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ABSTRACT

This thesis is concerned with the investigation of the 1nﬂuence of damping on the
frequencies of plane frames in the presence of rotational joint damping. Usually damping
is ignored in dynamic analysis of structures, or is taken into account using the simple
concept of Rayleigh dampmg However, dampmg is always ‘present, and must be
: conmdered for a realistic analysis of structures, espec1a11y if a matching is desired with
frequencies obtained from vibration testing of the structure. In the thesis, the view point is
adopted that the damping is caused mainly by the relative slip of the joined parts at
vvanous joints of the structure. The slip may e1ther be translational or rotational. However,
'1t appears that purely translational shp is not as significant as that caused by relative
rotation of members at a joint. The thesis considers frames in which joints are not
perfectly rigid, and hence allow relative rotation of members meeting at the joint. The
- resistance to the relative rotation is modeled by (1) assigning rotational stiffness to the
joints, and (2) by a331g111ng rotational damping coefficients to the Jomts The dampmg is
considered to be of the viscous variety, so that the dampmg moments are proport10nal to
the rotational velocities at the joint.

The resulting problem for free vibrations is a complex-valued eigenvalue problem. The
‘thesis investigates this problem analytically, expenmentally and numencal]y Exact free
vibration analyses were performed for straight beams with translational and rotational
dampers at the ends.’ Experiments were conducted on a simple frame to determme the
effect of joint damping on its in-plane frequencies. A Tfinite element prpgram was
constructed to determine ﬁequen01es of general plane frames in the presence of rotational
Jomt damping. '



Résumé -

Cette theése présente une recherche portant sur Iinfluence de ’amortissement sur les

fréquences des cadres en préserice d’amortissement de rotation aux joints. - Normaléement

on ne tient pas compte des amortissements dans une analyse dynamique des structures, si

ce n’est par le concept d’amortissement de Rayleigh. Toutéfois I’amortissement est
_ toujours présent et doit étre pris en considération pour une analyse réaliste des structures

surtout si on souhaite obtenir un résultat correspondant aux ﬁ‘equences obtenues lors des,'
tests de vibration de la structure. Dans cette thése on considere que I’amortissement

provient surtout du ghsscment se produlsant aux parties jointes & plusmurs joints de la

structure. 11 peut s’agir d’un glissement de translation ou encore de rotation. Il semble
toutefois qu’un simple glissement de translation ne soit pas aussi 1mportant qu’un-
glissement de rotation des membrures a un joint. Cette these porte sur les cadres dans

lesquels les joints ne sont pas parfaitement rigides et permettent donc une certaine
rotation des membrures aux joints. On crée un modéle de résistance relative a la rotation
en donnant (1) des rigidités de rotation et (2) des coefﬁments d’amortissement de rotation
aux Jomts L’amortissement est considéré de type visqueux afin que le moment de
glissement soit proportlonnel ala v1tesse de rotation aux joints.

Le probléme résultant des vibrations libres est un probléme a1'1x valeurs propres (eigen;
value) Dans cette thése on étudie le probléme de fac;on analytique, expérimentaie et
. numpnque Des analyses précises de vibration - libre sont faites pour des pout;es droites
avec des amortisseurs de translation et de rotation aux extrémités. Des expenences ont été
faites sur un cadrc simple afin-de déterminer I’effet de I’amortissement aux joints sur les
fréquences dans le plan du cadre. Un programme d’éléments finis a 6té créé afin de
déterminer les 'fréquences des cadres en présence d’amortissement de rotation aux joints.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to the Topic

Structural analysis using the FE method has become very widely spread for its efficiency
and affordability. However, it does not precisely analyze the real physical structure due to
many inaccuracies, especially when the structure is subjected to dynamic loading, in
which case the discrepancies might increase. These data inaccuracies are due to lack of
the physical information, for example, boundary conditions, material properties or
material imperfections, imprecise dimensional data, inappropriate damping
representation, and inadequate joints modeling. Finite element codes also do not provide
consistent modeling options. For example, NASTRAN uses the lumped or coupled mass
matrices for beam elements although, usually, consistent mass matrices are used in other

~ finite element codes.

On the other hand, in experimental structural dynamics the data are necessarily
incomplete due to the inadequacy of measurements arising from limitations on resources
and available equipment. Rotational degrees of freedom (DOF) are usually not measured
so that the number of DOF in the analysis are always greater than the measured ones.
This spatial incompleteness eventually requires reduction of the analytical data or the
expansion of the measured ones by some means. The measured data may contain signal
processing errors such as aliasing and leakage. In addition, systematic errors like
insufficient rigidity of supports or absence of perfect free-free conditions are present.
These errors may cause difficulty in obtaining reliable data for comparison with FE

results.

In space structures the mass of the payload plays an important role for mission suitability.
The design objective is to construct a mass-efficient structure which can be relied upon to

deliver the desired performance in space. This objective requires extensive analyses



under different loading conditions, which in turn demands a realistic finite element
modeling of the structure. The validity of such a finite element model is established by
laboratory testing of some prototypes of the structure with the expectation that the
measured response is predictable by the constructed model within an acceptance criterion.
This acceptance criterion may, for example, require that for a finite element model to be
acceptable there be a reasonable (4 5 %) match between say the first ten pfedicted and
measured frequencies. Such a stringent criterion will usually necessitate a repeated
refinement, i.e. updating, of the FE model by considering all possible sources of
discrepancies in the model. In civil engineering structures, the effect of damping is
usually not a major issue. However, it can be important in the case of earthquake resistant
design of structures.

Damping is often ignored in finite element modeling of a Stl'ucune. Therefore, logically,
one cannot expect realistic predictions from such a FE model unless the structure has no
damping. A common source of damping in frame structures is due to relative motion, i.e.
slippage, of members meeting at a joint. It has been observed experimentally that more
than 50 % of damping occurs at the structural joints [1, 2]. Thus, to account for damping
in frame structures, modeling of joint damping in FE models is an obvious necessity. It
also follows that in frame structures, the large axial stiffness of beams and columns
would significantly inhibit translational slip at the joints. Hence it appears that rotational
slip and hence rotational damping is the more likely mechanism of energy dissipation in
frame structures [1, 2]. The thrust of this thesis is to include this latter type of damping in
the updating of the FE models of the structures. |

When damping is taken into account in dynamic analysis of structure, it is usually done

. by using the concept of Rayleigh damping or proportional damping, i.e. by assuming the -
‘ damping matrix to be proportional to the mass and stiffness matrices. In other words,
damping is characterized by using jusf two proportionality constants [3] regardless of how

| complex the structure is. This concept, although popular for its mathematical
cohvem'ence cannot be expected to represent the damping charécteristics of a structure in
a physically meaningful way. Almost all FE codes provide the option of using
proportional dampmg

In view of the experimental evidence pointing to the importance of energy dissipation at
joints [1, 2], the objective of this thesis is to investigate the effect of rotational joint

damping on the vibrational characteristics of frame structures. Three aspects have been
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pursued in this thesis (i) theoretical — to demonstrate by exact analysis the effect of
rotational joint damping on the frequencies of simple structures, for example, beams and
simple 2 D frames, (ii) eXperimental — to validate the theoretical conclusions and, (iii)
numerical — to implement the theory in a general finite element program. For simplicity |
the attention will be restricted to the viscous variety of damping.

Needless to say, although‘ this research was undertaken with the main motivation of
updating of the finite element models of space structures it has wide applicability to all
structures wherever joint damping is important be it in civil, mechanical, or aerospace

structures.
1.2 General Literature Review

Damping is a very large field. There are many papers written on various aspects of this
field (see section 1.3). However, the subject of this thesis, i.e. The Influence of
Rotational Joint Damping In Plane Frames, is a specialized field with little previous
work. The most pertinent references which the author could locate are by Beards, [1, 2].
The first paper: "The Damping of Structural Vibration by Rotational Slip in Joints" was
published in 1977, and the second paper: "Damping in Structural Joints", was published
in 1985. Both papers describe the experimental work proving that dissipation of energy
takes places mostly at the joints by virtue of slip and friction. In the second paper it is
stated that, "... about 90% of the total damping in a structure originates in the joints....".
The papers are qualitative, with no formulation for structural analysis. It appears that such
analyses are not available even now. This lack of quantitative analysis provides the
motivation to investigate the effect of joint damping in theoretical and structural FE

analyses.

Experimental modal analysis plays an essential part in lipdatin'g of the FE models. There
is considerable knowledge on the subject of modal analysis. The classical paper on this
subject is by Bishop and Gladwell [4]. This pioneering work has been followed in more
recent times by Ewins [5] and his associates [6]. In the updating of FE models the
calculated frequencies and mode shapes are cotrelated with those obtained
- experimentally. Checks on the appropriateness of the frequency match are performed by
computing the Modal Assurance Criteria (MAC) matrix [7, 8]. This computation involves
both the analytical and the experimental mode shapes. A diagonal MAC value close to 1
indicates strong correlation between the modes. A further correlation check is the Pseudo

-3-



Orthoganality Check (POC). The POC is based on the orthogonality of the mass-
normalized modes [7, 9]. The correlation is considered good if the off-diagonal terms of
the POC matrix are less than 0.05 and diagonal values higher than 0.95 [10,11]. POC
requires reduction of the mass matrix to the size of the experimental modes. This
reduction is achieved by the SEREP formula [7]. |
The correlation téchniques mentioned above form the basis for decisions on updating of
the FE models. The various parameters which can be modified for updating are discussed
in the book by Friswell and Mottershead [10]. Damping is noticeably absent from these
parameters. "

1.3 Bibliography On Damping

.As mentioned before the topic of damping is an extensive one. There are a number of
references which the reader may consult, Some of which are listed in the Bibliography
section at the end of the thesis. These references, athough importaht from the general
point of view, are not directly connected to this thesis. The sole reason for giving this list

is to give the reader an idea about the diversity of the subject matter.

1.4  Thesis Overview
The thesis comprises of seven chapters:

Chapter 1 is the present chapter which introduces the subject and its significance in
structural dynamics, especially in relation to updating of FE models of space structures. It

also gives a review of the most relevant literature on this topic.

- Chapter 2 presents the theoretical background of the lumped mass dynamic systems for
single degree of freedom (SDOF) and multi degree of freedom (MDOQOF) systems for
undamped and damped free vibration. It also presents the forced vibration of these
systems under harmonic excitations. The eﬁsuing mathematical problem leads to a
generalized eigenvalue problem - for undamped cases, and to a quadratic eigenvalue
pfoblem for damped ones. The chapter is slanted to the theory of experimental modal

analysis. -



Chapter 3 deals with the exact free vibration analysis of a cantilever beam with rotational
or translational dampers present at the "free" end. This chapter illustrates the significance
of rotational damping on the frequencies of such structures.

Chapter 4 describes the experiment on a simple frame conducted by the author at the
Structures Laboratory of the Canadian Space Agency (CSA). '

Chapter 5 deals with the exact theoretical frequency analysis of straight and bent beams.
The method of analyéis is based on the transfer matrix approach. It calculates the exact
frequencies of the frame tested at the CSA described in chapter 4. It establishes
benchmark frequencies which can be used for validating FE results.

Chapter 6 formulates the FE implementation of the theory for taking into account the
finite rotational joint stiffness and joint rotational damping. Three frames of increasing
- complexity were analyzed by a general MatLab program constructed by the author.
Extensive verification of the obtained results was performed by constructing independent
Mathematica programs for the damped cases and also by using the NASTRAN finite
element package for the undamped cases.

Chapter 7 highlights the principal findings of the research, and suggests topics for further
investigation.

1.5 Originality of Contributions

The major original contributions reported in this thesis are as follow:

— The concept of rotational joint damping was introduced in the dynamic analysis of
frame structures. To the author's knowledge the implementation of this concept |

for updating of 2D frames has not been presented in the literature.

— An original experiment was designed for a 2D frame structure to test the

influence of rotational joint damping.
— The construction and validation of a finite element program incorporating the
rotational joint damping concept, and calculating for plane frame structures the

complex damped frequencies and the associated mode shapes.
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CHAPTER 2

SINGLE AND MULTI-DEGREE-OF-FREEDOM SYSTEMS

The purpose of this chapter is to present the theory of vibration of discrete systems
defined by masses interconnected by linear elastic springs and linear viscous dashpots.
Free as well as forced vibrations are considered. The theory is well known [5], but is
presented here for completeness and easy reference, and for emphasizing the role of
damping which has the most bearing on the subject matter of this thesis.

First free vibrations of a single-degree-of-freedom (SDOF) system, without and with
damping, are considered. Then, forced vibrations are considered, but only for harmonic
applied forces as being relevant to the thesis. The theory is then extended to free and
forced vibrations of multi degree of freedlom (MDOF) systems with and without
damping. ' '

2.1 Vibrations of a Damped and Undamped SDOF System

The SDOF system is the simplest form of spatial representation of a structure. It can be

represented by the mechanical model of Fig. 2.1. It consists of a rigid body of mass m,

connected to a fixed support by a spring of constant k£, and a dashpot of damping

coefficient C'. It slides on a frictionless surface. Let z (t) be the displacement of the mass -
from its equilibrium position, & (t) its velocity, and f(t) the external force acting on it at

time ¢. :

Equilibrium
Position
X (1)
C N
[
L
PR R —— ()
W,
Fn’ctionlesé

interface

Fig. 2.1: Single degree of freedom system.
The extension of the spring is :c(t) and the force exerted on the mass is — k z(t). The

- damping force — C'%(t) is of the viscous variety, proportional to the velocity and
provided (conceptually) by a dashpot filled with a fluid of viscosity C. The free body
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diagram of the mass leads to the following ordinary differential equation of motion for
the displacement z(%) :

mE () +Cx(t)+ka(t) = f(2) | (2.1)

The solution consists of the sum of a complementary function obtained by solving the
equation with f(¢) = 0, and a particular solution with f(¢) # 0.

(a) Complementary Function

In the absence of any applied force, the equation to be solved is
mi(t)+Cz(t)+kx(t)=0. . (2.2)
It is called the homogeneous equation, and its solu-tion,‘ zc(t), is known as the
complementary function. Substitution of a solution form z.(t) = Ae” gives the
characteristic equation

mp*+Cp+k=0 : (2.3)

which determines its two roots as

C .|k Cc? ,
PL 2= — o EiY s : (2.4)
Introducing the symbols
¢ ,_k 5, 2 _ 2 2
sz—i—n_v,’w =E,wd:w — (“w®, Coe = V4km (2.5)

the two roots can beb expressed as

p1, P2 = — (Wt iy - o (2.6)
and therefore the complementary function as

zo(t) = Are— (W —iwa)t 4 g0 — (Cw+iwg)t | 2.7)
where Ajand A, are arbitrary constants. The symbol w is called the natural frequency of

the system, and the symbol (w stands for the damping coefficient. Both of these
quantities are characteristic of the system and can be varied independently. However,

wg = w4/ 1 — (2 is a quantity dependent on w and (w.

For an under-damped system, defined by C' < C.,or ( < 1, wgis real and is called the
damped frequency. For such cases, the solution is oscillatory with decaying amplitude:

-7-



sin wqt
z.(t) = e *“*(Acos wyt + B =

) @8

Wq
where A and B are arbitrary constants.

For a critically damped system, defined by C = C,, or (w = w, one finds wy = 0; the
solution looses its oscillatory characteristic by assuming the form

z.(t) = e (A + Bt). - ‘ (2.9)

For an ovér-damped system, C' > Cl, or {w > w, v/ w? — (w? becomes purely imaginary
equal to iwy, and correspondingly the solution is again non-oscillatory, of the form

sinh wyt

zc(t) = e *“*(A cosh wgt + B »
d

) (2.10)

As a conclusion, we can say that the free vibration response of a damped single degree of
freedom (SDOF) system is oscillatory only if the damping is below its critical value.
Conversely, we may think of the critical damping as the dividing line between the
oscillatory and non oscillatory behaviours of the system when it is excited by some initial
input of energy via initial displacement or initial velocity.

(b) Particular Solution for a Harmonic Applied Force

Consider the mass to be acted upon by a harmonic force f(t) = Fet(S —y) , of
frequency () and amplitude F. The constant 7y, called the initial phase, is related to the

+ nm oo
Jr T where n is an

position of force peaks on the time scale. The peaks occur at ¢t =
integer. For simplicity we take y; = 0 which only means a shift of time origin. For

e Fe = Feos )t, the response is the real part of the solution e z,(t).

When damping is absent, i.e., when (w = 0, the response is always osc1llatory For
Q ;é w, it is expressible as:
1/m 11 1
R
Ww -2 2wmw+Q w-—Q

zp(t) = aFe’¥ witha = o(Q) = (2.11)

where o = (2),being a function of €, is known as the frequency response function
(FRF). Equivalently we may write, using the polar representation of a complex number -

- 1/m

z,(t) = X,e" % =), with X, = Flla|| = F and

(2.12)



_1JIm(a}
Re(a)

v = arg(o) = tan =0 forQ <wandy=m for Q2 > w.

X, is always positive, and the sign change in the response is accounted for by change in
the phase angle 7. At (2 =0, the applied force is static and the response is

Xp = 7= the static deflection. For, Q) < w, i.e., for driving frequencies smaller than

the natural frequency, the response z,(t) is oscillatory and in phase with the force, v = 0.
On the other hand, for driving frequencies greater than the natural frequency, 2 > w, the
response z,(t) is out of phase, v = 7.

When () = w, the solution changes to

' (Ot — . F t
. _ . Ft , T
which shows that at {) = w, the amplitude X, = o of the response oscillations
 om2w

grows unbounded, proportionally with time ¢. This growth in time is called resonance.
We say that resonance occurs in absence of damping when the driving frequency
coincides with the natural frequency of the system.

When damping is present, (w 5 0, the response ip(t) to f(t) = Fe™ may be expressed
as v

z,(t) = a f(t) = aFe’ ¥ | (2.14)

where a, the frequency response function (FRF), is now a complex valued function of Q:

1/m
= a() = 2.
@= o) = o aicn (215)
Equivalently, we may write, using the polar form of a complex number
xp(t) — Xpei(Qt - ’)’) ‘ (216)

where the amplitude X, and the phase v and their connection to the FRF are given by

. 1/m
v _ 2.1
X, = F x magnitude of oo = F’ P 1 AT (2.17)
~ = phase difference = arg(a) = tan‘l(w—gc?%—z) > - (2.18)



Equation (2.16) shows that damping causes a time lag % in the response peaks relative

to the force peaks. This shift determined experimentally can give information on damping
of the system. Equation. (2.18) shows that « varies from Oto 7,as € sweeps from 0 to
00. At Q = w, v = 7/2 regardless of the damping.

Due to damping, X, remains bounded for all 2. It can be easily shown that the maximum
amplitude X as a function of 2 occurs at {3 = \/ Zsz i.e. at a frequency less

Exactly at the
k 2€wy/1 = (2w Y

than the resonance frequency and X,(max) =

; —a— . F
resonance frequency () = w, we have z,(t) = X, U — a —7/2) iy X, = = %
. - w
The complete solution of the equation of motion, for f(t) = Fcos ), is
i t
z(t) = Ae™“*cos wqt + Be~¢ut S0 + X, cos (2t — 7). (2.19)

Wwq

where X, and « are different functions of (2 depending upon w? — 2 being positive,
zero, or negative as described above. Initial displacement z, and initial Veloc1ty Zg
~ determine the arbitrary constants A and B to yield the complete solution as

( ) = e~“{zy — X, cos y}coswat + e o + CwA — QX sin 'y} sin wdt + X, cos(Qt — 7).
(2.20)
If the interest is focussed on longtime response, ¢ > —,the terms with exponential

Cw
decay approach zero, and then effectively z(t) = X,cos (2t — ). This part of the
response in (2.17) is called the steady-state response.

To reiterate their importance to this thesis, we recall the relations of the response
-amplitude X, and phase angle <y to the frequency response function o/(FRF)

X

B 1/m 1/m
% ol = |

02 + 2i¢w H T /(W — Q2)2 + ACwr 2

(2.21)
v = arg(a) = tan_l—%q = tan‘1—2——<_%

One can determine ||a|| experimentally by plotting X,/F data as a function of 2in a
vibration test, and may estimate, by curve fitting Eq. (2.21) to these data, the natural
frequency w and the damping coefficient (w of the SDOF system.
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2.2 Vibrations of an Undamped MDOF System

We first present the easier case of vibrations of an undamped multi-degree-of-freedom
system. The general equations of motion of a MDOF system, with no damping, can be
written in the matrix form as

(M]{z @)} + [K{=z(t)} = {F ()} (2.22)

where [M] = n X nsize mass matrix, [K] = n X nsize stiffness matrix, {z} =n x 1
size vector of displacements, {F'} =n x 1size vector of applied forces. In 1ndex
notation, using the summation convention, the above equation is expressible as

Mi;d (t) + Kz (t) = Fi(t) (2.23)
where 7 and j range from 1 to n.
2.2.1 Free Undamped Vibrations of a MDOF System

Consider first free undamped vibrations. Then, there are no applied forces, i.e. { '} = 0.
Hence, the motion is started by imparting initial displacements {z}, or equivalently a

1 . .
strain energy §{x0}T[K {zo}, and velocities {Zo} to the masses, or equivalently a

1
kinetic energy i{io}T[M [{#o}. The equations of motion, as a statement of the

conservation of the initially supplied total energy, are

M) { (1)} + [K){& (1)} = {0} (2.24)
For a solution we assume

{w} = {p}e™* -  (2.25)

where w is a natural frequéncy of vibration, and {¢} is the corresponding mode shape.
~ When substituted in Eq. (2.24) it is found that

[—w?[M] + [K]){¢} = {0} (2.26)
For a solution of the assumed type, {¢} # {0}, w? must be a root of the equation

det [ — w?[M] + [K]] = {0} (2.27)
called the frequency equation. This is a polynomial equation of nth degree in w?, and has

consequently 2n real roots =4 w;, some of which may be repeated roots. We arrange
- frequencies in ascending order so that w, is the lowest (i.e., fundamental) frequency and
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wn, is the highest frequency. For each + w, so found, we can obtain a mode shape vector
{¢:} by solving [ — w?[M] + [K]|{¢:} = {0}. Thus, for distinct w7 and w? we have

[—w?[M] + [K][{¢:} = {0}
[—w}M] + [K]{¢;} = {0}
The symmetries of both [M] and [K] lead to the orthogonality conditions for the modes:

{9} [M{$5} = m by | ' o (2.29)

(2.28)

where §;; is the Kronecker delta, §;; = 1 for i = jand 6;; = 0 for i # j. Introducmg
mode shapes {1/;} scaled as

{vi} = {6} | (2.30)

7
the orthogonality condition is simplified to become
{w T [M{os} = 65 : (2.31)

The mode shapes {v;} are called mass—normahzed mode shapes Using these mode
shapes, the second orthogonality condition is found as

WTIKNW) = w2, SR (252)

The orthogonality relations (2.31)and (2.32) are useful in solving forced vibration
problems as will be shown below. The general solution of Eq. (2.24) can therefore be
expressed as

{z.} = ci{th1}cos wit + ca{ths}cos wat + ...co{thn }cos wpt
(2.33)
+ di{th1 }sin wit + do{tha}sin wot + ...dp {4 }sin wnt

where ¢1, ¢y, ...cpand di, dy, ...d, are arbitrary constants to be determined from the
imposed initial displacements and velocities: {zo} = z{0} and {Z¢} = £{0}. We have

{zo} = cr{tn} + co{tha} + ...cn{thn} = éck{lﬁk} 4 (2.34)
{#o} = widi {91} + wada{tha} + ... wndn{tn} = kf:_lwkdk{'i/)k}  (2:35) |

Then, using the orthogonality of the modes, we ﬁnd
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or = (e} (M }{zo} and d _ ()T [M]{do} ' C (2.36)

Wk

The complementary solution can therefore be written as

{z.} = [coswit {11 H{1 }T + coswat{ths}{1ho}T + ...cos wrt{th, }H{vn }T][M]{zo}

+ [sinwﬂ% T sinwﬂW T sinwgt {%}{%}T Wnlllol 01050}

' (2.37)
Succinctly, we may write the above as :
{xc} Z{Ak}cos wit + E{Bk} Sinwit (2.38)
where
{Ar} = {Hve IM{mo}, {Be} = {¢uHu} [M{zo} | (2.39)

It is clear from the above equation that an energy input may excite all the modes The

single-degree-of-freedom  solution, z, = zpcoswit + Fo suz:zlt ,1s recovered by
substituting 1, = 1/\/77_7,, ;= 0forj # 1, [M] =m.
2.2.2 Forced Undamped Vibrations

~ The equations of motion for forced vibration is
M) {z (0} + K}z ()} = (FO)} | - (2.40)
We restrict consideration to the loading of the type
[F ()} = {F)e™ (2.41)

which implies that all loads are harmonic and are applied with a common frequency 2
and common phase angle ¢ = 0. { F'} is therefore the vector of force magnitudes which
may be different for each degree of freedom. For such a loading we expect the response to
be harmonic of the same frequency 2. Thus we assume

{z} = {X}e¥ | (2.42)
Substitution of (13) and (14) in (12) gives the matrix equation

=M + [KIHX} = {F} | (2.43)
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The objective is to find {X} given { F}. We determine { X}, not by numerical inversion,
but by using the orthogonality properties of the mode shapes|[Fwing]. Let {X} be
expressed as a linear combination of mode shapes :

X} = (¥t Vot U)o = [ VY = [0Y) (240
or in index notation

Xi = Y | : | (2.45)
where 1);; = the i elemént of the j™ mode shape. Detenﬁining {Y} deteﬁnines {X}.

Substituting equation (2. 44) in equation (2.43) and pre multiplying the whole equation by
[4]F, we obtain

[— PRI IMIY] + W KIINY Y = RIT{F} (2.46)
which by virtue of the orthogonality of the mass-normalized mode shapes gives

[— 22 +u2|{Y} = WIT{F} _‘ (247)
) = | o |y | (2.48)
where L—;%_l—m—‘ is a diagonal matrix. Sin§e {X } = [p{Y}, we obtain

(X} = | e | )  a9)

In index notation, this result can be expressed as

X; = o, 26 - G P I (2.50)

When expanded, we find for a typical ¢

Xi ")bzlwll + ¢z’2¢12 + .. ¢zn¢1n }F +{ ¢11¢21 _|_ ¢i2¢22 + .. 1/’m¢2n }F

-2 w02 — 2 — )2
Yat | Yom W zb,m » o
+. 4 : 62+wg_92+. ~ — 3P (2.51)

Writing the above equation as X; = a;;(Q2) Fj, we identify
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az](Q) = _ ‘(22 w% _ 92

+...

d)’tn’(p]n } Z ¢Zp¢]p (252)

— )2

as the n X n frequency response functions (FRF) for an undamped n-degree-of-freedom
system. A typical term in o;;(€2), say the pth term, is the product of the pth elements of
ith and jth normalized eigen-vectors. Each FRF assumes an infinite value when the
driving frequency (2 coincides with any of the natural frequencies w,. The graph of any
a;;(€2) as a function of {2 will have n peeks at values of Q = w; (i =1, 2, 3, ...n). For

the case of a single-degree-of-freedom system, the FRF is a;; = —T/——ﬂ—%g, the same as
wl -

obtained directly in section 2.1.

2.3 Damped Vibrations of MDOF System

This subsection is important for this thesis. The equations of motion of a multi-degree-of-
freedom system with viscous damping can be written in the matrix form as

[M{z @)} + [CHz ()} + [K{=(2)} = {F ()} (2.53)
where [C] = n x n size damping matlfix. In index notation, the above equation is
M (1) +Cijs(t) + Ky (t) = Fi(t) | (2.54)

The application to a particular physical system (for example a cantilever beam) would
‘require definition of its mass density, the stiffness, and the damping coefficients.
Rotational joint damping can also be included into the [C'] matrix (see Chapter 6). The
particular values of the material properties can be obtained from experiments or
handbooks. Different materials have different damping coefficients, i.e. steel, concrete
(cracked or uncracked) and wood all have different coefficients of damping, stiffnesses
and mass densities.

2.3.1 Force-free damped vibrations
We first find the solution for force-free damped vibrations, when F;(t) = 0, i.e., for
- [M]{E (@0} + [CHe ()} + [K{=(8)} = {0} (2.55)

This form of the matrix eigenvalue problem, for a general damping matrix [C], does not
admit a solution for which modes are orthogonal. Following Ewins [5] and Mia and Silva
[6] we therefore recast the above equation in a manner that entails orthogonahty We
write the above equation as the following 2n equations:

i o |6+ [ ol (0] - Lo 20

-15 -



where the second matrix equation is in fact an identity. The expanded matrix equation
may be written as

[A{y} + [B{y} = {0} (2.57)
where

_ el [M] _ K] [0] _ [ {=®)}
=g o | e=1t ) mew =[50 (2.58)

This device renders [A] and [B] to be symmetric matrices, and the mode shapes of the
modified system orthogonal. We assume a solution in the form

{y} = {s}e” (2.59)
which requires that p be the roots of the frequency equation

det[p[A] + [B]] =0 (2.60)
which is a polynomial equation of degree 2n in p with real coefficients. Accordingly, P,
the conjugate of p is also a root. Additionally, if the mode shape corresponding to p; is
{¢1} then that corresponding to p, =7 is {¢2} = {#;}. The orthogonality conditions

follow from the symmetry of [A]and [B], so that for distinct roots p;and p;the
corresponding mode shapes obey

{¢:}T[A{#5} = a;6;; (2.61)

Introducing normalized mode shapes as
1
{¥i} = —ﬁ{qﬁi} (2.62)
1

the orthogonality conditions are then expressible as
{0} [AH{Y;} = 6i; and {9} [BH{y;} = — pidyy (2.63)

We leave the free damped vibration at this stage, and consider the forced damped
vibrations of multi-degree-of-freedom systems as more relevant to the present work.

2.3.2 Forced damped vibrations

The pertinent equations of motion driven by sinusoidal forces of the same frequency €2
and same phase (y; = 0) but possibly different amplitudes are
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which alternatively are expressible as
[A{y} + [B{y} = {F}e™ | (2.65)
Note that [{{ O}} ] has been redefined as { F'}. Letting {y} = {Y }e*¥, we find

iQAI{Y} + [BI{Y} = {F} |  (266)

For inversion, i.e., to find {Y'} given {F'}, we use the orthogonality conditions. First, we
introduce a 2n x 1 vector {Z } in terms of which

{Y} =[vl{Z} (2.67)

Finding { Z }is equivalent to finding {Y'}. We can now write

QA][WH{Z} + [Bl[¥{Z} = {F}, or o (2.68)
QU AWK Z} + W [Bll¥{Z} = W {F} ‘ (2.69)
which by virtue of the orthogonality of mode shapes enables us to write
) =1 g |wree | (2:70)
in which the matrix { T 1__ p] is diagonal of order 2n. In index notation

Ok
Y ¢’r’] i) — 'lpmkF (2.71)

where the indices range from 1 to m = 2n. Explicitly one has

¢’r1¢11 ¢r21/)12 wrnwlm
i2 — pp zQ Do miﬂ—pm

11[)1‘1 ,lp'n,l ¢T2¢n2 anwmm }F
2 —; z.Q p2 iR —pn ™ . (2.72)

}Fl + { ‘wrlwﬂ wr2¢22 + ¢rn¢2m

Y= i2—p 2 —p i —py

}EY

+..q

Since the roots p, are in conjugate pairs, and so are the mode shapes {¢, }, we can write
by combining the conjugate pairs
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Yp ={ i2 (Yatn + Ya¥n) —Pr¥atn — p¥a ¥y
- 22 —i(p +P71)2 + piP,

n i2(Yraty + Vra¥iz) — Po¥ra¥yy — B¥ra¥iy t. i2(Yra¥ing + Pra®in) = Pu¥rn¥in — Po¥raPin
= 2% —i(p2 +7,)2 + PP, = 22 —i(pn +P,) 02 + PPy

j231

2 (Yr1vvs + V1 ¥a1) — Pr¥ri¥s; — P Yo + i 2 (Yratay + Vratas) — Potbratay — Pary Py

+ . — L ! — —
{ 2% —i(p +7,)2 + p7, — 22 —i(py + D)2 + P2,

¥ 7"9 (¢Tn'¢’2n + $’I‘nE2n) - _ﬁnw’rﬂwz'n - pn@'rn EZTL }Fg + .. { if2 (1)[)7'1 ’wnl + @rl 'Enl) - ﬁl’d)’r‘l w'nl - pl’l_/-}T'l 'ln—bnl
— 022 = i(pn +Pn)S2 + PuPy — 22 —i(p +71)02 + ;1P

+ 182 ("p'r'Z'l/’nZ + 'E’rz"Fnz) - pz'l/)rz’lpnz - Pz@n@ng + .. ’LQ ('Qb’r‘n'lpnn + "Z'rnann) _ p—nip’l"n'lpnn - pn@rnq/)_nn

~ 7 — ilpy 7 72)2 + pi75 T (g T D)2 + pr, S
(2.73)
Denoting
Pk, Pr = — Qwg £ iwgsothatp, + Py, = - 2Cwk, PkPr = w% = Cw% + wzkd (2.74)
we can write the above as the double sum
= = 'I:'Q(wrs"pks +:¢). wk )—_ﬁklp w _pk@ @ o
Y. = s s s Yks rs Y ks F. = F
T kzz:l{; — 2 +2iN2 ka _*_wi ) } k Zla'rk k
(2.75)
= iQ(":brszpks +E Ek )_ﬁkw ’l,b _pk@ 'l:_b
h — 0) = T8 s T8 Vks s Vks
wnere ok Ol'rk( ) Sz:; — 2 +2i02 ka +wlzc
(2.76)
When damping is absent, (wy, =0, P, = — pr = — iwg and Y, Py, = — Yrsthps and it

can be shown that Eqgs. (2.76) reduce to those for the undamped system, Eq. (2.52).
From the relation postulated between {y} and {z} and {% }, the displacements are

Tm = Ypetform=1ton (2.77)
and the velocities are

Em = Y e form = n + 1to 2n. (2.78)
Alternatively, but less preferably, from Eq. (2.77)

& = 1Y, e (2.79)
for m = 1to n. This latter equality implies Y., = ¢QY,,r = 1ton.

Equations (2.76) are the basic equations by which a damped structural dynamic system is

represented. Software, e.g., LMS CADA-X [12] fit the experimental data on the basis of
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the above theoretical model. The reader is referred to Ewins [5] and Mia and Silva [6] for
the extraction methods for determining frequencies, mode shapes and damping
coefficients from experimental data.

2.4 Example: Forced Vibrations with General Viscous Damping

The above formulas appear quite theoretical and complicated. As an aid in understanding
their significance we present a concrete example. Consider a two-degree-of-freedom
system (n = 2) defined by:

6 2 2 2 2000 800
[M] = {2 8}kg, [C] = [2 4:|N-s/m, (k] = [ 200 1200}N/m,

{F}= {Heth

(2.80)
Thereby, in accordance with the above explained theory:
2 2 6 2 2000 800 0 0
2 4 2 8 800 1200 O 0
=16 20 o BI=] 0 0o -6 —2 (2:81)
2 8 00 0 0 -2 -8

The roots of det[pA + B] = 0 and the corresponding normalized eigenvectors {1;} are:

[ —0.0249 — 0.02374 |
0.0555 + 0.05574
—0.2544 4 0.27651
| 0.5983 —0.6170¢ |

p1 = —0.178023 — 10.92321, {41} =

[ —0.0249 +0.02373 |
0.0555 — 0.0557;

— 0.2544 — 0.2765i

| 0.5983 +0.6170 |

py = — 0.178023 + 10.9232i, {2} =

[ —0.04583 — 0.046483 |
—0.0047 — 0.003¢
—0.8424 4 0.8477i
| —0.0593 + 0.0879; |

p3 = — 0.185613 — 18.30461, {¢3} =

[ —0.04583 + 0.04648i |
— 0.0047 + 0.0032
—0.8424 — 0.8477:
—0.0593 — 0.0879: |

py = — 0.185613 4 18.3046i, {14} = (2.82)

L
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Although not used in the sequel it should be noted that the lower half of each eigenvector, v;, is equal to the
upper half multiplied by the complex eigenvalue p;. This fact is apparent from the last of equations (2.58)
and equation (2.59). The order in which frequencies are listed is from the lowest to the highest. Note that
the absolute value of ||p; || = ||p2|| = 10.9247 rad/s, and ||ps|| = ||p4]| = 18.3055 rad/s

The FRFs o, can now be calculated from the formula derived previously:

_ .'ijlwkl 4 fﬁjzwkz n _szwkg 4
W—p 2 —p 2 —p

YjaPra
W2 —py

ajk

(2.83)

wherejranges from1 to 4, and k£ from 1 to 2. As an example we note that 103103
denotes multiplication of the third elements of the jth and kth normalized column
vectors. Also recall that the first two values of j, 7 = 1, 2 correspond to displacement
response, while the latter two, j = 3, 4, correspond to velocity response. For the present

example the FRF for displacements are :

_ 0.0000597-0.0011817  0.0000597 +0.001181i _ 0.0000597 +0.004261i  0.0000597 — 0.00426i

T Q4017810920 2 +0.178+1092i ' if2 +0.186 - 18.30i ' if2 + 0.186 + 18.30i

.. _ —0.0000657 +0.0027i , —0.0000657 —0.0027i , 0.0000657 —0.000872i , 0.0000657 + 0.000372
12 =

Q12 =

Qg2 =

142 +0.178 — 10.92¢
—0.0000657 + 0.00273

12 +0.178 + 10.92¢
—0.0000657 — 0.0027:

(2 4+ 0.186 — 18.30¢
0.0000657 — 0.0003727

142 4 0.186 + 18.30¢
0.0000657 + 0.000372i

102 +0.178 — 10.92¢
— 0.000012—-0.006197

102 4+0.178 + 10.92¢
—0.000012 + 0.00619%

i(2 + 0.186 — 18.307
0.000012 — 0.0000314

102 + 0.186 + 18.30¢
0.000012 + 0.0000313

142 +0.178 — 10.92¢

1024 0.178 + 10.92i

The FRF for velocities are found as

0.012897 + 0.000862%

0.012897 — 0.0008621

12 4 0.186 — 18.30¢

0.078017 — 0.000302¢

1{2 + 0.186 + 18.30¢
(2.84)

0.078017 + 0.00030274

o = 12 +0.1780 — 10.9237 42 +0.1780 + 10.9237 142 4+ 0.1856 — 18.30467  if2 + 0.1856 + 18.30461
= 0.02953 — 0.0012: —0.02953 4 0.00127 0.006805 + 0.001273 0.006805 — 0.001277
@32 = 32 4+ 0.1780 — 10.9237 442 +0.1780 4+ 10.9237 = 42 4+ 0.1856 — 18.30467 2 + 0.1856 + 18.30461
- 0.02953 — 0.0012% —0.02953 4+ 0.0012: 0.006805 + 0.00127% 0.006805 — 0.001271
o= 202+ 0.1780 — 10.9237 2 +0.1780 + 10.9237 = 42 + 0.1856 — 18.30467 42 + 0.1856 + 18.3046%
0.0676 + 0.00971% 0.0676 — 0.00971% 0.000572 4+ 0.000224% 0.000572 — 0.0002241
Qg =

i2 +0.1780 — 10.923¢

12 +0.1780 + 10.923%

12 4 0.1856 — 18.30464

162 + 0.1856 + 18.30461
(2.85)

It is to be noted that ag; = 15 and a1 = a3z in accordance with the expected symmetry.
The displacements can be computed as

T = (O-’llFl + ozlez)emt, T9 = (0421F1 -+ 0422F2)6mt

and the velocities as
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t1 = (a1 F1 + @z Fy)e®, &y = (agn Fy + anFy)e®® (2.87)
Since £1 = i)z1and , = iQx,, we find that

a3 = 192001, g = 1Qaqi,a4 = 1Q0m1, and oy = 1 Qags, | (2.88)
Thus, the FRFs for velocities may be obtained from those for displacements.

The simplified expressions are

0 (Q) = 0.0258259 + 0.000119466i.2 0.15599 — 0.0001194664£2 (2.89)
= 2 1 9% 0.178023 2 + 10.92462 '« — 22 + 2 x 0.185613 442 + 18.30732 '
Similarly, one obtains
012(Q) = am (Q) = — 0059113 +0.000131477iQ __ ,  0.0136605 + 0000131477
12 2 — 22 +2x0.1780234/2 + 10.92462 ' — (2% + 0.371226i2 + 18.30732
(2.90)
0.135211 — 0.0000238626i £2 0.0011530 + 0.00002386264)
an(Q2) = 7 . 5+ 5 : 5 (2.91)
— 22 +2x0.178023 82 + 10.92462 ' — 22 + 0.371226i82 -+ 18.3073

The graphs of the three FRFs are shown below. They all have peak amplitudes near the
undamped resonant frequencies w; = 10.9246rad/s, and w, = 18.3073 rad/s. The graph
for the point receptance ay;(f2), Fig. 2.2, clearly shows the anti-resonant frequency
between the two resonant frequencies; the anti-resonant frequencies are those at which a
point receptance (here o;) becomes zero. Theoretically, for a point receptance ax(S2),
an anti-resonance must follow a resonance. The graph for the transfer receptance a;2(£2),
Fig. 2.3 is also quite consistent in showing a minimum between the resonances. However,
the graph of the point receptance a,((2), Fig. 2.4 is misleading in that the peak around
wy is not pronounced and might not be recognized as a resonance peak in an experimental
situation. This underscores the fact that some FRFs are better indicators of resonance
frequencies than others. Therefore, in experiments, one should look at as many FRFs as

possible to discern all resonance frequencies in a given frequency range.
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We may verify the above solution with that obtained by direct matrix inversion of

— 602 +2iQ+2000 —202+2iQ0+800 |[=1] _[F (2.92)
— 202 +2iQ+800 —80%+4iQ+1200] |z2| |F> '
Taking F; = 1, F, = 0, Creamer's rule of solving simultaneous equations gives
I — 802 + 41 + 1200 o 2007+ 2iQ + 800 (2.93)
11 = - A )y 012 = A v .
where A = 4404 — 32i03 — 2000402 + 720082 + 1760000 (2.94)

is the determinant of the matrix in (2.83). Then, by taking F} = 0, F, = 1, one obtains
(2.95)
— 602 + 2:0Q + 2000
A

a1 = g and oy =

The above expressions for o;; can be cast in the form of summation of quadratic partial
fractions, equations (2.80) to (2.82). More easily, by summing the partial fractions, it can
be shown that equations (2.80)to (2.82) reduce identically to those above, thereby

confirming the correctness of the previous method. For example, equation (2.80) becomes

0.15599 — 0.000119466:2 _27.2727 4 0.0909 — 0.181802
(22 — 2 % 0.178023 112 — 10.9246%)(£2% — 2 x 0.185613if2 — 18.30732) _ AJ44

o] =

(2.96)
exactly equal to the expression for a7 in (2.84) above.
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CHAPTER 3

THE INFLUENCE OF JOINT DAMPING ON A BEAM

In the previous chapter discrete systems were discussed to give the reader some
background about structural dynamics of such systems, particularly with regard to the
effect of viscous damping. In this chapter vibration of one-dimensional continuous
systems, i.e. beams, is discussed, including the effect of viscous damping at beam joints.

As indicated in the Introduction, damping is often neglected in finite element analyses.
We therefore have a situation in which we may be trying to correlate the undamped
frequencies of the analyses with the damped frequencies of the real structure. The goal of
this research, as previously stated, is to investigate the effect of damping in updating FE
models. There are many sources of damping, but, as previously emphasized, a significant
source is that due to slip which may occur at joints of the structure [1, 2]. The following
analyses illustrate the joint damping effects with reference to a cantilever beam in which
the free end is attached to (1) a translational damper, Fig. 3.1 and (2) a rotational damper,
Fig. 3.2.

3.1 Free Vibration of a Cantilever Beam

It will be shown in Chapter 5 that the equation governing the transverse displacement of a
freely vibrating elastic beam of uniform properties, neglecting the rotary inertia term, is

0w 0w

where E'I = bending rigidity, p = mass density per unit volume, A = area of cross
section, z = length coordinate, ¢t = time variable, and w = w(z,t) = the transverse
deflection. The adopted sign convention is that positive x is rightward, positive deflection

ow '
Ox
the sagging kind, and positive shear gives a counterclockwise rotation to an infinitesimal
beam element. The Bernoulli-Euler kinematic assumption and small strain linear elastic
behaviour lead to

w1is upward, positive slope is counterclockwise, positive bending moment M is of

A%w Bw

A solution of (3.1) for free vibration is sought in the form
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w(z,t) = ¢(z)e™! (3.2)
where ¢ = ¢(z) is the mode shape corresponding to frequency w. Substitution of this into
the above equation leads to

d*¢  pAw?

dxt EI

¢ =0 (3.3)

The solution of (3.3) is expressible as

¢(r) = Acosax + Bsinaxr + Ccoshax + Dsinh az (3.4)
Aw?\1/4 -
where o = (p EL; ) or, equivalently, w = o % (3.5)

The boundary conditions determine the corresponding natural frequencies of the beam.
We consider two cases in which damping acts at the end z = L of a cantilever beam fixed
atx = 0.

3.1.1 Translational Damper at x = L

The boundary conditions at the fixed end require vanishing of displacement and slope, i.e.
ow
UJ(O, t) = '(‘9-;(0, t) =Q0atz =0 (36)

The boundary conditions at the other end require the shear force to be equal to the
reactive viscous force from the dash-pot, and vanishing of the bending moment, i.e.

8w Ow 8w

These boundary conditions imply fixed support at x = 0. At the end x = L, the beam is
moment free but is attached to a dash-pot, Fig. 3.1.

.

F w (x)

EI, Uniform Translational
! Damper

Fig: 3.1: Cantilever beam with a vertical damper at free end.
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The solution form w(z,t) = ¢ e where w is a natural frequency and ¢ = ¢(z) is the
corresponding mode shape requires satisfaction of the following conditions

¢:g—§=0at:c=0and (3.8)
Erd—%i_ 0¢,EI§3=0atm:L - (3.9)
The conditions at x = 0 render C = — Aand D = — B, and the solution becomes

¢(z) = A(cos ax — cosh az) + B(sin az — sinh az) (3.10)

The conditions at z = L require

A{sin oL — sinh oL — iwCs (cosaL — cosh aL)}

EI 3
— B {cos aL + cosh oL, + EIC3 (sinaL — sinhal)} =0 (3.11)
A(cos aL + cosh aL) + B(sin oL + sinh L) =0 (3.12)

For a nontrivial solution of these two equations, meaning that both A and B are not zero,
the determinant of the matrix of the coefficients of A and B must be zero. This condltlon
then produces the frequency equation;

1 + cosh aLcosaL + EIC?’ (sinaLcosh oL — cos aL sinhaL ) = 0, or (3.13)
iCs i —cosaL sinhal) =0,or (3.14)
oL \| EIpA azr="5 '

EIpA
o Lz aL(1 + coshaLcosaL) — (sinaLcosh oL — cos aL sinhal ) =0
S

(3.15)

The computed frequency values for a particular choice of properties will be shown later.
We however note that if C; = 0, the frequency equation is the well-known

1 + coshaLcosaL = 0 (3.16)

for a beam fixed at z = 0 and free at x = L. The first, i.e. the fundamental frequency is
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0.597m, |EI
L pA

wy = ( (3.17)

whereas the higher frequencies (n > 1) are given to a very good approximation by [13]

W = ((2” — 1)”)Z’M =2, 3,4, ... (3.18)

Now when C; = oo, then the frequency equation is that of a beam fixed at z = 0 and
supported at z = L:

sinaLcosh aL — cos oL sinh oL = 0. (3.19)

The natural frequencies for such a beam are [13]

124987, [EI _ (4n+1)m ., [EI
w1 =(—7 )\/pA’and‘*’"_( i) A,forn—234 (3.20)

If C; is different from zero or infinity, the natural frequencies w are complex:

with real (oscillatory) part wy and imaginary (damping) part (w, which must be positive
for energy absorbing damping. In an experimental situation it is the damped frequencies
wg which are measured, while in analysis damping is usually neglected in determining the
natural frequencies. The usual presumption is that damping is small, and should not affect
the undamped frequencies significantly.

The frequency equation is now split into two equations, one pertaining to the real part of
the equation being zero and the other requiring the imaginary part to be zero. The
solutions of the two simultaneous transcendental equations thus obtained yield wy and the
corresponding (w of the complex frequencies. '
3.1.2 Rotational Damper atx = L

In this case the end at z = L is free against displacement but constrained against rotation

by a rotational damper. Therefore, the boundary conditions on w(z,t), as shown in Fig.
3.2, are

w(0,t) = g—:(o,t) = 0atz =0, and (3.22)
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53 8%w 0%w

V=- 8 3(L t)=0,M = EIa 2(L t) = 03t8 (L, 1) (3.23)
L - -
| W (%)
7% I , p Rotational
7 L . @25 Damper
EIL, Uniform

DN
P

Fig. 3.2: Cantilever beam with a rotational damper at free end.

The boundary conditions on ¢(z) are

d¢
=Qatz = .
¢ = Tz =0atz =0, and (3.24)
EId3¢—O EICZZ—¢— — w2 (3.25)
da3 dez ~ g '

These boundary conditions now require

wC; | . :
— Alcos aL + cosh oL + g}a (sinaL + sinhal)]

— B[sin oL + sinh aL — Eu}C’a (cos aL — cosh aL)] = (3.26)
A(sin L. — sinh L) — B(cos oL + coshaL) =0 (3.27)

Vanishing of the determinant of the matrix of the coefficients A and B in the two
equations produces the frequency equation for this case as

1 4 cosaLcoshaL —!— E (sm aLcoshal + cos aL sinhal) = 0, or (3.28)
A FEIpA } .
i~———(1 4 coshaLcosaL) — (sinaLcoshaL + cos aL sinhaL ) = 0 (3.29)

Cr

We note that if C, = 0, the frequency equation becomes

1+ coshaLcosal =0 (3.30)

-28 -



which is again that for a cantilever beam fixed at x = 0 and freeat z = L. If, on the other
hand, C; = oo, then the frequency equation becomes that of a beam fixed at x = 0 and
supported against rotation but free to translate at z = L:

sinaLcosh oL + cos aL sinhaL, = 0. (3.31)

The frequencies for such a beam are

0.7528
L

EI (dn— D)7
2

= andw, = (———2—
A\ o > &den = (7

)2 %I, forn =2, 3,4, ... (3.32)

wy = (

Again if C, is different from zero or infinity, the natural frequencies w are complex
similar to the case of displacement damping.

3.2 Frequency Comparison

To see the effect of the two types of damping, we work out a specific example of a
cantilever beam. The beam properties in Imperial units are taken as (for conversion to SI
units see the Conversion Table):

Length L = 1ft, Area of cross-section A = 1in? = 1/144 2, I = 1/12in* = (1/12)°ft*
Density p = 15.528 slug/ft3, E = 29 x 10%psi = 4176 x 1061b/ft?

The undamped fundamental frequencies for the three ideal cases are found as

wi(Cs = Cr = 0) = 220.86 Hz, w;(Cs = 00) = 967.95Hz, w;(C; = o0) = 351.18 Hz

The values corresponding to "infinite" damping (the last two cases) are not used in the
following as they only give an indication on the upper limit of the increased frequencies
due to damping. Only the frequencies of the standard fixed-free cantilever beam with no
damping (the first case) are used as reference.

Parametric studies for various values of C and C, were performed. Table 3.1 comprising
of 4 smaller tables displays these studies for the first five frequencies. The smaller tables
list the frequencies for damping values of C; = 12.5, 25, 37.5 units (Ib.sec/ft.), co and of
C, = 15, 30, 45 units (Ib.sec/ft), co. The damping renders the frequencies to be complex

w = wq + Cwi with modulus |lw|| = 4/w? + (?w?. Only the oscillatory part wy is used

for comparison, as it makes physical sense to do so. The damping part indicates the
decrement of the amplitudes of vibration, i.e., a higher (w value means faster decrease of
the amplitude with time.
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[Undamp Frequency |Transl. Damp. C; = 12.5] % Diff. |Rot. Damp.C,. = 7.5 % Diff
w w = wg + (wi Disp.Damper] w = wg + (wi |Rot. Damper|
220.86 Hz 218.022 + 37.03: —1.28 228.03 + 43.31: +3.25
1394.29 Hz 1381.37 + 36.85¢ —0.93 1718.24 + 305.93¢ | + 23.230
3873.04 Hz 3872.51 + 36.881 —0.014 |4573.32+334.82: | + 18.08
7591.15 Hz 7590.16 + 36.89: —0.013 |8631.26 + 344.66:| + 13.70
12548.62 Hz 12547.9 + 36.89: —0.006 | 13915.8 +348.817| + 10.90
Undamp Frequency |Transl. Damp. C; = 25 % Diff. |Rot. Damp.C, = 15 % Diff
w w = wg + Cwi Disp.Damper] w =w;+ (wi  |Rot. Damper
220.86 Hz 209.34 4 74.831 —5.22 265.60 + 83.70z2 + 20.26
1394.29 Hz 1374.99 + 73.43¢ —1.38 1854.83 +175/63: | + 33.03
3873.04 Hz 3868.62 +73.62¢ —0.11 4658.59 4 175.701 +20.28
7591.15 Hz 7587.33 + 73.69 —0.05 | 8693.73 +176.747 | + 14.52
12548.62 Hz 12545.7 4 73.731 —0.02 ]13965.3 + 177.194 +11.29
[Undamp Frequency |Transl. Damp. Cs = 37.5] % Diff. |Rot. Damp.C, = 22.5] % Diff
w w = wq + (wi Disp.Damper] w =wg+ (wi  |Rot. Damper
220.86 Hz 193.03 + 114.25: —12.60 310.63 + 77.59:¢ +40.65
1394.29 Hz 1364.16 + 109.39¢ —2.16 1879.02 + 118.87% +34.77
3873.04 Hz - 3862.12 4 110.084 —0.28 | 4674.08 4+ 117.98¢ + 20.68
7591.15 Hz 7582.61 + 110.341 —0.11 8705.19 +118.32¢ | + 14.68
12548.62 Hz 12542.0 4+ 110.47¢ —0.053 13974.4 + 118.451 +11.36
[Undamp Frequency |Transl. Damp. Cs = oo % Diff. |Rot. Damp.C, = 0 % Diff
w w = wy + (wi Disp.Damper w = wq + Cwi Rot. Damper
220.86 Hz 0 — 100 351.89 + 0¢ +59.33
1394.29 Hz 968.07 + 07 —30.57 1897.80 + 0¢ +36.11
3873.04 Hz 3137.16 4- 07 —19.00 4686.37 4 07 +21.0
7591.15 Hz 6545.43 + 0z —13.78 8714.32 + 01 + 14.80
12548.62 Hz 11193.1 + 02 —10.80 13981.6 + 01 +11.42

Table 3.1 Frequency comparison for the two types of damping of a cantilever beam.
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Consider first the variation in frequencies due to changes in Cs values. It is apparent that
as C; increases, the frequencies decrease. For example, the oscillatory part of the first
frequency decreases from 220.86 to 218.02 to 209.34 to 193.03 as C increases from 0 to
12.5 to 25 to 37.5 units. The percentage decrease (wyg — w)/w x 100 is greater for the
lower few frequencies. It is interesting to note that the damping part of the complex
frequency increases with increase in damping, and is approximately the same for all five
frequencies for a specified C,value. This means that all modes are attenuated significantly
with almost the same factor.

For C; values varying from 37.5 units to very high values it is found (although not shown
here), that at some value of C; the oscillatory part of the first frequency becomes zero.
After which a further increase in the C; value yields only a decreasing imaginary first
frequency, meaning that the motion is no longer periodic. For very large C; value,
Cs = oo, the first frequency is rendered zero, and the hitherto second frequency becomes
the first frequency of a beam fixed at z = 0, and simply supported at x = L. Thus the
listed non-zero frequencies for the Cs; = oo case are those for a such beam, Eq. (3.20)

Table 3.1 also shows the variation in the first five damped frequencies for C, values
varying from 7.5 to 15 to 22.5 units (Ib.ft.sec) to oco. In contrast to the previous
translational damping case, it is seen that the oscillatory parts of all frequencies continue
to increase (rather than decrease) with the increase of C, values. At C, = oo, the
frequencies are those of a beam fixed at x = 0, and fixed against rotation but free in
displacement at z = L given by Eq. (3.32). The percentage increase in frequencies
(wg — w)/w x 100 are significant for all five frequencies, indicating that the rotational
damping is more pervasive, not confined to only first few frequencies. However, the fact
remains that generally the lower frequencies experience greater increases. The damping
part of the frequency here has a similar kind of character as for the translational damping
case. Except for the first frequency, all other frequencies are attenuated by approximately
the same factor.

It is apparent from the above comparison that the effects of rotational damping are quite
different in character than those due to translational damping.
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CHAPTER 4

THE EXPERIMENT

In space-related applications, as mentioned earlier, the structure has to be tested under
dynamic loading to verify the theoretical model used in its analysis and design. Over-
design is not permitted with a high safety allowance as often done in civil engineering
structures. In aerospace structures the mass has to be minimized by an efficient design.
Experimental modal analysis has to be performed to ensure safety of the structure.

One can perform dynamic analysis using either commercial software like NASTRAN
[14] or by developing MatLab [15] or Mathematica programs [16] for taking into account
special circumstances, like those in the present thesis. The analytical results should
however be supported by experiments. Consequently, a series of experiments was
conducted at the Canadian Space Agency (CSA) laboratories. The experiments were
performed using the signal conditioning and data acquisition system operating with
LMS-CADA-X modal analysis software [12].

It should, however, be noted that the experimental part of the investigation was not the
main thrust of this work. The experiments were performed by the author at the CSA as a
guest researcher, with little authority. As well, the limitations of the equipment, resources,
and time hindered an in-depth experimental investigation. This chapter therefore provides
a rather brief summary of the experimental work. The value of the work reported herein
lies mainly in the fact that this was the first time these original experiments were
attempted. It is expected that the difficulties encountered in designing and conducting

them will prove valuable to other researchers in the future.
4.1 The test Specimen

The specimen constructed for the experimental study was a simple 2D aluminum frame
consisting of two columns (i.e. vertical members) and one beam (i.e. a horizontal
member). The dimensions of the specimen frame in zy plane are shown in Fig.4.1. The
beam is lapped on to the columns by bolts. The holes for the bolts are provided in 3 x 3
| configuration as shown. This configuration gives the flexibility to join the beam by 1, 2, 4
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or 9 bolts at each corner. The frame was tested for motion in the zy plane. However, the
eccentricity introduced by the lapping (i.e. offsetting) of the beam over the columns |
rendered the frame to be a slightly non-symmetric structure with respect to the zy plane
passiﬁg through the column centerlines. A second set of columns or a beam might have
been used to make the structure symmetric. But, this added stiffness would have
increased the frequencies of the structure rendering them more difficult to measure with
the available equipment. The presence of this eccentricity, however, did not have any
significant effect on the xy plane frequencies which are of interest here, in view of the
near absence of any out-of-plane motion during testing. The beam length measured from
the centerlines of the columns was 15 inches (0.381 m). The lengths of the column
measured from the centerline of the beam was 15 inches (0.381 m) but which additionally
had 1/2 in (12.7 mm) length for clamping it to the foundation of the test bed, which
‘rendered the effective length of the column to be 15 in (0.381 m). As shown, the width of
the members is 3 in (76.2 mm) and the thickness of the frame in the z direction is 1/8 in
(=~ 3.2 mm).
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Fig. 4.1: The 2 D frame
The properties common to all three aluminum members were:
Length L = 15in (381 mm), Width = 3 in (76.2 mm), Thickness = 0.125 in (3.2 mm)
Area A = 0.375in? (0.242 x 1073m?), Moment of Inertia ] = 0.28125in*
(117 x 10~°m*) , Density p = 5.4 slugs/ft3(2768 kg/m?), Young's Modulus
E =10.4 x 10%psi (71.7 x 10°Pa).

4.2 The test set up

Lateral
Support

Frame

Shaker

Encapsuling
Structure

Fig. 4.2: The main frame structure.
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4.2.1 The joint

The most significant element of the experiment is the joint. It is clear that the joint
damping will depend on the way it is constructed. The type of the joint will dictate the
amount of damping arising from friction between the surfaces or from material viscosity.
A bolted joint can be expected to have much more damping than a welded one because of
the amount of slip occurring in the joint as it opens and closes during vibrations. The
number of bolts in a joint and the torque used to tighten them will also affect the overall
joint damping. A welded joint, on the other hand, may only have micro slip within its
parts which may not contribute much to damping.

In this experiment, the beam and the columns were not welded, but bolted as shown in
Fig. 4.3 and 4.4. In order to experiment with different bolting configurations, the common
member widths was chosen to yield a joint of sufficiently large area to accommodate as
many as nine bolts. A width of 3 inches compared to a length dimension of 15 inches was
deemed sufficient for this purpose.

Bolt configurations of 1, 2, 4, or 9 bolts were tested, with different bolt materials and
different bolting torques. Actually twelve experiments were performed for the purpose of
this thesis. Table 4.1 lists the specific combinations used in the tests.

Bolts Material | Torque (in.lb)
1,2,4,9 | Steel 2
1,2,4,9 | Steel 5
1,2,4,9 | Plastic 2

Table 4.1: Bolts configurations.
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Fig. 4.3 The Joint with the steel Bolts.

Plastic Bolt

Aluminum
Accelerometer

Fig. 4.4: The joint . with plastic bolts.
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4.3  Fixity

To ensure valid experimental results, the 2-D frame was fixed to a sufficiently rigid metal
foundation. For this purpose, three holes were drilled widthwise at the bottom of each leg.
The legs were lowered into the recesses of symmetrically placed clamps. The legs were
then bolted to the clamps through the three holes, and the clamp's were bolted to the steel
base. This arrangement of providing fixity of the columns to the base was tested
experimentally by obtaining FRF of the base plate alone, which was found to be small
(close to zero) as it should be for a "rigid" foundation. Thereafter, FRF curves were
obtained for the attached frame with accelerometers placed at points close to the
connecting bolts. The difference between the two FRF curves was found to be negligible
(less than 2%)), thus proving the absence of any significant slip between the base plate and
the columns.

4.4 Prevention of out-of-plane displacements

Since the objective of the test was to obtain influence of joint damping in the zy motion
of the frame and since the frame was flexible in the out-of-plane direction, it was
necessary to constrain it against motion in that direction. The main structure was
therefore encapsulated by a stronger structure that provided lateral support against the
out-of-plane motion. The set up for encapsulating the 2D frame is indicated in Fig. 4.1.
The lateral supports were in the form of screwable Teflon-tipped contacts protruding
from the encapsulating frame. These permitted almost frictionless sliding of the
contacting surfaces of the beam and of the columns of the frame, and thus preventing it
from out-of-plane vibration and at the same time permitting unhindered in-plane motion.
This arrangement also helped minimize the effect of the slight asymmetry of the
constructed frame.
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4.5 Positioning of the accelerometers

°
3 ]
N3 N4 ON5
N2 N6
Nig ON7

Fig. 4.5: The numbering of the accelerometers.

The monitoring of in-plane motion required that the accelerometers be attached to the
sides of the frame as shown in Fig. 4.5 by the square symbols and names N1, N2, ...N7.
The small (1/8 in) thickness of the frame made it necessary to employ special attachments
to affix the accelerometers. The number of the accelerometers and their positions were
considered to be adequate to capture the mode shapes and hence the frequencies of the
frame. Figure 4.2 shows the leads from the accelerometers to the data acquisition system.

4.6 Position of the shaker

For exciting the frame with random burst input, a shaker was installed and attached as
shown in Fig. 4.2. The shaker was hung using bungee chords to allow for free vibration of
the frame. The attachment between the shaker and the frame was done through a stringer.
The stringer was leveled and placed to be in the same xy plane as the frame to ensure in-
plane excitation of the frame.

4.7 Data acquisition |

For data acquisition, the LMS-CADA-X [12] software was employed. The motion of the
accelerometers produces electrical signals that are sent to the signal conditioners, and then
to the data acquisition system. The signals are converted from analog to digital and are
then communicated to the computer for data analysis. Figure 4.6 shows the tower housing

the data acquisition system with its components identified.
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Amplifier

Amplifier

Current knob

Data Acquisition

Emergency Kill
Switch

Junction Box

Signal Conditioner

Signal Conditioner

Junction Box

Fig 4.6: The control tower housing the data acquisition system.

- 4.8 Verification of experimental results

The experimental results were checked, as soon as they were obtained, and before they
were processed to avoid errors in the correlation between the experimental and numerical
analyses. Figure 4.7 shows the FRF of the frame obtained from different accelerometers,
N2, ...N6, all of which could detect in-plane motion as well as out-of-plane motion. The
graphs corresponding to node 5 show the recorded in-plane and the out-of-plane motions,
clearly indicating that the out-of-plane (z-direction) motion was small.
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Fig. 4.7: FRF for each individual accelerometer (N2, N3, N5 and N6).

The figure also shows that for the most part of the FRF for nodes N3 and N5 coincide as
expected because they are placed in parallel columns at the same height shown in Fig.
4.5. The same can be said about the FRF of nodes N2 and N6. The overall average results
of the frame is obtained by the LMX software as shown in Fig. 4.8 (Note that the
displacements of N1 and N7 are close to zero since they are both near the base). N4 is not
included in Fig. 4.7 since it does not measure the horizontal (x-displacement) but'only the
vertical (y-displacement).
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Fig. 4.8: The average of FRFs of N2, N3, N5 and N6.

At this stage the frequencies corresponding to the peaks or resonant frequencies are
registered and their mode shapes are obtained as well. Unfortunately, the equipment used
in this experiment was inadequate to measure the rotational mode shapes of the structure.
Moreover, the system is limited to measuring with good accuracy frequencies less than
2000 Hz. This limitation of the equipment resulted in the fact that only two frequencies
could be measured. Table 4.2 shows the measured frequencies.

-41 -



1 2 3 4 5 6
Exp. (Hz) Modal Exp. (Hz) Modal Exp. (Hz) Modal
Bolt Nos. | Trq =2 (inlb) | Damping | Trq =5 (inlb) | Damping | Trq =2 (inlb) | Damping
(Steel) (Steel) (Plastic)
1 415.21 0.0223 416.55 :0.0162 413.41 0.0135
1302.64 0.0229 1286.64 0.0229 1292.31 0.0235
2 413.31 0.0222 423.60 0.0170 | 417.07 0.0126
1321.96 0.0132 1341.09 0.0132 1324.06 0.0113
4 419.13 0.0216 424.17 0.0218 | 421.66 0.0160
1335.26 0.0156 1355.81 0.0149 1345.09 0.0116
9 411.30 0.0200 415.45 0.0213 | 421.98 0.0140
1336.98 0.0154 1353.33 0.0142 1345.92 0.0113

Table 4.2: Frequency values for steel and plastic bolts configurations.

The modal damping determined experimentally and shown in the above table gives an
indication of rather low damping in the tested frame. An interpretation of these damping
values in terms of rotational damping, is not straight forward, and was considered beyond
the scope of this limited experimental investigation.

Regarding comparison with the computed frequencies, Table 4.3 shows that the
experimental frequencies, taken as the averages of the measured frequencies for each
mode, are fairly close to the ones obtained by NASTRAN considering no damping. This
indicates that the experiments were performed rather accurately. They achieved the
expected dynamic behaviour with a discrepancy in the measured frequencies of about 7%.
compared to the computed undamped values, which is quite acceptable.

Logically, the measured frequencies ought to be lower than the NASTRAN frequencies
since the latter are for undamped and rigid jointed frame. However, one finds that the first
measured frequency is higher than that of NASTRAN. On the other hand, the second
measured frequency is lower than the NASTRAN value, which is expected for a damped
structure. If one disregards the possibility of experimental error in the second case then
- this frequency would correspond to a combination of some joint stiffness and rotational
damping as is shown in Chapter 6.
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Average Exp. | NASTRAN | Diff
(Hz) No damp %
418 389.8 - 6.7

1328 1421.4 +7.0

Table 4.3: Comparison of the experimental frequencies with calculated ones.

Coming back to Table 4.2, it can be seen that generally (allowing for the éxperimental
discrepancies) the higher number of bolts in the two joints increases the frame
frequencies, columns 1, 3 and 5. This is more true for the second frequency than for the
first one indicating less experimental error in the determination of the second frequency.
Also, as expected, the higher torque increased the frequency (columns 3 in comparison to
column 1). Thus, it is evident, that the higher number of bolts and the higher torque
increased the stiffness of the frame.

When the plastic bolts are used, the frequencies are generally higher than their steel
counterpart for the same amount of torque, column 5 versus column 1 . This increase is
rather surprising in view of the lower modulus of plastic bolts, and correspondingly the
lower pinching forces exerted by the bolts on the joined parts. However, the possibility
exists that the plastic bolts provide a higher damping and therefore resulting in higher
frequencies. A further experimental investigation along the present lines, using steel and

plastic bolts, would be useful in proving this observation conclusively.

In conclusion, this limited number of experiments were successful in achieving their
primary purposes of demonstrating the effect of joint damping on the frequencies of the
tested frame. Availability of equipment with higher measurement capacity would have
made it possible to capture more frequencies. Obviously, for future investigation, many
improvements can be made in the design and construction of the present experiments, to

obtain a greater number of in-plane fréquencies.
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CHAPTER 5

FREE VIBRATION OF A BEAM WITH INCLINED SEGMENTS

The purpose of this section is to derive the exact frequencies and mode shapes of a beam,
or a bent with various straight but inclined segments. The specific problem is to
determine the exact frequencies and mode shapes of the frame for which experimental
frequencies were obtained. The analysis method presented below uses the concept of
transfer matrices [17]. This method produces the exact benchmark frequencies which can
be used for determining the goodness of approximate frequencies obtained by the finite
element method.

5.1 Transfer Matrix of a Straight Beam Segment

The exact transfer matrix of a straight beam element of uniform section can be derived by
solving the differential equations of motion expressed in terms of transverse displacement
w(z, t) and longitudinal displacement u(z, t) where z is the coordinate along the beam
centroidal axis and ¢ denotes the time coordinate. We assume that zy plane is a principal
plane of the beam. Positive w(z, t) and positive u(z, t) are in positive directions of the x
and y axes.

pAwWdx
M+dM
&%— ﬂi:]%ﬂ\HdN — C&}—» pAiidx
V-l-dV }/‘ Ipbdx
[

Fig. 5.1: The free body diagram of a beam element in motion

With reference to Fig. 5.1, the equations of motion in the zy plane, involving shear force
V = V(z), bending moment M = M (z), and axial force N = N(z) are

ov &%w

= Yo (5.1)
oM 9%  Ow

StV =550, (5.2)
ON o%u

5 ~ o 5
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where in view of their tensor character the internal moment and forces, M, V, and N are
positive as shown. p stands for the mass per unit volume, A denotes the cross-sectional
area, and [ is the area moment of inertia about the centroidal principal axis. The rotation
of the cross section, in accordance with Bernoulli-Euler hypothesis is taken equal to the

0 . . 0 .
slope, 0 = 7% The assumption of small rotations (% < 1) leads tothe strain

Oz
2
expression € = @ — B_w, and that of linear elastic isotropic material to
ox Ox?
2 2
M= — /a‘ydA = — /EeydA / o wy2 dA = EIg$2, and : (5.4)
ou
N = / o dA = / BedA = BAS" (5.5)

where E is Young's modulus. Consequently, the equations of motion can be written as

0tw &w 82 8w

EIB—F +APW_ 3132(6 2)—'0 and (56)
0%u A%u

If w denotes a natural frequency, then free vibrations with this frequency requires
w(z,t) = W(&) e“t, u(z,t) = U(E) e™* (5.8)

in which £ = z/L is a non-dimensional variable and W (&) and U(f) are amplitudes of
transverse and axial displacements, respectively. The differential equations become

d*w 4 4r2 92W

aEh — oW + L2 8&2 =0 and (5.9)
dQ—U+ﬂ2U—0 (5.10)
de? B '
wherein

_Lw 4, ALY , IL** L, BL, , E
6—- —C",O[ - Bl W = C2 (?) —(T) , C —;‘,T’— I/A (511)

Symbol ¢ stands for the velocity of sound along the beam length, and r denotes the radius
of gyration of the beam cross-section. The roots m of the characteristic equation for

W (£) are
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22' 2,2
9 9 a°r a“r

. Q. . ) 2c )
Now, if the attention is restricted to those natural frequencies w < —, or equivalently
r

042 7,.2

5Tz & 1, then for such cases, m? = + o and the rotary inertia term in the differential

equation for W (§) may be considered negligible, so that in effect 8_ +V =0 or

Oz
3
V=-FEI 8—;: The general solution can then be expressed as
W (€) = Kisin af + Kscos o€ + Kjsinh of + Kycosh o (5.13)
U (&) = Cisin C€ 4 Cyeos C§ (5.14)

involving arbitrary constants K, K, K3, K4 and C;, Coto accommodate specified
. . . aw
boundary conditions on bending moment M, shear force V, axial force N, slope —

¢’
and displacements W and U at left (¢ = 0) and at right (£ = 1) ends.

L

Y
[ M v, W o,
x Niv—ﬂii jl B—ij ui‘@ :{L j| uj
Vil N 8 |, L N
I | [

Fig. 5.2: Positive sign convention for positive quantities at nodes 7 and j.

Denoting the beam end joints as 7 and j,the quantities at the right of joint 7 (or left of
member ¢ — j), positive as shown in Fig. 5.2, are

WE = (K + Ky) (5.15)
dWw «
oF = T = 7 (K1 + Ks) : (5.16)
EI d3W Ela3
= = G o= T R o)
EI d*W EIo?
ME=Tr g ’£=o =~ (KK, (518

These give
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L3 2
L M-R)

1 1
K, = —(L§F 4+ —_y=R = (W - —— .
1= 5 L0 T gV Ke = 3 (W - s (5.19)
K3 = i(LeR — L—3VR) Ky = l(WR+ L (5.20)
722 T EI2 T T 2V T Elo? ‘
and hence
W(f) _ cosaé + coshoz&WR + sinaé + sinh o€ LOR
2 ‘ 2
sinaé —sinhaé L3 _ ., cosal—coshalé L? .
o M: .
2 Bl 2 Elo2™" (5.21)
The quantities at the left of joint 5 (or right of member 7 — j) are therefore
cosa+cosha p» sino +sinhal p
Wi Wlf— 2 : 2 al
sina —sinha L* _ p cosa—cosha L2
R ME 5.22
2 Elo® " 2 Elo* (5-22)
or — Elﬂ‘ _ (sina —sinha) o WR (cosoz+cosha)€R
77 Ldtle=1 2 L 2 ’
(cosa—coshe) L? _ . (sina+sioha) L  »
2 Bl 2 oBT (5.23)
v _E_I_d:*Wl _ _ (sina + sinh ) EIagWR N (cosa — cosh ) EIa20R
I L3 ded le= 2 JER 2 2t
(cosa+cosha)ViR+ (sina — sinh @) « MR (5.24)
2 2 L
AE - _E_IdZW’ __ (cosa — cosha) EIaZWR _ (sina —sinha) Ela oR
I L2 de? e=1 2 12 i 2 J AR
_ (sina +sinha) LVR (cosa + cosha) MFE (5.25)
2 2
2
For longitudinal vibrations, the solution of % + C’zU = 0 can be written as
LNE
U(&) = Uftcos C¢ + o SnC¢ (5.26)
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where UL and N are respectively the axial displacement and axial force at ¢ = 0. These

quantities at end £ = 1 are

R

LN;
L-yUR
Uy =U; cosC’—l—C,EA

sinC, and NL

(3

_UR

CEA

sin C + NfcosC

(5.27)

The connection between the quantities at the two joints of a member ¢ — 7, right of joint %
to those at the left of joint j can now be written via a transfer matrix as:

i
e
T ;

e

oF 0
NE |~ B
J _ 2

A I
| M} | 0
0

0 0
. L
ad )
-5 a
0 0
— Blgac Bl(;Zb
L2 L

Lf
ByC

0 0
L3d B L%
Biod Bio?
bL? Le
31 Olz Bl (0%

0
. o
L
Lc
- — a
«

where the new symbols B;, Bs, a, b, ¢, d have the following definitions:

B, = EI = bending rigidity, B, =

(cos a + cosh o)
—

b=

a =

_ (sina +sinha)

(cos @ — cosh )

2 b

(sin o — sinh )

d=
2 )

e=cosC, f=sinC

2

EA = By /r? = axial rigidity,

(5.28)

(5.29)

(5.30)

- (5.31)

(5.32)

As an immediate verification example, we note that for a cantilever beam fixed at the left
= ME = 0), the

joint i (UF =
above relations become
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[ Lf 1
0 —_— 0
e B,C 0
Lc L3d L?b
- A Lc B ) )
Uj 0 @ o 0 Byo3 Bia? 0
w} ad b2 Le 0
I 0 —-— a 0 0
9]» — L Bla2 Bla NR
0 B, ., i
0 - —L—C'f 0 3 0 2 e 0 Vz'};
0 Bja B« _ ad | M ]
- - 0 - I3 2 C L2 b 0 a —E-
Blol Bla Lc
I 0 2 b - i3 d 0 - a ]
(5.33)
which can be written as two decoupled matrix equations:
e 0 0
ad | [ N 0
Le MZE 0
0 —— a i
oY%
Lr 0
Uf B,C NE
T L3d L?b ' :
Wil=1 0 == ||V (5.35)
9L Bla Bloé MR
j 9 bL? Lc L
i Bia? Bia |

The first is a set of homogeneous equations to determine N, V.7, M. The second set
then yields U, WL, 0F. The condition for the nontrivial solution of the first set is
vanishing of its determinant, which is the frequency equation for such a beam, namely:

e(a® + cd) =0, i.e., (1 + cos acosha)cos C =0 (5.36)
which is a well known equation. From a similar procedure it follows that the frequency
equation for a simply supported beam is e(c? — d?) = sin asinh acosC = 0, whereas
for a beam fixed at both endsit is f(b? + cd) = sinC (1 — cos o cosh ) = 0. Note that

in all these examples, the axial vibrations of the beam are uncoupled from the transverse
vibrations.

Symbolically we may write the above relations as

{4} =[Tu{A} (5.37)
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where [T};] is the above 6 x 6 member transfer matrix connecting the six quantities {A,}
atend ito {A;} at end j of the member.

5.2 Bents with Straight Svegments, Joint Transfer Matrix

For a beam with segments of different section properties, and meeting at angles, we must
supplement the above member transfer matrix with a joint transfer matrix. Additionally,
we may endow the joint with desirable stiffness or flexibility properties to account for
joint deformation or joint slip. Restricting to beam segments with XY plane as the
common principal plane, let thelocal z; axis be directed from node 7 to node jand let o
be its inclination with respect to global X axis. Then the global components of the six
quantities at the left of joint j, denoted by 67, are

{67} = [RE,){A,) | (5.38)

where [RF «;) 18 the transformation matrix converting components of vectors in the local
‘(member) system to those with respect to the global (joint) coordinate system. Explicitly:

Uj [cosa; —sina; O 0 0 01175 ]
V; sina; cosa; O 0 0 0 Wj
0, 0 0 1 0 0 0] 9,
I\ _ A J
6} = Fi. | 0 0 0 cosa; —sina; 0| NV (5.39)
ij 0 0 0 sinq; cosa; O VJ
M, | 0 0 0 0 0 1] M,

Now {6]1-2}, the six global components at the right of joint j, may be expressed in terms of
those at the left by means of a joint transfer matrix [¢;] as

{67} = [t;1{67} | | (5.40)

The nature of [¢;] will depend upon the joint characteristics. In this work,

) -

',ué{' 1 0 0 ‘];—" 0 0 'u;}'

R JT L

Yi 010 0 £ o0 Yi

oF o 0% 5 41
R

Ff o000 1 0 0||FE

ME 000 0 1 0| Mk

-7 Jooo o o 1] "

where kj;, kjy, kj, are joint stiffness at joint j against X,Y displacements and Z
rotation, and where we have assumed that joint inertia forces can be neglected and hence
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left and right joint forces and moments must be in equilibrium. For a perfectly stiff (i.e.,
rigid) joint k;; = kj, = k;, = oo, and the above matrix becomes an identity matrix.

Now if o;is the inclination of the member spanning joints jand &, then the quantities at
the right of joint jin global and local coordinates are related as

— R - : - R -
Vi [ cosa; sina; O 0 o o]|"
WE - v
[ —sino; cosa; O 0 0 0 7
0 0 0o 1 0 0 0] ¢
RY _ il — J
{Af}= NjR N 0 0 0 coso; sine; O ij; (5:42)
VE 0 0 0 —sina; cosa; O FE
j
R 0 0 0 0 0 1 R
| Ml ¢t - M
or symbolically as
{AR} = [R,,]7{6F} (5.43)
Then combining the above results we may write
{AF} = [T){A7} where | (5.44)
Tj] = [Re, " t/][Ra)] | (5.45)

is the joint transfer matrix. This operation is shown pictorially for the forces and
moments, as well as for displacements and rotations in Figs. 5.3 and 5.4.

Fig. 5.3: Joint forces and moments. Fig. 5.4: Joint displacements and rotations.

Explicitly, the joint transfer matrix has the following form:
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Cos a;cos @  SinogSina;  sinajcoso;  sin o;c0s oy

cos(a; —a;) sin(aj—oz) O + - 0
’ ’ kja kjy kjy ' ka.
_ sin(aj _ Ot,') COS(O{j _ ai) 0 COS ;81N oy _ COS o;SIn &y COS i;COS Q5 SIn ;S1n @z 0
Ry kjz kiy kia
(= 0 0 1 0 0 1
ka
0 0 0 COS(CM]' - a,-) sin(aj - ai) 0
0 0 0 — sin(a; — a;) cos(aj — o) 0
0. 0 0 0 0 1 |
(5.46)
In this work, joint deformations are allowed in the rotational degree of freedom, but not
in the translational degrees of freedom. This in effect means that k o=k jy = 00 always,
but k », may be assigned a finite value. If in addition to the rotat10na1 stiffness & ; 2o there

is also rotat10na1 damping with coefficient C; 2o then

. L
ME = Cj, (07 - 67) + k(07 - 67) (5.47)

. D . ~R L
Assuming harmonic vibrations with frequency w, 0, = -1 w@f and 0, = V1w GJL ,
the joint transformation matrix can be written as

[ cos(a; — ;) sin(ej—a;) 0 0 0 0
—sin(aj; — a;) cos(oj—o;) O 0 0 0
1

[T]] = ° 0 ! 0 0 ka + V-1 ijz
0 0 0 cos(aj—oa;)  sin(oy — o) 0
0 0 0 —sin(ey — ;) cos(oy — ) 0
0 0 0 0 0 1

(5.48)
5.3 Exact Frequencies of a One-Story One-Bay Frame

The above formulation is now applied to determining the frequencies of vibration of the
one-story frame of the experiment described in Chapter 4. The two columns and one
beam of this frame have identical geometric and (Aluminum) material properties:

1
L=15in=0.381m, A = 3 X 3in® = 2.42 x 107*m?, p = 2768.0 kg/m3
3

I= %x%m =117 x 10°m*, F = 10.4 x 108 psi = 71.7 x 10° N/m?
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Fig. 5.5: The frame of the experiment, Chapter 4.

The four joints are named as 1, 2, 3, 4 with joints 1 and 2 considered fixed, Fig. 5.5. For
joints 2 and 3, identical stiffness and damping coefficients are assumed.

The sequence of matrix multiplications giving the connection between quantities at joint 1
to those at joint 4 are:

{A4} = [Tu][T5][Tos][ T[T { Ar } (5.49)
For the three members a; = 90°, ay = 0%, a3 = — 90°, and hence (ay — ay) = — 90°,
(a3 — ag) = — 90°. Thereby
0 —1 0 0 O 0
1 0 0 0 O 0
1
0O 0 1 0 O
(T3] = [T3] = kjy + V-1 wCj, (5.50)
0O 0 00 -1 0
0 0 01 o0 0
0 0 00 O 1
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_ Lf .
—_ 0 0
e 0 0 B,0
3 2
0 a E 0 L°d B L*b
o BlOlg Blo_’2
ad bL? Lc
0 _ — a 0 —B 5 E-_
[T51] = [T2] = [T3] = B L 10 1o
- fcf 0 0 e 0 0
B;o? B;o? ad
0 — L32c 7 b 0 a 7
Blof Blol Lc
I 0 - b T d 0 - a |
(5.51)

The sequence of matrix multiplications giving the connection between quantities at joint 1
to those at joint 4 are:

{Ad} = [Tus][T3][ T3] [T2] [T { A1 } A (5.52)

From the resulting 6 x 6 matrix equation we can extract the 3 X 3 matrix equation by
virtue of the ends 1 and 4 being fixed ends as was done previously for the beam example.
The determinant of the 3 x 3 matrix gives the frequency equation. We refrain from
writing the resulting 3 x 3 matrix as it is very complex with many large terms. Eventually
numerical values must be substituted for calculations of the frequencies.

Although we can account for finite joint stiffness and possible rotational damping, we
chose not to do so for the sake of simplicity as the calculations for these cases are very
tedious involving complex numbers in a transcendental frequency equation. We confine
ourselves to computing exact frequencies for the standard rigid joint case for which
k;; = oo, C = 0. The first ten benchmark frequencies are shown in the following table:

No. | Exact Freq. | NASTRAN
Hz Hz
1 389.78 389.79
2 1421.18 1421.20
3 2287.97 2287.65
4 2504.76 2506.49
5 2759.09 2757.38
6 3588.87 3590.94
7 5016.16 5008.35
8 5745.65 5759.66
9 7300.60 7310.71
10 | 7796.54 7830.97

Table 5.1: Exact and NASTRAN frequencies.
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For comparison NASTRAN results were obtained on the basis of 5 elements per member
for the same frame (see Chapter 6). It is evident that NASTRAN results are quite good for
all ten frequencies. This establishes the validity of using 5 elements per member as a

good finite element division for obtaining the first 10 frequencies with sufficient
accuracy.
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CHAPTER 6

FREQUENCIES OF PLANE FRAMES
WITH ROTATIONAL JOINT DAMPING

6.1 Introduction

This Chapter deals with determining the natural frequencies of general frame structures
with viscous rotational joint damping. For simplicity, the analysis is restricted to two
dimensional frames with members lying in zy plane, which is also the common principal
plane for all frame members.

The analysis is complicated because any frame joint can be considered to have finite
rotational stiffness as well as rotational damping. Each member meeting at such a joint
may have a different rotation. Thus, if there are m members meeting at such a joint, then
there are m rotations corresponding to that joint. In contrast, in the traditional method of
analysis, all members meeting at a joint have the same common rotation, which is called
the joint rotation. In effect, it is assumed in this latter case that the joint has infinite
stiffness and no relative rotation is possible between the members meeting at the joint.
Thus, in the present case of frame analysis, there can be many more degrees of freedom

than in frames analyzed with the usual assumption of rigid joints.

The present theoretical formulation leads to a complex-valued quadratic eigenvalue
problem with sparse damping matrix. The general problem is solved by constructing a
MatLab program by appropriately choosing the subroutines required for solving the
problem. Commercial finite element codes do not allow the option of modeling of
damping in this way, and therefore the validation of the constructed program can only be
done for cases where joints are considered rigid, and damping is neglected. This limited
validation was carried out here by comparing the results from the present program with
those obtained by performing analyses with the NASTRAN finite element code.

Additionally, independent Mathematica programs were constructed to verify the results
obtained by the MatLab programs, using a different numerical method to solve the
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quadratic eigenvalue problem. This was done for almost all cases presented in this thesis
and in each case the results were found to be almost identical.

6.2 Finite Element Formulation

Similar to the standard method, the present analysis also deals with the derivation of the
matrix equations for obtaining the frequencies and the corresponding mode shapes. These
equations include the global stiffness matrix which now has rotational joint stiffness
terms, global mass matrix with massless springs, and the global rotational joint damping
matrix which is of the utmost importance for the present thesis.

by

_bf‘
|
»

MJL eji

23] ——
Y

™1

Fy o

(—x—
N
M, 0,

Fig. 6.1: A joint with arbitrary number of members connected to it.
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Fig. 6.1 shows a typical joint to which arbitrary m members, here m = 6, are connected.
For a simple theoretical formulation we assume that the joint is like a rotational spring
with members connected to it. The spring resists rotations of connected elements relative
to each other. Now, assume that each member connected to joint A undergoes a positive,
i.e. counterclockwise rotation, 41, 042, 043, ...04m. Then, the relative rotations of

member 1 meeting at joint A with respect to other members are:
041 — Oaz, 041 — 043, ...041 — Oum (6.1)

Hence, if k4 is the spring constant of joint A then the resisting moments applied by the
spring to member 1 at joint A is

Mar =Fka(0ar — On2) + ka(0a1 — 0a3) + ... ka(Oa1 — Oam) | (6.2)
Similarly, the relative rotations of member 2 meeting at the same joint A are:

Oa2 — a1, a2 — Ous,...042 — Oam (6.3)
~ and the resisting moment applied by the spring to member 2, is

Mups =ks(0ag — 0a1) +ka(Oas — 043) + ...ka(0a2 — Oam) (6.4)
The same procedure is be applied to all the members, m meeting at the joint.

In matrix notation, the complete relations can be expressed as:

MAI (m - 1)kA - kA - k‘A - k’A HAI
MA2 _ - k‘A (m—l)kA - k‘A - kA 0A2
. . : C e — kg .
MAm - kA - kA — k‘A (m—l) k‘A ‘9Am
(6.5)

‘Symbolically, this equation for joint A can be written as

(Mp} =[kal{04} | (6.6)

For the whole system, the above equation can be written as
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(M7} =[KIHAT} | (6.7)

where, {A”} is the vector of the global degrees of freedom and [K”] is the assembled
global stiffness matrix corresponding to the finite stiffness of joints.

[K7] = [kal+[k5]+.. (6.8)

where, the sum extends over the joints with finite rotational stiffness and where their

stiffness matrices [ k4], [ kg], ... have been augmented appropriately to the system size.

The similar formulation applies for damping. At joint A the relative velocities of rotation
are

0a1 — Oazy Oa1 — Oa3,...041 — Opm, ’ (6.9)

Hence, if Cy4 is the damping constant of joint A then the resisting moments applied by
the damper to member 1 at joint A is

My, = Ca(bar — 042) + Ca(Ba1 — O43) + ...Ca(041 — Oam) (6.10)

and, similarly for other members meeting at joint A. All such relations can be expressed
in matrix notation as:

M1’41 (m—l)CA —CA - CA - CA éAl

. o . . . — Cy .
Mkmd _.CA —CA *—CA o “ee (m—l)CA éAm
| (6.11)
or symbolically as, {M} =[C41{04} (6.12)

For all the joints with dampers,
M7y =[CT{A"} | - (613)

where [C”] is the assembled global damping matrix corresponding to the joints with
rotational damping: '
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[C7]=[Ca]l+[CB] + ... (6.14)

where, [Cy], [Cg], ... are the damping matrices for individual joints augmented
appropriately to the system size.

Now, consider the energies of the joints. The strain energy of the joint A is:‘
Us= 3ka(0u1— 042)® + ka( 041 — 043)% + ... + 2ka(041 — Oam)? +
ika(0a2 — 041) + %kA(GAz — 0a3)? + ...+ 2ka(O42 — Oapn)?
+ ... ' (6.15)

1. . 1 : .
where the factor 1 is used in place of the standard factor 3 because the strain energies of

the relative rotations have been counted twice in the above expression. This is due to the
fact that the relative rotation like (§4; — 645) is equalin magnitude to (f42 — 64;) and
should not be counted twice. Obviously, the value of the strain energy is zero when the
joint is considered rigid, as in the traditional method, i.e. when the relative rotations are
zero or alternatively the joint stiffness is infinite.

The total energy of joint deformations for n joints is

U=Us+Up+..Un=> U; (6.16)

Joints

In contrast to the above strain energy of the joints of the frame, their kinetic energies are
taken to be zero by assuming them to be massless.

Now, consider the strain and the kinetic energies of the members. Let member 1 span
between joints A and B. The finite element approximation gives the strain energy of this
member as

. ‘
and the Kkinetic energy as
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1 . .
[TM] = 3 < Ay > [mi]{A1} (6.18)
where,
<A1>=<wuy v4 04 ug vg 0p > (6.19)
is the vector of global joint displacements and rotations corresponding to joints A and B.
Note that 8 4;1s the rotation at joint A and 6p;is that at joint B associated with member 1.
Similarly,

<A1> = < Uy Dy éAl up Up 931> (6'20)

is the vector of global joint translational and rotational velocities associated with member
1. Also

[k1] = global stiffness matrix of member 1, and
[my]= global mass matrix of member 1.

These global matrices are obtained from transforming the local stiffnessand mass

matrices [kF], [m{] by the usual transformation formulas
(k1] = [Ri]T[EL)[Ra), [ma] = [Ra]F[md][R] (6.21)

where [R;] is the transformation matrix transforming vector components from the global

coordinate system to the local member coordinate system.

(kL] and [mF] are standard matrices and can be found, for example in Cook [18]
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A 0 o -7 0 0
0 12ET 6ET 12EI  6EI
I3 12 0 - 3 L2
. 6EI 4ET . _6EI  2EI
Wl=| g4 T L L L (6.22)
- == 0 0o == 0 0
L L
. 12E1 651 12ET 6E]
~ 1z T
0 6E1 2F] . _6EI  4EI
| 12 L 12 L
= _
3 0 0 % 0 0
o 13 ur 9 _13L
35 210 70 420
o 1L L 0o BL L_z
[mf] = pAL ) 2(1)0 105 L 420 140 (6.23)
= 0 - 0 0
6 3
o 2 BL , 13 _ 1L
70 420 - 35 210
_BL 2 0 Lk L
420 140 210 105

The strain and kinetic energies of the system, members as well as joints, can therefore be

written as

m n

> (TM+UM+ U] (6.24)
members Joints

Using the expressions derived, these can be written as:
1 : 1 1
5<A>[MM]{A}+§<A>[KM]{A}+§<A>[KJ]{A} (6.25)

where,

{A} = the vector of all global displacement and rotation degrees of freedom,
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{ A}=the vector of all global translational and rotational velocity degrees of freedom,
[K7] and, [KM] are the assembled global joint and member stiffness matrices and,
[M™] is the assembled global mass matrix.

The equation of energy balance requires that the rate of change of strain and kinetic
energies of the system is equal to the rate of dissipation due to damping. The rate of
change of the total energy of the system is

% [% <A > [MM{A} + % < A > [KM{A} + % <A > [K7HA}]

= - <A>[M7]= - <A>[CT{A} - (6.26)

where the term on the right side of the equation is the work of the damping moments
acting at the joints through the velocities < A > .

This leads to,

<A>[MM{A}+ <A> [EM{A}+ < A>[K'{AY= — <A > [CT{A}
(6.27)
This last equation can be interpreted as the virtual power equation involving the stiffness,
damping, and inertia forces and moments of the systemacting through the arbitrary
velocities < A > . This implies the satisfaction of the following system equations:

[MMI{A} +[CT{AM[KI{A} = {0} (6.28)
where [K] = [KM] + [K] (6.29)
The number of equations in this system is equal to

3n+ 5 (m-—1) (6.30)
damped joints

where, m is the number of members meeting at a joint with a rotational damper. In the

traditional method of analysis, the system size is 3n.
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To solve this system of equations of motion, let
{A} = {g}e" (6.31)

which upon substitution gives
N [M]{¢} + A[Cl{¢} + [K]{¢} = {0} - (6.32)

The common factor e’ has been canceled out and the matrices are written without
superscripts for simplicity in subsequent treatment of these equations. This above system
of equations defines a quadratic eigenvalue problem. The solution of this problem
involves determining the eigenvalues A and the corresponding mode shapes {¢}. The
eigenvalues, as well as, the eigenmodes occur in pairs of complex conjugates quantities.
For example,

Ar = — Cr+ iwir, g1 = Ay = — Cp — iy (6.33)

where, C, and wy, are respectively, the damping factor and the frequency of the damped
vibration with modes {¢,} and {¢,+1} = {4, }.

One may solve the above system by the method shown in Chapter 2. Or, one may use the
direct procedure of solving a polynomial eigenvalue problem of degree 2. Both
procedures were used in this thesis for independent checks. Mathematica programs were
constructed to implement the first method, whereas MatLab programs were constructed
for solution by the second method.

6.2.1 The values of joint stiffness &

In general, the joint stiffness will depend upon the material of the joint, size of the joint
and the way its is constructed (welded or bolted). The numerical value of the joint
stiffness will have to be determined from experiments. The values of k& were not found
experimentally for this thesis. Theoretically, these values can vary from O (hinged joint)
to oo (rigid joint). For the purpose of this thesis the value of k£ was chosen as:

SEI
= — 6.34
b= (6:34)
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This value was chosen in view of the fact that for a beam of length, L and bending FE1I,

. : . . EI
the end moments required to bend it by one radian is N7 A value of % assumes that

the joint is five times stiffer than the beam. This value of k is found to be reasonable in
view of the results to be presented later in this chapter. In applications where length and
bending vary from member to member a reference length L and reference ET will have to
be chosen.

6.2.2 The values of joint damping constant C

The joint damping will depend upon the characteristics of the joint, for example the
material of the joined members, the tightening torque applied to the bolts in a bolted joint,
the surface conditions, etc. Ideally, the numerical value of the damping constant will have
to be determined experimentally. The values of C' could not be found experimentally for
this thesis. Again, as for the stiffness, C' values can theoretically vary from 0 to oo. For

the purpose of this thesis the value of C was selected by the following argument.

Consider a rigid bar of length L and mass M hinged at one end and free at the other, like
a pendulum. Now let a rotational spring of constant k, and a rotational damper of constant
C be affixed to the bar at the hinged end. The equation of free vibration of this rod is

I,d+CO+k0=0 (6.35)

where 6 = rotation of the rod from its equilibrium position, and I,, = =M L? = mass

moment of inertia of the rod about the hinge point. As a SDOF system, the frequencies of

vibration is given by substituting § = ©e™! whereupon it is found that

C C? k
Pt - = _
w Z2Im iz I, (6.36)

At the limit of oscillatory behaviour w is purely imaginary, which means that at such

limit,
C? k : .
m m
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Now, we may take the value of k = % = the bending stiffness of a beam of length L,

which gives

C= -gMLEI (6.38)

In lieu of the lack of data, we take the above value of C' as the rotational joint damping
constant in our subsequent calculations.

6.3 Example 1: One-storey one-bay frame

To illustrate the above formulation and methods of solution, we solve the one-storey one-
bay plane frame of the experiment described in Chapter 5.

® |

O == C

45@ 89®_ﬁ

1 3

Indexing

Node Number ____ e r
,®___183 181314_@

Fig. 6.2: One-storey one-bay frame of the experiment of Chapter 4

Element Number

Fig. 6.2 shows the frame, the joint numbers, and the member numbers. For simplicity,
the analysis considers only one finite element per member. Thus, there are 4 nodes and 3
members. Joints 1 and 4 are fixed joints, whereas, joints 2 and 3 permit relative rotations
of the members joined to them. These latter joints are assumed to have rotational springs
and rotational dampers. Since there are 2 members meeting at each of these joints,
mg = 2 and m3 = 2. The extra degrees of freedom of rotation at each of these joints are

therefore, mgs — 1and m3 — 1. Consequently, the total number of degrees of freedom are
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3n+ > (m-1) =3x4+1+1=14, | (6.39)

damped joints
The degrees of freedom are
<A> = < Al; Aza A3> A4, A5a Aﬁ) A7a AS) AQ, A10, Alla A127 A13) A14 >
= < 'U,1,'U]_,0]_1,“2,'UQ,621,022,“3,'03,932,933,“4,'()4,94 > (640)

Note, joints 2 and 3 have 2 degrees of rotations each. 5; and 6oy corresponding to
members 1 and 2 meeting at joint 2, and 63, and ¢33 corresponding to members 2 and 3
meeting at joint3. In the traditional method of analysis, 65 = 699 = 6,5, and
O30 = 033 = 3.

Since the degrees of freedom corresponding to the fixed joints 1 and 4 are zero, the
unknown active degrees of freedom are only 8 corresponding to joints 2 and 3 and the

problem can be reduced to a system of 8 equations and 8 unknowns:

<A> = < up,vg, 0,00, us,vs, 05,053 > (6.41)
which can also be written as:

<A > = < Ay As, DN, A7, Ag, Dg, A1y, Aqp > (6.42)

We now write explicitly the numerical values of the various matrices in which we have

used, as discussed previously, the joint stiffness value and damping constant as,

5EI 5 x7.17 x 101 x 117 x 107°
L 0.381

C =4/ %MLEI = 33 N.m.sec (6.44)

The reduced global mass, damping and stiffness matrices are:

k= — 110165 N.m (6.43)
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0.179817 0 0.00509198 0 0.0425243 0 0 0
0 0.179817 0 0.00509198 0 0.0328044 — 0.0030089 0
0.00509198 0 0.000352735 0 0 0 0 0
(M] = 0 0.00509198 0 0.000352735 0 0.0030089 — 0.000264551 0
0.0425243 0 0 0 0.179817 0 0 0.00509198
0 0.0328044 0 0.0030089 0 0.179817 —0.00509198 0
0 — 0.0030089 0 — 0.000264551 0 —0.00509198  0.000352735 0
0 0 0 0 - 0.00509198 0 0 0.000352735
(6.45)
00 0 0 00 0 0
00 0 0 00 0 0
0 0 33 -33 0 0 0 0
00 —-33 3 00 0 0
Ci= 00 0 0 00 O 0 (6'46)
00 0 0 00 0 0
00 0 0 00 33 -33
00 0 0 0 0 -33 33
47354400 0 346976 0 — 45533000 0 0 0
4] 47354400 0 346976 0 — 1821400 346976 0
346976 -0 198297 — 110165 0 0 0 0
0 346976 - 110165 198297 0 — 346976 44065.9 0
Kl=| _ 45533000 0 0 0 47354400 0 0 346976 (6'47)
0 — 1821400 0 — 346976 0 47354400 — 346976 0
0 346976 0 44065.9 0 — 346976 198297 — 110165
0 0 0 0 346976 0 — 110165 198297
Note that [ K /] has been included in the above global stiffness matrix [K ] where,
00 0 0 00 0 0
00 0 0 00 0 0
00 110165 —110165 0 0 0 0
0 0 -—110165 110165 0 O 0 0
E=19 09 o 0 00 0 0 (6.48)
00 0 0 00 0 0
00 0 0 00 110165 — 110165
00 0 0 0 0 -—110165 110165

These matrices are substituted in the system of equations:
N[M{g} + NCHo} + [KI{o} = {0} (6.49)

The above eigenvalue problem was solved by using 3 different programs namely,
NASTRAN, and programs constructed by the author using Mathematica and MatLab.
The results are shown in Table 6.1. Note that NASTRAN cannot model the damping in
the fashion accounted for in this thesis. The frequencies from NASTRAN were obtained
only as reference values for the standard case of no damping and rigid joints. For
presentation of the results in the tables below, the eigenvalue A is changed to w = A/:

=wy + ilw.
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w NASTRAN (Hz) | w Mathematica (Hz) | w MatLab (Hz)

390.80 361.70 + 15.03¢ 361.67 + 15.03¢
1612.84 1614.98 + 28.621 1615.0 +28.63¢
2718.95 2910.84 + 00.00 2910.8 +00.00

2857.30 3029.45 + 30.641 3029.5 +-30.661
4083.43 4093.1 + 83.38: 4093.1 +-83.421
4298.60 5171.75 4 93.65:¢ 5171.7 4+93.69:

Table 6.1: Frequency comparison of 2-D frame using different programs.

As expected, the differences between frequency values w = wy + iCw obtained by
MatLab and Mathematica are negligible. It is apparent that the damped frequencies wy
computed by these constructed programs are higher than the undamped frequencies
obtained by NASTRAN, except for the first frequency. The reason for such results
follows.

The above FE idealization of one element per member is rather crude and the frequencies
(except perhaps the first one or two) cannot be expected to be accurate. This inaccuracy is
evident from a comparison of the above NASTRAN frequencies with the analytically
exact frequencies obtained in Chapter 5, and listed in Table 5.1. Therefore, in the interest
of obtaining more accurate frequencies, a finer mesh consisting of five elements per
member was employed. Fig. 6.3 shows the division of the members into elements, and the
numbering of the degrees of freedom. The total number of active degrees of freedom is 44

including the 2 extra degrees of freedom of rotation at joints 5 and 10.
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Node Number

Element Number 5 i
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5 BB RN ® & o b5t
b R Ry LR 88 b
L 1L 1 11 1L 1
e 17 13@ @ ée 33 35 []

5 v 1
@_13 14 15 36 37 38 -@
M3 14 15 2¢ 27 ag[]

4 12
10 11 12 39 40 41 ||
@"m 112 39 40 4 '@
ic] 13
789 42 43 44|

42 43 44 '@
2 14
|4 5 6 45 46 47 |
®‘455 45 464?—®
15
U123 g Indexing 48 49 50
End Node

Beginning Node

Fig. 6.3: One-storey one-bay frame of Chapter 4 with 5 elements per member.

The following table shows the frequencies obtained for the finer model.

1 2 -3 4 5
NASTRAN (Hz) | MatLab (Hz) MatLab (Hz) MatLab (Hz) % Increase
K = oo K =large, C = 0| ¥ =5EI/L,C =0 | K =5EI/L,C =33 | £ » 100
389.79 389.81 353.97, — 9.19% 360.89 + 14.89: +1.95%
1421.20 1421.44 1362.9, —4.12% 1412.2 4 22.02¢ + 3.62%
2287.65 2289.29 2114.1, — 7.65% 2271.7 + 55.841 + 7.45%
2506.49 2506.71 2355.4, — 1.51% 2493.4 4 44.341 + 5.86%
2757.38 2764.34 2764.3, — 0.00% 2764.3 4+ 0.01: + 0.00%
3590.94 3601.13 3425.2, — 4.88% 3589.3 4 45.651¢ +4.79%
5008.35 5037.48 5034.3, — 0.06% 5037.4 + 0.60: + 0.06%
5759.66 5770.99 5660.3, — 0.02% 5770.0 + 11.011% +1.94%
7310.71 7360.71 6696.5, — 1.92% 7350.0 + 90.54¢ +9.76%
7830.97 7872.67 7596.6, — 3.50% 7869.2 4 31.60¢ + 3.59%

Table 6.2: Frequency comparison using 15 elements (5 elements per 'member).

For a more extensive comparison 10 frequencies (rather than 5) are listed in this table.

Evidently, the first five are significantly changed for this finer model in comparison to
Table 6.1, except for the first one. For this finer model, the undamped NASTRAN
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frequencies are very close to the analytically obtained frequencies of Table 5.1 for each of
the ten frequencies.

The frequencies from the MatlLab program were obtained in 3 ways by assigning joint
stiffness values and joint damping values: (1) k' = 0o, C = 0, (2) k' =5EI/L,C =0
and, (3) k' =5EI/L, C = 33.Itis to be noted that, as expected, the frequencies for the
first case are almost the same, albeit very slightly higher than the NASTRAN frequencies.
The slight differences result from the fact that NASTRAN uses a lumped mass procedure
for determining the mass matrices (as opposed to the consistent mass matrix used in the
present formulation). This comparison therefore validates the correctness of the MatLab
program for the standard case of free (undamped) vibrations of frame with rigid joints.
The MatLab values for the above three cases were verified by Mathematica program
using the method presented in Chapter 2, which, as pointed out before, is based on a

different method of extraction of eigenvalues.

Column 3 of the table shows the effect of finite joint stiffness only, when the two joints 5
and 10 of the frame, Fig. 6.3, are assigned a finite stiffness k' = 5FE1/L and there is no
damping. The frame is now weakened in its stiffness, and correspondingly, as expected,
the natural frequencies are lower than those in column 2 of Table 6.2 for the case of rigid
joints. The most affected frequency is the first one, lower by 9.19% than that for the rigid
jointed frame column 2.

When damping is introduced, the frequencies are rendered complex as listed in column 4
of the above table, with an oscillatory part wy and a damping attenuation part w(. The
comparison is made between the damped frequency and the undamped frequency for the
same values of the joint stiffnesses. The percentage differences of the oscillatoy parts are
shown in column 5. One finds that the rotational damping has increased the oscillatory
parts of the complex frequencies. They are all positive meaning that the damped

frequencies wy are higher than the undamped ones w (column 4 versus columns3).

Additionally, the effect of damping is evident by the presence of the damping factor
which is indicated by the imaginary parts. It is interesting to note that the damping factor
does not change uniformly from mode to mode. For example, the damping factor for the
third mode is quite high, whereas for the fifth mode it is almost zero. This means that

while the third mode is attenuated very significantly in each cycle of vibration, the fifth
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mode amplitude remains virtually unchanged. The reason for this peculiar behaviour will
be explained subsequently.

Now, a parametric study is made for the effect of the rotational damping, as it is increased
from C' = C, = 33 units to C' = 3C, = 99 units, keeping the joint rotational stiffness as
5EI/L. Table 6.3 is obtained by analyzing the above structure using one element per
member (i.e. 3 elements structure) with an increase in rotational damping for each run.
The table shows that the higher the damping the higher is the associated frequency.

Ic, =33

w = wq + Cwi

1.5C, =49.5

w = wq + Cwi

2C, =66

w = wgq + Cwi

3C, =99

w = wq + (w1

361.67¢ — 15.03

367.93¢ — 18.31

373.561 — 18.97

380.95¢ — 16.90

16157 — 28.63

1620.6: — 20.37

1622.71 — 15.64

1624.2¢ — 10.60

2910.8: — 00.00

2910.82 — 00.00

2910.8: — 00.00

| 2910.8% — 00.00

3029.5: — 30.66

3032.27 — 20.69

3033.27 — 15.59] 3033.9; — 10.42

4093.17 — 83.42

4100.47 — 56.25

4103.07 — 42.35

4104.97 — 28.31

5171.7¢ — 93.69

5175.21 — 62.4

5176.47 — 46.81

- 5177.31 — 31.20

Table 6.3: Frequency results of a one-storey one-bay frame with 1 element per member.

A similar parametric study is now made for the refined model of the same frame with 5

elements per member, Fig. 6.3. The resulting complex frequencies are shown in Table 6.4

C, =33
w(Hz)

1.5C, =49.5

w = wq + Cwi

2C, =66

w = wg + Cws

3C, =99
w = wg + Cwi

360.89¢ — 14.89

367.097 — 18.15

372.677 — 18.81

379.99: — 16.77

1412.2¢ — 22.02

1417.07 — 15.96

1418.97 — 12.34

1420.3: — 8.41

2271.71 — 55.84

2281.21 — 39.00

2284.7¢ — 29.73

2287.21 — 20.05

2493.41 — 44.34

2500.6: — 30.90

2503.2¢ — 23.54

2505.1¢ — 15.87

2764.3: — 0.01

2764.37 — 00.00

2764.3¢ — 00.00]

2764.3¢ — 00.00

3589.37 — 45.65

3595.71 — 31.46

3598.1¢ — 23.88

3599.8¢ — 16.05

5037.4¢ — 0.60

5037.47 — 0.41

5037.47 — 0.31

5037.57 — 0.21

5770.02 — 11.01

9770.51 — 7.37

5770.7t — 5.54

5770.9e — 3.70

7350.02 — 90.54

7355.91 — 60.76

7358.0¢ — 45.67

7359.5¢ — 30.50

17869.27 — 31.60

7871.17 — 21.20

7871.8¢ — 15.93

7872.31 — 10.64
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From the above table, Table 6.4, one finds that as the damping is increased, the
oscillatory part of every frequency also increases. This is to be expected. Since,
theoretically, when the damping is very large, the relative rotational velocities are
rendered very low, almost equal to zero regardless of the finite joint stiffnesses. Hence,
the relative rotation is also rendered zero. This, in turn, means that the joint is rendered
rigid (although in a quasi static motion, the finite joint stiffness will allow relative
rotation of the members meeting at the joint). Hence, as the damping approaches a large
value (C, = 00) at all joints, the oscillatory part of every frequency must approach the
corresponding undamped frequency of the rigid jointed frame and the damping part must
approach zero (column 2 of Table 6.2). This statement can be proved rigorously from the
equations of motions by putting C,. = oo for all joints where relative rotation is allowed.
The entries in Table 6.4 show this trend convincingly. It is also apparent that the higher

frequencies approach their undamped values faster than the lower frequencies.

The variation of the oscillatory part of each of the first ten damped frequencies as
functions of rotational damping are plotted below, Fig. 6.4.
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These plots, drawn for values of the rotational damping ranging from 0 to 99 units and

EI
k= 5—L—, reinforce the conclusions drawn before from Table 6.4. With the exception of

the first frequency, the frequencies approach their asymptotic values at relatively low
rotational damping.

- SEI . E
For joint stiffnesses lower than the above value, 0 < k < A and no damping, C = 0,

the frequencies can be expected to be lower than those shown in column 3 of Table 6.4.
The damped frequencies in such a case will have a larger range of variation before they
approach their asymptotic limits, column 2 of Table 6.4. The plots of frequency versus

rotational damping for such a case will therefore be similar in appearance to Fig. 6.4.

.. : SEIT _ ) :
Conversely, for joint stiffnesses k& > I the range of variation of the frequencies will

be lower than the ones shown in Fig. 6.4.

The mode shapes of the first five modes, as obtained from NASTRAN, are shown in Fig.
6.5. The mode shapes for the damped cases can be expected to be very similar to those
obtained by NASTRAN and, therefore, not shown. From these figures, it is clear that the
first four modes involve significant bending at the joints, hence the frequencies of these
modes can be expected to be significantly affected by joint rotational damping. In
contrast, the fifth mode involves mostly the axial movement of the two columns, with
almost no bending. Table 6.2 confirms this observation; the fifth frequency indeed
remains constant regardless of the increase in the joint rotation damping. Similar
explanation appears responsible for the small effect of damping on the frequencies of the
seventh and the eighth modes. Modes other than those mentioned in the preceding do

involve significant bending and show sensitivity to joint rotation damping.
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Fig. 6.5: NASTRAN mode shapes using 15 elements idealization.
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6.4 Example 2: Two-storey one-bay frame

The MatlLab program is general enough to analyze any plane frame with finite joint
stiffness and rotational joint damping. As an illustration of the use of this program, two

other frames with different configurations were analyzed. Figure 6.6 shows the first of the
two frames, a two-storey one-bay frame.

1|_3||
YT |2 4 o a o
=2 |a aa a oo
< A Q <9 0 0
o
—
a a a a oo
L _|a a a a oo
A 49 Q2 < 0 0
0
=—
—. 3" —-3"—

Fig. 6.6: Two-storey one-bay frame.

The joints of the frame are defined by data in Table 6.5. This table identifies the nodes,

which have rotational dampers and finite joint stiffness. It also enumerates the extra
degrees of freedom at such joints.
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Node No. | z coord y coord k,C | Extradof
1 0 0 N

2to 5 0 incr 0.381/5 | N

6 0 0.381 Y 2
7to 10 0 incr 0.381/5 | N

11 0 : 0.762 Y 1
12 0.381 0 N

13to 16 | 0.381 | incr 0.381/5 | N

17 0.381 0.381 Y 2
18t021 | 0.381 incr 0.381/5 | N '
22 0.381 0.762 Y 1
23t026 | incr0.381/5 | 0.381 N

27t0 30 | incr0.381/5 | 0.762 N

Table 6.5: Joint data for frame of Fig. 6.7.

The member connectivity, first node 7 second node j, and the associated degrees of
freedom are listed in Table 6.6 for each member. In general, the members can have
different properties, but for this example problem they are taken to be the same for all
members and therefore not listed for individual members. These common properties are
the same as for the previous one-storey one-bay frame. The rotational stiffness and the
rotational damping values for joints allowing relative rotation are also taken to be the

same for all sets of joints as in the previous example, namely, k = 5EI/L = 110165
Nm and C = 4/ %M LET = 33 N.m.sec. Table 6.6 corresponds to Fig. 6.7, wherein the

numbering of the degrees of freedom is shown explicitly.
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Memb | i |j | DOFi | DOFj Memb | i |j | DOFi | DOFj

1 I [2 [1,2,3 4,5,6 16 17 | 18 | 50,51, 53 | 54, 55, 56
2 2 |3 |4,5,6 7,8,9 17 18 | 19 | 54,55, 56 | 57,58, 59
3 3 (4 [7,8,9 10,11,12 | | 18 19 | 20 | 57,58,59 | 60,61, 62
1 4[5 [10,11,12 | 13,14,15| | 19 20 | 21 | 60, 61,62 | 63,64,65
5 5 |6 |13,14,15 | 16,17,18 | | 20 21 | 22 | 63,64, 65 | 66,67, 68
6 6 |7 |16,17,19 | 20,21,22 | | 21 6 |23]16,17,69 | 70,71,72
7 7 |8 |20,21,22 | 23,24,25 | | 22 23 |24 [ 70,71,72 | 73,74,75
8 8 |9 |23,24,25]26,27,28 | | 23 24 | 25 | 73,74, 75 | 76,77,78
9 9 [10]26,27,28 | 29,30,31 | | 24 25 | 26 | 76,77,78 | 79,80, 81
10 10 | 11 [ 29,30,31 | 32,33,34 | | 25 26 | 17 | 79, 80,81 | 50,51, 82
11 12 [ 13| 35,36,37 | 38,39,40 | | 26 11 | 27 | 32,33,83 | 84,85, 86
12 13| 14 [ 38,39,40 | 41,42,43 | | 27 27 | 28 | 84, 85,86 | 87, 88,89
13 14 | 15 | 41,42,43 | 44,45,46 | | 28 28 | 29 | 87,88,89 | 90,91, 92
14 15 | 16 | 44,45,46 | 47,48,49 | | 29 29 | 30 | 90,91,92 | 93,94,95
15 16 | 17 | 47,48,49 | 50,51,52 | | 30 30 | 22 | 93,94, 95 | 66,67,96

Table 6.6: Degrees of Freedom for 2 Storey 1 Bay Frame.
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Fig. 6.7: Two-storey one-bay frame with 5 elements per member (96 DOF).
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The frequencies of this frame are determined by using NASTRAN with k& = ocoand
C =0, and also by the constructed MatLab program for the three combinations of k£ and
C'. These latter frequencies are listed in columns 2, 3 and 4 of the table below. Comparing
columns 1 and 2, it is clear that the values for all 10 frequencies are almost identical, with
small positive and negative differences. Here, therefore, the NASTRAN does not always
give a frequency lower than the constructed MatLab program. This comparison again

provides a validation for the constructed MatLab program.

1 2 3 4 5
NASTRAN (Hz) | MatLab (Hz) MatLab (Hz) - MatLab (Hz) % Increase
k= oo k=large, C = 0| k=5EI/L,C =0 | k=5EI/L,C =33 | “=% x 100
178.59 178.50 159.97, — 10.4% 160.92 — 4.31¢ 0.59
593.00 592.78 521.49, — 12.02% 548.97 — 37.01¢ 5.27
1130.09 1130.00 1099.20, —2.73% 1122.10 — 13.67¢ 2.08
1325.86 1325.50 1301.50, — 1.81% 1321.30 — 9.27¢ 1.52
1523.12 1523.70 1511.10, — 0.83% 1521.10 — 5.07¢ 0.66
2068.02 2067.20 1920.10, — 7.11% 2051.40 — 47.401 6.84
2110.78 2111.00 1949.10, — 7.67% 2102.10 — 34.92: 7.85
2431.85 2432.40 2121.00, — 12.8% 2396.80 — 114.044¢ 13.00
2740.99 2741.60 2466.70, — 10.03% | 2724.00 — 71.55:¢ 10.43
3036.92 3036.20 2757.20, —9.19% 3022.20 — 64.307 9.61

Table 6.7: Frequency comparison using 30 elements (5 elements per member).

When relative rotation is permitted at the junction joints with joint rotational stiffness
k = 5FEI/L, and with zero joint damping, then the frequencies become those shown in
column 3 of Table 6.7. As expected, due to finite rotational stiffnesses at the junction
joints, these frequencies are always smaller than when these joints are assumed to be

rigid, columns 1 and 2.

A parametric study similar to the one done previously is performed for the effect of the
rotational damping, for the above frame. Table 6.8 shows the changes in the complex
frequencies as the rotational joint damping is increased. The trends indicated by the listed
results and the conclusions that follow are entirely similar to those for the previous one-
bay one-storey frame. For the limiting case of large damping (C = o), the frequencies
approach the values for the rigid-joint frame listed in column 2 of Table 6.7.
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C. =33 1.5C, =49.5 2C, =66 3C, =99
w(Hz) w=wi+(wi | w=wg+ (wi w = wq + Cwi
160.927 — 4.31 ] 162.02¢ — 6.15| 163.47 — 7.63 166.58¢ — 9.39
548.977 — 37.01 |565.12¢ — 36.991574.92¢ — 32.85] 584.02¢ — 24.87
1122.17 — 13.67 |1125.9¢ — 10.58] 1127.67 — 8.40| 1128.97 — 5.84
1321.37 — 9.27 | 1323.47 — 6.83 | 1324.37 — 5.31| 1325.0¢ — 3.64
1521.1¢ — 5.07 | 1522.47 — 3.81 | 1522.9¢ — 2.98 | 1523.37 — 2.06
2051.47 — 47.4 |2059.9¢ — 33.37]|2063.07 — 25.52] 2065.47 — 17.25

2102.17 — 34.92

2106.87 — 24.22

2108.61 — 18.43

2109.9¢ — 12.42

2396.8¢ — 114.04

2416.2¢ — 79.18

2423.2¢ — 60.22

2428.3t — 40.55

2724.0v — 71.55

2733.61 — 49.07

2737.1¢ — 37.17

2739.51 — 24.95

3022.27 — 64.3

3029.87 — 43.86

3032.6¢ — 33.16

3034.67 — 22.23

Table 6.8: Frequency results of a one bay two storey frame.

The NASTRAN mode shapes of the frame corresponding to the above frequencies are
shown in Fig. 6.8. It is found that most of these mode shapes show significant bending of
the beams and columns except for the fifth mode, where there is no significant bending of
the columns, but only their axial deformation. Correspondingly, the fifth frequency in the
above table remains unaffected, regardless of the rotational damping amount.
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Fig 6.8: NASTRAN mode shapes of the 2-storey 1-bay frame.
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6.5 Example 3: Two-storey two-bay frame

To illustrate the generality of the program, a more complex frame was investigated. Like
the previous frame it consists of 2 storeys, but now with 2 bays. The complexity arises
from the asymmetry of the structure. Here, there are four members meeting at joint C. A
blown up view of details at joints A, B and C' are shown in Fig. 6.9.

DETAIL A

® e = @ @
DETAIL C
o o .y ®
@ )
DETAIL B

Fig. 6.9: Two-storey one-bay frame with 5 elements per member (128 DOF).
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Fig 6.10: Numbering of the DOF at joints A, B and C.

The joint details shown in Figs. 6.10 are rotational joints with damping. They indicate

clearly the jumps in the numbering of the degrees of freedom because of the different

rotations of the members meeting at such a joint.

This frame has the same material properties and member dimensions as those of the

previous examples. Similar to the previous examples, NASTRAN results were obtained

by considering the joints to be rigid and without daniping. The MatLab results were
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obtained for different cases of joint stiffness and damping values similar to those

analyzed previously and indicated in the table below:

1 2 3 4 5
NASTRAN (Hz) | MatLab (Hz) MatLab (Hz) MatLab (Hz) % Increase
k = oo k = large, C = 0 k=§—‘§—I,C=O kz%,C:% (“’—dg-‘i)xmo

206.3 203.91 182.55, — 10.48% | 183.94 — 5.57¢ 0.76
527.9 526.39 464.22, — 11.81% 484.25 — 30.95¢ 4.31
1106.0 1095.60 1063.80, — 2.90% | 1086.90 — 14.38: 2.17
1344.0 1362.30 1332.30, — 2.20% | 1357.70 — 10.79: 1.91
1414.8 1406.50 1376.10, — 2.16% | 1401.90 — 10.72: 1.87
1725.3 1625.10 1531.80, — 6.09% | 1612.40 — 32.961 5.26
1925.6 1725.00 1674.80, —2.91% | 1719.60 — 15.331 2.67
2106.1 2086.80 1941.90, — 6.94% | 2071.00 — 46.48: 6.65
2344.6 2292.00 2030.90, — 11.39% | 2270.20 — 83.061 11.78
2474.4 2464.70 2254.30, — 8.54% | 2444.10 — 61.95: 8.42

Table 6.9: Frequency comparison using 40 Elements (5 elements per member).

For validation of the MatLab program, frequency values with large & are compared with
those from NASTRAN in which case k is infinite. The finite value of k renders the
MatLab frequencies lower than those from NASTRAN. The largest difference is in
frequency number 7, being about 10% lower than the NASTRAN value. For a value of k
which is much lower in comparison to that used in column 2, the MatLab program gives

as expected even lower frequency values as shown in column 3.

Column number 4 in the above table gives the frequencies for the same value of the joint

S5EI oy e . S .
stiffness k = A but with joint rotational damping included. The damping renders the

frequencies to be complex with a damping part and an oscillatory part. It can be seen that
all the oscillatory parts of the frequencies are now higher than the undamped frequencies,
column 3, due to rotational joint damping.

The effect of damping is not significant on the first frequency, being only slightly higher
(183.94 Hz) than the undamped frequency (182.55 Hz). The second damped frequency
shows a more significant increase of 4.3% (484.25 Hz vs. 464.22 Hz). Frequencies 3,4
and 5 again show only a smaller increase, within 2%. The higher frequencies, namely the
6, 8™ 9t and 10M are significantly higher than their undamped counterparts as evident
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in Table 6.9. In comparison, the 7™ frequency shows a much lower increase, which is
rather surprising because it does not fit the trend. A possible reason might be that the

associated mode shape may not involve significant rotation of the frame joints.

A parametric study for this more complex structure was conducted by varying the
rotational damping values in the same fashion as done previously. The frequency results
are shown below in Table 6.10. These results exhibit the same characteristics as those
observed before for the previous two frames. The frequencies always increase with the
increase of rotational damping and reach their ultimate asymptotic values, column 2,
when the damping is infinite.

C, =33 |1.5C, =49.5 2C, =66 3C, =99

w(Hz) w=wg + (wi}] w =wq + Cwi w = wq + Cwt
183.947 — 5.57| 185.52: — 7.82 | 187.48;—9.51| 191.59: —11.14
484.251 — 30.95] 498.027 — 32.93 |507.38¢ — 30.41] 516.777 — 23.84
1086.97 — 14.38] 1091.1¢ — 11.25 |1092.9¢ — 8.98| 1094.4: — 6.27
1357.7: — 10.79] 1360.0¢ — 7.83 |1361.0: — 6.06] 1361.67 —4.13
1401.9¢ — 10.72] 1404.3: — 7.81 |]1405.2¢ — 6.06] 1405.97 — 4.14
1612.47 — 32.96] 1619.1: — 23.57 |1621.67 — 18.13] 1623.57 — 12.31
1719.6¢ — 15.33] 1722.47 — 10.89 |1723.5: —8.36| 1724.3i — 5.67
2071.0¢ — 46.48] 2079.47 — 32.77 |2082.6¢ — 25.07| 2084.97 — 16.95
2270.27 — 83.06] 2282.47 — 56.68 [2286.7: — 42.81] 2289.77 — 28.67
2444.19 — 61.95] 2455.07 — 43.80 |2459.1¢ — 33.56] 2462.27 — 22.72

Table 6.10: Frequency results of a 2-storey 2-bay frame with 5 elements per member.

An examination of the mode shapes obtained from NASTRAN analysis, Fig. 6.11 shows
that mode shape 7 does not involve significant rotation. In comparison, mode shapes 8, 9,
and 10 show extensive rotations of joints and consequently higher effect of rotational
damping.
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6.6 The MatLab Program

The MatLab Program mentioned above and used in the calculation of the frequencies of
the three frames, was constructed by the author by assembling the subroutines provided in
Reference [19]. Extensive modifications were necessary to include joint damping and
finite joint stiffness in the main program. A flow chart and the listing of the program are
provided in Appendix A.

The information has to be prepared before it is entered into the program. The numbering
of (1)joints, (2) elements, and (3) degrees of freedom have to be chosen. This requires
taking into account the extra degrees of freedom which are associated with joints
allowing rotations. This numbering, for example, has been shown in Fig. 6.7 for the 2
storey 2 bay frame.

The main program starts with the control information. These include the number of
elements, nodes per elements, total number of nodes of the system and, total number of

degrees of freedom in the system. Then, nodal coordinates (z, y) are specified.

Next the material properties are entered, namely, Young's Modulus, the cross-section
area, moment of inertia of the members and, mass density of the material. Now, since this
is a program that takes into account the rotational stiffness and rotational damping, it is
necessary to include their values. Different spring constants and different damping
constants may be used for joints with 2 members, 3 members or 4 members. These
constants are chosen by the user. Then, nodal connectivity for each member is read and

the degrees of freedom associated with the boundary conditions are specified.

Before assembly, different matrices are initialized to zero according to their proper dimensions.

The assembly is started by looping over first the members and second over the joints. Member

stiffness and mass matrices are computed and assembled and put into the corresponding global

stiffness matrix [K] and global mass matrix [M] in accordance with the degrees of freedom

associated with the ends of the member.

Rotational stiffness matrix is computed and added to the global stiffness matrix [K]

appropriately according to the rotational degrees of freedom at the joint. Simultaneously,

rotational damping matrix is constructed and added to the global rotational damping matrix [C']
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again according to the rotational degrees of freedom at the joint. Note that matrix [C'] is quite
sparse containing only the terms due to rotational joint damping. On the other hand, [ K] and
[M] are banded matrices. The assembly is done with the help of the subroutine called Asm1 for
members as well as joints. Boundary conditions are then applied to reduce the size of the global
matrices by deleting the rows and columns corresponding to the constrained degrees of
freedom. The reduced [ K], [M] and [C] for the system are now ready for solving the quadratic
eigenvalue problem (QEP): ‘

N [M{¢} + ACHs} + [K1{6} = {0} < (6.50)

to find the eigenvalues A\ and the corresponding mode shapes ¢. The MatLab program
provides this facility through the "polyeig" command. The command gives the complex
eigenvalues and the associated mode shapes.

When the system is undamped, one may use the simpler command "eig" for solving the
generalized eigenvalue problem (GEP):

[K{¢1} = u[M}{¢:1} (6.51)
Vi

which gives frequencies w = o The frequencies are sorted in the ascending order by

using the command "sort".
6.7 Summary of the chapter

In this chapter we have presented the eigenvalue analysis of plane frames in which joints
allow relative rotations of members meeting at the joints. Thus;, joints do not necessarily
have infinite stiffness, but may have different finite values specified by the analyst. The
relative rotation can be hindered by rotational damping present at the joint. The damping
of the structure is modeled by assigning damping constants at the selected joints.

Three frames of increasing complexity were chosen for analysis. The analyses were
performed by using the finite element method. Programs were constructed using the (1)
Mathematica software and (2) MatLab software. These programs incorporated the finite
rotational stiffness and rotational damping of the joints. NASTRAN finite element code
was also used, but since it does not allow for inclusion of rotational damping it could not

be used for the analysis of these frames. It was used only for the verification of the
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undamped cases of the Mathematica and MatLab results. For all three frames, the first 10
frequencies of the in-plane vibration were determined by assigning different values of
stiffness and damping constants.

As expected when the joint rotations are permitted by virtue of finite joint stiffnesses, the
frequencies are lower than when joints are assumed to be rigid. It is found that when
rotational damping is introduced at joints allowing relative rotations, the frequencies
increased. As the rotational damping increases, the frequencies continue to increase, but
not indefinitely. They reach their maximum values which are those corresponding to the
frequencies of a rigid jointed frame. The increase in frequencies is not uniform, but is
dependent upon the mode shapes. The most effect is seen on those frequencies which are

associated with mode shapes that involve significant bending.

Finally, the constructed MatLab program was described (Appendix A). This program can
be used for analysing other plane frames with rotational joint damping.
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CHAPTER 7

CONCLUSION

This thesis has been based on the premise that it is important to take into account
rotational joint damping of aerospace structures in a realistic way for an accurate dynamic
analysis, especially as it relates to the updatirig of finite element models in conjunction
with the experimental data.

The significance of the concept was demonstrated in chapter 3 where rotational damping
was first introduced and compared with translational damping. It was shown that the
effect of rotational damping is significant and is not confined only to low frequency
modes. This chapter provides the proof of the concept of rotational joint damping having
a significant influence on the frequency of free vibration.

The practical proof of this concept was attempted by conducting dynamic modal testing
on a simple frame. The experiment was designed to determine the effect of joint damping
on frequencies. The experiment was successful. However, only two frequencies could be
determined as the structure proved to be quite stiff for the frequency range of the
measuring equipment.

Exact undamped frequencies for the tested frame were obtained by the transfer matrix
method. These frequencies served as benchmarks for later calculations by the constructed
MatLab and Mathematica programs, as well as, the NASTRAN code.
\

The final chapter formulates the theoretical concepts for use in the FE method. Three
frames of different configurations were considered using the constructed MatLab
programs. Different rotational joint stiffness and rotational damping constants were used
to determine the effect of joint damping. It was found that in all cases the rotational joint
damping affected the frequencies significantly. It was observed that the higher percentage
difference was found in the higher frequencies. The effect of rotational joint damping was
found to be dependent on the nature of the associated mode shapes. The effect on the
frequency was highest for modes with significant bending. As a corollary, it must also be
said that the effect of damping was less in modes dominated by translational motion.
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Traditionally, in updating the analyst is concerned with matching the first few
frequencies, say 5 frequencies, and finds it difficult to match higher frequencieé. This
difficulty may now be overcome by including appropriate rotational joint damping which
will affect the higher frequencies more than the lower ones. Of course, this option of
updating can be used in conjunction with other updating options. This gives a flexibility
to the analyst to tune the FE model to correspond to its experimental behaviour. This
method of updating should be used, especially if the analyst realizes the NASTRAN
mode shapes show a lot of bending.

7.1  Proposal For Further Research
- A thorough experimental investigation should be undertaken to determine the
stiffness of different types of joints and also the damping constants associated

with these joints under different types of bolts and torques.

— The methodology presented in this thesis can be extended to 3D frames.
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APPENDIX A

FLOWCHART AND LISTING OF THE MATLAB PROGRAM
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Start

Control information
No. of nodes
No. of elements
No. of system DOF

Material properties
E,0,LA
Spring constants & damping constants

r

A A

\ 4
| INPUT
I

Member nodal connectivity

nodes (elm, nodel) = node no. for nodel -
nodes (elm, node2) = node no. for node2
DOFs associated with each element
DOFs associated with each rotational joint

DOFs of boundary conditions

A

Nodal coordinates
gcoord(node,1) =global x-coord
gcoord(node,2) = global y-coord

Initialization

System stiffness matrix [K]
System mass matrix [M]
System damping matrix [(]

A 4

Loop over elements
assembling system matrices
using subroutine Asm1

[K], [M], [B]

A\ 4

Application of boundary conditions
using subroutine FeaplycsBet21
reducing system matrices

\ 4

Solving QEP for damped system
NIMI{o}+NBI{}+KI{¢} = {0}
by “polyeig” command
Solving GEP for undamped system
(K] {¢1} = uM] 1{,}

by “eig” command

A 4

End

Fig. A.1 Flow Chart for the MatLab Program for a 2-Storey 2-Bay Frame
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2 Storeys 2 Bays Frame

PLEASE REFER TO THE TEXT FOR EXPLANATIONS AND DIAGRAM
This program was assembled to find the natural frequencies for a
2-d frame using beam elements
Problem description
Find the natural frequencies of a frame which is made of three columns
and three beams of length of 15 in (0.381 m) each as described in the text
All members have
cross-sections of 3 in (0.0762 m) x 1/8 in (0.003175 m).
The elastic modulus is 7.17 E10 Pa.
The Frame has a mass density of 2767.99 Kg/m 3. 40 elements are used
Rotational Stiffness and Rotational Damping are introduced into the sysem.
Variable descriptions

x and y = global x and y coordiates of each node

k = element stiffness matrix

kk = system stiffness matrix

m = element mass matrix

mm = system mass matrix

indexl = a vector containing system dofs associated with each element

Rotational Joint

d° o° d° 0 O° Id° O O° A° O° O° O° O° O° d° O° A° O° O° Of d° O° Id° df o° d° d° d° d° oF°

with 4 members

index2 = a vector containing system dofs associated with each
Rotational Joint with 2 members

index3 = a vector containing system dofs associated each
Rotational Joint with 3 members ’

index4 = a vector containing system dofs associated each

bedof = a vector containing dofs associated with boundary condltlons

o0 of of

o° o° d° o° o

o° o

%

% SPECIFYING CONTROL INFORMATION

%

% _______________________________________________________________________________
%

%

clc;

nel=40; % number of elements

nnel=2; % number of nodes per element

ndof=3; % number of dofs per node, except rotational joints
nnode= (nnel-1) *nel; % total number of nodes in system

sdof=128; % total system dofs

%

%

%

% ______________________________________________________________________________
% SPECIFYING NODAL COORDINATES

% ______________________________________________________________________________
% The Nodal coordiantes specify the position of each

% node of the element with respect to the global coordinate.

% For example,

%

% gcoord (node,1) = Global x-coordinate

% gcoord (node,2) = Global y-coordinate

% ______________________________________________________________________________
%

%

gcoord(1,1)=0.0; gcoord(1,2)=0.0;

gcoord(2,1)=0.0; gcoord(2,2)=0.0762;

gcoord(3,1)=0.0; gcoord(3,2)=0.1524;
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gcoord(4,1)=0.0; gcoord (4,2)=0.2286;

gcoord(5,1)=0.0; gcoord (5,2)=0.3048;

gcoord(6,1)=0.0; gcoord (6,2)=0.381;

gcoord(7,1)=0.0; gcoord (7,2)=0.4572;

gcoord(8,1)=0.0; gcoord(8,2)=0.5334;

gcoord(9,1)=0.0; gcoord(9,2)=0.6096;

gcoord (10,1)=0.0; gcoord (10,2)=0.6858;

gcoord(11,1)=0.0; gcoord (11,2)=0.762;

gcoord(12,1)=0.381; gcoord (12,2)=0.0;

gcoord(13,1)=0.381; gcoord(13,2)=0.0762;

gcoord(14,1)=0.381; gcoord (14,2)=0.1524;

gcoord (15,1)=0.381; gcoord(15,2)=0.2286;

gcoord (16,1)=0.381; gcoord (16,2)=0.3048;

gcoord(17,1)=0.381; gcoord(17,2)=0.381;

gcoord (18,1)=0.381; gcoord (18,2)=0.4572;

gcoord(19,1)=0.381; gcoord (19,2)=0.5334;

gcoord (20,1)=0.381; gcoord (20,2)=0.6096;

gcoord(21,1)=0.381; gcoord (21,2)=0.6858;

gcoord(22,1)=0.381; gcoord (22,2)=0.762;

gcoord(23,1)=0.762; gcoord (23,2)=0.0;

gcoord (24,1)=0.762; gcoord (24,2)=0.0762;

gcoord (25,1)=0.762; gcoord (25,2)=0.1524;

gcoord (26,1)=0.762; gcoord (26,2)=0.2286;

gcoord (27,1)=0.762; gcoord (27,2)=0.3048;

gcoord (28,1)=0.762; gcoord (28,2)=0.381;

gcoord (29,1)=0.0762; gcoord (29,2)=0.381;

gcoord (30,1)=0.1524; gcoord (30,2)=0.381;

gcoord(31,1)=0.2286; gcoord (31,2)=0.381;

gcoord (32,1)=0.3048; gcoord (32,2)=0.381;

gcoord (33,1)=0.0762; gcoord (33,2)=0.762;

gcoord (34,1)=0.1524; gcoord(34,2)=0.762;

gcoord (35,1)=0.2286; gcoord (35,2)=0.762;

gcoord (36,1)=0.3048; gcoord (36,2)=0.762;

gcoord(37,1)=0.4572; gcoord(37,2)=0.381;

gcoord (38,1)=0.5334; gcoord (38,2)=0.381;

gcoord (39,1)=0.6096; gcoord (39,2)=0.381;

gcoord (40,1)=0.6858; gcoord (40,2)=0.381;

oS- -------------—-—-----======-===========-----s-sssse--==se=ssssssssss==== %
% SPECIFYING MATERIAL PROPERTIES %
U it bbbl bbbt %
% %
$The material properties to be entered in the computation are shown below: %
% %
et ittt %
%

ell=0.381;

el=7.170548e+10; % elastic modulus

area=0.000241935; % cross-sectional area

xi=117.07e-9; % moment of inertia of cross-section
rho=2767.99; % mass density per volume
spr2=5%el*xi/ell; % Node Spring Connecting 2 members

Node Spring Connecting 3 members

oL

spr3=5*el*xi/ell;

-103 - .



spr4=5¥el*xi/ell; % Node Spring Connecting 4 members

b2=sqgrt (4/3*rho*ell”2*area*xi*el) ; % Rotational Damper between 2 members
b3=sqrt (4/3*rho*ell”2*area*xi*el) ; % Rotational Damper between 3 members
b4=sqgrt (4/3*rho*ell”2*area*xi*el) ; % Rotational Damper between 4 members

%

% Notice that the Rotational spring values spr2=spr3=spr4 are left intentionally
% with the same value of 5EI/L. The user may choose to input different values

% for each. Similarly, the Rotational damper values b2=b3=b4

% where b2=Sqrt (4/3*rho*ell”2*area*xi*el)

%

%

% _________________________________________________________________________________
% SPECIFYING NODAL CONNECTIVITY

% _________________________________________________________________________________
$ The Nodal coonectivity specifies the nodal numbering of the system

% with respect to the elements connected to them.

5 .

% nodes (Element no.,node 1 of element) = first Global Node Number of the Element
% nodes (Element no.,node 2 of element) = second Global Node Number of the Element
% _________________________________________________________________________________
%

nodes (1,1)=1; nodes (1,2)=2;

nodes (2,1)=2; nodes (2,2) =3;

nodes (3,1)=3; nodes (3,2) =4;

nodes (4,1) =4; nodes (4,2)=5;

nodes (5,1) =5; nodes (5,2) =6;

nodes (6,1) =6; nodes (6,2)=7;

nodes (7,1)=7; nodes (7,2) =8;

nodes (8,1)=8; nodes (8,2)=9;

nodes (9,1)=9; nodes (9,2)=10;

nodes (10,1) =10; nodes (10, 2) =11;

nodes (11,1)=12; nodes (11, 2) =13;

nodes (12,1) =13; nodes (12, 2) =14;

nodes (13,1) =14; nodes (13, 2) =15;

nodes (14,1) =15; nodes (14, 2) =16;

nodes (15,1) =16; nodes (15,2)=17;

nodes (16,1) =17; nodes (16,2)=18;

nodes (17,1)=18; nodes (17,2)=19;

nodes (18,1)=19; nodes (18, 2)=20;

nodes (19, 1) =20; nodes (19, 2)=21;

nodes (20,1)=21; nodes (20,2)=22;

nodes (21,1)=23; nodes (21,2) =24;

nodes (22,1) =24; nodes (22, 2) =25;

nodes (23, 1) =25; nodes (23, 2) =26;

nodes (24,1) =26; nodes (24,2)=27;

nodes (25,1)=27; nodes (25, 2) =28;

nodes (26,1) =5; nodes (26,2)=29;

nodes (27,1)=29; nodes (27,2)=30;

nodes (28,1) =30; nodes (28,2)=31;

nodes (29,1)=31; nodes (29,2)=32;

nodes (30,1)=32; nodes (30,2)=17;

nodes (31,1)=11; nodes (31,2)=33;

nodes (32,1) =33; nodes (32,2) =34;

nodes (33,1) =34; nodes (33,2)=35;

nodes (34,1) =35; nodes (34, 2) =36;

nodes (35,1) =36; nodes (35,2) =22;
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nodes (36,1)=17;
nodes (37,1)=37;
nodes (38,1) =38;
nodes (39,1)=39;
nodes (40,1) =40;

nodes (36,2)=37;
nodes (37,2)=38;
nodes (38,2)=39;
nodes (39,2) =40;
nodes (40,2)=28;

L e e et S it
% SPECIFYING BOUNDARY CONDITIONS
e
% The following input shows the dof to be restrained, for example

% the first dof to be restrained bcdof (1)=1. Note that the value in

% bracket bcdof (i) is a numeration that will be used in the subroutine

% "feaplycsBet21"

% In refering to the Fig. pertaining to this example, one can see that

% these dof are those of the column supports

%
b e
% .

bedof (1) =1; % transverse deflection at node is constrained

becdof (2) =2; % axial displacement at node is constrained

bedof (3) =3; % slope at node is constrained

oe

becdof (4) =35;
becdof (5) =36;
bedof (6)=37;

ae d°

e

bcdof (7)=69;
bcdof (8)=70; %
bedof (9)=71; %

%
%

transverse deflection
axial displacement at
slope at another node

transverse deflection
axial displacement at

at another node is constrained
another node is constrained
is constrained

at different node is constrained
different node is constrained

slope at different node is constrained

e e o e e e e e e e e e em——-

% MATRIX INITIALIZATION

PP ——————————————E R

%

k=zeros (sdof,sdof); %
m=zeros (sdof,sdof); %
kk=zeros (sdof,sdof); %
mm=zeros (sdof,sdof); %
bet=zeros (sdof, sdof) ; %
kn=zeros (sdof,sdof); %
mn=zeros (sdof,sdof); %

ms2=zeros (2,2);
ms3=zeros (3,3);
ms4=zeros (4,4) ;

indexl=zeros (6,1);
index2=zeros (2,1) ;
index3=zeros(3,1);
index4=zeros (4,1);

initialization
initialization
initialization
initialization
initialization
initialization
initialization

of
of
of
of
of
of
of

element stiffness matrix
element mass matrix
system stiffness matrix
system mass matrix

d° d° o° o°

o° of o°

initialization
initialization
initialization
initialization
initialization
initialization
initialization
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system damping matrix
the reduced system stiffness matrix
the reduced system mass matrix

of the 2x2 massless spring matrix
of the 3x3 massless spring matrix
of the 4x4 massless spring matrix
of indexl vector

of index2 vector

of index3 vector

of index4 vector

do o° d° o° o°

o° d° d°



d° d° d° d° d° d° o°

% __________________________________________________________________________
for iel=1:nel % loop for the total number of elements

nd (1) =nodes (iel,1); % 1lst connected node for the (iel) -th element

nd (2) =nodes (iel,2); &% 2nd connected node for the (iel) -th element

xl=gcoord(nd(1),1); yl=gcoord(nd(1),2); % coordinate of 1st node
x2=gcoord (nd (2) ,1) ; y2=gcoord(nd(2),2); % coordinate of 2nd node

leng=sqrt ( (x2-x1) *2+(y2-y1) “2); % element length
if (x2-x%x1)==0; % compute the angle between the local and global axes
beta=pi/2; '
if (y2-y1)<0;
beta=-pi/2;
end
else
beta=atan ( (y2-yl)/(x2-x1)); % elemental angle calculations
end
% The assembling process takes both into account. It associates the
% elements or joints with the corresponding dof. Indexl indicates the

dof for the elements. Index2 is for a rotational joint with 2 Elm.

o0

% Index 3 is for a rotational joint with 3 Elm.
$ Index 4 is for a rotational joint with 4 Elm as indicated before.
if iel==1;

indexl1l=[1 2 3 4 5 6];
elseif iel==2;

index1=[4 5 6 7 8 9];
elseif iel==3;

index1=[7 8 9 10 11 12];
elseif iel==4;

index1=[10 11 12 13 14 15];
elseif iel==5;

index1=[13 14 15 16 17 18];
elseif iel==6;

indexl=[16 17 19 20 21 22];
elseif iel==7;

index1=[20 21 22 23 24 25];
elseif iel==8;

index1=[23 24 25 26 27 28];
elseif iel==9;

indexl1l=[26 27 28 29 30 31];
elseif iel==10;

index1=[29 30 31 32 33 34];
elseif iel==11;

index1=[35 36 37 38 39 40];
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elseif iel==12;

indexl=[38 39 40 41 42 43];
elseif iel==13;

index1=[41 42 43 44 45 461 ;
elseif iel==14;

index1=[44 45 46 47 48 49];
elseif iel==15;

index1=[47 48 49 50 51 52];
elseif iel==16;

index1=[50 51 53 54 55 56];
elseif iel==17;

index1l=[54 55 56 57 58 59];
elseif iel==18;

index1=[57 58 59 60 61 62];
elseif iel==19;

index1=[60 61 62 63 64 65];
elseif iel==20;

index1=[63 64 65 66 67 68];
elseif iel==21;

indexl1l=[69 70 71 72 73 74];
elseif iel==22;

index1=([72 73 74 75-76 77];
elseif iel==23;

index1=[75 76 77 78 79 80];
elseif iel==24;

index1=[78 79 80 81 82 83];
elseif iel==25;

index1l=[81 82 83 84 85 86];
elseif iel==26;

index1=[16 17 87 88 89 90];
elseif iel==27;

index1=[88 89 90 91 92 93];
elseif iel==28; _

index1=[91 92 93 94 95 96];
elseif iel==29;

index1=[94 95 96 97 98 99];
elseif iel==30;

index1=[97 98 99 50 .51 100];
elseif iel==31;

index1=[32 33 101 102 103 104];
elseif iel==32;

index1=[102 103 104 105 106 107];
elseif iel==33;

indexl1=[105 106 107 108 109 1101];
elseif iel==34; .

index1=[108 109 110 111 112 113];
elseif iel==35;

indexl=[111 112 113 66 67 114];
elseif iel==36;

index1=[50 51 115 116 117 118];
elseif iel==37;

index1=[116 117 118 119 120 121];
elseif iel==38;

index1=[119 120 121 122 123 124];

index2=[34 101]; % In here starts the assembly of the rotational joints with !
elseif iel==39;

indexl=[122 123 124 125 126 127];

index2=1[68 114];
elseif iel==40;

index1=[125 126 127 84 85 128];
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index2=[86 128];

index3=[18 19 87]; % Index 3 for a 3 elm joint
index4=[52 53 100 115]; % Index 4 for a 4 elm joint
end

% The "feframe2Beam" subroutine is invoked to compute element stiffness matrix
[k, m] =feframe2Beam (el,xi, leng, area, rho,beta,l);
ks2=springBeam2 (spr2); % creating rotational stiffness for 2 members

ks3=springBeam3 (spr3); % creating rotational stiffness for 3 members

ks4=springBeam4 (spr4); % creating rotational stiffness for 4 members
bb2=dampBeam2 (b2) ; % creating rotational damping for 2 members
bb3=dampBeam3 (b3) ; % creating rotational damping for 3 members
bb4=dampBeam4 (b4) ; % creating rotational damping for 4 members

% assemble the system stiffness matrix
kk=Asml(iel,kk,k,indexl,ksZ,indexZ,ksS,index3,ks4,index4);
% assemble system mass matrix
mm=Asm1(iel,mm,m,indexl,msz,index2,ms3,index3,ms4,index4);
% assemble element damping matrices into system matrix

bet=Damping1D(iel,bet,bbz,indexZ,bbB,index3,bb4,index4);

end

& e e e e e e e e m S - — - s oS s oo Coooo——o——es %
% : %
% SOLUTION OF THE EIGENVALUE PROBLEM FOR THE DAMPED AND UNDAMPED SYSTEMS %
% %
ettt %

% Applying the boundary conditions by invoking the subroutine "feaplycsBet2l"
?kn,mn,betn]=feaplycsBet21(kk,mm,bet,bcdof);

: solving the eigenvalue problem of DAMPED SYSTEM using the "polyeig" command.
;X,fsol]=polyeig(kn,betn,mn);

;sol=fsol/(2*pi); % converting frequency to Hz.

%

sort (fsol)

o0

kn,mn] =feaplycsBeam (kk,mm,bcdof); % apply the boundary conditions

e

solving the eigenvalue problem of UNDAMPED SYSTEM using the "eig" command.

o°

%

fsol=eig(kn,mn) ; % golve the matrix equation of undamped system
%

fsol=sqrt (fsol)/ (2*pi) ;

s ‘

sort (f£sol)
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L

% Purpose:

% Stiffness and mass matrices for the 2-d frame element
% nodal dof {u 1 v_1 theta_l u_2 v_2 theta_2}

& :

% Synopsis:

% [k,m] =feframe2 (el,xi,leng,area,rho,beta, ipt)

% .

% Variable Description:

% k - element stiffness matrix (size of 6x6)

% m - element mass matrix (size of 6x6)

% el - elastic modulus

% xi - second moment of inertia of cross-section
% leng - element length

% area - area of beam cross-section

% rho - mass density (mass per unit volume)

% beta - angle between the local and global axes
% is positive if the local axis is in the ccw direction from
% the global axis

% ipt = 1 - consistent mass matrix

% = 2 - lumped mass matrix

%

= 3 - diagonal mass matrix
% stiffness matrix at the local axis

a=el*area/leng;
c=el*xi/ (leng™3) ;

kl=[a 0 0 -a 0 0;...
0 12*c 6*leng*c 0 -12* ¢ 6*¥leng*c; ...
0 6*leng*c 4*leng”2*c 0 -6*leng*c 2*leng”2*c; ...
-;a 0 0 a 0 0;...
0 -12*c -6*leng*c 0 12*c -6*leng*c; ...
0 6*leng*c 2*leng”2*c 0 -6*leng*c  4*leng”2*c];
% rotation matrix
r=[ cos(beta) sin(beta) O 0 0 0;...
-sin(beta) cos(beta) O 0 0 0;...
0 0 1 0 0 0;.
0 0 0 cos (beta) sin(beta) 0;..
0 0 0 -sin(beta) cos(beta) 0;...
0 0 0 0 0 11;

% stiffness matrix at the global axis
k=r'*kl*r;

% consistent mass matrix

if ipt==

mm=rho*area*leng/420;
ma=rho*area*leng/6;

ml=[2*ma O 0 ma 0 i 0;.
0 156*mm 22*leng*mm 0 54 *mm -13*leng*mm; ...
0 22*leng*mm 4*leng”2*mm 0 13*leng*mm -3*leng”2*mm; .
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ma 0 0 2*ma O 0;...
0 54 *mm 13*leng*mm 0 156*mm -22*leng*mm; . .
0 -13*leng*mm -3*leng”2*mm O -22*leng*mm 4*leng”™2*mm] ;

% lumped mass matrix
elseif ipt==2
ml=zeros(6,6);
mass=rho*area*leng;
ml=mass*diag([0.5 0.5 0 0.5 0.5 0]);
% diagonal mass matrix
else
ml=zeros(6,6);
mass=rho*area*leng;

ml=mass*diag([0.5 0.5 1leng”®2/78 0.5 0.5 leng”®2/781) ;

end
% mass in the global system
m=r'*ml*r;
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function [ks2]=springBeam2 (spr2)

% [ks2] is the Rotational Spring Matrix of a node
% connecting two members
% spr2 is the numerical value of 5EI/L

ks2=[spr2 -spr2;...
-spr2 spr2l;

[ %
% ROTATIONAL JOINT STIFFNESS SUBROUTINE springBeam3 %
B e mmmmm e mm e e e mmm——mm - m—— o %

function [ks3]=springBeam3 (spr3)

% [ks3] is the Rotational Spring Matrix of a node
% connecting three members
% spr3 is the numerical value of SEI/L

ks3=[2*spr3 -spr3 -spr3;...
-spr3 2*spr3 -spr3;...
-spr3 -spr3 2*spr3l;

gy i %
% ROTATIONAL JOINT STIFFNESS SUBROUTINE springBeam4 %
S e %

function [ks4]=springBeam4 (spr4)

% [ks4] is the Rotational Spring Matrix for a node
% connecting four members
% spr4 is the numerical value of 5EI/L

ks4=[3*spr4 -spr4 -spr4 -spr4; ...
-spr4 3*spr4 -spr4 -spr4;...
-spr4 -spr4 3*spr4 -spr4; ...
-spr4 -spr4 -spr4 3*spr4l];
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function [bb2]=dampBeam2 (b2)

% [bb2] is the Rotational Damping Matrix of a node
% connecting two members
% b2 is the numerical value of sqgrt(4/3*rho*ell”™2*area*xi*el)

bb2=[b2 -b2;...
-b2 b2];
Sy gy ettt
% ROTATIONAL JOINT DAMPING SUBROUTINE dampBeam3
e e mmmmm e ———— oo

function [bb3]=dampBeam3 (b3)

[bb3] is the Rotational Damping Matrix of a node
connecting three members
% b3 is the numerical value of sqgrt(4/3*rho*ell”2*area*xi*el)

%
%

bb3=[2*b3 -b3 -b3;.
-b3 2*b3 -b3;...
-b3 -b3 2%b3];

function [bb4]=dampBeam4 (b4)

% [bb4] is the Rotational Damping Matrix of a node
% connecting four members
b4 is the numerical value of sqrt (4/3*rho*ell”2*area*xi*el)

oe

bb4=[3*b4 -b4 -b4 -b4;.
-b4 3*b4 -b4 -b4;.

-b4 -b4 3*b4 -b4; ...

-b4 -b4 -b4 3*b4];
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e
f

Purpose: _ :
Assembly of element matrices into the system matrix

Synopsis:
[kk]=Asm1(iel,kk,k,indexl,ksZ,indexZ,ksB,index3,ks4,index4)
Variable Description:
kk - system matrix
k - element matrix
indexl - d.o.f. vector associated with an element
ks2 - stifness matrix associated with a joint connecting two elements
index2 - d.o.f. vector associated with a joint connecting two elements
ks3 - stifness matrix associated with a joint connecting three elements
index3 - d.o.f. vector associated with a ‘joint connecting three elements
ks4 - stifness matrix associated with a joint connecting four elements
index4 - d.o.f. vector associated with a joint connecting four elements

dofl = length(index1);
or i=1l:edofl
ji=index1 (i) ;
for j=1l:edofl
jj=index1(J) ;
end
end
if iel >=38; % Note at this element value indexing2 starts
edof2=1length (index2) ;
for i=1:edof2
ii=index2 (i) ;
for j=1l:edof2
jj=index2 (j) ;
kKk(ii,jj)=kk(ii,jj)+ks2(i,3);

end
end
end ‘
if iel ==40; % Note at this element value indexing3 and 4 start

edof3=length (index3) ;
for i=1:edof3
ii=index3 (i) ;
for j=1l:edof3
jj=index3 (j) ;
kk(ii,jj)=kk(ii,jj)+ks3(i,3);
end
end
edof4=1length (index4) ;
for i=1l:edof4
' ii=index4 (i) ;
for j=1l:edof4
jj=index4 (J) ;
kk (ii,33)=kk(ii,jj) +ksa (i,7);
end
end
end



Uy e e e e e L e LR e %

$BOUNDARY CONDITIONS SUBROUTINE "feaplycsBet2l" %
P EEEEEFEEEE T %
% %
function [kn,mn,betn]=feaplycsBet21 (kk,mm,bet,bcdof) %
% %
e g %
% Purpose: %
% Apply constraints to eigenvalue matrix equation %
% [kk] {x}=1lamda [mm] {x} %
% %
% Synopsis: %
% [kn, mn,betn] =feaplycsBet21 (kk, mm, bet, bcdof) %
% %
% Variable Description: %
% kk - system stiffness matrix before applying constraints %

oe
o°

kn - system stiffness matrix after applying constraints

% mm - system mass matrix before applying constraints %
% mn - system mass matrix after applying constraints %
% bet - system damping matrix before applying constraints %
% betn - system damping matrix after applying constraints %
% bcdof - a vector containging constrained d.o.f %
et e %
mn = mm;

kn = kk;

betn = bet;

n=1ength (bcdof) ;
sdof =size(kk,1);

for i=1:n

c=bcdof (1) ; % The subroutine reads the values of the bcdof (i) from

for j=1l:sdof % the main program and transforms them to 0 values in the
kn(c,j)=0;% kn and bet matrices. The mn is transformed into 1 wvalues
kn(j,c)=0;% to retain the possibility of solving the matrix equation.
mn(c,j)=0;
mn(j,c):O;
bet (j,c)=0;
bet (c,j)=0;
end

mn(c,c)=1;

end
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