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“This thesis treats some of the problems related «to, the good drawings
D, of the corftpiete graph K.. The first of these problems is qbtainjng all
the non-isémorphic good -drawings Dj of K,. After conjecturing that any

} good drawing D, of K, has at least one crossing-free Hamiltonian

Circuif an algorithm generating all the non-isomorphic good drawings
D, of K is develgped The second problem, determining the exxstem.e of
a rectlhnear drawing D, of K, with Q given set of cross,zggb, is solved
by fm g a characteristic of the. rectilinear drawings D, of K, An
algonthm u&Tg this charactenstlc Hetermines .whether a.given set of -
crossings defines a rectilinear drawing D, of K,,. The last problem, to
generate all the non-isomorphjc rectilinear drawmgs D, of K, 1s~ solved

by an a]gonthm using a set of rectilinear drawings D 1 0of K.y @
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Résumeé

Cette these tra&e quelqﬁqs problémes ayant rapport aux’ hons
dessins, “good drawings”, D, de I(n du graphe complet K,. Le premler
de ces problémes est d’obtenir les bons dessins non- xsomor,phes D, de
K,. Aprés avoir conjecturé que tout bon dessin D, de K, a au moins
un cycle hamiltonien sans aucun croisem}el}nt, " _{m algorithme produisant
tous les bons dessins D, de K, est développé. Le deuxiéme ';S_roblém ,
déterminer l’existence d'un dessin D, de K, ayant un ensemble donhé
de croisements, est resolu en etagﬁssant une caractensthue des dESSlI?IS
rectilignes D, de K,. Un algorithme qui utilise cette caractéristique
détermine si un ensemble donné de croisements définit un dessin
rectiligne*D, de K,. Le deérnier probléme, p?oduix‘é' tous lés de§sins

rectilignés non-isomorphes D, de K, est résolu a raide d’un algorithme

qui-utilise un ensermnble de dessins rectilignes'D,,, de K,_,. ;
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. Chapter1® , .

g % LT ~ Introduction ' o o
}. ‘ "This thesis treafs some of t}}'e probl:ems relaf;ed to the geed d'ra'w- ? -
ings D, of the compléte grs;\plfTKu The fn'st of these problems-is to ob—
tai ’_@; the non-isormorphic good drawmgs D, of Kn After comecturmg
\“‘ﬂ‘(Z: any good drawing D, of K*n has at least one: Crossing-Free Hamilto-
nian Circuit, an algonthm generatmg all the non-isomorphic goed
drawings bn of K, is d eloped. The second problem, to determine the
y existence gf a rectilinej; drawing Dn‘c;f K, with a given set of crossings,
is solved by finding a characteri:-;tic of the rectilinear drawings D, of

. B )
* K,. An algorithm which uses this characteristic;d,etermines whether a

given set of crossings defines a rectilinear drawing D, of K,. The last

»

oo 3 problem, to generate all the non-isomorphic rectzhnear dramngs D, of .

@ ' 1 K,, is sdlved by an algorithm using a set of rectxlmear drawmgs Dy of '
K‘n-—l ! '

\ ) o \ Before proceedmg however, let us examme the definitions Wthh

N are required throughout’ the thesxs A graph G is a set V of vertices

\ AR - and a subset E of the wnmordered pairs of vertices called. edges , A

. . drawing D of "a graph ‘G is a mapping of G into a surface, which in this:_
| " thesis “will be the F_'ucliclozann'~ plane [8,10,14,15]. The wvertices are
mappe&l into distinct points, called nodes An: ec{ge is mapped into an
open arc which is glosed by its two definingY:odes. A good drawing is a

A}

« drawirig .in which (seei Fig.1.1):

, " i) no‘arc intersects itself, _
B : . e
. \ x !

&




ii) no two arcs incident with a common node have a

. comtnon point (the tanéents to the arcs at the

—

.point are distinct) °

jii) no two arcs have more than one point in common.

-9

T

’ >
(1) ‘ (it) B €11)
Fié 1.1: The three cases which mugt be avoided'to obtain a good drawing.

{
A good arc of a drawing D is an arc which does not intersect it-

self. A common point of two arcs is called a crossing. We assume that
no point c;f the plane belongs to more thf;l}x two arcs. The complete
. graph, X,, has n verticés and all (n,) possible edges. A crossing aptz‘inb/
drawing D, of K,, is one which has, among all posgble drawings of K,
the minimum number of crossings. This least ‘number of créssings is
. called the crosstng number of K_and is denoted hy v(K,). If we con-
sider only the rectilinearb\drawings of K, then\the minimum number of
crossings is called the rectilinear crossing number of X,. The node re-
spans}bm'ty is the tot’al numf)er of crossings on all arcs incident with
this node. The arc responsibiity is the total number of ’Eimes this arc is
crossed. For, the purposes of this thesis two drawings D and D' are
called isormorphic when there is a one-to-one correspondence between
the nodes of D and the nodes of D' such that if any pair of arcs in D
crosses then the corresponding pair in D' also crosses. This is a weak

definition <>i isomorphism. Examples are given in Fig:1.2. The usual

<
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, definition of isomorphism would distinguish between drawings in which
1B ) ' o
§ the same crossings on an arc were made in different orders. *
- A‘ -

ey ) @ -

(a . () (c) '

. Fig.1.2: The drawings (1) and (2) are isomorphic; while (1)
-~ and (3) are non-isomorphic. Similarly (a) and (b) are

@ . isomorphic but (a) and (c) are non-isomorphic. °

If all the arcs of a drawing D are restrictsd fo straight line ,seg—

v, . ' iy . .Y - .
ments then D is a rectilinear drawing, as in the drawing of Fig.1.3,

©

n : \
, S \
. : Fig.1.3: A rectilinear drawing. <

N

) : A k-cireust of a drawing D, is a sequence of arcs,
(ai, a2) 3 (az, as) 3. ‘a ) (ai, a1+1 ) 300 o0y (ak-‘i ’ ak), (ak, ai) y suCh that . al# aj
whenever i#j. A KHamiltonian Circuit, HC, of a drawing D, is an n-

[ 1
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circuit. If no two arcs in an HC cross one anether, then it is called &
crossing -free *Hamiltonian Circuit or C-F HC. Examples of C-F HC's are
given in Fig.1.4. An n-circuit optimal drawing D, of QK,, is one which
has, among all possible drawings of K, tl}e maximum number of \f:-vF
HC's. If only the rectilinear dr‘awgfvings D, of K, are considered then the
“~  term Kk-circuit is replaced by #4-gon. An n-gon optimal rectilinear
‘dra”wing D, of K, is one, which has, among all possible rectilinear

drawings of K,,the maximum number of C-F HC'’s.

14

\\ Fig.1.4: Drawing (a) has only one C-F HC, namely (1 1)
Drawing (b) " has four different C-F HC's: (1,2,3,4,5,1),

Tt (1,2,3,5,4,1), (1,2,5,3,4,1) and (1,4,3,2,5,1).
Although studies related to the complete graph K, started at least
a few decades ago, only partial results -have been reported thus far.
Many of these results concern the crossings and the crossiﬁg number of
Ko [3 - 5,7 - 9,16 -20]. The/ubper bound for the crossing number of
Kq, :

} .‘ v(K) € U[%2n] [a(n-1)] (Y2 (n-2)] [Y2(n=-3)],
where brackets denote greatest infeger not greater than, has been ob—
tained by R. K. Guy [3] . It “has been conjectured that the exact value
of the crossing number of K, is }iven by this bound. Guy confirmed
this conjecture for n< 7 [8!, éﬁen later hﬁ co'nﬁrmed ii for n< 10
[13]. Lower bounds for v(K,) have also been obtained by Guy [13]. For

a the rectilinear crossing number of K,, an upper bound has been ob—
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tained by H. F. Jensen [12] and independently by R. B. Eggleton. This

bound was then Jindependently improved by D. Singer and H. F.
Jensen. Guy [14] has confirmed that. the rectilinear cross{ng number
for K, is 19. R. B~ Eggleton [16] obtained all the non-isomorphic
drawings Ds‘of Kg. Most of the drawings D¢ of K¢ can be found in the
correspondgnce between R. Guy and fﬁoth A. Uytterheven and J.

Backelin [18]. The first part of the thesis, Chapters 2, 3 and 4, treats

the problem of generating, for a given n, all the non-isomorphic draw-—,

ings D, of the complete graph K,. An algorithm that generates all the
non-isomorphic good drawings D, of K,, is developed and results are ob—
tained by the corresponding computer program for n < 7. The only

input to this algorithm is the value of n. In the-third part of the the-

sis, Chapters 8, 9 and 10, the non-isomorphic rectilinear drawings D,,"

of K, are obtained using a set of rectilinear drawings D,y of K ;. An

algorithm is written to obtain these drawings D,. Using the corre-
sponding computer vrogram. the non-isomorvphic rectilinear drawinas Da
are obtalned uung a set of rectiinear drawings U(,

The problem concerning straight line representatlon of graphs has
been considered for many years [1,2,11,16]. A necessary and sufficient
condition .for some graphs to be drawn rectilinearly was presented by
Eggleton [16]. A similar &ndition for the complete graph K, is studied
in the second part of th?}esxs, Chgpters 5, 6 and 7. A computer
program is written to detekmine whether there exists a rectilinear
drawing D, satisfying a given set of crossings of K.

We summarize the three main contributions of the thesis 1n the

S

following:

v}
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Generating all the non-isomorphic drawings D, of K,
having at least one C-F HC. In Chapter .2, along with
the relevant theory, an algorithm is developed to gener-
ate, for a given.n, all the drawings D,. The results of this
algorithm for 3<n<7 are presented in Chapter 3 and Ap-
pendices A.2 and \ﬁ.3. Also in Cﬁ'laptex~j 3, having on hand
the1entire seth all drawings D,, we are able to determine
all those with the largest number of C-F HC's, confirming
the results obtained by Newborn and Moser[19]. Chapter 4
includes an analysis of the algorithm. |
Determining whether \a drawing D, of K, (as speci—
figd by a set of crossings) is rectilinear. In Chapter 5
we prove that all non-rectilinear drawings D, of K, always
have a specific sub-drawing which cannot be a sub-draw:
ing of a rectilinear dra‘ging. This characteristic can be de- -
termined by just knowing the set of crossings of the
drawing. In Chapters 6 and 7\we present Ehe correspond-
ing results and analysis.

Generating the non-isomorphic rectilinear drawings
D, given the rectilinear di_'awings Dyp-1. In Chapter 8,
the relevant theory is presented.to show that we cdn ob-
fain the rectilinear drawings D, using the rectilinear
drawings D,.,. The corresponding algorithm is presénted in
Chapter 8. In Chapter 9, the summary of the results for
n = 7 is given; while the actual drawings are shown n

Appendix C.2. An analysis of the algorithm is provided in
Chaptexj 10.
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Chapter 2

AN ALGORITHM FOR F INDING ALL THE NON-ISOFMORPHIC 600D DRRWINGS 0, OF Ka
" HAVING R CROSSING-FREE HRMILTONIAN CIRCUIT.

Work related to obfta‘ining all the non-isomorphic good drawings D,
of K, started a few years ago, [15,16,18]. In this chapter an
algorithm is developed to generate all the non-isomorphic good, draw;ngs
having at least one, C-F HC, C. It can be shown that each rectilinear
drawing D, of K, has a C-F HC. A proof of the existence of a C-F ‘HC in
each non-rectilinear good drawing D, of K, has not been obtained yet.
'i'he large number of unsuccessful trials to prodtTEe a good drawing D, of
K, with ;10' C-F HC created the belief that there are no such good
drawings. Thi; belief is strengthenéd by examining both sets of-
drawings D, of K obtained by the\ late Professor Uytterheven and by
Mr. Backelin and finding that each.of the drawings has a C-F HC.

From these facts we obtain the following conjecture. .

Conjecture K \
Every good drawing D, of K, has at least one C-F HC.
We note that if D, is not a good drawing it might still have a C-F-
HC as shown in Fig.2.1. Only the drawings that have a C-F HC are

sconsidered in this chapter.

[x 3
g

4 §

Fig.2.1: A drawing Dg in which the two arcs
(1,3) and (1,4) cross. Dg is not a good
drawing. however .{t has a C-F HC,
e=(1,2,3,4,5,1).
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General Description of the Aigorithm
) The algorithm begins by determining the list of all the edges (o,B)

of K, different from the edges of L =(1,2,3,...,n-1,n,1). For each edge
(a,B), the algorithm generates all the arcs (a,b) into which (a,B) could
_be mapped, such that (a,b) crosses any of the arcs of € at most once
and,l does not cross any of the, four arcs .of C which are incident to
eithér node a or node b. If (a,b) is a good arc, i.e. does not cross it—
self, ‘ then it is retained by the algorithm; otherwise it is discarded. At
‘this point the algorithm has the list of good arcs (a,b) related to each
&\he edges (a,p). N .

" Next,to the arcs 3f C, the algorithm adds.arcs (a,b), one arc per
edge and one*arc at a time. Before adding an arc, the algorithm veri-
fies whether the crossings occurring between this arc and each of the
arcs which were previously added to € do not violate conditions (i) and
(i) (on ‘page 1) for a good drawing. If for each edge (a,B) an arc
(a,b) is added to C then the algorit"hnﬁ l;as obtained a good drawing D,

. of I&n. ‘ . |

The algérithm compares this dx?awing D, to the non-isomorphic
drawmgs which were previously obtained. If D, is non-isomorphic to
each of these, then it is added to the set \of non-isomorphic good

drawings of K —~—-*

" Detailed Description of the Aigorithm

Consider n edges of K, and map them ;nto° a CF HC
C= (1 2,3,...,n-1,n,1). We call the area bounded by C, Int €, and the
remamder of the plane, Ext C. Consxder an edge (a,p) dlfferent from
the edges of C .The possible mappings of an edge (o: B) with respect to
C are 1llustrated in Fig. 2. 1. a, b, ¢, dand e for n=5 6, and 7. In

o
|

o
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Fig.2.1.a: Each of the edges (1,3), (2,4), (3'5), (4,1,)
and (5,2) of Kg can be_mapped into exactly 4 arcs.

G

Fig.2.1.b: ;Each ofthe edges (1,3), (2,4), (3,5), (4,6), (5,1)
and (6,2) of K¢ can be mapped into exactly 8 arcs. .
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Fig.2.1.c: Each of the three edges (1,4), (2,5), and (3,6) of K¢
can be mapped into exactly 10 arcs. = - .

[N
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Fig.2.1.d: Each of the edges (1,3),(2, 4) (3,5), (4,6), (,7),
(6,1) and (7,2) of K7 can be mapped into exactly 18 arcs.

11



Rig.2.1.e: Each of the arcs(1,4), (2,5), (3,6), (4,7), (5,1),
(6,2) and (7,3) of K; can be mapped into exactly 24 arcs.

Theorem 2.1 Q ) .

Let D, be a drawing (not necessarily a good drawing) of the com~
plete graph Kn; C be a C-F HE of D, and (a,b) be an arc of D, dijffer-
ent from the arcs of €. In ;d&ition, if C, the arcs of € crossed by
(a,b) and the location of each of the segments of (a,b) with respect to

°C are given (i.e. whether it is in Int C or Ext Ci, then, “one can
determine whether (3,b) is a good arc.




s
»?

Proof

~
‘%,,\;h !

As defined in Chapter 1, a good arc 1s one which does not jnter—
sect itself. We prove Theorem 2.1 by constructmg an algorithm that
determines whether an arc intersects itself.

Let D, be a drawing of K, with at least ‘one C-F HC, C. Label the

. nodes of D, such that Cbecomes (1,3,5, .. .,2n—-1,1)\. We label the arcs
of C with the integers 2, 4, 6,..., 2n as shown in Fig.2.2.

Fig.2.2: A C-F HC of a drawing D,,. -

The arcs of C crossed by (a,b) will be denoted by py, P, ... Prus-
The notation (pg,P1,D2 - - - » Pr-1» Py wﬂl mean that starting frorn node
‘ _ a =p, and going to node b =p,, the arcs p;, Py ..., DPp-q are crossgd
\ by (a,b) in this order. The arc (a,b) is said to be composed of
segments (py, 1), (P1,P2), - - s (Pe-1, D). For example, in Fig.2.3, the
arc (a,b) is composed of three segments (py, P1), (pi,gz) and (p,, ps).

J

»




Fig.2,3: The arcs p1 and p, are crossed by the arc (a,b).
Starting from node a, py is crossed first, followted }‘ay P .
Now form a list of all the segments of the arc (a,b) lying in Int
C. Let these segments be denoted by (P.,p;). Each pair (P, Pu) and -
(Py» Py is considered, separately. Assuming that p,< p, and p,<p., -

. we have the following:

L

P, < Py < Py < P, - '
or N @ (pot*pu) X (pvopw)
Py < p,< P < Py, (Fig.2.4)

-

We note that if there are no segments in lnt € then (a,b) does not
cross itself in Wt C. In an analogous way, the- segments of the arcs

(a,b) lying in Ext € are considered. 0

14
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P,
Fig.2.4: There is a crossing only in the first two diagrams.

We have explained previously that'the algox"ithm ,adds arcs one at )
a time to € to form a good drawing of K,. Before addmg each are, the
algorlthm verifies® whether the arc crosses any of the arcs already
added m a way that violates conditions (ii) or (iii) for a good drawing..
Two examples of such violations are-given in Fig.2.5. In the followuixg
theorem we show that éiven two arcs (a,b) and (c,d), we can

determine whether (a,b) crosses (c,d) .and whether they cross more

* than once. The ability to determine how ‘(a, b) and (c,qd) cFoss is nec-

essary because the algorithm- considers, with respect to C, each good
arc .(a,b) of an edge (x,B) along with each gaod arc (c,d) of an edge
(6,8), where (a,p) and (0,8) are different from the edges of C. The
algorithin stores information about each pair (a,b), (c,d) reflecting
whether they cross and 1f so, whether there is any violation of condi-

tions (ii) or (iii).

15 >
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Fig.2.5: Two pairs of arcs (a,b) " and (c,d) resulting in
drawings which are not good drawings. The first violates
condition (i) and the second violates condition (iii).

In this theorem we demonstrate that, given C, two arcs (a,b)

'~ and (c,d) of D,, the arcs of € crossed by each of (a,b) and (c,d), and

the location, 11t € or Ext € , of each of the segments of (a,b) and
(c,d) with respect to €, we can determine whether (a,b) crosses (c,d)
and whether the two arcs cross more than once. This theorem applies

—~

to drawings D, of K, which have at least one C-F HC.
g

Theorem 2.2

“Let D, be a drawing (not necessarily a good drawing) of the com-
plete graph K,, C be a C-F HC>of D,, and (a,b) and (c,d) be two arcs
of D, which are different ‘from the arcs of C. Let the sub-drawing
consisting of Cand (a,b) and the one consisting of Cand (c,d) be good
drawings. In addition, if C, the arcs of Ccrossed by (a,b), the arcs of
C crossed by (c,d) and the location of each of the segments of (a,b)

and (c,d) with respect to C are known; then, we can determine

‘whether (a,b) and (c,d) cross and whether they cross more _than

once. )
¥ >~
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Progt | b

Let D, be a drawing of K, with at least one C~F HC, €. We label *
the nodes of D, such that C becomes (1,5,3,...,4:1—3,1). An *’grc -
(i,i+4) of C could be crosge,d by both (a,b) aqd (c,d). To avoid the
meeting of (a,b) and (c,d) at the same point of (i,i +4),we consider
.twq distinct points on (i,i‘+ 4) where it céuld be crossed by (a,b) and
(c,d)We label the point closer to node i with the integer i+1 and the

one closer to i+4 with the integer i+3, as shown in Fig.2.6.

Fig.2.6: A.C-F HC of a'drawing D,.

' We assume that a < i:, ¢ <dand asc. The arcs of £ crossed
by (a,b) will be denoted by pj, —pz, ...,Pp-1 and the arcs crossed by
(c,d) will be denoted by qy, Gy, . .~ ,ds-1- The notation (p,, S;;pz, .+ Prets
p,) will méan that starting from node a = p; and going. to node b = p,»
the arcs labelled with the integers py, Pz, .. .,Pr-1 are crossed by (a,b)
in this order. The equivalent notation (qy,9;,4s, - - ,dg-1,q,) Is used "to’

denote the arcs of € crossed by (c,d) and their order.

{

B . 1 [ 2
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When both (a,b) and (C(d)\?\ross an arc (i,i+4) of €, we have
two ways of drawing (a,b) and (c,d)" ‘ :

1) (a,b) crossing at point i+1 and
(c,d) drossing at point i+3; |,

2) (a,b) crossing at point i+ 3 any
(c,d) crossing at point i+1. ‘ ~

If k arcs of C are crossed by both (a,b) and (c,d), then we get

2k ways of drawing them. The number of times these two arcs cross is

dete{mined in the following manner:

Consjder all the segments of the two drcs (a,b) and r(ci"d) lying in
nt €. Let i‘l{]ese segments be denoted by (pn p,) when t\h@f belong to
fa,b) and by (¢,,q,) when they belong to (;, d), as shown in Fig.2.7.

Po %

N

/

- (1) (2)
Pig.2.7: In (1) (a,b) xAc,d), which is reflected also in (2)
by the two segments (p,p;) and (gq,q;) crossing.

> '
: Fach pair (p, P} and (q,,q,,) Is considered separately. Assuming
that p, <. p, and q;,‘ < Qo W ve the following: - -
P u




qQ, < P < 9u< Po
@* (pi‘p‘) X (qviqw)
(Fig.2.8)

&
LN
g

pi< qv< pu< qw

&

o

Fig.2.8: There is a crossing only in the first two diagrams.

o.

In an analogous way, the segments of the arcs of (a,b) and \é,d) lying

in Ext C are considered.

, \ 3 o



We note that whenever k arcs of C are crosseci by both arcs
(a,b) and (c,d), these two arcs can be drawn in 2k possible ways; but

dhly the drawings 'with the least number of crossings are good

i

drawings, as shown in the two examples of Figs.2.9 and 2.10.

Fjg.2.9: In the two drawings (a,b) and (c,d) cross the
¢ - arc (21,25) but only the first drawing is good.

C ,




fig:2.9: The’arcs (a,b) and (c,d) cross two arcs of C g:/
our different ways. The first drawing is not a godd
drawing since (a,b) ¢rosses (c,d) more than once. _

$ \
BHCKGHUIINB";II THE ALGORITHM ¥

The purpose of the algorithm is to generate all the good drav&i}qg
D, of the complete graph K,, having a C-F HC. We let € =
(1,2,3,...,n-1, n,1) be.a C-F HC of all the drawings D, of KHP.

Now, suppose that two edges (&, B) and (v, 86) of K,, -which are
different from the edges of C, can be mapped‘into~ p arcs and q\ arcs
respectively. Then each of the p arcs is considered along with each of
the q arcs to generate p X q sub-drawings, gmany of which will not be
good drawings). .

‘ Hence, the idea behind the algorithm is to detérmir_xe all the dif-
ferent arcs of each of éhe edges of K, (with respect to a C-F HC, C, of
K,) amd to generate the drawings consisting ‘of the different combina-

tioﬁs of these arcs, as shown in Figs.2.10 and 2.11.
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Fig.2.10: For K,,- the edges (1,2),(2,3),(3,4)-and (4,1) are mapped to
form a C-F HC. The algorithm will generate all the drawings obtained
by combining one sub-drawing from row A with another from row B.
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Jum iz B
R Y

Fig.2.11: A C-F HC (1,2,3,4,5,1) is used for Ks. The, algorithm will

generate all possible drawings by /combining exactly one sub-
drawing from each of the rows A, B, C, D and E.

—

- Let R be a set of arcs obtained by mapping each of the edges of
K, different from the edges of C into an arc. 'For, example, considering
the drawings inm Fig.2.15, if we take one of the arcs (1,3) from row
A, an arc (1,4) from row B, an arc (2,4) from row C, an arc (2,5)
from rgw D, and an arc¢ (3,5) from row E; then we have g set of arcs
R.

In general, there are m = (»,)) -~ n edges of K, apart from the
edges of C. If we denote the i-th edge of these by a, and the J-th good

@ mapping of a; by a;;, then a set A, = {a'u} will consist of m arcs each

*
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of which is a mapping of an edge a; of the m edges of K. If the
number of good mappings of_a; is r,, then thesnumber ‘of sets A, will
equal the product of all r;where i=1,2,...,m. L

. After generating the edges a, and determining the g'oéd arcs into

o
which they could be mapped, the algorithm generates a matrix
§

RMX(-, .}, reflecting the relation between any twp arcs « and B of the

different sets A, (i.e. whether they cross, and, in case they cross,
v 3

whether their crossing violates the rules of a good drawing). If a pair.

of arcs a and B in A; does not cross then MX(«,B) is set to zero. If o

and B cross without violating the rules of a good drawing then MX(a,p)

is set to one. Otherwise MX(a,B) is set to two.

From the information\genetated in the matrix MX (-,-), the 3lgo-
rithm then checks the relationship between each pair of arcs of a set
d B, MX(a,B) equals 2 then this set A, is dis-

. {
carded and the algorifhm starts checking the pairs of arcs of a 'new

A;. If for any pair «

set. If there exists no such pair of arcs in A, then a set of crossings,

X, corresponding to a good drawing D, of K, is obtained. If the drawing -

- corresponding to X is isomorphic to a drawing corresponding to any of

the’ previously generated sets of crossings then X is discarded by the
algorithm.  Otherwise the algorithm adds X to a set D consisting of the
sets of crossings corresponding to the non-isomorphic good drawings D

of K,,. The algorithm stops when all the sets A; are checked.

Step 1 Generate a list pf the m edges a;,a;,...,2p, . .2y
,Of K, where a,)is not an edge of C and m= (n,)-n.

| %
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Step 2

Step 3

Step 4.0

Step 4.1

nSfep 4.2

For each a,, determine its corresponding good args
according to condition (i).
For each pair of arcs a and f, determine whether
they cross, and whether any of the conditions (i)
and (iii) is met. The existence or non-existence of
such crossings is reflectéd in a matrix MX(-,-),
/"0 if arcs & and p do not
cross
4 if arcs o and p cross

where MX(<,p) -< such that the sub-

’ drawing Cua u p -

is a good drawing

\_ 2 otherwiss

ie1.
D « @ (D will be composed of the sets of crossings
9 corresponding to the non-isomorphic drawings
D).
Form a set A; where A, consists of m arcs, each of which
is a mapping of one of the m edges of K, different from

the edges of C.

K « @ (X will be a set of crossings)

Je1

IF MX(a,B); =2, where (a,B); is the j-th pair of arcs

~-THEN STEP 4.3 .
Ux (where x is a crossing of an arc of €
and a or B, if any)

THEN-X « X v (a x B)
IF j = (m,) where m= (»,))-n
THEN IF X corresponds to a drawing which is non-
isomorphic to each of tle drawings | \
corresfaonding to the sets of crossings in D
THEND «D u )(O

25



STEP 4.3
ELSE j « j+1
STEP 4.2
STEP 4.3 IFi<ryXr,X.. Xry where r, is the number of
good mappings of the edge a, of K, !

THEN i «i+1
STEP 4.1
ELSE STOP
2
j R
A “
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Chapter 3
RESULTS OF THE RLGORITHM

[

A computer program is written to implement the "algorxthm pre—
sented in Chapter 2. This program is listed in Appendix A.1, and the
drawings D, having a C-F HC for n £ 6 are presented in Appendix A.2,
while in Appendix A.3 all the drawings D, are listed. In addition, re-
sults related to the n-circuit optimal and n-gon optimal drawings D, are
| ) ‘ obtained [19]. '

DRAWINGS Dy

By implementing the algorithm for n=3, the number of drawxfugs

.
@3
A
R

-generated by the computer program is one hundred twelve (112) D,
as per Table 3.1. | A

Number df Crossings | 1 2 3 4 5

v | Number of D, 20 .0 W 0 22 °

Table 3.1: The number of drawings Dy generated by the algorithm.

These 112 drawings yielded the five non-isormorphic drawings
~ * which are displayed in Fig.3.1. These drawings are essentially the same
as the ones of Diagram 37 in [16]. '

\
@ ’ .
N -
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Fig.3.1: The five non-isomorphic drawings of Ks two

drawings with 5 crossings, two drawings with 3 crossings,
and one drawing with 1 crossing. 1 { ;

DRAWINGS D

The number of good drawings D, of K, generated by thé\algori;;hm
is fourteen thousand four hundred and sixty (14,460). However, we
need only \generaﬁ?' half of these drawings ‘(7, 230) since the drawings
genérated using the last four atks ‘(1,3) shown in Fig.2.1.b are iso—
morphic to the drawings generated using _the first four arcs (1,3) as

shown in Fig.3.2._

J
- 28




L. " (a) (a) :
' Fig.3.2: All the drawings generated when arc (1,3) is

as in (a') will be isomorphic to all the drawings
generated when arc (1,3) is as in (a).

\

We get the one hundred and two (102) non-isomorphic drawings
which are displayed in Appendix A.2. Most of these 102 drawings have
already been found by Professor Uytterheeven and Mr. J. Backelin in
the early seventies. These drawings are shown in their cox‘responden‘&
with Professor Guyl [18]. ] _
Backelin's census consists of one hundred and.twenty-three (123) .
. drawings D,. When the crossings of these drawings are input to a
computer 'prGgram to identify isomorphism, oﬁly ninety:six (96) are
shown to be non-isomorphic. This discrepancy can most probably be '
explained by ¢he fact that it is extremely difficult to detect instances of
isormorphism betweén any two of the drawings visually.

Professor Uytterhceven’s fihdings are gresented in a Table 3. 2‘

which can be compared to the computer’s findings.

29




Number- of Number o_f Drawings found by
Crossings
, Uytterhaeven . Computer Program
3 1 1
4 1 / 1
9 3 3 ‘
6 3 . 3
7 9 9
8 13 13
9 16 17
0 T 9 9 -
11 - 20 21
= 12 15 15 -
15 10 10 -
Njamg:r of | | {190 102

Table3.2: The number of drawings D, found by Professor Uytterhcven
compared with those generated by the computer program.

30
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. ‘ .
Similarly; in Table 3.3, Backelin's) fjgures can be compared to the
prog}am’s results. Q

-

<«

Number of Number of Drawings found by
Crossings
Backelin | Computer Program
3 1 |
4 1 1
9 3 3
6 3 3
7 - 9 9 -
8 14 13
9 19 17
10 14 9
‘1t 25 21
12 . 19 15 X
19 1S 10
Numger of ¥ 123 102
3

Table 3.3: The number of drawings obtained by Mr. Backelin
and the ﬁaumbeh of drawings generated by the computer
program. ‘

i

~

Table 3.4 reflects the number of non-isomorphic drawings found

by both Uytterheven and Backelin.

o 2
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4

Numberof | <+ Number of Drawings found by
Crossings
Uytterheven | Backelin | Computer Program W
- I
3 ! G { .
4 - 4 1
S 3 3 3
6 3 3 3
7 9 ' L7 g .
. 8 13 | 13
9 16- L 15 17
4 L
10 9 9 9
1 20 \ 21 21
» 12 - 15 15 15
15 10 10 10
Number of ‘ -
D 100 96 | 102
y 8 . )

Table 3.4: The number df non-isomorphic drawings D¢ as obtained by
Professor Uytterheeven, Mr. Backelin and the computer program.
It should be noted that the computer program substantially confirms

Professor Uytterhoeven’s results.

DRAWINGS D, |

All the non-isomorphic drawings D, of Ky are generated. Table 3.5
reflects the number of drawings D, distributed according to their num-
ber of crossings. Note that there are no drawings D, having an even
mimber of crossings. All these d;'awings are listed in Appendix A.3. \

¥
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Number of |Number of
- Crossings - | Drawings
D RS s B
” ) < 11 27
C _ 13 103
© 15 363
17 937
K. - 19 653
. ~ 7 21 2259
i 23 2344
- 2 69
. 27 %30
29 633
h 31 318
0 35 115
v / Number of Dy| 11556
‘ Table 3.5: The number of the non-isomorphic
drawings D, having at least one C-F HC.
: The C-F HC’s are counted for each D,, to find the ones with th¢

largest number. The results obtained confirm Newborn and Moser's re—

sults related to optimal C-F HC drawings of K [19].




TNy,

Fig.3.3: The first two drawinge have the greatest number

of 7-circuits {n any drawing of K,. The third one has the
greatest number of 7-gons in any rectili‘near drawing of K.
These two numbers are 96 ?and 92 respectively.

P
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K v Chapter 4 iy
Analysis of the“mgomhm

&

Before counting the number of operations that are performed by
the &lgorithm, we first determine tl(e—;umber of arcs into which the
edges of K, could be mapped. |

There ar% ;1 edges of K, which are mapped into n arcs to form a
C-F HC, C. Co<(sider the remaining k = (») - n edges (a,B) of K. Any
arc (a,b) whith is a mapping of (a,8) might cross i arcs of C, where

0Sis<n-4, as shéwn in Fig.4.1.

o
L Fig.4.1: A C-F HC, C. The arc (a,b) might cross any

arcs of C except (a,ay), (a,a;), (b,b;) and (b,b,).
"

Suppose (a,b) crosses some’ of the arcs of C. From Fig.4.2 we can
see that the arcs of C and (a,B) can be redrawn without changing the

crossings occurring between (a,b) and the arcs of C, or the order of

/

-/

these crossings.

35
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Fig.4.2: Two drawings of the arcs of € and an arc (a,b). The

crossings and their order did not change from one drawing to
the other.

£

Consider the segments of the arc (a,b) falling above the arcs of
C. Put an open parenthesis above each of the arcs. which meet a left

& s
end of these segments and put a closed parenthesis above each of the

arcs which meet a right end of these segments. Now, consider the

segments of (a,b) which are below the arcs of L, and in a sirriifér
manner open and closed parentheses are placed below the arcs of C as
shown in Fig.4.3. Now, we note that for each of the arcs ¢ of C, we

have one of the following five possibilities displayed in Fig.4.4.




bt

) ( ( )
Y

a=2 § 4 3 6 7 b=} 9 i 2

, T
¢ ) < )

Fig.4.3. A parenthesis is placed above and below each of the
arcs of € which are crossed by (a,b) .

Fig.4.4: Any arc of € will have exactly
two parentheses or no parentheses at all.

Let p be the number of good arcs (a,b) into which an edge {(a, B)

V could be mapped, then-

p S Hn+1
Now we obtain a\ lower)bound for p. L;t a,8 be two vertices of
K,, and let a,b be theit corresponding nodes. Let (a,aJ and (b,b,) be
two arcs of C. If a; =b;, then the number of mappings of (a,p), will

¢

be as small as possible. .
The edge (a,B) might cross up to m=n-4 of the arcs of C which

we draw as in Fig.4.5. The nodes are labeled above C; while the m

arcs of € are labeled below L.



1 2 am8 ¢ 8 a-2 a-i n f=1

A PN S A V. ol O N pra

@ -1 i+l i = A 1

Fig.4.5: The heavy arcs cannot be crossed by (a,B).

Starting from « = 3 going to P =1, suppose the fjfst arc of C to be =
crossed- by (a,B) is arc i, then there are. i —1 arcs on the right side of
arc i. Each of these me;y or may not be crossed by (a,B) leading to
2i-1 possible combinations of arcs to ‘\be crossed, where 1<i<m. On the
left side of i there are m~i arcs. The edge (a,B) may cross only an
even number of these arcs, hence there are 2m—:-1" possible cornbina-
tions of arcs that (a,f) may cross where 1<i<m-1. The total num-

ber of arcs into which (a,B) could be mapped is then at least
m=1 )

2™ty Z gimt y @il (m+1) e 2
i=i

m-2

To this, thé arc which does not cross any of the m arcs, is added;
then the total is multiplied by 2 since arc i could beé crossed from ei-
ther side of C. Hence a lower bound for pis -°

\ 2+ (m+1) e 2m-t
Therefore, lowe(q“and upper bounds for the number of gooq arcs into
which an edge (a,B) could be mapped are given by the following ’
inequalities: { ® ) ‘
’ 2+ (n-3) o 2a-5 < p < 5a441
The following table reflects the number of arcs into which each of the
m. edges of ' K, could l?e mapped without violating the rules of good

drawings for 3<n<7.
r
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n
Edged 4 5 6 7
(1,3) 2 4 8 8
(2,4) 2 4 8 T
(3,5) 4 - 4 8 8
(4,6) - - 8 8
(5;7) - - - 18
{6,1) - - - 18 -
(7,2 - - - 18 '
(1,4) - | 4 10 24
(2,5) Eh 10 24
(3,6) - - 10 24
. (4,7) - - - 24
| \ (5,1) - - 8 24
3 , (6,2) - - 8 24
(7,3) - - - 24

Table 4.1: The number of the possible good mappingdfor each of
the m edges of K,. The C-F HC (1,2,3...,n,1) is assumed in all

cases. ) T e

The number of drawings that the algorithm generates is bounded
by the product of the number of goqd arcs into which _each of the k
edges of K, could be mapped. Howevegt this bound {ix\remely high,
since the laréer number of drawings will not be good drawings, as re—
flected in Table 4.2. This is due, obviously, to the fact that many arcs

when considered in pairs yield drawings which are not good drawings.
, 7



I Product of the Generated good
/ n nusber of arcs drawings
[
5 45 = 1024 112
6 8% x 10 = 262144000 14460
F

Table 4.2: The number of good drawings generated by the
algorithm {s small with respect to the product of the numbers of

arcs.

,Now, we calculate the number of operations taken by each’ of the
steps of the algorithm. ‘

Step®

Step Description Number of
Operations

Generate a list of the m edges a,, 0(n?2)
Az . Apy .- Am of K, where ap
is not an edge of C and m=(n,)-n.

For each a,, determine its O(nt e 5n)
corresponding good arcs according to ¢
condition (i).

For each pair of arcs a and B, O(n2 e 52:)

3 determine whether they cross, and

whether any of the conditions (ii)

and (iii) is met. The existence or
non-existence of such crossings is
reflected in a matrix MX(-,-), where"

/” 0 if arcs « and § do
not cross )
1 if arcs « and f cross
Mx(afp)-< such that the sub-
' drawing Cuva u g
is a good drawing -
v \_ 2 otherwiss

[

40




L V]

4.0

4.1

4.2

4.2.1

J
AL

*

D « 0 (D will be.composed of the

sets of crossings corresponding to _
the non-isomorphic drawings D,)

Form a set A, where A; consists
of n\;,rcs, each of which is a
mapping of one of the m edges of
K, different fromn. the edges of C.
X « @ (X is a set of crossingsy
Jje~1

IF MX(a,B), = 2, where («,B), is

the j-th pair of arcs belonging to A, 4
THEN STEP 4.3

X «X ux (where x is a crossing of
an arc of C and a or B, if any)

IF MX(cz,ﬁ)J =1

THEN X « X u (ax B)

IF j = (m,) where m = (»,))~-n
THEN 4 |

]
Obtain nodes responsibility O(ns)

4.2.2 Obtain arcs responsibility

4.2.3 Determine whether D, is
isomorphic to any of the
drawings in D

41

oo

O(pn!)

where p is the
number of non-
isomorphic
drawings in D
which have the
same nodes and
arcs responsibilities
as D,



"

4.2.4 Store D, if it is non-isomorphic 0(n4)
to each of the stored drawings ’
ELSE T« j+1
STEP 4.2 ‘
4.3 IF i=ry Xr;X...Xr, where r; is the
number of good mappings of an edge .
a of K, : g
k‘l‘ HEN i « i+l
STEP 4.1 | | 1‘
ELSE STOP C

An upper bound on the number of times Step 4.1 is perfdrmed is
s ;
o(5™)

Ar

]

For each of these, Step 4.2 is performed at most O(n?) times. The

number of. operations shown for Step 2 is also an upper bound for this

step. Neither of these two bounds is realized for the reasons ‘f:‘) eviously
given; see Table 4.2. Indeed, deterrnmmg whether the drawing in hand
is isomorpl'iic to any of the previously obtain_ed drawings takes the by
of the algorithm’s time. This is due to the fact that the nodes in many
drawings. have equal r‘ésponsibilities, in addition to the fact that arcs /

responsibilities are equal in many drawings, as shown in Table 4.3.

.
.
.
C ’




Nuaber of | Humber | Largest number of nodes
Crossings | of D, | having equal responsibiiities
3 58 6
4 208 "9
S 492 . 4 .
48 5
6 652 ’ 3 H
7 1638 4 )
8 1176 3
1956 ’ s °
9 1632 3
N « 716 6
10 1320 5
11 2358 . 4
12 1680 3
15 446 6

s -

Table 4.3: The largest number of nodes with equal
responsibility is six for all the drawings having 15
crossings. For many of these drawings, k X 6/ comparisons
are required to determine isomorphism, where k<10. "¢

To obtain the 102 drawings of K, an IBM microcomputer m@v{a_l

AT ran for about three days. Since, in addition, the product of the

good "arcs into which th; 14 arcs of K; could be mapped ‘can be calcu-

lated to be 187 X 247; it becomes clear that obtaining all the drawings

- of Ky, using the same computer, would require so long as to be im-—

practical. The SUN computer, modei) 3/280S at McGill Computer Sci-

ence School was used for n=7. Althodugh it.performs 4 x 106 instruc—

tions/seconc_i, it ‘Fequired about 18 days to produce the 11,556 non-

isomorphic drawings D,.
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Chapter 5

%

AN ALBORITHM TO DETERMINE WHETHER THERE ERISTS A RECTILINEAR
" DRAWING D, OF K,, HAUING A GIVEN SET OF CROSSINGS

Background

A necessary and sufficien(: condition for some graphs to be drawn
rectilinearly is give\;; by Eggleton[16]. In this chapter we present some
propositions and theorems by which we show that given a set of
crossings of K,, it is possible to determine whé‘t‘her there exists a
rectilinear drawing D, which has exactly this set of crossings.

First, the  necessary definitions and explanation of the
terminology that we are using are given. <

A trigon T of a drawing D, of K, consists of three nodes o, B,*y
and three arcs (a,B), (a,v), (B,y) of D,. Obviously any D, has (s;)
trigons. The conterztsof a trigon T refer. to{he nodes contained in the
area bounded by the arcs pf T. Except for the vertices of T, we say
that a node v is contained in T whenever v is inside T, and we write v
e Int T. If v is not contained in T, we write v ¢ Ext T. Two drawings
of K, are eguivalent if there is a one-to-one correspondence between
their nodes and their trigons such that if a node v is inside a trigon T
in one drawing, then, in the other drawing, the node corresponding to
v is? inside the trigon co;’responding to T. Counter examples{ are given
in Fig.5.0.1. Finally, if a set of arcs, segments of arcs and nodes of
D, form a boundary, B, such that all the remaining nodes and arcs

fall in the interior of B, then we call B the outer boundary of D,.

14
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3

(b) (b’)
Fig.5.0.1: Drawings (a) and (b) are i{somorphic but non-
equivalent to drawings (a‘') and (b') respectively.

Yo o
‘More than one drawing D, of K, may have the same "set -of

crossings. Some of .these will be equivalent, while others will be non-

equivalent, as shown. in Fig.5.0.2.

-]

D < -

1

¢ (a)



\-(4“,'

Fig.5.0.2: Three drawings (a), (b) and (c) having one
crossing (2,5) x (3,4). Only (a) and (b) are equivalent.

If the outer boundary B of D, does not have any crossed arcs, as .
in Fig.5.0.3(b),then B is a convex Aull of D, and we denote it by CH
On the other hand if any of these arcs is crossed then B is not a con-

vex hull of D, as in Fig.5 0.3(a).

(a) (b) ’
Fig.5.0.3: In (a) the outer boundary of Dg is not a convex
hull, while in (b) the outer boundary of D is a CH.




// o

/ ' ~

Let g/c2 .., Cyp ..., Gy be the CH's of the set of drawings D,

:: of ¥, @nd let us drdw a drawing D, having the CH C,.

Consider the arcs (a,B), (a,y), (B,y) and (a,8) of a drawing D,.
We say that (a,8) and (a,y) are adjacent with respect to (a &8) |if,
and only if, neither (a,8) nor a segment (a,8,) of (u,8) falls in the
area T bounded by (a,B), (a,y) and (B,vy). If («,8) of (a,8) is in T
we say that (o,8) is /located between (a,8) and (a,y), as shown in
the drawings {(c) and (d) in Fig.5.0.4.

J TP

(b)
N
] <
B y p y
)
(c) (d)

Fig.5.0.4: Arcs («,8), (a,y) are adjacent with respect to
(s,8) in (a) and (b) only. In (c) and (d) (a,3) is between
(0B) and (av).

.
- 4
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With the above definitions, the solution to the problem of deter—
mining whether K, can be drawn rectilinearly with a Z\ven set of
crossings is presented in this chapter. First we show that there exists a
drawing, A, shown in F ig.5.0.5, which is always a sub-drawing of any
non-rectilinear drawing D,. We also show that the drawing A cannot

be a sub-drawing of a rectilinear drawing D, .

Fig.5.0.5: The drawing A.

The drawing A is a good drawing D, of K,, drawn such that the
area bounded by a trigon T, consisting of three nodes a, of Dy and their
corresponding three arcs, contains the fourth node v of Dy, and such
that one of the arcs (v,a;) crosses an arc of T.

"To determine whether A is a sub-drawing of D,, we must know
the content of each. trigon T of D,, in other words, for each T we must
know whether v is contained in T, where v is any node of D,. This
matter is resolved when we show that, given a set of crossings of D,
along with its CH,‘ we can determine whether an arbitragry nede of D,
falls in an arbitrary trigon of D,. .

In the above, we have assumed that a CH of D, is given along
with a set of crossings of K,. However, we want to be able to deter-
mine whether K, can be drawn rectilinearly just by being given a set

L4
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of its crossings. For this purpose we produce a proposition showing
that, giyén a set of crossings of K,, we can determine all of the CH's of
the drawings D, of K, having this set of crossings.

F inally an algorithm is developed. With a set of crossings of K, as
input, this algorithm determines whether there exists a rectilinear

M
drawing D, of K, having exactly this set of crossings.

fi Characteristic of the Rectilinear Drawings
‘The complete graph K, has exactly three non-equivalent good

drawings Dy, as shown in Fig.5.1.1.

[

Fig.5.1.1: The three non-equivalent drawings of K,.

The third of these, the drawing A, is of gteat importance and 1s
used extensively in this chapter. We refer to the second drawn‘qg by X
This section is actually deyeloped to show 'that "A is always a sub-
drawing of any non-rectilmg\ar drawing D,,.
We prove that given the crossings of D, and its convex hull C, 1t
is possible to determiné(thether the arcs/of D, can be realized by

straight line segments. Essentially, we prove in the following theorem

. .that D, can be realized by straight line segments; if, and only if, A 1s

v
.

-

not a sub-drawing of D,.
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Before broceedigg with the theorem, we presént three proposi;
tions. In the first one it is shown that if A is a sub-drawing of D,, by
redrawing the arcs constituting A such that they form a sub-drawing
equivalent to X ifistead of A, then the new drawing D, will have a
CH, C which will neceésarily be different from C. The second proposition
is a generalization of the first, \;vhereby we show that by determining
the CH of D,, the containment of each node ‘of D, is also determ.ained
with respect to each trigon of D,. Finally, in the third proposition,
given a triangle T =(a,B,y,a) containing k‘some arcs (a,%), (a,y,) and
(x;,v,), all of which being straight line éegménts, we show that an arc
(a,6) can be represented by a straight line segment if (a,8) is located
between each pair of arcs (a,%,), (a,v,). )

Each of these propositions is important iﬁf‘?roving the theorem.

@ .
Propasition 5.1
Let D, be a drawing of K,, C be ithe Cﬁtf D,, and A be a sub-
drawing of D,. Denote the nodes of A by 1, 2, 3 and 4.

If D', is a drawing isomorphic to D, in which the sub-drawing
consisting of the nodes 1, 2, 3, 4 and their corresponding arcs is
equivalent to an X drawing instead of an A drawing; then C cannot be

the CH of D',.

~

Proof '

Let v be a node of C, as in Fig.5.1.2 (a),(b). The arc (v,4)
crosses either (1,2) or (2,3) but not both. When K, is &rawn such
that the nodes 1, 2, 3, 4 and their corresponding arcs form a sub-
drawing equivalent to X, and in order to maintain the crossing {(v,4)

X (1,2) or (v,4) X (2,3), node v must fall inside the area bounded

q
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g - " by the ares (1,2), (2,4), (4,3) and (3,1); this leads to a CH differ-
ent from C.
i
| |
1 2
{
3 4
(at)
1 e d
g
v
2¢ 4
(b) (bt)

Pig.5.1.2: Arcs forming sub-drawings A in (a) and (b).
The same arcs are redrawn in (al) and (b!) to form
sub-drawings X. .

’
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In Fig.5.1.3 - 5.1.5. we present some examples illustrating the
existence of a sub-drawing equivalent to the drawing A in every non-
rectilinear drawing D,. For the purposes of this chapter, a drawing is
Qconsidered rectilinear whenever its arcs are restricted‘ o straight line

- segments while preserving its CH. The two drawings in-Fig.5'1.3(i) are

equivalent, only the second one is rectilinear. The drawing in

Fig.5.1.3(ii) is r¥n-rectilinear. ; "
3 2
1 !
3 N —

4 S ~ 4 ]

(i)

1

4 2

{- /;/ . . (li)

‘ Fig.5.1.3: Three isomorphic drawings of Ks. In

(1) the first drawing can be realized using
strictly straight line segments to look likes the
second drawing with the same CH. In (ii),
€2,4) X (3,5) while 4 {s inside the trigon

2,3,5,2).
O/ /
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‘ . (e) ,
Fig.5.1.4: A is not a sub-drawing of any of the sub-drawings
in (a) and (b)™¥n (c) A is a sub-drawing of Dg, (4,6) x (2,5)
while node 6 is inside the trigon (2,4,5,4).

i

- Fig.5.1.5: The drawing A, in heavy lines, is a
sub-drawing of a drawing D¢ of K.
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Propaosition 5.2

Let T be a triarigle with vertices a, B, and y. Let S be a drawing
~consisting of T, some arcs (a,%2), (a,v), (x,,y,) and one arc («,8)
located in T, as shown in Fig.5.1.6. Suppose that (a,%), (a,y) and
(x,,y,) are straight line segments. If (a,8) is located between each pair

(a,%,), (o,y,), then (a,8) can be realized by a straight line segment.

¢

arss (axdy (oyD) and Crpyo. Al ares (n e,
(s,y;) and (xi:Vi) are straight line segments.
' Proof |

For convenience we assume that all (a,x;) are on one side of
(a,8), and all (a,y,) are on the other side of («,8). Among all (a,x,),
let (a,x,) be the closest arc from (a,8); and among all (a,y,), let
(a,y,) be the closest arc from (a,8). . We extend (a,x,) and (a,y,) to
meet (B,y) ‘at the points B, and y,, as shown in Fig.5.1.7. The inte—
rior of the triangle wi'gh vertices a,B,, ¥y, contains nothing but a seg-
ment of each of the arcs (x;,y;) the arc (a,8) and the node &, hence

(a,8) caf'\ be realized rectilinearly. -
O

“




)
Fig.5.1.7: The shaded triangle contains no nodes except . The
arc («,8) can always be realized by a straight line segment.

" Theorem 533 -

Let D, be a good drawing of K,. D, is non-rectilinear < Als a

sub-drawing of D,.

Proof

(i) First we prove that: | !

A is a sub-drawing of D, = D, is non-rectilinear. .

All the arcs of A cannot be realized rectilinearly unless they are re-
drawn to form a sub-drawing equivalent to X instead of A; obtaining a
drawing D'y. By Proposition 5.1, D, = D'j.

(ii) Secondly, we prove that:

D, is non-rectilinéar = A is a sub-drawing of D,.

Let C be the CH of D, and let x; depote the nodes of C. Let the
arcs (x;,X;) be straight line segments, as in Fig.5.1.8. If any arc
(xp,xq) is not a straight line, then by pu/ing x,and-x; in the appro-
priafe directions, (x,,%5) will become a straight line segment without

affecting any of the crossings of f),,, as shown in Fig.5.1.8.0. Of course,




/.

[+4

some arcs (x,,x,) will be pu'slng and pulling some of the other arcs,
however the crossings will be maintained. . ‘

. N

~ ) ,‘1

¥y
Fig.5.1.8.0: Two equivalent drawings D¢, all the arcs
(xi,xj) of the second one are straight line segments.




. Fig.5.1.8: The arcs (x;,x;) of a drawing D, realized
using straight line segments.

Hence, any arc which we cannot realize /{; straight line
segment has either: “
(1) a node x, belonging to C and 2 node v, located in the interior of
C, as shown in Fig.5.1.9.

. or ﬁ\,
(2) two nodes located in the interior of C, as shown in Fig.5.1.10.
L1 A

o
Vs
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Fig.5.1.10: The “a;c (v1,V2) has its two nodes inside C..

LE8

Consider the first case. Arc (x,,v,) falls entirely in a triangle T
with vertices %4, %, and x,. In order not d to be able to represent
(%,,v,) rectilinearly, (x,,v',) ‘must be crossing some arcs (v,, v;).

Now consider the triangle T and all the arcs (x,, v,), as shown in
Fig.5.1.11.

‘F13.5.1,11: The triangle T, the arc (x,v,) and the arcs
(xo’ vi)’

By Proposition 5.2, there is a pair of arcs (x,,v,), (x,,v3) which
is adjacent with respect to (x,,v,), where (v,,v;) is crossed by

(%,,v,), as shown in Fig.5.1.12.
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Fig.5.1.12: (x,,v,) and (x,,vp) are adjacent with
respect to ( x,,Vy), and (x,,V,) crosses (v,,vp).

b

v

° Now, by considering only T and the. arcs (%X,,Vv,), (X,,Va), (X,,Vvy) and
. (v,,vh), we see that A is a sub-drawing of D,, as shown in
Fig.5.1.12. Looking at the second case, we suppose that (v,,v,) cannot

be dfawn rectilinearly, as shown in Fig.5.1.13. /

0’

Fig.5.1.13: An arc (v,,v}), with its two mnodes

. inside C, falls in the interior of a triangle having
two nodes belonging to C. .



-xut

The arc (v,,v,) is located in a trigon with vertices v, and two
nodes of C. By changing the label v, to x, and v, to v, we obtain a

case similar to the first case. O .

Determining the Location of a Node

In the preceding section we have concluded that the existence of
a rectilinear drawing D, depends on whether A is a sub-drawing of D,.
+  To be able to find out 1f Iﬁs M\f{drawmg of a given drawing D,, it is
necessary then to know:
1. the crossings of D,, and
2. the location of each of the nodes with respect to each of |
- o the trigons of Dy. @
Here in a theorem, we show how the location of an arbitrary
“node v of D, with respect to an arbitrary triangle T of D,, can be
determined if the CH, C of D, is knc;wn along with the crossings of D,
While in this section we assume that C is given, in the next section we
demonstrate that all the CH’s of the drawings D, of K, with a set of
crossings can be obtained just by knowing these crossings.
First, we produce a proposition to be used in the' proof of the

above mentioned theorem.

Proposition 5.4

Let {1,2,3,a,B} be the set of nodes of a drawing Ds of@: Let T
dénote the triangle formed by (1,2), (2,3) and (1,3). If the crossings ‘,
of Dg are given and if we know the location of a with respect to T,

'\ /

then we can determine the location of B with respect to T.

<
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Proor ~

Assume that aelnt T.

(a,B) crosses exactly one of
the arcs of T or all its arcs, & pEExT
Fig.5.2.1.

(«,p) does not cross any of the
arcs of T or crossss exactly twoy ¢ p € IntT
of its arcs, Fig.5.2.2

A

ﬁo——/
Fig.5.2.1: Node « is inside T and P is outside T.

Pig.5.2.2: Nodes « ancf B are both inside T.

b

A similar argument is used when ais in Ext T.

\
\

\
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/\/n From the above proposition it is obvious that in- order to

~determine the location of a node « with respect to a triangle T, the

location of fa node B with -respect to T has to be known. This does not



>

\
represent an obstacle in locating the nodes of D, as long as C is known.

Any of the nodes of C can be used as a reference node B, since none of
these is located in the interior of any of the triangles’ of D,, as shown

in Fig.5.2.3.

Fi1g.5.2.3: A node B belonging to the CH is used as a reference to
determine tie location of « and «p with respec#to a triangle.

Theorem 5.5

Let D, be a drawmg of K, a» and let C be the CH of D,. Denote the
nodes of C by x and the remaining nodes of D, by v,as in Fig.5.2.4,
Knowing the nodes of C and the ccrossmgs of D,, we can determine

whether a node v is contained in a trigon T of D,. .

]

Iyt
Fig.5.2.4: A CH, C with nodes x, and nodes v inside C.
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Proof

The nodes of a trigon T of D, can be

e three x’s, as shown in Fig.5.2.5.a,
o three v's, as shown in Fig.5.2.5.b,
® two X's and one v, as s}\own in Fig.5. 2 5.c,

e one x and two Vv's, as shown in Fig.5. 2 5.d.

Fig.5.2.5: Trigons of D,,.,‘

To determine whether v « Int T or v « Ext T, we consider, along

with T and v, any node of the x’s which does not belong to T, say x,.

We know that x, € Ext T, hence by Proposition 5.4 we can determine

whether v is inside T.

O
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Determining the Conven Hulls
More than one non-equivalent drawing D, of K, might share the
same set of crossings X. In this section we show that the CH's of these
drawings can be determined by examining this set of crossings X.
Suppose we are<given an uncrossed C-F HC, C of a 'drav'ring Dy
along with the crossings of D,. The arcs of Dy, different from the arcs

of C, might be on either side of C, as in Fig.5.3.1.

Fig.5.3.1: An uncros C-F HC sC = (1,2,3,4,5,6,1)
of twa drawings Dy, Only in the second drawing,
all the arcs fall on one side of C, namely Int C.

If Cis also a CH of Dy, then all the arcs, different from the arcs
of C, mus'ﬁ;—in Int C. This happens only when the number of
crossings of Dy is (x). If k = 3, then all the arcs, different from the
arcs of C, are on either side of C.

» In the next proposition, given a CH, C of Dy and the crossings of
- 4

Dp, we show how we can determine whether C is a CH of D,.

Proposition 5.6
Let Dy be a sub-drawing of D,, and C be an uncrossed CH of D,.
Let v be a node of D, but not of D, and k> 3.

A%
' g
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+ v is in Int C if and only if there exists an arc (v,r) which crosses

(p,q) of Dy where p, ¢ and r are nodes of C.

Proof
(i) First we prove that
velnt C= (v,r) xgp,q)
The arc (p,q) divides D, into two sub-drawings. One of them
contains the node v. Let r be on the convex hull of the other sub-

drawing as shown in Fig.5.3.2. Tht™ arcs of C are uncrossed, Hence

(v,r) X (p,q).

( q-
Fig. 5.3.2: (»r) x (p,q) whenv is in Int C.

\

" (ii) Now we have to show that
) X (p,q) = wvelntc

Suppose v is irf Ext C. Since "C is uncrossed then any arc (u,i)

must fall Jcompletely in Ext C, as in Fig.5.3.3. Hence we can write:

ve Ext C= there exists no arc (v,r) crossing (p,q),

or equivalenily:
there exists an arc (v,r) crossing (p,q) @veint C.

N ‘ v,
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Fig.5.3.3: v e Ext C (C in heavy lines) implies that
* (v, r) cannot cross any arc (p,q) where p,q and r

are nodes of C.
RN .
The Rigorithm

" From the preceding sections we know that D, is non-rectilinear if
-and only if A is a sub-drawing of D,. Here we present an algorithm,
which on’being given the dimension n of K, and a set of crossings X as
its only input, determines whether K, has a réctilinear drawing D,
witl? the set of crossings X. /4,

The crossings are input to the algorithm, which first finds all the
uncrossed k-circuits C, of K, using the Depth First Search method [14].
From these d's the algorithm determines and retains the ones which
are convex hulls for drawxngs@! of K,. For each of these D the loca-
tion of each node v; with respect to each of the trigons of D, is then
deterrr“ned For each v, located inside a trigon T, the algorithm checks
to see whether vUT is A. If no sub-drawing A is found, then it is
concluded that D, is rectilinear. On the other hand, if each D,, has a
sub-drawing A, then it is concluded that there is no rectilinear drawing

D, of K, having the set of crossings X. .
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Step 1.0

Step 2.0

Step 3.0

Step 3.1

Step 3.2

Step 4.0
Step 4.1
Step 4.2
Step 4.3

N

L

Input the dimension n and the crossings of K,

Find the set C of all uncrossed k-circuits C, of K,
IfCis empty
Then Output:  There is no rectilinear drawing D,

having the given set of crossings

STOP
p—
i1 .

Consider an uncrossed k-circuit C, of 'C

I[F C;is not a CH of a drawing D,

Then eliminate C, from C

IFi=m (where m is the number of
uncrossed k-circuits C,), -

THEN GOTO Step 3.2° *  §

ELSE i« i+ 1 5

GOTO Step % 1

p < the number of CHs in C
[Fp=20 !
THEN Output: 7here /s no rectilinear drawing 0,

having the given set of crossings
STOP

11
Consider a CH, C, of C
Jje1

Consider a trigon T of D, (the drawing with
the CH,C, ), and consider the nodes v falling
inlnt T ~ .
IF there exists a crossing (v,a) X (B,6)
where «, § and 6 are the r}odes of T

-~

Y \a
[

! )

&
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THEN Qutput: Zhis drawing D, cannot be

realized rectiinearly
GOTO Step 4.5

Step 4.4 IF j= (»5) (the number of trigons)
THEN;i"Output: C,. 0, having CH C is rectilinear
STOP
ELSE j <« j+1 .
GOTO Step 4.3 N

Step 4.5 IF i=p

THEN Output: There is no rectilinear dra wing D,
having the given set of crossings

STOP
ELSE i & i+1
GOTO Step 4.1
In Appendix B, the corresponding computer program is presented.

The next chapter gives some of the results obtained by running the ,

computer program, followed by an analysis in Chapter 7.
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Chapter 6

RESULTS OF THE ALGORITHM

An algorithm which determines yv'heth;r there exists a rectilinear
drawing D, of K, is developed in the preceding chapter. In Appendix B
a computer program to implement this algorithm for n < 10 is pre-
sented.

All non-isomorphic drawings D, obtained by using the-algorithm of
Chapter 2 and presented in Appendix A.2 were input to the computer
program to determine the rectilinear ones. The results are given be-
low, along with the rectilinear drawings D,. Some drawings D;, D, and -

D,y are also shown here.

Results related to the non-lsomorphlchrawlngs 0,
By examining the one hundred and two non-isomorphic drawings
obtained in Chapter 3, it was found that:
¢ 15 drawings are rectilinear,
e 21 drawings are non-r:ctilinear and have a CH,
» 66 drawings are non-rectilinear and do not have

, a CH.

Their distribution related to their number of crossingg. is as follows:
} -

J
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N Non-rectilinear
Number of | Rectilinear Total number
Crossings D6 Hmc.: no Havg;g a DG
3 1 - - 1
4 1 - - 1
5 2 - 1 3
6 | - 2 3
7 2 6 1 9
8 2 6 5 13
9 2 10 5 17,
10 ! 8 - 9
1 1 17- 3 21
12 1 10 4 5
15 | 9 - 10
nul:.),‘:’,o, (5 66 21 102
Sy )
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Results for some drawings O, D, and D,,
In order to illustrate the possible results which can be reached by
the computer program, we present four examples corresp ding to four

different sets of crossings.

Rig.6.2: A clrawingl Dg with no CH's.

!
The correspondir{é/ computer output for the set of crossings defining the
drawing in Fig.6.2 is 7here is no rectilinear drawing D, having the )
girven set of crossings, which is obvious;ly the ‘ca“se.
The two drawings shéwn in Fig.6.3 share the same set of Ca(?ss—
ings. The first one has the CH (1,2,3,1) while the second has the CH

(4,7,8,4). Both are rectilinear drawing‘s.

72.




\\ Fig.6.3: Two drawings Dg with the same set of crossings.

Similarly, the two rectilinear drawings shown in Fig.6.4 share
the same set of crossings. The first one has the CH (1,2,3,1), while
the second has the CH (7,8,9,7). o ! )



Fig.6.4: Two drawings Dy sharing one set of crossings.-

A set of crossings X of K, is read by the algorithm which

determines that, there are three drawings Djy of K, with the set of

‘ mand (7,8,9,7). The d aw;ng with CH (1,2,3,1) is rectilinear since it

does not have a-sub-d awing equivalent to drawing A, as presented in .

. ’ .‘ Fig.6.5 .The two other drawings are non-rectilinear.
- ( o ' . ’ | ’
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% crossings X while having different convex hulls, (1,2,3,1), (2,3,10,2) .







In the drawing with CH (2,3,10,2), consider the -trigon T =
(2,3,5,2). It can be determined that, since' (6,10) crosses only one
side of T, node 6 is in the interior of T, as shown in Fig.6.6(a). But
(2,6) crosses (3,5), hence we get A as a sub-drawing of the drawing

having the CH (2,3,10,2), as shown in Fig.6.6(b).

- L2 X

Fig.6.6: In (a), node 6 is in the interior of the trigon
(2,3,5,2). In (b) (2,6) x (3,5) producing the -sub-
drawing A shown in heavy line.

In the drawing with CH (7,8,9,7) the crossing (2,6) X (9,10)
implies that node 10 is in the interior of the trigon T = (1,2,6,1),
since (9,10) does not cross any other side of T, as in Fig.6. 7(a) In

addition (1, 10) crosses (2,6) resulting in the sub-drawing A, as bhown

I

Lu 115.0./\1)). a
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(a) ¢ (b)
Fig.6.7: In (a), node 10 is in the interior of the trigon
(1,2,6,1). In (b), (1,10) % (2,6) producing the sub-drawing
A shown in heavy line.



thapter 7

, Analysis of the Algorithm
In Chapter 5 an algorithm that determines whether K h a
given set of trossings can be drawn rectilinearly is developed. Here we
prove two theorems which are used in determining the amount of

time required by the algorithm. Then we present an analysis of the

algorithm itself.

\
Background &‘% (, Q).

Let D ))e a good drawmg of the complete graph K, and let C be
an uncrossed k-circuit of K,. If the interior of C does not contain any
nodes, arcs or segments of arcs of Dn, then C is the convex hull of a .

drawing D', having the same crossings as D,. For convenience we call

it CH-circuit, as in Fig.7.1.0. -

~ 5
1 2
S )
$ 1
¢ 3 3 [

Pig.7.1.0: The dra'wing 05 in (a) has three uncrossed k-
circuits: (1,2,3,4,1) which is its CH, (1,2,3,54,1) and
(3,4,5,3). Only the third one is a CH-circuit. lt is also the
convex hull of Dg in (b).

We prove in theorem 7.3 that the largest ‘number of CH-circuits in
any drawing D, of K, is less than n. In Theorem 7.4 we show that

we cannot have more than 2(n—1) uncrossed arcs in any drawing D,

of K,. To prove these two theorems, the following two propoditions are

needgd .




Propasition 7.1
z Let D, be a drawing of the complete graph K,. If D, has the

maximum number of CH-circuits which can occur in a drawing of K,

then all these CH-circuits are trigons.

Proof (By Contradiction) -
\ h /I.:c D, be a drawing of K, having\the maximum number of cir-
cuits. Suppose D, has a ’ EH-circuit C which is not a trigon, say
C=(1,2,3,4,1), then beth (1,3), and (2,4) are in Ext C as in
Fig.7.1(1). / S
By removing only one of (1,3) and (2,4) from Ext C to Int C,
2 we obtain a drawing of K, non-isomorphic to D, which has at least
one CH-circuit more than those of D,, namely (1,2,3,1) or (1,2,4,1),

as shown in Fig.7.1(ii). -

4

@ S () ~
Fig.7.1: In (ii), (1,2,3,1) is a CH-circuit which does not exist in ().

Proposition 7.2
Let S; be a sub-drawing of D, consisting of the largest qumber of
uncrossed trigons, S, has at most 2n - 5 trigons containing no nodes in

their interior.

A\ f
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Proof (BYy Induction) X N

In 8;, the maximum number of uncrossed trigons having no

nodes in their interior is three as shown in Fig.7.2.

Fig.7.2: A drawing D; with three uncro:id
trigons containing no nodes in their interior.

Suppose that for S,_,;, the maximum number of such trigons 1s
2(n-1) - 5. We insert the n-th node v, .either in the interior of any
of the trigons of S,.;, or in the exterior of all of these trigons. In ei-
ther case, at most three uncrossed arcs (v,.) can be inserted, hence

increasing the number of trigons by 2, to 2n - 5 trigons as shown in

Fig.7.3.
O
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Fig.7.3: In (1) a node is inserted in the exterior of ail
trigons. In (ii) a npde is inserted in the interior of a trigon.

Next, we present two theorems which are useful in analyzing the -
algorithm. The first one establishes an upper bound on the number of
CH-circuits in D,, while the second theorem provides an upper bound

»

on the number of uncrossed arcs in D,.

Theorem 7.3
The largest number of CH-circuits in a drawing D, of K, dees not

.

exceed n-1. . /

Proof
From Proposition 7.1 and 7.2 v;re know that the maxxm:.zm num-
ber of the uncrossed trigons of D, having no nodes in their interior
cannot exceed 2n-5; however, some of these 2n -5 uncrossed trigons
are not CH-circuits because of the following. '
Suppose a node a is in the interior of a trigon T, then (a,B) must
cross one of the arcs of ' T wimnever B is in"Ext T, as shown in

Fig.7.4.

¢
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Fig.7.4: Node « in Wt T and node B in Exs
~ T implies that («,B) crosses an arc of T. )

Hence, either no nodes are located in the interior of any 3( “the
trigons, or exactly one trigon contains all nodes. This way we have a

maximum of n - 1 CH-circuits as shown in Fig.7.5. )

sy

yuudb,,’

» {)-
| | ‘F. ,v‘.
7

Fig.7.5: A drawing D, can have at most n—~- 1 CH-circuits.
. A

N
The largest number of uncrossed arcs in any drawing D, of K,

Theorem 7.4

does not exceed 2(n - 1).

Proof (By Induction

In D,, the™argest/ number of uncrossed ‘arcs is six as shown in
, ’/ Fig.7.6.

]




Fig.76: A Dy with the maximum
number of uncrossed arcs.

’ Suppose that for Dn..i, the largest number of uncrossed arcs is
2[(n - 1) - 1]. We add an n-th node, v, to D . If v is inserted in
the interior of a trigon (a,,ay, @5,@,), then at most three arcs (v,+)
are uncrossed. But at least one arc (a,, aJ) 1s crossed, hence at most
only two uncrossed arcs are added. A similar argument can be used

when v is inserted in the exterior of D,,, as shown in Fig.7.7
, _ 0 ,

Fig.7.7: Three uncrossed arcs (v,q«,) are added, while an arc
(o, uj) which was uncrossed is now crossed by (v,B).

L4

- . Analysis
The four steps of the algorithm presented in Chapter 5 are

considered and described with some details in the next three pages.

0
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Step *

1.0
1.1

1.2

2.0

2.1

2.2

2.3

2.4

Step Description Number of

Operations
* Input :
- Input dimension a;nd constant
number of crossings of K,
- Input crossings, sort them in O(ﬁ*)

ascending order and reorder
a crossing (a,b) X (c,d) such
that a<b, ¢<d and a<c

* Find all uncrossed k-circuits \

C; of K
- Find all uncrossed edges of K, o(nt)

" - Initialize arrays to be used . 0(n?

in the Depth First Search
procedure

- Depth First Search procedure , O(n!)
to determine all C;. If none
exists Output X, 2as no
uncrossed circuits, tRere Is
ne rectilinear drawing D, )
having this set of crossings Stop

- Order each C;, such that 0(n3)
G(1) TG for j=2,3,.. .,k
and. C;(2) <C;(k) where K is the
number of vertices of C,

. - Eliminate duplicate C;’s o(n3)

and form a set € of the
remaining C;'s *

* Find all CH's of K, by o(n?)
considering each C; of ¢
and determining whether

it is a CH-circuit : /

- Determine all the nodes v,” o(n2)
different from the nodes of
G ) ‘




!

3.2 - Determine the number of o(n®)
) crossings X involving
@ 4 only the nodes of C;. If

3 x# (K,), then ¢; is not a CH.
Eliminate C, from €. IfC 1s

empty and no CH has been
found, then Output X, »as no
‘CH, theFe fs no rectilinear
draying D, having this set of

crpssings and Stop, else
Step 3.0

3.3 -Ifk=3thenC/is aCH, and | 0(né)

Step 3.0
- If x=(x,), then for each node v

determine whether there is
a crossing (v,a) X (b,¢) where
b and ¢ are nodes of C;. If
there i{s a node v which has
no such crossings then C; is not a
CH. Eliminate C; frome. If ¢
becomes empty and no CH has
been found, then Output X,
has no CH, there Is no rectilinear
drawing D,, having this set of
crossings and Stop,; else
Step 3.0

4.0 | * Consider a CH, ¢, of € o(n®)
v = For each trigon T of D,

determine whether there is
a'crossing (v,a) x (b,c) such
that visin 1T and a,b,C

are nodes of T

4.1 - Determine all nodes 4 0(ns)
located in wwe T -
4.2 - For each v determine - 0o(n%)

whether (v,2) % (b, c)
- H thereis no T and v
Ior which such crossings
. oecur then Output D, saving

CH, & iIs Rectilinear, else Output
D, cannot be realized
rectilinearly with CH ¢;. A

)
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Ellminate C, from €. If
- € is not empty then
. ©  Step 4.0, else Stop.

~

Although the bound used in Step 2.3 is never reached, due to‘the
existence of crossings when n > 4,we know that this step might require
as much’ as O(Zf(nﬂ where f(n) is a function of n as illustrated in

Fig.7.8. : ,

i~

)

: S

Fig.7.8: Only the uncrossed arcs of a drawing D, are
shewn. The remaining arcs of D, would be in Ext C,
where C =(1,2,3,...,n,1). The number of uncrossed
k-ciréuits in this drawing is 2¥ where r =(n - 1)/2;

while the number of CHecircuits is just (n + 1)/2.
On the other hand, from Theorem 7.3 the number Sf/ CH-circuits
" in any drawing D, of K, is less than n. Hence, if in adéit% to the set
of crossings of K, we are given the possible CH-circuits thén Step 2.3
will be skipped and the time required by the algorithm will drop to
O(n’?, The drawing in Fig.7.8 illustrates the fact that the number of

uncrossed circuits is not proportional to the number of CH-circuits.




Chapter 8 0 ¢

: AN ALGORITHM FOR FINDING RLL NON-ISOMORPHIC
RECTILINERR DRAWINGS D, OF K,

Betliground )

In-this chapter we present an algorithm to find all the non-iso—

morphic rectilinear drawings D, of K. The input to the algorithm is the
set of crossings corresponding "to each of the non-equivalent rectilinear
drawings D,;_i of K,y. For each of these drawings, the algorithm gen-—
erates a set of rectilinear drawings D,. The set of all the sets of these .
drawings D, contains all the non-isomorphic rectilingar arawings D,.

First we ;;roduce aa theorem™ on which the algorithm is based
Then we present the algorithm. )

Before proceedxpg with the theorem, we m.roduce the following

definition which is requn'ed for the theorem.
.

Oeflinition n )
Let (v,a) and (v,B) be two arcs of Dy. If the area bounded by,
the triangle having node$ v, « and B, does not contam any arcs or

segment of arcs (v,¢), then (v,a) and (v,p) are ad/acent

e

:
Theorem 8.1 Coa
,

vom o .
Let D, be a rectilinear drawing of the complete graph Kj. Let the

nodes of D, be denoted by 1,2,3,...,n such that the arcs (n,i) and

‘(n;i +1) be adjacent and such that the node n be on the CH of D, as
, %hown!ih Fig.8.1.1.

) 9
. ’
o
. i
\ . \
- . b
. v, f
- f €
- .
f
.
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] e . .
:‘é - , If all the crossings involving the node n are given, thén all the
remaining crossings of D, can be determined. _
3
u‘ N (
> : ~
0 £ ~¢" T I P ‘

f - o . Ny -

-Fig.8.1.1: Knowing that all the %Yossings involving n‘é’e ‘
6 are (6,3)x(2,4), (6,3)x(2,5) and (6,3)%(1,4), we can
determine that the remaining crossings of D, are
*(L,4)%(2,3), (1,4)x(2,5) and (2,5)x(3,4).

v ~
'3 - Proof b N
Let l1Sr<s<t<usn-1 (1)
’ then  (r,t) may cross (n,s), (s,u) may cross (n,t), @
> g and (r,u) may cross any of (n,sZ’ and {ngt). -

By considering all the possible sib-drawings formed by n,r,s,t and u

and their corresponding arcs, we get eight sub-drawings rep}esented in
L~ Fig.8.1.2. . . c

r v P4
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<
Fig.8.1.2: The eight possible sub-drawings with
nodes n,r,s,t and u, and their corresponding arcs.

From these sub-drawings we obtain the following:
' \

‘ (rt)ll(ns)and(su)ll(nt)] \
: (rt)x (su)a :
y [(rt)x(n,s) and (su)x(nt)l ’

. [{r, u) x (n,8) and (r,u) || (n )]’
(tu)x (st) &
(ru)l|(ns)and(ru)x(nt)l!

/

[



3"

/’

We conmder every possible ‘combination of four nodes RSt and u such .
that the inéqualities :(1) are satisfied. From (2), knowing all the
crossings involving the arcs (n,s) and (n,t) _is equivalent to knowing
whether (r,t}X(s,u) and whethet (r,u)X(s,t).

. \
Backgroundjio the Rigorithm

Let D,., be a rectilinear drawing with k nodes on 'its CH, €. Con-
sider one of the nodes of C and label it n-1. Label the remammg nodes *

such that (n i) and (n,i +1) become. adjacent, for i = 1,2, ..., n=-2 as
shown in Fig.8.1.3. B N

Fig.8.1.3: A drawing Dy being labeled such that
(6,1) and (6, 1+1) are adjacent, (i =1,2,3,4).

>

We call the area bounded byEC, 'hl-t C;-and we call the remainder .
of the plane, ExtC. We add a node 1 to Dy, such that (n-1,n) be.
in- Ext C and (n-1,n) hnd (n-l n-2) be adqacent as shown in

F13814 o :. - 4
‘ . ,.

4




Fig.8.1.4: The shaded area A indicates -
-the possiblefocations for node n.

By considering all the possible mappings of an edge (n,i), we note
that they cannot exceed 2»-i-2, This is of course due to the fact that
when rhapping (n,i), only one of.the following two situations can occur |

2s shown in Fig.8.1.5:
(ni)x (n-1)) i=12,:n0-3
~@pll@-1) i<jsnz .\

. .
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R

(d5) (by)

P Fig.8.1.5: Two |mappings are possible for (5,2),
(a;) & (a;); and\the number of mappings of (5,1)

cannot exceed 22} We notice that (bs) is not a good
drawing.

!

We ‘input the crossings of D,., to the algorithm which considers
each of the possible mappings of each edge (n,i}. Some of these map-
pings produce rectilinear drawings. Only these rectilinear drawings are

retained by the algorithm.

The same process is repeated with each of the nodes of C » hence-

the algorithm generates a set of drawings containing ‘all the non-

isomorphic rectilinear drawings D, which have D,., as a sub-drawing

.y o .
and a node n located in ExtC as shown in Fig.8.1.6.

]



Fig.8.1.6: The CH, ¢ of a drawing D,_, is shown in
heavy line. £ has k nodes, and ExtC' is divided in k

regions (shaded areas). A node n is placed in one of .
the k areas and all rectilinear drawings D, consist- - .

ing of the union of D,_s and the arcs (n,i) are ob- © - |

- tained. The node n is then placed in another ‘shaded
area to obtain another set of rectilinear drawings
D,. The process is repeated for each of the k shaded

areas, The result is the set of all r‘ectilinea; draw-
ings D, satisfying the following: |
__— 1. Dp.4 is 2 sub-drawing of D,

- " 2. node n {s on the CH of D,. ‘o

Let D, be the set of all non- qu,uvalent rectilinear drawxngs with

n-1 nodes,

. @ A

<

1ot nn-1={Dn-1 'Dix—lzl Dn-is’ .- n-iq}1 Ll
= If Dpogd has a 'CH with k nodes then the nodes of D,.43 might have to

be re-labeled k times. We denote the set of crossimgs using the i-th ,la-

-

wh

belmg of the nodes D,_4J by Xy.
‘ F'mally, let P be the set of all values of -~

“ =

/
{Pn» P2,1 P2,25+ +» Px, o Px, 27+ 5> Pr,ks - oo Pn-s L Pn-sz»/'-: n-sn—s}
where p, , takes the value 0 or 1 dependmg on whether the two arcs

(n,n-k-2) and (n-1,n-1-1) cross.

7
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- The Rigorithm . .
Step 1: ‘Input: (1) the dimension n |
(2) the number of crossings of Dy_,J,
- where D,y belong to D,
(3§the number of nodes on the .CH of \
(sigghe number of o/
(4) ‘the crossings X, obtafned with the , ’

— first labeling

. (5) the q-1 ssets of labels to be used in.
> ‘ generating X ,Xy, . .. Xy

(SN

o

Step 2 jie1 L “
) Step 2.1 ie1
- Stepr2.2: K< XJ

~

. mée1
Step2X: ket
O Step 2.4: le1, _

Step 2.5: IF - p=y,1=1 where pm = Pk:x of the m-th set of P
{
" THEN X eXu(nn-k-2) X (n,n—-1-1)

. IF . =k
 THEN . IF  k=g-3 |
. THEN Step3 - L
FLSE ke k+l - |
'\' Step 2.4
‘ ELSE . lA—Al-fl T .
| Step 2.5 T a
Step 3: ' Consider e;ch corr;binag:ion of nodes r,s,t along with

the two nodes n and n-1, where r<s<t<n-1,;-and
let S, ,¢ be the sub-drawing consisting of the nodes/)
r,s,t,n,n-1 and their corresponding arcs.




‘\' v — -k

/ —— . . " '
Step4 - [F S;,4 is rectilinear for each otlY the *
,,,combmatlons of r,5 and t | :
% - °  THENfusing Theorem- 8 1, determme the remammg
crossings of D, and [y .
L Output the set of crossings % <{>f D, N
Step 5: IF m<M (where M is the ntj&nber of sets P of P) *«
THEN m < m+l ' ’,‘ ‘
Step 2.3 l\ . .
) Output ihe,crossings of a ',, ¥
step 6: é“wkq o . S
. THEN i « i+l )
' Step2.2 ' Lo
Step 7: IF’ j<J (where J is the number of drawmgs b, -y to be

‘ read by the prbgram)
TI‘-IEN Jj e« jHl
- Step 2.1
ELSE  STOP.
_The set of drawings ‘D produced by the algorithm cor%itains all the

4

non-isomorphic rectlhnear drawings D,. A computer program to obtam ‘
all D, from the non- equlvalent drawings D,_; has been developed and
jits listing m\'lbroduced in Appendlx C.1. Al non-lsomerphlc rectllxneqr
drawings D, are given in Appendix C.2. Results which are obtained l;y
implementing the algorithm for U, and Dg and by using the ‘corre‘s;wpond—‘
ing computer brograms for D(,Aand’ D, arqg;presented in the nextf chap—

r

ter.
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Results of the Rligorithm

%
¥

In this chapter, we find all the non-isomorphic rectxlmear draw-—
ings D, using Dp.4 when n € 7. Usmg the rectilinear drawmg Ds, we

obtain exactly two drawings D, as shown in Fig.9.1.

Fig.9.1: Two drawings D, are obtained from the drawing Ds.

VS

We call ‘the first drawing Dy, (a)

, and the second one,

(b).

Using (a), “we qbiain the four drawings D;, (a.1),

(a.2),

(a.4); \using (b), we obtain the four drawings (b.1), (b.2),

(a.3) and
(b.3) and

(b.4) as shown in Fig.9.2. The three non-isomorphic rectilinear
- "drawings Dy are among these eight drawings.

mg o




—— £

(b.3) (b.4) _
Fig.9.2: Eight.drawings Dg are obtained from the two drawings Dy.

A
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T
Py,
1
]
h

. o~ .‘ . ‘ ~ )
We consider one of the-three drawings Dg:as..shown in Figs.9.3 and
9.4. | S |

<
= {

)
> 2

-

(@) )

Fig.9.3: In (a), the same drawings D, are obtained by placing
the sixth node to the right or to the left of the light line. We
then note that it suffices to consider the sixth node in the re-

- gions R1 and R2 in (b) since these two regions will cover ail
the half plane-on the right of the light line.

¢



"Fig.9.4: All rectilinear drawings D, obtained by -
/ considering the sixth node in region R1. .

~

First, we place the sixth node in the region R1 to obtain the

_ rectilinear drawings shown in Fig.9.4. In a similar fashion we consider




»>
ae
Y

. ’ . N
e Iy - _‘ - 5
s 7. . . , - .
@ : the sixth node in the region=RZ to obtair a set of rectilinear ‘drawings
& e - \ o
D, 'as shown in Fig.9.5. o o
e ) \
* ) ° o“
o Flg.9.5§ A node v is placed in the region R2 and drawings Dy ,a'rg

obtained by” connectmg v to the nodes of Dg in every possible way.
: . . . 7.
@ The two other drawings D; as shown in Fig.9.6, are treated similarly

to obtain all the, rectilinear drawings D,, as shown in Fig 9.7,

-

X

.@‘

| L
. ‘\ ~‘,/////////3

(/ .
2 - (a)
%%
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¥ -
Fig.9.6: The drawing (a) is symmetric about the
/ thin lirie, only the regions R1, R2 and R3 need to be
considered. In (b), we consider only the region R.

A
A
x-S

~ - .
) |
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Pig.9.7. All the non-equivalent rectilinear drawings Dq.

The sixteen drawings ‘D‘,, given in Fig.9.7, are used to obtain all the
non-isomorphic rectilinear drawings D;. The total number of these '
dravvililgs is one hundred and tv\};.nty-two (122). The following table
represents their distribution by the number of crossings and by’ the
number of arcs of their convex hulls. A listing of the computer pro-
gram which i’las generated the one huﬁdrgd and twenty-two D, is given

in Appendix C.1.

~
A
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Number of Non-isomorphic Rectilinear D,
(By number of crossings and by aumber of arcs of CH)

No. of o
:‘o. rcsu:? 3 \'4 5 6 7 | g:;;‘lngs
Crossings , N
9 3 3
11, 1| 11
13 12 ‘ i2.
15 9 | 10 19
17 1 J 21 | 22
19 - 21 | 1| 22
21 6 4|\ 10
23 L | 10 -\ 11
25 s |7 5
27 || 2 |\ 2 , 1
29 1 T
31 1 I
35 || - 1 1
No.of . ! "R
Drawings 36 59 22 4 1 122
—
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Chapter 10

. P
:":

Analysis of the Aigorithm

»

An analysis of the preceding algorithm 1is presented in this
chapter, whereby we show that the number of operations required by

the algorithm is
a2

. O(pxnx2? ) °
'\p being the number of drawings D,_, used to generate the drawings D,
For ‘a given rectilinear drawing D,_, with arcs (n~i,n12), (n~-1,
_n—-3),...,(n-1,1) as shown in Fig.10.1, we generate the arcs (n,1),
where i = 1,2,;. .,n-2. A node n is placed in the area bounded by the
extension of the arc (1,n-1) and by the arc (n-1,n-2) and its exten—
@ sion as shown in Fig.10.2. An arc (n,i) may cross any of ':he arcs (n-
1,j) where i< < n-2 as shown in Fig."1'0.3. \

09

i
>

Fig.10.1: The arcs (6,1),i=1,2,3,4,5 of a rectilinear drawing Dy.

RIS
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o . Fig.10.3: An arc (7,1) may cross alt of the arcs (6,J) as in (a,1),
" or some of the arcs (6,4) as in (b,1), or none of them as in (c,1).
| An upper bound on the number of drawings D, which could be

generated usinti rectilinear drawing D, _, is

w4+ m

kx2 2 t | ‘ -
- .wherg m=n-3 and k is the number of arcs of the convex hull of D,

own in Table 10.1. ‘ .

' ANR=T
» e .



o
21?-2-2—1 D, generated by | Non-isomorphic
n . “Algoritha rectilinear D
3F) 2) |
4 2 2 2
5 8 [~ 7 3
6| 64 . 46 15,
7 | 1024 608 122
.
Table 10.1: 3 :
Column (1) = the largest number of drawings D,
which could be genefated using one
! rectflinear drawing D,.s, (m=n-3).
Column (2) = the number of drawings generated by

A Y
’

>

- the algorithm using all the non-

equivalent rectilinear drawings D, 4.

" The number of D, in column (2) are obtained when we take ad-

vantage of obvious symmetry which exists in some drawings D,.;. The

‘num‘lﬂ)er of generated D, is-generally higher if- symmetry is discarded,

Table 10.2.

“

3t

-
13
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SYMMETRY . SYMMETRY TAKEN
3 DISCARDED INTO ACCOUNT
" |Pat "o | GENERATED | D_. | GEneRATED |
* | INPUT Dn INPUT D, )
0 12 &) {4 (%
4 1 3 | - 6 1 2
5 2 ‘ 7 24 q1 2 ¢ 7
6 | 3| 12 94 6 46
7 | 16 | 58 867 a1 608
Table 10.2: ‘
Column (1) =  Number of the non-equivalent rectilinear draw-
ings Dy-4.

Column (2) = Number of sets of crossings “input to the algorithm,
without taking into consideration the possible
symmetry in a drawing. If a CH of a drawing has

- k arcs,then the crossings of this drawing will be ,
input k times to the algorithm using k appropriate
- ' different sets of labels.
Column (3) =  Number of generated drawings D, when poss:lble
© -, symmetry in drawings is not considered.

Column (4) = Number of sets of crossings input to the algorithm, w

. when obvious symmetry in a drawing is taken into

account. -

Column (8) = ‘Number of generated drawings D, ‘when obvious
- symmetry is taken into consi@eration.

i
4

We have shown that thé, potential number of dfawings D, to be gen-

'

erated for each D, is
, L
' m3+ m

N kx2 2 « . v
k being the number of arcs of the convex hull of D, and m=n-3. In
the following we look at the details of the algorithm to determine the

number of operations required to generate each drawing D,.

’
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Step *

¢ .

Step Description Number of
Operations
" Input the data related to D,_, 0(n%)

which is used to generate
the drawings D,. This data

- includes the crossings of D,_,

©

Set the relationship between 0(2m)

each pair of arcs (n,n-k-2) and , ‘
(n-1,n-1-1), where (K—3)2+(n—3)
n-k-2 < n-l-1 mz=. )

) . ' 2
Check whether the sub-drawing O(nd) -

consisting of the nodes r,s, t,n-1,
n and their corresponding arcs is
rectilinear, where 1<r<s<t<n-1

—

Determine the remaining . o(n?)
crossings of Dy, . '
]
Cutput the crossings of D, 0(n4) . 3

Repeat steps 2 to 5 for g
each set of labels of D, _,

' Repeat steps 1 to 6 for

each drawing D,,_,.

We go to Step 6 k times for each D,_,, where k is the number of » ]

\gcs of the convex hull of Dn_1 Step 7 is repeated p tlmes wherd p is

the number of drawings D,,. Hence, based on this and the number of

operations at Step 2, we can conclude that the algorithm requires no

"

more than pXnX 2m,
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Chapter 11

Conclusion
Ih this chapter we first summarize the results obtained in the
thesis, then we shed light on some problems which coyld be considered

for- future research.

&

In the first part of the thesis, related to generating all the non-
isomorphic drawings D, of the complete graph K,, we conjecture that

any good ‘drawing D, of K, has at least one C-F HC, C. An algorithm is

developéd to obtain all such drawings. The only input required by the

algorithm is the dimension n. Upon reading n, the algorithm generates
all the édges e; of K, different from the edges of C. For each edge e,
the algorithm constructs all the arcs a;; into which ¢; can be mapped
without violating any of the rules of a good drawing. The good draw-
ings are then obtained and only tﬁe non-isomorphic good ones are kept
by thepalgqrithm. A computer program is written and results are ob-
tained for n = 6 (102 drawings) and for n = 7 (11556 drawings). The
~ drawings for n = 4,5,6 are produced manually in Appendix A.2. The
complete set of all the noq-isorﬁorphic drawings D, of K; is generated
by the- program in list form in Appendix A.3. Results obtained by
Newborn and Moser [19] .for the n-circuit a;nd the n-gon optimal
drawings are confirmed for n&=“'7. Exactly two non-rectilinear -drawings

D, have the lérgest number of C-F HC's in any drawing D; of K,. This

number is 96. Only one rectilinear drawing D, has 92 C-F HC's which

is the largest number of C-F HC’s in any rectilinedr drawing D, of K,.

109
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A characteristic of the rectilinear drawings D, of K, is obtained
in the second part of the thesis. This characteristic is based on the

existence of a §peqific drawing D, of K, as" a su‘i)-drawing_ in or'xly‘ the

non-rectilinear drawings D, of K,,. For convenience we call this D,," A.

- This drawing A has a node, say v, located in the area Bounded by the

arcs (a,b), (E,c) and (a,c), such that (a,v) x (b,c), where a, b,
and ¢ are the three other nodes of A. Using this characteristic, an
algorithm is developed to determine whether there exists a. rectilinear
dr&wing D, of K, which ‘has a given set of crossings, X. The only in-
puts required hy the algorithm are the dimension n and the, set of
Krossings X. Upon reading n and X, the algorithm &nds the uncrossed
edges of K,, all uncrossed k-circuits and then all the convex hulls,
each of which has a corresponding drawing D, of K, having the set of

croséings X. For each of these drawings D, it verifies whether D, has a

sub-drawing equivalent to the drawing A. If one of these drawings has

the characteristic of rectilinear drawings, i.e. does not _Y‘\ave the
mdrawing A as a-sub-drawing, then the algorithm stops after printing
the convex hull_corresponding to this rectilinear drawing; otherwise it
coricluges Lthal lhe sel oi crossings £ does not determine any recixlinear
drawing D, of K,. By applying this algorithm to the set of the non-

isomorphic drawings D, obtained earlier. in the thesis, we can deter-

non-rectilinear. We note that 66 of the 87 non-rectilinear drawings D,

do not have a convex hull.

. ’ . .
In the last part of the thesis, an algorithm is written to generate

all’ the non-isomorphic rectilinear drawings D, of K,, -using the non-

[
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) \mine that 15 out of the 102 drawings D, are rectjlinear and 87 are “
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equivalent rectilinear drawings’ D,y of K,.;. The correspﬁnding com-
puter program is implémenfed for n=7. The.sets of crossings of the 16
non-équiva;féﬁt drawings D, of K, are used as input .to the computer
program. The completef set of all the non-isomorphic rectilinear draw- ~
ings D,, vghié:h consists of 122 drawings, is o{:}ained. The actual
drawings are displayed in Appendix C.2. )

In the following paragraphs. we direct the reader’s-attention to
some 9f the problems which could "be viewed as poss(ibla feséaréh prob—

o

lems. - _
The first of these problems-is to confirm the conjecture of Chap-

ter 2 stating that: “£very good drawing D, of K, has at' least one C-F
AC While thi§ conjecture can be éasily confirmed for the rectilinear
drawings D, of l{n, it is apparently an extremely difficult problem to
resolve for the case of non-rectilinear good drawings. ‘

The algorithm generating a?l\the non-isomo}phic dravgir_lgs D, of ‘
L\ K, requires a large amount of time when implemented for n=7. Im-

provement in the efficiency of the algorithm, coupled with the in- ‘

creased speed of the new generation computers, might pave the way

| to implement the algorithm for larger values of n. Such improvement

|
1 " might be obtained if we can find a way to determine isomorphism for ‘
larger numbers of drawings without actuéll'y generating these draw—“ |

ings. We might then be able to obtain, for example, all the non-iso-

morphic drawings Dy of K3 or the complete set of all crossing optimal

- ~ drawings Dy of K, and Dy of Ky. .
» To determine whether there is a rectilinear drawing D, of K,
having a given set of crossings, ‘the algorithm of Chapter 5 must first
N » . .-
11} - ’
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find all the uncrossed k-circuits in order to obtain all the possible con-
~ vex hulls. The large number of these uncrossed k-circuits reduces thce}
efficiency "of the algorithm. One way to eliminate this.might be to

obtain the convex"hulls without requiring all’ the uncrossed k-circuits. v
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—

¢ -

e 112 "




- v

" APPENDIX A.1 :

< . & —_— - |

PROGRAM TO GENERATE ALL NON-ISOMORPHIC '

GOOD DRAWINGS Dn OF K o - i
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MAIN H
INTREXTR:

SEGCRS

ISOMOR
NODRSP
ARCRSP
. ARRNGX 1

SORTX 1

" 4hen Xy

INTRCHG

% ".I. GENERAL DIAGRAM

. BATH =
. PROGRAN
) Y '3
|
wgtfi?nsxrn SEGCRS 1SONOR
y 4 ‘ } Y
7 | nommsp ARCRSP ARRNGY SORTX
T ]
INtRCHG |e |

o

Generates all the non-isonorphio yood dnuinqs Dn of K .
Seleots the good arcs into whieh an edge @ of E oould go mapped,
where I is the set of edges of K different from the edges of €
and where C is & C-F HC of K |

(The set of these good arcs Sm be denoted by A,)

Determines whether two arcs of A oross and

whether their érossing will lead 4o & good drawing,

Determines whether two drawings are isomerphio, 3

Caloulates nodes’ responsibilities, N

Caloulates aros’ responsibilities,

Arranges the nodes corresponding to the orossing (a,b)x(e,d)
such thatt acb , od , acb, ‘

Sorts a set of orossings in ascending order

such that if x =(a,b)x(o,d) and x =(e,f)x(g, M

is listed Defore xj whenever the number abod—is smaller
than the numbep efgh, ’

He note that n is assumed to be smaller than 0.

For n)i8, the subroutine will need some modifications,
Interochanges the values of ’wp variables p and q, suoh that p
takes the value of q, and q takes the value of p,

"
———,

P
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5

¢ aq

GENERGL FLOWCHART

(srnnr) :

Y

\\ INPUT n }/ S
’ '

I'Y w_

¢onsider a CWF HC € of Kn v
Generate a set K of all the
edges of Xn except those of C

R

Generate 2 set A of all q%od
aros lnto whi 1)
edges £ couid be nappe .

.~
- 4

y ™

Nt

]
Let D be the set which will '
contain the non-tsonorphto
Xnitiallv l) is enptg. .
Y .
ﬂith the ares of C,-consider [als
& new subset S of arcs of A
suoh that eabh edge of E has
exaotly one arc in §.
Y e S
Proceed to form 2
drawing Dn
! YES
« Do Are "
the ares there any
- of S form subsets S of R
good which have not
drawing Dn been
considered
yet
7,
\
.
. e

this drawing
isgnorfhlé to anq
ngs in.D

“8dd Bn to the set of all
non-isomorphic drawings D,
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%\5 nerate all the good drawings D. of K. having at least
»
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II- COMPUTER PROGRAM (FORTRAN 77)

Jﬁi LA A AR R R A RS AR ARl R R R LR R RRARRSRRRYRRYX R RRRR &)

Siven sufficient space and time; this program will ¢

obne C-F HC, C. The only input required by the program
i n. ¢ . .

The program consiats of the following four parts

PART I : Given n, the program will generate all the
edgea (a,b) vhich are different from the
edges of C.

PART II : For each edge (a,b), the program’will
generate all the good arcs into which
(a,b) could be mapped. '

In Part I and Part II, the nodes of Kn are denoted by
the odd numbers 1,3,5,.... ,2n-3,2n-1 and the edges of
Kn are denoted by the even numbers 2,4,6, ... ,2n
vhere 1 1a the edge (i-1,1i+1) for 1 < i < 2n-1 , and
2n is the edge (2n-1,1). In both parts, the program
agsumes that the vertices of Kn are labelled such

that the C—FCHC,%C, is (1,3,5, ... ,2n-3,2n-1}1).

,

PART IIIX: For each pair of arcs corresponding to two
distinct edges (a,b) and (¢,d), the program
will determine whether Ya,b) and (c,d)
cross each other, and vhether they crosas
more than once.

; .

In this part of the program, the nodes of Kn are

-denoted by the 6dd numbers 1,5,9, ... ,4n-7,4n-3 such !

such that C becomes (1,5,9, ... ,4n-7,4n-3,1). Each srce

c = (i1,1i+4) hase twvo points labelled i+1 and 1i+3, such =«

2 3 % % ¢ % 3 % 4 3 8 3 2 8 0 3 3 8 % % % 5 3 B 3 3 2 % 8 % S 388

that wvhenever c is croeggd, it will be crossed in eitherw

i+1 or 1+3. '

*»
L
. N . ! L 4
PART 1V In this part of the program, all the »
~ non-isomorphic dravings are genedated. »

*

L]
*
lQQ”Q.QQQ""IQ"’Q'QQQQ’.’Q'.'O‘QQQQQ'QQQQQQ’QQ."QQ'O'QQ’

-
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IMPLICIT INTEGER*2 (A-2)

*
*
EDGE(., 1) , EDGE(.,2) will contain the edges of Kn »
different from the edges of C »
vhen the vertices of (Kn are »
labeled 1,2,3,...,n *
®
EDGE2¢(., 1), EDGE2¢.,2 ) vill contain the sane edges, »
but vhen the vertices are *
. labeled 1,5,7,...,2%#n-1 *
*
NEDGE(.) will rofor to the edge number »
*
ADDT(i+1) = the nunber of good arcs into which all the «
i edges could be mapped '
»
NUMARC(i+1) ‘= the number of arcs related to any edge »
belonging to the i-th group of edges. »
»
DIMENSION EDGE(14, 2),EDGE2(14, 2), NEDGE (294), ADDT(lS)
DIMENSION NUMARC(4)
»
»
V(.) will contain a good arc of Kn »
ARCS(.) vill contain an arc of Kn, usually not a“g?od "
arc : »
»
MARCS(.,.) vill contain all good arcs of Kn , »
‘different from the arcs of C. > .
Ay *
DIMENSION V(6), ARCS(6), MARCS( AE)
~ »
INDX(.) and IARC(.) will be used {to generate the »
drawvings D, ’ »
»
INDX(1i) = %ﬁ? i-th arc of the drawing on hand *
! *
DIMENSION INDX(14), IARC(14) N g
LJ
INTR(.,1) , INTR(.,2) will contain the segments of)arc »
- located in Int C »
- . . »
EXTR(., 1) , EXTR(.,2) will contain the segments of arc *°
: - located in Ext C »
»

DIMENSION INTR(24, 2), EXTR(24, 2)
5

117
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¥
ARCL(.) , ARC2(.) = a pair of good arcs of Dn

Each pair of arcs of Dn is considered in order to
determine vhether Dn is a good drawing.

DIMENSION AR1(2,'7),AR2(2,7),AR3(2,7),AR4(2,7)
DIMENSION INDX1(7), INDX2(7), NXARCS(7)
DIMENSION ARC1(7),ARC2(7) ,

C.

- N

MX(i,J) will contain a value indicating vhether the
i-th arc crosses the j-th arc, and vhether
they cross more than once

DIMENSION MX(294, 294) .

NODES(.) = nodes of the drawving on hand

T X1¢.) X2(.),XQ(.),X4(.) = orossings of the draving
<fk\ on hand (/?

RSPND(.) = nodes responasibilities -

RSPAR(.) = arcs rsponsibilities

T I I NI N

DIMENSION NODES(?) Xlg;S) X2(3%5), X3(35), X4(33)
DIMENSION RSPND(7),RSPAR(21)

| )

SNODES(.J = nodes of the drawing to be compared -glinii

the drawing on ha

cromsings of the dfuving
to be comparediagsinst
the dflVng on hand

SX1(.),SX2(.),SX3(.),5X4«. ) =
h!

SRSPND(. ) = nodes responsibilities of the drawving to be
compared against the drawing on hand

SRSPND(.) = nodes responsibilit 6f the draving to be
compared against the dr-vag on hand

SIkDX(i) = the i-th arc of the draving to be compared

against the drawing on hand :
DIMENSION SNODES(7),SX1(35),SX2(3%),SX3(35),S5X4(39)
DIMENSION SRSPND(7), SRSPAR(21) |

® DIMENSION SINDX(14) N -

r-3 [4)
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el

MNX(1i) = number of crossings of the i-th non-isomorphic
drawing

)
X1¢i4,.), ..., X4(i,.) = crossings of the i=th
non-isomorphic drawing

HNODES(i,.) MRSPND(4,.), MRSPAR(i,.) = nodem, nodes and
arcs rosponsibilities of the .
j. ~ 1-th non-isomorphic drawing
MINDX(41,3) = ¢ j-th arc of the i-th non-isomorphic
draving

““‘r‘,“‘#"“

rd

DIMENSION MNX(35000), N
MX1(35, 3000), MX2(335, 5000), /

»
. MX3(35, 5000), MX4(35, 5000),
» MRSPND(7, 5000}, HNQDESK?,SOOO) MRSPAR(21, 3000),
» MINDX (14, 3000) )
»
° »
. ‘ . .
. »
v L W
. 8 ,
»
NNX(i) = number of dravings wvith i crossings : »
. . »
DIMENSION NNX(33) ¢
»
v & - »
ISD1(.) will be used in comparing the first n »
»*

elements of INDX(.) against thosmse of
~ MINDX(., .)

»

" DIMENSION 1501(70.ISD2(7),ISdS(?),ISO4(7),SYK(18)

DATA SYM/1,2,8,7,6,5,4,3,13,14, 11,12,9,10, 16,15, 18,17/

7

WRITE(», *(1X,’* I NP UT N°’)*)
READ(», *(I2)’) N

NML & N-1

NT2 = 2«N _

NM4 = N-4 ) . , e
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ERERBARS
Yy IYY Y
RRrRBRRR.
ARRNRRRN
ARt RRRRY

PART I

GENERATE

THE EDGES

sRnanenn -
feennaee
cnasenen
tRenanne
reecrnne .

QQQ&GQQ*Q*QQQQQQQQQC'QQQQ“’Q'QG'Q’QQ*QQ.‘QQQ"QQQQG.".QQQ‘Q

Qii’lfi"'i'i*ifQ'!lﬂ"iil'ﬂQi"".""'QQQQQQ'.Q'G'QQ*'QQQ'
“ .

» -
L *
- ™ q *
» Given n, all the gdges (a,b) different Irom‘tho .
-» »
» edges of C, are generated. »
» 3 . "
* B # # B BN B BB R R R R NN *® % 2 B # 2 * » 3 . #* o
*

NA = QO .

NAMAX = N#»(N-1) - N

., KA = 2 ~*
1000 DO 1100 I=1, N
’ NA = NA+1

EDGE(NA, 1) = I
EDGE(NA, 2) = I+KA
IF (EDGE(NA,2).GT.N) EDGE(NA,2) = EDGE(NA,2'-N
EDGE2(NA, 1) = EDGE(NA, 1)#2-1
EDGE2(NA,2) = EDGE(NA, 2)#2-1
IF (NA.EQ.NAMAX) GOTO 2000
., 1100 CONTINUE
KA = KA+l o
GOTO 1000

120
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TIIYYY)
T Y
snesenn
snaene

(X 2 XXX ]

‘AnneRNe
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ARARNRRR
XXX
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\

GENERATE

ARCS

IN
EDGES
CoOuLD B
A A H,D B
OF c.

»

PART

T o

( A,

E MAPPED,®

AR

II

ALL,

THE

WHICH

B )

E
#

T

0F

wo

@

*

GOOD,.

.T.HE
o

&

t
dK n
-~

WHERE

NODES

[ 22X Y ¥
[ XYY YY)
[T R Y
'q0499¢
aRANRRN
RRRRRRR
nRERRRRN
I Z XYY X
REBRANS
RRARRRY
"RERBRN
[ Z X X2 XX
[ T XXX XY
PRREBRS
rTRARRERS
eRRIRRS
RREBRRERS

LA 422X XX XXX AR AR XXl Xl X ROETREREEZE S Z XS &)

In this part,

[
into vhich (a, b) could be mapped,

follows:

by indicating the araos

(J, cl’ 62, e s » Cp"l, cp' b)

(0,a,cl,c2,

€

000 2ZEROQ = O

II =0

DO 2400 IK=i,

ST /
J

MAXEDGE = N

s 8 @ ’

KA-1

tom

cp- 1,cp,b)

the program generates all %he good arcs

»

»

»

' .

» aof C vhich are crbased by (a,b) and their order as
» ~

*

»

»

meaning thnt the -cgment of arc (a,cl) ia in Int C,

[

NADD = NADD + NUHARC(IK) * MAXEDGE

IT = IT + 1

ADDT(II) = NARC

A = EDGE2(II, 1)
‘B = EDGE2(II, 2)

fo

-

‘IF (IK.EQ.KA-1) MAXEDGE = NAHAX*N*(KA 2)

meaning éhat the smegment of arc (a,cl) ia in Ext C.

or

i
.
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WRITE(®, *(//)*)

WRITE(e, "(1X, ’’ EDGE ¢ *°* 2 I2,°%,7%,12,'')°°)") A,B

. HRITE(Q"(lx ’o aa----------l-:-.--")’)
‘QE ' WRITE(», "(1X, /"’ CDRRESPONDINB ARCS ’’)’)
WRITE(#, "(1X, '’ ~ccccccccamucacaaa try))
) NAR = O
NAR = NAR+1
’ WRITE(, ' (1X, I2, 5X, 2I3)*) NAR.A,B
NAR = NAR-+1
WRITE(», '(1X,I2,5X,313)') NAR, ZERO, A, B -
DO 2010 I=1, NM1

V(I) = 0
___ 2010 CONTINUE
NC = 0O ,
% -DO 2020 I=2, NT2, 2 : '
IF (IABS(A-I).NE.1 .AND. IABS(B-I).NE.l .AND.
" o IABS(A-I).NE.NT2-1 .AND.
. IABS(B-I).NE.NT2-1) THEN
= ” NC = NC+1
- ARCS(NG) = I
{3 - ENDIF -
020 CONTINUE -

'

’”Q’Q”.*"’Q”*ﬂ”."ﬂﬂ"QQ
¢

J
The edge (a,b) is mapped into an arc which crosses p

of the arcs of C. These p arcs are stored in
o L}

Vv¢2),v(3), ... ,V(p+1), while a and b are stored

An V(1) and V(p+2) respectively.
- |

5 .

LA 2NN SN SN BN R N S R NN R BN BN TN NN N BN I S I N N N N

-

¥ % % 3 * ¥ % %SRS SN

NARC = NARC+1
NUMARC(IK+1) = NUMARC(IK+1) + 1
NEDGE (NARC) = II
MARCS(NARC, 1) = A ) :
MARCS(NARC,2) .= B - ¥
NARC = NARC+1

’ NUMARC(IK+1) = NUMARC(IK+1) + 1
NEDGE (NARC) = II
MARCS(NARC, 1) = 0O
MARCS(NARC, 2) = A
MARCS(NARC,3) = B

122 " .
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DO 2300 M2=1, NM4
DO 2030 I=1, NM4

INDX(I) = 1
. IARC(I) = NM4
2030 CONTINUE
2035 DO 2050 I=1, M2-1

DO 2040 J=I-+1,

IF (INDX(I).EQ.INDX(J)) GOTO 2105

2040 CONTINUE
2050 CONTINUE
V(1) = A

DO 2060 I=2, M2+1

V(I) = ARCS(INDX(I-1))

2060 CONTINUE .
V(nM2+2) = B
' o
[ 2NN BN JEEE BN N L N BN BNk D N D DN N N BN L S B N B K B BN IR 2R N AN
» ‘
» Checking whether V(. ) is a good arc
. . .
" ® * * # N * ®# # # % * % N % F # # B £ N B * ¥ » ®
'Lx = 0
IN = O
EX = 0
NSEG = N/2
DO 2070 K=1, NSEG+1
} INTR(K, 1) = O,

INTR(K, 2) =-0

EXTR(K, 1) = O

EXTR(K, 2) = O
2070 CONTINUE

M2

123
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:QQQGQQ“QQ"’QQ.'Q.'Q’QAQ'Q..'G‘Q
R )
- Splitting- the arc V(.) inta tva sets of »
” ‘msegments of arcs: »
» *
- ‘ »
» 1. segments falling in Int C, which are »
» represented by INTR(.,1) »- INTR(.,2) and *
» . ) ; ) »
- . 2. segments falling in Ext C, wvhich are .
" represented by EXTR(.,1) , EXTR(.,2). »
«* »
QQQQQQ‘DQQGI!QQOQQQQJQGQQ"Q."Q
- .
*
DO 2080 K=1, NSEG+1i, 2
IN = _IN+1
' INTR(IN, 1) = V(K)
INTR(IN,2) = V(K+l)
EX = EX+1
EXTR(EX, 1) = V(K+l)
EXTR(EX, 2) = V(K+2)
2080 CONTINUE .
. .~
QQ’*QQ.&.!'QQO’Q&..Q*'Q..IQ'Q
»
= Each pair of segments of (a,b) loclt;d in
#= Int C is considered in order to determine the
*» existence of a crossing. If a crossing is
= found, then V(.) ia rejected.
»
.0’0.’0'.'.”#}’Q.”Q";Q.’QQ'
CALL INTREXTR(NTZ2, NSEG, INTR, NX) /
IF (NX.GT.0O) GOTO 2105
I I I O I N T I T N L R N T T TR SN A S
» . , 2 »
= Each pair of segments of (a,b) located in »
= Ext C is congidered in order to determine the »
*= existence of a crossindg. If a crossing is »
s found, then V(.) is rejected. PR
- [ fr *
QQ§QQIQ~QDQOQ’Q’Q’.0’I‘QQ.”Q”';

CALL INTREXTR(NT2, NSEG, EXTR, NX)
IF (NX.GT.O0) GOTO 2103 Cod \

124
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2100

2105

2110
21135

2120

2130

2200
2300

[ ZEN B B 2NN R 2N S 2R N 2 N I DN IR JEEE N SN B I N NN R R SR R N R B )

°

»

Here V(i) isms a good arc. It is then stored in the »
matrix MARCS(.,.) vhich contains all <the good arcs *
of (a,b), and vhich will be used as input to the part
of the program generating all the non-isomorphic good /»
dravings of the complete graph, having at least one *
C-F H C. "
r $
rg

QQ""Q’QQQQQQ’QQ’.'QQQQGQQQG

NAR = NAR+1
NARC = NARC+1 o
NUMARC(IK+1) = NUMARC(IK+1) + 1 A -
NEDGE(NARC) = II ,
DO 2090 I=1, M2+2 ]
MARCS(NARC, I) = V(I) '
CONTINUE ,
WRITE(#», ’ (1X, I2, SX, 10I3) ")
NAR, (V(I), I=1,M2+2)
NARC = NARC+1 .
NUMARC(IK+1) = NUMARC(IK+1) + 1
NEDGE(NARC) = II
MARCS(NARC,1) = 0O .
NAR = NAR+1 ‘ -
DO 2100 I=2, M2+3
MARCS (NARC, I)=V(I-1)
.CONTINUE
WRITE(», ’ (1X, I2, 5X, 11I3)*)
NAR, ZERO, (V(I-1), I=2,M2+3)
IF (INDX(M2).LT.IARC(M2)) GOTO 2110
LAST = N2
GOTO 2120
INDX(M2) = INDX(M2)+1 S
GOTO 203% <
IF (INDX(LAST).LT.IARC(LAST)) GOTO 2130
IF (LAST.EQ.1) GOTO 2300
LAST = LAST-1 (
GOTO 2115
INDX(LAST) = INDX(LAST)+1 @
DO 2200 I=LAST+1, NM4 o
INDX(I) = 1
CONTINUE .
GOTO 2035 :
CONTINUE
DO 2350 I =1, MAXEDGE-1
II = II + 1.
ADDT(II) = NARC
A = EDGE2(II, 1)
4= EDGE2(II, 2)
WRITE(w, *(//)*)
WRITE(e, *(1X,’’ EDGE ¢ *’,I2,'’,’’,12,'’)’*)*) A,B
WRITE(»,’'(1X,’’ =sasszaszsszsuzsazzax’’)’)

WRITE(», ' (1X,/’’ CORRESPONDING ARCS ’’)’)

<

_ WRITE(®, *(1X, '’ ==-e-eccceccaaoa-- tryr)

a

. “~
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NAR = Q

DO

2340 I1 =1, NUMARC(IK+41)
NARC = NARC+1
NEDGE(NARC) = II

NAR = NAR~+1

DO 2330 J1 =1, ' N .

IF (MARCS(I1+NADD, J1).NE.QO) THEN
MARCS(NARC, J1) = MARCS(I1+NADD, J1)+2eI

IF (MARCS(NARC, J1).GT.N»2)

- MARCS(NARC, J1) = KARCS(NARC,JL)-N02

ENDIF
23830 CONTINUE v :
’ WRITE(»,’ (1X,I2, 53X, 10I3)")
» ‘ NAR, (MARCS(NARC, J1),
2340° CONTINUE
2350 COMTINUE

2400 CONTINUE

~,
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PART III

GENERATE

1

-THE !

MATRI X\ M X, , )

srRRARRRR RS
ARRARRRRR RN
tRRRRRARERN
ERTERARERANRR
ARRRARRARERN RN
sRRRRRRRARRR

.

I IZEXIYY Y ¥

Qbﬂ"""a’QQO"'QQ'.OQQQ'QQQ.QQQQ'"'QQ"Qkﬂ‘*.’i’."*ﬂﬂ"’
BERBRRNBRRRRRRARARRRRRNPIERRRRRRRRBAIRR AR RRRRRRRRRIRRARRERIRRRARRNR RN

*
[ BN JNNE JENE NN EEE RN N JEEE K N JEEE N K I N BN K N K N K NEY S N R R R R B )
» . »
# Given all the arcs corresponding to each of the edges, »
* a matrix MX(.,.) with entries @ ,.1 or 2, is produced.
» . »
. "¢ 0 4if arc 1 and arc jJ .’
* _ P ( * do not cross -
» .o . (4 »
L M X4, ) = ( 1 41f arc i and arc j »
» - . ( cross exactly once, »
] ( and if they do not »
» - ( . have a common node »
* ( -
L ( '2 othervise »
L J »
® * ® » » = ®* % ® # » B B " * ® B 2 H B # B W ® » n
DO 2999 I=1, 294 -
DO 2998 J=1, 294
MX(ITJ) = 0 “ %
2998 - CONTINU
2999 CONTINUE
DO 3800 II=1, NARC -
DO 3700 JJ=1, HNARC
IF (NEDGE(II).EQ. NEDGE(JJ)) GOTO 3700\\ s
DO 3000 K=1, NMi '
AR1(L,K) =0
) AR1(2,K) ¢=,0
o~ AR2(1,K) ({O
AR2(2,K) = 0
- INDX1(K) = }-
INDY2(K) = 1
. NXARCS(K) = 1 T
3000 - CONTINUE
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€
no 3002 K=1, NM1 -
A = MARCS(II, X) S
IF (A.EQ.0) GOTO 3001
IF (A/2#2.NE.A) AR1(1,K) = Ae2 - 1
IF (A/2+2.EQ@.A) THEN
AR1(1,K) = Ae2
AR1<2,K) = “%R1(1, K)-2
- ENDIF -
3001 A= mncsu:.m *-
IF (A.EQ.0) GOTO 3002
IF (A/2#2,NE.A) AR2(1,K) = Ae2 - 1 ‘
IF (A/2#2.EQ.A) THEN ’
! AR2(1,K) = Ae2 —
i AR2(2,K) = AR2(1,K)-2 '
ENDIF )
3002 CONTINUE
: DO. 3004 I=1, NM1
IF (AR1(2,I).NE.O) THEN
DO 3003 J=1, NM1
IF-(AR2(2,J). NE.O) THEN
< “ IF (AR1(2, I).EQ. AR2(2, J)) GOTO 3004

A
>

ENDIF
3003 ! CONTINUE
AR1(2,I) = 0O
- ENDIF K
3004 CONTINUE ‘
. ) DO 3006 I=1, NM1 “*

IF (AR2(2,I).NE.O) THEN
DO 30035 J=1, NM1
IF (AR1(2,J).NE.O) THEN
R IF (AR2(2, I).EQ. AR1(2, 7)) GOTO 3006

, ENDIF
3005 . * CONTINUE
. AR2(2,I) = 0
ENDIF
3006 CONTINUE ~ '
ﬂ LA
}
N



( 3007

/ 3008

- 3009

3010
3012

b
5 3020

5

MINX = 100
DO 3007 K=1,
IF (AR1(2,K).NE.O) NXARCS(K) = 2
CONTINUE \
DO 3010 I=1,
A AR1(INDX1(I), I)

NM1

NM1 ,
IF (A.NE.O .AND. A/2+2.EQ.A) THEN
DO 3009 J=1, NM1

IF (A.BQ.AR2(INDX2(J),J)) THEN .
_INDX2(¢(J) = INDX2(J) +1

IF (INDX2(J).EQ.3) INDX2(J)_ = 1
ENDIF ‘
CONTINUE “—\\\\_
[5)
CONTINUE - ‘
DO 3020 K={1, NML
.ARC2(K) = AR2(INDX2(K),K)
CONTINUE

’ GOTO 3010 - &
ENDIF
ARC1(K)Ys = AR1(INDX1(K),K) < Y
¢
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é bl
’ QQQ!*Ql"’j'ilﬁ"'."""':HQQQ
» . i N\ -
Bt . Given two arcs correepogzzkg to tvo edges, L oe
'Q§ * each of these is divided into tvo sets of »
v » segments, -
» The& matrices INTR(.,1), INTR(.,2) will contain » '
* the seguwenta located in Int C, while EXTR(., 1), -
* EXTR(.,2) will contain the segments located in . »
P Ext C. ‘e
» ﬁ’{:  J
~ IQQQ‘IQQQQQL’QQODQQQ'QQQQGQQ'OQIQQ
~ NX = 0 ™
o IN:Q
EX = 0O
DO 3300 K=1, 2+NM4+1 .
INTR(K, 1) = O .
INTR(K, 2) = O = if
R EXTR(K, 1) = O
. ) - EXTR(K,2) = O TN
3300 CONTINUE \
’QQ#DQ'Q.!Q’Q.DQQOQ\QQDQOQOQQQ
» »
* 0 Storing the segments of the first arc »
» -
\U !Q*!”Q'.*’QQQQ.QQOQQ.‘QQ'Q.QQQ
»
§ DO 3400 K=1, N-2, 2
IN = IN+1
% INTR(IN, 1) = ARC1(K)
INTR(IN, 2) = ARC1(K+1)
EX = EX+1 '
"EXTR(EX, 1) = ARC1(K+1)
EXTR(EX, 2) = ARC1(K+2)

3400 \
. » »

~

3410

*> & »

* » 3

<

CONTINUE

LA I BN B R N R R

DO 3410 K=1,
IN = IN+1
INTR(IN, 1)
INTR(IN, 2)
EX = EX+1
EXTR(EX, 1)
EXTR(EX, 2)

CONTINUE

LR JEE SN B 25 K K EEE Y )

Determining whether

»

N-2

»

LA S R JEEE BN BN SN NN NN I NEY N I 2 Y
«

y 2

ARC2(K)
ARC2(K+1)

a4
ARC2(K+1)
ARC2(K+2)

® % * » »

Storing’the segments of the second arc

LA B L NN SN R B 2 R I R Y R T RN R Y S S Y

o

. » » »

the segments in Int C

CALL SEGCRS(N, INTR, NX)
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% ® 4 ® # 4 ® ® # F K % B # S KN % # B ® K, P ® * " »

C -l

® # & ® * »

3420
3425

3433

© 3437

3600

-

»

»

»
3630
*3700

CONTINUE
3800 CONTINUE .

TN
. Determining vhéther the segmentas in Ext C cross

"Q’QQQ"QQ’"ﬂ"""*ih*ﬂ**!ﬂf

CALL SEGCRS(N, EXTR, NX)

” ® # % & # B N 4 B ® # # £ 2 " 2 B
IF (NX.LT.MINX) MINX = NX

IF (MINX.EQ.O) GOTO 3650

"IF (INDX1(NM1).EQ.NXARCS(NM1)) THEN

LAST. = NM1
GOTO 3425

ENDIF)

INDX1(NM1) = INDX1(NM1)+1

GOTO 3008

IF (INDX1(LAST).LT.NXARCS(LAST)) GOTO

IF (LAST.EQ.0) GOTO 3600

LAST ;= LAST-1

GOTO 3420

INDX1(LAST) = INDX1(LAST)+1

DO 3437 IL=LAST+1, NM1

INDX1(¢(I) = 1 .

CONTINUE

GOTO 3008 .

IF (MINX.EQ.O0){ GOTO 3650

IF (MINX.GT.1)STHEN

MINX = 2 °
GOTO 3650

ENDIF .

NII = NEDGE(II)

NJJ = NEDGE(JJ)

IF (EDGE(NII, 1).EQ.EDGE(NJJ, 1) .OR.
EDGE(NII, 1).EQ. EDGE(NJJ, 2) .OR.
EDGE(NII, 2).EQ. EDGE(NJJ, 1) .OR.
EDGE(NII, 2).EQ. EDGE(NJJ,2)) MINX

MX(II,JJ) = MINX .

N

3

131

«

5 3 % 3 &

® * # 2 »

.
[

3435

~—
a2 2



ta

(A2 AL XL R4 A RS AR ARl R Rl XIS RS R Y]
(A4 AR X R AR R RXASER AR AR XL LIRS RRRRRRY R DY Y]
Q’**QQQQ"'!QQQQQQQ!"OQQQQQ'!.QQG'IQQQ.QQ"Q.'QQQ.Q'.%"Q..

(X X 2 XX/ L E R XX X )
*REREN P AR TQIV ° teeane
LA X X K 2 J LA X 2 8 X ]
wRRRRER GENERATE THE DRAWINGTS *nsnne
L2 K & X 3 J LA X R R X
RRuRe US ING THE I NFORMNMATION AR L
L X X X X X} (X X X X X ]
samnre IN MATRIXS MXC.,.). seeein
L X X X X 4 L R KA X

L2 2 X 22X 2 LA SR R XXX R AR AR AR A2 R AR RAXSERREEAR RN X )
LA X 22X AR R RS EAZAXE ARSI AR R R AL EREEEIERE RS RN X

* » } » » 3 L K BN BN BN BN I B A A N N DR K % % 2 0 # " =
# M = number of arcs of Kn = n#(n-1)/2 _
# Mlz number of arcs different from theé arcs of C ]
» = M- n »
» ® B #* & » " * % # & B B & » N . #* @ ® % * % » * 0 =

M = N#»(N-1)/2
M1 = Neo<(N-1)/2-N
ADDT(M1+1) = NARC -

ND = O /
DO 4000 I=1, M1 (/
INDX(I) = 1
. IARC(I) = ADDT(I+1)-ADDT(I)
4000 CONTINUE

4005 NX = 0

[ JEE NEEE NN AR I 2 2k I I R D N R R A L N NN B A I A 2 A R A 4

Forming the crossings occuring betwveen the e%go- (a, b)

* 5 % s

* % % 3

[ I K I BN B D BN BEE NS N AR BN N N . R I R I N N N L N L B 4

DO 4040 Ki=1, M1
I1 = INDX(K1)+ADDT(¢K1)

.

L ‘ | ‘ .




) /0
[ ZEEE K SN NN JEE JEE K TN NN JNEE DN BN JUNE ZNE BN BN NN DK NN NN JEE NN JEE R N B R

Forming the crossings’ occuring betwveen
the edges (a,b) and the edgebk of C.

* 3 % & 8 »

e
[ I NN BN NN I 2k SN R LR B N JEEE NN NN T N DEE . B IR I B K B R B

DO 4020 K=1, NM1
. A = MARCS(I1,K)
IF (A.EQ.0 .OR. A/2+2.NE.A) GOTO 4020
NX = NX+1°
IF (NX.GT.MAXCRS) THEN N
LAST = Ki .
GOTO 4115
ENDIF e
X1(NX) = EDGE(K1, 1)
X2(NX) = EDGE(K1, 2) ‘
) X3(NX) = A/2
X4(NX) = A/2 + 1
‘ IF (X4(NX).EQ.N+1) X4(NX) = 1
4020 CONTINUE
- DO 4030 K2=1, Ki-1
. I2 = INDX(K2)+ADDT(K2) 5
IF (MX(Il, I2).EQ.2) THEN :
(/ LAST = K1 '
GOTO 4115 ) ©
ENDIF ‘
IF (MXYI1, I2).EQ.Q)GOTO 4030
. - NX = NX+1 ’
‘: IF (NX.GT.MAXCRS) THEN
LAST = K1
GOTO 4115 ) P
ENDIF
X1(NX) = EDGE(K1, 1)
X2(NX) = EDGE(K1, 2)
) X3(NX) = EDGEYK2, 1)
-X4(NX) ElEE{K2,2)
4030 CONTINUE
4040 CONTINUE o
. & .
»
L I BT BN NN BT B BEE R BN BN 3 B N R Y BN T T K T T R R S N N N

,Arranging ilch cromsing (a,b) x (g,d) such
that a < b, ¢ < d #and a < c ; and
sorting the crossings in ascending order.

LN I BN I BN B R N DEE R N NN B B BEE Y BEK BEK JEE N IR BN NEE K IR B K

* % 5 % % 850

¥

CALL ARRNGX(NX, X1, X2, X3, X4)
) CALL SORTX(NX, X1, X2, X3, X4) ‘
o™

”

* 2 % % 3

* * ¥ % % ¥
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»

*

4042

4044
4046

4048

4050

4060

4070

4080

Obtaining nodes and arcs responsibilities

3
*'IQQQ\’Q"‘I""Q'Q.'QQGQQ'Q.'

CALL NODRSP (N, NX, X1, X2, X3, X4, RSPND, NODES)
CALL ARCRSP (N, M, NX, X1, X2, X3, X4, RSPAR)

IF (ND.GT.O) THEN S
ISO = 0 ,
DO 4070 I=1, ND

SNX = MNX(I)
DO 4042 J=1, SNX
SX1(J) = MX1(J, I)
SX2(J) = MX2(J, I)
SX3(J) = MX3(J, I)
SX4(J) = MX4(J, I
CONTINUE : '
DO 4044 J=1, N
SRSPND(J)
SNODES(J)
CONTINUE
DO 4046 J=i, M
SRSPAR(J)
CONTINUE
DO 4048 J=1, M1
SINDX(J) = MINDX(J, I)
CONTINUE '
IF (SNX.EQ.NX ) THEN
DO 4080 J=1, N

MRSPND(J, I)
MNODES(J, I)

MRSPAR(J, I)

IF (SRSPND(J).NE.RSPND(J)) GOTO 4070

CONTINUE
DO 4060 J=1, M

IF (SRSPAR(J).NE.RSPAR(J)) GOTO 4070

CONTINUE
CALL_ ISOMOR

» (N,\NX, RSPND, NODES, SNODES, X1, X2, X3, X4,
» v SX1, SX2, SX3, SX4, IS0O)

IF « 4. 1) GOTO 4108
ENDIF
CONTINUE
ENDIF
NNX(NX) = NNX(NX) + 1 .
ND = ND + 1 o
MNX(ND) = NX
DO 4080 J=1, NX
MX1(J, ND)
MX2(J, ND) X2¢(J)
MX3(J, ND) X3(3)
MX4(J,ND) = X4(J)
CONTINUE

K1)

\‘

%5 3 3% 9




"DO 4082 J=1, N
MRSPND(J, ND) = RSPND(J)
MNODES(J, ND) = NODES(J)

C 4082 CONTINUE
DO 4084 J=1, M . o
MRSPAR(J, ND) = RSPAR(J)
4084 CONTINUE .

DO 4086 J=1i, M1
MINDX(J,ND) = INDX(J)
4086 CONTINUE

[ 2K B B IS BN R R I R I BN R IR K N I SN I SN N I I B S R R

Dimplaying the crossings of the /
non-isomorphic drawings .

* % 3 % 3%

[ NN NN R BEE BEE BN BN 2B 2R NN NN R JEE BT R JEN NN SN DN B N L BN B R R A

* % % 2

- WRITE(#, *(1X, *’ DRAWING # ’’,IS,4X,15I3)’) ND,
» (INDX(I), I=1, M1),NX
DO 4100 I=1, NX '
WRITE(r *(1X,I3,5%,*(**,12,'’,**,I2,'") X (’°,
I2,°'','", 2 :r):‘i)t
» I, X1(I), X2(I), X3(1), Xa(I) \\\
4100 CONTINUE : ‘
WRITE(», ’ (1X, 14I4)') (NNX(I), I=9, 35 ,2)
4105 IF (INDX(M1).LT.IARC(M1)) GOTO 4110
LAST = M1
GOTO 4120
(: 4110 TINDX(ML1) = INDX(M1)+1
GOTO 4QOS
4115 IF (INDK(LAST).LT.IARC(LAST)) GOTO 4200
4120 IF (LAST.EQ.1) GOTO 9999
LAST = LAST-1 : |
‘ GOTO 4115 . |
4200 INDX(LAST) = INDX(LAST)+1 |
DO 4205 I=LAST+1, M1
INDX(I) = 1
4205 CONTINUE : .
IF (LAST.LT.3) WRITE(s, ‘(1X,’’ I1 I2 **,2I3)")
. INDX (1), INDX(2) :
IF (LAST.LE.N) THEN
4210 MAX1 = INDX(N) ~
( , t DO 42K0 J=1, N-1 ] - ‘
IF (MAXL.LT.INDK(J)) MAXL = INDX(J)
42%0 CONTINUE .
INDX(N) = %AXI
DO 4300 J=1, N
‘ P = INDX(D)
& .o IS01(J) = P
POSNEG = 1
IF (P/2#2.EQ.P) POSNEG = /-1
IS02(J) = P + POSNEG
4300 CONTINUE
‘: . MAX2 = ISO2(N)

»

' A
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DO 4304 J=1,N-1 T\>
IF (MAX2.LT.IS02(J)) MAX2 = IS02(J)
4304 CONTINUE' o
DO 4350 KJ=1, N-1
T = ISO1(1)
DO 4310 J=r, N-1
IS01(J) = ISO1(J+1)
4310 CONTINUE
ISOL(N) = T
IF (T.EQ.MAX1) THEN
: DO 4322 J=1, ND
; DO 4320 Ji=1, N
. IF (ISO1(J1).NE.MINDX(J1,J)) GOTO 4322
4320 CONTINUE
LAST = N
4321 IF (INDX(LAST).LT.IARC(LAST)) THEN
v INDX(LAST) = INDX(LAST) «+1
, GOTO 4210
ENDIF ,
IF (LAST.EQ.1) GOTO 9999
LAST = LAST - 1 .~
GOTO 4321
4322 CONTINUE
ENDIF
. T = IS02(1)
DO 4323 J=1, N-1
T IS02(J) = IS02(J+1)
4323 CONTINUE
ISO2(N) = T
IF (T.EQ@.MAX2) THEN
DO 4328 J=1, ND
DO 4325 Ji=1, N
. IF (IS02(J1).NE.MINDX(§L,J)) GOTO 4328
4325 CONTINUE
LAST = N
4326 IF (INDX(LAST).LT.IARC(LAST)) THEN
INDX(LAST) = INDX(LAST) +1
GOTO 4210 ‘
' ENDIF
? IF (LAST.EQ.1) GOTO 9999
LAST = LAST - 1
' #0TO 4326 . -
4328 CONTINUE ¢
ENDIF
4350 CONTINUE

’0...Il‘...‘l{.l.‘l.‘.’..l.l.lllll¢.~..lllltll....l.l....

DO 4400 J=1, N
P = SYM(INDX(J)) .
ISO3(N+1-J) = P _
POSNEG = 1 P
IF (P/2»2.EQ.P) POSNEG = -1
- ISO4(N+1-J) = P + POSNEG
4400 CONTINUE .
MAX3 = ISO3(N)

136




, . 4423

s 4423

4426

4428
4450

9999

DO 4402 J=1, N-1
IF (MAX3.LT.ISO3(J)) MAX3 = IS03(J)
CONTINUE
MAX4 = :IS04(N) .
]s] 4404 J=1, N-1
IF (MAX4.LT.IS04(J)) MAX4 = IS04(J)
CONTINUE 'S
DO 4450 KJ=1, N ,
T = IS03(1)
DO 4410 J=1, N-1 -
IS03(J) = ISO3(J+1) N
CONTINUE
ISO3(N)Y "= T
IF (T.EQ.MAX3) THEN - . y\
DO 4422 J=1, ND
DO 4420 J1=1, N //
IF (ISO3(J1).NE.MINDX(J1, J)) GOTO 4422 y
f) CONTINUE
LAST = N
IF (INDX(LAST).LT.IARC(LAST)) THEN
INDX(LAST) = INDX(LAST) +1
GOTO 4210
ENDIF
IF (LAST.EQ. 1) GOTO 9999
LAST = LAST - 1
GOTO 4421
CONTINUE
ENDIF
T = ISD4(1)
DO. 4423 J=1, N-1
" IS04(J) = ISO4{J+1)

CONTINUE .

ISO4(N) = T

IF (T.EQ.MAX4) THEN v

DO 4428 J=1, ND K P
DO 4425 Ji=1, N ‘ 2
IF (ISO4(J1).NE.MINDX(J1,J)) GOTO 4428

CONTINUE |
LAST = N

IF (INDX(LAST).LT.IARC(LAST)) THEN
INDX(LAST) = INDX(LAST) +1
GOTO 4210
ENDIF
' IF (LAST.EQ. 1) GOTO 9999
LAST = LAST - 1
GOTO 4426
CONTINUE
. ENDIF
CONTINUE - .
ENDIF
GOTO 4005
WRITE(+, * (1X, * *TOTAL NUMBER OF DRAHIHGS = '',I5)') ND
END

[N

L3
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i"i{iiiﬂl;ﬂiyiiﬁﬂﬁﬁi*iiiﬂiiQQQQ!QQQQQ.Q.Q.Q'Q"'t""'i'i.'
FRABRRABENRRRRRRRR S UBROUTTINE FSRRNARRAIRAIRINRRANRNER
l”ii”ﬂi!fﬂii'*lQQQQQQ{#!Q'QQl"""'.{‘!'ﬁ'."QQOQQQQQQ#"
* Thig subroutine determines whether an arc is good. It -
* conaiders 'the segments of the arcs located in Int C and =«
* the segments in Ext C. If a crossing is found in either «»
» set of segments then the arc on hand is not a good arc. «
'Ql'iCQQ’Q**QOI'*?QQQ’Q*!Q"Ql'*"'*Qi"”iﬂ"'*'.i*'l'l"'l
SUBROUTINE INTREXTR(NTZ2, NSEG, INEX, NX)
IMPLICIT INTEGER#2 (A-2)
DIMENSION INEX(24, 2)
DO 20 K=1, NSEG :
Cl = INEX(K,1)
C2 = INEX(K,2)
IF (C1.NE.O .AND. C2.NE.0) THEN
DO 10 Ki=K+1, NSEG
Al = C1 i
A2 = C2
Bl = INEX(K1,1)
B2 = INEX(K1,2)
IF (B1.NE.O .AND. B2. NE.Q) THEN
Al = O
A A2 = A2-C1
IF (A2.LT.0) A2 = A2+NT2
Bl = B1-Cl )
IF (B1.LT.0) Bl = B1+NT2
B2 = B2-Ci
IF (B2.LT.0K B2 = B2+NT2
IF ((AL1.LT.B1 .AND. Bl.LT.A2

» . AND. A2.LT.B2) .OR.
» . - (A1.LT.B2 .AND. B2.LT.AZ2.
» . AND. A2.LT.B1))
» s NX = NX+1 :
ENDIF
10 CONTINUE .
ENDIF L
20 . CONTINUE -
RETURN
END

(XXX XZIXEE YRS R R EE RS R XSS XXX S22 AR AR R 2222 R d)

snnsnnnannenninrer oS U B RQUTINE e®#ssasasasnsensnnnnesns
RUBPRBREIBRRRRRANRERPRRBRRBRRRBRBRRERAIRBRIRRARRBRABARNBIAPRNIRR NS

. Interchange the values of tvo variables L
'Ql**"QQQQO#’Q#”QD’Q##QQQQQQ”QQ"’0.001"9"090".00’0Di’
SUBROUTINE INTRCHG(A, B) a
INTEGER#2 A, B, T
T = A, -
A =B
B=T .
RETURN ) '
END
F W
’ o
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Ead L]

) L2242k ZAX X222 R 2R d R A2l A2 2 d il i i Xl R 2 XXX 2R R X )

SUBROUTTINE #ssnensfannsnrnnanns

RPNV RIBERRAENRN

"d””"."QQC’QQQQQ‘Q’QQQ”QOQQQ’Q'QQQ*QQ**Ilﬁ*’i*"’i'fif N
. ( - -
. #* This subroutine calculates the number of crossings »
#» occuring betveen the megments of arcs located on one »
»" mide of C. »
» »

..Q'Q"QQ’QQ'Q’Q”'Q’"Q,Q’QQﬂQﬂ"i'.’**i*'.i’ﬂ."’Qf’.”’ﬂ’

SUBROUTINE SEGCRS (N, INEX, NX)

IMPLICIT INTEGER#2 (A-2) .
' DIMENSION INEX(24, 2)
NT4 = 4sN 4
DO 20 K=1, 2+(N-3)-1 :

!

C2 = INEX(K, 2)

IF (Cl.NE.O

- ’ Al
' A2

Bl

B2

%Cl = INEX(K, 1)

«AND. C2.NE.O) THEN

IF (C2.LT.Cl) CALL INTRCHG(C1,C2) )
DO 10 Ki=K+l, 2#(N-3) <
Al = C}
A2 = C2 <
- Bl = INEX(K1,1)
B2 = INEX(K1,2)
IF (Bl.NE.O .AND.

B2. NE.O) THEN
= 0

a A2-C1

= B1-Cl

= B2-Cl -

(A2.LT.0) A2 = A2+NT4:¢

S 2
‘: i IF (B1.LT.0) Bl = B1+NT4
IF (B2.LT.0)"B2 = B2+NT4

IF ((Al1.LT.Bl1 .AND. B1l.LT.A2
» ’ «AND. A2.LT.B2) . OR.
» . (Al1.LT.B2 .AND. B2.LT.A2
‘ » «AND. A2.LT.B1)) NX = NX+1
N ENDIF “
.10 CONTINUE -
ENDIF
20 CONTINUE
RETURN
END
. C ¢
. 13
. -
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&
RERRRBRRARRRRRRREERANRNPRRNRIRARNRRANRARRARNRRNRNERRIRIRARERNOIOIRNRIRIRS

BRARAVRNRRARNARNRRARARAS S B R O\U T I NE seessvtesranrentasncene
VARRRRPRRRAPRIERBRIIRNREN LA AR AA RS AR R A RAA SRR RS AXE R Y]
» ' .
# Nodee responaibilities are calculated_here. " Theae are .
* gsorted in descending order and their corresponding nodes +
#+ are rearranged accordingly. "
» R »
QQ!‘QOQQQQ’***Q"QQQ’Q""Q'QQ'Q'QQQQ!IQQQQQ"QQQQQQ'QG:QQQQ

SUBROUTINE NQODRSP(N, NX, X1, X2, X3, X4, RSPND, NODES)
IMPLICIT INTEGER#2 (A-2)
DIMENSION X1 (NX), X2(NX), X3(NX), X4 (NX)
DIMENSION RSPND(N),NODES(N)
DO 10 J=1, N ' *
RSPND(J) = Q -
10 CONTINUE

DO 30 I=1,/ NX 3
DO 20 3=1, N
IF{(X1(I).EQ.J .OR. — .
» XZ(I).EQ.J aDR‘
. 3(I).EQ.J .OR.
g * D X4(I).EQ. ) RSPND(J) = RSPND(J)+1
20 CONTINUE )
30 CONTINUE 0 te \

DO 40 I=1, N
NODES<I) = I
40 CONTINUE
DO 60 I=1, N-1 .
DO SO J=I+1, N
IF (RSPND(I).LT.RSPND(J)) THEN
CALL INTRCHG(RSPND(I), RSPND(J))
CALL INTRCHG(NODES(I), NODES(J))
.+ . ENDIF -
50 CONTINUE ‘
60 CONTINUE K\_
~ RETURN
. "END
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”Q"’Q’QQQQOQ'Q’Q"Q'Qﬁ"*lgbiﬂﬁfﬂfﬂi'ﬂif”’f”i"f’*i"”’

oaaﬂbqonﬁcogaoqoa S UBROUTINE BARRARARARRRRRARARARRS

I Z2Z X222 222222224222 X R 2222 it XX i 222X X 2 s X X

* *

* Arcs responsibilities are-calculated then arranged in »
» descending order. »
» ! -
QO’QQ”."QQQQQ.QQQGQQQQQ‘QQ*’QQ’Q*QQQOQQCGQ*Q'QGQQ*Q*QQ*QQQ
SUBROUTINE ARCRSP(N, M, NX, X1, X2, X3, X4, RSPAR)
| IMPLICIT INTEGER+#2 (A-2)
DIMENSION X1(NX), X2(NX), X3(NX), x4(NX)
DIMENSION RSPAR(H)
! DO 10 J=1, M
REPAR(J) = O
10 CONTINUE
DO 40 I=1i, NX

»

JK = 0O
DO 30 J=1, N-1
r’ DO 20 K=J+1, N
JK = JK+1 ,
IF ((X1(I).EQ.J .AND. X2(Ij.EQ.K) .OR.
" , (X3(I).EQ.J .AND. X4(I).EQ.K))
i . ' RSPAR(JK) = RSPAR(JK)+1
_ 20 CONTINUE ~
30 CONTINUE -
40 CONTINUE ’
DO 60 I=1, M -1 : R <

DO S0 J=I+i, M
IF (RSPAR(I).LT.RSPAR(J))

» CALL INTRCHG(RSPAR(I), RSPAR(J))

S0 CONTINUE

60 - CONTINUE ,
RETURN ’ |
END - ‘ |

" ‘.l#”’.ﬁ"b'*’*Q'Qi*ﬁ*!i’ﬂ’."ﬂﬂi**’f’i”*Q*Q*Q*’Q**i’##***’
snnenennsenasnsensns S UBROUTTINE RRERRARRRERRRRRRRERRRR
Q"..QQ’Q’Q’ﬁ"*Qﬁi".’i*Q’Q*QQ**#**;Qbﬁfﬁﬂkﬁﬁﬁfﬂﬁﬁﬁ*Q’Q’***
* A croassing (a,b)x(c,d) is arranged such that »
» a<b, c<d and a < c »
(222X 22222 X2 SRS SR AXESE S S R RA R R 2SR SRR S R R X R R R J

- .- SUBROUTINE ARRNGX(NX, X1, X2, X3, X4)
IMPLICIT INTEGER#2 (A-2Z)
DIMENSION X1(NX), X2(NX), X3(NX), X4(NX)
DO 10 I=1, NX
K IF (X1<(I).GT.X2(I)) CALL INTRCHG(Xl(I) X2(I))
. IF (X3(I).GT.X4(I)) CALL INTRCHG(X3(I),X4(I))
" IF (X1(I).GT.X3(I)) THEN
* . CALL INTRCHG(X1(I),X3(I)) \
. +CALL INTRCHG(X2(I), X4(I))
- ENDIF
10 CONTINUE .
RETURN .
- END ’ '
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li*l*'l'iill:i'iﬂ'*'l!"*QQQQQOQ"QQQ!QQQQQQI‘"'GQQQ;Q."QQQQQ
RRERRRRARARRRRARRN SUBROUTINTE RRARARRARRARNARERNIARS
@ @ iQQQQ*QQtGG"i.’!"i.'i‘ﬂiQQQQQQQI*QQ"'QQGGQQQQQQ'QQOiQQQQQ
s ®* - s [
» The crossings of a drawing are aorted‘i;ba-conding ordoﬁ’n
» .
QQG*!Q*QQQQQQQIQQﬂ’i"l.i.IQ*QQ*QQQQQ‘GGQQQ'QQ.QQ'QQQQQ!Q'Q’
SUBROUTINE SORTX (NX, X1, X2, X3, X4)
IMPLICIT INTEGER+#2 (A-2)
DIMENSION X1 (NX), XZ(NX), X3(NX), X4 (NX)
DO 30. I=1, NX-1 ‘
: DO 20 J=I+1, RNX .
/ IF (X1(I).LT.X1(J)) GOTO 20
IF (Xl(I).GT.Xl(J)) GOTO 10 .
IF (X2(I).LT.X2(J)) GOTO 20 {
"IF (X2(I).GT.X2¢J)) GOTO 12
\ IF (X3(I).LT.X3(J)) GOTO 20 :
- IF (X3(I).GT.X3(J)) BOTO 14
IF (X4(I).LT.X4(J)) GOTO 20
IF (X4(¢(I).GT.X4(J)) GOTO 16

10 CALL INTRCHG(X1(I),X1(J))
12 CALL INTRCHG(X2(I), X2(J))
14 CALL INTRCHG(X3(I),X3(J))
16 CALL INTRCHG(X4(I),X4(I))
20 CONTINUE
30 CONTINUE

RETURN

END s

3 °
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QQ’QQQ'Q’QQ’Q'QQQ!Q.QQ'Q"'QQQQQ!*Q'!QQQQQQQQOQQQQ*QQQQQQQQQ
XX XXX XXX Y] S UBROUTTINANE PERRERARR RN AR RN RN
I X ZEEEYRERRER R R RERR R R AR X R R RXRA R R XS A A XS R R R XX L2 2 X 5 XK K 1
C ST j
Two drawings are compared for 1somorph;sﬁ. ode
responsibilities are used to reduce the number
*"of comparisons.

*
»
»
. . »
Variable ISO takes the value 1 vhenever the two *
»

»

»

*

drawings are isomorphic,” otherwise it retains its
original value of zerg

$ % 3% 3 % » 2 3 2

[ EXEZZEZEEEEZE R A RSZAZE R A AR A2l liX Rl il s sl i X 2R X 2 J
SUBROUTINE ISOMOR(N, NX, RSPND, NODES, SNODES,
. X1, X2, X3, X4,
» SX1, SX2, sX3, SX4, 1s0)
IMPLICIT INTEGER+*2 (A-2)
DIMENSION RSPND(N),NODES(N), SNODES(N)
DIMENSION X1(NX), X2(NX), X3(NX), X4 (NX)
DIMENSION SX1(NX),SX2(NX), SX3(NX), SX4(NX)

(8] '9 »
»’PRC(.),PRM(.),MP(.,.),MINI(.),MAXI(.) are used to generate+
» nev nodes’ labels »
-* »
»
DIMENSION PR(?),PRM(?),MP(7,7),HINI(14),MAXI(14)"
» »
s Y1(,),Y¥2(.),Y3(.),Y4(.) = crossings after relabelling »
( - the nodes »
» s »
DIMENSION Yl(SS)Ny2(35),Y3(35),Y4135)
DO 100 L=1, N
. v PR(L) = 0O
| ' 1C0 CONTINUE
J =1 W . ﬁ)
PR(1) = 1 :
¢ DO 110 L=2, N - ° :
IF (RSPND(L-1).GT.RSPND(L)) THEN
J = J+1 \
PR(J) = 1
' GOTO 110 .
: ENDIF :

PR(J) = PR(J)+1
110 CONTINUE ’
S =0 .
R=0 )
DO 130 I%1, N
DO 120 JY=1, N
MP(I,J) = O

120 CONTINUE
130 CONTINUE , ’
DO 220 J=1, N B
S = S+PR(J-1)
‘: * | IF (PR(J).NE.O) THEN

N , . 143



200
210

220

300
310

320

330

400
410

500
513

600

700

710

720
730

740

DO 210 K=1, PR(J)
R = R+l
DO 200 L=1, PR(J)
MP(NODES(L+S),K) = SNODES(R)
CONTINUE
CONTINUE
ENDIF
CONTINUE
DO 320 I=1, N
PI = 0O
DO 300 J=1, N
IF (MP(I,J).EQ.0) GOTO 310
PI = PI+1
CONTINUE
MINI(I) = 1
MAXI(I) = PI
CONTINUE
IS = 1° 2
DO 410 RW=IS, N
"PRMI = MP(RW,MINI(RW))
PRM(RW) =, PRHI
DO 400 J=1, RW-1
IF (PRM(J).EQ.PRMI) GOTO 700
CONTINUE
CONTINUE
DO 510 K=1, NX
DO S00 J=1, N
IF (X1(K).EQ.J) Y1(K) =PRM(J)

A\\§ IF (X2(K).EQ.J) Y2(K) =PRM(J)

IF (X3(K).EQ.J) Y3(K) =sPRM(J)
. IF (X4(K).E@.J) Y4(K) =PRM(J)
CONTINUE
CONTINUE X
CALL ARRNGX (NX, Y1, Y2, Y3, Y4)
CALL SORTX(NX, Y1, Y2, Y3, Y4)
DO 600 I=1, NX
IF (SX1(I).MNE.Y1(I) .OR. SX2(I).MNE.Y2(I) .OR.
SX3(I).NE.Y3(I) .OR. SX4(I).NE.Y4(I))

. GATO 700
CONTINUE

IS0 = 1 o
GOTO 900

IS = RW

IF (MINI(RW).LT.MAXI(RW)) GOTQ 710
LST = RW

GOTO 730

MINI(RW) = MINI(RW)+1

GOTO 330 |

IF (MINI(LST).LT.MAXI(LST)) GOTO 740
IF (LST.EQ.1) GOTO 900

. LST = LST-1 ——

IS = IS-1 ™~
GOTO 720
MINI(LST) = MINI(LST)+i

€
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730

900

DO 750 L=LST+1, N

MINI(L) =1
CONTINUE
GOTO 330
RETURN
END

[£3
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Note |

The program generates all possible sets ofﬂarcs corresponding .ta
~
thf edges of K, different from the edges of C, where

Q

C=(1,2,3,...,n-1,in,1). The first n arcs generated correspond th the
edges (1,3),(2,4),(3,5),...,/(n-1,1),(n,2). /

Let A={a,a,as,...,a,} be a set of arcs corresponé?ng to the
first n edges and suppose that all the non-isomorphic drawings having
A have been obtained. Whenever the program generates a new set ot
arcs B={b, by, bs,...,b,} corresponding to the first n edges, it starts
checking in the ron-isomorphic drawings on hand whether

B,=A i=2,3,...,n
where B,={b,,b,4, .. .bn,bs,bs .. ., by}

If there is a B, = A then the program drop§ this set B and gen-
erates another set, hence avoiding a large number of drawings which

.would have turned out to be isomorphic to previously generated
. drawings.

The program also checks whether - ;

Bf=A . i=2,3,...,n

2 where B*= {b* byu*, . . .,by* b, b*, . .., b,4*}

E!

N\ {b#t if by is odd PR
and b* = {

{bj-1 if b, is even
duce the numb? of comparisons petween A's and B’s the

program retains only the drawings in which /

? a,=max{a},i=1,2,...,n.

{

. )

146




Note 2

‘The program segment between the two dashed lines was added to

the algorithm to benefit from possible symmetric properties in the

drawings D, when drawn using a C-F HC as a basis. Figures A.1.1 and

A1.2 provide examples illustrating how symmetry can be used to

speed up the process of obtaining the non-isomprphic drawings.

1 H
. 74 \ 2
R Y,
Y \b ‘, L4
s Y
® Fig.A.1.1: The dashed line splits the C-F HC into tiWo
parts to reflect a possible symmetry in drawings D,
1
7 2
&
3
3 4

° (a)

Fig.A.1.2: Taking symmetry into consideration, we
can readily see that (b) is a mirror image of (a):

» ‘
) ' N
/ .
147 -~
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Any drawing having its first seven arcs as in Fig.A.1.2 (a) will be
isomorpl';ic to a drawing having its first seven arés as in Fig. A1.2
(b). Hence, if all the non-isomorphic\drawings having (a) as a sub-
drawing are obtained, then we can igpore all the drawings having (b)

as a sub-drawing.

So, in a similar manner the explana‘:t‘ingnﬂ m Note 1, whenever
a new set of arcs B is generated, the progré'e'n checks in the non-
isomorphic drawings on hand whether |

B,=A

and wheth
{ Br=A

where A,B,B, and B,* are as defined in Note 1.

/
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ALL;: NON-ISOMORPHIC. - GOO DRAWINGS
Dn oF R“ HAVING AT LEAST ONE C-F HC,
FOR n= 4,3,6 .

»
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Appendix A.2 ’

n=4
| ‘ \
4 2 » .
3
(1) @)
n=9%
1
3 2
W\ @ @
@)
@ | (5)
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(4) : :

. (8

(7)

"
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(10

(9

(11)

5(13)

$16;

15!
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BEEIREELRZBILUYLBLUR2LBRIRBRIBRBES

CROSSINGS

2
s

)

1 8

9 10 11 18 13 B B

13x24 1325 1326
1324 13x85 13126

/,Hxﬂ 13426 14x26

12624 12026 1423
13x84 12425 1023
12624 12625 1423
12435 13024 13425
12624 14x35 15046
12035 12024 14435
12135 12624 1435
13424 12488 14x26
13024 13625 14n26
12436 12628 13125
13624 10425 Thidk
12436 12024 14xeS
12436 13024 14x23
13xe4 138
13x24 1928 10433
1324 1325 13426
13624 13426 1425
12424, 1425 10125
12024 13425 1423
12436 13524 13u85
13424 14x35 14x36

" 12n24 13T 1526

1236 13x24 14n35
13u24 12625 14x26
12x36 13n24 13xE3
13x24 14025 tAx26
12036 13x24 14425
1236 13x2% 13x23
12x36 13x24 14n2d
13x24 125 13x26
13n24 1385 13x86
13x24 13x25 13x26
13u2h 135 14x36
12x36 13x24 14135
13x24 1Ax2S 14nd6
12436 13x26 14x23
13x24 14x26 14x33
12436 13x24 14%26
12436 13n24 14x2H
13x24 13x28 14x2S
1324 13x25 14x2Y
13u84 14435 14x36
13u24 14x35 24x35
13x24 14435 14u36
13x24 14435 16x29
13x24 14428 14x26
13u24 14x2S 1Ax2h

1425 1426 1435
14x25 4Ax25 14x35
{4x35 1n26 13x46
14x36 15486 15x46
14x35 14136 15x36
14435 15046 24x35
14%25 1435 15x46
2A%35 25436 3546
15x46 2435 24x36
15x46 16x25 2435
15%36 15146 2435
14x36 15x46 24x35
14x26 14x35 15%46
i¥h36 15046 2435
14026 14x36 19%46
14526 14x35 15n46

125 1435 15046 .

{5x46 16x25 24x335
14x26 14x36 15x46
f4x26 14x35 15x46
14x35 1Ax36 15x26
14x35 15x26 13x36
$4x25 14x35 15x26
§3x26 24x35 24x36
{5x36 24x33 28x36
15x26 15x36 24x35
14x36 15x26 15x36
{4x26 14x36 15x26
14x36 15x26 15x36
14x26 14x36 15x26
14x25 14x26 14%33
14x35 14x36 14x56
{4x23 14x35 15x26
14x26 14x36 135x26
1425 L4xcb $14x35
24x35 24x36 26x33
15x36 24x33 24x36
24x33 2Ax36 26x33
14x26 14x36 15x36
14x56 2435 24x36
14x35 14x36 14x56
$4x35 14x36 14x%6
{4x35 14x36 15x36
14535 24x35

1536 24x35 24x36
25x36 25n46

15%36 16x25 24x33
03 % - I

15x36 24x35 24x36
14x36 24x35 25x36

14%36 15x26 15x36 15x46 24x35 2436 2536 25w46 JSx46

1526 15wA6 24x35
2035 25x36 I5nd6
24x35 25x36 I0nA6
15x46 24x35 24x36
25xA6 35x46

2038 24x36 2536

Jn46

25x46 J9x46

25x36 29nA6 J5x46
25x46 35x46

24x36 2Tx36 2On46 35xA6
24x36 25x36 2546 3x4b

25x4b 35x46

2433 24x36 29x36
25x36 J9x4é

24x35 24x36 I5x46
16x25 24x35 24x36
2435 29x46 26x34
25x46 2634 26x3S
2435 2346 26u3A
16x25 24x35 25x46
24x35 24x36 25x36
24x3T 296 30x4b
1536 24x33 24x36
Jix4b

J0x4b

24x35 3346 .
24x35 25x46 J5x46
15x36 24x35 24x36
20x33 23x36 I5x46
15x36 2435 24x36
14x36 14x36 13x26
{5x26 15%36 2435
15x36 24x35 2Inkb
15x36 24x35 aBx46
14x36 14x36 15x26
26x43 35x46

26x35 26x45 33x46
26x45 3In4b

2433 24x36 26x3%
26135 26x45 JInéb
15x36 2435 24x36
15x23 19x24 13x26
20135 24x36 2336

2546
24x36 25x36
2ix46

L
164

23x46 35x46

23n36 25x46 IBn46
26035 30x46

35x46

26435 35x46

26x34 26x35 30x46
25u4b 33u46

25x36 23x46 JOnkb

23x36 Wb IIx46

k1T

15x36 24x33 24x36
24x36 3546

26x34 26435 3Unk6
26x34 26x35 Jndb
15%36 24x35 xAb

26x43 3Tx46

26%35 26xA5 33x46
15x36 24x35 24x36

N

25x36 2Tn46 JInAb

26x34 26x33 3."»:46

26x35 26x4S Jxk6
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cERE L0313 22 -5 FERE FEFE Ei
&
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BESRRLERL2EIRIRETEAR2E IS I

o CROSSINGS
{ 2 3 4“8 p 7 8 9 10 M i 13 1%

13624 14085 14%26 15x36 16x25 24x35 24x36 2x3b6
1324 14x25 14x26 {4x36 16x25 24x35
13x24 14425 1436 14x56 15x36 16x25 24x35 24x36 20x36
13x24 13x06 1425 WEB 14x36 16025 24n33 26434 26x35
13524 13x26 14x25 14x56 16x25 24x35 26434 26x33
13624 13426 1426 1Ax35 1625 24x35 26x35 26x45
13024 J3u26 14%25 14x36 16x25 24435 26x33 26x43
13024 13026 12T 14x25 14x36 16425 24x35 26x35 asn?
13%26 13n2S 14425 14x35 1An36 15x26 13x46 24x35 24x36 25x36
13124 1 1425 1433 15x26 13x36 15xd6 24x3T
13004 13x25 14x25 14x35 14x36 1%x26 15036 15x46 24x35 24x36 36xAT
13x24 14x35 14x36 1526 15036 15x45 2433 24x36 B30 25x46 36x4Y \
12436 13x24 14x35 15425 15x36 15x46 2435 24x36 2Bnd6
12404 13025 13x26 14x2S 14x35 15x26 15n36 {5xA6 24x35 26x34 263 ¥
1324 13x2% 1326 14x2E 14n35 15x26 15x36 15046 24135 26x34 26x33
13x24 13x25 13x26 14x2S 14x25 1Ax35 15x26 15x36 15x46 24x335 26135 26x43
13x24 13x25 13x26 1AnES 14x25 14x3% 14x35 15x26 15x36 15xA6 24x35 24x356 26x35 26u4T 36x4S
13x28 13588 13x26 14x36 15x24 15x26 15x34 15x36 24x35 C6x3T 26n43
13n24 13025 l13x26 15x24 15%26 15x34 15%36 24x35 2Au36 26x3% 26x45 36xAS
13424 13485 13426 1AXEE 14x55 15x24 15x26 15x34 15x36 24x3F 26x35 26n4A%
13000 13005 13406 1426 14x38 14x56 15x24 15x86 15x34 15x36 2Ax35 24x36 26435 26uAT J6xAS
12446 13x24 1325 13n26 13n46 1AxSE6 24x35 25x46 26x34 26%33 JUneb
12446 13x24 13n06 13046 1425 14x36 16x25 24x35 25x46 26x34 26135 33x46
19v46 13x8A 13x25 13x26 13046 14x25 14x35 15486 15x35 1346 24x35 2BxA6 26x34 26x35 35xA6
13524 13028 14x25 1Ax36 15x36 15x46 2436 25x36 23x46
13x84 13428 14T 15446 Undb > '
13084 15xA6 2436
13x24 13425 14x26 14x35 15%36 15x46 24x36 2536 2n4b
13024 13425 14%26 1An3S 14x36 15u46 25x46
13024 13x25 14x26 1435 1438 15x36 {5x46 20x36 25x46 JoxAS
13%24 14%05 14%26 14x35 14x36 15n46 25n36
13004 1AX2S 14n26 14x5 14x36 15x36 15x46 364D
13x24 13x23 14x2S 1An26 14x35 14x36 15x36 19x46 25x34 25x36 36x45 ‘
12x36 13024 13425 14%25 14%25 14x35 14x36 15x46 24x36 25x3A 23x36
1324 13x25 13x26 f4x2b 14%\:«36 15048 25xA8 26x34 2635
bt

w -
ve

13x84 13x26 1AXES 14%26 14XGS 1Ax36 15046 16X2S 2546 26x34 26435
13424 13x86 15486 15446 25x35.26x34 26x4S Lo

13624 13x26 14x2S 14426 14x35 14x36 15x25 15446 25x35 26434 2645

18x36 13x24 13x2%, 14xES 15425 15x36 24x36 25x36 25R46

1324 13428 14x26 1x35 14x36 15x26 25n36 23x46 xxg?c

12x35 13x24 13625 14x26 14x35 14x36 15426 15x36 2Ax36"5x36 25046

13624 13xE5 1AxES 14426 14x35 14x36 15426 25434 25k35 3644

12436 13x24 13625 10423 14%26 14x35 14x36 15x26 15x35 24x36 25x34 25u35

13024 13025 °13x26 14426 14X35 14x36 15xE6 15x36 25n46 26x34 26035 .

13024 13x85 13x26 14x23 1AxED 1Ax33" 1AR36 15xEE 1536 25x34 C6u34 26

13184 13x85 13485 14423 14x26 1Ax36 14x56 15426 15x35 25x46 26x34 635

12436 13x24 14x25 14x26 1435 14x36 15x36 24x36 26x3T 2643

12346 13x24 13xE6 13446 14xES 14x35 14x56 16425 25x46 26x34 2635

13624 13%86 14x26 14x33 14x35 14x56 15%23 15x24 15%25 16x35 24x35 2634 26435 26x45 3645
1220 12425 13x26 14x2S 14x26 1435 14x36 15446 16x25 16%35 20x34 25x36 25n46 2634 35x46
12435 12046 1324 13426 13046 15424 1526 15434 15435 15x46 2435 26x34 235 26x45 36u4S
1486 14x35 14436 26x34 26x3T x4
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-

I1. GENERAL DIAGRAM -

Y

MAIN '
TRAGL - !
DRMWA' !
INTRCHG:

¢

y

Determines whether (o;{)x(J,k) whil; v'is in Int T:(i,q‘k.{3.

that p takes the value of q and q_ takes the value of

. TRGL DRUA

M INTRCHG ¢

Determines whether X oouldlbo mapped into a rectilinear

n - e
drawing D having - -
. n . &

2 given set of crossings, . ‘ -
»

.

Determines the number of times a given aro orosses

the aros of a trigon, ’
e d

N

-

N

Interchanges the values. between two uaritblos p and g such
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Q. [ s )
N

' ., II. GENERAL FLOWCHART

'3 - . . - (;s;anr )

. ) .
° INPUY
) ) ) \ ' -Dimension n /y

i | ’ - - ] ,

. - _Find all k~cirouits usin
1 - -Dep th girs °Suroh I

L}

. &
» l’ -
number of
unorossed
k-circuits
9
- Deternine whether uncroiud
N N . k-cirouit is Conm Hull

f.ot C be thorsct of these
Ci*s, Consider one of them,

, 3

For sach 4rigon I,determine
. who hor there is a crossing
S aau . {,0%(b,0) such that |

1 in Int T and a,b,0 are
’ . ! nodes of 1.

Is
there such
2 orossing X

Rmo‘fu ¢ |

from €

3

-

¥RECTILINEAR DRRHING"I

\wnw {
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| ==——g]

...QQD..’Qf”’f.t”."l.’."QQ’Q"!’Q.'QQ”;Q (s A 2 I 222X

’ » »
» IV EN A SET OF CROS IN ? s OF »
* - ¢ . »
-'ru‘s:q/}aonpr.srs GR APH ~» ALONG *
. - »
* WITH. THE DIMENSTION N AND THEH-»» i
» » N
* NUMBER OF CROSSINGS, THIS »
. ® .
* PROGRAN W ILL DETERMINE .
- » . R . A
q * WHE THER K. COULD BE. MAPPED o
| B4 ‘ »
. » INTO A RECTIVLTINEA AR DRAWING D, »
. » ; l N 4
..QQ'Q.'.Q.OQ’..Q',.’.".QQ.Q”Q’QQQ"Q’QQQQQQQ’Q’Q’D”(#D’*
. o ) »
. *5 »
c : ~ .
* ’ o »
» * »
IMPLICIT INTEGER#2 (A=2Z)
. COMMON Yl,Y2,YB;Y4.NX,X1,X2,X3,X4,XX,IS
» +x . N ’ L4
* X1(.),X2(.),X3(.),X4(.) = the set of crossings of K, ¥,
. , ' T .
o . DIMENSION X1(100),X2(¢(1D0), X3(100), X4(100) . \
» - ? ’ »
* L] N o ’ »
* TR(.,.) = all the trigons of K. »
. * NT(4,J) = the j-th node loacated in the i-th trigon’ » ’
o * INL) = number of nodes located in the i-th trigon .
a » R - »
DIMENSION TR(120,7), NT(120, 3), IN(120) -
» - ‘ : »
- 3 »
¢ M(.,.) and LB(.,.) are used in the depth first search » .
*  process.’ ' ..
L3 . s a » *
* M(i,J) = v vhen edge (i,v) ism the j-th uncrossed edge »
* . »
) * LB(i,J) = 1 if node j -has been visited from node i »
. = 0 othervise i ) . e
" * . - B »
‘: *  (AL(.),A2(.)) = dncrossed edges \ .
) 4 © \\ - » 4




@

% - ¥ '
DIMENSION H(lO.S).LB(lO.10).A1(50),Ag(50)
. ’
' v
= CR(.,.) ™ = all uncroased k-circuits
. "
#« CRCT(.,.) = an uncrossed k-circuit - ’
» - .
*« LG(1i) - 1 = number of arca of the i-th uncrossed
* ' k-circuit. . . ..
»
¢« TC(i) used when sorting CR(.,.)
» ~
- ) R : b
DIMENSION CR(S0O, 11),CRCT(119, LGB(50), TC(%0)
. - ’
' + b 3
- D .
] ND(.) = nodes differe from the nades of the.,
» v uncrossed k-dircuit
*
- DD(.) = number of nodes different from the nodes
» . of.tho uncrossed k-circuit .
» N
» IX(.) umed in calculating the number of croasingas '
» involving the nodes Af an uncroased k-circuit
DIMENSION ND(S0, 7),DD(50), IX{(30)
» ' . -
»
-
» ! [ 4 . -
. ‘ ) ’
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‘: ' XA XTI 2 I I T TS TT R YT YY Y AR N g a N £ P g e
o oo’;oooooongboz , 4 . ) REBRNRNBRARABR SR AN RN N
RABRIRBORERONRRN T"STEP 1 CmaarmesserrenRRRtRAN
PRRBRRIBNRNOEEE FRERFEARAARARNRRNAR RN S
RERABRBRNBRNNRESN INPUT I RRRARRRRERARRRRRRR NN
tenanrRsssneRERe | ~ cunnnnnnranennnnnnnn
QQ'QQQQQQQO.Q'DQ.’DQQ”.D’.QQ’DDQQQQQ*!QQ’QIQ**QO#!*QQQDG’QQ
» Input: :-1. dimension, N ’ »
» 2, number of crosl-i gs, NX
* - 3. crossings, X1(.),X2(.),X3¢.),X4(.)
»
»
»

% % 5 »

Sort the crossings in ascending order and such that

‘df (a,b) x (c,d) then a < b, c <d and a < ¢ .
*QQQD.O.Q.QQ.'Q.."'f.QQQQQ’Q.0.0.’Q.”Q.‘QDQQQ”QDQQ_'QQQQQQ’

WRITE(«, (1X,’’ INPUT - N, NUMBER OF CROSSINGS’’)’)
READ(D,'(ZIZ)') N, NX_ .

_ » . -~ WRITE(w,’(1X,'’ INPUT CROSSINGS’’)’)
¢ DO 1000 I=1, NX o
READ(®, * (412)’) X1(I),X2(I),X3(I),X4(I)
; IF (K1(I).GT.X2(I)) CALL INTRCHG(XI(I) X2¢I))
IF (X3(I).GT.X4(I)) CALL INTRCHG(X3(I), X4(I))
IF (X1(I).GT.X3(I)) THEN
CALL INTRCHG(X1(I),X3(I)) A
3 CALL INTRCHG(X2(I),X4(I))
_ : ENDIF .
1000 CONTINUE ; SR ;
‘: , DO 1020 I=1, NX-1
e A = X1(I)
) B =" X2(I) ,
‘ C = X3(I) .
v D = X4(I) L
- DO 1010 J=I+i, NX
. . 7 IF (A.LT.X1(¢J)) GOTO 1010
IF (A.GT.X1(J)) GOTO 100S
) IF, (B.LT.X2(J)) GDTO 1010 )
IF (B.GT.X2(J)) GOTO 1006
. IF (C.LT.X3(J)) GOTO 1010 .
IF (C.GT.X3(J)) GOTO 1007 .
/ o © IF (D.LT.X4(J)) GOTO 1010 - .
\ IF (D.GT.X4(J)) GOTO 1008 o
1008 A = X1(J) . -
X1(J) = X1(I)
. XM(I) = A
1006 B = X2(J)
, X2(J) = X2(I).
X2(I) = B o
. 1007 c. = X3¢J)
. X3¢J) = X3(I) . - ]
X3(I) = C
1008 D = X4(J) - -
X4(J) = X4(I : : s
( X4(Iy = D \ : "
r 1010 CONTINUE

1020 CONTINUE
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(222X X X}
(22X X2 XX
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r

-

v
4

STEP 2
>

’

LAAAAAA A AL S A RSl Z A2 R R Rl RS Y Y XY YR Y R R YR )
' {
.Q'Q'QQ& »

Qﬂ;l""l
tRRNITOIRNN

AIIZ 2R
tRANRERR
I TXIXTXX]
eRRRRORE

renunenan
‘sennennen
Anneennee
tennetnen
anesnnne teenesnne
TP YYYIIX Y snenannnn
av..io*aooi¢00f¢¢¢*¢a"fﬂﬂiﬁiﬁoﬂiffapgfzqng»ﬂﬂon'cuﬂfaacn'ca

: .

FIND ALL UNCROSSED

K-CIRGUITS USTING

i
DEPTH FIRST S EARCH

. » - Y " -
»* ' m- 7 ‘ b -
- - Cbtain all uncrossed edges ( Al ," A2 ) »
' ) . -
'OQEQQGQQQ'OQ’Q;QQ"'Q!O"Q;{’Q"'QQ*QQQT'!QQQ"QQQ'Q'QDQ'Q.
- . . .
. , ] .
NA = O
NC = 0O ¥
DO 2020 I=1i, 'N-1
DO 2010 J=I+1, N °
-DO 2000 K=}, NX -
IF ((XA(K).EQ.I .AND. X2(K).EQ.J)
S « OR. i '
» 0 (X3(K).EQ.I .AND. X4(K).EQ.J)) =
» GOTO 2010 -, . i ,
2000 CONTINUE . X Q
NA = NA+1 .
AL(NA) = I @
AZ2(NA) = J '
2010 CONTINUE ‘ s
2020 CONTINUE . ’ - 4
» . o
» -
.QQQDQ.*QQQQ’;”’QO’Q”Q"QQQ';QQ‘;’O..Q.Q.’Q”QQO;DQQQDDQQJ'
» * "
- ., Forming array M(.,.) : % 4
» ) . "
L M(4i, ‘,\) = v vhen edge (i,v') is uncrosmed = . ‘.
» ’ w

(A RE I XX R X2 AR XSRS RS SE RS ESSIEZSE R Z NN ]

» 3 . _

DO 2040 I=1, N - )
DO 2030 J=1, N-1 - '
M(I,J) = 0O @ ’
2030 CONTINUE . ' \ °

2040 CONTINUE
DO 2050 I=1, NA
IX(I) = O
2050 CONTINUE '
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v

DQ 2060 I=i, NAX

e

ML = AL(I) o7 . 5 e,
M2 = A2(I) .
’ IR(ML) = IX(Mi)+1 ©
IX(M2) = IX(M2)+1 * ,
M(M1, IX(M1)) = M2 .
: M(M2, IX(M2)) = M1 )
. 2060 CONTINUE ) )
L DO 2080 I=i, N ' .
DO 2070 J=1, N-1
IF ( M(F, J).EQ.0) THEN
IX(I) = J-1 .~
- GOTO 2080
( ] ENDIF ‘
2070 CONTEINUE ..
. 2080 CONTINUE ' . .
P * . ' * - —
N » - N .
T )
Q.QQQ’.QQ.QQ”.'Q'Q”Q.!QQ!IQQ’.O.?O*’O*QIQI*i'****t**f”'*’
g » ) . - - ' »
L] o Initialize LB(.,.) to zero ’ »
» . N ° .
¢ QQQQIb!*’ttl’*#'!éﬂtQ'f’p”ﬁ”l*%‘l’k”0’9"#.'*”?90.!.’***
» . .
» - - . 3 - . >
( DO 2100 I=l, N - \ )
: : DO 2090 J=i, IX(I) A '
LB(I,J) &=.0 .
2090 ° CONTINUE

2100 CONTINUE

!

» ~
* : N
» o P
.QQO'QQQ'.;*’*’Q'QQ.’QQQ?.Q DQ’DQ.Q"QlQ!QQ’*!Q*DI;O##’!”*
- - N ) . N *
» DEPTH FIRST SEARCH r.
L 28 ) *
e NC * number of uncrossed k-circuits )
T CRCT(.) = an uncrossed k-circuit »
» . .-
Q’Q;Q"';}O.Q.’.Q'i.'.'.".”l”'!r’."QQQQ*Q!Q’Q””}D”’.’
* — §
' o » - 4 *
- . NC =0 o = s
b DO 2110 I=}, N . i
| IF (M(I,1).GT.0) THEN . . ]
RS = . ’
. GOTO 2115
ENDIF . ,
2110 CONTINUE . ,
‘:, . 2118 CRCT(1) = RS .. ; N T
2 , A = RS . ' ’ ' ,
. I = 3 ) - -
\M
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A »

a
* .
—— BERPRRRRRPRRRRRRRBERINIRENERPIRRRRRIARPRRNNIIRRRIARRERRAGOIRRRNERONCROE 1

.
»
»
J - * B
»
’ t
»
»

t

o
»

»

LB(1, ) =

vhen node 3 has been
visited from node i

othervise
&

.‘Of{“‘.
t

\ -

[ o
RRRRRRERERRRARRRBERIRRRRRRARTRRRRRRARRARRRIREIRERRINIRIRPOIRNIRENRR

@ . »

ﬁkﬁ . .

2117

.

-

2120

2130

2195

P

-~ - 2140
2150

2152
2133

“2135

- A

9

DO 2120 J=1, IX(A)

IF (LB(A,J).EQ.1) GOTO 2120 '~

P = M(A,J)
I = 1+1}
CRCT(I) = P
B =J
LB(A,J) =1
GaOTO 2135
CONTINUE

IF (I.EQ.1) GOTO 2155
DO 2130 J=1, IX(A)

LB(A,J) = 0
CONTINUE

I = I-1

A = CRCT(I)
GOTO 2117

IF (CRCT(I-2).EQ.CRCT(I)) GOTO 2152

DO 2150 K=1, I-2

IF (CRCT(K).NE.P) GOTO 2150 .

NC = NC+1
LG(NC) = I-K+1,
DO 2140 L=K, I

CR(NC,L-K+1) = CRCT(L)

CONTINUE
GOTO 2152.-
CONTINUE
GOTO 2153
I=1I-1
A = CRGT(I)
GOTQ 2117 .
IF (NC.EQ.O) THEN
WRITE(», *(}X, *°*

S |- b

~

Y

\ .

0 Il/
® 8 0 0 0 0 006 2 B P S LSOO S RN NSNS b

**THERE IS NO UQCROSBED k~-CIRCUIT’’/

0,

GOTO 9999
ENDIF

,II’I’
2 4 02 0.0 8 €0 0 0 8 BB 06N 8 SN LA AL s e an
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"C'QQ'.'QQQQ'Q.Q.Q.Q.QQ"i'..9QQQQQQQQ'QQQQ’Q'Q'I"’Q.I!'Q'

s ° B .,

Arranging.circuit CR(i,. ) such that CR(i, 2)<CR(41, k), -

»

»

' -

. vhere k is the length of CR(i,.) »
* .

L}

»
~. ,
.".."..'Q'.i..’Q'QQQ"'5"Q'.Q'%;'Qf‘ﬂ"il"'*'Q.QQQQ*"Q

DO 2200 I=}, NC
. DO 2160 J=1, LG(I)
©TC(T) = cn::’?\\
TC(J+LG(I)- CR(I, J)
2160 CONTINUE ‘L
MN = Ne+1
DO 2170 J=1, LG(I)-1
IF (TC(J).GT.MN) GOTO 2170 o
MN = TC(J) . )
FR = J : .
2170 CONTINUE v
IF (TC(FR+1).GT.TC(FR+LG(I)-2)) GOTO 2182

DO 2180 R=1,LG(I)
CR(I,R) = TC(FR+R-1)

2180 CONTINUE. ‘
GOTO 2200 [
2182 DO 2130 R=1, LG(I)
CR(I,R) = TC(FR+LG(I)-R)
2190 CONTINUE

2200, CONTINUE
WA A A A d R L L L Y o O Y g,

» »

- Eliminate duplicate’ k-circuits »
» »
QO'.QQQQOQQ’QOQQOQDQ!'QQQQQQQQ*’Q*DQQQ*'*QQﬁ#fi’!”’!#f*lf’t
DO 2230 I=i, NC-1 - . .
L = )
DO 2220 K=aI+l, NC
IF (CR(K,1).EQ.0 .0OR. LG(K).NE.L)
1] GOTO 2220 ' . /

) DO 2210 J=1, L
IF (CR(I, J).NE. CR(K, J)) GOTO 2220

2210 CONTINUE

CR(K,1) = O
2220 CONTINUE ¢
2230 CONTINUE
MC = O = Ny
DO 2250 I:f,' NC
IF (CR(I,1).EQ. 0) GOTO 2250 s
MC = +1
DO 2240 J=1, LG(I) -
CR(NMC, J) = CR(I,J)
2240 CONTINUE
LG(MC) = LG(I)
2230 CONTINUE o
* -
» / X ,
Y g ' <




- ©

» ’ 3 ‘
-

~/ LA AAL R A AR AL S AR ARl IR XTI ZTTTRL Y XYY LR L LY TR Y WP

wenee . srnmeRReR
LA LY " STEP 3 ITI LYY I
pFrne - TRERRRRER
manee DETERMINE WHETHEHR AN I XYY
FXYIY \\ rRRARRRRN
wse** 'UNCROS S¢YED K-CIRCUIT IS A CH. wenconrnen
mrane eRRpeRere

’QQﬂi_’..%'f”QQ“Q’Q".'.”.QQ.Q.QQGQ.QQQQQQQ..l"..'i’."i.l
- .

»
OB = O
DO 3130 II=1, MC
L = LG(II)
»
*
)

LA A A2 R 2 A X222 AR A2l XA KR XX ZRR R AR R RSN EENE S SRERYNWE FERY

»

» NN = number of nodes different from the node& of »
» the uncrossed. circuit under consideration. "
» - L]
» These nodes are stored in array ND(.) "
* R "
..Q.Q.”I’QQDQ’Q“i".ﬁﬁikl*”..*l”'l’.QQQOQQQQQQQQDQQQQIQ'DQ
» ..

»

NN = Q
DO 3010 J=1, N
DO°"3000 I=i, L-1
IF (CR(II,I).EQ.J) GOTO 3010

3000 CONTINUE
: NN = NN+1
ND(II, NN} = J

3010 CONTINUE

DD(II) = NN

% % %
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&

‘ ’ ' ‘ @
\\/ \

Ay

QQQ’Q"QQQQ"IQ'Q'%"Q."Q'Q"l"QQQ’QQ'Q"li"'iil"""ﬁ'i

» ®
» XN = .number of.cro-ling- involving the nodesas-.of the »
» uncrossed k-circuit. . »
L) . \ :n*‘
QQQQQQQQQQQQ’QQQQG'QQCQ'QQQOQQGO!QQQQQQ'#QQQQ’*Q'QQQ.QQQQQ!Q
» b
”» -

XN = NX . * .

DO 3020 I=1, NX -

© IX(I) = 0 ) r
3020 CONTINUE

DO 3040 J=1, NN
‘ NU = ND(II,J)
DO 3030 I=1i, NX A
IF (IX(I).EQ.1) GOTO 3030
IF (NU.EQ.X1(I) .OR. NU.EQ.X2(I) .OR.

-

. NU.EQ. X3(I)> .0R. NU.EQ: X4(I))
a  » IXCI) = 1
d IF (IX(I).EQ.1) XN = XN-1 .
3030 CONTINUE .
3040 CONTINUE ’
» ~

»
. !
’QQO....Q..Q....’OQOQ*..’QQQ.f’."”'.”*”f”" LA AR XX X2 XX X

]

» ' »

. If XN < k1/(41(k-4)1) then C ks not a C »
L ‘. ¥here k is length of C »
» - »

.QQQI.QQQQ.Q.ﬂ.Q#QQQQ.Q#”QQQ’QQ#Q'#QQQ**Q**;\QQ"*Q’Qk*****
» o
. &
\ IF (XN.EQ.(L ~1)=(L-2)#(L-3)#(L-4)/24)GOTO 3045

IF (I1.LT.MC DR. OB. GT.0) GOTO 3130

wRITE(.' ‘lx' ...‘.'........‘......-."/

» V- lx,I'THERE IS NO CONVEX HULL’’/
* L N S X
3045 IF (NNEQ.O ) GOTO 3105 & .
IF (L.EQ.4) GOTO 3105 . i
DO 3100 I=1, NN .

NU = ND(II, I) . )
DO 3090 J=1, NX : ,
IF (X1(J).EQ.NU .OR. X2(J).EQ.NU)
» GOTO 3065 . .
IF (X3(J).EQ.NU .OR. X4(J).EQ.NU)
» GOTO 3047 . .
GOTO 3050
3047 DO 3050 K=1, L-1
IF (CR(II,K).EQ.X16J)) GOTO 3055

‘3080 CONTINUE -

GOTO 3065 -

200 * \




3055

3060-

3065
3070

3073

\

3080
: 3090

3100
3105

3 3110

-

3120
3130

DO 3060 K=1, L-1 ‘
IF (CR(II,K).EQ.X2¢(J)) GOTO 3100
CONTINUE
GOTO 3090 |
DO 3070 K=1, L-1 .
IF (CR(II,K).EQ.X3(J)) GOTO 3075
CONTINUE
GOTO 3090 v L
DO 3080 K=3), L-1
IF (CR(II,K).E@.X4(J)) GOTO 3100
CONTINUE '
‘CONTINUE
GOTO. 3130
.~ CONTINUE
OB = QOB+} .
DO 3110 K=1, L 8"
CR(OB,K) = CR(II,X)
CONTINUE
LG(QB) = L
" DD(OB) = DD(II)
DO 3120 K=1,.DD(QB)
ND(OB;K) = ND(II,K)
CONTINUE
CONTINUE )
IF (OB.EQ.0) THEN .
WRITE(®, (1K, "¢ e ernrnecnnnsnnrennans’l
1X, '*THERE IS NO CONVEX HULL'’/
lx,”.........-.........‘.-.-")')
GOTO 9999 \
ENDIF ’

201,



<

.'.Q.’%"QQQ""'QQ"Q'QQ’Q.Q‘Q'QQ’C!QQ"!Q'QQQI”"Q"OQQQI

- L2222 XE 4

XYY STEP 4

renasnn X IR Y

#ssesee FOR EACH TRIGON T, revwnenen .

sRNNEEN : , I YY)

I EZ 22T ) DPETERMINE ‘W HE 'l'c HER o traannnee

AnBaNE. . _ sRRARRARS

senssse T HERE IS A CROSSING tRERRRERY

T XYY . ‘. sARRRRRRS

#neesee (V , A )rxx (B, C) SUCH THAT sxsnnnnne

. LA LS T , X RERRRRRES

tennnee VY IS IN INT T, AND A, RERRRRRRY

rennnee ‘ 15 8 seRRRNRRES

wesnees B, C ARE NODEsS aoF T. ersnanane

LA A ALE " o RERRRNRRY
* WAL AL AL SRR T E FY Y TR Y FEE N R R g g g g

» .

o , a ~
DO 4100 II=1, OB
: L = LG(ID -
(J NN = DD(II) - -
WRITE(», '(1X,///’* CONVEX HULL = ’’,620T2)*)
» ' (CR(II,K),K=1, L) °
WRITE(», '(//)")

'

" -

.. ' -

foi"*fQ
hY
PENBOSRAER




*
ZEI XS EII TR RS TR YR T LY L XYY Y g N Y Y gy g g oy N g g N R N " ' Ay WAy
<. .

Determine whether the di-nwiung under consideration

* % ¥ =

»
»
- ) . »
has a subdraving equivalent to drawving A. . \
- »
»

.’..’*".‘"*'.’.‘.'.".'\”....."’..‘.’."’Q.".'..*"....‘"'a.
» ¥
. -
DO 4060 Q=1, IN(IJK)
NU = NT(IJK,@Q@)
YL =°I
Y2 = NU
Y3 = J -
Y4 = K
CALL DRWA
IF (IS.EQ.1) GOTO 4100
Y1 = J°
~ . Y2 = NU
= Y3 = I
Y4 = K - .
CALL DRWA )
IF (IS.EQ.1) GOTO 4100
Yi =K
Y2 = NU -
Y3 = I o
Y4 = J ‘
CALL DRWA - s
S IF (IS.EQ.1) GOTO 4100 '
4060 CONTINUE
4070 .~ CONTINUE
4080 CONTINUE
4090 CONTINUE - ‘
WRITE(" '(lx' "olnu-ooco.o‘ooo-t-"ulooaooo '.)')
WRITE(», ’(1X,"’. RECTILINEA AR .’"")’)

B I‘wRITE("'(lx'"I..O.‘.‘.l......'..l'.'l.‘"////)') ,

4100 CONTINYE .
« 9999 END v, ‘
- , -
. v - - L
» ) . -
— \ ) ,
"4 -~
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" it
.
» X ———
..ﬁ..’l..’..!IQQDI'OEDQDGDDOQI'Q.l'#!b.Q’#’.Q’Q.QQQ"Qﬁ’.’ﬁ.bbl:ﬁ
» ° »
. W =1 when T is the C H. .
* s \ »
» Honq. Ws=1 implies that node v is in Int|"l'.' "
- » ' ° »
QQ.QQ.Q.th’.".’l'!.".l’.’*.9GQDQQi!*.#"ipl.ﬁ‘?}b*‘{#bifﬁ
[ ]
» . ® . ”
— IF (W.EQ.1) THEN N
) XX = % )
- .  ©GOTO 4035
) ENDIF .
‘ IF (V.EQ.'I .OR.
P . V.EQ.J .OR. . )
- . ) V.EQ.K 7 GOTO 4040 ‘
XX = 0 . .
YL = I =
7 \ Y2 = J
‘ ‘ Y3 = V
. Y4 = EX ]
CALL TRGL
YL = I
Y2 = K .
Y3 =V .
Y4 = EX g
- CALL TRGL ,
. YL = J
Y2 = K
o Y3 = v ) ’
3 Y4 = EX ' K 4
. CALL TRGL ‘ \
4038 , IF (XX.EQ.1 .OR. XX.EQ@.3) THEN ‘
INCIJK) = INCIJK)+1
HT(IJK.IN(IJK)) =V
. ENDIF
4040 CONTINUE .
; : IF (IN(IJK).EQ. o»aoro 4070
WRITE(w, '(rx.axz.sx,1712>') I,J,K,
. ' (NT(IJK,R), R=1, IN(IJK))
TR(IJK,1) = I v
TR(IJK,2) = J :
TR(IJK,3) = K
»
» . N
(;

=

h ‘ 204




rd

b

-

>

..'Q’.QQ".Q’.’Q’I"Q!.Q‘QQ.#."'.'.'.Q'..'.*Q'..3.'.0’..‘0'

-+

2 5 % 0

”

Determine vhether the draving under consideration

'h--

a gubdraving,oquivnlont to drawving A.

-

»
» e
»
[

Q

[2ZX2 XX 22222 R X222 2R R 22X RIS 2SR YR YRR YN YYRERYERYEY

¥

4060

4070

4080
4090

[l

’ DO 4060 Q@=1, IN(IJK)
NU RT(IJK, Q)
. —¥1 = 1 .
Y2 = NU N
Y3 = J
. Ya. = K~
CALL DRWA
IF (IS.;Q;I) GOTO 4100
Yi = J
Y2 = NU
Y3 = I ' .
' Y4 = K
CALL, DRWA
IF (IS.EQ.1) GOTO 4100
- "Y1 = K
, Y2 = NU
Y3 = I
Y4 = J,
CALL DRWA ~
" IF (IS.EQ.1) GOTO 4100
- CONTINUE ‘
CONTINUE ) . ’
CONTINUE . ’

CONTINUE

CON
END

wR TE("’(lX'".‘..lilil.l..‘g‘.......l.‘")"
WRITE(+,’(1X,’’. RECTI L INEAWR."")")

\

wRITE(’,’(lx,"cccl‘tcloocoo'oooloilonl.."‘////)’) rj

TINUE

~20%
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[ Z X XX T2 XXX XY ) S U BROUTTINE no.oo.;o;o».a"oicfﬁ
. L.
¢ Determine the number of times (EX,V) crosses fhe arcs »
: of the triangle T # (i, j,k,1). :
, . o :

.QQQQQQ..QO.'ﬂ."f‘.""i’.'QQ'QQQ‘QOQQQQ"QQQ!Q’QQ...QQQ%’Q —

| ] Bl

SUBROUTINE TRGL <
. IMPLICIT INTEGER#2 (A-2) .
. COMMON Y1, Y2, Y3, Y4, NX, X1, X2, X3, X4, XX, IS

DIMENSION X1(100),X2¢100), X3(100), X4(100}

IF (Y3.GT.Y4) CALL INTRCHG(Y3, Y4) .

IF (Y1.GT.Y3) THEN

CALL INTRCHG(Y1,Y3)!

CALL INTRCHG(Y2, Y4) ’

ENDIF

g ‘DO 10 S=1, NX:
IF (Y1.EQ.X1(S) .AND. Y2.EQ.X2(S) .AND.

. ¥3. EQ. X3(S) .AND. Y4.EQ.X4(S)) XX = XX+1
10  CONTINUE - <

RETURN

END ]
L *
*
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@ b I XTI YRYY X S UBROUTIN NE RN NSONONNBORNEGIRS

»
*
*
*
»

-

*»

f " - N g

Determine vhether (v,i)x(j,k) while' v im in Int T. .
*

*

*

L4
LA AL R LISl A2 222 R R R SRSl R R EE R R FY E R YR Y YR RS R X )
- .

L]

SUBROUTINE DRWA
IMPLICIT INTEGER#2 (A-2)
COMMON Y1, Y2, Y3, Y4, NX, X1, X2, X3, X4, XX, IS -
DIMENSION X1(100), X2(100), X3(100), X4(100)
IF (Y1.GT.Y2) CALL INTRCHG(YL, Y2)
IF (Y1.GT. Y3) THEN
CALL INTRCHG(Y1, ¥Y3)
. CALL INTRCHG(YZ2, Y4) : ™~
ENDIF - !
" ! T
¢ If (v,i)x(3j,k) then draving is non-rectjilinear.
»
IS =0
DO 10 S=1, NX
IF (Y1.EQ.X1(S) .AND. Y2.E@.X2(S) .AND.
" - Y3.EQ.X3(S) .AND. Y4.EQ.X4(S)) THEN
* WRITE(»,’(1X,°’’'(’’,12,'°,"'4,12, .
0 » - tyxCr,I1I2,,',12,7)77)%)Y1,Y2,Y3, Y4

\ a

’
. WRITE(*,'(IX."..................,-..."Y’) N
: . ° " WRITE(#,’(1X,’’. N O N - RECTILINEAR .’’)")
: WRITE(’,'(lx,"......................."
L - v 7/7/77)")
C ) 1S = 1
RETURN -
. ENDIF
. 10 - CONTINUE ' - (
- RETURN ,
. END ",
. o
. ™ o
» o
” 2T TR Y ] SUBROUTINE BERBEBBROROBRRRENRD
» ' . . ¢t . LI 7
\ . o Interchanges the values of A and B .
» »
bord..»»».i.o.p.p-o.o&.»o-n.oniw.p.oo.oqo.000»0o'»oo»ootoobo
) SUBROUTINE INTRCHG(A, B) - o
‘INTEGER#*2 A,B,T -
T = A '
A= B _ “ .
B=T .
. RETURN
o ' END . R
' *
. . ‘ ’ N
N » .

N7,
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APPENDIX C.1

i

"PROGRAM TO GEMNERATE THE MNON-ISOMORPHIC

RECTILINEAR DRAWINGS D USING

; C | THE NON-EQUIVALENT RECTILINEAR
| DRAWINGS D_




. I. GENERAL FLOWCHART

(srnnr )
¥ -

) - Y INPUT:H of_orossings and
: the orossings of Dn-i

\

Let R be the set of all
on~isomorphic re%t ltgur
rawings to be obtained.
R is initially empty,

'J 1
INPUTI¥ of orossings and
\ the crossings oqun-il

A
Ld

1 \J

0btain a set of orossings
- x = (n,.)x(n'i,.)

e

i - 2

F

Using Theorem 8,1, obtain
remaining orossings of Dn,

Add Dn to R
v T
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III- COMPUTER PROGRAM (FORTRAN 77) C

< ]
. ‘\.—_"{.

'

[ 20% 2NN TN T Y A I R ® % # ® * & # & # » .Q: * % # » ¥ # »
* - « . 5 2 h '_"
» Let D.., be a rectilinear drawing of the complete »
. - »
» graph K.-i:. We label the nodes of D... such that *
» . *
» the node n-1 be on its convex hull and‘ such that thes
* »
» drce (n-1,41) and (n-1,1i+1l) be adjacent to each others
. ¢ ‘ »
" vith respect to node n-1, as shown in Fig.8.1.3 of =
* »
» Chapter 8. . »
’..l‘.l.l.0'...‘..0.....".‘O‘Q.l'..l.l“l......ll.ll..ll’
* e *
* GIVEN THE CROSSINMNGS OF EACH»
» *
» -0OF THE»QNO‘H -"E\QUIVALEN‘T .
» - »
* RECTILINEAR Dyw.:. , ALONG WITHH»
* . B . » 5
» THETIR APPROPRTIATE NODES"' "
* - - »
» LABELS  AS EXPLAINED IN i
% - »
» CHAPTER 8, THIS PROGRAN WILL~»
» i »
. GENERATE ALL NON-ISOMORPHTIC »
) »
» DRAWINGS 'D. .
* . »
L B BN BEE N JEE JE NN I BN A I A B N B B S * # # B » & B £ » »
- - ‘
- “a
;;"ﬁ:‘{é"’” - —

. ) . 210




% % & % & & %' % 3 % $ % % % & % % 2 2 ¢ ¢ % % % 58

% 3 % % 3 & 3 8 % &

TR EE

L 2

IMPLICIT INTEGER#*2 (A-2)
Let D, be the drawing on hand, and
let D.* be a draving belonging to the set of
non-isomorphic drawings already generated and lglinlt
which wve compare D, for isomorphiam.

Xl(.),XZ(.),X3(.),X4(.0 = croasings of D.
SX1(.),SX2(.),SX3(.),SX4(.) = crossingas of D.°
21¢(.),22(.),23(.),24(.,) = croasingms of D,.,
DIMENSION X1(210),X2(210),X3(210), X4(210)
DIMENSION SX1(210),8X2(210), SX3(210), SX4(210)
DIMENSION 21(210),22(210),2Z3(210), 24(210)
NODES(. ), RSPND(. ), RSPAR(, ) = nodes, nodes »
responsibilities and .
arcs responsibilities .
remspectively, for D, .. .
»
[ ]
»
*

2 3 53558

SNODES(. ), SRSPND(. ), SRSPAR(. ) = nodes, nodes
- responsibilities and
arcs reaponsibilities
respectively, for D,*
DIMENSION NODES(1d), SNODES(10) :
DIMENSION RSPND(10), SRESPND(10)
DIMENSION RSPAR(45), SRSPAR(45)

INDX(.) and IARC(.) are used in the process of
generating the arca (n,1i) of drawing D..

INDX(.) will contain the value 1 if arc (n,i) crosses
arc (n-1,3j), and the value 0 othervimse.

IARC(.) will contain the largest values thatsthe
elements of INDX(.) could attain, namely 1.

l

* 3 3 & s 2 % % & =

DIHENSIPN INDX(ZB),IARC(ZS),SINDX(ZB)

»
»
! *

MN(.) and MX(.) are used in the process of determining»r

vhether the sub-drawing conaisting of the nodes r,s,t, «
n, n-1 and their corresponding arcs, is rectilinear. »

MN(.) will contain nodes r,s and ¢t. L]
MX(.) will copntain the maximum vnluc for each of tho 1]
, .nodes r, s and t. . »
» »
DIMENSION MN(3), MX(3)

’ [ 2
»
- L ]
PERM(.) = the different labels of the nodes of D,., L
b - [ il » »

DIMENSION PERM(10) ,

-
| J

&
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RN

’l".Q\..lﬂﬁﬂ.fﬂl.’i'ﬂiﬁiblﬁ

Input the dimension, n, ' o
' the number 8f c;oasings, and the crossings of

’Dn-lo

C."?...QQ".CQ.Q’IQ*'QQ’Q..
OPEN (2, FILE=’C:NONISO’, STATUS=’NEW’)"
NDRAW = O ,
WRITE(», * (1X, '’ ‘INPUT N’’)’)
READ (#,301) N ~
IF (N.EQ.0) GOTO 9999

!

100 WRITE(», ' (1X,/7/

» '~ # OF REGIONS, # OF CROSSINGS’’)"’)
READ (»,%01) PC, NXO . . ¢
IF (PC.Ed.O .0OR. NXO0.EQ.0) GOTO 9999
NN1 » N#(N-1)/2 , -

N3N2 = (N-3)#(N-2)72
ML = N-1
WRITE(#», ‘ (1X, ' ' INPUT CROSSINGS’’)’)
DO 1000 I=1, NXO )
v READ (w»,501) X1(I), X2(I), X3(I), X4(I)
IF (PC.GT.1) THEN'
Z1(I) = X1(I)
22(I) = X2(I)
23(I) = X3(I)
Z4(I) = X4(I)
ENDIF

“\@ooo CONTINUE
1002 D0,1004 I=1 , N3NZ

 /t0y0. CONTINUE
* ‘1020 CONTINUE . \

IARC(I) =

1
JINDX(I) 0 ' <

1004 CONTINUE
1005 NX =NXO

K=0-
DO 1020 I1=1 , N-3.

DO 1010 I2=I1+1 , N-2
K= K¢}
IF (INDX(K) .NE. ) THEN

NX = NX+1
X1(NX) = I1
> X2(NX) = N
) X3(NX) = I
X4(NX) = N
ENDIF /o

* %x % % &% % »

g

-
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* L]
+ The st of crossings (n,.) x (n-1,.) is checked to *
«* deterpine wvhether it could belong to a rectilinear *
+ drawing. .
- ' -
» If thils set cannot belong to a rectilinear draving, »
\\\\ “then it is ignored. Othérvise, the remaining crossingse
of the drawving are obtained using Theorem 8.1 of »
(\'Chapters. ‘ ! .
«* L]
# % # 4 & # B # BN # #* # B B ® N BB 8RR #H NN RN Neoe
. - .
» L ]
DO 1030 I=1 , 3
HX(I)=N+I-3 .
MN(I)=1
1030 CONTINUE 4
1035 R = MN(1)
S = MN(2)
T = MN(3
A =20 '
B=Oa
cC=20
~D =0
\% DO 1040 I=1, NX
IF (R.EQ. X1¥I) ¢AND. T.EQ.X2(I) . AND. L0
] S.EQ.X3(I) .AND. N1.EQ.X4(I)) C=1
IF (R.E@.X1(I) .AND. N.EQ.X22(I) .AND.
» S.EQ.X3(I) .AND. N1.EQ.X4(I)) A=l
* IF (R.EQ. X1(I) .AND. N.EQ.X22(I) . AND.
» T.EQ. X3(I) .AND. N1.EQ.X4(I)) B=1
IF (S.EQ. X1(I) .AND. N.EQ.X2(I) . AND.
» T.EQ.X3(I) .AND. N1.EQ@.X4(I)) D=1
104p CONTINUE ;
» »
» »
- - / ( .
. :
B o.
S ‘
{
]
/ -
o~ ﬁ
)}
\/«._,f‘
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draving.-

by,
»
k’

i

'S & 8 ¢ % % 38

IF ((A.EQ.O0 .AND.

(A.EQ.0 .AND.

~

(A.EQ@.O . AND.
(A.EQ@.0O . AND.
(A.EQ.1 . AND.
(A.EQ.1 .AND.

(A.EQ.1 . AND.

5 3 F SRS E ST E RS

GOTO 2112

"

»

LA I A A 2 R R O N Y N N I I N I
»

»

)

Q."Q’O'QQ.QQQQOGQGOQQQQQQ'Q’Q

-

*

. &
Checking vhether the crossings belong to a rectilinear+

B.EQ.O .AND. .C.EQ.1 .AND. D.EQ.1
- OR.

B. EQ- 1 - A"D. C. EQ- O . A"Do D- E__aa 0) "

. OR.
B.EQ.1 .AND. C.EQ.1 .AND. D.EQ.O0)

. OR.
Bn EQ. 1 . A"Dc Cc EQ- 1 O’ANDO Do EQ. 1’

. OR.
‘B.EQ.O .AND. C.EQ.O .AND. D.EQ@.O)

- OR.
B.EQ.O .AND. C.EQ.O .AND. D.EQ.1)

. OR.
B.EQ.O .AND, C.EQ.1 .AND. D.EQ. 1)

. OR.

(A.EQ.1 .AND. B.EQ.1 .AND. C.E@.0 .AND. D.EQ.0))

* %

7




00OoCOo

L}

A
B
t
D
DO 1050 P=1,NX

A IF (X1(P).EQ.R .AND.

@' QQIQQ“.’.I‘O.Qﬂ".'.!lﬂ."'."G

«*
- Obtaining the remainipng of the crosaings. L
»

% # # # # N B N BN R KRR BRN RN RR RN NN

A

X2(P).EQ.T .AND.

» X3(P).EQ.S .AND. X4(P).EQ.N1) A=
IF (X1(P).EQ.S .AND. X2(P).EQ.N .AND. :
» X3(P).EQ. T .AND. X4(P).EQ.N1) B =1 ’
IF (X1(P).EQ.R .AND. X2(P).EQ.N .AND.
» X3(P).EQ.S .AND. X4(P).EQ.N1) . C = 1
- IF (X1(P).EQ.R .AND. X2(P).EQ@.N .AND.
. , X3(P).EQ.T .AND. X4(P).EQ.N1) D=1
1050 CONTINU ; ‘ *
: IF ((A{EQ.O .AND. B.EQ.O) .OR. (//
» (A.EQ.1 .AND. B.EQ.1)) THEN ‘
’ NX =NX+1 -
__— I XL(NX) = R .
X2(NX) = T
f //// X3(NX) = § -
, X4(NX) = N
| GOTO 10SS
% ENDIF »
! IF ((C.E@. 1 .AND. D.EQ.O) .OR.
» (C.EQ.O .AND. D.EQ@.1)) THEN
NX =NX+1 .
X1(NX) = R #
X2(NX) = N - Ty .
X3(NX) = & \
" N X4(NX) = T “
~  ENDIF
1055 IF (MN(3).EQ.MX(3)) THEN ,
LST = 2
- N GOTO 1067 - 4
' ENDIF . .
1065 MN(3) = MN(3) + 1
. GOTO - 1035 . , {/
1067 IF (MNCLST).EQ.MX(LST)) THEN -

IF (LST.GT.1) THEN
-LST = LST-1
GOTO 1067
LELSE ~
] GOTO 1095
ENDIF
ENDIF
* 1085 MN(LST) = MN(LST) + 1
" s DO 1090 I=LST+i , 3
d : ¢ MN(I) = MN(I-1) + 1
ﬂ 1090 CONTINUE
€ GOTO 1035

215
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]

% % & % ¢ % % % % & 3

J

2030

2060

2070

* » %

Arranging each crossing (a,b) x (c,d) auéh

that a < b, c<d, and a < c ; and

sorting the crossings in ascending order.
A

. #

~ 7
P R R S 2 R T S S S S S S S S S S S S

-
% B % 8 # B N #IN # B '8 # K 8 R\H " B # B N

% % %2 % & 3

CALL ARRNGX(NX, X1, X2, X3, X4)
CALL SORTX(NX, X1, X2, X3, X4)

. # »

!
Obtaining nodes and arcs responsibilities

*® # »

QQQ'.QQQ"..'.'Q'QQ.'.
? -

* % % % 8

QQQQQQQG"Q"Q\'.'QG../

CALL NODRSP(N, NX, X1, X2, X3, X4, RSPND, NODES) -
CALL ARCRSP(N, NN1, NX, X1, X2, X3, X4, RSPAR)

”n
[ I B DS BN N NN NN SR 2 N R D B R L L DN 2R B BN N R K S R SR
.

File

compared agains

it is ismaomorphi

already stored in NONISO then it is ignored, .

othervigse it is stored in NONISO and its .
9cx;o--inq- are displayed.

non-isomorphic Epavingh. Each of these is

..Q"Qﬁiﬂ\-l'"."*il’ﬂﬁ#i'l”

NONISO on' drive c will contain the

the drawving on hand. If .
to any of the drawings

* & ¥ * % & % & % 3 3

IF (NDRAW.GT.Q) THEN
OPEN (2,FILE="C:NONISO’)
Iso = 0

DO

CONTINUE

ENDIF

2070 I=1, NDRAW
READ(2,501) SNX
READ (2, 501)
{SX1(J),SX2(J), SX3(J),SX4(J), IJ=1, SNX)
READ (2,5301) (SRSPND(J), J=1, N)
READ . (2,501) (SNODES(J), J=1, N)
READ (2,5%501) (SRSPAR(J), J=1, NN1)
READ (2,501) (SINDX(J), J=1, N3N2)
IF (SNX.EQ.NX) THEN ,
DO 20850 J=1, N
IF (SRSPND(J).NE.RSPND(J)) GOTQ 2070
CONTINUE
DO 2060 J=1, NN1i
IF (SRSPAR(J).NE. PSPAR(J)) GOTO 2070
CONTINUE

~  CALL ISOMOR

(N, NX, RSPND, NODES, SNODES, X1, X2, X3, X4,
SX1, SX2, SX3, SX4, IS0)
IF (ISO.EQ.1) GOTO 2112
ENDIF

)

. 216




.

@ owqoqgﬁiiiitﬁﬁo'oﬁﬁﬁro'o‘tuunm
g » : OuUTPUT ’ »
* ‘QQQIQDGQQQGQQ'i'QQdQQQGOiOQ'OOlG0.
(/ WRITE(2,501) NX
WRITE (2, 501)
e o (X1(J), X2(3), X3¢y, X4(J>, J=1, NX)
! WRITE(2,501) (RSPND(J). J-l, N)
: WRITE(2,5Q1) (NODES(J), J=1l, N)
WRITE(2,501) (RSPAR(J), J=1, NN1)
WRITE(2,3501) (INDX(J), J=1, N3N2)
CLOSE(2)
NDRAW = NDRAW + 1 3 .
WRITE(»,501) NDRAW, (INDX(I), I=1l, N3N2)
WRITE(*», 602) '
- DO 2110 I=i, NX
WRITE(+,603) I,. XI(I) x2<1) X3(I), X4(1)

| 2110 CONTINUE
2112 " IF (INDX(N3N2).GE. ARC(N3N2)) THEN
| ‘ . LAST = N3N2 ~
GOTO 2125
P . ENDIF -
INDX(N3N2) ,= INDX(N3N2) + 1 .
i p GOTO 1005
2117 ,IF (INDX(LAST).LT.IARC(LAST)) GOTO 2135
2125 IF (LAST.EQ.1) GOTO 2148
@ LAST = LAST - 1
v GOTO 2117
2135, INDX(LAST) = INDX(LAST) + 1} l
DO 2137 I=LAST+1 , N3N2
. INDX(I) = O . -
2137 CONTINUE .
GOTO 1005 - :
l&*.#b’.}l’#i.lll..ﬂ;'.".b!‘x'!'Q
» . »
* Changing the region in vhich the.n-th node is placed. »
- » g . »
0....#*000#..00.#0..0#'Q’QQ..\
- 21495 IF (PC.NE.1) THEN ,
’ PC = PC -1

WRITE(», ’(1X,///’' INPUT NEW LABELS’‘)‘)

READ(#,501) (PERM(I), I=1, N-1)

DO 2170 I=1 , NXO ¥
. DO 2160 J=1,N-1

IF (Z1(I).EQ.J) X1(I) = PERM(J)
‘ IF (22(I).EQ.J) X2(I) = PERM(J) .
. ‘ IF (Z3(I).EQ.J) X3(I) = 'PERM(J)
- IF (24(I).EQ.)J) X4(I) = PERM(J)
2160 : CONTINUE ’

7 2170 CONTINUE

1

/ . a7 o
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Erel S RN AL D I Sl S
L5 SRR LT LT T (N

DO 2180 I=1 , NXO .
, IF (X1(I).BT.X2(I)) v 5
K : CALL INTRCHG(X1(I),X2(I)) _
IF (X3(I).GT.X4(I))
» . CALL INTRCHG(X3(I),X4(I)) .
IF (X1(I).GT.X3(I)) THEN o
i CALL INTRCHG(X1(I),X3(I)) <
-, CALL INTRCHG(X2(I), X4(I)) -
‘ ! ENDIF © "
2180 - CONTINUE .
“ GOTO 1002
ENDIF . f
GAOTO 100 3
501  FORMAT(28I2)
601 FORMAT(’O’,’/DRAVWING # ’,I4,/

» 0/ Exzansssaxsxanzsaxxz’/1X, 28(12))

602 FORHAT(.I.X,//' CROSSINGS ry/
» T e memm e ————— ==ty

603 FORMAT(’ *,12,*  (’,12,°, 7,12, ') x ¢,
" \ : v I2,7,7,12,0)0)
9999 END : A
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RRRARANBRRAEBRRREIRBERIR AR AR FRN P B RARDCRNRING SR RRRPRRRNIE N
snnanrsnnnsnsneret S UB R CUT I NE sessnssannennnsnse
RERRRARBRARBBRRBIRBRRARNRERBRENR B RACARPRBANCERERARRNNRIRNN®

* N »
#* Nodes responsibilities are calculated here. These are#
*+ gorted in descending order and their corresponding "
+ nodes arre rearranged accordingly. .
» -~ -

".""}3."'*"..'*"""'."'.'"."'..’.'.""'.".'“'
SUBROUTINE NODRSP(N, NX, X1 X2, X3, X4, RSPND, NODES)
‘IMPLICIT INTEGER*2 &A-~2)
DIMENSION X1(NX),X2(NX),X3(NX), X4 (NX)
DIMENSION RSPND(N), NODES(N)
DO 10 J=1, N _ - v

RSPND(J) = O : .
10 # CONTINUE -

DO 30 I=1, NX '
DO 20 J=i, N
IF (X1(I).EQ.J .OR.

» : ¥2(I).EQ.J .OR.

. - X3(I).EQ.J .OR. i

» X4(I W EQ.J) RSPND(J) = RSPND(J)+1
- 20 CONTINUE

30 CONTINUE
DO 40 I=1, N
_NODES(I) = I

40 'CONTINUE

DO 60 I=1, N-1
DO 50 J=I+1, N
IF (RSPND(I).LT.RSPND(J)) THE
CALL INTRCHG(RSPND(I), RSPND(J))} '
CALL TINTRCHG(NODES(I), NODES(J) )

a

ENDIF
30 CONTINUE , ‘ "
60 CONTINUE 4
RETURN . ; o

END

219 ‘
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’Q.Q’.O’#.QQQ."'G.’Q.Q.’QQQ.QGO'.QQQD"0.”’.*#9!0”0{59

SRR RBBIIIRRINNNEN s q BROUTTI NE sessasnconssansnnnsss

QQQ'.QQ..C..OQQQ’W..Q”."CQQQ’Oi"."‘l’i"QQ.!QGQ’QOQ'Q

[ ] *

* Arcs responsibilities are calculated then arranged ins
+ descending order. »
* »
,'0.0..'QQ.QQQQQQOIQQOQQ'Q”QQfliifOliﬂ’ﬂ’ﬂ'*".ﬂ!"iiil.

SUBROUTINE ARCRSP(N, M, NX, X1, X2,X3,X4,RSPAR)

IMPLICIT INTEGER+#2 (A-2Z)'

DIMENSION X1 (NX), X2(NX), XG(NX) X4 (NX)

DIMENSION RSPAR(H)

DO 10 J=1, M

RSPAR(J) = Q

10 CONTINUE

DO 40 I=1, NX J
JK = O
DO 30 J=1, N-1
DO 20 K=J+i1, N
JK = JK+1
IF ((X1(I).EQ.J .AND. X2(I).EQ@.K) .OR.
(X3(I).EQ.J .AND. X4(I).EQ.K))

»

» i RSPAR(JK) = RSPAR(JK)+l
20 CONTINUE o
30, CONTINUE

40  CONTINUE .
DO 60 I=i, M -1
DO SO J=I+1, M
IF (RSPAR(I).LT.RSPAR(J))

. CALL INTRCHG(RSPAR(I), RSPAR(J))
50 CONTINUE
60 ° CONTINUE \
RETURN
END .
: /
\
[
T N \ \J
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RARR R BRI DR EN RN SUBROQUTINE®assscnspresssncsen
PRERRRBRIE BRI RBRBRARRRRERAR PR VRNV AR RERRARR R RGN O RPN NORR

» ) *
» A crossing (a,b)x(c,d) is arranged such that .
/ ™ a<b, c<d and a < ¢ "

!QQQ‘Q*.QO.QQ‘C'."'l"."'.""ﬂ’.‘Q‘Q.i?.""""ﬂﬁ'*"‘
SUBROUTINE ARRNGX(NX, X1, X2, X3, X4)
IMPLICIT INTEGER+*2 (A-2)
- DIMENSION X1(NX), X2(NX), X3(NX), X4<NX)
! . DO 10 I=1l, NX
IF (X1(I).GT.X2(I)) CALL INTRCHG(X1(I),X2(I))
. IF (X3(I).GT.X4(I)) CALL INTRCHG(XG(I),X4(I))
IF (X1(I).GT.X3(I)) THEN
) CALL INTRCHG(X1(I), X3(I))
ALL INTRCHG(X2(I), X4(I))

ENDIF ‘ . - a
' 10 CONTINUE . * {’\T>
RETURN '
END )

e 22t



OQ'QOQ”QO"O"09.".'.’9"*"QOQ*Q.”QQQ.Q'Q’Q’QQ.OQ’Q‘Q

pannuansnnsanansases S U B RO UT I NE #nussasnassnasnssns

".0ﬁ”""ﬂ.QQQOﬂ...D’Q‘Q.QCQ’0”Ql‘....ll”’i"i!l#*if!*

» L

¢ The cron-:l.ng- of a draving are sorted in aacending *
# order. w »

L
Q.”Q'QOQQQQ’QQQQQQ'QQ;OQ.QQ"lfCQCO.QQl"i.l’lill'!.l”.

'SUBROUTINE SORTX(NX, X1, X2, X3, X4)
IMPLICIT INTEGER#*2 (A-2) |
DIMENSION X1(NX), X2(NX), X3(NX), X4 (NX)
,DO 30 I=1, NX-1 ¢
© DO 20 J=I+i, NX )
IF (X1(I).LT.X1(J)) GOTO 20 .
IF (X1(I).GT.X1(J)) GOTO 10 :
IF (X2(I).LT.X2(J)) GOTO 20 ~\
IF (X2(I).GT.X2(J)) GOTO 12
IF (X3(I).LT.X3(J)) GOTO 20
IF (X3(I).GT.X3(J)) GOTO 14
IF (X4(I).LT.X4GJ)) GOTQ 20

*

- IF (X4(I1).GT.X4(J)) GOTO 16
10 CALL INTRCHG(X1(I), X1(JI))
12 CALL INTRCHG(X2(I), X2(J))
14 CALL INTRCHG(X3(I), X3(J))
16 of CALL INTRCHG(X4(I), X4(J)) .
20 CONTINUE
30 CONTINUE -
RETURN
END .
»
»
(
' R
A .
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(YIS Y SRR Y XY S UB ﬂ QU TINE #sesancsesaasnsnssnsrsn
RRERRR AR RRRARRRRARERRBREBRRRPRRR AR BB RABPRPRRNBRBIENRE NN

| J -
» Twvo drawings are compared for imomorphism. Node «
* respongibilities are used to reduce the numbe "
- ’ of comparisons. ) -
*_ - »
* ‘Variable ISO takes the value 1 whenever the tvo "
- drawvings are isomorphic. Otherwise it keeps its =»
. original value of zero. "
»

.QQ’I’.'.QQD.Q’..'.’QQi’.'#.*.?’..’."’.'t"Q'QQ&QQ.Q'.QQ'
SUBROUTINE ISOMOR(N, NX, RSPND, NODES, SNODES,
» x\l, xz' xap x4'
» SX1, SX2, SX3, SX4, I1s0)
IMPLICIT INTEGER#*2 (A-2) '
DIMENSION RSPND(N), NODES(N), SNODES(N)
DIMENSION X1(NX),X2(NX), X3(NX), X4 (NX)
DIMENSION SX1 (NX); SX2(NX), SX3(NX),SX4 (NX)
»* »
*PR(.), PRM(.), MP(.,. ), MINI(.), MAXI(.) are usedtogeneratex
* . nev nodes’ llbol-g
» ° 4
DIMENSION PR(6),PRM(6), MP(6,6), MINI(9), MAXI(9)
' »
Yi(¢.), ¥2(.), Y3(.), Y4(.) = crossings after relabelling®
' the nodes "
»

» % %9

. ]
DIMENSION Y1(15),Y2¢(15),Y3(1S),Y4(15)
DO 100 L=1, N~

PR(L) = 0O
© 100 CONTINUE
L=1
PR(1) = 1
DO 110 L=2, N . ~
IF (RSPND(L-1).GT.RSPND(L)) THEN
J = J+l
A PR(J) = 1
GOTO 110
ENDIF
PR(J) = PR(J)+1 (
110 -CONTINUE -
S =0 .
R=o0 | ., .
DO 130 I=1, N X .
DO 120 J=i, N &
0 MP(I,J) = O ‘ -
120 ' CONTINUE . \

-

130 CONTINUE

.,, »

223



™

200
210

220

300
310

320
330

400
410

S00
310

600

DO 220 J=31, N
S = S+PR(J-1)
IF (PR(J).NE.Q) THEN .
DO 210 K=1, PR(J) \
R.» Rx1
DO 200 L=1, PR(J)
MP (NODES(L+S),K) = SNODES(R)
CONTINUE ' .
CONTINUE
. ENDIF
CONTINUE : .
DO 320 I=1, N
PI = O
DO 300 J=)1, N .
IF (MP(I, J).E4.0) GOTO 310
PI = PI+1 :
CONTINUE
MINI(I) = %
MAXI(I) = PI
CONTINUE
IS = 3 v
DO 410 Rw=IS, N
PRMI = MP(RW, MINI(RW)) .
PRM(RW) = PRMI . .
DO 400 J=1, RW-1

’ . IF (PRH(J).E?%PRHI) GOTO 700 ; “

»
»

CONTINUE
CONTINUE
DO 510 K=1, NX
DO 500 J=1, N. , :
IF (X1(K).EQ.J) Y1(K) =PRM(J)
IF (X2(K).EQ.J) Y2(K) =PRM(J)
IF. (X3(K).EQ.J) Y3(K) =PRM(J)
IF- (X4(K).EQ.J) Y4(KQ =PRM(J)
CONTINUE - .
CONTINUE
CALL ARRNGX(NX, Y1,Y2, Y3,Y4) .
CALL SORTX(NX, Y1, Y2, Y3, Y4)
DO 600 I=1, NX ‘ '
IF (SX1(I).NE.Y1(I) .OR. SX2(I).NE.Y2(I) .OR.
SX3(I).NE.Y3(I) .OR. SX4(I).NE.Y4(I)) °
: GOTO 700
CONTINUE d : -
ISO = 1
GOTO 900

_____

4




700

710

720
730

740

730

900

IS = RW _ .
IF . (MINI(RW).GE. MAXI(RW)) THEN
LST = RW

GOTO 730 :
ENDIF -
MINI(RW) = MINI(RW)+1
GOTO 330 '

~

IF (MINICLST).LT.MAXI(LST)) GOTO 740

IF (LST.EQ@. 1) GOTO 900

LST = LST-1

IS = IS-1 »

GOTO 720 , C

MINI(LST) = MINI(LST)+1 .

DO 750 L=LST+1, N ~
MINI(L) =1 .

CONTINUE )

GOTO 330 ,

RETURN

END -

eed

2
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< SUBROUTINE INTRCHG(A,B)
«.—-INTEGER*2 A/B,T
T = A ]
a A = B o ,
B=T
RETURN . -
END s -
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- APPENDIX C.2  [r

¢ ALL THE NON-ISOMORPHIC

‘ ‘ RECTILINEAR DRAWINGS Dn OF Rn
-

FOR nNn = 35,6,7 .
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