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Abstract 

This thesis addresses the problem of producing three-dimensional constrained 

Delaunay triangulated meshes from the sequential two dimensional MRI medical 

image slices. The approach is to generate the volumetrie meshes of the scanned 

organs as a result of a several low-level tasks: image segmentation, connected 

component extraction, isosurfacing, image smoothing, mesh decimation and 

constrained Delaunay tetrahedralization. The proposed methodology produces a 

portable application that can be easily adapted and extended by researchers to 

tackle this problem. The application requires very minimal user intervention and 

can be used either independently or as a pre-processor to an adaptive mesh 

refinement system. 

Finite element analysis of the MRI medical data depends heavily on the quality of 

the mesh representation of the scanned organs. This thesis presents 

experimental test results that illustrate how the different operations done during 

the process can affect the quality of the final mesh. 



Résumé 

La présente thèse porte sur le problème de la production de maillages 

tridimensionnels restreints de Delaunay à partir des images de coupe 

bidimensionnelles séquentielles obtenues grâce à l'imagerie par résonance 

magnétique (IRM). La méthode consiste à produire les maillages volumétriques 

des organes lus optiquement à la suite de plusieurs tâches de bas niveau, à 

savoir : segmentation d'image, extraction d'une partie constituante, lissage 

paramétrique, polissage, décimation du maillage et tétraédrisation restreinte de 

Delaunay. La méthode proposée permet d'obtenir une application portable que 

des chercheurs peuvent facilement adapter et élargir pour résoudre ce problème. 

L'application exige de l'utilisateur une intervention minimale et peut être utilisée 

soit de façon autonome, soit comme un préprocesseur d'un système adaptatif 

d'affinement des maillages. 

L'analyse par éléments finis des données médicales de I'IRM tient fortement à la 

qualité de la représentation en maillage des organes lus optiquement. La 

présente thèse présente les résultats d'un essai expérimental qui montrent la 

manière dont les différentes opérations effectuées au cours du processus 

peuvent influer sur la qualité du maillage final. 
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Chapter 1 

Introduction 

Most medical imaging techniques such as X-ray, Computed tomography {CT) and 

Magnetic Resonance lmaging (MRI) produce high quality two-dimensional image slices. 

These images are very useful for the diagnostic evaluation. However, they cannot be 

used directly for advanced and detailed numerical analysis such as volume calculation, 

rapid prototyping, simulations, or treatment planning application. Even a specialized 

team would have difficulties to process directly the data emerging from these two­

dimensional photographie image slices. Automatic tools that are able to produce 

geometrie representations and numerical volume models of the scanned organs can 

provide quantitative data that aid the physicians to better treat their patients. 

1.1 The Finite Element Method 

The finite element method (FEM) is a tool that is used for finding approximate solutions 

of complex differentiai and integral equations [1 ]. The steps associated with a typical 

FEM can be summarized as follows: (i) Discretizing the problem region; (ii) a model of 

the solution is constructed over each element by an approximating function (uniquely 

defined by a set of parameters); and (iii) the parameters are computed based on global 

boundary conditions. Because of its strong foundations and favourable characteristics, 

FEM is sometimes considered one of the most powerful numerical analysis techniques 

[2]. 

FEM has applications in a wide range of fields in science and engineering. ln the 
~,, 

medical field, automatic Finite Element (FE) models can be extremely useful in analysing 

1 



the data of the patients. They can be utilized in many critical operations such as 

identifying prostate cancers, compensating for brain deformation during neurosurgery, or 

predicting deformation of the breast. 

Mesh generation is an important initial step in any numerical FE analysis requiring high 

quality meshes to accurately capture the complex physical abject. This step involves 

discretization of the three dimensional domain of the abject into small elements of simple 

geometry such as tetrahedra or hexahedra. The mesh quality directly affects the 

accuracy and the efficiency of the FEM solution [25]. 

1.2 Motivation for the Research 

Even though numerous mesh generation methods have been described to date, there 

are few which can deal directly with medical data input [1 0]. There is clearly no weil 

established methodology for mesh generation in the medical community. Most available 

automatic mesh generations are targeting physical abjects in general and they are not 

weil suited to handle abjects from medical images [10]. There is no doubt that a detailed 

investigation of the challenges and difficulties associated with automatic mesh 

generation of medical images needs to be explored and researched in more detail. 

There are many questions that should be answered such as: (i) what are the various 

steps needed to produce a high quality mesh from the 20 MRI slices? (ii) How does 

each step affect the quality of the produced mesh? (iii) How can the difficulties faced 

during the process be handled? 

2 



Most medical applications available in the market today are commercial and very 

expensive [17]. Moreover, they are designed for specifie hardware architectures that limit 

their portability [18]. 

1.3 Thesis Objectives 

This thesis is an attempt not only to defi ne the current state of the technology but also to 

propose a complete open-source architecture that can be used to transform medical 

images from their native scanned format to volumetrie meshes that can be used in FE 

analysis. The developed tool should be of great assistance to better analyze the 

scanned data of the patients and to aid future researchers to tackle this domain even 

further. 

Because mesh quality is often a pre-requisite for successful finite element analysis [25], 

this research is supported by a detailed discussion on how mesh generation algorithms 

based on the constrained Delaunay triangulation principle are affected by the operations 

executed during the process to transform the medical images into volumetrie meshes. 

This discussion is done with the aid of experimental test results produced by the 

proposed application. Also, a discussion about the possible ideas of how to improve 

such a process is presented. 

1.4 Thesis Outline 

ln Chapter 2, the theoretical concepts and the art of generating the volumetrie mesh 

from the MRI medical slices will be addressed. ln Chapter 3, a proposai of an open­

source system architecture that would accomplish the medical mesh generation task will 

be presented. ln Chapter 4, the details needed to setup an environment to execute the 
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experiments will be outlined. ln Chapter 5, the proposed architecture will be tested with 

real data and the results obtained will be discussed. Finally, conclusions and a summary 

of possible future work will be presented in Chapter 6. 

4 
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2.1 Overview 

Chapter 2 

Theory 

The two-dimensional Magnetic Resonance lmaging (MRI) slices can be used to create 

an image of the whole volume at once. There is no doubt that the geometrie 

representation would contain much more information than the separated two 

dimensional images. High quality numerical models do not only allow the physicians to 

look at the region of interest from the various possible viewpoints, but can also provide 

them with quantitative data that can potentially increase the probability of a successful 

treatment. This chapter of the thesis summarizes the theoretical concepts behind the 

r· various aspects involved in producing the numerical models of the anatomical 

geometries used as inputs for the three dimensional finite element solvers. 

2.2 Magnetic Resonance lmaging Theory 

The magnetic Resonance Imagine (MRI) technique is the most common technique to 

produce image volumes. Images produced from this technique will be used as the inputs 

for our various experimentations. This section summarizes the theory behind this 

technology and the type of information represented in these image slices. 

Unlike many other medical imaging techniques, exposure to radiation is avoided in this 

technique. The magnetic resonance images are not only clearer and more detailed than 

the other imaging methods but also can be taken from an arbitrary direction [49). ln 

addition, bane does not disturb the quality of the images. The produced images contain 
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information of a chemical nature. The different intensities in the image reflect mainly the 

density of hydrogen atoms and their chemical environment [3]. 

2.2.1 Magnetic Moment and Resonance 

MRI makes use of the resonance property found in the hydrogen nucleus in the body 

molecules. The basic principle of magnetic resonance is that the nucleus performs spins 

around its axis giving it angular moment. Since the proton is a positive charge, a current 

loop perpendicular to the rotation axis is created, and as a result the proton generates a 

magnetic field m parallel to the rotation axis (Figure 2.1 ). The total magnetic moment is 

zero because the direction of these moments is randomly distributed and on average 

equalizes one another [3]. 

Figure 2.1: Visualisation of the spin and the magnetic moment [3]. 

When an external, uniform magnetic field (80) is applied to the body, the hydrogen 

nuclei will align with the magnetic field and create a net magnetic moment, M, parallel to 

8 0 . The stronger the 8 0 field, the greater is the total magnetisation M. The applied field 

will also cause the magnetic moment of the nuclei to start to precess about the direction 

of 8 0 with an angular frequency w0 called the Larmor frequency - equal to [48]: 

Wo = Gamma * Bo (2.1) 
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Gamma is a constant called the gyromagnetic ratio, and its value depends of the type of 

nucleus. 

When a radio-frequency (RF) pulse (a weak rotating magnetic field), 8,, is applied 

perpendicular to Bo with a frequency equal to the Larmor frequency, M will start to tilt 

away from 8 0 as shown in Figure 2.2. 

" 
ff 

)) '} 
~ 

ff 
/ 

Br~ 
(a) 

Figure 2.2: The affect of applying the RF pulse (a) and the resonance relaxation (b) [48]. 

When the RF signal is turned off, the nuclei return to equilibrium such that M is again 

parallel to 8 0. This return to equilibrium is referred to as relaxation [48]. During 

relaxation, the nuclei emit the absorbed energy as a time varying signal. This produced 

RF signal is measurable and measured by a conductive field coil placed around the 

object being imaged. This measurement is processed to obtain the grey-scale MR 

images. 
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2.2.2 Magnetic Resonance Measures 

As stated, when the RF-pulse is removed, the magnetisation returns to its former state, 

which releases energy. At this point, the interesting information is gathered [3]: 

• The energy release gives an estimate of the number of hydrogen nucleuses, 

which in principle is the a mount of water. 

• The longitudinal relaxation time T1, the ti me passed until the magnetisation 

return to "normal", gives information about the chemical surrounding of the water. 

The longer time, the harder the water is chemically bound. 

• The transverse relaxation time T2, the time passed until the phase coherence is 

lost, reflects the surroundings of each individual atom, which gives a different 

contrast. T2 images often show differences between healthy and pathological 

tissue. 

lt can be concluded th at the different intensities in the generated image reflect mainly the 

density of the hydrogen atoms and their chemical environ ment. 

2.3 The Overall Model 

Volume geometrie models of the anatomical organs can be created from the MRI slices 

from a model that consists of four main steps (summarized in Figure 2.3): 

Step 1: Image segmentation to generate the object boundaries of the tissue under study. 

Step 2: Surface mesh generation. 

Step 3: Refine the surface mesh with smoothing and decimation. 

Step 4: Volume mesh generation. 
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3. Surface Mesh 
Adjustment 

(Srnoothing and Decimation) 

4. Volume Mesh Generator 

Figure 2.3: Flow chart for the creation of 30 meshes based on 20 images. 

Each of these steps is discussed in more detail in the following sections: 

2.4 Step One: Segmentation 

As discussed in section 2.2, the produced grey-scale MRI images actually represent 

density of the hydrogen atoms of the different scanned organs and tissues. The first 

logical step in producing meshes of a specifie tissue or an organ is to separate it from 

the other tissues/organs. Segmentation is the process that separates objects in an 

image. 

ln medical images, segmentation is the first step in creating three dimensional surfaces 

and volume meshes of the region of interests (ROis) [9]. lt is used to separate the 

different parts of the anatomical organ and to outline each ROI such that the enclosed 

area of the image can be identified out [28]. Segmentation by itself is used in various 
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medical applications. ldentifying tumours is an excellent example of such application. lt 

is an important step because it provides the initial seed set to start the meshing process. 

The quality of a segmentation process can be criticized against its speed, accuracy, and 

degree of automation [9]. Automated segmentation of medical images is not a new area 

of research and it is undergoing rapid development [15]. lt is a challenging task to 

automate the segmentation of medical images. A myriad of different methods have been 

proposed and implemented in recent years. ln spite of the huge effort invested in this 

problem, there is no single approach that can generally solve the problem of 

segmentation for the large variety of image modalities existing today [8]. Noise in the 

produced image is one factor why this task is not easy to automate [9]. Another factor 

would be the overlapping scalar value of the different tissues which significantly 

decreases the effectiveness of the automatic segmenting process [9]. Pre and post 

processing are sometimes necessary to improve quality. Therefore, sometimes the only 

way to get good segmentation is to manually draw the boundaries separating the ROis 

on each slice by an expert. 

Figure 2.4: Example of the original brain MRI slice scan and its corresponding 

segmented images (White matter, Ventricle, Gray matter) [9]. 

10 



2.5 Step Two: Surface Mesh Generation 

The second step in creating three dimensional volume meshes of the region of interests 

(ROis) is generating the surface mesh of the segmented data. A surface rendering 

algorithm is needed. Marching Cubes (MC) [4] is one of the most famous and reliable 

algorithms for this purpose. 

The Marching Cubes algorithm is a three dimensional technique for rendering 

isosurfaces representation of the volumetrie data. ln this algorithm, an imaginary cube is 

t 
used to march through pairs of adjacent segmented images by taking eight neighbour 

locations at a time, four vertices from each slice. A polygon is determined to represent 

the isosurface that passes through this cube by comparing the material type of each 

vertex. If a vertex has a different material from its neighbouring vertices, a boundary 

surface should exist between it and the others in order to separate the two different 

materials. There are 256 different combinations of material types that a cube's vertices 

could have [4]. These combinations can be obtained by reflecting and symmetrical 

rotation of 15 unique situations [14). Figure 2.5 shows these possible combinations. The 

individual polygons are then fused into the desired surface. 

The Marching Cubes combines simplicity with high speed. Despite the various 

advantages of using the Marching Cubes algorithm, it has some drawbacks. The surface 

model created by the Marching Cubes algorithm has stair-step shaped surfaces, which 

do not represent the natural surface curvature [8]. Also, the large density of the surface 

nodes and the triangles severely hinder the computational efficiency of the subsequent 

/' volume mesh generation steps [8). This emerges the need for some surface adjustments 

before being able to generate the meshes. 
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Figure 2.5: The fifteen unique MC configuration [14]. 

2.6 Step Three: Surface Mesh Adjustments 

7 

Case3 

Case7 

7 
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6 

6 
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There are two main procedures to improve the quality and efficiency of the existing 

surface model: smoothing and decimation. lt is worth noting that there is no preference 

on the order in which these procedures are applied. 
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2.6.1 Surface Smoothing 

The main focus of smoothing is to improve the appearance of a mesh. This step is 

necessary to overcome the stair-step shaped surfaces produced by the MC algorithm. 

During smoothing, the topology of the madel is not modified and only the node 

coordinates are adjusted. This means that the smoothing operation changes only the 

geometry and doesn't change the number of nodes in the existing model [16]. A 

common and effective technique is Laplacian smoothing [14]. The Laplacian smoothing 

equation for a point pi at position Xi is given by 

- - n - -
Xi+l =Xi +ÂL(XJ -xi) (2.2) 

j=O 

~·. Where Xi+l is the new coordinate position, and x1 are the positions of points p1 

connected to pi, and À is a user-specified weight. This operation can be executed on 

the same point repeatedly [14]. 

2.6.2 Surface Decimation 

Decimation is a technique used to reduce the total number of the polygons in the 

polygonal meshes generated by the Marching Cubes algorithm [7]. The main idea is to 

use the minimum number of polygons without having a significant change in topology 

and shape of the original geometry. This will reduce the speed and the memory 

requirements needed to process the data emerging from the Marching Cubes algorithm 

[16]. The decimation technique is not domain-specifie technique and it uses local 

operations on geometry and topology to reduce the numbers of the polygons. ln this 

technique, three steps shoUid be followed: 

13 



~·. 

Step#1 Vertex classification: The goal of this step is to identify the vertices that are 

candidates for deletion. ln this step, each vertex is characterized according to its local 

geometry and topology into one of five classifications [7, 14]: 

• Simple vertex: a vertex is considered simple when every edge containing this 

vertex is shared by exactly two triangles and these triangles form a complete 

cycle. 

• Complex vertex: a vertex is considered complex when one of the edges 

containing the vertex is not used by two triangles or if there exist a triangle that 

contains this vertex but not in the cycle of the triangles. 

• Boundary vertex: a vertex is considered a boundary vertex when it is on the 

boundary of a triangle mesh and is surrounded by a semi-cycle of triangles. 

• lnterior vertex: a vertex is considered interior if it is a simple vertex that is used 

by two feature edges. An edge is classified as feature edge when the angle 

between the normal of the two triangles sharing this edge is greater than a 

specified feature angle. 

• Corner Vertex: a vertex is considered corner if it is a simple vertex that is used by 

one, three or more feature edges. 

Simplt' Complex Boundary Interiur 
Edge 

Corner 

Figure 2.6: The five possible decimation vertex classifications [7]. 

Ali the vertices of type simple, boundary, interior or corner are candidates for deletion. 

Only the complex vertices are not considered for deletion. 
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Step#2 Decimation criteria: ln this step, a pass over the candidate vertices should be 

done to determine whether the vertex along with its connected edges can be deleted 

and replaced with another triangulation. For the simple vertices, this is done by 

evaluating the distance to plane criteria. If the simple vertex is within a specified distance 

to the average plane then the vertex can be deleted. For the boundary and interior edge 

vertices, this is done by evaluating the distance to the line defined by the two vertices 

creating the boundaries or the feature edges. Again if the vertex is within a specified 

distance then the vertex can be deleted. For the corner vertices, they are usually not 

deleted except for the cases when the meshes contain areas with relatively small 

triangles that have large features angles. ln these cases, the distance to plane criteria is 

used. When removing the triangles connected to the deleted vertex, a hole will be 

presented in the triangle mesh. This hole must be re-triangulated. 

Step#3 Triangulation: After the vertex has been removed, the resulting hole has to be 

triangulated. The resulting triangles should not be intersecting with each other and not 

degenerating. Triangulation with good aspect ratio can better approximate the original 

geometry of the hole. The generic two-dimensional triangulation algorithms cannot 

always produce practicable results. lnstead, the recursive three-dimensional divide-and­

conquer technique is used to take advantage of the star-shaped of the hole. First, this 

hole is split into two sub-holes through the split plane. The split plane is the plane 

orthogonal to the average plane that contains the split line. The split line is the line 

connecting two non-neighbours vertices. Only if ali the vertices of each of the resulted 

hole lie on the same side of the split plane, the split is considered acceptable. If the split 

is unacceptable, a different split plane should be considered. Note that if there is no 

possible acceptable split, then the original vertex along with its surrounding triangles will 
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not be removed from the mesh. This algorithm is applied recursively on the resulted sub­

holes until ali the resulting hales have exactly three vertices. 

A successful triangulation will result in a reduction of exactly two triangles when 

removing a simple, corner or interior edge vertex and exactly one triangle when 

removing a boundary vertex [7]. 

2.7 Step Four: Volume Mesh Generation 

A good mesh generation algorithm must not only correctly madel the shape of the 

problem domain but also offer as much control of the sizes of the elements in the mesh 

[12]. Also, the generated elements should be relatively "round" because elements with 

large or small angles can significantly decrease the quality of the numerical solution [38]. 

Many possibilities are available to construct the meshes. The choice of the shape of the 

elements is the first thing a mesh generator should consider. Simplicial meshes is the 

most popular choice since its elements have simple shapes that it is easy to 

approximate the behaviour of a partial differentiai equation on each of them (0-simplex is 

a vertex, 1-simplex is a segment, 2-simplex is a triangle and 3-simplex is a tetrahedron 

etc.). This is why tetrahedra have often been used for three-dimensional analysis. 

Also, meshes can be classified as structured or unstructured. ln structured meshes, the 

indices of the adjacent nades can be calculated with simple addition. The biggest 

advantage of this is that there is no storage need to store the indices of each node's 

neighbours. Also, this can help a lot in simplifying the parallel computation of the 
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problem without the use of sophisticated partitioning algorithms and parallel unstructured 

solvers as those needed for unstructured meshes [12]. 

However, structured meshes fail to properly discretize many of the problems which have 

irregularly shaped demains and tend to lead to a mesh with many more elements than 

an unstructured mesh. This leads to many more redundant computations that do not 

result in a more accurate solution. The unstructured mesh fits itself more nicely into 

these demains. Experimentation has proven that unstructured meshes are much better 

than structured meshes and can provide multi-scale resolution and conformity to 

complex geometry [38]. 

2.8 Delaunay Triangulation Mesh Generation 

2.8.1 Overview 

The most popular triangulation meshing methods are those that utilizing the Delaunay 

"empty sphere" criterion. This property says that any node in the mesh must not be 

contained within the circle/circumsphere of any triangle/tetrahedron within the mesh [32]. 

Figure 2.7 is a simple 2D example of this criterion. Delaunay mesh generation 

algorithms are both provably good and very practical [38]. 

(a) (h) 

Figure 2.7: Illustration of the Delaunay criterion. (a) maintains the criterion while (b) does 

not [50]. 
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Among ali triangulations of a vertex set, the Delaunay triangulation maximizes the 

minimum angle in the triangulation, minimizes the largest circumcircle, and minimizes 

the largest min-containment circle, where the min-containment circle of a triangle is the 

smallest circle that contains it (and is not necessarily its circumcircle) [12]. This nice 

property is the reason for the wide use of Delaunay triangulation in mesh generation. lt is 

important to note that the max-min property holds only for the two dimensional Delaunay 

triangulation and doesn't apply to three dimensions and higher triangulations. ln spite of 

that, experimental results show that the Delaunay triangulation in three dimensions and 

higher is still invaluable for mesh generation applications [12]. 

A standard way to construct Delaunay meshes is to first obtain an initial set of nodes by 

meshing the boundary of the given geometry. These nodes are then used to get the 

initial Delaunay triangulation. More nodes are then added incrementally to this 

triangulation structure. The resulted tetrahedrons are redefined locally to maintain the 

Delaunay criterion. There exist many methods to determine where to locate these 

interior nodes. 

The simplest approach for point insertion is to define the nodes from a regular grid of 

points covering the domain at a specified nodal density [50]. A sizing function, which is 

determined by the user, can be defined in order to provide changeable element sizes 

and the nodes are inserted until the condition of sizing function is met. Another 

approach can be done by recursively inserting the new nodes at the tetrahedrons' 

centroids [29]. The third approach is to follow a specifie order in inserting the new nodes 

at element circumcircle/sphere canters. This technique is called "Guaranteed Quality" as 

triangles can be generated with a minimum bound on any angle in the mesh [31]. The 

line segment between the circumcircle canters of two adjacent triangles or tetrahedrons 
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is referred as "Voronoi segment". A new node is established at a point along the 

segment to satisfy the best local size criteria. This method produces very structured 

meshes with six triangles at every internai node [32, 50]. 

2.8.2 Boundary Constrained Triangulation 

Even though the minimum angle of the Delaunay triangulation in two dimensions is 

maximized, strictly Delaunay triangulation is still not enough to produce good mesh 

elements. These methods are unaware of the requirement to maintain an existing 

surface triangulation. As a result, these boundary requirements may not appear in the 

final triangulation. Secondly, these methods may produce quite poor 

triangles/tetrahedrons. Certain simplices, according to their geometry, can result in a 

significant decrease in the precision of the solution. ln two dimensions, for example, a 

triangle which is too "flat" (a flat triangle has a large angle) leads to large errors (See 

Figure 2.8). To prevent this from happening, the mesh generation has to produce 

elements which are as close of being regular tetrahedrons as possible. 

Figure 2.8: The Delaunay triangulation of a set of vertices. lt does not usually solve the 

mesh generation problem, because it may contain poor quality triangles (bottommost 

triangle) [12]. 

Bath of these problems can usually be solved by inserting additional vertices into the 

triangulation. Therefore, many implementations usually add a second step to recover the 
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required surface triangulation. By doing that, the triangulation may no longer be strictly 

Delaunay, hence the term "Constrained Delaunay Triangulation" [12]. A constrained 

Delaunay simplex is one whose circumscribing circle can contain ether vertices as long 

as they are hidden by ether input simplices of order one less than the dimension we're 

working in [38]. 

A Constrained Delaunay Triangulation (CDT) is one which allows constrained Delaunay 

simplices to be included in it and therefore has a larger degree of freedom. Although not 

strictly Delaunay, a CDT has similar properties as the Delaunay triangulation. For 

instance, given a set of segment inputs, a CDT will have the maximum minimum angle 

out of ali the ether triangulations that conform to the input segments and vertices [12]. 

Certain triangles, however, may still be deemed "bad" because they may have small 

angles, as imposed by input segments which are at small angles of each ether [12]. 

ln two dimensions, the edge recovery is relatively straightforward. The edges of a 

triangulation may be recovered by iteratively swapping triangle edges. The process is 

considerably more complex in three dimensions. Two different methods are presented 

here for recovery of the boundary. 

ln the first approach, a series of tetrahedral transformations is done by swapping two 

adjacent tetrahedra for three in order to recover the edges as shown in Figure 2.9. lt is to 

be noted that if a swap cannet resolve the edge, more nodes must be added. After 

recovering the edges, additional transformations are executed in order to recover the 

face. That is done by swapping three adjacent tetrahedra at an edge for two. ln case that 

the surface tacet can not be resolved through the transformation, more complex 

transformations or additional nodes can be added during the face recovery phase [37]. 
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Two phases are included in the second approach: an edge recovery phase and a face 

recovery phase [29]. ln this approach, nodes are inserted directly into the triangulation 

wherever the surface edge or facet cuts non-conforming tetrahedra. This process 

temporarily adds additional nodes to the surface in order to facilitate the boundary 

recovery. However, these nodes will be deleted once the surface facets have been 

recovered, and the resulting local void re-triangulated. 

D E 

Figure 2.9: Tetrahedral transformation where two tetrahedrons are swapped for three 

[50]. 

2.8.3 Delaunay Mesh Refinement 

The resolution of the unstructured meshes can vary throughout the mesh. For example, 

around a singularity, tetrahedra should be small and should become larger and larger as 

we get farther from the singularity. ln order to obtain size-variable meshes, refinement 

algorithms are used. Once the solution is calculated using an initial coarse mesh, areas 

with large error can be identified and then further partitioned into smaller simplices in 

order to gain higher precision. Refinement can be defined to be any operation performed 

on the generated elements in the mesh that effectively reduces the local element size 

[38]. ln fact, post-processing refinement is almost always needed to improve the overall 

quality of the elements generated. Element refinement procedures are numerous. 
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Smoothing is one of the most popular techniques for refinement. Smoothing adjusts 

node locations while maintaining the element connectivity. With smoothing, there are no 

changes made to the topology of the mesh. Another method for refining is called "clean-

up". ln this method the process changes the element connectivity within the mesh. ln 

refining the mesh, it is important to keep the Delaunay property of the mesh so that no 

"bad" triangles are formed in the process. Incrementai algorithms for mesh refinement 

should add vertices one by one while keeping the mesh Delaunay [38]. 
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Chapter 3 

The System Architecture Proposai 

3.1 Objective 

One of the objectives of this thesis is to propose an architecture that can be used to 

transfer the medical images into meshes that can be consumed by the FEM software 

such as ANSYS, ABAQUS, and NASTRAN. 

The proposed system will also be initiated and utilized to supply us with experimental 

data results that can be used to enrich the discussion of the effect of sorne of the 

!"'· different steps on the quality of the generated meshes. 

3.2 Requirements: 

3.2.1 Functional Requirements: 

The following list is a summary of the main functional features that the proposed system 

should have: 

1. The system should provide the ability to process MRI images in their native 

format. 

Il. The system should be capable of providing the various image processing 

services needed during the various steps to generate the mesh. These services 

should include the segmentation, isosurface creation, smoothing, and decimation 

techniques. 

23 



Ill. The system should provide the ability to generate volume adaptive Delaunay 

meshes when seeded with an initial surface mesh. 

IV. The system should provide a visualization service. This should include 

elementary functions as zoom, rotate, and translate for the 2D and 3D views of 

the processed data. 

Figure 3.1 shows the building blacks of the proposed architecture functionalities based 

on the previously listed functional requirements. 

1 Medical Image File Handler 1 

Image Processing Functions 11----------,~ 

1 20/30 Viewer l 

1 Mesh Generating Functions lf-------'t 

Figure 3.1: The proposed system architecture functionalities. 

3.2.2 Non-Functional Requirements: 

The following list is a summary of the main non-functional features: 

1. Performance: The proposed system should be designed to maximize speed 

while minimizing the memory as much as possible. This requirement is important 

because the computational cast associated with processing medical data tends 

to be very expansive. 

Il. Usability: The proposed system should be easy to learn so that new users can 

start using the system with minimal knowledge. 
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Ill. Expandability: the proposed system should be expandable so that new 

functionalities, features, and components can be easily developed and integrated 

into the system. 

IV. Portability: The system should be portable across the different platforms and 

should not be limited to a specifie hardware. Also, it shouldn't rely on proprietary 

libraries that would prevent public researchers from taking advantage of it. 

3.3 Input Representation 

As the first functional requirement stated, the system should provide the ability to 

process MRI images in their native format. Digital lmaging and Communications in 

Medicine (DICOM) files is the most popular standard for sending/receiving medical scan 

images. lt was created by the National Electrical Manufacturers Association (NEMA) 

[51]. DICOM is a comprehensive set of standards for handling, storing and transmitting 

information. Unlike The previous attempts at developing a standard, DICOM had the 

potential to actually achieve its objective for transferring images as weil as associated 

information between deviees manufactured from various vendors. 

A DICOM file contains bath a header and the image data. The header is used to store 

metadata information such as the patient's name, the type of scan, image dimensions. 

The DICOM image data can be stored as raw data or compressed using lassy or 

lossless variants of the JPEG format to reduce the image size. 

The proposed software system should be able to handle the different DICOM medical 

files variations as these image files supply the input data to our system. 
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3.4 Software Components and Libraries 

Writing software from scratch that would achieve the listed functional requirements is a 

very difficult task that requires extensive amount of effort and time. An alternate 

approach would be to look for already developed open-source software 

components/libraries of which each would be able to achieve a sub-set of the functional 

requirements. These software components are then connected together to achieve ali 

the proposed functional requirements. There are many components available. The idea 

is to try to use the minimum number of components while achieving the maximum 

possible number of functionalities. lt is important to note that during the search for such 

components, one has to always not overlook the non-functional requirements. For 

example, a component might exist that would accomplish the required functionality but 

would break the portability non-functional requirement. Furthermore, the chosen 

components should be compatible with each other to some degree. This would make the 

integration process between them feasible and doesn't require a huge effort. 

ln this section, the chosen components/libraries needed to accomplish the system 

proposai are introduced. A description of each component is presented along with a 

discussion on why this component was chosen and how it should help in achieving the 

overall proposed requirements. Figure 3.2 shows the overall proposed object design 

process and how the different chosen components communicate with each other in 

order to accomplish the various tasks and functionalities. 
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Original Slice Images 

Optimized Surface Model 

Tagged Images 

Figure 3.2: The proposed abject design process with the data flow. 

3.4.1 The lnsight Toolkit 

The lnsight Toolkit (ITK) is an open-source and object-oriented software system library 

for performing registration and segmentation on images. ITK also provides functionalities 

that allow reading DICOM files. Therefore, this software component can be used to help 

fulfill the functional requirements 1 and Il. 

ITK is implemented in C++. lt is cross-platform and uses a build environ ment known as 

CMake to manage the compilation process in a platform-independent way (see section 

3.6). ITK was started in 1999 under a contract by the US National Library of Medicine. 

This Project is still under heavy development to include even newer segmentation 

algorithms and techniques. 

ITK is very large and relatively complex compared to the other components. ITK's C++ 

implementation style is referred to as generic programming. lt uses templates for both 
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the implementation of the algorithms and the class interfaces themselves. This type of 

heavily templated C++ code challenges many compilers and it can take much longer to 

compile. 

On the ether hand, the templates programming allows the same code to be applied 

generically to any class or type that happens to support the operations used. Such C++ 

templating means that the code is highly efficient, and that many software problems are 

discovered at compile-time, rather than at run-time during program execution. 

3.4.2 The Visualization Toolkit 

The Visualization Toolkit (VTK) is an open source software library for 2D/3D 

image/surface processing, and visualization. This software component can be used to 

help fulfill the functional requirement Il and IV. VTK supports a wide variety of 

visualization algorithms and advanced modeling techniques such as surface 

construction and polygon reduction (Decimation). The VTK library is portable because it 

has been installed and tested on nearly every Unix-based platform, PCs (Windows 

98/ME/NT/2000/XP), and Mac OSX Jaguar or later [43]. 

One should understand the pipeline architecture used in VTK in order to take full 

advantage of it. ln this architecture, multiple elements are attached together to perform a 

complex task. Typical pipeline architecture is outlined in Figure 3.3. 

[Sources H Filters H Mappers H Props 

Figure 3.3: A typical pipeline architecture in VTK. 

28 



ln the figure, the sources are the classes that produce the data while the filters are the 

classes that operate on the data to produce a modified version of it. The mappers, on 

the other hand, are the interface classes between the data and the graphies primitives. 

Multiple mappers may share the same input, but render it in different ways. The props 

are the classes needed to generate the visible representation of the output of the 

mappers on the screen [13]. 

The design and implementation of the VTK library has been strongly influenced by the 

object-oriented principles and therefore understanding of the abject oriented principles 

will help to utilize the VTK underlying classes more effectively. 

3.4.3 TetGen Mesh Generator 

The functional requirement Ill can be accomplished by the TetGen software component. 

The main goal of TetGen is to generate suitable Delaunay tetrahedralization, 

constrained Delaunay tetrahedralization and quality tetrahedral meshes for solving 

partial differentiai equations by finite element or finite volume methods. TetGen code is 

highly portable since it is written in ANSI C++ and therefore can be compiled in 

Unix/Linux, Windows, and MacOS [45]. 

The final step of generating the volume meshes from the adjusted surface meshes is the 

most time and memory consuming in the overall process. lt was reported that the 

TetGen implementation is fast and memory efficient. For example, on an Apple laptop 

(2.16GHz Intel Core 2 Duo); it takes 2.38 seconds to compute the Delaunay 

tetrahedralization of 40,000 randomly distributed points with 9.4MB heap memory. For 

one million points, it uses 93 seconds and 234.47MB heap memory [45]. The TetGen 
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software component was chosen for one more reason and this is because it can perform 

efficient mesh refinement by inserting new vertices to improve the overall mesh quality. 

This can be utilized to refine the generated mesh at places where the error is tao large. 

3.4.4 The Seripting language Tel 

3.4.4.1 Tel Rational 

Tel is an open-source interpreted language. lt is available on a wide variety of platforms, 

including Windows, Mac, and essentially ali flaveurs of UNIX (Linux, Solaris, IRIX, AIX, 

*BSD*, etc.) [47]. There exist many interpreter shells such as tclsh and wish which can 

execute the various Tel commands. This scripting language will be used primarily to 

achieve the binding glue role in the proposed system. The reason why a scripting 

language was chosen to accomplish this role instead of a traditional compiled language, 

like C++, is mainly because it is easier to learn a scripting language and it is more 

readable. Remember that if a language is chosen to be the binding glue between 

different components, then this language will be used to control the arder in which the 

operations of the other components are executed. lt will be the interface from which new 

experiments can be written and old experiments can be reorganized. Because of the use 

of a scripting language, there will be no need to recompile the code to execute the 

new/modified experiments. 

On the other hand, one would argue that a scripting language would hinder the 

performance of the system. This wou Id be true if the scripting language is being used to 

carry out the costly computational operations. Remember that these expensive 

operations will be executed by their corresponding components and not by the scripting 

language itself. The scripting language role will be just to provide an easy-to-use 

interface to cali these expensive operations. 
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A traditional compiled language A scripting language 

Examples C++, Java Tel, Perl, Python 

Application Large and complex applications Simple and small to medium 
where performance is important applications where performance 

is less important 

Structure Very structured Minimum structure, less 
overhead, easy to interchange 

Table 3.1: Comparison between a scripting language and a traditional compiled 

language. 

But why was the Tel language chosen and not any other scripting language such as 

Python, Ruby, or Perl? From the extendibility point of view, the Tel language is the one 

with the best integration with the graphical user interface toolkit "Tk" [13]. This would 

allow integrating a Ul component easily in the system if needed. ln fact, most of the 

other languages, directly or indirectly invoke Tk and hence an understanding of Tel is 

helpful in learning these languages as weil [13]. 

3. 5 Software Interfaces: 

The overall functionalities can be achieved by combining together the different software 

libraries and components. However, the Interfaces between the different components 

should be defined first to facilitate this process. This section establishes these interfaces 

which would make the integration process possible. 
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1 ITK written in C++ 1 1 VTK written in C++ 1 1 TetGen written in C++ 1 

• • • 
1 Tel commands to wrap ITK calls 1 1 Tel commands to wrap VTK calls Il Tel commands to wrap Tetgen calls 1 

-
t 

A script written in Tel 
that makes calls to the 

different libraries and components 
(There is no need to compile code to carry out experiments) 

1 Tel commands get executed in a Tel shell such as wish or tclsh 1 

Figure 3.4: The proposed interfaces between the software components. 

3.5.1 ITK-VTK interface 

Fortunately, both ITK and VTK have an automated wrapping process to generate 

interfaces between the implemented C++ class library and the interpreted programming 

languages Tel. However; this is not enabled by default and customized changes to the 

settings to compile their source code should be made to enable this feature (Refer to 

Appendix 1). 

Also, ITK and VTK use different wrapping system and therefore it is not a straightforward 

procedure to convert the output of the ITK engine to be used directly as input by the VTK 

engine from within the Tel command. There are mainly two possible approaches to solve 

this problem: (i) convert the output of ITK engine to a common file format that can be 

read by the VTK engine; or (ii) make use of the image data importer and exporter 

classes that have been implemented in both engines. The first approach is simpler as 

there is no challenge in instantiate image importer classes in the VTK without knowing 

first the pixel type of the produced image of the different ITK segmentation techniques. 

On the other hand, the first approach has worse performance as 10 operations are 

involved. Again this should not be an issue as these types of operations are not the 
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bottleneck operations in such medical application. The common file format that can be 

produced or consumed by both angines is the .vtk file format. 

3.5.2 VTK-TetGen Interface 

There is no automated wrapping process to generate an interface between the 

implemented C++ TetGen class library and the interpreted programming language Tel. 

This wrapper would make the ultimate use of the scripting and compiled language 

combination in a single piece of software (hybrid programming approach) [13]. lt would 

allow the TetGen code to be called directly from within a Tel shell and therefore 

maintaining the Tel interface among ali the components of the proposed system. ln fact, 

writing such code is a necessity to complete the integration process and to provide a 

mechanism for future code changes to be integrated into the proposed system 

regardless of the language they are written in. See Appendices Ill and IV for the C++ 

structure for such wrapper. 

Also, a similar approach to the ITK-VTK interface is being used to transfer the data from 

the VTK engine to the TetGen engine by using the .ply common file format that can be 

produced by the VTK engine and consumed by the TetGen engine. lt is important to 

note that TetGen can only accept .ply files as input data, and it cannet produce them as 

output data. Therefore, code was written to transfer the TetGen output files into a format 

that can be consumed by the VTK for visualization and mesh quality reporting purposes 

(Refer to Appendix V). 
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3.6 Software Portability: 

Writing software that can compile and run on different operating systems is not an easy 

task even for the most experienced programmer [13]. This is especially true for software 

written with the C++ language. C++ programmers not only have to make sure to follow 

the standard C++ coding rules and to restrict their use to the standard libraries but have 

also to provide a mechanism for their code to be campi led and built across the different 

platforms. 

CMake is a cross-platform and open-source make system. This tool can help in 

controlling the software compilation process of a software component across the 

different platforms. Portability of C++ code is easier with the use of such tool. CMake is 

quite sophisticated. lt is possible to support complex environments requiring system 

configuration, pre-processor initializations, code generation, and template instantiation. 

CMake takes as an input a set of configuration files and generates as an output native 

makefiles (Unix) or Visual studio projects (MS-WINDOWS) for the application. Because 

of this tool, there is no longer a need for the programmer to write bath by hand. 

8oth VTK and ITK provide the compiler independant CMake configuration file consumed 

by the CMake executable to generate the VTK/ITK code according to the chosen 

platform/compiler environment. CMake configuration file was produced for the TetGen 

code to be able to achieve the same functionality (See Appendix Il). 
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Chapter 4 

Experiments Setup 

This chapter of the thesis builds the foundations needed for the experiments to be 

carried out. This includes how to evaluate the results of the experiments, how to setup 

the hardware and software environments, and specifying the input data to the 

experiments. 

4.1 Mesh Quality Evaluation 

An important step in conducting numerical experiments is to setup the criteria with which 

one can evaluate the results of the experiments. This can be summarized into three 

categories: (i) Geometrie mesh quality measures; (ii) Mesh surface approximation 

measures; and (iii) Performance measures. 

No matter the context, it is clear that mesh quality evaluation are essential for achieving 

optimal accuracy and efficiency of the finite element analysis [21]. 

4.1.1 Geometrie Mesh Quality Measures 

lt is weil known that the accuracy and efficiency of the finite element method can be 

directly affected by very poor quality elements [2, 21-23). A single poor quality element 

can cause the slowdown of iterative solvers and large round-off errer in the finite 

element solution [21]. The tetrahedron simplex is the most flexible element for covering 

complex topologies in three dimensions because the complete polynomial expansion 

functions can be defined over tetrahedra with relative ease [26, 27]. Tetrahedra are 

considered a good choice to represent medical data since it is particularly 
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straightforward to use them to describe smooth surfaces [6]. Geometrie mesh quality 

measures evaluate the shape of tetrahedra based on purely geometrie characteristics. 

Most of these measures are usually presented in the form of quantities such as volume, 

edge lengths and radii of the spheres associated with the tetrahedral elements. The 

most common used benchmark test for geometrie quality measures are based on a 

specifie distortion of an equilateral tetrahedron [33, 34]. Tetrahedra that are particularly 

skewed slow down and produce errors in the solutions given by partial differentiai 

equations solvers. The reason for these problems is that the equations corresponding to 

skewed tetrahedra can be very poorly conditioned [6]. 

According to the dihedral angle, the angles between triangles in a tetrahedron, poorly-

shaped tetrahedra can be classified into five classes [6] as shown in Figure 4.1. A 

needle tetrahedral has the edges of one triangle much smaller than the ether edges. A 

wedge has one edge much smaller than the rest. A sliver has four weil separated points 

that nearly lie in a plane. A cap has one vertex very close to the triangle spanned by the 

ether three vertices. A spindle has one long edge and one small edge. 

Needle 

~ 
Wedge 

~ 
Spindle 

Figure 4.1: The five classes of poorly-shaped tetrahedra [6]. 

Beth a and f3Baker measures are considered among the most commonly used measures 

in identifying tetrahedra distorted from the equilateral shape. 
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3Rt 
a=­

Rc 
(4.1) 

Ri is the radius of the insphere inscribed in a tetrahedron such that each face of the 

tetrahedron is tangent to the sphere and Re is the circumsphere radius of the sphere 

passing through ali four vertices of the tetrahedron. The a ratio achieves a value of one 

for equilateral tetrahedra [33]. Elements having a lower value considered poorer quality. 

r;- Rt 
f3saker = 2-v o--

lmax 
(4.2) 

l is the length of the largest edge in a tetrahedron. Similarly, this ratio achieves a 
max 

value of one for equilateral tetrahedra and a lower value for the tetrahedra distorted from 

the equilateral shape. Note that the normalized Baker quality criterion has a solid 

theoretical basis linking it to approximation accuracy for first-order tetrahedral finite 

element [35]. ln particular, the measure is fair and associated with interpolation error 

bounds suggested by approximation theory [25]. 

Therefore, the quality of the shape of the mesh elements generated by the experiments 

can be compared by computing a and flsaker measures. Also, reporting the minimum, 

maximum and average minimal dihedral angle of the generated tetrahedrons would also 

help to visualize the quality of the mesh elements [12]. 
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4.1.2 Mesh Surface Approximation Measures 

The non-equilateral tetrahedra are known to negatively impact finite element accuracy 

and efficiency; however, it is not sufficient for evaluating tetrahedral meshes in the finite 

element context [25]. One of the most important properties of a tetrahedral mesh is that 

it must completely fill the region being simulated. ln the proposed methodology, this 

heavily depends on the surface approximation of the anatomical abject. The quality of 

the surface approximation can be evaluated using the Hausdorff distance mean error 

dm(S,S') [19] between the approximated surface (S') and the original surface (S). 

dm(S,S') = ~~~ fJd(p,S')dS 
pES 

(4.3) 

!SI donates the area of the surface S and d(p, S') is the distance between a surface S' 

and a point p belonging to surface S and it can be computed as 

(4.4) 

Note that 11·11
2 
donates the usual Euclidean norm. As can be seen in Figure 4.2 the 

distance between a point p and a surface S' is defined to be the distance between the 

point p and the nearest point in S' to p. 

Figure 4.2: Illustration of how to compute the distance between a point and a surface. 
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A natural variant of the equation 4.3 would be the root-mean-square errer version which 

can also be used as a measure for the accuracy of the surface approximation [19]. 

drmse(S,S')= ~~~ Jfd(p,S')
2

dS 
J1ES 

(4.5) 

lt is worth noting that the definition of the distance between two surfaces is given by the 

Hausdorff equation 4.6. 

d(S,S')=maxpES d(p,S') (4.6) 

This equation is not symmetrical (i.e. d(S,S') * d(S',S), see Figure 4.3) and therefore 

equation 4.3 is not symmetrical either. Symmetrical version of equation 4.3 can be 

derived as follows: 

(4.7) 

Similarly, a symmetrical version of equation 4.5 can also be derived. lt is important to 

mention that the symmetrical version provides a more accurate measurement of the 

errer of the surface approximation since the value of each distance side can be largely 

different than the ether as illustrated in Figure 4.3 where d(A,S') << d(B,S). 

Note that the original surface can be the surface produced by the marching cubes 

algorithm, before decimation. ln this case, the approximate surface would then be the 

surface produced by decimation. 
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Figure 4.3: Symmetrical distance between two surfaces [19]. 

4.1.3 Mesh Performance Measures 

The challenge of anatomical modeling from the medical images is not only to accurately 

model complex shapes but also to reduce the modeling time [20]. The produced mesh 

that leads to as few computations as possible in a finite element simulation is highly 

desirable as intra-operative medical procedures require the mesh generation process to 

be very fast. While sorne methods can perform weil with large datasets, it is often 

reported that the execution time can be very lengthy [20]. Both the bad quality and the 

large number of the mesh elements can negatively affect the execution time of a FEM 

simulation [5]. While the shape quality should be high in order to produce accurate 

results, the number of the mesh elements should be small enough to keep the 

computation time reasonable [24]. Consider for example, the typical Marching Cubes 

algorithm would generate a very large number of polygons: one to three million triangles 

from a 512x512x512 volume. If these generated polygons are used directly to generate 

the mesh then a large number of mesh elements would be produced without necessarily 

increasing the quality of the mesh. However, one should remember that the number of 
r·· 

elements cannot be very small as this would lead to mesh elements with large sizes. 
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Mesh elements with large sizes are reported to produce less FEM accurate results than 

the smaller ones [12]. 

Another performance attribute that should be considered is the memory needed during 

the process. Mesh generation algorithms might require huge amount of memory 

especially when the number of mesh elements generated is large. 

Therefore, it can be seen in order to evaluate the performance of the mesh generator: 

one would report the time needed for the various tasks to be executed, the number of 

mesh elements that were generated, the sizes of these elements, and the memory 

needed during the process. 

/' 4.2 Environ ment of the Experiments 

4.2.1 Hardware Environment 

The proposed system is a highly portable solution that is not limited to a specifie 

hardware system. The experiments in this thesis were performed on an Intel Pentium 4 

workstation equipped with a 2.0 GHz CPU, 512KB cache size, and 512MB physical 

memory. 

4.2.2 Software Environment 

Many different software components and tools were used in these experiments. Table 

4.1 summarizes the version numbers of the different software components. 
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Software component Version# 

os Windows XP Sp2 

Tel 8.3 

Visualization TooiKit (VTK) 5.0.3 

lnsight Toolkit (ITK) 3.4.0 

TetGen Mesh Generator 1.4.2 

CMake 2.4 patch 7 

C++ Compiler Microsoft Visual C++ 6.0 SP6 

Table 4.1: Software env1ronment of the expenments. 

Refer to Appendix 1 for the full guide of the detailed technical instructions on how to 

setup these different components together. 

4.3 Input Data 

The experiments were carried out on a dataset derived from a frog. The data was 

originally obtained from the Virtual Frog project of the Lawrence Berkeley National 

Laboratories [42]. The intention of the experiments done on the frog data was to 

generate a better understanding of how to transform the image slices into volumetrie 

mesh elements using the proposed system architecture by going through the different 

low-levels tasks. 
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Chapter 5 

Experimental Results 

There are many steps involved in the process to generate volumetrie medical meshes. ln 

this chapter, experiments were carried out in order to study the affect of sorne of these 

steps on the quality of the final produced meshes. 

5.1 The Reference Case 

The steps depicted in Figure 5.1 will be carried out on the segmented image slices of a 

frog. The names of the functions that are actually called are also presented in the figure. 

Note that sorne customized code had to be written to make the flow in the figure 

possible. Refer to Appendices Ill-VIII for the more technical details. 

The idea is to evaluate the affect of the operations involved on the quality of the final 

mesh generated. The first step would be to execute the suggested set of operations 

depicted in Figure 5.1 with sorne default parameter values on a set of different tissues of 

a frog and report back the quality of the meshes that are generated. After that, the 

experiments will be repeated by modifying the parameter values of the operations, 

replacing the operations with equivalent ones that implements different algorithms, or by 

adding new operations in the process. A comparison of the results will be done and 

discussed throughout the different experiments. 
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VTK 

Smoother 
(vtkSmoothPolyDataFilter) 

File Writer 
(vtkPL YWriter) 

TetGen 

Mesh Generator 
(TetGen) 

File Format Conversion 
( ConvertFrom TetgenTo VTK) 

Figure 5.1 : Flow chart of the various procedures of the experiment. 

Refer to Appendix VIII for the experiment.tcl script file which describes how the 

operations are actually called. Note that each operation has a section in the file which 

allows the user ta enable/disable the operation and/or change the parameter values of 

the operation. The results on applying the operations of Figure 5.1 on eight different 

tissues of the frog are presented in Tables 5.1 and 5.2. 
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Table 5.1: Numerical results forthe geometrie mesh quality measures of the reference case. 

Tissue Name Dihedral Angle a 13saker 

Min average Max Max average Min Max Average Min 

brain 0.823 43.571 88.761 0.999 0.538 0.013 0.977 0.479 0.020 
eye retina 0.389 43.442 89.130 0.999 0.517 0.000 0.986 0.476 0.003 

eye white 0.125 42.586 89.044 0.999 0.478 0.001 0.985 0.446 0.005 

heart 1.055 43.545 89.018 0.998 0.550 0.005 0.979 0.490 0.014 
kidney 0.152 43.378 88.979 1.000 0.293 0.000 0.988 0.475 0.002 

!_intestine 0.872 43.347 89.448 0.998 0.529 0.002 0.977 0.480 0.011 

lung 0.116 43.292 89.129 0.999 0.299 0.000 0.980 0.460 0.002 
spleen 0.888 42.975 88.866 0.995 0.523 0.015 0.954 0.470 0.016 

Table 5.2: Numerical results for the performance mesh quality measures of the reference case. 

Tissue Name 
# of Tetrahedron Tetrahedron Volume 

Mesh Generation Time (s) Memory (KB) 
generated Min average Max 

brain 52515 0.00011 0.544 32.315 6.124 5796 

eye retina 133186 0.00000 0.416 9.812 22.856 14972 
eye white 51318 0.00002 0.465 25.172 6.092 5925 

he art 84468 0.00011 0.655 33.424 11.449 9341 

kidney 113752 0.00000 0.514 19.914 18.437 12824 

1 intestine 93577 0.00004 0.820 78.886 11.868 10360 

lung 119058 0.00000 0.594 39.445 17.261 13371 

spleen 13012 0.00018 0.443 13.132 1.325 1505 



r-\. 
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Note that the results in both tables were obtained when the target reduction rate 

parameter for the decimation operation was set to 0.6. The values of the smoothing 

factor and the number of smoothing iterations were set to .01 and 10 respectively. The 

TetGen engine was instructed to generate a quality constrained Delaunay 

tetrahedralization for the surface mesh produced with a constraint to have a minimum 

radius-edge ratio of value 1.414 (switch pq1.414). This set of parameters is going to be 

considered the experiment's reference case to which the parameters of the ether 

experiments can be compared. 

lt is worth noting that the proposed application reports a significant amount of useful 

information regarding the various operations during/after their executions. This is done 

by leveraging the reporting functionalities offered by the various components. This 

includes for example the use of the vtkMeshQuality object in the system and customizing 

it to compute the required mesh measures. The verbose logging feature of the TetGen 

component is another opportunity to enhance the system's reporting capabilities. Refer 

to Appendix VIl for a sample output when the operations in Figure 5.1 get executed. 

Also, Figure 5.2 shows a visualization example on how the data are transformed during 

the various steps to create the final volume mesh of one of the frog's tissues, the spleen. 

Note that the adjusted surface mesh produced after the decimation and the smoothing 

operations fixes the stair-step shaped surface produced by the Marching Cubes 

operation and reduces the number of the triangles needed to represent the surface as 

weil. 
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5.2 Effect of the Decimation Operation 

The decimation operation is done by the vtkDecimatePro filter. This filter implements a 

very similar algorithm to the one described in section 2.6.2 except that it is designed to 

generate progressive meshes that is a stream of operations that can be easily 

transmitted and incrementally updated [14,40]. The experiments done with this operation 

is to evaluate the effect of changing the reduction rate parameter on the quality of the 

generated mesh and also to evaluate whether a different decimation approach would 

have any different results when applied to the same data. 

5.2.1 Decimation Reduction Rate Effect 

ln this experiment, the same operations in Figure 5.1 were carried out multiple times. ln 

each time, the reduction rate was chosen to be a value of 0, 0.2, 0.4, 0.6, 0.8, or 0.95. 

Similar tables to Tables 5.1 and 5.2 were produced and compared. Even though the 

numerical values of the geometrie mesh quality measures were changing slightly 

between the different iterations of the experiments, there was no clear direction for these 

changes. This would suggest the low impact of the decimation operation on the 

geometrie measures of the produced elements. On the ether hand, there was a clear 

impact on the mesh performance measures. This can be seen in Figure 5.3 where the 

number of the tetrahedra generated gets changed in almost a regular fashion for ali the 

tissues. 
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Figure 5.3: Effect of the decimation reduction rate on the number of generated elements. 

The increase of the reduction rate at the low spectrum of the chart doesn't have a 

measurable effect on the number of generated elements. This would suggest that the 

small reduction in the number of the triangles on the surface mesh is not sufficient for 

TetGen to start producing large elements that conform to the 1.414 edge-ratio imposed 

constraint and therefore not able to decrease the number of generated elements. The 

situation changes dramatically once the reduction becomes relatively higher. TetGen 

would have higher freedom to generate larger elements and therefore reduce the 

number of generated elements. However, this doesn't last for long as the number of 

generated elements in the mesh becomes constant at the high spectrum of the chart. 

This can be explained better with the aid of Figure 5.4. 
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Figure 5.4: Effect of the decimation reduction rate on the number of triangles generated 

on the mesh surface . 

ln Figure 5.4, one can realize that there is no actual decrease in the number of the 

triangles on the mesh surface as one would expect with a higher reduction rate. The 

reason is because the vtkDecimatePro implementation doesn't guarantee satisfying the 

reduction rate [14]. lt is a challenge for a decimation algorithm to obtain a very high 

reduction rate without changing significantly the topology of the mesh. vtkDecimatePro 

was used and instructed to preserve the topology of the mesh as much as possible. 

Similar effect was reported on the various other performance mesh measures. For 

instance, Figure 5.5 shows how the average tetrahedron volume gets affected by the 

variation of the reduction rate. 
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Figure 5.5: Effect of the decimation reduction rate on the average tetrahedron volume. 

5.2.2 Different Decimation Implementation 

ln this experiment, the same operations in Figure 5.1 will be carried out again but this 

time with a different implementation for the decimation operation. More specifically, the 

vtkDecimatePro abject will be replaced with the vtkQuadricDecimation abject. The 

details of the vtkQuadricDecimation algorithm can be fou nd in [41]. Figures 5.6 and 5. 7 

are the vtkQuadricDecimation figures corresponding to Figures 5.3 and 5.4. Similar 

behaviour was observed except for the high reduction rate spectrum. This change in 

behaviour would be explained by the ability of vtkQuadricDecimation to achieve higher 

reduction by changing significantly the topology of the mesh. This can be numerically 

seen in table 5.3 where the symmetrical Hausdorff distance was measured from the 

original surface produced by the Marching Cubes algorithm for the spleen tissue to the 

produced decimated surface by bath implementations. Bath implementations have 

relatively equal distance when the reduction rate is law. However; one can clearly see 

how the distance becomes large for the case of vtkQuadricDecimation implementation in 

the high reduction rate. 
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Figure 5.6: Effect of the vtkQuadricDecimation reduction rate on the number of 

tetrahedra generated. 
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Figure 5. 7: Effect of the vtkQuadricDecimation reduction rate on the number of triangles 

generated on the mesh surface. 

52 



r---\ 

Table 5.3: Symmetrical Hausdorff distance comparison between the surfaces produced 

by vtkDecimatePro against vtkQuadricDecimation. 

vtkDecimatePro vtkQuadricDecimation 
Symmetrical Hausdorff Symmetrical Hausdorff 

distance distance 
Reduction Rate Max Mean RMS Max Mean RMS 

0.02 0.378 0.013 0.024 0.253 0.012 0.025 
0.04 0.430 0.023 0.035 0.335 0.025 0.038 
0.06 0.507 0.036 0.048 0.363 0.039 0.052 
0.08 0.507 0.037 0.051 39.893 0.220 1.168 
0.95 0.507 0.037 0.051 40.751 0.686 1.422 

5.3 Effect of the Smoother Operation 

ln this section, the experiments will be carried out to analyse the effect of the parameters 

of the smoother operation on the quality of the final mesh. There are mainly two 

parameters that control the smoother operations: (i) the weight factor used in the 

Laplacian equation; and (ii) the number of times the Laplacian equation is executed on 

the same vertex. A similar approach was followed here as in the previous section to 

study the effect of these parameters. 

5.3.1 Effect of the Weight Factor of the Smoother Operation 

ln this experiment, the same operations in Figure 5.1 were carried out multiple times. ln 

each time, the weight factor parameter of the smoother operation was set to a different 

value from the set {0.01, 0.03, 0.05, 0.07, 0.1}. The ether parameters were set to the 

same values as in the reference case. On average and unlike the case of decimation 

reduction rate, there is a clear small positive change in the geometrie mesh measures. 

The smoothing operation relaxes the meshes by making the triangles better shaped and 

the vertices more evenly distributed. The improved input set of vertices and triangles 

describing the abject surface helped the TetGen mesh generator to produce tetrahedra 
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with better geometrie quality. Figures 5.8 and 5.9 depict how the average minimal 

dihedral angles and the average f3saker of the generated tetrahedra change as the 

weight factor of the smoother operation changes. 
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Figure 5.8: Effect of the weight factor of the smoother on the average minimal dihedral 

angle. 
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Figure 5.9: Effect of the weight factor of the smoother on the average f3saker. 
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Also, the variation of the weight factor parameter shows a clear change in the 

performance measure. For example, the change in the number of generated tetrahedra 

can be seen in Figure 5.1 O. This change can be explained by two reasons: (i) the 

improved shaped triangles input gives TetGen a better opportunity to produce fewer 

tetrahedra with larger volumes th at still comply to the specified input constraint ( q 1.414 

switch), and (ii) the smoothing operation has a shrinking effect of the object being 

smoothed and therefore the volume of the object would be less as more smoothing is 

done. 
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Figure 5.10: Effect of the weight factor of the smoother on the number of generated 

tetrahedra. 

5.3.2 Effect of the Number of Iterations of the Smoother Operation 

Similar experiments were carried out again but this time while varying the number of 

iterations parameter of the smoother operation. This parameter took a value from the set 

{1 0, 30, 50, 70, 1 00} in each experiment. Very similar results were obtained as the 

experiments done for the weight factor parameter. This would suggest that both 
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parameters would have similar effect on the quality of the final mesh. Figures 5.11 and 

5.12 show sorne of the obtained results. 
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Figure 5.11: Effect of the number of iterations of the smoother on the average minimal 

dihedral angle. 
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Figure 5.12: Effect of the number of iterations of the smoother on the ti me needed to 

generate the tetrahedra. 
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5.3.3 The Combined Effect of 8oth Parameters of the Smoother 

1 

r 
Since both smoother parameters have a similar effect on the quality of the final mesh. 

J 
One would expect to enforce the expected change if both parameters were to be used in 

the same experiment. Tables 5.4 and 5.5 show the obtained numerical results of the 

geometrie and performance quality measures when repeating the experiment by setting 

the weight factor to .05 and the number of iterations to 50. Most of the time, lt can be 

seen that it is possible to achieve at least the same effect as if the experiment was done 

by only setting the weight factor to 0.1 or by setting only the number of iterations 

parameter to 100. 

lt is worth noting that Laplacian smoothing works weil in most cases but one has to 

remember that mesh smoothing modifies point's coordinates, and therefore, surface 

geometry. Excessive smoothing can badly damage the mesh. Large numbers of 

smoothing iterations, or large smoothing factors, can cause excessive shrinkage and 

surface distortion. Sorne object like sphere may lose volume and even shrink to a point 

[14]. 
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Table 5.4: Numerical results for the geometrie mesh quality measures wh en the smoother factor is set to 0.05 and the 
number of iteration is set to 50. 

Tissue 
Na me 

brain 
eve retina 
eye white 
kidney 
1 Intestine 
lung 
spleen 

Dihedral Angle a J3Baker 

Min Average Max Max average Min Max average Min 
1.422 44.415 87.593 0.998 0.556 0.011 0.974 0.502 0.024 
0.889 44.360 88.514 1.000 0.556 0.001 0.987 0.506 0.010 
1.498 43.635 87.412 0.999 0.528 0.012 0.981 0.483 0.015 
1.894 44.569 88.016 0.998 0.570 0.009 0.976 0.509 0.010 
0.579 44.888 87.936 0.998 0.481 0.000 0.972 0.511 0.006 
0.850 44.286 88.021 0.999 0.521 0.001 0.985 0.496 0.005 
5.668 45.035 85.304 0.991 0.586 0.022 0.958 0.519 0.088 

Table 5.5: Numerical results for the performance mesh quality measures wh en the smoother factor is set to 
0.05 and the number of iteration is set to 50. 

#of Tetrahedron Volume Mesh 
Tissue Name Tetrahedron Generation Memory (KB) 

generated Min average Max Time (s) 
brain 31468 0.00025 0.857 34.901 3.128 3917 
eye retina 84392 0.00002 0.637 16.571 9.585 10544 
eye white 34324 0.00003 0.637 24.112 3.409 4323 
kidney 73723 0.00001 0.764 20.126 7.741 9132 
1 intestine 57397 0.00003 1.299 81.441 5.335 7157 
lung 67821 0.00002 1.006 62.983 7.502 8809 
spleen 7310 0.00003 0.716 13.845 0.605 981 
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5.4 Effect of Adding a New Operation 

ln this section, an attempt to introduce a new operation to the set of operations in Figure 

5.1 will be discussed. This is a pre-processing operation that can aid in supplying 

different set of initial nodes to the Marching Cubes operation. The objective is to be able 

to generate better quality meshes with the minimum distortion of the surfaces of the 

scanned objects. 

The idea is to smooth the volume data of the segmented images before creating the 

isosurface of the object. Noise is inherent in ali methods of data acquisition including the 

MRI scanner. By introducing this new operation, the segmented images will be blurred 

and the noise should be reduced. This will be accomplished by making use of the 

vtklmageGaussianSmooth filter which implements a convolution of the input image with 

a Gaussian kernel. The amount of smoothing is controlled by two parameters: (i) the 

Gaussian standard deviation; and (ii) the radius of the kernel used. Two set of 

experiments were carried out to study the effect of the two parameters. The first set was 

done by varying the radius factor of the kernel from 1 to 4 in each direction 

simultaneously and keeping the standard deviation factor set to 1 in each direction. 

Table 5.6 reports the number of generated tetrahedra in the final mesh of each tissue. 

One can notice from the table that once the Gaussian smoother operation gets applied, 

a reduction in the number of generated elements occurs. However, this amount of 

reduction doesn't change as the radius factor increases and it is almost constant. This is 

mainly because the new nodes enclosed by the extended volume introduced by the 

increased radiÙs value don't get enough weight from the Gaussian kernel to contribute 

enough to make a change of the current geometry. This can be seen clearly in Table 5.7 
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where the symmetrical Hausdorff distances are calculated from the different brain 

surfaces produced in the experiments to the brain surface produced when no Gaussian 

smoothing is applied. This distance is almost constant for the cases when the radius 

equals 2, 3, or 4. 

On the other hand, there were no clear changes in the numerical results of the geometrie 

mesh quality measures during the different experiments of this set. 

Table 5.6: The effect of Gaussian smoothing radius factor on the number of tetrahedra 
t d genera e . 

Number of Tetrahedra Generated 
R= R= R= R= 

Tissue Name No Gaussian (1,1,1) (2,2,2) (3,3,3) (4,4,4) 
brain 52515 42612 42441 41005 41420 
eye retina 133186 115741 115519 117039 117636 
eye white 51318 40049 36046 36495 35820 
he art 84468 78372 79029 78281 80673 
kidney 113752 107195 111192 112430 110386 
1 intestine 93577 95676 96650 99514 98771 
lung 119058 114645 114862 115384 114983 
spleen 13012 12296 10890 10943 10978 

Table 5.7: The effect of Gaussian smoothing radius factor on the symmetrical Hausdorff 
distance (brain tissue). 

Gaussian Radius 
symmetrical Hausdorff 

distance Factor 
Max Mean RMS 

(1,1,1) 3.570 0.349 0.501 
(2,2,2) 4.794 0.446 0.671 
(3,3,3) 4.795 0.453 0.677 
(4,4,4) 4.795 0.453 0.678 

The second set of experiments was carried out to evaluate the effect of the Gaussian 

standard deviation factor on the meshes generated. This was done by varying the 

standard deviation factor from 1 till 4 while keeping the radius of the kernel constant at 1. 

Figure 5.13 shows how the number of elements generated decreases with the increase 

of the standard deviation value. The increase in the value of the standard deviation gives 
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the adjacent nodes more weight to be able to contribute in changing the geometry of the 

surface. Table 5.8 shows how this is actually represented in numbers as the symmetrical 

Hausdorff distances between the surface of the un-smoothed brain tissue and the other 

generated surfaces become larger when the standard deviations increases in value. 

Again, there were no clear changes in the numerical results of the geometrie mesh 

quality measures during the different experiments of this set as weil. 
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Figure 5.13: Effect of the Gaussian smoothing standard deviation factor on the number 

of generated tetrahedra. 

Table 5.8: Effect of the Gaussian smoothing standard deviation factor on the 
symmetrical Hausdorff distance (brain tissue). 

Gaussian Standard 
symmetrical Hausdorff 

deviation 
distance 

Max Mean RMS 
(1,1,1) 3.570 0.349 0.501 
(2,2,2) 6.859 0.690 1.040 
(3,3,3) 9.343 1.057 1.645 
(4,4,4) 10.286 1.399 2.073 

61 



Finally, it is worth reporting that sorne ether attempts were made to introduce different 

operations in the proposed process. For example, one of these attempts was to 

introduce a sub-sampling operation. Usually the data obtained from the MRI scanner are 

of high resolution. The idea was to sub-sample the segmented volume data to a lower 

resolution volume that would eventually produce fewer triangles. The experiments were 

carried out to study the effect of such operation on the quality of the produced meshes. lt 

was shown that the sub-sampling operation led to fewer elements produced but with 

relatively large symmetrical Hausdorff distances. This is also beside the fact that the 

geometrie quality measures became worse. These are mainly because important details 

were lost during the sub-sampling operation. 
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6.1 Future Work 

Chapter 6 

Conclusion and Future work 

A very interesting possible future work would be to extend the current design and 

implementation to support parallelism. For example, recent work in VTK showed that it is 

possible to utilize this individual software component separately to provide a parallel 

system solution that is scalable and portable [46]. This; however, needs to be enhanced 

with the other software components. The ITK component supports shared-memory 

parallel processing but not distributed-memory parallel processing. TetGen doesn't 

support parallelism and therefore it is possible to be modified or to be replaced with a 

different software component. One possible approach would be to use a mesh generator 

that relies on the advancing front techniques which doesn't introduce any new points on 

the original surface mesh and therefore makes it perfect for parallelism by splitting the 

original abject domain in multiple sub demains [17]. 

Another possibility for future work would be to experiment with non-tetrahedral mesh 

generating algorithms. For instance, hexahedral meshes are weil suited for the 

deformation computation of incompressible materials [24]. This type of meshes, 

however; needs more sophisticated hierarchical adaptive refinement of basis functions 

for achieving similar results compared to the tetrahedral straightforward manner [24]. 

6.2 Conclusion 

This thesis described the process to produce three dimensional mesh models from a 

sequence of MRI medical images. This process can be summarized in four major steps. 

The first step is the segmentation. The second step is generating the surface boundary 
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mesh from the segmented images. The third step is to adjust the surface boundary. The 

final step is to create the volume meshes from the adjusted surface meshes generated 

earlier. At the end, the quality of the mesh generated depends on the various algorithms 

and techniques used during these four steps. A study on how sorne of these low level 

operations might affect the quality of the produced meshes was presented and 

discussed. A usable, open-source, portable, efficient, and extendible system architecture 

was proposed to accomplish the task of generating meshes from the native medical file 

format. 

ln conclusion, the quality of the final meshes generated can be enhanced throughout the 

various steps needed ta generate them. 
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Appendix 1: Detailed Instructions on How to Setup the Proposed 

System 

ln this appendix a summary of the instructions needed to setup the proposed system 

environment and to connect the different software components with each other is 

presented. These instructions are provided for the MS Windows platform. The steps are 

very similar in any different platform. 

Required Tools: 

TCL/TK: 

Tel scripting language cornes preinstalled on most UNIX systems and Mac OS X; 

however, one needs to download and install the ActiveTcl distribution from 

www.tcl.tk for a Windows platform. 

Cross-Piatform Make (CMake): 

CMake can be downloaded/installed from www.cmake.org 

C++ Compiler: 

Because of the use of the CMake tool, any standard C++ compiler in any 

platform can be used. MS Visual Studio 6 SP6 was chosen for the various 

experiments done in this thesis. 

Optional Tools: 

CVS is an open-source version control system that can keep a history record of 

the files. CVS repository is widely used by many developers to store/share both 

the code and the documentation of a project. ln fact, many of the software 

components used in the proposed system can be optionally obtained from public 
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access CVS repositories. These software components are still under ongoing 

development. By using CVS, one would be able to take advantage of the 

changes added to these components more often without the need to repeat the 

download and install process with every new release. ln order to be able to use 

CVS in Windows, one needs to download/install CVSNT from www.cvsnt.org. 

CVSNT provides its users with the CVS capabilities through the command line 

switches. A more user-friendly application with graphical interface can be 

installed on top of CVSNT. WinCvs from www.wincvs.org is one example of such 

GUI CVS front-end. 

Instructions on how to setup the Visualization Toolkit (VTK): 

1. Download the source code from www.vtk.org or 

Checkout the VTK module from the CVS repository: 

:pserver:anonymous@public.kitware.com:/cvsroot/VTK 

Note that you might need the CVS source code to take advantage of the new 

functionalities provided by the modified vtkMeshQuality object. 

2. Execute Cmake.exe 

- ln the "Where is the source code?" field, specify the location where the VTK 

source code was downloaded/checked out. This directory should contain a file called 

CMakelists. txt 

- ln the "Where to build the binaries" field, specify the location where you would 

like to save the generated compiler/platform specifie files. This directory is better to be 

empty as it will be the directory where ali the binary libraries and executables will be 

generated for the project. 

- Click on the Configure button. 

- Choose the C++ compiler environment form the drop down list box. 
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- Wait till a list of cached values setting gets displayed. Change the VTK_WRAP _ TCL 

setting to be ON and Click again on the configure button (See Figure 7.1) and wait till the 

OK button becomes enabled. 

Malœsure io 
prcn.oiùtlu!se 
vùues. 

Figure 7.1: The Visualization Toolkit CMake Settings. 

- Click on the OK button. CMake will start generating the needed files for your 

development environment and exit when it finishes. 

3. Compile/Build the VTK code 

Run the C++ development environment chosen in step#2 with the CMake generated file 

located in the root of build binaries directory chosen also in step#2. Unless there is a 

need to debug the code, building the release configuration should be sufficient and it 

should reduce the time needed to compile/build the code. lt is worth noting that the 

compilation of the VTK library is a lengthy process and it might take a couple of hours. 
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Instructions on how to setup the TetGen Mesh Generator: 

1. Download the source code from http://tetgen.berlios.de/ and extract the files to a local 

directory. 

2. Add TciTetGen.cpp and CMakeLists.txt files to the same location where the source 

files were extracted (See Appendices Il and Ill). 

3. Execute Cmake.exe 

- Specify the path to the TetGen source code directory in the "Where is the source 

code?" field, and a path to an empty directory in the "Where to build the binaries" field. 

- Click on the Configure button and choose the C++ compiler environment form the drop 

dawn list box. 

- Click again on the Configure button and then Click on the OK button when it gets 

ena bled. At the end of this step the development environ ment files will be generated. 

4. Compile/Build the TetGen code 

Compile and Build the TetGen Code from the C++ compiler environment generated from 

step#3. Similarly to VTK, building the release configuration should be sufficient unless 

there is a need to debug the code. The time needed to compile/build the TetGen code is 

in the arder of minutes. 

Instructions on how to setup the lnsight Toolkit (ITK): 

1. Download the source code from www.itk.org or 

Checkout the Insight module from the CVS repository: 

:pserver:anonymous®www.itk.org:/cvsroot/Insight 
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2. Download the source code of CableSwig from www.itk.org or 

Check-out the CableSwig module from the CVS repository: 

:pserver:anonymous@public.kitware.com:/cvsroot/CableSwig 

CableSwig is needed to create the Tel wrappers of the functions of the ITK library. The 

downloaded CableSwig directory should be placed under the Utilities directory of the ITK 

Root directory. If the downloaded/extracted directory is not named CableSwig, Rename 

it to be CableSwig. At the end, the directory hierarchy should be as follows: 

{Path to where ITK was extracted}\lnsight\Utilities\CableSwig 

Where the CableSwig directory would contain a file called CMakelists.txt 

3. Execute Cmake.exe 

- ln the "Where is the source code?" field, specify the location where the ITK 

source code was downloaded/checked out. This directory should contain a file called 

CMakelists.txt. ln the "Where to build the binaries" field, specify the location where to 

save the generated compiler/platform specifie files. 

- Click on the Configure butten and choose the C++ compiler environment form the drop 

dawn list box when prompted. 

- When the list of cached values setting gets displayed, check the Show Advanced 

values option and then modify the ITK_CSWIG_TCL setting to be ON (See Figure 7.2). 

- Click again on the configure butten and wait till the OK butten becomes enabled. 

- Click on the OK butten. CMake will start generating the needed files for your 

development environment and exit when it finishes. 
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Figure 7.2: The lnsight Toolkit CMake Settings. 

3. Compile/Build the ITK code 

Compile/Build the release configuration of the ITK code in the same way as was done 

for VTK. The compilation process of the ITK library is a lengthy process and it might take 

a couple of hours. 

Instructions on how put it ali together: 

1. Create an empty directory in the local system. This directory will be used as a 

workspace to combine ali the generated components. 

2. Copy the following items to this workspace directory: 

-The VTK executable file (vtk.exe in Windows) from: 

{Path to the location where VTK executables got generated}\bin\Release 
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-The generated TciTetGen shared library (TciTetGen.dll in Windows) from 

{Path to the location where TetGen source code }\Release 

3. Adda new environment variable called TCLLIBPATH that contains the path: 

{Path to where the ITK libraries got generated}/ /Wrapping/CSwig/Tci/Release 

Append this new variable to the PATH environment variable. 

By executing the VTK executable, a Tel Shell will start from which one can make use of 

any the functionalities of the combined components ITK, VTK, or TetGen. Tel scripts can 

be written with any text editor and be loaded with the source command. For example, to 

execute the code in Appendix VIII, one can execute the following from the Tel shell 

prompt: 

source experiment.tcl 
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Appendix Il: TetGen CMake Configuration File 

# CMakelists.txt CMake Configuration File 
# Project: T ciT etGen 
#Objective: Provides a means for the TetGen code to be easily portable across 
# the different platforms 

PROJECT{TCL TETGEN) 

# Define the C++ Files that will go into the TetGen.lib 
SET (TETGEN_SRCS 
tetgen.cxx 
predicates.cxx 
tetgen.h 
) 

# Define the C++ Files that will go into the TciTetGen.dll 
SET(TCLTETGEN_SRCS 
tetgen.h 
TciTetGen.cpp 
) 

# Set the default location for outputting the library 
SET (LIBRARY _OUTPUT _PATH ${TCLTETGEN_SOURCE_DIR}) 

# Build the tetgen.lib 
ADD_LIBRARY(TetGen STATIC ${TETGEN_SRCS}) 
ADD _DEFINITIONS( -DTETLIBRARY) 

#Look for tcllibrary 
# Try first with the predefined CMake Macro 
SET {TETGEN_TCL_CANBUILD 1) 
INCLUDE (${CMAKE_ROOT}/Modules/FindTCL.cmake) 

IF{TCL_LIBRARY) 
# Succeeded with the CMake Macro to find TCL 
INCLU DE_DI RECTO RI ES(${TCL_I NCLUDE_PA TH}) 

ELSE (TCL_LIBRARY) 
# Failed with the CMake Macro to find TCL 
#Another possible approach to find TCL is to search in the PATH Environment 

FIND_PATH(TCL_INCLUDE_PATH tcl.h PATHS) 
IF (TCL_INCLUDE_PATH) 

INCLUDE_DIRECTORIES(${TCL_INCLUDE_PATH}) 
FIND_LIBRARY(TCL_LIBRARY NAMES tel tcl84 tcl8.4) 

ELSE (TCL_INCLUDE_PATH) 
# Set The failure flag because TCL Cannet be found on this system 

SET (TETGEN_TCL_CANBUILD 0) 
ENDIF (TCL_INCLUDE_PATH) 

ENDIF(TCL_LIBRARY) 
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# Build the Tcltetgen.lib 
IF(TETGEN_ TCL_CANBUILD) 

ADD_LIBRARY(TciTetGen SHARED ${TCLTETGEN_SRCS}) 
TARGET _LINK_LIBRARIES{TciTetGen ${TCL_LIBRARY} TetGen) 

ENDIF(TETGEN_ TCL_CANBUILD) 
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Appendix Ill: TciTetGen C++ Code 

/*File Name: TciTetGen.cpp 
Objective: This code is the wrapper needed for the TetGen code to provide a 
TCL interface. This would allow us to leverage the full functionalities of TetGen 
with simple TCL commands 

Example: ln a Tel shell one can execute the following: 

TetGen pq1.414 c:\\Data\\mesh_surface.ply 
*/ 

#include "tcl.h" 
#include "tciDecls.h" 
#include <stdio.h> 
#include <string.h> 
#include "tetgen.h" 

//lnitialization Code 
#ifdef _WIN32 
#define TETGENTCL_EXPORT _declspec( dllexport ) 
#el se 
#define TETGENTCL_EXPORT 
#end if 

#define COMMAND_PARAM_NUM 3 Il Expected number of parameters 
#defi ne BUFFER_SIZE 1024 Il Size of buffer to be used to store 

Il each Parameter 

int TetGen(CiientData, Tcl_lnterp* interp,int objc, Tci_Obj *CONST objv[]) 
{ 

Il Validate the command li ne parameters 
if (objc != COMMAND_PARAM_NUM) 

{ 

} 
el se 
{ 

printf("Error in calling the TCL TetGen code."); 
printf("Usage: TetGen {TetGenSwitches} {PathToMeshFile}"); 

Il Handling of command line arguments 
char szExecutableName[BUFFER_SIZE] = {0}; 
char szSwitchCmd[BUFFER_SIZE] = {0}; 
char szMeshPathCmd[BUFFER_SIZE] = {0}; 

char* arrayCommanline[COMMAND_PARAM_NUM]; 

strepy( szExecutableN ame, T cl_ GetS tri ng( objv[O]) ); 
strepy( szSwitchCmd, T cl_ GetS tri ng( objv[ 1])); 
strcpy(szMeshPathCmd, Tci_GetString(objv[2])); 

int nOverHeadSize = 5;// Add sorne extra space in the memory to avoid overflow 
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int nArgSize = strlen(szExecutableName); 

if (nArgSize>O) 
{ 

} 

nArgSize += nOverHeadSize; 
arrayCommanline[O] = new char[nArgSize]; 
memset(arrayCommanline[O], 0, nArgSize); 

strcpy(arrayCommanline[O], szExecutableName ); 

nArgSize = strlen(szSwitchCmd); 
if (nArgSize>O) 
{ 

} 

nArgSize += nOverHeadSize; 
arrayCommanline[1] = new char[nArgSize]; 
memset(arrayCommanline[1], 0, nArgSize); 

Il Check if the switch argument has the -, add it if missing 
if (szSwitchCmd[O] != '-') 
{ 

strcpy(arrayCommanline[1], "-"); 
strcat( arrayComman Li ne[ 1], szSwitchCmd ); 

} 
el se 
{ 

strcpy(arrayCommanline[1 ], szSwitchCmd); 
} 

nArgSize = strlen(szMeshPathCmd); 
if (nArgSize>O) 
{ 

} 

nArgSize += nOverHeadSize; 
arrayCommanline[2] = new char[nArgSize]; 
memset(arrayCommanline[2], 0, nArgSize); 
strcpy(arrayCommanline[2], szMeshPathCmd); 

Il lnitializing TetGen ln/Out Structures 
tetgenbehavior tetgenBehavior; 
tetgenio in, addin, bgmin; 

bool bContinue = true; 

if(!tetgenBehavior.parse_commandline(COMMAND_PARAM_NUM, 
arrayCommanline)) { 

/~' printf("Error in calling the parse_commandlin."); 
bContinue = false; 

} 
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if (bContinue) 
{ 

if (tetgenBehavior.refine) { 
if (!in.load_tetmesh(tetgenBehavior.infilename)) { 

printf("Error in calling the load_tetmesh."); 
bContinue = false; 

} 
} else { 

if(!in.load_plc(tetgenBehavior.infilename,(int) 
tetgenBehavior.object)) { 

} 
} 

} 

printf("Error in calling the load_plc."); 
bContinue = false; 

if (bContinue) 
{ 

} 

if (tetgenBehavior.insertaddpoints) { 

} 

if (!addin.load_node(tetgenBehavior.addinfilename)) { 
addin.numberofpoints = 01; 

} 

if (tetgenBehavior.metric) { 

} 

if(! bgmin.load_tetmesh(tetgenBehavior.bgmeshfilename )) { 
bgmin.numberoftetrahedra = 01; 

} 

Il Calling the TetGen code 
if (bgmin.numberoftetrahedra > 01) { 

tetrahedralize(&tetgenBehavior, &in, NULL, &addin, &bgmin); 
} else { 

tetrahedralize(&tetgenBehavior, &in, NULL, &addin, NULL); 
} 

if (arrayCommanLine[O]) 
{ 

delete[] arrayCommanLine[O]; 
} 

if (arrayCommanLine[1]) 
{ 

delete[] arrayCommanLine[1]; 
} 

if (arrayCommanLine[2]) 
{ 

delete[] arrayCommanLine[2]; 
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} 
} 

return TCL_OK; 
} 

/* 
C++ to Tel Interface 

*/ 

extern "C" { 
int TETGENTCL_EXPORT Tcltetgen_lnit(Tcl_lnterp* interp); 
int TETGENTCL_EXPORT Tcltetgen_Safelnit(Tcl_lnterp* interp); 
} 

int Tcltetgen_lnit(Tcl_lnterp* interp) 
{ 

Tci_CreateObjCommand(interp, "TetGen", TetGen,(CiientData) NULL, 
(Tci_CmdDeleteProc *) NULL); 

return TCL_ OK; 
} 

int Tcltetgen_Safelnit(Tcl_lnterp* interp) 
{ 

return Tcltetgen_lnit(interp); 
} 
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Appendix IV: Template File to Wrap C++ Code as a Tel Command 

/* 
File Name: MyFunction.cpp 

Objective: This is a C++ template file that can be used by researches to wrap their C++ 
code to be used as Tel commands which can then be invoked from Tel scripts. This is 
needed to create a dynamic library(.so of .dll) which will includes the code and can be 
loaded within the Tel execution shell. 
*/ 

#include "tcl.h" 
#include "tciDecls.h" 
#include <stdio.h> 
#include <string.h> 

Il lnitialization Code 
#ifdef _WIN32 
#define MYFUNCTION_EXPORT _declspec( dllexport) 
#el se 
#define MYFUNCTION EXPORT 
#end if 

int MyFunction (CiientData, Tcl_lnterp* interp,int objc, Tci_Obj *CONST objv[]) 
{ 
Il Code should be placed here 

return TCL_OK; 
} 
/* 

C++ to Tel Interface 
*/ 

extern "C" { 
int MYFUNCTION_EXPORT Myfunction_lnit(Tcl_lnterp* interp); 
int MYFUNCTION_EXPORT Myfunction_Safelnit(Tcl_lnterp* interp); 
} 

int Myfunction_lnit(Tcl_lnterp* interp) 
{ 

Tci_CreateObjCommand(interp," MyFunction", MyFunction, (CiientData) NULL, 
(Tci_CmdDeleteProc *) NULL); 

return TCL_OK; 
} 

int Myfunction_Safelnit(Tcl_lnterp* interp) 
{ 

return Myfunction_lnit(interp ); 
} 
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Appendix V: Tel Code for Different Auxiliary Functions 

# File Name: AuxiliaryFunctions.Tcl 
#Objective: This file contains the customized Tel procedures that can be used to help 
# . accomplish the various tasks needed for the experiments of this thesis. 

# Procedure Name: ConvertFromTetgenToVTK 
#Objective :This procedure is used to convert the TetGen output files .node and .ele 
# to .vtk file that can be read back by the VTK Component 
# input : String path to where the generated tetgen .node and .ele are 
#output : Generates .vtk 
# example: ConvertFromTetgenToVTK "C:\\Thesis\\workspace\\Data\\Frog\\spleen.1" 

proc ConvertFromTetgenToVTK { strTetGenFile} { 

# Read TetGen .node file 
set fp [open $strTetGenFile.node r] 
set TetGenNodeData [read $fp] 
close $fp 

# Create a grid abject to store the information of the tetgen files 
vtkUnstructuredGrid tetgenGrid 

# Store the points generated by tetgen into a vtkPoints abject 
vtkPoints tetgenPoints 

set AIILinesData [split $TetGenNodeData "\n"] 
set bFirstline "true" 
foreach OnelineData $AIILinesData { 

set AIIWordsData [split $0nelineData " "] 
set nWordNumber 0 
foreach OneWordData $AIIWordsData { 

string trim $0neWordData 

} 

# Check if the line has a comment 
if {[string index $0neWordData 0] == "#"} { 

break 
} else { 

} 

if {[string length $0neWordData] != 0} { 

} 

set arg($nWordNumber) $0neWordData 
incr nWordNumber 

if {$nWordNumber == 4} { 

if {$bFirstline == "true"} { 

84 



} 

tetgenPoints SetNumberOfPoints $arg(O) 
} else { 

tetgenPoints lnsertPoint $arg(O) $arg(1) $arg(2) $arg(3) 
} 

set bFirstline "false" 
} 

# Store the points into the grid 
tetgenGrid SetPoints tetgenPoints 

# Read TetGen .ele file 
set fp [open $strTetGenFile.ele r] 
set TetGenEieData [read $fp] 
close $fp 

set testcount 0 
#Store the tetrahedra generated by tetgen into a vtkTetra object 
# and then store them in the grid 

set AIILinesData [split $TetGenEieData "\n"] 
set bFirstline "true" 

foreach OnelineData $AIILinesData { 
set AIIWordsData [split $0nelineData " "] 
set nWordNumber 0 
foreach OneWordData $AIIWordsData { 

string trim $0neWordData 

} 

# Check if the line has a comment 
if {[string index $0neWordData 0] == "#"} { 

break 
} else { 

} 

if {[string length $0neWordData] != 0} { 

} 

set arg($nWordNumber) $0neWordData 
incr nWordNumber 

if {$bFirstline == "true"} { 

} else { 

if {$nWordNumber == 3} { 

} 

# Allocate memory in the grid to store the tetrahedron 
tetgenGrid Allocate $arg(O) 100 

if {$nWordNumber == 5} { 
vtkTetra tetgenTetra 
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[tetgenTetra GetPointlds] Setld 0 $arg(1) 
[tetgenTetra GetPointlds] Setld 1 $arg(2) 
[tetgenTetra GetPointlds] Setld 2 $arg(3) 
[tetgenTetra GetPointlds] Setld 3 $arg(4) 
tetgenGrid lnsertNextCell [tetgenTetra 

GetCeiiType] [tetgenTetra GetPointlds] 
tetgenTetra Delete 

} 
} 

incr testcount 

set bFirstline "false" 
} 

vtkUnstructuredGridWriter usGridWriter 
usGridWriter Setlnput tetgenGrid 
eval usGridWriter SetFileName $strTetGenFile.vtk 
usGridWriter SetFileType 1 
usGridWriter Update 

} 

# Procedure Name: DisplayMesh 
# Objective : This procedure is used to display the mesh of type vtkUnstructuredGrid 
# : on the screen 
# input :An vtkUnstructuredGrid object 
#output : Display the vtkUnstructuredGrid object on the screen. 
# example: DisplayMesh myMesh 

proc DisplayMesh { tetgenGrid } { 

vtkDataSetMapper aTetraMapper 
aTetraMapper Setlnput tetgenGrid 

vtkActor aTetraActor 
aTetraActor SetMapper aTetraMapper 
aTetraActor AddPosition 4 0 0 
[aTetraActor GetProperty] SetDiffuseColor 0 1 0 

# Create the usual rendering stuff. 
vtkRenderer ren 1 
vtkRenderWindow renWin 

renWin AddRenderer ren1 
renWin SetSize 300 150 

vtkRenderWindowl nteractor iren 
iren SetRenderWindow renWin 

ren1 SetBackground .1 .2 .4 
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ren1 AddActor aTetraActor 

ren 1 ResetCamera 
[ren1 GetActiveCamera] Azimuth 30 
[ren1 GetActiveCamera] Elevation 20 
[ren1 GetActiveCamera] Dolly 2.8 
ren1 ResetCameraCiippingRange 

renWin Render 

# render the image 
# 
iren AddObserver UserEvent {wm deiconify .vtklnteract} 
iren lnitialize 
wm withdraw . 
} 

# Procedure Name: LoadFrogDatalnfo 
# Objective : This procedure is used to set the values of the various parameters 
# needed in the experiment based on the name of the frog tissue 
# 
# input The name of the tissue 
#output : Set the parameters to the data the specified tissue. 
# example: DisplayMesh myMesh 

proc LoadFrogDatalnfo { strTissueName } { 

global ROWS COLUMNS STUDY PIXEL_SIZE SPACING VALUE 
global TISSUE START _SUCE END_SUCE VOl 

set ROWS 470 
set COLUMNS 500 
set STUDY "C:/Feras/Thesis/workspace/Data/Frog/Data/frog/frogTissue" 
set PIXEL SIZE 1 
set SPACING 1.5 
set VALUE 127.5 

switch $strTissueName { 

blood { set TISSUE 1 
set START_SUCE 14 
set END_SUCE 131 
set VOl "33 406 62 425 $START _SUCE $END_SUCE"} 

brain { set TISSUE 2 
set START _SUCE 1 
set END_SUCE 33 
set VOl "349 436 211 252 $START _SUCE $END_SUCE"} 

duodenum { set TISSUE 3 
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set ST ART SUCE 35 
set END_SUCE 105 
set VOl "189 248191 284 $START_SUCE $END_SUCE"} 

eye_retna {set TISSUE 4 
set START _SUCE 1 
set END_SUCE 41 
set VOl "382 438180 285 $START_SUCE $END_SUCE"} 

eye_white {set TISSUE 5 
set START _SUCE 1 
set END_SUCE 37 
set VOl "389 433 183 282 $START _SUCE $END_ SUCE" } 

heart { set TISSUE 6 
set START _SUCE 49 
set END_SUCE 93 
set VOl "217 299 186 266 $START_SUCE $END_SUCE"} 

ileum { set TISSUE 7 
set START _SUCE 25 
set END_SUCE 93 
set VOl "172 243 201 290 $START _SUCE $END_SUCE"} 

kidney {set TISSUE 8 
set START_SUCE 24 
set END_SUCE 78 
set VOl "116 238193 263 $START_SUCE $END_SUCE"} 

1 intestine { set TISSUE 9 - . 
set START _SUCE 56 
set END_SUCE 106 
set VOl "115 224 209 284 $START _SUCE $END_SUCE"} 

liver {set TISSUE 10 
set START SUCE 25 
set END_SUCE 126 
set VOl "167 297 154 304 $START _SUCE $END_SUCE"} 

lung {set TISSUE 11 
set START SUCE 24 
set END_SUCE 59 
set VOl "222 324157 291 $START_SUCE $END_SUCE"} 

nerve { TISSUE 12 
set START SUCE 7 
set END_SUCE 113 
set VOl "79 403 63 394 $START _SUCE $END_SUCE"} 

skeleton {set TISSUE 13 
set VALUE 64.5 
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~~~~~ 

} 
} 

set START _SUCE 1 
set END_SUCE 136 
set VOl "23 479 8 469 $START _SUCE $END_SUCE" 
set GAUSSIAN_STANDARD_DEVIATION "1.5 1.5 1"} 

spleen {set TISSUE 14 
set START _SUCE 45 
set END SUCE 68 
set VOl ~66 219 195 231 $START_SUCE $END_SUCE"} 

stomach {set TISSUE 15 
set START _SUCE 26 
set END_SUCE 119 
set VOl "143 365 158 297 $START_SUCE $END_SUCE"} 

#The rest of the code is some functions to print out helpful messages 
proc readerStart {} {global NAME; puts -nonewline "$NAME read took:\t"; flush stdout}; 
proc mcubesStart {} {global NAME; puts -nonewline "$NAME mcubes generated\t"; flush 
stdout}; 
proc mcubesEnd {} { 

global NAME 
puts -nonewline "[[mcubes GetOutput] GetNumberOfPolys]" 
puts -nonewline " polygons in " 
flush stdout 

}; 
proc decimatorStart {}{global NAME; puts -nonewline "$NAME decimator generated\t"; 
flush stdout}; 
proc decimatorEnd {} { 

global NAME 
puts -nonewline "[[decimator GetOutput] GetNumberOfPolys]" 
puts -nonewline " polygons in " 
flush stdout 

}; 
proc smootherStart {}{global NAME; puts -nonewline "$NAME smoother took:\t"; flush 
stdout}; 

proc writerStart {} {global NAME; puts -nonewline "$NAME writer took:\t"; flush stdout}; 
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Appendix VI: Tel Code to Create Reports About Mesh Quality 

#File Name: MeshQualityReport.Tcl 
# Objective: This file contains the functions needed to report sorne of the qualities of the 
# mesh. 

proc QualityStatics { bReciprocal ldFile argStaticArray} { 

} 

if {$bReciprocal > 0} { 
puts -nonewline $1dFile [ expr 1 1 [$argStaticArray GetComponent 0 0]] 
} else { 
puts -nonewline $1dFile [$argStaticArray GetComponent 0 0] 
} 
puts -nonewline $1dfile "\t" 

if {$bReciprocal > 0} { 
puts -nonewline $1dFile [ expr 1 1 [$argStaticArray GetComponent 0 1]] 
} else { 
puts -nonewline $1dFile [$argStaticArray GetComponent 0 1] 
} 
puts -nonewline $1dFile "\t" 

if {$bReciprocal > 0} { 
puts -nonewline $1dfile [ expr 1 1 [$argStaticArray GetComponent 0 2]] 
} else { 
puts -nonewline $1dFile [$argStaticArray GetComponent 0 2] 
} 
puts -nonewline $1dFile "\t" 

#Print to the screean 
puts '"' 
puts "Min\tAverage\tMax" 
puts -nonewline [$argStaticArray GetComponent 0 0] 
puts -nonewline "\t" 
puts -nonewline [$argStaticArray GetComponent 0 1] 
puts -nonewline "\t" 
puts -nonewline [$argStaticArray GetComponent 0 2] 
puts -nonewline "\t" 
puts "" 

proc printline {} { 
set NumberOfSeperator 30 

} 

for {set i 0} { $i < $NumberOfSeperator} {incr i} { 
puts -nonewline "=" 
} 
puts "" 
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proc ReportQualityStatics {strVTKFilePath timelnfo} { 

vtkUnstructuredGridReader gridReader 
gridReader SetFileName $strVTKFilePath 
gridReader Update 

vtkMeshQuality objMeshQuality 
objMeshQuality Setlnput [gridReader GetOutput] 

# The following commented line can be used to print a header to the file 
#puts "Tetrahedral quality of mesh: $strVTKFilePath" 
#printline 
#puts "Tissue\t\t\t\tAngle\t\t\t\t\t\tAipha\t\t\t\t\t\tBeta\t\t\t\t\t\tBetaBaker\t\t" 
#puts 
"Name\t\tMin\t\tAverage\t\tMax\t\tMin\t\tAverage\t\tMax\t\tMin\t\tAverage\t\tMax\t\tMin\t\tA 
verage\t\tMax" 

set filename "results1.txt" 
set fileld [open $filename "a+"] 

puts -nonewline $fileld "$strVTKFilePath\t" 
puts -nonewline "$strVTKFilePath\t" 

objMeshQuality SetTetQualityMeasureToMinAngle 
objMeshQuality Update 
puts -nonewline "\nMinAngle" 
QualityStatics 0 $fileld [[[objMeshQuality GetOutput] GetFieldData] GetArray 

"Mesh Tetrahedron Quality"] 

objMeshQuality Se tT etQualityMeasure T oAspectBeta 
objMeshQuality Update 
puts -nonewline "\nAspectBeta" 
QualityStatics 1 $fileld [[[objMeshQuality GetOutput] GetFieldData] GetArray 

"Mesh Tetrahedron Quality"] 

objMeshQuality SetTetQualityMeasureToAspectRatio 
objMeshQuality Update 
puts -nonewline "\nAspectRatio" 
QualityStatics 1 $fileld [[[objMeshQuality GetOutput] GetFieldData] GetArray 

"Mesh Tetrahedron Quality"] 

puts $fileld "" 

close $fileld 

set filename2 "results2.txt" 
set fileld2 [open $filename2 "a+"] 

puts -nonewline $fileld2 "$strVTKFilePath\t" 

91 



puts -nonewline $fileld2 [[[[objMeshQuality GetOutput] GetFieldData] GetArray 
"Mesh Tetrahedron Quality"] GetComponent 0 4] 

puts -nonewline $fileld2 "\t" 

puts -nonewline "Number of Tetrahedrons=" 
puts [[[[objMeshQuality GetOutput] GetFieldData] GetArray "Mesh Tetrahedron 

Quality"] GetComponent 0 4] 

objMeshQuality SetTetQualityMeasureToVolume 
objMeshQuality Update 
puts -nonewline "\nVolume" 
QualityStatics 0 $fileld2 [[[objMeshQuality GetOutput] GetFieldData] GetArray 

"Mesh Tetrahedron Quality"] 

} 

puts -nonewline $timelnfo 

puts -nonewline $fileld2 $timelnfo 
puts -nonewline $fileld2 "\t\n" 

close $fileld2 
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Appendix VIl: Example of a Generated Mesh Quality Report 

spleen read took: 0.480556 seconds 
spleen mcubes generated 5104 polygons in 0.006696 seconds 
spleen decimator generated 2040 polygons in 0.069501 seconds 
spleen smoother took: 0.013781 seconds 
spleen writer took: 0.022524 seconds 
Opening spleen.ply. 
Constructing Delaunay tetrahedralization. 

Creating initial tetrahedralization. 
lncrementally inserting points. 
15846 Flips (T23 9297, T32 6547, T22 0, T44 2) 

Delaunay seconds: 0.078 
Creating surface mesh. 

Constructing mapping from indices to points. 
Constructing mapping from points to tetrahedra. 
Unifying segments. 
Constructing mapping from points to subfaces. 
Merging co plan ar facets. 
Marking acute vertices. 
Constructing mapping from points to segments. 
1 022 a cu te vertices. 

Perturbing vertices. 
0 break points. 

Delaunizing segments. 
Constructing mapping from points to tetrahedra. 
Queuing missing segments. 
779 protect points. 
R1: 521, R2: 206, R3: 52. 

Constraining facets. 
Constructing mapping from points to tetrahedra. 
The biggest cavity: 8 faces, 6 vertices 
Enlarged 0 times 

Segment and facet seconds: 0.156 
Removing unwanted tetrahedra. 

Marking concavities for elimination. 
Marking neighbors of marked tetrahedra. 
Deleting marked tetrahedra. 

Hale seconds: 0 
Repairing mesh. 
Repair seconds: 0.062 
Adding Steiner points to enforce quality. 

Marking sharp segments. 
5484 sharp segments. 
Deciding feature-point sizes. 
Constructing mapping from points to segments. 
1 028 feature points. 
779 Steiner feature points. 
Splitting encroached subsegments. 
525 split points. 
Splitting encroached subfaces. 
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15 split points. 
Splitting bad tetrahedra. 
957 refinement points. 
Totally added 1497 points. 

Quality seconds: 0.532 
Optimizing mesh. 

320 edges are flipped. 
3 passes. 
6 points are inserted (3 on segment). 
1 faces are flipped. 

Optimize seconds: 0.062 

Writing spleen.1.node. 
Writing spleen.1.ele. 
Writing spleen.1.face. 
Writing spleen.1.smesh. 

Output seconds: 0.141 
Total running seconds: 1.031 

Statistics: 

Input points: 1028 
Input facets: 2040 
Input segments: 3060 
Input hales: 0 
Input regions: 0 

Mesh points: 331 0 
Mesh tetrahedra: 13012 
Mesh triangles: 28425 
Mesh subfaces: 4802 
Mesh subsegments: 4438 

Mesh quality statistics: 

Smallest volume: 
Shortest edge: 
Smallest facangle: 
Smallest dihedral: 

0.00018011 1 Largest volume: 
0.052171 1 Longest edge: 

1.031 1 Largest facangle: 
0.8917 4 1 Largest dihedral: 

Aspect ratio histogram: 
< 1.5 132 1 6 - 10 777 

1.5-2 2100 1 10-15 199 
2 - 2.5 3082 1 15 - 25 78 

2.5 - 3 2488 1 25 - 50 17 
3 - 4 2557 1 50 - 1 00 4 
4-6 1575 1 100- 3 

13.132 
5.8542 

169.5270 
173.3423 

(A tetrahedron's aspect ratio is its longest edge length divided by its 
smallest side height) 
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Face angle histogram: 
0- 10 degrees: 333 1 90- 100 degrees: 
10- 20 degrees: 1461 1 100- 110 degrees: 
20 - 30 degrees: 4306 1 11 0 - 120 degrees: 
30 - 40 degrees: 8388 1 120 - 130 degrees: 
40 - 50 degrees: 9292 1 130 - 140 degrees: 
50 - 60 degrees: 4645 1 140 - 150 degrees: 
60 - 70 degrees: 4897 1 150 - 160 degrees: 
70 - 80 degrees: 8550 1 160 - 170 degrees: 
80 - 90 degrees: 6992 1 170 - 180 degrees: 

Minimum input face angle is 1.60076 (degree). 

Dihedral angle histogram: 
0 - 5 degrees: 58 1 80 - 110 degrees: 
5 - 1 0 degrees: 290 1 11 0 - 120 degrees: 
1 0 - 20 degrees: 1500 1 120 - 130 degrees: 
20 - 30 degrees: 2524 1 130 - 140 degrees: 
30 - 40 degrees: 3298 1 140 - 150 degrees: 
40 - 50 degrees: 3204 1 150 - 160 degrees: 
50 - 60 degrees: 1882 1 160 - 170 degrees: 
60 - 70 degrees: 256 1 170 - 175 degrees: 
70 - 80 degrees: 173 1 175 - 180 degrees: 

4196 
2162 
1052 
383 
123 
53 
10 
7 
0 

7232 
1924 

1425 
1057 
606 
453 
141 
1 
0 

Minimum input facet dihedral angle is 68.8558 (degree). 

Memory allocation statistics: 

Maximum number of vertices: 3310 
Maximum number of tetrahedra: 13294 
Maximum number of subfaces: 4802 
Maximum number of segments: 6120 
Approximate heap memory used by the mesh (K bytes): 1505.33 

spleen.1.vtk 
Mi nAng le 
Min Average Max 
0.888275 42.9754 88.8655 

AspectBeta 
Min Average Max 
1.00455 1.91216 66.5379 

AspectRatio 
Min Average Max 
1.04813 2.12916 62.1592 
Number of Tetrahedrons=13012 

Volume 
Min Average Max 
0.00017955 0.442654 13.1318 

1.132368 
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Appendix VIII: Example of How to Execute the Different Components 

# File Name: experiment.tcl 
# Objective: This file is where we connect ali the various low-level tasks together 
# to produce the FEM mesh. 
# 
#Note 
# 
# 
# 
# 
# 

:This file is provided as an example to show how the experiment can be done. 
The actual experimentations presented in this thesis are actually a modified 
versions of this example that were done by modifying the parameters used in 
the different procedures(Aigorithms), changing the order of sorne procedure 
calls, or by replacing the procedures with equivalent ones that implement 
different algorithms. 

lappend auto_path [file dirname [ info script]] 

if { $tcl_platform(platform) == "windows" } { 
load TciTetGen.dll 

} else { 
load libTciTetGen.so 

} 

#Specify the name of the tissue to do the experiment 
if {$argc == 0} { 

puts "Zeroooooooo" 
} else { 

puts "More than 0" 
set NAME [lindex $argv 0] 

} 

source AuxiliaryFunctions.tcl 
source MeshQualityReport. tel 

# Set Default values for the different parameters 
set PIXEL_SIZE 1 
set START _SUCE 1 

set FEATURE_ANGLE 60 

#Remove Islands Parameters 
set ISLAND ENABLE FLAG -1 - -
set ISLAND_AREA 4 
set ISLAND_REPLACE -1 

#Shrinker Parameters 
set SHRINKER ENABLE FLAG -1 - -
set SAMPLE_RATE "3 3 3" 

# Marching Cubes parameter 
set MC ENABLE FLAG 1 - -
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# Decimate parameters 
set DECIMATE_ENABLE_FLAG 1 
set DECIMATE_ANGLE $FEATURE_ANGLE 
set DECIMATE_REDUCTION .6 

# Smooth parameters 
set SMOOTH_ENABLE_FLAG 1 
set SMOOTH_ANGLE $FEATURE_ANGLE 
set SMOOTH_ITERA Tl ONS 1 0 
set SMOOTH_FACTOR .01 

# GAUSSIAN smooth parameters 
set GAUSSIAN_ENABLE_FLAG -1 
set GAUSSIAN_STANDARD_DEVIATION "2 2 2" 
set GAUSSIAN_RADIUS_FACTORS "1 1 1" 

# TetGen parameters 
set TETGEN_ENABLE_FLAG 1 
set TETGEN_SWITCH pq1.414V 

#Load Specifie Tissue parameters 
LoadFrogDatalnfo $NAME 

# Coordinate Computations 
set originx [expr ( $COLUMNS 1 2.0 ) * $PIXEL_SIZE * -1.0] 
set originy [expr ( $ROWS 1 2.0) * $PIXEL_SIZE * -1.0] 
set minx [lindex $VOl 0] 
set maxx [lindex $VOl 1] 
set miny [lindex $VOl 2] 
set maxy [lindex $VOl 3] 
set minz [lindex $VOl 4] 
set maxz [lindex $VOl 5] 

# adjust y bounds for PNM coordinate system 
set tmp $miny 
set miny [expr $ROWS- $maxy -1] 
set maxy [expr $ROWS- $tmp -1] 

# reader reads slices 
vtkPNMReader reader; 

reader SetFilePrefix $STUDY 
reader SetDataSpacing $PIXEL_SIZE $PIXEL_SIZE $SPACING 
reader SetDataOrigin $originx $originy [expr $START _SUCE* $SPACING] 
eval reader SetDataVOI $minx $maxx $miny $maxy $minz $maxz 
[reader GetOutput] ReleaseDataFiagOn 
set lastConnection reader 

if {$1SLAND_ENABLE_FLAG >= 0} { 
vtklmagelslandRemoval20 islandRemover 

islandRemover SetAreaThreshold $1SLAND_AREA 
islandRemover SetlslandValue $ISLAND _REPLACE 
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} 

islandRemover SetReplaceValue $TISSUE 
islandRemover Setlnput [$1astConnection GetOutput] 
set lastConnection islandRemover 

vtklmage Threshold selectTissue 
selectTissue ThresholdBetween $TISSUE $TISSUE 
selectTissue SetlnValue 255 
selectTissue SetOutValue 0 
selectTissue Setlnput [$1astConnection GetOutput] 
set lastConnection selectTissue 

if {$SHRINKER_ENABLE_FLAG >= 0} { 
vtklmageShrink30 shrinker 

} 

shrinker Setlnput [$1astConnection GetOutput] 
eval shrinker SetShrinkFactors $SAMPLE_RATE 
shrinker AveragingOn 
set lastConnection shrinker 

if {$GAUSSIAN_ENABLE_FLAG >= 0} { 

} 

vtklmageGaussianSmooth gaussian 
eval gaussian SetStandardDeviations $GAUSSIAN_STANDARD_DEVIATION 
eval gaussian SetRadiusFactors $GAUSSIAN_RADIUS_FACTORS 
gaussian Setlnput [$1astConnection GetOutput] 
set lastConnection gaussian 

if {$MC_ENABLE_FLAG >= 0} { 
#vtkMarchingCubes mcubes; 
vtkContourFilter mcubes; 

} 

mcubes Setlnput [$1astConnection GetOutput] 
mcubes ComputeScalarsOff 
mcubes ComputeGradientsOff 
mcubes ComputeNormalsOff 
eval mcubes SetValue 0 $VALUE 
[mcubes GetOutput] ReleaseDataFiagOn 
set lastConnection mcubes 

if {$DECIMATE_ENABLE_FLAG >= 0} { 

vtkDecimatePro decimator 
decimator Setlnput [$1astConnection GetOutput] 

decimator SetTargetReduction $DECIMATE_REDUCTION 
decimator PreserveTopologyOn 

~,, [decimator GetOutput] ReleaseDataFiagOn 
set lastConnection decimator 

} 

98 



# The following can be used as an alternats Decimator algorithm 
#vtkQuadricDecimation Newdecimator 
# Newdecimator Setlnput [$1astConnection GetOutput] 
# Newdecimator SetTargetReduction .95 
# Newdecimator AttributeErrorMetricOn 
# set lastConnection Newdecimator 

#vtkCieanPolyData cleaner 
# cleaner Setlnput [$1astConnection GetOutput] 
# cleaner SetTolerance 0.005 
# set lastConnection cleaner 

if {$SMOOTH_ENABLE_FLAG >= 0} { 
vtkSmoothPolyDataFilter smoother 

} 

smoother Setlnput [$1astConnection GetOutput] 
eval smoother SetNumberOflterations $SMOOTH_ITERATIONS 
eval smoother SetRelaxationFactor $SMOOTH_FACTOR 
eval smoother SetFeatureAngle $SMOOTH_ANGLE 
smoother FeatureEdgeSmoothingOff 
smoother BoundarySmoothingOff; 
smoother SetConvergence 0 
[smoother GetOutput] ReleaseDataFiagOn 
set lastConnection smoother 

# Write Data as .ply file 
vtkPL YWriter writer 

writer Setlnput [$1astConnection GetOutput] 
eval writer SetFileName $NAME.ply 
writer SetFileType 1 
set lastConnection writer 

#Note that we Add observers for the various steps to record time 
reader AddObserver StartEvent readerStart 
puts "[expr [lindex [time {reader Update;} 1] 0] 1 1000000.0] seconds" 

if {$MC_ENABLE_FLAG >= 0} { 
mcubes AddObserver StartEvent mcubesStart 
mcubes AddObserver EndEvent mcubesEnd 
puts "[expr [lindex [time {mcubes Update;} 1] 0] 1 1 000000.0] seconds" 
} 
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if {$DECIMATE_ENABLE_FLAG >= 0} { 
decimator AddObserver StartEvent decimatorStart 
decimator AddObserver EndEvent decimatorEnd 
puts "[expr [lindex [time {decimator Update;} 1] 0] /1000000.0] seconds" 
} 

if {$SMOOTH_ENABLE_FLAG >= 0} { 
smoother AddObserver StartEvent smootherStart 
puts "[expr [lindex [ti me {smoother Update;} 1] 0] /1 000000.0] seconds" 
} 

writerStart 
puts "[expr [lindex [time {writer Update;} 1] 0] /1000000.0] seconds" 

if {$TETGEN_ENABLE_FLAG >= 0} { 

# Start TetGen 

set TetGenTime [expr [lindex [time {TetGen $TETGEN_SWITCH $NAME.ply;} 1] 0] 1 
1000000.0] 

# Convert the resulted .node and .ele to .vtk 
ConvertFromTetgenToVTK $NAME.1 

# WriteUp Reports 
ReportQualityStatics $NAME.1.vtk $TetGenTime 

} 

exit 
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