Q ) x y H - (3.3.29) 

As for the general solution, it is more convenient to transform Eq. (3.3.24) in a polar 

cylindrical coordinate system by the aid of relationship (A.2) in Appendix A. Doing so, 

results in 

2- a 2 - (^ \dp 
= 0 (3.3.30) 2 a 2 p 0 a p0 f 3p 

+ ~> + + p p dp 2 a e 2 

Since [c.f, relation (3.10b)] 

dp 

H = l + - f 3 2 - > - p 2 asp->oo (3.3.31a) 
2 2 

for large values of p, Eq. (3.30) reduces to 

^2a2p0 + a2^_+7papo_ = 0 as ^ ^ (333lb) 
dp2 ae2 p dp 

Eq. (3.3.31b) may be solved by the usual manner of the separation of variables. Thus, letting 
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p0 = P.0 (where P is a function of only p and 0 is a function of just 0), putting its derivatives 

with respect to p and 0 in Eq. (3.3.31b), and dividing it by P.0 leads to the following 

equation: 

P 2 a2p 7p ap a2© 

-JW+T^=-^ (3-3-32) 
Since the left hand side is just a function of p and the right hand side is a function of 0 the 

only choice for them is that they would be equal to a constant, X say. Therefore, we have to 

solve 

d20 
— = - = - * , (3.3.33a) 
dO2 

p 2 d 2 P 7p dP 

YW+^Trx (3333b) 

But the physics of the problem implies that X is positive, equal to k2 say, that is the pressure 

is periodic in 0. Therefore, the solution of Eq. (3.3.33a) is 

S = Cl sin(ke) + C2 cos(k6) (3.3.34) 

Since the period of the pressure is equal to 2TT (i.e. any point of the domain, upon rotation by 

an angle 2TT, around the z-axis, reaches to the same point of the liquid to experience the same 

pressure), the only choice for k is to be equal to unity. Therefore, Eq (3.3.33b) may be written 

as 

P 2 ^ T + 7 P ^ - P = 0 (3.3.35) 
dp dp 

which has a solution in the form of pn. Thus, substituting its first and second derivatives in 

the equation results in 

p V n - l ) p n - 2 + 7npp n - , -p n = 0 

Equating the coefficient of pn to zero leads to 

n= -3± VT0 

which does not satisfy the matching condition (3.3.1 lc) and hence the general solution is 
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rejected. Therefore, from the derivatives of the particular solution of the pressure, the flow 

field at the lowest order, given by Eq.s (3.3.20-23), is completely determined with the result 

ux0 = - ( l + Q ) ( H " 2 - 2x2H"3)(z2 - Hz)+ ( l - n )A- ' z - 1 (3.3.36) 

uy0 = - - ( l + n)xyH-3(z2-Hz) (3.4.37) 

u z 0 =- ( l + n)(-4H-3 + 12H-4)z3+ -H-2-12H"3 z2 + -( l-n)xH-2z2 

(3.3.38) 
Let us compare this result with those reported in the literature. Goldman, Cox & 

Brenner (1967) solved this problem asymptotically. Their result agrees with the asymptotic 

result of the solution presented here for large values ofx . 

O'Neill & Stewartson (1967) considered the translation of the particle parallel to a 

wall. Using a cylindrical coordinate system, they obtained the exact solution of the problem 

which may be written as 

6 ^ ~ 2 

Po = 7 pcosGH 
cos0 

[(-9H-2+12H-3)z2+(l4H-'-12H-2)z] 

sinG / ~ -w-, ~ i ^ \ 
aeo = - ^ ( 3 H - 2 z 2 + 2 H ^ z ) 

pcos0 
U z 0 = [4(-FT3 + 3H"4)z3 +(4H"2 -12H"3)z2] 

(3.3.39) 

(3.3.40) 

(3.3.41) 

(3.3.42) 

Cooley & O 'Neill (1968) considered the rotation of the particle near a plane wall with angular 

velocity Q = (0, Q , 0). Using the same procedure as O'Neill & Stewartson (1967)'s, they 

obtained a solution: 

6 ^ ~ _2 

Po - "TpcosGH 

cos0 
pO 5 

[(-9H-2 + 12H-3)z2+(4H-,-12H-2)z] 

(3.3.43) 

(3.3.44) 
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s in0 / - _ _ /v , \ 
ueo = —(-3FT 2 z 2 + STT'z) (3.3.45) 

pcosG 
U z 0 = [(-4H-3 + 12H"4)z3 - (FT2 + 12H"3)z2] (3.3.46) 

Applying relationships (3.3.10b, A. 1, 11) the flow field determined by (3.3.28, 36-38), 

may be expressed in a cylindrical coordinate system as 

Po = - ( l + Q)pcos0H" 2 (3.3.47) 

up0 = ^y-{[(-9H"2 + 12H"3)z2 + (14FT1 - 12rT2)z- 5] 
(3.3.48) 

sin0 
ueo = " 5 

+ Q [ ( - 9 F T 2 + 12FT3)z2 + (4FT1 - 12FT2)z]} 

[(3H"2z2 + 2H_1z- 5)+ Q(+3FT2z2 - 8H_1z)] (3.3.49) 

< - ^f- {[4(-H-3 + 3H-)z3
 + (4H-2 - 12H-3)z2] ^ 

+Q[(-4FT3 +3H-4)z3
 +2(H"2 + 12H"3)z2]} 

Thus, for the rotation of the particle with angular velocity Q = 1 we recover Cooley & 

O 'Neill (1968)' s results and for its translation with unit velocity ( U = 1J we recover O'Neill 

& Stewartson (1967)'s ones, except for the extra terms + sin 0 in(ieoand - sin 0 inu 0. 

This appears because we consider a stationary sphere with the wall and the fluid at infinity 

moves with velocity - \ . For the calculation of the hydrodynamic force, these two solutions 

are equivalent since the variations of the velocity are involved in the stress tensor not the 

velocity, and hence the constant velocity of the fluid at infinity c.f, Eq. (3.3.36) ] does not 

affect the results. 

3.4 - Electroviscous Ion Concentrations 

3.4.1 - Outer Region 

As for the cylinder and wall, the equation and boundary conditions of the 

electroviscous ion concentration for the outer region, given by (1.3. 60), imply that, for low 
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Peclet number, c2 is of order Pe. Thus, if we expand c2 in this parameter as1 

ĉ  = Pea ! 1 + Pe2 D, + D2 
A 

C22 + V 2D2 j 

at the lowest order, (521 for the steady state satisfies 

V2c„ = 0 

(3.4.1) 

'21 or 
a c91 a c,, a c,, 

2 1 +-T- 2 r - + ^ r ^ L = 0 (3.4.2) 
dx2 ' ay2 az2 

with boundary conditions, upon the use of the definition of the unit vector outward to the 

solid surfaces, given by (3.2.4), 

dc 21 
21 dx 

dc dc 
+ y ^ 5 + ( z - l - 5 ) — 5 = F c P (n -v ) (n -v ) (n .n )onS p (3 .4 .3 ) 

dy dz 

dc 21 

az 
= FcW(ri.v)(ri-v)(ri.rj) onS 

w 

c 2 ] ->0 as —» oo 

(3.4.4) 

(3.4.5) 

in which(FCP , FcW ) are defined by the relation (1.3.60e). For order Pe2 we have 

V2c22 = u-Vc21 = 
d „ d a 

u - u - + u - + 
dx dx dz 

"21 (3.4.7) 

with boundary conditions 

dc 22 dc 22 
dc 22 n - V c ^ = x - r f ^ + y - ^ + ( z - l - 5 ) ^ 7 - = 0 onSP "22 dx dy dz 

dc 22 
fiVc22= az 
c22-> 0 

= 0 o n S 

as 

w 

-> oo 0 

(3.4.8) 

(3.4.9) 

(3.4.10) 

3.4.2 - Inner Region 

In view of (3.2.4), the unit vector outward to the sphere for the inner region is 

n= bV2(x\ + y\)+[-l+ b(z- \)]\ o n z = H (3.4.11) 

'The last indices of electroviscous variables denote the order of those variable in Pe. 
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Thus, the normal derivative of the normal derivative of the normal component of the purely 

hydrodynamic velocity appearing in the boundary condition of the electroviscous ion 

concentration, c21, given by (3.4.3), for the inner region, is determined by 

n - T i = 8 , / 2 ( x u x + y u y ) + [ - 8 , / 2 + 8 3 / 2 ( z - l ) ] u 2 

( n - v ) ( n . v ) . x — + y — + ( z - l ) - 8 - ' — 
ox dy) dz 

f~d . d\ , ,\d 

V dx dy, dz 
•> d 

= 8 " 2 — T + b~l 

dz2 

, d . a ,„ x a 
dx dy dz dz •+• 

From this and from the expansion of the velocity, given by (3.3.12), it follows that 

(h-V)(h-V)(h-ii)= 6"3/2 ^rr(xux 0 + yuy0 - uz0) on z= H 

5 0 ~ 
"U. 

+6 x — + y — - ( z - l ) — + 1 
dx dy dz 

— (xux0 + yuy0 - uz0) + 2 — - + ( z - l) 
di dz ~2 + • 

(3.4.12) 
The unit vector normal to the wall is ^, so that the normal derivative of the normal derivative 

of the normal component of the velocity appears in B.C. (3.4.4), at the lowest order in 6, is 

( n - v ) ( n V ) ( n - i i ) = 8 -3/2 ^ U z 0 

az + 0 (8 - 1 / 2 ) o n z = 0 

Thus, if we define the electroviscous ion concentration for the inner region as 

rx s - 3 / 2 ^ 

c = o a 
'2 - ^ ^ 2 

at order Pe it satisfies [c.f, Eq.s (3.4.2-4)], 

(3.4.13) 

(3.4.14) 

a2c2i 
dz 

+ 8 ̂
2621 . a V 
dx C-.2 + i ~ 2 

ey j 
= o (3.4.15) 

with boundary conditions 

dc 21 

dz 
+ 6 

„ dc2] „dc2l ,„ sdc2l 

dx dy dz 

a2 

= 6 FcP ^ r r ( x u x 0 +yu yo " uzo) + ° ( S 2 ) on z = H 
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^ 2 1 c. v
 3\o 

+ 0(82) on z= 0 
az ~~cW dz2 

The second derivative of uz0 with respect to z, appearing in these boundary conditions, may 

be determined from Eq. (3.3.22) as 

2 ~ a2u zO 1 ^ 2 

dz! 
d Po d p( 

v, ax2 ay |(2z-ft) 
1 r 

+ 
dp0 ~ foo 
«A X + 

v ax ay y + (Q + l)xH -2 

from which and from Eq.s (3.3.20, 21), the boundary conditions may be evaluated on the 

solid surfaces with the result 

dc 21 

az 
fHS 

= 8E cP 
J. 
2 

ax ay 
ac2 

"az 
onz= H 

a l - apn^ a f - apn 
H - ^ + — H- ° 

dc 

xv ox J ayv ay 
-(l-S)xH f + 0(82) 

(3.4.16) 

t=^{ J. 
2 

a ( - a6n 
H F o d A — — .** /v. 

xv ax / 

^ a 
+ H 

dp. 

ayv ay 
+ ( l -Q)xH" + 0(52) (3.4.17) 

onz= 0 
Definitions (3.3.1, 4.1, 14) indicate that the matching condition is required to satisfy 

-3' 

c2, = 0 ft*)" as (x,y) - » oo (3.4.18) 

The equation along with boundary conditions at order Pe2, given by (3.4.7-9), for the inner 

region is 

2 -dlc 
( 32 

22 + 8 
dz2 

with 

5 2~ ^ 2 ~ \ 

c„ a c * 
+ 

'22 

a ^ a y 7 ; 
= 8 3/2 dc 

u 
21 ae 
—+u, 

21 dc 
+ u„ 

21 
xO 3 ^ yO a ^ zO fc (3.4.19) 

C*C22 ^ UC22 y^ \ 

x ^ r - + y ^ + ( z - l ) 
ae 22 

dx dy dz 

dc 

dz 
^=0 

= 0 o n z = H 

onz= 0 

(3.4.20) 

(3.4.21) 

It has also to satisfy the matching condition 
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c22 = O 

3.4.2.1 - Inner Solution of Order Pe 

as(x,y)-> oo (3.4.22) 

The equation and boundary conditions at the first order in Pe, given by (3.4.15-17), 

suggest an expansion forc21 in 8 as 

A, A. o A. 

C21 = C
m + S C n + " -

Upon substitution of this expansion in (3.4.15-17), cm satisfies 

a2c. 
m = 0 

dz2 

with boundary conditions 

ae„ 
= o 

dz 

dc. 
^=0 
dz 

and with the matching condition 

onz= IF 

onz= 0 

m (x,y)-3 as M —>• oo 

Whilst cn satisfies 

2A ( ^ 

dz! 

. 2 - A 

+ 
dzom + a2cm 
dx' dy) 

= o 

with boundary conditions 

3£„ 
dz 

- + 
( 

F ' 
1 cP 

1 
2 

5x y 5y 
(H-I)

 m 

az 

dx 
H dPo f 

+ H dp( 

v axy ayv ay + ( l -Q)xH -2 on z- H 

5cn 1 
az • c W 

d(nd-k)+^n8^ dx\ dx) ayv ayy 

(3.4.23) 

(3.4.24) 

(3.4.25) 

(3.4.26) 

(3.4.27) 

(3.4.28) 

(3.4.29) 

+ (l - Q ) X F T 2 > on z = 0 (3.4.30) 

and with matching condition 
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c n = 0 (x, y) as (x, y) -» oo 

Eq. (3.4.24) together with B.C.s (3.4.25, 26) guaranties that 

cm = Func (x, y) 

Thus, Eq. (3.4.28) may easily be integrated with respect to z to give 

(3.4.31) 

(3.4.32) 

dz 

(^A dlc„ dlc m 
+ m 

Kdx1 dy1 ) 
z + A(X, y) (3.4.33) 

Imposing B.C. (3.4.30) results in 

A = • c W a (~ dpA d (~ ap0^ 
H-hr + — H ox\ ox) ayv ay y + (l-Q)xH 

Imposing B.C. (3.4.29) leads to a differential equation for cn 

a ( . ae J 
H m 

dx 

a / 

+ H 
dc \ 

m 
1 

dx) ayv a y ; = 2(FcP + Fcw) 

- (F c p-F c j ( l -Q)xH 

^ a 
+ 

( 

H 
ap( _ |H^o 

dx\ dx) d y l " dy) 

(3.4.34) 
From now on, to simplify the calculations, we consider the case in which the particle surface 

potential, and that of the wall are the same, or equivalently FcP = FcW. An approximate 

solution for the general case is determined in an indirect fashion based on the analogy of 

inner and exact solutions of the problem, as is done in Chapter four § 4.7. Therefore, the 

solution of Eq. (3.4.34) for cm is straight forward determined from Eq. (3.3.28) or Eq. 

(3.3.47) to be as 

cm = ^(FcP + FcW)P0 = ^(FcP + FcW)(l + Q)pH"2 cos0 

which satisfies the matching condition (3.4.27). That is, 

12 

(3.4.35) 

m asp-> oo 
y(FcP+Fcw)(l + ^)p"3cos0 (3.4.36) 

1±V2 Its complementary solution is rejected, since for large value of p it tends to p which 

does not satisfies the prescribed matching condition. Thus, c21 at the lowest order in 6, given 
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by (3.4.23), is determined by 

Zl 

c2i = 5 (FCP + Fcw)(l + S)pH"2 cos0 + 0(8) 

3.4.2.2 - Inner Solution of Order Pe2 

Equation (3.4.19) implies an expansion in 8 forc22 as 

(3.4.37) 

V2; 3/2 c22 = 8'^cp + 8 ^ c q + (3.4.38) 

Upon substitution of this in Eq.(3.4.19) and B.C.s (3.4.20-21) as well as the matching 

condition (3.4.22), we see that cp satisfies the same equation and boundary conditions as 

those for cm, given by (3.4.24-26), together with the matching condition 

-2 ' 

£P = o fry)- as fry) —> 00 (3.4.39) 

whilst cq has to satisfy 

a2c„ 
- 2 dz 

• + 

fd\ d2c^ 
+ 

V ax2 ay 
= u-Vc 

J 
m 

(3.4.40) 

in which cm and cp are functions of (x, y) with boundary conditions 

dc. 

dz 

ae. 

= 0 
z=0 

dz 

( -dc, dc A >\ 
m 

z=H 

and matching condition 

C 

x ^ + y ^ 
dx dy J 

(3.4.41) 

(3.4.42) 

= <#,y)" as fry) —>• 00 (3.4.43) 

Differentiating Eq. (3.4.40) with respect to z and then imposing B.C.s (3.4.41, 42) leads to 

the following differential equation for cp: 

ax 
H 

ay 
dx + H 

dc. H 

ay v ay y 
= Vc. judz (3.4.44) 

in which cm is given by (3.4.35) and u by (3.3.48-50). Upon integration of the velocity, it 

may be expressed in the cylindrical coordinate system by the use of relationships (A.2,7) as 
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a26p f p i] dcp i a26p 3 , v ~ o 
"F2 + 7T + ~ ~ ^ + ~ ~ ^ f = W7 FcP + FcW l + Q x ap2 VH p) dp p2 dQ2 25v cP cWA ; 

(1 \ - ( 3 '4 '4 5 ) 

- p2H-3 - 4p4FT4 cos(20) - 3H"2 + -p 2FT 3 - 4p4FT4 

Because of the symmetry, as can be observed from the right hand side of Eq. (3.4.45), we 

should look for a solution in the form of 

cp = — (FcP + FcW)(l + n)2[c2Pcos(20) + cop] 
25 

Substituting its derivatives in Eq. (3.4.45) results in 

(3.4.46) 

a2e 2P 
+ 

fp \\a6,D 46 '2P 2P 

P2 
COS (20) + 

a26 / 
2P 

+ 
P \\dc 
—+-

2P 

ap \H p) dp 

4 

dp vH p) dp 

|p 2FT 3 - 4p4FT4] cos(20) - 3H"2 +1p2H"3 - 4p4H 

Since this equation must hold for any value of 0, it must be independent of 0. Thus, upon 

equating the coefficients of (cos20)n (n = 0,1) to zero, it reduces to two ordinary differential 

equations to be solved 

2a dzc ( £ 
2P 

+ Ux-
\ 

dp VH p) dp 

c\r Ac 7 
U C 2 P ^ 2 P ' ~ 2 V \ - 3 / I * 2 T J -

- — = ; p H - 4 p H 
P 2 

d c ( A 
OP 

+ Ux-
\ dc 7 

dp2 ^H p) dp 
F- = -3H- 2+-f3 2H- 3-4p 2H- 4 

(3.4.47) 

(3.4.48) 

In the calculation of the electroviscous forces the solution of Eq. (3.4.47), as seen in 

§ 3.6, is not required. The solution of Eq.(3.4.48) would be as a sum of particular solution 

denoted by c0PPar and general one denoted by c0PGen. Its particular solution has been found 

to be 

c 0 P P a r = ^ ( H ' + H-2) 

which satisfies the matching condition (3.4.39), that is 

(3.4.49) 

copPar ^ - 2 

asp- . . ->P +2p (3.4.50) 
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The general solution is 

c0PGen = C( In 
P + C 

VVH; 
(3.4.51) 

Neither lnl / nr I nor the constant C2 satisfy the matching condition, since for large values 

of p both of them are of order 8°. Thus, c0P is determined to be equal to its particular solution 

from whichc22, given by (3.4.38), is obtained as 

( -
+ O l § 2 |(3.4.52) c 2 2 =5^(F c P +F c W ) ( l + Q)2 c^cosU^ + ^ ^ + r T 2 ) 

andc21 is given by (3.4.37). Thus, the electroviscous ion concentration in the expansion 

(3.4.1) for the inner region, by the aid of (3.4.14,46), at the lowest order in 6, is determined 

by 

c2 = ^ ( F c P +FcW) 5^Pe(l + Q)[pH-2 cos(0) + O(5)] 
25 

+61Pe2 2 D,+D, 

2D, 
(l + QM c2Pcos(20) + -(H-1+H-2) 

(3.4.53a) 

+ 0(5) +•• 

in which(FcP, FcP ) are defined by the relation (1.3.60f) as 

1 
F = 

cj 2D. 

cosh^-J J = (P,W) (3.4.53b) 

3.5 - Electroviscous Potential 

The equation and boundary conditions for the electroviscous potential denoted here 

by \j72 are given by relationships (1.3.61). The electroviscous ion concentration appearing 

in this equation is already determined. The second term in this equation, (b, satisfies the 

same equation and boundary conditions as those for the electroviscous ion concentration of 

order Pe given by (3.4.2-5) in which (Fcp, Fcw) are, respectively, replaced by (F^, F^J, 

defined by (1.3.6If), as 

2D, 
F = 
*J D, + D-

(j = P, w) (3.5.1) 

130 



Thus, such as for electroviscous ion concentrations, if we define 
_3 

\|/2 = 5 2\\J2 (3.5.2) 

by the aid of relationships (3.4.37,53) the electroviscous potential for the inner region at the 

lowest order in 8 in the expansion of Pe may be determined to be 

+8 

3 

5 
D.-D, 

V 2 = jfa? + F,w)K iPe(l + 3)[pH-2 cose + 0(8)] 

Pe2(l+Q)2
 62PCOS20 + - ( H - 1 + H- 2 )+O(8 ) 

•1 ^ 2 V 
(3.5.3a) 

in which, in view of the definitions (3.4.53b, 5.1), (F p , F w j are defined by 

D , - D 2D, 
(3.5.3b) 

3.6 - Electroviscous Force 

The electroviscous force, F, is determined by applying the Lorentz reciprocal 

theorem, given by(l .3.69). It may be written in vectorial form as 

F=e 4 F;=e 4 jBp • ap • dSp + JBw • aw • dSw 

>w 

(3.6.1a) 

in which B j , given by (1.3.59e-h), may be expressed as 

I^V-n^v)] -41n cosh 
V 4 

( ^ | j ) + Vj(v | / 2 | j )L T = (P,W)(3.6.1b) 

which represents tangential derivatives of the electroviscous ion concentrations and the 

electroviscous potential evaluated on the solid surface J. a j is the stress tensor due to the 

translation of the particle with unit velocity in the direction of the force under determination, 

evaluated on the solid surface J. Its integrand may be expressed in cylindrical coordinates 

as 

1 3 1 



+ Bje 

+ BJz 

5 jpp n jp + 5 jpe n jo+Sjpz n JzJ d Sj 

^jepnjp +^jeenje +5J9zn jzJdSj 
SJzPnJp+aJzenje+oJzznJz dSj 

(3.6.2) 

fij is the unit vector outward to the surface J, given by (3.2.4), in view of which the 

integrand reduces to 

B w - f J w - d S w = (BWpcj Wpz + B W 0 a W9z + B W z ° W z z ) d S 
W (3.6.3) 

and 

B p -(jp -dS p — B p 

+ B, 

+ B 

5pppP + 5P p z(z-l-5)]dSP 

apepp + r jp e 2 (z- l -5) |dS 
5PzpP + SPzz(z-l-6)[dSF 

(3.6.4) 

3.6.1 - Determination of B ; 

By the aid of relationships (A. 14, 17) the normal derivative, appearing in Eq. 

(3.6.1b), may be written as 

.- a 
nw(V nw) = i7 — = 8 'i. 

wv w/ z ^ ~ , dz 

rip(v rip)=[lpp + T z (z- l -8)] ~ d , ~ ^ d 

P — + ( z - l - 8 ) — ; 
ap az 

= iD82p 
. a / , A x a 
P77+ H + z _ 1 i ^ 

ap az 

+ T ( - l + 8 z - 8 ) p —+(-8 ' + z - l j 
dp dz 

from which Bj are evaluated on the solid surface J with the result 

Bw = X8 2 r _d_ -r 1_5_ 
l pa^+ i er3a0 

-4 In cosh Y W 

I 4 ) i=0+Vl>wM>2 z=0 (3.6.5) 
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Bp - X 
i ( \\ 

8 2 + 0 82 

v ) dp 
+ [8-1 + 0 ( l ) ] ^ 

az 
L + 8 

\_d_ 

pae 

+ [p + 0 ( 8 ) ] ^ + [28-* + 0 ( 1 ) ] ^ (3.6.6) 

-4 In cosh 
i | / P 

^H+Yp^Lfi t 
in which c2 and \|/ 2 are given by (3.4.53) and (3.5.3). Since at a first approximation they are 

independent of z , their values on the wall surface ( z = 0 ) and on the particle surface 

( z = H ) are the same, and also their derivatives with respect to z vanish. Therefore, Bw is 

obtained as 

BWp= -^Pe8_2L1Wp+w(l+ Q ) [ ( - 3 H - 2 + 4FT3)cos0 + 0(8)] 

3 - - ~ 2 
+ — ^ P e 2 8 " 2 L 2 W p + w ( l + Q ) 

ae 2P 

ap 
cos(20)-p(H-2 + 2H-3) +0(8) + -

Bw e = -^Pe§-2L'Wp+W(l + Q ) [ - F T 2 sin0 + O(S)] 

+ —A.Pe28_iL2Wp+w(l + Q)' 

B W z = 0 

2 
xc2Psin(20) + O(8) 
P 

+• 

(3.6.7a) 

(3.6.7b) 

(3.6.7c) 

and Bp as 

BPp=-XPe5-2L1Pp+w(l + Q)[(-3H-2+4H-3)cos0 + O(5)] 

+ -XPe 2 5 2L2PP+W(l + Q) 2P 

ap 
cos(20) - p(rT2 + 2FT3) +0(5) +• 

(3.6.8a) 

Bpe = ^Pe8"2L1Pp + w(l + o)[-H"2 sin© + 0(8)] 

+ —^Pe28"2L
2Pp+w(l + Q)2 - -c , p s in (20) + O(6) 

(3.6.8b) 
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BD = Pz 5 

6 -
- ^Pe8"2L1Pp+w(l + Q)[p(-3H-2 + 4FT3)cos0 + O(S)] 

+ - ^ P e 2 5 - , L 2 P p + w ( l + Q)2 

50 

ae 
p^cos(20)-p 2 (H- 2 +2FT 3 ) +0(5) 

ap +• 

(3.6.8c) 
in which L1Pp+w and L2Pp+w are defined by (2.6.26, 27). 

3.6.2 - Stress Tensor 

Since the system is symmetric with respect to the (x, z)-plane we do not expect any 

force to be experienced by the particle in the y-direction. Thus, it remains to determine the 

stress tensor for flow parallel and normal to the wall to obtain the components of the force 

in the x and z-directions, respectively. 

3.6.2.1 - Translation Parallel to Wall 

The flow field for the translation of a particle with unit velocity parallel to the wall 

is already determined in § 3.3 and the stress tensor is given by relationship (A.22). It may 

be written in terms of inner variables as 

i ad 
% P = 8 2 P + 5 2 2 ^ 

aue 1 du 
— + — 

u£ 

ap p a© p 
aa„ „ go. 

S j 

G 
'pz 

= + 8 ~ i — r + 8 ' 

G J0z 
= 6 ^ + 5 o I ^ 

dz 
3 

P a© 
-1 du 

Jzz F dz 
(3.6.9) 

az ap 

Thus, letting Q - 0 in the flow field given by (3.3.47-50), the required components of the 

stress tensor at the lowest order are obtained as 

G = a = - 8 " 2 - p H - 2 c o s 0 + O | 8 2 
Jpp " Jzz ~ ^ 

sin0 

Jzz 

1 

^pe = 8 2 — 

~ _i COS0 
°Jpz = S - — 

° J6z = S 
sin0 

[l2pH-3z2-4pH-2z+0(5)] 

[-6(3H~2 - 4H"3)z+ 2(7H-' - 6H"2)]+ o(5°) 

-eu-'z-iH-^+oib0) 

on Sj (3.6.10) 
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3.6.2.2 - Translation Normal to Wall 

A suitable expansion for variables of the flow field, produced by translation of the 

particle with unit velocity normal to and away from the wall is 

x = 82x, y = 52y, z = 8z 

u x = S 2 u x , u y = S 2 u y , uz = ux, p = S p 

Introducing it to Stokes equations, given by (3.3.2, 3), results in 
f 3 2 -a2(t azu 2 ^ A 5 ^ 2 

- 2 dx + ay 2 ; 
+ 5 

dlu 

3^a2uv a2a A 

+ ~2 ax' ay 
+ 6 

az2 

_ia2G 

^ = 8 
-I dp 

dx 

( *2 a2u, dlu 2 - \ 

s~2 + v. ax
2 a y ; 

+ 5' 

•-1 
faa auv du\ 

^r + + 

az-

a 2 ^ 
dz2 

= 0 

- 8 - ^ 
ay 

= 8 
ap 
dz 

\ dx dy dz) 

together with boundary conditions 
•A, • V ^ / \ 

U x = Uy = U z = 0 

u„ = u„ = 0, 

onz= 0 

uz = l on z= 0 

(3.6.11) 

(3.6.12.a) 

(3.6.12b) 

(3.6.12c) 

(3.6.12d) 

(3.6.12e) 

(3.6.12f) 

If we expand the flow field as that given by (3.3.12) to the lowest order it satisfies the same 

equations as those given by (3.3.13-16) with boundary conditions 

U x 0 = U y 0 = U z 0 = 0 on z= 0 

u xO uv0 = 0, ly0 
U z 0 = 1 on z= 0 

(3.6.13a) 

(3.6.13b) 

Integrating Eq.s (3.3.13, 14) twice with respect to z and imposing the corresponding 

boundary conditions given by (3.6.13) leads to 

ux0 = - ( z - H z ) — (3.6.14a) 
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u y 0 = ^ ( z 2 - H z ) dPo 
(3.6.14b) 

2 V ' dy 

Differentiating the former with respect to x and the latter with respect to y and then 

introducing them in the continuity equation, leads to the following differential equation: 

aa zO 

2 dz 
Its integration is 

a 2 i V d2PoV-2 ~„\ L d p 0 L . ap, 
( ^ 2 ^ 

V 

A 
o 

ay) 
(3.6.15a) 

u zO 2 

7^2 a-p0 . a2p0v 
+ ^ dx1 dy) 

I 
- z J - - H z ' 

V3 2 

i f .^Po . -dp. 'o , - ^ro , x ^ r + y—r 
V dx dy) 

z2 + C (3.6.15b) 

Imposing its boundary conditions leads to the following differential equation for the pressure 

a (_-_, dvA a (T-T3 dp0^ 
H3^> + H 

ay; xV ox J dy 

the particular solution of which is 

P o — 3 H - 2 

12 (3.6.16a) 

(3.6.16b) 

By the same argument as that presented in § 3.3, its general solution must be rejected. Now, 

the flow field is completely determined. Upon introducing derivatives of the pressure in Eq.s 

(3.6.14. 15b), we obtain the results 

ux0 = 3xH-3(z2-Hz) 

uy0 = 3yH- ' (z 2 -Hz) 

uz0 = (3fr4 - 4H"3)(2z3 - 3Hz2) + 3(H" 3 - H"2 )z2 

It may be written in the cylindrical coordinate system as 

Po = - 3 H - 2 

up0 = 3pH"3(z2 - Hz) 

(3.6.17a) 

u60 = 0 
(3.6.17b) 

uz0 = (3H-4 - 4H"3)(2z3 - 3Hz2)+ 3(H-3 - H"2)z2 

From the symmetry property around the z-axis it was expected that the flow field is 
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independent on the azimuth angle 0 and hence the velocity in the 0-direction is equal to zero. 

Thus, letting op6 = oee = oz6 =0, the other components of the stress tensor may be written 

in terms of inner variables as 

jpp • 5 - 2 p + 5 - ' 2 ^ 
ap 

3ii, du. 
a Jpz 

§ - 3 / 2 _ ^ + § - l / 2 - " Z 

dz dp 

° t e = -8 P + 5 2^z" 

onSj (3.6.18a) 

Combining it with the relationship (3.6.17) results in 

S ^ S ^ S - ^ H ^ + O^-') 

aJpz = 8"J3pH-3(2z-H)+o[6^ 
l \ 
I 

) 

o n S j (3.6.18b) 

3.6.3 - Force Parallel to Wall 

The required component of stress tensor for flow parallel to the wall, given by 

(3.6.10), may be evaluated on the wall(z = 0) as 

aWpz = 6"1 ̂ ( l 4 H _ 1 - 12FT2)cos0 + 0( l ) 

5Wez = S - , - ( - 2 H - 1 ) s i n 0 + O(l) 

aWpp = aWzz = - 8 - 3 ^ p H - 2 c o s 0 + o ( 8 - 2 ) 

and on the particle surface (z = H) as 

, - 6 

(3.6.19) 

°Ppp = °Pzz = ~ 6 pH-2cos0 + O(8-1/2) 

-8 
aD„0 = 8_1—H_1sin0 + O(l) 

ppe 

1 
a Ppz = 8-1 -(-4H"1 + 12FT2)cos0 + O(l) 

aPpe = 6-1/2fpH-1sin0 + o(8-1/2) 

(3.6.20) 
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Therefore, the integrand evaluated on the wall surface is determined, upon introducing 

(3.6.19) and (3.6.7) to (3.6.3), by 

B w -o w -dS w = A, — LX+ wPer2(l+Q)[(-21H-3 + 46H-4-24H-5) 

(1+ cos20)+H"3(l- cos20)+ 0(8)] 

X 

125 

dc-
+ —L2WP + wPe28^(i+Q) 2—^cos20-p(H-2 + 2H~3) 

ap 
x 

(lH] + 6H-2)cosG + -c .p IT 1 sin(20)sin0 + 0(8) | |pd0dp + 

(3.6.21a) 
and on the particle surface by combing (3.6.20), (3.6.8) and (3.6.4) with the result 

_3_ 
25 
+ (-4FT3 + 26PT4 - 24H"5)cos20 + 0(8)] 

Bp rjp dSp = X\ — L 'Pp^PeS - 2 ^ Q) [ ( -10FT 3 + 26FT4 - 24PT5) 

+ 1^L2PP+wPe28-2(l+Q)2 8 H ]c2P sin(20)sin0 
(3.6.21b) 

+ (2H-1-6H-2)cos0 + O(8)] pd0dp 

The force is obtained upon integration of its integrand determined by (2.6.21) on the solid 

surfaces bounding the inner region, i.e. forp = (0-oo) and0 = (0-27t). Because of the 

symmetry, integration of all terms containing azimuth angle 0 vanishes. Therefore, in view 

of the integral [c.f, definition (3.3.10)] 

27t +oo 2n +oo 1 

j |H-"pdpde=J {(l + Xp2)""pdpd9 = 27[Y-^(l + Xp2)1 

0 0 0 0 

,1-n 
+O0 

271 

the x-component of the force is obtained as 

2TC 

F * = 2 5 
e4 A,(7lJPp+w + 2L1WP+w)Pe8-2(l+ fl) 

n - 1 ' 
(3.6.22a) 

(3.6.22b) 

or in dimensional form as [c.f, definitions (3.2.2, 2.6.34)] 
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Fx 25 

8TI (sr80)2(kT)3 a 

cro(z,e) h2 

(7GP + 2GW)(GP + Gw ) ^ (7HP + 2 H W ) ( H P + H w ) 

D, + D2 

(3.6.23a) 

(U+aQ) 

in which ( G p , H p ) and ( H p , H w ) are given by (2.6.70). In developing this formula it was 

assumed that the C-potentials 0f the particle and wall surfaces are identical. Thus, the 

formula (2.6.23a) may be written as 

144TI ( e r 8 0 ) 2 ( k T ) 3
 a 

c.(Zle)4 h2LD, D2j 
Gz FT 

+ (U+aft) (3.6.23b) 

in which G = GP = Gw and H = HP = Hw. 

3.6.4 - Force Normal to Wall 

For the determination of the force normal to the wall only terms of order Pe2 

involved, since terms containing the odd function of p (terms of order Pe) do not contribute 

to the force. Thus, upon introducing the stress tensor (3.6.18) and relations (3.6.7, 8) to the 

integrand (3.6.3-4), its required component is obtained as 

l w -ryw - d S w = — ^L 2 W P + w Pe 2 8" 2 ( l+ Q) 2 X 

pFT2 ^ L c o s 2 0 + FT3 + FT4 - 2FT5 + O(S) 
aP 

l p -rTp -dSp = — MiPp+wPe2S-2(l+ nf x 

(3.6.24a) 

pdOdp 

PH" 
ae 2P 

dp 
cos20 + H"3 + H"4 - 2H"5 + 0(8) 

(3.6.24b) 

pdOdp 

Therefore, in view of [c.f, integral (2.6.22a)] 

2n oo 

) | (H-3 + H-4-2H-5)pdpd0 = 27t 
0 0 

1 r-2 
- - H " - T H - J + - H 

271 

3 ' 
(3.6.25a) 

the normal component of the force is determined by 
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F = 
6% 

25 
e 4x(L 2W p + w + L2Pp+w)Pe28-2(l + Q)2 

or in dimensional form by 

12TC ( s r s 0 ) 2 ( k T ) 3
 a

: 

Fz = 25 C t o ( Z | 6 ) 4 h2 L D, 
G p + G W H p + H W 

-|2 

D. 
( U + aT2): 

or 

F > = 2 5 

48TI (e r 8 0 ) 2 (kT) 3
 a

: 

( z . e ) 4 h' 

G H 
+ D, D2 

(U + aQ): 

(3.6.25b) 

(3.6.26a) 

(3.6.26b) 

in which G and H, given by (2.6.70), for identical-potentials, (̂ p = <̂ w = Q, may be expressed 

as 

G = ln 

_z,eC 

l + e_ 2 k T 

H = ln 

ZjeC 

l + e2kT 

(3.6.27) 
2 2 

In the formula (3.6.23, 26, 27), (s rs 0 j is the permitivity of the medium, (kT) the thermal 

energy, (z,e) charge of a counterion, cOT the number ion bulk concentrations, D, and D2 the 

diffusivity of counterions and coions, respectively; a is the sphere radius, h the clearance 

between the sphere and wall, and U is the translation velocity of the sphere and Q its rotation 

in the clockwise direction. 

3.7 - Results and Conclusions 

As for a cylinder-wall, a sphere-wall interaction results in an electroviscous force, 

experienced by the particle, of order e . Its tangential component is explicitly determined 

by formula (3.6.23), and its normal component by (3.6.26), for identical C-potentials. 

Although, the force is derived under the assumptions of P e « l and 8 « 1 , it is valid for a 

larger range of Pe, since the electroviscous ion concentrations and equally the electroviscous 

potential in fact are obtained under the following expansion [c.f, (3.4.1, 14, 23, 38)]: 

c2 = PeS-3 / 2 + P e V 1 + 0 ( P e V , / 2 ) (3.7.1) 

and this expansion is valid when the truncated term is much smaller than the retained term, 
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that is Pe 38 1 / 2« Pe26', or Pe«6"1/2 which is larger than P e « l , and thus, since 6 « 1, the 

expansion applies even for value of Pe larger than one. For example for 5=10"4 the 

expansion (3.7.1) is valid up to Pe=100. The tangential component of the force is of order 

Pe, or depends linearly on the velocity and the normal component of 0(Pe2), the same as for 

a cylinder-wall. Both tangential and normal components of the force are smaller than those 

of the cylinder-wall interactions by 0( 8/2). Thus, the tangential component is of 0(e4Pe5"2) 

and the normal component of 0(e4Pe28"2). The tangential component of the force depends 

linearly on the ratio of diffusivity of ions and the normal component on the second power of 

this ratio, whereas for both normal and tangential components the second powers of the 

parameters G and H [functions of £- potentials defined by (3.6.27)] are involved, the same 

as for the cylinder-wall interactions. The normal component of the force in dimensionless 

form (Fz ) may be written as 

96TI 
(3.7.2) F,= G4 ^Pe28"2fz 

25 
where fz is defined by 

fz = G + —LH 
E>2 

2 

(i+i (3.7.3) 

The function fz is plotted versus the ratio of diffusivity of ions in Fig. 3.2 for three different 

(-potentials, Cp=Cw=-^0 mV, Cp=Cw
=-200 mV, and Cp=Cw=-300 mV. Each curve has a 

minimum corresponding to fz =0, the same as for identical C-potentials of a cylinder and wall. 

The minimums in these curves occur at D1/D2=2.4791, 4.7882, 7.4655, for £=-100, -200, -

300, respectively. For two special hydrodynamic cases, namely forU= -aQ. and 

U = aQ, the particle experiences no force for the former, and two times the tangential 

component and four times the normal component of the force (because of the proportionality 

to the square of the velocity) produced by either the rotation or the translation of the particle 

for the latter, the same as for identical C-potentials of the cylinder and wall. The ratio of the 

contribution to the tangential component of the force from the sphere surface to that of the 

wall surface is 3.5 [c.f, (3.6.22)], whilst this ratio for the identical (-potentials of the 

cylinder and wall is 3 [c.f, (2.6.63)]. That ratio for the normal component of the force is the 
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same as that for the cylinder-wall, i.e. it is equal tol [c.f, (3.6.25b, 2.6.68)]. For small (-

potentials and for equal mobilities of ions, as a first approximation, the tangential component 

of the force, is linearly proportional to viscosity of medium, ion radius, aj9 and C2, whereas 

the normal component is proportional to r|2, a2 and (4, the same as for the cylinder-wall 

interactions. 

It is interesting to compare the drag force for a sphere-wall, given by (3.6.39), with 

that of sedimentation of a sphere in unbounded flow, given by (1.2.28). It is observed that 

their ratio always satisfy 

Sphere-wall 

Sphere 

-2 

25 
(3.7.4) 

30 

25 -

20 

f 15 H 
lz 

10 

5 -

0 -

_ « _ Cp<w=-300mV 

O CP=<w=-200mV 

C P =Cw = - 1 0 0 m V 

~~r~ 

0 2 4 10 12 

Fig. 3.2 - fz vs ratio of diffusivity of ions for either translation or rotation of sphere. 
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It should be noted that the force for the isolated sphere is an exact value, but for the sphere-

wall interactions only the contribution from the inner region is taken into account. 

The Derjaguin (1934) relationship between the coefficient of force experienced by 

a cylinder and that of a sphere given by [van de Ven (1989)] 

F = F 
Sphere Cylinder 

h 
n+- (2n-2)!! 

(2n- l ) ! ! 
2V2ah, (3.7.5) 

is extensively used for calculations of interactions between colloidal particles. Here 

h" 'n is the h-dependence of the cylinder force and k!! = k ( k - 2 ) ( k - 4)---. To see 

how it works for the electroviscous force in which h~^n+ ' = h ~'2 [c.f, formulas (2.6.63, 

67)] or n = 2, it may be written as 

jWw^l^-j- (3.7.6) 
1 Cylinder-Wall J 

For the drag component of the force, given by (2.6.64 ) and (3.6.23), this ratio is 

x Sphere-Wall 

x Cylinder-Wall 

18 
= —V2ah 

25 
(3.7.7) 

and for the normal component, given by (2.6.69) and (3.6.26) 

zSphere-Wall 48 

125 
V2ah (3.7.8) 

z Cylinder-Wall 

It is observed that although in both cases it predicts the right order in Vah, it overestimates 

the force by a factor of 50/27 for the tangential component and by a factor of 125/36 for the 

normal component of the force. 
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Chapter Four 

Electroviscous Sphere-Wall Interactions: 

Exact and Numerical 

Solutions 

144 



4.1- Introduction 

The problem of a sphere under translation and rotation parallel to a wall is reconsidered. The 

problem was solved for the inner region, in Chapter three, for the cases of small particle-wall 

distances and low Peclet numbers. First, the restriction on particle-wall distances is 

removed. An analytical-numerical solution is obtained valid for the whole domain of interest 

for low Pe. Second, the restriction on Peclet number is removed. An analytical-numerical 

solution for both arbitrary particle-wall distances and arbitrary Peclet numbers is presented. 

The purely hydrodynamic problem, as well as the stress tensor involved in the force integral 

equation are determined analytically, based on the Jeffery's solution (1912) of the Laplace 

equation in a bipolar coordinate system. The analytical solution is obtained as a summation 

of an infinite series. 

Although the bipolar coordinate system has the utility of describing the system by 

a single coordinate (that is both wall and sphere surface are described by only a single 

coordinate), the cylindrical polar coordinates are useful and are employed as intermediate 

steps in solving the equations of motion and subsequently the electroviscous ion 

concentration, the electroviscous potential, and the electroviscous flow field. Some 

properties of these two coordinate systems are discussed in Appendix A. 

For low Pe, the electroviscous ion concentrations and potential at order Pe are 

obtained both analytically and numerically, from which the analytical and numerical 

solutions of the tangential component of the force are determined. At order Pe2 they are 

determined numerically, resulting in a numerical solution for the normal component of the 

force. For arbitrary Pe the electroviscous ion concentrations and potential are also calculated 

numerically, from which the tangential and normal components of the force are determined 

numerically. 

The numerical approach is based on the finite difference approximation. The idea 

is that the dependent variables at each point of the domain can be determined from the values 

of its neighborhood by the use of a Taylor series expansion. Thus, the domain of interest is 

divided into discrete points. For each node we may write a finite difference equation, 

relating that node to the neighborhood nodes. These equations are simultaneously solved in 
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a way that boundary conditions for the nodes on the solid surfaces and for that at infinity are 

satisfied, from which the value of those variables for each node are uniquely determined. 

They are programed in MATLAB; an electronic copy can be provided upon request. 

The hydrodynamics is presented in § 4.2. It includes the exact solution of the Stokes 

equation, the translation of a sphere, the rotation of a sphere, and superimposing them to 

obtain the solution of the hydrodynamic part of the problem at hand. The electroviscous ion 

concentrations for low Pe is presented in § 4.3. It contains the electroviscous equation, the 

analytical solution at order Pe and numerical solutions at orders Pe and Pe2. The 

electroviscous potential is determined in § 4.4. The electroviscous force for low Pe is 

presented in § 4.5. It consists of the determination of the stress tensor for translation of the 

particle parallel and normal to the wall to determine the tangential and normal components 

of the force upon applying the Lorentz reciprocal theorem. The numerical solution for 

arbitrary Pe is given in § 4.6. It contains the electroviscous ion concentration, electroviscous 

potential and electroviscous force. Finally, results and conclusions are presented in § 4.7. 

4.2 - Hydrodynamics 

4.2.1 - Solution of Stokes Equations 

Equations of motion are assumed to be the Stokes equations given by (3.2.5, 6). 

Thus, taking the divergence of Eq. (3.2.5) results in: 

V - V 2 t f - V - V p = 0, or V 2 V - t i = V 2 p (4.2.1) 

Since by the continuity Eq. (3.2.6), V • u = 0 it follows that: 

V 2 p = 0 (4.2.2) 

which indicates that for creeping flows the pressure is harmonic. Using relationships (A. 17-

20), the pressure, the momentum, and the continuity equations, given by Eq.s (4.2.2, 3.2.5, 

6), may be expressed in the cylindrical coordinate system as 

l(~dp) 1 d2p d2p 
— P ' 
P dp) 

dp i a 

+ 7 T T — T + T Z T = 0 (4.2.3) 
2 d02 dz2 

dp pdp\ dp) 

( dun~] i (d% ) d \ 2 du, 
+ 

p 

P2 v u y j 9J ae 
+#-rf' (4-2-4) 

146 



i dp i a 
pf 50 ff dp 

dp \ d f 

p-rz: 
V op 

(*2 

+ 
a2tL 
a0 2 — " e 

c32TL 2 dur 
+ + 

J dz1 p1 ae 

an. 
az pT ap v ap ) 

I a2uz a2uz 

P 

p ap vr -p/ • p ae az 
I a 1 o / _ \ 1 I atx 

2 ao2 

au. + 

az 

= o 

(4.2.5) 

(4.2.6) 

(4.2.7) 

P = 

Now, if we write the flow field in terms of the auxiliary functions Q,, U2, U0, and W,: 

Q. 

u„ 

c 

J_ 
2 

cose, 

£ Q , + ( u 2 + U 0 - 2 ) cose, 

u e = j ( u 2 - U 0 + 2 ) s i n e , 

u = - - Q . + 2 W , cose 
2 Vc v 

(4.2.8) 

(4.2.9) 

(4.2.10) 

(4.2.11) 

in which the geometry constant c is defined by the relationship (A.41), we end up with an 

individual equation for each of the auxiliary functions to be solved (i.e., separation of 

auxiliary functions). Since the coordinate 0 has been used, the auxiliary functions, Q„ U2, 

U0, and W, are functions of only j) and z. Introducing the expressions (4.2.8-11) to the 

differential equations (4.2.3-7) results in: 

(& cose a2Q, I aQ, Q, azQ A 
+ + 

^ ap p ap p dz j 
(& 

2c 

a2Q, I aQ, Q, â Q \ 

+ - — + • 

= 0, 

( ^ 

(4.2.12) 

v. apz p ap pz az j 
ifa2u 

+— 
p 

wa2u 
+— 0 + i^au0 + a

2u0 
\ 

Pv ap p ap dz j 
I au, 4IL a2LO (4.2.13) 

+ • 
v ap p ap 

+ 
a z 2 ; 

= o 

a2iL I aun a2uf 'a2u, 
+ + 

I au, 4u, a2u,^ 
+ 

ap p ap az v ap p ap 
+ 

a z 2 ) 
= o (4.2.14) 

147 



z fa2Q, i a o L _ o L a 'Q^ a2w, 1 aw, WJ_ a^w. 
2c v ap p ap p az j dp p ap 

3Q, + p 
aQ.^aQ.^i (au, 2u, au„ _aw, 

+ z + c 

P^ az' 

ap dz j v ap 
Thus, Q, satisfies [c.f, Eq. (4.2.12)] 

+ + a? + 2-az J = o 

= 0 (4.2.15) 

(4.2.16) 

a2Q, I aQ, Q. a2Q, 
+ + 0, (4.2.17) 

ap2 p ap p2 az2 

Introducing Eq. (4.2.12) into Eq.(4.2.13), then adding and subtracting the result to the Eq. 

(4.2.14) gives the differential equations for U0 and U2 to be determined as 

a2u0 I au0 d2v0 
ap p ap az 
a2u2 I au2 4u2 a2u2 

(4.2.18) 

(4.2.19) 
ap P ap p az^ 

The differential equation for W, is obtained, upon introducing Eq. (4.2.12) into Eq. (4.2.15), 

as 

a2w, I aw, w, a2w, 
+ + = o, 

dp1 p dp pz az' 

The partial differential Eq.s (4.2.17-20) may be written in a general form as 

a2o I aa> m2o a2a> 

(4.2.20) 

LLO = 
m ap2 p ap p: + az: = o. (4.2.21) 

where 3> = Q,, U2, U0, or W„ and where m is equal to the corresponding indices, that is m=l 

for Q, and W,, m = 2 for U2, and m = 0 for U0. 

The bipolar coordinate system with the transformation function 

_ c s i n n _ c s inh^ 
P = z = (4.2.22a) 

cosh^-cosn/ cosh^-cosn 
as shown in Fig. 4.1, best describes the geometry of the problem. The constant c is a 

geometry constant defined by (A.41) as 
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c = sinh a , (4.2.22b) 

in which a is a function of the dimensionless gap width, 6, defined by (A.42) as 

a = In l + 5 + V ( l + 5 ) 2 - l (4.2.22c) 

In this coordinate system the sphere is defined by £ = a, the plane by £ = 0, the origin by (E, 

= 0, r\ = TC) and infinity by (£ = 0, r\ = 0), c.f, Fig. 4.1. Thus, since both solid surfaces are 

described by a single coordinate, in order to impose the corresponding boundary conditions, 

it is more convenient to transform Eq. (4.2.21) into the bipolar coordinate system, by the use 

of relationships (A. 54-59). Doing so, its transformation is obtained as 

1 a2o a2o 
a^2 dr\2 cosh^-cosn 

( 

sinh £ 
aO 1-cost]cosh£, a o A m2Q 

sin2 rj 
= 0 

d\ sin r] an y 
(4.2.23) 

This equation in essence has been solved analytically by Jeffery (1912). The details of the 

calculation are presented here for completeness. Letting 

/ 

0 = p _ 2 V F = 
cosh l%- COST] 

¥ 
J csinn 

we have the following relation between the derivatives of O and Y: 

(4.2.24) 

ao I 

a^ ^/csi sinn 

a^ 1 -- -
— sinh^cosh^-cosnj 2*F + (coshi%-COST])2 (4.2.25) 

a2o 

5 5 2 " V csinr] 2 

-- 1 --' 
cosh^cosh^-cosri) 2 - — sinh2 ^(cosh^- cost]) 2 

- ia v 
+ sinh^(cosh§-cosr|) 2 — + (cosh^-cosT|) 

\d\f_ 
d^ 

ao I 

an, Vc 
1 1 -COST)cosh£, (cosh^-cosn)2 a ^ 

^ T i + 1 
2 . sin2 rj(cosh^-cosr|) sin2 n, 

dr\ 

"¥ 

(4.2.26) 

(4.2.27) 
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a2o 
an2 4i 2 

cosh^ 3 cosri(l- COST] cosht\) 

sin2 r|(cosh^ - COST])2 sin2 T](cosh^ - COST])2 

1 ( l -cosr) cosh^j 

2 : i 

sin2 rj(cosh^ - cosrj)2 

Y + 

i 

( l - c o s n cosh^j 3 ^ (cosh^ - COST])2 d2y¥ 

sin2 T](cosh£, - COST])2 sin2 T] 

Introducing relationships (4.2.24-28) to Eq.(4.2.23) results in: 

.2 

3n2 

(4.2.28) 

[cosh^-cosT] a2vF a2vF _Y 

csinr) I a^2 ar)2 2 
2nV 2 cosh tj 

+ 
3 sinh2 ̂  

3cosT](l-cost] cosh^) 1-cosricoshE ( l - COST] coshcj) 
+ r-h f + — — + — 

_ sin2 T] cosh I; - COST] 2(cosh^ - COST])' 

2sin2 T](cosh^ - cost]) 2(cosh^ - COST])2 sin2 T](cosh^ - COST]) 

or 

d2x¥ d2x¥ (1 
+ dl%1 dx\ 

+ - m ' ¥ = 0 (4.2.29) 

Now, this equation can be solved by the usual manner of the separation of variables. Thus, 

introducing 

Y = S-N (4.2.30) 

where S = f (Q and N = g (n), to Eq.(4.2.29) and then dividing it by Y leads to the following 

relationship: 

1 d2S 1 d2N 1 ( 1 
+ - AZ2 - X T J 2 - . 2 , - j (4-2-31) 

£1 d^2 N dr]2 

Since the left hand side is only a function of £ and the right hand side is only a function of 

n, and this equality must hold for any values of £ and n, the only choice for them is to be 

equal to a constant, - (n+1/2)2 say. Since the problem is related to a sphere, we should seek 

a spherical harmonic solution, and hence only this choice of a set of constants, namely 

(n+1/2)2, where n are any integers, ends up in a spherical harmonic equation. But, since the 

choice - (n+1) instead of n leads to the same constant, that is - (-n-1+1/2)2 = - (n+1/2)2, we 
consider only one set of integers, namely zero and positive ones. Therefore, we end up with 
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two ordinary differential equations to be solved. The solution of the first equation, 

2 — d'E n 
^ 2 - l n + 2 ; 

IS 

S = 0, 

1 

(4.2.32) 

( 

a = an coshl n + — J £, + bn sinh 
V 

n 
n + — 

2^ S (4.2.33) 

where a„ and bn each are a set of constants associated with the integer n. The second 

equation, 

d 2N 
+ 

iV 
n + 

1 1 \ 

2) sin T| 
m - — 4) dry 

may be solved by changing the variable as 

N = 0, 

N = X sin21] 

from which dN/dn and d2N/dr)2 are determined as: 

dN 1 -I . 1 dX 
= —X cost] sin 2 ri + sin2 n —— 

dT] 2 ' ' ' dT] 

d2N 

"oV" 
= i/sinrj 

d2X cost] dX l 
+ — + 

l 

dt] sinr) drj 2v2 2sin x\) 

Introducing relationships (4.2.35-37) to Eq. (4.2.34) results in: 

d2X cost] dX 
Y + + 

dt] sinr] dr\ 

Finally, letting 

\x = COST], 

then 

d djLX d 

f m 
2 ^ 

n + n 
V sin r\J 

X = 0 

dr\ dr\ du = - s in r ] dp. 

f 

dn, dr] 
-s inn, d u j 

- C O S T ] - — + sin T] 
dfi dfj.^ 

(4.2.34) 

(4.2.35) 

(4.2.36) 

(4.2.37) 

(4.2.38) 

(4.2.39) 

(4.2.40) 

(4.2.41) 
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Introducing the relationships (4.2.39-41) to Eq. (4.2.38) leads to the following equation: 

/ 2 ^ d 2 X dX m2 

1-ia2 — T - 2 u — + n(n + l ) X = - r X (4.2.42) 
dp. dp \-pz 

This equation is well known as the associated Legendre equation of order n and degree m. 

Its solution is 

X = C n P ; ( ^ ) + D n Q ^ ) (4.2.43) 

in which Cn and Dn are sets of constants, and Pn
m and Qn

m are known as Legendre functions 

of the first and second kind, respectively, of order n and degree m. They are defined by 

m j m 

(4.2.44) 

(4.2.45) 

p ; ( p ) = ( i - P 2 ) y ^ pn(n) 

Q:M=(I-^£Q.M 
in which Pn are called Legendre polynomials of order n, Qn Legendre functions of the second 

kind, and dm/dum are mth derivatives with respect to u. Pn are finite and continuous at all 

points of the domain. But, Qn has singularities at points r\ = 0 and r\ = TC, which represents 

some special physical conditions such as a source or a charge, and hence it cannot be 

included in the solution. Therefore, the solution of Eq. (4.2.42) is 

m d m 

x = cnp;(n) = c n ( i - n 2 ) 2 - — PB(H) 
V 

(4.2.46) 

The general solution of the Eq. (4.2.31) is obtained by superimposing all individual 

solutions, corresponding to n = (0 - ~), given by (4.2.30, 33, 35, 46), as 

1 OO 

x¥ = (\-p2)2 sin"2riX 
n=0 

an cosh rfy + b sinh 
n + ^ 

i m 

dp m P.(H) 

(4.2.47) 
Now, in view of (4.2.24, 39), the general solution of Eq. (4.2.23) or equivalently Eq. 

(4.2.21) for $ representing auxiliary functions W„ Q, U0, and U2, corresponding to m = (1, 

1, 0, 2), respectively, is determined by 

Wj =(cosh£-u.)2 s inr j^ 
n=l 

( 

A„ cosh 
2) 

^ + Ansinh[n + - J ^ n ( ^ (4.2.48) 
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Q, = (cosh£, - n)2 sinr] Z 
n=l 

/ 

B„cosh 
1 

n+ -
2) 

\ + Cn sinh n + 2) \ 

U0=(cosh^-u)2i 
n=0 

( n r i, 
D n cosh|^n + - J £ + En sinh^n + - J \% 

i \ 
U2 = (cosh£, - [if2 sin2 n Z 

n=2 

1 
Fn cosh n + — 

V 2) 

( 

I + Gn sinh n+ — k 
s n I 2r 

1 

P n (n ) (4.2.49) 

P n ( u ) (4.2.50) 

P„"M (4-2.51) 

in which 

dP„ 

? n d|Li 

- d 2 P n 
P„ = 

d|Li' 
(4.2.52) 

and A'n, An, Bn, Cn, Dn, En, Fn, and Gn each are a set of constants to be determined by 

applying the relevant boundary conditions and continuity equation. In deriving (4.2.48-51), 

the summation over n for W, and Q, is taken from n = (1- °°), and for U2 from n = (2 - °°), 

instead of n = (0 - °°), since 

Po = 0. p; = o (4.2.53) 

The continuity equation (4.2.16), by the aid of relationship (A.54, 55), may also 

be expressed in the bipolar coordinate system as 

3 Q , -
d d 

\x sinh K% — + sin r\ cosh i\ — Q. 

d i v d 
sinnsinh^ — + ( l - u x o s h g — - U 0 + 2 

d i \ d cosht,-JJ, 
sinnsinhtTT + ll-p-COshc,)—- + 2 : 1 ^di% v w a r | sinn 

(l-Licosh^,)—--sin n sinh £-— W, = 0 
3c, ox\ 

U, 

(4.2.54) 
The solution of the Stokes equations in terms of the corresponding auxiliary functions 

defined by (4.2.8-11) has been used by O'Neill (1964) to solve the problem of the translation 

of a sphere parallel to a plane and by Dean and O'Neill (1963) for the rotation of a sphere 

around its diameter parallel to the wall in a quiescent liquids. In the subsequent sections 

these solutions are presented (in details for the former) and with a minor modification for the 

problem of a stationary sphere located in a liquid with undisturbed velocity U = - 1 parallel 

to the moving wall with the same velocity vector to remove the time dependency of the 

problem. This is already imposed in the definition of the auxiliary functions. Then, since 

the equation of motions are linear, these two solution are superimposed to obtain the flow 
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field for the problem at hand. 

4.2.2-Translation Parallel to Wall 

The no-slip boundary condition for a stationary sphere relative to a translating 

coordinate system with unit velocity in a liquid in which the wall and undisturbed fluid 

translate with unit velocity but with the opposite direction may be written as 

u 0, ue = 0, u =0 on 

up = - COS0 u0 = sinO. uz = 0 onS. 

(4.2.55) 

(4.2.56) 

In view of (4.2.8-11), these boundary conditions may be written in terms of the 

corresponding auxiliary functions (here, for translation denoted by ATn, BTn, CTn, DTn, ETn, 

FTn, and GTJ on the sphere (£ = a) as: 

P 
QT, + U T 2 + U T 0 - 2 = 0 

UT2 - UT0 + 2 = 0 

- Q T 1 + 2 W T , = 0 
c 

and on the plane (£ = 0) 

- Q T , + U T 2 + U T 0 = 0 

UT2 - UT0 = 0 

QT,+2WT, = 0 

(4.2.57) 

(4.2.58) 

(4.2.59) 

(4.2.60) 

(4.2.61) 

(4.2.62) 

Noting that QT, similar to the other auxiliary functions is finite, B.C. (4.2.62) indicates that 

on the wall(z = 0) the value of WT, is equal to zero, that is 

WT, = 0 on K% = 0 (4.2.63) 

from which it follows that WT„ given by (4.2.48), cannot include the terms 

COsh(n + y2\, and hence AT'n = 0. Therefore, WT, reduces to 

1 OD 

WT1 = (cosh^-^i)2sinT]Z AT„ sinh n + 2) \ p;(n) (4.2.64) 
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Now, it remains to determine the sets of coefficients ATn, BTn, CTn, DTn, ETn, FTn, and GTn, 

appearing in solutions (4.2.49-51, 64). These seven sets of constants are completely 

determined by imposing six boundary conditions, given by (4.2.57-62), and also applying the 

continuity equation (4.2.54). Since WT, has a more simple form than the other auxiliary 

functions, it is more convenient to write the boundary conditions (4.2.57-62) in terms of 

WT,. Thus, in view of the transformation function (4.2.22), B.C. (4.2.59) is expressed as 

2c 2 ( c o s h k - u > J2, , v 
QT, = - —WT, = - - * — . I . s innY ATn(cosh$ - u sinh 

z sinhq , 

f 1̂  
n + 

v 2) 

(4.2.65) 
From B.C.s (4.2.57, 58) it follows that 

UT, = t : W T , = 
sin n, 

sinh £, 

1 oo 

( c o s h 5 - i i ) 2 X A T n s i n h [ n + - j 5 P n ( i x ) | ^ a (4.2.66) 

Introducing B.C. (4.2.66) to B.C. (4.2.58) gives the boundary condition for UT0: 

1 °0 1 
UT0 = | w T 1 + 2 = ^ j ^ ( c o ^ ^ (4.2.67) 

Similarly, the boundary condition on the plane are determined by 

2c T . 2(cosh^-ix)2 . 
QT. = -L im—WT, = - L i m - v 

1 z=0 Z 4=0 

sinhe s i n T l Z A T n ( c o s h 4 - ^ ) s i n h ^ n + -j4Pn(p:) 

(4.2.68) 
~ - 2 1 oo / 1 \ 

UT2 = Lim^WT, = L i m ^ ^ ( c o s h ^ - i 4 ) 2 X A T n s i n h n + -kPn(p)(4.2.69) 
2 z=o z =̂o s inhq v j V 2 / 

~ - 2 1 °o I ] \ 

UT0 = Lim^WT, = L i m ^ - j l c o s h ^ - |a)2XATn sinh n + - kPn(p) (4.2.70) 
0 z=o z =̂° sinhc,v i v 2J 

Since on the plane z = 0 (^ = OJ, we take the limit \ -> Oin order to remove the 

singularity caused by the dominator. 

In view of the recurrence relationship [Macrobert (1967)] 

(2n+l)LxPn(Li) = (n+l)Pn_1( r t)+nPn + 1(^i) n > 1 (4.2.71) 
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the summation term in B.C.s (4.2.65, 68) (for QT,)may be written as 

X AT (cosh£, - jLijsinh 
1 

n 
2) 

( 

5P;W=ZAT n cosh5s in l Jn+-kp ; ( | i ) 
2) 

- X AT sinh n+ -
2) 

\ 

n+1 

2 n + l P - ^ ) + 2 ^ P - ( f l ) 

(4.2.72) 

But, by changing n to n + 1 and n - 1 we have the following relations: 

f 
Z ATn sinh 

i V 
n + 2) ^ p - 4 A T - s i n h 3̂ 1 n + 2 f 

V 27"2n + 3 n 5 

Z AT sinh 
( 

n + 2) ^ p - = fAT-sinh(n-^2^Tp" 

(4.2.73) 

(4.2.74) 

In deriving the identities (4.2.73,74), the limits of summation instead of (0 - °°) for the right-

hand side of (4.2.73) and (2- °°) for the right-hand side of (4.2.74) are taken to be (1 - °°) by 

the use of (4.2.53) and noting that for n =1 the right-hand side of (4.2.74) vanishes. 

Introducing (4.2.73, 74), written in terms of sinh(n + Y2)K% and cosh(n + Y2)K% by the use 

of the identities 

( A ( 1 1 
sinh n + — I = sinh n + — + 1 % = sinh 

V 2) \ 2 ) 

sinh vn"i K\ = sinh 
2 ) 

l\ = sinh 

n 
2) 

I) 

2) 

£,cosh^ + cosh 
( A 
V 2) 

( 
£,cosh^ - cosh 

n 
V 2) 

^sinh^ (4.2.75) 

^sinh^ (4.2.76) 

to the relation (4.2.72) leads to 

( 

^AT n (cosh^ - n)sinh 
i ^ 

OO 

I) 

2) 
, I) 

cosh£, sinh[ n+ — K 
n + 2 

A T n _2nT^ 
n - 1 

A T , , - - AT Ln+1 2 n - l n-l (4.2.77) 

1 
+ coshl n + — 

V 2) 
£, sinh^ 

n - l n + 2 Ar^ 
AT , - - rAT 

2 n - l 
Ln-1 2n+3 n+l 

Now, imposing B.C. (4.2.68) forcj = 0, in the solution (4.2.49), by the use of 

(4.2.77), results in 
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/ 

2 sinh n+b 
BTn = -Lim — 

=̂o sinh^ 
n - l n+2 

-2 i r AT„ , - r AT. 

AT -

2 n - l 
L n - 1 

2n+3 n+l 

n+2 
AT 

2n+3 n+1 

n> 1 

n - l 
2 n - l "-1 (4.2.78) 

or 

BTn = (n - 1)ATn_, - (2n + l)ATn + (n + 2)ATn+1 n > 1 (4.2.79) 

Thus, one set of constants of QT,, namely BTn, is determined in terms of ATn by the 

relationship (4.2.79), upon imposing the no-slip boundary condition on the wall. The other 

set, namely CTn, is obtained by imposing the boundary condition on the sphere, given by 

(4.2.65). Therefore, introducing QT,, given by (4.2.49), and relationships (4.2.77, 79) to 

B.C. (4.2.65), fori; = a results in 

CT sinh 
I) 
2) 
( 

a = - cosh[n+ ^]a[(n- \)k\_x - (2n+ l)ATn + (n+ 2)ATn+1] 

-2cotha sinh 
n 

( 

-2 cosh 

v 
\) 

2) 

2) 

a 

a 

n - l 

2n^~l 

- n + l n+2 
AT , + AT -AT L n - 1 2n- r"" n - 1 """ n 2n+3 

n+2 
AT , - rAT„ 

n+l 

L n - 1 
2n+3 

L n+1 

giving CTn to be determined by 

n - l 
CTn = -2kn 2 n - l 

n+2 
AT -AX. + 1 r AT L n - 1 2n+3 n-l n> 1 

n > l 

(4.2.80) 

(4.2.81) 

where we have written 

kn =1 n + -jcothl n + - | a - c o t h a 

in which the geometry constant a is given by the relation (4.2.22c). 

Similarly, from B.C.s (4.2.67, 70) DTn and ETn are obtained as 

(4.2.82) 
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DT = - - ( n - l ) n A T n _ 1 + - ( n + l ) ( n + 2)ATn+, n > 0 

ET = 
ijle^*' 

1 \ + k. 
sinh n + 

v 2) 
a 

n(n- l ) (n + l)(n + 2) 
AT„ , - -—. . AT 2 n - l 2n + 3 n + l 

(4.2.83) 

n > 0 (4.2.84) 

and B.C.s (4.2.66, 69) give FTn and GTnto be determined by 

FTn=^(ATn_,-ATn + 1) n > 2 (4.2.85) 

GT = -k n n 

1 1 

2 n - l A T n , ~ 2 n T 3 A T n + 1 n > 2 (4.2.86) 

In deriving (DTn, ETn) and ( FTn, GTn) the recurence relationships [Macrobert (1967)] 

( 2 n + l ) ( l - ^ i 2 ) P n ( ^ ) = n (n+ l)[Pn_,( | i )- Pn+1(n)] n > 1 (4.2.87) 

and 

(2n+l)Pn = -P:_, + P;+] n> 1 (4.2.88) 

are used, respectively. 

In this way, the sets of constants BTn, CTn, DTn, ETn FTn and GTn are determined in 

terms of ATn. 

It remains to determine the set of ATn by the aid of continuity equation, given by 

(4.2.54). It is observed that each of the following terms, involved in the continuity equation 

(4.2.54) or equivalently (4.2.16), namely 

( \ 

Q,, p — +z — 
v ap azy 

Q,> 

f a 2^ 
+— vap p) 

u au0 aw, 
2 ' ap az 

(4.2.89) 

is a particular solution of Eq. (4.2.91) for m = 1, and hence the linear combination of them 

is a solution of 
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- a2o> 1 a o o a2a> 
U O = ^ 3 T - + - - T 7 T / - 7 C f + 7TTJ2- = 0, 
'' dp2 ' p dp p2 ' dz2 (4.2.90) 

that is the terms in continuity equation may be written as 

O, =(cosh^-u)2 sinn.2^ 
n=l 

MTn cosh n + - k + NTn sinh n + - £ P„(u) (4.2.91) 
V 2) 

n + ^ 
V 27 

in which O, is equal to the sum of all terms appearing in the continuity equation. Thus, if the 

sets of constant Mn and Nn is equated to zero, the continuity equation 

0 , = 0 (4.2.92) 

is satisfied. Therefore, it remains to write each of the terms appearing in the continuity 

equation (4.2.54) in the form of relation (4.2.91) to determine the sets of constant Mn andNn. 

Ql, given by (4.2.49), is already in this form. The other terms are determined as follows: 

The first term may be evaluated as 

aQ, aQ, i 
- LI sinhE —— - sinncosh^—— = -—u, sinhE x 

di\ an 2 
1 OO 

sinr) sinh E, (cosh E, - LI ) 22_u 

I °° 
sinr|(cosh^ - \i)22^ (^n+ l) 

- sinn coshi; 

BT cosh 
( 

2) 

( 

5 + CTBsinh^n+-|5 
1 

BTn sinhl n + - j \ + CTn cosh n + i ' § 

— sin2 T|(cosh^ - LI) 2 - |i(coshE, - LI)2 

BTn sinh[n + - J 5 + CTn cosh[n+ - J $ 

(4.2.93) 

1 00 

+ sin2 T](cosh\\ - LI) 22_, BTn sinh 
A r i, 

n + - E + CTncosh n + - E 
I 2P V 2 / s 

In view of the relation [Macrobert (1967)] 

_d_ 
dp <-"•>£ = -n(n+ l)Pn = -(n+ l)(uPn -Pn_,) n> 1 (4.2.94) 
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the relation (4.2.93) may be written in terms of P as 

3Q 5Q, 
-\i sinh!; — - - sint| cosh I; — - = sinr|(cosh^ - \i)2 x 

I 
+ 

(\-n\ 

\ 2 ) 
(\-n\ 

BTn_, - BTn + 

dr\ 
^n+2^ 
v 2 ) 

BT 
n+l 

r n 

V 2 / 
CTn_, - CTn + 

^n+2^ 
V 2 J CT n+l sinh 

cosh 

( 1A 

V 2) \ 
(4.2.95) 

V 2) \
 P n 

The third term in the continuity equation may also be expressed as 

a / \ 5 2 ( c o s h £ - m 
lnrjsinh^ — + l l - u c o s h g — + : 

oq dr\ 
sin 

smr) 
U2 = - sin n sinh £, x 

FTn cosh^n + - J ^ + GTn sinh^n + - J $ 
1 _ J ! 

— sin2 nsinh£,(coshE,-uJ 2\t 

+ — sin2 n. sinh £,(cosh £, - n) 2 X I n + 9 

fr i -- -
- ( l - u c o s h ^ H — s in 3 n(cosh^-u) 2 +2s inrn i (cosh^- |u ) 2 

1 

2) 
FTn s inr |n + - J £ + GTn cosr^n + - J £ ft 

1 r i' 
FTn cosh^n + - J 1% + GTn sinh^n + - J £ ft 

sin3 n(cosh£,-uj 2 I FTn coshf n + Ai% + GTn sinh ( 0 
V 27 5 

+2 sin n(cosh £, - u)2 £ (cosh ^ - LI) FTncosh[n + ̂  + GTnsinh[n + ̂  ft 

(4.2.96) 
By the use of relation (4.2.94) and its derivative, the relation (4.2.96) is determined by 

sinn sinhE —+{l-\i cosh£. 
5^ v 5rj 

N 8 2(coshE, - ii) 
) z r + — — • : — sinrj 

U2 = sinr|(cosh^ - ix)2 x 

I (n-lKn-2)__ , l V . k T ( n + 2 ) ( n + 3 ) 
FTn_, - ( n - l)(n+ 2)FTn + FTn+1 cosh n + — £ 

V 27 s 

+ 
( n - l ) ( n - 2 ) 

G T n _ 1 - ( n - l ) ( n + 2 ) G T n + 
( n + 2 ) ( n + 3 ) 

GT n+I sinh 
V 27 s fP„ 

(4.2.97) 
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Similarly, 

sinnsinhl;— + ( l - Licosh^) — U 0 -
1 OO 

sinr|(cosh^ - \i)22_j 
1 1 

- - D T , + DT - - D T n + ] 
^ n - l n o n+l 

cosh n + — 1£ 
\ 2 / s 

+ -^ET n_, + E T n - i E T n + , sinh[n+-)^Pn 

(1 - p cosh 1%) — - sin T| sinhE —— 
dc, dr\ 

W, = sinr|(cosh^-uJ2 x 

I 
l L 

(n-l) ( 1 
„ AT ,+ n + - AT -
2 n_1 V 2) n 

^n + 2 

V 2 ' n+1 
( 1 ' , • 

cosr\n + -J5Pn 

(4.2.98) 

(4.2.99) 

Now, in view of (4.2.49, 95, 97-99), the continuity equation (4.2.54) may be written 

as 

1 oo 

sinr)(cosh£ - |i)22j 
n - l 

~2~) 
BT , + -BTn + 

n - l 2
 n 

n+2 

y~Y~J 
i 

B T . - - D T , 
n+l r\ n - l 

+ DTn - ^DTn+, + ( n " ^ n " 2 ) F T n _ , - (n- l)(n+ 2)FTn 
f w 

ATn-(n+2)AT, 
( n + 2 ) ( n + 3 ) ^ , . 

+ : FTn+,-(n- l)ATn_, + 2 

+ 

2 
n-f> 

2 ; 
(n- l ) (n-2) 

CTn_, + -CTn + 

(n+2! 

I 2 J 

n + ^ 

V 2) 
1 

n+l cosh 
( 0 
n+ -

V 2) 
1 

CTn+, - - E T , + ET - -ETn+, 
n+l ^ n - l n <•> n+l 

GTn_,-(n-l)(n+2)GTn + 
(n+2)(n+3) 

GT n+l sinh ( A n + -
V 2) 

k P =0 

(4.2.100) 

Therefore, it is satisfied for all £ and n, if the coefficients of cosh(n+ /?)£, and 

sinhln + M) h m (4-2.100) are equated to zero, that is 

-(n-l)BTn_, +5BTn +(n + 2)BTn+, -DTn_, +2DTn -DTn + 

+(n - l)(n - 2)FTn_, - 2(n - l)(n + 2)FTn + (n + 2)(n + 3)FTr 

-2(n -1)ATn_, + 2(2n +1)ATn - 2(n + 2)ATn+, = 0 

(4.2.101) 
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- ( n - O C T ^ +5CTn +(n + 2)CTn+1 -ETn_, +2ETn -ETn+, 

+(n - l)(n - 2)GTn_, - 2(n - l)(n + 2)GTn + (n + 2)(n + 3)GTn+, = 0 
(4.2.102) 

If we expressed the relation (4.2.101) and (4.2.102) in terms of Ans, by the aid of (4.2.79, 81 -

86), the former is observed to be automatically satisfied, and the latter gives a relation for 

Ans: 

[(2n-l)kn_1-(2n-3)kn] 

-[(2n+5)kn-(2n+3)kn+1] 

n - 1 n 
2 n - l "-1 2n+l n 

n+l n+2 
AT -AT 

= 42 
( \ 

2coth 
1 
2) 

a - coth 

2n+l 
( 1̂  

2n+3 n+l (4.2.103) 

V n-

/ 

2) 
a - coth 

A 

2) a n> 1 

in which k„ are given by (4.2.82). This generates n equations for (n+l) unknowns, A,, 

A2,... An, An+,. But, since the flow field is finite, the auxiliary functions, given by (4.2.48-51), 

have to converge at all points of the domain, and hence, in view of (4.2.79, 81-86), it is 

required that 

A n -> 0 a s n - > oo (4.2.104) 

Therefore, the set of A n s up to some level (depending on the desired accuracy), n = 

N, is completely determined by letting A N + 1 = 0, upon construction of the matrix of the 

coefficients. By knowing the set ofAns,the other sets of coefficients are completely 

determined by relations (4.2.79, 81-86). Their summations over n are programmed in 

"CoefTran". 

The domain of interest is divided into (K+l)x(L+l) nodes constructed by a net of 

bipolar coordinates in which K is the number of intervals on the £- coordinates and L the 

number of intervals on the n-coordinates. They are illustrated in Fig. 4.1. This figure 

corresponds to K = 3, L=30, and 6 = 0.05. The difference between each coordinates ĥ  and 

lî  is chosen to be a constant. They are determined by 

a 
l4 

71 
(4.2.105) 
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in which a is given by (A.42). Each node is addressed by its number, j , 0 = 1 -

(K+l)x(L+l)]. The number of nodes starts at the origin (£ = 0, n = it), increases with 

increasing the £- coordinate and with decreasing the r\-coordinate, as shown in Fig 4.1, that 

is j = 1 denotes the nodes located at the origin (£ = 0, TJ = TU); j = K+l is the node located at 

nearest point of the sphere to the plane (intersection of the z-axis and the below sphere, E, = 

a, n =7i), j = K+2 the node at the point (£ = 0, n = TU - h^), j = 2(K+1) the node at the point 

(£ = a, r)= TU -\); J = (K+1)L +1 the node located at infinity (£ = 0, r\ = 0), and j= 

(K+1)(L+1) the node at intersection of the above z-axis and sphere (£ = a, r\ =0). 

0 < ^ < a , 0 < n < n , 0 < 9 < 2 T I 

^ = 0 "» 
-• > c » 

A 

Fig. 4.1 - Distribution of nodes (1 -124) in bipolar coordinate system (£, n, 0) 

on the plane 0 = 0. 

1 6 3 



The Legendre polynomials, PJ(LX), (H = cos n ), and their derivatives with respect to 

p. are generated by the following relations: [Macrobert (1967)] 

p» = l, 

Po = 0, 

Po = 0, 

Po" = 0, 

P, = H, 

p; = i, 

P," = o, 

P," = o, 

2 i - l i - 1 
P,= , I IP, - , - j Pi-2 

P,' = rf-, + P,-, 
p," = UP,:, + p;_, 

p: = i ip l: I+(i+2)p i: 1 

for i > 2 

for i > 2 

for i > 2 

for i > 2 

(4.2.106) 

They are programmed in "PmuEq42106P" for each node j , with the notation 

P ( i , j ) = P , ( n J ) ; P l ( i , j ) = P , ' (n J ) ;P2( i , j )= P ; ( M j ) ; P3(i, j) = P,"(Mj) (4.2.107) 

The summation over n of the auxiliary functions WT,, QT,, UT0 and UT2, given by 

(4.2.64, 49-51), and their derivatives with respect to E, which are needed in the subsequent 

section are determined in the programs "WlEq4264, "QlEq4249", "U0Eq4250" and 

"U2Eq4251". The cylindrical components of the velocity in (4.2.9-11) may be written as 

u p T = V p T c o s 0 , u e T = V e T s i n 0 , u z T = V z T c o s 0 (4.2.108) 

in which! VpT, VeT, VzTj are defined by 

1 VT = -
p 2 c 

Q,T + (u 2T+U 0T-2) 

V e T=i(u 2 T-U 0 T+2) , 

V Z T=~Q,T+W,T 

The bipolar components of the velocity may be written as 

uj= V^TcosG, u 9 T= V eTsin0, u n T= VnTcos0 

(4.2.109) 

(4.2.110) 

(4.2.111) 

(4.2.112) 

in which(v^T, VeT, VnTj are determined by relations (4.2.109-111) and (A51, 52): 

(4.2.113) 
- sinh t sin n 1 - cosh ^ cos r) 

VT= L VT + LVZT 
1 c o s h \ \ - c o s t ] p c o s h £ - c o s n . 
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, T _ conh 1% cos T] - 1 - sinh £ sin n 
V,T= T l ! — VpT+ u t

S LVZT (4.2.114) 
' cosh c, - cos T| p cosh £, - cos r\ 

The cylindrical and bipolar components of the velocity are determined by the program 

"VTBConTran", upon the use of relations (4.2.108-114). Since the bipolar coordinate 

system has a singularity at infinity (E, = 0, r\ = 0) [c.f, (4.2.22)], to avoid this singularity in 

the dominator, this node is excluded in the calculation, the value of which is pre-described 

by imposing the boundary condition at infinity. 

To see how this solution works, an example of the distribution of the flow field in the 

plane 0 = 0, for a mesh size (K=3, L =30) is tabulated in Tables B1-5 for 6 = 0.05 (which is 

correspond to Fig. 4.1), in Table B6 for 6 = 2, and in Table B7 for 6 = 10"6. These Tables are 

located in Appendix B. For 6 = 0.05, hundred and twenty terms (N=120) are considered in 

the summation over n (n = 0 -120) in Eq.s (4.49-51, 64), for calculation of the auxiliary 

functions. Tables B1 -5 shows that boundary conditions are satisfied up to fourteen digits of 

accuracy for all points of the domain. For 6 = 2, only twenty two terms are considered 

(N=22) in the summation for which the boundary conditions are satisfied with the same 

accuracy at all points except for the two points located at the intersection of the sphere and 

z-axis (c.f, Table B6 nodes 5 and 124) which is within thirteen digits of accuracy. If one 

more term were added to the summation (i.e. for N = 23), the approximation of these two 

points would be improved beyond fourteen digits of accuracy. For 6 = 10"6, Nis taken to be 

5600 terms, the maximum capacity for MATLAB software. It is observed from Table B7 

that despite this large number of terms the accuracy is less than two digits (c.f, node number 

4). To improve the accuracy of the flow field for this case the addition of many more terms 

is required. 

Therefore, though there is no restriction for the particle wall distances, the smaller 

the gap width, the slower the convergence, that is as 6-0, (the rate of convergent)-0, and for 

6 = 0, since the problem is faced with a singularity at the origin, it never converges. 

4.2.3-Rotation of Particle 

Since the flow at infinity is already imposed on the definition of the auxiliary 

functions for the translation of the particle, given by (4.2.8-11), for the rotation of the particle 
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the suitable auxiliary function with a minor modification of the original solution are 

QR, 
pR = Q COS0 (4.2.115) 

Q 

Q 

-QR,+(UR 2 +TJR 0 ) cose, 

T2LeR=-(UR2-URo)sine, 

( 

u zR 

A Qf z 
QR,+2WR, cose 

2 V c ' V 

(4.2.116) 

(4.2.117) 

(4.2.118) 

Here, the indices R denote the rotation. Thus, they satisfy the same equations as those for 

the translation of the particle, since the reduction of the constant velocity at infinity does not 

affect the derivative of the velocity appearing in the equations of motion, and hence their 

solutions are the same as those obtained by (4.2. 49-51,64). Its boundary conditions on the 

sphere are [c.f, B.C.s (3.2.8-10)] 

upR = Q ( z - d )cos0 , ueR = - Q ( z - d ) s in0 , uzR = -QpTcosO, o n S p (4.2.119) 

in which d = 1 + 6, and those on the wall ( z = 0) 

UPR = e, U 9 R = 0 > a* = o onS w (4.2.120) 

and at far distances from the origin 

un R = 0 , *pR uflR = 0, u z R = 0 as|T1-» oo (4.2.121) 

The boundary conditions on the sphere may be expressed in terms of the auxiliary functions 

as 

- Q R , +(UR 2 +UR 0 ) = 2 ( z - l - 5 ) , on£ = a 

UR7 - URn = - 2 ( z - 1-5), on^ = 

- Q R . + 2 W R , = - 2 p on^ = a 
c 

a 

(4.2.122) 

(4.2.123) 

(4.2.124) 
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and on the wall and at infinity as 

- Q R , + (UR2 + UR0) = 0, on ^ = 0 (4.2.125) 

UR2 - UR0 = 0, on K% = 0 

QR,+2WR, = 0 on£ = 0 

(4.2.126) 

(4.2.127) 

Dean and O'Neill (1963), by imposing these boundary conditions in the solution of auxiliary 

functions, given by (4.2.49-51, 64), and by applying the continuity equation, given by 

(4.2.54), obtained the coefficients of the auxiliary functions, with the same procedure as that 

outlined for the translation of the particle as 

[(2n-l)kn_,-(2n-3)kn] 

-[(2n + 5)kn-(2n + 3)kn+1] 

n - l n 

n + l n + 2 
•AR - A R , 

V2( -I n+-ja r 

2(2n + l): 

2 n + T ~n 2n + 3~ ~n+1. 

2 n - l 2n + 3; (2n + l) 

( 0 
-(2n -1) cos echl n - — I a - (2n + 3) cosech 

cosech i n + T a 

V 2) 

( A n + T V 2) a 

BRn = ( n - l)ARn_, - (2n+ l)ARn + (n+ 2)ARn+1 n> 1 

CR„ = 4X„ cosech 
( \ \ 

V 2) a 

-2k 
n - l 

ARn , 
2 n - l n l 

n+2 

^ + 2 ^ A T -
n> 1 

DRn = - ^ ( n - l)nARn_, + - ( n + l)(n + 2)AR 

n > l 

n+l n > 0 

FRn = ^(ARn_,-ARn + 1) n > 2 

(4.2.128) 

(4.2.129) 

(4.2.130) 

(4.2.131) 

(4.2.132) 
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ER = 
n + - a 

V2(2n+l)e l 2) sihha - I 
( 

cosech 
\ \ 

n+ — 
2) 

+ k. 
n(n - l ) (n+l)(n+2) An 

AR„ , : : AR 
2 n - l -n-l 2n+3 n+l 

V 

n> 0 

a 
(4.2.133) 

f 
GR„ = -4A,„ cosech n + — 

V 2) 
a - k . 

1 
ARn . 

2 n - l n_1 

1 
ARn+, 

2n + 3 n+1 

n > 2 

(4.2.134) 
in which a and kn are given by the relations (4.2.22c, 82) and Xn is defined by 

x = -
e

 n-^)a
 e - ( n + i l a 

2 n - l 2n+3 
(4.2.135) 

They are programed in "CoefRot" from which the velocity field, given by (4.2.109-11), is 

determined in the program"VR". 

The cylindrical components of the velocity in (4.2.116-118) may be written as 

upR= VpRcos0 ueR= VeRsin0, 

in which(vpR, V eR, VzR)are defined by 

^Q,R+(U 2 R+U 0 R) 

uzR= VzRcos0 (4.2.136) 

VPR4 

V9R = ^ ( U 2 R - U 0 R ) , 

VzR = i - Q , R + W,R 

(4.2.137) 

(4.2.138) 

(4.2.139) 

The bipolar components of the velocity may be expressed as 

u ^ R = % R c o s 0 , u e R = V 0 R s i n O , u n R = V^RcosG (4.2.140) 

in which(\^R, VeR, VnR)are determined by relations (4.2.136-139) and (A51, 52) as 

- sinh E sin n 1 - conn § cos t] 
VER = 7-r2 L V R + ~—- VZR (4.2.141) 

% cosh \ -cost] p cosh K%- COST] 
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conh E, cos r\ -1 - sinh E sin n 
ynR = T? V P R + u . V z R 

' cosh £, - cos T) p cosh £, - cos n, 

(4.2.142) 

An example of its calculation for Q =1 and 6 = 0.05 is tabulated in Table B8, 9 for 

upR and uzR on the plane 0 = 0, and in Table B10 for ueR on the plane 0 = TU/2, given in 

Appendix B. In the calculation N =120. We see how boundary conditions, especially on the 

intersections of the sphere and z-axis (nodes 4 and 124), and on the leading point of the 

sphere (c.f, Fig. 4.1, node 112) are satisfied up to 14 digits of accuracy. 

4.2.4 - Translation and Rotation of Particle 

The flow field produced by translation and rotation of a sphere with linear velocity 

u = (U, 0, 0J and angular velocity Q = (0, Q, 0J, with the ratio of which given by r (= 

aQ/U), is obtained upon the linear combination (superimposition) of the solution for 

translation and rotation of the particle determined in § 4.2.2 and § 4.2.3. The bipolar 

components of the velocity may be expressed as 

u^ = V^ cosG, ue = Ve sinG, un = Vn cosG (4.2.143) 

where we have written 

aQ 
V 4 = q V J + r%R,Ve=qVeT + rVeR,VT,=qVtlT + rVT1R,r = — , q = (lor0) 

U 

from which the steady state components of the velocity are determined by 
(4.2.144) 

1 - - 1 °° 
V. = --sinr](cosh^ - LL) 2< - 2 ( l - Licosh^)^ An sinh 

2 i n+fjSP. 

+ LI sinh^2j 
i 

+(l-H2)srnh);X 

oo 

+ sinh^X 

{ 0 r i, 
Bn cosh^n+ - J $ + Cn sinh(^n+ - ] £ 

/ 1 / 

Fn cosh(^n + -j\ + Gn sinh^n+ -\\ 
1 

( 

Dn cosh 
2) 

\\ + En sinh 
( 

2) 

(4.2.145) 

\ 

p: 

sinh £, sin n 
n cosh \ - COS T] 
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V„=--(cosh4-np 
00 

+(1 - |n cosh £) sinh E^ 
0 
00 

+ sin2 r\[ 1 - Lt cosh c;) J ] 

00 

+ sin2 n,cosh^2j 

2s in 2 r ] s inh^A n s inh^n + -J^Pn 

Dncosh^n + - j 5 + Ensinh^n + - J ^ 

Fncosh^n + - j 5 + Gnsinh[n + - J ^ 

( 0 ( 
Bcosh n + - £ + Cnsinh 

V 2) 

1 \ 

V e =i ( cosh^ -u ) 2 z Dn cosh 
r 0 

n + -
V 2) 

n + ^ / 

v, 2) 

r 

\ 

conh^cosn,-l 

" cosh E, - cos rj 

(4.2.146) 

\ 1 
n + -

V 2) 

+sin r\ I Fncosh^n + - J ^ + Gnsinh^n + - J ^ 

K% + En sinh 4 P.M 
(4.2.147) 

where we have written 

Kn = qKTn + rKRn K = ( A , B, C, D, E, F, G ) , LI = cost] (4.2.148) 

When just rotation of the particle is considered q = 0 and r = 1, otherwise q = 1 and r = aQ/U. 

For the former, the characteristic velocity would be aQ instead of U. 

4.3 - Electroviscous Ion Concentrations for Low Pe 

4.3.1- Electroviscous Equations 

The equations and boundary conditions for electroviscous ion concentrations in the 

expansion (3.4.1), for Pe « 1, at order Pe are given by (3.4.2-5), and at order Pe2 by (3.4.7-

10). They may be expressed in the bipolar coordinate system (£, n, 0), for c:21as [c.f, 

(A.45)] 

"/ / a 2 d2
 I d2 

Icosh^-cosT]) — T + - T - T + . 2 ^Xl v \dE\ dr\ sin r\ dQ 

d cosh E, cos T]-l d 

dc, sin rj dr\ 

(4.3.1) 
c 2 ,=0 

with boundary conditions [c.f, (A.44)] 
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- ^ = FcJ (cosh £ - cosrj) — 
dq ' d\ 

(cosh^-cosrj)— 

c2 ,^0 
and for c22 as 

a s (^ , r | ) ->0 

u^ o n S j J = ( P , W ) (4.3.2) 

(4.3.3) 

d 2 •"*-' ^ 2'*•—' 

C , 0 C 
2^ A i a 2c 

+ 

( Ut Y\ U C22 U C22 
(cosh^-cosTi) — f - + — - f + . 2 2 
v 7 V d^ d t p sin T] 50 y 

(coshE, - cost]) - sinhE, 
dc2 2 cosh^ COST] - 1 dc '22 

SUIT] dt] ; 

(4.3.4) 

= u • V c '21 

with 

dc '22 

^ 
= 0 

c 2 2 -> 0 

o n S j 

a s ( ^ , T ] ) - > 0 

(4.3.5) 

(4.3.6) 

The geometry constant c in Eq. (4.3.4) is defined by (A.41). Because of symmetry 

properties, as observed in Chapter 3, if we define 

C21 = F c P C 2 1 c o s 0 , (4.3.7) 

c22 = F c P(C2 0 + C 2 2 c o s 2 e ) (4.3.8) 

at order Pe, C21 satisfies 

(cosh ^-COST]) — y + 
1 

dEj2 ' dr\2 sin2 r\) 

with boundary conditions [c.f, (4.2.134)] 

d cosh^cosr|-l d 
-sinh£, — + : — 

dc, sin T] dr\ 

ac 2 , / x d 
= (cosh ̂ - c o s r|]— a; 

dC 

^ 

(cosh^-cosrj) 
si 

Wt on £, = a 

rs p 
^ — = R( cosh ^ - C O S T ] ) — (cosh £ - c o s TI) — 
dc], dE,\_x oc, 

VE on h\ = 0 

C 2 , - > 0 as fell)->0 

C 2 1 = 0 

(4.3.9) 

(4.3.10) 

(4.3.11) 

(4.3.12) 

in which R is defined by 
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R = cW 

cP 

and at order Pe2 (C20 + C22cos20) [c.f, A.44)] 

(cOSh ^ - COST])| -Z7TT + 
1 d 2 \ 

dl%2 d\\2 s i n 2 n 50 
d coshE, COST] -Id 

sinh£, T—+ 
dl\ sinr] 

l+cos20^ 

5t] 

ac 

(C2O + C22cos20) = 

1- cos20 v ——+ v — 
*> dl% * di] ) 

VQ 
c 21 

sinn 

with 

(4.3.13) 

(4.3.14) 

dt 
(c2 0+C2 2cos29)L =0,C 2 0 +C 2 2 cos26->0 as(5, r | ) ->0 (4.3.15) 

Since these equations must hold for any value of 0, at order unity we have 

(cosh ^ - c o s r|)| 

ac, 

d2 d 2 A 

+ 

C 

2 
with 

v ——+v 
* dl% n dx\ 

oE\l dvCJ 
ac 

a cosh^cosr | - l a 
-s inh^ — + : — 

dc, sin T| an, 
C = 
^ 2 0 

-vfl 
c 21 

sinn, 

(4.3.16) 

ac 20 = 0, 
ac 20 

â  ^=1 ' d\ 
and at order cos(20) 

( r)2 d2 

(cOSh ^ - COST])| —— + 

:=0 = 0, C 2 0 ^ 0 as($,Ti)->0 (4.3.17) 

c 
= 2 

with 

ac 

d\\ dr\ sin x\) 
dOn, 5C7, C?1 

V —— + V —— + V —— 5 5 ^ " 5T] 9 sinn 

4 ] a coshE, cost] - 1 a 
- s i n h ^ — + : — 

oc, sinn dr| 

22 

55 :., = °- ac 22 

â  ^=0 

c 22 

(4.3.18) 

= 0, C 2 2 ->0 as (^, rj)->0 (4.3.19) 
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4.3.2 - Analytical Solution at Order Pe 

The electroviscous ion concentration at order Pe, C2I, satisfies the same equation as 

that given by (4.2.23) for which m = 1, so that its solution is 

C2, =(cosh^-Lt)2 sinr|Z 
n=l 

( I) ( 1 ) 
Incosh^n + - J 5 + Jnsinh^n + - J 5 Pn(|Li) (4.3.20) 

The sets of constants, Jn and In are determined upon imposing the boundary conditions on the 

solid surfaces. The derivative of the solution (4.3.20), with respect to E, is 

ac 21 

3$ 
= sinrf 

1 1 00 

-sinh^(cosh^-Li) 2 £ In cosh 

( n 
n + 

( 

\ 2) 
1 oo 

+ ( c o s h ^ - ^ i ) 2 X [ n + -
n=l 

/ 1 / 

L s i n h n + — XI + Jn cosh 
I 21 n 

\ + Jn sinh 

n 
n+ 

2) % 

n + 2) \ 

the value of which evaluated on the boundary E, = 0 is 

ac 21 

(4.3.21) 

^ I F = o - n* r , ^ > - . „ , - „ - „ (4-3.22) 

from which and upon the use of B.C. (4.3.11), the set of Jn is determined. V, appearing in 

B.C. (4.3.11) is given by (4.2.145). It may be expressed as 

= s i n n ( l - n ) i i ; ( n + ^ ) j „ P n 

sinn 
{ 2 

cosĥ  - LI) 2M- 2sinh (̂cosh^ - LI (4.3.23) 

in which the parameter M is defined by (Cl) in Appendix C. From this B.C. (4.3.11) may 

be written as 

ac 21 F c W s i n r | d 

dE] 2c 
Rsinr) d 

dl 

a 
(°oshS-n)-V = 

2c dE, 
(cosh^-ii) — (cosh^-Li) 2 M-2s inh^(cosh^- | j . ) L 

^ i J N + f c o s h ^ - i x n ±sinh2)jM 

I f 1 1 
f^oL.J:_iiV2 _ _ nnohPAA 4-1 m^hf — +(cosh^-Lt) - - c o s h EM 

2 
+ (cosh^- | i ) 2 [S + 2T + 0 ] 

(4.2.24) 
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The functions M, N, S, T, and O are defined by (Cl) , (C.2), (C.3) and (C.4) or, in revised 

forms, by (C9),(C10), (Cl 1) and (C.12) in Appendix C Now letting E, = 0, B.C. (4.3.24) 

is evaluated on the wall as 

dC 21 

d\ 

1 CO 

• = o 

x cW 

2c 
sinT](l-^)2X[(n + 2)Cn+,+(n-l)Cn_,-En+,+En_ 

+(n + 2)(n + 3)Gn+, - ( n - 2)(n - l)Gn_,]Pn 

In view of (4.3.22) and (4.3.25) the set of Jn is determined: 

X4.3.25) 

T _ _ cW 
n ~ c 2 

-\- [(n + 2)Cn+1 + (n - l)Cn., - En+I + E.. 
n+ 1L 

+(n + 2)(n + 3)Gn+1 - (n - 2)(n - l)Gn_, ] 
(4.3.26) 

n > l 

The other set of constants in the solution (4.3.20), namely In, is determined upon imposing 

the boundary condition on the sphere surface, given by (4.3.10), which requires much more 

calculation in order to equate it with that deduced from the solution (4.2.20), given by 

(4.2.21), evaluated on E, = a. This is determined in Appendix C as 

( n - 2 ) ( n - l ) / 

2 n - l 
sinh n - -1 

2) 
a l n-2 

- ( n - l ) 

1 

sinh a 

2 n - l 
cosh n -

/ 

2) 
a + cosh a sinh n - 2) a L n - 1 

+ 

+ 

( 

sinh 2a cosh 
1 

n+ — a 
2, 

, (n+ l ) (n - l ) n(n+2) 
(2n + 1) cosh a + : : — + 

- (n+2) 

(n+3) 
+ 

sinh a 

2n+3 
"(n+2) 

cosh 

2 n - l 
( i\ 
n+ -

2n+3 
sinh 

\ \ 
n+ — 

2) a 

v 

( 

f 

2n+3 
sinh 

2) 
5\ 

a + cosh a sinh n + 2) a Ln+1 

2) aIn+2
 = -Xn 

- — [Pn + 7 n + xln + x2n + x3n + (o ln + co2n + co3n + co4n + a)5n + o ) 6 n ] ^ 

(4.3.27) 
where x„, Pn Yn, Tln, i2n, x3n, wln, o>2n, o)3n, w4n, G)5n, a>6n, are given by (C.33, 22-31). 
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Eq.s (4.3.26,27) are solved by the program "CoefAnalyticRot" for the rotation of the 

particle and in "CoefAnalyticTran" for its translation up to transacting point n = N-l, upon 

the construction of the matrices of coefficients and the vectors of the right-hand sides. From 

the known coefficients, In and Jn, the electroviscous ion concentrations at order Pe, C21T for 

translation and C21R for rotation of the particle, are obtained by (4.3.20), programmed in 

"C21Psi21AnalyticTran" and "C21Psi21AnalyticRot". They are superimposed in Program 

"ForceParallelAnalytic". 

4.3.3 - Numerical Solution at Order Pe 

The finite difference approximation is applied to solve Eq. (4.3.9) along with B.C.s 

(4.3.10-13). The idea is that the electroviscous ion concentration at each point of the domain 

can be determined from the values of its neighborhood by the use of Taylor series 

expansions. Thus, if we divide the domain of interest in discrete points as shown in Fig. 4.1, 

for each node we may write 

A0C21 = A,C21(1)+ A2C21(2)+ A3C21(3)+ A4C21(4) (4.3.28) 

in which A; (i = 0, 1, 2, 3, 4) are known as weighted functions and C21(i) (i = 1, 2, 3, 4) are 

the value of C21 at four immediate neighborhood nodes, located on the coordinate curves 

passing at the point under consideration, C21. Here, node (1) is taken to be located in the 

increasing direction of r), node (2) is its reflection with respect to Ei coordinate, node (3) is 

in the increasing direction of E, and node (4) is its reflection with respect to r| coordinate, as 

shown in Fig. 4.2a. Thus, Eq. (4.3.28) may be written, upon the use of Taylor series 

expansions, as 

h2 a2c, hi a3c 
A, 

ac 
c * + V at, 

21 
+ 

'21 

+A-

+A, 

+A, 

2 dT] 
2 

+ 
'21 

3! dr\3 

C„_h^+^^%+0(h3) 

+ ' 

'21 dr| 2 dr\ 

ac2, h a2c 

c2i - K 

di% 2 dl\ 

^ + ^ + o 
d\ 2 dZ, 

?-+o(h\) 
(4.3.29) 

A Q C 2 I - 0 
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in which h^ and hn are intervals chosen for E, and n coordinates, respectively. 

The electroviscous ion concentration, C21, should simultaneously satisfy the exact 

equation, given by (4.3.9), and the approximate one given by (4.3.29). Therefore, the 

weighted functions A, are determined, upon equating these two equations, then collecting 

terms with the same derivatives. Because the exact equation does not poses terms of higher 

order than d2Cx/dE,2 and d2C,/dr|2 we truncate terms of 0(h3
£) and those of 0( h3^) in the 

approximate equation, given by (4.3.29). Thus, the error in this calculation is of order (h3
? 

+ h3
n) and hence the smaller the intervals the more accurate the result. Doing so the 

weighted functions are obtained as 

A0 = 2(cosh£, - cosn) 
sin2 T] sin2 n 1 
~ h T + ~ h ^ + 2 

A,= 

A, = 

sin2 T](cosh^ - COST]) sinn (cosh \ COST] - l) 
_ 1 i _ -

2h 

sin2 T] (cosh i\ - cos rj) sin n (cosh £, cos r\ - l) 

A3 = sin n 

A4 = sin T) 

h2 2h 

(coshi\ - cost]) sinh^ 

(4.3.30) 

K 2hc 

(cosh\\ - COST]) sinh^ 

2ht 

They should be evaluated at the node under consideration. Now, we can apply Eq. (4.3.28) 

to all individual interior nodes of the domain which have four neighborhood nodes around 

them. On the boundary of domain on the solid surfaces we have only three neighborhood 

nodes and at its edge only two. To manipulate the finite difference approximation for such 

points, we may consider an imaginary node behind the boundary denoted by C,(4') for the 

wall and C(3') for the sphere surface, as shown in Fig . 4.2b, c. By the aid of the governing 

Newman boundary conditions (4.3.10, 11), it would be possible to determine the value of 

such imaginary nodes in terms of inner nodes (i.e., imposing the boundary conditions). 

Therefore, if we write [c.f, Fig 4.2] 
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ac 21 

^ 

C2,(3)-C2,(4') 
2hc 

onS 
ac 21 

W> 
&> C=a 

C21(3')-C2,(4) 
2ht 

onS, 

(4.3.31) 
C21(3') and C21(4') are determined in terms of the interior nodes C21(3) and C21(4) as well as 

the corresponding boundary conditions, that is 

C2 ,(4') = C2 I(3) - 2h x BCWall , 

C21(3') = C 2 , (4)+ 2h x BCSphere , 

in which, in view of B.C.s (4.3.10, 11), we have written 

(4.3.32) 

(4.3.33) 

BCWal l = R(cosh 1% - cos n) — 
â  

BCSphere = (cosh ^ - cosn) 
dt, 

(cosh^-cosnj 

(cosh£,-cosnJ 
_a_ 
d?, 

Vd o n ^ = 0 (4.3.34) 

VE o n ^ = a (4.3.35) 

Thus, the finite difference equation (4.3.28) may be written as 

- A 0 C 2 , + A,C2 1(1) + A 2 C 2 , ( 2 )+ (A3 + A 4 )C 2 , (3) = 2A 4 h^BCWall (4.3.36) 

for nodes on Sw and 

- A 0 C 2 , + A,C2 ,(1) + A2C2 1(2) + ( A 3 + A 4 )C 2 , (4) = -2A3h^BCSphere(4.3.37) 

for those on SP. 

t 
•n 

o+h6(|) 

t 
0 ( , ! f l c I *X }An imaginary node 

% 
c -<2) d > -
^21 r | - h r,+hn 

r\ 

5-h, 0 
a: Interior nodes 

E, = O 
'W 

c d © ^ 
^21 r i -h ri+h^ 

Tl 
t 
c\ = a 

'21 

<2) 
r|-hT 

Q _ h U l j An imaginary node OC~hp ( 4 j 

b: Nodes on wall c: Nodes on sphere 

Fig. 4.2 - A node on E, and r| coordinates surrounded by the four immediate 

neighborhood nodes. 
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In addition to the solid surfaces for which ( = constant, we have two other boundaries of the 

domain for which r\ is constant, one on the z-axis above the sphere for which n = 0, and the 

other is that part of the z-axis below the sphere for which n = it (c.f, Fig. 4.1). To 

manipulate the finite difference approximation for such points, we may assume that the 

curves of the electroviscous ion concentration on the z-axis are piecewise continuous so that 

the imaginary nodes on the left side of the z-axis are located in such a way that the slope of 

the left-hand sides and the right-hand sides on the z-axis are the same. Thus, if the nodes 

behind the boundary n = n are denoted by C21(l') and those behind the boundary r) = 0 are 

denoted by C21(2') we may write 

ac. c n ^ - c 
(4.3.38) 

(4.3.39) 

ac2, 
dr\ 

dc2I 

dr\ 

^ 2 1 ^ 2 1 \^) 

Tl=n- h 
n 

v-^i — ^ 2 i ( 2 ) 

n 

ac2, 
an, 

ac21 

an 

^ 2 1 V ^ / ^ 2 1 

n=«+ h 
1 

^ 2 1 v U — ^ 2 1 
n=o+ " h 

n 

or 

C2 ,(P) = 2C2 1 - C 2 , (2) , C2,(2') = 2C2 , - C2I(1) (4.3.40) 

from which the finite difference equation (4.2.28) for the interior nodes on these boundaries 

is determined: 

( 2 A , - A 0 ) C 2 , + ( A 2 - A , ) C 2 1 ( 2 ) + A 3 C 2 , ( 3 ) + A 4 C 2 1 ( 4 ) = 0 o n r ^ T t (4.3.41) 

( 2 A 2 - A 0 ) C 2 , + ( A , - A 2 ) C 2 1 ( 1 ) + A 3 C 2 , ( 3 ) + A 4 C 2 , ( 4 ) = 0 o n n ^ O (4.3.42) 

It remains to write down the finite difference equations for the nodes located on the 

four edges of the boundary which have only two nodes around them, namely the intersection 

of the z-axis with the wall (E, = 0, n = ir), the intersections of the z-axis and the sphere (E, = 

a, n = TU, and E, = a, n = 0), and the intersection of the p and z-axis at infinity (E, = 0, n = 0), 

([c.f, Fig. 4.1). For the node located at infinity we have its value given by B.C. (4.3.12), 

so it may directly imposed in the matrix of coefficients. For the others, their equations are 

easily obtained by combining (4.3.32, 33) and (4.3.40): 
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at(ri = 7i,5 = 0) 

(2A, - A 0 )C 2 , + (A2 - A,)C 2 , (2)+ (A3 + A 4 )C 2 I (4) = 2h^A4BCWall (4.3.43) 

at (T] = 7t, cj - a ) 

(2A, - A0)C21 +(A 2 - A,)C2 ,(2) + (A3 + A4)C2,(3) = -2l \A 3BCSphere (4.3.44) 

and at [r\ = 0, £, = a ) 

(2A2 - A0)C2 , + (A, - A2)C2 ,(2)+ (A3 + A4)C21(3) = -2h^A3BCSphere (4.3.45) 

Now, each discrete node has an individual equation, so that its value is uniquely determined 

upon the solution of these (K+1)*(L+1) algebraic linear equations simultaneously. This is 

done by constructing the matrix of coefficients of C2i's and the vector of the right-hand sides 

in "C21Numeric". 

The BCWall and BCSphere, defined by Eqs.(4.3.34,35), are determined upon the use 

of solution of the purely hydrodynamic problem. Thus, if we write 

BCWall = F c WBCW, BCSphere = FcPBCS (4.3.46) 

BCW and BCS are determined by evaluating the following relation, obtained from (4.2.145), 

on the solid surfaces, i.e. by letting E, = 0 and E, = a, for BCW and BCS, respectively: 

aC7 1 1 1 sin2 T] sinh& r _ . / \i 

if =c2(-Jl^K + - • > ( " • + U»-2)] 
l4 sinh2 £, + 1 - LI cosh £, 

(cosh^ - (i) 

1 
- - s i n h ^ 

sin T] 

5 2Q, . 
L i—- 1 -+s inn 

di% 
(1 - LI cosh £,) 

aQ, . 

^"aT+smT1 

fd2ur 

(au0 au2 
v di% + dE, ) 

a2 iL 
+ 

(cosh£, - LIJ 
W,-

d\2 dt%2 J 

2sin 2 T] + LI cosh£, - 1 a w , 

( c o s h ^ - j i ) di\ 
- (LI coshi; - l) a

2w, 
dV j 
(4.3.47) 
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BCW and BCS is determined in "VTBConTran" for the translation of the particle and in 

"VRBConRot" for the rotation of the particle. They are superimposed in 

"ForceParallelLowPe". 

An example of the analytical and numerical solutions of C21 for comparison is 

illustrated in Table Bl 1, located in Appendix B. In this example Pe is taken to be equal to 

0.01 and 6 to 0.1, the number of intervals on the ^-coordinates is taken to be three (K = 3) 

and those on the r\-coordinates is taken to be thirty (L = 30), corresponding to Fig. 4.1. The 

other parameters are i|/ = - 5 0 mV, v|/ w = - 1 0 0 mV, aQ / U = 0.5, D, / D 2 = 2 and 

the medium is a univalent electrolyte at room temperature1. It shows that within 98% of 

accuracy the numerical solution agrees with the analytical one, that is the difference between 

the two solutions is less than 2%. 

4.3.4 - Numerical Solution at O (Pe2) 

The equations for electroviscous ion concentrations at order Pe2 are given by (4.3.16) 

and (4.3.18) for C20 and C22, respectively. The right-hand sides of these equations are 

completely determined analytically by the use of the analytical solution of C21 and the flow 

field. The suitable finite difference equation for either of them, C2j (i = 0, 2), is 

-A 0C 2 l + A,C2l(l)+ A2C2l(2) + A3C2i(3) + A4C2l(4) = RHS, (4.3.48) 

in which RHSj stand for the right-hand sides, determined by 

RHSC20 -
ac 21 ac 

v ——+ v 
* di\ n an 

21 - v a 
C 21 

sinr) 
(4.3.49) 

for C20 and 

RHSC22 - 2 Vc 

ac 21 + v. 
ac 21 

a^ * an 
+ vQ 

'21 

SUIT] 
(4.3.50) 

Throughout this chapter all examples are for a univalent electrolyte at room temperature, 
unless otherwise stated 
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for C22. If we expand the finite difference Eq. (4.3.48) by a Taylor series and then equating 

it to the analytical Eq.s (4.3.16, 18), we see that C20 and C22 for each node satisfy the same 

equation as that obtained for C2, in the previous section, except for the right hand side which 

is replaced by Eq. (4.3.49, 50) for the latter. The right-hand sides are programed in 

"RHSC20C22". C20 and C22 are so obtained by the programs "C20Numeric" and 

"C22Numeric1\ respectively. 

4.4 - Electroviscous Potential 

The electroviscous potential at 0(e2), \|/ 2 , is given by 

i |/2 = 

rD2-D^ 
c2+<|> (4.4.1) 

V D 2 + D , J 

in which c"2 has already been determined and (J) satisfies the same equation and boundary 

condition as those for electroviscous ion concentrations at order Pe in which the coefficients 

of the boundary conditions, (FcP, FcW] are replaced by I F^p, F ^ I defined by (1.3.61 e). If 

we write 

if = O cos0 (4.4.2) 

<E> is determined with the same procedure as that for C21. Therefore, at order Pe we have an 

analytical solution for the electroviscous potential also. Thus, if we expand the electroviscous 

potential as 

\j/2 =cos0\|/2,Pe+ 2 ] (\|/20+cos20vL/22)Pe2+o(Pe3) (4.4.3) 
2D2 

we have 

V21 = D
2

+ D
1 C 2 1 + 0 > V 2 0 = C 2 0 > V 2 2 = C 2 2 (4-4-4) 

' 2 ' J - ' l 

The function O is programmed in "C21 Psi21 Analytic" for the analytical solution and in 

"PhiNumeric" for the numerical solution, from which \j72, is determined. 

4.5 - Electroviscous Force on Sphere 
The electroviscous force experienced by the particle is obtained from the integral 
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(3.6.1). Noting that the unit vector outward the solid surfaces for the particle is - L and for 

the wall is î  the integrand of the force is determined by [c.f. (A.44), (A.43c)] 

B p - r j p • Sp = — 

^ w ' ° w ' ^w 

^PTiaPi^ +^pe°'pe^ 
c sinr| 

• '(cosha-cosrij 
drjdO 

"wnCT wn$ + "weawe^ 
c sinn, 

(l-COST] J 
dnde 

(4.5.1) 

(4.5.2) 

in which [c.f. (2.6.30, 31, 3.6.2)] 

BJn = -2X 
(cOS^ - COST]) ac 

(0, + H , ) — M G J - H , ) 
d\\i 21 

dr\ at] 
cos0 onSj (4.5.3) 

B j e = +2X 
(cos^-cosri)r/ x / x i 
y—±- ^[(Gj+H^+fo-H^jsine on S/4.5.4) 

where J = ( W, P), and Gj and Hj are defined by (2.6.31). 

4.5.1 - Stress Tensor for Translation Parallel to Wall 

The flow field for translation of the sphere parallel to the wall with unit velocity is 

determined in § 4.2.3. The stress tensor is given by (A.58), from which the required 

components of the stress tensor, o \ P and cf , e P , where P stands for translation parallel to 

the wall, are determined by 

^ n P = 
1 

sinT]iXT+ sinh^u T+ (cosh^ - COST]) 
(duj dVLf 

v 

v 

s » ? = l
e 

sinh^ueT+ (cosh^ - COST]) 

dr\ di\ 

(d\T 1 d\t\ 

v d\\ sinT] a0 ) 

(4.5.5) 

(4.5.6) 

The flow field is given by (4.2.112,145-147) from which, and upon excluding the term due 

to the moving coordinate system, the stress tensor is obtained as: 

cosG 
CT^P = - 2c I 

G ^ P A + G ^ P B C + G ^ P D E + a^PFG 

sinO 
a £ 6 P = n 

46 2c 
a 4 e P A + G4 ePBC + G4ePDE + G ^ 9 P F G ] 

(4.5.7) 

(4.5.8) 

where a ,nPA, a ?T1PBC, o .nPDE, a ,PFG, o £ePA, a <ePBC, a £9PDE and o £6PFG are given 
w W w Si w w w 
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in Appendix C, by the relationships (C.34-41), respectively. The stress tensor is determined 

in Program "SigmaParallel". 

4.5.2 - Stress Tensor for Translation Normal to Wall 

A novel solution for the flow field produced by translation of a sphere normal to and 

away from the wall is presented here upon the use of Jeffery's solution of the Laplace 

equation discussed in § 4.2. Because of the symmetry property around the z-axis, this flow 

field is independent of the azimuth angle 0, for which the suitable auxiliary functions are 

found as 

Q» l 
Cp = 2 

Qo + u , 
l 

Qo+2W0 (4.5.9) 

Introducing them in the two dimensional version of the Stokes equation results in 

i a 
p ap 

I a 
P dp 

~~aw0" 
P ~~ 

L aP _ 

"~5Q0" 

dP . 

i a 

a2w0 

dz 

d2Q0 

~P~[pUl]-~2 
p a p L J p 

dz' 

u, a2u, n 
1 +~—r = 0 dz-

~ dQQ „ dQ0 3Q0 + p - ^ + z - r ^ + c 
ap dz 

au, vA i + - i 

v ap p ) 
+ 2c-

dW, 

dz 
= 0 

(4.5.10a) 

(4.5.10b) 

(4.5.10c) 

(4.5. lOd) 

Thus, each of them satisfies Eq. (4.2.21) for which O = W0, Q0, and U„ corresponding to m 

= 0, 0, 1, respectively. Their solutions are [c.f, (4.2.49, 50, 64)]: 

W0= (coshZ,-\L)*t 
n=l 

Q0 =(cosh^-Li)2 Z 
n=l 

An sinh 

B„cosh 

2) 
(4.5.11) SJPnM 

n + - j 5 + Cnsinh[n + - j 5 Pn(u.) (4.5.12) 

^ + Ensinh[n + - J ^ ?n(p) (4.5.13) ( A 
Dncosh|^n + -^ U, = (cosh£-u j 2 sinr]Z 

v n=0 

The corresponding boundary conditions up = uz = 0 on the wall ( z = 0 or E, = 0), and 
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up = 0 and uz = 1 on the sphere [E, = a ), in terms of auxiliary functions (4.5.9) are: 

(4.5.14) 
2c (coshE-u,) 

z=o z =̂o sinhc, 

2p 
U, ~ n = lim—-Wn = lim 

2 sinn, 
z=0 

z=o z " s=o sinh^ 
W„ 

c/ \ cosh -̂u / xi 

Q.U=2z(i-w0)U=2^i(,-wia 
2 sinn, 

U, u / \ z,siii r / \ 

a=2^(w0-l)|,o=-^(w0-l)|,a 

(4.5.15) 

(4.5.16) 

(4.5.17) 

The term (cosh E, - u)W0 in B.C.s (4.5.14, 16), by the aid of (4.5.11), may be written as 

1 OO 

(cosh^ - |i)W0 = (cosh^ - p)2 Y, A n 
( A (A 

cosh E, sinhl n + — IE, - p sinhl n + — IE, 

(4.5.18) 
Using the recurrence relationships [Macrobert (1967)] 

n + l 

it may be expressed as 

2 n - l 
A„ , sinh k n - l ( c o s h ^ - | L i ) W 0 = ( c o s h ^ - ^ X 

( A n+1 -A A , 
+An cosh^sinh n + - J£ - "^77^A n + 1 sinh| n + - E, 

n ( n 
n - -

V 2) 
\ 

\ 2, 2n + 3 V 2) 

(4.5.20) 

Imposing B.C. (4.5.14) results in 

B n = nAn_, - (2n + l)An + (n + l)An+1 n > 0 

Using the identity [Macrobert (1967)] 

P = (P , - P ,) n > l 
P n 2 n + l V n+1 n _ l / 

the solution (4.5.11) may be written in terms of Pn( | i) as: 

W 0 = ( c o s h § - n ) 2 Z 

(4.5.21) 

(4.5.22) 

( 

- ^ - s i n h f n - H ^ - ^ r s i n h l n + - J ^ |Pn 
2 n - l V 2P 2n + 3 V 2P ^n (4.5.23) 
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Now, imposing B.C. (4.5.15) results in 

n> 1 Dn - An_, An+, (4.5.24) 

The other sets of constant are determined by imposing the no-slip boundary condition on the 

sphere surface. Using identities (4.2.75, 76) and [Macrobert (1967)] 

( c o s h S - u ) * = ] [ > n P n , 
1 

in which Xn is defined by (4.2.135), B.C. (4.5.16) may be expressed as 

(4.5.25) 

sinh a B„cosh 
f I) 

n+ -
2) 

a + Cn sinh 
0 
2) a 

n 
+ 2 n - l n_1 cosh a sinh 

( 

= 2 
( 

Xn- Ancosha sinh n + 
v 2) a 

n + 

n + l 
+ ^ + l A n+l 

( 

cosh a sinh 

2) 
I) 

2) 

( 

a - sinh a cosh 
1 

V 
n + 

( 

a + sinh a cosh n + 

2) 

2) 

a 

a 

Introducing (4.5.21) to (4.5.26) gives the set of Cn to be determined 

< n 
n + 

(4.5.26) 

Cn = 2 cos echa cosech 
V 2) 

a l - 2 k . n 
2 n - l "-1 

n + l 

2 n T 3 A n + 1 

(4.5.27) 
for which n > 0 and k„ is defined by (4.2.82). The set of En is so obtained upon the use of 

B.C. (4.5.17): 

1 \ 
En = 4cosechacosech[ n + —laln - 2 k n 

An_, A n+l 

2 n - l 2 n + 3 

It remains to determine the set of An by the use of the continuity equation. The terms in the 

continuity equation (4.5. lOd) may be expressed in terms of Pn by the use of the identities 

(4.2.87) and (4.2.94) as 

dQ0 „ 3 Q 
+ z—— = -LI sinh£, 

dQ o • dQ0 —--sinn—— 
di% ' dx\ 2 

( 1^ 
n + 2) \ 

ajf az 

X [-nBn_,-Bn + (n+l)Bn+,]cosh 
o I 

+ [-nCn_, - Cn + (n+ l)Cn+, ] sinhl n+ ^ [p„ 

1/ \~ 
= H c o s h ^ - L i ) 2 X 

(4.5.29) 
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'au, LO 
v ap p ) 

. , , d i J (cosh^- LI) 
- sinn sinh^ — +1 LI cosh$ - 11 — + : -

o\ ' dr\ °tn" sini] 

1 

+ 

U,= 

(cosh!; - n)2X [n(n- l)Dn_, - 2n(n+ l)Dn + (n+ l)(n+ 2)Dn+]]cosh 
1 

V 2) \ 

n(n- l)En_, - 2n(n+ l)En + (n+ l)(n+ 2)E n+l sinh n + 2) 
(4.5.30) 

aw, 
az 

( l - LL cosh^) — - sinn sinh^—- w0 = 

1 - °° ( \\ 1 
- f c o s h ^ - u p X [-nAn_1 + (2n+l)A„-(n+l)Ant ,]cosh[n+-J^P„ 

(4.5.31) 
Now, to satisfy the continuity equation for all ranges of £ and n, the summation of coefficients 

of cosh (n+l/2)£ and sinh (n+l/2)£ of all terms, contained in the continuity equation (4.5. lOd), 

given by (4.5.12, 29-31), must be zero. Writing them in terms of An's by the use of (4.5.21, 

24, 27, 28), for the coefficient of cosh (n+l/2)£ results in 

3[nAn_, - (2n +1)An + (n +1)An+,] + 1 {-n[(n-1)An_2 - (2n-1)An_, + nAn] 

- [ n A n _ , - ( 2 n + l ) A n + ( n + l)An+,] + (n + l)[(n + l ) A n - ( 2 n + 3)An + 1+(n + 2)An+2] 

+ n ( n - l ) [ A n . 2 - A n ] - 2 n ( n + l)[An_,-An + , ] + (n + l)(n + 2 ) [A n -A n + 2 ] 

+2[-nAn_, + (2n + l)An - (n + l)An+,]} = 0 

(4.5.32) 
and for the coefficient of sinh (n+l/2)£: 

n(2n-l) n(2n-3) t 
nk n _ , - - - k An_,+ 

+ 

(2n-l) n 

(n + l)(2n + 5) , 
- k n - (n + l)kn+, 

(2n + l) 
(n + l)(2n + 3) 

Kn-1 Di^n + / ^ „ . i\ Kn+l (2n + l) 

(2n + 3) 

cosecha 

A. 

A n + i -

( A ( iY4'5'33) 

n(2n - 3) cosechl n - - IaA,n_, - (4n2 + 4n - 5)cosechl n +—JaA,n 

n>0 +(n + l)(2n + 5) cosech 
K 2) aX n+l 
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Eq. (4.5.32) is automatically satisfied for all n's, which guarantees the correctness of the 

calculations. Eq. (4.5.33) represents n linear algebraic equations for n+l unknowns, the 

solution of which by truncating at n = N, by letting AN = 0, is determined in the program 

"CoefN". 

This problem has been solved by Brenner (1961) with a different approach based on 

Stimson & Jeffery solution of the stream function for axisymmetric flow (1926). Because of 

this symmetry the hydrodynamic force experienced by the sphere has only one component (in 

the z-direction), Fz. If we denote by k the correction which must be applied to Stokes' Law 

as a result of the presence of the solid wall then 

Fz = 67rk (4.5.34) 

The coefficient k is determined by Brenner (1961) as 

4 « n ( n + l ) 
k = — s inhaZTT TTTT TT 

3 i ( 2 n - l ) ( 2 n + 3) 

2 sinh(2n + l )a + (2n +1) s inh2a 

4sinh 2 (n + K ) a - ( 2 n + l ) 2 s i n h 2 a 
1 (4.5.35) 

Since the whole system is under statistical equilibrium the force the fluid exerts on the 

sphere is the same as the one exerted on the wall, but with opposite direction. It is more 

convenient to determine the force, upon the use of the cylindrical component of the stress 

tensor normal to the wall for which î  = ^ . Thus, the force experienced by the sphere from 

the present solution is determined by [c.f, (A.5c, 22)] 

2 7COO 

F; = - JSwz.dS = - JJ 
S„ 0 0 

- p + 2-
dz 

pdOdp (4.5.36) 
- lz=0 

The infinitesimal element of the surface on the wall may be written as [c.f, (A. 43c)] 

pdOdp = c sinr] 
,2 U=0 

(cosh^-cosr|) 

and the stress tensor as [c.f, (4.5.9, 12)] 

d0dr] = 
0-tf 

dOdjn - 1 < p < 1 (4.5.37) 

auz 

- lz=0 
3 oo 

2c 2c az az 

= -( l -pFZ(2n + DAnPn 

= 2 
z=0 

d% 
dz z=0 

(4.5.38) 

187 



Thus, the hydrodynamic force is obtained as 

2K 1 

Fz = - c J f Z ( 2 n + l ) A n ( l - u ) Pn = - 4 V 2 7 i c l A n (4.5.39) 
0 - 1 o 0 

where An are determined by (4.5.33). From this k for the present solution is obtained as 

2V2 
k = - cZAr (4.5.40) 

3 0 -

The correction coefficient, k, for both solutions is programed in "kEq4535Eq4540" and some 

examples of them are tabulated in Table B12, located in Appendix B . We see that, up to 

twelve digits of accuracy, these two solutions predict the same values for k, however, the 

smaller the gap width the larger the difference for the same truncated value of n. This is 

because the rates of convergence of the series in (4.5.35, 40) are different. The difference 

in the sign is due to the fact that Brenner (1961) considered the translation of the particle 

toward the wall, whereas the present solution is for translation of the particle away from the 

wall. 

The bipolar component of the velocity is obtained from (4.5.9, 11-13), by the aid of 

the relation (A.51, 52), as: 

1 --
u = - ( c o s h ^ - n ) 2 -LLsinh^X 

2 n 

( 1 
Bn cosh n + — \E + Cn sinh 

n ^ 2'^ n 

< w 
n + V 2) 

\ 

sin T] si inh$£ ( A ( 
D„ cosh n + — \E + En sinh 

V 2) v 

n^R 
( \ \ 

+2(l-LI cosh^)X An sinh[n+-J^Pn 

(4.5.41) 
and 

û  = -sinT](cosh^-Lt) 2 
cos h^S Bn cosh n + 

2) 
\ + Cn sinh n+ — 

2) 
\ 

-(l-Licosh^)X 
1 L 

- 2 s i n h ^ A n s i n h n+-j^Pn 

1 
Dn cosh n+ - 5 + En sinh n+ -\\ 

(4.5.42) 
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from which the only non-zero component of the stress tensor in (4.5.1, 2), a . , is obtained, 

upon the use of the relation (A.58): 

1 
^ 2c 

o^NA+o ^NBC + G ̂ NDE (4.5.43) 

where N denotes translation normal to the wall and where G ^ N A , a ^ NBC, G ̂  N D E 

are given in Appendix C by the relations (C.42-44), respectively. This is programmed in 

"SigmaNormar. 

4.5.3 - Force Parallel to Wall 

In the integrand of the force, given by (1.5.1,2), two components of the stress tensor, 

namely G * and G , 0 , are involved. Thus, if we write the tangent component of the force 

as the sum of the contribution of each of them, denoted by R and R 0 , that is 

(4.5.44) Fx = * f a + F<e) 

F: and FFfl are determined by the aid of (4.5.3, 4) as 
- < L n •^e 

^= P e -Tl[ ( G P + Hp)?f|s.+(Gp-Hp) 5v|/2l 
e5n

p 

( 

n̂ J J \ P p/ ^ri 'Sw ^ p p' dr\ Sw ^ Sw 

^^fl±^i]dllde+
2ff[(Gp + H p )^ s + (G P -H„P> 

1 - C O S T ^ 2 J ' J,JLV " <•' dr\ s' y " "> di\ 
x 

I c sin n 
qn ' p (cosha-cosnj 

1 + co20 
|dndO 

(4.5.45) 

and 

2TC 0 \ I 1 

ho = P e l l (GP+ H P ) C - | S „ + ( G P - H P V 2 1 | S W F 
. 0 71 

( l -COST])v 2 

1 - co2(P 
) 

211 S w 

2TC 0 

21 S w r J;0X S PL x 
w 

dnde- }}[(GP + HP)C2I |SP + ( G P - H P ) ¥ 21 

GC P 

0 7C 

1 - co20 

^ lSp(cosha - COST])V 2 
dnd0 

(4.5.46) 
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in whichrJ^P and G ^ P are determined by (4.5.7, 8). 

The force is obtained by the program "ForceParallelAnalytic" for analytical solution 

of electroviscous ion concentrations and potential, and by the program "ForceParallelLowPe" 

for the corresponding numerical solution, upon the integration of (4.5.45, 6). 
F / 

The analytical and numerical solution of the dimensionless force, z/\ , for different 

mesh sizes, particle-wall distances, ratio of diffusitivity of ions, ratio of the angular and 

linear velocity, and different C-potentials, for a univalent electrolyte are tabulated in Table 

B13 in Appendix B. It shows that the numerical solution is reasonably mesh independent 

and it is in fair agreement with the analytical solution. 

4.5.4 - Force Normal to Wall 

For the lift component of the force only C20 and i[r20 contributes to the integral of the 

force and the stress tensor is given by (4.5.43), from which the force is determined upon the 

use of (3.4.1, 4.4.4, 5,2.6.32): 

E 
i I 

2TC0 

^ = P e 2 | - ( G w + S H w ) j | 

3C 

0 re L 

ac 20 

dr\ <^nN 

J s w 

2n 0 

+ ( G P + S H P ) U 
0 71 

af°-N csinn 
(cosha - cost]) 

csinn 
( l - COST]) 

dndO 

dT]d0 

(4.5.47) 

where S is defined as the ratio of diffusivity of counterions to diffusivity of coions: 

s = (4.5.48) 

This is programmed in "ForceNormalLowPe" 

4.6 - Electroviscous Force for Arbitrary Peclet Numbers 
4.6.1 - Electroviscous ion concentrations 

In this section the restriction on the Peclet numbers is released, so that the 

electroviscous ion concentration satisfies a single equation, given by (1.3.60), which may be 

written in the bipolar coordinate system as 

190 



(cosh^ -COST]) 
a2c, a2c, i a2c; ^ / 

+ + 
di\l an2 sin2n 3G2j 

1+S 
cPeil + sinhl; 

3 c, 

1+S cosh^cosn-1 
—— cPeiL + : 

sinn, 

3 c, 1+S 
cPeu0 

with the boundary condition 

a c 2 

j 

a 
S.i 

PeF,(cosh^ - COST])-— 
at, 

dr\ 2sinr| 

(coshf, - COST]) 

ac2 

"ae" 

4.6.1) 

= 0 

d% 
Ur J = (P,W) (4.6.2a) 

(4.6.2b) c2 -> 0 as [E,, n ) -> 0 

The corresponding finite difference equation is 

A 0 c 2 = A , c2 (1) + A 2 c2 (2) + A 3 c 2 (3) + A 4 c2 (4) + A 5 c 2 (5) + A 6 c2 (6) ( 4 6 3 ) 

in which Af (i = 0, 1, 2, 3, 4, 5, 6) are weighted functions and C2i(i) (i = 1, 2, 3, 4, 5, 6) are 

the value of C21 at six immediate neighborhood nodes, located on the coordinate curves 

passing at the point under consideration, C21. Here, node (1) is taken to be located in 

increasing direction of n, node (2) is its reflection with respect to E, coordinate, node (3) is 

in the increasing direction of £, node (4) is its reflection with respect to r\ coordinate, node 

(5) is in the increasing direction of 0 coordinate, and node (6) is its reflection with respect 

to (£, r])-plane. The weighted functions are determined upon expanding the finite difference 

equation by a Taylor series, then equating it to the analytical equation, and collecting the 

terms of the same order: 

2 2 2 
A 0 = ( c o s h ^ ) [ ^ + ^ + -

A 

2 • 2 

sin r\j 

A , = 
cosh E]-p p cosh £, -1 1 + S 

+ 2hn sinn, 
cPeii 

2h n 

coshE-u ucosh^ -1 1 + S _ 
A, = ^ - ^ - — ~— + — c P e u . 

h 2hT)sinr| 2hr 

coshl - LI sinh^ 1 + S 
A, = i—^--—:—- ^ — c P e u H h.sinT] 2ha 

(4.6.4a) 

(4.6.4b) 

(4.6.4c) 

(4.6.4d) 
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cosh E-p sinh E (1 + S)cPeu, 
A4 = —2 + - r ^ + (4.6.4e) 

h, h.sinr] 2hf 

cosh Ej-p 1 + S 

he sin t] 2he sinn, 
A5 = u2 • 2^ " o u • cPeuG (4.6.4f) 

cosh ̂  - p 1 + S 
A6 = , 2 . 2 + TT— cPeue (4.6.4g) 

he sin r\ 2hesinn, 

Using the symmetry property with respect to the (x, z)-plane, only calculations for half the 

domain are required, that is only the part of the domain bounded by Ei = 0, E, = a, r\ = 0, r\ = 

7i, 0 = 0 and 0 = TC is considered in the calculation. This is done by the program 

"c2 ArbitraryPe". The domain is divided between (K+1 )(L+1 )2 nodes, where K is the number 

of intervals on the ^-coordinate and L is the number of intervals on both r\ and 0-coordinate. 

Thus, we have L+l planes bounded by the plane 0 = 0 and 0 = n, separated by an angle he 

= TC/L. Each plane consists of the matrix of nodes with (K+1)(L+1) elements. The finite 

difference equation for each node located on the solid surfaces is determined with the same 

procedure as that discussed in § 4.3.3 for low Pe. For nodes on the boundaries 0 = 0 and 0 

= TC, the symmetry property is used, for which the finite difference equation is determined by 

A0c2 = A1c2(l)+A2c2(2)+A3c2(3) + A4c2(4)+(A5 + A6)c2(5) 

(4.6.5a) 
for nodes on the plane 0 = 0, and 

A0c2 = A1c2(l)+ A2c2(2)+ A3c2(3)+ A4c2(4)+ (A5 + A6)c2(6) 

(4.6.5b) 
for those on the plane 0 = TC. 

4.6.2 - Electroviscous potential 

The electroviscous potential is determined by 

V 
' D 2 - D ^ 

c2 + (|> (4.6.6) 
V D 2 + D , ; 

where <() satisfies the Laplace equation written in the bipolar coordinate system: 
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2T\ 
(cosh^-cosnj —J + — + m 
v \dE, dr\ smr\dQ J 

d§ cosh E\ cos r\ -1 dfy 
sinh^ — + : — = 0 

aq sin T] dr\ 

(4.6.7) 

with boundary conditions [c.f, (A.44)] 

a<j> a$ 
" ^ r U = PeF , w BCWTR, ^ H = a = PeF^pBCSTR (4.6.8) 

J -> 0 a s ( s , r | ) - > 0 (4.6.9) 

Its finite difference equation is the same as that for c2 , given by (4.6.3), from which and from 

the analytical equation, given by (4.6.7), the weighted functions for<|) are determined as: 

(4.6.10a) 
2 2 2 

A „ = ( c o s h 4 - n ) -2- + 7T + ' 

cosh E-p p cosh E - 1 
A , = 7J-^+\,u (4-6-10b) 

h ; 2h t l s inr i 
cosh E-p p cosh Ej -1 

A 2 = - j . (4.6.10c) 
hn 2hT1sinT] 

c o s h £ - u sinh£ 
A 3 = - f - — . (4.6.10d) 

h^ h^sinr] 

c o s h £ - u sinh£ 
A 4 = -f—^ + — (4.6.1 Oe) 

hz h^sint] 

cosh ^ - p 

hi sin2 T] 
A

5 = A 6 = u 2 . 2 (4.6.10f) 

The value of <|> for each node is obtained by Program "PhiArbitraryPe" from which \|/ 2 , 

given by (4.6.6), is determined in Program "ForceParallelArbitraryPe". 

4.6.2 - Electroviscous Force 

The tangential and normal component of the force are determined by Programs 
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ForceParallelArbitrayPe" and "ForceNormalArbitraryPe" with the same procedure as that 

discussed for low Pe. However, for low Pe the integration over 0 is performed analytically 

between 0-2TC, whilst for arbitrary Pe the integration is performed numerically between O-TC, 

and the results are multiplied by a factor of two. 

4.7 - Results and Conclusions 

The exact and numerical solutions of a sphere-wall interactions are obtained by the 

use of a bipolar coordinate system (Ei, r\, 0) described in AppendixA. For low Peclet numbers 

and arbitrary particle-wall distances the numerical solutions of electroviscous ion 

concentrations and potential are determined by the aid of Programs "C21 Numeric", 

"C22Numeric", "C20Numeric", and "PhiNumeric", from which the tangential and normal 

component of the electroviscous force are obtained by Programs 

"ForceParallelNumericLowPe" and "ForceNormaLowPe". The boundary conditions and the 

flow field involved in the numerical calculation of the electroviscous ion concentrations and 

potential, or in general the hydrodynamic part of the problem is determined analytically. The 

stress tensor involved in the calculation of the force are determined analytically by the 

Programs "SigmaParallel" and "SigmaNormal, for the tangential and normal components of 

the force, respectively. The electroviscous ion concentration and potential at order Pe are 

also determined analytically, programmed by "C21Psi21 Analytic" which agrees with the 

numerical solution within 98% percent accuracy, illustrated by Table Bl 1 in Appendix B. 

The tangential component of the force is determined from the analytical solution by Program 

"ForceParallelAnalytic". Table B13 shows not only that the numerical and analytical 

solutions of the force are in fair agreement with each other, but also indicates that the 

problem is mesh independent. 

For arbitrary Peclet numbers and arbitrary particle-wall distances the electroviscous 

ion concentrations and potential are obtained numerically by the aid of Programs 

"c2ArbitraryPe" and "PsiArbitraryPe", from which the tangential and normal components 

of the electroviscous force are determined by Programs "ForceParallelArbitraryPe" and 

"ForceNormalArbitraryPe" 

The inputs of the force programs for both low and arbitrary Peclet numbers are: 

determination of mesh size, K>L for low Pe and KxLxL for arbitrary Pe (with K is 
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the number of intervals on the ^-coordinate and L is the number of intervals on either 

the T]-coordinate or 0-coordinate). 

dimensionless particle-wall distances defined by relation (3.2.2c). 

(-potential of particle and wall surfaces, denoted by ZetaP and ZetaW, respectively 

made dimensionless by the relation (1.3.10). 

• Peclet number defined by relation (3.2.2.d). 

ratio of angular velocity to the linear velocity, r, defined by relation (4.2.147). 

• ratio of diffusivity of ions, defined by relation (4.5.48). 

The outputs are the dimensionless force divided by X [X is defined by the relation (3.2.2.e)], 

denoted by Integral. Thus, the dimensional force is determined by 

1 ( s r s 0 ) 2 ( k T ) 3 1 ( s r 8 0 ) 2 (kT) 3 

F„ = — — ; — Integral x, Fz = — ——t—-A Integral 2 
a(Z]e) 

z 2 „2 
^ a ( z > e ) 

(4.7.1) 

where (e re 0 ) is the permitivity of the medium, (kT) the thermal energy, [zfi) charge of a 

counterion , cm the number ion bulk concentration and a the particle radius. 

The numerical solution and also the analytical one (for the tangential component) for 

small particle wall distances (6 « 1) and for small and intermediate Peclet numbers (Pe « 

6"1/2) can be approximated by the following formulas: 

= -7tPe5~2^ 
X 

' 2 8 

V 3 

'28 

IT 

41 V x (28 41 V N 

GP+ — GwJ(GP+Gw) + s [ y H p + — HWJ(HP + HW) 

Gp+\w)(GP-Gw) + s ( y H p ^ H w ) ( H p - H w ) ( q - r ) 

71 

X 450 
Pe25_2x 

-.2 
283 / \ 88 / \ / \2 

( G P + S H P ) + - ( 0 W + S H W ) (q+r) 10 

' 2 8 3 | / \2 OO 1 / \2 

•J (GP + SHP) -[-) (GW + SHW) 
(8S) 

V 10 
W-4 

(4.7.2) 

(4.7.3) 

in which q is equal to zero in the absence of translation, otherwise it is equal to one; the 

parameters G and H are defined by (2.6.70), and r and S by 
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r = 
a Q 

S= ' 
D. 

(4.7.4) 

The orders of the force in Pe and 6 agree with the inner solution presented in Chapter 3. In 

fact the dependence of the force on Pe, 6, the angular and linear velocity, the ratio of 

diffusivities of ions, and on the (-potentials is deduced from the analytical solution, but the 

coefficients are determined numerically and approximated in a fraction form, 9.3292-28/3, 

1.3663*41/30, 28.3005*283/10, 29.3325*88/3. It is observed that the second terms in 

square brackets on the right-hand side of either component of the force has a coefficient of 

-1/3 in addition to the change in the sign. Assuming there is a similarity between the inner 

solution and the complete one, the inner solution for arbitrary (-potentials can be 

approximated by the following relations [c.f, (3.6.23a, 26a)]: 

8TI (ere0)2(kT)3 a 
F ^ " 2 5 c.(z i e)4 h2 

(7GP + 2GW)(GP + GW) (7HP + 2HW)(HP + HW) 

D, + D 2 

( U + a Q ) (4.7.5) 

~3 

Fz = 

J. 
~3 

(7GP + 2G W ) (G P -G W ) (7HP + 2H W ) (H P -H W ) 

D, 

12TI (8rs0)2(kT)3 a: 

25 
> ( z i e ) 

IV 

( 

+ 

GD H, 

D. 
(U-af l ) 

H, G 
+ w 

D 

H 

D. 

A ( 
+ 

V JL^i V2J 

2 

G w H 
-|2 

D, + D. 
w (U+aQ) : 

D, a + w 
D, a 

(4.7.6) 

( u 2 - a 2 Q 2 ) 

However, comparison of (4.7.2) with (4.7.5), and (4.7.3) with (4.7.6), shows that the 

similarity for the tangential component is very weak, whereas for the normal component the 

similarity is strong, that is the ratio of the contribution of the wall to the force to that of the 

particle for tangential component in formula (4.7.2) is 0.1464 and in formula (4.7.5) is 

0.2857, almost two times, whereas for normal component that ratio is 1.0365 in formula 
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(4.7.3) and 1 in formula (4.7.6) which is very close. Tables B14 and B15, located in 

Appendix B, compare the tangential and normal components of the force obtained from 

different methods for different conditions with the formulas (4.7.2,3). It also shows that the 

contribution from the inner region is more than half the force. It is interesting to note that 

for large particle-wall distances the effects of wall interaction diminishes resulting in a 

tangential component of the force comparable with the drag force experienced by an isolated 

sphere obtained by Oshima et al. (1984). In the example of Table B14, for 6 =100, the 

tangential component of the force is obtained asFx /X,=- 0.1518, -0.1503, and -0.1480, 

determined, respectively, by the analytical method, numerical method for low Pe and 

numerical method for arbitrary Pe. For the same Pe, ratio of diffusivity of ions, and particle 

(-potential, formula (1.3.74) predicts an electroviscous drag of magnitude, Fx / X, = -0.1592 

for an isolated sphere. 

Representative numerical results are illustrated in Fig.s 4.3-9. The tangential 

components, Fx / X, are calculated by Program "ForceParallelArbitraryPe", and the normal 

components, Fz / X, by Program "ForceNormalArbitraryPe". The ion valency is taken to 

be one and the temperature of the medium is room temperature. The dependence of the force 

on Peclet number is illustrated in Fig. 4.3 for three particle-wall distances, 6 =0 .1, 6=1,6 

=10. In this example (P = -50 mV, (w=-100 mV, S (=D,/D2) =land r (=aQ/U) =1/3. Fig. 

4.3.a, b show that in general the force increases as Pe (^sJD^) increases, because the higher 

the Pe the more pronounced the effect of the flow field on the system. The tangential 

component of the force depends almost linearly on the Peclet number for the whole rang of 

Pe. This is because most (more than 98 %) of the contribution to the tangential component 

of the force comes from the parameter <j) in the equation of the electroviscous potential, given 

by (1.3.61), and the equation and boundary conditions (1.3.61b-d) indicates that 4> linearly 

depends on Pe for arbitrary Peclet numbers. For the same reason formula (4.7.2) works for 

arbitrary Pe. Fig. 4.3b indicates that for different particle-wall distances the normal 

component of the force depends linearly on Pe2 when Pe is small, and for small 6 the linear 

part extends up to Pe being smaller than 6"1/2, which agrees with the analytical solution of the 

inner region. The dependence of the force on the dimensionless gap width is plotted in Fig. 
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Fig. 4.7 - Tangential (a) and normal (b) components of force vs ratio of diffusivity of 

counter-ions to co-ions for rotation of particle. 

[Pe(=a2 Q/D,) =10, 6=(h/a)=0.1, Cw=-100 mV, q=0, r=l] 
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4.4, for low Pe (Pe=0.01), intermediate Pe (Pe=l) and high Pe (Pe=100). For this figure,CP 

= +200 mV, Cw=-50 mV, S (=D,/D2) =1/4, r (=aQ/U)=0 (only translation). As the particle-

wall distance increases the effect of the wall interaction diminishes resulting in a lower 

magnitude of the force for both normal and tangential components, and hence at large 

distances from the wall, the drag component is comparable to Oshima et al. 's theory(1984) 

for sedimentation of an isolated sphere . When 6 is small the tangential component of the 

force depends linearly on 6"2 for low, intermediate and high Pe, whereas the normal 

component depends linearly on 6"2 for Pe smaller than 6"1/2, and hence for high Pe the linear 

part of the normal component occurs at extremely small 6, in agreement with the analytical 

results. The dependence of the force on C-potentials is illustrated in Figs. 4.5,6. In Fig. 4.6, 

the force is plotted versus the wall C-potential, Cw > f°r varius particle C-potentials, CP , Cp= 

±0.5CW Cp= ±Cw a nd Cp= ^ C w In this example 6 = 0.1, Pe =100, r=0 (only translation of 

particle), and S=1. At zero charge there is no electric field so that we do not expect any force 

to be experienced by the particle. The dependence of the force on C-potentials is non linear. 

This figure shows that there is a symmetry property with respect to C-potentials for both 

tangential and normal components of the force. For the tangential component by reversing 

the signs of both particle and wall C-potentials, and for the normal component by reversing 

the sign of one or both of C-potentials the magnitude of the force remains unaltered. Thus, 

the normal component is independent of the signs of the particle and wall charges, that is 

even the charges of the particle and wall are different (positive and negative) the particle 

experiences the same force (lift force) as that for the cases of both charges are of the same 

signs (negative or positive), but with the same magnitude. However, the above symmetry 

properties are only for identical diffusivity of ions (S=l), as can easily be observed from the 

formula (4.7.2, 3), that is by reversing the signs of C-potentials, the parameters G and H [c.f, 

definitions (2.6.70)] are replaced with each other and for only S =1 does this result in the 

symmetry properties. Fig. 4.5a also shows that the tangential component of the force can be 

positive (decreasing the hydrodynamic drag), as it happens for the case CP= -0.5£w. The 

dependence of the force on particle C-potentials is illustrated in Fig. 4.6 for three ratios of 

diffusivity of ions, D,/D2= 3, 4, 5. For this example (w=- 50 mV, 6 = 0.01, Pe =0.01,and 

r=2/3. For the tangential component the curve has only one maximum, whereas for the 
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normal component, there is one maximum and two minima. One of the minima occurs when 

the C-potentials of particle and wall are of a different sign, and the other when they are of the 

same sign. Both minima have negative values. The dependence of the force on ratio of 

diffusivity of ions is illustrated in Fig.4.7 for the rotation and in Fig. 4.8 for the translation 

ofthe particle, for three cases CP
= 0.5Cw, Cp= Cw> ^ d (p= 2Cw- These curves are obtained 

for Pe =10, 6=0.1, Cw=_1°0 mV, and q=0, r=l for only rotation and q=l, r=0 for only 

translation of the particle. For only rotation, Pe is defined as a2Q/D,. For both rotation and 

translation, the normal component of the force has a minimum, depending on the magnitude 

of C-potentials. For identical C- potentials the minimum is zero, otherwise it is negative, the 

same as those observed for the analytical solutions of cylinder-wall and sphere-wall 

interactions. The location of the minima is magnified in Fig. 4.9a for the rotation of the 

particle and in Fig. 4.9b for its translation. This property is an interesting results, since it 

allows one to obtain a desired force, either positive, zero or negative, by a suitable 

combination of C-potentials and ratio of diffusivity of ions. The dependence of the force on 

the ratio of the angular velocity to the transnational velocity is illustrated in Fig.4.10. The 

data for this example are: CP=-50 mV, Cw="25 mV 6(=h/a)=l, S (=D,/D 2) =1/2, q=l. 

Although for just translation or just rotation of the particle the drag component is negative 

(act in the opposite direction of the flow) and the normal component is positive (lift force) 

regardless of the direction of the flow, when both translation and rotation are present, but 

with the opposite direction, there would be a range of the ratio of the angular velocity to 

linear velocity that the former remains unaltered, and the latter changes the direction from 

positive to negative (attractive force). For this example, that range for the tangential 

component is (-1.47 to 0) and for the normal component (-1.42 to 0). The tangential 

component depends almost linearly on the ratio of the angular velocity to the linear velocity 

with a constant slope for low and intermediate Pe, and with a change in the slope of the curve 

for high Pe. In this example it happens at Pe ^50. For the normal component also there is 

a change in the behavior of the force with respect to Pe. For low and intermediate Pe, each 

curve has only one minimum with a negative value (attractive force), but for high Pe (Pe>50) 

the curves have one maximum and two minima, one with a negative value, and the other with 

a positive one. 
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An experiment on a spherical particle of radius 2.6 pm in a shear flow was conducted 

by Wu, Warszynski & van de Ven (1996) demonstrated in Fig 4.11. The experiment was 

carried out in a surface collision apparatus with forward and backward movement. The 

variations in particle-wall separation distances with time are measured by a video tape 

resulting in an empirical expression: 

- = p ( l - e ~ b t ) + c (4.7.7) 
a 

in which p, b, and c are three adjustable parameters determined from the best fit. The force 

balance on the particle in the z-direction may be written as 

67Tnau 
F-=7(^) (4'78a) 

net 

net 
where f,(h/a) is the correction coefficient to Stokes law due to the presence of the wall. F 

is composed of bouncy force, electrostatic force and electroviscous force during the shear 

and only bouncy and electrostatic force in the absence of shear. For the former it may be 

written as 

27iaB ... 4 , / \ 
Fn, - Flift + — e " k h - 3 ™ j ( p f " P p jg (4-7-8b) 

in which g is gravitation acceleration, pf and pp are fluid and particle densities, K the 

reciprocal double layer thickness and B is determined by 

B=32tanlr 
r zeC 
UkTV 

G K 2 
fkT^ 

\zc) 

2 

(4.7.8c) 

The force was determined upon combination Eq.s (4.6.7, 8). The electrolyte is KC1 with 

conductivity 5 uS/m, and the medium is 96% glycerole-water solution. The shear rate is 19.1 

s"1. The present theory and the one by Bike & Prieve (1990) as an example of previous 

theories, given by (1.2.31), are compared with the experiments. The force from the present 

theory is obtained by Program "ForceNormalArbitraryPe". The linear and angular velocity 

in a simple shear flow is obtained by linear interpolation of the data obtained by Goldmann, 

Cox & Brenner (1967). In this experiment only the particle C-potential was measured, Cp =-
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45 mV. The wall C-potential is taken to be between -75 and -125 mV. However, the shear 

flow can be decomposed into three individual flows, translation of particle, rotation of 

particle and shear for the whole medium, excluding the sphere. The present theory consists 

of the translation and the rotation of the particle. Therefore, no solid conclusion can be 

drawn, as far as the there is uncertainty in the wall C-potential and the contribution of the 

shear flow, which is not taken into account. But, since we expect the contribution to the 

force from the shear to be of the same order as that of the translation or the rotation of the 

particle, at least it can be concluded that the present theory predicts the right order for the 

force, whereas the pervious theories underestimate the force by more than two orders of 

magnitude. 
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Fig. 4.11 - Comparison of theories with experiment. 

[Symbols are experimental observations of Wu et al. (1996). Previous theories refers to 

Bike & Prieve (1990).] 
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Chapter Five 

Conclusions 
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5.1 - Summary of Results and Conclusions 
Electroviscous particle-wall interactions in systems in which the double layer 

thickness is thin, are evaluated as a solution of three partial differential equations, derived 

from Cox's general theory (1997), for electroviscous ion concentrations, electroviscous 

potential and electroviscous flow field, given by (1.3.59-61). The electroviscous cylinder-

wall interactions and sphere-wall interactions for the translation and rotation of the particle 

close and parallel to a charged plane wall are analyzed by the use of the matched asymptotic 

expansion technique. The inner solutions of the force experienced by the particles are 

determined, upon the use of the Lorentz reciprocal theorem, discussed in §1.3.6. These 

solutions are obtained under the assumption of small particle wall distances, 6, (6 « 1 ) but 

for low and intermediate Peclet numbers, Pe, ( P e « 6~1/2). For sphere-wall interactions the 

problem is extended to arbitrary particle-wall distances and arbitrary Pe. 

For cylinder-wall interactions, the tangential component of the electroviscous force 

is of order (e 5 ~ Pe) and the normal component of order (e 8 ~ Pe j , where e is the 

ratio of double layer thickness to the cylinder radius, 6 the dimensionless gap width, and Pe 

the Peclet number. These parameters are defined by (2.2.4a). The tangential component of 

the force per unit length of the cylinder is obtained as 

r fa" V27t (ers0) (kT)3 Va" 
FX = - 2 V 2 ^ - U - — ^ - x 

^ ^ ( G P + Gw)+fc^(HP + Hw) (U+aQ) (5.1.1) 

+ 
2G, 
D, 

2H, 
( G P - Gw)+ - f r^Hp - Hw) 

and the normal component as 

V2TI (sr£0)2(kT)3 Va" 
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in which (s rE 0 ) is the permitivity of the medium, (kT) the thermal energy, (z,e) charge of 

a counter-ion, cro the number ion bulk concentrations, D, and D2 the diffusivity of counter-

ions and co-ions, respectively; a is the particle radius, h the clearance between the particle 

and wall, and U is the translation velocity of the particle and Q its rotation with the clockwise 

direction taken to be the positive direction, as shown in Fig. 2.1. The parameters G and H 

are functions of C-potentials defined by 

Z I < J z,eCj 

J = (P,W) G J = l n 
1 + e 2kT 

H,=ln-
1 + e 2kT 

(5.1.3) 
2 " J "" 2 

The first term in (5.1.1) is the purely hydrodynamic force. Because of the symmetry, the 

hydrodynamic force, at the first approximation, is independent of the rotation of the particle. 

Upon comparison of results with the existing theories, it is found that Cox's theory 

for the drag component of the electroviscous force, given by (1.2.32d), is valid for both 

translation and rotation of a cylinder parallel to the wall, but its normal component, reported 

in Wu, et al. (1996), given by (1.2.32a), is valid only for translation of a cylinder. The 

expression by Warszynski & van de Ven's theory (2000), given by (1.2.33), is valid only for 

a charged wall, but with an uncharged cylinder under translation parallel to a wall. 

For sphere-wall interactions the inner solution of the electroviscous force is similarly 

obtained analytically for the cases of identical particle and wall C-potentials. The tangential 

component of the force is of order (e 8" Pe) and the normal component of order 

( e 4 8 _ 2 Pe 2 ) , an 0 (8 1 / 2 ) smaller than those of the cylinder-wall interactions. The 

tangential component is obtained as 

(U + aD) (5.1.4) 
14471 ( e r s 0 ) (kT)3 a 

F x = " 25 Coo(Zie)4 h2 

G2 FT 
+ D, a 

and the normal component as 

,2 

F - 2 5 

48TT (s rs0) (kT)3 a2 

c.(Zle)4 h2 

G H 
• + • 

~|2 

D, D, 
(U + aQ): 

(5.1.5) 

For both cylinder-wall interactions and sphere-wall interactions, the tangential 

component of the electroviscous force depends linearly on the ratio of diffusivity of ions, and 
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the normal component is proportional to the second power of that ratio, which leads to the 

existence of a minimum for the magnitude of the normal component of the force at a 

specified ratio of diffusivity of ions. This is illustrated in Figs. 2.3, 4 and Fig. 3.2. The 

location of the minimum depends on the C-potentials of particle and wall. For identical (-

potentials the minimum is zero, otherwise it is negative (attractive force). The tangential 

component of the force also can be either negative or positive depending on the magnitude 

and signs of the C-potentials and the ratio of diffusivity of ions. For small, but equal C-

potentials and for equal mobilities of ions, as a first approximation, the tangential component 

of the electroviscous force is proportional to the viscosity of medium, n, ion radius, aj5 and 

C2, whereas the normal component is proportional to n2, a{ and C4- For identical C-potentials, 

the ratio of the force experienced by a sphere to that experienced by a cylinder, for both 

tangential and normal components, is proportional t o v 2 a b . The Derjaguin scaling 

approximation, given by (3.7.5) predicts the same proportionality to the geometry of the 

problem for the ratio of the force, but with a different coefficient. In both cases it 

overestimates those ratios. 

The problem of sphere-wall interactions is extended to the cases of arbitrary particle-

wall distances, and arbitrary Peclet numbers, by the use of a bipolar coordinate system. For 

arbitrary particle-wall distances, but for low Pe the force is obtained both analytically and 

numerically for the tangential component and numerically for the normal component, and 

for arbitrary Pe they are determined numerically. Comparison of the analytical solution with 

the numerical one is illustrated in Tables Bl 1, 13, located in Appendix B. It is found that 

for small particle-wall distances (8 « 1 ) the tangential component can be approximated as 

\2 
n (ers0) (kT)3 a 

K = ~2 (z,e)V h*X 
C 

f 28 41 ) ( G , + G w ) | f 2 8 41 ^(HP + HW) 
(U + aQ) 

(28 r 41 yOp-Ow) ,f28 41 ^ ( H P - H W ) 
l T G p + 30GwJ D, + l j H p + 30HwJ D, 

213 



an expression valid for arbitrary Pe, and the normal component as 

71 (s, .s0) (kT) 3 a 
F z = 9 0 0 (Z]6) 

283 ( 

10 

GD H, 88 

vD, + a + 3 

x 

G w H 
+ w 

I D , DJ 
(U+aQ) : 

283 

^ \0) 

\ 2 

GD H, ^2 ' 88^ 2 

V D, + D : V 3) 

G w H 
D, + a 

w ( l J 2 -a 2 Q 2 ) 

(5.1.7) 
valid for low and intermediate Pe, Pe « 81/2. The accuracy of the formulas (5.1.6, 7) is 

illustrated in Tables B14,15. Upon comparison of the drag component of the electroviscous 

force with that of an isolated sphere [formulas (5.1.6) and (1.3.74)] it is observed that the 

ratio of the force satisfies the following relations: 

Sphere-wall 

Sphere 

107 
240 

h 
8 = -

a 
(5.1.8) 

valid for small 8 (8«1) . For the inner solution, the ratio of the force is given by the relation 

(3.7.4), which is similar to (5.1.8) but differs from it by a numerical factor. 

Representative numerical results for arbitrary Pe and arbitrary particle wall distances 

are illustrated in Fig. 4.3-10. The dependence of the dimemsionless force ( */, , A H F a n d A, 

are defined by (3.2.2)] on Pe is illustrated in Fig. 4.3, on 8 in Fig. 4.4, on the C-potentials in 

Fig. 4.5 and Fig. 4. 6, on the ratio of diffusivity of ions in Figs. 4.7, 8, 9. and on the ratio of 

angular velocity to the linear velocity in Fig. 4.10. The results are in complete agreement 

with the formulas (5.1.6, 7), for the range of their validity. Of special interest is the existence 

of a minimum for the normal component of the force at a specified ratio of the diffusivity of 

ions regardless of the magnitude of Pe and 8. The location of minimum depends only on the 

C-potentials, and its magnitude is equal to zero for identical C-potentials, otherwise it is 

negative, the same as that observed for the analytical solutions of the inner region. The force 

is compared with the experimental observations of Wu, Warszynski &, van de Ven (1996) 
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in Fig. 4.11, and a fair agreement is found. 

In summary, although in most cases the tangential component of the electroviscous 

force is negative (increasing the drag above the purely hydrodynamic drag) and the normal 

component is positive (lift force), there are some situations that the former is positive 

(electroviscous drag reduction) and the latter is negative (attractive force). This is an 

interesting result since it allows one to tune the force to a desirable magnitude (attractive, 

neutral or repulsive), by suitable combinations of C-potentials and ratio of diffusivity of ions. 

5.2 - Contributions to Knowledge 

This dissertation has the following contributions to the knowledge: 

1. Analytical solution of the electroviscous equations (electroviscous ion 

concenterations, electroviscous potential and electroviscous flow field), for the inner 

region at order Pe (Peclet number) in an expansion of this parameter, resulting in an 

analytical expression for the tangential component of the electroviscous force 

experienced by a cylinder-wall interactions, valid for small particle-wall distances, 

but low and intermediate Pe. 

2. Inner solution of the electroviscous equations, at order Pe2 resulting in an analytical 

expression for the normal component of the electroviscous force experienced by a 

cylinder-wall interactions, valid for small particle-wall distances, but low and 

intermediate Pe. 

3. Outer solution of the electroviscous ion concentrations and potentials, for cylinder-

wall interactions at order Pe. 

4. Explaining the discrepancy between the Cox' theory reported in Wu et al. 's paper 

(1996) and Warszynski & van de Ven's theory (2000). 

5. Inner solution of the electroviscous equations for sphere-wall interactions of identical 

particle and wall C-potentials, at order Pe, resulting in an analytical expression for the 

tangential component of the electroviscous force experienced by the particle, valid 

for small particle-wall distances, but low and intermediate Pe. 

6. Inner solution of the electroviscous equations for sphere-wall interactions of identical 

particle and wall C-potentials, at order Pe2, resulting in an analytical expression for 
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the normal component of the electroviscous force experienced by the particle, valid 

for small particle-wall distances, but low and intermediate Pe. 

7. Observing that, for the electroviscous force, the Derjaguin approximation 

overestimates the ratio of the force experienced by the sphere-wall interactions to that 

of the cylinder-wall interactions. 

8. An exact analytical solution for the hydrodynamics of the motion of a sphere normal 

and away from a plane wall for arbitrary particle-wall distances. 

9. An analytical solution of the electroviscous equations, for the whole domain of 

interest, at order Pe, resulting in a analytical solution for the tangential component 

of the force on a sphere-wall interactions valid for Low Pe, but arbitrary particle-wall 

distances. 

10. An analytical-numerical solution of the electroviscous equations, for the whole 

domain of interest, at order Pe, resulting in a numerical solution for the tangential 

component of the force on a sphere-wall interactions, valid for Low Pe, but arbitrary 

particle-wall distances. 

11. An analytical-numerical solution of the electroviscous equations, for the whole 

domain of interest, at order Pe2, resulting in a numerical solution for the normal 

component of the force on a sphere-wall interaction, valid for Low Pe, but arbitrary 

particle-wall distances. 

12. An analytical-numerical solution of the electroviscous equations, for the whole 

domain of interest, resulting in a numerical solution for the tangential and normal 

components of the force on a sphere-wall interactions, valid for arbitrary Pe and 

arbitrary particle-wall distances. 

13. Obtaining a model for the tangential component of the force valid for arbitrary Pe, 

but small particle wall distances. 

14. Obtaining a model for the normal component of the force valid for small particle wall 

distances, but small and intermediate Pe. 

15. Observing that the normal component of the force can be negative and the tangential 

component can be positive under certain circumstances. 
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Appendix A 

Orthogonal Curvilinear Coordinate 

Systems 
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A.l - Cylinderical Coordinate System 

The transformation from Cartesian to cylindrical coordinates is defined by: 

x = p c o s 0 , y = p s i n 0 , 

Using the chain rule we have 

d d sinG d 
= c o s 9 ^ -

z= z (A.l) 

ax ap P ae ' 

or alternatively 

d d d 
— = cos0 — + sin0 — , 
dp dx dy 

a a cosG a 
—- = sin0 — + — 
ay dp p ao 

d • n d d 
— =-psin0 — +pcos0 — 
00 dx dy 

(A.l) 

(A3) 

The metrical coefficients hK (k=l, 2,3) for any orthogonal coordinate systems (q,, q^ q3) are 

determined by 

1 ' dxY ( dyY ( dz^2 

+ + KdqJ {dqk) Vdqk) 
(A.4a) 

from which and relationship (A.l) the metrical coefficients for cylinder coordinates (hp, he, 

h j are obtained as 

1 
h p ^ 1 ' h e - h =1 (A.5a) 

Thus, the metrical coefficients in each coordinate system can be interpreted as a reciprocal 

weighted function to be multiplied by each coordinate to convert it to a length dimension, 

and hence for the cylindrical coordinate system hp = \ =1, but he =l/p, that is p0 is the arch 

length of a sector whose angle and radius are 0 and p, respectively. Therefore, an 

infinitesimal length, dlj5 surface, dSj9 and volume, dV, for any coordinate system, may be 

written as 

k h 
k = (l, 2,3) 

dq2dq: 
dSl = di2di3 = dS, = dl.dl, = 1 U 1 3 

(A.4b) 

,dS, = dl1dl7=^^(A.4c) - — , ^ 3 - ^ 2 

l l " 3 
hA 
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and 

dV = d l j d l ^ = - ^ 7 ^ (A.4d) 
L1h2h3 

In relation (A.4c) dSf are infinitesimal surfaces normal to coordinates q̂  Thus, for a 

cylindrical coordinate system we have 

dlp = dp , dlo = pd0, dlz = dz, (A.5b) 

dS p = pd0dz, dS e = dpdz, dS z = pdpdO, d V = p d p d 0 d z (A.5c) 

The unit vector ik for the orthogonal coordinate system (q,, q2, q3) may be written in 

terms of Cartesian unit vectors ( i , j , k) according to the following relationships 

Jk = hk 

- dx - dy - dz , 
i ^ + J T ^ - + k — - (A.6) 

V dqk dqk dq 

From this, the unit vectors of the cylindrical coordinates may be expressed as 

ip = cosO i + sinOj, ig = - sin0 i + cosOj (A.7) 

or 

i = cos0ip - sinO ig, j = sin0ip + cosO ig (A.8) 

Then, if we write the velocity u as 

u = Up ip + u e ^ + uX = ux i + uy ] + uzk (A.9) 

the relationship between the cylindrical and the Cartesian components of the velocity may 

be written as 

Up = uxcos0 + uy sin0, uG = -u x sin0 + uy cos0, uz = uz (A.10) 

or alternatively 

ux = upcos0 - uesin0, uy = up sin0 + ue cos0, uz = uz (A.ll) 

A sphere with unit radius (r = 1) above plane z = 0 which its center is on the z-axis at 

location z = 1 + 6 (6 is the clearance between sphere and wall) may be described in the 

Cartesian coordinate system as 

z - 6 - l = ± V l - x 2 - y 2 (A-12) 
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with the sign + and - for the upper and lower parts of sphere, respectively. The unit vector 

normal to it (h p ) in cylindrical coordinates may be derived from the relationship between 

the spherical unit vector, ^ , and Cartesian ones which may be written as: 

x i + yj + ( z - 1 - 5)k 
n

P = \ = (A. 13) 

Letting r = 1 and introducing (A.7) into (A. 13) gives the unit vector in terms of cylindrical 

coordinates as 

rip = p i + ( z - 1 - 5 ) i z o n S p ' riw = iz on Sw (A. 14) 

in which f iw is the unit vector normal to the plane Sw. 

The gradient, V, and Laplacian, V2, for the orthogonal coordinate systems (q,, q2, q3) 

are defined by 

d ~ d ~ d 
V = i,h, - — + Lhu - — + i.h M"l dq] 

x 2"2 dq: 
13113 dq. 

(A. 15) 

and 

V2 
n i h 2 h 3 

a ( \ ( 

+ 
a \ a / 

+ 
a v 

dql Vh2h3 dqj dq2 v.h,h3 dq2J dq3 ^h2hj dq3J 
(A. 16) 

Thus, for the cylindrical polar coordinate system (p, 0, z) with metrical coefficients h, = hp, 

h2 = he, and h3 = h,, they may be obtained as 

- d - I d - d 
= I " + IQ— TT-+ I dp ^ p ae dz 

(A. 17) 

and 

V2 = 
1 a ( a 1 d: 

+ + 
P ap v dp) pl aez az 

(A. 18) 

Noting that all partial derivatives of unit vectors in cylindrical coordinates are zero except 

that 5Tp/d0 = Te and dTe/d0 = - Tp, the Laplacian and divergence of the vector u may be 

expressed as: 

226 



/ 
r2-* V z u= i 

2 auQ u \ 

V 
v U P ~2 a A . 2 

A 

P2 ae Pv H V 2 u . -
2 dup i O 

V P 2 ae p 2 ; 
+ LV2z (A.19) 

and 

V-u = 
i a w i auQ au. 

+ + (A.20) 
p ap v " p / p ae az 

The stress tensor, c -, is a symmetric tensor and may be determined by the rate of strain 

tensor (en , e12, e13...) as 

du, 

dq, 
+ h.huu 

dh, 

dq, 
+ h,h,u, 

ah, 
1 2 2 a- ' 3 3 a q 2 ' 

1 
C 2-2 

h, a h, a 
h3 aq2 

O v O + i r ^ r O w ) h2 aq3 

jl if i=j 
,J 10 if i * j 

(A.21) 

Thus for cylindrical coordinates we have 

°oo = - P + 2 
pp 

a_û  _aue_ I aup UQ 

ap ' ape ~ aP
 + p ae p 

2 auc 
°ee = -P + °ze = 

aue i auz 
+ 

auz aup 
apz" aP

 + az 
(A.22) 

P ap ' "ze az p ae ' 
A.2 - Tangent Circle Coordinate System 

The transformation from the Cartesian coordinate (x, z) to the tangent circle 

coordinate (C, u) is defined by 

x = 
2u, 

C2 + n 
2 > Z = 

2C 
C2 + n 2 ' o<C<i, oo < p < +oo (A.23) 

Eliminating \i results in 

f 
7 -

V 

0 
- — 

0 + x = c2 (A.24) 

which represents a family of non-intersection circles in the (x, y)-plane with radius 1 /( where 

centers are located on the z-axis at the points z = l/£. Thus, any sphere ( = constant, £0 say, 
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is tangent to the x-axis with radius r = l/(0 as shown in Fig. A. 1 Therefore, a circle tangent 

to the x-axis at the origin with unit radius is denoted by ( = 1, and C = 0 1S a circle of an 

infinity radius which is the x-axis. Eliminating £ leads to the following relationship for u: 

/ 1 \
2 

x±-
1 

+ z = 
M 

(A.25) 

This represents a family of non-intersecting circles tangent to the z-axis and normal to the 

^-coordinate which radius are equal to 1/p and located on the x-axis with - sign for those 

constructed on the positive direction of the x-axis and + sign their reflection with respect to 

the z-axis for negative values of p. Infinity is determined by ( = p. = 0, the z-axis above 

the sphere by p. = 0 and the contact point by (C, = 0, p = ±°°). Thus, a circle with unit radius 

tangent to the x-axis at the origin may be described in these coordinates by 

H = ± 

Fig. A.l- Tangent circle coordinate system ((, u) 

( 0 < £ < 1 , - 0 0 < L I < +00 ) . 
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C = L (A.26) 

and the plane by 

(A.27) 

From relationships (Al, 4, 13), upon applying the chain rule, its metrical coefficients are 

determined by 

•2 , . . 2 

(A.28) \ = K ?+V 
2 

Therefore, applying relationships (A. 15,16), its gradient and Laplacian of any scalar may be 

obtained as 

V = 
C' + u1 - d_ - d_ 

^ ac + v dp 

v2 = I 2 ) + a c dp-

(A.29) 

(A.30) 

The base unit vectors ( i c , i I may be determined in terms of those of the cylindrical 

coordinates, according to the relationships [Happel & Brenner (1965)] 

^ r dp 
I = £ ikhk 
p k=i aq, 

- 2 - az 
L = X luh. k=i k k aq, 

(A.31) 

They are obtained as 

2 
P "C 2 + ̂ 2 

and 

-t&'\ 
C~»2r 
—J-\L 

lz~C + »2 
C-»2r 

\ - ^ ' \ 

(A.32) 

(A.33) 

Now, the relationship between tangent circle component of velocity and cylindrical one is 

straight forward, that is 
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-2<fr _^_zy_ 

and 

c 2 ^ 2 U p ~ c 2 ^ 

uC = r 2 _ L , l 2 u p - r 2 ^ , , 2 U z (A.34) 

u , = " , 2 ^ 2 up - 7 T 7 T T uz (A.35) 

Since the coordinates C and p are orthogonal to each other, unit vector outward from each 

surface is 

h p ^ - i ^ onS, , , h w = i<; o n S w (A.36) 

A.3 - Bipolar Coordinate System 
Bipolar coordinates (£, n, 0) transform to the cylindrical coordinates according to the 

relationship 

sinn, sinh£, 
P = c — , z = c — , 6 = 6 (A.37) 

cosh c , - cost] cosh q-COST] 

The range of coordinates is given by by 

- 0 0 < ^ < 0 0 , 0 < T | < 7 I , O < 0 < 2 7 t 

In which c is a positive constant (a geometry constant) and is determined from the 

dimensions of the system. The coordinates E, and r| describe families of orthogonal circles 

in the plane formed by the p and z-axes. This is illustrated in Fig. A.2. The coordinates E, 

describes non-intersection circles which lie entirely above or below the plane z = 0. 

Therefore, E, = ± a{ describes two circles of a specific diameter which are reflections of each 

other in the plane z = 0, and their centers lie on the z-axis. Plane z = 0 is described by E, = 

0 and E, = + °° represents a circle with zero radius above the plane z = 0 and E, = - °° 

represents its reflection with respect to the plane. The coordinate n describes a family of 

circles which are orthogonal to all E, circles and their centers lie on the p-axis in the plane z 

= 0. In the limits, n = TI represents the darkened line segment on the z-axis, and n = 0 

represents the remainder of the z-axis. 

Upon rotating the bipolar coordinate system shown in Fig. A.2 through the azimuthal 

angle 0=2 TU, one obtains a family of coaxial spheres described by the coordinate E, = constant, 
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> oo 
A 

o 

o 
II 
Si-

Fig. A.2- Bipolar coordinate system (£, 0, r|) 

( - o o < ^ < o o , 0 < r | < 7 i , 0 < e < 2TC). 
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and a family of spindle-like surfaces of revolution described by rj = constant. It is apparent 

that one may describe the sphere-plane system shown in Fig 4.1 by restricting the rang of the 

E, coordinate to 0 < E, £ °°. i n this case, the sphere is described by the single coordinate, E, = 

a, and the plane is described by the single coordinate, E, = 0. Thus, the coordinates of each 

surface are 

EJ = a, 0<n<Tt , 0 < 0 < 2TT , o n S P 

and 

£ = 0, 0 < n < 7 t , 0 < 0 < 2 T T on S w 

(A.38) 

(A.39) 

The value of a in relationship (A.38) and c in transformation function (A.37) may be 

determined by eliminating n in relationship (A.37). Thus, adding cos2 r\ obtained from Eq. 

(A.37b) and sin2 n derived from Eq.s (A.37a, b) leads to the following relationship 

(z - c coth E, )2 + p2 = (c esc h E,): (A.40) 

Eq. (A.40) describes a family of spheres, each with a radius of c csch E, and its center on the 

z-axis and at point z = c coth E,. Since the sphere has the dimensionless radius of unity and 

its center at z = 1 + 6, then the sphere described by E, = a satisfies the following relationships 

c esc h a = 1, c coth a = 1 + 5 

or 

c = sinh a and 1 + 8 = cosh a (A.41) 

from them it follows that 

a = In 1+5 + V ( l + 8 ) 2 - l (A.42) 

The metrical coefficients of the coordinate systems of revolution (q„ q2, 0) may be 

determined by the following expression (Happel & Brenner 1965) 

1 ! ,,V ( dzV 

h; 
dp_ 
dqj ^dqj + 

1 dp_ 

dq2) 
+ 

az 

dqj 

\ 2 

h3 = 
1 

p(q i ,q 2 ) 

from them the metrical coefficients of the bipolar coordinate system (£, n, 0), ĥ , h^, and he, 
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are determined, upon using Eq. (A.37), as 

cosh £, - COS T] 
hS = h T , = ' h 0 -

cosh H, - cos n 
(A.43a) 

c c sin n 

Therefore, an infinitesimal length (dlj, surface (dSJ and volume (dV), given by (A.4b-d), for 

bipolar coordinate system are determined by 

c ... .. c 
dL = 4 cosh EJ- cos n, 

c2 sinn, dn,d0 

&» ̂ 1 = 

dSt = 

dV = 

11 cosh £ - cos r\ 

c2 sin n. d£,d0 

csinn 
dr), dle = — ! d0 (A.43b) 

(cosh£, cosrj ) (cosh£, cos n) 
dSQ = 

cosh Ej- cosn, 

c2 d^dn. 
2 > ^ ' - ' e 

(cosh^-cosnj 

c sinn, d^drjde 

(A.43c) 

(A.43d) 
(cosh^-cosr)) 

The gradient, V, and Laplacian, V2, defined by relations. (A. 15,16) may be expressed in this 

coordinates as 

V = 
cosh£, - COST] - d - d 1 a A 

H 7 - + , f l 

, 1 
v = 7 

%d\ Adx\ * sinn dQ) 

(cosh E,- cosn,) 

(A.44) 

2i a2 a2
 I a 2 \ 

2 "*" ^„2 + _;„2 „ n̂2 oE\l dr]2 s in ' r i aeV 

a cosh^cosr]- ! a * 
+ (cosh £ -cosn) -sinhE — + v /[ dEj sinn, any' 

(A.45) 

Unit vectors in cylindrical coordinates transform to the unit vectors in coordinate systems of 

revolution (q„ q^ 0) according to the relationships (Happel & Brenner 1965) 

S T , dp 
K = 

k=l 
^ ^ ^ ^ 

- 2 - az 
*e = le (A.46) 

k=i oq,, k=i a q k 

Thus, the relationships between the unit vectors of the cylindrical coordinate system and the 

bipolar coordinate system are obtained as 

1 
p cosh E, - cos r\ 

- sinh E\ sin r\ \ + (cosh E, cos n, -1) î  I (A.47) 
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1 
\ = (l - cosh £, cos n) î  - sinh £ sin r) î  (A.48) 

cosh £ - cos n 

The unit normal vector outward to each surface may also be written as 

n = - h onS. and n= L onS 
w 

The velocity vector, u, may be expressed in each coordinate system as 

a = V p + Ueie + U z ^ u{\ + <h + ^ \ 

(A.49) 

(A.50) 

Combining Eqs. (A.47, 48, 50) leads to the following relationships between the cylindrical 

and bipolar components of the velocity 

uc = 
sinh £, sin n 1 - conh £, cos n 

u„ + — u. ^ cosh 1], - cos n p cosh £, - cos r\ 

conh Ei cos n - l - sinh £, sin n 
u_ = — u. + 

^ cosh c, - COS T] M cosh £, - COS T] u. 

(A.51) 

(A.52) 

The relationship between the cylindrical partial derivatives and those of any coordinate 

systems of revolution (ql5 q2, 0) is given by (Happel & Brenner 1965): 

5 = i h ? 5 p a 

ap k=i k aqk a q k ' 

a 2 dz a 
= £hk (A.53) 

az k=i aqk aqk 

From them and in view of (A.37, 43) the first derivatives with respect to the p and z are 

determined as 

aP c 
sinn s inh£—+ ( l - cost] c o s h H — 

dE, v an 
(A.54) 

az c 
( l - cosn cosh^) — - sinn sinh£ 

an 
(A.55) 

The second derivatives d2/dp2 = d/dp (d/dp) and d Idz2 = dldz(dldz) are obtained from the 

first derivatives as 
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a2 sinn, sinh £, 

~dp2~ = ? 
a a2 

sin n, cosh E — + sin n sinh E. T T T 
a^ dE, 

d ( \d2 

-cosn sinh £7— + l-cosncosh£ ——— 
an, v a^an, 

+ 
1-cosn, cosh ^ d a2 

cos r\ sinh E, — + sin rj sinh E\ —— 
dc, dc,dr\ 

d i \d2 

+ sin n cosh E —— + 1 1 - cos n cosh E —-T 1 ^dr\ v ' w a n 2 

and 

(A.56) 

a2 1-COST] coshf, 

a?= c1 - cosn sinh£— + ( l - cost] coshc;)—7 
a^ a^ 

sinn sinh^ 

a a2 

- sinn cosh£ — - sinn sinh I: TTT— 
an dqar] 

sinn coshE — + ( l - cosn coshU . . . . 
o\ o^or\ 

a a2 

- cosn sinM -—- sinn sinhE 7—7 
an an 

(A.57) 

From the relation (A.21), the G , and a *e components of the stress tensor are obtained as 

sinnTJ^ + sinh^U4+ (cosh^-cosn) 

1 au^ 
°^ = 

a^e = 

au, a i n 
+ 

sinh^U0 + (cosh^ - cosn) 
au 

+ d£ sinn, a0 ; 

(A.58) 
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Table Bl - Distribution of u T 

1 Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infinity)-124 

11 Wall Surface 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1 00000000000000 

-1 00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1 00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

(6 = 0.05) on the nodes demonstrated in Fig. 4.1. 

II Medium 

-0.80303405944808 

-0.80158001969678 

-0.79723409872698 

-0.79004472436729 

-0.78009205554582 

-0.76748716035002 

-0.75237088405299 

-0.73491242652041 

-0.71530765509977 

-0.69377718701281 

-0.67056428522018 

-0.64593262504817 

-0 62016400784049 

-0.59355612647764 

-0.56642053286572 

-0.53908103250198 

-0.51187286083065 

-0.48514322747127 

-0.45925423125619 

-0.43458987809986 

-0.41157014148742 

-0.39067715869259 

-0.37250491445298 

-0.35787183563926 

-0.34815571921365 

-0.34640462703587 

-0.36060561655999 

-0.41066910210973 

-0.53472057193136 

-0.76755415258590 

-0.96552559541135 

1 Medium 

--0.47096507303833 

-0.46949113075993 

-0.46508588146849 

-0.45779889293584 

-0.44771223090067 

-0.43493964902042 

-0.41962547679030 

-0.40194322854049 

-0.38209396500967 

-0.36030444949996 

-0.33682515421267 

-0.31192819112357 

-0.28590526913173 

-0.25906582102703 

-0.23173551024980 

-0.20425543681646 

-0.17698254813088 

-0.15029208875756 

-0.12458352578437 

-0.10029254660524 

-0.07791405952292 

-0.05804592033258 

-0.04147306171343 

-0.02933480962732 

-0.02349281566758 

-0.02753058610774 

-0.05000734661333 

-0.11412196098471 

-0.27166181179843 

-0.55272808954765 

-0.73797466771637 

11 Sphere Surface 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 
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Table B2 - Distribution of u T (6 = 0.05) on the nodes demonstrated in Fig. 4.1. 

J Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infiniry)-124 

1 Wall Surface 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 Medium 

-0.00000000000000 

-0.00197396385159 

-0.00391012937049 

-0.00577093646598 

-0 00751929221763 

-0.00911878078454 

-0.01053384376409 

-0.01172991907385 

-0.01267352429086 

-0.01333226716629 

-0.01367476124997 

-0.01367041743029 

-0.01328907148881 

-0.01250039149244 

-0.01127298367136 

-0.00957307559056 

-0.00736259082423 

-0.00459632415383 

-0.00121776542510 

0.00284707750759 

0.00769863942222 

0.01347649239702 

0.02037959050675 

0.02871769957379 

0.03909638283057 

0.05301155228883 

0.07408386255548 

0.10823731903626 

0.15443868239879 

0.16757398998821 

0 

II Medium 

-0.00000000000000 

-0.00395456214716 

-0.00783314387456 

-0.01156024934659 

-0.01506133351920 

-0.01826323134864 

-0.02109452943269 

-0.02348585709050 

-0.02537007006119 

-0.02668229424448 

-0.02735978834422 

-0.02734157173197 

-0.02656774528380 

-0.02497840516124 

-0.02251200742161 

-0.01910297664414 

-0.01467825034653 

-0.00915229140261 

-0.00241986407156 

0.00565440500637 

0.01525073848874 

0.02661380897602 

0.04007907648860 

0.05612859516381 

0.07560972579874 

0.10058131424333 

0.13649500621316 

0.19307124170241 

0.26324073470589 

0.24698573512430 

0 

1 Sphere Surface 

-0.0000000000000 

0.00000000000000 

0.00000000000000 

-0.01156024934659 

-0.0000000000000 

-0.0000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.000000000000000 

0.000000000000000 

0.000000000000000 

-0.00000000000000 

0.000000000000000 

0 000000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0 
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Table B3 - Distribution of u5T (6 = 0.05) on the nodes demonstrated in Fig. 4.1. 
XT 

II Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infinity)-124 

II Wall Surface 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

11 Medium 

0.00000000000000 

0.00249518687909 

0.00500416910953 

0 00754104940237 

0.01012055988400 

0.01275841476709 

0.01547171215047 

0.01827940778895 

0.02120289030963 

0.02426669727816 

0.02749942628152 

0.03093491727471 

0.03461381588256 

0.03858567887433 

0.04291186412523 

0.04766957832242 

0.05295767322848 

0.05890515202340 

0.06568398525997 

0.07352891883356 

0.08276877898708 

0.09387731058854 

0.10756190981601 

0.12494896158868 

0.14807355566899 

0.18131221557061 

0.23519944403874 

0.33417921342535 

0.52233438119949 

0.76497805346238 

0 

J Medium 

0.00000000000000 

0.00126598142504 

0.00253895371721 

0.00382606318201 

0.00513477459237 

0.00647304954419 

0.00784954961806 

0.00927387590617 

0.01075685975234 

0.01231092454147 

0.01395054586111 

0.01569284846956 

0.01755839530613 

0.01957224969960 

0.02176543279430 

0.02417696431309 

0.02685678513119 

0.02987004823595 

0.03330358047629 

0.03727580837610 

0.04195212384597 

0.04756888521901 

0.05447465459851 

0.06322676895179 

0.07490541860594 

0.09216760617042 

0.12201776489752 

0.17901847976281 

0.26920413107879 

0.28889753606587 

0 

11 Sphere Surface 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0 
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Table B4 - Distribution of u T (6 = 0.05) on the nodes demonstrated in Fig. 4.1. 

1 Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infinity)-124 

1 Wall Surface 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1.00000000000000 

1 Medium 

0.80303405944808 

0.80157856667504 

0 79722798218341 

0.79002981132499 

0.78006264437466 

0.76743528477505 

0.75228554097381 

0.73477869382997 

0.71510565450484 

0.69348083028330 

0.67013971771734 

0.64533624360293 

0.61933987421436 

0.59243251130606 

0.56490518862022 

0.53705457328118 

0.50917925944094 

0.48157580963132 

0.45453442769466 

0.42833394226042 

0.40323514186876 

0.37946977314156 

0.35721936475725 

0.33657794641144 

0.31751402186856 

0.29988709674277 

0.28320672822095 

0.26208525707139 

0.19220871698397 

-0.17896646890782 

-0.96552559541135 

1 Medium 

0.47096507303833 

0.46950607846442 

0.46514491182673 

0.45792884488615 

0.44793606637032 

0.43527479083781 

0.42008202117476 

0.40252197415607 

0.38278418008061 

0.36108126826596 

0.33764644940944 

0.31273070279284 

0.28659966985505 

0.25953024369137 

0.23180682285938 

0.20371716074586 

0.17554767577087 

0.14757796786584 

0.12007406950065 

0.09327958678322 

0.06740330111059 

0.04260076119613 

0.01894358008504 

-0.00365047104510 

-0.02564997635127 

-0.04878182365560 

-0.07901447010421 

-0.13510259159216 

-0.26575357045243 

-0.53202303332182 

-0.73797466771637 

E Sphere Surface 

0.00000000000000 

0.00000000000000 

0 00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 
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Table B5 - Distribution of p T (6 = 0.05) on the nodes demonstrated in Fig. 4.1. 

I Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infinity)-124 

II Wall Surface 

0.00000000000000 

2.56683126460221 

5.06404206577036 

7.42458823742511 

9.58647071406446 

11.49499398730029 

13.10472044412745 

14 38103993974254 

15 30129055377915 

15.85538582312015 

16.04592499406338 

15.88778506546034 

15.40721563352735 

14.64047882789031 

13.63209601622328 

12.43277960135191 

11.09714142064867 

9.68127847713881 

8.24034178974969 

6.82619494138144 

5.48526361473268 

4.25665728921488 

3.17058994143488 

2.24704144847708 

1.49465852723310 

0.91061053592599 

0.48360700500082 

0.20110265474448 

0.05117303095520 

0.00384191971613 

0.00000000000000 

1 Medium 

0.00000000000000 

2.50489993442630 

4.94266596845149 

7.24863429056500 

9.36297838860926 

11.23287494355764 

12.81437865537711 

14.07392880473506 

14.98942623056694 

15.55083790896266 

15.76030664723196 

15.63176467258456 

15.19007117077438 

14.46971418848033 

13.51313586539680 

12.36875589799380 

11.08878076566148 

9.72689503874103 

8.33593566387165 

6.96565008698245 

5.66063335305729 

4.45852530909417 

3.38852497296632 

2.47025923243755 

1.71308745630983 

1.11611598944693 

0.66940126540957 

0.35640116111268 

0.15657411766398 

0.04719083197523 

0 

1 Medium 

0.00000000000000 

2.54107234013403 

5.01462393992073 

7.35560849728765 

9.50382565855289 

11.40609113150217 

13.01811560422546 

14.30601523422136 

15.24739235449095 

15.83194355407044 

16.06157262372460 

15.95000713271661 

15.52193869248578 

14.81172734060274 

13.86172905899788 

12.72032141933486 

11.43971502247043 

10.07364719247197 

8.67505890210303 

7.29385617885482 

5.97485454702668 

4.75600314642702 

3.66698800663818 

2.72830737158633 

1.95081762639781 

1.33541775411246 

0.87208950749518 

0.53830032864728 

0.30116367814816 

0.12978973336354 

0 

1 Sphere Surface 

0.00000000000000 

2.67712152950532 

5.28344062347382 

7.75074673204120 

10.01589938292411 

12.02310095476723 

13.72586352994599 

15.08859039908391 

16.08770808608646 

16.71230423787189 

16.96424779451904 

16.85779010894405 

16.41866806513056 

15.68275155185052 

14.69429704244176 

13.50388588818905 

12.16613937494904 

10.73731187931117 

9.27286819016280 

7.82515097265814 

6.44124126175602 

5.16111931588135 

4.01627263094401 

3.02899565740887 

2.21265807266163 

1.57260220465705 

1.10505613981956 

0.78809246521702 

0.56157689181553 

0.32118158346124 

0 

2 4 1 



Table B6 - Distribution of u T on the nodes constructed for 6 = 2. 

II Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infmiry)-124 

11 Wall Surface 

-1.00000000000000 

-1.00000000000000 

-1 00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

-1.00000000000000 

11 Medium 

-0 87514451361309 

-0.87386468921777 

-0.87005004114578 

-0.86377517075531 

-0 85516482206919 

-0 84439445202442 

-0.83169093808133 

-0.81733331898155 

-0.80165341662936 

-0.78503612800100 

-0.76791910597691 

-0.75079146933532 

-0.73419109949077 

-0.71870000198881 

-0.70493714316153 

-0.69354812546423 

-0.68519104330942 

-0.68051785698359 

-0.68015060189133 

-0 68465163174830 

-0.69448671130670 

-0.70997882818907 

-0.73124861181435 

-0.75813365052612 

-0.79007364616757 

-0.82594365531974 

-0.86382459860619 

-0.90074923757116 

-0.93260175680685 

-0.95456071995419 

-0.96244632852818 

1 Medium 

-0.58856295653182 

-0.58673340512381 

-0.58127773839553 

-0.57229528328935 

-0.55995281975983 

-0.54448649847410 

-0.52620463516070 

-0.50549144066845 

-0.48281168478404 

-0.45871616290233 

-0.43384761380163 

-0.40894639823666 

-0.38485476803643 

-0.36251791923664 

-0.34297923670114 

-0.32736624647290 

-0.31686290340778 

-0.31266315615731 

-0.31590057537960 

-0.32754968215944 

-0.34829710526175 

-0.37838556360207 

-0.41744158284636 

-0.46430903316173 

-0.51692408743832 

-0.57227991772814 

-0.62653503445383 

-0.67530829146311 

-0.71416736810511 

-0.73925562157885 

-0.74793197691388 

11 Sphere Surface 

-0.00000000000001 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

0 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000001 

242 



Table B7 - Distribution of u T (6 = 10"6) on the nodes constructed for 6 =10 —in-6 
lpT 

11 Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infiniry)-124 

1 Wall Surface 

-1.00011917730444 

-1 00000202311708 

-0.99999461613334 

-1 00000323561653 

-1.00000102975901 

-0 99999652724364 

-1.00000234481558 

-1.00000080333848 

-0 99999715173908 

-1 00000199933129 

-1 00000070483657 

-0 99999743091757 

-1.00000184198143 

-1.00000066417851 

-0.99999753758311 

-1.00000179879135 

-1 00000065981294 

-0.99999751627911 

-1.00000184285454 

-1.00000068804366 

-0.99999736073369 

-1.00000199797796 

-1 00000076198194 

-0.99999699834734 

-1.00000234456820 

-1.00000093079871 

-0.99999614941407 

-1.00000323299355 

-1.00000144460137 

-0.99999240399234 

-0.99999933246095 

1 Medium 

-0.80011509856558 

-0.79854116794786 

-0.79416759792548 

-0.78695156203867 

-0.77694650215562 

-0.76427017815877 

-0.74907350817375 

-0.73150612082100 

-0 71176550260861 

-0.69007805250294 

-0.66666741791414 

-0.64179405923642 

-0.61573971703183 

-0.58877718044096 

-0.56120533417561 

-0.53333516645944 

-0.50545983252232 

-0.47788797828252 

-0.45093073128373 

-0.42487107384659 

-0.39999769766291 

-0.37659278657520 

-0.35489957335813 

-0.33515894664743 

-0.31759830933879 

-0.30239495944988 

-0.28971884435305 

-0.27972370063435 

-0.27250056958928 

-0.26814114946819 

-0.96573198816636 

U Medium 

-0.46816765549011 

-0.46523118766413 

-0.46077222415079 

-0.45365554359705 

-0.44362506160905 

-0.43089683511789 

-0.41576722139871 

-0.39818205672782 

-0.37839933900977 

-0.35676775965840 

-0.33334221797122 

-0.30843109897978 

-0.28242761688307 

-0.25545148417586 

-0.22784359147772 

-0.20002252931590 

-0.17213406314841 

-0.14452600028017 

-0.11761862382991 

-0.09154564779601 

-0.06663394677162 

-0.04328251550032 

-0.02157507193624 

-0.00179111938633 

0.01570778979658 

0.03092733729136 

0.04365823934495 

0.05357108373755 

0.06081326753792 

0.06526720074362 

-0.73752125961111 

J Sphere Surface 

-0.02102174452739 

-0.00035389025675 

0.00094147196069 

-0.00056570854940 

-0.00018015443857 

0.00060717602173 

-0.00041007557593 

-0.00014054600615 

0.00049805347226 

-0.00034950560075 

-0.00012357458763 

0.00044921622612 

-0.00032233470120 

-0.00011629564688 

0.00043054381968 

-0.00031433699769 

-0.00011534945224 

0.00043413531967 

-0.00032231389196 

-0.00012036580301 

0.00046138776815 

-0.00034945261723 

-0.00013346933702 

0.00052490374947 

-0.00040995924064 

-0.00016274797963 

0.00067326353746 

-0.00056534623764 

-0.00025252721025 

0.00132809963134 

-0.00040738874699 
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Table B8 - Di 

II Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infinity)-124 

stribution of u R 

II Wall Surface 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0 00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

(for 0=TT) on the nodes demonstrated in Fig. 4.1. 

1 Medium 

-0.45667681301488 

-0.45522875263913 

-0.45090005913025 

-0.44373701113462 

-0.43381612664348 

-0.42124324652654 

-0.40615225728937 

-0.38870345758458 

-0.36908157225031 

-0.34749341491064 

-0.32416519438368 

-0.29933944963453 

-0.27327158011235 

-0.24622590870199 

-0.21847116619785 

-0.19027520794436 

-0.16189864760287 

-0.13358689420584 

-0.10555977406960 

-0.07799748983952 

-0.05102123061632 

-0.02466710815494 

0.00114313568389 

0.02660942798014 

0.05194139367094 

0.07685544645262 

0.09917759774669 

0.11234925849755 

0.10413120596956 

0.06464789452361 

0.02656381138936 

II Medium 

-0.78869047485863 

-0.78718389002079 

-0.78267916169799 

-0.77522114843458 

-0.76488387948690 

-0.75176944645978 

-0.73600643819033 

-0.71774790139313 

-0.69716879800408 

-0.67446291214022 

-0.64983913158736 

-0.62351698517204 

-0.59572124933196 

-0.56667533005195 

-0.53659295581301 

-0.50566744257635 

-0.47405734440938 

-0.44186656813516 

-0.40911581960108 

-0.37570027355548 

-0.34132522825010 

-0.30540689887781 

-0.26692017283704 

-0.22417569351228 

-0.17454669687966 

-0.11435677479839 

-0.03976870053604 

0.04928822716086 

0.14092699059691 

0.20877439479179 

0.23240008363428 

11 Sphere Surface 

-1.00000000000000 

-0.99986221034354 

-0.99944591662036 

-0.99874221375189 

-0.99773581391756 

-0.99640434148731 

-0.99471726952774 

-0.99263441064152 

-0.99010383245452 

-0.98705900842639 

-0.98341492837071 

-0.97906276531224 

-0.97386250234932 

-0.96763262626268 

-0.96013552918690 

-0.95105651629516 

-0.93997310709889 

-0.92630930829855 

-0.90926613386873 

-0.88771378290959 

-0.86002062704471 

-0.82377610785200 

-0.77533332444798 

-0.70904622882451 

-0.61601208541887 

-0.48214266439190 

-0.28598017585474 

-0.00000000000000 

0.38853438153656 

0.80263330164336 

1.00000000000000 
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Table B9 - Distribution of u R (for 6=7i) on the nodes demonstrated in Fig. 4.1. 

11 Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infmity)-124 

II Wall Surface 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 Medium Medium 1 Sphere Surface 

-0.00000000000000 

-0.00373940538488 

-0.00745101720776 

-0.01110746390396 

-0.01468221642837 

-0.01815000594596 

-0.02148723756199 

-0.02467239927810 

-0.02768646571040 

-0.03051329638573 

-0.03314002842592 

-0.03555746270395 

-0.03776044024139 

-0.03974819996577 

-0.04152469641937 

-0.04309882939498 

-0.04448448214009 

-0.04570015147092 

-0.04676772397112 

-0.04770948699701 

-0.04854146602029 

-0.04925877404112 

-0.04980218209064 

-0.04997806859189 

-0.04926888300675 

-0.04644677320823 

-0.03908413023816 

-0.02393845404476 

-0.00081279036348 

0.01784110097952 

0 

-0.00000000000000 

-0.01115297227831 

-0.02226875469910 

-0.03331137894460 

-0.04424733190434 

-0.05504681482100 

-0.06568504377983 

-0.07614361135281 

-0.08641193478030 

-0.09648882349743 

-0.10638420826597 

-0.11612108559943 

-0.12573774384728 

-0.13529034887069 

-0.14485597152681 

-0.15453612140715 

-0.16446077765246 

-0.17479270301358 

-0.18573132676340 

-0.19751431825046 

-0.21041226904337 

-0.22470532492641 

-0.24061352143323 

-0.25810715014230 

-0.27641274704872 

-0.29282972797987 

-0.30041074273894 

-0.28535152104114 

-0.22979356939568 

-0.12820618621149 

0 

-0.00000000000000 

-0.01660000984717 

-0.03328452719956 

-0.05013970951222 

-0.06725507881398 

-0.08472536966717 

-0.10265258741638 

-0.12114836693231 

-0.14033674130060 

-0.16035745659093 

-0.18137000484545 

-0.20355859495278 

-0.22713834224527 

-0.25236303333092 

-0.27953490943532 

-0.30901699437495 

-0.34124852810065 

-0.37676393850722 

-0.41621520611270 

-0.46039574241337 

-0.51025926846812 

-0.56691527068180 

-0.63155224328669 

-0.70516199939428 

-0.78773670132723 

-0.87609271836552 

-0.95823553420759 

-1.00000000000000 

-0.92143422682468 

-0.59647278487210 

0 
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Table BIO - Distribution of u (for 0=7u/2)on the nodes demonstrated in Fig. 4.1. 

I Nodes number 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(infinity)-124 

1 Wall Surface 

-0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0 00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

-0.00000000000000 

0.00000000000000 

0.00000000000000 

11 Medium 

0 45667681301488 

0.45661018233330 

0.45640881756512 

0.45606823107182 

0.45558070624066 

0.45493492116465 

045411537813137 

0.45310158854460 

0.45186693755514 

0.45037711638444 

0.44858795684336 

0.44644242204969 

0.44386638421353 

0.44076262982243 

0.43700223599276 

0.43241200142929 

0.42675591308226 

0.41970760381373 

0.41080940304362 

0.39941223534530 

0.38459067972731 

0.36503323527105 

0.33893032627800 

0.30394641037017 

0.25750983762542 

0.19791196959716 

0.12690231698505 

0.05370214685627 

-0.00330227415246 

-0.02680653327642 

-0.02656381138936 

1 Medium 

0.78869047485863 

0.78857408452067 

0.78822237513956 

0.78762761390726 

0.78677651107054 

0.78564958332667 

0.78422019026559 

0.78245316069106 

0.78030288422342 

0.77771068458891 

0.77460120450001 

0.77087740237837 

0.76641356337041 

0.76104542097665 

0.75455600675536 

0.74665509241410 

0.73694890741732 

0.72489499376134 

0.70973436862966 

0.69038956738587 

0.66531348956002 

0.63227404974155 

0.58807545423987 

0.52828119226613 

0.44719449896697 

0.33881895516736 

0.20039348969443 

0.04063944174139 

-0.10963302976832 

-0.20522792234966 

-0.23240008363428 

II Sphere Surface 

1.00000000000000 

0.99986221034354 

0.99944591662036 

0.99874221375189 

0.99773581391756 

0.99640434148731 

0.99471726952774 

0.99263441064152 

0.99010383245452 

0.98705900842639 

0.98341492837071 

0.97906276531224 

0.97386250234931 

0.96763262626268 

0.96013552918689 

0.95105651629515 

0.93997310709889 

0.92630930829854 

0.90926613386872 

0.88771378290958 

0.86002062704471 

0.82377610785199 

0.77533332444797 

0.70904622882451 

0.61601208541886 

0.48214266439189 

0.28598017585473 

-0.00000000000000 

-0.38853438153656 

-0.80263330164336 

-1.00000000000000 
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Table B l l - Comparison of Numerical and Analytical solutions, Pe =0.01, 6=0.1. 

Node 

l(origin)-4 

5-8 

9-12 

13-16 

17-20 

21-24 

25-28 

29-32 

33-36 

37-40 

41-44 

45-48 

49-52 

53-56 

57-60 

61-64 

65-68 

69-72 

73-76 

77-80 

81-84 

85-88 

89-92 

93-96 

97-100 

101-104 

105-108 

109-112 

113-116 

117-120 

121(*)-124 

Analytic 

-0.0000 

-29.8909 

-59.3302 

-87.8735 

-115.0903 

-140.5718 

-163.9366 

-184.8375 

-202.9678 

-218.0662 

-229.9222 

-238.3806 

-243.3448 

-244.7806 

-242.7175 

-237.2512 

-228.5431 

-216.8206 

-202.3746 

-185.5562 

-166.7696 

-146.4635 

-125.1205 

-103.2547 

-81.4327 

-60.3318 

-40.8191 

-23.9775 

-10.9738 

-2.7877 

-0.0000 

Numeric 

0.0003 

-29.6491 

-58.8966 

-87.2688 

-114.3297 

-139.6682 

-162.9022 

-183.6845 

-201.7083 

-216.7126 

-228.4871 

-236.8768 

-241.7854 

-243.1785 

-241.0856 

-235.6019 

-226.8884 

-215.1711 

-200.7397 

-183.9428 

-165.1823 

-144.9046 

-123.5927 

-101.7673 

-80.0099 

-59.0180 

-39.6728 

-23.0502 

-10.2955 

-2.3957 

0 

Analytic 

-0.0000 

-26.8998 

-53.3814 

-79.0335 

-103.4583 

-126.2780 

-147.1413 

-165.7294 

-181.7616 

-195.0009 

-205.2584 

-212.3976 

-216.3383 

-217.0590 

-214.5998 

-209.0631 

-200.6147 

-189.4830 

-175.9575 

-160.3857 

-143.1691 

-124.7586 

-105.6504 

-86.3865 

-67.5609 

-49.8288 

-33.9040 

-20.5195 

-10.3289 

-3.6976 

0 

Numeric 

0.0003 

-26.6808 

-52.9911 

-78.4925 

-102.7814 

-125.4781 

-146.2305 

-164.7195 

-180.6648 

-193.8293 

-204.0245 

-211.1143 

-215.0188 

-215.7168 

-213.2483 

-207.7160 

-199.2855 

-188.1848 

-174.7029 

-159.1870 

-142.0381 

-123.7074 

-104.6919 

-85.5352 

-66.8325 

-49.2389 

-33.4652 

-20.2392 

-10.1998 

-3.6748 

-0.0000 

Analytic 

-0.0000 

-25.1019 

-49.8060 

-73.7211 

-96.4692 

-117.6915 

-137.0551 

-154.2586 

-169.0375 

-181.1695 

-190.4794 

-196.8427 

-200.1894 

-200.5073 

-197.8435 

-192.3065 

-184.0668 

-173.3565 

-160.4685 

-145.7544 

-129.6220 

-112.5310 

-94.9889 

-77.5453 

-60.7812 

-45.2891 

-31.6327 

-20.2733 

-11.4473 

-4.9722 

0 

Numeric 

0.0002 

-24.8945 

-49.4370 

-732106 

-95.8319 

-116.9403 

-136.2021 

-153.3155 

-168.0164 

-180.0827 

-189.3395 

-195.6628 

-198.9833 

-199.2889 

-196.6274 

-191.1077 

-182.9007 

-172.2388 

-159.4153 

-1447822 

-128.7469 

-1117687 

-94.3533 

-77.0464 

-60.4225 

-45.0646 

-31.5247 

-20.2520 

-11.4757 

-5.0237 

-0.0000 

Analytic 

-0.0000 

-24.4400 

-48.4896 

-71.7651 

-93.8955 

-114.5293 

-133.3403 

-150.0332 

-164.3496 

-176.0729 

-185.0326 

-191.1088 

-194.2356 

-194.4041 

-191.6643 

-186.1274 

-177.9659 

-167.4141 

-154.7672 

-140.3796 

-124.6625 

-108.0800 

-91.1433 

-74.4008 

-58.4203 

-43.7586 

-30.9090 

-20.2215 

-11.7889 

-5.3109 

0 

Numeric 

0.0002 

-24.2321 

-48.1189 

-71.2514 

-93.2537 

-113.7722 

-132.4799 

-149.0815 

-163.3187 

-174.9752 

-183.8810 

-189.9169 

-193,0175 

-193.1745 

-190.4390 

-184.9227 

-176,7992 

-166.3037 

-153.7326 

-1394415 

-123.8423 

-107.3992 : 

-90.6218 

-74.0543 

-58.2568 

-43.7737 

-31.0800 

-20.5005 

-12.0982 

-5.5466 

-0.0001 
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Table B12-Correction coefficient to Stokes law, k, due to the presence of a wall 

6 

10 

1 

0.1 

0.01 

k Brenner (1961)'s solution 

1.11350323390571 

2.12553556676004 

11.45915720340954 

1.018961723245513e+002 

k Present solution 

-1.11350323390571 

-2.12553556676004 

-11.45915720340951 

-1.018961723264529e+002 

Table B13-Comparison of analytical and numerical force for different 
geometries and mesh sizes. 

6 

3.0 

3.0 

3.0 

0.1 

0.1 

0.1 

0.001 

0.001 

0.001 

Mesh 
size 

20x50 

14x15 

50x20 

20x50 

14x15 

50x20 

20x50 

14x15 

50x20 

\ | / P 

mV 

-300 

-300 

-300 

-100 

-100 

-100 

+150 

+150 

+150 

Vw 
mV 

-500 

-500 

-500 

+200 

+200 

+200 

-50 

-50 

-50 

aQ/ 7v 

0.5 

0.5 

0.5 

3 

3 

3 

0.25 

0.25 

0.25 

/»1 

2 

2 

2 

1 

1 

1 

0.5 

0.5 

0.5 

F / 
x/x Analytic 

-67.4523 

-66.9776 

-67.1351 

-267.3913 

-264.9144 

-266.1876 

-8.4789e+005 

-8.3343e+005 

-8.3925e+005 

F / 
Yx Numeric 

-66.9059 

-65.8799 

-66.9902 

-266.8082 

-258.9971 

-262.8536 

-8.4892e+005 

-8.3715e+005 

-8.4162e+005 
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Parameters M, N, S, T and O in relationships (4.3.23, 24) are defined by 

1 
M = - 2 ( l - iacosh^)XAn sinh n + -KP n 

V 2) 

Bn cosh +M,sinh£,7i 
1 

+ sinh E^ 
0 

+(l-^)sinh^ 

( A 
n + -

^ 2) 

( 1 
^ + Cnsinh^n + - J ^ 

(A • A A, 
Dncosh^n + - J ^ + Ensinh[n + - j ^ V 2) 

A f 1 

2) 
Fncosh(n + - ) ^ + Gnsinh^n + - J ^ 

(Cl) 

N = 2( l - ii2)sinh^(cosh^ - \i)~2 

( A 
S = 2\i cosh^X A n s i n h n + ^"Rpn 

dnh^X Bn cosh 
( \ \ 

+ fl si 

+ sinh^2j 
0 

+(l-^i 2 )s inh^X 

V 2) 

1 

V 27 

/ 

Dn cosh 
V 2) 

cj + Cn sinh 
V 

( 1̂  

\ 

£ + En sinh V 2) \ 

( 

F cosh 
\ 1 

V 2) 

( 

£ + Gn sinh 
1 

V 2) \ 

(C.2) 

(C3) 

T = 2 M . s i n h ^ X [ n + 2 ; 

/ 

An cosh 
1 

V 2) Fn 

\ \ 
+ HCOsh^]T n+ -

2) 
Bnsinh 

( A 
v 2) 

\\ + Cn cosh ( A 
V 2) 5 

+ cosh^X n +^" 27 

/ 

Dnsinh 
V 2) 

\ + Encosh 
' 1̂  

V 27 5 

1 1 

+ ( l -^ i 2 )cosh^Xl n + 7 2) 
Fnsinh 

( 1 

V 27 

( i 
$ + G n cosh[n+-]$ 

(C4) 

and 

252 



\ 2 
I 1 1 

0=-2( l - |L icosh^)X n + - Ansinh 
i V 2. J 

( 1 
n+ -

I 27 
^P„ 

+ M. sinh^X n+ -
\ 2 

27 

/ 

B„cosh n+ — 
27 

^ ( 

£, + Cn sinh 
1 

n+ -
27 

5 

+ sinh^X n+ — 
\ 2 

2) 

f 
D„cosh 

I) 
n+ — 

V 27 

+ ( l - M . 2 ) s i n h ^ ( n + - ; 

\2 f 
Fn cosh 

\ + En sinh 

1̂  

1 \ 
n + 

V 27 \ 

n+ — 
V 27 

/ 

cj + Gn sinh n+ — 
27 

5 

(C.5) 

In view of the recurrence relationships [Macrobert (1967)] 

(C.6) 

(n + l)(n + 2) ( n - l ) n 
( l-H2)P„(M)= ^ ' p ^ ) - ! — ^ - ^ ) n > l (c.7) 

p ^=2777 p -^ + I^Tp-W n i l (C.8) 

the auxiliary functions M, S, T and O can be written in terms of just Pn , with the notation 

( f 
Kn+1Sin = Kn+1 sinh(^n + i + - J \, Kn+1Cos = Kn+1 sinh[n + i + - j £, (C.9) 

[K = (A, B, C, D, E, F, G)], as 

CO 00 

M - - 2 ^ AnSinPn + 2 cosh E^ 
i 

00 

+ sinh^X 

+ sinh^J] 
i 

00 

+ sinh^2^ 
i 

1 L 

n + 2 n - l 
A„,,Sin- - + A„ .Sin-k n + T 2n + 3 

L n - l k 

2 n - l 

(Bn+1Cos + Cn+1Sin) j ^ + (Bn_,Cos + C n _ , S i n ) ~ 

(CIO) 

(Dn+1Cos + E n + 1 S i n ) — ^ - + ( D ^ C o s + E ^ S i n ) -±— Pn 

zn + J zn— 1J 
(v n r c- \ ( n + 2 X n + 3) (r: n n c - \ ( n - 2 ) ( n - l ) ' (Fn+1Cos + Gn+1Sin) —— (Fn_,Cos + G ^ S i n ) 

2n + 3 2 n - l 
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S= 2cosh^2j 
. „. n + 2 n - l 
A„,,SinT -+ A„ ,Sin -n+r 

+ s i n h ^ 
1 

00 

+ sinh^]T 
i 

00 

+ s i n h ^ 
I 

2n+3 ' ""-' ~"2n-l . 
n+2 

( C l l ) 

(Bn+1Cos+Cn+1Sin)——+ (Bn_1Cos+Cn_1Sin) 
2n+3 

-1 
(Dn+1Cos+ E n + 1 S i n ) — - + (Dn_,Cos+ En_,Sin) 

n - l 
2 n - l 

1 

(Fn+1Cos+Gn+1Sin) 

2n+3 
(n+2)(n+3) 

2n+3 

2 n - l 

-(Fn.1Cos+Gn_1Sin) 
(n -2 ) (n - l ) 

2 n - l 

CO 

T=s inh^ [A n + 1 Cos (n + 2) + An_1Cos(n-l)]Pn (C12) 
i 

00 

+ - c o s h ^ [ ( B n + 1 S i n + Cn+1Cos)(n + 2) + (Bn_1Sin + Cn_,Cos)(n-l)]Pn 
-̂  i 
1 00 

+ - c o s h ^ [ - ( D n + , S i n + En+1Cos) + (Dn.ISin+En_1Cos)]Pn 
• ^ i 

i °° 

+ -cosh^[ (Fn + ,S in + Gn+1Cos)(n + 2)(n + 3)-(Fn_1Sin + Gn_1Cos)(n-2)(n-l)]Pn 

00 / 1 \ ^ 00 

0 = - 2 l [ n + - J AnSinPn+cosh^ 

1 °° 
+ - s i n h ^ 

An.,Sin n+ ^ n+1 ^ 27 
3\ ( \\ 

(n + 2) + An_,Sin[n--J(n-l) |Pn 

1 °° 
--s inh^X 

^ i 

1 °° 
--sinh^X 

-(n - 2)(n - l)(Fn_,Cos + Gn_,Sin)[n - £) 

(Bn+1Cos + Cn+1Sm)(n + | ) ^ 

-(Dn+1Cos + En+1Sin)[n + | J +(Dn_1Cos + En_1Sin)[n-iJ Pn 

(Fn+1Cos + Gn+1Sin)(n + | ) ( n + 2)(n + 3) 

(C.13) 

The boundary condition on the sphere is the same as that for the wall, given by 

(4.3.25), for which FcW is replaced by FcP and E, is taken to be equal to a, that is 

ac 21 = - ^ J N + (cosh^P 

+(cosh^- | a ) 

2c 

2 

1 
•sinh2£M on£, = a 

1 
- —cosh^M 

i 

+ (cosh^-|i)2~[S + 2T + 0 ] 
(C.14) 

In view of (4.3.31) and the identity [Macrobert (1967)] 
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( c o s h ^ ) " 2 = - 2 i ^ n P n (C.15) 

where Xn is defined by (4.2.135), the parameter N in (C.14) (the term due to the moving 

coordinate system), given by (C.2), may be evaluated as 

- - n 

N = 2 ( l - n2)sinh^(cosh^ - p)" = - 4 ( l - Li2)sinh^(cosh^ - Lt)~2£ ?,nPn 

3 f n 

- 4 sinhl; (cosh I; - p)"2 I > n P n " n £ 
I 1 

-4sinh^(cosh^-pp Z^Pn-E 

n-l 
+ X 

n + l n - 2 

2 n - l 
Thus, if we write 

V'Vn2n+l + ; i n - 2 2 n - 3 , 

n + 2 
I 

n + 2 ( 

n - l 

^ ' ^ r i T ^ " - 1 ^ ! 

X 
n+ 3 

+ X n 
2n+3V n + 2 2n+5 n 2 n + l J 

(C.16) 

'"1 
N = (cosh^-npi:pnpn (C.17) 

Pn is determined by 

(3n = 4sinh^ -l„ + 
n + 2 ( 

X 
n+ 3 

+ X n A 

n - l / 

+ X 
n + l 

2 n + 3 T n + 2 2 n + 5 ' " n 2 n + l 7 

n - 2 ^ 
+ X n-2 

(C.18) 

2 n - l V n 2 n + l n " 2 2n-37 
from which and from the identities 

1_ _3 

(cosh^- | i )"2Pn =(cosh^-|n)"2(cosh^-|Li)Pn = 

n + l 
(cosh^-jj.) cosh ^Pn -

2n + l n-l + 
n 

2nTT 
n+l 

(C.19) 

- - -

(cosh^-ix)2Pn = (cosh^-np(cosh^-u )P n = 
n + l , 

(cosh^-u.) 2 cosh£,Pn -
n 

2n + l n- l 2n + l n+l 

(cosh^-11) 2\ cosh2 ^ P n - cosh 1% 
n + l , n 

•P. , + - 7P. 
2n + l 

2n+l n- l n+l 

(C.20) 

+ 
(n+l)(n- l ) n(n + 2) 

(n + 1 > n
 P + • - - - + 

(2n + l)(2n-l) n'2 |_(2n + l)(2n-l) (2n + l)(2n + 3) 
P_ + 

n(n + l) 
n (2n + l)(2n + 3) n+2 
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B.C. (C.14) may be written as 

dC 21 

d^ 
= - ~ (C0Sh^-(ij 2 X o n ^ = a 

(C.21) 

X [Pn +Yn + ^ n + ^ n +x3 n +coln +co2n + co3n +co4n +co5n +co6n]Pn 
i 

in which 0n is given by (C.6), and y„, (T1„, x2n, x3„,) and (G>1„, w2n, o>3n, a)4n, w5n, o)6n) are 

obtained from the second, third and the fourth term in (C.14), upon the use of the identities 

(C.7, 8), as 

y n = 4 sinh2 £, 

+ sinh£, 

+ siring 

+ sinh£, 

2AnSin+2cosh^ 

n + 2 

n + 2 n - l 
A„,,Sin- r + A „ ,Sin L n + l k 

2 n + 3 
Ln-T 2 n - l 

(C.22) 

(Bn+1Cos+ C n + 1 S i n ) - 2 - ^ + (Bn_1Cos+ C n _ £ i n ) ^ - j -

(Dn+1Cos+ E n + 1 S i n ) ^ - ^ + (Dn.1Cos+ E n - . S i n ) - ^ 

/ x(n+2)(n+3) / x ( n - 2 ) ( n - l ) 
(Fn+1Cos+ Gn+1Sin)V

 2 n
A

+ 3 - ( F n - i C o s + Gn_1Sin)V * 

n+2 n - l 
A_.,SinT 7 + A„ ,Sin n+1^"2n + 3 ' " n - , k " " 2 n - l 

n - l 

xln = cosh2 ^AnSin - cosh ̂ (cosh2 £, + sin2 h^j 

sinhE,cosh2 E, (Bn+)Cos + C n + 1 S i n ) ^ _ + (Bn_,Cos + Cn_,Sin) j ^ 

-s irm^cosh 2^(D n + 1Cos+E n + 1Sin)^-^ + (Dn_1Cos + E n _ 1 S i n ) ^ ^ 

( ^(n + 2)(n + 3) , ^ n - 2 ) ( n - l ) 
(Fn+1Cos + Gn+1Sin)—-^—^—-(Fn_ICos + Gn_ISin) ^ ^ 

AnCos - — sinh £ cosh2 ^[An+1Cos(n + 2) + An_jCos(n -1)] 

- - sinh2 \ cosh ̂ [(Bn+1Sin + Cn+1Cos)(n + 2) + (Bn_,Sin + Cn_,Cos)(n -1)] 

- - sinh2 \ cosh^[-(Dn+1Sin + En+1Cos) + (Dn_,Sin + En_,Cos)] (C.23) 

- - sinh21% cosh ̂ [(Fn+1Sin + Gn+1Cos)(n + 2)(n + 3) - (Fn_,Sin + Gn_,Cos)(n - 2)(n -1)] 

- sinh £, cosh2 £, 

+ - sinh 4 cosh t\n+2J 
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n+2 
T 2 » = -57ri 
- sinh £, cosh £ 

- sinh£, cosh I; 

- sinh^ cosh^ 

+ cosh^An+1Sin- (cosh2 EJ + sinh2 i\) 
n+ 3 n 

A„,oSin- + A Sin n+2~"~2n+5 

(Bn+2Cos+ C n + 2 S i n ) - ^ + (BnCos+ C n S i n ) - ^ 

2n+ l 

2n+5 
-1 

2n+ l 
1 

(Dn+2Cos+ En+2Sin) — + (DnCos + EnSin) — 
+ 1 

(v r ^n c . \0n+j0(n+4) , \ (n- l ) (n) 
(Fn+2Cos + Gn+2Sin FCos+ GnSin 
v n+2 n+2 ' 2n+5 v n n J 2n+l 

+ - s i n h d n+ - J An+1Cos- -sinh^ cosh^[An+2Cos(n+ 3) + AnCos(n)] 

- -sinh2 ^[(Bn+2Sin+ Cn+2Cos)(n+ 3) + (BnSin+ CnCos)(n)] 

- ^sinh2 ^[-(Dn+2Sin+ En+2Cos)+ (DnSin + EnCos)] 

- ^sinh2 ^[(Fn+2Sin+ Gn+2Cos)(n+ 3)(n+ 4 ) - (FnSin+ GnCos)(n- l)(n)] 

(C.24) 

. n + l n - 2 
A„Sin^ - + A„ 0Sin 

- sinh £, cosh £ 

- sinh Ej cosh £ 

n ""2n + l " n - 2 "~2n-3 
n - 2 " 

x3n = \ + cosh ^An_,Sin - (cosh2 EL, + sin2 h^) 

(BnCos + CnSin) ̂ — + (Bn_2Cos + Cn_2Sin) ^ 
zn +1 zn — 

(DnCos + EnSin) - ^ - + (Dn_2Cos + En_2Sin) -^-~ 
zn+1 z n - 3 

/ x(n + l)(n + 2) / . x (n-3) (n-2) 
(FnCos + GnSin) A - (Fn_2Cos + Gn.2Sm) ^ ~ r f ^ 2n + l 2 n - 3 

-s inh E, cosh £, 

+—sinhd n--jAn_,Cos--sinh^cosh^[AnCos(n + l) + An_2Cos(n-2)] 

- - sinh2 ^[(BnSin + CnCos)(n +1) + (Bn_2Sin + Cn_2Cos)(n - 2)] 

- - sinh2 ^[-(DnSin + EnCos) + (Dn_2Sin + En_2Cos)] 

- - sinh2 ^[(FnSin + GnCos)(n + l)(n + 2) - (Fn_2Sin + Gn_2Cos)(n - 3)(n - 2)] 

(C.25) 
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(o ln = cosh2^2cosh^ 

+ sinh^ 

n+2 n - l 
A_,Sin- r+A„ ,Sin-

+ sinhE, 

+ sinhl; 

2n+ 3 •--»- '—-2n-l 

(Bn+1Cos+ C n + 1 S i n ) ^ ^ + (Bn_,Cos+ Cn_,Sin) 
n - l 

2 n - l 

(Dn+1Cos+ En+1Sin) — + (Dn_,Cos+ E n _ ,S in)— 

/V ^ ^ o- \(n+2)(n+3) / x (n-2) (n- l ) 
(Fn+1Cos+ Gn+1Sin) 2 n

A
+ 3

 ;-(Fn_,Cos+ Gn.,Sin)^ ^_ ] 

+2sinh^[An+1Cos(n+ 2)+ An„,Cos(n- l)] 

+ cosh^[(Bn+lSin+ Cn+1Cos)(n+ 2)+ (Bn.,Sin+ Cn_,Cos)(n- l)] 

+ cosh^[-(Dn+1Sin+ En+1Cos)+ (Dn_,Sin+ En_,Cos)] 

+ cosh^[(Fn+,Sin+ Gn+1Cos)(n+ 2)(n + 3)- (Fn_,Sin + Gn.,Cos)(n- 2)(n- l)] 

(C.26) 

21 n+ - I AnSin+ cosh!; An+1Sin| n+ | | ( n + 2)+ An_,Sin(n- | ] ( n - l) 

+ — sinh!: 
2 ^ 

+ — sinhl: 
2 

+ —sinht 
2 

(Bn+1Cos+ Cn+,Sin)(n+ | ] ( n + 2)+ (Bn_,Cos + Cn.,Sin)(n- ^ ] ( n - l) 

-(Dn+1Cos+ En+1Sin)(n+ | j + (Dn_,Cos+ En_,Sin)(n- j 

(Fn+1Cos+ Gn+lSin)[n+ | j ( n + 2)(n+ 3)- (Fn_,Cos+ Gn_,Sin)[n- | J ( n - 2)(n- l) 

n + 2 , 
oo2n = -cosh £,77-—; i 2 cosh c, 

2n + 3 

n + 3 n 
A_,Sin- - + A„Sin-Ln+2L 

2n + 5 2n + l 
n + 3 

+ sinh£, 

+ sinh ^ 

+ s m h ^ n + 2 D + 2_. , 2 n + 5 

+2 sinh ̂ [An+2Cos(n + 3) + AnCos(n)] 

+ cosh£, 

+ cosh£, 

+ cosh£, 

/ \ n + j / _ _ . \ n 
(Bn+2Cos + Cn+2Sin + (BCos + CSin 
V n+2 n+2 / 2 n + 5 v " " ; 2 n + l_ 

(Dn+2Cos + En+2Sin)— I—+ (DnCos + EnSin)-
V n+2 n+2 / 2 n + 5 v " " ; 2 n + l 
/ J n + 3)(n + 4) , J n - l ) ( n ) ' 
(Fn+2Cos + Gn+2Sin)V J \ ^ ^-(FnCos + GnSin)V 

2n + l 

(Bn+2Sin + Cn+2Cos)(n + 3) + (BnSin + CnCos)(n)] 

-(Dn+2Sin + En+2Cos) + (DnSin + EnCos)] 

(Fn+2Sin + Gn+2Cos)(n + 3)(n + 4) - (FnSin + GnCos)(n - l)(n)] 

(C.27) 

Vn + - J An+1Sin + cosh^ An+2Sin vn + ̂ J(n + 3)+AnSin[n + | | ( n ) 

+ - s i n h ^ 

+—sinhf, 
2 

+ —sinhE 
2 

(Bn+2Cos + Cn+2Sin)[n + | J ( n + 3) + (BnCos + CnSin)[n + | J ( n ) 

-(Dn+2Cos + En+2Sin)[n + | j + (DnCos + E„Sin)[n + ^ 

(Fn+2Cos + Gn+2Sin)[n + | J ( n + 3)(n + 4)-(FnCos + GnSin)[n + ^] (n D(n) 
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co3n = -cosh^ ——7<J2cosh^ 
2 n - l 

A„Sin- r + A„ ,Sm 
2n + l 

+ sinh^ 

+ sinh^ 

+ sinh^ 

n + l 
(BnCos + CnSin) — — + (Bn_2Cos + Cn_2Sin) 

n-2~"""2n-3 
n - 2 

2n + l 
1 

2 n - 3 

( D n C o s + E n S i n ) ^ 7 T + (Dn_2Cos + E n _ 2 Sin) 2 ^- I 

(T*^ ^ c- \(n + l)(n + 2) / xfn-3)(n-2) ' 
(FnCos + GnSm) 2 n + 1

 y-(Fn_2Cos + Gn,2Sin)V 
2 n - 3 

+2sinhdAnCos(n + l) + An_2Cos(n-2)] 

+ cosh EL, 

+ cosh^ 

+ cosh£, 
f 

-2 

BnSin + CnCos)(n +1) + (Bn_2Sin + Cn_2Cos)(n - 2)] 

-(DnSin + EnCos) + (Dn_2Sin + En_2Cos)] 

(FnSin + GnCos)(n + l)(n + 2) - (Fn_2Sin + Gn_2Cos)(n - 3)(n - 2)] 

n - —j An_,Sin + cosh£, 

1 
+ —sinht 

2 ^ 

+ —sinhS, 
2 ^ 
1 

+ —sinh£ 
2 ^ 

A„Sin n + i j ( n + l) + An_2Sin[n-^)(n-2) 

(C.28) 

(BnCos + CnSin)[n + ^J(n + l) + (Bn_2Cos + C n_ 2Sin)[n- | j (n-2) 

-(DnCos + EnSin)[n + | J + (DD_2COS + En_2Sin)(n - 1 

(FnCos + GnSin)[n + ^J(n + l)(n + 2)-(Fn_2Cos + Gn_2Sin)[n-^J(n-3)(n -2) 

(n + 3)(n + 2) f 
CL)4„ = 7 7 7777 — )2c0Sh£, n (2n + 5)(2n + 3) 

n+4 n+l 
A„^Sin- + A_,Sin 'n+S1- 2n + 7 

n + 4 

n+1~"~2n + 3 
n + l " 

2n + 3 
+ sinh i% (Bn+3Cos + C n + 3 S i n ) ^ - ^ + (Bn+1Cos + Cn+1Sin) 

+ s i n h 4 ( D n + 3 C o s + E n + 3 S i n ) 2 ^ + (Dn+1Cos + En+1Sin)— 

/ \,(n + 4)(n + 5) / \ 
+ sinh^ (Fn+3Cos + Gn + 3Sin)—z^-j—-(Fn + 1Cos + Gn+1Sin) 

+2 sinh^[An+3Cos(n + 4) + An+1Cos(n +1)] 

+ cosh J(Bn+3Sin + Cn+3Cos)(n + 4) + (Bn+ISin + Cn+1Cos)(n +1)] 

+ cosh 1% -(Dn+3Sin + En+3Cos) + (Dn+1Sin + En+1Cosj] 

+cosh^ 
( 

-2 

• Vn)(n + 1) 
2n + 3 

(Fn+3Sin + Gn+3Cos)(n + 4)(n + 5) - (Fn+1Sin + Gn+ICos)(n)(n +1)] 

n + T/j An+2Sin + cosh^ An+3Sin 
f 7V , _. ( 3 

n + -J(n+4) + An+1Sin|^n + - ) (n + l) 

1 
+ -s inh^ 

+ —sinh£, 
2 

+—sinh£ 
2 

(C.29) 

(Bn+3Cos + Cn+3Sin)[n + | ) ( n + 4) + (Bn+1Cos + Cn+1Sin)[n + | j ( n + l) 

-(Dn+3Cos + En+3Sin)[n + | J + (Dn+lCos + En+1Sin)[n + | J 

(Fn+3Cos + Gn+3Sin)[n + | j ( n + 4)(n + 5) - (Fn+1Cos + Gn+1Sin)[n + | J (n)(n +1) 
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co5n = 

+ sinh^ 

+ sinh£, 

+ sinh^ 

(n + l)(n-l) (n)(n + 2) 
+ • 2cosh£, 

n+2 n - l 
A_,Sinz r + A„_,Sin (2n + l)(2n-l) (2n + l)(2n + 3)JP" a , l s |_~n + , O I 1 12n + 3 ™ n - ' ^ " 2 n - l 

(Bn+lCos + C n + , S m ) 2 ^ + (Bn_1Cos + C n , S i n ) 2 ^ 7 

( D n + l C o s + E n t l S i n ) ^ + (Dn.lCos + E n . 1 S i n ) ^ r 7 

h r ^r c- \ ( " + 2)(n + 3) , ^ (n-2) (n- l ) 
(Fn+lCos + Gn+,Sin) — — -(Fn_,Cos + Gn_,Sin) —— 

+2sinh^An+,Cos(n + 2) + An_lCos(n-l)] 

+ cosh£, 

+ cosh^ 

+ cosh£, 

(Bn+lSin + Cn+1Cos)(n + 2) +(Bn_,Sin + Cn_,Cos)(n -1)] 

-(Dn+1Sin + EntICos) + (Dn.1Sin + En.lCos)] 

(Fn+1Sm + Gn+lCos)(n + 2)(n + 3)-(Fn_1Sin + Gn_ lCos)(n-2)(n-l)] 

n + -J(n + 2) + An_,Sin[n - -J(n -1) -2[ n + - j AnSin + cosh £, An+1Sm 

+ -s inh^ 

+ —sinhE, 
2 

(Bn+lCos + Cn+,Sin)(n + | J ( n + 2) + (Bn.,Cos + Cn_,Sin)[n - ±J(n -1) 

-(Dn+1Cos + En+1Sin)(n + | J + (Dn.,Cos + En.,Sin)(n - j 

+ —sinh£ 
2 

(Fn+1Cos + Gn+1Sin)[n + | J ( n + 2)(n + 3) - (Fn.,Cos + Gn_,Sin)(n - -J(n - 2)(n -1) 

(n-2)(n- l ) 
C°6 n"(2n-3)(2n-l) 

2 cosh K% 

+ sinh£, 

+ sinh£ 

+ sinhi; 

+2sinh£, 

+ cosh K% 

+ cosh£, 

+ cosh KZ\ 

n n - 3 
A._,SinT 7 + A n _ 3 S i n - — -

zn —J 
n - 3 " 

n _ 1 ~ ' " 2 n - l 

(Bn_ICos + C n _ 1 S i n ) 7 2 ^ + (Bn_3Cos + C n . 3 S i n ) 7 2 ^ 

(Dn_1Cos + E n _ 1 S i n ) ^ ^ + (Dn_3Cos + E n _ 3 S i n ) ^ - : ^ 

', \(n)(n + l) / J n - 4 ) ( n - 3 ) ' 
( F n _ , C o s + G n , 1 S i n ) ^ - - - T

i - ( F n _ 3 C o S + Gn_3Sin)V ^ 

|An_1Cos(n) + An_3Cos(n - 3)] 

(Bn_,Sin + Cn_,Cos)(n) + (Bn_3Sin + Cn_3Cos)(n - 3)] 

- ( D ^ S i n + En_,Cos) + (Dn.3Sin + En_3Cos)] 

(Fn_,Sin + Gn.,Cos)(n)(n +1) - (Fn.3Sin + Gn_3Cos)(n - 4)(n - 3) 

- 2 [ n - — J An_2Sin + cosh£, 

+ —sinh^ 

+ —sinh£ 

2 

+ — sinh E 
2 

An_1Sin[n-72
1J(n) + A n _ 3 S i n [ n - - J ( n - 3 ) 

(C.30) 

(C.31) 

(BB_,Cos + C ^ S i n ^ n - | j ( n ) + (Bn_3Cos + Cn_3Sin)(n - | j ( n - 3) 

- ( D D _ 1 C O S + En_,Sin)[n - | J + (Dn_3Cos + En.3Sin)[n - 1 

( F ^ C o s + G ^ S i n ^ n - ^ J (nXn +1) - (Fn_3Cos + Gn_3Sin)[n - | J ( n - 4)(n - 3) 
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Now in view of (4.3.61) and (4.3.50) the equation for the set of In's is determined: 

+ 
( n - 2 ) ( n - l ) / 

sinh 
2 n - l 

, v sinha ( \\ 
- ( n - l ) rcosh n - -

2 n - l V 27 
i . -. J n 

al n-2 

/ 

a + cosh a sinh 
1 

Vn"27 a L n - 1 

+ 1 

+ 

— sinh 2a cosh 
2 V 

n+-ja 
A .x , 2 (n+l ) (n- l ) n(n+2) 
(2n+ ljcosh a + : : + 

+ 

(n+2) 

(n+3) 

sinha 

2n+3 
"(n+2) 

cosh 

2n+3 
sinh 

2 n - l 
1 A 
V 27 

5) 

2n+3 

a + cosh a sinh 

sinh 
f 0 n+^r 
V 27 

a I. 

/ 

V 27 a L n + 1 

V 27 al n+2 

(C.32) 

/I n 
cP [P n + Y n + * 1„ + ̂ 2n + 13n + 0) ln + o) 2n + oo 3n + oo 4n + co 5n + to 6n] 

in which xn is defined by 

( n - 2 ) ( n - l ) ( 3 , 
Xn = WI—; c o s h l n - 7 7 J a J n . 2 - ( n - l ) 

2 n - l 

,1 ( 1 , 
+i~sinh2asinhl n + —|a + 

r ^^ 

sinha 

2 n - l 

r 1 
sinhl n - — l a + coshacoshl n - r - la Jn-l 

" . u2 (n + l )(n-l) n(n + 2) 
(2n + 1) cosh a + : : + 

2 n - l 2n + 3 
coshl n + —Ja[\Jn 

-(n + 2) 
sinha ( 

sinh n . 
2n + 3 V 2) 

a + coshacoshl n + —la 
(n + 3)(n + 2) 

J n + 1 + 2n + 3 
cosh ̂ n + fjaJn+2 

(C.33) 

The parameters a ^ P A , G ^ P B C , G ^ P D E and G ^ P F G in relationship (4.5.7) and 

a ^ePA, a ^ePBC, a ^ P D E and a 4ePFG in relations (4.5. 8) are defined by 

a PA = (cosh E, - p)~2 [—3|LI3 cosh E, + u.2 cosh2 E, + 4|a2 - p cosh £, + sinh2 £ -1] x 

YJ An sinhl n + -J£Pn + (coshE]-p)2 2sin2 r | ( l -uxosh^)£ An sinh 

+ ( l -^ 2 ) s inh^ | ; (2n + l)Ancosh(n + -^)^Pn 

n + ^ P j 

(C34) 
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a^nPBC=-sinh^(cosh^-n) 2x 
Mi 

00 

f-5ii3 + 2 î2 cosh^ + \i + cosh^]X 
L i 

+(cosh^ - |A)2S -p. sin2 r\ sinh^X 

Bncosh[n+-|^ + Cnsinh[n+-j^ 

Bncosh[n+i]5 + Cnsinh[n+-J5 

+ ( l - n 2 ) c o s h ^ X | n + -
V 

Bnsinh(^n+-J^ + Cncosh 
1 A 
V 27 

(C.35) 

o,nPDE=-sinh^(cosh^-".) 2x 
W 

f-^i2-HCOsh^ + 2]X 
L o 

( 1 
Dncosh^n+-K + Ensinh 

1 A 
V 27 

\ 

+ (cosh^- \i) - sin rj2 sinh ^ 
i 

Dncosh|n+-J$ + Ensinr^n+-J$ 

r 
+(l-^icosh^)Xln+2 

r A 
Dnsinh n + - ^ + Encosh 

n V 27 

( A 
V 27 

(C.36) 

$V 
a^PGF=-s inh^(cosh^-u) 2x 

Fn coshf n+ -)*, + Gn sinr|n + - J$ f-5Li2 + 3ncosh^ + 2]X 
L 2 ,_ 

1 f °° 

+ (cosh$-u)* -(l-Li2)sin2r ,sinh^i; 

+ ( l - ^ i 2 ) ( l - l i c o s h O Z ( v
n + 2 

Fn cosh[n+ -)$ + Gn sinh[n+ - J$ 

Fn sinhl n + - J ^ + Gncosh V 27 

(C.37) 

^0 

I °° ( 1 , 

PA = -2(cosh^ - n ) 2 ( l - u c o s h O I An sinh^n+ -J$Pn 
(C.38) 
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1 00 

o^9PBC= (cosh^ - JLI)2 ia s i n n s i n h ^ B„ cosh 
( A 
V 2 7 

/ 

5 + Cnsinh^n+-J$ 
1 

(C.39) 

o ^ e P D E = - - s i n h 5 ( c o s h 5 - n ) 2 £ 

1 

D„cosh 
( 1 

n+ — 
V 27 

/ 

£ + En sinh 
\ 1 

27 \ 
3 oo 

- ( c o s h ^ - n . ) 2 £ n + 
1 

Dn sinh n+ — E + En cosh 
1 27 s 

f 1 
n+ -

V 27 S 

(C.40) 

a,ePFG = | ( l - u2)sinh^(cosh^ - uJ 2 X 
2 
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The parameters G £nNA, a £ NBC and G . NDE in relationship (4.5.53) are defined by 
4nJ W 

a , n NA = sinr)' 
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(C.42) 
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(C.43) 
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a^DE = sinn j -sinh^(cosh^ - \i)~2 
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