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Abstract

Studies on the statistical properties of the large scale structure of the universe
have often separated the problem into a spatial point distiibution of galaxies and a
functional variation of their luminosity independent of position. We consequently
attempt to bridge these two approaches by defining a family of generalized luminosity
fields which depends on both spatiai resolution and luminosity intensity. From analysis
of 3, 2, and 1-dimensional catalogues, we find that in 3d the galaxy luminosity ficld
exhibits two signatures of multifractal behavior: multiscaling and divergent statistical
moments. Furthermore, we find evidence suggesting that the statstics governing this
multifractal behaviour are determined by the parameters o (the degree of multifractality
of the field) and C;; (the codimension of the mean luminosity) which we estimate as
1.240.4 and 1.284+0.06 respectively. We consequently suggest that the non-linear
mechanisms responsible for the formation of galaxies may be of multifractal origin. As
many of the analyses were performed on projected ficlds a theoretical framework for

multifractal projections is also developed.




Résumé

Les études statistiques des structures de grande échelle de 'univers ont souvent
considéré que séparément la distribution spatiale ponctuelle des galaxies et 1'analyse
fonctionelle de leur luminosité sans regard de leur position. Nous essayons donc de
concilier les deux approches en définissant une famille de champs de luminosité généralisée
qui dépend A la fois de la résolution spatiale et de I'intensité lumineuse. D'apreés 1'analyse
des répertoires a trois, deux et unc dimension, nous trouvons gue le champ tri-dimensionel
de luminosité des galaxies porte deux signatures de multifractalité : I'invariance d'échelle
multiple et des moments statistiques divergents. De plus, certains indices permettent de
croire que les statistiques qui gouvernent ce comportement multifractal sont déterminées
par les parameétres o (le degré de multifractalité du champ) et Cj; (la codimension de la
luminosité moyenne) que nous avons estimé a 1,2 £ 0,4 et 1,28 £ 0,06 respectivement.
Conséqueinment, nous suggérons que les mécanismes non-linéaires responsables de la
formation des galaxies pourraient &tre d'origine multifractale. Puisque plusieurs des
analyses ont été effectuées sur la projection des champs, un cadre théorique pour la

projection des multifractales a été élaboré.
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Chapter One

Introduction.

1.1 Motivation and Previous Studies.

Since the birth of modern cosmology, statistical studies on the laige-scale
distribution of luminous objects in the universe have either treated the problem as a point
distribution in space, or as a functional variation in the luminosity independent of the
spatial distribution. However, neither approach by itself is sufficient to completely
describe the observed universe. In this chapter we shall present an overview of the main
achievements and disadvantages of each approach. We shall then argue that multifractals
provide a natural framework to combine both the spatial and the luminous propertics of
celestial objects and will consequently define a family of generalized luminosity fields.

These fields will be the primary subject of study of this thesis.

1.1.1 The spatial distribution of galaxies.

The most widely accepted view of the spatial distribution of galaxies arose in the
70's following Peebles' work on the two-point correlation function &(r). This function is
defined in terms of the point density p(r) of a set of N galaxies embedded in a volume V
within which statistical homogeneity and isotropy are assumed to exist:

(p(F)p(F, + 7))

(o)’

where (p)=N/V is the spatially-averaged density of the sample and 7, is the position of a

1 (1.1

&(r)=

galaxy in the set. We note that §(r)=0 for a uniform random process, &(r)>0 if the




Chapter 1: Introduction.

positions of galaxies are correlated and &(r)<O if the galaxies’ positions are

anticorrelated.
Pcebles and his collaborators (see for instance refs. 1-5) found that &(r) scales as

a power-law

c
g(r)m(’_o) (1.2)
r

where r, =5~ 10h~" Mpc (h is in units of 100 km sec”! Mpc'[), and* C=1.77. An
important point about the expression in 1.2 is the value of the so-called “correlation
length’#* . We note that for distances comparable to r,, &(r) approaches unity, which
indicates that r,, corresponds to the inner scale of the scaling relation 1.2.

A power-law behavior of &(r) at scales smaller than r, indicates a fractal
distribution in this range of scales (see for example refs. 6-8). This fractal interpretation
had been previously suggested by Mandelbrot in 1975%. In 1983, Grassberger and
Procaccial0 defined the correlation dimension D, as the limiting behavior of the
correlation integral C,(r) defined as

Ci(r) = [ 4ns*(1+ &(5))ds (1.3)

so that ﬁng C(r)= ro (1.4)

C,(r) measures the probability of finding a second object inside a sphere of radius r,
centered on an object of the set. By differentiating both sides of 1.3, and using 1.4 as the
asymptotic form of C,(r) we obtain that

1 d
—C
4mr? )dr /()

1 D.-1
=3 re
(41tr2)

]+§(r)o<rD‘—3 (1.5)

l+§(r)°c(

# These researchers actually denoted “C™ as *y”. In this thesis however, *“C” denotes codimensions and *y”

orders of singularities

## Note however, that this s not a true correlation length, since this would imply exponential decorrelations at r=r,,.
Therefore, the fact that &(r) approaches unity does not necessarily tmply a transition towards homogeneity, but is
dependent on the resolution of the catalogues



Chapter I. Introduction.

By comparing 1.5 and 1.2, it can be deduced that 3-D,=C=177.
Consequently, the exponent C can be interpreted as the *“*correlation codimension™* of the
fractal distribution of galaxies with dimension D,. This correlation dimension D, was
estimated as D, =1.23. As it will be seen in chapter two, D, is a lower bound for the
actual fractal (box-counting) dimension of the set. The value of 1.23 implies that the
clustering of galaxies is far from space filling or homogeneous (D=2), and is more
compatible with filamentary structures (D=1).

Based on Peebles' work (and later by various authors!!-13) on the correlation
functions, the picture of the universe that became widely accepted was that at scales
smeller than about 10 Mpc, the distribution of galaxies is highly ciustered and forms a
fractal set with dimension of about 1.23. At larger scales, galaxies seem to be uniformly
distributed in agreement with the idea of a homogencous and isotropic universe. This
picture was based on the fact that the quantity r, represents the upper limit for spatial
corrzlations. However, as discussed below, more recent analyses (see for instance
reference 8) have severely challenged this physical interpretation of r, on the grounds
that for scaling relations such as 2.1, the quantity r, is non-relevant and simply represents
the inner scaling limit of the sample studied.

In recent years various numerical models based on this standard picture have been
introduced!4-18, Some authors have accepted the scaling break at ~10 Mpc as real (rather
than as an artifact of the data set and analysis methods), and aitempted to produce
“broken” scaling models in order to reproduce the effect (sec for instance Castagnoli and
Provenzale!5 and Calzetti et al 16). However, even for these models the simulations of the
galaxy distribution which have been produced often lack the large-scale clustering
observed in real data samples. This fact has been attributed, by some researchers®19, to
apparent inconsistencies found in the standard analysis.

- Inconsistencies in the standard analysis.

Despite the general acceptance of the large-scale homogeneity assumption, a few
researchers have criticized its validity. The two main arguments are against the value of
the correlation length:

1.- If the universe was constructed as a hierarchy of structures up to the largest scales (as
it was first proposed by Fournier d'Albe?0 in 1907 and later by Charlier?! in 1922), then a

value for smaller scales of the mean-space density (p) (as defined in equation 1.1) would

# In chapter two 1t will be shown that for any fractal set of dimension Dy. its ‘codimension” C 1s defined as
C = D-D; (where D 1s the dimension of the embedding space).

3




Chapter 1: Introduction.

become ill-defined. In such case an estimate of the function &(r) could become strictly
sample-dependent, and hernce any analysis performed using this function vvould induce
spurious results especially on the value of the correlation length8.22-24.63, Furthermore, if
the distribution of luminous matter in the universe turns out to be multifractal, then over
the scahing range the densities would be singular measures whose statistical properties
will be dependent in strong ways on the scales over which they are averaged. In such
case, the “correlation length” actually corresponds to the internal scale of the scaling
regime of the data. Although in principle, this internal scale could correspond to the
internal scale of the physics we will argue that it is more likely to reflect the intrinsic
resolution of the catalogue, in particular this scale may be associated with the finite
number of galaxies in the catalogucs.

2.- Recently published 3-dimensional catalogues?3.26 show large inhomogeneous
structures at scales much larger than 10 Mpc. Figure 1.1a shows a 'slice of the universe'
135° wide and 150 h™ Mpc decp compiled by de Lapparent et al 27. Obscrvations show
that nearly 90% of all galaxies are located along giant filamentary structures, clusters, and
superclusters. It can be seen that in between these structures voids of up to 60 ™' Mpc are
found28.29, Clearly, a claim that galaxies are correlated only up to a distance of about 10
Mpc seems to be an artifact of the catalogues’ statistical limitations and of the data

analysis techniques.

Figure 1.1a. “Slice of the Umiverse” as compiled by de Lapparent et al 2. The
figure displays 1068 galaxies with apparent magnitude 7 <13.5 located in the
reglon 8hr<oa<17hr and 26°. 5< 0< 3'70 5. The sample’s depth is 150
h Mpc (4 is in unats of 100 km sec™ Mpc ) The large voids observed show
the existence of inhomogeneous structures at scales much greater than the
“correlation length” ry. . (Figure from de Lapparent et al 27y,

4



Chapter 1+ Introduction.

We have tested the extent of the scaling region in the galaxy distribution using a
straightforward method: we estimated the correlation dimension D, (defined in equation
1.4), from the 1068 galaxies showed in figure 1.1a. To do so, for each galaxy, we counted
the number N(r) of neighbours within a distance r from it (in order to avoid edge-
effects, we have only considered those galaxies located at a distance larger than r from
the edge of the sample). For a scaling fractal set, the average value of N(r) should be
given by

N(r) o< r2 (1.6)

Hence, the extent of the linear behavior on a plot of Log,o(N(r)) versus Logy(r),
indicates the extent of the scaling region of the set. The result of our analysis is presented
in figure 1.1b. The scaling region extends from a few to about 50 Mpc (the radius of the
largest circle embedded in the sample). This scaling range is similar to that found by
Weng et al 38 and by Coleman and Pietronero8, who used a method of analysis based on
an integrated form of the correlation function &(r). The break on the scaling observed in
figure 1.1b for short distances is a natural cut-off due to the fact that only few galaxies are
less than 1 Mpc apart from each other* . Shown for comparison in this figure, is the
expected slope for a homogeneous ( D.=2) set. It is clear that the distribution of galaxies
does not reach homogeneity in this range of scales.

s

3.0 Reference hine L
* of slope=2 0

25

20

1.5

Logo,(N(r))

10

0.5

0.0
A5 -1 0 05 00 05 1.0 15 20 25

Loglo (r)  (Distance m Mpc)

Figure 1.1b. Scaling analysis of a "Slice of the Universe" (as compiled by de
Lapparent et al 27 and described as sample CfA2 in section 1.3). The linear
scaling range extends from a few up to about 50 h_lMpc, the size of the largest
circle embecdded in the sample.

# Note that our galaxy’s diameter 1s just a few kpc.

5




Chapter 1: Introduction.

1.1.2 Studies on the Luminosity distribution.

Although there 1s still debate on the range, consensus exists among researchers on
the scaling power-law form ol the correlation function. This result 1s expected since the
fundamental processes responsible for the formation of the universe are scaling (as it will
be explained in section 1.2) However, a complete statistical description of these
processes must go beyond the trcatment of galaxies as mathematical point objects and
take into account other properties such as their mass and luminosity. Furthermore, the
large majority of the research done on the distribution of luminosity ignores its spatial
dependence (the only exception being the study done on the multifractal distribution of
absolute luminosity8-48). The main functional tool in the standard analyses of luminosity
distributions has been the luminosity function @®(L). This function is defined in terms of
the probability dP that a galaxy with luminosity L in the range L to L+dL is located

inside a randomly chosen volume 4V :
dP = ®(L)dLdV (.7

Integrated forms of this function were fitted to empirical data by Zwicky30 in
1957, Kiang3! in 1961 and Abell32 in 1965. Later in 1976, Schechter33 fitted ®(L) (as
defined by 1.7) based on the observed luminosity of bright nearby galaxies. Schechter's fit
of ®(L) was so successful, that since then it has become a standard analytic tool in
astronomy (see for example references 34 and 35). Unfortunately, no consensus exists
among researchers on the physical process responsible for the mathematical form of this
function. Later in chapter three we will propose that the dynamical process responsible
for this form is scale-invariant yielding multifractals and multifractal first order phase
transitions, related to a non-classical form of stochastic Self Organized Criticality3.

A different analysis37-38 done on the luminosity distribution of galaxies revealed
the existence of "luminosity segregation”; that is, an increased clustering among brighter
galaxies. In terms of the fractal formalism, this research showed that the fractal dimension
of a set of galaxies decreased with an increase in the minimum limiting luminosity. In
chapter two we will see that if the galactic luminosity is seen as a multifractal field, this
result causes no surprise; for in non-linear processes that result in multifractal fields,
extreme events (such as highly bright galaxies) are much sparser and less common than

“weaker” events (faint galaxies).



Chapter 1: Introdustion,

1.2 Generalized Luminosity Fields.

In the last few years, it has become fairly clear that non-lincar dynamical systems
which have no characteristic length-scale produce multifractal fields3%. Moreover, since
the dynamics of the large scale structure of the universe are scaling (such as gravitational
and electrodynamical interactions) and since scale-invariance is a fundamental symmetry
principle40, it is then expected that unless strong scale-bieaking mechanisms exist the
resulting fields (of mass, luminosity and density for instance) should be multifractal.

Multifractal fields possess some well-defined properties and features. The most
important is that they show multiscaling; that is, the different moments of the fields also
scale in a non-trivial manner. This will be the subject of chapter two. A second generic
feature of multifractal fields comes as a consequence of the existence in natuie of rare and
extreme events such as large storms in the atmosphere4!, violent earthquakes?? and in our
case, of ultra-bright and massive galaxies. Such extreme cvents tend to dominate the
probability distributions of the fields, leading to the observation of divergent statistical
moments associated with first order multifractal phase transitions and related to self-
organized criticality36, Such multifractal phase transitions will be the subject of chapter

three.
1.2.1 Definition of the generalized luminosities L, jand ¢, ;.

In order to test the multifractal character of the universe at large scales, we define
a family of generalized luminosity fields. These fields are constructed as follows (see
figure 1.2a for a schematic representation of the construction of these fields): we first
denote the standard information about a galaxy’s position and luminosity as KA(fl) and
LA(r,fZ) (for relative and absolute luminosity respectively®. The capital Greek letter A
indicates raw data at maximum available spatial -esolution and the parameters r and Q
represent respectively the galaxy's radial and angular position in spherical coordinates.

Next, consider a region of space A of size S . In order to define a ficld, this region
is subdivided into smailer regions B, of size s < S (the quantity A is the scale-ratio
defined as A=S/s > 1). The values of all the events ﬂA(f).) located within cach B, are
raised to a power n and then summed up. Finally, this sum is normalized over the entire
region A (see figure 1.2a) and the resulting quantity is defined as the "Generalized

(apparent) Luminosity Field" £, ; at resolution 4 :

# Note that (as it 1s standard in astronomy) throughout this thesis ¢ denotes apparent whereas L denotes absolute
lurinosity.




Chapter 1: Introduction.

j_ (£.(6D) a2
£y ()= 2% - (1.8)
IR

B(Q,)

where Bl(ﬁ,) is the angular region at resolution A located at an angular position ﬁ,
within the field (the subscript i runs between 1 and A°, D being the dimension of the
sample), and the exponent 1 is the index that represents the member of the luminosity
family under study. The brackets *( ) indicate ensemble average at resolution A over
the entire region A , so that the denomunator in 1.8 ensures the normalization of the field
(ie. ((’M(fl, )> =1). Note that the corresponding definition of the generalized absolute
luminosity L, , is identical to equation 1.8, but with £, (£2) replaced by L,(r,£2) #

The systeruatic study of normalized i powers of a multifractal field (as given by
equation [.8) was first proposed by Lavallée64. However, the application of such study to
an astronomical field has been done for the first time in this thesis.

- Some important members of the family of luminosity fields.

From the definition in equation 1.8, it can be noticed that ¢, ; represents the
density field of galaxies at scale-ratio A equivalent to the quantity p(F) (used in equation
1.1) for the A — A case. This field has been studied by various authors7.16:43-47 finding
good evidence for multiscaling, some of them up to angular distances greater than 30° (in
agreement with the large-scale inhomogeneities observed in figure 1.1a).

?) » represents the apparent lumunosity field at scale A; that is, the (normalized)
total amount of light received from all galaxies located within an angular region B, of
extent s.

Members of L, ; indexed by 0.8<n<1.25 (depending on the semi-empirical
method used to relate absolute luminosity to mass) represent the corresponding field of
mass distribution. Coleman and Pietronero8.48, using an integrated form of the correlation
function &(r), have recently analyzed the L, field finding good support for
multifractality up to distances comparable with the size of the catalogues (~50 Mpc).

By varying n it is possible to study the statistical features of the whole family of
fields as a function of scale (or resolution). The reason for this is that as 1 is increased

# In order to simplify the notation in the rest of the thesis, the generalized luminosity fields will be wntten as €, 50
that their spatial dependence witl be impheit
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emphasis is placed on the extreme values of the field, whereas the opposite occurs for
n<1. This effect is shown in Figure 1.2b with the {80 lield for n = 0,1,2 and 3. The
data corresponds to 6820 galaxies located in a square of 8G© by 809, centered on the north
galactic pole. This sample is denoted MCG80x80 and will be described in detail in
section |.3. Here, the value of A is 80 corresponding to a cell size of 19 .
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Figure 1.2a. Construction of a ‘Generalized Luminosiy field'. a grid of resolution
A (A=4 in this figure) is superimposed onto the original luminosity data (already
raised to a power 1) and the values of all luminosities within each field-box are
summed up. These integrated luminosities (from each field-box) are then
multiplied by a normialization constant, so that the average value of the field 1s
made equal to 1.
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Low ¢, , High ¢, 4

Fig1.2b Example of four fields of ¢ A - The values of M are0, 1,2, and 3. A is
80 for all pictures. Each square represents a region of 80 x 80° centered on the
north galactic pole. The pixel size is 1°. There are 6820 galaxies in each picture, It
can be noticed that as 1) increases, the extreme values of the field are amplified.
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1.2.2 The relation between L, ; and ¢, ;.

The field [n.l is an angular projection (along the radial direction) of the
corresponding field L, ;. The fact that relative and absolute luminositics are generally
related by an angular projection has often stopped researchers from combiring results of
both analyses. In the case of the angular projection of fractal sets, some results from
analyses on simulations have alteady been given by Dogterom and Pictronero?*. These
results are qualitative and indicate that large-scale homogeneity observed in projected
fractal sets is compatible with large-scale inhomogeneity in the actual 3-dimensional
distribution. Moreover, for regular cartesian projections the statistical properties of both
projected and unprojected fractal sets can gencrally be related by a set of simple
projection rules (see for instance Falconer®?), some of which will be discussed in scctions
2.1.1 and 2.1.2. We will now propose that the statistical properties of the multifracral
fields L, ; and ¢y.2» can also be related due to the specific relation between LA(r.fI)
and /,(Q).

The projection of a fractal set can be understood as the “shadow” that the set
produces on a plane perpendicular to the direction of integration (see figure 2.2a for a
pictorial representation). In the case of multifractal ficlds, the projection is the integral
along one of the spatial coordinates. Since in turbulence the integral of a multifractal
density is a flux, both terms: “flux” and “multifractal projection” will be equivalently
used throughout this thesis.

Consider first the simpler problem of a regular cartesian projection of a
multifractal field. Specifically consider a unit-square with axes along the x and y
direction respectively. Suppose that a grid of box size s (s <I) is superimposed onto the
square, and then a value T,(x,y) is assigned to each box. Let us further suppose that the
distribution of intensities of the T, (x,y)'s is governed by multifractal statistics. Then a
projection 7, (x) along the y axis is defined as the integral

T, (x)= '[:TA(x, y)dy (1.9)

The left-hand-side of equation 1.9 is independent of the projected coordinate y, which
ensures that for multifractals the statistical properties of both T, (x,v) and Tp,(x)arc
related by a set of projection rules discussed in detail :n appendix two.

Let us now consider the specific case of the luminosity fields. For astronomers,

the apparent luminoshy ¢, (Q2) is a measure of how bright a cclestial object appears to the

11
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observers on the earth. It is not equal to the absolute luminosity LA(r,ﬁ), which is
intrinsic to the object, due to the distance r that light must travel from its source to us. In
particular, radiative transfer theory predicts that the observed luminosity decreases with
the inverse square of the distance to the galaxy. In the case of the luminosity fields
defined in scction 1.2.1, and ignering the unimportant normalization factor, the quantity
EA(fl) is given by

e(Q)j (’Q) (1.10)

where V. is the volume of the cone whose vertex is at the earth and whose base is the
angular region B, where a galaxy at a distance r is located. Noticing that dV is an
element of volume equal to r’drdQ in spherical coordinates (dQ is the corresponding

element of solid angle) we can rewrite 1.10 as

0,(Q)= j(j L, (’Q) dr}dfz

£,(Q) = [L, ()0 (1.11)

B,

The right-hand-side of 1.11 is no longer an explicit function of the projected coordinate r
and equations 1.9 and 1.11 are hence analogous in their form. Furthermore, this analogy
indi~ates that as in the case of regular cartesian projections, the statistical prooerties of the
fields ¢, ; (derived from EA(Q)) will be related to the statistical properties of the fields
L'M (derived from L, (r,QQ)). Hence by combining the results from analyses on both
fields, we can maximize the amount of information acquired about the universe's actual
structure. A detailed discussion of cartesian projection relationships for multifractal
fields will be the presented in appendix two.

A further advantage of the use of £,, ; is that since all catalogues of galaxies’
position and luminosity are limited by a minimum detectable apparent magnitude, a field
constructed using F,\(ﬁ) has a constant minimum threshold. On the other hand, the
minimum threshold of a catalogue of absolute luminosity is distance-dependent (see
figure 1.3 and cquation 1.13 1n the next section). Since spuriovs results may arise from
analyses done on {ields having non-constant thresholds, researchers using LA(r,ﬁ) on
their analyses must resort to either constructing sub-samples with constant threshold (the

12



Chapter 1. Introduction.

so-called "volume-limited samples"”), or to invoking functions such as the luminosity
function @(L) to predict the luminosity of the unobserved galaxies. Unfortunately,
neither solution is completely satisfactory since the former severely decreases the number
of galaxies available for analysis50 (which is already small in a statistical sense), and the
latter is based on the erapirical assumption that the numerical fits of d(L) are applicable

and correct everywhere in space, neglecting any possible statistical spatial correlation.
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Figure 1.3. Radial distribution of the 1682 galaxies from the sample z40
(described in the next section). The abscissa shows the absolute magnitude M of
each galaxy. Observations of luminous objects on the sky are himited by a
minimum apparent magnitude, which in terms of absolute magnitudes, is
observed as a loganthmic function of the radial distance r. This produces the
strong distance-dependence of the minimum threshold observed in this sample
We have used h 1 units of 100 km s'! Mpcl. (Data from Huchraet al 25)
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1.3 The data.

In their original forms, catalogs contain information on the apparent magnitude m
of the galaxies. The values of the corresponding apparent luminosities ¢ are obtained
usingd!

0= l0{(»1'—1;1)/2 5} (1.12)
where m' is the limiting magnitude of the catalog. The values of the absolute magnitudes
M are obtained using the information on the radial distance r to the galaxies3!:

M =m-25- Log(r) (113)
where r is in Mpc. In our analysis all distances are derived using a Hubble constant H, =

100 km s"l Mpc'l and expansion velocities corrected for virgocentric flow, according
038,52

Veorr = Vin(sin 8, sin 8, +cos 8, cos 8, cos(a, - ) (1.14)
where V_,,, is the redshift correction for a galaxy located at right ascension ¢«; and
declination é,. V,, is the infall velocity of the Virgo center located at coordinates «,, and
8,. Weused V,,=300 km s-1.

Four data samples were used to test the multifractal character of the distribution of
generalized luminosities. Three of them are sub-samples of available redshift surveys
from the Harvard-Smithsonian Center for Astrophysics (CfA). These samples will be
denoted CfA2, CfA2proj and z40. The fourth sample (calied MCG80x80) comes from the
Merged Catalogue of Galaxies. This catalog contains all galaxies in Zwicky's catalugue33

and was compiled by Kogoshvilis# in 1986. The specifications about each sample are:

a) z40: This sub-sample of the CfAl catalogue?5 forms a cone bounded by (in
galactocentric coordinates) b" > 40° and §>0°, and centered on the norih galactic pole.
Its limiting appaient magnitude is 14.5 and contains 1682 galaxies. This sample contains
3-dimensional information (in spherical coordinates) on the galaxies' position and
luminosity. A radial distribution of the galaxies contained in this sample is presented in

figure 1.3.

b) CfA226; This sample contains 1091 galaxies with apparent magnitude less than or
equal to 15.5 located within a 6° by 135° strip passing through the Coma cluster. The
sample is 150 Mpc deep and 1s bounded by the angular positions 84 <a<17h and

14



Chapter 1 Inttoduction

26°.5<8<32°.5 (where o denotes nght ascension and § is the declination). in the
context of this thesis, this sample will be tieated as the intersection between a 2-
dimensional plane and the actual 3-d distribution (see figure 1.5). This "slice of the
universe" contains information on luminosity and position in radial and angular
coordinates as depicted in figure 1.1a.

c) CfA2proj: This sample is a projection along constant right ascension o of the CrA2
sample. It contains information only on the galaxies' angular position and luminosity and
it is therefore treated as a l-dimensional sample. Consequently, the luminostty fields
constructed from it, correspond to - dimnensional fluxes of the original 3d disttibution.
This sample can also be regarded as the intersection between a I-dimensional stiip and a
2-D projection of the actual 3-D distribution. Some examples of the field L, ; as obtained
from this sample are shown 1n figure 2.3 (next chapter) for various valucs of the scale-

ratio A.

d) MCGB80x80 : This sample is a square 80° x 80° centered on the north galactic pole. Its
limiting apparent magnitude is 15.5 and contains information on the luminosity and
angular position of 6820 galaxies. Since it can be regarded as a 2-dimensional projection
of the actual 3-d distiibution, this sample contains no information on radial distance.
Consequently, the luminosity fields constructed from it can be regarded as 2-dimensional
fluxes of the original distribution in 3d. Figure 1.4 shows the posttion of this sample on
the northern (galactic) hemisphere. The sample was constructed as follows: from the
original data file34 the angular position of each galaxy (in o and 8) was obtained and
then projected onto a plane using a standard equal-area Lambert projection’ which
retains the density of points of the original distribution. A cartesian grid with origin at the
north galactic pole was then superimposed onto this planc. Each axis was labcled from
-90° to +90° and only those galaxies containcd between -40° and +40° (for both axcs)
were included in the final sample. Examples of 7, ; fields produced from MCG80x80
can be observed in figure 1.2b.
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Figure 1.4 Location of the MCG80x80 sample in the northern galactic
hemisphere. Each pixel represents an angular box 1°x1°. This figure was
produced using data from the Merged Catalogue of Galaxies compiled by
Kogoshvili in 198654, This catalogue contains information on the position and
apparent magnitude of 20,513 galaxies located in the north galactic hemisphere.

740 — CfA2

(Actual 3-D data) Intersection (2-D Slice)

Projection U Projection U

MCG80x80 - CfA2proj
2-D projecti 1-D Stri
(2-I* projection) Intersection ( P

Figure 1.5. Relation among the four catalogues used in this thesis. The sample
z40 has 3d information on the actual distribution. The sample CfA2 can be
regarded as a 2d intersection of the set 240. CfA2proj is a radial projection along
constant angles of CfA2. Finally, the sample MCG80x80 can be understood as a
2d angular projection of the original 3d niverse (see the discussion in the text for
mere details on the various samples).
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1.4 Summary of the Thesis.

Chapter two begins by presenting the formalism of fractal projections and
intersections. It then explains the theory behind multiscaling and presents the results of
the analysis done on the data. The last section of this chapter discusses the theory of
“universal multifractals”. Predictions from this theory are then verified using the
generalized luminosity fields.

Chapter three concentrates on multifractal phase transitions. Starting from theory,
we apply this formalism to the data sets and study the consequences of this phenomenon
on the luminosity function ®(L).

The last chapter of this thesis is devoted to the conclusions and the physical
implications of this research. We examine the advantages and disadvantages of the use of
the generalized luminosity fields, and give a hint on a new picture of the large-scale
structure of the universe.

This thesis contains two appendices. Appendix one discusses multifractal
notation. Due to the importance of projected fields in this thesis, appendix twa is entirely
devoted to the question of the projection of multifractals. It begins with theoretical
considerations and ends with some tests performed on simulations.

17




Chapter Two
Multiscaling of the Luminosity Fields.

2.1 Fractals as Scale-Invariant Sets.

In nature one often finds phenomena which respect some type of symmetry
principle. In physics, these principles are reflected by the equations describing such
phenomena and usually the two descriptions are considered equivalent. For example in
mechanics, conservation of angular momentum is observed as rotational invariance and
energy conservation produces time independent equations. Equations that retain their form
under the isotropic transformation x — x/A (where A4 is some scalar) are said to be scale
invariant*, Scale-invariance is a symmetry principle characteristic of non-linear equations
and in recent years has become clear that the resulting fields reveal multifractal features39,
In mathematical terms scale-invariance is usually represented by power laws, This property
is known as scaling and gives us a transformation rule among physical processes acting at
different scales. Consequently, the existence of scaling in a physical system implies that
what happens at very small scales can be simply related to what is observed at larger scales,
and vice versa.

The simplest examples of scale invariance are fractal sets. A proper definition of a
fractal set is a mathematical object whose fractal (Hausdorff) dimension Dy is strictly larger
than its topological dimension D;. As an example, Dy for a fractal set of points is zero
whereas 0 < Dy <D, D being the dimension of the embedding space.

Consider a D-dimensional space A with size § subdivided into boxes of size s <.
Let us define A =S8/s(A>1 always). Then the total number N,, of boxes in A is
proportional to AP (A for a line, A? for a surface and A% for a volume). Furthermore,
suppose that a fractal set F' of dimension Dy has N, boxes embedded in A. The scaling
rules for a fractal st predict that N, o< A Consequently, the probability Pr that the nth

# Rigorously speaking, this definttion corresponds to self-similar scale invariance, a special case of scale
invanance in which all spattal coordinates are 1sotropically re-scaled. For amsotropic scaling ,see refs 68 and 69.
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box will belong to F is given by the ratio

N, A%
Pr(ne F) o< 'ﬁ;:?
Pr(ne F)< A€ (2.1

where C=D- Df is called the "codimension" of the fractal set.
2.1.1 Intersection of Fractal Sets.
Consider 2 objects with dimensions D, and D, respectively, both of them

embedded in a space of dimension D . Then, the dimension D, of the intersection of both
objects is given by (see for instance ref, 49)

D; = max[0,(D, + D,) - D] (2.2)
or in terms of codimensions: C; =min[D,C; + G, ] (2.3)
. where C; = D~ D;. The intersection relations 2.2 and 2.3 predict, for instance, that the

intersection between two planes ( Dy= D,=2) in a 3d-space will be a line ( D;=1). Equations
2.2 and 2.3 are not constrained to continuous objects; points sets (such as fractal sets) also
obey them49:56 , A few examples of intersections are presented in figure 2.1a:

..........

Figure 2.1a. Examples of intersecting objects. In 3-d, the intersection between a

sphere ( D=3) and a plane (D,=2) is a plane ( D;=2), whereas between two

planes (D= D,=2) the intersection 1s a line (D;=1). For a fractal set of

dimension Df the dimension of the intersecting set will depend on Dy In this
. figure intersections are represented by the mathematical symbol N.
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The correlation dimension D, (defined in equation 1.4) is often very close to the
actual fractal (or box-counting) dimension of a set (it 1s actually a lower bound estimate of
it). In chapter onc a dircct method of estimating D, was developed and then applied to the
CfA2 sample (see figure 1.1b). Figure 2.1b now shows the estimates of D, as obtained
from the MCG80x80 and CfA2proj data samples. The scaling regions for both samples are
well defined and reach up to about 40° (the size of the largest angular box totally embedded
within the sample) in agreement with previous studies done by Atmanspacher et al 44,

The obtained values of D, are 1.85%£0.04 and 0.8510.03 respectively for
MCG80x80 and CfA2proj, implying a correlation codimension C. of 1.15 in 3d. Since the
1-dimensional data set CfA2proj can be regarded as the intersection between a 1d-strip and
a 2d set such as MCGB80x80 (see figure 1.5), we have that in this case D=1, D,=1.85
(the observed dimension of the set in MCG80x80), and D =2. Equations 2.2 and 2.3
piedict then that D;=0.85 and C, =0.15 in perfect agreement with the observed values
from CfA2proj, as scen below in figure 2.1b:

MCGB80x80 CtA2proj
4 18
10
3 Slope= 1.85+0.04 -
2 2 Y  Slope=0.8540.03
= E’ 20
~— 2 ©
'§:‘-’ §5 15
0 10
0
0 0 * 7 v v
2 -1 0 1 2 2 1 0 1 2
Log, (8) (@ is in degrees). Log,, (8) .8 is in degrees).

Figure 2.1b . Correlation dimension analysis for the samples MCG80x80 and
CfA2proj. The values of the corresponding D, ’s are obtained from the slopes of
the lincar region on these figures. The observed values are 1.8510.04 and
0.8510.03 respectively for MCG80x80 and CfA2proj, in agreement with the
intersection relation 2.2. In this figure the quantity @ characterizes the
angular box-size (in degrees) used in the analysis of these samples.
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2.1.2 Projection of Fractal Sets.

An equation similar to 2.2 predicts the observed dimension D, of the projection (or
shadow) of an object with dimension Dy (embedded in a D-dimensional space),
orthogonally projected onto a space of dimension D':

D, = min(D',Dy) (2.4)

or in terms of codimensions
C, = max(C; - C,0) (2.5)

where Cr =D~ D, and C'= D- D (sce reference 49 for a discussion). As an example of
equation 2.4, a cube (D,=3) produces a square ( D,=2) when projected onte a plane
(D'=2), whereas a line (D,=1) retains its diriensionality after the projection. Some
examples of projections are shown below in figure 2.2a.

\ O
=

s SR o
e el L8,
/ T Ltitatstaat

Figure 2.2a. Examples of the projection of objects: the shadow (or projection) of
a cube (Df =3) on a plane (D’ =2) is a plane (Dp =2), whereas a line retains its
dimensionality (Df=1) after the projection (Dp, =1). For a fractal set the value
of Dp will depend on Dy,

In our analysis of the generalized luminosities, the 2-dimensional data set
MCG80x80 can be regarded as a 2-d projection of the 3-dimensional catalogue 240 (sce
figure 1.5). Consequently, since in the last section D, was found to be smaller than two for
the MCG80x80 sample, equation 2.4 predicts that both samples should show the same
value of D, . This is shown in figure 2.2b where we present the results of the correlation
analysis of the z40 sample. The scaling (linear) range seems to reach up to about 60 Mpc.
Between about 1 and 7 Mpc the curve shows a well defined slope implying a value of D,
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of 1.80%0.05 and a corresponding codimension of 1.20 (in 3-d). These values are in
agreement with those previously estimated from the MCG80x80 sample (see figure 2.1b).
Beyond about 7 Mpc a change in the slope is observed. Unfortunately, due to the low
number of galaxies in this sample it is hard to conclude whether this change in the slope
reflects an undeilying physical phenomenon, or is just an artifact of the poor statistics. It is
hoped that in the near future, the publication of more compleie catalogues will allow us to
perform a statistically more robust study.

Another interesting point to be noticed from figures 2.1b and 2.2b is the fact that the
obtained estimates of D, are in disagreement with the previous estimates found from
correlation function analysis, where D, was estimated as being 1.23 (see section 1.1.1).
However, our estimates are in perfect agreement with more recent estimates obtained in a
more direct manner by Atmanspacher er al 4 using Zwicky's catalogue33 (similar to our
MCG80x80 sample) and Wen er al 38 using the CfA1 catalogue25 (from which our sample
240 was constructed). This discrepancy may arise from the fact that the former estimates of
D, were often derived from analyses on the angular version of £(r) (denoted as ®(8)) and
relating these results to those of &(r) via Limber’s equation?’0. However, this equation
assumes that spatial homogeneity is reached within the sample’s limits, which is not the
case of the samples analysed here (as shown in figures 1.1a,b). Our analysis on the other
hand, is free from such assumptions and it is hence expected to provide more reliable

results.
240

30

Slope =180+ 0.05

Log,o(Mr))

-10 05 00 0S 10 1§ 20 25§
Logio(r)  (r15 10 Mpe)

Figure 2.2b. Correlation dinension analysis for the 3-d sample 240. The value of
the slope of the linear region implies D =1.80+0.05. This vatue is in agreement
with the value found from the analysis of the MCG80x80 sample (see figure
2.1b) as predicted by equationa 24. Although a change in the slope is observed
at about 7 Mpc, the scaling (linear) region of this sample reaches up to about 60
Mpc (the radius of the largest circle totally contained within the sample).
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2.2 Multifractals as Scale-Invariant Fields.

Usually in nature one deals with fi¢lds rather than geometric sets. Verv few physical
phenomena can be reduced to geometric sets of points. On the contrary, niost display
strong variability on their intensitics. Furthermore, the observed intensity of a field depends
strongly on the resolution of the measurement as shown in figure 2.3. Here we show the
non-normalized ficlds L, , of absolute luminosity obtained from the 1091 galaxies in the
CfA2proj sample. It can be secn that as the resolution A decreases fiom A=A to A=5 (ie. as
the luminosities are averaged over increasingly larger angles), the luminosity variation also
decreases severely as a result of the averaging process. In this figure the absolute
luminosity L, at maximum resolution was cstimated using L, = r¢ A» Where £, and r are
the known values of the apparent luminosity and radial distance to the galaxy (in Mpc).

In order to account for the dependence of the measurement on the resolution 4 (as
observed in figure 2.3), we will write the observed value of the field ¢ n.a (@t resolution 4)
as AY. The exponent ¥ is called the “order of singularity” and is targe for strong events
and is negative for weak ones4157:66,

For 1aultifractal fields, a single dimension {or codimension) is not sufficient to
characterize all the scaling properties of the distribution. In particular, the codimension of
the set of boxes with luminositics £, gieater than a value A’ will depend on Y.
Furthermore, for muliifractal fi~lds it is expected that the codimension of a field will
decrease with decreasing . Since, as we shall show, the large-scale galactic luminosity is
indeed a multifractal field, the so-called "luminosity segregation” (reported by various
authors37:38 and explained in section 1.1.2) can be then easily understood as the natural
result of the variation on vy of the galaxy distributions under study.

When dealing with multifractal fields it is convenient to generalize the previous
definition of the codimension C of a fractal set to a “codimension function” ¢(y, 1j) that
represents the whole family of exponents characterizing the statistical properties of the field.
A relation analogous to equation 2.1 is then obtained for ihe probability Pr of a certain
value £, ; within the field, of being greater than: a given value A’:

Pr(fn./l 2A7) o A-ctrm (2.6)

Equation 2.6 is one of the fundamental properties of multifractals and corresponds
to the generic outcome of cascade type of processes responsible for the formation of most
multifractal fields*0. The proportionality symbol in equation 2.6 reflects the fact that there
are slowly varying prefactors on the right-hand-side of this equation. These prefactors,

23




Chapter 2: Multiscaling of the Luminosity Fields.

however, may be ignored since our interest focuses on the exponential part which will be

the dominant behaviour for large 4.
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Figure 2.3. Luminosity variablility as a function of the resolution A for the
field L, ; as obtained from the 1091 galaxies of the sample CfA2proj. The
figures have been produced by averaging the luminosity over increasing
angular scales. As the resolution decreases from the original raw-data (A =A)
down to a resolution of 270 (4 = §), both the vanability and the intermittence
of the field are observed to decrease severely. In order to facilitate the
intercomparison among the figures, the luminosity fields were not normalized.
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2.2.1 The Scaling of Moments: Definition of the K(q,7) Function®.

A statistically equivalent approach to the question of characterizing the scaling
properties of a multifractal is to study the behavior of the different moments of the
distribution.. Consider the ensemble average of the gth moment of a field I’n 1» defined as56

<(€n-l)q> = J-(fnl )qd Pr(en.l 21) (2.7)

Substituting the value of £, ; by AY and using equation 2.6, we can approximate
<(£n./1 )q>lew—c(r.n)dy (2.8)

For large A, this integral can be evaluated using a saddle point approximation and invoking
the Legendre transform of ¢(y,n) which maximizes the value of the exponent in 2.8 (sce
Parisi and Frisch7). This function will be denoted as K(q, n) and is defined as

K(g.m)= m;lX( g -c(y.m) (2.9)

Equation 2.8 can then be written as

<(gn_/1 )"> _ sK@m (2.10)

Equation 2.10 is the mathematical definition of multiscaling and is another
fundamental property of multifractal fields. For a monofractal K(g,n) is linear in ¢,
whereas for multifractals, K(g,n) is nonlinear. In general, K(0,1)=0 (since <x °>=| for
any x#0) and for a conservative field equation 2.10 predicts that K(1,77)=0. Moreover.
since K(q, 1) mathematically corresponds to the second Laplacian characteristic function of
the fieldS6 it follows that it must be convex. Furthermore, since ¢(y,n) is the Legendre
transform of K(q,n), it must also be convex. The theoretical forms of both functions
K(q,m) and c(y,n) are shown in figure 2.4 for several values of the exponent 7). The
plots correspond to estimates obtained from a series of computer-made simulations with

# Note that the exphoi inclusion of the vanable 1 1n K(q,n) and ¢(y,n) 15 specific to the study of the generalized
luminosity fields, and most hterature on the subject considers only the functions c(y) and K(q) (with i implicitly
assumed to be 1) The relations between the latter functions and the functions f(¢) and t(q) (of common usc on
strange attractor theory) are discussed in appendix one
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known multifractal properties®. For high ) values the largest singularities of the field are
amplified hence extending the y-range of the ¢(y, 17) function. Consequently for increasing
1 the convexity of ¢{y,n) decreases whereas for K(q,n) it increases.

K(q,n) and c(y,n) are two equivalent forms of fully describing the statistical
properties of a multifractal distribution, and throughout this thesis will be the main
analytical tools employed. However, when dealing with real data, before attempting to
estimate K(g,n) or c(y,n) we must first venify that the multiscaling relations 2.6 and 2.10
are respected over a broad range of scales. This is an essential pre-requisite (which is not
always taken seriously enough) to being confident that the estimates obtained are a robust
representation of the statistical properties of the large-scale distribution of luminosity.

20
a)
15
n=0.5
10 11=} g
n=l.
K(‘IJ'I) n=2.0
05
00 4
05 v
0 1 2 3
q
b)
n=2.0
=1.5
n=10
c(y,m) n=0.5

Figure 2.4 . Theoretical forms for the functions: a) K(q,n) and b) c¢(y,n) for
n=0.5, 1.0, 1.5 and 2.0. The curves have been obtained from simulated 2-d
muliifractal fields of known statistical parameters a=2.0 and Cj,1=0.1 (see
section 2.4 for a discussion on these parameters).

# For a detailed discussion on the simulation of multifractals fields see references 58 and 41.
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2.3 Results from multiscaling analysis.
2.3.1 Results for K(q,n).

As mentioned 1n the last section, before estimating the actual form of K(q, 1) from
the data samples, we must check that the scaling regions are well defined. This is shown
for the 1091 galaxies of the sample CfA2proj in figure 2.5 which presents the plot of
Log|0<(€,w1 )q versus Log|g(A) for =0, 1, 2, 3. The ensemble averages have been
calculated over the number N, of nou-empty boxes at resolution A using the formula:

N,

) Ben
where the quantity (£ ,) represents the field value (raised to a power ¢ ) of the i™ box in
the field. According to equation 2.10, for a multifractal the plots in figure 2.5 should give
straight lines. In general this seems to be the case, althoug.! (as expected for a finite sample)
only for a limited range of scales. The most restricted scaling range is observed for 17 =0. In
this case the scaling region extends from A =4 to A =128, implying angular scaling
between 1° and about 35° (recall that the maximum extent of this sample is 135%). For
higher 1's, the scaling region extends trom 35° down to about 0.13°(A = 1024).

For all values of the exponent np in figure 2.5, fluctvatiens from linearity are also
observed within the scaling regions. This result is not surprising taken into account the
statistically low number of events used in this analysis (recall that the total number of
galaxies in this catalogue is 1091). Consequently, although multiscaling seems to be
observed in all fields studied, the poor statistics derived from the available catalcgues are
expected to introduce significant uncertainties on the estimates of the function K(q,1n) .
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Figure 2.5 . Multiscaling of four ¢ n.A fields as predicted by equation 2.10. The
values of 77 are 0, 1, 2 and 3. The analysis shown corresponds to the 1091
galaxies from the CfA2pro; sample. Angular scaling regions are clearly
observed in all of the fields.

For a given n, the value of K(q,n) is obtained for each g from the value of the
respective slope in figure 2.5. These slopes have been estimated using a linear regression
over the linear scaling region of the curves. The estimated values of K(g,n) are shown in
figure 2.6 for n=0; 0.5; 1; 1.5; 2 and 3. Error bars were estimated from the standard
deviation of the slope fits, and in order to preserve the clarity of the figure, they are just
shown for n=1.5 and 3.0. The curves are far from linear showing strong convexity (a
good signature of multifractality) for all ficlds £, , . These results are a generalization of the
results found by various authors’-16:43-47 on the multifractal features of the point-density
field (the n=0 case). Furthermore, these results suggest that the physical processes
responsible for the spatial distribution of luminous objects in the universe are of multifractal

character.
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Figure 2.6. K(g,1n) for the multiscaling curves of figure 2.5 . In this figure we
have also shown the results corresponding to 17=0.5 and 17=1.5. The number
density field (n =0), the apparent luminosity field (1 =1) and all of the other
n-fields show strong convexity, as expected from multifractality.

2.3.2 Comments on the Scaling Ranges.

Figures 2.7a and b show the multiscaling for the function K(q,l) as estimated from
the 1091 galaxies in the sample CfA2 and from its radial projection the sample CfA2proj. It
can be noticed that the scaling region for CfA2proj is much more extenstve than for CfA2.
Since the only difference between these two samples is an integral along the radial
direction, it must be concluded that the decreased scaling region of CfA2 1s erther an artifact
of the angular integration, or that is due to a much smaller average number of galaxies per
box (since there is only a finite number of galaxies, a break is expected to occur at scales
corresponding to densities close to 1 gaiaxy per box). In figure 2 7c we have plotted the
multiscaling corresponding to a verston of CfA2 but intcgrated along constant radii (not
along constant angles as in the case of CfA2proj). We note an increasc in the scaling region
almost identical to figure 2.7b. Also, the corresponding K(g,1) curves are very similar for
these two integrated ficlds as shown in figure 2.8. Since the latter integration is not an

29




Chapter 2; Muluscaling of the Luminosity Fields.

angular integration we are left to conclude that the break is only due to the insufficient
number of galaxies per box. In particular we note that for a field integrated by D
dimensions, the average number of galaxies per box increases by AP,

2 CIA2

b} CfA2pro)
150 ‘o
125 4
o8
- I(XL
T~ ~ O]
ol >
-~ 075 =
\; : 04
e 0% >
S0 k ~.
'3 ’c‘oz‘
0254 §°
000 4 00 4
025 02 r .
0 1 2 3 ° ! 2 )
A
Log, (A) Log,, ()
¢) CFA2 prugcuon sking constand rack
10
08
€ qen0s
¢ ge028
- 06 ' qw0.50
= ¢ qu0 7S
ot ® g=100
Y q
A 04 o gsl2§
= 4=1.30
& 02 s gl s
3 5 =200
* =228
00 * =250
-02 p— -
0 i 3

Figure 2.7 Multiscaling of K(q,1) for various samples. a) CfA2. b) CfA2proj. )
A version of CfA?2 integrated along constant radu1 (not constant angles as in the
case of CfA2proj) The similanty between the scaling ranges of figures b and ¢
suggests that the improvement on the scaling regions is independent of angular
fluxes or integ ations.

The agreement of the statistical functions (as evidenced by figures 2.7b,c and 2.8)
of both fluxes (along constant angles and along constant radii) suggests that standard
cartesian integraticns can be used as a first order approximation of the actual angular
integrals. This will be our assumption in the remaining of this thesis,
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The improved scaling regions observed 1n the projected fields make us more
confident on the statistical parameters estimated from them. Consequently, in the remainder
of this thesis emphasis will be placed upon the results from analyses on the integrated
samples CfA2proj and MCGB80x80. Since these two samples are related via an intersection
(see figur: 1.5) the knowledge of the statistical properties of (multi)fractal intersections will
be fundamental in comparing the results of the analyses from both samples.

0.6

05] == From CfA2proy
" From projection along constant radn

0.4

0.3.
K(q,1)

0.2

0.1

0'0 TOMN

4

Figure 2.8. K(q,1) curves estimated from two integrated sub-samples of the
sample CfA2: one along constant angles (this 1s the standard CfAZproj sample),
and the other along constant radu. Both curves agree implying that cartesian
projections are in this case a good first order approximation of the actual
angular integrals. These curves were obtained from linear regressions on the
slopes of the linear region of the curves shown in figures 2.7b and 2 7¢

A further eample of the importance of having sufficient galaxies per box can be
observed when the MCG80x80 sample is divided into 6° strips, and each strip is treated as
a 1 dimensional slice of the sky" . Figures 2.9a to 2.9d shiow the multiscaling of four of the
thirteen resulting strips. It can be noticed that both the scaling range and the values of the
slopes (for a constant ¢) vary strongly. This (as it will be explained in chapter three) is a
consequence of the critical behaviour of the luminosity fields associated to first order

multifractal phase transitions.

# This is an approximation to the fact that each strip 15 6° by 80° long
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Figure 2.9. Multiscaling cortesponding to four of the thirteen 1-dimensional
flux-strips produced by slicing the MCGB0x80 sample into 6 strips. It can be

observed that both the scaling range and the value of the slopes (for a given q)
vary significantly from strip to strip. Thuis will be explained in chapter three
as the result of the critical behaviour of the luminosity fields (section 3.3).

In statistical terms, each of these thirteen flux-strips is equivalent to the sample
CfA2proj (see figure 1.5) and they are hence expected to show scaling ranges broader than
the corresponding ranges of the whole MCG80x80 sample. This effect can be better
observed in figure 2.10 where we sec that the multiscaling of the ensemble average of the
thirteen 1d strips (shown in figure 2.10a) shows an increased scaling range when compared
to the scaling of the original 2-dimensional MCG80x80 sample (see figure 2.10b) .
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Figure 2.10. Multiscaling of the apparent luminosity field ¢, ; as obtained from
a) the ensemble average of the thirteen 1-dimensional flux-strips obtained
from the sample MCG80x80: and b) the onginal 2-dimensional MCG80x80
catalogue. The scaling region is significantly broader for the case of the
averaged multiscaling curves. It is argued that this effect is a consequence of
the increased box-density of galaxies in the 1-dimensional samples.

In this section we have shown that in order to obtain statistically robust scaling
ranges, it is necessary that the corresponding fields be constructed from a sufficiently high
number of galaxies per field-box. Since this number is generally higher in integrated fields,
in the remaining of this thesis the estimates of the statistical functions K(q,n) and c(y,1n)
will be obtained from analyses performed on the integrated samples CfA2proj and
MCG80x80.
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2.3.3 Results for c(y,n).

When studying probability distributions, the definition of multiscaling that applies is
given by equation 2.6. In this case the probabilities are estimated (at a given resolution A1)
from the ratio of the number N, of structures with orders of singularity greater than a given

Y, to the total number N, of boxes at scale A. Figures 2.11a and 2.11b show the
multiscaling corresponding to the function ¢(y,1) as estimated from the CfA2proj and
CfA2 samples. Once again, more extensive scaling regions are observed for the radially
integrated field in agreement with the conclusions of the last section. However, the curves
in these graphs are less straight than the corresponding analyses using K(q, 7). This is
consistent with the fact that ¢(7,n) is highly sensitive to normalization due to the slowly
varying prefactors neglected on the right hand side of equation 2.6%. Furthermore, the
situation is worsened by the fact that, because of a statistical “dressing” of the field, the
sample mean may actually be a poor estimate of the actual ensemble mean (as it will be
discussed in section 3.3). In our analysis, we have normalized the field so that at every

scale A the average luminosity is given by (¢, ,)=1.

CfA2proj n=1

a)
1
—
= 0
2 y=-250
N X150
= " y=-0.50
> -l ' ¥=-025
pt: T y=0.00
— : v= 0.10
o . Y= 0.25
-§1°— -2 — y= 040
-3
0 3

1 2
Log,(M)

# Notice that since K(q.n) is defined from a stnct equality (see equation 2.10) the estimation of this function is free
from normahzation problems.
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Figure 2.11. Multiscaling for the field ¢ 1\ as obtained from a) the CfA2proj
sample, and t) the CfA2 sample. Although the scaling for the radially
integrated field seems to be better defined, the curves shown in these figures are
less straight than the corresponding multiscaling curves obtained from the
moment scaling analysis (section 2.3.1). It is argued that this 1s probably due to
the normalization of the fields which affects primarily the estimates of the
probabilities.

The normalization problem produces scaling regions with greater uncertainty than
those from the moment analysis, which are not affected by this problem. Nevertheless,
some information can still be extracted and figure 2.12 shows the multiscaling of ¢(y,n)
for n=0.5 and 2.0 (using CfA2proj). The scaling regions are not always very well defined,
but roughly linear curves are observed to extend up to A =512. In particular, the scaling
curves are noticed to become less straight for increasing 7. This is due the existence of very
few structures in the field having high order singularities, which in turn leads to poor
statistics.
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Figure 2.12. Multiscaling for n=0.5 and 1 =2.0 as estimated from the sample
CfA2proj. The scaling curves are observed to be less straight than those
observed in tiie analysis of statistical moments.

The lack of good scaling observed in these fields means that the estimates of the
cerresponding functions c(y.7n) will not be very accurate. Consequently; due to the
relevance in this thesis of the luminosity distribution, the remaining of this section shall
concentrate exclusively on the case 7 =1. From the slopes of the scaling curves in figure
2.11a (as estimated from a linear regression over the range 2<A<512) we have estimated
the codimension function c(y,1) corresponding to the apparent luminosity field of the
sample CfA2proj. This estimate is shown in figure 2.13. It is observed that there exists a
certain order of singuiarity* y (~-0.5 in this case), below which ¢(y,1) converges to a value

* This order of singulanity (denoted as Yqy, tn appendix 2) corresponds to the minimum order of singularity
observable in a projected fieid. In appendix 2, the value of Yy, ,~-0.5 1s actually predicted from purely theoretical
considerations.
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of about 0.10, the codimension of the lowest singularity. This implies that the dimension of
the fractal point set (where all galaxies are treated as mathematical points) is about 1-
0.10=0.90 for the CfA2proj sample. This value is consistent with estimate from the D,
(~0.85) analysis already thown in section 2.1.1.

A second 1nteresting point about the curve on figure 2.13 is that the high-y end of
c(y,1) seems to be linear with a slope close to 1.25. In chapter three we will argue that this
is indeed the case and that the physical process responsible for this behavior is a first order
multifractal phase transition related to a non-classical form of self-organized criticality.
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Figure 2.13. Codimension c(Y, 1) of the apparent luminosity field as
estimated from the CfA2proj sample (the corresponding multiscaling curves are
shown in figure 2.11a). The linear behavior for the high-y end of this curve
will be interpreted in chapter three as the signature of a multifractal phase
transition, associated to a self-organized critical phenomenon.

In this section we have learned that normalization and statistical noise problems
inhibit the existence of well defined scaling regions (as estimated from probability
distributions) and consequently that the estimates of the codimension function ¢(y, n) are
statistically Jess robust than the corresponding estimates of K(g,7n) obtained from the
moment-scaling analysis (shown in section 2.3.1). Nevertheless, in the specific case of the
apparent luminosity field, the obtained curve of ¢(y,1) still contains valuable information
on some multifractal properties of the distribution. In particular, in this section we have
found somc evidence for the existence of a critical behaviour associated with first-order
multifiactal phase transitions (see figure 2.13). This subject will be developed in detail in

the next chapter.
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2.34 Cjy,n: The Codimension of the Mean of the Field.

In section 2.2.1 it was explained that for a conservative field K(q,n) is zero for
g=1. In such a case, equation 2.9 implies that there exists a certain y (denoted as 7,) such
ti:at, when g=1, 7, = (¥, 7). This fixed point on ¢(y,n) will be denoted as C; , and will
correspond to the codimension of the mean of the field ¢, , . Since K{(q,n) and c(y,n) are
Legendre transforms of each other the following inverse relations apply37:

d d
=—c(7, =-—Kl(q, 2.12)
q 3}/6(7 n) Y % q.1) (2.12)
hence for any given g (or y) there exists a corresponding exponent ¥ (or g). Equation
2.12 gives us a simple method of estimating C} p:

d
Cl'n =(5q-K(q9 77)] (2'13)

q=1

In its original form, the value of C, , was defined by Schertzer et al 62 in terms of
the function K(q,7n) as obtained from the ensemble average over the whole field¥,
However, as pointed out in section 2.3.1, the ensemble average of the fields £y were
computed over the number N, of non-zero boxes in the field at resolution A (ie, over the
fractal set). Nl can be approximated as A* (where D, is the box-counting or fractal
dimension of the set) and is not necessarily equal to the total number of boxes in the field
(given by AP, where D 1s the dimension of the embedding space). Hence, it is expected
that the functions K(q,n) estimated from each of these methods will differ from each other.

In fact, the difference amounts to a linear factor C, (g — 1), such that:

K(q’ n)wlmle-ﬁrld = K(q' n)[raclal + Cbox (q - l) (2' 14)

where C,, = D-D,, is the defined as the box-counting codiinension. The correlation
codimension C, is an upper bound estimate of C,, (both quantities are in general quite
similar, and for monofractals they are identical). In section 2.1.1 C. was estimated in 3d
as 1.15 and consequently we estimate C,, =1.15. Substituting equation 2.14 into 2.13, and
denoting K(4,M) jyear 25 K(g,7) (as it has been done throughout the thesis) we obtain that
the codimension of the mean singularity of the 3 dimensional distribution is given by:

* These authors actually defined C, ;, only for the n=I case.
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Cn = (%K (q,n)) +C,, (2.15)

q=!

In figures 2.14a and 2.14b, the functions K(q,1) and K'(g,1)* (corresponding to
the apparent luminosity field ¢, ;) estimated from the sample CfA2proj are shown. The
scaling region extends from =0.1° to =35 (this was shown in figure 2.5b). From the
value of K'(q,1) at q=1 and using equation 2.15 we estimated C;;=1.2510.05. In chapter
3 it will be argued that the large uncertainty involved on this estimate of C;; is due to
divergence of high statistical moments of the field, related to the linear behaviour previously

observed for ¢(y,1) in figure 2.13.
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Figure 2.14. a) K(q,1) and b) K'(g,]) as deduced from the CfA2proj sample.
From the value of K'(g,1) at q=1, we have estimated the codimension C,; of
the mean of the apparent luminosity field to be 1.25 +0.05.

# Note that primes(’) will never denote differentiation with respect to 1 in this thesis.
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The observed value of Cy,; is fairly close to the codimension of the minimum
singularity C,. This raises suspicions about the estimate of Cy i, for if such value were
correct it would imply that the singularities corresponding to the mean luminosity of the
universe are (fortunately for us} just above the minimum singularity responsible for the
limiting apparent luminosity observed from the earth. This suggests that the luminosity
estimates will be in general quite sensitive to the minimum detectable magnitude. On the
other hand, the obscived value of Cj j~1.25-1.30 appears consistently from the analysis of
other samples (as shown in the next figure for the ensemble average of thiricen 6° strips
obtained from the MCG80x80 sample).

In the next chapter our analysis will reveal that in fact the estimates of C; j should
be taken cautiously because of a statistical dressing mechanism which contaminates such
estimates. Nevertheless, the value of Cj j~1.28 may be taken as a rough approximation and
will in fact be used in the next section to model simulations of the generalized luminosity

fields.

1.2 0.8
a)

1.0] ®) 06

0.8] N
_ 0.6 -~ 04.
= y
% 04 S 02

0.2]

00 0.0] A

B . Lo ® K'(q,1)=0.18

0.2 . , -0.2 — ;

0 1 4 2 3 0 I g 2 3

Figure 2.15. a)K(gq,1) function and b) its corresponding derivative as
estimated from the ensemble average of thirteen 1-dimensional strips obtained
from the MCG80x80 sample. From the value of K'(q,1) at g=1 we estimatad
Cj,1= 1.3310.05 in agreement with estimates from CfA2proj (see figure 2.14).
The corresponding mulliscaling curves were already shown in figure 2.10a.
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2.4 Universal Mutifractals.

When many multifractal cascade processes interact and “mix” over a finite range of
scales, the resulting fields usually attain a stable attractive behaviour which can be expected
to fall into specific universality classes. In such case, the functions ¢(y.n) and K(q,n)
which describe the statistical properties of the resulting fields, can be fully characterized by
three parameters. In fact, as in standard probability theory a Gaussian curve can be
completely characterized by its mean and its variance, similatly for the case of these
“universal multifractals” the statistical properties of the multifractal distribution can be
completely described by the quantities Cy 5, &, and H:

C1,n corresponds to the codimension of the mean of the distribution, already
defined in equation 2.15.

o is called the "index of multifractality" and it can vary betwcen zero (for a
monofractal set) and two for a log-normal multifractal field. The value of o is related to the
curvature of the function c¢(y,7) at y=C y.

The parameters o and Cj y, totally determine the form of both functions K(q, n7) and
c(y,n). Estimates of these two parameters have been found by various authors for
multifractal fields such as scismic moments42, turbulent velocity fields39, cloud liquid-
water content0, landscape topography®!, and hadron jets®3.

The third universa! parameter H is a measure of the non-stationarity of the process
and it is consequently equal to zero for all conservative fields. In section 3.2 it will be
estimated that H=0 in the case of the generalized luminosity fields. In such a case for
universal multifractals we obtain that#

K(g.m=n%K(g,}) (2.16)

Equation 2.16 implies that if the fields correspond to universal multifractals, then
the quantity o (corresponding to the index of multifractality of the original 3d distribution)
may be estimated from the slope of a plot of Log,,(K(g,n)) versus Log,o(n).

2.4.1 Estimating o: the Double Trace Moment technique (D'TM).
We have attempted to use the above described procedure (denoted in the literature as

DTM64, which stands for Double Trace Moment) to estimate o for the fields £, ;. The
values of the function X(g,7n) are found from the slopes of plots of l,ogm((l,’n. A )") versus

# A complete treatment of the theory of Universal mulufractals may be found in reference 62,
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Lag,,(A) (as predicted by equation 2.10) in the same manner as previously done for the
standard moment-scaling analysis (section 2.3.1). The difference with the DTM technique
is that here we fix the value of ¢ and then plot Logm((t’n‘,1 )"> for various values of 1)
whereas 1n the standard moment-scaling technique the converse was done.

Universality is expected to be observed only within a certain range of ¢'s. In
particular, finite cbserving dimension leads to the divergence of high order statistical
moments, hence even for large enough samples universality can only be observed up to a
critical value of ¢, denoted as ¢gp;. In the next chapter we will estimate that
qp, =1.33£0.05. Also, the integration (along the radial direction) of the projected samples
MCG80x89 and CfA2proj ‘mposes a minimum g (denoted as g, in appendix 2) below
which universality may no longer be observed. In appendix 2, g, will be estimated as
0.610.1. Consequently, when performing a DTM analysis on the fields £, , , the allowed
values of ¢ must be contained within the range 0.6<g <1.33. This narrow range of allowed
q ‘s is expected to weaken the estimates of some of the statistical parameters that describe
the multifractal distribution of luminosity.

Figure 2.16a shows the multiscaling for the fields £, ; as obtained from the sample
CfA2. The multiscaling is shown for g=0.9. As previously shown in figure 2.7a, the
scaling range of this sample is very shert and restricted to 2<A<8. Using this range, the
values of K (0.9, n) were estimated from the corresponding slopes and are shown in figure
2.16b as a function of Log,,(n). Clearly, thic restricted scaling range is not expected to
yield very robust estimates of the function K(q, 77), but at least allows us to make a rough
estimate of what the true multifractality index 0. (obtained from the slope of the linear region
in figure 2.16b) should be in 3d, without the complications introduced by the projection of

the iields.
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Figure 2.16. a) Multiscaling and b) DTM analysis for the telds ¢, as
obtained from the sample CfA2. The linear regton 1n figure 2 16b 1s evndence of
the universal character of the £, ; fields. However, the short muitiscaling
region observed 1n fig. 2.16a (2<A<8) allows only for a "rough" eshmate of the
multifractality index o in 3d. From the slope of the hinear region n figure 2.16b
we have estimated a~1.4 (according to equation 2.16). We have used §= 0.9.

The linear region observed 1n figure 2.16b is (according to equation 2.16) evidence
for the presence of universal behaviour in the three dimensional luminosity fields.
Unfortunately, as already mentioned, because of the short range of scales used for the
estimation of K(0.9,n) , the estimate of o obtained in this analysis must only be taken as a
first approximation to the actual value. In section 3.6, a more indircct argument, using the
projected samples, will be used to estimate a=1.2+0.4. This value is compatible with the
value obtained from figure 2.16b.

The departure from linearity observed in figure 2.16b for low 1's, is due to the fact
that as 1 approaches zero the luminosity intensities are severely diminished and statistical
noise dominates the distribution; thws killing the universal behaviour.

In section 2.3.2 we saw that broader scaling regions are generally observed in
samples which are radial integrations of the actual threce dimensional distributions. Figure
2.17 shows the multiscaling of the fields ¢, ; as obtained from the 1091 galaxies of the
CfA2proj sample. The multiscaling is shown for ¢=09 and ¢=1.2. In both cases the
scaling ranges are clearly defined from A =2 up to the largest scale A =512 implying scaling
between ~0.26° and ~67° (recall that the total angular extent of this sainple is 1359).
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Figure 2.17. Mutiscaling for the gn.,l fields as estimated from the sample
CfA2pro). Shown are the curves corresponding to g = 09 and 4 =1.2. Both figures
show linear curves in agreement with equation 2 10. For each set of values g and
n, the quantity K(q,n) 1s obtained from the corresponding slope .i these figures.
The resulting functions K(q,n) are plotted in the next figure as a function of the
vanable n (not g as in the standard moment analysis).
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Figure 2.18 shows a plot of Logo(K(q.1)) versus Logo(7) for q=0.9 and
q=1.2. Both curves display roughly parallel linear regions implying a slope ap=2.0010.06
independent of g (the subscript "p" refers to the « of the "projected” field). However, this
estimate must be cautiously mterpreted. In appendix two (section I1.3) we show empirical
and theoretical evidence that suggests that for integrated (or projected) multifractal ficlds
the value of the observed index o 1s 2, independent of the true value of o for the origiral
distribution in 3d. Therefore, the observed value of ap should be understood as a signature
of the spatial integration of a multifractal field, and does not reflect the intrinsic value of o
corresponding to the actual 3d distribution (see appendix 2, section I1.3, for a short

discussion on the subject).

-05

a,=2.00 £0.06
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Figure 2.18. DTM analysis for the fields (n';_ obtained from the sample
CfA2pro). The slope of the linear region 1s roughly the same for both curves
implying that the projected luminosity distribution can be described by an index
of multifractality ap=2.0, different from that corresponding to the actual 3d
distribution. It 1s argued that this difference arises as an artifact of the
projection of the lumimnosity fields. The breakdown of the hnear behaviour 1s
due to the spatial integration of the fields (for low n’s) and to the divergence of
statistical moments due to a dressing mechanism (for large n's) as it will be
shown 1n the next chapter.

Although the linear regions in figure 2.18 scem to be well defined they are relatively
short (in terms of the range of 1’s). In fact, both curves are observed to depart from
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linearity for both high and low 1’s. In the case of the high 1 end, the bending of the curves
js caused by a dressing mechanism that induces a critical behaviour in the high statistical
moments of the fields (as it will be explained in the next chapter). For low values of 1 the
break is due to the fact that when projecting (cr integrating) a multifractal field, the
information on the lower orders of singulanty of the field is lost (as discussed in appendix
two). In section I1.2 (appendix two) we use the obtained values of o and Cj,) to predict
that the break on the universal behaviour should occur (for q=1.2) at Log,(n) = -0.13.
This predicted value agrees with the minimum value of Log,,(n) observed to display

universality in figure 2.18.
2.4.2 Multifractal simulations of the observed luminosity field ¢, ,.

In order to verify the validity of our estimates, we have compared the observed
form of K(gq,n) (as obtained from the radially integrated sample MCG80x80) to that
corresponding to simulated universal mutifractal fields. We have produced five two-
dimensional simulations* of universal multifractal fields with A=256, all having the same
statistical parameters a=1.4 and C; j=1.28 (corresponding to the universal parameters
estimated for the field ¢, ;). One such simulation is shown at the end of this chapter in
figure 2.20. Each of these simulated fields has been projected from 2 to 1 dimension, and
to each of them we have imposed a minimum threshold so that events with an intensity less
than such threshold are set equal to zero. This threshold has been selected so that the box-
counting codimension C,,, of the thresholded fields be equal to 0.15 (the same as the C,,
observed in the samples CfA2proj and MCG80x80). We have further compared the
statistical function K(q,1) as obtained from the thresholded simulations to that observed
from the sample MCG80x80. In figure 2.19 we show the K({q,1) curve for the ensemble
average of thirteen 6° strips from the MCG80x80 sample (already shown in figure 2.15a).
Also shown is the corresponding K(q,1) from the simulated fields. It is observed that both
curves agree fairly well for low values of ¢ implying that in this range, the observed
statistics of the luminosity distribution are well characterized by the above mentioned values
of oc and Cy 1. The curves start diverging near g ~1.33. In the next chapter it will be shown
that this value has important physical connotations since it arises as a result of the
“dressing” of the luminosity fields. This “dressing” mechanism is related to a Self-
Organized-Critical phenomenon and dominates the behaviour of K(q,1) for high values of

q (seec discussion in section 3.2).

* For a detailed discussion on the stmulations of mulufractal fields, see references 58 and 41.
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Figure 2.19. K(q,1) function as estimated from the ensemble average of thirteen
60 strips (from the MCG80x8) sample) compared to the corresponding function
obtained from 5 simulated multifractal fields with a=1.4 and Cq,1=1.28 which
have been projected and then throsholded up to a mintmum codimension of 0.15.
The agreement between the two curves 15 especially clear for the low g region.
To preserve the clanty of the figure, errors bars are only shown for the curve
correspondmng to the sample MCGB0x80.

K{q,l)

2.4.3 Comments on the results.

The results shown in this chapter, together with the theoretical developments
presented have provided us with a new (yet incomplete) picture for the large-scale
distribution of generalized luminosities. In this picture, luminous objects in the universe
would be formed by cascading processes dominated by non-linear interactions. The
resulting fields (of density, luminosity, mass, etc.) would have multifractal characteristics
as clearly demonstrated by the obtained estimates of the functions c¢(y,n) and K(q,m)
(sections 2.3.1 and 2.3.2). Due to observaiional limitations, not all galaxies in the universe
are visible from the earth. Our rescarch has estimated that the fractal dimension of the set of
observable galaxies with limiting mugnitude of 15.5 is (in 3-D) about 1.85 (sections 2.1.1
and 2.1.2) implying a codimension for the minimum observable singularity of ~1.15. There
is also evidence that the statistical properties of these multifractal fields would be
determined by some universal parameters & and Cj,; (~1.4 and ~1.28 respectively in 3-D).
The latier quantity corresponding to the codimension of the mean luminosity of the
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universe. However, as it has been stated in previous paragraphs, the values of ot and Cy )
should be accepted only as preliminary estimates due to some intrinsic statistical problems
of the luminosity fields which allow only a narrow statistical range within which these
measurements are vahd.

In the next chapter we will add yet another important feature to this new picture of
the large-scale distribution of the luminosity ficlds. We will detect and quantify the
existence of first order multifractal phase transitions associated with self-organized critical
behaviours. In this context, the next chapter will provide us with an appropriate framework

to understand both the variability of the C; ; estimates and the observed form of the

apparent luminosity distributions.

Figure 2.20. One of the five simulations of the 3-dimensional distribution of
galactic luminosity used in the analysis discussed in section 2.4.2. The universal
parameters are a=1.40 and Cy,1=1.28 (see discussion 1n the text). In this figure
evenis with a codimension lower than 015 (corresponding to "non-visible
galaxies") are shown in black, whereas "visible "galaxies” are shown in white.
The large-scale structures observed in this figure {clusters, voids and filaments)
are comparable to those observed in the sample CfA2, shown in figure 1.1a.
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Chapter Three

Multifractal Phase Transitions and Self-
Organized Criticality.

3.1 Motivation.

In chapter one (section 1.2) it was stated that besides multiscaling, another
import~nt signature of multifractality is the divergence of high statistical moments in the
probability distribution of the observed field. In this chapter we shall study the physical
origin of such divergence and its connections to first order multifractal phase transitions
and self-organized criticality. We shall then search for signatures of divergence of
moments 1n the various available generalized luminosity fields and shall attempt to define
a new quantity; the dressing dimension D, as a more appropriate qualifier of the
critical behavior of the these fields. As a consequence of this analysis, we shall also
propose that the observed critical behavior of the luminosity fields gives us a new insight

on the luminosity function ®(¢).

3.2 Dressed Statistics : Definition of g, .

Multifractal fields are generically produced as a result of cascade processes (from
large to smaller scales) ruled by non-linear interactions between the different scales?!. As
a multifractal process cascades down to very small scales, the variability and
intermittence of the field increases rapidly producing regions of highly localized extreme
intensity. Since this small scale limit 1s usually smalier than the scale of observation at
which actual measurements of the field are performed, the process of observation
effectively integrates or averages the ficld up to the scale of cbservation. This integrated
or "dressed" field usually behaves in a manner which is statistically similar to the actual
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"bare" field (ie. it has the same scaling exponents). However, in the case of the mcre
violent and extreme singularities of the field, the integration fails to smooth out the
process producing the divergence of some statistical moments. Since the presence of both
scaling and divergence of moments has been understood as a signature of self organized
criticality 36,65 Schertzer et al® have recently shown that this type of critical behaviour is
the generic outcome of multifractal processes. In particular, Schertzer and Lovejoy#! have
predicted the existence of a certain critical moment gp, , (the subscript D standing for
“dressing”) so that for a large enough sample the moment-scaling function will diverge
(ie. K(q,n)— =) for all g>q, . This divergence implies power law tails in the
probability histograms of some fields; that is, for a generalized field £, ; the probability
of a point in the field of having a luminosity greater than a certain value s is given by (for
very large s)
Pr(y 4 >s)ecs 2 3.1

We have tested the presence of such exponents in the probability histograms of
the various ¢, ; fields. Figure 3.1 shows a plot* of Log,o{Pr(Z,,_ 1 >s)} versus Log o{s}
for the CtA2proj sample for n=1, 2 and 3. In each case, g , is obtained from the value
of the slope of the histogram's tail. In particular, it was estimated that ¢ ,=1.33£0.05,
qp2=0.6410.06 and ¢, ;=0.36%0.04. In this case all histograms were taken at a
resolution A =128 which is well within the scaling range of this sample (see figure 2.5).
Note that these exponents do not vary in a trivial manner. Their values are determined by
equation 3.3, as discussed in section 3.5

By comparing equations 3.1 and 2.6, we note that in the case of the former the
right hand side shows no explicit dependence on the resolution A of the field. This is
because the exponent qp, ,, should be resolution independent as shown in figure 3.2 for
the sample CfA2proj. It can be noticed from this figure that the value of gp,=1.35

remains roughly constant even for very large values of 4.

¥ The probabilities have been estimated from the number of boxes 1n the field at resolution A which have a generalized
luminosity greater than the reference value §.
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Figure 3.1. Probability histograms for three fields ¢, ;. The slopes of the linear

regions provide estimates of the quantity qp ,, which varies as a function of 1.
The £, ; fields were obtained from the CfA2proj sample. A =128 in all cases.
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Figure 3.2. Independence of g , on the resolution 4 as seen for the ¢, ; fields
obtained from the CfA2proj sample. For four different values of A, the
probability histograms (plotted against normalized probabilities) show a

consistent estimate of gp,;=1.35.
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This independence of g, , on the resolution 4 implies that even for the raw
ungridded data (that is, for the case A — A) qp ,, should remain the same* . This is
shown in figure 3.3. This figure also shows the sample independence of these results.
Here we have ploited the probability histograms of ¢ 1. for the samples MCG80x80, z40
and CfA2. The abscissa shows the number N(m) of galaxies with an apparent magnitude
greater than a reference value m plotted against apparent magnitude rather than
luminosity (recall that a galaxy's magnitude is proportional to the logarithm of the
luminosity, as previously shown in equation 1.12). Using equation 1.12, it can be inferred
that the observed slope of 0.52+0.02 implies a value of ¢gp,=1.3010.05.
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Figure 3.3. Sample independence of the estimates of ¢p,. The analysis
corresponds to the apparent luminosity at highest resolution ¢, , obtained from
the samples MCG80x80, 240, and CfA2.

3.2.1 Estimation of the universal parameter H.

For multifractal fields (see for instance reference 60) the quantity A€, ,, defined as
the difference in luminosity beiween two adjacent grid boxes in a field £, ,, obeys the

following relation (analogous to equation 2.6):

¥ This implies that the "dressing” process occurs at scales smaller than the galaxy itself, which makes sense because

although 1n this analysis galaxies have been treated as point objects, the physics responsible fur the production of
luminous radiation acts mainly at intra-galactic distance scales.
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Pr(Ag,, 2 ) oe pretr+ (3.2)

When the function c(y+H) is proportional to (y+H) (as in the case of power-law
probability distributions), we can rewrite the right-hand-side of 3.2 as A" where a is
some proportionality constant. In the previous section we saw that when studying
probability distributions, the quantity A’ can be replaced by s (implying resolution-
independence). In such a case, (and setting a equal to qp,) equation 3.2 takes the

following form:
Pr(AL’M > s) oc g o) o 3.3)

w it follows that for a

Since the only scale-dependent term in equation 3.3 is A~
conservative field the probability distribution of the quantity Af, , should be resolution-
independent (since H=0 in such a case). In figure 3.4, the probability histograms of A¢, ,
(as calculated at resolutions A=64, 128 and 512) are shown for the sample CfA2proj. The
curves are observed to overlap implying that the probability distributions are independent
of resolution. These results suggest that the luminosity fields are the result of a

conservative and stationary process, implying H= 0.
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Figure 3.4. Probability histograms for the quantity A¢,, as estimated from the
sample CfAproj at scale-ratios A=64, 128 and 512. The resolution independence of
these curves suggests that the luminosity fields ¢, are the result of a conserved
multifractal process, implying H=0.
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3.3 Some Consequences of the Observed Value of ¢, ,.

The observed value of g5 ;= 1.33£0.05 is relatively close to q=1. This implies
that the estimates of C,,, which depend on moments of order 1, will have significant
fluctuations from sample to sample (as seen in section 2.3.4 for the samples CfA2proj and
MCG80x80). In physical terms, this means that the presence of rare but very extreme
cvents in the field (which are responsible for the divergence of high statistical moments)
leads to a slow convergence of the mean luminosity. Consequently, such mean, when
estimated from a single sample, may actually be a poor estimate of the true mean space
luminosity. This in turn explains why in section 2.3.2 (figure 2.9), the scaling of the
thirteen 6° strips produced from the MCG80x80 catalogue, presented such different

scaling slopes.

3.4 Implications on the Luminosity Function ®(L,).

In section 1.1.2 we defined the luminosity function ¢(L,) as a probability
density; that is, as the probability that a given galaxy possesses an absolute lumin <ty
within the range L, to L, +dL,. It can be noticed that an integral of this function over
the entire distribution of luminosities greater than L, is statistically equivalent to the
probability defined by equation 3.1 for the case A=A (ie. at maximum catalogue
resolution) and 71 =1. By denoting this integrated luminosity function as I(L,) it can be
seen that

I(LA)=L°:<D(LA )dL, (3.4)

where L, is just a variable of integration. In other words, for a set of galaxies located
within a volume dV , the function I(L,) represents a probability distribution; that is, the
probability of finding at least one galaxy with an absolute luminosity greater than a

certain value L, .
3.4.1 Experimental tests on the form of I(L,).
As explained in section 1.2.2, catalogues of galactic luminosity possess a constant

minimum threshold of apparent magnitude m’ . In the case of the CfA2 sample, m’ = 15.5
and figure 3.5 shows the strong distance dependence of the sample's threshold when
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plotted against absolute magnitude M (see equation 1.13). In order to produce a sub-
sample with constant minimum M -threshold and analyze its statistics we limited our
study to galaxies closer than (or at) 100 Mpc and with an absolute magnitude M<-19.5 .
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Figure 3.5. The C/A2 catalogue of absolute magnitudes M as a function of the
distance from the earth (assuming a Hubble constant of 100 kin s"Mpc'l). A
sub-sample with constant threshold was created by selecting those galaxies closer
than 100 Mpc and fainter than an absolute magnitude M =-19.5. There are 229
such galaxies. In total, there are 1091 galaxies represented 1n this figure.

The corresponding histogram (using A=A) for the 229 galaxies of this sub-sample
is shown on figure 3.6. Piotted on the abscissa is the number N(M) of galaxies with an
absolute magnitude greater than a certain reference value M. It is noticed that the
histogram shows a linear behavior implying a simple L' form for the luminosity
function I(L, ) (recall the logarithmic dependence between luminosity and magnitudes as
previously shown in equation 1.12). Figure 3.6 also shows the histogram coriesponding to
the 869 galaxies closer than 100 Mpc, but without any constraint on M. It is noticed that
both histograms coincide exactly and show a lincar behavior for the low magnitude (high
luminosity) end. However, the latter histogram deviates from lincarity for all gaiaxics
with M>-19.5 (the limiting magnitude of the sample with constant M -threshold). Similar
tests were performed using sub-samples from the z40 catalog. Results from these tests are
in agreement with the ones described above. These results suggest that the ‘flattening’ of
the luminosity curves (for low luminosities) is an artifact of the non-constant threshold of
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the samples studied, rather than the conscquence of a physical process. In physical terms,
these results suggest that if we had knowledge of the luminosities af all unobservable
galaxies (through catalogues of higher limiting apparent magnitude), then the integrated
Jluminosity function I(L,) would retain the form L,*' even for higher absolute
magnitudes. This would be a definite evidence of the critical character of the galactic

luminosity distribution.
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Figure 3.6. Probability histograms for the 869 galaxies shown in figure 3.5 closer
than 100 Mpc, and for the 229 contained in the volume-limited sample bounded
by 100 Mpc and M <~19.5. Both histograms are linear throughout the constant
threshold region suggesting that the bending of the former curve arises as a
result of the distance-dependent threshold of the catalogue.

As a further test of the importance of having a constant minimum threshold, the
histogram for the 869 galaxies in CfA2 with r < 100Mpc has been plotted in figure 3.7
against apparent (rather than absolute) magnitude. The abscissa shows the number N(m)
of galaxies with an apparent magnitude greater than a reference value m. Since in this
case there exists a constant threshold throughout the sample (given by the sampie’s
limiting apparent magnitude of 15.5) it is expected from the previous paragraph that the
power-law behaviour of /(¢,) will extend down to the fainter galaxies. Figure 3.7 shows
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this histogram. It can be seen that the curve obtained agrees with the previous estimates of

. qp.;=1.33 and shows no departure from linearity.
3
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‘ Figure 3.7 Probability histogram plotted against apparent magnitude for the 869
galaxies shown in figure 3.5 which are at a distance less than (or equal to) 100

Mpc from the earth. The linear behavior observed in this figure is consistent
with the results from previous figures.

3.5 The Dressing Dimension D, .

In section 3.2 it was stated that the moment exponent function K(g,n)* of an
infinite number of realizations will diverge to infinity for all ¢ >qp . In the case of a
finite sample size, as it is in our case, the probability histograms show a linear behavior
implying a linear codimension function c(y,n) with slope gp , (recall the linear
behaviour observed in figure 2.14 for the case n=1). From equation 2.9, it follows that the
corresponding dressed K(g,n) for a limited sample will also be linear for ¢> gy, p,
implying a change on its first derivauve at g=qp . Feigenbaumd7 (among others) has
shown that there is a formal analogy between multifractal dynamics and thermodynamics,

‘ # All statistical functions mentioned tn this section are implicitely meant to be "dressed” functions
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Chapter 3. Multifractal Phase Transitions.

for this reason this type of "jump"” on the derivative of K(gq,n) is called a "phase
transition" (of first order in this case due to the discontinuity in the first derivative). If the
divergence occurs due to a dressing of moments, Schertzer e al 66 have shown that in

such case the corresponding critical exponents ¢ , obey the relation:

K(4p.n 1 =(Gp,y = DDpess (3.5

where the quantity D, . is defined as the "dressing dimension” of the process. This
means that the underlying cascade dynamics are spatially “dressed” (or averaged) over a
space of dimension D,,,... The exact mechanism of such “dressing” however, is still a
subject of ongoing rescarch®4. It is expected though, that since the manner in which this
"dressing" proceeds depends upon the field itself, D,,,., may not be necessarily equal to
the dimension D of the embedding space.

In appendix 2 it is shown that it is possible to estimate (under some general
conditions) the form of K(g,7) from the function K,(g, ) corresponding to the moment
scaling function of a radially integrated (or projected) sample. In chapter two the
codimension Cy | of the mean luminosity field was estimated as ~1.28. In such case (ie.
for Cy,1>1.0), the equation that relates the projected and the unprojected functions is (see

equation II.12 in appendix 2)

Kap.nm=K,(4pym+4py-1 (3.6)

In figure 3.8 we have attempted to test equation 3.5 and estimate Dy, directly in
3d by plotting K(qp, ,, 1) versus (gp , — 1) for values of 7 ranging between O and 3* . 1In
this analysis, we have used 3 data sets: CfA2, CfA2proj, and MCG80x80. For the radially
integrated samples CfA2proj and MCG80x80, K(qp ,.7) has been estimated from the
corresponding values of K (g ,,7) using equation 3.6. The result of this analysis is a
roughly hinear curve that passes through the origin and with a slope D,,,.=1.53+0.08.
This result suggests that a good characterization of the critical behavior of the luminosity
ficlds is not obtained from ¢ ,, (which is 77-dependent), but rather by the quantity Dy,
which seems to be intrinsic to the multifractal cascading process, and therefore

independent of n.

# Since equation 3 5 1s defined for the function K(q.n) as calculated over the whole space (ie. not over the fractal set),
the values of K(qp q,1) used on the esimate of Dy s Fave been corrected using equation 2.14 and Cyo,=0.15.
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3] D =1.53%0.08

2
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K(qp ,, I proj
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Figure 3.8. Estimate of the quantity D, . using data from the samples CfA2,
CfA2proj and MCG80x80. The figure shows a roughly straight line that passes
through the origin in agreement with equation 3.3. From the slope of these
curves we have estimated D, =1.53t0.08. The values of K(qp,,.n) for the
radially integrated sampies were estimated from the corresponding values of
K ,(4p.,. 1) usingequation 3.6.

3.6 Estimation of o using D,

ress *

In section 2.4.1 the quantity a, corresponding to the multifractality index of the 3-

dimensional distribution of luminosity fields was roughly estimated as 1.4. However, this
estimate was statistically weak since it relied on narrow scaling regions. In this section we
present a more elaborate method of estimating o.. This method requires knowledge of
universal multifractals and also the just acquired knowledge of dressing statistics, and in
particular of the quantities qp 1, Cy,1 and Dgress.

For universal multifractals (introduced in section 2.4) Schertzer et al 62 have
predicted that for the case M=1, the moment scaling function K(q,1) obeys the general
form:

C
K(g,1) = L (g% - 3.7)
@) =—2g" - )
Replacing this form in equation 3.5, and using g - g,,, we obtain the relation:

C a
a_l:l_l(qD.] - qD.l)= D(lrﬁx(qD.l - l) (3.8)
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Chapter 3: Multifractal Phase Transitions.

C, 9p:" =4y,
el I L=
Rewriting 3.8 we obtain: [des(qD.l _ I)J( -1 ) (3.9

Using the previously estimated values of C, |, =128, g,,, =1.33 and D,, =1.53
we have plotted in figure 3.5 the left hand side of equation 3.9 for 0So<2 (the allowed
values of o according to the theory of universal muitifractals62). The o corresponding to
the full 3 dimensional distribution of the luminosity ficlds can then be read from the
intersection of this curve and the value of 1 in the abscissa. Our analysis produces an
estimate of oi=1.240.4. The large uncertainty is due to the amplification of the error on the
estimates of C,,, g, and D, by the non-linear form of equation 3.9. This value of o is
compatible with the value of ~1.4 previously obtained from the sample CfA2, in section
24.1.

1.2 ,
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Figure 3.9. Determination of o using equation 3.5 and the universal form of
K(q,1) given by equation 3.7. The value of a corresponding to the multifractality
index of the 3-dimensional luminosity fields can be read from the intersection of
the curve and the vaiue of 1 in the abscissa. We estimated a=1.240.4. The broken
lines correspond to the extreme variat:ons on the curve given by the uncertainties
on the quantities Cy,1, qp,1 and Dgress.

In this chapter we have quantified the critical behaviour of the luminosity fields
by introducing the formalism of dressed statistics and verifying the presence in the data
samples of its generic signatures, divergence of moments and first-order multifractal
phase transitions. The understanding of these phenomena has allowed us to gain a deeper
insight on the form of the luminosity function ®(L) (section 3.4). It has also provided us
with a physical justfication for the slight sample dependence found in the estimates of
Ci,1 (section 3.3), and finally has also supplied us with a method of estimating the
multifractality index o.
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Chabter Four

Conclusions.

4.1 General Comments.

In this thesis, we have presented a method that simultancously accounts for the
spatial and the luminous properties of the large-scale distribution of galaxies in the
observable universe. In particular, the application of multifractal theory to the various
generalized luminosity fields ¢, ,, has allowed us to jointly explore first the scaling
predictions from analyses on the correlation function &(r) (related to our correlation
dimension D, according to equation 1.5); and second, the so far little-understood shape of
the luminosity function P(L) (related to the probability histograms discussed in section
3.4). Furthermore, in this thesis we have generalized the studies done by various
researchers!4-18 on the properties of the spatial galaxy density when treated as a fractal set
(totally determined by a single dimension) to a more complete treatment of a multifractal
density field (characterized by a full codimension function and denoted in the thesis as the
case 1=0). We have attempted to go even further, and have extended our analysis to the
study of the properties of other important multifractal fieids such as the galaxy luminosity
and mass distributions (n=1 and 0.8<n<1.25 respectively). Finally, we have also found
evidence for universal multifractal behaviou in the generalized luminosity ficlds. In fact, all
samples studied over the broadest possible range of scales, have been obscrved to have
statistics compatible with G, =1.28, «=1.2, H=0, ¢,, =133 and D, =153 (see
discussion in section 4.2).

One of the main technical problems encountered by our analysis has been the
restricted number of galaxies contained 1 the available catalogues of galaxies' position and
luminosity. The low number of galaxies has limited the statistical strength of our analysis,
giving raise to statistical noise which 1n turn has increased the uncertainty on the estimates
of relevant multifractal parameters. Moreover, 1n seciion 2.3.2 we showed that because of
the low number of galaxies contained in the data samples, the fields #, ; became 1ll-defined
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as the scale-ratio A increased to a point when the average grid-box became empty. In such
cases spurious breaks on the scaling ranges are observea,

In this thesis we have pointed out two met..uds to overcome some of these
limitations: one is simply using larger (and deeper) spatio-luminous catalogues so that the
number of galaxies per box at any A could be considerably increased. In this case it is a
matter of time to wait until such catalogues (such as the APM Galaxy Survey!3) are made
public and then verify that the behavior of the scaling regions in fact improves.

The second method is to use radially integrated catalogues of relative luminosity.
Since the integration of a ficld by just one dimension effectively increases the average
number of events per box by a factor A (as explained in section 2.3.2), it follows that this
method can actually extend the range of scales within which the fields are still properly
defined. One must be aware however, that this method possesses two shortcomings. Since
multifractal projections are conceptually different from fractal projections (the former being
a flux and the latter a projection of a set of points) the relations between projected and
unprojected multifractal parameters are different form the straightforward fractal relations
studied in sections 2.2.1. and 2.1.2. In particular, in appendix 2 we show that a solid
understanding of the effects of projections on multifractal ficlds only exists for the case
when Cj 1>1.0 and ¢ > ¢,. The other handicap with the use of integrated (or projected)
samples is that universality (in a multifractal sense) is masked by the integrating mechanism
in a yet not clear manner. In particular, in appendix 2 (section iL.3) we present empirical
and theoretical evidence that suggests that any universal mutifractal field will display a
multifractality index o close to 2, independent of the o of the unprojected distribution.
Conscquently, in order to estimate the actual o one must resort to more indirect techniques
(as the one discussed in section 3.6) which are usually accompanied by significant
uncertaintics on the resulting estimates of a. If the above described shortcomings are not
considered fundamental or do not apply to the field under study, then the integration of
fields will most certainly improve the observation of the scaling ranges and will hence allow
the researcher to make (in general) more robust estimates of the statistically relevant

parameters.

4.2 Multifractal Picture of the Large-Scale Distribution
of Galactic Luminosity.

The results presented in this thesis, suggest that galaxies were formed as the generic

outcome of cascading processes of the constituent matter existing during the early stages of

the universe's development. In a multifractal context, these cascades would be ruled by
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non-linear interactions between the different scales and the resulting fields of mass, density
and luminosity (and consequently the distribution of galaxies) would exhibit multifractal
features. The main such feature observed 1n our analysis has been the existence of
multiscaling in the various statistical moments of the fields studied (as shown in section
2.3.1). Also, as predicted by multifractal theory, the observed fields display tremendous
intermittence and variability on their intensities®. Our analysis has revealed that the mean
singularity of the galactic luminosity field has a codimension C,,=1.28.

The results at the end of chapter 2, suggest that the staustical propeities governing
these multifractal fields, exhibit attractive universal behaviours and arc consequently
determined by a finite set of parameters. In particular, our rescarch has estimated that the
multifractality index o of these fields is 1.2+0.4. The formalism presented in section 2.4,
suggests that the knowledge of these two quantities: o and C, |, allows us to totally predict
the form of the functions K(q,1) and c(y, 1) which determine the statistical propertics of
the galaxy distribution.

The resulting fields of mass and luminosity present some rare but extremely violent
events (ie, extremely bright or massive galaxies). Because of such events, the observational
"dressing" of the fields dominates the behaviour of the high statistical moments of the
probability distributions inducing the existence of critical exponents related to first order
multifractal phase transitions and self-organized criticality. In section 3.2 it was shown that
because of these exponents, the probability histograms of the various fields yield power-
law curves. In particular, the probak:lity histogram of the galaxy luminosity field allowed
us to estimate g,,=1.33 Since for ¢>q,, the observed statistics of the luminosity
distribution depart from those of the actual one, ¢, effectively imposes an upper limit on
the range of statistical moments within which the universal behaviour of the ficlds may be
observed.

Our analysis has not been free from observational limitations. For instance, since
not all galaxies in the universe are visible from the carth, our research has estirnated that the
codimension of the observable galaxies with limiting apparent magnitude of 15 Sis ~ 1.15
(section 2.1.1). Also, the use of radially integrated galaxy catalogues, has cffectively
increased the minimum observable singulanty up to a value y,, . = —0.5, thus decreasing
the range of orders of moments available for analysis. In fact, in appendix 2 we have
estimated that the minitmum order of moment expected to show universal behaviour is
q,=0.6. This value of g,, together with the previously discussed value of ¢, ,, provide us

with an observationally narrow range of orders of moments available for valid statistical

# Recall for instance figure 2 3, where the absolute luminosity 1n the sample CfA2proy vanes from galaxy to
galaxy by as rauch as § orders of magnitude
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analysis. In fact, our research has shown that the only orders of moment allowed for the
detection of universal behaviour, are those contained within the range 0.6<g<1.33. A
consequence of this restricted range, is the existence of significant uncertainty on the
estimates of some of the multifractal parameters previously discussed. Moreover, in section
3.3 we argued that the fact that g, is relatively close to 1, induces sample dependence on
the estimates of the codimension C, .

The following table summarizes the most important numerical results in this thesis.

SUMMARY OF NUMERICAL RESULTS .

QUANTITY SYMBOL | ESTIMATED THESIS
VALUE SECTION

Codimension of C 1.28+0.06 234
mean singularity “I,1
Multifractality index o 1.2+0.4 2.4.1 and 3.6
of 3d distribution
Degree of non H ~0 3.2.1
stationarity
Minimum detectable C 1.1540.03 2.1.1 and 2.34
codimension hox
Critical exponent for
first order multifrac- 1.33%0.05 3.2
tal phase transition dp.
Dressing D 1.53+0.08 3.5
dimension dress
Minimum observable
singularity after ¥ -0.54£0.1 I1.1.1
projection 4hp (appendix 2)
Critical order of
moment for q 0.6+0.1 I1.1.1
projected fields ! (appendix 2)
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4.3 Concluding Remarks on the Physical Implications of
Multifractality.

4.3.1 The range of multiscaling.

Our analysis in chapter 2 showed that the multiscaling range of the galaxy
luminosity fields extends at least up to the size of our data samples, which is in any case
much greater than the value of the "correlation length” r, = lO!z_'Mpc, defined in chapter
one. If this is indeed the case, it implies that cither:

1. The large-scale homogeneity predicted by the Cosmological Principle is not yet reached
by ti.e samples studied in this work. In fact, other recently published catalogues, such as
the "Southern Sky Redshift Survey"7! which extends 120 h"'Mpc deep into the sky, also
report the existence of large inhomogeneous structures comparable to the cataloguc's size.
This scenario would certainly explain the large density fluctuations obscrved, for instance,
in the CfA2 catalogue as shown in figure 1.1a. In such a case, the clumpiness in the spatial
and luminous distributions of this sample would correspond to the result of a multifractal
cascade extending beyond the size of the sample, but truncated at some larger scale.
According to this point of view, beyond this scaling range overall homogeneity should be
observed .

2. The other possibility is that the "clustering hierarchy" observed within the scales of the
catalogues (ie: individual galaxies, groups, clusters, super-clusters, etc.) will indefinitely
continue up to the largest scales of the universe. This picture, first proposed by Fournier
d'Albe20 in 1907 was strongly revived by de Vaucouleurs’? in 1970 as a critic towards the
uncontested homogeneous hypothesis widely popular amongst researchers of that time (and
in fact of ours too). A universe with such strong clusiering properties would be composed
of island universes all ruled by the same multifractal statistics. Such scenario would not be
compatible at this point with the standard Big Bang hypothesis. This is probably yet
another reason of why this picture has not been accepted.

4.3.2 Origins of a multifractal cascade.
Independent of the question of the true extent of the multiscaling region, is the
problem of finding physical processes compatible with a multifractal cascade that may lead

up to the formation of galactic structures. In the context of the Big Bang hypothesis the
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formation and distribution of luminous massive objects was determined by the conditions
present during the first moments of the universe's life. As the universe expanded from an
extremely hot fire ball, its constituent "gas" cooled decoupling energy from matter. In this
context two of the most popular scenarios proposed are {see for instance references 29 and

73-76 for discussions on the subject ):

1. Hot Dark Matter: Due probably to photon viscosity small adiabatic fluctuations in the
gas density became negligible after decoupling. The remaining density fluctuations were of
the size of superclusters. As the gas continucd to cool down these fluctuations produced
clusters and galaxies via complex gravitational and bydrodynamical non-linear interactions.
As mentioned in chapter two, scaling is a property of non-linear equations and is in fact
possible that if the fluctuations before decoupling were ruled by multifractal statistics, the
resulting cascade may have carried with it the seeds of a multifractal structure.

2. Cold Dark Matter: A second scenario (which has become quite popular in the last few
years) proposes that after decoupling large fluctuations were rapidly damped. In this
scenario the large scale inhomogeneity of the present universe grew from small scale
density fluctuations via gravitational clustering. In this case, the cascade goes from small to
large scales, but its dynamics are still governed by scaling non-linear interactions. An
interesting consequencz of this "bottom up"76 cascade is that scaling is transmitted from a
scale to the next only after the bodies have undergone total giavitational reposition and
virialization. This means that there is an important time factor for bodies which are located
at large distances apart to enter the scahing regime. Consequently, the observation of
homoger....ty at very large scales may not be relaied to an overall symmetry of the universe,
but rather to regions of space which have not yet been virialized and have not entered the
scaling stage.

From a multifractal point of view it is important to realize that both of these
scenarios are compatible with a multifractal process. Which of the two (if any) is the actual
process that led to the formation of galaxies is still a cause of debate among cosmologists
and by all means an open question in science. Far from solving this problem, the objective
of our work in this thesis has been to shine new light onto this question and to offer a new

insight; one that may facilitate the undersianding of the statistical properties of the universe

that surrounds us.
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Appendix One

On Multifractal Notation.

The formalism and notation presented in this thesis is a "codimension-notation”
formalism which has been developed from the framework of turbulent cascades4!.
Another formalism (a "dimension-notation" formalism) of widespread use in multifractal
literature, has its origins on studies done on the theory of chaotic attractors??. In this
formalism the functions analogous to ¢(y) and K(q)*, that equivalently describe the
statistical properties of the multifractal field are denoted as f(a) and 7(q). f(@)
indicates the dimension of the set of points with singularity a and 7(q) describes the
scaling of the qth moment of the field. If we let D be the corresponding dimension of the
embedding space where the multifractal cascade takes place, then both formalisms are

related by

Physical Quantity Turbulence Chaotic Attractor
Formalism Formalism

Order of Singularity Y D-a

Codimension of the Set c(y) D~ f(a)

Order of Statistical Moments q q

Moment Scaling Function K(q) (¢-1)D - 1(q)

The advantage of the use of the turbulence notation is that all statistical functions
are independent of the dimension D of the ohserving space. This is convenient because
the multifractal cascade process that we are interested in is defined on an infinite
dimensional probability space*!, and hence f(a) and 7(g) of such process are also
infinite. On the other hand ¢(y) and K(q) are intrinsic to the process and remain finite.

# Note that the inclusion of the variable n 1n K(q,1n) and c(y,n) was specific to the study of the generalized luminosity
fields, and most hiterature on the subject considers only the functions K(g) and c(y) (with 1 implicitly assumed to be 1),
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On the Projection of Multifractals.

For multifractal fields, a projection effectively represents a flux or volume integral
along one of the spatial coordinates. In this appendix, all terms: "flux", "volume integral"
and "multifractal projection" will be equivalently used.

In section 2.3.2 it was concluded (from the analysis on various projections of the
sample CfA2) that although angular projections may be quite complex, in the case of the
multifractal luminosity fields they can be approximated by a linear cartesian volume
integration along one of the coordinates. In this appendix, some preliminary results on the
theory behind linear cartesian integrat:ons of multifractal fields are presented. Our aim is
not to give a complete trecatment of the theory of multifractal projections, but rather to
strengthen our understanding of the specific problem of the projected luminosity fields.
For this reason we shall restrict the discussions in this appendix to the Ci>1 case
(corresponding to the codimension of the mean singularity of the luminosity field £, ,).

11.1 The Effect of Projections on K(g).#

Consider a multifractal field ¢, (x,y) embedded in a unit square of resolution 4
with coordinates along the x and y directions. Then, the 1d cartesian multifractal
prajection of £, (x,y), denoted as €, (x), is defined as the integral along the y
coordinate for each value x of the field:

i
£, ()= [£,(r.)dy = 34, (702" (IL1)
1=1

where the factor A~ (coming irom the quantity dy) ensures the normalization of ¢ pA (x)
so that <€p,1(x)> =1, and the sum is over the A boxes of size A™'xA™! present in any
column of constant value x . The integral on equation Il.1 implies that the projection of a
multifractal field cotresponds to a "dressing" process onto a l-dimensional space. In
consequence, it is expected that the form of the statistical functions K ,(g) and c,(y)

¥ Note that 1n this appendix the index 1 will not be used since 1ts application 1s specific to the luminosity fields,
whereas the theoretical discussions thag follow apply te any multifractal field.
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(corresponding to the moment-scaling and codimension functions of the projected ficld)
will be determined by the formalism of dressed statistics developed in chapter 3. In
particular, we expect the existence of a critical order of moment (denoted below as q))
above which the dressed statistics of the unprojected function K(g) will be reflected by
the form of the function K () (see discussion below).

Consider first the case of the Trace moments Tr(¢, ) defined as*!:

MR 7 A W (I1.2a)
Tre, ) =Y, G A

where the quantity 7(g) was previously introduced in appendix 1. Using equation 2.10
(withn=1) we find that Tr(¢,)? is simply related to the function K(g):

Tr(6,) = A°A°((g,)") = Ar oo (I1.2b)

For the projected field, the corresponding Trace moments are found by replacing ¢, by
£,,,and Dby D-1:

1=}

Tr(e,) = §<( :Zi. )) = AR@-(O-ka-D (11.3)

Since Trace moments are unaffected by projections (since they explicitly take into
account their dependence on the dimension of the observing space) equations I1.2b and
I1.3 may be combined to obtain an explicit relation between K(g) and Kp(q). By
equating the exponents in I.2b and 11.3 we obtain that (for large enough ¢, as discussed
below) the "projected” and "unprojected” moment scaling functions are related by :

K(g)=K,(q)+q-1 (11.4)

Recalling the definition of C given by equation 2.13%, we note that equation I1.4 predicts
that the corresponding "projected” codimension Cj p, obeys the relation:

d d
S =L =C (I1.5)
G ( qu(q))‘r—I ( qu"(q)),,=|+l G+l

where C, , = (de(q)/dq)q=,. Equation 1L.5 is in agreement with equation 2.5, developed

in the realm of monofractal projections.

# Recall that since we are assuming n=1, throughout this section the codimension C; ; will be denoted as C;.
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As explained in section 3.2, the dressing mechanism which accompanies a
multifractal projection implies that the probability distributions are governed by the
statistics of the largest orders of moments, and consequently, lower orders are expected to
the be non-relevant. This implies that equations I1.4 and IL.5 are only valid for values of ¢
greater than a critical value denoted as g, and defined as the solution of the "dressing"

equation 3.5 in a !-dimensional space:

C . a
K(q|)=(q.-l)=a—:—l\q, -q) (I1.6)

The right hand sice of equation 11.6 corresponds to the form of K(q) valid for universal
multifractals only# (see section 2.4 for a discussion on universality). For the case o=2,
equation I1.6 predicts that g, has a particularly simple form:

1 for =2 (1L.7)

ql='C',l'

We have tested the validity of equations I1.4 and II.5 using simulated multifractal
fields. Figure I1.1a shows the multiscaling for the ensemble average of nine 2d fields
(1024 by 1024 pixels long) all with &=2.0 and C;=1.50, implying ¢,=0.67. Figure IL.1b
shows the multiscaling for the corresponding 1d projections. In both cases clear scaling

is observed up to the largest scales (A =1024).

a)*

= -
& |
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Figure IL.1. Multiscaling for a) the ensemble average of nine 2d fields, and b)
its corresponding 1d integration. The Cy of the ariginal 2d fields was 1.50.
Clear scaling regions are observed for bc*'1 samples.

C el
”(q q)

# Schertzer et al 62 have predicted that for a universal multifractal field K(g) = 0
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. From the slopes of the curves on figures 1l.1a and 11.1b we have estimated the
corresponding K,(¢) and K(q) functions. These are presented in figures I1.2a and 11.2b.
From the value of the derivatives of these curves at q=1 we have estimated
Cy,,=0.42£0.05 and C1=1.50%0.06, in agreement with equation IL.S.

Figure 11.2a also shows the expected form of the projected function K (q) as
predicted by equation I1.4 for g>qy. In figure 11.2b we have attemipted to infer the form of
the unprojected K(q) function from information obtained from the projected field It is
observed that theoretical and actual curves agree in the range g9>q.

a) 20 o Onginal K ,(q) b) +0 o Original K(q) 1
"1+ k@-g+ I K (q)+q-!
10, 2.0
K q) o5 K(q)1.0.
00k 0.0
) - |

Figure 11.2, Original and projecied K(q) functions as estimated from nine
simulations all with an original C1=150 Also plotted in figure 11.2a is the
predicted form of the projected function according to equation I1.4. In figure
11.2b we also show the form of the original K(q) curve as predicted from the
projected function and using equation 114 In both cases, the agreement
between theoretical and observed curves 1s clear for g>q1 =0.67.

I1.1.1 'The case of the galactic luminosity field 7, ,.

For the case o2 (as it is for the case of the luminosity ficld ¢, ,) equation [1.6

predicts that:

@(@+1)—-ag® =1 where a= -2 (11.8)
o-1

A trivial solution (ie. independent of o and C;) of II1.8 is ¢,=1. A physically more

interesting result may be found by plotting the left-hand-side of I1.8 as a function of ¢,
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and reading off the value of g, where the curve reaches 1. Using the values obtained in
chapters 2 and 3 (C)=1.28 and o=1.2) we have used the above described procedure to
estimate the value of ¢, corresponding to the apparent luminosity field ¢, ;. The abscissa
in figure 11.3 shows the left-hand-side of equation 11.8. This curve is observed to reach 1
at ¢,=0.620.1. This value imposes a lower bound on the values of g expected to display
multifractal properties related to those of the real 3-dimensional distribution. In particular
universality is not expected to be observed for g < g, (as already stated in section 2.4.1).

1.25
Tnvial solution
1.00 =5
7~
. A
0.754
g,(a+1)—aq” i
0.50-
0.254 Certainty on
4
0.00 - ~— .
000 025 050 075 1100 1.25 1.50
q

Figure IL3. Estimation of q for the field ¢,,. The abscissa displays the left-
hand-side of equation I1.8 . From the value of q where the curve becomes
equal to 1, we have estimated q;=0.610.1. The broken lines correspond to the
extreme variations of the curve given by the uncertainty on the quantity
a=C /(a-1)

According to equation 2.12 there is a certain singularity (denoted as 7,,)

corresponding to the order of moment g,. ¥,, is given by:

d
=) — (I1.9)
},ql (dq K(q))qrql

Using the universal form shown in equation I1.6 and the already estimated values of Cj,
o, and g, we have estimated that y,=0.5. Since equation I1.4 implies that
K',(q)= K (q) -1 then the corresponding projected quantity y,, , is given by:
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d
qu,p = (E K,,(Q))
q=q

qu.p = qu -1 (“.lO)

implying that for the projected field ¢, , the codimension function c(y,1) should show
scaling only for y>7v,, ,=-0.5. This value is in agreement with the lowest observed
singularity exhibiting non-linear behaviour in figure 2.13.

IL.2 Generalization to the n#1 Case.

Lavallée®4 has pointed out that any multifractal field (ie. not necessarily a
universal multifractal) obeys the relation:

K(q.m = K{gn)-qgK(n) (IL.11)

From equation I1.4 we know that K(x) = K,(x) + x -1 for any x > x,. Consequently, we

re-write I1.11 as:
K(g.m=K,(gm+qn—-1-gK,(n)-qn+q

K(g.m=K,(gm+q-1 for 9> 4, (I1.12)

where Kp(q, n)= Kp(qn) - qu(n). In section 3.4 equation II.12 was used to predict the
unprojected counterparts of the values K(q,,,7). Recalling that ¢, ,~=1.33, it follows that
the use of equation II.12 was justified on the ground that Cy,;>1 and q,,,>q, for the ficld
£,

Since K(g,n) is a function of two variables, we expect that there exists a critical
value of 1} (denoted as 1) above which equation 1112 is valid. nj may be defined as the
solution of the "dressing" relation I1.6 , but with the variable g held constant:

K(g,n)=(q-1) (11.13)

Using the universal form of K(q,n) (given by equation 2.16) we estimate n; as:

n = (Eﬁ#“l‘_ﬂ); (11.14)
C.(qg" -9
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Using the observed valucs of o and Cyy for £, and g=1.2 we obtain n(1.2)=0.74 and
consequently log,,(1,(1.2)) = ~0.13. This value is in agreement with the minimum value

of 1} observed to have displayed universal behaviour in figure 2.18.

I1.3 Comments on the Application of the DTM Technique
to Integrated Fields.

We now show some numerical evidence that suggests that when performing a
DTM analysis (see section 2.4.1) on an integrated field, the observed value of a (as
estimated from the slope of the linear region in a log,, X (q,n) versus log,(7) graph)
generally approaches the value of 2, independent of the o of the unprojected distribution.
Figure I1.4a shows the results from a DTM analysis on five 2-dimensional simulations all
having 0=2.0 and Cj ;=1.50, and a maximum iesolution A=512. Also shown is the result
of the DTM performed on the corresponding integrated samples. Both curves are fairly
linear and parallel over a wide range of n's, implying that the "projecied" o (denoted as
oip) is also equal to 2.0. In this analysis we have used g=1.20>q;=0.67 (as given by
equation I1.7).

Figure 11.4b shows the results of a DTM analysis performed on a different set of
five simulations. This time a=‘l.30 and Cy=1.50. Also shown are the results from the
analysis on the integrated fields. Although both curves display clear linear behaviours,
they are no longer parallel (as in the previous case). Moreover, o, is observed to be equal
to 2.04.

Similar analyses were performed on simulations having other values of o and C;j.
The results from those analyses are in agreement with the ones described here.
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Figure I1.4. DTM analysis for two sets of five 2d universal multifractal fields
and their corresponding projections. 2) a=2.0 and C1=1.50 and b) 0=1.30 and
C1=1.50. It is argued that this figure gives numerical evidence suggesting that
the value of a deduced from projected fields (and using a DTM technique) 1s
close to 2.0 even for the cases when the unprojected fields display an « very
different from 2.0. Similar analyses performed on other simulated fields
confirmed these results for the case a>1.0, C;>1and q>q;.

The behaviour shown in figure 11.4 may be thcoretically interpreted as the
signature of the dressing mechanism which accompanies the intcgration of the fields. If
we assume that the projection of the fields, in a yet unclear manner, makes Ky(q,n)
analytic at n=0, then in the region of low n's (where the DTM analysis possesses its
strongest statistical validity) we can expand Kp(q,n) in a Maclaurin series*. Let us start by
recalling equation I1.11 for the projected field:

K, (g.m=K,(gn)-q9K, (1) (11.15)

We then expand about the origin each of the terms on the right-hand-side of I1.15. Finally,
by retaining only values up to second order we obtain the following result:

K,(g.n—>0)= 2 df)(q -q)+ K, (0)i-9) (11.16)

# Notice that this is not allowed 1n the case of ordinary umversal multifractal fields sincc such fields are not analytic at
the origin62,

75




Appendix 2: Projection of Multifractals.

Since K,(0)=0 for any conservative ficld, equation I1.16 indicates that Kp(q,n) will
always bchave as a quadratic function of 1| near the origin. Thus, if the assumption of
analyticity near the origin is true, then the fact that the o observed in projected fields
approximates the value of 2 should be interpreted simply as a strong signature of a

multifractal projection.
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