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Abstract 

Psychological research often involves empirical testing of hypothetical relationships among 

variables including constructs or conceptual variables (e.g., intelligence). Although constructs 

are not as directly measurable as physical properties (e.g., weight), structural equation 

modeling (SEM) makes it possible to test such relationships involving constructs based on 

the data of observed variables. 

Researchers in psychology have typically used SEM while assuming all constructs in 

the model are latent, which indicates that the constructs are considered real entities that exist 

independently of observed variables. An SEM domain that considers every construct to be 

latent and represents it by a (common) factor is called factor-based SEM. However, assuming 

that some entity is latent does not guarantee that it indeed exists as latent by nature. Clearly, 

some constructs, including socioeconomic status and genes, cannot be seen as latent but 

rather correspond to a summary or cluster of relevant observed variables. Another SEM 

domain, called component-based SEM, has emerged to deal with such constructs, where 

constructs are represented as composite indexes of observed variables, termed components. 

Therefore, it would be valuable for researchers to study both SEM domains and be able to 

strategically select, for each research context, the domain that best aligns with their 

theoretical assumptions about constructs of interest and their interrelationships. 

This dissertation aims to make theoretical and methodological contributions to the 

two SEM domains. It begins with a systematic comparison of the two SEM domains along 

with an illustrative example. Then, it presents three novel SEM methods—structured factor 

analysis (SFA; Cho and Hwang, 2022), convex generalized structured component analysis 

(convex GSCA; Cho and Hwang, under review), and deep learning generalized structured 

component analysis (DL-GSCA; Cho and Hwang, in press)—to resolve two long-standing 

problems in each SEM domain. Jöreskog (1978)’s covariance-based approach, which has 
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been considered the de-facto standard method for factor-based SEM, has two limitations: the 

occurrence of improper solutions (e.g., negative variance estimates) and the lack of a 

statistical tool to deal with the factor score indeterminacy problem (i.e., an infinite number of 

factor scores being possibly true). As an alternative, SFA guarantees the convergence of its 

algorithm to proper solutions and enables an estimation of the probability distribution of all 

the factor scores that are possibly true given the data matrix. On the other hand, convex 

GSCA and DL-GSCA are new extensions of generalized structured component analysis 

(GSCA; Hwang and Takane, 2004), which overcomes two limitations of component-based 

SEM— removing information on indicators’ scale from data and restricting a functional form 

of components to be linear. Convex GSCA analyzes the raw data of indicators without 

standardizing their scores, allowing the generated composite indexes and their network to be 

interpreted with respect to the original indicators’ scale. DL-GSCA combines deep learning 

neural networks with GSCA in a single framework to find the optimal functional form for 

each component, maximizing its predictive power for target outcome variables. This 

dissertation provides the technical underpinnings of the three proposed methods in detail and 

demonstrates their practical utility through both simulated and real data analyses.  
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Abrégé 

La recherche en psychologie implique souvent des tests empiriques de relations 

hypothétiques entre des variables, y compris des construits ou variables conceptuelles (par 

exemple, l'intelligence). Bien que les construits ne soient pas aussi directement mesurables 

que les propriétés physiques (par exemple, le poids), la modélisation par équations 

structurelles (SEM) permet de tester de telles relations impliquant des construits sur la base 

des données de variables observées. 

Les chercheurs en psychologie ont généralement utilisé la SEM en supposant que tous 

les construits du modèle sont latents, ce qui indique que les construits sont considérés comme 

des entités réelles qui existent indépendamment des variables observées. Un domaine de la 

SEM qui considère chaque construit comme latent et le représente par un facteur (commun) 

est appelé SEM basée sur les facteurs. Cependant, supposer qu'une entité est latente ne 

garantit pas qu'elle existe réellement comme latente par nature. Il est clair que certains 

construits, y compris le statut socioéconomique et les gènes, ne peuvent pas être considérés 

comme latents mais correspondent plutôt à un résumé ou à un ensemble de variables 

observées pertinentes. Un autre domaine de la SEM, appelé SEM basée sur les composants, a 

émergé pour traiter de tels construits, où les construits sont représentés comme des indices 

composités de variables observées, appelés composants. Ainsi, il serait précieux pour les 

chercheurs d'étudier les deux domaines de la SEM et de pouvoir choisir stratégiquement, 

pour chaque contexte de recherche, le domaine qui s'aligne le mieux avec leurs hypothèses 

théoriques sur les construits qui les intéressent et leurs interrelations. 

Cette thèse vise à apporter des contributions théoriques et méthodologiques aux deux 

domaines de la SEM. Elle commence par une comparaison systématique des deux domaines 

de la SEM accompagnée d'un exemple illustratif. Ensuite, elle présente trois nouvelles 

méthodes de la SEM : l'analyse factorielle structurée (SFA ; Cho et Hwang, 2022), l'analyse 
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structurée générale des composants convexes (convexe GSCA ; Cho et Hwang, en révision), 

et l'analyse structurée générale des composants en apprentissage profond (DL-GSCA ; Cho et 

Hwang, sous presse) afin de résoudre deux problèmes de longue date dans chaque domaine 

de la SEM. L'approche basée sur la covariance de Jöreskog (1978), qui a été considérée 

comme la méthode standard de facto pour la SEM basée sur les facteurs, a deux limitations : 

l'apparition de solutions incorrectes (par exemple, des estimations de variance négative) et 

l'absence d'un outil statistique pour traiter le problème de l'indétermination du score factoriel 

(c'est-à-dire, un nombre infini de scores factoriels pouvant être vrais). En alternative, la SFA 

garantit la convergence de son algorithme vers des solutions correctes et permet une 

estimation de la distribution de probabilité de tous les scores factoriels qui peuvent être vrais 

étant donné la matrice de données. D'autre part, convexe GSCA et DL-GSCA sont de 

nouvelles extensions de l'analyse structurée généralisée des composants (GSCA ; Hwang et 

Takane, 2004), qui surmontent deux limitations de la SEM basée sur les composants : 

enlevant l'information sur l'échelle des indicateurs à partir des données et limitant une forme 

fonctionnelle des composants à être linéaire. Convexe GSCA analyse les données brutes des 

indicateurs sans standardiser leurs scores, permettant aux indices composités générés et à leur 

réseau d'être interprétés par rapport à l'échelle des indicateurs originaux. DL-GSCA combine 

les réseaux neuronaux d'apprentissage profond avec GSCA dans un seul cadre pour trouver la 

forme fonctionnelle optimale pour chaque composant, maximisant son pouvoir prédictif pour 

les variables de résultat cibles. Cette thèse fournit les bases techniques des trois méthodes 

proposées en détail et démontre leur utilité pratique à travers des analyses de données 

simulées et réelles. 
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Chapter 1. Introduction and Background 

 

1.1. Two Domains of Structural Equation Modeling 

Psychological research often aims to test hypotheses about the relationships among variables 

including constructs. A construct refers to a conceptual variable that describes or explains a 

cluster of covarying human behaviors or natural/social phenomena (Binning, 2015; Edwards 

& Bagozzi, 2000). For example, if a specific human abnormal behavior tends to co-occur 

with other behaviors of the same kind, researchers may hypothesize something 

psychopathological for describing or explaining the covariations of those behaviors and may 

give it a name that denotes a psychotic syndrome or a mental disorder. Other examples of 

constructs that can be found in psychological studies are intelligence, basic emotions, 

personality, and socioeconomic status. Constructs are not as directly measurable as physical 

properties, such as age or height, thereby making it impossible to directly collect the data of 

those constructs. Consequently, to conduct an empirical study involving theoretical constructs, 

researchers need to find relevant observed variables that can serve as measures or indicators 

of constructs and to draw on a statistical methodology specialized for analyzing the indicators’ 

data. This methodology is called structural equation modeling (SEM). 

SEM allows for the statistical testing or exploration of the hypothetical relationships 

between variables involving constructs through the analysis of their indicators’ data. It 

typically formalizes two classes of models: measurement and structural. The measurement 

model shows how constructs are associated with their respective indicators, whereas the 

structural model represents the interconnected network of variables including constructs and 

observed variables that are not used to measure the constructs. If constructs could be treated 

as observed variables whose data can be directly collected, the structural model would be 

identical to a generalized multivariate regression model, including the seemingly unrelated 
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model (Zellner, 1962) and the simultaneous equation model (Goldberger, 1964). In this 

respect, the distinguishing feature of SEM lies in the measurement model.  

Conventionally, SEM researchers formalize the causal relationships between 

constructs and their indicators in the measurement model, assuming that every construct is 

latent in its indicators’ cluster. This assumption means that each construct is considered as a 

real entity that exists independently of its indicators and causes the indicators to covary, 

though it is unobservable. This type of construct is called a hypothetical or latent construct in 

the literature (e.g., Heise, 1972; e.g., MacCorquodale & Meehl, 1948). Latent constructs are 

typically assumed to be unique sources of their indicators’ covariations, under which the 

indicators become conditionally independent of each other given the scores of the latent 

constructs—local independence. Under this assumption, each latent construct is represented 

by a common factor of indicators, which refers to a statistical proxy accounting for the shared 

variance among the indicators. Subsequently, there exists a residual variance of each 

indicator that is unexplained by the common factors. This unexplained variance is attributed 

to a random measurement error, represented by a statistical proxy called a unique factor, 

which captures the variance specific to the indicator. By default, each unique factor is 

assumed to be uncorrelated to other common and unique factors, though the zero-correlations 

between unique factors can be partially relaxed if necessary. The measurement model with 

common and unique factors is called the reflective model, and indicators in the reflective 

model are called reflective or effect indicators (e.g., Bollen & Bauldry, 2011). The SEM 

domain having the reflective model as its measurement model is called factor-based SEM 

(e.g., Tenenhaus, 2008). 

In psychological literature, the term SEM typically refers to this factor-based SEM 

domain. Popular SEM programs such as AMOS, Mplus, and the lavaan R package only 

covers factor-based SEM. SEM textbooks frequently used in psychology, including Bollen 
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(1989), Kleine (2016), and Hoyle (2014), also only deal with factor-based SEM. As a result, 

psychologists have adopted factor-based SEM exclusively for their empirical studies 

involving constructs, as highlighted in Rhemtulla et al.’s (2020) literature review of articles 

published in six major APA journals from 2016 to 2017. Jöreskog’s (1973, 1978) covariance-

based approach, factor score regression (Croon, 2002; Rosseel & Loh, 2022; Skrondal & 

Laake, 2001), and Bollen’s (1996, 2019) model-implied instrument variable method are 

representative in this SEM domain. 

However, applying factor-based SEM, as noted above, entails the assumption that 

every theoretical construct of interest exists by nature as a latent variable, which requires a 

strong justification. If some constructs are not latent in their indicators but incorrectly 

represented by common factors with a reflective measurement model, the specified 

measurement model can never be true, thereby resulting in biased estimates of structural 

model parameters (Cho, Sarstedt, et al., 2022; Hwang, Cho, Jung, et al., 2021). Under this 

circumstance, every statistical procedure in the factor-based domain, such as the χ2 test for 

identifying the true model or the t-test for testing the estimates of individual model 

parameters, would not be valid anymore. Thus, before applying the factor-based SEM, 

researchers should justify how every construct of interests in their model can be considered a 

latent variable. 

To justify the presence of latent constructs in the model, however, there are two issues 

that researchers would find difficult to address. First, there are many constructs whose 

existence cannot clearly be separated from their indicators. Socioeconomic status is a 

representative example of such constructs. Its indicators—income, educational level, and 

occupational prestige—conceptually constitute three dimensions of socioeconomic status 

itself (American Psychological Association, 2007), so that one cannot say socioeconomic 

status and its indicators are distinct entities that have causal effects on one another. A gene is 
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another exemplary construct that consists of its indicators, as each gene is defined as a 

biological cluster of multiple single nucleotide polymorphisms (SNPs) located within the 

gene.  

Second, it is essentially not possible to obtain empirical evidence to verify the latent 

existence of constructs even when they are truly latent by nature. The strong covariation 

observed between indicators of a construct cannot act as sufficient evidence to verify the 

existence of the construct as an underlying cause of the indicators since, as is well known, 

covariation does not imply causation. For instance, if the severity of three pathological 

symptoms (depressive mood, somatic discomfort, and social avoidance) tends to strongly 

covary, one may think of a latent, psychopathological construct, named depression, that 

makes those symptoms co-occur. However, one cannot exclude the possibility that those 

symptoms may be simply associated with each other without having any underlying causal 

structure, or their strong covariation may result from the fact that they mutually affect each 

other (e.g., Borsboom, 2017). In the same vein, a perfect goodness-of-fit of a reflective model 

in factor-based SEM cannot provide conclusive evidence that constructs in the model are 

latent, as the reflective model still may produce a perfect goodness-of-fit for the data 

generated from an entirely disparate model that does not involves any latent constructs (e.g., 

Hayduk, 2014).  

There is an alternative SEM domain that can avoid the two issues above, called 

component-based SEM (Rigdon, 2012; Tenenhaus, 2008). This SEM domain does not assume 

that constructs of interest are latent. It simply treats each construct as a summary or label of 

its covarying indicators’ cluster. For example, for a depression construct for the three 

covarying symptoms above (depressive mood, somatic discomfort, and social avoidance), 

component-based SEM regards the depression construct as a descriptive variable that is made 

to refer to its symptom cluster efficiently. In the literature, this type of descriptive construct is 
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referred to by various names such as abstractive construct, intervening variable, emergent 

variable, or synthetic variable (e.g., Cole et al., 1993; MacCorquodale & Meehl, 1948; Nimon 

et al., 2010). Component-based SEM seeks to create composite indexes of indicators to 

represent the constructs, each of which can serve a summary of its indicators’ cluster (e.g., 

Bollen, 2011; Cho, Sarstedt, et al., 2022). As in principle component analysis, the composite 

indexes are called components in component-based SEM.  

In line with its perspective on the relationship between constructs and their indicators, 

component-based SEM employs a distinct measurement model, which consists of two sub-

models: weighted relation and component-measurement. The weighted relation model defines 

each component as a deterministic function of its indicators (e.g., weighted sums of 

indicators), whereas the component-measurement model shows which cluster of indicators 

each component summarizes. Generalized structured component analysis (GSCA; Hwang & 

Takane, 2004, 2014) and partial least squares path modeling (PLSPM; Lohmöller, 1989; 

Wold, 1973, 1985) are two representative approaches in the component-based domain. 

 

1.2. Model Specification in Two SEM Domains 

To aid in understanding of how constructs are distinctively represented in the two SEM 

domains, this section will provide a brief explanation of their respective model specifications 

with a simple illustration. For the sake of clarity, all common factors, components, and 

indicators in the models are assumed to be standardized. Also, for the specification of the 

component model, this section will focus on the model proposed by Cho and Choi (2020), as 

it can be considered an underlying population model of any of the component-based SEM 

methods (Cho & Choi, 2020). 

Suppose that a researcher hypothesizes that employees’ health status may affect their 

job satisfaction level. If the two variables could be considered observed variables and their 
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data could be directly collected, the researcher’s hypothesis could be easily tested under 

certain assumptions with the following simple regression model, 

 health status = b1job satisfaction + ζ, (1.1)  

where b1 is a path coefficient signifying the effect of health status on job satisfaction, ξ is an 

error term in (1.1), and cov(health status, ζ) = 0. If the estimate of b1 is statistically significant, 

we may conclude that there exists a non-zero effect of health status on job satisfaction. 

However, the two variables (job satisfaction and health status) are actually theoretical 

constructs that are not as directly measurable as observed variables, so their data cannot be 

directly collected and thus, simple regression analysis cannot be applied. Let us assume that 

each of the two constructs can be measured with three relevant observed variables that can 

serve as the indicators. Under this condition, SEM would be indispensable to test the 

researcher’s hypothesis. 

Factor-based SEM represents the two constructs by two common factors of the six 

indicators, under the assumption that each construct is latent in its indicators as the unique 

source of their covariations. Let z = [z1, z2, z3, z4, z5, z6]' denote a vector of six indicators, 

where a set of z1, z2, and z3 is for health status, a set of z4, z5, and z6 is for job satisfaction. 

The covariance matrix of z is denoted by Σ. Let h = [h1, h2]' denote a vector of two common 

factors for the two sets of indicators, where h1 is a common factor of z1, z2, and z3 and h2 is a 

common factor of z4, z5, and z6. Let ε = [ε1, ε2, ε3, ε4, ε5, ε6]' denote a vector of six unique 

factors, where εj is a unique factor of zj (j = 1, 2, ···, 6). Each unique factor is assumed to be 

uncorrelated with any other factors at default (i.e., cov(ε, h) = 0 and cov(εj, εk) = 0 for j ≠ k 

and k = 1, 2, ···, 6). Let Λ = [
λ1,1 λ1,2 λ1,3 0 0 0

0 0 0 λ2,4 λ2,5 λ2,6
] denote a matrix of factor 

loadings, where λp,j is a loading parameter relating hp to zj (p = 1 or 2). Then, the relationship 

between h, ε, and z can be modeled as  

 z = Λ'h + ε, (1.2)  
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which is the reflective model in factor-based SEM. This model represents the causal 

relationship between latent constructs, measurement errors, and indicators. 

The common factors h in (1.2) are considered to be equivalent to the latent constructs 

of interest in factor-based SEM (i.e., h = [health status, job satisfaction]; Rigdon, 2012). 

Under this assumption, the equation (1.1) can be re-written as  

 h2 = b1h1 + ζ, (1.3)  

which is the structural model in factor-based SEM. Given Σ and (1.2), cov(h1, h2) can be 

identified, from which b1 in (1.3) also can be identified (e.g., refer to Bollen, 1989, pp. 238–

251). The parameter b1 in (1.3) represents the causal effect of the latent construct health 

status on the endogenous latent construct job satisfaction. If health status has no causal effect 

on job satisfaction, b1 becomes zero. Figure 1.1 visualizes the reflective and structural models 

of factor-based SEM via a single diagram. 

 

Figure 1.1. An illustration of a factor-based structural equation model. Squares denote 

indicators, circles represent factors, single-headed arrows correspond to loadings and path 

coefficients. 

Conversely, component-based SEM represents the two constructs by two components, 

under the assumption that the constructs are descriptive variables that refer to the two 
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indicator clusters. As mentioned above, each component corresponds to a composite index 

summarizing the cluster of its indicators, not their underlying cause. Let γ = [γ1, γ2]' denote a 

vector of components for the two sets of indicators, where γ1 is a component of z1, z2, and z3 

and γ2 is a component of z4, z5, and z6. Let e = [e1, e2, e3, e4, e5, e6]' denote a vector of 

residuals, where a residual ej is a part of zj that cannot be explained by the component of zj. 

Let W = [
w1,1 w2,1 w3,1 0 0 0

0 0 0 w4,2 w5,2 w6,2
] ' denote a matrix of weights, where wj,p is 

assigned to zj for forming γp. Let C = [
c1,1 c1,2 c1,3 0 0 0

0 0 0 c2,4 c2,5 c2,6
] denote a matrix of 

component loadings, where cp,j is a loading parameter relating γp to zj. Then, the relationships 

between γ and z can be written as 

 γ ≡ W'z,       (1.4)  

 z = C'γ + e. (1.5)  

The two models (1.4) and (1.5) are the weighted relation and component-measurement 

models, respectively. The weighted relation model (1.4) indicates by which set of indicators 

each component is defined, whereas the component measurement model (1.5) shows which 

cluster of indicators each component aims to explain as their summary index. 

Component-based SEM equates γ in (1.4) with the constructs of interests, that is, γ = 

[health status, job satisfaction]. Under this assumption, the equation (1.1) can be re-written as  

 γ2 = b1γ1 + ζ, (1.6)  

which is the structural model in component-based SEM. Given Σ and the model equations 

(i.e., (1.4), (1.5), and (1.6)), the path coefficient b1 is identified at the point where γ1 

maximizes its explanatory power for γ2 while γ1 and γ2 serve as the best summary of their 

respective indicator clusters (Cho & Choi, 2020). The parameter b1 in (1.6) summarizes the 

causal effects of the indicators of γ1 on the indicators of γ2, which is illustrated in Appendix 

A1. If none of the indicators of health status has a causal effect on any of the indicators of job 
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satisfaction, b1 becomes zero. Figure 1.2 displays the weighted relation, component-

measurement, and structural models of component-based SEM via a single diagram. 

 

Figure 1.2. An illustration of a component-based structural equation model. Hexagons denote 

components, double-headed arrows signify correlations, and straight lines represent weights. 

In summary, the two SEM domains share a common goal of testing the structural 

relationship between constructs of interest while deriving statistical representations for these 

constructs. However, they conceptualize the constructs differently, resulting in their distinct 

statistical representations and measurement models. 

 

1.3.  Discussion About the Superior Domain 

In the literature, several researchers had argued for the universal superiority of factor-based 

SEM over component-based SEM (e.g., Henseler, 2012, p. 402), with some advocating for 

the abandonment of the latter (e.g., Antonakis et al., 2010; Rönkkö & Evermann, 2013, p. 

443). The primary rationale behind this stance was the failure of component-based SEM to 

account for measurement errors in indicators, which consequently led to biased estimates of 

model parameters and inflated type I error rate. Implicit in their assumptions was the belief  
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that component-based SEM shares the same population models as factor-based SEM and 

therefore aim to estimate parameters in (1.3), rather in (1.6) (e.g., Henseler, 2012; Reinartz et 

al., 2009). This misconception, which had prevailed even since the initial development stage 

of component-based methods (e.g., Lohmöller, 1989; Wold, 1982), influenced a substantive 

body of simulation studies that compared component-based SEM with factor-based SEM in 

parameter recovery using data generated exclusively from population factor models (e.g., 

Areskoug, 1982; Goodhue et al., 2006, 2012; Henseler, 2012; Lu et al., 2011; Reinartz et al., 

2009). Consequently, these studies inadvertently conveyed a misimpression regarding the 

biased nature of component-based SEM estimators.  

It was not until the 2010s that methodologists began to realize the possibility that 

component-based SEM might have its unique population model, featuring different statistical 

representations for constructs, and could not be fairly evaluated under population factor 

models (e.g., Hwang, Malhotra, et al., 2010; Rigdon, 2012). Integrating diverse perspectives 

on the population component model (e.g., Cho & Choi, 2020; Dijkstra, 2013b, 2017), Cho et 

al. (2022) analytically proved the fundamental difference in the population models of the two 

SEM domains and the necessity of evaluating each domain based on the population models it 

assumes. In their subsequent comprehensive simulation study, they empirically revealed that 

each SEM domain excels at recovering parameters of the model whose construct 

representations align with their respective assumptions.  

In conclusion, drawing on the findings of earlier research, there is no universally 

preferable SEM domain; rather, one domain may be more suited to a researcher’s specific 

theory than the other, depending on the context.  
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1.4.  How to Choose an SEM Domain  

To determine which domain may be better aligned with their theories, researchers should 

begin with clearly defining constructs of interest, particularly in terms of their relationship 

with the respective indicators. As discussed in the previous sections, the factor-based SEM is 

preferable if constructs in researchers’ hypothesis are theoretically defined as latent variables 

that explain the covariations of the indicators as their underlying cause. In this case, 

indicators merely serve as measures of each latent construct, allowing one set of indicators to 

be interchangeable with another, provided that the covariation of the new set can also be 

attributed to the latent construct of interest (e.g., Bollen, 2011; Bollen & Lennox, 1991). 

Conversely, component-based SEM is preferable if researchers define each construct as a 

conceptual tool designed to simply describe an indicator cluster of interest. Under this 

scenario, indicators of a construct cannot be readily exchanged with others, as the indicators 

themselves represent sub-domains of the construct. 

Table 1.1 illustrates how the two constructs, health status and job satisfaction, can be 

defined distinctively in accordance with the assumptions of each SEM domain, leading to 

association with different sets of indicators. In this illustration, when the two constructs are 

considered latent, they denote an individual’s overall, subjective perception of the target 

psychological property. The items serving as their respective indicators essentially ask about 

the same psychological attribute despite their varying expressions. Replacing these items with 

new ones featuring different synonyms or phrases would be relatively straightforward. In 

contrast, when the two constructs are descriptive, each serves as a comprehensive label 

encompassing various target properties that are related to one another. Since each indicator is 

directly linked to a specific facet of a construct, researchers must exercise caution when 

altering the composition of their indicators.  
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Table 1.1. An illustration of distinct definitions and indicator sets for identically named 

constructs. 

Construct  Latent Descriptive/Summary 

Health 

Status 

Definition 
An individual's perception of 

their holistic health condition 

An individual's health status that 

encompasses physical, mental, 

and nutritional well-being. 

Indicators 

· How satisfied are you with 

your health status? 

· How much control do you 

feel you have over your 

health? 

· How much do you feel that 

your health interferes with 

your daily life? 

· How often do you experience 

physical discomfort or pain? 

· How often do you experience 

symptoms of depression or 

anxiety? 

· How often do you consume a 

balanced and nutritious diet? 

Job 

Satisfaction 

Definition 

An individual's subjective 

evaluation of their overall 

contentment with their 

occupational experience 

An individual's satisfaction with 

their job, including compensation, 

working conditions, job duties, 

and social relationships with 

colleagues and supervisors. 

Indicators 

· I am satisfied with the work 

I am presently engaged in. 

· I find my current work 

enjoyable. 

· Unless there are compelling 

reasons to the contrary, I 

would like to continue to 

perform the work I am 

presently engaged in. 

· I am content with my current 

salary. 

· I am satisfied with the 

conditions of my workplace. 

· I am satisfied with the nature of 

my present job duties. 

· I am content with my colleagues 

and supervisor in my workplace. 

 

In practice, however, it may be unclear to determine which type of construct would be 

more appropriate for a given indicator cluster of interest, making the choice of the SEM 

domain challenging. For instance, Table 1.2 displays the correlation matrix of six observed 

variables, representing children’s performance in each school subject (Spearman, 1904). The 

table shows that children’s performance in six school subjects is generally highly correlated. 

Spearman (1904), the inventor of a factor analysis, hypothesized the existence of a latent 

construct called general intelligence, which explains the correlations between the six 

observed variables as their underlying common cause. Conversely, researchers may opt not to 
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make such an additional assumption and instead treat a general intelligence as an umbrella 

term that broadly encompasses the children’s diverse cognitive abilities measured on the tests 

(e.g., van der Maas et al., 2014). Given that both approaches can be considered theoretically 

plausible, researchers may be uncertain about which SEM domain is more appropriate for 

testing their research hypothesis involving the intelligence construct. 

Table 1.2. The correlation matrix for children’s performance in six school subjects. 

  Classics French English Math Pitch Music 

Classics 1           

French 0.83 1         

English 0.78 0.67 1       

Math 0.7 0.67 0.64 1     

Pitch 0.66 0.65 0.54 0.45 1   

Music 0.63 0.57 0.51 0.51 0.4 1 

 

In such cases, researchers may empirically examine the relationships between 

constructs and their indicators. For instance, when researchers have data for multiple, 

validated indicators of a construct of interest, they can create several subsets of indicators and 

use each set to contemplate a competing SEM model having a distinct reflective 

measurement model for the construct, under the assumption that the construct is latent. If the 

construct truly exists separately from their indicators as a latent variable, allowing the 

indicators to be exchangeable, the correlation estimates between the construct and the others 

should not vary depending on the choice of indicator subsets unless sampling error occurs 

(Widaman, 2018). Consequently, if a change in indicator composition for a construct greatly 

alters its relevant correlation estimates, it can provide strong evidence to reject the latent 

existence of the construct, and researchers may consider employing an alternative 

component-based SEM accordingly. When the component-based SEM is applied, a change in 

indicators is expected to lead to a change in correlation estimates associated with the 
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construct, because indicators themselves constitute the construct in component-based SEM. 

However, since there is no clear criterion for determining a significant difference in 

correlation estimates between competing models, it would be necessary to develop such a 

statistical test for identifying construct types in the structural equation model.  

 

1.5.  Objectives and Overview of the Dissertation 

In Chapter 1, this dissertation introduced the two SEM domains—factor-based and 

component-based—and systematically compared them using examples to illustrate their 

distinct applications. In essence, both domains represent comprehensive, complementary 

SEM approaches, each grounded in unique premises regarding constructs and their 

relationships with indicators. Considering their respective utility in empirical research, it is 

important to continue technical development in both SEM domains. As such, this dissertation 

aims to identify two long-standing problems within each SEM domain and present advanced 

SEM methods capable of addressing these issues. 

Chapter 2 delves into two persistent issues in factor-based SEM and offers a new 

technical solution to address these challenges. The chapter begins with a succinct overview of 

Jöreskog's (1973, 1978) covariance-based approach (JCA), which has been widely regarded 

as the standard method in factor-based SEM (e.g., Bollen, 2019). As the name suggests, this 

method primarily relies on the covariance matrix of indicators throughout the analysis 

process, including identification, parameter estimation, and model evaluation. However, this 

characteristic results in two significant limitations: the emergence of improper solutions (e.g., 

negative variance estimates) and the absence of a statistical tool to tackle the factor score 

indeterminacy problem (i.e., an infinite number of factor score sets possibly being true given 

the data). 
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The first limitation poses a challenge for applied researchers, as the occurrence of 

improper solutions renders all parameter estimates in the model unreliable, preventing 

researchers from drawing conclusions about their model specification (e.g., McDonald, 2004; 

Newsom, 2014). The second limitation makes the method less than ideal for researchers who 

require probabilistic inferences about individuals' true factor scores (e.g., the estimation of 

the probability that an individual's true factor score is higher than another's). To address these 

issues, Chapter 2 introduces an alternative factor-based SEM method, termed structured 

factor analysis (SFA; Cho and Hwang, 2023). Unlike JCA, SFA incorporates the score 

matrix of indicators and factors as the central component of the entire analysis process, which 

precludes the emergence of improper solutions and facilitates probabilistic inferences about 

individuals' true factor scores. Empirical data analyses are conducted to demonstrate the 

relative advantages of SFA compared to JCA. This chapter was published in the journal 

Structural Equation Modeling: A Multidisciplinary Journal in 2023. 

Chapters 3 and 4 address two enduring limitations within component-based SEM and 

suggest innovative technical extensions of GSCA designed to surmount these obstacles. 

These two chapters commence with a brief description of GSCA. Although PLSPM, also 

known as PLS-SEM, tends to be more prevalent in application studies compared to GSCA 

(e.g., Cho, Schlaegel, et al., 2022), the focus here is primarily on GSCA, given its global, 

interpretable criterion for generating composite indexes, which makes the technical extension 

of the method more feasible. In contrast, PLSPM lacks such a criterion, leaving it uncertain 

how optimal the composite indexes generated from PLSPM are. In addition, in several 

simulation studies, GSCA has demonstrated comparable or even superior results to PLSPM 

in terms of parameter recovery and prediction accuracy (Cho et al., 2023; Cho, Sarstedt, et al., 

2022; Cho & Choi, 2020; Hwang, Malhotra, et al., 2010). 
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In Chapter 3, the focus shifts to a limitation in GSCA's treatment of indicator scores, 

which involves standardizing all indicators’ scores to have zero means and unit variances. In 

line with this standardization procedure, GSCA generates composite indexes in such a way 

that their scores are also standardized to have zero means and unit variances. While this 

simplification aids in the interpretation of the GSCA model, it prevents the generation of 

composite indexes that are interpretable on the indicators' original scales. To tackle this 

problem, Chapter 3 proposes a novel extension of GSCA, named convex generalized 

structured component analysis (convex GSCA). Unlike the conventional GSCA, this method 

retains the raw data for indicators when their measurement scales are identical within their 

respective blocks. It then generates composite indexes, known as convex components, which 

carry non-negative weights for their respective indicators, summing to one. The chapter 

elucidates how the scores of convex components and their associated path coefficients in the 

structural model can be interpreted in terms of the original scales of their indicators. The 

practical utility of convex GSCA is demonstrated through simulation and real data analyses. 

This chapter was first submitted to the journal Psychometrika in December 2021 and is 

currently in its second round of review. 

Chapter 4 concentrates on another limitation of GSCA, namely its restriction on the 

functional form of components to be linear. In other words, every composite index in GSCA 

is always defined as a weighted sum of its indicators. Such linear constraint may potentially 

inhibit components from capturing non-linear association between their indicators, suggesting 

that the components might not serve as the optimal summary index of their indicators, 

thereby diminishing their predictive power for other components. To overcome this limitation, 

the chapter introduces a new method, termed deep learning generalized structured 

component analysis (DL-GSCA). This approach integrates deep learning and GSCA into a 

single framework, allowing for the identification of the best functional form of components in a 
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data-driven manner. It aims to maximize the predictive power of components while ensuring the 

interpretability of their interconnected relationship. Through the application of real and simulated 

data analyses, the chapter demonstrates the relative advantage of DL-GSCA over GSCA, 

particularly when non-linear associations exist between indicators per component. This chapter 

has been recently accepted for publication in the journal Structural Equation Modeling: A 

Multidisciplinary Journal as of July 2023. 

Chapter 5 provides a comprehensive summary of the preceding chapters, highlighting the 

significance and implications of the proposed methods. It also offers a critical evaluation of 

potential limitations inherent in the current studies and outlines prospective directions for future 

research in this area. 
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Abstract 

Jöreskog’s covariance-based approach (JCA; Jöreskog, 1978) has been considered a standard 

method for structural equation modeling. However, JCA is prone to the occurrence of 

improper solutions and cannot make probabilistic inferences about the true factor scores. To 

address the enduring issues of JCA, we propose a data matrix-based alternative, termed 

structured factor analysis (SFA). Given a data matrix of indicators, SFA begins by estimating 

both measurement model parameters and factor scores by minimizing a single cost function 

via an alternating least squares algorithm, which mathematically guarantees convergence to 

proper solutions. It then employs the factor score estimates to estimate structural model 

parameters. Once all parameters are estimated, SFA further estimates the probability 

distribution of the factor scores that can generate the data matrix of indicators, which can be 

used for probabilistic inferences about the true factor scores. We investigate SFA’s 

performance and empirical utility through simulated and real data analyses. 

 

Keywords: Structured factor analysis, structural equation modeling, factor score, candidate 

factor score distribution, measurement.  
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2.1.  Introduction 

Structural equation modeling (SEM) can be used for examining the relationships between 

latent variables and indicators. Although there are various statistical methods for estimating 

structural equation models, including factor score regression (Croon, 2002; Skrondal & 

Laake, 2001), model-implied instrumental variable methods (Bollen, 1996, 2019), consistent 

partial least squares (Dijkstra, 2011, 2013), and generalized structured component analysis 

with  measurement errors incorporated (Hwang et al., 2017), Jöreskog’s covariance-based 

approach (Jöreskog, 1978), denoted by JCA herein, has been considered a de facto standard 

method for many reasons including its versatility in model specification and evaluation and 

statistically desirable properties in model estimation (e.g., Bollen, 2019). 

As its name implies, JCA carries out all main SEM steps, including model 

identification, estimation, and evaluation, based on the covariance matrix of indicators. 

Specifically, in this approach, the covariance matrix of indicators is reformulated as a 

function of parameters in the model, called the implied covariance matrix, and the model’s 

identification is ensured by checking whether the model parameters uniquely determine the 

implied covariance matrix (Bollen, 1989, p. 89). If the model is identified, JCA aims to 

estimate the model parameters by minimizing a cost function that represents the discrepancy 

between the sample and implied covariance matrices. JCA typically utilizes the maximum 

likelihood (ML) estimator, assuming the multivariate normality of indicators. The ML 

estimator is a full-information estimator that estimates model parameters simultaneously, 

using all information in model equations (Fomby et al., 2012, Chapter 22). It is known to be 

asymptotically unbiased and efficient, thereby being conceived of as the most optimal 

estimator in SEM when every endogenous variable in the model is continuous (e.g., Bollen, 

2019). Once the parameters are estimated, JCA provides overall model fit measures that 

assess the magnitude of the discrepancy between the sample and implied covariance matrices, 
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such as the χ2 statistic, root mean square error of approximation (Steiger, 2016), comparative 

fit index (Bentler, 1990), and standard root mean square residuals (Bentler, 1995), for 

evaluating the model and/or comparing competing models.  

Despite its merits, JCA has two long-standing limitations. First, JCA occasionally 

suffers from improper solutions, such as negative error variance estimates or correlation 

estimates over ±1 (e.g., Bentler & Chou, 1987; Chen, Bollen, Paxton, Curran, & Kirby, 2001). 

Given an improper solution, researchers can hardly consider the other parameter estimates 

reliable and conduct further model evaluation or comparison with confidence (e.g., 

McDonald, 2004; Newsom, 2014). Second, JCA does not provide statistical tools for making 

a probabilistic inference about the true latent variable or factor scores. In practice, researchers 

may be interested not only in the relationships between latent variables but also in the 

probability for a score interval to contain an individual’s true factor score. JCA does not 

provide information on this probability, focusing solely on testing the relationships between 

latent variables. 

The common source of these limitations is JCA’s reliance on the implied covariance 

matrix of indicators. The implied covariance matrix is entirely defined by model parameters, 

indicating that individual factor scores are not treated as parameters to be estimated and are 

completely ignored in JCA’s cost function. Consequently, it is impossible to obtain 

probabilistic information on the factor scores from the cost function. Moreover, as JCA’s 

algorithm disregards the factor scores while updating model parameters at each iteration, it 

can update the model parameters to some values that won’t be admissible if the factor scores 

are also to be updated prior to the other model parameters. For instance, although it is 

theoretically impossible that the variances of latent variables (or any other variables) are 

negative, JCA’s algorithm may update these variances to negative ones if such updating can 

reduce the value of its cost function. If JCA’s cost function were also defined based on the 
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factor scores and its algorithm was to update the factor scores before updating their variances, 

it would be essentially impossible for the algorithm to produce such improper solutions. De 

Jonckere and Rosseel (2022) recently suggested imposing additional constraints that force 

JCA’s algorithm to avoid improper solutions. However, their constrained procedure still 

tends to yield improper solutions at times, as shown in their simulation study.  

In this paper, we propose a new data matrix-based approach to SEM, named 

structured factor analysis (SFA), whose cost function reflects the discrepancy between the 

data matrices of indicators and their predicted values. SFA carries out two SEM stages 

sequentially. In the first stage, SFA begins by specifying the process of generating indicators’ 

data as the measurement model. It then estimates the measurement model parameters (i.e., 

factor loadings and factor variances and covariances) and factor scores concurrently in such a 

way that they jointly minimize a single cost function—an average residual variance or (in-

sample) prediction error for the indicators’ scores. The factor scores estimated from SFA are 

called candidate factor scores in the sense that they represent a set of factor scores that can 

be considered potential candidates for the true factor scores given a data matrix of indicators. 

In the second stage, SFA specifies the process of generating the true latent variable scores as 

the structural model and estimates its model parameters (i.e., path coefficients and error 

variances and covariances) based on the candidate factor scores obtained from the first stage 

without the need of modifying the candidate factor scores or their covariance matrix. 

 SFA can prevent the occurrence of improper solutions as it simultaneously estimates 

the measurement model parameters and factor scores in the first stage. Moreover, it allows 

for inferring the true factor scores probabilistically. Once all model parameters are estimated, 

SFA can additionally estimate the probability distribution of the candidate factor scores based 

on the cost function used in the first stage. From this probability distribution, we can obtain 

an individual’s 95% candidate factor score interval for each latent variable, which contains 95% 
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of the individual’s factor scores that can generate a given data matrix of indicators. We can 

also utilize the distribution for statistically testing the difference in two individuals’ factor 

scores or calculating the probability of one’s factor score being greater or less than the others. 

Thus, SFA can be used as an alternative when JCA suffers from improper solutions and/or 

researchers are interested in making probabilistic inferences about individuals’ true factor 

scores. 

 The remainder of the paper is organized as follows. In Section 2.2, we describe the 

two stages of SFA. In Section 2.3, we discuss the property and estimation of the candidate 

factor score distribution. Note that as one reviewer has suggested, we provide succinct yet 

essential information about both sections while relegating all technical details to Appendix B. 

In Section 2.4, we conduct Monte Carlo simulation studies to investigate how SFA performs 

as compared to JCA and whether SFA’s candidate factor score distribution behaves as 

expected. In Section 2.5, we illustrate an application of SFA to a real dataset. In Section 2.6, 

we discuss the implications of the proposed method and its potential extensions. 

 

2.2. The Proposed Method 

SFA carries out two stages sequentially, each of which involves its own model specification, 

identification, estimation, and evaluation. In the first stage, researchers are to specify the 

measurement model that represents the data-generating process of indicators under the 

assumption that the true latent variable scores are the underlying causes of the indicators’ 

scores. SFA estimates the parameters of the specified measurement model as well as factor 

scores and allows for statistical tests of the goodness-of-fit of the measurement model. If the 

measurement model with the factor score estimates may be acceptable, SFA can move on to 

the second stage. In this stage, researchers are to specify the structural model that represents 

the score-generating process of latent variables. SFA estimates the parameters of the 
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structural model using the factor scores estimated from the first stage and evaluates the 

goodness-of-fit of the structural model.  

The theoretical derivation of both stages is based on the random matrix theory, which 

involves a set of matrix-valued random variables. As stated above, we here present the most 

essential information on the stages, which is all based on realized counterparts of random 

matrices. For simplicity, we further assume that every realized matrix is representative of the 

population, which means that the sample mean vector and covariance matrix of the realized 

matrix are equivalent to their population counterparts, although this assumption can be 

relaxed. A fully detailed theoretical description of the stages, including several theorems and 

their proofs, is provided in Appendix B. 

2.2.1. Stage 1: Measurement Model for the Data-Generating Process of Indicators 

Model Specification 

Let Z denote an N by J matrix consisting of N individuals’ scores on J indicators, whose 

mean vector is a zero vector and covariance matrix is denoted by Σ. Let Htrue denote an N by 

P matrix of the true latent variable scores for N individuals, whose mean vector is a zero 

vector and covariance matrix is denoted by Φ. Each latent variable is equivalent to a common 

factor that causes their respective indicators to covary. Let Etrue denote an N by J matrix of 

the true unique factor scores for N individuals, whose mean vector is a zero vector and 

covariance matrix is denoted by Θ. Let Λ denote a P by J matrix of loadings that quantify the 

causal effects of P latent variables on J indicators. For simplicity, both Z and Htrue are 

assumed to be standardized. In Stage 1, SFA formulates the measurement model to describe 

how Z is generated from Htrue. The measurement model is given as  

 Z = HtrueΛ + Etrue. (2.1) 

Based on prior theory, researchers are to specify which elements of Λ, Φ, and Θ in 

the measurement model are non-zero parameters and ensure whether the specified 
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measurement model is identified. The identification rules for the measurement model are 

equivalent to those for the confirmatory factor analysis model in JCA (e.g., refer to Bollen 

1989, pp. 238–251). 

Parameter Estimation  

The measurement model (2.1) can be re-expressed as 

 Z = FtrueL, (2.2) 

where Ftrue = [Htrue, Etrue], L = [Λ; IJ], and IJ is the identity matrix of order J. We call Ftrue a 

matrix of the true factor scores including both common and unique factor scores for N 

individuals. Let Δ ≡ [
Φ 0

0 Θ
] denote the covariance matrix of Ftrue. The measurement model 

parameters include L and Δ. SFA seeks to simultaneously estimate L, Δ, and Ftrue given Z. 

However, even if we knew the values of L and Δ, it would be impossible to obtain the precise 

value of Ftrue from Z because the number of scores in Ftrue to be estimated (i.e., NT) is greater 

than that of observed scores in Z (i.e., NJ), where T = P + J (e.g., Mulaik, 2009; Steiger, 

1979). This is the factor score indeterminacy problem (de Leeuw, 2017). 

Accordingly, instead of aiming to obtain an unbiased estimate of Ftrue, SFA 

contemplates a matrix of the candidate factor scores, denoted by F, which satisfies Z = FL, 

mean(F) = 0, and cov(F) = Δ, and can thus be considered a potential candidate for Ftrue given 

Z, where mean() and cov() transform an input matrix into its sample mean vector and 

covariance matrix, respectively (refer to Appendix B1 for more details). SFA then aims to 

obtain unbiased estimates of L and Δ as well as an estimate of F. Specifically, let Zstd denote 

the standardized counterpart of Z, whose covariance matrix is denoted by S. Zstd Let Ẑ denote 

a matrix of the predicted values of Zstd based on the estimated model. To estimate L, Δ, and 

F, SFA seeks to minimize the following cost function.  

 
ρ = (JN)

–1
SS(Zstd – Ẑ)              

   = (JN)
–1

SS(Zstd – FL),

 (2.3) 
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subject to mean(F) = 0 and cov(F) = Δ, where SS(X) = tr(X'X) for any matrix X. The value of 

the cost function (2.3) can be interpreted as the average residual variance or (in-sample) 

prediction error for the standardized indicator scores. This indicates that SFA aims to 

simultaneously estimate the measurement model parameters and a matrix of the candidate 

factor scores in such a way that they maximize explanatory power for the standardized 

indicator scores. 

There is no closed-form solution for the constrained minimization problem (2.3). 

Thus, we develop an alternating least squares (ALS) algorithm, which divides the model 

parameters into several groups and updates each group alternately with the remaining groups 

fixed. A detailed description of this algorithm is provided in Appendix B4. After the model 

parameters are estimated, their standard errors or 95% confidence intervals are calculated for 

testing their statistical significance. As SFA does not assume any distributional assumption 

on indicators, it employs a resampling technique, such as the bootstrap method (Efron, 1979, 

1982), to obtain these statistics without recourse to a distributional assumption. 

If the ALS algorithm minimizes (2.3) under the identified measurement model, it 

provides unbiased estimates of the measurement model parameters, as proved in Appendix 

B5. The convergence of the ALS algorithm has been mathematically proven (de Leeuw et al., 

1976). Moreover, the proposed algorithm does not result in improper solutions as its cost 

function (2.3) is built on individual factor scores rather than their covariance matrix. 

Obviously, a set of individual factor scores cannot have negative variances, a negative-

definite covariance matrix, or correlations with Zstd greater than one in absolute value.  

 Despite its desirable properties, the algorithm may be computationally more costly 

than JCA’s algorithm when the sample size is large as it needs to estimate N individuals’ 

factor scores in addition to the model parameters. Thus, we propose a supplementary 

procedure to alleviate the algorithm’s potential computational burden in Appendix B6. This 
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procedure indicates that even if the cost function (2.3) is defined based on a data matrix of 

indicators, SFA only needs the sample covariance matrix of the indicators for estimating the 

model parameters. Thus, even when researchers only have the sample covariance matrix in 

hand, they can still apply SFA if they are only interested in estimating the model parameters.  

Model Evaluation  

SFA provides an overall goodness-of-fit index, termed the in-sample prediction error for 

observed variables (IPEO), for evaluating the measurement model using the estimates of the 

model parameters and factor scores. The IPEO is defined as  

 IPEO = SS(Zstd – F̂L̂)/SS(Zstd), (2.4) 

where F̂ and L̂ are the estimated candidate factor score and loading matrices, respectively. 

This index is equivalent to the value of (2.3) computed based on F̂ and L̂. The value of 1 – 

IPEO can also be interpreted as the average R2 for the indicators. The IPEO value is zero if and 

only if L̂ = L and F̂ satisfies mean(F̂) = 0, Zstd = F̂L̂, and cov(F̂) = Δ, given that the 

measurement model is identified (see Appendix B5). As F̂ obtained from SFA always 

satisfies mean(F̂) = 0, a positive value of IPEO indicates that L̂ ≠ L, Zstd ≠ F̂L̂, or cov(F̂) ≠ Δ.  

SFA can conduct a statistical test of the null hypothesis that L̂ = L, Zstd = F̂L̂, and 

cov(F̂) = Δ by using the Bollen-Stine (B-S) bootstrap method (Bollen & Stine, 1993). Let Σ̂ 

denote the estimated implied covariance matrix of the indicators. Let Zimp denote a modified 

data matrix generated under the null hypothesis, which can be obtained by Zimp = ZstdS
–1/2Σ̂1/2. 

The bootstrap method is applied to Zimp to estimate the sampling distribution of the IPEO. If 

the value of IPEO is greater than a critical or cut-off value, e.g., the (1 – α)th percentile of the 

estimated sampling distribution, we may reject the null hypothesis. In addition, SFA can offer 

other traditional goodness-of-fit indexes, such as GFI (Jöreskog & Sorbom, 1986) and SRMR 

(Bentler, 1995), which are computed based on the sample and implied covariance matrices of 
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the indicators. Lastly, the bootstrap standard errors or 95% confidence intervals of the model 

parameter estimates are used to test the statistical significance of the estimates. 

2.2.2. Stage 2: Structural Model for the Score-Generating Process of Latent Variables  

Model Specification  

Let HX,true and HY,true denote matrices of the true scores of exogenous and endogenous latent 

variables, respectively. Let BX and BY denote matrices of path coefficients that quantify the 

causal effects of exogenous latent variables on endogenous latent variables and those between 

endogenous latent variables, respectively. Let Qtrue denote a matrix of the true scores of 

structural errors for HY,true, whose mean vector is a zero vector and covariance matrix is 

denoted by Ψ. The structural model of SFA is defined as  

 HY,true = HX,trueBX + HY,trueBY + Qtrue. (2.5) 

Similar to Stage 1, based on prior theory, researchers are to predetermine which 

elements of BX, BY, and Ψ in (2.5) are non-zero parameters and check if the specified 

structural model is identified. The rules for the identification are the same as those used for 

the path analysis model in JCA, which can be found in Bollen (1989, pp. 88–104) or Dijkstra 

(2017). 

Parameter Estimation  

Let Η̂X and Η̂Y denote matrices of the candidate factor scores for the exogenous and 

endogenous latent variables estimated from Stage 1. In Stage 2, SFA estimates the structural 

model parameters (BX, BY, and Ψ) while treating [Η̂X, Η̂Y] as the input data. It utilizes a 

limited-information estimator, which successively applies ordinary least squares (OLS) or 

two-stage least squares (2SLS) to each equation for an endogenous latent variable (Lance et 

al., 1988). The proposed estimator draws on 2SLS if endogeneity occurs in the equation, and 

on OLS otherwise. Although this estimator can be less efficient than a full-information 

estimator, such as feasible generalized least squares (FGLS) or three-stage least squares 
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(3SLS), it can be more robust to model misspecification (Wooldridge, 2010, pp. 252–254). A 

detailed description of the estimator is provided in Appendix B7. Once all the structural 

model parameters are estimated, their standard errors or confidence intervals are estimated 

based on a set of the latent variable covariance matrices estimated from the bootstrap samples. 

Model Evaluation 

SFA provides a goodness-of-fit index, termed the in-sample prediction error for latent 

variables (IPEL), for evaluating the structural model. The IPEL is defined as  

 IPEL = SS(Η̂Y – (Η̂XB̂X + Η̂YB̂Y))/SS(Η̂Y). (2.6) 

This index represents the average residual variance for all endogenous latent variables 

unexplained by the fitted structural model. The value of 1 – IPEL is equivalent to the average 

R2 for the endogenous latent variables. SFA can also provide GFI and SRMR for the 

structural model, which are calculated based on the discrepancy between the covariance 

matrix of the latent variables estimated from Stage 1 and the implied covariance matrix of the 

latent variables estimated from Stage 2. 

 

2.3. Candidate Factor Score Distribution 

As discussed in the previous section, SFA obtains an estimate of a matrix of the candidate 

factor scores F and uses this estimate, denoted by F̂, to estimate the parameters of the 

measurement and structural models. However, SFA does not recommend using F̂ as a point 

estimate of Ftrue as there exist an infinite number of Fs owing to the factor score 

indeterminacy problem, so that there is no possibility that a single estimate of F is equivalent 

to Ftrue. Instead, SFA derives the probability distribution of all possible Fs and uses this 

distribution to infer Ftrue a posteriori given Z. We term this distribution the candidate factor 

score distribution. 
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As in Section 2.2, we only provide basic information about the candidate factor score 

distribution. A complete theoretical description of the candidate factor score distribution is 

available in Appendix B8. Let FN,T denote the set of all possible N by T matrices of candidate 

factor scores. In a nutshell, the candidate factor score distribution is the uniform distribution 

on FN,T with two parameter matrices W and G. The parameter matrix W denotes a J by T 

matrix of weights that determines the center of the candidate factor score distribution as ZW, 

whereas G denotes a T by T covariance matrix of measurement errors when ZW is used as a 

measurement of Ftrue. Using ZW as a measurement of Ftrue can be justified in that ZW is the 

only part of Ftrue that can be inferred from Z, as shown in Appendix B9, and can be 

considered the best linear predictor for Ftrue given Z (e.g., Bartholomew, 1981) because W is 

equivalent to the weight matrix obtained by regressing Ftrue on Zstd (Thurstone, 1934). The 

matrix ZW is called a matrix of expected candidate factor scores in SFA. The square roots of 

G’s diagonal entries are the standard deviations of measurement errors when ZW is used to 

measure Ftrue. These standard deviations of errors are called the standard errors of 

measurement in SFA (Leong & Huang, 2016), which refer to the standard amount of error 

that is expected to occur when a measurement is used to quantify the true amount of a 

particular quantity.  

As fully described in Appendices B11 and Appendix B12, SFA estimates the 

candidate factor score distribution by minimizing the same cost function (2.3) in a least 

squares sense. More specifically, let 𝓕̂𝑁,𝑇 denote an estimate of 𝓕𝑁,𝑇, which can be expressed 

with L̂ and Δ̂ obtained from the first stage. Then, SFA randomly samples a prescribed 

number of F̂s from 𝓕̂𝑁,𝑇 and uses a set of the sampled F̂ values as an estimate of the 

candidate factor score distribution.  

Once SFA estimates the candidate factor score distribution, it also estimates the 

expected candidate factor scores and the standard errors of measurement and uses these 
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estimates for measuring Ftrue. Moreover, SFA can obtain an individual’s 95% candidate 

factor score interval for each latent variable from the estimated candidate factor score 

distribution, which contains 95% of all candidate factor scores for the individual. 

 

2.4. Simulation Studies 

We conduct two simulation studies to examine SFA’s performance. In the first simulation 

study, we compare the performance of SFA and JCA via maximum likelihood (JCA-ML) in 

terms of parameter recovery and the frequency of improper solutions. In the second study, we 

examine the accuracy of the estimated standard errors of measurement and the coverage 

probability of the 95% candidate factor score intervals.  

2.4.1. Simulation Study 1 

As depicted in Figure 2.1, we specify two data generating models (Models A and B), which 

are different in model complexity. The vector h·p denotes N individuals’ scores on the pth 

latent variable (p = 1, 2, ···, P), whereas z·j denotes N individuals’ scores on the jth indicator 

(j = 1, 2, ···, J). In Model A, each group of three indicators loads on only one latent variable 

and all unique factors are uncorrelated with one another. On the other hand, in Model B, the 

first three groups of indicators (z·1 to z·9) additionally load on another latent variable (h·4), 

whose variance represents a common method variance (Podsakoff et al., 2003) for the nine 

indicators. This latent variable is set to be uncorrelated with the other latent variables. 

Moreover, the unique factors of three pairs of indicators (z·9 and z·13, z·10 and z·14, and z·11 and 

z·15) are assumed to be correlated. The two models share the same structural model, which 

imitates the one used in Bentler and Speckart (1979). In the structural model, three latent 

variables (h·1, h·2, and h·3) are exogenous, whose effects on an outcome latent variable (h·6) 

are mediated by another latent variable (h·5). Two errors in the structural model are set to be 
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correlated. The prescribed parameter values of the two data generating models are also 

presented in Figure 2.1.  

 

Figure 2.1. The two data generating models used for the simulation studies. Circles and 

squares signify latent variables and indicators, respectively. The arrow labeled A denotes the 

path coefficient excluded in the misspecified model. The values in the parentheses denote 

correlations. 

 We consider six different sample sizes (N = 30, 60, 120, 250, 500, and 1000). We 

include a very small sample size (N = 30), where JCA-ML is more likely to result in 
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improper solutions (e.g., Wolf, Harrington, Clark, & Miller, 2013), in order to examine 

whether SFA can be used as an alternative to JCA-ML in such a condition. We also consider 

two distributions of factor scores: normal and non-normal. Whereas the normal distribution is 

a multivariate distribution with a skewness of 0 and a kurtosis of 3, the non-normal 

distribution is set to have a skewness of 1.25 and a kurtosis of 3.75, which have been used to 

evaluate the relative performance of SEM methods in the literature (e.g., Hwang et al., 2010). 

We generate 2000 samples per experimental condition based on Mattson's (1997) procedure, 

whereby we randomly generate Htrue and Etrue per sample and then generate Z based on (2.1). 

To assess the bias of the SFA and JCA-ML estimators given a representative sample, we 

randomly generate a set of representative Htrue and Etrue satisfying mean(Ftrue) = 0 and 

cov(Ftrue) = Δ, and then generate a sample of N = 30 by Z = HtrueΛ + Etrue such that Z 

satisfies mean(Z) = 0 and cov(Z) = Σ. 

 Furthermore, we consider two specifications of each data generating model. One is 

the correctly specified model, which is equivalent to the data generating model, and the other 

is a misspecified model, where one path coefficient is incorrectly removed from the data 

generating model. In Figure 2.1, the path coefficient omitted incorrectly is labeled A. 

 We use the R package lavaan (version 0.5-16) (Rosseel, 2012) for JCA-ML and the 

MATLAB package SFA Prime (version 0.9)1 for SFA. To avoid non-convergence in JCA-

ML, we additionally apply the standard bounded estimation method with marker indicators 

for JCA-ML, as suggested by De Jonckere and Rosseel (2022). We set the first indicator of 

each latent variable as the marker indicator. For SFA, we fix the sign of the first loading for 

each latent variable to be positive. The default tolerance level of lavaan (2.220 × 1016) is 

employed for JCA-ML, whereas 10–13 is used for SFA’s ALS algorithm. The maximum 

number of iterations is 50000 for both estimators. For each combination of the experimental 

 
1 This MATLAB package is available at https://sfaprime.wordpress.com/. 

https://sfaprime.wordpress.com/
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conditions, we compute the (empirical) biases and root mean squared errors (RMSE) of the 

estimators. In the calculation of these measures for each estimator, any sample involving non-

convergence or improper solutions is excluded. We treat negative variance estimates and 

negative definite covariance matrices of common and unique factors as improper solutions, as 

in the lavInspect function of the lavaan package. We also consider standardized loading 

estimates over ±1 as improper solutions, as h·4 is assumed to be uncorrelated with h·1, h·2, and 

h·3 in the model.  

 Table 2.1 presents the proportions of the samples involving non-convergence or 

improper solutions per condition for SFA and JCA-ML. As expected, SFA always produces 

proper solutions without a convergence problem, regardless of the experimental conditions. 

On the other hand, JCA-ML results in improper solutions at times. The relative ratio of 

converging to improper solutions increases when the sample size is small and/or the model 

is complex. For instance, when N = 30 and the model is complex, JCA-ML produces 

improper solutions in around 64% of the samples regardless of the conditions. This ratio 

gradually decreases when the model is simple and/or when the sample size becomes large. 

The distribution of the factor scores does not seem to make substantial differences in the 

occurrence of improper solutions.   

Table 2.1. Percentages of the samples involving non-convergence or improper solutions per 

condition. 

Estimator N 

Correct model  Misspecified model 

Simple Complex Simple Complex 

Normal 
Non-

normal 
Normal 

Non-

normal 
Normal 

Non-

normal 
Normal 

Non-

normal 

SFA 

30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

250 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Estimator N 

Correct model  Misspecified model 

Simple Complex Simple Complex 

Normal 
Non-

normal 
Normal 

Non-

normal 
Normal 

Non-

normal 
Normal 

Non-

normal 

JSA-ML 

30 0.34 0.33 0.64 0.64 0.28 0.27 0.60 0.60 

60 0.13 0.12 0.36 0.38 0.08 0.08 0.31 0.33 

120 0.02 0.02 0.16 0.18 0.00 0.01 0.16 0.17 

250 0.00 0.00 0.05 0.05 0.00 0.00 0.07 0.09 

500 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Tables 2.2 and 2.3 provide the average biases and RMSE values of SFA and JCA-ML 

for each set of model parameters (e.g., loadings and path coefficients) per condition under the 

two model specifications. We only report the results that are aggregated over the normal and 

non-normal distributions as the relative performance of the two estimators was not 

substantially different between the two distributional conditions. This may be because SFA 

does not require any distributional assumption for parameter estimation and JCA-ML seems 

robust to the violation of its distributional assumption (i.e., normality) in recovering model 

parameters (e.g., Cassel et al., 1999; Hwang, Malhotra, et al., 2010). The average biases and 

RMSE values for the same sets of model parameters under each distributional condition are 

provided in Table S2.1 to Table S2.4. Furthermore, the bias and RMSE values of the two 

estimators for each individual parameter per condition are provided in Table S2.5 to Table 

S2.8. 

Under the correct model specification, both estimators are biased for all model 

parameters to some extent when the sample size is very small (e.g., N = 30) regardless of 

model complexity. However, in general, SFA tends to show comparable or smaller bias than 

JCA-ML. For instance, when N = 30, the average biases of the SFA and JCA-ML estimators, 

respectively, are .01 and .01 for the loadings and .01 and .03 for the path coefficients under 

the simple model, while those are .05 and .08 for the loadings and .03 and .10 for the path 

coefficients under the complex model. The average biases of both estimators become smaller 
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with the sample size and close to zero when N = 1000 in all conditions. Given a 

representative sample, the average biases of both estimators are close to zero, suggesting that 

the two estimators are virtually unbiased given a representative sample. 

Conversely, on average, SFA tends to show larger RMSE values than JCA-ML under 

correct model specification. This suggests that the SFA estimator is less efficient than the 

JCA-ML estimator as their biases are generally comparable. This efficiency difference is 

more pronounced when the sample size is small; for instance, when N = 30, SFA generally 

have larger RMSE values for the path coefficients than JCA-ML in both correct (data 

generating) models. The results are consistent with the literature that a full-information 

estimator is typically more efficient than a limited-information estimator under correct model 

specification (e.g., Fomby et al., 2012, Chapter 22). Nonetheless, the RMSE differences 

between SFA and JCA-ML decrease with the sample size and become negligible when N ≥ 

500.  

 On the contrary, under model misspecification, SFA generally tends to produce less 

biased and more accurate estimates than JCA-ML regardless of model complexity and sample 

size. The average biases and RMSE values of the two estimators decrease with the sample 

size. However, on average, JCA-ML always tends to provide biased estimates of the loadings, 

latent variable covariances, and path coefficients, leading to larger average RMSE values for 

the model parameters than SFA. For instance, when N = 1000 and the model is complex, the 

average biases of the SFA and JCA-ML estimators, respectively, are .00 and .04 for the 

loadings, .00 and .09 for the latent variable covariances, and .00 and .02 for the path 

coefficients. In a representative sample, the JCA-ML estimator is still biased for both 

measurement and structural model parameters. This is consistent with that a misspecification 

in part of the model may lead the JCA-ML estimator to be biased for entire model parameters 

(e.g., Devlieger & Rosseel, 2017).  
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 Taken together, SFA is free from the occurrence of improper solutions regardless of 

the experimental conditions, whereas JCA-ML suffers from convergence to improper 

solutions in several conditions. Moreover, SFA and JCA-ML generally show a similar pattern 

of bias across the two model specifications, even though our simulation design may be less 

favorable to SFA because it is applied to all samples, many of which lead to the improper 

solution problem in JCA-ML. This suggests that SFA can be an alternative to JCA-ML when 

JCA-ML fails to converge to proper solutions. Between the two methods, in general, when 

the model is correctly specified, JCA-ML tends to provide more accurate estimates with 

smaller RMSE values, whereas when the model is misspecified, SFA tends to yield more 

accurate estimates. Nonetheless, it is noteworthy to mention that when the model is correct, 

the RMSE differences of the methods virtually disappear when N ≥ 500, whereas when the 

model is incorrect, the differences remain regardless of the sample size.  
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Table 2.2. The average bias and RMSE values of the SFA and JCA-ML estimators per condition under correct model specification. 

Model 

complexity 
N Estimator 

Loadings 
(Co)variances of 

unique factors 

Covariances of 

latent variables 
Path coefficients 

(Co)variances of 

structural errors 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

Simple 

30 
SFA 0.01 0.15 0.03 0.20 0.01 0.23 0.01 0.32 0.05 0.22 

JCA-ML 0.01 0.16 0.03 0.22 0.03 0.23 0.03 0.28 0.08 0.31 

60 
SFA 0.00 0.10 0.01 0.14 0.01 0.15 0.00 0.16 0.02 0.15 

JCA-ML 0.00 0.10 0.01 0.14 0.01 0.15 0.01 0.16 0.02 0.16 

120 
SFA 0.00 0.07 0.01 0.10 0.00 0.11 0.00 0.11 0.01 0.11 

JCA-ML 0.00 0.07 0.00 0.10 0.00 0.10 0.00 0.11 0.01 0.11 

250 
SFA 0.00 0.05 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 

JCA-ML 0.00 0.05 0.00 0.07 0.00 0.07 0.00 0.07 0.01 0.07 

500 
SFA 0.00 0.03 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 

JCA-ML 0.00 0.03 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 

1000 
SFA 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.04 0.00 0.04 

JCA-ML 0.00 0.02 0.00 0.03 0.00 0.03 0.00 0.04 0.00 0.04 

∞ 
SFA 0.00   0.00   0.00   0.00   0.00   

JCA-ML 0.00   0.00   0.00   0.00   0.00   

Complex 

30 
SFA 0.05 0.21 0.02 0.12 0.04 0.26 0.03 0.44 0.05 0.29 

JCA-ML 0.08 0.23 0.02 0.13 0.08 0.25 0.10 0.35 0.10 0.38 

60 
SFA 0.02 0.14 0.01 0.09 0.02 0.19 0.01 0.35 0.03 0.21 

JCA-ML 0.03 0.15 0.01 0.09 0.04 0.17 0.04 0.22 0.04 0.21 

120 
SFA 0.01 0.09 0.00 0.06 0.00 0.13 0.01 0.15 0.02 0.15 

JCA-ML 0.01 0.09 0.00 0.06 0.01 0.11 0.01 0.14 0.01 0.13 

250 
SFA 0.00 0.06 0.00 0.04 0.00 0.09 0.01 0.10 0.01 0.11 

JCA-ML 0.00 0.06 0.00 0.04 0.00 0.08 0.00 0.09 0.01 0.09 

500 
SFA 0.00 0.04 0.00 0.03 0.00 0.06 0.00 0.07 0.01 0.07 

JCA-ML 0.00 0.04 0.00 0.03 0.00 0.06 0.00 0.07 0.01 0.07 

1000 
SFA 0.00 0.03 0.00 0.02 0.00 0.04 0.00 0.05 0.00 0.05 

JCA-ML 0.00 0.03 0.00 0.02 0.00 0.04 0.00 0.05 0.00 0.05 

∞ 
SFA 0.00   0.00   0.00   0.00   0.00   

JCA-ML 0.00   0.00   0.00   0.00   0.00   

Note: The results on the rows in N = ∞ are obtained from one sample representative of the population.  
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Table 2.3. The average bias and RMSE values of the SFA and JCA-ML estimators per condition under model misspecification. 

Model 

complexity 
N Estimator 

Loadings 
(Co)variances of 

unique factors 

Covariances of 

latent variables 
Path coefficients 

(Co)variances of 

structural errors 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

Simple 

30 
SFA 0.01 0.15 0.03 0.20 0.01 0.23 0.01 0.24 0.04 0.23 

JCA-ML 0.01 0.16 0.02 0.22 0.07 0.25 0.02 0.37 0.12 0.48 

60 
SFA 0.00 0.10 0.01 0.14 0.01 0.15 0.00 0.16 0.01 0.16 

JCA-ML 0.00 0.11 0.01 0.15 0.06 0.18 0.00 0.21 0.03 0.21 

120 
SFA 0.00 0.07 0.01 0.10 0.00 0.11 0.00 0.11 0.01 0.11 

JCA-ML 0.00 0.07 0.00 0.10 0.07 0.15 0.01 0.13 0.01 0.13 

250 
SFA 0.00 0.05 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.08 

JCA-ML 0.00 0.05 0.00 0.07 0.07 0.12 0.01 0.08 0.00 0.08 

500 
SFA 0.00 0.03 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 

JCA-ML 0.00 0.03 0.00 0.05 0.07 0.10 0.01 0.06 0.00 0.06 

1000 
SFA 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.04 0.00 0.04 

JCA-ML 0.00 0.02 0.00 0.03 0.07 0.09 0.01 0.04 0.00 0.04 

∞ 
SFA 0.00   0.00   0.00   0.00   0.00   

JCA-ML 0.00   0.00   0.07   0.00   0.00   

Complex 

30 
SFA 0.05 0.21 0.02 0.12 0.04 0.26 0.03 0.30 0.06 0.31 

JCA-ML 0.08 0.24 0.02 0.13 0.11 0.26 0.06 0.36 0.11 0.50 

60 
SFA 0.02 0.14 0.01 0.09 0.02 0.19 0.01 0.20 0.02 0.20 

JCA-ML 0.04 0.16 0.01 0.09 0.10 0.20 0.03 0.22 0.03 0.25 

120 
SFA 0.01 0.09 0.00 0.06 0.00 0.13 0.00 0.13 0.01 0.13 

JCA-ML 0.04 0.11 0.01 0.06 0.09 0.15 0.03 0.14 0.01 0.13 

250 
SFA 0.00 0.06 0.00 0.04 0.00 0.09 0.00 0.09 0.01 0.09 

JCA-ML 0.04 0.08 0.00 0.04 0.09 0.13 0.02 0.09 0.01 0.09 

500 
SFA 0.00 0.04 0.00 0.03 0.00 0.06 0.00 0.06 0.00 0.06 

JCA-ML 0.04 0.06 0.00 0.03 0.09 0.11 0.02 0.07 0.00 0.06 

1000 
SFA 0.00 0.03 0.00 0.02 0.00 0.04 0.00 0.04 0.00 0.04 

JCA-ML 0.04 0.06 0.00 0.02 0.09 0.10 0.02 0.05 0.00 0.04 

∞ 
SFA 0.00   0.00   0.00   0.00   0.00   

JCA-ML 0.04   0.00   0.09   0.02   0.00   

Note: The results on the rows in N = ∞ are obtained from one sample representative of the population. 
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2.4.2. Simulation Study 2 

In the second simulation study, we draw on the same samples generated in the previous study 

and apply SFA to fit the correctly specified model to each sample. For each sample, we 

randomly generate 500 matrices of candidate factor score estimates to estimate the candidate 

factor score distribution, from which we calculate 95% candidate factor score intervals for 

each individual and examine their coverage probability. We calculate the proportion of the 95% 

candidate factor score intervals that contain the true factor score of each latent variable per 

sample and average it over the samples per experimental condition. Furthermore, we estimate 

the expected candidate factor scores and the standard errors of measurement from the 

candidate factor score distribution and subsequently investigate whether the estimated 

standard errors of measurement are close to the true standard errors of measurement when 

using the estimated expected candidate factor scores to measure Ftrue. We calculate the 

average RMSE value of the standard error of measurement for each latent variable over the 

samples per condition.  

 Table 2.4 provides the average proportions of the 95% candidate factor score intervals 

and the average RMSE values for the standard errors of measurement in each condition. 

When the sample size is very small (i.e., N = 30), approximately 63% to 79% of the candidate 

factor score intervals contain the true factor score of each latent variable on average. The 

proportions rapidly increase as the sample size increases and become close to 95% when N ≥ 

500, regardless of the other conditions. Moreover, when N = 30, on average, the RMSE 

values for the standard errors of measurement range from .16 to .40. However, they rapidly 

decrease with the sample size and become close to zero when N = 1000. 
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Table 2.4. The average proportion (%) of the 95% candidate factor score intervals that contain the true score of each latent variable and the 

average RMSE value for the standard errors of measurement per condition. 

Model 

complexity 
Distribution  N 

Average proportion  Average RMSE  

h·1 h·2 h·3 h·4 h·5 h·6 h·1 h·2 h·3 h·4 h·5 h·6 

Simple 

Normal 

30 0.74 0.75 0.78 - 0.79 0.78 0.22 0.21 0.18 - 0.16 0.18 

60 0.86 0.86 0.88 - 0.88 0.88 0.12 0.11 0.09 - 0.08 0.09 

120 0.91 0.91 0.92 - 0.92 0.92 0.05 0.05 0.04 - 0.04 0.04 

250 0.94 0.94 0.94 - 0.94 0.94 0.03 0.02 0.02 - 0.02 0.02 

500 0.94 0.94 0.95 - 0.94 0.95 0.01 0.01 0.01 - 0.01 0.01 

1000 0.95 0.95 0.95 - 0.95 0.95 0.01 0.01 0.00 - 0.01 0.01 

Non- 

Normal 

30 0.75 0.75 0.78 - 0.78 0.78 0.22 0.22 0.19 - 0.17 0.19 

60 0.85 0.86 0.88 - 0.88 0.88 0.12 0.11 0.10 - 0.09 0.09 

120 0.91 0.91 0.92 - 0.92 0.92 0.05 0.05 0.05 - 0.04 0.04 

250 0.93 0.94 0.94 - 0.94 0.94 0.03 0.02 0.02 - 0.02 0.02 

500 0.94 0.94 0.94 - 0.94 0.94 0.01 0.01 0.01 - 0.01 0.01 

1000 0.95 0.95 0.95 - 0.95 0.95 0.01 0.01 0.00 - 0.00 0.00 

Complex 

Normal 

30 0.63 0.63 0.63 0.62 0.72 0.70 0.34 0.33 0.32 0.40 0.23 0.25 

60 0.78 0.79 0.78 0.79 0.86 0.85 0.20 0.19 0.19 0.21 0.11 0.12 

120 0.87 0.88 0.88 0.88 0.91 0.91 0.10 0.10 0.10 0.10 0.05 0.06 

250 0.92 0.92 0.92 0.92 0.94 0.94 0.05 0.05 0.05 0.05 0.03 0.03 

500 0.93 0.93 0.93 0.93 0.94 0.94 0.03 0.03 0.02 0.03 0.01 0.01 

1000 0.94 0.94 0.94 0.94 0.95 0.95 0.01 0.01 0.01 0.01 0.01 0.01 

Non- 

Normal 

30 0.63 0.64 0.64 0.64 0.71 0.70 0.34 0.33 0.32 0.39 0.24 0.25 

60 0.78 0.78 0.78 0.79 0.86 0.85 0.20 0.20 0.19 0.21 0.12 0.12 

120 0.87 0.87 0.87 0.88 0.91 0.91 0.10 0.10 0.10 0.10 0.06 0.06 

250 0.92 0.91 0.92 0.91 0.94 0.93 0.05 0.05 0.05 0.05 0.03 0.03 

500 0.93 0.93 0.93 0.93 0.94 0.94 0.02 0.02 0.02 0.03 0.01 0.01 

1000 0.94 0.94 0.94 0.94 0.95 0.95 0.01 0.01 0.01 0.01 0.01 0.01 

 



 

48 

2.5. Empirical Illustration 

We illustrate how to apply SFA in practice and utilize the estimated candidate factor 

distribution for making probabilistic inferences about the true factor scores. Fornell et al. 

(1996) proposed a structural equation model, named the American customer satisfaction 

index (ACSI) model, to measure customers’ average satisfaction levels on major American 

companies in different sectors and industries. As displayed in Figure 2.2, they assumed the 

causal relationships between a focal latent variable, customer satisfaction (CS), and its five 

antecedent or outcome latent variables—customer expectation (CE), perceived quality (PQ), 

perceived value (PV), customer complaints (CC), and customer loyalty (CL). This model 

contains fourteen indicators to measure the six latent variables. Refer to Fornell et al. (1996) 

for more information on the latent variables and their indicators. 

 

Figure 2.2. The American customer satisfaction (ACSI) model. 

We analyze company-level data from the ACSI database collected in 2002. The 

sample size is 152. We apply SFA and JCA-ML to fit the model to the dataset and obtain 
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their parameter estimates. We estimate the standard errors and 95% confidence intervals of 

SFA’s parameter estimates based on 1000 bootstrap samples. We use the SFA Prime and 

lavaan packages for SFA and JCA-ML, respectively, applying the same values for the 

maximum number of iterations and tolerance levels as those used in the simulation studies. 

SFA provides that IPEO = .013, indicating that the measurement model with the 

candidate factor score estimates explains 98.7% of the total variance of the fourteen 

indicators. However, the critical value of IPEO at α =.05 obtained from the B-S bootstrap 

method is .003, leading to a rejection of the measurement model with the candidate factor 

score estimates. This suggests that some part of the measurement model may be misspecified 

or the candidate factor score estimates may fail to recover the population covariance matrix. 

In this case, researchers should revise the measurement model more thoroughly before 

moving on to the next SFA stage. For illustration purposes, nonetheless, we here proceed 

with the second stage, assuming that the measurement model is correctly specified. SFA 

provides that IPEL = .305, indicating that the structural model accounts for 69.5% of the 

variances of all the endogenous latent variables on average. When applying JCA-ML, we find 

that the ACSI model may also be rejected as a whole (χ2(69) = 1768.16, p = .000).  

Tables 2.5 and 2.6 exhibit the loading and path coefficient estimates, and their 

standard errors and 95% confidence intervals obtained from SFA and JCA-ML. SFA’s 

loading estimates are all statistically significant and large, and most of its path coefficient 

estimates are statistically significant and generally consistent with the hypothesized 

relationships in the ACSI model. In contrast, JCA-ML fails to provide the standard errors and 

95% confidence intervals of its parameter estimates, making it impossible to test the 

statistical significance of the estimates. Moreover, some of JCA-ML’s estimates appear 

counterintuitive theoretically or substantively. For instance, some loading estimates for 

perceived value and customer loyalty are equal to one, indicating that the corresponding 



 

50 

indicators contain no measurement error. Also, the path coefficient estimate relating customer 

satisfaction to customer loyalty is negative, indicating that more satisfied consumers are less 

likely to remain. This is inconsistent with that the two variables are expected to be positively 

correlated (Fornell et al., 1996)(Fornell et al., 1996).  

Table 2.5. The loading estimates, their standard errors (SE), and 95% confidence intervals 

(CI) in the ACSI model obtained from SFA and JCA-ML. 

 SFA JCA-ML 

Latent 

variable 
Indicator Estimate SE 95% CI Estimate SE 95% CI 

 

CE 

 

z·1 .926 .013 [.898, .952] .935 NA NA 

z·2 .960 .001 [.941, .976] .962 NA NA 

z·3 .930 .013 [.903, .951] .919 NA NA 

 

PQ 

 

z·4 .974 .005 [.963, .983] .970 NA NA 

z·5 .971 .008 [.953, .985] .965 NA NA 

z·6 .940 .008 [.922, .955] .941 NA NA 

PV 
z·7 .942 .013 [.914, .968] .944 NA NA 

z·8 .995 .001 [.991, .997] 1.000 NA NA 

 

CS 

 

z·9 .992 .002 [.989, .995] .467 NA NA 

z·10 .975 .005 [.964, .983] .398 NA NA 

z·11 .918 .015 [.883, .945] .463 NA NA 

CL z·12 1 0 [1.000, 1.000] 1.000 NA NA 

CC 
z·13 .953 .010 [.933, .972] .934 NA NA 

z·14 .984 .009 [.962, .996] 1.000 NA NA 

 

Table 2.6. The path coefficient estimates, their standard errors (SE), and 95% confidence 

intervals (CI) in the ACSI model obtained from SFA and JCA-ML. 

 SFA JCA-ML 

Path Estimate SE 95% CI Estimate SE 95% CI 

CE → PQ .942 .011 [.918, .961] .936 NA NA 

CE → PV –.260 .237 [–.722, .218] -.271 NA NA 

PQ → PV 1.090 .244 [.574, 1.545] 1.149 NA NA 

CE → CS –.183 .072 [–.335, –.049] -2.050 NA NA 

PQ → CS .958 .086 [.814, 1.150] 2.551 NA NA 
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 SFA JCA-ML 

Path Estimate SE 95% CI Estimate SE 95% CI 

PV → CS .238 .040 [.149, .307] -.229 NA NA 

CS → CC –.460 .081 [–.618, –.298] -1.000 NA NA 

CS → CL .497 .056 [.377, .601] -95.610 NA NA 

CC → CL –.452 .049 [–.551, –.355] -96.290 NA NA 

 

 We also estimate SFA’s candidate factor score distribution for customer satisfaction. 

To estimate this distribution per company, specifically, we derive 1000 sets of candidate 

factor score estimates based on the resampling method described in Appendix B11. For 

illustration, we show the marginal distributions of the candidate factor score estimates for 

three companies, labeled ID1, 2, and 21, in Figure 2.3. ID1 shows a higher level of customer 

satisfaction (mean = .996, 95% candidate factor score interval = [.813, 1.108]) than ID2 

(mean = .704, 95% candidate factor score interval = [.542, .843]) and ID21 (mean = -.270, 95% 

candidate factor score interval = [–.462, –.151]).  

 

Figure 2.3. Marginal distributions of the candidate factor scores of customer satisfaction for 

three companies labeled ID1, ID2, and ID21. 

However, the 95% candidate factor score intervals of ID1 and ID2 overlap slightly, 

indicating that there may still be a chance that the two companies have the same level of 

customer satisfaction. Thus, we further calculate the probability for ID1 to have a higher level 

of customer satisfaction than ID2. Figure 2.4 displays the distribution of the differences in 
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customer satisfaction scores between them. The blue area of the histogram amounts to the 

probability that the differences between ID1 and ID2 are greater than zero. In our example, 

this probability is equal to 99.4%, indicating that 99.4% of ID1’s candidate factor scores are 

greater than their respective candidate factor scores of ID2. The result helps researchers 

conclude with great confidence that ID1 has a higher level of customer satisfaction than ID2.  

 

Figure 2.4. The distribution of the differences in the candidate factor scores of customer 

satisfaction between two companies ID1 and ID2. The colored area represents the probability 

for ID1 to have a higher customer satisfaction score than ID2. 

 

2.6. Discussion 

We proposed a new data matrix-based SEM approach, named structured factor analysis 

(SFA), which can circumvent the two enduring issues of Jöreskog’s covariance-based 

approach (JCA; Jöreskog, 1978): the occurrence of improper solution and the lack of a formal 

procedure for making probabilistic inferences about the true factor scores. SFA begins by 

estimating measurement model parameters and (candidate) factor scores simultaneously 

while preventing the occurrence of improper solutions. In the first simulation study, we 

demonstrated that the SFA estimator always converged to proper solutions even in an 

experimental condition where the JCA-ML estimator yielded improper solutions in more than 

60% of the samples. Furthermore, in the same condition, the bias of the SFA estimator was 
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smaller than or comparable to that of the JCA-ML estimator on average. The results suggest 

that SFA can be an alternative when JCA-ML produces improper solutions. 

 In addition, SFA can estimate the probability distribution of all factor scores that can 

generate a given data matrix of indicators, under the assumption that the true factor scores are 

representative of the population. In the second simulation study, we showed that the coverage 

probability of SFA’s candidate factor score interval converged to a prescribed rate (e.g., 95%) 

when the sample was sufficiently large (e.g., N ≥ 500). Moreover, in a real data analysis, we 

illustrated how the estimated candidate factor score distribution could be utilized for making 

probabilistic inferences on the true factor scores. We could obtain the 95% candidate factor 

score intervals for a latent variable (i.e., customer satisfaction) for all observations and 

calculate the probability for an observation to have a higher level of the latent variable than 

another observation. JCA does not enable such probabilistic inferences about the true factor 

scores. 

Although SFA is developed as an alternative to JCA, it can also be considered a data 

matrix-based alternative to two-stage covariance-based approaches such as factor score 

regression (Croon, 2002; Lu et al., 2011; Skrondal & Laake, 2001) or structural-after-

measurement methods (Rosseel & Loh, 2022). Similar to SFA, these existing two-stage 

approaches begin by estimating measurement model parameters as well as individual factor 

scores (or weights for obtaining factor scores) and subsequently estimate remaining structural 

model parameters based on the estimated factor scores. Nonetheless, SFA has clear 

advantages over the two-stage covariance-based approaches. First, the two-stage covariance-

based approaches do not completely overcome the occurrence of improper solutions (e.g., 

Cho, Sarstedt, et al., 2022) and have no mechanism for making probabilistic inferences about 

the true factor scores. Second, they rely on conventional formulas that estimate factor scores 

as weighted sums of indicators’ scores (e.g., Anderson & Rubin, 1956; Bartlett, 1937; 
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Thurstone, 1934). As the sample covariance matrix of these factor scores can never be true, 

the existing approaches have to apply an additional bias correction/avoiding procedure 

(Croon, 2002; Skrondal & Laake, 2001) for obtaining unbiased path coefficient estimates in 

the second stage. In contrast, SFA seeks to estimate candidate factor scores whose covariance 

matrix is equivalent to the covariance matrix of the true factor scores, thereby enabling itself 

to provide unbiased path coefficient estimates without adopting any additional procedure. 

Furthermore, SFA can be seen as an extension of matrix decomposition factor 

analysis (MDFA), which is a class of data matrix-based approaches to exploratory factor 

analysis (Adachi & Trendafilov, 2018; de Leeuw, 2004; Sočan, 2003; Unkel & Trendafilov, 

2010). MDFA aims to minimize the same cost function as SFA’s to estimate measurement 

model parameters and factor scores concurrently. However, it does not allow researchers to 

specify which parameters are free or fixed based on their prior knowledge, simply pre-setting 

the factor covariance matrix to be diagonal and all loadings to be non-zero. Conversely, SFA 

permits specifying and estimating a broad array of both measurement and structural models, 

thus being able to stand as a full-fledge method for SEM. 

Despite its usefulness, SFA can be technically extended in various ways to enhance its 

generality. For example, SFA is currently developed to deal with continuous variables only. 

Thus, it is important to extend SFA to handle discrete variables as well, which are not 

uncommon to encounter in practice. Moreover, it is meaningful to expand SFA to 

accommodate more complex models, including those with latent interactions (e.g., Marsh et 

al., 2013), random intercepts (Maydeu-Olivares & Coffman, 2006), and/or components (Gu 

et al., 2019; Hwang, Cho, Jung, et al., 2021).  

Furthermore, although SFA provides a statistical testing procedure for its goodness-

of-fit index IPEO based on the B-S bootstrap method, it does not offer a procedure for 

identifying which parts of the measurement model might be wrong. In JCA, the modification 
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index (MI; Sörbom, 1989) provides such information and serves as a reference on how to 

modify the model to improve its fit, under the normality assumption. Thus, it may be useful 

to develop an index akin to the MI for SFA.  

Besides SFA’s technical refinement, further empirical studies are needed to 

investigate its performance from more diverse perspectives. In our simulation studies, we 

have considered a limited number of data generating models, although they could still be 

considered complex involving many factors, a bi-factor structure, and/or correlated unique 

factors. Thus, it would be desirable to examine whether SFA can show similar, impressive 

performance in a greater variety of data generating models. Also, we focused on evaluating 

the performance of SFA and JCA, as SFA is proposed as an alternative to JCA. However, 

there are many other SEM methods (e.g., Bollen, 2019; Hwang et al., 2017; Lance et al., 

1988; Oldenburg, 2020; Rosseel & Loh, 2022), so it can be important to compare SFA to 

other SEM methods through simulation studies.  

In closing, SFA represents a novel data matrix-based approach to SEM that integrates 

the measurement of factor scores and the estimation of model parameters into a single 

framework. Although more technical and empirical studies can be needed to further improve 

its data-analytic flexibility and establish its practical utility as we have discussed some of 

them above, we believe that SFA can make a significant contribution to broadening SEM’s 

applicability. Obviously, SFA can be a sensible choice if researchers want to avoid the 

occurrence of improper solutions and/or make probabilistic inferences about the true factor 

scores. Moreover, even after using other SEM methods, researchers may still consider 

applying SFA to evaluate their model’s prediction accuracy for indicators based on the IPEO. 

Finally, it will be essential to develop an R package or user-friendly software for SFA to 

facilitate its wide adoption by researchers and practitioners.  
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Chapter 3. Generalized Structured Component Analysis Accommodating 

Convex Components: A Knowledge-Based Multivariate Method with 

Interpretable Composite Indexes 

 

Manuscript: Cho, G., & Hwang, H. Generalized structured component analysis 

accommodating convex components: A knowledge-based multivariate method with 

interpretable composite indexes. Under review at Psychometrika. 

 

Abstract 

Generalized structured component analysis (GSCA) is a multivariate method for examining 

theory-driven relationships between variables including components. GSCA can provide the 

deterministic component score for each individual once model parameters are estimated. As 

the traditional GSCA always standardizes all indicators and components, however, it could 

not utilize information on the indicators’ scale in parameter estimation. Consequently, its 

component scores could just show the relative standing of each individual for a component, 

rather than the individual’s absolute standing in terms of the original indicators’ measurement 

scales. In the paper, we propose a new version of GSCA, named convex GSCA, which can 

produce a new type of unstandardized components, termed convex components, which can be 

intuitively interpreted in terms of the original indicators’ scales. We investigate the empirical 

performance of the proposed method through the analyses of simulated and real data.  

 

Keywords: Generalized structured component analysis, convex component, multivariate 

analysis, composite index, interpretability 
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3.1. Introduction 

Generalized structured component analysis (GSCA; Hwang & Takane, 2004, 2014) is a 

multivariate method that allows for specifying and testing path-analytic relationships between 

observed variables and components (i.e., weighted sums of observed variables). Observed 

variables forming components are called composite indicators (Bollen & Bauldry, 2011). 

Given a theory-driven model, GSCA constructs components from composite indicators such 

that the components can explain the total variances of all dependent variables in the model as 

much as possible.  

 As in many component analysis techniques, GSCA has typically assumed that all 

components and indicators were standardized to have zero means and unit variances. This 

traditional, standardized version of GSCA shall be called GSCAstd hereafter. GSCAstd begins 

by standardizing indicators prior to estimating parameters and updates component weights in 

such a way that they produce standardized components during the estimation process. Such 

standardization can be useful for the interpretation and comparison of GSCAstd’s estimates 

because the GSCAstd model is equivalent to a system of multiple regression equations for 

standardized components and indicators, indicating that its loadings and path coefficients can 

be interpreted as standardized regression coefficients.  

 Nonetheless, the conventional standardization of components makes it difficult to 

interpret component scores in terms of the original indicators’ measurement scales. The 

standardized component score for an individual merely shows the individual’s relative 

location to the other individuals in the sample and the absolute score itself is not interpretable. 

This is less attractive to researchers who are interested in the absolute level of a component 

for each individual. For example, if a standardized component is used to measure the level of 

life satisfaction, an individual’s component score can inform whether s/he has a relatively 

lower or higher level of life satisfaction than the others. However, it cannot tell exactly what 
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the level of her/his life satisfaction is, reflecting whether s/he is satisfied or dissatisfied with 

her/his life. 

 Moreover, if indicators for each component are measured on the same scale, which is 

often observed in practice, standardizing the indicators may not be recommended because it 

can eliminate “the natural and relevant variability present” (Naik & Khattree, 1996) in each 

of the indicators, forcing them to have the same variance, although their variances may not be 

the same in reality. For illustration, suppose that we made two versions of test batteries to 

assess children’s intelligence, both of which were measured on a 0 to 100 scale. Three 

children took these tests and obtained {49, 50, 51} for Test 1 and {0, 50, 100} for Test 2. The 

results show that Test 1 almost fails to differentiate the children’s intelligence levels, whereas 

Test 2 differentiates their intelligence level very well, indicating that the difference in score 

variability between the two tests is interpretable and contains meaningful information. 

However, when we standardize these scores, such information disappears since both score 

sets become identical (i.e., {–1, 0, 1}). If GSCAstd is applied to the tests, the same 

standardized weight values (i.e., .5) will be assigned to the two tests. 

To obtain unstandardized component scores from original indicators, GSCAstd applies 

an additional rescaling of weight estimates after convergence (Hwang & Takane, 2014, 

Chapter 2). As will be discussed in more detail in Section 3.2.2, each indicator’s weight 

estimate is rescaled by dividing it by the indicator’s standard deviation. Subsequently, 

unstandardized component scores are obtained by pre-multiplying the rescaled weights by 

their indicators’ original scores.  

However, this rescaling procedure has two issues. Firstly, the procedure is carried out 

while keeping the variances of components fixed to one. Thus, the variances of the resultant 

unstandardized components are likely to be different from those of the original indicators, so 

that it is not guaranteed that the unstandardized component scores would vary within the 
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same range of the original indicators. Secondly, the rescaling procedure tends to have 

indicators with relatively small variances influence the construction of their unstandardized 

component more heavily. In the above example, as the sample standard deviations of the two 

test batteries were 1 and 50, the unstandardized weights obtained from this ad-hoc rescaling 

procedure would be .5 and .01 for Tests 1 and 2, respectively. This indicates that Test 1 is 50 

times more influential for forming children’s unstandardized component scores than Test 2, 

even though Test 2 differentiates children’s intelligence levels much better than Test 1. In 

Section 3.2.2, we will explain why this issue occurs in the rescaling procedure. 

 To address these issues, we propose a different version of GSCA, named convex 

GSCA or GSCAcvx for short, which can estimate unstandardized components of original 

indicators. Specifically, GSCAcvx obtains an unstandardized component as a convex 

combination of original indicators, termed a convex component, if the indicators for the 

component have the same measurement scale. A convex combination of a set of vectors 

refers to a special linear combination whose weights are non-negative and summed up to one 

(Lay et al., 2015, Chapter 8). As will be shown in Section 3.3, a convex component’s scores 

are within the same range of its indicators’ scores. This property of the convex component 

facilitates the interpretation of its component scores with reference to the indicators’ scales. 

Moreover, GSCAcvx avoids the unnecessary standardization of indicators when they are on 

the same measurement scales, allowing for utilizing information on their variances in 

parameter estimation.  

 The remaining sections of the paper are organized as follows. In Section 3.2, we 

briefly describe GSCAstd and explain its ad-hoc procedure of computing unstandardized 

components and the procedure’s limitation. In Section 3.3, we introduce a convex component 

and explain its six properties. In Section 3.4, we present the GSCAcvx model that 

accommodates convex components and propose an iterative algorithm for estimating model 
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parameters. We also provide a set of overall goodness-of-fit and cross-validation indexes for 

model evaluation and comparison. In Section 3.5, we conduct a Monte-Carlo simulation 

study to examine GSCAcvx’s parameter recovery. In Section 3.6, we apply GSCAcvx to real 

data to demonstrate its practical usefulness. In Section 3.7, we summarize the previous 

sections and discuss the method’s implications and prospective extensions. 

 

3.2. Traditional GSCA with Standardized Variables 

3.2.1. Model and Parameter Estimation 

GSCAstd involves three sub-models—weighted relation, component measurement, and 

structural models (Hwang & Takane, 2004, 2014). Let zstd = [zstd,1, zstd,2, ···, zstd,J]' denote a J 

by 1 random vector of standardized indicators, where zstd,j is the jth standardized indicator, 

i.e., E(zstd,j) = 0 and var(zstd, j) = 1 (j = 1, 2, ∙∙∙, J). The mean of zstd is a zero vector, and the 

correlation matrix of zstd is denoted by Σstd. Let γstd = [γstd,1, γstd,2, ···, γstd,P]' denote a P by 1 

random vector of standardized components, where γstd,p is the pth standardized component, 

i.e., E(γstd,p) = 0, var(γstd,p) = 1 (p = 1, 2, ∙∙∙, P). Let Wstd denote a J by P matrix consisting of 

component weights assigned to indicators. Let Cstd denote a P by J matrix of loadings relating 

components to indicators. Let Bstd denote a P by P matrix of path coefficients relating 

components to each other. Let ξ = [ξ1, ξ2, ···, ξJ]' denote a J by 1 random vector of errors in 

the component measurement model, where ξ j is an error for the jth indicator. Let ζ = [ζ1, ζ2, 

···, ζP]' denote a P by 1 random vector of errors in the structural model, where ζ p is an error 

for the pth component. The three sub-models of GSCAstd are expressed as follows. 

        γ
std

 ≡ Wstd'zstd (weighted relation model) (3.1) 

                          zstd = Cstd'γ
std

 + ξ (component measurement model) (3.2) 

  γ
std

 = Bstd'γ
std

 + ζ (structural model). (3.3) 
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The weighted relation model (3.1) shows that (standardized) components are defined as a 

linear combination of standardized indicators. The component measurement and structural 

models (3.2) and (3.3) express the directional relationships between the indicators and 

components and those among the components, respectively. As (3.2) and (3.3) can be seen as 

systems of linear regression equations, their model parameters, including loadings and path 

coefficients, can be interpreted in the same manner as standardized regression coefficients. 

The three sub-models are combined into the following equation,  

 

[zstd; γ
std

] = [Cstd, Bstd]'γ
std

 + [ξ; ζ]                

↔ [IJ, Wstd]'zstd = [Cstd, Bstd]'Wstd'z
std

 + [ξ; ζ]

↔ Vstd'z
std

 = Astd'Wstd'zstd + e,                               

 (3.4) 

where IJ is the identity matrix of order J, Vstd ≡ [IJ, Wstd], Astd ≡ [Cstd, Bstd], e ≡ [ξ; ζ], and a 

semicolon within brackets is an operator to vertically concatenate two vectors in the array. 

The equation (3.4) is called the GSCAstd model. 

Let 1Q denote a column vector of Q ones. Let SS(X) ≡ tr(X'X) for any matrix X. Let 

vecdiag() denote an operator that returns a column vector stacking the diagonal elements of a 

square matrix one below another. GSCAstd estimates model parameters (Wstd and Astd) by 

minimizing the following objective function  

 

f
std

(Wstd, Astd)

  = tr(E(estdestd'))

  = E(SS([zstd; γ
std

]' –zstd'WstdAstd),

  = E(SS(zstd'([IJ, Wstd] – WstdAstd))

  = tr((Vstd – WstdAstd)'Σstd(Vstd – WstdAstd))

 (3.5) 

subject to vecdiag(Wstd'ΣstdWstd) = 1p. Thus, GSCAstd estimates the model parameters by 

minimizing the sum of error variances for all variables in the model given Σstd. In general, 

Σstd is replaced with the sample correlation matrix of indicators, denoted by Sstd. The 

objective function (3.5) also shows that GSCAstd aims to create components that explain the 

total variances of variables in the model rather than their covariances, as with PCA or other 
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component-based methods. The error terms in the GSCAstd model are not considered 

independent entities that cause the variation of indicators but simply treated as residuals that 

are unexplained by independent components. Thus, GSCAstd typically makes no assumptions 

about the correlation structure of the error terms of indicators, leaving them freely correlated. 

This is distinct from the common factor model, where the error terms are typically assumed 

to be uncorrelated. Nonetheless, no error covariances between different blocks of indicators 

may be assumed in some special cases of GSCA (Cho et al., 2020; Cho, Sarstedt, et al., 2022). 

  Note that (3.1) defines a component as a weighted sum of indicators, which is also 

the case in PCA. However, this equation itself is not identified because there would exist 

infinitely different ways of deciding the component weights. Thus, we need a certain rule or 

criterion to determine the component weights. PCA’s criterion is one of the most widely used 

ones in statistics that the weights are to be determined in such a way that their corresponding 

components explain the maximum total variance of the indicators. The regression coefficients 

of indicators on their component are (component) loadings. These relationships between 

components and their indicators are expressed in the component measurement model (3.2). 

Thus, GSCA can have confirmatory PCA (Takane, Kiers, & de Leeuw, 1995) as a special 

case when it considers (3.1) and (3.2) only.  

As the minimization problem (3.5) cannot be solved in closed form, an alternating 

least squares (ALS) algorithm was developed for iteratively finding the minimum point of 

(3.5). In the ALS algorithm, Wstd and Astd are updated alternately with the other fixed until 

the difference in (3.5) between consecutive iterations decreases beyond a pre-specified 

tolerance level (e.g., 10–5) (see Hwang & Takane, 2014, Chapter 2, for a full description of 

the ALS algorithm). Let  Γ̂std denote an N by P matrix of the standardized score estimates of 

components, Dstd denote an N by J matrix of the standardized scores of indicators, and N is 

the number of cases in the sample. Let us suppose that we obtain the estimates of Wstd and 
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Astd that minimize (3.5), denoted by Ŵstd and Âstd.  Then, a matrix of standardized 

component scores is obtained by  

  Γ̂std ≡ DstdŴstd. (3.6) 

3.2.2. Unstandardized Weight Estimates in GSCAstd 

Let D = 1Nμ̂' + DstdΔ̂z denote an N by J matrix of the unstandardized scores of indicators, 

where μ̂ is a J by 1 sample mean vector and Δ̂z is a diagonal matrix whose entries are sample 

standard deviations of unstandardized indicators. Conventionally, unstandardized component 

means are subsequently computed by transforming Ŵstd as follows. As it follows from (3.6) 

that 

 

Γ̂std = (D – 1Nμ̂')Δ̂z

−1
Ŵstd              

↔ 1Nμ̂'Δ̂z

–1
Ŵstd + Γ̂std  = DΔ̂z

–1
Ŵstd

↔ 1Nμ̂'Ŵuni + Γ̂std  = DŴuni,              

 (3.7) 

where Ŵuni ≡ Δ̂z

–1
Ŵstd, GSCAstd computes unstandardized component scores, denoted here 

by Γ̂uni, as Γ̂uni ≡ DŴuni (Hwang & Takane, 2014, p. 26).  

As shown in the last line of (3.7), however, Γ̂uni can be simply seen as a variant of 

standardized component scores whose means are only relocated a posteriori by 1Nμ̂'Ŵuni in 

that Γ̂std  remains standardized irrespective of the sample variances of the original indicators. 

Consequently, it is not guaranteed that the scores of Γ̂uni are within the same range of the 

unstandardized scores of their indicators, which will be empirically shown in Section 3.5. 

Also, as illustrated in Section 3.1, GSCAstd tends to assign smaller unstandardized weights to 

original indicators with relatively large variances in forming Γ̂uni. That is because minimizing 

(3.5) involves imposing a relatively large penalty on an original indicator with a relatively 

large variance, which is shown in Appendix C1. This disproportionate penalization for 

original indicators can inadvertently amplify the influence of an original indicator with a 

small variance on GSCAstd’s parameter estimation. Such an approach could be deemed 
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unsuitable when one aims to obtain an unstandardized component of original indicators on a 

single scale. 

 

3.3. Convex Component and Its Six Properties 

Let γp denote the pth component (p = 1, 2, ···, P) that is assumed to have the mean τp and 

variance ϕp. Let zp denote a Jp by 1 vector of indicators for γp, where Jp is the number of 

indicators for γp. We call the vector zp a block of indicators for γp, which is assumed to have 

the mean vector μp and covariance matrix Σp. Let wp denote a Jp by 1 vector of weights for zp. 

Let 0k×l denote a k by l matrix of zeros, where k and l are any scalars. If γp is defined as a 

convex component, it can be expressed as  

 γp ≡ wp'zp subject to wp'1Jp = 1 and wp ≥ 0Jp×1. (3.8) 

A convex component has six useful properties as follows.  

Proposition 1. A convex component has scores within the range of its indicators’ scores. 

Proposition 2. Each score of a convex component corresponds to a component score of an 

individual whose scores for indicators are all the same as the component score. 

Proposition 3. The mean of a convex component is not fixed to zero but is determined by 

weights within the range of its indicators’ means. 

Proposition 4. The standard deviation of a convex component is not fixed to one but is 

determined by weights within the range from 0 to the maximum standard deviation of its 

indicators. 

Proposition 5. Given a linearly independent set of indicators’ scores, a set of convex 

component scores has a unique set of weights that are nonnegative and summed up to one. 

Proposition 6. The path coefficient of a convex component on an outcome variable indicates 

the expected amount of change in the outcome variable for a unit change in each indicator of 

the convex component while holding other variables fixed. 
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We provide proofs for the six propositions in Appendix C2. The first four properties make a 

convex component’ scores, mean, and standard deviation interpretable with reference to its 

indicators’ scale when its indicators are on the same scale. The fifth property allows 

interpreting weight parameters as the contribution rates of indicators to forming their 

component. The last property allows for interpreting the path coefficient of a convex 

component with respect to its indicators’ scale. We here illustrate these properties with an 

example of (major) depression. 

Let us assume that depression can be represented by a convex component (γ) with 

three symptom-related indicators (z1 = depressed affect, z2 = somatic discomfort, and z3 = 

interpersonal problem), which are commonly rated on a seven-point Likert scale (0 = “none”, 

1 = “minimal”, 2 = “mild”, 3 = “moderate”, 4 = “moderately severe”, 5 = “severe”, and 6 = 

“extremely severe”). It is generally considered safe to treat ordinal variables with five or 

more categories as continuous (Johnson & Creech, 1983; Norman, 2010; Sullivan & Artino, 

2013; Zumbo & Zimmerman, 1993). Then, this depression component serves as a summary 

index whose score indicates the overall severity level of the three depressive symptoms for 

each individual. Specifically, once weight parameters are estimated, a score set of depression 

component is obtained given a dataset of its indicators. Proposition 1 indicates that all 

individuals’ scores of depression component will be within the range of the measurement 

scale of its indicators (e.g., [0, 6]). Proposition 2 implies that each individual’s score of 

depression component within the range can be interpreted as the depression level of an 

individual whose indicators’ scores are all the same as the depression component score. For 

example, if a patient’s depression component score is 3, it implies that their depression level 

can be considered equivalent to that of depression of a patient whose symptom levels are all 

moderate (i.e., 3), suggesting that their depression is generally moderate. By Propositions 3 

and 4, the means and the standard deviations of depression component are determined by 
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weight parameter estimates within the range of its indicators’ original scales (e.g., [0, 6]) as 

well, which can also be interpreted in relation to those scales. For instance, if the mean of 

depression component scores turns out to be 5, it means that the average depression level of 

patients in the sample can be considered equivalent to the depression level of a patient whose 

symptom levels are all severe, or that the patients’ depression is severe on average. Also, if 

the standard deviation of depression component scores turns out to be 1, it implies that the 

depression severity levels of patients in the sample were one-unit lower or higher than the 

moderate level on average. 

By Proposition 5, it is guaranteed that once a set of depression component scores is 

obtained with a set of weight estimates, any other set of weight estimates does not exist that 

makes the same score set of depression component while satisfying the constraint in (3.8). As 

these weight estimates are always non-negative and summed up to one, they can be 

interpreted as the indicators’ contribution ‘rates’ of forming the convex component. For 

example, suppose that the weight estimates for z1, z2 and z3 are .41, .24, and .35, respectively. 

It indicates that when the severity level of depression component increases by one unit due to 

a one-unit increase in all the three symptom-related indicators, the contribution rates of z1, z2 

and z3 to the one-unit increase of depression severity are 41%, 24%, and 35%, respectively. 

Such interpretation was not applicable to weight of standardized components, as their values 

can be negative and not necessarily summed up to one. Note that this proposition is satisfied 

only if a linearly independent set of indicators’ scores is given as a dataset. A set of indicators’ 

scores being linearly independent means that a score vector of an indicator cannot be 

expressed as a linear combination of score vectors of the other indicators, which further 

implies that sample covariance matrix of the indicators is positive definite. 

By Proposition 6, the path coefficient of a convex component on an outcome variable 

can be interpreted as an aggregate effect of the indicators of the convex component on the 
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outcome variable, given that the structural model holds. For example, let’s consider a 

situation where a path coefficient of a depression component on employment earnings for the 

year of depression reported is identified -$5000 (e.g., Dobson et al., 2021). This would 

suggest that a one unit increase across all depression symptoms, such as a shift in all 

depression symptom levels from mild to moderate, would be associated with a $5000 loss for 

the individual experiencing depression. Such an interpretation was not feasible for path 

coefficients of standardized components.  

 

3.4. Convex GSCA 

3.4.1. Model Specification 

Convex GSCA (GSCAcvx) introduces a convex component with original indicators into the 

GSCA model. The GSCAcvx model also consists of three sub-models: weighted relation, 

component measurement, and structural models (Hwang & Takane, 2004, 2014). Let γ = [γ1, 

γ2, ···, γP]' denote a P by 1 random vector of components. Each component (γp) can be either 

a convex or standardized component. If a block of indicators (zp) has the same measurement 

unit within the block, γp is defined as a convex component as expressed in (3.8). Otherwise, 

γp is defined as a standardized component, whose indicators (zp) are also assumed to be 

standardized such that τp = 0, ϕp = 1, μp = 0Jp×1, and vecdiag(Σp) = 1Jp. Let W denote a J by P 

matrix consisting of component weights assigned to z. Let C denote a P by J matrix of 

loadings relating γ to z. Let B denote a P by P matrix of path coefficients relating γ to each 

other. Let c0 and b0 denote the column vectors of intercepts for the component measurement 

and structural models, respectively. The three sub-models of GSCAcvx are expressed as 

follows. 

 γ ≡ W'z (weighted relation model) (3.9) 

                         z = c0 + C'γ + ξ (component measurement model) (3.10) 



 

75 

  γ = b0 + B'γ + ζ (structural model).        (3.11) 

In GSCAcvx, the weighted relation model (3.9) shows that each component is defined as a 

weighted sum of standardized or unstandardized indicators. As GSCAcvx may involve 

unstandardized variables, intercept terms (c0 and b0) are newly included into the component 

measurement and structural model (3.10) and (3.11). Each model parameter in (3.10) and 

(3.11)—intercepts, loadings, and path coefficients—can be interpreted in the same manner as 

the intercepts and regression coefficients in linear regression model with unstandardized 

variables. The three sub-models are combined into the following equation,  

 

[z; γ] = [c0; b0] + [C, B]'γ + [ξ; ζ]                

↔ [IJ, W]'z = [c0; b0] + [C, B]'W'𝐳 + [ξ; ζ]

↔ V'z = a0 + A'W'z + e,                               

 (3.12) 

where a0 ≡ [c0; b0], V ≡ [IJ, W], A ≡ [C, B], and e ≡ [ξ; 𝛇]. The equation (3.12) is called the 

GSCAcvx model. If every indicator and component is standardized, the GSCAcvx model (3.12) 

becomes identical to the GSCAstd model (3.4). 

3.4.2. Parameter Estimation 

Let σp denote a Jp by 1 vector of standard deviations (SD) of zp. If the pth component is 

defined as standardized ones, σp is equivalent to 1Jp. Let Oz denote a J by J diagonal matrix 

whose jth element is Jp
–11Jp'σp if the jth indicator in the pth block is a dependent variable and 

zero otherwise. Let Oγ denote a P by P diagonal matrix whose pth element is Jp
–11Jp'σp if the 

pth component is a dependent variable and zero otherwise. Let O ≡ blkdiag(Oz, Oγ). GSCAcvx 

estimates parameters by minimizing the following objective function  

  

f
cvx

(W, A, a0)

 = tr(OE(ee')O)

 = E(SS(([z; γ]' – (a0' + z'WA))O)),

 (3.13) 

subject to wp'Σpwp = 1 or 1Jp'wp = 1 (p = 1, 2, ···, P). The objective function (3.13) shows 

that components in GSCAcvx are constructed such that they can minimize the “weighted” sum 
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of error variances for all dependent variables under the constraints. Specifically, the objective 

function (3.13) penalizes each prediction error for dependent variables differentially by 

dividing it by the average SD of the corresponding block of indicators. This prevents 

prediction errors for a block of indicators with large variances from dominating the 

estimation of parameters.  

To help understand the role of O in (3.13), we illustrate how O is determined based 

on the standard deviations of indicators. This will also explain the characteristic of the 

objective function described above. Figure 3.1 presents an illustrative GSCAcvx model 

involving two convex components (γ1 and γ2), each measured by three indicators that share 

the same scale, while the scales of two indicator blocks differ. Let us assume that σ1 = [1; 2; 

3] and σ2 = [100; 200; 300], indicating that the differences in the overall magnitude of 

indicators’ variances between the two blocks arises from the difference in scale. In this case, 

without O in (3.13) (i.e., O = I), the value of (3.13) would predominantly rely on the error 

variances for z2 and γ2, implying that the error variances for z1 would be rarely considered in 

parameter estimation due to their scale. However, GSCAcvx determines O = blkdiag(Oz, Oγ), 

where Oz = blkdiag(2, 2, 2, 200, 200, 200)–1 and Oγ = blkdiag(0, 200–1), and then uses it to 

penalize the error variances for z2 and γ2 to adjust their effects on (3.13). For instance, given 

A = 0 and a0 = E([z; γ]), there are substantial differences in error variances between z1 and z2 

(i.e., [12; 22; 32] for z1 and [1002; 2002; 3002] for z2), but their error variances contribute 

equally to the value of (3.13) (i.e., (12 + 22 + 32)/22 = [1002; 2002; 3002]/2002). This suggests 

that introducing O into (3.13) enables GSCAcvx to consider prediction errors for both z1 and 

z2 during the parameter estimation process. 
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Figure 3.1. An illustrative GSCAcvx model. Hexagons represent components, squares denote 

indicators, straight lines indicate weights, single-headed arrows denote loadings and path 

coefficients. All intercepts and error terms are omitted to make the figure concise. 

Conversely, as illustrated above, the objective function (3.13) does not impose 

different penalties on indicators within the same block to take into account potential 

differences in their variances. Furthermore, the objective function (3.13) is partially scale-

invariant, which means that the minimum value of (3.13) does not vary with a linear change 

of measurement scales of each block of indicators that share the same scale (e.g., a scale 

range from 1 – 10 to 0 – 100), leading to the same weight estimates. This property is distinct 

from a property of (full) scale invariant (Swaminathan & Algina, 1978) in that changing the 

measurement scales of each indicator differentially (e.g., standardization) is not considered. 

The proof for the property is provided in Appendix C3.  

As the minimum point of (3.13) cannot be found in closed form, we developed an 

ALS algorithm for iteratively finding its minimum point. A detailed description of the ALS 

algorithm is provided in Appendix C4. Note that we do not constrain the weights for convex 

components to be non-negative in (3.13) to make the method more flexible. In some cases, 

researchers may wish to examine which indicators contribute to forming a component in the 

opposite direction to the other indicators and may be excluded during model re-specification. 

The negative weight of an indicator for a convex component may signify that the indicator is 

not suitable to form the component along with other indicators. As discussed in Appendix C4, 
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the ALS algorithm allows for the imposition of the additional non-negativity constraints on 

weights, forcing the weights to be always positive. 

3.4.3. Model Evaluation Indexes 

GSCAstd provides four overall goodness-of-fit measures, including FIT, AFIT, GFI, and 

SRMR, and one overall cross-validation index, out-of-bag prediction error (OPE). The FIT 

indicates the average explained variance of all variables in the model, whereas the AFIT is an 

adjusted version of FIT that takes into account the number of model parameters and sample 

size (Hwang & Takane, 2014, pp. 26–29). The GFI and SRMR evaluate the discrepancy 

between the sample and implied covariance matrices (Cho et al., 2020). The OPE aims to 

measure the average out-of-sample prediction error of the model for all variables via a 

bootstrapping-based cross validation and can be used for comparing models in terms of 

predictive generalizability (Cho et al., 2019). Whereas the GFI and SRMR can be used for 

GSCAcvx without modification, the FIT, AFIT, and OPE need to be modified for GSCAcvx 

because these measures were developed only for the condition where all variables are 

standardized. We revised FIT and OPE such that they can be applied for the GSCAcvx model 

with both standardized and unstandardized variables, taking into account the variances of 

dependent variables only.  

 We propose a modified version of FIT, termed FIT for unstandardized dependent 

variables (FITUD), as follows. 

 UD 0
ˆ ˆˆ ˆˆ(([ , ] ( ' )) )

FIT 1 .
ˆˆ ˆˆ(([ , ] '[ , ]) )

N

N J

SS

SS

− +
= −

−

D DW 1 a DWA O

D DW 1 μ I W O
 (3.14) 

The FITUD indicates the proportion of the explained variance of all dependent variables 

(including dependent convex components) to their weighted total variance. If every 

component and indicator is standardized, FITUD = 
Y

T

T
FIT, where T ≡ P + J and TY is the 
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total number of dependent variables in the model. Also, we provide the following two local 

fit measures of FITUD  

 UD 0 z
M

z

ˆ ˆˆˆ(( ( ' )) )
FIT 1 ,

ˆˆ(( ') )

N

N

SS

SS

− +
= −

−

D 1 c DWC O

D 1 μ O
 (3.15) 
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N

N
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− +
= −

−

γ

γ

DW 1 b DWB O

DW 1 μ W O
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where Ôz and Ôγ are sample analogies of Oz and Oγ. We refer to "local fit" as the goodness-

of-fit of GSCA’s sub-models. The FITM
UD and FITS

UD can be used for evaluating the 

component measurement and structural models, respectively. The FITM
UD indicates the 

proportion of the explained variance of all dependent indicators to their weighted total 

variance, whereas the FITS
UD indicates the proportion of the explained variance of all 

dependent (convex) components to their weighted total variance.  

 Moreover, we propose a revised version of OPE, termed OPE for dependent variables 

(OPEUD), to evaluate the predictive generalizability of models involving convex components, 

as follows. 

 
* * *

0UD

* *
1

ˆ ˆˆ ˆˆ(([ , ] ( ' )) )1
OPE .

ˆˆ ˆ(([ , ] '[ , ]) )ˆ

k
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K
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k k k k N k J k k

SS

K SS=
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=

−
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D D W 1 a D W A O

D D I W OμW 1
, (3.17) 

where Ŵk, Âk, âk, and μ̂
k
 are the parameter estimates obtained from the kth bootstrap sample 

(k = 1,2, ···, K), Ôk is the penalty term that rescales prediction errors for all dependent 

variables in the kth bootstrap sample, Dk
∗ is the kth test sample consisting of observations that 

are not included in the kth bootstrap sample, and Nk is the number of observations in the kth 

test sample. As shown in (3.17), the bootstrap sampling procedure generates pairs of mutually 

exclusive samples (bootstrap and test samples), over which a specified GSCA model is cross-

validated (for a detailed description of OPE’s computation, refer to Cho et al., 2019). The 

OPEUD represents the weighted average out-of-sample prediction error of the model for 

dependent variables. The value of the OPEUD ranges from 0 to infinity, where 0 means that a 
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specified model perfectly predicts every dependent variable, and a value over 1 indicates that 

the prediction accuracy of a specified model is worse than that of the null model, where all 

dependent variables are predicted by their sample means. Again, when every variable is 

standardized, OPEUD =  Y

Y Y

( )
OPE

T TT

T T

−
− . In addition, we provide the following two local 

cross-validation indexes of OPEUD 
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where Ôz,k and Ôγ,k are the penalty terms that rescale prediction errors for dependent 

indicators and components, respectively, in the kth bootstrap sample. The OPEM
UD and 

OPES
UD can be used for evaluating the predictive generalizability of the component 

measurement and structural models, respectively. 

 

3.5. Simulated Data Analysis 

We conduct a simulation study to examine the parameter recovery of the proposed method. 

Figure 3.2 depicts the population GSCAcvx model used in our simulation study. The 

population model involves four convex components, each of which is measured by four 

composite indicators. Indicators per block had different mean vectors: the mean vectors of 

indicators are [6, 5, 4, 3] for γ1, [5.5, 4.5, 3.5, 2.5] for γ2, [5, 4, 3, 2] for γ3, and [4.5, 3.5, 2.5, 

1.5] for γ4, respectively. 
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Figure 3.2. The population GSCAcvx model used in the simulation study. Double-headed 

arrows represent correlations. All intercepts and error terms are omitted to make the figure 

concise. 

We manipulate four experimental factors: the variances of indicators, correlations 

between indicators per component, distribution of indicators, and correlations among 

components. We consider the variances of indicators because this is a unique piece of 

information for the proposed method to use for creating components as compared to GSCAstd. 

The other three factors have been frequently considered in testing the performance of GSCA 

(e.g., Cho, Sarstedt, et al., 2022; Cho & Choi, 2020; Hwang, Malhotra, et al., 2010). 

Specifically, we consider three levels of the variances of indicators per component: [1, 1, 1, 

1], [1 2, 3, 4], and [1, 4, 9, 16]. We take into account three correlation matrices of indicators 

per component, which are provided in Table 3.1 (Cho & Choi, 2020). We consider two 

distributions of indicators: normal and non-normal. The normal distribution has a skewness 

of 0 and a kurtosis of 3, whereas the non-normal distribution has a skewness of 1.25 and a 

kurtosis of 3.75 as in Hwang et al. (2010). Lastly, we consider three levels of correlations 

among components (0, .2, and .4) as in Cho et al. (2022). In total, we consider 54 population 
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GSCA models with convex components (3 levels of indicators’ variances × 2 types of 

indicators’ distribution × 3 levels of indicators’ correlations × 3 levels of components’ 

correlations). 

Table 3.1. Three conditions of the correlation patterns of four indicators per component in the 

simulation study.  

  Condition 1 Condition 2 Condition 3 

  z1 z2 z3 z4 z1 z2 z3 z4 z1 z2 z3 z4 

z1 1    1    1    

z2 .24 1   .50 1   .49 1   

z3 .24 .20 1 .13 .43 .47 1  .56 .74 1  

z4 .17 .21 .13 1 .30 .23 .45 1 .66 .48 .69 1 

 

Per population model, we consider five sample sizes (N = 100, 200, 400, 800, and 

1500), for each of which 1000 samples are randomly generated from the multivariate 

distribution with the population mean vector and covariance matrix of indicators. The 

procedure of deriving the population covariance matrix of indicators from the prescribed 

parameter values of a population GSCAcvx model is explained in Appendix C5. We apply 

GSCAcvx
2 to each sample and obtain parameter estimates. 

 As parameter recovery measures, we empirically compute the absolute bias and root 

mean squared error (RMSE) of each parameter estimator. These measures are defined as  

 
1000

=1

1ˆ ˆAbsolute bias = E(θ) θ  ( θ ) θ
1000

−  − i

i

 (3.20) 

 
1000

2 2

=1

1ˆ ˆRMSE = E(θ θ) (θ θ)  
1000

−  − i

i

, (3.21) 

where θ is the value of each parameter, θ̂ is the estimator of θ, and θ̂i is the estimate of θ 

obtained from the ith sample. We focus here on reporting the average absolute bias and 

RMSE values of the estimators of weights, loadings, intercepts, component means, and 

 
2 The MATLAB code is available at https://osf.io/y75kg/?view_only=0d02aea6aaaa4aa29d405172544aae7d. 

https://osf.io/y75kg/?view_only=0d02aea6aaaa4aa29d405172544aae7d
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component variances over the population models per sample size, as the sample size is the 

only factor that substantially influences the absolute bias and RMSE values of the estimators. 

The results for each population model are provided in Supplementary Material. 

 Table 3.2 shows the average absolute bias and RMSE values of the estimators per 

sample size. In all sample sizes, the absolute biases of the weight, loading, and component 

mean estimators are small and close to zero on average. For example, when N = 100, the 

average absolute biases of the weight, loading, and component mean estimators are .002, .022, 

and .008, respectively. They continue to decrease and approach zero when the sample size 

increases. The average RMSE values of the same estimators show a similar pattern. When N 

= 100, the average RMSE values are around .047, .134, and .216, respectively, and becomes 

close to zero as the sample size increases. The average absolute bias and RMSE values of the 

intercept and component variance estimators are relatively large, compared to those of the 

other parameter estimators in the same condition. For instance, when N = 100, the average 

absolute biases of the intercept and component variance estimators are .107 and .178, 

respectively, and their average RMSE values are .668 and .859, respectively. However, both 

of them also decrease with the sample size and become close to zero. Taken together, 

GSCAcvx estimators are empirically unbiased on average, improving their parameter recovery 

as the sample size increases.  

Table 3.2. The average absolute bias and RMSE values of the estimators of weights, loadings, 

intercepts, component means, and component variances per sample size. 

  Absolute Bias RMSE 

N Weights Loadings Intercepts 
Component  

Means 

Component 

Variances 
Weights Loadings Intercepts 

Component  

Means 

Component 

Variances 

100 0.002 0.022 0.107 0.008 0.178 0.047 0.134 0.668 0.216 0.859 

200 0.001 0.011 0.052 0.005 0.078 0.030 0.092 0.460 0.146 0.515 

400 0.001 0.005 0.026 0.003 0.037 0.021 0.064 0.319 0.102 0.346 

800 0.000 0.003 0.013 0.002 0.018 0.014 0.045 0.223 0.072 0.240 

1500 0.000 0.002 0.008 0.002 0.010 0.010 0.033 0.162 0.052 0.174 
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3.6. Illustration with Empirical Data  

To illustrate its empirical utility, we apply GSCAcvx to American customer satisfaction index 

(ACSI) data. The ACSI model (Fornell et al., 1996) is built on the established theories and 

has been used to produce index scores for customer satisfaction in the United States since 

1994. The present ACSI data are comprised of 774 customers’ responses for fourteen items: 

z1 = expectation for overall quality, z2 = expectation for reliability, z3 = expectation for 

customization, z4 = overall quality, z5 = reliability, z6 = customization, z7 = price given 

quality, z8 = quality given price, z9 = perceived overall satisfaction, z10 = fulfilment of 

expectations, z11 = distance to the ideal, z12 = complaint behavior, z13 = repurchase intention, 

z14 = price tolerance. Twelve of the items (z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, and z13) are 

measured on a 10-point Likert scale (e.g., 1 = “very negative” and 10 = “very positive”). 

Within the interval [1, 5], a smaller point reflects a stronger negative response, whereas 

within the interval [6, 10], a larger point indicates a stronger positive response. On the other 

hand, z12 is a binary variable (1 = formally complained and 0 = otherwise) and z14 is a 

composite of two price tolerance measures in different metrics, which is expressed as a 

percentage ranging from 0 to 50 (the higher, the more tolerant). The means, covariances, 

minimums, and maximums of the items are provided in Table 3.3. Refer to Fornell et al. 

(1996) for more detailed information on the items. 

Table 3.3. Sample covariances (in upper triangular), correlations (in lower triangular), 

variances (in diagonal), means, minimums, and maximums of the fourteen indicators in the 

ACSI example. 

  z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 

z1 5.81 3.61 2.71 2.92 2.91 2.10 1.96 2.79 3.01 2.73 3.23  –.14 2.62 11.78 

z2   .65 5.38 2.88 2.69 2.92 2.36 1.48 2.63 2.79 2.30 2.64  –.13 2.05 7.65 

z3   .43   .47 6.90 2.03 2.15 2.56 1.49 2.18 2.16 1.96 2.41  –.12 1.74 7.77 

z4   .53   .50   .33 5.31 4.77 3.76 2.52 4.15 4.87 4.35 4.42  –.32 3.94 16.86 

z5   .49   .51   .33   .84 6.11 3.98 2.48 4.37 5.23 4.80 5.01  –.36 4.29 17.20 

z6   .33   .39   .37   .62   .61 6.93 2.46 3.65 3.95 3.67 3.75  –.23 3.18 13.58 
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  z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 

z7   .31   .25   .22   .42   .39   .36 6.67 3.43 3.05 2.88 2.78  –.14 2.42 11.31 

z8   .47   .46   .33   .72   .71   .56   .53 6.18 4.74 4.42 4.70  –.29 3.60 16.60 

z9   .50   .48   .33   .85   .85   .60   .47   .77 6.19 5.06 5.09  –.35 4.55 19.55 

z10   .45   .40   .30   .75   .78   .56   .44   .71   .81 6.27 4.96  –.29 3.98 16.71 

z11   .51   .43   .35   .73   .77   .54   .41   .72   .78   .75 6.93  –.32 4.74 20.79 

z12  –.17  –.17  –.13  –.40  –.42  –.25  –.16  –.34  –.41  –.34  –.36   .12  –.33 -1.55 

z13   .37   .30   .22   .58   .58   .41   .32   .49   .62   .54   .61  –.33 8.79 35.21 

z14   .31   .21   .19   .47   .45   .33   .28   .43   .51   .43   .51  –.29   .76 241.11 

Mean 7.34 7.75 6.67 7.66 7.59 7.39 5.96 7.12 7.59 6.82 6.76   .14 7.73 31.82 

Min 1 1 1 1 1 1 1 1 1 1 1 0 1 0 

Max 10 10 10 10 10 10 10 10 10 10 10 1 10 50 

 

Figure 3.3 depicts the relationships among the six components and their indicators. 

The 14 items are used as composite indicators of the following six components: γ1 = 

customer expectations (CE), γ2 = perceived quality (PQ), γ3 = perceived value (PV), γ4 = 

customer satisfaction (CS), γ5 = customer complaints (CC), and γ6 = customer loyalty (CL). 

We represent all the constructs by convex components with unstandardized indicators except 

for the customer loyalty. As two indicators (z13 and z14) for customer loyalty are not 

measured on the same scale, we set this component as a standardized one with the indicators 

standardized.  
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Figure 3.3. The ACSI model. The dashed line labeled b10 signifies an incorrectly specified 

path coefficient. All weights and error terms are omitted to make the figure concise. CE = 

customer expectations, PQ = perceived quality, PV = perceived value, CS = customer 

satisfaction, CC = customer complaints, CL = customer loyalty.  

We use 4000 bootstrap samples for computing the standard error and 95% confidence 

interval of each parameter estimate. For comparison, we also apply GSCAstd to the same data 

and compute unstandardized weight estimates and unstandardized component scores based on 

the procedure discussed in Section 3.2. As customer satisfaction is the focal component in the 

ACSI model, we concentrate on interpreting the scores of customer satisfaction, its statistics, 

and the relevant model parameters.  

 The model fitted by GSCAcvx shows FITUD = .714, indicating that the ACSI model 

accounts for 71.4% of the weighted total variance of all dependent variables in the model. It 

also provides GFI = .987 and SRMR = .022, pointing to an acceptable level of model fit (Cho 

et al., 2020). In addition, it provides that FITM
UD =.802 and FITS

UD = .438. This indicates that 

the component measurement model explains 80.2% of the weighted total variance of all 
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dependent indicators, whereas the structural model explains 43.8% of the weighted total 

variance of all dependent components.  

 Table 3.4 provides the weight and loading estimates, and their standard errors and 95% 

confidence intervals obtained from GSCAcvx, along with the intercept estimates in the 

measurement model. The unstandardized weight estimates obtained from GSCAstd are also 

provided for comparison. Overall, all the weight and loading estimates obtained from 

GSCAcvx are large and statistically significant, indicating that all the indicators contribute to 

forming their components, which in turn, explain the variances of their indicators well. 

Among the three indicators (z9, z10, and z11) for customer satisfaction, z9 (perceived overall 

satisfaction) are the largest contributor (w9 =.422, SE = .015, 95% CI = [.393, .454]). This 

indicates that when each of the three indicators equally increases, leading to an increase in 

customer satisfaction, the contribution rate of z9 for the increase in customer satisfaction was 

42.2%, which is greater than those of the two others (z10 = 25.4% and z11 = 32.4%). Similarly, 

the unstandardized weight estimate of z9 obtained from GSCAstd is the largest among the 

three (w9 = .188, w10 = .107, and w11 = .131). In contrast, it is uncertain how to interpret the 

unstandardized weight estimates obtained from GSCAstd. 

Table 3.4. The weights, loading, and intercept estimates of the fourteen indicators in the 

ACSI model and their standard errors (SE) and 95% confidence intervals (CI) obtained from 

GSCAcvx, along with the unstandardized weight estimates obtained from GSCAstd (Ŵuni).  

Indicator Component 
Weights 

Ŵuni 
Loadings Intercepts 

(ĉ0) Estimate SE 95% CI Estimate SE 95% CI 

z1 

CE 

  .345 .013 [.320, .372]   .180 1.008 .025 [.957, 1.054]   .018 

z2   .337 .014 [.309, .366]   .188   .982 .027 [.925, 1.033]    .616 

z3   .317 .013 [.292, .343]   .128 1.011 .036 [.937, 1.077] –.674 

z4 

PQ 

  .387 .018 [.353, .425]   .184   .979 .013 [.953, 1.004]   .260 

z5   .342 .017 [.307, .374]   .170 1.043 .013 [1.018, 1.071] –.303 

z6   .271 .007 [.257, .285]   .101   .976 .024 [.927, 1.021]   .012 

z7 
PV 

  .404 .010 [.384, .423]   .154   .960 .020 [.921, .997] –.427 

z8   .596 .010 [.577, .616]   .293 1.027 .013 [1.002, 1.051]   .289 
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Indicator Component 
Weights 

Ŵuni 
Loadings Intercepts 

(ĉ0) Estimate SE 95% CI Estimate SE 95% CI 

z9 

CS 

  .422 .015 [.393, .454]   .188 1.004 .011 [.982, 1.025]   .433 

z10   .254 .013 [.229, .279]   .107   .965 .016 [.933, .996] –.052 

z11   .324 .012 [.300, .348]   .131 1.022 .016 [.990, 1.053] –.524 

z12 CL 1.000 .000 [1.000, 1.000] 2.909 1.000 .000 [1.000, 1.000]   .000 

z13 
CC 

  .610 .015 [.579, .639]   .206   .956 .004 [.949,   .963]   .000 

z14   .453 .016 [.424, .484]   .029   .920 .007 [.906, .932]   .000 

 

 Table 3.5 presents the path coefficient estimates and their standard errors and 95% 

confidence intervals obtained from GSCAcvx. Overall, the patterns of all the path coefficient 

estimates are consistent with those from previous studies (e.g., Hwang & Takane, 2014, 

Chapter 2). For instance, perceived quality and perceived value have statistically significant 

influences on customer satisfaction (b5 =.723, SE = .033, 95% CI = [.659, .786]; b6 = .275, 

SE = .035, 95% CI = [.204, .344]). Customer satisfaction have statistically significant effects 

on customer complaints (b7 = –.059, SE = .006, 95% CI = [–.072, –.047]) and customer 

loyalty (b8 = .252, SE = .015, 95% CI = [.222, .279]). Each individual path coefficient 

estimate is indicative of the expected change of the dependent variable for a one-unit change 

in indicators of a predictor component. For instance, the estimate of the path coefficient, b8 

= .252, implies that a one-unit increase in z9 (perceived overall satisfaction), z10 (expectation 

fulfillment), and z11 (distance to the ideal) would be associated with an increase of .252 unit 

in customer loyalty. The R2 value is .331 for perceived quality, .511 for perceived value, .812 

for customer satisfaction, .164 for customer complaints, and .404 for customer loyalty. Also, 

the intercept estimates for the dependent components in the same order as above are 

3.014, .793, –.501, .558, and –1.756. 
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Table 3.5. The path efficient estimates and their standard errors (SE) and 95% confidence 

intervals (CI) obtained from GSCAcvx. 

  Estimate SE 95% CI 

b1 CE → PQ   .626 .037 [.551,   .696] 

b2 CE → PV   .134 .039 [.058,   .209] 

b3 PQ → PV   .646 .038 [.573,   .721] 

b4 CE → CS   .045 .026 [–.005,   .095] 

b5 PQ → CS   .723 .033 [.659,   .786] 

b6 PV → CS   .275 .035 [.204,   .344] 

b7 CS → CC –.059 .006 [–.072, –.047] 

b8 CS → CL   .252 .015 [.222,   .279] 

b9 CC→ CL –.267 .104 [–.471, –.064] 

 

 Table 3.6 presents the estimated means, standard deviations, and ranges of 

unstandardized component scores obtained from GSCAcvx and GSCAstd. As expected, the 

individual scores of each convex component obtained from GSCAcvx are within the range of 

their indicators’ scores. The individual scores of customer expectation, perceived quality, 

perceived value, and customer satisfaction all range from 1 to 10 and those of customer 

complaint were between 0 and 1, which are equivalent to the ranges of their indicators’ 

measurement scales. The mean of customer satisfaction from GSCAcvx is 7.125, indicating 

that the average satisfaction level in the sample is moderately positive or equivalent to the 

satisfaction level of a customer whose indicator scores are all 7.125. This mean of customer 

satisfaction appears to be congruent with the means of its original indicators (7.585, 6.824, 

and 6.760). The standard deviation of customer satisfaction is 2.353, suggesting that the 

scores of customer satisfaction are somewhat widely spread out from the mean. This standard 

deviation value also seems to conform to those of its original indicators (2.489, 2.504, and 

2.632).  
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Table 3.6. The means, standard deviations (SD), and ranges of the unstandardized component 

scores estimated from GSCAcvx and GSCAstd. The last component (CL) is defined as a 

standardized component in GSCAcvx. 

 GSCAcvx GSCAstd 

  Mean SD Range Mean SD Range 

CE 7.265 2.014 [1.000, 10.000] 3.633 1.000 [.496, 4.961] 

PQ 7.564 2.194 [1.000, 10.000] 3.444 1.000 [.455, 4.546] 

PV 6.652 2.223 [1.000, 10.000] 3.008 1.000 [.448, 4.475] 

CS 7.125 2.353 [1.000, 10.000] 3.037 1.000 [.425, 4.253] 

CC 0.137 0.344 [0.000,   1.000]  .398 1.000 [.000, 2.909] 

CL 0.000 1.000 [–2.311,     .998] 2.518 1.000 [.206, 3.516] 

 

On the contrary, unstandardized components’ scores obtained from GSCAstd are not 

always within the range of their indicators’ scores. Some scores of customer expectation, 

perceived quality, perceived value, and customer satisfaction are smaller than 1, which is the 

minimum value of their indicators on the scale. Moreover, the means of unstandardized 

components are also far from those of their original indicators. For instance, the mean of 

customer satisfaction obtained from GSCAstd is just 3.037, even though its indicators’ means 

are around 7 as stated above. Thus, it is questionable whether the mean of customer 

satisfaction obtained from GSCAstd can be a good representation of the average level of 

customer satisfaction in the sample. Furthermore, all the standard deviations of 

unstandardized components are fixed to one, even though none of their indicators have 

standard deviations being around 1. 

 To illustrate the usage of OPEUD as a model comparison criterion, we additionally 

contemplate two misspecified models of the ACSI model, while assuming the original ACSI 

model as the true model (denoted by Model 1). One misspecified model (Model 2) is an 

under-specified one, where a path coefficient (b6) is omitted from Model 1. The other 

misspecified model (Model 3) is an over-specified one that includes an additional path 

coefficient from customer expectation to customer loyalty in Model 1, as displayed in Figure 

3.3. We apply GSCAcvx to fit the three models to the data and compute their OPEUD values 
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based on 4000 bootstrap samples. Model 1 provides the smallest OPEUD value (Model 1 

= .2883, Model 2 = .2901, and Model 3 = .2887), indicating that the original ACSI model has 

the highest predictive generalizability among the three models. The OPEUD value of Model 2 

is larger than that of Model 1 (.2901 > .2883), suggesting that excluding a path coefficient (b6) 

from Model 1 rather decreases the prediction accuracy of the model. On the other hand, the 

OPEUD value of Model 3 is larger than that of Model 1 (.2887 > .2883), indicating that 

specifying an additional path coefficient (b10) to Model 1 is not helpful to improve the 

predictive generalizability of the model. 

 

3.7. Concluding Remarks  

We proposed convex GSCA that can accommodate a new type of unstandardized components, 

named convex components. A convex component is defined as a convex combination of 

original indicators whose weights are all non-negative and summed up to one. Every 

individual score of a convex component is always within the range of its indicators’ scores 

and can be interpreted as a construct’s specific level of a person who has the same score for 

all its indicators as his/her component score. Moreover, the means and standard deviations of 

convex components are estimated along with other parameters through a single optimization 

procedure, which can also be interpreted in terms of indicators’ scales. Thus, introducing 

convex components to the GSCA model will enhance the practical utility of component 

scores and their summary statistics, for instance, in investigating individuals’ levels of a 

construct or comparing the average levels of a construct between groups. 

We developed an alternating least squares (ALS) algorithm for estimating parameters 

of the convex GSCA model, which does not require standardizing blocks of indicators that 

have the same measurement scales within the blocks. The algorithm not only enables 

information on the variances of each block of indicators to be additionally utilized in 
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parameter estimation, but also prevents indicators with small variances from influencing 

more heavily the construction of an unstandardized component than those with large 

variances. Furthermore, its objective function is partially scale-invariant, indicating that the 

minimum value of the objective function remains unchanged with a linear change in the 

measurement scale of each block of indicators, giving rise to the same weight estimates. 

We evaluated the parameter recovery of the proposed method in a simulation study 

and further illustrated the merits of the proposed method via a real data analysis. In the 

simulation study, the proposed method empirically produced unbiased parameter estimates on 

average under nine GSCA models with convex components and its accuracy was further 

improved with large sample size. In the real data analysis, the patterns of the parameter 

estimates were consistent with those from previous studies, and the benefits of convex 

components were pronounced, compared to the unstandardized components obtained from 

the conventional ad-hoc procedure of rescaling weight estimates. Unlike these unstandardized 

components, convex components’ weight estimates were interpretable, all their individual 

scores fell within the range of indicators’ measurement scales or their scores, and their 

estimated means and standard deviations were congruous with those of their indicators. 

Therefore, we are confident to recommend that researchers employ the method when they are 

interested in the GSCA model with unstandardized components of original indicators. 

Note that as an anonymous reviewer pointed out, researchers may still want to 

consider standardizing observed variables that are measured on the same scale. We 

recommend considering this option only if researchers are not interested in unstandardized 

component scores. If researchers apply GSCA to estimate the scores of unstandardized 

components after standardizing indicators of the same scale, an indicator with a small 

variance can be assigned a relatively large unstandardized weight, leading to a potentially 

inflated influence of the indicator on the estimation of the component scores, as shown in 
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Section 3.2. This issue does not occur when researchers keep the original scales of indicators 

and apply convex GSCA with convex components. 

In future research, we may consider incorporating convex components into various 

extensions of GSCA, which deal with more complex analyses, for instance, those of 

involving higher-order components (Hwang & Takane, 2014, Chapter 3), missing 

observations (Hwang & Takane, 2014, Chapter 3), multilevel components (Hwang, Takane, 

et al., 2007), components with categorical indicators (Hwang & Takane, 2010), component 

interaction terms (Hwang, Cho, Jin, et al., 2021; Hwang, Ho, et al., 2010), or factors (Hwang, 

Cho, Jung, et al., 2021). Such additional extensions will improve the usefulness of GSCA, 

placing components on their indicators’ scales while having their means and variances free 

parameters to be estimated along with others. 
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Chapter 4. Deep learning Generalized Structured Component Analysis: An 

Interpretable Artificial Neural Network Model with Composite Indexes 

 

Manuscript: Cho, G., & Hwang, H. (in press). Deep learning generalized structured 

component analysis: An interpretable artificial neural network model with composite indexes. 

Structural Equation Modeling: A Multidisciplinary Journal. 

 

Abstract 

Generalized structured component analysis (GSCA) is a multivariate method for specifying 

and examining interrelationships between observed variables and components. Despite its 

data-analytic flexibility honed over the decade, GSCA always defines every component as a 

linear function of observed variables, which can be less optimal when observed variables for 

a component are nonlinearly related, often reducing the component’s predictive power. To 

address this issue, we combine deep learning and GSCA into a single framework to allow a 

component to be a nonlinear function of observed variables without specifying the exact 

functional form in advance. This new method, termed deep learning generalized structured 

component analysis (DL-GSCA), aims to maximize the predictive power of components 

while their directed or undirected network remains interpretable. Our real and simulated data 

analyses show that DL-GSCA produces components with greater predictive power than those 

from GSCA in the presence of nonlinear associations between observed variables per 

component. 

 

Keywords: Generalized structured component analysis, deep learning, nonlinear component, 

composite index, interpretability   
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4.1. Introduction 

Generalized structured component analysis (GSCA; Hwang & Takane, 2004, 2014) is a 

multivariate method for examining path-analytic relationships between observed variables 

and components. GSCA estimates parameters via an iterative least squares algorithm, 

generating components that minimize the sum of (in-sample) prediction errors for all 

dependent variables in the model that researchers specify based on prior knowledge and 

theory. In this regard, GSCA’s component may be considered an aggregated measure of 

observed variables, or a composite index created under a certain rule that a component is to 

explain the total variance of its observed variables and to be highly related to other 

components (Cho, Sarstedt, et al., 2022).  

GSCA can include a broad array of component analysis methods as special cases, 

including (constrained) principal component analysis (Takane et al., 1995), (generalized) 

canonical correlation analysis (e.g., Carroll, 1968; Kettenring, 1971; Tenenhaus et al., 2017), 

principal covariate regression (de Jong & Kiers, 1992), redundancy analysis (van den 

Wollenberg, 1977), extended redundancy analysis (Takane & Hwang, 2005), canonical 

regression analysis (van der Leeden, 1990, p. 47), hierarchical structural component analysis 

(e.g., Choi et al., 2020), and partial or global least squares path modeling (Hwang et al., 2020; 

Hwang & Cho, 2020), particularly under the unidimensionality assumption that one 

component is extracted from each set of observed variables (refer to Hwang & Takane, 2014, 

Chapter 2). 

GSCA has been extended in various ways to deal with more complex data structures 

and analyses. For instance, GSCA was combined with fuzzy clustering to capture cluster-

level heterogeneity in observations (Hwang, Desarbo, et al., 2007). It was also extended to 

accommodate interactions between components while addressing potential multicollinearity 

via regularization (e.g., Hwang, 2009; Hwang, Cho, Jin, et al., 2021; Hwang, Ho, et al., 2010). 
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GSCA and all these extensions to date commonly assume that each component is defined as a 

linear function (or a weighted sum) of its observed variables, also referred to as (composite) 

indicators (Bollen & Bauldry, 2011). This linearity assumption can be useful for the 

interpretation of individual component scores, particularly when all component weights for 

indicators are positive. For example, if an individual has a high score on a component relative 

to other individuals, the individual will also tend to have relatively high scores for the 

component’s indicators (e.g., refer to Section 3.3). 

However, defining a component as a linear function of indicators (i.e., a linear 

component) all the time can be rather too restrictive in practice, ignoring potential nonlinear 

associations between the indicators. For example, two scatterplots in Figure 4.1 exhibit the 

relationships among four indicators for the Human Development Index (HDI; UNDP, 1990), 

including countries’ gross national income (GNI), life expectancy (LifeExp), expected 

schooling years (ExpSchl), and mean schooling years (MeanSchl), from the Human 

Development Report 2010 (UNDP, 2010). The scatterplots show clear curvilinear 

relationships between GNI and the other indicators. Likewise, it has been reported that two 

indicators for socioeconomic status (SES), i.e., schooling year and income, are nonlinearly 

related (e.g., Gensowski et al., 2011, pp. 13–15; P. V. Le, 2014; Park, 1994). In these cases, 

adopting a linear component for the HDI or SES indicators can lead to less explanatory 

power for in-sample data.  
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Figure 4.1. Scatterplots of four indicators for the Human Development Index (HDI). 

In addition, linear components may have less predictive power for unseen 

observations or out-of-sample data. For example, Takane and Hwang (2007) investigated the 

relationships between two components—country-level food consumption and mortality rate. 

They showed that when both components were defined as linear ones, food consumption had 

substantially lower predictive power for mortality rate, as compared to when they were 

defined as nonlinear functions of their indicators. 

We may consider adding polynomial and/or product terms of indicators to capture 

some nonlinear relationships between the indicators. Nonetheless, this way of modeling 

requires prior knowledge on what forms of nonlinear relationships between indicators is 

expected and which terms should be added to capture the nonlinearity sufficiently well. Deep 

learning (Lecun et al., 2015; Rosenblatt, 1962) can be useful to address such nonlinearity of 

indicators without relying on prior knowledge on their relationships. As in GSCA, deep 

learning begins by defining multiple components as linear deterministic functions of 

observed variables. Unlike GSCA, however, it typically further transforms the linear 

components in a nonlinear manner. This multivariate and vector-valued function, which 

transforms multiple input variables (e.g., observed variables) into multiple outcome variables 

(e.g., transformed components of the input variables), is called a layer. The outcome variables 

of a layer are fed into another layer, in which they are again combined into several linear 
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components and (nonlinearly) transformed. The operation of producing a function as a 

function of another function—function composition—is a key element that enables deep 

learning to successfully approximate nonlinear relationships between input and outcome 

variables (Urban & Gates, 2021). It is mathematically proven that any continuous function 

can be approximated by deep learning’s function in a prescribed accuracy under some mild 

conditions—the universal approximation theorem (For the conditions in detail, Csaji, 2001; 

Cybenko, 1989; Z. Lu et al., 2017). 

In the paper, therefore, we propose to combine deep learning (DL) with GSCA into a 

single framework. This extension, termed deep learning generalized structured component 

analysis (DL-GSCA), aims to conduct path-analytic modeling of indicators and components 

as in GSCA. At the same time, DL-GSCA relaxes the linearity assumption between 

indicators and components thereof, allowing components to be nonlinear functions of their 

indicators without the need of pre-determining their exact functional forms. It then estimates 

the functional form of each component from the data by utilizing DL’s artificial neural 

networks, such that the component can maximize its predictive power for dependent variables 

in the model. In this regard, DL-GSCA is distinct from GSCA that always fixes the 

component’s functional form to be linear. Nonetheless, DL-GSCA still assumes that the 

relationships among components remain linear to facilitate their interpretation as in GSCA. 

 The paper is organized as follows. In Section 4.2, we provide a technical account of 

DL-GSCA, including its model specification, parameter estimation, and model evaluation. 

We here focus on providing a rather general description of the proposed method to avoid 

excessive notational burden, while all technical details with formal mathematical notations 

are relegated to appendices. In Section 4.3, we present the application of DL-GSCA to the 

Human Development Index datasets to illustrate its relative explanatory and predictive 

performance to GSCA. In Section 4.4, we conduct a Monte-Carlo simulation study to 



 

103 

 

investigate whether DL-GSCA’s comparative advantages over GSCA can be generalized to 

conditions where different forms of nonlinearity exist between indicators. In Section 4.5, we 

summarize and discuss the implications, limitations, and potential extensions of the proposed 

method. 

 

4.2. The Proposed Method 

4.2.1. Model Specification 

We begin by describing GSCA’s model specification to facilitate understanding of DL-

GSCA’s model specification. To specify path-analytic relationships between indicators and 

components, GSCA involves three sub-models: weighted relation, component measurement, 

and structural models. The weighted relation model indicates that components are defined as 

linear deterministic functions of their respective indicators. The weights assigned to 

indicators to form their components are called (component) weights. The component 

measurement model shows that indicators are explained by their components and these 

relationships are signified by (component) loadings. The structural model specifies path-

analytic linear associations between components, represented by path coefficients.  

Let γ and z denote random vectors of components and indicators, respectively, both of 

which are assumed to be standardized. Let W, C, and B denote matrices consisting of weights, 

loadings, and path coefficients, respectively. Let ξ denote a vector of errors for z in the 

component measurement model. Let ζ denote a vector of errors for γ in the structural model. 

Then, the three sub-models of GSCA are expressed as 

 γ = W'z (weighted relation model)               _   (4.1) 

 z = C'γ + ξ (component measurement model)  (4.2) 

 γ = B'γ + ζ (structural model),                      _             (4.3) 

where X' denotes the transpose of a matrix X.  
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DL-GSCA also involves the same sub-models. However, components in DL-GSCA 

are defined as any continuous (linear or nonlinear) deterministic functions of their indicators 

in the weighted relation model and are allowed to be nonlinearly related to their respective 

indicators in the component measurement model. Let fW and fC denote continuous functions 

of z and γ, respectively. Then, DL-GSCA’s three sub-models are given as  

 γ = fW(z) (weighted relation model)                _   (4.4) 

 z = fC(γ) + ξ (component measurement model) (4.5) 

 γ = B'γ + ζ (structural model).                        _           (4.6) 

If fW and fC are confined to be linear, (4.4) and (4.5) become equivalent to (4.1) and (4.2), 

respectively, indicating that DL-GSCA includes GSCA as a special case. A more detailed 

description of DL-GSCA’s model specification is provided in Appendix D1. 

4.2.2. Parameter Estimation 

In DL-GSCA, we utilize DL for estimating fW and fC in a data-driven manner. Let hW and hC 

denote a set of DL’s artificial neural networks that approximate fW and fC, respectively. Two 

hyperparameters—the number of hidden layers and the number of hidden units per hidden 

layer for each component—determine the basic forms of hW and hC, as discussed in detail in 

Appendix D2. 

Given the matrix of standardized indicators and the two hyperparameters, we aim to 

estimate hW, hC, and B by minimizing a single optimization criterion that is equivalent to the 

average residual variance of all dependent variables in the model. We develop an alternating 

least squares (ALS) algorithm to minimize the optimization criterion iteratively. The ALS 

algorithm begins by dividing the model parameters into two sets and alternately updates each 

set of the parameters with the other set fixed until the criterion’s difference between 

consecutive iterations becomes smaller than a prescribed tolerance level (e.g., .0001). Once 

hW, hC, and B are estimated, the standard errors and confidence intervals of path coefficient 
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estimates are obtained based on the bootstrap method (Efron, 1979, 1982). We provide a 

detailed description of the ALS algorithm in Appendix D3. 

Prior to the implementation of the ALS algorithm, it is important to predetermine the 

values of the two hyperparameters. These values affect the potential capacity of hW and hC to 

approximate fW and fC (Lu et al., 2017). For example, by increasing the number of hidden 

layers and/or that of hidden units per layer for hW and hC, one can approximate a more 

intricate form of fW and fC, thereby reducing the bias in hW and hC. However, this approach 

can require estimating a large number of model parameters, which in turn tends to increase 

the variance in hW and hC. This phenomenon is often referred to as the bias-variance trade-off 

(Hastie et al., 2001, Chapter 7.3). If the increased variance outweighs the bias reduction, the 

model may overfit (e.g., Strang, 2019, p. 374) and fails to generate optimal components for 

predicting dependent variables in test samples. It is, therefore, essential to optimally calibrate 

the two hyperparameters of hW and hC to ensure the maximal predictive power of the 

components. 

Nonetheless, it should be noted that there is, as yet, no universally agreed-upon 

method for determining hyperparameter values of deep learning methods (Mas & Flores, 

2008). Within the context of DL-GSCA, we adopt the predictive feedforward search 

algorithm (Cho et al., 2022), which was originally proposed for variable selection in GSCA. 

This search algorithm gradually increases the hyperparameter values until any further 

increase results in a higher expected prediction error of the model. A detailed description of 

the search algorithm is presented in Appendix D4. 

Lastly, it is worth noting that DL-GSCA’s approach to estimating components can be 

categorized as unsupervised learning. This is due to its primary focus on “generating” 

components capable of accurately predicting their outcomes, including indicators and 

dependent components, without necessitating a pre-collected dataset of components. In fact, 
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if researchers do not specify the structural model (6), the DL-GSCA model becomes identical 

to a set of autoencoders (e.g., Q. V. Le, 2015; Rumelhart et al., 1986), each of which takes a 

specific set of indicators as both inputs and outputs and includes a component as a hidden 

unit in its hidden layer (refer to Figures B1 and B3).  

4.2.3. Model Evaluation 

DL-GSCA provides three types of indices for evaluating the overall performance of a 

specified model: FIT for dependent variables (FITD), test error for dependent variables (TED), 

and ), and out-of-bag prediction error for dependent variables (OPED). We provide the 

formulae of these overall model fit indices and relevant local model fit indices that we will 

also discuss below in Appendix D5. 

FITD is a rescaled version of the traditional goodness-of-fit measure FIT in GSCA 

(Hwang & Takane, 2014, pp. 26–30). It shows how much variance of dependent variables 

(both indicators and components) in the model is explained by components on average. This 

index is equivalent to the average of the R2 values for all dependent variables, which ranges 

from 0 to 1. The larger the FITD value, the more variance is explained. Also, 1 – FITD is 

indicative of the average in-sample prediction error for dependent variables in the model. 

This in-sample prediction error indicates the model’s estimated prediction error for the 

training sample. When every variable is specified as a dependent variable, FITD becomes 

equivalent to FIT. In addition, DL-GSCA provides two local goodness-of-fit indices: FITM
D 

and FITS
D. The former shows how much variance of dependent indicators in the component 

measurement model is explained by components on average (i.e., average R2 for all 

dependent indicators), whereas the latter shows how much variance of dependent components 

in the structural model is explained by other components on average (i.e., average R2 for all 

dependent components).  
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 On the other hand, TED assesses the average out-of-sample prediction error for 

dependent variables in the model. The value of TED indicates the ratio of the average 

prediction errors of a specified model and the null model that uses the training-sample means 

of indicators and components as their predicted scores in a test sample. A value of TED 

smaller than 1 indicates that the estimated model shows better predictive performance than 

the null model in the test sample. If the estimated model perfectly predicts dependent 

variables in the test sample, its TED value will be zero. DL-GSCA also provides TEM
D and 

TES
D for respectively assessing the average out-of-sample prediction errors for dependent 

indicators in the component measurement model and for dependent components in the 

structural model, relative to the corresponding null models (i.e., in a test sample, the null 

component measurement model uses the training-sample means of indicators as the indicators’ 

predicted scores and the null structural model uses the training-sample means of components 

as the components’ predicted scores).  

In practice, researchers may not have a designated test sample, or the sample size of 

their dataset may be too small. This can make it infeasible to set aside a portion of the dataset 

as a test sample and to calculate the TED value of the trained DL-GSCA model. To address 

this issue, DL-GSCA provides OPED, which is a rescaled version of the traditional cross-

validation index OPE in GSCA (Cho et al., 2019). This index can estimate the expected 

prediction error of the DL-GSCA model, when a test sample is not available. The OPED 

value has the same interpretation as that of TED, but it is primarily used for comparing 

models (Cho et al., 2019). For example, when there are several competing models, the model 

with the smallest OPED value can be selected as the final one in terms of predictive 

generalizability. DL-GSCA also provides OPEM
D and OPES

D, which aim to estimate the 

expected prediction error of the measurement and structural models, respectively. 
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When a test sample is given, researchers can additionally evaluate the predictive 

power of individual predictor components through the use of ∆TEp,q, which assesses the 

contribution of one predictor component, denoted by component p, to prediction of its 

dependent component, denoted by component q, in the model. If the value of ∆TEp,q is 

negative, including the predictor component in the model worsens the prediction of the 

dependent component. Conversely, if the value of ∆TEp,q is positive, adding the predictor 

component contributes to better predicting the dependent component.  

 

4.3. Empirical Application 

The datasets we analyze come from two Human Development Reports (HDR) published by 

the United Nations Development Programme (UNDP, 2010, 2016) in 2010 and 2016. Under 

the premise that “the real wealth of nations” is people, not the real and financial assets 

accumulated (UNDP, 1990, p. 9), the UNDP created a composite index for measuring 

countries’ development levels for humans, named the Human Development Index (HDI), and 

has published each country’s HDI score and ranking annually since 1990. The HDI is 

evaluated in terms of three domains of human development—health, knowledge, and decent 

standard of living. Specifically, since the revision of the HDI formula in 2010, life 

expectancy at birth (LifeExp) has been used as the indicator for health, mean schooling years 

(MeanSchl) and expected schooling years (ExpSchl) as the indicators for knowledge, and 

gross national income per capital (GNI) as the indicator for decent standard of living.  

Although the provision of the HDI plays a role in shifting a national paradigm of 

development from materialistic growth to human well-being in many countries (UNDP, 2016, 

p. 2), this index has been constantly criticized in two respects. First, many researchers point 

out that the formula used to calculate the HDI is rather arbitrary and difficult to justify 

because the formula has been heavily affected by the developers’ opinions (e.g., Noorbakhsh, 
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1998; Nübler, 1995). Second, researchers are concerned that the HDI is not developed to 

sufficiently account for other important domains of human development, including ecological 

sustainability (e.g., Sagar & Najam, 1998), political freedom (e.g., Ranis et al., 2006), and 

subjective well-being (e.g., Blanchflower & Oswald, 2005). In fact, the HDI has been 

developed based solely on a group of experts’ judgements on which change/growth in the 

country should be indicative of development. However, it seems to be of particular 

importance to take into account subjective well-being, which informs “whether progress has 

indeed occurred if the (partial) metrics of human development suggest it appears to have” 

(Hall & Helliwell, 2014, p. 11), reflecting people’s actual opinions about which changes in 

the HDI domains they perceive as real-life developments in their country (e.g., Blanchflower 

& Oswald, 2005). Thus, some researchers suggest determining the weights for the HDI 

indicators based on their contributions to subjective well-being (e.g., Blanchflower & Oswald, 

2005; Nübler, 1995). 

DL-GSCA may be used for statistically addressing these issues with the HDI. It does 

not need to pre-determine a formula for combining the four HDI indicators or equivalently 

how the weights for the indicators are to be determined. Instead, DL-GSCA estimates the 

functional form between the HDI and its indicators in a data-driven fashion such that the 

index maximizes the total explained variance of dependent variables in the DL-GSCA model. 

Particularly, subjective well-being can be specified as a focal dependent variable for the HDI 

in the model. Then, DL-GSCA will estimate the weights for the HDI indicators in such a way 

that the index is highly associated with subjective well-being. 

Figure 4.2 displays the HDI model that we specified for illustrative purposes. We 

consider the HDI an exogenous component (i.e., γ1 = HDI), which is associated with four 

indicators (i.e., z1,1 = LifeExp, z1,2 = MeanSchl, z1,3 = ExpSchl, and z1,4 = GNI). We also 

assume that the HDI influences two types of subjective well-being. One type is the average 
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level of satisfaction with the country’s environment for development (SED; γ2 = SED), which 

is measured by three indicators: z2,1 = proportion of the people satisfied with healthcare 

quality (SatisHQ), z2,2 = proportion of the people satisfied with education quality (SatisEQ), 

and z2,3 = proportion of the people satisfied with state of living (SatisSL). The other type is 

overall life satisfaction (OLS; γ3 = OLS), which is measured by a single indicator, z3,1 = the 

average life satisfaction of the people living in a country (Cantril, 1965). We further assume 

that SED influences OLS, as it seems reasonable that an individual satisfied with his or her 

country’s environment is more likely to be satisfied with his or her overall life (e.g., Silva et 

al., 2012).  

 

Figure 4.2. The Human Development Index (HDI) model specified for the empirical application. 

Hexagons and squares denote components and indicators, respectively. Each set of curved 

arrows shows which block of indicators is to be explained by which component. A straight 

line labelled with 1 indicates that OLS is set to be identical to z3,1. Error terms are omitted. 

We apply DL-GSCA to fit the model to the 2010 HDR data. Of 169 countries, we use 

142 countries that have no missing observations (N = 142). We wrote a MATLAB code for 

DL-GSCA3 for this analysis. We consider three levels of the number of hidden layers, 

denoted by Lp in Appendix D2, for HDI and SED (Lp = 0, 1, and 2). When the number of 

hidden layers is greater than zero, we consider four levels of hidden units per hidden layer, 

denoted by Rp
(l) in Appendix D2 (Rp

(l) = 2, 3, 4, and 5). We employ Cho et al.’s (2022) search 

algorithm with five-fold cross validation for deciding the two hyperparameters. We then 

 
3 The MATLAB code and the HDR data are available at 

https://osf.io/wdz79/?view_only=39cbbe18a7f442d381e2483b4bced177. 

https://osf.io/wdz79/?view_only=39cbbe18a7f442d381e2483b4bced177
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apply the ALS algorithm to each training sample, using ten different sets of initial values. 

The parameter estimates obtained from the set of initial values, which results in the largest 

FITD, are chosen as the final estimates. The tolerance level used in the study is .0001. For 

comparison, we also apply GSCA to the same data. The total number of bootstrap samples is 

1000. 

We choose one hidden layer for both HDI and SED and four and three hidden units 

per hidden layer for HDI and SED, respectively, based on the predictive feedforward search 

algorithm. We then proceed to apply the ALS algorithm with ten different sets of random 

initial values. Figure 4.3 displays how the value of the optimization criterion (D.6) changes as 

the ALS algorithm iterates through its two steps with a set of randomly assigned initial values. 

With each iteration, the value of (D.6) always decreases, indicating that the ALS algorithm is 

successfully finding parameter values that result in a smaller value of (D.6) than the previous 

iteration. 

 

Figure 4.3. Plot of the optimization criterion value (D.6) versus the number of iterations. 

DL-GSCA provides FITD = .81, indicating that the model explains 81% of the total 

variance of all dependent variables in the model. Also, DL-GSCA provides FITM
D = .86 and 

FITD
S = .65, indicating that the component measurement model accounts for 86% of the total 
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variance of all dependent indicators, whereas the structural model explains 65% of the total 

variance of all dependent components. Conversely, GSCA provides FITD = .75, FITM
D = .79, 

and FITS
D = .60. This indicates that DL-GSCA provides smaller in-sample prediction errors 

for both indicators and dependent components than GSCA. 

Figure 4.4 displays the indicators’ values predicted by DL-GSCA against their 

original values. The three scatterplots show that the HDI and SED components appear to 

capture the nonlinear relationships of their respective indicators sufficiently well, indicating 

that they can serve as a good summary of their indicators. The average R2 value of the HDI 

and SED components for their respective indicators are .89 and .82, respectively.  

 

Figure 4.4. Scatterplots of indicators’ scores (blue circles) and their predicted values (orange 

stars) obtained from DL-GSCA in the empirical application.  

Figure 4.5 depicts the relationships among the HDI and SED components and their 

indicators obtained from DL-GSCA. The individual scores of the components are obtained by 

plugging their indicators’ scores in the estimated weighted relation model (i.e., gn,p = hw,p(dn,p) 

in Eq. (D.5) in Appendix D3). In general, an increase in the indicators’ scores is associated 

with an increase in their component scores, indicating that an improvement in each domain of 

the HDI and SED is likely to be related to an increase in the level of human development and 

people’s satisfaction with their living environment for development. It seems intriguing that a 

small amount of increase in GNI is linked to a steep growth in the HDI for countries with 
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extremely low levels of GNI, suggesting that an economic growth may contribute 

substantially to human development for these countries. On the other hand, for those with 

relatively high levels of GNI (i.e., greater than around a standardized score of 1.5 or 

equivalently 36,654 US dollars), an increase in GNI is associated with only a marginal 

increase in the HDI. This may be because GNI is negatively associated with the other 

domains of the HDI among the countries with high GNI levels, as displayed in the first two 

scatterplots of Figure 4.5. 

(A) HDI  

 

(B) SED  

 

Figure 4.5. Scatterplots of two components (HDI and SED) and their indicators obtained 

from DL-GSCA in the empirical application. 

In the structural model, the HDI has a positive and statistically significant effect on 

SED (b1,2 = .76, SE = .04, 95% CI = [.69, .83]), indicating that a higher level of human 

development tends to lead to a higher level of people’s satisfaction with their living 

environment. Also, SED has a positive and statistically significant effect on OLS (b2,3 = .45, 

SE = .06, 95% CI = [.33, .58]), indicating that people satisfied with their living environment 
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are likely to have a high level of overall life satisfaction. Moreover, the HDI has a positive 

and statistically significant effect and on OLS (b1,3 = .44, SE = .07, 95% CI = [.30, .56]), 

indicating that people living in a country with a relatively high level of human development 

tend to have a relatively high level of satisfaction with their life, controlling for satisfaction 

with their living environment. Furthermore, the HDI has a positive and statistically 

significant indirect effect on OLS, mediated by SED (b1,2 × b2,3 = .35, SE = .05, 95% CI = 

[.25, .46]). The total effect of the HDI on OLS (.79) is also positive and statistically 

significant (SE = .03, 95% CI = [ .73, .84]). 

To evaluate the model’s predictive power, we evaluate its out-of-sample prediction 

error, using the 2016 HDR dataset as a test sample. We use 156 countries without missing 

observations. DL-GSCA provides TED = .24, indicating that on average, DL-GSCA’s 

prediction error is 24% of the null model’s prediction error. This value is smaller than that of 

GSCA (TED = .29). DL-GSCA provides TEM
D = .17 and TES

D = .52, indicating that DL-

GSCA’s prediction errors for the measurement and structural models are 17% and 52% of the 

respective null models. They are also smaller than the counterparts of GSCA (TEM
D = .23 and 

TES
D = .57). These results show the superior predictive performance of DL-GSCA to GSCA. 

In addition, all ∆TEp,q values obtained from DL-GSCA are positive (i.e., ∆TE1,2 = .98, ∆TE2,3 

= .17, and ∆TE1,3 = .09), indicating that all the predictor components contribute to predicting 

their dependent components. 

For illustrative purposes, suppose that we do not have any additional dataset to use as 

a test sample. In such a case, as typically recommended in the literature (e.g., Hastie et al., 

2001, p. 222), we might use about 75% of observations in the 2010 HDR dataset for model 

training and the rest for model testing. However, due to the limited number of countries in 

this dataset, we opt to use OPED, OPEM
D, and OPES

D values to evaluate the out-of-sample 

errors of the competing DL-GSCA and GSCA models, rather than TED, TEM
D, and TES

D 
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values. DL-GSCA yields OPED = .20, whose value is smaller than that of GSCA (OPED 

= .27). This suggests that DL-GSCA can be chosen over GSCA in terms of predictive 

generalizability Additionally, DL-GSCA provides OPEM
D = .15 and OPES

D = .36, both of 

which are also smaller than GSCA's counterparts (OPEM
D = .23 and OPES

D = .43). This 

indicates that DL-GSCA’s nonlinear components are expected to have smaller prediction 

error for outcome variables in both measurement and structural models than GSCA’s linear 

components. 

Taken together, DL-GSCA is applied to construct a composite index for human 

development. Without assuming any prescribed formula for calculating the HDI, DL-GSCA 

estimates the formula in a data-driven manner, which leads the HDI to be constructed to 

sufficiently capture potential nonlinear associations among its four indicators while 

predicting two types of subjective well-being. In addition, DL-GSCA’s components, 

including the HDI, have higher in-sample and out-of-sample prediction powers than GSCA’s 

components. 

 

4.4. Simulation Study 

We conduct a simulation study to examine the explanatory and predictive power of DL-

GSCA when nonlinear relationships exist between indicators in the model. For this study, we 

design a population DL-GSCA model that imitates the structural model as the HDI model, as 

shown in Figure 4.6. We describe how to generate data based on the population model in 

Appendix D6. 
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Figure 4.6. A population DL-GSCA model used in the simulation study. 

 We consider four levels of sample size (N = 100, 200, 500, and 1000), for each of 

which we generate 500 training samples. Additionally, we generate one test sample of N = 

2000. Figure 4.7 displays the association patterns of each block of indicators in the test 

sample. In this simulation study, we employ 30% of each training sample as a validation 

sample to determine the values of the hyperparameters (i.e., Lp and Rp
(l)) from prescribed 

candidate values per hyperparameter (i.e., Lp = 0, 1, and 2; Rp
(l) = 2, 3, 4, and 5). We use the 

same number of initial values and tolerance level used in the previous section. 

 

Figure 4.7. Scatterplots of indicators per component in the test sample for the simulation 

study. 

 

We compute the values of FITD, FITM
D, and FITS

D based on the final parameter 

estimates to evaluate the model’s explanatory power (or in-sample prediction error) for each 
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training sample. We also calculate the TED, TEM
D, and TES

D values based on the test sample 

to assess the model’s predictive power (or out-of-sample prediction error). We apply 

traditional GSCA as a benchmark for comparing DL-GSCA’s performance in both in-sample 

and out-of-sample prediction errors. 

Figure 4.8 displays the average values of FITD, FITM
D, and FITS

D obtained from DL-

GSCA and GSCA per sample size. As shown in the figure, DL-GSCA provides greater 

average FITD values than GSCA in all sample sizes, indicating that overall, the nonlinear 

components of DL-GSCA explain the variance of the dependent variables better than the 

linear components of GSCA. The difference in the average FITD values between the two 

methods remains unchanged across the sample sizes. The same patterns are observed in the 

average FITM
D

 and FITS
D values of the methods. 

 

Figure 4.8. In-sample performance of DL-GSCA and GSCA in the simulation study. The 

average values of FITD, FITM
D, and FITS

D obtained from DL-GSCA and GSCA per sample 

size. O = DL-GSCA and * = GSCA.  

Figure 4.9 shows the average values of 1 – TED, 1 – TEM
D, and 1 – TES

D from DL-

GSCA and GSCA per sample size. DL-GSCA provides smaller average TED values than 

GSCA in all sample sizes, indicating that DL-GSCA generally outperforms GSCA in terms 

of predictive power. The TED values of both methods tend to decrease on average as the 
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sample size increases, but the difference in the values between the methods does not diminish. 

The average TEM
D

 and TES
D values of the methods show the same patterns. 

 

Figure 4.9. Out-of-sample performance of DL-GSCA and GSCA in the simulation study. The 

average values of 1 – TED, 1 – TEM
D, and 1 – TES

D obtained from DL-GSCA and GSCA per 

sample size. O = DL-GSCA and * = GSCA.  

To further compare the predictive performance of DL-GSCA and GSCA, we generate 

another training sample of N = 2000 and estimate their parameters from this sample. Then, 

we use the estimates to obtain the predicted values of the indicators in the test sample. Figure 

4.10 displays the indicators’ values predicted by DL-GSCA and GSCA against their original 

values in the test sample. It clearly shows that DL-GSCA’s components can produce 

relatively accurate predictions of the three blocks of indicators, efficiently capturing their 

nonlinear and linear relationships. On the other hand, GSCA’s components fail to make 

accurate predictions of the first two blocks of indicators (z1,1 to z2,3), leading its indicators’ 

predicted values to deviate substantially from their original values. This indicates that GSCA 

is not optimal for predicting the nonlinear associations among the indicators for components 

1 and 2, as expected.   
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(A) DL-GSCA 

 

(B) GSCA 

 

Figure 4.10. Scatterplots of indicators’ scores (blue circles) and their predicted values (orange 

stars) per component obtained from DL-GSCA and GSCA in the simulation study. 

In sum, our simulation study shows that when some indicators are nonlinearly related, 

on average, DL-GSCA results in smaller in-sample and out-of-sample prediction errors than 

GSCA in all conditions, speaking to DL-GSCA’s superior performance to GSCA in terms of 

both explanatory and predictive power. 

 

4.5. Concluding Remarks 

We proposed a new extension of GSCA, termed deep learning GSCA (DL-GSCA), which 

incorporates DL’s functions to produce components that can capture nonlinear associations 

among their indicators in a data-driven manner without the need of pre-specifying the exact 
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functional forms between the components and indicators. We also provided model evaluation 

indices to assess a model’s explanation (in-sample) and prediction (out-of-sample) errors.  

We conducted both real and simulated data analyses and demonstrated the superior 

performance of DL-GSCA to GSCA in the presence of nonlinear relationships among 

indicators per component. Moreover, we illustrated DL-GSCA’s potential for creating the 

HDI while capturing nonlinear associations among the index’s indicators and considering its 

hypothetical relationships with other variables. Unlike the traditional procedures for 

developing the HDI, in which a group of experts determine its computational formula without 

considering its relationships with other variables, DL-GSCA statistically estimated the 

formula for the HDI such that it could be a good summary of its indicators and good 

predictors for two types of subjective well-being.  

 DL-GSCA contributes substantially to broadening the scope of GSCA beyond linear 

modeling and improving prediction accuracy. Nonetheless, it has limitations as well. For 

example, the proposed method in its current form assumes that components are always 

linearly related in the structural model. We here intend to focus on capturing nonlinear 

associations among indicators per component in the component measurement model while 

keeping the interpretation of the relationships among components as simple as possible. 

However, some researchers may want to specify nonlinear associations between components 

while still defining components as linear functions of their indicators (e.g., Basco et al., 2021; 

Hwang, Ho, et al., 2010). For example, they may be interested in examining interaction 

effects of components, keeping the component scores easily interpretable (e.g., Hwang, Cho, 

Jin, et al., 2021). Thus, it may be necessary to incorporate DL’s functions into the structural 

model as well, so that researchers can freely decide which sub-model(s) can be nonlinear.  

Moreover, DL-GSCA currently assumes that all dependent variables are continuous. 

Consequently, it is not suitable to estimate models with categorical dependent variables. For 
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example, in genomic modeling, a set of single nucleotide polymorphisms (SNPs) within a 

gene is typically categorical variables (e.g., Romdhani et al., 2015). To handle such cases, we 

may need to extend DL-GSCA to adopt a different activation function for categorical 

variables (e.g., sigmoid or softmax; see Nwankpa et al., 2021), minimizing a mixture of two 

optimization criteria, e.g., the mean squares error for continuous variables and cross-entropy 

for categorical variables.  

 Furthermore, DL-GSCA needs to accommodate various technical extensions of 

GSCA. For instance, it should be extended to deal with higher-order components (Hwang & 

Takane, 2014, pp. 99–110). In the empirical application, for example, the HDI may be 

considered a second-order component which is linked to the three domains of human 

development (i.e., health, knowledge, and decent standard of living) as its first-order 

components. Also, it would be beneficial to extend DL-GSCA to efficiently handle missing 

observations which frequently occur in practice (Graham, 2008). We may adopt GSCA’s 

model-based imputation approach (Hwang & Takane, 2014, pp. 123–125), which treats 

missing values as parameters and estimates them along with the other model parameters by 

minimizing a single optimization criterion. In addition, we may consider combining DL-

GSCA with regularization techniques, such as ridge and lasso, to avoid potential overfitting. 

DL-GSCA may be more susceptible to the overfitting issue than GSCA because the former 

will likely have a far larger number of parameters than the latter. We may borrow the same 

idea of regularized GSCA (Hwang, 2009; Hwang & Takane, 2014, Chapters 8 and 9) to 

shrink DL-GSCA’s parameter estimates toward zero or to exact zero. 

In closing, DL-GSCA represents a flexible, nonlinear multivariate method for 

estimating complex path-analytic models involving components. It aims to capture potential 

nonlinear associations between components and indicators while examining linear 

associations among components. Thus, DL-GSCA can substantially improve the predictive 
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power of its components while maintaining the interpretability of the relationships among the 

components. We concentrate on proposing DL-GSCA’s general framework in the paper and 

will need to refine and extend the method in various ways to deal with a broad range of data-

analytic issues, including those enumerated above. Moreover, it will be important to develop 

a software program for DL-GSCA to make it more accessible to researchers and practitioners. 

For example, DL-GSCA can be included in GSCA’s free user-friendly software – GSCA Pro 

(Hwang et al., 2023). This can also contribute to the application of DL-GSCA to a greater 

variety of real-world problems and more thorough investigations of its practical usefulness. 

Finally, we considered a maximum of two hidden layers per neural network (Lp) in 

our empirical analyses. This may give the impression that DL-GSCA can only handle a 

shallow neural network with a small number of hidden layers. However, in our DL-GSCA 

model, the overall structure is not represented merely by the layers of a single nested neural 

network. As described in Appendix D2, the model’s architecture consists of several 

interconnected neural networks. Therefore, the total number of hidden layers in the entire 

model is always significantly higher than the number presented in any single nested network 

(Lp). In addition, DL-GSCA does not impose any limit on the number of hidden layers (Lp) in 

each individual network. Researchers, depending on the availability of computational 

resources, can consider a greater value of Lp than the ones employed in our empirical studies. 
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Chapter 5. Concluding Remarks 

 

5.1. Summary and Implications 

A construct may or may not be latent, suggesting that it could represent an underlying reality 

causing its observed indicators to covary or merely serve as a summary or descriptive label of 

an indicator cluster (Binning, 2015). Despite these two distinct possibilities, many 

psychologists have treated psychological constructs of interest as inherently latent, rarely 

questioning their true latent status (e.g., Borsboom, 2008; Rhemtulla et al., 2020). Under this 

unexamined assumption, they have employed structural equation modeling (SEM) to study 

the relationships between latent constructs based on the data of their indicators. The SEM 

domain that characterizes each latent construct as a common factor of indicators through its 

reflective measurement model is known as factor-based SEM.  

 However, contrary to common expectations (e.g., Brandt et al., 2023), factor-based 

SEM per se cannot provide conclusive evidence for the existence of latent constructs. As 

illustrated in Chapter 1, the presence of alternative models, capable of explaining the 

covariance among indicators, limits the usefulness of the goodness-of-fit of a reflective 

model for verifying the latent nature of constructs (e.g., Hayduk, 2014). Additionally, some 

constructs used in psychology, such as socioeconomic status (SES) and genes, can be more 

suitably viewed as descriptive labels for their respective clusters of indicators. This suggests 

the need for an alternative SEM domain that does not require constructs to be latent, which is 

referred to as component-based SEM. This domain represents each construct as a composite 

or summary index of indicators through its weighted relation and component measurement 

model, utilizing these indexes to investigate the relationships between constructs. 

Given that each SEM domain possesses its own advantages, researchers stand to 

benefit from equipping their statistical toolbox with both SEM domains, selecting the most 
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fitting one based on the research context. From a methodological perspective, continuing 

methodological development of both domains would be a valuable contribution to the field. 

Thus, this dissertation presented technical solutions to two enduring challenges in each SEM 

domain. 

Chapter 2 of the dissertation introduced a new data matrix-based method, named 

structured factor analysis (SFA; Cho and Hwang, 2022). This technique was developed to 

address two major challenges in factor-based SEM: the issues of improper solution and factor 

score indeterminacy. Unlike conventional covariance-based approaches in this domain 

(Jöreskog, 1970, 1978), SFA simultaneously estimates both the parameters of the 

measurement model and the probability distribution of candidate factor score matrices, given 

the data matrix of indicators. This probability distribution can be used to infer individuals’ 

true factor scores probabilistically (e.g., the estimation of the probability that an individual 

has a higher true factor score than another individual) while also quantifying the degree of 

factor score indeterminacy. Furthermore, since the factor variance-covariance matrix is 

directly derived from the candidate factor score matrix, SFA inhibits the emergence of 

improper solutions, such as negative factor variance estimates. Therefore, researchers can 

consider SFA as a viable alternative factor-based method in cases where they encounter 

improper solutions with other methods or when their research necessitates the probabilistic 

inference of individual true factor scores. 

Chapters 3 and 4 of the dissertation presented two extensions of generalized 

structured component analysis (GSCA; Hwang and Takane, 2004)—convex generalized 

structured component analysis (convex GSCA; Cho and Hwang, under review at 

Psychometrika) and deep learning generalized structured component analysis (DL-GSCA; 

Cho and Hwang, accepted in Structural equation modeling: A multidisciplinary Journal). 

Each was designed to overcome a specific limitation of GSCA within the component-based 
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domain. Namely, composite indexes generated by GSCA face two main constraints: their 

scores are not directly interpretable in terms of the original scales of indicators, and they are 

restricted to linear functional forms, thereby limiting their predictive power for outcome 

variables. Convex GSCA offers a method for generating linear composite indexes whose 

scores can be interpreted on the original scales of indicators. DL-GSCA, in contrast, proposes 

a way to create nonlinear composite indexes that optimize their predictive power for targeted 

outcome variables, in a data-driven manner. Thus, when implementing component-based 

SEM, researchers might opt for convex GSCA if their main priority is model interpretability, 

and for DL-GSCA if their primary interest is model predictability. 

 

5.2. Limitations and Future Research Directions 

In sum, this dissertation delineated the two SEM domains, emphasizing their critical roles in 

the empirical investigation of psychological theories involving constructs, and proposed 

innovative SEM techniques to tackle the long-standing limitations of current methods in both 

SEM domains. However, this dissertation also has limitations. While individual chapters 

discussed the limitations of proposed methods specific to each SEM domain, this sub-section 

will pivot towards discussing their limitations within the overarching SEM framework.  

Foremost, this dissertation stresses the critical need for accurate identification of 

construct types and the corresponding selection of SEM domain, but it does not offer a fully 

established statistical procedure for exploring the nature of constructs in the model. 

Misrepresenting constructs—by representing non-latent constructs as common factors or 

genuinely latent constructs as components—can lead to inaccurate outcomes in statistical 

testing and parameter estimates (Cho, Sarstedt, et al., 2022; Hwang, Cho, Jung, et al., 2021), 

underlining the importance for precise construct type clarification before SEM application. 

Additionally, a conceptual review of the constructs may not be sufficient to identify construct 
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types, as illustrated in studies concerning the American Customer Satisfaction Index (ACSI) 

model (Fornell, 1992; Fornell et al., 1996). Although the authors identified all key constructs 

to be latent in the ACSI model based on an in-depth conceptual review of the constructs, their 

measurement model turned out to be not statistically supported (Section 2.5). In contrast, the 

model representing the constructs as components led to acceptable goodness-of-fit values 

(Section 3.6). 

This dissertation suggests potential empirical strategies for construct type 

identification. One such strategy involves comparing the goodness-of-fit values from two 

identical structural equation models with differing statistical representations, expecting those 

fit values to be within acceptable bounds if the models are true. While these fit values cannot 

serve as confirming evidence for a specified model, they might reject a model if the values 

fall outside of acceptable bounds, as shown in the ACSI model case. Another proposed 

strategy involves examining the variations in correlation estimates between a target construct 

and other variables in response to changes in their indicators. As elucidated in Chapter 1.4, 

alterations in the indicators of a target construct can differentially impact its correlations with 

other variables, contingent on its true nature.  

Nonetheless, these suggestions are in their nascent stage and require rigorous 

empirical testing for their practical utility. Consequently, it is essential for future research to 

develop a comprehensive and reliable statistical procedure for discerning construct types. 

Such research should involve the establishment of statistical tests and a broad simulation 

study to gauge the effectiveness of these procedures in various research scenarios. This will 

not only solidify the theoretical underpinnings but also significantly enhance the practical 

applicability of the two SEM domains in empirical research. 

Second, every method introduced in this dissertation necessitates that all constructs in 

the model be treated as either latent or summary/descriptive. This requirement may not suit 
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all practical situations, as researchers may wish to treat only some constructs in the model as 

latent and the others as summary or descriptive. For instance, in a study exploring the 

relationship between SES and adolescent aggression (Fatima & Sheikh, 2014), researchers 

might prefer to consider SES a summary and adolescent aggression a latent construct, thereby 

representing the former as a component and the latter as a common factor, respectively. 

However, proposed methods in either SEM domain can accommodate only one of these two 

statistical representations within a single structural equation model, possibly limiting their 

applicability in empirical research. 

While the recently proposed method, integrated generalized structured component 

analysis, (IGSCA; Hwang, Cho, Jung, et al., 2021), attempts to address this limitation, it is 

restricted to estimating parameters of the basic structural equation model (e.g., recursive 

structure, absence of method factors, and uncorrelated errors) and lacks the ability to estimate 

the candidate factor score distribution for latent constructs. Considering the variety of 

methods available that can handle a broader range of models in each SEM domain, including 

those proposed in this dissertation, there is a substantial potential for future research to 

develop a statistical procedure that applies the appropriate SEM methods from each SEM 

domains to each construct based on its nature and subsequently combines the results to obtain 

unbiased parameter estimates for the entire model. 
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Appendix A for Chapter 1 

Appendix A1. An illustration of how a path coefficient in a component-based structural 

equation model summarizes causal effects between two indicator clusters 

Figure A1.1 illustrates a hypothetical multivariate regression model. This model involves 

nine causal effects of the three indicators of γ1 on the other three indicators of γ2.  

 

Figure A1.1. A hypothetical multivariate regression model. Squares signify indicators, single-

headed arrows signify individual causal effects between variables, and double-headed arrows 

denote correlations. 

According to Cho and Choi (2020), this regression model can be re-expressed as a 

component-based structural equation model with two components in Figure A1.2. This model 

condenses the nine causal effects between the two indicator clusters into a single path 

coefficient from γ1 to γ2. The two components fully mediate the causal effects of the 

indicators of γ1 on the indicators of γ2, so that the correlations between the two indicator 

clusters can be entirely explained by the two components. One can recover the nine original 

regression coefficient values from the component model by calculating the indirect effects of 

the indicators of γ1 on the indicators of γ2 though the path between γ1 and γ2 (e.g., the direct 
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effect of z1 on z4 = w1,1 × b1 × c2,4). With this regard, the path coefficient b1 can be considered 

a summary of the causal effects between the two indicator clusters. 

 

Figure A1.2. A component-based structural equation model that is equivalent to the 

multivariate regression model in Figure A1.1. Error terms and their correlations are omitted. 

The parameter values are as follows: b1 = .6, w1,1 = .40, w2,1 = .32, w3,1 = .46, w4,2 = .44, w5,2 

= .33, w6,2 = .39, c1,1 = .83, c1,2 = .68, c1,3 = .97, c2,4 = .96, c2,5 = .72, and c2,6 = .85. 
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Appendix B for Chapter 2 

Appendix B1. A full description of the two stages in SFA 

In this Appendix, we provide a full description of the two modeling stages in SFA based on 

the random matrix theory. In the first stage, researchers are to specify the measurement model 

that represents the data-generating process of indicators under the assumption that the true 

latent variable scores are the underlying causes of the indicators’ scores. SFA estimates the 

parameters of the specified measurement model as well as factor scores and allows for 

statistical tests of the goodness-of-fit of the measurement model. If the measurement model 

with the factor score estimates may be acceptable, SFA can move on to the second stage. In 

this stage, researchers are to specify the structural model that represents the score-generating 

process of latent variables. SFA estimates the parameters of the structural model using the 

factor scores estimated from the first stage and evaluates the goodness-of-fit of the structural 

model. 

 As many of readers would not be familiarized with the theory of a random matrix, we 

start with briefly explaining the concept of a random matrix 𝕏 and its relevant estimators here. 

Let 𝕩n∙ denote a set of random variables or a random vector for each individual n (n = 1, 2, ···, 

N), whose population mean vector and covariance matrix are denoted by τn and Ξn, 

respectively (i.e., τn ≡ E[𝕩n∙] and Ξn ≡ E[(𝕩n∙ – E[𝕩n∙])(𝕩n∙ – E[𝕩n∙])']). With {𝕩1∙, 𝕩2∙, ···, 𝕩N∙}, 

we can define a random matrix 𝕏 for N individuals as 𝕏 ≡ [𝕩1∙, 𝕩2∙, ···, 𝕩N∙]'. For a random 

matrix 𝕏, SFA employs two estimators of 𝕏: score mean vector and score covariance matrix. 

The score mean vector and covariance matrix of 𝕏 are defined as mean(𝕏) and cov(𝕏), 

respectively, where mean(X) ≡ (N–11N'X) and cov(X) ≡ N0 
–1(X – 1Nmean(X))'(X – 

1Nmean(X)) for any matrix X having N rows and N0 ≡ N – 1 (see Appendix A in Bollen, 

1989). If {𝕩1∙, 𝕩2∙, ···, 𝕩N∙} is i.i.d., then τ1 = τ2 = ··· = τN and Ξ1
 = Ξ2

 = ··· = ΞN, indicating 

that the population mean vector and covariance matrix of 𝕩n∙ can be expressed without a 
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subscript as τ and Ξ, respectively. Under this condition, the expected score mean vector and 

covariance matrix of 𝕏 becomes equivalent to the population mean vector and covariance 

matrix of 𝕩n∙, i.e., E[mean(𝕏)] = τ and E[cov(𝕏)] = Ξ (Theorem 1), whose proof is provided 

in Appendix B2. This theorem suggests that mean(𝕏) and cov(𝕏) can serve as unbiased 

estimators for τ and Ξ, respectively, when the rows of 𝕏 are i.i.d. random vectors. Also, 

under the same condition, mean(X) can be seen as the sample mean vector of 𝕩n∙ as well as 

the score mean vector of 𝕏, and similarly, cov(X) can be considered the sample covariance 

matrix of 𝕩n∙ and the score covariance matrix of 𝕏. 

B1.1. Stage 1: Modeling the Data-Generating Process for Indicators 

Model Specification  

Suppose that we are interested in the levels of P latent variables of a certain group of N 

individuals. Let 𝕙n∙ denote a random vector of the nth individual’s P latent variables, whose 

population mean vector and covariance matrix are denoted by α and Φ, respectively, for all n 

(n = 1, 2, ···, N). We assume that {𝕙1∙, 𝕙2∙, ···, 𝕙N∙} is i.i.d. and every latent variable is 

standardized (i.e., α = 0 and diag(Φ) = 1P), where 1k is a k by 1 vector of ones having N rows 

and diag() is an operator that converts an input matrix into a column vector of its diagonal 

elements. If 𝕙n∙ is realized as a score vector, denoted by hn·, it means that the nth individual 

has a specific level of the P latent variables that correspond to hn. Throughout the Stage 1, 

SFA assumes that 𝕙n has been already realized for all n (i.e., 𝕙1∙ = h1·, 𝕙2∙ = h2·, ···, 𝕙N∙ = 

hN·). 

Let Htrue ≡ [h1·, h2·, ···, hN·]' denote an N by P matrix that includes all the N 

individuals’ true latent variable scores, from which the sample mean vector and covariance 

matrix of 𝕙n∙, denoted by αs and Φs respectively, can be calculated by αs = mean(Htrue) and 

Φs = cov(Htrue). For simplicity, the true latent variable scores in Htrue are assumed to be 
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standardized such that αs = 0 and diag(Φs) = 1P. This matrix Htrue is the target score matrix 

that SEM researchers eventually would like to measure. 

However, researchers could have only a limited access to the true scores of latent 

variables in an epistemic sense (Borsboom, 2008), suggesting that they cannot have direct 

measures of Htrue. Accordingly, researchers typically seek to find J indicators of the P latent 

variables (J > P) and measure Htrue indirectly through the N individuals’ scores on the J 

indicators. Let ℤ denote an N by J random matrix of J indicators for the N individuals, whose 

realized value is denoted by Z. This matrix Z is the data matrix researchers have collected for 

inferring Htrue. In Stage 1, SFA formulates a model that explains how this data matrix Z is 

generated from Htrue, which is called the measurement model.  

As in other SEM approaches, SFA assumes that everyone’s indicator scores in Z are 

generated from the scores of two factors: common and unique. The common factor 

corresponds to a latent variable that affects its multiple indicators simultaneously, whose 

scores are included in Htrue. The parameters quantifying the causal effects of each latent 

variable on its indicators are included in a P by J loading matrix, denoted by Λ, whose (p,j)th 

entry refers to the pth latent variable’s effect on the jth indicator (p = 1, 2, ···, P; j = 1, 2, ···, 

J).  

On the other hand, a unique factor in SFA corresponds to a random error that affects 

one indicator uniquely (Bollen, 1989, p. 233). Let 𝕖1∙, 𝕖2∙, ···, 𝕖N∙ denote i.i.d. random 

vectors of J unique factors, where E[𝕖n∙] = 0 and Θ ≡ E[𝕖n∙𝕖n∙'] satisfying diag(Λ'ΦsΛ + Θ) = 

1J (n = 1, 2, ···, N). Then, a random matrix of J unique factors for the N individuals, denoted 

by 𝔼, can be defined as 𝔼 ≡ [𝕖1∙, 𝕖2∙, ···, 𝕖N∙]'. By Theorem 1, E[mean(𝔼)] = 0 and E[cov(𝔼)] 

= Θ. In addition, we assume that E[𝔼|Htrue] = E[𝔼], indicating that the scores of unique 

factors are determined independently of the true scores of latent variables. It also implies that 

unique factor scores are expected to be uncorrelated with the true scores of latent variables 
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(i.e., E[cov([𝔼, Htrue])] = 0), where cov(X1, X2) ≡ N0
–1(X1 – 1Nmean(X1))'(X2 – 1Nmean(X2)) 

for any matrices X 1 and X2 having N rows. Then, the measurement model can be expressed 

as 

 ℤ = HtrueΛ + 𝔼. (B.1) 

The measurement model (B.1) shows the hypothetical, probabilistic process of 

obtaining Z when researchers seek to measure Htrue through ℤ. For instance, suppose that J 

indicators are items of a self-reported questionnaire for P psychological latent variables. 

When N individuals respond to the J items without knowing their levels of the P 

psychological variables precisely, random errors (i.e., 𝔼) can involve the individuals’ 

response process to the items, so that 𝔼 can be realized as an unknown constant, denoted by 

Etrue, and determines the resultant data matrix of measurements Z as Z = HtrueΛ + Etrue. 

Under (B.1), E[mean(ℤ)] = 0 and E[cov(ℤ)] = Λ'ΦsΛ + Θ (Theorem 2), whose proof is 

provided in Appendix B3. In the paper, E[cov(ℤ)] is denoted by Σs. 

Based on a prior theory, researchers must specify which elements of Λ, Φs, and Θ in 

the measurement model (B.1) are non-zero parameters to be estimated and check whether the 

specified measurement model can be identified. The identification rules for the measurement 

model are equivalent to those for the confirmatory factor analysis model in JCA (e.g., refer to 

Bollen 1989, pp. 238–251). 

Estimation Algorithm  

Suppose that the measurement model is correctly specified and Z is collected from N 

individuals, suggesting that Z is generated as Z = HtrueΛ + Etrue. For simplicity, let Ftrue ≡ 

[Htrue, Etrue], L ≡ [Λ; IJ], and Δs ≡ [
Φs 0

0 Θ
], where IJ is the identity matrix of order J, 

followed by Z = FtrueL. We call Ftrue a matrix of the true factor scores including the scores of 

both common and unique factors for N individuals. In Stage 1, SFA seeks to estimate L, Δs, 

and Ftrue given Z. However, even if we knew the values of L and Δs, it would be impossible 
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to obtain the precise value of Ftrue from Z because the number of scores in Ftrue to be 

estimated (i.e., NT) is greater than the number of observed scores given in the dataset Z (i.e., 

NJ), where T = P + J (e.g., Mulaik, 2009; Steiger, 1979). This is the factor score 

indeterminacy problem (de Leeuw, 2017). 

Accordingly, instead of aiming to obtain an unbiased estimate of Ftrue, SFA first 

contemplates a matrix of the candidate factor score matrix F ∈ ℝN × T, which satisfies Z = FL, 

mean(F) = mean(Ftrue), and cov(F) = cov(Ftrue), and thus can be considered a potential 

candidate for Ftrue given Z. To simplify the problem, SFA makes an additional assumption 

that Ftrue would be representative of the population. A score matrix X, which is considered a 

realized value of a random matrix 𝕏, is said to be representative (of the population) if X 

satisfies mean(X) = E[mean(𝕏)] and cov(X) = E[cov(𝕏)]. The score matrix Ftrue being 

representative given Htrue in Stage 1 implies that Etrue is generated such that mean(Etrue) = 0, 

cov(Etrue) = Θ, and cov(Htrue, Etrue) = 0, thereby having Ftrue satisfy mean(Ftrue) = 0 and 

cov(Ftrue) = Δs. Under this condition, Z also becomes representative (i.e., mean(Z) = 0 and 

cov(Z) = Σs; see Appendix B3), from which mean(Ftrue) and cov(Ftrue) can be identified as 0 

and Δs, respectively.  

Assuming that Ftrue is representative, SFA aims to obtain unbiased estimates of L and 

Δ as well as an estimate of F. Specifically, let Zstd denote the standardized counterpart of Z, 

whose sample mean vector is zero and sample covariance matrix is denoted by S. Let Ẑ 

denote a matrix of the predicted values of Zstd based on the estimated model. SFA estimates 

L and F by minimizing the following cost function. 

 
ρ = (JN)

–1
SS(Zstd – Ẑ)             

   = (JN)
–1

SS(Zstd – FL),

 (B.2) 

subject to mean(F) = 0 and cov(F) = Δs, where SS(X) ≡ tr(X'X) for any matrix X. The second 

constraint on F indicates that some entries of cov(F) must be zeros if their corresponding 
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parameters in Δs are fixed to zeros. The value of the cost function (B.2) can be interpreted as 

the average residual variance or (in-sample) prediction error for the standardized indicator 

scores. This indicates that SFA seeks to simultaneously estimate the measurement model 

parameters and a matrix of candidate factor scores in such a way that they maximize 

explanatory power for the standardized indicator scores. Once L and F are estimated, the 

estimate of Δs is obtained by Δ̂s = cov(F̂). 

There is no closed-form solution for minimizing (B.2) subject to the constraints. Thus, 

we developed an alternating least squares (ALS) algorithm, which divides model parameters 

into several groups and updates each group alternately with the remaining groups fixed. A 

detailed description of this algorithm is provided in Appendix B4. After the model parameters 

are estimated, their standard errors or 95% confidence intervals are calculated for testing their 

statistical significance. As SFA does not assume any distributional assumption on indicators, 

it employs a resampling technique, such as the bootstrap method (Efron, 1979, 1982),  to 

obtain those statistics without recourse to a distributional assumption. 

If the ALS algorithm minimizes (B.2) given the identified measurement model and 

the representative Ftrue, it provides unbiased estimates of the measurement model parameters 

(Theorem 3), as proven in Appendix B5. Also, the proposed ALS algorithm mathematically 

guarantees the convergence of (B.2) (de Leeuw et al., 1976), which means that the decrease 

in (B.2) must become smaller than any positive value after some iterations. Moreover, the 

proposed algorithm does not result in improper solutions as its cost function (B.2) is built on 

individual factor scores rather than their covariance matrix. Obviously, a set of individual 

factor scores cannot have negative variances, a negative-definite covariance matrix, or 

correlations with Zstd greater than one in absolute value. 

Despite its desirable statistical properties, the algorithm may be computationally 

costly than JCA when the sample size is large as it needs to estimate N individuals’ factor 
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scores as well as the model parameters. Thus, we propose a supplementary procedure to 

alleviate the algorithm’s potential computational burden in Appendix B6. This procedure 

indicates that even if SFA’s cost function is defined based on a data matrix of indicators, SFA 

only needs the sample covariance matrix of the indicators for estimating the model 

parameters. Thus, albeit researchers only have the sample covariance matrix of indicators in 

hand, they can still apply SFA if they are interested in estimating the model parameters. 

Model Evaluation  

SFA provides an overall goodness-of-fit index, termed the in-sample prediction error for 

observed variables (IPEO), for evaluating the measurement model along with factor score 

estimates. IPEO is defined as  

 IPEO = SS(Zstd – F̂L̂)/SS(Zstd), (B.3) 

where F̂ is the estimate of the candidate factor score matrix and L̂ is the estimate of the 

loading matrix. This index is equivalent to the value of ρ given F̂ and L̂. The value of 1 – 

IPEO can also be interpreted as the average R2 for the indicators. The IPEO value is zero if and 

only if L̂ = L and F̂ satisfies mean(F̂) = 0, Zstd = F̂L̂, and cov(F̂) = Δs, under the condition 

that the measurement model is identified (see Appendix B5). As F̂ obtained from SFA always 

satisfies mean(F̂) = 0, the positive value of IPEO indicates that L̂ ≠ L, Zstd ≠ F̂L̂, or cov(F̂) ≠ 

Δs.  

SFA can conduct a statistical test of the null hypothesis that L̂ = L, Zstd = F̂L̂, and cov(F̂) 

= Δs by using the Bollen-Stine (B-S) bootstrap method (Bollen & Stine, 1993). Let Σ̂s denote 

the estimated implied covariance matrix of the indicators. Let Zimp denote a modified data 

matrix generated under the null hypothesis. The modified data matrix Zimp can be obtained by 

Zimp = ZstdS
–1/2Σ̂s

1/2. The bootstrap method is applied to Zimp to estimate the sampling 

distribution of the IPEO. If the value of IPEO is greater than a critical or cut-off value, e.g., the 
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(1 – α)th percentile of the estimated sampling distribution, we may reject the null hypothesis. 

For more detailed information on the B-S bootstrapping method, you may refer to Bollen et al. 

(1993) and Kim et al. (2014). 

Also, SFA offers traditional goodness-of-fit indexes, such as GFI (Jöreskog & Sorbom, 

1986) and SRMR (Bentler, 1995), which are computed based on the sample and implied 

covariance matrices of the indicators. In contrast to IPEO, these indexes only concentrate on 

evaluating the estimated measurement model. Lastly, the standard errors or 95% confidence 

intervals of individual parameter estimates are used to test the statistical significance of the 

estimates. 

B1.2. Stage 2 – Modeling of the Structural Model 

Model Specification  

Until now, we have just assumed that the true scores of latent variables (i.e., Htrue) exist 

without questioning how those scores are generated. In Stage 2, SFA considers Htrue a value 

of a random matrix ℍ ≡ [𝕙1∙, 𝕙2∙, ···, 𝕙N∙]' and additionally models the stochastic process of 

generating the scores of ℍ, which is called the structural model. We use 𝕙∙p to denote the pth 

column of ℍ, which corresponds to an N by 1 random vector of the pth latent variables for 

the N individuals. By Theorem 1, ℍ satisfies that E[mean(ℍ)] = 0 and E[cov(ℍ)] = Φ. 

For simplicity, we assume that the entries of 𝕙n∙ are arranged such that 𝕙n∙ can be 

expressed as 𝕙n= [𝕙X,n∙, 𝕙Y,n∙], where 𝕙X,n∙ and 𝕙Y,n∙ denote a random vector of Px exogenous 

latent variables and that of Py endogenous latent variables, respectively (n = 1, 2, ···, N). By 

the assumption, Φ also can be expressed as Φ = [
ΦXX ΦXY

ΦXY' ΦYY
], where ΦXX ≡ E[𝕙X,n∙𝕙X,n∙'], 

ΦYY ≡ E[𝕙Y,n∙𝕙Y,n∙'], and ΦXY ≡ E[𝕙X,n∙𝕙Y,n∙']. Let ℍX ≡ [𝕙X,1∙, 𝕙X,2∙, ···, 𝕙X,N∙]' and ℍY ≡ 

[𝕙Y,1∙, 𝕙Y,2∙, ···, 𝕙Y,N∙]', whose realized values are denoted by HX,true, and HY,true, respectively. 
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With ℍX and   ℍY, ℍ can be re-expressed as ℍ = [ℍX, ℍY], whose realized value is denoted 

by Htrue. 

Let {𝕢1∙, 𝕢2∙, ···, 𝕢N∙} denote a set of i.i.d. random vectors of Py structural errors, 

where 𝕢n∙ is for the nth individual (n = 1, 2, ···, N), E[𝕢n∙] = 0, and Ψ ≡ E[𝕢n∙𝕢n∙']. Let ℚ ≡ 

[𝕢1∙, 𝕢2∙, ···, 𝕢N∙]', whose realized value is denoted by Qtrue. By Theorem 1, E[mean(ℚ)] = 0 

and E[cov(ℚ)] = Ψ. We assume that E[ℚ|ℍX] = E[ℚ], indicating that the scores of structural 

errors are determined independently of the scores of exogenous latent variables. It also 

implies that the scores of structural errors are expected to be uncorrelated with the scores of 

exogenous latent variables (i.e., E[cov(ℚ, ℍX)] = 0]. Let BX and BY denote matrices of path 

coefficients that quantify the causal effects of 𝕙X,n∙ on 𝕙Y,n∙ and those between endogenous 

variables in 𝕙Y,n∙, respectively. We assume that diag(BY) = 0 and (IPy – BY) is invertible. 

Then, the structural model can be written as  

 ℍY = ℍX𝐁X + ℍY𝐁Y + ℚ (B.4) 

From (B.4), ℍY can be expressed as a function of ℍX and ℚ (i.e., ℍY = (ℍX𝐁X + ℚ)(IPy –

 𝐁Y)
–1

). 

The structural model (B.4) describes how Htrue are generated. For N individuals, the 

random matrices ℍX and ℚ in (B.4) are initially realized as HX,true and Qtrue, respectively, 

which determine the value of ℍY as HY,true = (HX,trueBX + Qtrue)(IPy – BY)–1. Then, Htrue is 

determined as [HX,true, HY,true]. If Htrue is representative, then Htrue satisfies mean(Htrue) = 0 

and cov(Htrue) = Φ. 

Based on a prior theory, researchers must predetermine which elements of BX, BY, 

and Ψ in the structural model (B.4) are non-zero parameters to be estimated and check 

whether the specified structural model can be identified. The rules for the identification are 
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the same as those used for the path analysis model in JCA, which can be found in Bollen 

(1989, pp. 88–104) or Dijkstra (2017). 

Parameter Estimation  

Let Η̂X and Η̂Y denote matrices of candidate factor score estimates for the exogenous and 

endogenous latent variables obtained from Stage 1. In Stage 2, SFA estimates the structural 

model parameters (i.e., BX, BY, and Ψ) while treating [Η̂X, Η̂Y] as if they were the data of 

latent variables, assuming that Φ̂s = Φ. It utilizes a limited-information estimator, which 

successively applies ordinary least squares (OLS) or two-stage least squares (2SLS) to each 

equation of an endogenous latent variable (Lance et al., 1988). The proposed estimator draws 

on 2SLS if endogeneity occurs in the equation, and on OLS otherwise. Although this 

estimator can be less efficient than a full-information estimator, such as feasible generalized 

least squares (FGLS) or three-stage least squares (3SLS), it can be more robust to model 

misspecification (Wooldridge, 2010, pp. 252–254). Appendix B7 provides a detailed 

description of the estimator. Once all the structural model parameters are estimated, their 

standard errors or confidence intervals are estimated based on a set of the estimates of latent 

variables’ covariance matrix obtained from the bootstrap samples. 

Model Evaluation 

SFA provides a goodness-of-fit index, termed the in-sample prediction error for latent 

variables (IPEL), for evaluating the structural model. The IPEL is defined as  

 IPEL = SS(Η̂Y – (Η̂XB̂X + Η̂YB̂Y))/SS(Η̂Y). (B.5) 

This index represents the average residual variance for all endogenous latent variables 

unexplained by the fitted structural model. The value of 1 – IPEL is equivalent to the average 

R2 for the endogenous latent variables. SFA can also provide GFI and SRMR for the 

structural model, which are calculated based on the discrepancy between the estimated and 

implied covariance matrices of the latent variables.  
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Appendix B2. Theorem 1 and its proof 

Theorem 1. Let 𝕏 ≡ [𝕩1, 𝕩2, ···, 𝕩N]' denote a random matrix of N rows, where 𝕩n is a random 

vector corresponding to the nth row of 𝕏 (n = 1, 2, ···, N). If {𝕩1, 𝕩2, ···, 𝕩N} is i.i.d., τ ≡ 

E[𝕩n], and Ξ ≡ E[(𝕩n– E[𝕩n])(𝕩n– E[𝕩n])'], then E[mean(𝕏)] = τ and E[cov(𝕏)] = Ξ. 

Proof. The expected value of mean(𝕏) can be expressed as E[mean(𝕏)] =E[(N–11N'𝕏)] = N–

11N'E[𝕏] = N–11N'E[[𝕩1, 𝕩2, ···, 𝕩N]'] = N–11N'[E[𝕩1], E[𝕩2], ···, E[𝕩N]]' = N–11N'1Nτ = τ, 

indicating that E[mean(𝕏)] = τ. Also, the expected value of cov(𝕏) can be expressed as 

E[cov(𝕏)] = E[N0
–1(𝕏 – 1Nmean(𝕏))'(𝕏 – 1Nmean(𝕏))] = N0

–1(E[𝕏'𝕏]  – E[𝕏'1Nmean(𝕏)] – 

E[mean(𝕏)'1N'𝕏]) + E[mean(𝕏)'1N'1Nmean(𝕏))]) = N0
–1(E[𝕏'𝕏]  – N(E[mean(𝕏)'mean(𝕏)])) = 

N0
–1(∑ E[𝕩i𝕩i']

N
i =1  – N–1E[(∑ 𝕩i

N
i =1 )(∑ 𝕩i

N
i =1 )']) = N0

–1(∑ E[𝕩i𝕩i']
N
i =1  – N–1(∑ E[𝕩i

N
i =1 𝕩i'] + 

∑ E[𝕩i𝕩k'i ≠ k ]) = N0
–1(N0E[𝕩n𝕩n'] – N–1∑ (E[(𝕩i – E[𝕩i])(𝕩i – E[𝕩k])'] + E[𝕩i]E[𝕩k]')i ≠ k  = N0

–1 

(N0(Ξ + ττ') – N0ττ') = N0
–1N0Ξ = Ξ. Q.E.D.  
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Appendix B3. Theorem 2 and its proof 

Theorem 2. E[mean(ℤ)] = 0 and E[cov(ℤ)] = Λ'ΦsΛ + Θ under (2.1). 

Proof. The expected value of mean(ℤ) can be expressed as E[mean(ℤ)] = E[(N–11N'ℤ)] = 

E[(N–11N'(HtrueΛ + 𝔼)] = E[N–11N'𝔼] = E[mean(𝔼)] = 0, indicating that E[mean(ℤ)] = 0. Also, 

the expected value of cov(ℤ) can be expressed as E[N0
–1(ℤ – mean(ℤ))'(ℤ – mean(ℤ))] = 

E[N0
–1(HtrueΛ + 𝔼 – mean(𝔼))'(HtrueΛ + 𝔼 – mean(𝔼))] = N0

–1(HtrueΛ)'(HtrueΛ) + (HtrueΛ)'E[𝔼 

– mean(𝔼)] + E[(𝔼 – mean(𝔼))'](HtrueΛ) + E[(𝔼 – mean(𝔼))'(𝔼– mean(𝔼))] = Λ'ΦsΛ + Θ. 

Q.E.D.  
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Appendix B4. The proposed ALS algorithm for the first stage of SFA 

Let us reparametrize F = UVf, where U is an N by T matrix satisfying 1N'U = 0 and N0
–1U'U = 

IT , and Vf is a T by T matrix satisfying Vf'Vf = Δs. Then, (B.2) can be re-expressed as  

 ρ = (JN)
–1

SS(Zstd – UVfL), (B.6) 

 

subject to 1N'U= 0, and N0
–1U'U = IT. 

The ALS algorithm begins by assigning initial values to Vf and L. The ALS algorithm 

alternatingly updates each of U, Vf, and L with the others fixed until no substantial decrease 

in (B.6) occurs between two consecutive iterations. One can utilize one of the existing SEM 

techniques to obtain the initial values of L and Δs, from which Vf can be obtained by the 

Cholesky decomposition of Δs. Otherwise, SFA draws on the following procedure to obtain 

the initial values of L and Vf. Let Uη and Uϵ denote the matrix of the first P columns of U and 

that of the last J columns of U, respectively. Let Vη denote a matrix of the first P by P 

diagonal block of Vf satisfying Vη'Vη = Φs and Vϵ denote a matrix of the last J by J diagonal 

block of Vf satisfying Vϵ'Vϵ = Θ. The algorithm initially sets Vη to be IP and all the non-zero 

entries of the loading matrix Λ to be ones. Then, it calculates a residual vector for each 

indicator by regressing each of the indicators on all the other indicators except for ones 

whose unique factors are correlated. Then, it standardizes the residual vectors and uses each 

of them for the initial value for each column of Uϵ. The initial value of Vϵ is obtained by Vϵ = 

N0
–1Uϵ'Zstd, implying that the initial value of Vϵ is equivalent to the correlations between Zstd 

and U. By subtracting UϵVϵ from Zstd, the algorithm obtains a part of the data matrix that 

cannot be explained by the initial value of unique factors, denoted by Zη. Then, the initial 

value of Λ is rescaled such that diag(Λ'ΦsΛ) = N0
–1diag(Zη'Zη). Lastly, the initial values of 

Vf and L are obtained by Vf = [
Vη 0

0 Vϵ

] and L = [Λ; IJ], respectively. 
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Given the initial values of Vf and L, the ALS algorithm repeats the following three 

steps at each iteration.  

Step 1: Update U for fixed Vf and L. As Zstd can be decomposed as  

 N0
1/2ΚzΩzO𝑧 ', (B.7) 

where Κz is an N by J matrix satisfying 1N'Κz= 0 and Κz'Κz = IJ, Ωz
2
 is a J by J diagonal 

matrix of the eigenvalues of S, and Oz is a J by J orthogonal matrix of the eigenvector of S, 

(B.6) can be re-expressed as 

 

ρ = c0((tr(S) + tr(L'ΔsL)) – N0
–1tr(2Zstd'UVfL)) 

   =  c1 – 2c0tr(N0
–1/2U'ΚzA),

 (B.8) 

where c0 ≡ (JN)
–1

N0, c1 ≡ c0tr(S + L'ΔsL), and A ≡ ΩzOz'L'Vf'. The rank of A is J because 

rank(A) = rank(ΩzOz'L'Vf') = rank(L') = rank([Λ', IJ]) = rank(IJ) = J. Matrix A can be 

decomposed  into  

A = RA[χ 0] [
Q'

Q⊥'
] ,     (B.9) 

where RA is a J by J orthogonal matrix of the left singular vectors of A, Q is a T by J matrix 

of the right singular vectors of A, Q⊥ is a T by P matrix of orthonormal columns satisfying 

Q'Q⊥ = 0, and χ is a J by J diagonal matrix of the non-zero singular values of A. Then, ΚzA 

can be expressed as  

 ΚzA = [R R⊥] [
χ 0

0 0
] [

Q'

Q⊥'
], (B.10) 

where R = ΚzRA and R⊥ is an N by N – J – 1 matrix of orthonormal columns satisfying 

(ΚzRA)'R⊥ = 0 and 1N'R⊥ = 0. Given ΚzA, U that minimizes (B.8) can be obtained by  

 U = N0
1/2(RQ' + R⊥CQ⊥'), (B.11) 
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where C is a matrix satisfying C'C = IP (e.g., [IN – J – 1, 0(N – J – 1)×(P)]), at which point tr(U'ΚzA) 

is equivalent to tr(χ) (refer to de Leeuw (2017) for the proof). The column space of R⊥ is an 

orthogonal basis of the null space of [ΚzRA, 1N]', which can be obtained through the QR 

decomposition of [ΚzRA, 1N]. 

 This step is largely based on de Leeuw (2017)’s algorithm. The difference is that we 

impose an additional constraint 1N'U= 0. Without the imposition of this constraint, F = UVf 

cannot satisfy 1N'F = 0 and thus, N0
–1F'F cannot be interpreted as a covariance matrix 

anymore.  

Step 2: Update Vf for fixed U and L. Then, (B.8) can be re-written as  

 

ρ  = N–1N0 + c0(SS(VfL) – 2tr(OzΩzRAQ'(VfL)))

    = c2 + c0(SS(QRA'ΩzOz') – 2tr(OzΩzRAQ'(VfL)) + SS(VfL)

    = c2 + c0SS(QRA'ΩzOz' – VfL)

    = c2 + c0SS(vec(QRA'ΩzOz') – (L' ⊗ IT)vec(Vf)),

 (B.12) 

where c2 ≡ N–1N0 + c0SS(QRA'ΩzOz'). Let ι2 denote a vector of non-zero elements in vec(Vf) 

and Γ1 denote a matrix of the columns of (L' ⊗ I) corresponding to ι2. Then, the least-

squares estimate of ι2 is obtained by  

 (Γ1 'Γ1)
–1

Γ1'vec(QRA'ΩzOz'). (B.13) 

The non-zero elements of Vf are updated by ι2 if the smallest eigenvalue of Vf'Vf remains 

positive. Note that the smallest eigenvalue of Vf'Vf is considered positive only if its 

calculated value is greater than a small positive number (e.g., 10^–10), because the numerical 

calculation of the smallest eigenvalue can be susceptible to a numerical error when its actual 

value is close to zero (e.g., Perla et al., 2020, Chapter 23). 

Step 3: Update L for fixed U and Vf. Let Qη denote a P by J matrix of the first P rows of Q 

and Q
ϵ
 denote a J by J matrix of the last J rows of Q. Then, (B.6) can be re-expressed as  
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ρ = c2 + c0SS( [
Qη

Q
ϵ

] RA'ΩzOz' – [
Vη 0

0 Vϵ

] [
Λ

IJ

]  )

    = c2 + c0SS( [
QηRA'ΩzOz'

Q
ϵ
RA'ΩzOz' – Vϵ

]  – [
IP

0
] VηΛ )

    = c3 + c0SS(QηRA'ΩzOz' – VηΛ )

    = c3 + c0SS(vec(QηRA'ΩzOz') – (IJ ⊗ Vη)vec(Λ)),

 (B.14) 

where c3 ≡ c2 + c0SS(Q
ϵ
RA'ΩzOz' – Vϵ). Let ι3 denote a vector of non-zero elements in vec(Λ) 

and Γ2 is a matrix of the columns of (IJ ⊗ Vη) corresponding to the non-zero elements in 

vec(Λ). Then, the least-squares estimate of ι3 is obtained by 

 (Γ2'Γ2)
–1

Γ2'vec(Q
η
RA'ΩzOz'). (B.15) 

Then, the non-zero elements of Λ are updated by ι3, from which L is reconstructed by L̂ = [Λ; 

IJ]. 

Upon convergence, Vη is obtained from the first P by P diagonal block of Vf and Vϵ is 

obtained from the last J by J diagonal block of Vf. Let Γ3 denote a P by P diagonal matrix 

whose diagonal entries are the elements of diag(Vη'Vη)°1/2. Then, Vη is rescaled by post-

multiplying Vη by Γ3
–1 such that the rescaled value of Vη can satisfy diag(Vη'Vη) = 1p. Then, 

the least-squares estimate of Φs is updated by Φ̂s = Vη'Vη. The rescaling of Vη is needed to 

ensure that the variances of latent variables are equal to one. To avoid the change of ρ by the 

rescaling, Λ̂ is also adjusted by pre-multiplying it by Γ3. Also, let Γ4 denote a J by J diagonal 

matrix whose diagonal entries are the elements of diag(Λ̂Φ̂sΛ̂ + Vϵ'Vϵ)°
1/2. Then, Vϵ is 

updated one more time by post-multiplying it by Γ4
–1 such that the updated value of Vϵ can 

satisfy diag(Λ̂Φ̂sΛ̂ + Vϵ'Vϵ) = 1J. This makes the variances of Ẑ equal to one (i.e., 

diag(cov(Ẑ)) = 1J). Then, the least-squares estimate of Θ is obtained by Θ̂ = Vϵ'Vϵ. Lastly, Vf 

is updated by Vf
 = [

Vη 0

0 Vϵ

] and the least- squares estimate of F is obtained by F̂ = UVf.  
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Appendix B5. Theorem 3 and its proof 

Theorem 3. Suppose that the measurement model is identified and Ftrue satisfies mean(Ftrue) 

= 0, and cov(Ftrue) = Δs. If the ALS algorithm minimize (B.2) given Z, it provides unbiased 

estimates of the measurement model parameters. 

Proof. Suppose that Ftrue satisfies mean(Ftrue) = 0 and cov(Ftrue) = Δs. Then, Z satisfies that 

mean(Z) = 0, cov(Z) = Σs, and Z = Zstd, as mean(Z) = 1N'Z = (1N'Ftrue)L = mean(Ftrue)L = 0L 

= 0 and cov(Z) = N0
–1Z'Z = L'(N0

–1Ftrue'Ftrue)L = L'ΔsL = Σs. Also, given the identified 

measurement model, L̂ = L and Δ̂s = Δs if and only if Σ̂s = Σs, where L̂ and Δ̂s are estimates 

of L and Δ, respectively, and Σ̂s denotes the model-implied covariance matrix of indicators. 

We need to show that if and only if L̂ = L and Δ̂s = Δs, (B.2) can be zero for some F subject 

to 1N'F = 0 and Δ̂s = N0
–1F'F. 

Suppose that (B.2) is zero with a value of F satisfying its constraints, indicating that Z 

= FL̂, mean(F) = 0, and Δ̂s = cov(F). Then, Σs = N0
–1Z'Z = N0

–1(FL̂)'(FL̂) = L̂'Δ̂sL̂ = Σ̂s. 

Then, L̂ = L and Δ̂s = Δs by the identification assumption. Conversely, suppose that L̂ = L 

and Δ̂s = Δs. We only have to show that there exists F that makes (B.2) zero subject to 

mean(F) = 0 and Δ̂s = cov(F). By the assumption, Σs = N0
–1 Z'Z = L'ΔsL. As A in (B.8) 

satisfies A = ΩzOz'L'Vf' = RAχQ', then AA' = ΩzOz'L'ΔsLOzΩz = ΩzOz'(OzΩzΩzOz')OzΩz 

= Ωz
4
, implying that χ = Ωz

2
. When plugging (B.11) into (B.6) given L̂ = L and Δ̂s = Δs, (B.2) 

can be re-expressed as  

 ρ = c0((tr(Σs) + tr(L'ΔsL) – 2tr(χ)). (B.16) 

 As the trace of Σs is equivalent to the sum of its eigenvalues, (B.16) can be written as  

 ρ = c0((tr(Ωz
2
) + tr(Ωz

2
) – 2tr(Ωz

2
)) = 0. (B.17) 

Q.E.D.   
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Appendix B6. A supplementary procedure for the ALS algorithm 

As the cost function (B.2) is defined on Zstd, the proposed ALS algorithm can be 

computationally less efficient as the sample size becomes large. This issue can be 

circumvented by replacing Zstd with Za, where Za is a (T + 1) by P data matrix with the same 

mean and covariance matrix as those of Zstd (i.e., 1(T + 1)'Za = 0 and T–1Za'Za = S). This 

replacement makes the ALS algorithm computationally efficient, particularly when N is far 

larger than (T + 1), because the number of scores to be estimated in F will be much smaller 

when Za is used than when Zstd is used (i.e., (T+1)T < NT ). Let Γ5 ≡ (I(T+ 1) – (T + 1)–11(T+ 

1)1(T+ 1)')[I(J + 1), 0(J + 1)×P]' and Ka ≡ Γ5(Γ5'Γ5)–1/2. The data matrix Za can be obtained by  

 T1/2ΚaΩzOz'. (B.18) 

Once the ALS algorithm converges based on Za, we can calculate the estimate of candidate 

factor scores for original observations by extracting Vf from Δ̂s and applying Step 1 of the 

ALS algorithm given Vf and L̂. We may also utilize this procedure when only S is available 

for parameter estimation. Specifically, we can obtain Ωz and Oz through the eigenvalue 

decomposition of S, based on which we can obtain Za and apply the ALS algorithm to Za
 for 

estimating model parameters. 

We can substitute Za for Zstd in the proposed algorithm because the minimum point of 

(B.2) does not depend on a change in Zstd unless such a change alters the sample mean vector 

and covariance matrix. To prove this, we need to show that the value of (B.2) is unaffected by 

a change in Kz in (B.7). As Kz is involved only in Step 1 of the algorithm, we only need to 

show that Kz does not affect the minimum point of (B.8). The minimum point of (B.8) is 

equivalent to c1 – 2c0tr(χ) (de Leeuw, 2017), where c0 ≡ (JN)
–1

N0, c1 = c0tr(S + L'ΔsL), and χ 

is a matrix of singular values of A = ΩzOz'L'Vf. Thus, Kz does not determine the minimum 

point of (B.8).  
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SFA uses (T + 1) for the row size of Za, because (T + 1) is the minimum sample size 

required for the proposed ALS algorithm. In Step 1 of the ALS algorithm, the least-squares 

estimate of U is obtained by (B.11), where C in (B.11) must satisfy C'C = IP. As C is an (N – 

J – 1) by P matrix, this condition can hold only when N – J – 1 ≥ P. Thus, N must satisfy N ≥ 

P + J + 1 = T + 1. 
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Appendix B7. A non-iterative estimation for the second stage of SFA 

The structural model (B.4) can be re-expressed in the so-called reduced-form equation as 

follows. 

 ℍY = ℍXΠ + ℚ(IPy – BY)–1, (B.19) 

where Π ≡ BX(IPy – BY)–1. The matrix Π is called a matrix of reduced-form parameters. Since 

E[N0
–1(ℍX – mean(ℍX))'(ℚ – mean(ℚ))] = E[N0

–1(ℍX – mean(ℍX))'(ℍY(IPy – BY) – ℍXBX – 

mean(ℍY(IPy – BY) – ℍXBX)] = E[N0
–1(ℍX – mean(ℍX))'(ℍY – mean(ℍY))](IPy – BY) – E[N0

–

1(ℍX – mean(ℍX))'(ℍX – mean(ℍX))]BX = ΦXY(IPy – BY) – ΦXXBX = 0, Π can be re-

expressed as Π = ΦXX
–1ΦXY, implying that Π can be identified from Φ. However, as 

researchers’ interest is typically in the structural parameters BX and BY, not in the reduced 

one (Π), researchers must examine whether all the non-zero elements of BX and BY can be 

uniquely determined by Π or can be identified. When such a relationship between Π and a set 

of BX and BY holds, Ψ can also be uniquely expressed as Ψ = [–BX;(IPy – BY)]'Φ[–BX;(IPy – 

BY)].  

 SFA’s estimation algorithm starts with estimating Π given Η̂X and Η̂Y obtained from 

Stage 1. The least-squares estimate of Π is obtained by  

 Π̂ = (ĤX'ĤX)
–1

(ĤX'ĤXY). (B.20) 

If no endogeneity occurs in the equation, SFA obtains OLS estimates for the path coefficients. 

Otherwise, SFA seeks to estimate the path coefficients via 2SLS (e.g., Dijkstra, 1989). Let 

Π̂0 ≡ [IPx, Π̂] and B̂ ≡ [B̂X; B̂Y]. Let π̂q and 𝐛̂q denote the qth column vectors of Π̂ and B̂, 

respectively (q = 1, 2, ···, Py). Let ι3 denote a vector of non-zero elements in b̂q. Let Γ6 

denote a matrix of the columns of Π̂0 corresponding to the non-zero elements in b̂q. Then, the 

least-squares estimate of ι3 is obtained by  
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 ι3 = (Γ6'Γ6)
–1

Γ6'π̂q. (B.21) 

Then, the non-zero elements in the qth columns of B̂X and B̂Y are updated by ι3. After all the 

path coefficients are estimated, the least-squares estimate of Ψ is obtained by Ψ̂ = [–B̂X; IPy – 

B̂Y]'Φ̂s[–B̂X; IPy – B̂Y]. 
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Appendix B8. A full description of the candidate factor score distribution 

As stated in Section 2.2, SFA obtains an estimate of a matrix of the candidate factor scores F 

and uses this estimate, denoted by F̂, to estimate the parameters of the measurement and 

structural models. However, SFA does not recommend using F̂ as a point estimate of Ftrue as 

there exist an infinite number of Fs owing to the factor score indeterminacy problem so that 

there is no possibility that a single estimate of F is equivalent to Ftrue. Instead, SFA 

contemplates the set of all possible N by T matrices of candidate factor scores, denoted by 

𝓕N,T, assuming Ftrue is representative given Z (i.e., Z = FtrueL, mean(Ftrue) = 0, and cov(Ftrue) 

= Δs). Under this assumption, 𝓕N,T can be expressed as 𝓕N,T ≡ {F ∈ ℝN × T| Z = FL, mean(F) 

= 0, and cov(F) = Δs}, suggesting that if a factor score matrix does not have the sample mean 

vector of 0 or the sample covariance matrix of Δs, one does not necessarily consider the score 

matrix as a potential candidate for Ftrue. SFA derives the probability distribution for all the 

possible values in 𝓕N,T and uses it to infer Ftrue a posteriori given Z.  

Derivation of the candidate factor score distribution and its five properties 

Let 𝔽 denote a random matrix that takes on a value F in 𝓕N,T. As each element in 𝓕N,T is 

called a matrix of candidate factor scores, we call 𝔽 a random matrix of candidate factors and 

its probability distribution the candidate factor score distribution. Then, each column of 𝔽', 

denoted by 𝕗n∙, correspond to a random vector of each individual’s candidate factors, whose 

population covariance matrix is denoted by Gn (n = 1, 2, ···, N). 

The derivation of the candidate factor score distribution starts from the following 

theorem: Ftrue in 𝓕N,T can be re-expressed as Ftrue = ZW + Mtrue, where W ≡ Σs
–1[Λ'Φs, Θ], 

G ≡ [𝐈P, –Λ]'(Φs – ΦsΛΣs
–1Λ'Φs)[𝐈P, –Λ], and Mtrue is an N by T matrix satisfying 

mean(Mtrue) = 0, cov(Mtrue) = G, and cov(Z, Mtrue) = 0 (Theorem 4; Guttman, 1955), whose 

proof is provided in Appendix B9. The major implication of this theorem is that Ftrue in 𝓕N,T 
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can be decomposed into two parts: the deterministic part (i.e., ZW) that can be inferred from 

Z and its random part (i.e., Mtrue) that can never be known from Z. Unless Ftrue is given, any 

element of Mtrue cannot be estimated from Z because the two score matrices are uncorrelated 

(i.e., cov(Z, Mtrue) = 0). As Ftrue can be seen as an arbitrary value in 𝓕N,T given Z, the 

theorem also implies that any F in 𝓕N,T can be re-expressed as F = ZW + M, where M is an 

N by T matrix in 𝓜𝑁,𝑇 ≡ {M ∈ ℝN × T| mean(M) = 0, cov(M) = G, and cov(Z, M) = 0}. The 

value of F depends solely on M given ZW, so that if M = Mtrue, then F = Ftrue. It means that 

if we know the value of M in 𝓜𝑁,𝑇 being equivalent to Mtrue given Z, we can know the 

value of Ftrue. However, as the value of Mtrue cannot be inferred from Z because they are 

uncorrelated, one cannot assume that a value in 𝓜𝑁,𝑇 is more likely to be Mtrue than the 

others. Accordingly, SFA considers M a realized value of a random matrix 𝕄 that follows the 

uniform distribution on 𝓜𝑁,𝑇, which means that every M in 𝓜𝑁,𝑇 is assumed to be equally 

likely to be true. With the random matrix 𝕄, we can re-express 𝔽 as  

 𝔽 = ZW + 𝕄. (B.22) 

The equation (B.22) implies that the candidate factor score distribution (i.e., the probability 

distribution of 𝔽) has the following five properties: (a) 𝔽 follows the uniform distribution on 

𝓕N,T; (b) E[cov(Ftrue –𝔽)] = 2G; (c) E[𝔽] = ZW; (d) E[cov(Ftrue – E[𝔽])] = G; (e) N0
–1∑ Gi

N
i =1  

= G (Theorem 5). The proof of these properties is provided in Appendix B10. 

Property (a) means that every matrix of candidate factor scores in 𝓕N,T  is equally 

likely to be Ftrue, suggesting that researchers cannot find a value that is more likely to be 

true than the others in 𝓕N,T. Property (b) indicates that if one randomly chooses a value from 

𝓕N,T  and uses it as a measurement of Ftrue, the standard deviations of measurement error are 

expected to be diag(2G)°1/2, where °1/2 is a Hadamard root operator that takes elementwise 

square roots of the base vector. Property (c) shows that the center of the candidate factor 
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score distribution E[𝔽] can be expressed as a matrix of weighted composite scores of 

indicators ZW. Accordingly, ZW is called a matrix of expected candidate factor scores in 

SFA. Property (d) means that if one uses ZW as a measurement of Ftrue, the standard 

deviations of measurement error are expected to be diag(G)°1/2, which are two times smaller 

than when one randomly chooses a value from 𝓕N,T as a measurement of Ftrue. It suggests that 

it is more reasonable to use ZW as a measurement of Ftrue than any random value in 𝓕N,T. 

Lastly, Property (e) indicates that each 𝕗n∙ has the covariance matrix that approximates G 

with E[𝕗n∙] = (zn∙'W)', where zn∙ is a vector of the nth individual’s indicator scores in Z. 

Note that researchers need to be cautious not to interpret the equation (B.22) as a data-

generating process for Ftrue. Unlike (B.1), the candidate factor score distribution is built on Z 

after Z has been generated as Z = FtrueL, for inferring Ftrue a posteriori given Z in a 

probabilistic manner. 

Estimation of the candidate factor distribution and its statistics 

SFA estimates the candidate factor score distribution by minimizing the same cost function 

(B.2) in a least-squares sense. Specifically, let 𝓕̂𝑁,𝑇 denote an estimate of 𝓕𝑁,𝑇, whose 

elements can be expressed with L̂ and Δ̂s obtained from the first stage. Then, SFA randomly 

samples a prescribed number of F̂ from 𝓕̂𝑁,𝑇 and uses the set of the F̂ values as an estimate 

of the candidate factor score distribution. A detailed explanation of this procedure is provided 

in Appendix B11. Under the assumption that L̂ = L, Δ̂s = Δs, and Ftrue is representative given 

Z, the estimate of the candidate factor score distribution with Ŵ and Ĝ approximates the 

uniform distribution on 𝓕𝑁,𝑇 with W and G (Theorem 6), whose proof is provided in 

Appendix B12. 

Once it estimates the candidate factor score distribution, SFA estimates ZW and 

diag(G)°1/2 at default as well and uses their estimates as a single measurement of Ftrue and its 
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standard deviations of measurement error, respectively. This choice makes sense in that ZW 

is the only part of Ftrue that can be inferred from Z, as shown in Theorem 4, and can be seen 

as the best linear predictor for Ftrue given Z (e.g., Bartholomew, 1981), as W in ZW is 

equivalent to the one that can be obtained by regressing Ftrue on Zstd (Thurstone, 1934). In 

SFA, the standard deviations of measurement error are called the standard errors of 

measurement (Leong & Huang, 2016), which refer to the standard amount of error that is 

expected to occur when the measurement is used to quantify the true amount of a particular 

quantity. In Section Simulation Studies, we will investigate whether diag(Ĝ)°1/2 obtained 

from SFA approximates the actual standard errors of measurement (i.e., diag(cov(Ftrue – 

ZstdŴ))°1/2) when ZstdŴ is used as a measurement of Ftrue. 

Moreover, SFA derives 95% candidate factor score intervals (95% CI) for each latent 

variable per individual from the estimate of candidate factor score distribution. As its name 

denotes, this interval shows a range of 95% factor scores that are possibly equivalent to Ftrue 

among the entire candidate factor scores. We will conduct a simulation study to examine that 

the coverage probability of the 95% CIs becomes close to .95 on average as the sample size 

becomes larger. In addition, in Section Empirical Illustration, we will demonstrate how to 

utilize the estimated candidate factor score distribution for various probabilistic inferences on 

Ftrue.  
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Appendix B9. Theorem 4 and its proof 

Theorem 4. Ftrue in 𝓕N,T can be re-expressed as Ftrue = ZW + Mtrue, where W ≡ Σs
–1[Λ'Φs, 

Θ], G ≡ [𝐈P, –Λ]'(Φs – ΦsΛΣs
–1Λ'Φs)[𝐈P, –Λ], and Mtrue is an N by T matrix satisfying 

mean(Mtrue) = 0, cov(Mtrue) = G, and cov(Z, Mtrue) = 0. 

Proof. Suppose that W = Σs
–1[Λ'Φs, Θ]. Let us define Mtrue as Mtrue = Ftrue – ZW. We need 

to show that Mtrue satisfies (a) mean(Mtrue) = 0, (b) cov(Z, Mtrue) = 0, and (c) cov(Mtrue) = [𝐈P, 

–Λ]'(Φs – ΦsΛΣs
–1Λ'Φs) [𝐈P, –Λ]. For (a), mean(Mtrue) = N–11N'Mtrue = N–11N'(Ftrue – ZW) = 

N–11N'Ftrue – N–1(1N'Z)W = 0. For (b), cov(Z, Mtrue) = N0
–1Z'Mtrue = N0

–1Z'(Ftrue – ZW) = 

L'Δs – [Λ'Φs, Θ] = 0. For (c), let M1 and M2
 denote a matrix of the first P columns of Mtrue 

and that of the last J columns of Mtrue, respectively. Let G1 ≡ N0
–1M1'M1, G2 ≡ N0

–1M2'M2, 

and G12 ≡ N0
–1M1'M2. Then, the data matrix Z is equivalent to FtrueL = (ZW + Mtrue)L = 

ZΣs
–1[Λ'ΦsΛ + Θ] + [M1Λ + M2] = Z + [M1Λ + M2] = Z, indicating that M2 = – M1Λ, G2 = 

Λ'G1Λ, and G12 = – G1Λ.  Let Htrue denote a matrix of the first P columns of Ftrue and W1 ≡ 

Σs
–1Λ'Φs. Then, G1 can be expressed as G1 = N0

–1M1'M1 = (Htrue – ZW1)'(Htrue – ZW1) = Φs 

– ΦsΛW1 – W1'Λ'Φs + W1'ΣsW1 = Φs – ΦsΛΣs
–1Λ'Φs – ΦsΛΣs

–1
'Λ'Φs + 

ΦsΛΣs
–1

ΣsΣs
–1Λ'Φs = Φs – ΦsΛΣs

–1Λ'Φs. As G2 = Λ'G1Λ and G12 = –G1Λ, N0
–1Mtrue'Mtrue 

= [𝐈P, –Λ]'G1[𝐈P, –Λ] = G. Q.E.D.  
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Appendix B10. Theorem 5 and its proof 

Theorem 5. The probability distribution of 𝔽 has the following five properties: (a) 𝔽 follows 

the uniform distribution on 𝓕N,T; (b) E[cov(Ftrue –𝔽)] = 2G; (c) E[𝔽] = ZW; (d) E[cov(Ftrue – 

E[𝔽])] = G; (e) N0
–1∑ Gi 

N
i =1  = G. 

Proof. For (a), the random matrix 𝕄 in (B.22) follows the uniform distribution on 𝓜𝑁,𝑇. 

Also, the equation (B.22) is a one-to-one mapping of 𝓜𝑁,𝑇 onto 𝓕N,T, which means that 

every M in 𝓜𝑁,𝑇 corresponds uniquely to each and every F in 𝓕N,T though (B.22). Thus, the 

probability distribution of 𝔽 is the uniform distribution on 𝓕N,T. For (b), E[cov(Ftrue –𝔽)] = 

E[cov(Mtrue – 𝕄)] = E[N0
–1((Mtrue – 𝕄) – 1Nmean(Mtrue – 𝕄))'((Mtrue – 𝕄) – 1Nmean(Mtrue – 

𝕄))] = E[N0
–1(Mtrue – 𝕄)'(Mtrue – 𝕄)] = E[N0

–1Mtrue'Mtrue] – E[N0
–1𝕄'Mtrue] – E[N0

–1Mtrue'𝕄] 

+ E[N0
–1𝕄'𝕄] = E[N0

–1Mtrue'Mtrue] + E[N0
–1𝕄'𝕄] = 2G. For (c), E[𝔽] = E[ZW + 𝕄] = ZW 

+ E[𝕄]. For any M in 𝓜𝑁,𝑇, –M is in 𝓜𝑁,𝑇, and both of M and –M are equally likely to be 

true, implying that E[𝕄] = 0. Thus, E[𝔽] = ZW. For (d), E[cov(Ftrue – E[𝔽])] = E[cov(Ftrue – 

ZW)] = E[cov(Mtrue)] = E[G] = G. For (e), let zn∙ and 𝕞n∙ denote the nth column of Z' and 

that of 𝕄', respectively. Then, G can be re-expressed as G = N0
–1𝕄'𝕄 = E[N0

–1𝕄'𝕄] = E[N0
–

1∑ 𝕞i𝕞i'
N
i =1 ] = N0

–1∑ E[𝕞i𝕞i']
N
i =1  = N0

–1 ∑ E[(𝕗i∙ – W'zi∙)(𝕗i∙ – W'zi∙)']
N
i =1  = N0

–1 

∑ E[(𝕗i∙– E[𝕗i∙])(𝕗i∙– E[𝕗i∙])']
N
i =1  = N0

–1∑ Gi 
N
i =1 . Thus, N0

–1∑ Gi 
N
i =1  = G. Q.E.D. 
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Appendix B11. The algorithm for estimating the candidate factor score distribution 

with W and G 

SFA estimates the candidate factor score distribution with W and G given Δ̂s and L̂ by using 

the same cost function (B.2) as the one used in Stage 1. By the ALS algorithm, the least-

squares estimate of F is obtained by F̂ = N0
1/2(ΚzRAQ' + R⊥CQ⊥)Vf = 

Zstd(OzΩz
–1

RAQ'Vf) + N0
1/2R⊥CQ⊥Vf, which means that the least-squares estimates of W 

and G can be obtained by Ŵ = OzΩz
−1

RAQ'Vf and Ĝ = Vf'Q⊥Q⊥'Vf, respectively.  

 However, there exists an infinite number of C in (B.11) that minimizes (2.3) subject 

to C'C = IP given Ŵ, R⊥, Q⊥, and Vf, so one can obtain an infinite number of F̂s that result 

in the same value of ρ given Δ̂s and L̂. Let 𝓕̂𝑁,𝑇 denote a set of all possible values of F̂ by 

changing the value of C in (B.11) given Ŵ, R⊥, Q⊥, and Vf. Let 𝓒N–J–1, P denote the set of all 

possible values of C with P orthonormal columns (i.e., 𝓒N–J–1, P ≡ {C ∈ ℝ(N–J–1)×P| C'C = IP}). 

Let ℂ denote a random matrix that takes on C in 𝓒N–J–1, P. SFA presumes that every C in 𝓒N–J–

1, P is equally likely to be true, implying that ℂ follows the uniform distribution on 𝓒N–J–1, P 

(For the mathematical definition of the uniform distribution of a random matrix with 

orthogonal columns, see Eaton, 1989, Chapter 2). Then, a random matrix 𝔽̂ on the sample 

space 𝓕̂𝑁,𝑇 can be defined as  

 𝔽̂ = ZstdŴ + N1/2R⊥ℂQ⊥'Vf. (B.23) 

SFA seeks to numerically obtain the probability distribution of 𝔽̂ by randomly generating 

multiple values of ℂ. Specifically, let 𝕆 denote an N – J – 1 by P random matrix whose 

vectorized elements have the following distribution, 

 vec(𝕆) ~ Normal(0, IN–J–1 ⊗ IP). (B.24) 

As 𝕆(𝕆'𝕆)–1/2 is known to follow the uniform distribution on 𝓒N–J–1, P (Eaton, 1989, pp. 100–

101), SFA randomly generates a value of 𝕆, denoted by O, and obtains a value of ℂ by C = 
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O(O'O)–1/2. By substituting the C value into (B.23), SFA obtains a value of 𝔽̂ (i.e., F̂). SFA 

repeats this resampling procedure multiple times (e.g., 1000) to obtain a set of F̂ values that 

approximate to 𝓕̂𝑁,𝑇. 

Note that if the resampling procedure is not sufficiently repeated, the resultant set of 

matrices of candidate factor score estimates may not approximate to 𝓕̂𝑁,𝑇 due to the sampling 

error. Let {F̂
(1)

, F̂
(2)

,···, F̂
(Nr)

} denote a set of candidate factor score estimates obtained from 

the resampling procedure above, where F̂
(q)

 is a matrix of candidate factor score estimates 

obtained from the qth sample (q = 1, 2, ···, Nr), and Nr is the number of times the resampling 

procedure is repeated. In particular, if Nr is not sufficiently large, Nr
–1∑ F̂

(i)Nr
i = 1  may not be 

equivalent to ZstdŴ, even though E[𝔽̂] is equivalent to ZstdŴ. Accordingly, SFA additionally 

updates F̂
(q)

 by F̂updated
(q)

 = (F̂
(q)

 – (Nr
–1∑ F̂

(i)Nr
i = 1  – Zstd'Ŵ)), when a small value is used for Nr. 
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Appendix B12. Theorem 6 and its proof  

Theorem 6. If L̂ = L, Δ̂s = Δs, and Ftrue is representative given Z, the estimate of the candidate 

factor score distribution with Ŵ and Ĝ approximates the uniform distribution on 𝓕𝑁,𝑇 with 

W and G. 

Proof. Suppose that L̂ = L, Δ̂s = Δs, Ftrue satisfies N–11N'Ftrue = 0 and N0
–1Ftrue'Ftrue = Δs. Then, 

Z satisfies 1N'Z = 0 and N0
–1Z'Z = Σs. We need to show that (a) Ŵ and Ĝ are equivalent to 

W and G, respectively, and (b) the probability distribution of F̂ on 𝓕̂𝑁,𝑇 is equivalent to the 

uniform distribution on 𝓕𝑁,𝑇. 

 For (a), A = ΩzOz'L'Vf' = Ωz
2
Q', implying that Q' = Ωz

−1
Oz'L'Vf'. Then, Ŵ = 

OzΩz
−1

RAQ'Vf = (OzΩz
−1

Ωz
−1

Oz')L'(Vf'Vf) = Σs
–1L'Δ = [Σs

–1Λ'Φs, Σs
–1Θ] = [W1, W2] = 

W. Also, Ĝ =Vf'Q⊥Q⊥'Vf = Vf'(IT – QQ')Vf = Vf'(IT – VfLΣs
–1L'Vf')Vf = Δs – ΔsLΣs

–1L'Δs 

= [𝐈P, –Λ]'(Φs – ΦsΛΣs
–1Λ'Φs)[𝐈P, –Λ] = [𝐈P, –Λ]'G1[𝐈P, –Λ] = G. 

For (b), we need to show that (c) the function of ℂ for 𝔽̂ (B.23) is a one-to-one 

mapping of 𝓒N–J–1, P onto 𝓕̂𝑁,𝑇 and (d) 𝓕̂𝑁,𝑇 = 𝓕𝑁,𝑇. To facilitate their proofs, we re-express 

model equations for 𝔽 and 𝔽̂ (i.e., (B.22) and (B.23)) with a random matrix 𝔻, which denotes 

an N by P random matrix that takes on a value D in 𝓓N,P, where 𝓓N,P ≡ {D ∈ ℝN × P|mean(D) 

= 0, cov(D) = IP, and cov(Z, D) = 0}. Then, (B.22) can be re-expressed as  

 𝔽 = ZW + 𝔻[Vm1, –Vm1Λ], (B.25) 

where Vm1 is a P by P matrix satisfying Vm1'Vm1 = G1. The function of 𝔻 for 𝔽 is a one-to-

one mapping of 𝓓N,P onto 𝓕𝑁,𝑇.To prove this, we need to show the following three 

statements: (e) for any D in 𝓓N,P, (ZW + DVm) is in 𝓕𝑁,𝑇, (f) if (ZW + D∗Vm) =  

(ZW + D∗∗Vm) for D∗ and D∗∗ in 𝓓N,P, then, D∗ = D∗∗, and (g) for any F in 𝓕𝑁,𝑇, there exists 

D in 𝓓N,P such that F = (ZW + D∗Vm).  
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For (e), let D in 𝓓N,P be given. Then, (ZW + DVm)L = ZΣs
–1(Λ'ΦsΛ + Θ) = Z, 

mean(ZW + DVm) = N–11N'(ZW + DVm) = (N–11N'Z)W + (N–11N'D)V
m

 = 0, and 

cov(ZW + DVm) = N–1 (ZW + DVm)'(ZW + DVm) = [Λ'Φs, Θ]'Σs
–1[Λ'Φs, Θ] + [Vm1, 

Vm2]'[Vm1, Vm2] = [
ΦsΛΣs

–1Λ'Φs + G1 ΘΛΣs
–1Θ − G1Λ

(ΦsΛΣs
–1Θ − G1Λ)' ΘΣs

–1Θ + Λ'G1Λ
] = Δs, as ΘΣs

–1Θ + Λ'(Φs – 

ΦsΛΣs
–1Λ'Φs)Λ = (Σs – Λ'ΦsΛ)Σs

–1(Σs – Λ'ΦsΛ) = Σs – Λ'ΦsΛ = Θ and ΦsΛΣs
–1(Σs – 

Λ'ΦsΛ) – (Φs – ΦsΛΣs
–1Λ'Φs)Λ = ΦsΛ – ΦsΛ = 0. For (f), suppose that (ZW + D∗Vm) = 

(ZW + D∗∗Vm), where D∗ and D
**
 are in 𝓓N,P. Then, (ZW + D∗Vm) – (ZW + D∗∗Vm) = (D∗ – 

D∗∗)[Vm1, Vm2] = 0, thereby making (D∗ – D∗∗)Vm1 = 0. As G1 is invertible (Guttman, 1955, 

theorem 4), Vm1 is also invertible, which implies that D∗ = D∗∗.  

For (g), let F = [H, E] be given in 𝓕𝑁,𝑇, where H and E are the matrix of the first P 

columns and that of the last J columns, respectively. We need to show that there exists D in 

𝓓N,P that makes ZW+ DVm = F. Let us assume that D = (H – ZstdW1)Vm1
–1, where W1 = 

Σs
–1Λ'Φs. It satisfies all of its constraints such that mean(D) = N–11N'D  = N–11N'(H – ZW1) 

Vm1
–1 = ((N–11N'H) – (N–11N'Z)W1)Vm1

–1 = 0, cov(D) = N0
–1D'D = N0

–1(Vm1
–1)'(H – ZW1)' 

(H – ZW1) Vm1
–1 = (Vm1

–1)'(Φs – ΦsΛΣs
–1Λ'Φs)Vm1

–1 = (Vm1Vm1
–1)'(Vm1Vm1

–1) = IP, and 

cov(Z, D) = N0
–1Z'(H – ZstdW1)Vm1

–1 = (Λ'Φs – Λ'Φs)Vm1
–1 = 0. Also, ZW +DVm = 

ZΣs
–1[Λ'Φs, Θ] + (H – ZW1)[IP, –Λ] = [ZW1 + (H – ZW1), ZΣs

–1Θ – (HΛ – ZΣs
–1(Σs– Θ))] 

= [H, E] = F. The proof of (g) is the finite sample analogy to Guttman's (1955) one given N = 

∞. As 𝔽 follows the uniform distribution on 𝓕𝑁,𝑇, 𝔻 also follows the uniform distribution on 

𝓓N,P, which means that every D is equally likely to be true. 

The random matrix 𝔻 also can be re-parameterized again as 𝔻 = N0
1/2[R⊥ℂ] because 

𝔻 = N0
1/2[R⊥ℂ] is a one-to-one mapping of 𝓒N–J–1, P onto 𝓓N,P. To prove this, we need to 

show the following three statements: (h) for any C in 𝓒N–J–1, P, N0
1/2[R⊥C] is in 𝓓N,P, (i) if 
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N0
1/2[R⊥C∗] = N0

1/2[R⊥C
**

] for C∗ and C∗∗ in 𝓒N–J–1, then C∗ = C∗∗ and (j) for any D in 𝓓N,P, 

there exists C in 𝓒N–J–1, P such that D = R⊥C. For (h), let C in 𝓒N–J–1, P be given. Then, C 

satisfies 1N'(N0
1/2R⊥C) = N0

1/2(1N'R⊥)C = 0, N–1(N0
1/2R

⊥
C)'(N1/2R⊥C) =C'(R⊥'R⊥)C = IT – r, 

Z'(N0
1/2R⊥C) = (ΚzΩzOz')'(N0

1/2R⊥C) = N0
1/2OzΩz(Κz'R⊥)C = 0. For (i), let us assume that 

N0
1/2[R⊥C∗] = N0

1/2[R⊥C∗∗] for C∗ and C∗∗ in 𝓒N–r–1, T–r. Then N0
1/2[R⊥C∗] – N0

1/2[R⊥C∗∗] = 

N0
1/2R⊥(C∗ – C∗∗) = 0, followed by R⊥'R⊥(C∗ – C∗∗) = R⊥'0 and thus C∗ = C∗∗. For (j), let D 

in 𝓓N,P be given. Then, let us define C+ as C+ ≡ N0
–1/2R⊥'D. Let Γ8 denote an N by (J + 1) 

matrix whose columns form an orthonormal basis for the column space of [Κz, 1N]. As [Γ8, 

R⊥][Γ8, R⊥]' = IN, N0
–1D'R⊥R⊥'D = N0

–1D'(IN – Γ8Γ8')D = N0
–1D'D – N0

–1(Γ8'D)'(Γ8'D) = IP. 

Also, R⊥C+ =  R⊥(R⊥'D) = (IN – Γ8Γ8')D = D. 

As 𝔻 = N0
1/2[R⊥ℂ] is a one-to-one mapping of 𝓒N–J–1, P onto 𝓓N,P, the model equation 

(B.23) can be re-expressed as  

 𝔽̂ = ZW + 𝔻Q⊥'Vf. (B.26) 

The function of 𝔻 for 𝔽̂ is a one-to-one mapping of 𝓓N,P onto 𝓕̂𝑁,𝑇. To prove this, we only 

need to show that if F̂∗ = F̂∗∗ for any F̂∗ and F̂∗∗ in 𝓕̂𝑁,𝑇, then D∗ = D∗∗ for any D∗ and D∗∗ in 

𝓓𝑁,𝑇. Let D∗ and D∗∗ in 𝓓𝑁,𝑇 be given, having F̂∗ = ZW + D∗Q⊥'Vf and F̂∗∗ = ZW + 

D∗∗Q⊥'Vf. Suppose that F̂∗ = F̂∗∗. Then, F̂∗ – F̂∗∗ = (ZW + D∗Q⊥'Vf) – (ZW + D∗∗Q⊥'Vf) = 

(D∗ – D∗∗)Q⊥'Vf = 0. As (D
*
 – D∗∗)Q⊥'VfVf

–1Q⊥= 0Vf
–1Q⊥, D∗ = D∗∗. From the fact that the 

function of ℂ for 𝔻 is a one-to-one mapping of 𝓒N–J–1, P onto 𝓓N,P and the function of 𝔻 for 𝔽̂ 

(B.26) is a one-to-one mapping of 𝓓N,P onto 𝓕̂𝑁,𝑇, it follows that (c) the function of ℂ for 𝔽̂ 

(B.23) is a one-to-one mapping of 𝓒N–J–1, P onto 𝓕̂𝑁,𝑇. As ℂ follows the uniform distribution 

on 𝓒N–J–1, 𝔽̂ follows the uniform distribution on 𝓕̂𝑁,𝑇. 
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Lastly, for (d), we need to show that (k) any F̂ in 𝓕̂𝑁,𝑇 is in 𝓕𝑁,𝑇 and (l) any F in 𝓕𝑁,𝑇 

is in 𝓕̂𝑁,𝑇. For (k), let D in 𝓓𝑁,𝑇 be given, thereby having F̂ = ZW + DQ⊥'Vf. The estimate 

of the candidate factor score matrix F̂ given D satisfies that F̂L = ZWL + DQ⊥'VfL = 

ZΣs
–1L'ΔsL = Z, mean(F̂∗) = N–11N'F̂∗ = N–11N'(ZW + DQ⊥'Vf.) = (N–11N'Z)W +  

(N–11N'D)Q⊥'Vf. = 0, and cov(F̂) = N0
–1F̂'F̂ =  N0

–1(ZW + DQ⊥'Vf.)'(ZW + DQ⊥'Vf.) = 

W'ΣsW + G = Δs, implying that F̂∗ is in 𝓕𝑁,𝑇. For (l), we need to show that for any F in 𝓕𝑁,𝑇, 

there exists D in 𝓓𝑁,𝑇, such that F = ZW + DQ⊥'Vf. Let F∗ in 𝓕𝑁,𝑇 be given. Let us define 

D∗ as D∗ = (F∗ – ZW)Vf
–1 Q⊥. The matrix D∗ satisfies mean(D∗) = N–11N'D∗ = N–

11N'(F* – ZW)Vf
–1Q⊥ = 0, cov(D∗) = N0

–1D∗'D∗ = Q⊥'Vf
–1'GVf

–1Q⊥ = 

Q⊥'Vf
–1'Vf'Q⊥Q⊥'VfVf

–1Q⊥= IP, and cov(Z, D∗) = N0
–1Z'D∗ = N0

–1Z'(F* – ZW)Vf
–1Q⊥ = N0

–

1(Z'ZW – Z'ZW)Vf
–1Q⊥ = 0, which means that D∗ is in 𝓓𝑁,𝑇. Also, D∗ satisfies ZW + 

D∗Q⊥'Vf = ZW + (F∗ – ZW)Vf
–1Q⊥Q⊥'Vf = ZW + (F∗ – ZW)(IT – Vf

–1QQ'Vf) = ZW + (F∗ 

– ZW)(IT – Vf
–1Vf LOzΩz

−2
Oz'L'Vf'Vf) = ZW + (F∗ – ZW)(IT – LΣs

–1L'Δs) = ZW + (F∗ – 

ZW)(IT – LW) = ZW + F∗ – ZW – F∗LW + ZWLW = ZW + F∗– F∗LW = F∗, indicating 

that any F in 𝓕𝑁,𝑇 is in 𝓕̂𝑁,𝑇. From (k) and (l), it follows that (d) 𝓕𝑁,𝑇 = 𝓕̂𝑁,𝑇. Q.E.D. 
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Appendix C for Chapter 3 

Appendix C1. A proof of disproportional penalty imposition on indicators during the 

minimization of the objective function (3.5) 

Let z = μ + Δzzstd is a random vector of original indicators, where μ, Σ, and Δz denote a 

column mean vector of z, the covariance matrix of z, and a diagonal matrix consisting of each 

indicator’s standard deviation, respectively. Let γ
uni

 ≡ Wuni'z denote a random vector of 

unstandardized components, where Wuni is a matrix of unstandardized weight parameters and 

vecdiag(Wuni'ΣWuni) = 1P. Let euni is a random vector of prediction errors for [z; γ
uni

]. Let Δ 

≡ blkdiag(Δz, IP) is a diagonal matrix of penalty parameters for euni, where blkdiag() is an 

operator to convert input matrices into a block-diagonal matrix. Here, the penalty parameters 

refer to the parameters that rescale prediction error for each dependent variable in the model. 

Let Auni denote a matrix of unstandardized loading and path coefficients in GSCAstd. Let 

a0,uni denote a column vector of the unstandardized intercepts in GSCAstd. When Wuni = 

Δz
–1

Wstd, Auni = AstdΔ, and a0,uni = ([IJ, Wuni] – WuniAuni)'μ, (3.5) is equivalent to the 

following objective function, 

 
f
uni

(Wuni, Auni, a0,uni)

 = tr(Δ
−1

E(eunieuni')Δ
−1

)
 (C.1) 

subject to vecdiag(Wuni'ΣWuni) = 1P, which can be proved as follows. 
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f
std

(Wstd, Astd)

= tr(E(estdestd'))

= E(SS(zstd'Vstd – zstd'W
std

Astd)))

= E(SS((z – μ)'Δz
–1

(Vstd – WstdAstd)))

= E(SS((z – μ)'([Δz
–1

, Δz
−1

Wstd] – Δz
−1

WstdAstdΔΔ
−1

)))

= E(SS((z – μ)'([IJ, Wuni]Δ
−1

 – WuniAuniΔ
−1

)))

= E(SS((z – μ)'(Vuni – WuniAuni)Δ
−1

))

= E(SS((z'Vuni – (z'WuniAuni + a0,uni'))Δ
−1

)),

= tr(Δ
−1

E(eunieuni')Δ
−1

)

= f
std

(Wuni, Auni, a0,uni),

 (C.2) 

where Vuni ≡ [IJ, Wuni]. The equivalence between (3.5) and (C.1) indicates that GSCAstd’s 

parameters are actually the standardized versions of Wuni and Auni that are obtained by 

minimizing the sum of penalized error variances for the original indicators and 

unstandardized components. While minimizing (C.1), a relatively large penalty will be 

imposed on an indicator with a relatively large variance, potentially inflating the influence of 

an indicator with a small variance on GSCAstd’s parameter estimation.  
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Appendix C2. Proofs of the six propositions that characterize a convex component 

Let us suppose that the pth component (γp) is a convex component defined with Jp indicators 

(zp), indicating that the sum of weights assigned to the indicators is equal to one (i.e., 1Jp'wp = 

1) and all the weights are non-negative (i.e., wp ≥ 0Jp ×1). Let zi,p denote the ith random 

variable in zp (i = 1, 2,  ···, Jp), which takes a value in 𝓏i,p ⊂ ℝ. Let wi,p denote the ith element 

of wp (i = 1, 2,  ···, Jp). 

Proposition 1. A convex component has scores within the range of its indicators’ scores. 

Proof. Let m1 ≡ inf{inf 𝓏1,p, inf 𝓏2,p, ∙∙∙, inf 𝓏Jp,p} and m2 ≡ sup{sup 𝓏1,p, sup 𝓏2,p, ∙∙∙, sup 

𝓏Jp,p}. Then, m1 = 
1

1

m w
=


pJ

i,p

i

= 
1

1

m w
=


pJ

i,p

i

 ≤ γp = 
,

1

z w
=


pJ

i p i,p

i

 ≤ 
2

1

m w
=


pJ

i,p

i

 = 
2

1

m w
=


pJ

i,p

i

= m2.   

Proposition 2. Each score of a convex component corresponds to a component score of an 

individual whose scores for indicators are all the same as the component score. 

Proof. Let g ∈ 𝒢p denote a value of γp, where 𝒢p ⊂ ℝ is the set of all possible values γp can 

take in ℝ. If zp = [g, g, ∙∙∙, g]' = g1Jp, then γp = wp'g1Jp = g. 

Proposition 3. The mean of a convex component is not fixed to zero but is determined by 

weights within the range of its indicators’ means. 

Proof. E(γp) = wp'E(zp) = wp'μp. Thus, E(γp) varies depending on wp unless μp = 0. Let μi,p 

denote the ith element of up. Let m3 ≡ inf{μ1,p, μ2,p, ∙∙∙, μJp,p} and m4 ≡ sup{μ1,p, μ2,p, ∙∙∙, μJp,p}. 

Then, m3 = 
3

1

m w
=


pJ

i,p

i

= 
3

1

m w
=


pJ

i,p

i

≤ E(γp) = wp'μp = 
,

1

μ w
pJ

i p i,p

i=

  ≤ 
4

1

m w
=


pJ

i,p

i

 = 
4

1

m w
=


pJ

i,p

i

= m4. 

Proposition 4. The standard deviation of a convex component is not fixed to one but is 

determined by weights within the range from 0 to the maximum standard deviation of its 

indicators. 

Proof. var(γp)
1/2 = (wp'var(zp)wp)

1/2 = (wp'Σpwp)
1/2, indicating that the standard deviation of γp 

depends on wp. Let σk,l,p denote the (k,l)th element of Σp. Let m5 ≡ sup{σ1,1p, σ2,2,p, ∙∙∙, σJp,Jp,p}. 
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Then, var(γp)
1/2 = (wp'Σpwp)

1/2 = 1/2

,

1 1

( w w σ )
= =


p pJ J

k p l,p k, l,p

k l

≤ 1/2

, 5

1 1

( w w m )
= =


p pJ J

k p l,p

k l

=

1/2

5 ,

1 1

(m w w )
= =


p pJ J

k p l,p

k l

 = 1/2

5 ,

1 1

(m w ( w ))
= =

 
p pJ J

k p l,p

k l

= 1/2

5 ,

1

(m w )
=


pJ

k p

k

= 
1/2

5m . Therefore, 0 < 

var(γp)
1/2 ≤ 

1/2

5m .  

Proposition 5. Given a linearly independent set of indicators’ scores, a set of convex 

component scores has a unique set of weights that are nonnegative and summed up to one. 

Proof. Let Dp = [d∙1,p, d∙2,p, ···, d∙Jp,p] denote a N by Jp data matrix of zp, where N is the total 

number of individuals and d∙i,p is the score set of zi,p (i = 1, 2,  ···, Jp). Then, the score set of 

the pth convex component for N individuals, denoted by g∙p, can be expressed as g∙p = Dpwp. 

Suppose that there exists a different set of weights, wp+ = [w1,p+, w2,p+, ···, wJp,p+]', such that 

g∙p = Dpwp+ and wp+
 ≠ wp. Then, 0 = g∙p − g∙p = Dpwp

 − Dpwp+ = Dp(wp
 − wp+) = d∙1,p(w1,p − 

w1,p+) + d∙2,p(w2,p
 − w2,p+) + ··· + d∙Jp,p(wJp,p − wJp,p+). By the assumption that {d∙1,p, d∙2,p, ···, 

d∙Jp,p} is linearly independent, w1,p = w1,p+, w2,p
 = w2,p+, ···, wJp,p = wJp,p+, which contradicts 

the assumption. By the definition of a convex component, wp'1Jp = 1 and wp ≥ 0Jp×1. 

Proposition 6. The path coefficient of a convex component on an outcome variable indicates 

the expected amount of change in the outcome variable for a unit change in each indicator of 

the convex component while holding other variables fixed. 

Proof. Let γq = b0,q + bp,qγp + α'x + ζq denote a structural model equation of the outcome 

variable γq on γp and a vector of covariates x for γq, where b0,q is an intercept for γq, bp,q is the 

path coefficient from γp to γq. α is a vector of path coefficients of x, and ζq is an error term for 

γq. As this model equation can be re-expressed as γq = b0,q + bp,q wp'zp + α'x + ζq, an expected 

change of γq for a one-unit change in every element of zp with the values of x fixed can be 

expressed as E((b0,q + bp,q wp'(zp + 1p) + α'x + ζq) − (b0,q + bp,q wp'zp + α'x + ζq)), which is 

equivalent to E(bp,qwp'(zp + 1p)− bp,qwp'zp) = E(bp,q(wp'1p)) = E(bp,q) = bp,q.   
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Appendix C3. A proof that the optimization function of convex GSCA is partially scale-

invariant 

Suppose that for each block of indicators that are on the same scale, the measurement scales 

are linearly transformed arbitrarily. Let znew = Ωz(z + 𝛌) denote a vector of rescaled 

indicators, where 𝛌 is a J by 1 constant vector for relocation and Ωz is a diagonal matrix for 

scalar multiplication for each indicator. This linear transformation of the measurement scales 

of indicators does not change the minimum value of the objective function (3.13) and the 

corresponding weight values, which can be proven as follows. Let γ
new

 = W'znew denote a 

vector of components defined with rescaled indicators. Let enew denote a vector of prediction 

errors for [znew; γ
new

]. Let Anew denote a matrix of unstandardized loading and path 

coefficients for znew. Let a0,new denote a vector of unstandardized intercepts for znew. Let Onew 

denote a diagonal matrix of penalty parameters for prediction errors given znew. Let ωp is the 

scalar multiplier that is applied the pth block of indicators. Let Ωγ ≡ blkdiag(ω1, ω2, ···, ωP) 

and Ω ≡ blkdiag(Ωz, Ωγ).  

When Anew = Ωγ
–1AΩ, a0,new = (λ'(V – WA) + a0)Ω, and Onew ≡ Ω

–1
O, the objective 

function (3.13) can be re-written as 

 

f
cvx

(W, A, a0)

 = tr(OE(ee')O)

 = E(SS((z'V – (z'WA + a0'))O)

 = E(SS((z'(V – WA) –  a0')O)

 = E(SS((z' + 𝛌' – 𝛌')ΩzΩz
–1

(V – WA) – a0')ΩΩ
–1

O)

 = E(SS((z + 𝛌)'Ωz(Ωz
–1

V – Ωz
–1

WA)Ω – (𝛌'(V – WA) + a0')Ω)Ω
–1

O)

 = E(SS(znew'([Ωz
–1

, Ωz
–1

W]Ω – Ωz
–1

WAΩ) – a0,new'))Onew)

 = E(SS(znew'([IJ, W]Ω
–1

Ω – WΩγ
–1

AΩ) – a0,new'))Onew)

 = E(SS(znew'(V – WAnew) – a0,new'))Onew)

 = E(SS(znew'V – (znew'WAnew + a0,new'))Onew)

 = tr(OnewE(enewenew')Onew)

 = f
cvx

(W, Anew, a0,new).

 (C.3) 

The seventh equality in (C.3) holds because Ωz
–1

W = 𝐖Ωγ
–1

.  
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Appendix C4. A description of GSCAcvx’s ALS algorithm 

The objective function (3.13) can be re-written as  

  

f
cvx

(W, A, a0)

 = E(SS((z'(V – WA) – a0')O))

 = E(SS((z – μ)'LO – (a0' – μ'L)O)),

 = E(tr(((z – μ)'LO – (a0' – μ'L)O)'((z – μ)'LO – (a0' – μ'L)O))),

 = tr(OL'ΣLO) – 2tr(O(a0' – μ'L)'E(z – μ)'LO) + SS((a0' – μ'L)O))

 = tr(OL'ΣLO) + SS((a0' – μ'L)O)),

 (C.4) 

where L ≡ V – WA. Let S denote the positive definite sample covariance matrix of indicators 

and Ô denote the sample analogy of O. As Σ, μ, and O are typically not available, GSCAcvx 

replaces Σ, μ, and O in (C.4) with S, μ̂, and Ô, respectively, as follows, 

  
f
cvx

 ∗
(W, A, a0)

 = tr(ÔL'SLÔ) + SS((a0' – μ̂'L)Ô),
 (C.5) 

and applies the ALS algorithm to find the minimum point of (C.5) with respect to W, A, and 

a0 subject to wp'Spwp = 1 or 1Jp'wp = 1 (p = 1, 2, ···, P), where S𝑝 is an Jp by Jp sample 

covariance matrix of zp. 

The proposed ALS algorithm begins by assigning random initial values to A and 

repeats two steps until convergence. In the first step, W and a0 are updated with A fixed. By 

solving 

*

0

1
0

2 a


=



cvxf
, the least square estimates of a0 given W and A can be obtained as 

 â0  = μ̂(V – WA) (C.6) 

This implies that the least squares estimate of a0 can be expressed as a function of W and A. 

In other words, if we can find the least square estimate of W given A under the constraint 

(C.6), we can obtain â0 as well by (C.6). Inserting (C.6) into (C.5) makes (C.5) be simplified 

as  
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f
cvx

 ∗
(W, A)

 = tr(Ô(V – WA)'S(V – WA)Ô) 

 = N–1SS(Dct(V – WA)Ô),

 (C.7) 

where Dct ≡ D – 1Nμ̂'. Let ÔY denote a T by TY matrix consisting of all nonzero columns of Ô, 

where T ≡ P + J and TY is the number of dependent variables in the model. Let I0 ≡ [IJ, 0J×P] 

and AI ≡ A – [0P×𝐽,  𝐈P]. Let W–p denote a J by (P – 1) matrix formed by the columns of W 

except for its pth column. Let AI,–p denote a (P – 1) by T matrix formed by the rows of AI 

except for its pth row and a𝑝 denote a row vector whose entries are the non-zero elements of 

the pth row of AI,–p corresponding to wp. Let vec() denote an operator that returns a column 

vector obtained by stacking the columns of input matrix vertically. Given A, (C.7) can be re-

expressed as  

 

f
cvx

 ∗
(wp; A, W–p) 

= N–1SS(Dct(V – WA)ÔY)

= N–1SS(Dct([IJ, 0J×P] + [0J×J,  W] – WA)ÔY)

= N–1SS(Dct(I0
 – WAI)ÔY)                              

= N–1SS(Dct(I0
 – W–pAI,–p – wpap)ÔY)

= N–1SS(vec(Dct(I0
– W–pAI,–p)ÔY) – ((apÔY)' ⊗ Dct)wp))

= N–1SS(ψ
1
 – Ξ1wp)),

 (C.8) 

where ψ
1
 ≡ vec(Dct(I0 – W–pAI,–p)ÔY) and Ξ1 ≡ (a𝑝ÔY)' ⊗ Dct.  

If γp is standardized component, the unstandardized least square estimate of wp is 

obtained by  

 ŵ𝑝* = (Ξ1'Ξ1)
–1

Ξ1ψ
1
. (C.9) 

Then, the standardized least square estimate of wp is obtained by ŵ𝑝 = (ŵ𝑝*'Spŵ𝑝*)1/2 such 

that ŵ𝑝 can satisfy ŵ𝑝'Spŵ𝑝 = 1. If every element of ŵ𝑝 is forced to be positive, finding ŵ𝑝 

that minimizes (C.8) becomes a well-known nonnegative least squares problem (NNLS; 
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Lawson & Hanson, 1974, Chapter 23), which should be solved numerically. For instance, the 

function lsqnonneg in MATLAB or the nnls package in R can be utilized under this condition. 

If γp is a convex component, the ALS algorithm finds the solution for (C.8) subject to 

1Jp'wp = 1. This minimization is a linearly constrained least squares problem (Boyd & 

Vandenberghe, 2018, Chapter 16). As the product of the ranks of two matrices equals to the 

rank of the Kronecker product of the two matrices and a𝑝ÔY has one row, (a𝑝ÔY)' ⊗ D𝑐𝑡 has 

linearly independent columns, thereby having the columns of [
Ξ1

1Jp'
] are also linearly 

independent. Thus, there exists 𝛅 satisfying 

 [
Ξ1'Ξ1 1Jp

1Jp' 0
] [

wp

δ
] = [

Ξ1'ψ
1
 

1
], (C.10) 

where  [
Ξ1'Ξ1 1Jp

1Jp' 0
] is invertible. Let Ξ2 ≡ [

Ξ1'Ξ1 1Jp

1Jp' 0
] and ψ

2
 ≡ [

Ξ1'ψ
1
 

1
]. Then, ŵ𝑝 can be 

obtained by the first Jp entries of Ξ2
–1ψ

2
, from which Ŵ is updated. If wp is forced to be 

positive, minimizing (C.8) becomes a quadratic programming problem with a linear 

constraint and an inequality constraint (e.g., Floudas & Visweswaran, 1995; Frank & Wolfe, 

1956). This problem does not have closed-form solution. Instead, it can be solved 

numerically via interior point methods (e.g., Altman & Gondzio, 1999; Vanderbei & 

Carpenter, 1993). For instance, the function lsqlin in MATLAB or the quadprog package in 

R can be utilized to minimize (C.8) numerically. This process repeats for every wp (p = 1, 2, 

···, P). Then â0 is updated by (C.6). 

In the second step, A and a0 are updated with W fixed. Given W, (C.8) can be re-

expressed as  

 

f
cvx

 ∗
(A; W)  

= N–1SS(vec(D𝑐𝑡VÔY) – (ÔY' ⊗ (D𝑐𝑡W))vec(A))

= N–1SS(vec(D𝑐𝑡VÔY) –Ξ3𝛒),

 (C.11)    



 

199 

 

where Ξ3 is the matrix formed by the columns of (ÔY' ⊗ (D𝑐𝑡W)) corresponding to the 

nonzero elements in vec(A), and 𝛒 is the column vector of the nonzero elements of vec(A). 

Then, the value of 𝛒 that minimizes (C.11) is obtained by  

 𝛒 = (Ξ3'Ξ3)–1Ξ3'𝑣𝑒𝑐(D𝑐𝑡V ÔY) (C.12)    

from which the non-zero elements of Â are updated. Then â0 is updated by (C.6). 
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Appendix C5. A procedure for deriving the population covariance matrix of indicators 

from the prescribed parameter values of the GSCA model with convex components 

The proposed procedure imitates the one suggested by Cho and Choi’s (2020) one, while 

simply replacing standardized components and correlation matrix of indicators with convex 

components and covariance matrix of indicators, respectively. Let cp is a Jp by 1 vector of 

loadings for zp. Let ξp is a Jp by 1 vector of error terms for zp. Let Φstd denote a P by P 

correlation matrix of components. Let Δ denote a P by P diagonal matrix whose pth entry is 

the standard deviation of γp, denoted by ϕp. Let Θ = blkdiag(Θ1, Θ2, ···, ΘP) denote a J by J 

covariance matrix of errors in the measurement model, where Θp is a Jp by Jp covariance 

matrix of errors for the pth block of indicators. Let τ = [τ1, τ2, ···, τP]' denote a P by 1 vector 

of component means.  

Given the prescribed values of Σp, μp, and Φstd (p = 1, 2, ···, P), wp is obtained by wp = 

(Σp
–1/2u1p) / 1p'Σp

–1/2u1p), where u1p is the eigenvector corresponding to the largest eigenvalue 

of Σp, indicating that wp maximizes the sum of explained variances of zp given Σp subject to 

1p'wp = 1. Then, τp and ϕp are calculated as τp = wp'μp and ϕp = wp'Σpwp, respectively, based 

on which cp are obtained by cp = ϕp
–2Σpwp, implying that cp is a vector of least-square loading 

values of zp on γp. In turn, Θp is obtained by Θp = (IJp – cpwp')Σp(IJp – wpcp'). Then, all the 

block-diagonal elements of W, C, and Θ can be filled in with wp, cp, and Θp (p = 1, 2, ···, P), 

respectively. Also, τ is computed by τ = W'μ and then, c0 is calculated as c0 = μ – C'τ. Next, 

Φ is derived by Φ = ΔΦstdΔ. Finally, we obtain Σ by Σ = C'ΦC + Θ. A more detailed 

explanation on each step of this procedure can be found in Cho and Choi (2020). 
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Appendix D for Chapter 4 

Appendix D1. Model specification in DL-GSCA 

Let γ = [γ1, γ2, ∙∙∙, γP]' denote a P by 1 random vector of components, where γp is the pth 

component (p = 1, 2, ···, P), and P is the total number of components. Let zp = [z1,p; z2,p; ∙∙∙; 

zJp,p] denote a Jp by 1 random vector of indicators for γp, called a block of indicators for γp, 

where zi,p is the ith indicator in zp (i = 1, 2, ∙∙∙, Jp) and Jp is the number of indicators for γp. 

Let z = [z1; z2; ∙∙∙; zP] denote a J by 1 random vector of indicators, where J is the total number 

of indicators. Both indicators and components are assumed to be standardized, i.e., 𝐸(zi,p) = 

𝐸(γp) = 0 and var(zi,p) = var(γp) = 1. Each component γp is defined as γp = fw,p(zp), where fw,p: 

ℝJp → ℝ denotes a continuous function of zp to γp. Let fc,p: ℝ → ℝJp denote a continuous 

function of γp to ẑp, where ẑp is the predicted value of zp given γp. DL-GSCA assumes at 

default that γp is to explain the variance of zp. If fw,p and fc,p are linear, then fw,p(zp) and fc,p(γp) 

can be expressed as fw,p(zp) = wp'zp and fc,p(γp) = cpγp where wp is a Jp by 1 vector of weight 

parameters for zp, and cp is a Jp by 1 vector of weight parameters for zp. If γp is not assumed 

to explain zp, then fc,p(γp) = 0. Let bp = [b1,p, b2,p, ∙∙∙, bP,p]' denote a P by 1 vector of path 

coefficients relating γ to γp, where bq,p is non-zero if γq is assumed to influence γp and zero 

otherwise (q = 1, 2, ∙∙∙, P and q ≠ p). Let fW(z) ≡ [fw,1(z1); fw,2(z2); ∙∙∙; fw,P(zP)], fC(γ) ≡ [fc,1(γ1), 

fc,2(γ2) , ∙∙∙,  fc,P(γP)]', and B ≡ [b1, b2, ∙∙∙, bP]. Let ξ = [ξ1; ξ2; ∙∙∙; ξP] denote a J by 1 vector of 

errors for z in the component measurement model, where ξp is a Jp by 1 vector of errors for zp. 

Let ζ = [ζ1, ζ2, ∙∙∙, ζP]' denote a P by 1 vector of errors for γ in the structural model, where ζp 

is an error for γp. Then, the three sub-models of DL-GSCA are expressed as (4.4), (4.5), and 

(4.6). Furthermore, DL-GSCA combines the sub-models into a single equation as follows. 

 

[z; γ] = [fC(γ); B'γ] + [ξ; ζ]

↔[z; fW(z)] = fA(γ) + [ξ; ζ]

↔ fV(z) = fA(fW(z)) + ε,

 (D.1) 
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where fV(z) = [z; fW(z)], fA(γ) = [fC(γ); B'γ], and ε = [ξ; ζ]. This is called the DL-GSCA model. 
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Appendix D2. Approximations to DL-GSCA’s fW and fC via deep learning’s artificial 

neural networks 

DL-GSCA utilizes deep learning (DL) for estimating each fW and fC in a data-driven manner. 

As fW and fC can be seen as function sets of fw,p and fc,p across components (p = 1, 2, ···, P), 

respectively, DL-GSCA splits fW and fC into their small ingredients (i.e., fw,p and fc,p) and 

processes each of them separately. Let hw,p and hc,p denote DL’s two artificial neural networks 

that approximate fw,p and fc,p, respectively. As briefly discussed earlier, these functions are 

built based on function composition, indicating that hw,p and hc,p map their input arguments to 

the output through a sequence of functions. Specifically, hw,p is defined as γp = hw,p(zp) = 

hw,p
(Lp+1)(hw,p

(Lp) (∙∙∙(hw,p
(1)(zp))), where hw,p

(l) is the lth function in a sequence of functions for 

hw,p (l =1, 2, ∙∙∙, Lp+1) and Lp+1 is the total number of functions in the sequence for γp. 

Likewise, hc,p(γp) is defined as ẑp = hc,p(γp) = hc,p
(Lp+1)(hc,p

(Lp)(∙∙∙(hc,p
(1)(γp))), where hc,p

(l) is the 

lth function in a sequence of functions for hc,p (l =1, 2, ∙∙∙, Lp+1). As stated earlier, hw,p
(l) and 

hc,p
(l) are called layers in DL. Once hw,p and hc,p are defined, hW and hC  are defined as hW(z) = 

[hw,1(z1); hw,2(z2);∙∙∙; hw,P(zP)] and hC(γ) = [hc,1(γ1); hc,2(γ2);∙∙∙; hc,P(γP)], which approximate fW 

and fC, respectively. Taken together, DL-GSCA employs a total of 2P artificial neural 

networks to approximate fW and fC in (4.4) and (4.5). 

There are three types of layers: input, hidden, and output layers. The input layer refers 

to a vector of input arguments, for instance, zp for hw,p and γp for hc,p, whereas the output layer 

refers to the last layer in a sequence of functions, such as, hw,p
(Lp+1) for hw,p and hc,p

(Lp+1) for 

hc,p. The other functions between the input and output layers constitute hidden layers, for 

example, hw,p
(Lp), hw,p

(Lp–1), ∙∙∙, hw,p
(1) for hw,p and hc,p

(Lp), hc,p
(Lp–1), ∙∙∙, hc,p

(1) for hc,p. Only the 

hidden and output layers are called computational layers, as the input layer simply transmits 

its input arguments to the next layer (Aggarwal, 2018, p. 6). The output values of each hidden 

layer are called hidden units in the hidden layer, and all indicators, components, and hidden 
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units are collectively called nodes. The number of hidden units in the lth hidden layer is 

denoted by Rp
(l).  

Figure D2.1 depicts an example of layers for hw,p. The input layer includes three 

indicators for a component, whereas the output layer contains the component. There are two 

hidden layers, each of which contains four hidden units, signified by dotted hexagons. A 

hidden unit refers to an element of the output vector of each hidden layer. In this example, 

there are three computational layers for hw,p. 

 

Figure D2.1. An example of layers for hw,p in DL-GSCA’s weighted relation model. Dotted 

circles represent hidden units per hidden layer. Straight lines denote weight parameters. 

Each node per computational layer is obtained by transforming the weighted sum of 

nodes in the previous layer in a linear or nonlinear fashion. Specifically, let sp,a
(l) denote the 

ath node in the lth computational layer for hw,p (a =1, 2, ∙∙∙, Rp
(l); l =1, 2, ∙∙∙, Lp+1). Let sp

(l) ≡ 

[sp,1
(l), sp,2

(l), ∙∙∙, sp,Rp
(l)]' and sp

(0) ≡ zp. Let Wp
(l) denote an Rp

(l – 1) by Rp
(l) matrix of weights in 

the lth computational layer, where Rp
 (0) ≡ Jp. Let βw,p

(l) denote a Rp
 (l) by 1 vector of 
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biases/intercepts in the lth computational layer. Let α(x) = [α1(x1), α2(x2), ∙∙∙, αM(xM)]' denote 

an activation function that transforms each entry of the input vector x linearly or nonlinearly, 

where x = [x1, x2, ∙∙∙, xM]' is any vector of size M and αm is an activation function that is 

applied to xm (m = 1, 2, ∙∙∙, M). Then, hw,p
(l) in hw,p can be expressed as sp

(l)  = hw,p
(l)(sp

(l – 1)) = 

α(Wp
(l)'sp

(l – 1) + βw,p
 (l)), indicating that a set of nodes in the lth computational layer for hw,p is 

defined as a linear or nonlinear function of a weighted sum of nodes in the (l–1)th 

computational layer for hw,p.  

We can consider several types of activation function, including identity, sigmoid, 

tangent hyperbolic (tanh), bounded linear unit (BLU), and rectified linear unit (ReLU). Refer 

to Nwankpa, Ijomah, Gachagan, and Marshall (2021) for the characteristics of these 

activation functions. The ReLU function is one of the most popular activation functions for 

hidden units in modern deep learning architectures because of its superior performance in 

multiple-layer cases (e.g., Aggarwal, 2018; Nwankpa et al., 2021). Thus, in DL-GSCA, by 

default, the ReLU function is used for hidden units, which can be expressed as  

 αm(xm) = max(0, xm). (D.2) 

Figure D2.2(a) displays the ReLU function, which is a continuous, piecewise, linear function. 

Based on the property of a piecewise linear function, hw,p involving the ReLU also becomes 

continuous and piecewise linear in zp(Strang, 2019, p. 375). This indicates that hw,p 

approximates fw,p by a linear combination of multiple line pieces. On the other hand, two 

activation functions, identity and BLU (Zhangyang et al., 2016), are recommended for the 

output layer, which can be written as  

 αm(xm) = xm (identity)                           _        (D.3) 

 αm(xm) = max(min(xm, τ2,m), τ1,m) (BLU), (D.4) 
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where τ1,m and τ2,m are the lower and upper limits of xm, respectively.4 Figure D2.2(b) and 

Figure D2.2(c) exhibit the two activation functions. In DL-GSCA, the BLU function is 

preferred to the identity function for the output layer of hw,p because it can suppress the 

occurrence of extreme component scores from a test sample by truncating them to lie in the 

range of the component scores estimated from a training sample (e.g., [–3, 3]). Without such 

a truncation scheme, abnormally large component scores can be obtained from a test sample 

if this sample includes outliers, leading to large out-of-sample prediction error.  

 

Figure D2.2. Three types of activation functions used in DL-GSCA. 

 Figure D2.3 depicts an example of layers for hc,p, which consists of the same number 

of computational layers as those for hw,p. The input layer in hc,p includes a component, 

whereas the output layer includes the predicted values of the component’s indicators. Let tp,a
(l) 

denote the ath node in the lth computational layer for hc,p (a =1, 2, ∙∙∙, Rp
(l); l =1, 2, ∙∙∙, Lp+1). 

Let tp
(l) ≡ [tp,1

(l), tp,2
(l), ∙∙∙, tp,Rp

(l)]' and tp
(0) ≡ γp. Let Cp

(l) denote an Rp
(l – 1) by Rp

(l) matrix of 

loadings, and βc,p
(l) denote a Rp

(l) by 1 vector of biases. Then, hc,p
(l) in hc,p can be expressed as 

tp
(l) = hc,p

(l)(tp(l – 1)) = α(Cp
(l)'tp

(l – 1)+ βc,p
(l)), indicating that a set of nodes in the lth 

computational layer for hc,p is defined as a linear or nonlinear function of a weighted sum of 

nodes in the (l–1)th computational layer for hc,p. The ReLU function is again used for all 

 
4 In the original BLU function, τ1,m and τ2,m are restricted as 1 = τ2,m = –τ1,m. 
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hidden layers of hc,p, while the identity function is for the output layer. The BLU function is 

not used for the output layer because the values of ẑp are not expected to be abnormally 

extreme as the argument of hc,p (i.e., the score of γp) is already truncated not to have an 

extreme value.  

 

Figure D2.3. An example of layers for hc,p in DL-GSCA’s component measurement model. 

Dotted circles represent hidden units per hidden layer in the measurement model. Straight 

lines denote loading parameters. 
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Appendix D3. Parameter estimation procedure for DL-GSCA 

Given the data of indicators, DL-GSCA aims to estimate hw,p, hc,p, and B in such a way that 

components minimize the average unexplained variance of all dependent variables in the 

model. Let dn,p denote a Jp by 1 vector of the standardized scores of zp for the nth individual 

in a sample of N individuals. Let dn ≡ [dn,1; dn,2; ∙∙∙; dn,P] and D ≡ [d1, d2, ∙∙∙, dN]'. Let gn,p 

denote the nth individual’s standardized score for γp, which can be obtained by 

 gn,p = hw,p(dn,p).   (D.5) 

 Let gn ≡ [gn,1, gn,2, ∙∙∙, gn,P]' and G ≡ [g1, g2, ∙∙∙, gN]'. Let en denote a J + P by 1 vector of 

residuals for [dn; gn]. Let SS(X) ≡ trace(X'X), where X is any matrix. Let blkdiag() denote an 

operator that converts a set of input matrices into a block-diagonal matrix that includes each 

input matrix as its diagonal block. Let Oz ≡ blkdiag(Oz,1, Oz,2, ∙∙∙, Oz,P), where Oz,p = I if zp is 

explained by γp and Oz,p = 0 otherwise. Let Oγ ≡ blkdiag(oγ,1, oγ,2, ∙∙∙, oγ,P), where oγ,p is one if 

γp is explained by other components and zero otherwise. Let O ≡ blkdiag(Oz, Oγ). Let T 

denote the number of dependent variables in the model. Given D, DL-GSCA seeks to 

minimize the following optimization criterion 

 

φ(hw,p, hc,p, B)

 = (TN)
–1 ∑ SS(enO)N

n=1

 = (TN)
–1 ∑ (SS((dn,p – hc,p(g

n,p
))Oz,p) + SS(g

n,p
 – g

n
bp)oγ,p)) ,P

p=1

 (D.6) 

subject to the standardization constraints on components. The criterion (D.6) is equivalent to 

the average (squared) prediction error for all the dependent variables in the model.  

As this constrained optimization criterion cannot be minimized in closed form, we 

develop an alternating least squares (ALS) algorithm to minimize (D.6) iteratively. 

Specifically, the ALS algorithm begins by assigning initial values to the parameters in the 

following way. It utilizes the estimates of GSCA as the initial values of G and B and then, 

applies the He initialization (He et al., 2015) to assign random initial values to hw,p and hc,p. 

The He initialization is more efficient for convergence than any other procedures when the 
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Relu function is used for deep learning (Kumar, 2017). Then, the algorithm alternates the 

following two steps until the difference in the value of (D.6) between consecutive iterations 

becomes smaller than a prescribed tolerance level (e.g., .0001). 

Step 1. Update hw,p, hc,p , and bp with hw,q, hc,q , and bq fixed for all q ∈ ℚp, where ℚp is a set 

of integers from 1 to P except for p. Let ςp denote the pth row of B – I, and Ωp denote I – B 

with the pth row removed. Let πp denote a row vector of the nonzero entries of ςp. Let Φp 

denote a matrix of the columns of Ωp that correspond to the non-zero entries of ςp. Let Ωp,z 

denote a matrix of the columns of Ωp that correspond to the zero entries of ςp. With the 

standardization constraints imposed on components, the objective function (D.6) can be re-

expressed as  

 

φ(hW, hC, B)

= (TN)
–1 ∑ (∑ (SS((dn,k – hc,k(gn,k

))Oz,k)) + SS((I – B)'g
n
Oγ)

P
k=1 )N

n=1

= (TN)
–1 ∑ (∑ (SS((dn,k – hc,k(gn,k

))Oz,k)) + SS((Ωp'g
n,–p

 – ς
p
'g

n,p
)Oγ)

P
k=1 )N

n=1    

= (TN)
–1 ∑ (SS([(dn,p – hc,p(hw,p(dn,p)))Oz,p, (Φp'g

n,–p
 – πp'hw,p(dn,p))Oγ]) + ψ

1
,N

n=1

 (D.7) 

where ψ
1
 =  (TN)

–1 ∑ (∑ (SS((dn,q – hc,q(g
n,q

))O
z,q

))  + SS(Φp'g
n,–p

Oγ) q∈ℚp
)N

n=1  is a constant, 

indicating that hc,p, hw,p, and πp can be estimated with hw,q, hc,q, and bq fixed for all q ∈ ℚp in 

such a way that the pth component (gn,p) can minimize the sum of squared residuals for dn,p 

and Φp'g
n,–p

. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Broyden, 1970; 

Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) can be used to minimize (D.7) subject to the 

standardization constraints. We employ the fminunc function in MATLAB, which allows 

users to implement the BFGS algorithm without manually calculating the gradient of  (D.7) 

(The MathWorks Inc., 2022). Once hc,p, hw,p, and πp are updated, the non-zero elements of bp 

are updated by the estimated πp.Then, hW, hC, and B are updated by hw,p, hc,p , and bp. 

Step 2. Update B for hW and hC fixed. Let θ denote a column vector of the non-zero elements 

of vec(B), where vec() is an operator to converts an input matrix into a column vector by 
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stacking the columns of the input matrix vertically in order. The operator ⨂ denotes the 

Kronecker product. Let Ξ denote a matrix of the columns of Oγ ⨂ G that correspond to the 

non-zero elements of vec(B). We can re-write (D.6) as  

 

φ(hw,p, hc,p, B)

= (TN)
–1 ∑ (SS((g

n
 – B'g

n
)Oγ)) + ψ

2
N
n=1

= (TN)
–1

SS(GOγ –  GBOγ) +  ψ
2

= (TN)
–1

SS(vec(GOγ) – (Oγ ⨂ G)vec(B)) + ψ
2

= (TN)
–1

SS(vec(GOγ) – Ξθ) + ψ
2
,

 (D.8) 

where ψ2 = (TN)
–1 ∑ (SS((dn – hc(gn

))Oz))N
n=1  is a constant. The least squares estimate of θ 

can be obtained by  

 𝛉̂ = (Ξ'Ξ)
–1

Ξ'vec(GOγ), (D.9) 

from which the non-zero elements of B are updated.  

DL-GSCA repeats the ALS algorithm with different random initial values to avoid 

potential convergence to local minima (Hwang & Takane, 2014, p. 24). Then, DL-GSCA 

selects a set of parameter estimates that leads to the smallest value of (D.6) as the final one.  
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Appendix D4. Predictive feedforward search algorithm used for tuning DL-GSCA’s 

hyperparameters 

Prior to applying the ALS algorithm, DL-GSCA should determine the values of two 

hyperparameters for each component (i.e., Lp and Rp
(l)). The predictive feedforward search 

algorithm (Cho, Hwang, et al., 2022), which was originally introduced for variable selection 

in GSCA, can be utilized for deciding on the values of the hyperparameters in DL-GSCA.  

Given candidate sets of the hyperparameter values for a component, the search 

algorithm generates K pairs of training and validation samples. Then, the algorithm starts 

with the smallest candidate values of Lp and Rp
(l). The DL-GSCA model with these values is 

fitted to a training sample, and the model’s TED value is subsequently calculated from the 

corresponding validation sample. This procedure is reiterated for the remaining pairs of 

training and validation samples, leading to the calculation of the average TED value over K 

validation samples. 

The algorithm proceeds with the next smallest Rp
(l) value and calculates the model’s 

average TED value again. Then, it compares the two average TED values from two different 

Rp
(l) values to see if the TED value decreases with an increase in the Rp

(l) value. If it does, the 

process continues with the next smallest Rp
(l) value until the model’s TED value no longer 

decreases with an increase in Rp
(l), or there are no remaining Rp

(l) candidates. The Rp
(l) value 

resulting in the minimum average TED is selected as the optimal one for the smallest Lp value. 

This process is then conducted for the next smallest Lp value with the aim of 

identifying the optimal Rp
(l) value for that Lp. The algorithm subsequently compares the two 

average TED values from two different combinations of Lp and Rp
(l) and determines whether 

an increase in the Lp value reduces the model’s TED value. If so, the process proceeds with 

the next smallest Lp until the model’s TED value no longer decreases with an increase in Lp or 
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there are no further Lp candidates. The Lp and Rp
(l) pair that leads to the smallest average TED 

is selected as the optimal one for that component.  

The search algorithm repeats the above procedures for all components. When the 

sample size is large, it may be too computationally costly to conduct K-fold cross validation. 

In this case, the algorithm is carried out based on the validation set approach that uses a 

prescribed percentage of the training sample (e.g., 70%) for training the model and the 

remaining one for calculating the model’s TED value.  
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Appendix D5. Formulae for DL-GSCA’s model evaluation indices 

The overall goodness-of-fit index, FITD, is given as  

 D 1
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where B̂ is the estimate of B. The two local goodness-of-fit indices, FITM
D and FITS

D, are 

provided as 
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 On the other hand, TED is defined as  
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,  (D.13) 

where Ntt is the number of individuals in the test sample; dn,tt is the nth individual’s 

standardized scores in the test sample (n = 1,2, ∙∙∙, Ntt); hW, hC, and B̂ are the parameter 

estimates obtained from the training sample; and gn,tt  ≡ hW(dn,tt). Note that dn,tt should be 

standardized using the sample means and standard deviations of indicators obtained from the 

training sample, not from the corresponding test sample, because hW, hC, and B̂ are the 

estimates obtained from the standardized scores of indicators in the training sample. In 

addition, two local indices for evaluating the prediction errors of the component measurement 

and structural models are defined as follows. 
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Moreover, OPED is defined as  
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where Nboot is the number of in-bag and out-of-bag sample sets; Nk is the number of 

individuals in the kth out-of-bag sample; dn,k is the nth individual’s standardized scores in the 

kth out-of-bag sample; hW,k, hC,k, and B̂k are the parameter estimates obtained from the kth in-

bag sample; and gn,k  ≡ hW (dn,k). Note that dn,k should be standardized using the sample means 

and standard deviations of indicators obtained from the kth in-bag sample. The two local 

cross-validation indices are defined as follows. 
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Lastly, ∆TEp,q, which is used to evaluate the predictive power of each individual 

predictor for its dependent component, is defined as  
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where gn,q,tt  is the qth component’s score in gn,tt , b̂q is the qth column of B̂, and Ip0 is the 

identity matrix of order P, whose pth diagonal entry is zero.  
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Appendix D6. Data generating procedure for the simulation study 

Let dn,p,i denote the nth individual’s score of the ith indicator for the pth component in the 

prototype model in Figure 4.6 (n = 1, 2, ∙∙∙, N; i = 1, 2, 3; p = 1, 2, 3). To generate dn,p,i, we 

begin by obtaining the implied correlation matrix of the GSCA model based on Cho and 

Choi’s (2020) procedure, under the assumption that all indicators are linearly associated. This 

implied covariance matrix is provided in Table D6.1. We draw a sample of N individuals 

from a multivariate normal distribution with zero means and the covariance matrix. Let yn,p,i 

denote the nth individual’s score of the ith indicator for the pth linear component. We then 

generate dn,p,i as follows: dn,1,1 = yn,1,1, dn,1,2 = (yn,1,2)
2, dn,1,3 = –(yn,1,3)

2, dn,2,1 = yn,2,1, dn,2,2 = 

(yn,2,1 × yn,2,2), dn,2,3 = (yn,2,2 × yn,2,3), dn,3,1 = yn,3,1, dn,3,2 = yn,3,2, and dn,3,3 = yn,3,3. 

Table D6.1. The correlation matrix of indicators used in the simulation study. 

 y1,1 y1,2 y1,3 y2,1 y2,2 y2,3 y3,1 y3,2 y3,3 

y1,1 1.000 0.800 0.800 0.433 0.433 0.433 0.303 0.303 0.303 

y1,2 0.800 1.000 0.800 0.433 0.433 0.433 0.303 0.303 0.303 

y1,3 0.800 0.800 1.000 0.433 0.433 0.433 0.303 0.303 0.303 

y2,1 0.433 0.433 0.433 1.000 0.800 0.800 -0.303 -0.303 -0.303 

y2,2 0.433 0.433 0.433 0.800 1.000 0.800 -0.303 -0.303 -0.303 

y2,3 0.433 0.433 0.433 0.800 0.800 1.000 -0.303 -0.303 -0.303 

y3,1 0.303 0.303 0.303 -0.303 -0.303 -0.303 1.000 0.800 0.800 

y3,2 0.303 0.303 0.303 -0.303 -0.303 -0.303 0.800 1.000 0.800 

y3,3 0.303 0.303 0.303 -0.303 -0.303 -0.303 0.800 0.800 1.000 

 


	Abstract
	Abrégé
	Acknowledgements
	Contribution of Authors
	List of Tables
	List of Figures
	Chapter 1. Introduction and Background
	1.1. Two Domains of Structural Equation Modeling
	1.2. Model Specification in Two SEM Domains
	1.3.  Discussion About the Superior Domain
	1.4.  How to Choose an SEM Domain
	1.5.  Objectives and Overview of the Dissertation
	References

	Chapter 2. Structured Factor Analysis: A Data Matrix-Based Alternative Approach to Structural Equation Modeling
	Abstract
	2.1.  Introduction
	2.2. The Proposed Method
	2.2.1. Stage 1: Measurement Model for the Data-Generating Process of Indicators
	2.2.2. Stage 2: Structural Model for the Score-Generating Process of Latent Variables

	2.3. Candidate Factor Score Distribution
	2.4. Simulation Studies
	2.4.1. Simulation Study 1
	2.4.2. Simulation Study 2

	2.5. Empirical Illustration
	2.6. Discussion
	References

	Chapter 3. Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes
	Abstract
	3.1. Introduction
	3.2. Traditional GSCA with Standardized Variables
	3.2.1. Model and Parameter Estimation
	3.2.2. Unstandardized Weight Estimates in GSCAstd

	3.3. Convex Component and Its Six Properties
	3.4. Convex GSCA
	3.4.1. Model Specification
	3.4.2. Parameter Estimation
	3.4.3. Model Evaluation Indexes

	3.5. Simulated Data Analysis
	3.6. Illustration with Empirical Data
	3.7. Concluding Remarks
	References

	Chapter 4. Deep learning Generalized Structured Component Analysis: An Interpretable Artificial Neural Network Model with Composite Indexes
	Abstract
	4.1. Introduction
	4.2. The Proposed Method
	4.2.1. Model Specification
	4.2.2. Parameter Estimation
	4.2.3. Model Evaluation

	4.3. Empirical Application
	4.4. Simulation Study
	4.5. Concluding Remarks
	References

	Chapter 5. Concluding Remarks
	5.1. Summary and Implications
	5.2. Limitations and Future Research Directions

	References
	Appendix A for Chapter 1
	Appendix A1. An illustration of how a path coefficient in a component-based structural equation model summarizes causal effects between two indicator clusters

	Appendix B for Chapter 2
	Appendix B1. A full description of the two stages in SFA
	Appendix B2. Theorem 1 and its proof
	Appendix B3. Theorem 2 and its proof
	Appendix B4. The proposed ALS algorithm for the first stage of SFA
	Appendix B5. Theorem 3 and its proof
	Appendix B6. A supplementary procedure for the ALS algorithm
	Appendix B7. A non-iterative estimation for the second stage of SFA
	Appendix B8. A full description of the candidate factor score distribution
	Appendix B9. Theorem 4 and its proof
	Appendix B10. Theorem 5 and its proof
	Appendix B11. The algorithm for estimating the candidate factor score distribution with W and G
	Appendix B12. Theorem 6 and its proof

	Appendix C for Chapter 3
	Appendix C1. A proof of disproportional penalty imposition on indicators during the minimization of the objective function (3.5)
	Appendix C2. Proofs of the six propositions that characterize a convex component
	Appendix C3. A proof that the optimization function of convex GSCA is partially scale-invariant
	Appendix C4. A description of GSCAcvx’s ALS algorithm
	Appendix C5.  A procedure for deriving the population covariance matrix of indicators from the prescribed parameter values of the GSCA model with convex components

	Appendix D for Chapter 4
	Appendix D1. Model specification in DL-GSCA
	Appendix D2. Approximations to DL-GSCA’s fW and fC via deep learning’s artificial neural networks
	Appendix D3. Parameter estimation procedure for DL-GSCA
	Appendix D4. Predictive feedforward search algorithm used for tuning DL-GSCA’s hyperparameters
	Appendix D5. Formulae for DL-GSCA’s model evaluation indices
	Appendix D6. Data generating procedure for the simulation study


