
A Methodology for Applying Three Dimensional Constrained

Delaunay Tetrahedralization Algorithms on MRI Medical

Images

By

Feras Wasef Abutalib, B.Eng. (Computer)

Computational Analysis and Design Laboratory

Department of Electrical Engineering

McGill University,

Montreal, Quebec, Canada

December, 2007

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements of the degree of Master of Engineering

© Feras Abu Talib, 2007

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Bran ch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-51441-2
Our file Notre référence
ISBN: 978-0-494-51441-2

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

This thesis addresses the problem of producing three-dimensional constrained

Delaunay triangulated meshes from the sequential two dimensional MRI medical

image slices. The approach is to generate the volumetrie meshes of the scanned

organs as a result of a several low-level tasks: image segmentation, connected

component extraction, isosurfacing, image smoothing, mesh decimation and

constrained Delaunay tetrahedralization. The proposed methodology produces a

portable application that can be easily adapted and extended by researchers to

tackle this problem. The application requires very minimal user intervention and

can be used either independently or as a pre-processor to an adaptive mesh

refinement system.

Finite element analysis of the MRI medical data depends heavily on the quality of

the mesh representation of the scanned organs. This thesis presents

experimental test results that illustrate how the different operations done during

the process can affect the quality of the final mesh.

Résumé

La présente thèse porte sur le problème de la production de maillages

tridimensionnels restreints de Delaunay à partir des images de coupe

bidimensionnelles séquentielles obtenues grâce à l'imagerie par résonance

magnétique (IRM). La méthode consiste à produire les maillages volumétriques

des organes lus optiquement à la suite de plusieurs tâches de bas niveau, à

savoir : segmentation d'image, extraction d'une partie constituante, lissage

paramétrique, polissage, décimation du maillage et tétraédrisation restreinte de

Delaunay. La méthode proposée permet d'obtenir une application portable que

des chercheurs peuvent facilement adapter et élargir pour résoudre ce problème.

L'application exige de l'utilisateur une intervention minimale et peut être utilisée

soit de façon autonome, soit comme un préprocesseur d'un système adaptatif

d'affinement des maillages.

L'analyse par éléments finis des données médicales de I'IRM tient fortement à la

qualité de la représentation en maillage des organes lus optiquement. La

présente thèse présente les résultats d'un essai expérimental qui montrent la

manière dont les différentes opérations effectuées au cours du processus

peuvent influer sur la qualité du maillage final.

11

Acknowledgements

This thesis could not have been carried out without the help from a number of

persans, to whom 1 owe a great debt of gratitude. 1 wish to express my sincere

respect and appreciation to Dr. D. Giannacopoulos for his support, guidance and

insights in the preparation of this thesis. 1 must also thank my father and mother

for their moral support.

111

Table of Contents

Table of Contents ... iv
List of Figures .. vi
List of Tables ... vii
Chapter 1 ... 1
Introduction .. 1

1.1 The Finite Element Method ... 1
1.2 Motivation for the Research .. 2
1.3 Thesis Objectives ... 3
1.4 Thesis Outline .. 3

Chapter 2 ... 5
Theory ... 5

2.1 Overview .. 5
2.2 Magnetic Resonance lmaging Theory ... 5

2.2.1 Magnetic Moment and Resonance .. 6
2.2.2 Magnetic Resonance Measures .. 8

2.3 The Ove rail Madel .. 8
2.4 Step One: Segmentation .. 9
2.5 Step Two: Surface Mesh Generation .. 11
2.6 Step Three: Surface Mesh Adjustments .. 12

2.6.1 Surface Smoothing .. 13
2.6.2 Surface Decimation ... 13

2.7 Step Four: Volume Mesh Generation .. 16
2.8 Delaunay Triangulation Mesh Generation ... 17

2.8.1 Overview ... 17
2.8.2 Boundary Constrained Triangulation .. 19
2.8.3 Delaunay Mesh Refinement .. 21

Chapter 3 ... 23
The System Architecture Proposai. ... 23

3.1 Objective .. 23
3.2 Requirements: .. 23

3.2.1 Functional Requirements: .. 23
3.2.2 Non-Functional Requirements: .. 24

3.3 Input Representation .. 25
3.4 Software Components and Libraries ... 26

3.4.1 The lnsight Toolkit ... 27
3.4.2 The Visualization Toolkit.. .. 28
3.4.3 TetGen Mesh Generator .. 29
3.4.4 The Scripting language Tel .. 30

3. 5 Software Interfaces: .. 31
3.5.1 ITK-VTK interface .. 32
3.5.2 VTK-TetGen Interface ... 33

3.6 Software Portability: ... 34
Chapter 4 ... 35
Experiments Setup ... 35

4.1 Mesh Quality Evaluation ... 35
4.1.1 Geometrie Mesh Quality Measures : .. 35
4.1.2 Mesh Surface Approximation Measures ... 38
4.1.3 Mesh Performance Measures .. 40

4.2 Environ ment of the Experiments ... 41
4.2.1 Hardware Environment .. 41
4.2.2 Software Environ ment ... 41

4.3 Input Data .. 42

lV

Chapter 5 ... 43
Experimental Results ... 43

5. 1 The Reference Case .. 43
5.2 Effect of the Decimation Operation ... 48

5.2.1 Decimation Reduction Rate Effect ... 48
5.2.2 Different Decimation Implementation ... 51

5.3 Effect of the Smoother Operation ... 53
5.3.1 Effect of the Weight Factor of the Smoother Operation 53
5.3.2 Effect of the Number of Iterations of the Smoother Operation 55
5.3.3 The Combined Effect of Both Parameters of the Smoother 57

5.4 Effect of Adding a New Operation ... 59
Chapter 6 ... 63
Conclusion and Future work ... 63

6.1 Future Work ... 63
6.2 Conclusion ... 63

References ... 65
Appendix 1: Detailed Instructions on How to Setup the Proposed System 70
Appendix Il: TetGen CMake Configuration File ... 77
Appendix Ill: TciTetGen C++ Code ... 79
Appendix IV: Template File to Wrap C++ Code as a Tel Command 83
Appendix V: Tel Code for Different Auxiliary Functions ... 84
Appendix VI: Tel Code to Create Reports About Mesh Quality 90
Appendix VIl: Example of a Generated Mesh Quality Report .. 93
Appendix VIII: Example of How to Execute the Different Components 96

l

v

List of Figures

Figure 2.1: Visualisation of the spin and the magnetic moment. ... 6
Figure 2.2: The affect of applying the RF pulse and the resonance relaxation 7
Figure 2.3: Flow chart for the creation of 3D meshes based on 20 medical images 9
Figure 2.4: Example of the original brain MRI slice and its corresponding segmented images 10
Figure 2.5: The fifteen unique MC configuration ... 12
Figure 2.6: The five possible decimation vertex classifications ... 14
Figure 2. 7: Illustration of the Delaunay criterion ... 17
Figure 2.8: The Delaunay triangulation of a set of vertices ... 19
Figure 2.9: Tetrahedral transformation where two tetrahedrons are swapped for three 21
Figure 3.1: The proposed system architecture functionalities ... 24
Figure 3.2: The proposed abject design process with the data flow .. 27
Figure 3.3: A typical pipeline architecture in VTK ... 28
Figure 3.4: The proposed interfaces between the software components 32
Figure 4.1: The five classes of poorly-shaped tetrahedra ... 36
Figure 4.2: Illustration of how to compute the distance between a point and a surface 38
Figure 4.3: Symmetrical distance between two surfaces40
Figure 5.1: Flow chart of the various procedures of the experimentation 44
Figure 5.2: Flow ch art for the creation of the frog's spleen volume mesh 47
Figure 5.3: Effect of the decimation reduction rate on the number of generated elements 49
Figure 5.4: Effect of the decimation reduction rate on the number of triangles generated 50
Figure 5.5: Effect of the decimation reduction rate on the average tetrahedron volume 51
Figure 5.6: Effect of the vtkQuadricDecimation reduction rate on the number of tetrahedra 52
Figure 5. 7: Effect of the vtkQuadricDecimation reduction rate on the number of triangles 52
Figure 5.8: Effect of the weight factor of the smoother on the average minimal dihedral angle 54

Figure 5.9: Effect of the weight factor of the smoother on the average flsaker 54

Figure 5.1 0: Effect of the weight factor of the smoother on the number of generated tetrahedra. 55
Figure 5.11: Effect of the smoother iteration number on the average minimal dihedral angle 56
Figure 5.12: Effect of the number of iterations of the smoother on the ti me needed 56
Figure 5.13: Effect of the Gaussian smoothing standard deviation on the number of tetrahedra. 61
Figure 7.1: The Visualization Toolkit CMake Settings ... 72
Figure 7.2: The lnsight Toolkit CMake Settings .. 75

Vl

List of Tables

Table 3.1: Comparison between a scripting language and a traditional compiled language 31
Table 4.1: Software environment of the experiments .. 42
Table 5.1: Numerical results for the geometrie mesh quality measures of the reference case45
Table 5.2: Numerical results for the performance mesh quality measures of the reference case.45
Table 5.3: Symmetrical Hausdorff distance comparison between the surfaces produced by
vtkDecimatePro against vtkQuadricDecimation .. 53
Table 5.4: Numerical results for the geometrie mesh quality measures when the smoother factor
is set to 0.05 and the number of iteration is set to 50 ... 58
Table 5.5: Numerical results for the performance mesh quality measures when the smoother
factor is set to 0.05 and the number of iteration is set to 50 .. 58
Table 5.6: The effect of Gaussian smoothing radius factor on the number of tetrahedra generated .
... 60
Table 5.7: The effect of Gaussian smoothing radius factor on the symmetrical Hausdorff distance
(brain tissue) ... 60
Table 5.8: Effect of the Gaussian smoothing standard deviation factor on the symmetrical
Hausdorff distance (brain tissue) ... 61

vii

Chapter 1

Introduction

Most medical imaging techniques such as X-ray, Computed tomography {CT) and

Magnetic Resonance lmaging (MRI) produce high quality two-dimensional image slices.

These images are very useful for the diagnostic evaluation. However, they cannot be

used directly for advanced and detailed numerical analysis such as volume calculation,

rapid prototyping, simulations, or treatment planning application. Even a specialized

team would have difficulties to process directly the data emerging from these two­

dimensional photographie image slices. Automatic tools that are able to produce

geometrie representations and numerical volume models of the scanned organs can

provide quantitative data that aid the physicians to better treat their patients.

1.1 The Finite Element Method

The finite element method (FEM) is a tool that is used for finding approximate solutions

of complex differentiai and integral equations [1]. The steps associated with a typical

FEM can be summarized as follows: (i) Discretizing the problem region; (ii) a model of

the solution is constructed over each element by an approximating function (uniquely

defined by a set of parameters); and (iii) the parameters are computed based on global

boundary conditions. Because of its strong foundations and favourable characteristics,

FEM is sometimes considered one of the most powerful numerical analysis techniques

[2].

FEM has applications in a wide range of fields in science and engineering. ln the
~,,

medical field, automatic Finite Element (FE) models can be extremely useful in analysing

1

the data of the patients. They can be utilized in many critical operations such as

identifying prostate cancers, compensating for brain deformation during neurosurgery, or

predicting deformation of the breast.

Mesh generation is an important initial step in any numerical FE analysis requiring high

quality meshes to accurately capture the complex physical abject. This step involves

discretization of the three dimensional domain of the abject into small elements of simple

geometry such as tetrahedra or hexahedra. The mesh quality directly affects the

accuracy and the efficiency of the FEM solution [25].

1.2 Motivation for the Research

Even though numerous mesh generation methods have been described to date, there

are few which can deal directly with medical data input [1 0]. There is clearly no weil

established methodology for mesh generation in the medical community. Most available

automatic mesh generations are targeting physical abjects in general and they are not

weil suited to handle abjects from medical images [10]. There is no doubt that a detailed

investigation of the challenges and difficulties associated with automatic mesh

generation of medical images needs to be explored and researched in more detail.

There are many questions that should be answered such as: (i) what are the various

steps needed to produce a high quality mesh from the 20 MRI slices? (ii) How does

each step affect the quality of the produced mesh? (iii) How can the difficulties faced

during the process be handled?

2

Most medical applications available in the market today are commercial and very

expensive [17]. Moreover, they are designed for specifie hardware architectures that limit

their portability [18].

1.3 Thesis Objectives

This thesis is an attempt not only to defi ne the current state of the technology but also to

propose a complete open-source architecture that can be used to transform medical

images from their native scanned format to volumetrie meshes that can be used in FE

analysis. The developed tool should be of great assistance to better analyze the

scanned data of the patients and to aid future researchers to tackle this domain even

further.

Because mesh quality is often a pre-requisite for successful finite element analysis [25],

this research is supported by a detailed discussion on how mesh generation algorithms

based on the constrained Delaunay triangulation principle are affected by the operations

executed during the process to transform the medical images into volumetrie meshes.

This discussion is done with the aid of experimental test results produced by the

proposed application. Also, a discussion about the possible ideas of how to improve

such a process is presented.

1.4 Thesis Outline

ln Chapter 2, the theoretical concepts and the art of generating the volumetrie mesh

from the MRI medical slices will be addressed. ln Chapter 3, a proposai of an open­

source system architecture that would accomplish the medical mesh generation task will

be presented. ln Chapter 4, the details needed to setup an environment to execute the

3

experiments will be outlined. ln Chapter 5, the proposed architecture will be tested with

real data and the results obtained will be discussed. Finally, conclusions and a summary

of possible future work will be presented in Chapter 6.

4

.r"".

2.1 Overview

Chapter 2

Theory

The two-dimensional Magnetic Resonance lmaging (MRI) slices can be used to create

an image of the whole volume at once. There is no doubt that the geometrie

representation would contain much more information than the separated two

dimensional images. High quality numerical models do not only allow the physicians to

look at the region of interest from the various possible viewpoints, but can also provide

them with quantitative data that can potentially increase the probability of a successful

treatment. This chapter of the thesis summarizes the theoretical concepts behind the

r· various aspects involved in producing the numerical models of the anatomical

geometries used as inputs for the three dimensional finite element solvers.

2.2 Magnetic Resonance lmaging Theory

The magnetic Resonance Imagine (MRI) technique is the most common technique to

produce image volumes. Images produced from this technique will be used as the inputs

for our various experimentations. This section summarizes the theory behind this

technology and the type of information represented in these image slices.

Unlike many other medical imaging techniques, exposure to radiation is avoided in this

technique. The magnetic resonance images are not only clearer and more detailed than

the other imaging methods but also can be taken from an arbitrary direction [49). ln

addition, bane does not disturb the quality of the images. The produced images contain

5

t
t

information of a chemical nature. The different intensities in the image reflect mainly the

density of hydrogen atoms and their chemical environment [3].

2.2.1 Magnetic Moment and Resonance

MRI makes use of the resonance property found in the hydrogen nucleus in the body

molecules. The basic principle of magnetic resonance is that the nucleus performs spins

around its axis giving it angular moment. Since the proton is a positive charge, a current

loop perpendicular to the rotation axis is created, and as a result the proton generates a

magnetic field m parallel to the rotation axis (Figure 2.1). The total magnetic moment is

zero because the direction of these moments is randomly distributed and on average

equalizes one another [3].

Figure 2.1: Visualisation of the spin and the magnetic moment [3].

When an external, uniform magnetic field (80) is applied to the body, the hydrogen

nuclei will align with the magnetic field and create a net magnetic moment, M, parallel to

8 0 . The stronger the 8 0 field, the greater is the total magnetisation M. The applied field

will also cause the magnetic moment of the nuclei to start to precess about the direction

of 8 0 with an angular frequency w0 called the Larmor frequency - equal to [48]:

Wo = Gamma * Bo (2.1)

6

~··

Gamma is a constant called the gyromagnetic ratio, and its value depends of the type of

nucleus.

When a radio-frequency (RF) pulse (a weak rotating magnetic field), 8,, is applied

perpendicular to Bo with a frequency equal to the Larmor frequency, M will start to tilt

away from 8 0 as shown in Figure 2.2.

"
ff

)) '}
~

ff
/

Br~
(a)

Figure 2.2: The affect of applying the RF pulse (a) and the resonance relaxation (b) [48].

When the RF signal is turned off, the nuclei return to equilibrium such that M is again

parallel to 8 0. This return to equilibrium is referred to as relaxation [48]. During

relaxation, the nuclei emit the absorbed energy as a time varying signal. This produced

RF signal is measurable and measured by a conductive field coil placed around the

object being imaged. This measurement is processed to obtain the grey-scale MR

images.

7

~··

2.2.2 Magnetic Resonance Measures

As stated, when the RF-pulse is removed, the magnetisation returns to its former state,

which releases energy. At this point, the interesting information is gathered [3]:

• The energy release gives an estimate of the number of hydrogen nucleuses,

which in principle is the a mount of water.

• The longitudinal relaxation time T1, the ti me passed until the magnetisation

return to "normal", gives information about the chemical surrounding of the water.

The longer time, the harder the water is chemically bound.

• The transverse relaxation time T2, the time passed until the phase coherence is

lost, reflects the surroundings of each individual atom, which gives a different

contrast. T2 images often show differences between healthy and pathological

tissue.

lt can be concluded th at the different intensities in the generated image reflect mainly the

density of the hydrogen atoms and their chemical environ ment.

2.3 The Overall Model

Volume geometrie models of the anatomical organs can be created from the MRI slices

from a model that consists of four main steps (summarized in Figure 2.3):

Step 1: Image segmentation to generate the object boundaries of the tissue under study.

Step 2: Surface mesh generation.

Step 3: Refine the surface mesh with smoothing and decimation.

Step 4: Volume mesh generation.

8

3. Surface Mesh
Adjustment

(Srnoothing and Decimation)

4. Volume Mesh Generator

Figure 2.3: Flow chart for the creation of 30 meshes based on 20 images.

Each of these steps is discussed in more detail in the following sections:

2.4 Step One: Segmentation

As discussed in section 2.2, the produced grey-scale MRI images actually represent

density of the hydrogen atoms of the different scanned organs and tissues. The first

logical step in producing meshes of a specifie tissue or an organ is to separate it from

the other tissues/organs. Segmentation is the process that separates objects in an

image.

ln medical images, segmentation is the first step in creating three dimensional surfaces

and volume meshes of the region of interests (ROis) [9]. lt is used to separate the

different parts of the anatomical organ and to outline each ROI such that the enclosed

area of the image can be identified out [28]. Segmentation by itself is used in various

9

medical applications. ldentifying tumours is an excellent example of such application. lt

is an important step because it provides the initial seed set to start the meshing process.

The quality of a segmentation process can be criticized against its speed, accuracy, and

degree of automation [9]. Automated segmentation of medical images is not a new area

of research and it is undergoing rapid development [15]. lt is a challenging task to

automate the segmentation of medical images. A myriad of different methods have been

proposed and implemented in recent years. ln spite of the huge effort invested in this

problem, there is no single approach that can generally solve the problem of

segmentation for the large variety of image modalities existing today [8]. Noise in the

produced image is one factor why this task is not easy to automate [9]. Another factor

would be the overlapping scalar value of the different tissues which significantly

decreases the effectiveness of the automatic segmenting process [9]. Pre and post

processing are sometimes necessary to improve quality. Therefore, sometimes the only

way to get good segmentation is to manually draw the boundaries separating the ROis

on each slice by an expert.

Figure 2.4: Example of the original brain MRI slice scan and its corresponding

segmented images (White matter, Ventricle, Gray matter) [9].

10

2.5 Step Two: Surface Mesh Generation

The second step in creating three dimensional volume meshes of the region of interests

(ROis) is generating the surface mesh of the segmented data. A surface rendering

algorithm is needed. Marching Cubes (MC) [4] is one of the most famous and reliable

algorithms for this purpose.

The Marching Cubes algorithm is a three dimensional technique for rendering

isosurfaces representation of the volumetrie data. ln this algorithm, an imaginary cube is

t
used to march through pairs of adjacent segmented images by taking eight neighbour

locations at a time, four vertices from each slice. A polygon is determined to represent

the isosurface that passes through this cube by comparing the material type of each

vertex. If a vertex has a different material from its neighbouring vertices, a boundary

surface should exist between it and the others in order to separate the two different

materials. There are 256 different combinations of material types that a cube's vertices

could have [4]. These combinations can be obtained by reflecting and symmetrical

rotation of 15 unique situations [14). Figure 2.5 shows these possible combinations. The

individual polygons are then fused into the desired surface.

The Marching Cubes combines simplicity with high speed. Despite the various

advantages of using the Marching Cubes algorithm, it has some drawbacks. The surface

model created by the Marching Cubes algorithm has stair-step shaped surfaces, which

do not represent the natural surface curvature [8]. Also, the large density of the surface

nodes and the triangles severely hinder the computational efficiency of the subsequent

/' volume mesh generation steps [8). This emerges the need for some surface adjustments

before being able to generate the meshes.

11

~
t

'

t

'

CaseO

7

Càse4

1

CaseS

6

6

Case 12.

Case 1

7

Case 5

Case9

6

1

Case 13

CaseZ

1

Case6.
1

Case10

6

6

7

Case 14

Figure 2.5: The fifteen unique MC configuration [14].

2.6 Step Three: Surface Mesh Adjustments

7

Case3

Case7

7

Case 11
6

6

6

There are two main procedures to improve the quality and efficiency of the existing

surface model: smoothing and decimation. lt is worth noting that there is no preference

on the order in which these procedures are applied.

12

2.6.1 Surface Smoothing

The main focus of smoothing is to improve the appearance of a mesh. This step is

necessary to overcome the stair-step shaped surfaces produced by the MC algorithm.

During smoothing, the topology of the madel is not modified and only the node

coordinates are adjusted. This means that the smoothing operation changes only the

geometry and doesn't change the number of nodes in the existing model [16]. A

common and effective technique is Laplacian smoothing [14]. The Laplacian smoothing

equation for a point pi at position Xi is given by

- - n - -
Xi+l =Xi +ÂL(XJ -xi) (2.2)

j=O

~·. Where Xi+l is the new coordinate position, and x1 are the positions of points p1

connected to pi, and À is a user-specified weight. This operation can be executed on

the same point repeatedly [14].

2.6.2 Surface Decimation

Decimation is a technique used to reduce the total number of the polygons in the

polygonal meshes generated by the Marching Cubes algorithm [7]. The main idea is to

use the minimum number of polygons without having a significant change in topology

and shape of the original geometry. This will reduce the speed and the memory

requirements needed to process the data emerging from the Marching Cubes algorithm

[16]. The decimation technique is not domain-specifie technique and it uses local

operations on geometry and topology to reduce the numbers of the polygons. ln this

technique, three steps shoUid be followed:

13

~·.

Step#1 Vertex classification: The goal of this step is to identify the vertices that are

candidates for deletion. ln this step, each vertex is characterized according to its local

geometry and topology into one of five classifications [7, 14]:

• Simple vertex: a vertex is considered simple when every edge containing this

vertex is shared by exactly two triangles and these triangles form a complete

cycle.

• Complex vertex: a vertex is considered complex when one of the edges

containing the vertex is not used by two triangles or if there exist a triangle that

contains this vertex but not in the cycle of the triangles.

• Boundary vertex: a vertex is considered a boundary vertex when it is on the

boundary of a triangle mesh and is surrounded by a semi-cycle of triangles.

• lnterior vertex: a vertex is considered interior if it is a simple vertex that is used

by two feature edges. An edge is classified as feature edge when the angle

between the normal of the two triangles sharing this edge is greater than a

specified feature angle.

• Corner Vertex: a vertex is considered corner if it is a simple vertex that is used by

one, three or more feature edges.

Simplt' Complex Boundary Interiur
Edge

Corner

Figure 2.6: The five possible decimation vertex classifications [7].

Ali the vertices of type simple, boundary, interior or corner are candidates for deletion.

Only the complex vertices are not considered for deletion.

14

Step#2 Decimation criteria: ln this step, a pass over the candidate vertices should be

done to determine whether the vertex along with its connected edges can be deleted

and replaced with another triangulation. For the simple vertices, this is done by

evaluating the distance to plane criteria. If the simple vertex is within a specified distance

to the average plane then the vertex can be deleted. For the boundary and interior edge

vertices, this is done by evaluating the distance to the line defined by the two vertices

creating the boundaries or the feature edges. Again if the vertex is within a specified

distance then the vertex can be deleted. For the corner vertices, they are usually not

deleted except for the cases when the meshes contain areas with relatively small

triangles that have large features angles. ln these cases, the distance to plane criteria is

used. When removing the triangles connected to the deleted vertex, a hole will be

presented in the triangle mesh. This hole must be re-triangulated.

Step#3 Triangulation: After the vertex has been removed, the resulting hole has to be

triangulated. The resulting triangles should not be intersecting with each other and not

degenerating. Triangulation with good aspect ratio can better approximate the original

geometry of the hole. The generic two-dimensional triangulation algorithms cannot

always produce practicable results. lnstead, the recursive three-dimensional divide-and­

conquer technique is used to take advantage of the star-shaped of the hole. First, this

hole is split into two sub-holes through the split plane. The split plane is the plane

orthogonal to the average plane that contains the split line. The split line is the line

connecting two non-neighbours vertices. Only if ali the vertices of each of the resulted

hole lie on the same side of the split plane, the split is considered acceptable. If the split

is unacceptable, a different split plane should be considered. Note that if there is no

possible acceptable split, then the original vertex along with its surrounding triangles will

15

not be removed from the mesh. This algorithm is applied recursively on the resulted sub­

holes until ali the resulting hales have exactly three vertices.

A successful triangulation will result in a reduction of exactly two triangles when

removing a simple, corner or interior edge vertex and exactly one triangle when

removing a boundary vertex [7].

2.7 Step Four: Volume Mesh Generation

A good mesh generation algorithm must not only correctly madel the shape of the

problem domain but also offer as much control of the sizes of the elements in the mesh

[12]. Also, the generated elements should be relatively "round" because elements with

large or small angles can significantly decrease the quality of the numerical solution [38].

Many possibilities are available to construct the meshes. The choice of the shape of the

elements is the first thing a mesh generator should consider. Simplicial meshes is the

most popular choice since its elements have simple shapes that it is easy to

approximate the behaviour of a partial differentiai equation on each of them (0-simplex is

a vertex, 1-simplex is a segment, 2-simplex is a triangle and 3-simplex is a tetrahedron

etc.). This is why tetrahedra have often been used for three-dimensional analysis.

Also, meshes can be classified as structured or unstructured. ln structured meshes, the

indices of the adjacent nades can be calculated with simple addition. The biggest

advantage of this is that there is no storage need to store the indices of each node's

neighbours. Also, this can help a lot in simplifying the parallel computation of the

16

t

t
t

1
t

problem without the use of sophisticated partitioning algorithms and parallel unstructured

solvers as those needed for unstructured meshes [12].

However, structured meshes fail to properly discretize many of the problems which have

irregularly shaped demains and tend to lead to a mesh with many more elements than

an unstructured mesh. This leads to many more redundant computations that do not

result in a more accurate solution. The unstructured mesh fits itself more nicely into

these demains. Experimentation has proven that unstructured meshes are much better

than structured meshes and can provide multi-scale resolution and conformity to

complex geometry [38].

2.8 Delaunay Triangulation Mesh Generation

2.8.1 Overview

The most popular triangulation meshing methods are those that utilizing the Delaunay

"empty sphere" criterion. This property says that any node in the mesh must not be

contained within the circle/circumsphere of any triangle/tetrahedron within the mesh [32].

Figure 2.7 is a simple 2D example of this criterion. Delaunay mesh generation

algorithms are both provably good and very practical [38].

(a) (h)

Figure 2.7: Illustration of the Delaunay criterion. (a) maintains the criterion while (b) does

not [50].

17

l
1

t

.~"""\

Among ali triangulations of a vertex set, the Delaunay triangulation maximizes the

minimum angle in the triangulation, minimizes the largest circumcircle, and minimizes

the largest min-containment circle, where the min-containment circle of a triangle is the

smallest circle that contains it (and is not necessarily its circumcircle) [12]. This nice

property is the reason for the wide use of Delaunay triangulation in mesh generation. lt is

important to note that the max-min property holds only for the two dimensional Delaunay

triangulation and doesn't apply to three dimensions and higher triangulations. ln spite of

that, experimental results show that the Delaunay triangulation in three dimensions and

higher is still invaluable for mesh generation applications [12].

A standard way to construct Delaunay meshes is to first obtain an initial set of nodes by

meshing the boundary of the given geometry. These nodes are then used to get the

initial Delaunay triangulation. More nodes are then added incrementally to this

triangulation structure. The resulted tetrahedrons are redefined locally to maintain the

Delaunay criterion. There exist many methods to determine where to locate these

interior nodes.

The simplest approach for point insertion is to define the nodes from a regular grid of

points covering the domain at a specified nodal density [50]. A sizing function, which is

determined by the user, can be defined in order to provide changeable element sizes

and the nodes are inserted until the condition of sizing function is met. Another

approach can be done by recursively inserting the new nodes at the tetrahedrons'

centroids [29]. The third approach is to follow a specifie order in inserting the new nodes

at element circumcircle/sphere canters. This technique is called "Guaranteed Quality" as

triangles can be generated with a minimum bound on any angle in the mesh [31]. The

line segment between the circumcircle canters of two adjacent triangles or tetrahedrons

18

1
t

t
t

1

is referred as "Voronoi segment". A new node is established at a point along the

segment to satisfy the best local size criteria. This method produces very structured

meshes with six triangles at every internai node [32, 50].

2.8.2 Boundary Constrained Triangulation

Even though the minimum angle of the Delaunay triangulation in two dimensions is

maximized, strictly Delaunay triangulation is still not enough to produce good mesh

elements. These methods are unaware of the requirement to maintain an existing

surface triangulation. As a result, these boundary requirements may not appear in the

final triangulation. Secondly, these methods may produce quite poor

triangles/tetrahedrons. Certain simplices, according to their geometry, can result in a

significant decrease in the precision of the solution. ln two dimensions, for example, a

triangle which is too "flat" (a flat triangle has a large angle) leads to large errors (See

Figure 2.8). To prevent this from happening, the mesh generation has to produce

elements which are as close of being regular tetrahedrons as possible.

Figure 2.8: The Delaunay triangulation of a set of vertices. lt does not usually solve the

mesh generation problem, because it may contain poor quality triangles (bottommost

triangle) [12].

Bath of these problems can usually be solved by inserting additional vertices into the

triangulation. Therefore, many implementations usually add a second step to recover the

19

required surface triangulation. By doing that, the triangulation may no longer be strictly

Delaunay, hence the term "Constrained Delaunay Triangulation" [12]. A constrained

Delaunay simplex is one whose circumscribing circle can contain ether vertices as long

as they are hidden by ether input simplices of order one less than the dimension we're

working in [38].

A Constrained Delaunay Triangulation (CDT) is one which allows constrained Delaunay

simplices to be included in it and therefore has a larger degree of freedom. Although not

strictly Delaunay, a CDT has similar properties as the Delaunay triangulation. For

instance, given a set of segment inputs, a CDT will have the maximum minimum angle

out of ali the ether triangulations that conform to the input segments and vertices [12].

Certain triangles, however, may still be deemed "bad" because they may have small

angles, as imposed by input segments which are at small angles of each ether [12].

ln two dimensions, the edge recovery is relatively straightforward. The edges of a

triangulation may be recovered by iteratively swapping triangle edges. The process is

considerably more complex in three dimensions. Two different methods are presented

here for recovery of the boundary.

ln the first approach, a series of tetrahedral transformations is done by swapping two

adjacent tetrahedra for three in order to recover the edges as shown in Figure 2.9. lt is to

be noted that if a swap cannet resolve the edge, more nodes must be added. After

recovering the edges, additional transformations are executed in order to recover the

face. That is done by swapping three adjacent tetrahedra at an edge for two. ln case that

the surface tacet can not be resolved through the transformation, more complex

transformations or additional nodes can be added during the face recovery phase [37].

20

Two phases are included in the second approach: an edge recovery phase and a face

recovery phase [29]. ln this approach, nodes are inserted directly into the triangulation

wherever the surface edge or facet cuts non-conforming tetrahedra. This process

temporarily adds additional nodes to the surface in order to facilitate the boundary

recovery. However, these nodes will be deleted once the surface facets have been

recovered, and the resulting local void re-triangulated.

D E

Figure 2.9: Tetrahedral transformation where two tetrahedrons are swapped for three

[50].

2.8.3 Delaunay Mesh Refinement

The resolution of the unstructured meshes can vary throughout the mesh. For example,

around a singularity, tetrahedra should be small and should become larger and larger as

we get farther from the singularity. ln order to obtain size-variable meshes, refinement

algorithms are used. Once the solution is calculated using an initial coarse mesh, areas

with large error can be identified and then further partitioned into smaller simplices in

order to gain higher precision. Refinement can be defined to be any operation performed

on the generated elements in the mesh that effectively reduces the local element size

[38]. ln fact, post-processing refinement is almost always needed to improve the overall

quality of the elements generated. Element refinement procedures are numerous.

21

r" ..

Smoothing is one of the most popular techniques for refinement. Smoothing adjusts

node locations while maintaining the element connectivity. With smoothing, there are no

changes made to the topology of the mesh. Another method for refining is called "clean-

up". ln this method the process changes the element connectivity within the mesh. ln

refining the mesh, it is important to keep the Delaunay property of the mesh so that no

"bad" triangles are formed in the process. Incrementai algorithms for mesh refinement

should add vertices one by one while keeping the mesh Delaunay [38].

22

Chapter 3

The System Architecture Proposai

3.1 Objective

One of the objectives of this thesis is to propose an architecture that can be used to

transfer the medical images into meshes that can be consumed by the FEM software

such as ANSYS, ABAQUS, and NASTRAN.

The proposed system will also be initiated and utilized to supply us with experimental

data results that can be used to enrich the discussion of the effect of sorne of the

!"'· different steps on the quality of the generated meshes.

3.2 Requirements:

3.2.1 Functional Requirements:

The following list is a summary of the main functional features that the proposed system

should have:

1. The system should provide the ability to process MRI images in their native

format.

Il. The system should be capable of providing the various image processing

services needed during the various steps to generate the mesh. These services

should include the segmentation, isosurface creation, smoothing, and decimation

techniques.

23

Ill. The system should provide the ability to generate volume adaptive Delaunay

meshes when seeded with an initial surface mesh.

IV. The system should provide a visualization service. This should include

elementary functions as zoom, rotate, and translate for the 2D and 3D views of

the processed data.

Figure 3.1 shows the building blacks of the proposed architecture functionalities based

on the previously listed functional requirements.

1 Medical Image File Handler 1

Image Processing Functions 11----------,~

1 20/30 Viewer l

1 Mesh Generating Functions lf-------'t

Figure 3.1: The proposed system architecture functionalities.

3.2.2 Non-Functional Requirements:

The following list is a summary of the main non-functional features:

1. Performance: The proposed system should be designed to maximize speed

while minimizing the memory as much as possible. This requirement is important

because the computational cast associated with processing medical data tends

to be very expansive.

Il. Usability: The proposed system should be easy to learn so that new users can

start using the system with minimal knowledge.

24

Ill. Expandability: the proposed system should be expandable so that new

functionalities, features, and components can be easily developed and integrated

into the system.

IV. Portability: The system should be portable across the different platforms and

should not be limited to a specifie hardware. Also, it shouldn't rely on proprietary

libraries that would prevent public researchers from taking advantage of it.

3.3 Input Representation

As the first functional requirement stated, the system should provide the ability to

process MRI images in their native format. Digital lmaging and Communications in

Medicine (DICOM) files is the most popular standard for sending/receiving medical scan

images. lt was created by the National Electrical Manufacturers Association (NEMA)

[51]. DICOM is a comprehensive set of standards for handling, storing and transmitting

information. Unlike The previous attempts at developing a standard, DICOM had the

potential to actually achieve its objective for transferring images as weil as associated

information between deviees manufactured from various vendors.

A DICOM file contains bath a header and the image data. The header is used to store

metadata information such as the patient's name, the type of scan, image dimensions.

The DICOM image data can be stored as raw data or compressed using lassy or

lossless variants of the JPEG format to reduce the image size.

The proposed software system should be able to handle the different DICOM medical

files variations as these image files supply the input data to our system.

25

3.4 Software Components and Libraries

Writing software from scratch that would achieve the listed functional requirements is a

very difficult task that requires extensive amount of effort and time. An alternate

approach would be to look for already developed open-source software

components/libraries of which each would be able to achieve a sub-set of the functional

requirements. These software components are then connected together to achieve ali

the proposed functional requirements. There are many components available. The idea

is to try to use the minimum number of components while achieving the maximum

possible number of functionalities. lt is important to note that during the search for such

components, one has to always not overlook the non-functional requirements. For

example, a component might exist that would accomplish the required functionality but

would break the portability non-functional requirement. Furthermore, the chosen

components should be compatible with each other to some degree. This would make the

integration process between them feasible and doesn't require a huge effort.

ln this section, the chosen components/libraries needed to accomplish the system

proposai are introduced. A description of each component is presented along with a

discussion on why this component was chosen and how it should help in achieving the

overall proposed requirements. Figure 3.2 shows the overall proposed object design

process and how the different chosen components communicate with each other in

order to accomplish the various tasks and functionalities.

26

Original Slice Images

Optimized Surface Model

Tagged Images

Figure 3.2: The proposed abject design process with the data flow.

3.4.1 The lnsight Toolkit

The lnsight Toolkit (ITK) is an open-source and object-oriented software system library

for performing registration and segmentation on images. ITK also provides functionalities

that allow reading DICOM files. Therefore, this software component can be used to help

fulfill the functional requirements 1 and Il.

ITK is implemented in C++. lt is cross-platform and uses a build environ ment known as

CMake to manage the compilation process in a platform-independent way (see section

3.6). ITK was started in 1999 under a contract by the US National Library of Medicine.

This Project is still under heavy development to include even newer segmentation

algorithms and techniques.

ITK is very large and relatively complex compared to the other components. ITK's C++

implementation style is referred to as generic programming. lt uses templates for both

27

~··.

the implementation of the algorithms and the class interfaces themselves. This type of

heavily templated C++ code challenges many compilers and it can take much longer to

compile.

On the ether hand, the templates programming allows the same code to be applied

generically to any class or type that happens to support the operations used. Such C++

templating means that the code is highly efficient, and that many software problems are

discovered at compile-time, rather than at run-time during program execution.

3.4.2 The Visualization Toolkit

The Visualization Toolkit (VTK) is an open source software library for 2D/3D

image/surface processing, and visualization. This software component can be used to

help fulfill the functional requirement Il and IV. VTK supports a wide variety of

visualization algorithms and advanced modeling techniques such as surface

construction and polygon reduction (Decimation). The VTK library is portable because it

has been installed and tested on nearly every Unix-based platform, PCs (Windows

98/ME/NT/2000/XP), and Mac OSX Jaguar or later [43].

One should understand the pipeline architecture used in VTK in order to take full

advantage of it. ln this architecture, multiple elements are attached together to perform a

complex task. Typical pipeline architecture is outlined in Figure 3.3.

[Sources H Filters H Mappers H Props

Figure 3.3: A typical pipeline architecture in VTK.

28

ln the figure, the sources are the classes that produce the data while the filters are the

classes that operate on the data to produce a modified version of it. The mappers, on

the other hand, are the interface classes between the data and the graphies primitives.

Multiple mappers may share the same input, but render it in different ways. The props

are the classes needed to generate the visible representation of the output of the

mappers on the screen [13].

The design and implementation of the VTK library has been strongly influenced by the

object-oriented principles and therefore understanding of the abject oriented principles

will help to utilize the VTK underlying classes more effectively.

3.4.3 TetGen Mesh Generator

The functional requirement Ill can be accomplished by the TetGen software component.

The main goal of TetGen is to generate suitable Delaunay tetrahedralization,

constrained Delaunay tetrahedralization and quality tetrahedral meshes for solving

partial differentiai equations by finite element or finite volume methods. TetGen code is

highly portable since it is written in ANSI C++ and therefore can be compiled in

Unix/Linux, Windows, and MacOS [45].

The final step of generating the volume meshes from the adjusted surface meshes is the

most time and memory consuming in the overall process. lt was reported that the

TetGen implementation is fast and memory efficient. For example, on an Apple laptop

(2.16GHz Intel Core 2 Duo); it takes 2.38 seconds to compute the Delaunay

tetrahedralization of 40,000 randomly distributed points with 9.4MB heap memory. For

one million points, it uses 93 seconds and 234.47MB heap memory [45]. The TetGen

29

software component was chosen for one more reason and this is because it can perform

efficient mesh refinement by inserting new vertices to improve the overall mesh quality.

This can be utilized to refine the generated mesh at places where the error is tao large.

3.4.4 The Seripting language Tel

3.4.4.1 Tel Rational

Tel is an open-source interpreted language. lt is available on a wide variety of platforms,

including Windows, Mac, and essentially ali flaveurs of UNIX (Linux, Solaris, IRIX, AIX,

BSD, etc.) [47]. There exist many interpreter shells such as tclsh and wish which can

execute the various Tel commands. This scripting language will be used primarily to

achieve the binding glue role in the proposed system. The reason why a scripting

language was chosen to accomplish this role instead of a traditional compiled language,

like C++, is mainly because it is easier to learn a scripting language and it is more

readable. Remember that if a language is chosen to be the binding glue between

different components, then this language will be used to control the arder in which the

operations of the other components are executed. lt will be the interface from which new

experiments can be written and old experiments can be reorganized. Because of the use

of a scripting language, there will be no need to recompile the code to execute the

new/modified experiments.

On the other hand, one would argue that a scripting language would hinder the

performance of the system. This wou Id be true if the scripting language is being used to

carry out the costly computational operations. Remember that these expensive

operations will be executed by their corresponding components and not by the scripting

language itself. The scripting language role will be just to provide an easy-to-use

interface to cali these expensive operations.

30

A traditional compiled language A scripting language

Examples C++, Java Tel, Perl, Python

Application Large and complex applications Simple and small to medium
where performance is important applications where performance

is less important

Structure Very structured Minimum structure, less
overhead, easy to interchange

Table 3.1: Comparison between a scripting language and a traditional compiled

language.

But why was the Tel language chosen and not any other scripting language such as

Python, Ruby, or Perl? From the extendibility point of view, the Tel language is the one

with the best integration with the graphical user interface toolkit "Tk" [13]. This would

allow integrating a Ul component easily in the system if needed. ln fact, most of the

other languages, directly or indirectly invoke Tk and hence an understanding of Tel is

helpful in learning these languages as weil [13].

3. 5 Software Interfaces:

The overall functionalities can be achieved by combining together the different software

libraries and components. However, the Interfaces between the different components

should be defined first to facilitate this process. This section establishes these interfaces

which would make the integration process possible.

31

1 ITK written in C++ 1 1 VTK written in C++ 1 1 TetGen written in C++ 1

• • •
1 Tel commands to wrap ITK calls 1 1 Tel commands to wrap VTK calls Il Tel commands to wrap Tetgen calls 1

-
t

A script written in Tel
that makes calls to the

different libraries and components
(There is no need to compile code to carry out experiments)

1 Tel commands get executed in a Tel shell such as wish or tclsh 1

Figure 3.4: The proposed interfaces between the software components.

3.5.1 ITK-VTK interface

Fortunately, both ITK and VTK have an automated wrapping process to generate

interfaces between the implemented C++ class library and the interpreted programming

languages Tel. However; this is not enabled by default and customized changes to the

settings to compile their source code should be made to enable this feature (Refer to

Appendix 1).

Also, ITK and VTK use different wrapping system and therefore it is not a straightforward

procedure to convert the output of the ITK engine to be used directly as input by the VTK

engine from within the Tel command. There are mainly two possible approaches to solve

this problem: (i) convert the output of ITK engine to a common file format that can be

read by the VTK engine; or (ii) make use of the image data importer and exporter

classes that have been implemented in both engines. The first approach is simpler as

there is no challenge in instantiate image importer classes in the VTK without knowing

first the pixel type of the produced image of the different ITK segmentation techniques.

On the other hand, the first approach has worse performance as 10 operations are

involved. Again this should not be an issue as these types of operations are not the

32

bottleneck operations in such medical application. The common file format that can be

produced or consumed by both angines is the .vtk file format.

3.5.2 VTK-TetGen Interface

There is no automated wrapping process to generate an interface between the

implemented C++ TetGen class library and the interpreted programming language Tel.

This wrapper would make the ultimate use of the scripting and compiled language

combination in a single piece of software (hybrid programming approach) [13]. lt would

allow the TetGen code to be called directly from within a Tel shell and therefore

maintaining the Tel interface among ali the components of the proposed system. ln fact,

writing such code is a necessity to complete the integration process and to provide a

mechanism for future code changes to be integrated into the proposed system

regardless of the language they are written in. See Appendices Ill and IV for the C++

structure for such wrapper.

Also, a similar approach to the ITK-VTK interface is being used to transfer the data from

the VTK engine to the TetGen engine by using the .ply common file format that can be

produced by the VTK engine and consumed by the TetGen engine. lt is important to

note that TetGen can only accept .ply files as input data, and it cannet produce them as

output data. Therefore, code was written to transfer the TetGen output files into a format

that can be consumed by the VTK for visualization and mesh quality reporting purposes

(Refer to Appendix V).

33

3.6 Software Portability:

Writing software that can compile and run on different operating systems is not an easy

task even for the most experienced programmer [13]. This is especially true for software

written with the C++ language. C++ programmers not only have to make sure to follow

the standard C++ coding rules and to restrict their use to the standard libraries but have

also to provide a mechanism for their code to be campi led and built across the different

platforms.

CMake is a cross-platform and open-source make system. This tool can help in

controlling the software compilation process of a software component across the

different platforms. Portability of C++ code is easier with the use of such tool. CMake is

quite sophisticated. lt is possible to support complex environments requiring system

configuration, pre-processor initializations, code generation, and template instantiation.

CMake takes as an input a set of configuration files and generates as an output native

makefiles (Unix) or Visual studio projects (MS-WINDOWS) for the application. Because

of this tool, there is no longer a need for the programmer to write bath by hand.

8oth VTK and ITK provide the compiler independant CMake configuration file consumed

by the CMake executable to generate the VTK/ITK code according to the chosen

platform/compiler environment. CMake configuration file was produced for the TetGen

code to be able to achieve the same functionality (See Appendix Il).

34

Chapter 4

Experiments Setup

This chapter of the thesis builds the foundations needed for the experiments to be

carried out. This includes how to evaluate the results of the experiments, how to setup

the hardware and software environments, and specifying the input data to the

experiments.

4.1 Mesh Quality Evaluation

An important step in conducting numerical experiments is to setup the criteria with which

one can evaluate the results of the experiments. This can be summarized into three

categories: (i) Geometrie mesh quality measures; (ii) Mesh surface approximation

measures; and (iii) Performance measures.

No matter the context, it is clear that mesh quality evaluation are essential for achieving

optimal accuracy and efficiency of the finite element analysis [21].

4.1.1 Geometrie Mesh Quality Measures

lt is weil known that the accuracy and efficiency of the finite element method can be

directly affected by very poor quality elements [2, 21-23). A single poor quality element

can cause the slowdown of iterative solvers and large round-off errer in the finite

element solution [21]. The tetrahedron simplex is the most flexible element for covering

complex topologies in three dimensions because the complete polynomial expansion

functions can be defined over tetrahedra with relative ease [26, 27]. Tetrahedra are

considered a good choice to represent medical data since it is particularly

35

straightforward to use them to describe smooth surfaces [6]. Geometrie mesh quality

measures evaluate the shape of tetrahedra based on purely geometrie characteristics.

Most of these measures are usually presented in the form of quantities such as volume,

edge lengths and radii of the spheres associated with the tetrahedral elements. The

most common used benchmark test for geometrie quality measures are based on a

specifie distortion of an equilateral tetrahedron [33, 34]. Tetrahedra that are particularly

skewed slow down and produce errors in the solutions given by partial differentiai

equations solvers. The reason for these problems is that the equations corresponding to

skewed tetrahedra can be very poorly conditioned [6].

According to the dihedral angle, the angles between triangles in a tetrahedron, poorly-

shaped tetrahedra can be classified into five classes [6] as shown in Figure 4.1. A

needle tetrahedral has the edges of one triangle much smaller than the ether edges. A

wedge has one edge much smaller than the rest. A sliver has four weil separated points

that nearly lie in a plane. A cap has one vertex very close to the triangle spanned by the

ether three vertices. A spindle has one long edge and one small edge.

Needle

~
Wedge

~
Spindle

Figure 4.1: The five classes of poorly-shaped tetrahedra [6].

Beth a and f3Baker measures are considered among the most commonly used measures

in identifying tetrahedra distorted from the equilateral shape.

36

3Rt
a=­

Rc
(4.1)

Ri is the radius of the insphere inscribed in a tetrahedron such that each face of the

tetrahedron is tangent to the sphere and Re is the circumsphere radius of the sphere

passing through ali four vertices of the tetrahedron. The a ratio achieves a value of one

for equilateral tetrahedra [33]. Elements having a lower value considered poorer quality.

r;- Rt
f3saker = 2-v o--

lmax
(4.2)

l is the length of the largest edge in a tetrahedron. Similarly, this ratio achieves a
max

value of one for equilateral tetrahedra and a lower value for the tetrahedra distorted from

the equilateral shape. Note that the normalized Baker quality criterion has a solid

theoretical basis linking it to approximation accuracy for first-order tetrahedral finite

element [35]. ln particular, the measure is fair and associated with interpolation error

bounds suggested by approximation theory [25].

Therefore, the quality of the shape of the mesh elements generated by the experiments

can be compared by computing a and flsaker measures. Also, reporting the minimum,

maximum and average minimal dihedral angle of the generated tetrahedrons would also

help to visualize the quality of the mesh elements [12].

37

4.1.2 Mesh Surface Approximation Measures

The non-equilateral tetrahedra are known to negatively impact finite element accuracy

and efficiency; however, it is not sufficient for evaluating tetrahedral meshes in the finite

element context [25]. One of the most important properties of a tetrahedral mesh is that

it must completely fill the region being simulated. ln the proposed methodology, this

heavily depends on the surface approximation of the anatomical abject. The quality of

the surface approximation can be evaluated using the Hausdorff distance mean error

dm(S,S') [19] between the approximated surface (S') and the original surface (S).

dm(S,S') = ~~~ fJd(p,S')dS
pES

(4.3)

!SI donates the area of the surface S and d(p, S') is the distance between a surface S'

and a point p belonging to surface S and it can be computed as

(4.4)

Note that 11·11
2
donates the usual Euclidean norm. As can be seen in Figure 4.2 the

distance between a point p and a surface S' is defined to be the distance between the

point p and the nearest point in S' to p.

Figure 4.2: Illustration of how to compute the distance between a point and a surface.

38

A natural variant of the equation 4.3 would be the root-mean-square errer version which

can also be used as a measure for the accuracy of the surface approximation [19].

drmse(S,S')= ~~~ Jfd(p,S')
2

dS
J1ES

(4.5)

lt is worth noting that the definition of the distance between two surfaces is given by the

Hausdorff equation 4.6.

d(S,S')=maxpES d(p,S') (4.6)

This equation is not symmetrical (i.e. d(S,S') * d(S',S), see Figure 4.3) and therefore

equation 4.3 is not symmetrical either. Symmetrical version of equation 4.3 can be

derived as follows:

(4.7)

Similarly, a symmetrical version of equation 4.5 can also be derived. lt is important to

mention that the symmetrical version provides a more accurate measurement of the

errer of the surface approximation since the value of each distance side can be largely

different than the ether as illustrated in Figure 4.3 where d(A,S') << d(B,S).

Note that the original surface can be the surface produced by the marching cubes

algorithm, before decimation. ln this case, the approximate surface would then be the

surface produced by decimation.

39

B

Figure 4.3: Symmetrical distance between two surfaces [19].

4.1.3 Mesh Performance Measures

The challenge of anatomical modeling from the medical images is not only to accurately

model complex shapes but also to reduce the modeling time [20]. The produced mesh

that leads to as few computations as possible in a finite element simulation is highly

desirable as intra-operative medical procedures require the mesh generation process to

be very fast. While sorne methods can perform weil with large datasets, it is often

reported that the execution time can be very lengthy [20]. Both the bad quality and the

large number of the mesh elements can negatively affect the execution time of a FEM

simulation [5]. While the shape quality should be high in order to produce accurate

results, the number of the mesh elements should be small enough to keep the

computation time reasonable [24]. Consider for example, the typical Marching Cubes

algorithm would generate a very large number of polygons: one to three million triangles

from a 512x512x512 volume. If these generated polygons are used directly to generate

the mesh then a large number of mesh elements would be produced without necessarily

increasing the quality of the mesh. However, one should remember that the number of
r··

elements cannot be very small as this would lead to mesh elements with large sizes.

40

Mesh elements with large sizes are reported to produce less FEM accurate results than

the smaller ones [12].

Another performance attribute that should be considered is the memory needed during

the process. Mesh generation algorithms might require huge amount of memory

especially when the number of mesh elements generated is large.

Therefore, it can be seen in order to evaluate the performance of the mesh generator:

one would report the time needed for the various tasks to be executed, the number of

mesh elements that were generated, the sizes of these elements, and the memory

needed during the process.

/' 4.2 Environ ment of the Experiments

4.2.1 Hardware Environment

The proposed system is a highly portable solution that is not limited to a specifie

hardware system. The experiments in this thesis were performed on an Intel Pentium 4

workstation equipped with a 2.0 GHz CPU, 512KB cache size, and 512MB physical

memory.

4.2.2 Software Environment

Many different software components and tools were used in these experiments. Table

4.1 summarizes the version numbers of the different software components.

41

Software component Version#

os Windows XP Sp2

Tel 8.3

Visualization TooiKit (VTK) 5.0.3

lnsight Toolkit (ITK) 3.4.0

TetGen Mesh Generator 1.4.2

CMake 2.4 patch 7

C++ Compiler Microsoft Visual C++ 6.0 SP6

Table 4.1: Software env1ronment of the expenments.

Refer to Appendix 1 for the full guide of the detailed technical instructions on how to

setup these different components together.

4.3 Input Data

The experiments were carried out on a dataset derived from a frog. The data was

originally obtained from the Virtual Frog project of the Lawrence Berkeley National

Laboratories [42]. The intention of the experiments done on the frog data was to

generate a better understanding of how to transform the image slices into volumetrie

mesh elements using the proposed system architecture by going through the different

low-levels tasks.

42

Chapter 5

Experimental Results

There are many steps involved in the process to generate volumetrie medical meshes. ln

this chapter, experiments were carried out in order to study the affect of sorne of these

steps on the quality of the final produced meshes.

5.1 The Reference Case

The steps depicted in Figure 5.1 will be carried out on the segmented image slices of a

frog. The names of the functions that are actually called are also presented in the figure.

Note that sorne customized code had to be written to make the flow in the figure

possible. Refer to Appendices Ill-VIII for the more technical details.

The idea is to evaluate the affect of the operations involved on the quality of the final

mesh generated. The first step would be to execute the suggested set of operations

depicted in Figure 5.1 with sorne default parameter values on a set of different tissues of

a frog and report back the quality of the meshes that are generated. After that, the

experiments will be repeated by modifying the parameter values of the operations,

replacing the operations with equivalent ones that implements different algorithms, or by

adding new operations in the process. A comparison of the results will be done and

discussed throughout the different experiments.

43

VTK

Smoother
(vtkSmoothPolyDataFilter)

File Writer
(vtkPL YWriter)

TetGen

Mesh Generator
(TetGen)

File Format Conversion
(ConvertFrom TetgenTo VTK)

Figure 5.1 : Flow chart of the various procedures of the experiment.

Refer to Appendix VIII for the experiment.tcl script file which describes how the

operations are actually called. Note that each operation has a section in the file which

allows the user ta enable/disable the operation and/or change the parameter values of

the operation. The results on applying the operations of Figure 5.1 on eight different

tissues of the frog are presented in Tables 5.1 and 5.2.

44

)) \
)

Table 5.1: Numerical results forthe geometrie mesh quality measures of the reference case.

Tissue Name Dihedral Angle a 13saker

Min average Max Max average Min Max Average Min

brain 0.823 43.571 88.761 0.999 0.538 0.013 0.977 0.479 0.020
eye retina 0.389 43.442 89.130 0.999 0.517 0.000 0.986 0.476 0.003

eye white 0.125 42.586 89.044 0.999 0.478 0.001 0.985 0.446 0.005

heart 1.055 43.545 89.018 0.998 0.550 0.005 0.979 0.490 0.014
kidney 0.152 43.378 88.979 1.000 0.293 0.000 0.988 0.475 0.002

!_intestine 0.872 43.347 89.448 0.998 0.529 0.002 0.977 0.480 0.011

lung 0.116 43.292 89.129 0.999 0.299 0.000 0.980 0.460 0.002
spleen 0.888 42.975 88.866 0.995 0.523 0.015 0.954 0.470 0.016

Table 5.2: Numerical results for the performance mesh quality measures of the reference case.

Tissue Name
of Tetrahedron Tetrahedron Volume

Mesh Generation Time (s) Memory (KB)
generated Min average Max

brain 52515 0.00011 0.544 32.315 6.124 5796

eye retina 133186 0.00000 0.416 9.812 22.856 14972
eye white 51318 0.00002 0.465 25.172 6.092 5925

he art 84468 0.00011 0.655 33.424 11.449 9341

kidney 113752 0.00000 0.514 19.914 18.437 12824

1 intestine 93577 0.00004 0.820 78.886 11.868 10360

lung 119058 0.00000 0.594 39.445 17.261 13371

spleen 13012 0.00018 0.443 13.132 1.325 1505

r-\.

.~·

Note that the results in both tables were obtained when the target reduction rate

parameter for the decimation operation was set to 0.6. The values of the smoothing

factor and the number of smoothing iterations were set to .01 and 10 respectively. The

TetGen engine was instructed to generate a quality constrained Delaunay

tetrahedralization for the surface mesh produced with a constraint to have a minimum

radius-edge ratio of value 1.414 (switch pq1.414). This set of parameters is going to be

considered the experiment's reference case to which the parameters of the ether

experiments can be compared.

lt is worth noting that the proposed application reports a significant amount of useful

information regarding the various operations during/after their executions. This is done

by leveraging the reporting functionalities offered by the various components. This

includes for example the use of the vtkMeshQuality object in the system and customizing

it to compute the required mesh measures. The verbose logging feature of the TetGen

component is another opportunity to enhance the system's reporting capabilities. Refer

to Appendix VIl for a sample output when the operations in Figure 5.1 get executed.

Also, Figure 5.2 shows a visualization example on how the data are transformed during

the various steps to create the final volume mesh of one of the frog's tissues, the spleen.

Note that the adjusted surface mesh produced after the decimation and the smoothing

operations fixes the stair-step shaped surface produced by the Marching Cubes

operation and reduces the number of the triangles needed to represent the surface as

weil.

46

SegJneJUr:I.Fng~Slires

ne &.r~aœ MesltMterd.e ~hùtr:
Cùes Open:D.n

...... '111eW1aoleS~

The St.irlit.ce Afin CUdng 1lae U,er lblt

......

n.~uœts.r&o.Mooi.A&.rdoe S...ddq
ana the Decbu&n Operatlo:u

DcWùhs.r&o.

TJœ Surface Afœr CwttiJI;_ th '1\pr Ralf

......

Figure 5.2: Flow chart for the creation of the frog's spleen volume mesh.

)

llœV.Juu :rr&sh.AfœrihTetGell.
Ope:nmn

ne Wlto1e Volute

5.2 Effect of the Decimation Operation

The decimation operation is done by the vtkDecimatePro filter. This filter implements a

very similar algorithm to the one described in section 2.6.2 except that it is designed to

generate progressive meshes that is a stream of operations that can be easily

transmitted and incrementally updated [14,40]. The experiments done with this operation

is to evaluate the effect of changing the reduction rate parameter on the quality of the

generated mesh and also to evaluate whether a different decimation approach would

have any different results when applied to the same data.

5.2.1 Decimation Reduction Rate Effect

ln this experiment, the same operations in Figure 5.1 were carried out multiple times. ln

each time, the reduction rate was chosen to be a value of 0, 0.2, 0.4, 0.6, 0.8, or 0.95.

Similar tables to Tables 5.1 and 5.2 were produced and compared. Even though the

numerical values of the geometrie mesh quality measures were changing slightly

between the different iterations of the experiments, there was no clear direction for these

changes. This would suggest the low impact of the decimation operation on the

geometrie measures of the produced elements. On the ether hand, there was a clear

impact on the mesh performance measures. This can be seen in Figure 5.3 where the

number of the tetrahedra generated gets changed in almost a regular fashion for ali the

tissues.

48

r-··.

"C 250000
J!!

J

!!! -.-brain Q)
200000 r:::

Q) ~"41~eye_retina
(!)

t
!!! 150000

eye_white
"C
Q) he art

..r:::
!!! -?lE- kidney - 100000 Q)
1- -tl-l_intestine
0 -t--lung ... 50000 Q)
.a -spleen
E
:::1
z 0

0 0.2 0.4 0.6 0.8 0.95

Decimation Reduction Rate

Figure 5.3: Effect of the decimation reduction rate on the number of generated elements.

The increase of the reduction rate at the low spectrum of the chart doesn't have a

measurable effect on the number of generated elements. This would suggest that the

small reduction in the number of the triangles on the surface mesh is not sufficient for

TetGen to start producing large elements that conform to the 1.414 edge-ratio imposed

constraint and therefore not able to decrease the number of generated elements. The

situation changes dramatically once the reduction becomes relatively higher. TetGen

would have higher freedom to generate larger elements and therefore reduce the

number of generated elements. However, this doesn't last for long as the number of

generated elements in the mesh becomes constant at the high spectrum of the chart.

This can be explained better with the aid of Figure 5.4.

49

. r-'·

c 60000
"'C :§
cu-
ni f! 50000
; :g_
5i 0
~ il 40000
Ill :::s

.!!u
g' Cl 30000
Ill.:
"i: .c
1- !::! 20000
-Ill
0:::!: ...
il ~ 10000
Et-
:::s ...

Z:!
Ill 0

0 0.2 0.4 0.6 0.8

Decimation Reduction Rate

0.95

-+-brain

""""*····· eye_retina

eye_white

heart

-*-kidney

-+-!_intestine

--+--lung

--spleen

Figure 5.4: Effect of the decimation reduction rate on the number of triangles generated

on the mesh surface .

ln Figure 5.4, one can realize that there is no actual decrease in the number of the

triangles on the mesh surface as one would expect with a higher reduction rate. The

reason is because the vtkDecimatePro implementation doesn't guarantee satisfying the

reduction rate [14]. lt is a challenge for a decimation algorithm to obtain a very high

reduction rate without changing significantly the topology of the mesh. vtkDecimatePro

was used and instructed to preserve the topology of the mesh as much as possible.

Similar effect was reported on the various other performance mesh measures. For

instance, Figure 5.5 shows how the average tetrahedron volume gets affected by the

variation of the reduction rate.

50

0.900

Q) 0.800
E
::1 0.700 0
> 0.600 c
!:! 0.500 "C
Q)
..c 0.400 E ...
Q) 0.300 1-
Q)

g> 0.200 ...
~ 0.100

<C
0.000

0 0.2 0.4 0.6 0.8

Decimation Reduction Rate

0.95

--+--brain

~,-4&,~ eye_retina

eye_white

heart

-*-kidney

--+-!_intestine

-1---lung

--spleen

Figure 5.5: Effect of the decimation reduction rate on the average tetrahedron volume.

5.2.2 Different Decimation Implementation

ln this experiment, the same operations in Figure 5.1 will be carried out again but this

time with a different implementation for the decimation operation. More specifically, the

vtkDecimatePro abject will be replaced with the vtkQuadricDecimation abject. The

details of the vtkQuadricDecimation algorithm can be fou nd in [41]. Figures 5.6 and 5. 7

are the vtkQuadricDecimation figures corresponding to Figures 5.3 and 5.4. Similar

behaviour was observed except for the high reduction rate spectrum. This change in

behaviour would be explained by the ability of vtkQuadricDecimation to achieve higher

reduction by changing significantly the topology of the mesh. This can be numerically

seen in table 5.3 where the symmetrical Hausdorff distance was measured from the

original surface produced by the Marching Cubes algorithm for the spleen tissue to the

produced decimated surface by bath implementations. Bath implementations have

relatively equal distance when the reduction rate is law. However; one can clearly see

how the distance becomes large for the case of vtkQuadricDecimation implementation in

the high reduction rate.

51

250000
'a
.!
E 200000 Cil
c
Cil

(!)
Cil 150000 ...
'a
Cil
.c
Cil ... 100000 -Cil
1-....
0 ... 50000 Cil ..c
E
:s
z 0

0 0.2 0.4 0.6 0.8

Decimation Reduction Rate

0.95

-+-brain

-"'®-"-~ eye_retina

eye_white

heart

--*-kidney

-e-l_intestine

--+--lung

--spleen

Figure 5.6: Effect of the vtkQuadricDecimation reduction rate on the number of

tetrahedra generated.

c 60000

~ ~ 50000
~ ~
; 0

(!) Cil 40000 ..c
1/1 :s
.!!!(.)
g' C) 30000
Cil ·= ·;:: .c
!: e 2oooo
0 111
... :a=
z ~ 10000
El-
:s ...
Z:!

111 0

0 0.2 0.4 0.6 0.8

Decimation Reduction Rate

0.95

-+-brain

~,1®-- eye_retina

eye_white

heart

--*-kidney

-e-l intestine

-+-lung

--spleen

Figure 5. 7: Effect of the vtkQuadricDecimation reduction rate on the number of triangles

generated on the mesh surface.

52

r---\

Table 5.3: Symmetrical Hausdorff distance comparison between the surfaces produced

by vtkDecimatePro against vtkQuadricDecimation.

vtkDecimatePro vtkQuadricDecimation
Symmetrical Hausdorff Symmetrical Hausdorff

distance distance
Reduction Rate Max Mean RMS Max Mean RMS

0.02 0.378 0.013 0.024 0.253 0.012 0.025
0.04 0.430 0.023 0.035 0.335 0.025 0.038
0.06 0.507 0.036 0.048 0.363 0.039 0.052
0.08 0.507 0.037 0.051 39.893 0.220 1.168
0.95 0.507 0.037 0.051 40.751 0.686 1.422

5.3 Effect of the Smoother Operation

ln this section, the experiments will be carried out to analyse the effect of the parameters

of the smoother operation on the quality of the final mesh. There are mainly two

parameters that control the smoother operations: (i) the weight factor used in the

Laplacian equation; and (ii) the number of times the Laplacian equation is executed on

the same vertex. A similar approach was followed here as in the previous section to

study the effect of these parameters.

5.3.1 Effect of the Weight Factor of the Smoother Operation

ln this experiment, the same operations in Figure 5.1 were carried out multiple times. ln

each time, the weight factor parameter of the smoother operation was set to a different

value from the set {0.01, 0.03, 0.05, 0.07, 0.1}. The ether parameters were set to the

same values as in the reference case. On average and unlike the case of decimation

reduction rate, there is a clear small positive change in the geometrie mesh measures.

The smoothing operation relaxes the meshes by making the triangles better shaped and

the vertices more evenly distributed. The improved input set of vertices and triangles

describing the abject surface helped the TetGen mesh generator to produce tetrahedra

53

with better geometrie quality. Figures 5.8 and 5.9 depict how the average minimal

dihedral angles and the average f3saker of the generated tetrahedra change as the

weight factor of the smoother operation changes.

45.000
G)

g' 44.500
c:(

"E 44.ooo
'"0
G)-

== al 43.500 c ...
- Cl .§ ë. 43.000
c
:il 42.500

42.000

41.500

0.01 0.03 0.05 0.07

Smoother Weight Factor

0.1

-+-brain

~eye_retina

eye_white 1

heart

--*-kidney

-e-1 intestine

---t--lung

-spleen

Figure 5.8: Effect of the weight factor of the smoother on the average minimal dihedral

angle.

~
::::1
Ill
ca
G)

:::!1 ...
~
ca m

~ m
G)
Cl
E
G)

~

0.520

0.510

0.500

0.490

0.480

0.470

0.460

0.450

0.440
0.430

0.420

0.410
0.01 0.03 0.05 0.07

Smoother Weight Factor

0.1

-+-brain

1111 eye_retina

eye_white

heart

-*-kidney

-+-!_intestine

~lung

--spleen

Figure 5.9: Effect of the weight factor of the smoother on the average f3saker.

54

Also, the variation of the weight factor parameter shows a clear change in the

performance measure. For example, the change in the number of generated tetrahedra

can be seen in Figure 5.1 O. This change can be explained by two reasons: (i) the

improved shaped triangles input gives TetGen a better opportunity to produce fewer

tetrahedra with larger volumes th at still comply to the specified input constraint (q 1.414

switch), and (ii) the smoothing operation has a shrinking effect of the object being

smoothed and therefore the volume of the object would be less as more smoothing is

done.

140000
"'C
~ 120000 ~
Cl)
c
Cl) 100000

(!)

~ 80000 "'C
Cl)
.c
~ 60000 ...
Cl)
1-- 40000 0 ...
Cl)

20000 .Q

E
::s z 0

0.01 0.03 0.05 0.07

Smoother Weight Factor

0.1

-+-brain

~· eye_retina

eye_white

heart

~kidney

__.__!_intestine

-r-lung

-spleen

Figure 5.10: Effect of the weight factor of the smoother on the number of generated

tetrahedra.

5.3.2 Effect of the Number of Iterations of the Smoother Operation

Similar experiments were carried out again but this time while varying the number of

iterations parameter of the smoother operation. This parameter took a value from the set

{1 0, 30, 50, 70, 1 00} in each experiment. Very similar results were obtained as the

experiments done for the weight factor parameter. This would suggest that both

55

parameters would have similar effect on the quality of the final mesh. Figures 5.11 and

5.12 show sorne of the obtained results.

45.000
Cil

C"l 44.500
~
~ 44.000
"C
Cll-
:5 3l 43.500 c ...
- C"l .ê ë. 43.000
c

:::iE 42.500
Cil

~ 42.000
Cil

~ 41.500

10 30 50 70

Number Of Iterations

100

-+-brain
,~!!Il~ eye_retina

eye_white

heart

-.-kidney

--41-1 intestine

-t-lung

-spleen

Figure 5.11: Effect of the number of iterations of the smoother on the average minimal

dihedral angle.

25.000
.c
:6
E
Cil- 20.000
.c Ill
...,"C
Cil c

..... 0
1!! lil 15.000
~~
Cil c
~ ~ 10.000 ;âi
CIII­

"C >. 3l Jl 5.000
c
Cil
E
j:: 0.000

10 30 50 70 100

Number Of Iterations

-+-brain

-+- eye_retina

eye_white

heart

-.-kidney

--41-l intestine

-t-lung

--spleen

Figure 5.12: Effect of the number of iterations of the smoother on the ti me needed to

generate the tetrahedra.

56

5.3.3 The Combined Effect of 8oth Parameters of the Smoother

1

r
Since both smoother parameters have a similar effect on the quality of the final mesh.

J
One would expect to enforce the expected change if both parameters were to be used in

the same experiment. Tables 5.4 and 5.5 show the obtained numerical results of the

geometrie and performance quality measures when repeating the experiment by setting

the weight factor to .05 and the number of iterations to 50. Most of the time, lt can be

seen that it is possible to achieve at least the same effect as if the experiment was done

by only setting the weight factor to 0.1 or by setting only the number of iterations

parameter to 100.

lt is worth noting that Laplacian smoothing works weil in most cases but one has to

remember that mesh smoothing modifies point's coordinates, and therefore, surface

geometry. Excessive smoothing can badly damage the mesh. Large numbers of

smoothing iterations, or large smoothing factors, can cause excessive shrinkage and

surface distortion. Sorne object like sphere may lose volume and even shrink to a point

[14].

57

)

-_.....- --.........._..------ ~ --- ~_,..-- ._..~- ~

')

Table 5.4: Numerical results for the geometrie mesh quality measures wh en the smoother factor is set to 0.05 and the
number of iteration is set to 50.

Tissue
Na me

brain
eve retina
eye white
kidney
1 Intestine
lung
spleen

Dihedral Angle a J3Baker

Min Average Max Max average Min Max average Min
1.422 44.415 87.593 0.998 0.556 0.011 0.974 0.502 0.024
0.889 44.360 88.514 1.000 0.556 0.001 0.987 0.506 0.010
1.498 43.635 87.412 0.999 0.528 0.012 0.981 0.483 0.015
1.894 44.569 88.016 0.998 0.570 0.009 0.976 0.509 0.010
0.579 44.888 87.936 0.998 0.481 0.000 0.972 0.511 0.006
0.850 44.286 88.021 0.999 0.521 0.001 0.985 0.496 0.005
5.668 45.035 85.304 0.991 0.586 0.022 0.958 0.519 0.088

Table 5.5: Numerical results for the performance mesh quality measures wh en the smoother factor is set to
0.05 and the number of iteration is set to 50.

#of Tetrahedron Volume Mesh
Tissue Name Tetrahedron Generation Memory (KB)

generated Min average Max Time (s)
brain 31468 0.00025 0.857 34.901 3.128 3917
eye retina 84392 0.00002 0.637 16.571 9.585 10544
eye white 34324 0.00003 0.637 24.112 3.409 4323
kidney 73723 0.00001 0.764 20.126 7.741 9132
1 intestine 57397 0.00003 1.299 81.441 5.335 7157
lung 67821 0.00002 1.006 62.983 7.502 8809
spleen 7310 0.00003 0.716 13.845 0.605 981

)

5.4 Effect of Adding a New Operation

ln this section, an attempt to introduce a new operation to the set of operations in Figure

5.1 will be discussed. This is a pre-processing operation that can aid in supplying

different set of initial nodes to the Marching Cubes operation. The objective is to be able

to generate better quality meshes with the minimum distortion of the surfaces of the

scanned objects.

The idea is to smooth the volume data of the segmented images before creating the

isosurface of the object. Noise is inherent in ali methods of data acquisition including the

MRI scanner. By introducing this new operation, the segmented images will be blurred

and the noise should be reduced. This will be accomplished by making use of the

vtklmageGaussianSmooth filter which implements a convolution of the input image with

a Gaussian kernel. The amount of smoothing is controlled by two parameters: (i) the

Gaussian standard deviation; and (ii) the radius of the kernel used. Two set of

experiments were carried out to study the effect of the two parameters. The first set was

done by varying the radius factor of the kernel from 1 to 4 in each direction

simultaneously and keeping the standard deviation factor set to 1 in each direction.

Table 5.6 reports the number of generated tetrahedra in the final mesh of each tissue.

One can notice from the table that once the Gaussian smoother operation gets applied,

a reduction in the number of generated elements occurs. However, this amount of

reduction doesn't change as the radius factor increases and it is almost constant. This is

mainly because the new nodes enclosed by the extended volume introduced by the

increased radiÙs value don't get enough weight from the Gaussian kernel to contribute

enough to make a change of the current geometry. This can be seen clearly in Table 5.7

59

where the symmetrical Hausdorff distances are calculated from the different brain

surfaces produced in the experiments to the brain surface produced when no Gaussian

smoothing is applied. This distance is almost constant for the cases when the radius

equals 2, 3, or 4.

On the other hand, there were no clear changes in the numerical results of the geometrie

mesh quality measures during the different experiments of this set.

Table 5.6: The effect of Gaussian smoothing radius factor on the number of tetrahedra
t d genera e .

Number of Tetrahedra Generated
R= R= R= R=

Tissue Name No Gaussian (1,1,1) (2,2,2) (3,3,3) (4,4,4)
brain 52515 42612 42441 41005 41420
eye retina 133186 115741 115519 117039 117636
eye white 51318 40049 36046 36495 35820
he art 84468 78372 79029 78281 80673
kidney 113752 107195 111192 112430 110386
1 intestine 93577 95676 96650 99514 98771
lung 119058 114645 114862 115384 114983
spleen 13012 12296 10890 10943 10978

Table 5.7: The effect of Gaussian smoothing radius factor on the symmetrical Hausdorff
distance (brain tissue).

Gaussian Radius
symmetrical Hausdorff

distance Factor
Max Mean RMS

(1,1,1) 3.570 0.349 0.501
(2,2,2) 4.794 0.446 0.671
(3,3,3) 4.795 0.453 0.677
(4,4,4) 4.795 0.453 0.678

The second set of experiments was carried out to evaluate the effect of the Gaussian

standard deviation factor on the meshes generated. This was done by varying the

standard deviation factor from 1 till 4 while keeping the radius of the kernel constant at 1.

Figure 5.13 shows how the number of elements generated decreases with the increase

of the standard deviation value. The increase in the value of the standard deviation gives

60

Î

'
t
t

1

the adjacent nodes more weight to be able to contribute in changing the geometry of the

surface. Table 5.8 shows how this is actually represented in numbers as the symmetrical

Hausdorff distances between the surface of the un-smoothed brain tissue and the other

generated surfaces become larger when the standard deviations increases in value.

Again, there were no clear changes in the numerical results of the geometrie mesh

quality measures during the different experiments of this set as weil.

140000

"tJ
.$ 120000
~
Cl)
c 100000 Cl)
(!)

~ 80000 "tJ
Cl)
J:
~ 60000
â)
1-- 40000 0 ...
Cl)
..c 20000 E

:::::1 z
0

(1, 1, 1) (2,2,2) (3,3,3) (4,4,4)

Gaussian Standard Deviation

eye_retina

eye_white

heart

Figure 5.13: Effect of the Gaussian smoothing standard deviation factor on the number

of generated tetrahedra.

Table 5.8: Effect of the Gaussian smoothing standard deviation factor on the
symmetrical Hausdorff distance (brain tissue).

Gaussian Standard
symmetrical Hausdorff

deviation
distance

Max Mean RMS
(1,1,1) 3.570 0.349 0.501
(2,2,2) 6.859 0.690 1.040
(3,3,3) 9.343 1.057 1.645
(4,4,4) 10.286 1.399 2.073

61

Finally, it is worth reporting that sorne ether attempts were made to introduce different

operations in the proposed process. For example, one of these attempts was to

introduce a sub-sampling operation. Usually the data obtained from the MRI scanner are

of high resolution. The idea was to sub-sample the segmented volume data to a lower

resolution volume that would eventually produce fewer triangles. The experiments were

carried out to study the effect of such operation on the quality of the produced meshes. lt

was shown that the sub-sampling operation led to fewer elements produced but with

relatively large symmetrical Hausdorff distances. This is also beside the fact that the

geometrie quality measures became worse. These are mainly because important details

were lost during the sub-sampling operation.

62

6.1 Future Work

Chapter 6

Conclusion and Future work

A very interesting possible future work would be to extend the current design and

implementation to support parallelism. For example, recent work in VTK showed that it is

possible to utilize this individual software component separately to provide a parallel

system solution that is scalable and portable [46]. This; however, needs to be enhanced

with the other software components. The ITK component supports shared-memory

parallel processing but not distributed-memory parallel processing. TetGen doesn't

support parallelism and therefore it is possible to be modified or to be replaced with a

different software component. One possible approach would be to use a mesh generator

that relies on the advancing front techniques which doesn't introduce any new points on

the original surface mesh and therefore makes it perfect for parallelism by splitting the

original abject domain in multiple sub demains [17].

Another possibility for future work would be to experiment with non-tetrahedral mesh

generating algorithms. For instance, hexahedral meshes are weil suited for the

deformation computation of incompressible materials [24]. This type of meshes,

however; needs more sophisticated hierarchical adaptive refinement of basis functions

for achieving similar results compared to the tetrahedral straightforward manner [24].

6.2 Conclusion

This thesis described the process to produce three dimensional mesh models from a

sequence of MRI medical images. This process can be summarized in four major steps.

The first step is the segmentation. The second step is generating the surface boundary

63

mesh from the segmented images. The third step is to adjust the surface boundary. The

final step is to create the volume meshes from the adjusted surface meshes generated

earlier. At the end, the quality of the mesh generated depends on the various algorithms

and techniques used during these four steps. A study on how sorne of these low level

operations might affect the quality of the produced meshes was presented and

discussed. A usable, open-source, portable, efficient, and extendible system architecture

was proposed to accomplish the task of generating meshes from the native medical file

format.

ln conclusion, the quality of the final meshes generated can be enhanced throughout the

various steps needed ta generate them.

64

t

•

References

[1] D. Giannacopoulos and S. McFee, "Functional Derivatives and Optimal
Discretization Based Refinement Criteria for Adaptive Finite Element Analysis
with Scalar Tetrahedra," IEEE Transactions on Magnetics, 1999, pp. 1326-1329.

[2]

[3]

M. Dorica and D. Giannacopoulos, "Towards Optimal Mesh Quality
Improvements for Adaptive Finite Element Electromagnetics with Tetrahedra,"
IEEE Transactions on Magnetics, 2004, 40(2).

Claes Lundstrom, Segmentation of medical image volumes. Master thesis,
Linkoping University, November 1997.

[4] W. Lorensen and H. Cline, "Marching Cubes: A High Resolution 3D Surface
Construction Algorithm," Computer Graphies, 21 (4): 163-169, July 1987.

[5] Matthieu Ferrant, Simon K. Warfield, Arya Nabavi, Ferenc A. Jolesz, and Ron
Kikinis, "Registration of 3D Intraoperative MR Images of the Brain Using a
Finite Element Biomechanical Model," Source Lecture Notes In Computer
Science, Proceedings of the Third International Conference on Medical Image
Computing and Computer-Assisted Intervention, Vol. 1935, 2000, pp. 19-28.

[6] Timoner S., Compact Representations for Fast Nonrigid Registration of Medical
Images. PhD thesis, MIT, 2003.

[7] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen, "Decimation
of Triangle Meshes," International Conference on Computer Graphies and
Interactive Techniques, Proceedings of the 19th annual conference on computer
graphies and interactive, 1992, pp. 65-70.

[8] John M. Sullivan, Jr., Ziji Wu, and Anand Kulkarni, "3D Volume Mesh
Generation of Human Organs Using Surface Geometries Created from the
Visible Human Data Set," The Third Visible Human Project Conference
Proceedings, Bethesda, Maryland, October 5-6, 2000.

[9] John Melonakos, Ramsey Al-Hakim, and James Fallon, "Knowledge-Based
Segmentation of Brain MRI Scans Using the Insight Toolkit," IJ- 2005 MICCAI
Open-Source Workshop, Oct-2005.

[10] Andriy Fedorov, Nikos Chrisochoides, Ron Kikinis, and Simon K. Warfield,
"Tetrahedral Mesh Generation for Medical Imaging," 2005 MICCAI Open Source
Workshop, 2005.

65

~··

[11] A. Mohamed and C. Davatzikos, "Finite Element Mesh Generation and
Remeshing from Segmented Medical Images," IEEE International Symposium on
Volume, Vol1, 15-18 April2004, pp. 420-423.

[12] Jonathan Richard Shewchuk, Lecture Notes on Delaunay Mesh Generation,
Department ofElectrical Engineering and Computer Science, University of
California at Berkeley, Berkeley, CA, 1999.

[13] Xenophon Papademtris, An Introduction to Programmingfor medical image
Analysis with the visualization Toolkit, Yale University, 2006.

[14] Will Schroeder, Ken Martin, and Bill Lorensen, The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphies, Upper Saddle River, NJ: Prentice
Hall, 1998.

[15] L. Ibanez and W. Schroeder, The ITK Software Guide, Kitware, Inc. ISBN 1-
930934-10-6, 2003, http://www.itk.org/ItkSoftwareGuide.pdf.

[16] Du Jian-jun, Yang Xiao-yong, and Du You-jun, "From Medical Images to Finite
Grids System," IEEE-EMBS 2005. 27th Annual International Conference of the
Volume, 01-04 Sept. 2005, pp.1630-1633.

[17] A. Fedorov, N. Chrisochoides, R. Kikinis, and S. K. Warfield, "An Evaluation of
Three Approaches to Tetrahedral Mesh Generation for Deformable Registration
of Brain MR Images," Biomedical Imaging: Nano to Macro,3rd IEEE
International Symposium on Volume, 6-9 April2006, pp. 658-661.

[18] A. Coronato, G. De Pietro, and I. Marra, "An Open-source Software Architecture
for Immersive Medical Imaging," Virtual Environments, Human-Computer
Interfaces and Measurement Systems, Proceedings of 2006 IEEE International
Conference. July 2006, pp. 166-170.

[19] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, "MESH: Measuring Errors Between
Surfaces Using the Hausdorff Distance," IEEE International Conference on
Vol. 1, 2002, pp. 705-708.

[20] N. Archip, and R. Rohling, "Volumetrie anatomical modeling from medical
images," Engineering in Medicine and Biology Society, 26th Annua1 International
Conference ofthe IEEE, Vo1.3, 1-5 Sept. 2004, pp. 1838-1841.

[21] J.R Shewchuk, "What is a Good Linear Element? Interpolation, Conditioning
and Quality Measures," Proceedings of the 11 th International Meshing
Roundtable (Sandia National Laboratories, 15-18 Sep 2002, pp. 115-126.

66

[22] P.G. Ciarlet, "The Finite Element Method for ELLIPTIC Problems," North
Rolland, Amsterdam, 1978.

[23] I. Tsukerman, "Approximation ofConservative Fields and the Element Edge
Shape Matrix," IEEE Transactions on Magnatics, 1998, pp. 34(5): 3248-3251

[24] M. Sermesant, C. Forest, X. Pennee, H. Delingette, and N. Ayache,
"Biomechanical Model Construction from Different Modalities: Application to
Cardiac Images," Lecture Notes in Computer Science, Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2002: 5th International
Conference, Tokyo, Japan, September 25-28, 2002, Proceedings, PartI. pp. 714-
721.

[25] Mark Dorica, Novel Mesh Quality Improvement Systems for Enhanced Accuracy
and E.fficiency of Adaptive Finite Element Electromagnetic with Tetrahedra.
Master thesis, McGill University, April, 2004.

[26] T.J. Baker and J.C Vassberg, "Tetrahedral Mesh Generation and
Optimization," Proceedings of the 61

h International Conference on Numerical
Grid Generation in Computational Field Simulations (University of
Greenwich), July 1998, pp. 337-349.

[27] P.R. Cavalcanti and U.T. Mello, "Three-Dimensional Constrained Delaunay
Triangulatio: A Minimalist Approach," Proceedings of the 8th International
Meshing Roundtable (South Lake Tahoe, CA, U.S.A) Oct 1999, pp. 119-129.

[28] John E. Stewart, James H. Johnson, and William C. Broaddus, "Segmentation and
Reconstruction Strategies for the Visible Man," Proceedings of the Visible
Human Project Conference; 1996 Oct 7-8; Bethesda.

[29] N. P. Weatherill and O. Hassan, "Efficient Three-dimensional Delaunay
Triangulation with Automatic Point Creation and Imposed Boundary Constraints",
International Journal for Numerica1 Methods in Engineering, 1994, vol37,
pp.2005-2039

[30] I. Tskerman and A. Plaks, "Comparison of Accuracy Criteria for
Approximation of Conservative Fiels in Tetrahedra," IEEE Transactions on
Magnatics, 1998, pp. 34(5): 3252-3255.

[31] Jonathan Richard Shewchuk, "Triangle: Engineering a 2D Qua1ity Mesh
Generator and Delaunay Triangulator", 1996,
http://www.cs.cmu.edu/-quake/triangle.html

67

[32] S. Rebay, "Efficient Unstructured Mesh Generation by Means of Delaunay
Triangulation and Bowyer-Watson Algorithm", 1993, Journal ofComputational
Physics, vol. 106, pp.l25-138

[33] V.N. Parthasarathy, "A Comparison ofTetrahedron Quality Measures," Finite
Elements in Analysis and Design, 1993, 15:255-261.

[34] D. Field, "Qualitative Measures for Initial Meshes," International Journal for
Numerical Methods in Engineering, 2000, 47: 887-906.

[35] T.J. Baker and J.C. Vassberg, "Element Quality in Tetrahedral Meshes,"
Proceedings of the 7th International Conference on Fini te Element Methods in
Flow Problems, Numerical Grid Generation in Computational Field
Simulations (Huntsville, U.S.A), 1989, ppl018-1024.

[36] T.S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S.
Aylward, D. Metaxes, and R. Whitaker, "Engineering and Algorithm Design for
an Image Processing API: A Technical Report on ITK- The Insight Toolkit," In
Proc. of Medicine Meets Virtua1 Rea1ity, J. Westwood, ed., lOS Press Amsterdam
pp 586-592 (2002).

[37] P.L. George, F. Recht andE. Saltel, "Automatic Mesh Generator with
Specified Boundary," Computer Methods in Applied Mechanics and
Engineering, North-Rolland, 1991, vol92, pp.269-288

[38] Jonathan Richard Shewchuk, Delaunay Refinement Mesh Generation. Ph.D.
thesis, Carnegie-Mellon Univ., School of Computer Science, May 1997

[39] H. Borouchaki, F. Recht, E. Saltel and P. L. George, "Reasonably Efficient
Delaunay Based Mesh Generator in 3 Dimensions," Proceedings 4th
International Meshing Roundtable, pp.3-14, October 1995

[40] Hugues Roppe, "Progressive meshes," In SIGGRAPH 96 Conference
Proceedings, pages 99-108. ACM SIGGRAPH, Addison Wesley, August 1996.

[41] Hugues Roppe, "New quadric metric for simplifying meshes with appearance
attributes," IEEE Visualization 1999, October 1999, pp. 59-66.

[42] The who le frog project, Lawrence Berkeley National Laboratory,
http://froggy.lbl.gov/

[43] The Visualization ToolKit (VTK) website, http:/ /www .vtk.org/

[44] NLM Insight Segmentation and registration Toolkit website,
http :/ /www .itk.org/

68

[45] The TetGen project, Numerical Mathematics and Scientific Computing
research group, Weierstrass Institute for Applied Analysis and Stochastics,
http://tetgen.berlios.de/

[46] James Ahrens, Charles Law, Will Schroeder, Ken Martin, Michael Papka, "A
Parallel Approach for Efficiently Visualizing Extremely Large, Time-Varying
Datasets" Tech. Rep. LAUR-00-1620, Los Alamos National Laboratory.

[47] Tel Developer Xchange website, http://www.tcl.tk/

[48] Blair Mackiewich, Intracranial boundary detection and radio frequency
correction in magnetic resonance images, Master thesis, Simon Fraser University,
August 1995.

[49] A. Glowinski, J. Kursch, G. Adam, A. Bucker, T.G. Noll, and R.W. Gunther,
"Deviee visualization for interventional MRI using local magneticfields: basic
theory and its application to catheter visualization," IEEE Trans Med Imag.,
vol. 17, pp. 786-793, Oct. 1998.

[50] Steve Owen, "A survey ofunstructured mesh generation technology," in
Proceedings of 7th International Meshing Roundtable, 1998, pp. 239-267

[51] National Electrical Manufacturers Association (NEMA),
http://dicom.nema.org/

69

~ ..

Appendix 1: Detailed Instructions on How to Setup the Proposed

System

ln this appendix a summary of the instructions needed to setup the proposed system

environment and to connect the different software components with each other is

presented. These instructions are provided for the MS Windows platform. The steps are

very similar in any different platform.

Required Tools:

TCL/TK:

Tel scripting language cornes preinstalled on most UNIX systems and Mac OS X;

however, one needs to download and install the ActiveTcl distribution from

www.tcl.tk for a Windows platform.

Cross-Piatform Make (CMake):

CMake can be downloaded/installed from www.cmake.org

C++ Compiler:

Because of the use of the CMake tool, any standard C++ compiler in any

platform can be used. MS Visual Studio 6 SP6 was chosen for the various

experiments done in this thesis.

Optional Tools:

CVS is an open-source version control system that can keep a history record of

the files. CVS repository is widely used by many developers to store/share both

the code and the documentation of a project. ln fact, many of the software

components used in the proposed system can be optionally obtained from public

70

access CVS repositories. These software components are still under ongoing

development. By using CVS, one would be able to take advantage of the

changes added to these components more often without the need to repeat the

download and install process with every new release. ln order to be able to use

CVS in Windows, one needs to download/install CVSNT from www.cvsnt.org.

CVSNT provides its users with the CVS capabilities through the command line

switches. A more user-friendly application with graphical interface can be

installed on top of CVSNT. WinCvs from www.wincvs.org is one example of such

GUI CVS front-end.

Instructions on how to setup the Visualization Toolkit (VTK):

1. Download the source code from www.vtk.org or

Checkout the VTK module from the CVS repository:

:pserver:anonymous@public.kitware.com:/cvsroot/VTK

Note that you might need the CVS source code to take advantage of the new

functionalities provided by the modified vtkMeshQuality object.

2. Execute Cmake.exe

- ln the "Where is the source code?" field, specify the location where the VTK

source code was downloaded/checked out. This directory should contain a file called

CMakelists. txt

- ln the "Where to build the binaries" field, specify the location where you would

like to save the generated compiler/platform specifie files. This directory is better to be

empty as it will be the directory where ali the binary libraries and executables will be

generated for the project.

- Click on the Configure button.

- Choose the C++ compiler environment form the drop down list box.

71

- Wait till a list of cached values setting gets displayed. Change the VTK_WRAP _ TCL

setting to be ON and Click again on the configure button (See Figure 7.1) and wait till the

OK button becomes enabled.

Malœsure io
prcn.oiùtlu!se
vùues.

Figure 7.1: The Visualization Toolkit CMake Settings.

- Click on the OK button. CMake will start generating the needed files for your

development environment and exit when it finishes.

3. Compile/Build the VTK code

Run the C++ development environment chosen in step#2 with the CMake generated file

located in the root of build binaries directory chosen also in step#2. Unless there is a

need to debug the code, building the release configuration should be sufficient and it

should reduce the time needed to compile/build the code. lt is worth noting that the

compilation of the VTK library is a lengthy process and it might take a couple of hours.

72

Instructions on how to setup the TetGen Mesh Generator:

1. Download the source code from http://tetgen.berlios.de/ and extract the files to a local

directory.

2. Add TciTetGen.cpp and CMakeLists.txt files to the same location where the source

files were extracted (See Appendices Il and Ill).

3. Execute Cmake.exe

- Specify the path to the TetGen source code directory in the "Where is the source

code?" field, and a path to an empty directory in the "Where to build the binaries" field.

- Click on the Configure button and choose the C++ compiler environment form the drop

dawn list box.

- Click again on the Configure button and then Click on the OK button when it gets

ena bled. At the end of this step the development environ ment files will be generated.

4. Compile/Build the TetGen code

Compile and Build the TetGen Code from the C++ compiler environment generated from

step#3. Similarly to VTK, building the release configuration should be sufficient unless

there is a need to debug the code. The time needed to compile/build the TetGen code is

in the arder of minutes.

Instructions on how to setup the lnsight Toolkit (ITK):

1. Download the source code from www.itk.org or

Checkout the Insight module from the CVS repository:

:pserver:anonymous®www.itk.org:/cvsroot/Insight

73

2. Download the source code of CableSwig from www.itk.org or

Check-out the CableSwig module from the CVS repository:

:pserver:anonymous@public.kitware.com:/cvsroot/CableSwig

CableSwig is needed to create the Tel wrappers of the functions of the ITK library. The

downloaded CableSwig directory should be placed under the Utilities directory of the ITK

Root directory. If the downloaded/extracted directory is not named CableSwig, Rename

it to be CableSwig. At the end, the directory hierarchy should be as follows:

{Path to where ITK was extracted}\lnsight\Utilities\CableSwig

Where the CableSwig directory would contain a file called CMakelists.txt

3. Execute Cmake.exe

- ln the "Where is the source code?" field, specify the location where the ITK

source code was downloaded/checked out. This directory should contain a file called

CMakelists.txt. ln the "Where to build the binaries" field, specify the location where to

save the generated compiler/platform specifie files.

- Click on the Configure butten and choose the C++ compiler environment form the drop

dawn list box when prompted.

- When the list of cached values setting gets displayed, check the Show Advanced

values option and then modify the ITK_CSWIG_TCL setting to be ON (See Figure 7.2).

- Click again on the configure butten and wait till the OK butten becomes enabled.

- Click on the OK butten. CMake will start generating the needed files for your

development environment and exit when it finishes.

74

\

/

/

'
Malœsure
loprovide
tltesewlues

C:/Thesis/workspace/ITK·DIS/Insight/T esting/Data

Figure 7.2: The lnsight Toolkit CMake Settings.

3. Compile/Build the ITK code

Compile/Build the release configuration of the ITK code in the same way as was done

for VTK. The compilation process of the ITK library is a lengthy process and it might take

a couple of hours.

Instructions on how put it ali together:

1. Create an empty directory in the local system. This directory will be used as a

workspace to combine ali the generated components.

2. Copy the following items to this workspace directory:

-The VTK executable file (vtk.exe in Windows) from:

{Path to the location where VTK executables got generated}\bin\Release

75

-The generated TciTetGen shared library (TciTetGen.dll in Windows) from

{Path to the location where TetGen source code }\Release

3. Adda new environment variable called TCLLIBPATH that contains the path:

{Path to where the ITK libraries got generated}/ /Wrapping/CSwig/Tci/Release

Append this new variable to the PATH environment variable.

By executing the VTK executable, a Tel Shell will start from which one can make use of

any the functionalities of the combined components ITK, VTK, or TetGen. Tel scripts can

be written with any text editor and be loaded with the source command. For example, to

execute the code in Appendix VIII, one can execute the following from the Tel shell

prompt:

source experiment.tcl

76

Appendix Il: TetGen CMake Configuration File

CMakelists.txt CMake Configuration File
Project: T ciT etGen
#Objective: Provides a means for the TetGen code to be easily portable across
the different platforms

PROJECT{TCL TETGEN)

Define the C++ Files that will go into the TetGen.lib
SET (TETGEN_SRCS
tetgen.cxx
predicates.cxx
tetgen.h
)

Define the C++ Files that will go into the TciTetGen.dll
SET(TCLTETGEN_SRCS
tetgen.h
TciTetGen.cpp
)

Set the default location for outputting the library
SET (LIBRARY _OUTPUT _PATH ${TCLTETGEN_SOURCE_DIR})

Build the tetgen.lib
ADD_LIBRARY(TetGen STATIC ${TETGEN_SRCS})
ADD _DEFINITIONS(-DTETLIBRARY)

#Look for tcllibrary
Try first with the predefined CMake Macro
SET {TETGEN_TCL_CANBUILD 1)
INCLUDE (${CMAKE_ROOT}/Modules/FindTCL.cmake)

IF{TCL_LIBRARY)
Succeeded with the CMake Macro to find TCL
INCLU DE_DI RECTO RI ES(${TCL_I NCLUDE_PA TH})

ELSE (TCL_LIBRARY)
Failed with the CMake Macro to find TCL
#Another possible approach to find TCL is to search in the PATH Environment

FIND_PATH(TCL_INCLUDE_PATH tcl.h PATHS)
IF (TCL_INCLUDE_PATH)

INCLUDE_DIRECTORIES(${TCL_INCLUDE_PATH})
FIND_LIBRARY(TCL_LIBRARY NAMES tel tcl84 tcl8.4)

ELSE (TCL_INCLUDE_PATH)
Set The failure flag because TCL Cannet be found on this system

SET (TETGEN_TCL_CANBUILD 0)
ENDIF (TCL_INCLUDE_PATH)

ENDIF(TCL_LIBRARY)

77

' 1

t
•

Build the Tcltetgen.lib
IF(TETGEN_ TCL_CANBUILD)

ADD_LIBRARY(TciTetGen SHARED ${TCLTETGEN_SRCS})
TARGET _LINK_LIBRARIES{TciTetGen ${TCL_LIBRARY} TetGen)

ENDIF(TETGEN_ TCL_CANBUILD)

78

' t

'

Appendix Ill: TciTetGen C++ Code

/*File Name: TciTetGen.cpp
Objective: This code is the wrapper needed for the TetGen code to provide a
TCL interface. This would allow us to leverage the full functionalities of TetGen
with simple TCL commands

Example: ln a Tel shell one can execute the following:

TetGen pq1.414 c:\\Data\\mesh_surface.ply
*/

#include "tcl.h"
#include "tciDecls.h"
#include <stdio.h>
#include <string.h>
#include "tetgen.h"

//lnitialization Code
#ifdef _WIN32
#define TETGENTCL_EXPORT _declspec(dllexport)
#el se
#define TETGENTCL_EXPORT
#end if

#define COMMAND_PARAM_NUM 3 Il Expected number of parameters
#defi ne BUFFER_SIZE 1024 Il Size of buffer to be used to store

Il each Parameter

int TetGen(CiientData, Tcl_lnterp* interp,int objc, Tci_Obj *CONST objv[])
{

Il Validate the command li ne parameters
if (objc != COMMAND_PARAM_NUM)

{

}
el se
{

printf("Error in calling the TCL TetGen code.");
printf("Usage: TetGen {TetGenSwitches} {PathToMeshFile}");

Il Handling of command line arguments
char szExecutableName[BUFFER_SIZE] = {0};
char szSwitchCmd[BUFFER_SIZE] = {0};
char szMeshPathCmd[BUFFER_SIZE] = {0};

char* arrayCommanline[COMMAND_PARAM_NUM];

strepy(szExecutableN ame, T cl_ GetS tri ng(objv[O]));
strepy(szSwitchCmd, T cl_ GetS tri ng(objv[1]));
strcpy(szMeshPathCmd, Tci_GetString(objv[2]));

int nOverHeadSize = 5;// Add sorne extra space in the memory to avoid overflow

79

1

' ~

int nArgSize = strlen(szExecutableName);

if (nArgSize>O)
{

}

nArgSize += nOverHeadSize;
arrayCommanline[O] = new char[nArgSize];
memset(arrayCommanline[O], 0, nArgSize);

strcpy(arrayCommanline[O], szExecutableName);

nArgSize = strlen(szSwitchCmd);
if (nArgSize>O)
{

}

nArgSize += nOverHeadSize;
arrayCommanline[1] = new char[nArgSize];
memset(arrayCommanline[1], 0, nArgSize);

Il Check if the switch argument has the -, add it if missing
if (szSwitchCmd[O] != '-')
{

strcpy(arrayCommanline[1], "-");
strcat(arrayComman Li ne[1], szSwitchCmd);

}
el se
{

strcpy(arrayCommanline[1], szSwitchCmd);
}

nArgSize = strlen(szMeshPathCmd);
if (nArgSize>O)
{

}

nArgSize += nOverHeadSize;
arrayCommanline[2] = new char[nArgSize];
memset(arrayCommanline[2], 0, nArgSize);
strcpy(arrayCommanline[2], szMeshPathCmd);

Il lnitializing TetGen ln/Out Structures
tetgenbehavior tetgenBehavior;
tetgenio in, addin, bgmin;

bool bContinue = true;

if(!tetgenBehavior.parse_commandline(COMMAND_PARAM_NUM,
arrayCommanline)) {

/~' printf("Error in calling the parse_commandlin.");
bContinue = false;

}

80

if (bContinue)
{

if (tetgenBehavior.refine) {
if (!in.load_tetmesh(tetgenBehavior.infilename)) {

printf("Error in calling the load_tetmesh.");
bContinue = false;

}
} else {

if(!in.load_plc(tetgenBehavior.infilename,(int)
tetgenBehavior.object)) {

}
}

}

printf("Error in calling the load_plc.");
bContinue = false;

if (bContinue)
{

}

if (tetgenBehavior.insertaddpoints) {

}

if (!addin.load_node(tetgenBehavior.addinfilename)) {
addin.numberofpoints = 01;

}

if (tetgenBehavior.metric) {

}

if(! bgmin.load_tetmesh(tetgenBehavior.bgmeshfilename)) {
bgmin.numberoftetrahedra = 01;

}

Il Calling the TetGen code
if (bgmin.numberoftetrahedra > 01) {

tetrahedralize(&tetgenBehavior, &in, NULL, &addin, &bgmin);
} else {

tetrahedralize(&tetgenBehavior, &in, NULL, &addin, NULL);
}

if (arrayCommanLine[O])
{

delete[] arrayCommanLine[O];
}

if (arrayCommanLine[1])
{

delete[] arrayCommanLine[1];
}

if (arrayCommanLine[2])
{

delete[] arrayCommanLine[2];

81

.~.

}
}

return TCL_OK;
}

/*
C++ to Tel Interface

*/

extern "C" {
int TETGENTCL_EXPORT Tcltetgen_lnit(Tcl_lnterp* interp);
int TETGENTCL_EXPORT Tcltetgen_Safelnit(Tcl_lnterp* interp);
}

int Tcltetgen_lnit(Tcl_lnterp* interp)
{

Tci_CreateObjCommand(interp, "TetGen", TetGen,(CiientData) NULL,
(Tci_CmdDeleteProc *) NULL);

return TCL_ OK;
}

int Tcltetgen_Safelnit(Tcl_lnterp* interp)
{

return Tcltetgen_lnit(interp);
}

82

Appendix IV: Template File to Wrap C++ Code as a Tel Command

/*
File Name: MyFunction.cpp

Objective: This is a C++ template file that can be used by researches to wrap their C++
code to be used as Tel commands which can then be invoked from Tel scripts. This is
needed to create a dynamic library(.so of .dll) which will includes the code and can be
loaded within the Tel execution shell.
*/

#include "tcl.h"
#include "tciDecls.h"
#include <stdio.h>
#include <string.h>

Il lnitialization Code
#ifdef _WIN32
#define MYFUNCTION_EXPORT _declspec(dllexport)
#el se
#define MYFUNCTION EXPORT
#end if

int MyFunction (CiientData, Tcl_lnterp* interp,int objc, Tci_Obj *CONST objv[])
{
Il Code should be placed here

return TCL_OK;
}
/*

C++ to Tel Interface
*/

extern "C" {
int MYFUNCTION_EXPORT Myfunction_lnit(Tcl_lnterp* interp);
int MYFUNCTION_EXPORT Myfunction_Safelnit(Tcl_lnterp* interp);
}

int Myfunction_lnit(Tcl_lnterp* interp)
{

Tci_CreateObjCommand(interp," MyFunction", MyFunction, (CiientData) NULL,
(Tci_CmdDeleteProc *) NULL);

return TCL_OK;
}

int Myfunction_Safelnit(Tcl_lnterp* interp)
{

return Myfunction_lnit(interp);
}

83

Appendix V: Tel Code for Different Auxiliary Functions

File Name: AuxiliaryFunctions.Tcl
#Objective: This file contains the customized Tel procedures that can be used to help
. accomplish the various tasks needed for the experiments of this thesis.

Procedure Name: ConvertFromTetgenToVTK
#Objective :This procedure is used to convert the TetGen output files .node and .ele
to .vtk file that can be read back by the VTK Component
input : String path to where the generated tetgen .node and .ele are
#output : Generates .vtk
example: ConvertFromTetgenToVTK "C:\\Thesis\\workspace\\Data\\Frog\\spleen.1"

proc ConvertFromTetgenToVTK { strTetGenFile} {

Read TetGen .node file
set fp [open $strTetGenFile.node r]
set TetGenNodeData [read $fp]
close $fp

Create a grid abject to store the information of the tetgen files
vtkUnstructuredGrid tetgenGrid

Store the points generated by tetgen into a vtkPoints abject
vtkPoints tetgenPoints

set AIILinesData [split $TetGenNodeData "\n"]
set bFirstline "true"
foreach OnelineData $AIILinesData {

set AIIWordsData [split $0nelineData " "]
set nWordNumber 0
foreach OneWordData $AIIWordsData {

string trim $0neWordData

}

Check if the line has a comment
if {[string index $0neWordData 0] == "#"} {

break
} else {

}

if {[string length $0neWordData] != 0} {

}

set arg($nWordNumber) $0neWordData
incr nWordNumber

if {$nWordNumber == 4} {

if {$bFirstline == "true"} {

84

}

tetgenPoints SetNumberOfPoints $arg(O)
} else {

tetgenPoints lnsertPoint $arg(O) $arg(1) $arg(2) $arg(3)
}

set bFirstline "false"
}

Store the points into the grid
tetgenGrid SetPoints tetgenPoints

Read TetGen .ele file
set fp [open $strTetGenFile.ele r]
set TetGenEieData [read $fp]
close $fp

set testcount 0
#Store the tetrahedra generated by tetgen into a vtkTetra object
and then store them in the grid

set AIILinesData [split $TetGenEieData "\n"]
set bFirstline "true"

foreach OnelineData $AIILinesData {
set AIIWordsData [split $0nelineData " "]
set nWordNumber 0
foreach OneWordData $AIIWordsData {

string trim $0neWordData

}

Check if the line has a comment
if {[string index $0neWordData 0] == "#"} {

break
} else {

}

if {[string length $0neWordData] != 0} {

}

set arg($nWordNumber) $0neWordData
incr nWordNumber

if {$bFirstline == "true"} {

} else {

if {$nWordNumber == 3} {

}

Allocate memory in the grid to store the tetrahedron
tetgenGrid Allocate $arg(O) 100

if {$nWordNumber == 5} {
vtkTetra tetgenTetra

85

[tetgenTetra GetPointlds] Setld 0 $arg(1)
[tetgenTetra GetPointlds] Setld 1 $arg(2)
[tetgenTetra GetPointlds] Setld 2 $arg(3)
[tetgenTetra GetPointlds] Setld 3 $arg(4)
tetgenGrid lnsertNextCell [tetgenTetra

GetCeiiType] [tetgenTetra GetPointlds]
tetgenTetra Delete

}
}

incr testcount

set bFirstline "false"
}

vtkUnstructuredGridWriter usGridWriter
usGridWriter Setlnput tetgenGrid
eval usGridWriter SetFileName $strTetGenFile.vtk
usGridWriter SetFileType 1
usGridWriter Update

}

Procedure Name: DisplayMesh
Objective : This procedure is used to display the mesh of type vtkUnstructuredGrid
: on the screen
input :An vtkUnstructuredGrid object
#output : Display the vtkUnstructuredGrid object on the screen.
example: DisplayMesh myMesh

proc DisplayMesh { tetgenGrid } {

vtkDataSetMapper aTetraMapper
aTetraMapper Setlnput tetgenGrid

vtkActor aTetraActor
aTetraActor SetMapper aTetraMapper
aTetraActor AddPosition 4 0 0
[aTetraActor GetProperty] SetDiffuseColor 0 1 0

Create the usual rendering stuff.
vtkRenderer ren 1
vtkRenderWindow renWin

renWin AddRenderer ren1
renWin SetSize 300 150

vtkRenderWindowl nteractor iren
iren SetRenderWindow renWin

ren1 SetBackground .1 .2 .4

86

ren1 AddActor aTetraActor

ren 1 ResetCamera
[ren1 GetActiveCamera] Azimuth 30
[ren1 GetActiveCamera] Elevation 20
[ren1 GetActiveCamera] Dolly 2.8
ren1 ResetCameraCiippingRange

renWin Render

render the image

iren AddObserver UserEvent {wm deiconify .vtklnteract}
iren lnitialize
wm withdraw .
}

Procedure Name: LoadFrogDatalnfo
Objective : This procedure is used to set the values of the various parameters
needed in the experiment based on the name of the frog tissue

input The name of the tissue
#output : Set the parameters to the data the specified tissue.
example: DisplayMesh myMesh

proc LoadFrogDatalnfo { strTissueName } {

global ROWS COLUMNS STUDY PIXEL_SIZE SPACING VALUE
global TISSUE START _SUCE END_SUCE VOl

set ROWS 470
set COLUMNS 500
set STUDY "C:/Feras/Thesis/workspace/Data/Frog/Data/frog/frogTissue"
set PIXEL SIZE 1
set SPACING 1.5
set VALUE 127.5

switch $strTissueName {

blood { set TISSUE 1
set START_SUCE 14
set END_SUCE 131
set VOl "33 406 62 425 $START _SUCE $END_SUCE"}

brain { set TISSUE 2
set START _SUCE 1
set END_SUCE 33
set VOl "349 436 211 252 $START _SUCE $END_SUCE"}

duodenum { set TISSUE 3

87

set ST ART SUCE 35
set END_SUCE 105
set VOl "189 248191 284 $START_SUCE $END_SUCE"}

eye_retna {set TISSUE 4
set START _SUCE 1
set END_SUCE 41
set VOl "382 438180 285 $START_SUCE $END_SUCE"}

eye_white {set TISSUE 5
set START _SUCE 1
set END_SUCE 37
set VOl "389 433 183 282 $START _SUCE $END_ SUCE" }

heart { set TISSUE 6
set START _SUCE 49
set END_SUCE 93
set VOl "217 299 186 266 $START_SUCE $END_SUCE"}

ileum { set TISSUE 7
set START _SUCE 25
set END_SUCE 93
set VOl "172 243 201 290 $START _SUCE $END_SUCE"}

kidney {set TISSUE 8
set START_SUCE 24
set END_SUCE 78
set VOl "116 238193 263 $START_SUCE $END_SUCE"}

1 intestine { set TISSUE 9 - .
set START _SUCE 56
set END_SUCE 106
set VOl "115 224 209 284 $START _SUCE $END_SUCE"}

liver {set TISSUE 10
set START SUCE 25
set END_SUCE 126
set VOl "167 297 154 304 $START _SUCE $END_SUCE"}

lung {set TISSUE 11
set START SUCE 24
set END_SUCE 59
set VOl "222 324157 291 $START_SUCE $END_SUCE"}

nerve { TISSUE 12
set START SUCE 7
set END_SUCE 113
set VOl "79 403 63 394 $START _SUCE $END_SUCE"}

skeleton {set TISSUE 13
set VALUE 64.5

88


~~~~~ 

} 
} 

set START _SUCE 1 
set END_SUCE 136 
set VOl "23 479 8 469 $START _SUCE $END_SUCE" 
set GAUSSIAN_STANDARD_DEVIATION "1.5 1.5 1"} 

spleen {set TISSUE 14 
set START _SUCE 45 
set END SUCE 68 
set VOl ~66 219 195 231 $START_SUCE $END_SUCE"} 

stomach {set TISSUE 15 
set START _SUCE 26 
set END_SUCE 119 
set VOl "143 365 158 297 $START_SUCE $END_SUCE"} 

#The rest of the code is some functions to print out helpful messages 
proc readerStart {} {global NAME; puts -nonewline "$NAME read took:\t"; flush stdout}; 
proc mcubesStart {} {global NAME; puts -nonewline "$NAME mcubes generated\t"; flush 
stdout}; 
proc mcubesEnd {} { 

global NAME 
puts -nonewline "[[mcubes GetOutput] GetNumberOfPolys]" 
puts -nonewline " polygons in " 
flush stdout 

}; 
proc decimatorStart {}{global NAME; puts -nonewline "$NAME decimator generated\t"; 
flush stdout}; 
proc decimatorEnd {} { 

global NAME 
puts -nonewline "[[decimator GetOutput] GetNumberOfPolys]" 
puts -nonewline " polygons in " 
flush stdout 

}; 
proc smootherStart {}{global NAME; puts -nonewline "$NAME smoother took:\t"; flush 
stdout}; 

proc writerStart {} {global NAME; puts -nonewline "$NAME writer took:\t"; flush stdout}; 

89 



Appendix VI: Tel Code to Create Reports About Mesh Quality 

#File Name: MeshQualityReport.Tcl 
# Objective: This file contains the functions needed to report sorne of the qualities of the 
# mesh. 

proc QualityStatics { bReciprocal ldFile argStaticArray} { 

} 

if {$bReciprocal > 0} { 
puts -nonewline $1dFile [ expr 1 1 [$argStaticArray GetComponent 0 0]] 
} else { 
puts -nonewline $1dFile [$argStaticArray GetComponent 0 0] 
} 
puts -nonewline $1dfile "\t" 

if {$bReciprocal > 0} { 
puts -nonewline $1dFile [ expr 1 1 [$argStaticArray GetComponent 0 1]] 
} else { 
puts -nonewline $1dFile [$argStaticArray GetComponent 0 1] 
} 
puts -nonewline $1dFile "\t" 

if {$bReciprocal > 0} { 
puts -nonewline $1dfile [ expr 1 1 [$argStaticArray GetComponent 0 2]] 
} else { 
puts -nonewline $1dFile [$argStaticArray GetComponent 0 2] 
} 
puts -nonewline $1dFile "\t" 

#Print to the screean 
puts '"' 
puts "Min\tAverage\tMax" 
puts -nonewline [$argStaticArray GetComponent 0 0] 
puts -nonewline "\t" 
puts -nonewline [$argStaticArray GetComponent 0 1] 
puts -nonewline "\t" 
puts -nonewline [$argStaticArray GetComponent 0 2] 
puts -nonewline "\t" 
puts "" 

proc printline {} { 
set NumberOfSeperator 30 

} 

for {set i 0} { $i < $NumberOfSeperator} {incr i} { 
puts -nonewline "=" 
} 
puts "" 

90 



./'·. 

proc ReportQualityStatics {strVTKFilePath timelnfo} { 

vtkUnstructuredGridReader gridReader 
gridReader SetFileName $strVTKFilePath 
gridReader Update 

vtkMeshQuality objMeshQuality 
objMeshQuality Setlnput [gridReader GetOutput] 

# The following commented line can be used to print a header to the file 
#puts "Tetrahedral quality of mesh: $strVTKFilePath" 
#printline 
#puts "Tissue\t\t\t\tAngle\t\t\t\t\t\tAipha\t\t\t\t\t\tBeta\t\t\t\t\t\tBetaBaker\t\t" 
#puts 
"Name\t\tMin\t\tAverage\t\tMax\t\tMin\t\tAverage\t\tMax\t\tMin\t\tAverage\t\tMax\t\tMin\t\tA 
verage\t\tMax" 

set filename "results1.txt" 
set fileld [open $filename "a+"] 

puts -nonewline $fileld "$strVTKFilePath\t" 
puts -nonewline "$strVTKFilePath\t" 

objMeshQuality SetTetQualityMeasureToMinAngle 
objMeshQuality Update 
puts -nonewline "\nMinAngle" 
QualityStatics 0 $fileld [[[objMeshQuality GetOutput] GetFieldData] GetArray 

"Mesh Tetrahedron Quality"] 

objMeshQuality Se tT etQualityMeasure T oAspectBeta 
objMeshQuality Update 
puts -nonewline "\nAspectBeta" 
QualityStatics 1 $fileld [[[objMeshQuality GetOutput] GetFieldData] GetArray 

"Mesh Tetrahedron Quality"] 

objMeshQuality SetTetQualityMeasureToAspectRatio 
objMeshQuality Update 
puts -nonewline "\nAspectRatio" 
QualityStatics 1 $fileld [[[objMeshQuality GetOutput] GetFieldData] GetArray 

"Mesh Tetrahedron Quality"] 

puts $fileld "" 

close $fileld 

set filename2 "results2.txt" 
set fileld2 [open $filename2 "a+"] 

puts -nonewline $fileld2 "$strVTKFilePath\t" 

91 



puts -nonewline $fileld2 [[[[objMeshQuality GetOutput] GetFieldData] GetArray 
"Mesh Tetrahedron Quality"] GetComponent 0 4] 

puts -nonewline $fileld2 "\t" 

puts -nonewline "Number of Tetrahedrons=" 
puts [[[[objMeshQuality GetOutput] GetFieldData] GetArray "Mesh Tetrahedron 

Quality"] GetComponent 0 4] 

objMeshQuality SetTetQualityMeasureToVolume 
objMeshQuality Update 
puts -nonewline "\nVolume" 
QualityStatics 0 $fileld2 [[[objMeshQuality GetOutput] GetFieldData] GetArray 

"Mesh Tetrahedron Quality"] 

} 

puts -nonewline $timelnfo 

puts -nonewline $fileld2 $timelnfo 
puts -nonewline $fileld2 "\t\n" 

close $fileld2 

92 



Appendix VIl: Example of a Generated Mesh Quality Report 

spleen read took: 0.480556 seconds 
spleen mcubes generated 5104 polygons in 0.006696 seconds 
spleen decimator generated 2040 polygons in 0.069501 seconds 
spleen smoother took: 0.013781 seconds 
spleen writer took: 0.022524 seconds 
Opening spleen.ply. 
Constructing Delaunay tetrahedralization. 

Creating initial tetrahedralization. 
lncrementally inserting points. 
15846 Flips (T23 9297, T32 6547, T22 0, T44 2) 

Delaunay seconds: 0.078 
Creating surface mesh. 

Constructing mapping from indices to points. 
Constructing mapping from points to tetrahedra. 
Unifying segments. 
Constructing mapping from points to subfaces. 
Merging co plan ar facets. 
Marking acute vertices. 
Constructing mapping from points to segments. 
1 022 a cu te vertices. 

Perturbing vertices. 
0 break points. 

Delaunizing segments. 
Constructing mapping from points to tetrahedra. 
Queuing missing segments. 
779 protect points. 
R1: 521, R2: 206, R3: 52. 

Constraining facets. 
Constructing mapping from points to tetrahedra. 
The biggest cavity: 8 faces, 6 vertices 
Enlarged 0 times 

Segment and facet seconds: 0.156 
Removing unwanted tetrahedra. 

Marking concavities for elimination. 
Marking neighbors of marked tetrahedra. 
Deleting marked tetrahedra. 

Hale seconds: 0 
Repairing mesh. 
Repair seconds: 0.062 
Adding Steiner points to enforce quality. 

Marking sharp segments. 
5484 sharp segments. 
Deciding feature-point sizes. 
Constructing mapping from points to segments. 
1 028 feature points. 
779 Steiner feature points. 
Splitting encroached subsegments. 
525 split points. 
Splitting encroached subfaces. 

93 



15 split points. 
Splitting bad tetrahedra. 
957 refinement points. 
Totally added 1497 points. 

Quality seconds: 0.532 
Optimizing mesh. 

320 edges are flipped. 
3 passes. 
6 points are inserted (3 on segment). 
1 faces are flipped. 

Optimize seconds: 0.062 

Writing spleen.1.node. 
Writing spleen.1.ele. 
Writing spleen.1.face. 
Writing spleen.1.smesh. 

Output seconds: 0.141 
Total running seconds: 1.031 

Statistics: 

Input points: 1028 
Input facets: 2040 
Input segments: 3060 
Input hales: 0 
Input regions: 0 

Mesh points: 331 0 
Mesh tetrahedra: 13012 
Mesh triangles: 28425 
Mesh subfaces: 4802 
Mesh subsegments: 4438 

Mesh quality statistics: 

Smallest volume: 
Shortest edge: 
Smallest facangle: 
Smallest dihedral: 

0.00018011 1 Largest volume: 
0.052171 1 Longest edge: 

1.031 1 Largest facangle: 
0.8917 4 1 Largest dihedral: 

Aspect ratio histogram: 
< 1.5 132 1 6 - 10 777 

1.5-2 2100 1 10-15 199 
2 - 2.5 3082 1 15 - 25 78 

2.5 - 3 2488 1 25 - 50 17 
3 - 4 2557 1 50 - 1 00 4 
4-6 1575 1 100- 3 

13.132 
5.8542 

169.5270 
173.3423 

(A tetrahedron's aspect ratio is its longest edge length divided by its 
smallest side height) 

94 



!'·. 

Face angle histogram: 
0- 10 degrees: 333 1 90- 100 degrees: 
10- 20 degrees: 1461 1 100- 110 degrees: 
20 - 30 degrees: 4306 1 11 0 - 120 degrees: 
30 - 40 degrees: 8388 1 120 - 130 degrees: 
40 - 50 degrees: 9292 1 130 - 140 degrees: 
50 - 60 degrees: 4645 1 140 - 150 degrees: 
60 - 70 degrees: 4897 1 150 - 160 degrees: 
70 - 80 degrees: 8550 1 160 - 170 degrees: 
80 - 90 degrees: 6992 1 170 - 180 degrees: 

Minimum input face angle is 1.60076 (degree). 

Dihedral angle histogram: 
0 - 5 degrees: 58 1 80 - 110 degrees: 
5 - 1 0 degrees: 290 1 11 0 - 120 degrees: 
1 0 - 20 degrees: 1500 1 120 - 130 degrees: 
20 - 30 degrees: 2524 1 130 - 140 degrees: 
30 - 40 degrees: 3298 1 140 - 150 degrees: 
40 - 50 degrees: 3204 1 150 - 160 degrees: 
50 - 60 degrees: 1882 1 160 - 170 degrees: 
60 - 70 degrees: 256 1 170 - 175 degrees: 
70 - 80 degrees: 173 1 175 - 180 degrees: 

4196 
2162 
1052 
383 
123 
53 
10 
7 
0 

7232 
1924 

1425 
1057 
606 
453 
141 
1 
0 

Minimum input facet dihedral angle is 68.8558 (degree). 

Memory allocation statistics: 

Maximum number of vertices: 3310 
Maximum number of tetrahedra: 13294 
Maximum number of subfaces: 4802 
Maximum number of segments: 6120 
Approximate heap memory used by the mesh (K bytes): 1505.33 

spleen.1.vtk 
Mi nAng le 
Min Average Max 
0.888275 42.9754 88.8655 

AspectBeta 
Min Average Max 
1.00455 1.91216 66.5379 

AspectRatio 
Min Average Max 
1.04813 2.12916 62.1592 
Number of Tetrahedrons=13012 

Volume 
Min Average Max 
0.00017955 0.442654 13.1318 

1.132368 

95 



Appendix VIII: Example of How to Execute the Different Components 

# File Name: experiment.tcl 
# Objective: This file is where we connect ali the various low-level tasks together 
# to produce the FEM mesh. 
# 
#Note 
# 
# 
# 
# 
# 

:This file is provided as an example to show how the experiment can be done. 
The actual experimentations presented in this thesis are actually a modified 
versions of this example that were done by modifying the parameters used in 
the different procedures(Aigorithms), changing the order of sorne procedure 
calls, or by replacing the procedures with equivalent ones that implement 
different algorithms. 

lappend auto_path [file dirname [ info script]] 

if { $tcl_platform(platform) == "windows" } { 
load TciTetGen.dll 

} else { 
load libTciTetGen.so 

} 

#Specify the name of the tissue to do the experiment 
if {$argc == 0} { 

puts "Zeroooooooo" 
} else { 

puts "More than 0" 
set NAME [lindex $argv 0] 

} 

source AuxiliaryFunctions.tcl 
source MeshQualityReport. tel 

# Set Default values for the different parameters 
set PIXEL_SIZE 1 
set START _SUCE 1 

set FEATURE_ANGLE 60 

#Remove Islands Parameters 
set ISLAND ENABLE FLAG -1 - -
set ISLAND_AREA 4 
set ISLAND_REPLACE -1 

#Shrinker Parameters 
set SHRINKER ENABLE FLAG -1 - -
set SAMPLE_RATE "3 3 3" 

# Marching Cubes parameter 
set MC ENABLE FLAG 1 - -

96 



# Decimate parameters 
set DECIMATE_ENABLE_FLAG 1 
set DECIMATE_ANGLE $FEATURE_ANGLE 
set DECIMATE_REDUCTION .6 

# Smooth parameters 
set SMOOTH_ENABLE_FLAG 1 
set SMOOTH_ANGLE $FEATURE_ANGLE 
set SMOOTH_ITERA Tl ONS 1 0 
set SMOOTH_FACTOR .01 

# GAUSSIAN smooth parameters 
set GAUSSIAN_ENABLE_FLAG -1 
set GAUSSIAN_STANDARD_DEVIATION "2 2 2" 
set GAUSSIAN_RADIUS_FACTORS "1 1 1" 

# TetGen parameters 
set TETGEN_ENABLE_FLAG 1 
set TETGEN_SWITCH pq1.414V 

#Load Specifie Tissue parameters 
LoadFrogDatalnfo $NAME 

# Coordinate Computations 
set originx [expr ( $COLUMNS 1 2.0 ) * $PIXEL_SIZE * -1.0] 
set originy [expr ( $ROWS 1 2.0) * $PIXEL_SIZE * -1.0] 
set minx [lindex $VOl 0] 
set maxx [lindex $VOl 1] 
set miny [lindex $VOl 2] 
set maxy [lindex $VOl 3] 
set minz [lindex $VOl 4] 
set maxz [lindex $VOl 5] 

# adjust y bounds for PNM coordinate system 
set tmp $miny 
set miny [expr $ROWS- $maxy -1] 
set maxy [expr $ROWS- $tmp -1] 

# reader reads slices 
vtkPNMReader reader; 

reader SetFilePrefix $STUDY 
reader SetDataSpacing $PIXEL_SIZE $PIXEL_SIZE $SPACING 
reader SetDataOrigin $originx $originy [expr $START _SUCE* $SPACING] 
eval reader SetDataVOI $minx $maxx $miny $maxy $minz $maxz 
[reader GetOutput] ReleaseDataFiagOn 
set lastConnection reader 

if {$1SLAND_ENABLE_FLAG >= 0} { 
vtklmagelslandRemoval20 islandRemover 

islandRemover SetAreaThreshold $1SLAND_AREA 
islandRemover SetlslandValue $ISLAND _REPLACE 

97 



} 

islandRemover SetReplaceValue $TISSUE 
islandRemover Setlnput [$1astConnection GetOutput] 
set lastConnection islandRemover 

vtklmage Threshold selectTissue 
selectTissue ThresholdBetween $TISSUE $TISSUE 
selectTissue SetlnValue 255 
selectTissue SetOutValue 0 
selectTissue Setlnput [$1astConnection GetOutput] 
set lastConnection selectTissue 

if {$SHRINKER_ENABLE_FLAG >= 0} { 
vtklmageShrink30 shrinker 

} 

shrinker Setlnput [$1astConnection GetOutput] 
eval shrinker SetShrinkFactors $SAMPLE_RATE 
shrinker AveragingOn 
set lastConnection shrinker 

if {$GAUSSIAN_ENABLE_FLAG >= 0} { 

} 

vtklmageGaussianSmooth gaussian 
eval gaussian SetStandardDeviations $GAUSSIAN_STANDARD_DEVIATION 
eval gaussian SetRadiusFactors $GAUSSIAN_RADIUS_FACTORS 
gaussian Setlnput [$1astConnection GetOutput] 
set lastConnection gaussian 

if {$MC_ENABLE_FLAG >= 0} { 
#vtkMarchingCubes mcubes; 
vtkContourFilter mcubes; 

} 

mcubes Setlnput [$1astConnection GetOutput] 
mcubes ComputeScalarsOff 
mcubes ComputeGradientsOff 
mcubes ComputeNormalsOff 
eval mcubes SetValue 0 $VALUE 
[mcubes GetOutput] ReleaseDataFiagOn 
set lastConnection mcubes 

if {$DECIMATE_ENABLE_FLAG >= 0} { 

vtkDecimatePro decimator 
decimator Setlnput [$1astConnection GetOutput] 

decimator SetTargetReduction $DECIMATE_REDUCTION 
decimator PreserveTopologyOn 

~,, [decimator GetOutput] ReleaseDataFiagOn 
set lastConnection decimator 

} 

98 



# The following can be used as an alternats Decimator algorithm 
#vtkQuadricDecimation Newdecimator 
# Newdecimator Setlnput [$1astConnection GetOutput] 
# Newdecimator SetTargetReduction .95 
# Newdecimator AttributeErrorMetricOn 
# set lastConnection Newdecimator 

#vtkCieanPolyData cleaner 
# cleaner Setlnput [$1astConnection GetOutput] 
# cleaner SetTolerance 0.005 
# set lastConnection cleaner 

if {$SMOOTH_ENABLE_FLAG >= 0} { 
vtkSmoothPolyDataFilter smoother 

} 

smoother Setlnput [$1astConnection GetOutput] 
eval smoother SetNumberOflterations $SMOOTH_ITERATIONS 
eval smoother SetRelaxationFactor $SMOOTH_FACTOR 
eval smoother SetFeatureAngle $SMOOTH_ANGLE 
smoother FeatureEdgeSmoothingOff 
smoother BoundarySmoothingOff; 
smoother SetConvergence 0 
[smoother GetOutput] ReleaseDataFiagOn 
set lastConnection smoother 

# Write Data as .ply file 
vtkPL YWriter writer 

writer Setlnput [$1astConnection GetOutput] 
eval writer SetFileName $NAME.ply 
writer SetFileType 1 
set lastConnection writer 

#Note that we Add observers for the various steps to record time 
reader AddObserver StartEvent readerStart 
puts "[expr [lindex [time {reader Update;} 1] 0] 1 1000000.0] seconds" 

if {$MC_ENABLE_FLAG >= 0} { 
mcubes AddObserver StartEvent mcubesStart 
mcubes AddObserver EndEvent mcubesEnd 
puts "[expr [lindex [time {mcubes Update;} 1] 0] 1 1 000000.0] seconds" 
} 

99 



if {$DECIMATE_ENABLE_FLAG >= 0} { 
decimator AddObserver StartEvent decimatorStart 
decimator AddObserver EndEvent decimatorEnd 
puts "[expr [lindex [time {decimator Update;} 1] 0] /1000000.0] seconds" 
} 

if {$SMOOTH_ENABLE_FLAG >= 0} { 
smoother AddObserver StartEvent smootherStart 
puts "[expr [lindex [ti me {smoother Update;} 1] 0] /1 000000.0] seconds" 
} 

writerStart 
puts "[expr [lindex [time {writer Update;} 1] 0] /1000000.0] seconds" 

if {$TETGEN_ENABLE_FLAG >= 0} { 

# Start TetGen 

set TetGenTime [expr [lindex [time {TetGen $TETGEN_SWITCH $NAME.ply;} 1] 0] 1 
1000000.0] 

# Convert the resulted .node and .ele to .vtk 
ConvertFromTetgenToVTK $NAME.1 

# WriteUp Reports 
ReportQualityStatics $NAME.1.vtk $TetGenTime 

} 

exit 

100 


