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Abstract

At low temperature and weak magnetic field (B), and under a strong DC current IDC , a

two-dimensional electron gas (2DEG) can exhibit a variety of non-linear transport phe-

nomena, which we refer to as phases. In an ultra-high mobility (µ=20 × 106 cm2/Vs)

narrow (15 µm wide) GaAs/AlGaAs Hall bar, with DC current densities up to 0.67 A/m,

the various phases are captured together in a single phase diagram, a differential resis-

tivity map of B-field versus DC current. Around zero current, we observe 1/B periodic

Shubnikov-de Haas (SdH) oscillations and phase inversion of SdH oscillations. Around

zero B-field, we observe a negative magnetoresistance and a double peak feature, which

are both signs of ballistic electron transport. At high DC current, we observe strong IDC/B

oscillations known as Hall-induced resistance oscillations (HIROs). The object of this the-

sis is to give a general overview of the weak B-field strong DC current phase diagram

of 2DEG, as we introduce and report on each of these phases, giving extra emphasis to

HIROs. In the work presented in this thesis, we compare our experimental data to exist-

ing theories to extract parameters of interest. Notably, we find a difference between the

quantum lifetime τq extracted from SdH oscillations and from HIROs, an unexpected half-

integer HIRO-like feature, and evidence of DC current-induced electron hydrodynamic

transport.
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Abrégé

À basse température et sous un faible champ magnétique (B), et sous un fort courant

DC IDC , un gaz électronique en deux dimensions (GE2D) peut présenter une variété de

phénomènes de transport non linéaires, que nous appelons des phases. Dans une barre

à effet de Hall composé de GaAs/AlGaAs à ultra-haute mobilité (µ=20 × 106 cm2/Vs)

et étroite (15 µm), avec des densités de courant continu allant jusqu’à 0.67 A/m, les

différentes phases sont capturées ensemble dans un diagramme de phase, une représentation

graphique de résistivité différentielle du champ magnétique en fonction du courant DC.

Autour du zéro courant, nous observons des oscillations périodiques à 1/B de l’effet de

Shubnikov-de Haas (SdH) et une inversion de phase des oscillations de SdH. Autour

du zéro champ magnétique, nous observons une magnétorésistance négative et une car-

actéristique de double pics, qui sont tous des signes de transport balistique d’électrons. A

fort courant continu, nous observons de fortes oscillations à IDC/B connues sous le nom

d’oscillations de résistance induites par Hall (HIROs). L’objetif de cette thèse est de don-

ner une vue d’ensemble du diagramme de phase dans un champ B faible et sous un fort

courant continu dans un GE2D, en introduisant et en expliquant chacune de ces phases,

en concentrant surtout sur les HIROs. Dans le travail présenté dans cette thèse, nous com-

parons nos données expérimentales aux théories existantes pour extraire les paramètres

d’intérêt. En particulier, nous trouvons une différence entre la durée de vie quantique τq
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extraite des oscillations de l’effet de SdH et des HIROs, une résonance qui ressemble aux

HIROs à demi-entier des HIROs, et des signes du transport hydrodynamique d’électrons

induit par le courant continu.
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1. Introduction

In low dimensional physics, the two-dimensional electron gas (2DEG) has been one of

the most studied systems in the past four decades. The extensive experimental studies

have made remarkable discoveries, most notably the integer quantum hall effect [2] and

the fractional quantum hall effect [3]. 2DEGs are made from semiconductor materials.

Recently, with modern fabrication techniques such as molecular beam epitaxy (MBE), we

now have access to low disorder, high mobility 2DEG systems. In these high mobility

2DEGs, non-linear phenomena have been discovered at high filling factors (very small

magnetic fields), such as Hall-field induced resistance oscillations [4] and microwave in-

duced resistance oscillations [5], which we refer to as phases. These various phases have

received significant interest in the past two decades [6, 7].

This thesis focuses on the experimental investigations of non-linear transport of a

2DEG in an ultra-high mobility (µ=20×106 cm2/Vs) narrow (15 µm wide) GaAs/AlGaAs

Hall bar, under DC current densities up to 0.67 A/m. Under DC current and in the pres-

ence of a weak perpendicular magnetic field, Hall-field induced resistance oscillations

(HIROs) can be observed. Previously published experimental works on HIROs have

mostly focused on the magnetoresistance of HIROs, where the data are usually presented

in a resistivity vs B-field plot at fixed DC current [4, 8–21]. However, the low magnetic

field high DC current regime is filled with a rich set of phases, other than HIROs. The
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object of our research is to present this regime and its various phases by mapping out

the resistance versus both B-field and DC current. This top-down approach allows us to

present to the reader a complete picture of the low B-field high DC current regime in one

place and from a single sample. This method also allows us to understand the possible

relationships between the observable phenomena, and has previously been used success-

fully in the high magnetic field regime [22–24].

To properly introduce the phases discussed in this thesis, we start by presenting a map

of the measured differential resistivity ρxx along the direction Hall bar versus B-field and

DC current, which we refer to as the phase diagram. Then, from the phase diagram, we

identify the relevant regions of each phase, as well as their boundaries. For each non-

linear phenomenon, we give a review of the background information. Lastly, we present

an overview of the content of this thesis.

1.1 Phase Diagram

We start by presenting the phase diagram, a plot of the magneto-resistivity ρxx in differ-

ential resistivity versus DC current IDC up to 10 µA and B-field up to 0.25 T, of a narrow

(W=15 µm) and ultra-high mobility (µ=20×106) Hall bar [see Fig. 1.1(a)]. In the phase

diagram, there are various non-linear phenomena that we can identify with their own

regions and boundaries, which we refer to as phases. Each phase is a feature of the phase

diagram that can tell us more about the properties of 2DEG such as how charge carriers in

the system interact with impurities, with the boundaries and with each other. Specifically,

by comparing the phases to existing theories, we are able to validate our current under-

standings of non-linear phenomena with experimental data, and extract parameters of in-

terest such as the electronic width, the quantum lifetime and the electron temperature. In

the phase diagram, we can identify five distinct phases: Shubnikov-de Haas oscillations

3



Figure 1.1: a) Phase diagram of differential resistivity ρxx vs B and IDC (A background

parabolic dependence with IDC and a small uniform linear dependence with B-field are

subtracted from the raw data to emphasize the features of interest in the phase diagram).

b) Horizontal cross section of the phase diagram at IDC=6 µA, where HIROs and nMR

can be observed. c) Expanded view of the phase diagram around B=0 T (raw data). A

double peak can be observed on top of the nMR. The background parabolic dependence

can be observed at ∼0.2 T. d) Vertical cross section of the phase diagram at B=0 T. A

decrease in ρxx with increasing current is a sign of a hydrodynamic effect [25]. e) ρxx vs B

at IDC=0 µA and IDC=0.4 µA, where SdH oscillations and a phase inversion (PhI) of the

SdH oscillations can be observed.
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(SdH), phase inversion of the SdH oscillations, negative magnetoresistance around B=0

T (nMR), Hall-field induced resistance oscillations (HIROs), and evidence of DC current-

induced electron hydrodynamics (HYDRO). The phases are identified in Fig. 1.1. In this

thesis, we will mainly focus on the topic of HIROs which is a spectacular manifestation

of non-linear behavior. Nonetheless, we also introduce and report on the findings from

the four other phenomena of the phase diagram, in order to give a general picture to the

reader. The phase diagram analysis approach is motivated by a lack of a comprehen-

sive experimental analysis of more than one low B-field non-linear phenomenon in the

literature. This method has merits, as we will see later, when parameters obtained from

the analysis of one phase can be relevant or compared to parameters obtained from the

analysis of another phase.

1.2 Shubnikov-de Hass Oscillations

SdH oscillations are 1/B oscillations in the resistivity in the presence of a small magnetic

field at low temperature [26–29]. In the phase diagram presented in Fig 1.1(a), these

oscillations can be identified as horizontal waves for |B| > 0.1 T, although the theoretical

formulation does not take into account DC current. SdH oscillations are best observed

at zero DC current, where they have the largest amplitudes [see Fig. 1.1(e) and Fig. 1.2].

Analysis of SdH oscillations is useful to extract parameters, notably the quantum lifetime

and the effective mass.

SdH oscillations arise from the magneto-oscillation of the density of states (DOS) in a

small magnetic field. At zero magnetic field, the DOS of a 2DEG is constant and equal

to ν0 = m∗/π~2, where m∗ is the effective mass. In a magnetic field perpendicular to the

sample, taking into account disorder and temperature, the DOS can be approximated by

the overlap of a series of Gaussian functions at each Landau level. An approximation of
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the DOS takes the form of [7]:

ν(ε) = 1− 2λcos

(
2πε

~ωc

)
(1.1)

where λ = exp(−π/ωcτq) is the Dingle factor, ωc = eB/m∗ is the cyclotron frequency,

τq is the quantum lifetime. When a magnetic field is applied to a solid state material, the

charge carrier’s energy spectrum is quantized because of the quantization of the cyclotron

orbits, which are characterized by Landau levels separated to the next immediate energy

level by the cyclotron energy ~ωc. The Landau level separation increases with increasing

B-field, and the oscillatory nature of the DOS affects the conductivity. The resistivity

peaks when a Landau level crosses the Fermi energy, which is the source of the SdH

oscillations. In the small B-field regime, we can analytically describe the SdH oscillations

in the resistance Rxx = Vxx/I (which is equivalent to the differential resistance in the limit

of zero DC current) by the conventional Ando formula [30, 31]:

∆Rxx = 4R0DT cos

(
2πEF
~ωc

− π
)

exp

(
− π

ωcτq

)
, (1.2)

where ∆Rxx is the SdH oscillation resistance amplitude, R0 is the zero field resistance,

and DT is the thermal damping factor:

DT =
XT

sinh(XT )
, XT =

2π2kBT

~ωc
. (1.3)

Here kB is the Boltzman constant and T is the temperature. From the Dingle factor in Eq.

(1.2), we can conclude that SdH oscillations are observable for ωcτq � 1, which defines

the SdH boundary Bq, the B-field value where ωcτq = 1. This condition effectively means

that the separation of the Landau levels (~ωc) must be greater than the broadening of

each level equal to ~/τq. For SdH oscillations to be observed, ~ωc � kBT must also be
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satisfied, which states that the separation between Landau levels must be greater than the

thermal broadening. This condition is described in the thermal damping factor. Finally,

oscillations appear for EF � ~ωc, where there is degeneration of the 2DEG, which sets an

upper B-field limit for SdH oscillations. For an extensive review of SdH oscillations see

Refs. [6, 7].

1.3 Phase Inversion of The SdH Oscillations

In the phase diagram, SdH oscillations can be observed to persist at non-zero DC cur-

rent. Their amplitude decreases exponentially away from IDC=0 µA. Interestingly, the

SdH oscillations become phase inverted around IDC ∼ 0.3 µA, meaning the peaks and

troughs of the oscillations are inverted, or shifted by a phase π. Beyond IDC ∼ 0.3 µA,

the SdH oscillations are entirely inverted [see Fig. 1.1(e)]. This phenomenon has been

observed previously in the differential resistance of SdH oscillations in graphene [32] and

in InGaAs/InP quantum well [33]. A model by Studenikin et al. [33] describes a phase

inversion of SdH oscillations in differential resistance by a DC current-induced electron

temperature dependence. Specifically, the phase inversion emerges from a conversion of

the SdH oscillations correction in resistance ∆RSdH
xx in Eq. 1.2 to differential resistance

∆rSdHxx , taking into account a temperature dependent on DC current, such that

rxx =
∂Vxx
∂I

= Rxx + IDC
∂∆RSdH

xx

∂Te

∂Te
∂I

, (1.4)

where Te is the electron temperature, Vxx is the potential across the probe, rxx = R0 +

∆rSdHxx , Rxx = R0 + ∆RSdH
xx , R0 is the bulk resistance. The derivative of ∆RSdH

xx with

respect to T is negative and introduces a phase inverted oscillatory component (see DT

versus ∂DT/∂T versus B-field in Fig. 1.2). From this model, at large enough DC current,
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a phase inversion occurs when the second term of the right side of Eq. (1.4) is larger

than Rxx. This model also accounts for the decreasing amplitude of SdH oscillations with

increasing IDC , explained by an increase in electron temperature due to DC current. The

parameter of interest is Te(IDC). In Studenikin et al. [33], the electron temperature was

calibrated to IDC , which had the form:

Te = T0 + αIβDC (1.5)

where IDC is in µA, T0 is the bath temperature, α and β are constants. α and β were

found to be 0.487 and 2/3, respectively. The 2/3 dependence was explained by a power

dissipation related to T 3, which is consistent with previous experimental works on 2DEG

[34,35]. In our phase diagram, the phase inversion happens at∼ 0.3 µA around 0.2 T. The

boundary of the phase inversion is dependent on B-field, which we will refer to as IPhI .

1.4 Negative Magnetoresistance

Around zero magnetic field, a strong negative magnetoresistance can be observed [see

Fig. 1.1(a), (c)]. At zero DC current, the nMR has a sharp change of slope around 10mT

and also has a double peak feature at ∼ 5 mT. As the DC current increases, the nMR

feature persists and the double peak feature widens. Both are signs of ballistic trans-

port [36–38], which is a regime where the width of the sample is smaller than the trans-

port mean free path and the electron-electron scattering length. In this regime, electron

transport is dominated by scattering events with the 2DEG boundaries (see Fig. 1.3). In a

theoretical work by Scaffidi et al. [36], a sharp change of slope at Weff = 2rc and a peak at

Weff ' 0.55rc in the magnetoresistance were both attributed to be signs of ballistic trans-

port in a 2DEG. In general, the resistivity of a material is caused by scattering of the charge
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Figure 1.2: Thermal damping factor DT in Eq. (1.3) versus its derivative with respect to

T , evaluated at T = 40 mK and plotted versus B-field. The derivative of DT with respect

to the temperature T is negative, which introduces a phase inversion at large enough IDC
in Eq. (1.4), given that the electron temperature depends on current.

carriers inside of the material. In the ballistic transport regime, the resistance is mainly

affected by charge carriers scattering off the boundaries of the 2DEG. When Weff = 2rc,

the diameter of the cyclotron orbit of an electron is equal to the width of the 2DEG. In a

stronger B-field (Weff > 2rc), an electron cannot scatter from one side of the 2DEG to the

other side, except by scattering off impurities in the material. This results in a decrease

of the resistivity and the sharp change of slope of the magnetoresistance at Weff = 2rc.

Physically, the double peak feature can be explained by interactions of the charge carriers

with the side contacts under a magnetic field, which results in an increase in magnetore-

sistance. In an experimental work by Gusev et al. [39], it was shown that the configuration

of measurement of the voltage across the length of the Hall bar has a significant effect on

the double peak feature. The double peak feature has also been observed experimen-
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tally in previous works [37, 40–43]. In general, nMR has been observed in high-mobility

2DEG Hall bar devices [44–55], quantum wires and quantum point contacts [40, 56–59].

In Refs. [46, 60, 61], the nMR was associated with weak localization. For our sample, the

mean free path is larger than the Hall bar width, and coherent backscattering is negligible,

so we can rule out weak localization.

1.5 Hall-Field Induced Resistance Oscillations

Hall field-induced resistance oscillations (HIROs) are IDC/B oscillations in the resistivity

observable in the presence of a DC current. In our phase diagram, these oscillations are

the sharp diagonal resonances at non-zero magnetic field and DC current. The first order

resonance is the one closest to the B-field axis [see Fig. 1.1(a)]. Subsequent resonance

orders approach the DC current axis. In our sample, we observe up to 7 resonances in all

four quadrants. HIROs were first observed in 2002 by Yang et al. [4] and were attributed

to a Zener tunneling effect between Landau levels tilted by the electric field. The origin

of the Landau level transition is elastic scattering of electrons off impurities. A detailed

literature review of HIROs is presented in Chapter 2.

1.6 DC Current-Induced Electron Hydrodynamic Transport

In our phase diagram, at zero magnetic field, the differential resistivity ρxx first decreases

with increasing DC current, and then increases at around 4 µA [see Fig. 1.1(d)]. We

attribute the decrease in ρxx at zero B-field to be a sign of DC current-induced electron

hydrodynamic transport. We can exclude umklapp processes and weak electron phonon

coupling because we use an ultra-high mobility 2DEG in a GaAs/AlGaAs heterostruc-

ture [25]. We can also exclude weak localization because of our sample’s long mean free
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path (lmfp = 145 µm). Thus, electrons in the 2DEG interact with the boundaries and/or

potentially with each other. This phenomenon was previously reported in high-mobility

2DEG of (Al,Ga)As electron wires under DC current by Molenkamp and De Jong [25,62],

which was attributed to be hydrodynamic in nature.

Electron hydrodynamic transport has become a reemerging topic of significant in-

terest recently. The possibility of viscous electronic flow was originally theorized by

Gurzhi [63, 64] in the 1960’s. Conventionally, electronic transport is determined by mo-

mentum relaxing (MR) collision of electrons (electron-impurity for instance). On the other

hand, electron-electron collisions are momentum conserving, and should not affect the

conductivity. When the electron-boundary collisions are more frequent than MR colli-

sions of electrons, the electron transport is ballistic in nature [36]. Gurzhi suggested that

electrons flow differently in a system when the MC electron-electron collisions are more

frequent than both the momentum relaxing electron-impurity collisions and boundary

collisions, at low temperatures. As a result, electrons away from the boundaries undergo

many fewer collisions with the boundaries due to collisions with each other before reach-

ing the boundaries. Additionally, if the width of the electronic system is also less than

the mean free path, the electrons are much less likely to undergo momentum relaxing

collisions. Under these conditions, the electrons flow through the channel like a hydro-

dynamic fluid (see Fig. 1.3). In summary, there are three relevant length scales: sample

width W , classical mean free path lmfp (MR) and electron-electron scattering length lee

(MC). The three length scales define three limiting transport regimes: Ohmic (lmfp � W ),

ballistic (W � lee, lmfp) and hydrodynamic (lee � W � lmfp). Effectively, the validity of

the hydrodynamic regime can be determined by the detection of a hydrodynamic correc-

tion to the resistivity of a material.
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Figure 1.3: Cartoon simplifying the difference between an electron in the ballistic regime

versus hydrodynamic regime. In the hydrodynamic regime, the electron undergoes

momentum-conserving scattering collisions.

Since the proposition by Gurzhi, there has been numerous theoretical studies on the

topic of electron hydrodynamic transport [25, 65–74]. Experimental studies in the 1990s

used high-mobility GaAs/AlGaAs hetero-structure wires to report on the Knudsen and

Poiseuille (Gurzhi) transport regimes in the differential resistance [25, 62, 68]. In recent

years, following the development of high mobility materials with high transport mean

free path, there has been a renewed interest in electron hydrodynamics. New theoretical

works [36, 75–82] furthered our understanding of the viscous contribution in semicon-

ductor 2DEG. New experimental works studied hydrodynamic effects in the 2D systems

of graphene [43, 83–91], high-mobility semiconductor 2DEGs [39, 42, 47, 52, 82, 92–99], 2D

metals [42], and semi-metal micro-ribbons [92].

Commonly used methods of reaching the hydrodynamic regime are temperature-

induced suppression of lee and reduction of the channel width in steps [42]. The temperature-

induced suppression of lee is a theoretical prediction by Giuliani and Quinn [65]. A sim-

ilar prediction with DC current was also made by the same author, which is the basis of

current-induced viscous transport in our work.
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1.7 Thesis Overview

The thesis is organized in 7 chapters.

With HIROs being the principle topic of this thesis, in Chapter 2, we review the exper-

imental and theoretical works on HIROs. Specifically, we present the theoretical frame-

work developed to understand nonequilibrium corrections of the magnetoresistance un-

der DC current. The theory presented in this section will be used extensively in Chapter

4 for the analysis of the experimental data of HIROs.

The data presented in this thesis are from measurements of a Hall bar under magnetic

field and DC current. The experimental setup and relevant details about the instrumen-

tation are presented in Chapter 3. Following this chapter, the next chapters describe the

analysis of each phase observable from the experimental data.

Chapter 4 presents the analysis of HIROs with the theoretical models presented in

Chapter 2. From the analysis, we extract parameters of interest, namely the effective

width of the Hall bar, the backscattering lifetime, the quantum lifetime τq and the inelastic

relaxation lifetime. Our study shows a DC current dependence of τq and a discrepency

between τq extracted from HIROs and extracted from SdH oscillations. We also report on

an unexpected “fractional” HIRO-like feature between the first and second order maxima.

In Chapter 5, we present our analysis of the SdH oscillations. We compare our data

to a model of SdH oscillations under DC current in differential resistivity based on a DC

current-induced electron temperature dependence, which is described in Sec. 1.3. This

model explains both the decreasing amplitude of SdH oscillations with increasing DC

current and the phase inversion.
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Chapter 6 describes our observation of the negative magnetoresistance at zero mag-

netic field. The main topic of this chapter is to characterize this phenomenon and investi-

gate its origin. The noticeable double peak feature’s dependence with DC current is also

explored.

Lastly, in Chapter 7, we present evidence of DC current-induced electron hydrody-

namic transport. first, we present evidence of DC current-induced suppression of the

electron-electron scattering length, which is an essential condition for the hydrodynamic

regime. Then, we identify the contributions in the deviation of the magnetoresistance

with DC current in the near-zero magnetic field. Following the background information

presented in Sec. 1.6, we compare the data to theoretical hydrodynamic models.

The concluding Chapter 8 summarizes the findings from the analysis of all the phases

observable from the phase diagram. We also discuss the significance of our work and

detail possible directions for experiment and analysis in the future.
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2. Literature Review of HIROs

Hall field-induced resistance oscillations (HIROs) are a type of 1/B magnetoresistance

oscillations observable in the presence of a DC current. These oscillations are observed

in the resistivity at high filling factors in a 2DEG system. In this case, the DC current

is applied along the length of the Hall bar and the B-field is applied perpendicularly to

the Hall bar. An example of HIROs obtained from our sample are presented in Fig. 2.1.

HIROs were first observed in 2002 by Yang et al. [4]. The origins of the HIRO oscillation

frequency with respect to B-field and DC current were explained by a Zener tunneling

process between Landau orbits [4]. The discovery of HIROs gained interest and led to

various experimental works [8–21] and theoretical studies [6, 7, 100–103] in the last two

decades to gain better understanding of this type of oscillations. Experimental works

have helped characterize more properties of this non-linear effect such as the near zero

DC current dip. Theoretical studies have suggested two mechanisms to explain HIROs,

which are elastic scattering of electrons off of impurities, and inelastic correction to the

electron distribution function induced by DC current [101, 102].

In this chapter, we review the experimental and theoretical development of HIRO in

the last two decades. Alongside a presentation of the experimental works, we also review

the Zener tunneling process originally proposed by Yang et al. [4] and the elastic and
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inelastic theory model by Vavilov et al. [102]. Lastly, we discuss details of the methods to

compare the theoretical framework to the experimental data.

2.1 Theoretical Framework

In 2002, Yang et al. [4] found oscillations in the differential resistivity ρxx of a Hall bar at

high filling factors and under high DC current IDC . The experiment was conducted in a

2DEG system in a high mobility (µ = 3 × 106 cm/V s) GaAs/AlGaAs heterostructure at

T=0.33 K, up to a current density of ∼ 1.2 A/m. The oscillations were observed to dis-

place with increasing DC current, following a period ofB ∝ IDC/WM linear relationship,

where M is an integer representing the N th order of the oscillation maxima, and W is the

width of the Hall bar. This relation was found to occur strictly in the derivative of ρxx with

respect to B, where maxima of the oscillations plotted versus B-field and IDC extrapolate

to zero. This non-linear phenomenon was attributed to Zener tunneling between Landau

levels in a strong electric field.

The following explanation follows Yang et al. [4]. In a 2DEG in a Hall bar, with a

DC current along the length of the Hall bar and a perpendicular B-field, a Hall electric

field EY along the width of the Hall bar (y-direction) is induced by the DC current. The

resulting Landau levels are tilted spacially in the y-direction due to EY , such that:

EN(Y ) = (N +
1

2
)~ωc − eEY Y +

1

2
m∗v2

d; (2.1)

where vd is the electron drift velocity, current density is related to vd by IDC/W = nevd,

W is the sample width, n is the electron concentration and N is the Landau level index.

Similarly, the Fermi energy level is also tilted along the y-direction [104]. This results

in the lifting of degeneracy Landau level with respect to the y-direction, which allows

16



Figure 2.1: Differential resistivity ρxx versus B-field at different DC current showing HI-

ROs. HIRO harmonics evolve linearly with DC current, and inversely proportional to

B-field. At zero current, there is no HIRO, only SdH oscillations. Traces are shift up by 2

Ω for clarity.
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Figure 2.2: Sketch of Landau level transition between spatially tilted Landau levels in a

2DEG under magnetic field and in an electric field. N and N + 1 refers to the index of

Landau levels. The hopping distance ∆Y is bounded by energy conservation, and the

transition rate is maximized when ∆Y ' 2rc.

for transitions between the occupied Landau levels below the Fermi energy EF and the

empty ones above the EF . The HIRO correction in the resistivity is minimal when the

transition terminates between two Landau levels, and reaches its maximum when the

transition terminates at the center of a Landau level. The hopping occurs during elastic

short-range scattering with impurities. A hopping along the Y-direction causes a transi-

tion between Landau levels (see Fig. 2.2). By conservation of energy, the transition must

satisfy eEY ∆Y = M~ωc, where eEY ∆Y is the work between the two spatially separated

Landau levels, M = N ′ −N is and index difference between involved Landau levels, ~ωc

is the difference between involved Landau levels, and ∆Y is the distance between two

Landau levels. Simplifying ∆Y gives:

∆Y =
M~ωc
eEY

= M
e~nW
m∗IDC

. (2.2)
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Scattering depends on the probability of finding an impurity at the overlap of the wave

functions of the two Landau level states. The authors found that the transition rate is

maximal at ∆Y = γrc, where rc = vF/ωc = m∗vF/eB is the cyclotron radius, and γ ≈ 2.0.

γrc is associated with a momentum transfer of ≈ 2kF , where kF is the Fermi wave vector.

When ∆Y > 2rc, the initial and final electron wave function do not overlap and there is

no hopping. The distance ≈ 2rc is the maximal as well as the most optimal distance for

overlap of the wave function, which maximizes the hopping probability. By combining

this condition with Eq. (2.2), we obtain:

γrc =
M~ωc
eEY

⇒ B = γ

√
2π

n

m∗

e2

IDC
MW

(2.3)

which is the linear relationship observed in B ∝ IDC/WM . Yang et al. found experimen-

tal confirmation of γ ≈ 2.0. In their sample, HIRO oscillations were also observed up

to order M = 4. For HIROs to be observed, there must be a significant amount of short

range scatterers. Three short range elastic scatterers were discussed as possible processes

for HIROs: residual background ionized impurities, interface roughness and neutral im-

purities in the GaAs quantum well. Lastly, unlike SdH oscillations, the oscillations were

observed to persist in high temperature (∼4 K).

The observation of HIROs drew significant attention and prompted various experi-

mental [8, 10, 11] and theoretical studies [101–103]. Notably, in the regime of very small

applied DC current, an unusual sharp drop in the differential resistivity was observed by

J.-Q. Zhang et al. [10] and by W. Zhang et al. [11]. This effect was attributed to a correc-

tion of the electron energy distribution function under DC current [101]. Examples of this

phenomenon in our sample are presented in Fig. 2.3. The drop is for IDC smaller than

the first order resonance of HIROs. In 2007, to address all the the characteristics of HI-

ROs, namely the IDC/B oscillatory correction to the resistance, HIRO persisting at higher

19



temperature and the low DC current dip feature, Vavilov et al. [102] developed a theory

of non-linear response of electronic magnetotransport of a 2DEG with respect to an elec-

tric field and in high Landau levels. The authors took a quantitative approach using a

standard Boltzmann kinetic formalism for a weakly disordered 2DEG under both electric

and magnetic field. This theory describes HIROs by two separate physical mechanisms.

The first mechanism is the large-angle scattering off of short-range disorder, which is re-

lated to the elastic-impurity scattering previously explained. This mechanism explains

the oscillatory behavior of HIROs. The second mechanism is an inelastic contribution

that originates from the nonequilibrium correction to the electron distribution function

under DC current. At weak fields, this correction causes the suppression of electron tran-

sitions normally contributing to the conductivity, which reduces the magnetoresistance.

The inelastic mechanism explains the low current correction in the form of a dip in the dif-

ferential resistivity. Effectively, this theory builds on the mechanism suggested by Yang et

al. and incorporates other processes to explain the low current correction in the ρxx. Func-

tionally, by taking a quantitative approach, Vavilov et al. found an analytical expression

for the correction in the differential resistivity, which can describe both the amplitude and

the oscillation frequency in terms of quantum parameters.

Here, we follow Vavilov et al. [102] to summarize the relevant equations to use in

practice for experimental data. The analytical expression found for the non-linear current

density j in the limit of high temperatures kBT ≥ ~ωc/2π2 and magnetic fields ωcτ0 ≤ 1

is:

j(E) = σDE (1 + 2λ2F (ζ)) ; F (ζ) = 2Γ1(ζ, τin) + Γ2(ζ) (2.4)

where σD is the Drude conductivity, τ0 is the quantum scattering time, τin is the inelastic

relaxation time, λ = exp(−π/ωcτq) is the Dingle factor, ζ = 2πeErc/~ωc is the frequency

∝ IDC/B, equivalent to πM in Eq. (2.3). Effectively, 2λ2F (ζ) is the correction in the
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Figure 2.3: ρxx versus IDC at various fixed B-fields. A sharp drop in the differential resis-

tivity can be observed in the small IDC regime. Traces are shift up by 2 Ω for clarity.

conductivity that describes HIROs. The expression Γ1(ζ) and Γ2(ζ) are defined as the

following:
Γ1(ζ, τin)

τtr
= − [dκ(ζ)/dζ]2

τ−1
in + τ−1

0 − κ(ζ)
(2.5)

Γ2(ζ)

τtr
= −d

2κ(ζ)

dζ2
(2.6)

where τtr is the transport relaxation time, and κ(ζ) =
∑

n J
2
n(ζ)/τn, Jn(ζ) are the Bessel

functions, 1/τn are harmonics of the elastic electron scattering rate. Effectively, this ex-

pression can only be fully evaluated given a disorder model for 1/τn. However, in the
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strong-field limit where ζ � 1, the authors find

Γ1(ζ, τin)

τtr
∝ − τ0

τ 2
π

cos2(ζ)

ζ2
,

Γ2(ζ)

τtr
=

1

τπ

sin(2ζ)

ζ
(2.7)

where 1/τπ =
∑

n e
iπn/τn is the backscattering rate. The Γ2 contribution is larger than the

Γ1 contribution, which is the source of the oscillations.

To fully evaluate Eq. (2.4), a disorder model was proposed by the authors. In a high-

mobility structure, there are two types of disorder. The first type of disorder is from

the defects in the quantum well caused by interface roughness and defects in the lattice

during growth. Although defects are minimized with a structure growth method like

MBE, they are still present. This type of defects causes short range large-angle scattering

events [105].

The second type of disorder origins from the remote donors of a quantum well which

causes short range small-angle scattering. A quantum well is formed from a doped layer

with charge carriers that migrate over to the undoped layer which is the 2DEG. However,

the remote donors’ electric field can still affect the charge carriers in the quantum well.

Usually, in AlGaAs/GaAs hetero-structures, the two layers are separated by a neutral

undoped AlGaAs spacer layer, which controls the density of migrating charge charriers,

and reduces the effect of the donor region on the electrons in the quantum well. The

reduced effect is a disorder that causes small-angle scattering events.

The authors proposed a mixed disorder model that considered both the “smooth” and

the “sharp” components of the disorder potential:

1

τn
=

1

τsm

1

1 + χn2
+
δn,0
τsh

, χ� 1 (2.8)
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where 1/τsh is the “sharp” scattering off of impurities inside of a 2DEG and 1/τsm is the

small-angle (θ <
√
χ� 1) “smooth” scattering off of charged impurities in the proximity

of the 2DEG. χ ∼ (λF/ξ) is related to the the Fermi wavelengthλF and ξ is the correlation

length of the disorder potential. Given the definition of κ(ζ) and Eq. (2.8), κ(ζ) was

obtained to be:

κ(ζ) =
J2

0 (ζ)

τsh
+

1

τsm
√

(1 + χζ2)
. (2.9)

Note that the transport relaxation time is defined as τtr = τ0 − τ1. In Eq. (2.4), F (ζ) can be

separated into two regimes. At weak DC current ζ � 1, the term Γ1(ζ) is the dominant

contribution, which describes the decrease of the resistance. At strong DC current ζ �

1, the term Γ2(ζ) dominates and contribute to the oscillatory behavior in the non-linear

response.

In experimental studies, HIROs are generally measured in differential resistance. The

non-linear correction in differential resistivity ρ becomes:

δρ(j)

ρD
= 2λ2d[jF (πj/jB)]

dj
, jB =

vF e
2B

4π~
(2.10)

where ρD = m∗/e2nτtr is the resistivity at zero magnetic field. The full non-linear effect

can be directly calculated via Eq. (2.10) for different variables. In Fig. 2.4, we present

calculations of Eq. (2.4) versus current for a combination of variables τsh, τsm, χ and τin at

fixed B = 0.05 T. This theory effectively explains the drastic dip at small DC current and

calculates the amplitude of HIROs. One of the findings of the authors is that the HIRO

oscillation amplitude in differential resistivity does not decrease with increasing IDC at a

fixed B-field. At strong DC current ζ � 1, the correction to the differential resistivity is

approximately:
δρ(j)

ρD
=

16τtr
πτπ

λ2cos(2ζ) (2.11)
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Figure 2.4: Normalized differential resistivity calculated from theory Eq. (2.10) of HIROs

versus current density j, for different set of parameters described in the text. This figure

is a reproduction of Fig. 3 from Ref. [102], recalculated to extend the current range. At

small current, there is a noticeable dip in the resistivity. At higher current, the oscillation

amplitude is constant w.r.t. j.

where 1/τπ is the backscattering rate off disorder by scattering angle π. Generally, this

equation is the more commonly used in experimental studies to understand HIROs due

to its simplicity [14–16,19,20]. However, when the low current range must be considered,

the whole theory presented in Equation (2.10) should be used. The theory Eq. (2.11)

for HIROs has no thermal damping factor which explains why HIROs were observed to

persist at high temperatures unlike SdH oscillations (up to∼ 4 K) [4,8,10]. This theory has

also been expanded to include effects under microwave radiation and DC current [103].
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2.2 Experimental Studies

An experimental investigation of the HIRO’s temperature dependence was performed by

Hatke et al. [14], from 2 to 5 K. The authors found a decrease in HIRO amplitude versus

increasing temperature. This was explained by a decrease of τq versus increasing DC

current, where they found a T 2 dependence of 1/τq in the form:

1

τq(T )
=

1

τ imq
+
λT 2

EF
, (2.12)

where τ imq is the temperature independent contribution to τq and λ ' 4.1. A T 2 depen-

dence was associated to be a signature of electron-electron interaction such that 1/τq =

1/τ imq + 1/τ eeq , where 1/τ eeq is the electron-electron scattering contribution. This was also

found to be the case in double quantum wells [106], microwave-induced resistance oscil-

lations [107] and phonon-induced resistance oscillations [108]. The form 1/τ eeq = λT 2/EF

is consistent with theory equation by Chaplik [109] and Giuliani and Quinn [65].

In terms of oscillation order, HIRO oscillations have been observed up to 10 orders in

very high mobility samples [10, 14, 110]. HIRO has also been observed in other materials

and other structures. Namely, Dai et al. [13] observed HIROs in a two-dimensional hole

system in a GaAs/AlGaAs quantum well, which has a higher effective mass (m∗ ≈ 0.4me.

Bykov et al. [17] observed HIROs in a 2DEG in a corbino structure. Shi et al. [19] observed

HIROs in MgZnO/ZnO heterostructure, which has a much lower mobility (µ ∼ 104

cm2/Vs) and a higher effective mass (m∗ ≈ 0.3me). The universality of HIROs is use-

ful to extract understand low temperature two-dimensional systems.

In terms of the experimental methods, to better resolve orders of HIROs, examining

the differential resistivity ρxx by performing IDC-sweeps at a fixed B is prefered to per-
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forming B-sweeps at a fixed IDC value. Higher orders of HIROs approaches the IDC axis

in the phase diagram, which makes it far easier to detect higher orders of HIROs by taking

a horizontal fixed B-field trace than a vertical fixed B-field trace [see phase diagram in Fig

1.1(a)]. For analysis, the commonly used approach to extract τq is the Dingle plot, which

is a plot of the oscillation extrema in a semi-log plot of ρxx versus 1/B, where the slope is

∝ τq. τq is extracted for each current value as it has been reported that τq can vary with

IDC [19]. However, at small IDC ranges, traces versus B-field may show no more than one

order of HIRO maxima, which cannot be used in a Dingle plot to extract τq. Instead, the

method of direct fitting can be used. Contrary to the data collection method, the analysis

is more meaningful when applied to ρxx vs B-field traces at fixed DC current, as quantum

parameters could vary with increasing DC current.
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3. Experimental Setup

All experimental data of 2DEG presented in this document were obtained from measure-

ments performed on a single Hall bar structure. The 2DEG investigated is in the quantum

well (QW) region of a GaAs/AlGaAs hetero-structure grown by molecular beam epitaxy.

The 2DEG is located in a 30 nm wide GaAs QW at a depth ∼200 nm below the surface.

The QW has barriers on either side composed of Al0.30Ga0.70As and contains QW doping

regions. The method of growth and the specific layers are presented in Appendix A. The

effective mass of an electron in the 2DEG is 0.067me where me is the electron mass. From

a large area Van der Pauw device measured in a dilution refrigerator at base temperature

and after illumination, the mobility µ was measured to be 20×106 cm2/V s, equivalent

to a mean free path lmfp of 145 µm. The 2DEG electron density n was measured to be

2.0×1011 cm−2. The corresponding Fermi velocity and Fermi energy EF respectively are

1.9 × 107 cm/s and 7.2 meV. A summary of the 2DEG parameters are presented in Table

3.1.

The central region of the Hall bar structure used to acquire all electronic transport data

is presented in Fig. 3.1. The Hall bar device is made by standard fabrication techniques

where the geometry is lithographically defined and etched from a larger quantum well

sample. The Hall bar has nominal width 15 µm, which was chosen such that the Hall bar’s

width is much smaller than the mean free path. Three pairs of potential probes separated
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Figure 3.1: Central region of the Hall bar device used for the measurements presented in

this thesis. Vxx is measured from the bottom left and right voltage probes, separated by a

distance L=100 µm, and Vxy is measured from the middle top and bottom voltage probes.

The lithographic width of the Hall bar is W=15 µm.

by 50 µm were placed along the Hall bar. ∆Vxx, the voltage drop along the Hall bar, is

measured from the bottom left and right voltage probes, separated by a length of 100 µm,

which is referred to as the length L of the Hall bar. ∆Vxy, the voltage drop across the Hall

bar, is measured from the middle top and bottom voltage probes, as indicated in Fig. 3.1.

A DC current combined with a small AC current of 20 nA is passed through the Hall bar

from the source to the drain Ohmic contacts. ∆Vxx and ∆Vxy are measured using standard

lock-in technique [33] at 148 Hz. The data obtained from the potential probes are differ-

ential resistances, where rxx = ∆Vxx/IAC = dVxx/dI and rxy = ∆Vxy/IAC = dVxy/dI . The

Hall resistance is presented in Sec. 7.9 of the electron hydrodynamic transport chapter.

The device is maintained in the dark in a dilution refrigerator at base temperature

where the mixing chamber temperature is∼15 mK, where measurements were performed

with a B-field applied out of plane. The electron temperature Te is estimated to be ∼40

mK. Measurements were obtained with a DC current up to 10 µA and a B-field up to

0.25 T.
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L W n µ vF EF lmfp

(µm) (µm) (cm−2) (cm2/V s) (cm/s) (meV) (µm)

100 15 2.0× 1011 20× 106 1.9× 107 7.2 145

Table 3.1: Key parameters of the Hall bar and the 2DEG material system. The parameters

given are determined from a large area Van der Pauw device measured in a dilution

refrigerator at base temperature and after illumination.

Note that the 2DEGs were grown at Princeton University, and the measurements were

made in collaboration with the National Research Council Canada, in which I did not

participate. My contribution to the research project is focused on the analysis of the ex-

perimental data.
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Part II

Analysis of Experimental Data
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4. Hall-Field Induced Resistance Oscilla-

tions

Sharp HIRO resonances can be observed in the phase diagram presented in Fig. 1.1(a).

We observe up to 7 HIRO orders from the phase diagram. In this chapter, we compare

the experimental data to the theory presented in Sec. 2.1, and extract relevant parameters

of interest, namely the quantum lifetime, the backscattering lifetime, the effective width

and the inelastic relaxation lifetime. We also detail our observation of a novel “fractional”

HIRO-like feature between the M = 1 and M = 2 HIRO maxima [see black arrows in the

phase diagram in Fig. 1.1(a)].

4.1 IDC/B Dependence

We start by analyzing the experimental HIRO data with the model by Yang et al. [4].

In their model, the position of the maxima of HIROs in ∂ρxx/∂|B|, the derivative of the

differential resistivity ρxx with respect to B-field and DC current, satisfies B ∝ IDC/W . In

Fig. 4.1(a), we plot the B-field versus IDC position of maxima of HIRO ∂ρxx/∂|B| for each

HIRO orderM . The position of the maxima can be collapsed onto a single line, essentially

that of the first-order HIRO peak, following the relation B ·M ∝ IDC/W . The slope of the
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Figure 4.1: (a) Fan diagram of HIRO maxima in ∂ρxx/∂|B| for each peak up to the sixth

order. Triangles: Maxima in ∂ρxx/∂|B| of the “1.5” features. Fitting through points yields

M=1.44. (b) HIRO maxima collapsed on a single line by multiplying each maxima by the

HIRO peak order M. The slope is used to extract γ. See more details in the text.
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single line in Fig. 4.1(b) is found to be 324 mT/(A/m). From Eq. (2.3), we can calculate

γ = 2.4. This result is consistent with the theoretical value of γ ≈ 2.0 reported in the work

of Yang et al. [4], and their experimental γ values for Hall bars with a 2DEG density close

to that for our Hall bar device. It is to note that we usedW = 15 µm, the physical width of

the sample, to calculate the current density. In the next section, we obtained an effective

width of the Hall bar Weff equal to 11 µm. Had we used Weff ∼ 11µm to calculate the

nominal current density, we would obtain γ=2.1.

4.2 Quantum Parameters Extracted from HIROs

After analyzing the HIRO frequency, we now proceeds to analyze the HIRO amplitude

with the model by Vavilov et al. [102]. Given the possibility for quantum parameters to

vary with increasing DC current, we perform fitting to B-field traces using the model

described in Eq. (2.11). From Eq. (2.11), the amplitude of the HIROs depends on the

backscattering lifetime τπ and the quantum lifetime τq. The HIRO frequency depends on

the effective mass of the electron, electron concentration n and width of the sample W ,

where W is a fitting parameter. Effectively, we obtain τπ ∼ 5 ns, τq ranging from 18 to

40 ns decreasing with DC current, and an effective width Weff = 11 µm of the Hall bar.

We now discuss the details of the fitting method. The HIRO frequency depends on

the effective mass of the electron, electron concentration n and width of the sample W .

The effective mass and electron concentration are well-known quantities extracted from

SdH oscillations and Hall resistivity, respectively. Therefore, rather than assuming W is

fixed and equal to the nominal lithographic width of the Hall bar,W is a fitting parameter,

which we refer to asWeff , the effective width extracted from HIROs. We fit individual ρxx

versus B traces to Eq. (2.11) for each value of IDC to obtain τq, Weff and τπ. Furthermore,

we choose to fit the ∂ρxx/∂B [see Fig. 4.2(a)], the partial derivative of Eq. (2.11) with
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Figure 4.2: (a) HIRO amplitudes in ∂ρxx/∂|B| vs B-field (colored lines) fitted to theory

Eq. (2.11) (black lines), for different DC current. Curves are shifted downwards by 200

Ω/T . (b) Parameters τq and Weff versus IDC extracted from fits. Dashed line: 1/τq is

proportional to I2
DC , a relation previously reported by Shi et al. [19].
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respect to B, instead of ρxx, to remove the background linear B dependence in the data,

and to reduce fitting errors, although fits to either are equivalent and give nearly identi-

cal fitting parameters. The fitting parameters τq and Weff obtained are presented in Fig.

4.2(b). τq is discussed extensively in the following paragraph. The value of the effective

electronic width, Weff , is found to be ∼ 11 µm over the 10 µA current range. Parameter

Weff is obtained from the HIRO frequency and is extremely accurate as it is indepen-

dent of the amplitude of the HIROs. The effective electronic width is smaller than the

lithographic width of the Hall bar of 15 µm. We attribute the difference to a combination

of undercut during the wet etching step in the fabrication of the Hall bar, and sidewall

depletion. For the backscattering lifetime τπ, we obtained τπ ≈ 5 ns with no significant

current dependence.

The extracted values of the quantum lifetime τq in Fig. 4.2(b) are notable for two rea-

sons. First, τq decreases with increasing DC current, and second, τq extracted from the

HIROs far exceeds the value of τq=11.5 ps extracted from the SdH oscillations in Sec 5.1.

Concerning the first point, in model of Vavilov et al. [102], the HIROs amplitude should

not depend on DC current, whereas our data shows that the HIROs amplitude decreases

with increasing DC current (see Fig. 2.3). This has also been observed in another ex-

periment featuring MgZnO/ZnO [19], and was attributed to enhanced electron-electron

scattering with increasing electron temperature, where 1/τq ∝ I2
DC . Using the same anal-

ysis for our Hall bar, we obtain

τq(IDC)

τq(0)
= 1 +

(
IDC
I0

)2

(4.1)

where τq(0)=41.2 ± 0.7 ps and I0=8.66 ± 0.04 µA [see Fig. 4.2(b)]. Note that we used the

strong field (ζ � 1) approximation of the theory equation by Vavilov et al., which may
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not accurately reflect the theory for the HIRO correction below the first HIRO order. To

offset this issue, we only performed fitting for traces above 2 µA.

Concerning the difference between τq and τHIROq , the extracted value of τq from fitting

HIROs, τHIROq varies from∼40 ps at 2 µA to∼18 ps at 10 µA. On the other hand, τSdHq , the

extracted value of τq from fitting the SdH oscillations at zero DC current, is ∼11 ps. The

extrapolated value to zero DC current of τHIROq is 41.2 ps, which is almost 4 times τq ex-

tracted from SdH oscillations. An alternate method to extract τq from HIROs is to use an

Arrhenius plot, which is to plot the logarithm of HIRO extrema as a function of inverse

B-field as shown in Fig. 4.3. From Eq. (2.11), the slope is equal to −2πm∗/eτHIROq . At

IDC = 5 µA, we obtain τHIROq = 29 ps, which is consistent with the direct fitting method-

ology. For our data, the Arrhenius method is only effective for IDC > 4 µA, where there

are enough oscillation extrema, and for IDC < 7 µA, before the fractional HIRO feature

which correlates with a decrease in amplitude from the nearby extrema (described in Sec.

4.4). In Fig. 4.3, we also plot the SdH oscillation extrema. The Dingle factor in HIRO

Eq. (2.11) is squared, therefore the slope of HIRO extrema in an Arrhenius plot should be

twice that of SdH extrema. However, this is clearly not the case as can be seen in Fig. 4.3.

For the 5 µA data, the slope for the HIROs is in fact even less than the slope for the SdH

oscillations, and illustrates well why we obtain a value for τHIROq that is a factor of two

to four times larger than the value for τSdHq . Looking closer at the theory, which assumes

that τq for HIROs and SdH oscillations are the same, we recall that in the derivation of

Eq. (2.4) it is also assumed that kBT � ~ωc. This corresponds to a temperature exceeding

0.5 K at 0.025 T, which clearly does not hold for our experimental situation. This may

explain the observed discrepancy between τSdHq and τHIROq , and suggests that a theory for

HIROs extended to the low temperature regime is needed in order to correctly explain the

observed amplitudes of the HIROs. Usually, the quantum lifetime is normally taken to
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Figure 4.3: Arrhenius plot versus 1/B of SdH oscillations extrema amplitudes (at IDC = 0

µA) and HIRO extrema amplitudes at IDC=5 µA, in Rxx. Red dashed line for SdH oscil-

lations: fit to Eq. (1.2) where DT is the thermal damping factor, and τSdHq is determined

from the slope (τSdHq =11 ps). The intercept is ln(4R0). Grey dashed line for HIROs: fit to

Eq. (2.11) where τHIROq at 5 µA is determined from the slope (τHIROq =29 ps). The intercept

is ln(Rπ)=ln( L
W

16m
πne2τπ

).

be a value determined from the SdH oscillations (τSdHq ) at zero DC current. Inferring this

quantum lifetime is the same as the quantum lifetime determined from measurement of

HIROs (τHIROq ), a non-linear transport phenomenon observed at finite DC current, there-

fore has to be done with caution [20]. The difference could also be explained by noting

that the τSdHq are sensitive to macroscopic density fluctuations, and τHIROq is not, which

results in smaller values of τSdHq compared to τHIROq in the same sample [14, 111].
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Figure 4.4: HIROs amplitude ∆ρxx at B=0.06T plotted versus IDC , experimental data

(solid line, with background parabolic dependence removed) compared to theory (dashed

line). The dip at small IDC (IDC ∼ 1µA) agrees with the theoretical model by Vavilov et

al. [102]. However, the experimental data shows decreasing amplitude of HIROs with

increasing DC current, which is not in agreement with the theory.

4.3 Small DC Current Dip

At small DC current (IDC < 1 µA), we observe a drastic dip in the ρxx at non-zero B-field, a

characteristic of HIROs previously observed in Refs. [10,11]. This non-linear phenomenon

is described theoretically in Eq. (2.10) by Vavilov et al. [102] in Sec. 2.1. In Fig. 4.4, we

present the ρxx versus IDC trace at B=0.06 T and the fit of Eq. (2.10) to the data. In the

process of fitting, we considered the mixed disorder model presented in Eq. (2.8). We

obtain parameters χ = 0.1, τsh = 289 ps, τsm = 13 ps and τin = 580 ps. We recall that 1/τsh
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Figure 4.5: Differential resistivity ρxx versus B-field traces for a range of IDC values offset

from each other by 0.06 Ω, starting from the IDC=-1µA trace. The “1.5” feature can be

observed around |B|=0.12 T.

is the scattering off of impurities inside of a 2DEG, 1/τsm is the small-angle scattering off

of charged impurities in the proximity of the 2DEG, χ is related to the scattering angle for

τsm, and τin is the inelastic relaxation time.

4.4 Fractional HIROs

Lastly, we report on a “fractional” HIRO-like feature observed between the M = 1 order

and M = 2 order of HIROs observed in the phase diagram. This phenomenon, which we

refer to as the “1.5” feature, can be observed in three of the four quadrants in Fig. 1.1(a) for

a DC current exceeding 6 µA and a B-field above 0.1 T (see Fig. 4.5). The positions of the

maxima of the “1.5” feature in the IDC vs B-field plane are plotted in Fig. 4.1. Specifically,

we find that the “1.5” feature at M=1.44±0.04.
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In terms of amplitude, we observe a decrease in amplitude of the M = 1 and M = 2

HIRO maxima coinciding with the onset of the “1.5” feature. In Fig. 4.6, we present

ρxx versus IDC for each HIRO order M , where the B-field is parameterized as a linear

function of IDC following Fig. 4.1(b). We selected the negative B-field and negative IDC

quadrant of the phase diagram, where the “1.5” feature is most prominent. At M = 1.44,

an increase in ρxx can be observed around -7 µA. Around IDC = −7 µA, a drop in the

amplitude of both M = 1 and M = 2 HIRO maxima is observed. The origin of the “1.5”

feature is currently unknown. We speculate that it may be related to the lifting of the

spin degeneracy which is observed in the Hall bar measured in the SdH oscillations at

a similar B-field (∼ 0.15 T). “Fractional” HIROs have been been observed previous by

Hatke et al [110], where a HIRO-like feature was reported at M = 0.5. However, in their

case, the feature was observed under microwave illumination, which is a different regime

than what we observed.
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Figure 4.6: Differential resistivity ρxx at HIRO maxima in the−B-field and−IDC quadrant

of the phase diagram in Fig. 1.1, extracted by peak order M and plotted versus IDC .

Dashed line: ρxx near the HIRO minima atM = 1.5 (specifically at M=1.44, following 4.1).

Around IDC ∼-6 µA, the M=1 and M=2 HIRO maxima amplitudes decrease, and coincide

with the onset of the “1.5” feature.
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5. Shubnikov-de Haas Oscillations

SdH oscillations are most clearly observed at zero DC current. We begin by presenting a

SdH oscillation trace at zero DC current and with an AC current of 40 nA in Fig. 5.1. At

ωcτq > 1 (or B > Bq), SdH oscillations are clearly visible. In this section, we compare the

SdH oscillation to theory Eq. (1.2) to extract parameters τq and R0. Recall R0 is the zero

Figure 5.1: Resistivity Rxx versus B-field at IDC=0 µA and AC current equal to 40 nA.

Near B=0 T, there is a negative magnetoresistance, bounded by a sudden change in slope

at BW=2rc. SdH oscillations become significant for B > Bq, where Bq is related to τq.
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B-field resistance. However, in the case of our sample, at zero B-field, a nMR alters the

zero B-field resistance. We aim to detect whether nMR is related to SdH oscillations.

5.1 Extraction of τq and R0

Our first method of fitting is the direct fit of Eq. (1.2) to the oscillations. This method

has the advantage of considering all experimental data points instead of only the peaks,

which offers greater accuracy for the parameters. We obtain R0=11.4±0.6 Ω, τq=11.5±0.3

ps. A useful conversion of B-field is the filling factor of Landau levels, which is equal

to ν = 2EF/~ωc = 2π~n/eB. SdH oscillations are extracted from the resistance trace

and plotted over ν. Figure 5.2 presents the SdH oscillation (in black) and the fit (in red).

The value of R0 is four times smaller than the zero field resistance. The bulk resistance

calculated from 1/ρ = enµ is equal to 14 Ω. The electron concentration n = 2.0 × 1011

cm−2 and mobility µ = 20× 106 cm2/V s were obtained from a Van der Pauw sample. We

conclude that the value of R0 is not related to the nMR phase.

Alternatively, we can extract R0 and τq from a Dingle plot, which is the more common

way to obtain τq. The method is as follows: extract the SdH oscillation amplitude extrema;

take the natural logarithmic of each extrema divided byDT from Eq. (1.3) and plot against

1/B; perform a linear fit. Essentially, the amplitude of Eq. (1.2) is transformed into:

log(
∆Rxx

DT

) = log(4R0)− πm∗

eτq

1

B
, (5.1)

where the intercept is a function of R0 and the slope is a function of τq. From fitting

the data, we obtain R0=13.5 ± 0.6 Ω, τq=11.0 ± 0.2, which are consistent with the values

obtained from direct fitting. The advantage of this method is the ability to separate R0

and τq accurately. The disadvantage of this method is the possible under-fitting when
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Figure 5.2: SdH oscillations amplitude ∆Rxx at IDC=0 µA and AC current equal to 40

nA plotted versus filling factor (ν ∝ 1/B), theory (red line) fitted to experimental data

(black line). We obtain parameters R0=11.4± 0.6 Ω, τq=11.5± 0.3 ps. SdH oscillations are

observable up to ν=400 (B=21 mT).

considering only the SdH oscillation extrema; i.e. the data may not have captured the

true resistance and B-field of a maxima, and only a near peak value. This may explain the

slight difference in parameter R0 obtained from the two different methods.

5.2 Phase Inversion

In the phase diagram presented in Fig. 1.1(a), SdH oscillations persist at non-zero DC

current. Their amplitude decreases rapidly with increasing IDC , and a phase inversion

occurs around IDC ∼ 0.3 µA. The low IDC positive B-field phase diagram is presented

in Fig. 5.3(a). Assuming the electron temperature Te changes with DC current, we can

use to theoretical model presented in Sec. 1.3 to fit our data. Although we do not have

an experimental relation for IDC vs Te, it is possible to extract a relation from fitting and

compare to results from previous work.

Recall from Sec. 1.3 that the theory model of phase inversion in differential resistance

rxx is

rxx =
∂Vxx
∂I

= Rxx + IDC
∂∆RSdH

xx

∂Te

∂Te
∂I

, (5.2)
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Figure 5.3: Grayscale plots showing phase inversion of SdH oscillation amplitude ∆rxx

in differential resistance vs B and IDC , experimental data (a) compared to theory (b). The

phase inversion occurs at ∼0.3 µA around B=0.2 T.

where Te is the electron temperature. Fitting the theory to the experimental data is non-

trivial, due to the nature of Eq. (5.2). Given an unknown function Te(IDC), Eq. (5.2) is a

differential equation with temperature Te and its derivative w.r.t. ∂Te/∂IDC , which cannot

be readily used to fit the experimental data. A solution is to assume the electron tempera-

ture is of form Te = T0 +αIβDC as presented in Eq. (1.5). This relation was obtained from a

similar experimental work by Studenikin et al. [33]. T0 = 15 mK is the bath temperature in

our experimental setup. We use a brute force Monte Carlo approach to find parameters α

and β. The method of fitting is as follows: 1. Choose a pair of values for α and β (starting

order of values are taken from relation in Studenikin et al. [33]); 2. Compute Te for all

traces by IDC . 3. Find curve of best fit by comparing Eq. (5.2) to data using dTe/dIDC

as a fitting parameter. 4. Compare dTe/dIDC(IDC) obtained from fitting to the empirical

(dTe/dIDC)theory obtained from the pre-selected values of α and β. 5. Repeat 1 to 4 for a

range of α and β to find the pair of parameters where dTe/dIDC self-consistently matches

best with (dTe/dIDC)theory.
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Figure 5.4: Electron temperature Te and ∂T/∂I plotted versus IDC . theory and from

fitting. A current dependence is extracted for the electron temperature Te(IDC)=T0 +

α(Idc)
β=T0 +1.0(Idc)

0.62, where T0=0.015 K is the bath temperature and IDC is in µA. ∂T/∂I

from fit matches the theory, which is the self-consistency condition for the Monte Carlo

simulation to find the values for α and β.

Using the method outlined above, we obtain Te = T0 + 1.0I0.62
DC for our data. The

fitting parameter dTe/dIDC self-consistently matches with dTe/dIDC theory obtained from

α = 1.0 and β = 0.62 (see Fig. 1.5). We find β=0.62 consistent with the value of β = 2/3

reported in previous work by Studenikin et al. [22], further suggesting electron heating

is important for phase inversion. The theoretical phase diagram of phase inversion is

presented in Fig. 5.3(b), which matches the experimental data.
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6. Negative Magnetoresistance at Zero Mag-

netic Field

6.1 Origin of Negative Magnetoresistance

In the phase diagram presented in Fig. 1.1(a), a strong negative magnetoresistance can

be observed around zero magnetic field. The sudden change in slope and the double

peak feature are both signs of ballistic transport of electrons in a 2DEG [36], which is

presented in Fig. 6.1. The magnetoresistance persists at non-zero DC current. However,

after removing the background parabolic increase in the resistance with IDC , as presented

in Fig. 7.5(b), we observe a decrease in the amplitude of the magnetoresistance.

6.2 Double Peak

We now focus on the topic of double peaks, which we observe on top of the negative

magnetoresistance in ρxx [see Fig. 6.2(a)]. For our Hall bar device, we infer Weff '0.65rc,

using Weff = 11 µm, from the position of the two peaks in the double-peak feature at

IDC = 0 (B = 4.6 mT and B = -4.8 mT), presented in Fig. 6.1. Note that a double-peak

47



Figure 6.1: Resistivity Rxx versus B-field at IDC=0 µA and AC current equal to 40 nA.

Near B=0 T, there is a negative magnetoresistance, bounded by a sudden change in

slope at BW=2rc. Dashed lines: the double peak of the nMR feature can be identified

at Weff '0.65rc.

is more prominent with diffuse scattering on the edge along the Hall bar channel [40],

which would need to be taken into account in numerical simulations.

From the phase diagram in Fig. 6.2(a), we also observe that the double peak sepa-

ration increases with DC current. The +B and −B peak positions are presented in Fig.

6.2(b), and were extracted with Gaussian peak fitting. The parabolic behavior of the dou-

ble peak position can be fitted to (Bdp − Bdp(0))/Bdp = (Idp/Idp,0)2 (after averaging both

+B and −B positions), where we obtain Bdp(0) = 4.5 mT and Idp,0 = 0.27 µA [see Fig.

6.2(c)]. At IDC = 0, the double peak is a sign of ballistic transport, with Weff ' 0.55rc.

If we assume Weff ' 0.55rc for IDC > 0, we would obtain a Weff that decreases with

increasing DC current. However, from HIROs analysis in Sec. 4.2, we obtained the elec-

tronic width Weff w.r.t. IDC in Fig. 4.2(b), which slightly increases with IDC . Thus, we
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Figure 6.2: a) Phase diagram of the differential resistivity ρxx vs IDC and B, centered

around B=0 T, where a nMR can be observed. On top of the nMR, a double peak feature

can also be observed. b) Double peak positions for both +B and−B sides inB vs IDC . The

symmetrical noise pattern from +B and −B peak positions is an artifact from Gaussian

peak fitting. c) Averaged peak position from −B and +B sides. Parabolic dependence

w.r.t. IDC is obtained to be (Bdp − Bdp(0))/Bdp = (Idp/Idp,0)2, where Bdp(0) = 4.5 mT and

Idp,0 = 0.27 µA.

cannot attribute the phenomenon of parabolic increasing peak separation with increasing

IDC to a ballistic model. We currently do not know the origin of this phenomenon and

further investigation is needed.
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7. Hydrodynamic Electron Transport

In this section, we analyze ρxx in the small B-field regime (B < 0.01 T) in the context of

electron hydrodynamic transport. From the phase diagram, we observe that ρxx decreases

with DC current at zero B-field, which is a sign of electron hydrodynamic transport [25].

To have a better understanding of this phenomenon, first we present evidence of the DC

current-induced suppression of electron-electron mean free path. Next, we analyze the

DC current evolution of ρxx with B-field data, which can be compared to the form of the

theoretical hydrodynamic correction with magnetic field. Finally, we look for evidence of

electron hydrodynamic in the Hall resistivity ρxy.

7.1 Current-Induced Suppression of Electron-Electron Scat-

tering Mean Free Path

One of the conditions for electron hydrodynamic transport requires the electron-electron

scattering length lee to be much smaller than the width of the sample. Commonly, this

condition is achieved through a temperature change. In an ideal 2DEG, the relation be-

tween the electron-electron scattering rate τ−1
ee and DC current at zero temperature, in-

stead of the usual temperature dependence, was derived by Chaplik [109] and Giuliani
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and Quinn: [65]

τ−1
ee =

EF
4π~

(
∆

EF

)2 [
ln

(
EF
∆

)
+ ln

(
2QTF

kF

)
+

1

2

]
, (7.1)

where ∆ is the excitation (or excess) energy relative to the Fermi energy EF (satisfying

∆� ~2kFQTF/m
∗), QTF=2m∗e2/4πεrε0~2 is the 2D Thomas-Fermi screening wave vector,

kF is the Fermi wavevector, εr is the dielectric constant (∼13.1 for GaAs), and ε0 is the

vacuum permittivity. Our sample’s bath temperature is 15 mK. For a sufficiently small

excess energy, Eq. (7.1) is approximately quadratic with respect to DC current. The excess

energy ∆ is equal to eVDC , where VDC is the voltage drop across the Hall bar. ∆ ' eVDC is

an experimental result by Yacoby et al. [112] where theory Eq. (7.1) was validated using

quantum interference. For our sample, ∆ ∼ 0.4 meV, which satisfies the condition ∆ �

~2kFQTF/m
∗where ~2kFQTF/m

∗=24.7 meV. However, we note that in the work by Yacoby

et al., it is suggested that ∆ is only proportional to eVDC and the actual excess energy is

smaller than the applied voltage.

Using ∆ = eVDC , the electron-electron scattering length lee under DC current can be

calculated by Eq. (7.1). We take the voltage across the horizontal probes VDC = IDC×Rxx,

where Rxx is approximately 40 Ω. In Fig. 7.1, the predicted lee is plotted versus DC

current. At ∼ 9.5 µA, lee is equal to W . According to Eq. (7.1), our sample should be

transitioning from a ballistic regime to a hydrodynamic regime (recall ballistic regime is

when W � lee, lmfp and hydrodynamic lee � W � lmfp, where W � lmfp is trivially

satisfied).

Here, we present evidence of lee decreases by increasing the DC current flowing through

the Hall bar device. First, we present ρxx versus IDC traces for low B-field values in Fig.

7.2. At zero B-field, ρxx first decreases with current, and increases after IDC ∼4 µA. Away
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Figure 7.1: Electron-electron scattering mean free path lee versus IDC , predicted by Eq.

(7.1) using ∆ = eVe = eIDCRxx. Rxx=43 Ω was used in the calculation (a lee decreases with

increasing IDC and reaches 15 µm at IDC ∼ 9.5 µA.

from B=0 T, we identify a clear parabolic increase of ρxx with increasing current. This

dependence can be observed even at higher B-fields when SdH and HIROs are present

(see gray traces in Fig. 7.2). The transition between the B=0 T to a parabolic dependence

occurs within ∼8 mT. From analysis of ρxx traces between 12 mT and 24 mT in Fig. 7.2,

we find that the quadratic background dependence follows the relationship:

∆ρbgxx(IDC)

ρxx(0)
=

(
IDC
I0

)2

, (7.2)

where ρxx(0)=1.81± 0.01 Ω, and I0=11.4± 0.1 µA. We attribute this quadratic dependence

to a DC current induced increase of the electron-electron scattering rate τ−1
ee . Note that the

value of I0 here is comparable to that obtained from the τq dependence to IDC discussed

in Sec. 4.2, specifically in Eq. (4.1).
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Figure 7.2: Differential resistivity ρxx versus IDC for different B-fields. At B=0 T, ρxx ini-

tially decreases with increasing current, and starts increasing around IDC ∼ 4 µA. Away

from B=0 T, ρxx exhibits a quadratic dependence with respect to IDC , which is observable

even Above B ∼ 30 mT, where HIROs start to appear. The dashed line is a quadratic fit

of the average ρxx from 12 mT to 24 mT, shifted down by 0.5 Ω for clarity. This B-field

range is selected because it is clear SdH and HIROs, and the hydrodynamic effects are

suppressed. The quadratic dependence is found to follow the relationship ∆ρbgxx
ρxx(0)

=(I/I0)2

where ρxx(0)=1.81± 0.01 Ω, and I0=11.4± 0.4 µA. Traces for B > 30 mT are shifted down

progressively by 1 Ω each for clarity.
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In general, the resistivity of a material is proportional to the sum of the scattering rates

from different sources such that ρxx=m∗

e2n

∑
i τ
−1
i , where n is the carrier concentration, and

τ−1
i are independent scattering rates for different sources of scattering [113]. A DC current

induced increase in the electron-electron scattering rate τ−1
ee results in a correction to the

resistivity on the order of τ−1
ee . Although electron-electron interactions are momentum

conserving, contributions by electron-electron scattering have been known to affect the

resistivity observable in non-linear phenomena in 2DEG systems [14,20,107,108,114] (see

discussion in Sec. 1.6). A DC current induced quadratic increase in τ−1
ee should result in a

quadratic change in the resistivity on the order of m∗

e2n
τ−1
ee , which follows the same trend,

and is the same order of magnitude as the quadratic dependence we observe for our

experimental data. In Fig. 7.3, we present the correction from electron-electron scattering

from m∗

e2n
τ−1
ee and the parabolic background ∆ρbgxx extracted from experimental data. τ−1

ee is

calculated from Eq. (7.1), with ∆ = eVe = eIDCRxx. Given that ∆ is only proportional to

eVDC [112], ∆ = aeVe is obtained from the curve of best fit, where a = 0.88± 0.01 which is

consistent with the values of ∆ = 0.82eVe and ∆ = 0.67eVe reported by Yacoby et al. [112]

Lastly, we focus again on the ρxx vs DC current trace at zero B-field. By subtracting the

parabolic dependence ∆ρbgxx from ρxx, it is interesting that we obtain a linear dependence

with IDC (see Fig. 7.4). We attribute this DC current-dependent deviation as a hydrody-

namic contribution to ρxx. In the next section, we analyze this contribution in detail by

also taking into account the nearby non-zero B-field DC current-induced change in ρxx.

7.2 Hydrodynamic Magnetoresistance

In the previous section, we established that increasing IDC suppresses lee, which is one

of the conditions for electron hydrodynamic transport. Evidence of DC current-induced

hydrodynamic effects can already be observed without B-field from the ρxy versus IDC

54



Figure 7.3: ∆ρxx, the change in differential resistivity ρxx versus increasing IDC , experi-

ment compared to theory. Black line: parabolic dependence ∆ρbgxx vs IDC obtained from

experimental data [see Fig. 7.2 and Eq. (7.2)]. Dashed lines: ∆ρxx predicted by theory

Eq. (7.1) using ∆ = eVe (in blue). With a correction to the excitation energy ∆ such that

∆ = aeVe, we obtain a = 0.88± 0.01 from a best fit to ∆ρbgxx (in red).
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Figure 7.4: ∆ρ∗xx=ρxx−∆ρbgxx atB = 0 T plotted versus DC current, effectively ρxx (red trace

in Fig. 7.2) minus the background quadratic dependence found in Eq. (7.2). We attribute

this as a hydrodynamic contribution to ρxx. From a linear fit we find ∆ρ∗xx=−0.155|IDC |).
This component has a negative sign.

trace at B=0 T (see Fig. 7.2). In this section, we analyze the evolution of ρxx versus B-

field with increasing DC current. Our goal is to identify the components of ρxx which

evolves with IDC in the small B-field regime (B < 0.01 T), and isolate the hydrodynamic

contribution. Next, this contribution can be compared to the theoretical viscous correction

for ρxx.

7.2.1 Isolating The Hydrodynamic Contribution

We begin by presenting the ρxx versus B-field traces for different DC currents up to 10 µA

in Fig. 7.5(a). With increasing DC current, the background quadratic dependence ∆ρbgxx

established in Sec. 7.1 can be readily observed away from B=0 T. Figure 7.5(b) shows

ρ∗xx = ρxx −∆ρbgxx, the ρxx after removing the background parabolic dependence over the

entire B-range. We find that for |B| .0.01 T, the ballistic peak decreases with increas-

ing current, meaning there is an additional negative component to ρxx with increasing

IDC . This component can be isolated by computing the deviation of ρ∗xx from ρ∗xx at zero

current, ∆ρ∗xx=ρ∗xx − ρ∗xx,I=0, which is presented in Fig. 7.5(c) in solid lines. We attribute

56



this deviation to be evidence of of a transition between the ballistic regime to the hy-

drodynamic regime. The deviation share similar to the purely hydrodynamic viscous

correction [36], showing a growing amplitude with increasing DC current and a rapid

decay with increasing B-field. In Fig. 7.5(c), the dips at |B| ∼ 5 mT and |B| ∼ 8 mT are

artifacts of the methodology due to the subtraction of the zero current trace ρ∗xx,I=0. From

Fig. 7.5(a), we highlight that the double peak feature is smoother as IDC increases, which

leaves a dipping residue when substracting the zero current trance. The double peak is

ballistic in origin, discussed in the nMR Sec. 6.1.

Alternatively, we can also directly compute the deviation of ρxx from the zero current

trace, ρxx − ρI=0
xx , which is presented in Fig. 7.6. From this figure, we observe both the

background parabolic dependence ∆ρbgxx and the hydrodynamic correction ∆ρ∗xx. Clearly,

an increasingly strong dip with current is observed for B < 0.1 T. Next, we discuss our

method to compare ∆ρ∗xx to the theoretical viscous correction.

7.2.2 Comparison to Theory Using a Perturbative Method

In the purely hydrodynamic regime, following Scaffidi et al. [36], the viscous correction

to the magnetoresistance can be expressed as:

∆ρhydxx =
m∗

e2n

vF lee
W 2

3

1 +

(
2lee
rc

)2 . (7.3)

Equation (7.3) describes the viscous correction in the purely hydrodynamic regime for a

2DEG when lee � W � lmfp. For our Hall bar device, Weff ∼ W � lmfp is trivially

satisfied since lmfp=145 µm. lee has been established in Sec. 7.1 to decrease with increas-

ing DC current. The 2DEG is initially in the ballistic regime and with increasing current,

lee decreases and the 2DEG transitions into the hydrodynamic regime. The transitional
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Figure 7.5: (a) Differential resistivity ρxx plotted versus B-field for different DC cur-

rents. (b) ρ∗xx=ρxx − ∆ρbgxx, the differential resistivity after removing the quadratic back-

ground dependence ∆ρbgxx, plotted versus B-field. Around B=0 T, an increasingly strong

decrease in ρ∗xx with increasing IDC can be observed. (c) Isolated hydrodynamic compo-

nent, ∆ρ∗xx=ρ∗xx − ρ∗xx,I=0 is DC current-dependent deviation of ρ∗xx from the zero current

trace. Dashed lines: rH∆ρhydxx fit to the data in a perturbative approach. See more details

in text.
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Figure 7.6: ρxx-ρI=0
xx , deviation of differential resistivity ρxx from ρxx at IDC=0 µA. Away

from B ∼0 T, before HIROs, a background parabolic increase in ρxx with IDC can be

observed. Around B=0 T, an increasingly strong negative contribution with increasing

IDC is observed, which is signs of hydrodynamic electron transport.

deviation from the ballistic regime is the negative contribution given in Fig. 7.5(c). To

examine the experimental data, we use a perturbative approach assuming that the 2DEG

is initially in a ballistic regime, and that the change in ρxx with increasing DC current near

zero field is solely hydrodynamic in origin, and that the change is proportional to the vis-

cous correction described in Eq. (7.3). Specifically, our fitting model to the hydrodynamic

correction ρ∗xx with increasing DC current is equal to:

∆ρxx = ρxx − ρI=0
xx = ∆ρbgxx + rH∆ρhydxx , (7.4)

where ∆ρbgxx is the background quadratic increase in ρxx due to the DC current induced

decrease in lee, and rH is a dimensionless parameter describing the relative strength of the

viscous correction at different DC currents. The fits are presented in Fig. 7.5(c) in dashed

lines. The fitting parameters are rH and lee, and their dependencies with DC current are

presented in Fig. 7.7. lee decreases exponentially with DC current, which is consistent
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Figure 7.7: Electron-electron scattering length lee and |rH | extracted from fits of the traces

in Fig. 7.5(c) versus DC current. As IDC increases, lee decreases and the hydrodynamic

component becomes stronger as expected.

with the results obtained from theory Eq. (7.1): at 10 µA, Eq. (7.1) predicts lee=14 µm and

we obtain lee ∼ 11 µm. |rH | increases exponentially with DC current which is reflective of

the growing contribution of the hydrodynamic component.

Lastly, we estimate the electron shear viscosity [64] η, defined as η=1
4
v2
F τee, to be 0.7

m2/s at 10 µA. In comparison, in the work of a temperature-induced hydrodynamic

regime, with no DC current, η=0.3 m2/s at T=1.4 K is found by Gusev et al in Ref. [39]).

7.3 Hydrodynamic Hall Resistivity

In the previous section, we discussed the increasing hydrodynamic contribution to ρxx

with increasing IDC near zero B-field. Similarly, the growing influence of hydrodynamics

affects the differential Hall resistivity ρxy. ρxy was measured from the voltage across the

Hall bar system, and the data for IDC = 0 µA, IDC = 4 µA and IDC = 8 µA versus B-field

are presented in Fig. 7.8. In the small magnetic field regime (∼ 10 mT), the resistivity

ρxy diverges from the well-known Hall resistivity linear relation ρbulkxy = B/en. To better
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Figure 7.8: Hall resistivity ρxy plotted versus B-field for IDC=0 µA, 4 µA, 8 µA. For

|B| .0.01 T, ρxy stray away from the linear bulk Hall resistivity.

understand this phenomenon, we compute the deviation from the conventional Hall re-

sistivity ∆ρxy = ρxy−ρbulkxy , presented in Fig. 7.9(a). The sharp peaks near |B| ∼ 8 mT arise

from ballistic transport [36,39,115]. At zero B-field, The change in the slope from positive

to negative with increasing DC current is a signature of hydrodynamics.

Similarly to ρxx, our objective is to compare the viscous correction in ρxy to theory in a

perturbative method. In the purely hydrodynamic regime, the viscous Hall correction to

ρxy was derived by Alekseev [75] and Scaffidi et al. [36] and found to be:

∆ρhydxy

ρbulkxy

= −

[
6

1 + (2lee/rc)2

(
lee
W

)2
]
, (7.5)

where ρbulkxy =−B/en is the bulk Hall resistivity, and ∆ρhydxy =ρxy− ρbulkxy is the hydrodynamic

contribution to the bulk Hall resistivity. The DC current-induced hydrodynamic con-

tribution to ∆ρxy can be better visualized by taking the ratio ∆ρxy/ρ
bulk
xy , following the

approach of Gusev et al. [39] [see Fig. 7.9(b)]. To take the ratio ∆ρxy/ρ
bulk
xy of the experi-

mental data is non-trivial, as ρbulkxy = 0 at zero B-field. The solution is to transform the data

into a function of B, which can then be divided by ρbulkxy . In our case, the function used
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is a sum of polynomials times B [see black lines in Fig. 7.9(a)]. The resulting ∆ρxy/ρ
bulk
xy

is presented in Fig. 7.9(b). The negative value near 0 T in the 8 µA trace is a clear sign

of the growing impact of hydrodynamics. The deviation of ∆ρxy/ρ
bulk
xy from the IDC = 0

µA trace, ∆ρ∗xy=ρxy − ρxy,I=0, is presented in Fig. 7.9(c) in solid lines, which is the DC

current-induced hydrodynamic contribution. We fit ∆ρ∗xy to

∆ρhydxy = rH∆ρhydxy (7.6)

in a perturbative method, where rH is a dimensionless fitting parameter reflecting the

impact of the viscous correction to ρxy at different DC currents. We find that increasing

the DC current “amplifies” ∆ρ∗xy/ρ
bulk
xy near zero field, and at IDC=8 µA, the minimum

value at 0 T equates to an electron-electron scattering length lee of 29 µm, with a rH factor

of 0.019. These values are consistent with those from our analysis of ρxx and theory Eq.

(7.1) for lee [see also Fig. 7.5(d)].
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Figure 7.9: (a) Deviation from Hall resistivity ∆ρxy=ρxy–ρbulkxy versus B-field. Black lines:

fits to a polynomial function times B, to allow for division by ρbulkxy . Traces for each IDC

value are offset by 10 Ω for clarity. (b) ∆ρxy/ρ
bulk
xy versus B-field. The decreasing value of

the ratio at B=0 T is signs of hydrodynamic electron transport. (c) Isolated hydrodynamic

component ∆ρ∗xy/ρ
bulk
xy = (∆ρxy − ∆ρxy,I=0)/ρbulkxy versus B-field. Dashed line: hydrody-

namic theory Eq. (7.5) fit to IDC=8 µA trace.
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8. Conclusion

In this thesis, we have presented studies of non-linear phenomena in the small B-field

regime of a GaAs/AlGaAs narrow ultra-high mobility Hall bar, under DC current densi-

ties up to 0.67A/m. Our study mainly focused on analyzing our data on HIROs, which

arise from elastic impurity scattering between Landau levels tilted by the Hall field. Fur-

thermore, we have also presented our studies on the other phases found in the low B-field

high DC current regime of our 2DEG, namely SdH oscillations, phase inversion of SdH

oscillations, nMR and DC current-induced electron hydrodynamic transport.

8.1 Summary of Parameters Extracted

We investigated the HIRO frequency and amplitude, and compared the experimental

data to both theories by Yang et al. [4] and Vavilov et al. [102]. First, we confirmed the

IDC/B oscillation frequency dependence described in theory Eq. (2.3). Next, by fitting

theory Eq. (2.11) to data, we obtained an effective width Weff = 11 µm of the Hall bar,

a backscattering lifetime τπ = 5 ns and a DC current dependence to quantum lifetime

τHIROq . The current dependence of τHIROq is found to be 1/τq ∝ I2
DC , where τHIROq varies

from ∼40 ps at 2 µA to ∼18 ps at 10 µA. We associate this dependence with an increas-

ing electron temperature. The τHIROq was also found to be several times larger than τSdHq

obtained from SdH oscillations, which requires further theoretical investigation. At low

64



DC current, a sharp dip in ρxx was observed. By comparing to theory, an inelastic relax-

ation lifetime of 580 ps was obtained. Lastly, we observe a new “fractional” HIRO-like

resonance at HIRO order M ≈ 1.5, the origin of which is currently unknown.

From SdH oscillations at zero DC current, by fitting to theory Eq. (1.2), we obtained

parameters R0=11.4 ± 0.6 Ω and τq=11.5 ± 0.3 ps. The value of R0 is much closer to the

bulk resistance of 14 Ω, than the actual resistance at zero B-field of 43 Ω, implying SdH

oscillations are independent from nMR. At non-zero DC current, in terms of the phase

inversion of SdH oscillations, we have found that the rising electron temperature with DC

current model by Studenikin et al. [33] match with experimental data. By performing a

Monte Carlo approach on the parameters given in the form of the DC current dependence

of electron temperature Te in Eq. (1.5), it is possible to fit the theory Eq. (1.4) to the

experimental data to obtain Te. We have obtained a dependence Te = T0 + 1.0I0.6
DC , which

is in agreement with the previous work [33]. Thus, we confirm that electron heating is a

viable explanation for phase inversion of the SdH oscillations.

From the negative magnetoresistance around zero B-field, we extracted W = 0.65rc

from the double peak feature, which is in agreement with the W ∼ 0.55rc theoretical

value. We also report a positional parabolic dependence of B versus IDC for the double

peak, which requires further investigation.

Lastly, we report signs of DC current-induced hydrodynamic effect in both ρxx and

ρxy. At zero B-field, we observe a decrease in ρxx versus IDC , which is a known signature

of hydrodynamics [25]. We extracted the current-dependent hydrodynamic contribution

at small B-fields for both ρxx and ρxy and compared to the purely hydrodynamic viscous

correction in a perturbative method. From the comparison, we extract lee which is con-
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Weff lee η τSdHq τHIROq τπ

(µm) (µm) (m2/s) (ps) (ps) (ns)

11 11 0.7 11.5 18 - 40 5

Table 8.1: Summary of key extracted parameters from Chapters 4 to 7. The value of lee is

for IDC=10 µA determined in Sec. 7.2.2. The value of η is for IDC=10 µA determined in

Sec. 7.2.2. τHIROq depends on IDC hence a range of values is given (see Sec. 4.2).

sistent with the theoretical prediction of lee versus DC current from Eq. 7.1. All the key

parameters obtained from the analysis are presented in Table 8.1.

8.2 Summary of The Phase Diagram

In this thesis, we performed detailed analysis for five non-linear phenomena identifiable

from the phase diagram of differential resistivity ρxx presented in Fig. 1.1. Each phase

appears in its own region delimited by its own boundaries, which can be summarized

in a schematic of the low B-field high DC current regime, presented in Fig. 8.1. SdH

oscillations at zero current can be observed at B > Bq, where Bq is related to the quan-

tum lifetime τq by ωcτq = 1. SdH oscillations can still be observed at non-zero current,

although their amplitude decay significantly with increase IDC . At IDC = IPhI , there is

phase inversion of the SdH oscillations, where maxima become minima and vice versa.

Around B=0 T, there is a nMR phase, which is a sign of ballistic transport. The nMR is

bounded by BWeff
, where BWeff

can be evaluated from Weff = 2rc. With increasing DC

current, a contribution to ρxx can be identified as evidence of DC current-induced electron

hydrodynamic transport. Lastly, HIROs can be observed at B > BHIRO
q and IDC > IHIRO,

where BHIRO
q can be evaluated from ωcτ

HIRO
q = 1. BHIRO

q is related to the quantum life-

time τHIROq extracted from HIROs, as there is a discrepancy between τq extracted from
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Figure 8.1: Summary of the observed nonlinear phenomena regions and boundaries in a

phase diagram of ρxx vs B and IDC . SdH oscillations and phase inversion of SdH oscil-

lations are observable at B > Bq; nMR is observable at low B-fields bounded by BWeff
;

Hydrodynamic effects are observable at low B-fields and high DC current; HIROs are ob-

servable at B > BHIRO
q and I > IHIRO, which is delimited by the first HIRO maxima.

Boundaries are defined in the text.

SdH oscillations and HIROs. IHIRO is simply the DC current as a function of B-field of the

first HIRO maxima.

8.3 Outline for Future Research

Although we understand the non-linear phenomena presented in the phase diagram in

Fig. 1.1, there are still many unanswered questions that can be topics of research for

the future. From an experimental point of view, the obvious path for experiments in the

future is to use higher DC current on a similar sample. This process can possibly give
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us hints for the origin of the “1.5” HIRO-like feature, and more concrete evidence of DC

current-induced hydrodynamics.

In terms of analysis, we reiterate that the unresolved problems are: 1. the discrepancy

between quantum lifetime τHIROq extracted from HIROs compared to SdH oscillations

2. the decreasing nature of τHIROq with respect to DC current 3. DC current induced

hydrodynamic at higher DC current. For points 1 and 2, we suggest doing a full analysis

of HIROs oscillation with the Vavilov et al. [102] full Eq. (2.10) to check for the validity

of theory. τHIROq and τπ in our work were extracted u using the approximate Eq. (2.11),

which is only a sinusoidal function and doesn’t take into account small IDC effects, which

may influence the fitting for the quantum lifetime. For point 3, we suggest a Boltzmann

theory analysis similar to theoretical study from Molenkamp and De Jong [25,68], Scaffidi

et al. [36], Raichev et al. [81].

8.3.1 Boltzmann Transport Theory Analysis for DC Current-Induced

Hydrodynamic Electron Transport

Recent electron hydrodynamic theories [25, 36, 42, 68, 81] for effects on the magnetotrans-

port in a 2DEG are based on a Boltzmann transport formalism. For the analysis of our

sample, a perturbative method was used instead, because our sample is transitioning

from the ballistic regime to the hydrodynamic regime (lee ∼ Weff ). However, given fur-

ther experiments at even higher DC current, the perturbative approach could be inac-

curate as lee decreases well below the sample width Weff . Using an existing and more

complete theory to analyze higher DC current experimental data, as well as the data pre-

sented in this thesis, could help us further our understanding of DC current-induced

electronic transport. It would also be an opportunity to validate the Boltzmann equation

formulation of electronic hydrodynamic transport.
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More specifically, the Boltzmann transport formulation of electron hydrodynamics

predicts the magneto-resistivity given relevant length scales lee, lmfp and W . This can

be used to compare with our experimental data. This method could also validate Eq.

(7.1) given the DC current relationship with lee.
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A. GaAs/AlGaAs Hetero-Structure Fab-

rication Process

The 2DEG investigated is in the quantum well region of a GaAs/AlGaAs hetero-structure

grown by molecular beam epitaxy. The material was provided by L. N. Pfeiffer, and K.

W. West from the Pfeiffer Group at Princeton University. The growth method consists of

thin-film deposited in an ultra-high vacuum to produce high purity of the grown films

(see review in Ref. [105]). The relevant layers of the quantum well doping are presented

Fig. A.1. The 2DEG is a 30 nm GaAs layer. On each side of the 2DEG, there is a barrier

composed of Al0.30Ga0.70As with a quantum well doping region. From the 2DEG, in order,

the barrier consists of a 78 nm layer of Al0.30Ga0.70As, a 57 nm layer of AlAs, a 5.7 nm

layer of GaAs, a layer of SiAs, a 23 nm of GaAs, a 57 nm layer of AlAs, a 100 nm layer of

Al0.30Ga0.70As.
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Figure A.1: Schematic of the layers surrounding the 2DEG. The AlGaAs barrier on either

side of the 2DEG has a quantum well doping region. The layer thicknesses are presented

in the text.
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B. Hall Resistivity Under Illumination

We have also measured the Hall resistivity under illumination with VLED = 3 V, up to

230 seconds. The objective is to determine the effect of illumination on the hydrodynamic

contribution at B=0 T presented in Sec. 7.3. At different duration during the illumination

process, the Hall resistivity was measured under zero DC current and at IDC = 8 µA. The

electron concentration n decreased linearly with increasing illumination time t (see Fig.

B.1), from n = 2.0× 1011 cm−2 without illumination to n = 1.7× 1011 cm−2 at t = 230 s.

Figure B.1: Electron concentration n obtained from Hall resistivity plotted versus illumi-

nation time under a 3V LED. The electron concentration decreases linearly with illumina-

tion time, down ∼ 10% over t = 230 s.
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Figure B.2: ∆ρxy/ρ
bulk
xy plotted versus B-field after different illumination time, without DC

current (a) and with DC current of 8 µA (b). There is no correlation between illumination

time and hydrodynamic component.

It is possible to apply the same methods from Sec. 7.3 to determine whether a change

of illumination affects the hydrodynamic contribution ∆ρ∗xy/ρ
bulk
xy . To obtain ∆ρ∗xy = ρDC>0

xy −

ρDC=0
xy at each tillum, ∆ρ∗xy = ∆ρDC>0

xy − ∆ρDC=0
xy is used where ∆ρxy = ρxy − ρBulkxy , to ac-

count for the slight concentration change between the setup with and without DC cur-

rent. ∆ρxy for each tillum and current setup can be fitted from the method outlined in

Sec. 7.3. The hydrodynamic contribution ∆ρ∗xy/ρ
bulk
xy for each tillum can be calculated using

ρbulkxy = B/ens. The results are presented in Fig. B.2, and show no significant correlation

between ∆ρ∗xy/ρ
bulk
xy and illumination duration tillum.
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J. V. Koski, M. Berl, W. Dietsche, W. Wegscheider, M. Polini, T. Ihn, and K. En-

sslin, “Scanning gate microscopy in a viscous electron fluid,” Phys. Rev. B, vol. 98,

p. 241304, Dec 2018.

[96] G. M. Gusev, A. S. Jaroshevich, A. D. Levin, Z. D. Kvon, and A. K. Bakarov, “Stokes

flow around an obstacle in viscous two-dimensional electron liquid,” Sci. Rep.,

vol. 10, p. 7860, May 2020.

[97] A. C. Keser, D. Q. Wang, O. Klochan, D. Y. H. Ho, O. A. Tkachenko, V. A. Tkachenko,

D. Culcer, S. Adam, I. Farrer, D. A. Ritchie, O. P. Sushkov, and A. R. Hamilton,

“Geometric control of universal hydrodynamic flow in a two-dimensional electron

fluid,” Phys. Rev. X, vol. 11, p. 031030, Aug 2021.

[98] A. Gupta, J. J. Heremans, G. Kataria, M. Chandra, S. Fallahi, G. C. Gardner, and

M. J. Manfra, “Hydrodynamic and ballistic transport over large length scales in

GaAs/AlGaAs,” Phys. Rev. Lett., vol. 126, p. 076803, Feb 2021.

[99] E. Mönch, S. O. Potashin, K. Lindner, I. Yahniuk, L. E. Golub, V. Y. Kachorovskii,

V. V. Bel’kov, R. Huber, K. Watanabe, T. Taniguchi, J. Eroms, D. Weiss, and S. D.

Ganichev, “Ratchet effect in spatially modulated bilayer graphene: Signature of

hydrodynamic transport,” Phys. Rev. B, vol. 105, p. 045404, Jan 2022.

86



[100] M. G. Vavilov and I. L. Aleiner, “Magnetotransport in a two-dimensional electron

gas at large filling factors,” Phys. Rev. B, vol. 69, p. 035303, Jan 2004.

[101] I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and D. G. Polyakov,

“Theory of microwave-induced oscillations in the magnetoconductivity of a two-

dimensional electron gas,” Phys. Rev. B, vol. 71, p. 115316, Mar 2005.

[102] M. G. Vavilov, I. L. Aleiner, and L. I. Glazman, “Nonlinear resistivity of a two-

dimensional electron gas in a magnetic field,” Phys. Rev. B, vol. 76, no. 11, p. 115331,

2007.

[103] M. Khodas and M. G. Vavilov, “Effect of microwave radiation on the nonlinear resis-

tivity of a two-dimensional electron gas at large filling factors,” Phys. Rev. B, vol. 78,

p. 245319, Dec 2008.

[104] C. Chaubet, A. Raymond, and D. Dur, “Heating of two-dimensional electrons by a

high electric field in a quantizing magnetic field: Consequences in landau emission

and in the quantum hall effect,” Phys. Rev. B, vol. 52, pp. 11178–11192, Oct 1995.

[105] M. J. Manfra, “Molecular beam epitaxy of ultra-high-quality algaas/gaas het-

erostructures: enabling physics in low-dimensional electronic systems,” Annu. Rev.

Condens. Matter Phys., vol. 5, no. 1, pp. 347–373, 2014.

[106] N. C. Mamani, G. M. Gusev, T. E. Lamas, A. K. Bakarov, and O. E. Raichev, “Res-

onance oscillations of magnetoresistance in double quantum wells,” Phys. Rev. B,

vol. 77, p. 205327, May 2008.

[107] A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, “Temperature dependence

of microwave photoresistance in 2d electron systems,” Phys. Rev. Lett., vol. 102,

p. 066804, Feb 2009.

87



[108] A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, “Phonon-induced resis-

tance oscillations in 2d systems with a very high electron mobility,” Phys. Rev. Lett.,

vol. 102, p. 086808, Feb 2009.

[109] A. V. Chaplik, “A chaplik,” Sov. Phys. JETP, vol. 33, no. 8, p. 997, 1971.

[110] A. T. Hatke, H.-S. Chiang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, “Microwave

photoresistance in dc-driven 2d systems at cyclotron resonance subharmonics,”

Phys. Rev. Lett., vol. 101, p. 246811, Dec 2008.

[111] P. T. Coleridge, R. Stoner, and R. Fletcher, “Low-field transport coefficients in,” Phys.

Rev. B, vol. 39, pp. 1120–1124, Jan 1989.

[112] A. Yacoby, U. Sivan, C. P. Umbach, and J. M. Hong, “Interference and dephasing

by electron-electron interaction on length scales shorter than the elastic mean free

path,” Phys. Rev. Lett., vol. 66, pp. 1938–1941, Apr 1991.

[113] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors. Springer Berlin Heidel-

berg, 2005.

[114] N. Mamani, G. Gusev, O. Raichev, T. Lamas, and A. Bakarov, “Nonlinear transport

and oscillating magnetoresistance in double quantum wells,” Phys. Rev. B, vol. 80,

no. 7, p. 075308, 2009.

[115] R. J. Blaikie, D. R. S. Cumming, J. R. A. Cleaver, H. Ahmed, and K. Nakazato, “Elec-

tron transport in multiprobe quantum wires anomalous magnetoresistance effects,”

J. Appl. Phys., vol. 78, no. 1, pp. 330–343, 1995.

88


	Abstract
	Abrégé
	Acknowledgements
	Statement of Contributions
	List of Figures
	List of Tables
	I Background Information
	Introduction
	Phase Diagram
	Shubnikov-de Hass Oscillations
	Phase Inversion of The SdH Oscillations
	Negative Magnetoresistance
	Hall-Field Induced Resistance Oscillations
	DC Current-Induced Electron Hydrodynamic Transport
	Thesis Overview

	Literature Review of HIROs
	Theoretical Framework
	Experimental Studies

	Experimental Setup

	II Analysis of Experimental Data
	Hall-Field Induced Resistance Oscillations 
	IDC/B Dependence
	Quantum Parameters Extracted from HIROs
	Small DC Current Dip
	Fractional HIROs

	Shubnikov-de Haas Oscillations
	Extraction of q and R0 
	Phase Inversion

	Negative Magnetoresistance at Zero Magnetic Field
	Origin of Negative Magnetoresistance
	Double Peak

	Hydrodynamic Electron Transport
	Current-Induced Suppression of Electron-Electron Scattering Mean Free Path
	Hydrodynamic Magnetoresistance
	Isolating The Hydrodynamic Contribution
	Comparison to Theory Using a Perturbative Method 

	Hydrodynamic Hall Resistivity

	Conclusion
	Summary of Parameters Extracted
	Summary of The Phase Diagram
	Outline for Future Research
	Boltzmann Transport Theory Analysis for DC Current-Induced Hydrodynamic Electron Transport


	GaAs/AlGaAs Hetero-Structure Fabrication Process
	Hall Resistivity Under Illumination


