
•

•

THE PARAMETER IDENTIFICATION OF A

NOVEL SPEED REDUCER

Xiaohui Song

Department of Mechanical Engineering

McGill University, Montréal

March 2002

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Master of Engineering

© XIAOHUI SONG, MMII

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services

385 Wellington Street
OftaW8 ON K1A 0N4
canada

BibliothèQue nationale
du Canada

Acquisitions et
seNiees bibliographiques

395. rue Welington
on.wa ON K1A l1No'
eat\IdI

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distnbute or sen
copies of tbis thesis in microfo~
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extraets from it
may he printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse soUs
la forme de microtiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0_612-79097-5

Canad~

•

•

ABSTRACT

Many a mechanical application involves power transmission from a high-speed mo­

tor to a low-speed load. However, existing speed-reduction mechanisms are usually

a major sink of energy and information in mechanical transmissions. Energy and

positioning information are lost through: (a) friction between sliding components;

(b) compliance; and (c) backlash. A novel transmission for speed reduction, Speed­

o-Cam, is currently under research at McGill University's Centre for Intelligent Ma­

chines (CIM). The transmission is based on the layout of pure-rolling indexing cam

mechanisms, and hence, eliminates backlash and friction. Besides zero backlash and

low friction losses, Speed-o-Cam also offers the possibility of high stiffness, another

essential attribute for high-accuracy applications.

This thesis focuses on the aspects of both model development and mechanical-parame­

ter identification of a spherical prototype of Speed-o-Cam. Our main interest lies in

identifying the mechanism stiffness. In order to conduct experiments on the proto­

type, a testbed was designed and fabricated. A mathematical model of the testbed is

first formulated. Based on this model and the results of experiments, the parameters

of the Speed-o-Cam prototype are identified. In the process, the stiffness and damp­

ing parameters of the couplings of the testbed are also identified.

Power efficiency is an important indicator of speed reducing mechanisms. For the

Speed-o-Cam prototype, this indicator is also estimated experimentally.

•

•

Résumé

Beaucoup d'applications en mécanique nécessitent des systèmes efficaces de transmis­

sion. Cependant, les réducteurs de vitesse actuels engendrent généralement des pertes

d'énergie et d'information. Ces pertes sont principalement dues au frottement entre

les pièces en mouvement, aux déformations des composants flexibles et au jeu. Le

Centre de recherche sur les machines intelligentes de l'Université McGill met au point

à l'heure actuelle une transmission novatrice, appelée Speed-o-Cam, ayant la fonction

de réduction de vitesse. Cette transmission est inspirée des systèmes de mouvement

intermittent à cames et roulements sans frottement. Par conséquent, le jeux et le

frottement sont élimines dans le mécanisme. En outre, la transmission Speed-o-Cam

offre la possibilité don grande raideur, une propriété essentielle pour les applications

de haute précision.

Cette thèse porte sur deux aspects d'un prototype sphérique de Speed-o-Cam: le

développement d'un modèle mathématique et l'identification de ses paramètres. Nous

nous intéressons particulièrement il, lldentification de la raideur du mécanisme.Afin de

mener des expér: ences sur le prototype du mécanisme, un banc d'essais a été conçu et

réalisé. Dans un premier temps, un modèle mathématique du banc d'essais est établi.

Ensuite, les paramétres mécaniques du prototype sont identifiés expérimentalement.

Enfin, les paramétres de rigidité et d'amortissement du banc d'essais sont aussi iden­

tifiés.

Le rendement est un indicateur important du prototype de Speed-o-Cam, qUI est

estimé par une série d'expériences.

•

•

ACKNOWLEDGEMENTS

I am indebted to my thesis supervisor, Professor Jorge Angeles, for his continued su­

pervision, guidance, suggestions and invaluable support throughout the course of my

research. I admire his deep insight into many scientific subjects and his enthusiasm

and vigour for research. He has played a very active role in aIl aspects of my graduate

education; I truly appreciate his time and effort.

I would like to sincerely thank Dr. A. Hemami, who shared with me his wide prac­

tical knowledge and experience while Professor Angeles was away on sabbatical. Dr.

Hemami's help and support have been most valuable.

I would like to thank the support by NSERC (Natural Science and Engineering Re­

search Council, of Canada), under the Strategie Project No. STR192750-1996, and our

industrial partners in the Speed-o-Cam Project, Alta Precision Inc., of Ville d'Anjou,

Quebec, and Placage Unique Inc., of Rigaud, Quebec for their assistance in producing

the Speed-o-Cam prototypes.

I would like to thank Professor Yixin Shao and Machinist Damon Kiperchuk, of the

Department of Civil Engineering and Applied Mechanics, for their friendly help when

I was conducting part of my experiments in the Solid Mechanics Laboratory.

The two years that I spent at the Centre for Intelligent Machines (CIM) were very

joyful and productive. I would also like to thank the staff, secretaries, and my col­

leagues for their help, support and making this stay very enjoyable.

I am grateful to my parents for their endless encouragement and support, which gave

•

•

ACKNOWLEDGEMENTS

me love and confidence in completing my thesis. Special thanks are due to my sis­

ter for her love, patience and understanding throughout the hard times during my

research.

Last but not least, l would like to express my deepest gratitude to the persons who

directly or indirectly contributed to my thesis, but are not mentioned here.

v

•

•

TABLE OF CONTENTS

ABSTRACT

Résumé .

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES .

CHAPTER 1. Introduction

1.1. Background

1.1.1. Mechanical Power Transmission

1.1.2. Speed-o-Cam ..

1.1.3. Dynamic Systems

1.1.4. System Identification

1.2. Motivation .

1.3. Scope and Organization of the Thesis

CHAPTER 2. Testbed Calibration

2.1. Hardware .

2.1.1. Mechanical Hardware Setup

2.1.2. Electrical Hardware Setup

2.2. Software

2.2.1. Human-Machine Interface

11

III

IV

V11I

x

1

3

3

4

5

8

10

11

12

13

14

15

23

23

TABLE OF CONTENTS

CHAPTER 6. Concluding Remarks

6.1. Conclusions .

6.2. Recommendations for Future Research

CHAPTER 3. Modelling of the Testbed .

3.1. Iconic Model of the Testbed

3.1.1. List of Symbols

3.2. Main Assumptions .

3.3. Derivation of the Mathematical Model .

3.4. Derivation of the Transfer Function Model

3.5. Inertial Properties of the Testbed Elements

CHAPTER 4. Dynamic Analysis of the Testbed

4.1. System Identification

4.1.1. Input-Output Data Analysis

4.1.2. Approximating the Numerator Polynomial of ETF .

4.2. Mechanical Parameter Identification

4.2.1. Analysis of the Results

CHAPTER 5. Efficiency of the Speed-o-Cam Prototype .

5.1. The Efficiencies of the Couplings .

5.2. The Efficiency of the Prototype

25

25

25

26

26

29

31

33

33

33

38

40

47

51

53

56

58

58

59

60

...... 64The Control and Data-Acquisition C++ Program

REFERENCES

APPENDIX A.

•

• vu

•
LIST OF FIGURES

1.1 Spherical Speed-o-Cam prototype: (a) external view; (b) mner

vlew. 5

•

1.2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

3.1

(a) View of ensemble and (b) close-up of cam-follower meshing of

the spherical Speed-o-Cam prototype 10

Speed-o-Cam testbed 12

lconic model of the Speed-o-Cam prototype testbed 13

Flexible shaft couplings: (a) DT0125-C14mm; (b) DT0125-

C12mm; (c) BT0150-C14mm . 14

Connection scheme from the testbed to the host computer. 16

DC motor calibration for constant-velocity profiles: (a) with

mechanism and load; (b) without mechanism and load 17

DC driver. 18

ADIO 1600 Analog/Digital lia card . 19

Tachometer calibrations: (a) the DC motor tachometer; (b) the

output shaft tachometer . 21

Tachometer calibrations: (a) the input shaft torque sensor; (b)

the output shaft torque sensor 22

The human-machine interface under the X-Windows environment 24

Solid models of (a) the cam shaft; and (b)the roller-carrying disk 32

• 4.1

LIST OF FIGURES

The signaIs recorded of input and output velocities for input

velocity values of: (a) 600rpm; (b) 800rpm; (c) 1000rpm; (d)

1200rpm; (e) 1400rpm 36

•

4.2

4.3

4.4

5.1

5.2

5.3

5.4

The Bode plots of the system .

The pole-zero map of the system

Torsional stiffness test machine .

Speed-o-Cam power efficiency testbed

Iconic model of Speed-o-Cam power efficiency testbed

The coupling testbed .

!conie model of the eoupling testbed

37

37

48

51

52

54

54

lX

•
LIST OF TABLES

2.1 Parameter specifications of the couplings 15

2.2 Parameter specifications of the load 15

2.3 DC motor specifications . . 16

2.4 DC driver electrical ratings 18

2.5 DC driver jumper settings 19

2.6 Pin assignments of termination board panel 20

2.7 Sensitivity constants for the sensors 23

3.1 Moments of inertia of the input cam shaft and the roller-carrying

disk with output shaft . 32

4.1 The natural frequencies and damping ratios of the system 38

4.2 Unit parameters specifications 43

4.3 Initial guesses 46

4.4 Numerical values of the weights 46

4.5 Dimensionless mechanical parameters 47

4.6 The mechanical parameters . 48

4.7 The stiffness of the couplings 49

4.8 Numerical values of the new weights 49

• 4.9 Dimensionless mechanical parameters 50

LIST OF TABLES

The mechanical parameters 50

The system efficiency with experimental value specifications . 54

Efficiency values with the experimental values of coupling 1 57

Efficiency values with the experimental values of coupling 2 57

• 4.10

5.1

5.2

5.3

5.4

•

Efficiency of the Speed-o-Cam prototype 57

Xl

•

•

CHAPTER 1

Introduction

A speed reducer is an integral part of most mechanical transmissions. Power delivered

from motors is usually available at a relatively high speed, and relatively low torque.

In many applications, however, such as in electrical appliances, machine tools, con­

veyors, robotic joints and automobiles, power is required at a relatively low speed and

high torque. Speed reducers used in mechanical transmissions between the motor and

the load provide means of reducing the speed while increasing the torque.

Speed-reduction mechanisms have been built and investigated extensively since the

eighteenth century (Euler, 1754). These mechanisms have also been the topic of con­

tinuous research for the last fifty years (Buckingham, 1963; Dudley, 1966), during

which various mechanisnis have emerged to improve speed reducers, most of them

being gear-based. One of the most common mechanisms is the spur-gear train, which

is the simplest to design and manufacture. This mechanism is usually employed in

gearboxes with variable-speed reductions. Others, like planetary, or epicyc1ic gear

trains, which consist of one or more central 'sun' gears with 'planet' gears, translat­

ing and rotating around the 'sun' gear, have more complicated layouts. This c1ass

of gear trains, accompanied by a c1utch, can be found useful in automobile transmis­

sions. Another device, making use of the concept of flexible gears, is the harmonie

drive, which has found widespread acceptance since its invention by C.Walton Musser

•

•

CHAPTER 1. INTRODUCTION

in 1955 (U.S.patent 2959065). Because of their compact size and high reduction ra­

tio, harmonie drives are often favoured for electromechanical systems with space and

weight constraints (Yuen, 1996). Typical examples are the joint transmissions III

robotic manipulators, which require relatively low speed and high torque.

Although gear-based mechanisms are widely used for high-rate speed reduction in

various industrial environments. These have numerous drawbacks, two of the most

significant of them being friction and backlash, which constitute two of the largest

sinks of energy and sources of noise in conventional gear-based transmissions. Fric­

tion cornes mainly from the sliding action of the involute gear teeth, the amount of

slip increasing with the applied torque. If slippage is high, not only is the friction

loss high, but also the speed regulation, efficiency and the life of the system decrease.

Moreover, backlash makes the gear teeth lose contact. The impacts between teeth

upon meshing can be damaging to both the machine on which the gears are mounted

and the humans using the machine. Harmonie drives, on the other hand, eliminate

backlash. However, transmission compliance results from gear-tooth interaction and

wave-generator deformation due to high radial forces, and is present in an harmonie

drives (Tuttle and Seeting 1993). Compliance, in addition, is a source of nonlinearity,

which leads to a nonlinear torque transmission between the motor and the load, an

otherwise linear system.

Upon considering the foregoing alternatives to gears, along with their drawbacks, a

methodology for designing planar, spherical and spatial cam mechanisms was devel­

oped by GonzaJez-Palacios and Angeles (1993) in order to replace gear trains with

cam mechanisms. These mechanisms are intended to outperform gear-based trans­

missions by virtue of:

• high speed-reduction ratios; they provide speed reductions of N : 1, where N

is an integer as high as 10, in one single stage;

2

•

•

1.1.1 BACKGROUND

• Law friction lasses, because the transmissions have pure-rolling contact;

• virtually zero backlash, since the mechanisms can be configured to provide pos­

itive motion;

• high stiffness, by virtue of the convexity of the driving cam; and

• Law cast to manufacture, because all contact surfaces can be machined with

general-purpose CNC machine tools.

The main thrust of the thesis is the study of the dynamic response of these mecha­

nisms. In particular, investigations are carried out to identify the relevant mechanical

parameter of a spherical prototype, namely, its stiffness. In the process, the stiffness

and damping parameters of the couplings of the testbed are also identified.

1.1. Background

In this thesis we will investigate the dynamic behaviour and identify the mechan­

ical parameters of a spheyical speed reducer prototype. The necessary background is

given in this chapter.

1.1.1. Mechanical Power Transmission Mechanical power is generated by

a motor and is consumed by a load. Between the motor and the load we have the

transmission elements. Mechanical power transmission refers to "the business of mov­

ing energy or power from the place where it is generated to the place where it is used

by mechanical devices" (Patton, 1980). Energy is transferred through belts, gears,

sprockets, shafts, power takeoffs, hydraulic valves, pneumatic hoses, and other me­

chanical devices. Mechanical power transmission between shafts can be accomplished

in a variety of ways. In addition to gears, flexible elements such as belts and chains

are in common use. These permit power to be transmitted between shafts that are

separated by a considerable distance, thus providing the design engineer with greater

3

•

•

1.1.1 BACKGROUND

flexibility in the layout of driving and driven elements.

Belts are relatively quiet in operation. Except for timing belts, slippage between

belt and pulleys causes speed ratios to be nonuniform. This slippage characteristic is

sometimes used to advantage by permitting the pulleys to be moved doser together in

order to disengage the drive, as in sorne snowblowers and self-propelled lawn mowers.

This may save substantial cost, weight, and the bulk of providing a separate dutch.

The flexibility and inherent damping in belts-and, to a lesser extent, in chains­

serves to reduce the transmission of shock and vibration.

The design of chains illustrates the general proposition that if a component of desired

characteristics is not already available, an engineer should consider the possibility of

inventing something new. If little power is required, a "beaded chain," similar to

the pull cord on a plain light fixture, can be used. A stronger type of flexible chain

incorporates parallel steel cables bonded to the sides of plastic cylindrical "buttons"

that simulate the rollers of conventional roller chains (Juvinall and Marshek, 1991).

1.1.2. Speed-o-Cam A cam mechanism is a mechanical device that transmits

force or torque from cam to follower through a specifie motion program by higher-pair

contact. The nature of contact in a higher pair is along a line or a point, while that

in a lower pair is along a surface (Denavit and Hartenberg, 1964).

Common applications of cam mechanisms indude quick-return and indexing motions.

Quick-return mechanisms are extensively used in manufacturing processes such as

metal-cutting, metal-forming, pick-and-place and material-handing operations.

The high-speed reducers. of interest, that we term Speed-o-Cam, are based on the

layout of pure-rolling indexing cam mechanisms (lCM), i.e., a cam mechanism whose

follower bears a periodic geometry, repeating itself N times. The mechanism is thus

said to have N stages or indexing steps. An lCM is designed so as to allow the pro­

duction of a periodic, nonreversing speed of the follower when the cam rotates at a

constant angular speed (GonzaJez-Palacios and Angeles, 1993).

While Speed-o-Cam stems from the concept of lCM, its distinguishing feature is the

4

•
1.1.1 BACKGROUND

type of periodic speed produced on the follower, namely, a constant speed that is a

multiple or a submultiple of the cam speed. As a matter of fact, when Speed-o-Cam

is used to actually reduce speed, just as gear transmissions, the speed-reduction ratio

is 1/N, for an N-stage layout. When Speed-o-Cam is used as a speed amplifier, the

speed-amplification ratio is N.

The CIM Robotic Mechanical System Laboratory has produced four prototypes of

Speed-o-Cam. Three prototypes are planar speed-reducing mechanisms, used to cou­

ple shafts of parallel axes. Another prototype is a spherical speed-reducing mecha­

nism, which is intended for the coupling of intersecting shafts. Planar Speed-o-Cam

is intended to replace spur and helical gears, while its spherical counterpart is to

replace bevel gears. The R&D of Speed-o-Cam is reported in (GonzaJez-Palacios and

Angeles, 1999; Gonzalez-Palacios and Angeles, 2000).

The subject of this thesis is specifically the spherical Speed-o-Cam, the first prototype

being shown in Fig. 1.1.

(a) (b)

•
Figure 1.1: Spherical Speed-o-Cam prototype: (a) external view; (b) inner view

1.1.3. Dynamic Systems Nearly all observed phenomena in our daily lives

or in engineering systems exhibit important dynamic features. Specifie examples may

5

•

•

1.1.1 BACKGROUND

anse m (a) a physical system, such as a travelling space vehicle, a home-heating

system, or in the mining of a mineraI deposit; (b) a social system, such as the move­

ment within an organizational hierarchy, the evolution of a tribal class system, or

the behaviour of an economic structure; or (c) a life system, such as that of genetic

transference, ecological decay, or population growth. While these examples illustrate

the pervasiveness of dynamic situations and indicate the potential value of develop­

ing means for representing and analyzing dynamic behaviour, it must be emphasized

that the general concept of dynamics transcends the particular origin or setting of

the process or system.

Many dynamic systems can be understood and analyzed intuitively, without resort­

ing to mathematical modelling and without developing a general theory. Indeed, we

often deal quite effectively with many simple dynamic situations in our daily lives.

However, in order to approach unfamiliar complex situations efficiently, it is necessary

to proceed systematically.

With this view, the term dynamics soon takes on somewhat of a dual meaning. It is,

first, as stated earlier, a term for the evolutionary phenomena in the world about us,

and, second, a term for that part of science that is used for the representation and

analysis of such phenomena. In the most profound sense, the term refers simultane­

ously to both aspects, the real and the abstract, besides the interplay between them.

Although there are endless examples of interesting dynamic situations arising in a

spectrum of areas, the number of corresponding general forms for mathematical rep­

resentation is relatively .small. Most commonly, dynamic systems are represented

mathematically in terms of either differential or difference equations. These equa­

tions provide the structure for representing time linkages among variables.

The use of either differential or difference equations to represent dynamic behaviour

corresponds, respectively, to whether the behaviour is viewed as occurring in contin­

uous or discrete time. Continuous time corresponds to our usual conception, where

time is regarded as a continuous variable and is often viewed as flowing smoothly

past us. Mathematically, continuous time of this sort is quantified in terms of the

6

•

•

1.1.1 BACKGROUND

continuum of real numbers. An arbitrary value instant of continuous time is usually

denoted by the letter t .. Dynamic behaviour viewed in continuous time is usually

described by differential equations, which relate the derivatives of a dynamic variable

to its current value.

Discrete time consists of a denumerable sequence of instants rather than a contin­

uum thereof. In terms of applications, it is convenient to introduce this kind of time

when events and consequences either occur or are accounted for only at discrete time

periods, such as daily, monthly, or yearly. When developing a population model, for

example, it may be convenient to work with yearly population changes rather than

with continuous-time changes. Discrete time is usually labelled by simply indexing,

the discrete instants starting at a convenient reference time. Thus, if time corresponds

to integers 0, 1, 2, and so forth, then an arbitrary instant is usually denoted by the

letter k. Accordingly, dynamic behaviour viewed in discrete time is usually described

by difference equations.

In loose terms a system. is an object in which variables of different kinds interact

and produce observable signaIs. The observable signaIs that are of interest ta us are

usually called outputs. The system is also affected by external stimuli, i.e., external

signaIs that can be manipulated by will, and which are called inputs. Other stimuli

are called disturbances and can be divided into those that are directly measured and

those that are only observed through their influence on the output. The distinction

between inputs and measured disturbances is often less important for the modelling

process (Ljung, 1987).

Once dynamic phenomena and systems experiencing them are weIl understaod, the

definition of a dynamic system is readily available. A system is called dynamic if its

present output depends on its past input; if its current output depends only on the

current input, the system is known as static. The output of a static system remains

constant if the input does not change. The output changes only when the input

changes. In a dynamic system, the output changes with time if it is not in astate

of equilibrium (Ogata, 1998). Dynamic systems are described by either partial or

7

•

•

1.1.1 BACKGROUND

ordinary differential equations; sometimes they are described by difference equations

(case of discrete-time systems), integral equations and even by integro differential

equations. Associated with a dynamical system is the notion of state of the system.

The state of a dynamic system at a certain instant ta is the information pertaining to

the system that completely describes the effect of the whole past excitation history

up to and inc1uding time ta. The behaviour of a dynamic system at sorne instant

t > ta is then uniquely specified if two items are given, namely, 1) the time history of

the excitations between ta and t, and 2) the state of the system at ta. The state of a

system at a time ta often turns out to be the familiar initial conditions of elementary

differential equations.

1.1.4. System Identification The problem of system identification is gener­

ally referred to as the determination of the parameters of a mathematical model for

a system or process by observing its input-output relationships (Hsia, 1977). System

identification is a fundamental problem in science, medicine, engineering, and so on.

Humankind has always sought knowledge of a physical system beyond that which is

directly observable. The underlying theme is the relationship between the internaI

structure of a system and the observed output. The hidden features of the system

are to be extracted from. the experimental data.

Historically, system identification has been motivated by the need to design better

control systems. In most practical systems, such as industrial processes, there is

seldom sufficient a priori information about a system and its environment to design

an effective control strategy. Very frequently, we are faced with the necessity of ex­

perimentally determining sorne important physical parameters such as heat transfer

coefficient, chemical reaction rate, damping factor, and so on. The need for highly ac­

curate system models has been intensified by the development of optimal and adaptive

control theories. Other engineering applications for system identification of dynamic

systems inc1ude communication channel probing, and system and fault testing.

The system identification problem can be c1assified into two categories:

8

•

•

1.1.1 BACKGROUND

(i) The complete identification problem, whereby we do not know anything

about the system, such as whether it is linear or nonlinear, memoryless

or with memory, and so on. Obviously, this is an extremely difficult

problem to solve. Usually sorne kind of assumptions have to be made

before any meaningful solution can be attempted. This type of problem

is also referred to as a black box problem.

(ii) Partial identification problem, whereby, sorne basic features of the sys­

tem, such as linearity, bandwidth, and so on, are assumed to be known.

However, we may not know the specific arder of the system, or the val­

ues of the associated coefficients. A situation of this kind is also called

a gray box problem and is, of course, easier to deal with than the black

box problem.

Fortunately, the majority of engineering systems and industrial processes we en­

counter in practice are of type (ii). In many cases, we know a good deal about

the structure of the system, so that it is possible to derive a specific mathematical

model of the system dynamics. Consequently, only a set of parameters in the model

equation are left to be determined. Thus, the modelling problem is reduced to that

of parameter identification (Hsia, 1977).

Since a majority of system identification problems can be either formulated as or

reduced to a parameter identification problem, the treatment of the latter is con­

sidered to be of the greatest importance. In principle, we can precisely determine

the unknown parameters in a mathematical model where the exact measurements of

the input-output data are given. In reality, however, the input-output data are cor­

rupted by measurement noise. The determination of system parameters is essentially

a statistical-estimation problem, where we seek to specify a mathematical model that

fits the observation data.

9

•
1.1.2 MOTIVATION

1.2. Motivation

Low friction and backlash are crucial in high-precision applications. Based on

the layout of pure-rolling indexing cam mechanisms, Speed-o-Cam overcomes these

problems associated with gear transmissions and other mechanisms used to reduce

speed, because it eliminates friction, backlash and compliance. As well as zero back­

lash and low friction losses, Speed-o-Cam also exhibits high stiffness, another essential

attribute for high-torque applications.

The main contribution of this thesis is a study of the dynamic behaviour of the

spherical Speed-o-Cam. A computer-generated model of the spherical Speed-o-Cam

is shown in Fig. 1.2, where the cams straddle the inside and outside surfaces of a

webbed 'hoop', which has drive pins projecting radially from its inner and outer di­

ameter surfaces. One cam drives the inner pins, the other the outer pins. The two

cams are offset to guarantee multi-point contact. The centre of the hoop shares a

common centre of rotation with the output shaft, to which it is connected by a web.

(a) (b)

•

Figure 1.2: (a) View of ensemble and (b) close-up of cam-follower meshing of the
spherical Speed-o-Cam prototype

We will focus on the aspects of both model development and parameter identification.

In the process, the testbed is designed and fabricated; then, a series of experiments

10

•

•

1.1.3 SCOPE AND ORGANIZATION OF THE THESIS

are conducted. The transfer function of the system is derived and, finally, the stiff­

ness parameter and the power efficiency of the Speed-o-Cam prototype are obtained,

which allow us to quantify how this device performs in those transmission aspects

described above.

We decided to conduct dynamic tests for stiffness identification, instead of static

tests, because by conducting static tests, we can only obtain the stiffness parame­

ters; however, by conducting the dynamic tests, we can obtain not only the stiffness

parameters, but also the damping parameters of the mechanical components of our

testbed.

1.3. Scope and Organization of the Thesis

The thesis begins with a description of the Speed-o-Cam testbed. Then, a math­

ematical model of the testbed is derived. Once the model is created, the procedure to

identify its mechanical parameters is described. The results of experiments then lead

to model validation studies and the identification of the stiffness of Speed-o-Cam.

Chapter 2 describes the Speed-o-Cam testbed, with all its components (mechan­

ical and electric), control software and human-machine interface.

In Chapter 3 the mathematical model of the Speed-o-Cam testbed is formulated.

The transfer function of the whole system is derived and then used in conjunction

with the results of dynamic experiments.

Chapter 4 describes the experiments conducted to estimate the parameters which

will be matched with the mathematical model of Chapter 3. Model validation studies

and a refinement of the proposed transfer function are created. An analysis of the

experimental data and c0mparison studies are inc1uded.

In Chapter 5 the efficiency of the Speed-o-Cam prototype is estimated. In the

process, the power losses of two couplings are also obtained.

Chapter 6 summarizes the work accomplished in this thesis and suggests further

research work.

11

•

•

CHAPTER 2

Testbed Calibration

Figure 2.1: Speed-o-Cam testbed

This chapter gives an.overview of the Speed-o-Cam testbed hardware and software

that were set up to operate the Speed-o-Cam transmission and acquire the measured

data.

•

motor Ct

2.2.1 HARDWARE

loac1

wrGlue sen50r 2

ma551e55 plate P

1
1
i
1 1

C~:::--j e,

•

Figure 2.2: !conie model of the Speed-o-Cam prototype testbed

2.1. Hardware

The Speed-o-Cam testbed, shown in Fig. 2.1 with the ieonie model displayed in

Fig. 2.2, is eomposed of several meehanical parts, namely,

• three couplings: Flexible shaft eouplings are used in the testbed, whieh are eon­

neeted the motor, torque sensors, Speed-o-Cam transmission and load shaft .

• the spherical Speed-o-Cam prototype: The spherieal Speed-o-Cam prototype is

to be test here, whieh reduees the high speed delivered by the motor to a low

speed at the load end.

13

•
2.2.1 HARDWARE

• the load shaft: The load shaft is used to couple the spherical Speed-o-Cam

prototype and the load.

• the load: A steel rotor is used as inertial load in our experiments.

Moreover, the electric hardware comprises the DC motor, the DC driver, the D/ A

converter and the data-acquisition system. The details of every component are de­

scribed below.

2.1.1. Mechanical Hardware Setup

2.1.1.1. Coupling Specifications We used three couplings in our testbed.

The first one is the DT0125-C14mm Flexible Shaft Coupling1 , which is connected to

the DC motor with the input shaft torque sensor. The second one is the DT0125­

C12mm Flexible Shaft Coupling, which is used to connect the input shaft torque

sensor with the input shaft of the Speed-o-Cam transmission. The last one is the

DT0125-C12mm Flexible Shaft Coupling that connects the output shaft torque sen­

sor with the load shaft. AlI three couplings are shown in Fig. 2.3 with the parameter

specifications recorded in Table 2.1.

(a) (b) (c)

•

Figure 2.3: Flexible shaft couplings: (a) DT0125-C14mm; (b) DT0125-C12mm;
(c) BT0150-C14mm

2.1.1.2. The Load Specifications In order to conduct the tests of Speed-o­

Cam, we introduce one inertialload, with the specifications described in Table 2.2.

1 As per Electromate Industrial Sales Ltd. catalogue of Stocking Distributor Performance Motion
Control Products, 2000 .

14

•

•

2.2.1 HARDWARE

Coupling Peak Torque Stiffness
Nm Nm/deg

DT0125-C14mm. Flexible Shaft Coupling 8.47 1.24
DT0125-C12mm Flexible Shaft Coupling 13.56 0.95
BT0150-C14mm Flexible Shaft Coupling 13.56 1.92

Table 2.1: Parameter specifications of the couplings

Mass Moment of Inertia
kg kgmm2

4.998 14,752

Table 2.2: Parameter specifications of the load

2.1.2. Electrical Hardware Setup The electrical hardware setup involves

using 1/0 devices, and the host computer. A PC with Pentium III 500MHz processor

is used to drive the DC motor and acquire the measured data. The D/ A converter

card receives digital voltage signaIs from the computer and sends analog signaIs via

the DC driver to drive the DC motor. Moreover, the A/D converter receives analog

voltage signaIs from the data-acquisition system and converts analog voltage signaIs

into digital data. The latter are then sent to the host computer. The electrical

connection from the Speed-o-Cam testbed to the host computer is shown in Fig. 2.4

15

2.2.1 HARDWARE

+v -v+v -v-v

1Termination Board Panel 1

"---------1 De Motor

•

Figure 2.4: Connection scheme from the testbed to the host computer

2.1.2.1. Motor Specifications We used an HS-250-9 DG Servo Actuator for

the Speed-o-Cam testbed, which drives the Speed-o-Cam transmission with its load.

The specifications of this motor are recorded in Table 2.3.

Rating Value
Rated Voltage 85V
Rated Current 5AOA
Rated Speed 3000rpm

Efficiency 82.01%
Viscous Damping Constant 44.73Nm/rpm

Moment of Inertia 3.04Nm/(rad/s~)

Maximum Output Speed 4000rpm

Table 2.3: DC motor specifications

• 16

•
2.2.1 HARDWARE

2.1.2.1.1. Motor calibration The purpose of the calibration is to identify the

constant gain and bias that relate the input voltage from the host computer with the

output velocity of the De motor. The relation thus resulting is intended to eliminate

the amplification effect of the De driver, which is composed of the servo-amplifier and

the DIA converter, whose values are unknown at the moment. The motor calibration

was conducted with the Ç1id of a multi-voltmeter and the motor tachometer.

The De mator was l'un with different input voltages and the output velocities were

measured with the motor tachometer. Plots of data obtained from the calibration are

shown Fig. 2.5 both with and without mechanism and load.

1600r----,---,--r----,---,--r----,---,-----,r----. 1600r--------,------,---------,

•
••..

1 1.5

Input Voltage [V] (From Host Computer)

200'---------'------'--------"
0.5

1400

E
g1200

~ •'0
0 •
~ 1000 •
'5
Cl

'5 •o 800

.9 •
0 •
~ •
Ü 600 ..
0 ••••400

o"-----'-_-'-_L----'-_-'-_L----'-_-'-_L-----'
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Input Voltage [V] (From Host Computer)

600

400~'•........ ; •....•..........-...•..•.. .•....•.. -j

800

200~ ..•.... .•........ .•..... ..•.... .••.......•....

1400f- ;............ ..•..... -j

1200f-· .

1000

(a) (b)

Figure 2.5: De motor calibration for constant-velocity profiles: (a) with mechanism
and load; (b) without mechanism and load

•
The relations for constant velocity profiles with and without mechanism and load

are given below, respectively, with voltage measured in V and motor output velocity

17

•

•

2.2.1 HARDWARE

mrpm.

MOTOR OUTPUT VELOCITY = 721.8443 * input voltage - 12.4679 (2.1)

MOTOR OUTPUT VELOCITY = 709.3619 * input voltage - 56.0805 (2.2)

2.1.2.2. DC Driver Setup The DC driver that we used is the KBRG-240D

DC driver, as shown in Fig. 2.6.

Figure 2.6: DC driver

The KBRG-240D DC driver is a full-wave regenerative control, capable of operating

a DC motor in a bidirectional mode. It offers excellent controllability, which closely

approximates the performance of servo-type drives. Its ratings are listed in Table 2.4.

Model Input Max.AC Output Max. DC Output Max.
Voltage Current Voltage Current Horsepower
(VAC) (RMS) (VDC) (ADC) HP (KW)

KBRG-240D 8802 115 16 0- ±90 11 1(0.75)
230 16 0- ±180 11 2(1.5)

Table 2.4: DC driver electrical ratings

The jumper settings of the DC driver, very important parameters, are shown in Table

2.5 .

18

•

•

2.2.1 HARDWARE

Jumper Number Position Function
JIA and JIB 115 select the input AC line voltage as 115V

J3 90V to match our motor armature voltage (85V)
J7 Spd select control-speed mode
J6 NTCL don't stop the motor if it is overloaded after a delay

Table 2.5: DC driver jumper settings

2.1.2.3. Digital/Analog Card Setup The D/ A card used for interfacing

with the host computer is the ADIO 1600 D/ A. This is a 100kHz multifunction

analog/digital 1/0 card, as shown in Fig. 2.7

Figure' 2.7: ADIO 1600 Analog/Digital 1/0 card

For our needs, the jumpers are set as follows:

• 4 analog inputs: +1- 10V, differential (bipolar range for negative speed and

positive speed).

• 1 analog output: +1- 10V, (bipolar range 10V) for De driver speed voltage

control.

• 1 digital output: 0 low and -5 high to enable the DC driver.

• We have to set the memory port address. In general, the address Ox300 is for

prototype cardo

19

•

•

2.2.1 HARDWARE

• Setting analog inputs

- Move jumper JP4 to bipolar position.

- Move jumpers JP8 and JP9 to differential position.

• Setting analog outputs

- Select bipolar position

- Select 10V position

- Select "off" position

After setting the jumpers on this card, we need to set different channels for analog

inputs and outputs, as shown in Table 2.6.

Pin Number Name Function
19 L.L GND Low Level Ground
9 DACO out D/ A Channel 0 Output
7 COM Power Common (Logic GND)

23 OPO Digital Output Channel 0
37 CHO HI Channel 0 Analog high input
18 CHOLO Channel 0 Analog low input
36 CH1 HI Channel 1 Analog high input
17 CH1LO Channel 1 Analog low input
35 CH2 HI Channel 2 Analog high input
16 CH2LO Channel 2 Analog low input
34 CH3 HI Channel 3 Analog high input
15 CH3 LO Channel 3 Analog low input
28 L.L GND Low Level Ground
29 L.L GND Low Level Ground

Table 2.6: Pin assignments of termination board panel

The analog inputs are configured as differential channels. A difl'erential input

uses two input channels and the signal corresponds to the voltage difl'erence between

these two channels. Pins numbers 9 and 19, to which we will connect the DC driver

control connector, allow us to start and stop the DC motof.

20

•
2.2.1 HARDWARE

2.1.2.4. Data-Acquisition System The data-acquisition system includes: the

DC motor tachometer, termed input velocity tachometer; an input shaft torque sen­

sor, termed input torque sensor; an output shaft tachometer, referred to as output

velocity tachometer; and an output shaft torque sensor, called output torque sensor.

8ince the outputs of two 'tachometers and the torque sensors are voltages, for obtain­

ing the respective velocities and the torque, the voltage readouts at the AjD converter

channel have to be divided by the sensitivity constant of each sensor.

In order to find the precise sensitivity constants, the calibrations were performed.

Tachometer calibration was conducted with the aid of a multi-voltmeter and a halld­

held mechanical tachometer. The DC motor was run with different velocities. The

motor velocities and the output voltages from the tachometers were measured with

the hand-held tachometer and the multi-voltmeter, respectively.. Plots of data ob­

tained from the calibration are shown in Fig. 2.8.

2000 550

1800 500

1600
450

1400

400
E E
8-1200 8-
'$ ~350
'(j ü

~ 1000 0
Qi

> >
300

800

250
600

200400

200 150
0 6 B 10 12 14 3 7 10 Il

Voltage[v] Voltage[v]

(a) (b)

•
Figure 2.8: Tachometer calibrations: (a) the DC motor tachometer; (b) the output

shaft tachometer

21

•
2.2.1 HARDWARE

Furthermore, torque sensor calibration was conducted with the aid of the multi­

voltmeters and the DC motor tachometer. The DC motor was run with different

velocities measured with the DC motor tachometer, and the DC motor input voltages

and currents were measured with a multi-voltmeter. The DC motor output torques

were calculated based on the formula below

UIry
Tm =-­

Wm
(2.3)

where l and U are DC motor input current and voltage, ry is the efficiency of the

motor, and W m is DC motor output velocity. Moreover, the output voltage from torque

sensors was measured with another multi-voltmeter. Plots of the data obtained from

the calibration are shown in Fig. 2.9.

0.40.350.30.2 0.25

Votlage[V]
0.15

0.7

0.3

0.6f-······ :....

0.2

0.1 '-----_---'-_---'-__..L-_--'-__L-_-'-_--.J

0.05

0.8,----,-------r---,----,--,.---,---,

Eo.5z
m
:l

~
~0.4f-·· :.... . / .

0.40.350.30.2 0.25

Votlage[V]
0.15

0.9

0.8

0.7

E
Z

~06
~
0
f-

0.5

0.4

0.3

0.2
0.05 0.1

(a) (b)

Figure 2.9: Tachometer calibrations: (a) the input shaft torque sensor; (b) the out­
put shaft torque sensor

• Finally, the sensitivity constants of tachometers and torque sensors are obtained and

22

•

•

2.2.2 SOFTWARE

recorded in Table 2.7.

Sensor Sensitivity Constant
Input velocity tachometer 6.9[Vjkrpm]

Output velocity tachometer 19.3[Vjkrpm]
Input Torque sensor 2.45[mV jNm]

Output Torque sensor 2.44[mVjNm]

Table 2.7: 8ensitivity constants for the sensors

2.2. Software

The control and data-acquisition C++ program, called Simple, is included in Ap­

pendix A. Simple can control the DC motor and acquire data for analysis. Using this

program, the DC motor can be controlled with arbitrary velocity profiles, preferably

of the constant types.

2.2.1. Ruman-Machine Interface The interface is produced by C++ code

to create a graphical X-Windows environment, as shown in Fig. 2.10. X-Windows

offers the user various options to perform operations such as sending signaIs to operate

the DC motOf. X-Windows provides push-button options activated by the use of a

computer mouse. X-Windows comprises five menu boxes, each menu box supplied

with command buttons. The menu boxes occupy the top section of X-Windows,

which are

• File: There are New, Open, Save, Save As and Exit commands in this menu

box, which permit one to load or save measurement data and exit the program.

• Edit: This menu box includes Undo, Cut, Copy and Paste commands, which

permit one to edit one's input signal data.

• View: In this menu box, one can select to display or hide the toolbar and

Status Bar when' the program is mn.

23

•

•

2.2.2 SOFTWARE

Figure 2.10: The human-machine interface under the X-Windows environment

• Help: This is a very useful menu box. When the mouse is placed on each

button, the explanation of this program is displayed.

• Input Signal: This is the most important menu box in the program, which

one can input constant voltage signal to control the De motor with constant

velocity.

24

•

•

CHAPTER 3

Modelling of the Testbed

In this chapter, the Newton-Euler and the Lagrange formulations are used in devel­

oping the mathematical model for the testbed of the Speed-o-Cam prototype; the

iconic model of the testbed is displayed in Fig. 2.2. Based on this model, the transfer

function of output velocity to input velocity is derived.

3.1. Iconic Model of the Testbed

In the iconic model of the prototype, as illustrated in Fig. 2.2, all springs and

dashpots are torsional elements that are assumed to operate within their linear range.

3.1.1. List of Symbols

kl : torsional stiffness of coupling 1

k2 : torsional stiffness of coupling 2

k3 : stiffness of the roller pins of the transmission

k4 : torsional stiffness of coupling 3

Cl: coefficient of viscous damping of the motor

C2: coefficient of viscous damping of coupling 1

C3: coefficient of viscous damping of coupling 2

C4: coefficient of viscous damping of coupling 3

C5: coefficient of viscous damping of the load shaft

•

•

3.3.3 DERIVATION OF THE MATHEMATICAL MODEL

JI: moment of inertia of the motor

J2 : moment of inertia of the cam shaft

J3 : moment of inertia of the raller-carrying disk

14 : moment of inertia of the load

el: angular velocity of the motor

ec : angular velocity of the high-speed shaft between coupling 1 and coupling 2

e2 : angular velocity of the high-speed shaft

rh: angular velocity of the low-speed shaft

of the the transmission under rigid-pin conditions

e4 : angular velocity of the low-speed shaft due to raller-pin flexibility

es: angular velocity of the load

Tm: motor-supplied torque

Tl: the torque of the high-speed shaft

T2: the torque of the low-speed shaft

N: integer giving the speed-reduction ratio as N : 1

3.2. Main Assumptions

We assume that aIl shafts, connectors, cams and load are rigid bodies. Moreover,

the rallers are rigidly attached to the roller-carrying disk. However, in practice, the

rollers are not rigidly attached to this disk by means of the raller-pins. Thus, the

velocities of the high-speed shaft and low-speed shaft do not precisely obey the relation

of the speed reduction N : 1. In order to find the velocity of the low-speed shaft e4 ,

and the stiffness of the roller-pins k3 , we model the raller-carrying disk as a massless

plate P, and lump its mass in the rator of moment of inertia 13, as shown in Fig. 2.2.

3.3. Derivation of the Mathematical Model

We formulate the governing equations using a Lagrangian appraach (Seely, 1964).

If we let q be the vector of independent generalized coordinates, then the Langrange

26

•
3.3.3 DERIVATION OF THE MATHEMATICAL MODEL

equation of the system is given below:

d(aL) aL- - --
dt aq aq

where

a
aq (II - 6) (3.1)

L : the Lagrangian of the system, given by L = T - V

T : the total kinetic energy of the system

V : the total potential energy of the system

II : the power supplied to the system by motor sources

6 : the dissipation function associated with an dashpots in the system

The total kinetic energy is obtained by adding the individual energies of the various

bodies comprising the system. The obvious choice of generalized coordinates is the

set of angular displacements (Ji, for i = 2, ... , 5 and c, the total kinetic energy of the

system hence being

(3.2)

Furthermore, the system has elastic elements, while gravity does not intervene. The

potential energy is, therefore,

Since an the input power cornes via the motor-supplied torque T, which is delivered

at an angular velocity (JI, we have

(3.4)

•

With regard to viscous damping only, the dissipation function is

27

•
3.3.3 DERIVATION OF THE MATHEMATICAL MODEL

The speed ratio being 1/N, under the assumption that 03 = 0, when Oz = 0, we have,

(3.6)

It is then apparent that out of the five generalized coordinates Bi, for i = 2, ... , 5

and C, only four are independent, and hence, the system has four degrees of freedom.

Substituting eqs. (3.2)-(3.6) into eq. (3.1), the Langrange equation becomes

Mij + Ci] + Kq = f(t) (3.7)

•

where q is the 4-dimensional vector of generalized coordinates and f(t) is the 4­

dimensional vector of generalized force, namely,

(Je kl (JI + Cz (JI

(Jz
f(t) =

0
q

(J4 0

(JS 0

Moreover, M, C and K are the 4 x 4 mass, damping and stiffness matrices, respec-

tively, as given below:

0 0 0 0

0 Jz + J3 /Nz 0 0
M

0 0 0 0

0 0 0 J4

28

3.3.4 DERIVATION OF THE TRANSFER FUNCTION MODEL

•
c

o
o

o 0 C4 -C4

o 0 -C4 C4 + C5

-k3 /N 0

k3 + k4 -k4

-k4 k4

K

-k2

k2 + k3 /N2

-k3 /N

o

o o

•

3.4. Derivation of the Transfer Function Model

Transfer function models are widely used in many single-input single-output

(SIS0) systems. The transfer function is a compact representation of the differ­

ential equation describing the ratio of the output variable to the input variable, these

variables being expressed as polynomial functions of s, after Laplace-transforming the

input-output differential equation (Savant, 1964).

We find the transfer function of the system at hand by choosing el as the input vari­

able and e5 as the output variable. To this end, we first take the Laplace transform

of eqs.(3.7), with zero initial conditions. The Laplace transforms in terms of ei(t) are

k18 l + C2 8 l S (C2 + c3)8cs - C382S + (k l + k2)8c - k28 2 (3.8a)

0 (J2 + 1/N 2J3)82s2
- c 38 cs + C382S - k28 c

+ (k 2 + 1/N2k3)82 - 1/N84k3 (3.8b)

0 C4 8 4S - C4 8 5S - 1/Nk38 2 + (k3 + k4)84 - k4 8 5 (3.8c)

0 J48 5s2
- C4 8 4 S + (C4 + c5)85s - k4 8 4 + k4 8 5 (3.8d)

We derive the desired transfer function, namely,

(3.9)

29

•
3.3.4 DERIVATION OF THE TRANSFER FUNCTION MODEL

where

P(s) k 3N(-C2C3C4S3 + (k1C3C4 + C2C3k4 + C2k2C4)S2

+ (k1C3 k 4 + k 1k 2C4 + C2 k 2k 4)S + k 1k 2k 4)

Q(s) = Bs6 + Cs5 + Dé + Es3 + Fs2 + Gs + H

with coefficients B, C, D, E, F, Gand H given by

(3.10a)

(3.10b)

•

B c3hN2c4J4 + J3C4C2J4 + c3hc4 J 4 + J2N2c4C2J4 (3.10c)

C J2N2k4C2J4 + J3k4C2J4 + c3J3k3J4 + k2J3C4J4 + k2J2N2c4J4

+ C3J2N2c4C5 + C3J3k4J4 + J3C4klJ4 + J3k3C2J4 + J2N2C4C2C5

+ J 2N
2

k3C2J4 + J2N2c4klJ4 + C2C3N2c4J4 + C3 J 2N2 k 4 J 4

+ C3 J 2N2 k 3 J 4 + h C4C2C5 + C3 J 3C4C5 (3.10d)

D J3k3C2C5 + J 3 k 4 k 1 J 4 + J2N2k4C2C5 + J2N2k3klJ4 + k2N2c4C2J4

+ k3c4C2J4 + J2N2C4klC5 + J2N2k3C2C4 + J2N2k3C2C5

+ J 3C4 k l C5 + hk3C2C4 + J3k4C2C5 + J 3 k 3 k 1 J 4 + k2J2N2k4J4

+ C3J2N2 k3C5 + C3J3k3C4 + C3J3k3C5 + k 2 J 3 k 3 J 4 + k2J2N2c4c5

+ C2C3N2C4C5 + C2 C3N2 k 4 J 4 + k 2 J 3C4C5 + C3 J 3 k 4C5 + k 2 J 3 k 4 J 4

+ klC3N2c4J4 + k2J2N2k3J4 + C2C3N2k3J4 + C3J2N2k3C4

+ C3k3C4J4 + C3J2N2 k4C5 + J 2N
2

k 4 k 1 J 4 (3.10e)

30

•
3.3.5 INERTIAL PROPERTIES OF THE TESTBED ELEMENTS

E J3k4k1C5 + k3C4C2C5 + J 2N
2

k4k1C5 + k3C4klJ4 + k2N2C4C2C5

+N2k4C2k2J4 + k2N2C4klJ4 + k3k4C2J4 + J2N2k3C2k4

+ J2N2k3klC5 + J3k3k1C5 + N2k3C2k2J4 + J 3k 3C2k 4 + hk3k 1C4

+ k1C3N2 k 4 J 4 + k 2 J 2N
2

k4C5 + k2J3k3C4 + k2J3k3C5 + k 2k 3C4 J 4

+ c3J3k 3k 4 + C3J2N2 k 3k 4 + C3k3k4J4 + k2J3k4C5 + C3 k 3C4C5

+ k2J2N2k3C4 + k2J2N2k3C5 + C2C3N2k3C4 + J2N2k3klC4

+ klC3N2k3J4 + C2C3N2k4C5 + C2C3N2k3C5 + klC3N2C4C5

F J 2N
2

k 3k 1k 4 + J 3k 3k 1k 4 + k 2k 3k 4 J 4 + k2k3C4C5

+ klC3N2k3C4 + N2k3C2k2C4 + C2C3N2k3k4 + k 2hk3k 4

+ N2k3klk2J4 + k3k4C2C5 + N2k4C2k2C5 + klC3N2k4C5

+ N2k4klk2J4 + k3C4klC5 + klC3N2k3C5 + N2k3C2k2C5

+ k2J2N2k3k4 + k 3k 4k 1 J 4 + k2N2c4klC5 + C3 k 3k 4C5

G N2k3C2k2k4 + k2k3k4C5 + N2k3klk2C4 + k3k4k1C5

+ klC3N2k3k4 + N2k4klk2C5 + N2k3klk2C5

}{ == klk2k3k4N2

3.5. Inertial Properties of the Testbed Elements

(3.10f)

(3.10g)

(3.10h)

(3.10i)

•

In the dynamic analysis of the Speed-o-Cam testbed, to be undertaken in Chap­

ter 4, the inertial properties of the rotating parts are required. For a uniform solid,

these properties are the volume, the centroid coordinates, and the inertia tensor. We

assume that aIl rotating parts, the cam shafts and the roller-carrying disk have lln­

dergone a full static and dynamic balancing, and hence, the only relevant property

for our analysis is the moment of inertia about the axis of rotation.

Pro/ENGINEER Model Analysis (MA) is a useful tool, which includes facilities to

31

•
3.3.5 INERTIAL PROPERTIES OF THE TESTBED ELEMENTS

calculate the volumetrie properties of general solids. The cam input shaft and the

roller-carrying disk were generated in Pro/ENGINEER, as shown in Fig. 3.1

(a) (b)

•

Figure 3.1: Solid models of (a) the cam shaft; and (b)the roller-carrying disk

The inertial-parameter values, as reported by Pro/Engineer, are recorded in Table

3.1.

Mass Moment of Inertia
(kg) (kgmm2

)

Cam Shaft 0.5676 128.75022
Roller-Carrying Disk 1.9414 4778.4172

Table 3.1: Moments of inertia of the input cam shaft and the roller-carrying disk
with output shaft

32

•

•

CHAPTER 4

Dynamic Analysis of the Testbed

4.1. System Identification

The system identification problem consists in estimating the parameters of a'

system model based on observed input-output data, The procedure to determine

these parameters involves three basic ingredients:

• Design an experiment and collect input-output data from measurements.

• Examine the data. Polish the data so as to remove trends and outliers, and

select useful portions of the original data, possibly applying filters to enhance

important frequency ranges.

• Compute the best model parameters according to the input-output data.

In the previous chapters, the testbed and the data acquisition program were deseribed.

In order to identify the testbed model parameters, we will begin with input-output

data analysis; to this end, the numerical results of the testbed transfer funetion are

obtained.

4.1.1. Input-Output Data Analysis Good and simple insight into a sys­

tem's dynamie properties is obtained by looking at its step response or impulse re­

sponse (Wolovich, 1994). In our case, the step response of the system is used for this

purpose; that is, we study the output as a result of a step input. Sinee practieally

we only ean change the supply voltage to the motor, a true step in the input velocity

•

•

4.4.1 SYSTEM IDENTIFICATION

is not possible. However, as made apparent from the Fig. 2.5, the motor shows a a

predominantly static behaviour. We can thus reliably accept that a voltage step to

the motor leads to a step input in the angular velocity of the motor shaft. In our

experiments, constant voltage input signaIs are sent from the host computer to the

motor, so as to produce motor velocities of 600rpm, SOOrpm, 1000rpm, 1200rpm and

1400rpm. el, the input variable, is measured from the input velocity tachometer, and

es, the output variable, is measured from the output velocity tachometer. We collected

data for a time span of lOs with sampling rate of 10ms, thus acquiring 10000 sets of

input-output data, which were then saved in a file for each experiment; these were

then analyzed with MATLAB. Moreover, for each motor speed, we conducted five

experiments. The best data group with least measurement noise is selected out of

five experiments by means of the fast Fourier transform (Kahaner, Moler and Nash,

1977). Furthermore, in addition to the decisions required for the transfer function

selection and validation, the data may need to be processed carefully. Hence, we

removed the outliers to refine data and filtered the high-frequency noise by means of

Butterworth filter. The plots for the best groups of data sets of input and output

angular velocities with different velocities are obtained, finally, as shown in Fig. 4.1.

(a)

34

•

•

4.4.1 SYSTEM IDENTIFICATION

(b)

Time [5]

(c)

(cl)

35

• 4.4.1 SYSTEM IDENTIFICATION

oo!'---:-~---:-~~,-----:-:----:------::------;
Time[s]

•

(e)

Figure 4.1: The signaIs recorded of input and output velocities for input veloc­
ity values of: (a) 600rpm; (b) 800rpm; (c) 1000rpm; (d) 1200rpm; (e)
1400rpm

Five groups of input-output data sets where the setting speed varied from 600rpm

to 1400rpm were acquired. We did the system identification analysis in the time­

domain not the frequency-domain, because the capability limit of our DC driver card,

which can not produce a sinusoidal voltage signal to the DC motof. We analyzed these

data by means of the System Identification toolbox in MATLAB (Ljung 2000). The

transfer function, termed the experimental transfer function (ETF), was obtained in

the form

H() = N(s)
s D(s)

where

N(s) = -72.47s5
- 16360s4

- 1.685 X 107s3 + 8.027 x 109
8

2 + 1.239 x 1012
8

+7.022 x 1013

D(8)

+5.608 x 1014

36

•
4.4.1 SYSTEM IDENTIFICATION

The associated Bode plots and the plot of pole-zero map are shawn in Fig. 4.2 and

Fig. 4.3.

10'10
3

Frequency (rad/sec)

-270~~~~~~~~~~~~-'-'-~~~~~~
10'

-50L--_~~~~-'-'-'-_~~~~~-'-'-_~~~~~

oF========r:::-~~~~~~-c--'--:---~~

aL10
~
ID

~20
'ë
~30

::;:

-40

êii
;-90
ID

~
oC
0..
-180

Figure 4.2: The Bode plots of the system

600,--~--~--~--~-~----.

400

°

200
-600 L--_---'-__-'-_---=0-C-__'----_---'-__-'

-800 -600 -400 -200

Real Axis

-400

200

-200

(J)

~
0) 0
CIl
E

400

•
Figure 4.3: The pole-zero map of the system

37

•

•

4.4.1 SYSTEM IDENTIFICATION

To verify this transfer function, we use the Final- Value Theorem (Cannon, 1967)

with the step time response function, thus obtaining

lim[8 H(8)] = 7.022 X 10
13

= 0.1252
8->0 8 5.608 X 1014

Apparently, this value is very close to 1/N, the speed reduction ratio of 1/8, thus

validating the above transfer function.

To obtain the natural frequencies and damping ratios of the testbed, we factored the

sixth order polynomial of the denominator of ETF into three quadratic polynomials,

with real coefficients, upon pairing the complex-conjugate roots (D'Azzo and Houpis,

1988), thus obtaining

Ml 82 + 338.558 + 16104.4250

M 2 82 + 120.568 + 48463.2713

M 3 82 + 1596.888 + 718452.3737

The natural frequencies and damping ratios of the system are shown in Table 4.1.

Mode Natural frequencies Damping ratios
The first mode 19.92Hz 1.3338

The second mode 35.0547Hz 0.2738
The third mode 134.9707Hz 0.94198

Table 4.1: The natural frequencies and damping ratios of the system

4.1.2. Approximating the Numerator Polynomial of ETF With the

model transfer function (MTF), derived in Chapter 3, we have two expressions for

the transfer function of the Speed-o-Cam testbed. The numerator of the MTF is a

third-degree polynomial, while the numerator of the ETF is a fifth-degree polynomial.

In order to match the coefficients of the two expressions to identify the mechanical

parameters of the prototype, the Chebyshev algorithm (Henrici 1964) was employed

38

•
4.4.1 SYSTEM IDENTIFICATION

to approximate the fifth-degree polynomial of the numerator of the ETF by a third­

degree polynomial.

The Chebyshev algorithm is described below: If we let Q(x) be a polynomial of degree

n with leading coefficient 1,

Q() n n-1 +x = x + an-Ix + ... ao

then the approximate polynomial P(x) of degree n-1 is chosen so that the maximum

value of error IQ(x) - P(x) 1 is minimized; P(x)is given by

P(x) = Q(x) - L(x)

where

with Tn denoting the nth Chebyshev polynomial.

The original fifth-degree numerator polynomial of the ETF is

(4.1)

•

Q(8) = -72.4785 -1636084 -1.685 X 10783 +8.027 x 10982 + 1.239 x 1012 8

+ 7.022 x 1013

Using eq.(4.1) and taking the interval [-1, 1], we obtain

P4(8) = -1636084
- 1.685009059 X 10783 + 8.027 x 10982 + 1.23 x 1012 8

+ 7.022 x 1013

Thus approximating the original polynomial with a fourth-degree polynomial. By

using the approximating process of eq. (4.1) recursively in the same interval, finally,

the third-degree polynomial approximation is obtained as

P3(8) = -1.685009059 x 108é + 8.026983640 x 10982 + 1.23 x 1012 8 (4.2)

+7.022 x 1013

39

• 4.4.2 MECHANICAL PARAMETER IDENTIFICATION

The ETF becomes, therefore,

H() = P3(3)
3 D(3)

Where:

P3 (3) -1.685009059 X 10833 + 8.026983640 x 10932 + 1.23 x 1012 3

+7.022 x 1013

D(3) 36 + 205635 + 1.557 x 10634 + 5.165 x 10833 + 1.058 x 1011 32

+1.443 x 1013 3 + 5.608 x 1014

(4.3)

•

Moreover, to verify this new transfer function by means of Final- Value Theorem

1
. [H(3)] 7.022 X 1013 2
lm 3-- = = 0.1 52

8-.0 3 5.608 X 1014

The va1idity of this transfer function does not change. The coefficients of the two

transfer functions can now be matched.

4.2. Mechanical Parameter Identification

We identify the mechanica1 parameters by matching the coefficients of the two

transfer functions. The mechanica1 parameters that we want to identify are k1 , k2 ,

k 3 , k 4 , C2, C3, C4 and Cs, which occur in the e1even-coefficient matching equations.

Furthermore, it is apparent that out of e1even equations, on1y ten are independent

and hence, the equations that we will use are

-1.685 X 108
-k3C2C3C4N (4.4a)

8.027 x 109
k 3N(k1C3C4 + C2 C3 k 4 + C2 k 2C4) (4.4b)

0.123 x 1013
k 3N(k1C3 k 4 + k 1k 2C4 + C2 k 2 k 4) (4.4c)

1 C3J2N2c4J4 + J3C4C2J4 + C3J3C4J4 + J2N2c4C2J4 (4.4d)

40

•
4.4.2 MECHANICAL PARAMETER IDENTIFICATION

1.058 X 1011
J 2N

2
k 3k 1k 4 + J 3k 3k 1k 4 + k 2k 3k 4 J 4 + k2k3C4C5

+ k1C3N2 k3C4 + N
2

k3C2k2C4 + C2 C3N2 k 3k 4 + k 2 J 3k 3k 4

+ N2k3k1k2J4 + k3k4C2C5 + N2k4C2k2C5 + k1C3N2k4C5

+ N2k4k1k2J4 + k3C4k1C5 + k1C3N2k3C5 + N2k3C2k2C5

+ k 2J 2 N
2

k 3k 4 + k 3k 4 k 1J 4 + k2N2C4k1C5 + C3 k 3k 4C5

1.443 X 1013
N

2
k3C2k2k4 + k2k3k4C5 + N

2
k3k1k2C4 + k3k4k1C5

+k1C3N2k3k4 + N2k4k1k2C5 + N2k3k1k2C5

5.608 X 1014 = k1k2k3k4N2

(4.4h)

(4.4i)

(4.4j)

We thus have ten nonlinear equations with eight unknowns, the system being overde­

termined. We will solve this overdetermined system by means of least squares (Lawson

and Hanson 1974).

In order to obtain reliable solutions with minimum errors, we convert the above eight

equations into dimensionless form (Lu, 1979); we do this by introducing two basic

parameters. These parameters are the characteristic stiffness k char and the charac­

teristic damping Cchar, SO that,

where

K,ikchar, i = 1, 2, 3, 4

rnCchan n = 2, 3, 4, 5

(4.5)

(4.6)

•

k char

Cchar

42

•
4.4.2 MECHANICAL PARAMETER IDENTIFICATION

Jmr moment of inertia of the motor rotor

kchar : torsional stiffness of the motor shaft

T rated motor torque

w rated motor speed

T mechanical time constant of the motor

Cchar coefficient of viscous damping of the motor

""i : dimensionless torsional stiffness, i = 1, 2, 3, 4

ln : dimensionless coefficient of viscous damping, n = 2, 3, 4, 5

The motor specifications described in Table 4.2,

1 Parameters 1 Value
T 980.8Nmm
w 18000deg/s
T 0.007sec

Jmr 3050.6Nmmsz/deg
kchar 7.8Nmm/deg
Cchar 154Nmms/deg

Table 4.2: Unit parameters specifications

Therefore, eqs.(4.4a)-(4.4j) become, in dimensionless form

cPl 121314""3 - 0.7394 (4.7a)

cP2 ""11314""3 + 1213""4""3 + 12""214""3 - 695.3967 (4.7b)

cP3 ""113""4""3 + ""1""214""3 + 12""2""4""3 - 2103829.767 (4.7c)

cP4 1314 + 1412 - 0.2196 X 10-12 (4.7d)

cP5 ""412 + 13""3 + ""214 + 0.2061131415 + 13""4 + 14""1 + ""312

• + 0.2061141215 + 14.9475121314 - 0.8912 X 10-8 (4.7e)

43

4.4.2 MECHANICAL PARAMETER IDENTIFICATION• <P6 "'4"/2/5 + 72.5224"'2/4"12 + 72.5224"/2/3"'3 + 2.1332"/3"'3"/4"13"'4"/5

+ 72.5224"/2"/3"'4 + "/4"'1"/5 + 2.1332"'3"/2/4 + "'3"/2"/5 + 4.8518"'31'\;1

+ 4.8518"'2"'4 + 4.8518"'2"'3 + 4.8518"'4"'1 + 72.5224"'1"/3"/4

+ 14.9475"/2"/3"14"15 + "/3"'3"15 + "'2/4"15 - 0.6465 X 10-3 (4.7f)

<P7 "'2/4"'1 + 0.0294"'2"'3"/4 + 0.0138"'2"'4"15 + 0.2061"/2/3"14"'3

+ 0.0032"/3"'3"14"15 + 0.2061"/2/3"'4"15 + 0.2061"'1"/3"14"15

+ 0.2061"'2/4"12/5 + 0.0138"'3"'1 "/5 + "'4"/2"'2 + "'3"12"'2

+ 0.0294"/3"'3"'4 + 0.0138"'4"'1"/5 + 0.0294"'3"14"'1

+ 0.0032"'3"14"12/5 + 0.0138"'2"'3"15 + 0.2061"/2/3"'3"15

+ "'1"/3"'3 + 0.0294"'3"'4"/2 + "'1"/3"'4 - 0.0584 (4.7g)

<PS "'3"'1"'4 + "'2"'3"'4 + 0.1095"'2"'3"14"15 + 7.0072"'1"/3"14"'3

+ 7.0072"/2/3"'4"'3 + 33.9976"'3"'1"'2 + 0.1095"'3"'4"12/5

+ 7.0072"'1"/3"'4"15 + 7.0072"'2/4"'1"/5 + 33.9976"'4"'1"'2

+ 7.0072"'1"/3"'3"/5 + 7.0072"'3"12"'2/5 + 0.1095"/3"'3"'4"/5

+ 7.0072"/2"'2/4"'3 + 7.0072"'4"12"'2/5 + 0.1095"'3"14"'1"/5

- 8028.2194 (4.7h)

<P9 "/2"'2"'4"'3 + 0.0156"'2"'3"'4"15 + "'1"'2/4"'3 + 0.0156"'3"'4"'1 "/5

+ "'1"/3"'4"'3 + "'4"'1"'2"/5 + "'3"'1"'2/5 - 3085189.384 (4.7i)

<PlO "'1"'2"'3"'4 - 2139332168 (4.7j)

• 44

-. 4.4.2 MECHANICAL PARAMETER IDENTIFICATION

Furthermore, an A:I, A:2, A:3, A:4, 12, 13, 14 and IS are positive quantities, i.e,

hl = A:I > 0 (4.8a)

h2 - A:2 > 0 (4.8b)

h3 A:3 > 0 (4.8c)

h4 - A:4 > 0 (4.8d)

hs 12 > 0 (4.8e)

h6 -13 > 0 (4.8f)

h7 -14 > 0 (4.8g)

hg -IS > 0 (4.8h)

The problem can be formulated as an inequality-constrained nonlinear least-square

problem, which consists in finding the least-square error f in the approximation of

an overdetermined system of nonlinear equations, cjJ(x) = 0, i.e. (Teng and Angeles

2001),

subject to the linear inequality constraints

h(x) > 0

mm
x

(4.9)

(4.10)

•

where cjJ is an 10-dimensional vector with components cPi(X) , i = 1, ... ,10, eqs.(4.7a)-­

(4.7j), while x is a 8-dimensional vector, where Xi, i = 1, ... ,8, denote the eight

unknowns A:I, 1'\,2, 1'\,3, 1'\,4, 12, 13, 14, IS' Moreover, h is a 8-dimensional vector of linear

inequality constraints with its elements hi(x), i = 1, ... ,8, as defined in eqs.(4.8a)­

(4.8h), the 10 x 10 weighting matrix W being diagonal, i.e.,

W = diag(wl, W2 ...WlO)

45

• 4.4.2 MECHANICAL PARAMETER IDENTIFICATION

Where

1

Il cPi (x) 11~=xo

•

with i = 1, ... ,10 and Xo is the initial guesses. The values of Xo and Wi are listed in

Tables 4.3 and 4.4.

D Initial guesses D Initial guesses 1
""1 158 12 2

""2 121 13 2

""3 120000 14 6

""4 300 15 9

Table 4.3: Initial guesses

Wl 1.06048 X 1O-l~

W2 1.88352 X 1O-lI

W3 4.39456 x 10 ·lb

W4 2.86344 X 1O-U4

W5 2.28412 X 1O-l~

W6 6.60810 X 1O-lb

W7 1.93624 X 10-1 ::1

Ws 8.17289 X 1O-lb

Wg 6.14479 X 1O-Hi

WlO 2.75912 X 10-15

Table 4.4: Numerical values of the weights

46

• 4.4.2 MECHANICAL PARAMETER IDENTIFICATION

The solutions of eq.(4.9) produced with MATLAB are recorded in Table 4.5.

1 . 1 Dimensionless mechanical parameters 1

/1";1 154.9487
/1";2 121.0256
/1";3 117440
/1";4 299.8718
12 0.0012

13 0.0011
14 4.6669
15 8.9994

f_min 4.3392 x lOi

Table 4.5: Dimensionless mechanical parameters

To verify that the results of Table 4.5 are indeed optimum, we evaluted the gradient

of the objective function at the solution obtained (Luenberger, 1968). The values are

0.856394

-0.009569

-0.013391

0.911531

0.331273

0.499969

0.013964

0.003965

•

Where <P is the gradient of 4> with respect to x. Although V f is not exactly zero, its

components are reasonably "small", which indicates an acceptable solution.

By using eqs.(4.5) and (4.6), the mechanical parameters are obtained, as shown in

Table 4.6.

47

4.4.2 MECHANICAL PARAMETER IDENTIFICATION• 1 Mechanical parameters 1 Value

•

kl 1.21Nm/deg
k2 O.94Nm/deg
k3 916.03Nm/deg
k4 2.34Nm/deg
C2 1.85 x 1O-4 Nms/deg
C3 1.69 x 1O-4 Nms/deg
C4 O.72Nms/deg
C5 1.39Nms/deg

Table 4.6: The mechanical parameters

4.2.1. Analysis of the Results Parameters kl , k2 and k4 are the torsional

stiffnesses of couplings 1, 2 and 3 respectively. We conducted the torsional stiffness

test of the three couplings in the Solid Mechanics Laboratory of the Department of

Civil Engineering and Applied Mechanics. The test machine with the test setup is

shown in Fig. 4.4

Figure 4.4: Torsional stiffness test machine

The measured stiffness and identified Stiffnesses of couplings 1, 2 and 3 with the in

corresponding errors are shown in Tables 4.7

48

• 4.4.2 MECHANICAL PARAMETER IDENTIFICATION

Coupling Measured Stiffness Identified Stiffness errors
Nrn/deg Nrn/deg

Coupling 1 1.24 1.21 2.42%
Coupling 2 0.95 0.94 1.05%
Coupling 3 1.92 2.34 21.87%

Table 4.7: The stiffness of the couplings

It is apparent that the errors between rneasured and identified stiffness values of

couplings 1, 2 are quite srnall, while the error of coupling 3 is ten tirnes as large,

although still within reasonable values. The reason for the large error associated

with coupling 3 is that we assurned the steel connector and the load shaft to be rigid

bodies; we only considered the stiffness of coupling 3 in the equivalent output shaft

of our testbed. Therefore, sorne errors were brought in. Moreover, in order to verify

the reliability and sensitivity of the rnechanical pararneters, we changed the weighting

factors to

1

•

with i = 1, ... ,10 and defined Xo as the sarne initial guess. The values of the new

weights Wi are recorded in Tables 4.8

Wl 3.2565 x 10 -1$ W6 2.5706 x 10 -1$

W2 4.3399 x 10 -~ W7 4.4003 X lOI

W3 2.0963 x 10 -1$ W8 2.85882 x 10 -1$

W4 1.6900 X 1O-:l Wg 2.4788 X 10-8

W5 4.7792 X 10- 1
WlO 5.2527 X 10-8

Table 4.8: Nurnerical values of the new weights

The solutions reported by MATALB are recorded in Table 4.9.

49

• 4.4.2 MECHANICAL PARAMETER IDENTIFICATION

CI Dimensionless mechanical parameters 1
/\'1 270.i154
/\'2 97.6923
/\'3 123360
/\'4 298.4308
12 0.0509
13 0.0542

14 0.4239

IS 0.7312
fmin 1.5628

Table 4.9: Dimensionless mechanical parameters

The mechanical parameters derived from Table 4.9 are shown in Table 4.10.

Value
k1 2.11Nm/deg
k2 0.76Nm/deg
k3 962.23Nm/deg
k4 2.33Nm/deg
C2 7.83 x 10 -JNms/deg
C3 8.35 x 10 -JNms/deg
C4 6.53 x 10 -4Nms/deg
Cs O.llNms/deg

1 Mechanical parameters 1

Table 4.10: The mechanical parameters

•

Comparing the mechanical parameters recorded in Tables 4.6 and 4.10, we can find

that the values of the torsional stiffness are more reliable than the values of the co­

efficient of viscous damping, especially, the torsional stiffness of the Speed-o-Cam

prototype k3 , in which we are interested. The values of the coefficient of viscous

damping are too sensitive to the weighting matrix. The reason of this phenomenon,

which cause sorne errors in our results, is that we obtained the transfer function of

the testbed by using a time-domain analysis, rather than frequency-domain analysis.

50

•

•

4.4.2 MECHANICAL PARAMETER IDENTIFICATION

Therefore, some useful information may have been lost, while some errors are brought

in (Rohrs, Melsa and Schultz, 1993) .

51

•

•

CHAPTER 5

Efficiency of the Speed-o-Cam Prototype

Efficiency is an important factor in continuously operated drive trains. Over a period

of years, losses of a even low percentage of the transmitted power can be expensive.

Low efficiency may bring about additional penalties, since friction losses introduce

heat, which must be dissipated. The usual definition of efficiency Tl is

power output

power input

The Speed-o-Cam testbed shown ln Fig. 5.1 is used for the determination of the

Speed-o-Cam efficiency.

Figure 5.1: Speed-o-Cam power efficiency testbed

•
CHAPTER 5. EFFICIENCY OF THE SPEED-O-CAM PROTOTYPE

The iconic model of the testbed shown in Fig. 2.2 is reproduced in Fig. 5.2 for

quick reference.

G(;1Jplin~ ?

Wrque sensor 1

j
1

~;;;;;;;,~.: l'

e, C~::J e,

Wr~ue sensor 2

massless plal:e P

•

Figure 5.2: Iconic model of Speed-o-Cam power efficiency testbed

In order to conduct the efficiency experiments, we measured el and Tl with an input

velocity tachometer and an input torque sensor. Moreover e4 and T2 are the output

variables, measured with an output velocity tachometer and an output torque senSOT.

The efficiency is computed as

(5.1)

53

•

•

5.5.1 THE EFFICIENCIES OF THE COUPLINGS

where Pi and Po are the input and output powers, respectively. Thcse values are

calculated based on the formulas,

(5.2)

(5.3)

We select three experimental speeds, 500rpm, 1000rpm and 1500rpm, to conduct the

efficiency experiments. The efficiency 7]1, that we caU system efficiency under those

velocities is obtained by using eqs.(5.1)-(5.3). The efficiencies are shown in Table 5.1

together with the experimental values of input velocity, output velocity, input torque

and output torque.

speed seting experimental values 7]1

el e4 Tl T2

rpm radis radis Nm Nm
500 52.82309 6.4175 0.6900 4.8994 86.265%
1000 106.4647 13.2392 0.6846 4.8230 87.601%
1500 158.2754 19.5378 0.4128 2.9265 87.512%

Table 5.1: The system efficiency with experimental value specifications

5.1. The Efficiencies of the Couplings

Two couplings are involved in the efficiency experiments, namely, coupling 1 and

coupling 2, as shown in Fig. 5.2. Coupling 1 is connected to the DC motor with the

input shaft torque sensor and coupling 2 is used to connect the input shaft torque

sensor with the input shaft of the Speed-o-Cam transmission. Both couplings dissipate

a part of the power generated by the motof. Therefore, a series of experiments should

be performed to estimate the efficiencies 7]c1 and 7]c2 of the two couplings. These values

should be taken into account while calculating the Speed-o-Cam efficiency.

To determine the efficiency of the couplings, we used the same Speed-o-Cam testbed

with a different setup, shown in Fig. 5.3 .

54

•
5.5.1 THE EFFICIENCIES OF THE COUPLINGS

Figure 5.3: The coupling testbed

The iconic model of the coupling testbed is shown in Fig. 5.4

wrCjue sensor 1

rotor

1
1

1
1

1 C W

T, Ccru~l~1~-C~PIIn~ 2 '

T. ?777/777?

2

•
Figure 5.4: Iconic modcl of the coupling tcstbed

55

•
5.5.1 THE EFFICIENCIES OF THE COUPLINGS

In Fig. 5.4:

k: torsional stiffness of the test coupling

c: coefficient of viscous damping of the test coupling

Wl angular velocity of the rotor

W2 angular velocity of the load shaft

Tm: rotor-supplied torque

Tl: the input torque

T2: the output torque

The couplings are tested separately. Each experiment is carried out with three dif­

ferent input velocities, which are the same as those we set in the system efficiency

experiments. We chose Wl and Tl as input variables measured from an input velocity

tachometer and an input torque sensor. Moreover W2 and T2, the output variables,

are measured from an output velocity tachometer and an output torque sensor. The

efficiency rJe of each coupling is thus obtained as

rJe =

where
Pei: the input power of the test coupling

Pco : the output power of the test coupling

Wl: input power of motor

W2: output power of coupling

(5.4)

•

The experimental values of the velocities and torques with the efficiencies of two cou­

plings were obtained as recorded in Tables 5.2 and 5.3.

56

•
5.5.2 THE EFFICIENCY OF THE PROTOTYPE

speed setting experimental values 'T]cl

WI W2 Tl T2

rpm radis radis Nm Nm
500 52.4960 51.4783 0.3037 0.3040 98.158%
1000 105.3717 103.9033 0.2712 0.2714 98.679%
1500 157.9762 155.0182 0.2125 0.2121 98.312%

Table 5.2: Efficiency values with the experimental values of coupling 1

speed setting experimental values 'T]c2

WI W2 Tl T2

rpm radis radis Nm Nm
500 51.6826 50.5715 0.2821 0.2829 98.127%
1000 105.0463 103.0399 0.2577 0.2580 98.204%
1500 157.9762 155.0182 0.2121 0.2125 98.312%

Table 5.3: Efficiency values with the experimental values of coupling 2

5.2. The Efficiency of the Prototype

Finally, the efficiency of the Speed-o-Cam prototype, which we term 'T]s, is ob­

tained as,

'T]s =
fil

'T]cl'T]c2
(5.5)

•

The efficiency of the Speed-o-Cam prototype are recorded in Table 5.4.

experimental speed 'T]s

500rpm 89.561%
1000rpm 90.397%
1500rpm 89.965%

Table 5.4: Efficiency of the Speed-o-Cam prototype

The average values of the efficiency of most common power transmission elements

with same speed reduction ratio are: Spur gears with cut teeth, including bearings,

98%; bevel gears with cut teeth, including bearings, 94% (Oberg, Jones and Horton,

57

•

•

5.5.2 THE EFFICIENCY OF THE PROTOTYPE

1988). If lubrication is poor or if the drive operates at lower-than-rated power, the

efficiency will be lower. In high-reduction worm drives, losses may exceed 50% of the

transmitted power. Traction drives have efficiencies from 65% to 90%, where the me­

chanical losses include the bearing friction, windage and brush-friction losses (Plint

and Martyr 1995).

Comparing the average values of the efficiency of those power transmission elements

with the efficiency of the Speed-o-Cam prototype, it can be said that the efficiency

of the Speed-o-Cam prototype is on the low side. However, since this is the first

spherical Speed-o-Cam prototype, its efficiency of around 90% can still be increased

with proper redesign.

58

•

•

CHAPTER 6

Concluding Remarks

6.1. Conclusions

We introduced here a procedure to identify the mechanical parameters of a novel

mechanical transmission, Speed-o-Cam, for speed reduction. The morphology of this

transmission stems from that of pure-rolling indexing cam mechanisms; hence, Speed­

o-Cam is backlash-free and frictionless.

In this thesis, we studied the dynamics of this novel mechanism. In particular, this

thesis focuses on the aspects of both model development and mechanical parameter

identification, as pertaining to a spherical prototype of Speed-o-Cam. In order to

conduct the experiments on the prototype, a testbed was designed and fabricated.

Then, the iconic model of the testbed was produced, all the related equations, such as

the total kinetic energy and the total potential energy of the system were determined,

so as to use a Lagrange formulation to develop the dynamic model. A mathemati­

cal model of the testbed was first derived under sorne main assumptions. Then, the

model transfer function (MTF) of the output velocity to the input velocity of the

system was derived based on the mathematical model of the testbed. Furthermore,

a series of new experimental procedures for system identification were proposed and

explained. As a result, the experimental transfer function (ETF) of the testbed was

obtained by using the system identification toolbox in MATLAB. To this end, by

•

•

6.6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

matching the coefficients of the two transfer functions at hand, the problem of me­

chanical parameter identification was investigated.

In consequence, investigations were carried out to identify the values of the relevant

mechanical parameter of a spherical prototype, namely, its stiffness. In the process ,

the stiffness and damping parameters of the couplings of the testbed were also iden­

tified.

In addition, an important factor of power transmissions, which is the efficiency of the

prototype was obtained in this thesis. The efficiency of the prototype was found to

be of around 90%, which is stilllow, but acceptable for power transmissions.

6.2. Recommendations for Future Research

As an extension to the work reported here, several interesting issues remain to

be further explored:

(i) Improving the stiffness of the spherical Speed-o-Cam. Since the spherical

Speed-o-Cam has zero backlash and low friction losses, it should have a high

stiffness. Rowever, the stiffness parameter that finally we obtained is 916.03Nm­

/deg, which is not as high as we desired. Renee, we should optimize the roller

and the roller-disk design to improve the stiffness.

(ii) Improving the efficiency of the spherical Speed-o-Cam by enhancing the accu­

racy of manufacturing and assembly .

(iii) Comparing the Speed-o-Cam prototype with a gear-box speed reducer in terms

of dynamic performance.

(iv) Investigating the dynamics of cam-roller speed reducers with different speed

reduction ratios.

(v) Implementing a feedback control system of the testbed. The testbed is supplied

with an open-Ioop control system and, hence, causes the operational speed to

be inexact. We could add a compensating part in the control system by feeding

back the input velocity from the input velocity tachometer, which willlead to

the desired operational speed.

60

•

•

REFERENCES

Branch, M.A. and Grace, A., 1996, Matlab Optimization Toolbox, Math Works Inc.,

Natick, MA.

Buckingham, E., 1963, Analytical Mechanics of Gears, Dover Publication, Inc., New

York.

Cannon, R.H., 1967, Dynamics of Physical Systems, McGraw-Hill Book Company,

New York.

D'Azzo, J.J. and Houpis, C.H., Linear Control System Analysis and Design Con­

ventional and Modern, McGraw-Hill Book Company, Singapore.

Dudley, D.W., 1991, Handbook of Practial Gear, McGraw-Hill Book Company, New

York.

Denavit, J. and Hartenberg, R.S., 1964, Kinematic Synthesis of Linkages, McGraw­

Hill, New York; Toroto.

Euler, L., 1754, Elements of Algebra, J. Johnson, London.

Gonzalez-Palacios, M.A. and Angeles, J., 1993 Cam Synthesis, Kluwer Academie

•

•

REFERENCES

Publishers, Dordrecht, Boston.

Gonzalez-Palacios, M.A. and Angeles, J., 1999, "The Design of a Novel Mechani­

cal Transmission for Speed Reduction," ASME J. of Mechanical Design, Vol. 121,

no. 4, pp. 538-543.

Gonzalez-Palacios, M.A. and Angeles, J., Sept. 10-13, 2000, "The novel design of

a pure-rolling transmission to convert rotational into translational motion," Proc.

2000 ASME Design Engineering Technical Conferences Baltimore.

Henrici, P., 1964, Elements of Numerical Analysis, John Wiley & Sons, Inc. New

York.

Hsia, T.C., 1977, System Identification, D.C. Heath and Company Lexington, Mas­

saehusettsm, Toronto.

Juvinall, R.C. and Marshek, K.M., 1991, Fundamentals of Machine Component De­

sign, John Wiley & Sons. Ine New York.

Kahaner, D., Moler, C. and Nash, S., 1977, Numerical Methods and Software, Pren­

tiee Hall, Englewood Cliffs, New Jersey.

Lawson, C.L. and Hanson, R.J., 1974 Solving Least Squares Problems, Prentice-Hall,

Inc., Englewood Cliffs, N.J.

Ljllng, L., 1987, System Identification Theory For the User, Prentice-Hall, Ine., En­

glewood Cliffs, New Jersey.

62

•

•

REFERENCES

Ljung, L., 2000, System Identification Toolbox User's Guide, Math Works, Ine., Nat­

ick, MA.

Lu, P.C., 1979, Fluid Mechanics, The Iowa State University Press, Ames, Iowa.

Luenberger, D.G., 1968, Optimization by Vector Space Methods, John Wiley & Sons,

Ine. New York.

Oberg, E., Jones, F.D. and Horton, H.L., 1988, Machinery's Handbook, Industrial

Press Ine., New York.

Ogata, K., 1998, System Dynamics, Prentice Hall, Upper Saddle River, New Jer­

sey.

Patton, W.J., 1980, Mechanical Power Transmission, Prentice-Hall, Ine., Englewood

Cliffs, New Jersey.

Plint, M. and Martyr, A.J., 1995, Engine Testing Theory and Practice, Butterworth­

Heinemann, Oxford.

Rohrs, C.E., Melsa, J.L. and Schultz, D.G., 1993 Linear Control Systems, MeGraw­

Hill, Ine. New York.

Savant, C.J. Jr., 1964, Control System Design, MeGraw-Hill Book Company, New

York.

Seely, S., 1964, Dynamic Systems Analysis, Reinhold Publishing Corporation, New

York.

63

•

•

REFERENCES

Teng, C.P. and Angeles, J., 2001, The Solution of Nonlinear Programming Problems

with the Orthogonal Decomposition Algorithm - A Tutorial, Department of Meehani­

eal Engineering, MeGill University, Montreal.

Tuttle, T. and Seering, W., 1993 "Kinematie Errar, Compliance, and Friction in

a Harmonie Drive Gear Transmission." ASME Advances in Design Automation Vol

65-1.

Thomson, W.T., 1981, Theory of Vibration with Applications, Prentice-Hall, Ine.,

Englewood Cliffs, New Jersey.

Wolovieh, W.A., 1994, Automatic Control Systems-Basic Analysis and Design, HoIt,

Rinehart and Winston, Ine.

Yuen, W.K., 1996, Dynamics and Control of a High-Rate Speed Reduction Cam Mech­

anism, Thesis, Department of Meehanical Engineering, MeGill University, Montreal.

64

•

•

APPENDIX A

The Control and Data-Acquisition C++

Program

==
MICROSOFT FOUNDATION CLASS LIBRARY : Simple

==

~PPWizard has created this Simple application
n04 only demonstrates the basics of using the
but is also a starting point for writing your

for you. This application
Microsoft Foundation classes
application.

This file contains a summary of what you will find in each of the files that
make up your Simple application.

Simple.dsp
This file (the project file) contains information at the project level and
is used to build a single project or subproject. Other users can share the
project (.dsp) file, but they should export the makefiles locally.

simple.h
This is the main header file for the application. It includes other
project specifie headers (including Resource.h) and declares the
CSimpleApp application class.

simple.cpp
This is the main application source file that contains the application
class CSimpleApp.

simple.rc
This is a listing of aIl of the Microsoft Windows resources that the
program uses. It includes the icons, bitmaps, and cursors that are stored
in the RES subdirectory. This file can be directly edited in Microsoft
Visual C++.

Simple.clw
This file contains information used by Classwizard to edit existing
classes or add new classes. ClassWizard also uses this file to store
information needed to create and edit message maps and dialog data
maps and to create prototype member functions.

es\Simple.ico
This is an icon file, which is used as the application's icon. This
icon is included by the main resource file Simple.rc.

res\Simple.rc2
This file contains resources that are not edited by Microsoft
Visual C++. You should place aIl resources not editable by
the resource editor in this file.

Simple.reg
This is, an example .REG file that shows you the kind of registration
settings the framework will set for you. You can use this as a .REG
file to go along with yourapplication or just delete it and rely
on the default RegisterShellFileTypes registration.

///

For the main frame window:

MainFrm.h, MainFrm.cpp
These files contain the frame class CMainFrame, which is derived from
CFrameWnd and controls aIl SDI frame features.

res\Toolbar.bmp
This bitmap file is used to create tiled images for the toolbar.
The initial toolbar and status bar are constructed in the CMainFrame
class. Edit this toolbar bitmap using the resource editor, and
update the IDR_MAINFRAME TOOLBAR array in Simple.rc to add
toolbar buttons.

///

impleDoc.h, SimpleDoc.cpp - the document
These files contain your CSimpleDoc class. Edit these files to
add your special document data and to implement file saving and loading
(via CSimpleDoc::Serialize).

AppWizard creates one document type and one• view:

Simpleview.h, Simpleview.cpp - the view of the document
These files contain your CSimpleView class.

l

CSimpleview objects are used to view CSimpleDoc objects.

~///
~her standard files:

StdAfx.h, StdAfx.cpp
These files are used to build a precompiled header (PCH) file
narned Simple.pch and a precompiled types file narned StdAfx.obj.

Resource.h
This is the standard header file, which defines new resource IDs.
Microsoft Visual C++ reads and updates this file.

///
Other notes:

Appwizard uses "TODO:" to indicate parts of the source code you
should add to or customize. .

If your application uses MFC in a shared DLL, and your application is
in a language other than the operating system's current language, you
will need to copy the corresponding localized resources MFC42XXX.DLL
from the Microsoft Visual C++ CD-ROM onto the system or systern32 directory,
and renarne it to be MFCLOC.DLL. ("XXX" stands for the language abbreviation.
For exarnple, MFC42DEU.DLL contains resources translated to German.) If you
don't do this, sorne of the UI elements of your application will remain in the
language of the operating system.

///

•
2

// AmplitudeDlg.cpp : implementation file
Il

_
'nclude "stdafx.h"
'nclude "Simple.h"
include "AmplitudeDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__ ;
#endif

///
// CAmplitudeDlg dialog

CAmplitudeDlg::CAffiplitudeDlg(CWnd* pParent /*=NULL*/)
: CDialog(CAmplitudeDlg::IDD, pParent)

//({AFX_DATA_INIT(CAmplitudeDlg)
rn_amplitude = O.Of;
//}}AFX_DATA_INIT

void CAmplitudeDlg::DoDataExchange(CDataExchange* pDX)
(

CDialog: : DoDataExchange(pDX) ;
//({AFX_DATA_MAP(CAmplitudeDlg)
DDX_Text(pDX, lOC_AMPLITUDE, mLamplitude);
DDV_MinMaxFloat(pDX. rn_amplitude. O.2f, 2.3f);
//}}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAmplitudeDlg. CDialog)
//({AFX_MSG_MAP(CAffiplitudeDlg)

// NOTE: the ClassWizard will add message map macros here
//}}AFX_MSG_MAP

. END_MESSAGE_MAP ()

///
// CAmplitudeDlg message handlers

1

// FrequencyDlg.cpp
//

implernentation file

•

inclU.de "stdafx.h"
'nclude "Simple.h"
'nclude "FrequencyDlg.h"

#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

////////////////////////////////!//
// CFrequencyDlg dialog

CFrequencyDlg::CFrequencyDlg(CWnd* pParent /*=NULL*/)
: CDialog(CFrequencyDlg::IDD, pParent)

//({AFX_DATA_INIT(CFrequencyDlg)
m_frequency = O.Of;
//}}AFX_DATA_INIT

void CFrequencyDlg::DoDataExchange(CDataExchange* pDX)
(

CDialog: :DoDataExchange(pDX);
//({AFX_DATA_MAP(CFrequencyDlg)
DDX_Text(pDX, IDC_FREQUENCY, m_frequency);
DDV_MinMaxFloat(pDX, m_frequency, 5.e-002f, 5.f);
//}}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CFrequencyDlg, CDialog)
//({AFX_MSG_MAP(CFrequencyDlg)

// NOTE: the Classwizard will add message map macros here
//}}AFX_MSG_MAP

END_MESSAGE_MAP ()

///
// CFrequencyDlg message handlers

•
1

// MainFrm.cpp : implernentation of the CMainFrame class
1/

~~include "stdafx.h"
~~nclude "Simple.h"

#include "MainFrm.h"

#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__ ;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAPICMainFrame, CFrameWnd)
//{{AFX_MSG_MAP(CMainFrame)

// NOTE - the Classwizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

ON_WM_CREATE ()
//}}AFX_MSG_MAP

END_MESSAGE_MAP 1)

static UINT indicators[]
{

ID_SEPARATOR,
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,

} ;

// status line indicator

///
// CMainFrame construction/destruction

"MainFrame: :CMainFramel)

// TODO: add mernber initialization code here

CMainFrame: : -CMainFrame ()
{
}

int CMainFrame::OnCreateILPCREATESTRUCT lpCreateStruct)
{

if (CFrarneWnd::OnCreatellpCreateStruct) == -1)
return -1;

if (!m_wndToolBar.CreateExlthis, TBSTYLE_FLAT, WS_CHILD 1 WS_VISIBLE I,CBRS_TOP
1 CBRS_GRIPPER 1 CBRS_TOOLTIPS 1 CBRS_FLYBY 1 CBRS_SIZE_DYNAMIC)
!m_wndToolBar.LoadToolBarIIDR_MAINFRAME))

TRACE0 1"Failed to create toolbar\n");
return -1; // fail to create

if l!m_wndStatusBar.Createlthis) l'
!m_wndStatusBar.Setlndicatorslindicators,

sizeof(indicators)/sizeof(UINT)))

TRACEO("Failed to create status bar\n");
return -1; // fail to create

•
// TODO: Delete these three lines if you don't want the toolbar to
// be dockable
m_wndToolBar.EnableDockingICBRS_ALIGN_ANY);
EnableDockingICBRS_ALIGN_ANY);
DockControlBarl&rn_wndToolBar) ;

return 0;

BOOL CMainFrarne::PreCreateWindow(CREATESTRUCT& cs)
{

1

•
if(!CFrarneWnd::PreCreateWindow(cs)

return FALSE;
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return TRUE;

///
// CMainFrarne diagnostics

#ifdef DEBUG
void CMainFrarne::AssertValid() const
{

CFrarneWnd::AssertValid();

void CMainFrarne::Durnp(CDurnpContext& dc) const
{

CFrarneWnd::Durnp(dc);

#endif //_DEBUG

///
// CMainFrarne message handlers

2

// OffsetDlg.cpp : implementation file
//

~
'nclUde "stdafx.h"
nclude "Simple.h"

lnclude "OffseiDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[]
#endif

///
// COffsetDlg dialog

COffsetDlg::COffsetDlg(ewrtd* pParent /*=NULL*/)
: CDialog(COffsetDlg: :IDD, pParent)

//({AFX_DATA_INIT(COffsetDlg)
rn_offset = O.Of;
//))AFX_DATA_INIT

void COffsetDlg::DoDataExchange(CDataExchange* pDX)
(

CDialog:: DoDataExchange (pDX) ;
//({AFX_DATA_MAP(COffsetDlg)
DDX_Text(pDX, lOC_OFFSET, rn_offset);
DDV_MinMaxFloat(pDX, rn_offset, -l.Sf, l.Sf);
//))AFX_DATA_MAP

BEGIN_MESSAGE_MAP(COffsetDlg, CDialog)
//({AFX_MSG_MAP(COffsetDlg)

// NOTE: the ClassWizard will add message map macros here
//))AFX_MSG_MAP

END_MESSAGE_MAP ()

///
// COffsetDlg message handlers

•
1

// SarnplingRateDlg.cpp
//

implementation file

_
'nclUde "stdafx.h"
'nclude "Simple.h"
include "SarnplingRateDlg.h"

#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__ ;
#endif

///
// CSarnplingRateDlg dialog

CSarnplingRateDlg::CSarnplingRateDlg(CWnd* pParent /*=NULL*/)
: CDialog(CSarnplingRateDlg::IDD, pParent)

//{{AFX_DATA_INIT(CSarnplingRateDlg)
//}}AFX_DATA_INIT

BEGIN_MESSAGE_MAPICSarnplingRateDlg, CDialog)
//({AFX_MSG_MAPICSarnplingRateDlg)

// NOTE: the ClassWizard will add message map macros here
//}}AFX_MSG_MAP

END_MESSAGE_MAP ()

///
// CSarnplingRateDlg message handlers

l .'"
l '

•
1

// Simple.cpp : Defines the class behaviors for the application.
//

~.include "stdafx.h"
.,-nclude "Simple.h"

#include "MainFrrn.h"
#include "SimpleDoc.h"
#include "SimpleView.h"

#include "TextureTimer.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__ ;
#endif

//}//////
/ / CSimpleApp

BEGIN_MESSAGE_MAP(CSimpleApp, CWinApp}
//{{AFX_MSG_MAP(CSimpleApp}
ON_COMMAND (ID_APP_ABOUT, OnAppAbout)

// NOTE - the ClassWizard will add and rernove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//»AFX_MSG_MAP
// Standard file based document cornrnands
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew}
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen}

END_MESSAGE_MAP ()

///
// CSimpleApp construction

CSimpleApp::CSimpleApp(}
{

// TODO: add construction code here,
// Place aIl significant initialization in Initlnstance

///
// The one and only CSimpleApp object

csimpleApp theApp;

// and object to handle the multimedia timer, hopefully, it'll work
TextureTimer MMTimer;

///
// CSimpleApp initialization

BOOL CSimpleApp::lnitlnstance(}
{

AfxEnableControlContainer(};

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should rernove from the following
// the specifie initialization routines you do not need.

#ifdef AFXDLL
Enable3dControls(};

#else
Enable3dControlsStatic(};

#endif

// CalI this when using MFC in a shared DLL

// CalI this when linking to MFC statically

•
// Change the registry key under which our settings are stored.
// TODO: You should modify this string to be something appropriate
// such as the name of your company or organization.
SetRegistryKey(_T("Local AppWizard-Generated Applications"}};

LoadStdProfileSettings(l}; // Load standard INI file options (including MRU)

// Register the application's document ternplates. Document ternplates
// serve as the connection between documents, frame windows and views.

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTernplate(

IDR_MAINFRAME, .

1

RUNTlME_CLASS(CsimpleDoc) ,
RUNTlME_CLASS(CMainFrame),
RUNTlME_CLASS(CSimpleView)) ;

AddDocTemplate(pDocTemplate) ;

// Enable DDE Execute open
EnableShellOpen() ;
RegisterShellFileTypes(TRUE);

//.main SDI frame window

// Parse command line for standard shell commands, DDE, file open
CCommandLinelnfo cmdlnfo;
ParseCommandLine(cmdlnfo) ;

// Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdlnfo))

return FALSE;

// The one and only window has been initialized, so show and update it.
m-pMainWnd->ShoWWindow(SW_SHOW);
m-pMainWnd->UpdateWindow();

// Enable drag/drop open
m-pMainWnd->DragAcceptFiles();

return TRUE;

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
(
public:

CAboutDlg();

// Dialog Data
//({AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
//}}AFX_DATA

// ClassWizard generated virtual function overrides
//({AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:

//({AFX_MSG(CAboutDlg)
// No message handlers

/ /} }AFX_MSG .
DECLARE_MESSAGE_MAP ()

} ;

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
(

//({AFX_DATA_INIT(CAboutDlg)
//}}AFX_DATA_INIT

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
(

CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
//})AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
//({AFX_MSG_MAP(CAboutDlg)

// No message handlers
/ /}) AFX_MSG_MAP

~D_MESSAGE_MAP ()

~ / App command to run the dialog
void CSimpleApp: :OnAppAbout()
(

CAboutDlg aboutDlg;
aboutDlg.DoModal() ;

2

///
// CsimpleApp message handlers

•

•
3

// SimpleDoc.cpp : implementation of the CSimpleDoc class
Il

~nclude "stdafx.h"
...-rnclude "Simple.h"

lfinclude "SimpleDoc.h"

lfinclude "TextureTimer.h" //support for the data to be stored

lfifdef DEBUG
lfdefine new DEBUG_NEW
lfundef THIS_FILE
static char THIS_FILE[) = __FILE__ ;
lfendif

///
// CSimpleDoc

IMPLEMENT_DYNCREATE(CSimpleDoc, CDocument)

BEGIN_MESSAGE_MAP(CSimpleDoc, CDocument)
//{{AFX_MSG_MAP(CSimpleDoc)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG_MAP
END_MESSAGE_MAP ()

///
// CSimpleDoc construction/destruction

csimpleDoc::csimpleDoc()
{

FileName[O)='\O';
m-pFile = NULL;

CSimpleDoc::-CSimpleDoc(),

BOOL CSimpleDoc::OnNewDocument()
{
// if (!CDocument::OnNewDocument())
// return FALSE;

// TODO: add reinitialization code here
// (SDI documents will reuse this document)

CloseFile();
BOOL bRet = CDocument::OnNewDocument();
if (bRet) // do normal stuff

((CEditView*)~viewList.GetHead())->SetWindowText(NULL);

//JCMH
CHAR tmp[200);
strcpy(tmp, "untitled") ;
SaveSpeedOCAMData(tmp,1);
OnOpenDocument ("untitled") ;
Il

return bRet;

///
// CSimpleDoc serialization
#define SIZE_ARRAY 10000 // max size of storage
#define CHANNELS 5
float data_sensors[SIZE_ARRAY) [CHANNELS);
UINT tot_samples;

_
Oid

.......•. if
{

Il

csimpleDoc: :Serialize(CArchive& ar)

(ar.IsStoring())

// TODa: add storing code here
l// if is storing
else
{

1

Il TODO: add loading code here

}

•~III111111111111111111111111Il CSimpleDoc diagnostics '

#ifdef DEBUG
void CSimpleDoc::AssertValid() const
{

CDocument::AssertValid();

void CsimpleDoc::Dump(CDumpContext& dc) const
{

CDocument::Dump(dc);
}
#endif II_DEBUG

1111111111111/1/1////1//11111111/111111111111111111111111//111111111111111111
Il CSimpleDoc commands

Il CFile::Open mode flags
const OPENREAD CFile::modeRead
const OPENWRITE = CFile::modeReadWrite
const OPENCREATE = cFile::modeCreate

CFile::shareDenyWrite;
1

CFile::shareDenyNone;
CFile: :shareOenyWrite;
CFile::modeReadWrite 1

m_bReadOnly;
m-pFile;

Il ** Il
11============== OnOpenDocument ===========================
Il Open New doc. Close old one in case this is an SDI appll
1/ ==

BOOL CSimpleDoc: :OnOpenDocument(LPCTSTR lpszPathName)
(

CloseFile(); 1/ Required for SOI app only, because MFC re-uses doc

Il Open the file using the ImageGear library
LPTSTR Ipsz = new TCHAR[lOO];
strcpy(lpsz, lpszPathName);
strcpy(FileName, IpszPathName);

1/ return TRUE;

Il Open the file
CFile* pFile = OpenFile(lpszPathName, m_bReadOnly);
if (!pFile)

return FALSE;
if (m_bReadOnly)
{

Il Doc was opened read-only: tell user
CString s;
s.Format("File '%s' is in use.\nIt will be opened read-only" ,

lpszPathName) ;
AfxMessageBox(s);

}
m-pFile = pFile;

1/ Now do standard MFC Open, but close file if the open fails
BOOL bRet = CDocument::OnOpenDocument(lpszPathName);
if (!bRet)
CloseFile () ;

return bRet;

11=====================OnSaveOocument==========================
Il Save document. Use already-open file, unless saving to a new name.
Il Either way, lock the file and set length to zero before saving it.
Il ==
BOOL CSimpleDoc: :OnSaveDocument(LPCTSTR lpszPathName)

•.
f,', BOOL bReadOnly

. CFile* pFile

NULL)if (m-PFile
{

//JCMH
LPTSTR lpsz new TCHAR[lOO];

2

•
strcpy(lpsz, lpszPathName);
strcpy(FileName, lpszPathName);
Il save the image in memory to the file selected
SaveSpeedOCAMData(FileName,O);

ASSERT_VALID(pFile);

Il Check for different file names
CString sFileName = pFile->GetFilePath();
BOOL bNewFile = (sFileName != lpszPathName);
if (bNewFile)
{

IIJCMH
LPTSTR lpsz = new TCHAR[lOO);
strcpy(lpsz, IpszPathName);
strcpy(FileName, IpszPathName);
Il save the image in memory to the file selected
SaveSpeedOCAMData(FileName,O) ;
return TRUE; Il once we have save it retunr;
Iiend JCMH

Il saving w/different name: open new file
pFile = OpenFile(lpszPathName, bReadOnly, TRUE);
if (!pFile)

return FALSE;
} Il document was opened
ASSERT_VALID(pFile) ;

Il If can't get write access, can't save.
Il Display message and return FALSE.
Il
if (bReadOnly)
{

CString s;
s.Format("File '%5' is

IpszPathName);
AfxMessageBox(s);
if (bNewFile)

pFile->Close() ;
return FALSE;

in use.\nSave with a different name.",

Il if new file was opened:
Il close it

Il
Il
Il

Il

Il
Il

•

}
if (bNewFile)
{ Il new file was opened: install it and close the old one

ASSERT(m-pFile); Il sanity check
m-pFile->close(); Il close old one
m-pFile = pFile; Il and replace w/new one
m_bReadOnly = bReadOnly;11 read-only flag too

}
Il Now do normal Serialize. Lock the file first and set length to zero
Il This is required because l opened with modeNoTruncate. You might
Il want to consider " robust " saving here: that is, save to a temp file
Il before destroying the original file; then if the save succeeds, replace
Il the original file with the new one. Il
pFile->LockRange(O, (DWORD)-l); Il will throw exception if fails
pFile->setLength(O); Il otherwise will append
BOOL bRet = CDocument::OnSaveDocument(lpszPathName); Il normal MFC save
BOOL bRet=TRUE;
pFile->UnlockRange(O, (DWORD)-l); Il unlock

DoSave(NULL);
return TRUE;

IIJCMH
Ilm-pFile->Abort();
m-pFile->Close();
LPTSTR lpsz = new TCHAR[lOO);
strcpy(lpsz, lpszPathName);
strcpy(FileName, IpszPathName);

Il save the image in memory to the file selected
SaveSpeedOCAMData(FileName,O) ;
OnOpenDocument(lpszPathName) ;
return TRUE; Il once we have save it retunr;
Iiend JCMH

return bRet;

3

Il ======================== CloseFile ============

•

Close the file if it's open. Called from multiple
places for SDI app

ri ===
void CSimpleDoc::CloseFile()
{

1* if an old image exists, delete it before loading the new one *1
if (m-pFile)
(

m-pFile->Close() ;
m-pFile = NULL;

11========================== OnCloseDocument =====================
Il Close document: time to really close the file too. MFC only calls this
Il function in a MDI app, not SDI.II
Il ==
void CSimpleDoc::OnCloseDocument()
(

CloseFile(); Il close file
CDocument::OnCloseDocument(); Il Warning: must call this last

Il because MFC will "delete this·

Il ========================= OpenFile =================
Il Open the document file. Try to open with write access,
Il else read-only.
Il bCreate says whether to create the file, used when saving
Il to a new name.
Il Returns the CFile opened, and sets bReadOnly.11
Il ==
CFile* CSimpleDoc::OpenFile(LPCTSTR IpszPathName,

BOOL& bReadOnly, BOOL bCreate)

CFile* pFile = new CFile;
ASSERT(pFile) ;
bReadOnly = TRUE; Il assume read only

Il try opening for write
CFileException fe;
if (pFile->Open(lpszPathName, bCreate ? OPENCREATE
(

OPENWRITE, &fe))

bReadOnly = FALSE; Il got write access
)
else

if (bCreate Il !pFile->Open(lpszPathName, OPENREAD, &fe))
(

Il can't open for read OR write--yikes! Time to punt
delete pFile;
pFile = NULL;
ReportSaveLoadException(lpszPathName, &fe, FALSE,

AFX_IDP_FAILED_TO_OPEN_DOC);

if (pFile)
pFile->SeekToBegin();

return pFile;

Il ================= ReleaseFile ========================
Il "Release" the file. This means either abort or close.
Il In the case of close, l don't really close it, but leave
Il file open for duration of user session. Il
Il ==
void CSimpleDoc: : ReleaseFile (CFile* pFile, BOOL bAbort)

~(if (bAbort)
CDocument::ReleaseFile(pFile, bAbort);

else
if (!m_bReadOnly)
(

pFile->Flush(); Il write changes to disk, but don't close!

4

// ============== DoFileSave =======================

•

Map "Save" to "Save As" if doc is read-only
===

OOL CSimpleDoc: :DoFileSave()
(

return m_bReadOnly ?
DoSave(NULL) :
CDocurnent: :DoFileSave();

// do Save As
// save as normal

}
// ================== GetFile ============================
// Override to use my always-open CFile object instead
// of creating and opening a new one.//
// ===
CFile* CSimpleDoc::GetFile(LPCTSTR, UINT, CFileException*)
{

ASSERT_VALID(m-pFile);
return m-pFile;

//
// Save data related to the speedocarn
//
void CSimpleDoc::SaveSpeedOCAMData(CHAR* FileNarne1,BOOL m_or_unt)
(

if(m_or_unt == 1) // 1 means we have to save the untitle file
strcat(FileNarne1,"");

else
strcat(FileNarne1, ".m");

FILE *file = fopen(FileNarnel,"w");
if(file == NULL)

perror("Open failed on output file");
else
(

printf("Open succeeded on output file\n");
fprintf(file,"sarnprate= %07.Sf;\n",DataSarnpRate);
fprintf(file, "arnplitude= %07.Sf;\n",DataArnp);
fprintf(file, "frequency= %07.Sf;\n",DataFreq);
fprintf(file,"offset= %07.Sf;\n",DataOffset);
fprintf(file,"data=[\n");
for (unsigned int n=O;n< tot_sarnples ;n++)
(

fprintf(file, "%07.Sf %07.Sf %07.Sf %07.Sf %07.Sf\n",
data_sensors[n] [0],
data_sensors[n] [1].
data_sensors[n] [2],
data_sensors[n] [3],
data_sensors[n] [4]);

)
fprintf(file,"];\n");
fclose(file);

•
5

// Simpleview.cpp : implementation of the CSimpleview class
Il

~nclude "stdafx.h"
Wnclude "Simple.h"

#include "SimpleDoc.h"
#include "simpleview.h"

#include "FrequencyDIg.h"
#include "AmplitudeDlg.h"
#include "SamplingRateDlg.h"
#include "OffsetDIg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[]
#endif

///
// CSimpleView

IMPLEMENT_DYNCREATE(CSimpleView, CView)

BEGIN_MESSAGE_MAP(CSimpleview, CView)
//({AFX_MSG_MAP(CSimpleview)
ON_COMMAND(ID_INPUTSIGNAL_AMPLlTUDE, OnlnputsignalAmplitude)
ON_COMMAND(ID_INPUTSIGNAL_FREQUENCY, OnlnputsignalFrequency)
ON_COMMAND(ID_INPUTSIGNAL_RUN, OnlnputsignalRun)
ON_COMMAND(ID_INPUTSIGNAL_STOP, OnlnputsignalStop)
ON_UPDATE_COMMAND_UI(ID_INPUTSIGNAL_RUN, OnUpdatelnputsignalRun)
ON_UPDATE_COMMAND_UI(ID_INPUTSIGNAL_STOP, OnUpdatelnputsignalStop)
ON_COMMAND(ID_INPUTSIGNAL_OFFSET, OnlnputsignalOffset)
//}}AFX_MSG_MAP

END_MESSAGE_MAP ()

///
/ CSimpleView construction/destruction

CSimpleView::CSimpleView()
{

// TODO: add construction code here

// initial values of the input signal and sampling rate
Amplitude = 0;
freq 1;
SetSampling () ;
//SamplingRate = (float) (1.0/200.0): // 200 Hertz
//MMtimerPeriod = (UINT) (1000.0 * SamplingRate):
Offset = 1.88:
run_stop=O: // not running

Csimpleview: :-CSimpleView()
{
}

BOOL CSimpleView::PreCreateWindow(CREATESTRUCT& cs)
(

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CView: :PreCreateWindow(cs) ;

///
// CSimpleView drawing

void CSimpleView::OnDraw(CDC* pDC)
(

CSimpleDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc) ;
// TODO: add draw code for native data here

///
// CSimpleView diagnostics

#ifdef _DEBUG

1

void CSimpleView::AssertValid(} eonst
{

CView::AssertValid(};

•~oid CSimpleView::Dump(CDumpContext& de} eonst
{

CView::Dump(de};

CSimpleDoe* CSimpleview: :GetDoeument(} // non-debug version is inline
(

ASSERT(m-pDoeument~>IsKindOf(RUNTlME_CLASS(CSimpleDoe)));

return (CSimpleDoe*)m-pDoeument;
)
#endif //~DEBUG

///
// CSimpleView message handlers

void CSimpleView::OnlnputsignalAmplitude()
(

// TODO: Add your eommand handler code here
// Beep(SOO,SOO);

CAmplitudeDlg dlg;
dlg.m_amplitude = Amplitude;
if(dlg.DoModal()== IDOK)

Amplitude = dlg.m_amplitude;

void CSimpleView::OnlnputsignalFrequeney()
(

// TODO: Add your eommand handler code here

CFrequencyDlg dlg;
dlg.m_frequency = freq;
if (dlg.DoModal() == lDOK)
(

freq = dlg.m_frequency;
SetSampling();

void CSimpleView::OnlnputsignalRun()
(

// TODO: Add your command handler code here
Beep(lOOOO,SO) ;
run_stop=l; //set flag to one to idicate it's running

// Create multimedia timer
CSimpleDoe* pDoc = GetDoeument();
ASSERT_VALID(pDoe};

pDoe->DataSampRate = SamplingRate;
pDoc->DataAmp = Amplitude;
pDoe->DataFreq = freq;
pDoe->DataOffset = Offset;
id_timer2=MMTimer.Create((UINT)MMtimerPeriod. (UINT}O,freq,

Amplitude, Offset, SamplingRate);
if (id_timer2== NULL)

run_stop=O; //bRtn = FAILURE;

CClientDC de(this);
de. Rectangle (S, S,20,20};

void
(

•
CSimpleView::OnlnputsignalStop()

// TODO: Add your eommand handler code here
Beep(13000,SOO);

if(TlMERR_NOERROR -- timeKillEvent(id_timer2}}
{

run_stop=O;
// DDAOS.lnitDAC(};

CClientDC dc(this};

2

dc.Rectangle(10, 10,15, 15);

~~Oid CSimpleView::OnUpdateInputsignalRun(CCmdUI*
{

pCrndUI}

Il TODO: Add your command update UI handler code here
Il Beep(5000,500};

if (run_stop)
pCrndUI->Enable(FALSE };II process running, so set unable it

else
pCmdUI->Enable(TRUE };

void CSimpleView::OnUpdateInputsignalStop(CCrndUI* pCrndUI}
{

Il TODO: Add your command update UI handler code here
Il Beep(5000,500};

if (run_stop)
pCrndUI->Enable(TRUE };II process running, so set unable it

else
pCmdUI->Enable(FALSE };

void CSimpleView::OnInputsignalOffset(}
{

Il TODO: Add your command handler code here

COffsetDlg dlg;
dlg.mLoffset = Offset;
if (dlg.DoModal() == IDOK)

Offset = dlg.m_offset;

Il instead of reading a new sampling rate, we compute it based on the
1 value of the frequency of the signal.
~id CSimpleView::SetSampling(}

{
float T;
if(freq <l.0}

T=(float} (1.0/freq);
else

T=1.0;
SamplingRate = (float) (T/1000.0); Il we use this variable to compute the input signal
MMtimerPeriod = (UINT}T; Il the timer will run every T milliseconds

./
3

Il stdafx.cpp : source file that includes just the standard includes
Il Simple.pch will be the pre-compiled header
Il stdafx.obj will contain the pre-compiled type information

e)nclude ·stdafx.h"

.'
1

Il stdafx.cpp : source file that includes just the standard includes
Il Simple.pch will be the pre-compiled header
Il stdafx.obj will contain the pre-compiled type information

~nclude "stdafx.h"

•
1

Il TextureTimer.cpp
Il
Il Implementation of the class members of TextureTimer class

~ (C) Xiaohui Song. 1999.

#include "stdafx.h"
#include "TextureTimer.h"

#include "f:\novy-2-l\DDA16\DLPortIO\Api\dlportio.h" Iito access memory.address

Il create timer and set data members
UINT TextureTimer::Create(UINT nPeriod, UINT nRes, float f,

float amp, float offset, float samprate)

Il Set data members
sr_timer = samprate;
amp_timer = amp;
off_amplitude = offset;
omega = (float) «float)TWOPI * f);
samp_n = 0;
max_time = (float) (lO.O/f);

Il stop_signal is initialized to 0, and will be set to zero once
Il two cycles have elapsed
stop_signal =0;

Il initiallize in zero both dig-to-analog channels
WriteAnalogOutput(O, 0);
WriteAnalogOutput(l, 0);

Il Create multimedia timer
id_timer_this = timeSetEvent (nPeriod, nRes, TimeProc,

(DWORD) this, TIME_PERIODIC);
return(id_timer_thisl;
Il if successful return the IDtimer, if not returN NULL

1 callback function: display texture matrix
void CALLBACK TextureTimer::TimeProc(UINT uID, UINT uMsg,

DWORD dwUser,
DWORD dwl, DWORD dw2)

Il dwUser contains ptr to Timer object
TextureTimer * ptimer = (TextureTimer *) dwUser;

int i;
float time,input;

time = ptimer->samp_n * ptimer->sr_timer;
input = (floatl (ptimer->amp_timer * (float)sin(ptimer->omega * time)

+ptimer->off_amplitude);

if(time > ptimer->max_time)
{

ptimer->samp_n--;
tot_samples = ptimer->samp_n;
input=O;
IIBeep(lO,l) ;

Il

Il

Il
Il•

WriteAnalogOutput(unsigned char chan, float volt)
WriteAnalogOutput(O. input);
for(i=O; i < CHANNELS-l ;i++) Il read 4 èhannels

IIReadAnalogInput(unsigned char chan,unsigned char gain)
data_sensors [ptimer->samp_nl [il=ReadAnalogInput(i,O);
data_sensors[ptimer->samp_nl [il=input;

for(i=O; i < CHANNELS-l ;i++)
data_sensors[ptimer->samp_nl [il=input;

data_sensors[ptimer->samp_nl [il=input;IIReadAnalogInput(i,O);

ptimer->samp_n++;

Il update # of samples in a stage

1

void TextureTimer::UpdateData(int samps-per_stage)
{
)

~~ :~i~~-~~~-~~~~-:i~:î-i~~~-~~~-;;-~~~~~--
Il --
void TextureTimer::WriteAnalogOutput(unsigned char chan, float volt)
{

11-------- check voltage range ---------­
if (volt >= 4.99) volt (float) 4.99;
if (volt <= -4.99) volt = (float) -4.99;

short volt_w;
char low_w, high_w;
(unsigned short) ((volt*(Ox7FF))/10.0+(Ox7FF));
(volt_w & OxFF); Il get low byte
((volt_w»8) & OxOF); Il get high part

11----------- convert voltage
.llvolt=-5.0;

unsigned
unsigned
volt_w
low_w
high_w =

to 12 bit value

unsigned short offset_add=chan*2;
DIPortWritePortUchar(CARDBASE+Ox08+offset_add, low_w):
DIPortWritePortUchar(CARDBASE+Ox08+offset_add+1,high_w) ;

Il unsigned short value = (unsigned short)volt;llvolt;
Il volt_w = (unsigned short) (4098.0/20.0*(volt+10.0));
Il DIPortWritePortUchar(CARDBASE+Ox08,2048&Oxff);
Il DIPortWritePortUchar(CARDBASE+Ox09,2048/256);

)
Il --
Il read the signal comming from the sensors
Il --
float TextureTimer::ReadAnaloglnput(unsigned char chan,unsigned char gain)
{

unsigned int
long int
float

timeout = 60000;
read_volt=O;
volt;

Il DIPortWritePortUchar(CARDBASE+O, Ox04); Ilused with an external trigger
DIPortWritePortUchar(CARDBASE+2. (gain« 4 1 chan));11 write channel and enable start conversion
DIPortWritePortUchar(CARDBASE+3. OxO); Il start conversion

while((DIPortReadPortUchar(CARDBASE+2) & OX80)) timeout--;II wait for ADe conversion
Il volt = (float) ((unsigned) (DIPortReadPortUchar(CARDBASE+2»>4));

Il read_volt = (DIPortReadPortUchar(CARDBASE+7));
Il read_volt = (DIPortReadPortUchar(CARDBASE+6));
Il read_volt = (DIPortReadPortUchar(CARDBASE+7)«4);
Il read_volt 1= (DIPortReadPortUchar(CARDBASE+6»>4);

read_volt = (DIPortReadPortUchar(CARDBASE+6»>4);
read_volt 1= (DIPortReadPortUchar(CARDBASE+7)«4);

if (timeout == 0)
{

return Oxffff;
)

Il volt = (float) ((float)read_vo1t*20.0/4096.0-10.0);
return (float) ((float)read_volt*20.0/4096.0-10.0);

•
2

#if !defined(AFX_AMPLITUDEDLG_H__019C6707_E54B_11D2_BBB4_00600B1FFF94__INCLUDED_)
#define AFX_AMPLITUDEDLG_H__019C6707_E54B_11D2_BBB4_00600B1FFF94__INCLUDED_

•

f _MSC_VER > 1000
ragma once

endif // _MSC_VER > 1000
// Amp1itudeDlg.h : header file
Il

11111111111/1111111111111111/111/11////11/11/1111111111111111//1111111/111/11
/1 CAmplitudeDlg dialog

class CAmplitudeDlg : public CDialog
{
Il Construction
public:

CAmplitudeDlg{CWnd* pParent = NULL);

Il Dialog Data
11{{AFX_DATA{CAmplitudeDlg)
enum { IDD = IDD_AMPLITUDE };
float rn_amplitude;
Il}}AFX_DATA

Il standard constructor

// Overrides
Il ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL{CAmplitudeDlg)
protected:
virtual void DoDataExchange{CDataExchange* pDX); Il DDX/DDV support
Il}}AFX_VIRTUAL

Il Implementation
protected:

Il Generated message map functions
11{{AFX_MSG{CAmplitudeDlg)

Il NOTE: the ClassWizard will add member functions here
Il}}AFX_MSG
DECLARE_MESSAGE_MAP ()

} ;

//{{AFX_INSERT_LOCATION}}
Il Microsoft Visual C++ will insert additional dec1arations immediately before the previous line .

•
1

Il
Il
Il

.~
Il

DDA-OS.h
Header file that defines constants to be used by an object
This definitions allow communication between the software
and the DA_AD

(C) Xiaohui Song. 1999.

#ifndef _DA_AD_H
#define _DA_AD_H

II#define CARDBASE
II#define SIZE_ARRAY

Ox340
10000

Il memory address of the DA_AD card
Il max size of storage

Ilconst int CHANNELS=4;
#define CARDBASE Ox300
#define SIZE_ARRAY 2500
#define CHANNELS 5

Il nurnber of CHANNEls to read from
Il memory address of the DA_AD card
Il max size of storage
Il nurnber of CHANNEls to read from

float data_sensors(SIZE_ARRAY] (CHANNELS];
UINT tot_sarnples;

#endif

•
1

#if !defined(AFX_FREQUENCYDLG_H__019C6706_E54B_11D2_BBB4_00600B1FFF94__INCLUDED_'
#define AFX_FREQUENCYDLG_H__019C6706_E54B_11D2_BBB4_00600B1FFF94__INCLUDED_

~if _MSC_VER > 1000

•
.. pragma once
~endif // _MSC_VER > 1000
// FrequencyDlg.h : header file
//

///
// CFrequencyDlg dialog

class CFrequencyDlg : public CDialog
{
// Construction
public:

CFrequencyDlg(CWnd*pParent NULL);

// Dialog Data
//{{AFX_DATA(CFrequencyDlg)
enum { IDD = IDD_FREQUENCY };
float m_frequency;
//}}AFX_DATA

// standard constructor

Il Overrides
Il ClassWizard generated virtual function overrides
1/{{AFX_VIRTUAL(CFrequencyDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
Il}}AFX_VIRTUAL

1/ Implementation
protected:

// Generated message map functions
/1 {{AFX_MSG(CFrequencyDlg)

Il NOTE: the Classwizard will add member functions here
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

} ;

II{{AFX_INSERT_LOCATION}}
Il Microsoft Visual C++ will insert additional declarations immediately before the previous line .

•
1

// MainFrm.h : interface of the CMainFrame class
//
///

•
·f !defined(AFX_MAINFRM_H__Ol9C66FB_E54B_l1D2_BBB4_00600B1FFF94__INCLUDED_l

~define AFX_MAINFRM_H__019C66FB_E54B_11D2_8BB4_0060081FFF94__INCLUDED_

tif MSC VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame
{

public CFrameWnd

protected: // create from serialization only
CMainFrame() ;
DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
// Classwizard generated virtual function overrides
//{{AFX_VIRTUAL(CMainFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
//}}~X_VIRTUAL

// Implementation
public:

virtual -CMainFrame();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& de) const;

#endif

rotected: // control bar ernbedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;

// Generated message map functions
protected:

//{{AFX_MSG(CMainFrame)
afx_msg int OnCreate{LPCREATESTRUCT lpCreateStruct);

// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG
DECLARE_MESSAGE_MAP()

} ;

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line .

•
1

#if !defined(AFX_OFFSETDLG_H__86BE1090_E619_11D2_8BB4_0060081FFF94__INCLUDED_)
#define AFX_OFFSETDLG_H__86BE1090_E619_11D2_8BB4_0060081FFF94__INCLUDED_

•

'f _MSC_VER > 1000
ragma once

endif // _MSC_VER > 1000
// OffsetDlg.h : header file
Il

///
// COffsetDlg dia10g

class COffsetDlg : public CDialog
{
// Construction
public:

COffsetDlg(CWnd* pParent = NULL);

// Dialog Data
//{{AFX_DATA(COffsetDlg)
enum { IDD = IDD_OFFSET };
float rn_offset;
/ /} }AFX_DATA

// standard constructor

// Overrides
// Classwizard generated virtual function overrides
//{{AFX_VIRTUAL(COffsetDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//{{AFX_MSG(COffsetDlg)

// NOTE: the ClassWizard will add member functions here
//}}AFX_MSG
DECLARE_MESSAGE_MAP ()

} ;

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line .

•
1

Studio generated include file.

IDD_ABOUTBOX
IDR_MAINFRAME
IDR_SIMPLETYPE
IDD_FREQUENCY
IDD_AMPLITUDE
IDD_SAMPLINGRATE
lDD_OFFSET
IDC_FREQUENCY
lOC_AMPLITUDE
IDC_SAMPLINGRATE
IDC_OFFSET
ID_INPUTSIGNAL~FREQUENCY

ID_INPUTSIGNAL_AMPLITUDE
ID_INPUTSIGNAL_SAMPLINGRATE
ID_INPUTSIGNAL_RUN
ID_INPUTSIGNAL_STOP
ID_INPUTSIGNAL_OFFSET

II{{NO_DEPENDENCIES}}
Il Microsoft Developer
Il Used by Simple.rc

êj.. efine
.,define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

100
128
129
130

·131
132
135
1000
1001
1002
1006
32771
32772
32773
32774
32775
32776

Il Next default values for new objects
/1
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_3D_CONTROLS
#define _APS_NEXT_RESOURCE_VALUE
#define _APS_NEXT_COMMANO_VALUE
#define _APS_NEXT_CONTROL_VALUE
#define _APS_NEXT_SYMED_VALUE
#endif
#endif

•

1
136
32777
1007
101

1

Il standard constructor

#if !defined(AFX~SAMPLINGRATEDLG_H__019C670B_E54B_IID2_BBB4_00600BIFFF94__INCLUDED_)
#define AFX_SAMPLINGRATEDLG_H__019C670B_E54B_IID2_BBB4_00600BIFFF94__INCLUDED_

•

if _MSC_VER > 1000
ragma once

endif Il _MSC_VER > 1000
Il SarnplingRateDlg.h : header file
1/

11111111111111/1111111111111111111111111111111111111/111111111111111111111111
Il CSarnplingRateDlg dialog

class CSarnplingRateDlg : public CDialog
.<
Il Construction
public:

CSarnplingRateDlg(CWnd* pParent NULL);

Il Dialog Data
Il ({AFX_DATA(CSarnplingRateDlg)
enum { IDD = IDD_SAMPLINGRATE };
Il}}AFX_DATA

Il Overrides
Il ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CSarnplingRateDlg)
Il}}AFX_VIRTUAL

Il Implementation
protected:

Il Generated message map functions
11{{AFX_MSG(CSarnplingRateDlg)

Il NOTE: the ClassWizard will add member functions here
Il}}AFX_MSG
DECLARE_MESSAGE~P()

} ;

j {{AFX_INSERT_LOCATION}}
Il Microsoft Visual C++ will insert additional declarations immediately before the previous line.

1

// Simple.h : main header file for the SIMPLE application
//

~f !defined(AFX_SIMPLE_H__Ol9C66F4_E54B_11D2_BBB4_00600B1FFF94__INCLUDED_'
.... ~efine AFX_SIMPLE_H__019C66F4_E54B_11D2_BBB4_00600B1FFF94__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef AFXWIN H
#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h"

// JCMH
#include "TextureTimer.h"

// main symbols

// a global timer.
extern TextureTimer MMTimer;

///
// CSimpleApp:
// See Simple.cpp for the implementation of this class
Il

class CSimpleApp : public CWinApp
(
public:

CSimpleApp() ;

// Overrides
// Classwizard generated virtua1 function overrides
//{{AFX_VIRTUAL(CSimpleApp)
public:
virtual BOOL InitInstance();
//}}AFX_VIRTUAL

/ Implementation
//{{AFX_MSG(CSimpleApp)
afx_msg void OnAppAbout();

// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG
DECLARE_MESSAGE_MAP()

} ;

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line .

•
1

// input amplitude
/1 input frequency
/1 ~nput offset

1/ sampling rate
Il number of samples

1/ data file

// SimpleDoc.h : interface of the CSimpleDoc class
//
// /////////11111/1/11111/

~f !defined(AFX_SIMPLEDOC_H__019C66FA_E54B_11D2_8BB4_0060081FFF94__INCLUDED_)
~efine AFX_SIMPLEDOC_H__019C66FA_E54B_11D2_8BB4_0060081FFF94__1NCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CSimpleDoc : public CDocument
(
protected: // create from serialization only

CSimpleDoc();
DECLARE_DYNCREATE(CSimpleDoc)

// Attributes
public:

float DataAmp;
float DataFreq;
float DataOffset;
float DataSampRate;
UINT Data_n;
CStdioFile DataFile;

1/ Operations
public:

CHAR FileName[200); Ilname of the file

CFile* m-pFile; // the file kept open during editing
BOOL ~bReadOnly; /1 wheter read only access

Il operations overriding MFC operations
virtual BOOL OnOpenDocument(LPCTSTR IpszPathName);
virtual BOOL OnSaveDocument(LPCTSTR IpszPathName);
// helpers
void CloseFile();
void SaveSpeedOCAMData(CHAR* FileName1,BOOL m_or_unt);

CFile* OpenFile(LPCTSTR IpszPathName, BOOL& bReadOn1y,
BOOL bCreate=FALSE);

virtual void OnCloseDocument();
virtual void ReleaseFile(CFile* pFile, BOOL bAbort);
virtual BOOL DoFileSave();
virtual CFile* GetFile(LPCTSTR IpszFileName, UINT nOpenFlags,

CFileException* pError);

Il overrides
Il ClassWizard generated virtual function overrides
/1 ({AFX_VIRTUAL(CSimpleDoc)
public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);
/I}}AFX_VIRTUAL

1/ Implementation
public:

virtual -CSimpleDoc();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& de) const;

#endif

protected:

/1 Generated message map functions
protected:

•

1/{{AFX_MSG(CSimpleDoc)
, // NOTE - the Classwizard will
" // DO NOT EDIT what you see

I/}}AFX_MSG
DECLARE_MESSAGE_MAP ()

add and remove member functions here.
in these blocks of generated code !

} ;

11/////11///1//

1

II{{AFX_INSERT_LOCATION}}
Il Microsoft Visual C++ will insert additional declarations immediately before the previous line.

~ndif Il !defined(AFX_SIMPLEDOC_H__019C66FA_ES4B_llD2_BBB4_00600BlFFF94__INCLUDED_)

•
2

// SimpleView.h : interface of the CSimpleView èlass
Il
///

•
~-~f !defined(AFX_SIMPLEVIEW_H__OI9CGGFC_E54B_11D2_8BB4_00G0081FFF94__INCLUDED_)

define AFX_SIMPLEVIEW_H__019CGGFC_E54B_11D2_8BB4_0060081FFF94__INCLUDED_

#if MSC VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CSimpleView : public CView
{
protected: // create from serialization only

CSimpleView () ;
DECLARE_DYNCREATE(CSimpleView)

// Attributes
public:

CSimpleDoc* GetDocument();

lmsec

be used with the input signal to the DC-motor
// given in Hertz
// given in volts
// given in seconds i.e. O.OOlsec
// offset on the input signal

// variables to
float freq,

Amplitude,
SamplingRate,
Offset;

UINT MMtimerPeriod;

BOOL run_stop; // l running, 0 stop
UINT id_timer2; //timeSetEvent, for multimedia timer

// Operations
public:

void SetSampling();
// Overrides

// ClassWizard generated virtual function overrides
//({AFX_VIRTUAL(CSimpleView)
public:
virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
//}}AFX_VIRTUAL

// Implementation
public:

virtual -CSimpleView();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& de) const;

#endif

protected:

// Generated message map functions
protected:

//({AFX_MSG(CSimpleView)
afx_msg void OnInputsignalAmplitude();
afx_msg void OnInputsignalFrequency();
afx_msg void OnInputsignalRun();
afx_msg void OnInputsignalStop();
afx_msg void OnUpdateInputsignalRun(CCmdUI* pCmdUI);
afx_msg void OnUpdateInputsignaIStop(CCmdUI* pCrndUI);
afx_msg void OnInputsignalOffset();
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

} ;

#ifndef DEBUG // debug version in SimpleView.cpp
inline CSimpleDoc* CSimpleView::GetDocument()

{ return (CSimpleDoc*)m-pDocument;)
#endif

~//iiiii11111111111111111111111
/1 {{AFX_INSERT_LOCATION}}
Il Microsoft Visual C++ will insert additional declarations immediately before the previous line.

1

Il stdafx.h : include file for standard system include files,
Il or project specific include files that are used frequently, but
Il are changed infrequently

•

J
1 .
if !defined(AFX_STDAFX_H__019CGGFG_E54B_IID2_8BB4_00G0081FFF94__INCLUDED_l

#define AFX_STDAFX_H__019C66FG_E54B_IID2_BBB4_00GOOBIFFF94__INCLUDED_

#if MSC VER > 1000
#pragma once
#endif Il _MSC_VER > 1000

#define VC_EXTRALEAN Il Exc1ude rarely-used stuff f~om Windows headers

#include <afxwin.h> Il MFC core and standard components
#include <afxext.h> Il MFC extensions
#include <afxdisp.h> Il MFC Automation classes
#include <afxdtctl.h> Il MFC support for Internet Explorer 4 Common Controls
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h> Il MFC support for Windows Common Controls
#endif Il _AFX_NO_AFXCMN_SUPPORT

II{{AFX_INSERT_LOCATION}}
Il Microsoft Visual C++ will insertadditional declarations immediately before the previous line .

•
1

Il
Il
Il

..~.,1
Il
Il

TextureTimer.h
Header file that defines a class that will contain
the data and functions needed to set and access a
multimedia timer

(C) Xiaohui Song. 1998.

#ifndef _CLASS_TEXTURE_TlMER
#define _CLASS_TEXTURE_TlMER

IIJCMH: defined to handle the timer
#include <rnrnsystem.h.>llinclude for the DisplayTèxture type
Il declaration of the CArray stuff JCMH
#include <afxtempl.h>

#include <math.h>
#include <conio.h>

#define PI
#define TWOPI

#define MMTIMER_PERIOD

3.1415927
2*PI Il to work with rad/sec

1 Il in miliseconds

#define CARDBASE
#define SIZE_ARRAY
#define C~ELS

Ox300
10000
5

Il memory address of the DA_AD card
Il max size of storage
Il number of CHANNEIs to read from

extern float data_sensors[SIZE_ARRAY) [CHANNELS);
extern UINT tot~samples;

c1ass TextureTimer
{

Il parameter passed to the class
float sr_timer; Il sampling rate (in sec, i.e. O.005=5milsec
float amp_timer; Il amplitude of the signal
float off_amplitude; Il offset of the signal
Il variables used inside the class
int samp_n; Il current sample
float omega; Il 2 * pi * f

float max_time;

UINT stop_signal; Il will tell us when the signal
Il has reached two cycles and w ernust send
Il a zero signal

static void CALLBACK TimeProc(UINT uID, UINT uMsg, DWORD dwUser,
DWORD dwl, DWORD dw2) ;

static void WriteAnalogOutput(unsigned char chan, float volt};
static float ReadAnaloglnput(unsigned char chan,unsigned char gain);

public:
TextureTimer ()
{

}
-TextureTimer() {samp_n=O;}
UINT Create(UINT nPeriod, UINT nRes, float f, float amp,

float offset, float samprate};

void UpdateData(int sampstage);
} ;

#endif

•
1

•

•

Document Log:

Manuscript Version 1-March, 2002

Typeset by AMS-U1EX - 28 April 2002

XIAOHUI SONG

CENTRE FOR INTELLIGENT MACHINES, MCGILL UNIVERSITY, 3480 UNIVERSITY ST., MONTRÉAL

(QUÉBEC) H3A 2A 7, CANADA, Tel. : (514) 398-5856

E-mail address: songwell©cim. mcgill. ca

Typeset by AMS-U1EX

