INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Temporal-Oriented Policy-Driven Network Management

Manuela-lonelia Dini
School of Computer Science
McGill University, Montreal

July, 2000

A Thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the Degree of

Master in Computer Science

Copyright © Manuela-lonelia Dini, 2000.
All nights reserved.

i~l a“‘“"'c....a.“'“""" G Canada” o

305, rus Welington
OMON Kmom Ottawa ON K1A ON4
Canada Carada
Your s Vove néddrence

Our @i Nowe rébivarce

The author has granted a non- L’auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-70702-4

Canadi

Abstract

Systems management represents the set of activities necessary to ensure that
information systems function according to user requirements and objectives. Chapter 1
summarizes the management challenges in today’s networks and distributed systems.
Policy-driven network management is the new management paradigm. Its implementation
needs a new information and decision model, appropriate protocols and new hosting and
access mechanisms. [ETF policy framework and architecture create the support for the
deployment of this new paradigm.

Consideration of temporal aspects to allow run-time policy conflict detection and
error-handling has not yet been developed. After assessing the existing policy-oriented
achievements in terms of tools and IETF drafts, and after presenting existing temporal
mechanisms, we concluded that only policy definition temporal issues are partially
referred to. We considered complementary temporal issues focusing on “policy
execution” and coping with the notions of time zones, policy dependency across multiple
time zones and actions translation among many time zones. Finally, we showed how our
input can be used for extending the current IETF Policy CIM proposal.

We intend to have an IETF draft on these issues. Specifically, our proposal can be
added as a new building block to any existing policy-enabled management tool. We
identified important directions in handling policy conflicts at run-time.

Résumé

La gestion des réseaux représente I’ensemble d’activités nécessaires pour s’assurer
que les systémes d’information fonctionnent selon les exigences et les objectives de
I'utilisateur. Le premier chapitre résume les défis de la gestion des réseaux d’aujourd’hui
et des systémes répartis. La gestion des réseaux basée sur des politiques est le nouveau
paradigme de gestion. Son implémentation a besoin d'un nouveau modéle d’information
et de décision, de protocoles appropriés et de mécanismes d'accés. Le cadre et
I'architecture des politiques d'IETF créent le soutien nécessaire pour le déploiement de ce
nouveau paradigme.

La considération des aspects temporels pour permettre la détection des conflits
entre politiques au moment de I'exécution et le traitement des erreurs n'a pas encore été
développé. Aprés avoir évalué des accomplissements existants orientés vers les politiques
en termes d'outils et des propositions d*IETF, et aprés avoir présenté les mécanismes
temporels existants, nous avons conclu que des issues temporelles de définition de
politique sont seulement partiellement mentionnées. Nous avons considéré les aspects
temporelles complémentaires se concentrant sur I'exécution des politiques et tenant
compte de notions de fuseaux horaires, de la dépendance des politiques a travers des
fuseaux horaires multiples et de I’équivalence des actions a travers plusieurs fuseaux
horaires. En conclusion, nous avons montré comment notre contribution peut étre utilisée
pour étendre la proposition actuelle d’IETF concernant les politiques.

Nous avons l'intention de proposer des améliorations a la proposition actuelle
d*IETF concernant les politiques. Spécifiquement, notre proposition peut étre ajoutée
comme nouveau module a n'importe quel outil de gestion existant basé sur les politiques.
Nous avons identifié des directions importantes a suivre pour traiter les conflits entre

politiques au moment de I’exécution.

Acknowledgements

First of all, I would like {0 express my gratitude to my supervisor, Prof. Gerald
Ratzer, for his continuous guidance and encouragement throughout the course of this
work. He helped me shape the ideas and concepts presented here and provided me
with the opportunity to discover and develop many interests. His assistance is

reflected not only in the contents of this thesis but also in the presentation style.

[would also like to thank the Computer Research Institute of Montreal
(CRIM) for providing the necessary technical environment for the completion of this
thesis.

[am very thankful to my brother, Cosmin, for his technical help, constructive

criticism, and for always being there when I needed a second opinion.

Finally, [would like to thank my entire family for their invaluable support,
especially my husband, Sebastian, whose encouragement and understanding helped
me fulfill my goal.

List of Figures

Figure 1.1 Management ACtIVILY.......ccoevuiuiiiniieirnerierireereecesernseeenrneseennes |
Figure 1.2 Policy in systems management...........cc.oceeiiiiiiicrncrnrenenereeeseenennnn. 3
Figure 1.3 Managed and Managing SyStems.cocevveinerieinrieiiiieenarnnennss 6
Figure 1.4 Increased traffic of more demanding applications bottleneck edge router.12
Figure 1.5 Class of Service maps multiple flows to a few service levels................ 14
Figure 1.6 ToS provides 3 prioritization bits in the Layer 3 header...................... 14
Figure 1.7 Taxonomy for QoS specifications.............cocvveeiieiveciiicriinnreneennnnn. 15
Figure 1.8 Information Exchange between Management Functional Areas............ 22
Figure 1.9 RSVP is used to establish a resource reservation between sender and

FECEIVET. . ceuuvineerrneaietieneerrnsssacsesassscsesssnsenassconsnesssnnssnsnnnnns 32
Figure 1.10 Differentiated Services Architecture.............c.c.coovveiiieiiiniinennnn.. 34
Figure 1.11 The DSCP replaces the ToS octet in the Ipv4 header and the Class octet in

theIpvb header.........cc.cocvinininmiiiiiiiic e 35

Figure 1.12 End-to-End and Top-to-Bottom QoS............cccviiiiriiiiiiiiiiinnn., 36
Figure 1.13 The MIB tree of object identifiers.............c.cocvveiiiniiiiiniininninen. 42
Figure 2.1 The path from policy classification to policy application..................... 48
Figure 2.2 A policy hierarchy............ccooeiiiiniiiiiiiiiiiii e 49
Figure 2.3 The DEN policy class hierarchy............ccccveviiiiiiiiiiiinniiininan, 50
Figure 2.4 The Policy Framework.............cccociviiiiiiiiiiiiiiiiiiiiiic e 53
Figure 2.5 The Policy AFCRiteCIUE.ccuvumeriereeeeeeeeeeesinireeeeaeeeeeenen. 55
Figure 2.6 Class hierarchy in policy core schema....................oiiiiii 57
Figure 2.7 Class hierarchy for the networkingPolicyCondition subclass and other

policy condition-related auxiliary classes..................c.ooooiii 58
Figure 2.8 Class hierarchy for the policy action subclasses and related group

To P T J I 59
Figure 2.9 The Policy Information Base (PIB)...........ccccivveriiiiiiiiiiiiiinnan. 60

iv

Figure 2.10 Hierarchy relation between Core and QoS policy classes.................. 63

Figure 2.11 QoS Policy Schema Inheritance Hierarchy..............ccceveeaiennnne.... 66

Figure 2.12 QoS policy class containment.cc.coeeeiveereerienecrninennrnnnnns. 68
Figure 2.13 Containment Hierarchy and Policy Scoping...........ccccovvieininnnnnan.. 69
Figure 3.1 Management tools and policy enabled tools...............c.cceevneninennen... 76
Figure 4.1 Hysteresis Mechanism.............ccoiviiniiiiiiiiiiiiiiiiiiirreceeen e, 93
Figure 4.2 Direct and Indirect dependency Class.............c.coceveieiuiiiieicinneennnn. 95
Figure 4.3 Example of Dependency Graph............c...ocvviiiniiiiiiiiiiiiiiiinennnnnn. 96
Figure 4.4 n-Layer Connectionccooeiiiiiniinniniininnieneennerecnsirisiuencrcanns 96
Figure 4.5 Policy Representation............ccocovuvuinriieiiniiiiiiiiniiiieeinnieeaan. 100
Figure 4.6 Correlation Window............ocoveiuiiiiiiininiiiiiieniiiinecciieenesnnnnn. 106
Figure 4.7 The Poll MechaniSm..............cocociiiniiiiiiiiiiiiiiiiiiciiiicee e 110
Figure 4.8 Policy Representation revised (1)...........cooveievreiiiiiiiiiiiininn, 112
Figure 4.9 Policy Representation revised (2)...........cocevvrmieiniiiiiniiiiiiiininennnn. 115
Figure 4.10 Policy Representation revised (3).........c.cocvviieiieiininiininieiinnineen.. 117
Figure 5.1 Bandwidth problem............c.cooiiiiiiiiiiiiiiiiii e, 121

Figure 5.2 Sun Bandwidth Allocator 1.0 Accounting System..........c.c.cccceueenn.n. 124
Figure 5.3 Bandwidth Allocator building blocks.............ccceiviiiriiiiinininnen.. 125

List of Tables
Table 1.1 OSIversus DMTF...... ..ottt e e eeee e e s e e s s e eeaeennans 11
Table 3.1 Summary of policy-enabled management tools features.......................... 88

Table of Contents
ADSITRCE....cccaiieieiniinceinctacresescosecssorcnsescecsssscnasnssnsssasessessonsassessase crencses O |
ReSume......coccvoeerenncecsesorccccsascncenssorsasecses conenes ceesteesesenssanscnsesenssansnnsranes ii
Acknowledgements..........ccccceeeeenrereccceccnces Ceeescscecencterssensnsssestaratnsnnrsssance iii
List of Figures......ccccccecevirencecerercecnrasececcnssssessascescesesass seesassecacaccssnnsennness iv
List of Tables....cccccuveeeiuirirrerccannsararesecnssasscessscssccasssssssesescscnsssssnss cesceseVi
Table of Contents......... cersssseasssassenacnsssstrnasesssenane ccensessscssecusncs coseecenssesasss vii
List of ACronymS....cccccrvianescrescensencesanscncsens cecessseseresstnrcencrsiserssasasanassansene 4
1 Management Challenges in Networks and Distributed Systems.........cccccceuveee.. 1
L.l INrOdUCHION.covieiiiniieic it eier e rieneeeeernenrraeneneeaennesnnean 1
1.2. Managing across private networks and Intemet................c..ooeiiiiiiiii. 6
1.2.1. Proprietary management tools.............c.oeviiiiniiiiiiiiiiiiiiiniiinanns 7
1.2.2. Managing the Intemet............ccoociiiniiiiiiiiiiiiiiiiie e, 8
1.3. Quality of Service (QoS), Type of Service (ToS), Class of Service (CoS)...... 12
1.3.1 QOS Parameters.coouiiniinrieneineeinrireesiesieeranetoessaesecsnnnesonson 15
1.3.2. Special management functions due to Internet.................c.cocevninnnn 21
1.3.3. Existing Remedies.............cocoiiiiniiiiiiiiiiiiiiiiiiiiiniinniciee e 27
1.4. Integrated services versus Differentiated services Frameworks................... 30
1.4.1. End-to-end Integrated Services (Intserv/RSVP).........c.ccoieeiniiinnn. 31
1.4.2. Differentiated Services...........coovieiiiiiiiiiiiiiiiriic e 33
1.4.3. Combining Intserv and Diffserv...........c.cooeeiniiiiiiiiiiiniiiinann.. 36
LS. OPeNASSUES. . ..ottt ittt reet ettt eeaaceearentsananesans 37
1.5.1. Implementation QoS Policy Framework............cc.coooeiiiiiiiiiiiiniiiii, 37
1.5.2. Compiex filtering/aggregation/correlation mechanisms....................... 39
1.5.3. Co-habitation between SErVICES.......coviiiiiniiniiiininntoieienneeeensanenes 40

1.5.4. Need for mechanisms for early Policy conflict detection and resolution ..45

2 Current IETF Policy Framework.................. cecscersssesteratesesantsntsasenanssansran 49
2.1. Layered Approach..........ccocouieiniiiiiiiiiiiiiiiiiiiiiici i e e 47
2.2. Policy framework & architecture..............ccoveiiiiiiiiiiiiiiiiiiiereenaineenn 51

2.2 1. FOUNAAtON.eeeeereiiirtieeiiirereeteresenssenseocessnnanenssonesnroenssnsnses 51

2.2.2. Policy framework.cccoveimiriiciieiiiiiieierierrr e reseen e 53
2.2.3. Policy fUnCtionS.couvriiniiiiiiiiiiiiiereenserieeeeeeteseaeaneneenraaanas 54
2.2.4. Policy architecture.cceiriimiiieiiieieiiriaareenieereanaeenanns 55
2.2.5. Policy core information model..............cooiiiiiiiiiiiiiiiii s 56
2.2.6. Policy condition and policy action classes............ccccceeenvrninennnnnn. 58
2.3.COPS and PIBS.......cc.couiniiiiiiieiiiiiiiiiieiieeieteesreraeaessseeenaeanns 60
2.3.1. Policy Information base...........ccccoeeiieiininiierieriiiriiiiiiieinienne, 60
2.3.2. COPS (Common Open Policy Service) protocol...........ccceuvnenennnnenn. 61
2.3.3.LDAPPolicy Schemacccoiriiiiiiiiiiiiiiiiiereere e 61
2.4. QoS Policy Schema...........cccovviiiiiiiiiiiiiiiiiiiii e 61
2.4.1. Mappings between CIM and QoS information model........................ 62
2.4.2. QoS policy information model.............coooiiiiiiiiiiiiii e 62
2.4.3. Inheritance hierarchy for the LDAP QoS Policy Schema.................... 65
2.4.4. Containment and Scoping Policycoceiieiiniiiiniiiiiiiiniinennnnen., 67
2.4.5. Features of QoS Policy rules...........ooeineeiiiiioiiiiiimriiiieneenenns 70
2.5. Implementation iSSUES..........couveiiiniiiieiiiiiiiiiiiii e 73
2.5.1. Policy-enabled tools..........cccoiuiniiiiiii i 73
2.5.2. Policy-oriented languages.............c.ccoeeiniiiiiiiiiiiiiiiiiiiiiiia e 73
2.5.3. Interoperability between policy-enabled management toois................. 75
3 Policy-Enabled Tools........ ceescascsasasacss cessncsessaassssansonns R |
3.1. Management toOlS.oueniniimininiiiii ittt eere et re e e 76
3.2. Generic Management tOOIS..........ccvuiuiiniiriiniiiniiinieiiiiiiiiiiieieiereeeaas 78
320 INtEl. . et een e e e s ere s eenans 78
3.2 2 THVOI ettt et e e e e 78
3023 SUN. ettt ettt r e et e e e e et et e e eaes 79
3.3. Special policy-enabled tools...........ccooiiiiiiniiiiiii 80
3.3.1 CiSCO SYSIEIMS.oieeiniiniieieieeeteeaceanneerecoeareerastenssesassnnrnnnnes 80
3.3.2 Lucent Technologies........ ..ottt crrceeeaes 81
3.3.3 Hewlett Packard.............ccouieieiiinininiiiiiiiiiiiice e 82
33 ANOIEl .ottt e e e eae 83

3.3.5 Allot COMMUINICAtIONS. . .eeiennrnnrnnerereenreenereesesssnsennsssssssssssnnssonns 84

3.3.6 OrcheStream.ccvuniiiiiniiiiiii i i tiereeierareneenreeraraennsenennnes 85

3.3.7 EXtreme NetWOIKS.cooeiniiuineiiiiieennreeeieereniaerneenrernensensnssnsnes 85

338 IPHIBhWAY.....ooiiiniiiniiiiiiiiic e ittt ereeteeeeeerrarennennnnenae 86

3.3.9 Spectrum Management.............cocuvriiieniiiiniieiiirnerieereenscreenensnans 87

3.3 Conclusion on existing tools.........c..cooiiiiriiiniiiiiiiiiiiiiierrreneeenennes 88

4 Proposal for Event and Policy Correlation.................. crecesnssessscesesansenascares 91
4.1 Typing Schema.........cocoiiiiiiiiiiiiiii e 91
4.1.1 Typed EVENtS.....couvniiniiiiiiiiiiiiiiiiiiiiiiiieiiieiite s et e e s sesenesaiane 91

4.1.2 Typed interactions between network elements....................coooiiiiiin, 95

4.1.3 Typed PONCIES.c.cuvinininiiiiniiiiiei i iee e cea e 98

4.1.4 Consid=red Policy Schema..........c..coevineiiiiiiiiiiiiiiiiiiiiiiiiieens 100

4.2 Correlation Mechanisms.............ccociiiiiiiiiiiiiiiiiiiiiii e, 101
4.2 1 EventModels......ccouinuiiiiiiiiiiii it et e e naees 101

4.2.2 Temporal MechaniSms...........coeoievuiiiniiieiiiiiniiiiireeenenanennn 101

4.2.3 Window and Events Correlation...............ccoviiiiiiiiiiiiiiiiiiiinnne.n. 104
4.2.4 Policy Conflict Detection.........c.ccouvvriiniiiiniieriniaiiineiiieeeeennees 106
4.2.5 Synchronizing Zonal Clocks...........cocevieiiiiiiiiiiiiiiiiiiiiiiiieaenns 109

4.3 Proposal on Temporal Aspects Considering Time Zones......................... 111
4.3.1 Coping with TimeZone............cccoceivviiniiiiiiiiiiiiiiiiiieeceees 112

4.3.2 Coping with “Companion policies™...........cc.oeeieriiiiiiiiiiiiiiiinnnen, 114
4.3.3 Coping with Relative Temporal ordering and Actions Dependencies......117
5 Implementation Features of the Proposal..........cc.ccccceueaceene cessnceccrsesonsessnne 120
5.1 Sun’s Bandwidth Allocator 1.0.........ccooiiiiiiiiiiiiiiiiiii e 120
5.1.1. The bandwidth problem...........ccocooiriiiiiiiiiiiciiiiiiieeeeens 120

5.1.2. Sun’s Bandwidth solution................cooiiiiiiiiiiiiiiiiiiiiiiieenene, 121
5.1.3Building BIOCKSccvininiiiiiiiiiiiii et e e 124

5.2 Temporal-Orineted building block............c..coooeiiiiiiiiiiii. 125
6 Conclusions and Future Work........c.cccceieeiniuiincniennincisinsencsccnsccceccccenne 129
Bibliography............. eeecssseesseesenstectessenasensetsaancaserassasrassssentsansanasanasanan 131

List of Acronyms

AF: Assured Forwarding

API: Application Programming Interface

ASN. : Abstract Syntax Number 1

ATM: Asynchronous Transfer Mode

ATM MIB: Asynchronous Transfer Mode Management Information Base
CBR: Constant Bit Rate

CIM: Core Information Model

CLI: Command Line Interface

CoS: Class of Service

CPU: Central Processing Unit

CMIP: Common Management Information Protocol
CMIS: Common Management Information System
COPS: Common Open Policy Service

CORBA: Common Object Request Broker Architecture
DEN: Directory Enabled Networks

DiffServ: Differentiated Services

DLCS: Dynamic Link Configuration System

DMTF: Distributed Management Task Force

DSCP: Differentiated Services Code Point

EF: Expedited Forwarding

EIGRP: Enhanced Interior Gateway Routing Protocol
EMA: Enterprise Management Architecture

FDDI: Fiber Distributed-Data Interface

FIFO: First-In-First-Out

GDMO: Guidelines for Definition of Managed Objects
GRM: General Relationship Model

GUI: Graphical User Interface

HMMP: HyperMedia Management Schema

HMQL: HyperMedia Query Language

HTTP: Hypertext Transfer Protocol

IANA: Intemet Assigned Numbers Authority
IETF: Internet Engineering Task Force
IntServ: Integrated Services

IP: Intemnet Protocol

IP DA: Internet Protocol Destination Address
IP SA: Internet Protocol Source Address

IPSec: Internet Security Protocol

IPX: Internetwork Package Exchange

ISO: International Standardization Organization
ISP: Internet Service Provider

IT: Internet Technology

LAN: Large Area Network

(L)DAP: Lightweight Directory Access Protocol
LPDP: Local Policy Decision Point

L2TP: Level Two Tunneling Protocol

MAC: Media Access Control

MIB: Management Information Base

MO: Managed Object

MOF: Managed Object Format

MPD: Manager Position Domain

MPLS: Multi-Protocol Label switching

NAT: Network Address Translation

NMP: Network Management Protocol

OMA: Open Management Architecture

OMG: Object Management Group

OSF/DME: Open Software Foundation / Distributed Management Environment
OSI: Open System Interaction

OSPF: Open Shortest Path First

QPM: QoS Policy Manager 1.1 (Cisco Systems)
QoS: Quality of Service

xi

PEP: Policy Enforcement Point

PCIM: Policy Core Information Model

PDC: Primary Domain Controller

PDP: Policy Definition Point

PDU: Protocol Data Unit

PHB: Per Hop Behavior

PIB: Policy Information Base

PPP: Point-to-Point Protocol

RESV: Reservation Request (in the context of RSVP)
RSpec: Request Specification (in the context of RSVP)
RSVP: Resource Reservation Protocol

RMI: Remote Method Invocation

RMON MIB: Remote Monitoring Management Information Base
SBM: Subnet Bandwidth Management

SDH: Synchronous Digital Hierarchy

SLA: Service Level Agreement

SMI: Structure of Management Information

SNA: Systems Network Architecture

SNMP: Simple Network Management Protocol
TACACS+: Terminal Access Controller Access Control System Plus
TCP: Transmission Control Protocol

TL1: Transaction Language One

TME: Tivoli’s Management Environment

ToS: Type of Service

TSpec: Traffic Specification (in the context of RSVP)
UDP: User Datagram Protocol

UNMA: Unified Network Management Architecture
URD: User Representation Domain

URT: User Registration Tool

UTC: Universal Time Clock

VLAN: Virtual Local Area Network

xii

VOIP: Voice over IP (Internet Protocol)
VPN: Virtual Private Network

WAN: Wide Area Network

WBEM: Web-Based Enterprise Management
WFQ: Weighted Fair Queue

WRED: Weighted Random Early Detection
WWW: World Wide Web

Chapter 1

Management Challenges in Networks and Distributed Systems

1.1 Introduction

Systermns management represents the set of activities necessary to ensure that information
systems function according to user requirements and objectives [Mof94]. Commonly,
large networks have a number of types of hardware and software components with
specific features. These features differ from component to component and cover many
capabilities related to capacity, scalability, speed of connection etc. In order to be
managed these components are modeled by so-called managed objects (MOs). Figure 1.1

below depicts a common way in which management activity is viewed [Osi91].

Managed Object
Monitoring |
h
MANAGER MANAGED RESOURCES
ﬁ
Control |
Legend: I Functional Interface 0 Management Interface

Figure 1.1 Management Activity

Here, the manager interacts with a managed object through a management interface.
Managed objects represent abstractions of managed resources. Managed resources have
functional responsibilities that are fulfilled through interactions via a functional interface

[Put95].

Managers can be looked upon as objects with management responsibilities and may,
at the same time, be function of higher-level management. Managers manage MOs by
various actions such as monitoring MOs behavior, making management decisions based
on the monitored behavior and modifying MOs behavior through management operations
[Mof94].

Systems management deals with activities that ensure the meeting of the functional
service levels required by the users of the system. This is not concerned directly with the
functional activities of the managed systems and, in this sense, it is a meta-activity.

In contrast to Figure 1.1, real life management systems consist of a large number of
managed and managing objects. Several problems present in large-scale management
systems have been identified [Slo94]:

- Central management of large-scale systems is a difficult task because these

systems cross-organizational frontiers.

- Multiple managers are often required to deal with large scale systems; these
managers could be hierarchically organized, but even such a ranking can introduce
problems with the delegation of authority and responsibility.

- Managed objects can fall under the responsibility of more than one manager and,
in such cases, conflicting management requirements from different managers can
arise.

- Large-scale systems require the existence of grouping mechanisms for MOs in
order to deal with such a high number of them.

- For very large management systems, it is important to automate the management
process as much as possible in order to assist human managers in the management

of systems.

Mechanisms that simplify the management process are needed in large scale
management systems. These mechanisms include [Put95] [Mas93]:
- Increasing the level of abstraction at which interactions occur so that managers

can interact with groups of MOs rather than with separate MOs.

- Using management policies instead of controls so that users are enabled to specify
the required service levels rather than specifying how these levels can be
achieved.

- Automating the process that captures and transforms management policies to
control operations.

The changing business requirements of companies, together with the increased scale
and complexity of mission critical applications, place extra pressure on system
developers. Rapidly delivered information systems that dynamically adapt to change are
the most preferred [Sl094][Po094].

Policy driven management systems cope with policy changes. A management policy
is a relationship between a set of managers and a set of managed objects; this
relationship includes obligation and/or authorization rules for managers to perform
activities on managed objects. The following are managing and managed entities:
managers, managed objects, policies, functional systems and subsystems and services
provided by support environments and management platforms [Put95]. All these entities
are viewed as objects.

As illustrated in Figure 1.2, management policy can be used as a mechanism to

capture the goals and requirements from the users. This captured information needs
further transformation into management operations that, in turn, serve to influence the

behavior of managed systems in order to satisfy user requirements.

Domain of MOs
[piadaiibtiedindbedidindio ittt tld =
POLICY ! :
[. '
'
l!nterpretation : [
Monitoring i !
MANAGER O +— ! :
Control 1 . i
' |
P -
Legend: I Functional Interface 0 Management Interface

Figure 1.2 Policy in systems management

Large management systems are divided into domains in order to ease their

management. Domains are groups of MOs to which a common policy applies and which

act as a naming construct for objects (unique name space). They can also be used for the

specification of viewpoints (partial behavior) with specific emphasis on systems [S1094).

Management domains represent groups of objects for the application of a common

management policy. On the other hand, functional domains are groups of objects to
structure functional systems [Put95].

Policy management systems exist everywhere in companies and organizations.

Usually, there is a very close link between policy statements and system code, such that

the policies themselves are rarely articulated [Poo91]. This situation gives rise to some
problems, as briefly presented below [Ngu92]{Mas93][Mof94]:

It becomes very difficult to capture, store, query and modify policies in a
structured manner.

Managers do not interpret policies in a consistent way, so it is difficult to
implement re-usable managers.

Inconsistencies and conflicts can easily arise.

It makes it very difficult to modify policies because these changes have to be
made directly to the system’s code.

It makes it very difficult to modify policies dynamically and to forecast the effects
of policy changes.

A solution to the above mentioned problems is to treat and implement policies as a
separate concern [Mof94][Ngu93][Mcb91]. This new policy modeling comes with

various advantages such as (i) policies are recognized as deliberate, (ii) they are well-

defined, (iii) it is easier to manage them and (iv) it is easier to assess their correctness. At

the same time, management policies can easily be modified and interpreted. Reusable

managers can also be implemented.

Policy management services should provide mechanisms to ensure the following
actions [S1094}{Ngu93]:

- Create, modify and delete policies;

- Represent and interpret policies;

- Store and retrieve policies;

- Negotiate the outcome of conflicting policies, and

- Communicate new policies or modifications done to existing policies to concerned

managers.

A policy model should be consistent, should capture policies at a high level of
abstraction and should allow high-level policies to be transformed into concrete plans to
meet the necessary requirements [Mas93]. Mechanisms to refine abstract, high level
policies, should exist, and automation of this process should be considered as extensively
as possible [Mcb9][S1094]. Some actions can easily be automated. These include [Put95]:

- The capturing of requirements from end system users in order to shorten the gap

between the policy requirements and the operations needed to enforce these
requirements;

- The detection of incomplete information in user requirements statements;

- The detection of managers and MOs to which certain policies apply and the

distribution of these policies to concerned managers;

- The detection and resolution of policy conflicts, and

- The transformation of policy statements into management operations.

Relationships between policies should also be represented in order to allow human
managers to assess if stated policies have been satisfied [Mof94]. These relationships
between policies are very often hierarchical in nature, where the authority is appointed
downward. Policy hierarchies are characterized by partitioned targets, refined goals and
delegated responsibilities [Mof94]{Mas93]. If a less hierarchical nature of organization is
adopted, a particular MO can fall under the management of more than one manager and
policy conflicts may arise.

Various strategies can be used to deal with policy conflicts. The two main approaches
are either avoiding policy conflicts or resolving them when they occur. A combination of
avoidance and detection mechanisms can be used for better results. Another possibility is

to allow a certain degree of policy conflict, as detailed in [Mof94].
5

1.2 Managing across Private Networks and Internet

Many proprietary architectures tried to solve the above problems [Terp92]. IMB’s OMA
(Open Management Architecture) is tailored for managing SNA (Systems Network
Architecture) networks, as well as Token Ring LANs. Mainly, the fault functionality is
covered. The AT&T’s UNMA (Unified Network Management Architecture) is an OSI
(Open System Interaction)-based architecture, structured in three levels: Network
Elements, Element Management Systems, and Integrated Management Systems. The OSI
CMIP (Common Management Information Protocol)-based NMP (Network Management
Protocol) really permits the integration of vendor management systems. DEC’s EMA
(Enterprise Management Architecture) has an object-oriented information model and uses
an architecture similar to OSI Management. The concept of domain is used to divide
network management solutions. There is a critical problem to integrate such private
solutions in order to achieve automatic management. However, many attempts exist. The
goals of standardization, industry, and research groups that propose information models,
management protocols, and management architectures are derived from the imperious
need to facilitate the management of networks and distributed systems. The final purpose
is to develop management systems powerful enough to automatically monitor and control
the behavior of managed systems. Management systems require support platforms
offering particular services to achieve the desired automation. The management tools
presented above allow a system operator to act on the real managed and managing

systems, as well as on their object-oriented representation.

System Configuration Management
Operator il System
Management Abstract
Tools Represent.
Managed
System

Figure 1.3 Managed and Managing systems

6

The generic framework of a managed system and its managing system, presented
in Figure 1.3, shows different management interactions between system operators,
managed, and managing systems. Real components of a distributed system and of its
management system are represented as objects. The management system interacts with
this representation to perform various management tasks conforming to management
functionalities, such as fault recovery, security, and reconfiguration. A system operator
can directly interact with the management system or real components, and, across
specialized tools, with the abstract representation. Management functionalities may be
performed either by the system operator directly on managed systems or across
specialized management tools, or automatically, by management systems. However, even
in the last case, a minimum cooperation with the system operator is unavoidable. The
current tendency is to clearly define management concepts and unify heterogeneous
proposals. The final goal is to use these concepts to design management systems, able to
automatically apply management decisions. To develop such applications, the distribution
of processing, storage, and management must be considered. Consequently, support
platforms offering services to manipulate objects belonging to managed and management
systems are required. Such platforms must offer services to monitor and control

interactions between objects, according to the nature of applications.

1.2.1 Proprietary management tools

Many vendors developed general proprietary management tools to deal with various
aspects of the network management area. For example, Hewlett-Packard’s generic
network management solution, HP OpenView Express 2.0 is an integrated version of
several existing HP products, including ManageX for application and systems
management, Network Node Manager 250 for NT for network management, and
OmniBack II for NT for managing storage. Sun’s Management Center tool proposes a
large spectrum of proprietary management tools, covering the aspects of network
bandwidth management, network fault/performance management, and system

management [Sun98]. Tivoli’s management solution offers a comprehensive IT (Intermet

Technology) management system for any environment regardless of size, complexity, or
growth rate [Tiv97].

1.2.2 Managing the Internet

Web technologies started to be used in IP network management as early as 1993 [Fla99].
Today, many network equipment vendors such as Cisco, Nortel Networks and 3Com,
embed HTTP (Hypertext Transfer Protocol) servers in their new network equipment. The
concept of embedded management application was introduced [Sun95], including the
advantages of using HTTP rather than SNMP (Simple Network Management Protocol) to
transmit data between managers and agents. The idea is to transform a vendor-specific
management GUI (Graphical User Interface) that has to be ported to different
management platforms and operating systems into an applet that can run everywhere. [n
addition to this proposal, one can use Java serviets and Remote Method Invocation (RMI)
to open persistent sockets between applets and servlets.

With all these new possibilities in mind, two general network management
paradigms have been proposed: the pull model [Sun95]{F1a99] and the push model
[F1a99]. In software engineering, the pull and the push models refer to two approaches for
exchanging data between two distant entities.

(a) The Pull Model
The pull model uses the request/response paradigm. The client, that is, the manager, sends
a request to the server, which gives an answer either synchronously or asynchronously.
This model can be used for both ad hoc and regular management. In ad hoc management,
a network manager connects to a network device via some GUI, retrieves the desired data
and closes the connection. In regular management, continuous data collection, network
monitoring and event handling take place.

In the context of ad-hoc management, the pull model can be used in various
circumstances as described further. One approach is to code the vendor-specific
management GUI as an applet [Sun95]. The uploading of the applet by the Web browser

proceeds as follows. The HTTP server from the agent retrieves its vendor-specific
8

management applet from local storage and sends it to the Web browser. After the Web
browser uploads the applet, either SNMP or HTTP can be used for the communication
[F1a99]. Another approach [F1a99] uses generic management GUIs coded as applets and
relies entirely on Web technologies. A generic GUI supports generic MIBs (Management
Information Base) such as MIB-1I, RMON MIB (Remote Monitoring MIB), or ATM
MIB (Asynchronous Transfer Mode MIB) [Mar98].

In the context of regular management, automation is extensively considered. Data
polling and event handling are also being taken care of. In the case of data polling, for
example, there are well-defined steps to be performed in order to integrate two separate
management platforms:

- integrate a Web browser in the network management platform;

- replace all the GUIs of the network management platform [Mar98] with applets;
- make the data repository independent of the network management platform;

- implement data polling with HTTP, using a servlet, and

- migrate reports generation to Web technologies, using another servlet.

At this point, data collection and monitoring rely entirely on Web technologies.

(b) The Push Model
In contrast to the pull model, the push model uses the publish/subscribe/distribute
paradigm. Agents first advertise what MIBs they support and what SNMP (Simple
Network Management Protocol) notifications they can generate. A human administrator
subscribes the manager to the data she or he is interested in, specifies the desired receipt
of data frequency and then disconnects. The agents push the data to the subscribed
managers either by following a pre-established schedule or asynchronously via SNMP
notifications.

In the case of the push model, the communication is initiated by the agent instead
of the manager, as was the case with the pull model. To deal with this issue, three
technologies can be used: HTTP, sockets, or RMI [Fla99].

Java servlets can also be effectively used in Web-based messaging management

[Jon99]. Java has proven to be an effective support for providing an integrated
9

management function. Java and Web-based management schemes confer flexibility in
. dealing with custom management requirements, security functions and cost.

Networks today are composed of many interconnected heterogeneous resources.
Network management standards are essential in consistently managing these resources
and they are an important step towards integrated network management. It is very
difficult for the end user to manage network resources in a single and consistent way
because many network resources come with proprietary software tools running only on
specific platforms and powerful, general-purpose network management tools are complex
and costly [Der96].

The World Wide Web (WWW) is a new way to provide wide access to complex
software applications. It contains general-purpose information either distributed or
contained in a single large database. The Web can be used in the complex situations of
network management, such as changing network topology [Der96). Specific management
problems can be solved by combining technology presented with the power of the WWW.
Following are the major advantages of using the Web when dealing with network
management problems:

‘ - itis an open and established technology;
it has a limited configuration;

- it is based on inexpensive and standard web technology (Liaison and the
GDMO/ASN.1 (Guidelines for Definition of Managed Objects / Abstract Syntax
Number 1) Search Engine are easily accessible [Der96]);

- uses a machine with limited power to manage network resources;

- it has reduced cost since users can share a single Liaison or GDMO/ASN.1 Search
Engine, and

- additional security is provided by the Web in addition to the CMIP/SNMP

security mechanisms.

Web-Based Enterprise Management (WBEM) and OSI management are two
management approaches that share many common concepts. Both approaches use a
manager/agent paradigm. One agent maintains a Management Information Base (MIB)

. which is a set of MOs, and a management service and protocol give access to the agent’s
10

MOs [Fes99]. Both models take an object-oriented approach to information modeling.
Despite these similarities, certain differences exist, as outlined below.

Topics OSI versus DMTF(Distributed Management Task Force)
OSI DMTF
Specification - GDMO (MOC, MO instance) |- MOF (Managed Object
Languages [Isol]. Format) (MOC MO instance,
- GRM (General Relationship | data-type) [Dmtf].
Model) [Iso02].
- ASN.1 (data-type) [Iso3].
Specification - Module with OSI global - Schemas.
Unit naming.
Inheritance - Multiple. - Simple.
Attribute scope - Outside MO class, grouped in | -Directly defined in MO class
packages optionally added to | context.
class.
Data-type (attributes, |- All possibilities of ASN.1 - Limited set of basic data
parameters, reply) (list, sequence). types (integer, boolean).
Basic containment |- Hierarchical Name binding |- Name-space (hierarchical
relation and naming | between MO instances using | directory structure) for MOC
one attribute per Instance and MO instances.
Distinguished Names. - Many key attributes per
instance.
Relationship - Pointer attribute. - Special managed objects
between MOs - GRM class and instance. containing references to other
- Management action and/or objects (association qualifier).
operation.
Specification - Dedicated MIB definition and | - MOF MOC definition are
repository agent [Itu]. stored in name space.
Management - CMIS/CMIP [Cci91). Basic |- HMMP(HyperMedia
service/protocol services, for instances: Management Schema). Basic
creation, manipulation, and service for instances and
deletion. classes creation, manipulation,
- Most of the services can and deletion.
apply on a set of instances - SQL-like query language
specified by scoping rules and |(HMQL).
filters.
Event - GDMO specification - none.
Management service available
(Event Report Service).

Table 1.1 OSI versus DMTF.

11

1.3 Quality of Service (QoS), Type of Service (ToS), Class of Service (CoS)

Nowadays, the majority of traffic does not come from within a workgroup, but rather

from outside it and from over the Internet. This situation arises because of several

reasons [Int00]:

(1) Companies are moving mission-critical applications from local systems to enterprise-
wide server clusters;

(2) Inter-network global communications are increasing to deal with the expansion of
corporate businesses and technology partnerships, and

(3) Users are increasingly using web-based technologies for research, product search and

evaluation and communication.

At the same time, both volume and type of data have expanded due to:

(1) higher speed PCs generate traffic faster than they used to

(2) Fast Ethernet at the workstation, Gigabit Ethernet in the backbone and Layer 3
switching technology moving packets faster through the network

(3) increasing use of “killer” applications such as Voice-Over IP (VOIP) requiring faster
service than the one presently in place.

The convergence of different, more bandwidth demanding, and faster applications
stress the networks, which become severe bottlenecks and inhibit higher service quality
for the more demanding applications. As a consequence, one obtains delays of mission-
critical data, jittery video quality or choppy voice over IP communications. Core routers

can be arranged to run fast routing mechanisms.

)
]l * o

.DD
@m0
@ quj

]
e

Figure 1.4 Increased traffic of more demanding applications bottleneck edge routers
12

As a response to service degradation due to bad response to user related
scalability, unexpected failures, or user profile changes, managers on campus used
additional bandwidth and faster equipment, but this was a costly solution. Outside the
campus, such decisions were not under manager’s control and the cost was much higher.
At this point, the idea of prioritizing network resources to traffic requirements emerged,
and this was under the manager’s control. To implement this kind of management, policy-
based management mechanisms emerged as a new paradigm. Quality of Service (QoS),
Type of Service (ToS), Class of Service (CoS) mechanisms, such as Differentiated
Services (DiffServ), as well as Integrated Services (IntServ) are at the base of policy-

based network management and prioritizing resources to requirements.

(a) Quality of Service (QoS)

Quality of Service (QoS) mechanisms provide the necessary level of service to an
application in order to maintain an expected quality. For mission-critical applications,
QoS means guaranteed bandwidth and zero frame loss. For a Voice over IP application,
QoS means guaranteed frame latency. The detailed control provided by QoS overwhelms
the network infrastructure, especially the boundary elements (e.g. edge routers). Each
network device must keep an entry for each flow in its forwarding table.

Some examples of protocols that deliver level of service by application flow are
ATM, Frame Relay, MPLS (Multi-Protocol Label switching) and RSVP (Resource
Reservation Protocol). RSVP delivers end-to-end service by reserving bandwidth and
resources along a particular path. It is implemented in some routers and in network layer
switches. Nevertheless, complete end-to-end quality of service implementations are
difficult and costly to be achieved [Int00].

() Class of Service (CoS)

Class of Service (CoS) mechanisms map multiple flows into a few service levels to
reduce complexity. Resource allocation is then done according to these service levels and

flows can be cumulated and forwarded according to the service class of the packet. CoS
13

applies bandwidth and delay to different classes of network, a matter much easier

. achieved than QoS control. As the traffic grows, it continues to be managed based on a
few service levels.
oo
oooo
oo o
o0
oo o000

Figure 1.5 Class of Service maps multiple flows to a few service levels
(c) Type of Service (ToS)

One common CoS mechanism is Type of Service (ToS) prioritization, at layer 3 of the
OSI layered network model [Int00]. CoS can be in Ipv4 or Ipv6.
Type of Service adds to the Ipv4 header 3 precedence bits which describe 7

different priority levels. There are S unimplemented bits. Boundary routers and ToS-
. enabled layer 3 switches map these precedence bits to forwarding and dropping

behaviors. In Figure 1.6, the ToS octet in the Ipv4 header is further detailed. Bits 0 to 2

represent the “precedence”, bit 3 represents the “delay”, bit 4 represents the “throughput”,

bit 5 is the “reliability”, and bits 6 and 7 are left for further use.

| Liininninin | | IPSA | IPDA | DATA |

\‘

Precedence | D | T | R | 0 | 0]
Ipv4 Frame (ToS octet)

Figure 1.6 ToS provides 3 prioritization bits in the Layer 3 header

1.3.1 QoS parameters

When traffic passes through a network connection, the receiver can, theoretically, obtain
the traffic identically as the sender sends it. However, since the network is not perfect, the
communication is affected by different factors. In general, these factors are referred to as
QoS parameters, which are measured, evaluated and monitored over a certain time period.

One method to classify QoS parameters is depicted in Figure 1.7. This taxonomy
clearly identifies different classes of QoS parameters [Sab97]. Policies and metrics form
the two main categories. Policies are further divided into management and levels of
service, and are responsible for network management. Metrics are grouped into security
levels, performance and relative importance. Security levels specify the data security
level that needs to be provided to the application. Performance refers to parameters
related to the performance of the network services. Relative importance specifies the
price that a user is willing to pay for a QoS.

Management
Policies
Levels of Service
QoS
Specifications . Timeliness
Security
Precision
Performance
Metrics Accuracy
Relative
Importance Combinations

Figure 1.7 Taxonomy for QoS specifications

15

Network communication expects the QoS parameters to be specified in order to
determine whether or how much QoS can be provided. One single parameter is not
enough, but a set of such QoS parameters is required. Therefore, there is a need to have a
formal way to evaluate QoS parameters. Following, we present some QoS parameter
definitions for general networks together with their formulas. They are grouped in (a)
basic parameters, including those which are the most important for network performance

and (b) other parameters.

(a) Basic Parameters

The four most important QoS parameters reflecting network performance are: bandwidth,
latency, delay jitter and loss rate. The calculation of these parameters is unavoidable
when evaluating the system’s performance with respect to QoS.

QoS of a connection is evaluated by many parameters, which are measured at each
component along the connection path. If the network entities cooperate in a linear
configuration, that is, from server QoS to network QoS to terminal QoS, then the end-to-
end QoS can be calculated based on the QoS characteristics of each component according
to the QoS parameter type. In the following formulas, the end-to-end QoS parameter
values (P end.w0-end) is calculated from the QoS parameters of the i-th component, where i =
1,2...n.

(i) Bandwidth

Bandwidth, or throughput, represents the maximum number of bytes that can be
transmitted over a connection in a certain time interval. A bandwidth of 15 million bits
per second (Mbps) means that the network is able to deliver 15 million bits each second.
Another way of viewing bandwidth is in terms of how long it takes to transmit one bit of
data. In the example used, it would take 0.15 microseconds (psec) to transmit one bit of
data [Wol98].

16

End-to-end bandwidth or throughput is the minimal throughput of links and nodes
along the path. The minimum throughput at a link is the limiting factor that determines
the capability of a connection.

Throughput end-1o-end = Minimum (Throughput ;), wherei=1,2...,n

The minimal bandwidth a network offers can not be less than the bandwidth
needed to satisfy real-time traffic.

Minimum Bandwidth pa » > Bandwidth request

For service that does not require real time, the network manager makes use of
bandwidth readjustment technologies to balance traffic load and affordable bandwidth
[Por97].

(ii) Latency

Latency, or delay, refers to the interval of time between the generation or access of media
data and its presentation. Delay is also viewed as the period of time from the moment data
is received at an input port and the moment it is sent out on the output port. Time is the
only important metric for latency.

Latency is composed of: propagation, transmission and queuing. Propagation
latency is the speed of light transmitting in the media between two ends of a network. It is
known that light travels through vacuum at 3.0*10 ® meters per second and through fiber
at 2.0*10 ® meters per second. Transmission latency is the time a network takes to
transmit packets of a certain size under its bandwidth. Queue latency represents the
amount of time packets spend in routers before being forwarded onto the output link.
Routers generally use the FIFO (First-In-First-Out) algorithm to decide which packet is
next to be forwarded [Wol98].

End-to-end latency is the sum of all the delays in nodes on the links along the path
from source to destination. The formula used for its calculation is [Haf98]:

17

n

Latency end-to-end = Z Latency ;

i=1

(iii) Jitter

Jitter is the variance in the delay when processing and transmitting data. It can be
smoothened by buffering at the receiver side, but this action increases the end-to-end
delay {Wol98].

The end-to-end delay jitter is calculated by adding up all the delay jitters of the
nodes along the path. This value can not exceed the service requested jitter [Haf98].

Jitter end-to-end S Jitter requested

If we consider the jitter to be the difference between the maximum and the
minimum delay, the following formula is used:

n
Jitter cndo-end = Z Jitter ;

i=1
If we assume the jitter to be the average deviation of the delay from the average
delay, with the delay considered to follow a normal distribution, than the following

formula more is appropriate:

n
Jitter cgocaa = \| 2 (itter ;)2
i=1
(iv) Loss Rate

Loss rate represents the ratio between the number of bits lost during transmission and the

total number of bits sent by the source. Data loss occurs when a data segment is
18

transferred with an error, with a duplicate copy or is lost in the network. Loss rate is
generally specified by bit-error or packet-error rate, but, sometimes, service providers use
additional criteria to determine the capability of delivery on a guaranteed service. For
example, if only 97% of the data sent is delivered to the destination, one might consider
this to be a high loss rate. This situation most probably arises due to lack of resource,
such as bandwidth, so increasing the buffer size is helpful here to increase the
performance in terms of packets lost. On the other hand, a larger buffer can store more
messages waiting to be sent, which extends the delay in data transmission [Wol98].

Loss rate in a path is function of the loss rate for every connection. The following
formula is used for its calculation [Haf98]:

Log (1 - LossRate end-10-end) = Z Log (1 - LossRate ;)

i=1
or LossRate end.to-ena= 1- (1 - LossRate ;)* (1 - LossRate ;)*...* (1 - LossRate ,)
(b) Other Parameters

In addition to the basic QoS parameters presented above, other parameters related to end-

to-end communications exist. In this sub-section, we briefly present a few of them.

(i) Cost

The end-to-end cost represents the maximum price a user is willing to pay for a
given quality of service in a system where users compete for resources. It is computed by
adding the costs on all the network components along the path.

n

Cost enduto-end = Z Cost ;

i=1

19

(ii) Hop Number

In general, there is more than one path between two points in a given network, with
varying number of hops. The route having the minimum number of hops is regarded as

the hop-number of a particular end-to-end connection.

Number_Of_Hops end-10-end = Minimum (Number_Of Hops;),wherei=1,2,...,n

(iii) Blocking probability of new connections

Blocking probability of new connections represents the ratio between the number of
rejected connections and the total number of connections. Because new connections
always have lower priority than existing ones, they are always blocked or rejected when
the bandwidth becomes scarce. One solution to reduce the blocking probability is to
increase the bandwidth, but this implies a higher cost. Algorithms that employ less
bandwidth without lowering the performance are preferred as suitable solutions for

decreasing the blocking probability of connections.

(iv) Minimum allowed bit rate

The minimum allowed bit rate is the minimum amount of bandwidth required for a
connection to operate within acceptable QoS boundaries. This parameter is provided by
the user for real-time applications. In the case of applications that don’t require real-time,
the minimum allotted bit rate is set by the network and represents the available
bandwidth.

(v) Bandwidth readjustment probability and Robustness

When not enough bandwidth is available for transmission traffic, bandwidth readjustment
is performed based on the available bandwidth in the network. A network connection is

robust if it has low bandwidth readjustment probability [O1i95].
20

(vi) Connection duration

The duration of a connection QoS parameter is the time interval between the issuing of a
connection request and the receipt of the confirmation information for that connection. It
is used in evaluating the performance of algorithms.

(vii) Connection failure probability

Connection failure probability is the probability that a requested connection is not

established within the maximum acceptable time for setting up a connection.

(viii) Release delay

Release delay represents the time interval between the issue of a disconnect request and a

correspondence for successful release by the service provider [Hut94].

1.3.2 Special management functions due to Internet

As we have seen, a management system is an application which consists of specialized
managing objects playing different management roles, such as performance monitoring,
fault detection, or system reconfiguration. These roles are fulfilled based on the
information collected by managing objects using management operations on managed
objects, and the interpretation of the results of these operations.

In distributed systems, many functionality areas must be considered, as shown in
Figure 1.8 below.

21

Error rate, response time, etc.
Fault Management |« Performance Management

Accounting Management

Trading Management —

<4 Config. Management

QoS Management [¢———

Fal

Security Management Bandwidth Management

Network Design & Planning

Figure 1.8 Information Exchange between Management Functional Areas

The key functional areas of network management as defined by International
Organization for Standardization are: Fault Management, Accounting Management,
Configuration and Name Management, Performance Management and Security
Management [Sta93]. This functional classification is widely accepted by vendors of
standardized and proprietary network-management systems.

(i) Fault Management

In complex networks, the proper functioning of each network component as well as of the
system as a whole is mandatory. A fault, as distinguished from an error, is an abnormal
condition that requires management actions in order to be repaired. In the case of a fault
occurrence, the following actions must take place as soon as possible:
- localize the fault;
- isolate the fault from the rest of the network so that it is prevented from interfering
with the proper functioning of the remaining network;
- reconfigure the network so that it becomes able to function appropriately without
the faulty component, and
- repair or replace the faulty component to obtain the network’s initial state.

22

Examples of faults are : incorrect operation of a network component or excessive
errors. Some types of errors, such as single bit errors, are not normally considered to be
faults. Also, error-handling mechanisms of different protocols can compensate for some
errors.

From a user perspective, fault resolution should be fast and reliable. At the same
time, users expect instant notification of a fault occurrence. To ensure these user’s
expectations, very rapid fault resolution techniques and reliable fault-detection and
diagnostic-management mechanisms are suitable. The presence of redundant network
components and alternate routes confer some degree of fault tolerance. After resolving
the fault, the fault management is responsible for ensuring that no other problems have
been caused by the solved one. The entire procedure should be performed with minimal
network performance damage.

(ii) Accounting Management

Networks possess internal accounting procedures for different corporate networks,
divisions or cost centers that make use of network services. [n the case when no such
internal accounting procedures are employed, the network manager must be able to
identity the user or the user class that employs network resources because of different
reasons briefly outlined below:
- auser or group of users may abuse their access privileges at the expense of other
users of the network
- the network manager may assist users that make inefficient use of network
resources in improving network performance
- knowledge of the user activity in a network allows the network manager to better
plan the network growth.
From a user point of view, the network manager should be able to specify the
various accounting information necessary at every node, the time period between sending
the recorded information to higher-level management and the algorithms used in

23

calculating changes. Users themselves should have their authorization verified when they

access and manipulate information.

(iii) Configuration and Name Management

Network components can be configured to perform many different applications. For
example, the same entity can be configured to act as an end-system node, or as a router,
or as both. Configuration management takes care of initializing a network and gracefully
shutting it down. In the course of network operation, configuration management
maintains, adds, and updates the relationships among components and the status of the
components.

From the user point of view, the network manager should be able to identify the
components of a network and determine their most appropriate connectivity. Other tasks
that a network manager should be able to perform, from a configuration point of view,
are:

- change the connectivity of the network or network components, and
- reconfigure a network as a result of network performance evaluation, upgrade,
fault recovery or security issues.

Some configuration management operations are automated, such as configuration

reports periodically generated to users, or as response to a request.

(iv) Performance Management

Components in complex networks should be able to interact with each other and share
resources. Many applications require that the communication between network
components is within pre-defined performance limits.

Performance management includes monitoring and controlling. Monitoring keeps
track of network activity, whereas control makes adjustments to improve network
performance. Some performance management issues include:

- the level of capacity utilization;

- the existence of excessive traffic;
24

- the level of the throughput;
- the existence of bottlenecks, and
- the existence of an increase in response time.
From a user perspective, performance should be precisely known in order to
respond to specific user queries. Users expect a good response time from the network.
Network managers use performance statistics to help them predict bottlenecks before

these actually occur and take the corresponding correcting actions.

(v) Security Management

The tasks of security management include:

- generation, distribution and storage of encryption keys;

- maintenance and distribution of passwords and other authorization controls;

- monitoring and controlling access to computer networks and to network
management information from network nodes, and

- collection, storage, examination, enabling and disabling of audit records and
security logs.
From a user perspective, security management ensures the protection of network

resources and user information.

(vi) QoS, Trading, Bandwidth and Configuration Management

Complex interaction exists between managing objects that are responsible for fault,
performance, security, network planning, accounting, trading, naming, QoS, and the
objects performing configuration management.

Configuration management interacts bi-directionally with fault management. Fault
management uses the system configuration to apply particular fault models to discover a
faulty component, to diagnose the fault, and to solve it. If a component must be isolated
for a test or maintenance, a reconfiguration is expressly requested. Configuration is the
basis to apply diagnostic strategies to correlate system alarms and identify the cause of

the alarm [Hou95]. In fact, complex dependencies, expressed as relationships between
25

managed system components, lead to different diagnostic policies. Another case where
automation can be applied concerns tests within distributed systems. When a component
must be tested by a well-defined test component, represented in turn as a managed object,
fault management interacts with configuration management to create the adequate
relationship instances. It is clear that models where relationships are not represented, or
are poorly represented, do not allow such an activity.

A tied relation exists between security management and configuration
management. In particular, authenticated associations are used for providing mutual peer
authentication. If the access control policy invalidates a relationship already established,
this leads to a reconfiguration of the system. Conversely, when configuration
management has to create a relationship instance, and the tentative is aborted because of
access rights violation, this information is sent to security management. Security manage-
ment uses the configuration to ensure security agreements. A reconfiguration can be
inhibited, e.g. a connection, if a security agreement is violated.

Configuration management cooperates with accounting management to ensure
cost-based agreements, according to the performance of the system components and the
requested QoS. Accounting management needs current cost information and may request
configuration changes. Configuration management may initiate a reconfiguration when
the system perforrnance decreases, according to performance criteria, by using the trading
functionality. The trading functionality may initiate a request for a new configuration in
different scenarios, e.g. a often-requested service is not available with the desired QoS
performance, the performance of some suppliers decreases, or the QoS requested by a
customer is not longer satisfied by its current suppliers. As a central management activity,
the configuration and reconfiguration management copes with the diversity of software

versions, component localities, migration transparency, in order to preserve the achieved

QoS, or to guarantee a graceful degradation of QoS.

In the Internet world, nobody’s land, other functionality areas induced by QoS,
ToS and user profiles must be considered such as congestion management, bandwidth
management, special NAT (Network Address Translation) [Nat99] mechanisms. These

issues will be addressed in the following section.
26

1.3.3 Existing Remedies

As already outlined, several issues have to be taken care of for the proper functioning of
today’s Internet. This section presents possible remedies to network problems related to
congestion, bandwidth, security and constraints-based routing,.

(i) Congestion

It is known that network congestion is a resource sharing problem. Consider the case of a
network lacking effective congestion control. When the network load is small, network
throughput generally keeps up with the increase in load until a point in reached where the
increase in the throughput is much slower than the increase in the load. If the load keeps
increasing to reach the network capacity, the queues on network elements will become
full, possibly causing packet drops, and throughput will arrive at its maximum to decrease
sharply to a very low value. At this point, the network is said to be congested.

A new taxonomy for congestion control algorithms in packet-switching computer
networks based on the control theory has been proposed [Cui95]. The network is viewed
as a large, distributed control system in which a congestion control strategy is a control
policy executed at each node of the network with the maintenance of stable network
conditions as its goal. The authors define a set of criteria for control systems as a
taxonomy of congestion control algorithms for packet-switching networks as well as how
this taxonomy is applied to the individual characteristics of existing congestion control
algorithms. The key element of the proposed taxonomy is the decision-making process of
individual congestion control mechanisms.

The main taxonomy categories are:

- Open Loop Congestion Control Algorithms — these algorithms control decisions
do not depend on any feedback information from the congested locations in the
network.

- Closed Loop Congestion Control Algorithms — these algorithms take their control

decisions based on some sort of feedback from the faulty areas.
27

All open loop schemes have a continuous activation feature and are based on
admission mechanisms that tend to stabilize the arrival of traffic at the source. They can
act much faster than closed loop schemes. However, only closed loop schemes are able to

distribute indications on resource utilization and traffic conditions in the network.

(ii) Bandwidth

Computer networks are becoming busier and more complex with the increasing amount
of information and the various information formats. This situation requires increased
bandwidth, a resource which is finite. In today’s Intemet, the quality and quantity of
bandwidth cannot be predicted. Certain applications, such as videoconferencing, require a
specific quality of service in terms of both response times and delay. Often the network
cannot be used to its full potential, even though it may be sufficient for the requirements
placed on it. Bandwidth reservation removes this unpredictability by allowing
applications to reserve the bandwidth quality of service they need. Therefore, bandwidth
allocation becomes an important component of bandwidth management and control.
Many vendors propose solutions such as bandwidth brokers to deal with bandwidth

management across networks [Ban00].

(iii) Security

Network security has always been an issue in the field of computing and, in the later
years, in the area of personal computing. Accessing the network represents an important
security risk. Various solutions have been proposed to deal with different aspects of
network security. Here are only a few examples: Radius, [PSec, NAT, firewalls, L2TP
(Level Two Tunneling Protocol), etc.

Radius is a distributed security system using an authentication server that can be
modified to different kinds of networks. Radius uses an open protocol which makes it
easy and efficient to interface with networks having large modem pools. The presence of
a large modem pool (Internet Provider Services, universities, etc.) always increases

network security problems, because there are more opportunities for people to break in or
28

abuse access privileges. Radius authenticates users through a series of communications
between the client and the server. Once a user is authenticated, the client provides the
user with access to the appropriate network services [Ful00].

IPSec is a simple version of the emerging Intemnet IP security protocol. It
represents a set of protocols being developed by the IETF (Internet Engineering Task
Force) to support secure exchange of packets at the IP layer. The two encryption modes
supported by IPsec are transport and tunnel. Transport mode encrypts only the data
portion of each packet, but not the header. The more secure Tunnel mode encrypts both
the header and the data portions of a packet. At the receiving end, an IPSec-compliant
network element decrypts each packet [Isp00].

Network Address Translation (NAT) is a router function that allows address reuse.
The idea is that the address inside a stub domain can be reused by many stub domains.
NAT is seen as a privacy providing mechanism because the machines on the backbone
cannot monitor which hosts are sending and receiving traffic [Ege96].

Internet firewalls are security mechanisms allowing limited access to a site from
the Internet, or allowing approved traffic in and out according to a pre-defined plan. They
allow one to select the appropriate services to meet business needs, while barring others
which may have significant security holes. To succeed in repelling unwanted intruders
while still providing access to the outside world, firewalls must meet precise requirements
[Fir99).

Another security solution is offered by L2TP, which extends the PPP (Point-to-
Point Protocol) model [Sim94] by allowing the layer 2 and PPP endpoints to reside on
different devices interconnected by a packet-switched network. A user has a layer 2
connection to an access concentrator and the concentrator then tunnels individual PPP
frames to a network access server. L2TP uses two types of messages: control messages
and data messages. Control messages are used in the establishment, maintenance and
clearing of tunnels and calls. Data messages are used to encapsulate PPP frames being
carried over the tunnel [Tow99).

29

(iv) Constraints-based routing

The first step in constraint-based routing is to find a path from source to destination. One
condition that has to be satisfied is that the available bandwidth of all network elements in
the path has to be larger or equal to the requested bandwidth. To find the shortest path
from a source to a destination, one can use different shortest-path algorithms such as
Dijkstra’s shortest path algorithm or Bellman-Ford shortest path algorithm [Cor89]. One
method to select an acceptable path is to eliminate all paths having the residual bandwidth
smaller than the requested bandwidth and to choose the shortest of the remaining paths.

A method of choosing an acceptable path to support dynamic routing with QoS
constrains is available [Nou97]. The proposed algorithm builds a graph reflecting the
change in the network, and then constructs a subnet graph containing only acceptable
paths. Next, the algorithm builds the QoS constraint routing table using the subnet graph.
Based on the QoS parameters, the algorithm selects the best three paths having the
required QoS parameters in the routing tables from source to destination. Multi-parameter
applications use a k-shortest path algorithm [Por97] (for example, Double-Sweep
Algorithm) to find the k best paths. A recursive procedure is used to select the next offer
in a routing table when the current connection request is refused. This dynamic algorithm
takes into account multiple QoS parameters and is able to select the best path satisfying
these QoS requirements from source to destination independent of specific network
technologies.

1.4 Integrated Services vs Differentiated Services Frameworks

Today’s Internet Protocol (IP) default behavior in the absence of QoS is known as best-
effort service. The TCP (Transmission Control Protocol) / I[P nodes make their best effort
to deliver a transmission, but they will randomly drop packets in the event of managing
the bandwidth or assigning priority to delay-sensitive packets [St299]. The “intelligence”
resides in the end-entities while the network remains relatively simple [Sal84). With the

extensive growth of the Internet in the last decade, best effort service proved to be well
30

scalable. Network capacity may be exceeded with the increase in service demands, but
service is not denied, instead, it degrades gracefully. This results in a variance in delivery
delay (jitter) which does not affect Internet applications such as e-mail, file transfer or
Web applications. However, real time applications such as IP telephony require a jitter-
free transmission [St199].

Increasing the bandwidth is not sufficient to avoid jitter, although it is a necessary
first step. The second step would represent the insertion of some intelligence within the
network entities so that they become able to distinguish traffic that can tolerate jitter,
delay and packet loss from that with strict timing requirements. The goal of protocols
supplying QoS is to manage bandwidth so that it is used to provide some control and
predictability for different kinds of application requirements.

Taking a satisfaction approach, there are two basic types of QoS: (i) Resource
reservation and (ii) Prioritization. In Resource Reservation (integrated services), network
resources are distributed according to an application’s QoS request and this mechanism is
under bandwidth management policy. In Prioritization (differentiated services) network
traffic is classified and network resources are given to each class of traffic according to
bandwidth management policy criteria. Network elements give preferential treatment to
more demanding applications.

Applications, network topology and policy dictate which type of quality of service
is most appropriate. Many QoS protocols have been designed to fit together in various
architectures and to deliver end-to-end quality of service. Following are the most
common:

ReSerVation Protocol (RSVP);

Differentiated Services;

Multi Protocol Labeling Switching (MPLS), and
Subnet Bandwidth Management (SBM).

1.4.1 End-to-end Integrated Services (IntServ/RSVP)

The IETF Integrated Services Working Group is working to develop standards that dictate

how application services define their QoS requirements, how routers learn this
31

information, how to test and validate that the contracted QoS is maintained. In Integrated
Services (IntServ), each network element has to identify the coordinated set of QoS
control capabilities it provides the information it requires and the information it exports.
Routers that support Integrated Services have to classify packets according to some fields
specified in the policies. In addition, they have to maintain state information for each
individual flow [St299].

IntServ are of two different types:

- Guaranteed: they ensure the required bandwidth availability and provide strict

bounds on the end-to-end queuing delays, and

- Controlled Load: they provide a service equivalent to that provided by best-effort

networks under unloaded circumstances, but can not guarantee the strict bounds
that Guaranteed services provide.

The ReSerVation Protocol (RSVP) is a signaling protocol that enables IntServ by
ensuring the reservation and control of network resources. This is the most complex of all
the QoS technologies for both hosts and network elements. RSVP provides the highest
level of QoS in terms of service guarantees, granularity of resource allocation and
feedback to QoS-supporting applications [St199].

Figure 1.9 presents an overview of RSVP.

PAy \Pim

RESV RESV
\PATH
..“3/
RESV

s / o / \\

SENDER RECEIVER

32

Figure 1.9 RSVP is used to establish a resource reservation between sender and receiver.

In RSVP, the sender sends a PATH message that contains the traffic specification
(TSpec) in terms of bandwidth, delay and jitter to the destination address. Each router
enabling RSVP along this downstream route establishes a path-state with the previous
source address of the PATH message. This will represent the next hop upstream towards
the sender. The receiver sends a RESV (Reservation Request) message upstream that
contains the TSpec, a request specification (RSpec) indicating the type of IntServ
requested, and a filter specification (filter spec) identifying the transport protocol and port
number. Together, the RSpec and the filter spec represent the flow-descriptor used by
routers to identify each reservation. In the upstream path, each RSVP-router uses the
admission-control process to authenticate the request and allocate the required resources.
An error is returned back to the receiver if the request can not be satisfied. In the case of a
request that can be satisfied, the RESV message is sent upstream to the next router. If the
router that is the closest to the sender accepts the RESV message, it sends a confirmation
message to the receiver. When the sender or the receiver ends an RSVP session, there a
tear-down process is initialized destroy the connection created [St199].

Although Integrated Services provide the highest level of granularity and the best
guarantees for QoS, there are some drawbacks. In particular, the complexity and overhead
of RSVP is damaging for many applications or portions of the network. In these cases,
methods that provide less granularity and guarantees in terms of QoS are needed. One
such a method is Differentiated Services (DiffServ), presented further.

1.4.2 Differentiated Services

Differentiated Services (DiffServ) define a simple method of classifying services of a
number of applications {St199]. Differentiated Services are not based on priority,
application or flow, but on the possible observable forwarding behaviors of packets,
named Per Hop Behaviors (PHB) [Int00]. The PHB provides a particular service level

(bandwidth, queuing, and dropping decisions) according to the network policy (Figure
33

1.10). Currently, there are two standard PHBs defined that represent two service levels or
traffic classes:

- Expedited Forwarding (EF): It minimizes delay and jitter providing the highest
level of aggregate quality of service. It has a single DiffServ value. All traffic that
exceeds the profile defined by local policies is discarded [Jac99]

- Assured Forwarding (AF): It has four classes and three drop-precedences within
each class, for a total of twelve DiffServ values. Traffic that exceeds the profile
defined by local policies is not necessarily dropped, but has a decreased
probability of delivery [Hei99].

- Classifier T T > Conditioner P

Marker Meter

Figure 1.10 Differentiated Services Architecture

PHB:s are applied by the Conditioner to traffic at a network border entry according
to pre-determined policy criteria. The Marker can optionally mark the traffic at this point
so that it can be routed according to the marking and unmark it at a network border exit
point. The Meter simply records statistics and it is also optional.

DiffServ makes the assumption that Service Level Agreements (SLA) exist
between neighboring networks. A SLA defines the policy criteria and the traffic profile.
Any traffic out of profile has no guarantees as it crosses the network. The policy criteria
used may include source and destination addresses, transport protocol, port number or
time of the day [StI99].

When applied, the protocol mechanism that the service uses is the Differentiated
Services Code Point (DSCP) bit patterns, in the [P header. This octet maps to a particular
PHB, hence classifying the packet service level. The DSCP replaces the ToS octet in the
Ipv4 header and the Class Octet in the Ipv6 header, as depicted in Figure 1.11 below.
There are a possibility of 64 different classifications for service levels (8 bits) but only the
first 6 bits are currently in use. Two bits are reserved for future expansions. The DSCP

34

retains backward compatibility with the three precedence bits so that non-DS compliant,
ToS-enabled devices will not conflict with the DSCP mapping.

{ Precedence | D
[pv4 Frame (ToS octet)
I | I l 1 | Unused | unused |
— _
~
DSCP

Figure 1.11 The DSCP replaces the ToS octet in the Ipv4 header and the Class octet in the
Ipv6 header

Differentiated Services are based on rules, so they represent a good strategy to be
used in policy-based network management. The idea is to keep the current network
technology and resources and manage networks by appropriate network policies.

As mentioned previously, different kinds of traffic can be marked by the Marker
for different kinds of forwarding based on network policies. Resources can then be
allocated according to the marking and the policies. As an example, mission-critical
messages can be encoded with a DSCP bit pattern that indicates high bandwidth and zero
frame loss. On the other hand, Web browsing could be encoded with a DSCP bit pattern
indicating routine traffic handling.

The power of DiffServ resides in its simplicity to prioritize traffic. If DiffServ
uses RSVP parameters to identify and classify constant-bit-rate (CBR) traffic, it is
possiblie to establish aggregate flows that could be directed into fixed bandwidth pipes. In
this case, resources can be shared and guaranteed services are still provided [St199]. This

35

particular situation is further described while presenting the combination between IntServ
and DiffServ.

1.4.3 Combining IntServ and DiffServ

Figure 1.12 below represents the model under development within the IETF and shows
how QoS technologies combine together to provide End-to-End and Top-to-Bottom QoS

[Ber99]).

Host A Host B
Application Application
Presentation Presentation
Session Session
Transport Transport } RSVP
Network Network) } DiffServ
Data Link Data Link
Physical Physical
4 A

- > <+ —»

RSVP DiffServ & MPLS RSVP
< >

End-to-End QoS

Figure 1.12 End-to-End and Top-to-Bottom QoS

RSVP provisions resources needed for network traffic and DiffServ marks and
prioritizes traffic. As already discussed, RSVP is one of the most demanding protocols on
backbone routers in terms of complexity and overhead. Therefore, its use should be
limited on backbone routers [Man97]. DiffServ can be a complement for RSVP in the

36

quest to ensure End-to-End QoS. In this architecture, the hosts use RSVP to request
resource reservation with high granularity. The border routers at the backbone entry
points map these RSVP reservations onto a class of service indicated by the DSCP bit
pattern. Another alternative is to require the host to set the DSCP bit accordingly also.
The border routers at the backbone exit points are responsible for re-establish the RSVP
provisioning to the final destination address [St199].

1.5 Open Issues

The complexity of distributed networks and the need for consistent management
overwhelmed the network operators. The need to capture a higher level of abstraction and
to later refine it in order to be implemented raised the question of having an automatic
policy management approach. Some achievements presented above partially solved well-
defined areas. However, vendors, standard communities and service providers are
thriving for defining an uniform approach for policy definition and policy
implementation. This will allow proprietary policy-based management tools to interact
with each other in a consistent manner. Following this increased need, the IETF proposed

a policy framework whose general guidelines are presented in the next subsection.

1.5.1 Implementation QoS Policy Framework

The QoS Policy Schema provides a mapping of QoS policy information to an
implementable form in a directory that uses (L)DAP (Lightweight Directory Access
Protocol) as its access protocol [Sni00]. QoS policy information includes definition of
policy rules, policy conditions, policy actions, and general policy data.

Due to its generality, the QoS Policy schema alone may not be sufficient to modetl
a particular set of QoS services and systems. Three ways in which QoS policy schema
may be insufficient exist.

1) The QoS Policy Schema lacks application-specific policies. These extensions

can be new functions represented as subclasses of classes defined in the document or as

37

new attributes of the classes defined in the document. In effect, the QoS policy schema is
a middle layer in the following three level hierarchy:

- Core Policy Schema;

- QoS Policy Schema, and

- Implementation-specific schemata.

2) The QoS Policy Schema may not necessarily provide an efficient mapping to a
given vendor’s directory implementation. Certain LDAP functions are implemented in
different ways by different vendors. The basic design may therefore need to be modified
in order to fit a particular vendor’s implementation.

3) The QoS Policy Schema may lack to accommodate an implementation not

compliant with LDAP specifications. This represents a particular case of point 2) above.

Since rules can be as simple as an IF-THEN statement or as complex as an
aggregated object, it is necessary to make the representation of management rules
uniform.

(a) T. Kock et al [Koc96] presented the general structure of a polling event
definition as follows:

event name type polling {
operation (parameter_1, ... , parameter 2)
every cycle
[filter ({ median | medium | none }, window)]

on {==|!=| <=| <|>=| >} threshold
[mode { static | dynamic }]

[delay interval]

[single]

trigger eventname

on...

}

Name represents the name of the event definition, and eventname is the name of

the event used to trigger a policy. The operation defines an interface method providing
38

the monitoring value. The cycle defines the polling rate in seconds. Optionally, a filter
can be specified together with other technicalities.

The PolicyRule class from the IETF DEN (Directory Enabled Networks) is
another example of policy rule representation [Str99]. This is a subclass of the Policy
class and represents the IF {condition is met] THEN [execute action]. This is obtained by
aggregating a set of policyCondition and a set of policyAction objects. A policyRule
condition is formed by either an ORed set of ANDed conditions (Disjunctive Normal
Form) or an ANDed set of ORed conditions (Conjunctive Normal Form). Individual
conditions may also be negated. The policyRule actions are performed if and only if the
policyRule is true.

(b) Dini et al. [Din95] present more complex expressions of a management policy
in statements of the form:
<policy-name> : : = if {<conditions>, [|<conditions> or <conditions> |

<conditions> and <conditions>] }

then {<actions>, [|<actions> and <actions>] }
where <conditions> are predicated on values of properties of a system component and
<actions> represent management actions. The management actions can be simple updates
of component properties or complex management actions performed by managing
objects.

We have just seen some proposed policy rule representations, but policy rules
must also consider current status of the network elements such as synchronization of

some actions or policy triggers, specification of companion policies and so on {Slo94].
1.5.2 Complex filtering, aggregation, correlation mechanisms

Today’s telecommunication networks are increasingly complex in their layered structures
and services. Integrated backbones using Asynchronous Transfer Mode (ATM) and

Synchronous Digital Hierarchy (SDH) are carrying data, voice and video at the same time
[Kat97]. The number of protocols in use is therefore high at any given moment. Any

39

problem in the base transmission services causes the failure of numerous higher layer
services, which may not even be directly connected to the failing element.

The type of situation mentioned above causes serious problems to the network
management systems. If integrated management system is not in place, then the network
managers have to manually correlate the problems on the various network management
consoles by using their experience. When successful, this procedure takes too long and
the system remains down for higher than desired periods of time. If integrated services
are present, they become flooded with events from all the different sub-network
management systems [Kat93].

Automated fault isolation and event correlation in integrated networks are serious
theoretical and practical problems. Fault isolation represents the automated detection of
problem, which is the cause of the trouble. When talking about event correlation, all
problem indicators whose generation was caused by the same underlying problem are
grouped together. The authors of [Kat97] present an algorithm that allows determining
the underlying cause of network problems and correlating the events associated with that
problem. The main idea is based on model traversing allowing incorporation of different
correlation techniques. Model traversing is an approach that reconstructs fault

propagation at run-time by analyzing relationships between MOs.

1.5.3 Co-habitation between services

Different perspectives have to be considered when dealing with network management.
From the policy perspective, COPS (Common Open Policy Service) and PIBs (Policy
Information Base) are promoted. From the management and event triggering perspective,
SNMP and MIB are considered by their simplicity and facility to be implemented. At the
same time, network resources and services discovery and management require a
DEN/LDAP (Directory Enabled Network/Lightweight Directory Access Protocol)
schema [How95]. While still in current use, CLI (Command Line Interface) or TL-1
Transaction Language One) must be used with all the above frameworks. It is important
to devote appropriate effort to avoid conflicts in applying any or all of these approaches

together. All these approaches are considered in further detail below.
40

(a) SNMP/MIB for network elements

As seen in the previous sections, management is too large and complex that a single
vendor cannot handle all its aspects. In order to support the muitivendor network
management, a standard was needed. The ISO (International Standardization
Organization) proposed CMIP (Common Management Information Protocol) while the
Internet world inclined towards the SNMP (Simple Network Management Protocol). In
1990, the IETF (Internet Engineering Task Force) published the document that made
SNMP an Internet standard. Ever since, it was used in every network management system
deployed [Ste00].

SNMP management has the following three components:

1) The Structure of Management Information (SMI)

The SMI defines the structure of the SNMP naming mechanism by identifying the
allowable data types for the rules of naming and identifying MIB components. The
naming structure is hierarchical and ensures unique names for managed objects, the
components of MIB.

SNMP-managed objects are very simple, containing generally six attributes. For
example, these attributes can be name (ex : ifInErrors), a dotted decimal object identifier
(1.2.3.4.5.6.7.8.9.10), a syntax field that selects the data type (Integer, IPAddress, Counter
etc), an access field («non-accessible», «read-only», «read-write», «write-only»), astatus
field («mandatory», «optional», «deprecated» or «obsolete») anda text description field.

The SMI makes possible the writing an SMI-compliant management object
definition, the running of the text through a standard MIB compiler to create an
executable and the installing of the code in existing agents and management consoles that
could start generating different charts and reports.

41

2) The Management Information Base (MIB)

The MIB is a hierarchical name space whose nodes registration is administered by
the Internet Assigned Numbers Authority (IANA). The term «MIB» can also be attributed
to specific collections of objects used for particular purposes. The figure 1.13 below
depicts the MIB structure.

The object ID for every relevant object begins with either 1.3.6.1.2.1 (the MIB-2
node) or with 1.3.6.1.4.1 (the Enterprise node). The nodes under MIB-2 include the
RMON (remote monitoring) MIB objects and other generic MIB objects such as I[P, TCP,
UDP etc. The nodes under Enterprise include all proprietary MIB objects. It has been
estimated that there are 10 times as many proprietary MIB objects as there are generic

ones.

root
CCITT ISO Joint ISO-
0 1 CCIT 3

v

ORG 3

v

DOD 6

v

/ [ntemet -
Directory | Management 2 Experimental 3 Private 4 Security § Snmp

‘ ¢ V26

MIB-21 Enterprises |

¥ v a v X

Figure 1.13 The MIB tree of object identifiers

42

Each MIB object has a value associated with it according to the syntax part of its
specification. When a MIB object is instantiated on a device, the value associated with the
object is called a MIB variable. SNMP agents store MIB variables and send them upon
request to managers on management stations. MIB objects are static. They are compiled
from a description language to a binary form that agents and managing objects can load.

MIBs can be divided into smaller units called groups of related objects. A vendor
can implement the groups that are useful for a product and leave out the ones that are not.
For example, MIB-2 has 10 subgroups such as “system”, “interfaces”, “IP”, “ICMP”,
“TCP”, “UDP” and “SNMP”. Also, the RMON MIB for Ethernet segments has 9 groups
including “statistics”, “history”, “alarm”, “event”, “capture”. Traditional SNMP agents
are not capable of capturing most RMON data; built-in probe functions or special RMON
probe devices are necessary to collect and forward RMON information. The advantage of
RMON probes extends beyond the capturing and processing of more data than ordinary
device agents. In effect, RMON probes can reduce traffic by storing intermediate results
locally and forwarding them to applications on demand.

3) Protocol Data Units (PDUs)

The Protocol Data Units represent the different possible payloads that form

legitimate management messages.

In SNMP version 1 there are only 5 types of messages:

(a) get-request — retrieves one or more values from a managed node’s MIB

(b) get-next-request — enables the manager to retrieve values sequentially. This
operation is widely used when reading through the rows of a table.

(c) set-request — enables the manager to update appropriate variables, providing SMNP
with the ability to configure and control entities remotely. Managed objects with an
access attribute of "read-only” can't be set.

(d) get-response — returns the results of «get-request», «get-next-request» and «set-
request» operations, at the same time acknowledging them

43

(e) trap — enables an agent to spontaneously report important events or problems to the
managing process. Traps are not acknowledged.

Although the first SNMP version was rapidly accepted and implemented, it had
serious shortcomings. First, the « password » called community name or community
string offered no reliable method of authenticating the source of network management
messages. Second, the community name was visible in unencrypted mode in each SNMP
packet ; there was no means to secure the contents of network management messages
from network hackers. Under such circumstances, many network managers only
implemented the SNMP sections responsible for monitoring devices and collecting
statistics, hence not taking full advantages of all the SNMP capabilities.

SNMP version 2 addresses the authentication and security problems. It also contains
other enhancements such as improved support for systems and applications management,
manager-to-manager communication and, hence, a more distributed management model.

Retrieving tabular data is more efficient because of the presence of a new message type.

(b) LDAP/DEN for services

Directory Enabled Networks (DEN) provides a schema and information model for
representing network elements and services in a directory. An implementation of this
specification then enables an appropriate set of network services to be associated with
users and applications. The specification defines a set of data models for typical network
devices, and implements these as extensions to the directory services schema.

LDAP (Lightweight Directory Access Protocol) is the standard way to access
directory information in the Intenet. It defines a simplified object model for defining
information that can be stored in the directory and gives a corresponding workspace that
determines how information is organized, stored and retrieved.

(c) COPS/PIB for polices

COPS is a dedicated protocol for transporting policy information. It is a simple query and
response protocol that is used to exchange policy information between a policy server
(PDP-Policy Definition Point) and a policy client (PEP-Policy Enforcement Point).

Policy rule classes are arranged in a hierarchical structure similar to the one in
SNMP’s SML. For each policy rule class, there may be none or more policy rule instances
for any particular device. A collection of policy rule classes are defined in PIB modules,
which follow the same structure as MIB [St399].

COPS is the preferred protocol over both SNMP and LDAP for policy
configuration installation and communication of policy information. When compared to
SNMP, COPS has richer semantics and uses TCP for large transactions (as opposed to
SNMP which only uses UDP). When compared to LDAP, COPS has many advantages
including (i) carrying and understanding of dynamic state information, (ii) support for

unsolicited notifications, and (iii) requirement of less code to be implemented.

(d) Other techniques

The CLI is a simple line-oriented interface used to perform network operations from any
node in the network, with or without having a network management system. One
limitation of CLI is that it only allows the issue of commands to one node at a time. This
means that one cannot view the status of several switches by using a single command, but
a separate command for each switch.

Another technique is Transaction Language One (TL-1), a widely used
management protocol in telecommunications. It is a man-machine, text-based message set
that manages most of the broadband and access networks in North America and is

increasingly being used for newer management applications.

1.5.4 Need for mechanisms for early policy conflict detection and resolution

The network heterogeneity, the diversity of services, the diversity of management tools,
the complementary protocols and information structures, and the potential conflict

between sub-network owners themselves or with their customers, led to a variety of
45

management goals and policies. This variety of management policies, policy conflicts can

. be of many types. Following is a summary of the most common kinds of policy conflicts:

)]

2)

3)

4)

5)
6)

Different policies that refer to the same object may eventually trigger conflicting
actions.

Different policy owners, having potentially opposite interests, can set different
pre-conditions for the same set of actions leading to policy conflicts.

The lack of companion policies, that is, policies that have to be in place in order
for another policy to be applied, creates policy conflicts.

The same policy may trigger conflicting actions : parallel actions, sequential
actions or overlapping actions.

Different policies may trigger conflicting actions.

Different policies can be defined under temporal constraints that must be verified
when a policy is really applied. Various kinds of temporal conflicts may occur, as
presented in this thesis.

. The existence of the above policy conflicts calls for mechanisms for early policy

conflict detection and resolution to ensure a successful and effective network

management.

To help us understand the current status regarding policies and policy-enabled

networks, the next chapter focuses on the current IETF Policy framework and

architecture.

Conclusion

Policy-enabled management tools are tailored to cope with the complexity of today’s

networks and user profiles. Early policy conflict detection and resolution is suitable. Also,

temporal aspects of policy definition must present conflicting execution and must favor

checking of policy application.

Chapter 2

Current IETF Policy Framework

2.1 Layered Approach

Usually, policies define the essential behavior of distributed heterogeneous systems,
applications and networks. The policies only specify the desired behavior, but say nothing
about how this behavior can be accomplished and maintained, commonly by using
actions pointed by appropriate protocols. Policies range from high level, that is, abstract,
non-technical policies to low level, technical policies. The level of abstraction depends on
the degree of detail present in the policy definition and the ratio of business issues to
technological issues within the policy.

The process of defining, analyzing and structuring policies is the basis for
processing and application of management policies, as illustrated in Figure 2.1. Policy
classification gives a very simplified representation of the policy, but does not cover all
policy aspects. In the transformation phase more domains may be resolved. The
refinement of the policy classification plus the introduction of policy hierarchy gives a
policy template definition [Wei95].

Policies are very different in terms of level of abstraction and degree of detail. A
structure of policies is mandatory in order to ensure that all policies can be successfully
applied to their targets. Policy hierarchies divide policies into smaller groups of different
levels of abstraction, later to be processed into applicable, low-level policies
[Mac93][Ngu93]. Weiss presented a policy hierarchy that defines the levels within the
management environment in which policies are applied. As depicted in Figure 2.2, this
policy hierarchy makes the difference between the following aspects :

- Corporate or High level policies - directly following from corporate plans of

strategic business management. Technology presence is minimal. In order to be

47

implemented, these policies have to be redefined as one of the other three policy
types defined below.

- Task-oriented policies — define how management tools must be applied and used
in order to achieve the desired behavior

- Functional Policies — define the use of management functions, such as the OSI
systems management functions [Iso10164], the OSF/DME distributed services
[Dme92] and OMG’s object services [Omg921, Omg922].

- Low-level policies — act at the level of managed objects, the abstractions of
managed network and system resources.
In order to be implemented, some policies do not have to arrive at the lowest level

in the above hierarchy.

Policy Classification

Definition +
— Policy Hierarchy

Policy Template
Definition

Transformation +

Available Information on Managed Resources,

/ Management Tools and Management Services

Policy Objects /
Management Scripts

Application +

/ Management System, Management Tools,
Services, Agents.

Management of
Resources

Figure 2.1 The path from policy classification to policy application

48

Corporate, High-Level Policies

PR T

Detail Task Oriented Policies
In Business |l Technology

Definition __/ v N Aspects Wl Aspects

Functional Policies

A T

Low-Level Policies

Figure 2.2 A policy hierarchy

The transformation process is used on policies to refine them as well as to identify
the targets, subjects and monitor objects. As an example, a high-level security policy can
be further refined into two separate policies: one responsible for the access control, the
other responsible for the data confidentiality [[s07498].

In some situations, the refinement process may be automated entirely, but,
usually, it is only partially automated. Extensive information on the managed
environment, the managed capabilities, the tools and platforms available is essential for
the interpretation of the policy semantics. An asyntactical approach to refinement is not
desired since it may cause most of policy conflicts. A refinement is considered complete
when the lowest level of detail has been reached or when a mapping between the value to

managed objects or management functions of the management system is possible.

Another policy hierarchy has been presented by Strassner [Str99]. Let us consider
the DEN (Directory Enabled Networks) policy class hierarchy in Figure 2.3 below.

49

TOP

A

1 2 |

L 1
Core Policy Policy PolicyCondition PolicyAction

Model 'y A A
Networking Networking Networking
Policy PolicyCondition PolicyAction
Specializationinto | DiffServ DiffServ
Network Policy Policy PolicyAction

Figure 2.3 The DEN policy class hierarchy

The Policy Class is a subclass of the TOP class and is used to contain information
on the use and interaction between network resources and services in a specific context. A
policy represents an aggregation of one or more PolicyCondition and one or more
PolicyAction objects. The NerworkingPolicy class is a subclass of the Policy class and is a
base class for grouping different networking policies. The DiffServ Policy class is a
subclass of the NerworkingPolicy class and is used to define policies that apply
specifically to using DiffServ as a tool of achieving the required results. The
PolicyCondition class is a subclass of 7OP and describes a set of conditions necessary to
determine if the actions associated with a certain Policy should be executed. The
NetworkPolicyCondition class is a subclass if PolicyCondition class and provides a
canonical representation of network policy. The PolicyAction class is a subclass of TOP
and describes a set of actions that are invoked when the conditions for a Policy are
satisfied. The NetworkingPolicyAction class is a subclass of the PolicyAction class and

provides a canonical representation of common network policy actions. The

50

DiffServPolicyAction class is a subclass of the NetworkingPolicyAction class and is used
to describe actions specific to the IETF DiffServ effort [Str99].

2.2 Policy Framework and Architecture

2.2.1 Foundation

Many organizations have policies concerning security or specifications of rights and
responsibilities related to a particular executive position. A role framework has been
developed [Lup297], which can be used to formally express role concepts (explained
further), analyze these specifications for consistency and translate them into automated
agents to manage distributed systems. The relationships between multiple roles can also
be considered to define the rights, duties and protocols related to interactions between

roles.

Policies

A domain is a collection of references to object interfaces that have been grouped in order
to facilitate their management. The concept is very similar to a directory in a hierarchical
file system. A domain service manipulates the membership information. Also, domain
scope expressions can be specified and represent the set of objects to which a policy
applies. Policies that apply to a domain, will, by default, apply to all the sub-domains of
that domain, but this default can optionally be turned-off. A user representation domain
(URD) is a persistent representation of the human in the computer system. When a user
logs onto the system, an adapter object is created within the URD and acts as the interface
between the person and the computer system. Other agents representing the human can
also be created in the URD.

Management policies are rules used to change the behavior of a system. They
establish relationships between managers and managed object domains, which can be
either Obligation or Authorization. “Rights™ can be modeled as authorization policies

specifying what activities a user, manager or agent is permitted or forbidden to perform
St

on a set of objects. “Duties” can be modeled as obligation policies specifying what
activities a user, manager or agent must or must not perform on a set of objects. By
separating policies from managers that interpret them allows for the change of the

behavior and strategy of the management system without re-coding the managers.

The general format of a policy is [Lup97b]:

Identifier Mode (Trigger) Subject * {*Action‘}’ Target (Constraint) (Exception) (Parent)
(Child) (Xref) *;’

The different modes possible are: (permitted = A+) (forbidden = A-) (must = O+)
(must not = O-). The subject represents the set of managers designed to carry out the
actions. The constraints limit the applicability of the policy.

Policies can specify actions at different levels of abstraction. Authorization
policies are translated into access control lists to be interpreted by security agents in the
target system, while obligation policies given to distributed automated management
systems for interpretation.

There are two situations in which several policies may apply to the same objects:
(1) when objects are members of the same domain and (2) when different management
functionalities need to be reflected by the same object.

Roles

A role represents a group of policies specifying obligations and authorizations, and a
relationship represents a group of interacting roles [Lup97a]. A role groups the policies
specifying the duties and rights of a particular position inside an organization.

Policies reference a common subject domain called the Manager Position Domain
(MPD). The implementation of a role is an object which maintains a reference to the
MPD of the role and a table of all the policies which are part of the role. Each entry in
this table contains a unique name within the role, and a reference to the policy object to
be resolved by the underlying support system.

The issue of concurrency constraint rules, which apply to policies of a role or of a

relationship, has been addressed [Lup97b]. It allows the expression of sequences of
52

actions, parallelism and synchronization. Concurrency constraints can be translated to
complex events that will trigger the execution of activities. A role object maintains a

concurrency constraint table containing a unique name and a constraint expression.

2.2.2 Policy framework

In order to establish a scalable policy control model for the ReSerVation Protocol (RSVP)
and the integrated services (IntServ) it enables, the RSVP Admission Policy working
group in the IETF (Internet Engineering Task Force) was created. The group proposed a
policy framework that can be applicable to other QoS technologies, such as differentiated
services (DiffServ). The framework is also useful for other technologies that need policy
support such as network security (firewalls, system access, IP security, VPN (Virtual
Private NetworkS), etc) [Sta99].

Two main components are at the core of the policy framework: the Policy
Decision Point (PDP) and the Policy Enforcement Point (PEP). PDP is the decision-
maker unit and PEP is the enforcer unit. The proposed policy framework is depicted in

Figure 2.4 below:
| .
l LDAP Policy
Network Repository

Border PDP o
Point Authentication

' Server

| COPS

Other

Legend: PEP=Policy Enforcement Point; COPS=Common Open Policy Service;
PDP=Policy Decision Point; LDAP=Lightweight Directory Access Protocol

Figure 2.4 The Policy Framework

53

The PEP sends policy elements with the request and receives in turn a decision
from PDP, possibly with policy elements such as errors. PDP exports information from
monitoring and management units through Simple Network Management Protocol
(SNMP), Lightweight Directory Access Protocol (LDAP) etc. Here, the PDP and the PEP
are considered separate entities from a functional point of view, but, physically, they can
be built into the same device. As a matter of fact, the Policy Framework specification
[Yav99] describes a sub-component of the PEP called the Local PDP (LPDP) that enables
PEP to perform some decisional functions. However, a PEP is always required to send a
request to the PDP for final policy decision.

A policy-enabled network is likely to have many PEPs in any network domain
with multiple interfaces on each PEP. On the other hand, the number of PDPs or Policies
Repositories is likely to be much lower in order to simplify administration. For this
reason, they will be more centralized than PEPs, although still distributed. Having more
than one PDP or Policy Repository per network domain will provide some fault tolerance
[Sta99].

2.2.3 Policy functions

In addition to the functions of decision and enforcement that are assigned to PDP and PEP
respectively, metering is another important function. The following is a brief description

of these three primary policy functions:

Decision-making: Decision-making represents the function of PDP and involves
retrieving and interpreting policies, detecting policy conflicts, receiving interface (Role)
descriptions, policy decision requests and policy elements (Conditions) from PEPs,
determining which policy is relevant, applying the policy and returning the results.
Decision-making by PDP uses static or dynamic data in order to determine if a policy is
being satisfied and, if not, what steps need to be taken in order to satisfy it. Decision-
making also involves sending policy elements to the PEP "asynchronously,” based on
policy updates or requests from external entities. The COPS "Policy Provisioning Client"

54

message [Rei99] was created for this purpose, and it sends a Basic Encoding Rules-
encoded policy instance called a "PIB" to be installed in the PEP.

Enforcement: Enforcement represents the function of PEP and involves PEP taking
actions according to the PDP decisions and based on relevant policies and current
network conditions. The network conditions, in turn, can be static such as source and
destination addresses or they can be dynamic such as current bandwidth availability and
time of day.

Metering: Metering represents the active or passive examination of the network and its
constituent devices. The elements recorded and verified are network health, whether
policies are being satisfied and whether the clients are taking unfair advantages over the
network services. Metering by PEP is the auditing of policy compliance to verify that the

policy consumers properly implement policies.
2.2.4 Policy architecture
The policy architecture describes how a policy management tool is related to the other

policy framework components.
Each entry/exit to the dotted box is an

Policy frescriptions interface that must be designed
e

Policy Management Tool =+
‘ Policy Repository
(Rules)
Policy Decision Point ‘_ |
- é Policy Mechanism Protocol
Policy Enforcement Point

Figure 2.5 The Policy Architecture

55

2.2.5 Policy Core Information Model

The Policy Core Information Model (PCIM) defines the structure of generic policy
information [Str00]. It defines two hierarchies of object classes: structural classes
representing policy information and control, and association classes defining how
instances of the structural classes are related to each other [Sni00b]. It represents objects
and relationships between objects, and, in this sense, it is not confined to a specific
repository. The information model defines the mappings that translate the data specified
in the information model to a specific type of repository.

The Policy Core Schema defines a mapping that interprets the information from
the PCIM in a form that can be implemented in a directory. PCIM extends as to include
information needed to represent QoS policies with the QoS Information Model [Sni00a].
The mapping of these information model classes to a directory that uses LDAPvV3 as its
access protocol are defined in [Sni00b]. For the classes in the information model, the
mapping is done one-to-one, that is, information model classes map to LDAP classes and
information model properties map to LDAP attributes.

The policy core schema consists of thirteen classes. From these, six are general
classes, namely policy, policyGroup, policyRule, policyCondition,
policyTimePeriodCondition, policyAction, and two are vendor-specific classes, namely
vendorPolicyCondition and vendorPolicyAction [Wah00)]. The Core Model only presents
general policy classes, but application-specific policy models can be derived from this
general model by using the PolicyGroup, PolicyRule, and PolicyTimePeriodCondition

classes.

56

TOP (root of the directory)
I

|~---- policy (abstract)
|-====-===—-- policyGroup (structural)
|-==~==eeee— policyRule (structural)
|-=-=--=--—— policyCondition (auxiliary)
I |-—

|

l

I

I policyTimePeriodCondition (auxiliary)
| [|e=—=-~---——- vendorPolicyCondition (auxiliary)
| |

[|===s=---—-- policyAction (auxiliary)

|

l

I

|

I

| e

vendorPolicyAction (auxiliary)
|
|-====------- policyInstance (structural)

|--e==s~~-~-- policyElement (auxiliary)

|------ policySubtreePtrAuxClass (auxiliary)
|------ policyGroupContainmentAuxClass (auxiliary)

|----— policyRuleContainmentAuxClass (auxiliary)

Figure 2.6 Class hierarchy in policy core schema

The schema also contains two auxiliary classes policyGroupContainmentAuxClass
and policyRuleContainmentAuxClass and two other classes defined for optimized LDAP
retrievals : policySubtreesPtrAuxClass and policyElement. The last class, policylnstance,
is defined for attaching auxiliary classes representing policy conditions and policy actions
[Sta99]. The Figure 2.6 shows schematically the classes hierarchy. Section 2.2.6 will
present more details on these classes as well as on they are used to describe policies.

Subclasses and auxiliary classes extend PolicyCondition and policyAction.

57

2.2.6 Policy condition and policy action classes

We have seen that policy core schema defines general classes for policies. However,
policy applications requiring QoS need specialized subclasses derived from
policyCondition.
The networkingPolicyConditions subclass has five auxiliary subclasses (Figure
2.7, adapted from [Sta99]) used by network managers to control access to network
resources and services [Raj99a]:
- Host — host ID or source and/or destination address;
- User — user identifier type and values for senders and receivers;
- Application — source and/or destination port number ranges, transport protocols
and/or received IP ToS byte values;
- Routing — Interfaces by Ipv4 or Ipv6 address or interface ID and the traffic direction
in them, and
- Layer 2 — source and/or destination MAC (Media Access Control) address range,
Ethertype, 802.1Q VLAN (Virtual Large Area Network) identifier, etc.

TOP (root of the directory)
|

|-----—- policyCondition (structural)
|-===-=-- networkingPolicyCondition (structural)

hostConditionAuxClass (auxiliary) [

applicationConditionAuxClass (auxiliary)

routeConditionAuxClass (auxiliary)

l
|
l
| userConditionAuxClass (auxiliary)
|
|
|

layer2ConditionAuxClass (auxiliary)

Figure 2.7 Class hierarchy for the networkingPolicyCondition subclass and other policy

condition-related auxiliary classes

58

A vendor can attach any or all of these auxiliary classes to
networkPolicyConditions class in order to meet his/her needs. Their definition simplifies
management, assuring extensibility and reusability. Different vendor goals are achieved
by extending networkPolicyConditions class differently. Also, the auxiliary classes may
be associated with other subclasses of policyCondition, DHCPPolicyCondition etc.

Since LDAP does not support multiple inheritance, a new subclass has to be
created each time new attributes need to be added, starting from structural objects. For the
auxiliary classes, the attributes can be mixed into an instance without attribute clashes.
Because of this, all attributes should be optional in auxiliary classes, but some should be
required [Sta99].

Similar to the policyCondition class, the policyAction class also contains subclasses
responsible for QoS facilitation [Raj99b]. Depicted in Figure 2.8, these policy action
subclasses support RSVP and Differentiated Services. The idea was to provide support
QoS policies for the following situations:

- the use of RSVP as a signal mechanism for integrated services inside a domain or
between domains (per flow reservations);

- the use of DiffServ inside a domain or between domains (prioritized aggregates), and

- the mapping of RSVP from one domain onto DiffServ on another domain (mapping
per-flow reservations onto aggregates at a domain entry point and back at a domain

exit point).

TOP (root of the directory)
|

policyAction (structural)
I
|

diffServAction (structural)

rsvpAction (structural)

diffServResourceGroup (structural)

RSVPResourceGroup (structural)

Figure 2.8 Class hierarchy for the policy action subclasses and related group classes

59

2.3 COPS and PIBs

The following sections describe in more detail the issues related to COPS and PIBs that
have been introduced in Chapter 1.

2.3.1 Policy Information base

Policy-enabled networks help network managers to allocate network resources
more effectively and reduce the management overhead. These networks require policy-
aware servers, switches, routers and end-stations. Policy servers, also known as Policy
Decision Points (PDP), are designed to make most policy decisions. Policy-aware routers
and other network elements, known as Policy Enforcement Points (PEP) are designed to

control the access to network resources.

|
|
| PDP Policy
| Repository
|
| LDAP
Network PIB l‘ Policy
Border W Schema
Point
| |
! COPS .~ i W h heeeeesnssesssannnnnens H
[r
| MIB NMP‘ Management
! Entities
PEP

Figure 2.9 The Policy Information Base (PIB)

Policy is represented and stored in a policy repository from where it is retrieved by
PDP using LDAPv3. Aside from the declarative information of policy rules, other
vendor-specific information is needed. To interface the protocol-specific information, a

Policy Information Base (PIB) was introduced, as depicted in Figure 2.9. As mentioned in
60

Chapter 1, Section 1.5.4, PIB modules hold the collection of policy rule classes and
follow the same structure as MIBs for SNMP.

2.3.2 COPS (Common Open Policy Service) protocol

In order to allow PDP and PEP to interoperate, the protocol Common Open Policy
Service (COPS) is used. COPS is based on the query/response paradigm and needs
TCP/IP for its transport mechanism. Each COPS message carries client specific-
information together with the actions the requestor asks from a device. COPS protocol
allows for ten different message types, such as Request, Response, Report State,
Synchronize State, Client-Accept, Client-Close, Keep-Alive [Co000].

2.3.3 LDAP Policy Schema

The LDAP implementation of the CIM policy model forms the basis for the DEN Policy
Model. Some differences exist between the IETF Policy Model and the LDAP
corresponding implementation [Str99]. These differences are due to the limitations of
LDAP and to take into account how information is organized in a directory. This
organization is different from other types of repositories, so a specialized mapping is
needed.

2.4 QoS Policy Schema

The QoS policy schema has at its basis the object-oriented QoS policy information model
which is presently developed by the IETF Policy Framework Working Group. The QoS
policy information model defines the structural and auxiliary object classes used for QoS
policy information representation. These classes extend the Core Policy object classes, as
seen in the Policy Core Information Model in Section 2.2.5. More precisely, the Policy
Core Information Model defines the generic structure of a policy and describes a
framework for declaring specific conditions and actions used to built application and

domain-specific policies. The QoS Policy Information Model refines the Policy Core
61

Information Model to include policy rules, conditions, and actions needed for QoS

network policies representation. Some of these concepts are discussed in the following.

2.4.1 Mappings between Policy Core Information schema and QoS information
model

Since information models are repository-independent, there is a need to map the data
contained in the information model to a form that can be implemented in a specific
repository.

In order to ensure this, two mappings are defined by the Policy Framework
Working Group. The first mapping is the Policy Core Schema, which maps the
information in the Policy Core Information Model to a form that can be implemented in a
directory. The second mapping is one from the QoS Information Model to a form suitable

to be implemented in a directory.

2.4.2 QoS policy information model

The QoS policy information model provides the detailed semantics for the QoS policy
classes. It refines the Core policy information model by refining the concept of generic
policy rules, conditions and actions to cover extensions necessary for representing QoS
policies. The QoS policy information model also introduces QoS capabilities to integrated
and differentiated services by allowing policy control on RSVP admissions [Sni00Oa]. The
classes defined here are mapped onto a directory that uses LDAPvV3 as its access protocol,
as will be described in Section 2.4.3.

Different services have different capabilities so they may respond differently to
the same high-level policy rule. To avoid this problem, a set of common abstractions is
defined to be used to build high-level QoS policies. Different devices use the same low-
level abstractions of mechanisms when implementing QoS services. Also, different policy
servers and applications provision parts of the network differently if there is a lack of a

common high-level policy.

62

Figure 2.10 depicts the relation between classes in Policy Core information model
. and classes in the QoS policy information model. Each class is clearly identified as
belonging to one of these models.

[unrooted]

I
+-Policy (Core model)

—PolicyGroup (Core model)

I
+-—qosPolicyDomain (QoS model)

I

+---qosNamedPolicyContainer (QoS model)
—PolicyRule (Core model)

+

I

|

|

|

|

+

|

+-—PolicyCondition (Core model)

[

| +-—PolicyTimePeriodCondition (Core modei)
(I

| +--—-VendorPolicyCondition (Core model)
|

| +-—qosPolicySimpleCondition (QoS model)
I

+

I

I

I

I

I

I

I

I

I

|

I

+

---PolicyAction (Core model)

+-—VendorPolicyAction (Core model)

I
---qosPolicyPRAction (QoS model)

—-qosPolicyRSVPAction (QoS model)
—-qosPolicvRSVPSignalCtriAction (QoS model)

+
I
+
I
+
I
+.—-qosPolicvRSVPinstallAction (QoS model)
|
—qosPolicyPRTrfcProf (QoS model)
I
+-—qosPolicyRSVPTrfcProf (QoS model)
I
+-—qosPolicyVariable (QoS model)
I
+-——gosPolicyValue (QoS model)
|
| +---qosPolicyI[Pv4AddrValue (QoS model)
(.
| +-—gosPolicyl[Pv6AddrValue (QoS model)
|
| +-—qosPolicyMACAddrValue (QoS model)
I
I
I

I
+-—qosPolicyStringValue (QoS model)

|
@ 63

|
I
I
|
|
I
I
|
|
!
I
|
I
I
I
|
I
I
|
I
|
I
|
|
I
I
|
I
!
|
I
|
|
|
l
I
|
I
|
I
|
I
|
I

+-—qosPolicyBitStringValue (QoS model)

I

+-—qosPolicyDNValue (QoS model)

|

+---qosPolicyAttributeValue (QoS model)

I
+—qosPolicyintegerValue (QoS model)

-—qosPolicyPHBSet (QoS model)

|
|
I
I
l
!
I
I
+—qosPolicyMeter
I
+
I
+-—qosPolicyPHB (QoS model)
I

I
I
I
|
I
|
I
I
!
|
I
|
|
|
+

--CIM_ManagedSystemElement (abstract, Core model)
|
+--CIM_LogicalElement (abstract, Core model)

I
+—CIM_System (abstract, Core model)

|
+-——CIM_AdminDomain (abstract, Core model)

I
+-—PolicyRepository (Core model)

Figure 2.10 Hierarchy relation between Core and QoS policy classes

The class gosPolicyDomain defines the root of a single administrative QoS policy
domain, and contains the domain's policy rules and definitions. The class
qosNamedPolicyContainer represents an administratively defined policy rule container.
All policies that are commonly administered are defined in a particular
qosNamedPolicyContainer. This allows the administrator to group different sets of policy
rules that perform different types of operations. The class gosPolicyPRAction defines
DiffServ actions to be applied on a flow or group of flows, including the marking of a
DSCP value, dropping, policing and shaping. The class gosPolicyRSVPAction
defines a policy action to be applied on an RSVP signaling message that matches the rule
condition. The class qosPolicyPRTrfcProf is a class that carries the policer or shaper rate
values to be enforced on a flow or a set of flows. The class gosPolicyRSVPTrfcProf
represents an IntServ RSVP Traffic profile. Values of RSVP traffic profiles are compared
against Traffic specification and QoS Reservation requests from the RSVP requests. The
class gosPolicyRSVPSignalCtriAction extends the functionality of the
qosPolicyRSVPACction class by adding detailed control on the signaling protocol behavior

64

itself. The class gosPolicyRSVPInstallAction extends the functionality of the
qosPolicyRSVPACction class by adding detailed control for COPS Install decisions. The
auxiliary class gosPolicySimpleCondition allows the declaration of simple conditions
composed of an ordered triplet: <Variable> <Operator> <Value>. If <variable> matches
<value>, the condition is evaluated to True. With the class qosPolicyVariable, variables
are used to build individual conditions; variables specify the properties of a flow and
should be matched when evaluating the condition. The class gosPolicyValue is used for
defining values and constants used in policy conditions. The class
gosPolicylPv4AddrValue is used to provide a list of [Pv4Addresses, hostnames and
address range values and the class gosPolicyIPv6AddrValue is used to define a list of
IPv6 addresses, hostnames, and address range values. The class gosPolicyMACAddrValue
defines a list of MAC addresses and MAC address range values. The class
qosPolicyStringValue is used to represent a single or set of string values, whereas the
class qgosPolicyBitStringValue is used to represent a single or set of bit string values. The
class gosPolicyDNValue represents a single or set of Distinguished Name (name that can
be used as a key to retrieve an object) values, including wildcards. The class
qosPolicyAutributeValue is used to represent a single or set of property values in an
object. The class gosPolicylntegerValue provides a list of integer and integer range
values. The class gosPolicyPHBSet serves as a named container for gosPolicyPHB
objects. The abstract class qosPolicyPHB extends the policy class with the information
required to model a PHB service class. The class gosPolicyMeter models a meter, that is,
a way to measure the temporal properties of the stream of packets selected by a classifier
against a traffic profile.

2.4.3 Inheritance hierarchy for the LDAP QoS Policy Schema

Figure 2.11 depicts the class hierarchy for the LDAP QoS Policy schema (adapted from
[Sni00b]). The classes that are found in the Policy Core schema are presented in bold.

65

Top

I-P-policy (abstract)

«Il»_palicmeup (structural)

: l-qosPolicyDomain (structural)

I lnquamedPolkyConminer (structural)
Jlr_poli‘.vykule (structural)
l-policykult(’oudiﬁou«lssoa’m‘ion (structural)
J—-policykulﬁcﬁaMnocimu (structural)
l-polkylmance (structural)
-L-poliqCanditionlnstauce (structural)
J—npolicy/lm’anlnsmnce (structural)
J-_poliquIemeanaClm (auxiliary)
-fl-..policyCandiIiouAlaam (auxiliary)

: l_qosPalicySimpleCondm'on (auxiliary)
J-.. qosPolicyMeter (auxiliary)

J-.. qosPolicyPRTrfcProf (auxiliary)

l— qosPolicyRSVPTrfcProf (auxiliary)

J».. qosPolicyPHBSet (abstract)

+|-— qosPHB (abstract)

J—-qosPolicy Variable(auxiliary)

j——qosPolic_v Value(abstract)

I| i—qosPoIicy[PWAddrValue(miliary)
: i_qosPaIicyva6AddrValue(auxiliar:v)
} J—-—qosPolicnylC4ddrValue(auxiliarjv)
: i—qosPolicySn'ingValue(aux:‘liary)
I| l-—qosPoliquitSlﬂngValue(azailiar_v)
: l-—qosPolicyDNValue(miliary)

|

|
+-—qosPolicyAttributeValue(auxiliary)

+ —

l

| --qosPolicyIntegerValue(auxiliary)
I

| +--policyActionAuxClass (auxiliary)

} |

i +— gosPolicyPRAction (auxiliary)

I |

| +— gosPolicyRSVPAction (auxiliary)
I

|

l

|

|

l

I
+-- gasPolicyRSVPSignalCtrlAction (auxiliary)

I
+-- qosPolicyRSVPInstallAction (auxiliary)

+--policyRepository (structural)
|
+--policyGroupContainmentAuxClass (auxiliary)

I
+—policyRuleContainmentAuxClass (auxiliary)

Figure 2.11 QoS Policy Schema Inheritance Hierarchy

The classes defined in the Policy Core Information Model were dealt with in
Section 2.2.5 and the classes defined in the QoS Policy Information Model were
presented in Section 2.4.2. To achieve the mapping of the information model's
relationships, the schema contains two auxiliary classes:
policyGroupContainmentAuxClass and policyRuleContainmentAuxClass [StrO0b]. The
LDAP policy schema mentioned in Section 2.3.3 is to be used by implementations that
use LDAP as their policy repository.

2.4.4 Containment and Scoping Policy

Containment is an important characteristic of directories. Figure 2.7 depicts the general
view of the QoS policy classes containment.

In Figure 2.12, implied containment means that the class policyGroup would not
contain an instance of the policyRepository class, but would contain instances of the
classes contained in the policyRepository class.

The QoS policy hierarchy is a set of containment relationships. This hierarchy is
composed of container objects that each have sets of Domain Names that point to other

67

objects from the policyRepository class. These other objects from the policyRepository
class model containment by placing the contained objects as leaf nodes of the container.
The container objects from the policyGroup model containment both by placement and

Domain Name reference.
policyGroup | - - - ccccea-- - policyRepository
i i }——p| Conditions
—pp qospolicyDomain
e Actions
QosNamedPolicy
Container
—— Profiles
—p| qospolicyDomain > Meters
=T e PHBs
qosPolicyDomain
== —pp| Variables
Scoping provided b
. ’ L—p Constants
QoS policy Domains
Reusable Objects

Legend : ™% containment
= = = % implied containment

Figure 2.12 QoS policy class containment

In terms of the Policy Framework Core Schema, containers are based on auxiliary
classes. A container may be attached to a branch-level class so that specific leaf-nodes of
sub-domains, applications etc may be added below the branch-level class. Policy scoping

is depicted in Figure 2.13.

68

There are two types of objects:

- Reusable Objects — these are objects that can be used by many policy rules. They
reference cross the containment hierarchy and are not considered part of the policy
tree structure. The advantage they bring is that one object can be used by many policy
rules. This allows one set of conditions and actions to be defined once and used many
times. One drawback is that in the directory implementation, the object may demand
multiple accesses, which can become costly.

- Rule-Specific Objects — these are objects that can be used only by a single rule. Their
advantage is the speed of access and a simplified design. The drawback is that there is
no reusability and inconsistencies may arise if the same entity is defined in different

ways when used by multiple rule-specific objects [Sni00b].

Repository Specific location within the Directory Information Tree

—ﬂ qosPolicyDomain | Defines the root of an administrative domain

—p| qosNamePolicyContainer | Contains a set of related policies

Ly policyRule Scoped by the named policy container

L5 Generic and QoS
condmo;sc, achions | conditions, actions and other objects
—— QosNamedPolicy Contains a different set of related
Container . .
policies

Figure 2.13 Containment Hierarchy and Policy Scoping

69

2.4.5 Features of QoS Policy rules

Section 2.4.2 mentioned the policy QoS class gosNamedPolicyContainer which
represented an administratively-defined policy rule container. Each
qosNamedPolicyContainer contains a set of policy rules or other policy containers. QoS
policy rules are modeled by the policyRule class seen in the Policy Information Core
Model.

A rule is a statement of the form “IF condition THEN action”. The application of
a rule implies evaluating its condition and execute the action when it evaluates to TRUE
or do nothing when it evaluates to FALSE. A policy rule must belong to only one
qosNamedPolicyContainer to retain its coherence. Should it belong to more than one
container, many important rule features would be lost. For example, a rule would lose its
ability to know its position inside a container, a property based on the relative values of
the Priority attribute of each of the policyRules, because it would belong to many
containers at the same time. Rule ordering would then be impossible.

A rule is a composite object that contains conditions and actions. A condition is a
Boolean expression that is evaluated to see if the rule should apply. When it evaluates to
true, the corresponding actions should be taken. Actions are specifications of QoS
operations.

The basic I[F-THEN policy rule is extended to include other rule characteristics
that are briefly described below.

Policy Rule Structure

In addition to the basic rule attributes, the following QoS-related attributes are defined :

- Enable flag indicating if a rule is enabled, disabled or enabled in debug mode

- Condition set defined in PolicyConditionInPolicyRule or
PolicyConditionInPolicyRepository aggregation

- Flag indicating if the condition is conjunctive or disjunctive normal form

70

- A list of actions defined in PolicyConditionInPolicyRule or
PolicyConditionInPolicyRepository aggregation

- Priority value inside a container

- A " mandatory“ attribute used to define whether the conditions evaluation and
execution is mandatory or not

- A SequenceActions attribute that defines how to execute the actions if the condition is
true

- An array of policyRoles attributes defining the roles used in the rule

- A RuleUsage attribute describing how the rule should be used.

So, if the rule is enabled and the conditions are evaluated to true, then the list of
actions should be used to dictate how this flow should be treated.

QoS policy conditions

A condition is represented as either an ORed set of ANDed conditions or an ANDed set
of ORed conditions. Every single condition may be negated. From the networking point
of view, some conditions may be modeled as filters. There is no filter class defined, but it
is modeled in the Network Model of DEN.

The gosPolicySimpleCondition class models individual conditions. This class
refines the policyCondition class and uses the triplet (<variable>, <operator>, <value>) to
form a condition. The <variable> field specifies the attribute of a flow that should be
matched when the condition is evaluated. Simple conditions may be reused by placing
them in a common portion of the policy information tree. A simple condition may be
added to a policyRule in two ways:

- by direct attachment of an instance of the condition to the ConditionInPolicyRule
instance in what is called an ad-hoc simple condition. This method creates private (not
reusable) simple conditions.

- by indirect reference to an instance of a condition from a reusable-object repository.

Four different ways to compose simple conditions are:
71

- Variable Representation
- the class gosPolicyVariable may be contained in the gosPolicySimpleCondition
instance
- the class gosPolicyVariable may be referenced from the
qosPolicySimpleCondition class
- Value Representation
- the gosPolicyValue class may be contained in the gosPolicySimpleCondition class
- the gosPolicyValue class may be referenced from the gosPolicySimpleCondition

instance

QoS Policy Variables

QoS policy variables specify the attributes of a flow that should be matched when

evaluating the condition. Variables also constrain the set of values within a certain value

type that can be matched against it in a condition. For example, a variable for the source

port number must constrain the set of values to the valid range of port values integers.

QoS policy variables are also are used for binding individual conditions. The three main

attributes for a value are:

- gpVariableName of the qoSsPOlicyVariable class which specifies the well known
name used for logical binding

- qpValueTypes represents the list of value classes that can be matched to a particular
variable

- gpValueConstraints representing a list of constraints on a particular variable

Meta-data, obtained by combining the above main attributes, define the semantics
of variables to be used to form QoS conditions.

In order for different policy management systems to interoperate the same
variables must be initialized to the same value by different policy servers. Even if their
binding mechanisms can be different, the binding logic must give identical instantiation.
Each variable must be bound to a logical entity. When a policy server evaluates an

expression containing variables, it must first instantiate them. To be instantiated, a
72

variable must be bound to a specific value and associated with a logical entity. Some
variables are pre-defined.

2.5 Implementation Issues

After having seen the current IETF policy framework, we are now considering the main

implementation issues related to policy-enabled network management.

2.5.1 Policy-enabled tools

Management tools have to provide ways to facilitate the specification of roles, the
defining of conditions, the detection of conflicts and so on. Inside a domain, policy
conflicts can be managed in an easier fashion, subject of ownership and focused goals. In
the case of interdomain policy conflicts, one should possess some tools capable of
detecting and resolving at runtime potential conflicts raised by different ownerships and,

eventually, different goals.

2.5.2 Policy-oriented languages

The system management seeks the provision of the highest QoS possible to the users. The

two steps necessary to achieve this goal are: define the required QoS in terms of

measurable properties and define suitable policies to ensure the desired QoS. Currently,

most management activity is done by the network managers who monitor the system’s

status, analyze the situation and take the appropriate actions to correct errors or improve

the system’s functioning. Several problems arise when management occurs in this manner

[Koc96]:

- different managers may interpret differently similar situations resulting in different
actions

- management knowledge is not documented , so each manager has to find his/her own
solution

- network managers put a lot of time in reactive action to urgent problems.
73

To improve this situation, automation of the network management task is required.

For the basic formalization of various attributes and MOs, ASN.1 and GDMO can
be used. However, an appropriate policy oriented language must allow a user designer to
express new requirements such as events, relationships between actions, roles, and
temporal issues.

Management policies are specific to each functional area of network or system
management [Wei95]. Alpers and Plansky presented the domain-based management
policies and a GDMO-based formalism within a policy-platform [Alp95].

Many approaches consider the policy as class schemas. For example, in Object —
Z, one can specify the managed objects. A similar approach allows us to define an object
representing a policy. A specialization of this schema leads to different policies. A policy
has its own type. The most generic policy type inherits from the software type and has
specific static features, such as the domain belonging to, the time interval it holds, its
target referring to the concerned managed object, the scope defining the level of validity
starting from the target base within the Object Oriented hierarchy, and the policies which
are concurrently used. Other policies could inherit by specialization from this generic
type. As dynamic properties, a policy has the refinement status, trigger mode, and
administrative state. The refinement represents the degree of maturity of a policy, which
can be definitive or experimental. The trigger mode reflects the procedure of applying a
policy. The administrative state is usually unlocked. Locked state is used when testing a
policy or when modifying it by meta-policies. All these properties are visible and can be
modified according to other policies. The important difference between the behavior
attribute in GDMO templates for managed objects and a policy behavior is that the
managed object behavior defines possible or available behavior of the resources they
represent expressed by their state values, while a policy behavior is a restriction on the
possible behavior =xpressed as the desired behavior. The desired behavior of a managed
object is dependent on different goals, whereas the real behavior of a managed object
depends on the behavior of its cooperation relations and managed objects cooperating
with it.

74

The policy as an object approach is taken by standards [Iso19]. They focus on
policies for a management domain. A policy is represented by a managed object having
the following features: name, generic contents, and a set of domains to which the policy
refers to. From the management point of view, a policy encapsulates a representation of
system management goals. Other commercial products present some « rudimentary
functionality to define domains and apply policies » [Wei95]. For example, the HP’s
Dolphin uses an object-oriented Prolog-like language to specify policies [Pel93]. The
TME (Tivoli’s Management Environment) defines policy objects as a set of customizable
programs written as shell or Perl scripts [Wel94].

A rule-based policy is presented in [Iso19]. A policy is a set of rules of the form :
Pled'

P2e S (P1)+5°?

P3e X (P1)+8°

P4 e X (P2,P1)+5*

where P4 is the most specialized version of a policy P1 and 8" represents discrete rules
specific to that policy. In P4, additional rules to those specified by P1 and P2 cannot
contradict any rule specified in either P1 or P2. Here, a correlation between &*, P1’s
rules and P2’s rules must ensure that there are no conflicts. Koch and al. present a similar

approach [Koc95].

2.5.3 Interoperability between policy-enabled management tools

We have seen that, in fact, policy-enabled approach may refer to distinct technology
networks (ATM. IP, Frame Relay). Management tools must cover all these.

Many specification languages can be used and, eventually, many different CIMs
or the same CIM being partially and, perhaps, differently implemented. Therefore, there

is an increased need for tools coping with these issues.

The next chapter focuses on policy-enabled tools and the solutions they offer to

solve policy-enabled network management problems.

75

Chapter 3

Policy—enabled Tools

3.1 Management Tools

From the large set of management tools (Figure 3.1), one can distinguish a subset of
policy-enabled management tools. Their particularity is that they introduce means for
defining, editing, deploying and reusing policies as a way to manage the network. A
subset of policy-enabled management tools is formed by target-oriented policy-
enabled tools; these tools are designed specifically to suit particular applications, for

example, video-on-demand.

Policy
Enabled

Management
Tool

Figure 3.1 Management tools and policy enabled tools

The transition from classical tools to policy-enabled tools requires more than a
simple standard body effort. We estimate that we are facing a new management
paradigm. Implementing it signifies a new information model and decision model, and
needs appropriate protocols and new hosting and access mechanisms. The current
tendency is to open network elements via standard AP{s (Application Programming
Interface), and to allow the push model to appropriate policies across these APIs.

Before analyzing the major players in the policy-enabled-management, we will
first consider the relevant features of a policy-enabled tool. Following is a "wish-list™
of the desired characteristics of a policy-enabled-tool.

1) Upgradability — The tool should allow new mechanisms to be incorporated in its
list of features.

76

2) Standard / IETF drafis — orientation — The tool should operate according to pre-
defined and widely used standards, such as the Common Information Model
(CIM).

3) Scalability — The software should be scalable in terms of:

(a) the number of policies (should allow the specification of the number of
policies);

(b) the types of policies (should account for different policy types and allow the
definition of such various types), and

(c) the number of network elements covered (shouid allow the specification of
the number of network elements to be affected by a particular policy).

4) Utilization of Relational MIBs or PIBs. The classical version of network
management tools use MIBs, but policy-oriented software should use PIBs as their
information bases.

5) Legacy Protocols or COPS - Policy-enabled tools should use policy-oriented
communication protocols such as COPS rather than legacy protocols such as
SNMP.

6) Policy definition GUI - The software should provide a graphical user interface to
allow the manager to define policies.

7) Policy Conflict Detection ~ Policy conflict detection involves the verification of
rule consistency, and the detection of both condition and action conflicts. Some
tools do offer such features [Lup97] whereas others don’t.

8) Temporal properties concerning policies — A policy-enabled tool should allow the
expression of time or of the relative position of two events, including the time
intervals.

9) Correlation between temporal properties — Within a given time zone, correlation
adjustment between temporal properties is not necessary. However, between time
zones, mechanisms that handle correlation between temporal properties should
exist.

10) Error-Handling Mechanisms — Appropriate error-handling mechanisms should
exist to deal with situations in which policies fail partially or entirely.

11) Network Dependence / Independence — Some policy-enabled tools are dependent
upon the presence of particular elements in the network and on the network
topology, whereas others are independent of the network they function on.

77

12) Interoperability with other existing tools — When two different network
interoperate, the software tools on each of them should also interoperate.

13) Proactive mechanisms — Policy-enabled tools should have measurement features
and policies to prevent certain event types such as network failure, CPU shortage,
link bandwidth saturation, etc.

3.2 Generic Management Tools

In order to satisfy the previous list of features, classical generic management tools
were developed. They are robust in representing the network topology and have a
friendly operator GU], although they offer very few automated mechanisms.

3.2.1 Intel

Intel’s network management solution, named Intel Policy-Based Network
Management, uses policies in order to implement Service Level Agreements (SLAs)
by establishing contracts with user groups.

Using a single console with a simple GUI, managers can define, edit and
deploy policies for multi-vendor networks. Another advantage is the use of COPS to
support heterogeneous network environments and legacy network elements. The
software is also scalable to accommodate future changes in network resources [Int00].

With Intel Policy-Based Network Management, policies are stored in
directories, which are not policy brokers, but only common repository for user
information. COPS, LDAP and RSVP standards are supported.

3.2.2 Tivoli

Tivoli’s management solution, Tivoli Remote Control, regards policies as a set of
rules to be applied to managed resources in order to control the default values of
newly created resources (default policy) and to maintain the guidelines when
administrators modify or operate on resources (validation policy). An example of
Tivoli policy is a rule requiring user login names to be eight characters or less.
Tivoli uses policy regions as containers for managed resources that use the

same set of policies. These regions also serve as basis for assigning administrator
78

permissions or roles. Policy regions enable Tivoli Remote Control to provide granular
access control, which is necessary to implement remote control in large organizations.
The ability to centrally manage remote control policy makes the product scalable - the
complexity of management does not increase exponentially with an increase of the
size of the network.

Tivoli Remote Control’s GUI enables quick access to the available commands
and the display of the current state of the session.

Other features supported by the software include: cross-platform support for
controller and target: Windows family and OS/2, gateway support to provide efficient
and secure access through firewalls or across different networks, DHCP support and
dynamic target lists. On the other hand, in terms of policies support, the software does
not provide error-handling or proactive mechanisms, temporal properties or
correlation between temporal properties or other policy conflict detection features
[Tiv97].

3.2.3 Sun

Finally, Sun’s Bandwidth Allocator 1.0 allows for the easy specification of bandwidth
allocation policy. At the same time, it provides reporting utilities to follow how
bandwidth is used and how efficiently the traffic provisioning rules are working.

The Packet Classifier component of Sun’s Bandwidth Allocator takes an
outgoing packet and assigns it to a traffic class based on the information found in the
[P or application header. Some of the factors that are important when assigning a
packet to a particular class are: protocol type, [P source and destination address,
TCP/UDP source and destination port. The assignment of quality of service is done
according to a provisioning rules file, which can be updated by command-line mode
or via a Graphical User Interface (GUT). The Packet Scheduler component transmits
different classes of traffic according to the pre-defined priority and transfer rate for
each class. Statistics collected during the classification process are available via a
command-line interface or via GUI through a proprietary MIB. Monitoring can be
done via SNMP.

79

The software uses the following filters for the provisioning rules:
(1) traffic type (TCP/IP or UDP ports or services)
(2) source or destination IP address (atlowed discrimination between different
machines or organizations)

Filters can be placed in a hierarchy. For example, a pre-defined quality of
service can be assigned to traffic coming from a particular organization. Within this
traffic, a subset of the pre-defined quality of service can be reserved for FTP, for
example [Sun98).

3.3 Special Policy-Enabled Tools

As outlined in the introduction of Chapter 3, a particular subset of the management
tools available, are policy-enabled tools. Policy enabled network management relies
on many protocols. Each vendor of policy-enabled management tools must decide
how to implement the communication between many policy servers, directories and
the entities being managed. Following, we present a non-exhaustive list of special
existing policy-enabled tools with respect to the degree of satisfaction of the
previously outlined features wish list.

Some policy-based tools are vendor oriented because vendors are building
software tools specific to their own equipment. In this category we consider Cisco's,
Lucent’s, Hewlett Packard’s and Nortel’s, whereas others are more generic in both
types of networks and problems to be solved (Allot, Orchestream, Extreme Networks,
[PHighway, Spectrum).

3.3.1 Cisco Systems

Cisco Systems QoS Policy Manager 1.1. (QPM) and User Registration Tool (URT)
1.2 (beta version) are two packages of software designed to solve policy-enabled
networks management problems.

QPM is a configuration interface for Cisco devices. It enables differentiated
services for Web-based applications, VoiceOverlP, Internet appliances, and business-
critical processes, ensuring the desired QoS. It automates QoS configuration and
deployment and improves multi-service performance. QPM allows the definition of

80

QoS policies at a more abstract level than can be defined using device commands. For
example, one can define policies for groups of devices rather than one device at a
time. Policies can be created that apply to applications or groups of hosts.

The QPM Policy Manager allows the definition of QoS policies for devices or
interfaces, and sets the queuing mechanism for interfaces. Policies can be created for
groups of devices, interfaces, hosts, or definitions of application traffic. Web-base
reporting to helps the maintenance of policy definitions. The Distribution Manager
allows the deployment of policies and QoS configurations created by the Policy
Manager to the network devices. Loggings and web-based reportings help to maintain
records of policy deployments. The QoS Manager — distributes the changes requested
by the Distribution Manager, configures devices and maintains the QoS database
created by the Policy Manager [Cis00].

Cisco’s QPS strength relies in its mechanism to define multiple conditions. This
condition matrix supports: source and destination [P address, IP subnet mask, protocol
type (IP, TCP, UDP), application port numbers, and IP precedence.

When defining a policy, a manager selects an interface or group of interfaces from
the management console and defines the type of queuing mechanism to be used. Roles
are handled on a per-interface basis. The interfaces support a variety of roles including
priority queuing, custom queuing, weighted fair queuing, weighted random early
detection and class-based weighted fair queuing. The actions include coloring a flow
with [P precedence information, limiting the bandwidth to a particular value, apply
proritization by directing the traffic into a particular queue and custom queuing.
However, issues such as temporal policy conflict detection are not addressed.

Cisco’s URT software allows user-tracking mechanisms in Windows NT and
NetWare NDS-enabled [P environments. It uses a combination of server and client
technologies to dynamically track a user at login, assign that user to a virtual local area

network and track the user’s location.

3.3.2 Lucent Technologies

Lucent Technologies proposes RealNet Rules (Beta Version), a new policy
management application for multivendor environments that allows managers to drive

network behavior that maps to business needs. Unlike Cisco’s solution, Lucent builds

81

its policy based management software around the LDAP interface. The software
focuses on three main points of policy-based control: QoS, security, and resource
allocation. These provide an automatic mapping of users to available local resources.
It offers the inherent scalability and fault tolerance that solutions using COPS or CLI
have to build in manually.

RealNet Rules reduces complexity by providing an intuitive graphical user
interface. Network managers are allowed to implement high-level network rules into
detailed configurations, which are then applied to the network. Policies are stored in a
directory and can be acceded via LDAP-enabled applications [Luc99].

RealNet Rules is directed at the enterprise LAN. The software uses the CIM
directory schema to store policy in the LDAP server and allows applications to
manipulate and use this policy data. RealNet Rules supports conditions such as IP
source and destination addresses, layer 3 protocols, layer 4 port numbers, Diffserv
code points. However, the solution addresses only the basic features of end-to-end
policy management, excluding features such as dynamic applications, different types
of queuing mechanisms, provisioning protocols (HT TP/CLIY/COPS), DiffServ/ToS
markings or temporal policy conflict detections [Con99).

3.3.3. Hewlett-Packard

Hewlett Packard’s HP OpenView PolicyXpert allows network managers to automate
the configuration of QoS mechanisms across a heterogeneous network environment by
capturing them in a high-level terms. A single set of policies can be deployed across
many managed elements, so that there is no need for configuring QoS on each element
individually. The software supports three QoS abstractions that can be implemented
using various QoS mechanisms. Prioritized Class of Service policies can use queuing,
IP Precedence marking, or IEEE 802.1P frame tags to define a class of service for
application traffic. Assured Bandwidth policies can use TCP rate control, class-based
queuing, and committed information rate mechanisms to assure bandwidth. RSVP
policies can include allow or disallow, maximum bandwidth, and flow priority to
control applications that signal QoS requirements using RSVP [Hew00].
PolicyXpert’s conditions can be complex combinations of one or more of the

following parameters: time, date, day of the week, application port number, source or

82

destination I[P address, IP type of service, HTTP URL or VLAN ID. Traffic can be
allowed or denied based on the RSVP admission control model. When a condition is
matched, a usage model can be applied to that flow. The main advantages of
PolicyXpert are:
- its multivendor devices support ;
- its RSVP capabilities, and
- its use of COPS to provision network devices.
When COPS is not found on a target platform, a proxy agent acts to configure the
non-COPS-compliant device [Con99].

Some of the software’s disadvantages include:
- it does not provide any filtering or security features ;
- it has no LDAP integration, unlike Lucent’s solution, and
- does not provide any temporal policy conflict detection mechanisms.

3.3.4 Nortel

Nortel’s network management solution, Optivity Policy Services 1.0, is built around
an Oracle database and, like Lucent’s solution, works together with both policy
management and [P address management.

When dealing with policy management, Nortel groups devices into various
domains. The software uses a Java interface to access Nortel BayRS and Cisco IOS
router platforms, but one interface can be member of only one domain, which limits
the types of policies that can be applied to the network. Like many of the solutions
offered by other vendors, Nortel’s solution has a condition/action model, including all
main [P layer 3 and 4 conditions.

The software has the ability to deny service, mark flows with a particular class
of service coloring, regulate and monitor traffic flows and shape traffic to a specific
bandwidth. However, Nortel's solution doesn’t allow queue behavior configuration.
SNMP and CLI are presently the communication means, but their replacement with
COPS is part of future improvement plans [Con99).

83

3.3.5 Allot Communications

NetPolicy, the policy-enabled tool of Allot Communications, is a Java-based
application that enables the deployment of complex policies in already existing
networks [A1100]. The software uses a unique, table-like interface to define conditions
and actions needed for policy definition, but does not treat roles separately as other
available products do. NetPolicy can define flows in terms of the IP addresses and
netmasks, groups of IP addresses, types of protocols, TCP/UDP port numbers, [P ToS
information, time of the day and other high-level information. Examples of actions the
software supports are: allocation of minimum and/or maximum bandwidth, guaranteed
bandwidth, priority and limitation of number of concurrent sessions.

NetPolicy works very well in combination with other Allot network hardware.
[t supports load-balancing and cache-redirection based on policy. NetPolicy’s modular
architecture works together with Allot’s policy enforcement devices (NetEnforcer) to
ensure service and user provisioning, policy enforcement, service verification and
billing.

The software does support multiple platforms, but the features supported for
each platform are restricted to queuing and access control list. It allows for the
management of different hierarchical groups. Single flows can be manipulated
independently and groups of flows can be acted upon as a single logical unit by
defining group policies that apply to a collection of flows.

Another feature present in NetPolicy is an active feedback mechanism by
which network administrators are able to see in real time the effects of applying their
policy on the network. COPS and CLI are used for communication [Con99].

NetPolicy creates a complete policy system intended for both Internet Service
Providers and for enterprises. For the former, it gives the ability to provision, enforce,
verify and bill service level agreements and to offer bandwidth on demand and
bandwidth brokering services. For the later, NetPolicy gives a unified view of QoS
policies and network actions in real time.

3.3.6 Orchestream

Orchestream Enterprise 2.0, Orchestream’s policy-management solution, offers a
complete set of conditions, actions and roles. It is the first software capable of
automating the deployment of QoS and security features across the enterprise.

Orchestream is the only product on the market based on the new I[ETF
DiffServ framework [Orc99]. One can assign to each device or interface a DiffServ
role when they are placed on a network domain, without the need to upgrade the
network hardware or software.

Each application flow is allocated the appropriate level of bandwidth by
aggregating flows into a small number of classes. The network manager has complete
control over the allocation process.

The Orchestream software is designed to support multi-vendor environments
such as those from Cisco Systems, Xedia, and Lucent. Orchestream Enterprise 2.0
provides policy-based control of access security, allowing all existing routers to be
configured into packet-filtering firewalls in one step. Devices can be configured by
SNMP, HTTP and TACACS+ (Terminal Access Controller Access Control System
Plus). At the same time, its QoS policies are equipped with protection against denial
of service attacks [Orc99].

3.3.7 Extreme Networks

ExtremeWare Enterprise Manager 2.0 (Beta version) of Extreme Networks is a
complete management tool enables you to set policies that provision bandwidth and
prioritize applications for specific end-user groups. It allows network-wide inventory
control, management and configuration of multiple Summit switches, the Summit
Virtual Chassis, VLANSs and Policy-Based Quality of Service (QoS).

ExtremeWare Enterprise Manager uses a three-tiered architecture. The
platform is very extensible and allows the use of SNMP, Java, HTTP and standard
SQL relational database management system. It also supports ExtremeWare's
SmartTraps™ feature, which minimizes bandwidth usage by enabling Extreme
switches to interact with the ExtremeWare Enterprise Manager platform [Pro98].

8s

The software defines conditions based on physical port, a specific VLAN, a
specific IP address or subnet, a particular Layer 3 protocol and Layer 4 TCP or UDP
port or group of ports. Using DLCS (Dynamic Link Configuration System), the
software is able to import users, groups and workstations in a Windows NT Primary
Domain Controller (PDC) environment. When loggings are executed in or out the
PDC, the user is tracked and reported to the policy server.

The software lacks some granularity because it applies the policy to an entire
device rather than on the per-interface basis. It also supports third-party network
management system software integration via HP OpenView [Con99].

3.3.8 IPHighway

Unlike Orchestream, [PHighway is taking a more strategic approach to policy-based
networking by giving internally developed source code for COPS to any vendor
willing to implement the protocol on its devices. COPS is implemented to manage
every device that supports the protocol.

[PHighway’s network management solution, Open Policy System 1.0, has a
friendly policy definition GUI with concise definitions of policies and actions. Among
the conditions for policy management we cite: source and destination [P address,
application type and physical interface. A feature specific to IPHighway’s Open
Policy System 1.0 is the enabling of several unique groupings of subnets and
interfaces such as « all interfaces supporting weighted-based queuing ». The actions
that the software supports include: FIFO queuing, WFQ (Weighted Fair Queue),
custom queuing, priority queuing, class-based distributed fair queuing and an
[PHighway hybrid queuing mechanism that uses both WRED (Weighted Random
Early Detection) and custom queuing.

On the negative side, the product does not support COPS functionalities, nor
does it deal with policy conflict detection or multi-vendor support [Con99].

86

3.3.9 Spectrum Management

Finally, Spectrum Management’s solution, the Spectrum Policy Based Network
Management Suite, takes advantage of the Cableton’s SecureFast technology base.
The switch reports information such as [P and MAC addresses that are attached to a
particular switch port in order to simplify policy management.

The advantages this software offers include: a large range of conditions
(ethertype, source and destination port numbers, [P ToS information, IP protocol type,
IP source and destination addresses, [IPX (Internetwork Package Exchange) class of
service, [PX packet type, [PX port number), a large range of actions (traffic
assignment to a particular VLAN, prioritizing packets into multiple queues, coloring
packets with [P ToS information, packet filtering and rate limiting). The software uses
SNMP and CLI as communication means between the manager and the managed
objects. Also, LDAP and LDIF (LDAP Directory Interchange Format) inform the
manager of the changes to the directory.

On the drawbacks side, we can mention the lack of multi-device management,
the lack of policy conflict detection support, the lack of temporal properties
concerning policies, and its dependence on SNMP and CLI to perform the job,.

Considering policy-enabled tools, a few features concerning policies have been

partially implemented or are part of future implementation plans. Table 3.1

summarizes some of these particular characteristics.

87

LAYER Policy Actions
Name Temporal Various |Types |Protocols
1 2 3 4 5+ fosues Types of | Of
Actions | Queuing
Allot Yes No Yes Yes |Parially| Yes | Partially | Partially | Yes
Cisco No No Yes Yes |Partially| No Partially | Yes | Partially
Extreme Yes Yes No No Partially | Partially | Partially
Networks Partially | Partially
Hewlett No Yes Yes |Partially} Yes | Partially | Partially | Partially
Packard Partially Future
IP- Yes No Yes Yes No Yes | Partially | Partially | Partially
Highway Future
Lucent No No |Partially | Yes No | Partially | Partially | Future | Partially
Future

Nortel Future | Yes Yes Yes Yes Yes Yes Yes Partially

Future | Future | future
Orche- Yes Yes Yes | Future Yes Partially Yes Partially
Stream Partially Future
Spectrum | Yes Yes Yes Yes No Yes Yes Yes Yes
Manag.

Table 3.1 Summary of policy-enabled management tools features

3.4 Conclusions on Existing Tools

We conclude that there is a paradigm shift in network the management community,

the industry and the service providers. The current achievements allow us to predict

more emphasis on inter-domain correlation, adoption of COPS-like protocols for

policy manipulation, etc.

A good policy management strategy can be divided in four steps.

88

1) Identification of the type of network traffic using classical tools such as RMON,
SNMP or other packet-capturing tools. This includes measuring the amount of
bandwidth used, the peak load times, traffic burst sizes, and packet size
distribution. The latency applications tolerate is also important. None of the
products we presented offer these functionalities yet.

2) Construction and deployment of a set of policies to help bandwidth and different
types of traffic management. Most of the solutions we examined allowed the
dynamic creation of policies and provided means to shape the traffic to meet
various needs. The most dynamic solutions were offered by Cisco and
Orchestream. Also, Hewlett Packard and [PHighway allowed multi-vendor
policies.

3) Deployment of mechanisms to measure the effects of defined policies. Feedback
mechanisms can constitute a first solution, but, ideally, network elements should
have the capability to report service level statistics to the policy-enabled tool.
Allot’s was the only product solution from those considered that provided
feedback on the deployment of defined policies onto the network.

4) Network self-healing and self-tuning. None of the solutions presented offered such
a feature. A first step towards these characteristics would be the reporting based on
device statistics. Spectrum Management did offer a reporting mechanism, but not
the necessary statistics to determine if the policies were really working.

We have identified that some improvements still need to be made.
Summarizing, there is a special need for correlation algorithms to deal with conflicts
arising from various situations such as different policies referring to the same object
and triggering conflicting actions, different policy owners, having opposite interests,
setting different pre-conditions for the same set of actions, the lack of companion
policies, the same policy triggering conflicting actions: parallel actions, sequential
actions or overlapping actions, or different policies triggering conflicting actions.

Sometimes a policy is triggered by an event or set of events that already caused
a network failure. In this case, it is too late for a policy-based remedy. Prediction
mechanisms in order to forecast the change tendency of the network state must be
used in such situations. Usually, this is done by a state refinement (wamning
thresholds) preventing a policy system to be late. For example, a refinement of the

89

operational state enabled can be specified by another state attribute called UsageState
(idle, active, busy). By interpreting these values, the managing system may either
apply policies in the subsystem with respect to the state of one particular component
or choose to react directly across an administrative state attribute of this component,
by the use of commands. As opposed to the operationalState (enabled, disabled)
attributes whose values are updated by the resource itself, commands act on attributes

whose values are updated by the managing system [Bir96].

We estimate that temporal issues have only partially and insufficiently been
considered in the tools we have studied. We will consider further the particular
temporal issues related to:

(a) Particular requirement from a policy to be fired only under the presence of another
policy declared as valid and fireable or already fired.

(b) Dealing with Time Zones. When a policy and its required policies are in the same
time zone there is no temporal translation needed. When the required policies used
by another policy are defined in a different time zone, the necessary time zone
adjustments must be done. When a policy is defined in a particular time zone to be
fired in another time zone, again, the time zone appropriate modifications must be
effectuated.

(c) Dealing with temporal relative dependency between actions.

(i) the question is how to specify this kind of dependencies in order to
capture actions ordering, actions overlapping, or other relationships
between the start/duration/stop temporal expressions.

(i) This kind of conditions must be checkable with respect to the
effectiveness of their scope. Some systems have sensors for capturing
the fact that an action succeeded. Usually, management tools require
another “check-status’ action on the MIB to which the target object
belong, via get/get bulk (SNMP) or m-get (CMIP) etc. Practicaily,
when a policy partially fails on a non-synchronism between its actions,
the entire subnetwork must be set.

We will consider these aspects to improve the existing policy CIM.

Chapter 4

Proposal for Temporal Policy Correlation

Policies need a richer CIM, especially in order to express types of events, types of
interactions between networks as well as types of policies that can be applied upon a
network.

Different correlation mechanisms and specification techniques can be used to
detect conflicts when policies are applied (temporal logic, temporal interval logic,
correlation windows).

Due to the real time issues of different events that occur in networks and to the
fact that networks are widely spread on the globe, it is important to synchronize the

actions that result from policies with apparently non-related goals when applied.

4.1 Typing Schema

Generally, events occurring within a network are well typed (SNMP traps, CMIP
notifications, types of alerts etc). Most of the component parameter values are dependent
upon various kinds of relationships a given network component has with its neighbors
(since interactions take effect across these relationships). It is logical that for a given
combination of different types of events occurring within a system, and considering

various component types and component interaction types, different policy types apply.

4.1.1 Typed Events

According to a given activation event type, a policy may trigger a given action or set of
actions. Basically, we will present the (i) SNMP (RMON) alarmGroup with different
types of events and a useful hysteresis mechanism for triggering, (ii) a solution for fault
(alarm) notification that prescribes what a normalized set of alarms must include, and (iii)

summarize how CORBA Event Service treats the event typing issue.
91

Remote Network Monitoring (RMON) defines standard network-monitoring

functions and interfaces to communicate between SNMP- management consoles and

remote monitors. In the context of RMON, the alarmGroup is used to define a set of
thresholds for network performance. When a threshold is crossed, an alarm is sent to the

monitoring console. The alarmGroup consists of an alarmTable whose entries are

variables to be monitored, sampling intervals and threshold parameters. The objects in the

alarmTable are:

alarmindex — unique integer representing the row number in alarmTable
alarminterval — interval in seconds over which data are sampled and compared with
the thresholds

alarmVariable — object identifier of a particular variable in the RMON MIB to be
sampled. The only object types allowed are those that resolve with to ASN.1 type
integer, namely integer, counter, gauge, and TimeTicks.

alarmSampleType — the method of calculating the value to be compared with the
thresholds. When the value of the object is absoluteValue(), then the value of the
selected variable is compared directly with the thresholds. When the value of the
object is deltaValue(), then the difference between the value of the selected variable at
the last sample and its current value is compared to the thresholds.

alarmValue — the value of the statistic at the last sampling period
alarmStartupAlarm — the possible values are: risingAlarm(), fallingAlarm() and
risingOrFallingAlarm. Its value determines if an alarm will be generated if the first
sample after the row becomes valid is greater than or equal to the risingThreshold(),
less than or equal to the fallingThreshold() or both.

alarmRisingThreshold — the rising threshold for the sampled statistic
alarmFallingThreshold — the falling threshold for the sampled statistic
alarmRisingEventindex — index of the eventEntry used when rising threshold is
crossed. EventEntry is part of the eventTable of RMON.

alarmFallingEventindex -- index of the eventEntry used when falling threskold is

crossed.

92

The event types in alarmSampleType are usually established by considering their
occurrence (periodical, non-periodical). For example, according to their incidence in the
system, alarms can be categorized as yellow alarms, specifying warnings or red alarms,
specifying outstanding alarms.

Small fluctuations in the values are prevented from causing alarms by a process
that RMON calls Hysteresis Mechanism (Figure 4.1).The alarm generation mechanism is
viewed as a two-states process. In the rising-alarm state, a rising alarm will be generated
when the value of the observed variable reaches or is higher than the rising threshold. In
this situation, the mechanism is disabled from generating a falling alarm. After the rising
alarm is generated, the mechanism enters the falling-alarm state and remains there until
the observable value reaches the falling threshold [Sta93].

A State of alarm-generation

mechanism
Filling
Alarm State Falling alarm Rising alarm
triggered Y 2 triggered
Raising Alarm Sampled object value

State

Falling Raising

threshold threshold

Figure 4.1 Hysteresis Mechanism

Houck and Finkel [Hou95] present an alarm notification system, commercially
available under the name of NetFACT software. The idea is to use a collection of
techniques specialized to the type of topology that encompasses the faults or alarms being
considered. The two techniques used are:

- path analysis — deals with failure of path problems. Faults are reported by alarms,

which are then analyzed to evaluate which component of the path is faulty, and
93

tree search — used to determine if the nodes identified in path analysis are directly
responsible of a fault or if they are part of a faulty component.

The different stages of problem solving with NetFACT are briefly presented below:

Awareness — build the internal representation of the alarm and wait for related alarms
to arrive;

Get Config — obtain the configuration information from the configuration model;
Diagnosis — identify the cause of the problem by the techniques presented above;
Recovery — await the recovery of network components affected by the fault;

Closure — mark the problem as closed, and

Purge — an operator purges the problem from the system.

Upon the receipt of an alarm, its corresponding model object is located in the database. A

new alarm must be normalized to a consistent syntax and semantics. A normalized alarm

must include:

the identity of the object to which the alarm refers;
the impact to the behavior of the object;
votes representing the probable source of fault, and

other information such as alarm ID and timestamp.

Another event model [Sch97] is used in CORBA-based monitoring and

management systems. In an object-oriented framework, event classes specify the attributes

contained in event messages of the corresponding event class type. The definition of the

class Event contains the generic attributes of notification messages common to all

instances of event classes, which can be derived from this abstract base class. Two kinds

of attributes may be assigned to each event: dependent or independent. The dependent

attributes are determined by the particular type of event. The class Event represents the

root of inheritance tree formed by subtyping to describe events emitted my real MOs. For

this reason, event channels can be used as typed event channels based on the CORBA
Event Service [Omg95] using Event as the expected type for push server and consumer
interfaces.

4.1.2 Typed interactions between network elements

Relationships are class properties that represent the dependencies between MOs.

Therefore, all objects instantiated from a given class have similar relationship types. Fault

propagation in the network is dependent upon the network elements relationship

dependencies. Next, we will present a three levels dependency model:

- the first level is the direct in indirect dependency class;

- the second level is composed of three relationships which inherit from the first level :
users and shares, connection end-point and matched connection, and

- the third level is composed of five dependency relationships : usage allocation
dependency, message passing dependency, shared resources dependency, existential

dependency and operational dependency.

First Level:
MOs in telecommunication networks are dependent upon each other in complex

ways. All dependencies are composed of two kinds of basic dependency (Figure 4.2)

Generic Relationship Class

|
| |

Direct Dependency Class Indirect Dependency Class

Figure 4.2 Direct and Indirect dependency Class

In the Direct Dependency Class an object is referenced directly by another object
and appear as directed edges in the dependency graph (Figure 4.3). In the Indirect
Dependency Class, a sequence of one or more direct dependencies exists between two
objects. In a dependencies graph, if there is a directed path from A to B, then A is said to
depend on B and B is said to be a supporter of A. If a node is dependent upon itself, then
there is circularity. A node A is a candidate supporter of B if the addition of a direct
dependency of B on A does not induce circularity.

95

Figure 4.3 Example of Dependency Graph

In the Example of Dependency Graph (Figure 4.3):
- A depends directly on B and E
- AdependsonB,C,E,and F
- Eisasupporterof A and D
- D s a candidate supporter of A and B, but not of C, E or F

Second Level:

Three-second layer dependency relationships have been identified [Jor93). They
inherit the features from the superclass direct or indirect dependencies. This means that
network elements that have these three relationships can depend directly or indirectly on
each other. Indirect dependency is the result of direct relation composition. Figure 4.4
depicts a n-layer connection between objects A and B with corresponding underlying
connections and links used to realize this connection.

Layer n A B
Layer n-1 C D E F
Layer n-2 G H I J K L

Figure 4.4 n-Layer Connection

(a) Uses and Shares Relationship relates the resources to the hardware or software

resources on which they are based. For a n-layer connection, the application of this

9

relationship will give the local view of the (n-1)-layer connection, which is used for
transmission. In the example, object (A, B) uses (C, D) and (E, F). The layers in the n-
layer connection example do not reflect the OSI communication protocol layer, but
any organization in which the objects have “uses” relationships between them. When
two objects use the same resource, they have a “shares” relationship between them
based on “uses” relationship.

(b) Connection EndPoint Relationships. Two MOs representing endpoints are connected
directly and the superclass is direct dependency class.

(c) Matched Connection Relationship. This relationship exists between peer connections,
which are linked by gateways or switches. The superclass is direct dependency class.

Third Level:

Level 3 contains terminal dependency classes in the dependency hierarchy we are
presenting. They are subclasses of classes from the second level which inherit from the
direct and indirect dependencies. Level 3 contains the following dependency models :
usage allocation dependency, message passing dependency, shared resources

dependency, existential dependency and operational dependency.

Very few existing management tools consider all these three dependency models.
If we reconsider the NetFACT (Section 4.1.1), fault visibility can be limited and not all
the dependencies that point to a cause of fault are known. Only applying the NetFACT
heuristic may result in incorrect identification of a node that is visible for NetFACT as a
fault cause, while the real fault cause is a hidden common element inside the carrier
network. To solve the problem, such failures are reported as independent faults. Hidden
dependencies called for a change in NetFACT’s heuristic from “minimum number of
faults” to “best explanation for each symptom”.

Another kind of interaction between network elements is also found in the
NetFACT example and concemns the nature of dependency relationships between network
elements. In the case of simple dependencies, the dependent resource depends only on the
binary availability of the supporting resources. More complex dependency relationships

depend on logical combinations of other resources. Other resources depend on a
97

quantitative amount of capacity in the shared resource. In such cases, a drop in the

available capacity may cause failures in the dependent resources.

4.1.3 Typed Policies

As already outlined in Section 2.1, policies range from high level, that is, abstract, non-
technical policies, to low level, that is, technical policies, immediately instantiable and
applicable. Usually, these low level policies specify as resulting actions some actions
from those offered by SNMP, COPS and LDAP, already presented. The level of
abstraction is a function of the degree of detail present in the policy definition and the
ratio of business issues to technological issues within the policy.
Policy classification has a series of advantages, such as:
- better understanding of what exactly can be accomplished through management
policies;
- identification of similarities and differences between policies to determine their
corresponding class;
- availability of a policy hierarchy for policy transformation process, and
- derivation and verify the components of formal definition of policies.

Since we promote a system with typed events and typed dependencies, a typed
policy-enabled tool will ease policy conflict detection and resolution. This also depends on
the manner policies are specified and stored. Some service providers such as FidoNet or
VirNet maintain their policies in informally written policy catalogues. Rene Wies [Wei95]
presents multi-dimensional criteria for policy classifications, the result of deep analysis of
these policy catalogues and talks with system administrators and operators. No matter how
abstract a policy is, it can be studied according to these criteria. The multi-dimensional
criteria for policy classification includes:

- Activity (reacting, monitoring, enforcing);
- Mode (prohibition, permission, obligation);
- Services (mail, consulting, data storage, network installation, etc.);

98

- Management Scenario (enterprise management, application management, systems
management, network management, etc.);

- Management functionality of the policy’s actions (performance, configuration, security,
fault);

- Functionality of target objects (traffic management, performance analysis, security, fault
location, accounting);

- Type of targets (PCs, hubs, routers, printers, employees, etc.);

- Trigger Mode (constantly active, periodic, asynchronously triggered, etc.);

- Life-time of policy (short-term, medium-term, long-term);

- Geographical criterion (global, country, city, building, department, working-group,
office), and

- Organizational criterion for targets and subjects (corporate, personnel, marketing,
research and development, production etc.).

Another way of specifying policy types and active policy relationships [Din00]
exist. This model distinguishes between pre- and post-conditions of a policy and
considers the rules of the form IF <pre-conditions> THEN <actions> WITH <post-
conditions>. However, post-conditions are assumed to hold. No feedback mechanisms are
provided. In turn, some well-defined policy types are provided, which may help to keep
policy correlation under control. An action is a command or method invocation and it has
pre-conditions, post-conditions and an activation event. A plan is a set of related actions
and is used to specify dependencies between actions. The model can be summarized as
follows:

policy ::= <policy-body> <policy-properties>

policy-body ::= IF <pre-cond> THEN {<> | <action> | <plan>}
[ELSE {<> | <action> | <plan>} <action> | <plan>}]
(<post-cond>]

Three distinct types of policies concerning policy bodies have been identified:

1) Daemon-based policy. This type of policy can be represented by the IF-THEN form,
with post-conditions guaranteed by the action. The daemon captures the pre-
conditions and triggers the action while the post-conditions are ensured by the policy
according to those guaranteed by the action.

2) Plan-Command policy. This type of policy assumes that a goal has been given to the
system and an action or plan has been appropriately established.

3) Desirable-goal oriented policy. In this type of policy there are no guarantees on the
execution. A goal is registered as desirable, but nothing guarantees its satisfaction.

This approach allows us to specify the required policies to be active for a given
policy to be applied. Even if the majority of necessary elements have been introduced,
very few are found in practice.

4.1.4 Considered Policy Schema

A policy is a set of rules that have specific properties. Considering previous proposals, we
represent policies as depicted in Figure 4.5 where the abstract class PolicyFeatures has
been introduced to capture various static properties of a PolicyGroup.

PolicyGroup <> PolicyFeatures
PolicyRule PolicyCondition
PolicyAction
Figure 4.5 Policy Representation

The types of events and the types of interactions are represented by PolicyActions
and PolicyConditions. Each different class of policies has its own policy type.

100

4.2 Correlation Mechanisms

Certain event models or type of interactions depend on time, others don’t. In focusing on

temporal issues, the following components are desired:

- an event model that takes temporal issues into account;

- operations to express the relationship in time between two events, and

- arules model that expresses the triggering of particular actions as a function of real
time.

4.2.1 Event Modeis with Temporal Features
An event can be represented as a pair
event = (message, time component)

where the time component may take various forms:
(@) time component = [tl, _,t2], tl = starttime and ¢2 = end time.
(b) time component = [tl, 8,], tl = starttime and = event duration.
(c) time component =[_, & t2], & =eventduration and r2 = end time.

(d) time component=[,6,], J =eventduration

4.2.2 Temporal Mechanisms for Processing Temporal Features

Temporal mechanisms play a critical role in monitoring network events.
Knowledge about absolute and relative times of occurrence of events, their sequence and
duration is mandatory. Several temporal relations [Jak95] have been defined for time-
dependent event correlations. We consider the first type of event notation introduced in
section 4.2.1 and define events el =(ml, [t],tI']) and e2=(m2, (t2, t2°]). These two
events may have the following temporal relations between them:

101

1) event e2 starts an interval h after event el :
€2 after(h) el <=>t2>tl+h
el

P
h e2

|

2) event e2 starts an interval h after the end of event el :
e2 follows(h) €2 <=>t2 >tl'+h
el e2

3) event e2 finishes an interval h before event el :
€2 before(h) el <=>tl' 212°+h
el
h |
<——e§—b

4) event e2 precedes event €2 by an interval h :

e2 precedes(h) el <=>1t22tl'+h

el

|

h [}

|

e2
5) event e2 happens during event e2 :
e2 duringel <=>t22tlandtl’ 212’
el

<+ - >

4>

6) event el starts at the same time as event €2 :
el starts €2 <=>tl =2

el
4+t——>

«—= —-»>

102

7) event el ends at the same time as event e2 :
el finishes €2 <=>tl"' =12’

el

—>
«—= >

8) event el coincides with event 2 :
el coincides e2 <=>tl =t2and tl' =12’
el

—>

|e2|

9) event el overlaps with event €2

el overlapse2 <=>1t2" 2tl'>t2 >tl

el
< >
e2
4

From the above nine basic temporal relations between two events, some conclusions can

be drawn:

- from definitions 1) and 2) and if d = the duration of event el, it follows that :
if e2 follows(h) el then €2 after(d+h) el

- from definition 2) and 4) it follows that :

e2 follows(h) el <=> el precedes(h) €2
- from definitions 1), 3), 5), 6) and 7), it follows that ;
if €2 during el, then €2 after el and e2 before el (and vice-versa)
if e2 after(h) el and el after(h) €2, then e2 starts €2 (and vice-versa)
if €2 before(h) el and el before(h) €2, then el finishes €2 (and vice-versa)

103

4.2.3 Events Correlation and Correlation Window

Event correlation is becoming increasingly important in managing the large volume of

event messages present in today’s networks. On one hand, it becomes extremely useful in

treating actions prescribed by policies defined in different time zones. On the other hand,

using such mechanisms, one can reduce the time of policy conflict detection and obtain

network stability as a sign that a given policy has successfully applies. Among the

advantages of event correlation we can mention:

- reduction of the information presented to network managers by dynamic focus
monitoring an filtering;

- increase in the semantic content of the information presented to the network managers
by aggregation and event generalization;

- fault isolation, diagnosis and suggested corrective actions in real-time, and

- network behavior and trend analysis.

A classical event correlation is a dynamic pattern matching over a stream of
network events. Other information included in the correlation pattern includes network
connectivity information, diagnostic test data, data from external databases etc.

Several results may arise after applying event correlation rules:

- anew event may be transmitted to the manager;

- an action may resolve existing events;

- amessage could be sent about the existence of faults in the network;

- an executable external procedure may be called, and

- an internal system procedure may be called

All these resulting events are treated as regular events and are therefore also subject to
event correlation. This creates complex, multi-level correlations.

In terms of the time model, point time and interval time are used. In point time,
events take place at integer times on a pre-defined time scale. Examples of point time
actions are system interrupts and user commands. In time interval, events have a time of
start and the time of finish. Examples of interval time events are network elements faults
and changes in network behavior.

104

According to the nature of the operations performed on events, several event

correlation types have been identified.

Y

2)

3)

9

5)

6)

7)

8)

Compression. Multiple occurrences of identical events are reduced to a single
representative event. The number of occurrences of the event is not taken into
account.
[a,a,...,a] =>a
Filtering. This operation is mainly used to reduce the number of alarms presented to
the network manager. When some parameter p(a) of an alarm a does not belong to a
pre-defined set of legitimates values H, then alarm a is discarded.
[a, p(a) <H]=> O
Suppression. The event a is temporarily inhibited depending on the dynamic
operational context C of the network management process. A network management
context change can be due to other network events, resources, priorities etc.
[a,Cl=>C
Count. This type of correlation is counting and thresholding the number of repeated
arrivals of identical events.
[n*a)=>b
Escalation. This type of correlation assigns a higher value to a particular parameter
p'(a) of event a.
[n*a, p(a)] => a, p'(a), p™>p
Generalization. In this correlation type, an event a is replaced by its super class b.
This allows network managers to view management situations from a higher level.
[a,acb]=>b
Specialization. This is the opposite mechanism to generalization. It replaces an event
by a specific subclass of this event.
[a,a>b]=>b
Temporal relation. Events a and b can be correlated depending on their order and time
of arrival by using this type of correlation mechanism. Different types of temporal
relations have already been described in section 4.2.1
[aTbl=>c

105

9) Clustering. Complex correlations can be created using the logical operators (and, or,

not) with simple events.

[ab, ... T, A, v,0]=>c¢

An event pending in an event list will be eliminated either by clearing by a
network manager or by the expiration of its lifespan.

As depicted in Figure 4.6, each event correlation process has a correlation time
window. A correlation time window is a maximum time interval during which the
component events should take place. The length of the correlation window and the
lifespan directly determine the potential of creating correlations. A wider correlation
window and a longer lifespan increase the chances of creating a correlation. For fast
events, the length of the correlation window should be seconds, while for slow events the
correlation window can be hours or days. The right value for the correlation window and

the lifespan comes from practice of managing a particular network [Jak95].

event b

ossmsssssss CVENt C

’

Correlation window

< -
Correlation lifespan

Time

Figure 4.6 Correlation Window

4.2.4 Policy Conflict Detection

Policy conflicts can generally be classified in two categories:
(a) the first category related to policy definitions, rules (conditions and actions), etc.
(b) the second category related to temporal issues (policy execution).

106

(a) The first category of policy conflicts has been analyzed and discussed [Lup97]. As
already defined, authorization policies specify the activities a manager or agent can
perform on a set of managed objects or what monitored information can be received.
Authorization policies can be positive (A+) or negative (A-). Obligation policies define
what activities a manager or agent must or must not perform on a set of target objects.
Again, obligation policies can be positive (O+) or negative (O-). Positive and negative
authorization and obligation represent different policy modes. Modality conflicts are
inconsistencies in policy specification, which may occur when two policies with opposite
modalities refer to the same subjects, actions and targets. Three types of modality

conflicts were identified:

1) O+/0-: the subjects are at the same time obliged and not obliged to perform
the same actions on the target objects.

2) A+/A-: the subjects are at the same time authorized and not authorized to
perform the same actions on the target objects.

3) O+/A-: the subjects are obliged but forbidden to perform the same actions on
the target objects.

These kinds of conflicts are application specific and can not be detected directly
from the policy specifications. Therefore, additional information specified in the form of
meta-policies is required to detect these conflicts. Meta-policies define application-
specific consistency constraints related to the contents of policies. They limit the set of
acceptable attributes for policies. Different types of application specific conflicts have
been identified [Mof94]: resource priority conflicts, duties conflicts, interest conflicts,
multiple managers conflicts, self-management conflicts etc. These conflicts have been
classified according to the overlaps between the subject, action and target sets.

In the case of modality conflicts, they arise as a result of a triple overlap between
policies subjects, actions and targets. Detecting all tripie overlaps between policies with
opposite signs modalities will detect many possible conflicts that do not necessarily result
in real conflicts. There exist several principles to establish a policy precedence

107

relationship used as selection rule to screen out some of these possible but not actual
modality conflicts:

1) Negative policies always have priority. A forbidden action will never be permitted.

2) Assigning explicit priorities. A user can specify priority values to policies. This is
extremely difficult to manage and may result in inconsistencies in a distributed system
in which different people are assigning policy priorities.

3) Distance between a policy and an MO. Higher priority is given to the policy applying
to the closer class in the inheritance hierarchy when evaluating access to an object
from a query. This distance between the policy and the objects to which it applies
indicates the relevance of the policy and can be evaluated from the number of levels
of refinement of the organizational policies.

4) Specificity related to domain nesting. A policy that applies to a subdomain has higher
priority than a policy applying to ancestor domains. Usually, a subdomain is created
for a specific management purpose, to specify a policy that differs from policies of the
parent domain. Precedence based on domain nesting can be used to automatically

resolve some conflicts.

(b) For the second category of policy conflicts, those related to temporal issues, it is

essential that the clock system be synchronized and the absolute values of the intervals

have the same origin (TimeZone):

1) There are situations in which zonal clocks might become de-synchronized and
appropriate synchronization mechanisms are necessary in those cases. This issue will
be further discussed in Section 4.2.5.

2) There is a zonal time delay which has to be taken into account by a translation « A »
between time zones in order to obtain the same origin as reference. Section 4.3 will

address this concern.

108

4.2.5 Synchronizing Zonal Clocks

A general time synchronization algorithm exists [Ber00] that analyses the time offset
between any two computers’ clocks in a network using mathematical topology properties.
One network element, called a client, is synchronized in time with another network
element, called a reference, if, at any moment, it knows the time offset between its clock
and the other device’s clock, or it can display the same time.

A conversion rule from a clock on host a to a clock on host b can be expressed as
follows:

Tb(t) = Fab (Ta(t)) = (1+o). Ta(t) + &
Where

o = the shift in frequency (drift) between the two clocks.
8 = offset between two clocks at some moment
(o and 3 are not assumed to be fixed but slowly changing over time)
t = universal absolute time
Ta(t) = time showed by local clock at host a at that time
Fab() = conversion function that transforms time of host a in time of host b with
a calculated error interval, such that the result is guaranteed and within

requested maximum interval [-n,n]

Time synchronization is entirely handled by clients and they are responsible for
guaranteeing the requested precision. To broaden the application range, the time

synchronization process can be divided in two levels:
1) Level I mechanisms are responsible for determining the offset and its uncertainty

between a client clock and a reference clock. As depicted in Figure 4.7, there is a Poll

mechanism that exchanges time information between the two entities involved.

109

Host a Host b

Ta(tl)

I POLL

1->2

€a To (12)
™ (©B)

ga 4 I ANSWER

Ta (14)

Figure 4.7 The Poll Mechanism

Through the poll mechanisms, host a collects the values of Ta (t1), Tb (t2), Tb
(t3) and Tb (t4) and determines the current offset with an uncertainty which is function of
the round-trip delay
Tb (t3) - Tb (12)
RTa=¢a '"?+ea”*=(Ta (t4) - Ta (t1)) - Q)

l+o

The triplet (ta, tb, £b) to remember in history is calculated as follows:

Ta(tl)+Ta(t4) Tb(2)+Tb(3) RTa
; , - (I+0)

2) Level 2 mechanisms are responsible for calculating the conversion function and
guaranteeing the required precision level. In summary, level two performs the
following sequence of actions:

- obtain observation data from Level 1. If the current reference can not be found, find a
new reference and restart. Else, add the new data to the history

- run the synchronization algorithm on the history to calculate the conversion function
and bounding structured used to calculate errors

110

calculate when a new time information should be brought in from the reference in

order to ensure the requested precision.

The algorithm works to build mathematical structures on the elements of the history,

which are then used to calculate the conversion function and the uncertainty interval. The

history H is formed of triplets of the form H = { (ta1, to1, Ab1), (taz, toz, Ab2); --- » (tans tons

Apq)} which represents the current set of observation data with their uncertainty intervals.
The algorithms has the following steps:

1
2)
3)
4)

5)

6)
7)

Calculate two sets of points, of maximum and minimum positions of observation data
in their error range.

Build the convex closures of each one of these sets.

Detect crossing closures and correct them by discarding points from history.

Remove from history data that has not been used by at least one of the convex
closures.

Using the convex closures, calculate infinite lines for maximum and minimum
gradient for the observed clock.

Remove useless data from the history.

Choose conversion function in terms of convex closures positions and infinite lines in

step 5).

The bounding structures of the algorithm limit the range of values of each parameter of

the conversion function. Clock granularities allow the algorithm to get rid of errors as

observation data accumulates. More information on the details of the algorithm and

conclusions on its implementation are presented [Ber00].

4.3 Proposal on Temporal Aspects Considering Time Zone

Certain formalities or specification disciplines must guide the definition of a policy.

According to the IETF ongoing work and some notable achievements, a policy can be

represented at a high level as shown in Figure 4.5.

Although most of the policy definitions have generic, not ownership-related,

characteristics, due to the large space shared by either the same company or many

111

cooperating companies, considering temporal aspects is mandatory for correct policy
definition.

Introducing temporal aspects requires a specialization of policy types (for other
policies to be in place), or a new time-oriented data and action models used in policy
definition.

4.3.1 Coping with TimeZone

With the advent of global market, worldwide networks are common skeletons for
communicating. Implicitly, this means that the server hosting a policy set (PDP) may be
widespread across many geographical areas, having a definition Time Zone.

We assume an equal division of 24 hours in a number N of time zones. Without
loss of generality, let’s consider the natural 24 zones used in any global temporal business
reference. Therefore, we understand thereafter that a Time Zone corresponds to a «one
hour band» within a 24 hours day.

We semantically distinguish between Time Zone of a PDP and Time Zone of a

PEP when considering a given type of policy and one or many of its instances. Therefore,

Figure 4.5 becomes Figure 4.8.
Temporal Timeless
PolicyGroup O PolicyFeatures
PolicyRule <> PolicyCondition

PolicyActions

Figure 4.8 Policy Representation revised (1)

12

Among the desired features for a policy (Chapter 3), we introduced a category of
features called “Temporal”, as distinguished from those “Timeless”. In the latter category
we included all previous features with the exception of the temporal ones.

We define, in the Bachus-Naum Form, the data type called TimeZone as follows:

TimeZone ::=1|2|3]...124
and we introduce the policy attribute

timeZone: TimeZone

(the notation a : A means that instance “a” has the type, or belongs to the class «A»)
A policy template can be represented as follows:

o - ———----

which means “Policy of class P is defined in time zone 3”. This property will be useful in
synchronizing other temporal features.
We also introduce the parameter

applyilnZone : set of TimeZone
to express the fact that a given policy class, regardless of the time zone it has been

defined (hosted) in, can be applied only on a given set of time zones. If it is not specified,
applyInZone takes the same value as timeZone by defauit.

113

Finally, we introduce the attribute applyingZone, defined as follows:
applyingZone : TimeZone

with the semantics that applyingZone represents the current time zone an instance
of a given policy is being applied in. If not specified, the attribute applyingZone takes the

same value as timeZone by default.

In conclusion, we introduced and defined the semantics of the following temporal
parameters:
- timeZone : TimeZone
- applyinZone : set of TimeZone
- applyingZone : TimeZone
where TimeZone : : = 1| 2| ... | 24 and the following properties hold :
- applyInZone = applyingZone, when a policy is defined and used in the same time zone
and
- applyingZone c applyinZone, when a policy is defined in one particular time zone and
used by a set of time zones.

In the present definition we do not consider the change of date effect that could
easily be expressed as:

timeZone = timeZone + 24

We note that, according to chapter 3, Table 3.1, there exist some policy-enabled
tools that do take into consideration temporal elements, but these are limited to date, day

of the week or month.

4.3.2 Coping with “Companion Policies”

The notion of “companion policy” has already been needed in order to specify existential
intra-policy constraints [Alp95]. However, the notion has not been extended to the policy-

114

enabled mechanisms. We consider a new extension of the policy schema in Figure 4.8 by
representing this dependency as a new type of global constraint on a policy.

Temporal - Timeless

=~_ >

,.____<> PolicyGroup 0——— PolicyFeatures

Constraints
PolicyCondition

PolicyRule <>

PolicyAction

Figure 4.9 Policy Representation revised (2)

Let’s consider the pseudo-operator:

require < policyType > with < policyTypeProperties >

where :

- policyType is is any of the policy types defined within the model and available to be
applied (PEP) within a given set of timeZones.
- polictTypeProperties expresses particular conditions on a given set of policy

instances, for example:
policyType.state = {triggered, triggarable, blocked}
means that the attribute szate of an instance of policyType may have values within the

set {triggered, triggarable, blocked}.
If we re-use a template-like specification, the representation of a policy can be

written as follows:

115

Policy A

require < policyType > with < policyType.state ={triggered, triggarable}>
timeZone = 2

applyInZone =3

applyingZone = 2

L R el

with the semantics

“When an instance of Policy A is necessary, then in that time zone where applyingZone

specifies, the following condition must hold :

(policyA.applyingZone c policyB.applyinZone) A

((policyA.state = triggered) A (policyB.state=triggered)) = TRUE *

Obviously, the discussion is more complex if we consider some “precedence

relationships” between policy states. Refined semantics may raise various case studies,

for example:
i) policy A can be triggered iff policy B can be triggered after policy A.
A B
i1) policy A can be triggered iff policy B is already triggered.
A
A
iii) Policy A can be triggered iff policy B has been triggered and all B's actions
succeeded.
B A
This refinement is out of the scope of our proposal since it is based on the same
policy model.

116

It is worth mentioning that Temporal Operators mentioned in Chapter 4, Section
4.2.1, can be used to express supplementary conditions between properties of policies in
terms of firing”.

It is also valuable to note that, by the “start” and “end” of a policy, we understand
the events outlined next. Commonly, a policy has some conditions to be fired. The last
condition that determines if the logical condition set becomes true determines the firing
point, or the “start”. Also, if one particular condition in a set of conditions is considered
as “main condition™ or “activation condition”, it is the one to determine the “start”. Firing
a policy results in a unique action or a set of actions. The “stop” point for a policy is
considered to be when that unique action succeeded or failed, but terminated, or when the
latest action in a set of actions (temporally speaking) succeeded or failed.

4.3.3 Coping with Relative Temporal Ordering and Dependencies between Actions

We consider, by default, that an action or set of actions resulting from a policy belonging
to a given timeZone are defined with respect to the origin of the temporal interval
appropriate to that time zone. For example, Zone 1 <=> [0, 1), Zone 2 <=> [1, 2), etc,
where interval boundaries are hours and there are 24 hours in one day.

Sometimes, a policy having actions defined according to policy.timeZone may

apply in another TimeZone.
Temporal Timeless
Policy <> ‘x /‘
Group ;
Co ints PolicyFeatures
? é Temporal
- - Constraints
PolicyCondition Policy KO— PolicyAction
Rule
< Temporal
Actions

Figure 4.10 Policy Representation revised (3)
117

The previous generic enhanced Figure 4.9 can be revised to include the actions
performed by a policy with appropriate temporal relationships.

On one hand, this allows us to properly describe the desired plan (a set of actions
having the same firing conditions, but with some temporal interaction constraints).

On the other hand, one can express plans between actions having temporal
constraints, but defined and possibly applied in different time zones.

Our analysis is focusing on providing the basis of the importance of considering

time zones by considering the following example.

Example: Translating Temporal Events from one Time Zone to Another

Let avi[tiy,t2]and

ari{tjtp]
be two actions that must be triggered by a combined policy with the following temporal
constraints :

ati—> 0 —>anj
meaning that “ar; ” will act with a delay of “3* after “ar;“ is finished.
Therefore, when applied in “timeZone = k", with Ti < Tk < Tj, the following condition
must apply :

tiz + (kei) + 8 < 1 + (k)

because a tiand a T; in timeZone k will be :

aqi[tiy + (k-i), tp + (k-i)]
aT1j[i + (k-j), tiz + (k=)]

Time zones

! 1 I
T 1 T >

118

This condition automatically becomes a temporal constraint for the policy triggering a r;
and a 1; with 3 delay.

Conclusion
We focused on policy CIM and means to provide temporal information to reflect the

distribution of the networks. Our proposal extends the existing CIM and enriches the

policy hierarchy with new, reusable, temporal classes.

119

Chapter §

Implementation Features of the Proposal

Chapter 3 presented an extensive list of network management tools characteristics and
focused on the features offered by policy-enable tolls. While very developed in areas
concemning standard/IETF drafts orientation, scalability, multi-platform support, etc,
many tools don’t offer any support regarding temporal aspects of policy conflict
detection.

Based on our tool analysis, we conclude that no temporal relationships are
considered by existing policy-enabled tools, but date and day of the week. At the last
IETF meeting (Adelaida, Australia, April 2000) the issue of time zones was raised and
most participants recognized a need for a formal schema, eventually IETF Draft, on this
topic. The present study is intended to contribute to this effort.

From the feasibility perspective, in our consideration, we looked at Sun’s
Bandwidth Allocator 1.0 and tried to evaluate how our proposal can enrich its set of

capabilities.
S.1 Sun’s Bandwidth Allocator 1.0

Before evaluating how our proposal can enrich the functionalities of Sun’s
Bandwidth Allocator 1.0, we present the bandwidth allocation problem in networks, a
summary of Sun’s bandwidth solution and its constituent building blocks._

5.1.1 The bandwidth problem

From a router’s point of view, quality of service support can be broken down in three

steps: definition of packet treatment classes, specification of the amount of resources
120

(usually bandwidth) for each class of traffic, and sorting of the incoming packets into
. their corresponding classes. DiffServ treats the first and the third steps above, while the
second issue is addressed devices called bandwidth brokers (Figure 5.1).

bandwidth bandwidth
broker broker
care 46

core
routers - routers /
./ l Domain 1 I I Domain 2

Egress Edge Ingress Edge
Router Router

Figure 5.1 Bandwidth problem

Bandwidth brokers keep track of the current allocation of marked traffic and
. interpret new requests in the light of the policies and the current allocation. They are
responsible for two important aspects:
- Inter-domain resource management ~ deals with provisioning and allocating resources
at network boundaries between two domains.
- Intra-domain resource management — deals with bandwidth allocation within a

network or domain. It supports information flows across a domain from an ingress

point to an egress point.

§.1.2 Sun’s bandwidth solution

Sun’s solution to bandwidth allocation, Bandwidth Allocator 1.0 software [Sun98],
manages the bandwidth allocated to the applications, users and organizations that share
the same outgoing intranet or Internet link. The two key points are (1) to prevent a small
number of applications from taking up all the available bandwidth by enabling control of
the allocated bandwidth and (2) to avoid congesting the network by prioritizing the

. 121

traffic. The software provides guaranteed bandwidth and quality of service, monitors the
levels of bandwidth and quality of service they are providing, keeps the appropriate
accounts and does the capacity planning.

The outgoing traffic is managed based on the type of traffic (FTP, e-mail, telnet,
etc) and on the end-user or organization source or destination address. Any type of TCP
or UDP-based traffic can be managed by the Sun Bandwidth Allocator. It works in a
heterogeneous environment without any modification of the systems accessing the
gateway and can run on top of WAN links (PPP) or LAN links (Ethernet and FDDI).

The Packet Classifier component collects packets from the IP layer, applies the
filters defined in the provisioning rules and assigns each of them to its appropriate class
queue where it waits to be processed. If the queue to where a packet is allocated is full,
the packet is dropped. Its retransmission will ensure that the packet is resent.

The following factors are important when assigning a packet to a particular class:
(1) Protocol (TCP or UDP)
(2) IP source address
(3) IP destination address
(4) TCP or UDP source port
(5) TCP or UDP destination port
The configuration of Sun’s Bandwidth Allocator 1.0 specifies, in terms of some or all of
the above factors, the set of known classes for a network node. It also allocates a priority
and a percentage of bandwidth to each class. Classes are arranged hierarchically and
every class has a parent.

The Packet Scheduler component decides the order in which class queues are
processed based on the percentage of bandwidth configured and the priority of each class.
Within a queue, the FIFO (first in first out) priority is applied. When the network traffic
reaches the maximum allocated to a class, packets from the next lower priority class are
processed.

Sun Bandwidth Allocator 1.0 can be installed in two environments: as a Traffic

Manager or as an Application Controller.
122

(1) As traffic manager

When installed in the “IP-transparent” mode of operation on a LAN, WAN or Internet
server, the SUN Bandwidth Allocator 1.0 can control the outgoing traffic and still
remains transparent to the [P users. In this mode of operation, any failure of the hardware
or software can make the link unavailable. One of several solutions can be used to ensure
higher availability, namely to reduce the path redundancy with intelligent routing
algorithms such as OSPF, to reduce router redundancy with Hot Standby Routing
Protocol combined with a routing protocol which converges very rapidly (such as EIGRP)
or to link redundancy with link monitoring by fault tolerant switches.

(2) As application controller

When installed as an Application Controller, SUN’s bandwidth allocation
software controls output from a server to a LAN, WAN or Internet. The server can be a
file, an application or a Web server. For exampile, traffic outgoing from a cluster of Web
servers of an ISP can be prioritized according to server or application. In this manner, the

ISP can guarantee bandwidth to each customer, depending on the hosting contract.

Sun Bandwidth Allocator 1.0 gives real-time statistic information including: class
id, class bandwidth, traffic volume, number of dropped packets etc.

Statistics can be accessed directly via Java Graphical User Interface or via any
SNMP manager such as Solstice Domain Manager or Solstice Site Manager. A statistics
API allows the building of user-defined monitoring utilities or the integration of Sun
Bandwidth Allocator 1.0 statistics into the user’s own monitoring system.

Accounting is done as depicted schematically in the Figure 5.2 below.

123

SUN Accounting Rating
Bandwidth [25" | Database Table
Allocator 1.0

~1 Billing }—»| Invoice

Figure 5.2 Sun Bandwidth Allocator 1.0 Accouating System

An accounting agent of the SUN Bandwidth Allocator 1.0 software collects
accounting information and outputs it in ASCII format which eventually is accepted by
the Billing system. The accounting information includes sender/receiver IP address, port
numbers, packet and byte counts, time-stamps. The accounting data also allows for the
billing of advanced, quality-of-service-enabled IP services such as premium class-of-

service traffic.

5.1.3 Building Blocks

Sun’s Bandwidth Allocator 1.0 has at its base the STREAM module found between the IP
layer and the network interface. Figure 5.3 below shows a schematic overview of the
building blocks of the software, which, as seen in Chapter 3, is a general management
tool.

A new building block can be attached to the Sun Bandwidth Allocator building
blocks schema to deal with temporal issues of policy conflicts. The resulting tool will be
temporal policy-enabled. This enrichment of the tool implies:

- considering a new block implementing the issues related to time zones, called
“Temporal Building Block™.
- updating “notification” messages with appropriate alerts for handling temporal

constraint violations.

124

Accounting Graphical User
and Billing Interface (GUT)

L+

Outgoing [P Outgoing IP traffic
traffic enters Bandwidth is transmitted
Bandwidth # Allocator 1.0 # by Bandwidth
Allocator : t : Allocator

: i Temporal Building Block ! |

| e cccaccc e e= a |

S 4

Figure 5.3 Bandwidth Allocator building blocks

5.2 Temporal-Oriented Building Block

The classes of the policy CIM are intended to serve us as an extensible class hierarchy,
through specialization, for defining policy objects that enable application developers and
policy administrators to derive easily temporal aspects and detect functional conflicts.

The main classes that must be used, according to the CIM schema, are presented
in Chapter 2 (Figure 2.6):

- policy (abstract)

- policyGroup (structural)

- policyRule (structural)

- policyCondition (auxiliary)
- policyTimePeriodCondition (auxiliary)
- vendorPolicyCondition (auxiliary)

- policyAction (auxiliary)
- vendorPolicyAction (auxiliary)

with the following attributes :
125

Class: policy (type: abstract), Attributes:

cn (commonName, optional)
caption (optional)
description (optional)
policyKeywords (optional)

Class: policyRule (type: structural), Attributes:

policyRuleName (required)
policyRuleEnabled (optional)
policyRuleConditionListType (optional)
policyRuleConditionList (optional)
policyRuleActionList (optional)
policyRuleValidityPeriodList (optional)
policyRuleUsage (optional)
policyRulePriority (optional)
policyRuleMandatory (optional)
policyRuleSequencedActions (optional)

Class: policyCondition (type: auxiliary), Attributes:

policyConditionName (required)

Subclass: policyTimePeriodCondition (type: auxiliary), Attributes:

ptpConditionTime (optional)
ptpConditionMonthOfY earMask (optional)
ptpConditionDayOfMonthMask (optional)
ptpConditionDayOfWeekMask (optional)
ptpConditionTimeOfDayMask (optional)
ptpConditionTimeZone (optional)

Subclass: vendorPolicyCondition (type: auxiliary), Attributes:

126

- vendorPolicyConstraintData (optional)
. - vendorPolicyConstraintEncoding (optional)

Class: policyAction (type: auxiliary), Attributes:
- policyActionName (required)

Class: vendorPolicyAction (type: auxiliary), Attributes:
- vendorPolicyActionData (required)
- vendorPolicyActionEncoding (required)

In order to specialize and aggregate various temporal policy-related classes, we
have introduced, we consider the last Internet Draft on Policy CIM, version 1, May 2000.

In the following, we will situate the new classes we have proposed within the

IETF hierarchy. IETF introduced the notion of LocalTime and UTCTime in
. PolicyTimePeriodCondition. An instance of PolicyTimePeriodCondition has five

properties that represent times: TimePeriod, MonthOfY earMask, DayOfMonthMask,
DayOfWeekMask, and TimeOfDayMask. All of these properties represent one of two
types of times: (i) local time at the place where the policy is applied or (ii) UTC time. The
property LocalOrUtcTime indicates which time representation is to be applied to an
instance of PolicyTimePeriodCondition. Because PCIM only provides for local and UTC
time, a policy management tool that provides other time representations needs to map
from these other representations to either local or UTC time.

Mostly, IETF temporal properties concern policy validity in terms of policy
specification. Our input is mainly focusing on policy execution and conflict detection at

the execution time.

We considered PolicyFeature as an abstract « attribute-based » class and specified

two concrete classes, i.e. Timeless and Temporal.

@ 7

As an example of Timeless, we consider IETF Proposal of the policy property
called “Priority”. The “Priority” property gives a non-negative integer for prioritizing
policy rules relative to each other. A larger integer value signifies higher priority. One of
the goals of this property is to allow specific policy rules to temporarily override
established policy rules. This translates into the fact that instances having this property
set, have a higher priority that all instances that lack this property. This prioritization

among policy rules provides a mechanism to resolve policy conflicts.

Our Temporal class may contain all the newly introduced attributes, i.e. timeZone,
applyInZone, and applyingZone and other IETF-defined properties such as TimePeriod,
which refers to the validity of a policy definition. This property identifies an overall range
of calendar date and times over which a policy rule is valid.

By considering our proposal, the policy root will include the following supplementary

classes:

- policyFeature
- Timeless
- Temporal

- policyConstraints (companion)

We conclude that the new policy hierarchy allows a policy-based tool to express

execution constraints coping with TimeZones, which is a novelty.

128

Chapter 6

Conclusions and Future Work

Systems management represents the set of activities necessary to ensure that information
systems function according to user requirements and objectives [Mof94]. Commonly,
large networks have a number of types of hardware/software with specific features. These
features differ from component to component and cover many capabilities related to
capacity, scalability, speed of connection etc. In order to manage these components, they
are modeled by so-called managed objects (MOs).

We have seen that several problems present in large-scale management
systems have been identified [Slo94] and that mechanisms simplifying management are
proposed [Put95] [Mas93].

Policy driven management systems are proposed to cope with policy changes. The
desired mechanisms provided by a policy management service include (i) the creation,
modification, and deletion of policies, (ii) the representation and interpretation of policies,
(iii) the storage and retrieval of policies, (iv) the negotiation of the outcomes of policy
conflicts and (v) the communication of new policies or modifications done to existing
policies to managers.

Today, Quality of Service (QoS), Type of Service (ToS), Class of Service (CoS)
mechanisms, such as Differentiated Services (DiffServ), as well as Integrated Services
(IntServ) are at the base of policy-based network management and prioritizing resources
to requirements.

The ongoing work on IETF Policy CIM tries to standardize a common hierarchy
Of policy features to facilitate policy reuse and policy-based tool interaction.

Some of the temporal issues concerning policy validity (definition) have already
been proposed and mainly adopted by the emerging policy-enabled tools. However,
temporal properties dealing with execution are from far solved. We proposed certain

solutions for aspects concerning the notion of time zones. We enhanced the current mode!

129

with appropriate classes of required information. More specifically, our solution copes
with:

companion policies;
time zones , and
start/stop translation from actions specified by different policies defined in different

time zones.

Future work that is under consideration refers to:

policy notification;

sensors and measurement for confirming the correctness of firing for translated
actions, and

run-time policy conflict handling.

For the first topic, the work on typing appropriate events must be developed according

to COPS primitives and data structures prescribed by IETF Policy CIM.

The second topic requires new mechanisms for feedback to avoid the network

collapse if a policy fails or succeeds only partially.

The third becomes a complex task. We estimate that dedicated “conflict detection

mechanisms” embedding temporal issues for run-time solutions must arrive as a concern

from many vendors and industrial research groups.

130

Bibliography

[AllI00] NetPolicy -Data Sheet, Allor Communications, 2000
http://www.allot.com/products/Policy Manager DS.htm

[Alp95] B. Alpes, H. Plansky, “Concepts and Applications of Policy-Based
Management”, Integrated Network Management [V, Edited by A.S.Sethi, Y.Raynaud,
F.Faure-Vincent, Chapman&Hall, IFIP 1995. P. 58-68

[Ban00] «Network Bandwidth Management — Bandwidth Management Demo», 2000
http://www.sun.com/software/bandwidth/demo/DemoBM. html

[BER] OSI "Basic Encoding Rules” for [ASN.1], ISO standard 8825, December 1987

[Ber99] Y. Bemet, R. Yavatkar, P.Ford, F. Baker, L.Zhang, K. Nichols, M.Speer, R.
Braden, Interoperativity of RSVP/IntServ and DiffServ Networks, February 1999,
draft-ietf-diffserv-rsvp-02.txt, Work in Progress

[Ber00] Jean-Marc Berthaud, “Time Synchronization Over Networks Using Convex
Closures”, IEEE/ACM Transactions on Networking, April 2000, Vol.8, N.2, [EANEP
(ISSN 1063-6692)

[Bir96] Alessandro Birolini, ““On the Use of Stochastic Process in Modeling Reliability
Problems”, Springer-Verlag, 1985 (Lecture Notes in Economics and Mathematical
Systems, 252)

[Cci91] CCITT, Common Management Information Service Definition, [TU-T,
International Standard, 1991.

[Cis00] Cisco QoS Policy Manager, Product Documentation
http://www.precept.com/warp/public/cc/cisco/mkt/enm/cap/qospm/index.shtml

[Co000] Mike Cookish, “COPS lays down policy-management law”, Network World
Fusion News, www.nwfusion.com/news/tech/05 1 Otech.htnl?nf

[Con99] Policy-Based Network Management, by Joel Conover, November 29, 1999
http://www.networkcomputing.com/1024/1024f1side1.html

{Cor89] Thomas H. Cormen, Charles E. Leiserson, “Introduction to Algorithms™, ISBN
0-262-03141-89 MIT Press.

[Cui95] Cui-Qing Yang and Alapati V.S. Reddy, “A Taxonomy for Congestion Control
Algorithms in Packet Switching Networks”, IEEE Network Magazine, July/August 1995,
V.9, nS

131

[Der96] Luca Deri, “Surfin’Network Resources across the Web”, IEEE Second
International Workshop on Systems Management, June 19-21, 1996, Toronto, Ontario,
Canada.

[Din95] Petre Dini, Gregor v. Bochman, “Modeling for Automatic Policy-Driven
Reconfiguration within Distributed Systems”, IGLOO Technical Report, CRIM 1995

[Din00] P. Dini and N. Mihai, “Policy Framework: Specifying Policies Types and Active
Policy Relationship”, Policy Workshop, Bristol, UK, 2000

[Dme92] Open Software Foundation, OSF Distributed Management Environment (DME)
Architecture, 1992

[Dmtf] DMTF, Common Information Model (CIM) version .1, DMTF September 1997.

[Ege96] K. Egevang, P. Francis “The IP Network Address Translator (NAT)”, 1996
Network Working Group, rfc 1631

http://194.52.182.96/rfc/rfc1631.htm

[Fes99] O.Festor, P.Festor, N.Ben Youssef and Laurent Andrey, “Integration of WBEM-
based Management Agents in the OSI Framework™, Integrated Network Management [V,
Edited by Morris Sloman, Subrata Mazumdar and Emil Lupu (1999)

[Fir99] “PORTUS Firewall Tutorial”, 1999
http://www.lsli.com/tut27.html

[F1a99] J.P. Martin-Flatin, “Push vs. Pull in Web-Based Network Management”,
Integrated Network Management VI, Edited by Morris Sloman, Subrata Mazumdar and
Emil Lupu (1999)

[Ful00] Bob Full, Mike Roderick, Michele Clark, Jeff Vian “Radius--Remote
Authentication Dial In User Service”

http://www.squashduck.com/~roundman/radius/

[Haf98] A. Hafid and G.v. Bochman, « Quality of Service Adaptation in Distributed
Multimedia Applications », Multimedia Systems, 1998, v.6, n.5, p.6, 22p.

[Hei99] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, « Assured Forwarding PHB
Group », RFC 2597, June 1999

[Hew00] OpenView PolicyXpert Frequently Asked Questions, 2000
http://www.openview.hp.com/docs/199.htm

132

[Hou95] Houck, K., Calo, S., Finkel, A. 1995. Towards a practical Alarm Correlation
System. In Integrated Netwotk Management IV, eds. A.S. Sethi, Y. Raynaoud, F. Faure-
Vincent, Chapmané&Hall, 1995.

[How97] Timothy A. Howes and Mark C. Smith, “LDAP- Programming Directory-
Enabled Applications with Lightweight Directory Access Protocol”, 1997

[Hut94] D. Hutchison, G. Coulson, A. Campbell and G.S.Blair, « Quality of Service
Management in Distributed Systems », Lancaster University Report, Number MPG-94-
02.

(Int00] Differentiated Services Moving towards Quality of Service on the Ethemnet
http://www.intel.be/network/white_papers/diff_serv/index.htm

[Ips00] “IP Security and NAT: Oil and Water?”, 2000
http://www.isp-planet.com/technology/nat_ipsec_p2.html

[Isol] ISO, Structure of Management Information — Part 4 : Guidelines for the Definition
of Managed Objects, International Standard 10165-4, 1992.

[Iso2] ISO, Structure of Management Information — Part 7 : General Relationship Model,
International Standard 10165-7, 1995.

[Iso3] ISO, Specification of Abstract Syntax Notation Number One (ASN.1), ISO,
International Standard 8824, 1990.

[[s07498] “Information Processing Systems — Open Systems Interconnection — Basic
Reference Model — Part 2 : Security Architecture”, IS 7498-2 , ISO/IEC , 1988

[Iso10164] “Information Technology- Open Systems Interconnection —Systems
Management — Management Functions”, IS 10164-X, I[SO/IEC

[Iso19] ISO/IEC CD 10164-19, Management Domain and Management Policy,
Management Function, January 21, 1994

[Itu] ITU-T, Principles for a Telecommunications management network, ITU-T,
International Standard M. 3010, January 1996.

[Jac99] V. Jacobson, K. Nichols, K. Poduri, “An Expedited Forwarding PHB”, RFC
2598, June 1999

[Jak95] G. Jakobson, M. Weissman “Real-time telecommunication network

management : extending event correlation with temporal constraints”, Integrated Network
Management IV, Edited by Adarshpal S.Sethi, Yves Raynaud and Fabienne Faure-
Vincent, 1995

133

[Jon99] G. Jones, E. Zeisler, L. Chen, “Web-based Messaging Management Using Java
Serviets”, Integrated Network Management IV, Edited by Morris Sloman, Subrata
Mazumdar and Emil Lupu (1999)

[Jor93] J.F Jordaan and M.E. Paterok “Event Correlation in Heterogenous Networks
Using the OSI Management Framework”, Integrated Network Management, vol. III, 1993

[Kat97] S. Katker, M. Paterok, “Fault Isolation and Event Correlation for Integrated
Fault Management”, Integrated Network Management V, Integrated Management in a
Virtual World, Edited by Aurel Lazar, Roberto Saracco and Rolf Stadler, 1997

[Koc96] Thomas Kock, Christoph Krell and Bernd Kramer, *“Policy Definition Language
for Automated Management of Distributed Systems”, IEEE International Workshop on
Systems Management, June 19-21, 1996, Toronto, Canada

[Koc95] T. Koch, B. Kramer “Towards a Comprehensive Distributed Systems
Management”, [CODP"95, 20-24 February 1995, Brisbane, Australia,

[Luc99] Lucent Technologies announces RealNet Rules policy management application,
April 1999

http://www.lucent.com/press/0499/990426.cob.htm!

[Lup97] E. Lupu, M. Sloman, “Conflict Analysis for Management Policies”, Integrated
Network Mangement V, Edited by Aurel Lazar, Roberto Saracco, and Rolf Stadler, 1997.

[Lup97a] E. Lupu and M. Sloman. "Towards a Role-based Framework for Distributed
Systems Management" Journal of Network and Systems Management, vol. §, no. 1, pp. 5-
30, Plenum Press Publishing, 1997.

http://www-dse.doc.ic.ac.uk/~ecl 1/

[Lup97b] E.C. Lupu and M.S. Sloman "A Policy Based Role Object Model", First
International Enterprise Distributed Object Computing Workshop (EDOC'97), Gold
Coast, Queensland, Australia, pp. 36-47, Oct. 1997.
http://www-dse.doc.ic.ac.uk/~ecl 1/

[(Mac93] M. Masullo and S. Calo, “Policy Management : An Architecture and
Approach”, [n [TWSM-I 93]

[Man97] A. Mankin, et al, « Resource ReSerVation Protocol (RSVP) Version |
Applicability Statement — Some Guidelines on Deployment », RFC 2208, September
1997

[Mar98] L.P. Martin-Flatin “IP network management platforms before the Web™
Technical report SSC/1998/021, version 2, SSC, EPFL, Lausanne, Switzerland,
December 1998.

134

[Mas93] Masullo MJ, Calo SB, “Policy Management: An architecture and Approach”,
Proceedings of the IEEE First Intemnational Workshop on Systems Management, Los
Angeles (1993)

[Mcb91] McBrian P, Niazette M, Pantaziz D, Selviet AH, Sundin U, Theodoulis B,
Tziallas G, Wohed R., A Rule Language to Capture and Model Business Policy
Specifications, Proceedings of the Third International Conference on CaiSE, Norway
(1991)

[Mof94] J.Moffret and M. Sloman “Policy Conflict Analysis in Distributed System
Management”, Ablex Publishing Journal of Organizational Computing, 4 (1), 1-22

[Nat99] Cisco IOS Network Address Translation (NAT)
http://www.cisco.com/warp/public/701/60.html

[Ngu92] Incorporating Business Management Policy into Information Technology:
Nguyen TN. Proceedings of the Second International Symposium on Network
Management, Halfway House, South Africa (1993)

[Ngu93] Thang Nguyen , “Linking business strategies and IT operations for Systems
Management Problem Solving”, In [[WSM-I 93]

[Nou97] Mhamed Nour, Abdelhakim Hafid, J.William Atwood “Routing with Quality of
Service Constrains” , to appear in International Pacific Workshop on Distributed
Multimedia Systems, 1997, Vancouver, Canada

[Oli95] C. Olivera, J. Kim, and T. Suda, “Quality-of-Service Guarantee in High-Speed
Multimedia Wireless Networks”,

http://jblevins.ics.uci.edu/Dienst/UI/2.0/Describe/ncstrl.uci%2fICS-TR-95-41

[Omg95] Object Management Group, “The Common Object Request Broker:
Architecture and Specification *, 1995, OMG Document PTC/96-08-04

[Omg921] “Object Management Architecture Guide”, Document 92-11-1, Object
Management Group, September 1992.

[Omg922] “Object Services Architecture”, Document 92-8-4, Object Management
Group, August 1992.

[Orc99] Orchestream Enterprise Edition 2.0, Fighting network decay - Take control of
network performance, 1999.
http://www.actualit.com/products/orchestream/enterprise.htm

[Osi91] Open Systems Interconnection : Management Overview. IS10040 (1991)

135

[Pel93] A. Pell, C. Goh, P. Mellor, J-J. Moreau, S. Towers, Data + Understanding =
Management, in W.W. Chu, A. Finkel (eds) : Proceedings of the IEEE First International
Workshop on Systems Management, Los Angeles, IEEE, April 1993.

[Poo91] Poo CD, “Representing Business Policies in the Jackson System Development
Method”, The Computer Journal Vol 34 no 2 (1991)

[Por97] C. Pomavalai, G. Chakraborty, and N. Shiratori, « Routing with QoS Constraints
in Integrated Services Networks », IEEE Conference — Multimedia Networking
PROMS-MmNet’97

[Pro98] George Prodan, “Extreme Networks Introduces the ExtremeWare Enterprise
Manager Policy-Based Management Platform”, 1998

http://www.extremenetworks.com/corporate/pressroom/news/pr23.asp

[Put95] Towards policy driven systems management by Phillip Putter, Judy Bishop and
Jan Roos, Integrated Network Management IV, edited by Adarshpal S.Sethi, Yves
Raynaud and Fabienne Faure-Vincent (1995)

[(Raj99a] R. Rajan, S. Kamat, P. Bhattacharya, D. Biswas, "Networking Policy Condition
Information Model", April 1999, <draft-rajan-policy-conditions-00.txt>, Work in
Progress

[Raj99b] R. Rajan, S. Kamat, J.C. Martin, M. See, R. Chaudhury, D. Verma, G. Powers,
R.Yavatkar, "Policy Action Classes for Differentiated Services and Integrated Services”,
April 1999, <draft-rajan-policy-qosschema-01.txt>, Work in Progress

[Rei99] F. Reichmeyer, K. H. Chan, D. Durham, R. Yavatkar, S. Gai, K. McGloughrie, S.
Herzog, A. Smith, "COPS Usage for Policy Provisioning", February 1999,
<draft-sgai-cops-provisioning-00.txt>, Work in Progress

[Sab97] B. Sabata and S. Chatterjee, « Taxonomy for QoS Specifications », Proceedings
of WORDS '97, Newport Beach, California, 1997 , February 5-7

[Sak99] Sakir Yucel, Nikos Anerousis, “Event Aggregation and Distribution in Web-
based Management Systems”, Integrated Network Management VI, Edited by Morris
Sloman, Subrata Mazumdar and Emil Lupu (1999)

[Sal84] J. Saltzer, D.Reed, D. Clark, End-to-End arguments in System Design, ACM
Transactions in Computer Systems, November 1984
www.reed.com/Papers/EndtoEnd.html

{Sch97] A. Schade, “An Event Framework for CORBA-Based Monitoring and
Managemet Systems”, Open Distributed Processings and Distributed Platforms, Edited by
Jerome Rolia, Jacob Slonim and John Botsford, 1997

136

[Sim94] W. Simson, “The Point-to-Point Protocol (PPP)”, 1994
ftp://ftp.isi.edw/in-notes/rfc1661.txt

[Sl094] Sloman MS, Twidle K., "Domains : A Framework for Structuring Management
Policy” Chapter 17 of Network and Distributed Systems Management. Sloman MS,
Kappel K. Addison Wesley (1994)

{Sni00] Y. Snir, Y. Ramberg, J. Strassner, R.Cohen, “Policy Framework Internet Draft”,
QoS Policy Schema, expires September 2000,
draft-ietf-policy-qos-schema-01.txt

[SniO0a] Y. Snir, Y Ramberg, J. Strassner, R. Cohen "QoS Policy Information model”,
Internet draft , draft-ietf-policy-qos-info-model-01.txt

[SniO0Ob] Y. Snir, Y. Ramberg, J. Strassner, R.Cohen, "QoS Policy Schema",
Internet Draft <draft-ietf-policy-qos-schema-01.txt>

http://www.ietf.org/internet-drafts/draft-ietf-policy-qos-schema-0 1 .txt

[St399] Introduction to QoS policies — white paper, Stardust.com.Inc, 1999,
www.stardust.com

[St199] QoS protocols and architectures—white paper, Stardust.com Inc., 1999
www.stardust.com

[St299] Quality of Service Glossary of Terms, Stardust.com Inc., 1999
www.stardust.com

{Sta93] William Stallings, SNMP, SNMPv2 and CMIP, The Practical Guide to Network -
Management Standards, Addison-Wesley Publishing Company, Inc., Chapter One, 1993

[Sta99] Introduction to QoS policies, stardust.com
http://www.winsock2.com/policy/whitepapers/qospol.htm

[Ste00] Steve Steinke, Simple Network Management Protocol—SNMP,
http://www.networkmagazine.com/magazine/tutorial/management/9702tut.htm

[Str99] John Strassner, “Directory Enabled Networks™, 1999

[Str00] J. Strassner, E. Ellesson, B. Moore, "Policy Framework Core Information
Model", Internet Draft <draft-ietf-policy-core-info-model-06.txt>

[StrO0b] J. Strassner, E. Ellesson, B. Moore, Ryan Moats, “Policy Framework LDAP
Core Schema”, draft-ietf-policy-core-schema-06.txt, November 04, 1999

[Str99] John Strassner, “Directory Enabled Networks™, 1999

137

[Sun98] Bandwidth Management for I[P Networks Sun Bandwidth Allocator, Version 1.0
http://www.sun.com/software/white-papers/wp-sbal 0/

[Sun95] SUN Microsystem. EmbeddedJava. Available at :
http://www.javasoft.com/products/embeddedjava/

[Terp92] Terplan, K. 1992. Communication Network Management, Practice-Hall Inc.,
1992

[Tiv97] *Tivoli Remote Control”, 1997
http://www.tivoli.com/products/index/remote_control/overview.htmi

[Tow99] W. Townsley, A.Valencia, A. Rubens, G. Pall, G. Zorn and B. Palter “Layer
Two Tunneling Protocol L2TP”, 1999

ftp://ftp.isi.edw/in-notes/rfc2661 .txt

[Vol98] L.C Wolf, C. Griwodz, and R. Steinmetz, “Multimedia Communication”, [EEE
Network, 1998, v.12, n.6, p.56, 8p.

{(Wah00] Lightweight Directory Access Protocol (LDAP) , Chair(s): M. Wahl
Mark.Wahl@innosoft.com, Applications Area Director(s): Ned Freed
ned.freed@innosoft.com and Patrik Faltstrom <paf@swip.net>
http://www.ietf.org/html.charters/|dapext-charter.htm|

[Wel94] C. Wells, “Tivoli Systems Inc. , TME”, Datapro Integrated Network
Management, January 1994

[Wie95] Rene Wies, “Using a Classification of Management Policies for Policy
Specification and Policy Transformation”, Integrated Network Management [V, Edited
by Adarshpal S. Sethi, Yves Raynaud and Fabienne Faure-Vincent

[Yav99] R. Yavatkar, D. Pendarakis, R. Guerin, "A Framework for Policy-based
Admission Control", April 1999, <draft-ietf-rap-framework-03.txt>, Work in Progress

138

