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Abstract 

Studies on the statistical properties of the large se ale structure of the lIniverse 

have often separated the problem into a spatial point distlibution of galaxies and a 

functional variation of their luminosity independent of position. We cOllsequclltly 

attempt to bridge these two approaches by defining a family of generalized luminosity 

fields which depends on both spatiai resolution and lllminosity intensity. Prom analysis 

of 3, 2, and I-dimensional catalogues, we find that in 3d the galaxy 11lmi llOsity field 

exhibits two signatures of multifraetal behavlOr: mlllti~caling and divergcnt statistical 

moments. Furthermore, wc find evidcnce suggestlllg that thc statlstics govClllll1g this 

multifractal behaviour are determined by the parameters ex. (the degree of multifractality 

of the field) and Cl,l (the codimension of the mean lllrninostty) which we cslllllale a~ 

1.2±O.4 and 1.28±O.06 respectively. We conscqllent'Iy ~uggcst that the non-lincar 

mechanisms responsible for the formation of galaxies may be of mllltifractal origin. As 

many of the analyses were performed on projected fields a theoretical framcwork for 

multifractal projections is also developed. 



Résumé 

Les études statistiques des structures de grande échelle de l'univers ont souvent 

considéré que séparément la distlibution spatiale ponctuelle des galaxies et l'analyse 

fonctionelle de leur luminosité sans regard de leur position. Nous essayons donc de 

concilier les deux approches en définissant une farmlle de champs de luminosité généralisée 

qui dépend à la fois de la résolution spatiale et de l'mtensité lumineuse. D'après l'analyse 

des répertoires à troiS, deux et une dimension, nous trouvons que le champ tri-dimensionel 

de luminosité de~ galaxIes porte deux signatures de multifractalité : l'invariance d'échelle 

multiple et des moments statistiques divergents. De plus, certains indices permettent de 

croire que les statistiques qui gouvernent ce comportement multifractal sont déterminées 

par les paramètres (1 (le degré de multifractalité du champ) et CI,I (la codimension de la 

luminosité moyenne) que nous avons estimé à 1,2 ± 0,4 et 1,28 ± 0,06 respectivement. 

Conséquemment, nous suggérons que les mécanismes non-linéaires responsables de la 

formation des galaxies pourraient être d'origine multifractale. Puisque plusieurs d(~s 

analyses ont ét~ effectuées sur la projection des champs, un cadre théorique pour la 

projection des multifractales a été élaboré. 

ü 
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Chapter One 

Introduction. 

1.1 Motivation and Previous Studies. 

Since the birth of modern cosmology, .. tatistical studies on the Imge-scalc 

distribution of lu minous objects in the univer~e have clther treatcd the prohlclll as a point 

distribution in space, or as a functional variation in the luminosity indepcndcnt of the 

spatial distribution. However, neithcr approach by itsclf is ~lIfficient to completely 

describe the observed uni verse. In this chapter we shaH prc~ent an overvicw of the main 

achievements and disadvantages of each approach. We shaH then argue Ihat Illllltifractals 

provide a natural framework to combine both the spatial and Ihe Ilimmous propertics of 

celestial objl!cts and will con~equently define a family of generalizcd luminm.ity flclds. 

These fields will be the primary slIbject of ~tudy of this thesis. 

1.1.1 The spatial distribution of galaxies. 

The most widely accepted view of the spatial di~tnbution of galaxic~ aro~e in the 

70's following Peebles' work on the two-point correlation function 1;(r). Thil, funetion is 

defined in terms of the point density p(r) of a ~c( of N galaxic~ cmbcddcd ln a volume V 

within which statistical homogencity and i~otropy arc a~"'llmcd ta cxist: 

ç(r)" (P(r, )~1 + ri) -1 ( 1.1) 

where (p)=NN is the spatially-averaged den~ity of the ~ample and " i~ the pOl,ition of a 

galaxy in the set. We note that 1;(r)=O for a uniform random procc ... ~, 1;(r»O if the 



Chapter 1: Introduction. 

po~ition~ of galaxies are correlated and ç(r)<O if the galaxies' positions are 

anticorreJated. 

Pcebles and his collaborators (see' for instance refs. 1-5) found that ç(r) seales as 

a power-Iaw 

(1.2) 

where ro =5-10h-1 Mpc (h is in units of 100 km sec- I Mpc- 1
), and ll C=1.77. An 

important point about the expression in 1.2 is the value of the so-called "correlation 

length"## ro' We note that for distances comparable to ro' ç(r) approaches unit y, which 

indicates that r 0 corresponds to the inner seale of the scaling relation 1.2. 

A power-law bchavior of ç(r) at seales sm aller than ro indieates a fractal 

distribution in this range of scales (see for cxample refs. 6-8). This fractal interpretation 

had been previously suggested by Mandelbrot in 19759. In 1983, Grassberger and 

Proeaccia t 0 defined the correlf\tion dimension De as the limiting behavior of the 

correlation intcgral C/(r) defined as 

C/(r) = J: 41ti(1 + ç(s»)ds (1.3) 

so that limC/(r) = r Dr 

r--+O 
(l.4) 

C/(r) measures the probability of finding a second object inside a sphere of radius r, 

centered on an object of the set. By differentiating both sides of 1.3, and using 1.4 as the 

asymptotic form of C/(r) we obtain that 

cx:--r C 

( 
1 ) D -1 

41tr2 

(1.5) 

# Thcsc rc~earchcrs actuatty dcnoted "C" as "r". In this thesis however, "C" den otes codimensions and 'Y' 
orders of singularities 
## Note however. that thls IS not a true correlatIon length. since this would imply exponenual decorrelauons at r=ro' 

Therefore. the fact that ç(r) approaches uOity does not necessarily Imply a transitIOn towards homogeneity, but is 
dependcnt on the resolullon of the catalogues 

2 
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Charter 1. Introdu~tion. 

By comparing 1.5 and 1.2, it can be deduced that '3 - De = C::: 1. 77 . 

Consequently, the exponent C can be intel preted as the "correlation codimcn~ion "# of the 

fractal distribution of galaxies wnh dImension D(. ThIs correlation dimcnsion De was 

estimated as De::::: 1.23. As it will be secn in charter Iwo. D( is a low<:r bound for the 

actual fractal (box-counting) dimension of the ~ct. The value of 1.23 implie:-. that the 

clustering of galaxies is far from space fIlhng or homogcneous (D=3). and i:-. more 

compatible with filamentary structures (D=I). 

Based on Pecbles' work (ami later by various authors ll - 13 ) on the correlation 

functions, the picture of the universe that became widely acccpted was that at scale~ 

smaller th an about 10 Mpc, the distrIbution of galaxies is highly clustered and forllls a 

fractal set with dimension of about 1.23. At larger scales, galaxies secm to be uniformly 

distributed in agreement with the idea of a homogencous and i~otropic lIniver~e. This 

picture was based on the faet that the quantity '0 rcprcscnts the upper limit for spatial 

corr~lations. However, as discussed below, more recent analyses (sec for inslance 

reference 8) have severely challenged this physie,ll interpretation of r
Cl 

on Ihe grounds 

that for sealing relations sueh as 2.1, the quantlty '0 is non-relevant and simply rcpresents 

the inner scaling Iirnit of the sample studied. 

In recent years various numerieal models based on this ~tandard pielUre have been 

introdueed I4- 18. Sorne authors have accepted the scaling break at - 10 Mpc as real (rather 

than as an artifact of the dala set and analysls rnethod~), and a~temptcd to producc 

"broken" scaling rnodels in order to reproduce the effect (see for instance Castagnoli and 

Provenzale 15 and Calzetti et al 16). However, even for thc~c rnodels the ~Irnlllations of the 

galaxy distribution which have been produced often lack the large-seale clu~lering 

observed in rcaI data samples. This faet has been attributed, by some rcsearchersR•19, to 

apparent inconsisteneies found in the standard analysis. 

- Inconsistencies in the standard analysis. 

Despite the general aeceptance of the large-seale homogeneity assumplion, a fcw 

researehers have criticized its validlty. The two main argument!l are again!lt the value of 

the correlation length: 

1_- If the universe was constructed as a hierarchy of ~tructures up to the largc~t ~<.:ale~ (a!o. 

it was first proposed by Fournier d'Albe20 in 1907 and later by Charlicr21 in 1922), thcn a 

value for sm aller scales of the mean-<.,pace denslty (p) (a<., defined in equation 1.1) would 

# ln chapler Iwo H will be shown Ihal for any fraclal sel of dimenSion Df. Ils 'codlmen~lOn" C 1'- defined a .. 
C;;: D- DI (where D IS Ihe dimenSIOn of ltoc cmbeddmg space). 

3 
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bccome ill-dcfined. ln such case an esrimate of the funcrion ç(r) couJd become strictly 

sarnplc-dcpcndent, and hence any analysis performed using this function \'Iould induce 

!'purious results e~pccially on the value of the correlation length8.22-24.63. Furtherrnore, if 

the distribution of lummous matter in the uni verse turns out to be multifractal, then over 

the scalmg range the densitics would be singular measures whosc statistical properties 

will be dcpendent in strong ways on the scales over which they are averaged. In such 

case, the "correlation length" aClually corresponds to the internaI sc ale of the scaling 

regime of the data. Although in pnnclple, this internaI scale could correspond to the 

internaI !lcale of the physics we will argue that it is more likely to reflect the intrinsic 

resolution of the catalogue, in particular this scale may be associated with the finite 

nurnber of galaxies in the catalogues. 

2.- Recently published 3-dimensional catalogues25,26 show large inhomogeneous 

structures at sc ales much larger than 10 Mpc. Figure Ua shows a 'slice of the universe' 

135° wide and 150 h- I Mpc decp compiled by de Lapparent et a/ 27. Observations show 

that nearly 90% of ail galaxies are located along giant filamentary structures, c1usters, and 

superclustcrs. It can be seen that in between these structures voids of up to 60 h -1 Mpc are 

found28•29 . Clearly, a claim that galaxies are correlated only up to a distance of about 10 

Mpc seems to be an artifact of the catalogues' statistical limitations and of the data 

analysi~ techniques. 
12111' 

, 
• ft • • • . .' "' .. - . . . 

• • ".,'. JI .# . " ~ .• :., ,., ·.I·f"!~·'·· . 
• • : ' , r' """ • 

" '"L' ··f·· ',~ 1 ... ; :- • ,,·.f, •.• ~ .. ' , ~(~. ' . ~. . .' "'..... . ',' .":'-:!,: -', ,.1\ 't 
". ,. • • of"... ,Ii" .. '. . . ..,.... ..... 

" . ' 1· " Il ,.. • ..... -.,;. t ., ....... . 
1. , ~ ••• 

• Shr 

• • ~I ~ •• 

".: .. 'iv · 
Figure t.la. "Slice of the Umverse" as I.ompiled by de Lapparent et a1 27. The 
figure displays 1068 galaxies wlth apparent magnitude m $; 15.5 located in the 
region 8hr ~ a ~ 17 hr and 26°. 5 ~ Ô $; 32°.5. The sample's depth is 150 
,,-IMpe (lz is in uruts of 100 km sec -1 Mpc -1). nie large voids observed show 
the existence of inhomogeneous structures at scales much greater than the 
"correlation Jength" '0- . (FIgure from de Lapparent et a1 27) . 

4 



• 

• 

• 
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We have tested the extent of the scaling region in the galaxy distribution using a 

straightforward rnclhod: wc estimated the correlation dimension q. (defincd in equation 

1.4), from thl,; 1068 galaxies showed in figure 1.Ia. To do sa, for each galaxy, we counted 

the number N(r) of neighbours withm a dis/anee r from il (in order to avoid edge

effeets, we have only considered those galaxies loeated at a distance largcr than r from 

the edge of the sample). For a scaling fractal set, the average value of N(r) should be 

given by 
( 1.6) 

Hence, the extent of the linear behavior on a plot of LoglO(N(r») versus LoglO(r) , 

indicates the extent of the sca1ing region of the set. The resull of our analysis is prcsented 

in figure 1.1 b. The scaling region extends from a few to about 50 Mpc (the radius of the 

largest circle embedded in the samplc). This scaling range is similar to that found by 

Weng et al 38 and by Coleman and Pletronero8, who uscd a mcthod of analysis based on 

an integrated form of the correlation function ç(r). The break on the scaling observcd in 

figure 1.1 b for short distances is a naturaJ cut-off due to the faet that only few galaxies are 

less th an 1 Mpe apart from each other* . Shown for comparison in Ihis figure, is the 

expected slope for a homogeneous (Dc=2) set. It is c1ear that thL distribution of galaxies 

does not reaeh homogeneity in this range of seales. 

3.5 

3.0 Rcfcrenl"e lin«: 
of slup.. ... 2 0 

2.5 

---- Z.O 10... 

~ -- 1.5 
0 -1..!IMpe 
~ ..s 1.0 

0.5 

0.0 
·1.5 -1.0 ·0.5 0.0 0.5 1.0 1.5 Z.O 2.5 

LoglO (r) (DI~tancc ln Mpc) 

Figure l.lb. Scaling analysis of a "Shce of the Uni verse" (as compiled by de 
Lapparent et al 27 and described as sample CfA2 in sectIOn 1.3). The lincar 
scaling range extends from a few up to about 50 h -1 Mpc, the size of the Jargest 

circ1e embedded in the sam pIe . 

# Note that our gaJaxy's dlameter IS Just a few kpc. 

5 



• 

• 

• 

Chapler 1: Inlroduclion. 

1.1.2 Studies on the Luminosity distribution • 

Although thcre IS !>till debate on the range, consensus exist~ among researchers on 

the scaling powcr-law form o~ the correlation funelion. This result IS expected since the 

fundamental procell!>e~ responllible for the formation of the universe are scaling (as it will 

be cxplained in sectIOn 1.2) However, a complete statistical description of these 

procc~~c'i must go bcyond the treatment of galaxies ao; mathcmatlcal point objects and 

takc into account other properties such as their mass and lummosity. Furthermore, the 

large majority of the research done on the distribution of luminosity ignores its spatial 

dependence (the only exception being the study done on the multifracta! distribution of 

absolu te luminosity8,48). The main functional tool in the standard analyses of luminosity 

distributions has been the luminosity function <I>(L). This function is defined in terms of 

the probability dP that a galaxy with luminosity L in the range L to L + dL is located 

inside a randomly chosen volume dV : 

dP = <P( L )dLdV (1.7) 

Integrated forms of this function were fitted to empirical data by Zwicky30 in 

1957, Kiang31 in 1961 and Abelf32 in 1965. Later in 1976, Schechter33 fitted <P(L) (as 

defined by 1.7) based on the observed luminosity of bright nearby galaxies. Schechter's fit 

of <P(L) was 50 succc:.sful, that since then it has become a standard analytic tool in 

astronomy (see for example references 34 and 35). U nfortunately, no consensus exists 

among researchers on the physical proecss respon~ible for the mathematical fOfm of this 

function. Later in chapter three we will propose that the dynamical process responsible 

for this form is seale-Invariant yielding multifractals and multifractal first order phase 

transitions, related to a non-classical form of stochastic Self Organized Criticality36. 

A different analysis37,38 done on the luminosity distribution of galaxies revealed 

the existence of "iuminosity segregatIOn"; that is, an increased c1ustering among brighter 

galaxies. In tcrms of the fractal formalism, this research showed that the fractal dimension 

of a set of galaxies dccreased with an increase in the minimum limiting luminosity. In 

chapter two we will sec thal if the galaetie luminosIIy is seen as a multifractal field, this 

result causes no surprise; for in non-linear proecsses that resuIt in multifractal fields. 

cxtrcme events (such as highly bright galaxies) are much sparser and less common than 

"weaker" events (faint galaxies) . 
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1.2 Generalized Lunlinosity Fields . 

In the last few years, it has become fairly clcar Ihal non-linear dynamical sysl:ems 

which have no characteristie length-scale produce multifractal ficld~39. Morcover, since 

the dynamics of the large seale stmcturc of the univcrse arc scaltng (such as gravitational 

and electrodynamical lI1teraction~) and sincc ~cale-invanancc i" a fundamcntal symmctry 

principle40, it is then cxpected Ihal unless ~trong sl:alc-blcaking mcrh .. mi~l11s cXI~ll the 

resulting fields (of mass, luminosity and denslty for Instance) ~hollid be mullifl'artul. 

Multifractal fields possess ~ome well-deflOed propertics and fea!urC'~;. The mos! 

important is that they show multiscaling; that is, the dlfferent moments of the fields also 

scale in a non-trivial manner. This will be the subjcct of chapt cr two. A !,ccond gcncric 

feature of multifractal fields comes as a consequence uf the existence in natUle of rare and 

extreme events sueh as large storms in the atmospherc41 , violent em thquakl~s42 and inl our 

case, of uJtra-bright and massive galaxies. Such cxtrcrne cvcnt~ tend to dominatc the 

probability distributions of the fields, leading to the obscrvation of divergent ~tatistical 

moments associated with ftrst order multlfractal phase transitions and rclatcd to self

organized criticality36. Such multifractal phase transitions will bc the subje'ct of chapter 

three . 

1.2.1 Definition of the generalizcd luminosities LT}.À. and f T}.,t. 

In order to test the multifractal character of the univcrse at large scale", wc define 

a family of generalized luminosity fIelds. Thcse fields are eonslructed as foJlows (see 

figure 1.2a for a schematic representation of the construction of the~e fields): we first 

denote the standard information about a galaxy's position and lumino~ity as f. .. (0) and 

LA (r,n) (for relative and abso!ute luminosity re~pectivelyll). The capllal Grc(!k Icttcr 1\ 

indicates raw data at maximum available spatial -I!~olution and the parameten, r and il 

represent respectively the galaxy's radIaI and angular po~ition in ~phcrical ('oordinatcs. 

Next, considcr a region of space A of ~izc S. In ordcr to definc a field, 1111'-, reglOn 

is subdivided into smailer regions BA of size s < S (the quantity À i~ the ~calc-ratlo 

defined as À == S / s > 1). The valuc~ of ail thc evcnt~ Pli (0) locatcd withm cal:h R). arc 

raised to a power 1] and then summed up. Fmally, thl~ ... um i~ normali.LCd over l'hc entire 

region A (see figure 1.2a) and thc rcsulting quantity i~ ùefined a~ the "Gcllcralized 

(apparent) Luminosity FIeld" f! 1],,1, at re~oIution À: 

# Note tha! (as il IS standard ln astronomy) Ihroughoul Ihls Ihesls t denole~ apparent whcrea~ L dcn(}w~ ab~olule 
lummoslty. 
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( 1.8) 

where Bi. (.Q,) is the angular region at resolution À. located at an angular position .Q, 
within 'the field (the subscript i runs between 1 and 'AD, D bcing the dimension of the 

sample), and the exponent 11 is the index that represents the member of the luminosity 

family under ~tudy. The brackets ,,( )" indicate ensemble average at resolution À. over 

the entire region A , so that the denommator in 1.8 cnsures the r.ormalization of the field 

(ie. (f'l.i. (.Q,») = 1). Note that the corresponding definition of the generalized absolute 

luminosity L
Tl

,).. is identical to equation 1.8, but wlth .e A (0) replaced by LA (r,n).# 

The systclilatic study of normalized Tl powers of a multifractal field (as given by 

equation 1.8) was first proposed by Lavallée64. However, the application of such study to 

an astronomical field has becn done for the first time in this thesis. 

- Some important members of the family of luminosity fields . 

From the definition in equation 1.8, it can be noticed that f o,).. represents the 

density field of galaxies at seale-ratio À equivalent to the quantity p{r) (used in equation 

1.1) for the À. ~ A case. This field has been studied by various authors7,16,43-47 finding 

good evidence for multiscaling, sorne of them up to angular distances greater than 30° (in 

agreement with the large-seale mhomogeneities ohsefVI:!d in figure 1.1 a). 

e Ul represents the apparent lummosity field at scale À; that is, the (normalized) 

total amount of Iight recelvt:d from ail galaxies loeated within an angular region Eh of 

extent s. 

Membcrs of L Tl .).. indexed by 0.8< Tl < 1.25 (depending on the semi-empirical 

mcthod used to relate absolute luminosity to mas:) represent the corresFonding field of 

mass distrihution. Coleman and Pietronero8,48, using an integrated form of the correlation 

function ç(r), have rceently analYlcd the ~). field finding good support for 

multifraetality up to distances comparable with the size of the catalogues (-50 Mpc). 

By varying 11 it is possible to study the statistical features of the whole family of 

fields a~ a funetion of scule (or rcsolution). The reason for this is that as 11 is increased 

# ln ortler 10 ~Imphfy (he nolallon 10 Ihe resl of Ihe IheSlS, Ihe generahzed lummosily fields will he wnlten as t qA' so 
Ih(\I'hclr spallal depcndcnce will he IInphcn 
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emphasis is plaeed on the extreme values of the field, whereas the opposite occurs for 

11< 1. This effeçt is shown in Figure 1.2b \Vith the f",!lo licld for 11 = 0,1,2 and 3. The 

data çorresponds to 6820 galaxies loeated in a square of 80ll by 80°, ccntercd on the north 

galaerie pole. This sampJ(! is denoted MCG80x80 and will be de~crihcd in detai! in 

section 1.3. Here, the vallJ(~ of À is 80 corresponding to a ccII sile of 1(1 . 

• • • .. ' • • • • • • 
• • • • · , • • • • 
• • · , • 
• • • . • • • • • • • • • 
ORIGINAL DI~ n, 
(AT RESOLUTION A) 

RAISED TO J, POWER Tl 

~ 
+ 

GRID OF RESOLUTION 
').."SI s 

==> 
INTEGRATION 
OVEREACH 
BOX 

li NORMALIZATION 
OF THE FIELD 

-- 1 --

S 

Figure l.2a. Construction of a 'Gencralized Luminosi:y field'. a grid of resolution 
')" ('),,=4 in this figure) is superimposed onto the original llimmosity data (already 
raised to a power 11) .and the values of alliuminosltil's wlthin each field-box are 
summed up. These integrated llimmosities (from each field-box) are then 
multiplied by a normah7ation constant, 50 that the iwerage value of the field 15 

made equal to 1. 
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11 =0.0 11 =1.0 

11 =2.0 11 =3.0 

Low {'I.À. High .e 1/. A. 

Fig l.2b Example of four fields of f 'l.À • The values of 11 are 0, l, 2, and 3. Â. is 
80 for aU pictul'es. Each sqUtue represents a reglOn of 800 x 800 centered on the 
north galactic pole. The pIxel size is 1°. There are 6820 galaxies ln each picture. It 
can be notlced that as Tl increases, the extreme values of the field are amplified. 

10 
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1.2.2 The relation between Lt}.À. und e 'l.À • 

The field f rJ). is an angular projection (along the radiai direction) of the 

corresponding field LTl .). •• The fact that relative and absolute luminositics are generally 

related by an angular projection has often ~topped rcscarchcrt. from comhining rcsults of 

both analyses. In the ca~e of the angular projectIOn of fractal sets, ~OIl1C rc~ult~ from 

analyses on simulatIOns have aheady heen glven by Doglerom and Piclronero 24. Thcse 

results are qualitative and indicate that large-scale homogcneity obscrved in projectcd 

fractal sets is compatible with large-scale înhomogcneity in the actual 3-dimcnsional 

distribution. Moreover, for regular cartesian proJcctions the stati~tical pIOpcrtics of both 

projected and unprojected fractal sets can gcnerally be rclatcd by a sct of simple 

projection rules (see for instance Falconer49), some of which will he discussed in seclions 

2.1.1 and 2.1.2. We will now propose that the statistical propcrtics of the lllultif11lclal 

fields L'l). and e 'l.À' can also he related due to the specifie relation bctwcen L",(r,Q) 

and f" (n). 

The projection of a fractal set can he lInderstood as the "shadow" that the set 

produces on a plane perpendicular to the direction of integration (sec figure 2.2a for a 

pictorial representation). In the case of multifractal fjelds, the projection is the integral 

along one of the spatIal coordinates. Since in turbulence the integral of a multifractal 

density is a flux, both terms: "flux" and "multifractal proJection" will be equivalcntly 

used throughout this thesis. 

Consider first the simpJer problem of a regular cartcsian projection of a 

multifractal field. Specifically consider a unit-square with axes along the x and y 

direction respectively. Suppose that a grid of box size s (s <1) is supcrimposed onto the 

square, and then a value T" (x,y) is aS~lgned to each box. Let us further suppose that the 

distribution of intensities of the Til (x,y)'s is governed by multifractal stati~tics. Then a 

projection Tpr(x) along the y axis is defined as the integral 

( 1.9) 

The left-hand-side of equation 1.9 is indcpcndent of the projected coordinate y, which 

ensures that for multifractals the statlstical properties of both Til (x, v) and Tp,(x)are 

related by a set of projection rules dlSCU~scd in detml m appendix two. 

Let us now consiàer the specifie case of the luminosity fields. For a~tronomers, 

the apparent luminosity fil (n) is a mea~ure of how bright a ceJe~tial ohjcct appt!ars to the 

Il 



• 

• 

• 

Chapter 1. Introduction. 

observers on the earth. Il is not equal to the absolute luminosity LI\ (r,n), which is 

intrin~ic to the object, due to the di~tance r that light must travel from ils source to us. In 

particular, radiative transfer theory predicts that the observed lummosity decreases with 

the Jnvcr~c square of the di~tance to the galaxy. In the case of the luminosity fields 

defined in ~cction 1.2. l , and ignonng the unimportant normalizaIion factor, the quantity 

f 1\ (n) is given by 

( 1.10) 

where Vc is the volume of the cone whose vertex is at the earth and whose base is the 

angular region BA where a galaxy at a distance r is located. Noticing that dV is an 

element of volume equal to r2drdn in spherical coordinates (dO. is the corresponding 

clement of sol id angle) we can rewrite 1.10 as 

f,\ (0.) = f L ... (Q)do. (1.11) 

BA 

The right-hand-side of 1.11 is no longer an explicit function of the projected coordinate r 

and equations 1.9 and 1.11 are hence analogolls in their form. Furthermore, this analogy 

inà~~:\tes that as in the case of regular cartesian projections, the statistical prnoerties of the 

field~ e 7]). (derived from f 1\ (n» WIll be rclated to the statistical propcrties of the fields 

L'l,À. (denved from LA (r,n». Henet! by combining the results from analyses on both 

fields, we can maxinllze the amount of mformation acquired about the universe's actual 

structure. A detailed discussion of cartesJan projection relationships for multifractal 

fields will be the presented in appcndix two. 

A furthel advantage of the use of f 1].À is that since ail catalogues of galaxies' 

position and luminosity are Illnited by a minimum detectable ap!Jarent magnitude, a field 

constructed ming f 1\ (12) has a constant minimum threshold. On the other hand, the 

minimum thrc!>hold of a catalogue of absolute luminosity is dlstance-dependent (see 

figure 1.3 and cquation 1.13 In the next section). Smce spunolJs results may arise from 

anulyses done on fields having non-constant thre~holds, researchers using LA (r,n) on 

thcir analyses must resort to either constructing sub-samples with constant threshold (the 

12 
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so-called "volume-limited samples"), or to 1I1voking funetions slIch as the luminosity 

function <t>(L) to preiict the luminosity of the unobscrved galax!c~. Unforlullutely. 

neither solution is completcly satisfactory since the former scverely dccreascs the Humber 

of galaxies avallable for analy~is50 (which is alrcady small in a stal1!>tical sense), and the 

latter is based on the ernpirical assumption that the numerical fits of $(L) arc applicable 

and correct everywhere in space, neglecting any po~slble ~t;ltl!>tical spatial correlation. 

.... 
fil 

-2~ 

.!! fc -20 
·C 
= 

-18 

-16 

-14 

-12 +-~--r---""'~---.----.r---.......-~-r----r-.....j 
o 20 40 60 80 100 120 140 

Radial Distance (in h -1 Mpc) 

Figure 1.3. Radial distnbution of the 1682 galaXies from the sample z40 
(descnbed in the next section). The absclssa shows the ab~olute magnitude M of 
each galaxy. Observations of luminous obJects on the sky are hmited by a 
minimum apparent magmtude, whlch 10 terms of absolu te mdgnitudes, is 
observed as a loganthmic function of the radIal dIstance r. ThIs produces the 
strong distance-dependence of the mffilmum threshold observed ln this sample 
We have used Il m units of 100 km 5-1 Mpc-1. (Data from Huchract al 25) 
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1.3 The data . 

In their original forms, catalogs contain information on the apparent magnitude m 

of the galaxies. The values of the corre~ponding apparent luminosities .e are obtained 

using51 

f. = 1O{(III'-m)/2 5} (1.12) 

where m' i~ the limlting magnitude of the catalog. The values of the absolute magnitudes 

Mare obtained using the information on the radial distance r to the galaxies51 : 

M = m - 25 - Lo g( r) (1 13) 

where r is in Mpc. In our analysis aIl distances are derived using a Hubble constant Ho = 
100 km s-1 Mpc -1 and expansion velocities corrected for virgocentric flow, according 

t038,52 

Vcorr = VIII (sin 8, sin Ov + cos 8, cos Ov cos( a, - av») (1.14) 

where Vcorr is the redshift correction for a galaxy located at right ascension ai and 

declination 8
" 

Vm is the infall velocity of the Virgo center located at coordinates av and 

8v • Wc uscd V/II=300 km s-I . 

Four data sample~ were used to test the multifractal character of the distribution of 

gencralized Illmino~itics. Threc of them are sllb-samples of available redshift surveys 

from the I1arvard-Smlth~onian Center for Astrophysics (CfA). These samplcs will be 

dcnoted CfA2, CfA2proj and z40. The fOUlth sample (calied MCG80x80) cornes from the 

Mergcd Catalogue of GalaxIes. This catalog contams ail galaxies in Zwicky's catalugue53 

and was compilcd by Kogoshvili54 111 1986. The specifications about each sample are: 

a) z40: This slIb-sumple of the CfA 1 ca taloglle25 forms a cone bOllnded by (in 

galactocentric coordinates) bl/ 2: 40° and 8 ~ 0 0
, and centered on the north galactie pole. 

Its linliting app,ucnt magnitude is 14.5 and contams 1682 galaxies. This sample contains 

3-dimcnsional lIlfOlmatlOn (in sphcrical coordinates) on the galaxies' position and 

luminoslly. A radIaI disttibution of the galaxies contamcd in this sample is presented in 

figure 1.3. 

h) CfA226: This sample contains 1091 galaxies with apparent magnitude less th an or 

cqual to 15.5 located within a 60 by 1350 strip passing through the Coma cluster. The 

sample is 150 Mpc deep and IS bounded by the angular positions 8h 5: a. 5: 17 h and 
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26°.5 S Ô S 32°.5 (where ex denotes nght .:scension and ù is the declinatlOn). In the 

context of this thesis, this samplc wIll bc tleatcd as the mtcl sectIon hctween a 2-

dimensional plane and the actllal 3-d distribution (sec figure 1.5). This "slice of the 

universe" contams mformation on lummosity and p01lition in radial .tnd angular 

coordinates as depicted in figure 1.1 a. 

c) CfA2proj: This sample is a projl~ction along con~tant l'ight ascension Cl of the CfA2 

samp)e. It contain~ information only on the galaxies' angul:.tr posItion and hnnino1lity and 

it is lherefore treated as a I-dimensional sample. Consequently, the luminoslty fields 

constructed from it, correspond to 1- dirnensional fluxes of the original 3d dbtlihution. 

This samp)e can a)so be l'egarded as the intersection between a I-dllllcnsionai 1111 11' and H 

2-D projection of the actllal 3-D distribution. Some examplcs of the field ~.). a1l oht~lincd 

from this samplc are shown 111 figure 2.3 (next chapter) for variolls vallle~ of the scale

ratio Â. 

d) MCG80x80 : This sample is a square 80° x 80° centered on the north galactic pole. Ils 

limiting apparent magnitude is 15.5 and contains information on the IUIllino1lily and 

angu)ar position of 6820 galaxie~. Since it can be regarded as a 2-dimcnsional projectIOn 

of the actual 3-d disll ibution, this ~amplc cOl1tatn~ no mformation on radial d/:-.tancc. 

Consequently, the luminosity fields con~tructcd from it can be regatdcd as 2-dllllen~ional 

fluxes of the original distribution in 3d. Figure 1.4 show~ the pO~ltlOn of thi ... ~alllpic on 

the northern (galactic) hemi~phere. The ~amplc wa~ con~tructcd as follow~: l'rom the 

original data fIle 54 the angular pO~lllOn of each galaxy (in ex and Ô) wa~ obtamed and 

then projecled onto a plane usmg a ~tandard equal-arca Lambert proJectIOnS,'; which 

retains the denslty of points of the original dl~tribution. A cartc~ian gnd wlth origin at the 

north galactic pole \Vas then ... uperimposed onto this plane. Each axb wa~ labded l'rom 

- 90° to +900 and only tho~e galaxies containcd bctween -40° and + 40° (for both axc~) 

were included in the fmal sample. Examplcs of P 11.;" flcld~ produ<.:Cd l'rom MCG80x80 

can be observed in figure l.zb. 
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Figure 1.4 Location of the MCG80x80 sample in the northem galactic 
hemisphere. Each pixel represents an angular box 1 Oxl°. This figure was 
produced using data from the Merged Catalogue of Galaxies compiled by 
I<ogoshvili in 198654• This catalogue contains information on the position and 
apparent magnitude of 20,513 galaxies located in the north galactic hemisphere . 

z40 
(Actual 3-D data) 

Projection V, 

MCG80x80 
(2-D projection) 

1 ntersection 
crAZ 

(2-D Slice) 

Projection V, 

~ 
1 ntersection 

crA2proj 
(1-0 Strip) 

Figure 1.5. Relation among the four catalogues used in this thesis. The sam pIe 
z40 has 3d information on the actual distribution. The sample CfA2 can be 
regarded as a 2d intersection of the set z40. CfA2proj is a radial projection along 
constant angles of CfA2. Finally, the sample MCG80x80 can be understood as a 
2d angular projection of the original 3d tmiverse (see the discus~ion in the text for 
mCff" (~etails on the vnrious samples). 
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1.4 SUlnmary of the Thesis. 

Chapter two begins by presenting the formalisrn of fractal projections .md 

intersections. It then explains the theory behind muItiscaling and presents the reslIlts of 

the analysis done on the data. The last section of this chapter discusses the theory of 

"universal multifractals". Predictions from this theory are then vt~rified lIsing the 

generalized luminosity fields. 

Chapter three concentrates on multifractal phase transitions. Starting from thcory, 

we apply this formalism to the data sets and study the consequences of this phcnomenon 

on the luminosity function <I>(L). 

The last chapter of this thesis is devotcd to the conclusions and the physical 

implications of this research. We examine the advantages and disadvantages of the use of 

the generaliz{,d luminosity fields, and give a hint on a new picture of the Inrge-scale 

structure of the universe. 

This thesis contains two appendices. Appendix one discllsses multifractal 

notation. Due to the importance of projected fields in this thesis, appendix two is entirely 

devoted to the question of the projection of mllltifractais. Il begins with theoretical 

considerations and ends with sorne tests performed on simulations. 
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Multiscaling of the Luminosity Fields. 

2.1 Fractals as Scale-Invariant Sets. 

In nature one often finds phenomena which respect sorne type of symmetry 

principle. In physics, these principles are retlecled by the equations describing such 

phenomena and usually the two descriptions are considered equivalent. For example in 

mechanics, conservation of angular momentum is observed as rotational invariance and 

energy conservation produces time independent equations. Equations that retain their form 

under the isotropie transformation x ~ x 1 À (where À is sorne sealar) are said to be seale 

invariantt#. Scale-invariance is a symmetry principle characteristie of non-linear equations 

and in recent years has become cIear that the resulting fields reveal multifractal features39. 

In mathematical tcrms sçale-invarianc.e is usually represented by power laws. This property 

is known as scaling and gives us a transfonnation rule among physicaJ processes acting at 

different seales. Consequcntly, the existence of scaling in a physical system implies that 

what happens at very small scales can be simply related to what is observed at Iarger scaIes, 

and vice versa. 

The simplest examples of scale invariance are fractal sets. A proper definition of a 

fractal set is a mathcmaticaI object whose fractaI (Hausdorff) dimension Df is strictJy Jarger 

th an its topological dimension Dr. As an example, Dr for a fractal set of points is zero 

whereas 0 < D f ~ D, D being the dimension of the embedding space. 

Conslder a D-dimen~ional space A with size S subdivided into boxes of size s < S. 

Let liS defme À == SIs (À> 1 always). Then the total number NUIt of boxes in A is 

proportional to À[) (À for a line, À 2 for a -"urface and À3 for a volume). Furthermore, 

suppose that Cl fraclal set F of dimension DI has N À boxes embedded in A. The scaling 

rules for a fractal set predict that N À oc À DI. Conscquently, the probability Pr that the n th 

# RlgurolJsly spcaklng. (hl~ dcflnlllOn corresponds 10 self-slmllar scale Invanance. a specIal case of scale 
invanancc in whlch ail ~pallal coordlnates are Isolroplcally re-scaled. For alllsotroplc scahng ,sec refs 68 and 69. 

18 



• 

• 

• 

Chapter 2: Multiscahng of the Lununosity Fields. 

box will belong to F is given by the ratio 

Pr(n e F) oc À-c (2.1 ) 

where C == D- Df is called the "codimension" of the fractal set. 

2.1.1 Intersection of Fractal Sets. 

Con si der 2 objects with dimensions DI and D2 respectively, both of them 

embedded in a space of dimension D . Then, the dimension DI of the intersection of both 

objects is given by (see for instance ref, 49) 

(2.2) 

or in terms of codimensions: (2,3) 

where CI = D - DI' The intersection relations 2.2 and 2,3 predict, for instance, Ihat the 

intersection between two planes ( DI = D2 =2) in a 3d-space will be a Hne ( DI: 1). Equations 

2.2 and 2.3 are not constrained to continuous objects; points sets (such as fractal sets) also 

obey them49,56 . A few examples of intersections are presented in figure 2.1 a: 

. "':'.' .. : .. :.: •. : ......... . 

Figure 2.la. Examples of intersectmg obJects. In 3-d, the intersection between a 
sphere (DI =3) and a plane (D2 =2) is a plane (DI =2), whereas between two 
planes (DI = D2 =2) the intersection IS a Hne (D,=1). For a fractal set of 
d1mension DI the dimension of the lOtersectmg set will depend on o,r In this 
figure intersections are represented by the mathematical symbol n. 
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The correlation dimension De (defined in equation 1.4) is often very close to the 

actual fractal (or box-counting) dimension of a set (H IS actually a lower bound estimate of 

it). In chapter one a (hrect method of e~timating De was developed and then applied to the 

CfA2 ~ample ('1ee fIgure I.lb). Figure 2.1b now shows the estimates of De as obtained 

from the MCG80x80 and CfA2proj data samples. The scaling regions for both samples are 

weil defined and rcach up to about 40° (the size of the largest angular box totally embedded 

within the sample) in agreement with previous studies donc by Atmanspacher et al 44. 

The obtained values of De are 1.85iO.04 and 0.85±0.03 respectively for 

MCG80xSO and CfA2proj, implying a correlation codimension Cc of 1.15 in 3d. Since the 

] -dimension al data set CfA2proj can be regarded as the mtersectlOn between a Id-strip and 

a 2d set such as MCGSOx80 (see figure 1.5), we have that in this case Dl = l, D2 = 1.S5 

(the observed dimension of the set in MCG80x80), and D =2. Equations 2.2 and 2.3 

p;edict then that D[=0.85 and CI =0.15 in perfeet agreement with the observed values 

from CfA2proj, as seen below in figure 2.1 b: 

MCG80x80 CfA2proj 
4r----------------------~~ 

3 
Slope= 1.85± 0 .04 

Slope= 0.85 :±O.03 

o 

o~==~~~L-------------~ o~~---.-----.------~--~ 

·2 .) o 2 ·2 o 

Logo (8) ,(6 is in degrees). LoglO (8) ,(6 is in degrees). 

Figure 2.lb. Correlation dimension analysis for the samples MCG80x80 and 
CfA2proj. The values of the correspond mg De 's are obtained from the slopes of 
the linl?ar reglon on these fIgures. The observed values are 1.85±O.04 and 
0.85±O.03 respechvely for MCG80x80 and CfA2proj, ln agreement with the 
intersection relahon 2.2. In thls figure the quantlty (J characterizes the 
anguldr box-size (in degrees) used m the analysis of these samples . 
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2.1.2 Projection of Fractlll Sets • 

An equation similar to 2.2 prcdicts the observed dimension DI' of the projection (or 

shadow) of an object with dimension DJ (cmbcdded in a D-dimcnsional spacc), 

orthogonally projected onto a space of dimension D': 

(2.4) 

or in tenns of codimensions 
Cp = max(Cf - C ,0) (2.5) 

where Cf == D- DJ .md C = D-IJ (see reference 49 for a discussion). As an example of 

equation 2.4, a cube (Dj=3) produces a square (Dp =2) when projected onto a plane 

(D'=2), whereas a line (Df=l) retains its dinlensionality after the projection. Some 

examples of projections are ~hown below in figure 2.2a . 

.,..,- .,.~ ...................... • 1".rI'.rI'."'.".~.' ,It ..................... . 
~:J'.J'.rI'.J',,,.,/I. ' 

Figure 2.2a. Examples of the projectIon of obJects: the shadow (or projectIOn) of 
a cube (DI =3) on a plane (D' =2) is a plane (D p =2), whereas a hne retains its 

dimensionality (DJ=1) alter the projection (Dp =1). For a fractal set the value 

of Op will depend on Of. 

In our analysis of the generalized luminosities, the 2-dimensional data set 

MCG80x80 can be regarded as a 2-d projection of the 3-dimensional catalogue z40 (~ee 

figure 1.5). Consequcntly, since in the last section De was found to be ... rnaller than two for 

the MCG80x80 sarnple, equation 2.4 predicl~ thal buth ~ample~ ... hould ~how the ~ame 

value of De . This is shown in figure 2.2b where we prc~ent the rc~ults of the correlation 

analysis of the z40 sample. The scaling (linear) range ~cem!-' to rcach up 10 about 60 Mp<.: . 

Between about 1 and 7 Mpc the curve shows a weIl defined ~Iope implying a value of De 
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of 1.80±O.05 and a corresponding codimension of 1.20 (in 3-d). These values are in 

agreement with tho~e previously estimated from the MCG80x80 sample (see figure 2.1b). 

Beyond about 7 Mpc a change in the slope is observed. Unfortunately, due to the low 

number of galaxies in this sample it is hard ta concJude whether this change in the slope 

reflects an undetlying physical phenomenon, or is just an artifacl of the poor statistics. It is 

hoped that in the near future, the publication of more complt 'le catalogues will allow us to 

perform a statlstically more robust study. 

Another intercsting point to be noticed from figures 2.1 band 2.2b is the faet that the 

obtained estimates of De are in disagreement with the previous estimates found frorn 

correlation function analysis, whcre De was cstimated as being 1.23 (see section 1.1.1). 

However, our estimates are in perfeet agreement with more recent estimates obtained in a 
more direct manDer by Atmanspacher et al 44 using Zwicky's catalogue53 (similar to our 

MCG80x80 sample) and Wen et al 38 u~jng the CfA 1 catalogue25 (from which our sample 

z40 was constructed). This discrepancy may arise from the fact that the former estimates of 

De were often derived from analy~es on the angular version of ç(r) (denoted as ro(9» and 

relating these results to those of s(r) via Limber's equation 70. However, this equation 

assumes that spatial homogeneity is reached within the sample's limits, which is not the 

case of the samples analysed here (as shown in figures Ua,b). Our analysis on the other 

hand, is free from such assumptions and it is hence expected to provide more reliable 

results. 
z40 

30,-__________________________ r-' ________ -, 

25 Slo~ = 1 80 ± 0.05 

20 

-60Mpc 

-7 MI'" 

~5~~ ________ ~ ________ ~ 

-1 0 .() S 00 GS 1 0 1 5 20 25 

LoglO( r) (r IS ln Mpc) 

Figure 2.2b. Correlation dhnenslOn analysis for the 3-d sample z40. The value of 
the slope of the linear reglOn implies De =1.80±0.05. thiS vaiue is in agreement 
with the value found from the analysis of the MCG80x80 sample (see figure 
2.1b) as predicted by equatio,\ 24. Although a ch,mge m the slope is observed 
at about 7 Mpc, the scalmg (linear) region of this sample reaches up to about 60 
Mpc (the radius of the lc:rgest circle totally contamed within the sample). 
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2.2 MuItifractals as Scale-Invariant Fields . 

Usually in nature one deaJs with tièld5 rather th an geomelric sets. Verv few physicul 

phenomena can be reduced ta geometric sets of points. On the contrary, nJost displny 

strong variability on their intensitics. Furthermorc, the observed inlcnsity of a field depcnds 

strongly on the resolution of the measurement as shown in figure 2.3. Here wc show the 

non-normalized fields ~.À of absolute lurnino~ity obtained From the 1091 galaxies in the 

CfA2proj sample. It can be secn that as the resolutlOn ').. decreases l'lOm À=A to À.:=5 (ie. as 

the luminosities are averaged over increasingly Jarger angles), the Juminosity variation also 

decreases severely as a result of the avemging process. In this figure the absolute 

luminosity LA at maximum resoluhon was estimated using LA = ,2f A' whcre fA and, are 

the known values of the apparent luminosity and radial distance to the galaxy (in Mpc). 

In order to account for the depcndence of the measurement on the rcsolution Â (as 

observed in figure 2.3), we will write the observed value of the field f 1}.À (ut resolution Â) 

as Â.Y. The exponent y is called the "order of singularity" and is large for strong events 

and is negative for weak ones41 ,57 ,66. 

For multifractal fields, a single dimension {or codimension) is not sufficient to 

characterize aIl the scahng properties of the distribution. In particular, the codimension of 

the set of boxes with luminosities f 11,'\ gleater than a v8lue ').} will depend on y. 
Furthermore, for multifractal fi"lds it is expected that the codimension of a field will 

decrease with deereasing y. Sinee, as we shaH show, the large-se ale galactic luminosity is 

indeed a multifractal field, the so-callcd "Iuminosity segregation" (reported by various 

authors37,38 and explained in section 1.1.2) can be then easily understood as the natural 

result of the variation on y of the galaxy distributions under study. 

When dealing with multifractal fields it is eonvcnient to genemlizc the previous 

definition of the codimension C of a fractal set to a "codimension function" c( y, rj} that 

represents the whnlc family of exponents characterizing the statistical properties of the field. 

A relation analogous tu equation 2.1 is then obtained for lhe probability Pr of a certain 

value f 11,.1 within the field, of being greater than a given value Âi': 

(2.6) 

Equation 2.6 is one of the fundamental properties of multifractals and corresponds 

to the generic outcome of cascade type of proccsses responslble for the formation of mos! 

multifractal fields40. The proportionahty symbol in equation 2.6 reflects the fact that there 

are slowly varying pre factors on the nght-hand-side of this cquation. These prcfactors. 
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however, may be ignored since our interest focuses on the exponential part which will be 

the dominant behaviour for large ..t. 

"C 
"ü 
u: 
o 
.~ 

e 
j 

80000~-------~--------~-------' 14 000 

1 

12 000 ----------1--1 

1 

, 

10000 

8 ~ 
o 45 90 135 

Angular PO~lIIon (in degrees) Angular Positton (in degrees) 

Î 
Â;=135 Î-v=27 

JOOOOr--------,--------,---------, 1&OOr--------r--------.-------~ 

20000 - -- -- --------r -- --
10000 

o 45 90 13~ o 45 90 

Angular PositIOn (10 degrees) Angular Po~ition (in degrees) 

Figure 2.3. Luminosity variablility as a funchon of the resolulion .Il for the 
field Lr.À as obtained from the 1091 galaxies of the sample CfA2proj. The 
figures have been produced by averaging the Juminosity over increasing 
angular scales. As the resoJuhon decrcc.lses from the original raw-data (À. = A) 
down to a resoJution of 27<' ( À. = 5), both the vanability and the intf'rmittence 
of the field are observed to decreasc severely. In order to facilitate the 
intercomp<uison among the figures, the luminosity flelds were not normalized . 
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2.2.1 The Scaling of Moments: Definition of the K(q,1]) FunctionN • 

A statistically equivalent approach to the question of charactcrizing the scnling 

properties of a multifractal is to study the hehavior of the different moments of the 

distributiorl. Consider the ensemble average of the qlh moment of a field f 'l.À ' defined as56 

(2.7) 

Substituting the value of f 1],,l. by Â rand using equation 2.6, we can approximate 

(2.8) 

For large À, this integral can be evaluated using a sadd le point approximation and invoking 

the Legendre transform of c( y, 1]) which maximizes the value of the exponent in 2.8 (see 

Pari si and Frisch57). This function will he denoted as K(q, 1]) and is defined as 

K(q, 1]):: max( rq - c( r,11») 
r 

Equation 2.8 can then he written as 

(( p.1],,l. t) = Â K(q.1]) 

(2.9) 

(2.10) 

Equation 2.10 is the mathematical definition of muItiscaling and is anothcr 

fundamental property of multifractal fields. For a mono fractal K(q,1]} is lioear in '1, 

whereas for multifractals, K(q, 1]) is nonlinear. In gencral, K(O,l1)=O (since <x °>=1 for 

any x:tO) and for a conservative field equation 2.10 predicts that K(l,1])=O. Moreover. 

since K(q, 11) mathematically corresponds to the second Laplacian characteri!'tic function of 

the field56 it follows that it must be convex. Furthermore, !'ince c( y, 1]) is the Legendre 

transform of K(q,1]), it must also be convex. The theoretical forms of both functions 

K(q, 1]) and c( y, 1]) are shown in figure 2.4 for lIeveral values of the exponent TI. The 

plots correspond to estimates obtaincd from a series of computer-made ~imulations with 

# Note Iha~ the exphclI IOcluslOn of Ihe variable Tl 10 K(Q.ll) and C(Y.TI) Il> speclfic 10 the Mudy of the gcncraliled 
Iuminoslly fields, and most hterature on the subJect consldcrs only the functlOns c(y) and K(q) (wlth Tl Implicitly 
assurncd to be 1) The relatIOns between the laller functlOns and the functions feu) and t(q) (of commun U&C on 
st range attractor theory) are dl!.cussed in appendlx one 
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known multifractal properties#. For high Tl values the largest singularities of ti."! field are 

amplified hence eXlending the y-range of the c( y, 1]) function. Cûnsequently for increasing 

11 the convexity of c( y, 1]) decreases whercas for K(q, 1]) it increascs. 

K(q.1]) and c(Y.1]) are two equivalent forms of fully describing the statisticaJ 

propcrties of a multifractal di~tributlOn, and throughout this thesis will be the main 

analytical tools cmploycd. However, when dealing with real data, before attempting to 

estimnie K(q, 1]) or c( y. 17) wc must firs! venfy that ihe multiscahng relations 2.6 and 2.10 

are rc~pcctcd over a broad range of seales. This i~ an cssential pre-requisite (which is not 

always takcn seriousJy enough) ta being confident that the estimates obtamed are a robust 

representation of the statistical properties of the large-scale distribution of luminosity. 

Figure 2.4 . Theoretical lorms for the lunctions: a) K(q,n) and b) C(y,7T) for 
11=0.5, 1.0, 1.5 ,md 2.0. The rurves have been obtained from simulated 2-d 
muHifractal lield.s of known statistical parameters a=2.0 and Cl,l=O.l (see 
section 2.4 for a discussion on these parameters) . 

Il For a detnilcd discussion on the sImulation of multifraclals fields sec references 58 and 41. 
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2.3 ResuIts from multiscaIing analysis. 

2.3.1 Rcsults for K(q, 1]). 

As mentionc:-d 10 the last section, before e~timating the aetual fonn of K(q, rJ} from 

the data samples, we must check that the scahng regions are wdl dcfined. This i~ shown 

for the 1091 f\laxles of the sample Cf A2proj in figure 2.5 WhlCh presents the plot of 

LOglO \(.e 1J.l..t 1 versus Lo~IO(À) for 11~=O, 1,2,3. The ensemhle avcragcs have becn 

calculated over the number NA. of nOll-empty boxes at resolulion À using the formula: 

, 1 ~ 
\ (fll.À)q) = N}. ~(fll'À); (2.11) 

where the quantity (RTl.À)~ represents the field value (raised to a power q ) of the i'" box in 

the field. According to equation 2. iO, for a multifractal the plots in figure 2.5 should give 

straight tines. In general this seems to be the case, althollg.l (<1S expccted for a finite sample) 

only for a limited range of scales. The most restricted scaling range is obscrvcd for 1] =0. In 

this case the scaliflg region extends from il :::: 4 to À "'- 128, implying angular scaling 

between }o and about 35° (recall that the maximum extent of this sample is 135°). For 

higher 11 's, the scaling region extends trom 35° down to about D.13° O. :::: 1024). 

For ail values of the exponent 1J in figure 2.5, fluctuations from linearity arc also 

observed within the scaling regions. This result is not surprising taken into account the 

statistically low number of events llsed in this u'1alysis (recall that the total number of 

galaxIes in this catalogue is 1091). Consequently, although multiscaling sccms to be 

observed in all fields studied, the poor statistics derived from the available catalcgues are 

expected to introduce significant uncertainties on the estimates of the function K(q.1]). 
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-- q= 000 
q= 025 -- q= 050 
q= 0.75 - q= ) 00 --- q= 125 

q= J.50 - q= 175 -- q= 200 - q= 225 

Figure 2.5 . Multiscaling of four R 11. À. fields as predicted by equation 2.10. The 
values of Tl are 0, 1, 2 and 3. The analysis shown corresponds to the 1091 
galdxies from the CfA2proj sample. Angular scaling regions are clearly 
observed in aU of the fields. 

4 

For a given 11, the value of K(q,7J} is obtained for each q from the value of the 

respective slope in figure 2.5. These slopes have been estimated using a linear regression 

over the !inear scaling region of the ~urves. The estimated values of K( q. Tl) are shown in 

figure 2.6 for 11 ~~O; 0.5; 1; 1.5; 2 and 3. Error bars were estimated from the standard 

deviation of the slope fits, and in order to preserve the c1arity of the figure, they are just 

shown for 1J '::., 1.5 and 3.0. The curves are far from linear showing strong convexity (a 

good signature of multifractality) for ail fields f 11. À. • These results are a generalization of the 

results round by various authors 7 ,16,43-47 on the multifractal features of the point -density 

field (the 1J =0 case). Furthermore, these results suggest that the physical processes 

rcspotlsible for the spatial distribution of luminous objects in the uni verse are of multifractal 

chnracter . 
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Figure 2.6. K(q,1]) for the multiscaling curves of figure 2.5 . In this figure wc 
have also shown the results corresponding to 1]=0.5 and 1]=1.5. The numbcr 
density field (T] =0), the apparent luminoslty field (11 =1) and ail of the other 
TJ-fields show strong convexity, as expected from mulhfractality. 

2.3.2 Comments on the Scaling Ranges. 

Figures 2.7a and b show the multiscaling for the function K(q,l} as cstimated from 

the I091 galaxies in the sample CfA2 and [rom ils radial projectIOn the sample CfA2proj. ft 

can be noticed that the scaling region for CfA2proj is much more CX(cn~lve than for CfA2. 

Since the only difference between the~e two ~ample~ i~ an Integral along the radial 

direction, it must be concluded that the decreascd ~caling reglOn of CfA2 I~ clthcr an artifact 

of the angular intcgration, or that is duc to a much ~mallcl average Ilumbcr of galaxie ... per 

box (since there is only a fmite number of galaxie~, a break I~ expcclcd (0 OCCljf at ~cale~ 

corresponding to densliles close 10 1 gaiaxy per box). In figure') 7c wc have plotted the 

multiscaling corre~pondmg to a ver~lOn of CfA2 but integrated alung con~tant radii {not 

along constant angles as in the case of CfA2proJ}. We note an Increa~c ln the ~caling region 

almost identical to figure 2.7b. AIso, the cOITe~ponding K(q,l) curve~ are very ~lImlar for 

the se two integrated fields as shown in figure 2.8. Smce the latter inlcgratlOn i~ not an 
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angular intcgration we are left to concludC" that the break is only due to the insufficient 

number of galaxies per box. In particular we note that for a field integrated by D 

dimensions, the average number of galaxies per box increases by À. D. 
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Figure 2.7 Multiscalmg of K(q,l) for various samples. a) CfA2. b) CfA2proj. c.) 

A version of CfA2 integl'ated along constant radll (not constant angles as in the 
case of CfA2proJ) The simllanty between the scaling ranges of figures b and c 
suggcsts that the lL.provement on the scalmg reglOns is mdependcnt of angular 
fluxes or mteg, ations. 

The agreement of the statistical functlOns (as evidenced by figures 2.7b,c and 2.8) 

of both fluxes (along constant angles and along constant radii) suggests that standard 

cartesian integrations can he used as a first order approximation of the actual angular 

inregrals. This will he our assumption in the remaining of this thesis, 
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The improved scaling regions observed In the projected fields make us more 

confident on the statistical pararneters estimateô from them. Consequently. in the remainder 

of this thesis emphasis wIll be placed upon the result:i from analyses on the integratcd 

samples CfA2proj and MCG80x80. Smce these two sample~ are rclatcd Vlll an intersection 

(see figuf.: 1.5) the knowl~dge of the stati!ootiC'al propertic" of (multi)fractal Jnter~cctlOns will 

he fundamental 10 comparlOg the results of the analyses from both sarnples. 

0.6 

0.5 --0-- From Cf A2proJ 
From proJecllon along constant radn 

0.4 

0.3 
K(q,l) 

0.2 

0.1 

0.0 

-O. ] 
0 2 3 

q 
Figure 2.8. K(q,l) curves estlmated from two integrated sub-samples of the 
sample CfA2: one a)ong constant angles (this IS the standard CfA2proj sample), 
and the other along con~tant radll. Both curves agree ImplylOg that cartcslan 
projections are ln thls case a good flfst order approximation of the actual 
angular integrals. Tlll'se curves were obtamed from lmcar regresslOns on the 
slopes of the linear reglOn of the curves shown in figures 2.7b and 2 7c 

A further e\ample of the importancc of having ~ufficient galaxies per box can he 

observed when the MCG80x80 !ooample is divided lOto 6° strips, and each .. trip is treated as 

a 1 dimensional !oolice of the sky# . Figures 2.9a to 2.9d !!~JOW the multiscaling of four of the 

thirteen resulting strips. It can be noticcd that both the scaling range and the value~ of the 

slopes (for a constant q) vary strongly. This (as it will he explained in chapter thrC'e) is a 

consequence of the critical behaviour of the luminosity fields associated to flrst order 

multifractaJ phase transitions. 

# This is an approximation to the fac! tha! each stnp IS 6° by 800 long 
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Figure 2.9. Multiscaling conesponding to four of the thirteen I-dimensional 
flux-strips produced by slicing the MCG80x80 sample mto 6° strips. It can be 
observed that both the scaling range and the value of the slopes (for a given q ) 
valy signiftcantly from strip to strip_ TIus will be explained in chapter three 
as the result of the crîtical behavlOur of the lummosity fields (section 3.3). 

3 

In statistical terms, each of these thirteen flux-strip:, is equivalent to the sample 

CfA2proj (see tïgure 1.5) and they are hence expected to show scaling ranges broader than 

the corrcsponding ranges of the wholc MCG80x80 sampte_ This effect can be bctter 

observed in figure 2.10 where wc sec that the multiscaling of the ensemble average of the 

thirteen Id strips (shown in figure 2.lOa) shows an in~reascd scaling range whcn compared 

to the scaling of the original 2-dimensional MCG80x80 sample (see figure 2. lOb) . 
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Figure 2.10. Multiscaling of the apparent luminoslty field II ,À as obtained from 
a) the ensemble average of the thirteen I-dlmenslOnal flux-strips obtained 
from the sample MCG80x80; and b) the onginal 2-dimensional MCG80x80 

catalogue. The 'icaling region is signiflcantly broader (or the case of the 
averaged multiscaling curves. It is argued that this effect is a consequence of 
lhe increased box-density of galaxies In the I-dlmenslOnal samples. 

In this section wc have shown that in order to obtain ~tatjstjcally robust scaling 

ranges, it is necessary that the corresponding fields he constmclcd from a sufficicntly high 

number of galaxies pcr field-box. Since thlS Humber is gcnerally higher in integrated fields, 

in the remaining of this thesis the estimates of the ~tati~tical functions K(q,71) and c( y, 71) 

will be obtained from analyses performed on the integrated samples CfA2proj and 

MCG80x80. 
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2.3.3 Results for c(r.7]) • 

When ~tudying probability distributions, the definition of multiscaling that applies is 

givetl by equation 2.6. In this ca<;e the probabilities are estimated (at a given resolution À.) 

from the ratio of the number N y of structures with orders of singularity greater than a given 

r , to the total number N À. of boxes at scale À. Figures 2.11 a and 2.11 b show the 

multiscaljng corrc~ponding to the function c( y. 1) as estimated from the CfA2proj and 

CrA2 samples. Once agam, more extensive scaling regions are observed for the radially 

integrated field in agreement with the conclusions of the last section. However, the curves 

in these graphs are less straight than the corresponding analyses using K(q,7]). This is 

consistent with the faet that c( r, 7]) is highly sensitive to normalization due to the slowly 

varying prefactors ncglected on the right hand side of equation 2.6#. Furthermore, the 

situation is worsened by the faet that, because of a statistical "dressing" of the field, the 

sample mean may actualJy he a poor estimate of the actua) ensemble mean (as it wi1l be 

discussed in section 3.3). In our analysis, we have normalized the field so that at every 

scale À the average IUl1ùnosity is given by (e IJ.~) = 1. 

a) 
1 

CfA2proj 11=1 

,,-.... 

~ 0 ::J. .. If .. ~ ~ ---.J __ -
a 

1\1 r=-2.50 
~ --- 1- -1.50 

~ -1 ~-
1--0.50 -- • 1--0.25 

~ 1- 0.00 
P-c 1- 0.10 --Q 

-2 ~ 
~-

1- 0.25 

! 1- 0.40 

~ 
-3 

0 1 À 2 Log
lO 

( ) 

3 

Il Notice Ihat sJnce K(q.T'!) is defined from a sinct equality (sec equation 2.10) the estimatIon of this functlon is free 
from normahzalion problems. 
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Figure 2.11. Multiscaling for the field f I.À. as obtained from a) the CfA2proj 
sample, and ~) the CfA2 sample. Although the scaling for the radially 
integrated fjeld seems to be better defined, the curves shown in th(,sl~ figures are 
less straight than the correspond mg muItiscalmg CIJfVeS obt.lined from the 
moment scaling analysis (section 2.3.1). Il is argued that this IS probably due to 
the normalization of the fields which affects primarily the estima tes of the 
probabilities. 

The normalization problem produces scaling regions with greatcr uncertainty than 

those from the moment analysis. which are not affected by thls problem. Ncvertheless. 

sorne information can still be extracted and figure 2.12 shows the multiscaling of c( r.m 
for 1] =0.5 and 2.0 (using CfA2proj). The scaling regions are Ilot a]ways very weil defined. 

but roughly linear curves are observed to extend up ta Â. =512. In particular, the scaling 

curves are noticed to become less straight for increasing y. This is due the existence of very 

few structures in the field having high order singularitics. which in turn leads to poor 

statistics . 
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Figure 2.12. MuItiscaling for 11 =0.5 and 11 =2.0 as estimate::i from the sample 
CfA2proj. The scaling curves are observed to be les& straight than those 
observE'd in t:.e analysis of statlstical moments. 

The lack of good scaling observed in these fields means that the estimates of the 

corresponding funetions c(y.7]) will not be very accurate. Consequently; due to the 

relevance in this thesis of the luminosity distribution, the remaining of this section shaH 

concentrate exclusively on the case 1] :-.: 1. From the slopes of the scaling curves in figure 

2.11 a (as estimated from a linear regression over the range 2$À$512) we have estimated 

the codimension function c(y.l) eorresponding to the apparent luminosity field of the 

samp!e CfA2proj. This estimate is shawn in figure 2.13. It is observed that there exists a 

certain order of singuiarity# y (--0.5 in this case), below which c( r, 1) converges to a vaIue 

Il Thb order of stngulJnty (dcnoted as Yql.p ln appendlx 2) corresponds to the mmimum order of stngularity 
(Jbser.·able ln a projected field. In appendlx 2. the value of Yql.p--O.5 IS actually predlcted from purely theoretical 
consideratIOns. 
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of about 0.10, the codimension of the lowest singularity. This i mplies that the dimension of 

the fractal point set (where ail galaxies are treated as mathematical points) is about 1-

0.10=0.90 for the CfA2proj sample. This value is consistent with estimate from the ù,

(-0.85) analysis already ~:hown in section 2.1.1. 

A second mteresting pl.)int about the cmve on figure 2.13 is that the high-'Y end of 

c( r,I) seems to be Iinear with a slope close to 1.35. In chapter Huee we will argue that this 

is indeed the case and that the physical process responsible for this behavior is a first order 

multifractal phase transition related to a non-c1assical form of self-organized criticality. 

c(y,l) 

l.lr---------r---t---, 
1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 

0.3 
0.2 

~:~ HHIHIHf~lI~t 

slope=: 1.35 

-0.1 f--~--.--~--'---r---~-"""--~ 
-1.0 -0.5 0.0 0.5 1.0 

y 
Figure 2.13. Codimension c ( y, 1) of the apparent luminosity field as 
estimated from the CfA2proj sample (the corresponding multiscahng curves are 
shown in figure 2.11a). The hnear bchavior for the high- y end of this curve 
will be interpreted in chapter three as the signature of a multifractal phase 
transition, assoclated to a self-organized critical phenomenon. 

In this section we have !earned that norrnalization and ~tatistical noise problems 

inhibit the existence of weIl defined scaling regions (a~ e~timated from probability 

distributions) and consequently that the est:.nates of the codimension functlon c( r. 11) are 

statistically Jess robust than the correspolldillg e~;timate~ of K(q,1]) obtained from the 

moment-scaling analysis (shown in section 2.3.1). Nevertheles~, in the ~pecific ca!',e of the 

apparent luminosity field, the ohtained curve of c(y,l) still contains valuable information 

on sorne multifractal propcrtles of the distribution. In particular, in thi~ section we have 

round sorne evidence for the existence of a critical bchaviour associated with first-ordcr 

multiflactal phase transitions (sec figure 2.13). Thi~ subject will be developed in detail in 

the next chapter. 
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2.3.4 Cl,Tl: The Codimension of the Mean of the Field • 

ln section 2.2.1 it was explained that for a conservative field K(q,17) is zero for 

q=l. In such a calie, equation 2.9 implic~ that there exists a certain y (denoted as YI) such 

tr:at, whcn q= 1, YI = c( rl,17). Thi~ fixed point on c( y, 17) will be denoted as CI.7] and will 

correspond to the codimension of the mean of the field f 17. À. • Since K(q, 17) and c( y, 17) are 

Legendre transforms of each olher the following inverse relations apply57: 

(2.12) 1 

hence for any given q (or y) there exists a corresponding exponent y (or q). Equation 

2.12 gives us a simple method of estimating Ct.7]: 

Cl.l1 = (: K(q,1])J 
q q=1 

(2.13) 

In its original form, the value of Ct,/] was defined by Schertzer et al 62 in tenns of 

the function K(q,17) as obtained from the ensemble average over the whole field#. 

• However, as pointed out in section 2.3.1, the ensemble average of the tields t'Tl'À were 

computed over the number Nf,. of non-zero boxes in the field al resolution Â. (ie, over the 

fractal set). NÀ cao be approximated as Â.0"''' (where DIxI.l: is the box-couoting or fractal 

dimension of the set) and is not necessarily equal to the total number of boxes in the field 

(given by Â.D , where D l~ the dimension of the embedding space). Hence, it is expected 

that the functions K(q,1]} estimated from each of these methods will dîffer from each other. 

In faet, the dîfference amounts to a linear factor Cho/q -1), such that: 

• 

K(q, Tl)",/IIII~_ fil'Id = K(q, 11) 'rOr/tJI + CI"' .. (q -1) (2.14) 

where Cb< • .( == D - Db<.x is the deflOed as the box-counting codimension. The correlation 

codimension Cc is an upper bound estimate of Cb<lX (both quantities are in general quite 

similar, and for monofractals they are identical). In section 2.1.1 Cc was estimated in 3d 

as 1.15 and consequently we estimate Cb</t:::-: 1.15. Substituting equation 2.14 into 2.13, and 

denoting K(Q,l1)/raclal as K(q,ry} (as il has been done throughout the thesis) we obtain tbat 

the codimension of the mean singularity of the 3 dimensional distribution is given by: 

Il Thesc aUlhors actually defined CI •1l only for the '1=1 case. 
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CI•Tl = (; K(q'll» + C,,(l\ 
q q=1 

(2.15) 

In figures 2.14a and 2.14b, the functions K(q,l) and K' (q,l)# (corresponding to 

the apparent luminosity fit.'ld f I.A) estimated from the sample CfA2proj are show n. The 

scaling region extends from == 0.1 0 to == 350 (this was shown in figure 2.5b). From the 

value of K' (q,l) at q= 1 and using equation 2.15 we estimated CI.I = 1.25 ±0.05. In chap'cr 

3 it will be argued that the large uncertainty involved on this eSlimate of CI•1 is due to 

divergence of high statistical moments of the field, related to the Iinear behaviour previously , 

observed for c(y,l) in figure 2.13. 
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Figure 2.14. a) K(q,l) and b) K(q,l) as deduced (rom the CfA2proj sample. 
From the value of K'(q,l) at q-=l, we have estimated the codimension Cu of 
the mean of the apparent lummosity field to be 1.25 ±O.05. 

# Note that pnmes(') will never denote differcntlatlon wlth rc:.pcct to Tl in this thesis. 
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The observed value of CI, 1 is fairly close to the codimension of the minimum 

singularity Cc' This raises suspicions about the estimate of CI,I, for if such value were 

correct it would imply that the singularities corresponding to the mean luminoslty of the 

universe are (fortunately for us) just above the minimum singularity responsible for the 

Iimiting apparent Juminosity observed from the earth. This suggests that the luminosity 

estimates will be in general quite sensitive to the minimum detectable magnitude. On the 

other hand, the ObSt::l vt:d value of Cl,l'~ 1.25-1.30 appcars consistently from the analysis of 

other samples (as shown in the next figure for the ensemble average of thirlt;en 60 strips 

obtained from the MCG80x80 sample). 

In the next chapter our analysis will reveal that in fact the estimates of Cl, 1 should 

be taken cautiously because of a statistkal dressing mechanisTll which contaminates such 

estimates. Nevertheless, the value of CI, 1 -1.28 may he taken as a rough approximation and 

will in faet be used in the next section to model simulations of the generaiized luminosity 

fields. 
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Figure 2.15. a) K (q, 1) function and b) its corresponding derivative as 
estimated from the ensemble average of thirteen 1-dimensional strips obtained 
from the MCG80x80 sample. From the value of K'(q,l) at q=l we estimated 
CI,1= 1.33±O.05 in agreement with estimaées from CfA2proj (see figure 2.14). 
TI\e correspondmg mulliscaling curves were already shown in figure 2.10a . 
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2.4 Universal Mutifraclals. 

When many multifractal cascade p~ocesses interact and "mi x" over a finite nmge of 

seales, the resulting fields usually attain a stable attractive behaviour which can he expectcd 

to fall into specifie universality classes. In slIch case, the functions c( y.l]} and K( q, '1) 

which describe the statistical properties of the rcslllting fields, can be fully chamctcrizcd by 

three parameters. In fact, as in standard probability thcory a Gaussi.m curve can be 

completely characterized by its mean and its variance, similarly for the case of these 

"universal multifractals" the statistical properties of the multifractal distributIon can he 

completely descrihed by the quantities CI,Tl' Cl, and H: 

CI,n corresponds to the codimension of the mean of the distribution. already 

defined in equation 2.15. 

a is called the "index of multifractality" and it can vary betwcen zero (for a 

monofractal set) and two for a log-norolal multifractal field. The value of a is rclatcd to the 

curvature of the function c( y, 1]) at y=C l,Tl' 

The rarameters a and CI,Tl totally determine the fonn of both functions K(q, 11> and 

c( r. 1]). Estimates of these two parameters have been found by various authors for 

multifractal fields such as seismic nloments42, turbulent veloclty fields 59, cloud Iiquid

water content60, landscape topography61, and hadron jets63. 

The third universa! parameter H is a measure of the non-stationarity of the process 

and it is consequently equal to zero for aIl conservative fields. ln section 3.2 it will be 

estimated that H==O in the case of the generalized luminosity fields. In such a case for 

universal multifractals we obtain lhat# 

K(q, 11) = 1Ja K(q, 1) (2.16) 

Equation 2.16 implies that if the fields correspond to universal multifractals, then 

the quantity a (corresponding to the index of multifractality of the original 3d distribution) 

may he estimated from the slope of a plot of Log1o(K(q, Tl) ver~us LoglO ( '1). 

2.4.1 Estimating a: the Double Trace Moment technique (DTM). 

We have attempted to use the above described procedure (denotcd in the literaturc as 

DTM64, which stands for Double Trace Moment) to estimate a for the fields f. 1'/.).' The 

values of the function K (q, 1]) are found from the slopes of plots of LoglO (f 1'/.). )q) versus 

# A complete treatmenl of the 'heory of Umversal mulufractals may be found ln refcrente 62. 
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Log 1 0 ( À) (as predictcd by equation 2.10) in the same m'1nner as previously done for the 

standard moment-<,caling analy~ls (~ection 2.3.1). The difference with the DTM technique 

is that here we flx ! he value of q and then plot LoglO ((I! T'J.À.. yi) for various values of '1 

whereas JO the ~tandard momcnHcahng technique the converse was done. 

Univer~ality is expectcd to be observed only within a certain range of q' s. In 

particular, fmite ob~ervmg dimension !eads to the divergence of high order statistical 

moment~, hence even for large enough samples universality can only be obscrved up to a 

criticul value of q, dcnoted a~ qO.l' In the nex! chapter wc will estimate that 

qtJ .• = 1.33 ± 0.05. Also, the integration (along the radial direction) of the projected samples 

MCG80x80 and CfA2proj :mposes a minimum q (denoted as q. in appendix 2) below 

which universality may no longer he observed. In appendix 2, q. will be estlmated as 

0.6±0.1. ConseC]ucntly, when performing a DTM analysis on the fields Rtl. À. , the allowed 

values of q mu~t be contained within the rm.ge 0.6~q ~1.33. This narrow range of allowed 

q 's is expected to weaken the estimates of sorne of the statistical parameters that describe 

the multifractal distribution of luminosity. 

Figure 2.l6a shows the rnultiscaling for the fields f Tf. À.. as obtained from the sample 

CfA2. The multiscaling is shown for q=0.9. As previously shown in figure 2.7a, the 

scaling range of this sample is very short and restricted to 2~À~8. Using this range, the 

values of K(O.9, 1]) were estimated from the corresponding slopes and are shown in figure 

2.16b as a function of Log. 0 ( 11). Clearly, th~:: restricted scahn~ range is not expected to 

yield very robust estimates of the function K(q, il), but at least allows us to make a rough 

estimate of whaf the Ime multifractaHty index a (obtained from the slope of the linear region 

in figure 2.16b) should be in 3d. without the complications introduced by the projection of 

the tÏelds. 
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Figure 2.16. a) MultIscaling and b) DTM analysls for the helds e Tl. À. as 
obtained {rom ihe sam pie CfA2. The lincar reglOn ln figure 2 16b 15 evidence of 
the universal character of the e Tl.À. fIelds. Howevel', the short multIscaling 
region observed ln fig. 2.16a (2~À.~8) allows only for a "rough" l'sltmate of the 
multifractahty mdex ex 10 3d. From the slope of the hnear feglon m figure 2.1bb 

we have estimated a-lA (accurding to equahon 2.16). Wc have used '1= 0.9. 

The linear region observed ln figure 2.l6b is (according to equation 2.16) cvidencc 

for the presence of universal behaviour in the three dimcnsional luminosity fields. 

Unfortunately, as already mentioned, beeausc of the short range of se ales used for the 

estimation of K(O.9, 7]} , the estimate of a obtained 10 this analysls must only be taken as a 

first approximation to the actual value. In section 3.6, a more indirect argumcnt, using the 

projected samples. will be used ta estimate a= 1.2±0.4. This value is compatible with the 

value obtained from figure 2.16b. 

The departure from linearity observed in figure 2.16b for low 11'~. is due to the fael 

that as 11 approaches zero the luminosity intensities are ~evcrely dimini~hed and statbtieal 

noise dominates the distribution; tl1tlS killing the universal behaviour. 

In section 2.3.2 we saw that broader scaling regions arc generally oh~ervcd in 

samples which are radial mtegrations 01 the actual thrce dimen~ional di..,tribution~. Figure 

2.17 shows the multiscaling of the fields f 1].;" as obtained from thc 1091 galaxic!-. of the 

CfA2proj sample. The multlsc:aling is shawn for q=O 9 and q= 1.2. In bath ca!-.c!:. thc 

scaling ranges are c!early defincd [rom À =2 up ta the large..,t !-.calc À =5 t 2 lInplying ~caling 

between -0.260 and -670 (recall that the total angular cxtcnt of thi ... ~aJllplc is 135°). 
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Figure 2.17. Mutiscalmg for the f TI.). fields as estimated from the sample 
CfA2proJ. Shawn are the curves carrespondmg ta q = 0 9 and q =1.2. Bath figures 
show Iinear curves ln agreement wlth equahon 2 10. For each set of values q and 

71, the quantlty K(q,ll) IS obtamed from the corresponding slope Ji these figures. 
The resultmg funchons K(Q,11) are plotted ln the next figure as a funchon of the 
variable 11 (nat q as ln the standard moment analysis) . 
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Figure 2.18 shows a plot of LoglO (K(q,1])) versus Log 10 ( 1]) for q=O.9 "nd 

q= 1.2. Bath curves dlsplay roughly parallel linear regions implying a slope u p=2.()()±{).06 

independent of q (the subscript "p" refers ta the u of the "projccted" field). Howcver, thi~ 

estimate must he cautiously 1l1terpreteri. In appendix two (sectIOn 11.3) we ~how cmpirical 

and theoreticaI eVldence that sugge~ts that for intcgratcd (or proJcctcd) multifracHll fields 

the value of the ob~erved Index u p IS 2, mdcpcndcnt of the truc value of u for the origiral 

distribution In 3d. Therefore, the observcd value of u p should be understood as " sign<llure 

of the spatial integrauon of a multifractal field, and does not reflccl the intrin~ic value of (l 

corresponding to the actual 3d distribution (sec appendlx 2, section n.3, for a short 

discu~sion on the subject). 
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Figure 2.18. DTM analy51s for the fields ê 11). obtained from the sample 
CfA2proJ. The slope of the hnear reg IOn 15 roughly the same for both curves 
implying that the projected lummoslty dIstributIOn can be d('scnbcd by an index 

of multifractahty cxp=2.0, dlfferent from that correspond mg to the actual Jd 
distnbution. It IS argued that thls dlfference anses as an arllfact of the 
projectIon of the lum\Oo~lty fleld~. The breakdown of the hnear behavlOur IS 
due to the spatial mtegration of the fIelds (for low 11's) and to the divergence of 
statistical moments due to a dressmg mechamsm (for large 11'5) as It Will be 
shown m the ne,t chapter. 

Although the linear regions in figure 2.18 sccm to he weil defined they are reJatively 

short (in terms of the range of 11' s). In fact, both curves are observed to depart from 
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Iinearity for both high and low Tl' s. In the case of the high 11 end, the bending of the curves 

is caused by a dres~ing mechanism that mduces a critical behaviour in the high statistical 

moments of the field~ (as it will be explained in the next chapter). For low values of Tl the 

break is due to the fact that when projecting (or Illtegratmg) a multifractal field, the 

information on the lower orders of singulanty of the field is Imt (as discussed in appendix 

two). In ~cction II.2 (appendix two) we LIse the obtained values of a and CI,l to predict 

that the break on the univer~al behaviour should oecur (for q=1.2) at LoglO ( 1]) == -0.13. 

This predlcted value agrees with the minimum value of LoglO ( 1]) observed to display 

universality in figure 2.18. 

2.4.2 Multifractal simulations of the observed luminosity field .eu.' 

In order to verify the validity of our estimates, we have compared the observed 

form of K(q, Tl) (as obtained from the radially integrated sample MCG80x80) to that 

eorresponding 10 slmulated universal mutifraetal fields. We have produeed five two

dimensional simulations# of universal multifraetal fields with A=256, all having the same 

statistical paramcters a=1.4 and CI,I=1.28 (eorresponding to the universal parameters 

estimated for the field Ru). One such simulation is shown at the end of this chapter in 

figure 2.20. Each of !hese simulated fields has been projected from 2 to 1 dimension, and 

to eaen of them we have imposed a minimum threshold so that events with an intensity less 

than such threshold are set equal to zero. This threshold has been seleeted so that the box

counting codimension C"'u of the thresholded fields he equal to 0.15 (the same as the ClvJx 

observed in the samples CfA2ploj and MCG80x80). Wc have further compared the 

statistical function K(q,l) as obtained from the thresholded simulations to that observed 

from the sample MCG80x80. In figure 2.19 we show the K(q,l) curve for the ensemble 

average of thirteen 6° strips from the MCG80x80 sample (already shown in figure 2.15a). 

Also shown is the corresponding K (q, 1) from the simulated fields. It is observed that both 

curves agree fairly weil for low values of q implying that in this range, the observed 

statistics of the luminosity distribution arc weIl characterized by the above mentioned vaIues 

of Cl and C 1,1. The curves start diverging near q -1.33. In the next chapter it will he shown 

that this value has important physical connotations SInce it arises as a result of the 

"dressing" of the luminosity fields. This "dressing" mechanislll is related to a Self

Organizcd-Critical phenom~non and dominates the behaviour of K(q,1) for high values of 

q (sec discussion in section 3.2) . 

" For a detalled discu~slOn on the simulations of mulufractal fields, see references 58 and 41. 
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0.6,---------------, 
• From ensemble average of 

MCG80x80. 1 
0.4 0 F~om 5 projected simulations III 

wlth Cl= 1.4 and Cu = 1.28 ~Jp;( 

~~j 
0.0~~~ 

K(q,l) 
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Figure 2.19. K(q,l) function as estimated from the ensemble average of thirteen 
60 strips (from the MCG80»$O sample) compared to the corresponding functioo 
obtained from 5 simulated multIird.:~:tl fields with (l=1,4 and Cl,F1.28 which 
have been projected and then thr,~sholded up to a mimmum codimension of 0.15. 
The dgreement between the two curves l~ t~pecially clear for thE' low q region. 
To preserve the danty of the figure, errors b.;rs are only shown for the curve 
correspondmg to the sample MCG80x80. 

2.4.3 Comments on the results. 

The results shown in this chapter, together with the thcoretical developments 

presented have provided us with a new (yet incomplete) picture for the large-seale 

distribution of gener.:tlized luminosities. In this picture, luminous objeets in the uni verse 

would be formed by caseading processes dominated by non-linear interactions. The 

resulting fields (of density, luminosity, mass, etc.) would have multifractal characterifltics 

as clearly demonstrated by the obtained estImates of the functions c( y, Tl) and K(q, ro 
(sections 2.3.1 and 2.3.2). Due to ob!ierVatlonallimitations, not a!l galaxies in the universe 

are visible from the earth. Our re~carch has estimated that the fractal dimension of the set of 

observable p.alaxies with limiting magnitude of 15.5 is (in 3-D) about 1.85 (~ections 2.1.1 

and 2.1.2) implyinp a codlmen~ion for the minimum observable !iinguJarity of - J .15. There 

is also evidence tilat the ~tatJ"tical properties of these multifractal fields wou Id be 

determined by sorne universal parameters a. and CI,l (-1.4 and -1.28 re!ipectively in 3-D>. 

The latter quantity corresponding to the codimension of the mean lumino~ity of the 
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univer!\e. However, a!\ it has been stated in previous paragraphs, the values of ex. and CI,l 

should ue (Icccpted only a~ prcliminary estimates due to sorr.e intrinsic statistical problems 

of the lummm.ity field~ whlch allow only a narrow statl~tleal range within which these 

mea\urement~ are val Id. 

ln the next chapter we will add yet another important feature to this new pieture of 

the large-seale di!'ltribution of the !uminosity fields. We will detect and quantify the 

existence of fir~t order multifraetal phase transitions assoclated with self-organized critical 

bchaviour~. In this contcxt, the next chapter will provide us with an appropriate framework 

to understand both the variability of the CI,! estimates and the observed form of the 

apparent luminosity distributions . 

Figure 2.20. One of the ftve simulatIons of the 3-dimenslOnal distnbution of 
galachc luminosity used 10 the analysls dlscussed in sechon 2.4.2. The umversal 
parameters are a=1.40 and Cl,1=1.28 (see discussion ln the text). In this figure 
evcnis wlth a codlOlenslOn lower than 0 15 (correspond mg to "non-visible 
g.llaxies") are shown in black, whereas "vIsible "galaxies" are shown in white. 
The large-scale structures observed 10 this fIgure (clusters, vOlds and fIlaments) 
are comparable to those observed 10 the sam pIe CfA2, shown 10 figure Ua. 
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Multifractal Phase Transitions and Self
Organized Criticality. 

3.1 Motivation. 

In chapter one (section 1.2) it was stated that besides multiscaling, another 

import'nt signature of multifractality is the divergcnce of high statistical moments in the 

probability distribution of the observed field. In this chapter WI! shaH study the physical 

origin of such divergence and its connections to first order multifractal phase transitions 

al1d self-organized criticality. We shaH then scarch for sIgnatures of di vergence of 

moments 10 the various available generalized IUl1l1nosity fields and shall attcmpt to define 

a new quantity; the dressing dimension Ddrw' as a more appropnate qualifIer of the 

critical behavior of the these fields. As a consequence of this analysis, wc shaH also 

propose that the observed critical behavior of the luminmity fields gives us a new insight 

on the Juminosity function <1>( f). 

3.2 Dressed Statistics : Definition of qn,q' 

Multifractal fields are generically produced as a result of cascade processes (from 

large to smaller scales) mled by non-linear interaction~ bctwecn the diffcrent scales41 . As 

a multifractal process cascades down to very 'imall ~cales, the variability and 

intermittence of the field increases rapidly produClOg ï('gion~ of highly 10c<lli/.cd extreme 

intensity. Since this smaH seale limit IS u1o,ually !-.malicr than the ~cale of ob~crvation at 

which actual measurements of the field are performed, the proee~~ of ob~ervation 

effectively integrates or avcrages the fIeld up to the ~eale of ob~ervatlon. Thi, integrated 

or "dressed" field usually behave~ in a manner which i~ ~tatjstlcally ~imjlar to the aetual 
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"bare" field (ie. it has the same scaling exponents). However, in the case of the more 

violent and extreme ~ingularities of the field, the integration fails to smooth out the 

process producing ~he divergence of sorne statistica! moments. Since the presence of both 

scaling and divergence of moments has been under~tood as a signature of self organized 

criticality36,65 Schertzer et al 66 have recently shown that thls type of critical behavlOur is 

the generic outcome of rnultifractal processe~. In particular, Schertzer and Lovejoy41 have 

predicled the exi~lence of a certain critical moment qD,1] (the subscript D standing for 

"dressing") 50 that for a large enough sample the moment-scaling functlOn will diverge 

(ie. K(q, 11) ~ 00) for a11 q> qD.T]' This divergence irnplies power law tails in the 

probability histograms of sorne fields; that is, for a generalized field e 11,À. the probability 

of a point in the field of having a luminosity greater than a certain value s is given by (for 

very large s) 

pr(i > s) oc S -qD . .,., 
11 ,À. 

(3.1) 

We have tested the presence of such exponents in the probability histograms of 

the various e I],À. fields. Figure 3.1 shows a plot# of LoglO { pr( f 11,Â. > s)} versus LoglO { s} 
for the CfA2proj sample for 17=1,2 and 3. In each case, qD,q is obtained from the value 

of the slope of the histogram's t.ul. In particular, it was estirnated that q D,l = 1.33 ±0.05, 

QD,2=0.64±O.06 and QD,3==O.36±O.04. In this case ail histograms were taken at a 

resolution À = 128 which is weil within the scalîng range of this sample (see figure 2.5). 

Note that these exponents do not vary in a trivial manner. Their values are dctermined by 

equation 3.3, as discussed in sectIOn 3.5 

By comparing equations 3.1 and 2.6, we note that in the case of the former the 

right hand side shows no explicit dependence on the resolution À of the field. This is 

because the exponent qD.l1 should be resoJution independent as shown in figure 3.2 for 

the sample CfA2proj. It can be noticed from this figure that the value of QD, l z 1.35 

rcmains roughly constant even for very large values of À. 

#1 The prùbdblhlles have been eSlimaloo from Ihe number of boxes JO Ihe field al resolu/ion Â whlch have a generalized 
luminoslty greatel' than the reference value S. 
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Figure 3.1. Probability histograms for three fields f 1J • .t. The si opes of the linear 
regions provide estimates of the quantity QD,'1' which varies as a function of 17. 
The f,'l.À fields were obtaL'led fcom the CfA2proj sample. À =128 in aU cases. 
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Figure 3.2. Independence of QD.7} on the resolution .Â. as seen for the t'I.À fields 
obtained from the CfA2proj sampll'. For four d,Herent values of À, the 
probabihty histograms (plotted against normalized probabilities) show a 
consistent estima le of q D,I =1.35. 
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This independcnce of qn,rr on the rcsolution À implies that even for the raw 

ungridded data (that is. for the case À. ~ A) qD,11 should remain the same# , This is 

shown in figure 3.3. This figure also shows the sample independence of these results. 

Here we have plotted the probability histograms of fl.A for the samples MCG80x80. z40 

and CfA2. The absci,sa ~;hows the number N(m) of galaxies with an apparent magnitude 

grcater than a reference value m plotted against apparent magnitude rather than 

lumino~ity (reeall that a galaxy's magnitude is proportional to the logarithm of the 

luminoslly. a~ previously shown in equation 1.12). Using equation 1.12. il can he inferred 

that the observed slope ofO.52iO.02 implies a value of qD,I=1.30iO.05. 

4 

• 
Slope=O.52 • •• 11us slope Imphes qD,1 = 1.30 .t 

3 
for ail samples ••••• •••• -. . . ' ri' ..... -. ••• ,l E .:--- t·:-'o ~ 

~ •••• •••• / "'-' 2 
• _.0 

0 .... 
S ••• t • • .. ' .;-• o' ... . ' • • 1 

• il' .t.' 
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l , • 
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Figure 3.3. Sample mdependence of the estima tes of tjD.I' The analysis 
corresponds to the apparent luminosity at highest resolution ll.A obtained from 
the samples MCGSOx80, z40, and CfA2. 

3.2.1 Estimation of the universal parameter H. 

For multifraetal fields (see for instance referen~e 60) the quantity Afl•A, defined as 

the difference in luminosity between two adjacent grid boxes in a field f l•A, obeys the 

following relation (analogous to equation 2.6): 

# llm Imphc~ thilt the "Jresslng" process occurs at seales smaller lhan the galaxy Itself. which makes sense because 
although m Ihls analysis galaxies have been tre:lIed a!> pOint obJeets. the physics responsible fl.tr the production of 
lurninous radlallon aets mamly al IOlra-galactic dIstance seales. 
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(3.2) 

When the function c(y+H) is proportional to (y+H) (as in the case of power-law 

probability distributions), we can rewrite the right-hand-side of 3.2 as Â,-.r--III/, whcre CI is 

sorne proportionality constant. In the previous section we saw that whcn studying 

probability distributions, the quantity À/ can be replaced by s (implying resolution

independence). In such a case, (and setting il equal to qD.t> equation 3.2 takes the 

following forrn: 
(3.3) 

Since the only scale-dependent tenn in equation 3.3 is Â,-q/llll, it follows that for a 

conservative field the probability distribution of the quantity L\fu should be resolution

independent (since H=O in such a case). In figure 3.4, the probability histograms of ~el.A 

(as calculated at rcsolutions Â=64, 128 and 512) are shown for the sample CfA2proj. The 

curves are observed to overlap implying that the probability distributions are independcnt 

of resolution. These resuIts suggest that the luminosity fields are the result of a 

conservative and stationary process, irnplying H::= O. 

O-r---

.. "", 1 PI 

-1 

-2 • 

-3+-__ ~--__ -~ __ --~ __ ~--__ ~ 

-3 -2 -1 0 2 
loglo(s) 

• )..::64 

• À= 128 . 
.. À=512 

Figure 3.4. Probability histograms for the quantity MI A as estimated (rom the 
sample CfAproj ut scale-ratios ,.=64, 128 and 512. The resolution indcpcndence of 
these curves suggests that the luminoslty ftelds t ~ A are the rc,>ult of a conserved 
multifractal process, implymg H::;O. 
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3.3 Sorne Consequences of the Observed Value of q D,I • 

The ob~erved value of qD,I= 1.33±O.05 is relatively close to q=1. This impJies 

that the estimates of CI,I' which depend on moments of order l, will have significant 

fluctuations from :-.ample to sample (as seen in section 2.3.4 for the samples CfA2proj and 

MCG80x80). In physical tenTIS, thiS means that the presence of rare but very extreme 

events in the field (which are responsible for the divergence of high statistical moments) 

leads to a slow convergence of the mean luminosity. Consequently, such mean, when 

estirnated from a smgle sample, may actually be a poor estimate of the true me an space 

luminosity. This in turn explains why in section 2.3.2 (figure 2.9), the scaling of the 

thirteen 6° strips produced from the MCG80x80 catalogue, presented such different 

scalmg slopes. 

3.4 Implications on the Luminosity Function <I>(LA ). 

In section 1.1.2 we dcfined the luminosity function <I>(LA ) as a probabi!ity 

density; that is, as the probability that a given galaxy possesses an absolute lumin "Ity 

within the range LA to LA + dLA. It can be noticed that an integral of this function over 

the entire di~tribl.ltion of luminosities greater than LA is statistically equivalent to the 

probability defined hy equation 3.1 for the case Îv=A (ie. at maximum catalogue 

resolution) and 17 =1. By denoting tbis integrated luminosity function as I(LA ) it can be 

seen lhat 

(3.4) 

where LA 1s just a variable of integration. In other words, for a set of galaxies located 

within a volume dV , the function I(LA ) represents a probability distribution; that is, the 

probability of finding at least one galaxy with an absolute luminosity greater than a 

certain vtllue LA' 

3.4.1 Experimental tests on the form of I(LA ). 

As explained in section 1.2.2, catalogues of galactic luminosity possess a constant 

minimum threshold of apparent magnitude ln' . In the case of the CfA2 sample, m' = 15.5 

and figure 3.5 shows the strong distance dependence of the sample's threshold when 
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plotted against absolute magnitude M (see equation 1.13). In Ordl:f to producc a sub

sample with constant minimum M -thrcshold and analyzc its statistics we limilcd our 

study to galaxies doser than (or at) 100 Mpc and with an absolute magnitude M < -19.5. 

-2 

..... 
CIl 
(1) ..... 

.. ~~I'"tT~ "'-oC , , 

~ 
Cl) " " 

'c "~':':~:, ' 

~ lXl I+"'~ ... ,rI;r· 

'8 " .... _'+r 

.... -1 1 ' ' 

'S . ' , 
~ SltHamplc U'icd f(J' figure 3.5. 
:E Il conlUlns 229 galaxies. 
!a -1 
=' 
'0 
~ .... 
<. "J 

~ -1 
~ 

'ëa u.. 

~ -1 
0 20 40 60 80 100 120 140 

Radial distance (in Mpc) 

Figure 3.5. The CA2 catalogue of absolu te magnitudes M dS a function of the 
distance from the earth (assumillg a Hubble constant of 100 km s-IMpc- I

). A 
sub-sarnple wIth constant threshold was created by ~electjng those galaxies c1o~er 
than 100 Mpc and fainter than an absolu te magl11tude M =-19.5. There are 229 
such galaxies. In total, there are 1091 galaxlCs represented an thlS figure, 

The corresponding histogram (using ÂFA) for the 229 galaxies of this sub-sample 

is shown on figure 3.6. Piotted on thc absclssa is the number N(M) of r,alaxies with an 

absolute magnitude greater than a certain refercnce value M. Il i~ noticed that the 

histogram shows ~ ;inear bchavior implying a ~impl'.! L~q/J' form for the luminosity 

function [(LA) (recall the logarithmic depcnd(,l1cc bctween luminosity and magnitudes a~ 

previously shown in equalion 1.12). Figure 3.6 aho ~how~ the histogram conc~pol1ding to 

the 869 galaxies cJoser than 100 Mpc, but wllhout any con~traint on M. Il j~ noticed (hal 

both histograms comcide cxactly and show a linear bchavior for the low magnllude (hlgh 

luminosity) end. Howcver, the latter hi~togram dcviate~ from lincarity for ull ga:axies 

with M>-19.5 (the limiting magnitude of the ~,ample with con~tant M -thre~hold). Similar 

tests were performed using sub-samples from the z40 catalog. Re~uJts from thc!-'c te~t!-. arc 

in agreement with the ones described above. The~e resulls ~uggc~t that the 'flattcning' of 

the luminosity curves (for low lummosities) b an artlfact of the non-constant thrc~hold of 
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the samples studicd, rather than the consequence of a physical process. In physical terms, 

these re!-..ults ;,uggcst thar if we had knowlcdge of the luminosities af aIl unobservable 

galaxie~ (through catalogues of higher limiting apparent magnitude), then the integrated 

Jumino~ity function J( LA) wouJd rctain the form L~ql>' even for higher absolute 

magnitudes. Thi~ would be a dcfinite evidence of the critical character of the galactic 

lumino!lity distribution. 
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Figure 3.6. Probabllity histograms for the 869 galaxies shown in figure 3.5 closer 
th an 100 Mpc, and for the 229 C'ontained ID the volume-limited sample bounded 
by 100 Mpc and M:S; -19.5. Both histograms are linear throughout the constant 
threshold reglon suggesting that the bending of the former curve arises as a 
result of the distance-dependent threshold of the catalogue. 

As a further test of the importance of having a constant minimum threshold, the 

hisfOgrmn for the 869 galaxies III CfA2 with r S; JOOMpc has been plotted in figure 3.7 

agalnst apparent (rather than absolute) magnitude. The abscissa shows the number N(m) 

of galaxies with an apparent magnitude grcater than a reference value m. Since in this 

case there exists a constant threshold throughout the sample (given by the sample's 

limitlng apparent magnitude of 15.5) it is expected from the previous paragraph that the 

power-Iaw behaviour of I( fA) will extend down to the fainter galaxies. Figure 3.7 shows 
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this histogram. It can be scen that the curve obtained agrecs with the prcviolls estimalcs of 

qD.::::::l.33 and shows no departllre [rom linearity. 

))ope=O 54 
llm ~)ope IInphes a 1JI = 1. 35 

10 11 12 13 14 15 16 

Apparent Magnitude ln 

Figure 3.7 Probability histogram plotted against apparent magnitude for the 869 
galaxies shown in figure 3.5 which are at a distance less th an (or equal to) 100 
Mpc from the edrth. The linear behavior observed in this figure is consistent 
with the results from previous figures. 

3,5 The Dressing Dimension Ddrw ' 

In section 3.2 it was stated that the moment exponent function K(q, 7])# of an 

infinite number of realizations will diverge to infinity for ail q > qD,T]' In the case of a 

finite sample size, as it is in our case, the probability histogram~ show a linear bchavior 

implying a linear codimension function dy,1]) with ~lope qD.T) (rccall the linear 

behaviour observed in figure 2.14 for the case n,=I). From equation 2.9, it follow ... that the 

corresponding dressed K(q, TJ) for a limited sam pIe will also be lincar for cI> l/D.T} , 

implying a change on its first derivauve at q = qD.T}' Feigenbaum57 (among othcr~) has 

shown that there is a formaI analogy between multifractal dynamic~ and thcrmodynamics, 

# Ail statlsllcal funcuons mcntloned ln thls sectIOn arc Imphcltcly mcant to be "drc\\cd" functlOn~ 
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for this rea~on this type of "jump" on the derivative of K(q, 71) is called a "phase 

transition" (of fir~t order in this case due to the discontinuity in the first derivative). If the 

divergence occur~ due to a dressing of moments, Schertzer et al 66 have shown that in 

!o.uch case the corre~ponding critical exponents qD.1} obey the relation: 

K(QD.1}' 1]) = (qD.1} -l)Ddress (3.5) 

where the quantity Dams is defined as the "dressing dimension" of the process. This 

means that the underlying cascade dynamlcs are spatially "dressed" (or averaged) over a 

space of dimension Ddrew The exact mechanism of ~uch "dressing" however, is still a 

subject of ongoing rcscarch64 . It is cxpcctcd though, that sincc the manner in which this 

"drcs~ing" procceds dcpcnds ùpon the field itself, Ddress may not be necessarily equal to 

the dimension D of the cmbcdding space. 

In appcndlx 2 it is shown Ihat it is possible to estimate (under sorne gcneral 

conditions) the form of K(q, 7]) frop; the function Kp (q,7J) corresponding to the moment 

scaling function of a radially integrated (or projected) sample. In chapter two the 

codimension CI,I of the me an lununosity field was estimated as -1.28. In such case (ie. 

for C 1,1 > 1.0), the equation that relates the projected and the unprojected functions is (see 

equation JI .12 in appendix 2) 

(3.6) 

In figure 3.8 we have attempted to test equation 3.5 and estimate Ddress directly in 

3d by plotting K(qD.TI' 1]) versus (qD." -1) fol' values of 11 ranging between 0 and 3# . In 

this analysis, we have used 3 data sets: CfA2, CfA2proj, and MCG80x80. For the radially 

integrated samples CfA2proj and MCG80x80, K(qD.,.,, 71) has been estimated from the 

corresponding values of Kp(qD.", 71) using equation 3.6. The result of this analysis is a 

roughly Imear curve that passes through the origin and with a slope Ddress= 1.53 ±O.OS. 

This rcsult suggc~ts that il good charactcrization of the critical behavior of the luminosity 

fields is not obtaincd from QD,1} (which is 1] -dcpendent), but rather by the quantity Ddress 

which seems to be intrinsic to the multifractal cascading process, and therefore 

inde pendent of 1]. 

# Since equ3tion 3 5 IS defined for the functlOn K(q.n> as calculated over the whole space (ie. not over the fractal set), 
the values of K(qO.ll,ll) used on the esumate of Ddress t'ave been corrected usmg equatlon 2.14 and Cbox=O.l5. 
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Figure 3.8. Estimate of the quantity Ddrm using data from the samples CfA2, 
CfA2proj and MCG80x80. The figure shows a roughly straight line that pdsses 
through the origin in agreement with equahon 3.3. From the slope of these 
curves we have estimated Ddrm =1.53±O.08. The values of K(qD.11' IJ) for the 
radially integrated s'ImpIes were eshmated from the corresponding values of 

Kp (QD.IJ, 11) usingequation 3.6 . 

3.6 Estimation of ex using Ddrm' 

In section 2.4.1 the quantity ex, corresponding to the multifractality index of the 3-

dimensional distribution of luminosity fields was roughly estimated as lA. Howevcr, this 

estimate was statistically weak sincc it relied on narrow scaling regions. In thi~ section wc 

present a more elaborate method of estimating ex. This method rcquire~ knowledge of 

universal multifracta]s and a]so the just acquired knowledge of drcssing statistics, and in 

particular of the quantities qO, l, CI, 1 and Ddress. 

For universal multifracta]s (introduced in section 2.4) Schertzer el al 62 have 

predicted that for the ca~e 11= l, the moment scaling function K(q,l) obeys the general 

form: 
CIl a K(q,l) = -'--(q - q) 
a-l 

(3.7) 

Replacing this form in equation 3.5, and using q ~ q D.I we obtain the relation: 

(3.8) 

59 



• 

• 

• 

Chaptcr 3: Multifractal Phase Transitions. 

Rewriting 3.8 wc obtain: ( C J( a ) 
1.1 qD.1 -qD.1 = 1 

Ddrt\\(qD.I-I) a-I 
(3.9) 

U~ing the prcviously estimatcd values of CI . I = 1.28, qD.1 = 1.33 and Ddrtss = 1.53 

we have plotted in figure 3.9 the If'ft hand side of equation 3.9 for O::;a:52 (the allowed 

values of a according to the theory of universal multifractals62). The a correspondmg to 

the full 3 dimcnslonal distribution of the luminosity fields can then be read from the 

intersection of this curvc and the value of 1 in the abscissa. Our analysis produces an 

cstimate of a= 1.2±O.4. The large uncertainty i~ due to the amplification of the error on the 

estimatcs of CI. I , qD.1 and Ddrm by the non-linear fonn of equation 3.9. This value of a. is 

compatible with the value of -1.4 previously obtained from the sample CfA2, in section 

2.4.1 . 

0.0 0.5 1.0 

a 
1.5 20 

Figure 3.9. Determmahon of a using equahon 3.5 and the universal form of 
K(q,l) given by equation 3.7. The value of a corresponding to the multifractality 
index of the 3-dlmenslOnallummosity fields can be read from the intersection of 
the curve and the value of 1 in the absClssa. We estimated <x=1.2-+O.4. The broken 
lines corr('spond to the extreme variat:ons on the curve given by the uncertamties 

on the quantihes CI,I, gD,} and Ddress· 

In this chapter we have quantified the critical behaviour of the luminosity fields 

by introducing the formalism of drc~sed statistics and verifying the presence in the data 

samples of ils gencric signatures, divergence of moments and first-order multifractal 

phase lramitions. The undcr~tanding of thc~e phenomena has all'Jwcd us to gain a deeper 

illslght on the form of the luminosity function <I>(L) (section 3.4). It has also provided us 

with a physical justIfication for the slight sample dcpendence found in the estimates of 

CI.I (section 3.3), and finally has also supplied us with a method of estimating the 

multifractality index a. 
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Conclusions. 

4.1 General Comments. 

In this thesls, we have presented a mcthod that simuItaneously aecounts for the 

spatial and the luminous properties of the large-seale distribution of galaxies in the 

observable universe. In particular, the "rplication of multifractal theory to the various 

generalized luminosity fields f I/,A' has allowed us to jointly explore fi~st the scaling 

predictions from analyses on the correlation function ç(r) (related to our correlation 

dimension De according to equation 1.5); and second. the so far little-under~tood shape of 

the luminosity function ~(L) (related to the probabilJty hlstograms dfscussed in section 

3.4). Furthermore, in this thesis we have generalized the ~tudies done by various 

researchers l4 -18 on the properties of the ~patJaI galaxy density when treated as a fractal set 

(totally detennined by a single dimension) to a more complete treatment of a mllltifractai 

density field (characterized by a full codimension function and denoted in the the~is as the 

case 11=0). We have attempted to go even further, and have extendcd our analysis to Ihe 

study of the properties of other important multifractal fieids such a~ the galaxy luminoslty 

and mass distributions (11=1 and 0.8<11<1.25 respectively). Finally, we have abo found 

evidence for universal multifractal hehavioUJ in the generali.led lumino~ity fields. In fact, ail 

sampi es stlldied over the broadest possible range of scales, have been ob~crved to have 

statistics compatIble with Cu:::: 1.28, (X::::1.2, H::::O, q/),I::::: 1.33 and DJ,rII:::: 1.53 (sec 

discussion in sectIOn 4.2). 

One of the main technical problcms encountercd by our analy~i~ has heen the 

restricted numbcr of galaxie~ contained In the availab!e cataloglle~ of galaXIe!·,' po~ilion and 

luminosity. The low number of galaxies has hmitcd the statistical ~trcngth of our analy~ü" 

giving rai se to statistÎCaJ noise which In turn nas lncrca<,cd the uncertainty on the e~tjmate~ 

of relevant mllltifractai parametcrs. Moreover, ln ~eciion 2.3.2 we ~howcd that becau~e of 

the low number of galaxies contamed in the data sam pIc li, the field~ l'l.). became Ill-defined 
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a~ the scale-ratio Â. increa\cd to a point when the average grid-box became empty. In such 

ca~e~ spuriou~ breaks on the scaling ranges are observed. 

ln !hl~ thesis we have pointed out two meLvds to overcome sorne of these 

limitatIOns: one is \lmply u~mg larger (and deeper) spatlo-lummous catalogues 50 that the 

number of galaxjc~ per box at any À could be comiderably mcreased. In thls case it is a 

matter of time to walt umil ~uch catalogucli (such as the APM Galaxy Surveyl3) are made 

publIc and then verify that the bchavior of the ~cahng regionli in fact improves. 

The ~econd method l~ to use radlally mtegrated catalogues of relative luminosity. 

Since the integratlOn of a field by just one dimcnsion effectively increases the average 

number of evcnts per box by a factor À (as cxplained in section 2.3.2), it follows that this 

metJlod can actually extend the range of scales wlthin which the fields are still properly 

defined. One must be aware howcver, that this mcthod possesses two shortcomings. Since 

nmltifractal projections are conccptually dlffcrent from fractal projections (the former being 

a flux and the latter a projectIOn of a set of points) the relations between projected and 

unprojected multifractal parameters are different form the ~trajghtforward fractal relations 

studied in sections 2.2.1. and 2.1.2. In particular, in appendix 2 we show that a solid 

lIndcrstanding of the effect~ of projections on multifractal fIelds only exists for the case 

when CI,I>l.O and q > ql' The other handicap with the use of integrated (or projected) 

samples i~ that univer!lality (in a mu!ufractal sense) is masked by the integrating mechanism 

in a yel not clear ll1anner. In particlllar, in appendix 2 (section II.3) we present empirical 

and theorctical eVldence that suggcsts that any lIniversal mutifractal field will display a 

multifractality index CI.. close to 2, mdependent of the CI.. of the unproJected distribution. 

Con~cqucntly. In order 10 e~timate the actual a one must resort to more indirect techniques 

(as the one dbcussed in section 3.6) which are uSlIally accompanied by significant 

uncertainties on the rcsulting c~timates of CI... If the above described shortcomings are not 

considered fundamental or do not upply to the field under study, then the integration of 

fields will mo~t certamly improve the observatIOn of the :;culing ranges and will hence allow 

the rc~earcher to make (in general) more l'Obust e~timates of the statistically relevant 

parametcrs. 

4.2 MuItifractal Picture of the Large-Scale Distribution 
of Galactic Luminosity. 

The results presentcd in this thcsis, suggest that galaxies were formed as the generic 

olltcome of cascading processes of the constituent matter existing during the carly stages of 

the universe's development. In a multifractal context, the se cascades would be ruled by 
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non-Iinear interactions betwcen the different scales and the re~lIlting fields of mass. density 

and luminoslty (and consequently the distribution of galaxIes) would exhihtt multifnll'tal 

features. The main such feature ohserved In our analysis ha~ bcen the exi~tcnce of 

multiscaling in the various statl~tlcal moments of the fields "tudlcd (as shown in section 

2 .. 3.1). Also, as predicted by multifractal theory. thl? observed fields display trcmendous 

intermittence and variability on their intcnsltic!'>". Our analysis ha~ revealcd that the me an 

singularity of the galactlc luminoslty field ha~ a codllnen",on CI.I::::: 1.28. 

The results at the end of chapter 2, ~lIggc~t that the ~tatlstical propCI tic~ govcrning 

these multifractal fields, exhlbit attracltve universal behaviours and <irc con~cqllcntly 

determined by a finite set of parameters. In pal1lcular, our rcscarch has e~timated that the 

multifractality index a of thcse fields is 1.2±0.4. The formalism pre~ented in section 2.4, 

suggests lhat the knowledge of these two quantities: a and CI,I' allows us to totally predict 

the fonn of the functions K(q, 1]) and c( y, 1]) which determine the statistical plOperties of 

the galaxy distribution. 

The resulting fields of mass and luminosity present some rare but extrcmely violent 

events (ie, extremely bright or massive galaxIes). Because of ~uch events, the observation al 

"dressing" of the fields dominates the behaviour of the high ~tatistical moments of the 

probability distributions inducing the existence of crilical exponents relatcd to fir~t order 

multifractal phase transItions and self-organized criticality. In section 3.2 it wu!. !.hown that 

because of these exponents, the probability histogram~ of the vanous fields yield power

law curves. In particular, the probahlJty histogram of the galaxy luminosity field allowed 

us to estimate qD,i'::::1.33 Sirice for q>qD.1 the ob~erved stati~tics of the luminosity 

distribution depart from those of the actual one, qD,1 cffectively impose!. an upper limit on 

the range of statistlcal moments within which the universal b~havlOur of the fields may be 

observed. 

Our analysis has not been free from ob~ervational limitations. For in!.tance, since 

not ail galaxies in lhe universe are visible from the carth, our re~earch has estirnated that the 

codimension of the ob~ervable galaxie~ wlth limiting apparent magnitude of 15 5 i!. - 1.15 

(section 2.1.1). Also, the use of radmlly intcgrated gaJaxy catalogues, ha~ effectively 

increased the minimum observable ~lIlgulaflty up to a value Yql,l' "" -0.5, thu~ dccrea~ing 

the range of orders of moments avallable for analy~I". In faet, in appcndlx 2 wc have 

estimated that the mimmum order of moment expectcd 10 ~how univcNtI bchaviour i), 

q,""O.6. ThIS value of q" togclher with the previou~ly dl"çu".,ed value of q/J.I' pro\'lde u), 

with an observationally narrow range of order!. of moment., available for valtd ~tati~tical 

# Recall for Instance figure 2 3, where the absolu te lumlOo~Jly ln Ihe ~ample Cf A2proJ varae!> from galaxy 1o 
gaJaxy by a!. much as 5 order!. of magnitude 
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analysis. In fact, our rcsearch has shown that the only orders of moment allowed for the 

detection of univcrsal behaviour. are those contained within the range O.6<q<1.33. A 

consequence of thb rc~tncted range, is the existence of significant uncertainty on the 

e~timate~ of somc of the multifractaJ paramcters previously discussed. Moreover, in section 

3.3 we argued that the fact that qD,1 i~ relatively close to l, induces sam pIe dependence on 

the c!>timates of thc codimen~ion C., •. 

The following table summarizes the most important numerical results in this thesis . 

.s!lMMARY OF NUMERICAL RESUL TS ! 

QUANTITY SYMBOL ESTIMATED THESIS 
VALUE SECTION 

Codimension of 
C •.• 

1.28±O.O6 2.3.4 
mean singularity 

,.-

Multifractality index a 1.2±O.4 2.4.1 and 3.6 
of 3d distribution 

Degree of non H -0 3.2.1 
stationarily 

Minimum detectable Chox 
1.15±O.O3 2.1.1 and 2.3.4 

codimension 

CriticaI exponent for 
first order multifrac-

qD.1 
1.33±O.O5 3.2 

(al phase transition 

Dres"iing Ddreu 
1.53±O.O8 3.5 

dimension 

Minimum observable 
singularity after Yq ,.P 

-O5±O.1 II.1.1 
projection (appendix 2) 

CriticaJ order of 
moment for q. O.6±O.1 II.1.1 
projected fields (appendix 2) 
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4.3 Concluding Remarks on the Physical Implicutions of 
MuItifractality. 

4.3.1 The range of multiscaling. 

Our analysis in chapter 2 showed that the mllltiscaling range of the galaxy 

luminosity fields ex tends at least up to the ~ize of our data sarnples, which is in any case 

much greater than the value of the "correlation length" '0"" IOh-1 Mpc, ddined in chaptcr 

one. If this is indeed the case, it implics that cither: 

1. The large-scale homogeneity predicted by the CosrnologicaJ Principlc is not yet reached 

by h,'e samples studied in this work. In faet. other recently publishcd catalogues, sllch as 

the "Southern Sky Redshift Survey"71 which extends 120 ,,-IMpe dcep inlo the sky, also 

report the existence of large inhomogeneous structures comparable to the cltalogue's size. 

This scenario would certainly explain the large denslty fluctuations obscrved, for instance, 

in the CfA2 catalogue as shown in figure 1.1 a. In such a case, the clumpiness in the spatial 

and luminous distributions of this sample would correspond to the rcsult of a multifractal 

cascade extending beyond the size of the sample, but truncated at sorne larger seale . 

According to this point of Vlew, beyond this scaling range ove raIl homogcneity should be 

observed. 

2. The other possibility is that the "clustering hierarchy" obscrved within the l>calcs of the 

catalogues (ie: individual galaxies, groups, c1usters, super-clusfers, etc.) will indefinitely 

continue up to the largest se ales of the ulllverse. This picture, fir!;t proposed by Fournier 

d'Albe20 in 1907 was strongly revived by de Vaucouleurs72 in 1970 as a cr!tic towards the 

uncontested homogeneous hypothesis widely popular amoligst researchers of that time (and 

in fact of ours too). A uni verse with !luch strong clusiering propertles would be compo~ed 

of island universes ail ruled by the same multifraetal staUstlcs. Such !'cenario woulct not be 

compatible al this point wlth the standard Big Bang hypothcsis. This is probahly yet 

another rcason of why this plcture has not becn accepted. 

4.3.2 Origins of a multifractal cascade. 

Independent of the question of the true extent of the multiscaling region, is the 

problem of finding physical processe!l compatible with a multifractal cascade that may lead 

up to the formation of galactie structures. In the context of the Big Bang hypothe~is the 
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formation and distribution of luminous massive objects was determined by the conditions 

present during the first moments of the universe's life. As the universe expanded from an 

cxtrcmely hot firc bail, it~ con~tituent "gas" cool cd decoupling energy from matter. In this 

context two of the most popular scenanos proposed are (see for instance references 29 and 

73-76 for discu!)sions on the subject ): 

1. Hot Dark Matter: Due probably to photon viscosily small adiabatic fluctuations in the 

gas density became ncgligible after decoupling. The remaining density fluctuations were of 

the size of superclusters. As the gas continucd to cool down these fluctuations produeed 

clusters and galaxies via complex gravitational and hydrodynamical non-linear interactions. 

As mentioned in chapter two, scaling is a property of non-linear equations and is in faet 

possible that if the fluctuations before decoupling were ruled by multifractal statistics, the 

resulting cascade may have carried with it the seeds of a multifractal structure. 

2. Cold Dark Matter: A second scenario (which has beeome quite popular in the last few 

years) proposes that after decoupling large fluctuations were rapidly damped. In this 

scenario the large seale inhomogeneity of the present uni verse grew from small scale 

density fluctuations via gravitatlOnal c1ustering. In this case, the cascade goes from small to 

large scales, but its dynamics are still governed by sealing non-linear interactions. An 

interesting consequenco! of this "bottum up"76 cascade is that scaling is transmitted from a 

scale to the next only after the bodies have undergone total glavitational reposition and 

virialization. This means that thcre is an important time factor for bodies which are located 

at large distances apart to enter the scahng regime. Consequently, the observation of 

homoger .. ~;ty at very large scales may not be related to an overaJl symmetry of the uni verse, 

but rather to regions of space which have not yet been viriaIized and have not entered the 

scaling stage. 

From a multifractal point of view it is important to realize that both of these 

scenarios are compatible wilh a muItifractal process. Which of the two (if any) is the actual 

process that led 10 the formation of galaxies is still a cause of debate among eosmologists 

and by ail means an open question in science. Far from solving Ihis problem. the objective 

of our work in this thcsis has been to !>hine new light onto this question and to offer a uew 

insight; one Ihat may facililate the understanding of the statisttcal properties of the uni verse 

that surrounds us . 
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On Multifractal Notation. 

The forrnalism and notation presented in this thesis is a "codimension-notation" 

formalism whieh has been developed from the framework of turbulent caseades41 . 

Another formalism (a "dimension-notation" formahsm) of widespread use in multifractal 

literature, has its origins on studies donc on the thcory of ehaotic attraetors77 . In this 

formahsm the funetions analogous to c(y) and K(q)#, that equivalcntly describc the 

statistical properties of the multifractal field are dcnoted as f(a) and f(q). f(a) 

indieates the dimension of the set of points with singularity a and f(q) describes the 

scaling of the qth moment of the field. If we let D be the corresponding dimension of the 

embedding spaee where the multifraetaJ cascade takes place, then both formalisms are 

related by 

Physieal Qua~ 

Order of Singularity 

Codimension of the Set 

Order of Statistieal Moments 

Moment Scaling Function 

Turbulence 

Formalism 

r 
c(r) 

q 

K(q) 

Chaotjc \ttractQ( 

Formalism 

D-a 

D·- f(a) 

q 

(q -1)D - 'f(q) 

The advantage of the use of the turbulence notation is that aIl statistical funetions 

are independent of the dimension D of the ohserving space. This is convenient because 

the multifractal cascade process that vve are interestcd in is defined on an infinite 

dimen'iional probability space41 , and hence f(a) and r(q) of !otuch process are also 

infinite. On the other hand c( y) and K(q) are intrinsic to the proce~s and rernain finite. 

# Note that the inclusIOn of the vanable Tl ln K(q.ll) and c(y,ll) wa~ speclflc to the Mudy of the generali/.ed Iuminosity 
fields. and mmt hterature on the subJect conslders only the funet/ons K(q) and cCy) (wlth Tllmphcltly a~sumed to be 1), 
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On the Projection of Multifractals. 

For multifractal fields, a projecüon effectively represents a flux or volume integral 

along one of the spatial coordinates. In this appendix, ail tenns: "flux", "volume integral" 

and "multifractal projection" will be equivalently used. 

In section 2.3.2 it was concIuded (from the analysis on various projections of the 

sam pie CfA2) that although angular projections may be qllite complex, in the case of the 

multifractal luminosity fields they can be approximated by a linear eartesian volume 

integration along one of the coordinates. In this appendix, some preliminary results on ~he 

theory behind linear cartc~ian integral!OnS of mllltifractal fields are presented. Our aim is 

not to give a complete trcatment of the theory of multifractal projections, but rather to 

strengthen our understanding of the specific problem of the projected ltnninosity fields. 

Fûr this reason wc shaH festrict the discussions in this appendix to the CI>l case 

(corresponding to the codimension of the mean singularity of the luminosity field il,}.)' 

Il.1 The Effect of Projections on K(q).# 

Considef a multifractallield l'A (x,y) embedded in a unit square of resolution Â 

with coordinates along the x and y directions. Then, the Id cartesian multifractal 

projection of t'À,(x,y) , denoted as fp;'(x), is defined as the integral along the y 

coordinate for each value x of the field: 

1 }. 

t'p;'(x) = !/A(x,y)dy= I,.eA,/{X,y/)Â-
1 

,=\ 
{II. 1) 

where the factor Â- l (cominr; [rom the quantity dy) ensures the normalization of i pÀ (x) 

so that (f pÀ. (x)) = l, and the sum is over the À.. boxes of size À.-1 x À -1 present in any 

column of constant value x . The integral on equution n.! implies that the projection of a 

multifractal field eOlrc~ponds to a "dressing" process onto a I-dimensional space. In 

consequence, il is expected that the fOfm of the statistica1 functions Kp(q) and cp(y) 

#1 NOie Ihal ln Ihls .lppendlx the mdex n will not be used since Ils applicallOn IS specifie to the lummosity fields, 
wherens Ihe Ihcorctlcal diSCUSSions tha6 follow apply 10 any muillfractal field. 
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(corresponding to the moment-scaling and codimension functions ot the projcctcd field) 

will be determined by the formalism of dressed statistlcs developcd in chapter 3, In 

particular, we expect the existence of a critical order of moment (dcnoted below us q t> 
above which the dre~sed statistics of the unprojectcd functlOn K(q) will be reflectcd by 

the fonn of the function Kp(q) (se~~ discussion below), 

C'onsider first the case of the Trace moments rr( e À.)" dcfined as41 : 

(1I.2a) 

where the quantity r(q) was previously introduced in appendix L Using equation 2.10 

(wilh 11=1) we find that Tr(fJq is simply reluted to the function K(q): 

(II.2b) 

For the projected field, the corresponding Trace moments are found by replacing f À. by 

t' pÀ ' and D by D - 1 : 

A.o-I(( e )q) T. (f )q == ~ --'!.!.. = ,tKp(qHO-I)(q-1I (II.3) 
r pÀ k ~D-I .= 1 1\. 

Since Trace moments are unaffected by projections (since they explicitly take into 

account their dependence on the dimension of the observing space) equations Il.2b and 

II.3 may be combined to obtain an explicit relation bctween K(q) and Kp{q), By 

equating the exponents in II.2b and II.3 we obtain that (for large enough q, as di~cussed 

below) the "projected" and "unprojected" mOlTIent scaling functions a.re related by : 

K(q)=Kp(q)+q-l (11.4 ) 

Recalling the definition of CI given by cquation 2.13#, we note Ihat equation II.4 predicts 

that the corresponding "projected" codimension CI,p obeys the relation: 

CI=(: K(q») =(: K/q» +l=C'I,p+l (11.5) 
q I/~I q q=1 

where C1,p = (dKp(q)/dq)q=l' Equation 11.5 is in agreement with equation 2.5, dcveJoped 

in the realm of monofractal projections. 

# Recall that smce we are assuming 11=1, throughout this section the codimenltlon CI•I will be denoted as CI' 
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As explained in section 3.2, the dressing rnechanism which accompanies a 

multifractal projection implies that the probability distributions are governed by the 

~tatistic~ of the largcst orders of moments, and consequently, lowcr orders are expected to 

the be non-relevant. This implies t!lat cquations lIA and n.s are only valid for values of q 

greater tharl a critical value denotcd as ql and defined as the solution of the "dressing" 

equation 3.5 in a I-dirncnsional space: 

(II.6) 

The right hand sid~ of equation II.6 corresponds to the form of K(q) valid for universal 

multifractals only# (see r.ection 2.4 for a discussion on universality). For the case a=2, 

equation Il.6 prcdicts that ql has a particularly simple forrn: 

1 
q,=-

CI 
fora=2 (lI.7) 

We have tested the validity of equations lIA and IL5 using simulated multifractal 

fields. Fig\lre II.1 a shows the rnultiscaling for the ensemble average of nine 2d fields 

(1024 by 1024 pixels long) ail with a=2.0 and CI=1.50, implying q.=O.67. Figure II.1b 

shows the rnu1tiscaling for the cOlfesponding 1 d projections. In both cases cIear scaling 

is observed up to the largcst se ales ( Â. = 1 024). 

b) 'r---------------~ 

--0-- q.ooo 
--+-- q_OlS 

--- q.oso 
--+-- q-07'; 

-...-- Q-l00 

--a-- 'l-12S 

--'-- q<ol SO 

---+- q..17S 

-.........-- q-2oo 

---+- q .. 2 2~ 

Figure II.1. Multiscaling for a) the ensemble average of nine 2d fields, and b) 
ifs corresponding Id integration. The Cl of the original 2d fields was 1.50. 
Clear scaling regions are observed for bc"t samples . 

# Schertzer et al 62 have predlctcd that for a universal multtfractal field K(q) = ~(qa - q) 
(a-I) 
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From the slopes of the curvcs on figures ll.la and Il.lb we have estimatcd the 

eorresponding Kp(q) a!1d K(q) funetions. These are presented in figures Il.2a and Il.2b. 

From the value of the derivativcs of these curves at q~ 1 wc have cstimuted 

C1,p=0,42±O.05 and CI=-1.50±O.06. in agreement wlth equation 11.5. 

Figure II.2a also shows the exprcted fOfln of the projcçted function Kp(q) us 

predieted by equation II.4 for q>q 1. In ligure II.2b we have attelllptcd to inter the form of 

the unprojeeted K(q) funetion from information obtained from the projcçtcd field Il is 

observed that theoretical and actual eurves agree in the range q>q ,. 

a) 

Kiq) 

2.0 
0 Original K1,(q) b) 

4.0 

o Original K(q) 
1.5 3.0 

• K(q) - q + 1 • K/q)+q-l 
1.0 2.0 . 

• 
0.5 • . K(q) 

ql =0.67 1.0 
• • 

0.0 

-0.5 -1.0.folE=--_........,. ___ -T-__ --I 

0 2 3 o 2 
q q 

Figure II.2. Original and projecied K(q) lunctions as estimalcd {rom nine 
simulations all witl-. an ongmal Cl =1.50 Also plotted in figure II.2a is the 
predicted form o{ the proJected (unction accordlOg lo e(luilllon II.4. !n figure 
!l.2b we also show tht' form o{ the ongmal K(q) curvc as predicted from the 
projected funchon and using equahon II 4 In both cases, the agreement 
between theoretical and observed curves IS cl€ar for q>ql =0.67. 

II.1.1 The case of the galactic luminosity field fl,) .• 

3 

For the case a~2 (as it is for the case of the lumino!.lty field f l •À ) equation Il.6 

predicts that: 
CI where u=-

a-l 
(11.8) 

A trivial solution (ie. independent cf a and Cl) of rI.8 is ql=). A physically more 

interesting result may be found by plotting the left-hand-side of 11.8 as a function of ql 
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and reading off the value of 'II where the curve reaches 1. Using the values obtained in 

chapters 2 and 3 (C 1:: 1.28 and u= 1.2) we have used the above described procedure to 

estimate the value of ql corrl!spondmg 10 the apparent luminosity field fl,).,. The abscissa 

in figure II.3 ,hows the Jeft-hand-side of equatlOn II.8. This curve is observed to reach 1 

at ql=O.6±O.1. This value Imposes a lower bound on the values of q expected to display 

multifraclal propertie~ related to tho!.e of the real 3-dimensional distribution. In pa11icular 

univcrsality is not expected to be observed for '1 < '1J (as already stated in section 2.4.1). 

'1J{a + 1) -a'lJ
a 

1.2.').,------.----.-------...... 

I..~~-----=,;',.j..::.:~~~""':;"'--'---I 

0.75 

0.50 

0.25 

., 
1 , 

1 , 
1 1 

" " 1 " l , 
1 1 
1 1 , , , 

1 
1 

,,

Un erlain on 
'II 

O.oo+---.----"f---+---.... --.---~ 
0.00 0.25 0.50 0.75 1.00 1.25 1.50 

Figure Il.3. Estimation of ql for the field (,.A' The abscissa displays the left
hand-side of equation II.B . From the value of q where the curve becomes 
equal to l, we have estimated ql=0.6±O.1. The broken lines correspond to the 
extreme variations of the curve given by the uncertainty on the quantity 
a;;; C1/(a-l) 

According to equation 2.12 there is a certain singularity (denoted as Yql) 

corresponding to the order of moment 'II' rqJ is given by: 

(11.9) 

Using thf' universal form shown in equation II.6 and the already estimated values of Cl. 

a. and 'II we have estimated that Yq l,,"O.5. Since equation II.4 implies that 

K' p ('1) = K' ('1) - 1 then the corresponding projected quantity Yql. p is given by: 
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(11.10) 

implying that for the projected field lu. the codimension fllnction c(y,l) ShOllld show 

scaling only for y> Yq •• p ==-O.5. This value is in agreement with the lowest observed 

singularity exhibiting non-linear bchaviour in figure 2.13. 

II.2 Generalization to the 11:;t=1 Case. 

Lavallée64 has pointed out that any multifractal field (ie. not necessarily a 

universal multifractal) obeys the relation: 

K(q.1]) = K(q1]) - qK( 11) (11.11) 

From equation II.4 we know that K(x) = Kp(x) + x -1 for any x> x.' Consequently, we 

re-write II.II as: 
K(q, 1]) = K/q11) + q11- 1 - qKp( 1]) - q11 + q 

K(q, 11> = Kp(q, 1]) + q - 1 ,for q> q. (11.12) 

where K/q, 1])= Kp(q1])-qK/1]), In section 3.4 equation Il.12 was used to predict the 

unprojected counterparts of the values K(q D .• ' 11). Recalling that q D,. == 1.33, it follows that 

the use ofequation II.12 wasjustified on the ground that CI,I>I and qD .• >ql for the field 

.e •. À , 

Since K(q,Tl) is a function of two variables, we expect that there cxisls a critical 

value of 11 (denoted as 111) above which equation II.12 is valid.lll may be dcfined as the 

solution of the "dressing" relation II.6 , but with the variable q held constant: 

K(q, 1].) = (q -1) (11.13) 

Using the universal form ofK(q,l1) (given by equation 2.16) we estimate 111 as: 

• -(a -I)(q -I)J; 1]. - ---'-'-a =---'-
C1.1(q -q) 

(11.14) 
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U~ing the observed values of Cl and Cl,t for fI,). and q=1.2 we obtain 1110.2)=0.74 and 

con§cquently 10glO( 11, (1. 2» :::: -0.13. ThIs value is in agrcement with the minimum value 

of 11 obscrvcd to have dbplayed universal behaviour in figure 2.18. 

II.3 Comments on the Application of the DTM Technique 
to Integrated Fields. 

We now show sorne numerical evidence that suggests that when perforrning a 

DTM analysis (see section 2.4.1) on an integrated field, the observed value cf Cl (as 

estimated from the slope of the linear region in a 10glO.'(/ Q.11) versus loglO(11) graph) 

gcnerally approaches the value of 2, mdependent of the Cl of the unprojected distribution. 

Figure IL4a shows the rc~ults from a DTM analysis on five 2-dimensional simulations aIl 

having a=2.0 and CI,I=1.50, and a maXIITIUm icsolution A=512. Also shown is the result 

of the DTM performed on the corresponding integrated samples. Both curves are fairly 

linear and parallel over a wide range of 11's, implying that the "projecled" Cl (denoted as 

ap) is also equal to 2.0. In this analysis wc have uscd q= 1.20>q t =0.67 (as given by 

equation II. 7). 

Figure H.4b shows the results of a DTM analysis performed on a different set of 
• 

five simulations. This time a=1.30 and CI=1.50. Also shown are the results from the 

analysis on the integrated fields. Although both curves display clear linear behaviours, 

they are no longer parallei (as in the previous case). Moreover, Clp is observed to he equal 

to 2.04. 

Similar analyses were performed on simulations having other values of Cl and Ct. 

The results from those analyses are in agreement with the ooes described here. 

a) 

cP~~.······ 
-1 0 ~ •••••• 

-os 

o 10glO (K(1.2, 11» #pcP" .e
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o~------------------______ _ 
b) 

o logto (K( 1.2, 1]» _1 

Original en 2d 
a = 1.30 

~1d Integration 
a p =2.04 

-3+---~--~~ __ --~ __ '-T--__ ~ 

-1.00 -0.75 -0.50 -0.25 0.00 0.25 
loglo 11 

Figure II.4. DTM analysis for two sets of five 2d univ,~rsal multifractal fields 
and their corresponding projections. a) a=2.0 and Cl =1.50 and b) a""1.30 and 
Cl =1.50. It 1s argued that this figure gives numerical evidence suggeshng that 
the value of a deduced from proJected fields (and using a DTM techniqul» IS 

close to 2.0 even for the cases when the unprojected fields dl!>play an a very 
diffcrent from 2.0. Smlilar analyses performed on other slmulated f1('lcis 

confirmed the se results for the case a>1.0, CI>1 and Q>ql. 

The behaviour shown in figure II.4 may be thcoretically intcrprcted as the 

signature of the dressing mechanism which accompanies the intcgration of the fieldll. If 

we assume that the projection of the fields, in a yet unclcar manner, makcs Kp(q,ll) 

analytic at '1=0, then in the region of low 11's (whcre the DTM analy~is posscsscs its 

strongest statistical validity) we can expand Kp(q,11) in a Maclaurin seriesll. Let us start by 

recalling equation II.11 for the projected field: 

(11.15) 

We then expand about the origin each of the terms on the right-hand-side of II.15. Finally, 

by retaining only values up to second order wc obtain the following rcsult: 

(11.16) 

# NotIce that thls is not allowed ln the case of ordlnary umversal multlfractal field~ smcc such field~ are not analyllc at 
the ongm62. 
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Since KI'(O)=O for any comervative field, equation 11.16 indicates that Kp(q,lÜ will 

alway~ behave a~ a quadratic function of 11 near the origin. Thus, if the assumption of 

analyticity near the origin i!. true, then the faet that the Ci observed in projeeted fields 

approximate~ the value of 2 should be intcrpretcd simply as a strong sIgnature of a 

multifractal projection . 
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