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ABSTRACT

Epilepsy is a chronic neurological disorder affecting around 50 million

people worldwide. It is characterized by the occurrence of seizures; a tran-

sient clinical event caused by synchronous and/or abnormal and excessive

neuronal activity in the brain. This thesis presents a novel machine learning

toolbox that generates personalized epileptic seizure detection algorithms ex-

ploiting the information contained in electroencephalographic recordings. A

large variety of features designed by the seizure detection/prediction com-

munity are implemented. This broad set of features is tailored to specific

patients through the use of automated feature selection techniques. Subse-

quently, the resulting information is exploited by a complex machine learning

classifier that is able to detect seizures in real-time. The algorithm genera-

tion procedure uses a default set of parameters, requiring no prior knowledge

on the patients’ conditions. Moreover, the amount of data required during

the generation of an algorithm is small. The performance of the toolbox is

evaluated using cross-validation, a sound methodology, on subjects present in

three different publicly available datasets. We report state of the art results:

detection rates ranging from 76% to 86% with median false positive rates

under 2 per day. The toolbox, as well as a new dataset, are made publicly

available in order to improve the knowledge on the disorder and reduce the

overhead of creating derived algorithms.
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ABRÉGÉ

L’épilepsie est un trouble neurologique cérébral chronique qui touche

environ 50 millions de personnes dans le monde. Cette maladie est carac-

térisée par la présence de crises d’épilepsie; un événement clinique transitoire

causé par une activité cérébrale synchronisée et/ou anormale et excessive.

Cette thèse présente un nouvel outil, utilisant des techniques d’apprentissage

automatique, capable de générer des algorithmes personnalisés pour la dé-

tection de crises épileptiques qui exploitent l’information contenue dans les

enregistrements électroencéphalographiques. Une grande variété de carac-

téristiques conçues pour la recherche en détection/prédiction de crises ont été

implémentées. Ce large éventail d’information est adapté à chaque patient

grâce à l’utilisation de techniques de sélection de caractéristiques automa-

tisées. Par la suite, l’information découlant de cette procédure est utilisée

par un modèle de décision complexe, qui peut détecter les crises en temps

réel. La performance des algorithmes est évaluée en utilisant une validation

croisée sur des sujets présents dans trois ensembles de données accessibles

au public. Nous observons des résultats dignes de l’état de l’art: des taux

de détections allant de 76% à 86% avec des taux de faux positifs médians

en deçà de 2 par jour. L’outil ainsi qu’un nouvel ensemble de données sont

rendus publics afin d’améliorer les connaissances sur la maladie et réduire la

surcharge de travail causée par la création d’algorithmes dérivés.
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CHAPTER 1
Introduction

1.1 Epilepsy

Epilepsy is a chronic neurological disorder affecting around 50 million

people worldwide [51]. These epileptic syndromes are characterized by the oc-

currence of seizures; a transient clinical event caused by synchronous and/or

abnormal and excessive neuronal activity in the brain. The clinical manifes-

tations of seizures may affect the sensory, motor and autonomic functions of

the body, as well as the consciousness, memory, cognition and behaviour of

the patient [7]. In many cases, the aetiology of the syndrome is unknown,

varying from genetic pre-dispositions, head traumas, brain tumours, infec-

tions, etc.

The diagnosis of epilepsy is based on the observation of epileptic seizures

in conjunction with the analysis of the neuronal brain activity through elec-

troencephalographic (EEG) recordings. The epileptologists observe the EEG

recordings to find special characteristics of the ictal phase and interictal

epileptiform discharges (IEDs) that occur during and between seizures. IEDs

are short events lasting between 20 and 200 milliseconds caused by neurons

firing synchronously [37]. These characteristics of the EEG can help confirm

the diagnosis of epilepsy, the type of epilepsy syndrome, the type of seizures,

etc.

1



The treatment of epilepsy can be achieved through medication and/or

surgery; the goal being for the patients to be seizure-free. However, seizures

are refractory to anti-epileptic drugs in 20% to 30% of patients [30]. More-

over, most of the drugs have common side-effects caused by their action

on the central nervous system like tiredness, fatigue, unsteadiness, cognitive

impairment, blurry vision, visual field loss, etc. These side-effects are some-

times related to the dosage of the drugs and, in most cases, are reversible [36].

As for surgery, patients are free from seizures impairing awareness in 58%

of the cases [50]. Surgery is considered a safe operation as only 2% of the

patients with temporal lobe epilepsy have clinically important consequences.

Nonetheless, neuropsychological outcomes are relatively frequent and depend

on which side the brain is operated on. Surgery on the left side causes verbal

memory loss in 44% of the patients, visual memory loss in 23% and naming

reduction in 34%. As for the patients operated on the right side of the brain,

verbal memory loss occur in 30% of the patients and visual memory loss in

21% [44]. Even though there exist treatments that are effectively controlling

seizures, they are not without consequences.

The quality of life of patients suffering from epilepsy can be greatly hin-

dered by the syndrome. Indeed, some patients suffer from the constant fear

and uncertainty of having seizures. Even patients for which anti-epileptic

drugs are successfully controlling seizures can have their quality of life de-

teriorated significantly by adverse effects caused by medication [36]. Also,

stigmata are still present and have a substantial impact on the quality of life,
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both by reducing the social interactions quality and self-esteem of epileptic

patients [20]. Furthermore, people diagnosed with epilepsy often have lower

job and income levels compared to the general population [49]. Finally, in

many countries, laws ban or restrict the possibility of epileptic patient to ob-

tain a driving license. Not only the syndrome and the medication affects the

quality of life of people suffering from epilepsy, but the social and economical

repercussions also play a major role in its reduction.

1.2 Objectives

The objective of this thesis is to design a toolbox to automate the cre-

ation of efficient personalized seizure detection algorithms that operate in

real-time. Seizure detection is the process of identifying and reporting the

occurrence of ictal (seizure) events present in an EEG recording. The al-

gorithms should monitor the EEG recordings in real-time and raise alarms

during ictal events, i.e. after their beginning, but before their end. The

generated algorithms are to be tailored to a specific patient in order to im-

prove efficiency; measured by the expected number of successful and false

alarms raised over a fixed period of time. Moreover, the toolbox must be

usable without having to optimize the parameters on a patient specific ba-

sis. Therefore, it needs to be general enough to cover a large set of patient

and seizure characteristics, and be able to focus on those relevant to a given

patient.

In the short term, such tools could help alleviate the task of annotating

EEG recordings during the diagnosis of the syndrome in new patients by
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indicating points of interest to the epileptologist. Furthermore, nursing care

facilities could benefit from such systems in order to alert nurses or relevant

authorities that the patient is currently suffering from a seizure. Finally,

this toolbox could help during the analysis of new large databases of EEG

recordings taken from epileptic patients.

In the long run, these detection algorithms will help to create prediction

algorithms. Indeed, once the automated detection of seizures is possible, one

can explore the feature space and other algorithms in order to search for

recurrent patterns occurring before the start of seizures. It could also help

the development of early seizure detection systems that are capable of issuing

alarms at the early beginning of an ictal event. These tools could help design

new treatments in the form of prevention or early seizure abortion techniques,

through electro-stimulation, automated chemical release mechanisms, etc.

Lastly, discoveries made while studying EEG recordings for characteristics

intrinsic to ictal events and the syndrome in general could help understand

the mechanisms responsible for epilepsy.

1.3 Challenges

Creating such a toolbox is a complex procedure as it requires multiple

components to be well designed in order to achieve good performance. The

sources responsible for this complexity come from different areas, which are

covered in the following paragraphs.
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First, epileptic syndromes are quite complex and vary greatly across

patients. In recent years, research has provided multiple different patho-

physiological mechanisms, or combinations thereof, capable of explaining

why seizures occur in different patients suffering from epilepsy [42]. How-

ever, these only cover a small fraction of the unsettling amount of possible

mechanisms that could explain epileptic seizures. To help describe the char-

acteristics of a patient epileptic syndrome, the International League Against

Epilepsy (ILAE) published a report proposing a new classification scheme for

both seizure types and epilepsy syndromes [5]. The scheme contains 40 dif-

ferent seizure types defined according to their pathophysiologic mechanisms,

responses to anti-epileptic drugs, affected neuronal structures, patterns gen-

erated in EEG recordings, etc. The epilepsy syndromes are classified into 30

categories using properties such as the presence or absence of seizure types,

age of onset, generated interictal EEG patterns, pathophysiologic mecha-

nisms, etc. It is important to understand that these categorizations have

been made in order to improve the quality of communication, diagnosis and

research about epilepsy. We can see that a patient epileptic syndrome is

a complex system of intertwined mechanisms that cause the occurrence of

different types of seizures. Moreover, the classification schemes created by

the ILAE express the heterogeneity of the syndromes across patients. There-

fore, we need a toolbox that is able to manage the large diversity of possible

mechanisms, syndromes and seizures.
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Second, the data provided by EEG recordings is quite useful, but subject

to some limitations. Standard EEG recordings are performed using electrodes

that are placed on the scalp and sampled at a high frequency, providing

a good temporal resolution. This procedure is relatively inexpensive and

easy to perform [37]. On the other hand, the electrical activity recorded

comes principally from neuronal cells close to the scalp surface, preventing

the analysis of deeper brain structures. In order for the electrodes to capture

changes in polarity, a large area of neurons, approximately 6 cm2, must fire

synchronously. Moreover, the electrical activity is blurred by the three layers

separating the neurons from the electrodes: the cerebrospinal fluids, the skull

and the scalp. As a result, the spatial resolution of scalp EEG recordings

is poor [48]. In rare cases, mostly patients preparing for epilepsy surgery,

electrocorticograms (ECoG) are available. These recordings are made with

electrodes placed under the scalp, on the surface or inside the brain. The

spatial resolution of these recordings is better locally and it is possible to look

a deeper brain structures, but a very small portion of the brain is analyzed.

Both types of recordings measure the neuronal activity caused by a sea of

unknown brain mechanisms operating simultaneously. Therefore, the toolbox

needs to extract information related to the epilepsy syndrome of a patient

from the complex EEG signal that is recorded.

Third, we are subject to computational and machine learning constraints.

Since EEG recordings are sampled at high frequencies using multiple elec-

trodes, the throughput of data to analyze is quite substantial. Therefore, we
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need fast computational tools to be able to extract and treat the information

in real-time in order to detect seizures. The same high throughput of data is

responsible for the large size of the datasets used to validate the performance

of algorithms. Indeed, the three datasets used in this study weighed 249 GB

in text format, but only contained data coming from 48 different patients,

with an average of 36 hours of EEG recording per individual. This further

emphasizes the importance of using fast and efficient algorithmic tools. Also,

the fact that seizures are sparse events of relatively short durations, less than

five minutes, prohibits the use of some standard machine learning techniques

without some modifications [19]. Effectively, this property of seizures makes

the datasets highly imbalanced as the time spent during ictal events is much

smaller than the one spent in the interictal period. It is thus important to

consider these algorithmic constraints when designing a toolbox, for it to be

useful and efficient.

Finally, the lack of publicly available datasets containing EEG recordings

from epileptic patients hinders the research on the syndrome. Indeed, the fact

that most research is conducted using private datasets makes the comparison

and reproducibility of results difficult. Moreover, to improve the quality of

the experiments, one might need to test his findings on different epileptic

syndromes that might be absent from his datasets. Therefore, an effort

should be made to anonymize the medical data and make it publicly available.

This would increase the pool of available EEG recordings and enable a better

coverage of the syndromes. To the best of our knowledge, there exist only two
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large freely available datasets. The first dataset is from the Epilepsy Center

of the University Hospital of Freiburg, in Germany, and contains ECoGs

of patients suffering from medically intractable epilepsy [8]. The second

dataset is from the Children Hospital of Boston (CHB), conjointly with the

Massachusetts Institute of Technology (MIT), and contains EEG recordings

from pediatric patients suffering from epilepsy [45]; it is freely available on

Physionet [12]. In 2012, an European effort, the EPILEPSIAE project [22],

came to fruition and will soon provide the world’s largest database of EEG

recordings from epileptic patients, under some conditions. We ought to use

and encourage these wonderful initiatives in order to improve the quality of

the research performed on epilepsy.

1.4 Seizure Detection and Prediction

As explained in Section 1.2, the task of real-time seizure detection is to

raise an alarm once an ictal event begins, but before it ends. This problem as

been tackled by researchers since the early 1980’s [13]. Nowadays, multiple

other detection algorithms have been developed using more advanced com-

putational techniques. They extract complex features from the raw EEG

signals and use either a simple threshold or machine learning tools, such

as neural networks, in order to detect the occurrence of seizures. Some of

these algorithms are explained in more details in Chapter 5. Many of the

limitations of the methods developed for seizure detection stem from design

decisions or from their performance analysis. Indeed, the features are often

hand selected or created by the authors, requiring prior knowledge about the
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patients conditions. Also, the feature configurations are sometimes tailored

to the dataset used in the experiments. Moreover, the performance is almost

always evaluated using private datasets, making the comparison of different

algorithms difficult. Finally, some datasets are pre-processed in order to re-

move EEG artifacts, overestimating the performance that the methodology

would have if used in real clinical settings.

As for the task of seizure prediction, the goal of the algorithm is to

forecast the occurrence of a seizure in the near future, from a few seconds to

a few minutes in advance. These algorithm work in a similar way, analyzing

features extracted from the EEG signals in order to detect particular changes

in the pre-ictal period present before an ictal event. It is important to note

that even if a lot of work as been done in this area, it is still unknown if

seizures are predictable [32]. This is mainly the result of the poor evaluation

methodologies and lack of rigorous statistical analysis of the performance of

these algorithms.

1.5 Contributions

We have developed a toolbox that automates the creation of person-

alized seizure detection algorithms by gathering and combining knowledge

from multiple different research areas. It is general and proficient enough

to generate efficient algorithms for a large proportion of epileptic syndromes

and seizures without the need to input any prior knowledge about a pa-

tient’s characteristics. It was designed with modularity in mind, so that its

components may be used independently or conjointly. Figure 1–1 depicts a
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flowchart of the toolbox and its components. We now describe the modules

as well as the reasons behind their design decisions.

Segmented EEG Recordings

Feature Extraction

Cross-Validation

Feature Selection

Classifier Training

Event Classification & Performance Analysis

Training Data Testing Data

Figure 1–1: Flowchart describing the steps taken by the toolbox. The modularity
of the toolbox enables the interchangeability of any subcomponents.

The first module is the feature extraction component. We implemented a

large set of features created and validated by the seizure detection/prediction

community. Most features have parameters, enabling them to cover a large

set of epileptic syndromes and seizures. Moreover, their validation implies

that they gather relevant information about the epileptic syndrome and are
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able to make abstraction of the other brain processes. We also provide a

complexity analysis of each feature to guide the choice of features to extract

if constrained by computational costs.

The second module partitions the data for cross-validation. This tech-

nique creates an environment that simulates real experimental conditions in

the sense that we train on a subset of the data and validate the performance

on another, unseen, subset. The results obtained when using cross-validation

are closer to the ones to be expected if the algorithm was to be used on a

patient in real-time (i.e. on unseen data).

The third module is the feature selection component. Its role is to select

a subset of features that are relevant to a patient’s epileptic syndrome and

seizures in order to reduce the computational cost of the feature extraction

step. Indeed, this smaller subset enables us to compute the features in real-

time. Furthermore, the selected subset must not hinder the efficiency of the

automated seizure detection algorithm. We evaluate the performance of two

distinct feature selection methods: a basic score selection technique based

on the area under the receiver operating characteristic (ROC) curve and a

model-based selection using a `1-regularized logistic regression.

The fourth module is the classification component, enabling the training

of a classifier. The detection of ictal events can be done using a `1-regularized

logistic regression, or for a richer hypothesis class, extremely randomized

trees (Extra-Trees). Extra-Trees are useful for multiple reasons: they are

fast to train and query, and are able to capture complex changes between
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classes of events (in our case interictal and ictal data). The logistic regression

is used as a simple model to validate the use of more complex classifiers.

The fifth, and last, module evaluates the performance of the toolbox. It

measures the detection rate, false positive rate, and detection latency of the

algorithms generated for the patients.

We then validate the performance of the toolbox on three datasets. We

used the datasets provided by the University Hospital of Freiburg and the

CHB-MIT. The third dataset was provided by the Montréal Neurological

Institute (MNI) and contains ECoG recordings of Sprague-Dawley rats where

status epilepticus was induced by injection of pilocarpine. The use of this

data is justified by the similarity of the model to human epilepsy [4], the

ease of long-term collection compared to human ECoG recordings and the

fact that it enables the possibility to explore different control mechanisms

which could either prevent or abort seizures. Both the MNI dataset and the

toolbox are made publicly available at www.cs.mcgill.ca/~gsauln under

the Apache License, Version 2.0.
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CHAPTER 2
Technical Background

2.1 Machine Learning

In this section, we introduce important notions about machine learning

that enable us to understand the design decisions that were taken throughout

this project. We first give an introduction to supervised learning and a few

examples of classification methods. Then, we explain the bias/variance trade-

off, useful when considering classifiers and estimating their testing error.

Finally, we cover the importance of cross-validation, a technique used to

measure the expected testing error correctly.

2.1.1 Supervised Learning

In order to define supervised learning, we need to introduce some nota-

tion. Let X be the space of input variables and Y be the space of output

variables. We have that xi ∈ X is an instantiation of an input variable

represented as a vector, with xij representing the value at its jth position.

Moreover, yi ∈ Y is the output variable corresponding to xi. We assume

that there exists a true function f : X → Y that models the system we are

observing such that given an input variable xi ∈ X, we have f(xi) = yi. In

other words, f(xi) defines the output variable, or label, yi. Unfortunately, f

is often unknown and we would like to be able to determine yi given a new un-

seen instance xi ∈ X. Thus, we want an approximation function f̂ : X → Y
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that yields approximate classifications f̂(xi) = ŷi such that f̂(xi) is as close

as possible to f(xi) most of the time. In supervised learning, we are given a

set of inputs X and the corresponding set of outputs Y and we are asked to

find a good approximation function f̂ using this known data [18]. Note that

both X and Y are in fact multisets: sets in which we allow multiplicities.

When the output value Y is categorical, the task is called classification, and

when the output is quantitative, the task is called regression.

2.1.2 Classification Methods

In order to approximate f , multiple different methodologies of varying

complexities have been defined by the machine learning community, where

the principal ones are presented in [24]. These methods often map the sam-

ples x ∈ X into a feature space defined by some function φ. This function

enables to extract relevant information about x. As an example, if x is an

individual taken from a population X, φ(x) = {age,weight, heigth, sex} could

be the set of properties helpful in differentiating overweight versus healthy

people. Amongst the simplest classification methods, linear classifiers will try

to capture linear relations between the properties of the samples and their

corresponding labels. The `1-regularized logistic regression, a linear classi-

fier, is described in Section 3.4.2. More complex classifiers, such as decision

trees, can exploit the feature space in order to capture complicated relations

between properties. Extra-Trees, a variant of decision trees, are presented

in Section 3.5.2. While only two different classifiers are used in this thesis,

many others exist, such as k-nearest neighbours, artificial neural network,
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support vector machines, etc. and are available through libraries such as

Weka [15].

2.1.3 Bias/Variance trade-off

When training a classifier f̂ , it is important to take into account the

bias/variance trade-off. Indeed, the average error of a classifier f̂ on a set of

testing data (i.e. unseen data) is related to the sum of the bias and variance

errors. We can think of training f̂ as selecting the right function from a family

of functions F . The bias error of a function f̂ is caused by the inability of F

to correctly approximate the true function f . As for the variance error, it is

correlated to the variance of the average error of F on a given test set, when

trained on different sets sampled from the same distribution.

The complexity of the family of functions F affects both the bias and

variance errors: the bias is inversely proportional to the complexity of the

family F and the variance is proportional to it. Indeed, if we have a family

F which has a low complexity compared to f , we will never be able to model

f correctly, inducing a high bias, but variations in the training data will not

affect the choice of f̂ ∈ F by much, inducing lower variance. On the other

hand, a very complex family of functions F will be able to model the training

data perfectly, inducing a low bias, but will make many errors predicting

unseen data, as the chosen function f̂ ∈ F is tailored only according to the

training data used. Figure 2–1 depicts the standard behaviour of the bias,

variance and testing error with respect to complexity of F .
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Figure 2–1: Standard behaviour of the bias, variance and test error with respect
to complexity of a family of function F . The optimal complexity lies at the inter-
section of the bias error and variance error curves.

2.1.4 Cross-Validation

Since we are now aware of the bias and variance errors related to a family

of function F , we can now explain the importance of using cross-validation

to validate the experimental results. If we train our algorithm using all the

available data, and then test it using the same data, the error calculated is

only related to the bias. Indeed, there are now no differences between the

testing set and training set, therefore no variance error is present. Notice from

Figure 2–1 that the bias error goes to zero as the complexity of the classifier

increases. Therefore, we could optimize f̂ to have the lowest possible training

error by increasing its complexity. The problem is that this classifier would
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have a fairly poor performance when used on new unseen data. This validates

the importance of using the test error as the true efficiency of a classifier.

In an optimal world, we would be able to separate the data randomly

into two large sets, one used for training and the other used to validate the

performance of our classifier. Unfortunately, this is not always possible. As

in the problem of creating automated seizure detection algorithms, the data

is often scarce. Indeed, for some patients, only 3 seizures are available. This

would imply either training on one and testing on two, or the inverse, training

on two and testing on one. In both cases, we can see that the reliability of

the results would probably be poor, as either there is not enough data to

successfully train the classifier or validate its performance accurately.

Luckily for us, even when the available data is scarce, we can compute

the expected test error easily using k-fold cross-validation. This methods

takes the available training data and separates it uniformly into k different

sets. Then, all but one set are used in the training of the classifier. The

performance of this classifier is evaluated on the remaining set, not contained

in the training data. This process is repeated until all sets have been used

as test sets. Finally, the overall performance of the classifier is calculated

by averaging the performance on each testing sets. This method directly

estimates the expected testing error of the classifier [18].

2.2 Seizure Detection

The task of an automated seizure detection algorithm is to analyst the

EEG recording in real-time and raise alarms during ictal events. In order
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to do so, at a fixed time interval, the algorithm extracts features from the

EEG recording and feeds them to a classifier. Using the output of the latter,

an alarm may be raised. The interested reader can refer to Figure 2–2 for a

flowchart of the procedure. The objective is to only raise alarms during ictal

events, without missing any.

EEG Data Feature Extraction Classification Alarm Control

Alarm

¬Alarm

Automated Seizure Detection Algorithm

Figure 2–2: Flowchart describing the steps taken by an automated seizure detec-
tion algorithm.

2.3 EEG Recordings

EEG recordings consist of multivariate time-series data where each mea-

sured variable comes from a different electrode. The electrodes are usually

sampled between 200Hz to 2000Hz and downsampled to 256Hz for compu-

tational reasons. The univariate time-series sampled by those electrodes are

called EEG channels. The analog data is often digitized to 16 bits of resolu-

tion.

To be able to train a classifier, each EEG recording needs to be analyzed

by an epileptologist in order to define the beginning and end of each ictal

events. These cut points enable us to label each EEG sample as either ictal

or interictal. Figure 2–3 shows an example of a scalp EEG recording and
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Figure 2–4 shows an example of an ECoG recording, in which seizures have

been annotated.

Using the machine learning terminology introduced in Section 2.1, the

set Y = {ictal, interictal} corresponds to the two output variables that we are

trying to approximate with our classifier. The set of input variables is defined

as X ⊆ Rd, where d corresponds to the number of features extracted from

the EEG recording. Each vector of X corresponds to the possible feature

values an EEG could have at a single point in time.
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Figure 2–3: Multi-channel EEG recording containing a seizure delimited by the
gray areas. The signal is less defined compared to ECoG recordings.

19



G
_A

4

5 s.

G
_D

2

5 s.

IH
1

5 s.

IH
3

5 s.

IH
4

5 s.

IH
A

1

5 s.

Figure 2–4: Multi-channel ECoG recording made with three focal and three extra-
focal electrodes containing a seizure delimited by the gray areas. The signal is more
defined compared to scalp EEG recordings.
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CHAPTER 3
A Toolbox for Personalized Seizure Detection Algorithms

This chapter presents the core contribution of thesis: the toolbox imple-

mented to generate personalized epileptic seizure detection algorithms that

operate in real-time. We cover the different components of the toolbox de-

picted in Figure 1–1. Unless specifically mentioned, everything was imple-

mented directly in the toolbox.

3.1 Data Description

To ease the pre-processing of datasets, the toolbox uses a simple text

format. An EEG recording is defined by a unique folder containing a text

file for each of its channels. Each of these files has one value per line, corre-

sponding to the amplitude of the signal recorded by a given electrode. The

files must all start and end at the same time, as well as possess the same

sampling rate. Therefore, the nth line of a channel file must exists in all of

them, and correspond to the same recording time. A simple XML file encap-

sulates all the information required to process the multivariate time-series:

the EEG name, the sampling rate, the name and filenames of each channel

file and the labels of the different events present in the recording. These la-

bels are defined by the first and last samples present in the contiguous event,

combined with a numerical value corresponding to its type.
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3.2 Feature Extraction

The feature extraction module is responsible to extract relevant informa-

tion about a patient’s epileptic syndrome and seizures from his EEG record-

ings. In order to do so, a large set of univariate features, computed on

a unique EEG channel, and bivariate features, computed on pairs of EEG

channels, has been implemented. The toolbox provides a direct access to

a well-tested implementation of many features proposed in the literature to

achieve seizure detection and/or prediction ([32], and references therein). It

is worth noting that most of the features depend on some parameters (e.g.

window length over which the feature is calculated, type of finite impulse

response filter used, etc.). The toolbox is capable of extracting them over a

wide range of parameter values. This range can be modified if desired, by

reducing the range to accelerate computation, or to possibly improve perfor-

mance by extending the range. Our assumption is that the feature set, with

its possible configurations, is large enough to capture relevant information

from the EEG recordings of many different epileptic syndromes and seizures.

To account for the non-stationarity of the EEG recordings and to de-

tect changes in the brain state, the features are extracted over windows of

EEG data that are moved in time. Multiple windows lengths are used to

get different time resolutions. Indeed, when moved by a small amount of

time, a feature value will vary quickly in short windows, but slowly in longer

windows, making the former more sensitive and the latter more stable to

changes in the brain activity. The toolbox is able to extract any features
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on a set of window length W with a spacing of δ samples between the end

of two consecutive windows. These windows are synchronized at their end,

such that in a real-time setting, all features are computed using the latest

available data.

We now define the mathematical notation that will be used to describe

the features. Let E represent an EEG recording and let c ∈ E be a channel

present in the EEG. The vector c represents a time-series consisting of the

recordings of the electrode across time. We will denote by ck the value of the

kth sample of the time-series c. A window of length w ending with sample

k will be written as cwk . Thus, cwkl corresponds to the lth value of cwk for

0 ≤ l < w. Note that all indices are starting at 0. An example of two

consecutive sets of moving windows with W = {200, 400, 1000} and δ = 200

is illustrated in Figure 3–1. A complete feature vector x ∈ X consists of all

the features computed on all the channels (or pair of channels) over a given

window set, defined by W and k.

To be concise with the machine learning notation introduced in Sec-

tion 2.1, we will denote the set of feature vectors extracted from the EEG

data by X and its corresponding set of labels by Y. The label yi ∈ Y as-

signed to a feature vector xi ∈ X corresponds to the label that is in majority

across the samples {k − δ + 1, k − δ + 2, . . . , k} of the EEG recording.

We use the notation (a◦b)i = aibi, ∀i to denote pointwise multiplication

of the vectors a and b.
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Moving windows with respect to EEG recordings

samples (x200)

0 1 2 3 4 5 6 7 8 9 10

c1200
1000

c1200
400

c1200
200

c1400
1000

c1400
400

c1400
200

Figure 3–1: Two consecutive sets of moving windows with lengths W =
{200, 400, 1000} and δ = 200 are illustrated in the above figure. The horizon-
tal lines correspond to the segment of data on which the features are extracted and
the dashed lines show the synchronization of the endpoints of a set of windows.
The signal shown corresponds to c ∈ E and is sampled at 200 Hz.

3.2.1 Univariate Features

Univariate features are extracted from a single channel c ∈ E at a time.

• Mean (µ):

µ(cwk ) =
1

w

w−1∑
l=0

cwkl. (3.1)
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The mean captures shifts in the base line of the EEG recordings.

• Variance (σ2):

σ2(cwk ) =
1

w − 1

w−1∑
l=0

(cwkl − µ(cwk ))2. (3.2)

The variance is positively correlated to the amplitude of the measure-

ments made by the electrodes.

• Line-Length (L):

L(cwk ) =
w−1∑
l=1

∣∣cwkl − cwk[l−1]

∣∣ , (3.3)

where | · | denotes the absolute value. The line-length was introduced

in [34] and is positively correlated to the high-frequency components

contained in the signal and the signal’s amplitude.

• Fast Fourier Transform (FFT):

The spectral characteristics of the brain activity are a natural compo-

nent to extract from EEG recordings. A windowing function h such

as Hann or Hamming [17] is applied on the window cwk to reduce the

creation of artifacts due to the non-periodicity of the signal inside that

window. Let h be a windowing function such that |h| = w. We denote

the FFT of (h ◦ cwk ) as

FFT(h ◦ cwk )l =
w−1∑
j=0

(h ◦ cwk )j · e
−i2πlj
w , (3.4)
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with l ∈ {1, 2, . . . , w
2
} and i representing the imaginary number. Given

the sampling rate fs of the EEG recording and a frequency f with

0 ≤ f ≤ fs
2
, the linear weighted average of the magnitude of the spec-

trum between l1 =
⌊
f ·w
fs

⌋
and l2 =

⌈
f ·w
fs

⌉
is returned as the amplitude

of f . Note that only frequencies up to fs
2
are considered because of the

Nyquist-Shannon sampling theorem [43]. The analysis of the spectral

components of an EEG recording is a standard procedure used as the

brain activity is often characterized in wave bands.

• Mean of the Squared Convolution (MSC):

Let g be a finite impulse response (FIR) filter. The convolution of g

and cwk is defined as

(g ∗ cwk )l =

w+|g|−1∑
j=0

g|g|−l+j−1c
w
kj, (3.5)

where l ∈ {0, 1, . . . , w+|g|−1} and the convolution operator is denoted

by ∗. The values for out of bounds indices are assumed to be 0. The

mean of the squared values of the convolved signal is defined as

MSC(cwk ,g) =
1

w + |g| − 1

w+|g|−1∑
l=0

|(g ∗ cwk )l|2 . (3.6)

The MSC feature corresponds to the power, or energy per sample, of

the convolved signals. This feature was taken from [35].

The FIR filters used with the MSC feature for automated seizure detec-

tion are constructed from the Daubechies 4 wavelets. We first describe
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these wavelets as well as the discrete wavelet transform in order to

explain how the filters are constructed. The Daubechies 4 wavelets

consists of two FIR filters:

D1
high =

(
1−
√

3

4
√

2
,
−3 +

√
3

4
√

2
,
3 +
√

3

4
√

2
,
−1−

√
3

4
√

2

)
, (3.7)

D1
low =

(
1 +
√

3

4
√

2
,
3 +
√

3

4
√

2
,
3−
√

3

4
√

2
,
1−
√

3

4
√

2

)
, (3.8)

which are depicted in Figure 3–2.
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Figure 3–2: The Daubechies 4 High and Low band filters.

To get the coefficients of the discrete wavelet transform of a signal s at

level n, we need to follow the operations on the path from s to level n

in the filter bank depicted in Figure 3–3.

It is however possible to obtain the coefficients of the signal s at level

n by performing a single convolution with the filter Dn
high and down-

sampling the result by a factor of 2n:
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s D1
high ↓ 2 Level 1

D1
low ↓ 2 D1

high ↓ 2 Level 2

D1
low ↓ 2 D1

high ↓ 2 Level 3

D1
low ↓ 2 . . .

Figure 3–3: Filter bank describing the discrete wavelet transform. To get the
coefficients at level n, one needs to follow the operations present on the path from
s to that level. The boxes represent convolutions and the circles represent sampling
operations such that ↓ 2 is a downsampling by a factor of two.

s Dn
high ↓ 2n Level n

We used the filters Dn
high, with different values of n, as our FIR filters

in the MSC feature. To construct the filter Dn
high, one needs to follow

the operations presented in the filter bank depicted in Figure 3–4. The

use of these filters was suggested in [35]. Figure 3–5 shows Dn
high and

its frequency response for different values of n.

3.2.2 Bivariate Features

Bivariate features are extracted over a pair of EEG channels c, d ∈ E

in order to measure the relations between them. The features are extracted

over windows of the same size at the same time location, i.e. cwk ,dwk .

• Linear Coherence (LC):

Let g be a weighted average filter of size |g| � w
2
. For larger |g|, the
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D1
high D1

high

D1
low ↑ 2 D2

high

D1
low ↑ 2 D3

high

. . .

Figure 3–4: Filter bank describing the construction of Dn
high. To get the filter at

level n, one needs to follow the operations present on the path from the original
D1

high to that level. The boxes represent convolutions and the circles represent
sampling operations such that ↑ 2 is a upsampling by a factor of two (adding a
zero between each sample).

statistical significance of the measure is increased at the cost of spectral

distortion [25]. Let

G(cwk ,d
w
k ,g,h) = g ∗ [FFT(h ◦ cwk ) ◦ FFT(h ◦ dwk )∗] , (3.9)

be the sample cross-spectrum of cwk and dwk convolved with g where a∗

denotes the complex conjugate of a. This estimation of the spectrum

is shown to be roughly equivalent to the Welch method with M = |g|

when g is uniform [25]. We then define the linear coherence as

LC(cwk ,d
w
k ,g,h)l =

∣∣∣∣∣ G(cwk ,d
w
k ,g,h)l√

G(cwk , c
w
k ,g,h)l ·G(dwk ,d

w
k ,g,h)l

∣∣∣∣∣ , (3.10)

where l ∈ {|g| − 1, |g|, . . . , w
2
}. Then, for a given sampling rate fs and

a frequency f , with 0 ≤ f ≤ fs
2
, the value of the measure is located at

index l = round
(
f ·w
fs

)
+|g|−1. The value at l gives the linear coherence
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Figure 3–5: Dn
high filters and their frequency response for n ∈ {3, 5}. D3

high and
D5

high are represented on the first and second rows, respectively. The first column
corresponds to the filter values and the second column corresponds to the amplitude
of the frequency response of the filter on a signal sampled at 200Hz.

between cwk and dwk at the frequency band defined by g centered at f .

The linear coherence has a value of 1 when there is a perfect linear

synchronization and 0 when there is no synchronization. This feature

as been used in [38].
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• Maximum Cross-Correlation (MCC):

Let

C(cwk ,d
w
k , τ) =


1

w−τ
∑w−τ−1

j=0 cwk(j+τ)d
w
kj τ ≥ 0

C(dwk , c
w
k ,−τ) τ < 0

, (3.11)

define the standard linear cross-correlation. Then,

MCC(cwk ,d
w
k , r, t) = max

τ∈R(r,t)

∣∣∣∣∣ C(cwk ,d
w
k , τ)√

C(cwk , c
w
k , 0) · C(dwk ,d

w
k , 0)

∣∣∣∣∣ , (3.12)

measures the maximum normalized lag synchronization of the two sig-

nals in the range defined by R(r, t) = {−r,−r+ t,−r+ 2t, . . . , r}. The

cross-correlation measures the linear similarity of the amplitude of two

signals as a function of lag. Therefore, the maximum cross-correlation

returns the highest similarity obtained across the lags contained in

R(r, t). This feature as been used in [38].

• Non-Linear Interdependence (NI):

Let

ψ(cwk , d, τ)l = (cwkl, c
w
k[l+dτ ], . . . , c

w
k[l+(d−1)τ ]), (3.13)

be the time delay embedding of cwk in d dimensions with lag τ . Note

that valid values for l range from 0 to w−(d−1)τ−1. We define the set

of indices corresponding to the r nearest neighbours of l in ψ(cwk , d, τ)

as
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NN(cwk , d, τ, r)l =

argmin
A⊆{0,...,w−(d−1)τ−1}:

|A|=r

∑
j∈A

‖ψ(cwk , d, τ)l − ψ(cwk , d, τ)j‖2, (3.14)

where ‖v‖2 denotes the Euclidean norm (length) of the vector v and

‖v‖2
2 naturally denotes the square of ‖v‖2. If we let

R(cwk ,d
w
k , d, τ, r)l =

1

r

∑
j∈NN(dwk ,d,τ,r)l

‖ψ(cwk , d, τ)l − ψ(cwk , d, τ)j‖2
2, (3.15)

and define N = |ψ(cwk , d, τ)| = w − (d − 1)τ , one can compute the

following measures of non-linear interdependence

NIS(cwk ,d
w
k , d, τ, r) =

1

N

N−1∑
l=0

R(cwk , c
w
k , d, τ, r)l

R(cwk ,d
w
k , d, τ, r)l

, (3.16)

NIH(cwk ,d
w
k , d, τ, r) =

1

N

N−1∑
l=0

log
R(cwk , c

w
k , d, τ,N − 1)l

R(cwk ,d
w
k , d, τ, r)l

, (3.17)

where higher values imply higher degrees of non-linear interdependence.

These features measure a notion of generalized synchronization that

captures an asymmetric relation of dependence between cwk and dwk .

They were suggested in [1].

• Phase Synchrony (PS):

Let a ∈ [0, 1] and h be a width parameter, we define

σ(h, a) =
h√

2 · erf−1(a)
, (3.18)
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where

erf(x) =
2√
π

∫ x

0

e−t
2

dt, (3.19)

is the error function. Then,

G(f, h, a, fs)l =
1

fs
e2πi l

fs
(f+πi l

fs
[σ(h,a)]2), (3.20)

is a complex valued function with a frequency response corresponding

to a normal distribution centered at f where a of the area of its prob-

ability density function (pdf) is located between [f − h, f + h]. Note

that fs is the sampling rate of the EEG recording and l ∈ Z.

Let 1expr be the indicator function; having a value of one when the

expr is satisfied and zero otherwise. Then, we can define the Hilbert

transform in the time domain. For w even, we define

H(w)j =

1j=bw2 c +
i

w

cot

(
(j −

⌊
w
2

⌋
)π

w

)
−

cos
(
(j −

⌊
w
2

⌋
)π
)

sin

(
(j−bw2 c)π

w

)
 , (3.21)

when j −
⌊
w
2

⌋
is even and

H(w)j = 0, (3.22)
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when j −
⌊
w
2

⌋
is odd. For w odd, the Hilbert transform is defined as

H(w)j = 1j=bw2 c +
2i

w
sin2

(
(j −

⌊
w
2

⌋
)π

2

)
cot

(
(j −

⌊
w
2

⌋
)π

w

)
, (3.23)

for all j’s. The real values of H(w) ∗ cwk correspond to cwk and the

imaginary values correspond to the Hilbert transform of cwk . This rep-

resentation of the Hilbert transform is useful as we can now use either

G or H in the same manner to calculate the phases of a signal. Indeed,

choosing g to be either G or H, we can compute the phases of a signal

cwk by

φ(cwk ,g)j = arctan

(Im[(g ∗ cwk )
j+b |g|2 c]

Re[(g ∗ cwk )
j+b |g|2 c]

)
, (3.24)

in which j ∈ {0, . . . , w − 1} and ∗ denotes the convolution operator

defined earlier. The phase difference between cwk and dwk is defined as

∆(cwk ,d
w
k ,g)j = φ(cwk ,g)j − φ(dwk ,g)j. (3.25)

Three different features can be extracted from the recordings. They

are measures of synchronization that do not depend on the amplitude

of the signals, but instead are related to their respective phases. The

first is the mean phase synchrony,

PSµ(cwk ,d
w
k ,g) =

∣∣∣∣∣ 1

w

w−1∑
j=0

ei·∆(cwk ,d
w
k ,g)j

∣∣∣∣∣ , (3.26)

which represents the average phase difference between the two signals.

Alternately, an index based on the conditional probability (PScp) and

another index based on the Shannon entropy (PSse) can be computed.
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To define these, we first need to separate the interval [0, 2π] into equidis-

tant bins. The number of such bins is given by

L(w) =
⌈
e0.626+0.4 ln(w−1)

⌉
, (3.27)

as defined in [40]. Let

M(cwk ,g)l =

{
j : φ(cwk ,g)j ∈

[
l

L(w)
2π,

l + 1

L(w)
2π

]}
, (3.28)

where j ∈ {0, 1, . . . , w − 1}, l is a bin index and M(cwk ,g)l is an index

set containing the indices of the elements of φ(cwk ,g) that fall into the

lth bin. Then, for each bin, we compute the following value

λ(cwk ,d
w
k ,g)l =

1

|M(cwk ,g)l|
∑

j∈M(cwk ,g)l

eiφ(dwk ,g)j , (3.29)

which enables us to calculate the index based on conditional probability,

PScp(c
w
k ,d

w
k ,g) =

1

L(w)

L(w)−1∑
l=0

|λ(cwk ,d
w
k ,g)l|. (3.30)

This index is related to the probability that φ(dwk ,g)j has a certain

value given that φ(cwk ,g)j fell in a certain bin. As for the index based

on the Shannon entropy, we bin the phase differences as

P (cwk ,d
w
k ,g)l =

∣∣∣{j : ∆(cwk ,d
w
k ,g)j ∈

[
l

L(w)
2π, l+1

L(w)
2π
]}∣∣∣

n
, (3.31)
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where j ∈ {0, 1, . . . , w − 1}. Then the index is computed as

PSse(c
w
k ,d

w
k ,g) =

1 +
1

ln[L(w)]

L(w)−1∑
l=0

P (cwk ,d
w
k ,g)l ln[P (cwk ,d

w
k ,g)l]. (3.32)

The PSse index represents the Shannon entropy of the binned phase

differences between the two signals.

3.2.3 Computational Complexity

In this section, we analyze the computational complexity of each fea-

ture. This will enable a user to choose which feature configurations to use in

the training phase of the algorithm by accounting for the time available to

compute them.

We now introduce the Big-Oh notation O(·). We say that a function

f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that for all

n ≥ n0, we have f(n) ≤ cg(n) [23]. Note that the Big-Oh notation only

provides an upper bound on the growth rate of a function.

The bounds derived for the features are not necessarily tight with the

toolbox implementation, since multiple tricks have been used to speed up

computations. Nevertheless, these are still useful to get an idea of the com-

putational cost of a feature. For the sake of the calculations, we assume that

|g| ≤ w, with w ∈W, for all possible configurations.

The computational costs of each univariate features on a single cwk are

shown in Table 3–1. To account for the total cost of computing the feature

for a given feature vector, we need to add the costs for each window size
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present in W and then multiply by the number of channels present in the

EEG recording, |E|.

Table 3–1: Computational cost of univariate features on a single channel cwk .
Univariate Feature Computational Cost

µ(cwk ) O(w)
σ2(cwk ) O(w)
L(cwk ) O(w)

FFT(h ◦ cwk ) O(w logw)
MSC(cwk ,g) O(w logw)

The computational cost of each bivariate feature on a pair (cwk ,d
w
k ) is

given in Table 3–2. Since bivariate feature are computed on all pairs of

channels, the total cost of computing them is equal to the summation of the

costs for each window size present in W multiplied by the total number of

pairs of channels present in the EEG recording, i.e. the binomial coefficient(|E|
2

)
∼ O(|E|2).

Table 3–2: Computational cost of bivariate features for a single channel pair
(cwk , dwk ).

Bivariate Feature Computational Cost
LC(cwk ,d

w
k ,g,h) O(w logw)

MCC(cwk ,d
w
k , r) O(rw)

NIS(cwk ,d
w
k , d, τ, r) O(dw2 + w2 logw)

NIH(cwk ,d
w
k , d, τ, r) O(dw2 + w2 logw)

PSµ(cwk ,d
w
k ,g) O(w logw)

PScp(c
w
k ,d

w
k ,g) O(w logw + wL(w))

PSse(c
w
k ,d

w
k ,g) O(w logw + wL(w))

From our experimentation with the toolbox, any complexities containing

terms higher or equal to O(w2) are excessive for values of w ∼ 1000, i.e. 5
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seconds sampled at 200Hz. Moreover, the constant terms present in the linear

coherence implementation’s complexity prohibits its computation when more

than 15 channels are present in the EEG recordings.

3.3 Cross-Validation

The cross-validation module is responsible for the separation of the data

into training and testing sets in order to correctly estimate the efficiency of

the created automated seizure detection algorithms. It does so by separating

the ictal events and interictal segments uniformly across the folds. All the

other modules of the toolbox are carried independently on each different

training set.

3.4 Feature Selection

In the feature extraction phase, we extracted a large amount of features

by using multiple different configurations in order to cover a large set of

epileptic syndromes and seizures. The computational cost of extracting this

ample pool of features was high. However, our goal is to create personal-

ized seizure detection algorithms that run in real-time. Therefore, given a

patient, we only need the subset of features that is relevant to his particular

epileptic syndrome and seizures. Selecting this smaller subset of features will

reduce the computational cost of the feature extraction when performed in

real-time as well as reduce the amount of irrelevant features fed to the clas-

sifier, possibly increasing its efficiency. The combination of the extraction of

the large pool of features with the automated feature selection enables the
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toolbox to create personalized seizure detection algorithms without the need

for external input on the patient’s conditions.

The machine learning literature provides a large number of methods for

automatic feature selection [14]. Most of these feature selection techniques

can be categorized as filter, wrapper or embedded methods. A common

advantage of these methods is that regardless of their simplicity, a rich func-

tion class can still be considered when building a classifier. We now discuss

both the filter and embedded methods, as techniques from those two feature

selection schemes are implemented in the toolbox.

The filter methods consist of ranking each feature individually accord-

ing to a scoring function and selecting the highest ranked subset. These

methods have some attractive properties: they are simple, scalable and have

been shown to work well on multiple problems [14]. Indeed, the computa-

tional complexity is linear with respect to the cost of computing the scoring

function, as a single score has to be calculated per feature. Furthermore,

these methods are robust against overfitting [18]. On the other hand, filter

methods cannot capture complex relations between features and they are

subject to select multiple highly correlated ones. Standard scoring functions

are often based on mutual information, correlation or other measures such

as the area under the receiver operating characteristic (ROC) curve, where

the latter is explained in Section 3.4.1.

As for the embedded methods, they perform feature selection while con-

structing a classifier. A standard approach in statistical analysis is to impose
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a complexity constraint when training a simple classifier; selecting only the

features with non-zero weights [18]. This complexity constraint creates a

trade-off between the number of selected features and the overall classifier

performance. Thus, the features selected are only those that improve the

performance of the classifier substantially. The downside of embedded meth-

ods is that they often have a higher computational complexity than filter

methods. An example of an embedded method, the `1-regularized logistic

regression, is described in Section 3.4.2.

3.4.1 Area under the ROC curve (AUC)

The area under the receiver operating characteristic (ROC) curve, de-

noted AUC, is a useful filter method to assign a score for each feature in-

dependently when the final task is to perform binary classification. We first

need to introduce the necessary concepts in order to understand the ROC

curve.

Given a classifier f̂ and a new sample xi to classify, there are four possible

outcomes considering the true label f(xi): true positive, false positive, true

negative and false negative. Table 3–3 enumerates these outcomes as well as

the conditions for them to occur.

Table 3–3: The possible outcomes of the classification of a new sample xi using a
classifier f̂ with respect to the true labels.

f(xi) = 1 f(xi) = 0

f̂(xi) = 1 True Positive False Positive

f̂(xi) = 0 False Negative True Negative
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From these outcomes, we can define the true positive rate (TPR) and

false negative rate (FPR) of a classifier f̂ over a set of samples X as,

TPR(f̂ ,X) =

∣∣∣{xi ∈ X : f̂(xi) = 1, f(xi) = 1}
∣∣∣

|{xi ∈ X : f(xi) = 1}|
, (3.33)

and

FPR(f̂ ,X) =

∣∣∣{xi ∈ X : f̂(xi) = 1, f(xi) = 0}
∣∣∣

|{xi ∈ X : f(xi) = 0}|
, (3.34)

where |A| denotes the size of set A. These two measures define the two

dimensional ROC space, shown to the right of Figure 3–6. The point located

at the origin, (0, 0), corresponds to a classifier that classifies everything as a

negative, i.e. f̂(·) = 0. At the other extreme, we have the point (1, 1), which

corresponds to a classifier that classifies everything as positive, i.e. f̂(·) = 1.

The optimal point is located at (0, 1), where we have a perfect TPR and

FPR, i.e. ∀xi ∈ X, f̂(xi) = f(xi). The diagonal line y = x (the dashed line

to the right of Figure 3–6) corresponds to random classifiers. Indeed, if we

have a classifier that randomly classifies a sample as positive with probability

p, its corresponding point in the ROC space would be (p, p).

Now consider a function g : X → R instead of f̂ : X → Y . For g to be

helpful in determining the class of new samples, its distributions of values

must be different when the class is positive or negative. Figure 3–6 to the left

depicts an example of the densities of the output of a function g according to

the different classes. We can observe that the two distributions overlap, but

are not completely the same. Therefore, the function g is capable of partially

differentiating the classes. We can create points in the ROC space for the
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function g by choosing a threshold t and saying that every value to the left

will be classified as negative, and every value to the right as positive, or vice-

versa. In fact, we are converting g into a simple classifier called a decision

stump. As an example, the threshold depicted to the left of Figure 3–6 for the

function g correspond to the ROC point in the right figure. To approximate

the full ROC curve of g shown to the right of Figure 3–6, we can vary the

threshold so that all the values between min(g(·)) and max(g(·)) are covered.
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Figure 3–6: Left - Density distribution of the function g according to the different
classes. If we consider everything to the left of the threshold as negative and
everything to the right as positive, it yields the ROC point denoted in the right
figure. Right - ROC space with the ROC curves of both g and a random classifier.
The AUC of g is reported.

Once we have a complete ROC curve, we can compute our scoring func-

tion: the AUC. Since the curve is embedded into the unit square, we know

that AUC of g is less than or equal to 1. We also know that a random clas-

sifier has an AUC of 0.5. This ranking measure has an important statistical
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property: it is equivalent to the probability that g(xi) ≥ g(xj) for a ran-

domly chosen sample xi ∈ X such that f(xi) = 1 and a randomly chosen

sample xj ∈ X such that f(xj) = 0 [6]. In other words, the higher the AUC,

the more g is able to distinguish between the two classes. Moreover, this

measure in robust against class imbalances present in the data. Indeed, it is

easy to see that given any quantity of samples from both classes, the TPR

and the FPR will stay the same for a given classifier. Note that the AUC is

closely related to the Gini coefficient [16].

We can compute the AUC of a feature by considering it as the output of

some function g. Since we do not know the true function, we can approximate

its density distributions according to each class by using the feature values

over all the labelled training data. This enables us to compute its AUC.

Once a score is assigned to each feature, we can select a subset of features

by picking the best n ranked ones.

3.4.2 `1-Regularized Logistic Regression

We now describe the `1-regularized logistic regression as an embedded

feature selection method. This approach is natural in statistical learning [18].

It uses the logistic function σθ : X → [0, 1] as a simple model. For x ∈ X,

the logistic function is defined as

σθ(x) =
1

1 + eθTx
, (3.35)
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where θ are the parameters of the function. It can be shown that given the

right set of parameters θ for a model f(·), such that f(x) = y with y ∈ {0, 1},

σθ(x) ≈ p(y = 1|x). (3.36)

Indeed, if we let

θTx ≈ − ln

(
P (x|y = 1)P (y = 1)

P (x|y = 0)P (y = 0)

)
, (3.37)

we obtain

σθ(x) =
1

1 + eθTx
(3.38)

≈ 1

1 + e− ln(P (x|y=1)P (y=1)
P (x|y=0)P (y=0))

(3.39)

≈ 1

1 + P (x|y=0)P (y=0)
P (x|y=1)P (y=1)

(3.40)

≈ P (x|y = 1)P (y = 1)

P (x|y = 1)P (y = 1) + P (x|y = 0)P (y = 0)
(3.41)

≈ P (x|y = 1)P (y = 1)

P (x)
(3.42)

≈ P (x, y = 1)

P (x)
(3.43)

≈ P (y = 1|x), (3.44)

as required. The set of optimal parameters θ can be estimated from a set of

training samples X and corresponding set of labels Y by maximizing the log

likelihood of the labels given the data with respect to the parameters, i.e.

argmin
θ

∑
xi∈X

− log[p(yi|xi; θ)]. (3.45)

44



Unfortunately, the set of parameters found during this optimization might

contain only non-zero entries; using all the available features in x.

To remedy this problem, we can use an interesting complexity constraint

called the `1 norm:

‖θ‖1 =
∑
θj∈θ

|θj|, (3.46)

which measures the density of θ. We modify the optimization function of θ

to include this complexity constraint,

argmin
θ

∑
xi∈X

− log[p(yi|xi; θ)] + λ‖θ‖1, (3.47)

where λ is a parameter controlling the complexity penalty. The optimization

function is now `1-regularized. The parameter λ indicates how much to

penalize the parameter vector θ according to its `1 norm. Indeed, if λ = 0,

no penalization is applied, and we retrieve the original optimization function.

On the other hand, for larger values of λ, the regularization parameter has

more influence during the optimization. Therefore, sparser θ vectors are

preferred, i.e. vectors with few non-zero entries.

The `1-regularized logistic regression has two main advantages. First,

it is efficient at selecting a small subset of useful features from a pool con-

taining a large proportion of irrelevant ones [33]. Second, highly correlated

features are often not selected during the optimization, providing a more

diverse feature set.

Note that iterative methods are often used to solve the regularized opti-

mization because of the large number of features for which we want to learn
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the set of parameters θ [27]. In our case, the `1-regularized logistic regres-

sion was implemented with the use of the Vowpal Wabbit (VW) toolbox [26].

Vowpal Wabbit was designed for computational efficiency when training on

large datasets, using a modified online gradient descent algorithm for learn-

ing.

3.5 Classification

The classification module is responsible for creating classifiers using the

selected features and the training data. The goal is to train a classifier f̂

using the selected features and use it to get good approximations of the

labels ŷ = f̂(x) for new samples x ∈ X. We implemented two types of

classifiers able to represent different families of functions. The first one is a

`1-regularized logistic regression [18], able to represent linear functions, and

the second one is a forest of Extra-Trees [11], able to represent a much more

complex family of functions. We describe the two methods as well as a way

to define thresholds in order to account for the data imbalance present in

EEG recordings.

3.5.1 `1-Regularized Logistic Regression

The `1-regularized logistic regression was explained in Section 3.4.2. It

is important to note that for the right choice of λ, the complexity constraint

prevents the optimization function from overfitting the training data. Indeed,

it reduces the complexity of the model created by reducing the number of non-

zero entries in the set of parameters θ. Even though the family of functions
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this classifier is able to represent is fairly simple, it is really useful in order

to validate the use of more complex classifiers.

3.5.2 Extra-Trees

Extra-Trees are a type of extremely randomized binary decision trees

introduced by Geurts et al. in [11]. A binary decision tree is a binary tree

where each inner node contains a test and each leaf determines a label y ∈ Y .

A test is a function T : X → {True,False} defined by a threshold t and a

feature j such that given a feature vector x ∈ X,

T (xi) =

 True if xj ≥ t

False otherwise
. (3.48)

Using a decision tree, we can classify a sample x ∈ X by running tests

on x until we reach a leaf node. The path taken by the sample x from the

root to the leaf is determined by the outcome of the tests contained in its

inner nodes: if the output of a test is false, we go into the left subtree and if

it is true we go into the right subtree. The label assigned to sample x is the

one contained in the leaf node it reached.

Assuming the features contain significant information about the class

label, the usefulness of a decision tree resides in the way that we define its

tests at each inner node. These are often chosen by optimizing an information

theoretic criterion: the information gain. Since Extra-Trees use a particular

normalization of the information gain, we will only introduce the modified

version. Let X be our set of training samples with corresponding set of labels

47



Y. We first define the multiset T (X) to be

T (X) = {T (xi) : xi ∈ X}, (3.49)

containing each outcome of T on the samples of X. The scoring function

S(T,X,Y) is defined as

S(T,X,Y) =
2I(T (X);Y)

H(T (X)) +H(Y)
, (3.50)

where H(T (X)) is the log entropy of T (X), H(Y) is the log entropy of Y

and I(T (X);Y) is the mutual information between T (X) and Y. Let p(a)

be the probability of an event a, B = {True,False} be the set of outcomes of

a test, x be a random element of X and y be a random element of Y, then

H(T (X)) = −
∑
b∈B

p(T (x) = b) log[p(T (x) = b)], (3.51)

H(Y) = −
∑
y∈Y

p(y = y) log[p(y = y)], (3.52)

and finally

I(T (X);Y) =∑
b∈B,y∈Y

p(T (x) = b,y = y) log

[
p(T (x) = b,y = y)

p(T (x) = b)p(y = y)

]
. (3.53)

Standard decision trees are created using a top down recursive approach.

We first consider the root node, with the full training set (X,Y). We select

a test T by maximizing the scoring function over all possible thresholds and
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features. Then, we split the training data according to the output of the test:

L(X) = {xi ∈ X : T (xi) = False}, (3.54)

R(X) = {xi ∈ X : T (xi) = True}. (3.55)

Finally, we repeat the procedure for the left subtree using L(X) as the train-

ing data and for the right subtree using R(X). This procedure continues

until all the labels in the remaining training data are the same, where we

create a leaf and assign it that label.

Extra-Trees differ in the way they are created. Indeed, during the top

down recursion, not all possible thresholds and features are considered. In

fact, K tests are created by randomly picking a non-constant feature and a

threshold uniformly at random across that feature range. Then, each test is

scored according to S and the highest ranked is selected as that inner node

test. As with the standard trees, the training data is then split according to

the test and the procedure is carried out on the two subtrees. However, the

stopping criteria is also different: we stop when all the training data labels

are the same or when the size of the training set reaches a lower limit nmin.

It is interesting to consider the effects of the parameters K and nmin

when creating an Extra-Tree. The parameter K controls the randomization

of the tree, where lower values of K induce higher randomization. This

increased randomization causes the tree to have a higher bias error, but a

lower variance error. The parameter nmin averages the noise present in the

output variables. Indeed, higher values induce an earlier stopping criteria
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where the label of the leaf is decided across a larger set of training example.

The resulting tree is also shorter, increasing the bias error and lowering the

variance error.

The main source of prediction error in standard decision trees is caused

by the variance error. Effectively, it is principally the result of overfitting

the inner tests to the training data [10]. To consider the prediction error

of an Extra-Tree, we first need to look at the default parameters defined in

the original paper: K =
√
|F | and nmin = 2 , where |F | is the number of

features present in each training point [11]. These default parameters cause

an Extra-Tree to have higher variance and a slight increase in bias compared

to standard decision trees, making their prediction error worse. A natural

question comes to mind: why use an Extra-Tree?

The trick resides in the cause of the variance of an Extra-Tree: the

randomization of the tests. Instead of using a single Extra-Tree, we create

an ensemble of M trees, called a forest. To classify a new sample, we ask

each tree in the forest to label the sample and return the proportion labelling

the example for each possible class. By choosing the label to be the one in

highest proportion, the forest is actually averaging out the variance error of

each Extra-Tree [11]. For higher values of M , we have a higher reduction

in the variance error. Note that for randomized methods, increasing M will

never cause the ensemble to overfit the data, as the expected prediction error

is a monotonically decreasing function with respect to M [2]. The resulting

forest still has a slightly higher bias error than a standard decision tree, but
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its variance error almost completely disappears. Therefore, forests of Extra-

Trees, or simply Extra-Trees, usually outperform standard decision trees as

their prediction error is much lower, thanks to a much lower variance error.

Another advantage of Extra-Trees over standard decision trees is the

computational cost to create them. Both methods have a cost of O(n log(n)),

assuming balanced trees and n training samples. However, it is important

to consider the constant factor induced by the choice of tests at each inner

node. We expect it to be much lower for Extra-Trees as only K tests are

considered, versus the full spectrum for standard decision trees. These trees

are also fast to query, requiring O(n log(n)) operations when balanced. This

enables their use in real-time settings.

3.5.3 Threshold Selection

The two classifiers that can be created by the toolbox have real valued

outputs. Indeed, the logistic function is defined as σθ : X → [0, 1] and the

Extra-Trees, E, return the proportion of the forest that labels an example as

each class, i.e. E : X → [0, 1]|Y |. Since we are considering binary classifica-

tion, the output of the Extra-Trees can be denoted as E : X → [0, 1], where

the returned value is the proportion of trees that label the sample as ictal.

When designing seizure detection algorithms, we are faced with the class

imbalance problem [19]. It occurs when the proportion of training samples

between the two classes that we are trying to learn differ by a large amount.

Indeed, the number of samples present during ictal events is magnitudes

lower than the number present during interictal data. To help remedy to the

51



problem, we pick a non-standard threshold to apply on our classifiers in order

to define the final classification. Normally, for balanced classes, a standard

threshold with value 0.5 is used. Indeed, a logistic regression combined with

this threshold will return the class that is most probable and the Extra-

Trees will return the class that is in majority across the forest. In our case,

this threshold may be suboptimal as the classes are highly imbalanced. For

logistic regression, ictal samples have a lower influence on the optimized set

of parameter θ, because they are in much lower proportion compared to

interictal samples. As for the Extra-Trees, it is much more difficult for a leaf

to contain a majority of ictal samples, as these are dispersed amongst a sea

of interictal samples. By choosing a different threshold, we help the classifier

by putting more importance on ictal samples.

Our methodology to find this non-standard threshold is rather simple.

Consider a classifier g : X → Y and a set of training data X. Let

X− = {xi ∈ X : g(xi) = 0}, (3.56)

X+ = {xi ∈ X : g(xi) = 1}. (3.57)

We select the threshold tg to be

tg =
µ(g(X−)) + µ(g(X+))

2
, (3.58)

where

µ(g(X)) =
1

|X|
∑
xi∈X

g(xi), (3.59)
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is the mean of the output of g on samples in X. We can then define the final

classifier f̂g as

f̂g(x) =

 ictal if g(xi) ≥ tg

interictal otherwise
. (3.60)

This final classifier is more sensible to ictal events as instead of using an

absolute threshold of 0.5, it picks the midpoint between the mean output of

the classifier over the two classes. It can be thought of as the equivalent of

a 0.5 threshold, but for shifted distributions. The output of these classifiers

will be used in order to raise alarms for the automated detection of ictal

events.

3.6 Performance Analysis

The performance analysis module is responsible for the computation

of the metrics used to validate the efficiency of the personalized automated

seizure detection algorithms generated by the toolbox. Recall that a complete

automated seizure detection algorithm consists of a combination of a feature

extraction module, a classification module and an alarm control module,

as depicted in Figure 2–2. The first two components have been described

in sections 3.2 and 3.5, respectively. We will now cover the alarm control

module as well as the performance metrics used to validate the efficiency of

the automated seizure detection algorithms generated by the toolbox.
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3.6.1 Alarm Control

Recall that the output of a classifier f̂ on a feature vector x ∈ X is

a label of ictal or interictal as defined in Section 2.3. Since the types of

classifiers considered in the toolbox do not take into account their previous

classifications when classifying a new feature vector, their output might be

highly sensitive to small changes in the EEG recordings. Therefore, raising

an alarm for each ictal classifications would cause a high false positive rate.

To remedy this problem, an alarm is issued only after a minimum number of

consecutive ictal classifications are made by the classifier and is maintained

until the first interictal classification. We call the minimum number of clas-

sifications the minimum trigger length (MTL) and it is a tunable parameter

of the toolbox. We can increase the MTL until a maximum acceptable false

positive rate is achieved and then observe the corresponding detection rate of

the algorithm. It is important to note that an alarm has a starting time and

a duration for which it is on. Figure 3–7 shows an example of the output of a

classifier combined with MTL of 5 on a segment of EEG recording containing

a seizure.

3.6.2 Performance Measures

To evaluate the performance of the generated algorithms, we consider

the following three definitions:

i. Detection: An alarm issued by the algorithm is deemed a true detection

if it overlaps an ictal event and the first ictal classification occurred no
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Classifications and alarms using a MTL of 5

seconds

0 5 10 15 20 25 30 35 40

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Alarm State
Ictal Classification
Interictal Classification

Figure 3–7: Example of the effect of a minimum trigger length of 5 on a segment of
EEG recording containing a seizure in the greyed out area. The alarm is only raised
after the 34th feature vector is classified, when the 5th consecutive ictal classification
is made. For simplicity, only a single channel of the EEG is displayed.

more than 30 seconds before the start of the ictal event. If a single alarm

overlaps 2 ictal events, only the first one is deemed detected.

ii. False Positives: Each alarm present in an EEG recording segment con-

taining no ictal events counts as a false positive.

iii. Latency: The latency is the time between the start of the ictal event and

the beginning of the earliest alarm that successfully detects this event.
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Note that if the alarm begins before the start of the seizure, the latency

is considered to be 0.

These metrics are evaluated for each personalized automated seizure

detection algorithms generated by the toolbox. For a given patient and for

each different fold of the cross-validation, these quantities are measured over

every EEG segment not included in the training data. The final performance

measures of an algorithm are then averaged across each fold of the cross-

validation, as is described in Section 2.1.4.

3.7 Discussion

In this chapter we described each of the modules present in the toolbox

in details. First, we covered the simple data format required by the toolbox,

facilitating its use across different datasets. Then, the features implemented

were defined in details and a computational cost analysis for each of them

was provided. Both the definitions and analysis will help the community

choose which features to use if constrained by computational reasons during

the training phase. Two different feature selection techniques were presented

in order to compare a simpler filtering method with interesting properties,

the AUC, to a more complex embedded method, the `1-regularized logistic

regression. The classification module contained two classifiers, the simpler

logistic model as well as a more complex classifier, the Extra-Trees. The

trees have multiple interesting properties: they are fast to train and query,

and are robust against overfitting. Moreover, we presented a technique to

choose a threshold that helps account against the class imbalance present

56



between the ictal events and the interictal data. Also, the minimum trigger

length, a tunable parameter, was introduced to enable the specification of a

maximum acceptable false positive rate in order to observe the corresponding

algorithm performance. Finally, standard performance metrics calculated by

the toolbox were presented.

The toolbox could be improved by implementing an even broader set

of features defined by the seizure detection/prediction community. Indeed,

increasing the diversity of the features would enable to cover a larger set of

epileptic syndromes and seizures, improving the performance of the generated

algorithms. Moreover, temporal information could be incorporated in the

feature vectors by concatenating parts of previously computed vectors. The

current strategy of the toolbox is to increase the size of the windows on which

the features are extracted in order to capture information present in a longer

history of EEG data. This method is more stable with respect to changes

present in the EEG signals whereas the concatenation would provide the same

higher sensitivity that is present in shorter windows, but with a temporal

evolution. This would help reduce the number of false positives caused by

artifacts and by interictal epileptiform discharges as well as possibly increase

the sensitivity of the generated seizure detection algorithms.

Other classifiers, such as artificial neural networks, support vector ma-

chines, etc. could be incorporated in the toolbox. These would enable a

broader set of classification techniques to be used in order to find which are
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more resilient to the difficulties present when performing automated seizure

detection.

Finally, if datasets containing more seizures per patient were available,

it would be interesting to modify the toolbox such that the minimum trigger

length parameter is selected during the training phase of the cross-validation.

This modification would help us better estimate the true performance of the

generated algorithms in a real clinical environment.
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CHAPTER 4
Validation and Results

This chapter will cover the experimental methodology and the toolbox

configuration used to evaluate the toolbox performance. The metrics are

measured on the personalized epileptic seizure detection algorithms generated

for subjects present in three different datasets. One of these datasets is

newly introduced and made publicly available. Finally, the performance of

the toolbox is presented for each dataset independently.

4.1 Experimental Methodology

This section will describe in details how the experiments were conducted

using the toolbox.

4.1.1 Dataset Preparation

First, every EEG recording is split into non-overlapping two minutes

segments (Figure 4–1-b). Then, any ictal event split across multiple segments

is merged back together by joining the corresponding segments (Figure 4–

1-c). Finally, any segment containing an ictal event is padded with two

extra segments (4 minutes) at the beginning and at the end, when possible

(Figure 4–1-d). See Figure 4–1 for a detailed explanation of the procedure.

This segmentation procedure was performed for two reasons: it lowers the

memory requirements during the feature extraction phase of the toolbox and
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it helps balancing the amount of ictal and interictal data contained in the

training folds of the cross-validation.

a)

b)

c)

d)

Figure 4–1: Description of the data preparation procedure used for the experi-
mentation. Segments are separated by the dashed horizontal lines. a) An EEG
recording containing a seizure marked in gray. b) Segmentation of the EEG into
two minutes segments. c) Merging of segments containing ictal events. d) Two
segments (four minutes) padding before and after segments containing ictal events.

4.1.2 Feature Extraction

Let fs be the sampling frequency of the EEG recordings. Features were

extracted over a set of windows lengths W = {fs, 2fs, 5fs} (1,2,5 seconds)

with a delay of δ = fs (1 second) between the end of each consecutive set of

windows. The following feature configurations were used:

• µ(cwk )

• σ(cwk )

• L(cwk )

• FFT(h ◦ cwk )l where h is a Hann window and l ∈ {1, 2, . . . , 100}.

• MSC(cwk ,g) where g is a finite impulse response filter corresponding to

the Daubechies 4 wavelet decomposition at levels {1, 2, . . . , 5}.

• LC(cwk ,d
w
k ,g,h)l where g = (1, 4, 6, 4, 1), h is a Hann window and l ∈

{1, 2, . . . , 100}.

• MCC(cwk ,d
w
k , r, t) where r = fs and t = 5.
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• PSµ(cwk ,d
w
k ,g),

PScp(c
w
k ,d

w
k ,g),

PSse(c
w
k ,d

w
k ,g), where

g ∈



H(w)

G(2, 2, 0.95, fs)

G(5.5, 1.5, 0.95, fs)

G(10, 3, 0.95, fs)

G(14, 1, 0.95, fs)

G(22, 8, 0.95, fs)

G(37, 7.5, 0.95, fs)

G(72.5, 27.5, 0.95, fs)


The phase synchrony (PS) features were only extracted using windows

of length fs. For the CHB-MIT dataset, presented in Section 4.2.3, we did

not extract the linear coherence (LC) feature, because of the high number of

channels present in the EEG recordings.

4.1.3 Cross-Validation

To correctly measure the performance of the toolbox, we followed a 3-

folds cross-validation scheme for each patient. Patients with less than three

seizures were dropped from the experimentation as not enough seizures were

present to create three folds. For the other patients, we randomly separated

the segments containing ictal events across three sets. Then, we selected

uniformly at random an amount of interictal segments equal to twice the to-

tal duration of the ictal segments. We also separated these segments across
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the three sets. The training data used for each fold consisted of the seg-

ments present in a pair of sets, such that all possible pairs were considered.

Figure 4–2 shows an example of a 3-folds cross-validation performed on a

fictitious patient. Again, all the following phases of the toolbox were carried

independently on each fold of each patient.

a c b a c a

2 min.2 min.

Example of a 3−Folds Cross−Validation

b a a a b a c

2 min.2 min.

b c b b b a c a b a

2 min.2 min.

b a a a b c a b c

2 min.2 min.

c c b b b c c c c

2 min.2 min.

Figure 4–2: Example of a 3-folds cross-validation on a fictitious patient. For sim-
plicity, a single channel of the EEG recording is shown. Segments are separated
by dashed lines, and they are placed in a random ordering. The signal of seg-
ments containing an ictal event is gray. Segments with a black signal and a shaded
background were selected uniformly at random across the ones not containing an
ictal event. Each class {ictal, interictal} of shaded segments were distributed uni-
formly across the tree sets {a, b, c}. The training was performed on all segments
contained in a pair of sets and the performance was measured on all the segments
not contained in these two sets. This process was repeated three times, in order to
consider all possible pairs of training sets.
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4.1.4 Feature Selection

• AUC: We computed the value of the AUC for each feature. Then, we

selected the top 200 ranking features as the feature set.

• `1-Regularized Logistic Regression: We configured the Vowpal Wabbit

toolbox using the following set of parameters:

vw --loss_function logistic --exact_adaptive_norm

--passes 10 --learning_rate 5 --decay_learning_rate 0.90

--l1 1.0E-5

These parameters tell the Vowpal Wabbit to optimize a `1-regularized

logistic regression with the complexity parameter λ = 10−5. The use of

the exact adaptive norm improves the quality of the learned parameters

when many features are present. The passes argument tells the toolbox

to go over all the training data up to ten times, in order to get a better

fit. The decay learning rate parameter decreases the original learning

rate by a factor of 0.90n−1 at the nth pass. The features corresponding

to parameters of non-zero weights were selected as the feature set.

4.1.5 Classification

• `1-Regularized Logistic Regression: We used the same configuration as

for the feature selection, see Section 4.1.4.

• Extra-Trees: We built forests of M = 200 Extra-Trees using the de-

fault parameters K =
√
|F | and nmin = 3, where |F | corresponds to
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the number of features used. At each fold, three forests were built: one

using all the features that were extracted, another using only the fea-

tures selected by the AUC, and the last one using the features selected

by the `1-regularized logistic regression.

4.2 Datasets

To validate the performance of the personalized automated seizure de-

tection algorithms generated by the toolbox over a large variety of epileptic

syndromes and seizures, we used three publicly available datasets. We now

describe their characteristics into details.

4.2.1 Dataset 1: Montréal Neurological Institute (MNI)

A rat pilocarpine model of temporal lobe epilepsy was used to collect

ECoG data [28, 29]. This animal model of epilepsy is highly isomorphic

to human epilepsy [4]. A one hour status epilepticus (continuous stage 5

seizures [39]) was induced in six Sprague-Dawley rats (250-300g) by intraperi-

toneal injection of pilocarpine (380mg/kg). Then, three days after, surgery

was performed to place intracranial bipolar electrodes in the CA3 region of

ventral hippocampus, the medial entorhinal cortex, the ventral subiculum,

and the dentate gyrus for rats 45-5, 46-5, and 50-9. For rats 38-5, 39-3 and

39-8, electrodes were placed in both the left and right regions of the CA3, the

medial entorhinal cortex and the amygdala. All procedures were approved

by the Canadian Council of Animal Care and all efforts were made to min-

imize the number of animals used and their suffering. The recordings were
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downsampled to 200Hz without filtering and digitized using a 16 bit analog-

to-digital converter. Random recordings between the 4th and 15th day after

injection were used, for a total of 475 hours of data containing 137 seizures

(see Table 4–1 for the data distribution per rat). This new dataset is freely

available at www.cs.mcgill.ca/~gsauln/files/mni_dataset/.

Table 4–1: Distribution of ECoG data (MNI).
Patient Ictal Segments Inter-ictal Segments

(2 min. each)
rat38-5 18 2953
rat39-3 20 4908
rat39-8 47 4769
rat45-5 7 262
rat46-5 31 620
rat50-9 14 42
Total 137 13554

4.2.2 Dataset 2: Freiburg

The Freiburg epilepsy dataset [8] consists of patients suffering from med-

ically intractable focal epilepsy at the Epilepsy Center of the University Hos-

pital of Freiburg, in Germany. Recordings from three focal and three extra-

focal intracranial electrodes from subjects undergoing presurgical monitoring

are available. The ECoG signals are sampled at 256Hz and digitized using a

16 bit converter. No filters were applied to the recordings. We analyzed data

from 18 of the 21 available patients due to a lack of seizures for patients 002,

008 and 013 (less than 3 seizures). A total of 450 hours of ECoG recordings

containing 79 seizures were processed for the experiments (see Table 4–2 for

the data distribution).
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Table 4–2: Distribution of ECoG data (Freiburg).
Patient Ictal Segments Inter-ictal Segments

(2 min. each)
pat001 4 720
pat003 5 720
pat004 5 720
pat005 5 720
pat006 3 720
pat007 3 738
pat009 5 716
pat010 4 732
pat011 4 720
pat012 4 743
pat014 4 714
pat015 4 720
pat016 5 720
pat017 5 721
pat018 5 746
pat019 4 731
pat020 5 767
pat021 5 718
Total 79 13086

4.2.3 Dataset 3: CHB-MIT

The CHB-MIT dataset [45], freely available on Physionet [12], contains

EEG recordings from 24 pediatric patients from the Children’s Hospital of

Boston. Non-invasive scalp recordings were made during the monitoring of

patients after their withdrawal from anti-seizure medication in order to char-

acterize their seizures and assess the possibility of surgical intervention. The

signals were sampled at 256Hz with a 16 bit resolution. For some patients, the

set of available electrodes changed between recordings. Therefore we chose

the largest subset of electrodes common to a maximum number of recordings
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for the analysis. On average, 21 channels were used per patient. A total of

824 hours of data containing 185 seizures were analyzed (see Table 4–3 for

the data distribution).

Table 4–3: Distribution of EEG data (CHB-MIT).
Patient Ictal Segments Inter-ictal Segments

(2 min. each)
chb01 7 1017
chb02 3 990
chb03 7 930
chb04 4 4357
chb05 5 1020
chb06 10 1225
chb07 3 1739
chb08 5 450
chb09 4 1746
chb10 7 1080
chb11 3 959
chb12 27 330
chb13 12 750
chb14 8 570
chb15 20 780
chb16 10 390
chb17 3 540
chb18 6 900
chb19 3 810
chb20 8 660
chb21 4 869
chb22 3 840
chb23 7 526
chb24 16 278
Total 185 23756

4.3 Results

The effect of the minimum trigger length on the trade-off between the

detection rate and the false positive rate for all 3 datasets is illustrated in
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Figures 4–3, 4–5 and 4–7. As expected, an increase of the MTL decreases

both the false positive rate and the detection rate. Effectively, increasing the

MTL requires the algorithm to make ictal classifications for a longer period

of time before raising an alarm. By fixing the MTL according to a maximum

acceptable false positive rate, we are able to obtain the corresponding detec-

tion rate of the algorithm. In Figures 4–3, 4–5 and 4–7, the marks correspond

to the smallest MTL such that the median false positive rate is less than 2

per day, or 0.08 per hour.

Figures 4–3, 4–5 and 4–7 also demonstrate the superior performance of

the Extra-Trees, both for the detection and false positive rate, compared to

the logistic regression. We can also compare the effectiveness of the different

feature selection methods.

4.3.1 Dataset 1: MNI

The Extra-Trees using the AUC feature selection and a MTL of 13 are

able to detect 118 out of the 137 seizures, which represents a 86.1% sensitivity.

The corresponding median false positive rate is 0.071 per hour or 1.704 per

day. The average latency of the detections is 24.9 seconds. A per rat analysis

of this configuration is provided in Figure 4–4. A perfect sensitivity was

achieved for rat39-3 and rat45-5, and no false positives occurred for rat45-5

and rat50-9. The AUC feature selection picked 5.96% of the 3354 available

features and the `1-regularized logistic regression picked 2.06% on average.
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4.3.2 Dataset 2: Freiburg

The Extra-Trees using the AUC feature selection and a MTL of 6 are

able to detect 60 out of the 79 seizures, which represents a 75.9% sensitivity.

The corresponding median false positive rate is 0.053 per hour or 1.272 per

day. The average latency of the detections is 15.6 seconds. A per patient

analysis of this configuration is provided in Figure 4–6. A perfect sensitivity

was achieved for 8 of the 18 patients and no false positives occurred for 6 of

them. A low sensitivity (≤ 0.5) was obtained for 4 patients and a high false

positive rate (≥ 0.5) for another. Removing these patients, as the algorithm

performs under our expectations for them, would yield a sensitivity of 89.5%

and an average and median false positive rate per hours of 0.092 and 0.060,

respectively. The AUC feature selection picked 2.82% of the 7089 available

features and the `1-regularized logistic regression picked 1.52% on average.

4.3.3 Dataset 3: CHB-MIT

The Extra-Trees using the AUC feature selection and a MTL of 7 are

able to detect 144 out of the 185 seizures, which represents a 77.8% sensitivity.

The corresponding median false positive rate is 0.076 per hour or 1.824 per

day. The average latency of the detections is 14.2 seconds. A per patient

analysis is provided in Figure 4–8. A perfect sensitivity was achieved for 15 of

the 24 patients and no false positives occurred for 5 of them. A low sensitivity

(≤ 0.5) was obtained for 3 patients and a high false positive rate (≥ 0.5) for

5 of them. Removing these patients, as the algorithm performs under our

expectations for them, would yield a sensitivity of 91.4% and an average and
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median false positive rate per hours of 0.101 and 0.068, respectively. The

AUC feature selection picked 1.17% of the 17061 available features and the

`1-regularized logistic regression picked 1.65% on average.

4.3.4 Feature Selection

Figures 4–9 depicts the average proportion of features selected across pa-

tients by both feature selection methods for the MNI, Freiburg and CHB-MIT

datasets. The horizontal lines present in those figures represent the maxi-

mum proportion achievable assuming 200 features are selected. The AUC

feature selection picks principally FFT and MSC features in all datasets. The

`1-regularized logistic regression selects mostly FFT, MSC and LC features for

the MNI and Freiburg datasets. As for the CHB-MIT dataset, the method

selects mainly FFT and PS features. More than 90% of the features selected

by the AUC method are univariate features, whereas the `1-regularized logis-

tic regression selects under 60% of them. Table 4–4 contains the proportions

of univariate and bivariate features selected by both methods across the three

datasets.

Table 4–4: Average proportions of univariate and bivariate features selected
for both feature selection methods across all three datasets.
Dataset Feature Selection Univariate (%) Bivariate (%)

MNI AUC 100.0 0.0
`1-regularized logistic regression 59.6 40.4

Freiburg AUC 90.8 9.2
`1-regularized logistic regression 52.3 47.7

CHB-MIT AUC 95.7 4.3
`1-regularized logistic regression 35.0 65.0
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Figure 4–6: Freiburg: Performance of Extra-Trees trained on features selected by their AUC, using
a MTL of 6. A per patient analysis is presented on the left and the overall statistics across all patients is
presented to the right. The error bars correspond to the 95% confidence interval.
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Figure 4–8: CHB-MIT: Performance of Extra-Trees trained on features selected by their AUC, using
a MTL of 7. A per patient analysis is presented on the left and the overall statistics across all patients is
presented to the right. The error bars correspond to the 95% confidence interval.
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logistic regression for the MNI, Freiburg and CHB-MIT dataset. The horizontal bars
represent the maximal proportion achievable assuming 200 features are selected.
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CHAPTER 5
Analytical Comparison of Related Work

We show that the toolbox provides state of the art results in seizure

detection by comparing it to other published methods. Table 5–1 contains

relevant information about the statistics of the datasets and the performance

of these algorithms. Note that the comparison of different methods is diffi-

cult as only the work by Shoeb & Guttag was performed on a freely avail-

able dataset (CHB-MIT). We will first consider work developed using ECoG

recordings and finish with algorithms developed for scalp EEG recordings.

Chan et al. [3] used spectral and temporal features combined with a sup-

port vector machine (SVM) in order to localize seizure onset times. They ob-

tained a 89.4% sensitivity with an average of 0.69 false positives per hour us-

ing ECoG recordings. The sensitivity obtained for the MNI dataset (86.1%)

is similar, but our average false positive rate per hour (0.106) is 6.5 times

lower. Reducing the MTL to 5, we obtain a comparable average false positive

rate per hour of 0.651 with a sensitivity of 95.6%. For the Freiburg dataset,

our sensitivity is lower at 75.9%, but our false positive rate per hour is 5.7

times lower at 0.121. We can lower the MTL at 3 to obtain a 81.0% sensi-

tivity with an average false positive rate per hour of 0.425. However, these

results are still worse than the one obtained by Chan according to the sensi-

tivity. The sensitivity of our method could be improved if more seizures were
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available per patient. Indeed, to train their algorithm, 10 seizures were used

per patient, which is much more that the 2 to 4 that were available in our

case (recall that a third of the seizures are always withheld for performance

evaluation in the cross-validation).

Gardner et al. [9] used energy-based features combined with a one-class

SVM for abnormal activity detection in ECoG recordings. They obtained a

97.1% sensitivity with an average false positive rate per hour of 1.56. They

have a higher sensitivity than both the MNI (86.1%) and Freiburg (75.9%)

datasets, but their average false positive rate is 14.7 and 12.9 times higher

in comparison, respectively. We can reduce the MTL for the MNI dataset

to 5 and obtain a similar sensitivity of 95.6%, with an average false positive

rate of 0.651, which is still 2.4 times lower. Even when reducing the MTL for

the Freiburg dataset, we are unable to obtain a similar sensitivity. However,

it is important to note that the 5 patients used in their study all suffered

from temporal lobe epilepsy and that the ECoG recordings were hand se-

lected by experts to insure the absence of artifacts. On the other hand, their

algorithm was trained using only interictal data, making it harder to differ-

entiate between ictal events and abnormal activity that could result from

other processes. The advantage of this methodology is that no seizures need

to be present in the training data; at the cost of a higher false positive rate.

Comparing the techniques developed for scalp EEG recordings, we see

that the performance of our algorithm on the CHB-MIT dataset is on par

with Saab & Gotman, obtaining a sensitivity of 77.8% and an average false
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positive rate per hour of 0.276 compared to their 76% sensitivity and 0.34

average false positive rate [41]. Their algorithm used wavelet decomposition

combined with a Bayesian model for seizure detection. Our sensitivity is

also similar to the one obtained by IdentEvent (79.5), however their average

false positive rate per hour (0.09) is 3.1 times lower [21]. The IdentEvent

algorithm is not patient specific, but it was trained using 141 seizures, taken

from 47 patients, with a total of 3653 hours of data. This is a lot more data

than what we used for each patient present in the CHB-MIT dataset.

Zandi et al. [52] implemented a new feature called the combined seizure

index and monitored its increase using a robust statistic in order to raise

alarms. They obtained a 90.5% sensitivity with an average false positive

rate of 0.51 per hour using scalp EEG recordings [52]. Their sensitivity

is 12.7% higher than ours (77.8%), but our average false positive rate per

hour is 1.85 times lower at 0.276. Their algorithm did not use any machine

learning techniques for seizure detection. However, they optimized the al-

gorithm configuration using their testing data. As an example, they chose

the Daubechies 6 wavelets as they had the best performance after compar-

ing Daubechies, Coiflets and Simlets wavelets at different orders. Moreover,

they show that the algorithm parametrization was close to optimal for their

dataset. To get a better idea of the true sensitivity and false detection rate

of their algorithm, experiments should be ran on a held out dataset.
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Shoeb & Guttag [47] designed a new type of feature vector that ac-

counted for both the spectral and spatial information of a patient’s disor-

der characteristics and used a SVM with a non-linear kernel to detect ictal

events. Their work provides much better results than ours, with a sensitivity

of 96% and a median false positive rate of 0.08 per hour on the CHB-MIT

dataset [47]. The large difference in sensitivity could be partly explained

by the way their algorithms were trained and performance measured. They

performed a full leave-one-out cross-validation for each patient, training on

all the data except for a single one hour long segment in each fold. They

assessed the performance of the algorithm on the left out segment, measuring

the sensitivity and latency when the segment contained ictal events and the

false positive rate when the segment was seizure free. Doing so, the algo-

rithm was able to train on almost all the data (on average 96.8%) available

per patient at each fold, therefore lowering the chances of committing errors.

As a comparison, our algorithm was trained using on average 9.08% of the

available data per patient at each fold.
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CHAPTER 6
Discussion of Results

We now discuss the results presented in Chapter 4 with respect to the

different design decisions made while creating the toolbox. Some ideas of

future work are also presented at the end of the chapter.

6.1 Feature Extraction

From the overall good performance of the toolbox on the majority of the

patients present in the three datasets, we can confirm the effectiveness and

extended coverage of the features implemented with respect to the different

epileptic syndromes and seizures. Indeed, for each patients, the large pool of

feature configurations enabled a subset of features to be useful in identifying

ictal events while disregarding the presence of artifacts, interictal epileptiform

discharges and other brain processes contained in the EEG recordings.

6.2 Feature Selection

The main concern when using such a large set of different features is the

computational complexity, which translates into a prohibitively long feature

extraction phase. We remedied this problem by adding a feature selection

module. We considered a filtering method based on the AUC of individual

features and an embedded method using a `1-regularized logistic regression.

The filtering method proved to be more useful, as the performance of the

Extra-Trees using the selected subsets was superior. This can be explained
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by the fact that the AUC is robust against class imbalances. Effectively, only

5% of the training data consisted of feature vectors computed during ictal

events. The AUC feature selection picked a total of 200 features per fold from

the available set, using only 2.06%, 1.52% and 1.65% of the total number of

features present in the MNI, Freiburg and CHB-MIT datasets, respectively.

This small proportion of features can be extracted in real time from EEG

recordings using a standard personal computer. Another interesting conse-

quence of the use of this method is its small computational footprint when

selecting features during the training phase of the toolbox.

Even though the reduction in features used in the Extra-Trees was sub-

stantial, their performance was not affected for the MNI dataset. The varia-

tions in sensitivity could be explained by the random property of the trees.

For the Freiburg dataset, selecting a subset of features increased the per-

formance of the algorithm by a small margin, discarding irrelevant features.

As for the CHB-MIT dataset, the features selected using the AUC improved

the sensitivity of the trees by 11.8% compared to using all of them. This

major improvement can be explained by two factors: the selected features

are highly sensitive to signal differences present in ictal events, and by choos-

ing a smaller subset of features, we force the trees to explore the separation

boundaries between ictal events and interictal data at a finer level. On the

other hand, the features selected by the `1-regularized logistic regression re-

duce the performance of the trees by 10.2% compared to when all of them
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are used. If we look at the performance of the `1-regularized logistic regres-

sion as a classifier, we observe that it is unable to obtain a false positive

rate per hour under 0.08 with MTLs in {1, 2 . . . , 30}. The blurred electrical

activity recorded from large areas of neurons on the brain surface combined

with the presence of artifacts in scalp EEG recordings may cause the decision

boundary between ictal events and interictal data to be highly non-linear,

making it impossible for the regression to correctly model the data. Indeed,

the maximum sensitivity of the regression over the training data, obtained

with a MTL of 1, is around 80%, whereas for the MNI and Freiburg datasets,

it is close to 98%. This indicates that the regression is unable to capture the

complex differences between the two classes of data. Moreover, most of the

features selected by the regression are irrelevant, as reflected in their AUC

scores. The median AUC across all folds is 0.60, implying that half have a

behaviour close to random. The latter could explain why the Extra-Trees are

unable to correctly separate the two classes using the features selected by the

`1-regularized logistic regression: not enough relevant information about the

epileptic syndrome is present in the selected features.

6.3 Classification

Although the feature selection module has some impact on the perfor-

mance of the toolbox, the choice of classifier is even more important. As

expected, the performance of the Extra-Trees, a high level machine learning

classifier, is much better than the simpler `1-regularized logistic regression.

Indeed, the Extra-Trees obtained good detection rates with much lower false
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positives rates on most of the patients compared to the `1-regularized logistic

regression. It is no surprise, as the trees are able to represent much more

complex classification boundaries than the linear model. It is important to

note that even if the trees are more complex, the time used for their creation

and during classification is still small. Moreover, we would like to highlight

the low data requirements to train the classifier: a small number of hand

labelled seizures (e.g. 3) and a few segments of interictal data.

The higher performance of the Extra-Trees compared to the logistic re-

gression is clearly reflected across both the Freiburg and CHB-MIT datasets.

In both cases, the high amount of false positives generated by the logistic

regression force the need of higher MTL values, lowering the sensitivity of the

algorithm under 60%. The better performance of the `1-regularized logistic

regression on the MNI dataset could be explained by the larger amount of

seizures available during training (median of 12.5). As a comparison, the me-

dian number of seizures present in the training folds of the Freiburg dataset

is 3, and it is 4 for the CHB-MIT dataset. Also, we suspect the epileptic

syndrome generated in the rats to be simpler than the ones existing in human

patients. When using human data, the more complex brain processes and

the lower amount of available ictal events during the training phase could

be responsible for the lower performance of the Extra-Trees compared to the

one obtained for rats.

Finally, we would like to highlight the necessity of using more complex

classification models, such as Extra-Trees, in order to obtain good detection
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and low false positive rates. Indeed, only the Extra-Trees were able to pro-

vide good results on the majority of the patients. The `1-regularized logistic

regression had high positive rates, which induced low detection rates. It is

important to note that a single feature combined with a threshold is equiva-

lent to training a logistic regression using only this feature. Therefore, since

the `1-regularized logistic regression, using more than one feature, fell short

on performance, the simple feature/threshold model would be even worse.

6.4 Minimum Trigger Length

As with most classifiers, we cannot specify a trade-off between sensitiv-

ity and false positive rate directly in the training of the Extra-Trees. The

introduction of the MTL parameter enables us to control this trade-off to

some extent, by choosing an acceptable false positive rate for the task at

hand. Tasks demanding lower false positive rates can use a higher MTL,

whereas tasks that can tolerate a higher false positive rate can lower the

MTL, improving the sensitivity.

6.5 Default Toolbox Parameters

An interesting characteristic of the toolbox is its default set of param-

eters. Indeed, the default parametrization of the feature extraction, fea-

ture selection and classifier training was used on all the patients present in

the three datasets, with good results. This essentially makes the algorithm

"parameter-free" if desired, while enabling the toolbox to be used under dif-

ferent environments, such as seizure prediction, by tweaking the parameters

if need be.
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The principal set of parameters that would require modifications reside

in the feature extraction phase. They could be tailored to capture relevant

information occurring in the pre-ictal phases of the EEG recordings. The

Extra-Trees could be trained to detect the pre-ictal phases, therefore pre-

dicting the occurrence of seizures. In this study, about half of the AUC

scores of the computed features are under 0.60. We could speed up the ini-

tial feature extraction phase by reducing the range of features extracted from

the data such that most of them have a score above this threshold. In order

to do so, we would need to verify if a subset of features performs constantly

poorly across all the patients.

The parameters of the Extra-Trees could also be modified. Recall that

increasing the value of M , the number of trees present in the ensemble, will

only increase the performance of the classifier as it will reduce the variance

error. The value of nmin = 3 provided trees that were deep enough to cap-

ture the complex differences between ictal events and interictal data. The

default parameter of K =
√
|F | provided enough randomization in the trees,

achieving good results when used in an ensemble.

6.6 Modularity

The separation of the toolbox into distinct modules that can be used sep-

arately or jointly facilitates the development of new algorithms for seizure

detection or prediction. As an example, the output of the feature extrac-

tion/selection modules can readily be used by other machine learning tool-

boxes such as Weka [15].
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6.7 Future Work

It would be interesting to see if any correlations exists between the differ-

ent types of epileptic disorders and seizures, and the features used to detect

ictal events in the EEG recordings. If such relations exist, they could help

elucidate the potential mechanisms responsible for the seizures. Moreover,

these correlations could be detected in a patient automatically in order to

refine the parameters of the features extracted from the EEG recording, im-

proving the quality of the information retrieved.

Also, a long-term online in vivo study would help validate the perfor-

mance of the toolbox in real world settings. Indeed, such a study would

capture other properties of the disorders like their evolution over time, the

different manifestations of seizures, etc.
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CHAPTER 7
Conclusion

We presented a toolbox that automates the creation of efficient person-

alized seizure detection algorithms that operate in real-time. Its default set

of parameters provide a good performance for the majority of the patients,

eliminating the necessity to adjust them on a per patient basis. The data

requirements of the toolbox are modest, requiring a small number of seizures

(e.g. 3) and a few EEG segments containing interictal data.

The toolbox is capable of extracting relevant information about a pa-

tient’s epileptic syndrome and seizures from the complex EEG recordings

by calculating a large number of features and then selecting a small subset

representative of the patient’s condition. It was shown to be robust against

the class imbalances present between ictal events and interictal data. Also,

the computational complexity of each module is low, enabling the toolbox to

process large amounts of data.

To our knowledge, this is the first toolbox/algorithm to be analyzed

using a sound methodology, such as cross-validation, on multiple freely avail-

able datasets. We want to highlight the importance of testing new tech-

niques on publicly available datasets in order to ease the comparison of

methods for seizure detection and prediction. For this reason, the MNI
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dataset, containing ECoG recordings of rats, is made publicly available at

www.cs.mcgill.ca/~gsauln/files/mni_dataset/.

The existence of such a toolbox could alleviate the task of annotating

EEG recordings during the diagnostic of new patients. Moreover, it could

help the analysis of large EEG databases. Nursing care facilities could also

benefit from such a system, alerting relevant authorities when a patient suf-

fers from a seizure. In the long run, good detection algorithms can help

design early seizure detection as well as seizure prediction algorithms. From

these, new treatments could be developed in order to prevent the occurrence

of seizures or cause them to abort early.

On a side note, it is important to mention that the toolbox can be used

on a wide variety of time-series signals, such as accelerometer data, as was

performed by Moghaddam et al. [31]. As of now, the toolbox contains few

classification algorithms: linear regressions and Extra-Trees. We would like

to add classifiers such as support vector machines.

Finally, we release the toolbox for public use under the Apache License,

Version 2.0, at www.cs.mcgill.ca/~gsauln/ and we encourage others to do

the same in order to improve the knowledge on the disorder as well as reduce

the overhead of creating derived algorithms.
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