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ABSTRACT 

This thesis presents a stereo-based object segmentation system that combines the simplicity 

and efficiency of the background subtraction approach with the capacity of dealing with dynamic 

lighting and background texture and large textureless regions. The method proposed here does 

not rely on full stereo reconstruction or empirical parameter tuning, but employs disparity-based 

hypothesis verification to separate multiple objects at different depths. 

The proposed stereo-based segmentation system uses a pair of calibrated cameras with a 

small baseline and factors the segmentation problem into two stages: a well-understood offline 

stage and a novel online one. Based on the calibrated parameters, the offline stage models 

the 3D geometry of a background by constructing a complete disparity map. The online stage 

compares corresponding new frames synchronously captured by the two cameras according to 

the background disparity map in order to falsify the hypothesis that the scene contains only 

background. The resulting object boundary contours possess a number of useful features that 

can be exploited for object segmentation. 

Three different approaches to contour extraction and object segmentation were experimented 

with and their advantages and limitations analyzed. The system demonstrates its ability to 

extract multiple objects from a complex scene with near real-time performance. The algorithm 

also has the potential of providing precise object boundaries rather than just bounding boxes, 

and is extensible to perform 2D and 3D object tracking and online background update. 
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ABRÉGÉ 

Cette thèse présente un système de segmentation d'objets basé sur la vision stéréo incor­

porant la simplicité et l'efficacité de la soustraction de l'arrière-plan et pouvant fonctionner 

malgré des changements d'intensité lumineuse et la présence de grandes régions sans motifs dans 

l'arrière-plan. La méthode proposée ne dépend pas d'une reconstruction stéréo ou d'un ajuste­

ment empirique de paramètres, mais emploie la vérification d'hypothèses basées sur la disparité 

afin de séparer des objets situés à différentes profondeurs. 

Le système de segmentation proposé utilise une paire de caméras calibrées ayant une ligne 

de base courte et divise le problème de segmentation en deux étapes: une étape autonome 

bien connue et une nouvelle étape en ligne. Suivant les paramètres de calibration, la première 

étape modélise la géométrie 3D de l'arrière-plan en construisant une carte de disparité. La sec­

onde étape compare les images correspondantes acquises de manière synchronisée avec les deux 

caméras selon cette carte de disparité dans le but de contredire l'hypothèse d'une scène ne con­

tenant que l'arrière-plan. Les contours d'objets résultants présentent certains attributs pouvant 

être exploités par la segmentation d'objets. 

'Irois approches distinctes pour l'extraction des contours et la segmentation d'objets ont été 

expérimentées et leurs avantages et limites ont été analysés. Le système a la capacité d'extraire 

plusieurs objets d'une scène complexe, et ce presque en temps réel. L'algorithme retourne aussi 

le contour précis des objets plutôt qu'une simple boîte de délimitation et peut être adapté pour 

faire du suivi d'objets en 2D et 3D et pour la mise à jour en temps réel de l'arrière-plan. 
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CONTRIBUTIONS 

The work presented in this thesis makes contributions in two distinct areas of computer 

vision. The first set of contributions are with respect to the camera calibration work presented 

in Chapter 3. 

• An empirical study of the impact of noise and training data quantity on calibration accuracy 

is conducted, using three publicly available techniques, through extensive experimentation 

with separate training and test data. 

• A detailed comparison of various camera models is included to determine the relative 

importance of different distortion components. 

The second set of contributions deal with the object segmentation work, which presents a multi­

camera method to isolate and distinguish multiple foreground objects in a scene. 

• It provides a solution in the presence of illumination and texture change in the background. 

• The method generates not only the 2D locations of objects in images but also boundaries 

and depth information, without using full stereo reconstruction. 

• It offers a new perspective on disparity analysis for depth extraction and 3D scene under­

standing. 

• The approach suits generic object segmentation tasks as it does not require prior knowledge 

of the objects or impose any constraint on object shape. 

• The system achieves near-real-time performance by avoiding slow online stereo matching, 

and is much faster than existing software based stereo segmentation systems. 
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CHAPTER 1 
Introduction 

Extracting moving objects from a static or dynamic scene is useful for a wide variety of 

applications, such as video surveillance, tracking, or event recognition. The problem of fore-

ground/background separation in a dynamically textured scene is particularly interesting to 

virtual reality environment research, and the entertainment and film industry, where projected 

video backgrounds are often present. Efficient, high-quality foreground object location and seg-

mentation is also an important research topic in itself and has been studied for decades in the 

computer vision community. It is a use fuI preprocessing step for more general image content 

analysis in attentional contexts, allowing computational effort to be focused on foreground ob-

jects. 

Most segmentation systems use information from a single camera, and may be classified into 

two general categories: background suppression and object-specific foreground extraction. 

Background suppression is commonly used for detecting moving objects, where each image is 

compared against a reference or background model [67, 130, 146,42,27, 175]. Simple background 

suppression, such as background subtraction and frame differencing, performs poorly due to 

illumination change and shadow; see examples shown in Fig. 1-1, 1-2, 1-3, and 1-4. Therefore, 

statistical models are often used to represent background pixel values, to adapt to appearance 

variations. The most popular background models include per-pixel single Gaussian model [165], 

Gaussian Mixture Model [145, 146], linear prediction [155], eigenbackground model [118], Hidden 

Markov Model [130], optical flow [64], and median filtering [42]. Most of the background models 

proposed focus on the texture of the background. Despite their adaptability to slow changes in 

lighting, texture, geometry, shadow, and repetitive background motion such as tree leaves and 

ripples, they all assume that such changes in the background are significantly less dynamic than 
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(a) Image of a static background. 

(b) Samples from an image sequence with static background. 

(c) Results of background subtraction. 

Figure 1-1: Background subtraction on an image sequence with static background. 

those of the foreground. Problems related to truly dynamic environments, such as virtual reality 

environments or modern commercial displays, have not been addressed. 

An example of such dynamic environments is the Shared Reality Environment (SRE) and 

its conceptual prototype is illustrated in Fig. 1-5. The aim of the SRE project is to create an 

audio and video enhanced virtual environment with a purpose of facilitating interactions between 

users regardless of distance. In order to successfully immerse real objects, such as humans, in 

a virtual world, it is necessary to separate them from their actual physical surroundings, which 

may contain fast background motions as shown in Fig. 1-2(b). Therefore, the assumption of 

static or slowly changing background is no longer valid here and a real-time object segmentation 

system that is able to tackle dynamically textured scenes is required. 
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(a) Background image. 

(b) Samples from an image sequence with projected video background. 

(c) Results of background subtraction. 

Figure 1-2: Background subtraction on an image sequence with projected video background. 

A foreground object can be detected directly from a scene based on an object-specific fore­

ground model, without relying on the knowledge of the background. The information used for 

foreground modeling can be collected from texture [14, 13, 155, 80, 140], shape [24, 114, 48, 168, 

174], motion [15, 142, 119, 51], or a combinat ion of the three [165, 16, 67, 150, 87]. Texture 

modeling includes the per-pixel Gaussian model [165], histograms [155], Principal Component 

Analysis [14, 13] and wavelets [80, 140]. Shape modeling is often based on contours [16]. Motion 

is usually expressed by dynamic models [165, 16, 67]. Object-specific modeling limits a segmen­

tation system to specifie targets. A new modeling process is required whenever a new object is 

involved, which may be time-consuming and impractical for online processing. 

Layered motion segmentation has become popular in the past decade. It decomposes an 

image sequence into a set of overlapping layers with each layer's motion described by a smooth 
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Figure 1-3: Frame differencing on an image sequence with static background, captured at 
30 frames/sec. (White denotes zero difference.) 

optical fiow field. The discontinuities in the description are attributed to object occlusions, 

resulting in a 2.5D representation of the scene that consists of motion layers as well as occlusion 

and depth ordering. The most representative work on layered motion segmentation includes that 

of Wang and Adelson [160], Jepson and Fleet [78], Hsu et al. [73], Ayer and Sawhney [3], Weiss 

and Adelson [162], and Xiao and Shah [166]. Unfortunately, these methods almost all involve the 
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(a) Sample image sequence with projected video background. 
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(b) Results of frame differencing. 

(a) Sample image sequence with projected video background. (cont.) 
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(b) Results of frame differencing. (cont.) 

Figure 1-4: Frame differencing on an image sequence with projected video background, captured 
at 30 frames/sec. (White denotes zero difference.) 

computation of optical flow, which is time-consuming and impractical for real-time use. They 

are also unable to distinguish between a real scene and the projected video of a scene. 

Using information from two or more cameras is a biologically motivated and attractive 

alternative for tackling dynamic environments, which may also offer benefits in dealing with 

occlusion. Some researchers use multiple cameras mainly to cover a large field of view with litt le 

overlap between different views [29, 2]. Such setups do not make use of stereo information, and 
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Figure 1-5: A conceptual prototype of a node of the Shared Reality Environment. 

their most important problems to solve are matching and switching between different camera 

views. 

In order to obtain more accurate 3D information, multiple cameras with overlapping fields 

of view have been used. Wide baseline setups [32, 47, 89, 107] have difficulties in stereo mat ching 

and uncertainty in object correspondence across multiple views. By exploring the potential of 

multiple calibrated cameras with a small baseline, sorne systems work from an extensive 3D 

reconstruction to object seg!llentation and tracking [77, 112], for which the good performance of 

a stereo algorithm is crucial. However, frame-by-frame stereo reconstruction is expensive and so 

far unsuitable for real-time or interactive applications. Existing stereo matching algorithms [116, 

131,93, 149] also tend to be very sensitive to differences in camera response; obtaining sufficiently 

well-matched cameras may pose a practical difficulty. Finally, the uniform or repetitive textures 

common in indoor scenes and video-augmented spaces constitute worst-case inputs for stereopsis, 

often leading to disappointing results. 

Sorne systems combine stereo matching and segmentation [5, 154, 11, 99]. Despite their 

good performance, the high computational cost remains a weakness of these methods. Recently, 

both layered dynamic programming and layered graph eut methods [91] have been proposed for 

bi-layer foreground-background segmentation. Both methods yield comparably high accuracy in 

their experimental results and have the potential for real-time applications. However, they have 

been tested only on images with a large depth difference between background and foreground. 
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Although dynamic backgrounds such as people walking across the room were tested, foreground 

motion was restricted to a small depth range, close to the camera, which does not suit most 

real-world applications. Although a few real-time stereo systems have been claimed in the past 

decade [85, 110, 55], these systems rely on the computational power of multiple processors and 

give various definitions of "real-time". None of them ad dresses the issue of dynamic background. 

This thesis presents a stereo-based object segmentation system that incorporates the sim­

plicity and efficiency of the background subtraction approach and the capacity to handle dynamic 

lighting and background texture, should they occur, as well as static background environments. 

The method proposed here do es not rely on full stereo reconstruction, but introduces disparity 

contours to separate multiple objects at different depths, and is applicable to large textureless 

regions. The system demonstrates near real-time performance and has the potential of providing 

precise object contours rather than just bounding boxes. It is also extensible to perform 2D and 

3D object tracking. 

The proposed stereo-based segmentation system uses a pair of calibrated cameras with a 

small baseline and factors the segmentation problem into two stages: a well-understood offiine 

stage and a novel online one, as illustrated in Fig. 1-6. 

The offiine stage first performs a camera calibration to estimate camera parameters. Based 

on the calibrated parameters, a disparity map of the background scene is constructed to store 

pixel correspondence information between the left and right views of the background. Since the 

background disparity map (BDM) is determined by the 3D geometry of the background, which 

is likely to be more stable over time than texture and illumination, the BDM representation is 

valid over long term even in the presence of lighting and texture change. 

The online processing stage compares corresponding new frames synchronously captured by 

the two cameras according to the BDM in order to falsify a background hypothesis of the scene, 

and stores the mismatch information in a view difference map (VDM), which enables the rapid 

extraction of object boundary contours that encode depth information. Object segmentation is 
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Figure 1-6: Stereo-based object segmentation system overview. 

conducted based on the extracted contours. Of course at the beginning of each online processing 

loop, a preprocessing step is necessary for image distortion removal and rectification. 

This thesis is structured as follows. Chapter 2 reviews existing approaches to various com-

ponents of the proposed system, including camera calibration, computational stereo, and object 

segmentation. Chapt ers 3 to 7 then provide the detailed explanation of each component of the 

system and the experimental results, as outlined below. Chapter 3 presents sorne use fuI empirical 

observations from the work on camera calibration. Appendix A briefiy describes synchronized 

video acquisition and image preprocessing. Chapter 4 explains the idea of background hypothesis 

falsification and introduces the concept of disparity contours. Chapters 5 and 6 present two 

initial approaches to disparity contour extraction and object segmentation, with qualitative and 
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quantitative analysis of experimental results. Chapter 7 explores in more depth the features of 

disparity contours and proposes a much improved method to overcome the weaknesses of the 

previous two. Finally, Chapter 8 summarizes the work and suggests future directions for this 

research. 
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CHAPTER 2 
Literature Review 

Stereo-based object segmentation involves several areas of research: camera calibration, 

computational stereo, and object segmentation. This chapter reviews each of them in detail. 

2.1 Camera calibration 

Camera calibration has received increased attention in the computer vision community dur­

ing the past two decades [59, 132]. The decreasing cost of comput ers and cameras has also 

brought rapid growth in stereo-based applications. In consequence, an ever-increasing popula-

tion of researchers is coming to depend on camera calibration for their projects. 

The purpose of camera calibration is to estimate the parameters of a camera model so as 

to establish the correspondence between 3D scenes and 2D images captured by the camera, as 

shown in Fig. 2-1(a). Given a minimum of two calibrated cameras, the 3D structure of a scene 

can be reconstructed from the 2D information in the camera views. Therefore, camera calibration 

is a critical first step for stereo applications such as view synthesis, 3D object segmentation and 

tracking. 

3D scenes 

camera canlera 
parameters model 

2D images 

(a) 

ll11age 
plane 

(b) 

p 

nnage 
point 

Figure 2-1: (a) Diagram of a camera model. (b) A pinhole camera model. 
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Figure 2-2: Coordinate transformations in a camera model. 

2.1.1 Camera models 

A camera is usually represented by a pinhole model that maps 3D scenes to 2D images, as 

illustrated in Fig. 2-1(b). This pro cess conceptually consists of four coordinate transformations, 

as shown in Fig. 2-2. The first transformation between 3D world coordinates and 3D camera 

coordinat es is determined by camera position and orientation, known as the extrinsic parameters. 

The next three transformations from camera coordinat es to pixel coordinates are controlled by 

internaI camera configuration such as the focal length and the image center location, known as 

the intrinsic parameters. 

The choice of camera model in various calibration methods varies mainly in characterization 

of lens distortion [143]. Types of lens distortions commonly considered are radial and tangential. 

Two common radial distortions are pincushion and barrel distortions. Tangential distortions are 

usually caused by decentering or thin-prism distortion. One of the effects of tangential distortion 

is that a straight line passing through the center of the field of view may appear in the image as 

weakly curved line. 

Among existing calibration methods, Tsai used a second order radial distortion model [158] 

while Zhang employed both the second and fourth order terms [172]. Heikkila included two 

further decentering distortion components [71], while Lavest et al. added the sixth order radial 

term [95]. Weng et al. incorporated the thin prism distortion whose coefficients could be merged 

with those of the decentering distortion in actual calibration [163]. Most camera models assume 

zero skewness, i.e., the angle between x and y image axes is 90° [158, 71, 163], but Lavest [95] 

and Zhang [172] estimate skewness as a variable. 
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Although the significance of each distortion coefficient apparently depends on the actual 

camera and its distortion characteristics, it is not clear which distortion coefficients most con­

tribute to the accurate calibration of various cameras with different distortion characteristics, 

whether the addition of higher-order radial distortion components or decentering distortions 

actually improves calibration accuracy and if so, to what degree. 

2.1.2 Calibration algorithms 

According to the nature of the training data used, existing calibration methods can be 

classified as coplanar or non-coplanar. The coplanar approaches perform calibration on data 

points limited to a single planar surface. These methods are either computationally complex or 

fail to provide solutions for certain camera parameters, such as the image center, the scale factor, 

or lens distortion coefficients [33]. In contrast, the non-coplanar approaches uses training points 

scattered in 3D space to coyer multiple depths, and do not exhibit such problems. 

Non-coplanar approaches fall into a number of categories. World-reference based calibration 

is a conventional approach requiring the 3D world coordinates and corresponding 2D pixel co­

ordinates of a set of feature points [54, 158, 163, 71, 132]. The disadvantage of this approach is 

that either a well-engineered calibration object is required, or the environment has to be set up 

carefully to achieve accurate 3D measurements. Geometrie invariant based methods use parallel 

lines and vanishing points as calibration features. Although world coordinate measurement is 

not required, special equipment may be necessary for measuring certain variables, for example, 

the ratio of focallengths on the two axes [31]. Implicit calibration methods [161] have no explicit 

camera model and may achieve high accuracy, but they do not reveal the physical parameters of 

a camera and are computationally expensive because of the large number of unknown variables 

involved. Auto- or self- calibration approaches determine camera parameters directly from mul­

tiple uncalibrated views of a scene by matching corresponding features between views, despite 

unknown camera motion and even changes in some of the intrinsic parameters [53, 68]. Unfortu­

nately, due to the difficulty of initialization [59], auto-calibration results tend to be unstable [17]. 

Planar auto-calibration [156] addresses this initialization difficulty by using multiple views of a 
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planar scene, taking advantage of the fact that planes are simple to pro cess and allow reliable 

and precise feature or intensity-based matching. Sturm-Maybank [147] and Zhang [172] both 

extended this idea by taking into account the relative geometric information between planar 

feature points, with Zhang's method estimating lens distortion coefficients, a factor not included 

in the former work. According to Sturm and Maybank's singularity analysis [147], degenerate 

situations can easily be avoided. Another extension of the multi-view planar approach suggests 

the use of angles and length ratios on a plane but provides no experimental results [98]. 

It is worth noting that these multi-view planar calibration methods differ from the coplanar 

methods reviewed by Chatterjee [33]. The methods described here rely on a planar calibration 

pattern positioned at various orientations. They exploit the co-planarity constraint on the points 

in each sample set to reduce or eliminate the need for 3D measurement, but still sample a 3D 

region. Similarly, a one-dimensional object can be positioned at various spots with various 

orientations in a 3D space to provide non-coplanar points for calibration [173]. 

While it is trivially obvious that more accurate training data will result in better calibration; 

the more salient issue is what accuracy can be achieved within the practicallimits of most research 

environments. The impact of noise on calibration accuracy has been studied by Lavest et al. [95] 

and Zhang [171], however, their experiments on real data involved calibration points with small 

distance coverage in 3D space and did not use a separate test data set to verify the scalability of 

calibrated results. This apparent gap in the literature motivates the work reported in Chapter 3. 

2.2 Computational stereo 

Computational stereo for extracting three-dimensional scene structure has been studied for 

de cades [46, 83, 137, 26]. Its basic princip le is stereo triangulation, locating a single 3D point 

from a unique pair of image points in two observing cameras [157], as illustrated in Fig. 2-3. The 

primary problem to solve is stereo correspondence, i.e., computing the displacement (disparity) 

of a projected point in one camera view with respect to the other. Stereo mat ching algorithms, 

aiming to solve the correspondence problem, must generally address three issues: token types, 

source of constraints, and support or compatibility aggregation. 
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Figure 2-3: Stereo triangulation. 

2.2.1 Tokens 

Tokens are the information extracted from images, based on which stereo matching is per­

formed. The simplest tokens used in stereo mat ching algorithms are brightness in gray-scale 

images or colors in color images [62, 25, 109, 148]. The disadvantage of using intensity values 

directly is that they are sensitive to illumination, contrast, and differences in viewing positions 

of two cameras. 

Feature-based stereo algorithms use symbolic tokens derived from intensity images, which 

are more stable to changes in contrast and ambient lighting. The most commonly used low 

level features are edges or points of interest [106, 63]. The main disadvantage in using low level 

features for mat ching is that the hundreds of edge points demand a large number of computations 

and result in a large number of ambiguous candidate matches. 

The most common high level tokens include li ne segments [121], contours [167], curves [138] 

and regions [61, 133, 126]. The use of complex image features has two main advantages in 

matching. First, they are usually fewer in number, resulting in much faster correspondence 

algorithms. Second, they contain rich descriptive attributes, such as length, width, area, global 

intensity information and contrast. This attribute information can reduce the number of match 

candidates and significantly increase the matching accuracy. These advantages of high level 

tokens are desirable for real-time stereo systems. 
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2.2.2 Constraints 

Matching constraints have been classified by Jones [83J into unary and binary. Unary con-

straints contain information specifie to each match, while binary constraints measure the com-

patibility of pairs of matches. This classification is essentially based on the level of locality or 

globality of a constraint. Here we refer to individu al constraints and compatibility constraints. 

Individual constraints. One of the most important classes of individu al constraint is that 

of geometry, the best known of which is epipolarity. The epipolar constraint reduces the search 

for a corresponding point from an entire 2D image to a ID epipolar line [157J. This reduction in 

search space significantly improves matching speed and reliability, and has been adopted by many 

stereo algorithms. To take advantage of the epipolar constraint, image rectification techniques 

have been developed to virtually modify the camera parameters so that pairs of conjugate epipolar 

lines become co-linear and parallel to the horizontal image axis [60J. Often used in conjunction 

with the epipolar constraint is the view volume constraint, which limits the length of the epipolar 

line to the width of the image plane. 

The similarity constraint is another important individual constraint, and forms the basis of 

stereo matching. ldeally, best matches can be found simply by locating corresponding tokens 

that satisfy the similarity constraint. The similarity between two pixels or their neighborhoods is 

measured through a matching co st computation. Disparities are obtained either by the winner-

take-all method directly from the matching costs or by an optimization scheme based on a global 

cost. 

The most common pixel-based matching costs include the sum of squared differences (SSD), 

the sum of absolute differences (SAD), which is often used for computational efficiency, and the 

normalized cross correlation (NCC) [137, 26J. 

SSD: 

SAD: 

NCC: 

Lu,v Ih(u, v) - 12 (u + d, v)1 

L:u,v [( h(U,V)-Ïl H h(u+d,v)-Ï2 )J 
VL:u,v [( h(u,v)-Ï1 t( h(u+d,v)-Ï2 )2] 
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Other cost computation methods, e.g., gradient-based measures [135] and non-parametric 

measures such as rank and census transforms [169], are insensitive to difference in camera gain 

or bias. The rank transform of a pixel in its neighborhood region is defined as the number of 

pixels in that region whose intensity is less than that of the center pixel. The resulting values 

are based on the relative ordering of pixel intensities, which preserves the sharpness of region 

boundaries. However, because of the information loss of the rank transform, the discriminatory 

power of the succeeding mat ching procedure is reduced. The cens us transform preserves the 

spatial distribution of ranks by encoding them in a bit string. Matching is then performed 

using Hamming distance, i.e., the number of bits that differ, between bit strings. It is also 

possible to correct for different camera characteristics by performing a preprocessing step for 

bias-gain or histogram equalization [62, 41]. Additional proposaIs include phase and filter-bank 

responses [106, 81, 103, 100]. 

Unfortunately, an these more robust methods require extra processing compared to the 

simple pixel-based matching cost computation and negatively impact performance. 

Compatibility constraints. Compatibility constraints express the support for the match 

of a token from the matches of the token's neighborhood. Such constraints include continu­

ity jsmoothness, coherence, uniqueness and topology. 

The continuity constraint rests on the observation that points adjacent in 3D space remain 

adjacent in each image projection. Therefore, disparity varies smoothly on object surfaces, 

along edges of surfaces, and along contours. To realize this, adjacent disparities must satisfy 

a disparity gradient limit [28, 120], lie on the same edge contour or line segments [106, 63], or 

satisfy a smoothness term in a global energy function [141, 136, 104, 131, 152, 23, 22, 92, 11,99]. 

This is a very useful constraint for environments with opaque objects. 

The coherence constraint recognizes the case of transparent objects [124]. It allows the 

occurrence of a discontinuous disparity field if it is the result of several interlaced continuous 

disparity fields, each corresponding to a piecewise smooth surface. 
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The uniqueness constraint requires a one-to-one mapping, Le., each token in an image can 

be assigned to one and only one disparity value [92]. In the case of ambiguous matching, the 

uniqueness constraint is usually implemented by further examining the multiple tokens belonging 

to a single match. 

The topological constraints are based on the fact that the projections of a 3D structure in 

different viewpoints have the same topology. Popular among these are the ordering constraint, 

parallelism, and the relative position constraint. The ordering constraint preserves the order in 

which 3D events are projected [116, 40, 74, 141]. Parallelism me ans that nearby parallellines in 

3D space must be projected to nearly parallel lines in each 2D view [82]. The relative position 

constraint assumes that the relative positions of tokens remain similar between images [72]. This 

is less true when features are widely separated in a 3D space where occlusions exist. 

The compatibility constraints can be combined through a weighted average of individual 

sources [82, 141, 11, 23] or a series of thresholded filters [72]. Most compatibility constraints 

are implemented in a heuristic manner within various optimization methods to achieve a global 

compatibility [83]. 

2.2.3 Compatibility or support aggregation 

The distribution of the constraint information discussed above is usually sparse in an im­

age, which leads to poor or ambiguous matching results. Therefore, compatibility needs to be 

propagated from reliable to unreliable matching regions to improve results. Almost all stereo 

algorithms consider compatibility between neighboring regions. Their difference lies in the de­

gree of globality of the compatibility considered. Accordingly, stereo algorithms can be divided 

roughly into local and global approaches. 

Local compatibility aggregation. Local correspondence methods, such as block match­

ing, gradient methods, and feature matching, consider small neighborhoods. 

Intensity based block mat ching methods estimate disparity at a point III one Image by 

comparing a small region (the template) around that point with a series of small regions in 

the other image (the search region). As stated in Section 2.2.2, the epipolar constraint greatly 
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reduces the search space to one dimension. Matching cost computation, reviewed in that section, 

is the key to the block matching approach. The biggest challenge of using block mat ching is how 

to balance speed and accuracy; both are affected by the size of the template. A small template 

can yield fast yet ambiguous matching, whereas increasing the template size results in slower 

mat ching that is more robust to noise. The naive implementation of any block mat ching method 

is inefficient due to redundant computations. Somewhat faster algorithms have been developed 

by Sun [148], Muhlmann et al. [109] and Schmidt et al. [139]. However, despite its simplicity, 

point-to-point matching to determine view correspondence is inherently slow and unreliable. 

More constraints are necessary to restrict the search space. 

Gradient-based or opticalflow methods [102] determine smalliocai disparities between two 

images by formulating differential equations relating motion and image intensity. Assuming that 

the intensity of a point in the scene is constant between two views, the horizontal translation of a 

point from one image to the other is computed by a differential equation. Assuming that disparity 

varies smoothly over a small window of pixels, the disparity at a point may be estimated using 

least squares on a system of linear differential equations at each pixel in an n pixel window around 

that point. Gradient-based methods are suit able for estimating small disparities. However, the 

disparity range of a stereo image pair is typically much larger than one pixel, limiting the method's 

performance. 

Intensity or gradient-based methods are sensitive to depth discontinuity. Feature-based 

methods seek to overcome this problem by limiting the regions of support to specific reliable 

features in the images, such as edges, curves, etc. Three classes of feature-based approaches 

are worthy of mention: hierarchical geometric feature matching, segmentation matching, and 

wavelet analysis. 

Hierarchical geometric feature matching algorithms [105, 159] often take a top-down ap­

proach and exploit several types of features, from low-Ievellines, vertices and edges to high-Ievel 

regions or surfaces. Matching begins at the highest level of the hierarchy (regions or surfaces) 

and proceeds to the lowest (lines). This allows coarse, reliable features to provide support for 
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mat ching finer, less reliable features and reduces the computational complexity of matching by 

reducing the search space at lower levels. Segmentation matching takes either a bottom-up 

approach as is done by Sander et al. [133], who grows regions from pixels, or a top-down ap­

proach as is done by Randriamasy and Gagalowicz [126], who recursively divide regions using 

a thresholding method based on contrast minimization. These approaches are usually sensitive 

to the quality of the segmentation. Wavelet analysis methods [103, 100] represent images using 

a multi-scale decomposition. A hierarchical disparity propagation scheme is used to aggregate 

matching results at each level. 

The disadvantage of feature mat ching is its difficulty in generating dense depth maps. How­

ever, its benefits include increased speed and accuracy, especiallY when used with high-Ievel 

tokens, as mentioned in Section 2.2.1. 

Global cornpatibility aggregation. Global compatibility aggregation aim to reduce the 

sensitivity of a stereo algorithm to occlusion and uniform texture. Sorne of the most popular 

approaches include graph isomorphism, energy optimization, 3D geometry approximation, and 

structured light. 

Graph isornorphisrn The tokens in an image can be represented by a graph structure whose 

nodes represent individu al tokens and who se links encode topological or spatial relations between 

tokens. Such graphs are referred to as relational or attributed graphs [45]. The reversible mapping 

between all nodes of one graph and all nodes of another is known as isomorphism. In stereo 

correspondence problems, image graphs are likely to be incomplete due to occlusion, hence a 

double subgmph isomorphism is performed to locate a mapping between the two subgraphs [20]. 

The most commonly used algorithms are based on recursive graph search [6], which explores 

all or a subset of potential mappings between two graphs to minimize sorne distance measures [45, 

20J. These methods are often feature-based and construct interpretation trees whose root-to­

branch paths represent all possible interpretations of the correspondence pro blem [61]. In order 

to restrict the interpretation tree to a computationally feasible size, sorne methods build the tree 

based on a set of reliable seed matches of sorne minimum size [61]. 
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Energy optimization In global energy optimization approaches, a cost or energy function 

is defined by combining a variety of constraints. Optimization is performed to maximize or 

minimize this energy function. Here we review sorne of more recent approaches including dynamic 

programming, graph eut, nonlinear diffusion, and belief propagation. 

Based on the epipolar monotonie ordering constraint, dynamic programming [39] optimizes a 

global cost function by finding the minimum co st path through a disparity-space image (DSI) [74]. 

The total co st is summed up recursively from the costs of partial paths, and the cost of each 

point in the DSI is defined using the similarity measures in Section 2.2.2. There are two ways 

to construct a DSI. The axes of a DSI can be defined as the left and right scanlines [116, 40], as 

shown in Fig. 2-4(a), or the left scanline and the disparity range [75], as in Fig. 2-4(b). In order 

to reduce ambiguity, various methods have integrated interscanline constraints to minimize the 

sum of costs over two-dimensional regions [4, 116,8,40, 10]. The major disadvantage of dynamic 

programming is the possibility that local errors may be propagated along a scanline, corrupting 

other potentially good matches [26J. 

A variation of dynamic programming uses intrinsic curves instead of the DSI [153J. An 

intrinsic curve is a vector representation of image descriptors defined by applying operators, e.g, 

edge and/or corner operators, to the pixels in a scanline. Thus, the disparity search problem 

""' ................ ," d 

limA ' 

(a) (b) 

Figure 2-4: Disparity-space image with (a) axes defined as the left and right scanlines, and (b) 
axes defined as the left scanline and the disparity range. Fig. 2 of Roy and Cox 1998 [131J. 

20 



becomes a nearest neighbor problem in intrinsic curve space. Although this is an interesting 

idea, no advantage over the DSI approach is demonstrated in experimental results. 

The most significant limitation of dynamic programming is its inability to incorporate 

strongly both horizontal and vertical continuity constraints. Graph cut approaches first pro-

posed by Roy and Cox [131] extend DSI construction from a 2D left-disparity representation 

to a 3D left-disparity representation as in Fig. 2-5(a). Based on the 3D DSI, a directed graph 

as shown in Fig. 2-5(b) is defined, where the vertices represent aU possible matches, and each 

edge has an associated flow capacity defined as a function of the costs of the adjacent nodes it 

connects. The stereo problem becomes the problem of finding the cut with the minimum ca-

pacity that maximizes the flow through the graph. The standard relabel-to-front algorithm [39] 

was used by Roy and Cox [131] to solve the max flow problem. An efficient data structure has 

been introduced by Thomo et al. [152] to reduce the memory space, making large data sets 

more manageable. Boykov and Kolmogorov [22] developed an approximate Ford-Fulkerson style 

augmenting paths algorithm, which they showed to be much faster in practice than the stan­

dard relabel-to-front approach. Boykov et al. [23] proposed a multi-way cut graph structure, 

as demonstrated in Fig. 2-6, instead of the 2-terminal graph and used a-expansion and a-f3-

swap algorithms to modify labels of arbitrarily large pixel sets simultaneously. Kolmogorov and 

6-connect&d 

"'''?}! /" \, :. 1 .' . t :; : 
./ \, /' 

... : ........... :::~::::.~,. 
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x' Flow direction: S -+- t 

(b) 

Figure 2-5: (a) 3D disparity-space image with axes defined as the left image and the disparity 
range between the left and right images. Fig. 3 of Roy and Cox 1998 [131]. (b) A directed graph 
for solving maximum flow problem. Fig. 4 of Roy and Cox 1998 [131]. 
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Figure 2-6: (a) Example of a graph with multiple terminaIs. (b) A multi-way cut on a multi­
terminal graph. Fig. 9 of Boykov et al. 2001 [23J. 

Zabih [92J suggested another graph structure in which the vertices represent pixel correspon-

dence rather than pixels themselves so that a uniqueness constraint can be imposed to handle 

occlusion. 

Other methods considering 2D global optimization include nonlinear diffusion and belief 

propagation. Instead of using fixed size, rectangular windows to compute neighborhood support 

as in most block mat ching schemes, nonlinear diffusion [141, 136, 104J combines various models 

non-uniformly at locations of ambiguous matches. The belief propagation method [149J uses a 

Markov Network to represent the posterior probability function over disparity. The standard 

max-product algorithm is employed to maximize the posterior probability (beliefJ and update the 

network by propagating messages between nodes. 

3D geometry approximation Sorne global methods reconstruct a 3D scene by explicitly 

modeling its 3D geometry. Fua and Leclerc [58J modeled surfaces as a mesh that is iteratively 

adjusted to minimize an objective function. Faugeras and Keriven [52J proposed a similar ap­

proach but modeled surfaces using level sets. Kutulakos and Seitz [94J represented the scene as 

a volume and refined the surface using a space carving method by checking voxel consistency 

between different views. Tomasi et al. used a multi-way cut segmentation approach [11, 99J to 
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Table 2-1: Performance comparison of best stereo algorithms on 384 x 288 Tsukuba image with 
15 disparity labels. 

method 

multi-way graph cut [23] 
(Boykov et al. 2001) 
graph cut with occlusion [92] 
(Kolmogorov and Zabih 2001) 
belief propagation [149] 
(Sun et al. 2003) 
multi-way cut segmentation [99] 
(Lin and Tomasi 2004) 

Il 

processing 1 processor 
time (s) 

75 500MHz Pentium III 

83 500MHz Pentium III 

51 
1.7GHz Pentium IV 
(~ 1.2rv1.4GHz Pentium III) 

no data, expected to be slower than others 

minimize an energy function by alternating between an image segmentation using Boykov et al. 's 

multiway cut algorithm and a surface fitting pro cess using either affine parameters [11] or bicubic 

B-splines [99]. 

The recent multi-way graph cut methods [23, 92], the belief propagation method [149], and 

the multi-way cut segmentation approach [99] are shown to be among the best performers in 

stereo algorithms according to Scharstein and Szeliski's review [137]. Table 2-1 compares their 

processing time per image pair on the Tsukuba image of resolution 384 x 288 with 15 disparity 

labels. Although no data is available, the multi-way eut segmentation method is expected to be 

slower than the others, as it aims to produce a real-valued subpixel disparity map. As can be 

seen, none of these methods is close to real-time performance, even on low resolution images. 

Structured light Unlike the methods above that rely on stereo triangulation between two 

camera views, the structured light approaeh performs optical triangulation between the "views" 

of a camera and a projector. Instead of matching images captured by two cameras, the image 

projected (i.e. 'inversely perceived') by the projector and the image perceived by the camera are 

matched through a space-time analysis [43] to obtain their correspondence. 

Various light patterns have been designed to facilitate the matching. Simple ones include a 

flying spot [128] and a sweeping light plane [84]. Complicated ones include a set of hierarchical 

gray stripe patterns [134] and time-varying stripe patterns [66]. Color has also been used, such 

as a color dot pattern [44] or a color stripe pattern [19, 170] with a special color intensity 
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configuration. Since structured light reduces unambiguous matching on a horizontal scanline, 

dynamic programming can be used to obtain a global optimum [170]. 

The benefit of using structured light is its ability to achieve accurate 3D reconstruction 

of any given shape from the view of a single camera. However, it requires the calibration and 

synchronization between a camera and a projector, and is only applicable to textureless objects. 

Although one-shot reconstruction is possible using color stripes [170], multiple images of the 

same scene are necessary to achieve accurate results, which limits its suitability for moving 

objects. Although sorne methods claim to capture moving scenes [19, 44, 66], they Impose 

various constraints on either the appearance or the speed of an object. 

2.3 Object segmentation 

01;>ject segmentation extracts foreground objects from a background scene, which is a critical 

early step for many applications of video surveillance and human-computer interaction. Several 

aspects of object segmentation are reviewed in this section, including sources of information, 

background suppression, foreground object extraction, tracking, layered motion segmentation, 

and stereo segmentation. 

2.3.1 Sources of information 

Information collected for object segmentation can be roughly classified into four categories: 

texture, shape, motion and depth. 

Texture/ Appearance. Texture and shape information describe the visual properties of 

an object. Raw texture information includes the intensity [155, 145, 130, 146, 38] and the 

color [165, 145, 146, 38, 42, 27, 91] of pixels. Normalized color is often used to reduce its 

sensitivity to changes in ambient light [165, 27]. Intensity and color can also be combined [144]. 

Computed texture includes derivatives [130], contrast [91J and reflectance ratio [27J. 

Appearance modeling is another useful method to describe the texture of an object. The 

most commonly used appearance model is based on principal component analysis (PCA) [14, 13, 

118]. A less common appearance model expresses object texture by wavelets [80, 140]. 
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Shape. Shape information can be obtained from three sources: edges, silhouettes and 

contours. Edges are useful in representing salient features in an image such as corners and 

curves [114,48, 168,87], and can be connected to form object contours for high-level modeling [16, 

174]. 

Sorne methods use silhouettes to represent object shapes [24, 67]. This can provide global 

information including size, centroid, major axis, and moments of various orders which can be 

made invariant to translation, rotation and scale. Object contours, and horizontal and vertical 

projection histograms can be extracted easily from silhouettes [67]. 

çontours are most commonly used for shape modeling. For human objects, an ellipsoid 

contour model is often used to detect head, torso, hands, legs, feet, or even clothing [165, 16, 174]. 

Contours from silhouettes more usually contain an entire object [150]. 

Specific to human object segmentation, there are several models to describe the human 

body, including stick figure models and volumetrie models such as generalized cones, elliptical 

cylinders and spheres [1]. 

Motion. Motion information expresses how an object moves. The basic motion informa­

tion is position and velocity, which are usually represented by dynamic models [165, 16, 67]. 

Optical flow is a powerful tool for motion extraction. Various methods have been proposed 

to estimate the parameters of an affine image motion model based on optical flow [9, 160, 78, 162]. 

Using a pre-defined basis set of steerable flow fields, motion discontinuities or boundaries can be 

detected [56, 12]. 

PCA is another approach to represent motion [15, 142, 119, 51] and can be applied to optical 

flow [15, 51]. Different variations of the PCA approach have been employed to model periodical 

human motions [142, 119]. 

Depth. Depth eues provide 3D information about a scene and are especially important for 

dealing with multiple object segmentation and occlusions. Depth information can be extracted 

from motion by using the temporal coherence of an image sequence [9,160,78,73,3, 162,79, 166] 

or through stereo algorithms [5, 11, 21, 69, 154, 99, 91]. 
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The four types of information above are often combined for object representation. For 

example, intensity and optical flow are combined for more reliable motion estimation [73] or 

foreground-background separation [64]. Edge and motion are coupled for boundary detec­

tion [114]. A dynamic model can be combined with a contour model and become active con­

tours [16]. More and more frequently, appearance, shape and motion are integrated for segmen­

tation [165, 67, 150, 87]. Recently, depth or stereo information has also become involved [5, 11, 

21, 69, 154, 99, 91, 97]. Jepson et al. [79] proposed a 2.5D layered polybone model, which used 

shape and motion parameters and depth ordering information to include visibility and occlusion 

for multi-object tracking. 

2.3.2 Background suppression 

Background suppression is a common approach to identifying moving objects, in which 

each video frame is compared against a reference or background model. There are two basic 

approaches in this direction. One is background subtraction [42], where a difference image is 

computed between the current frame and a reference image representing a background model. 

Thresholding and morphological filtering are then applied to the difference image to locate ob­

jects. The other approach is pixellabeling [67, 130, 146, 27, 175]. Pixels in the current frame 

that deviate significantly from the background are considered to be moving objects. These 'fore­

ground' pixels are fur~her processed for object localization and tracking. This section reviews 

the key components of background suppression: background modeling and shadow detection. 

Background modeling. Simple background subtraction performs poorly due to illumi-

nation change and shadow. To adapt ta appearance variations, background is often represented , 
by a statistical model of the intensity or color value of every pixel in an image. 

A Gaussian model of YUV color distribution was first proposed by Wren et al. [165] to 

represent each pixel, whose statistics are updated using a simple information weighting. This 

method is able to adapt to illumination change in the background. This ide a was extended by 

Stauffer and Grimson, who modeled the recent history of every pixel by a weighted mixture of 

Gaussian distributions (the Gaussian mixture model-GMM) , where the weights were updated 

26 



by an online K-means approximation [145, 146]. The Gaussian models are sorted according to 

their probability of representing the background and the few most probable models are chosen for 

background estimation. The GMM approach has the advantages of representing the multi-modal 

appearance of the background and adapting to slow changes in lighting, texture, geometry, and 

repetitive background motion such as that of tree leaves and ripples. 

Sorne systems model background using multi-level processing. Toyama et al. [155] proposed 

a linear prediction method to estimate the intensity of a background pixel from its history. 

Prediction coefficients are learned by minimizing prediction error. Multi-scale pixel-level models 

are used for multi-modal background appearance and model switch occurred at frame-level. 

Haritaoglu et al. [67] maintained the background by keeping track of the minimum and maximum 

intensity of a pixel and the maximum intensity difference of the pixel between consecutive frames. 

The background is updated by two processes: a pixel-based update to adapt to illumination 

changes and an object-based update to adapt to geometry changes such as added or removed 

objects. This approach is limited by its inability to handle partial occlusion of a person. 

PCA, hidden Markov model (HMM), and optical fiow have also been used in modeling 

background. Oliver et al. [118] built an eigenspace model using PCA to describe the range of 

background appearance due to lighting variation over the day. Eigenbackground subtraction was 

then performed adaptively to detect moving objects. By exploring temporal continuity, Rittscher 

et al. [130] modeled the grayscale intensity over time for each pixel location as a single HMM with 

three types of observations: foreground, background and shadow. The parameters of the model 

were learned by a Baum-Welch algorithm [125]. Gutchess et al. [64] initialized a background 

model based on optical fiow. A net flow between two frames is defined by subtracting output 

fiow from input fiow at each pixel. Pixels with high negative net fiow caused by objects leaving 

are likely to be background. 

Other simpler and faster background modeling methods include frame differencing [155] and 

median filtering [42]. Unfortunately, experiments show that more slowly adapting algorithms 

tend to have better performance than those that adapt quickly [34]. 
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Shadow detection. Moving shadows can be misclassified as foreground, which may lead 

to drastic changes in the shape of an object or merging of multiple objects. Sorne methods 

reduce sensitivity to shadows by using YUV color and normalizing UV with respect to Y [165]. 

Sorne methods use HSV color to separate chromaticity and luminosity explicitly, and a shadow 

is detected by judging its darkening effect on the background [42]. Other methods combine 

normalized RGB color and reflectance ratio for shadow detection [27]. A detailed evaluation of 

several shadow detection methods can be found in the work of Prati et al. [123] 

Despite their adaptability to various slow changes in the environment, aH the background 

modeling methods reviewed in this section assume that lighting and texture variations of the 

background are significantly less dynamic than those of the foreground. Problems related to truly 

dynamic environments, such as virtual reality environments or modern commercial displays, have 

not been addressed. 

2.3.3 Foreground extraction 

Foreground objects can be extracted by background suppression or detected directly from 

an image based on object-specific foreground modeling. 

Object extraction via background suppression. Once a reliable background model is 

available, foreground object extraction can be performed through either background subtraction 

or pixellabeling, as reviewed in Section 2.3.2. High-level post-processing is usually necessary to 

yield a meaningful object interpretation. 

Most background suppression algorithms generate foreground blobs after thresholding or 

pixellabeling. Due to noise and misclassification error, these blobs may be disconnected. There­

fore, morphologie al operations are needed to pro duce a single region for each object that is 

guaranteed to be connected [165, 145, 67]. Object detection can then be triggered based on the 

size, saliency, and motion of the regions [42]. Sorne methods operate directly on the difference 

image resulting from background subtraction [36, 7], where object regions can be located using 

a clustering approach such as mean shift [37, 38]. 
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Sorne background suppression schemes such as frame differencing yield the contour fragments 

of a moving object. To compute closed bounding contours from contour fragments relies on the 

technique of contour grouping, which has been studied for many decades in the area of perceptual 

organization [49, 50]. Contour grouping constraints have also been employed to complement 

region-based segmentation [129, 96]. However, reliable contour grouping requires a large amount 

of computation and is unsuitable for real-time applications. The general problem of extracting 

the bounding contour of an object of arbitrary shape in a complex scene is essentially unsolved. 

Object-specific foreground modeling. A foreground object can be modeled by its 

texture, shape and/or motion, which enables the object to be detected directly from a scene 

without relying on knowledge of the background. 

Texture modeling Like background, foreground texture can be described by a per-pixel Gaus­

sian model [165], although position information is usually added to the feature vector. Histogram 

is also commonly used as a simple and adaptive method for extracting global statistics of fore­

ground texture. Toyama et al. [155] applied histograms to reliable object regions detected by 

frame differencing and backprojected histogram statistics to the image to correct mislabeled 

foreground pixels. 

Appearance modeling, including PCA [14, 13] and wavelets [80, 140], is a popular tool for 

modeling object texture. Black and Jepson [14] proposed a pyramid of eigenspace representations 

to allow coarse-to-fine matching for tracking. In order to deal with outliers, the eigenspace was 

built to represent a smaller set of canonical views and a parameterized transformation was esti­

mated to convert an input image to the eigenspace. Jepson et al. [80] expressed image appearance 

in terms of responses from a wavelet-based steerable pyramid, which provided image features at 

different scales for coarse-to-fine differential motion estimation and stability assessment. 

Shape modeling The most common shape model is based on contours [16]. The ide a is to 

fit a spline curve to the contour of an object, thus expressing its shape by the control vectors 

of the spline curve, or by lower dimensional shape space vectors mapped from the former via 

a linear transformation. The shape space describes the variation of the object shape and can 
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be constructed in various ways. The key-frame method builds the shape space from a linear 

combination of sample shapes; the random sampling approach assumes a Gaussian distribution 

of the shape; PCA can be employed either in the curve space or shape space; residual PCA 

operates on a key-Jrame based shape space that does not totally cover a certain data set, and 

fills in missing components by PCA, thus retaining the clear interpretation of key frames. 

In order to obtain object contours, edge detection is often a necessary first step [174]. The 

Canny edge detector [30] is well known to give the best results but is computationally expensive. 

Contour grouping techniques [49, 50] are usually needed here to group edge features that belong 

to a common structure. 

Motion modeling Dynamic models [165, 16, 67] such as first- and second-or der auto-regressive 

(AR) pro cesses are often used to describe the trajectory of a stochastic motion. The first-order 

AR pro cess is the simplest model to deal with changes of position and shape, and can impose 

incremental constraints when global constraints are weak. However, they are not able to model 

motions with arbitrary direction al changes of velo city, or oscillations. The second-order AR 

pro cess is a natural extension and meets the requirements for both translational and oscillatory 

motions. Dynamic models can be learned by various algorithms such as the dynamic learning 

algorithm [16] and the expectation maximization (EM) algorithm [115]. 

PCA is another approach to representing motion [15, 142, 119]. Black et al. [15] modeled 

motion discontinuities and non-rigid motions using PCA on optical flows. Sidenbladh et al. [142] 

used a multivariate PCA to train a walking human motion model to reduce the dimensionality 

of a parameter space. Ormoneit et al. [119] proposed a functional PCA, which used the fast 

Fourier transformation (FFT) to deal with missing data and enforce motion smoothness, m 

order to model periodic human motion cycles. 

Integrated modeling As mentioned in Section 2.3.1, most segmentation systems use more 

than one source of information for object modeling. Wren et al. [165] combined a skin-color 

model, 2D contour shape model, and a dynamic motion model for object tracking. Haritaoglu 

et al. [67] distinguished humans from other objects (e.g. cars) using both silhouette shape 
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and periodic motion eues, separated multiple overlapping objects using projection histograms 

computed from silhouettes, and identified objects after occlusion based on a temporal texture 

template by integrating appearance, shape and dynamic models. Taking advantage of the fact 

that the appearance and shape of vehicles remain unchanged in satellite images, Tao et al. [150] 

adopted constant appearance and shape models for vehicles and approximated their motion by 

a translation and rotation after the projective planar background motion is compensated. Kang 

et al. [87] employed a polar distribution of Gaussian models of color and shape to represent 

foreground objects, which had the advantage of being invariant to translation, rotation and 

scale. 

Shape and motion can also be learned together by a HMM [125] for recognition purpose. 

Brand [24] trained a HMM to learn the shape and motion of a 3D human body from 2D sil­

houettes. Oliver et al. [118] used HMM and coup Led HMM (CHMM) to model human behaviors 

and interactions. Nair and Clark [111] proposed a HMM for human activity recognition in or­

der to detect anomalous activities for video surveillance. The HMM can be learned using the 

Baum-Welch method or the EM algorithm [125]. 

Key-frame extraction and video segmentation have recently been combined by Fan et al. [101, 

144], where the extracted key frames were used to estimate statistical models for model-based 

object segmentation, and object segmentation results were used to further refine the initially 

extracted key frames. Spatial-temporal features used include YUV color, x-y spatial location, 

time, and intensity change over time. A feature selection process is applied, not to reduce feature 

dimension but rather, to extract video key frames such that the feature space overlap among 

major objects is minimized. 

Object-specific modeling limits a segmentation system to specifie targets. A new model­

ing pro cess is required whenever a new object is involved, which may be time-consuming and 

impractical for online processing. 
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2.3.4 'fracking 

Although object segmentation do es not require tracking, they are often coupled, as segmen­

tation is a prerequisite of tracking, and tracking is helpful for propagating good segmentation 

results through an image sequence. Feedback from motion tracking can also be incorporated 

into adaptive background modeling [151]. Therefore, it is beneficial to examine existing tracking 

approaches as weIl. 

Tracking algorithms can be divided into two categories: one based on static images, the 

other based on temporal coherence in image sequences. PCA-based eigentracking [14, 13] is a 

typical method that considers each image in a video as isolated and static. Its detection and 

tracking mechanisms are essentially a single matching process; thus eigentracking does not require 

sophisticated feature detection and object segmentation techniques. However, due to the lack 

of temporal information during tracking, eigentracking pro cesses im~ges independently of each 

other and is computationally expensive in the long fUn. 

The Kalman filter is the simplest tracking algorithm to incorporate temporal coherence of 

an image sequence [88, 165, 16] and has been integrated into many systems [118, 146,47, 87]. It 

consists of three steps: First, given the tracking result from the previous frame, the algorithm 

predicts the shape and motion of an object in the current frame based on a shape and motion 

model; second, it measures or observes detected features of an object in the current frame; last, it 

assimilates the observation into the prediction using information weighting. With the help of an 

adaptive validation gate, the Kalman filter is able to adjust its search region and, hence, handle 

cluttered background, partial occlusion and agile motion. However, as it assumes a unimodal 

Gaussian distribution for an object, the Kalman filter is able to track only a single object and is 

not able to recover once it loses the target. 

The particle filter or the CONDENSATION algorithm [16, 76, 12, 130, 51] is proposed to 

overcome the shortcomings of the Kalman filter. The particle filter assumes a multi-modal non­

Gaussian distribution of an object and uses factored sampling to approximate its distribution. 

The particle filter is able to track multiple objects and recover from a loss of tracking. However, 
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using a high dimension al parameter space, the particle filter requires a large number of samples 

and it proves to be computationally expensive to provide a good approximation of the distribu­

tion. One solution to this problem is to reduce the dimension of the parameter space by sorne 

compression technique such as PCA. Another solution is to use the hybrid Monte Carlo (HMC) 

filter. 

The idea of HMC [113, 35, 122, 174], also known as the Markov chain Monte Carlo (MCMC) 

filter, is to use fewer particles, where each particle pro duces a Markov chain to explore the 

parameter space until the chain converges to a posterior. Thus, the HMC explores the parameter 

space both in space and in time, which speeds up the searching process. In a study by Choo and 

Fleet [35], the HMC performed faster for problems of high dimensionality such as 10D or 28D, 

while the particle filter was faster for problems of low dimensionality such as 4D. 

2.3.5 Layered motion segmentation 

Layered motion segmentation decomposes an image sequence into a set of overlapping layers 

with each layer's motion described by a smooth optical fiow field. The discontinuities in the 

description are attributed to object occlusions, mirroring the structure of the scene. This is a 

2.5D representation because the segmentation result consists of motion layers as well as occlusion 

and depth ordering. 

Layered motion originated from optical-fiow based image motion analysis. The assumption 

made in many optical-fiow algorithms is that motion at any point in an image can be represented 

as a single pattern component undergoing a simple translation; even complex motion appear as 

a uniform displacement when viewed through a sufficiently small window. This assumption fails 

for a number of situations, for example, transparent surfaces moving past one another, or at 

the boundary between two differently moving regions. Bergen et al. [9] addressed the problem 

by extending a coarse-to-fine incremental single motion estimator to a two-component motion 

model. The estimations of two motions are refined in an alternating iterative fashion. 

Wang and Adelson's motion segmentation [160] estimated multiple affine motions within 

subregions of images using a multi-scale coarse-to-fine algorithm and determined coherent motion 
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regions based on the estimated affine models. The affine models and the regions were updated 

iteratively. Meanwhile, Jepson and Black [78] used a probabilistic mixture model on optical ftow 

to represent multiple motions within an image patch explicitly using a simple modification of the 

EM algorithm for parameter estimation. Hsu et al. [73] presented a framework where a global 

parametric motion was estimated for an entire motion layer, and the motion at each point was 

corrected by residual ftow, parametric estimation error, and residual intensity. Similar to the 

mixture model of Jepson and Black [78], Ayer and Sawhney [3] represented the current image by 

an additive mixture of a finite number of previous images that were warped by different motion 

models, and the parameters of these models were estimated by a modified EM algorithm. Weiss 

and Adelson [162] extended the above work [78, 3] by adding spatial constraints to the mixture 

formulations. A Markov random field (MRF) was employed to propagate neighborhood support 

and another modified EM algorithm was used for parameter estimation. 

Due to its success in minimizing energy functions for stereo problems [22, 23, 92, 93], the 

graph cut approach has been adopted for motion layer extraction. Xiao and Shah [166] used two 

graph cut steps for motion layer extraction. First, seed regions, initially determined by two frame 

correspondences, are expanded and refined by a graph cut method and the resulting regions are 

merged into several initiallayers according to motion similarity. Final motion layers are obtained 

by a multi-frame graph cut algorithm with the occlusion or der constraint included in the energy 

function. 

Layered motion segmentation methods almost all involve the computation of optical ftow, 

which is time-consuming and impractical for real-time use. Besides, they do not exploit stereo 

information for depth extraction and are not able to provide precise depth information. 

2.3.6 Stereo segmentation 

The techniques for a single camera described above can be useful for segmentation and 

tracking with multiple cameras, yet new challenges arise, such as how to maintain the identity 

of an object across different views, and how to integrate information from different views, how 

to switch between cameras when sharing a large field of view. 
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Some researchers use multiple cameras mainly to provide a large field of view with little 

overlap of coverage between different views [29, 2]. In this context, the most important problems 

to be solved are mat ching and switching between different camera views. Cai and Aggarwal [29] 

proposed the use of geometry features-such as position and velo city-and intensity features for 

matching, and a camera selection scheme to choose one of the nearest cameras that had a high 

confidence match, and would image the object over the longest number of frames in the future. 

Atsushi et al. [2] projected a 3D ellipse model to 2D views to create various simulated images 

as estimations and compared them to actual background removed images so as to detect the 3D 

position of an object. Their view matching was based on 3D position and color. 

In order to obtain more accurate 3D information, multiple cameras with overlapping fields­

of-view have been used. Some researchers explored, without calibration, synchronized visual eues, 

such as the bottom points of a person moving on the ground [32, 89] or the edges of the field of 

view of a camera intersected by a person [89], to obtain the object correspondence in multiple 

views. Given multiple calibrated cameras, the matching can be done across different views 

more easily along epipolar lines. Mittal and Davis [107] back projected the cent ers of matching 

segments by stereo triangulation to obtain 3D points in a scene potentially corresponding to 

people. They then projected the 3D points to the ground plane for 3D tracking. Dockstader 

and Tekalp [47] used a Bayesian network for integrating back-projected 3D positions of features 

across multiple views. 2D segmentation and tracking were carried out based on regional optical 

flows in each view and a Kalman filter was adopted for maintaining the temporal smoothness of 

the 3D trajectory. 

AlI of these methods used wide base-line camera arrangements, causing difficulties in stereo 

matching and uncertainty in object correspondence across multiple views. By exploring the 

potential of multiple calibrated small baseline cameras, sorne systems work from an extensive 

3D reconstruction to object segmentation and tracking [77, 112], which relies on the good per­

formance of a stereo algorithm. However, frame-by-frame stereo reconstruction is expensive 
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and so far unsuitable for real-time or interactive applications. Existing stereo matching al­

gorithms [116, 131, 93, 149] also tend to be very sensitive to differences in camera response; 

obtaining sufficiently well-matched cameras may pose a real practical difficulty. Finally, the 

uniform or repetitive textures common in indoor scenes and video-augmented spaces constitute 

worst-case inputs for stereopsis, often leading to disappointing results. 

The latest approach towards stereo segmentation is to combine the stereo matching and 

segmentation processes. Harville et al. [69] obtained depth information from a stereo camera 

and modeled the background using per-pixel, time-adaptive, Gaussian mixtures of combined 

color and depth. The background update rate was modulated based on scene activity and a 

depth-dependent color segmentation scheme was proposed. Similar to the idea of layered motion, 

the layered stereo approach [5, 154] models a scene as planar layers using 3D plane equations 

refined by per-pixel opacity and per-pixel residual depth relative to the plane. The multi-way 

cut segmentation approach [11, 99] reviewed in Section 2.2.3 extends this idea by representing 

the scene structure as a collection of smooth surface patches. An energy function is minimized 

by alternating between an image segmentation and a surface fitting process. Despite their good 

performance, the high computational cost remains a weakness of these methods . 

. Kolmogorov et al. [91] proposed both layered dynamie programming and layered graph eut 

for bi-layer segmentation. Layered dynamie programming solves stereo in an extended 6-state 

space that represents background and foreground layers and occluded regions. Layered graph eut 

do es not solve stereo directly; instead, it segments an image into foreground and background 

layers based on a contrast-sensitive color model. Both methods yield comparably high accuracy 

in experimentation and have the potential for real-time application. However, it is noticeable 

that there is a substantial depth difference between background and foreground in the test images 

of these two methods. Although dynamic background such as people walking across the room 

was tested, foreground motion was restricted to a small depth range, close to the camera, which 

do es not fit most real-world applications. 
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A few real-time stereo systems have been claimed in the past decade [85, 110, 55]. A close 

examination of these systems revealed that they give different definitions of "real-time". By 

using special-design dedicated processor boards and programmable hardware, the Video Rate 

Stereo Machine of Kanade et al. [85] generates depth images of 256x240 pixels at 30 frames/sec. 

The trinocular stereo system designed by Mulligan et al. [110] reconstructs disparity maps of 

foreground objects at 2-3 frames/sec at a resolution of 320x240 pixels and 64 disparities on a 

four-processor machine. The real-time segmentation system developed by Feldmann et al. [55] 

segments foreground objects from background in a color scene in real-time TV resolution by the 

support of multiple PCI based multi-processor boards containing four TriMedia TM 1300 on 

each board. Note that aIl these systems rely on the computational power of special hardware, 

which may not be affordable by many research labs. Moreover, they assume a static background 

for foreground/background separation and do not address the issue of dynamic environments. 

Having looked at existing literature, it is clear that the object segmentation problem with 

rapid background texture changes has not been studied. The remainder of the thesis will present 

an implemented solution to this problem, starting with the work on camera calibration. 
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3.1 Introduction 

CHAPTER 3 
Camera Calibration 

The proposed stereo-based object segmentation system uses a small baseline camera pair 

of fixed focal length. In order to establish the correspondence between the 3D scene and the 

2D views of the cameras and so exploit the depth information of a scene, estimating camera 

parameters is the critical first stepl . 

Although camera calibration is a mathematically weIl defined problem and numerous meth-

ods have been developed to provide solutions, these methods make different simplifying assump­

tions as to how they should be used in practice and which variables need to be measured. It 

was not clear how certain factors such as training data quantity, measurement error, and the 

choice of camera model influence calibration accuracy. Moreover, a major practical concern is 

the degree of effort involved in providing a given algorithm with the training data it needs to 

achieve a required accuracy. 

In order to answer the questions ab ove , an empirical study was conducted, using three 

publicly available techniques, through extensive experimentation with separate training and test 

data, to investigate the impact of noise, either in world or pixel coordinates, and training data 

quantity, on calibration accuracy. A detailed comparison of various models was also included to 

determine the relative importance of different distortion components. 

This chapter presents sorne useful observations from the study, in the hope of first providing 

a quick answer to researchers who need an immediate camera calibration solution; and second, 

1 The material in this chapter was originally published as Machine Vision and Applications 
2006 Volume 17 pages 51-67, "An empirical evaluation of factors influencing camera calibra­
tion accuracy using three publicly available techniques", Wei Sun and Jeremy R. Cooperstock, 
@Springer-Verlag 2006. With kind permission of Springer Science and Businesss Media. 
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giving sorne insight into practical difficulties one may encounter in a real environment, and which 

factors to keep in mind when looking for a suit able calibration technique; and finally, offering an 

introduction to the field for those newly embarking upon calibration related research. 

3.2 Calibration methods for experimentation 

The calibration methods chosen for experimentation were developed by Tsai [158], Heikkilii 

[71] and Zhang [172]. An important reason behind this choice is that the source code for the 

three methods is publicly available, well developed, well tested, and therefore provides a fair 

comparison. In fact, only open source algorithms are serious candidates for a study of this 

nature, because they are open to study and readily integrated into a larger system. 

Tsai's method represents a conventional approach that is based on the radial alignment 

constraint (RAC) and requires accurate 3D coordinate measurement with respect to a fixed 

reference. Among the conventional calibration methods surveyed by Salvi [132], including those 

developed by Hall [65], Faugeras-Toscani [54], and Weng [163], Tsai's was reported to exhibit 

the best performance. His method has been widely used in multi-camera applications [86, 127]. 

Heikkilii's method, also world-reference based, although not included in that survey, employs the 

more general direct linear transformation (DLT) technique by making use of the prior knowledge 

of intrinsic parameters. It also incorporates a more complete camera model for lens distortions. 

Zhang's method is (essentially) a different special case of Heikkilii's formulation. It combines 

the benefits of world-reference based and auto-calibration approaches, which enables the linear 

estimation of all supposedly constant intrinsic parameters. This method is flexible in that either 

the camera or the planar training pattern can be moved freely, and the calibration procedure 

is easily repeatable without redoing any measurements. These three methods of course form 

part of a large space of potential algorithms and can each be generalized in a variety of ways. 

Researchers' names have been applied to particular forms of their algorithms as embodied in the 

published code. 
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3.2.1 Camera model 

Tsai's, Heikkilii's and Zhang's methods all use the pinhole projective model to map 3D scenes 

to the 2D image plane. Despite different formulations for lens distortion, the mapping between 

world and image points proceeds through the same four transformations, from world coordinates 

(Xw, Yw, Zw), via camera coordinat es (Xc, Yc, Zc), undistorted image coordinat es (xu, Yu), and 

distorted image coordinat es (Xd, Yd), to pixel coordinates (xp, Yp), as shown in Table 3-1. 

The transformation between (Xw, Yw, Zw) and (Xc, Yc, Zc) is expressed by the extrinsic pa-

rameters R and t, where t = [tx ty tz JT is a translation vector, and R = is a 3 x 3 

r7 r8 rg 

rotation matrix which can also be expressed in terms of the roll-pitch-yaw angles, re = [()x ()y ()z JT, 
cosBycos()z sin()xsin()yCos()z - cos()xsin()z cos()xsinBycos()z + sin()xsin()z 

as R = cosBysinez sin()xsinBysin()z +cosexcos()z cos()xsinBysin()z - sinexcos()z 

- siney sinexcosBy cosexcosey 
The other three transformations from (Xc, Yc, Zc) to (xp, Yp) are expressed by the intrinsic 

parameters. In Tsai and Heikkilii's models, these are: the camera's principal point or image 

center in pixels, (cx , Cy); the effective focallength, J; the image scale factor, Sx; the (supposedly 

known) center-to-center distances between adjacent pixels in x and y directions, dx and dy, or 

their inverses, Dx and Dy; the coefficients of Tsai's radial distortion, kiT); and Heikkilii's radial 

and decentering distortions, kiH), k~H), piH) and p~H). In Zhang's model, the intrinsic parameters 

are: the image center, (cx , Cy); the pixel focallengths along the x and y axes, Ct and (3; the radial 

distortion coefficients, kiZ) and k~Z); and the skew parameter, " describing the relative skewness 

of the x and y image axes of a camera. The focal lengths in the three models are related to each 

other as follows: 

(3.1) 

Note that precise values are not needed for dx, dy and Dx, Dy in Tsai and Heikkilii's models as 

any error will be compensated for by the focallength, J, and the image scale factor, sx, after 

calibration. 
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Table 3-1: Coordinate transformations in Tsai, Heikkilii and Zhang's camera models. 
Tsai Il Heikkmi Il Zhang 

[ ~:J ~ R [ ~: ] +t [ ~:J ~ R [ ~: ] +t [~:J~R[~:]+t 
[ ~: ] = f [ ~: ] [ ~: ] = f [~: ] [ ~: ] = L [ ~: ] 

[ ~: ] = (1 + k~T) r2) [ ~: ] 

where r = JXd2 + Yd 2 

[~:] = (1+k~H)r2+k~H)r4) [~: ~ [~:] = (1+k~Z)r2+k~Z)r4) [~:] 

[ 
2 (H) (H) (2 2 2) Pl XdYd + P2 r + Xd 2 2 

+ (H) ( 2 2) (H) where r = J Xu + Yu 
Pl r + 2Yd + 2P2 XdYd 

where r = JXd2 +Yd 2 

[ 

xp ]_ [ sxl dx 
YP - a 
1 a 

a cx] [Xd] [ X
p 

] [sxDx a cx] [Xd] [ x
p 

] [a 'Y cx] [Xd] 1 lady cl ;d Yi = ~ ~y 7;d Yi = ~ ~ cl ;d 



3.2.2 Calibration algorithms 

AH three calibration algorithms estimate an initial closed-form solution by solving part of 

an over-determined system of linear equations. The initial estimates then proceed through a 

non-linear optimization process, such as the standard Levenberg-Marquardt algorithm as im-

plemented in Minpack [108], to minimize residual error. The objective function used in the 

optimization step is usually the error of distorted pixel coordinates, which will be described in 

detail in Sect. 3.2.3 Eq. (3.10). As the three algorithms differ mainly in their estimation of the 

closed-form solution, this section offers further detail as to how the initial solution is obtained 

in each algorithm. 

In Tsai's algorithm, given the 3D world and 2D distorted image coordinates of n » 7 feature 

points, and assuming the camera's image center, (cx , Cy), to be the center pixel of a captured 

image, a linear equation is formed based on the radial alignment constraint (RAC): 

t;l sxtx = Xd. (3.2) 

t - l 
y T4 

With n such equations, an over-determined linear system can be established to solve for the 

unknowns, sx, tx, ty, Tl ... T6. The third row of the rotation matrix, T7· .. Tg, can be computed as 

the cross product of the first two rows. With the same n feature points, the focal length, f, and 

the last element of the translation vector, t z , can be estimated from another over-determined 

system of n equations of the following form: 

(3.3) 
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where dx and dy are the distances between adjacent pixels in the x and y directions. The estimates 

of f and tz and an assumption of zero for the radial distortion coefficient, kiT), then serve as an 

initial estimate for a Levenberg-Marquardt algorithm. Finally, all parameters derived from linear 

estimation and the image center, (cx , cy), are optimized iteratively by the Levenberg-Marquardt 

algorithm to refine the solution. 

HeikkiUi's algorithm is based on the direct linear transformation (DLT) method [68], which 

is a general form of Tsai's algorithm. Ignoring nonlinear distortions, a linear projective transfor-

mation, P, maps 3D world points, (Xw, Yw, Zw), to their corresponding pixel points, (xp, yp), up 

to a scale, p,: 

where P = K [R t], Rand tare extrinsic parameters, and K = o 

o 

(3.4) 

fD deter-y c y 

o 1 

mines the coordinate transformation between distorted image coordinates, (Xd, Yd), and pixel 

coordinates, (xp , Yp), as shown in Table 3-1. Given n» 5 feature points, P is obtained from an 

over-determined system of n pairs of the following equation by eliminating p,: 

[

Xw Yw Zw 1 0 

o 0 0 0 Xw 

o 0 o -xpXw -xpYw -xpZw -xp 1 
1 -YpXw -YpYw -YpZw -YP 

=0, (3.5) 

P3 

where Pi(i = 1,2,3) is the ith row vector of P. Setting f to an initial estimate, Sx to 1, and 

(cx , cy) to the center pixel of an image, the extrinsic parameters Rand tare computed by 

(3.6) 

where Pi(i = 1,2,3,4) is the ith column vector of P. The Levenberg-Marquardt algorithm is 

then applied to find exact values of the intrinsic parameters including the distortion coefficients, 

k(H) k(H) (H) (H) 
l , 2 ,Pl ,P2 . 
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In Zhang's calibration process, a planar calibration pattern is presented to a camera in 

various orientations and is always assumed to be on Zw = 0 of a changing world coordinate 

system. The calibration algorithm starts similarly to the DLT method except that the projective 

transformation, P, in Eq. (3.4) now degenerates to a 3 x 3 homography, H: 

(3.7) 

where H = K [rI r2 t], K = 0 f3 Cy determines the coordinate transformation between 

o 0 1 

distorted image coordinates, (Xd, Yd), and pixel coordinates, (xp, Yp), as shown in Table 3-1, and 

ri(i = 1,2,3) is the ith column vector of the rotation matrix, R. Henee, for each view of the 

pattern, a homography, H, is estimated from n feature points on the pattern as in Eq. (3.5) and 

refined by the Levenberg-Marquardt algorithm. Based on the constraint that the image of the 

two circular points must lie on the image of the absolute conic, the proof of which can be found 

elsewhere [68], a linear equation pair is formed as follows: 

(3.8) 

where Vu ~ [ ""hj, h"hj , + ""hjl h"hj2 "'3hjl + ""h,3 h"h'2 + h"h'3 h"h'3] T, 

[hil hi2 hi3]T is the ith column vector of a homography, H, and b = [b l1 bl2 b22 bl3 b23 b33f is a 6D 

vector representation of the symmetric matrix 

bl1 b12 b13 
1 

a 2 

B = À K-T K-l = À bl2 b22 b23 =À -~ 
a 2(3 

b13 b23 b33 
Cl(Y-Cx(3 

a 2(3 

-~ 
a 2 f3 

L 1 
a 2(32 + (32 

"((cy"(-cx (3) Cy 
- a 2(32 - [fI 

Cy "(-cx f3 
a 2 f3 

_ "(( Cy"(-cx(3) _ !:Ji.. 
a 2(32 (32 

(Cy "(-Cxf3)2 + c;i + 1 
a 2(32 [fI 

(3.9) 

where À is an arbitrary scale factor. Given m 2:: 3 views of the pattern, i.e., the m homographies 

obtained above, an over-determined system of m pairs of the above equation can be established 

to obtain the vector, b, from which the intrinsic parameters can be extracted. The extrinsic 
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parameters with respect to each orientation of the pattern plane are computed by Eq. (3.6). 

Finally, the Levenberg-Marquardt algorithm optimizes the result while taking into account the 

d· 1 d· t t· k(Z) k(Z) ra la lS or IOns, l , 2 . 

3.2.3 Evaluation of calibration accuracy 

In the experiments, a camera is calibrated with Tsai, Heikkilii and Zhang's methods us-

ing a set of training data, and then validated with a neutral test set covering a wide distance 

range. 2 Sorne well developed, freely available calibration toolboxes are used as implementations 

of the three algorithms in order to achieve a fair comparison: Reg Willson's code [164] for Tsai's 

algorithm, Janne Heikkilii's toolbox [70] for Heikkilii's algorithm, and Jean-Yves Bouguet's tool­

box [18] for Zhang's algorithm. For evaluating both training and testing accuracies, four of 

the most frequently used methods [132] were adopted based on their applicability to the single 

camera calibration case. 

The error of distorted pixel coordinates, Ed, is measured by computing the discrepancy 

between estimated pixel coordinates, (Xpi' Ypi), projected from measured world coordinat es by 

the camera model with lens distortions, and observed pixel coordinates, (Xpi, Ypi), obtained from 

captured images: 

(3.10) 

where n is the number of feature points. 

The error of undistorted pixel coordinates, Eu, is measured by computing the discrepancy 

between estimated undistorted pixel coordinates, (Xupi, Yupi), projected from measured world 

coordinat es without lens distortions, and observed undistorted pixel coordinates, (XUPi, Yupi), 

computed by removing distortions from observed pixel coordinates: 

(3.11) 

2 In real data experiments, training sets are acquired separately for each of the three methods 
according to their varying requirements. 
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Figure 3-1: Back-projection of a pixel to the object surface. The back-projected area on the 
object surface is represented by a pixel rectangle at the center depth. The error between the 
back-projected area and the pixel rectangle is measured to assess the calibration accuracy. Based 
on Fig. 6 of Weng et al. 1992. [163] 

The distance with respect to· the optical ray, Eo, is measured between 3D points in camera 

coordinates, (Xci, Yci , Zci) , and the optical rays back-projected from the corresponding undis­

torted image points on the camera image plane, (Xui, Yui). For Tsai and Heikkila's models, Eo is 

expressed as: 

and for Zhang's model, 

EàZ
) = ~ 2:~=1 V(XCi - Xui' t)2 + (Yci - Yui' t)2 + (Zci - t)2, 

t = (XciXui + YciYui + Zci) /(X;i + Y;i + 1) . 

(3.12) 

(3.13) 

These three measurements are intuitive but sensitive to digital image resolution, camera field 

of view, and object-to-camera distance. The normalized calibration error (NCE), proposed by 

Weng et al. [163], overcomes this sensitivity by normalizing the discrepancy between estimated 

and observed 3D points with respect to the area each back-projected pixel covers at a given 

distance from the camera. (See Fig. 3-1.) The NCE is calculated as follows: 

E = ~ n [ (XCi - Xci) 2 + (}rci - Yci ) 2] ~ 
n n L Z2. (a- 2 + (3-2) /12 ' 

t=l Ct 

(3.14) 
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where (XCi' -Vci , Zci) represent 3D camera coordinates as estimated by back-projection from 

2D pixel coordinates to depth Zci and (Xci, Y ci , Zci) represent observed 3D camera coordinates 

computed from measured 3D world coordinates. In Tsai and Heikkilii's methods, the values of 

ct and (3 can be calculated using Eq. (3.1). AH four evaluation methods described in Sect. 3.2.3 

were used and the results demonstrated very similar trends. Due to limited space, only the 

normalized calibration error (NCE) is plotted. 

3.3 Evaluation on simulated data 

The simulated camera had the foHowing properties, chosen based on empirical data: center­

to-center distances between adjacent pixels in x and y directions of dx = 1/ Dx = 0.016 mm 

and dy = 1/ Dy = 0.010 mm, an image scale factor Sx = 1.5, and an effective focal length 

f = 8 mm, resulting in pixel focal lengths of ct = 750 pixels and (3 = 800 pixels. A second­

order radial distortion was simulated with the coefficients klZ) = -0.32 mm-2 and k~Z) = 0 in 

Zhang's model, or equivalently, k~T) = k~H) = 0.005709 mm-2 and k~H) = p~H) = p~H) = 0 in 

Tsai and Heikkilii's models. The skew parameter, "i, was set to o. The image resolution was 

512 x 512 pixels with the image center at (cx , cy) = (264, 280) pixels. 

The training points of aH three methods, covering 30 - 55 cm from the simulated camera, 

were obtained from the grid corners of a 20 x 20 cm simulated checkerboard patterns, placed at 

16 different orientations in front of the virtual camera at a 45° angle with respect to the image 

plane.3 The number of grid corners contained in a simulated pattern varies according to the 

requirements of each experiment. 

The 4108 test points, covering a distance of 10 - 300 cm, were generated by sampling a 

3 X 3 x 3 m cubic space at intervals of 10 cm in aH three dimensions and keeping only points 

visible to a camera located at the center of one face of the cube. 

3 The number of orientations and the angle of the pattern plane were chosen based on 
Zhang [171], in which the best performance was reported with more than 10 orientations and an 
angle near 45°. 
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Figure 3-2: Effect of pixel coordinate noise on calibration accuracy. Top row: training errors 
vs. the amount of Gaussian noise (zero mean, cr of 0.02 - 1.0 pix) added to training data pixel 
coordinates. Bottom row: testing errors vs. the amount of noise during training. No noise added 
to test data. Note that zero testing error was achieved when adding zero noise. 

3.3.1 Effect of noise on calibration accuracy 

A total of 16 views of a 10 x 10 checkerboard pattern were simulated to generate 1600 

training points. Different levels of Gaussian noise were added to study its effect on calibration 

accuracy. 

Calibration accuracy vs. pixel coordinate noise. Fig. 3-2 shows the decrease in 

training and testing accuracies of all tested methods as pixel noise increases. Zhang's algorithm 

was found to be more sensitive to pixel coordinate noise and hence more dependent on high-

accuracy calibration feature detection than either Tsai or Heikkilii's. 

Calibration accuracy vs. world coordinate noise. Fig. 3-3 illustrates the expected 

decrease of calibration accuracy as world coordinate noise increases. Zhang's calibration error 

was, again, the highest for the same noise range. While these results might at first seem dis-

couraging for Zhang's method, it is important to note that unlike the other algorithms, which 
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Figure 3-3: Effect of world coordinate noise on calibration accuracy. Top row: training errors 
vs. the amount of Gaussian noise (zero mean, (J of 0.2 - 5.0 mm) added to 3D world coordinates 
of Tsai's and Heikkilii's training data and 2D world coordinates of Zhang's training data, as 
Zhang's algorithm assumes all feature points fall on the Zw = 0 plane. Bottom row: testing 
errors vs. the amount of noise during training. No noise added to test data. 

require absolute coordinate measurement with respect to a fixed world reference, Zhang's relative 

world coordinate measurement allows for a minimal equipment requirement, which, in practice, 

can simply be a laser printed checkerboard pattern on a letter sized sheet. As a result, most 

setups can easily achieve measurement noise levels of (J < 0.5 mm, obtaining a reasonably high 

calibration accuracy, as shown in the last column of Fig. 3-3. In contrast, Tsai and Heikkilii's 

world coordinate measurements are inherently prone to higher measurement error; the fact that 

their testing errors increased significantly when (J > 2 mm poses a strong constraint on real-world 

setups for accurate measurement. Although largely similar, Heikkilii's algorithm performed bet­

ter than Tsai's at higher noise level, but slightly worse at lower noise levels. This may be due 

to Heikkilii's use of fixed empirical values to initialize the linear estimation of intrinsic parame­

ters, which, while more robust to measurement errors, failed to exploit the potential of accurate 

measurements. 

49 



Tsai's training accuracy 
3.5,-~-~-~-~-----, 

e 3 
Ci; 
c: 2.5 

.Q 
]! 2 
.0 

~ 1.5 

~ 1 
.!::! 

~ 0.5 R-H -1-+ -l--{ ---{- ---{- ---{- ----r 
g 0 

-0.50 100 200 300 400 500 600 
number of points per pattern 

Tsai's tasting accuracy 
3.5,-~-~-~-~-----, 

e 3 
Ci; 
c: 2.5 
o 
'la 2 
i; 
~ 1.5 

~ 1 
.!::! 
~ 0.5 

g 0 

-0.50 '00 200 300 400 500 600 
numbar of points par pattarn 

Haikkila's training accuracy 
3.5,----,---~---~___, 

g 3 
al 
c: 2.5 
.Q 
ë 2 
,Q 

ri '.5 

~ lIT 1 o':rrI -l-I--}- -I---}---I----I-- ---l--- --I 
-0.50 '00 200 300 400 500 600 

number of points per pattern 

Haikkila's tasting accuracy 
3.5,----,---~---~___, 

-0.50 100 200 300 400 500 600 
number of points per pattarn 

Zhang's training accuracy 
3.5~--~-~-~-----, 

g 3 
al ' 

.§ 2.5 l 
~ 2 T 
~ 1.5 1\ 
~ 1 
.!::! 
~ 0.5 

g a 

H--l--__ _ f }--I----{-----I-----I 

-0.50 '00 200 300 400 500 600 

e 3':r Ci; , 

.g 2.5 l 

number of points per pattern 

Zhang's tasting accuracy 

e 2 \ 
,Q l ri 1.5 \ 

~ , 'r--l-cI __ 
.~ 'I---1---1---_:1 ____ 1 ___ --I 

~ 0.5 

g 0 

-0.50 '00 200 300 400 500 600 
number of points per pattern 

Figure 3-4: Training (top row) and testing (bottorn row) errors vs. the nurnber of training points 
per pattern. Training data generated from 16 views of checkerboard patterns containing between 
3 x 3 and 24 x 24 grid corners. Gaussian noise of zero mean, (J" = 0.1 pix added to training data 
pixel coordinates. No noise added to test data. 

3.3.2 Effect of training data quantity on accuracy 

As the effect of the number of orientations and the angle of the pattern plane on calibration 

accuracy has been studied by Zhang [171],4 this section explores the effect of the number of 

feature points per pattern on calibration accuracy. In the absence of noise, a small number of 

training points can yield 100% accuracy. As sorne existing corner detection algorithms daim an 

accuracy of 0.1 pixels, Gaussian noise of zero mean and (J" = 0.1 pixels was added to the pixel 

coordinates of training data. The average results of 10 trials are illustrated in Fig. 3-4. 

Since each checkerboard pattern was viewed at 16 different orientations, a pattern of 3 x 3 

grid corners could pro duce 144 training points, sufficient for Tsai's algorithm to achieve rea­

sonable accuracy; however, the calibration error stabilized further when more than 256 training 

4 See the foot note on page 47. 
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points were used. Although more robust with limited training data quantities, Heikkila's results 

demonstrated a slightly inferior performance to Tsai's, which might be explained by the low 

noise level in training data as suggested in the previous section. Zhang's calibration error was 

again higher than those of the other two methods with small training sets, as the former is more 

sensitive to noise. However, increasing the number of training points per pattern alleviates this 

sensitivity, resulting in similar accuracies to Tsai's algorithm when employing more than 200 

training points per pattern. As noticeable in Fig. 3-4, testing errors exhibit higher standard 

deviation with Tsai and Heikkila's algorithms than with Zhang's. This is likely due to the fact 

that the former two treated each feature point independently whereas the latter took advan-

tage of the copI anar constraint between feature points of each view, thus compensating for the 

inconsistencies of noisy training points. 

3.3.3 Effect of distortion model on calibration accuracy 

Radial and decentering distortions [143] are the most common distortions modeled in camera 

calibration and can be expressed as follows: 

where ki(i 

Jx~ + y?;. 

(3.15) 

1,2, ... ) and Pl, P2 are radial and decentering distortion coefficients, and r 

In this experiment, five types of cameras were simulated, each corresponding to a different 

distortion characteristic that consists of the first n low-order radial distortion terms with or 

without the two decentering terms, Rn (n = 1, 2) and RnD2 (n = 1, 2, 3). The simulated 

coefficients, listed in Table 3-2, were chosen from empirical data. AlI the remaining camera 

parameters were the same as previously described. Each of the five simulated cameras was 

calibrated by Zhang's algorithm combined, in turn, with each of the five distortion models, Rn 

(n = 1, 2) and RnD2 (n = 1, 2, 3), with skew parameter set to zero. 

Fig. 3-5 shows, for each simulated camera, the calibration error versus the distortion models 

used for calibration on a large low-noise training set. The results indicate that high calibration 
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Figure 3-5: Training (left column) and testing (right column) errors vs. distortion model used in 
training. Trained from 16 views of 20 x 20 pattern with Gaussian noise of zero mean, (J = 0.1 pix 
added to pixel coordinates. No noise added to test data. Logarithmic scale used for y axis. 
Measured with Zhang's algorithm. 
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Table 3-2· Distortion coefficients of simulated cameras 
Distortion Coefficients RI R2 RID2 R2D2 R3D2 

kl (mm-2) -0.3 -0.3 -0.3 -0.3 -0.3 
k2 (mm-4 ) 0 0.15 0 0.15 0.15 
k3 (mm-6 ) 0 0 0 0 0.1 
Pl (mm-2

) 0 0 0.02 0.02 0.02 
P2 (mm-2

) 0 0 0.015 0.015 0.015 

Table 3-3: Simulated camera R2D2 and calibration results using different distortion models. 
Camera Simulated Distortion Models U sed in Calibration 

Parameters R2D2 RI R2 RID2 R2D2 R3D2 
0: (pix) 750 754.36 754.32 749.46 749.98 749.98 
(3 (pix) 800 802.98 802.88 799.51 799.98 799.98 
Cx (pix) 264 220.06 224.67 263.80 263.82 263.82 
c y (pix) 280 218.50 217.23 279.94 279.95 279.95 

kl (mm-2 ) -0.3 -0.1422 -0.1019 -0.2812 -0.3005 -0.3001 
k2 (mm-4 ) 0.15 - -0.1460 - 0.1538 0.1472 
k3 (mm-6) 0 - - - - 0.03055 
Pl (mm-2 ) 0.02 - - 0.01995 0.01996 0.01996 
P2 (mm-2 ) 0.015 - - 0.01497 0.01497 0.01497 

Normalized training 188.25 166.44 0.6179 0.5699 0.5701 
Calib. Error testing 196.14 174.20 0.6537 0.5102 0.5113 

accuracy is obtained provided that the distortion model assumed in calibration includes aIl the 

distortion components of the camera, although the sixth order radial term do es not benefit 

accuracy. Moreover, adding higher or der radial terms affects the estimation of lower order terms, 

as can be observed in Table 3-3. This correlation between radial distortion components may, 

unfortunately, degrade calibration performance when only a limited amount of noisy training data 

is available. Fig. 3-6 illustrates the same experiment using noisy training data. The addition of 

higher order radial terms produced a higher error, especially with small training sets, as shown 

in the left column. Nonetheless, including the two decentering distortion components generally 

guaranteed a high calibration accuracy for a camera with unknown lens distortions. 

3.4 Evaluation on real data 

The real data experiments were carried out in our Shared Reality Environment (SRE), a 

laboratory space equipped with three vertical projection screens, each approximately 2.3 x 1.8 m 
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Figure 3-6: Testing errors vs. distortion model. Trained from 16 views of 10 x 10 (left column) 
and 20 x 20 (right column) patterns with Gaussian noise of zero mean, (j = 0.5 pix or 0.5 mm 
added to pixel and world coordinates. No noise added to test data. Logarithmicscale used for 
y axis. Measured with Zhang's algorithm. 

54 



1 
camera 

Figure 3-7: A node of the Shared Reality Environment. 

and raised about 0.7 m ab ove the ground, semi-enclosing a space of 5.4 m2 as shown in Fig. 3-7. A 

3Com V.S. Robotics BigPicture Camera with fixed focallength was placed along one screen at a 

height of 0.5 m, facing the other two adjacent screens. The image resolution was 640 x 480 pixels. 

To investigate the influence of experimental setup, two configurations, the casual setup and the 

elaborate setup, were studied. 

3.4.1 Casual setup 

The training data for Tsai and Heikkilii's calibration was obtained from 600 gr id corners of 

checkerboard patterns of 8 x 8 cm squares, projected onto the two visible screens, as in Fig. 3-

8(a).5 Assuming that the projectors were accurately calibrated and the patterns were projected 

as rectangular shapes, the 3D world coordinates of the four pattern corners on each screen were 

measured according to a fixed world reference system referred to as SRE coordinates, and the 

remaining points were interpolated. Due to the calibration error between projectors and screens, 

the limited image resolution of the projected pattern, and the non-rigid material of the screens, 

verifying with a few interior points indicated an average interpolation error of 4.1 mm, equivalent 

to approximately 0.28% of the pattern size. This data set covered a distance of 200 - 325 cm 

from the camera and will be referred to as Screen Data in the text below. 

5 Due to the difficulty of achieving 3D measurements of low errors on an arbitrarily positioned 
small checkerboard pattern, this experiment did not use 16 views of a hand-held checkerboard 
pattern for Tsai and Heikkilii's training data collection as in the simulation experiments, Sect. 3.3. 
Instead, large checkerboard patterns projected on big screens were used, which is likely to produce 
highly accurate measurements to the advantage of Tsai and Heikkilii's calibration. 
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(a) (b) (c) 

Figure 3-8: A demonstration of casual setup for generating (a) Tsai and Heikkila's training data, 
(b) Zhang's training data, and (c) test data. 

The training data for Zhang's calibration was generated by printing checkerboard patterns of 

8 x 6, 12 x 9, 15 x 14, and 20 x 20 grid corners onto letter sized sheets. Each was attached to a rigid 

card6 and viewed at 16 different orientations at roughly 45° with respect to the camera image 

plane, as explained in Sect. 3.3 and demonstrated in Fig. 3-8(b). This produced four data sets of 

768 - 6400 points. The 2D relative world coordinates of these points were measured with respect 

to one of the four corners of each pattern, i.e. the origin of a changing world reference system. 

The four corners were measured first and the interior points interpolated due to the regularity 

of the printed pattern. Since the ruler was accurate only to 1mm, a maximum measurement 

error of 0.5mm was assumed, approximately 0.29% of the pattern size. These four data sets each 

covered a distance of 25 - 55 cm from the camera and will be referred to as Board48, Board108, 

Board210, and Board400 Data respectively. 

The test set for all three algorithms was created by moving a wooden board bearing a 

100 x 85 cm printed pattern of 17 x 15 checks along a specially constructed rail at different 

locations within the SRE space, as pictured in Fig. 3-8 ( c), to provide 1872 accurately measured 

points in the SRE coordinates. This data set covered a distance of 100 - 265 cm and will be 

referred to as Rail Data. 

6 According to Zhang's study [171], the effect of systematic non-planarity can be ignored in 
our experiments. 
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Figure 3-9: Training (top row) and testing (bottom row) errors vs. the number of training 
points in casual setup. Admittedly, more training points were used for Zhang's calibration than 
for Tsai and Heikkilii's. However, as indicated by the simulation results in Fig. 3-4, there was no 
accuracy improvement in Tsai and Heikkilii's results beyong 256 training samples. This is also 
evident in the present figure and Fig. 3-14 of the elaborate setup. 

Effect of training data quantity. Tsai and Heikkilii's algorithms were trained using 

between 50 and 600 points, selected from Screen Data to be evenly distributed across the screens, 

and then tested on Rail Data. The average results of 10 trials for each quantity of training data are 

shown in Fig. 3-9. With Tsai's algorithm, no significant improvements in testing accuracy were 

observed beyond 300 training samples. Similarly to the simulation results, Heikkilii's algorithm 

produced better results than Tsai's with small training data quantities. The overalliower testing 

errors of Heikkilii's method compared to Tsai's suggested the presence of high noise in the training 

data, as discussed in Sect. 3.3.1. 

Zhang's algorithm was trained separately on Board48, Board108, Board210, and Board400 

Data, and tested on Rail Data. As Zhang's extrinsic parameters were calibrated with respect 

to a corner point of the calibration pattern, whose position in the SRE coordinates varied over 

different views, while the Rail Data were measured in the fixed SRE coordinates, the extrinsic 
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Table 3-4: The best calibration results obtained in casual setup. 

Camera Tsai 
Parameters (trained on Screen) 

Cx = 338.56 pix 
cy = 240.34 pix 
f = 6.9333 mm 

Intrinsic Sx = 1.5575 
dx = 0.016 mm (given) 
dy = 0.010 mm (given) 

Parameters kiT) = 0.007121 mm-2 

-1982.9 
Extrinsic t = -1455.5 mm 

2324.9 
153.18° • 

Parameters ro = 19.44° 
91.25° 

HeikkiIa 
(trained on Screen) 
Cx = 319.55 pix 
cy = 263.12 pix 
f = 6.7617 mm 
Sx = 1.5504 
Dx = 62.5 mm- 1 (given) 
Dy = 100.0 mm-1 (given) 
kiH ) = 0.006477 mm-2 

k~H) = 0.000333 mm-4 

PlH ) = 0.000627 mm-2 

p~H) = 0.001838 mm-2 

-1910.2 
t = -1535.9 mm 

2256.4 
154.73° . 

ro = 17.69° 

Zhang 
(trained on Board21O 
with extrinsic recalib.) 
Cx = 332.39 pix 
cy = 268.01 pix 
a = 675.89 pix 
/3 = 695.15 pix 
'Y = 0.000533 

kiZ ) = -0.3230 mm-2 

kf) = 0.08667 mm-4 

-1963.5 
t = -1560.0 mm 

2269.7 
153.07° • 

ro = 17.33° 
91.45° 

parameters needed to be recalibrated to the same coordinate system. The training data for this 

extrinsic recalibration was generated by placing a printed 12 x 15 checkerboard pattern at a 

location along the rail to pro duce feature points measured in SRE coordinates. After extrinsic 

recalibration, the testing accuracies on Rail Data were obtained, as shown in Fig. 3-9. Both 

training and testing accuracies increased with the number of training data per pattern with no 

significant improvement beyond 100 samples per pattern, which is consistent with the simulations. 

Recalling that the test data (100 - 265 cm from the camera) was obtained from a much further 

distance range than the training data (25 - 55 cm), one might expect large errors in the test 

results. However, despite this large discrepancy, Zhang's algorithm achieved impressive testing 

accuracies. This suggests that the parameters calibrated by Zhang's algorithm are scalable to 

test data over a larger range than represented in the training data. 

Table 3-4 lists the best calibration results of each algorithm from Fig. 3-9, with the corre-

sponding accuracy shown in Table 3-6, casual setup. Under our experimental conditions with the 
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interpolation measurement errors as described previously, Zhang's algorithm outperformed Tsai 

and Heikkila's by approximately four and three times respectively, under all evaluation measures. 

Effect of distortion model. The 3Com U .S. Robotics BigPicture Camera exhibits obvi-

ous lens distortions visible in the images of Fig. 3-8. The effect of distortion model on calibration 

accuracy was studied. 

Skewness Although included in a linear transformation and not part of the actual distortion 

model, skewness should nevertheless be considered as a type of distortion. In Zhang's method, 

the skewness was estimated, as expressed by '"'( in Table 3-4, but was essentially zero. For 

comparison, camera parameters were calibrated by Zhang's algorithm on Board210 Data with '"'( 

either estimated or fixed at zero. The calibration accuracies are compared in Table 3-5, showing 

no improvement when estimating '"'(. This result can also be seen in Fig. 3-10. 

Lens distortion Zhang's algorithm was integrated separately with each of the. five distortion 

models described in Sect. 3.3.3 to calibrate camera parameters on Board21O Data. Calibration 

accuracies are displayed in Fig. 3-11. While all models achieved almost the same training 

Table 3-5: Comparing calibration accuracies assuming skewness '"'( =J 0 and '"'( = O. 
Accuracy Training Accuracy Testing Accuracy 
Evaluation '"'(=JO '"'(=0 '"'(=JO '"'(=0 
2D distorted error (pix) 0.2776 0.2782 1.0028 0.8959 
2D undistorted error (pix) 0.2898 0.2905 1.0470 0.9395 
distance from optical ray (mm) 0.1648 0.1653 2.7689 2.5153 
Normalized Calibration Error 0.7099 0.7118 2.5602 2.3076 

(a) (b) (c) (d) 

Figure 3-10: Removing distortions from (a) original image using Zhang's model assuming (b) 
skewness '"'( =J 0 and (c) '"'( = 0 with (d) their difference, i.e. I(b) - (c)l, which is barely visible. 
(White denotes zero difference.) 
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Figure 3-11: Training (left) and testing (right) errors vs. distortion model used in calibration. 
Trained from 16 views of a 15 x 14 checkerboard pattern. Measured with Zhang's algorithm. 
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Figure 3-12: Removing lens distortions from (a) original image using distortion model (b) RI, 
(c) R2, (d) R1D2, (e) R2D2 and (f) R3D2. The differences of (b)(c)(d) and (e) with respect to 
(f) are shown in (g)(h)(i) and (j), respectively. (White denotes zero difference.) 
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accuracy, those considering decentering distortions performed marginally better in testing. As 

shown in Fig. 3-12, aH five models successfuHy recovered the original image from distortions with 

litt le difference in the results. 

3.4.2 Elaborate setup 

To investigate how much improvement can be realized by increasing the measurement ac­

curacy of training data and by reducing the discrepancy of distance coverage between training 

and test sets, the rail structure for obtaining the test data in Sect. 3.4.1 was used to generate a 

total of 3810 accurately measured feature points in an attempt to coyer the volume of the cam­

era's working space within the SRE. From this set, 50 - 2000 evenly distributed points, covering 

85 - 245 cm from the camera, were selected as Tsai and Heikkilii's training data and the re-

maining points, covering the same range, were used as a neutral test set for aH three algorithms, 

as demonstrated in Fig. 3-13(a). Zhang's training data was generated in the same manner as 

described in Sect. 3.4.1 but replacing the letter sized cardboard pattern with the 100 x 85 cm 

wooden board pattern of the rail structure, producing 16 views of 20 - 255 planar points covering 

95 - 225 cm from the camera, as demonstrated in Fig. 3-13(b). The extrinsic parameters were 

then recalibrated with respect to the SRE coordinates by aligning this wooden board pattern 

with the projection screens at a known location on the rail. 

The training and testing accuracy of aH three algorithms are shown in Fig. 3-14 and Table 3-

6, elaborate setup. Compared to the best results obtained in the casual setup, Tsai and Heikkilii's 

testing errors decreased by approximately 90% and 65% while Zhang's error decreased by only 

(a) (b) 

Figure 3-13: A demonstration of elaborate setup for generating (a) Tsai and Heikkilii's training 
data and test data, (b) Zhang's training data. 
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Figure 3-14: Training (top row) and testing (bottom row) errors vs. the number of training 
points in elabomte setup. 

Table 3-6: Accuracy comparison of Tsai, HeikkiUi and Zhang's calibration algorithms. 
Accuracy Training Accuracy Testing Accuracy 

Setup Evaluation Ts He Zh Ts He Zh 
2D distorted (pix) 0.8843 0.4104 0.2776 3.9206 3.2311 1.0028 

Casual 2D undistorted (pix) 0.9410 0.6677 0.2898 4.0865 3.2949 1.0470 
3D distance (mm) 3.5752 2.4291 0.1648 9.9358 7.7337 2.7689 
Norm. Calib. Err. 2.3150 1.6397 0.7099 10.1184 8.0920 2.5602 
2D distorted (pix) 0.3498 0.3480 0.1816 0.3445 0.3505 0.6301 

Elaborate 2D undistorted (pix) 0.3730 1.0765 0.1907 0.3701 1.1900 0.6856 
3D distance (mm) 0.9456 2.5730 0.4135 0.9244 2.8083 1.6926 
Norm. Calib. Err. 0.9141 2.6484 0.4667 0.9079 2.9267 1.6767 

35% as, understandably, there was essentially no increase in training data accuracy of the latter. 

However, the distance change in training samples from the casual setup (25 - 55 cm) to the 

elabomte setup (95 - 225 cm) yielded a modest improvement in Zhang's results, as the test data 

(85 - 245 cm) was now doser in range to the latter. 

62 



3.5 Conclusion 

An empirical study on camera calibration was carried out to investigate how such factors as 

noise level, training data quantity, and distortion model affect calibration accuracy. Three of the 

most popular and representative methods, developed by Tsai, HeikkiHi and Zhang, were chosen 

for experimentation on both simulated and real data. Four commonly used criteria were applied 

to evaluate accuracy on separate training and test sets. 

Results indicated that the conventional world-reference based approach, exemplified by 

Tsai's method,can achieve high accuracy when trained on data of low measurement error. 

However, this requires accurate 3D measurement, typically involving hundreds of samples with 

respect to a fixed reference system, which is prone to noise, and, as the experiments on actual 

data confirmed, yields a disappointing NeE of 10.1. After a careful and time-consuming setup 

and measurement process, the NeE was limited to approximately 0.9, indicating that the back­

projected 3D error due to the camera parameters was lower, on average, than the error introduced 

by quantizing real world 3D coordinat es to the level of individual image pixels [163J. However, 

the effort required to achieve this level of accuracy may well be inordinate for most researchers. 

Heikkila,'s results demonstrated a similar trend despite its slightly greater robustness for small 

training data quantities and large measurement errors. 

In contrast, the planar calibration approach, exemplified by Zhang's method, makes efficient 

use of world information by taking into account the planar constraint on the calibration pattern, 

and requires neither a laborious measuring task nor specialized equipment. With a hand-held 

pattern placed approximately 40cm from the camera, an NeE of around 2.6 was obtained, 

suggesting an acceptable calibration in which the residual error was almost negligible compared 

to the pixel quantization error discussed above [163J. Training with a pattern placed closer to 

the location of the test data yielded improved results, with NeE falling to 1.7. 

Although the comparison between the three methods required that the extrinsic parameters 

obtained by Zhang's method be recalibrated with respect to the fixed SRE coordinates, this 

pro cess may not be relevant for stereo or multi-camera calibration, in which a camera reference 
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system can be used instead of a world reference system. Moreover, the sensitivity of Zhang's 

algorithm to noise may be overcome by adding training points, simply by printing a checkerboard 

pattern containing more grid corners. In summary, these results demonstrate the flexibility of 

the multi-view planar approach and its suitability for calibration in dynamic environments. 

The study also included a detailed comparison of distortion models to determine the relative 

importance of various coefficients given unknown lens distortion. The zero-skewness assumption 

made in many methods was confirmed as reasonable, at least for the cameras of average quality 

that were tested, and the second or der term was found sufficient for modeling radial distor­

tion [132]. Estimating the fourth order radial term may be desirable at low noise levels, although 

including the sixth order term can degrade calibration performance for small, noisy training sets. 

For a camera with unknown lens distortion, adding decentering components, in general, increases 

the likelihood of accurate calibration. 

For calibrating the cameras of the proposed segmentation system, Zhang's algorithm was 

used, with a distortion model of two radial distortion terms and two tangential distortion terms, 

R2D2. 

64 



CHAPT ER 4 
Disparity Contours 

As noted in Sect. 2.3.2, background subtraction is a simple and efficient method for segment-

ing foreground objects from a scene, provided that an accurate background model is available. 

Unfortunately, aU background models developed so far [165, 145, 155, 118, 130, 64, 42] focus on 

the texture of the background, which impairs their adaptability to rapid changes in background 

texture and illumination. 

This thesis presents a background subtraction approach based on the geometry instead of 

the texture of a background. With the help of a stereo camera pair, the background geometry is 

modeled by a background disparity map. Assuming that a given scene (where foreground objects 

may exist) contains only the background (background hypothesis), a mismatch between the scene 

and the background geometry model (background h ypothesis falsification) can be expected to 

give cIues to the location of foreground object~. It was discovered in the course of the study 

that background hypothesis falsification actuaUy results in object boundary contours carrying 

foreground disparity information (disparity contours) rather than object areas. Such contours 

possess a number of features that can be exploited for object segmentation in a dynamically 

textured environment. 

This chapter explains the idea of background hypothesis falsification, the resulting disparity 

contours, and the construction of background disparity map. 

4.1 Background hypothesis falsification (BHF) 

The 3D layout of a background scene as observed by a stereo camera pair can be represented 

by a background disparity map (BDM) that describes the relative dis placement , or disparity, 

of pixels corresponding to the same background image point in each camera view. Since the 

two images have been rectified [60] during preprocessing, as described in Appendix A, pixels 

corresponding to the same scene point s differ only in x-coordinate, appearing at (xL(s), y(s)) 
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in VL, the left view, and at (xR(s) ,y(s)) in VR, the right. The difference 

(4.1) 

which increases as distance to the camera decreases, is referred to as the background disparity at 

s. Thus, the BDM is defined to be the set 

BDM = {(xL(s) ,xR(s) ,y(s))}, ( 4.2) 

where s ranges over all background scene points visible to either camera and in the field of view of 

both. As the depth of a visible background point can be easily calculated from the disparity [157], 

the BDM actually encodes the 3D geometry of the background. Based on the observation that 

the background geometry is usually more stable over time than texture and illumination, the 

BDM can be useful as a valid geometric model over a long time even in the presence of lighting 

and texture change. This provides the basis for the following background hypothesis falsification. 

Given the BDM for two cameras, each new pair of captured images are hypothesized to 

be of the background and a view difference map (VDM) is computed based on the stored cor­

respondences, using a block-matching technique based on sum of absolute differences (SAD) in 

Eq. (2.2): 

u,v 

A pair of difference images, DL and DR' are constructed from the VDM for the points visible in 

the left and right views, as shown in Fig. 4-1. If the images are well synchronized, the difference 

cancels background texture, making the method applicable to dynamically textured scenes. 

Assuming Lambertian reflectance or isotropie illumination, ideally DL(XL(S) ,y(s)) = 0 = 

DR(XR(S) ,y(s)) where a scene point s is truly part of the background, and yields a higher value 

if at least one of the pixels V L(XL, y) and V R(XR, y) belongs to a foreground object. As illustrated 

in Fig. 4-2, suppose (aL' aR , y), (bL, bR' y), (CL' CR' y) and (dL, dR , y) represent four entries on the 

Y th scanline in the BDM. At object boundaries, segments [(aL' y) , (bL, y)] and [(CL' y) ,(dL, y)] in 
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(a) (b) 

(c) (d) 

Figure 4-1: View differences under background hypothesis. Original (a) left view VI,. and (b) right 
view VR after image distortion removal and rectification. Corresponding projection (c) DL and 
(d) DR of computed view difference map. Note that high responses occur both at object bound­
aries and within objects of non-uniform textures. 

a b background C d 

Figure 4-2: Background hypothesis falsification. Mismatch occurs both at object boundaries 
and interiors. 

the left image are mismatched against segments [(a R , y), (bR, y)] and [(CR' y) ,(dR , y)] in the right 

image respectively. In object interiors, segment [(bL, y) ,(CL' y)] in the left image is mismatched 

against segment [(bR, y) ,(CR' y)] in the right. Thus, a mismatch value that is significantly different 

from zero leads to the falsification of the hypothesis that the BDM is an accurate local description 
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at the scene point. This is the essence of our geometric background subtraction. We wish to 

segment non-zero areas in the image that represent the foreground objects. 

However, the reality is very different from our original expectation. The result of VDM 

depends on the visual difference between the background and foreground, between different fore-

ground objects, and between internaI points within a foreground object. It has been consistently 

found that mismatches at object boundaries due to foreground-background difference have ex­

ploitably higher intensity and more regular shape than those obtained in object interiors due to 

foreground self-correlation, as visible in Fig. 4-1. This motivates us to consider the possibility of 

extracting object boundary contours instead of object areas. We first examine more closely the 

characteristics of the mismatches at object boundaries. 

4.2 Disparity contours 

At object boundaries, stereo mismatch resulting from background hypothesis falsification 

forms contours, as illustrated in Fig. 4-3. Since disparity increases with proximity to the cameras, 

the width of the contour area in which background is mismatched against the foreground depends 

on how bad the assumption of background was, in terms of depth error. 

Considering, without loss of generality, the left view, it is obvious from Fig. 4-2 that 

left . 
. . 

e+, . e- e+ e-

contour 

right 

object 
boundary 

._._. __ . y 

(4.4) 

Figure 4-3: Disparity contours resulting from background hypothesis falsification. The width of 
the contour equals the relative disparity of an object with respect to the background. 
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according to the BDM, and 

xL(bL) - xR(aR) = dF(bL), (4.5) 

where dF(bL) is the foreground disparity at bL. Subtracting the two equations yields 

(4.6) 

Similarly, 

(4.7) 

This means that the lengths of the segments [(aL' y) ,(bL, y)] and [(CL' y) , (dL, y)] are exactly the 

differential disparities between the foreground and background at the object boundaries, and 

encode depth. Combining such segments vertically in Fig. 4-3 will generate the depth-encoding 

contours of foreground objects, referred to as disparity contours. As'the figure makes clear, the 

resulting contours lie at the left of object boundaries in the left image but at the right in the 

right image. There is thus no ambiguity as to the location of the object boundaries. 

In order to maintain reasonably precise contour widths while aggregating neighborhood 

support during block matching, an 11 x 1 vertical stripe window is employed for Eq. (4.3). 

However, empirical study suggests that this choice of window height is not critical. Any value in 

the range of 7 rv 15 produced similar results. 

4.3 OfHine construction of background disparity map 

The construction of the BDM is a well-understood problem. In the common case that the 

3D geometry of the background is static, the BDM construction can be performed once, offiine. 

This allows for the use of sophisticated stereo mat ching algorithms [116, 131, 93, 149, 99], for 

example, without impact on run time. 

Unfortunately, such algorithms typically assume both well-matched cameras and non-uni­

formly textured backgrounds. The presence of large textureless regions in typical virtual reality 

environments such as that in Fig. 4-4 ( a) (b), and the varying intensity responses of low qual­

ity cameras, can pro duce poor results. Fig. 4-4 ( c) shows the disparity map computed from 

Kolmogorov and Zabih's graph cut algorithm [93] (software provided by Kolmogorov [90]) after 
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(a) (b) 

(c) (d) 

Figure 4-4: Background disparity map (BDM) construction. Original (a) left and (b) right 
background images after image distortion removal and rectification. (c) BDM by graph eut, left 
view. (d) BDM by ray tracing using 3D measurements of the background scene, left view. 

a moderate amount of parameter tuning. Although their method was rated one of the best 

performers among stereo algorithms [137], its result on our background images is disappointing. 

In the current implementation, the 3D geometry of the environment is measured manually 

by a steel tape measure and a ray tracing algorithm [57J is performed to obtain prior knowledge 

of the disparities. Fig. 4-4(d) shows the resulting disparity values from the BDM. 

If more intrusive initialization procedures are acceptable, and the entire background scene 

can be actively illuminated, a structured light calibration method [170J should readily pro duce 

a BDM of comparable quality. 

4.4 Disparity contour extraction and object segmentation 

Disparity contour extraction aims to extract object boundary contours resulting from back-

ground hypothesis falsification while suppressing unwanted structures caused by excessive fore­

ground object internaI texture and camera calibration or synchronization error. Therefore, dis-

parity contour extraction can be further divided into two steps, extraction and noise removal. 

Object segmentation then separates foreground objects from background based on extracted 

70 



contours. Experimentation with three different approaches, based on different strategies in con­

tour extraction, noise removal or segmentation was performed with the results described in the 

following three chapters. 
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CHAPTER 5 
Disparity Multihistogram Segmentation 

The disparity multihistogram approach was the first attempt to segment objects from dy-

namically textured background. It employs a simple strategy in contour extraction and noise 

removal, and separates multiple objects at different depths via a multihistogram scheme. The 

system diagram is shown in Fig. 5-1. 

5.1 Contour extraction 

Contour extraction proceeds through edge detection, edge pairing, noise removal, and con-

tour repair. Let D represent a difference image for either left or right view, as obtained from 

Eq. (4.3), an example of which is shown in Fig. 5-2(b). A simple [-11] edge operator is applied 

to D to generate an edge image, E. 

VDM 
"", 

edge 
pairing 

contour 
extraction 

dispa .. ity 
multihistog .. am 

segmentation 

1 

i 

object 1 

segmentation 1 

Figure 5-1: Disparity multihistogram object segmentation scheme. 
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(c) (d) 
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Figure 5-2: Contour extraction, left view. ( a) Original image after image distortion removal 
and rectification. (b) Projection D of view difference map. (c) Contours C extracted byedge 
detection and pairing. (e) Result C* after median filtering and contour repair. (d) and (f) are 
results in (c) and (e) displayed as binary line segments joining edge pairs. 

Clearly, positive edges are obtained on the left side of a contour ridge in D and negative 

edges on the right side. Therefore, contours can be extracted by locating the corresponding 

positive and negative edge pairs, e+ to the left of e-, on the same scanline. They are required 

to satisfy the following two conditions: 

1. E(e+) / max(E) > TE 1\ E(e-) / min(E) > TE; 
(5.1) 

2. IE(é) + E(e-)I < CE' 

Condition 1 excludes edge points below an empirically determined relative intensity threshold 

TE = 0.06, and condition 2 requires that e+ and e- have similar edge intensity in E. The line 

segments, c, between the paired positive and negative edge points are the desired contours, the 
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lengths ofwhich, Ici, equal the differential disparity, d(c), between an object and the background. 

This information can be stored in a contour image, C, illustrated in Fig. 5-2( c). 

(5.2) 

In order to remove noise in the contour image, a 3 x 3 median filter is applied to C and 

the resulting edges are re-matched to form new contours. Choppy contours resulting from me­

di an filtering are repaired by vertically extending and connecting contour fragments of similar 

disparity. Fig. 5-2(e) shows the final contour image C*. 

5.2 Multihistogram segmentation 

The segmentation scheme is based on two types of histograms: a histogram of disparities, 

and histograms of x coordinat es , also known as the horizontal signatures of an image. The 

pro cess is illustrated in Fig. 5-3. 

First, from contour image C* in Fig. 5-3(a), a disparity histogram is calculated by counting 

the contour segments at each differential disparity value, d(c), as shown in Fig. 5-3(b), top 

left. After ID Gaussian smoothing, disparity ranges containing a single peak are extracted, 

ending at histogram valleys or zeroes. For example, two ranges of interest can be extracted from 

Fig. 5-3(a), one at [1,10] and the other [11,26]. 

Next, for each disparity range of interest, [d~in' d~ax]' a horizontal signature of C* is 

computed counting only line segments {c 1 d~in ::; d(c) ::; d~ax}. In Fig. 5-3(b), top right, the 

first histogram counts line segments of Fig. 5-3( a) with differential disparity in [1,10]; the second, 

those in [11,26]. Each horizontal signature is also smoothed and its peaks located. Small peaks, 

usually due to noise, are discarded. 

Finally, adjacent peaks p; and P;+l in the i th horizontal signature are grouped if 

(5.3) 
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Figure 5-3: Multihistogram segmentation, left view. (a) Contour image in Fig. 5-2(f). (b) Left: 
disparity histogram with disparity ranges of interest indicated by dotted horizontal bars. Right: 
horizontal signatures of corresponding disparity ranges of interest. Peak grouping indicated by 
dotted vertical bars. (c) Object regions resulting from contour grouping, indicated by bounding 
boxes. (d) Objects identified in the scene. 

where 'Tx
i is a horizontal distance threshold. Grouped contours in each disparity range form 

object regions in the contour image, indicated by bounding boxes at the bottom of Fig. 5-3(b). 

Fig, 5-3( c) shows the results overlaid on the original image. 

As the width of a foreground object is inversely proportional to the object-to-camera dis-

tance, which is in turn inversely proportional to the object disparity, the object width is linearly 

proportion al to its disparity. This motivates the determination of the distance threshold T xi for 

contour grouping by its corresponding disparity range, [d~in' d~ax]: 

(5.4) 
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where K, = 3 and ç = 20 are tunable empirical parameters. 

5.3 Experimental results 

The disparity multihistogram segmentation method was tested in the Shared Reality Envi­

ronment. Two cameras with fixed focal length were placed at a height of lm, facing the screens. 

Grayscale image sequences were captured at a resolution of 640 x 480 pixels. 

The method was validated first on an image sequence with static projected background in 

order to exclude interference from camera synchronization error (Fig. 5-4) and then on a sequence 

with moving video background having rapid changes in texture and illumination (Fig. 5-5). The 

quantitative analysis of the segmentation results is shown in Table 7-1 and Fig. 7-10 for the static 

background sequence and in Table 7-2 and Fig. 7-11 for the video background sequence. As 

can be seen, the proposed method is able to extract multiple foreground objects from a complex 

scene despite changing background lighting and texture. The rate of 'correct' segmentation, 

encompassing exact bounding box, noise enlarged bounding box, and partial object bounding 

box, is around 48% and 69% respectively on the two sequences. 

Although the results are encouraging, problems are also evident. A summary of the problems 

with corresponding example frames appears in Table 5-1. First, the multihistogram approach 

to contour grouping is mechanical, without understanding the concept of objects. When an 

object fans in more than one disparity range in the disparity histogram, multiple bounding 

boxes containing partial objects result, as in frames 330 and 340 of Fig. 5-4 and frames 500 and 

655 of Fig. 5-5. This is why the partial object category is dominant, constituting about 2/3 

of the 'correct' segmentation, as shown in Fig. 7-10 and Fig. 7-11. Moreover, the resolution of 

object segmentation depends on the resolution of disparity range extraction from the disparity 

histogram and the peak distribution in the horizontal signatures of a contour image, which causes 

systematic difficulty in separating objects that are close in distance and depth, as in frames 

120", 150 of Fig. 5-4 and frames 850 and 870 of Fig. 5-5. When the disparity difference between 

two objects do es not result in distinct peaks in the disparity histogram, false grouping occurs 

even among objects not close in depth, as seen in frames 290 and 300 of Fig. 5-4 and frames 
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Figure 5-4: Disparity multihistogram segmentation results on a sequence with static background 
and three subjects, 
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Figure 5-5: Disparity multihistogram segmentation results on a sequence with moving video 
background and two subjects. 
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Figure 5-5: Disparity multihistogram segmentation results on a sequence with moving video 
background and two subjects. (cont.) 
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Table 5-1: Result analysis of disparity multihistogram segmentation. 

example frames 
remaining problems static background video background 

Fig. 5-4 Fig. 5-5 

multiple bounding boxes 
330,340 500,655 

containing partial objects 
difficulty in separating objects 120",150 850,870 
close in distance and depth 
disparity difference between objects does 

290, 300 285, 1000 
not cause peaks in disparity histogram 
object coalescing due to background 

90, 280 
noise and partial occlusion 
false edge pairing 455, 940 
object detection or grouping 

130",170 555 
failure due to contour loss 
false grouping due to partial occlusion 350 990, 1265 
object partially out of view 240",320 1010",1035 

285 and 1000 of Fig. 5-5. This explains the high proportion of 'object coalescing', about 42% 

and 21% of the total, in the result. In addition, remaining noise from background and internaI 

object texture, and object self-occlusion, often yield false disparity information and confuse the 

peak distribution of the horizontal signatures. This may enlarge object bounding boxes, create 

false objects, or result in false grouping across multiple objects. These problems are obvious in 

frames 90 and 280 of Fig. 5-4. 

Second, the quality of object segmentation relies on the qualities of contour extraction 

and contour grouping, which are determined by parameter tuning. The contour extraction 

result is sensitive to the choice of the edge threshold TE' The higher the threshold, the more 

unwanted structure is remùved but the more useful contours are lost. Contour grouping is 

controlled by '" and ç, which are difficult to choose in a compromise between grouping partial 

objects and preventing object coalescing. Besides, empirical parameter tuning limits the system's 

adaptability to unknown scenes and is unsuitable for real-life applications. 

Third, the median filter, although not completely successful in eliminating false edge pairing, 

as exemplified by frames 455 and 940 of Fig. 5-5, causes a loss of object boundary contours. This 

information loss either results in occasional failure to detect an object due to insufficient contour 
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evidence, as shown in frames 130",-,170 of Fig. 5-4 where the person on the 1eft is not detected, 

or prevents successful contour grouping as in frame 555 of Fig. 5-5. 

Fourth, even though the proposed method is somewhat able to handle partial occlusion 

between objects in cases such as in frames 200",-,270 of Fig. 5-4 and frames 590 and 815 of 

Fig. 5-5, this should not be seen as a reliable feature. The irregu1ar shape of contour stripes 

within an occlusion area has often confused the segmenter, as in frame 350 of Fig. 5-4 and frames 

990 and 1265 of Fig. 5-5, resu1ting in an overall worse performance (around 40% and 24% correct 

segmentation) compared to the no occlusion cases (51% and 77%). 

Last, when an object moves partially out of view, the contours no longer provide an accurate 

object location, as shown in frames 240",-,320 of Fig. 5-4 and frames 1010",-,1035 of Fig. 5-5. 

These problems motivate the investigation of approaches more focused on objects than the 

statistical properties of a scene. 
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CHAPTER 6 
Contour Grouping Segmentation 

The naive noise removal and contour grouping strategy of the disparity multihistogram 

approach resulted in systematically inaccurate segmentation results. This chapter presents a 

much improved disparity contour based scene segmenter, illustrated in Fig. 6-1. It employs 

a multi-evidential dual-threshold contour filter, statistical noise removal, and heuristic based 

contour grouping to overcome the weaknesses of the previous method and reduce its dependence 

on empirical parameter tuning. 
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Figure 6-1: Contour grouping object segmentation scheme. 
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6.1 Contour extraction 

In order to extract object boundary contours while suppressing unwanted structures caused 

by excessive foreground object internaI texture and camera calibration or synchronization error, 

a dual-threshold coupled edgejintensity contour filter is developed. 

6.1.1 Coupled edgejintensity contour extractor 

Let D represent the difference image for either left or right view, as obtained from Eq. (4.3), 

an example of which is shown in Fig. 6-2(b), and Ethe edge image generated from D by the 

[-1 1] edge operator. Positive and negative edge points in E that correspond to the left and 

right sides of a contour ridge in D, e+ to the left of e- on the same scanline, are paired if they 

satisfy the following three conditions: 

1. E(e+) j max(E) > TE !\ E(e-) j min(E) > TE; 

2. IE(ë) + E(e-)I < CE; (6.1) 

3. 'VpE[e+,e-jD(p);:::: min(D(e+), D(e-)). 

(a) (b) 

., 

t /~t') 
'" " , It~ /'. ~. . 

(c) (d) (e) 

Figure 6-2: Contour extraction, left view. Contours displayed as binary line segments joining 
edge pairs. (a) Original image after image distortion removal and rectification. (b) Projection D 
of computed view difference.(c) Contour Cu extracted using low threshold TE = Tu. (d) Contour 
Cn extracted using high thresh6ld Tn • (e) Merger C* of (c) and (d) preserving useful object 
boundary contours and removing unwanted structure. 
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Compared to Eq. (5.1), the added third condition guarantees that the li ne segment [e+, e-j 

corresponds to a high intensity contour ridge in D. Overlapping segments are resolved in favor 

of higher edge intensity. 

The li ne segments, c, between the paired positive and negative edge points are the desired 

disparity contours. As in Eq. (5.2), this information is extracted and stored in a contour image, 

C, illustrated in Fig. 6-2(c). 

6.1.2 Dual-threshold contour fllter 

As analyzed in Sect. 5.3, the above single contour extractor is sensitive to the edge threshold, 

TE. The higher the threshold, the more interesting contours are lost, but the less unwanted 

structure remains. Fig. 6-2(c) and (d) demonstrate contour images, Cu and Cn, resulting from 

the use of a low, Tu, and a high, Tn, threshold, respectively. In order to alleviate this sensitivity, 

a dual-threshold contour filter is used and the advantages of the two different threshold values 

are combined. 

Connected contour line segments are grouped to form contour regions, R. Let Su and Sn 

be the set of such contour regions in Cu and Cn, respectively. A new contour image, C*, is 

generated, as shown in Fig. 6-2 ( e), by preserving only Su regions overlapping Sn: 

(6.2) 

In the implementation, Tu = 0.015 and Tn = 0.05. However, because of the robustness 

provided by the dual-threshold filtering, small variations to the threshold values have little impact 

on the results, and no further parameter tuning was required during testing. 

6.2 Contour out lier removal 

In order to remove the remaining noise in C*, the global statistics of contour regions are 

calculated, and a statistical outlier removal method is employed. This pro cess consists of two 

steps: regularization of line segments and suppression of contour region outliers. 
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(a) (b) (c) 

Figure 6-3: Contour outlier removal, left view. Bounding boxes indicating contour regions, and 
brightness representingl(R), the average region intensity. (a) Fig. 6-2(e) overlaid with bounding 
boxes. (b) Line segment outliers regularized. (c) Contour region outliers suppressed. 

6.2.1 Line segment regularization 

The first step eliminates line segment outliers within a contour region. Let R be a contour 

region containing IRlline segments, cE R be a line segment consisting of Ici pixels, and p E c be 

a pixel on c. The average intensity 1 (c) of c can be expressed as 

_ ( ) _ l:PEc D (p) 
1 C - ici . (6.3) 

Assume that the average intensity l(c) and differential disparity d(c) of c are independent 

and their distributions within R can be represented by a bivariate Gaussian: 

'1 (1 (c), d(c);1 (R), d(R); U,(R), U,(R)) ex U,(R)~,(R) exp ( 
(1 (c) -1 (R))2 _ (d(c) - d(R))2) 

20"j (R)2 20" d (R)2 . 

(6.4) 

The mean values 1 (R) and d(R) are 

(6.5) 

where d(R) is defined to be a weighted average disparity in order to give more weight to line 

segments with high l(c). Fig. 6-3(a) shows contour regions in their average intensity. The 

l:CER (l(c) -1(R))2 

IRI 
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We can define an integrated intensity / disparity measure 

J-tr(c, R) = Il(c) -l(R)lld(c) - d(R)I, (6.7) 

and a coupled deviation 

(6.8) 

Combining the following two conditions 

1. Il(c) -l(R)1 > V2Ui(R); and 

2. Id(c) - d(R)1 > V2Ud (R), 
(6.9) 

a contour line segment c is considered an outlier and removed from its region R if 

(6.10) 

The product in Eq. (6.7) is used instead of the Euclidean norm in order to bias towards preserving 

line segments where eitherl(c) or d(R) is close to the mean. This was found to yield better results 

in practice. The value J2 in the thresholds of Eq. (6.9) is an empirical choice, but once set, the 

adaptive thresholding of Eq. (6.10) proves insensitive to variations of lighting and background 

texture in experiments. 

Finally, a contour region disconnected due to segment removal is reconnected by interpo­

lating missing segments from their neighbors. Region statistics, l(R), d(R), and Ü(R), are then 

updated according to Eq. (6.3)-(6.8). The result, which has smoother contour stripes, is shown 

in Fig. 6-3(b). 

6.2.2 Contour region out lier suppression 

The second step removes region outliers globally. Let 8 represent the set of 181 contour 

regions resulting from the previous step. Based on the observation that unwanted regions are 

usually small and have low average intensity, as can be observed in Fig. 6-3(b), a summed 
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intensity î (R) is defined combining both attributes: 

(6.11) 

Another Gaussian distribution is used to model the deviation of aH the regions in 8 with 

respect to the region with the largest summed intensity, R*: 

where the deviation 

A A * A 1 ((î (R) - î (R *) ) 2 
) 

11 (1 (R), 1 (R ) ,u(8)) ex A (8) exp - 2' 
u 2û(8) 

û(8) = 
LRES (î (R) - î (R*))2 

181 

(6.12) 

(6.13) 

A contour region R is considered an outlier and removed from the set 8 by another adaptive 

thresholding: 

lî (R) - î (R*)I > û(8). 

Region statistics are again updated. The result is shown in Fig. 6-3( c). 

6.3 Contour grouping 

(6.14) 

Contour grouping gathers contour fragments that belong to the same object. Computing 

closed bounding contours of objects from contour fragments relies on contour grouping, which 

has been studied for many decades in the area of perceptual organization [49, 50J. However, 

reliable contour grouping requires a large amount of computation and is unsuitable for real-

time applications. This section presents a simple grouping technique based on computed global 

information. It is ~gain divided into two steps: a local intensityjdisparity based grouping and a 

global geometric-shape-based grouping. 

6.3.1 Integrated intensity / disparity grouping 

This step is based on heuristics inspired by the Gestalt Principles of similarity and proximity. 

It groups a contour region to its neighbors based on essentiaHy the integrated intensity jdisparity 

measure of Eq. (6.7): 

(6.15) 
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Now let T(R) and l.(R) be the top and bottom end contour line segments of R. The distance, 

(F(Ri, Rj), from the top end of Ri to any region Rj is defined by: 

(6.16) 

where p, q are pixels and 11·11 is the Euclidean norm. 

The set of candidate regions for grouping with Ri at the top end, ST; is then obtained by 

applying adaptive thresholding similar to Eq. (6.10): 

(6.17) 

The first constraint guarantees that a candidate region is compatible with the current region in 

average intensity and disparity. The second adjusts the candidate se arch window according to 

the average disparities of two regions in question, as the width and height of an object is linearly 

proportional to its disparity. 

Finally, if ST is nonempty, a region RJ is chosen from ST to group with the top end of Ri. 

The choice of RJ is made by selecting the region with a minimum ILl. For regions with equal ILil 

the one with the smallest (F is chosen. 

(6.18) 

where lex min means ILl and OT are minimized in the given priority order. The same calculation 

is performed at the bottom end of Ri using the analogous distance function O.J..(Ri' Rj) to locate 

and merge a bottom end candidate, Rf. 

Contour region labeling takes place in a single step, after the best merge candidates have 

been located for each region. Fig. 6-4(a) shows the final result, with bounding boxes indicating 

contour groups. 
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(a) (b) (c) 

Figure 6-4: Contour grouping, left view. (a) Neighboring contour regions grouped based on 
integrated intensityjdisparity measure ILl' (b) Contour regions grouped based on convexity, ILc' 

(c) Objects as located by grouped contours. 

6.3.2 Geometrie shape based grouping 

Based on the heuristic that most real-life objects have a tendancy to global convexity due 

to shape or perspective, a simple convexity measure is def1ned for grouping contour regions with 

compatible convex-outwards shapes, which is consistent with the Gestalt Principle of closure. 

As described in Section 6.1, a contour piece is produced by connecting line segments between 

pairs of positive and negative edge points. As in Fig. 6-5, let x = f+(y) be the line joining the 

left extrema of the end segments of a contour region R, and x = f-(y) that joining the right 

extrema, both represented as functions of y-coordinate. The convexity measure of the region, 

ILc(R), is def1ned as: 

(6.19) 
cER 

where c+ and c- are the left and right endpoints of the contour line segment c, respectively. It 

can easily be shown that ILc(R) < 0 if R is overall convex towa~ds the left, suggesting that it is 

contour 

Figure 6-5: Computing the convexity of a contour stripe. 

89 



the left side of an object, and J..tc(R) > 0 if R is overall convex towards the right, suggesting that 

it faUs on the right. The algorithm then groups contours classified as left or right side to find 

object regions, with result shown in Fig. 6-4(b). Fig. 6-4 ( c) shows the objects identified in the 

scene. 

6.4 Experimental results 

The contour grouping segmentation approach was validated on the same two image sequences 

used in Sect. 5.3, with sample images shown in Fig. 6-6 and Fig. 6-7 and quantitative analysis 

illustrated in Table 7-1, Table 7-2, Fig. 7-10 and Fig. 7-11. None of the parameters required 

empirical tuning during testing to achieve the demonstrated performance. 

Comparing these results against those of the simpler multihistogram approach, the pro­

portion of 'correct' segmentation has increased, to approximately 70% on the static background 

sequence and 68% on the video background sequence, due to a number of improvements. First, by 

employing multi-evidential contour extraction and adaptive noise removal, the contour grouping 

approach is able to preserve more useful contour information at object boundaries while removing 

unwanted structures in the background. This reduces object detection failure rate from 6% in the 

static background case and 0.3% in the video background case to 2.6% and 0.2%, respectively. 

This result can be seen by comparing frames 130, 140 and 170 of Fig. 6-6 and frame 555 of 

Fig. 6-7 against the same frames in Fig. 5-4 and Fig. 5-5. 

Second, the contour grouping approach makes better use of object coherence and yields more 

accurate object locations by providing tighter bounding boxes, such as in frames 110 and 320 of 

Fig. 6-6 and frames 625, 920, 940, 1000 and 1280 of Fig. 6-7. This significantly increases the 

proportion of 'accurate' segmentation from the 5% and 16% with the multihistogram method to 

43% and 42%. The improvement is especially obvious when an object is partially out of view, 

as in frames 250 and 270 of Fig. 6-6 and frames 101OI"VI035 of Fig. 6-7, or when two objects 

are close in distance and depth, as in frames 1201"V150 of Fig. 6-6 and frames 850 and 870 of 

Fig. 6-7. 
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frame 220 frame 230 frame 240 frame 250 frame 260 frame 270 frame 280 

frame 290 frame 300 frame 310 frame 320 frame 330 frame 340 frame 350 

Figure 6-6: Contour grouping segmentation results on a sequence with static background and 
three subjects. 

91 



1 ) 1 

\~ J [Ii 1 \,} 

1 i \\ 1 Ihl !,II: 
1 ~.~ ,~ 

frame 270 frame 285 frame 320 frame 345 frame 370 frame 395 

''''' 1 / 

i, 
> 1 "1', 1 

1 1 1 

1 1 1 
1 l ' 

frame 430 frame 455 frame 475 frame 500 frame 520 frame 555 

,-
t~ 1 

-~j : "M' ~ 

1· ." 1 

~" 1 

frame 590 frame 625 frame 655 frame 680 frame 720 frame 750 

1 ~)~l 1 (1"\ 
t '~\ 1 , 

frame 770 frame 785 frame 815 frame 830 frame 850 frame 870 

Figure 6-7: Contour grouping segmentation results on a sequence with moving video background 
and two subjects. 
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Figure 6-7: Contour grouping segmentation results on a sequence with moving video background 
and two subjects. (cont.) 
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Table 6-1: Result analysis of contour grouping segmentation. 

example frames 
improvements over static background video background 
disparity multihistogram approach Fig. 5-4 vs. Fig. 6-6 Fig. 5-5 vs. Fig. 6-7 

preserve contour information to 
130, 140, 170 555 

reduce detection or grouping failure 
use object coherence to yield 

110,320 625, 920, 940,1000,1280 
more accurate object locations 
handle objects partially out of view 250, 270 1010rv1035 
distinguish objects close 

120rv150 850,870 
in distance and depth 

example frames 
remaining problems static background video background 

Fig. 6-6 Fig. 6-7 

wrong convexity due to concavities 80, 290rv310 455, 785, 1010 
wrong convexity due to 

655, 720 
imperfect contour extraction 
wrong convexity due to background 

330rv350 270rv370 
noise, object texture or occlusion 
coalescing due to failure to 

280 750, 770, 830 
judge contour grouping completion 
object falsely suppressed 150, 160 

While overall performance is good, the inherent shortcomings of contour grouping segmen-

tation are obvious, mostly due to the convexity assumption on object shape. This assumption 

is not applicable to an object with a truly concave shape. Moreover, most objects in the real 

world contain local concavities, which, under certain circumstances, cause grouping errors, as 

for example in frames 80 and 290rv310 of Fig. 6-6 and frames 455, 785 and 1010 of Fig. 6-7. 

Even with convex objects, the convexity value, J-lc(R), of a contour stripe depends on the shape 

of the extracted contour and may exhibit the wrong sign due to imperfect contour extraction, 

resulting in a grouping failure, for example in frames 655 and 720 of Fig. 6-7. This problem is 

made worse by the remaining noise from the background and within an object, as weIl as partial 

occlusions, including self-occlusions. These can be observed in frames 330rv350 of Fig. 6-6 and 

frames 270rv370 of Fig. 6-7. Furthermore, the over-simplified global definition of the convexity 

measure is incapable of judging when the grouping of an object is complete, which is why false 
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grouping across multiple objects occurs in frame 280 of Fig. 6-6 and frames 750, 770 and 830 of 

Fig. 6-7. For the above reasons, 'object coalescing' remains the major cause (at around 70%) of 

'incorrect' segmentation in this approach. 

Another source of error is the statistical contour out lier removal. Although effective in 

removing unwanted structures, this process may falsely suppress small objects with low contour 

intensity, as with the face on the left in frames 150 and 160 of Fig. 6-6. 

Table 6-1 summarizes the improvements and remaining problems of the contour grouping 

segmentation approach. Our final solution attempts to address these issues by further exploiting 

the properties of disparity contours. 
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CHAPTER 7 
Disparity Verification Segmentation 

The inherent weakness of the contour grouping segmentation scheme is its convexity as-

sumption about object shape, which is not always true in a real environment. Additionally, the 

over-simplified convexity measure is not able to provide information as to whether aIl the contour 

fragments of an object have been collected, causing false grouping across different objects. In 

order to overcome this weakness, this chapter goes back to the idea of background hypothesis 

falsification, explores more features of disparity contours, and presents a disparity verification 

based contour grouping approach. 

A diagram of the revised system is shown in Fig. 7-1. This new grouping pro cess makes use 

of the results from both background hypothesis falsification and foreground hypothesis verifica-

tion, and not only improves the segmentation results but also broadens the applicability of the 

algorithm. In preparation for explaining foreground hypothesis verification, this chapter starts 

by showing how to calculate the disparity of a foreground object. 

7.1 Foreground disparity calculation 

Foreground disparity can be calculated once disparity contours are extracted as described 

in Sect. 6.1. Let c be a contour li ne segment of length Ici in the left view and c+ and c- its left 

and right end points. From Fig. 4-2 and Eq. (4.6), we have 

(7.1) 

where d(c) is the differential disparity between the background and foreground. We can rewrite 

this equation, while simplifying the notation without introducing ambiguity, as: 

(7.2) 
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Figure 7-1: Disparity verification object segmentation scheme. 

which calculates foreground disparity at the boundary point given background disparity and 

differential disparity. Let R be a contour region containing IRI such li ne segments. The average 

foreground disparity of R is obtained by: 

(7.3) 

Similarly, if 0 is a foreground object containing 101 such contour regions, then the average 

foreground disparity of 0 is 

(7.4) 
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Figure 7-2: The ideal case of foreground hypothesis verification. 

7.2 Foreground hypothesis verification (FRV) 

The essence of background hypothesis falsification is disparity verification, which can be 

applied to foreground disparity as weIl. Assume the depth range of a foreground object 0 is 

much smaller than the object-to-camera distance and the object disparity can be approximated 

by dF(O). Similarly to Sect. 4.1, if a pair of images is hypothesized to be of the foreground 0 

alone, the block-matching operation on the two images 

u,v 

ideally pro duces a high value in the background area and zero in the foreground object area, as 

illustrated in Fig. 7-2. In reality, the result depends again on the self-correlation of foreground 

texture, of background texture, the visu al difference between the background and foreground, 

and between different fareground abjects. 

Although both background hypothesis falsification and foreground hypothesis verification are 

sensitive to texture self-correlation, the subtraction of the two results can generate more ra­

bust values. Assuming sufficient visual difference between background and foreground, Fig. 7-3 
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Figure 7-3: The Y th scanline ofleft projection DL ofVDM, where (aL' y), (bL, y), (CL' y), (dL, y) are 
the end points of disparity contour line segments, as in Fig. 4-3, Top: DL from background hy­
pothesis falsification (BHF); middle: DL from foreground hypothesis verification (FHV); bottom: 
DL from the subtraction of BHF and FHV. 

demonstrates VDM results on a scanline corresponding to whether the background or foreground 

is textured or plain. As can be observed, the subtraction of background hypothesis falsification 

and foreground hypothesis verification results in overall higher values within the foreground are a 

between the two contour stripes than in the background area. Due to the movement of fore­

ground objects, it is statistically rare that the entire background and foreground regions remain 

texturelèss over time in a real environment. Hence, a reliable foreground confidence measure can 

be defined based on the subtraction results, 

7.3 Foreground confidence and disparity contour direction 

Let ~(.) and >() be functions that yield the left and right neighbors of an element, re­

spectively. Let the left neighbor ~(c) of a contour segment C E R be the rightmost contour line 

segment to the left of c on the same scanline, as illustrated in Fig. 7-4. The left neighborhood of 

R can be constrained by left border points, f--( c), defined to be either ~(c) -, the right end point 

of ~(c), or a distance threshold T ~ to the left of c+, whichever is closest (in this case, rightmost): 

f--(c) = right ((X(C+)-T~, y(c)) , ~(c)-+l), (7.6) 
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Figure 7-4: Neighborhood of contour region R for computing disparity direction. 

where ~(c)- is offset by 1 so that border points do not faU in a contour region. The foreground 

confidence IL~(R) of R'S left neighborhood can thus be defined by the subtraction of background 

hypothesis falsification (left hand of numerator) and foreground hypothesis verification (right hand 

of numerator), normalized by the left neighborhood area (denominator): 

where DL is the left projection of VDMB resulting from background hypothesis falsification. Sim­

ilarly, the foreground confidence 1L)<l(R) of R'S right neighborhood can be defined. 

The disparity contour direction ILD(R), which determines the grouping direction of R when 

locating foreground objects, can be expressed by: 

(7.8) 

According to Fig. 7-3, Ris on the left boundary of an object if ILD(R) < 0, on the right boundary 

of an object if ILD(R) > 0, within an object or background or both the object and background are 

textureless if ILD(R) = o. As noted in Section 7.2, the last case rarely persists, due to expected 

foreground movement. 
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Figure 7-5: Geometrie relations between contour regions Ri and Rj' 

7.4 Disparity contour overlap, blocking, and match 

In order to group contour regions that belong to the same object, three types of relationships 

between neighboring contour regions are analyzed. Given two contour regions Ri and Rj, as shown 

in Fig. 7-5, the overlap of Rj onto ~. is defined by an overlap measure ILQ(Ri' Rj): 

. (7.9) 

where 7ry (R) is the projection of R on the y-axis. Hence, we have 

1. Overlap: Ri overlaps with Rj iff ILQ(Ri, Rj) > 7 Q, 

2. Blocking: Ri is blocked by Rj iff ILQ(Ri, Rj) > 1 - 7 Q, 

where 7 Q is an overlap threshold. If Ri and Rj overlap with ILD(Ri) < 0 and ILD(Rj) > 0, a matching 

cost between Ri and Rj can be defined based on foreground hypothesis verification, normalized 

by the overlapping region between Ri and Rj: 

where 

d (. .) _ IRiI dF(Ri) + IRjl dF(Rj) 
F R~, RJ - I~I + IRjl (7.11) 

Therefore, the third type of relationship can be described as: 
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3. Match: Ri and Rj match iff J-LM(Ri, Rj) < TM, 

where TM is a mat ching cost threshold. An abject cast J-LM(O) can also be defined in the same 

manner using the object's peripheral contours on the left and right sides. 

7.5 Disparity verification based contour grouping 

As seen in Fig. 6-1 and Fig. 7-1, disparity verification segmentation adopts the same contour 

extraction and out lier removal strategy as contour grouping segmentation. The difference lies in 

its global contour grouping step, which is based on disparity verification. 

Let S* represent the set of IS*I contour regions after removing contour outliers, as in 

Sect. 6.2.2, and S*I represent the set of IS*II ::; IS*I contour regions after the integrated in­

tensity / disparity grouping, as in Sect. 6.3.1. AH contour regions are sorted by their horizon­

tal positions. Disparity verification based contour grouping is performed on each region of 

{R E S* 1 J-Lo(R) =1- O} by a recursive function group 0 , explained in Fig. 7-6 (ignoring boundary 

cases), and the grouping result, stored in S*o, is dynamically updated; initially S*o = S*.· S* 

is also updated to confirm the grouping results in S*I. In Fig. 7-6, ~(R) and ~(R) are the left 

and right neighbors of R according to the sorted horizontal positions, respectively, and RM the 

grouping candidate of R; initially RM = R. 

The algorithm proceeds as follows. First select the left or right neighbor of R to be R M, 

according to J-Lo(R). If Rand RM have opposite grouping directions, then check if they overlap. 

If they do, group them if they match, and apply groupO to any non-blocked part of R again; 

otherwise, skip RM' get the next horizontal neighbor as RM' and apply groupO. If Rand RM 

have nondistinct grouping directions, then check if they are already grouped in S*I. If they are, 

integrate RM with Rand retry groupO on R; otherwise check if they overlap. If they do, group 

them if RM 's direction is unknown and Rand RM match, and apply groupO to any non-blocked 

part of R; otherwise, skip RI>'" get the next horizontal neighbor to be RM' and reapply group 0 . 

Currently, TQ = 0.2 and TM = 20 are empirical choices, but once set, no further parameter tuning 

was required during testing, as thresholding is performed on normalized values. The choice of 

TM = 50 has proved non-critical. 
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group (in R, in RM' inout 8*, in 8*1, inout 8*0) 

{ 
~(RM) E 8*, if J-Lo(R) < 0 / / if left boundary, get right neighbor 

RM ~ ~(RM) E 8*, if J-Lo(R) > 0 / / if right boundary, get left neighbor 
if J-Lo (R)J-Lo (RM) < 0 / / opposite grouping directions 

if J-LQ (R, RM ) > TQ / / overlap 
if J-LM(R, R M ) < TM / / match 

group R, RM in 8*0 
if remains (R, RM ) = true 

group (R, RM' 8*, 8*1, 8*0) 
else done. 

else / / R, RM do not overlap 
group (R, RM' 8*, 8*1, 8*0) 

else / / R, RM have nondistinct grouping direction 
if R, RM grouped in 8*1 

R ~ RUR M 

update 8*, 8*0 
group (R, R, 8*, 8*1l 8*0) 

else / / R, RM not grouped in S*1 
if J-LQ(R, R M ) > TQ / / overlap 

if J-Lo(RM) = 0/\ J-LM(R, R M) < TM / / RM direction unknown and R, RM match 
group R, RM in 8*0 

if remains (R, R M) = true / / R, RM same direction or R, RM do not match 
group (R, RM' 8*, 8*1, 8*0) 

else done. 
else / / R, RM do not overlap 

group (R, RM' 8*, 8*1l 8*0) 

Boolean remains (inout R, in R M ) 

if J-LQ(R, R M) > 1 - TQ / / R blocked by RM 

return (false ) 
else / / R not blocked by RM 

R ~ R - 11";1 (1I"y(~) n 1I"y(Rj)) / / keep non-blocked part 
return(true) 

Figure 7-6: Contour grouping algorithm based on disparity verification. 
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(a) (b) (c) 

Figure 7-7: Disparity contour grouping, left view. (a) Neighboring contour regions grouped based 
on integrated intensity-disparity measure /LI as in Fig. 6-4(a). (b) Contour regions grouped based 
on disparity verification. (c) Objects located according to grouped contours. 

Disparity contour grouping pro duces object regions as shown in Fig. 7-7(b). An object is 

considered a false one and removed if /LM(O) ~ 'TM' Fig. 7-7(c) shows the segmentation result on 

the original image. 

7.6 Experimental results 

The proposed method was again validated using the same two image sequences as in Sect. 5.3 

and Sect. 6.4, with sample images shown in Fig. 7-8 and Fig. 7-9 and the quantitative analysis 

illustrated in Table 7-1, Table 7-2, Fig. 7-10 and Fig. 7-11. 

As can be seen, the proportion of 'correct' segmentation reaches about 85% in both se-

quences. In particular, the proportion of 'accurate' segmentation has significantly increased to 

between 55% and 60%. This is due to the advantage of disparity verification based grouping, 

which is based on disparity, i.e., depth information, and is much more robust to noise from 

background and object internaI texture, as observable in frames 320,,-,370 of Fig. 7-9. 

What is more, disparity verification segmentation demonstrates its improved capability in 

handling partial occlusions. In comparing the partial occlusion cases of Table 7-1 and Table 7-2, 

the proportion of 'accurate' segmentation has doubled over that of contour grouping segmenta-

tion. The results are also observable in frames 330 and 340 of Fig. 7-8 and frames 270,,-,285 of 

Fig. 7-9. 
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Figure 7-8: Disparity verification segmentation results on a sequence with static background and 
three subjects. 

105 



frame 270 frame 285 frame 320 frame 345 frame 370 frame 395 

frame 430 frame 455 frame 475 frame 500 frame 520 frame 555 

1 l:r Il ~ 1 

!i 'Cl r\ .-
'\ ,\ . 

'~' l , 

, 1 ~ il':~ 
• 1 

-1 

frame 590 frame 625 frame 655 frame 680 frame 720 frame 750 

1

ft j 1 ~ 

~1 l '1 

frame 770 frame 785 frame 815 frame 830 frame 850 frame 870 

Figure 7-9: Disparity verification segmentation results on a sequence with moving video back­
ground and two subjects. 
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Figure 7-9: Disparity verification segmentation results on a sequence with moving video back­
ground and two subjects. (cont.) 
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Table 7-1: Segmentation result comparison on the static background sequence. 
- ---~ 

segmentation accuracy 
accurate inaccurate incorrect 

total true objects exact enlarged partial enlarged coalesced object false 
bdg. box bdg. box object ptl. obj. object undet. object 

no occl'n 591 100% 20 3.38% 95 16.07% 185 31.30% 20 3.38% 226 38.24% 45 7.61% 
ptl. occl'n 211 100% 18 8.53% 11 5.21% 56 26.54% 11 5.21% 112 53.08% 3 1.42% 
ail 802 100% 38 4.74% 106 13.22% 241 30.05% 31 3.87% 338 42.14% 48 5.99% 8 1.00% 

no occl'n 591 100% 306 51.78% 29 4.91% 123 20.81% 41 6.94% 78 13.20% 14 2.37% 
ptl. occl'n 211 100% 36 17.06% 3 1.42% 66 31.28% 1 0.47% 98 46.45% 7 3.32% 
ail 802 100% 342 42.64% 32 3.99% 189 23.57'1'0 42 5.24% 176 21.95% 21 2.62% 40 4.99% 

no occl'n 591 100% 376 63.62% 41 6.94% 112 18.95% 33 5.58% 16 2.71% 13 2.20% 
ptl. occl'n 211 100% 66 31.28% 6 2.84% 69 32.70% 3 1.42% 61 28.91% 6 2.84% 
ail 802 100% 442 55.11% 47 5.86% 181 22.57% 36 4.49% 77 9.60% 19 2.37% 42 5.24% 

Table 7-2: Segmentation result comparison on the video background sequence. 
-- ----- ----

segmentation accuracy 
accurate inaccurate incorrect 

total true objects exact enlarged partial enlarged coalesced object false 
bdg. box bdg. box object ptl. obj. object undet. object 

no occl'n 1767 100% 317 17.94% 116 6.56% 926 52.41% 215 12.17% 192 10.87% 1 0.06% 
ptl. occl'n 334 100% 21 6.29% 10 2.99% 50 14.97% 1 0.30% 247 73.95% 5 1.50% 
ail 2101 100% 338 16.09% 126 6.00% 976 46.45% 216 10.28% 439 20.89% 6 0.29% 517 24.61% 

no occl'n 1767 100% 825 46.69% 149 8.43% 341 19.30% 177 10.02% 275 15.56% o 0.00% 
ptl. occl'n 334 100% 63 18.86% 9 2.69% 48 14.37% 7 2.10% 203 60.78% 4 1.20% 
ail 2101 100% 888 42.27% 158 7.52% 389 18.51% 184 8.76% 478 22.75% 4 0.19% 817 38.89% 

no occl'n 1767 100% 1113 62.99% 335 18.96% 182 10.30% 99 5.60% 38 2.15% o 0.00% 
ptl. occl'n 334 100% 127 38.02% 19 5.69% 38 11.38% 6 1.80% 140 41.92% 4 1.20% 
ail 2101 100% 1240 59.02% 354 16.85% 220 10.47% 105 5.00% 178 8.47% 4 0.19% 866 41.22% 
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Figure 7-10: Segmentation result comparison on the static background sequence. 
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Figure 7-11: Segmentation result comparison on the video background sequence. 
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The biggest improvement of the disparity verification approach over the contour grouping 

approach is the removal of the convexity constraint on object shape, which improves the seg­

mentation results from two directions. First, grouping difficulties due to the concave profile of 

an object or the wrong convexity measure of a contour are largely eliminated, as exemplified 

by frames 80 and 290",310 of Fig. 7-8 and frames 455, 655, 720, 785 and 1010 of Fig. 7-9 in 

comparison with the same frames in Fig. 6-6 and Fig. 6-7. Second, faise groupings of multiple 

objects, for example as seen in frame 280 of Fig. 6-6 and frames 750, 770 and 830 of Fig. 6-7, are 

corrected. Therefore, 'object coalescing' decreases by over 50% compared to contour grouping 

segmentation, as we notice in Fig. 7-10 and Fig. 7-11. 

Despite numerous improvements over the previous methods, the results of disparity verifi­

cation segmentation are still not perfecto The first and the most important source of remaining 

error is the calibration of the environment. As mentioned in Sect. 4.3, the background disparity 

map (BDM) was constructed based on measurements of the environment with a tape measure. 

This results in inaccuracies that cause systematic background noise, confusing the segmenter, as 

visible on the left screen of the video background sequence in Fig. 7-9 with obvious examples 

shown in frames 270",475. This also explains the large number of false objects in the result. 

SecondIy, the disparity contour direction measure, JLD(R), of a contour stripe can provide 

misleading information due to texturelessness in both background and foreground, as explained 

in Fig. 7-3. A typical example can be found in frame 140 of Fig. 7-8 where the arms of two 

people are grouped together. 

Third, without the aid of temporal coherence between consecutive frames, partial occlusion 

remains a difficult issue for a segmenter. This scenario results in an 'accurate' segmentation 

rate of only 1/3, with samples shown in frames 180",210 of Fig. 7-8 and frames 590 and 950 of 

Fig. 7-9. 

Moreover, specular lighting caused by the directional illumination of the projector, as shown 

in frame 980 of Fig. 7-9, differences in camera response due to either sensor noise or sensor 

response mismatch, and camera synchronization error during synchronized video acquisition can 
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Table 7-3: Result analysis of disparity verification segmentation. 

example frames 
improvements over static background video background 
contour grouping approach Fig. 6-6 vs. Fig. 7-8 Fig. 6-7 vs. Fig. 7-9 

no convexity constraint 80, 290",310 455, 655, 720, 785, 1010 
improved capability with occlusion 330, 340 270, 285 
more robust to background noise 

320",370 
and internaI object texture 
correctly judge contour grouping 

280 750, 770, 830 
complet ion and reduce coalescing 

example frames 
remaining problems static background video background 

Fig. 7-8 Fig. 7-9 

background noise due to 
270",475 

environment calibration error 
wrong contour direction due to 

140 
textureless foregroundjbackground 
difficulty with partial occlusion 180",210 590,950 
directional illumination of projector 980 

aH contribute to differences in image intensity values between corresponding pixels in the left 

and right views. The camera synchronization problem is exacerbated by the interlaced NTSC 

cameras used for experimentation, which produce a 640 x 480 image frame by interlacing two 

640 x 240 fields. This interlacing effect is further amplified by image distortion removal and 

rectification, during preprocessing. 

A summary of the improvements and problems discussed above is shown in Table 7-3. 

7.7 Performance analysis 

The initial, unoptimized, implementation of the algorithm presented processes about four 

640 x 480 monochrome image pairs per second on a 1.8G Hz AMD processor running in 32 bit 

mode. InformaI analysis of the algorithm suggests that potential performance is significantly bet-

ter, comparable to the cost of a few linear passes over the input data. Crucially, the construction 

of BDM takes place offiine and do es not contribute to the cost. 

In an optimized implementation, aH pixel-level processing described can be performed in 

two passes. The first of these computes Eq. (4.3) from a pair of input images. To the extent 
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that the BDM is vertically homogeneous, which is characteristic of large areas of indoor scenes, 

a rolling implementation annuls the overhead of the vertical stripe matching window. 

The second pixel-grain pass applies the edge detection operator and computes conditions 1 

and 2 of Eq. (6.1) for both high and low thresholds, producing a queue of edge candidates for 

each scanline in the rectified view. These points are combined into line segments marked as to 

which threshold they satisfy, and fed to a region-growing algorithm. This builds a higher level 

representation of the region list, computing the statistics of Eq. (6.3)-(6.8) and (6.11)-(6.13) and 

propagating the overlap condition of Eq. (6.2) on the fiy. Pairing candidate edge points into 

segments is in princip le quadratic in the length of the scanlines, but the three conditions of 

Eq. (6.1) constrain the search space in such a way that the practical cost of this operation is 

comparable to that of an additional pixel scan of the full scene. 

The regions can now be scanned to regularize line segment outliers by Eq. (6.10), and to 

determine R*. The outlier regions can then be culled according to Eq. (6.14) and grouped based 

on integrated intensity jdisparity in a single pass by Eq. (6.15)-(6.18). Again the operation is 

in princip le quadratic, this time in the number of surviving regions, but the reduction in data 

volume to this point is such that in practice the number of operations is no more than 10 times 

the number of total objects. 

The final disparity verification based contour grouping by Eq. (7.2)-(7.11) and Fig. 7-6 

is dominated by the computations of foreground confidence in Eq. (7.7) and of matching cost 

between regions in Eq. (7.10). In the worst case, Eq. (7.7) and Eq. (7.10) each requires two linear 

passes of pixel-Ievel processing of the whole image. 

7.8 Comparison with graph eut method 

The presented disparity verification segmentation is compared to one of the best stereo 

methods-Kolmogorov and Zabih's graph cut algorithm [93], discussed in Sect. 2.2.3. Using 

the same camera calibration data as described in Chapter 3, their software [90] was tested on 

samples from the same sequences as shown in Fig. 7-12(a) and Fig. 7-13(a). Fig. 7-12(b)(c) and 

Fig. 7 -13(b ) (c) show the scene disparity map resulting from the graph eut algorithm on these 

113 



Table 7-4: Performance comparison of disparity contour approach and graph cut method. Image 
resolution 640 x 480. Processor: 1.8GHz 32 bit AMD (~ 1.8GHz Pentium III). 

method 
processing time frame rate 
per frame (s) (Hz) 

disparity multihistogram 0.219 4.56 
contour grouping 0.258 3.88 
disparity verification 0.264 3.79 
graph cut with occlusion [92] 

441.6 0.00229 (Kolmogorov and Zabih 2001) 

sample images. Fig. 7-12(d)(e) and Fig. 7-13(d)(e) show the results of disparity verification 

segmentation for comparison. 

We can see that the graph cut algorithm offers reasonably good performance in generating 

a disparity map from a given scene despite the dynamic lighting and texture of the background. 

However, due to its weakness in dealing with large textureless regions, quite prevalent in the 

projected background, the resulting disparity map is inaccurate. This is especially evident in the 

results of the static background sequence where disparity values in the background area (Fig. 7-

12(b)) are often incorrect. Object segmentation based on this result remains a challenge and a 

large amount of post-processing will be necessary. 

Table 7-4 compares the processing time of the proposed disparity contour based approach 

to Kolmogorov and Zabih's graph cut method. It can be seen that the graph cut algorithm, 

although only generating a disparity map without performing the entire object segmentation 

task, takes more than 7min for processing each frame pair, more than 1600 times slower than 

the proposed disparity contour based methods. Obviously, this is impractical for real-time, 

interactive applications. 
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(a) Sample images after distortion removal and rectification. 

(b) Scene disparity map by graph cut algorithm. 

( c) Same results in (b) with occluded pixels indicated by white. 

(d) Results by disparity verification based contour grouping. 

(e) Final results of disparity verification segmentation. 

Figure 7-12: Comparison with Kolmogorov and Zabih's graph cut algorithm on static background 
sequence, left view. 
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(a) Sample images after distortion removal and rectification. 

(b) Scene disparity map by graph cut algorithm. 
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(c) Same results in (b) with occluded pixels indicated by white. 

(d) Results by disparity verification based contour grouping. 

(e) Final results of disparity verification segmentation. 

Figure 7-13: Comparison with Kolmogorov and Zabih's graph cut algorithm on video background 
sequence, left view. 
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CHAPTER 8 
Conclusions and Future Work 

This chapter summarizes the work presented in this thesis and suggests a number of im-

provements for the future. 

8.1 Conclusions 

A new multiple object segmentation system using disparity contours is developed. By ex­

ploiting the observation that background geometry may be more stable over time than texture 

or illumination, and avoiding full stereo reconstruction and empirical parameter tuning, the 

method easily achieves near-real-time performance on traditionally difficult scenes, without re­

quiring identical or high-quality cameras, and is applicable to environments with dynamic lighting 

and texture. 

Three different approaches developed chonologically during the study have been compared 

with deeper understanding achieved at each step. The disparity multihistogram approach, due to 

its naive noise removal and contour grouping strategy, yields systematically inaccurate segmen-

tation results. The contour grouping approach, which employs a multi-evidential dual-threshold 

contour filter, statistical noise removal, and heuristic based contour grouping, overcomes the 

weaknesses of the multihistogram method and is far less dependent on empirical parameter tun-

ing. However, its convexity assumption about object shape and its over-simplified calculation of 

the convexity measure limit the robustness of the contour grouping approach. By examining more 

closely the idea of disparity verification and exploring more features of disparity contours, the 

disparity verification based segmentation removes any constraint imposed on object shape and 

demonstrated its improved capability in handling partial occlusions. The disparity verification 

method achieves 85% 'correct' segmentation with approximately 60% 'accurate' segmentation in 

the experiments at a speed of nearly 4 frames/sec on videos of 640x480 pixels. 
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8.2 Future work 

Although as noted in Chapter 7 there remain a number of challenges due to errors caused 

by environment calibration (which could be improved by using special measurement assembly 

such as a laser scanner), incorrect disparity contour direction, and partly occluded boundaries, 

the method has not yet been exploited to its full potential. 

8.2.1 Boundary finder 

As explained in Section 4.2, an object contour lies on the left side of the object boundary 

in the left image and on the right side of the boundary in the right image. Therefore, precise 

boundaries can be located by connecting either the negative edge points on the object's peripheral 

contour in the left view or the positive edge points in the right view, once the object contours 

are correctly grouped. 

Fig. 8-1 and Fig. 8-2 show objects cropped from a scene based on boundaries located from 

peripheral contours. We can see that although the segmentation is correct overall, the accuracy 

of boundary location is poor. 

A major cause of such inaccuracies is that the view difference images, from which disparity 

contours are extracted, are the result of an intensity based block mat ching technique (Eq. (4.3)). 

The detection of peripheral contours relies on the local intensity difference between background 

and foreground. When such a difference is truly small in sorne localities, no disparity contour can 

be detected there, and thus no peripheral contour is obtained. The internaI contours resulting 

from foreground auto-correlation are then mistaken by the boundary finder for the peripheral 

contours, and therefore object boundaries are mislocated. This is especially severe in the video 

background sequence (see Fig. 8-2) where the dynamic background texture increases the occur­

rence of local intensity proximity between background and foreground. 

The second problem, due to the inherent weakness of the horizontally positioned stereo 

system, is the failure to detect horizontal or near horizontal disparity contours of an object. 

Extrapolation to create horizontal or near horizontal boundaries based on detected vertical or 
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(a) Sample images overlaid with object bounding boxes. 

(b) Results of disparity verification based contour grouping. 

(c) Objects segmented by boundaries located from peripheral contours. 

Figure 8-1: Results of object boundary finder on static background sequence, left view. 

near vertical contours is prone to error. As observable in the last two samples of Fig. 8-1, the 

shoulder of the person on the left is mislocated. 

In the presence of partial occlusions or when an object is partially out of view, the peripheral 

contours are either invisible, or of irregular shape, which makes boundary location difficult. Self­

occlusion, such as the arm of the person on the right in the first sample of Fig. 8-1, is also an 

issue requiring special attention in the boundary finder. 

In summary, a better boundary finder is necessary to overcome or compensate for the above 

shortcomings and pro duce a more accurate object location, which will provide potential for 

applications that require more details of body motion such as gesture recognition [117]. 
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(a) Sample images overlaid with object bounding boxes. 

(b) Results of disparity verification based contour grouping. 

(c) Objects segmented by boundaries located from peripheral contours. 

Figure 8-2: Results of object boundary finder on video background sequence, left view. 

8.2.2 2D and 3D tracking 

By exploiting the temporal coherence in an image sequence, a higher-level tracker should 

aIleviate many problerris due to contour extraction error and partial occlusion. The extended 

system is illustrated in Fig. 8-3. Here two new modules are added, object prediction and object 

refinement. 

The final segmentation result, combined with extracted raw contour information, is fed to 

the prediction module, which predicts the location of contours as weIl as objects. The prediction 

is then verified against the initial segmentation result to refine object information. This feedback 

loop is expected to propagate good segmentation results and deal with occlusions by keeping track 

of contours. 
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Figure 8-3: A disparity-based object tracking system. 

In addition, enhancing the object finder with a pre-trained model of human (or other) 

target contours should greatly increase the precision and reliability of tracking [16] and reduee 

the problem of wrongly oriented contour regions. 

The information exposed by the disparity contour technique is far from exhausted by object 

segmentation. Sinee absolute depth can easily be extracted, the method naturally extends to 3D 

object tracking. 
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8.2.3 Online update of background disparity map 

The background disparity map (BDM) is presently assumed to be static and constructed 

omine, however, there is no reason why this could not be updated online to integrate changes to 

the environment and to correct the inaccuracies in the initial BDM caused by camera calibration 

error. This online update can be carried out by a parallel pro cess with low priority, which not 

only has little impact on the system performance but also opens a door to more complicated and 

expensive algorithms. This improvement would make the method more suit able in environments 

in which the geometry of the background, and not just its texture, is dynamic somewhat. 

8.3 Application to Shared Reality Environment 

A number of vision tasks are involved in order to realize the goals of the SRE project, 

including background removal, person tracking, gesture recognition, gaze tracking, and arbitrary 

view synthesis. If using frontal video projection, shadow removal is also necessary. The object 

segmentation and potential tracking system presented in this thesis can either be applied directly 

to perform sorne of the tasks, such as background removal and person tracking, or aid in finding 

solutions to others, such as shadow removal and gesture recognition. 

In addition to the previously suggested improvements in boundary fin ding , tracking and 

BDM update, a few other practical issues need to be resolved. As noted in Sect. 8.2.1, the 

inherent weakness of the horizontally positioned stereo system results in a failure to detect 

horizontal or near horizontal object boundaries, which is expected to cause difficulty in gesture 

recognition. This weakness can be overcome by employing three cameras positioned in a vertical 

"L" shape, combining the results of both horizontal and vertical sensing systems. In order to 

achieve online real-time performance for the SRE, a distributed processing system will eventually 

need to be used. In this case, the system will consist of multiple nodes, each with a camera and 

a processor. Images acquired from each camera will be processed locally and the information 

for stereo processing will be shared via the network. To compensate for the difference in the 

speed of capture cards and processors, video acquisition will need to be synchronized not only 

at the starting point, as explained in Sect. A.1, but also regularly online. Specifically for shadow 
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removal, geometric calibration of the projector as well as the camera will be necessary for the 

precise location of the occluder and the shadow. 

The multi-camera object segmentation system presented is also useful for a wide variety of 

applications including surveillance, tracking, and event recognition. It is particularly interesting 

to virtual reality environment research and the entertainment and film industry. The proposed 

disparity contour method is fast, and immune to large textureless regions and rapid changes in 

background texture and illumination, difficulties so far untackled by existing approaches. 
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APPENDIX A 
Video Acquisition and Preprocessing 

This section briefly describes synchronized video acquisition using multiple cameras and 

preprocessing including distortion removal and rectification. 

A.l Synchronized video acquisition 

Video acquisition from multiple cameras was carried out by a distributed system in which 

each camera was connected to a computer. Multicast synchronizing signaIs were used to initiate 

and terminate video capture, which, in theory, runs at a stable rate of 30 frames/sec. 1 Due to 

the various response times and processing latencies of hardware, the starting time of a captured 

video varies with different cameras and capture cards. Moreover, at the beginning of a captured 

image sequence, the frame rate is usually not constant at 30 Hz due to the video streaming setup 

of a frame grabber. Therefore, off-li ne processing is necessary to locate the starting synchronized 

frame in each image sequence before any subsequent image processing. This was done based on 

timestamps recorded with each frame during video capture. 

A.2 Image distortion removal and rectification 

Distortions in captured images due to camera lens systems must be removed because the 

following rectification algorithm assumes a linear camera model without distortion. The undis-

torted image samples are shown in Fig. A-1(b). 

As mentioned in Sect. 2.2.2, stereo mat ching can be made more efficient by making use 

of the epipolat constraint, searching for a match along corresponding epipolar lines. For this 

purpose, image rectification based on the algorithm of Fusiello et al. [60] is employed to virtually 

change the camera parameters, or equivalently, to warp pairs of stereo images so that pairs of 

1 Actually, the frame rate of an NTSC camera is 30 x 1000/1001 ~ 29.97 frames/sec. 

124 



(a) 

(b) 

(c) 

Figure A-1: Image preprocessing. Left column: left view; right column: right view. (a) Captured 
images. (b) Image distortions removed. (c) Images rectified. 

conjugate epipolar lines become co-linear and parallel to the horizontal image axis. The results 

are shown in Fig. A-1(c). 

Both distortion removal and rectification are image warping operations and can, therefore, 

be combined into a single lookup table that contains pixel-to-pixel mappings between the original 

image and the warped result. This lookup table can be built offiine to reduce the run time cost. 
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