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Abstract

In observational research, confounding control is critical to appropriate inference. In the

field of pharmacoepidemiology, determining the appropriate lookback period is essential as

it dictates how far back we examine potential confounding factors from the time of exposure.

This study aims to compare treatment effect estimates using two different approaches: tar-

geted maximum likelihood estimation (TMLE) and propensity score method under inverse

probability weighting approach (PS-IPW), considering varying lookback periods (short term

and long term). To conduct the comparison, simulation settings were established, consider-

ing eight different lookback periods (1,3,6 months, and 1,2,5,7,9 years), with 10 years as the

ideal reference lookback period. We applied two different approaches: PS-IPW and TMLE-

logistic, both within the logistic regression framework. Additionally, we included TMLE

using SuperLearner (TMLE-SL) as part of our simulation. To assess the effect of lookback

on propensity score models, propensity score quantile estimates were computed, revealing

that longer lookback periods exhibited less bias compared to shorter ones. Subsequently,

the average treatment effect (ATE) along with standard error was estimated using PS-IPW,

TMLE-logistic, and TMLE-SL. It was observed that TMLE-logistic and TMLE-SL produced

lower standard errors than the PS-IPW approach across the varying lookback periods. Fi-

nally, the study applied both methods to the CPRD (Clinical Practice Research Datalink)

database to evaluate how TMLE and PS-IPW perform in real-life scenarios for each of the

specified lookback periods. In conclusion, this research contributes valuable insights into

the impact of lookback periods on treatment effect estimates, highlighting the advantages

of using TMLE approaches over PS-IPW in certain lookback scenarios. Furthermore, the

application of these methods to real-world data from CPRD aids in understanding their

performance in practical healthcare research settings.
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Abrégé

En recherche observationnelle, le contrôle des facteurs de confusion est essentiel pour obtenir

des inférences appropriées. Dans le domaine de la pharmacoépidémiologie, la détermination

de la période de référence appropriée est essentielle, car elle détermine à quel point nous

examinons les facteurs de confusion potentiels à partir du moment de l’exposition. Cette

étude vise à comparer les estimations des effets du traitement en utilisant deux approches

différentes : l’estimation du maximum de vraisemblance ciblée (TMLE) et la méthode du

score de propension avec approche de pondération par probabilité inverse (PS-IPW), en ten-

ant compte de différentes périodes de référence (court terme et long terme). Pour mener la

comparaison, des paramètres de simulation ont été établis en considérant huit périodes de

référence différentes (1, 3, 6 mois, et 1, 2, 5, 7, 9 ans), avec une période de référence idéale

de 10 ans. Nous avons appliqué deux approches différentes : PS-IPW et TMLE-logistique,

toutes deux dans le cadre de la régression logistique. De plus, nous avons inclus TMLE

utilisant SuperLearner (TMLE-SL) dans notre simulation. Pour évaluer l’effet de la péri-

ode de référence sur les modèles de score de propension, des estimations des quantiles du

score de propension ont été calculées, révélant que les périodes de référence plus longues

présentaient moins de biais par rapport aux périodes plus courtes. Ensuite, l’effet moyen du

traitement (ATE) ainsi que l’erreur standard ont été estimés en utilisant PS-IPW, TMLE-

logistique et TMLE-SL. Il a été observé que TMLE-logistique et TMLE-SL produisaient

des erreurs standard plus faibles que l’approche PS-IPW sur les différentes périodes de

référence. Enfin, l’étude a appliqué ces deux méthodes à la base de données CPRD (Clinical

Practice Research Datalink) pour évaluer comment TMLE et PS-IPW se comportent dans

des scénarios réels pour chacune des périodes de référence spécifiées. En conclusion, cette

recherche apporte des informations précieuses sur l’impact des périodes de référence sur
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les estimations des effets du traitement, mettant en évidence les avantages de l’utilisation

des approches TMLE par rapport à PS-IPW dans certains scénarios de période de référence.

De plus, l’application de ces méthodes aux données du monde réel provenant de la base de

données CPRD contribue à comprendre leur performance dans des contextes pratiques de

recherche en santé.
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Chapter 1

Introduction

Pharmacoepidemiologic research is fundamentally interested in the estimation of the causal

effect of medications on safety and efficacy outcomes. To estimate the causal effect of ex-

posure on a disease outcome, the randomized controlled trial (RCT) is useful as random

allocation of treatment removes confounding bias. However, the RCT design is mainly im-

plemented in pre-market studies to adopt a new intervention and compare its effectiveness

with the current drugs in the market [1]. Due to limited budget, low resources, and eth-

ical considerations, the RCT design is not always feasible once the drug is on the market

[2]. Further, the result from an RCT lacks generalizability since it is mostly limited to

a selected homogeneous population, and the sample size is typically small relative to the

population using the medication. So, this design has less ability to detect uncommon but

important harms. Also, in clinical decision-making, some interventions may never be sub-

ject to randomization. Thus, observational studies are sometimes the only option to get

data on specific scientific questions and to help make decisions about limited health care

budget allocation [3, 4, 5]. Moreover, after the approval of a new drug, further investiga-

tion tends to be continued to ensure drug safety in humans [6, 7, 8]. Therefore to identify

previously unrecognized adverse effects as well as positive effects of drugs, observational

research is adopted in post-marketing surveillance [9, 10, 11]. A crucial problem in ob-

servational studies emerges when the treatment groups are not directly comparable due

to covariate imbalances (i.e., confounding). To minimize this confounding bias in observa-

tional studies, several methods have been developed in the literature [12]. Propensity score
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methods are one of the most widely used [13, 14, 15, 16, 17]. The propensity score methods

were first introduced in 1987 by Rosenbaum [18] and are commonly used to balance between

treatment and comparison groups. The propensity score is the probability of treatment as-

signment conditioning on some observed baseline characteristics. To design and analyze an

observational study, propensity score methods imitate some particular characteristics of a

randomized control trial by providing a balancing score. In particular, the propensity score

is a balancing score such that, when conditioning on the propensity score, the treated and

untreated groups would have a similar covariate distribution on average. There are four

well-known propensity score methods, i.e., matching on the propensity score, stratification

on the propensity score, inverse probability treatment weighting using the propensity score,

and covariate adjustment using the propensity score.

Observational healthcare data, especially administrative healthcare data, are often crit-

icized for partial or incomplete information about patients’ past history. In the presence of

confounding, drawing appropriate inferences is critical. So, it is important to identify the

lookback period to determine how far back from exposure one looks to assess potential con-

founders [19, 20, 21]. Typically researchers often decide on a lookback time window. A previ-

ous methodological study (Ripamonti et al., under review in Statistical Methods in Medical

Research) has been done to explore how much history should be considered in propensity

score estimation. The study showed that with longer lookback time windows, the estimates

of the true propensity score distribution are less biased and more precise than with shorter

lookback time [19].

However, the propensity score method has some limitations as it requires the treat-

ment model to be correctly specified given confounders. To obtain an unbiased estimate of

the average treatment effect (ATE), correct model specification is necessary [22, 23, 24].

To overcome this challenge, a semi-parametric double robust method called targeted max-

imum likelihood estimation (TMLE) has been introduced [25]. This method is robust to

misspecification of either treatment or outcome model, making it appealing in confounding

adjustment over other naive approaches. Besides, it allows the incorporation of flexible ma-
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chine learning algorithms for choosing the correct model. But due to its limited familiarity,

TMLE has not been extensively used in observational drug studies. To our knowledge, The

estimation of average treatment effect (ATE) using TMLE in the context of varying look-

back time lengths has not yet been explored. This study explores estimating the average

treatment effect using TMLE under various lookback settings. Moreover, we will explore

how the estimate of ATE can be affected using a data-driven approach by defining long term

and short term lookback periods. Finally, we intend to compare propensity score methods

and TMLE in various timestamped lookback data under a simulation study and real world

settings.
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Chapter 2

Literature Review

2.1 Observational Studies in Pharmacoepidemiology

The field of pharmacoepidemiology uses observational studies to examine drug safety and

effectiveness [26, 9]. In this modern age of evidence-based medicine, clinical researchers

require an extensive range of well-designed studies to provide an appropriate prescribing

decision for patients. Observational studies have become necessary to provide evidence

to assess drug safety and detect the advantages and disadvantages of approved medica-

tions [27]. Randomized studies allow us to directly compare the results from those assigned

treatment to those from the control group. To ensure a fair comparison between compa-

rable groups, we randomly allocate the subjects into one of the two treatment groups. In

randomized controlled trials (RCT), the sample size is typically planned to be large enough

to fairly compare two treatment groups on primary efficacy outcomes. However, clinical tri-

als are run on a restricted study population determined by the pre-approved protocol. For

example, testing a new intervention on pregnant women or children is usually not ethical.

RCTs typically focus on a population that is easily managed and less heterogenous than the

general population. Thus the result from an RCT may be locally valid but not admissible

to check the effectiveness or safety of treatment in the general population. In that case,

observational studies are the only way to collect information about a particular treatment

or medication. Observational studies include cohort or case-control studies [28].
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A key feature of the observational study is that it is designed so that the study does

not dictate any intervention on the participants. Instead, it observes their drug usage and

health status. The study selects a cohort of people with a specific disease of interest or a

combination of characteristics and reports their health information at periodic intervals.

Since no experimental drug is prescribed, ethical concerns are reduced in the observational

study design. Thus the participants in each study cohort become more representative and

reflect “real life” drug usage. The main drawback of such study designs is that the exposure

or intervention is not randomized in two treatment groups, and therefore confounding

by indication [29] becomes a problem. Confounding is a source of bias that corresponds to

lack of comparability between treatment and exposure groups when estimating the causal

effect [29]. Confounding bias may arise due to differences in any measured or unmeasured

confounders between two comparison groups. Any observed exposure effect on the outcome

may be due to these baseline differences. Various statistical tools have been introduced in

the literature to address confounding in this observational study setting.

Due to improvements in observational study methods and advanced statistical tech-

niques, researchers can investigate real life data, rare outcomes, and long term effects that

were unexplored in pre-approval RCTs [30, 31]. In a review of empirical studies, a study

suggested that systematic review or meta-analysis based on RCT and well-conducted obser-

vational studies produce similar effect estimates in many settings [32]. The discrepancies

between these studies might happen due to study design or other causes, and in such cases,

appropriate clinical reasoning and causal inference should be provided [32]. Another study

of meta-analyses has shown that the RCT and observational studies have more similar re-

sults than have often been thought [33]. An important feature of observational research

is that it can include millions of patients to study drug safety, which is unlikely to happen

in randomized controlled trials because of limited size and follow up. The databases used

in the observational study are typically from patient registries, electronic health records,

routinely collected administrative data, primary patient-level data collection (prospective

or retrospective), or population health surveys [34]. Information on medication from these

data sources is usually more accurate than self-recorded information, particularly in the
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situation when patients are too ill or have died already. A study suggested that observa-

tional studies may be less prone to heterogeneity and more representative of clinical prac-

tice because they have large populations [35]. Moreover, observational research can address

research questions that are not suitable for randomized clinical trials. For example, obser-

vational studies can address safety outcomes, and there can be individuals whose adminis-

tration is not consistent with treatment guidelines. Proper use of observational studies can

investigate disease prevalence, incidence, association, causes, and outcomes. Observational

studies can provide critical, descriptive data when little is known about the epidemiology of

disease and information on long term drug efficacy and safety in a cost-effective way. Typ-

ically these studies include case reports and case series, ecological, cross-sectional, cohort,

and case-control studies. In pharmacoepidemiology, many studies use cohort study design

[36].

Since observational studies cannot control for bias and confounding by design, statistical

tools must be used for confounding adjustment. As pharmacoepidemiologic research takes

advantage of large databases because of the growing trend of recorded electronic data, ob-

servational studies use these retrospective databases that can engage longer observation

periods and large populations [37]. Thus observational studies answer various research

questions at less expense and without long delays and help decision-makers compare the

efficacy of various medications [38].

2.2 Lookback Periods in Observational Studies

In observational studies, the researcher does not know the treatment assignment mecha-

nism, as the treatment for an individual can be selected by itself or by a third party. The

researcher starts with a comparison group that may not be equivalent to the treatment

group in terms of background characteristics. To conduct a valid study, covariates related

to the treatment assignment and potential outcomes should be identified and addressed by

the researcher. For example, a researcher wants to evaluate a home tutoring program to im-

prove students’ science skills. The researcher has to consider all covariates related to math,
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physics, and biology score. Some of these covariates may be observed or unobserved. The

observed variables can be identified by the student’s exam scores in corresponding subjects,

prior experiences, and demographic characteristics. But there can be some unmeasured

variables such as students’ capability to learn, parents’ attitude towards education, stu-

dents’ personality factors, etc. Failure to account for these variables may lead to biased or

inconsistent effect estimates.

In pharmacoepidemiology, observational studies use administrative health care data

routinely compiled by various health care providers and patient encounters [39, 40]. Of-

ten these data are criticized for the incompleteness of information on potential confounders

[41]. Moreover, the past history of drug exposure is only partially available or missing be-

cause of the non-availability of the individuals under observation. This problem can lead

to potential biases and thus questions can arise on the validity of the research being con-

ducted. Rather than ignoring this data, researchers decide on a lookback period to identify

individuals and to identify relevant confounders. Subjects can vary in terms of the duration

of available baseline information. In this situation, the researchers have two choices, either

use covariate information based on all available baseline data for each individual or use

covariate information based on a fixed baseline window of time that is shared by all subjects

[19]. Previous studies showed that assessing baseline confounders with fixed/short lookback

time may cause biased or inconsistent effect estimates [42].

2.2.1 Review of the Choice of Optimal Lookback Length

Relevant information like past acute diseases and events might not be captured if the look-

back window is not optimal. Previous research has investigated how this length is selected

and showed how it affects results [43]. A Korean study using a health insurance database

has shown the number of miss-classified incident cases decreases as the lookback length

increases [44]. Another US study showed that a 3-year lookback could produce a less bi-

ased point estimate [45]. A study conducted by Osokogu [46], has shown that the length of

various lookback periods might affect inference using propensity scores in electronic health

care data. The study made a comparison among lookback periods of 1 week, 1 month, and
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3 months and corresponding results showed that 3 months lookback periods might lead to

the most comparable results to clinical trial results compared to other lookbacks. However,

they suggested all available lookback is preferable over short fixed lookbacks. In addition,

an Australian study using linked perinatal population data showed that although longer

ascertainment (lookback) periods might improve the identification of chronic disease his-

tory, it did not change the C-statistic [47]. The study’s findings indicated that information

regarding comorbidity prior to hospital admissions had minimal impact on hemorrhage (an

acute loss of blood from a damaged blood vessel) modeling. Instead, the study proposed

determining an appropriate lookback period based on the specific objectives of the research

[47]. These findings might help us to conclude that evaluating previous hospital history for

the completeness of disease history is not always worthwhile. A US study was performed

to quantify the effect of lookback periods on the misclassification of true new users of an-

tibiotics and asthma medications [48]. The study defined lookback periods ranging from 30

days to 12 years and reported severe misclassification for 30 days to 2-year lookback. How-

ever, it suggested that studies with limited prescription history are likely to be unable to

observe an adverse drug effect, and the choice of optimal lookback length should depend on

the type of medication and the outcome that is being studied [48]. Another study aimed at

quantifying the effects of different comorbidity ascertainment lookback lengths on modeling

post-hospitalization mortality and readmission outcomes [49]. They defined lookback period

1 (1-365 days), lookback 2 (366 days- 2 years), lookback 3 (2-3 years), and final period (3-5

years) [49]. They reported that the predictive ability of regression models is affected by the

length of the lookback. Lookback period 1 appeared to be appropriate for modeling posthos-

pitalization mortality where longer lookback was preferable for readmission outcomes [49].

Several authors performed a systematic review of multiple comorbidity measures and sug-

gested that a lookback period 1 year before the index date is preferable to improve mortality

prediction [50]. However, another study was performed in Norway to examine the effect

of lookback period length to identify acute MI (myocardial infarction) on incidence rates by

performing a subgroup analysis between men and women [51]. The study concluded that the

lookback period of 7 and 10 years are reliable to identifying the incident of acute myocardial

infarction whereas the shorter lookback period may overestimate the incidence rates [51].

8



2.2.2 Methods Used to Analyze Varying Lookback Data in Litera-

ture

A recent study of Alzheimer’s disease (AD) in the US adult cohort showed that influenza

vaccination is associated with reduced AD risk for adult people [52]. They used a 6 years

lookback period and found a statistically significant relationship between influenza vaccina-

tion status and incident dementia. They used propensity score-matched cohorts to find the

treatment effect of flu vaccination on AD risk. As they used nearest neighborhood match-

ing without replacement, this can be computationally inefficient, and the treated subjects

matched may change the quality of the matches [53]. Another study showed a comparison

between the extended lookback period of all available data and a fixed baseline period and

concluded that there is a chance of covariate misclassification with a fixed baseline period

[20]. In the analysis, three propensity score based Cox-proportional hazard models were

used to estimate the outcome. In the first model, they categorized the propensity score into

deciles and used it as a covariate in Cox-proportional hazard model. In the second model, an

asymmetrical trimming approach was used with 2.5% levels of PS tails. In the third model,

nearest-neighborhood matching was used with a 0.025 caliper. However, one problem with

these propensity score matching methods arises if there is not substantial overlap between

the two groups, in which case bias may be introduced in the model. Another study conducted

on US electronic health record database aimed to assess the predictive performance between

models with up to 2 years of lookback data [54]. Multiple logistic regression was used for the

different combinations of lookback periods and to predict the mortality outcomes, and found

no significant clinical differences between the lookback periods. However, they concluded

that bias is possible due to missing clinical and demographic information.

2.3 Targeted Maximum Likelihood Estimation (TMLE):

A More General Approach to Causal Inference

Targeted maximum likelihood estimation (TMLE) of a parameter of a data-generating dis-

tribution is a semi-parametric doubly robust method that improves the chances of correct
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model specification by allowing flexible estimation using a (non-parametric) machine learn-

ing method. Correct specification of the propensity score model is crucial to obtain an un-

biased estimate of marginal treatment effect by matching or inverse probability weighting.

The TMLE as a double robust method was proposed by Van der Laan to minimize the im-

pact of model misspecification, which requires estimation of either outcome and treatment

mechanisms [22, 55]. Even if one of the models is misspecified, the TMLE effect estimator

is asymptotically consistent. Furthermore, TMLE is also locally semi-parametric efficient,

meaning that the estimator has (asymptotically) the smallest standard error among estima-

tors that make the same model assumption under the correct specification of both models.

In observational data settings, TMLE is a well-established alternative method with desir-

able statistical properties. A recent simulation study showed how TMLE can be applied in

practical settings [56]. Methods based on propensity score are not doubly robust as there

is a chance of bias in the estimation of the exposure mechanism; the TMLE can outperform

in an observational setting. A comparison was shown between TMLE, G computation, and

inverse probability weighting where TMLE had less mean bias compared to the other two

methods [56]. The study further demonstrated the best practice of TMLE application using

an ensemble machine learning algorithm [56]. Another study by Pang showed a comparison

between TMLE and IPTW using a point exposure cohort study of the marginal causal effect

in the CPRD data [57]. The study considered the situation of near violations of practical

positivity assumption in a high dimensional covariate setting and concluded that TMLE

had improved performance in case of well-specification of the outcome model [57]. Another

methodological study by Porter and colleagues demonstrated that under the logistic frame-

work, a certain version of TMLE is more robust to violations of positivity assumption and

model misspecification than the linear function [58]. Schnitzer and colleagues implemented

TMLE methodology to estimate the impact of breastfeeding intervention on gastrointestinal

infections [59]. The study showed that TMLE did not produce less bias compared to the G

computation substitution estimator, but the TMLE estimators under the logistic framework

were more stable in near-positivity violation. The study also showed that the performance of

TMLE was well in the time-interval case and better than non-doubly robust methods under

model misspecification. Moreover, another article suggested that under model misspecifica-
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tion, both TMLE and bias-corrected matching method (BCM) can perform well compared to

propensity score methods when the machine learning methods are incorporated [60].

2.3.1 TMLE Using Ensemble Machine Learning Algorithm

In parametric models, biases may arise when the assumed functional form or distribution

of the model does not match the true relationship in the data, leading to systematic errors

in the estimates [61]. The central limit theorem (CLT) and the law of large numbers are

used as classical tools to draw appropriate inferences while working with parametric model

approaches [62]. Inference based on these models may produce biased estimates, however,

if the model is misspecified. Flexible machine learning tools may be used to alleviate this

bias. As TMLE has both outcome and treatment models, machine learning approaches can

be used in these models, which incorporate a variety of algorithms [63]. While dealing with

observational data, a large number of covariates with potentially complex relationships can

be present. So, model misspecification can happen in estimating treatment effects. In this

setting, TMLE implementation using machine learning tools can be advantageous. Simu-

lation studies performed by [56] have shown that TMLE using SuperLearner (i.e., ensem-

ble method) helps to reduce bias in average treatment effect (ATE) estimates. Ensemble

learning is a technique that uses multiple algorithms (can include traditional regression

methods, too) and combine them to advance estimates and predictive performance. There

are a variety of ensemble models, i.e., random forest, bagging, boosting, and SuperLearner

[63]. Several tutorials aimed at TMLE using SuperLearner have been published in the

literature, including R code for implementation as well [56, 64]. In R under library Super-

Learner, instead of only simple regression models, a set of prediction algorithms can be used.

These algorithms may include parametric regression models, non-linear regression models,

shrinkage estimators, and regression trees. The ensemble method SuperLearner selects a

weighted combination of different algorithms to optimize cross-validated mean square er-

ror [65, 66]. A study evaluated the performance of TMLE using machine learning-based

estimators by implementing TMLE using random forest and SuperLearner and concluded

that TMLE incorporating SuperLearner produces more feasible estimates with small stan-

dard error [67]. Another methodological study has shown that while using the doubly robust
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method TMLE, the SuperLearner method worked well with the ensemble including general-

ized additive model, general linear models, and regression splines [68]. A case-control study

on breast cancer was performed to estimate the causal effect of reproductive factors on the

risk of breast cancer using an updated version of TMLE (case-control weighted (CCW)) and

SuperLearner algorithms [69]. This study identified that TMLE with the SuperLearner, was

more efficient for controlling confounding than other statistical approaches. Another study

to analyze dietary data has shown the variation of results while using TMLE with logistic

regression and ensemble machine learning algorithms [70]. The study concluded that Su-

perLearner with TMLE produced stronger and more precise estimates with less variation.

A simulation study performed by Schnitzer has shown the use of TMLE with SuperLearner

in the presence of dependent censoring and intimated that overall TMLE implementation

with the SuperLearner library produced the most efficient result [71]. A very recent US

study was performed to examine the effect of mobility on new COVID-19 case rates [72].

In the primary analysis, TMLE with SuperLearner was used to adjust confounders, and

an unadjusted analysis was also implemented. The unadjusted analysis showed a strong

association between mobility indexes and COVID-19 new case rates, while no association

was found after confounding adjustment [72]. Finally, they reported that TMLE with Su-

perLearner is an attractive approach and should be used in an effective way to provide the

basis for valid statistical inference [72]. Another study implemented TMLE to estimate the

causal association of proximity to gold and copper mines on respiratory disease among the

children living in a desert area of Northern Chile. The study concluded that TMLE with en-

semble learning algorithms can reduce the parametric misspecification bias and draw valid

inferences [73].

2.4 How Much Lookback Length Should be Taken Using

Propensity Score Methods?

As noted earlier, in epidemiology, cohort studies usually require a baseline period to mea-

sure the effect of covariates as the databases provide varying and truncated historical in-
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formation. The accuracy of the covariate estimate and sample size might be affected by the

length of this baseline interval. However, a methodological study conducted by Ripamonti

et al. (under review in Statistical Methods in Medical Research) has investigated the im-

pact of unmeasured/truncated time-varying covariates on propensity score estimates using

different lookback periods. They made a comparison among the types of variables, such

as confounders, instrumental variables (iv), and risk factors (rs) in the propensity score

model. The simulation study was mainly focused on the effect of unmeasured covariates

due to varying lookback windows on propensity score (PS) estimation. The empirical dis-

tribution function of propensity score estimates for both the treated and control group were

calculated for different lookbacks. The empirical maximum likelihood estimator for mini-

mum, 1st quantile, median, 3rd quantile, and maximum were obtained for various lookback

lengths. In the analysis, the lookback lengths of 1, 2, 5, 7, and 9 years were considered,

and 10 years was used as a term of comparison. A relevant variation is found in the quality

of estimates of the PS distribution as longer lookback time windows guarantee less biased

and more accurate estimates of the PS quantiles. From the PS summary, it was expected

that the lookback time window of 9 years led to estimates very close to reality. Estimates

obtained with lookback windows of 7 years and, in some cases, 5 years generally provided

reasonable results both in terms of PS distribution function and outcome model. From all

the scenarios of simulation results, estimates obtained with a short lookback time window

lead to very poor outcomes. Previous simulation studies suggested that the variables that

are unrelated to the exposure but related to the outcome, known as risk factors (rs), should

always be included in a PS model [74]. Whereas the variables that are related to exposure

but not the outcome, known instrumental variables (iv), should not be inserted in the PS

model. A finding from Ripamonti’s study suggested that while using a long lookback time

window, inserting instrumental variables provided slightly better estimates (under review

in Statistical Methods in Medical Research). They explained this situation in two ways.

First, with a long lookback, the impact of instrumental variables could be weaker, which

may lead to complicated effects such as reducing the estimates of bias or standard errors.

Second, they suggested more future simulation studies to consider the correlation between

iv and exposure, which is mostly neglected in the literature. Thus an interesting interaction
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effect was detected between the type of variable and the length of lookback time windows.

By contrast, using shorter lookback windows of one or two years, including instrumental

variables (iv), led to inconsistent PS estimates. However, in the literature, it is often be-

lieved that the correlation between iv and confounders is weak; however, this relation can

be moderate too, in some cases. In that situation, Ripamonti suggested including iv’s that

may lead to more consistent PS estimates. Thus a careful detection of possible iv’s and

choice of lookback windows was recommended in this study.

2.5 Knowledge Gap

From the literature review, it is evident that researchers have examined the application

of various lookback periods using the propensity score approach. However, the TMLE ap-

proach has not been considered with different lookback data. Accurate estimation of treat-

ment effects requires information on an individual’s long-lasting medical history, which is

often unavailable in registry-based hospital data. Therefore, identifying the optimal look-

back becomes crucial to enhance accuracy. As a more general and doubly robust maxi-

mum likelihood-based method, TMLE incorporates the targeting step to optimize the bias-

variance trade-off in the presence of confounding when estimating the parameter of interest.

Surprisingly, no previous study has explored the choice of an optimal lookback length within

the TMLE framework. The selection of an optimal lookback length involves a trade-off be-

tween the accuracy level of estimating the treatment effect and the number of lookback

periods included in the dataset. Furthermore, none of the studies have compared the use

of various lookback data with TMLE and PS methods. Such comparisons would provide

valuable insights into the strengths and weaknesses of these approaches.

2.6 Objective of the Thesis

• To evaluate the performance of targeted maximum likelihood estimation (TMLE) with

varying lookback time windows.
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• To compare the effect of metformin vs. sulfonylureas on the risk of major adverse

cardiovascular death using TMLE.

• To compare parameter estimation using TMLE and propensity score methods with

different lookback time windows in simulation and real life settings.
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Chapter 3

Methods

3.1 Potential Outcomes Framework

The Neyman-Rubin causal model is the most widely used potential outcomes framework for

causal inferences in statistics and health science [75, 76, 77, 78, 79, 80]. According to this

causal model, let us consider a binary treatment indicator A where we specify A = a to a

particular treatment assignment. If a = 1, we consider the scenario when the individual

receives the treatment, and if a = 0, we refer to the scenario when an individual does not

receive the treatment. We are interested in knowing the effect of A on an outcome variable

Y . The potential outcomes framework allows us to expand the joint distribution of (A,Y )

to include two random variables Y (1),Y (0). Where Y (1) is the potential outcome if an indi-

vidual receives the treatment, and Y (0) is the potential outcome if an individual does not

receive the treatment as,

Y =


Y (1) if a = 1,

Y (0) if a = 0

The potential outcomes are referred to as counterfactual outcomes as they represent

what would have been observed in the scenario that did not occur. For example, Y (0) is not

observable if a = 1 and then Y (0) becomes counterfactual. Similarly, when a = 0, Y (1) is the

counterfactual. We will discuss the term “counterfactual” briefly in this chapter.
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3.1.1 Causal Estimands, Counterfactuals, and Confounding

In evaluating public health policy, the common challenge is to estimate the causal effect of a

treatment or intervention. In the realm of statistical inference, the data allows researchers

to estimate various types of population causal effects, known as estimands. The term esti-

mand is defined as the parameter in a population to be estimated from statistical analysis.

The causal estimands refer to specific quantities or parameters that represent the causal

effects of an exposure or treatment on an outcome of interest in a population [81, 82]. In

causal inference, one of the standard problems is causal estimand which is depicted by the

array of values in Table 3.1. In Table 3.1, there are N subjects, and each subject is exposed

or not exposed to the treatment. The column covariates X represent the variables that take

their values for each subject and are independent of the treatment assignment. The column

labeled “potential outcomes” represents the value of outcome Y for each subject at a certain

time.

Notation: A : Treatment status

A =


1 treatment, or

0 no treatment

Y : Outcome

Y =


Y (1), if under active treatment

Y (0), if under control group

All of the information should be analyzed by considering X , Y (1), and Y (0). The “subject-

level causal effect” represents the comparison of Y (1) and Y (0) for each individual. For any

subject i at most one of the Yi(1) and Yi(0) can be observed. The last column, “summary

causal effect,” represents all subjects’ mean individual-level causal effects. So, the potential

outcomes framework for causal inference can be summarized as the observed outcome is
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what actually happened; in contrast, the counterfactual outcome is what would have hap-

pened if a different treatment had been assigned [81].

Table 3.1: The Causal Estimand

Potential outcomes

Subjects
Covariates
X

Treatment
Y (1)

Control
Y (0)

Subject-level
causal effects

Summary
causal effects

1 X1 Y1(1) Y1(0) Y1(1) vs Y1(0)
. . . . .

. . . . .
Comparison of Yi(1)
vs Yi(0) for a
common set of units

i X i Yi(1) Yi(0) Yi(1) vs Yi(0)
. . . . .
. . . . .
N XN YN(1) YN(0) YN(1) vs YN(0)

The individual treatment effect (ITE) is a comparison of the potential outcomes for

a specific individual i. If Y1i is the potential outcome of an individual i if treated and Y0i is

the potential outcome of that individual if untreated, then the individual treatment effect

(ITE) will be,

ITE i =Yi(1)−Yi(0) (3.1)

In this way, we may compare the disease outcome under treatment and no treatment.

However, one problem is that we can only observe one outcome (either Yi(1) or Yi(0) for any

individual i). So, the ITE can never be observed directly, as only one of the potential out-

comes may be observed. So this individual effect is not identifiable.

Holland defined this as the “Fundamental Problem of Causal Inference” [76]. In

this case, an alternative approach is to extend our population where we can evaluate the

treatment effects in a particular context but not for a specific individual. This phenomenon

brings us to our primary causal parameter of interest, the average treatment effect

(ATE). In practice, the causal effect of treatment refers to the specific impact that the treat-
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ment has on an outcome of interest, taking into account the cause-and-effect relationship

between the two. It aims to quantify how the outcome would change due to the treatment,

compared to what would have happened in the absence of the treatment (i.e., the counter-

factual scenario) [81, 82].

Under the potential outcomes framework for causal inference, the average treatment

effect (ATE) is the average of all individual treatment effects in a sample. The ATE can be

defined in two ways:

• Average of all differences Yi(1)−Yi(0); where i = 1,2..........N

• Difference between average of all Yi(1) and Yi(0); where i = 1,2...N

We will describe the estimation and statistical inference for the ATE in section 3.2.

Causal inference is drawing the conclusion of the effects of real or conceptual interven-

tions on an outcome. Through the Rubin Causal Model, one can define the causal parameter

of interest, and here comes the term confounding. Confounding is defined as the exposure

and the outcome of interest having a common cause. The bias due to confounding arises

when there is a failure to adjust for this common cause. The variable C is called to be a

confounder variable when it is causally associated with both exposure X and outcome Y

and not on the causal pathway between X and Y (see Figure 3.1).

3.1.2 Assumptions

• Stable Unit Treatment Value assumption [SUTVA]: The Stable Unit Treatment

Value Assumption (SUTVA) states that the treatment assignments of one unit (e.g.,

an individual or a group) do not influence the potential outcomes of other units, and

there are no hidden treatment variations leading to different treatment effects. [83,

81, 82].
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Figure 3.1: DAG representing confounding

• Consistency: If an individual or unit receives a specific treatment, then their ob-

served outcome corresponds to the potential outcome under that treatment condition.

• Positivity: The Positivity assumption requires that the probability of any individual

receiving treatment should be bounded away from zero and one [82].

• Exchangeability / Strong Ignorability of Treatment Assignment: The assump-

tion of exchangeability, also known as strong ignorability, posits that the treatment

assignment is unrelated to potential outcomes under different treatment conditions,

given the observed covariates. In simpler terms, altering the treatment status among

the individuals being studied whether from exposed to unexposed or vice versa—will

not affect the magnitude or direction of the treatment effect [82, 84].
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3.2 Average Treatment Effect (ATE)

The average treatment effect is the mean difference of potential outcomes between subjects

assigned to the treatment group and subjects assigned to the control group [82]. When the

outcome variable is binary, the average treatment effect (ATE) can be represented as the

risk difference (RD). Throughout the entire thesis, we will use the term ATE to refer to the

risk difference (RD).

Let us assume Y : A binary outcome variable (takes value 0 or 1); A: Treatment variable

(binary: 1 if treated, 0 if not treated). So, the risk difference (RD) will be,

RD = P(Y (1)= 1)−P(Y (0)= 1)

Under the potential outcomes framework, the average treatment effect is defined nota-

tionally as follows [82]:

Y (1): potential outcome if an individual receives the treatment (A = 1).

Y (0): potential outcome if an individual does not receive the treatment (A = 0).

E[Y (1)]: expected value of the potential outcome Y(1), which represents the average out-

come for individuals if they were all treated (A = 1).

E[Y (0)]: expected value of the potential outcome Y(0), which represents the average out-

come for individuals if they were all untreated (A = 0).

Then the average treatment effect (ATE) is defined as:

ATE = E [Y (1)]−E [Y (0)]=
∑

[Y (1)P(A = 1)]−
∑

[Y (0)P(A = 0)] (3.2)

In general, we cannot observe both Y (1) and Y (0) since any individual cannot be treated

and not treated at the same time. It is probable that the treatment assignment mechanism

is dependent on outcomes, leading to potential differences in baseline covariates between

the two groups. Such discrepancies in the observed sample means can introduce bias into

the estimator of the average treatment effect (ATE). This bias can be seen in the data (overt
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bias) or can be hidden [78]. For example, prior to the treatment, the treated subjects might

be more financially stable than the non-treated group. A hidden bias occurs when the nec-

essary information is not reported or observed. Overt bias can be adjusted using statistical

adjustment [78]. However, the information on baseline covariates can provide useful data

for ATE estimation, and we may use this data to find a less biased estimator of ATE. Esti-

mating the ATE requires careful consideration of potential confounding factors.

3.3 Propensity Score Analysis

As described earlier, randomized controlled trials are the gold standard for estimating the

causal effect of a treatment. This random treatment assignment maximizes the chance

of having treatment groups with the same baseline patient characteristics (known or un-

known). However, if there is a discrepancy between the two treatment groups because of

different background factors, that may influence both the exposure and the outcome. This

caused the phenomenon of “confounding.” Confounding is a distortion of the estimated mea-

sure due to the presence of a known or unknown variable (confounding variable) associated

with both treatment and outcome [85]. Randomization is the ideal approach for estimating

causal effects but is not always feasible. Therefore, many statistical techniques have been

proposed for non-randomized studies (i.e., observational studies) to reduce the influence of

confounding variables. Propensity score methods are one such method. The propensity

score is the probability that an individual would have been assigned to a particular treat-

ment group as a function of observed baseline covariates [86]. To interpret the propensity

score, suppose we have a dichotomous treatment variable A = (0,1) and a vector of observed

available pre-treatment covariates X = x1, .........xn. Then the propensity score e(X ) be the

conditional probability of assignment to treatment (A = 1), given the covariates X defined

by,

e(X )= Pr(A = 1|X )
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where,

P(A|X = x1....xn)=
N∏

i=1
e(X i)A(1− e(X i))1−A; A ∈ (0,1)

The propensity score is a single scalar value calculated for each individual based on mul-

tidimensional covariates denoted as X . It represents the estimated probability of an individ-

ual receiving treatment. The objective is to ensure that the distribution of these propensity

scores is similar between the two treatment groups. This similarity can be achieved, for

instance, by using propensity score matching or inverse probability weighting. As a result,

the propensity score acts as a balancing score, as the conditional distribution of covariates,

given the propensity scores, becomes comparable between the treated and control groups

[86]. Rosenbaum and Rubin showed that if the choice of treatment allocation is strongly

ignorable given a set of baseline covariates X , then the propensity score e(X ) is a function

of these covariates that also makes treatment selection strongly ignorable [86].

As we noted earlier in section 3.2, the assumption of strong ignorability is also known

as an unconfoundedness assumption which states that, the treatment assignment is in-

dependent of potential outcomes conditional on observed covariate X . Mathematically, the

strongly ignorable (unconfoundedness) assumption can be expressed as follows:

Y (1),Y (0)⊥ A|X

However, the assumption of exchangeability states that the potential outcomes Y (1) and

Y (0) have the same distribution, given the covariates X . In other words, the potential

outcomes are interchangeable between the treated and control groups, conditional on the

observed covariates. So, Y (1),Y (0) are exchangeable given X . To show that these two as-

sumptions are equivalent, we will demonstrate that strong ignorability implies exchange-

ability and vice versa:
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Let us assume strongly ignorable such that, (Y (1),Y (0) ⊥ A|X ). Then, consider the fol-

lowing conditional probability:

P(Y (1),Y (0)|X , A = 1)= P(Y (1)|X , A = 1)×P(Y (0)|X , A = 1)

Since Y (1) and Y (0) are conditionally independent of A given X , the conditional probabili-

ties are equivalent such that [87]:

= P(Y (1)|X , A = 1)×P(Y (0)|X , A = 1)

= P(Y (1)|X )×P(Y (0)|X )

The same reasoning applies to the case when A = 0

P(Y (1),Y (0)|X , A = 0)= P(Y (1)|X )×P(Y (0)|X )

Therefore, the potential outcomes Y (1) and Y (0) have the same distribution given X, which

satisfies the exchangeable assumption.

Now the assumption of exchangeability states that, Y (1),Y (0) are exchangeable given X .

This implies that the joint distribution of (Y (1), Y (0)) does not depend on A, given X and so,

P(Y (1),Y (0)|X , A)= P(Y (1),Y (0)|X ) (3.3)

Then, we can express the conditional probability as:

P(Y (1)|X , A)

=∫
P(Y (1),Y (0)|X )dY (0)

=∫
P(Y (1),Y (0)|X , A = 0)dY (0)

=∫
P(Y (1)|X , A = 0, X )P(Y (0)|X , A = 0, X )dY (0)

=∫
P(Y (1)|X )P(Y (0)|X )dY (0)

= P(Y (1)|X )

Similarly, we can show that P(Y (0)|X , A)= P(Y (0)|X ). Thus, Y (1) and Y (0) are conditionally

independent of A given X, which satisfies the strongly ignorable assumption. Rosenbaum
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and Rubin [86] proved that if the potential pair of outcomes (Y (1),Y (0)) is not dependent

on the treatment assignment given the observed covariates X , they are also independent of

treatment allocation given the propensity score e(X ):

if (Y (0),Y (1))⊥ A|X then

(Y (0),Y (1))⊥ A|e(X ) and A ⊥ X |e(X )

Since the propensity score is a balancing score, the mean difference between the treated and

control group at a particular value of the propensity score is the average treatment effect at

that propensity score (assuming ignorability). Under this assumption, several propensity

score methods (defined below) can provide less biased estimates than naive approaches. If

the assumptions are not met, bias can still be present in the estimates. Sensitivity analyses

and diagnostic checks are often conducted to assess the robustness of results to potential vi-

olations of these assumptions [88]. The true propensity score is usually known and designed

by study design in randomized control trials. But in observational studies, it is not known;

instead, it has to be estimated from study data [13]. These propensity scores can be used in

four ways that will be discussed in the next section [18]:

• Matching on propensity score

• Stratification on propensity score

• Covariate adjustment using the propensity score

• Weighting using the propensity score

3.3.1 Matching on Propensity Score

Once the propensity score is estimated, one could match treated to control subjects with

similar propensity scores [89]. In the matched sample, differences in outcome between the

treatment and control group provide an unbiased estimate of the treatment. There are

several types of matching algorithms, such as one-to-one matching, 1:N matching, nearest

neighbor matching, N:N matching, caliper matching, radius matching, kernel matching,
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Mahalanobis metric matching, etc. Matching on propensity score requires a matched

pair of treated and control individuals who share a similar value of estimated propensity

score. In nearest neighborhood matching or NNM matching, a treated individual is

chosen randomly and then matched to the control individual having a similar or closest

propensity score estimate. The first step is to take the absolute minimum difference between

estimated propensity scores for the control and treated individuals. Then the treated and

control units are randomly ordered such that the first treated unit is matched with a control

unit having the closest propensity score estimates.

C(Pi)=min j|Pi −P j|

Here, C(Pi) is defined as the group of control participants j matched to the treated subjects

i (matched on the estimated propensity score)

Pi is the estimated propensity score for the treated individuals i

P j is the estimated propensity score for the individuals in control group j

This can be done “with replacement” or “without replacement”. In the “with replace-

ment” approach, an individual in the control group can be used more than once for an indi-

vidual in the treated group. For the “without replacement”, the control group’s comparison

unit can be considered a match with the treated units only once. However, matching with

replacement works as a bias-variance trade-off as if the replacement is allowed, the average

matching quality will increase, and hence the bias will decrease. This NNM matching is

also known as greedy matching as in each stage, the control unit is selected close to the

currently considered treated unit, even if the untreated unit would work better as a match

for a subsequently treated unit. However, one problem may arise with NNM matching when

the close neighbor is far away. This can be avoided by imposing a pre-determined range of

values usually defined within one-quarter of the standard error (0.25s) of the estimated

propensity score. This is called caliper matching, where the control unit is chosen as a
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match for a treated unit within the caliper ( pre-determined range). However, one problem

with this matching method is not knowing the choice of the possible range in advance [90].

Another matching method as an alternative to caliper matching is radius matching

recommended by [91]. In this approach, every treated participant is matched with an anal-

ogous control participant that lies within a pre-determined range of the treatment unit’s

propensity score. Thus a comparison is made among all the caliper members. The method

might have the drawback of oversampling, but the risk of bad matches can be avoided. An-

other non-parametric matching method is known as kernel matching, where individuals

in the treated group are matched with individuals in the control group based on their esti-

mated propensity scores [92]. The matching process assigns weights to each control group

member according to a kernel function that captures the similarity of their propensity scores

to the treated individuals [92]. These weights are inversely equivalent to the distance be-

tween treated and control group units. In N:N matching method, control and treated units

are randomly assigned, but the first n treatment units are matched with n control units

with the adjacent propensity score. Some other propensity score matching methods are 1 : 1,

1 : N or N : 1 matches, Mahalanobis metric matching, etc. [89].

3.3.2 Stratification or Subclassification on the Propensity Score

In stratification, the estimated propensity score divides the population into homogenous

subclasses with similar propensity scores [14, 93]. This method is commonly applied in ob-

servational studies to control systematic discrepancies between treated and control units.

At first, the participants are grouped according to their estimated propensity score. A sub-

set/subclass of participants is created based on the formerly defined threshold of the esti-

mated propensity score. Thus the strata are defined, and a comparison is made between

the treated and control units in each stratum. The treatment effect is estimated within

each stratum, and finally, the treatment effects for all strata are combined to estimate the

overall treatment effect. Several examples are found in literature where both regression

adjustment and using propensity score strata as a covariate can be used in the model [94,

95, 96]. Following Cochran, these subclasses are mostly based on percentiles, quintiles, etc
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[97]. In a seminal article, [97], Cochran concluded that 90% of the covariate bias could be

reduced by creating quintiles of a continuous confounding variable. However, by classify-

ing these groups on quintiles, Rosenbaum and Rubin [86] demonstrated that approximately

90% of bias due to measured confounders can be reduced while estimating linear treatment

effect. In an interview with observational studies [98], Rubin stated that a sufficient num-

ber of strata (i.e., five sub-classes per thousand subjects) could ensure a more negligible bias

than a variance.

3.3.3 Inverse Probability of Treatment Weighting (IPTW) using Propen-

sity Score

Rosenbaum initially put forth the method of model-based direct standardization, while the

inverse probability weighting (IPW) technique was introduced by Donald B. Rubin in 1980

and later elaborated upon by James M. Robins in his influential paper titled “Causal Infer-

ence from Complex Longitudinal Data” published in 1997 [18, 99, 100]. Under the assump-

tions of consistency, exchangeability, positivity, and correct specification of the model, the

inverse probability treatment weighting can reduce the confounding by creating a pseudo-

population [82]. This pseudo population is generated by assigning a weight to each in-

dividual that is proportional to the treatment option they actually received [82]. Under

exchangeability, the exposed and unexposed groups are, on average, similar, conditional on

covariates. This assumption implies that there are no unmeasured confounders and resid-

ual confounding and makes a fair comparison between the two groups. However, in obser-

vational research, this is unrealistic as we can never observe the unmeasured confounding

and can only adjust the measured confounders and hence only “conditional exchangeability”

can be assumed [101, 102]. The inverse probability weighting method utilizes the estimated

propensity score values to construct sets in which the treated and control groups possess,

on average, similar characteristics. For the treated groups, weights for each individual are

calculated as 1/(propensity score) and for the control group 1/(1− (propensity score)). Af-

ter that, these weights are assigned to balance individual baseline characteristics for the

treatment and control groups. Finally, in the pseudo-population, the outcome variable is re-
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gressed on the exposure by fitting a crude weighted regression model [101]. The estimated

parameters from the regression model are used to estimate the causal effect of the exposure

in the study population. Again, denoting e i the propensity score for ith subject.

e i = P(A i = 1|X i)

The most widely used model for estimating propensity score is logistic regression [53, 16].

Since the treatment indicator A i is binary and X i denotes the vector of measured baseline

covariates. The logistic regression model is parametrized by, α = (α0,α1, ..........αp)T such

that,

log
( ei

1−ei
)= X i

Tα

For each individual indexed by subscript i, the probability of being treated or not treated

given the baseline covariates is estimated from the fitted propensity score model as [23]:

ê i = exp(X T
i α̂)

1+exp(X T
i α̂)

Then for the ith treated individual, the weight is,

wi = A i
ê i

And for ith control individual, the assigned weight,

wi = 1−A i
1−ê i

Finally, the weight for ith individual,

wi = A i
ê i

+ 1−A i
1−ê i

Thus an individual’s weight is equal to the inverse of the probability of receiving the treat-

ment that the individual actually received. So, individuals in the treated group with a

lower probability of treatment are likely to receive larger weights. We will illustrate this

phenomenon with the following example.

Suppose there are two individuals, A and B. A researcher estimates the probability of

being treated for A and B as 0.5 and 0.8, respectively. The weights are calculated as 1/0.5= 2
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and 1/0.8 = 1.25. So, person A would be given more weight than B. Thus B is given smaller

weights as there can be a reason why B is more likely to be treated. Similarly, the untreated

individual having a higher probability of being treated (lower probability of being untreated)

receives higher weight. Thus the data become more comparable and similar. In some cases,

however, this method can produce biased results. If the model specification is wrong, this

covariate balance might get worse. In this case, doubly robust estimation is popular for

solving issues, as discussed in a later section.

3.3.4 Covariate Adjustment on Propensity Score

This method includes using the estimated propensity scores as an additional variable in the

regression model. Under this approach, the outcome variable of interest is regressed on the

exposure/treatment variable and the estimated propensity score [16]. The regression model

is chosen depending on the outcome of interest. For instance, a simple linear regression

model can be used for the continuous outcomes, or a logistic regression model can be chosen

for a binary outcome. The treatment effect is defined from the coefficient of a fitted regres-

sion model. In contrast, using propensity score as a covariate in a multivariable model,

researchers cannot take the full convenience of the propensity score features. In an article

by Austin, it was explained that this method assumes the same distributional assumption of

the baseline covariates between the treated and untreated group [103]. So, covariate adjust-

ment can be easily affected by the assumptions of distributions and correct propensity score

specification. Moreover, differences in the variance of the propensity score function between

the treated and untreated groups may also lead to bias [103]. However, researchers need

to be careful with the analysis while using this method as it is not considered good practice

[104]. Besides, it does not permit the assessment of covariate balance like the other three

methods (i.e., matching, stratification, IPTW).
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3.4 Average Treatment Effect Estimation using Inverse

Probability Weighting

The individual weights described in section 3.3.3 are used to create a weighted sample

where no confounding is present in the observed baseline covariates. To estimate the av-

erage treatment effect (ATE), one can easily use this weighted sample. Let us assume a

binary treatment indicator ( where A = 1 and A = 0 for the treatment and control group,

respectively). The propensity score for each individual is defined as e = P(A = 1|X ); the

probability of an individual receiving treatment given the observed baseline covariates [86].

As described earlier, the individual treatment weight is defined by w = A
e(X ) + 1−A

1−e(X ) . The in-

verse probability weighted mean is estimated using the Horvitz-Thompson estimator [105]

and by definition of ATE [82],

τATE = E
[

AY
e(X )

− (1− A)Y
1− e(X )

]

For ith individual the inverse probability weight is,


w1(X i)= 1

e(X i)
, for A i = 1

w0(X i)= 1
1−e(X i)

, for A i = 0

Then an unbiased nonparametric estimator of ATE can be expressed by taking the differ-

ences between the mean of weighted outcomes between groups as,

τATE
ipw,1 =

1
n

n∑
i=1

A iYi

e(X i)
− 1

n

n∑
i=1

(1− A i)Yi

(1− e(X i)
= 1

n

n∑
i=1

Yi A iw1(X i)−Yi(1− A i)w0(X i) (3.4)

It is recommended by [100] to use the “stabilized weights” by diving each individual’s weight

by the sum of all weights in that group wi/
∑

i:Z=z wi for A = 0,1 and for instance, the Hajek

estimator:

τipw,H =
∑n

i=1 Yi A iw1(X i)∑n
i=1 A iw1(X i)

−
∑n

i=1 Yi(1− A i)w0(X i)∑n
i=1(1− A i)w0(X i)
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Both stabilized and non-stabilized inverse probability weights lead to the same estimate.

But using stabilized weights can result in narrower 95% confidence intervals than non-

stabilized weights [82] particularly in the case when the model is not saturated (a model

“saturated” means that the model is complex and fully accounts for all available information

and covariates). However, another estimator of ATE was reviewed by Lunceford, [23]

τATE
ipw,2 =

(
n∑

i=1

A i

ei

)−1 n∑
i=1

A iYi

e i
−

(
n∑

i=1

1− A i

1− ei

)−1 n∑
i=1

(1− A i)Yi

1− e i
(3.5)

Here, equation 3.5 is known as ratio estimator. This estimator is often used with IPW

to handle missing outcome data and helps in estimating the population-level parameter

while adjusting for the non-response or missingness [23]. In the given equations, n rep-

resents the total number of individuals, and ipw stands for inverse probability weighting.

Specifically, the approaches denoted as ipw,1 and ipw,2 are two commonly used methods

for weighting in the context of causal inference [23].

Before estimating the causal effect, it is recommended to check the standardized mean

difference (SMD) between two groups [106]. This can be evaluated before and after weight-

ing allowing for checking balance across the measured variables. The standard error of

our parameter of interest ATE can be obtained using various methods. The most ordinary

approach is to use a naive variance estimator that is based on the assumption of the sta-

tistical model (usually logistic regression model) used in estimation [107]. Nevertheless, the

model-based standard errors can be incorrect because of the violation of independent and

identically distributed or iid assumption [18]. This complication arises as the weights

are estimated from the data; sampling variability is possible. Since the weights are not

fixed, a biased standard error can occur. So, it is recommended to use robust sandwich

estimator standard errors [108, 109, 110]. Also, bootstrap standard errors can be used

32



where the approximation is based on a sampling distribution through repeated sampling. In

our analysis, we will use robust sandwich estimator standard errors under the PS-IPW

approach to minimize the chance of biased standard errors.

3.5 Overview of Targeted Maximum Likelihood Estima-

tion (TMLE)

Targeted maximum likelihood estimation (TMLE) is a doubly robust technique that mini-

mizes bias and targets the parameter of interest by leveraging the influence function [22].

An influence function measures an estimator’s sensitivity to data perturbations, and TMLE

employs this information to update treatment and outcome models iteratively [111, 22]. In

general, TMLE benefits from the efficient influence function (a type of influence func-

tion), which optimizes efficiency and asymptotic properties by achieving the Cramér-Rao

lower bound and providing the minimum variance property in the class of semi-parametric

estimators of the interesting parameters [22, 112, 113]. Moreover, the inference is drawn for

an estimator corresponding to the efficient influence function would be optimally efficient in

this class of estimators [114]. Typically, the TMLE estimators are two-stage estimators.

In the first stage, the researcher needs to define the parameter of interest as a function

of the data-generating distribution. Usually, practitioners assume the parameter to be a re-

gression coefficient in this stage. However, in many applications, the target quantity is not

easily expressed as a model parameter. In TMLE, the estimation procedure involves mini-

mizing a targeted loss function [115]. A targeted loss function combines the log-likelihood of

the outcome model and the balancing constraint, ensuring that the treatment assignment

mechanism is balanced between treated and control groups [22, 115]. Integrating TMLE

with SuperLearner, utilizes this loss-based estimation concept and enhances the efficiency

of the estimates, and assures adaptivity to the data at hand during the estimation procedure

[22, 116]. Thus the initial estimator from this stage is somehow already informed about the

target parameter of interest, focusing on the set of all possible probability distributions of
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the data. So, the true probability distribution falls within the assumed statistical model to

represent true knowledge.

The second stage of TMLE is referred to as the targeting step, where the primary goal

is to enhance the initial estimates obtained in the first stage. This phase emphasizes re-

fining the estimation process specifically for the target parameter of interest, employing a

targeted maximum likelihood approach. Here, the initial estimator serves as an “offset,”

and the fluctuation function is applied to this offset. The term offset refers to the use of the

initial estimated propensity scores as a fixed reference value to update the outcome model

predictions. On the other hand, the fluctuation function refers to the difference between the

predictions of the outcome model using the updated propensity scores and the predictions

from initial propensity scores. Thus a set of potential fluctuations is generated representing

the various parametric variations of the offset and identifies a parametric model consisting

of fluctuated versions of the offset. This parametric model is a minimally favorable para-

metric model such that its maximum likelihood estimator listens approximately to the data

with respect to fitting the target parameter as a semiparametric model efficient estimator.

Thus the second stage is targeted toward making an optimal bias-variance trade-off for

the parameter of interest rather than the overall distribution [22].

The procedure of the above two stages is called double robust. This notable feature

doubly robust of TMLE means that if either the model for expected outcome (E(Y |A, X ))

or the model to estimate the probability of treatment P(A = 1|X ) is correctly specified the

final TMLE estimate will be consistent. Asymptotically if the model and other nuisance

parameters are correctly specified, the estimate would be maximally efficient [22]. Further-

more, this property provides robustness against misspecification in either model and

enhances the validity of causal inference in observational studies. The above-mentioned

“targeting” step allows the final ATE estimate to remain consistent if the outcome model

is not correctly estimated. The unbiasedness will still be preserved if the treatment model

is correctly estimated. An appealing property of TMLE estimators is “robustness,” as these

estimators are robust to outliers [22]. Another attractive feature of TMLE is “dealing with
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missingness” described by Van der Laan [117]. The authors stated that TMLE could in-

herently adjust for dropout (missingness) and can be used to evaluate the treatment effect

in non-compliance (when the patient refuses to take a medication). In addition, TMLE can

accommodate missing data and censoring by using appropriate imputation techniques, in-

verse probability weighting, or censoring adjustment methods.

Observational studies often include a large number of covariates. TMLE is well-suited

for situations with high-dimensional confounding in the presence of many potential con-

founders. Traditional propensity score methods may face challenges in such scenarios due to

the “curse of dimensionality” and the need for dimensionality reduction techniques. TMLE

can handle high-dimensional data by leveraging modern machine learning algorithms, such

as lasso or elastic net regularization, to select relevant confounders and estimate the treat-

ment effect more efficiently [118]. Many covariates may exist while dealing with observa-

tional data, and a complex relationship might happen between these variables. In that case,

model misspecification, which can be a specific concern, can be possible. These models can

be misspecified such that the effect estimate can be biased. In addition, TMLE enables the

integration of advanced machine learning algorithms into the estimation process. TMLE

enables sophisticated machine learning algorithms like random forests, support vector ma-

chines, or neural networks for estimating propensity scores or outcome models. This flexibil-

ity empowers researchers to leverage advanced techniques for propensity score estimation

and outcome modeling within the TMLE framework. In practice, the researcher does not

know which machine learning algorithm should be used. Ensemble methods such as Su-

perLearner [119] allows users to specify several machine learning methods. By adopting

a comprehensive library approach, the combination of TMLE and SuperLearner facilitates

the incorporation of versatile machine learning algorithms [25, 22, 66].

3.5.1 Illustration of TMLE (A Step-by-Step Algorithm)

We illustrate TMLE for estimating the marginal causal effect of a binary point treatment A

on observed binary outcome Y . In the description of the TMLE approach, we denote W as a

vector containing all important covariates to align with conventional notation in literature
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(this remains consistent with X in our previous discussion). Given a full (counterfactual)

dataset containing observations where Y (1) corresponds to the outcome observed when sub-

ject i is assigned to treatment group (A = 1) and Y (0) corresponds to the outcome observed

when subject i is assigned to control group (A = 0). Thus TMLE can be used to estimate

the proportion of subjects experiencing a certain event if everyone were treated in a tar-

get population and the proportion with such event if everyone were untreated. We refer to

these two quantities as our parameter of interest and the average treatment effect (ATE)

can be summarized by using these two corresponding parameter estimates. So, the targeted

parameter of interest ATE can be expressed as,

ATE = E[Y (1)]−E[Y (0)]

TMLE is implemented in the following four steps.

Step 1: In the first step, an initial model for the outcome Y is fit to all observations,

using confounders and treatment as a predictor. For a binary outcome, the standard logistic

regression model is one possible approach such that,

logit([P(Y = 1|A,W)])

=α0 +α1 +α2
TW (3.6)

Using this model, the initial probability for the original dataset can be estimated by:

Q̂0(A,W)= expit(α̂0 + α̂1 + α̂T
2 W) (3.7)

The predicted probability for both counterfactual outcomes for treatment group (A = 1)

and control group (A = 0) for everyone are respectively:
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Q̂0(1,W)= expit(α̂0 + α̂1 + α̂T
2 W)

Q̂0(0,W)= expit(α̂0 + α̂T
2 W)

Step 2: In this step, the probability of receiving treatment for all individuals is esti-

mated using the covariates as confounders. Generally, it is known as the propensity score

model. A logistic regression model can be used such that:

logit[P(A = 1|W)]= logit(pA|W )=β0 +β1
TW (3.8)

The probability of A given W can be estimated by:

ĝ(1|W)= expit(β̂0 + β̂T
1 W)

Step 3: In this step, the information about the treatment mechanism in step 2 is used

to optimize the bias-variance trade-off for ATE estimate to obtain a valid inference. This

is usually done by solving an equation to determine how much to update or fluctuate our

initial estimates. To find a better prediction model targeted at minimizing mean square

error for the estimation of u0 = E[Y (A = 0)] and u1 = E[Y (A = 1)] by the so-called efficient

fluctuation of u1 and u0. To solve the equation, a parametric model is defined as:

logit(E[Y |A,W])= logit(Ê[Y |A,W])+ϵ0H0(A,W)+ϵ1H1(A,W)

= α̂0 + α̂1 + α̂T
2 W +ϵ0H0(A,W)+ϵ1H1(A,W) (3.9)

where ϵ0 and ϵ1 are so-called fluctuation parameters. Hence, H0(A,W) = I(A=0)
ĝ(0|W) and

H1(A,W) = I(A=1)
ĝ(1|W) are called clever covariates. The inverse probability of receiving treat-

ment ĝ(1|W) and the negative inverse probability of not receiving treatment ĝ(0|W) is esti-

mated from the second step. The indicator functions I(.) take value one if one of its Boolean
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arguments is true and value zero otherwise.

Thus, fitting a logistic regression solves an efficient influence function (u0,u1) estimat-

ing equation that satisfies many useful statistical properties of TMLE, such as:

• A long as either outcome or treatment is estimated correctly (consistently), the final

estimate is consistent.

• If both are estimated correctly, the final estimate achieves its smallest possible vari-

ance as the sample size approaches infinity (efficiency).

The above parametric model is fitted with maximum likelihood estimation to obtain esti-

mates for the fluctuation parameters (ϵ̂0, ϵ̂1). This fitting can be done with standard software

by setting expected outcomes under observed treatment,

logit(Q̂0(A,W))= α̂0 + α̂1 + α̂T
2 W

as an offset in an intercept-free logistic regression with covariates H0 and H1. More specifi-

cally,

logit(Q̂1(A,W))= logit(Q̂0(A,W))+ϵ0H0(A,W)+ϵ1H1(A,W) (3.10)

Then by taking the model coefficients, the estimates of the fluctuation parameter (ϵ̂0, ϵ̂1)

are obtained.

Thus the magnitude of the fluctuation parameter reflects the strength of the association

of a function of the propensity score with the signal in the residuals. The value of the fluc-

tuation parameter will be close to 0 if there is a little signal in the residuals.

By replacing (ϵ̂0, ϵ̂1), the estimated probability of Y given A and W and the probability of

the counterfactual outcomes for each individual can be updated as :

Q̂1(A,W)= expit(logit(Q̂0(A,W))+ ϵ̂0H0(A,W)+ ϵ̂1H1(A,W))
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So, we can compute the updated outcome under treatment,

Q̂1(1,W)= expit(logit(Q̂0(1,W))+ ϵ̂1H1(1,W)

and the updated outcome under no treatment,

Q̂1(0,W)= expit(logit(Q̂0(0,W))+ ϵ̂0H1(0,W).

This updating is done by placing A = 0 and A = 1 for each individual in the probability

functions Q̂0(0,W),Q̂0(1,W) similarly as in the clever covariates H1(1,W)and H0(0,W). As a

general rule, TMLE is an iterative procedure, where Q̂k(A,W) is updated with Q̂k+1(A,W)

and above updating is done until convergence (until ϵ̂ is adequately small). The subscript

k is used to denote updating the kth step. Generally, the targeting step only estimates the

“treatment” mechanism Q̂1(A,W). In the next step, the average treatment effect (ATE) is

calculated by using the above-mentioned updated outcome pairs. In the ATE estimation, it

can be demonstrated that the convergence of TMLE can be achieved after a single iteration

[25].

In the final step, the ATE is calculated by taking the average difference between the

updated expected outcomes across individuals using the G computation formula [120]. G

computation formula is an analytic tool for estimating standardized ATE concerning a “stan-

dardized” population distinguished by marginal covariate distribution [121, 122, 56]. This

estimation technique uses the G computation formula to estimate the average treatment

effect (ATE) after adjusting the confounders [123].

The ATE using targeted maximum likelihood estimation is calculated by taking the av-

erage differences between the updated expected outcome (via G computation formula [123]):

ATETMLE = û1 − û0 = EW
[
Q̂1(1,W)

]−EW
[
Q̂1(0,W)

]= 1
n

n∑
i=1

Q̂1(1,Wi)− 1
n

n∑
i=1

Q̂1(0,Wi)
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After performing targeted maximum likelihood estimation, the marginal odds ratio can

be obtained. The marginal odds ratio represents the change in the odds of the outcome

variable associated with a one-unit change in the treatment variable while considering the

average effect across the entire study population. So, the marginal odds ratio (OR) can be

estimated by the following equation:

�MORTMLE =
( 1

n
∑n

i=1 Q̂1(1,Wi)
)(

1− 1
n

∑n
i=1 Q̂1(0,Wi)

)(
1− 1

n
∑n

i=1 Q̂1(1,Wi)
)( 1

n
∑n

i=1 Q̂1(0,Wi)
)

3.5.2 Statistical Inference Under TMLE Framework:

The “targeting” step in the TMLE procedure primarily relies on the notion of the efficient in-

fluence curve (EIC) [58, 25]. The efficient influence curve tells us how much the estimate

of average treatment effect would change if the data were slightly modified, preserving the

underlying distribution of the data [25]. Following semi-parametric and empirical process

theory, an estimator is asymptotically linear if :

�ATE− ATE = 1
n

n∑
i=1

IC(Oi)− op

(
1p
(n)

)

Using the weak law of large numbers, the term op

(
1p
(n)

)
will always converge to 0 in prob-

ability as the sample size (n) goes to infinity [22, 64]. To be efficient, the researcher must

ensure that the influence curve has finite variance where the empirical mean of the influ-

ence curve (IC) is 0. Many influence functions may exist in a given estimation problem and

for a targeted parameter, and the most “efficient” IC achieves the lower bound on asymptotic

variance.

Explicitly, the efficient influence curve for the ATE parameter can be defined as:

EICATE =
(

A
P(A = 1|W)

− 1− A
P(A = 0|W)

)
[Y−E(Y |A,W)]+E(Y |A = 1,W)−E(Y |A = 0,W)−ATE

(3.11)
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This can be estimated as,

�EICATE = H(A,W)
[
Y − Q̂1(A,W)

]+ Q̂1(1,W)− Q̂1(0,W)−�ATETMLE

for every individual. A more sophisticated explanation of the above formula can be found in

Chapter 5, Appendix A of [22]. Finally the standard error of �ATETMLE can be defined as

follows:

σ̂ATE,TMLE =

√√√√�V ar
(�EICATE

)
n

In which the term �V ar
(�EICATE

)
is defined as the sample variance of the estimated Influ-

ence function. The corresponding Wald-type 95% confidence interval for ATE can be con-

structed by :

�ATE±1.96

√√√√�V ar
(�EICATE

)
n

And the causal null hypothesis H0 : ATE = 0 can be tested with the statistic [22]

T =
�ATE√�V ar

(�EICATE

)
n

Defining the two quantities D1 and D0, the efficient influence curve (EIC) for E[Y (1)] and

E[Y (0)] can be expressed accordingly :

D1 =
(

A
P(A = 1|W)

)
[Y −E(Y |A = 1,W)]+E(Y |A = 1,W)−E[Y (1)]

D0 =
(

1− A
P(A = 0|W)

)
[Y −E(Y |A = 0,W)]+E(Y |A = 0,W)−E[Y (0)]

Using the functional delta approach [124], the efficient influence curve (EIC) for marginal

odds ratio is [64]:

EICMOR = 1−E[Y (0)]

(1−E[Y (1)])2 ×E[Y (0)]
×D1 − E[Y (1)]

(1−E[Y (1)])× (E[Y (0)])2 ×D0

41



3.5.3 Targeted Maximum Likelihood Estimation (TMLE) with Su-

perLearner

TMLE using SuperLearner gives additional opportunities to minimize the prediction error.

SuperLearner uses the output of different machine learning methods that are more flexible

than parametric methods. In section 3.5.2, we mentioned that TMLE uses the influence

function that requires the models for expected observed outcome E[Y |A,W] and propensity

scores E[A|W] to converge to the true value [58, 25]. When the true propensity score model

is logistic, the maximum likelihood estimates (MLE) converge to the true value. But in

practice, the true model is unknown. In that case, SuperLearner takes advantage of using

its candidate models to have the best chance of approaching the true value. Incorporating

SuperLearner in TMLE allows combining a set of regressions to construct a library of al-

gorithms containing all weighted averages of these regressions [22]. One of these weighted

averages might work better than one of these regression models alone. Thus instead of

using the single parametric model for both treatment and outcome mechanisms, the Super-

Learner (SL) is implemented to use the information from the data itself flexibly and adap-

tively. Moreover, SuperLearner has been referred to as the best choice among the family of

weighted combinations of targeted estimators [22, 66, 125]. The SuperLearner algorithm

requires combining multiple estimators into an improved estimator and gives back a func-

tion that can be used to predict new datasets [22].

In order to explain how SuperLearner works with TMLE, we need to define some nota-

tion and describe the process step by step as follows:

• Y : The binary outcome variable takes 0 or 1

• A: The binary treatment variable takes 0 or 1

• W : A vector of covariates or confounding variables.

• g(A): The propensity score model that estimates the probability of treatment assign-

ment given covariates W
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• Q(W): The outcome model that estimates the probability of the outcome given covari-

ates W

• g0(A) The true (but unknown) treatment probability model

• Q0(W) The true (but unknown) outcome model.

In step 1, the SuperLearner algorithm selects a set of candidate algorithms for each

model. Some commonly used algorithms for machine learning methods in the context of Su-

perLearner are logistic regression, decision trees, random forests, neural networks, etc [66].

For each candidate algorithm, cross-validation is used to fit the model to the data and as-

sess its performance [126]. Cross-validation is a statistical technique that is commonly used

in machine learning to evaluate the performance and generalization ability of a predictive

model on an independent dataset [126]. It divides the data into two parts: a training set

and a testing (validation) set. The model is trained on the training set, and its performance

is assessed on the testing set [126, 127].

In step 2, the candidate models are combined using a weighted average or other ensem-

ble learning techniques [66, 22]. These weights are computed based on the performance of

candidate models during the cross-validation. The resulting SuperLearner models QSL(W)

and gSL(A) are the combined outcome model and treatment model. The treatment probabil-

ity model gSL(A) predicts the probability of receiving treatment given the covariates W . In

the 3rd step, using the estimated treatment probabilities from these SuperLearner models,

the inverse probability weights are calculated as:

A
gSL(A)

+ 1− A
1− gSL(A)

(3.12)

Finally, these weights are incorporated in the TMLE approach (see section 3.5.1), and the

treatment probabilities and outcome models are updated. After the TMLE procedure, the

final causal effect is estimated similarly as described in section 3.5.1.
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In this thesis, for our analysis purpose, we will use the following SuperLearner (SL) func-

tions [128] that can be called from library SuperLearner under statistical software R:

• SL.glm : conventional main terms logistic regression

• SL.step: stepwise regression

• Sl.gam: generalized additive models

• SL.glm.interaction: logistic regression variant that includes second-order polynomials

and pairwise interactions of the main terms

• SL.glmnet: lasso (least absolute shrinkage and selection operator)

• SL.rpart: an implementation of classification and regression trees.[129]

• SL.randomForest: implements Breiman’s randomForest algorithm [130]

In R, under the package “tmle” and “SuperLearner”, we will use the above selected

SL library instead of the default SL library.
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Chapter 4

Simulation Study

4.1 Simulation Settings

Following the data generation setting used by Ripamonti et al. (under review at Statistical

Methods in Medical Research), we performed a Monte Carlo simulation study to examine

how the lookback period affects the estimation of the average treatment effect using TMLE.

We generated datasets focusing on a realistic scenario. Setting an ideal timeline with an

initial point of follow-up (t0), we theorized to have all available information in an entire

lookback period with length of 10 years (t0 − t−10). Within this period, two time-varying

confounders representing the role of two acute events indicated by c1 and c2 were gener-

ated from Bernoulli(.50) and Bernoulli(.25) respectively. Another confounder c3 was gen-

erated from Bernoulli (.25) to indicate the emergence of a chronic condition. Further, a

time-varying covariate specifying acute events c4 was generated from Bernoulli (0.5). In

addition, an instrumental variable (iv) and an independent risk factor (rs) were generated

from Bernoulli (0.50). All these variables were assumed to appear up to three times in ten

years. We assumed a moderate association (an odds ratio of 2) between covariate and treat-

ment (or outcome). In our data generation setting we kept all confounders (c1, c2, c3, c4)

along with instrumental variable (iv) and risk factor (rs) with a moderate association. An

instrumental variable (iv) is a factor that is assumed to be related to exposure but not

directly related to the outcome or not indirectly connected via pathways through unmea-

sured variables. Typically, an instrumental variable depends on three assumptions [131]:
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Figure 4.1: Causal diagram representing confounding variables

a) An instrumental variable (iv) is an additional variable that affects exposure or is as-

sociated with exposure by sharing a common cause. b) Instrumental variable (iv) is not

independent of exposure, but it affects outcome only through its association with exposure

[132] (page 247). c) An instrumental variable is independent of all baseline variables, so

it is unrelated to patient characteristics. Under observational settings, using large-scale

databases, it is often difficult to find proper instrumental variables, but it depends mostly

on knowledge, experience, and the researcher’s intuition [133]. However, instrumental vari-

ables can be used in several settings. For example, an instrumental variable can have a

direct association with medical interventions that may influence the outcome, which can be

used to estimate the causal relationship between an exposure and outcome. The risk fac-

tor (rs) is a variable associated with an increased risk of developing the disease or outcome.

A risk factor can be behavioral, physiological, demographic, environmental, or genetic [134].
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In our simulation setting, patients were presumed to be examined until the occurrence

of the outcome or event. The time of occurrence of events for each covariate was generated

from a Beta (1.25,1) and further scaled on the (0−10) intervals. The idea behind this interval

is to distribute the measurements of the covariate across the 10-year lookback time window.

We estimated the effect of treatment by restricting the lookback period correspondingly to 9

years (t0 − t−9), 7 years (t0 − t−7), five years (t0 − t−5), 2years (t0 − t−2), 1 year (t0 − t−1), six

months (t0 − t−0.5), 3 months (t0 − t−0.25) and 1 month (t0 − t−0.083). Each dataset included

10,000 individuals and was replicated 1000 times for each analysis.

Following the procedure of [135], a treatment status for each individual was randomly

generated from a Bernoulli distribution with subject-specific probabilities of treatment as-

signment. The following relation determined the selection probability for the treatment

status for each subject i:

logit(πi,treat)=β0,treat +β11c1t1 +β12c1t2 +β13c1t3 +β21c2t1 +β22c2t2

+β23c2t3 +β3c3t1 +β41c4t1 +β42c4t2 +β43c4t3 +β51ivt1 +β52ivt2 (4.1)

Here β0,treat indicates the treatment effect on the log-relative risk scale was determined in

a preliminary simulation step. A virtual dataset of 1,000 entries was generated, and β0,treat

was targeted such that the treatment would be assigned to approximately half of the in-

dividuals. The value of all other regression coefficients β1,β2,β3,β4,β5 were kept as log2

to keep a moderate association. We used weight for each covariate by the time of occur-

rence of events using a cubic spline function with 10 degrees of freedom [136]. The term

“spline” refers to a wide class of functions used in applications requiring data smoothing. A

cubic spline is constructed of piece-wise third-order polynomials that pass through a set of

v control points. The second derivative of each polynomial is commonly set to zero at the

endpoints. A boundary condition that completes the system of v-2 equations can provide

the solutions. The coefficients of the polynomials are obtained by specifying this condition.

Among the variety of choices in the smoothing process, we used the choice of degree of poly-

nomials, such as the choice of degrees of freedom and boundary conditions. Thus the above
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equation is properly defined, and we specified the treatment status for each individual from

a Bernoulli random variable such that: A i ∼ Be(πi,A=1)

For each individual, an outcome was generated conditional on treatment assignment

status (A i) following the equation:

log(πi,outcome)=β0,out +β00A i +β11c1t1 +β12c1t2 +β13c1t3 +β21c2t1

+β22c2t2 +β23c2t3 +β3c3t1 +β41c4t1

+β42c4t2 +β51rst1 +β52rst2 (4.2)

Finally, the outcome is defined as Yi ∼ Bernoulli(πi,outcome). The value of the regression

coefficients of the second equation β00,β1,β2,β3,β4 and β5 was set as log(2), indicating an

odds ratio of 2. A preliminary step was done to determine the value of β0,out such that the

left term of the above equation was set to be negative. The idea behind this is to restrict the

value of the linear predictor of the logarithm of the probability of an outcome less than 0 for

all individuals and fix πi in (0,1). Thus if Yi = 0, the subject would survive until the end of

follow-up; otherwise, an event would occur.

4.2 Simulation Results

To estimate the ATE, we used both TMLE and IPTW methods and compared them. We im-

plemented TMLE using a logistic regression model and SuperLearner(SL). [66]. Following

the previous methodological study (Ripamonti et al, under review in Statistical Methods

in Medical Research), we first examined the empirical distribution of the PS for both the

treated and control group. We included the potential confounders c1, c2, c3 and risk factor rs

in both the propensity score model and outcome model. In the basic scenario, we considered

only the first-order main effects and no interaction term/higher-order terms. First, we cal-

culated the propensity score distribution for the entire 10years lookback period data using

a logistic regression model. Then we computed the summary statistics (i.e. minimum, 1st
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quantile, median, 3rd quantile, and maximum) from the estimated PS distribution.

We hypothesized these quantile values as our true parameter value θ. Similarly, for

other short lookback data (9,7,5,3,2,1 years and 6,3,1 months), we estimated the PS sum-

mary statistics (θh) and compared them with true value. Thus we can define bias in the

estimation of the propensity score as

Bias(θ̂h)= E[θ̂h −θ]

Where θ̂h is the empirical maximum likelihood estimator for PS summary statistics using

short lookback periods (h = 1,2,5,7,9 years and 6,3,1 months). We presented the distribu-

tion of propensity scores for various lookbacks in Table 4.1. The simulation result shows

that lookback 9 years produces very similar results compared to our defined reality sce-

nario. But this situation changes surprisingly for the short term lookback (less than 5 years

lookback). We can observe very poor estimates for the PS-quantiles and increased bias for

lookbacks 2 years and less than 2 years compared to other lookbacks. That means a short

lookback time can lead to discrepant propensity score estimation.

In Table 4.2, we estimated the average treatment effect (ATE) using PS (IPW frame-

work; PS-IPW), TMLE-logistic, and TMLE-SL (TMLE using SuperLearner). We considered

the confounders c1, c2, c3, and risk factor rs in our propensity score model for the estimation

of ATE. We used the inverse probability weighting method for PS-IPW in each lookback and

finally estimated the average treatment effect (ATE) after the weight adjustment. We used

the robust standard errors for ATE using the IPW method [82]. To do this in R, we used

survey::vcovHC() after a glm() call with the outcome model recommended by [82]. We pre-

sented the marginal odds ratio for different lookbacks in Table 4.2.

For TMLE, in step 2, described in section 3.5.1, we used the same propensity score model

as the PS-IPW approach. We considered the outcome model with all adjusted confounders

and estimated the ATE. We present ATE for all lookbacks and corresponding standard er-
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Table 4.1: Propensity Score Quantile Estimates and Bias for Varying Lookback

Periods from Simulation Study

A=0 A=1
10yr Min 1st q Med 3rd q Max 10yr Min 1st q Med 3rd q Max

0.022 0.095 0.215 0.417 0.987 0.023 0.52 0.781 0.932 0.999
Stat lookback Est Bias (θ̂h) lookback Est Bias (θ̂h)
Min 9yr 0.023 0.0004 9yr 0.023 0.0003

7yr 0.032 0.009 7yr 0.032 0.009
5yr 0.078 0.055 5yr 0.078 0.055
2yr 0.301 0.278 2yr 0.302 0.279
1yr 0.337 0.314 1yr 0.343 0.32
6mo 0.378 0.355 6mo 0.383 0.360
3mo 0.269 0.246 3mo 0.278 0.255
1mo 0.230 0.208 1mo 0.240 0.217

1st q 9yr 0.091 0.003 9yr 0.524 0.004
7yr 0.078 0.016 7yr 0.534 0.014
5yr 0.083 0.011 5yr 0.495 0.024
2yr 0.309 0.214 2yr 0.31 0.21
1yr 0.397 0.302 1yr 0.397 0.122
6mo 0.434 0.339 6mo 0.434 0.085
3mo 0.269 0.246 3mo 0.453 0.066
1mo 0.230 0.208 1mo 0.461 0.058

Med 9yr 0.209 0.005 9yr 0.786 0.005
7yr 0.198 0.017 7yr 0.798 0.017
5yr 0.218 0.003 5yr 0.78 0.0003
2yr 0.309 0.094 2yr 0.618 0.162
1yr 0.397 0.182 1yr 0.403 0.377
6mo 0.434 0.218 6mo 0.436 0.345
3mo 0.453 0.238 3mo 0.454 0.326
1mo 0.461 0.246 1mo 0.462 0.318

3rd q 9yr 0.414 0.003 9yr 0.935 0.003
7yr 0.403 0.014 7yr 0.942 0.009
5yr 0.416 0.001 5yr 0.933 0.024
2yr 0.325 0.092 2yr 0.821 0.111
1yr 0.399 0.018 1yr 0.734 0.198
6mo 0.436 0.018 6mo 0.502 0.430
3mo 0.455 0.037 3mo 0.498 0.434
1mo 0.462 0.044 1mo 0.489 0.443

Max 9yr 0.987 0.001 9yr 0.999 0
7yr 0.989 0.003 7yr 0.999 0
5yr 0.99 0.003 5yr 0.999 0
2yr 0.98 0.006 2yr 0.999 0.0005
1yr 0.971 0.015 1yr 0.997 0.002
6mo 0.964 0.022 6mo 0.991 0.008
3mo 0.958 0.028 3mo 0.982 0.017
1mo 0.952 0.034 1mo 0.963 0.036

1) Est represents propensity score quantile estimates.

2) Bias (θ̂h) represents the absolute bias
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rors in Table 4.2. We also estimated the odds ratio under this approach for different look-

backs. For both PS-IPW and TMLE-logistic, no higher-order polynomials or interaction

term was added. In step 2 for TMLE under SuperLearner, we used SuperLearner instead of

a parametric model. In R under library SuperLearner, we used the following user-selected li-

brary for TMLE-SL (“SL.glm,” “SL.step,” “SL.step.interaction”, “SL.glm.interaction”, “SL.gam,”

“SL.randomForest,” “SL.rpart”) (see section 3.5.3). We considered the same set of covariates

for the outcome model as the other two methods under TMLE-SL. The standard errors for

the estimates for the TMLE and TMLE-SL were calculated based on the idea of efficient

influence curve (EIC) [25] [58]. We also present the marginal odds ratio using TMLE-SL

in Table 4.2. Our main results showed that the effect estimates differ slightly among the

lookback periods. We assumed the true average treatment effect is 0.03 (for 10 years look-

back period), and the corresponding standard error estimate is 0.0118. The effect estimates

from lookback periods 9, 7, and 5 years are close to the true effect estimates. This estimate

differs for smaller lookback periods (i.e., 6 months to 2 years). The estimates of standard er-

rors also differ among the lookback periods. The lookback periods of 9 and 7 years produced

estimates of standard errors close to the true value. That means, in the case of estimating

ATE, longer lookback periods are more efficient and less biased compared to shorter look-

backs. We observe a similar situation for PS-IPW and TMLE-SL. For these two methods,

longer lookbacks (9 and 7 years) produced ATE estimates close to the true value compared

to the shorter lookbacks (1 month to 2 years).

We also observe relevant variations among the estimates of standard errors for varying

lookbacks in each of the three methods. TMLE-logistic has smaller standard errors than the

PS-IPW approach for lookback periods 9, 7, and 5 years. However, standard error estimates

are similar in shorter lookbacks for both methods. For TMLE-SL, we noticed decreased

standard errors for longer lookbacks (5, 7 and 9 years) compared to PS-IPW and TMLE-

logistic. TMLE-SL also produces smaller standard error estimates for shorter lookbacks

(3 months to 2 years) compared to the other two methods. So, incorporating TMLE with

the SuperLearner algorithm produces less standard error estimates for longer and shorter

lookback periods than TMLE-logistic and PS-IPW. The occurrence of this phenomenon can

51



be attributed to the SuperLearner algorithm’s strategy of amalgamating numerous diverse

models, which effectively captures various patterns and characteristics present in the data.

It selects the optimal prediction by leveraging cross-validation [126]. In addition, for shorter

lookbacks, there can be a chance of missingness in the covariate information, and choosing

the appropriate model might be difficult. In this situation, TMLE with SuperLearner may

provide additional opportunities for choosing the right model and producing efficient esti-

mates, and this reflects in our simulation results.

Table 4.2: Estimates of Average Treatment Effect (ATE) and Odds Ratio (OR) Using

PS-IPW, TMLE-logistic, and TMLE-SL for Varying Lookback Length

Estimation method lookback period ATE SE OR
TMLE-logistic 10yr 0.0353 0.0118 1.3508

9yr 0.0349 0.0119 1.348
7yr 0.0355 0.0124 1.358
5yr 0.0432 0.0119 1.437
2yr 0.071 0.009 1.787
1yr 0.0821 0.0081 1.958
6mo 0.0867 0.0077 2.0378
3mo 0.0897 0.00746 2.09
1mo 0.091 0.00749 2.12

PS-IPW 9yr 0.0446 0.0124 1.447
7yr 0.0443 0.0131 1.443
5yr 0.0504 0.0125 1.52
2yr 0.073 0.0092 1.82
1yr 0.0827 0.0081 1.975
6mo 0.086 0.0077 2.045
3mo 0.089 0.0074 2.097
1mo 0.091 0.0072 2.122

TMLE-SL 9yr 0.0486 0.0048 1.499
7yr 0.0451 0.005 1.458
5yr 0.0520 0.0065 1.54
2yr 0.0745 0.0074 1.85
1yr 0.0787 0.0073 1.92
6mo 0.0816 0.0073 1.97
3mo 0.0844 0.0073 2.02
1mo 0.0858 0.0074 2.043
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Chapter 5

Analysis of Real World Data

5.1 Motivation for Real World Data analysis

The importance of assessing drug effectiveness, safety, and post-market surveillance has

been widely acknowledged for over four decades. Observational studies are used to evalu-

ate these drug assessments. Researchers from CNODES (Canadian Network for Observa-

tional Drug Effect Studies) conduct observational studies and provide extensive informa-

tion on drug assessments in support of regulators and other stakeholders [7, 8, 137]. Until

2022, CNODES was a joint initiative of CIHR (Health Canada and Canadian Institutes of

Health Research); it is currently funded through the Canadian Agency for Drugs and Tech-

nologies in Health. CNODES include a combined population from seven provinces (British

Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec, and Nova Scotia) [8] as well

as the CPRD (United Kingdom Clinical Practice Research Datalink), which incorporates

drugs marketed in the UK [138]. In these distributed networks, the administrative data

sites include minimal patient history information; thus, adopting varying lookback periods

is of use in assessing confounding control. In real world evidence, having a longer look-

back might not be possible as a patient’s past data is less likely to be recorded due to follow

up variation. However, it is very natural that treatment allocation is strongly dependent

on the patient’s recent characteristics but only moderately on older events. If a significant

portion of recent data is missing, the patient’s past data may be able to be used to com-

pensate for this missingness. In most cases, shorter lookback time windows might capture
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the most admissible information for treatment effect estimation. However, in settings such

as the CPRD, patients’ chronic conditions may not be recorded at each visit, and at some

points, a longer lookback might be helpful. Moreover, longer lookback periods may classify

patients’ medications that are no longer in use, but shorter lookback may miss this medica-

tion. Choosing an optimal lookback is essential in an observational setting.

Several methods have been introduced in the literature to minimize confounding bias.

However, very little work has been done to compare varying lookback periods with these

approaches. Propensity score methods are commonly used to address this bias; however,

these methods require the correct specification of a treatment model. However, the double

robustness property of the TMLE approach can lead close to true effect estimates in the

presence of model misspecification (either treatment or outcome model). As TMLE is rela-

tively new to the literature, to our knowledge lookback periods have not been explored with

this method. In this thesis, our primary motivation is to estimate the drug effects in various

lookback periods (short-term and long-term) and to compare propensity score methods and

TMLE. In this chapter, we use real world data for examining these issues.

5.1.1 Clinical Practice Research Datalink (CPRD)

The Clinical Practice Research Datalink (CPRD), formerly known as the “General Practice

Research Database,” is a UK government, non-profit primary care research database that

collects anonymized patient data from 624 general practices across the UK, covering 6.3%

of all 9949 practices in 2012 [139]. In October 2017, CPRD initiated a new CPRD AURUM

database that collects data routinely from practices using electronic patient record (EHR)

system software [140]. As of September 2018, the CPRD database contains 7 million pa-

tients portraying 13% of the population in England. So, this significant population-based

data source CPRD AURUM has extended historical information on individuals from vari-

ous geographical regions linked to secondary care, disease registries, and death registration

records. We use this database as an ideal to create different lookback data and to conduct

our research.
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5.1.2 Description of the Data

Study Population

The study cohort was drawn from patients receiving their first-ever prescriptions for either

metformin or sulfonylureas between April 1, 1998, and December 30, 2019. Patients meet-

ing the following criteria were excluded: 1) age < 18 years; 2) >= 1 year of database history.

3) A previous prescription for an antidiabetic drug; 4) A prescription for both metformin

and sulfonylureas or a prescription for any antidiabetic drug other than metformin or a sul-

fonylurea on the day of cohort entry; 5) A previous diagnosis of polycystic ovary syndrome

(other indication for metformin use); 6) No recorded follow-up. Patients were followed until

an event (defined below) occurred, a departure from the CPRD or HES (Hospital Episode

Statistics) , or the end of the study period (December 30, 2019), whichever occurs first.

Exposure Definition

Exposure was defined as the initial use of sulfonylurea monotherapy. Switching within

sulfonylureas (i.e., glyburide, glimepiride, and glipizide) is permissible, but patients were

not allowed to change their exposure (i.e., metformin to sulfonylurea or vice-versa) as it

might be an indicator of diabetes severity or could be related to an adverse drug event.

Exposure was treated as time-fixed in a preliminary analysis, and an intention-to-treat

approach will be used. Patients were considered exposed to either drug following their first

medication regardless of the treatment switches or discontinuation. To minimize exposure

misclassification, the follow-up period was restricted to a maximum of 1 year.

Outcome Definition

The outcome of interest for this methodological study was death due to major adverse car-

diovascular events during the first year of post-treatment initiation. We have assessed the

outcome based on recorded diagnoses in CPRD AURUM, HES. We identified HES records

with the corresponding ICD-10 codes in the primary or secondary position or as the under-

lying cause of death (for myocardial infarction, 121. X; for ischemic stroke, 163. X, 164. X).

HES data was supplemented by ONS (Office of National Statistics) data. Cardiovascular
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death (ICD-10 codes 10-99) was defined using ONS data, and all-cause mortality were de-

termined using both data sources and CPRD AURUM. The date of death was used as the

event date.

Covariates

A range of covariates were adjusted in our TMLE and PS-IPW analyses. These covari-

ates measure in the year before cohort entry include demographic characteristics (age, sex,

calendar year), socio-economic status, lifestyle variables (smoking [ever, never], excessive

alcohol use), BMI, previous medical history (blood pressure, atrial fibrillation or flutter,

cancer, cerebrovascular disease, chronic obstructive pulmonary disease, coronary heart dis-

ease, heart failure, hyperlipidemia, hypertension, previous myocardial infarction, previous

coronary revascularization, previous stroke, and thyroid disease), complications of diabetes

(neuropathy, peripheral arterial or vascular disease, renal disease, and retinal disorder),

eGFR, and glycated hemoglobin level (7%,7.1−8.0%,> 8%, unknown). We also assessed the

use of the following medications: angiotensin-converting enzyme inhibitors, angiotensin II

receptor blockers, diuretics, digoxin, statins, fibrates, acetylsalicylic acid, clopidogrel, war-

farin, nonsteroidal, anti-inflammatory drugs, opioid analgesics, and paracetamol. To evalu-

ate the effect of measurement error due to varying lookback periods on using PS-IPW and

TMLE, we evaluated covariates (comorbidities, drugs, lifestyle variables, number of hospi-

talizations) with a lookback of 10 years and then restrict the lookback to 1, 3, 6 months, and

1, 2, 5, 7 years.

5.1.3 Analysis and Results

This is a retrospective population-based cohort study with a total number of 656,450 study

participants. We extracted a cohort of eligible study participants for each lookback period

(1,3,6 months and 1,2,5,7,10 years). In each lookback, a total number of 556,667 metformin

and 99,783 sulfonylurea users were included. Study participants in the metformin group

consist of 301,070 males and 255,597 females, and for the sulfonylureas group, 42,751 fe-

males and 57,032 males. For both groups, the age of most participants is more than 50
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Figure 5.1: Causal diagram with confounding variables

years (70% for the metformin and 83.4% for sulfonylureas) in all lookback periods. For each

lookback, the percentage of the smoking group is higher than non-smoking (Table 5.1, 5.2).

The patient’s other demographic and lifestyle characteristics, comorbidities and risk factors,

and medication use for each lookback are presented in Table 5.1, 5.2, and Table 5.3.
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Table 5.1: Demographical and Clinical Characteristics of Study Participants

(Lookback Period 1, 3 and 6 months)

Variables lookback period 1mo lookback Period 3mo lookback Period 6mo
Metformin
(N=556,667)

Sulfonylureas
(N=99,783)

Metformin
(N=556,667)

Sulfonylureas
(N=99,783)

Metformin
N=556,667

Sulfonylureas
(N=99,783)

Gender
Female 255597(45.9) 42751(42.8) 255597(45.9) 42751(42.8) 255597(45.9) 42751(42.8)
Male 301070(54.1) 57032(57.2) 301070(54.1) 57032(57.2) 301070(54.1) 57032(57.2)
Age
Less than 20 1586 (0.3) 93 (0.1) 1586 (0.3) 93 (0.1) 1586 (0.3) 93 (0.1)
20 to 30 16624 (3.0) 1022 (1.0) 16624 (3.0) 1022 (1.0) 16624 (3.0) 1022 (1.0)
30 to 40 42092 (7.6) 4486 (4.5) 42092 (7.6) 4486 (4.5) 42092 (7.6) 4486 (4.5)
40 to 50 92800 (16.7) 10913(10.9) 92800 (16.7) 10913(10.9) 92800 (16.7) 10913(10.9)
50 to 60 138438(24.9) 18861(18.9) 138438(24.9) 18861(18.9) 138438(24.9) 18861(18.9)
60 to 70 140261(25.2) 25973(26.0) 140261(25.2) 25973(26.0) 140261(25.2) 25973(26.0)
>70 124866(22.4) 38435(38.5) 124866(22.4) 38435(38.5) 124866(22.4) 38435(38.5)
Calendar year
entry
1998-2003 73517 (13.2) 60003(60.1) 73517 (13.2) 60003(60.1) 73517 (13.2) 60003(60.1)
2004-2009 163636 (29.4) 21960(22.0) 163636(29.4) 21960(22.0) 163636(29.4) 21960(22.0)
2010-2014 154100 (27.7) 10296(10.3) 154100(27.7) 10296(10.3) 154100(27.7) 10296(10.3)
2015-2019 165414 (29.7) 7524 (7.5) 165414(29.7) 7524 (7.5) 165414(29.7) 7524 (7.5)
Comorbidities and risk factors
Smoking status
Never smoking 95673 (17.2) 9768 (9.8) 119810 (21.5) 13167 (13.2) 140840 (25.3) 140840 (25.3)
Ever smoking 136478 (24.5) 12645 (12.7) 175239 (31.5) 17620 (17.7) 209902 (37.7) 22403 (22.5)
Missing 324516 (58.3) 77370 (77.5) 261618 (47.0) 68996 (69.1) 205925 (37.0) 61025 (61.2)
Alcohol disorder
No 541796 (97.3) 98136 (98.3) 537107 (96.5) 97469 (97.7) 532360 (95.6) 96799 (97.0)
Yes 14871 (2.7) 1647 (1.7) 19560 (3.5) 2314 (2.3) 24307 (4.4) 2984 (3.0)
BMI
<25 21586 (3.9) 10261 (10.3) 26194 (4.7) 12553 (12.6) 30235 (5.4) 14318 (14.3)
25-30 75855 (13.6) 11073 (11.1) 91100 (16.4) 14222 (14.3) 103734 (18.6) 16764 (16.8)
>30 160992 (28.9) 7354 (7.4) 193372 (34.7) 9680 (9.7) 218587 (39.3) 11794 (11.8)
Missing 298234 (53.6) 71095 (71.2) 246001 (44.2) 63328 (63.5) 204111 (36.7) 56907(57.0)
Hemoglobin level
<7 71786 (12.9) 2917 (2.9) 91201 (16.4) 4456 (4.5) 99067 (17.8) 5883 (5.9)
7-8 109039 (19.6) 7537 (7.6) 131134 (23.6) 9724 (9.7) 136724 (24.6) 10896 (10.9)
>8 154051 (27.7) 23991 (24.0) 175583 (31.5) 28308 (28.4) 179752 (32.3) 29686 (29.8)
Missing 221791 (39.8) 65338 (65.5) 158749 (28.5) 57295 (57.4) 141124 (25.4) 53318 (53.4)
Systolic blood pressure
Mean (SD) 138 (17.5) 140 (20.7) 137 (17.2) 140 (20.5) 137 (17.1) 140 (20.3)
Missing 221791 (39.8) 65338 (65.5) 140629 (25.3) 43089 (43.2) 95548 (17.2) 34386 (34.5)
Diastolic blood pressure
Mean (SD) 80.9 (10.7) 80.2 (11.4) 80.6 (10.6) 80.0 (11.3) 80.4 (10.5) 79.9 (11.2)
Missing 211769 (38.0) 56070 (56.2) 140629 (25.3) 43089 (43.2) 95548 (17.2) 34386 (34.5)
Atrial fibrillation
No 555888 (99.9) 99606 (99.8) 555268 (99.7) 99472 (99.7) 554504 (99.6) 99307 (99.5)
Yes 779 (0.1) 177 (0.2) 1399 (0.3) 311 (0.3) 2163 (0.4) 476 (0.5)
Cancer
No 553581 (99.4) 97828 (98.0) 551267 (99.0) 96744 (97.0) 549061 (98.6) 95912 (96.1)
Yes 3086 (0.6) 1955 (2.0) 5400 (1.0) 3039 (3.0) 7606 (1.4) 3871 (3.9)
Cerebrovascular disease
No 552255 (99.2) 98704 (98.9) 549504 (98.7) 98027 (98.2) 547153 (98.3) 97371 (97.6)
Yes 4412 (0.8) 1079 (1.1) 7163 (1.3) 1756 (1.8) 9514 (1.7) 2412 (2.4)
All values are presented as n (%), unless otherwise stated.
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Variables lookback period 1mo lookback period 3mo lookback period 6mo
Metformin Sulfonylureas Metformin Sulfonylureas Metformin Sulfonylureas

Chronic Obstructive Pulmonary Disease
No 551732 (99.1) 99000 (99.2) 548193 (98.5) 98431 (98.6) 544914 (97.9) 97892 (98.1)
Yes 4935 (0.9) 783 (0.8) 8474 (1.5) 1352 (1.4) 11753 (2.1) 1891 (1.9)
Coronary heart disease
No 539832 (97.0) 96337 (96.5) 530938 (95.4) 94504 (94.7) 522408 (93.8) 92719 (92.9)
Yes 16835 (3.0) 3446 (3.5) 25729 (4.6) 5279 (5.3) 34259 (6.2) 7064 (7.1)
Heart failure
No 554690 (99.6) 98857 (99.1) 553324 (99.4) 98266 (98.5) 551958 (99.2) 97693 (97.9)
Yes 1977 (0.4) 926 (0.9) 3343 (0.6) 1517 (1.5) 4709 (0.8) 2090 (2.1)
Hyperlipidemia
No 541082 (97.2) 97803 (98.0) 535522 (96.2) 96884 (97.1) 529771 (95.2) 95923 (96.1)
Yes 15585 (2.8) 1980 (2.0) 21145 (3.8) 2899 (2.9) 26896 (4.8) 3860 (3.9)
Hypertension
No 499809 (89.8) 93306 (93.5) 471484 (84.7) 89599 (89.8) 446884 (80.3) 85959 (86.1)
Yes 56858 (10.2) 6477 (6.5) 85183 (15.3) 10184 (10.2) 109783 (19.7) 13824 (13.9)
Coronary Revascularization
No 556054 (99.9) 99507 (99.7) 555560 (99.8) 99370 (99.6) 554976 (99.7) 99265 (99.5)
Yes 613 (0.1) 276 (0.3) 1107 (0.2) 413 (0.4) 1691 (0.3) 518 (0.5)
Thyroid
No 551168 (99.0) 99132 (99.3) 548454 (98.5) 98750 (99.0) 545778 (98.0) 98352 (98.6)
Yes 5499 (1.0) 651 (0.7) 8213 (1.5) 1033 (1.0) 10889 (2.0) 1431 (1.4)
Diabetic Neuropathy
No 545239 (97.9) 98847 (99.1) 542352 (97.4) 98510 (98.7) 538642 (96.8) 98122 (98.3)
Yes 11428 (2.1) 936 (0.9) 14315 (2.6) 1273 (1.3) 18025 (3.2) 1661 (1.7)
Peripheral Vascular Disease
No 554699 (99.6) 99332 (99.5) 553679 (99.5) 99063 (99.3) 552659 (99.3) 98779 (99.0)
Yes 1968 (0.4) 451 (0.5) 2988 (0.5) 720 (0.7) 4008 (0.7) 1004 (1.0)
Chronic Kidney disease
No 551930 (99.1) 98705 (98.9) 549538 (98.7) 98107 (98.3) 547039 (98.3) 97459 (97.7)
Yes 4737 (0.9) 1078 (1.1) 7129 (1.3) 1676 (1.7) 9628 (1.7) 2324 (2.3)
Retinal disorder
No 553828 (99.5) 99385 (99.6) 550798 (98.9) 99065 (99.3) 547638 (98.4) 98693 (98.9)
Yes 2839 (0.5) 398 (0.4) 5869 (1.1) 718 (0.7) 9029 (1.6) 1090 (1.1)
eGFR
Mean (SD) 81.1 (18.9) 69.8 (23.6) 81.1 (18.8) 69.4 (23.5) 81.1 (18.8) 69.3 (23.3)
Missing 272200 (48.9) 65237 (65.4) 179984 (32.3) 54412 (54.5) 134114 (24.1) 47663 (47.8)
Previous stroke
No 553937 (99.5) 99092 (99.3) 552054 (99.2) 98676 (98.9) 550540 (98.9) 98294 (98.5)
Yes 2730 (0.5) 691 (0.7) 4613 (0.8) 1107 (1.1) 6127 (1.1) 6127 (1.1)
Previous
Myocardial Infarction
No 554609 (99.6) 98865 (99.1) 553501 (99.4) 98472 (98.7) 552422 (99.2) 98171 (98.4)
Yes 2058 (0.4) 918 (0.9) 3166 (0.6) 1311 (1.3) 4245 (0.8) 1612 (1.6)
MajorAdverse Cardiovascular
Events (MACE)
No 467178 (83.9) 56843 (57.0) 467178 (83.9) 56843 (57.0) 467178 (83.9) 56843 (57.0)
Yes 89489 (16.1) 42940(43.0) 89489 (16.1) 42940(43.0) 89489 (16.1) 42940(43.0)

All values are presented as n (%), unless otherwise stated.
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Variables lookback Period 1mo lookback Period 3mo lookback Period 6mo
Metformin Sulfonylureas Metformin Sulfonylureas Metformin Sulfonylureas

Medications
Angiotensin Converting Enzyme (ACE)
No 423659 (76.1) 80648 (80.8) 392108 (70.4) 76238 (76.4) 387113 (69.5) 75045 (75.2)
Yes 133008 (23.9) 19135 (19.2) 164559 (29.6) 23545 (23.6) 169554 (30.5) 24738 (24.8)
Angiotensin Receptor Blockers (ARB)
No 512317 (92.0) 95187 (95.4) 500205 (89.9) 93922 (94.1) 498663 (89.6) 93569 (93.8)
Yes 44350 (8.0) 4596 (4.6) 56462 (10.1) 5861 (5.9) 58004 (10.4) 6214 (6.2)
Beta Blocker
No 467124 (83.9) 82825 (83.0) 441020 (79.2) 77812 (78.0) 436770 (78.5) 76603 (76.8)
Yes 89543 (16.1) 16958 (17.0) 115647 (20.8) 21971 (22.0) 119897 (21.5) 23180 (23.2)
Diuretics
No 454717 (81.7) 76946 (77.1) 422741 (75.9) 70288 (70.4) 416046 (74.7) 68472 (68.6)
Yes 101950 (18.3) 22837 (22.9) 133926 (24.1) 29495 (29.6) 140621 (25.3) 31311 (31.4)
Digoxin
No 545234 (97.9) 94288 (94.5) 542518 (97.5) 92956 (93.2) 542208 (97.4) 92741 (92.9)
Yes 11433 (2.1) 5495 (5.5) 14149 (2.5) 6827 (6.8) 14459 (2.6) 7042 (7.1)
Statin
No 328327 (59.0) 77288 (77.5) 280920 (50.5) 72398 (72.6) 274521 (49.3) 71433 (71.6)
Yes 228340 (41.0) 22495 (22.5) 275747 (49.5) 27385 (27.4) 282146 (50.7) 28350 (28.4)
Nonsteroidal Anti inflammatory
Drugs (NSAIDS)
No 509432 (91.5) 92151 (92.4) 478544 (86.0) 87075 (87.3) 451411 (81.1) 82655 (82.8)
Yes 47235 (8.5) 7632 (7.6) 78123 (14.0) 12708 (12.7) 105256 (18.9) 17128 (17.2)
Opioids
No 482717 (86.7) 85679 (85.9) 450554 (80.9) 79553 (79.7) 426638 (76.6) 75231 (75.4)
Yes 73950 (13.3) 14104 (14.1) 106113 (19.1) 20230 (20.3) 130029 (23.4) 24552 (24.6)
Paracetamol
No 477541 (85.8) 83919 (84.1) 440201 (79.1) 76726 (76.9) 415356 (74.6) 72007 (72.2)
yes 79126 (14.2) 15864 (15.9) 116466 (20.9) 23057 (23.1) 141311 (25.4) 27776 (27.8)
Fibrate
No 551632 (99.1) 98928 (99.1) 550209 (98.8) 98685 (98.9) 549804 (98.8) 98569 (98.8)
yes 5035 (0.9) 855 (0.9) 6458 (1.2) 1098 (1.1) 6863 (1.2) 1214 (1.2)
Aspirin
No 465169 (83.6) 81769 (81.9) 439325 (78.9) 76532 (76.7) 432375 (77.7) 74721 (74.9)
yes 91498 (16.4) 18014 (18.1) 117342 (21.1) 23251 (23.3) 124292 (22.3) 25062 (25.1)
Clopidogrel
No 544294 (97.8) 97774 (98.0) 541273 (97.2) 97386 (97.6) 540178 (97.0) 97232 (97.4)
yes 12373 (2.2) 2009 (2.0) 15394 (2.8) 2397 (2.4) 16489 (3.0) 2551 (2.6)
Warfarin
No 542728 (97.5) 96132 (96.3) 537424 (96.5) 94645 (94.9) 536164 (96.3) 94204 (94.4)
yes 13939 (2.5) 3651 (3.7) 19243 (3.5) 5138 (5.1) 20503 (3.7) 5579 (5.6)
All values are presented as n (%), unless otherwise stated.
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Table 5.2: Demographical and Clinical Characteristics of Study Participants

(Lookback Period 1, 2 and 5 years

Variables lookback period 1yr lookback Period 2yr lookback Period 5yr
Metformin
(N=556,667)

Sulfonylureas
(N=99,783)

Metformin
(N=556,667)

Sulfonylureas
(N=99,783)

Metformin
N=556,667

Sulfonylureas
(N=99,783)

Gender
Female 255597(45.9) 42751(42.8) 255597(45.9) 42751(42.8) 255597(45.9) 42751(42.8)
Male 301070(54.1) 57032(57.2) 301070(54.1) 57032(57.2) 301070(54.1) 57032(57.2)
Age
Less than 20 1586 (0.3) 93 (0.1) 1586 (0.3) 93 (0.1) 1586 (0.3) 93 (0.1)
20 to 30 16624 (3.0) 1022 (1.0) 16624 (3.0) 1022 (1.0) 16624 (3.0) 1022 (1.0)
30 to 40 42092 (7.6) 4486 (4.5) 42092 (7.6) 4486 (4.5) 42092 (7.6) 4486 (4.5)
40 to 50 92800 (16.7) 10913(10.9) 92800 (16.7) 10913(10.9) 92800 (16.7) 10913(10.9)
50 to 60 138438(24.9) 18861(18.9) 138438(24.9) 18861(18.9) 138438(24.9) 18861(18.9)
60 to 70 140261(25.2) 25973(26.0) 140261(25.2) 25973(26.0) 140261(25.2) 25973(26.0)
>70 124866(22.4) 38435(38.5) 124866(22.4) 38435(38.5) 124866(22.4) 38435(38.5)
Calendar year
entry
1998-2003 73517 (13.2) 60003(60.1) 73517 (13.2) 60003(60.1) 73517 (13.2) 60003(60.1)
2004-2009 163636 (29.4) 21960(22.0) 163636(29.4) 21960(22.0) 163636(29.4) 21960(22.0)
2010-2014 154100 (27.7) 10296(10.3) 154100(27.7) 10296(10.3) 154100(27.7) 10296(10.3)
2015-2019 165414 (29.7) 7524 (7.5) 165414(29.7) 7524 (7.5) 165414(29.7) 7524 (7.5)
Comorbidities and risk factors
Smoking status
Never smoking 164957 (29.6) 20209(20.3) 181698(32.6) 23843(23.9) 189450(34.0) 28326(28.4)
Ever smoking 250481 (45.0) 28386(28.4) 286058(51.4) 34638(34.7) 324317(58.3) 43090(43.2)
Missing 141229 (25.4) 51188(51.3) 88911 (16.0) 41302(41.4) 42900 (7.7) 28367(28.4)
Alcohol disorder
No 524750 (94.3) 95846(96.1) 511682(91.9) 94428(94.6) 487127(87.5) 91744(91.9)
Yes 31917 (5.7) 3937 (3.9) 44985 (8.1) 5355 (5.4) 69540 (12.5) 8039 (8.1)
BMI
<25 35060 (6.3) 16313(16.3) 39944 (7.2) 18176(18.2) 45894 (8.2) 20676(20.7)
25-30 118060 (21.2) 19725(19.8) 130743(23.5) 22569(22.6) 144875(26.0) 26831(26.9)
>30 247753 (44.5) 14281(14.3) 273239(49.1) 16798(16.8) 298809(53.7) 20579(20.6)
Missing 155794 (28.0) 49464(49.6) 112741(20.3) 42240(42.3) 67089 (12.1) 31697(31.8)
Hemoglobin level
<7 106309 (19.1) 7648 (7.7) 112144(20.1) 8871 (8.9) 11737(21.1) 9894 (9.9)
7-8 139538 (25.1) 11856(11.9) 140792(25.3) 12334(12.4) 141315(25.4) 12542(12.6)
>8 181635 (32.6) 30489(30.6) 182505(32.8) 30927(31.0) 183119(32.9) 31190(31.3)
Missing 129185 (23.2) 49790(49.9) 121226(21.8) 47651(47.8) 114859(20.6) 46157(46.3)
Systolic blood pressure
Mean (SD) 137 (17.0) 140 (20.2) 137 (17.1) 140 (20.3) 136 (17.1) 140 (20.3)
Missing 60607 (10.9) 26708(26.8) 38730 (7.0) 21072(21.1) 19343 (3.5) 14433(14.5)
Diastolic blood pressure
Mean (SD) 80.3 (10.4) 79.9 (11.1) 80.3 (10.4) 80.0 (11.1) 80.3 (10.4) 80.2 (11.1)
Missing 60607 (10.9) 26708(26.8) 38730 (7.0) 21072(21.1) 19343 (3.5) 14433(14.5)
Atrial fibrillation
No 553179(99.4) 99035(99.3) 551017(99.0) 98674(98.9) 547117(98.3) 98075(98.3)
Yes 3488 (0.6) 748 (0.7) 5650 (1.0) 1109 (1.1) 9550 (1.7) 1708 (1.7)
Cancer
No 545779 (98.0) 95030(95.2) 541043(97.2) 93876(94.1) 532553(95.7) 92125(92.3)
Yes 10888 (2.0) 4753 (4.8) 15624 (2.8) 5907 (5.9) 24114 (4.3) 7658 (7.7)
Cerebrovascular disease
No 543805 (97.7) 96587(96.8) 539107(96.8) 95471(95.7) 531234(95.4) 93627(93.8)
Yes 12862 (2.3) 3196 (3.2) 17560 (3.2) 4312 (4.3) 25433 (4.6) 6156 (6.2)
All values are presented as n (%), unless otherwise stated.
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Variables lookback period 1yr lookback period 2yr lookback period 5yr
Metformin Sulfonylureas Metformin Sulfonylureas Metformin Sulfonylureas

Chronic Obstructive Pulmonary Disease
No 540518 (97.1) 97223(97.4) 536282(96.3) 96480(96.7) 531746(95.5) 95530(95.7)
Yes 16149 (2.9) 2560 (2.6) 20385 (3.7) 3303 (3.3) 24921 (4.5) 4253 (4.3)
Coronary heart disease
No 510758 (91.8) 90275(90.5) 497824(89.4) 87390(87.6) 479559(86.1) 83196(83.4)
Yes 45909 (8.2) 9508 (9.5) 58843 (10.6) 12393(12.4) 77108 (13.9) 16587(16.6)
Heart failure
No 549857 (98.8) 96966(97.2) 547093(98.3) 96055(96.3) 542542(97.5) 94528(94.7)
Yes 6810 (1.2) 2817 (2.8) 9574 (1.7) 3728 (3.7) 14125 (2.5) 5255 (5.3)
Hyperlipidemia
No 521018 (93.6) 94550(94.8) 506573(91.0) 92582(92.8) 476382(85.6) 88994(89.2)
Yes 35649 (6.4) 5233 (5.2) 50094 (9.0) 7201 (7.2) 80285 (14.4) 10789(10.8)
Hypertension
No 413513 (74.3) 81162(81.3) 373588(67.1) 75275(75.4) 322561(57.9) 67048(67.2)
Yes 143154 (25.7) 18621(18.7) 183079(32.9) 24508(24.6) 234106(42.1) 32735(32.8)
Coronary Revascularization
No 553948 (99.5) 99081(99.3) 552060(99.2) 98755(99.0) 547572(98.4) 98017(98.2)
Yes 2719 (0.5) 702 (0.7) 4607 (0.8) 1028 (1.0) 9095 (1.6) 1766 (1.8)
Thyroid
No 541689 (97.3) 97813(98.0) 535768(96.2) 96934(97.1) 524847(94.3) 95476(95.7)
Yes 14978 (2.7) 1970 (2.0) 20899 (3.8) 2849 (2.9) 31820 (5.7) 4307 (4.3)
Diabetic Neuropathy
No 532972 (95.7) 97560(97.8) 528107(94.9) 97036(97.2) 523004(94.0) 96620(96.8)
Yes 23695 (4.3) 2223 (2.2) 28560 (5.1) 2747 (2.8) 33663 (6.0) 3163 (3.2)
Peripheral Vascular Disease
No 551039 (99.0) 98350(98.6) 548794(98.6) 97788(98.0) 544795(97.9) 96806(97.0)
Yes 5628 (1.0) 1433 (1.4) 7873 (1.4) 1995 (2.0) 11872 (2.1) 2977 (3.0)
Chronic kidney disease
No 542788 (97.5) 96367(96.6) 536416(96.4) 95046(95.3) 525751(94.4) 93241(93.4)
Yes 13879 (2.5) 3416 (3.4) 20251 (3.6) 4737 (4.7) 30916 (5.6) 6542 (6.6)
Retinal disorder
No 542428 (97.4) 98169(98.4) 536931(96.5) 97500(97.7) 530330(95.3) 96707(96.9)
Yes 14239 (2.6) 1614 (1.6) 19736 (3.5) 2283 (2.3) 26337 (4.7) 3076 (3.1)
eGFR
Mean (SD) 81.2 (18.8) 69.2 (23.1) 81.4 (18.9) 69.3 (23.1) 81.7 (18.9) 69.4 (23.1)
Missing 97847 (17.6) 41801(41.9) 79742 (14.3) 38363(38.4) 64422 (11.6) 35852(35.9)
Previous stroke
No 548365 (98.5) 97835(98.0) 545173(97.9) 97171(97.4) 539601(96.9) 95993(96.2)
Yes 8302 (1.5) 1948 (2.0) 11494 (2.1) 2612 (2.6) 17066 (3.1) 3790 (3.8)
Previous Myocardial Infarction
No 550793 (98.9) 97751(98.0) 547933(98.4) 97103(97.3) 541697(97.3) 95564(95.8)
Yes 5874 (1.1) 2032 (2.0) 8734 (1.6) 2680 (2.7) 14970 (2.7) 4219 (4.2)
Major Adverse Cardiovascular Events
No 467178 (83.9) 56843(57.0) 467178(83.9) 56843(57.0) 467178(83.9) 56843(57.0)
Yes 89489 (16.1) 42940(43.0) 89489 (16.1) 42940(43.0) 89489 (16.1) 42940(43.0)

All values are presented as n (%), unless otherwise stated.
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Variables lookback Period 1yr lookback Period 2yr lookback Period 5yr
Metformin Sulfonylureas Metformin Sulfonylureas Metformin Sulfonylureas

Medications
Angiotensin Converting Enzyme (ACE)
No 381059 (68.5) 73699(73.9) 370980(66.6) 71873(72.0) 350846(63.0) 68999(69.1)
Yes 175608 (31.5) 26084(26.1) 185687(33.4) 27910(28.0) 205821(37.0) 30784(30.9)
Angiotensin Receptor Blockers (ARB)
No 497003 (89.3) 93213(93.4) 494431(88.8) 92729(92.9) 489439(87.9) 92086(92.3)
Yes 59664 (10.7) 6570 (6.6) 62236 (11.2) 7054 (7.1) 67228 (12.1) 7697 (7.7)
Beta Blocker
No 431827 (77.6) 75393(75.6) 423599(76.1) 73690(73.9) 404092(72.6) 70206(70.4)
Yes 124840 (22.4) 24390(24.4) 133068(23.9) 26093(26.1) 152575(27.4) 29577(29.6)
Diuretics
No 408794 (73.4) 66900(67.0) 397661(71.4) 64823(65.0) 375331(67.4) 61352(61.5)
Yes 147873 (26.6) 32883(33.0) 159006(28.6) 34960(35.0) 181336(32.6) 38431(38.5)
Digoxin
No 541962 (97.4) 92618(92.8) 541559(97.3) 92451(92.7) 540644(97.1) 92150(92.4)
Yes 14705 (2.6) 7165 (7.2) 15108 (2.7) 7332 (7.3) 16023 (2.9) 7633 (7.6)
Statin
No 269856 (48.5) 70726(70.9) 264247(47.5) 69943(70.1) 255778(45.9) 68960(69.1)
Yes 286811 (51.5) 29057(29.1) 292420(52.5) 29840(29.9) 300889(54.1) 30823(30.9)
Nonsteroidal Anti inflammatory
Drugs (NSAIDS)

No 410190 (73.7) 76544(76.7) 351916(63.2) 68069(68.2) 258783(46.5) 55047(55.2)
Yes 146477 (26.3) 23239(23.3) 204751(36.8) 31714(31.8) 297884(53.5) 44736(44.8)
Opioids
No 393322 (70.7) 69844(70.0) 347796(62.5) 63087(63.2) 276983(49.8) 53593(53.7)
Yes 163345 (29.3) 29939(30.0) 208871(37.5) 36696(36.8) 279684(50.2) 46190(46.3)
Paracetamol
No 384048 (69.0) 66619(66.8) 342534(61.5) 60420(60.6) 277378(49.8) 51891(52.0)
yes 172619 (31.0) 33164(33.2) 214133(38.5) 39363(39.4) 279289(50.2) 47892(48.0)
Fibrate
No 549236 (98.7) 98420 (98.6) 548231 (98.5) 98183 (98.4) 545828 (98.1) 97698 (97.9)
yes 7431 (1.3) 1363 (1.4) 8436 (1.5) 1600 (1.6) 10839 (1.9) 2085 (2.1)
Aspirin
No 425968 (76.5) 73360 (73.5) 417030 (74.9) 71728 (71.9) 399951 (71.8) 69167 (69.3)
yes 130699 (23.5) 26423 (26.5) 139637 (25.1) 28055 (28.1)
clopidogrel
No 538550 (96.7) 97001 (97.2) 535840 (96.3) 96689 (96.9) 530286 (95.3) 96197 (96.4)
yes 18117 (3.3) 2782 (2.8) 20827 (3.7) 3094 (3.1) 26381 (4.7) 3586 (3.6)
Warfarin
No 535126 (96.1) 93881 (94.1) 533514 (95.8) 93505 (93.7) 530163 (95.2) 92875 (93.1)
yes 21541 (3.9) 5902 (5.9) 23153 (4.2) 6278 (6.3) 26504 (4.8) 6908 (6.9)
All values are presented as n (%), unless otherwise stated.
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Table 5.3: Demographical and Clinical Characteristics of Study Participants

(Lookback Period 7 and 10 years)

Variables lookback period 7yr lookback period 10yr
Metformin Sulfonylureas Metformin Sulfonylureas

Gender
Female 255597(45.9) 42751(42.8) 255597(45.9) 42751(42.8)
Male 301070(54.1) 57032(57.2) 301070(54.1) 57032(57.2)
Age
Less than 20 1586 (0.3) 93 (0.1) 1586 (0.3) 93 (0.1)
20 to 30 16624 (3.0) 1022 (1.0) 16624 (3.0) 1022 (1.0)
30 to 40 42092 (7.6) 4486 (4.5) 42092 (7.6) 4486 (4.5)
40 to 50 92800 (16.7) 10913(10.9) 92800(16.7) 10913(10.9)
50 to 60 138438(24.9) 18861(18.9) 138438(24.9) 18861(18.9)
60 to 70 140261(25.2) 25973(26.0) 140261(25.2) 25973(26.0)
>70 124866(22.4) 38435(38.5) 124866(22.4) 38435(38.5)
Calendar year
entry
1998-2003 73517 (13.2) 60003(60.1) 73517 (13.2) 60003(60.1)
2004-2009 163636(29.4) 21960(22.0) 163636(29.4) 21960(22.0)
2010-2014 154100(27.7) 10296(10.3) 154100(27.7) 10296(10.3)
2015-2019 165414(29.7) 7524 (7.5) 165414(29.7) 7524 (7.5)
Comorbidities and risk factors
BMI
<25 47784 (8.6) 21865(21.9) 49541 (8.9) 22937(23.0)
25-30 149381(26.8) 29145(29.2) 153423(27.6) 30957(31.0)
>30 305825(54.9) 22281(22.3) 311012(55.9) 23375(23.4)
Missing 53677 (9.6) 26492(26.5) 42691 (7.7) 22514(22.6)
Smoking status
Never smoking 188383(33.8) 30546(30.6) 185419(33.3) 31872(31.9)
Ever smoking 337745(60.7) 47213(47.3) 350425(63.0) 50654(50.8)
Missing 30539 (5.5) 22024(22.1) 20823(3.7) 17257(17.3)
Alcohol disorder
No 476500(85.6) 90571(90.8) 466431(83.8) 89495(89.7)
Yes 80167 (14.4) 9212 (9.2) 90236 (16.2) 10288(10.3)
Hemoglobin level
<7 118516(21.3) 10092(10.1) 119404(21.4) 10268(10.3)
7-8 141381(25.4) 12558(12.6) 141436(25.4) 12598(12.6)
>8 183315(32.9) 31236(31.3) 183626(33.0) 31302(31.4)
Missing 113455(20.4) 45897(46.0) 112201(20.2) 45615(45.7)
Systolic blood pressure
Mean (SD) 136 (17.1) 140 (20.3) 136 (17.1) 140 (20.3)
Missing 15386 (2.8) 12097(12.1) 12691 (2.3) 10723(10.7)
Diastolic blood pressure
Mean (SD) 80.3 (10.4) 80.2 (11.1) 80.3 (10.4) 80.3 (11.1)
Missing 15386 (2.8) 12097(12.1) 12691 (2.3) 10723(10.7)
Atrial fibrillation
No 545692(98.0) 97842(98.1) 544441(97.8) 97686(97.9)
Yes 10975 (2.0) 1941 (1.9) 12226 (2.2) 2097 (2.1)
Cancer
No 529053(95.0) 91418(91.6) 525488(94.4) 90738(90.9)
Yes 27614 (5.0) 8365 (8.4) 31179 (5.6) 9045 (9.1)
All values are presented as n (%), unless otherwise stated.
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lookback period 7yr lookback period 10yr
Variables Metformin Sulfonylureas Metformin Sulfonylureas
Cerebrovascular disease
No 528298(94.9) 92814(93.0) 525454(94.4) 92091(92.3)
Yes 28369 (5.1) 6969 (7.0) 31213 (5.6) 7692 (7.7)
Chronic Obstructive Pulmonary Disease
No 530591(95.3) 95229(95.4) 529741(95.2) 94958(95.2)
Yes 26076 (4.7) 4554 (4.6) 26926 (4.8) 4825 (4.8)
Coronary heart disease
No 473056(85.0) 81624(81.8) 466949(83.9) 80210(80.4)
Yes 83611 (15.0) 18159(18.2) 89718 (16.1) 19573(19.6)
Heart failure
No 540960(97.2) 94039(94.2) 539657(96.9) 93606(93.8)
Yes 15707(2.8) 5744(5.8) 17010(1.7) 6177(6.2)
Hyperlipidemia
No 462614(83.1) 87444(87.6) 448026(80.5) 85911(86.1)
Yes 94053 (16.9) 12339(12.4) 108641(19.5) 13872(13.9)
Hypertension
No 307182(55.2) 64034(64.2) 294511(52.9) 61227(61.4)
Yes 249485(44.8) 35749(35.8) 262156(47.1) 38556(38.6)
Coronary Revascularization
No 545209(97.9) 97642(97.9) 542415(97.4) 97244(97.5)
Yes 11458 (2.1) 2141 (2.1) 14252 (2.6) 2539 (2.5)
Thyroid
No 520420(93.5) 94865(95.1) 515986(92.7) 94230(94.4)
Yes 36247 (6.5) 4918 (4.9) 40681 (7.3) 5553 (5.6)
Diabetic Neuropathy
No 521721(93.7) 96524(96.7) 521143(93.6) 96463(96.7)
Yes 34946 (6.3) 3259 (3.3) 35524 (6.4) 3320 (3.3)
Peripheral Vascular Disease
No 543243(97.6) 96381(96.6) 541824(97.3) 96008(96.2)
Yes 13424 (2.4) 3402 (3.4) 14843 (2.7) 3775 (3.8)
Chronic Kidney disease
No 522375(93.8) 92786(93.0) 519647(93.3) 92496(92.7)
Yes 34292 (6.2) 6997 (7.0) 37020 (6.7) 7287 (7.3)
Retinal disorder
No 528798(95.0) 96514(96.7) 528003(94.9) 96387(96.6)
Yes 27869 (5.0) 3269 (3.3) 28664 (5.1) 3396 (3.4)
eGFR
Mean (SD) 81.7 (19.0) 69.4 (23.1) 81.8 (19.0) 69.5 (23.1)
Missing 60493 (10.9) 35429(35.5) 57736 (10.4) 35180(35.3)
Major Adverse Cardiovascular Events
No 467178(83.9) 56843(57.0) 467178(83.9) 56843(57.0)
Yes 89489 (16.1) 4294(43.0) 89489 (16.1) 42940(43.0)
Previous stroke
No 537557(96.6) 95490(95.7) 535581(96.2) 95033(95.2)
Yes 19110 (3.4) 4293 (4.3) 21086 (3.8) 4750 (4.8)
Previous
Myocardial Infarction
No 538430(96.7) 94785(95.0) 534400(96.0) 93895(94.1)
Yes 18237 (3.3) 4998 (5.0) 22267 (4.0) 5888 (5.9)

All values are presented as n (%), unless otherwise stated.
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lookback period 7yr lookback period 10yr
Variables Metformin Sulfonylureas Metformin Sulfonylureas
Medication
Angiotensin Converting Enzyme (ACE)
No 342371(61.5) 67889(68.0) 334374(60.1) 67093(67.2)
Yes 214296(38.5) 31894(32.0) 222293(39.9) 32690(32.8)
Angiotensin Receptor Blockers (ARB)
No 487476(87.6) 91885(92.1) 485716(87.3) 91722(91.9)
Yes 69191 (12.4) 7898 (7.9) 70951 (12.7) 8061 (8.1)
Beta Blocker
No 394152(70.8) 68731(68.9) 382933(68.8) 67226(67.4)
Yes 162515(29.2) 31052(31.1) 173734(31.2) 32557(32.6)
Diuretics

No 365895(65.7) 60083(60.2) 356734(64.1) 59130(59.3)
Yes 190772(34.3) 39700(39.8) 199933(35.9) 40653(40.7)
Digoxin
No 540215(97.0) 92023(92.2) 539757(97.0) 91934(92.1)
Yes 16452 (3.0) 7760 (7.8) 16910 (3.0) 7849 (7.9)
Statin
No 253053(45.5) 68707(68.9) 251092(45.1) 68548(68.7)
Yes 303614(54.5) 31076(31.1) 305575(54.9) 31235(31.3)
Fibrate
No 544644(97.8) 97529(97.7) 543242(97.6) 97336(97.5)
Yes 12023 (2.2) 2254 (2.3) 13425 (2.4) 2447 (2.5)
Aspirin
No 392830(70.6) 68353(68.5) 386274(69.4) 67676(67.8)
Yes 163837(29.4) 31430(31.5) 170393(30.6) 32107(32.2)
Clopidogrel
No 528064(94.9) 96023(96.2) 525939(94.5) 95917(96.1)
Yes 28603 (5.1) 3760 (3.8) 30728 (5.5) 3866 (3.9)
Warfarin
No 528820(95.0) 92624(92.8) 527411(94.7) 92396(92.6)
Yes 27847 (5.0) 7159 (7.2) 29256 (5.3) 7387 (7.4)
Nonsteroidal
Anti inflammatory
Drugs (NSAIDS)
No 226884(40.8) 50673(50.8) 199211(35.8) 47324(47.4)
Yes 329783(59.2) 49110(49.2) 357456(64.2) 52459(52.6)
Opioids
No 252317(45.3) 50670(50.8) 230951(41.5) 48356(48.5)
Yes 304350(54.7) 49113(49.2) 325716(58.5) 51427(51.5)
Paracetamol
No 254194(45.7) 49230(49.3) 233766(42.0) 47069(47.2)
yes 302473(54.3) 50553(50.7) 322901(58.0) 52714(52.8)
fibrate
No 544644 (97.8) 97529 (97.7) 543242 (97.6) 97336 (97.5)
yes 12023 (2.2) 2254 (2.3) 13425 (2.4) 2447 (2.5)
Aspirin
No 392830 (70.6) 68353 (68.5) 386274 (69.4) 67676 (67.8)
yes 163837 (29.4) 31430 (31.5) 170393 (30.6) 32107 (32.2)
clopidogrel
No 528064 (94.9) 96023 (96.2) 525939 (94.5) 95917 (96.1)
yes 28603 (5.1) 3760 (3.8) 30728 (5.5) 3866 (3.9)
Warfarin
No 528820 (95.0) 92624 (92.8) 527411 (94.7) 92396 (92.6)
yes 27847 (5.0) 7159 (7.2) 29256 (5.3) 7387 (7.4)
All values are presented as n (%), unless otherwise stated.
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We presented the overall missing value percentage of variables in each lookback period

(1,3, 6 months, and 5,7,10 years) in Figures 5.2a, 5.2b, 5.2c, 5.2d, 5.2e, 5.2f, 5.3a and 5.3b.

The missing variables in each lookback are lifestyle variables (BMI and smoking status),

hemoglobin level, eGFR, systolic blood pressure (sbp), and diastolic blood pressure(dbp).

The overall percentage missing BMI for lookback periods 1 month, 3 months and 6 months

is 62%, 51%, and 41% (Figure 5.2a, 5.2b, 5.2c). The missing percentage in the metformin

group for the lookback period 1 month is 53.6% and 71.2% in the sulfonylureas group. This

percentage decreases to 36.7% for metformin and 57% for the sulfonylureas group in look-

back period of 6 months. The missing percentage of BMI for lookback period 1 year is 28%

for metformin and 49.6% for the sulfonylureas group. The percentage decreases gradually

as we increase the period of lookback length. For the lookback period of 5 years, the missing

percentage for BMI is 12.1% for metformin and 31.8% ( see Table 5.2) for the sulfonylureas

group. As we increase the lookback period to 10 years, the percentage of missing BMI among

metformin is 7.7%, and for sulfonylureas is 22.6% (see Table 5.2).

Similarly, for smoking status, the missing percentage for lookback 1 month is 62% (see Fig-

ure 5.2a) where the missing percentage for metformin group is 58.3% and for sulfonylureas

77.5% (see Table 5.1). By restricting lookback period to 1 year, these percentages decrease

to 28% (25.4% for metformin and 51.3% for sulfonylureas), (see Table 5.2) and Figure 5.2d).

The overall missing percentage for hemoglobin level for lookback period 1 month is 42%

(62% (see Figure 5.2a) and decreases to 24% (Figure 5.2d), and it remains approximately

the same for other lookback periods in years (5, 7, 9 yrs). The missing percentage for sys-

tolic and diastolic blood pressure for lookback 1 month is 40% and it decreases to 13% and

8% for lookback 1 and 2 years (see Figure 5.2d, 5.2e). This percentage decreases to 5% for

lookback 5 years and less than 5% for lookback 7 and 10 years (see Figure 5.3a, 5.3b).
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We analyzed data for each lookback period in two ways: complete case or available case

analysis, and using multiple imputation. For simplicity, we kept our analysis plan the same

for both approaches.

(a) Missing data plot for lookback 1 month (b) Missing data plot for lookback 3 months

(c) Missing data plot for lookback 6 months (d) Missing data plot for lookback 1 year

(e) Missing data plot for lookback 2 year (f) Missing data plot for lookback 5 year

Figure 5.2: Missing data plots for varying lookback periods (1, 3, 6 months and 1, 2, 5

years)
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(a) Missing data plot for lookback 7 years (b) Missing data plot for lookback 10 years

Figure 5.3: Missing data plots for varying lookback periods (7 and 10 years)

For the complete case analysis, we simply omit the participants with missing data (this could

be for one variable only) and then analyzed the remaining data. For multiple imputations,

we have used R package mice from the Comprehensive R Archive Network (CRAN)[141].

For the continuous missing variable sbp (systolic blood pressure), dbp (diastolic blood pres-

sure), and eGFR, we used the predictive mean matching (pmm) method. Since smoking

status is a binary categorical variable, we used logreg (logistic regression) [141]. For

the ordered categorical missing variable BMI and hemoglobin level, we used polr (propor-

tional odds model or ordered logit model > two levels) under the package mice. In

each lookback, we imputed the data 5 times (m = 5 under mice package), and the total num-

ber of iterations was set to 20 (maxit=20 under mice). The above imputation methods are

kept the same for all lookback periods.

We presented the standardized mean difference (smd) stratified by treatment group

for varying lookback periods in Table 5.4. From the table, the smd seems to be > 0.1 for

gender and age for each lookback. Among the comorbidities and risk factors, the variable

alcohol disorder has smd smaller than 0.1 for lookback 1 month to 1 year and a higher smd

(> 0.1) for lookback period of 2 to 10 years. The variables BMI, MACE, hemoglobin level,

systolic blood pressure, cancer, hypertension, and eGFR have higher smd (> 0.1) in all look-

back periods (Table 5.4). The variables heart failure, Diabetic Neuropathy have lower smd
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in the lookback period of 1 and 3 months and higher smd in other lookback periods. The

risk factor smoking status and other comorbidities including diastolic blood pressure, atrial

fibrillation, cerebrovascular disease, chronic obstructive pulmonary disease, coronary heart

disease, coronary revascularization, thyroid, peripheral vascular disease, chronic kidney

disease, retinal disorder, history of stroke and myocardial infarction have lower smd (less

than 0.1) in each lookback lengths. Only the covariate hyperlipidemia has a lower smd in

lookback 1 month to 2 years and a higher smd for other lookbacks. The other covariates

considered medication, i.e., ACE (angiotensin converting enzyme), ARB (angiotensin recep-

tor blockers), diuretics, digoxin, and statin, have higher mean differences (smd > 0.1) for

all lookback lengths. Only the medication NSAIDs has lower smd in lookback 1 month to

1 year, and it increases greater than 0.1 as the lookback period increases. The other medi-

cation variables, opioids and paracetamol have higher smd only at a lookback period of 10

years (see Table 5.4). So, covariates with important imbalances are present in the data.

70



Table 5.4: Comparison of Standardized Mean Differences (SMD) (Stratified by Expo-

sure) Among Various Lookback Periods

Standardized Mean Differences
Lookback Period

1mo 3mo 6mo 1yr 2yr 5yr 7yr 10yr
Variables
Gender= Male 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
Age 0.411 0.411 0.411 0.411 0.411 0.411 0.411 0.411
Calendar year entry category 1.189 1.189 1.189 1.189 1.189 1.189 1.189 1.189
Comorbidities and risk actors
BMI category 0.898 0.085 0.829 0.797 0.765 0.719 0.705 0.70
Major adverse cardiovascular
events (MACE) 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618

Smoking status 0.048 0.044 0.042 0.038 0.039 0.057 0.072 0.083
Alcohol disorder 0.070 0.071 0.073 0.083 0.109 0.146 0.161 0.175
Hemoglobin level category 0.518 0.483 0.434 0.381 0.355 0.34 0.337 0.334
Systolic blood pressure 0.134 0.145 0.158 0.173 0.187 0.201 0.201 0.201
Diastolic blood pressure 0.060 0.057 0.049 0.041 0.03 0.012 0.007 0.004
Atrial fibrillation 0.009 0.011 0.013 0.015 0.009 0.001 0.002 0.007
Cancer 0.126 0.148 0.158 0.156 0.153 0.141 0.137 0.133
Cerebrovascular disease 0.030 0.039 0.050 0.055 0.062 0.071 0.079 0.084
Chronic Obstructive Pulmonary Disease 0.011 0.014 0.015 0.021 0.019 0.01 0.006 0.001
Coronary heart disease 0.024 0.031 0.037 0.045 0.058 0.077 0.085 0.091
Heart failure 0.072 0.090 0.104 0.114 0.124 0.141 0.145 0.15
Hyperlipidemia 0.053 0.050 0.047 0.05 0.065 0.109 0.128 0.151
Hypertension 0.135 0.153 0.157 0.17 0.185 0.192 0.184 0.171
Coronary revascularization 0.038 0.039 0.034 0.028 0.021 0.011 0.006 0.001
Thyroid 0.037 0.014 0.040 0.047 0.05 0.064 0.068 0.071
Peripheral Vascular Disease 0.016 0.023 0.031 0.039 0.045 0.054 0.059 0.063
Diabetic Neuropathy 0.092 0.094 0.102 0.115 0.122 0.138 0.142 0.142
Chronic kidney disease 0.016 0.023 0.031 0.055 0.055 0.042 0.034 0.026
Retinal disorder 0.017 0.036 0.046 0.066 0.075 0.085 0.087 0.086
eGFR 0.528 0.549 0.558 0.568 0.575 0.58 0.582 0.582
Previous stroke 0.026 0.029 0.035 0.035 0.037 0.04 0.045 0.048
Previous Myocardial Infarction 0.069 0.077 0.079 0.08 0.077 0.084 0.087 0.088
Medications
Angiotensin converting enzyme 0.115 0.135 0.127 0.12 0.117 0.13 0.137 0.15
Angiotensin receptor blockers 0.139 0.158 0.152 0.147 0.143 0.147 0.15 0.153
Beta blocker 0.024 0.030 0.041 0.048 0.052 0.049 0.042 0.03
Diuretics 0.113 0.124 0.136 0.14 0.139 0.124 0.114 0.099
Digoxin 0.182 0.204 0.209 0.211 0.213 0.215 0.215 0.214
Statin 0.405 0.466 0.468 0.469 0.472 0.482 0.487 0.49
Fibrate 0.005 0.006 0.001 0.003 0.007 0.01 0.007 0.003
aspirin 0.043 0.053 0.066 0.069 0.069 0.056 0.045 0.034
Clopidogrel 0.015 0.023 0.025 0.027 0.035 0.057 0.066 0.078
Warfarin 0.067 0.083 0.091 0.095 0.096 0.092 0.091 0.088
Nonsteroidal
Anti-Inflammatory Drugs 0.031 0.038 0.045 0.07 0.105 0.174 0.202 0.238

Opioids 0.025 0.030 0.029 0.014 0.015 0.079 0.109 0.141
Paracetamol 0.025 0.030 0.029 0.048 0.02 0.044 0.074 0.104
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We kept our analysis approach similar to our simulation studies. We estimated the over-

all effect using the propensity score method under the IPTW framework and the TMLE

approach. For Propensity score methods under inverse probability treatment weighting

framework, we computed the distribution of propensity score distribution for both complete

case and imputed analysis. Table 5.5 and Table 5.6 present the summary statistics for

propensity score distribution under varying lookback lengths. From the complete-case anal-

ysis, the median of PS estimates in the metformin group ranges between 0.028 to 0.037, and

for the sulfonylureas group, it ranges from 0.169 to 0.203. The mean of propensity score

estimates for varying lookback length ranges between 0.059 to 0.074 for the metformin and

0.235 to 0.266 for the sulfonylureas group. However, the estimates of 3rd quartiles differ be-

tween the two groups (0.064−0.081) for metformin and (0.361−0.403) for sulfonylureas but

do not vary much among the lookback periods in each group. From the imputed analysis, the

mean of PS estimates for the metformin group ranges from 0.117 to 0.112 and 0.347−0.370

from the sulfonylureas group. Also, for imputed analysis, the quantile estimates, minimum

and maximum, were not affected by varying lookback lengths (see Table 5.6).

We have used the stabilized weight for both analyses (complete and imputed analysis)

to reduce influential weights. We presented the distribution of the stabilized weight in Ta-

ble 5.7 and Table 5.8 for varying lookback periods.

Table 5.5: Propensity Score Distribution Under Varying Lookback Periods for

Complete Case Analysis

Metformin Sulfonylureas
Lookback min 1st q Median Mean 3rd q Max min 1st q Median Mean 3rd q Max

1mo 0.0014 0.013 0.028 0.059 0.064 0.912 0.0034 0.070 0.169 0.235 0.343 0.94
3mo 0.0011 0.013 0.027 0.059 0.063 0.933 0.002 0.071 0.174 0.239 0.350 0.96
6mo 0.0014 0.015 0.033 0.062 0.068 0.941 0.003 0.075 0.178 0.243 0.354 0.95
1yr 0 0.016 0.032 0.066 0.073 0.95 0.003 0.077 0.182 0.246 0.361 0.95
2yr 0 0.017 0.034 0.068 0.075 0.95 0.003 0.079 0.189 0.252 0.376 0.95
5yr 0 0.019 0.036 0.071 0.078 0.95 0.004 0.081 0.195 0.25 0.389 0.96
7yr 0 0.019 0.036 0.072 0.079 0.94 0.005 0.083 0.19 0.26 0.398 0.96

10yr 0 0.02 0.037 0.074 0.081 0.94 0.005 0.084 0.203 0.266 0.403 0.95

After weighting, we presented smd (standardized mean difference) plots for all

lookback periods for both cases under the PS-IPW framework to check the covariate bal-

72



Table 5.6: Propensity Score Distribution Under Varying Lookback Periods for Im-

puted Analysis

Metformin Sulfonylureas
Lookback Min 1st q Median Mean 3rd q Max min 1st q Median Mean 3rd q Max

1mo 0.004 0.036 0.061 0.117 0.122 0.959 0.007 0.134 0.358 0.347 0.516 0.972
3mo 0 0.034 0.059 0.115 0.121 0.961 0.006 0.143 0.358 0.354 0.526 0.982
6mo 0 0.033 0.058 0.115 0.121 0.963 0.007 0.146 0.358 0.357 0.530 0.990
1yr 0 0.032 0.057 0.114 0.121 0.962 0.006 0.149 0.36 0.360 0.533 0.986
2yr 0 0.0314 0.056 0.114 0.122 0.962 0.006 0.153 0.361 0.363 0.536 0.971
5yr 0 0.030 0.055 0.113 0.123 0.961 0.005 0.156 0.361 0.367 0.544 0.97
7yr 0 0.0298 0.055 0.113 0.123 0.949 0.006 0.156 0.361 0.369 0.547 0.971

10yr 0 0.029 0.055 0.112 0.124 0.952 0.005 0.157 0.362 0.370 0.552 0.96

Table 5.7: Distribution of Stabilized Weight Under IPW for Varying Lookback Pe-

riods Under Complete Case Analysis

Lookback Min 1st q Median Mean 3rd q Max
1mo 0.07567 0.93985 0.95398 0.99601 0.99192 20.7137
3mo 0.07528 0.93921 0.95298 0.99731 0.99091 28.8051
6mo 0.08006 0.93603 0.95076 0.99775 0.99165 24.4416
1yr 0.08444 0.93312 0.94884 0.99852 0.99222 25.0361
2yr 0.08799 0.93044 0.94649 0.99852 0.99117 22.6512
5yr 0.09148 0.92796 0.94437 0.99862 0.99032 18.9099
7yr 0.09324 0.92634 0.94286 0.99852 0.98948 17.8236
10yr 0.09572 0.92476 0.94161 0.99847 0.98932 17.5944

Table 5.8: Distribution of Stabilized Weight Under IPW for Varying Lookback Pe-

riods With Imputed Analysis

Lookback Min 1st q Median Mean 3rd q Max
1mo 0.1563 0.8740 0.8993 0.9971 0.9686 20.8448
3mo 0.1547 0.8721 0.8969 0.9966 0.9674 24.4718
6mo 0.1535 0.8714 0.8957 0.9964 0.9668 23.3269
1yr 0.1542 0.8705 0.8946 0.9965 0.9666 24.8408
2yr 0.1564 0.8698 0.8937 0.9968 0.9668 23.4751
5yr 0.1565 0.8689 0.8927 0.9973 0.9675 25.6681
7yr 0.1565 0.8685 0.8924 0.9978 0.9680 22.3650
10yr 0.1571 0.8681 0.8921 0.9978 0.9682 27.4739
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ance. Figure 5.4a to 5.5d represents the covariate balance before and after weighting under

complete case scenarios for varying lookback lengths. The smd plots for imputed analysis

with varying lookback lengths are presented from Figure 5.6a to 5.7d.

(a) Comparison of standardized mean

difference before and after weighting

for lookback 1 month

(b) Comparison of standardized mean

difference before and after weighting

for lookback 3 months

(c) Comparison of standardized mean

difference before and after weighting

for lookback 6 months

(d) Comparison of standardized mean

difference before and after weighting

for lookback 1 year

Figure 5.4: Comparison of standardized mean difference before and after weighting for

varying lookback periods (1, 3, 6 months and 1 year)
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(a) Comparison of standardized mean

difference before and after weighting

for lookback 2 years

(b) Comparison of standardized mean

difference before and after weighting

for lookback 5 years

(c) Comparison of standardized mean

difference before and after weighting for

lookback 7 years

(d) Comparison of standardized mean

difference before and after weighting

for lookback 10 years

Figure 5.5: Comparison of standardized mean difference before and after weighting for

varying lookback periods (2, 5, 7, and 10 years)
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(a) Comparison of standardized mean

difference before and after weighting

for lookback 1 month for imputed analysis

(b) Comparison of standardized mean

difference before and after weighting

for lookback 3 months for imputed analysis

(c) Comparison of standardized mean

difference before and after weighting

for lookback 6 months for imputed analysis

(d) Comparison of standardized mean difference before

and after weighting for lookback 1 year for imputed

analysis

Figure 5.6: Comparison of standardized mean difference before and after weighting for

varying lookback periods 1, 3, 6 months and 1 year for imputed analysis
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(a) Comparison of standardized mean

difference before and after weighting

for lookback 2 years for imputed analysis

(b) Comparison of standardized mean

difference before and after weighting

for lookback 5 years for imputed analysis

(c) Comparison of standardized mean

difference before and after weighting

for lookback 7 years for imputed analysis

(d) Comparison of standardized mean

difference before and after weighting

for lookback 10 years for imputed analysis

Figure 5.7: Comparison of standardized mean difference before and after weighting for

varying lookback periods 2, 5, 7 and 10 years for imputed analysis
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5.2 Summary

Following the methods of the primary study, our analyses use an intention-to-treat approach

to compare our outcomes among the patients who initiated sulfonylureas and among the

patients who initiated metformin. Using the targeted maximum likelihood estimation ap-

proach and the propensity score method in inverse probability weighting framework, the

effect of treatment is estimated by restricting lookback periods correspondingly to lookback

1, 3, 6 months, and 7, 5, 2, 1 years.

We present the effect estimates of sulfonylureas use on major adverse cardiovascular events

(MACE) for various lookback lengths by TMLE and PS-IPW approach in Table 5.9 and Table

5.10 for complete and imputed analysis. The standard errors should account for the weight-

ing, so as in our simulation studies, we used the robust standard errors for ATE using the

IPTW method [82]. To do this in R, we used survey::vcovHC() after a glm() call with the

outcome model recommended by [82]. In both exposure and outcome models, we considered

all the covariates considered in Tables 5.1, 5.2, 5.3 for each lookback analysis.

For TMLE, we used the same propensity score model as for the PS-IPW approach. We con-

sidered the outcome model including all adjusted confounders and estimated the ATE. We

presented ATE for all lookbacks and corresponding standard errors in Table 5.9 for the com-

plete case and Table 5.10 for imputed analysis. We also estimated the log odds ratio under

this approach for different lookbacks. For both PS-IPW and TMLE-logistic, no higher-order

polynomials or interaction term was added. The standard errors for the estimates for the

TMLE were calculated based on the idea of efficient influence curve (EIC) [25, 58]. We also

estimated the log odds ratio and corresponding standard error using TMLE and IPW with

varying lookback periods for both imputed and complete case analysis.
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Table 5.9: Effect Estimates of Sulfonylureas Using Logistic Regression Model (Adjusted

for all Covariates) for TMLE and PS (IPW-Stabilized Weights) Under Various Lookbacks

(Complete Case)

Lookback Period ATE SE(ATE) log (OR) SE (log (OR))
10yr 0.0718 0.0028 0.6217 0.0149
7yr 0.0713 0.0029 0.6177 0.0153
5yr PS-IPW(Stabilized) 0.0696 0.0029 0.6028 0.0157
2yr 0.0623 0.0031 0.5355 0.0173
1yr 0.0582 0.0036 0.4903 0.0193
6mo 0.0587 0.0043 0.4834 0.0228
3mo 0.0555 0.0049 0.4509 0.0274
1mo 0.0516 0.0060 0.3928 0.0349
10yr 0.0724 0.0026 0.4660 0.0153
7yr 0.0718 0.0027 0.4635 0.0158
5yr TMLE-logistic 0.0701 0.0028 0.4530 0.0162
2yr 0.0628 0.0030 0.4059 0.0177
1yr 0.0577 0.0034 0.3746 0.0203
6mo 0.0571 0.0040 0.3759 0.0241
3mo 0.0524 0.0047 0.3571 0.2912
1mo 0.0467 0.0055 0.3224 0.0348

Table 5.10: Effect Estimates of Sulfonylureas Using Logistic Regression Model (Adjusted

for all Covariates) for TMLE and PS (IPW-Stabilized weights) Under Various Lookbacks

(With Imputation)

Lookback Period ATE SE(ATE) log (OR) SE (log (OR))
10yr 0.0722 0.00180 0.5766 0.00960
7yr 0.0713 0.00185 0.5710 0.00961
5yr PS-IPW(Stabilized) 0.0704 0.00183 0.5634 0.00963
2yr 0.0678 0.00182 0.5433 0.00965
1yr 0.0685 0.00180 0.5439 0.00964
6mo 0.0685 0.00178 0.5415 0.00963
3mo 0.0721 0.00179 0.5647 0.00958
1mo 0.0821 0.00181 0.6257 0.00946
10yr 0.0738 0.00178 0.4252 0.00943
7yr 0.0733 0.00176 0.4209 0.00935
5yr TMLE-logistic 0.0722 0.00173 0.4166 0.00921
2yr 0.0695 0.00170 0.4023 0.00911
1yr 0.0698 0.00169 0.4041 0.00906
6mo 0.0696 0.00166 0.4021 0.00881
3mo 0.0729 0.00168 0.4205 0.00892
1mo 0.0822 0.00170 0.4702 0.00900
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Chapter 6

Discussion

The use of population health data to study the nature of health outcomes research is growing

[142, 143]. However, the incomplete nature of the information in administrative databases

about patients’ comorbidities and history raises an important concern regarding the look-

back period. Few studies have shown the impact of longer lookback length compared to

shorter lookback length, and almost all of them focused on using propensity score methods

to adjust for confounders. However, to our knowledge, the doubly robust method TMLE has

not been implemented in the administrative databases with a variety of lookback periods.

In this study, we implemented the doubly robust method TMLE on different lookback data

and made a comparison between propensity score and TMLE approach using simulation

and a real life database.

6.1 Summary Findings from Simulation Study

Our simulation result shows an important variation in the quality of the PS estimates for

short term lookback (1, 3, 6 months and 1, 2 years) compared to longer lookback (5, 7 and

9 years) as expected. We considered 10 years lookback as an ideal scenario to compare

the PS quantile estimates for various lookback periods. The longer lookback length has

less biased estimates compared to the shorter lookbacks. And the estimates of propensity

score distribution for a lookback period of 9 years produce very close results to the ideal

scenario. These findings underscore the importance of using longer lookback time windows
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for more reliable estimates, and we recommend their adoption in applications after carefully

addressing issues related to missingness and loss to follow-up. Relevant variations were

found among the estimates of ATE and standard errors for varying lookback periods. The

average effect estimates for longer lookback periods (9, 7 and 5 years) were close to the true

value than for every three methods (TMLE-logistic, PS-IPW, TMLE-SL) compared to the

shorter lookback periods. Furthermore, the doubly robust method TMLE, exhibited greater

efficiency in producing smaller standard errors than propensity score methods, particularly

for longer lookback periods (9, 7, and 5 years). Incorporating SuperLearner with TMLE

proved effective, resulting in smaller standard errors for ATE estimates when compared

to TMLE-logistic and PS-IPW. These results highlight the advantages of the data-adaptive

approach through TMLE, offering valid inference and providing a compelling incentive for

applied practitioners to utilize TMLE in their research.

6.2 Summary Findings from the Analysis of Real Data

In our real world data analysis, we evaluated the covariates with a lookback of 10 years and

then restricted the period to 1, 3, 6 months and 1, 2, 5, 7 years. Missing percentages for

comorbidities were higher when restricting the lookback period to 1 month to 1 year. But

these percentages did not vary much for lookback 1 year to 10 years. This could happen

because, for shorter lookback (i.e., 1 month to 6 months), much information on the patient’s

comorbidities was not available in the database. So we might not expect much variation in

the effect estimates among the various lookback 1 to 10 years. But if we look at lookback 1

month to 1 year, we can see some differences among the estimates of treatment effect and

standard errors.

In the complete case analysis, the effect estimates did not differ much among the varying

lookback lengths for PS-IPW (stabilized) and logistic TMLE. But we can see the estimates

of the standard errors for ATE varied from lookback 1 month to 1 year. In further lookbacks

(1 year to 10 years), we could see less variation among the estimates of standard errors

for both TMLE and IPW methods. For the imputed analysis, the average effect estimates
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did not vary much among the lookbacks for the two methods. The estimates of standard

errors among different lookbacks (1 month to 1 year) were very close to each other (both

for IPW and TMLE). This is expected because, in imputed analysis, no incompleteness of

information is present. So, it is very likely to have similar results for each lookback period.

However, the standard error estimates of average treatment effects for imputed analysis

are less compared to the complete case analysis, as expected. In both the complete case and

imputed analyses, the logistic TMLE has smaller standard errors for ATE estimates than

stabilized PS-IPW for each lookback length. For the imputed analysis, the estimated stan-

dard errors of the log odds ratio were smaller for TMLE-logistic, whereas, for the complete

case analysis, PS-IPW performed well.

Both in real data and simulation study, TMLE-logistic did not produce a great reduction

in variance, but this new doubly robust method performs comparatively well for each look-

back for estimating the average treatment effect. In our real analysis, we were unable to

assess the bias of the two methods as the true effect was unknown.

6.3 Strengths of the Study

Our study delved into the variability of average treatment effect estimates and standard

errors across a wide range of lookback periods (ranging from 1 month to 10 years) in obser-

vational study settings. We evaluated these various lookback periods using PS-IPW, TMLE-

logistic, and TMLE-SL, comparing the effect estimates through both simulation and real

data analyses. In real data settings, the estimates of PS-quantiles remained unaffected by

the varying lookback periods, mirroring real world scenarios. Conversely, in controlled sim-

ulation conditions, the quantiles of PS estimates exhibited variations among the different

lookback periods. In both the simulation and real data analyses, we found that the double

robust TMLE outperformed the PS method (PS-IPW), with longer lookback periods leading

to lower standard error estimates. Notably, our simulation study favored integrating TMLE

with an ensemble machine learning algorithm for varying lookback scenarios, highlighting

its superiority over the parametric TMLE and PS-IPW approach. Furthermore, while pre-
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senting the methodological challenges, the extended lookback periods allowed us to capture

the full history of the patient’s health in detail and made our findings more reliable. Despite

having complexities, this strategic choice facilitated a broad evaluation of the temporal im-

pact of comorbidities on health outcomes.

6.4 Limitations of the Study

After restricting the lookback periods in our analysis, all covariates remained fixed, which

means these results cannot be generalized to scenarios with time-varying covariates. Fur-

thermore, it’s important to note that our simulation study may not fully capture all possible

lookback settings. Therefore, we cannot make definitive conclusions regarding the compar-

ison of TMLE and PS-IPW in other lookback scenarios. Moreover, in our real analysis, we

demonstrated the implementation of TMLE in a simpler scenario. However, we encountered

computational constraints that prevented us from integrating TMLE with SuperLearner

into the real data analysis. In the real data analysis, we observed that the proportion of

missing values was higher while restricting the lookback to shorter periods. This finding is

substantial as it highlights the potential for biased estimates of different treatment effects

due to incomplete data. Despite this, we did not see much variation in the effect estimates of

varying lookbacks (1-10 years). This suggests that the imputation method we applied may

mitigate the impact of missing data for the more extended lookback periods. Nonetheless,

we need to be careful in interpreting these findings, as the assumption of the imputation

model may not hold in all scenarios.

6.5 Future Study

Future studies should be done on other lookback settings and consider the different model

scenarios, such as non-additivity, non-linearity, and other complex model scenarios. Collab-

orative TMLE (C-TMLE), an extension of TMLE [144, 145], may be useful in the settings we

studied. Future work should consider these and other alternative TMLE methods. Addition-

ally, more work should be on implementing TMLE with SuperLearner with a large number
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of covariates for restricted lookback periods in real-world scenarios. This may outperform

the parametric TMLE in the presence of more complex data. Future research should also

aim to incorporate more sophisticated methods for dealing with missing data and perform

sensitivity analysis to provide a more nuanced understanding of the impact of missingness

on study outcomes.

6.6 Conclusion

In this thesis, we address the criticism surrounding administrative healthcare data for

potential confounding by determining an appropriate lookback period for assessing con-

founders relative to exposure. We demonstrated the implementation of double robust TMLE

and propensity score methods using simulation for varying lookback periods in observa-

tional settings as well as in real data to estimate the treatment effect of sulfonylureas on

major adverse cardiovascular events. To achieve this, we conduct simulation studies in ob-

servational settings and analyze real data. Both TMLE and propensity score under inverse

probability weighting framework (PS-IPW) are implemented using the same modeling ap-

proach, allowing us to compare their effect estimates and standard errors. In the simulation,

we observe that TMLE-logistic yields lower standard errors for effect estimates compared to

PS-IPTW in scenarios with longer lookback periods. Conversely, in scenarios with shorter

lookback periods, the variation in standard error between TMLE and PS-IPW is less pro-

nounced. Additionally, when we apply TMLE with SuperLearner to varying lookback sce-

narios, we find that it outperforms both TMLE with logistic regression and PS-IPW. How-

ever, when analyzing real data, we observed smaller standard errors for effect estimates for

all long and short term lookback periods. This study will aid researchers in understanding

the implications of the TMLE method when applied to diverse lookback periods in observa-

tional data, thereby ensuring the validity and generalizability of forthcoming study results.
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