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Abstract

We propose the use of cyclic interval graphs as an alternative representation for register
allocation. The “thickness” of the cyclic interval graph captures the notion of overlap
between live ranges of variables relative to each particular point of time in the program
execution. It is effective in capturing the regular periodic nature of loop-varried dependent
live ranges found in loops.

Unlike Chaitin’s approach wheiz the spilling and coloring phase can alternate several
times, we propose a two-step register allocation scheme based on the cyclic interval graph
representation. The first step is the spilling phase. The spiller uses the wxact times of
overlap between intervals to discover opportunities to avoid spills by inserting register move
instructions. 'The spiller is followed by a coloring phase. One of the coloring algorithms
developed, the fatcover algorithm, makes use of the cyclic intervals to find a 1ear-optimal
register allocation for innermost loops which have no embedded flow of control.

As most scientilic code spend a lot of time executing loop structures, it is most crucial
to perform well when register allocating for it. A good spilling algorithmm and a close to
optimal coloring algorithm is invaluable in minimizing the cost that may be incurred while
performing register allocation for loop structures. Minimization of spill code often greatly
increases the performance of the code. Our proposed spilling and coloring scheme is very
well suited to these loop structures, and could be used to reap maximum benefit when used
in tandem with loop scheduling algorithins [NG93, Nin93].

A collection of real program loops are used to test the effectiveness of our approach.
From our limited experimental results, we find that the spiller generates 37% to 56%
fewer spill store instructions and about 90% fewer spill load operations in comparison to
commerrial compilers. We also observe that on the average the fatcover coloring algorithm

(474

requires 5.2% more registers than that required by ar optimal coloring algorithm!

liven though we focus on loops which consist of single basic blocks in this thesis, we
propose ways of extending our method to register allocate for loops having embedded control
flow.



Résumé

Dans cette thése nous proposons ['usage de graphes d’intervalle cyclique comme méthode de
modélisation pour le probleme de Pallocation des registres relié a la compilation, Un graphe
d’intervalle cyclique se définit sur un espace temporel et I'“épaisseur™ d’un tel graphe a un
moment précis refléte le nombre de variables qui coexistent a ce moment exact. Ces graphes
réussissent a modéliser la périodicité d’une houcle en plus de soutenir un méchanisme de
représentation pour les variables dont la durée d’existence s’étend sur multiples itérations
de la boucle.

Différente de la méthode de Chaitin ol les phases de débordement et de coloration
peuvent étre répétées a plusieurs reprises, notre technique fondée sur les graphes d'intervalle
cyclique ne requiert que deux étapes. L’étape de débordement s'effectue en utilisant les
bornes précises de chevauchement entre intervalles. Ceci permet Pidentification de transferts
de registres qui limitent le nombre total de débordements. A la suite de I’étape de débordement,
vient D’étape de coloration. L’un des algorithmes présentés (Palgorithme fateover) performe
de facon presque optimale pour les boucles les plus emboitées qui sont, sans opérations de
contrdle.

Etant donné que les programmes de nature scientifique écoulent. une tres grande partie
de leur temps d’execution sur des boucles, il est primordial d’avoir un algorithme performant
pour P’allocation des registres a l'intéricur des boucles. Un bon algorithme de débordement
et un algorithme de coloration presque optimal sont indispensables pour minimiser Pimplémentation
des boucles. La minimisation du code de déhordement représente un gain substantiel dans la
performance des programmes. In particulier, notre méthodologic produit des giins quasi-
optimaux lorque utilisée conjointement avec des algorithmes calculatenr d’échéanciers, tol
celui de [NG93, Nin93].

Une série de boucles soutirée de programmes existants est utilisée pour vérifier 'efficacité
de notre approche. Pour le débordement, les résultats experimentaux indiquent que notie
méthodologie génére de 37% a 56% d’instructions de storage en moins et environ 90%

—
oy
—o




d’instructions de chargement en moins par rapport aux compilateurs disponible sur le
marché, De plus, en comparaison & un algorithme de coloration optimal, notre algorithme
de colorition ne requiert, que 5.2% de registres en surplus.

Cotte those n’étudie que les boucles d’un seul bloe; cependant nous proposons des
modifications qui permettraient des structures de controle plus complexes a l'intérieur des
houcles.
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Chapter 1

Introduction to Register
Allocation

1.1 General Introduction

With the advent of new architectures, more emphasis is being laid on the development of
portable optimizing compilers. Such compilers comprise of two broad stages.

e The “front-end”, which is machine independent, translates a high level source program
into an intermediate form. Syntax checking is performed at this level.

e Next, the “back-end” performs various kinds of optimizations like dead code removal,
jump optimization, loop transformations, and register allocation on the intermediate
code. Iinally, the intermediate language is translated into machine code. Of course,
this stage requires knowledge of machine specific information.

Register allocation is thus a phase of the back-end of the compiler. This phase plays an
important role in compiler optimization. In fact, for modern high-performance processor
architectures, register allocation has been viewed as a technique which “adds the largest
single improvement” among various compiler optimizations [HT'90). Technology advances
in the past decade have widened the gap between the speed of the CPU and memory
(DRAMs), and this gap (a form of the Von Neumann bottleneck) i. expected to continue to
grow [HJ91]. Therefore, the benefit of keeping variables in registers, which are high speed



on-chip memory, is increasing. Thus the impact of good register allocation strategies is also
increasing.

In this thesis we focus on register allocation techniques. We shall assume the presence
of RISC architectures as the target platform in all of our examples unless it is mentioned
otherwise.

The reader will first be introduced to the register allocation problem in Section 1.2,
Some terminologies which are used in the thesis are mentioned in Section 1.3. Section 1.4
discusses register allocation from a historical perspective. In Section 1.5 we discuss Chaitin’s
well-established register allocation method along with some limitations and extensions, "I'his
lays the foundation for and motivates a presentation of our framework for register allocation
which is based on cyclic interval graphs as discussed in Section 1.6. Iinally, Section 1.7
outlines the general structure of the rest of this thesis.

1.2 What Is Register Allocation?

In many compilers, after the back-end is invoked, the intermediate form generated by the
front-end undergoes a transformation in which veriables or operands of instructions are
assigned “pseudo registers”. At this stage it is assumed that the architecture has an infinite
supply of pseudo or symbolic registers. This transformed intermediate code is used by the
register allocation phase of the optimizing back-end of the compiler. Since architectures
cannot have an infinite supply of registers, the pseudo registers used have to be mapped
onto the actual number of registers available on the target machine. This is the first basic
problem of register allocation.

The register sct available on most RISC-based machines tend to be small. For example,
IBM’s RS6000 workstation has 32, 32-bit general purpose registers and 32, 64-bit floating
point registers. Due toit’s faster speed of access, we are tempted to hold as many variables as
possible in registers. However, as there are only a limited number of registers available, this
critical resource must be used judiciously. In a RISC architecture, memory load and store
operations as well as all other (ALU) instructions are performed using registers. Assume
that at a certain point of time we need to read in a variable, x, from menory. x has to be
read into a register, but registers alieady have values in them. As program execution on
most traditionzl architectures can not continue without x bheing road, we have to dovise a
way of making an occupied register available for it. One option is to store a variable that is
being held in a register, to memory. This process is known as “spilling”. Spilling frees up
a register which can then be reassigned to the new variable, like x. Making a good choice
of variables to spill is an important problem of register allocation.

2




9

In summary, we look upon the register allocation problem as the following two sub-

problems :

e (A) Given a program, we would like to assign the minimum number of registers to
the program variables. Regardless of the actual number of registers available in the
architecture, we wish to reduce the number of required registers to a minimum possible
number. This has some important applications. For example, when allocating registers
interprocedurally it is beneficial to allocate a minimal number of registers to each
procedure. This reduces the amount of register saving required at procedure call
time, and can also improve interprocedural register allocation [STI89b, Cho88].

e (B) Unlike in (A), in this case we assume that there are k registers available on the
target machine. The minimum number of registers required to map cach variable to
a register may exceed k. Hence, spill code has to be introduced and our objective is
to keep the total cost incurred by the spills to a minimum.

The above mentioned informal problem statements are stated precisely in Chapter 2.2.

spil code

|

renumber buid coalesce spill costs simpliy { select }_’

FFigure 1.1: Chaitin’s Global Register Allocator




1.3 Terminology

For the purposes of this thesis we define some terms. The piece of code shown below in
Fig. 1.2(a) is used while defining some of the terms.

a=...(s1)
b=...(s2)
=a (s3)
=b (84)
=a (ss5)

(a) Code Segment (b) Interference Graph

Figure 1.2: Explaining Terminologies With An Example

Live variable : A variable, a, is born at the point p where it is defined in a program
and it dies at the point where it is last used. a is said to be live at points along those
paths of the program starting at p where its value can be used. lor instance, ais
born in s; and dies in s5. a comes alive at s; - that is at its’ point of birth.

Live range of a variable : is the duration of liveness of the variable. The live range
extends from the point of birth of the variable till its point of death. In our example,
a’s live range extends between statements s, and ss.

Def-Use chain of a variable : The def-use chain of a variable is the “set of uses, s, of a
variable such that there is a path from p to s that does not redefine it” [ASUSR]. In
our example, a is defined at s, and this definition is linked with its uses at statements
83 and s to create the def-use chain for a.

Interference between variables : T'wo variables are said to interfere at a point p of the
program if they are both live at p. In our example, variables a and b interfere.

(Register) interference graph : is an undirected graph in “which the nodes are
symbolic registers and an edge connects two nodes if one is live at a point where




the other is defined” [ASU88]. a and b of our example are two interfering nodes of
the interference graph (Fig. 1.2(b)).

e Degree of a node : is the total number of neighbors of the node in an interference
graph. Each neighbor of a node is connected to it with an edge.

o Spill cost of a node : is an attribute of the node. It is the cost incurred to store the

variable to memory and reload it from memory.

o Spill code : consist of the group of instructions which store and load a spilled node
to and from the memory respectively.

e Basic block : is the smallest sequence of statements which have no flow of control.

o Global register allocator : A global register allocator assigns registers to all the
variables and compiler generated temporaries of an entire function or procedure. On
the other hand, a local register allocator works at the basic block level.

o Loop carried dependence : is caused when a variable defined in one iteration of a loop
is used by a following iteration of the loop.

1.4 History Of Global Register Allocation

A number of researchers have looked into the memory and register allocation problem [Ers90,
Fre74, MBR3]. We refer the reader to Chapter 7 for a detailed survey of work being done
in this arca. At this point we concentrate on providing a historical perspective of global
register allocators.

John Cocke came up with the idea of transforming the register allocation problem to a
graph coloring problem [Ken7l, Bri92]. Aninterference graph is created such that the nodes
(or vertices) of the graph ate live ranges, and edges exist between those nodes which are
live simultancously. If there are & hardware registers available on the target architecture,
the goal of the register allocator is to map the k registers to the nodes of the interference
graph. This is accomplished by tinding a k-coloring of the (interference) graph. Each node
of the graph is colored with one of the k registers and no two interfering nodes can reccive
the same color.

While working on the PL.8 compiler, Gregory Chaitin at IBM, T.J. Watson Research
Center at Yorktown Heights, developed the first complete global register allocator. Chaitin’s
global allocator also uses the graph coloring approach, and spilling and coloring is performed
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in a coordinated fashion [CAC*81, ASUSS]. This work laid the foundation for most future
work done in the area of register allocation. Over time, Chaitin improved the heuristics used
by his original algorithm [Cha82). Others, notably Briggs, Bernstein and, Nickerson have
improved and extended Chaitin’s algorithm [BCKT89, BGGH89, BCT92, Nich0]. One of the
more significant improvements included reducing the amount of spill code generated [Bri92).
Today, widely used optimizing compilers like IBM’s XLC and the GCC avail of Chaitin’s
method of register allocation.

While Chaitin worked on the interference graph approach to register allocation, I'red
Chow and John Hennessy developed the priority based global register allocator [ChoS3,
CH84, Cho90]. This allocator is also based on the graph coloring method, but diflers
significantly from Chaitin and his successors work in the spilling techniques used. Extensions
and modifications of this work have been reported in [Cho88, (5589, LIS6).

1.5 Evolution Of Chaitin’s Global Allocator

As the work presented in this thesis is based on some hmitations of Chaitin's approach, we
shall first review his method and then motivate our approach in Section 1.6.

1.5.1 An Informal Description Of Chaitin’s Algorithm

The essence of Chaitin’s algorithm is probably best understood through an example. After
presenting an intuitive description of the algorithm we will go through an example which
will help illustrate the details of the algorithm.

Assume that the target architecture has & available registers. Given an input set of
live ranges, the algorithm first builds an interference graph, and annotates the nodes with
information that is used by the coloring phase. Next, the interference graph is colored. This
phase is the core of the allocation algorithm. The interference graph is repeatedly reduced
by removing nodes which have a degree strictly less than k. The reason is because if a
node, n, has at most (£ — 1) neighbors then it is always possible to color n with a color
distinct from it’s neighbors.

If at some point the graph can’t be reduced as all the nodes in the partially reduced
graph has degree > k, spill code has to be introduced. A node is chosen to be spilled and
spill code is generated for it. A node having a lower spill cost is a better candidates for a
spill than a node having a higher spill cost. The interference graph is then reconstructed to
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reflect the new conflicts of the spilled live range. The coloring process is rerun on the new
interference graph. This two step spilling and coloring process is repeated until a k coloring
of the interference graph is found.
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(b) Renumbering x3 and x4

Figure 1.3: Using Chaitin’s Algorithm On An Example

1.5.2 The Original Algorithm By Chaitin

Fig. 1.1 illustrates the flow diagram of Chaitin’s register allocator. This diagram is similar
to the one presented by Preston Briggs in his thesis [Bri92]. An interference graph is the
expected input of the algorithm and, a colored interference graph that may have undergone
transformation due to spill code insertion is the output. W use the example in Fig. 1.3 to

understand the various steps of the algorithm illustrated in Fig. 1.1.

¢ Renumber : All the live ranges of a function are given unique names. This allows
greater {lexibility in assigning different registers to live ranges arising from a single



x4

x5

(c) Interference Graph (d) After Coalescing
Figure 1 4: Using Chaitin’s Algorithm On An Example

variable. If renumbering were not done, then all the live ranges of a single variable
would have to be assigned the same register and this creates an unnecessary constraint.

Fig. 1.3(a) shows a code segment and the live ranges of the program variables. x3
and x4 have two live ranges each. Since the numbers of all the live ranges must be
unique the live range of x3 that extends between statements 5 and 7 is renumbered
as xJ in Fig. 1.3(b). Similarly the the live range of x4 between statements 8 and 9 is
renumbered as x6.

Build : An “interference graph” graph is built based on the live range information.
Recall that each node in the graph corresponds to a live range of a program variable.
An edge between two nodes in the graph represents interference hetween the two live
rages. This means that, the two interfering live ranges cannot share the same register
and must be assigned different registers.

The interference graph of our example is shown in Fig. 1.4(c).
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Figuce 1.5: Using Chaitin’s Algorithm On An Example

o Coalesce : Unnecessary copy instructions are eliminated if the source and result live
ranges do not interfere. This phase reduces the number of nodes of the graph.

In our example statemeunt 8 is a copy instruction (Fig. 1.3(b)). x6 can be coalesced
with x2 as the result and source live ranges don’t interfere. The coalesced node x6 is
removed from the interference graph as shown in Fig. 1.4(d).

e Spill Costs : Each node is annotated with a spill cost, which is used to choose a
node if one needs to be spilled. Spill costs are calculated on the basis of heuristics.
According to one such heuiistic, live ranges of veriables which are used in deeply
cmbedded loop nests are given a high spill cost as we would prefer to hold it within
a register rather than load and store it during each iteration of the loop [Bri92].

For the sake of simplicity, let us assume that all the nodes of our example have the
same spill cost.

e Simplify : This phase reduces the interference graph and is the key to the coloring
process.
If there are k registers avaiiable in the architecture, then nodes having a degree < k
are repeatedly removed from the graph. The degree of a node is given by its number
of neighbors. The rationale behind removing nodes having degree less than k is if the
node that is being removed has (at most) k-1 neighbors then each of the neighbors
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Figure 1.6: Example For Chaitin’s Algorithm Continued

can receive a different color. This leaves the last color, of the k colors, {or the node
being removed.

If we encounter the situation where there are no nodes in the graph having a degiee
less than k, then a node has to be chosen as a spill node. Heuristics involving spill
costs of nodes guide the choice of a spill node. The chosen node is marked to he
spilled and is removed from the graph. The graph reduction process then continues
on the resultant reduced subgraph.

At the end of this phase, the graph is completely reduced so that it becomes empty.
Generally, three to five iterations of the algorithm may be needed to k-color graphs
of real world benchmarks. Only a few benchmarks require more than ten to twelve
iterations before a k-coloring is found [Cha82, ABGM93].

For the purpose of our example, assume that there are two available hardware registoers,
r] and r2. We need to simplify the interference graph of I'ig. 1.4(d). The nodes x3, or
x5 can be chosen to be removed from the graph as they have the highest degree < 2,
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(1) Interference Graph Updated After Spilling

Figure 1.7: Example For Chaitin’s Algorithm Continued

Let’s say that we remove x3. This leaves us with the partially reduced interference
graph shown in Fig. 1.5(¢). Now, we must remove x5 as it is the only node whose
degree < 2. Then, we have an option of removing either x2 or x4 and we first choose
x2 and then x4. Finally xI is removed and we are left with an empty graph.

Select : This phase assigns colors to the nodes in the reverse order in which they have
been reduced. Each node gets a color distinct from its’ neighbors. Assigning a color
is equivalent to assigning a 1egister and henceforth we shall use colors and registers
interchangeably.

The nodes of our example are colore:d in the reverse order in which they are removed
from the graph. Fig. 1.5(f) shows the final 2-coloring of the graph.

Spill Code : If at any point, the interference graph fails to reduce as the degrees of
all the nodes of the subgraph are greater than k, we have to introduce spill code. For
cach variable that is chosen to be spilled, a store instruction is added after the point
of definition of the variable and, load instructions are inserted before every point of
use of the variable in the live range. This splits one live range into two or more shorter
live ranges.

For instance, let us increase the number of interferences of the nodes of the graph
of Fig. L.4(d). Fig. 1.6(g) shows the modified graph. If only two hardware registers
are available to color the graph, then the simplify phase can not remove any of the
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nodes as their degrees are all > 2. At this point, we have to choose a node to spill.
Assuming that the spill cost of all the nodes are the same, let’s say we choose to
spill x4. Spill code may be inserted for x4 so that the single long live rauge for xf is
replaced by several several shorter live ranges as shown in Iig. 1.6(h).

The change in the live range information changes the structure of the interference
graph as shown in Fig. 1.7(i). So, the interference graph is modified and the algorithm
is executed on the new interference graph.

Spill code is not inserted after each spill node is chosen in the simplify stage. lustead,
chosen spill nodes are marked and spill code is inserted all the spill decisions have been
made in this phase. This of course, avoids repeated reconstruction of the interference
graph. Instead of splitting a spilled node into several smaller live ranges immediately,
we choose to depict these smaller live ranges as one large conglomerate node till
the end of the phase. This makes the graph impiecise and it doesn’t necessarily
reflect the true state of the program at all times. In the context of our example, two
shorter lie ranges replace the live range for x4 (Iig. 1.G(h)), however this change is
not reflected in the interference graph until the end of the spilling phase. At the end
of this phase, the interference graph is modified to accurately reflect the changed live
range information due to the spilled live ranges.

1.5.3 Brigg’s Improvement To Chaitin’s Algorithm

Essentially, Chaitin reduced the register allocation problem to a graph coloring problem.
However, the k-coloring of a graph, where k is assumed to be the number of registers
available on the target machine, is known to be a classical NP-complete problem [GJ79)].
Hence, the coloring algorithms employ heuristics and may not provide optimal results in all
cases and, Chaitin’s algorithm is no exception to this rule.

As an example, Ken Kennedy, of Rice University [Bri92], constructed a very simple
diamond shaped interference graph which causes Chaitin’s algorithm to perform sub-optimally
in two respects :

1. Failure to find a k coloring in some cases even when one exists.

2. As aside-effect of being unable to find a k-coloring, unnecessary spill code is generated.

We provide such a similar diamond shaped graph in Fig. 1.8. Let us assume that we
have only two colors, red and green, available for this graph. By inspection, we give X1 the
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Figure 1.8: Sub-optimal Performance Of Chaitin’s Algorithm On A Small Example

color red. X2 and X4 can be assigned the same color as they do not interfere with each
other, but they must receive a color different from the one assigned to X1. So, the only
color that can be given to X2 and X4 is green. Finally, X3 is colored red.

Unfortunately, Chaitin’s algorithm fails to find a 2-coloring for this graph. As there are
no nodes in the graph whose degree < 2, we will be forced to spill a node. Assuming the
same spill cost for all the nodes, we choose to spill X1. Once X1 has been removed from the
graph, the other nodes can be reduced very easily. This example does not claim to show
that a 2-coloring of this graph can never be found. It could, using some heuristic other than
the one used by Chaitin [MB83].

If we were to ask ourselves why Chaitin’s heuristic fails to color this graph with two
colors, we notice that the heuristic used in reducing the interference graph is the root cause
of this problem. Since nodes with degree strictly < than k can be removed from the graph,
it is implicitly assumed that every node that interferes with the node being removed, say
Npemove » 18 going to be assigned an unique color. Different colors don’t necessarily have to
be assigned to neighbors in all cases, they could share colors. If the neighbors of nremove
do not interfere with cach other, then there is no reason not to assign them the same color.
Instead, Chaitin chose to be pessimistic and assumed that all neighbors of n,.¢move conflict.

Preston Briggs suggested a very simple and elegant solution to that overcomes this
suboptimal behavior. Iig. 1.9 is taken from his thesis and shows his suggested improvement
to Chaitin’s algorithm. Notice that the only difference between Fig. 1.1 and Fig. 1.9 is that
the spill code decision is made after the select phase instead of after the simplify phase.
With this improvement, the simplify phase doesn’t make any spill decisions at all. Nodes
are removed from the graph even if their degree are > k. Spill decisions arc delayed till the
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Figure 1.9: Briggs Improvement to Chaitin’s Algorithm

select phase. When the select phase is invoked, colors are assigned to nodes in the reverse
order in which they have been reduced and, a node, say ngor, is assigned a color different,
from all its neighbors. This is the crux of the solution - we are no longer hothered if nqy0,. s
neighbors have been assigned distinct colors, all that we are concerned with is that n
receive a color distinct from all its’ neighbors (as n.,, interferes with its neighbors). This
leaves us the opportunity to color neighbors of a node with the same color, and of course,
this leads to the reduction of unnecessary spill code.

Keeping Brigg’s modification in mind, we take another look at the example in Fig. 1.8.
Instead of spilling X1 when there are only two colors available, Briggs removes it from the
graph and continues the simplification process. Assume that we remove node X2, then X4
and finally X3. Then the nodes are colored. X3 reccives the color red. X4 is colored green
as it interferes with the red node X3. Next, X2is also colored green as it interferes with
X3 but not with X2. When we encounter the node X! we notice that it can be assigned
the color red as it is different from the colors assigned to its’ neighbors. This saves us from
spilling a node.
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Figure 1.10: Impreciseness Of Interference Graphs

1.6 Motivating Our Approach

Chapters | through 5 focus on register allocation for loop structures, especially “perfect”
loops. In this thesis we use the word “perfect” to mean basic blocks which do not have any
embedded flow of control.

Numerically intensive real world benchmarks tend to have a very high number of perfect
innermost loops [Huf93] and hence we zero in on the allocation problem for these structures.
Huff studied DO loops in the Lawrence Livermore, SPEC89 Fortran and the Perfect Club
benchmarks. The DO loops that he focused on had acyclic loop bodies with no procedure
calls, and assigned or computed goto statements. Surprisingly enough, out of the 1525 loops
that he isolated, 23% of them had loop carried dependences and no conditionals. while 70%
of them had neither loop carried dependences nor any conditionals. Both these kinds of
loops fall under our category of perfect loops. Due to the high percentage of occurrence of
perfect loops they merit special consideration. These programs spend a lot of time executing
the loop structures, therefore it is very important to obtain a good register allocation for
this structure so that the best possible speedup can be achieved.

While studying Chaitin’s interference graph coloring approach to register allocation,
we investigated a representation different from the interference graph. The representation
chosen by us works well for perfect loop structures. Here are our motivations :
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Figure 1.11: Impreciseness Of Interference Graphs Contd

o From our pocint of view, interference graphs do not encode any notion of the relative
time of overlaps between live ranges. As an example, we refer to the two loop bodies
shown in Figs. 1.10(a) and 1.12(d). The live range of ¢ in loop2 (of I'ig. 1.12(d))
extends from instructions 2 through 6 of each iteration of the loop, while ¢ in loopl
(of Fig. 1.10(a)) is defined at instruction 5 of one iteration and used by instruction 2
of the following iteration. The live range of ¢ of loop! is split into two segments per
iteration as is seen in Fig. 1.11(c). The interference graph created for both the loops
are exactly the same (Fig. 1.10(b)). However, when we see the live ranges of the
loops in Figs. 1.11(c) and 1.12(e) we get a precise picture of the times of overlap of
the various intervals.

e The exact times of overlap of live ranges is very useful in developing effective coloring
and spilling heuristics. This iz particularly true when one considers how to effectively
model the live range of a loop variable: its lifetime may cross the boundary of
iterations, and it may be defined and used repetitively at regular intervals. Let
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us consider another example to illustrate this case. Fig. 1.13(a) shows a loop with n
iterations. TFour scalar variables are defined and used in the loop: X1 - X4. Note
that in the case of loops each variable has a sequence of live ranges that correspond
to different iterations of the loop. For example, the live range of the variable X4, can
be split into several segments. For the first iteration, .X'4 is defined outside the loop
and dies at instruction 2 within the loop. This is one section of X4’s live range. In
addition, for cach iteration ¢ of the loop, X is defined in instruction 4 of iteration
i, and is live between this definition and the last use in instruction 2 of the following
iteration i+ 1. There is a similar situation for X3. In order to accurately capture this
infornration in our approach, we would like to find a representation that incorporates
the regular periodic nature of variables that are defined in some iteration ¢ and last
used in some later iteration o',

Fig. 1.13(L),shows the interval graph for the program segment. The X axis represents
the instruction numbers of the code, while the Y axis represents the variables of the
program. The solid circles of the diagram illustrate the points of definition while the
crosses illustrate the points of last use. For example, X1 is defined in instruction 1
and last used in instruction 3. Note that the lifetimes of each variable are represented
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Figure 1.13: Introducing An Interval Graph

by a sequence of intervals, one interval for each iteration.

As illustrated in Fig. 1.13(b), the live range of a loop variable can be represented
as a periodic interval: a sequence of lifetime intervals that are equally spaced in

time by some period. Such a periodic interval can be characterized by the interval
corresponding to one period. For example, the live ranges of variables X1 X in
Fig. 1.13 (b) have a period of one iteration. The live ranges of variables X1 and X2
do not extend across the boundary between iterations, therefore, they cach can he
expressed as one interval, i.e. X1: [l : 3), X2: [2 : 1), The variables X3 and X4,
however, are defined in one iteration and used in the next. Therefore, for convenicence,
we represent its live range as a pair of two intervals, i.e. X3: ([0 :1),[3 : 5]) and
X4: ([0,2),[4,5]), where the interval [0: 1), for X3 as an instance, can be considered
an extension of the interval [3 : 5] that is wrapped around to fit in one period. We
call such a “wrapped” interval a cyclic mterval. 1In Fig. 1.14(¢), we show the
cyclic interval graph representation for Fig. 1.13(b). The numbers 0 and 5 do not
correspond to any instructions but merely provide a joining point for two sticcessive
iterations.

e Another weakness of the interference graph approach is the potential expense required
to to rebuild and 1ecolor the interference graph after spill code has been introduced.
Based on the cyclic graph representation we have devised a two step method of
register allocation, the first step involves the spilling process and in the second step
the interval graph is colored. Intuitively, the “thickness” of cach point in the cyclic
interval graph captures information about overlapping live ranges of variables at a
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Figure 1.14: Cyclic Interval Graphs

particular location in the program. The points of the graph which are the thickest
— the “fat spot” — is crucial in developing our new heuristic algorithms. A detailed
description of the algorithin developed on the basis of the fatspots can be found
in Chapter 3.2 and, Chapter 2 details our two-step methodology and explores the
advantages offer »d by cyclic intervals graphs in detail.

The possibility of using interval graphs as a model for register allocation was noted in
[Tuc?5, Tucyd]. llowever, to our knowledge, previous research was theoretical in nature
and mainly focused on the algorithmic aspects of the interval graph model, while we are
primarily interested in the feasibility of using interval graphs in register allocators of real
life compilers.

1.7 Summary Of Chapter And Structure Of Thesis

In this chapter we provide the reader with a background on Chaitin’s allocation strategy
based on the interference graph coloring method. We also discussed some limitations
of Chaitin’s method and proposed some advantages offered by the cyclic interval graph
representation for register allocation for perfect loop blocks.

In Chapter 2, cyclic and non cyclic intervals are formally defined and the properties of
specific cyclic interval graphs are explored. A formal problem statement is also provided.
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Chapter 3 discusses heuristic algorithins developed for minimum register allocation for
perfect loop blocks. Chapter 4 describes a new spilling algurithm, the sweep and split
algorithm, that is used to transform an interval graph to one whose thichness is k as this
is the form in which the colorer expects to receive the interval graph. Chapter 5 reports
experimental results of our two step approach that uses heuristic graph coloring algorithms
mentioned in Chapter 3.

Since our allocation strategy works well for perfect loop structures that is what we
have concentrated on in this thesis. However, we have given thought to ways of extending
our method to other structures like loops having embedded flow of control or loops having
dependences which extend beyond one iteration. We describe difliculties we encountered in
creating such an extension as well as some plausible solutions in Chapter 6.

Finally, Chapter 7 concludes the thesis with a summary of related work done in the area
of register allocation. This helps to put our work in a broader perspective.
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Chapter 2

Introduction And Background

This chapter forially introduces the reader to the cyclic interval graph representation that
forms the basis of our register allocation approach. It is crucial in that it lays the foundation
for all the following chapters of the thesis.

Section 2.1 describes cyclic interval graphs and their properties. Then Section 2.2
formulates the register allocation problem in terms of the cyclic interval graph representation.
Finally, in Section 2.3 we argue that our chosen representation is beneficial and absolutely
crucial to the development of the algorithms used in our spilling and coloring phases.

2.1 Cyeclic Interval Graphs

In Chapter 1.6, we introduced the concept of cyclic interval graphs with the help of an
example shown in Figs. 1.13 and 1.14. Now, we shall generalize the description of the
interval graph and, make explicit any assumptions which we make while interpreting the
graph.

In general, we use the following conventions in our cyclic interval graph representations.
Let 1o, Ly, ... be the starting tume points of a sequence of machine operations. Without loss
of generality, we use non-negative integers for the time points. We use [t : t'] to denote the
interval between ¢ and ' including both end points. The notation [¢,!') denotes the same
interval but with the end point ¢’ left out.

We assume that each machine operation is in the form of a quadruple, e.g. x = y + 2,
which begins at some time point ¢t. To be precise, we say that variable x is defined at time

n)l

o~



point . The live range of x will continue to the time point t', (' > t), where it is last used
in a statement, e.g. u = x + v. After time ¢/, the value in x is no longer live. In this paper,
we define the lifetime interval of x to be [t,1"). When no confusion may occur, we use the
terms interval and lifelime interval interchangeably. The relation between the live ranges
of a set of variables is completely defined by the corresponding set of lifetime intervals.

Our problems are related to the class of circular-arc graph coloring problems [Kle69,
GIMP80]. A graph G is called a circular-arc graph if its vertices can be placed in a one-to-
one correspondence with a set of circular arcs of a circle in such a way that two vertices of
G are joined by an edge if and only if the corresponding two arcs overlap one another. In
Fig.1.14 (d), we show the circular-arc graph representation of our example in IFig. 1.13(b).
Intuitively, one can think of “bending” each of the interval into an arc. Since the intervals
are periodic, we can fit them into one circle. Theoretically, the problem of determining a
k-coloring for a circular arc graph with n ares has a complexity of O(ak!klogk) [GIMPSO].

As in any general graph coloring problem, finding the minimum coloring of a cyelie
interval graph is NP-hard [GJMP80]. For our purpose of register allocation, it is most
important to use the information provided in the interval graph as guiding heuristics for
our algorithmic solutions.

Now, we take the opportunity to introduce some definitions which will be used at some

points of the thesis.

Definition 2.1.1 A time t is covered by an interval Il : [t1,01"), if (11 <1 < {1'), or by
an interval T1': [t1,¢1'] if (11 < t < t1'), or by a cyclic interval 12 : ([t1,11"),[t2,12']), if ¢
is covered by either ([t1,t1") or [2,12]).

Definition 2.1.2 Two intervals I1,12 overlap if there ezists a time | thal is covered by
both I1 and I2.

2.2 A Formal Problem Statement

Having been introduced to the representation that forms the basis of our allocator, we
formulate the register allocation problem in context of cyclic interval graphs.

¢ Problem 1 (Finding a Minimum Coloring of a Cyclic Interval Graph):
Given a set of live ranges represented as a cyclic interval graph G, find a minimum
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register (color) assignment for the intervals in (& such that overlapping intervals are

assigned different registers.

Chapter 3 deals entirely with this problem.

e Problem 2 (Finding a k-coloring of a Cyclic Interval Graph with Mirimum Spilling
Cost):
Giiven a set of live ranges represented by a cyclic interval graph G and a set of &
registers, find an assignment of the k registers for the intervals in G. Introduce spill
code when necessary, and keep the spill cost to a minimum.

This problem is given full attention in Chapter 4.

These problem statements are a refinement of the ones stated in Chapter 1.2.

2.3 Features Of Cyclic Interval Graphs

laving understood how to interpret and read an interval and a cyclic interval graph, we
claborate on the advantages that this representation offers over the traditional interference
graph. While pointing out the differences between Chaitin’s approach and our own, we will
frequently refer to phases of Chaitin’s algorithm (Fig. 1.1 in Chapter 1.2).

l. A two-step allocation approach :
Now, that we have an interval graph, we are interested in fast heuristic methods which
find a A-coloring quickly, and generates efficient code for spilling when necessary.

We have observed that the number of minimum registers needed for a cyclic interval
graph is related to the thickness of the graph, which we will formally define below!.

Definition 2.3.1 The width of a cyclic interval graph G at time t, written as width(G,t),
is the number of intervals covering t.

Definition 2.3.2 The maximum width of a cyclic interval graph G, written W,4.(G),
is the marimum width(G,t), for all t which is covered by some interval in G. The
minimum width of e cyclic interval graph G, written Wp,,,(G), is the minimum
width((, t), for all t which is covered by some interval in G.

"Parts of this section has been excerpted from [HGAM92].
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Now, we state the following theorems about the number of colors required to minimally
color acyclic and cyclic interval graphs.

The following theorem addresses the problem of optimal coloring of acycelic interval
graphs.

Theorem 2.3.1 Let G be an interval graph containing no cyclic intervals. hen ¢
is optimally colorable with W,,,.(G) colors.

Proof: First, it is obvious that ¢ cannot be colored with less than & colors. Now ot
us complete the proof by sketching an algorithm (called left cdge algorithm? [I1ST1])
which will guarantee to find the optimal coloring of (/. Assume (7 spans {rom time
0 to time n. Starting from the left end (at time, { = 0), move from left to right
along the time line. For each interval, I, which ends at ¢, release its color back to the
pool of free colors. For each interval I beginning at {, give { a [ree color which is not
being used by any interval covering {. Initially, the pool coutains k = W, ((/) free
colors. Since there will never be more than W,,,,.(G') intervals covering any time f,
the algorithm will successfully find a k-coloring for (/. m

For a cyclic interval graph G, k = Wy,az(G) may not be enough to color ¢/, "This is
due to the constraints caused by the cyclic intervals. However, we can establish the
following upper bound:

Theorem 2.3.2 Let G be an nterval graph conlamning cyclic intervals. Then (7 is
optimally colorable with Wy, ,o(G) < k < Wit (G) + Won((F) colors.

Proof: First, it is obvious that & cannot be colored with less than W, ., ((/) cclors.,
Now let us complete the proof by sketching an algorithin which will guarantee to find
the coloring of G in Wy u(G) + Winn(G) colors. Cut (¢ at the point where it has the
minimum width W,,,,(G). Take the intervals covering the cutting point out of ¢/ and
call the remaining part G'. Obviously, we can now treat (i as a non-cyclic interval
graph. Coloring G’ with the left-to-right algorithm guarantees it to be colored with
no more than &' = Wp,u,(G) colors (Theorem 2.3.1). Then, it is trivial to see that
we can use W,,,,,(G) more colors to color the removed intervals. 8

Since we are able to predict the upper and lower bound of the colors that will be
needed to color an interval graph, we use this information to device a two step
allocation policy as shown in Fig. 2.1. Assume that the number of available registers
is k. According to Theorems 2.3.1 and 2.3.2 the thickness of the interval graph
provides us with the number of colors which will be required to color it If the

2A description of the algorithm can be found in Appendix A.

24




PROGRAM

J

INTERVAL

GRAPH

U

SPILL
(SWEEP AND
SPLIT)

@

COLORING

N

{atcover greedy

Figure 2.1: I'low Diagram For Register Allocation Based On Cyclic Interval Graphs

number of colors needed is greater than k, then we have to transform the interval
graph so that it becomes k-colorable. As we have a priori knowledge of the number
of intervals to spill, we perform the spilling phase first and only once to transform
the interval graph so that its’ thickness is < k as expectled by the colorer. Then the
coloring, phase uses k or fewer registers to color the transformed graph. This dual
step process avoids the potential expense that may be required to rebuild and recolor
the interference graph after the introduction of spill code in Chaitin’s approach.

Notice that it is not easv to determine a lower bound on the number of colors that
will be needed to color an interference graph. In order to determine the lower bound,
we would have to find the largest clique in the interference graph and once again, we
encounter an NP problem [GJ79]. Or we would have to use a backtracking algorithm
to actually color the interference graph before obtaining an answer. This makes
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it difficult to implement a two step approach like ours on the interference graph
representation.

Use of explicit timing information provided by interval graphs :

The interval graph representation encodes the exact times of overlap amongst the
various intervals. This makes it easy to assign colors to intervals using the left edge
algorithm (Appendix A) for instance. Since the interval graph can be swept in any
direction along the time line and fatspots of the graph are casily identifiable, heuristics
can very naturally use this information to choose and priotitize intervals which are to
be assigned colors. We can also keep track of the times when registers (or colors) are
free and busy and, this information can be used as heuristics by the colorer. Interval
graphs provide a very convenient and natural framework to identify intervals which
can share colors.

Unfortunately, the interference graph doesn’t include time in its’ representation,
Hence, timing information can not be availed of by heuristics used to choose nodes
to color or spill. For instance, it is not possible to directly know which nodes are live
simultaneously at a point of time. This make it difficult to detect nodes which could
conceivably share the same colors. Chapter 4.2 illustrates a case where our spilling
algorithm makes use of the timing information offered by interval graphs.

Natural way of capturing loop carried dependence information :
As we saw in Fig. 1.14(c¢), loop carried dependence information can he very casily
captured by cyclic interval graphs. As we shall see in Chapter 4.2 onr two step
allocation method takes advantage of the explicit presence of cyclic intervals to
discover opportunities to avoid spill code by inserting register move instructions
instead. We expect this to imnprove the performance of the loop.

Renumbering phase becomes redundant :

Each interval of the interval graph is akin to a renumbered live range or a node of the
interference graph. The mere presence of the intervals in the interval graph makes
the renumbering phase redundant.

The intervals ate essentially def-use chains [ASU88] of program variables. Fach
interval captures specific information about the point of definition and the points
of use of that live range. Since we are focusing on perfect loop blocks, every variable
of a perfect loop block has a single def-use chain and an interval of this block is the
same as a def-use chain of that variable.
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2.4 Summary

This chapter provides formal definitions of cyclic interval graphs as well as a description of
their propertics. We present a formulation of the register allocation problem in context of
cyclic interval graphs and finally, points justifying the use of cyclic intervals graphs as the
basis of our register allocation method is brought forth.




Chapter 3

Register Allocation

In this chapter we examine heuristic algorithms for coloring cyclic interval graphs using a
minimal number of colors. More specifically, given a cyclic interval graph ¢/, we would like
to find a fast algorithm that can color G with as few colors as possible. All the algorithms
of this chapter address Problem 1 of Chapter 2.2. Recall that Problem | was stated as the
following :

¢ Problem 1 (Finding a Minimum Coloring of a Cyclic Interval Graph):
Given a set of live ranges represented as a cyclic interval graph @, find a minimum
register (color) assignment for the intervals in ¢ such that overlapping intervals are
assigned different registers.

This has importaut applications in situations when the smallest number of registers
is required. Tor instance, when allocating registers interproceduraily it is beneficial to
allocate a minimal number of registers to each procedure. This reduces the amount of
register saving required at procedure call time, and may improve interprocedural register
allocation [SHB89b).

Our algorithms are based on the important assumption that the number of registers, k,
required to color the graph, G, is available on the target architecture. If the graph required
more than k registers then we assume that it has been transformed by the spilling phase
(Chapter 4) to G, which is k-colorable.

As the graph coloring problem is known to be NP-complete, the coloring algorithins
use some sort of heuristic, and therefore are not guaranteed to find the optimal solution.
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However, our goal is to come up with heuristic based algorithms that find near-optimal
solutions for the majority of the graphs being colored.

Section 3.1 outlines some terminology that will be used with regard to the cyclic intervals
of the graphs. In Sections 3.2 and, 3.3 we develop new algorithms which address the issue
of the minimal coloring problem and describe some implementation details. Lastly, in
Section 3.4 we mention the assumptions which the coloring algorithms are based on as well
as some of the caveats.

3.1 Terminology

Before embarking on a discussion of coloring algorithms, we explain terminologies which
will be used to describe cyclic intervals in this and the following chapters.

Cyclic intervals wrap around from one iteration to the next, it is one long interval.
However, in the interval graphs, we choose to depict it as two intervals instead. Variables
x3 and x1 are cyclic intervals in Fig 1.14(c) of Chapter 1.

¢ Front-end of cyclic intervals : While sweeping the graph from left to right, the first
section of the interval that is encountered is called the front-end of the cyclic interval.
For instance, the front-end of x3 extends from instruction 0 to 1 (Fig. 1.14(c)).

e Tail-end of cyclic intervals : The second section of the cyclic interval that is encountered
while sweeping the graph is the tail-end of the interval. The tail-end of x3 extends
from instructions 3 to 5.

3.2 The Fat-Cover Coloring Algorithm

Given the fact that the optimal number of colors required to color a cyclic interval graph G
is bounded by W02(G) and Wiy, 0 (G) + Winae(G) (Theorem 2.3.2), and our experimental
observations which indicate that a large majority of graphs that could represent programs
can be colored in W4, colors, we have developed an algorithm, called the fat cover
algorithin [HGAM92], that is specifically designed to work well for graphs that can be
colored in W, colors.

The key to this algorithm is the observation that the fat spots which are the thickest parts
of the interval graph are the locations that are most important. We can iteratively reduce
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the maximum width of the uncolored portion of the graph by finding a non-oveilapping
set of intervals that covers all of the fat spots and coloring all of these intervals with the
same color. First, we introduce this idea informally with an example, and then give a more
formal description of the algorithm!.

3.2.1 An Example

Consider the example graph given in Fig. 3.1.

Fig. 3.1(a) : In this picture we give the input interval graph. Notice that this graph has
a maximum width, W,,,.(G), of 3, and two cyclic intervals a and b, The fat cover
algorithm will try to color it with & = Wy,,,(G) = 3 colors.

Fig. 3.1(b) : The fat spots, or the points of maximum width, are indicated by arrows.
The objective of the fat cover algorithm is to find for cach cyclic interval, a sot of
non-overlapping intervals that includes the cyclic interval. 'The intervals are chosen
such that one of the intervals is live at each fatspot of the graph. We call this set of
intervals the fetcover relative to the cyclic interval.

In this example, there are four fat spots to be covered and the fatcover for two cyclic
intervals, a and b, have to be found. We find the fatcover for a in this step. By
traversing left from interval a, the cover {a,d} is found. We can now color a and d
with a new color red, and proceed to the next phase.

Fig. 3.1(c) : The intervals of the fatcover of a are removed and the remaining uncolored
intervals are shown in this figure. Note that Wy,4,.(G) is now 2, and there are three
fat spots as indicated by the arrows. We find that {h,g} forms a fal cover for b, the
only remaining cyclic interval, and we color b and g with a new color blue.

Fig. 3.1(d) : This figure shows the only remaining intervals to consider. Note that there
are no cyclic intervals, and we can easily color these intervals with the third color
green.

Fig. 3.1(e) : The final coloring of all the intervals is shown in this figure. Note that a
and d are red, b and g are blue, e and h are green.

Parts of this section has been excerpted from [HGAMY2]
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(a) The Original Interval Gra

(c) Finding A Fat Cover For b - {b,g}

(b) Finding A Fat Cover For a - {a,d}

- A - - =

- —

(d) Coloring The Rest

Figure 3.1: An Example Of Applying The Fat Cover Algorithm
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3.2.2 Theoretical Background

Given the basic idea of the algorithm as presented in the previous section, we now provide
some definitions which will be frequently used.

Definition 3.2.1 The fat spots of a cyclic interval graph G, written fatspots((i), 1s the scl
of all times 1, where width(G,1,) = W0 (G).

Definition 3.2.2 A fat cover of « cyclic interval graph, G, relatwe to interval 1 is o
subgraph F (I € F) of G that obeys the following two propertics: (1) all intervals in ¥
are non-overlapping, and (2) ¥, € fatspots((i), there exists an interval e I thal covers {,,

Theorem 3.2.1 If a cyclic interval graph G is colorable in k = W,,,, (/) colors, then for
each cyclic interval I, of G, there exists a fat cover for G rclative to 1., call it V', suech that

G- F isk—1 colorable.

Proof: Given a b = W, (G) coloring of (7, pick the color associated with any
cyclic interval 1., call it C'. Now form a set I of all the intervals from ¢/ that were colored
with C. Tirst, let us show that I is a fat cover of (i relative to /.. By definition of a
valid coloring, all intervals in /' must be non-overlapping, and thus F
property of Definition 3.2.2. Furthermore, since ¢ is colorable in exactly W,,, {¢/) colors,
then exactly one interval at each fat spot must be colored with C'. Thus, I' clearly satisfies
property 2 of Definition 3.2.2. Secondly, it is clear that by removing I’ from ¢/ we are left
with a graph that is colored with & — 1 colors. m

satisflies the fist

3.2.3 A Description Of The Algorithm

The development of the fat cover algorithm was inspired by Theorems 2.3.1 and 3.2.1.

Given a graph G with m cyclic intervals C,,, C,,,...,(,,,, the algorithm proceeds in
two phases.

1. The first phase :
attempts to use m colors to find a fat cover for cach of the m cyclic intervals. At
the ith step, a tr.versal from left to right is performed to find a fat cover for interval
C, (call this fat cover F)). If such a cover is found, a traversal from right to left is
performed which assigns the same new color €, to all of the intervals in /.
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2. The second phase :

If the first phase suceceeds in coloring m cyclic intervals with m colors, then the second
phase need only consider a reduced graph G’ that contains no cyclic intervals. G’ has
amaximum width of w = W,,,,,(G)— m. The coloring of ¢/ is guaranteed to use only
w new colors (see proof of Theorem 2.3.1). A straightforward left-to-right algorithm
is used to color the remaining non-cyclic intervals. We will not dwell on the left
edge algorithm [IIS71] as it is a very simple linear algorithm?, Thus, we can find an
optimal coloring in & = W,,,.(() colors for graph (.

However, if the first phase fauls to find a fal cover at some stage, the second phase
simply colors the remaining cyclic intervals with new colors, and applies the simple
left to right algorithm to color the remaining intervals. In this case. the resultant
coloring, may or may not be optimal.

Our fat cover algorithm can be thought of as a smart way of deciding which subset of
intervals should be colored with the same color. In some of the more traditional approaches
using interference graphs, a simplification phase is applied to the interference graph in which
pairs of nodes are coalesced into one node, thus forcing them to be colored the same color
[CACHEL]. In our case we are searching for sets of nodes that have a very specific property,
that is they all belong to a fat cover of some cyclic interval. Finding such a set of intervals
requires information reparding the location of all the fat spots in the interval graph. This
information is explicit in our cyclic interval graph representation, and is not available in
the interference graph representation.

3.2.4 Sub-Optimal Performance Of The Algorithm

Although the algorithm finds « fat cover at each step, it may not find the fat cover that
leads to an optimal solution. That is, for a k-colorable graph G, it may select a fatcover
Fe, such that (7~ F¢, is not k— 1 colorable, even though there exists another fatcover Iy,
such that ¢ - l"('.' is k - 1-colorable. In parts of the chapter I, is also defined as FC, or
L.

Fig. 3.2 shows an example illustrating this case. The interval graph (Fig. 3.2(a)) has a
maximum width of 3 and the fatspot is marked by an arrow.

Assume that we are trying to find the fatcover of the cyclic interval a first. It has three
potential fatcovers :

2Appendix A (Algorithm A.0.1) gives a brief description of the left edge algorithm.
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Figure 3.2: Sub-Optimality Of The Fatcover Coloring Algorithm

1. {a,c, a’} |
2. {a,d, a’}

3. {a,e, 2%}

If one of the last two fatcovers are chosen then a fatcover for the cyclic interval b can be
found. The fatcover for b consists of the intervals {b, ¢, b’}.

However, if the { a, ¢, a’ } is chosen as the fatcover for a then we will he unable to find
a fatcover for b. Fig. 3.2(b) shows the reduced graph after the fatcover for a is removed.
from this graph, a fatcover for b can not be found. From our example we sce that a specific
choice of a fatcover paves the way for finding fatcovers of other cyclic intervals. 3 colors |
(which is > (Wyaz(G') = 2)) will be required to color the reduced graph, (/. T'he cyclic
interval b as well as intervals d and e will have to be assigned new colors each. Therefore,
it is important to note that GG is uncolorable with W,,,.((/) colors, it requires more colors.

Theorem 3.2.2 For a graph, G, which s colorable unth W,,,,.((;) colors and has only one
cyclic interval, the fatcover algorithm always finds the optimal (W,,,,,((7)) coloring of (.
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Proof: Given a graph, (, which is Wy,,;(G)-colorable and has only one cyclic
interval, (’,. The fatcover algorithm is guaranteed to find a fat cover, Fg,, if one exists.
Furthermore, after a fat cover is found, we know that the graph G — F¢, will have maximum
thickness of W, ((7)—1, and (G — F¢, will contain no cyclic intervals. Therefore, by theorem
2.3.1, we can guarantee that (¢ — Fg, can be colored with W,,,,,(G) — 1 colors, and ¢ can
therefore be colored in W,,..(G') colors. B

3.2.5 An Improved Fatcover Algorithm

As we saw in the section above, when there are more than one cyclic intervals in the graph,
we may make a bad choice of a fatcover from amongst all the possible fatcovers of a cyclic
interval. Our choice may prevent us from finding the fatcover for a subsequent cyclic interval
and this renders the graph uncolorable in & colors! Finding the right fatcover is an NP-hard
problem and we could attempt to use a backtracking algorithm to find the right solution.
After making a choice of a Iy, if (v - F¢, is uncolorable with W, (G — F¢,) colois then it
would have to backtrack and choose another I, for the cyclic interval i. 1If there are several
cyclic intervals then the algorithim may spend most of its time backtracking. Hence, this is
not a very practical solution.

Perhaps we need to see the problem in a different perspective. A Wi,..(G)(= k) coloring
of the graph is not possible when the right fatcover has not been found for one of the cyclic
intervals. Instead of focusing on obtaining the right fatcover for all the cyclic intervals, we
shift our attention to ensuring that we always obtain a & coloring of the graph.

First, we ask why making a wrong choice of a fatcover renders G” uncolorable in £ - 1
colors, According to the fatcover algorithm, assume that we color the wrong fatcover {a,
¢, @’} the color red in Fig. 3.2(a), then this color is unavailable to color {b, b’}, d and e
and all of them require to be assigned distinct colors. However, if we were to assume that
all the intervals of the fatcover do not have to receive the same coler then we can find a
J-coloring of the graph. Of course, the front and tail ends of the cyclic intervals must be
assigned the same colors, but if there are acyclic intervals in the fatcover then they do not
necessarily have to share the color assigned to the cyclic interval. This is the key intuition
behind the improvement of the fatcover algorithm [Gao93]. The fatcover of a cyclic interval
is useful in reducing the maximum thickness of the graph and, we exploit this property of
fatcovers. Bul choosing to assign the same color to all the intervals of the fatcover imposes
an unnecessary constraint,

For instance, how do we find this 3-coloring of G of Fig. 3.2(a)?
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Figure 3.3: Illustrating A Modified Fatcover Algorithim

. STEP 1 : Find fatcovers of cyclic interval, but do not assign colors
After choosing the fatcover {a, ¢, a’} we remove it from (' but unlike the fatcover
algorithm, do not assign it any color.

This is the first deviation from the original fatcover algorithm.

. We proceed to find a fatcover for the cyclic interval b of Fig. 3.2(b) and, discover that
a fatcover can’t be found for it. So, we remove b from (' and refrain from coloring
the cyclic interval.

. STEP 2 : Color acyclic interval graph

Next, we are left with the non-cyclic interval graph of Fig. 3.3(c). Like in the fatcover
algorithm, the left-edge algorithm is used to color these intervals. Interval d is colored
red, while e is colored blue.

. STEP 3 : Color fatcovers, (F'C,), containing acyclic intervals

Now, we put back the fatcover of a into the graph and concentrate on coloring the
acyclic intervals of this fatcover (Fig. 3.3(d)). As cis a part of the fatspot. of the graph
and, the graph can be colored in Wy,,,(G) colors, a free color must he available for
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{(e) The Colored Cyclic Interval Graph
Figure 3.4: Nlustrating A Modified Fatcover Algorithm

<

it. We assign it a color other than the ones which have been assigned to the intervals
that it conflicts with. In our example, b has to be assigned the color green, as the
colors red and blue have been assigned to d and e which are a part of the fatspot.

Having the flexibility to assign the acyclic intervals of FC, a color different from
the cyclic interval of I'C', is the most important modification made to the fatcover
algorithm. This does not tie up a single color for all the intervals of F'C, and allows
colors to be shared between FC, and the other acyclic intervals of G — FC,.

This is the second distinguishing trait of the modified algorithm.

STEP 4 : Color cyclic intervals having no fatcovers

Lastly, we put back { b, b’ }. In general, cyclic intervals for which no fatcover have
been found are put back in the last step. This cyclic interval is assigned a color thai
is free during its lifetime. From Fig. 3.4(e) b is assigned the color green, it could not
be assigned red as it has been assigned to the cyclic interval a and blue is assigned
to interfering interval e.

And, this is the third and last factor that separates the modified algorithm from the
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original one.

3.2.6 The Implemented Algorithm

In this section we discuss the original fatcover algorithm as it has been implemented and
the next section outlines some data structures it uses.

The procedures that we will refer to have been described in detail within in boxes in
the following pages. The names of procedures have been italicized.

1. Main Fatcover
Expected inputs and the output of the algorithm are mentioned in the boxes labelled
Input and Qutputl respectively. The procedure Main Falcover is the driving routine

for the fatcover algorithm.

Main Fatcover chooses and colors fatcovers for each cyclic interval of the graph. If a
fatcover is not found for a cyclic interval, then it is assigned a previously unused color,
The colored intervals are removed from the graph and the resulting graph contains
no cyclic intervals. The non cyclic intervals are assigned colors using the left-edge
algorithm. The final colorings of all the intervals are output. Below, we give a high
level algorithm for this procedure. The terms reg.p, ., denote the vegister classes
available on the target architecture, while regpref(i) is the register class preference of
a register i.



High Level Algorithmic Description Of Main Fatcover :

FOR cach reg.p, o
Subgraphs,((”), are created
where «all the intervals, i, of G’ are such that :
regpref (1) = regejass
FOR cvery ¢
FOR cvery cyclic interval, C;, in G’
Sweep (¢’ from left to right once, incrementally gathering
all thie possible fatcovers of C,, FCg,[] (in Function
Establish All Covers Of C,)
Sweep (7 from right to left again and choose one fatcover
from the set F'C¢,[] (in Function
Choose A Cover For C,)
IF FC¢,[] == 0 THEN
Mark C, a chameleon interval
ELSE
Assign (r€g,umber(C:)) new colors to FCg,[].
Run Left-Edge-Algorithm on the subgraph
(' - F'C¢, ,,) which has only non-cyclic intervals
DONE

2. Establish All Covers Of C,
"This routine (described in the box labelled Establish Aill Covers Of C,) is invoked by
Main Fatcover. It is responsible for finding all the fatcovers of a cyclic interval, C,,
of (5.

We give a high level algorithm for this procedure.
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parents[] is initialized to NULL before we begin the sweep of (.
A left to right sweep of G’ is performed and cach fatspot is visited.

At each fatspot the following steps are performed :

(1) We obtain candidate intervals for each of the possible fatcovers. Candidate
intervals of a fatspot are chosen such that they do not conflict with the
previously chosen parent intervals, parentsf].

(2) As each candidate interval is chosen it is stored in children]].

(3) Once all the children{] intervals have been found at a fatspot they’re moved
into parent[].

(4) We continue our sweep of the graph and move onto the next fatspot

C, is always a part of its fatcover, so the front and tail ends of C, are always
inserted as intervals of it’s fatcover.

We should note that in this function all the possible fatcovers for each cyelic interval
is established and maintained as a graph structure without their explicit enumeration.
A record is made of all the acyclic intervals of a fatspot that do not conflict with the
parent intervals. In this way enough information is captured about all the feasible
fatcovers of a cyclic interval without explicitly enumerating them. This information
is later used in function Choose A Cover For C, to create and choose one fatcover
from amongst all the possible ones.

The time complexity of this procedure dominates the total complexity of the fatcover
algorithm. Hence, we analyze a couple of aspects of its complexity.

(A) The worst case time complexity of Istablish All Covers Of C, (where (', is a
cyclic interval) is O(num_fs x n*), where num_fs is the number of fatspots in ('

and, n = number of intervals(G’).

From the described algorithm, we see that in the worst case this procedure has
a complexity of O(num_fs * (W,,0-(G"))?). At every fatspot, we need to look
at every interval live at that time instant and it’s parents, to see check if it
can be a candidate for the fatcover for C,. And we know that there are at most
Winaz(G') intervals live at any fatspot. If all W,,,((’) intervals are live at every
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fatspot and the intervals at a fatspot do not conflict with those of other fatspots.
Fig. 3.5(a) shows the structure of the interval graph in the worst case. Hence,
we check (Wipaz(G’))? intervals at cach fatspot. We hope that W,,,.(G') < n,
where n = number of intervals(G').

In the absolute worst case, Wi, (') = n and the complexity becomes O(num-_fs*
n?).

b ) Ciustert Cluster2 Cluster3

T wessm T e N s s brd e

Time T 1 1
Fatspots paths

(a) The Worst Case Interval Graph (b) The Number Of Fatcovers

Ifigure 3.5: Number Of Fatcovers Per Cyclic Interval (Worst Case Situation)

(B) If we were interested in enumerating all the fatcovers of a cyclic interval, then
in the worst case the total number of possible fatcovers of a cyclic interval, C,
is ‘Vmar(G/)num_fs.

In the worst case scenario, we assume that the set containing W,,,,(G") intervals
at each of the num_fs fatspots are unique. Furthermore, none of the intervals
of the fatspots conflict with the cyclic interval whose fatcover is being found.
Fig. 3.5(a) shows the structure of the interval graph. From the figure we see
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3 (= num_fs) clusters of 2 (= W,,,+(G")) intervals each. In order to find all
the fatcovers we need to find all the paths from cluster_1 to cluster-(num.fs).
Fig. 3.5(b) shows all the paths from from cluster_! to cluster.3. In general, we
observe that there will be ‘/me.((}")"””'-ﬁ paths for every cyclic interval in the

graph. Paths are equivalent to the fatcovers of the cyclic interval.

3. Choose A Cover For C,

This is a subsidiary routine that is invoked by Man Fatecover as well. A high level

description of the algorithm is provided below.

We now have parentf] (from Establish All Covers Of ) containing the last
interval of all the fatcovers. The last interval is always the tail end of (',.

We traverse the graph backwards visiting each fatspot.

At each fatspot the following steps are performed :

intervals chosen at each fatspot of G'.

(1) The list of candidate intervals are reviewed. None of the candidate intervals
at that fatspot conflict with the parent[] interval.

(2) From the list of candidates one is chosen. The choice is based on heuristics,
Our heuristics favor :

o Intervals which have earlier start times.

e When two intervals have the same start time then the interval which is
live longer is chosen.

These criteria tend to choose intervals of longer duration. This ensures color
assigned to fatcovers are kept busy for long stretches of time instead of being
live for several short durations. all the candidate intervals at that fatspot.

(3) Once an interval is it is entered in parent[].

(4) The previous fatspot of the graph is visited.

Please refer to the box labelled Choose A Cover For C, for a detailed description of

the algorithm.

We also provide a time complexity analysis for this procedure.

(A) In the worst case, the time required to choose a cover for a cyclic interval is

O(num_fs x Wy,,(G")).

From the described algorithm we sce that in the worst case this procedure has
a complexity of O(num_fs ¥ Wp,4-(G’)). Given that we have all the possible
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fatcovers, we traverse the graph backwards selecting acyclic intervals at each
fatspot. By the end of the traversal, a fatcove: is created.

Assume that the intervals at each fatspot do not conflict with intervals at the
next fatspot (Fig. 3.5(a)). Hence in our backward traversal when we encounter
the first fatspot we choose one interval from amongst the possible W, .-(G")
intervals. Since none of the intervals of one fatspot conflict with those of the next
fatspot, the interval chosen for the fatcover has (Wy,r(G')) possible parents.
Therefore, at each fatspot we have to look through (W,,.-(G’)) intervals in
order to choose one. Since there are num_fs fatspots, the total complexity is
O(num_fs * Wour(G')).

Algorithm 3.2.1 Given a cyclic interval graph, G, use the fatcover algorithm to
color (7.

Inpul: A cyclic interval graph, G, constructed using the def-use information of
the variables. The cyclic and the non-cyclic intervals of the graph are identified,

The register classes, reg.j,., present on the target architecture,

The register preference, regpref» of each interval of the cyclic interval graph.
This determines the class of register that needs to be assigned to each interval.

And,

The number of registers, regpum, needed by each interval of the cyclic
interval graph. Recall that we use registers and colors interchangeably.

Qutput: The cyclic interval graph, G, such that
every interval, i, of the graph has been
assigned a color, ¢,, and,
reBeass(€) = rogpre{(i) assigned colors, ¢ regnum(i)’ and,

regelass( €l .regnum(x)) = regpref(i)
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Procedure Main Falcover :

FOR each subgraph, G/,
Identify all the fatspots (fsf]) of G’
Record the numbcr of fatspots in num-_fs
FOR every fatspot, fs[t]),
Find all non cyclic intervals, NC’I""’ NC'k’
live at time t
FOR every cyclic interval, C,,
Establish All Covers Of C,, FCc,[], by a left to right traversal of ¢/
IF FC¢,[) > 1 THEN
successful = Choose A Cover For C, from
FCc,[] by a right to left traversal of G’
IF successful THEN
Assign FC¢ [chosen] (regnumber(C)) new colors to #'C¢ [chosen]
ELSE
Mark C, to be a chameleon interval (These are
special intervals and will be discussed in Chapter 4).
ELSIF FCg¢,[] = 0 THEN
Assign C, (regnumber(i)) new colors, ¢,
Use Left-Edge-Algorithm to color the subgraph (G’ — I, ),
which has only non cyclic intervals
DONE
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Procedure Estabhsh All Covers Of O,

curfspot = 1
parentf]=children{]= roots = NULL
front.end dive = FALSE
tuil_end ive = FALSE
WHILE curfspot < num-fs
( If the fiont end of the cyclic interval s hve )
( then it s the 100t interval of all possible fatcovers )
IF fiont-end of Uy, gy, is live THEN
Chioose C, to be a patt of the fatcover
Insert Cy into cnldienf]
parentsf] = culdren{] ((in preparation for curfspot +1 )
Increment cufspot
IF curfopot == 1 THEN
Set parent of ¢, = NULL ( as this has to be the first interval in all possible fatcovers )
rootsf] = childrenf] ( to keep track of the first interval of the fatcovers )
frontendive = TRUE
ELSE
Set parent of ('
CONTINUE with next iteration of loop
( If the fiont end of the cyclic interval s not live at the first )
{ fatspot, mcludet in FCe [] anyhow, as it must be a part, )
( of the fatcover )
IF (cindspot == 1 && fiont_end_hive) THEN
Set parent of (', = NULL ( as this has to be the first interval in all possible fatcovers )
1ootsf] = cluldrenf]  to keep track of the first interval of the fatcovers )
patents] = cluldren[] ( i preparation for the next fatspot )
fiont.enddive = TRUE
Inctement curfspot
CONTINUE with next iteration of loop
FOR each noa-cyche mterval, NCy, live at curfspot
FOR cach it i parentf]
IF NC', and mt do not conflict
Insert NC', mto cluldren(]
Record parent of NC', to be mnt
Record dduld of mnt Lo be NC,
IF tail-end of Oy 18 hive at cur fspot
tail.end dive = 'TRUE
Insert ta-end of 40—, v cluldien{] so that 1t
15 chiosen to be a pait of the fatcover
Ehminate all parent[] intervals which conflict with Cyqyr—,
IF puent{] = ¢ THEN
RETURN FALSE ( No fatcover can be found )
ELSE
RETURN TRUL { Fatcover can be found )
parent[] = childieaf]
Increment cur fspot
( If Ceast—y was not live at any of the fat spots then insert it )
( in the fatcover anay to mahe it the last interval to be seen by all )
( fatcovers)
IF !tail.enddne THEN
Insert tail-end of Cegyy—, in childrenf]so that it
is chosen to be a part of the fatcover
Ehounate all parentf] intervals which conflict with Cyqyp-y
IF paient[] = ¢ THEN
RETURN FALSE ( No fatcover can be found )
RETURN TRUE ( Fatcover can be found )
DONE 45




Choose A Cover For (', :

chosen_fc[] = NULL
earliest_start_time = LARGE_NUM
WHILE parent[0] != NULL
FOR each int in parentf]
IF int was before and s in chosen_fc[} THEN
int_num = int
ELSIF start_time(int) < carliest_start.time THEN
int_num = int
earliest _start_time = start_time(int)
chosen_fc[] = int_num
parent{] = parents of int_num

DONE

3.2.7 Main Data Structures Used

In order to implement the fatcover algorithm, we have used the data structures deseribed
below.

e Interval Array:

As shown in Fig. 3.6(a), this is an array that holds all the intervals of the graph,
cyclic as well as the non-cyclic ones. Cyclic intervals occupy the first portion of the
interval array and, the front and tail ends of cach cyclic interval are hept adjacent
to one another. The rest of the structure is occupied by non-cyclic intervals. Basic
infermation about all the intervals is recorded here and is used by all the coloring
algorithms. The index of the array gives cach interval an unique interval mumber,
The following attributes of intervals ate recorded :

1. Var number : This tells us which variable in the source code gives birth to this
interval. The var number is mainly used for debugging purposes.

2. Reg preference : The regeiass(i) is needed so that we can ereate subgraphs, (7,
such that all the intervals of G’ have the same register preference.

3. (Number) # of regs required : Intervals may require more than one register,
Some data modes require two or even four registers. When coloring, we need to

know the number of colors required by cach interval in (/.

4, Interval Property : This flag tells us whether an interval is cyclic, non-cyclie or
chameleon.
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5. Start time, End time : The start time and end times of every interval provides
us with information about the life length of the interval. The exact timings are
used by the coloring algorithms.

6. Register assigned : The color assigned to the interval is recorded in this field.

7. Start operation, Ind operation : These are pointers to the first and the last
operations of the interval.

e Fatspot Array:
I'ig. 3.6(b) illustrates an array where we keep record of all the live non-cyclic intervals
at each fatspot of every G'. In essence, this array contains a part of the interval graph.
The array is first indexed by the reg.,ss and then for cach rege,s; the following
information is kept :

—~ FOR every fatspot (each of which is a cell of an array)

1. Time : of G’ where the fatspot occurs.

2. Maximum intervals live : the maximum number of intervals live at this
fatspot.

3. Interval Vector : which is an array containing the interval number of all the
live intervals of this fatspot. The interval numbers are used to access the
Interval array.

Since live intervals at any fatspot can be available in constant time from this
structure, the complexity of the fatcover algorithm is reduced.

e Roots and Fatcover array :
Iig. 3.6(c¢) shows the roots and the fatcover arrays. Together these two structures
hold all the possible fatcovers for a C,.
The roots array points to the root interval for all the fatcovers of C,. The root interval
is the front-end of (',. The intervals pointed to by the root are the first level intervals
The first level intervals maintain pointeis to candidate children and are candidate
intervals for the fatcover of C, for the first fatspot. The first level intervals maintain
pointers to candidate children intervals. The structure is recursive and ends with the
last interval of all the fatcovers which has to be the tail-end of C,. This is the leaf
interval of the graph.
We see that roots holds a directed graph structure and this is built by the procedure
Establish All Covers For C',. The function Choose A Cover For C, chooses a path
starting with the leaf interval and ending with the root interval. Intermediate members
of the path (which may be acyclic intervals) are chosen by heuristics.

Fach element of the fatcover array has information about the following
ficlds :
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1. Number of Interval : The candidate intervals’ number. This is used to access
the interval array.

2. Number of parents : The number of parent intervals of this interval,

3. Number of children : The number of children candidate intervals of this interval,

3.3 The Greedy Coloring Algorithm

Another approach to coloring a cyclic interval graph is to first color the cyclical intervals with
unique colors, and then use a greedy algorithm to color the remaining intervals [HGAM92).
We describe this approach in Section 3.3.1 and then provide implementation details in
Sections 3.3.2, 3.3.3 and 3.3.4. Like the fatcover algorithm, the greedy algorithm also
makes use of heuristics to address the issue of minimum coloring of a cyclie interval graph
which was stated as Problem 1 in the beginning of this chapter.

3.3.1 A Description

Given a graph G with m cyclic intervals C,,,C,,,...,C,,,, the following steps
are performed :

1. Assign (regnymber(C:)) unique colors to each cyclic interval C,.

2. After coloring the cyclic intervals, we are left with a graph that contains only non-
cyclic uncolored intervals, NC,...NC,. So, we color these intervals of (i using the
three step process mentioned below :

(a) From among the uncolored intervals, choose the “best” one to color next, call
it NChezt. NCrezt is chosen on the basis of heuristics.

(b) From among the colors previously used, choose the “best” available color, call
it epezi. If no color is available for this interval, then allocate a new color, Like
NCext, Cnext is heuristically chosen.

(c) Assign color cpeze to interval NCpep;.
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3.3.2 The Implemented Algorithm

We outline the algorithm as it has been implemented. While giving an overall description,
we will refer to routines which are described in detail in the following pages. The routines

are cenclosed in labeled boxes.

l

Main Greedy

The expected input and output of the algorithm are mentioned in Input and Output
respectively. The main driving routine is Main Greedy. In this algorithm, first each
of the cyclic intervals are assigned new colors and removed from the graph. Once all
the cyclic intervals are removed, we are left with non cyclic intervals only. These non
cyclic intervals are colored by choosing one interval from amongst all the uncolored
ones and assigning, it a color from amongst all the colors available for it. These choices
are heuristically determined.

Section 3.3.3 defines two functions which are invoked by Main Greedy. The function
Choose A Non-Cyelic Interval, chooses a non cyclic interval, NC,, to color from
amongst all the uncolored non cyclic intervals and, Choose A Color For Non-Cyclic
Interval chooses a color to assign to NC,.

An analysis of the time complexity of the greedy algorithm is presented in Section 3.3.4.

Algorithm 3.3.1 Given a cyclic interval graph, G, that is colorable with Wy = k

colors, use the greedy algorithm to color G.

Input: A cyclic interval graph, G, constructed using the def-use information of

the variables. The cyclic and the non-cyclic intervals as well as the fatspots of
the graph are identified,

The register classes, reg . present on the target architecture,

The register preference, regpref » of each interval of the cyclic interval graph.
This determines the class of register that needs to be assigned to each interval.
And,

The number of registers, regnum, needed by each interval of the cyclic
interval graph. This is the same as the number of colors required by an interval.
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Output: The cyclic interval graph, G, such that
every interval, i, of the graph has been

assigned colors, ¢} reg and,

num(i)’ )
regclass(cl...regnum(i)) = regprt‘f(')

Procedure Main Greedy :

( Assign colors to all the cyclic intervals of GG )
FOR each cyclic interval C,
Assign (regnumber(C,)) new colors to C,
Update status of assigned colors to mark their times of use
( Now, we are left with a reduced graph, G, where all the uncolored )
( intervals are non-cyclic. We assign colors to them. )
Sort the uncolored non-cyclic intervals in order of increasing start time
WHILE there exists uncolored non-cyclic interval, NC,, in ¢
Choose an interval, NC posen from amongst all the available
uncolored intervals
Choose {regnum (N Cehosen)) colors to assign to NCoposen
Assign the chosen colors, (€1 (regnum(NC to NCihosen
DONE

chnsml)) )’

3.3.3 Two Important Steps Used By The Greedy Algorithm

The two functions described here are used by the greedy algorithm. Heuristics used by
these functions have been mentioned in [IIGAM92].

Choose A Non-Cyclic Interval, NC, :
Given a set of uncolored intervals, we have to choose one to color. Intervals are chosen
according to heuristics. Some possible criteria that are used in making this choice
are :
o the leftmost uncolored interval (the interval with the lowest starting time),

e the longest uncolored interval,

e the interval which overlaps with the most uncolored intervals, or
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e the interval which has the fewest number of available colors (where a color ¢
is available for interval NC,, only if ¢ has not heen used for any interval that
overlaps with NC).

Choose A Color For Non-Cyclic Interval, NC, :

Algorithm : All the colors assigned to the acyclic intervals that conflict
with NC, are made unavailable for NC,
Choose (regnum(NCeolor)) colors from amongst the available colors for NC,.

Some possible criteria for choosing the “best” color for a given NC, include:

o (a) best-fit (each color is available for some time intervals, a color that best-fits
is one where the starting and ending times for the color best match the starting
and ending times for the interval NC.pt),

o (b) worst-fit, and

e (¢) the color which can be used for the fewest number of unallocated intervals.

3.3.4 Main Data Structures Used

We use the following heuristics in the greedy algorithm,

1. When choosing an interval :
ligher priority is given to those intervals which have fewer colors available to be
assigned to it.

2. When choosing colors to assign to an interval :
Colors which can color fewer number of uncolored intervals are given a higher priority.

Together these two heuristics aim at coloring constrained intervals first as there are fewer
available colors for it. The color that is assigned to the chosen interval is one which is
available to color the fewest intervals. This heuristic used to choose a color ensures that
colors are maximally reused.

Given these heuristics, we use the following data structures in the implementation of
the greedy algorithm.




e Interval Array :
This is the same structure as the one used by the greedy algorithm (Fig. 3.6(a)).
It stores basic information about all the intervals of the graph and the index of the
array is used to number intervals. The interval array is used in building the structure
greedy intervals.

¢ Greedy Intervals :
This is a sorted linked list of intervals where the first interval of the list has highest
priority for coloring (Fig. 3.7(a)). For our heuristic, cach clement of the list has the
following information :

1. (Number) # of interval : like NC,.

2. (Number) # of overlap, Overlap List : These fields are crucial to our heuristic.
Number of overlaps records the number of all the uncoloied intervals which
have the same preference as NC, and which overlaps with it, while ovcrlap bist
maintains a list of all the overlapping intervals, NCypertap; -+« N Covertapyum -one g

The number of overlaps of NC, is used to position the interval in the sorted
greedy intervals list.

3. (Number) # of colors, Register list : The number of color gives us the number
of colors available to color NC,, while the register list is an array that holds the
colors that could be used to color this interval. When choosing a color, these
available colors are considered by the heuristic algoritiun.

4. Prev(ious), Next : are pointers to the previous and next intervals of the list.

¢ Greedy Registers :
This structure provides the heuristic algorithm information about the lis' of available
registers (Fig. 3.7(b)). The information is used when choosing a color to he assigned
to an interval.

Each cell of the greedy registers array represents a register class that is supported by
the target architecture and, it points to a list of all the registers of that class. Fach
register in the list has the fields :

1. Number of the register : The register number is recorded. For example, regl is
known as 1.

2. Number of intervals : that this register can color. This is the key factor involved
in our heuristic choice of a color.

Once NC, is chosen, it is assigned a color, cyg,. Next, the data structures are updated
‘ in the following fashion :




e the overlapping intervals, NCoyertapy - - NCoverluppum—pveriap © N C: can no longer be
assigned the color enc,. The register list field of all the conflicting intervals have to
be updated to make ¢cy¢ unavailable for it.

o As N(, is being colored, it can no longer belong to the overlap lists of
NCovertopy ++« NCovertap ( - recall that the overlap list contains a list of only
the uncolored overlapping intervals). And finally,

num~overlap

e The number of intervals that the color ¢nc¢, can color decreases by the number of
overlapping intervals of NC,. This change is reflected as well.

These above steps must be performed and the greedy intervals list has to be re-sorted to
keep it in a state where it can be easily used by the colorer. Updating the greedy intervals
list contributes to the time complexity of the greedy algorithm. We outline the process of
updating the list bricfly to understand the time complexity.

Updating Greedy Last :

FOR cach conflicting interval, NCypeptap, of NC,
( Temporary pointer used to traverse greedy intervals list )
traversey e edy = greedy intervals list
WHILE traverseg ceqy | = NULL
IF t(raverseg,ceqy — number_of interval == NCoyeriop THEN
Make enc unavailable for NCoyeriap by
changing the register list
Remove N C, from the overlap list of NCeyeriap
Decrement the number of intervals for enc¢
in greedy registers array
Re-sort greedy intervals list in increasing order of number of color

DONE

(A) In the worst case the time complexity of the Greedy Algorithm to update the greedy
intervals list after having chosen one interval is O(Wy,,.(G) * n) where, n= total
number of intervals in the graph.

In the worst case scenario, NC, can have a maximum of Wy,,-(G) - 1 conflicting
intervals, and each of these conflicting intervals have to be searched for in the greedy
intervals list. which is as long as n = total number of intervals in the graph. Thus,
the complexity is O(Wy,,:(G) * n), assuming Wy0.(G) < n.
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3.4 Assumptions And Caveats
Currently our coloring algorithms have been implemented on the basis of several assumptions.

Subsets of register classes :

We take various register classes (like floating point registers and, general purpose
registers) into account. Every symbolic register is assumed to have a preference for
one specific class of register only. At this point of time, we do not allow one register
class to be a subset of another class. This makes the allocation problem simpler for
us, as it eliminates the possibility of an interval heing members of several subgraphs
of G. The subgraphs of G are created such that all the intervals of ¢/ have the same
register preference.

Adjacency and alignment constraints of multi-registers :
Different kinds of architectures impose different adjacency and alignment constraints
of registers.

Typically, intervals which require multi-registers to be assigned to them must be
aligned on certain word houndaries and may require the allocated registers to adhere
to some adjacency requirement as well. These coustraints decrease the size of the
register set available to the graph and also affect the way intervals conflict with it’s
reighbors [Nic90, BCT92].

Currently, our colorer takes very simple constraints into account. Intervals may be
assigned one or two registers. If two or more registers are to be assigned then the first
register assigned must be an even numbered one. More over, the assigned registers
should all be contiguous. We chose to impose this restriction as current architectures
like the SPARC and the MIPS assign even/odd register pairs [SPAY2].

3.5 Summary

Three coloring algorithms, the fatcover, a modified fatcover and a greedy algorithm are
presented in this chapter. All the algorithms are based on the interval graph representation.
The fatcover and the greedy algorithms have been implemented and, we discuss the data
structures used as well as the time complexity of these algorithms.
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Chapter 4

The Spilling Phase

4.1 An Introduction To The Spilling Phase

In Chapter 3, we assumed that the target architecture always provides the number of
registers needed to color the interval graph without causing any spilling to occur. The aim
was to color the interval graphs using the minimum number of colors.

However, in many instances, we may have fewer than the minimum number of registers
required by the coloring process. As it was outlined in Chapter 1, whenever the interference
graph becomes uncolorable, Chaitin’s algorithm introduces spill code, rebuilds the interference
graph and reinvokes the coloring algorithm. This multi-pass process may be iterated several
times. In contrast, our algorithm avoids this repetition. Since the width of the interval
graph gives us the number of registers required to color it, we introduce spill code first and,
appropriately transform the interval graph which can then be colored in one simple pass
using one of the algorithms described in the previous chapter.

The one step spilling phase of our allocation method (Fig. 2.1) constitutes the subject
matter of this chapter. We need to understand

o the algorithm that is used in the spilling process as well as

o the heuristics used by the algorithm to choose intervals to spill.

In essence we are dealing with Problem 2 of Chapter 2. The problem was defined as follows :



¢ Problem 2 (Finding a -coloring of a Cyclic Interval Grapu with Minimum Spilling
Cost):
Given a set of live ranges represented by a cyclic interval graph ¢/ and a set of b
registers, find an assignment of the & registers for the intervals in (/. Introduce spill
code when necessary, and keep the spill cost to a minimum,

Given that we have a limited number k of registers, the objeciive is to use them as
best as we can with minimal sacrifice of the performance of the program. We introduce
an algorithm that spills intervals when necessary to ensure that the graph is colorable with
k-colors.

The rest of this chapter is structured such that Section 4.2 describes the different cases
where spilling can occur in the interval graphs. Section 4.3 outlines a new spilling algorithm
which has been developed, the sweep and split algorithm. Implementation details are
provided in Section 4.4. Lastly, Section 4.5 points to some shortcomings and optimizations
made by our algorithm®.

4.2 Chameleon Intervals, and Register Spills

In this section, we identify two cases which could lead to the introduction of spill code.

o Wha(G) > k:

This case is most evident. If & graph G has some time, /,, where there are more
than & intervals covering ,, then it is impossible to allocate a different color Lo each
interval at ¢,. Ior example, consider the graph given in Fig. 4.1(a). llere there are
three intervals, a, b, and c¢ that overlap. The only way in which this graph can be
colored with 2 colors is to spill one of the intervals to memory. We illustrate this =
process in Fig. 4.1(b), where the interval for ¢ has been spilled leaving two short
intervals represeuting the definition of ¢ followed by a store to memory () and a load
from memory () followed by a use.

It was important to choose ¢ to spill. Spilling ecither a or b would net result in
reducing W,,.((G') to 2. Both would have to be spilled to reduce the thickness of the
graph to 2. For instance, had a been chosen to to he spilled at the point where the
thickness of the graph becomes 3, then it would have to be reloaded from memory
at its” next point of use. At the point where it is reloaded W, ((/) = 3 and, b or

1Some parts of this chapter has been excerpted from [HGAM92].
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¢ would have had to be spilled in order to reduce Wy,,.(G) to 2. This would entail
spilling two variables instead of just one. Hence two load and two store instructions
would have to be introduced instead of just one load and one store instruction. It is
quite apparent that timing inforination about the next use of a variable can be very
helpful in making a good choice of an interval to spill.

) | | I
' 1 | '
: a : : green :
f b | | red i
: C : : red red :
! ! ! U
(a) A Graph With W,,,,. =3 (b) A Graph With Spilling And W,,,,, = 2
(3-colorable) (2-colorable)

) [} 1 ]
] t { 1
[ et a a ey, < : red reen red
' b . + grean 1
' ' ' ———— '
' ——n ' i - '
[) t ] ]
H ' '

(¢) A Graph With A (d) A Graph With A (e) The Interference Graph
Cyeclic Interval For a Chameleon Interval For a
(3-colorable) (2-colorable) (3-colorable)

Figure 4.1: An Example of Register Spilling and Register Floating

o Wi ()= k:

The second situation is more subtle. Consider the graph given in Fig. 4.1(c). This
graph has a maximum width of 2, but is not 2-colorable. In this situation we have
not really run out of colors, and we need not resort to spilling in order to make this
graph 2-colorable. Instead, we use the notion of a chameleon interval, an interval that
can change color depending on its surroundings. Since the width of the graph is 2,
the spiller mechanically assumes that the graph is 2-colorable and leaves this interval
graph exactly as it is for the coloring phase.
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In the coloring phase, if we allow the interval for variable a to change hue at the
location indicated by the solid bar in Fig. 1.1(d), then we can easily color this graph
with only two colors. Thus, instead of introducing the loads and stores required for a
register spill, we nced only introduce a register move that corresponds to the location
that interval a changes from green to red. We call this register move operation a
register flont - a value floats from register to register, but is not spilled.

By using chameleon intervals to find register floats, we can color any cyclic interval
graph G that has W,,,,, (G) = k with exactly k colors without introducing any spilling.
This is because any graph with W,,,,(() = k£ that is not immediately k-colorable
must belong to the class of graphs that can be colored if we allow chameleon intervals
(as illustrated in Fig. 4.1(d)).

Thus, we can use our fat cover algorithmn to color the graph, and for ecach cyclic interval
that cannot be covered, we simply introduce a chameleon interval. No extra loads or
stores need be introduced: we simply introduce a register float for cach chameleon
interval. Since we introduce chameleon intervals only for the cyclic intervals that do
not have a fat cover, the number of chameleon intervals introduced is small (at most

W (G)).

If more than one 1egister float is introduced, it is possible that some of the register
moves depend ~u each other. For example, perhaps a red interval needs to turn to
green, and a green interval needs to turn to red. This can be accomplished cither by
rotating values through a temporary register, or by swapping the contents of registers
using a trick such as a := a xor b; b := b xor a; a := axor b. It is most straightforward
to use a temporary, and since the number of cyclic intervals is likely to be less than

the maximum width of the graph, a temporary register will be available.

The idea of register floats is not new [CCK90], however difficulty in efliciently identifying,
values to treat as register floats has prevented their widespread use. For instance,
Fig. 4.1(e) shows the interference graph for the interval graph of Fig. 4.1(¢). Since a,
b, c are all seen to conflict with each other, both Chaitin and Briggs’ algorithm will
try to assign distinct colors to them. As we have only 2 colors available, spill code
will be introduced. Unlike the interval graph, the interference graph does not encode
the exact times of overlap between nodes (or intervals). This makes it very difficult to
identify opportunities where nodes could shate a color with a neighbor for a part of its’
live range. This could lead the traditional approach to miss opportunities to prevent
a spilling by inserting register moves instead. Our interval graph representation
provides a natural mechanism—chameleon ntervals - for recognizing when to use
register floats and the quantities on which to use them.
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4.3 The Sweep And Split Algorithm

4.3.1 The Problem Definition

Giiven that we have the coloring algorithm described in Chapter 3, the problem of k-coloring
now reduces to the problem of transforming a graph G, with Wy,.(G) = &, k' > k, toan
equivalent graph ¢/ with W,,,,.(G') = k. Since we are trying to reduce the width of a graph
(as shown in Fig. 4.1(b)), this transformation must introduce register spills. Therefore, we
would like an approach which attempts to minimize the number of register spills.

On the other hand, if W,,,,.(G) = k', k' = k, then the spilling phase leaves the interval
graph untouched. It is the coloring phase that detects chameleon intervals.

4.3.2 An Overview

We have developed an algorithm, the sweep and split algorithm that is based on the cyclic
interval graph representation.? Like the fat cover coloring algorithm, the sweep and split
algorithm takes advantage of the extra information available in the interval representation.
Since this algorithm is straight-forward, we only give an overview.

The central idea of the algorithm is to sweep from left to right over the cyclic interval
graph. The invariant is that at cach time step 4, any time to the left of time 7is guaranteed to
have a maximum width W, (G, i) < k. To move to the next time step, 1+ 1, there are two
situations. The fitst is that width(G, 1) < k, and the second is that width(G,i)= k', k' > k.
In the first case, no action is required. In the second case, one must select k' — k intervals
to split by introducing spill code. Thus, the only difficulty is developing a good heuristic
for selecting which intervals to split.

We have developed a heuristic that uses information about time which is readily available
from our interval graphs. This heuristic favors intervals that will clear the longest time
interval to the right of ¢. For non-cyclic intervals this is equivalent to choosing the one
with the farthest next use from i, Note we do not split all the intervals of the variable, but
only the segment that overlaps time ¢. The other segments will be split only if the sweep
selects those intervals as the ones to split at some later step ', The reasoning behind our
heuristic is that according, to the invariant, all times to the left of : have already had their
widths reduced, and so we should favor intervals that will reduce widths to the right of .

?A snlar method was proposed for basic blocks in [CH&4)
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If multiple intervals clear the same longest distance, an interval that requires only a. load,
is preferted over an interval that requires both a load and a store, and if a store is required,
then a store that is outside of the loop is preferred.

4.3.3 An Example

Let us now go through a concrete example of applying the sweep and split algorithm to
a cyclic interval graph that corresponds to a small program. In Fig. -1.2(a) we give an
illustrative program, and in Fig. 4.2(b) we give the 3-address code.® Assuming that the
number of available registers (k) is 3, Iig. 4.2(c) gives the 3-address code program that
results from applying the sweep and split algorithim. Fig. 4.2(d) shows the cyclic interval
graph for this loop, and I'igs. 4.2(d-f) illustrate the sweep and split process that transforms
the original graph into one that has a maximum thickness of 3 (i.e. transforms it into a
3-colorable graph). These steps are as follows:

Fig. 4.2(d): (Time = 1) The sweeping process starts at time step 1. Note that the
sweeping line is indicated by the vertical dotted line. There are 6 intervals covering
time step 1. In order to reduce the width to 3, three intervals must be selected to
be split. Interval ¢ cannot be split because its use is at time 1. Of the remaining
intervals, the best intervals to select are a, b, and n. Splitting cach of these intervals
frees the longest time interval to the right of the sweeping line.

Fig. 4.2(e) (Time = 2): This figure illustrates the graph resulting from splitting the a,
b, and p in the previous step. There are four intervals covering time step 2, and so
interval c is chosen to split.

Fig. 4.2(f) (Time = 3): There are four intervals covering time step 3, and interval tf
is chosen because it has the rightmost next use. We can sce the importance of our
heuristic here. Note that in this situation, choosing t1 is very important, choosing,
t2 would not reduce the width at time step 4, and another spill would have to he
introduced.

Fig. 4.2(g) (Time = 4): At time step 4, and all times greater than 4, the width is 3, and
so no further spilling is required.

3 Assuming right-associativity, and right to left order of evaluation.
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L1: load ¢

c + sum

tl =

store ti
load a

Li: t1 = ¢ + sum

t2 = al[il
load b

t2 = afi]

while (i<n)

b[i]
t4 = t3 * t2
sum = t4 + ti1

i

t3

{ sum =

t3 = b[i]

b[i] * a[i] + c + sum;

i=1i+1;

t4 = t3 * t2

load t1

i+ 4

if 1 < n goto L1

sum = t4 + ti

i

i+4

load n

if i < n goto L1

(c) 3-address Code After Spilling

(b) 3-address Code

(a) Original Loop

llllllllllll

!

(d) oniginal interval graph, tme

(g) ime

Figure 4.2: An example of introducing spill code




4.4 Implementation Details

In the last section we provided an intuitive description of the sweep and split algorithm
through an example. In this section we formalize the method into an algorithm and provide
a description of the data structures that have been used in its implementation.

4.4.1 The Implemented Sweep And Split Algorithm

We describe the implemented sweep and split algorithim referring to detailed descriptions
of various routines which are used in its’ implementation. The main procedure is enclosed
by a box in this section while subsidiary procedures aie in the next section.

1. Main
The expected inputs and the output of the algorithm are given in Inpul and Qulpul.
The Main procedure sweeps the graph from left to right and at each time spot, t,
where the width(G, t) > Wiao(G), width(G, t) — Wiy oo(G) intervals are chosen to be
spilled so as to reduce the thickness of the graph at t to W, (7). width((, t)is also
defined as W;, in the description of the algorithm. Mazn refers to the two subsidiary
functions mentioned below.

2. Heuristic Based Choice Of Intervals
This function is in Section 4.4.2 and outlines the method used in choosing an interval
to spill.

3. Finding The Width of Interval Graphs
As a preprocessing step to the spilling phase, the width of ¢/ is found for every time
step of the graph. This process is described in Finding the Width of Interval Graphs
of Section 4.4.2.

Algorithm 4.4.1 Perform the sweep and split spilling algorithm described in Section /..
on a cyclic interval graph.
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Inpul: A cyclic interval graph, G, constructed using the def-use information of
the variables,

The register classes, classreg, present on the target architecture,

The number of registers, reg,,.i, present in each class of registers on the
target architecture,

The register preference, regy, s, of each interval of the cyclic interval graph.
This determines the class of register that needs to be assigned to each interval.
And,

The number of registers,regnum, needed by each interval of the cyclic
interval graph.

Output: FOR each class of register, classreg,
A transformed cyclic interval graph, G, such that
‘/Vmaa:(Gl) = kl, k' <k,
where k = reg, .1, and,
reg,yai] = number of available registers
for classreg.
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Procedure Main :

FOR each class of register, classpeg,
FOR each time instant, t;, in G
Find the width, W, of G using
function Finding The Width Of Interval Graphs, W, ((7)
and record W,,,.(G)

IF W,..(G) > k THEN
FOR each time instant, t;, in ¢/
IF W,, > k THEN
Using heuristics in function
Heuristic Based Chowce Of Spill Intervals,
choose (W;, — k) intervals to spill
FOR cach interval to be spilled, spill,,
IF spill,,; is acyclic THEN
IF spill,;,; has been defined at time < t, THEN
Introduce a store instruction at t; — |
IF spill,,; is used at time > t; THEN
Introduce a load instruction belore the next use
of spill,y,
ELSIF spill,,; is the front-end of a cyclic
interval THEN
IF spill,n: has been delined at time > t;,
that is, at the tail-end of the cyclic interval, THEN
Introduce a store instruction at t; - |
IF spill,,; is used al timne > ¢,
Introduce a load instruction before the next use
of spill,,
ELSIF spill,,;,; is the tail-end of a cyclic
interval THEN
IF spull,y; has been defined at tvme < ¢, THEN
Introduce a store instruction at t, — |
IF spill,ny is used at time > ¢;
|| time < t; (at the front-end of the cyclic interval)
Introduce a load instruction before the next use
of spill
ELSE
Continue with outer FOR loop

DONE
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4.4.2 Two Important Steps Used By The Spiller

The sweep and split algorithm uses two important steps — (1) to find the width of the
interval graph and, (2) to choose intervals to be spilled. We look into these two steps in
more detail,

any op
‘D su)
Ot e X
any op
. ()
L W adds to
. X thickness
——————————————
s
X does not add
: to thickness
v

current time =t

Iigure 4.3: Finding The Thickness Of The Interval Graph At A Time, ¢

Finding The Width of Interval Graphs, W, (G) :

Iig. 4.3 illustrates how the width of the interval graph is computed at a time instant
t,. The letters D mark a point of definition, L a point of load, S a point of store and
finally, U a point of use for the interval. Time ¢, is represented by the dotted line in the
graph. At t,, we see that the topmost interval is defined, while the second interval is
loaded from memory. Even though the third interval is live at ¢,, it is not referenced.
All these three intervals are live at time ¢, and contribute to the width, W, (&), of
the graph. The fourth interval is last used at this time instant, and essentially dies.
So, it doesn’t add to the thickness of the graph. Assuming that each interval of the
example graph tequires one register to be assigned to it, W, (G) = 3.

Heuristic Based Choice Of Spill Intervals : 1If at a time, ¢,, W, (G) > k then we
need to choose intervals to spill. All the intervals which are live at ¢,, and are
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not referenced (through load, store, def or use instructions) are considered to be
candidates for spilling. The crux lies in choosing an interval from amongst all these
candidates such that the spill cost (in terms of run time) is as small as possible,

In our current implementation, we choose to spill the interval that is referenced
farthest away from the time at which the spill occurs. Information about the next
time of refercnce of an interval is very easily available from an interval graph, but it
is unavailable in the traditional interference grapbh.

Other criteria which are often used for spilling are :

¢ frequency of reference made to an interval [ASU8S],
e intervals having a high degree of conflict with other intervals [(AC*81],

e intervals having a high ratio of degree of conflict with cost to reload the variable [Bri92].

The sweep and split algorithm could these above criteria when choosing an interval to spill
as well.

4.4.3 The Data Structures Used

In order to understand the complexity of the implemented spilling algorithm, we need to
consider the data structures used.

Fig. 4.4 shows the main data structure used by the sweep and split algorithm. Even
though we conceptually think of spilling nterval graphs, at this point, we do not create
intervals. We maintain lists of variables (or symbolic registers) and the operations (like
load, store, def and use) that they are involved in. Lists are maintained for easy insertion
of spill code and operations are exposed so that some optimizations (which are explained in
Section 4.5) can be easily perforined. It also allows the spiller to exploit information about
tne next reference made to the symbolic register.

e Variable access list (var list) :

The main part of this structure is named var list. The names of the structures
appear in solid boxes while the size of the structures are enclosed by dashed boxes in
the diagrams. Var list is essentially an array of records. There are as many records in
var list as there are variables ( and not intervals) in the basic bloek being considered,
Each variable that is encountered in the basic block is given an unique number. Recall
from Chapter 2.1 that a variable gives rise to several intervals. An interval is akin
to a node of the tiaditional renumbered interference graph. Each record in var list
stores information about one variable. The fields of each record are :
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Figure 4.4: Data Structure Used By The Sweep And Split Spiller
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1. Name : This points to an array of characters that store the name of the variable.
Names of variables are used for debugging purposes.

2. Register pref(erence) : This records the class of register, elass,,, that is to be
assigned to all the intervals of this variable.

3. (Number) # of regs (registers) : This stores the data mode of the variable. Short
variables require single registers, while long or, double require two registers to
be assigned to them. The number of registers required by each variable affects
the width of the interval graph for that class of register.

4. Pointer to operation list : The operation list is a doubly linked circular list of
all the operations that each variable is involved in. Each cell of the list contains
the following information :

(a) Time of op(cration) : The time at which an operation takes place. ‘T'his
time corresponds to a time in the cyclic interval graph.

(b) Type of op(eration) : The possible operations which we take into account
are loads, stores, defs and uses.

(c) Next pointer : Points to the next cell of the list.

(d) Prev(ious) pointer : Points to the previous operation of the operations list.

At any time, ¢,, the pointer to operations list is updated to point to an operation
that executes at t, if one exists, or to an operation that executes at a time step
> ¢, when the variable is not accessed at (,.

The main field of var list that is used by the spiller is the “pointer to the operation list”.
There is a three fold use for this field of the structure :

e To calculate W, :
The average complexity to find the width of G at time t, is of the order O(n), where
n =number of variables in the block.

Finding the width of the graph at time ¢, could be potentially expensive and the
complexity depends on the kind of data structure used to implement the algorithm.
Since at time, ¢,, the pointer to the operations list from var list always points to
the next operation to be executed, we need to check the time of the operation of
every variable to find out whether or not it is alive at {,. So, the complexity of
this step is of the order O(n), where n =number of variables in the block. Recall
that we keep track of all the operations of of every variable in the code. ‘T'herefore,
n{the number of variwables) < number of wmtervals. Worst case performance is
obtained when static single assignment form is followed so that each variable gives
rise to exactly one interval. In this case, n = the number of intervals of the graph.

e Use in choosing a spill interval, spill,,; :
A quick answer to a question like
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“Ifow far away is the next reference to this variable?”

can bhe provided by checking the time of execution of the operation pointed to by
the “pointer to operations list” field of var list for that variable. Such a query is
requested by the spill heuristic when choosing an interval to spill from amongst a
pool of potentially qualified intervals.
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time of op t-4 ! 1+ 2 te §
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prev next _+ prev next > prev next
I operalion list ' :
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1
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time =1
1 maxvar
I var list I
var number -

IFigure 4.5: Use Of Var List In The Spilling Phase

o Inserting spill code for interval, i :
When an interval, i, is chosen to be spilled, the linked list of operations provide an easy
access to the previous and next operations of i. Inserting load and store instructions
entails adding new operations to the “operations list” and this can be done in constant
time. When we are at time t which is the dotted line in Fig. 4.5, interval i is chosen to
be spilled. The “pointer to the operations list” field of the variable points to the next
reference made to the variable at time t 4+ 2. Since no operation involving i exists for
time t it could be chosen to be spilled. As the operation at t + 2 is an use of the
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variable, and it is defined at t — 4. As this definiticn of the variable is not stored in
memory before it is used at t+2, a load and a store instruction has to be inserted.
The store operation is inserted at time t-1 while the load operation is inserted at
time t-+1 just before the next use of the variable.

It is essential to know the previous and forthcoming operations Lo assess whether or
not spill and reload code have to be introduced. Blind insertion of load and store
operations may create redundant load and store operations. We claborate on this in
Section 4.5.

4.5 Optimizations And Caveats

While spilling, certain optimizations like the ones listed below are performed :

D . v required
- } store foq!
: any op
L : (V] 1 no store Is
O et e X2 required --
. f just load
before X2
) u no slore
X3 ——O0— quired -
. jusl load
. before U
Y

current tima = t

Figure 4.6: Finding Out If A Spilled Interval Requires To Be Stored And Loaded

Avoiding introduction of unnecessary store operations :
Assume that while scanning the interval graph from left to right, we have arrived at
time instant t which is the dotted line in Fig. 4.6. Let us further assume thay the
top-most interval of this graph has been chosen to be spilled as its point of next use

72




is farthest away from (. As this interval is defined but not stored till its point of next
use, it hias to be stored in memory in case it is it is used by some later instructions.
However, if the next intervals had been chosen to be spilled, it would not have to be
stored. 'This is because the symbolic registers have not been redefined by any of the
operation previous to time ¢,

Eliminating redundant load and store operations :
T'he spilling phase also looks for opportunities to pack code more tightly by removing
one of the load instruction from a load followad by a load instruction sequence, or a
store from a store followed by a store instruction sequence.

Before ending this chapter, we broach on a popular problem which appears to be endemic
to register allocators.

Miscommunication between the spiller and the colorer :
At times the spiller may decide that a graph is colorable with & colors while the
colorer may require more than & colors. How does this happen?

The spiller is oblivious to the adjacency and alignment constraints imposed on multi-
rogister operands by the architecture. The spillers decision to k-color the graph
could be respected by the colorer if register constraints weze not taken into account.
However, when coloring, these constraints are typically brought into the picture and
this causes problems,

For example, imagine an architecture with three registeis, regl...reg3. We need
to map two psceudo registers, pI, p2, to these hardware registers. p! requires two
contigunous hardware registers which are aligned on an even/odd boundary, while
p2 can be assigned any single register. If p2 is assigned reg?2 then, pI can no
longer be assigned any of the available registers, reg!, reg3 or, reg4, as they do not
respect the alignment and adjacency requirements of pI. Notice that even though
there are sufficient registers available, they can’t be assigned because of architectural
constraints. ‘This problem is not unique to our allocation method. Other register
allocators face the very same problem.

Since our allocation strategy involves a two step process where the spilling and
the coloring phases ate run only once we cannot insert spill code if the colorer
discovers that the available registers can not be assigned as they violate the adjacency
and alighment constraints of the interval. However, we could attempt to perform
register moves so as to shift other intervals into different registers to accommodate the
requirements of the multi-register interval. But this is a rather convoluted approach.
Instead, we would like to have a spilling phase that takes architectural constraints
into account. This is an arca of future rescarch.




4.6 Summary

In this chapter, we introduce the coucept of chameleon registers and identify instances
where spilling is required in cyclic interval graphs. We outline the sweep and split spilling
algorithm illustrating it with an example. lmplementation details are described as well,
Some optimizations which are perforimed in the spilling phase ate noted and the caveats are
also mentioned.
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Chapter 5

Results and Analysis

Chapters 4 and 3 described the sweep and split algorithm which is used for the purposes
of spilling and, the fatcover and greedy algorithms which are used to color cyclic interval
graphs. In this chapter we report quantitative results of the effectiveness of our cyclic graph
based spiller and colorers. We compare

o the performance of the spilling and coloring algo .thms with that of commercial
compilers in Sections 5.1 and 5.2.5 respectively.

e The coloring algorithms are also evaluated with a couple of other standalone coloring
schemes and details of the results are described in Section 5.2.1.

Besides reporting results, each section describes the assumptions made and the process
followed to obtain the results.

I'rom our experiments we notice that, for the test programs we used, the sweep and
split algorithm generates about 90% fewer spill load operations and 37% to 56% fewer
store instructions than the Sparc CC and MIPS C compilers. A marked difference in the
performance of the commercial compilers and our spiller is seen when loops are unrolled
and have increased register pressure.

We also compared the performance of the fatcover and greedy algorithms to an optimal
coloring algorithm. The fatcover algorithm requires only 5.2% more registers on the average
than the optimal colorer!
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5.1 Performance Of Sweep And Split Spiller

Standalone versions of our spilling and coloring algoiithms were implemented!. In this
section we compare the performance of our interval graph method of spilling to the performance
of three advanced production (' compilers for the IBM RS6000 (Version 1.01.0003.0013),
the Sun Sparc (version bundled with SunOS 4.1.1), and the MIPS (Version 2.11.2). Our
comparisons use the highest level of optimization offered by these compilers. Fach of these
three architectures has 32, 32-bit integer registers. The R56000 also las 32, 61-bit floating
point registers, while the Sparc and the MIPS have 16, 61-bit floating point registers.

Before providing results in Section 5.1.3, we outline the process that was followed to get
to the point where results could be obtained.

5.1.1 Obtaining Interval Graphs

We focus on two inner loop bodics, one taken from Livermore Loop 8, the other from
the Tomcat? SPEC89 benchmark (Release 1.2).3 Both of these benchmarks were selected
because of the relatively large size of their loop bodies and the large number of variables
referenced. This large size is necessary in order to cvaluate the efficiency of register
allocation and spilling on these three architectures with their large register sets.  Both
benchmarks aire also floating point intensive and use double precision (G4-bit) arithmetic,
Hence we concentrate on the allccation and spilling of floating point registers. Although
this restriction does limit the scope of our results, it provides a test of our approach on
problems of real use.

1. Input for commercial compilers :
In order to give all compilers approximately equal input,

(a) we first transformed the input source code so that all of the complex transformations
had been made explicit.
(b) Both loops were manually unrolled and software pipelined.

(¢} Common subexpression elimination was performed and reused data values were
explicitly assigned to local scalar variables.

1 Most of this section has been excerpted from [H(iAM92].
2To be precise, the Tomcat loop is the “I-LOOP” beginning with “DO 250 i= 11P,]2M”.
3The Standards Performance Evaluation Corporation (SPEC) benchmark suite can be obtained
from 39510 Paseo Padre Parkway, Suite 350, Fremont, CA 94538 These benchmarks have heen
‘ derived from publicly-available CPU intensive application programs.
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This transformed code is isomorphic to the interval graphs which were fed through
our spiller and allocator. These aggressive optimizations performed tend to increase

the

lifetime of variables thus increasing the importance of the register allocator.

Thus no sophisticated analysis of array indices nor any unusual optimization was
required by the commercial compilers to match the performance of our standalone
implementation.

2. Input for our standalone systein :
Interval graphs are created using the hand transformed source code obtained from
(1) above. [n order to be as fair as possible we generated two interval graphs for each
benchmark tested.

(a)

(h)

In the first interval graph we assumed that instructions are executed in their
source code order.

llowever, most modern compilers do not generate code in source code order—
sophisticated instruction scheduling is performed to minimize the pipeline stalls
and the effect of hazaids. In particular LOAD’s are often moved long before
their first use. Such scheduling tends to increase register pressure. llence in
our second interval graph we moved LOAD’s as far as possible before their
first use. Since we are dealing with cyclic interval graphs, this means moving
LOAD’s immediately after the last use of the previous iteration’s value. In most
cases, this is far carlier than the compiler would need to schedule the LOAD to
avoid stalls, however it allows us to make an honest comparison with production
compilers.

As will be seen shortly, our approach generates few spills on the scheduled interval
graphs that are not present in the unscheduled graphs.

5.1.2

Assumptions Made

We make several assumptions when generating the interval graphs. We assume that

1. in an instruction like x1 = x2 + 4 the same register could be used for both x1 and
x2 if x2 were dead after this point.

2. Vor simplicity we also assume in constructing our interval graphs, that all instructions

oxee

ute in unit time. This assumption biases our results towards needing more

registers, For example, if in executing a floatine point divide, the destination register
is not filled for 20 cycles after the initiation of the divide, that register could be used

for some other purpose during those 20 cycles.
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5.1.3 Results

In generating spills we scan the interval graph from left to right. Whenever the thickness
exceeds the number of registers, the excess is spilled. The registers chosen for spilling, are
those whose next use is most distant. Since these are cyclic interval graphs, the distance
measure is cyclic, i.e. distance is measured from the current time to the next use, wrapping,
around at the end of the iteration.

e When 16 registers are available :

—~ Tomcat (Table 5.1) :

When only 16 registers are available, our method requires the introduction of
spills for these benchmarks. However as can be seen in Table 5.1, the number of
spills required is substantially less than that required by cither the Spare or the
MIPS compilers. The reduction in load spills ranges from 6 loads per iteration
(o1 37% for the rolled scheduled graph in comparison to the MIPS code) to
73 loads per wteration (or 56% for the scheduled unrolled graph in comparison
to the SPARC code)! These are proportional to the dynamic loads and stores
performed. 37% of the loads ate 1educed in the scheduled graph in comparison to
the code generated by the MIPS C compiler, while 56% of the loads are reduced
in the unscheduled graph in comparison to the code generated by the SPARC ¢
compiler. The reduction in store spills ranges from 0 to 71 stores per wcralion.
71 stores of the 79 stores generated by the MIPS compiler is eliminated in the
scheduled unrolled graph. That is 90% of the store instructions are removed!
Please note that the total number of loads and stores include the loads and
stores introduced by spilling as well as the intrinsic loads and stores which wme
the first reference or final store of array elements respectively.

— Livermore loop 8 (Table 5.2:
It is also clear from Tables 5.1 and 5.2 that there is little difference in the
number of spills of the scheduled and unscheduled interval graphs. Unrolled
Livermore Loop 8 goes from 59 load spills in the unscheduled graph to 65 in the
scheduled graph, while rolled Loop 8 has a more dramatic increase from 1 to 6.

Note that the result in all cases is better than the performance achieved by either of
the commercial compilers. These results also show the robustness of our approach:
scheduling substantially increases the register pressure - from W, = 1T to W,,,, =
30 for rolled Loop 8, from W, = 40 to Wy, = 57 for unrolled Loop 8, and from
Wier = 24 to Wy,4. = 38 for rolled Tomcat, yet relatively few additional spills result.

e When 32 registers are available :
. Tables 5.3 and 5.4 give analogous results when 32 registers are available on the
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Rolled Unrolled - 3x
Interv Graph | SPARC | MIPS || Interv Graph | SPARC | MIPS
Unsch | Sched Unsch | Sched
LOADS(total) 27 28 11 34 71 73 144 131
LOADS(spill) 9 10 23 16 53 55 126 113
STORES(Lotal) 4 4 8 17 20 20 66 91
STORIES(spill) 0 0 4 13 8 8 54 79

Table 5.1: Number of Double Precision Loads and Stores with 16 registers for Tomcat.

Rolled Unrolled - 3x
Interv Graph | SPARC | MIPS || Interv Graph | SPARC | MIPS
Unsch | Sched Unsch | Sched
LOADS(total) 16 21 23 22 107 113 158 147
LOADS(spill) 1 6 8 7 59 65 110 99
STORES(total) 6 6 6 6 24 24 34 40
STORES(spill) 0 0 0 0 6 6 16 22

Table 5.2: Number of Double Precision Loads and Stores with 16 registers for Loop
8.



RS6000. The increased number of registers alleviates the need for many of the spills.
The interval graph method allows the rolled version of Loop 8 to execute with no
load spills in either the scheduled or unscheduled interval graphs.

Rolled Unrolled  3x
Interv Graph | R6000 §j Interv Graph | R6000
Unsch | Sched Unseh | Sched
LOADS(total) 18 22 24 18 29 66
LOADS(spill) 0 4 6 0 11 (8
STORIS(total) 4 4 4 12 (2 3
STORES(spill) 0 0 0 0 0 22

Table 5.3: Number of Double Precision Loads and Stores with 32 registers for 'Tomeat.

Rolled Unrolled  6x
Intery Graph | R6000 || Interv Graph | R6000
Unsch | Sched Unseh | Sched
LOADS(tlotal) 15 15 16 33 34 81
LOADS(spill) 0 0 l S 9 H6
STORLES(total) 6 6 6 19 21 B
STORIS(spill) 0 0 0 I 3 33

Table 5.4: Number of Double Precision Loads and Stores with 32 registers lor Loop

8.

Most interesting however, is our performance with the unrolled versions of Tomcat
and Loop 8. Even using the scheduled interval graph, our approach generates only 11
load spills for unrolled Tomcat versus 48 for the RG000 (‘Table 5.3). We generate no
store spills versus their 22, On Loop 8 the numbers ate equally impressive 9 load
spills to the RGOOO’s 56 and 3 store spills to their 33 (Table 5.4).

The main point to be made from these experiments is that the cyelic interval graph
approach does a goud job on complex loops that have high register pressure. This can be
seen by the very low number of loads and stores required for all cases, and the use of register
floats instead of spills on the unrolled tomcat case. This is an absolute observation, and
does not depend on comparing the results to other register allocation strategies,
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The other point, is that when given the same programs, three production-quality compilers
produce substantially worse spill code for these challenging examples.  Slight variations
among these three compilers might be due to slightly diflerent low-level optimizations or
instruction scheduling. However, the main point is that all of them performed significantly
worse than the interval graph approach.

5.2 Performance Of Various Coloring Algorithms

In this section, we compare the performance of the fatcover and the greedy coloring algorithms
(described in Chapter 3) with two other coloring algorithms - an optimal coloring algorithm
and, a greedy coloring algorithm. Section 5.2.1 provides an explanation of the latter two
coloring algorithms used in this comparative study, Section 5.2.2 describes the method used
to obtain interval graphs and, Section 5.2.3 points out the assumptions made when coloring,
the graphs. Finally, we report comparative results of the various coloring algorithms in
Section 5.2.1.

5.2.1 The Coloring Algorithms

We compare the performance of the fatcover and the greedy coloring algorithms with two
others — a backtracking scquential algorithm which provides optimal results and a greedy
algorithm which is based on heuristics. A brief description of both these algorithins follow,

Backtracking Sequential Algorithm :

This method colors graphs with the minimum number of colors using a backtracking
sequential algorithm that expects an interference graph as its input., The optimal
algorithm is presented here for the sake of completeness and, has been taken directly
from [SDIKR3].

Assume that we are given a graph, G, with vertices vy ...v,. The vertices may be
ordered arbitrarily. As each vertex, v, is being colored, one color from a set of all
feasible colors, U,, is chosen to be assigned to v,. Colors are represented as numbers,
for exar ple color 1 is the same as 1. Since the minimal coloring of the graph is to
be found, all possible color assignments are taken into account exeept those that can
lead to nonoptimal colorings or colorings equivalent to the ones which have already
been found. Search paths in the backtracking phase are pruned using a branch and
hound technique.

We provide a brief informal description of the algorithm. Assume that ecach new color
that is needed to color G is assigned a number. The colors are numbered 1,2,.. ..

1. Assign color 1 to v;.
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2. For cach vertex v, such that (vg < v; < vp)

(a) Find the set of feasible colors, U,, for v,.
Assume that a maximum of [, colors have been used to color vertices
vy ..1n-y. It may be possible to color v, with any one of the {,_; colors or,
at worst a new color I may be needed. Colors which have been assigned to
neighbors of v, can’t be members of the U, set. Furthermore, if a complete
-coloring of G has already been found, then none of the numbers of the
colors of the set U, should exceed q. This restriction is imposed as we want
to explore paths that use fewer than g colors and, it is used to bound the
scarch of the backtracking algorithm.

(b) H (U;=0) then it means that this path can not yield a better coloring of
(! than one that has already been found. So, we backtrack to vertex v,—
and explore the color assignment of G had v, been assigned an alternate

color,

3. If a complete g-coloring of &' has been found, check to see if g is the minimum
number of colors required to color G by traversing the next path of the colur tree
in the depth first traversal. Essentially this entails backtracking and returning
to step (2).

Another Heuristic Greedy Algorithm (Greedy2) :
This greedy algorithm, which we shall call greedy?2, was devised by Erik Altman [ARG93]
and is described briefly.

The algorithm expects a cyclic interval graph, G, as its input and it outputs a set of
colors for cacliinterval of Gi. (i is first processed in preparation of the coloring phase
and then it is colored. A modified left edge algorithm is used by the colorer.

I. The input graph ¢ is rotated so that the first time step in the transformed graph
' is the point of minimum width, W,,,,,(G"). Rotation of G reduces the number
ol cyclic intervals in G’. The cyclic intervals in the original graph, G, are shifted
and some may become non cyclic intervals in G’, while some non cyclic intervals
of ¢/ become cyclic in (7. The number of cyclic intervals in G’ is reduced to
exactly W, (G). The left edge algorithmn is able to color a graph containing
no cyelic intervals in O(n(logn)) time, where n is the number of intervals in the
graph. It is more complex to color cyclic intervals and reducing their number
helps in improving the overall time complexity of this greedy algorithm, which
| in the worst case is O(n?) but is probably O(n) on the average.
2. Next, cach cyclic interval of G’ is assigned an unique color and removed from
the graph.
The colors assigned to the cyclic intervals are recorded and marked. A set of all

the colors assigned to cyclic intervals, color_set.y., is maintained. The set of
colors which have not been assigned to cyclic intervals are maintained in another

‘ list, colorsetyon—eyelic



3. The resulting graph, ¢, contains only uncolored non cycelic intervals, A modified

left edge algorithm is used te sweep (7 from left to right. As cach uncolored
non cyclic interval, 1, is encountered, a color is assigned to it. The following,
heuristics guide the choice of a color for an intervali :

e An attempt is made to reuse the colors assigned to the cyclic intervals,
Members of the set color_set.y.1,- are checked and the first color that is free
for the duration of the life time of 7 is assigned to it.

e If a color couldn’t be found from amongst the color_set, , y,, set, then a free
color is chosen from the color_setyon—cyetre et and assigned to o,

5.2.2 Obtaining Interval Graphs

In order to obtain interval graphs for our colorers, we take advantage of the method used
by Ning in his thesis [Nin93].

In his thesis, Ning proposes a method of generating time optimal schedules for loops
having no embedded flow of control [Nin93, NG93]. The time optimal schedules are also
allocated a minimum number of “buffers”. Henceforth we shall call these schedules Ning's
schedule.

First, time optimal parallel schedules are created for software pipelined loops. These
schedules are obtained using integer linear programming methods and, their novelty lies in
the presence of “buffers” which arise due to loop carried dependences. Buffers can he viewed
as temporary storage places for values being generated by one iteration of the loop. Values
in the buffers are consumed by a later instruction in the same or following iteration of the
loop. The buflers together with live ranges of symbolic registers of the code are represented
as intervals in a cyclic interval graph [NG93, Nin93].

Once a schedule is generated it is colored using the coloring algorithms of Section 5.2.1.
We color Ning’s schedules (which are cyclic interval graphs) with our fatcover and greedy
algorithms. Our results can then be compared with the results obtained using the optimal
and the greedy colorers.

As we shall sce in the next section, selected loops from the Livermore Loops, SPECR)
and Whetstone were used as benchmarks. The following steps describe how the cyclic
interval graphs are generated from the source code of the benchmark programs [Nin93].

1. Since all of the chosen loops are written in Fortran, they are hand coded into three
address code which closely matches assembly code. Temporaries are generated when
needed and, as in the previous experiments a schedule of only floating point operations
are created.
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2. Next, Parafrase-2, which was developed at University of lllinois Urbana-Champaign,
is used to obtain data dependence inforination between pairs of instructions in the
hand coded three address code,

3. Using the dependence information thus gathered, the optimal period of the loop is
calculated and finally Ning’s schedule is produced. An integer linear programming
mothod is used to create the optlimal schedule.

We color these generated schedules. Some of the interval graphs have also heen unrolled
hefore being colored.

5.2.3 Assumptions Made
We make the following assumptions about the target machine :

1. We assume the presence of a multiple instruction issue (VLIW) machine which has
multiple adders, multipliers, dividers, copy units, load units and, store units.

2. 'T'he functional units are assumed to be pipelined.
3. The following operation latencies are used when generating a rate optimal schedule:
(a) Add 1 eyele
(b) Subtract 1 cycle
(¢} Multiply 2 eycles
(d) Divide 17 cyeles
(¢) Negate | eycle
(f) Load 2 cycles

(g) Store | cycle

5.2.4 Results Of Standalone Colorers

Table 5.5 lists the benelimarks which have been used to test the different coloring algorithms.
We have carefully chosen perfect loop segments having loop-carried dependences. Our
colorer is geared to handle cyclic intervals, and the presence of loop-carried dependences
create such cvelic intervals. So, this is an important criteria that guided our choice of
benchmark programs. All of the chosen loops were software pipelined.

Specifically, the loops of the benchmarks tested are :
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1. Linpack : The ddot funcdon from the linpack benchmark has been wsolated, This
function forms the dot product of two vectors. ddot 1 is the rolled version of the loop,
vhereas ddot 1 has been unrolled four times after software pipelining,.

2. The next few benchmarks have been taken from the SPECS9 benchmarths.

(a) Doduc : Three loops have been taken from the debico.f. Loopl is DO 300 loop.,
loop2 the DO 400 loop and loopd is the DO 150 loop.

(b) FPPPP : Once loop has been chosen from the file fmtgen.f. The loop begins as
DO 180.

(¢) Spice : Seven loops have been chosen from this benchmark program. Loopl is
from the file vOL.f and is the DO 360 loop; loop?2 is also fram vOL.[ and is the
DO 205 loop. Loop3d and 4 are from vOG.f and they begin as DO 210, and DO
763 respectively. Loops 5, 8, and 10, are from v0O7.f and are the DO 30, DO 10
and, DO 50 loops respectively. None of these loops have been unrolled.

3. Livermore Loops : Three loops, loops five, eleven and, twenty thice have been taken
from the livermore loops. Loop 5 (livh.61) has been unrolled three times, but rolled
versions of the other two loops (livll and liv23) are used.

4. Rau : This loop was used as a working example in a paper by Ran [RLTS92]. A
rolled version (rau.l) and, a four times unrolled version version (rau-1) of the loop is
used.

5. Whetstone : All the loops arc taken from the whetstone.f file. Loop!l begins as DO
18, while loop2 begins as DO 88 in the file.

6. Finally, the graphs cycled_1 and cycled_2 have been cooked up by Ning,.

Coloring Ning’s schedules :

The benchmarks in Table 5.5 are colored using the fatcover, greedy and the optimal
coloring algorithms. Below we make a few observations about the results we obtan,

e We notice that the fatcover algorithm performs as well as the optimal colorer on
all the loops except on the fifth livermore loop (livh_61 in the table) and loop2
of the whetstone benchmark. It deviates from the optimal number of registers
in only two cases, and on the average requires 10% more registers.

e The heuristics used in choosing a fatcover for a cyclic interval performs rather
well, as we are able to color the graphs optimally in most cases even when there
are more than one cyclic intervals in the graph. Recall that the hearistic used
to choose a fatcover for a cyclic interval favor intervals with earlier start times
and those which are live the longest.
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IFatcover | Optimal | Our Greedy | Max # Of
Colorer | Colorer Colorer Width | Cyc Ints

Linpack

ddot] 7 7 7 7 7
ddot4 7 7 10 7 7
Doduc(SPECS89)

loop ! 7 7 7 7 3
loop2 1 4 4 4 2
loop3 4 4 4 4 2
FPPPP(SPECS9)

loop1 3 3 3 2 2
Spice(SPEC89)

loop] 3 3 4 3 3
loop?2 15 15 15 15 15
loop3 2 2 3 2 2
loop4 9 9 9 9 9
loopH 2 2 3 2 2
loop8 8 8 8 8 8
loop10 3 3 3 3 3
Livermore

livll 9 5 5 5 4
[ 1iv23 12 12 12 12 5
livh 61 4 3 4 3 3
Rau

rau.l 19 19 19 19 19
rau_i 19 19 19 19 19
Whetstone

loop 6 6 6 ) 3
| loo}>2 6 5 6 5 5 |
Ning

cyclel.l | 1 1 1 1
cyclet2 2 2 3 2 2

Table 5.5: Number Of Registers Required To Color Time Optimal Schedules



In Section 3.2.1 we were concerned about the suboptimal performance of the
fatcover algorithm in the presence of two or more cvclic intervals, The fatcover
algorithm may choose intervals for one fatcover which may block the algorithm
from discovering a fatcover for another cyclic interval of the graph. The collection
of rcal world loops that we have tested all have several cyclic intervals and, the
fatcover colorer performs very well on them. There are {ew and, a lot of times
just one, plausible fateovers for the cyclic intervals of the graph.

o The greedy colorer is far less powerful than the fatcover algorithm, ‘The greedy
colorer requires more registets than the optimal colorer for 27% of all the
benchmarks. In contrast, the fatcover performs worse than the optimal colorer
in only 9% of the loops. This experiment certainly favors the fatcover algorithm
to the greedy.

o The loops which we have tested tend to require a small number, typically 2 (o
20 registers to be colored.

Coloring several schedules :
In this experiment some of the applications used above were taken and several (at
most 100) schedules were created using an exhaustive search mechanism [ARGO:3).
All the schedules thus generated were colored using the fatcaver, optimal, greedy?2
and, our greedy algorithms.

Table 5.6 details the benchmarks studied and the number of schedules that were
colored per benchmark. Abbreviated names of the benchmarks are written within
parenthesis and are used in the plots of I'igs. 5.1 and 5.2.

We present the average performance of each colorer over all the schedules of an
application in Figs. 5.1 and 5.2 and note the following :

¢ Ofthe eleven applications, the fatcover performed worse than the optimal colorer
in 18% of all the benchmarks whercas the our heuristic greedy colorer performed
worse than the optimal colorer in 55% of the cases. Our greedy algorithm
appears to be far weaker than the fatcover algorithm.

¢ On the other hand, it is interesting to note that the greedy?2 technique is much
more aggressive and performs optimally in all the cases! From Figs. 5.1 and 5.2
we see that our greedy algorithm performns worse than the greedy?2 algorithm
on ddotl of Linpack, as well as loops 2, 3 and 5 of the Spice benchmark. These
benchmarks have 7, 2, 2 and 15 cyclic intervals in the interval graphs. Shifting
the cyclic interval graphs, as is done by the greedy2 algorithin, to reduce the
number of cyclic intervals may contribute to its better performance. Having
fewer cyclic intervals causes the algorithm to use fewer registers to color the
graph.

¢ Now, we focus on the benchmarks where the fatcover and our greedy algorithis
have performed worse than the optimal colorer. Table 5.8 shows that in the worst
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Number of

Schedules Colored
Linpack
ddot 1 2
ddot4 2
Doduc(SPECB89)
loop3({doduc3) 16
FPPPP
loop 1{fppp) 6
Rau
raul 2
Spice
loop2(spice?) 4
loop3(spiced) 2
loopH(spiceh) 3
toop8(spice8) 2
Whetstone
loun2 (whtsto2) 12
Ning
cyclet_l(cyedl) 2

| Total | 53 ||

Table 5.6: Number Of Schedules Colored For Each Application



case both the fatcover and the greedy algorithins require 50% more registers on
the average to color the schedules of looph and loopd of the spice benchmark
respectively.  This difference is considerable.  However, register allocators do
not perform optimally in all cases, so these numbers ought not to dishearten
us. Instead it motivates us to investigate the performance of our allocators in
comparison to the ones used by commercial (" compiler. This study is presented
in section 5.2.5.

Coloring Tomcat and the Livermore Loop 8 With Fatcover Colovrer :
In the final part of this section, we return to the benehmark programs ol Section h.l',
We had presented statistics on spilling the hand generated schoedule for Tomeat and
the Livermore Loop 8. The sweep and split algorithm had been compared against
the spill code generated by the MIPS, SPARC and the RS6000 native (' compilers.
Now, we shall color these loops using the fatcover colorer.

Using the fat-cover algorithm all but the unrolled version of tomeat were successiully
colored without using chameleon intervals as can be scen in Table 5.7, lor the
unrolled tomcat loop, the interval graph had a minimal coloring of 34, and our
method introduced 4 chameleon intervals to make it 32 colorable. In all the state
of-the-art C rompilers that we have studied (GCC, SPARC, MIPS, and the RS6000
C compilers) costly spills to memory would have been used to make the graph 32
colorable. However, in our case we needed only 1 register moves because the interval
graph again provided a natural representation which allowed us to avoid these spills.

Cyclic Min Max | Colors | Chameleon
Intervals | Width | Width

Rolled Tomcat, 16 regs 0 0 16 16 0 |
Rolled Tomeat, 32 regs 0 5 24 24 0
Unrolled Tomecat, 16 regs 5 l 16 16 0
Unrolled Tomeat, 32 regs 12 17 32 3 1
Rolled Loop 8, 16 regs 0 10 16 16 0
Rolled Loop 8, 32 regs 0 11 17 I7 0
Unrolled Loop 8, 16 regs 0 8 16 16 0
Unrolled Loop 8, 32 regs 0 22 32 3 0

Table 5.7: Interval Graph Statistics (after Spilling).

4Most of tlus section has been excerpted from [HGAMY2)
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5.2.5 Results : Comparison With Commercial Compilers

In the previous section we had noticed that in the worst case the fatcover algorithm was
performing substantially worse (requiring 50% more registers) than the optimal coloring
algorithm. In order to put these results in context of the world of commercially available
compilers, we tested the benchmarks with the native C compiler on the SPARCI10 and the
XLC compiler on the RS6000 workstations.

The fortran loops were isolated from the benchmarks and transformed by hand to closely
resemble three address code as was described in Section 5.2.2. F2¢ was then used to convert
the fortran code into C code®. This code was compiled by the C compilers. The highest
level of optimization were used on both machines (-03 for SPARC10 and -O for RS6000).
Assembly code was generated for cach of the benchmarks which were then scanned to check

S12¢ 1 a source to source translator. It converts fortran programs into semantically equivalent
(' programs
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for the number of registers used per iteration of the loop. The number of registers used
by the commercial compilers to color the nodes of their code were then compared with
the number of registers used by the fatcover and the greedy algorithms to color Ning's
schedule (‘Table 5.5). We should point out that the schedule generated and colored by the
commercial compilers may very likely differ from Ning’s schedule which is colored by the
fatcover, greedy and the optimal coloring algorithms. However, we still make a comparison
between the performance of the commercial compilers and, and Ning’s scheduling and our
colering algorithms to gauge if existing commercial compilers could potentially benefit by
exploiting our methods on innermost loops.

We considered the number of floating point registers used by the oop body only. Intege
operations like the ones used to set up the loop body were ignored. When using the native
CC compiler on the SPARC, we noticed that the loops are automatically unrolled. ‘T'o make
the comparison fair, we report the number of 1egisters usedi per iteration of the loop. Recall
that the schedule colored by the optimal, fatcover as well as the greedy colorers have been
software pipelined.
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Fatcover | Our Greedy
Linpack
ddot2 0% 36%
FPPPP
loopl(fppp) 6.7% 6.7%
Spice
loop2(spice?) 0% 1.9%
loopi(spiced) 0% 50%
loopH(spiced) 50% 15%

Table 5.8: Average Percentage More Registers Required Than Optimal

From Fig. 5.3 summarizes the comparative results of the different commercial compilers
with ours. I'rom this figuie we notice the following :

I

The SPARC-C'C compiler 1equires more registers than the optimal number in four
out of the live benchmarks. More registers were required in Linpack’s doduc loop
(ddot in Fig. 5.3), the livermore loop 5 (livs), ond the first and the fifth loops from
spice (spicel and spiceb). As the loop bodies have been automatically unrolled by the
compiler the size of the loop body incieases, and this leads to an increased register
pressure as well. This effect is aggravated in Livermore Loopb (livs) where it is most
apparent. The code generated by SPARC CC requires 1.5 times as many registers as
the optimal

On the other hand, code generated by the XLC compiler tends to require fewer
registers than the optimal number. While scudying the assembly code generated by
XLC we realized that loop carried dependences are not being recognized so it is not
taken advantage of. Instead of having cyclic intervals, shorter non cyclic intervals
exist as live ranges are not kept live from one iteration to a successive one. This
reduces the constraints and the register pressure in the graph. Hence the code
generated requires fewer registers. Upon further investigation, we realized that in
the process of converting the fortan benchmarks into C with f2¢ several temporaties
variables are created. These variables contribute to the degraded output of the XLC
compiler [Alt93]. If the fortran benchinarks were hand coded into C code then the
comparison may have challenged the commercial compilers better. As f2¢ skews the
results obtained lor the XLC' compiler, we can not make any conclusive remarks about
it's performance.

In compatison to the number of registers required by the above two compilers, the
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fatcover algorithm deviates the least from the optimal colorer. This algorithm is
powerful for loop structures.

4. Our greedy algorithm still appears to perform the worst in compatison to the commercial
compilers.

5. From .he above observations, we conjecture that commercial compilers would most
likelv beuefit by at least tncorporating Ning’s scheduling techniques for inner loop
bodies. In addition, from Section 5.1, we notice that our two step allocation method
can be useful in reducing spill code and, this could be of interest to commerdial
compiler writers as well.

5.3 Summary Of Main Points

‘ Before concluding this chapter we highlight some of the main points of ont experiments,
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The sweep and split spilling algorithm works well on loops which have high register
pressure lihe tomeat. It generates a small number of spill store and load operations
in comparison to that generated by commercial compilers. Spill store instructions are
lessened by approximately 90% while spill load instructions are lessened by 37% to
56Y% for the two test programs.

The fatcover coloring algorithm is able to color loops with loop carried dependences
very well. It generates optimal to near-optimal results in most benchmarks which
have been tested.

Amongst the 53 schedules of the seven benchmarks tested (Tables 5.6 and 5.8) it
required 50% more registers than the optimal in only one case (loop3 of spice). On the
average the fatcover deviated by 5.2% from the optimal number of registers required.

Unfortunately, the greedy coloring algorithm performs worse than the fatcover algorithm.

In the worst case, the deviance is 50% amongst all the 53 schedules of Table 5.6.
"This is no worse than the worst performance of the fatcover algorithm. However, the
main difference lies in the average deviance from the optimal number of registers.
The average deviance is 10% and this is about twice that observed by the fatcover
algorithm.

Production compilers are sometimes unable to recognize loop carried dependences in
some loops which have been converted by {2¢. This greatly hinders the performance
of the compiler and they are unable to exploit the fact that instruction scheduling
coupled with loop unrolling can lead to values being retained over a period of time.
This avoids the need to constantly load and store variables in between iterations.

Although the version of XL(" used by us generates code that requires fewer registers,
it doosn’t appear to perform dependence analysis on the 2¢ converted benchmarks
that we have experimented with. In contrast, the SPARC CC performs automatic
loop unrolling and this increases the size of the loop body and hence the register
pressure. OQur approach of using software pipelined and unrolled loops works well
with the fatcover algorithm,
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Chapter 6

Extensions And Enhancements To
Our Allocation Scheme

In this chapter, we shall address two important issues.

e In Scctions 6.1 and 6.2 we describe extensions of our register allocation scheme
to handle a larger class of loops, those which include embedded structures, and a
restricted set of other program constructs into consideration.

e Since our allocation scheme is best applicable for numerical henchmarks, which typically
contain a lot of vectors within loop structures, we address the issue of handling these
subscripted variables. This is discussed in Section 6.3.

6.1 A Hierarchical Coloring Approach For Other
Constructs

So far in this thesis, innermost loops which have no embedded constructs have heen considered
for register allocation under our cydlic interval graph scheme. Numerically intensive real
world benchmarks tend to have a very high number of perfect innermost loops [Huf93].
Huff studied DO loops in the Lawrence Livermore, SPECR9 Fortian and the Perfoct Club
benchmarks. Of the 1525 loops that he studied, 23% of them had loop carried dependences
and no conditionals, while 70% of them had necither loop cartied dependences nor any
conditionals. Both these kinds of loops are classified as petfect loops by us and have heen
the focus of our study. However, always assuming the presence of petfect loops may limit
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the practical applicability of our approach. Hence, it is imperative to develop a model that
adequately handles a larger class of loops and eventually other program constructs.

The loops that we would like to concentrate on for the moment are those that have
embedded loops, and multi-way branches like conditionals.

We employ a bottom-up approach when tackling complex (or hierarchical) program
constructs. The hasic assumption is that we are dealing with structured programs. This
assumption, of course, disallows the presence of unstructured control flow, like goto statements.
Unstructured programs may e transformed into structured code [EH93]). From now on,
the term “program” is synonymously used with “structured programs”.

Complex constructs are handled in the following manner :

o First, the structureis broken into smaller hierarchical blocks. This process is described
in Sections G.1.1 and 6.1.2,

e The hicrarcliical blocks are then colored in an inside-out fashion as described in
Section 6.1.3.

The hierarchical graphs could be represented as cyclic interval graphs or as circular arc
graphs as outlined by Fig. 1.14 of Section 1.6, In this chapter, we demonstrate how to
represent hierarchical graphs as cyclic interval graphs.

6.1.1 Creating Hierarchical Intervai Graphs

The first thing to do is to break complex program constructs, like multi-way branches, and
loops which nest conditionals or other loops, into simpler more manageable blocks. These
blocks are then tackled one at a time. Blocks may contain embedded blocks which are
simpler in structure.

Through examples we show how such a hierarchy of interval graphs are formed. Appendix B
outlines the process by which the intervals graphs are created from code segments. Here we
shall merely show the final hierarchical interval graphs of some code segments. For the sake
of simplicity, let us assume that each statement is executed in unit time cycle. We consider
the following cases :

¢ Embedded Loops :
Fig. 6.1(b) provides the assembly code for the piece of code with embedded loops
of Fig. 6.1{a). Using the method given in Appendix B we construct the hierarchical
. interval graph shown in Fig. 6.1(c). The hierarchical graph representation is very
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intuitive and follows the same structure as the nesting level of the program. T'he two
main blocks that we are concerned about are B3 - the inner j loop bloch and, B2
which is the outer i loop. Just as the jloop is embedded in the i loop in the code
shown in Fig. 6.1(a), the basic block B3 is enclosed by the block B1I.

e Nested Branch Structures :

Now, we consider the case of nested conditionals. F'ig. 6.2(b) shows the interval graph
of the code in Fig. 6.2(a). This time we do not bother with the assembly code as
it introduces more blocks than the ones which interest us. For the sake of clarity,
we omit these superfluous blocks. In this case, conditional 2 is cmbedded in the
conditional C1. C2 is an if-then-else construct, and the if block B2 is at the same
nesting level as the else block B4. This nesting level is reflected in the interval graph
as well.

6.1.2 Creating Hierarchical Cyclic Interval Graphs

Now, that we have seen how to create simple hierarchical structures, we will add a slight
twist. When possible, we are interested in creating cyeclic hierarchical interval graphs. Cyelic
graphs take certain constraints into account. If a variable is shared by two sibling blocks
and it is live at the point of entry and/or exit of these sibling blocks then the blocks can
be manipulated so that the shared variable can be treated as a cyclic interval spanning the
two blocks. This section describes exactly how and under what situations blocks can be
manipulated to become cyclic interval graphs. Lastly, as described in Section 6.1.3, register
allocation is performed from the innermost to the outermost block.

We illustrate this idea by building on the examples of nested loops and switch statements
shown in Figs. 6.1 and 6.2 respectively. We fill in the bodies of the basic blocks to create
situations which can lead to cyclic interval graphs in the hierarchical structure. In the
previous scction, we had converted the examples to assembly code to obtain the basic
blocks. From here on, we may not show the assembly code for all examples and, may tend
to ignore some of the standard blocks which chieck for the loop termination conditions.

Nested Loops :
Fig. 6.3 shows a loop structure where the variable a is first born in instruction 2 in
the outer for loop. It is then used and redefined repeatedly in instruction 4 within
the inner for loop. As this variables’ life extends belween erations, we capture Lhis
information by wrapping the interval for a around the inuner for j block. Similarly,
the life of the loop counter variables, i and j, are live between suceossive iterations of
the loop and are converted to cyclic intervals.

Switches :

Next, we look at a simple branch statement. In branch statements, constraints can
be created in three ways.
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Constraint from Entry Point :

From Pig. 6.4(a, b) we sce variable a being born in instruction . Depending on
the flow of control it is read in instruction 2, in either the if or the else part of
the branch. As this variable is defined outside of the branch blocks and is shared
by theil-block and the else-block from their point of entry, a has to be assigned
to the same register in both the blocks. In order to maintain consistency and
correct program semantics, the 1egister containing ain instruction step 1 should
be made visible to both the paths of execution (Fig. 6.4(b)). This constraint
can he very natwally captured by rotating the else block by a —180° so that the
interval of a becomes a cyclic interval spanning the combined block formed by
the if and the else blocks (I'ig. 6.4(c)). Notice that the intervals in the rotated
blocks have undergone reflection. The cyclic interval forces a to be in the same
register in both blocks.

Constraint from Exit Point :

In Fig. 6.5, we sce that the sibling blocks of the conditional statement share a
variable at it’s cxut pont. That is, a variable, like b, may be born within either
the if or the else-block and then used outside the branch. b must be assigned
to the same 1egister in both paths of execution to maintain consistency in the
program. T'his constraint can again be captured by a rotation of the else-block
and then by joining the intetval between the two sibling blocks (Fig. 6.5(c)).
Notice that the interval formed by the variable b extends between the if-block
and the else-block. Such an intervai which extends between two blocks is named
the fusing interval,

In the next step when register allocation is performed, one register is allocated
to the interval for b, thus taking this constraint into account.

Constraint from both Entry and Exit Points :

Finally, in 1%g. 6.6(a, b), we sce a combination of the above two situations. a
is born outside the conditional and is used in one of either sides of the branch,
whereas b is boin, in instruction 2, in both sides of the branch, and is used
outside the conditional. In this situation, consistency has to be maintained
between both the entry and cxit pownts of the two sibling blocks and the parent
block. Once again, these constraints are retained and taken care of by rotation
of the else block as shown (Iig. 6.6(c)). The constraint at the entry point is
preserved through the cyciic interval that wraps around, while the constraint
at the exit point is preserved through the fusing interval that extends to both
blocks.

In essence, constraints are taken care of by rotating and merging sibling blocks to form one
single unit. We shall call such units fused blocks.

Notice that in all of our examples we consider only intervals created by scalar variables
as candidates for cyclicity. In Section 6.3, we shall deal with subscripted variables at some
length, We observe that only those scalar variables
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e whose life extends between iterations of loops

can be candidates for cyclic intervals and can thus give rise to cyclie interval graphs.

6.1.3 Spilling And Coloring Hierarchical Cyclic Interval Graphs
(HCIG)

Once the hierarchical cyclic interval graphs have been created,

e the snilling phase is invoked.

The spiller works on each block as described before in Chapter 4. However, the
question that arises is

— how do we calculate the width (or the thickness) of hierarchical graphs.

The answer to this question can be obtained by considering two cases. ‘T'he width is
determined by working from the innermost block outwards.

— TFig. 6.7(a): First, we shall deal with nested structures that do not embed sibling
graphs. In these cases, we pay special attention to the times at which one block
overlaps with an enclosing block. It is at these times that the width of the outer
parent block is determined by adding the width of the parent block with that
of the inner child block.

In our three level deep nested hierarchical graph structure (Fig. 6.7(a)), we find
that the width of the innermost (that is parentl) block, is dI and d2 at times
I and 2. We move onto the outer parent? block. At time 0 the width of the
interval graph is d3. If, for just a moment we ignore the presence of the block
parent] then the width of parent2 at time 1 is d4. Since we must take the inner
block into consideration the width at time | changes to (dif + d1I). A similar
situation is seen to occur again at time 2 and then at times 0...3 for the parent3
block. We continue finding the width of the blocks incrementally while moving
[tlom the inner to the outer layer. Inner loops having a smaller width receive
a high priority to be allocated and retained in registers while intervals in the
outer blocks have a higher chance of getting spilled.

- Pig. 6.7(b) : It is very likely that we will encounter parent blorks that nest
children blocks. Note that the children blocks in this example overlap with each
other, that is, either sibling I or sibling 2 is executed. This kind of an interval
graph can arise from code shown in Fig. 6.2.

What is the relationship between the widih of the sibling blocks and the enclosing
parent block? At each time of overlap between the parent and the children block,
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the maximum width of all the children at that time is added to the width of the
parent block to obtain the resuitant width of the parent block.

In our example, we find the width of the siblingl and sibling?2 blacks first. T'hen
we move onto the outer parentl2 block. At time 0 the widthv is d5 and if we
ignote the presence of the embedded children blocks then the width at time | is
d6. Once we take the children blocks into consideration we become aware of the
overlap between the current block and its children block. For instance, at time
I the parent block’s width is (d6 4+ maerimum{d3, d4}). We continue using this
method for times 2.. ..

- Vig. 6.7(c) : This figure is very much like Fig. 6.7(b). The only difference is
that the nested sibling blocks, sibling 1 and sibling 2, do not overlap, they are
odjacent to each other. Both sibling I and sibling 2 are exccuted in this example,
I'his interval graph structure can arise from the code shown bhelow.

for (parenti2) {
if (sibling 1) {
}
for (sibling 2) {
}

}

The width of parent 12 is found by adding the widths of sibling | with that of
parent 12 for times 0...1, and by adding the widths of sibling 2 with that of
ol parent 12 for times 3...4. Note that this calculation is an extension of the
width calculation of Parent 2 shown in I'ig. 6.7(a).

e After completion of the spilling phase, register allocation is performed from the
innermost block outward. The coloring algorithm (for instauce the left edge algorithin
of the fatcover colorer) has to be modified to take the hierarchical structure of the
graphs into account. The modification made to the fatcover colorer is deseribed in
the nest section. When using the fatcover algorithm, cyelic intervals of a block are
assigned registers first,

e Nent. iegisters are allocated to the local intervals of the inner blocks using one of
the coloring algorithms mentioned in Chapter 3. A history is maintained for each
register of the target architecture, and registers allocated to the children blocks are
made unavailable for the duration in which they’re used in the outer parent block.
The duration of use of the registers is calculated in the manner described below.

~ 1g. 6.8(a) (Nested Blocks) :
In this instance, we have a nested structure where register regl is assigned to
mtervals in parent! and parent2 blocks. When we are in the enclosing parent2
block, register regl is occupied from times 1...3. It’s life is cumulative of it’s
life length in parentl and parent2 blocks.

107




Var Var
Names NAMOS e e mmm—cemacrmccmcraccaemmm—nen
________________________ . :Pnrent 12 (Function Block) :
1Parént 2 (Fuhction Block) 1 N B \ N
: : 1 M Sibling . )
........ - ' [} o- 2-x ¢ 1
: ' Parent 1 ' , ' : regecx ' :
: 1 Oo—regt k) .} ! ! o—regl—x ' !
L]

; ' o : e :
[} L} ] ] ] ]
' 4 | ' | 2 meescewowooes L E R i
2 leerrcccaan ‘ ' ' : Sibling 2 : H

s : ] ’
! o-reg1 —x ' H ' O- = =reg2===% | :
. : ? '
(] ] ' ! . ] '
L ammeemm————- : ' ' 0=reg1 X N
' Y eprcameaan- —mm—— v
[} ]
(] 1
' (o] . e )
: v LR ¢ :

Time 0 1 2 3 4 o Time 0 1 2 3 4 o
(a) Register Life In Embedded Blocks (b) Register Life In Sibling Blocks

Iigure 6.8: Life Of Registers Within A Function Block

108




— Fig. 6.8(b) (Sibling Blocks):

This figure illustrates the case where sibling blocks, siblingl and sibling2, are
enclosed within a parent block, parent[2. Sibling blocks receive a similar register
history file and do not need to kuow about the other sibling blocks local register
allocation information. Assume that two registers reg! and reg? are assigned to
intervals in both the sibling blocks. Once we move out to the parent 12 blockh we
notice that register regl is live from times 1...3. The life (that is the duration
in which it holds a value} of regl from sibling! and sibling? are added to give
the life of regl in parc.t12. In contrast, the life of reg2is taken to be the greater
of the lifetimes of the intervals it is allocated to in the sibling blocks. From the
example, we see that reg2is live from times 2...4.

We do not show how the register lifetimes for an interval graph structure like the one
in Fig. 6.7(c) is calculated as it is very similar to Fig. 6.8(a).

¢ Having knowledge of the lifetime of the registers, we allocate them to the outer parent

block.

o When we have allocated registers to all the embedded children blocks within a parent
block we refresh the register history file. That is, registers allocated to local intervals
of the children block are freed.

This process is recursively followed for the entire program on a function by function
basis.

6.1.4 Examples: Coloring HCIG

Now, that we have a global picture of the coloring process, we will build on the previous
examples to illustrate this idea. We shall cousider

1. a simple nested for loop
2. a conditional statement and,

3. a for loop with an embedded conditional statement.

i

»

The previous examples of Section 6.1.2 is made more complex and interesting for this section.

Simple Loop :
To begin with, we consider the case shown in Fig. 6.9(a) which consists of an embedded |
loop. Like the example in Fig. 6.3, the inner “for loop” does not have any sibling i
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blocks. Inter-iteration dependences make i a cyclic interval for the outer for loop,
while the variables a and j are cyclic intervals for the inner for loop (Fig. 6.9(b)).
We assume that our architecture has only four registers available. That is, the number
of registers equal the maximum width of the interval graph, Wy, (G). Furthermore,
we simplify our model by assuming that we have a single class of register only.

As Tar as the coloring algorithm goes, let’s assume that we use the fatcover algorithm.
7

e Register allocation is first performed for the innermost block, which in this case
is the inner for loop.

— Pig. 6.10(c) : The cyclic intervals of the inner for loop are assigned registers.
The fatcover of a consists of {a} and it is assigned a new register, RI.
Similarly, the fatcover of jis {j} and it is assigned a new register, R2.

— Iig. 6.10(d) : After the cyclic intervals have been taken care of, we are left
with a reduced inner graph of non-cyclic intervals. A left to right sweep
is performed and the non cyclic interval, b, is assigned a free register R3.
This uses the left edge algorithm, but as we shall sce below, the original
left edge algorithm presented in Appendix A can not be directly used in
the next step of this example. It neceds to be extended and, we shall point
out exactly where the modification is required in the next step.

e Once, we're done with the inner block, we move onto the outer parent block
shown in Fig 6.10(c). The allocations made for the inner block are grafted into
the parent block as colored intervals (depicted by the dotted lines of the inner
block). Note that the grafted intervals are represented as non-cyclic intervals in
the outer loop. Now, we shall color the uncolored intervals of the outer block.

— According to the fatcover algorithm, we assign the fatcover of i (which is
{i}) a register Rd.

— As there are no more cyclic intervals left, the graph is swept from left to

right and colored using the extended left edge algorithm. We notice that
three intervals, a, b and, j, are pre-colored. These intervals were assigned
registers in the inner for loop block, they do not have to be recolored in
this plhase. The left edge algorithm ignores the colored intervals, however
the register assignments made to a, b and, j are recorded and, the assigned
registers are noted to be busy for the duration of the live ranges. After
updating the status of the registers to reflect the colors of the precolored
infervals, the colored intervals can be removed and the original left edge
algorithm can be used.
The uncolored intervals for the variable ¢ is to be assigned a register. As
we'd like to minimize the total number of registers used, we prefer to reuse
a register that is free during the life-time of ¢ rather than allocate a new
register that has not been assigned previously. In our case the architecture
has only four available registers, so we do not have the luxury of playing
with a new register, so we must either reuse register R2 or R3.
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Conditional :
Our next example consists of a conditional statement shown in Fig. 6.11(a). This
example is based on the one illustrated in IMig. 6.6.

e Fig. 6.11(b) : This diagram shows the hicrarchical interval graph for the code
segment shown in (a). The embedded conditional statement is constrained from
both it's point of entry and exit due to interval a.

o Fig. G.11(c) : Here the else block has been translated to merge with the if bloek
and a cyclic interval and a fusing interval is created.
This strategy of translating the blocks is merely a visual aid to ilustrate the
potential for a cyclic and fusing interval. In reality, we don’t have to petform this
rotation and translation stage and can work on the sibling blocks simultanconsly
as long as we arc able to identify the cyclic and fusing intervals and mark them.
Now, we attack the fused if and else block together. A fatcover has to be found
for the cyclic interval a. The novelty of this cyclic interval is that half of it lies
in one sibling (if) block while the other half lies in the other (else) sibling block.
The if block is missing the tail end of the cyclic interval and the else block is
missing the front end of the cyclic interval. Keeping this in mind, we find the
fatcover of the cyclic interval by scanning the if block from left to right, and
scanning the else block from right to left. The fatcover in the fused block is seen
to consist of all the intervals (b, ¢ and the fusing’ interval) of the blocks and is
assigned a register rl.
If the fusing interval is a part of the fatcover of the eyclic interval in one sibling,
block, sibling 1, while it isn’t in the other sibling block sibling 2 then, it must he
conflicting with one of the intervals of the fatcover of sibling 2. If this situation
arises then the fusing interval can not be included in the fatcover.

Loop with Embedded Conditional :
We move onto the last example of this section. Consider a conditional statement that
is embedded within a for loop like the one shown in Fig. 6.12(a). Assume that the
target architecture has two available registers, rl and, r2,

o I'ig. 6.12(b) : The cyclic intervals r.ave been identified and the hierarchical
interval graph is ready for the coloring phase now,

e [ig. 6.12(c) : The else block undergoes rotation and translation in final preparation
for the coloring phase. The embedded conditional statement is constrained from
both it’s point of entry and exit like in Fig. 6.6. Interval ais responsible for this
constraint.

There is a very subtle complication in this example. Both branches of the
conditional statement read a which is defined outside the conditional blocks.
This causes the constraint at the entry point. Later, ais defined in both sides of
the conditional and is used in the outer parent block. This causes the constraint
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at the point of exit and gives rise to a fusing interval. Thus far, the situation is
the same as that in Fig. 6.6.

If we work according to the inside-out method that we have followed so far, the
cyclic interval and the fusing interval could be assigned two different registers like
rl and r2 respectively. This can happen if the fusing interval is not a part of the
fatcover of the cyclic interval. Let us assume that we have used this allocation
scheme.  However, when we progress beyond the conditional blocks into the
parent for loop block we are confronted with a conflict. The fusing interval
transforms into a eyclic interval for the for loop. This cyclic interval carries the
value of a across to the next iteration and into the if and else blocks.. Hence, it
becomes imperative for the fusing interval to be assigned the same register as the
cyclic interval for the conditional. If distinct registers are allocated to the fusing
interval and the conditional cyclic interval, then the conflict could be resolved by
performing move instructions at the end of the if and else blocks to transfer the
value of the fusing interval into the 1egister used by the cyclic interval. However
our current inside-out approach fails to handle this conflict because we recognize
this conflicting situation in the outer for loop and by then it is too late to go
back into the inner block to change the allocation of the intervals. This clearly
demonstrates the sub-optimality of our current approach. We shall explore this
further in Section 6.2.

Fortunately in our example (Fig. 6.12(c)) we have avoided this conflict-resolution
step as the fatcover of the cyclic interval is found to include all the non cyclic
intervals (that is b, ¢ and the fusing interval) of the if and the else blocks and
it is assigned the register rl,

e Fig. 6.12(d) : After tackling the inner conditional, we move onto the intervals
of the outer loop block. As the cyclic interval d is live all through the block, it
forms it’s own fatcover which is assigned a free register r2.

6.2 A Modified Approach For Coloring

In the previous section (Figs. 6.11 and 6.12), we may have encountered situations where
our inside-out method would not have been able to color the interval graphs. In this section
we shall illustrate a second problem that our method runs into with the help of a very
simple example.
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6.2.1 Sub-optimality Of The Inside-Out Approaéh : An
Example

Assume that the target architecture has several register classes and there are only 2 available
floating point registers, rl and r2. Now, take the case of two sibling blocks, siblingl and
sibling2, embedded within a parent12 block as shown in Fig. 6.13. The sibling blocks do
not share any intervals and are thus not constrained at all. The sibling blocks and the
parent block each have an interval. Such an interval graph may be a subgraph of a larger
program graph and shows intervals that belong to a specific register class like the floating
point registers.

We determine the width of the two sibling blocks, siblingl and sibling2. 'T'hen we find
the width of the parent12 block. The maximum width of the parent12 block is 2 and it is
clearly two-colorable. As the number of registers equal the maximum width of the graph
the spilling phase does not change the interval graph.

Now, the graph is to be colored. According to our inside-out coloring scheme, we assign
registers rl to interval a and r2 to interval h. After this, we are ready to move to the
parent12 block. The interval ¢ needs to be assigned a register. Interval ¢ conflicts with
intervals a and b and hence can not be assigned rl or r2. And unfortunately, at this point
we do not have any new free registers! If ¢ is to be colored, it has to be spilled. But in
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our approach the spilling phase is invoked only once and that is before the coloring phase.
Unlike Chaitin’s approach we do not re-run the spiller. It is also not possible to introduce
register move instructions to avoid spill code without changing the interval graph of the
hierarchical blocks.

To handle such problems we need to modify our inside-out crioring approach. We
propose a two pass, inside-out-outside-in, approach.

(1) Inside-Out Phase :
Temporary assignments of registers are made in the inside-out approach. If conflicts
do not arise then the temporary assipnment is made permanent and the outside-in
phase is by passed altogether.

(2) Outside-In Phase :
However, if conllicts do arise then the outside-in phase is invoked after the completion
of the inside-out pass. In this phase we progressively move inwards changing some
temporary register assignments in the appropriate blocks to remedy the conflict.

For instance, in our example above we assign ¢ one of the registers like r1 and then
continue the outward coloring process. Once the outward coloring phase is complete,
we initiate the outside-in phase. We move inwards to the siblingl block. llere we
change the color of a from 11 to r2. We must be able to change the color of the
interval in one of the inner blocks (assuming that there ave sibling blocks) as the
spiller has determined that the outer parent graph is colorable with the number of
registers available. If need arises, then register floats can be introduced in this pass.

However, this algorithm is probably not general enough to handle all cases optimally.
We plan to state concrete algorithms for this modified approach in the future.

6.3 Handling Array Subscripts within loops

So far we have worked with only scalar variables only in the source code. However, as we
focus mainly on scientific benchmarks which have a high proportion of loops with array
accesses, we must be able to handle subscripted variables. When dealing with these cases
we are faced with questions like :

e How do we create cyclic interval graphs for such loops?

o Do subscripted variables having inter-iteration dependences need special care?

¢ Would the inclusion of array dependence analysis information into our allocation
scheme enhance performance of our allocation strategy? If so, how do we incorporate
this information?

We shall answer these questions through the example of Fig. 6.14.
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6.3.1 Introducing An Example

IMig. 6.14(a) shows a picce of code that we shall consider. It is a very simple loop that

references three diflerent elements of the vector a. The subscripted variables have a dependence

distance of 1. Assuming that dependence analysis information is unavailable, a compiler
may generate the three address code shown in Tig. 6.14(b). According to this code 3 load
instructions are issued per iteration of the loop. This is rather inefficient. I'rom Fig. 6.14(c)
it is clearly seen that two registers are adequate for coloring the interval graph of this code
segment. We set about hettering the code generated with our register allocation scheme.

6.3.2 Applying Our Method On The Example

In order to extract maximal efficiency from our register allocation scheme we need to find
the period of the interval graph structure. A perwodic interval graph captures all array
dependences and this helps us to recognize all the cyclic intervals. This provides our
alleeation strategy with an enhanced graph and our method can then attempt to hold all
the cyclic intervals in registers. Ketaining as many cyclic intervals as possible in registers,
of course, reduces spill code as we know that the cyclic intervals are going to be referred to
at a later iteration of the loop. This certainly leads to better code generation.

The following describes a step by step method that is followed when handling subscripted
variables. We use the code segment of Fig. 6.14(a) as our example again.

Step 1 : Finding The Period

(a) Dependence Distance = 0 : If the dependence distance is 0 then this step can be
avoided as there are no inter-iteration dependencies. A single iteration of the loop
body, in this case, constitutes a period.

(b) Dependence Distance > 0 : When the dependence distance is greater than 0 then
finding the perivd entails some work.

From IMig. 6.11(b) we see that cach iteration references three vector elements A[i — 1]
(through the temporary register t,_y), Afi] (through the temporary register t;) and,
Afi + 1] (through the temporary register ¢, ;). Afi] and A[i+ 1] of one iteration
becomes Afi — 1] and A[fi] of the next iteration respectively. The dependence distance
is 1. We would like to embed this information in the cyclic interval graph that we
create for this loop structure.

In order to do this we unroll the loop once (Fig. 6.15(a)) and create it’s interval graph
(PFig. 6.15(b)). A repeated patvern of access is seen after every two iterations and,
this is what gives us the period. In this case the unrolling factor is the same as the
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dependence distance. When several different dependence distances are present then
we can get the unrolling factor by taking the least common multiple (lem) of all the
distance vectors of the loop. Consider the piece of code shown below.

FOR (i=..; i<..; i++) {
A[i] = ALi-2] + A[i-3] (1)
}

We sce that instruction one has a dependence distance of 2 and 3. This means that
A[l] is defined in iteration 1 is read in iterations 3 as A[i — 2] and 4 as A[i — 3].
Similarly, A[2] is defined in iteration 2 and is read in iterations 4 as Afi — 2] and 5 as
Ali ~ 3] and so on. Generally, A[i] is defined at every iteration and this A[i] is read
in the i 4 2nd iteration. So, it we unroll the loop twice (or any multiple of 2 like 2, 4,
6, ...) we will notice a regular pattern of access to A1} and Az — 2]. But Afz] is also
read in the ¢+ 3rd iteration and if the loop is unrolled three times (or any multiple
of 3 like 3, 6,9, ...) then we will see a regular pattern of access for Afi] and A[i - 3].
The first iteration at which the regular pattern of access for both A[: ~2] and A[zi — 3]
is scen together is 6, which is the lem of the dependence distances, 2 and 3.

From Fig. 6.15(a) we notice that the dependence between the first and second iteration
is folded into the body of the loop. t;3 carries the value of Afij and t,,; carries the
value of A[i + I] of the first iteration and they are used by the instruction 5 of the
second itetation to caleulate A[i 4 1]. Unrolling the loop has the effect of reducing
the number of load requests. In this example the number of loads has decreased from
6 (for the rolled loop) to 3 for every two iterations.

The interval graph of the unrolled loop embed the dependence information between
the intervals of the different iterations as is done in Fig. 6.15(b). The interval ¢;, 9
of the first iteration carries the value of A[i + 2] and becomes A[i] of the following
iteration (that is iteration i + 3). Similarly, the interval tgg carrying the value of Afi]
merges With Ali - 1] of the (i + 3)rd iteration (i + 3). The solid and dashed arrows
of Fig. 6.15(b) show these merges.

Step 2 : The Cyclic Interval Graph

After having nnrolled the loop, we need to recognize the cyclic intervals of the graph. Once
we know which intervals of the first period merge wi.h which intervals of the second period
we are able to ereate the cyclic interval graph as sbown in step 1.

We see the cyclic interval graph in Fig. 6.15(c).
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Step 3 : The Coloring Phase

Now the colorer can be invoked. The graph is 2-colorable and is allocated the registers
shown in Fig. 6.15(c). Finally, Fig. 6.16 shows the pseudo assembly code generated.

6.4 Summary

Asonly perfect loop structures have been taken into consideration in the previous chapters of

the thesis, this chapter presents some thoughts on how the cyclic interval graph representation
can be extended to take other program constructs, like loops having conditionals or nested

conditionals, into account. The hierarchical cyclic interval graph is presented as a possible

means of achieving this goal. We also touch on the topic of register allocation for subscripted

array variables using the hierarchical cyclic interval graph approach.
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Chapter 7

Related Works And Conclusions

In Section 7.1, we present a survey of work related to register allocation, graph coloring
and, interval graphs. [Finally, we summarize the main contents of the thesis and conclude
in Section 7.2.

7.1 Related Work

In a number of recent publications, researchers have been trying to improve Chaitin’s
method for register allocation!. Briggs et al. recognized the fact that Chaitin’s original
heuristic is not guaranteed to find the minimum coloring [BCKTR9]. They proposed a
different heuristic method which simplifies the coloring phase by separating it from the
spilling phase. That is, when the graph has been reduced to the stage where all remaining
nodes have a degree greater or equal to k, it does not stop and spill. The algorithm continues
the coloring process by selecting one temaining node to 1educe the graph according to some
heuristics. At the end of the reduction phase, the nodes are processed in the 1everse order
and are assigned colors. It is possible that during this process, a node with a degree greater
or equal to k can still be colored, since more than one neighbor may have been allocated
the same color. This method is based on interference graphs, and the coloring and spilling
process may be iterated several times. Nomnetheless, by avoiding some pointless spilling,
improved code was generated for a number of test programs.

Bernstein et. al. have introduced a collection of heuristics which reduces the likelihood
of excessive spill code generation [BGGT89]. The width, which is the number of live rangoes
at a certain point in the program, is used to compute the spill cost of a variable. The width

Most of this section has been excerpted from [HGAM92]
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coupled with the depth (of loop nesting) form the basis of their area-based heuristics. This
method employs the interference graph as the basic representation of the program, and may
require the graph to be rebuilt after spill code is introduced.

Callahan, Carr and Kennedy studied register allocation methods for subscripted variables,
which poses a problem for many compilers [CCK90]. According to their method, array
references which are live across several iterations are recognized and a source-to-source
transformation called scalar replacement is performed so that they can be handled by
coloring-based register allocators.  Register moves are introduced to transfer values of
subscripted variables across iterations, thus eliminating some load and store operations.
However, the introduction of register moves, and the subsequent processing of register
allocation seem to be orthogonal, and there exists no single unified framework for this
optimization problem,

Another approach to the problem of register allocation for scalar and subscripted variables
has been suggested by Duesterwald, Gupta, and Soffa [DGS92]. This method uses the
inlegrated rapster allocalion graph, which is an extension of the interference graph, to
represent the coloring problem for both scalars and subscripted variables. The subscripted
variables are allocated a set of registers that form a register pipeline.

Eisenbeis et. al. proposed a method based on cyclic scheduling for optimizing register
usage on the Cray-2 [1NJL90).

Interprocedural register allocation has been studied by a number of people [Cho88,
SH8YL, THL*86). For example, Steenkiste and Hennessy have developed an algorithm
for interprocedural register allocation where a procedure interference graph is constructed.
Sach node in the graph is a procedure of the program. Two procedures which are active
at the same time are adjacent in the procedure interference graph. Each node of the graph
is assigned a number of color that equals the number of registers needed by the local
variables of the procedure. This number is determirved by an intraprocedural-procedure
allocation phase. A coloring algotithm assigns different colors to adjacent nodes of the
procedure interference graph. Therefore, it is evident that a good solution for the minimum
1egister allocation vroblem (as described in Problem 1 of Section 1.2) is important for the
intraprocedural allocation phase.

Cytron and Ferrante have proposed a method of storage allocation where the amount
of storage needed is equal to the maximum number of simultaneously live variables in the
original program [CF87]. The objective of their work is to allocate storage for temporary
variables by renamang, which is a compiler technique that transfoims imperative programs
to dataflow graphs [KKP*81, Den80). They have pointed out that the formulation of the
register allocation problem as a graph coloring problem based on the traditional interference
graph may abstract away vital information present in the original program (Jike the width
of interval graph), which their method uses to guide the register allocator to achieve an
optimal solution cfficiently. One difference between their work and the work proposed in
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this paper lies in the treatment of loop variables. For example, a scalar variable defined in
a loop, is either changed into an array by scalar cxpansion when the loop bound is hnown «
priori, or it is transformed to a dynamically allocated variable when the loop bound is not
known statically [CF87]. In our work, we treat such variables using cyclic intervals, thus
the overhead of extra arrays or dynamic allocation is avoided.

Callahan and Koblenz have presented a register allocation method via hierarchical graph
coloring [CK91]. The main idea is to represent the hierarchical program structure as a tree
of tiles. Tiles are processed first in a bottom up fashion and the local interference graph is
created and colored (perhaps with pscudo registers) on a tile by tile basis to capture the local
usage pattern. Then a top down walk binds the pseudo registers to physical registers. Spill
code is finally introduced in the less frequently executed portions of the program. Knobe
and Zadeck have also proposed a hierarchical register allocation scheme based on control
trees [KZ92]. A prune procedure is executed hefore coloring to reduce the register pressure
to a desired threshold value by storing some values in memory on entry to a prograin region
and then 1cloading them on exit. The authors claim that after pruning, the coloring process
will terminate if the threshold value is set properly. A live range may need to be split during
the coloring process. The coloring algorithms of both the hierarchical methods described
above accept Chaitin’s interference graph as their input.

Gupta et. al. reported their work in the arca of global register allocation using elique
separators [GSS89]. A clique separator is a completely connected subgraph., When it
is removed from the graph, it disconnects the graph into at least two subgraphs. Their
algorithm first partitions the code into code segments using clique separators. Each code
segment s colored scparately using the interference graph coloring method. Then, the
colored subgraphs are combined by the global register allocator. In the presence of hranching,
the combining process may introduce register copying at the point whete dilflerent control
flow paths merge.

In their work, Proebsting and Fischer use a two step probabilistic approach 1o register
allocation [PF92]. Local allocation is followed by global allocation. During the local
allocation phase, the probability of a value residing in a register is calculated for every
statement in the program and candidates whose next use is the farthest are chosen to be
spilled. Global register probabilities are computed by combining local register probabilities
with live variable analysis information. Probability information together with the profit
obtained by keeping a value in a register guides the global allocation phase. Once this
allocation process is complete, a graph coloring method is used to assign registers, Notice
that in this approach, the preblems of register allocation and assignment are separated,
Register allocation involves making a choice of candidates to spill.

Kolte et. al perform the spilling on load/store ranges instead of on live ranges [KH93).
An interference graph of load/store ranges is created instead of live ranges and register
allocation is performed using Chaitin’s graph coloring scheme. The load range of a definition
is the sequence of statements over which a variable must be allocated a register so as to
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avoid a load before a use of the definition. Similarly, the store range of a definition is the
sequence of statements over which a variable must be allocated a register so as to avoid a
store at the definition. The authors claim that load/store ranges are advantageous as they
provide information about the access patterns of variables.

As we pointed out before; our problems aie related to the class of circular-arc graph
coloring problems [Kle69, ((JMPR0]. The idea of using interval graphs for register allocation
goes back over 15 years. ‘Tucker was one of the first to note the advantages of the representation
[Tuc?h, Tuck4]. He also noted that the related concept of circular arc graphs could be
applied to program loops. Interval graphs have also been used to overlay arrays and thereby
minimize program memory requircments [Fab82], and to performn channel routing in VLSI
layouts [Bur&6, DGPS8Y]. However, the practical use of interval graphs in register allocation
appears to have been largely ignored because of perceived difficulties in dealing both with
circular are graphs and hierarchical interval graphs, both of which arise when dealing with
real programs [BGGTRY). A great deal of theoretical work has been done, a good summary
of which is found in [Gol85, SH89a].

Using circular are graphs for register allocation has recently been proposed in high-level
dataflow synthesi, for digital systems [TS86, KP87, SvdB88]. In this application domain,
the computation is represented by data flow graphs. Data flow graphs with loops can be
modeled by eyelie detaflow graphs [PKR7, St092], and the corresponding register allocation
problem can be modeled by circular are graphs [Sto92]. Unlike in compiler optimization, the
hardware-oriented synthesis work traditionally does not address the issue of code spilling.

A recent application of the work described in this paper is the use of cyclic interval graph
representation in a unified framework of loop scheduling and register allocation [NG93].
In fact, lifetime intervals can naturally be derived from an instruction schedule, and the
register allocation scheme developed in this paper can be utilized effectively in the scheduling
framework.

7.2 Conclusions

In this section we briefly summarize the most significant achievements of our research.

L. We presented the cyclic interval graph representation as an alternative to the interference
graph that is used by traditional register allocators like Chaitin’s global allocator.
Our approach to register allocation based on cyclic interval graphs appears to be well
suited to structured programs, and in particular large inner-loops having loop-carried
dependences.

2. Based on the cyclic interval graph representation, we have devised a two step approach
to register allocation.
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From the interval graph we can establish the lower and upper bounds of the number
of colors which will be required to color it. The number of colors required is related to
the maximum and minimum thickness of the interval graph. We have noticed that a
lot of interval graphs can be colored using as many colors as the maximum thickness of
the graph. Based on this observation, the first step of our algorithm is the sweep and
split spilling algorithm which transforms an input graph whose maximum Chickness
exceeds & to one whose maximum thickness equals &, We assume that the number
of registers available on the target machine is k. Next, new heuristic algorithms,
like the fatcover and the greedy algorithins color the transformed graph exploiting
information that is readily available from the cyclic interval graphs,

We notice that the fatcover coloring algorithm performs sub-optimally in some situations
and propose an important modification to the fatcover algorithm that overcomes this
limitation.

The effectiveness of our approach has been tested on a suite of selected perfecet loops
from commonly used benchmarks like Livermore loops, SPECRI and the whetstone
benchmarks.

From our limited experimental results, we find that in comparison to commercial
compilers, like the pative C compilers of SPARC and MIPS, the sweep and split
spiller works well on loops which have high register pressure,

We obsecrve that the fatcover coloring algorithm is able to color loops with loop
carried dependences very well. It generates optimal to near-optimal results in most
benchmarks which have been tested. On the average the fatcover deviated by 5.2%
from the optimal number of registers required. The fatcover algorithm also outperforms
the greedy coloring algorithm in most cases,

Finally, we explore and describe plausible ways of extending our local loop allocator
to handle broader and more complex classes of program structires.

Eventhough the cyclic interval graph representation is well-suited to innermost loop
structures, the the interference graph is the perhaps the best representation for less
structured programs. We expect that these two representations can complement each
other in a compiler, and we would like to combine them in an effective fashion.
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Appendix A

Left Edge Algorithm

For the sake of completeness we provide a brief description of tae Left Edge Algorithm [HS71].

Algorithm A.0.1 Use the Left Edge Algorithm to color an interval graph, G such that
G has no cyclic wtervals.

Inpul: An interval graph, G having no cyclic intervals.
The register classes, reg.|,s, present on the target architecture,

The register preference, reg, e, of each interval of the cyclic interval graph.
This determines the class of register that needs to be assigned to each interval.

And,

The number of registers, regnym, needed by each interval of the interval
graph. The number of registers needed is the same as the number of colors that
have to be assigned to an interval.

Output : 'The interval graph, &, such that
every interval, i, of the graph has been
assigned colors, ¢, ... cregpym » and,
1
regoass(€i) = “‘Spref(‘) assigned colors, C1..regnum(i)® and,
reg(‘IﬂSS(Cl...I‘(' "nu]"(l)) = mgpref(')
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Main Left Edge Algorithm:

FOR each reggj,ss
Subgraphs,(G"), are created
where all the intervals, i, of G’ are such that :
regpref (i) = regclass
Initialize state of all colors of reg ., to be free
at all times, 2y ...t,

FOR every G’
FOR cvery time, ¢, in ¢ ...t, of ('
FOR. cach interval, { defined at ¢
Obtain colors, ¢;...cregyym. that are free for the lifetime of i
i
Assign ¢; ... cregyum. 10 ¢
1

Mark c;... cregpym. to i to be busy for the lifetime of
i
DONE
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Appendix B

Creating Hierarchical Interval
Graphs From Code

In this section we describe how hierarchical interval graphs can be created from programs —

o by using the nesting levels of programs constructs,

o and by using control flow graphs created from the code,

Examples from Chapter 6.1 are reused to illustrate the process of creating hierarchical
graphs.

For the sahe of simplicity, let us assume that each statement is executed in unit time
cycle,

The problem of creating hierarchical interval graphs can be approached in the following
Ltwo ways :

In terms of the nesting level of the program :
Basic blocks are first created.
Next, the following two rules are used to establish the relationship between the various
blocks :

e Basic blocks at the same nesting level are considered to be sibling blocks.

o Blocks at a higher nesting level are contained within it’s parent block which has
a lower nesting level.
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Nesting level is written B o Bagin Outer Loop
alongside in () Rny <-n

cmp R'.Rn,
(0) jgo 13
for{i =1;i<n ;i++ 1) I ey RS
( ' ' ){ ( ) E L1 Code for Outer Loop
% Intiahzation for Inner Loop

R] <1
Ang <-n

. code...
for(j=1;j<n; j+){ (2)
cmp Rl'FInz
ge L4

L2 Code tor Inner Loop
mnc R

.. code ...

} /* inner for loop */ (1)

[+]
3
S
=)
2
S
S

} /* outer for loop */ 0)

(a) Code Segment : Loops (b) Assembly Code

Nesting Level 0

Nesting Level 2

Nesting Level 0

(¢) Control Flow Graph : Nested Loops

Figure B.1: (1) Creating Hierarchical Block Structures For Nested Loop Structures

133




Var
Names [g1 (Nesting Level 0)

Outer For Loop (B2, Nesting
Level 1)

]
1
1
' [BB3 X
[ ]
]
[}
[ ]

BBS
{nesting level 0)

P
ot

Time

(d) Interval Graph For Nested Loops

Figure B.2: (2) Creating Hierarchical Block Structures For Nested Loop Structures

The hicrarchy of blocks created in this process follows the structure of the program.
We take the small code segment of Fig. B.1(a) as a first example. The various basic
blocks of the program segment is shown in Fig. B.1(b). Using the nesting level
information from PFig. B.1(a), a hierarchical basic block structure is created as in
Fig. B.2. Similarly, Pig. B.3(a, c¢) gives another example with embedded conditionals

The intervals within cach block is created using def-use information gathered at an
earlier stage of the compiler. This is one way of creating nested interval graph
structures,

In terms of control flow graph :
It is casy to decipher the nesting level when working with a tree like intermediate
structure. However, if we choose to have a flat intermediate structure, like a list,
then the information about the nesting level is no longer explicitly available. At this
level, we can create the hierarchical blocks from the control flow graph instead. Two
alporithms are provided, one that is to be used with control flow graphs with back-
edges and, the other that is to be used with control flow graphs without back-edges.
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Nesting level s whitten

alungside 1n () Nesting Level 0

LI (C1) | ©
________________________ Nesting Level 1
1 (c2) | Y
I:B3 l ... code (2).:'
: } ok '
|B4 IL else { -"(-2-)-:
E code .. :
: } /* else %/ : Neating Level 2
AR ‘
.. code .. (0) E
b e e e !
Nesting Level 0
(a) Code Segment : Multi-way Switch (b) Control Flow Graph
Var
Names
B1 (Nesting Leve) 0)
B2 (Nesting Level 1)
:'c'zin'e;tias level 2) ‘:
: BB3 :
L] ]
1 ]
1 ]
1 {
' BB4 1
] ]
] ]
1.1}
{nesting levei 0}

Ly d

Time

(c) Interval Graph For Nested Conditionals

Figure B.3: (1) Creating [lierarchical Block Structures For Nested Branch Struetures




Non Looping Structures :
Assuming that the control flow graph is available and, it does not have any
looping stiuctures, that is there are no back-edges in the graph, we go back
to our previous example of Fig. B.3. Part (b) shows the control flow graph
for the assembly code shown in (a). The following steps are used to obtain a
hicrarchical interval graph structure while traversing the control flow graph in
a top-down fashion.

1. Everytime a branch occurs, a counter is incremented. This counter essentially
heeps track of the depth of the basic blocks in the program. Each basic block
that can be branched into is assigned the value of this counter.

2. If two o1 more forward paths of execution reach a basic block then that basic
block becomes a converging or syne block. For instance B5 in Fig. B.3(b))
is a sync block.

At a point when paths of execution merge, the counter (or the nesting
depth) previously assigned to the sync block by a previous node is decremented
and reassigned to 1t. In our example, B1 branches into B2 and B5 both
of which receive a nesting level of 1. Later, when either one of B3 or B4
branch into B3, we recognize B5 as a sync node as two paths of execution are
reaching it. The nesting depth of B5 is decremented to 0. All subsequent
paths of excecution that lead to B5 are not allowed to affect the nesting
depth of B,

3. Finally, cach block, b, is embedded in a predecessor block, p, which has a
nesting level that equals or is less than the nesting level of b.

These three steps find the nesting level of non-looping structures, and can be
accomplished in one top-down pass of the control flow graph.

Looping Structures :
However, if loops o1 back-edges are present (Fig. B.2(c)), then these additional
steps must be taken into consideration when assigning the nesting level of a
block :

1. If the block, B-suce (or B4 in Fig. B.2(c)), that immediately follows the
block, B-pred (or B3 in the diagram), is also a block from where back-
cdges emanate, then B-suce receives the same nesting level as B-pred. In
general, two adjacent blocks which have back-edges emanating from them
are assigned the same nesting level.

2. However, if the above condition does not hold true, then the block, B-succ
(or BS in Fig. B.2(c)), that immediately follows a block from where back-
cdges emanate ( B4 in diagram) then, it is given a nesting level that is one
less than the lowest amongst the blocks where the back-edge terminates.
Back-edges from B terminate at B2 (which has a level of 1). Hence, B5
receives a nesting level of (lower of (1) - 1) = 0.
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