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Abstract - A theoretical analysis is presented to determine the forces of interaction between
an electrically charged cylindrical or spherical particle and a charged plane boundary wall
when the particle translates parallel to the wall and rotates around its axis in a symmetric
electrolyte at rest. The electroviscous effects, arising from the coupling between the
electrical and hydrodynamic equations, are determined as a solution of three partial
differential equations, derived from Cox’s general theory, for electroviscous ion
concentration, electroviscous potential and electroviscous flow field. It is a priori assumed
that the double layer thickness surrounding each charged surfaces is much smaller than the
length scale of the problem. Using the matched asymptotic expansion technique, the
electroviscous forces experienced by the cylinder and by the sphere are explicitly determined
analytically for low and intermediate Peclet numbers, but small particle-wall distances. The
solution for the sphere-wall interactions is extended to arbitrary particle-wall distances
analytically for the tangential component of the force and numerically for the normal
component of the force by the use of a bipolar coordinate system. The tangential and normal
components of the electroviscous force experienced by the sphere-wall interactions for both
arbitrary particle-wall distances and arbitrary Peclet numbers are also determined
numerically by the use of the finite difference approximation in the bipolar coordinate
system. It is found that the tangential force usually increases the drag above the purely
hydrodynamic drag, although for certain conditions the drag can be reduced. Similarly the
normal force is usually repulsive, i.e. it is an electrokinetic lift force, but under certain

conditions the normal force can be attractive.



Résumé - Une analyse théorique est présentée afin de déterminer les forces d’interaction
entre une particule cylindrique ou sphérique chargée électriquement et une paroi plane
également chargée lorsque la particule est en translation parallelement a la paroi et en
rotation autour de son axe dans un électrolyte symétrique au repos. Les effets
électrovisqueux, provenant du couplage entre les équations électriques et hydrodynamiques,
sont déterminés par la résolution de trois équations aux dérivées partielles, provenant de la
théorie générale de Cox, pour une concentration ionique électrovisqueuse, un potentiel
électrovisqueux et un champ d’écoulement électrovisqueux. On fait I’hypothese que
1’épaisseur de la double couche entourant chaque surface chargée est bien plus petite que les
dimensions du probléme. En utilisant une technique d’expansion asymptotique, les forces
électrovisqueuses auxquelles sont soumis le cylindre et la sphére sont déterminées
explicitement analytiquement pour de faibles et intermeédiaires nombres de Peclet et
distances particule - paroi. La solution pour les interactions sphere - paroi est étendue aux
distances particule - paroi arbitraires de fagon analytique pour la composante tangentielle de
la force et numérique pour la composante normale en utilisant un systeme de coordonnées
bipolaires. Les composantes tangentielle et normale des forces électrovisqueuses auxquelles
sont soumises les interactions sphére-paroi pour des distances particule - paroi arbitraires et
des nombres de Peclet arbitraires sont aussi déterminées numériquement en utilisant
I’approximation de la méthode des différences finies dans un systeme de coordonnées
bipolaires. Les résultats montrent que la force tangentielle augmente la résistance, en
génerale, au dessus de la valeur purement hydrodynamique, mais, pour certaines conditions,
la résistance est diminuée. Egalement, la force normale est en génerale une force répulsive,

mais pour certains conditions elle peut étre attractive.
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Chapter One

Introduction



1.1 - Introduction

Suspensions of colloid particles in Newtonian fluids are well known for their
complex rheology and their sensitivity to their electrochemical state. For example,
Freundlich & Jones (1936) had difficulty to distinguish between systems for which the shear
viscosity increases with increasing rate of strain (shear-thickening) and those for which it
decreases (shear-thinning), solely based on particle size and shape, concentration and solvent
type. This failure 1s due to the fact that these parameters do not characterize all the dominant
forces. Fryling (1963) demonstrated the critical role of electrical forces by transforming a
low-viscosity suspension of 0.1 pm polymer latex spheres into a gel by removing free
electrolyte which screens (or neutralizes) surface charges. Alexander and Prieve (1987)
observed the change in particle-wall distance of a 9 pm latex particle moving with a velocity
of 50 pm/s parallel to a glass wall in a slit-like flow cell apparatus containing a glycerol-
water solution. These phenomena along with many others appearing in the literature indicate
that surface charges play a major role in the behavior of suspensions of colloidal particles.

When a solid surface comes into contact with a liquid it often acquires a charge. In
a suspension of charged particles containing electrolyte, ions of opposite charge
(counterions) are attracted toward the surface of the particles and ions of like charge (coions)
are repelled from the surface. Therefore, each particle is surrounded by a charged cloud
which total charge 1s equal in magnitude and opposite in sign to its own. This charged cloud
together with the surface charge is referred to as electric or diffuse double layer.

When fluid flow or electric fields are applied to such a system, so-called
electrokinetic phenomena arise. They owe their unusual character to the interaction among
viscous, Brownian and electrical forces in the diffuse double layer. For systems subject to
fluid flow, this behavior has been qualitatively explained for many years in terms of the
‘primary’, ‘secondary’ and ‘tertiary’ electroviscous effects [Dobry (1953)]. The first or
primary effect arises from the deformation of the diffuse double layer around a single particle
by the flow. The secondary effect arises from charged particle interactions and has been
studied theoretically by Russel (1976, 1978 a). The tertiary effects appears when electrical

forces cause particles to change their shape, as happens with polyelectrolytes [Sherwood
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(1980)].

The first theory for the primary electroviscous effect was presented without any proof
by Smochulowski (1916) for the limiting case of a thin double layer. Krasny-Ergen (1936)
calculated the viscous dissipation in the same limit to obtain a result similar to
Smochulowski’s, but differing from it by a numerical factor. Booth (1950b) presented a
complete analysis of the primary effect for spherical particles with an arbitrary thick charged
cloud 1n the imits of weak flow and weak electrical effects, which leads to a modification
of the Einstein coefficient characterizing viscosity in the dilute limit. Russel (1978b)
extended the theory to flows with arbitrary strength. Lever (1979) considered the problem
with the same assumption but for a large deformation of the charged cloud. All these
theories were developed for small surface potentials. They also assumed that the fluid
motion around the sphere was changed only slightly by the presence of the charged cloud.
Sherwood (1980) removed these restriction. Hinch and Sherwood (1983) extended and
complemented Sherwood’s asymptotic results for high surface potential and high Hartmann
numbers. Oshima et all. (1984) derived the electrokinetic force superimposed on the Stokes
drag in the sedimentation of a charged sphere in unbounded liquid. Dukhin & van de Ven
(1993, 1994) studied theoretically the behavior of a charged sphere in a simple shear flow
in an unbounded medium with a symmetric electrolyte.

When sliding motion or squeezing flow is present, the unbounded restriction is
released, and hence the so called electroviscous effects have been an interesting subject for
study, not only because of the complexity and unusual behavior of the force experienced by
the particle, but also because of a practical demand for explaining experimental observations.
Among pioneers who paid attention to this line of investigation we may mention the works
by Prieve & Bike (1987), Bike (1988), Bike & Prieve (1990), Bike & Prieve (1992), van de
Ven, Warszynski & Dukhin (1993a, b), Bike & Prieve (1995), Bike, Lazaro & Prieve (1995)
and Wu,Warszynski & van de Ven (1996). All these papers consider the problem of a
particle with a thin double layer. With the exception of the numerical work by Wu,
Warszynski & van de Ven (1996), the common problem encountered in these theories is that

the Maxwell stress tensor, used to calculate the force, does not seem to be the dominant



contribution to the force. It was Cox (1997) who pointed out that the main contribution to
the force experienced by a charged particle comes from the non-zero normal hydrodynamic
stress originating from the tangential flow of the ions in the diffuse double-layer as a result
of the streaming potential built up outside it. This contribution is two orders of magnitude
greater than that predicted from the perturbation of the electrical field due to the presence of
the flow (the streaming potential). Consequently, he provided a general recipe to calculate
the normal and tangential components of the force to be applied to different geometries.

The objective of this research is to calculate the electroviscous force experienced by
cylindrical and spherical particles under translation and rotation parallel to a wall based on
Cox’s general theory (1997). Thus, following the historical background, Cox’s theory
(1997) is presented 1n detail. The problem of a cylinder moving near a wall is investigated
in Chapter two. Analytical solutions for a sphere moving near a wall for low and
intermediate Peclet numbers (characteristic of the relative importance of hydrodynamic
motion to Brownian motion), and small clearance of particle-wall are presented in Chapter
three. In Chapter four the restriction on particle wall distances is released. Analytical-
numerical solutions for low and also arbitrary Peclet numbers are obtained in this chapter.
Chapter five contains the overall conclusion of this dissertation.

Throughout this research I tried to present the subjects in a relatively self-contained
way with the mathematical procedures, containing most details of calculations, as simple as
to be easily followed. Whenever it was felt needed a figure accompanies the material. Finite
difference approximations are used in the numerical calculations. For the sake of simplicity
it is programmed in Matlab. An electric copy of the programs is available upon request.
Some properties of coordinate systems employed are discussed in Appendix A. Tables of
theoretical results are located in Appendix B. Finally, Appendix C contains some of the

analytical calculations of Chapter four.

1.2 - Historical Background

1.2.1 - Electrophoretic Mobility

Many attempts have been made in the past to determine the relation between the



motion of charged particles, the applied electric field and other relevant physical quantities.
Helmholtz (1879) was the first to pay attention to this problem. He made a theoretical study
of electrokinetic phenomena in general. He presented a qualitative discussion of
cataphoresis, now commonly called electrophoresis. Consequently, he formulated the
electroosmotic velocity in a single capillary upon imposing an external eclectic field it. He
also presented a relation for the streaming potential (electroviscous potential) arising from
the motion of the electrolyte in a simple capillary, upon imposing a pressure drop along it.

Smoluchowski (1918) improved Helmholtz’s theory and derived the relationship

U ¢

— _Zm> (1.2.1a)
E n

presented without any proof. E is the strength (magnitude) of the applied electric field
E,i.e. E =|E|, (in modern physics a field is described by an "action-at-distance" theory)

defined by!

E=-Vy (1.2.1.b)

in which the gradient, V, 1s defined as the directional rate of variation (derivation) with
respect to space, and \y 1s a scalar physical quantity known as potential; U is the

electrophoretic velocity of non-conducting particles (U/E 1s known as the electrophoretic

mobility denoted by E.M.). The parameter € _ is the permittivity of the medium (or dielectric

permittivity), defined by
€,=€,&, (1.2.1¢)

m

where€ _is the relative permittivity of the liquid (dielectric constant) and¢ ,is the
permittivity of free space (the vacuum); 7 is the viscosity of the solution surrounding the

colloid particles; { represents the difference potential between the surface of the solid and

1

Throughout this dissertation, the physical quantities or geometry descriptions, which is
described by a scalar quantity and a direction (vector), such as velocity, force and position
of a point relative to a reference (coordinate system), are denoted by an arrow (), and those
which is described by a scalar quantity and two directions (tensor of the second rank), such
as hydrodynamic and electric stress tensor (directional derivative of the force per unit area),

by two arrows, an arrow rides another arrow.



the liquid at infinity, known as the electrokinetic potential of the surface, and it is well

known as the Zeta-potential ({-potential).

Later works by Hiickel (1924), Henry (1931), Overbeek (1943) and Booth (1948)
have shown that the validity of Eq. (1.2.1) is rather restricted. In the case of a spherical
colloid particle, it is valid only when x ™' << a, in which a is the radius of the particle and
K 1s the reciprocal double layer thickness.

The next major advance was made by Henry (1931). He confined attention to
spherical particles but generalized Smoluchowski's theory in two ways. He examined both
conducting and non-conducting particles and did not impose any restrictions on the double
layer thickness, but assumed that the {-potential is low. For the case of non-conducting

particles he obtained the relationship

U
- _ % f(b) (1.2.2a)
E m

where b = ka ; 1/x is known as the double layer thickness and is defined by

(1.2.2b)

z. is the ion valency of species i, e the charge of a poroton, c; the number concentration of
ions of type i far from the particle; k 1s Boltzmann's constant and T the absolute temperature.
The summation is over the m different ionic species in the electrolyte. The function f(b) is
plotted by Henry and varies from the value of 2/3 for small b to 1 for large b, that is, %3 < f(b)
<1. Hence, for large b (i.e. for thin double layers), Henry's equation reduces to that of
Smoluchowski. In deriving Eq. (1.2.2), Henry used two main simplifying assumptions. He
assumed in the first place that the so-called ' inertia terms' in the hydrodynamic equations
of motion would be negligible, that is the Reynolds number, which describes the relative
importance of the inertia effects to viscous effects, is low. Secondly, he regarded the field
near the particle as simply the resultant of the applied field and the field due to the electrical
double layer in its equilibrium state. The first assumption is almost certainly valid for the

range of the particle sizes and of velocities encountered experimentally. But, the second
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assumption is open to criticism. As the particle moves through the electrolyte, the ions in
the double layer will tend to lag behind. In front of the particle we would expect the charge
density at a given position in the ionic double layer to be less than its equilibrium value,
whereas behind the particle it will be greater. This behavior is well known as the ‘relaxation
effect' in the Debye-Hiickel theory of the conductance of electrolytes. In addition, the
applied field will modify the charge density in the atmosphere, quite apart from any effects
due to the finite mobilities of the ions. For moderate values of ka (say, 0.2 < ka < 50), the
so-called relaxation effect leads to important corrections, which increase with increasing
electrokinetic potential. This was found by Overbeek (1943) and, independently, by Booth
(1950a).

Although Komagata (1935) and Hermans (1938) had attempted to improve Henry's
theory, only Overbeek and Booth' s results are in fair agreement with each other, though their

methods and scope of their studies are different. Both authors expressed the E.M. as a power

series in the dimensionless {-potential, hereafter denoted by |/, defined by (1.2.28¢), unless

otherwise stated.

Overbeek (1943), under the following assumptions, calculated the electrophoretic
velocity, U, correct to order | *

a - Interactions between colloid particles are negligible and only a single particle is
considered (i.e. low concentration of particles, a dilute suspension ).

b - This particle (plus the adjacent layer of the liquid which remains stationary
relative to the particle) is treated as a rigid sphere.

¢ - The dielectric constant is supposed to be same everywhere in the sphere.

d - The electric conductivity of the sphere 1s assumed to be zero. This implies that
the charge within the surface of shear does not move relative to the particle when a D.C.
electrical field is applied.

e - The charge of the sphere is supposed to be uniformly distributed on the surface.

f- The mobile part of the electric double layer 1s described by the classical Gouy

Chapman theory.



g - Only one type of the positive and one type of negative ions are considered to be
present 1n the ionic atmosphere.

h - The dielectric constant of the liquid surrounding the sphere is supposed to be
independent of position.

1- The viscosity of the surrounding liquid is assumed to be independent of position.

j - Brownian motion of the colloid particle is negligible.

k - Finally, because colloidal suspensions follow Ohm's law at the moderate field
strengths (1.e. a few volts per second) which are employed in electrophoresis experiments,
in the computation only linear terms in the field are taken into account.

Booth (1950a) analyzed the electrophoresis (cataphoresis) of a spherical, non-
conducting solid particle, suspended in a fluid, under the action of an applied electric field.

He demonstrated that the steady velocity (U) of the particle may be expressed as:
U= c,Q =D d.§" (1.2.3a)
n=1 n=1

where Q is the number of charges, 1.e. Qe is the absolute value of the total charge of the
sphere and where either of the coefficients ¢, and d, 1s an infinite set of coefficients to be
determined, proportional to the strength of the applied field, and depending on particle size,
and the concentrations, valencies and also mobilities of the ions in the electrolyte. Booth
outlined a general method for calculation of ¢, or d, and could calculate the coefficient ¢, for
four terms involved in Eq. (1.2.3a) under the following assumptions:

(1) - The dielectric constant, the viscosity and the ionic mobilities are uniform
throughout the fluid phase.

(2) - The cataphoretic velocity is proportional to the field strength; this assumption
simplifies the theory very much and is generally fulfilled in practice.

(3) - The electrolyte is incompressible.

(4) - The inertia terms in the equations of motion of the electrolyte is negligible. It
can be shown that this is justified provided that (2) is fulfilled.

(5) - The electrolyte is symmetrical, that is, it contained of equal numbers of ions of



equal ion valency but with opposite charge.
(6) - Finally, some extra assumptions on the behavior at the surface of the particle
arerequired. By purely thermodynamical arguments, the difference of potential between the

interior of the particle and the electrolyte far from the interface, \ , is derived as

RT

W =\uo+ﬁlnai (1.2.3b)
in which y  1s a constant potential; R is the gas constant, F, the Faraday's constant (RT/F,
sometimes is refereed to as Nernst potential and has a value of 25.7 mV at 25°C), and a; is
the activity of ion of type i. The potential \y can not be identified with the electrokinetic
potential, since { and y behave quite differently as the ionic concentrations are varied. Itis
therefore necessary to postulate a region or 'surface phase' on the solid side of the boundary,
in which the potential varies. The four assumptions on conditions in the surface phase are:

(1) - The thickness of the surface phase is small compared with the particle radius.

(ii) - The charge in the surface phase is immobile; there is no surface conductance.

(iii) - The surface charge density when the field is applied satisfies

S(fo) = —% E g cosO + Sl(fo) (1.2.3¢)

in which S( T, ) and S,( T, ) represent the density of the surface charge at point O, ( T, is the
position vector of point O relative to a reference coordinate system) with and without applied
field ( E ), respectively; € is the permittivity of the solid, and 6 the angle between the
directions of field E and position vector T, at the point under consideration, O. The first term
represents a small charge due to the difference between the conductivities of solid and liquid.
In fact, this assumption [Eq. (1.2.3c)] was first made by Henry who then concluded that the
first term is negligible, i.e. field remained unchanged [S( fo ) = SI(L)].

(iv) - Finally, the potential difference across the surface phase retains its equilibrium

state when the external field is applied.

As mentioned by Booth himself, the last two assumptions are open to criticism, since



both the surface charge and potential jump must depend, somehow, on conditions in the
electrolyte such as on the ionic concentrations and the local field strength, whilst neither of
them is taken into account.

However, because of mathematical complications, both authors [Overbeek (1943) and
Booth (1950a)], as mentioned above, were able to calculate only a few terms of the series in
electrokintic potential under the above assumptions. Therefore, quantitative validity of their
results could be claimed only for small potentials, { < 25 mV [for { = 25.7 mV, in a
univalent electrolyte at the room temperature, y = 1, c.f., relation (1.2.28.¢)].

Wiersema et al. (1966) considered the problem under the same assumption as
Overbeek (1943)'s work improving the results by obtaining a more general calculation
numerically. Comparison of the result with those of Overbeek (1943) and Booth (1950a)
shows that, for high ( together with the double layer thickness, (), in the range of, 0.2<ka
< 50, the preceding calculations generally overestimate the relaxation effect.

Dukhin & Semenikhin (1970) derived an analytical expression for electro- and
diffusio-phoresis of spherical particles.

O’Brien &White (1978) improved the numerical method used by Wiersema et al.
(1966) and removed its convergence difficulty for high Zeta potentials. They obtained a

more general calculation for 1:1 and 2:1 electrolytes.
1.2.2 - Brownian Motion and Diffusion?

1.2.2.1 - Brownian Motion

A major characteristic of colloidal dispersion is the perpetual motion of the
suspended particles. This motion was first observed by Robert Brown (1928), who observed
the motion of pollen grains suspended in water. The phenomenon is widely known as
Brownian motion. Initially, it was believed that the particles were alive and their motion

caused by vital forces. Gouy (1888) observed that the motion decreases with increasing

2
The reference of the following discussions is “Colloid Hydrodynamics” by van de Ven
(1989).
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viscosity and increasing with the particle size. Consequently, he concluded that the idea of
the vital force is incorrect. Exner (1900) attempted to measure the velocity of the particles

and to compare it with the value deduced from the kinetic theory of gases:

—1 : —31( 1.2.4
m< v’ >=—KkT 4
2 Y 2 (1.24)

in which m is mass of the particle. Since the velocity changes, its mean square of its

magnitude [v =|V]|], denoted by the symbol < >, appears in the mechanical energy. Exner
observed that the velocity v is about 1000 times smaller than that predicted by Eq. (1.2.4).
This failure is due to the fact, that the actual path of a particle changes direction so often, that
the time interval At needed to measure the velocity, v = Ax/At, is extremely small.

In classical mechanics the motion of the particle is determined from the force balance

equation. The drag force, 1—5, experienced by a particle may be determined by Stokes’ law,

that is

F=-fv (1.2.52)
in which f is the friction coefficient [for spherical particle of radius a, f = 67mna, c¢.f., Eq.
(1.2.17)], and V is the particle velocity. When the velocity is non-uniform (i.e. the particle

accelerates or decelerates), it experiences a force, F, described by the Newton’s second law

which may be written as

_ d*¥(t)
F=m i

where T is the position vector of the particle, function of time, t, which describes the path of

(1.2.5b)

the particle. The velocity of the particle [with initial velocity V ; at time t = 0] is determined,
upon combining Eq.s (1.2.5a, b), 1.e. writing down the force balance, and then integrating it
once:

t
T

- dr _
V(t)=a?= £, T= (1.2.62)

m
f
and the path of the particle [with the initial position f(t) = 0, at time t=0], upon integrating

it once more:

11



i(t) = 1\70(1 = e‘), (1.2.6b)

in which the parameter t has a dimension of time and is known as "relaxation time" [i.e. a
time in which the particle velocity decays to 1/e times its initial value]. Typically, it is of
order 10 sec, depending on the size and mass density of the particle, and its friction
coefficient in the medium.

To see how this classical mechanics works for Brownian motion, suppose we would
film the motion of a Brownian particle with a film speed of n frames per second. Projecting
the film at low speed (for example 4 frames per second) and observing the trajectory of the
particle for one second, we would observe the trajectory of the particle at 4 subsequence
positions, such as that shown in Fig. 1.1a. If we would project this trajectory with a film

speed of 2n frames (8 frames) per second we would observe a different trajectory, as shown

in Fig. 1.1b.

. - n frames per second
a: nframes per second b: — 21 frames per second

Fig. 1.1 -Trajectory of a particle with two speeds of observation

[after van de Ven(1989)].

Thus, increasing the film speed, increases the apparent distance a particle has to
travel, as can be seen upon comparing the two trajectories for the same particle at the same
period of time, but with two speeds of observation. This increase in path will continue until
the film speed reaches about 10° frames per second. In addition, the position of the particle

also depends on the speed of observation. Stated mathematically, the trajectory of a

Lo



Brownian motion 1s non-differentiable curve. It is impossible to fix a tangent at a given
point, because it changes direction with changing the speed of observation. Since velocity
in classical mechanics is described as the tangent of the path (which has magnitude and
direction), given by the relation (1.2.6a), it is clear that the velocity of a Brownian motion
1s a meaningless quantity. What is meaningful, instead, is its displacement from a given
origin. This was first realized by Einstein (1905), and independently by Smoluchowski
(1906).

Therefore, since a Brownian particle is subject to arandom displacement, besides the
forces described by Eq.s (1.2.5a, b), it experiences a "random" forces denoted by/?x a
function of time, due to fluctuations in the random motion of the suspending fluid molecules.
According to quantum mechanics, these fluctuations are truly non-deterministic, only

statistical averages can be determined:

<A(t)>=0 (1.2.72)
2
<|A(t)A(L,) >= 2kT—fm—6(t1 -t,) (12.7b)
in which 0 is Dirac delta function defined by
o0 ift, =t
5(t, - t,) = {0 o t: ) t; (1.2.7¢)

Eq. (1.2.7b) is a mathematical expression of a Markov-process, which is a process in which
a future motion is independent of the motion’s history.

Combining Eq.s (1.2.5a, b, 7) yields the following force-balance:

d’r 1

— =-—V+R, R =—A(t) (1.2.82)

1
dt? T m

known as the Langevin equation. Its solution is

T = t[vo(l— e_‘j + j(l - e_?) R(t)dt} (1.2.8b)
0

Statistical averages can be obtained by averaging Eq. (1.2.8b), upon the use of relations
(1.2.4,7):

13



.. 2kT Jt
<[f(t))] >==——1* —=1+e * (1.2.8¢)
m T

Since T is of order 10?, in real life t >> 1, and hence the second and third term in the square

bracket 1s much smaller than the first term. Thus, Eq. (1.2.8¢) reduces to

BPINT: kT
<[f(O)] >= 2, for t >> 1 (1.2.8d)
and for t << 7, in view of the expansion

L t 1(t)’
e T =lo—g—|—| =" (1.2.8e)
T 2\71
to
2

F(t) kT

< I 0 l >=< v >= —, fort<<t= 0(10'9) (1.2.89)
m

in agreement with the equipartition of energy, given by (1.2.4), so that Exter was right in
postulating this equation, but the difficulty he encountered was that its condition could not
be satisfied (as observation times are much larger than t). The above theory also provides
another interpretation of the relaxation time, T. For times t << t, the motion is correlated
with the motion at the initial time, t = 0, while for t>> t, no correlation between the motion
at a given time and time t = 0 exist (Markov-process).
1.2.2.2 - Diffusion

Diffusion is the spontaneous equalization of the concentration of colloidal (or other)
particles as a result of the chaotic Brownian motion of each particle. It can be easily
understood if we consider a container divided in two parts by an imaginary wall. Let each
part contains a suspension with different concentration (say, c, for the left part and c, for the
right, with ¢, > ¢,), and let the imaginary wall have no excess resistance to the motion of the
particles. Each particle on each side of the dividing surface undergoes random Brownian
displacements. Thus, each particle is equally likely to move to the right or to the left, and
hence it does not know it must diffuse in a certain direction. But, since there are more
particle available in the intermediate neighborhood of the left side of the imaginary wall than
on the right side, on average more particles will move from left to the right than vice versa.

Hence, there will be a net transport of particles from higher to the lower concentrations. This

14



1s quantitatively described by the Fick’s first law:

J =-DVe, V=i +i— (1.2.92)

inwhich J = J xi +] ),?1y +1J Zi is the flux or number of particles passing a unit area on the
surface normal to the direction of concentration changes (concentration gradient) per unit
time. In a Cartesian coordinate system of reference, with unit base vectors (L , _1; , _1; ), it has
three component in the (x, y, z)- direction (for concentration changes in the x-direction, 0/0x,
in the y-direction, d/dy, and in the z-direction, d/0z, respectively). D is proportionality
constant, termed diffusion constant (diffusivity), with a dimension of surface per time
(length? time'). Regarding the mass balance in an element volume of the dispersion, the
change in the mass with respect to time is equal to the change in the flux of mass in the
volume. And since the flux of the particles is proportional to the gradient of the
concentration, the mass balance process is determined by the divergence of the flux (V - T ),
that is [c.f, Eq. (1.2.9a)]

~ ) & &
& v.i=DVe V.V=V’= Tt oyt ag

P = (1.2.9b)

which is Fick’s second Law of diffusion. V? is known as the Laplacian, defined as the dot
product of two gradients (or divergence of gradient), and hence it is a scalar operator. Both
equations (1.2.9a, b) are equally valid for ions in a solution. In fact, Ficks laws were first
developed for diffusion of molecules in a solvent, and because of the similarity between such
a system and colloidal dispersions, they have also been applied to the latter. Fick’s second
Law, Eq. (1.2.9b), can either be considered as describing the diffusion of a single particle,
for which ¢ must be interpreted as the probability of finding the particle at a certain position
at time t, or for many particle systems, for which c is considered as particle concentration
at a given time and position.

Eq. (1.2.9b), is function of both time and position, the solution of which, for particles

initial at origin at time t =0, is
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_ .
c(lrl,t): We 4Dt (1.2.9¢)

Here c is the concentration per unit length. From Eq. (1.2.9¢) the mean square displacement

is determined by

<[F]" >= (It cl|zl, tid|t| = |r? e “Ptdr = 2Dt, r=r 1.2.9d
o= JIePeflel il = [ o i 209
Now, in view of (1.2.8d, 9d), it is observed that
kT
DZT (1.2.10)

which 1s known as Stokes-Einstein (or sometimes as Einstein-Sutherland) equation. This
equation is a fundamental equation, relating diffusion to the friction coefficient of a particle.
The Stokes-Einstein equation allows Avogadro’s number, N, (=R/k), to be determined from
diffusion experiments. This was first done by Perrin (1909). In fact, by this experiment he

proved the reality of atoms and molecules, for which he received a Nobel prize.
1.2.3 - Rheology of Suspensions
1.2.3.1 - Viscosity of Suspensions
The first investigation for the viscosity of suspensions (effective viscosity) was made
by Albert Einstein (1906). He derived analytically the effective viscosity of a suspension of

solid spheres in a liquid of viscosity 1, as

5v \Y 2
=n.l1 ——T+O(—T ) 1.2.11
n T]O[ +2VT VT ( )

(V7 is the total volume of the mixture; vy is the total volume of the solid particles assumed
to be much smaller than V), though he had made a mistake in the coefficient of the volume
fraction (5/2) in his first calculation which was corrected by himself, after an analysis of
experimental data by Perrin [Perrin (1913)]. In fact, among others, he developed this theory,
in his doctoral dissertation (1905) to obtain a model for the resistance to shear of a molecular

solution in which the dissolved molecules are large enough (compared to solvent molecules)
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to be considered to be dissolved in a continuous fluid in the macroscopic scale.
Smoluchowski (1916) pointed out that for a charged particle in an electrolyte, the
electrical double layer around the particle might be expected to increase the effective
viscosity of the suspension. Hence, he added a term due to the electroviscous effect to the
Einstein formula. He assumed that the thickness of the double layer, compared with the

particle radius, is small and calculated the effective viscosity as

5 1 (2 :
n="ng ”23 {1+ ( SWC) } (12.12)

T NyO a

where 0 is the specific conductivity of the electrolyte, a the radius of the solid particles and
g, the the permittivity of water.

Jeffery (1922) extended Einstein's work to ellipsoidal particles, with a different
approach, and found that for this case the factor 5/2 in the formula (1.2.11) is replaced by a
coefficient depending on the axial ratio of the particles and their orientation with respect to
the flow.

Gouth & Simha (1936) improved the Einstein's approximation and obtained the

formula correct up to the third power of the volume fraction as

2 3
5V, 109(VT) (VT)
n=No gt Y, V. (1213

Batchelor & Green (1972) proved that the coefficient of the third term in the

expansion (1.2.13) depends on Peclet number and type of flow which varies from 5.2 to 7.6.
Krasny & Ergen (1936) improved Smoluchowski’s theory, given by (1.2.12), upon

increasing the electroviscous term by a factor 3/2, which may be written as

1+SVT 1+L(8WC)2 (1.2.14)
O A A -

Booth (1950b) modified the primary electroviscous effect by combining his theory,

given by (1.2.3), with the Einstein formula as
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Sv = eC\"
=1n,91+——|1+ bn(—] (1.2.15)
=M 2\/1[ 2007 }

in which b, is an infinite set of constants to be determined (n is an integer). However, He
computed only the first two terms of the infinite series.

Dukhin & van de Ven (1993) found a solution for particles with thin double layers,
but arbitrary (- potentials as

0= n0{1+ - {1+(fj§’z lncoshiff{m+f+(u7)+m_f.(i“v)-ﬁ[m+f+(\’l7)—m-f.(\?)]}}}

(1.2.16a)
in which the mobility of ions, m, , is related to their diffusion coefficients, D +>DY
2e,K T (1.2.16b)

m,=_—5;5—, 2.

* 3ne’z’D,
and / is the dimensionless {-potential defined by the authors as
. ez

= _C (1.2.16¢)

4kT

1.2.3.2 - Motion of a Single Particle

The flow field produced by the motion of a single particle in a quiescent liquid has
attracted considerable attention. When a suspension of colloid particles is dilute, that is each
particle is far enough from the others not to be influenced by the reflection of the others, the
rheology of the suspension can be analysed by studying the behavior of a single particle.
Thus, each particle in the suspension can be considered moving in an unbounded medium.
Though, this idealization is justified and works for most particles inside such a dilute
suspension, for those close to the suspension container the particle-wall interactions should
always be taken into account, and play a major role to predict the behavior of such particles
in deposition or detachment processes. Particle-wall interactions are discussed in the next
section. The most common particle shapes encountered in suspensions of colloid particles
are of a simple geometry or can be approximated to a simple geometry, either sphere,

cylinder, or ellipsoid. For prescribed translational and angular particle velocities, the
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macroscopic parameters of primary physical interest are the hydrodynamic forces and torques
exerted on the particles by the fluid. Once these parameters are known for a particle, one may
immediately solve the inverse problem of determining the state of motion of such a particle
from the known gravitational body forces and torques acting on it. Since the problem of the
motion of a particle in a quiescent liquid is hydrodynamically similar to the problem of the
flow of the liquid on the fixed particle, in the following discussions, sometimes the former
is replaced by the latter, or vice versa.

Many of the early contributions to low Reynolds number hydrodynamics are
summarized in the book by the Swedish physicist, Carl W. Oseen (1927); of special interest
are the contributions of Hilding Faxen, his co-worker, the early papers of whom are discussed
by Oseen. His later papers are discussed in a famous book by Happel & Brenner (1965).

The problem of the motion of a sphere in a viscous incompressible fluid first received

attention by Stokes (1851) who derived the force, F, experienced by the particle as
F= —6nanfj (1.2.17)

(a is the radius of the sphere, U its uniform velocity) which is the well-known Stokes drag
formula for sedimenting a sphere in an unbounded liquid. For an infinite circular cylinder,
Stokes equations (the low Reynolds number version of the Navier-Stokes equation) failed to
give any solution. The non-existence of a Stokes solution for any two dimensional body fixed
in unbounded flow is usually referred to as Stokes’ paradox.

Oberbeck (1876) considered a spheroid, with semi-axis a and b, aligned along the

symmetry axis, b, by neglecting the inertia effects too, leading to a value for the force F (also
along the symmetry axis) of magnitude

Vo (D)

= - —1+ ) -1
2(b) : b/ | \b
F=-161tnbU{ - + 7 In = 7 (1.2.18)

- 6 (-

Whitehead (1889) attempted to improve the Stokes solution for a sphere by obtaining

1%

higher order approximations to the flow when the Reynolds number is not negligibly small.
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The method proposed by Whitehead was an iterative procedure to take the inertia effects into
account. The particular difficulty encountered by Whitehead was that the second
approximation to the velocity of flow remains finite at infinity in a way which is
incompatible with the uniform-stream condition. This mathematical phenomenon appears
to be common to all problems of uniform streaming past bodies of finite length and is
sometimes referred to as Whitehead's paradox [Proudman & Pearson (1957)].

The paradox was resolved by Oseen (1910). Oseen pointed out its physical origin
and developed a mathematical device for overcoming the difficulties associated with
Whitehead's paradox. Oseen found a uniformly valid first approximation to the velocity and
all its derivatives, which is itself a linear problem that can be solved analytically, resulting
in the Oseen equation. In contrast to Stokes equations, Oseen's equation provided a solution
for a two dimensional flow past an infinite cylinder of finite cross-sectional length. The first
such solution to be obtained was by Lamb (1911), for which Lamb retained some of the
"inertia terms" but omitted the others in his solution. Oseen himself gave a solution for flow
past a sphere of radius a and an infinite circular cylinder of radius b (placed perpendicular

to the uniform flow), respectively, as

3
F= 67maU{1+§ReaJ (1.2.19a)

and
P 4nnU
" 2In2-1nRe,-y+1/2

(1.2.19b)

where Re, and Re, are the Reynolds number based on the characteristic length ofa and b, and

v is Euler's constant. These parameters are defined by

bU
Re, = ig, Re, = —, vy = 05772 (1.2.19¢)
v v

Burgers (1938) derived the force on a long slender ellipsoid of revolution with the
result exactly the same as the asymptotic result of the Oberbeck (1876)’s formula, given by
(1.2.18), for large b/a. He also applied his method to determine the force acting on a circular

cylinder of finite length fixed in a uniform stream flowing in the direction of its symmetry

axis. For this case, he obtained the total force acting on the cylinder as
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4nmal

F= - (1.2.20)
ln(Z E) -0.72

where a and b are, respectively, the semi-length and the cross-sectional radius of the cylinder.

Lagerstorm & Cole (1955) introduced Oseen and Stokes variables and obtained
Oseen and Stokes expansions which followed naturally from the limit processes they
adopted.

A well-known paper by Proudman & Pearson (1957) considered the problem in more
detail giving an intensive theoretical study of the subject. Proudman & Pearson (1957) and
also Kaplun & Lagerstorm (1957) demonstrated that it is possible to obtain higher order
approximations to the flow past a sphere and a circular cylinder by applying the method of
Stokes and Oseen expansions, the so called matched asymptotic expansion technique, which
is also the main tool used in Chapters two and three of this thesis. Proundman & Pearson 's
studies (1957) led to improving the approximation of the Oseen drag force acting on a sphere

and on an infinite circular cylinder, respectively, as

3 9
F = 6nan U{H §R6a+ Z(;Rea2 InRe,+ O(Reaz)} (1.2.21)
and
F=-4mmU 1 ( : jz( +1 21 2) +O( : jB 1222
=— + ——2In 2.
"M InRe, \nRe,) \' 72 InRe, (1.2:22)

Broersma (1960) improved the method outlined by Burgers (1938). He took the

disturbance produced by a cylindrical body as being that due to a line of force of magnitude

(& vn (Y
f(z) = B, + B, o) tBdg) T HlAx<a (1.2.23a)
f(z) =0 otherwise

where B,, B,, B, ... are an infinite set of constants to be determined. Broersma computed the
values of these constants numerically (for the case of a circular cylinder of finite semi-length
a and cross-sectional radius b being fixed in a fluid with uniform velocity U flowing in the

direction of the symmetry axis) and obtained the force on the cylinder as
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4mmal

F= : (1.2.23b)
1 (2 —) - 0281
G

which is similar to the formula (1.2.20), but differs from it by a numerical factor.

Taylor (1969) proved that if the Reynolds number is very small, a slender body of
revolution falls twice as fast axially as it does transversely.

Cox (1970), by neglecting inertia effects, derived the force density (force per unit
length) on a fixed curved slender body of circular cross-sections (the radius may varies along
the body centerline) with length | and with the characteristic dimension of the body cross-
section b by expanding the solution directly in powers of 1/Ind (0 is the slenderness
parameter defined by & = b/l) up to O(1/In 8)’. He obtained a solution for the force per unit
length, for examples involving bodies having a curved centerline. For the special case of
sedimenting of a torus (with constant circular cross section falling normal to its centre line),
he derived the total force:

6m *nal ( 1 ) ’
Y-In%- Ind " Ans.

Ind
Batchelor (1970) adopted the slender body theory to a straight non-axisymmetric

(1.2.24)

body. From an investigation of the local inner flow field in the vicinity of a section of the
body, and the condition that it should join smoothly with the outer flow which is determined
by the body as a whole, Batchelor observed that a given shape and size of the local cross-
section is equivalent, in all cases of transverse relative motion, to an ellipse of certain
dimensions and orientation, and in all cases of longitudinal relative motion, to a circle of
certain radius. The equivalent circle and the equivalent ellipse (characteristic tensor) of the
cross-sectional shape may be found from certain boundary-value problems by solving the
harmonic and biharmonic equations, respectively {Details of such a solution by complex
variable method is given in Tabatabaei (1995), Appendix A].

Batchelor (1972) devised a method for calculation of the mean velocity of the
sedimentation of the spherical particles in a dilute dispersion.

Johnson & Wu (1979) considered the Stokes flow passing a slender torus of circular

22



cross-section. By the method of distribution of singularities (stokeslets, doublets, rotlets,
sources, stresslets and quadrupoles) on the body centreline, they satisfied the no slip
boundary condition on the body surface, in closed form, up to an error of O(¢’lne) (¢ is the
semi-slenderness parameter, ratio of the radius of cross-section to the half length), and hence
they obtained the force (correct up to order %) and/or the torque the torus experienced for the
individual cases of the broadwise translation (motion along the longitudinal axis), translation
normal to the longitudinal axis, rotation of a torus on its edge, spinning and expanding of a
torus. For the case of axial translation of a torus with cross-sectional radius b and body
centreline radius a, their studies results in
AU
In¥%+ X

where € = b/a, and F is the axial component of the force per unit length acting on the torus.

(1.2.252)

For the case of transverse motion perpendicular to the torus axis, they obtained the total drag

as

27°naUQBIn% - 1%) 0(82)

) .2.25b
: (ln%—%)(ln%—z)-f (1.2.25b)

where by neglecting terms of order (1/lng)’ this leads to Cox's result given by (1.2.24).

Johnson (1980) generalised the method used by Johnson & Wu (1979) (singularity
method) for flow past slender bodies of finite centreline curvature. He applied his theory to
a torus of a circular cross-section with the same result as that obtained directly by Jonson &
Wu (1979), given by (1.2.25a).

Khayat & Cox (1989) took inertia effects into account and adopted Batchelor
(1970)’s observation for a non-axisymmetric body to Cox (1970)'s theory. They assumed
the Reynolds number Re based on the body length is arbitrary and derived the force per unit
length on a curved slender body of arbitrary transverse cross-section (at rest in unbounded
fluid undergoing undisturbed uniform velocity U) in terms of the semi slenderness parameter,
e, correct up to order (1/In €)’. They applied the force equation to the uniform flow past a

long straight slender body of arbitrary cross-section, and derived the force density
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experienced by the body, F(s), as

F(s) 1

21U Ine
1- e—%Re(]—cosG)(Hs)

2
(f cosf - 2?_)+ (ﬁ) {%[21 cosf - (2— cosf + cos® G)f] X

lr - -
_1 — — 3 _ 2 2
_%Re(l—cose)(us) | 4[21c039 ( + cosf + cos O)t]x

-V Re(1+cos0)(1-5) 1

1-¢ ~1]- E(f cosh - 2;){]31[% Re(1- cos)(1+5)]

L%Re(H cosf)(1-s)

+In(1- cosb)} - %(f cos(; - 2?){E1[% Re(1+ cosd)(1-s)]+ In(1+ cosO)}

B} - Rek.) 3. . .= 1Y’
—(tcos9—21) Y + In —tcosf-1+21-Q+ tcosOlng+ O —
4 ) Ing

(1.2.26a)

where € = b/a (b being the characteristic length of the cross-sectional shape and a is the half

length of the body); t is a unit vector, representing the direction of the body centreline; 1 is

the unit vector in the direction of velocity U; 0 is the angle between the unit

vectors f and 1 (i.e. i-t=cosh ); vy 1s Euler's constant; Re is the Reynolds number based

on the body half-length; A, is the radius of the equivalent circle of the cross-section at the
point under consideration, s [where s (-1 < s <+1) is the arch length along the body centreline
measured from its midpoint]; Q is the characteristic tensor of the transverse cross-sectional
shape; q is the charateristic scalar which depends on the cross-sectional shape (charateristic
scalar of the cross-section for longitudinal relative motion), for a sphere q = 1, and where

E,(x) is the exponential integral defined by

E (x)= Ierr (1.2.26b)

in which the argument x for the formula (1.2.26a) is [% Re(l —COoSs 9)(1 + s)] and [% Re

(1 + COSO)(I - s)] While they applied their theory to an infinite straight slender body, with
large Re, they realized that it fails to give a uniform valid solution, and hence a minor
modification is needed. They gave a theoretical reason for this violation and pointed out that
for an infinite slender body together with large Re the force should be expanded in (InR,)"!

(R, being the Reynolds number based on the characteristic length of the cross-sectional
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shape) instead of (Ind)' and lengths, in the outer region, should be made dimensionless by
(v/U) (v being the kinematic viscosity of the fluid) rather than a (half length of the body).
By this modification, their research for the special case of an infinite straight cylinder of
constant circular cross-section, placed perpendicular to uniform flow, leads to the Proudman
& Pearson's result, given by (1.2.22).

Cox (unpublished), in his last sabbatical (1992 or 93), improved the inertia effects
in the slender body theory of circular cross-section, but with an arbitrary body centreline
configuration. He derived a force integral equation by considering the Reynold numbers
based on the body length being of order unity. For low Reynolds number fluid flows, his
theory leads to the Johnson’s theory (1980). He applied his theory to derive the force on the
sedimentation of a torus which, for low Reynolds number flows, leads to a different result
than that obtained by Jonson & Wu (1979) and Jonson (1980), given by (1.2.25a).

Tabatabaei (1995) extended Cox’s theory to arbitrary body cross-sectional shapes.
He applied his theory to a straight slender body of arbitrary cross-section and to a torus of
uniform arbitrary cross-sectional shape. For the former he obtained a result in a complete
agreement with the formula (1.2.26), directly obtained by Khayat & Cox (1989). For the
latter he derived the radial and normal components of the force density (F, F,) experienced

by the torus correct up to O(d) as

2
—8nnU(R—ZA, +A22Q,3)
F = : 2 (1.2.27a)
* (2n 4n 4n nA LI
A +A2Q,) —| A -1 poA s e -2 00, [l A +1-20 72 2Q,
8 U(A LN SRPNLUR 2Q)
—omn 1T T Ra —<In - <
F - Re * Re 4 (1.2.27b)

(2 : 4n 4n? LY 3
(R—ZA|+A22Q|3) —(AI—I—QA2+E—2M 4 -2Q, || A +1-2In 4 -2Q;,

in which Q; are the characteristic tensor of the cross-sectional shape, A, is the radius of its
equivalent circle (i.e. 2mA, is the perimeter of the local cross-section), and (A, A,) are

function of Re, determined by the integrals:

x| a-YixResin% 1 n
€ . - Y «Resin®%
= — do, A, =le do 1.2.27
Ay J{ sin¥% sin%} 2 J ( ©)
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For an elliptical cross-section with semi-diameters a and b (with a > b) and with the

direction of larger principal axis (2a) given by unit vector t, Q; are determined by

a+b a-b a-b a+b a-b _,

Q, =In 5 " arh) cos’ a, Q,, =5(—a+—b)sin2oc,Q33 =In 8 taap) S

S

(1.2.27d)
in which o is the angle between the direction of larger principal axis and uniform velocity

U (e cosa = t- —i;) and A, is determined by

2a b 2
A, = —E|1-— g , E[K ﬂ: J/1-K?sin® ¢d¢ (1227¢)
0

T a

where E(K, 1/2) is the complete elliptic integral of the second kind the values of which, for
various values of K = (1 - b%/a?)" are available in tables. For a torus of a circular cross-
section (i.e.a=band A, =1), Q; in formula (1.27a, b) vanish [c.f., (1.2.27d)]. For circular
cross-section, by neglecting the inertia effects, i.e. in the limit as Re - 0, the only non-zero
component of the force, F,, leads to Jonson & Wu (1979) and Johnson (1980)’s results, given
by (1.2.25a), and for Re of order unity to the correction for the Cox’s solution.

Russel (1978a, b) formulated a theory of the rheology of suspensions of charged rigid
spheres. He calculated the bulk stresses due to the deformation of the electrical double layer
surrounding a charged sphere. These stresses are derived for a dilute dispersion of spheres
which have small surface charges and with a thin double layer.

Lever (1979) studied the large distortion of the electric double layer around a charged
particle by a shear flow. For weak flows, a second-order-fluid approximation was obtained
for the stress contribution for a dilute suspension of such particles. For arbitrary strong flows
an integral representations of the charge density and the numerical calculations of the stress
contribution are given for three representative flows, simple shear, axisymmetric strain and
two-dimensional straining motion.

Sherwood (1980) assumed an arbitrary value for the surface potential of the particles
and found that for non-dimensional potential value smaller than two, q7 < 2, the predictions

are altered by less than10 %, whilst for higher values, specially when the charge cloud is
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much thinner than the radius of the charged sphere, the differences between linear and non-
linear theory are not negligible.

Ohshima, Healy, White & O’Brien (1984) did a theoretical study on the
sedimentation velocity (electroviscous velocity) and potential (streaming potential) in a dilute
suspension of charged spherical colloidal particles. They derived a general expression for
the sedimentation velocity (Ugp) and potential in a dilute suspension of charged spherical
rigid particles in an electric solution in terms of the liquid flow and the potential of the
electrolyte ions. They obtained the exact numerical result for the sedimentation velocity and
potential as functions of the {-potential and xa. They also derived analytical expressions for
small \y and for large ka with arbitrary y . Forthe latter, they formulated the sedimentation

velocity (Uggp) as [Eq. (78) in their paper]

8] 1+ 2| m,G? m,H, +0| — |tus (1.2.282)
=<1+ m,G; +——— 2.28a

SED (Ka)2 P (141) (Ka)3 SED

where m, and m, are the scaled ionic mobilities for counterions and coions, respectively,

given by [c.f., Eq. (1.2.16b)]
2e kT

_ 2eKT
3n(zie)

1
in which A, is the drag coefficient of the i" ionic species related to the limiting conductance

m.

1

(1.2.28b)

of the same ionic species (A’) or molar conductivity (A;) by

N,e’|z/| B N, e’
A A

A = (1.2.28¢)

(N, is Avogadro number); UgED is the Stokes velocity for uncharged particle; G and H are
defined by relationships (1.2.32c) and I by

2¢ kT \/
_2 1+_§m_2_x2 {exp(%}—l} (1.2.28d)
Ka n(zze)

in which q7 is th7e dimensionless electrokinetic potential (particle surface - potential),

defined [differently than (1.2.16¢)] by
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o %
Y o= KT (1.2.28¢)

Although it was not mentioned by the authors, Cox(1997) pointed out that this theory is valid
for low Peclet numbers.

Schumacher & van de Ven (1987) studied the diffusion coefficients of charged
colloidal particles surrounded by electrical double layers by the use of photon correlation
spectroscopy. They found that the diffusion constant equals the value of a neutral sphere at
high and low electrolyte concentrations, but is reduced by several percent when the electrical
double layer is comparable to the radius of the particle. The reduction depends on the (-
potential of the particle and the sizes of the ions in the double layer. They also found that
the diffusion of charged particle can be explained by the Ohshima ef al (1984)’s theory,
assuming that the friction coefficient of a charged sphere in Brownian motion equals the
equilibrium friction coefficient of a sedimenting sphere.

van de Ven (1988) studied streamlines around a charged sphere in simple shear flow
and found that the region of closed streamlines is larger than for a neutral sphere. He
concluded that a small neutral particle approaching a large charged sphere feels an additional
repulsion on approach and an additional attraction after the encounter.

Schumacher & van de Ven (1991), by using photon correlation spectroscopy,
determined translational diffusion coefficients of electrostatically stabilized rod shaped
colloidal particles, TMV (tobacco mosaic virus). They found that when the double layer
thickness is comparable to the radius of an equivalent sphere of the rod, the diffusion
constant reduces by a few percent, depending on both the sizes of the ions and the charge on
the rod. The experimental data is found to indicate that, at the salt concentrations used, TMV
behaves like a model colloidal particle. They also obtained the effective charge on the
individual TMV particles, as well as an estimate of their (-potential.

Dukhin & van de Ven (1994) studied the trajectories of charged tracer particles
around a charged sphere in a simple shear flow. They found several new types of trajectory,
besides the closed and open trajectories. They concluded that the richness of possible

trajectories is due to three electrokinetic phenomena: electro-osmotic slip, electrophoretic
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motion and diffusiophoretic motion.
1.2.3.3 - Squeezing and Sliding Motion

The study of hydrodynamic interactions of rigid particles, under the slow motion
induced by an external force, was initiated by Smoluchowski (1911). He outlined a method,
known as ‘reflections method’, to determine the flow field for an array of particles that are
sufficiently close to each other to be hydrodynamically interacting, and the whole system is
far enough from the wall to be considered an unbounded flow. An extensive review of such
solutions is presented in the book by Happel & Brenner (1965).

Stimpson & Jeffery (1926) obtained the exact solution of Stokes equations for two
spheres (equal or unequal size) falling parallel to their line of centres (an axisymmetric flow),
by employing a bipolar coordinate system, upon the use of Jeffery’s (1912) solution of
Laplace’s equation. The bipolar coordinates, discussed in Appendix A, best described the
geometry of the problem of two sphere or a sphere and wall, and hence allows one to
simultenuously satisfy the boundary conditions on the solid surfaces for such a boundary
value problem. The details of such a solution for interaction of sphere and wall is presented
in the hydrodynamic part of Chapter four of this dissertation.

Oseen (1927) improved the inertia effects, in the Smoluchowski (1911)’s theory, for
the case of two sphere, by replacing the Stokes field with Oseen’s field.

Kynch (1952) presented general formulas to provide an analytic analysis for the case
of three or more spheres. This expressions are so complicated that generalization are only
possible for a simple geometry of configuration. So far the hydrodynamic interaction of
particles has been solved for not more than three particles, done by Kynch himself.

A number of authors have contributed to the development of purely hydrodynamic
interactions of two particles or in general two surfaces. Among them we may mention the

work by Dean & O’Neill (1963), O’Neill (1964), Cooley & O’Neill (1967), Goldman, Cox

& Brenner (1966, 67), Darabaner & Raasch & Mason (1967), O’Neilll & Stewartson (1967),
Cox & Brenner (1967, 68, 71), Cox & Zia & Mason (1968), Curtis & Hocking (1969), Lin

& Lee & Sather (1969), Batchelor (1972), Batchelor & Green (1972), Cox (1974), van de
Van & Mason (1976) and Kao & Cox & Mason (1977).
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Darabaner ef al. (1967) have investigated both theoretically (by the use of bipolar
coordinates) and experimentally the interaction of two infinitely long cylinders in a Couette
flow. They showed that the cylinders move either along open orbits extending to infinity in
both upstream and downstream directions or in closed orbits around each other forming a
permanent doublet. They have illustrated that in the limiting case where the radius of one
cylinder tends to zero while the other remains constant one would expect the orbit of the
smaller cylinder to be the streamline around the larger one.

Cox ef al. (1968) studied theoretically the streamlines around an infinitely long
cylinder and around a sphere moving freely in Couette shear flow. For flow around a

cylinder, they obtained the streamline, ¥ as

1
LI’:—ZG[pz —1+(p2 —2+p‘2)0032¢] (1.2.29a)
from which the velocity components (u 03 u¢) are obtained by
1 0¥ oV 12206)
u = __, u, = —— L.
" p oY o ap

in which G =2 Q is the shear rate (Q being angular velocity of the cylinder relative to polar
axes (p, ®). For free spheres, they obtained the streamline which satisfies the following

relations in spherical polar coordinates (r, 0, ®) with the origin at the centre of the moving

sphere:
%% = %G sin’ 0 sin2¢[3r‘5 ~5r7 + 2], (1.2.30a)
% = %G sin 20 sin2¢[r~* - 1] (1.2.30b)
% = - %G[2 cosr ™ - cos2¢ - l] (1.2.30c)

In both cases, they obtained open and closed streamlines separated by a limiting streamline
or surface. These correspond to separating and permanent collision doublets of cylinders and
of spheres in the limiting case in which the ratio of diameters of the two interacting particles

(two cylinders or two spheres) is zero. Their theory is in complete agreement with Darabaner
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et al's theoretical study (1967) and experimental observation.

Lin et al. (1969) solved the Stokes equations for two spheres of arbitrary size and
orientation with respect to the shear field by the use of spherical bipolar coordinates. They
calculated numerically the trajectory of the free motion of the sphere for the two cases of (1)
two equal-sized spheres in a simple shear flow, and (2) a sphere near a wall in a rotational
shear flow between two parallel disks rotating at different rates, where the results for the first
case agrees fairly well with those observed experimentally.

Batchelor & Green (1972) studied the purely hydrodynamic interaction of two
unequal sized spheres in unbounded flow whose velocity at infinity is assumed to be a linear
function of position. They found the velocity either of each sphere relative to the other
together with the force dipole strength tensors of the two spheres as a function of the
position vector of the either sphere relative to the other. Both the velocity and the force
dipole strengths depend linearly on the rate of strain at infinity which can be expressed as a
function of scalar quantities r/a and b/a (r being the magnitude of the position vector r ; a and
b radius of the spheres). They determined the asymptotic solution of the functions for both
cases of r/(atb) >> 1 and r - (a+b) <<either a or b whichever is smaller. For the special case
of two equal spheres in a steady simple shearing motion they analysed the closed trajectories
of one of them relative to the other both analytically and numerically.

Kao et al. (1977) investigated a general two dimensional linear flow having pure
shear flow as one limiting case and pure rotation as the other one, with simple shear flow as
an intermediate case. They calculated the streamlines around a rigid, neutral sphere in
creeping flow and found that for flow regimes between pure and simple shear both types of
closed and open streamlines exist, whilst only closed ones exist between simple shear and
pure rotation. There is no closed streamlines for pure shear. They also calculated the
trajectories of interaction of two equal sized spheres for these types of flow and found that
closed trajectories do not exist in a large regime of flows near pure shear.

Boluk & van de Ven (1989) studied the deposition of titanium dioxide particles onto

cellophane and glass surfaces in a stagnation point flow. They concluded that the
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discrepancies between observations and DLVO theory [after Derjaguin & Landau (1943) and
Verwey & Overbeek (1948)] can be explained by including ion-size effects in the
hydrodynamic correction functions which describe hydrodynamic particle-wall interactions.

Warszynski & van de Ven (1990) did a theoretical study of electroviscous forces in
a suspension of charged particles. Using the squeezing-flow approximation, they analysed
the interaction of charged disks, and calculated the total friction coefficient. Using the
Derjaguin approximation, they also calculated the relative friction coefficient for two charged
spherical particles to obtain the theoretical rates of the coagulation and/or deposition process.
They compared the theory with experimental data and found a good agreement between the
theory and coagulation, but a significant discrepancy for the deposition process.

Bike & Prieve (1990) applied lubrication theory to study the squeezing motion and
also sliding motions of two surfaces bearing thin double layers in an electrolyte solution for
the cases when the double layer is much thinner than the minimum distance separating the
two bodies. For sliding motion of a spherical particle along a plane wall they obtained a
general integral expression for the force the fluid exerts on the body in the direction normal
to the wall (F,) and evaluated it numerically as

_ mag; U’

F =05 [O.384O.OQ2 +0.1810CA% + 0.0242(A§)2] (1231)

in which a is the particle radius, h the minimum clearance between the particle and the wall,
K is the conductivity of the medium, ( the average of (-potentials of the particle and the
wall, and A( is their differences. They concluded that always F, > 0, regardless of the sign
and magnitude of {-potential, and so they called F, the electrokinetic lift force. However,
experimental observations show that this theory and some other theories which appeared in
the literature underestimate the force by several orders of magnitude. It was pointed out by
Cox (1997) that the discrepancy between the experimental observations and these theories
is due to the fact that the authors a priori assumed that the dominant electroviscous force,
arising from the coupling between electrical and hydrodynamic equations, would be due to

the contribution of the Maxwell stress tensor resulting from the streaming potential. In
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reality the contribution to the electroviscous force from hydrodynamic effects is two orders
of magnitude greater than that of electric effects.

Wu, Warszynski & van de Ven (1996) calculated numerically the lift force per unit
length experienced by a long cylinder in a sliding motion along a plane wall for an arbitrary
Peclet number and k' << h <<a. They also conducted experiments on a sphere and a wall
under the same conditions. Using the Derjaguin approximation, they converted their
calculation and also Cox’s analytical expression for the lift force (reported in the same paper)
from a cylinder-wall system to a sphere-wall system and observed that there was a good
agreement between these two theories and their experiment. Cox’s formula for the
electroviscous lift force per unit length experienced by an infinite cylinder under translation
and rotation parallel to a plane wall in a symmetric electrolyte, obtained from his general

theory, for low Peclet numbers and k' « h « a, is presented as

L (,6,) (KT)® ava |[(Gp+ Gy )(9G,+Gy)
"8 (ze)'c, h'+h D;
(H,+ Hy J(OH,+ Hy ) 2(9G,H,+5G,Hy+ 5GHy+ GyHy)]
D§ + DD, Vo+
(Gp+ Gy )(4G,+3Gy) (8G,H,+ 7G,Hy+ TG H,+6G,Hy)

+
4VaQ D’ DD,

- +8(aQ) +
D? D, D,

+

+

(1.2.32a)

where a is the radius of the cylinder; Q is its angular velocity with the clockwise direction;

V is the velocity of the nearest point of the cylinder to the wall, that is

V=U-aQ (1.2.32b)
(U is its translation velocity parallel to the wall); ¢ is the number ionic bulk concentration,
z, is ion valency of either species; D, and D, are ions diffusion coefficients (diffusivity) of
counterions and coions, respectively, and where (GP , Hp ) and (GW , HW) are defined by
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G, =In . H, =1 1=(P, W 1232
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in which \Tf pand Y  are the dimensionless particle and wall {-potentials, defined by relation

(1.2.28e). Cox also obtained the tangential component of the force as

F, = -2+/21y \/%(\H aQ)

2
V2r (e,6,) (KT Va |[5G2+2G,Gy, + G2 SH2+2H,H,, + H?
_ P P~ W + P P+ W W V
2 (ze)'c, h'Wh D, D,
» 3G; +4G,Gy, + G, . 3H2 + 4H,H,, + HY, -0
D, D,
(1.2.32d)

The first term is the purely hydrodynamic drag and the second one is the electroviscous drag.

Warszynski & van de Ven (2000), applying lubrication theory, obtained, in a direct
fashion, an analytical expression for the electroviscous forces per unit length experienced by
an infinite cylinder moving normal to its centerline parallel to a plane wall in a symmetric
electrolyte with velocity U, for low Peclet numbers and k' <<h <<a. The lift component

of the force may be expressed as

2
] \/En (Srgo) (kT)3 a\/g e . HW)[QGP 9H, Gy, HW]UZ
8 (ze)e., WvhiD, D,)\ D, D, D, D,

-

+n\/§(srso)3(kT)4 Ja 7(9})_ Hpjz+[Gw ijz

16 (ze)'c h’vh| D, D, D, D,
oG B0 )
Dl D2 DI D2

(1.2.33)
The first term is due to the hydrodynamic effects and the second one is due to the Maxwell

stress tensor resulting from deformation of the potentials (streaming potential). Warszynski
& van de Ven (2000) also derived an expression for the drag component of the force

containing an integral which is evaluated numerically. Their results agree with Wu, et al.’s
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numerical solution (1996) for arbitrary Peclet numbers.

1.3 - Cox’s General Theory

1.3.1 - Problem Statement

Cox considered an electrically charged smooth solid particle P suspended in a liquid
(such as an aqueous electrolyte solution) containing ionic charges with a charged smooth
solid boundary wall W being present. The liquid is assumed to be moving due to either the
motion of the particle P, the motion of the wall W or because there is some prescribed flow
(such as a planar shear flow) of the liquid at infinity.

At position T relative to some fixed origin and at time t, the velocity of the liquid is
taken as v and the pressure as p. The ion concentration of the species i is taken as c; the
electric potential as \y and the charge density asp. The concentrations of the ions each

satisfy the convective diffusion equation which may be written as

V.[Dchi —Ci(iViE +V)]:% (1.3.1a)

(with + sign for counter-ions and - one for co-ions) in which D, is the diffusion coefficient
of ion 1, and where ViE is the velocity of the ion 1, produced by the electric field, E, induced

by the charged particle and/or wall. Introducing the Lorentz- Stokes-Einstein equation,

o —E Dzey (1.3.1b)
V., = —= — 3.

iIE i kT W
[ FiE = — (z,e)V y, (Lorentz equation) is the electric force experienced by the ion i, f; is

Stokes friction coefficient, obtained by the relation (1.2.10)], to Eq. (1.3.1a) results in

i Cl Cl | T Qw ( )

For simplicity, there are assumed to be just two species of ion present in the liquid (species
1 and 2) which have charges + z,€ and — z,e fori1=1 and 1 = 2, respectively, so that only

symmetric electrolytes are considered, that is electrolytes in which both species of ion have

the same valency z,.

The variables are made dimensionless by the length scale, L (L being for example
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the particle size or the distance between the particle and wall), velocity V (an appropriate
characteristic velocity), the liquid viscosity,n, and the ion concentration, ¢ (where c,, is the
characteristic value of the ion concentration and is taken to be the value of ¢, or c, at
infinity). Therefore, the independent variables ¥ , t and dependent variables v, p, ¢, C,,

y and p may be expressed in terms of corresponding dimensionless quantities (shown with

a tilde) as
- = L .
r=L7 tzvt (1.3.2a)
and
vV=Vv p= nvs Y = Eq’?

L ze (1.3.2b)
c,=c¢,¢C (1=1,2) p=2¢,zep

Thus. the concentrations of the ions, given by Eq.s. (1.3.1c), for species 1 may be expressed

in terms of the dimensionless (tilde) variables as

%V D](%ﬁ)(cw“@)ﬂ“(c Cl){Dkie(Lv)[:_;j ;} (E/Va)zt

or
~ [~ =~ - 0¢,
V- [VE + Vi -Pe ¥ =Pe—= (1.3.3a)
in which Pe is a Peclet number defined by
P L (1.3.4)
e="_" 3.
D,

and a tilde over the gradient operator denotes evaluation with respect to dimensionless

position vector F. Similarly, a dimensionless convection diffusion equation for the other

species, C, , may be obtained as

D, oc¢
V- {ch—csz PG(DZ] CzV}“Pe( ] at2 (1.3.3b)

In Eq.s. (1.3.3a, b) the first, second and third terms in the brackets represent the negative of

the flux due, respectively, to diffusion, to convection by the electric field and to convection
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by the fluid flow.

The electrostatic relationship between the electric potential and the electric charge
density is given by Poisson equation as

Vz\lj = —L
E

m

It may be expressed in terms of the dimensionless (tilde) variables defined by (1.3.2), as

(LW)(E@) __(2eazep)
L z,e €€,

But, the characteristic double layer thickness for two species of ions is [c.f., (1.2.2b)]

1
1 _[ sreokT)/2

K 221262000 (1:3:2)
Therefore,

V3§ = —(LK)2 P
or

e Vy=-p (1.3.3¢c)
in which € defined by

e=(xL)" (1.3.6)

is the ratio of the inverse of the Debye-Hiickel parameter ¥ to the length scale L.

The electric charge density (charge per unit volume of the liquid), defined by

J
o= cizie (i=2)
|

may be written in terms of the our dimensionless (tilde) variables as

(2cwzle’§) = (cmzle?:’l ) + (— cwz]e’éz)
or

~

5 = (51 _ 52) (1.3.3d)

N |

It is assumed that the liquid is Newtonian and incompressible and that the Reynolds

number (LV / v) of the flow (where v is the kinematic viscosity of the liquid) is very much
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smaller than unity, so that inertia effects in the liquid flow may be neglected. Thus,

momentum and continuity equations for the liquid flow in the presence of the electric body

force, FE = ~pVy ,may be written as
nV*v-Vp=pVy, V-v=20

[t may be expressed in terms of our dimensionless variables, defined by (1.3.2), as

{2 (2], (e

or

V3-Vp=ApViy (1.3.3¢)

V.¥=0 (1.3.39)

in which the parameter A defined by

" - 2¢ _kTL 13.7
=TV (13.7)

measures the relative importance of the electrical body forces on the flow field.

Thus, there are eight scalar equations, given by Eq.s (1.3.3a-f), for the eight
dependent variables (denoted by ¥, P, ¢, C,, ¥ and p). It is to be noted that a possible
solution of these equations for an unbounded liquid with no solid surfaces present, is one

with no volume charges present, i.e., the solution

—~

¢, = ¢, = constant; p=0

with electric potential y satisfying

—~

Vg =0

and with a purely hydrodynamic flow

~  —

ViN-Vp=0; V.¥=0
Thus, at large distances we will take a solution of this form with y = 0, since it is assumed

that there is no applied electric field at infinity. If we take the characteristic ion

concentration c. to be that at infinity (i.e., .= the bulk concentration), then the boundary

conditions will be
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¢ -1 g, —1 (1.3.8a)
v —0 (1.3.8b)

V- (given flow at infinity) (1.3.8¢)

as |%|—> . On the surface S  of the particle P and on the surface S, of the wall W the no-
slip boundary condition is required to be satisfied, so that if at a general point on S, the

velocity of the solid surface is GP (and on S is fjw ), then

—_ —
e ~ —~

v="U, onS;; V= Uy on S, (1.3.8d)
where fJP and l:jw , defined by

= U = U

U, =— and U, =—~+ 1.3.9

are the dimensionless velocities of the solid surface S, and S, respectively.
It is also assumed that ions (of either species) on reaching a solid surface (S, or S,)
do not give up their electric charge or in any way react with the surface, or mathematically

stated, the ion flux (of either species) normal to the surface (relative to the surface) must be

zero, that 1s

ﬁ-[%q + Eﬁq’?]: 0 on S; and Sy, (1.3.8¢)

ﬁ-[f@ —’c‘ﬁxv]z 0 on S, and Sy (1.3.86)
where 1 is the unit vector normal to the surface directed into the liquid. In deriving Eq.s
(1.3.8e, f), it was noted that, by the aid of Eq. (1.3.8d), the convective flux due to the fluid

relative to the solid surface is zero. Boundary conditions (1.3.8e, f) are usually referred as

the no-penetration boundary conditions.

It is assumed that the surface potential of the particle is everywhere equal to a

constant onS,;, \|7 P> and that of the wall is everywhere equal to another constant, say l|7 we

Then it is required that

V=V, on S, (1.3.8g)
V=0 on Sy (1.3.8h)
where
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~ Zle . —_~ Zle
Ve =11 Crs Vw =TT Cw (1.3.10)

are the dimensionless surface potentials of the particle P and wall W, respectively.
The solution of Eq.s (1.3.3a-f) with B.C.s (1.3.8a-h) depend, in addition to the shapes,

relative positions and motions of the particle and wall (and flow at infinity), on the following

sIX parameters:

Pe = Peclet number for ions of species 1 [c.f., Eq. (1.3.3a, b)].

D,/D, = Ratio of diffusivities of the two species of ion [c.f., Eq. (1.3.3b)].

€ = Ratio of double layer thickness to the length scale, L [c.f., Eq. (1.3.3¢)].

A = Parameter measuring effect of electrical forces on the flow [c.f., Eq.(1.3.3¢)].
v p = Dimensionless particle surface potential [c.f., B.C. (1.3.8g)].

V , = Dimensionless wall surface potential [c.f., B.C. (1.3.8h)].

Cox considered the problem for small € with all the other five parameters being held
fixed and of order unity, i.e. there is no restriction on the other parameters. He was interested
in obtaining a general solution under the above assumptions to determine the force and
torque experienced by the particle P in the limit as€ = 0. Thus, it is assumed that the
double layer thickness is very much smaller than the particle size or the distance from
particle to the wall.

Since the total stress tensoro is the sum of the hydrodynamic and electrostatic

Maxwell stress tensors, then if one defines a dimensionless stress tensor G by

V_
S, =n—L—gU (1.3.11)

the dimensionless stress tensor may be expressed as'
1
~ = ~ ~ 2 ~ o~ ~ o~ <\
G, =—-P5; + (Vi,j + Vj,i)+ AE (—Ew,kw,ksnj + “V,iw,jja (I,J) = (1,2,3) (1.3.12a)

were all derivatives are with respect to the 'i‘; variables, that is

9 00 0w (o) (o%)’
o~ __ji_ ~ _9Y TR :[—L—V—j +(—) +(——] etc--- (1.3.12b)
Vi,_j - afr\j s L|j,j - 5f ) W‘kw,k aff]' a?zz arf; ’

Einstein summation convention is imposed on the repeated index, unless otherwise stated.
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and where § i 1s the Kronecker delta defined by

| for 1=
5{ or = |

O fOf i?f _] (1.3.12C)

It may then, by using (1.3.3c, e, f), be readily shown that the conservation of total

momentum defined by

~

V-5=0 or 5, =0 (13.13)

is satisfied. It is noted that the external angular momentum for structureless fluids

considered here is always satisfied [Happel & Brenner 1975, p. 25].

Fig. 1.2 - Surface S enclosing particle P near the wall W.

—

The total dimensionless force, ?, acting on the particle P may be determined by

F=[6,ndS=[5,ndS (1.3.14)
Sp S

wherefi is defined by

F=nLVF (1.3.15)

and where d§ is a dimensionless infinitesimal element of area; i is the unit vector normal
to the surface directed outward from the particle and S is any closed surface completely
surrounding the particle P and containing only liquid and the particle P itself, as shown in

Fig 1.2, so that no part of the wall W is within S.
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Similarly the moment of force, G, on the particle P about a reference point O may be

obtained in terms of the dimensionless moment, (N}, defined by

G =nL*VG (1.3.16)
as
Gi=gg%ﬁammd§=£a%§ammd§ (1.3.17a)

P

in which € ik is the alternating tensor defined by

+1 if 1,j, k is an even permutation, e.g., 2,3,1
e, =1-1 ifi j, kisanodd permutation, e.g., 132 (1.3.17b)
0 1f two or more indices are the same, e.g., 1,2,2

and T is the position of the surface element relative to the reference point O (c.f., Fig. 1.2).

1.3.2 - Inner and Outer Region

In solving Eq.s (1.3.3a-f) with B.C.s(1.3.8a-h) for the limitas € - O, the dependent
dimensionless (tilde) variables should be expanded in terms of the parameter €. In this
manner one obtains an outer region solution. Then for the inner region solution an inner
region expansion in € is required for each point on the solid surfaces S and S,. Therefore,
at a completely general point Q at position:lf2 on the surface S, (or on the surface S,)), Cox
defined locally a set of orthogonal coordinates (E, ﬁ) lying within the solid surface (c.f., Fig
1.3) with unit metric tensor in terms of the outer variables. He also employed a local outer
region Cartesian coordinates (?{', Y, 2) with origin at Q, Z being normal to the solid surface
(S, or S,) and directed into the liquid and with theZ and y axes tangent to E and

coordinate lines at Q, respectively, (c.f., Fig 1.3).

Inner region variables (denoted as barred variables) at Q are then defined by

X=c"%,  §=e"y, Z=ez, 1=t (13.18)

9

~

V=U+QxT+V, P=p, VY=V, ¢=c, p=p (1.3.19)

where U here is the dimensionless velocity of the surface under consideration at Q (equal

to either I:jpor I:jw atQ), Q) is the dimensionless angular velocity of the solid surface defined
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by
= V =

Q = fQ (1.3.20a)

(Q being the dimensional angular velocity of either the particle or the wall relative to a fixed
point) and T here is the position vector relative to the point Q, the original of the local

Cartesian coordinate system (3{, Y, ?), in outer variables. Therefore, noting that

-
~

QAxT=

D? Zy—-l
:OZ Reald!

1)/
Q.

X y Z

X Z

- (0,2-0,3)i-(Q,2-0.%)i +(2,5-9,%)§
the three components of the velocity in Eq. (1.3.19), by the use of (1.3.18), may be written

as

T 1 = 12 = A =
U +v,—e " Qy+eQz
B = 12 & < O
U, +V,+€” QX-€Q

~

~ T = 12 A = e
v,=U,+V,+ € (Qxy—ny

I

NI

’VX
v, (1.3.20b)

I

z

N—

Fig. 1.3 - Local orthogonal curvature coordinates (€, i) lying on the solid surface

showing the local Cartesian coordinates (X, ¥, Z) at the general point Q.
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The solution procedure would be to solve Eq.s (1.3.3a-f) together with B.C.s (1.3.8a-c) at
infinity in an expansion in €, as for the outer region solution. Then at each point Q on the
surfaces S, and S, an inner region expansion in €, is made by solving Eq.s (1.3.3a-f) with
B.C.s (1.3.8d-h) (the boundary conditions on the solid surfaces) written entirely in terms of
the inner region (barred) variables. These solutions are matched asymptotically by requiring
that the inner region solution at Q for Z -  be identical to the outer region solution as the
point Q is approached.

The general shape of the particle surface S, (or the wall surface S,) in the
neighbourhood of the point Q may, using the local outer coordinates (3?, Y, f) at Q, be

written as
Z=a,%X +2a,XV+a,y + (cubic terms in X, ?)Jr (1.3.21a)

where the constantsa,,, a,, and a,, are of order unity and have values dependent on the
point Q chosen (and on the choice of E and 1 coordinates). For example, for a surface
geometry as symmetry as an arch surface of a sphere with the dimensionless curvature
radius R = 1, the equation of particle shape, in the local Cartesian coordinates (’5(’, Y, E) is
defined by

7+1=(1-%*-52)",

which, upon the use of the binomial theorem,

n(n— 1) e n(n - 1)(n -2)

n
(a+b)"=a"+—a""'b+ a" b’ +--, (1.3.21b)

1! 2! 3!
may be expressed as
1 1 ~
2=—5(§2+?2)—§(§2+Y2)2 b (1.3.21c)

Within the inner region, for simplicity, Cox solved for the dependent variable only
on the Z -axis (where X = ¥ = 0), since if we have the value of any dependent variable ( f

say) as a function Z of in the inner region at all points Q (so that fis also a function of

E and n), then f and also its X and ¥ derivatives are completely determined.
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1.3.3 - Electrical Problem
1.3.3.1 - Outer Region Solution

A special case of the problem discussed in §1.3.2 in which the fluid velocity ¥ is zero

everywhere is considered in this section. This implies that the velocity U of the surfaces S,

and S,, of particle and wall must also be zero and that V- Oat infinity, so that the problem

would reduce to a steady state of a purely electrical nature. A subscript E is used to denote

all dependent variables for this case (i.e., €., Gz, P, Y ¢ and Pg ). Thus, letting V=0

and 0€, /0t = 0T, /0t = 0, Eqs (1.3.3a-¢) [with (1.3.3f) automatically satisfied], for

steady state, may be expressed as

—~

Vg + V(€77 ,)=0

—~ o~

Vzazﬁ -V '(62E§\|7E): 0

—~

e’ 62\}713 = ~Pe

- |
Pe = E(CIE - CZE)

6?5 = ‘7&’55%!75

Then B.C.s (1.3.8a-h) [with (1.3.8c, d) automatically satisfied] may be written as

cg— 1 CE
yp—>0

as|?|—) w0, with
n'[VC15+015VWE]:O

ﬁ'[{iEZE - E52156\1715] =0

~ ~

Ve=Vp OnSP

-1

on S, and S,

on S, and Sy,

(1.3.22a)

(1.3.22b)

(1.3.22¢)

(1.3.22d)

(1.3.22¢)

(1.3.23a)

(1.3.23b)

(1.3.23¢)

(1.3.23d)

(1.3.23¢)
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~

Vg =Vy on S, (1.3.230)

The dimensionless flux of the ions of speciesldenoted by ’ETIE is defined by

—_
—~

Qe = VCe + CrVy (1.3.24a)
which may be written in Cartesian coordinates (’)Z, vy, 2) with unit vectors ( i, 1, iz> as

~ ~ ~ 86 —_ a\Tf - aa - a\Tj -
q]Ex]'x+qlE_\'1y+qlEzz:( a;{E+ClE af)\;)lx-'_( 1E+C E) 1y

aN 1E ~
53 063 (1.3.24b)
Cg , . OV Ej 0
+ +¢
( 0z "t oz )"
Then Eq. (1.3.22a) becomes
V-Ge=0 (1.3.25)

Upon multiplying it by g and integrating that over the liquid volume V contained with a

large sphere Sy of radius R (V isbounded by S, S, and S; with R = ) the energy equation

p~w

for the ions of species 1, by using the divergence theorem,

jV-Advz IA- nds, (1.3.26a)
A% S

may be written as

JV-(§:q,)dV = - SJ{;‘/SE’ELE fidS (1.3.26b)
\% ptow+or

where dS and dV are dimensionless elements of surface area and volume and 1 is the unit

vector normal to the surface (S, S, or Sg) drawn into the liquid. Using the relationship
V-(cA)=Ve-A+cV A (1.3.26¢)
the integral over the volume may be expressed as

W’ (7 £ q,p)dV = £(€q75)- q,edV+ ‘qu“iE(@' : EIE)dT/ (1.3.27a)

and, by the aid of (1.3.23c¢, e, f, 24a), the surface integral may be evaluated as

(¥ 84S = [§,8, 0dS+ [§,d,-8dS+ [¥:d,e -7 dS
S S, Sw Sk

(1.3.27b)
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But, B.C.s(1.3.23a,b) and Eq. (1.3.25) show that (so long as 6115 , C,p,and (|7 ¢ tend to their
limits sufficiently rapidly as| T | — o) the last integral in (1.3.27a) and also the integral on

the right-hand side of (1.3.27b) vanishes giving [c.f., Eq. (1.3.26b, 27a)]

[q V§dV=0 (1.3.27¢)

\
Since the quantity — q - §q7 ¢ 1s the dimensionless rate of energy conversion into heat per
unit volume (assuming the species 1of ions have a positive charge) it must be a strictly non-
negative quantity. Ifthe summation (integral) of strictly positive quantities is equal to zero,
the only possible evaluation of them is that all individual quantities must be zero, from which

it follows that
de Vi=0 (1.3.28a)
everywhere. This may also expressed in the Cartesian coordinate system as

0y . Ny Oy
qlEx afiE_*_qlEy afS;E_‘-qlEz a'ZE

Consider now any equipotential surface X given by g = constant (c.f., Fig. 1.4). If the

=0 (1.3.28b

coordinate system is chosen such that its origin lays on the surface X with the Z -axis being
normal to the surface, because of equipotential, 0  / 0X andalso 0V ; /0¥ inEq.(1.3.28)

vanish, giving §,z, = 0 (zero component normal to X). Therefore, for the plane X, Eq.

(1.3.24) may be expressed as
aus = €2€1E (1.3.29)
where 6 , is the two dimensional gradient operator on the surface 2. From this Eq.(1.3.25)

reduces to

~ o~ —_~

V, V.G, =0 or Vit =0 (1.3.30)

on the surface X. Multiplying this by EIE and integrating over that part X" of the surface X

d externally by a closed line L’ drawn on Z, as shown in Fig. 1.4, one obtains, upon using the

divergence theorem,

j615§25115 A'dl = J_Wzanslz dS (1.3.31)
L b
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(y, = constant)

n*

Fig. 1.4 - An area X" bounded by the closed line L" on equipotential surface X.

in which dS is an element area of X, dT an element of length of L" and fi" a unit vector in
the plane of " normal to L". If the equipotential surface X is closed (so that L" can be shrunk
to a point as X* - X) or if X is unbounded with €, on X tending to a constant value
sufficiently rapidly at infinity, by the use of (1.3.23a), we see that the integral on the left hand
side of (1.3.31) tends to zero giving

[IV,&.dS=0 (1.3.32)
Since the integrand in Eq. (1.3.32) is strictly non-negative, it follows that

~

V,¢g=0 (1.3.33)
so that €, is equal to a constant on an equipotential surface 2. Thus, the ion flux a’]E (and

by a similar argument the ion flux a“ZE ) is zero everywhere. From this, Eq.s (1.3.22a, b) may

be replaced by
VT, +CViyy=0 (1.3.34a)
Ve, -G Vip=0 (1.3.34b)

Then, with B.C.s (1.3.23¢c, d) being automatically satisfied, Eq.s (1.3.34a, b) may be

expressed as

iy — V¢ -
—E . YV —===4+V
~ - WE’ r \UE
Cie CE
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Its solution 1s

InCp=-vy+c, InC=+y +c

Imposing B.C.s (1.3.23a, b) results in

~ _ _WE —~ _
CIE_e 2 CzE—e

Eq.s (1.3.22d. ) then give

Pp = %(e'“’E —e+“75)= —sinh

and

—

[(VBe )-dF =2 [sinh 7 (Vi )- dF

the integration of which is

Pg = Acoshy;+c

+V g

(1.3.35)

(1.3.36)

But, it is assumed, without loss of generality, thatp, — Oas | T | - «, or equivalently

as Y ; = 0. Thus, the pressure Py is determined by

Be = »(cosh iy ; - 1)

(1.3.37)

which is a well known result first derived by Langmuir (1938) and independently by

Derjaguin (1940). It should be noted that since p is a function of \ g the electrical body

force L p g\Tf . acting onthe liquid [c.f., Eq.(1.3.22¢)], is conservative, so that no fluid flow

is produced (like the gravitation force acting on a liquid). The remaining equation,

Eq.(1.3.22c), with B.C.s (1.3.23b, e, f) gives Y ¢ being determined by

e? V2§, = sinh

with

v —> 0 as”?|—>oo
Ve=Up on S,
Ve=Vw on Sy,

(1.3.38)

(1.3.392)

(1.3.39b)

(1.3.39)
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Although the solution (1.3.35-39) to the electrical problem considered here is valid even if
€ is large, Cox was interested in this solution in the limit as € =& 0 in the inner and outer
regions of expansion (see § 1.3.2).

In the outer region where the above (tilde) variables are used, Eq. (1.3.38) with B.C.

(1.3.39a) at infinity may be solved by expanding g In a power series of € as!
—~ ~ ~ 2 ~

Ve~ VYeot €EVgt € Ypyt -

Thus, Eq. (1.3.38) may be written as

e(‘PEO+E\pEI+"') \ﬂE0+E‘47£|+"')

o
2

e 62(\1’750'*' G\TIE1+”'):

- ~ 1/ ~
= (WEO"’ EWE1+“')+§(WEO+ EW51+"')3 oo

which indicates that
Yp=0 (1.3.40a)

correct to all orders in €. Consequently, by the aid of Eq.s (1.3.35-37) one may obtain

T =1 S =1 (1.3.40b)
Ppe=0 (1.3.40¢)
and

Pe=0 (1.3.40d)

everywhere in the outer region correct to all orders in € .
1.3.3.2 - Inner Region Solution Procedure
By the aid of definition (1.3.18, 19), Eq. (1.3.38) may be written in terms of inner

variables as

azﬁl—E az_\yE aZWE
e 5 2
(V) o) e

Thus, in the inner region at a point Q on the particle surface Sp, One observes that |- g on the

=sinh y

'The last subscript of any dependent variable denotes the order of that variable in €.
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Z -axis (1.e. where X = ¥ = 0) satisfies
2— 2— 2—
a\VE_*_e(a WE+8W
0z’ oxt oy’
with boundary condition, given by (1.3.39b), as

E) = sinh (1.3.41)

Vg =V, atz=0 (1.3.42)
whilst matching onto the outer solution, given by (1.3.40a), requires

Yy 0 aszZ > o (1.3.43)

Lettingy ¢ = Y got €Y 5+ e’ Y g, +-- Eq.(1.3.41) may be expressed as

82 82 62 — — 1 Ygo+EWE + - —AYgot+teYg +
|:az2 + e[g_i_z__l__a_y?j:l(wa)_*_ EWEI_*____):E[G(WEO VEI )_e (‘I’Eo YE1 )]

=%[(1+ eEYg, + )“’E"—(l EYg + ) "’EO]—smthEO+ewElcosh\uE0+0( )

(1.3.44)
Thus, collecting terms of order unity gives
0V o
——a ;= sinhy g, (1.3.45a)
with boundary conditions
Veo= Ve atz=0 (1.3.45b)
Ygo— 0 aszZ— o (1.3.45¢)
Terms of order € satisfy
2—

0", — = 0’ | O Wi

57 2E (COSh\VEO)WEl - %l t 55" (1.3.46a)
with boundary conditions
WYg =0 atz=0 (1.3.46b)
Yg 0 asZ—> © (1.3.46¢)

Upon substitution the expansion of the quantities, €, , C,5, P and Py expressed as
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Cig = Clgot €Cg + -+, Cyp = Cypot ECyp + -

L L ~ (1.3.47)
Pe = Pgot €Pp;+ Pe = Pgot €EPpi -

into Eq.s (1.3.22a-e) and B.C.s (1.3.23c¢-f), written entirely in terms of inner variables,

equations and boundary conditions for(ElEO, EZEO,EEO,ﬁEO)and for(ElEl, Cyers PEL

[ ), etc... are so obtained by collecting the terms of the same order in €. This has been

done by Cox and reported explicitly in his paper [Cox (1997)].

1.3.4 - Hydrodynamic Problem

A purely hydrodynamic problem would be another special case of the problem
discussed in §1.3.1in which the liquid is flowing as a result of the motion of the particle P
and/or the wall W as well as the prescribed flow at infinity. For this case the ion
concentrations are taken to be zero with no electric field present. This implies that the
electric potentials of the particle and of the wall are zero. Variables with a subscript H are
used for this case (i.e., f/‘H , Py )- Then Eq. (1.3.3) [with (1.3.3a-d) being automatically
satisfied} and B.C.s (1.3.8c, d) [with (1.3.8a, b, e, f) being automatically satisfied] may be

expressed as

V¥, -Vpy =0 (1.3.482)
V.-¥,=0 (1.3.48b)
and
%H — (given flow at inﬁnity) as ‘ T ‘—> 0 (1.3.49a)
v, =U, on S,

(1.3.49b)
v, = U, on Sy

Thus, the flow field (%H , fSH) is the creeping flow solution to the problem, and does not
depend on the parameter €. In order to obtain an expansion in € for this flow field in the

inner region at a point Q (on either the surface of the particle S; or of the wall S,) Cox
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expanded (VH , 5}{) as a Taylor series about Q in theX, V, Z coordinates. If the inner

region hydrodynamic variables 6}1 and Py are defined as in (1.3.19), then one obtains

B Vi, [ 0Vy Vi ~ 10°v,,
Vi T oy kX ( 'o*Qj (a )Ea_
~ 5
Vi = ava| -Q, z+—a o X2+ (1.3.50a)
Hy ,.5(_, Q 2 aNz Q I,
_ OV, . =~ |- [0V, 0V, 1 6°v,,
VHZZ( % Q+Q>)X+(F~y—|0‘ j 57 ]QZ+'2_ a~zH |Q
- oy _ Py ap . 1 0Py

in which |Q denotes evaluation at the point Q. From the no-slip boundary condition on the

solid surface and from the definition of %/H in (1.3.19), it follows that
V=0 on Z=2a,X +2a,X+a,,¥ + - (1.3.51)

for all (i, ’y) This, when introducing to (1.3.50a), gives restrictions on the values of the
derivatives of %H at Q. In addition, further restrictions are obtained from Eq.s (1.3.50a, b)
and from their derivatives with respect to X, ¥ and Z by evaluating them at Q. By writing
Eq.s (1.3.50a, b) in terms of the inner variables (X y,Z ) defined by (1.3.18), and using the
above restrictions on the derivatives of V VH at Q, Cox obtained the values of V Vy and py and

their X and ¥ derivatives evaluated on the Z -axis as expansions in € .

1.3.5 - Electroviscous Equations

The solution of the general electrohydrodynamic problem [given by Eq.s (1.3.3.a-h)
and B.C.s (1.3.8a-h) ] may be considered as the sum of the solution of the purely electrical
problem (discussed in §1.3.3), the solution of the purely hydrodynamic problem (discussed
in §1.3.4) and a new set of electroviscous dependent variables denoted by an asterisk as a

coupling between the electrical and hydrodynamic equations. Thus, upon introducing

V=V, +V P=Pu+tPe TP V=Yg +VY
(1.3.52)
¢ =Cg+¢ C, =Cp +6, P=Pg+pP
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toEq.s(1.3.3a-f)and B.C.s(1.3.8a-h), and noting that €, C,, ¥ -- - satisfy Eq.s (1.3.22a-
¢) with B.C.s (13.23a-f) and ¥, P, satisfy Eq.s (1. 3.48a,b) with B.C.s (1.3.49a,b), the

N*

~*
remaining terms including the elctroviscous variables V v , P, € ---mustsatisfy

72 ~* — [~ S~* T~ P T
V7¢, +V-(C]EVW +¢ Vy +¢ Vy )=

= — o~ = — ~* gt S Dk ok
Pe| Vv, -VC +V,-VC +V V¢ +V -V¢ + +

. & aclj , (1353
ot Ot

2~ * - [~ ~* ~ R~ ~* S~k
V7E, —V-(CZEV\U +¢ Vy +¢,Vy )=

Dz s~ 2 S 2o ~ =~ 0Gp OC 1.3.53b
Pe(Dlj(vH-VCZE+VH-Vc2 +V VG, +V VG, + a%E + 2):(0 )
2

ot
2V =-p (1.3.53¢)
~ 1 ~ —~k
5 = E(q -%) (1.3.53d)
G5 -5 =A(F Vi, +5.Y7 +5Vi) (1.3.53¢)
V.¥ =0 (1.3.53f)

with boundary conditions

T -0 T, -0 (1.3.54a)
v -0 (1.3.54b)
¥ 0 (1.3.54c)

as |ﬂ—) oo and
¥ =0 (1.3.54d)
(Ve + 5, V7 + TV, + Vi']=0 (1.3.54¢)

~

ﬁ[662* B ’62E€\|7* B V - szw ] 0 (1.3.54%)
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v =0 (1.3.54¢)

onS,and on S,,. In deriving (1.3.53a, b) it should be noted that, in general,0<C, / 0t and

0T, / 't are non-zero and must be included, since the boundaries S, and S,, move and thus

the time-independent solutions for €, and €, as calculated in § 1.3.3, must be considered
as functions of t.

As for the outer region of the expansion, the solution of the purely electrical problem

is given by (1.3.40) by applying boundary conditions only at infinity (and match onto the inner

region expansions as the surfaces S or S, are approached). Thus, upon the substitution of this

solution into Eq.s (1.3.53a-f) and B.C.s (1.3.54 a-g), we see that in this outer region, the

—

*

* ~F

electroviscous variables V., p , €, ---satisfy
T 4 T + G- (FG) - Pel(§ +7)- Ve - Pe Lt
C,+Vy +V- -\ Vy |J-Pelvy+Vv )-VC — ea? = (1.3.55a)

K72'6*—52\;7*—\7-(’6*5\]7*)—Pe(&](% +%*)-\7'62*—Pei~;=0 (1.3.55b)
2 2 D H at

2V =-p (1.3.55¢)
—~k 1 ~* —~

5= E(q -%) (1.3.55d)
Vi -Vp =Ap'V§~ (1.3.55¢)
V-¥ =0 (1.3.55f)

with boundary conditions

S -0 T, -0 (1.3.56a)
vV >0 (1.3.56b)
¥V 50 (1.3.56¢)

asT — . The equations and boundary conditions for v , ﬁ* , El* ,*** 1n the inner region of
expansion at a point Q (on either surface S, or S,) may be obtained by writing Eq.s (1.3.53)
and B.C.s (1.3.54) in terms of the inner variables using (1.3.18, 19) and then substituting the
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known expansions for the purely hydrodynamic problem variables (which are obtained by
solving the equations and corresponding boundary conditions given in § 1.3.4.) and the
expansions for the electrical problem variables given in § 1.3.3. However, in the inner
region, boundary conditions are applied only at the solid boundary (i.e. at Z = 0 )and match
onto the outer region (at Q) aszZ — . This is so obtained by Cox by applying the rigorous
procedure of a matched asymptotic expansion of inner and outer expansions up to order e’.

As a consequence of a logical process, he pointed out that the lowest order correction due to
the electrohydrodynamic effects on the velocity and pressure fields appear at order € 4 onthe
ion concentration of either specie and potential at the order e’ and on the charge density at
order €*. Therefore, the electroviscous velocity, pressure, ion concentrations, potential and

charge density may be written, in terms of outer variables, respectively, as

Vi=e' T+ - (1.3.57a)
P =" Pt (13.57b)
T =’ T, S, =€’ Tt (1.3.58a)
Vo=t Yot (1.3.58b)
p =€¢'p, (1.3.58¢)

Upon substituting these quantities in Eq.s (1.3.55¢, f) and B.C. (1.3.56¢), it follows that the

electroviscous flow field satisfy a creeping flow equation

V¥, -Vp, =0 (1.3.59)

V.-¥,=0 (1.3.59b)
with boundary condition

V.50 as |T|o (1.3.59¢)

It can be concluded that this flow field resulting from the tangential movement of the ions
in the diffuse double layer and hence it has the components on the solid surfaces (just outside

the double layer) only parallel to the plane tangent to the solid surface (i.e. normal to the Z -
axis). Therefore, %2 at the point Q (i.e., at Z = 0) may be written as
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v,=B,i +B,i (1.3.59d)

where i_and i, are unit vectors in the X and ¥ directions in the tangent plane to the surface
and where B, and By are the components of velocity which, in general, are function of
electroviscous parameters and position on the solid surfaces. They are determined by Cox

upon evaluating %: at point Q (i.e., by matching %: as the solid boundary is approached onto

= =
V4as‘ r’—) © ) as

~ (W, |8, -~ OB
B, =x{—4ln_cosh(71)_ a’xj‘l +, a,; J=W.,P (1.3.59)
~ i v, \|oB,, _ OB
Bjyzk{—4ln-cosh(Tj)_ a,};l+\yJ 8?12 (1.3.59f)

in which parameters (B 115 B JZ) are the value of the electroviscous ion concentrations and

potential on the solid surfaces J, just outside the double layer, that is
By =Gy Br=v, on S, (1.3.59h)

The perturbation of ion concentrations at the lowest order [1.e. at O( € ?)] of counter-

ions, €, , and co-ions, C,, , satisfies the same equation which is obtained by Cox as

~ .~ ., 0%

Ve, = Pe(%%%j(v}l VT, + ait‘?j (1.3.60a)
with boundary conditions

i-Ve, =PeF, (i-V)i- V)@ ) onS, (1.3.60b)
ii-Ve, =PeFy, (5-V)5-V)7-9,) onS, (1.3.60c)
S, 0 as | T |- o (1.3.60d)

in which Fp and Fy, are functions of the diffusivity of ions and surface potential defined by

~

TSRS )

" 2D,

FCJ
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The perturbation in potential at O(€?),  , , satisfies

W [Dz_DI)N* ¢ 1.3.61
=1 ———|¢C, + 3.
V2={p, +p,) % (1.3.61a)

in which d) satisfies Laplace’s equation

~ o~

V2¢ =0 (1.3.61b)
together with boundary conditions

i-V§ = PeF,, (7-V)(i- V)5-7,) onS, (13.61c)
i-Vé = PeF,, (5-V)E-V)7-7,) on$,, (13.61d)
$—> 0 as ‘ T ‘—) o0 (1.3.61¢)

where we have written

F =(Lj(p F =(—21—)i—)\]7 (1.3.611)
¥ \D,+D,) "’ W o\D,+D,) " "
1.3.6 - Force and Torque on Particle

The dimensionless force, %, [defined by (1.3.15)] and moment of force, é, [defined
by (1.3.16)] experienced by the particle P could be calculated by the integrals (1.3.14, 17)
in § 1.3.1 taken over any chosen surface S completely enclosing the particle. The simplest
surface would be the particle surface S, in the outer region (i.e. it is taken to be just outside
of the double layer surrounding the particle), so that in the integrands (1.3.14,17a) the stress
tensor 6 i is used in terms of outer variables, defined by (1.3.11, 12). In the outer region, by

the aid of Eq.s (1.3.57a, b) and Eq. (1.3.58b), %, p and \17 , given by (1.3.52), may be written

as
T = %H+ <t %; (1.3.62a)
B = P+ et f),; (1.3.62b)
W =¢? \172 (1.3.62¢)

Here %H and P, are the pure hydrodynamic velocity and pressure discussed in § 1.3.4. In
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writing Eq.s (1.3.62b, ¢) it is noted that by the aid of (1.3.40a, d)/ = Oand pe=0
throughout the outer region. By introducing the expansion (1.3.62 ) to the stress tensor

(1.3.12), the dimensionless force on the particle F is determined by

~

F=F,+¢'F +-- (1.3.63)

The hydrodynamic force, FH may be easily determined by solving the purely hydrodynamic
problem discuss in § 1.3.4 and then using the relationship (1.3.14). But, as for the
electroviscous force, the required solution for the electroviscous flow field given by (1.3.59)
is not an easy task due to imposing the complex boundary conditions on the solid surfaces.
Fortunately, for a stationary wall there is an alternative way to calculate the force by
employing the Lorentz reciprocal theorem, which states that instead of solving a complex
flow field, solve an easier one and from that find the force for the former.

If we define a disturbance flow field (%Tk , §Tk ) due to a translation (indices T denotes
translation without rotation) of the particle P with unit velocity in the k™ direction (k =1,
2, 3) in a semi-infinite quiescent fluid bounded by an infinite plane wall (c.f., Fig. 1.5), the

flow field, for each direction k, satisfies Stokes equation, that is
~ = ~ _ =
VN, -VP, =0 and V-V =0

or i1n indices notation as

azvm ai;Tk

B ~ 0 i,i=1,2,3 1.3.64
P (i, ) (13.642)
QY%“"— =0 (1.3.64b)

oF

together with the corresponding boundary conditions, that is [c.f., definition (1.3.12c¢)]

Vo = 04 on Sp (1.3.65a)
V. = 0 on Sy, (1.3.65b)
Vo = 0 as|Fl- 0 (1.3.65¢)

The first boundary condition shows that the velocity of the fluid is equal to unity only in the
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the direction of the translation of the particle, i.e. when 1 =k (c.f., Fig.1.5), which is the no-
slip boundary condition. The first boundary condition shows that the velocity of the fluid
is equal to unity only in the direction of the translation of the particle, i.e. wheni =k (c.f,,

Fig.1.5), which is the no slip boundary condition on the particle surface.

Fig. 1.5 - Flow field (’%Tk 5 fiTk ) produced at position % of a general point of the fluid
due to the pure translation of particle P with unit velocity in the direction of

either X, ¥ or Z -axis corresponding to k = 1, 2 or 3, respectively.

Then Lorentz reciprocal theorem may be written as [Happel & Brenner (1965)]

~

£kai0 4ijnjds = £v4i0 Tkijnde (1.3.66)

in which G Tkij 1S the stress tensor for the flow field (VTk N ) , 0; 1s the unit vector normal

and outward to a closed surface S bounded any fluid volume. Surface S may consist of a
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number of distinct surfaces. Let S include the particle surface S;, the wall surface Sy, and
an imaginary surface of a semi-sphere drawn into fluid with an infinite radius R, S;, (c.f., Fig

1.6). Thus, the first integral in the Lorentz reciprocal theorem may be expressed as

4177 ] 4ij77 ) 4ij°"j
P Sw Sk

i VO 4511, dS = SJ Va0 40, dS+ | ¥,.6,n,dS+ [V,6,,n,dS (1.3.67a)

The velocity Vo, . is due to particle translation, and hence it is induced by a point force
application of the Oseen technique (assuming the force exerted on the fluid, by the particle,
can be considered as a point force), so that it should be of order R [Happel & Brenner
(1965), p. 83)]. Like pressure, the stress tensor (force per unit area), noting that the
magnitude of the force is finite, is of order R 2 and the surface of a sphere is equal to
4n ﬁ,z so that dS is of order R2. Therefore, the integrand of the third integral of the right
hand side of (1.3.67a) is of order R , and hence it tends to zero as R - o, from which it

follows that

~

[ V10 40, dS = 0 asR - » (1.3.67b)

SR
The second term 1n (1.3.67a) is obviously equal to zero, since by B.C. (1.3.65b) the
velocity on the wall is equal to zero and the electroviscous stress tensor on the wall is of

order unity (i.e. it is not too large), resulting in

.[ v'rkig;ijnjdg =0 (1.3.67¢)
Sw

But, the first integral is exactly what we are looking for, the electroviscous force. By
the aid of B.C. (1.3.65a) the velocity on the particle surface Sy is only non-zero and equal to
unity when i = k [c.f,, definition (1.3.12c)]. Thus, letting kai = landi =k, the first
integral in the right hand side of Eq. (1.3.67a) becomes

Il X G gy jdg
v:}Plich represents the electroviscous force E*k [c.f., Eq (1.3.14)]. Therefore, by the aid of

(1.3.67), the Lorentz reciprocal theorem, given by (1.3.66), may be expressed as

F, = Jv4i6Tkijnde+ j‘v4iGTkijnde+ jv4i0Tkijnde (1.3.68)
Sp Sw Sr

61



By the same argument as for integral (1.3.67b) the third integral of the right hand side of

(1.3.68) vanishes. Therefore, in view of the definition (1.3.59d), the remaining integrals may

be expressed as

F, = [Bo,ndS+ [ Bo,,ndS (1.3.69)
Sp

SW
The above analysis is illustrated in Fig. 1.6.

’ Lorentz Reciprocal
T

heorem

J-VTkiG“jn.dS = | V40 10 ds
S

” S 0 O(1) O(R’) ORY) O

Il N[
j.v'l'kia:i]njdg = J- VTle4lj ;dS + jvaGm jds + I Tkjcﬁjnjd
S

Sw
(. Jk >

i=k

7

Fig. 1.6 - Surface S consist of S,, Sy and Sk bounded a volume of fluid showing
calculation of electroviscous forces upon application of

the Lorentz reciprocal theorem.
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Thus, the advantages of the application of the Lorentz reciprocal theorem is that, in
order to know the force we require only to obtain the stress tensor corresponding to the flow
field (%Tk , IN)Tk ), multiplying it by the known boundary conditions of the electroviscous flow
field and integrating it over the solid surfaces. Whereas, to obtain the force in a direct
fashion we need to solve the whole electroviscius flow field to obtain the required
electroviscous stress tensor.

Similarly, the torque experienced by the particle around a reference point O may be

expressed as

-
~

G=Gu+ €' G, (1.3.70)
The hydrodynamic torque may be determined upon using Eq. (1.3.17) for the purely

hydrodynamic problem. The electroviscous torque is so obtained upon applying the Lorentz

reciprocal theorem as

n.dS (1.3.71)

ij

Gy = Iﬁjgmjnidgwt J ﬁjERk

Sp Sw

~ >~
Vri3 (VRk’ PR.)
o2 ///// ;R‘kg
% \;377‘
P r
VRi2
~ /
2=(0,1,0) |/
A
y ¥
\%%

Fig. 1.7 - Flow field ('\:;Rk s Prac ) produced at position Fofa general point of the fluid

due to the pure rotation of the particle P with unit angular velocity around

either X, ¥ or Z -axis corresponding to k = 1, 2 or 3, respectively.
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in which ]§j is given by (1.3.59, f) andG riij 1S the stress tensor for the flow field

(ka » Pr ) satisfying the creeping flow equations

a 2kai aijk

— - =0 (1.3.72a)
O0T0T,  OF
OV gy
— -9 (1.3.72b)
oF,

due to the rotation of the particle with unit angular velocity about an axis in the k-direction
passing from point O in the quiescent fluid with the wall W being at rest (c.f., Fig 1.7).

Therefore, it satisfies the following boundary conditions

Vi = €T onS, (1.3.73a)
Ve = 0 onS,, (1.3.73b)
Vex = 0 as l T ’—) s (1.3.73¢)

where ’f]' is the position vector relative to the reference point O and ¢ kij 1S the alternating
tensor, defined by (1.3.17b).
1.3.7 - Force on Sedimenting Sphere

Cox applied his general theory to the sedimentation of a charged sphere in an
unbounded electrolyte and derived the total force experienced by the particle, for low Peclet

numbers, as

24ne (kT)’ ( G* H?
F=-|6nna+

+ jUST (1.3.74)
(zle)4cwa D, D, e

in which ¢ _ is the permitivity of the medium, defined by (1.2.1b), (kT) the thermal energy,
(Zle) the charge of an ion of type of counter-ions, c., the number ion bulk concentrations,
(D,, D,) the diffusivity of (counter-ions, co-ions), and the surface potential is involved via
parameters G and H, defined by (1.2.32¢). The first term in the formula (1.3.74) is the well
known Stokes drag formula for the sedimentation of uncharged sphere with velocity
UggD and radius a, given by (1.2.17). The perturbation in the force (electroviscous force),

the second term, was obtained by applying the Lorentz reciprocal theorem. Comparisons

64



with the result of Oshima et al. (1984) is given in the next section.
1.4 - Results and Conclusions

Electroviscous phenomena for a thin diffuse double layer surrounding charged solid
surfaces under a motion in a symmetric electrolyte are analysed by Cox general theory
(1997). The flow field, described by Stokes equations, perturbs the electric field induced by
acharged solid surface. This is because the flow disturbs the ions in the diffuse double layer
resulting in a perturbation in the charged density which causes the perturbation in the
potential, described by the Poisson equation, given by (1.3.3¢). The perturbation potential
known as the streaming potential, in turns, causes a tangential motion of the ions in the
diffuse double layer [by exerting an electrostatic force on them, described by the Lorentz-
Stokes-Einstein equation, given by (1.3.1b)], resulting in a perturbation in the flow field. Or
mathematically stated, there is a coupling between the electrical and hydrodynamic equations
describing the system. lons are also subject to a motion induced by the Brownian motion as
a consequence of the difference in their concentrations (the concentration gradients),
depending on their diffusion coefficients, described by the Fick’s second law, given by
(1.2.9), appearing as the first term in the convective diffusion equation (1.3.1a). Therefore,
the electroviscous effects arise from the interaction among the flow field, Brownian motion,
and the electric field originating from the charged boundaries and producing the diffuse
double layer surrounding charged solid surfaces.

The streaming potential, with a magnitude of order € (¢ is the ratio of the double
layer thickness to the length scale of the problem assumed to be small), is a function of the
perturbation in ion concentration as can be observed by Eq. (1.3.61a, b), in addition to the
flow field appearing in its boundary conditions, given by (1.3.61c¢-f). Itis observed from this
equation that for identical diffusivities of counter-ions and co-ions the streaming potential
is independent of the perturbation of ion concentration, as it is supposed to be.

The electroviscous ion concentrations of either species at the leading order, O(€?),
satisfy the same equations and boundary conditions, determined by the relations (1.3.60).
At the second approximation, O(€e?), the perturbation in concentration of counter-ions and

co-ions are also the same, resulting in a perturbation of the charge density appearing at the
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higher order, O(€*), [c.f., (1.3.58¢]. In addition to the flow, the diffusivity of ions appears
in both the equation and their boundary conditions. The electroviscous ion concentrations
also depend on the -potentials of the solid surfaces appearing on their boundary conditions,
as 1t is supposed to be.

The electroviscous flow field satisfying the creeping flow equations, given by
(1.3.59a, b), is of order (¢*). Because of assumptions of the no-penetration of ions on the
solid surfaces (non-conducting solid surfaces, and the absence of any chemical reactions) and
especially the thin double layer thickness assumption, this perturbed flow has only a
tangential component on the solid surfaces just outside the double layer. These boundary
conditions, determined by (1.3.59¢- h), depend not only on the steaming potential and (-
potentials of the solid surfaces, but also on the electroviscous ion concentrations and the

diffusivity of counter-ions and co-ions. Though electroviscous flow field is two orders of

magnitude smaller than the steaming potential, it exerts a force and torque on the particle
(electroviscous force and torque), which is two orders of magnitude greater than the one
exerted by the streaming potential, as can be observed from the Maxwell stress tensor, given
by (1.3.12). The tangential and normal component of the force as well as the torque,
experienced by the particles are determined upon applying the Lorentz reciprocal theorem,
outlined in § 3.6. The contribution to the force from this perturbed flow has been neglected
in a number of publications in favor of the Maxwell stress tensor resulting from the
streaming potential.

Ohshima, et al. (1984) derived the electroviscous velocity for the sedimentation of
a charged sphere which is sufficiently far from other solid surfaces for interactionns to be
absent, or mathematically stated in unbounded electrolyte, given by (1.2.28). Cox applied
his general theory to obtain the drag force experienced by such a particle, given by (1.3.74).
The Peclet number in both theories is assumed to be much smaller than unity. For the
interaction of two solid surfaces, Wu, Warszynski & van de Ven (1996) calculated
numerically the normal component of the force per unit length experienced by along charged
cylinder under translation near and parallel to a charged plane wall, for arbitrary Peclet

numbers. Cox obtained an analytical expression for normal component of the force
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[presented in Wu, et al. (1996)’s paper] and also the tangential component of the force
experienced by a charged cylinder under both translation and rotation parallel and near to a
charged wall, for low Peclet numbers, given by (1.2.32). Warszynski & van de Ven (2000)
reconsidered the translation problem of the cylinder-wall to obtain an analytical expression
for the normal component of the force, given by (1.2.33).

To compare Cox’s theory with the Oshima, Healy, White & O’Brien (1984)’s theory,
the molar conductivity (A,) which is related to the ion diffusion coefficient (D,) via the
mobility of the ions (v,) [upon using the Nernst-Einstein equation (D, = N,kT v,)] may be

written as

A =FZv, = (NAe)zz.zu. = (1.4.12)

i i kT i
Thus, m,, defined by relationships (1.2.28b, ¢), may be expressed in terms of ion diffusion

coefficients as

2 2
. 2¢ kT N, kT 2¢ (KT) (14.15)

- 311(zie)2 | D,.NA(zl.e)2 i 31](zl.e)zzi2Di

which is similar but different from that defined by (1.2.16b) by a factorz’. From this and
from the definition of the reciprocal double layer thickness, k, given by (1.2.2b), the Oshima

et al.’s theory (1984) for the sedimentation velocity may be written as

8¢ (kT)’ G’ H’
Uggp =

+ +.: U 1.42
z'D, z§D2(1+I)} SED (14.2)

ne“(clzl2 + czzg)a2
Using Stokes’ law, given by (1.2.17), the force, F, the fluid exerts on the particle P may be
determined from it as

2 3 2 2
48ne? (KT) [ G H } o

+ U (1.4.3.2)
e4(c,zf+czz§)a zD, ZD,(1+1) ||

F=—(6nna+

But, in view of the definition (1.2.2b) (noting that the length scale L here is taken to be

identical to the sphere radius a), the parameter I, appearing in the dominator of (1.4.3a),
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defined by the relationship (1.2.28d), may be evaluated in a general form as
1= 0(e)+ O(e?) (1.43.b)

Thus, upon applying the binomial theorem, given by (1.3.21b), Oshima et al.’s theory may

be expressed as

4872 (kT) [ G? H?
F=-<6ntna+ u + 1-0(g)-0O(g* )+--|¢ U
i e*(c,z} +c,22)a | 21D, ZiDz[ (&-0)e-f (U

(1.4.3¢c)
from which it follows that the electroviscous force at the first approximation for a symmetric

electrolyte considered in the Cox theory (z, = Z, and hence ¢,= ¢,=c, ) is exactly the same
as that obtained by Oshima et al. Although the formula (1.4.3¢) has terms of order e’ and
those of order €°- -, it is not obvious to determine its order [c.f., formula (1.2.28a)], whilst
Cox’s theory is valid up to order €’ the order considered in his general theory. Since Cox
obtained the force for low Peclet numbers, he concluded that the Oshima et al.’s theory is
valid for low Peclet numbers, though it is not mentioned by the authors in their paper.

As for the cylinder-wall problem, Cox’s theory, given by (1.2.32a), for identical

particle and wall potentials predicts

\/_TE g2 (kT)’ a/a

’ 2 (zle)4cw h2

2
G H
2 —_—
[SU +4UaQ - (aQ)’ ](Dl +D2) (1.4.4)

Whereas, Warszynski & van de Ven’s theory (2000), given by (1.2.33), for the identical {

potential predicts

F - 5\/_7I8 aI(G+H)2U2

© 4 (ze)4c h’vh\D, D,
3\/—7T8( \/E[G HJZUZ
4 (ze)6 > K’vh\D, D,

(1.4.5)

From this it follows that for the translation of the cylinder the magnitude of the force obtained

from Cox’s theory is two times larger than that predicted by Warszynski & van de Ven ’s
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theory (2000). For translation of a particle, both Cox’s formula and Warszynski & van de
Ven’s predict a positive, zero or negative value for the normal component of the force,
depending on the magnitude of the particle and wall {-potentials and the ratio of diffusivity
of ions. Warszynski & van de Ven's theory (2000) also predicts the second approximation
term due to the contribution of the tangential electric field resulting from the streaming
potential appeared at O (€°), which agrees with that obtained by Bike and Prieve (1987). Bike
and Prieve considered only this term to calculate the force which obviously is not the
dominant contribution to it. The tangential component of the force is of order Pe and the
normal component of O (Pe?). Thus, because of the proportionality to U?the change in the
direction of the flow does not reverse the direction of the normal component of the force.
Therefore, it is concluded that for a sedimentation of an spherical charged particle in
an unbounded electrolyte, the electroviscous drag force, arising from the interaction among
viscous, Brownian and electrical forces, obtained by Cox (1997) is in complete agreement
with the Oshima et al.’s theory (1984). Whereas, Cox’s theory [presented in Wu et al.’s paper
(1996)] and Warszynski & van de Ven’s theory (2000) for the motion of a charged cylinder
near and parallel to a charged wall, obtained for low Peclet numbers, predict different values
for the magnitude of the force and by a factor of two for identical {-potentials of the wall and
cylinder surfaces. Warszynski & van de Ven (2000)’s results agree with Wu et al.’s
numerical solution (1996) for arbitrary Peclet numbers. The authors speak of a lift force,

presumably not realizing that under certain conditions the normal force can be negative.
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Chapter Two
Electroviscous Cylinder-Wall

Interactions
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2.1 - Introduction

The problem of a long charged cylinder moving parallel to a charged plane wall for
translation and rotation of the particle has been solved analytically by Raymond Cox and
reported 1n a paper by Wu, Warszynski & van de Ven (1996) and for the translation of a
cylinder by Warszynski & van de Ven (2000). In both theories the Peclet number and the
clearance between the cylinder and wall are assumed to be small. Cox obtained the
electroviscous force by applying the Lorentz reciprocal theorem as outlined in his general
theory. Warszynski & van de Ven (2000) assumed the same orders for the perturbation in
ion concentrations and potential as those given in Cox ‘s general theory (1997), but obtained
the force directly from stress tensors resulting from the perturbation in both hydrodynamic
and electrical fields. Cox obtained both tangential and normal components of the force
analytically. Warszynski & van de Ven (2000) obtained the lift component of the force
analytically, but derived an analytical expression for the tangential component of the force
containing an integral which is evaluated numerically. These only two available theories,
given by (1.2.32, 33), predict different values for the magnitude of the force. It is the
purpose of this chapter to reconsider the problem with the above assumptions to investigate
the validity of either solution.

The analytical approach to the problem is based on the matched asymptotic expansion
technique, which is a powerful technique to solve partial differential equations involving a
small parameter. The idea is that the domain of interest is divided into two regions, the so-
called inner and outer regions. The inner region 1s taken to be a small portion of the domain
in the neighbourhood of the nearby contact point, and the outer region is the region
everywhere outside the gap. For the inner region, variables are expanded in terms of the
small parameter in a way that only dominant terms are being considered in the equations, so
to simplify them for an easier solution. Moreover, a solution which is valid for the outer
region, known as the outer solution, is required. At the boundary of the inner and outer
regions these two solutions must predict the same value for those variables. Thus, the outer

solution as it approaches the gap, should match smoothly to the inner solution as it
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approaches to the outer region. This is called the matching condition. With this procedure,
one obtains the solution (inner plus outer solution) for the problem which is valid for all the
domain of interest. Here, we are concerned with the inner solution, bearing in mind that the

matching condition must be satisfied.

Thus, following the problem statement, the inner solution of the purely hydrodynamic
problem, in an expansion of the normalized clearance, 8, (for 6 << 1) is presented in § 2.3.
The perturbation of ion concentrations, in an expansion of the Peclet number, Pe, (for Pe <<
1)is givenin § 2.4. It contains outer and inner regions with inner region solutions of orders
Pe and Pe’. respectively. The perturbation of the potential is determined in § 2.5. The
electroviscous force is obtained in § 2.6. It includes the tangential derivative of the
electroviscous ion concentrations and potential, the determination of the stress tensor for
translation of the particle parallel and normal to the wall and applying them to obtain the
tangential and normal components of the force, upon the use of the Lorentz reciprocal
theorem. The matching condition and the existence of the outer solution are discussed in §

2.7. Finally, results and conclusions are given in § 2.8.
2.2 - Problem Statement

Consider an electrically charged smooth cylindrical particle P moving in an
electrolyte solution with a stationary charged plane wall W being present. The liquid is
assumed to contain a symmetric electrolyte with two species of 1ons with charges + z,e and -
z,e. For the sake of simplicity we consider a long cylinder parallel to the wall in order to
reduce the problem to a two dimensional one. The radius of the cylinder is denoted by a and
the gap width between cylinder and wall by h.

The double layer thickness (Debye length), denoted by x’', is assumed to be much
smaller than the gap width, and the gap width is much smaller than the radius of the cylinder.

Thus, € << & << 1 where

h 1
§=—, €= — (2.2.1)
a Ka

This condition fulfills the thin double layer condition considered in Cox’s general theory

(1997). 1t is further assumed that the Peclet number, Pe, entering the electroviscous
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equations, defined by relationship (1.3.4), is much smaller than unity.
A right-handed Cartesian coordinate system (x, y, z) is chosen such that the center
of the circular cross section of the cylinder coincides with the point (x =0, z=h + a) with

the y coordinate being parallel to its axis (c.f., Fig 2.1).

Fig. 2.1 - A charged cylinder translates and rotates parallel to a charged wall.

The cylinder is assumed to be translating perpendicular to its axis with velocity
u= (U, 0, O) and rotating around it with angular Velocityﬁ — (O, Q, O) in a fluid at rest.
By taking the coordinate system to translate along with the cylinder, the problem reduces to
a steady state one. That is, the flow field (ﬁ, p), the ion concentrations of either species and
the electric potential at position T relative to the moving coordinate system (x, z) remain
unchanged during the motion of the particle. As aconsequence, since the electroviscous ion
concentrations and potential arise from the coupling between electrical and hydrodynamic
equations (hereafter denoted by c, and y , )', would be time independent. The problem is
equivalent to the one in which the particle is only rotating with angular velocity () in a fluid
in which both wall and liquid are under translation with velocity U = (— LU, O) for the wall

and the fluid at infinity. Thus, the velocity U of the liquid on the cylinder surface in this

'For simplicity we use the notationc, and {/ , ins-tead of 0:2 and y ; in Cox’s general theory
(1997), with the indices 2 denoting their orders in €.
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coordinate system is determined by

-l

i
0 |=Q(z-h-a)i -Qxi, (2.2.2)
y z-a-h

[

R
Qxr=(0 Q
X

where 1, (k =X,Y, z) are the unit base vectors coinciding with the (X, y, z) coordinates. The

surface of the wall, denoted by Sy, and that of the cylinder, S, may be written as

X = asin® }

z=0 onS
’ we z=h+a-acosf

onS, (2.2.3)

where 0 is the polar angle associated with the cylinder cross section measured from the point
Q (the nearest point of the cylinder to the wall) in the counter clockwise sense, as shown in
Fig 2.1.

For the outer region we use variables made dimensionless by the length scale a,
charactenstic velocity U and the characteristic ion concentrations c.. Thus, the outer
variables denoted by a tilde are defined by the relationship (1.3.2) in which L is taken to be
aand V to be U. From this it follows that [c.f,, (1.3.9, 20a, 4, 7, 15, 6, 5)]

b
G 5.3 oAU 2eakT o ee,kT |
=1, =, e=—, =, :nl'F, e=|——"—7
U D, nu 2(azle)2c°0
(2.2.4)

Here, Fis the force per unit length of the cylinder. The (-potential of the solid surfaces

denoted by (CP , Cw ), are made dimensionless by relation (1.3.10) as

—~ Z.€ — Z.€
Vp = (ﬁjap V= (;{‘—T-)Cw (2.2.4b)

By eliminating the azimuth angle 6 in (2.2.3), the solid surfaces, Sp and Sy, may be

expressed in terms of the outer variables as

7-0  onS,, 7=1+5+(1-%2)"  ons, (2.2.5)

(where the + signs account for the upper and lower parts of the cylinder, respectively), and

the normal unit vectors outward to them, denoted by np and nn, , as
fy = 1, i, = sinB1i, - cosfi, = Xi, +(Z-1-8)4, (2.2.6)
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2.3 - Hydrodynamics
2.3.1 - Flow in Outer Region

It 1s assumed that the liquid is incompressible, that is the fluid density, p, is constant
everywhere. In addition, the Reynolds number, Re, based on the cylinder radius defined by
Re = apU/n which is characteristic of the hydrodynamics in the outer region, is assumed to
be small enough so that inertia effects can be negligible. As its definition indicates, this
condition is achieved when either the kinematic viscosity, v, (v =1/p) of the liquid is high
(highly viscous liquid), the particle size is small or the characteristic velocity is small. The
second and third condition (for the size of colloidal particles and its velocity close to the
wall) are certainly fulfilled in experiments. Thus, the purely hydrodynamic flow satisfies the

creeping flow equations (Stokes equations)

Vp=0 2.3.1)

=18

V21U -
V.i=0 (2.3.2)

with boundary conditions on the solid surfaces [c.f., (2.2.2, 5)]

u =-1, u =0 onz=0 (2.3.3)
i, =0(z-1-8), 1§ =-0% onZ=1+5+4(1-%*) (234
and at infinity

u, = -1, u,=0 as|t| » o (2.3.5)

This produces a flow field which is bounded, or mathematically stated, it is of order unity
(i.e. it is neither very small nor very large as observed from its boundary conditions). Since
the small parameter & appears in the boundary condition (2.3.4a) (as a consequence of the

geometry of the problem) the outer solution can be constructed upon the expansion of the

flow field in d as'

ux=ux0+6 uxl+é‘32 U,...» P=P,+0P,+0° P, -,
u =’ﬁzo+6ﬁzl+6 U,

z

(2.3.6)

| The last indices of any variable denotes the order of that variable in .
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The leading term in the right-hand side of the expansion (2.3.6) is of order unity, O(8°), as
it 1s supposed to be, the second term is much smaller than the first one, the third one is much
smaller than the second one, and so on, since 8 is assumed to be much smaller than unity.
Thus, a solution of the problem up to two or three terms gives a very good approximation for
the flow field when 6 < 1, even if & is not very small.

To solve this problem at the first approximation, we neglect the terms beyond order
unity. In other words, in the expansion (2.3.6) & should be taken to be equal to zero. Thus,
for this limiting case, the cylinder would be in contact with the wall since 0 is the gap width
between the cylinder and the wall. For this case, both B.C.s (2.3.3a, 4a) cannot
simultaneously be satisfied at the origin. Thus, a first approximation to the flow for the outer
region would be the solution of Eq.s (2.3.1, 2) with B.C.s (2.3.3-5) in which & = 0 which is
valid throughout the fluid except in the neighbourhood of the origin, because of the
singularity at this point. Thus, an individual solution must be constructed for the small
portion of the domain around the neighbourhood of the nearby contact point (inner solution)
which is valid for this region that is, the equations of motion as well as the boundary
conditions on both solid surfaces bounding this region must be satisfied. By the way, for the
inner region solution, the boundary condition at infinity, given by (2.3.5), is not imposed
since this region only includes (and hence the solution of which is only valid for) a small
portion of the neighbourhood of the nearby contact point. Instead, it has to satisfy the
matching condition asymptote by requiring that the inner solution, as it approaches the outer
edge of the inner region, being matched to the outer solution as it approaches the origin i.e.
as X - 0.

2.3.2 - Flow in Inner Region

Since the clearance between the particle and wall is assumed to be very small, it is
justified to apply lubrication theory to analyze the flow field within the gap. Thus, to solve
the flow field for this region we expand the independent variables (the two dimensions, X
and %) and the dependent variables ({,, 0, p) in terms of the parameter 6 according to their
magnitudes in order to consider only the dominant terms (at each order in d) in the equations
of the motion to be solved for either order in &. It is obvious that in the inner region the

7 dimension has a lower magnitude than the X dimension and hence the space in this
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direction is too tight for the fluid to manoeuver, so that the lower magnitude of the velocity
would be the velocity in this direction, U,. In the gap the flow is subject to the strong shear.
This is because in the gap the velocity field falls from its maximum value (on the particle
surface) to its minimum value (zero on the wall) in a shorter distance than in any other part
of the medium. In other words the derivative of the velocity field with respect to the z-axis
reaches its highest value in the gap. Thus, the derivative of the pressure with respect to z
reaches its lowest value in the gap, according to Bernoulli’s law. Therefore, we may define
the inner variables denoted by a hat () as

X =6"’%, 7=987%2
(2.3.7)

~

u =u, u, =

X

fp—f_: 6—3/21':\)

Thus, the cylinder shape for the gap, (i.e., the lowest part of the cylinder) may be expressed

in terms of the inner variables as (c.f., Fig. 2.2)

1
5(1- 2) = -1+ (1-8%2)? (2.3.8)
or upon expansion of the bracket by the binomial theorem as
7 =1 Lo 6i4+ (2.3.9)
Z = _+_ —_ X + —_— e I

2 8

Then, upon introducing the expansion (2.3.7) in (2.3.1-4), the equations of motion for the

inner region are determined by

5%, op o,

- d—=0 2.3.10

2 ok oR (23.10)

op _o*a, _,00
4+ d—=+0"—=0 2.3.11

5% %% 0w (23.11
ou, ou

X4+ —%=0 2.3.12
% o (23.12)
The boundary conditions are [c.f., B.C.s (2.3.3, 4)]
u, =-1, 4,=0 onz=0 (2.3.13)

A2 A4
~ . ~ . X X 5

o =-0+80(2-1), §,=-Q% onz= 1+7+6§+0(6 ) @314
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Since & is very small, the expansion X = 2% in (2.3.7) indicates that, for X of order

unity, X has to be large enough to satisfy this matching location asymptote (i.e.,as d - 0, X
- =+ o, c.f., Fig. 2.2) . Because the flow field in the outer region is of order unity, the
dependent inner variables at the first approximation has also to match onto the outer

variables at order &° that is.

N

u,

—
—~

= U

~

30" Po

~

=P, (2.3.15)

N>t N>t X—0

in which « for the inner dimension means the location of the outer edge of the inner region,

as shown in Fig. 2.2. Thus, the expansion of the independent variables in (2.3.7) indicates

that for the solution to satisty the matching condition (2.3.15), we require

a.=0(%°), G4,=0(&"), p=0(x7) ask- to (2.3.16)

X z

2.3.2.1- Inner Solution at Lowest Order in 0

The inner solution may be constructed upon introducing an expansion of the flow

field as

1,'\]‘x:ﬁxo_*_Bﬁxl+'“') ﬁz:ﬁ20+6uzl+'“7 p:p0+6pl+”. (2317)

to the equations of motion given by (2.3.10-16). Doing so, and collecting the terms of the

same order in 8, at order unity they satisfy

azﬁ,\’o _ 5130

2 ok (2.3.18)
5%
% =0 (2.3.19)
Z
on, oOu,
5% + % =0 (2.3.20)
with boundary conditions
i,=-1, G, =0 onz=0 (2.3.21)
A -~ ~ A~ o) 1 A2
u,=-Q, 0, = -XQ onz=1+ 5 X (2.3.22)

and with matching condition
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0,=0(1), 10,=0(%), p,=0(&3) ask> to (2.3.23)

Eq. (2.3.19) indicates that to the leading term the pressure is independent of Z, so that Eq.
(2.3.18) may easily be integrated twice with respect to Zto give

u,=-—2 +Az+B (2.3.24)

Imposing B.C.s (2.3.21a, 22a) results in

B=-1, A=ty +(1-Q)a™ (2:3.25)
2 dx

where we have written

H=1+ % %2 (2.3.26)

The x-component of the velocity is obtained as
R 1 dp0
u

0T o dRk

Introducing its derivative with respect to X into the continuity equation (2.3.20) gives the

—0 (22 - Fi2)+(1- Q)2 -1 (2.3.27)

equation for the z-component of the velocity:

au 1 d pO A2 A 1 dpo AA A A -2
= Hz)+ — 1- Q)xzH" 2.3.28
Ty e )i (1-0) (2:328)
Integrating it with respect to Z and imposing B.C. (2.3.21b) results in
1 d2p0 ~3 1 A a2 1 dﬁo AAz 1 -2a 2
0., = -—Hz" |+—— = 1-Q 2.3.29
B0 =75 g2 [ “ 72 v o 2y (1 Q) (23.29)

Imposing B.C. (2.3.22b) gives the equation for the pressure:

2A . 1 N
L1 4P g, 1dPo g, (14 Q)= 0

12 dx° 4 dx

or

d[.,dp ~\ .

— | H =2 |=-6[1+ Q)& 2.3.30
dﬁ{ di} (1+8) (2339
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which is equivalent to the Reynolds equation occurring in the classical lubrication theory.

It may be integrated to give

A

dp,
dx

But the matching condition (2.3.23¢) implies that the pressure tends to zero as both X - +

- 31+ Q)2+ C)A (2.331)

and X — - . Thus, the constant C is determined by

p o -3(1+ 5)E(X2 + CJH>dk = 0 (2.3.32)

OIX > -

By the use of [c.f., (2.3.26)]

%2 =2H-2 (2.3.33)
and the integrals

) 1% 42 %

e 1 ()
Jirdi= g+ e\ (3334

) % 3% 32 %

Hdx = + tan_l(—) 2335
J " YSh T8 NG (2:339)

Eq. (2.3.32) may be evaluated as

~

X

—él~+ﬁtan_l(—\/—§) L (C-2)

X +3§(+3\/—2_t “( )A() °° 0(2.3.36
~ A~ an Nl = LI,
AH*> 8H 8 J2 ( )

from which C is obtained to be equal to - 2/3. Thus, the pressure is determined by

Py = —3(1 + ﬁ) LO (iz - —i—) A-d& = 21+ Q)xH (2.3.37)

To see how the matching condition is satisfied, for large value of X, H? may be expressed

as [c.f, (2.3.26)]

2= S 457 as X - to (2.3.38)
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Therefore, the pressure, determined by (2.3.37), for large distances from the origin (i.e. for

the outer edges of the inner region, c.f., Fig. 2.2) may be written as

- 8(1+ Q)%™ as X - +oo (2.3.39)

which satisfies the matching condition (2.3.23¢). Now, from the first and second derivatives

of the pressure, the x and z-components of the velocity, given by (2.3.27, 29), are obtained:

i, = (1+ 5){(413-3 i)z - ﬁi)—%}r(l—ﬁ)—ﬁ“i— l} 2340)

= (1+ 5);{(41:14 o) - (i -2A } Li-g)ae
(2.3.41)
In this manner, the inner solution of the flow field is determined by (2.3. 37, 40, 41), valid
up to order O [i.e. with an error term of O(d)], so that the smaller the gap width, the more
accurate the result. If we are interested in improving the approximation of the flow field, we
may solve the equations along with boundary conditions as well as matching conditions

20 Uy pz),... in the

expansion (2.3.17), by the use of the solution at the lower order (for each order), i.e. by an

A

constructed at the second, third, ... orderin & for(ﬁx1 U, P, ), (u

iterative procedure.

2.4 - Electroviscous Ion Concentrations

2.4.1 - Outer Region
The perturbation in ion concentrations, here denoted by '52 , for low Peclet numbers

may be expanded in this parameter as'

D‘—+D—2’622+- . (2.4.1)
2D,

This expansion may be introduced to the equation and boundary condition (1.3.60):

¢, = Pe’C,, + Pe¢,, + Pe

— - D +D, _ D +D, -~ _r_ -
Vz[czo + PeG,, + Pe’ —EE‘ c22+---i| = Pe—ﬁu-V[czo + Peczl+---]

IThe last indices of the electroviscous variables denote the order of those variables in Pe.
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. - - D, +D, _ . ~
7, -v[czo +Pey, +Pel ==L c22:| = PeF, (7, - V)5, - V(g -ﬁ)\sj
2 S,
and
- — ,D,+D, _ -
C,, + Pec,, + Pe Tczﬁ--- — 0 asT —> 0
2

in which F_; (J = P, W) is defined by (1.3.60¢). Collecting terms, of the same order, in Pe

results, at order Pe’, in
Vi, =0 (2.4.2)

with boundary conditions

n,-Vcyls =0, Cy— 0 ast > 0 (2.4.3)
At order Pe:
D, +D, - 0°c,, 0°C
Ve, =———21%-Ve or 2, 2L 2.4.4
21 2D, 20 ox>  07Z* 244)

with boundary conditions

—

i,-ve, |, = F.(8,-V)& V)3, §)

¢, —>0 as ‘ T ‘—) 0 (2.4.6)

N 7=(P,W) (2.4.5)

The normal derivative and the normal component of the velocity may be written as [c.f.,

(2.2.6)]

_ - (-0 -0 -0 J

Ny V=1- 128')?+1y8§i+128'i =5 (2.4.7)
0 0

N, - V=X__-+(Z-1-06)Z 2438

n, -V xa,)\(ﬂr(z 1 )82“ (2.4.8)

and

i, -U=1, 0, u=xXu +(Z-1-8)4, (2.4.9)

and at order Pe? :
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V¢, =1u-VG, = (ﬁ‘ aN +1, i) %, (2.4.10)
* OX 0Z

with boundary conditions

oo | %y
Ny VCyls, = 57 ISw = (2.4.11)
- s _0¢, ,_ o¢

N, -VC,ls, =X 832{ +(Z-1-8) 8;2 s =0 (2.4.12)
and

&0 as |[T|- o (413

The equation and boundary condition (2.4.2, 3) guaranties that C,, = 0 everywhere. Since
B.C. (2.4.3a) indicates that 520 has no singularity at the origin and since it satisfies the
homogenous Eq. (2.4.2) it follows that 520 is bounded everywhere. By the aid of the

divergence theorem, we may write

[%0(8, - V&, )as, = [, V25, dV + [[vE,[ dv

S, v v

Since C,, is bounded and 11} - V C,, = O on all surfaces, it follows that the integral on the
left-hand side is equal to zero and so is the first integral on the nght-hand side. In addition,
the integrand of the second integral on the right-hand side is always positive, so that the only
possible value for V G, is to be equal to zero, or equivalently 520 is a constant. And since
it has to satisfy B.C. (2.4.3b) too, it follows that C,, = 0 everywhere. Thus, it remains to
determine €, and C,, , the perturbation of ion concentrations, at order Pe and Pe’.

In order to solve the corresponding equations together with the boundary conditions,
one should obtain a solution as an outer solution in the parameter d at each order in Pe. But
for the first approximation (at any order in Pe), the purely hydrodynamic velocity appears
in the equation and boundary conditions, as mentioned in § 2.3, has a singularity at the
origin. Therefore, for the electroviscous ion concentrations and equivalently for the
electroviscous potential, a solution for the inner region is required. Because of this
singularity (as we observed for the case of the purely hydrodynamic problem), the main

contribution to the perturbation of ion concentrations comes from this region. By the way,
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for the inner region solution of the electroviscous effects (as for the case of the purely
hydrodynamic), the boundary conditions at infinity given by (2.4.6, 13) are not imposed
since this region only includes (and hence the solution of which is only valid for) a small
portion of the neighbourhood of the nearby contact point. Instead, it has to satisfy the

matching condition

A~

:(:2

g, (2.4.14)

X—0 X— o

2.4.2 - Inner Region

In view of expansion (2.3.7) and identities (2.4.7-9), the normal derivative of the
normal derivative of the normal component of the purely hydrodynamic velocity appeared

in B.C. (2.4.5) for the inner region are
- . = . 0 R 0.0 0. 0
(ﬁP-V)(nP-V)(np-u):[xaf(+(—6 ]+z—1)5§}[x—a—i+(—6 1+z—1)£}
1 3 352 1
{62(&&;&)%2(2-1)&2}6 2 (iﬁx—ﬁz)+0(6 2)

_ 0 o)L ) .-2o%,
(ﬁW-V)(ﬁW-V)(ﬁW-’ﬁ)z(B“ gj(s-‘ 55)(82%) =52 a;

the second derivatives in which are obtained as [c.f.,(2.3.40, 41)]

8;122 =(1+ ﬁ))z[lz(zﬁ“‘ _H7)a - (8617 - 307 )] J(1-QRA? @als)
;;z (%0,,) = (1+Q)x(8A - 6H?) (2.4.16)
Thus, if we expand the electroviscous ion concentrations for the inner region as

¢ =877, (2.4.17)

for the inner region, at order Pe it satisfies [c.f., (2.4.4, 5)]:

0’e, 0%,
2L, 5—2_9 (2.4.18)
FERAPTE

with boundary conditions
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a;; 320 = 0 Fyy [(1 + Q)x(-807° +307) + (1- fi)tz] (2.4.19)
oc oc,, . oc
_ a;‘ +5|: Gx (z-1) 8; :|Z ﬁ _ o

5 F, (1 DR(-8A7 + 3617 (1+ )]

and at order Pe’ [c.f, (2.4.10-12)]:

0, _0%¢ ol oc

P 248 ax§2 6”( i, aC; +1,, ;22‘) (2.4.21)
with boundary condition

oc¢ oC oc o¢C

6;2 . =0, - a; +5{ 2 1 (2-1) 22] =0 (2.4.22)

2.4.2.1 - Inner Solution at Order Pe
The equation and boundary conditions at the first order in Pe, given by (2.4.18-20),

suggest an expansion for 621 in 0 as
C,y=¢C_+9 C + - (2.4.23)
Upon substitution of this expansion in Eq. (3.4.18) and B.C.s (2.4.19, 20), it is observed that

¢, satisfies

GAH =0 (2.4.24)
02° o

with boundary conditions

o¢.
=0 =0 (2.4.25)
o

= |0 =0 (2.4.26)

Whereas ¢, satisfies

24 2A
aaf aa =0 (2.4.27)
V4
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with boundary conditions

ac»; 320 = Faw [(1 + Q)R(-8A +3017)+(1- ﬁ)xﬁz] (2.4.28)
and

5, .o, e
T3 TR e T Fcp[(”Q)x(“SH +307)-(1+Q)%A ] (2.4.29)

Eq. (2.4.24) together with B.C.s (2.4.25, 26) guaranties that
¢, = Func (%) (2.4.30)
Thus, Eq. (2.4.27) may easily be integrated with respect to Z to give

oc, d¢c,_ .

~ - a2t A(R) (2.4.31)
Imposing B.C. (2.4.28) results in
A= F,[(1+ Q)%(-8A7 +3A2)+ (1- Q)xA7] (2.4.32)
Imposing B.C. (2.4.29) leads to the following differential equation for &,
L g (1 B8 3017) + (1- DA -
M o o (2.4.33)
= By |(1+ Q)R(-8H +3017) - (1- Q)xA]
or

5 (ﬁ = ) = (B + By Y1+ Q)(-811 +3012) - (E, - B, )(1- Q)1
(2.4.34)

Integrating it once and then dividing it by H results in

dc;‘:im = (Fp+Ey )1+ Q)(4f1 - 32) 4 (Fy — B 1= Q)2+ CH 2439)

Now, in view of the integrals (2.3.34, 35) and

~

-l 40X
f H =+2tan 5 (2.4.36)
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Eq. (2.3.35) may be integrated to give

&, = (Ey + Ey )1+ B)RA +Cy7 tan” ﬁ

| 5 . (2.4.37)
+ (Fcp —Ew )(1 - Q)[E H'+ 7 tan ™’ E} +D
But, since
X 1 | A
tan ﬁ‘—‘i—z"——?-l-o ‘);(7 as x = o (2.4.38)

and since for large value of X any constants do not satisfy the matching condition (2.4.17),

D =0, and C must be determined in a way that 6m does not include the term tan™ %/5 ,
that is

1 ~
C=-—(E, ~E, 1-8)
From this it follows that

&, =(Fp +Ey J(1+ Q)xA + %(FP ~F, J1-Q)RA (2.4.39)

2.4.2.2 - Inner Solution at Order Pe?

Equation (2.4.21) implies an expansion in & for €, in the form of
Cp =022 #8778 + - (2.4.40)
Upon substitution of this expansion in Eq. (2.4.21) and corresponding boundary conditions

given by (2.4.22) we see that ¢, satisfies the same equation and boundary conditions as those

for ¢, given by (2.4.24-26), so that ¢, such as ¢, is independent of Z. Whereas ¢, has to

satisfy
76, 4G g, L (2.4.41)
+——-=1u ~ 4.
0z*  dx’ X0 dx
with boundary conditions
oc,
a5 |70 = 0 (2.4.42)
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a8, dé
E sefl Xg = (2.4.43)
Integration of Eq. (2.4.41) with respect to Z yields
oc, d¢ de_ ..
Pra s z+ % quodz+ C(%) (2.4.44)
Imposing B.C. (2.4.42) gives the value of C as
dc
Cd&
Imposing B.C. (2.4.43) leads to
d ( ~de ) de

1§
H =—=|0,dz 2.4.46
dx di) dx ! Hxo2 (24.46)

C= f u,,dz,_, (2.4.45)

the integral in which is evaluated as [c.f,, (2.3.40)]

H

[a,,d2=(1+ ﬁ’){(—?,ﬁ‘z + 4?1-3)(%23 ~ —;'HZZ) - %ZJ

O . (2.4.47)
c(-a) 2 - Ly - -20+a)

Thus, by the use of (2.4.39), Eq. (2.4.46) is integrated as

% = —é(Fcp + By )1+ Q) 2717 - %(FP ~Fy J1-0O%)%A7 + CH ' 2.4.48)
X
Its second integration is [c.f., (2.4.36)]

6y =5 (Fp + B Y1+ 0 7 45 (B~ B J1- 67 4 CYZ tan %+ D

But, electroviscous ion concentrations at O(Pe?) are symmetric with respect to the z-axis (i.e.
since they are proportional to U? by reversing the direction of the flow from U to -U and the
coordinate from X to -X, we expect to have the same electroviscous effects) and hence an odd
function of X cannot be included in the electroviscous ion concentration at this order,
resulting in C = 0. The constant D is also taken to be zero since, in view of (2.4.17, 40), it

does not satisfy the matching condition at order unity, either. Thus,C, is reduced to
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¢, =5 (o + By 1+ 0 112 4 (Ea B, J1- )R 2.4.49

Therefore, in view of (2.4.1, 17,23, 40, 39, 49), the electroviscous ion concentrations

for the inner region at the lowest order in & in the expansion (2.4.1) are determined by
o ] .
g, =5 2Pe[(Fcp +Fy J(1+ Q%A + 7 (Fe —Ey )1~ Q)XH"]]

)2

cP
(2.4.50)
e S LU (N R R (5

C

2D, 3

in which F_; and F_, are defined by (1.3.60¢) as

) ~
E, = ﬁ[(Dz - Dl)\]]J —4(D2 + Dl)ln(cosh%ﬂ J

(p, W) (2.4.51)

2.5 - Electroviscous Potential

The equation and boundary conditions for the electroviscous potential denoted here
by V , are given by relationships (1.3.61). The perturbation in ion concentrations also present
in this equation is already determined. The second term in this equation, ¢, satisfies the
same equation and boundary conditions as those for the electroviscous ion concentrations of
order Pe, given by (2.4.4, 6), in whichF_; and F, are respectively replaced by F(pP and

Fq,w »defined by (1.3.61f) . Thus, as for the case of electroviscous ion concentrations, if we

expand the electroviscous potential as

3

¥, =98 2y, (2.5.1)

by the aid of relationships (2.4.39, 50) for the inner region, it is determined by

¥, = a'gpe[(pr +E,y )1+ Q)RA7 + %(F\VP ~Eu)(1- Q)XHI}
(2.5.2)

+67'Pe?

D,-D,[1
3 3

) 17-2 1 ~2\y-1
=00 2 14 8) B 5 (R R -G
in which, in view of relationships (1.3.60, 61), F, ; and F, y, are defined by

90



D:"Dip 22 g 1=(P, W) (253)

F =—2 "\ .
v D,+D, ° D,+D, V!

2.6 - Force on Cylinder

The force per unit length, F experienced by the particle is the sum of the purely
F , that

hydrodynamic force IE‘H , of order unity and the electroviscous force, I, , of order e

1s
F =F,+¢€F,_, F =F,+¢'F, (2.6.1)

2.6.1 - Hydrodynamic Force
The hydrodynamic force is determined from the relationship (1.3.14). It may be

expressed in vectorial form as
(2.6.2)

F, = |c.fi,dS,
S
N, is the unit vector normal and outward to the cylinder surface, given by (2.2.6), as

A, = Xi, +(z-1-8)i, (2.6.3)

In view of the expansion (2.3.7), it may be expressed in terms of the inner vanables as

1
n,, =82%, n,, =[-1+8(z-1)] (2.6.4)
c , the stress tensor, is defined by
- ou, _ ou, oJu, _ <0 ou, 065
= s, Oy = — s O,=— Ta— .0.
x> O¢ 0z X P*<57
For the inner region it is determined by [c.f., expansion (2.3.7)]
3 Lo, ou, ou, 3 1 50,
- -5 2f 5 =8 "2+8° 2,5, =-8 p+25?
GX 6 8x Oz az aX p 52
(2.6.6)
Thus, at the lowest order in & we may write
= ou Kl ol , |-
i, = -8 [’A‘f’“_a_ i+ 2p,+5 % = > i, +0(s8°) 2.6.7)
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where P, and U, are given by (2.3.37, 40), from which

R0 _ (14 )it - 3072z 1)+ (1- G)f1- 263
and
%P, =2(1+ Q)2A-2)A? = 4(1+ Q)(-A2 + A (2.6.9)

—

Thus, the x-component of G - N, may be evaluated on the cylinder surface as

5[p a } s (@) (1 B)E ] = 257 o

At the first approximation the cylinder surface bounding the inner region is parallel to the
wall, and hence d§P = d§W = dX = & Y2dX. Therefore, the contribution to the force from
the inner region is obtained, upon the integration of the integrand and evaluating it from left

to the right edge of inner region (-, +=) as

A

\/Etan‘l %

Thus, in view of (2.2.1, 4) the dimensional x-component of the force is determined by

F, = -2+/21n \/%U (2.6.12)

—_

But, as for the z-component of the force, upon the comparison of the x and z-componentsof G - i,

X=+400 1

= 2278 2 (2.6.11)

X=—00

+o0 1 1
F = -267" [A'62dk = -25 2

—00

it follows that the z-component contains terms of an odd function of X so that its integration

with respect to X would be an even function of X and hence its evaluation between - = and

+ « vanishes, resulting in

F. =0 (2.6.13)

—
—

The flow field in the outer region is bounded, and hence g - ﬁP is of order unity.
Therefore, the contribution to the force from the outer region is of order unity and hence
should be added to the force. But even though it is not small by itself it is much smaller than

that of the inner region (which is of order &'?, as & ~ 0) and hence can be neglected in

comparison with the leading term.
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2.6.2 - Electroviscous Force

The electroviscous force, l~34* is determined by applying the Lorentz reciprocal

theorem, given by Eq.(1.3.69), which may be written in a vectorial form

F, = IEP-SP -dS, + IEW-EW-d§W (2.6.14)
S Sy

in which B ;- given by (1.3.59), can be expressed as

~

B, = [V -, (&, -V)]{—4 ln[cosh(%) }(Eztj)ﬁu wj(wz\J)}, J=P,W(26.15)

which represent the tangential derivatives [i.e. the total derivative, V, minus the normal
derivative, n, (ﬁ Y )] of the electroviscous ion concentrations and potential (times
physicochemical properties of the system) evaluated on the solid surfaces J. § ; 1s the stress
tensor due to the translation of a particle with unit velocity in the direction of force under
determination evaluated on the surfaces J.

The integrand of the integrals of the force in (2.6.2) may be expressed as

—
—~

BJ Y d§J = [ﬁJx(aJxanx + Eszng)-i_ IF§Jz(ananx + 6:Jzszz):IdFS’J (2616)

QU

The unit vector normal to the wall is TZ and that of the cylinder is given by (2.6.3), from

which the integrand (2.6.16) evaluated on each solid surfaces is determined by

By 6y dSy = (Buad wae + BusB was JdSy 2.6.17)

-
~

B, 6, -dS, = {Bp[6 X+ pul(Z-1-8)]+ By [F0aX + 5, (2- 1-8)]}d5,
, (2.6.18)
2.6.2.1 - Determination of B,

The normal derivative involved in the relationship (2.6.15) is determined by

N ??(?a “_a_) _7i—6_]?i
nw(nW-V)=lz kot L) [Tk =0 kg (2.6.19)
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:{5 = 2357 + (2 1)]—} (2.620)

+{§[-1+ 5(z- 1)]a_>*<+ 57 [-1+8(z- 1] :—Z}TZ

Introducing this in (2.6.15) and noting that C, and / , (c.f., 2.4.50, 5.2) are independent of
Z (and hence their values on the solid surfaces are the same and their derivatives with respect

to z vanish) results in
2 0 Vil Lo o
=A0 °1 ¢ % —4In| cosh )G +YwW, (2.6.21)

= o .0 v
B, = 7{6 2] — pre) i,X axH 4ln[cosh(-\%‘£)}62+ \]7P\|72} (2.6.22)

Introducing €, , given by (2.4.50, 51), and / , , given by (2.5.2, 3), to (2.6.21, 22) results in

—»

<!

B s P W, () 5 )L 1 (

A
EH +H

_E 2 -3 1 2 2

+8 2Pe’ §L2WP+W(1+Q) ain ~3L Wy (1-8?)

(2.6.24)
P~ K{B_zpe[LIPHW(l ' ﬁ);‘((_3ﬁ-2 ¥ 4ﬁ_3)+ LIPP-w(l‘ ﬁ)ﬁ(_ %I:I_l + ﬁ_zﬂ
' B%Pe{— %LzPHW(H 5)2(H—2 - ﬁ_3)_ %LZPP-w(l— 52)(ﬁ_1 - ﬁ_z)}}

EWZ =0
(2.6.25)
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Here L'J p+w [1 = (1, 2) denote the order in Pe, and J = (P, W) denote the evaluation on the

solid surfaces J] are defined by

L'y, =—4 ln[cosh(%} }(FP £F, )+ J(Fw + FWW), (1=P,W) (2626

N ¥,)|D,+D, _ D,-D,
LJPiW—{—4ln[cosh( 4” TR N (F, +F,,)

2.6.2.1.1 - Value of L'J .,

(2.6.27)

The constants — 4 ln(cosh v,/ 4) appearing in (2.6.26, 27) may be expressed as

a5 ] _
€ 4(6 2 +1) | 2
—_ + €
~4In > =y ,;-4In >
—4ln[cosh(&”:< Sl 1T
4 B D ]
e 4(1+e 2) | -
~ + ¢
-4In > =-y,-4Iln
Subtracting and adding these two identities results in
- ]
v, = —2(GJ - HJ), - 4ln{cosh(f” = —Z(GJ + HJ)
in which G ; and H  are define by
W KA
l1+e 2 l+e 2
G, =In——, H, = In———

From this F; and F\u | » defined by (2.4.51, 5.3), are determined by

-1

(2.6.29)

(2.6.30)

(2.6.31)

-2
E, = D_ (Dz _Dl)(GJ —HJ)+(D2 +D1)(GJ +HJ)] = D_z[DzGJ +D1HJ]

2

(2.6.32)
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-2
FWJ:D(D +D)[DG+DDG ~D,DH, DH]———[DG ~DH,|

(2.6.33)
Thus, '], , and L*T,, » given by (2.6.26, 27), may be expressed as
LIJPiW:Di{(G + H,)D,(G, + Gy )+ D,(H, £ Hy )] + (G, - H, )x
2
[D,(G,+Gy)-D,(H, ¢ HW)]} - Di[D G,(G, £ Gy )+ D,H,(H, + H,)|
(2.6.34)
LzJPirw - F (FcP - F )
(2.6.35)

(G, £Gy )+ D,(H, £ H, |

4
—BﬂDG+DH)

2.6.2.2 - Stress Tensor for Translation Parallel to Wall

The flow field for the translation of a particle with unit velocity parallel to a wall
1s determined by (2.3.37, 40, 41) in which Q is taken to be equal to zero. From them the
components of the stress tensor, determined by (2.6.6), evaluated on the solid surface J, at

the lowest order in § are obtained as

3 1
G, =-0 22%H +0(5‘2j

SJ
5, =5, =5 (407 -3A7)22-H)+H"' +0(s°) S, (2.6.360)
3 1
G, =—0 22%H7 + 0(6_5j
SJ

2.6.2.3 - Stress Tensor for Translation Normal to Wall
A suitable expansion of the variables for the flow field, produced by the translation

of the particle with unit velocity normal to and away from wall, is

B |

0z
i, P

X = 62X, Z

(2.6.37)

!
u =902, U

X
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Introducing this expansion to the Stokes equations, given by (2.3.1, 2), results in

30M0, 20,  _-2op
S 2 2 —§ 2 X
ax2 48 aZZ ) oS (2.6.38)
o', 82“ p
8 —£+87° =8~ 6.
Ea e 0z (2.6.39)
o (au + o, ) 0 2.6.40
& o (2.6.40)
The boundary conditions are
ua =10,=0 onz=0 (2.6.41)
4. =0, a, =1 onz=H (2.6.42)

Introducing the expansion (2.3.17) in this flow field leads to the same equations for the
leading term as those obtained for the flow field for the translation of the particle parallel to

the wall, given by (2.3.18-20), with boundary conditions
U,=10,=0 onz=0 (2.6.43)

a,=0, u,, =1 onz=H (2.6.44)

In view of equation (2.3.19), the pressure is independent of . Thus, integrating Eq. (2.3.18)

twice with respect to Z and imposing B.C.s (2.6.43a, 44a) results in

1 A2 A de

u,=—\z"-Hz)—— (2.6.45)
X0 2( ) dx

Differentiating it with respect to X and introducing the result to the continuity equation

(2.3.20), leads to the following differential equation for 0,

= = — — 2.6.46
o 2 { w2 )27 (2.6.46)
Its integration is
1 d2p0 ( l A Az) 1 ~ df)O A2
0, =- —— -~ X2 +C 2.6.4
u,, {df(z A > Hz 2x oS z (2.6.47)
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Imposing B.C.s (2.6.43b, 44b) results in the following differential equation for the pressure:

i(ﬁ d_ﬁo) ~12 8
= )" (2.6.48)

[ts integration is

df L
Lo 20+ o (2.6.49)
dx

The flow field is symmetric with respect to the Z -axis. Thus, the pressure must be an even
function of X which indicates that C = 0. In view of the expansion (2.6.37¢), any constants
can not be included in the pressure either to satisfy the matching condition. Inthis way, upon

integration of (2.6.49), the pressure is obtained as
p, = -6H (2.6.50)

Now, introducing (2.6.49) and its derivative in (2.4.45, 47) and noting that the constant C

in either of the equations is equal to zero, yields the components of the velocity as

i, = 68H7(2 - 2) (2.6.51)
§,, = —2(6H - 5A?)2* +3(4A~ - 3H2)7 (2.6.52)

Introducing the flow field (2.6.50-52), to the stress tensor, given by (2.6.5), written in terms

of the inner variable [by the use of the expansion (2.6.37)], leads to

&, = #5260 +0(37),
(2.6.53)

5, =06, = 6_%6xﬁ‘3(22— H)+0(57%)
5,,, = +572617 +0(57)0(3)|

S;

2.6.2.4 - Force Parallel to Wall

The integrand of the force, given by (2.6.17, 18), for the tangential component of the
force, is determined by the use of (2.6.23-25, 36) . The stress tensor for the translation of a

particle parallel to the wall, given by (2.6.36), is evaluated on the wall(Z = 0) as
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3 1
= —622§¢H"2+O(6 2)

GWxx
Gsz = 0-sz = 6 4 ﬁ
3 I
Gy, = -0 22807 +0( ‘5)
and on the cylinder surface z = Has
3 A
EPXX = _6 22 ( 2)
8:sz - GPZ\ = 6 2(2H H (60)
3 |
G, =-8 22817+ o[a 2)

(2.6.54)

(2.6.55)

The integrand of the force, given by (2.6.17,18), is obtained as [c.f., (2.6.23-25, 54, 55)]

wu
Qzu

LW,y (1

BP'GP

5, =13 TPUB (1+3) 6017+ 2017 - 16117)

y-dSy = K{S%Pe[L‘WHW(H Q)(-1287 + 280 - 16A79)

)( 207+ 6H - 4131‘4)] + 6'2Pez[odd function of f(]} dx

(2.6.56)

(2.6.57)

4+ PP_W(I — ﬁ)(—f{'z +4H? -4H™ )]+8‘2Pe7' [odd function of i]}df(

The force is obtained by the sum of the contribution from all individual points on the solid

surfaces bounded the inner region, upon the integration from the left edge (f{ = - oo) to the

right edge(f( = +00) of the inner region. Thus, in view of integrals (2.3.34, 35, 2.4.38),

- R(IA_3 5 . 1A) N2
=—{-H"+—=H"+_-H |+ ——tan
IH =3 g 16
M‘—s A_E Y -4 Z"—B EA -2 _:EA-I)
£H dx—g(H e

T [odd functions of f(]df( =

| X [F 5721
Flo™ 16 (2.6.58)
L322 1(_x_) to 35{2n
128 "\ 2w~ 128 (2639)
{7 =0 (2.6.60)

-0
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the x—component of the force, given by (2.6.14), is obtained as
Fy = APed 2 [L‘ oo (14 0 )(- 611 + 20017 - 1611°)

PP, (1= Q)(- 1172 + 407 - 4) ) o

5+CO

#2Ped 2 [[LW,,, (1+ Q)(- 1287 + 2871 - 16H7)

FLW, o (1-Q)(-287 + 67 - 4117 |as

3 (-9 25 35 (-1 35
= APed 2| L'P,, (14 Q)(—+———)+L'PP_W(1—Q)(?+5 Zﬂ 27

4 4 8
9 35 35 ~
+1Ped 2|1 P+W(1+Q)(7+T—?)+L1WP_W(1—Q)( 1+— )J\/_n

(2.6.61)
By the use of definition (2.2.5e, f), the dimensional force per unit length experienced by the

particle, given by (2.6.1), 1s

F=F +(ﬁ°—klj2 UE (2.6.62)
T 22 a nur, 0.

Thus, the x-component of the total force is determined by [c.f., (2.6.12, 61, 62, 2.2.1, 5)]

2 5
g,€,kT 2c, akT aU( a2
F, :—2ﬁnn\/7U 2m —— | nU=— (—j X
Z(az e) c, nU D, \h
| . aQQ) 1, aQ)
§(3LPP+W+LWP+W) 1+ )+ 7 PP 1=

or, in view of (2.6.34), by

o (e D)V
:—2\/—7”]\/‘ hz\/HX

(2.6.63)

(z e:)4c00
(G, +Gy )+ (3HPD+ HW)(HP +Hy ) |(U+aQ) (2.6.64)
2

[21()} (Ge-Gu )+ 2§P(HP-HW)}(U-aQ)}

1 2

(3G, + Gy,
Dl
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It is of interest to note that for small but equal surface potentials and equal ion mobilities
(e.g. K" and CI'), the second term in square brackets on the right-hand side vanishes. The

first term in square brackets, in view of the relation between the ionradius, a ., and diffusion

constant,
D= KT , (2.6.65a)
4nna,
reduces to
4nn(zle)zai§2
(kT)3 , (2.6.65b)
In deriving (2.6.65b) the expansion (1.2.8¢) and
x> x x°
ln(1+x)=x—7+?-——4—+--- (2.6.65¢)

have been used. Thus, the electroviscous drag is proportional to ion size, similar to

electroviscous drag on an isolated sphere, and scales with viscosity and (>
2.6.2.5 - Force Normal to Wall

The integrand of the force given by (2.6.17, 18), for the normal component of the
force, is determined by the use of (2.6.23-25, 53). The stress tensor for translation of a

particle normal to the wall, given by (2.6.53), is evaluated on the solid surfaces as
~ ~ ~ ~ _e-2.172 -1
Opo =0py = O = Owg = t0 6H +O(6 )

7z W
; 1
26xH? + O(ﬁ_zj (2.6.66)

~

O py, =0p, =0

Al

; 1
W = Oy = 0 26xH 7 + 0(6 2)

From this, and (2.6.23-25) the integrand (2.6.17, 18) is evaluated on each solid surfaces

with the result

-

B, -é W -d§w = A {6 ’3Pe[odd function of )A(]

. 5-§Pez[gL2wp+w(1+ Q) (- U W, (1- @) (f - )] o
(2.6.67a)
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]:?;P -gp -d§P = A {6 ‘3Pe[0dd function of )2]

+6_§Pe2[8L2PP+W(1 + Q) (A - A Jedr?p,  (1- 02)( - 1)) Jag

(2.6.67b)
Thus, the normal component of the force is determined by [c.f,, (2.6.13, 62, 58-60]

o V2n (e (KT)' ava
: (zle)4Dlzcw hz\/H

{1—56—(L2PP+W + *W,., (U +aQ)*+ %(LZ’PP_W + W, , J(U? - a%Q 2)}

(2.6.68)
or, in view of (2.6.35), by
5 _

o _2n(e) (KT) ada | ((—}hﬂ +(GW +HW”2(U+3Q)2

* 8 (ze)'e, Wvh|{\D, D,/ \D D,

2 2
G, H G H

+4 (D—}:_'_Bzﬂj - _VIV+52E (Uz_azgz)

(2.6.69)

in which(Gp. Gy /) and (Hp, Hy, ) , given by (2.6.31), in view of definition (2.2.4b), may be
expressed as

S 216

+ T 2kT 1+ e 2kT
l—ez—, H=lh——— J= (p, W) (2.6.70)

2
In the formula (2.6.64, 69, 70),¢ is the relative permitivity of the medium (dielectric

G, =In

constant), € , the permitivity of the vacuum (€ €, is the permitivity of the medium), n the
viscosity of liquid, (kT) the thermal energy, z, the ion valency of either species, e the charge
of aproton, ¢ the number ion bulk concentrations,{ , and( ,, the {-potentials of the particle
and wall, D, and D, the diffusivity of counterions and coions, respectively; a is the cylinder
radius, h the clearance between cylinder and wall; U is the translation velocity of the cylinder
and Q its angular velocity for its rotation in the clockwise direction.

It is of interest to note that for ions with the same mobility and for small but equal

surface potentials of the wall and the particle, Eq. (2.6.69) reduces to
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F - 5y2n’ (grgo)znzafg4 av/a
8 ¢, (kT)’ h’h

It can be seen that the normal component force varies linearly with ion size squared (ai2 ) :

(U+aQ)’ 2.6.71)

[t also varies linearly withn ?and it proportional to the fourth power in {-potential.

2.7 - Discussion

2.7.1 - Matching Conditions

The inner solution of the perturbation of ion concentrations obtained in § 2.4 has to

match to the outer solution by requiring that

A

x50 — ©2

(A (2.7.1)

X too

To investigate how it works, for large values of X, the perturbation of ion concentrations of

order Pe, given by (2.4.23, 39,) and of order Pe?, given by (2.4.40, 49), may be written as

&l iim = (Fp = By J1- Q)& (272)
and
el o %(Fcp ~Fy J1-02 )% 2.7.3)

Thus, in view of (2.3.7, 4.17), the matching condition (2.7.1) gives

E21 %0 7 6_1(Fcp - ch )(1 - ﬁ)iﬂl (2.7.4)
and
Tleno = %SO(Fcp ~-F, )(1 - ﬁz)i‘z (2.7.5)

But, the electroviscous ion concentrations for both orders in Pe in the outer region must be
of the same order in &, since otherwise (noting that the flow field in the outer region is of
order unity) Eq.s (2.4.10-13) for the perturbation in ion concentrations at order Pe? does not
work anymore. In other words, the expansion (2.4.1) breaks down (i.e. it is not uniformly

valid). From this it follows that for the matching condition to be satisfied at order 6", in
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deriving Eq. (2.4.49), for ép , the constant of integration, D, must be included, resulting in

Chlsne 2> 87D (2.7.6)

By the way, evaluating this constant is not required, since in deriving the electroviscous force
only the derivatives of the electroviscous ion concentrations [c.f,, (2.6.21, 22)] are needed

and hence the derivative of the constant D vanishes.
2.7.2 - Existence of Quter Solution

To investigate for the existence of an outer solution that satisfies the matching
condition (2.7.4) we may use a tangent circle coordinate system ({, p) which best describes
the geometry of the problem for the outer region (c.f., Fig. A1l). This coordinate system is

discussed in Appendix A with the transformation

- 2p - 2¢
x=m, sz, 0<C<1, — 00 < Y < +00 (2.7.7)
or equivalently,

2X 27
- =% 0<(<1, —oo<p<+® 27.8
hei TRz ; : (2738)

The cylinder surface is given by = 1and the wall surface by = 0, the origin by (C =0,
L= ), and the far distances from the origin by { = p = 0. The normal unit vector
outward to the cylinder is— iand that of the wall is+ _1; . Thus, the electroviscous ion
concentrations of order Pe, given by (2.4.4-6), may be written in this coordinate system as

[c.f, (A.30)]

2~ I
0°¢c,, 0°¢,

+ =0 2.7.9
ac2 aHZ ( )
with boundary condition on the solid surfaces [c.f., (A.29)]
0¢,, dc,;
—2L 9 onl =0, =0 on{ =1 (2.7.10)
ag - o
and at infinity
¢, >0 as(Q,u)—) 0 (2.7.11)
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and with the matching condition [c.f., (2.7.4, 7)]

1 ~
S Lo E(FCP ~Fy J1-Q)u (2.7.12)
[ts solution is
T, = %(FP ~Fy J(1-Q)u (2.7.13)

which may be expressed in Cartesian coordinates as [c.f., (2.7.8)]

<, = 6"[Pe(Fcp ~F )(1- §)§7§’z_2 + O(Pez)} 2.7.14)

To determine the outer solution at order Pe? the solution of the flow field for the outer region
involved in Eq. (2.4.10) is required. It is easily observed that this solution satisfies the
matching condition (2.7.4).

From the above discussion, it follows that the contribution from the outer region in
electroviscous ion concentrations and equally the electroviscous potential is of order &' for

non-identical particle and wall surface potential, otherwise it is of order unity.

2.8 - Results and Conclusions

For a charged system, the cylinder experiences an electroviscous force of order
€ (e s the ratio of the double layer thickness to the cylinder radius), resulting from the
tangential movement of the ions in the diffuse double layers on the solid surfaces caused by
perturbation of the electrical field. For an uncharged system, Stokes equations predict no
force on the cylinder in the direction normal to the wall [c.f,, (2.6.13)]. Whereas, for the
charged system the cylinder experiences a normal component of the force, determined by the
formula (2.6.69). The drag component of the purely hydrodynamic force for the inner region
is of order &' [c.f., (2.6.12)]. Because of symmetry, as a first approximation, it is
independent of the rotation of the particle. For a charged system, the particle experiences an
additional force (tangential component of electroviscous force) of order € * determined by the
formula (2.6.64). The tangential component of the electroviscous force is of order Pe (Pe is
the Peclet number based on the radius and translation velocity of the cylinder, and diffusity

of counter-ions), or linearly depends on the velocity, and it is of O(8°?) in terms of the
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dimensionless clearance [i.e. O(Ped>?%)]. The normal component of the force is of order (Pe’
6-5/2).

The normal component of the force may be written in dimensionless form as

- 2r
F, = n €' APe?d*f, (2.8.1a)

where f, is a function of {-potentials, the ratio of diffusivity of ions, and the linear and angular

velocity of the particle, defined by
2

f =5 (1+ Q)

Dl Dl
GP+D—HP + GW+D—HW

2 2

) ) (2.8.1b)
Dl Dl ~ 2
+4/| Gp+ 5 H, | | Gy + SHHy, (1-Q?)

2 2

The function f, is plotted versus the ratio of the diffusivity of ions in Fig. 2.3 for the
translation and in Fig. 2.4 for the rotation of the particle for three different ratios of (-
potentials, {,=0.5¢,, ¢,=C,, and (=2 . The valency of the ions is assumed to be one, the
temperature of the medium is room temperature and (,, is taken to be -100 mV. Each curve
has a minimum. The location of the minimum depends on the magnitudes of the {-potentials.
The minimum can be either zero or negative. For identical {-potentials the minimum is zero
for any combination of the linear and angular velocities, and for this example it occurred at
D,/D,=2.4791. For the curve {,;=0.5C,, f,\4, = -0.1434 for translation and {4, = -0.1037 for
rotation of the particle and they correspond to D,/D,=1.9344 and D,/D,=2.2788 for the former
and latter, respectively. For the curve { =2, these values are (f,\5, =-1.4846, D,/D,=4.1662)
for translation and (f,,,,, =-1.7199, D,/D,=3.2453) for rotation of the particle. The tangential
component of the force depends linearly on the ratio of the diffusivity of ions. For small -
potentials and for equal mobilities of ions, as a first approximation, the tangential component
of the force, is linearly proportional to viscosity of medium,n, ion radius, a;, and ¢, whereas
the lift component is proportional to 1?, ai2 and {*. For two special hydrodynamic cases,
namely for U = —aQ and U = aQ, for the normal component of the force, the present theory

[c.f, (2.6. 69)] predicts no force for the former and four times the force (because of the
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proportionality to the square of the velocity) produced by either the rotation or translation of

the particle for the latter.

For identical particle and wall {-potentials, the present theory predicts the normal

component of the electroviscous force of magnitude [c.f, (2.6.69)]

sv2n (g,6,) (K1) ava (G H,

b= (ze)'c, h¥h\D "D,

) (U+aQ)’ (2.8.2)

Warszynski & van de Ven (2000)’s theory for the same conditions, given by (1.4.5), predicts
a force half as large. Their theory, given by (1.2.33), at the leading order [1.e. at 0(64) ] for
an uncharged particle but with the charged wall predicts a normal component of the force of

magnitude

V2r ( )(kT ava Hy 2 2
FZ: 8 (213)4000 hz\/H[Dl Dzj v

(2.8.3)

which is the same as that predicted by the present theory for the same conditions [c.f,,
(2.6.69)]. For an uncharged wall but with a charged particle the present theory for the

translation of the particle predicts a force of order €* of magnitude

0v2r (g,8,) (KT Va (G Hy j U

E="% (ze)'c, BVh\D "D,

but, Warszynski & van de Ven (2000)’s theory predicts no force of order e*, only a force of

(2.8.4)

order €° (i.e. just the contribution from the perturbation in potential) of magnitude

7727 (8rs:())3(kT)4 ava [Gp B Hpszz

i 16 (zle)()ci h’vh\D, D,

(2.8.5)

which makes no physical sense, since for both cases [i.e. (y,=0, ¢, # 0) and (¢, * 0, ¢, =
0)] we expect to have a perturbation in the flow field, which must result in a lift force of order
e*. From these three comparisons it follows that they obtained the force by considering only

the tangential movement of the ions in the diffuse double layer on the wall. This is clearly
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verified by the relationships (2.6.67a, b) which indicate that for identical ¢-potentials half of
the contribution to the force comes from the wall and the other half comes from the particle
surface and hence by neglecting the latter they obtained only half the force for identical C-
potentials, the exact value for the case when y , = 0, and no force fory , = 0.

The drag component of the force, given by (2.6.64), is exactly the same as that
obtained by Cox, given by (1.2.32d). For the normal component, Cox’s theory, presented in
Wu et al. (1996), given by (1.2.32a), for the translation of a particle predicts a force of

magnitude

o V21 (6,6,) (KT)* ava
©8 (216)4000 hZ\/HX

2 2
G H G H G H G H
9 —& —P) +(—W+—i] +IO( L+ PJ( Yoy WJ U’
(Dl "Dp,) "\p, "D, D, D,)\D, "D,

(2.8.6)

which is the same as that determined by (2.6.69). But, for the rotation of a particle his theory
predicts a different value for the force as can be seen (for a special case of the problem) by

comparing formals (1.4.4) and (2.8.2). Cox’s theory for just rotation of a particle predicts

F - V2 (1"r80)2(kT)3 aa
TE (e WAR

2 2
G, H] [Gw ij (GP HP)(GW Hw) )
—+ | -3+ -2 + + a()
(D1+D2 Dl DZ Dl D2 Dl DZ ( )

(2.8.7)

which indicates that for a charged particle but uncharged wall (i.e. G,, =0, H,, = 0) the force
is positive, for an uncharged particle and charged wall the force is negative, and also for
identical {-potentials the force is negative, which does not make sense.

In deriving the present theory, in all calculations from the beginning to the end, the
dimensionless linear velocity (1) and angular one (ﬁ) appeared combined [i.e. either as
(l -Q ), (1 +Q ) or their product], and hence if the derived coefficient of the linear velocity
in the force is correct, the coefficient of the angular velocity must be correct, if at the first step

(i.e. in the hydrodynamic part) they combined together correctly and in addition if the new
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combination of them, (1 + ﬁ ), which is involved in the calculation after the integral (2.4.47)
1s correct. It is easily verified by observing that the boundary conditions (2.3.13, 14) are true
and they are also satisfied by the flow field, given by (2.3.40, 41), and the integration (2.4.47)
is correct. In Cox’s original formula, presented in Wu et al. (1996), instead of the linear and
angular velocity, U and aQ, the velocity of the nearest point of the cylinder to the wall, V (V
= U - aQ), and its angular velocity, aQ, appeared. Therefore, this discrepancy may be
explained by the possibility that Cox obtained the hydrodynamics of the problem in a fixed
coordinate system instead of the moving coordinate system used here, but to remove the time
dependency of the electroviscous ion concentrations which appeared at O(Pe?) [c.f., Eq.s
(1.3.60a, 2.4.10)] instead of subtracting the linear velocity of the particle, U, from the x-
component of the velocity, he subtracted the velocity of the cylinder at the closest point to the
wall, V = U-aQ, which is obviously not correct. In other words, his calculation up to O(Pe?)
is correct, and hence the derived drag component of the force is valid for both translation and
rotation, but for the normal component, in addition to the linear velocity, an excess angular
velocity (for removing the time dependency) is involved in the Eq. (2.4.46) to be accounted
for the invalidity of the normal component of the force for the rotation of the particle. This
is verified by recalculating the problem after adding the term() in the x-component of
velocity appearing in the integral (2.4.47).

The purely hydrodynamic force determined by (2.6.12, 13) is the same as that obtained
by Cox and Warszynski & van de Ven (2000).

From the above discussion it can be concluded that Cox’s theory for the drag
component of the electroviscous force is valid for both translation and rotation of a cylinder
parallel to the wall, but its normal component, reported in Wu, ef al. (1996), is valid only for

translation of a cylinder. Warszynski & van de Ven’s theory (2000) is valid only for a

charged wall, but with an uncharged cylinder under translation parallel to a wall.
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Chapter Three
Electroviscous Sphere-Wall

Interactions
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3.1 - Introduction

Observations by Alexander and Prieve (1987) of the change in the distance to the
wall of a9 pm spherical latex particle moving parallel to a glass wall (with velocity 50 pm/s)
in a slit-like flow cell apparatus containing a glycerol-water solution attracted the attention
of scientists to explain this interesting phenomenon. The pioneering work was by Prieve &
Bike (1987) who attempted to formulate a theory based on the lubrication approximation.
They concluded that the discrepancy between experiment and their theory was due to the
invalidity of the lubrication theory. In their latest papers which appeared in the literature
in1995, they released the lubrication theory, and obtained a complete solution of the
problem. Although they could improve their results, the theory underestimated the force by
several orders of magnitude. Many other theories appeared in the literature in the late
eighties and early nineties, none of which could predict the right order of the force. As
mentioned in Chapter one, the common problem encountered in these theories is that it is
assumed that the perturbation of potential determines the force by applying the Maxwell
stress tensor, however this 1s not the dominant contribution to the force. Although Cox
predicted the right order of magnitude of the force in his general theory(1997), the problem
of the sphere-wall interactions remained unsolved. The objective of this chapter is to present
a solution for the problem of a sphere which 1s under translation and rotation with a small
clearance between particle and wall for low Peclet numbers. As for the case of cylinder-wail
interactions, the assumption of a small clearance allows an easier analytical approach to
solve the hydrodynamic part of the problem and equally the low Peclet number assumption
allows one to analyze the electroviscous part by applying the usual procedure of matched
asymptotic expansions. Since hydrodynamics is involved in the electroviscous equations,
the electoviscous effects are determined in the expansion of both the clearance parameter and
the Peclect number.

Following the problem statement, the inner solution of the purely hydrodynamic
problem in an expansion of the small clearance is presented in § 3.3. The perturbation of ion

concentrations in an expansion of low Peclet number is given in § 3.4. It contains outer and
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inner regions, and inner region solutions at orders Pe and Pe?, respectively. The perturbation
of potential is determined in § 3.5. The ectroviscous force is obtained in § 3.6. It includes
the tangential derivative of the electroviscous ion concentrations and potential, the
determination of the stress tensor for the translation of the particle parallel and normal to the
wall and applying them to obtain the drag and lift components of the force. Finally, results

and conclusions are given in § 3.7
3.2 - Problem Statement

Consider a charged spherical particle translating parallel to a charged stationary plane
wall with velocity U, and rotating around its diameter, parallel to the wall and normal to U,
with angular velocity , in a symmetric electrolyte at rest, as shown in Fig. 3.1. The radius
of the sphere is a, and the gap width between the sphere and wall is denoted by h. The
surface of the particle is given by S, and that of the wall by S,,, the particle surface potential
by C p and that of the wall by C,,. The purely hydrodynamic problem is denoted by the flow
field (ﬁ, p), the electroviscous ion concentration (of either of co-and counter-ions) by ¢, and

the electroviscous potential by y ,.

Fig. 3.1- A charged sphere under translation and rotation near a charged plane wall.
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The (x, y, z) coordinates with unit base vectors ( 1, 1y , 12) constitute a right-handed
rectangular Cartesian coordinate system having their origin on the wall, defined by z = 0.
The z-axis passes through the sphere center, O, whose coordinates are (x =0,y =0,z=a +

h). The particle surface and that of the wall may be written in this coordinate system as

z-a-h=1t \/az—(x2+y2) onS,, z=0  onS, (3.2.1)
The + sign corresponds to the upper part of the sphere and the - one to the lower part.
Associated with this coordinate system is a cylindrical coordinate system (p, 6, z), described
in Appendix A.

In order to make quantities dimensionless, shown with a tilde, the length scale 1s
taken to be identical to the radius of sphere and the characteristic velocity is taken to be the
particle translation velocity. Thus, quantities are made dimensionless according to the
relation (1.3.2) in which L =aand V=U. From this it follows that

~ —_~

O-,a0-225-2p
= =, = c =
’ U

h aU 2c akT - = { g €,kT
a’ -

where 8 is the dimensionless gap width between particle and wall.
The surfaces of the particle and wall, given by (3.2.1), may be expressed in the

dimensionless coordinate system as

7-1-8=1,1-(¥+3?) onS,, Z=0 onS, (3.23)

p

and the unit vector outward to them, n; (J =P, W), as [c.f,, (A.13)]

—_
Py

f, = XL, + ¥, +(Z-1-8)i, onS,, fiy=1i  onS, (3.2.4)

It is assumed that the Reynolds number based on the velocity U, the sphere radius,
a, and the fluid viscosity, v, defined by (2.3.1), is much smaller than unity. Therefore, the
governing equation of motion around the particle may be considered the Stokes equations

which may be written in dimensionless form as
VA -Vp=0 (3.2.5)
V-u=0 (3.2.6)
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By translating the coordinate system (%, ¥, Z) with velocity ;x the problem reduces to a steady
state one in which the particle just rotates, with angular velocity (2 ,and the undisturbed fluid
and wall translate with velocity — —1; . Doing so, the corresponding boundary conditions on

the sphere may be written as

S Lo L
U=U i +U1+0,,=QxT=Q Q Q, |= onsS,
o e e (3.2.7)
X v (Z-1-39)
[(z-l-ﬁ)gy-yﬁzTX—[(*z“—1—6)ﬁx—'xﬁz]fy+['yﬁx—iﬁy]12
Letting
Q=01+0,i+0,,=0L+Qi +0i, (3.2.8)
it may be expressed as
i, =(Z-1-98)Q, T, =0, i, =-%Q0  onS, (3.2.9)

and those on the wall (Z = 0) and at far distances (as |T|> o ) may be expressed as
u, =-1, u, =0, = on Sy, (3.2.10)

q=-1, U =0, U =0 as|T|l»> o (3.2.11)

z

A search for a solution of the problem for the case when the particle is very close to

the wall but the double layer thickness is much smaller than the gap width, that is

1 h
e=—<<0=—<<1 (3.2.12)
Ka a

along with the condition of low Peclet number, Pe << 1, is considered in this chapter.
3.3 - Hydrodynamics

3.3.1 - Flow in Inner Region

As for the problem of cylinder-wall interactions, since the clearance between the
sphere and wall is very small, it is justified to apply the lubrication theory to analyze the flow
field within the gap (the inner region). Therefore, we may define the inner variables denoted

by a hat (") as
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~ A A [~ A~ A ~ 172 A ~ -3/2 A (3.3.1)
U =u.,u =u (u =u uezue), u,=95"u p=0"p

Thus, the creeping flow equations for the outer region written in the Cartesian coordinate

system are
0°U, N O’U N o’t, Op 1y
& oy T o ok (33-22)
o’u, o'u, U, op
st —— Y Y= ===, 3.3.2b
& oy o oy (3.3.20)
o1, N vl . o*u,  op 1y
& oy T o ew (3.2
aﬁx+C’9ﬁy+aﬁz—0 3.3.3
X o 0z 6-3-3)
And for the inner region they are
ot ota, oM op
4+ =+t | == 334
2 & T )T ek 634
2A 24 24 ~
aAuzy+8 6Auzy+aAuzy :813 (3.3.5)
0z oX oy oy
G o, &h ) p
) Z+6{ L+t == 3.3.6
o7 & o) % 3.36)
%, | %, + o, (3.3.7)
=+ = 3.
ox o0y 0z
The corresponding boundary conditions, given by (3.2.9, 10), for the inner region are
i, =-[1+8(1-2)]Q, §&,=0  0§,=-30 onz=H (3.3.8)
4, = -1, i, =0, a,=0 onz=10 (3.3.9)
where we have written [cf., Eq. (3.2.1)]
. L/, . 3
2 =1+ 5(x2+y2)+0(6)sp -A+0() (3.3.10a)
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in which H defined by

n L., . 1,

H=1+§(x2+y2):1+5p2 (3.3.10b)
is the surface of the particle for the inner region. The flow field in the outer region (outside
of the gap) is bounded (i.e. it is of order unity) as 6 - 0, so that the inner flow field has to
match onto the outer flow at order &°as (X, §) ~ . This means that the matching condition

1s required to satisfy [c.f., (3.3.1)]

4,=0(1), a,=0() 4,=0(p), p=0[p>] as(p)—> = (33.11)
Expanding the flow field in 0 as
u, =10, +6ﬁ‘+~-~, O =u.+0u.,+---
Ax AxO A‘l Ay A y0 ) yl (3312)
uz:uzO+6uzl+“.’ p:p0+6p1+"'
the equations of motion at the lowest order satisfy
0’4, Op
20 - By (3.3.13)
0z 1)
0’0, op
Azyo _ pf) (3.3.14)
0z oy
5
Po_g (3.3.15)
0z
ou ol ou
X0 0,0 (3.3.16)
0x oy 0z
with boundary conditions
i,=-Q, i,=0, i, = -XQ onz=H (3.3.17)
U,=-1, i, =0, U, =0 onz=0 (3.3.18)

and with matching condition
~A ~ A A ~ ~ _3 ~ A
i, = 0(1), 8,0 = O(1), = O(%,9),p, = O [(x 9) ]as (%,9)> » (33.19)

Eq. (3.3.15) indicates that p, is independent of Z, so that Eq. (3.3.13) may easily be integrated

twice with respect to 2 to give
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>

1{0p,) .
“’:5( axo) "+AZ+B

Imposing B.C.s (3.3.17a, 18a) gives the value of A and B:

1(0p,) » /s
B=-1, A:-—(—%jm 1-Q)H™
2\ 0X ( )
From this Gl __ is obtained as
A 6p0 - ~\rY-1~
i, = ( ax)( ~Hz)+(1-Q)A"2-1 (33.20)
Similarly, ﬁyo 1s obtained from Eq. (3.3.14) as
A~ 1 0Py
u, = 55 (z - Hz) (3.3.21)

Differentiating Eq. (3.3.20) with respect to X, Eq.(3.3.21) with respect to § and introducing

them to the continuity equation (3.3.16) yields a differential equation for ﬁzo
—f—(’:_—( 2o p“j(z —Hz)+—( Po ¢+ %o j +(1-8)xA722 (3322)
oz 2\ 0X ay 2\ 0x oy

from which and upon imposing B.C. (3.3.18c¢), 01 is obtained as

5°p, 9P, 1.5) 1[0y, 8Po.)er 1/ ~\onan
i, - - 2( Po )(—AB—EHZ) [p"x poyjzz+—(l—Q)xH'zzz

ox>  9y° J\3 4\ 0% oy 2
(3.3.23)
Imposing B.C. (3.3.17¢) leads to a differential equation for the pressure p,,:
1 ap 62 J (5p0 0P, A) 2 ~\a
— H’ +— X H +{1+Q)x=0
( 0% 03 ox 8y (1+0)
or
~ . Op P,
i(m ap}j 0 (H3 j +6(1+Q)x = (33.24)
0% ox/ 0Oy ay

which is similar to the Reynold’s equation in the lubrication theory. The matching condition

(3.3.19d) suggests to seek for a solution of the form
po=a KA +B §H (3.3.25)
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But, since the flow field is symmetric with respect to the (%, §)-plane, the pressure cannot be
an odd function of §, so that the second term on the right hand side is rejected. Differentiating

(3.3.25) with respect to X and ¥ results in [c.f., (3.3.10b)]

op A .

;;0 =« (H?-28°A7) (3.3.26)
op At

L (3.3.27)

ay
Substituting these in Eq. (3.3.24) leads to the following expression:
~30 k-20 &+ 6(1+Q)%=0

from which it follows that

6

a=—(1+Q , =0
S(1+0) p
Thus, the particular solution of the pressure and its derivatives are determined by
6 ~ A

B, = 5(1 + Q)& (33.28)
af)o 6 ~\ ({1-2 ~2771-3 6}30 12 ~ )5 2113
—=—=1+Q)\H" -2x"H"), —=———\1+Q)xyH 3.
= =51+9)( ) 5 =5 U+ QRIAT @329)

As for the general solution, it is more convenient to transform Eq. (3.3.24) in a polar

cylindrical coordinate system by the aid of relationship (A.2) in Appendix A. Doing so,

results in
0°p, 0°p (3p3 j op
2 0 0 0
Since [c.f., relation (3.10b)]
A 1., 1., "
H=1+Ep —>Ep asp — © (3.3.31a)

for large values of p, Eq. (3.30) reduces to

o’p, O°p op
2 0 0 0
+ +7 =0 as p—> (3.3.31b)
o0t a0* P op

Eq. (3.3.31b) may be solved by the usual manner of the separation of variables. Thus, letting
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Po = P.© (where P is a function of only p and © is a function of just 0), putting its derivatives

with respect to p and 0 in Eq. (3.3.31b), and dividing it by P.© leads to the following

equation:

p> 0°P . 71p 0P  9°0
Pop: Pop  06°

(3.3.32)

Since the left hand side is just a function of p and the right hand side is a function of 8 the
only choice for them is that they would be equal to a constant, A say. Therefore, we have to
solve
d’e
do’

p-d’P 7pdP
— + <=

P dp* P dp

=-X (3.3.33a)

A (3.3.33b)

But the physics of the problem implies that A is positive, equal to k> say, that is the pressure

is periodic in 0. Therefore, the solution of Eq. (3.3.33a) is
® = C, sin(kB) + C, cos(k6) (3.3.34)

Since the period of the pressure is equal to 27 (i.e. any point of the domain, upon rotation by
an angle 27, around the z-axis, reaches to the same point of the liquid to experience the same

pressure), the only choice for k is to be equal to unity. Therefore, Eq (3.3.33b) may be written

as
A2d2P+7Ad—P P=0 (3.3.35)
p dﬁz pdﬁ - e

which has a solution in the form of ™. Thus, substituting its first and second derivatives in

the equation results in
p’n(n-1)p" 2+ 7npp" ' -p" =0

Equating the coefficient of p" to zero leads to

n= —3i\/1—0

which does not satisfy the matching condition (3.3.11¢) and hence the general solution is
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rejected. Therefore, from the derivatives of the particular solution of the pressure, the flow

field at the lowest order, given by Eq.s (3.3.20-23), is completely determined with the result

~

b= %(H Q)(A?-282A7)(22 - z)+ (1-Q)A2-1 (3.3.36)

f,=- —2—(1 + 5)&9}1-3 (z ~-H z) (3.4.37)

i, = %(1 + ﬁ){(—4ﬁ1‘3 +1207)7 + (% H? - 12131‘3) 22} + %(1 - Q)RA
(3.3.38)
Let us compare this result with those reported in the literature. Goldman, Cox &
Brenner (1967) solved this problem asymptotically. Their result agrees with the asymptotic
result of the solution presented here for large values of X .
O’Neill & Stewartson (1967) considered the translation of the particle parallel to a
wall. Using a cylindrical coordinate system, they obtained the exact solution of the problem

which may be written as

6.

P, = gpcoseﬁ_z (3.3.39)
o= COSSO [(~of1 + 122 )2 + (147" - 1277 )2 (3.3.40)
gy = — Sirsle (3f172%% + 2(17'2) (3.3.41)
i, =P Cgse [4(-F12 + 307 )2° + (402 - 120172 (3.3.42)

Cooley & O’Neill (1968) considered the rotation of the particle near a plane wall with angular
velocityﬁ = (0, Q, O). Using the same procedure as O’Neill & Stewartson (1967)’s, they

obtained a solution:

Po = ‘g‘ﬁcoseﬁ‘z (3.3.43)
o, = Cosse [(~of + 12017 )27 + (47 - 120173 (3.3.44)
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R sin© Al A
figo = — (30722 +8F'2) (3.3.45)

= Cgse (4 + 1207 )3 - (12 4+ 12812 (3.3.46)

Applying relationships (3.3.10b, A.1, 11) the flow field determined by (3.3.28, 36-38),

may be expressed in a cylindrical coordinate system as

By = g(l +Q)p cosbH 2 (3.347)
i, = Cosse [(of2 ¢ 1267)22 + (14607 - 126122 5]

+Q[(-9F + 1201°)22 + (4l - 120122 o
o= - T2 [(3A727 + 282 5)+ A(+30°%° - 811712) (3.3.49)
6, =P Cgsg [a(-F 4 32 + (a1 12027 350

+O[(~4A7 + 307 )2 +2(A7 + 121?1‘3)22]}

Thus, for the rotation of the particle with angular velocityﬁ = 1 we recover Cooley &
O’Neill (1968)’s results and for its translation with unit velocity (fj = 1) werecover O’Neill
& Stewartson (1967)’s ones, except for the extra terms + sin 0 in i, and - sin 6 inG 00"
This appears because we consider a stationary sphere with the wall and the fluid at infinity
moves with velocity — L . For the calculation of the hydrodynamic force, these two solutions
are equivalent since the variations of the velocity are involved in the stress tensor not the

velocity, and hence the constant velocity of the fluid at infinity c.f., Eq. (3.3.36) ] does not

affect the results.

3.4 - Electroviscous Ion Concentrations

3.4.1 - Outer Region
As for the cylinder and wall, the equation and boundary conditions of the

electroviscous ion concentration for the outer region, given by (1.3. 60), imply that, for low
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Peclet number, €, is of order Pe. Thus, if we expand ¢, in this parameter as'

D, + D,
~ ~ 2
¢, =Peq, +Pe [Ez—) G, + (3.4.1)

at the lowest order, C,, for the steady state satisfies

0°¢C o0°¢ 0°¢
VS, =0 or a§§‘+ 637?+ a,zj‘ =0 (3.4.2)

with boundary conditions, upon the use of the definition of the unit vector outward to the

solid surfaces, given by (3.2.4),

n-Ve, = X%era;; +(Z-1-9) a;; - F, (ﬁ.e)(ﬁﬁ)(ﬁ,ﬁ) on'S,(343)
5;21 = Fow (ﬁﬁ)(ﬁﬁ)(ﬁ‘ ﬁ) onS, (344
=0 as l T ‘ —> 0 (3.45)

in which (Fcp , ch) are defined by the relation (1.3.60¢). For order Pe? we have

e = 0 0 0
V¢, =u-Vg, —|:u 8—xu“5;+u26—z+}21 (3.4.7)
with boundary conditions
f-VT, = a;j +y5;§2 (Z-1-9) a;; -0 onS, (3.4.8)
n-V¢, = % _, on S, (3.4.9)
0z
¢, 0 as ‘ T l—) o 0 (3.4.10)

3.4.2 - Inner Region

In view of (3.2.4), the unit vector outward to the sphere for the inner region is

-~
A

fi = 6”2(x1x+y5) [-1+6(2-1]j, onz=H (3.4.11)

IThe last indices of electroviscous variables denote the order of those variable in Pe.
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Thus, the normal denivative of the normal derivative of the normal component of the purely
hydrodynamic velocity appearing in the boundary condition of the electroviscous ion

concentration, C,,, given by (3.4.3), for the inner region, is determined by

—

ﬁ-ﬁ:SW(xu +yu) [—6”2+63/2(2—1)]ﬁ
(5-9)(5-9)- {( 252t 55}

(i£1+A 8) (2-1-8 )8 =577 a2+6' £1+ 2 (2 Uiz+ﬂ,jz+
& Vo)t 57 572 R Pl P

From this and from the expansion of the velocity, given by (3.3.12), it follows that

z

( )( )( ) 87" 552 (Xuxo + YU, - ﬁzo) onz=H
+6-]/2H ai y y—(Z—l)a—Zle} 66 (xux0+yuyo Z0)+2(3;ZZO+(Z— )66“1;220}+
(3.4.12)

The unit vector normal to the wall is IL , so that the normal derivative of the normal derivative

of the normal component of the velocity appears in B.C. (3.4.4), at the lowest order in 0, is

~ ~ - 9%h

n-V)(a- V)i u)=8""—2+0(" onz=0 3.4.13
(8-9)5 V)5-8)=02 5+ 0(6™) (3413
Thus, if we define the electroviscous ion concentration for the inner region as

T, =877, (3.4.14)
at order Pe it satisfies [c.f., Eq.s (3.4.2-4)],

0%¢ 0%¢ 9°¢

2L 5| =3+ —5-|=0 (3.4.15)
0z 0X oy

with boundary conditions

_5621 +5{ 0S5, + . 0%y +(2-1 )aefl:l

&5 % 5

2

=0 F

cP aAz (Xuxo + yuyO zO) + 0(62) on 2 H
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2A

0c,, u

2L =8 F,,, —=++0(5’ onz=0
7 =0 Fw gt +Ol)
The second derivative of 1,, with respect to Z, appearing in these boundary conditions, may

be determined from Eq. (3.3.22) as
8%, 1(52130 5p0) A 1(@15 op j ~ .
— == 22-H)+—| 2%k +—-9 | +(Q+1)xH
07" ox* oy’ ( ) 2\ ox oy 4 ( )
from which and from Eq.s (3.3.20, 21), the boundary conditions may be evaluated on the

solid surfaces with the result

- 5 H-1 - H
82+ X6x+y6y +( )62 onz
i . (3.4.16)
1 8(A6p0) a(Aaoj AL )
-—BFcP{z_ai A=+ | H= -(1-Q)xA? +0(52)

p
y
0¢,, 1a(ﬂaf30 a(Aaﬁoj oA 2

E || f 8 - Q)’2 0+ 05
L AP CPrY BT L (1= QR 067 (541
onz=0

Definitions (3.3.1, 4.1, 14) indicate that the matching condition 1is required to satisfy

&, = O[(i, 9)_3] as(%,9)> © (3418

The equation along with boundary conditions at order Pe?, given by (3.4.7-9), for the inner

region is

0%, (8%, 8% 08, . 88, . 08,
6252 + ( — 22 4 ayizj 253/2(ux06—§(+ u,, 657 +u,, PES (3.4.19)
with
. . . 5 )
—~ aacfz +8{>‘< a;f: +§/aac}f/2 +(z-1) ;;2}= 0 onz=H (3.4.20)
y4
©n _ onz=0 (3.4.21)
0z

It has also to satisfy the matching condition
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Cy = 0[(?(, 5’)_3] as(%,9)» © (3422
3.4.2.1 - Inner Solution of Order Pe

The equation and boundary conditions at the first order in Pe, given by (3.4.15-17),

suggest an expansion forC,,in & as
C,y=C +0cC + - (3.4.23)

Upon substitution of this expansion in (3.4.15-17), ¢,, satisfies

G =0 3.4.24)
02t (B4

with boundary conditions

acj“ =0 onz=H (3.4.25)
0Z
aé A

== onz=0 (3.4.26)
0z

and with the matching condition
~ A ~ _3 A
c_.=0 [(x, y) ] as (x, y) — 0 (3.4.27)

Whilst ¢, satisfies

0% (0%, o%,
352 +( PYe + 8}72 j =0 (3.4.28)
with boundary conditions
%, {iaem . yaem (A1 1)66:“}
0% 0% § 5
(3.4.29)

A
0
~ Op ~ O o\ A A
aaA(HaIiO)-f- a ( pO ]+(1_Q)m—2} OnizH
X

1
:FCP 5

y
o 1 a(AapO) G, Aaﬁoj A R
no_ — H + +{1-Q)xH onz=0 (3.4.30
5 F°W{2[a§< (1-9) nz=0 (430

and with matching condition
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A A _2 A A
=0 [(x 5) ] as(%,9) >0 (3.431)
Eq. (3.4.24) together with B.C.s (3.4.25, 26) guaranties that
¢, = Func (f(, 9) (3.4.32)

Thus, Eq. (3.4.28) may easily be integrated with respect to 2 to give

&, (98, &), ..
=t 5 2+ A%, 9) (3.4.33)

Imposing B.C. (3.4.30) results in

_Ewl| 0 (0D 0 P, .
A=—5 [ax(Hax)+ay(Hay)} (1-Q)xA

Imposing B.C. (3.4.29) leads to a differential equation for &_:

05105t )5
ox\ ox/ oay\ o9y /) 2V f(
- (E, - Ey (
(3.4.34)

From now on, to simplify the calculations, we consider the case in which the particle surface

potential, and that of the wall are the same, or equivalently F; = F_,. An approximate
solution for the general case is determined in an indirect fashion based on the analogy of
inner and exact solutions of the problem, as is done in Chapter four § 4.7. Therefore, the
solution of Eq. (3.4.34) for ¢, is straight forward determined from Eq. (3.3.28) or Eq.
(3.3.47) to be as

& = l(FCp +E, )P, =

n=> (FcP +F,, )(1 + ﬁ)ﬁﬁ'z cosO (3.4.35)

W | W

which satisfies the matching condition (3.4.27). That is,

A 12 )4 :
Conlasire —> ?(FcP + ch)(l + Q)p > cosO (3.4.36)
Its complementary solution is rejected, since for large value of p it tends to ﬁ_liﬁ which

does not satisfies the prescribed matching condition. Thus, C,, at the lowest order in 8, given
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by (3.4.23), is determined by

¢, = %(FCP + F.y )(1 + ﬁ)ﬁﬁ‘z cos® + O(8) (3.4.37)

3.4.2.2 - Inner Solution of Order Pe?

Equation (3.4.19) implies an expansion in & for C,, as

&y =828 +8¥2 8 + - (3.4.38)

Upon substitution of this in Eq.(3.4.19) and B.C.s (3.4.20-21) as well as the matching
condition (3.4.22), we see that ¢, satisfies the same equation and boundary conditions as

those for ¢, given by (3.4.24-26), together with the matching condition

¢ =0 [(f( y)‘z] as(%, §) > (3.4.39)

whilst ¢, has to satisfy

o2, (%, 9, . o
5 T 2 T == =u-ve 3.4.40
822 8X2 ay2 ( )
in which ¢, and ¢, are functions of (X, ¥) with boundary conditions
8¢,
= =0 (3.4.41)
0z |,
z=0
GIH .0C_ . 0C_
- =-| X7%x tY - (3.4.42)
0z |,_ 4 0X oy

and matching condition

A ~ )1 A A

C, = O [(x,y) ] as (x, y) —> © (3.4.43)
Differentiating Eq. (3.4.40) with respect to Z and then imposing B.C.s (3.4.41, 42) leads to

the following differential equation for ¢, :

0X
in which ¢, is given by (3.4.35) and U by (3.3.48-50). Upon integration of the velocity, it

0 Aaéj a(Aaépj A T
H—|+—|H—|=V¢_-|adz 3.4.44
65{( 0y 0y J. ( )

may be expressed in the cylindrical coordinate system by the use of relationships (A.2, 7) as
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%, +(5 _Jae 1%, _ 3
op° op p* oo* 25
(3.4.45)

7 A ~ A ~ 7 A A
[(5p2H3 —4p“H—4j cos(26) -3H + = 5P H —4p4H“4}

Because of the symmetry, as can be observed from the right hand side of Eq. (3.4.45), we

should look for a solution in the form of

¢ = %(F +E, J(1+Q)[&,, cos(20) + &, | (3.4.46)

Substituting its derivatives in Eq. (3.4.45) results in

azczp (() 1) 0,, 48, i (5 )8(:
H 4| = — 20) + +| =+ | =25
| o \H p)op P cos(20) op>° \H pJ) op

7 s i a7
(Esz“3—4p4H’4)cos(29)—3H_2+Ep2H —4p*H" }

Since this equation must hold for any value of 0, it must be independent of 6. Thus, upon

equating the coefficients of (cos20)" (n=0, 1) to zero, it reduces to two ordinary differential

equations to be solved

d3e o 1)dc 4¢ 7 .
Czp 4 (£+ _) CiP _ AgP R & o 4p2H_4 (3.4.47)
dp> \H p/ dp ¢ 2
dzcop ( p 1) dcp 12 4 7 sy 2774
dp2 \a " p) dp T2 4 P oA

In the calculation of the electroviscous forces the solution of Eq. (3.4.47), as seen in
§ 3.6, is not required. The solution of Eq.(3.4.48) would be as a sum of particular solution

denoted by ¢ pPar and general one denoted by ¢ppGen. Its particular solution has been found

to be

A 1/a -1 y-2

CopPar = E(H +H ) (3.4.49)
which satisfies the matching condition (3.4.39), that is

CopPar| 5, > P+ 207 (3.4.50)
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The general solution 1s

C,pGen=C, In \/pﬁ) +C, (3.4.51)

Neither ln(%ﬁ nor the constant C, satisfy the matching condition, since for large values
of p both of them are of order 8°. Thus, & is determined to be equal to its particular solution
from whichC,, , given by (3.4.38), is obtained as

- 5% 2 (B + B 1+ &, cosl20) 27+ 7)1 ofs7) a2

and 621 1s given by (3.4.37). Thus, the electroviscous ion concentration in the expansion

(3.4.1) for the inner region, by the aid of (3.4.14, 46), at the lowest order in 0, is determined

by

T = %(F +F, ){6’§Pe(1 +Q)[pA? cos(6) +O(3)]
(3.4.53a)

_ D,+D ~\2 || . 1o~ A
+6 lPeZ_;-Bz_l(l-FQ) {{czp cos(29)+5(1-1 '+H 2)}+O(6)}}+...

in which (Fcp , Fp ) are defined by the relation (1.3.60f) as

(p, w) (3.4.53b)

F, = 211) [(D -D, ), 4(D2+D1)ln(cosh—z—JH J

3.5 - Electroviscous Potential

The equation and boundary conditions for the electroviscous potential denoted here
by , are given by relationships (1.3.61). The electroviscous ion concentration appearing
in this equation is already determined. The second term in this equation, ¢, satisfies the
same equation and boundary conditions as those for the electroviscous ion concentration of
order Pe given by (3.4.2-5) in which (F,, F,) are, respectively, replaced by (F,, F,,),
defined by (1.3.61f), as

2D
F,=—" J=P,W 3.5.1
¥ D,+D, ( ) G-3.1)
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Thus, such as for electroviscous ion concentrations, if we define
3

v, =0 2y, (3.5.2)
by the aid of relationships (3.4.37, 53) the electroviscous potential for the inner region at the
lowest order in & in the expansion of Pe may be determined to be

3

V,= E(Fw + Fww){B—zPe(l + 5)[;3ﬁ’2 cosh + 0(6)]

5
3.5.3

,D,-Dy SV A Lia A 230

+0 " ———Pe (1+ Q) C,p 0520 +—(H + H )+ O8) [p+---
2D, 2
in which, in view of the definitions (3.4.53b, 5.1), (praF\uw) are defined by
F,oo2Dip 2D g 1=(P, W) (3.5.3b)
v D,+D, ¢ D,+D, "’ ’ o

3.6 - Electroviscous Force

The electroviscous force,F,is determined by applying the Lorentz reciprocal

theorem, given by(1.3.69). It may be written in vectorial form as

—

=c'F, =€ IEP .G, -dS, + jﬁw .Gy -dSy (3.6.1a)
Sp Sw

et

in which B ;> given by (1.3.59¢-h), may be expressed as

~

1:3J = x[v ~ 1, (ﬁJ .V)]{—4 ln{cosh(%) ](’52| J)+ \TJJ(\?Z\J)}, J=(P,W)(3.6.1b)

which represents tangential derivatives of the electroviscous ion concentrations and the
electroviscous potential evaluated on the solid surface J. G, is the stress tensor due to the
translation of the particle with unit velocity in the direction of the force under determination,

evaluated on the solid surface J. Its integrand may be expressed in cylindrical coordinates

as
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-—
—~

-dS, = BJp[GJpanp T 00Ny + 0,0y, ds,
B

o
a

18| O sepTyp + G jgeMjg + O g,y |dS; (3.6.2)

+
+ BJZ Gszan + GJZGHJG + GJzszz dSJ

n ; 1s the unit vector outward to the surface J, given by (3.2.4), in view of which the

integrand reduces to

B, G, -dS, = (BWPE wor + BwoO wa, + Bw,0 WZz)d§w (3.6.3)

B, G, dS, = B,,[5y, 5 +5y,,(z-1-8)|d5,
+ By |G pg,P + G, (Z—1-0)[dS,
+B,,|Gp,,P + 6, (Z—1-8)|dS;

(3.6.4)

3.6.1 - Determination of B,

By the aid of relationships (A.14, 17) the normal derivative, appearing in Eq.

(3.6.1b), may be written as

~ 0 - 0
iy (V- iy )= lza_“z‘:&—lza_z
- 0 0
ﬁP(V nP): [1 p+ 12(2— 1—6)]{Ea—bj+(“z’— 1—5)5%]
|
= Tpﬁiﬁ{ﬁj—ﬁJr(—&-l +Zz- 1):—2}TZ(—1+62—6){5;—5+(_5—1 + 5 l)aa_J

=0 TWwWY

zzo}} (3.6.5)
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= - 0 a 0 110
B, =1{||s 0(62) —+[5"" —+82x—i
) {{ + }ap+[6 +O()az}1+6 ¥R

[[p +0(3 ] +[267"+ 0(1)] g }} (3.6.6)

07 | ™
{—4 ln{cosh( %ﬁ) }c’z z:ﬁ}

in which C, and y , are given by (3.4.53) and (3.5.3). Since at a first approximation they are

Q=Q+WP\V2

independent of Z, their values on the wall surface (Z = 0) and on the particle surface
( z=H ) are the same, and also their derivatives with respect to Zvanish. Therefore, ]§W 1S

obtained as

E?»PeS 'ZLIWP+W(1 + 5)[(—3ﬁ"2 + 4ﬁ'3)0056 + 0(6)]

Wp: 5
i 2 ; 2 aézp ~f{y-2 1-3
+ oM LW, Wy, (1+8) 5 cos(26) - p(A2 + 2A7%) | + O(5) |+
(3.6.7a)

-~ 3. A
Byp = ZAPed L' W, (1+ Q)[-A 2 5in8 + O(5)]

;7 s N (3.6.7b)
+%KPe26 2szw(l + Q) [— gezp sin(20) + O(6)J+- ..
B,,=0 (3.6.7¢)

and ]§P as

B, = %?»PeS’ZL'PHW(l + 5)[(—3ﬁ_2 + 4ﬁ'3)cose + 0(6)]

~

i _ul(6
+5—30xpe26 2L2PP+W(1+Q)2[( ;p cos(260) - p(A™ + 20" )j+o(5)}+---

(3.6.8a)
-6 NP
B,, = gxpea-2L‘Pp+w(1 +Q)[-A7sin0+0(5)]
6 2 (3.6.8b)
+2—57\.Pe26 2L2 P+W(1+Q) [ Eézp sin(20) + O(§) [+ --
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3
B, = gXPeS_ELIPHW(I +0)[p(-3A7 +4H7)cos0 + O(5)]

Do (20)-p (H 242" )j +O(6)}+---

op
(3.6.8¢)

3 -
e SR N +Q)2Kp

in which L'P,, , and L*P,, , are defined by (2.6.26, 27).
3.6.2 - Stress Tensor

Since the system i1s symmetric with respect to the (x, z)-plane we do not expect any
force to be experienced by the particle in the y-direction. Thus, it remains to determine the
stress tensor for flow parallel and normal to the wall to obtain the components of the force
in the x and z-directions, respectively.
3.6.2.1 - Translation Parallel to Wall

The flow field for the translation of a particle with unit velocity parallel to the wall
is already determined in § 3.3 and the stress tensor is given by relationship (A.22). It may

be written in terms of inner variables as

3 _1 o oa ou 1 0u
~ _ A p ~ _s~17"6 0~ 7"z
Jpp“6 2p+6 22 55 S; 0192'6 07 9 6 00 15
en, 100, @ a a3, 00
5 =g e, 2o G, =-62p+5 222 3.6.9
GJpe 6 |:ap p ae p :|S, GJZZ p az S, ( )
ot ot
~ _+6 1 p+60 AZ
L 02 9P

Thus, letting Q = 0 in the flow field given by (3.3.47-50), the required components of the

stress tensor at the lowest order are obtained as

36 _L
Gypp = 0y = =0 ZgﬁH’z cosO+O(6 2)

B 2sin@p, s, A Ly-2A
Orpp =0 [126072° - 451172+ O3)] on'S; (3.6.10)
5,,=08" COSSG [-6(361 - 4717 )2+ 2(7A7" - 61172)]+ Of5")

sin0

Gy, =87 5 -6H 2 - 207']+ 0(s°
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3.6.2.2 - Translation Normal to Wall
A suitable expansion for variables of the flow field, produced by translation of the

particle with unit velocity normal to and away from the wall is

N | —

I
X =02

X, ¥ =929, Z =02
1 1
~ _ o an eI ~ _ =& ~ _ g-24 3.6.11
ux_8 zu,\" =0 2u u, = Uy, p_6 p ( )
Introducing it to Stokes equations, given by (3.3.2, 3), results in
2(e*a, o' 590,  _-20p
§ 2| —r4+—2|+82 =0 2 — 3.6.12.a
o o7 prs X G-6122)
3 82“ a“ 56“ 3 op
0 ? —|+0 2 L=§ 2= 3.6.12b
T 07 P (3.6.120)
o, a“ j o op
5! +6 7P —E=8"— 3.6.12¢
PO 57 % (3.6.12c)
57! o, au aﬁz) 0 (3.6.12d)
+ ~ - Q.
8x oy 0z
together with boundary conditions
G,=0,=0,=0 onz=0 (3.6.12¢)
i, =1,=0, 4, =1 onz=0 (3.6.129)

If we expand the flow field as that given by (3.3.12) to the lowest order it satisfies the same

equations as those given by (3.3.13-16) with boundary conditions

Uo=0,=0,=0 onz=0 (3.6.13a)

Oy = G, =0, U,,=1 onz=0 (3.6.13b)

Integrating Eq.s (3.3.13, 14) twice with respect to z and imposing the corresponding

boundary conditions given by (3.6.13) leads to

1 op
0,0 =3 —(2* - Hz)% (3.6.142)
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1 ~ .\ 0P
b= 52 o) T

Differentiating the former with respect to X and the latter with respect to ¥ and then

(3.6.14b)

introducing them 1n the continuity equation, leads to the following differential equation:

aﬁzo 1 (azﬁo észO) A2 A (A Eﬁo ~ lA.OjA
20 _ _ _ _ — .6.15
> 2{ e + - (z Hz) X=3 +y v z (3.6.15a)

Its integration is

X 1{(8°p, 62130j(1A3 1 . 2) 1( P, af)oj )
- _ — —7° ——Hz° | — —| X V 7 3.6.15b
u,, 2{(85{2+8}72 32 2Hz 2 X@f( +ya§/ z° |[+C ( )

Imposing its boundary conditions leads to the following differential equation for the pressure
0 ( ~,0F 0 ~,0p

—A(H3 @j +—A(H3Lj’) - 12 (3.6.16a)
0xX 0x oy oy

the particular solution of which is

p, = -3H (3.6.16b)

By the same argument as that presented in § 3.3, its general solution must be rejected. Now,
the flow field is completely determined. Upon introducing derivatives of the pressure in Eq.s

(3.6.14. 15b), we obtain the results
i, = 3%A(2* - 1i2)

i, = 39A7(2* - A2) (3.6.172)
8, = (3 —417)(22° - 3(2?) +3(A~ - A7)’

It may be written in the cylindrical coordinate system as

Po = -3H"

6, = 3pH7(2* - H2

Tpo = P ( ) (3.6.17b)
Ugp = 0

0, = (307 - 407)(22° - 30122+ 3(A7 - A7)
From the symmetry property around the z-axis it was expected that the flow field is
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independent on the azimuth angle 0 and hence the velocity in the 0-direction is equal to zero.
Thus, letting 6,4 = 0gp = 0,9 = 0, the other components of the stress tensor may be written

in terms of inner variables as

~ Ao
G ypp = 56
6ﬁ au
-3/2 -172
Gy, =0 5 +8° ap onS, (3.6.18a)
ou
~ -2 z
(0] = ~
Jzz aZ

Combining it with the relationship (3.6.17) results in

=3723H72+0(57")

GJpp:G

I (o8]

1 onS, (3.6.18b)
§,, =06 23pH7(22- H)+ 0[5 2

3.6.3 - Force Parallel to Wall
The required component of stress tensor for flow parallel to the wall, given by

(3.6.10), may be evaluated on the wall(Z = 0) as

1, A
Gy =8 3(14}1“ —~ 12112 )cos6 +O(1)
~ - 1 “r-1 .
S, = 8 'g(—ZH )sin6 +0O(1) (5.6.19)

6.~ _
-5 2511 cost + Of6™"")

chp = Gsz

A

and on the particle surface ( H)

GPpp = GPzz

-6 .
= -5 — : —pH 2 cos + O(5 ™)

-8 ~
Gpoo =0 = H'sind + O(1)
5 (3.6.20)

1+ 12H72)cost + O(1)

Ll’llh—i

Gsz - (
zgﬁH sind + O(5 ™?)

-1/
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Therefore, the integrand evaluated on the wall surface is determined, upon introducing

(3.6.19) and (3.6.7) to (3.6.3), by

B,-5,-dS, = X{%L‘Wp+wPeS 21+ Q) (2187 + 461 - 2477

(1+ cos28)+ H(1- cos26) + O(5) ]

3 ., g ~\2|| _0C,p af A
+ —L*W,,,,Pe? 2(1+ Q) Hz c0s20 - p(A2 + 2A 3)}

125 3p

(\S)

(71:1“1 + 6ICI’2)COSO +=¢,,H ™" sin(20)sinf + 0(5)}}6d9d‘3+"'

(3.6.21a)
and on the particle surface by combing (3.6.20), (3.6.8) and (3.6.4) with the result

©

iyl

25

B, 5,dS, - x{i L'Py, Ped (14 Q)| (- 10A7 + 260 - 24)
+(~4A7 + 26A - 24A)cos26 + O(3)|
(3.6.21b)

125 P+W p

3 2| 8
+——17P,,, Pe’s 2(1+ Q)zﬂrH“ezP sin(26) sin6
+ (Zf{" - 6ﬁ‘2)c059 + 0(6)] }ﬁd(—)dﬁ +

The force is obtained upon integration of its integrand determined by (2.6.21) on the solid
surfaces bounding the inner region, i.e. forp=(0-o0)and6 =(0-2x). Because of the

symmetry, integration of all terms containing azimuth angle 6 vanishes. Therefore, in view

of the integral [c.f., definition (3.3.10)]

2w 4o 2 +oo +0
~ -n 1 I-n 27
"pdpdo = 1+ %p%) pdpdo =2 1+ )5 p =

J (J)‘H pdp ! J( 45%) " pdpde = 2m—(1+ %) ST
(3.6.22a)

the x-component of the force is obtained as

=~ 21 1 1 2(1+ Q)

F="ce A(TL'P,,y + 2L'W,,, JPed 2(1+ (3.6.22b)

or in dimensional form as [c.f., definitions (3.2.2, 2.6.34)]
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8n (sreo)z(kT)3 a

Fx =~ 4 2

25 Cw(Zle) h

(7G; + 2Gy )(G, + Gy ) . (7H, + 2H,, )(H, + Hy)
D, D,

X

(3.6.23a)

(U+aQ)

in which (GP , Hp ) and (HP , Hy, ) are given by (2.6.70). In developing this formula it was
assumed that the (-potentials of the particle and wall surfaces are identical. Thus, the

formula (2.6.23a) may be written as

2 3
144n (8 rao) (kT)" a | G* H?
= — + (U+aQ) (3.6.23b)
25 ¢ (ze) M|D, D,
in which G = G, =G, and H = H, = H,,.
3.6.4 - Force Normal to Wall
For the determination of the force normal to the wall only terms of order Pe’
involved, since terms containing the odd function of p (terms of order Pe) do not contribute
to the force. Thus, upon introducing the stress tensor (3.6.18) and relations (3.6.7, 8) to the

integrand (3.6.3-4), its required component is obtained as

[
~

B, .5, d§, = =W, Pe?s2(1+0) x
w W W_25 P+W

96 (3.6.24a)
[5111-2 —a%"—cosze +H?+H*-2H + O(8)}5d9d6
P
= 2 ¥ 9 12 26 -2 ~)?
B, G, dS, = S AL'P,,, Pe’s (1+ Q) x
5 (3.6.24b)
{5}1‘2 a—i"cosze +H?+H*-2H+ O(6)}ﬁdedf>
Y
Therefore, in view of [c.f.,, integral (2.6.22a)]
2% © ~ N A 1 A 1 A 1 A ® 2,7'5
Sy H™M-2H )pdpdd = 2n|- —H?*-—-H? >+ —H™| = = (3.6.253)
H(HJFH )6d "2 3 P

the normal component of the force is determined by
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F = % e X(szP+W + L2Pp+w)Pe26 (1+Q )2 (3.6.25b)

or in dimensional form by

2 3 2
127 (g,8,) (kKT)" a’ | G, +G,, H,+H
, = ( 0) 2 a2|: P_—W P W (U+aQ)’ (3.6.26a)
25 ¢ (z¢) Pl D D,
or
2 3 2
48 (&2,) (KT) az{G H} ,
F, = + (U+aQ) (3.6.26b)
25 cw(zle)4 h’| D, D,

in which G and H, given by (2.6.70), foridentical-potentials,C, = £, = £, may be expressed

as

z,el z,e§
1+e 2T 1+ 2kT
G= ln—z——, H= ln——z——— (3.6.27)

In the formula (3.6.23, 26, 27), (8 it 0) is the permitivity of the medium, (kT) the thermal
energy, (Zle) charge of a counterion, ¢ _ the number ion bulk concentrations, D, and D, the
diffusivity of counterions and coions, respectively; a is the sphere radius, h the clearance
between the sphere and wall, and U is the translation velocity of the sphere and Q its rotation

in the clockwise direction.
3.7 - Results and Conclusions

As for a cylinder-wall, a sphere-wall interaction results in an electroviscous force,
experienced by the particle, of order e’ Its tangential component is explicitly determined
by formula (3.6.23), and its normal component by (3.6.26), for identical {-potentials.
Although, the force is derived under the assumptions of Pe<<1 and 8<<l1, it is valid for a
larger range of Pe, since the electroviscous ion concentrations and equally the electroviscous

potential in fact are obtained under the following expansion [c.f,, (3.4.1, 14, 23, 38)]:
¢, = Ped ™% + Pe?5 ' + O(Pe’s 2) (3.7.1)

and this expansion is valid when the truncated term is much smaller than the retained term,
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that is Pe’87'?<< Pe?d!, or Pe<<& "2 which is larger than Pe<<1, and thus, since << 1, the
expansion applies even for value of Pe larger than one. For example for 6=10" the
expansion (3.7.1) is valid up to Pe=100. The tangential component of the force is of order
Pe, or depends linearly on the velocity and the normal component of O(Pe?), the same as for
a cylinder-wall. Both tangential and normal components of the force are smaller than those
of the cylinder-wall interactions by O( 8”). Thus, the tangential component is of O(e*Ped™)
and the normal component of O(¢*Pe?6?). The tangential component of the force depends
linearly on the ratio of diffusivity of ions and the normal component on the second power of
this ratio, whereas for both normal and tangential components the second powers of the
parameters G and H [functions of (- potentials defined by (3.6.27)] are involved, the same
as for the cylinder-wall interactions. The normal component of the force in dimensionless

~

form (FZ) may be written as

F = % e APe’87’f, (3.7.2)
where {, is defined by
2
f = {G+%H} (1+§~2)2 (3.7.3)
2

The function f, is plotted versus the ratio of diffusivity of ions in Fig. 3.2 for three different
¢-potentials, ¢ =C,=-100 mV, CP=CW=-200 mV, and ¢ ,=(,=-300 mV. Each curve has a
minimum corresponding to f, =0, the same as for identical {-potentials of a cylinder and wall.
The minimums in these curves occur at D,/D,=2.4791, 4.7882, 7.4655, for {(=-100, -200, -
300, respectively. For two special hydrodynamic cases, namely forU = —a() and
U = aQ, the particle experiences no force for the former, and two times the tangential
component and four times the normal component of the force (because of the proportionality
to the square of the velocity) produced by either the rotation or the translation of the particle
for the latter, the same as for identical {-potentials of the cylinder and wall. The ratio of the
contribution to the tangential component of the force from the sphere surface to that of the
wall surface is 3.5 [c.f, (3.6.22)], whilst this ratio for the identical -potentials of the
cylinder and wall is 3 [c.f., (2.6.63)]. That ratio for the normal component of the force is the
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same as that for the cylinder-wall, i.e. it is equal tol [c.f., (3.6.25b, 2.6.68)]. For small (-
potentials and for equal mobilities of ions, as a first approximation, the tangential component
of the force, is linearly proportional to viscosity of medium, ion radius, a,, and (%, whereas
the normal component is proportional to 1’ af and (*, the same as for the cylinder-wall
interactions.

It is interesting to compare the drag force for a sphere-wall, given by (3.6.39), with
that of sedimentation of a sphere in unbounded flow, given by (1.2.28). It is observed that

their ratio always satisfy

F cere—wa 6
Sprerewel _ —§72 (3.7.4)
FSpherc 25

30

—e— G, =Cy=-300mV
o Cp=Ly=-200mV

—y— GGy =-100mV

25

N"’%
i
(@)

1

-
o
1

0 2 4 6 8 10 12

Fig. 3.2 - f, vs ratio of diffusivity of ions for either translation or rotation of sphere.
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It should be noted that the force for the isolated sphere is an exact value, but for the sphere-
wall interactions only the contribution from the inner region is taken into account.

The Derjaguin (1934) relationship between the coefficient of force experienced by

a cylinder and that of a sphere given by [van de Ven (1989)]

(nD) [@n=2)11  —
l:Sphere = FCylinder|:h ? :|(2n—_1)'_'2 2ah, (375)

is extensively used for calculations of interactions between colloidal particles. Here
[h"("’%) ] is the h-dependence of the cylinder forceand k1! = k(k - 2)(k — 4)---. Tosee
how it works for the electroviscous force in which [h‘(“’%)] = h_% [c.f., formulas (2.6.63,

67)] or n =2, it may be written as

F Crec— 4
Sphere W = 2ah (3.7.6)

FCylinder—Wall

For the drag component of the force, given by (2.6.64 ) and (3.6.23), this ratio is

XSphere-Wall 18

T 25

2ah (3.7.7)

X Cylinder—Wall

and for the normal component, given by (2.6.69) and (3.6.26)

FZ ere—Wa 48
Sehere el = —/2ah (3.7.8)

ZCylinder-Wall 125

It is observed that although in both cases it predicts the right order in 4/ ah, it overestimates

the force by a factor of 50/27 for the tangential component and by a factor of 125/36 for the

normal component of the force.
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Chapter Four
Electroviscous Sphere-Wall Interactions:
Exact and Numerical

Solutions
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4.1- Introduction

The problem of a sphere under translation and rotation parallel to a wall is reconsidered. The
problem was solved for the inner region, in Chapter three, for the cases of small particle-wall
distances and low Peclet numbers. First, the restriction on particle-wall distances is
removed. Ananalytical-numerical solution is obtained valid for the whole domain of interest
for low Pe. Second, the restriction on Peclet number is removed. An analytical-numerical
solution for both arbitrary particle-wall distances and arbitrary Peclet numbers is presented.
The purely hydrodynamic problem, as well as the stress tensor involved in the force integral
equation are determined analytically, based on the Jeffery’s solution (1912) of the Laplace
equation in a bipolar coordinate system. The analytical solution is obtained as a summation
of an infinite series.

Although the bipolar coordinate system has the utility of describing the system by
a single coordinate (that is both wall and sphere surface are described by only a single
coordinate), the cylindrical polar coordinates are useful and are employed as intermediate
steps in solving the equations of motion and subsequently the electroviscous ion
concentration, the electroviscous potential, and the electroviscous flow field. Some
properties of these two coordinate systems are discussed in Appendix A.

For low Pe, the electroviscous ion concentrations and potential at order Pe are
obtained both analytically and numerically, from which the analytical and numerical
solutions of the tangential component of the force are determined. At order Pe? they are
determined numerically, resulting in a numerical solution for the normal component of the
force. For arbitrary Pe the electroviscous ion concentrations and potential are also calculated
numerically, from which the tangential and normal components of the force are determined
numerically.

The numerical approach is based on the finite difference approximation. The idea
is that the dependent variables at each point of the domain can be determined from the values
of its neighborhood by the use of a Taylor series expansion. Thus, the domain of interest is

divided into discrete points. For each node we may write a finite difference equation,

relating that node to the neighborhood nodes. These equations are simultaneously solved in
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a way that boundary conditions for the nodes on the solid surfaces and for that at infinity are
satisfied, from which the value of those variables for each node are uniquely determined.
They are programed in MATLAB; an electronic copy can be provided upon request.

The hydrodynamics is presented in § 4.2. It includes the exact solution of the Stokes
equation, the translation of a sphere, the rotation of a sphere, and superimposing them to
obtain the solution of the hydrodynamic part of the problem at hand. The electroviscous ion
concentrations for low Pe is presented in § 4.3. It contains the electroviscous equation, the
analytical solution at order Pe and numerical solutions at orders Pe and Pe’. The
electroviscous potential is determined in § 4.4. The electroviscous force for low Pe is
presented in § 4.5. It consists of the determination of the stress tensor for translation of the
particle parallel and normal to the wall to determine the tangential and normal components
of the force upon applying the Lorentz reciprocal theorem. The numerical solution for
arbitrary Pe is given in § 4.6. It contains the electroviscous ion concentration, electroviscous

potential and electroviscous force. Finally, results and conclusions are presented in § 4.7.
4.2 - Hydrodynamics

4.2.1 - Solution of Stokes Equations

Equations of motion are assumed to be the Stokes equations given by (3.2.5, 6).
Thus, taking the divergence of Eq. (3.2.5) results in:
V-VX-V-Vp=0, or ViV.u=V2p (4.2.1)
Since by the continuity Eq. (3.2.6), V - T = 0 it follows that:
v 2f5 -0 (4.2.2)

which indicates that for creeping flows the pressure is harmonic. Using relationships (A.17-
20), the pressure, the momentum, and the continuity equations, given by Eq.s (4.2.2,3.2.5,
6), may be expressed in the cylindrical coordinate system as

1 (Naﬁ) 1 5‘25+ 0°p

= — |+t = —
) g op) proe* 0z’
o 1o ou) 1(0u, _) 0T 2 &y,
A~ T T A | P A | T2 y U |t T )
op pop\ dp/) p-\ 06 0z° p°- 06

=0 (4.2.3)

(4.2.4)
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L9012 (50) 1 (0 ), o 2
500 pop\Par) "5 a0 ™) T T 0 (4.2:5)
p 13 Naﬁz)+ 1 o', a1,

3 _

(4.2.7)

Now, if we write the flow field in terms of the auxiliary functions Q,, U,, U,,and W,:

5 = %COS 0, (4.2.8)
- _1p

u, = 5 ;Ql + (U2 +U, - 2) cos 9, (4.2.9)
- 1 :

U, = —2—(U2 ~U, +2)sin®, (4.2.10)
. 1(z

o, =7 —C—Q1 +2W, | cos9 (4.2.11)

in which the geometry constant c is defined by the relationship (A.41), we end up with an
individual equation for each of the auxiliary functions to be solved (i.e., separation of
auxiliary functions). Since the coordinate 0 has been used, the auxiliary functions, Q,, U,,
U,, and W, are functions of only p and Z. Introducing the expressions (4.2.8-11) to the

differential equations (4.2.3-7) results in:

cosf(9’Q, 10Q, Q 82Q1]
=== =0 2
C (8’52 +5 op 52 + 57 ] (4.2.12)
? ok 1(o0’U, 10U, &
L(@gléagl_gh g1)+:( U, 100, | go)
2c\ Op pop P 0Z p\ Op p op OZ 4913
1(&2U2 10U, 4U, azuzj (82.13)
+ = ~97 +———— — + — —
p\Lop” p3Idp P 0z
*U, 148U, &°U, (azu2 10U, 4U, 82U2j
— | == t=—-—=*+ =0 42.14
5 ‘pop ozt \op pop p 0T (4219
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~ 82 la 2 2 2
i( Q, 1 Q, Q anj oW, 1oW, W, oW L_-0 (4.2.15)

— T T~ < = - =
op° p op p? oz )" op’ 5 pop p° W
Q, an) [aU2 2U, U, aw,)

3 = 4.2.16
(Ql+pa P +c 8’5+[5+85+262 0 ( )
Thus, Q, satisfies [c.f., Eq. (4.2.12)]

o 10 0
9 1Q Q 9Q -0, 4.2.17)

— Tt == — = —
op> pop p> 07’
Introducing Eq. (4.2.12) into Eq.(4.2.13), then adding and subtracting the result to the Eq.
(4.2.14) gives the differential equations for U, and U, to be determined as

o’U, 10U, 0o°U,

— t=——= +—= =0, (4.2.18)
op p O0p O0Z
o’U, 10U, 4U, o°U

L ——r_ I, 2, (4.2.19)
op- pIdp P 0z

The differential equation for W, is obtained, upon introducing Eq. (4.2.12) into Eq. (4.2.15),

as

O*°W, 10W, W, W,
55 +5 5 - 52 + p =0, (4.2.20)

The partial differential Eq.s (4.2.17-20) may be written in a general form as

oD © 102 m’® o'®

= 4221
6’52 ap p2 aZZ ( )

2
L &= ,
where ® =Q,, U,, U,, or W,, and where m is equal to the corresponding indices, that is m=1
for Q, and W, m =2 for U,, and m = 0 for U,

The bipolar coordinate system with the transformation function
- csinm - csinh§
p = 5 7Z =
cosh& —cosn cosh§ —cosm

as shown in Fig. 4.1, best describes the geometry of the problem. The constant ¢ is a

(4.2.22a)

geometry constant defined by (A.41) as
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c=sinha, (4.2.22b)

in which « is a function of the dimensionless gap width, 8, defined by (A.42) as

a =In [1+6+\/(1+ 6)2—1] (4.2.22¢)

In this coordinate system the sphere is defined by £ = a, the plane by £ = 0, the origin by (€
=0, = ) and infinity by (§ = 0, 1 =0), c.f,, Fig. 4.1. Thus, since both solid surfaces are
described by a single coordinate, in order to impose the corresponding boundary conditions,
it is more convenient to transform Eq. (4.2.21) into the bipolar coordinate system, by the use

of relationships (A.54-59). Doing so, its transformation is obtained as

OD IO 1 oD 1- hg o@ g0
e (sinh& 4 1zcosncoshg j_ m2 o
ot on coshi—cosn o0& sinm on/ sin“n
(4.2.23)

This equation in essence has been solved analytically by Jeffery (1912). The details of the

calculation are presented here for completeness. Letting

1

L hE — 2
d=p zwz(cos Eﬂ Cosn) ¥ (4.2.24)
csinm

we have the following relation between the derivatives of @ and P

1 L oW
acD —51nh§(cosh§ cosn) 2V + (cosh& cosn)2 — | (4.2.25)
,/c sinm o€
D 1 :

'}P

(4.2.26)

1
o = m { %{cosh §(cosh§ —cos n)_i - % sinh’ E_,(cosh& —COS n)
1

+ sinh &(cosh«i — COS n)

0 Lo
a\g +(cosh§ cosn) 2 62;\5}

1

o 111 1 cosmcoshg ¥ (Coshé’;—cosn)g oY

1 + 1
[ 1 1 0
on - sm2 n(cosh}; —cos n)2 sin? n N

(4.2.27)
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0% 1 |1 cosh§ 3 cosn(l—cosn cosh&)

67}2_\/52 1 125 1

sin? n(coshé; - cosn)5 sin? n(cosh& - cosn)z

1 (1— cosT cosh@) . (1— COST coshﬁ) oY . (cosh& - cosn)% o’y

1 1 1 1 oom ! on’
sin? n(cosh&, - cosn)2 sin? n(coshE, - cosn)2 sin? 7
(4.2.28)
Introducing relationships (4.2.24-28) to Eq.(4.2.23) results in:
coshé - cosn | 0°¥ . 'Y Y| 2m’ 2cosh§ . 3sinh® £
csinn 0t*  onm® 2| sin®n  coshé - cosy 2(cosh§ _ cosn)2

+3cosn(1—cosncosh5_,)+ 1- cosn coshf s (1-COST]COShE,.)2 }}_0
2sin’ n(cosh& - cosn) 2(cosh¢ - cosn)2 sin® 11(cosh¢ - COSH)2 i

or
OY oY ( 1 2)
+ +|—=——m" | ¥ =0 (4.2.29)
ot*  on’ 4
Now, this equation can be solved by the usual manner of the separation of variables. Thus,
introducing
Y =E-N (4.2.30)

where E =1 (&) and N =g (1)), to Eq.(4.2.29) and then dividing it by ¥ leads to the following
relationship:
1d’Z 1d°N 1 (1 )

2
Bl ——m 4231
Zde? N dn® sin’n ( )

4
Since the left hand side is only a function of £ and the right hand side is only a function of
7, and this equality must hold for any values of £ and 7, the only choice for them is to be
equal to a constant, - (n+1/2)* say. Since the problem is related to a sphere, we should seek
a spherical harmonic solution, and hence only this choice of a set of constants, namely
(n+1/2)?, where n are any integers, ends up in a spherical harmonic equation. But, since the
choice - (n+1) instead of n leads to the same constant, that is - (-n-1+1/2)* = - (n+1/2)* , we

consider only one set of integers, namely zero and positive ones. Therefore, we end up with
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two ordinary differential equations to be solved. The solution of the first equation,

d’=z ( 1)2
—|n+—=-| =0, 4.2.32
1s
— 1 . 1
E=a_cosh n+§ & +b_sinh n+5 & (4.2.33)
where a, and b, each are a set of constants associated with the integer n. The second
equation,
d2N+( +1)2 : ( ? 1) N=0 4.2.34
n+—| — —— = 2.
dn’ 2 sin’ M My ’ ( )
may be solved by changing the variable as
1
N = X sin? 1 (4.2.35)
from which dN/dn and d*°N/dn? are determined as:
dN L n? + s 5 & 4.2.36)
— = sin sin‘ n-— 2.
dn 2 cosT n N dn (
d*N d’X cosn dX 1 ( 1 | j
= \/si + -—| =+ X 4.2.37
dn’® S dn* sinn dn 212 2sin’q ( )
Introducing relationships (4.2.35-37) to Eq. (4.2.34) results in:
d*X dX m’
: +Cf)sn +(n2+n— — JX=O (4.2.38)
dn® sinn dn sin® 1
Finally, letting
L = cosn, (4.2.39)
then
d dpd o d
= =—sinmn—— (4.2.40)
dn dndu du
¢ _d ( ' d) d +sin’ d (4.2.41)
=—| —sinn— | =—cosn—+sin" N 2.
dn® dn T i du’
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Introducing the relationships (4.2.39-41) to Eq. (4.2.38) leads to the following equation:

(1 2)de 2w a1 X mx 42.42
- —2u——+n(n+1) X = 2.

This equation is well known as the associated Legendre equation of order n and degree m.

Its solution 1s

X = C,P"(1)+ D,Q™(u) (4.2.43)

in which C, and D, are sets of constants, and P,™ and Q,™ are known as Legendre functions

of the first and second kind, respectively, of order n and degree m. They are defined by

PP(w)=(1-17)* g Paln) (4.244)
mogm
Q™(n) = (1-pn?)> Q. (1) (4.2.45)

dp™
in which P, are called Legendre polynomials of order n, Q, Legendre functions of the second
kind, and d™/du™ are m™ derivatives with respect to u. P, are finite and continuous at all
points of the domain. But, Q, has singularities at points 1} = 0 and n = &, which represents
some special physical conditions such as a source or a charge, and hence it cannot be

included in the solution. Therefore, the solution of Eq. (4.2.42) is

X =C,P"(u)=C,(1- uz)% dim"‘ P, (1) (4.2.46)

The general solution of the Eq. (4.2.31) is obtained by superimposing all individual
solutions, corresponding to n = (0 - =), given by (4.2.30, 33, 35, 46), as

L . 1 1 d”
¥ = (1- u?)? sin”? n;{an cosh[(n+5)§}+ b, sinh[(n+§) F,il} " P,(u)

(4.2.47)
Now, in view of (4.2.24, 39), the general solution of Eq. (4.2. 23) or equivalently Eq.

(4.2.21) for ® representing auxiliary functions W,, Q, Uy, and U,, corresponding to m = (1,

1, 0, 2), respectively, is determined by

1 ©

1 , 1 , 1 .
W, = (coshg - u)z sin nZ[An cosh(n + 5) E+A, smh(n + Ej &}Pn(u) (4.2.48)

n=1
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1

Q, :(coshi—u) sng[B cosh(n+ )§+C smh n+ ;)&}P (4.2.49)

n=0)

U, = (coshci - u)5 i [D cosh(n + )& +E, s1nh n+ ;) @}P (4.2.50)

1

UZ:(coshé—p) sin nZ{F cosh(n+ )§+G sinh n+;)§}P (4251)

in which
. dP, . d’P,
P = du , Pn = du2 (4.2.52)

and A", A,B, C,D,E,F, and G, each are a set of constants to be determined by
applying the relevant boundary conditions and continuity equation. In deriving (4.2.48-51),
the summation over n for W, and Q), is taken from n = (1- =), and for U, from n = (2 - «),

instead of n = (0 - «), since
P, = 0, P,=P =0 (4.2.53)

The continuity equation (4.2.16), by the aid of relationship (A.54, 55), may also

be expressed in the bipolar coordinate system as

3Q, l:usmh§£+smncosh§§n‘Q |:smnsmh§%+(1—pcosh@)%+22§i}%:le

Ean—JUO +2{(1 —ucosh&)a—i—sin'r]sinh&%}wl =0

—[sinnsinh§£+(l—pcosh§)

(4.2.54)
The solution of the Stokes equations in terms of the corresponding auxiliary functions

defined by (4.2.8-11) has been used by O’Neill (1964) to solve the problem of the translation
of a sphere parallel to a plane and by Dean and O’Neill (1963) for the rotation of a sphere
around its diameter parallel to the wall in a quiescent liquids. In the subsequent sections
these solutions are presented (in details for the former) and with a minor modification for the
problem of a stationary sphere located in a liquid with undisturbed velocity U=-1 parallel
to the moving wall with the same velocity vector to remove the time dependency of the
problem. This is already imposed in the definition of the auxiliary functions. Then, since

the equation of motions are linear, these two solution are superimposed to obtain the flow
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field for the problem at hand.
4.2.2-Translation Parallel to Wall

The no-slip boundary condition for a stationary sphere relative to a translating
coordinate system with unit velocity in a liquid in which the wall and undisturbed fluid

translate with unit velocity but with the opposite direction may be written as

=0, TG=0 T=0 on S, (4.2.55)

u, = - cos®, U, = sin0, u,=0 onsS (4.2.56)

In view of (4.2.8-11), these boundary conditions may be written in terms of the
corresponding auxiliary functions (here, for translation denoted by AT,, BT, CT,, DT, ET,,
FT,, and GT,) on the sphere (§ = o) as:

~

%Qn+Un+Un—2=o (42.57)
UT, - UT,+2=0 (4.2.58)
%Qn+2w1=o (4.2.59)
and on the plane (€ = 0)

%QT1 +UT, +UT, =0 (4.2.60)
UT, - UT, =0 (4.2.61)
%QTI +2WT, =0 (4.2.62)

Noting that QT, similar to the other auxiliary functions is finite, B.C. (4.2.62) indicates that

on the wall(Z = 0) the value of WT, is equal to zero, that is

WT, =0 on¢ =0 (4.2.63)
from which it follows that WT,, given by (4.2.48), cannot include the terms

Cosh(n + %)& ,and hence AT’ = 0. Therefore, WT, reduces to

1

1 ® 1 |
WT, = (cosh& - u)z sinm ;{AT" sinh(n+ 5) &]Pn(u) (4.2.64)

154



Now, it remains to determine the sets of coefficients AT,, BT,, CT,, DT ,ET,,FT,,and GT,,
appearing in solutions (4.2.49-51, 64). These seven sets of constants are completely
determined by imposing six boundary conditions, given by (4.2.57-62), and also applying the
continuity equation (4.2.54). Since WT, has a more simple form than the other auxiliary
functions, it is more convenient to write the boundary conditions (4.2.57-62) in terms of

WT,. Thus, in view of the transformation function (4.2.22), B.C. (4.2.59) is expressed as

2(cosh :

2 E-p) ¢ : Dep
QT = - ?CWT1 - sinh§ “) Slnnzl ATn(COShé B p)SLﬂ.h(n"' 5)§P"(P')lé=

(4.2.65)

From B.C.s (4.2.57, 58) it follows that

p sin’
UT, = = WT, =
z

N | —

sinhz (cosh&.—u) ZT: AT, smh(n+ )&P( )I teq  (42.66)

Introducing B.C. (4.2.66) to B.C. (4.2.58) gives the boundary condition for UT,;:

~

UTp

WT, +2 = Irllhg(coshi p) ZAT smh(n+ )&P( )’ . T2 (42.67)

Similarly, the boundary condition on the plane are determined by

1

hE —
QT, = —Lirglz—;WTl = —Lélzlgl 2(C0§ini§ !»l) smnz AT (cosh& p)smh(n+ )E_,P ( )
(4.2.68)
~ . 2
D sin” M ( j
UT, = LzungWT Izlgn smhi(COShg u) ZAT sinh| n + &P( )(4.2.69)

~ 2

sin
UT, = L1m P WT, = Igll(’)n smhz (cosh& - ;,L)

NI |

Z':: AT, smh(n+ ng( ) (4.2.70)

Since on the plane Z = 0(& = 0), we take the limit§ — Oin order to remove the

singularity caused by the dominator.

In view of the recurrence relationship [Macrobert (1967)]
(2n+ DB (1) = (n+ D, (1) + 0P, (1) n21 4.2.71)
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the summation term in B.C.s (4.2.65, 68) (for QT,) may be written as
Z]A (cosh& u)smh(n+ )&P ( ) ZAT cosh¢ smh(n+ )éP ( )

) | » 4.2.72)
_21 AT, sinh(n+ —)&[ = P (p)+ - IP;HI(u)}

27 2n+1 ™! 2n+

But, by changing nton + 1 and n - 1 we have the following relations:

© 1 n+1 3 n+2
AT nh( +—j =) AT nh(n+ ) P 4.2.73
21: n St " 2§2n+1 n-l Z nt1 51 2§2n+3 n ( )
wA 1 h( + 1)5,\ ZA llh(ll —1) - Pv 4.2.74
>, AT sinh| n = [ - 2.
1 n St 2/°2n+1 Prot = -1t 2 g2n—1 n ( )

In deriving the identities (4.2.73, 74), the limits of summation instead of (0 - «) for the right-
hand side of (4.2.73) and (2- «) for the right-hand side of (4.2.74) are taken to be (1 - «) by
the use of (4.2.53) and noting that for n =1 the right-hand side of (4.2.74) vanishes.
Introducing (4.2.73, 74), written in terms of sinh(n + %) and cosh(n + J)E by the use

of the identities

sinh(n+ %)E,, = sinh(n+ %+ l)}; = sinh| n+ %)& cosh¢& + cosh(n+ %)%; sinh& (4.2.75)

sinh(n— %)& = sinh(n+ %— 1)& = sinh| n+ %)&, cosh¢g - cosh(n+ %)@ sinhf (4.2.76)

to the relation (4.2.72) leads to

ZAT(coshﬁ p)smh(n+ j&P()

- ) 1 n+2 n-1
=Z{cosh§smh[n+ 5)@{,41,— AT - AT, } 42.77)
+cosh(n+ J&smh&{ ot nt 2AT J}P

-1 2n+3™

Now, imposing B.C. (4.2.68) for = 0, in the solution (4.2.49), by the use of
(4.2.77), results in
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1
2sinh{ n+ ]
BT« Lim—— ; AT, - 22 ar o 2lar
" g sinh¢ " 2n+3 ™ 2n-1 (4.2.78)
5 n-1 n+2 A 51
2n-17""1" o3| 0
or
BT, = (n- )AT_, - (2n+ 1)AT, + (n+ 2)AT,, n> 1 (4.2.79)

Thus, one set of constants of QT,, namely BT,, is determined in terms of AT, by the
relationship (4.2.79), upon imposing the no-slip boundary condition on the wall. The other
set, namely CT,, is obtained by imposing the boundary condition on the sphere, given by
(4.2.65). Therefore, introducing QT,, given by (4.2.49), and relationships (4.2.77, 79) to
B.C. (4.2.65), for = a results in

1 1
CT, sinh(n+ E) o= - cosh(n+ E)a[(n— DAT_, - (2n+ 1)AT, +(n+2 ATn+1]

2coth 'nh( 1) LRV VL LY, }
— +— —_
COMASIMA AT J& oo et T T 3 o
2 h( 1) nolar J M2y ] > 1
- + — nz
COSIRT o) H ppo 11" gpg 3 e
(4.2.80)
giving CT, to be determined by
k| 27l at AT + 22 AT } >1 4281
Cl,=-2 2n-1 S o3t ! ne (4281)
where we have written
1 1
k = (n + 5) coth(n + —2—) o — cotha (4.2.82)

in which the geometry constant o is given by the relation (4.2.22c).

Similarly, from B.C.s (4.2.67, 70) DT, and ET, are obtained as
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1 1
DT =- E(n— )nAT _, + E(n+ 1)(n+2)AT,,, n>0 (4.2.83)

n

1
2\/56‘(“*5)“
sinh(n + %) a

ET =

n

n(n—-1) (n+1)(n+2)
+k AT, - >0 (4.2.84
“[ 2n—1 " 2n+3 Al | n20( )

and B.C.s (4.2.66, 69) give FT, and GT, to be determined by

1
FT, = E(ATH_l ~AT,,,) n>2 (4.2.85)
GT, =-k |: AT ! AT >2 4.2.86
n n 'n—1 n-1 on+3 n+l nz ( )

In deriving (DT,, ET,) and ( FT,, GT,) the recurence relationships [Macrobert (1967)]

(2n+ 1)(1- p2)P. (1) = n(n + 1)[Pn_,(u) - Pn+l(u)] n>l1 (4.2.87)

and

(2n+1)P. =-P._ +P,

n+l

nl (4.2.88)

are used, respectively.

In this way, the sets of constants BT, CT,, DT, ET, FT, and GT, are determined in

terms of AT,.

It remains to determine the set of AT, by the aid of continuity equation, given by

(4.2.54). Itis observed that each of the following terms, involved in the continuity equation
(4.2.54) or equivalently (4.2.16), namely

(Na Na) (_a_+g)U ou, oW, .
Ql’ p£+zafz Ql’ 55 ~ 2 85 ) a,z ’ 2. )

is a particular solution of Eq. (4.2.91) for m = 1, and hence the linear combination of them

1S a solution of
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PO 160 & o

LPO=—F+=—=-=+ =0 4.2.90
ot pop pt ooz 220
that is the terms in continuity equation may be written as
1
d, :(cosh& u) smnz [MT cosh(n+ )§+NT sinh n+ § (4291)

in which @, is equal to the sum of all terms appearing in the continuity equation. Thus, if the

sets of constant M, and N, is equated to zero, the continuity equation
® =0 (4.2.92)

is satisfied. Therefore, it remains to write each of the terms appearing in the continuity
equation (4.2.54) in the form of relation (4.2.91) to determine the sets of constant M, and N, .
Q1, given by (4.2.49), is already in this form. The other terms are determined as follows:

The first term may be evaluated as

0 0 1
- I sinh&%— sinm cosh&—a%z L sinh & x

1 «©

{sinn sinh&(cosh& - p)_iz {BT cosh(n+ )& +CT, smh(n+ ;)&}Pn

e o]

u 1
sinn(cosh&—p)zz 2n+1 {BT smh(n+ )§+CT cosh(n+ 2)& P

(4.£93)

1

1 1
- sinm cosh&{[%sinz n(cosh§ - p)_i - p(cosh§ - p)E] X

ZI:[BT smh(n+ )§+CT cosh(n+ )&}P
+ sin n(coshg “)“‘i{ T, smh(n+ )§+CT cosh(n+;)§}P;}

1

In view of the relation [Macrobert (1967)]

Zldﬂ{(l _ uz) (311:: } = —n(n+1)P, = —(n+1)(uP, - P, ,) n>1  (42.94)
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the relation (4.2.93) may be written in terms of Pr; as

!

., .0 . 0
—p sinh¢§ 6&@1— sinm cosh§ _G&nl = sinn(coshg - u)z X

= l1-n n+2 ]
[ I

1

+[(1_Tnj CT,_, - CT, +(n; )CT +l]smh(n+ ;)Q}Pn

The third term in the continuity equation may also be expressed as

_ smns1nh§—+(1—pcoshg)3+ (Cos,hg_“) U, = —sinnsinh& x

g m sinm
lsm smh&(cosh& ) ]z FT cosh(n+ )§+GT smh(n+ 1)@ P
5 sin" n b 5 )5 [Pa
+%sin2 nsinh&(cosh& — p)_%z (n+ —;—)[FT sinh(n+ E)g +GT, cosh(n+ 9 g}xzj}

1

(l—ucoshé){{lsm n(cosh& - u) 7 +2sinnp(cosh& - p )1}

Z [FTn cosh(n + -2—)§ +GT, sinh n+ l &}Pm
—sin’ n(cosh& - H);{Z [FT cosh(n+ )& +GT, smh(n+ ;)&}Pn}

+2sin n(cosh§ — u)%z (cosh = p)[FTn cosh(n + 5)@ +GT, sinh(n + —;—) Q}Pn

(4.2.96)
By the use of relation (4.2.94) and its derivative, the relation (4.2.96) is determined by

1

}Uz = sinn(cosh?; - p)5 X

2 h§ -
_{smnsmh§%+(l—ucosh§) aTl+ (Co:iné] H)

(n+2)(n+ 3)

Z': {[(n_ 1)2(n— 2) FT, , - (n-1)(n+ 2)FT, + FT, H} cosh(n+ ;jg

{(“‘ U0-2) 1, , - (a- (n+ 2)a1, + 2120 Gh]smh(m ;)a}P,;

(4.2.97)
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Similarly,

0 0
—{smn sinh§ — (1 pcosh&) }U =
él on
= 1 1 ]
sinn(cosh& - u)z Z H— EDTn_, + DT, - > — DT, +]}cosh(n+ 2)& (4.2.98)
1

1 1 1 .
-—ET _,+ET --E ( )
[ 5 L+ 5 Tﬂ]smh n+2 é;}Pn

1

[(l—ucosh&,) ag—smnsmhg } —smn(coshE> u)

Z‘j {— (n2— 1) AT | +(n+ %)ATn - (H;ZJAT +l}cosh(n+ )&P

Now, in view of (4.2.49, 95, 97-99), the continuity equation (4.2.54) may be written

(4.2.99)

as

l i n-1 1 5 n+2 1
sinn(cosh - p 22 BT + =BT +| —|BT_, - —DT
|

2 2 2 n+l 2 n-1
1 )(n-2)
+DT, - - DT, , + (n )2(n FT_, - (n- 1)(n+ 2)FT,
+2)(n+3 1 1
L l(n ) FT_ -(n- 1)AT,_,+ 2(n+ 5) AT - (n+2)AT, +l}cosh(n+ 2)2;

n+2

1 1
CT, --ET_ +ET -—-ET
2 ) n+l 2 n-1 n 2

n+l

+[—(—2—)CT_ +=CT, +(

D61 (a- 1)ns 2)GT, + 2)2(1” ) GTHJsmh(n+ ;)g}m - 0

(4.2.100)
Therefore, it is satisfied for all & and 1, if the coefficients of cosh(n+ yz)ﬁ and

Sinh(n + %)(Y; in (4.2.100) are equated to zero, that is

—~(n-1)BT,_, +5BT, +(n+2)BT,,, - DT,_, +2DT, - DT, ,,

+Hn-1)(n-2)FT_, -2(n-1)(n+2)FT, +(n+ 2)(n+3)FT,,, (4.2.101)
2(n-1)AT,_, +2(2n+1)AT, - 2(n+2)AT,,, =0
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—(n—-1)CT,_, +5CT, +(n+2)CT,,, —ET_, + 2ET, —ET_,,

4.2.102
Hn-1(n-2)GT, , - 2n-1)(n+2)GT. +(n+2)(n+3)GT,., =0 1%

If we expressed the relation (4.2.101) and (4.2.102) in terms of A_s, by the aid of (4.2.79, 81-
86), the former is observed to be automatically satisfied, and the latter gives a relation for

As:

[(2n- Dk, , - (2n- 3)kn]{ nolar oM AT }

2n-1 " 2n+1 °
~[(2n+ )k, - (2n+ 3)k [ melop M2 g (42.103)
n n+l 2n+ 1 n 2n+ 3 n+1l
1 1 3) ]
:ﬁ{2coth(n+ 5)0(—coth(n—i)a—coth(nwti)a n21

in which k, are given by (4.2.82). This generates n equations for (n+1) unknowns, A,,
A,,...A_, A,,,. But,since the flow field is finite, the auxiliary functions, given by (4.2.48-51),
have to converge at all points of the domain, and hence, in view of (4.2.79, 81-86), it is

required that

A -0 asn-» o (4.2.104)

Therefore, the set of A'ns up to some level (depending on the desired accuracy), n =
N, is completely determined by letting A |, , = 0, upon construction of the matrix of the
coefficients. By knowing the set ofA'ns, the other sets of coefficients are completely
determined by relations (4.2.79, 81-86). Their summations over n are programmed in
“CoefTran”.

The domain of interest is divided into (K+1)x(L+1) nodes constructed by a net of
bipolar coordinates in which K is the number of intervals on the &- coordinates and L the
number of intervals on the n-coordinates. They are illustrated in Fig. 4.1. This figure
corresponds to K = 3, L=30, and 6 = 0.05. The difference between each coordinates h, and
h, is chosen to be a constant. They are determined by

h, == h =

= . (4.2.105)

=3
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in which o is given by (A.42). Each node is addressed by its number, L =1-
(K+1)x(L+1)]. The number of nodes starts at the origin (€ = 0, N = n), increases with
increasing the - coordinate and with decreasing the n-coordinate, as shown in Fig 4.1, that
is j = ldenotes the nodes located at the origin (£ = 0, 1 = 1t); j = K+1 is the node located at
nearest point of the sphere to the plane (intersection of the z-axis and the below sphere, £ =
a,  =m), j = K+2 the node at the point (£ =0, n = 7 - h,), j = 2(K+1) the node at the point
(€ =a,n=m-h,); ] = (K+1)L +1 the node located at infinity (£ = 0, n =0), and j=

(K+1)(L+1) the node at intersection of the above z-axis and sphere (€ = a, 1) =0).

Fig. 4.1 - Distribution of nodes (1 - 124) in bipolar coordinate system (&, 1, 0)

on the plane 0 = 0.
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The Legendre polynomials, P,(u), (1 = cos 1 ), and their derivatives with respect to
p are generated by the following relations: [Macrobert (1967)]

21-1 i-1 _
—pP - _i_—Pi‘z fori22
i

P, =1, P =y, P =

P(; =0, P =1, Pi' = ,'J'Pi'—l + P, foriz2 (4.2.106)
P,=0, P =0, P =uP  +P fori> 2
P,=0, P'=0, P =uP’ +(i+2)P, fori>2

They are programmed in “PmuEq42106P” for each node j, with the notation
P(i, j)= Pi(pj); Pl(i, j)z Pi'(pj); P2(i, J) = Pi"(pj); P3(i, J) = Pi'"(uj) (4.2.107)

The summation over n of the auxiliary functions WT,, QT,, UT, and UT, , given by
(4.2.64, 49-51), and their derivatives with respect to § which are needed in the subsequent
section are determined in the programs “W1Eq4264, “Q1Eq4249", “U0OEq4250” and
“U2Eq4251”. The cylindrical components of the velocity in (4.2.9-11) may be written as

u T=VTcos6, u,T = V,Tsinb, u,T=V,TcosH (4.2.108)

in which (VDT, V, T, VZT) are defined by
I\ p

V,T=2| QT+ (U,T+U,T-2)|, (42.109)
1

V,T=—(U,T- U, T+ 2), (42.110)
1z

V,T=2—QT+WT 4.2.111)

C

The bipolar components of the velocity may be written as

U, T= V,Tcosb, u,T= V,Tsin0, U, T=V Tcosb (4.2.112)

in which (VE_'T, V, T, VnT) are determined by relations (4.2.109-111) and (A51, 52):

—sinh £ sin 1 1-cosh §cosm
V T = V. T+ V,T 5
¢ cosh&-cosm °  cosh&—cosn (4.2.113)
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V T conh&cosn—lVT+ —sinh §sinn
" cosh{—-cosn °  cosh&-cosn

VT (4.2.114)

z

The cylindrical and bipolar components of the velocity are determined by the program
“VTBConTran”, upon the use of relations (4.2.108-114). Since the bipolar coordinate
system has a singularity at infinity (§ = 0, = 0) [c.f., (4.2.22)], to avoid this singularity in
the dominator, this node is excluded in the calculation, the value of which is pre-described
by imposing the boundary condition at infinity.

To see how this solution works, an example of the distribution of the flow field in the
plane 0 = 0, for a mesh size (K=3, L =30) is tabulated in Tables B1-5 for = 0.05 (which is
correspond to Fig. 4.1), in Table B6 for =2, and in Table B7 for 8 = 10®. These Tables are
located in Appendix B. For 6 =0.05, hundred and twenty terms (N=120) are considered in
the summation over n (n = 0 -120) in Eq.s (4.49-51, 64), for calculation of the auxiliary
functions. Tables B1-5 shows that boundary conditions are satisfied up to fourteen digits of
accuracy for all points of the domain. For & = 2, only twenty two terms are considered
(N=22) in the summation for which the boundary conditions are satisfied with the same
accuracy at all points except for the two points located at the intersection of the sphere and
z-axis (c.f., Table B6 nodes 5 and 124) which is within thirteen digits of accuracy. If one
more term were added to the summation (i.e. for N = 23), the approximation of these two
points would be improved beyond fourteen digits of accuracy. For & =10, Ns taken to be
5600 terms, the maximum capacity for MATLAB software. It is observed from Table B7
that despite this large number of terms the accuracy is less than two digits (c.f., node number
4). To improve the accuracy of the flow field for this case the addition of many more terms
is required.

Therefore, though there is no restriction for the particle wall distances, the smaller
the gap width, the slower the convergence, that is as -0, (the rate of convergent)-0, and for

& =0, since the problem is faced with a singularity at the origin, it never converges.

4.2.3-Rotation of Particle
Since the flow at infinity is already imposed on the definition of the auxiliary

functions for the translation of the particle, given by (4.2.8-11), for the rotation of the particle
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the suitable auxiliary function with a minor modification of the original solution are

Pr = 5%0089, (4.2.115)
U, = %E QR, +(UR, + URO)} cos®, (42.116)
U, = %(UR2 ~UR,)sin#, 4.2.117)
U, = %(%—QRI + 2WR,) cos 0 4.2.118)

Here, the indices R denote the rotation. Thus, they satisfy the same equations as those for
the translation of the particle, since the reduction of the constant velocity at infinity does not
affect the derivative of the velocity appearing in the equations of motion, and hence their
solutions are the same as those obtained by (4.2. 49-51, 64). Its boundary conditions on the
sphere are [c.f., B.C.s (3.2.8-10)]

U, = Q(Z-d)cosh, Uy, = ~Q(Z-d)sinb, T, = -Qpcosh, onS, (42.119)
in which d = 1 + 8, and those on the wall(Z = 0)

U, =0, Uy = 0, U,=0 onS,, (4.2.120)

and at far distances from the origin

~

=0, Ty = O, Uyp=0 as|T|»> o  (4.2.121)

The boundary conditions on the sphere may be expressed in terms of the auxiliary functions

as
%QRI +(UR, +UR,)=2(Z-1-8), on&=a (4.2.122)
UR,- UR,=-2(Z-1-38), onf=a (4.2.123)
%QRl +2WR, =-2p ong=a (4.2.124)
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and on the wall and at infinity as

~

%QR1+(UR2 +UR,)=0, onE=0

UR,-UR,=0, on&=0

Z
~QR,+2WR,=0  onf=0

(4.2.125)

(4.2.126)

(4.2.127)

Dean and O’Neill (1963), by imposing these boundary conditions in the solution of auxiliary

functions, given by (4.2.49-51, 64), and by applying the continuity equation, given by

(4.2.54), obtained the coefficients of the auxiliary functions, with the same procedure as that

outlined for the translation of the particle as

[(2n-1k, , —(2n-3)k ][H—_IAR - AR}
- D on 1 T

n+l n+2 }_

AR — AR
2n+1 n 2n+3 0

[0 4 - 1
(2n+1)2[ © © )cosech(n+—2-)oc

-{(2n+5)k, - (2n+ 3)k,,+1][

ﬁe‘(‘”%)“

2
(2n+1)
1 3
—~(2n-1)cos ech(n - —2*) a—(2n+3) cosech(n + 5) a}

2n—1+2n+3

BR_=(n-1)AR,,-(2n+ AR, +(n+2)AR,,, n21

1
CR, =4\, cosech(n+ E)oc

n-1 n+2
-2k { AR_,-AR + ATn_l} n>1
" 2n-1

1 1
DR, = —E(n— 1)nAR +5(n+ 1)(n+2)AR,,, n>0

FR, = %(ARM ~AR,,,) n>?2

n=>1

(4.2.128)

(4.2.129)

(4.2.130)

(4.2.131)

(4.2.132)
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1

-\ n+>]a 1
ER_ = \/5(2n+1)e( ) sihha—kn]cosech(n+ Eja

n

(4.2.133)

n(n-1) (n+ 1)(n+2)
+k | —AR__ - >
{ 2n-1 ™" 2n+3 wr| 120

1 1 1

GR, =—4A, cosech(n+—)a—kn[ AR, - AR ., nx2
2 2n-1 2n+3

(4.2.134)
in which « and k,, are given by the relations (4.2.22¢c, 82) and A, is defined by
[ 1 3
J2 e'(“‘i)“ e‘(‘”i)“
A o=— - (4.2.135)

" 2| 2n-1 2n+3

They are programed in “CoefRot” from which the velocity field, given by (4.2.109-11), is

determined in the program“VR”.

The cylindrical components of the velocity in (4.2.116-118) may be written as

u R =V Rcosb, U,R = V,Rsinb, i,R = V,Rcosf (4.2.136)

in which (VDR, VLR, YV, R) are defined by
1l p

V,R=> ;Q,R+(U2R+UOR) , (42.137)
1

V,R = E(UZR ~U,R), (4.2.138)
17Z

VR = 5—Q1R+W1R (4.2.139)

C

The bipolar components of the velocity may be expressed as

U,R = V.Rcosb, U,R = V,Rsinb, u R=V Rcos6 (4.2.140)

in which (VER, VoR, V, R) are determined by relations (4.2.136-139) and (A51, 52) as
—sinh & si 1—conh & cos

VR - _SmESION scosn (42.141)

¢ cosh&—cosn cosh & —cosn
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conh £ cosn—1 —si i
V,R = scosn=ly p, ZsinhGsinn
cosh—-cosn P cosh&—cosn

(4.2.142)

z

An example of its calculation for Q) =1 and & = 0.05 is tabulated in Table B8, 9 for
U and U, on the plane & = 0, and in Table B10 for Ty, on the plane 8 = /2, given in
Appendix B. In the calculation N =120. We see how boundary conditions, especially on the
intersections of the sphere and z-axis (nodes 4 and 124), and on the leading point of the
sphere (c.f., Fig. 4.1, node 112) are satisfied up to 14 digits of accuracy.
4.2.4 - Translation and Rotation of Particle

The flow field produced by translation and rotation of a sphere with linear velocity
u= (U, 0, 0) and angular velocityﬁ = (0, Q, O) , with the ratio of which given by r (=
aQ/U), is obtained upon the linear combination (superimposition) of the solution for
translation and rotation of the particle determined in § 4.2.2 and § 4.2.3. The bipolar
components of the velocity may be expressed as

= V, cosb, U, = V,sin6, u =V, cosb (4.2.143)

where we have written

aQ
V. =qV, T+1V,R, V, =qV,T+1V,R, V, =qV, T+1V,R,r = R q= (1 or O)

(4.2.144)
from which the steady state components of the velocity are determined by
1 - = , 1. .
V, = - Esmn(coshé - p) 2 —2(1- il cosh&)z A_sinh| n+ 5 EP.
1
+1 smhé';z [B cosh(n+ )Z; +C smh(n+ )&]P
(4.2.145)

(1 il )smh&Z{F cosh(n+ )§+G smh(n+ j@}P

+smh§Z{D cosh(nJr )§+ E smh(n+ ;)@}Pn}+ Cs;ﬁtg‘sizgn
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1 1 il
V. = —E(COShE_, - u) 2J2 sin’ nsinhﬁz A, sinh(n+l)§P,;

+(1—ucosh§)sinh§2: D cosh(n+ )§+E smh(n+ )@ P
+sin’ n(l—ucosh&)i FFn cosh(n+—)£_,+Gn sinh(n+5)&, P

| o
i [ ot el e R

(4.2.146)

\VA :%(coshé—u);{i [D cosh(n+ )§+E smh( Hpn(p)

0
[= ] 1 .
+sin’ T]Z [Fn cosh(n + 5)& +G, sinh n+ 5 Q}Pn(p)} _
2

where we have written

(4.2.147)

K,=qKT,+tKR,  K=(A,B,C,D,E,F,G), p=cosn (42.148)
When just rotation of the particle is considered q =0 and r = 1, otherwise q = land r = aQ/U.

For the former, the characteristic velocity would be aQ instead of U.

4.3 - Electroviscous Ion Concentrations for Low Pe

4.3.1- Electroviscous Equations

The equations and boundary conditions for electroviscous ion concentrations in the
expansion (3.4.1), for Pe << 1, at order Pe are given by (3.4.2-5), and at order Pe? by (3.4.7-
10). They may be expressed in the bipolar coordinate system (&, n, 0), for 321 as [c.f,
(A.45)]

o 1 &
(cosh&_,—cosn) T +5le +Sinz 207
0 coshEcosn-10 | (431
o¢ sinm on “

—sinh&
with boundary conditions [c.f., (A.44)]
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aacg' =F,(cosh§ — cosn)a—zli(coshf; - cosn)a—i}ﬁé onS, J=(P,W) 432
c,—0 as (&, n) —0 (4.3.3)

and for C,, as

1 3°¢ az~ 1 0% j
_ hE - 22 22 22
2 [(cos g cosn) ( P + sin’n 90

(4.3.4)
0¢ h -10¢ -
+(cosh§ - cosn)(— sinh§ Cu O E.,.cosn 8022) =1-VT,
§ sinm on
with
e
acgz onS, (4.3.5)
S, > 0 as(&,1) - 0 (4.3.6)

The geometry constant ¢ in Eq. (4.3.4) is defined by (A.41). Because of symmetry

properties, as observed in Chapter 3, if we define

¢,, = F;C,, cosb, (4.3.7)

T, = Fp(Cyy + C,, c0526) (4.3.8)

at order Pe, C,, satisfies

o° & 1 j , 0 coshEcosm—1 0
[(coshi—cosn){aéz + o sn’n —sinh§ P + - on C, =0
with boundary conditions [c.f., (4.2.134)] (4.3.9)
aCy 0 0

8§ (cosh& cos n) 3 {(cosh& cosn) 8&] on=q (4.3.10)
0 0
8§g = R(cosh& - cosn)— % [(Coshﬁ cosn) 5&] oné =0 43.11)
C,—0 as (E_n n) —0 (4.3.12)
in which R is defined by
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FcW
F, (4.3.13)

and at order Pe? (C,y + Cy; c0s20) [c.f., A.44)]

{(cosh&—cosn)( 522 + ik - ,1 62]

dt?  on® sin’n 06°
coshi cosm-1 0

R =

- smh& F, s o (CZO +C,, cos29) =
C[H cos20 (V 0C,, LV 6C2,j _I-cos20 v C,,
2 ¢ 0 "o 2 % sinn
(4.3.14)
with

0
8—§(C20 +Cy CC’Sze)'sJ =0,C, +C,, 0520 > 0 as (&, n) =0 (4.3.15)

Since these equations must hold for any value of 0, at order unity we have

o 0 h -120
[(cosh& —COS n)(—— + ———j - smh& COS E".COST] }CZO =
(4.3.16)

P &t sinnom

C oC,, 0C,, Cy

hd b’} i’ W § e} B

2[\’@ & "V sing

with

oC,, 0C,,

__a_g_l a=0 0=0, Cyu—0 as(g,n)—>0 (4.3.17)

and at order cos(20)

0> 9’ 4 J 0 coshécosn-1 0
_ - - sinh
[(cosh& cosn)(aiz + am?  sin’n sinh§ ot + sinn on C

- C{V Cu v u,y Cu ]

2| ¢ 0 " oon % sinn
(4.3.18)
with
aC aCZZ
agz ’§=‘ =0, ok 1820 =0, Cp—0 as (&: 11)—> 0 (4.3.19)
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4.3.2 - Analytical Solution at Order Pe
The electroviscous ion concentration at order Pe, C,,, satisfies the same equation as
that given by (4.2.23) for which m = 1, so that its solution is
I
C,, = (coshé’; — u) sng[I cosh(n+ )E_, +J smh n+ E_, (4 3.20)
The sets of constants, J, and [, are determined upon imposing the boundary conditions on the

solid surfaces. The derivative of the solution (4.3.20), with respect to £ is

aggl _ Sinn{%sinhé(coshg_u)_%i {I COSh(I’H. 1)&.*‘] smh(n+ ;jéjlpr‘l

S 5o sl oo

n=1

the value of which evaluated on the boundary § =0 is (4.3.21)
0C,, L& ( 1) .

=sinn{1-pn)? n+—|J P 4.3.22

aEJ £=0 n( u) HZ:] 9) mn ( )

from which and upon the use of B.C. (4.3.11), the set of J is determined. Vg appearing in
B.C. (4.3.11) is given by (4.2.145). It may be expressed as

sin
V=

é (cosh§ - u)-%M- 2sinh§(cosh§ - p)—l} (4.3.23)

in which the parameter M is defined by (C.1) in Appendix C. From this B.C. (4.3.11) may

be written as

0C,,  Fysinn 0 0
oE T 2¢ o {(COSh& W5 OE ' }

Rsmn aﬂ(coshg ) ;}(cosh& u) ™™ 2sinh(cosh& — ) }:
Rsmn{ +(cosh& —p)” : ismh2 &M}

+(cosh§ - p)—%[— %cosh &M] (cosh@ - u)E[S +2T+ O]}

(4.2.24)
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The functions M, N, S, T, and O are defined by (C.1), (C.2), (C.3) and (C.4) or, in revised
forms, by (C.9),(C.10), (C.11) and (C.12) in Appendix C. Now letting £ = 0, B.C. (4.3.24)
1s evaluated on the wall as

o]

oc,, F

1
_6§ =" —i‘g—sin n(l - H)2 Zl: [(n +2)C,,, +(n-1)C_,-E_,, + En_l(4.3.25)
+n+2)(n+3)G,, -(n-2)(n-1G,_,|P,
In view of (4.3.22) and (4.3.25) the set of J, is determined:
E 1

| [(n+2)C,, +(n-1C,  ~E,, +E,,

c 2n+l1 (4.3.26)
+(n+2)(n+3)G,_,, —(n—2)(n—1)Gn_1] n>1

The other set of constants in the solution (4.3.20), namely I, is determined upon imposing
the boundary condition on the sphere surface, given by (4.3.10), which requires much more
calculation in order to equate it with that deduced from the solution (4.2.20), given by

(4.2.21), evaluated on £ = . This is determined in Appendix C as

(n-2)(n-1) . 3
o1 sinh n—E al ,
sinha 1 : 1
~(n- 1){ 211 cosh(n— Ejoc + cosha smh(n— E)a}ln_l
L h2 h( 1)
—_ +—
+ 2sm o cosh| n 5 o

2

+(2n+ 1)cosh® o +

(n+1)(n-1 n(n+2)| . 1
n-1  2n+3 }Smh(r” )“ L

inh 3 _ 3
~(n+ 2){ ;1:;0; cosh(n+ E) a + cosha smh(n+ E)a}lml
(n+3)(n+2) . 5
+ P sinh n+5 al ,,=-%,

_Ey [Bn+yn+11n+t2n+t3n+031n+m2n+m3n+m4n+m5n+m6n]§_
C =q

(4.3.27)
where X, B Yos Tlo T2p T3 015, 02, 03, wd,, 05, w6,, are given by (C.33, 22-31).
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Eq.s(4.3.26,27) are solved by the program "CoefAnalyticRot" for the rotation of the
particle and in "CoefAnalyticTran" for its translation up to transacting point n = N-1, upon
the construction of the matrices of coefficients and the vectors of the right-hand sides. From
the known coefficients, I, and J, the electroviscous ion concentrations at order Pe, C21T for
translation and C21R for rotation of the particle, are obtained by (4.3.20), programmed in
"C21Psi121 AnalyticTran" and "C21Psi21 AnalyticRot". They are superimposed in Program
"ForceParallelAnalytic".

4.3.3 - Numerical Solution at Order Pe

The finite difference approximation is applied to solve Eq. (4.3.9) along with B.C.s
(4.3.10-13). Theideais that the electroviscous ion concentration at each point of the domain
can be determined from the values of its neighborhood by the use of Taylor series
expansions. Thus, if we divide the domain of interest in discrete points as shown in Fig. 4.1,
for each node we may write
ACy = AC,(D+AC,(2)+ AC,(3) + ALy (4) (4.3.28)
in which A, (1=0, 1, 2, 3, 4) are known as weighted functions and C,,(1) (i1=1, 2, 3, 4) are
the value of C,; at four immediate neighborhood nodes, located on the coordinate curves
passing at the point under consideration, C,;. Here, node (1) is taken to be located in the
increasing direction of 1}, node (2) is its reflection with respect to & coordinate, node (3) is
in the increasing direction of £ and node (4) is its reflection with respect to 1 coordinate, as
shown in Fig. 4.2a. Thus, Eq. (4.3.28) may be written, upon the use of Taylor series
expansions, as

0Cy 15 9°C,  hy 0°C,,

Ay Gyl om 5 on’ 3 on’

0Cy 1 0°Cy 1
#Ay| Cy by S ST +ofn?)
5 . (4.3.29)
0Cy heCy 1
#Ay| Cyt hy 2 = +o(n})
' oC, hia*C
FA| Co by S a§22‘+0(h§)_—A0C2,=0
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in whichh, and h__ are intervals chosen for £ and n coordinates, respectively.

The electroviscous ion concentration, C,;, should simultaneously satisfy the exact
equation, given by (4.3.9), and the approximate one given by (4.3.29). Therefore, the
weighted functions A; are determined, upon equating these two equations, then collecting
terms with the same derivatives. Because the exact equation does not poses terms of higher
order than 0°C,/98* and 0°C,/dn* we truncate terms of O(h’;) and those of O( h’,) in the
approximate equation, given by (4.3.29). Thus, the error in this calculation is of order (h’
+ h’,) and hence the smaller the intervals the more accurate the result. Doing so the

weighted functions are obtained as

sin®n  sin’n 1

A= 2(cosh§ - cosn) h§ + hf‘ + 5
sin’ n(cosh& ~ cosn) sinn(coshé cosn - 1)
A= 2 t ’
h; 2h,
A sin’ n(cosh& - cosn) sinn(cosh& cosM - 1)
) = 2 - “2h, (4.3.30)
A S (cosh@ - cosn) sinh¢&
3= S h? 2h,
. (cosh& - cosn) sinh§
= +
A, =smn" 1 h§ oh,

They should be evaluated at the node under consideration. Now, we can apply Eq. (4.3.28)
to all individual interior nodes of the domain which have four neighborhood nodes around
them. On the boundary of domain on the solid surfaces we have only three neighborhood
nodes and at its edge only two. To manipulate the finite difference approximation for such
points, we may consider an imaginary node behind the boundary denoted by C,(4") for the
wall and C,(3") for the sphere surface, as shown in Fig . 4.2b, c. By the aid of the governing
Newman boundary conditions (4.3.10, 11), it would be possible to determine the value of
such imaginary nodes in terms of inner nodes (i.e., imposing the boundary conditions).

Therefore, if we write [c.f., Fig 4.2]
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& _ €, ) -G, (4) on S 9C,, _ C,,(3)-Cy4)
o £o 2h, W ok - 2h

on S,
§

(4.3.31)
C,1(3") and C,,(4') are determined in terms of the interior nodes C,,(3) and C,,(4) as well as

the corresponding boundary conditions, that is
C,,(4") = C,,(3)- 2h BCWall, (4.3.32)
C,,(3) = C,,(4) + 2h BCSphere, (4.3.33)

in which, in view of B.C.s (4.3.10, 11), we have written

0 0

BCWall = R(cosh& —cos n)g (coshED - cosn)£ Vo ong=0 (4334
o[ 3 |

BCSphere = (cosh& —Cos n) E (cosh& — CosS n) 8_§ V. onf=a (43395)

Thus, the finite difference equation (4.3.28) may be written as
— AyCy + ACy () + A,C, (2)+ (A, + A, )C, (3) = 2A,h, BCWall  (4.3.36)
for nodes on Sy, and

= ACy + ACy (1D + A,Cp(2) + (A, + A, )C,,(4) = ~2A,h, BCSphere(4.3.37)

for those on S;.

g‘*‘h&_ @ O+h€ @ Q,‘f_hi 3An|mag|narv node
T b, Ios,
@"_ni 2 @«-ﬂﬁC:O/@ @hnéza/@
n+h, Ca n—h n+h, 2 nm-h n-+h, Cu n-h,
ﬁ—ha_ @ ()_hé {%ﬁ:}f\nimaginary node Ot—hé @
a: Interior nodes b: Nodes on wall ¢: Nodes on sphere

Fig. 4.2 - Anodeon £ and 1 coordinates surrounded by the four immediate

neighborhood nodes.
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In addition to the solid surfaces for which { = constant, we have two other boundaries of the
domain for which n 1s constant, one on the z-axis above the sphere for which 1 = 0, and the
other is that part of the z-axis below the sphere for which n = = (c.f., Fig. 4.1). To
manipulate the finite difference approximation for such points, we may assume that the
curves of the electroviscous ion concentration on the z-axis are piecewise continuous so that
the imaginary nodes on the left side of the z-axis are located in such a way that the slope of
the left-hand sides and the right-hand sides on the z-axis are the same. Thus, if the nodes
behind the boundary n = & are denoted by C,,(1") and those behind the boundary n = 0 are

denoted by C,,(2') we may write

dC,, - G, -G, (2) _ 0C,, = C, (1) -Gy, (4.3.38)
on In=r h, on In=r h,

0C,, = C, -Cu(2Y) _ dC,, = C, (D -Gy, (4.3.39)
om In=o h, on 1m0 h,

or

C,,(1) = 2C,, - C,,(2), C,,(2) = 2C,, - C,,(D) (4.3.40)

from which the finite difference equation (4.2.28) for the interior nodes on these boundaries

is determined:
(24, - A,)C,, + (A, - A, )CH(2)+ ALCL()+ AC, ()= 0 onn =1 (43.41)

(24, - A,)Cyy + (A, - A,)Co (D) + A;C,(3)+ ACy(4)=0 onn = 0 (43.42)

It remains to write down the finite difference equations for the nodes located on the
four edges of the boundary which have only two nodes around them, namely the intersection
of the z-axis with the wall (€ = 0, n = =), the intersections of the z-axis and the sphere (§ =
o, =T, and £ = &, n = 0), and the intersection of the p and z-axis at infinity (£ =0, n=0),
([c.f, Fig. 4.1). For the node located at infinity we have its value given by B.C. (4.3.12),

so it may directly imposed in the matrix of coefficients. For the others, their equations are

casily obtained by combining (4.3.32, 33) and (4.3.40):
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at(n =n,§ = O)
(24, - A,)Cy + (A, - A)C, 2+ (A, + A, )C,1(4) = 20, A, BCWall  (43.43)
at(n =n,§ = a)
(2A,-A,)C, +(A, - A,)C,,(2) +(A, +A,)C,,(3) = ~2h, A, BCSphere  (4.3.44)

and at (n=0,§:oc)

(2A,-A,)C,, + (A, - A,)C,,(2)+ (A, + A,)C, (3) = ~2h, A, BCSphere  (4.3.45)

Now, each discrete node has an individual equation, so that its value is uniquely determined
upon the solution of these (K+1)x(L+1) algebraic linear equations simultaneously. This is
done by constructing the matrix of coefficients of C,,'s and the vector of the right-hand sides
in "C21Numeric".

The BCWall and BCSphere, defined by Eqs.(4.3.34, 35), are determined upon the use

of solution of the purely hydrodynamic problem. Thus, if we write
BCWall = F,,BCW, BCSphere = F BCS (4.3.46)

BCW and BCS are determined by evaluating the following relation, obtained from (4.2.145),
on the solid surfaces, i.e. by letting £ = 0 and £ = &, for BCW and BCS, respectively:

. 2 .
9C,, 1{_1_ sin T]smhéi2 [pQ1+Sinn(Uo+U2—2)]

0t ¢ 2(cosh§—p)
_%sinh2§+l—ucosh§— 0Q, . (5Uo 5U2”
(coshg - p) -p T TR
1 0%Q, . (o’u, &%y,
—Esinhé[p 6§ + sinn T + ot ”

sinzn(l—pcoshé) 2sin’n + pcoshf - 10W, 8*W,
_ _ _ he —
(Coshg—u)z “fl (COShg—}J.) ag (“ CcOs E,. 1) agz
(4.3.47)
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BCW and BCS is determined in "VTBConTran" for the translation of the particle and in
"VRBConRot" for the rotation of the particle. They are superimposed in
"ForceParallelLowPe".

An example of the analytical and numerical solutions of C21 for comparison is
illustrated in Table B11, located in Appendix B. In this example Pe is taken to be equal to
0.01 and & to 0.1, the number of intervals on the E-coordinates is taken to be three (K = 3)
and those on the 1-coordinates is taken to be thirty (L = 30), corresponding to Fig. 4.1. The
other parametersare y , = ~50 mV, y , = -100 mV, aQ /U=05,D,/D, =2 and
the medium is a univalent electrolyte at room temperature'. It shows that within 98% of
accuracy the numerical solution agrees with the analytical one, that 1s the difference between

the two solutions is less than 2%.

4.3.4 - Numerical Solution at O (Pe?)

The equations for electroviscous ion concentrations at order Pe” are given by (4.3.16)
and (4.3.18) for C,, and C,,, respectively. The right-hand sides of these equations are
completely determined analytically by the use of the analytical solution of C,; and the flow

field. The suitable finite difference equation for either of them, C,; (1 =0, 2), is
-A,C, + A C,,(D)+A,C,(2)+ AC,(3)+ A,C,(4) = RHS, (4.3.48)

in which RHS; stand for the right-hand sides, determined by

= -V, — 4.3.49
RHSC,, Z[Va T +V, o ° Sinm ( )
for C,, and
C 0C,, 0Cy, Cy
=— —=+V,/— 4.3.50
RHSC,, 5 I:Vé ot +V, on + Vg sin ( )

1

Throughout this chapter all examples are for a univalent electrolyte at room temperature,
unless otherwise stated
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for C,,. If we expand the finite difference Eq. (4.3.48) by a Taylor series and then equating
it to the analytical Eq.s (4.3.16, 18), we see that C,, and C,, for each node satisfy the same
equation as that obtained for C,, in the previous section, except for the right hand side which
is replaced by Eq. (4.3.49, 50) for the latter. The right-hand sides are programed in
“RHSC20C22". C20 and C22 are so obtained by the programs “C20Numeric” and

“C22Numeric”, respectively.
4.4 - Electroviscous Potential

The electroviscous potential at O(€?), lV 5, 18 glven by
~ D,-D,|_. ~
v, =(mjcz +¢ (4.4.1)
in which C, has already been determined anda)v satisfies the same equation and boundary
condition as those for electroviscous ion concentrations at order Pe in which the coefficients
of the boundary conditions, (Fcp , ch) are replaced by (F¢P , F¢W) defined by (1.3.61¢). If

we write

¢ = @ cosb (4.4.2)

® is determined with the same procedure as that for C,,. Therefore, at order Pe we have an
analytical solution for the electroviscous potential also. Thus, if we expand the electroviscous

potential as

Y, = cosOy, Pe+ —;—D—'(\u -0 +€0s20v ,, )Pe2 + O(Pe3) (4.4.3)
2

we have
_D,-D,

Vo= D, +D, 21

The function @ is programmed in “C21Psi21Analytic” for the analytical solution and in

+ D, Wa = Cyps Yy =Cy (4.4.4)

“PhiNumeric” for the numerical solution, from which \ ,, is determined.

4.5 - Electroviscous Force on Sphere

The electroviscous force experienced by the particle is obtained from the integral
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(3.6.1). Noting that the unit vector outward the solid surfaces for the particle is —;é and for

the wall is Té the integrand of the force is determined by [c.f. (A.44), (A.43¢)]
— 2 .
= = =z ~ ~ c’sinn
By Gy Sy = ByGing + Bruoes] —dnde @5.1)
(cosh oL — COS n)

¢’ sinn

w Sy = [EWHSW +]§W96W9§](1—C08n) (4.5.2)

> dnd6

Qu

B, -
in which [c.f. (2.6.30, 31, 3.6.2)]

~ - 0C
B, = -2A (COSEJ Ccosn) {(GJ + HJ)WZH' (GJ - HJ)

0
wz]‘cosG onS, (4.5.3)
on

on SJ(4.5.4)

~ cos& —cosm .
B, =422 5 (5 e, (6, -1 o sino
where J = ( W, P), and G and H, are defined by (2.6.31).

4.5.1 - Stress Tensor for Translation Parallel to Wall

The flow field for translation of the sphere parallel to the wall with unit velocity is
determined in § 4.2.3. The stress tensor is given by (A.58), from which the required

components of the stress tensor, o énP and ¢ gePa where P stands for translation parallel to

the wall, are determined by
1 _ 0u,T 0u T
6P = - sinnU, T+ sinhu, T+ (cosh& - cosn) o + % (4.5.5)
R | ou,T 1 0T
6 oD = E sinh&u, T+ (coshé - cosn) % + sinn 90 (4.5.6)

The flow field is given by (4.2.112, 145-147) from which, and upon excluding the term due

to the moving coordinate system, the stress tensor is obtained as:
(4.5.7)

_ cosH
G P = [0,,PA +0,,PBC+ 5, PDE+ G, PFG|

sin9
G,yP =~ |0euPA+ 0 PBC+0, PDE+ 6,4PFG]|
where 6, PA, 6, PBC, 0, PDE, 0, PFG, 0,,PA, 0,PBC, 6 ,,PDE and 0 ,,PFG aregiven
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in Appendix C, by the relationships (C.34-41), respectively. The stress tensor is determined

in Program “SigmaParallel”.
4.5.2 - Stress Tensor for Translation Normal to Wall

A novel solution for the flow field produced by translation of a sphere normal to and
away from the wall 1s presented here upon the use of Jeffery’s solution of the Laplace

equation discussed in § 4.2. Because of the symmetry property around the z-axis, this flow

field is independent of the azimuth angle 0, for which the suitable auxiliary functions are

found as
_ Q - lip ~ 1z
p:_cg-’ upz_z_ —C_-QO+U1 ’ uz=_2— EQ0+2W0 (4.5.9)

Introducing them in the two dimensional version of the Stokes equation results in

L9 | 5W, 82 0 (4.5.10a)
—_ = . a
sop|" op | 3

i ] 2
é 8~ '55%’ 0 QO =0 (4.5.10b)
popL 9p | 0z
1 0 U, aZU
- Y L_0 4.5.10
5 65 pU ] ~2 a~2 ( c)

Q, , . Q, (8Ul Ulj oW,
=0 4.5.10d

QP57 s 5 )  w (4>-100)

Thus, each of them satisfies Eq. (4.2.21) for which ® = W, Q,, and U,, corresponding to m
=0, 0, 1, respectively. Their solutions are [c.f., (4.2.49, 50, 64)]:

1 »
W, = (cosh& — u)? é[An sinh(n+ %)E_, () 4.5.11)

n=1

Q, = (cosh& — u)% i[Bn cosh(n+ %)& +C, sinh(n+ 1 @:IPH (p,) (4.5.12)

1

Ulz(coshg—u) sng[D cosh(n+ )§+E smh n+ & (4513)
The corresponding boundary conditions U = U, = 0 on the wall ('Z =0or &= ()), and
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u =0 and U, = 1on the sphere(§ =aqa ), in terms of auxiliary functions (4.5.9) are:

Qolso0 = - 12193%9 W, =2 1398(‘:0:;; ) W, (4.5.14)
Ul = 121301§w0 = lim 212;12 W, (45.15)
Qolecq = 2%(1-W0)|§ 2(00::1;“)(1 W) (4.5.16)
Ul = 2g(w0 1), = ‘Zisniﬁg(wo 1), 45.17)

The term (cosh € - p)W, in B.C.s (4.5.14, 16), by the aid of (4.5.11), may be written as

(cosh&_,—u) (coshé’; u) ZA [cosh&smh(n+ 1)& usmh n+— &}P

(4.5.18)
Using the recurrence relationships [Macrobert (1967)]

uP, (u) n+l P P_ forn>1, P(u)zuP forn=0 4.5.19)
n+l ™ 2n41 1 0

it may be expressed as

(cosh§ — u)WO = (cosh@ - u)%i{_—n_lAn_l sinh(n — %)ci

nel 3 (4.5.20)
+A cosh&smh(n+ )i— 2n+3 lsinh(n+5) &}Pn
Imposing B.C. (4.5.14) results in
B =nA_,-(2n+ 1A, +(n+ DA, nx0 (4.5.21)
Using the identity {Macrobert (1967)]
p =——(B, —P.) n>1 (4.5.22)

2n+1

the solution (4.5.11) may be written in terms of Pn( }1) as:

3 .
smh(n— —)& — 2n 3 smh(n + —2-) @}PH (4.5.23)
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Now, imposing B.C. (4.5.15) results in
D =A_,-A,, n>1 (4.5.24)

The other sets of constant are determined by imposing the no-slip boundary condition on the

sphere surface. Using identities (4.2.75, 76) and [Macrobert (1967)]

(cosh - H)2 = Z N (4.5.25)

in which A_ is deﬁned by (4.2.135), B.C. (4.5.16) may be expressed as

1 1 1
sinho{Bn cosh(n+ —2—)a +C, sinh(n+ E)a} = 2{Kn - A_cosha sinh(n+ Eja

n . 1) i ( 1)
il DO h -

+ 2n_1An_l{coshon s1nh(n+ 5 o - sinha cosh| n+ > a}
n+ 1 A h . ( ' l) L . h( + _1_)

+ e 3 e cosha sinh|{ n > o + sinha cosh| n > a

(4.5.26)
Introducing (4.5.21) to (4.5.26) gives the set of C, to be determined:

C. =2cosech h( +1) 2 2k.[ DA a2 }
» = 2cosechocosech| n+ 7 Jod, | 5o A T An T S AL

(4.5.27)
for which n > 0 and k, is defined by (4.2.82). The set of E, is so obtained upon the use of

B.C. (4.5.17):

An—l An+1 > 1 4 5 28
2n—1 2n+3 nzl (45.28)

[t remains to determine the set of A_ by the use of the continuity equation. The terms in the

1
E_ =4cosecha cosech(n + -2—) oA, - 2kn[

continuity equation (4.5.10d) may be expressed in terms of P by the use of the identities

(4.2.87) and (4.2.94) as

0 1 1
paano+2 an psmh&—%—snna&—g(cosh@—p)zx
S 1
Z {[_ an—l - Bn + (n+ 1 n+l]COSh(n+ 2)& (4529)
0

|
+[— nC_,-C, +(n+1)C,,, sinh(n+ 5) &}Pﬂ
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u, U} | o a 0 (cosht-p)|
[ % + j— sinn sinh§ % +(u cosh?@—l)an + s JU1 =
%(cosh@ —u)2), {[n(n— D, -2n(n+1)D_+(n+1)(n+ 2)Dn+,l cosh(n+ -;—)&
+[n(n— DE,,-2n(n+1)E,+(n+1)(n+2) n+l]smh(n+ ;ji}P
(4.5.30)
caW0 = (1— pcosh&)i—sm smhé— W, =
07 ge O
%(coshé -u)2Y. [-nA, +(2n+ DA, - (n+ 1)An+1]cosh(n+ %)&}Pn
(4.5.31)

Now, to satisfy the continuity equation for all ranges of § and 1), the summation of coefficients
of cosh (n+1/2) and sinh (n+1/2)E of all terms, contained in the continuity equation (4.5.10d),
given by (4.5.12, 29-31), must be zero. Writing them in terms of A_’s by the use of (4.5.21,
24,27, 28), for the coefficient of cosh (n+1/2) results in

InA,, -@n+DA, +(n+DA,, |+ {n[n DA, -(2n-1A,  +nA,]
-[nA,,-(n+DA, +(n+ 1)An+]]+(n+1 [(n+ 1)An ~(2n+3)A,, +(n+2)A,,,]
+o(n-1[A,, - A,]-2n(n+D[A, -A,, [+(0+Dn+2)[A, -A,,,]
#2-nA, ,+2n+DA, ~(n+DA,, ]} =0

(4.5.32)
and for the coefficient of sinh (n+1/2)&:
n(2n - 3) n(2n-1) (n+1)(2n+3)

-——k_ |A — k -5k +

[“k"-l (20-1 k"} "'*[ T e ]
5
—(n+1)(2n+ )kn_(n+1)kn+1 An+l =
(2n+3)

i (4.5.33)
cosecha[n(Zn—3) cosech(n—gjakn (4n +4n-— 5)cosech(n+ 2) an

n

3
+(n+1)(2n+5)cosech(n+ )oc?» } n>0
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Eq. (4.5.32) is automatically satisfied for all n’s, which guarantees the correctness of the
calculations. Eq. (4.5.33) represents n linear algebraic equations for n+1 unknowns, the
solution of which by truncating at n = N, by letting Ay, = 0, is determined in the program
“CoefN™.

This problem has been solved by Brenner (1961) with a different approach based on
Stimson & Jeffery solution of the stream function for axisymmetric flow (1926). Because of
this symmetry the hydrodynamic force experienced by the sphere has only one component (in
the z-direction), FZ. If we denote by k the correction which must be applied to Stokes’ Law

as a result of the presence of the solid wall then

F, = 61k (4.5.34)
The coefficient k is determined by Brenner (1961) as
4 e n(n+1) |_ 2sinh(2n+ Do +(2n+1)sinh2a
k = —sinha — 5 —— 1| (4.535)
3 i (2n—1)(2n+3)|_4smh (n+ %)a—(2n+1)° sinh® a

Since the whole system is under statistical equilibrium the force the fluid exerts on the
sphere is the same as the one exerted on the wall, but with opposite direction. It is more
convenient to determine the force, upon the use of the cylindrical component of the stress
tensor normal to the wall for which _l;l = ;Z Thus, the force experienced by the sphere from

the present solution is determined by [c.f., (A.5¢, 22)]

~ e et U —

F =-]6,,dS=- Hl:—p + 2—:} pdodp (4.5.36)
Sw 00 9z 1,

The infinitesimal element of the surface on the wall may be written as [c.f., (A. 43¢)]

2

,d0dn = ——5d0dy  —l<p<l  (4537)

(1-n)

c’sinm ‘
(cosh§ — COS n)z

and the stress tensor as [c.f., (4.5.9, 12)]
u Z 0 oW,
{—5+2@i—2} = &+2(Q° 2 0, 0)
0z J,_,

c 2¢ +20 0z O0Z
3 o©
=l(1—u)52(2n+1)AnPn
C 0

5d0dp =

_, W
. 0Z =
z= (4.5.38)
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Thus, the hydrodynamic force is obtained as
!

_ 21l © @
F =-cf IZO(Zn+ 1)An(l— u) P - WNEYTH) A (4.5.39)
0-1 0

n

where A are determined by (4.5.33). From this k for the present solution is obtained as

242 &

k=- 3 cZA (4.5.40)

The correction coefficient, k, for both solutions is programed in “kEq4535Eq4540" and some

examples of them are tabulated in Table B12, located in Appendix B . We see that, up to
twelve digits of accuracy, these two solutions predict the same values for k, however, the
smaller the gap width the larger the difference for the same truncated value of n. This is
because the rates of convergence of the series in (4.5.35, 40) are different. The difference
in the sign is due to the fact that Brenner (1961) considered the translation of the particle
toward the wall, whereas the present solution is for translation of the particle away from the
wall.

The bipolar component of the velocity is obtained from (4.5.9, 11-13), by the aid of
the relation (A.51, 52), as:

T, = %(cosh?’; - u)—%{—p sinhgi {Bn cosh(n+ %)g +C. sinh(n+ %MP“
~sin’ 1 sinh&i {Dn cosh(n+ %)E_, +E, sinh(n+ %)ﬁ}Pn

+2(1— Tt cosh&)i A sinh(n+ lj EP.

(4.5.41)
and

U, %smn(cosh& p) ;{—coshQZ{B COShLTH )§+C smh(n+ ;)€:|Pn

—(l—ucoshﬁ)Z{D cosh(n+ )§+E smh(n+ ;)E}}Pn

1
-2smthA smh(nJr )@P
(4.5.42)
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from which the only non-zero component of the stress tensor in (4.5.1, 2), 6 £n> is obtained,
upon the use of the relation (A.58):

1
e N = 3o 0, NA+c, NBC+ 6., NDE (4.5.43)

where N denotes translation normal to the wall and wheres ., NA, o, NBC, 6, NDE
are given in Appendix C by the relations (C.42-44), respectively. This is programmed in

“SigmaNormal™.
4.5.3 - Force Parallel to Wall

In the integrand of the force, given by (1.5.1, 2), two components of the stress tensor,
namely G, and G q,are involved. Thus, if we write the tangent component of the force

as the sum of the contribution of each of them, denoted by F and Fge , that is

F = )\(En + 'F“&e) (4.5.44)

Sw :FEJ]P

E,, and F, are determined by the aid of (4.5.3, 4) as
oo )%

csinm 01 +¢020 ar‘!zno oC
)( 5 jdnde ; H[(Gp +H, )2

(1 —COoST .
csinn (1 + 0029) dndo
> (coshoc —COS n)

Sy +(G —Hp)%

P

A ©

oénP

(4.5.45)
and

E:pe{zjj[( )y (G, 1, oo, Pl

: )(1 Czoze)dnde—zfn(Gp+Hp) +(G,-H, v,

sp]x

(l—cosn 0x

c 1- co26
o, P ( )d do
e S (cosha - cosn) 2 !

(4.5.46)
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in whichc ,, P and & ,, P are determined by (4.5.7, 8).

The force is obtained by the program “ForceParallel Analytic” for analytical solution
of electroviscous ion concentrations and potential, and by the program “ForceParalle]LowPe”
for the corresponding numerical solution, upon the integration of (4.5.45, 6).

The analytical and numerical solution of the dimensionless force, F% , for different
mesh sizes, particle-wall distances, ratio of diffusitivity of ions, ratio of the angular and
linear velocity, and different {-potentials, for a univalent electrolyte are tabulated in Table
B13 in Appendix B. It shows that the numerical solution is reasonably mesh independent

and it 1s in fair agreement with the analytical solution.

4.5.4 - Force Normal to Wall
For the lift component of the force only C,, and {,, contributes to the integral of the
force and the stress tensor is given by (4.5.43), from which the force is determined upon the

use of (3.4.1,4.4.4, 5,2.6.32):

T 27t0 .
L per{(G, +sH, H{ 0 6 Nl (—Cs—m—)dnde
On S

A 1-cosn
" (4.5.47)
2n 0 .
0C csin
+(G,+sH, ) [ ]| =220 } L dndo
o s, (cosha - cosn)
where S is defined as the ratio of diffusivity of counterions to diffusivity of coions:
S D, (4.5.48)
- D2 . .

This is programmed in “ForceNormalLowPe”

4.6 - Electroviscous Force for Arbitrary Peclet Numbers

4.6.1 - Electroviscous ion concentrations

In this section the restriction on the Peclet numbers is released, so that the
electroviscous ion concentration satisfies a single equation, given by (1.3.60), which may be

written in the bipolar coordinate system as
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0°%, az 1 aza) (1+s )a
he - e —=
(cos £ cosn)( e 2 * sin”n 00° 2 cPel; + sinh§ 5§461)
—[EcPeﬁ \ cosh§ cosn - 1) 0c, 1+8S p ac, _0 '
2 1 sinm on  2sinn cPed, 00

with the boundary condition

5@% S, — PeFCJ(COSh§ - Cosn)%{(coshfD - cosn) 0‘1} J= (P, W)(4.6.2a)
Ez - 0 as (& R n) - 0 (4,6,2b)

The corresponding finite difference equation is

AgS = A1)+ A+ AGB) + AT + AG () + AT (6) 4o

in which A, (1=0, 1, 2, 3, 4, 5, 6) are weighted functions and C,;(1) (i=1, 2, 3, 4, 5, 6) are
the value of C,, at six immediate neighborhood nodes, located on the coordinate curves
passing at the point under consideration, C,,. Here, node (1) is taken to be located in
increasing direction of 1, node (2) is its reflection with respect to £ coordinate, node (3) is
in the increasing direction of &, node (4) is its reflection with respect to ) coordinate, node
(5) is in the increasing direction of 6 coordinate, and node (6) is its reflection with respect
to (£, n)-plane. The weighted functions are determined upon expanding the finite difference
equation by a Taylor series, then equating it to the analytical equation, and collecting the

terms of the same order:

A, :(coshé—u>[ 22 + 22 + = 2 > j (4.6.4a)
h; h; hysin"n

A = COSTE —kLE ;;::ii;l - 12;? cPeii, (4.6.4b)

A, = COSTE —h_F ;}?S:iial + 12;]18 cPeil, (4.6.4¢)

A, - cosh¢ — b sinh 1+S cPeii w4

hé h sinm 2hé
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cosh& —p . sinhg  (1+S)cPet,
= +

= 4.6.4
‘=7 W Thesinn ' 2n (1649

2
cosh& — 1+S
h2sin’n  2h,sinm
cosh& —p 1+8S

A = . + . Pet 4.6.4
® hisin’n  2h, smr|C le (4.6.4¢)

A=

cPeii, (4.6.40)

Using the symmetry property with respect to the (x, z)-plane, only calculations for half the
domain are required, that is only the part of the domain bounded by § =0, =0, n=0,n=
n, 0 = 0 and O = m is considered in the calculation. This is done by the program
“c2ArbitraryPe”. The domain is divided between (K+1)(L+1)* nodes, where K is the number
of intervals on the &-coordinate and L is the number of intervals on both 1 and 6-coordinate.
Thus, we have L+1 planes bounded by the plane 6 = 0 and 6 = &, separated by an angle h,
= 1t/L. Each plane consists of the matrix of nodes with (K+1)(L+1) elements. The finite
difference equation for each node located on the solid surfaces is determined with the same
procedure as that discussed in § 4.3.3 for low Pe. For nodes on the boundaries 6 = 0 and 6

= 7, the symmetry property is used, for which the finite difference equation is determined by

AT = AG(+A,EQR)+AER)+FAGH) + (A + AT ()

(4.6.52)
for nodes on the plane 0 = 0, and

AT = AS(D+AGR)+ AR +AGME) + (A + AL )T, (6)

(4.6.5b)
for those on the plane 6 = .
4.6.2 - Electroviscous potential
The electroviscous potential is determined by
~ (D,- D1]~ ~
= C,+ 4.6.6
\V 2 ( D2 + D] 2 (1) ( )

where a; satisfies the Laplace equation written in the bipolar coordinate system:
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¢ 0% 1 az;ﬁj

(cosh&—cosn)(&;2 + e + Sin? 1 062

~ ~ 4.6.7
: 0 cosh&cosn—10¢ #6.7)
~sinh& —+ , =0
o¢ sinm on
with boundary conditions [c.f., (A.44)]
o9 %
_GEE:O = PeF,,BCWTR, £|§=a = PeF,, BCSTR (4.6.8)
$—> 0 as(&,n)— 0 (4.6.9)

Its finite difference equation is the same as that for €, , given by (4.6.3), from which and from

the analytical equation, given by (4.6.7), the weighted functions for$ are determined as:

2 2 2
A, = hé& — + + 4.6.10
o =(coshe “)(hi h? 12 sin’ nj (4.6.10a)

_coshE—p pcosh§-1

= + . (4.6.10b)
: hf] 2h, sinm
hé - cosh& -1
A, = COS h§ B Mzh S.é (4.6.10¢)
N , sinm
h&é - sinh
A= o8 h§ b - siné (4.6.10d)
g g SINT
hé - inh
A, = =28 hi; a hSISing (4.6.10¢)
: g SINM
cosh& —
A=A =—FF5— 4.6.10
5 6 hg Sin2 n ( t)

The value of 5 for each node is obtained by Program “PhiArbitraryPe” from whichy ,,
given by (4.6.6), is determined in Program “ForceParallel ArbitraryPe”.

4.6.2 - Electroviscous Force

The tangential and normal component of the force are determined by Programs

193



ForceParallelArbitrayPe” and “ForceNormal ArbitraryPe” with the same procedure as that
discussed for low Pe. However, for low Pe the integration over 0 is performed analytically
between 0-27, whilst for arbitrary Pe the integration is performed numerically between 0-7,

and the results are multiplied by a factor of two.
4.7 - Results and Conclusions

The exact and numerical solutions of a sphere-wall interactions are obtained by the
use of a bipolar coordinate system (&, i), 0) described in AppendixA. For low Peclet numbers
and arbitrary particle-wall distances the numerical solutions of electroviscous ion
concentrations and potential are determined by the aid of Programs “C21Numeric”,
“C22Numeric”, “C20Numeric”, and “PhiNumeric”, from which the tangential and normal
component of the electroviscous force are obtained by Programs
“ForceParalleINumericLowPe” and “ForceNormalLowPe”. The boundary conditions and the
flow field involved in the numerical calculation of the electroviscous ion concentrations and
potential, or in general the hydrodynamic part of the problem is determined analytically. The
stress tensor involved in the calculation of the force are determined analytically by the
Programs “SigmaParallel” and “SigmaNormal, for the tangential and normal components of
the force, respectively. The electroviscous ion concentration and potential at order Pe are
also determined analytically, programmed by “C21Psi21 Analytic” which agrees with the
numerical solution within 98% percent accuracy, illustrated by Table B11 in Appendix B.
The tangential component of the force is determined from the analytical solution by Program
“ForceParallelAnalytic”. Table B13 shows not only that the numerical and analytical
solutions of the force are in fair agreement with each other, but also indicates that the
problem is mesh independent.

For arbitrary Peclet numbers and arbitrary particle-wall distances the electroviscous
jon concentrations and potential are obtained numerically by the aid of Programs
“c2ArbitraryPe” and “PsiArbitraryPe”, from which the tangential and normal components
of the electroviscous force are determined by Programs “ForceParallelArbitraryPe” and
“ForceNormalArbitraryPe”

The inputs of the force programs for both low and arbitrary Peclet numbers are:

. determination of mesh size, KxL for low Pe and KxLxL for arbitrary Pe (with K is
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the number of intervals on the £-coordinate and L is the number of intervals on either
the n-coordinate or 6-coordinate).

. dimensionless particle-wall distances defined by relation (3.2.2¢).

. ¢-potential of particle and wall surfaces, denoted by ZetaP and ZetaW, respectively
made dimensionless by the relation (1.3.10).

. Peclet number defined by relation (3.2.2.d).

. ratio of angular velocity to the linear velocity, r, defined by relation (4.2.147).

. ratio of diffusivity of ions, defined by relation (4.5.48).

The outputs are the dimensionless force divided by A [A is defined by the relation (3.2.2.e)],

denoted by Integral. Thus, the dimensional force is determined by

(e,8,) (KT’ 1 () (KT)’

I, -
a(zle)4cw Integra X Fz 5 a2(21e)4c

where (8 € 0) is the permitivity of the medium, (kT) the thermal energy,(zle) charge of a

gl
X2

Integral, 4.7.1)

0

counterion , C_ the number ton bulk concentration and a the particle radius.
The numerical solution and also the analytical one (for the tangential component) for
small particle wall distances (& << 1) and for small and intermediate Peclet numbers (Pe <<

&) can be approximated by the following formulas:

F 28 41 28 41
== -nPeB_z{[(—é— G, + %GWJ(GP +Gy )+ s(—3— H, + %HW)(HP + Hw)} x

(q+1)- é[(%GP +%GWJ(GP ~GW)+S(?HP +%ij(Hp - Hw):l(q_ r)}

4.72)
10
2 2
) %{(%—3) (G, +SH,) - (% (G, +SH,, )

in which q is equal to zero in the absence of translation, otherwise it is equal to one; the
parameters G and H are defined by (2.6.70), and r and S by

~ 2
b T et {{2_83((3}, +SH, )+ 8—38(GW + SHW)} (q+1)
(4.7.3)

(4 - r?)
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r= ﬁ, S = & (4.7.4)
U D,

The orders of the force in Pe and 0 agree with the inner solution presented in Chapter 3. In

fact the dependence of the force on Pe, d, the angular and linear velocity, the ratio of

diffusivities of ions, and on the {-potentials is deduced from the analytical solution, but the

coefficients are determined numerically and approximated in a fraction form, 9.3292~28/3,

1.3663=41/30, 28.3005=283/10, 29.3325~88/3. It is observed that the second terms in

square brackets on the right-hand side of either component of the force has a coefficient of
-1/3 in addition to the change in the sign. Assuming there is a similarity between the inner
solution and the complete one, the inner solution for arbitrary (-potentials can be

approximated by the following relations [c.f., (3.6.23a, 26a)]:
8T (a,so)z(kT)3 a

ST o (ge)

[ (7G, + 2G4, )(G, + Gy,) (7H, + 2H,, (H, + H,,)

D D, (U+aQ) (4.7.5)

1] (7G, +2G, (G, - Gv) , (7H, + 2H,, )(H, - H,,) (U- a0)

3 D] D2

2 2
bl 0 ).
25 cm(zle)4 h>’|\D, D, D, D,

2 2
1 (91+_H_p) (G_H_j (U - a0?)
3]\ D, D, D, D,

(U+aQ)’

(4.7.6)

However, comparison of (4.7.2) with (4.7.5), and (4.7.3) with (4.7.6), shows that the
similarity for the tangential component is very weak, whereas for the normal component the
similarity is strong, that is the ratio of the contribution of the wall to the force to that of the
particle for tangential component in formula (4.7.2) is 0.1464 and in formula (4.7.5) is

0.2857, almost two times, whereas for normal component that ratio is 1.0365 in formula
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(4.7.3) and 1 in formula (4.7.6) which is very close. Tables B14 and B15, located in
Appendix B, compare the tangential and normal components of the force obtained from
different methods for different conditions with the formulas (4.7.2, 3). It also shows that the
contribution from the inner region is more than half the force. It is interesting to note that
for large particle-wall distances the effects of wall interaction diminishes resulting in a
tangential component of the force comparable with the drag force experienced by an isolated
sphere obtained by Oshima et al. (1984). In the example of Table B14, for 6 =100, the
tangential component of the force is obtained as Fx /\,=-0.1518, -0.1503, and -0.1480,
determined, respectively, by the analytical method, numerical method for low Pe and
numerical method for arbitrary Pe. For the same Pe, ratio of diffusivity of ions, and particle
{-potential, formula (1.3.74) predicts an electroviscous drag of magnitude, F, /A ,=-0.1592
for an isolated sphere.

Representative numerical results are illustrated in Fig.s 4.3-9. The tangential
components, E / A , are calculated by Program “ForceParallel ArbitraryPe”, and the normal
components, E / A, by Program “ForceNormalArbitraryPe”. The ion valency is taken to
be one and the temperature of the medium is room temperature. The dependence of the force
on Peclet number is illustrated in Fig. 4.3 for three particle-wall distances, 6 =0 .1, 6 =1,
=10. In this example {, = -50 mV, {,=-100 mV, S (=D,/D,) =land r (=aQ/U) =1/3. Fig.
4.3.a, b show that in general the force increases as Pe (=Ua/D),) increases, because the higher
the Pe the more pronounced the effect of the flow field on the system. The tangential
component of the force depends almost linearly on the Peclet number for the whole rang of
Pe. This is because most (more than 98 %) of the contribution to the tangential component
ofthe force comes from the parameter ¢ in the equation of the electroviscous potential, given
by (1.3.61), and the equation and boundary conditions (1.3.61b-d) indicates that ¢ linearly
depends on Pe for arbitrary Peclet numbers. For the same reason formula (4.7.2) works for
arbitrary Pe. Fig. 4.3b indicates that for different particle-wall distances the normal
component of the force depends linearly on Pe? when Pe is small, and for small & the linear
part extends up to Pe being smaller than &2, which agrees with the analytical solution of the

inner region. The dependence of the force on the dimensionless gap width is plotted in Fig.
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4.4, for low Pe (Pe=0.01), intermediate Pe (Pe=1) and high Pe (Pe=100). For this figure,(;
=+200 mV, {,=-50 mV, S (=D,/D,) =1/4, r (=aQ/U)=0 (only translation). As the particle-
wall distance increases the effect of the wall interaction diminishes resulting in a lower
magnitude of the force for both normal and tangential components, and hence at large
distances from the wall, the drag component is comparable to Oshima et al.’s theory(1984)
for sedimentation of an isolated sphere . When & is small the tangential component of the
force depends linearly on &7 for low, intermediate and high Pe, whereas the normal
component depends linearly on & for Pe smaller than 6, and hence for high Pe the linear
part of the normal component occurs at extremely small &, in agreement with the analytical
results. The dependence of the force on {-potentials is illustrated in Figs. 4.5, 6. In Fig. 4.6,
the force is plotted versus the wall {-potential, (,, , for varius particle -potentials, (p , (p=
+0.5Cy, (p==x(y and (p=+2(,,. In this example 6 = 0.1, Pe =100, r=0 (only translation of
particle), and S=1. At zero charge there is no electric field so that we do not expect any force
to be experienced by the particle. The dependence of the force on {-potentials is non linear.
This figure shows that there is a symmetry property with respect to -potentials for both
tangential and normal components of the force. For the tangential component by reversing
the signs of both particle and wall {-potentials, and for the normal component by reversing
the sign of one or both of {-potentials the magnitude of the force remains unaltered. Thus,
the normal component is independent of the signs of the particle and wall charges, that is
even the charges of the particle and wall are different (positive and negative) the particle
experiences the same force (lift force) as that for the cases of both charges are of the same
signs (negative or positive), but with the same magnitude. However, the above symmetry
properties are only for identical diffusivity of ions (S=1), as can easily be observed from the
formula (4.7.2, 3), that is by reversing the signs of (-potentials, the parameters G and H [c.f.,
definitions (2.6.70)] are replaced with each other and for only S =1 does this result in the
symmetry properties. Fig. 4.5a also shows that the tangential component of the force can be
positive (decreasing the hydrodynamic drag), as it happens for the case (= -0.5Cy,. The
dependence of the force on particle ¢-potentials is illustrated in Fig. 4.6 for three ratios of
diffusivity of ions, D,/D,= 3, 4, 5. For this example (y,=- 50 mV, 6 = 0.01, Pe =0.01,and

r=2/3. For the tangential component the curve has only one maximum, whereas for the
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normal component, there is one maximum and two minima. One of the minima occurs when
the {-potentials of particle and wall are of a different sign, and the other when they are of the
same sign. Both minima have negative values. The dependence of the force on ratio of
diffusivity of ions is illustrated in Fig.4.7 for the rotation and in Fig. 4.8 for the translation
of the particle, for three cases (= 0.5Cy,, (= (y, and (= 2{,,. These curves are obtained
for Pe =10, 6=0.1, {\=-100 mV, and q=0, r=1 for only rotation and g=1, r=0 for only
translation of the particle. For only rotation, Pe is defined as a’Q/D,. For both rotation and
translation, the normal component of the force has a minimum, depending on the magnitude
of {-potentials. For identical {- potentials the minimum is zero, otherwise it is negative, the
same as those observed for the analytical solutions of cylinder-wall and sphere-wall
interactions. The location of the minima is magnified in Fig. 4.9a for the rotation of the
particle and in Fig. 4.9b for its translation. This property is an interesting results, since it
allows one to obtain a desired force, either positive, zero or negative, by a suitable
combination of {-potentials and ratio of diffusivity of ions. The dependence of the force on
the ratio of the angular velocity to the transnational velocity is illustrated in Fig.4.10. The
data for this example are: {,=-50 mV, {,=-25 mV 6(=l/a)=1, S (=D,/D ,) =1/2, q=1.
Although for just translation or just rotation of the particle the drag component is negative
(act in the opposite direction of the flow) and the normal component is positive (lift force)
regardless of the direction of the flow, when both translation and rotation are present, but
with the opposite direction, there would be a range of the ratio of the angular velocity to
linear velocity that the former remains unaltered, and the latter changes the direction from
positive to negative (attractive force). For this example, that range for the tangential
component is (-1.47 to 0) and for the normal component (-1.42 to 0). The tangential
component depends almost linearly on the ratio of the angular velocity to the linear velocity
with a constant slope for low and intermediate Pe, and with a change in the slope of the curve
for high Pe. In this example it happens at Pe >50. For the normal component also there is
a change in the behavior of the force with respect to Pe. For low and intermediate Pe, each
curve has only one minimum with a negative value (attractive force), but for high Pe (Pe>50)

the curves have one maximum and two minima, one with a negative value, and the other with

a positive one.
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An experiment on a spherical particle of radius 2.6 pm in a shear flow was conducted
by Wu, Warszynski & van de Ven (1996) demonstrated in Fig 4.11. The experiment was
carried out in a surface collision apparatus with forward and backward movement. The
variations 1n particle-wall separation distances with time are measured by a video tape

resulting in an empirical expression:

2 =p(1-e™)+c 4.7.7)

in which p, b, and ¢ are three adjustable parameters determined from the best fit. The force
balance on the particle in the z-direction may be written as
6mnau,

F.=—""+F 4.7.8
net fl(h/a) ( a)

where f,(h/a) is the correction coefficient to Stokes law due to the presence of the wall. F
is composed of bouncy force, electrostatic force and electroviscous force during the shear

and only bouncy and electrostatic force in the absence of shear. For the former it may be

written as
2raB _, 4 |
Fio =Fip+——¢ 7 -3ma (pf - pp)g (4.7.8b)

in which g is gravitation acceleration, p; and p, are fluid and particle densities, k the

reciprocal double layer thickness and B is determined by

L[ zeC o kT ?
B =32tanh" ZE"E €K e (4.7.8¢)

The force was determined upon combination Eq.s (4.6.7, 8). The electrolyte is KCI with
conductivity SuS/m, and the medium is 96% glycerole-water solution. The shearrateis 19.1
s"'. The present theory and the one by Bike & Prieve (1990) as an example of previous
theories, given by (1.2.31), are compared with the experiments. The force from the present
theory is obtained by Program “ForceNormalArbitraryPe”. The linear and angular velocity
in a simple shear flow is obtained by linear interpolation of the data obtained by Goldmann,

Cox & Brenner (1967). In this experiment only the particle -potential was measured, {p =-
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45 mV. The wall (-potential is taken to be between -75 and -125 mV. However, the shear
flow can be decomposed into three individual flows, translation of particle, rotation of
particle and shear for the whole medium, excluding the sphere. The present theory consists
of the translation and the rotation of the particle. Therefore, no solid conclusion can be
drawn, as far as the there is uncertainty in the wall {-potential and the contribution of the
shear flow, which is not taken into account. But, since we expect the contribution to the
force from the shear to be of the same order as that of the translation or the rotation of the
particle, at least it can be concluded that the present theory predicts the right order for the
force, whereas the pervious theories underestimate the force by more than two orders of

magnitude.

10-11
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T
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Fig. 4.11 - Comparison of theories with experiment.
[Symbols are experimental observations of Wu et al. (1996). Previous theories refers to

Bike & Prieve (1990).]
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Chapter Five

Conclusions
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5.1 - Summary of Results and Conclusions

Electroviscous particle-wall interactions in systems in which the double layer
thickness 1s thin, are evaluated as a solution of three partial differential equations, derived
from Cox’s general theory (1997), for electroviscous ion concentrations, electroviscous
potential and electroviscous flow field, given by (1.3.59-61). The electroviscous cylinder-
wall interactions and sphere-wall interactions for the translation and rotation of the particle
close and parallel to a charged plane wall are analyzed by the use of the matched asymptotic
expansion technique. The inner solutions of the force experienced by the particles are
determined, upon the use of the Lorentz reciprocal theorem, discussed in §1.3.6. These
solutions are obtained under the assumption of small particle wall distances, 0, (6 <<1) but
for low and intermediate Peclet numbers, Pe, (Pe<< 6'"?). For sphere-wall interactions the
problem is extended to arbitrary particle-wall distances and arbitrary Pe.

For cylinder-wall interactions, the tangential component of the electroviscous force
is of order (64 d '”Pe) and the normal component of order (€4 § ?Pe? ), where € is the
ratio of double layer thickness to the cylinder radius, d the dimensionless gap width, and Pe
the Peclet number. These parameters are defined by (2.2.4a). The tangential component of

the force per unit length of the cylinder is obtained as

2n (2.6,) (KT a
2‘””‘[ TN

ze)‘icqo
(36 5 (GP+GW>+(3HDZH s m)0ra) i
{251 (G, -Gy )+ 2;12*’(}1? H )}(U aﬂ)}

and the normal component as

\/—n (8,80) )3 \/;1_ _ GP
g

+4(G +Hj - GW+—D— (U?-a2Q?)

D, D

211



in which (8 € o) is the permitivity of the medium, (kT) the thermal energy, (Z]e) charge of
a counter-ion, ¢, the number ion bulk concentrations, D, and D, the diffusivity of counter-
ions and co-ions, respectively; a is the particle radius, h the clearance between the particle
and wall, and U 1s the translation velocity of the particle and Q its rotation with the clockwise
direction taken to be the positive direction, as shown in Fig. 2.1. The parameters G and H

are functions of {-potentials defined by

LS zel;
l+e 20 I+e2K
G, =1n——2——, H, =ln——2—

The first term in (5.1.1) is the purely hydrodynamic force. Because of the symmetry, the

J=(P, W) (5.1.3)

hydrodynamic force, at the first approximation, is independent of the rotation of the particle.
Upon comparison of results with the existing theories, it is found that Cox’s theory

for the drag component of the electroviscous force, given by (1.2.32d), is valid for both
translation and rotation of a cylinder parallel to the wall, but its normal component, reported
in Wu, er al. (1996), given by (1.2.32a), is valid only for translation of a cylinder. The
expression by Warszynski & van de Ven’s theory (2000), given by (1.2.33), is valid only for
a charged wall, but with an uncharged cylinder under translation parallel to a wall.

For sphere-wall interactions the inner solution of the electroviscous force is similarly
obtained analytically for the cases of identical particle and wall {-potentials. The tangential
component of the force is of order (64 572 Pe) and the normal component of order
(64 & 2Pe? ), an 0(5 12 ) smaller than those of the cylinder-wall interactions. The

tangential component is obtained as

x 25 c. (216)4 h2

and the normal component as

_ 48m (g,8,) (KT)® a? [G L H
?25 cw(zle)4 h*| D, D,

For both cylinder-wall interactions and sphere-wall interactions, the tangential

2 3
kT : H?
_144n (erso) (kT)" a [G N }(U+ ) (5.14)
Dl D2

2
} (U+aQ)’ (5.1.5)

component of the electroviscous force depends linearly on the ratio of diffusivity of ions, and
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the normal component is proportional to the second power of that ratio, which leads to the
existence of a minimum for the magnitude of the normal component of the force at a
specified ratio of diffusivity of ions. This is illustrated in Figs. 2.3, 4 and Fig. 3.2. The
location of the minimum depends on the {-potentials of particle and wall. For identical -
potentials the minimum is zero, otherwise it is negative (attractive force). The tangential
component of the force also can be either negative or positive depending on the magnitude
and signs of the (-potentials and the ratio of diffusivity of ions. For small, but equal (-
potentials and for equal mobilities of ions, as a first approximation, the tangential component
of the electroviscous force is proportional to the viscosity of medium, 7, ion radius, a,, and
%, whereas the normal component is proportional to 1%, ai2 and {*. Foridentical {-potentials,
the ratio of the force experienced by a sphere to that experienced by a cylinder, for both
tangential and normal components, is proportional to \/EEE . The Derjaguin scaling
approximation, given by (3.7.5) predicts the same proportionality to the geometry of the
problem for the ratio of the force, but with a different coefficient. In both cases it
overestimates those ratios.

The problem of sphere-wall interactions is extended to the cases of arbitrary particle-
wall distances, and arbitrary Peclet numbers, by the use of a bipolar coordinate system. For
arbitrary particle-wall distances, but for low Pe the force is obtained both analytically and
numerically for the tangential component and numerically for the normal component, and
for arbitrary Pe they are determined numerically. Comparison of the analytical solution with
the numerical one is illustrated in Tables B11, 13, located in Appendix B. It is found that
for small particle-wall distances (6 <<1) the tangential component can be approximated as

T (sreo)z(ka a

F":—E (216)4% el

28 41 )(GP+GW) (28 41 )(HP+HW)
- - > 7 —_— _H - 7
(3 GP+3OGW ) 3 HP+3O w D, (U+aQ)
1/(28 . 4l )(GP—GW) (28 41 )(HP—HW)
g . +>G, |2 | ZH +—H, | ——¥ (U=
3 (3GP+30GW o 3 Heragty) 5 — (U-a0)
(5.1.6)
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an expression valid for arbitrary Pe, and the normal component as

m (8,_80)2(kT)3 a
Fz = 4 2
900 (zc)c, h

283(GP HPJ 88[GW H,,

X

+ + —
10\D, D,/ 3D, D,
2 2
_l (283) (GP n HP] _(SSJZ[GW_}_ HW] (Uz_azgz)
31\ 10/ \ D, D, 3){D, D,

(5.1.7)
valid for low and intermediate Pe, Pe << &2, The accuracy of the formulas (5.1.6, 7) is

illustrated in Tables B14, 15. Upon comparison of the drag component of the electroviscous
force with that of an isolated sphere [formulas (5.1.6) and (1.3.74)] it is observed that the

ratio of the force satisfies the following relations:

E ere—wa 107 3 h
ophorer vl —§ =— (5.1.8)
FSphere 240 a

valid for small & (6<<1). For the inner solution, the ratio of the force is given by the relation
(3.7.4), which 1s similar to (5.1.8) but differs from it by a numerical factor.

Representative numerical results for arbitrary Pe and arbitrary particle wall distances
are illustrated in Fig. 4.3-10. The dependence of the dimemsionless force (F% , FK) [ % and A
are defined by (3.2.2)] on Pe is illustrated in Fig. 4.3, on 6 in Fig. 4.4, on the {-potentials in
Fig. 4.5 and Fig. 4. 6, on the ratio of diffusivity of ions in Figs. 4.7, 8, 9. and on the ratio of
angular velocity to the linear velocity in Fig. 4.10. The results are in complete agreement
with the formulas (5.1.6, 7), for the range of their validity. Of special interest is the existence
of a minimum for the normal component of the force at a specified ratio of the diffusivity of
jons regardless of the magnitude of Pe and &. The location of minimum depends only on the
{-potentials, and its magnitude is equal to zero for identical (-potentials, otherwise it is
negative, the same as that observed for the analytical solutions of the inner region. The force

is compared with the experimental observations of Wu, Warszynski &, van de Ven (1996)
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in Fig. 4.11, and a fair agreement is found.

In summary, although in most cases the tangential component of the electroviscous

force is negative (increasing the drag above the purely hydrodynamic drag) and the normal

component is positive (lift force), there are some situations that the former is positive

(electroviscous drag reduction) and the latter is negative (attractive force). This 1s an

interesting result since it allows one to tune the force to a desirable magnitude (attractive,

neutral or repulsive), by suitable combinations of {-potentials and ratio of diffusivity of ions.

5.2 - Contributions to Knowledge

This dissertation has the following contributions to the knowledge:

1.

Analytical solution of the electroviscous equations (electroviscous ion
concenterations, electroviscous potential and electroviscous flow field), for the inner
region at order Pe (Peclet number) in an expansion of this parameter, resulting in an
analytical expression for the tangential component of the electroviscous force
experienced by a cylinder-wall interactions, valid for small particle-wall distances,
but low and intermediate Pe.

Inner solution of the electroviscous equations, at order Pe’ resulting in an analytical
expression for the normal component of the electroviscous force experienced by a
cylinder-wall interactions, valid for small particle-wall distances, but low and
intermediate Pe.

Outer solution of the electroviscous ion concentrations and potentials, for cylinder-
wall interactions at order Pe.

Explaining the discrepancy between the Cox’ theory reported in Wu ef al.’s paper
(1996) and Warszynski & van de Ven’s theory (2000).

Inner solution of the electroviscous equations for sphere-wall interactions of identical
particle and wall {-potentials, at order Pe, resulting in an analytical expression for the
tangential component of the electroviscous force experienced by the particle, valid
for small particle-wall distances, but low and intermediate Pe.

Inner solution of the electroviscous equations for sphere-wall interactions of identical

particle and wall (-potentials, at order Pe?, resulting in an analytical expression for
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10.

11.

12.

13.

14.

15.

the normal component of the electroviscous force experienced by the particle, valid
for small particle-wall distances, but low and intermediate Pe.

Observing that, for the electroviscous force, the Derjaguin approximation
overestimates theratio of the force experienced by the sphere-wall interactions to that
of the cylinder-wall interactions.

An exact analytical solution for the hydrodynamics of the motion of a sphere normal
and away from a plane wall for arbitrary particle-wall distances.

An analytical solution of the electroviscous equations, for the whole domain of
interest, at order Pe, resulting in a analytical solution for the tangential component
of'the force on a sphere-wall interactions valid for Low Pe, but arbitrary particle-wall
distances.

An analytical-numerical solution of the electroviscous equations, for the whole
domain of interest, at order Pe, resulting in a numerical solution for the tangential
component of the force on a sphere-wall interactions, valid for Low Pe, but arbitrary
particle-wall distances.

An analytical-numerical solution of the electroviscous equations, for the whole
domain of interest, at order Pe?, resulting in a numerical solution for the normal
component of the force on a sphere-wall interaction, valid for Low Pe, but arbitrary
particle-wall distances.

An analytical-numerical solution of the electroviscous equations, for the whole
domain of interest, resulting in a numerical solution for the tangential and normal
components of the force on a sphere-wall interactions, valid for arbitrary Pe and
arbitrary particle-wall distances.

Obtaining a model for the tangential component of the force valid for arbitrary Pe,
but small particle wall distances.

Obtaining a model for the normal component of the force valid for small particle wall
distances, but small and intermediate Pe.

Observing that the normal component of the force can be negative and the tangential

component can be positive under certain circumstances.
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Appendix A
Orthogonal Curvilinear Coordinate

Systems
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A.1 - Cylinderical Coordinate System
The transformation from Cartesian to cylindrical coordinates is defined by:
X=pcos, y=psin#, Z=7 (A.1)

Using the chain rule we have

i_cosea_sinﬁé i_ ,98+00398 Ao
ox Y o 0 oy ™, o0 (A-2)
or alternatively

0 0 0 0 0 0

% = cosf a—x+ sinf E, 0= P sin9&+ p cosf 5 (A.3)

The metrical coefficients hy (k=1, 2,3) for any orthogonal coordinate systems (q,, q,, q;) are

determined by

(o (2 )
_ Zr il 4a
hkz 99, 09, 09,

from which and relationship (A.1) the metrical coefficients for cylinder coordinates (h,, h,,

h,) are obtained as

h = 1’ he = h =1 (A5a)

1
- 2
Y
Thus, the metrical coefficients in each coordinate system can be interpreted as a reciprocal
weighted function to be multiplied by each coordinate to convert it to a length dimension,
and hence for the cylindrical coordinate system h, =h, =1, but hg =1/p, that is p0 is the arch

length of a sector whose angle and radius are © and p, respectively. Therefore, an

infinitesimal length, dl, surface, dS;, and volume, dV, for any coordinate system, may be

written as
dl, - 2 k=(1,2,3) (Adb)
h,
dq,dq, dq,dq, dq,dq,
dS, =dldl, =—=—=,dS, =dldl, =——,dS, =dl dl, = ——= (A4c)
1 2773 h2h3 2 1773 h1h3 3 1772 hlhz
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and

q,9,9;
dV=dldl.dl, =——— (A.4d)
e hh,h,

In relation (A.4c) dS; are infinitesimal surfaces normal to coordinates g, Thus, for a

cylindrical coordinate system we have

dl) = dp, dl, = pdo, dl, = dz, (A.5b)

dS_ =pdbdz, dS,=dpdz, dS,=pdpdd, dV=pdpdbdz (A.5¢)

The unit vector Tk for the orthogonal coordinate system (q,, q,, q;) may be written in

terms of Cartesian unit vectors (I, 5, 12) according to the following relationships

- - 0 ~ 0 - 0
BENT

1, = 1a+ Jaqk + 5q. (A.6)
From this, the unit vectors of the cylindrical coordinates may be expressed as
—i; = cosfi+ sin@j, Ie = —sin®1i+ cosej (A.7)
or
i= cosefp ~ sin@fe, j= sinefp + cos(ﬁe (A.8)
Then, if we write the velocity U as

u= upip + Uy + ujz =u,i + uyj +uk (A9)

the relationship between the cylindrical and the Cartesian components of the velocity may
be written as

u, =u,cosb+u,sinf, uy=-u sinb+u cosh, u,=u (A.10)

p z z

or alternatively

u, = u,cosb - u,sinb, u, =u, sinb +u, cosf, wu,=u, (A.11)

A sphere with unit radius (r = 1) above plane z = 0 which its center is on the z-axis at
location z= 1 + d (8 is the clearance between sphere and wall) may be described in the

Cartesian coordinate system as

z-5-1=#4/1-x"-y? (A.12)

225



with the sign + and - for the upper and lower parts of sphere, respectively. The unit vector
normal to it (ﬁp) in cylindrical coordinates may be derived from the relationship between

the spherical unit vector, i, and Cartesian ones which may be written as:

~ xi+yj+(z-1-8)k
7= (r ) (A.13)

—

P

Letting r = 1 and introducing (A.7) into (A.13) gives the unit vector in terms of cylindrical

coordinates as

i, =pi +(z-1-8)i, onS,, i, =i onS, (A.14)

in which ﬁw is the unit vector normal to the plane S,,.

The gradient, V, and Laplacian, V* for the orthogonal coordinate systems (g, q,, q;)

are defined by
-0 0 9,

V=1h + 1L,h, —+ 1,h, — :
] 1aq1 12 2 5q, 13 38q3 (A.15)

and

z_hhh{a ( h, aj+ 8 (hz a)+ a(h3 aj a6
e oq, \ h,h; dq, dq, \ h;h; 0Oq, dq; \ h,h, dq, '

Thus, for the cylindrical polar coordinate system (p, 8, z) with metrical coefficients h; = h,,

h, =h,, and h, = h,, they may be obtained as
o -10 -+ 0

VZTPEE“L 1958—9+ i (A.17)

and

szlﬂ( a)+ii+6_2 (A.18)
pop\" Op 00* 07’

Noting that all partial derivatives of unit vectors in cylindrical coordinates are zero except
that 91,00 = 1 and 01,08 = - T, the Laplacian and divergence of the vector U may be

expressed as:
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- 2 Ou u - 2 Ou u -
Vii=i (Vz — Y pj i ( u, — - 9) i V2 A.19
u=1i| Vo, L0 + 1| V'u, T30 o +1Vz (Al9)
and

1 0 ( ) 1 0uy, Ou

Viu=—— +——+ =
> o0 + (A.20)

The stress tensor, G ij» is a symmetric tensor and may be determined by the rate of strain

tensor (€, €5, €,3...) @S

G oh, h,
N L
0q, 0q,

]ach
1[h, @ h, 9
ey, = —| 2 —(hyu,)+ —=—(h
23 2{h3 8q2( ) h, 5C13( 2u2)}’ (A2
1 if i=
O5= POy T2y, =10 if ixj
Thus for cylindrical coordinates we have
du du, 10u, u du, Ou
- pt2—2 e R S04 T
M N A R R T A22
Jr28ue 8ue+18uZ 2auz (A.22)
= - -, 6] = — — R = —
099 p p ap z0 aZ p ae 0-zz p+ (3Z

A.2 - Tangent Circle Coordinate System
The transformation from the Cartesian coordinate (X, z) to the tangent circle

coordinate ((, p) is defined by
2u 28

X=C2+M2’ Z_C2+M2, 0<C<1, — 0 < U <40 (A.23)
Eliminating p results in
e

zZ— ¢ +X" = Cz (A.24)

which represents a family of non-intersection circles in the (X, y)-plane with radius 1/ where

centers are located on the z-axis at the points z= 1/{. Thus, any sphere { = constant, {, say,
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is tangent to the x-axis with radius r= 1/, as shownin Fig. A.1 Therefore, a circle tangent
to the x-axis at the origin with unit radius is denoted by { = 1, and { =0 is a circle of an

infinity radius which is the x-axis. Eliminating { leads to the following relationship for p:

xt—| +z°=— (A.25)
u u

This represents a family of non-intersecting circles tangent to the z-axis and normal to the
¢-coordinate which radius are equal to 1/p and located on the x-axis with - sign for those
constructed on the positive direction of the x-axis and + sign their reflection with respect to
the z-axis for negative values of p. Infinity is determined by { = p = 0, the z-axis above
the sphere by p = 0 and the contact point by ({ = 0, p = £e). Thus, a circle with unit radius

tangent to the x-axis at the origin may be described in these coordinates by

6=0 o
I
o ~R
Il
= =constant
6=1

p=constant

[

T
Il
()

X

v

Fig. A.1- Tangent circle coordinate system ((, p)

(OSQSI,-oo<p<+oo).
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=1, (A.26)
and the plane by

£=0, (A.27)
From relationships (A1, 4, 13), upon applying the chain rule, its metrical coefficients are

determined by

2 2
+
— —Q—“ (A.28)
C n 2 >
Therefore, applying relationships (A.15, 16), its gradient and Laplacian of any scalar may be
obtained as

£+ 0 0
V= 5 l:lq ag-l-l“ au} (A.29)

VZ ~ (gz j az 82 y
T2 )|’ (A.30)

—

The base unit vectors(ic, ip) may be determined in terms of those of the cylindrical

coordinates, according to the relationships [Happel & Brenner (1965)]

_ 2 op -~ 2. 0z

A : _sin 92

b= Z kg L= Zihg (A31)
They are obtained as

- 2 CZ _ MZ -

i - A32
b= T [ ~Cpi, lp} (A.32)
and

- 2 £ —p’ -

1 = A.33
1, % +H2[ 5 I, = Cl“u} (A.33)

Now, the relationship between tangent circle component of velocity and cylindrical one is

straight forward, that is
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-2Cu £ -y’

u, = Cz i Mz u, - Cz +},l2 u, (A.34)
and
2 2
- 2
u = C———“—u —C—uu (A.35)

M _C2+H2 p_CZ_l_“Z z
Since the coordinates { and p are orthogonal to each other, unit vector outward from each

surface is

W= i onS, (A.36)

=]’

fip = - & onS,,

A.3 - Bipolar Coordinate System

Bipolar coordinates (€, 1, 0) transform to the cylindrical coordinates according to the

relationship
sinm sinh &
p=c , z=2c , 0=0 (A.37)
cosh& —cosn cosh& —cosn
The range of coordinates is given by by
—0<f <o, O<n<m, 0<0<2n

In which ¢ is a positive constant (a geometry constant) and is determined from the
dimensions of the system. The coordinates § and 1 describe families of orthogonal circles
in the plane formed by the p and z-axes. This is illustrated in Fig. A.2. The coordinates £
describes non-intersection circles which lie entirely above or below the plane z = 0.
Therefore, £ = + o, describes two circles of a specific diameter which are reflections of each
other in the plane z = 0, and their centers lie on the z-axis. Plane z = 0 is described by £ =
0 and £ = + «~ represents a circle with zero radius above the plane z=0 and § = - «
represents its reflection with respect to the plane. The coordinate 1 describes a family of
circles which are orthogonal to all € circles and their centers lie on the p-axis in the plane z
= 0. In the limits, n = 7 represents the darkened line segment on the z-axis, and n =0
represents the remainder of the z-axis.

Upon rotating the bipolar coordinate system shown in Fig. A.2 through the azimuthal

angle 6=27, one obtains a family of coaxial spheres described by the coordinate £ = constant,
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A §= O
.............. ) w
%%: (0-2n) = |
&
I =
=l &= constant
_BT P s g 3 | §=a
+
Il :
N \'4
o’\
I
s N = constant
+
Il
LN
B E=0
e g
~ [
Q
Il
N
c‘\
Il
Q
N’
8
I
[l
[
o E=-a
I
& =
I
=4
£=0
S > w

Fig. A.2- Bipolar coordinate system (&, 6, 1)

(—oo<§<oo,0$1]£n,0$9£2n).
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and a family of spindle-like surfaces of revolution described by 1 = constant. It is apparent
that one may describe the sphere-plane system shown in Fig 4.1 by restricting the rang of the
€ coordinate to 0 < £ < «. In this case, the sphere is described by the single coordinate, £ =

o, and the plane is described by the single coordinate, § = 0. Thus, the coordinates of each

surface are

E=a, 0<n<m, 0<06 <27, on Sp (A.38)
and

& =0, 0<n<m, 0<0 <2, on Sw (A.39)

The value of o in relationship (A.38) and ¢ in transformation function (A.37) may be
determined by eliminating 7 in relationship (A.37). Thus, adding cos® 1 obtained from Eq.
(A.37b) and sin® 1 derived from Eq.s (A.37a, b) leads to the following relationship

(z-ccothé)* +p*=(ccsché)’ (A.40)
Eq. (A.40) describes a family of spheres, each with a radius of ¢ csch § and its center on the

z-axis and at point z = ¢ coth . Since the sphere has the dimensionless radius of unity and

its center at z= 1 + 8, then the sphere described by £ = o satisfies the following relationships

ccscha =1, ccotha =1+9
or
c=sinha, and 1+8 = cosha (A.41)

from them it follows that

a:ln[1+6+\/(1+6)2—1] (A.42)

The metrical coefficients of the coordinate systems of revolution (q;, g,, 0) may be

determined by the following expression (Happel & Brenner 1965)
1

BTN FNTS -
h%_ 5(]] aql ’ h% aqz aqz ’ ’ P(ql,%)

from them the metrical coefficients of the bipolar coordinate system (€, n, 6), h, h,, and hy,
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are determined, upon using Eq. (A.37), as

cosh & — cos cosh & — cos
h,=h, = 5 n h, = g, u (A.43a)
C c sin 1

Therefore, an infinitesimal length (dl.), surface (dS;) and volume (dV), given by (A.4b-d), for

bipolar coordinate system are determined by

C c csinm
dl, = d¢, dl = dn,dl, = do (A.43b
¢ cosh& —cosn 5 dl; cosh& —cosn > o cosh§ —cosm ( )
? sin1 dnde ? sinn d&dO ? ded
as, - <o g __csinndedd o ¢ AN ase)
’ (coshé—cosn) (cosh@—cosn) (cosh&—cosn)
¢’ sin
dv = 1 dedndo (A.43d)

(cosh& —COS n)

The gradient, V, and Laplacian, V2, defined by relations. (A.15, 16) may be expressed in this

coordinates as

_cosh&—cosn(7 6+7 8+7 1 5) A 44
- c “ ot T Man T sinn 00 (A49)
V2 1 ( h )2( 82 " 62 + 1 62 )
= 7| \eosh&mcosm{ 5+ 5 G 50°
(A.45)

0 +coshégcosn—l 8) }

+ (cosh& —COS n)(— sinh § o sinm on

Unit vectors in cylindrical coordinates transform to the unit vectors in coordinate systems of

revolution (q,, g,, 0) according to the relationships (Happel & Brenner 1965)

Thus, the relationships between the unit vectors of the cylindrical coordinate system and the

bipolar coordinate system are obtained as

R 1 . .
i = —sinh Esinn i, +{cosh Ecosn—1 A47
1" cosh&—cosn[ sinf Gsinm ( seosm ) ]“] (A.47)
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- 1 - . . _
1, = cosh £ — cos 1 [(l ~ cosh £ cos n) i - sinh £ sin n 1n] (A.48)

The unit normal vector outward to each surface may also be written as

n=- i) onS, and = Té onS, (A.49)

The velocity vector, U, may be expressed in each coordinate system as

—»

u=up1p+u919+u212=ué§+u919+u 1n (A.50)

Combining Eqgs. (A.47, 48, 50) leads to the following relationships between the cylindrical

and bipolar components of the velocity

—sinh & sin +1—conh§cosn
= u u .
Yo = Cosh E-cosm ? coshf-cosn * (A1)

conhfcosn-1 N - sinh £ sin
= u u
1T Teosh E—cosn " coshf-cosn ° (A52)

The relationship between the cylindrical partial derivatives and those of any coordinate

systems of revolution (q,, q,, 0) is given by (Happel & Brenner 1965):
0 2 op 0 0 2,,0z 0
— =), hi —p—————, =) hk (A.53)
- 9z i 09, aqk

From them and in view of (A.37, 43) the first derivatives with respect to the p and z are

determined as

0
8 1 sin sinh§ ——+ (1 COSM cosh&) } (A.54)
ap 0§ an
1 0 . . 0
aa—z - ;{(1 — CoSsT cosh&)g— sinm sinh§ 511—} (A.55)

The second derivatives 8%/9p> = 8/3p (9/0p) and 8°/0z” = 9/9z(9/0z) are obtained from the

first derivatives as
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9>  sinmsinh§ e
- SmT]COSh§~+smnsmh§

apz - 02 E) é
oS nh§ 0 +(1 h&_’) az
- sinng —— +1- cos
n aﬂ cosm 5o
(A.56)
+l—cosncoshg —h - 5
o? cos ™M sl 2; oE +sinmsinh§ SEon

0 5?
+sinncosh§a+(1—cosncosh&)W

and

0’  1-cosncoshé 52
072 c? { — CoST smh& ot (1 COS1 COSh&)ag
62
sinneoshs %_ e T }
(A.57)
S { sin1 cosh& 8_+ (1— cosm coshg) 0
g OED
62
~ CcOS1 s1nh§— }

From the relation (A.21), theG ,, and ¢ ., components of the stress tensor are obtained as

1 - o0U, U,
6y, = —| sinnU, + sinhE U, + (cosh - cosn)| —=+

| nor (A.58)
Oy = |5l EU, + |coshf - cosn ot " sinn 40
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Table B1 - Distribution of ﬁpT (6 = 0.05) on the nodes demonstrated in Fig. 4.1.

| Nodes number | Wall Surface | Medium | Medium ! Sphere Surface
I(origin)-4 -1.00000000000000 -0.80303405944808 --0.47096507303833 -0.00000000000000
5-8 -1.00000000000000 -0.80158001969678 -0.46949113075993 ~0.00000000000000
9-12 -1.00000000000000 -0.79723409872698 -0.46508588146849 0.00000000000000
13-16 -1.00000000000000 -0.79004472436729 -0.45779889293584 -0.00000000000000
17-20 -1.00000000000000 -0.78009205554582 -0.44771223090067 -0.00000000000000
21-24 -1.00000000000000 -0.76748716035002 -0.43493964902042 -0.00000000000000
25-28 -1.00000000000000 -0.75237088405299 -0.41962547679030 -0.00000000000000
29-32 -1.00000000000000 -0.73491242652041 -0.40194322854049 0

33-36 -1.00000000000000 -0.71530765509977 -0.38209396500967 -0.00000000000000
37-40 -1.00000000000000 -0.69377718701281 -0.36030444949996 0.00000000000000
41-44 -1.00000000000000 -0.67056428522018 -0.33682515421267 -0.00000000000000
45-48 -1.00000000000000 -0.64593262504817 -0.31192819112357 -0.00000000000000
49-52 -1.00000000000000 -0.62016400784049 -0.28590526913173 -0.00000000000000
53-56 -1.00000000000000 -0.59355612647764 -0.25906582102703 -0.00000000000000
57-60 -1.00000000000000 -0.56642053286572 -0.23173551024980 -0.00000000000000
61-64 -1.00000000000000 -0.53908103250198 -0.20425543681646 0.00000000000000
65-68 -1.00000000000000 -0.51187286083065 -0.17698254813088 -0.00000000000000
69-72 -1.00000000000000 -0.48514322747127 -0.15029208875756 -0.00000000000000
73-76 -1.00000000000000 -0.45925423125619 -0.12458352578437 -0.00000000000000
77-80 -1.00000000000000 -0.43458987809986 -0.10029254660524 -0.00000000000000
81-84 -1.00000000000000 -0.41157014148742 -0.07791405952292 0.00000000000000
85-88 -1.00000000000000 -0.39067715869259 -0.05804592033258 0.00000000000000
89-92 -1.00000000000000 -0.37250491445298 -0.04147306171343 0.00000000000000
93-96 -1.00000000000000 -0.35787183563926 -0.02933480962732 -0.00000000000000
97-100 -1.00000000000000 -0.34815571921365 -0.02349281566758 -0.00000000000000
101-104 -1.00000000000000 -0.34640462703587 -0.02753058610774 0.00000000000000
105-108 -1.00000000000000 -0.36060561655999 -0.05000734661333 -0.00000000000000
109-112 -1.00000000000000 -0.41066910210973 -0.11412196098471 -0.00000000000000
113-116 -1.00000000000000 -0.53472057193136 -0.27166181179843 -0.00000000000000
117-120 -1.00000000000000 -0.76755415258590 -0.55272808954765 -0.00000000000000
121(infinity)-124 -1.00000000000000 -0.96552559541135 -0.73797466771637 -0.00000000000000
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Table B2 - Distribution of U_; (6 = 0.05) on the nodes demonstrated in Fig. 4.1.

| Nodes number § Wall Surface | Medium | Medium I Sphere Surface
1(origin)-4 0 -0.00000000000000 -0.00000000000000 -0.0000000000000
5-8 0 -0.00197396385159 -0.00395456214716 0.00000000000000
9-12 0 -0.00391012937049 -0.00783314387456 0.00000000000000
13-16 0 -0.00577093646598 -0.01156024934659 -0.01156024934659
17-20 0 -0.00751929221763 -0.01506133351920 -0.0000000000000
21-24 0 -0.00911878078454 -0.01826323134864 -0.0000000000000
25-28 0 -0.01053384376409 -0.02109452943269 0.00000000000000
29-32 0 -0.01172991907385 -0.02348585709050 -0.00000000000000
33-36 0 -0.01267352429086 -0.02537007006119 0.00000000000000
37-40 0 -0.01333226716629 -0.02668229424448 -0.00000000000000
41-44 0 -0.01367476124997 -0.02735978834422 0.000000000000000
45-48 0 -0.01367041743029 -0.02734157173197 0.000000000000000
49-52 0 -0.01328907148881 -0.02656774528380 0.000000000000000
53-56 0 -0.01250039149244 -0.02497840516124 -0.00000000000000
57-60 0 -0.01127298367136 -0.02251200742161 0.000000000000000
61-64 0 -0.00957307559056 -0.01910297664414 0.000000000000000
65-68 0 -0.00736259082423 -0.01467825034653 -0.00000000000000
69-72 0 -0.00459632415383 -0.00915229140261 -0.00000000000000
73-76 0 -0.00121776542510 -0.00241986407156 -0.00000000000000
77-80 0 0.00284707750759 0.00565440500637 -0.00000000000000
81-84 0 0.00769863942222 0.01525073848874 -0.00000000000000
85-88 0 0.01347649239702 0.02661380897602 -0.00000000000000
89-92 0 0.02037959050675 0.04007907648860 -0.00000000000000
93-96 0 0.02871769957379 0.05612859516381 -0.00000000000000
97-100 0 0.03909638283057 0.07560972579874 -0.00000000000000
101-104 0 0.05301155228883 0.10058131424333 -0.00000000000000
105-108 0 0.07408386255548 0.13649500621316 -0.00000000000000
109-112 0 0.10823731903626 0.19307124170241 -0.00000000000000
113-116 0 0.15443868239879 0.26324073470589 -0.00000000000000
117-120 0 0.16757398998821 0.24698573512430 -0.00000000000000
121(infinity)-124 0 0 0 0
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Table B3 - Distribution of ﬁgT (6 = 0.05) on the nodes demonstrated in Fig. 4.1.

| Nodes number I Wall Surface | Medium { Medium | Sphere Surface
1(origin)-4 0 0.00000000000000 0.00000000000000 -0.00000000000000
5-8 0 0.00249518687909 0.00126598142504 0.00000000000000
9-12 0 0.00500416910953 0.00253895371721 0.00000000000000
13-16 0 0.00754104940237 0.00382606318201 -0.00000000000000
17-20 0 0.01012055988400 0.00513477459237 -0.00000000000000
21-24 0 0.01275841476709 0.00647304954419 -0.00000000000000
25-28 0 0.01547171215047 0.00784954961806 -0.00000000000000
29-32 0 0.01827940778895 0.00927387590617 -0.00000000000000
33-36 0 0.02120289030963 0.01075685975234 -0.00000000000000
37-40 0 0.02426669727816 0.01231092454147 -0.00000000000000
41-44 0 0.02749942628152 0.01395054586111 0.00000000000000
45-48 0 0.03093491727471 0.01569284846956 0.00000000000000
49-52 0 0.03461381588256 0.01755839530613 -0.00000000000000
53-56 0 0.03858567887433 0.01957224969960 0.00000000000000
57-60 0 0.04291186412523 0.02176543279430 0.00000000000000
61-64 0 0.04766957832242 0.02417696431309 0.00000000000000
65-68 0 0.05295767322848 0.02685678513119 0.00000000000000
69-72 0 0.05890515202340 0.02987004823595 0.00000000000000
73-76 0 0.06568398525997 0.03330358047629 0.00000000000000
77-80 0 0.07352891883356 0.03727580837610 -0.00000000000000
81-84 0 0.08276877898708 0.04195212384597 0.00000000000000
85-88 0 0.09387731058854 0.04756888521901 0.00000000000000
89-92 0 0.10756190981601 0.05447465459851 0.00000000000000
93-96 0 0.12494896158868 0.06322676895179 0.00000000000000
97-100 0 0.14807355566899 0.07490541860594 0.00000000000000
101-104 0 0.18131221557061 0.09216760617042 0.00000000000000
105-108 0 0.23519944403874 0.12201776489752 0.00000000000000
109-112 0 0.33417921342535 0.17901847976281 0.00000000000000
113-116 0 0.52233438119949 0.26920413107879 0.00000000000000
117-120 0 0.76497805346238 0.28889753606587 0.00000000000000
121(infinity)-124 0 0 0 0
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Table B4 - Distribution of ﬁnT (6 = 0.05) on the nodes demonstrated in Fig. 4.1.

§ Nodes number ! Wall Surface { Medium § Medium | Sphere Surface
1(origin)-4 1.00000000000000 0.80303405944808 0.47096507303833 0.00000000000000
5-8 1.00000000000000 0.80157856667504 0.46950607846442 0.00000000000000
9-12 1.00000000000000 0.79722798218341 0.46514491182673 0.00000000000000
13-16 1.00000000000000 0.79002981132499 0.45792884488615 0.00000000000000
17-20 1.00000000000000 0.78006264437466 0.44793606637032 0.00000000000000
21-24 1.00000000000000 0.76743528477505 0.43527479083781 0.00000000000000
25-28 1.00000000000000 0.75228554097381 0.42008202117476 0.00000000000000
29-32 1.00000000000000 0.73477869382997 0.40252197415607 0.00000000000000
33-36 1.00000000000000 0.71510565450484 0.38278418008061 0.00000000000000
37-40 1.00000000000000 0.69348083028330 0.36108126826596 0.00000000000000
41-44 1.00000000000000 0.67013971771734 0.33764644940944 0.00000000000000
45-48 1.00000000000000 0.64533624360293 0.31273070279284 -0.00000000000000
49-52 1.00000000000000 0.61933987421436 0.28659966985505 -0.00000000000000
53-56 1.00000000000000 0.59243251130606 0.25953024369137 0.00000000000000
57-60 1.00000000000000 0.56490518862022 0.23180682285938 0.00000000000000
61-64 1.00000000000000 0.53705457328118 0.20371716074586 -0.00000000000000
65-68 1.00000000000000 0.50917925944094 0.17554767577087 0.00000000000000
69-72 1.00000000000000 0.48157580963132 0.14757796786584 0.00000000000000
73-76 1.00000000000000 0.45453442769466 0.12007406950065 0.00000000000000
77-80 1.00000000000000 0.42833394226042 0.09327958678322 0.00000000000000
81-84 1.00000000000000 0.40323514186876 0.06740330111059 0.00000000000000
85-88 1.00000000000000 0.37946977314156 0.04260076119613 0.00000000000000
89-92 1.00000000000000 0.35721936475725 0.01894358008504 0.00000000000000
93-96 1.00000000000000 0.33657794641144 -0.00365047104510 0.00000000000000
97-100 1.00000000000000 0.31751402186856 -0.02564997635127 0.00000000000000
101-104 1.00000000000000 0.29988709674277 -0.04878182365560 0.00000000000000
105-108 1.00000000000000 0.28320672822095 -0.07901447010421 0.00000000000000
109-112 1.00000000000000 0.26208525707139 -0.13510259159216 0.00000000000000
113-116 1.00000000000000 0.19220871698397 -0.26575357045243 0.00000000000000
117-120 1.00000000000000 -0.17896646890782 -0.53202303332182 0.00000000000000
121(infinity)-124 1.00000000000000 -0.96552559541135 -0.73797466771637 0.00000000000000
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Table BS - Distribution of P, (5 = 0.05) on the nodes demonstrated in Fig. 4.1.

| Nodes number ! Wall Surface § Medium ! Medium Il Sphere Surface
1(origin)-4 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000
5-8 2.56683126460221 2.50489993442630 2.54107234013403 2.67712152950532
9-12 5.06404206577036 4.94266596845149 5.01462393992073 5.28344062347382
13-16 7.42458823742511 7.24863429056500 7.35560849728765 7.75074673204120
17-20 9.58647071406446 9.36297838860926 9.50382565855289 10.01589938292411
21-24 11.49499398730029 11.23287494355764 11.40609113150217 12.02310095476723
25-28 13.10472044412745 12.81437865537711 13.01811560422546 13.72586352994599
29-32 14.38103993974254 14.07392880473506 14.30601523422136 15.08859039908391
33-36 15.30129055377915 14.98942623056694 15.24739235449095 16.08770808608646
37-40 15.85538582312015 15.55083790896266 15.83194355407044 16.71230423787189
41-44 16.04592499406338 15.76030664723196 16.06157262372460 16.96424779451904
45-48 15.88778506546034 15.63176467258456 15.95000713271661 16.85779010894405
49-52 15.40721563352735 15.19007117077438 15.52193869248578 16.41866806513056
53-56 14.64047882789031 14.46971418848033 14.81172734060274 15.68275155185052
57-60 13.63209601622328 13.51313586539680 13.86172905899788 14.69429704244176
61-64 12.43277960135191 12.36875589799380 12.72032141933486 13.50388588818905
65-68 11.09714142064867 11.08878076566148 11.43971502247043 12.16613937494904
69-72 9.68127847713881 9.72689503874103 10.07364719247197 10.73731187931117
73-76 8.24034178974969 8.33593566387165 8.67505890210303 9.27286819016280
77-80 6.82619494138144 6.96565008698245 7.29385617885482 7.82515097265814
81-84 5.48526361473268 5.66063335305729 5.97485454702668 6.44124126175602
85-88 4.25665728921488 4.45852530909417 4.75600314642702 5.16111931588135
89-92 3.17058994143488 3.38852497296632 3.66698800663818 4.01627263094401
93-96 2.24704144847708 2.47025923243755 2.72830737158633 3.02899565740887
97-100 1.49465852723310 1.71308745630983 1.95081762639781 2.21265807266163
101-104 0.91061053592599 1.11611598944693 1.33541775411246 1.57260220465705
105-108 0.48360700500082 0.66940126540957 0.87208950749518 1.10505613981956
109-112 0.20110265474448 0.35640116111268 0.53830032864728 0.78809246521702
113-116 0.05117303095520 0.15657411766398 0.30116367814816 0.56157689181553
117-120 0.00384191971613 0.04719083197523 0.12978973336354 0.32118158346124
121(infinity)-124 0.00000000000000 0 0 0
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Table B6 - Distribution of 'ﬁpT on the nodes constructed for 6 = 2.

| Nodes number

| Wall Surface

| Medium

! Medium

| Sphere Surface

1(origin)-4
5-8

9-12
13-16
17-20
21-24
25-28
29-32
33-36
37-40
41-44
45-48
49-52
53-56
57-60
61-64
65-68
69-72
73-76
77-80
81-84
85-88
89-92
93-96
97-100
101-104
105-108
109-112
113-116
117-120

121(infinity)-124

-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000
-1.00000000000000

--1.00000000000000

-0.87514451361309
-0.87386468921777
-0.87005004114578
-0.86377517075531
-0.85516482206919
-0.84439445202442
-0.83169093808133
-0.81733331898155
-0.80165341662936
-0.78503612800100
-0.76791910597691
-0.75079146933532
-0.73419109949077
-0.71870000198881
-0.70493714316153
-0.69354812546423
-0.68519104330942
-0.68051785698359
-0.68015060189133
-0.68465163174830
-0.69448671130670
-0.70997882818907
-0.73124861181435
-0.75813365052612
-0.79007364616757
-0.82594365531974
-0.86382459860619
-0.90074923757116
-0.93260175680685
-0.95456071995419

-0.96244632852818

-0.58856295653182
-0.58673340512381
-0.58127773839553
-0.57229528328935
-0.55995281975983
-0.54448649847410
-0.52620463516070
-0.50549144066845
-0.48281168478404
-0.45871616290233
-0.43384761380163
-0.40894639823666
-0.38485476803643
-0.36251791923664
-0.34297923670114
-0.32736624647290
-0.31686290340778
-0.31266315615731
-0.31590057537960
-0.32754968215944
-0.34829710526175
-0.37838556360207
-0.41744158284636
-0.46430903316173
-0.51692408743832
-0.57227991772814
-0.62653503445383
-0.67530829146311
-0.71416736810511
-0.73925562157885

-0.74793197691388

-0.00000000000001
0.00000000000000
0.00000000000000
-0.00000000000000
0.00000000000000
0.00000000000000
-0.00000000000000
0.000006000000000
-0.00000000000000
0
0.00000000000000
-0.00000000000000
0.00000000000000
0.00000000000000
-0.00000000000000
0.00000000000000
-0.00000000000000
-0.00000000000000
0.00060000000000
-0.00000000000000
0.00000000000000
0.00000000000000
-0.00000000000000
0.00000000000000
-0.00000000000000
-0.00000000000000
0.00000000000000
-0.00000000000000
0.00000000000000
0.00000000000000

-0.00000000000001
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Table B7 - Distribution of Ui oT (6 =10) on the nodes constructed for 6 =10"°.

{ Nodes number ! Wall Surface ! Medium § Medium i Sphere Surface
1(origin)-4 -1.00011917730444 -0.80011509856558 -0.46816765549011 -0.02102174452739
5-8 -1.00000202311708 -0.79854116794786 -0.46523118766413 -0.00035389025675
9-12 -0.99999461613334 -0.79416759792548 -0.46077222415079 0.00094147196069
13-16 -1.00000323561653 -0.78695156203867 -0.45365554359705 -0.00056570854940
17-20 -1.00000102975901 -0.77694650215562 -0.44362506160905 -0.00018015443857
21-24 -0.99999652724364 -0.76427017815877 -0.43089683511789 0.00060717602173
25-28 -1.00000234481558 -0.74907350817375 -0.41576722139871 -0.00041007557593
29-32 -1.00000080333848 -0.73150612082100 -0.39818205672782 -0.00014054600615
33-36 -0.99999715173908 -0.71176550260861 -0.37839933900977 0.00049805347226
37-40 -1.00000199933129 -0.69007805250294 -0.35676775965840 -0.00034950560075
41-44 -1.00000070483657 -0.66666741791414 -0.33334221797122 -0.00012357458763
45-48 -0.99999743091757 -0.64179405923642 -0.30843109897978 0.00044921622612
49-52 -1.00000184198143 -0.61573971703183 -0.28242761688307 -0.00032233470120
53-56 -1.00000066417851 -0.58877718044096 -0.25545148417586 -0.00011629564688
57-60 -0.99999753758311 -0.56120533417561 -0.22784359147772 0.00043054381968
61-64 -1.00000179879135 -0.53333516645944 -0.20002252931590 -0.00031433699769
65-68 -1.00000065981294 -0.50545983252232 -0.17213406314841 -0.00011534945224
69-72 -0.99999751627911 -0.47788797828252 -0.14452600028017 0.00043413531967
73-76 -1.00000184285454 -0.45093073128373 -0.11761862382991 -0.00032231389196
77-80 -1.00000068804366 -0.42487107384659 -0.09154564779601 -0.00012036580301
81-84 -0.99999736073369 -0.39999769766291 -0.06663394677162 0.00046138776815
85-88 -1.00000199797796 -0.37659278657520 -0.04328251550032 -0.00034945261723
89-92 -1.00000076198194 -0.35489957335813 -0.02157507193624 -0.00013346933702
93-96 -0.99999699834734 -0.33515894664743 -0.00179111938633 0.00052490374947
97-100 -1.00000234456820 -0.31759830933879 0.01570778979658 -0.00040995924064
101-104 -1.00000093079871 -0.30239495944988 0.03092733729136 -0.00016274797963
105-108 -0.99999614941407 -0.28971884435305 0.04365823934495 0.00067326353746
109-112 -1.00000323299355 -0.27972370063435 0.05357108373755 -0.00056534623764
113-116 -1.00000144460137 -0.27250056958928 0.06081326753792 -0.00025252721025
117-120 -0.99999240399234 -0.26814114946819 0.06526720074362 0.00132809963134
121(infinity)-124 -0.99999933246095 -0.96573198816636 -0.73752125961111 -0.00040738874699
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Table B8 - Distribution of U , (for 6=m) on the nodes demonstrated in Fig. 4.1.

| Nodes number

| Wall Surface

| Medium

| Medium

! Sphere Surface

1(origin)-4

13-16
17-20
21-24
25-28
29-32
33-36
37-40
41-44
45-48
49-52
53-56
57-60
61-64
65-68
69-72
73-76
77-80
81-84
85-88
89-92
93-96
97-100
101-104
105-108
109-112
113-116
117-120

121(infinity)-124

0.00000000000000
-0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
-0.00000000000000
0.00000000000000
-0.00000000000000
-0.00000000000000
-0.00000000000000
-0.00000000000000
0.00000000000000
0.00000000000000
-0.00000000000000
0.00000000000000
0.00000000000000
-0.00000000000000
-0.00000000000000
-0.00000000000000
0.00000000000000
0.00000000000000
-0.00000000000000
0.00000000000000
0.00000000000000
-0.00000000000000
0
-0.00000000000000
-0.00000000000000
0.00000000000000
-0.00000000000000

-0.00000000000000

-0.45667681301488
-0.45522875263913
-0.45090005913025
-0.44373701113462
-0.43381612664348
-0.42124324652654
-0.40615225728937
-0.38870345758458
-0.36908157225031
-0.34749341491064
-0.32416519438368
-0.29933944963453
-0.27327158011235
-0.24622590870199
-0.21847116619785
-0.19027520794436
-0.16189864760287
-0.13358689420584
-0.10555977406960
-0.07799748983952
-0.05102123061632
-0.02466710815494
0.00114313568389

0.02660942798014

0.05194139367094

0.07685544645262

0.09917759774669

0.11234925849755

0.10413120596956

0.06464789452361

0.02656381138936

--0.78869047485863
-0.78718389002079
-0.78267916169799
-0.77522114843458
-0.76488387948690
-0.75176944645978
-0.73600643819033
-0.71774790139313
-0.69716879800408
-0.67446291214022
-0.64983913158736
-0.62351698517204
-0.59572124933196
-0.56667533005195
-0.53659295581301
-0.50566744257635
-0.47405734440938
-0.44186656813516
-0.40911581960108
-0.37570027355548
-0.34132522825010
-0.30540689887781
-0.26692017283704
-0.22417569351228
-0.17454669687966
-0.11435677479839
-0.03976870053604
0.04928822716086
0.14092699059691
0.20877439479179

0.23240008363428

-1.00000000000000
-0.99986221034354
-0.99944591662036
-0.99874221375189
-0.99773581391756
-0.99640434148731
-0.99471726952774
-0.99263441064152
-0.99010383245452
-0.98705900842639
-0.98341492837071
-0.97906276531224
-0.97386250234932
-0.96763262626268
-0.96013552918690
-0.95105651629516
-0.93997310709889
-0.92630930829855
-0.90926613386873
-0.88771378290959
-0.86002062704471

-0.82377610785200
-0.77533332444798
-0.70904622882451

-0.61601208541887
-0.48214266439190
-0.28598017585474
-0.00000000000000
0.38853438153656

0.80263330164336

1.00000000000000
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Table B9 - Distribution of TjZR (for 0=7) on the nodes demonstrated in Fig. 4.1.

| Nodes number ! Wall Surface § Medium | Medium | Sphere Surface
1(origin)-4 0 -0.00000000000000 -0.00000000000000 -0.00000000000000
5-8 0 -0.00373940538488 -0.01115297227831 -0.01660000984717
9-12 0 -0.00745101720776 -0.02226875469910 -0.03328452719956
13-16 0 -0.01110746390396 -0.03331137894460 -0.05013970951222
17-20 0 -0.01468221642837 -0.04424733190434 -0.06725507881398
21-24 0 -0.01815000594596 -0.05504681482100 -0.08472536966717
25-28 0 -0.02148723756199 -0.06568504377983 -0.10265258741638
29-32 0 -0.02467239927810 -0.07614361135281 -0.12114836693231
33-36 0 -0.02768646571040 -0.08641193478030 -0.14033674130060
37-40 0 -0.03051329638573 -0.09648882349743 -0.16035745659093
41-44 0 -0.03314002842592 -0.10638420826597 -0.18137000484545
45-48 0 -0.03555746270395 -0.11612108559943 -0.20355859495278
49-52 0 -0.03776044024139 -0.12573774384728 -0.22713834224527
53-56 0 -0.03974819996577 -0.13529034887069 -0.25236303333092
57-60 0 -0.04152469641937 -0.14485597152681 -0.27953490943532
61-64 0 -0.04309882939498 -0.15453612140715 -0.30901699437495
65-68 0 -0.04448448214009 -0.16446077765246 -0.34124852810065
69-72 0 -0.04570015147092 -0.17479270301358 -0.37676393850722
73-76 0 -0.04676772397112 -0.18573132676340 -0.41621520611270
77-80 0 -0.04770948699701 -0.19751431825046 -0.46039574241337
81-84 0 -0.04854146602029 -0.21041226904337 -0.51025926846812
85-88 0 -0.04925877404112 -0.22470532492641 -0.56691527068180
89-92 0 -0.04980218209064 -0.24061352143323 -0.63155224328669
93-96 0 -0.04997806859189 -0.25810715014230 -0.70516199939428
97-100 0 -0.04926888300675 -0.27641274704872 -0.78773670132723
101-104 0 -0.04644677320823 -0.29282972797987 -0.87609271836552
105-108 0 -0.03908413023816 -0.3004107427389%4 -0.95823553420759
109-112 0 -0.02393845404476 -0.28535152104114 -1.00000000000000
113-116 0 -0.00081279036348 -0.22979356939568 -0.92143422682468
117-120 0 0.01784110097952 -0.12820618621149 -0.59647278487210
121(infinity)-124 0 0 0 0
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Table B10 - Distribution of U, (for 6=7t/2)on the nodes demonstrated in Fig. 4.1.

Y Nodes number | Wall Surface | Medium | Medium | Sphere Surface
1(origin)-4 -0.00000000000000 0.45667681301488 0.78869047485863 1.00000000000000
5-8 0.00000000000000 0.45661018233330 0.78857408452067 0.99986221034354
9-12 -0.00000000000000 0.45640881756512 0.78822237513956 0.99944591662036
13-16 -0.00000000000000 0.45606823107182 0.78762761390726 0.99874221375189
17-20 0.00000000000000 0.45558070624066 0.78677651107054 0.99773581391756
21-24 0.00000000000000 0.45493492116465 0.78564958332667 0.99640434148731
25-28 0.00000000000000 0.45411537813137 0.78422019026559 0.99471726952774
29-32 0.00000000000000 0.45310158854460 0.78245316069106 0.99263441064152
33-36 -0.00000000000000 0.45186693755514 0.78030288422342 0.99010383245452
37-40 0.00000000000000 0.45037711638444 0.77771068458891 0.98705900842639
41-44 0.00000000000000 0.44858795684336 0.77460120450001 0.98341492837071
45-48 -0.00000000000000 0.44644242204969 0.77087740237837 0.97906276531224
49-52 -0.00000000000000 0.44386638421353 0.76641356337041 0.97386250234931
53-56 -0.00000000000000 0.44076262982243 0.76104542097665 0.96763262626268
57-60 0 0.43700223599276 0.75455600675536 0.96013552918689
61-64 0.00000000000000 0.43241200142929 0.74665509241410 0.95105651629515
65-68 0.00000000000000 0.42675591308226 0.73694890741732 0.93997310709889
69-72 -0.00000000000000 0.41970760381373 0.72489499376134 0.92630930829854
73-76 -0.00000000000000 0.41080940304362 0.70973436862966 0.90926613386872
77-80 0.00000000000000 0.39941223534530 0.69038956738587 0.88771378290958
81-84 0.00000000000000 0.38459067972731 0.66531348956002 0.86002062704471
85-88 0.00000000000000 0.36503323527105 0.63227404974155 0.82377610785199
89-92 0.00000000000000 0.33893032627800 0.58807545423987 0.77533332444797
93-96 0.00000000000000 0.30394641037017 0.52828119226613 0.70904622882451
97-100 -0.00000000000000 0.25750983762542 0.44719449896697 0.61601208541886
101-104 -0.00000000000000 0.19791196959716 0.33881895516736 0.48214266439189
105-108 0.00000000000000 0.12690231698505 0.20039348969443 0.28598017585473
109-112 0.00000000000000 0.05370214685627 0.04063944174139 -0.00000000000000
113-116 -0.00000000000000 -0.00330227415246 -0.10963302976832 -0.38853438153656
117-120 0.00000000000000 -0.02680653327642 -0.20522792234966 -0.80263330164336
121(infinity)-124 0.00000000000000 -0.02656381138936 -0.23240008363428 -1.00000000000000
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Table B11 - Comparison of Numerical and Analytical solutions, Pe =0.01, 6=0.1.

Node Analytic Numeric Analytic Numeric Analytic Numeric Analytic Numeric
I I{origin)-4 | -0.0000 0.0003 -0.0000 0.0003 -0.0000 0.0002 -0.0000 0.0002 |
5-8 -29.8909 -29.6491 -26.8998 -26.6808 -25.1019 -24.8945 -24.4400 -24.2321 "
| 9-12 -59.3302 -58.8966 -53.3814 -52.9911 -49.8060 -49.4370 -48.4896 -48.1189 "
13-16 -87.8735 -87.2688 -79.0335 -78.4925 -73.7211 -732106 -71.7651 -71.2514 |
17-20 -115.0903 -114.3297 { -103.4583 | -102.7814 | -96.4692 -95.8319 -93.8955 | -93.2537
21-24 -140.5718 | -139.6682 -126.2780 | -125.4781 | -117.6915 | -116.9403 | -114.5293 | -113.7722
25-28 -163.9366 -162.9022 | -147.1413 | -146.2305 { -137.0551 | -136.2021 | -133.3403 | -132.4799
29-32 -184.8375 -183.6845 | -165.7294 [ -164.7195 | -1542586 | -153.3155 | -150.0332 | -149.0815
33-36 -202.9678 | -201.7083 -181.7616 | -180.6648 | -169.0375 | -168.0164 | -164.3496 | -163.3187 |
3740 -218.0662 | -216.7126 | -195.0009 | -193.8293 | -181.1695 | -180.0827 | -176.0729 | -174.9752
41-44 -229.9222 228 4871 | -205.2584 | -204.0245 | -190.4794 | -189.3395 | -185.0326 | -183.8810
4548 -238.3806 -236.8768 | -212.3976 | -211.1143 | -196.8427 | -195.6628 | -191.1088 | -189.9169 I
49-52 -243.3448 | -241.7854 | -216.3383 | -215.0188 | -200.1894 | -198.9833 | -194.2356 | -193.0175 '
53-56 -244.7806 | -243.1785 { -217.0590 | -215.7168 | -200.5073 | -199.2889 | -194.4041 -193.1745 I
57-60 -242.7175 -241.0856 | -214.5998 | -213.2483 | -197.8435 | -196.6274 | -191.6643 | -190.4390
61-64 -237.2512 -235.6019 | -209.0631 | -207.7160 | -192.3065 | -191.1077 | -186.1274 | -184.9227 |
65-68 -228.5431 -226.8884 | -200.6147 | -199.2855 | -184.0668 | --182.9007 | -177.9659 | -176.7992 -
69-72 -216.8206 | -215.1711 | -189.4830 | -188.1848 | -173.3565 | -172.2388 | -167.4141 -166.3037
73-76 -202.3746 | -200.7397 | -175.9575 | -174.7029 | -160.4685 | -159.4153 | -154.7672 | -153.7326 l
77-80 -185.5562 -183.9428 -160.3857 -159.1870 -145.7544 -144.7822 -140.3796 -139.4415
81-84 -166.7696 | -165.1823 | -143.1691 | -142.0381 | -129.6220 | -128.7469 | -124.6625 | -123.8423
85-88 -146.4635 | -144.9046 -124.7586 | -123.7074 | -112.5310 | -111.7687 | -108.0800 | ~107.3992
89-92 -125.1205 § -123.5927 -105.6504 | -104.6919 -94.9889 94.3533 -91.1433 906218
93-96 -103.2547 -101.7673 -86.3865 -85.5352 -77.5453 -77.0464 -74.4008 ~74.0543 "
97-100 -81.4327 -80.0099 -67.5609 -66.8325 -60.7812 -60.4225 -58.4203 -58.2568 I
101-104 -60.3318 -59.0180 -49.8288 -49.2389 -45.2891 -45.0646 -43.7586 -43.7737
105-108 -40.8191 -39.6728 -33.9040 334652 | -31.6327 | -31.5247 -30.9090 | -31.0800
109-112 -23.9775 ~23,0502 -20.5195 -20.2392 -20.2733 -20.2520 -20.2215 -20.5005
113-116 -10.9738 -10.2955 -10.3289 -10.1998 -11.4473 -11.4757 -11.7889 -12.0982
117-120 -2.7877 -2.3957 -3.6976 -3.6748 -4.9722 ‘5.0237' -5.3109 -5.5466
“ 121@)r124 | -0.0000 0 0 -0.0000 0 -0.0000 0 20,0001
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Table B12-Correction coefficient to Stokes law, k, due to the presence of a wall

o k Brenner (1961)’s solution k Present solution
10 1.11350323390571 -1.11350323390571
1 2.12553556676004 -2.12553556676004
0.1 11.45915720340954 -11.45915720340951
0.01 1.018961723245513e+002 -1.018961723264529e+002
Table B13-Comparison of analytical and numerical force for different
. geometries and mesh sizes.
o Mesh Ve Vw a(y D%z FA Analytic ﬁ% Numeric
size mV mV U
KxL
3.0 20x50 [ -300 | -500 0.5 2 -67.4523 -66.9059
3.0 14x15 | -300 | -500 0.5 2 -66.9776 -65.8799
3.0 50x20 | -300 [ -500 0.5 2 -67.1351 -66.9902
0.1 20x50 | -100 | +200 3 1 -267.3913 -266.8082
0.1 14x15 | -100 | +200 3 1 -264.9144 -258.9971
0.1 50x20 | -100 [ +200 3 1 -266.1876 -262.8536
0.001 | 20x50 | +150 -50 0.25 0.5 -8.4789e+005 | -8.4892e+005
0.001 { 14x15 | +150 -50 0.25 0.5 -8.3343e+005 | -8.3715e+005
0.001 | 50x20 { +150 -50 0.25 0.5 -8.3925e+005 | -8.4162e+005
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Appendix C

Chapter Four Calculations
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Parameters M, N, S, T and O in relationships (4.3.23, 24) are defined by

M= —2(1 —pcosh §)iAn sinh(n+ l)?;P,"
+1 smhiZ{B cosh(n+ j?; +C smh(n+ D &}P'

+smh§Z\iD cosh(n+ )E_,+E smh(n+; &}P

+1- )smhij,Z‘:F cosh(n+ )§+G smh(n+;)&}P;

N = 2(1— z)sinhf;(coshﬁ - u)-z

S= 2pcosh§ZA smh(n+ )&P
+psmh§Z{B cosh(n+ )§+C smh(n+ ;)&}P'

+sinh§2[ cosh(n+ )§+E smh(n-k% 41),1

+(1-p )smh&Z[F cosh(n+ j§+G sinh| n+ 5)413“

T=2p sinh&i(n+ ;)A cosh(n+ )éP

+u cosh&i(n+%j[B smh(n+ 1)§+C cosh(n+ ;)E}Pn

+cosh§Z(n+EJ[D smh(n+ )§+E cosh(n+5
0

> 1 . 1
+(1— uz)coshg; (n+ EJ[F" smh(n+ —2-)5 + G, cosh

and

)
&Pn

(C.1)

(C.2)

(C.3)

(C.4)
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O= (1 ucosh&)i( J A smh(n+ )QP

+psmh2’;2( I)Z[B cosh(n+ )§+C smh(n+;)ﬁlP;

2 (C.5)
+ sinhgzo (n+ %) {D cosh(n+ )g +E smh(n+ ;HPH
+(1- pz)sinhz;Z: (n+ %ﬂ}r cosh(n+ jg +G smh(n+ ;MP,;'
In view of the recurrence relationships [Macrobert (1967)]
uP (1) = ;Hill P, (n)+ 2nn+ “P(n)  n21 (C6)
(1= )P (1) = +2112(fl+ Dp (u)- (Izln_j)ln P.(u) nx>1 €7
P,(n)= 2; “P, ()4 2n1+ “P(n)  nz1 (€8)

the auxiliary functions M, S, T and O can be written in terms of just Pl'1 , with the notation
: : .1 . o1
K .Sin=K_, . sinhin+i+ 5 g, K, ,.Cos=K_,. sinh|n+i+ 5 &, (C9)

[K=(A,B,C,D,E,F,G),as

M:—ziAnsmP,;+2cosh§Z[Amsln n*t2 A Sint=t j|P,', (C.10)
_ 2n+3 2n—1

+sinh gz (Bchs +C,, Sin) 2nn++23 +(B, ,Cos+C,_Sin) 2nn——11 :lP,;

+ sinhégz -(Dn+1COS +E,,,Sin) 21: S+ (D, Cos+E,_Sin) 2n1_ Jp;

; sinhgz (Fn+1COS +G,, Sin) (n 2?&“; ) (F, ,Cos+G,_Sin) (n _21)(_“1_ 1) }P,;
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- n+2 n-11,
S = 2cosh A .S A, _Si 11
F’Z{ e 3 ““Sln2n—lJP" (1D

+sinh )" (B, Cos+ C,, Sin) 23 +(B,_.Cos+ C,_Sin) P
1

i 2n+ 2n-1] °

1 .
Pn
n-1

(n-2)(n- I)JP.

n-1

+ sinh@i
1

n+
(n+ 2)(n+ 3)

2n+3

.\ 1 .
D_, Cos+ En”Sln) 13 + (Dn_,Cos+ En_lSm) 5

(
+sinhe Y (E,,,Cos+G,,,Sin)
1L

n+l

-(F, ,Cos+ G,_Sin) -

T=sinh&) :An+1Cos(n+2)+An_lCOS(n—1)]P,', (C.12)
1

+ %cosh E_,i .(BnHSin - Cn+,Cos)(n+ 2) + (Bn_18m+ Cn_lCos)(n— l)]P,;
~ |

+ %Cosh &ZT :—(DnHSin + En+1COS) + (Dn_lSin+ E“"COS)]P"’

+%cosh gi (F,.Sin+G,,,Cos)(n+2)(n+3) - (E,_Sin+G,_Cos)(n—2)(n- 1)]P,;
L |

2 1)* . - 3 1 .
0= —22 (n+ —2-) A _SinP_+ coshéz [An+18in(n+5)(n+2) +An_]Sin(n— EJ(n— l)}Pn
1

1 - 3 1 :
+Esinh§2 (Bn+1Cos+ CMSin)(n + Ej(n +2)+ (Bn_1C05+ Cn_]Sin)(n - Ej(n -1) P,
1

IS P I

1 a 3
+§sinh§Z (Fn+1Cos+Gn+ISin)(n+§)(n+2)(n+3)
1

~(n-2)(n-1)(F, ,Cos+ Gn_ISin)(n—%”P,; (C.13)

The boundary condition on the sphere is the same as that for the wall, given by

(4.3.25), for which F_y, is replaced by F; and £ is taken to be equal to «, that is

F, si A
agg’ =— Cst::nn{NJr(cosh&—p) 2[Zsinh2 &M} on&=a

Y | 1
+(cosh§ - u) 2 {— Ecosh &M} + (coshE_, - u)z [S+2T+ O]}
In view of (4.3.31) and the identity [Macrobert (1967)]

(C.14)
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B | —

(coshg—p)2 =—25A P! (C.15)
1

where A, is defined by (4.2.135), the parameter N in (C.14) (the term due to the moving

coordinate system), given by (C.2), may be evaluated as

3 n

N=2(1- pz)sinhg(coshg ~u)" = -4(1- p?)sinhg(cosht - u) 2D 4 P,

n+2 -1
P HZ|: n+|2 +)\' n__ :an}:

—4sinh§(cosh§ - u)

2
)

3 i n+2( n+3 n )(C.16)

_4sinh hE - P} P + A

Sl i(COSE,. H) Z 2n+3\ ™ 2n+5 ""2n+1l
+n—1()L n+1+x ?-)PW>

2n-1\""2n+1 ""?2n-3/]""
Thus, if we write

30 ,
N = (coshE, - u)_z 2.B.P, (C.17)
1

B, is determined by

_ n+?2 n+3 n
B, =4sinh&| -4 + A + A

2n+3\V ™ 2n+5 "2n+1

(C.18)
n—l(}M n+1+x n—2)
-1\ 2ne 1 2 on 3
from which and from the identities
I 3 |
(cosh& —p) 2P, = (cosh& — ) ?(cosh& - uwp, =
3 ' ( n+1 n ' ) (C 19)
-’ P+ P
(COShg “’) |:COShE.’Pn 2n+1 n—1 2n+1 n+l
l by 1
(cosh& —p)? P, =(cosh& - u)_z (coshg — )P, =
(cosh& — )-%{costh' ool 0y }
H "Ton+l ™ 204l ™
3 +1 n (C.20)
2 .
(coshg p) 2{cosh EP. —cosh&[ an, o +1Pn+ljl

(n+1)n p [(n+1)(n—l) . n(n+2) }P'+ n(n+1) , }
T an+D@n-1) 27| @n+D2n-1)  @2n+1)2n+3) | " @n+1)(2n+3) 2

255



B.C. (C.14) may be written as

0C,, E, sinn -
x - T o (cosh& - p)

N W

X onf=a

o (C.21)
> [Bn +y,+1l, +12, +13 +ol +02 +03, +04 +65, +o)6n]P,;

in] which B, is given by (C.6), and v, (t1,, T2, ©3.,) and (0], ®2_, w3, w4, w5, w6,) are
obtained from the second, third and the fourth term in (C.14), upon the use of the identities
(C.7,8), as

4sinh®E{2A Sin+ 2 hg{A Sint2 A gin ! (C.22)
= 4si in+2c¢ :
Yn n OS n+l ln2n+3 n-1 lnzn_ 1

. [ y nh+2 y h-1
+ sinh¢ _(Bn+1Cos+ CnHSm) e 3 + (Bn_lCos+ Cn_lSm) o J
+ sinh¢§ -(D Cos+ E Sin) oL + (D Cos+ E Sin) :

I n+l n+l 2n+ 3 n-1 n—1 2n_ 1

. . \(n+2)(n+3) .\ (n-2)(n-1)

+ smh&{(FnHCOSA Gn+181n) ned (Fn_lCOS+ Gn_lSm) a1

11 =cosh®£A Sin—coshi(coshziﬂin2 hé’;){A Sin n+2 +A __Sin n—lJ
n " " 2n+3 " 2n-1

inh& cosh? & (B,.,Cos+C, Sin) =" + (B, Cos+C, Sin) -
—sinh & cos 2;- .1 Cos+C_, Sin ne3 n1C0s+C, Sinjom
_sinh cosh? &| (D,.,Cos + E,,Sin) ==+ (D, ,Cos+E, Sin) 1
i n+l n+l 2n+3 n-1 n-1 2n—1
. _y(n+2)(n+3) y(n=2)(n-1)
—smh&coshzg(Fn+1Cos+Gn+ISm) i3 —(Fn_,Cos+Gn_]Sm) -

(1 1
+%sinh £ cosh §(n + EjAnCOS - Esinhgcosh2 &[AnHCos(n +2)+A__ Cos(n- 1)]

- %sinhz £ coshg|(B,, Sin +C,,,Cos)(n+2) +(B, Sin+C, ,Cos)n-1)]

n+l

n+1 n+l

- % sinh? & cosh & :—(D Sin +E,,,Cos)+(D,_,Sin+ En_ICOS)] (C23)

n+l n+l

_%sinhz ¢ coshé|(F,, Sin+G,,,Cos)(n+2)(n+3)-(F,_Sin+G,_Cos)n-2)(n- 1)]

256



- sinh§ cosh¢§
- sinh¢§ cosh§

~ sinh¢ cosh¢ (Fn+2Cos+ G

1
+§Sinh§(
|
—Zsmh £
| R
_Zsmh 3
| S
—Zsmh 3

n-1
g 2n—1

—sinh & cosh &

13 =

—sinh & coshg

—sinh & cosh§ (FnCos + GnSin)

1
+Esinh§(
l inh?
—431 €
1 inh® &

41151

+3
{+ cosh&AnHSin—(costh,+sinh2§){A Sin——> 4 A Sin— }

+3 " 2n+ 5 " 2n+ 1

n
2n+1

B_..Cos+ C__.Sin

n+2 n+2

n+3
)2n+5

(
(D,.,Cos+ E, ,Sin) 21: o+ (D,Cos+ E,Sin)

(n+3)(n+4)
2n+5

3 1
n+ 5) A, Cos- Esmhﬁ cosh@[A

:(BmSin +C,,,Cos)(n+3) + (B,Sin+ CnCOS)(n)]

+ (BnCos+ CnSin)

i 2n+1

Sin) o o)

- (FnCOS+ GnSin)m

Cos(n+ 3) + AnCos(n)]

n+2

n+2

-(D,.Sin+ E,,Cos)+ (D,Sin+ E,Cos)|

(F,..Sin+ G,,,Cos)(n+ 3)(n+ 4) - (E,Sin+ G,Cos)(n- 1)(n)]}

(C.24)

+1 -2
{+cosh EA,_Sin—(cosh? & + sin’ hg)[AHSin Z . }

+A i
11 T ARSIy
_2
3

2n
. n+1 n
B,Cos+C,Sin) :

. Tl +(Bn_2Cos+Cn_sz

n
1

2n-3
(n—3)(n—2)}

L 2n-3

1

1
n- E)AH_ICOS -5 sinh & cosh E_,[AnCos(n +1)+A,_,Cos(n— 2)]

T(BnSin + CnCOS)(n +1) + (Bn—ZSin + Cn—ZCOS)(n Bl 2)]

n

(
_(D Cos+E,Sin) S +(D,_,Cos +E, _,Sin)

(n+1D(n+2)
2n+1

- (Fn_ZCos + Gn_ZSin)

:—(DnSin + EnCOS) + (Dn—zsin + En-ZCOS)]

— —sinh?
451 &

(F,Sin+G,Cos)(n+1)(n+2) - (F, ,Sin+G, ,Cos)(n-3)(n- 2)]}

(C.25)

257



n+2 n-1
o1 = cosh®¢£52cosh {A Si A__Si
n g{ 0s é n+l n 2n+ 3 + n—lSln zn_ 1

+sinh§

.\ n+2 n- 1
B,,,Cos+ CMISm) a3’ (Bn_,Cos+ Cn_lSin) s J

+sinh§

L
:(Dn+lCOS+ E,, Sin) 2;: 7+ (D,_,Cos+ E,_Sin) 2n1_ IJ

(n+2)(n+3) (n-2)n-1)

i 2n+3 2n-1

+2 sinhé[An+,Cos(n+ 2)+ A, Cos(n- l)]

¥ coshg[(Bn+,Sin+ C,..Cos)(n+2)+(B,_Sin+ C, Cos)(n- 1)]

+ cosh&[— (DM,Sin+ En+,Cos)+ (Dn_,Sin+ En_,Cos)] (C.26)

+ cosh@[(Fn+,Sin+ GMCOS)(n+ 2)(n+3)- (Fn_,Sin+ Gn_ICos)(n- 2)(n- l)]

n+i n+1

+sinhg| (F,,,Cos+ G,, Sin) - (F,.,Cos+ G,_Sin)

-

1) 3 1
—2(n+ ;) A Sin+ cosh&lAMSin(n+ 5)(n+ 2)+ An_,Sin(n— E)(n— 1)}

~

1 3 1
+ > sinht (B,..Cos+ Cn+,Sin)(n+ 5)(n+ 2)+(B,_,Cos+ Cn_,Sin)(n— 5)(11- 1)]

+ lsinhz; -(D,,Cos+ E sm)[m %) +(D,_,Cos+ En_lSin)(n— %)J
L

2 n+l n+l

+ %sinhép(Fn+,Cos+ Gn+,Sin)(n+ %)(n+ 2)(n+3)- (Fn_,Cos+ Gn_lSin)(n~ -;—)(n— 2)(n- 1)“

M2 2n+5 2n+1
) n+3
2n+5

n+2 . n+3 .1
(o2n=—cosh§m 2coshg| A ,,Sin +A Sin

+sinh&|{\B_,,Cos+C_,,Sin

n+2 n+2

+ (BnCos + CnSin) 2nn+ J

+Slnh§ n+2 n+2 2 +5

|
:( 2n+ I:I

+sinh gL(FmCos +G,.,Sin) %ﬂ—) ~(F,Cos+G,Sin) (HT;{E(TH)J
+2sinhE[A,,,Cos(n+3) + A, Cos(n)|

+coshg|(B,.,Sin +C,,;Cos)(n+3) +(B,Sin + C,Cos)(n)]

n+2 n+2
+cosh&[~(D,.,Sin + E,,,Cos) +(D,Sin + E,Cos)| (C.27)

+coshg](E,,,Sin +G,,,Cos)(n+3)(n+4) - (F,Sin +G,Cos)(n-1)(n)]

.y 1 .
D,,,Cos+E Sm) o +(DnCos+EnSm)
n

n+2 n+2

3)’ , : 5 , 1
-2 n+> A, Sin+cosh§| A, ,,Sin n+3 (n+3)+A Sin n+s (n)

_ 5 ' 1
¥ % sinhg| (B, ,,Cos + CMSin)(n + 5)(n +3)+(B,Cos+ CnSm)(n + 5)(n)}

1 . . 5 : ]
+Esmh€; —(Dn+2Cos+ EmSm) n+5 +(DnCos+EnSm) n+5

2

+ 1 sinh & (FMCos + GmSin)(n + %)(n +3)(n+4)- (FnCos + GnSin)(n + %)(n - 1)(n):|}
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n-1 +1 -2
w3, :—coshém{zcoshi{AnSin L 1+An_ZSin 2 il

) 2n+ 2n-3
. _ +1 —2
+sinh&| (B,Cos +C,Sin) 2nn 1 +(B,,Cos+C,_;Sin) 2nn 2

+sinh&| (D,Cos + E,Sin) o

+ (Dn_ZCos + En_ZSin)

i ( +)1 : 2n-3
_ An+D(n+2 n-3)(n-2)
+sinh&| (F,Cos+G_Sin)————— _ in)————
sin é_( LCos+ G, m) il (Fn_ZCos+Gn_ZSm) n_3
+2sinh&[A, Cos(n+1)+A,_,Cos(n-2)]
+coshg|(B,Sin+ C,Cos)n+1)+(B,_,Sin+C,_,Cos)(n-2)]

+cosh§ —(DnSin + EnCos) + (Dn_ZSin + En_zCos)] (C.28)
+coshg|(F,Sin +G,Cos)(n + 1)(n +2) - (F, ,Sin + G, ,Cos)(n - 3)(n-2)]

1)’ . : 1 : 3
) n-> A,_Sin+coshg| A Sin n+> (n+1)+A__Sin n-- (n-2)

1 1 3
5 sinh& (BnCos + CnSin)(n + 5)(n +1)+ (Bn_ZCos + Cn_ZSin)(n - Ej(n -2)

I | 1 . 3
+Esmh§ —(DnC05+EnSm) n+5 +(Dn_2Cos+ En_ZSm) n-y

+%sinh§ (FnCos+GnSin)(n +%)(n+ 1)(n+2) —(Fn_2Cos+Gn_ZSin)(n—g-)(n— 3)(n—2):l}

—

(n+3)(n+2) { n+4 , n+l]
= 2cosh® A . Si +A S
O = Gnr)2ng3) | 2C0NE AwsSing o+ ALSInG T

. .y h+4 oy n+l
+sinh&| (B,,;Cos +C,,,Sin) o (B,.,Cos+C,, Sin) s

+sinh¢| (D, ,,Cos +E, ,Sin) = +(D,,,Cos +E,, Sin)

I n+3 n+3 2n+7 n+l 2n+3
+sinh ¢ (F,,,Cos+ Gn+3Sin)(n—+;1—)E_%+—5)— —(F,,,Cos+ Gmsm)("z)i%;)}
+2sinhE[A,,,Cos(n+4) +A,, Cos(n+1)]
+cosh§|(B,,,Sin+ Cu+3COS)(n +4)+ (BMSin + CM,Cos)(n + 1)]
+cosht|—(D,, Sin+E,,,Cos) +(D,.,Sin+E,,,Cos)| (C29)
+cosh&|(F,,,Sin+ Gn+3COS)(n +4)(n+5)— (FnHSin + GnHCos)(n)(n + 1)]

5)° . . 7 . 3
-2 n+- A,,,Sin+cosh& A ,,Sin n+o (n+4)+A_, Sin n+> (n+1)

—

7 . 3
+%sinh§ (Bn+3Cos+Cn+3Sin)(n +5)(n +4) +(Bn+lCOs+cn+,5m)(n+5)(11 + 1)]

1. : 7 : 3
+5 sinh§ —(DmCos + En+3Sm) n+ 5 + (DnHCos + EM[Sm) n+ 5

+%sinh £ (FmCos + GmSin)(n + %)(n +4)(n+5)- (FMCos + GMSin)(n + -;—) (n)(n+ l)}}
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(n+1)}(n-1) (n)(n+2) . n+2 Cn-1
(Dsn B {(211 + 1)(2n - 1) ¥ (21’1 + 1)(211 + 3) ]{2 COShEJIZAnHSln In+3 + An-ISIH M — 1j]
+sinh§[

.y -1
+(Bn_1Cos+Cn_,Sm) P

N
1
)2n—1:|
n—2)(n—1):|

(B, Cos+C,,Sin) 2“n++23
(

n+l n+l

oy 1
D,, Cos+ EM,Sm) m+3 +(Dn_,Cos+ E,_.Sin

)(n +2)(n+3)
2n+3
+2sinhE[A,.,Cos(n+2) +A _ Cos(n-1)]

+coshg|(B,,,Sin+C,, Cos)(n+2) +(B,_Sin+C, Cos)(n-1)]

n+l

+coshé[~(D,, Sin +E,, Cos) +(D,_Sin+E,_Cos)] (C.30)

n+l n+l

+cosh §[(F Sin+G,,,Cos)(n+2)(n+3) - (F, ,Sin+G, ,Cos)(n-2)(n- 1)]

n+l n+l

1 3 1
—2(n+5) AnSin+coshE_{An+,Sin(n+5)(n+2)+An_lsm(n—5)(n—l)}

1
+Esinh§

+sinh&

—(Fn_,Cos+Gn_,Sin)T

n+t n+l

+sinh&,[(F Cos+G,,,Sin

n+l n+l

|:(B Cos+C Sin)(n + %)(n +2)+ (Bn_lCos + Cn_lSin)(n - %)(n - 1)}
+%smhg[—(Dm,Cos+ En”Sin)(n +§) +(D,_,Cos+ En_lSin)(n— %ﬂ

+%sinhé; (F,, Cos+ GM,Sin)(n +%)(n +2)(n+3)-(F, ,Cos+ Gn_]Sin)(n - %)(n—2)(n— 1)}}

(n-2)(n-1) . n
w6, = (,_2n—3)(2n—1) {ZCosh&,[An_ISm Tn1

. n
+sinh§ (Bn_1C05+ Cn_ISm) S

-—+(D,Cos+E, Sin)

(n)(n+1)
n-—1

A__Cos(n)+A,_,Cos(n— 3)]

+coshE|(B, Sin+C,_,Cos)(n) +(B,_,Sin+C,_,Cos)(n-3)]

+coshg{~(D, Sin+E,_,Cos) +(D,_;Sin+E, ,Cos)| (C3D)

+coshE|(F,_,Sin+G,_,Cos)(n)(n+1) - (F,_,Sin +G,_,Cos)(n-4)(n-3)

’ 1 _ 5
—2[n -~ %) A__,Sin+cosh Q[An_,Sin(n —~ 5)(n) + An_38m(n —~ 5)(n -3)

n-3
2n—5|
n-3

2n-5

+A__,Sin

+(B, ,Cos+C,_,Sin)

+sinhg| (D, Cos+E,_Sin)

2n—35 |
(n—4)(n—3)}
2n—-95

+sinh&| (F,_,Cos+G,_Sin) ~(F, ,Cos+G,_,Sin)

+2sinhE

1 , 5
+%sinh§ (B,,_,Cos+cn_lsm)(n —5)(11) +(B,_;Cos + CHSm)(n—E)(n—B)]

+lsinh§ —(Dn_lCOS+ En_ISin) n—l +(Dn_3Cos+ En_JSin) n—é
2 2 2

+ % sinh&| (F,_,Cos+ Gn_ISin)(n - %)(n)(n +1) = (F,_,Cos+ GHSin)(n - %)(n —4)(n— 3)]}
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Now in view of (4.3.61) and (4.3.50) the equation for the set of I,’s is determined:

(n-2)(n-1) Smh[n_ i)al,,_z

2n-1 2
sinha 1 _ 1
~(n-1 5o cosh n-—Jo +cosha sinh| n- = Ja |l ,
1 1
+{Esmh2oc cosh(n+ E)a
(n+ D(n-1 n(n+2) ( 1)
+|(2n+ 1)cosh’a + i —
{( n+ 1)cosh’a -1 + s 3 sinh n+2 ol (C.32)
sinha 3 3
~-(n+ 2){ s 3cosh(n+ 5)0( + cosha sinh(n+ E)QJI"”
(n+3)(n+2) ( 5)
+ s 3 sinh| n+ 5 ol .,
F
:_Xn———éﬂ[[}n+yn+rln+r2n+13n+mln+w2n+m3n+m4n+m5n+m6n]§=a
in which y,, 1s defined by

_(n—2)(n—l) h( é)] —(n-1) smha_h( l) + cosh h( l) '
Xn=""5 7 coshin-——JaJ, n—1) 2 — sinh( n—=Jo+coshacosh| n— jo |, ,

1 1 +1)(n-1 +2 1
+Esinh2asinh(n+§)a+{(2n+l)coshz0L+(n Jn )+n(n )jlcosh(n+§)a T

2n-1 2n+3
inh 3 3 +3)n+2 5
—(n+ 2)[;:;3‘ sinh(n + ’2‘)(1 + coshacosh(n + E)OL:IJHH + 91—211)(;—3)cosh(n + '2—)(1.Jn+2
(C.33)

The parameters 6, PA,0,, PBC, o, PDE and o ¢ PFG in relationship (4.5.7) and
6, PA, 0 ,,PBC, 0, PDE and ¢ ,,PFG in relations (4.5. 8) are defined by

1
o, PA = (coshé; - p)_i[—3u3 cosh& + p? cosh® & +4p® — pcosh & + sinh? & — 1] X

ZA smh(n+ )E,P (cosh&—u)l[ZSln n(l—ucoshé)ZA s1nh(n+ )QP

(1 1) )smh§Z (2n+1)A cosh(n+ )&P} (C34)
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va—

P 1
BC = - sinh§(cosht - k)7 x

[‘5u3+2u2C05h5+H+COSh§]i{B cosh(n+ )§+C smh( ;)&}Pn

1 (C.35)
+(cosh§ - p) % I sin nSmMZ[B COSh(fH 1)5 +C smh(n+ ;)43}
+(1_ p’)coshiz(r” IJ{B smh(n+ 1)& +C cosh(n+ ;)&}Pn}
1 !
o,.,PDE = Esth,(coshﬁ u) 2
[‘Hz ~ pcosht + Z]i {D cosh(n+ 1)& +E smh(n+ ;)&}Pn
(C.36)

+(cosh§—u)l{- sinm smh@Z{D cosh(n+ 1)&+E smh(n+ D&}PH

+(1-pcoshz-,)2?( HD smh(n+ lj§+E cosh(n+ ;MPH}

NI»—t

., PGF = Esmhg(coshg p)
= 1 : 1 ;

[—SHZ + 3p coshi + 2]2 {Fn cosh(n+ > £+ G, smh(n+ E)E_an
2

1

+(cosh§ - H)E —(1— pz)sinznsinh§Z F, cosh(n+ )& +G smh(n+ ;)&:\Pn

L

+(1_ uz)(l— M cosh&)z::( ){F smh(n+ l)g +G cosh(n+ ;)Q}Pn}

(C.37)

PA = -2(cosh - p)%(l- M coshg)i A, sinh(nJr -;-)gp,‘l (C.38)
1

0&9
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! 1 .
6, PBC= (coshé’; p) [ sinm sth)ZlB cosh(n+ )2;+C smh(n+2)ﬁan

(C39)

PDE—-% inh&(coshE - p);Z: D cosh(n+ )§+E smh( ;)&JPH
—(cosh&—u)gz.:(n+5)[Dnsinh(n )§+E cosh(n+éj&}Pn

(C.40)

0 PFG = %(1‘ HZ)Sinhi(COSh{; - u)%z; {Fn cosh(n+ %)?; +G, sinh(n+ %j&}Pn
+(1— uz)(coshi - “)32: ( j{F smh(n 1)& + G, cosh(n+ %)é]l)n

(C.41)

The parameters 6, NA, ¢, NBC and ¢ ¢ INDE in relationship (4.5.53) are defined by
1
6., NA = sinn (coshé —~ u) 2[1 p coshé - sinh?® ]Z A smh(m— )iPn
1
+(coshf; - u)2 2(u cosh§ - l)z A smh(n+ jE_,P (C42)

—smhiz (2n+ 1A, cosh(n+ J&P H

1

6,.,BC= sinn{— %(cosh& - p)_i(coshﬁ + u)sinh@ X
i{B cosh(n+ )§+C smh(n+ )JJP
1 (C.43)

+(cosh§—p)l{u smh&Z{B cosh(n+ )§+C smh(n+ ;)&}Pn

-coshgi(m EJ{B smh(n+ 1)§+C cosh(n+ ;)&]Pn}}
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: 1, =
0,,DE = smn{zsmhé‘;(coshé; - p) 2 X

[—p2 + 3u cosh - 2]2 [Dn cosh(n+ %)& +E, sinh(n+ %)E_,JPH

1

T e i (C.44)
+(cosh§ - ,,1)2 sinn? smh§Z [Dn cosh(n+ 5)& +E_ sinh(n+ %) }P"
1

§ | Py
~(1-u coshg)Z:: (n+ %)[D,, sinh(n+ %)é +E, cosh(n+ %)&}PH

n
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