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ABSTRACT

Abstract

A haptic device is usually a controlled mechanical system. By using such a device a

human operator can interact with a virtual environment. In kinesthetic haptic de-

vices, the virtual interaction forces can be determined via the virtual environment

model and generated via the actuation of the device. Main problems in haptics come

from non-idealities stemming from virtual force representations and the instrumen-

tation of the haptic device. In case of impedance-type haptic devices in applications

where rendering a stiff virtual environment is required, these non-idealities can lead

to undesired dynamic behaviour and instability problems. The dynamic behaviour

of the haptic device can significantly influence the quality and nature of haptic ren-

dering. This dynamics primarily depends on the mechanical properties of the device.

Therefore, it is important to understand the effect of the mechanical system properties

on haptic dynamics and the virtual contact behaviour.

In this thesis, we outline a systematic framework for the development of para-

metric mechanical models for the analysis of haptic systems. In this framework, we

introduce and discuss models starting from general principles of mechanics applied to

haptic devices. Such devices can be seen as articulated mechanical systems possessing

several active and passive degrees of freedom. This framework also makes it possible

to generate simplified models that allow for analytical investigation. The effective pa-

rameters of these simplified models are directly derived and related to the mechanical

system parameters of the haptic device and expressed as functions of those parame-

ters. The considerations and effects of structural flexibility are also discussed as an
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important element of the framework. Structural flexibility may seriously limit haptic

performance and impedance range, and can lead to high-frequency oscillations.

Rendering a virtual wall is used as a sample case to illustrate the concepts. For

this case and using the proposed models, closed-form stability conditions are devel-

oped in this thesis for a broad range of virtual stiffness and damping values, and the

results are compared with those reported in the haptic literature. The results are

validated and illustrated experimentally using a five-bar linkage based haptic device.

In this analysis, effects of human operator on dynamic behaviour of haptic systems

are also investigated.

For further analysis, closed-loop performance measures are developed in terms of

the mechanical parameters of the haptic system. These indices represent the range

of renderable virtual environment parameters, and the fidelity of the virtual inter-

action forces. The parametric performance measures are compared with those of

traditionally used in design of robotic mechanisms and their properties are discussed

for application in haptics.
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RÉSUMÉ

Résumé

Un dispositif haptique est généralement un système mécanique contrôlé. En utilisant

un tel dispositif, l’opérateur humain peut entrer en interaction avec un environnement

virtuel. Dans les dispositifs haptiques kinesthésique, les forces d’interactions virtuelles

peuvent être déterminées par l’intermédiaire d’un modèle d’environnement virtuel et

générées via l’actionnement du dispositif. Les principaux problèmes des systèmes

haptiques sont des non-idéalités provenant des représentations de la force virtuelle

et l’instrumentation du dispositif haptique. Dans des dispositifs haptique de type

impédance et dans les applications où le rendu d’un environnement virtuel rigide

est nécessaire, ces non-idéalités peuvent provoquer un comportement dynamique et

des problèmes indésirables d’instabilité. Le comportement dynamique d’un dispositif

haptique peut avoir une influence significative sur la qualité et la nature du rendu

haptique. Cette dynamique dépend principalement des propriétés mécaniques du

dispositif. Par conséquent, il est important de comprendre les effets des propriétés

mécaniques du système sur la dynamique du dispositif haptique et sur le comporte-

ment du contact virtuel.

Dans cette thèse, nous présentons un cadre de travail systématique pour l’élaboration

de modèles mécaniques paramétriques pour l’analyse des systèmes haptiques. Dans

ce cadre, nous présentons et discutons les modèles en débutant par la présentation des

principes généraux de la mécanique appliquée à des dispositifs haptiques. De tels dis-

positifs peuvent être considérés comme des systèmes mécaniques articulés possédant

plusieurs degrés de liberté actifs et passifs. Ce cadre de travail permet également de
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RÉSUMÉ

générer des modèles simplifiés qui permettent des études analytiques. Les paramètres

effectifs de ces modèles simplifiés sont directement dérivés et liés aux paramètres du

système mécanique du dispositif haptique et exprimés en fonction de ces paramètres.

Les effets de la flexibilité structurelle sont également discutés comme un élément

important de ce cadre. La flexibilité structurelle peut sérieusement limiter la perfor-

mance haptique et la gamme d’impédance, et peut aussi entraner des oscillations de

hautes fréquences.

Le rendu d’un mur virtuel est utilisé comme un exemple pour illustrer les concepts.

Dans cette thèse, les modèles proposés sont utilisés pour déterminer les conditions

de stabilité en forme fermée pour ce cas pour une vaste gamme de rigidité virtuelle

et de valeurs d’amortissement. Par la suite les résultats sont comparés à ceux rap-

portés dans la littérature. Les résultats sont validés et illustrés expérimentalement

en utilisant une liaison mécanique à cinq barres à base de dispositif haptique. Dans

cette analyse, les effets de l’opérateur humain sur le comportement dynamique des

systèmes haptiques sont également étudiés.

Pour une analyse plus en profondeur, des mesures de performance en boucle

fermée sont élaborées en fonction des paramètres mécaniques du système haptique.

Ces indices représentent la gamme des paramètres d’environnement virtuel réalisables,

et la fidélité des forces d’interaction virtuelle. Les mesures de rendement paramétriques

sont comparées à celles traditionnellement utilisées dans la conception de mécanismes

robotiques et leurs propriétés sont discutées dans les applications haptiques.
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CLAIMS OF ORIGINALITY

Claims of Originality

• Development of parametric mechanical models as a tool for the analysis

and performance evaluation of the haptic systems.

• Consideration of structural flexibility and its effect on virtual contact dy-

namic behaviour.

• Validation of the proposed models via experimental analysis, and investi-

gating the applicability of these models in different operational conditions.

• Analysis of the effects of the human operator on the dynamic behaviour of

haptic systems.

• Analysis of the effects of time-delay and filtering on the dynamic behaviour

of haptic systems.

• Development of closed-form stability conditions for a broad range of virtual

environment parameters as functions of mechanical and structural proper-

ties of the system.

• Development of quantitative performance measures to characterize the ef-

fects of system parameters on the haptic stability and performance.
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1.1 LITERATURE REVIEW

CHAPTER 1

Introduction

1.1 Literature Review

Haptics or haptic technology refers to the technology of transmitting the sense

of touch from a remote or virtual environment by applying force or vibration to the

human user. Haptic technology has many areas of application. One of the main

applications is in virtual reality systems, adding the sense of touch to previously

visual-only technologies. Another major application of haptics is in medical simula-

tion for training in minimally invasive procedures such as laparoscopy (Panait et al.,

2009) and interventional radiology (Ilic et al., 2005) as well as for performing remote

surgery.

(a) Haptic Wand (b) Phantom Omni (c) Phantom Premium

Figure 1.1. Impedance-type haptic interfaces
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CHAPTER 1. INTRODUCTION

A haptic interface or haptic device is usually a controlled mechanical system by

which the communication between the human user and the remote or simulated vir-

tual environment is possible. A haptic interface usually includes a force feedback

device using which a human operator can experience tactile or kinesthetic sensation.

Tactile feedback refers to the sensation of deformations of the skin (Okamura et al.,

1998), allowing users to feel the texture of surfaces. A popular method to convey

tactile sensation is by applying vibrations feedback (Minsky and Lederman, 1996).

Kinesthetic feedback on the other hand directly transmits forces to the human op-

erator and refers to the internal sensing of forces and displacements inside muscles,

tendons, and joints (Siciliano and Khatib, 2008). Kinesthetic feedback can be pro-

vided via two classes of haptic devices, admittance-type or impedance-type interfaces.

An admittance-type interface generates motion in response to the force input from

the human operator, while an impedance-type device provides force feedback to the

user in relation to the imposed motion. Admittance-type interfaces are generally

heavy, stiff and strong devices, such as industrial robots, which can render rigid con-

tact with a virtual environment. Example of these devices can be a high-performance

haptic device called HapticMaster (van der Linde et al., 2002). On the other hand,

impedance-type haptic interfaces are usually back-drivable and have low inertia and

friction. Samples of the commonly used impedance-type haptic devices are shown

in Fig. 1.1, which includes Phantom Premium (Massie and Salisbury, 1994), Phan-

tom Omni and Haptic Wand. This class of interfaces are dominant in various haptic

applications for variety of reasons, such as cost.

1.1.1 Performance Analysis. An interface device in general allows a hu-

man user to interact with computer or other electronic information system. Haptic

interfaces have a distinguishing feature among other interface devices by being bi-

directional in terms of information flow, while other interfaces, such as joysticks, are

uni-directional. Haptic interfaces track the input of the human user and provide

force feedback to the user accordingly. Due to this difference, performance evaluation

2
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and comparison of these devices become more difficult and remains an active area of

research.

There are several performance requirements for haptic applications which in-

dicate the quality of haptic rendering of virtual environments. Impedance range,

transparency and fidelity are among requirements that are usually referred to in the

literature. Impedance range refers to the capability of a haptic interface of render-

ing a range of virtual impedances (Colgate and Brown, 1994), and transparency is

associated with the quality of the transmitted feedback to the human user (Moix,

2005; McJunkin, 2007). An ideal transparent haptic interface is a device in which

the transmitted feedback force from a virtual environment to an operator is not influ-

enced by the physics of the device. Fidelity is another important haptic requirement,

which is associated with the closeness of the sense of the simulated environment to

the corresponding physical environment intended to be rendered.

In admittance-type haptic devices, the impedance range is limited by the struc-

tural properties of the device only, and they are capable of rendering high impedance

(stiff) contact with virtual environments. However, due to their typically high inertia,

achieving transparency is a challenging control task. Compared to admittance-type

interfaces, impedance-type devices can provide good transparency, but serious limi-

tation can arise in their performance when rendering a rigid contact with a virtual

environment.

Several performance measures are listed in (Hayward and Astley, 1996) in rela-

tion to haptic applications. This includes traditional robotics performance measures,

such as dexterity and manipulability measurements, as well as a set of more specific

performance measures, such as peak force and acceleration. Generally the quantita-

tive performance measures in the literature can be categorized in three groups. The

first group considers the “uncontrolled system”, which refers to pure mechanism and

structural design. This group includes traditional robotic performance indices such

as indices for dexterity, workspace, singularity, or structural properties of the device,

which are discussed in (Hayward et al., 1994). An example of such performance

3
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measures in haptic applications can be the isotropy index which corresponds to the

entire workspace proposed in (Stocco et al., 1998), which has been used for the kine-

matic design of a haptic device for optimum performance in terms of semidextrous

workspaces and static force capabilities (Stocco, 2000).

The second group includes the evaluation of the “powered system”. This refers

to actuation and sensing capabilities of the system. An example of this group is

the a performance measure for force optimization of commercially available electric

motors for haptic applications proposed in (Salcudean and Stocco, 2000). The third

category includes more specific measures evaluating the “closed-loop” performance

of haptic systems, incorporating both the effects of the human operator and the

virtual environment. These measurements include the measurement of impedance

range (Colgate and Brown, 1994; Weir et al., 2008), which is closely related to the

stability properties of a given haptic interface.

Most of the proposed work on performance analysis of haptic devices in the lit-

erature consists of the evaluation of particular haptic devices (Faulring et al., 2006;

Gassert et al., 2006; Peer and Buss, 2008; Samur et al., 2011) , or relates to experimen-

tal performance evaluation (Ellis et al., 1996; Ueberle and Buss, 2002; Ueberle, 2006;

Salisbury et al., 2011). However, development of closed-loop performance measures

as functions of system parameters can be advantageous in haptic system analysis.

1.1.2 An Important Problem in Haptics. A typical representation of hap-

tic interfacing using an impedance-type kinesthetic haptic device is shown in Fig. 1.2.

As illustrated in this figure, human operator is in interaction with a virtual environ-

ment via manipulating a haptic device. Such haptic devices are generally articulated

mechanical systems. These can be modelled as multibody systems, and the physical

system model can also be expanded to include the human operator.

Main problems in haptics come from the interaction force between the human user

and the virtual environment. If we replaced the virtual environment with its physical

counterpart then these interaction forces would normally be developed via physical

4
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Figure 1.2. Schematic of the haptic interaction

contact and the model of the system would take the usual form of a constrained me-

chanical system. However, in a haptic multibody system the virtual interaction forces

are determined via the virtual environment model and generated via the actuation

of the haptic device. For instance, in case of using impedance-type haptic devices

equipped with encoders for position measurement, the virtual environment reactions

are generated via rendering virtual impedances. This is in principle equivalent with

the penalty method to represent the effects of interaction forces.

Key problems in such haptic multibody systems stem from non-idealities in the

system. These non-idealities are included in the virtual force representations, such as

time discretization; as well as the non-ideal effects coming from the instrumentation of

the haptic device, such as quantization and the lack of explicit velocity measurement

(Janabi-Sharifi et al., 2000; Diolaiti et al., 2006). These are manifested in passivity

violations (Colgate and Schenkel, 1997; Adams and Hannaford, 1999) that can lead

to undesired dynamic behaviour and instability problems, particularly in impedance-

type haptic devices interacting with virtual environments with high impedance. This

has been a core problem in haptics in general.

This problem has been looked at from several different aspects. A main line of

approach intends to resolve the problems purely at the control, i.e., software, level

to restore passivity and increase the impedance range via the introduction of virtual

dissipative elements. For example, time-domain passivity control (Hannaford and
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Ryu, 2002) is a main example of this group of approaches. For the practical imple-

mentation of such control algorithms, velocity estimation from discrete and quantized

position data is the bottleneck point (Janabi-Sharifi et al., 2000). Another group of

approaches introduce physical dissipative elements to deal with the unwanted dynam-

ics in haptic rendering. These include for example, increasing the physical dissipation

via frequency dependent electrical damping (Mehling et al., 2005), or programmable

physical damping realized by electromagnetic brakes (Gosline et al., 2006; Tognetti

and Book, 2006).

Another approach, which is a main topic in this thesis, is to investigate how

the dynamics of the haptic mechanical system influences the core virtual contact

dynamics, and implement changes via mechanical design. The dynamic behaviour of

haptic devices can fundamentally influence the quality of the feeling of the virtual

contact and generally the safety and usability of haptic rendering. By analyzing

these effects, an optimum design may be proposed for a device before it is built for a

desired task. In addition, further parametric analysis can make it possible to assess

the importance of mechanical and control parameters.

1.1.3 Dynamic Analysis of Haptic Systems. In most haptic system anal-

yses, the physical part of the haptic device is modelled as a single degree of freedom

(DoF) mass-damper system with viscous damping. Passivity analysis of such models

leads to the determination of stability regions, ensuring that energy generated due to

the digital realization of the virtual environment is always dominated by the intrinsic

dissipation of the device (Colgate and Schenkel, 1997). However, it is shown in (Di-

olaiti et al., 2006) that in practice most commercially available haptic devices have a

larger impedance range than that of dictated by the passivity condition. It was also

observed that the dissipation in these devices is dominated by Coulomb friction at low

velocities. To take this into consideration, an energetic dissipativity condition is given

in (Diolaiti et al., 2006), which can take into consideration both damping and friction.

However, this condition limits the maximum (initial) velocity of the system. This is a
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strong limitation for haptic applications, since the initial velocity depends on the in-

teraction with the user. Another group of energy-based approaches are motivated by

electrical network models, which include a two-port network representation of haptic

devices proposed in (Adams and Hannaford, 1999, 2002; Tognetti, 2005). This repre-

sentation makes it possible to directly apply Raisbeck’s passivity criterion and/or the

less conservative Llewellyn unconditional stability criterion (Haykin, 1970) to hap-

tic models that describe interactions corresponding to a single direction. Raisbeck’s

passivity condition corresponds to the positive definiteness of the imittance matrix

defined by the relation between the input/output power variables. These variables

are the forces and velocities applied by the human operator and transmitted from the

simulated virtual environment. An advantage of the two-port network representation

is that it provides passivity or unconditional stability based control design for a larger

class of systems (including flexible, and multi-DoF models) compared to the single-

DoF point-mass model investigated in (Colgate and Schenkel, 1997; Diolaiti et al.,

2006). An extension to multiple-port networks is provided in (Mendez and Tavakoli,

2010). By using the two-port network representation of haptic interactions, the sta-

bility of the system can be guaranteed for any level of passive human operator and

virtual environment impedance by the Llewellyn’s stability criterion (Adams et al.,

1998). This is achieved by the addition of a virtual coupling network with sufficiently

low virtual stiffness and damping.

Internal dissipation and human models are uncertain elements in the analysis of

haptic rendering. The practical implementation of energy-based approaches is in-

dependent of the uncertain human impedance and the mechanical properties of the

system (Hannaford and Ryu, 2002). This is beneficial because the results do not rely

on the uncertain system parameters, but the drawback is that they cannot reflect the

effect of mechanical design on the virtual contact dynamics. Also these approaches

typically result in conservative stability conditions (Hulin et al., 2008). This conserva-

tiveness can cause performance limitations, when high impedance virtual environment

is required.

7
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The focus of this thesis is on impedance-type haptic devices in contact with

stiff virtual environments, where stability of virtual contact dynamics is of great

importance. The closed-loop performance of haptic interfaces, which includes the

effect of digital control realization, can be quantified via stability conditions (Hayward

and Astley, 1996).

The stability properties of the single-DoF point-mass model have been analyzed

from various aspects. A point-mass model connected to a viscous damping element is

analyzed in (Gil et al., 2004), and a linearized stability condition is proposed which is

valid for low virtual damping values. This condition was earlier achieved empirically

in (Minsky et al., 1990) as a stability condition for virtual wall implementation. A

mass-spring-damper model of a haptic device is analyzed numerically in (Colgate

and Schenkel, 1997), where the spring element was used to model the worst case

contact with the human operator. The physical stiffness was selected such that the

undamped natural frequency matched the Nyquist frequency and the corresponding

stable domain is termed as the domain of spring stability. The same model with

arbitrary stiffness is used in (Hulin et al., 2008) for further analysis of the human

operator effects, and a comparison of the results with passivity and spring stability

is provided.

In practice, instability may occur before reaching the stability limits obtained

by the simple point-mass model. This is because of the simple representation of

the haptic interaction (Hayward and Astley, 1996). Methods for the analysis and

performance evaluation of multi-DoF haptic systems and related models represent an

open area of research.

1.1.4 Digital Realization. In dynamic analysis of haptic systems, digital

realization of virtual environment is similar to mechanical system with digital con-

troller. In case of high sampling frequency and where the end-effector is in contact

with soft environments, low effective stiffness and high effective mass, the virtual in-

teraction can be approximated as continuous. If the environment is very stiff, then

the digital effects will have significant effect.
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Dynamics of a digitally controlled system can be very different from that of

an analog system (Kuo, 1981). For instant, stability of a single-DoF mechanical

system with a continuous time PD controller, where P and D correspond to the

proportional and derivative control gains respectively, results in an asymptotically

stable behaviour for any P > 0 and D > 0 values. However, a digital PD controller

and the same mechanical system, shows a completely different behaviour. In this

case, the structure of the stability domain in the parameter space is more complex,

which requires more detailed analysis. The stability and performance characteristics

of a digital PD controller can be determined by the intricate combinations of the

control gains, the sampling frequency and the mechanical parameters of the system

(Stepan et al., 1990; Stepan, 2001).

The digital PD controller in motion control in robotics is mathematically similar

to a haptic device in contact with a commonly used Kelvin-Voigt model based virtual

wall. However, there is a fundamental difference. In motion control, the gains can be

tuned to obtain a required performance, while in haptics they carry physical meaning,

where P and D serve as stiffness and damping properties of a rendered virtual wall.

Another important difference is the presence of human in haptic systems. In such

a case, for stable rendering of a specific virtual wall, i.e., fixed values of P and D,

tuning of the mechanical design properties can be of interest.

1.1.5 Structural Flexibility. Beside the inertial properties of a haptic device

and the impedance of the human operator (Colgate and Schenkel, 1997; Hulin et al.,

2008), structural flexibility can play an important role in the dynamic behaviour. In

impedance-type haptic devices the minimization of inertia, and consequently the ef-

fective mass in the rendered direction, can lead to a design where structural flexibility

becomes an essential element to consider. Structural flexibility can generally appear

in two different ways in robotic and haptic systems: in a localized form such as the

flexibility originating from the mechanical elements of the joints, and as distributed

flexibility if the structural properties of the main links need to be considered. Of-

ten, localized joint flexibility is dominant. For example, cable-driven, capstan-based

9



CHAPTER 1. INTRODUCTION

joints are quite common in haptic applications. Such design solutions have several

advantages, e.g., higher transmission ratio and back-drivability. On the other hand,

such joints can also introduce significant, localized sources of structural flexibility.

In general, flexibility is rarely taken into consideration in haptic system analysis

and design. A possible explanation for this is that in the range of relatively low vir-

tual impedances, permitted by conservative stability results, the structural vibration

modes cannot be excited during haptic interactions. Secondly, the applied low-pass

filters may suppress not just the measurement noise, but also the high-frequency

structural vibrations. This will also be further discussed.

There are few papers that consider the effect of structural flexibility in haptics,

e.g., (Adams et al., 1998) and (Gil and Diaz, 2010). In these approaches, lumped-

parameter models have been employed, where the parameter identification is based on

the measured frequency response of the system. In (Adams et al., 1998), a two-port

network representation is used to investigate the behaviour of haptic systems with

structural flexibility. In (Gil and Diaz, 2010) the influence of structural vibration

modes on the stability of different haptic devices, PHANToM (Massie and Salisbury,

1994) and LHIfAM (Borro et al., 2004), is investigated, where the effects of a single

actuator was considered. The analysis revealed that for some devices, like PHAN-

ToM, the worst-case scenario could be effectively described by the simple rigid body

model of the device, while, for other devices, like LHIfAM, effects of the structural

vibration modes has to be taken into account. For characterizing the importance of

structural vibration modes, a practical measure of dynamic response of haptic devices

is proposed in (Moreyra and Hannaford, 1998).

The numerical and experimental analysis and identification reported in these

studies give useful results but they do not provide parametric models that would

directly establish the connection between the observed dynamic behaviour and the

mechanical system properties.
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In addition to these, indices quantifying free-motion and hard-contact trans-

parency are presented in (Tavakoli and Howe, 2007, 2008), where the effect of flexi-

bility in teleoperation systems has been analysed. This analysis relies on continuous-

time system representations. The digital realization is not considered and the detailed

stability analysis is left for future work.

1.1.6 Mechanical Design of Haptic Devices. As discussed earlier in this

chapter, high impedance range, transparency, and fidelity are considered as funda-

mental requirements in haptic applications. In addition, kinematic and dynamic

considerations such as dexterity, and uniform kinematic/dynamic response in the

workspace are important in mechanical design of such robotic systems. These re-

quirements and the corresponding design considerations in haptic applications are

discussed in (Hayward et al., 1994; Ellis et al., 1996).

Design optimization of haptic devices in the literature are mostly implemented

on pre-selected mechanisms. The selection of these mechanism are usually based on

factors such as low inertia, high stiffness, no singularity and backlash, and backdriv-

ability. For example, parallel mechanisms are commonly used in haptic devices with

base-mounted motors for high structural stiffness and low inertia. In addition, direct-

driven mechanisms are usually selected to eliminate transmission problems such as

friction and non-backdrivability.

Kinematic and inertia properties of several manipulators are optimized in the

literature considering different objective functions. The architecture of a parallel

redundant mechanism is optimized from a kinematical viewpoint in (Kurtz and Hay-

ward, 1992). In this work, the joint redundancy is proposed for minimization of the

device dynamics-induced parasitic torques/forces and friction. This is implemented

by considering the condition number of the Jacobian matrix as an indicator of the

amplification factor of relative errors from joints to the reference point. Joint redun-

dancy is also considered in (M. Ueberle and Buss, 2004). In this approach, dexterity,

kinematic uniformity, and actuator forces have been considered as potential objective

functions for mechanical design of a 10 actuated-DoF haptic device.
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Dexterity, manipulability, force capability, inertia, and response uniformity were

considered in design optimizations in several haptic devices in the literature. A two-

DOF five-bar linkage based haptic device is optimized in (Hayward et al., 1994) con-

sidering the dexterity and manipulability of the interface as objective functions. The

kinematic properties of this mechanism are optimized such that the response remains

as uniform as possible in the workspace. Dexterity and minimization of the apparent

inertia were also the objectives in the design of a five-DOF haptic interface in (Vlachos

et al., 2004), while satisfying several kinematic constraints was required. Dimensions

of a mechanism are optimized in (A. Frisoli and Salsedo, 2007) via multi-objective

optimization of several performance measures, such as minimum required torque at

actuators and maximum reachable workspace, with the simultaneous fulfillment of

design constraints, such as satisfactory mechanical stiffness at the end effector and

the global kinematic isotropy over the workspace. Kinematic isotropy, workspace size,

endpoint force, and position accuracy were the objectives in the optimization process

in (S. Li and Bergamasco, 2010). A 4DoF mechanism is optimized in (Millman and

Colgate, 1991) for haptic applications which requires minimum continuous stall mo-

tor torques. In (Gil et al., 2012) mechanical properties of a mechanism have been

optimized in order to guarantee a proper workspace, manipulability, force capability,

and inertia for the device.

In (Stocco et al., 1998) a new global, configuration independent, isotropy index

and a discrete global optimization algorithm are presented, where discrete refers to

sampling the area in the workspace. This algorithm is used in (Salcudean and Stocco,

2000) for developing force isotropy optimization algorithm which involves the maxi-

mization of a workspace inclusive isotropy measure defined as a function of the haptic

interface mechanical parameters. These algorithms are used in (Stocco, 2000) where

performance of three 6-DOF robots are compared in terms of their semidextrous

workspace and static force capabilities.
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A design optimization methodology for haptic applications is developed in (Vla-

chos and Papadopoulos, 2006) focusing on endpoint fidelity. The objective is to

minimize the parasitic terms in the force/torque feedback to the human user.

As can be seen, most of the work on design of haptic devices in the literature

focuses on kinematics of the selected mechanism. However, in addition to kinematic

related performance measures, considering the closed-loop performance in the design

of haptic devices is essential. Effects of mechanical and electrical properties of several

haptic devices on closed-loop performance are analyzed experimentally in (Salisbury

et al., 2011). It is shown that haptic devices produce perceptible artifacts when

rendering vibrations near human detection thresholds. By experimentally finding the

source of the deficiencies, it is shown that minor modifications to the haptic hardware

were sufficient to make these devices well-suited for haptic applications.

In another work, via an energy-based approach, effects of mechanical and struc-

tural properties of a teleoperation system are analyzed in design optimization in

(Willaert et al., 2010). The analysis in this work demonstrates that there is a trade-

off between requirement of low inertia and high stiffness slave robots.

However, these approaches focus on optimization and performance analysis of

specific devices and do not provide general guidelines for mechanical design of haptic

systems.

1.2 Motivations

Dynamics of haptic systems can significantly influence the quality and nature of

haptic rendering. This dynamics primary depends on the mechanical properties of

the physical device and the realization of the virtual environment to be rendered.

However, effects of mechanical system properties, compared to other factors such as

control realization, are overlooked in the current haptic system analysis literature.

This is mostly because the transparency of the interface has been over emphasized

such that the inertia is minimized down to a level where the dynamic parameters

seem to be less important. Another reason can be the incorporation of low pass filters
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to suppress the measurement noise and the high frequency structural vibrations of

the interface for fidelity improvement. This can limit the performance to a level

where dynamic and structural properties are no more essential to be considered.

It is also shown that energy based approaches used in the current literature limits

the renderable environment to low virtual impedances. These conservative stability

results limit the performance such that dynamic and structural properties seem to be

unimportant. This has affected the mechanical design of the current haptic devices.

However, in applications where rendering high impedance virtual environments

is of interest, development of a framework for parametric analysis of overall haptic

system behaviour is necessary to assess the importance of mechanical and control

parameters of the system.

1.3 Objectives

The main goal of this work is to develop tools to characterize the effects of mechan-

ical system properties on virtual contact dynamics behaviour. To this end, parametric

mechanical models will be developed for the analysis and performance evaluation of

multi-DoF haptic systems. These models should incorporate and reflect the influence

of overall system properties in a parametric form, yet being simplified to be used in

analytical investigations. Representativeness of the proposed models will be investi-

gated in practical applications, when a human operator is interacting with the device.

Effects of structural flexibility and filtering on dynamic behaviour of haptic systems

will be discussed via incorporating these models.

Furthermore, parametric dynamic analysis will be implemented with the goal

to quantify overall performance of haptic systems. As result of this analysis, rep-

resentative performance indices will be developed which quantify impedance range

and fidelity of haptic interfaces including mechanical properties of the system. The

resulting performance indices will be compared to those which has commonly been
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used in the design of such devices. This can lead to the development of tools for me-

chanical design optimization of haptic interfaces considering the closed-loop dynamic

behaviour of the system.

1.4 Thesis Outline

In this thesis, a modelling framework is developed in Chapter 2, using the general

multibody dynamics. This can lead to simplified models, which reflect the influence

of the overall system properties. The proposed models are validated experimentally

and numerically in Chapter 3 for practical applications. Effects of human operator

and the representativeness of the developed models are also studied in that chapter.

Using these models, more detailed dynamic analyses are carried out in Chapter 4

which results in closed-form stability conditions as functions of the mechanical prop-

erties of the system. Usability of the proposed stability conditions are discussed for

different applications. In Chapter 5, parametric performance indices are developed

for quantifying impedance range for stable virtual environments and fidelity of the

virtual interaction force. These indices are compared with the usual performance

indices used in haptic system design in the literature. Finally, the thesis concludes in

Chapter 6 by summarizing the most important elements of the presented work.
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CHAPTER 2

Dynamics Formulation and Modelling

The dynamics behaviour of haptic interfacing can significantly depend on the me-

chanical properties of the haptic device. Any haptic device comes with specific elec-

trical and mechanical properties. The relationship between these properties and the

performance requirements is of utmost importance. To investigate theses effects,

representative dynamic models are essential. For this purpose, we require to develop

dynamic models with effective parameters directly be related to mechanical properties

in closed-form. The goal in this chapter is to outline dynamic formulations starting

from general multibody dynamics and via systematic derivation, develop parametric

models for haptic system analysis. The method we introduce here is also applicable

in several other areas of mechanical systems.

2.1 Dynamics Modelling

A haptic system generally includes the haptic device, the human operator, and

the virtual environment. These three main components contribute to the dynamics.

The haptic device can be modelled as a multibody system. Considering the human

operator as articulated mechanical systems makes it possible to model the operator’s

behaviour as another multibody system. This is shown in Fig. 2.1, where three links

were used as an example to illustrate multibody systems. The multibody dynamics

of the human operator and the device can be connected by modelling the grasp of
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Figure 2.1. Multibody haptic system

the device via the operator. This forms a more general multibody dynamic model

where the model of the human can add more degrees of freedom to the overall system.

As an example if the effect of human operator is modelled via a mass-spring-damper

element, for the case of a rigid (firm) grasp, no additional coordinate is needed to

represent the human model. However, in the case of a flexible grasp, the model of the

human can be connected via another spring-damper element to the device end-point.

This model adds one degree of freedom to the multi-DoF mechanical system of the

device.

The configuration of a multi-DoF haptic mechanical system can be represented

by n generalized coordinates collected in an n×1 array, q. These coordinates describe

the configuration of the haptic device and can also contain representations of degrees

of freedom that are associated with the human operator.

The general dynamics model of a haptic mechanical system can be written as

Hq̈ + c = Qp + Qv (2.1)

where H is the n×n mass matrix, c is the n× 1 array of nonlinear inertia terms, Qp

represents the generalized forces that arise due to physical sources, and Qv includes
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the “virtual” generalized forces that represent the virtual interaction forces transmit-

ted from the virtual environment. The physical forces can be further decomposed

as

Qp = Qh + Qd + Qk + Qo (2.2)

where Qh comes from the representation of the human operator force, Qd gives the

dissipative generalized forces of the haptic device, Qk represents the generalized elastic

forces that are present only if the structural flexibility of the device is considered, and

Qo contains other external forces possibly acting on the system.

Typically, the parameterization for the dynamics of the device is selected such

that q̇ include joint velocities of the device. In addition, q̇ can also include other

velocities that are associated with the human operator representation. In haptic ap-

plications the task often corresponds to m distinguished operational-space directions

with m ≤ n. These directions can be seen to form the rendered subspace. For exam-

ple, in interaction with a virtual wall or surface, the single direction perpendicular

to the surface is characteristic for haptic rendering and corresponds to the rendered

subspace, i.e., m = 1. This is illustrated in Fig. 2.2.

The rendered directions at the velocity level can be represented with an m × 1

array, ur, which can be defined via a linear transformation as

Aq̇ = ur (2.3)

where A = A(q) is an m× n transformation matrix.

Our intention is to develop representations that allow the user to gain information

on how the mechanical system of the device is affecting the behaviour of the haptic

system. An important element we define here is the concept of haptic equilibrium.

This concept is a direct extension of the traditional concept of equilibrium in mechan-

ics. The equilibrium configuration is the solution that satisfies the dynamic equations

(2.1) with zero velocities and accelerations. Physically, this means the situation where

the virtual interaction forces and the human operator forces completely balance each
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Figure 2.2. Haptic equilibrium, interaction with single virtual wall

other via the haptic device, and no motion is involved. This is illustrated in Fig. 2.2

for the case of single rendered direction. For this, (2.1) reduces to the equilibrium

equations as

0 = Qh + Qk + Qv + Qo (2.4)

The solution of the dynamic equations in (2.1), which satisfies the above equilib-

rium condition is q0. The study of the dynamics representation linearized about

this equilibrium configuration can reveal significant information on how the mechan-

ical system parameters influence the haptic dynamic behaviour, the virtual contact

dynamics. These linearized equations describe the dynamics associated with small

motions about equilibrium. The variables, i.e., coordinates, for small motion can be

interpreted as q0 − q = δ. For the sake of simplicity in the following we will reuse

q for the notation of these coordinates. With this the dynamic equations linearized

about the haptic equilibrium defined by (2.4) and q0 can be derived from (2.1) as

Mq̈ = fh + fd + fk︸ ︷︷ ︸
f p

+fv (2.5)

where M = H(q0) is the mass matrix of the linearized system, interpreted for the q0

configuration; fh, fd, fk, and fv are the linearized forms of the different generalized

forces, i.e., human force representation, dissipation, structural flexibility and virtual
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interaction, respectively, for the perturbations relative to the equilibrium configura-

tion. These force expressions will be expanded and analyzed in more detail in the

following. We will see that it will also be easier to discuss these in further detail after

the transformation that will be introduced. Here, we assumed that the external forces

contained in Qo contribute to the development of the equilibrium configuration, but

will have negligible effect on the perturbed dynamics. This perturbed dynamics will

be primarily influenced by the haptic device properties, the virtual environment, and

the human operator.

With the new definition of q for small motions about equilibrium, the rendered

directions can be interpreted with the same formula as ur = Aq̇; where now A =

A(q0) has constant elements that are defined for the equilibrium configuration.

Eq. (2.5) with the proper interpretation of the linearized force models on the

right-hand side can already serve as basis for analysis. However, for parametric

investigations and in order to gain more understanding about the system it can be

advantageous to further study the possibilities for decoupling the dynamic equations.

Several techniques for dynamic decoupling of mechanical systems are available

in the literature. Modal decomposition (Angeles, 2012) can be used for decoupling

linear systems. However, such decomposition requires the introduction of modal

coordinates, that do not carry direct physical interpretation. Techniques dealing

with dynamic decoupling for the operational space motion/force control of robotic

systems and redundant manipulators is proposed and implemented in (Khatib, 1987,

1990; Chang and Khatib, 2000). In these approaches, the intention is to develop

operational space control structure in highly redundant manipulators. This approach

focuses on decoupling the control torque and does not lead to decoupled dynamic

systems.

We take a different approach here, which leads to a level of decoupling of dy-

namic systems and keeps the physical representation for the rendered directions. For

this purpose a transformation is introduced in the following which decomposes the
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dynamic equations of (2.5) into equations corresponding to the physical rendered di-

rections and another set of equations that describe the dynamics of motion admissible

with the dynamics of the rendered subspace. Via this transformation, a new set of

generalized velocities are introduced for the parameterization of the system dynamics

so that the two subspaces will be fully or partially decoupled.

For describing the admissible motion, we consider that a complementary set of

n−m generalized velocities is introduced in the form

Bq̇ = ua (2.6)

where ua is the (n-m)×1 array of these generalized velocities that parameterize the

motion admissible with the rendered subspace. There is a significant freedom in the

way how ua can be selected. This concept has been described in detail in (Kovecses,

2008). The components of ua do not necessarily carry direct physical interpretation.

The intention here is to keep the original u)r representation for the rendered directions

Considering (2.3) and (2.6) result in the interpretation of a full velocity transfor-

mation as

u = Rq̇ , with R =

 A

B

 , u =

 ur

ua

 (2.7)

Both A and B here are constant matrices as we deal with the linearized system.

Due to this, both ur and ua can be seen as time derivatives of local coordinate level

representations as ur = ẋ and ua = ξ̇, where x represents small movements along the

rendered directions, and ξ give the coordinates for the admissible dynamics.

The fundamental variational form of the dynamics of the system can be repre-

sented as

δq̇T(−Mq̈ + fp + fv) = 0 (2.8)

Using the transformation in Eq. (2.7) the dynamic equations in (2.8) can be written

as

δuTR−T(−MR−1u̇ + fp + fv) = 0 (2.9)
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The only condition for the transformation described in eq. (2.7) is that R needs to

be invertible. As A is already specified via the distinguished directions of the haptic

system, the properties of R are governed by B. Based on Eq. (2.9) the dynamic

equations in terms of new generalized velocities can be written as

R−TMR−1︸ ︷︷ ︸
W

u̇ = R−Tfp︸ ︷︷ ︸
hp

+ R−Tfv︸ ︷︷ ︸
hv

(2.10)

where the new arrays of physical and virtual generalized forces are given by hp and hv

and the transformed mass matrix is represented by W. Let us consider the generalized

virtual interaction forces for the rendered directions by an m× 1 array denoted by λ.

Based on the power of forces and the transformation described in Eq. (2.3) between

generalized velocities and the rendered directions, it can be shown that,

q̇Tfv = uT
r λ (2.11)

which leads to

fv = ATλ (2.12)

Then considering the transformation between fv and hv and the full transformation

in Eq. (2.7), we can obtain hv = [λT 0T]T.

The transformed dynamic equations in (2.10) can then be further expanded asWrr Wra

War Waa

 u̇r

u̇a

 =

 sr

sa

+

λ
0

 (2.13)

where the subscripts “r” and “a” denote partitioning according to the rendered and

admissible decomposition, and the physical generalized forces are decomposed as

hp = [sT
r sT

a ]T. The virtual interaction forces λ are associated with the rendered

directions only, but the dynamics in the rendered and admissible directions can still

be coupled through the mass matrix, and possibly via the physical applied forces,

such as the ones arising from structural flexibility.
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The expansion of the inverse of the transformed mass matrix gives

W−1 = RM−1RT =

AM−1AT AM−1BT

BM−1AT BM−1BT

 (2.14)

The idea here is to introduce the set of generalized velocities u for the parameteriza-

tion of the system dynamics so that the mass matrix is decoupled. If B is selected

such that

AM−1BT = 0 (2.15)

i.e., B is an orthogonal complement of AM−1, then transformed inverse of the mass

matrix in (2.14) will be block diagonal. Based on Eq. (2.6), we will require that

ua is defined so that B satisfies condition Eq. (2.15). With such a choice for the

parametrization of admissible motion, the coupling through the mass matrix can be

eliminated, and the dynamic equations take the form

Wrru̇r = sr + λ (2.16)

Waau̇a = sa (2.17)

with Wrr =
(
AM−1AT

)−1
and Waa =

(
BM−1BT

)−1
representing the effective mass

matrices for the rendered and admissible dynamics, respectively. Here, the effective

mass matrix of the rendered subspace is of primary importance. We note again that

in this analysis ur carries direct physical interpretation of the rendered directions.

On the other hand, the entries of ua does not have to be associated with direct

physical meaning; they play a role similar to that of modal coordinates. They are

defined via specifying a transformation to achieve a desired form of the system model.

This is completely compatible with the general principles of analytical mechanics

(Papastavridis, 2002).

Dissipative forces are included in sr and sa. Physical dissipation is a phenomenon

very difficult to model. The viscous dampers are only very simplistic representations.
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We will here follow the general practice of structural engineering to develop the para-

metric models first and then add dissipation explicitly in the form of so-called modal

damping.

The representation derived above is valid for any haptic system. However, we have

to elaborate on two important cases: (1) when all physical elements in the system

are modelled as rigid bodies with perfect joints, and (2) when structural flexibility is

considered. The resulting models will have different numbers of degrees of freedom,

but can generally be represented as discussed above. In the following below, we keep

the same notation that was used earlier with the understanding that the dimension

of the appropriate matrices matches the number of DoFs needed for the particular

model.

2.1.1 Rigid-Body Model. In this case, the structural flexibility related

generalized forces fk in eq. (2.5) and the corresponding terms in sr and sa in eqs.

(2.16) and (2.17) vanish. Each actuated joint is well represented with one single

variable, and the generalized coordinates and velocities, q and q̇, contain these joint

variables and their time derivatives. If J represents the m×n Jacobian of the system,

which connects the joint rates to the rendered operational space directions, then, in

this case the transformation to the rendered direction can be defined as

A = J (2.18)

With this the effective mass matrix for the rendered directions can be interpreted. In

this rigid-body model, the linearized physical generalized forces, sr and sa, would only

originate from the variations of the human operator force about the equilibrium state

and the dissipative effects of the device. If it is assumed that the operator primarily

develops force/moments associated with the rendered directions, then

sa = sad

sr = sh + srd

(2.19)
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where sad and srd contain the dissipative generalized forces for the admissible and

rendered directions respectively, and sh comes from the human operator force rep-

resentation. For this case the linearized dynamics equations of the rendered and

admissible motions, (2.16) and (2.17) can be seen decoupled, and the haptic system

behaviour will be governed by the dynamics of the rendered subspace described with

Wrru̇r = sh + sdr + λ (2.20)

2.1.2 Model with Structural Flexibility. The second case is when struc-

tural flexibility can have an important effect on the dynamic behaviour. The main

sources of structural flexibility can come from the joints and the links. Localized

joint flexibility is typical in many systems. On the other hand, link flexibility may

become important in systems with direct driven joints. The full model represented by

(2.16) and (2.17) can be used also when structural flexibility is considered. However,

if flexibility is present then the rendered and admissible dynamics will stay coupled

as the linearized structural terms will add contributions to both sr and sa in (2.16)

and (2.17).

The flexibility of haptic systems can be often associated with the joints drives.

In this case, the joint deflections can usually be represented as ϕ=φ − θ, (Spong,

1987; Luca, 1998), where φ and θ are n×1 arrays corresponding to the link positions

and actuator positions, respectively. The actuator positions are reflected through the

transmission elements used for the joints and they are interpreted at the joint level.

Therefore, the generalized flexible-jointed model can be developed by considering the

generalized coordinates defined as q = [φT θT]T. When the transmission ratio is large

enough the inertial coupling between the actuators and the links are negligible and

the linearized dynamic equations in (2.5) can be written as

Mφφ̈ = −K(φ− θ) + fh + fd,φ

Mθθ̈ = K(φ− θ) + fv + fd,θ

(2.21)
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where Mφ, Mθ, fd,φ and fd,θ are inertia matrices and dissipative torques associated

with links and actuators, respectively; and K is the joint-level effective stiffness ma-

trix.

There are several approaches for modelling distributed flexibility, for the case

when link flexibility become important in the system. The most common approach

is the finite element method (FEM) (Cleghorn et al., 1981). Another approach is

the assumed-modes method (AMM) (Book, 1984), which is computationally more

efficient compared to FEM, and is based on the dynamic behaviour of the system. In

this method, the elastic deflection of the flexible link is described by finite number

of modes of the system (Zhang et al., 2007). However, the distributed flexibility can

also be modelled by considering the first vibration mode of each link only, where the

dominant frequency is captured by this mode (Tavakoli and Howe, 2008; Zhu et al.,

1999). Another approach is considering the static deflection of the flexible link by

which lumped parameters model can be constructed.

As an example, one can consider a single flexible link modelled as an Euler-

Bernoulli beam, while the flexural flexibility is considered only. In this case, with the

assumption of small deflections, the end-point deflection of the flexible link, denoted

by δ, can be defined as δ = L(φ− θ), where φ and θ correspond to the link and joint

position. A lumped parameter model can be obtained by considering an equivalent

lumped mass, me, located at the end-point of the link, and the corresponding flexibil-

ity is modelled by a massless linear bending spring kΦ. The corresponding dynamic

equations can be written as

meLφ̈ = −keL(φ− θ) + fe

Jθθ̈ = keL
2(φ− θ) + τm

(2.22)
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fe is the applied force at the end-point, Jθ is the hub/motor inertia and τm is the

motor torque. The resulting dynamic equations can be written as

Jφφ̈ = −kθ(φ− θ) + τe

Jθθ̈ = kθ(φ− θ) + τm

(2.23)

where JΦ = L2me is the equivalent joint-level inertia of the lumped mass, kθ = L2Ke

is the equivalent joint-level stiffness, and τe = Lfe is the equivalent joint torque

corresponding to the end-point applied force. Dynamic equations in (2.23) is obtained

in a form similar to that of a flexible jointed system in (2.21), where the localized

structural stiffness representation also embeds effects of link flexibility. This is an

example for a single flexible link,which can be extended to consider multi flexible

links.

2.1.2.1 Modelling of haptic systems with structural flexibility. In the following

we consider the dynamic equations in (2.21) as the basis of our investigations for the

effects of structural flexibility. The analysis of these coupled dynamic equations is

possible via numerical methods, but they do not make it possible to establish closed-

form results that explicitly reflect the influence of various parameters. Later in this

thesis we will also use the full set of coupled equations for comparison. However,

first we will look at the possibility to develop reduced-order representations that can

better highlight and capture the essence of the core phenomena.

Some considerations and assumptions may be possible about neglecting the struc-

tural coupling depending on the application and the specific device at hand. But, in

general, the coupling remains and the model reduction is not possible in the same

way as done for the rigid body model. In the following, we present an alternative

way to establish simplified parametric models for the consideration of the effects of

structural flexibility. The basis of the development of such simplified models will be

rooted in the way how the human operator interacts with the virtual environment via

the haptic device.
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The human operator usually interacts with the device at the physical reference

point/frame. However, the virtual environment representation is directly related to

the actuators where the driving torques/forces are applied. In other words, the loca-

tions of application of the two sets of forces are not the same. Such a problem does

not exist in the case where the human interacts with a real physical environment.

Also, this does not give much difference if the device is modelled using rigid bodies

and perfect joints. On the other hand, for a flexible system it makes a difference

as it gives the possibility to view the rendered directions and the way how they are

related to the device dynamics from two points of view: from the point of view of

the operator, and from the point of view of the virtual environment. Based on the

application location, different transformations can be considered for projecting to the

rendered directions.

In this case, from the human operator perspective, the relation of the rendered

directions to the joints can be interpreted via considering only the transformation

of link position to the rendered direction. As was defined earlier, the 2n × 1 array

of q contains both sets of generalized coordinates necessary to describe rigid-body

motion and deformations. From the kinematics point of view, m×n Jacobian matrix

of the rigid-body model of the device connects the time derivatives of both link and

actuators positions to rendered directions. The transformation connecting the link

position to the rendered direction, from the virtual environment perspective, can be

obtained as

ẋ1 = A1q̇ (2.24)

where

A1 = [J 0] (2.25)

and another transformation can be considered connecting the actuator position to

the rendered directions as

ẋ2 = A2q̇ (2.26)
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where

A2 = [0 J] (2.27)

while both A1 and A2 arem×2nmatrices; and 0 represents anm×n zero matrix. This

gives the possibility to interpret the concept of two effective inertia representations

for the rendered directions as

Wr1 = (A1M
−1AT

1 )−1

Wr2 = (A2M
−1AT

2 )−1
(2.28)

where the variables associated with these are x1 and x2. The two effective masses in

the rendered directions are connected via massless flexible elements. This concept is

illustrated in Fig. 2.3. To illustrate more the physical meaning of Wr1 and Wr2, let

us consider the hypothetical case if the flexible connection connecting the links to the

actuators are cut. Then Wr1 represents the inertia that would be felt by the human

operator, and Wr2 is the inertia the actuators would feel.

Figure 2.3. Modelling Haptic system with structural flexibility

The above interpretation allows us to model the system as the two effective

generalized inertia representations connected via the effective stiffness that can be

derived considering the static model of the system. For the static model, the joint

actuators are considered to be locked and only the pure deflection mode exists for the

system, which is represented by ϕ, and associated with a n× n stiffness matrix Kϕ,

where n corresponds to the number of actuators. For the static model the mapping
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between the joint deflections and the rendered directions can be described via the

Jacobian of the rigid-body model of the device as

Jϕ = x (2.29)

where x is the m×1 array of end-point deflection in the rendered directions. Consid-

ering this transformation and using the principle of virtual work (Greenwood, 2003),

we can write

δϕTfk = δxThk (2.30)

where substituting (2.29) to (2.30) leads to

fk = JThk (2.31)

Equation (2.31) provides the transformation between the force due to structural flex-

ibility in rendered directions and joint level. Considering this transformation and

substituting it in relation ϕ = K−1
ϕ fk, we can obtain

ϕ = K−1
ϕ JThk (2.32)

Substituting this to the transformation in (2.29) leads to

x = JK−1
ϕ JThk (2.33)

Based on this, the effective stiffness matrix for the rendered subspace can be obtained

as

Ke = (JK−1
ϕ JT)−1 (2.34)

For the case of m rendered directions, it can be seen that the haptic system can

be modelled via two effective inertias represented by m ×m effective mass matrices

connected via a spring element with stiffness represented by an m × m matrix of

effective structural stiffness. In this model, the human operator force representation,

sh, is applied to Wr1, while the virtual interaction force, λ, is applied to Wr2. This

leads to a 2m-DoF model for the dynamics of the haptic rendering. The dynamic
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equations for this can be established asWr1 0

0 Wr2

ẍ1

ẍ2

+

 Ke −Ke

−Ke Ke

x1

x2

 =

sh

λ

+

sdr1

sdr2

 (2.35)

where sdr1 and sdr2 represent dissipative force terms. The linearized virtual interaction

force λ can be represented as

λ = −kpx(tj) + kdv(tj) , t ∈ [tj, tj+1) (2.36)

where kp and kd are virtual stiffness and virtual damping matrices, respectively,

tj = j∆t, ∆t is the sampling time, and v(tj) ≈ ẋ(tj) = ur(tj) is the estimated

velocity at tj from the encoder position data. The applied filtering depends on the

specific application, but often simple backward differentiation is used.

2.1.3 Further Analysis. The left hand side of (2.35) can be used to deter-

mine natural frequencies of the haptic system model where the virtual interaction

forces and physical dissipation are not considered. However, the virtual interaction

forces, λ can significantly influence the dynamic behaviour in haptic systems, and

cannot be eliminated in the dynamic analysis. This is one of the core factors in

determining the dynamic range of a haptic system (Colgate and Brown, 1994).

The stability and dynamic properties of the rigid-body model in (2.20), and the

flexible model in (2.35) can be studied via the construction of a discrete mapping as

described in (Kuo, 1981; Stepan, 2001). These continuous-time systems with discrete-

time applied force form a system of non-homogeneous ordinary differential equations

with piecewise constant right hand side. The general solution of this system can

be constructed from sum of the homogeneous part and a particular solution of the

non-homogeneous part. The particular solution can be obtained for each subsequent

sampling interval. In other words, during each sampling interval, when t ∈ [tj, tj+1),

the applied force is a constant value. In this case, one can apply the usual exponential

trial solution as

Zj = cestj (2.37)
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where Zj represents the discrete state vector formed based on the generalized coordi-

nates and velocities at time tj, and the coefficient c can be obtained using the initial

conditions at the beginning of time interval. Then, the general solution at the end of

each sampling interval can be determined by considering the solution at the end of

previous sampling interval as initial conditions.

Considering this, piecewise solution of the dynamic equations in (2.20) and (2.35)

leads to a discrete map which can be established as

Zj+1 = LZj (2.38)

where L is the so-called transition matrix that embeds properties of the system. The

dimensions of Z and L depends on the states of the discretized dynamic systems

and the augmenting states (delayed position sequence) associated with the virtual

environment realization.

Convergence of the discrete mapping in (2.38) is equivalent to the asymptotic

stability of the piecewise continuous mechanical systems in (2.20) and (2.35) (Stepan,

2001). Therefore, stability of the system can be determined via the eigenvalues of

transition matrix L, denoted by z. However, for further analysis of the system,

we need to study the vibration frequencies along the stability limits and also the

calculation of the exponential decays. Therefore, it is advantageous in the analysis

here to formulate the stability in terms of characteristic exponents s. Consider the

exponential trial solution in (2.37), the characteristic equation of the system can be

written as

det(es∆T I− L) = 0 (2.39)

This equation has an infinite number of roots sk, k = 1, 2, ..., which can be considered

as points along finite number of vertical lines in the left hand side of the complex

plane. However consider that an infinite number of characteristic roots belong to a

single eigenvalue z. This relation can be written as

z = es∆T ←→ s =
lnz

∆T
(2.40)
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With this transformation, the infinite number of characteristic roots transfer to a

finite number of points located inside a unit circle. As a result, the condition for

stability of such systems can be written as

det(zI− L) = 0 |zi| < 1 i = 1, 2, ..., n ⇔ Re sk < 0, k = 1, 2, ... (2.41)

The eigenvalues of L whose magnitudes are close to unity tend to dominate the

response of the system since their contribution takes a longer time to die out. When

the haptic system loses stability, typically the magnitude of one of the complex conju-

gate pairs of eigenvalues just exceeds unity. The base harmonic frequency associated

with this complex conjugate pair will dominate the oscillatory behaviour. This domi-

nant frequency of the combined physical-virtual system plays a role similar to the first

natural frequency of a purely continuous-time physical system. The determination of

the stability boundaries in the space of the parameters of the virtual interaction force

representation is a key element in the analysis.

2.2 Single Virtual Wall Interaction

A typical case in haptics is when either force or moment rendered. In that

case the rendered subspace for haptic equilibrium reduces to one single direction

that is determined by the resultant force or moment to be transmitted. This single

rendered direction is considered in the operational space, and ur = ẋ represent the

velocity in that direction for force rendering and the angular velocity about the axis

of rotation for moment rendering. The most common example is the virtual wall

or surface. In the following we will often reference to this. However, the analysis

is applicable to more general situations as well. Consider the case when a single

rendered direction perpendicular to the virtual wall is implemented in the operational

space. A frequently used model to represent the virtual wall interaction forces and

establish the virtual coupling relies on the Kelvin-Voigt viscoelastic model, i.e., a

spring and damper in parallel. Having a single rendered direction, the effective mass

and stiffness representations reduce to scalar quantities. Assuming that the human

34



2.2 SINGLE VIRTUAL WALL INTERACTION

operator representation adds no extra DoF in the model, then the representation

reduces to a single-DoF model and the corresponding dynamic equations for the

rigid-body model with perfect joints can be written based on (2.20) as

meẍ = sh + λ+ sdr (2.42)

where me = (JM−1JT)−1, while A = J is 1 × n row matrix in this case. This model

is representative when flexibility is not considered either because of the construction

of the device or the operation of the system takes place in the range of low virtual

impedances.

Filters are also often employed to reduce the effect of unmodelled dynamics (e.g.

structural flexibility), or the noise due to velocity estimation with quantized and

sampled position data (Metzger et al., 2012). If the high frequency components are

filtered out for such a case then the model in (2.42) can also be used to consider the

physical part of the haptic system.

In the presence of structural flexibility the dynamics, in the case of one single

rendered direction, and again assuming no extra DoFs for human operator model,

can be described based on (2.35) as

me1ẍ1 + ke(x1 − x2) = sh + sdr1

me2ẍ2 + ke(x2 − x1) = λ+ sdr2

(2.43)

where the effective parameters are in scalar form as me1 = (A1M
−1AT

1 )−1 and

me2 = (A2M
−1AT

2 )−1 with the interpretation of A1 and A2 given before, and are in

this case 1 × 2n row matrices. In this case, the human operator representation can

consist of a stiffness term and dissipation. We emphasize that the effective parameters

of these simplified models embed the mechanical properties of the overall haptic

mechanical system.

The human stiffness is usually much lower than structural stiffness. The effec-

tive mass me2 is typically small and the characteristic vibrations at high virtual wall

impedances take place relative to the larger mass m1e. Therefore, the important
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frequency is dominantly influenced by the smaller mass me2. This can allow for intro-

ducing a further simplified single-DoF model considering the dynamics corresponding

to me2 in (2.43) in the form

me2ẍ2 + kex2 = λ+ sdr2 (2.44)

As discussed before the human operator can also be modelled as articulated me-

chanical systems. Equation (2.35) can be used for a more general representation of

the human operator effects. However, the human operator is often characterized by

series of linear impedance elements along the rendered direction (Hogan, 1989; Spe-

ich et al., 2005). With this assumption, (2.42) and (2.43) can be used to further

investigate the effect of human operator models. In the presence of structural flexi-

bility, the higher frequency structural modes of the system will govern the dynamics,

and one can use the one-DoF flexible model of (2.44). By considering this simplified

model, the human model does not directly enter into the analysis. This corresponds

to the worst-case scenario where the potentially stabilizing and dissipative effects of

the human operator are not present (Diolaiti et al., 2006).
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CHAPTER 3

Experimental Evaluation

This chapter investigates the validity of the models developed in Chapter 2. For this

purpose, a five-bar linkage based haptic device is used for the experimental evalua-

tion. Two types of experiments were carried out. First, interaction with a bilateral

virtual wall is considered, without human operator’s sustained touch; and second

when a human operator interacts with a unilateral virtual wall via the haptic device.

The experimentally measured stability boundaries are compared to that obtained

numerically using the models developed.

Due to the capstan drive mechanisms used in this device, structural flexibility can

become an important factor. In this case, the validity of the flexible model can be

studied. On the other hand, the usability of the rigid-body model can be investigated

while the device is used for interaction with low-stiffness virtual environment, or when

filtering is employed in the system. This is investigated by incorporating a 2nd-order

Butterworth filter as an example.

3.1 Experimental Device

For the analysis in this chapter, we consider the haptic device shown in Fig. 3.1

The device is based on a five-bar mechanism with two actuated joints at the base. The

driving mechanisms of the joints are based on capstan drives, where the motor pulleys

are connected with a single cable. This device can be modelled based on the kinematic
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diagram of the five-bar linkage as shown in Fig. 3.2. The ground link has zero length,

and the axes (A and C) of the actuated links, (link 1 and link 3), are collinear. The

corresponding CAD model of these links together with the attached motor is shown

in Fig. 3.3. Links 2 and 4 are the distal links, which are called as passive arms. The

passive arms are lightweight compared to the driven arms which carry the driving

motors. The links are modelled as rigid-bodies with a slender beam-like shape.

Figure 3.1. Experimental device

3.1.1 Model Parameters. The device in Fig. 3.1 is actuated by two Maxon

118774 brushed DC motors. Inertia properties and other data of the motors at nom-

inal voltage are listed in Table 3.1. It has to be noted that the operation range is

limited to ±10 V by the processor used for these experiments.

The distance between the axes of the motors and the driven joints is 96 mm,

and the diameter of the cable pulley is approximately 9.9 mm. According to these

dimensions, the transmission ratio of the driving mechanism can be approximately

calculated as Kg = (96− 4.95)/4.95 = 18.6. Using this transmission ratio, the motor

inertia Imot at the joint axis level can be calculated as K2
g Imot = 1.186× 10−4 kgm2.

Table 3.2 lists the geometry and inertia properties of the haptic device. The locations
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Figure 3.2. Five-bar linkage, modelling of haptic device

Figure 3.3. CAD model of the driven arm

of the centres of mass of the individual links are given in the local frames with axes ξi,

ηi and ζi as shown in Fig. 3.2. These axes are aligned as ξi points toward the output

joint of the i th link, ζi is directed upwards and it is perpendicular to the plane of the

mechanism, while ηi is such that they form a right-handed system. By comparing

motor inertia at the joint level and the inertia properties of the linkage, it can be

Table 3.1. Maxon motor properties

Nominal voltage 48 V
Nominal current 0.659 A
Torque constant 50.2 mNm/A
Rotor inertia 12.1 gcm2
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Table 3.2. Multibody model parameters

Geometry data

l1 0.147 m l2 0.199 m
l3 0.147 m l4 0.199 m
ξCM1 -0.04565 m ηCM1 -0.0001 m
ξCM2 0.0902 m ηCM2 -0.0075 m
ξCM3 -0.04565 m ηCM3 0.0001 m
ξCM4 0.0902 m ηCM4 0.0075 m

Inertia properties

m1 0.282 kg m2 0.05427 kg
m3 0.282 kg m4 0.05427 kg
ICM1 0.0024 kgm2 ICM2 0.000341 kgm2

ICM3 0.0024 kgm2 ICM4 0.000341 kgm2

seen that the inertia of the rotor has to be considered in the mechanical model. The

kinematic and dynamic models of the device are described in detail in Appendix B.

φ1

φ3

x

y

φ2

φ4

A
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virtual
wall

rendered
direction

Motor #2Motor #1

Motor #1
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link 2

link 3
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Figure 3.4. Left: experimental device and its capstan drive, right: me-
chanical model

3.1.2 Dynamic Modelling. Capstan drive mechanism has been considered

in many available haptic devices (Massie and Salisbury, 1994). This driving system

avoids the use of gears, and makes it possible to amplify the torque of small DC

motors, and still keeps the system back-drivable. However the tension in the cable
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can bend the motor pulleys and twist the driven links connected to the motors (see

Fig. 3.4). This results in the need to consider the structural flexibility in the capstan

drive, which can be modelled as localized joint flexibility. With ideal, rigid joints,

this five-bar linkage would have two-DoFs. The flexibility of the driven joints can

introduce two additional DoFs. Therefore, this system can be parameterized with four

absolute coordinates as a minimum set specified by q = [φT θT]T, where φ= [φ1 φ3]T

are the angles representing the configuration of the links, and θ= [θ1 θ3]T is the array

of joint level motor angles. Then the linearized minimum set of dynamic equations

in (2.21) for the four-DoF flexible-joint model of this device can be written in matrix

form as Mφ 0

0 Mθ

φ̈
θ̈

+

 K −K

−K K

φ
θ

 =

fh

fv

+

fd,φ

fd,θ

 (3.1)

where Mφ is the inertia matrix of the two-DoF rigid-body model described with

independent joint coordinates φ1 and φ3 (Appendix B). The motor inertia matrix

is Mθ = diag(Imot1, Imot2), while K = k2
g × diag(k1, k2) is the stiffness matrix with

the transmission ratio kg, and k1 and k2 are the corresponding joint stiffness values.

Arrays of fh, fv and fd linearized forms of the different generalized forces as defined

in Chapter 2. This model will be referred to as the four-DoF flexible model in the

following.

3.1.3 Stiffness Evaluation. For the analysis in this chapter, we selected the

end-point position at xE = 0 m, yE = 0.25 m as a reference configuration (Fig. 3.4

interprets the coordinate system).

The stiffness corresponding to the flexible joints were determined via a series of

experiments at the reference configuration. The driven links were blocked in this

configuration, while the motors were loaded in different directions and their angular

deflections were recorded. The corresponding measurements of motor torque versus

motor deflection are shown in Fig. 3.5. The measurements show that the system has
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(a) Motor 1 (b) Motor 2

Figure 3.5. Measured joint stiffness

non-symmetric stiffness properties. The maximum and average measured stiffness

values at the joint level are presented in Table 3.3.

By using the four-DoF flexible model, the non-zero natural frequencies of the

system can be obtained as 101 Hz and 131 Hz, when using the maximum measured

stiffness value; and 95 Hz and 120 Hz by considering the average measured stiffness

values. In our analysis, for providing sufficiently conservative results, we consider the

effective model parameters that correspond to the maximum stiffness values.

A second set of measurements is conducted to confirm the validity of the different

joint stiffness values. In these experiments a sweeping sinusoidal input torque signal

was applied with target frequency of 200 Hz and duration 20 s, and the y-directional

displacement of the tip of the device was recorded as output. These experiments were

conducted both with and without the human operator grasping the end point.

The measured frequency responses are shown in Fig. 3.6. Within the excitation

bandwidth, the chart on the top shows the two natural frequencies of the device

Table 3.3. Experimentally measured stiffness values

k1,max 0.45 Nm/rad k2,max 0.75 Nm/rad
k1,avg 0.40 Nm/rad k2,avg 0.65 Nm/rad
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3.1 EXPERIMENTAL DEVICE

Figure 3.6. Measured frequency response of the system, without and with
human operator

measured without the human operator interacting with the device. This confirms the

localized consideration of stiffness capturing the structural properties of the device.

The frequency chart on the bottom shows the effect of the human operator. The

measurements without the human operator are in good agreement with the results

that can be obtained using the four-DoF model of the system. By firmly grasping the

tip of the device, a slight increase could be observed in the characteristic frequencies.

For experimental validation the sampling frequency has to be chosen such that it

is sufficiently larger than the lower bound required by the sampling theorem. Based

on the measured frequencies it was possible to conclude that the spectral components

above 200 Hz in both cases, with or without human operator are negligible. The

typical 1 kHz sampling frequency is five times higher. Here we select a slightly lower

sampling frequency fs = 800 Hz, which introduces less noise when the velocity of the

endpoint is calculated from quantized and sampled position data. Also, the lower the

sampling frequency is the smaller the stable domain becomes, and the experimental

results are less influenced by temporary saturation of the actuators.
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It can be shown that the highest vibration frequency of the controlled system is

about 200 Hz (see later in Fig. 3.8), which is half of the Nyquist frequency, which is

equal to 400 Hz, proving that the corresponding signal can be properly sampled.

3.2 Bilateral Virtual Wall

For validation of the models proposed in Chapter 2, first we consider interaction

with a single bilateral virtual wall. This case corresponds to the situation where the

device is in sustained contact with the virtual wall and the wall is already deformed.

For such a case, the dynamic behaviour of the proposed two-DoF flexible model in

(2.43) can be compared with behaviour of the described haptic device.

3.2.1 Analysis of the Two-DoF Flexible Model. Interacting with a bilat-

eral virtual wall without the human operator’s sustained touch can create a worst-case

scenario for stability investigation of haptic systems (Diolaiti et al., 2006). Consider

dynamic equations in (2.43). In this case sh = 0, and the dissipation due to the

device damping is considered. To approximate the device damping, modal damp-

ing (Angeles, 2012) can be considered here, which makes it possible to apply modal

transformation for further analysis of this model. Then for this case, the dynamic

equations in (2.43) can be written as

Wrẍ + Bẋ + Kx = sν with B = rmWr + rkK,

Wr =

me1 0

0 me2

 , K =

 ke −ke
−ke ke

 , x =

x1

x2

 , sν =

0

λ

 , (3.2)

where the effective masses me1 and me2, and the effective structural stiffness ke were

defined in Chapter 2; and rm and rk corresponding to the coefficients of effective mass

and stiffness matrices, respectively. Finally, force sν describes the discrete-time virtual

contact realization. Incorporating the Kelvin-Voigt model in (2.36) for the virtual

wall modelling and using the frequently applied backward difference approximation
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for velocity estimation, the virtual environment force can be written as

sν = DXj (3.3)

where

D =

 0 0 0 0

0 −kp − kd
∆t

0 kd
∆t

 , and Xj =


x1j

x2j

x1j−1

x2j−1

 (3.4)

where xj = x(tj).

For stability analysis of this system, we construct the discrete map in (2.38) for

this model. For this purpose, first modal transformation can be applied to simplify the

equations. The two eigenvalues of the undamped system can be obtained as λ1 = 0

and λ2 = ke
me1+me2

me1me2
. Using these, the corresponding mass normalized eigenvectors

can be determined as

U =
[
ν1 ν2

]
=

 α1
α1

α2

α2 −α1α2

 (3.5)

where

α1 =
1√

me1 +me2

, and α2 =

√
me1

me2

(3.6)

Applying the modal transformation, and denoting the non-zero natural frequency of

the model by ω2
n = λ2, the dynamic equations in modal coordinates take the form

ξ̈1 + rmξ̇1 = Fξ1

ξ̈2 + (rm + rkω
2
n)ξ̇2 + ω2

nξ2 = Fξ2

(3.7)

where ξ1 and ξ2 are the modal coordinates, and Fξ1 and Fξ2 are the virtual interaction

force components associated with these coordinates. In order to form the discrete

mapping, as discussed in Chapter 2, the solution at t = tj+1 can be obtained in the
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piecewise linear form based on the solution at t = tj as

ξ1j+1
=ξ1j −

1− e−rm∆t

rm
ξ̇1j + (

erm∆t − 1

r2
m

+
1

rm
)Fξ1

ξ2j+1
=(e−ζΩn cos Ωd +

ζωne
−ζΩn

ωd
sin Ωd)ξ2j +

e−ζΩn sin Ωd

ωd
ξ̇2j+

(
e−ζΩn cos Ωd

ω2
n

− ζe−ζΩn sin Ωd

ωnωd
+

1

ω2
n

)Fξ2

(3.8)

where Ωd = ωn∆t
√

1− ζ2, ζ = rm
2ωn

+ rkωn

2
, and

 Fξ1

Fξ2

 =

 α1α2(−p− d
∆t

) −α2
1α2(−p− d

∆t
) α2α2

d
∆t

α2
1α2

d
∆t

α1(−p− d
∆t

) −α2
1(−p− d

∆t
) α1

d
∆t

−α2
1
d

∆t




ξ1j

ξ2j

ξ1j−1

ξ2j−1


(3.9)

Substituting (3.9) in (3.8) forms a decoupled set of equations with constant right-

hand-side within consecutive sampling periods. Following the process described in

Chapter 2, the transition matrix of the system, L, can be constructed, while the

discrete state of the system in terms of modal variables is Zj = [ξ̇1j∆t, ξ̇2j∆t, ξ1j , ξ2j

, ξ1j−1
, ξ2j−1

]T. The resulting 6 × 6 transition matrix L has five non-zero and one

zero eigenvalues. The zero eigenvalue corresponds to the redundant element in the

state vector which is added due to the modal transformation. The transition matrix

in this case is relatively complex and cannot be presented in parametric form here.

However, based on the process explained in Chapter 2, the transition matrix can be

constructed numerically.

The eigenvalues of this mapping must lie within the unit disk of the complex plane

to ensure stability. The magnitude of the largest real or complex eigenvalue primarily

characterizes the decaying of the transients. Stability boundary of the system in (3.2)

can be numerically obtained by plotting the boundary where magnitude of the largest

eigenvalue of the transition matrix L must be equal or less than unity.
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3.2 BILATERAL VIRTUAL WALL

Consider the reference configuration described in Sec.3.1.3. At this configuration,

the effective parameters of the two-DoF flexible model in (3.2) are listed in Table 3.4.

We assume that the structural damping of the device is proportional to the stiffness

matrix of the system only, i.e., rm = 0. For the case where rk = 0.0012, which

corresponds to the damping ratio of ζ = 0.5, the stability boundary can be obtained

as shown in Fig. 3.7 by the bold solid line.

Figure 3.7. Bilateral wall without the human operator

3.2.2 Experimental Analysis. Experimental stability analysis is conducted

for the validation of the numerical results. The experimental device together with

the virtual wall is shown in Fig. 3.4. In this experiment, the virtual wall was located

at the reference location. For each experiment, a small perturbation was applied to

the end-point of the device to overcome the effect of dry friction and deviate the

Table 3.4. Effective model parameters

me1 0.2616 kg me2 0.0254 kg
ke 15620 N/m ∆t 0.0025 sec
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end-point from equilibrium. At each measurement point, the virtual stiffness was

selected and the stability boundary was measured by changing the virtual damping

values. For each selected virtual stiffness, two values for virtual damping were used

which correspond to the lower and upper stability boundaries. The behaviour of the

system in the regions corresponding to the low and high values of virtual damping

was different. The resultant measured stability boundary in the space of virtual

environment parameters is shown in Fig. 3.7 via indicating the measurement points

by circles. Measuring the points on the tip of the boundary were more challenging. For

virtual stiffness values higher than 7000 N/m, the stability boundary were measured

via recording the stable virtual stiffness corresponding to a selected values of virtual

damping.

Comparing the experimentally measured stability boundary with the one ob-

tained via the two-DoF flexible model, it can be seen that they are in good agree-

ment in the domain of low virtual damping. However, in the high virtual damping

region the boundary obtained based on the model does not follow the experimental

measurements and the stable domain is smaller.

To understand the behaviour of the system in this region, the characteristic vibra-

tion frequency of the system along the stability boundary can be investigated using

the two-DoF flexible model. This frequency can be obtained via the angle α of the

complex conjugate pairs corresponding to the eigenvalues of the transition matrix L

with largest magnitude that leaves the unit disk on the complex plane (Kuo, 1981;

Stepan, 2001). This frequency is equal to α/∆t. There are also higher frequency

components due to periodicity of the eigenvalues with 2π. Due to this, there are

higher components having the same frequencies plus the integer multiple of the sam-

pling frequency. These higher components are usually damped out by the internal

damping of the mechanism.

The resulting characteristic vibration frequency of the system along the stability

boundary are shown in Fig. 3.8. This reveals that in the domain of low virtual damp-

ing, the lose of stability is accompanied with low-frequency vibrations, while in the
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high virtual damping region, this frequency increases drastically. At the intersection

of the boundaries there are two dominant frequencies which are indicated by circles

on the frequency chart.

Figure 3.8. Vibration frequencies at lose of stability

We note that the structural dissipation is a function of the characteristic vibration

frequency of the system. This study of characteristic frequency of this system shows

that the modelling of dissipation is not trivial, and the employed modal damping can-

not capture the complex and nonlinear behaviour of the structural damping. This can

explain the difference between the experimental and numerical stability boundaries

in Fig. 3.7 in the domain of high virtual damping.

As shown in Fig. 3.8 the characteristic vibration frequency along the stability

boundary in the low virtual damping domain has small values. The behaviour of

the system in the experimental analysis also confirms the low frequency vibration

of the system in this region. Based on this observation, it can be considered that

the system can be well representative with rigid-body model in this domain and the

structural flexibility of the device cannot be excited. For more detailed investigation,

the stability analysis incorporating the rigid-body model in (2.42) will be conducted,

and the results can be compared with the experimental measurements.

3.2.3 Analysis of the Single-DoF Rigid-Body Model. As discussed in

Chapter 2, when structural flexibility is not excited, dynamic behaviour of a haptic
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system may be described via the single-DoF rigid-body model in (2.42). For the

analysis of this model, interaction with a bilateral virtual wall is considered with-

out human operator’s sustained touch, where sh = 0. For this model, the physical

dissipation due to device damping can be approximated via considering a linear vis-

coelastic damping element b in the rendered direction, where sdr = −bẋ. Employing

the same model described earlier in this chapter for the realization of the virtual wall,

the dynamic equation in (2.42) can be written in the piecewise linear form as

meẍ(t) + bẋ(t) = λ , t ∈ [tj, tj+1)

with λ = (−kp −
kd
∆t

) xj +
kd
∆t

xj−1

(3.10)

For stability analysis of this model, constructing the discrete map in (2.38) can

be implemented in closed-form. For this purpose dynamic equations in (3.10) can be

represented with dimensionless coefficients as

x′′(T ) + βx′(T ) = (−p− d)xj + d xj−1 (3.11)

where the prime denotes differentiation with respect to the dimensionless time T = t/∆t .

The dimensionless virtual stiffness and damping p= kp∆t
2/me and d= kd∆t/me, arise

naturally also in the piecewise solution of (3.10). To construct the solution of (3.11)

for the given generic sampling interval, one can consider the state space representation

of (3.11) as

X′(T ) = CX(T ) + Duj, T ∈ [Tj, Tj+1), n = 0, 1, 2, ... (3.12)

where Tj = j∆(t), and

X(T ) =

 x(T )

x′(T )

 , uj =

 xj

xj−1

 (3.13)

and the coefficient matrices are

C =

 0 1

0 −β

 , D =

 0 0

(−p− d) d

 (3.14)
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Considering the solution at T = Tj as an initial condition, the general solution at the

end of time interval T = Tj+1 can be written in the form

Xj+1 = eC∆TXj +

∫ T

0

eCτdτDuj (3.15)

Then, by selecting the discrete state vector zj = [x′j, xj, xj−1]T and using the short-

hand notation ε= (1− e−β)/β, the discrete mapping can be obtained as

zj+1 = L zj with

L =


1− εβ −ε(p+ d) εd

ε 1− 1− ε
β

(p+ d)
1− ε
β

d

0 1 0


(3.16)

Using this transition matrix, the stability boundaries can be obtained for any value

of β. The stability boundary associated with β → 0 is shown in Fig. 3.9. Stability

boundary corresponding to the two-DoF flexible model in (3.2) can also be obtained

for the case with zero structural damping, i.e., rm = 0, rk = 0. The resulting boundary

is also illustrated in Fig. 3.9.

It is illustrated in this figure that in the case of the flexible model, the system

can lose its stability well inside the stable domain that is obtained based on the rigid-

body model. The lower bound of the stable domain obtained using the rigid-body

model is also shown in Fig. 3.7 by a thin solid line. It is interesting to see that

in the low virtual damping domain, both the experimental measurements and the

numerical results using the two-DoF flexible model follow this line. This can also be

explained via the low characteristic vibration frequency of the system in this region.

Therefore, in this range of virtual environment parameters, the structural flexibility

of the physical device is not excited and the system can be approximated by the

single-Dof rigid-body model.
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Figure 3.9. Numerical stability boundaries corresponding to the rigid-body
and flexible models

We can further investigate the characteristic dynamics of the system in different

regions of the space of virtual environment parameters. For this purpose, the be-

haviour of the system at different points of this parameter space is simulated via the

two-DoF flexible model. These pints are shown in the first chart in Fig. 3.10. The

resulting behaviours are presented in the second chart of Fig. 3.10. In these charts,

x1 and x2 correspond to the coordinates associated with the effective masses. Several

points are selected inside and outside of the resulting stable domain. It can be seen

that from point B to A (inside to outside of the stable domain in high virtual damping

region), the smaller mass oscillates relative to the larger mass with an increasing am-

plitude. To show high-frequency oscillation of me2 at point B, a magnification factor

of five was applied. The behaviour of the system at points C and D located in the low

virtual damping domain is different. In this region, both x1 and x2 show oscillatory

motion at the same frequency and the behaviour of the system can be described by a

rigid-body model. Point E is located at the point corresponding to the lowest spectral

radius of the transition matrix, which represents the fastest decaying oscillation. This

can be an optimum operational point of the system for highest fidelity.
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(a) Experimental measurements

(b) Simulated model behaviour

Figure 3.10. Characteristic dynamics at different points of the stability chart

3.2.4 Filtering. It is common in haptic applications to filter the measured

quantized and sampled signals. This, however, can also seriously limit the perfor-

mance. Filtering can also be used to reduce the effects of structural flexibility. In this
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case, the rigid-body model presented in Chapter 2 can be representative for dynamic

behaviour.

To investigate the effect of filtering, we applied a 2nd-order Butterworth filter

with 20 Hz cutoff frequency as a classical low-pass filter. To minimize the introduced

time delay the filter is only used in the velocity estimation, while the position feedback

is left unfiltered.

The normalized transfer function of the second-order Butterworth filter is

G(s) =G0/Bn(
s

ωc
), with Bn(s) = s2 +

√
2s+ 1 (3.17)

where G0 is the steady state gain and ωc is the cut-off frequency. In order to use the

filter in the digital controller it has to be discretized. This is often carried out by

using the Tustin transformation s= 2
∆t

(z−1)/(z+1) which leads to the discrete time

filter

Gd(z) =
n0z

2 + n1z + n2

d0z2 + d1z + d2

(3.18)

where,

2n0 =n1 = 2n2 =G0
Ω2

c

Ω2
c + 4ζΩc + 4

d0 = 1 , d1 =
2 (Ω2

c − 4)

Ω2
c + 4ζΩc + 4

, d2 =
Ω2

c − 4ζΩc + 4

Ω2
c + 4ζΩc + 4

.

(3.19)

and Ωc = ωc∆t and ζ = 1
/√

2. This filter is applied to the measured position

in the rendered direction and the corresponding velocity is calculated via backward

differentiation subsequently. The force feedback of the virtual spring is based on the

unfiltered position. In order to focus on the effects of filtering, effects of physical

damping is eliminated in this model. With these assumptions, the dynamic equation

in (3.11) can be written as

x′′(T ) = −pxj − d(ςj − ςj−1) , T ∈ [j, j + 1) , (3.20)
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where ς denotes the filtered position. The solution and the filtered position at T =

j + 1 is given by

x′j+1 = − pxj − d(ςj − ςj−1) + x′j

xj+1 =
1

2
(−pxj − d(ςj − ςj−1)) + x′j + xj

d0 ςj+1 =n0 xj+1+n1xj+n2xj−1−d1ςj−d2ςj−1

(3.21)

Considering that d0 = 1 and introducing the discrete state vector as zj = [x′j, xj, xj−1

, ςj, ςj−1]T, the transition matrix corresponding to the discreet mapping in (2.38) has

the form

L =



1 −p 0 −d d

1 1−p
2

0 −d
2

d
2

0 1 0 0 0

n0 n0

(
1−p

2

)
+n1 n2 −n0

d
2
−d1

d
2
n0−d2

0 0 0 1 0


. (3.22)

The resultant stability boundary is shown in Fig. 3.11 by solid line. Incorporat-

ing the same filter, the stability boundary can be measured experimentally as it is

illustrated in Fig. 3.11. It can be seen that the proposed rigid-body model is represen-

tative in this case. However, since the effects of physical damping are not considered

in the analysis, the stable domain is smaller than the one measured experimentally.

Compared to the unfiltered results (see in Fig. 3.7) it can readily be seen that the sta-

ble domain of virtual environment parameters is considerably smaller. Filtering made

it possible to achieve higher virtual damping at low-stiffness values, but it decreased

the maximum stable virtual stiffness.

3.2.5 Effect of Quantization. Quantization can limit the haptic perfor-

mance. It is important to note that the presented experimental results are not cor-

rupted by the effect of quantization. For the experimental device considered in this

work, the quantization limit can be estimated as kpmax = 2C/∆p≈ 26700 N/m based

on (Diolaiti et al., 2006). Comparing this limit with the maximum stable virtual

stiffness achieved based on the flexible model of the device in Fig. 3.7, it can be seen
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Figure 3.11. Effect of filtering

that the system is expected to lose stability well before quantization effects could be

observed. In practice, quantization limit can only be reached when a higher sampling

frequency is considered, in order to prevent actuator saturation. To experimentally

verify this observation, we increased the sampling frequency to 10 kHz which made it

possible to set higher virtual stiffness values than in the experiments reported above.

With this, the maximum renderable stiffness before experiencing limit cycle oscilla-

tions due to quantization was found at kp = 50 KN/m. This limit is clearly outside of

the reachable impedance range in our experiments due to the presence of structural

flexibility.

3.3 Unilateral Wall

Understanding the effect of the human operator is important in experimental

validation with real operating conditions. Another set of experiments were conducted

to study effects of human operator on haptic system dynamics in more detail. In this

case, a unilateral virtual wall is considered in the experiments. A human operator

was interacting with this virtual wall by touching the wall and trying to keep the
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contact sustained. Whenever this was not possible the measurements were considered

unstable. These experiments are summarized and compared to the previous results in

Fig. 3.12. The points of the measured stability boundary are shown by solid squares.

In this set of experiments two subjects participated. Each experimental measurement

point was obtained via 4−5 trials. The deviations due to different subjects and their

strength of grasp are indicated by bars around these points.

Figure 3.12. Effect of the human operator

It can be seen, that the human operator can stabilize the virtual contact. The

experimentally obtained stability chart is considerably larger compared to the case

without human. A significant qualitative difference is that the lower bound is located

in the negative virtual damping domain and it is no longer linear. However, we can

also see that the nature of the dynamic behaviour is reasonably well-captured by the

two-DoF flexible model. The shapes of the two areas are very similar. Also, the

two-DoF model gives more conservative results as the human operator enlarges the

stable domain via adding more damping and also probably actively compensating for
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instabilities. To study these effects, a simple model of human operator will be defined

here and the resulting stability chart will be compared to the experimental results.

3.3.1 Human Model. The force exerted by the human operator is often

characterized by series of linear impedance elements in the rendered direction (Hogan,

1989; Haddadi, 2011; Speich et al., 2005). To include the effect of human operator in

the model, an inertia element is considered representing the hand/arm model which is

attached to the inertia reference frame through the stiffness and damping representa-

tion of the hand/arm. This model is linked to the reference point of the haptic device

via stiffness and damping elements representing the grasp properties. This five pa-

rameter arm/hand linear impedance model together with the two-DoF flexible model

of the device is shown in Fig. 3.13. This model of the human operator’s hand/arm

introduces one additional DoF which together with the device leads to a three-DoF

haptic system model. The dynamic equations of this model can be written as

Wrẍ + Bẋ + Kx = sν (3.23)

where,

Wr =


me1 0 0

0 me2 0

0 0 mh

 , B =


b+ bc −b −bc
−b b 0

−bc 0 bc + bh

 , K =


ke + kc −ke −kc
−ke ke 0

−kc 0 kc + kh


(3.24)

and x = [x1, x2, xh]
T, sν = [0, λ, 0]T, and mh, kh and bh correspond to the human

hand/arm mass, stiffness and damping properties, kc and bc are associated with the

stiffness and damping properties of the grasp. The damping effect of the device

is represented by b. Stability analysis of this model can be carried out similar to

what was explained for the two-DoF flexible model in (3.2). The parameters of the

arm are considered as mh = 0.8 kg, kh = 580 N/m and bh = 5.5 Ns/m. these

parameters give typical representation of human hand/arm impedance as reported

in (Hogan, 1989). The parameters of the firm grasp of human in this experiment
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is selected as kc = 10000 N/m and bc = 5 Ns/m. Ref. (Fu and Cavusoglu, 2012)

provides similar human model parameters for the grasp except the grip stiffness kc.

The value selected here for kc is based on the study reported in (Perez-Gonzalez

et al., 2013), where the grip stiffness is directly measured at the phalanges of the

human hand at grip forces in the range of 6 − 7N. The grip stiffness is proportional

to the grip force (at the distal phalanges) and has intrinsic and reflexive components,

where the reflexive part involves the time delay of the human sensory system (Perez-

Gonzalez et al., 2013). These additional time delay effects are not included in the

model here, but they can also have important influence on the dynamics of the haptic

system. In addition to these passive impedance parameters of the human-machine

interconnection, a damping coefficient of 7.5% is assumed for modelling the effect of

the damping of the structural dynamics of the haptic device.

Figure 3.13. Illustration of a haptic system model using a one-DoF human
operator representation

The resulting stability chart is shown in Fig. 3.12 and referred to as the three-DoF

model with human grasp.

The results presented suggest that the passive arm and grasp dynamics of the

human operator has a relatively small effect on the stability of the haptic device in

the presence of structural flexibility.

The larger stable domain is mainly the consequence of the assumed increased

structural dissipation and the active human operator behaviour to compensate for

instabilities. In case of high virtual damping, the experimental results with and with-

out the human operator are very close. For low virtual damping values the difference

is significant. This is an indication that the human operator has different dynamics
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in these regions. The subjects in the experiments could shape their impedance char-

acteristics such that they stabilized the interaction with an otherwise highly unstable

virtual wall. This is the case when a human is interacting with low-frequency insta-

bilities. However, human cannot react to the vibrations at high frequency. In the

high-frequency region, the difference between the numerical results and experimen-

tal measurements can be due to the damping model used to represent the physical

dissipation of the haptic device. It is important to note that in this high-frequency

region, nonlinear models for damping may better match the experimental measure-

ments. Based on these observations one may conclude that the human operator is not

necessarily passive in all the possible interaction scenarios, which is also supported by

observations in (Diolaiti et al., 2006). In the lower frequency range, the human can

actively compensate for instabilities and have variable and/or non-linear impedance.

While the passive physical damping of the operator is important, it cannot explain

the stable operation at high negative virtual damping values. The operator must

compensate actively in that range. By analyzing the effect of human grasp on two

different haptic devices, it was found in (Speich et al., 2005) that the human-machine

interconnection might change the system dynamics. It is concluded that some devices

are not sensitive to the human effects, while in other cases an extra resonant peak

may appear in the system response. In our experiments we could observe a simi-

lar behaviour when out-of-plane forces were applied by the human operator which

pre-stressed the elements of the capstan drive. This may indicate nonlinear spring

characteristics and/or unmodelled, out-of-plane flexibility which cannot be directly

measured until the device is built.

(Hulin et al., 2008) concludes that all the three elements of a linear mass-spring-

damper human model has stabilizing effects in impedance type haptic devices. In fact,

as it will be shown later, the stiffness of the operator slightly reduces the physically

meaningful (positive) domain of virtual wall parameters. This reduction of stable

domain is compensated by the damping and the added effective mass of the human

operator.
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As we can also conclude from the analyses in this chapter, the human operator

can have different dynamics in the space of virtual environment parameters. The

human operator can be active and change his/her impedance to stabilize an unstable

virtual interaction, while cannot react to high-frequency vibration.

Therefore, new devices require proper structural design, and sufficient conser-

vatism is required in the analysis to avoid unexpected instability due to interaction

with the human operator.
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CHAPTER 4

Haptic System Analysis

Two simplified single-DoF models were developed in Chapter 2 for haptic interaction

with a single rendered direction. One when rigid-body model is considered and the

other when structural flexibility is considered. In this chapter, these simplified models

are used for more detailed parametric analysis. Closed-form conditions are defined for

the stability of the haptic systems as functions of the system parameters. Stability

results in the literature of haptic rendering are then reviewed for comparison with the

conditions derived in this chapter.

4.1 Rigid-Body Model

The dynamic equation of the rigid-body model was developed in Chapter 2 as

meẍ = sh + sdr + λ (4.1)

As mentioned before in Chapter 3, considering the case where the human operator

is not in sustained touch with the virtual environment brings conservativeness into

the results, which corresponds to the worst-case scenario. In this model one can

consider only the dissipation from the human force representation, which can be

lumped together with the representation of the device damping. Considering viscous

damping leads to

sh + sdr = −bẋ (4.2)
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With this assumption, the model in (4.1) forms a mass-damper model. This is the

model most investigated in the literature. For example, (Colgate and Schenkel, 1997)

provides analytical conditions for the passivity of such a model and compares them to

numerically obtained stability results. We note that here we obtained the model as a

subcase of the general model framework. The terms of this simple model are connected

to the physical parameters of the overall haptic system. Employing representation

(2.36) for the virtual interaction force, the dynamic equation in the rendered direction

can be written in the piecewise linear form

meẍ+ bẋ = λ, , t ∈ [tj, tj+1)

with λ = (−kp −
kd
∆t

) xj +
kd
∆t

xj−1

(4.3)

This model was analyzed in Chapter 3. The transition matrix L corresponding to

the discrete mapping is developed in (3.16). To ensure stability, as discussed in

Chapter 2, the spectral radius of the transition matrix must be equal or less than

unity, i.e., all the eigenvalues must lie inside the unit disk of the complex plane. To

obtain stability conditions in closed-form, it is advantageous to map the unit disk

into the left half of the complex plane via the Moebius (bilinear) transformation.

This way the Routh-Hurwitz criterion (Appendix A) can be directly applied to the

transformed characteristic polynomial to analyze stability. Based on that and by

using the Moebius transformation, the transformed characteristic polynomial of the

transition matrix L can be obtained as

p3(σ) =
3∑
i=0

µiσ
i (4.4)

where,

µ3 = εβp

µ2 = 2εβd− 2εp− εβp+ 2p+ 2εβ2

µ1 = 4d− εβp+ 4β − 4εβd− 4εd

µ0 = 2εp− 2εβ2 + 2εβd+ εβp+ 4εd+ 4β − 4d− 2p

(4.5)
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The Routh-Hurwitz criterion can be directly applied to this polynomial. Based on

that to ensure stability, several conditions have to be simultaneously satisfied as

µi > 0, i = 1, 2, 3, and ∆2 = µ1µ2 − µ3µ0 > 0 (4.6)

which results in the requirement of the dimensionless virtual stiffness to be positive,

and the stable region of virtual wall parameters are bounded by a domain which in

the p− d plane can be described in the form

(1− ε)pd+ εβd2 + βp+
εβ2(ε+ εβ − 2)

ε+ εβ − 1
d− εβ3

ε+ εβ − 1
= 0 (4.7)

Considering the p−d plane, the general equation of a conic section can be written

as

appp
2 + 2apdpd+ addd

2 + 2bpp+ 2bdd+ c = 0 (4.8)

and if condition a2
pd − appadd > 0 is satisfied, then (4.8) is a hyperbola. For the

equation in (4.7), where app = 0, this condition is true for any apd values. This shows

that the domain bounded by (4.7) is a hyperbola. Based in (4.7) and by expressing

p, after some simplifications, one can arrive to

0 < p <
εβ(d+ β)(β + d(1− ε+ εβ))

(εd− d− β)(1− ε+ εβ)
(4.9)

and the maximum point of this hyperbola boundary is at

pmax =
(1 + β)2β2ε2/(ε+ εβ − 1)

ε+ εβ − 1 + 2
√
β(ε+ εβ − 1)

(4.10)

d(pmax) =
β(1− εβ)

ε+ εβ − 1 + ε
√
β(ε+ εβ − 1)

(4.11)

For low virtual wall impedances the stable domain is approximately bounded from

below by a tangent line at p = 0 as

d=
εβ(1 + β)

(ε+ εβ − 1)p−β (4.12)
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Figure 4.1. Stability charts: lumped mass model with damping

As an example, the corresponding stability chart with β= 0 and β= 0.2 are given

in Fig. 4.1. For the case of β = 0.2, the rightmost point of this boundary, indicated

by point B, and the tangent line at low impedances is also shown in the figure.

When β tends to zero, the corresponding transition matrix can be obtained by

applying the limit cases as

lim
β→0

ε= 1 and lim
β→0

1− ε
β

=
1

2
(4.13)

in (3.16). This leads to the derivation of the condition corresponding to the physically

undamped model in (2.42) with sdr = 0, as

0 < p <
2d

d+ 2
(2− d) (4.14)

Searching for the rightmost point of this boundary one can obtain the maximum

dimensionless virtual stiffness as pmax = 12− 8
√

2 at d(pmax) = 2(
√

2−1) (see point A

in Fig. 4.1), and for p = 0, the maximum virtual damping as dmax = 2.
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It should be noted that the stability conditions and the critical points of the

stability boundaries derived above in equations (4.9) to (4.14) are in terms of di-

mensionless parameters of the virtual wall. However, for practical application, these

conditions can be obtained in terms of physical parameters by substituting he defini-

tion of these dimensionless parameters described in Chapter 3. The resulting stability

conditions embed mechanical properties of the haptic system, which are obtained from

the overall dynamics representation of the whole system.

One can compare the resulting stability conditions with the passivity condition in

the haptic system literature. Consider the passivity condition proposed in (Colgate

and Schenkel, 1997) as

d < β − 1

2
p ⇔ kd < b− kp∆t

2
(4.15)

This domain, where the passivity requirement is satisfied, is shown in light gray area

in Fig. 4.1. Compared to the presented maximums at points A and B, the rightmost

point of the shaded domain i.e., p = 2β, d = 0, indicates the maximum virtual

stiffness satisfying the passivity condition. This can illustrate the conservativeness

of the proposed passivity condition compared to the stability conditions developed

above.

We can consider the tangent line of the stability boundary for low virtual stiffness

(and damping) values in (4.12). One can take the limit as

lim
β→0

εβ(1 + β)

(ε+ εβ − 1)
=

1

2
(4.16)

In this case, the slop of the tangent can be approximated with a constant value of

1/2, which results in the simple, linearized stability condition as

d+ β >
p

2
⇔ kd + b >

kp∆t

2
(4.17)

Condition (4.17) was also reported earlier in (Gil et al., 2004). However, this

condition is only valid for a limited range of virtual stiffness and damping, and does

not provide any information on the characteristic points of the stability boundary for
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higher virtual wall stiffness and damping. Compare to the stability conditions pre-

sented in equations (4.9) to (4.14), the linearized condition in (4.17) is a conservative

stability condition. This condition has been the focus of the analysis in (Gil et al.,

2004; Minsky et al., 1990) because considering the physical parameters of available

haptic devices and the usual 1 ms sampling time, actuator saturation would occur

before one would need to consider the actual, non-linear stability boundary.

The general results provided here can give important insight for the design of

new devices, and have theoretical importance in comparing the stability of the mass-

damper model to other models. Later it will be shown that when filtering and/or

flexibility need to be considered linearized conditions only hold for a limited range of

virtual wall parameters, and the effective mass and stiffness play an important role

in system stability.

4.1.1 Effect of Computational Delays. Time-delay is generally an impor-

tant phenomena that significantly affects haptic systems. For example, filters can

usually introduce considerable delay effects. To investigate the effects of time-delay

we consider again the rigid body model which is interacting with a single virtual wall

without sustained human touch. In the following analysis we neglect the physical

damping and focus on the destabilizing effect of computational delays.

To consider the time delay, a new state variable can be introduced which corre-

sponds to the state of the system at the delayed time instant. However, this increases

the size of calculation. Another way to account for the time delay is to consider a

unit delay z−1, which ensures uniformly timed actuation. When the time delay is

longer (e.g. due to communication channel) it is usually just approximated as an

integer multiple of the sampling time, i.e., tdelay = l∆t, l= 0, 1, . . ., where l is the

delay parameter. Employing representation (2.36) for the virtual interaction force,

the dynamic equation of the rigid-body model described in (2.42) with the above
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assumptions can be written as

meẍ = λ, , t ∈ [tj, tj+1)

with λ = (−kp −
kd
∆t

) xj−l +
kd
∆t

xj−l−1

(4.18)

Stability conditions of this model can be developed by constructing the discrete map-

ping in closed-form following the process described in Sec. 3.2.3. For this purpose,

dynamic equation (4.18) can be written with dimensionless coefficients as

x′′(T ) = (−p− d)xj−l + d xj−l−1 , T ∈ [j, j + 1) . (4.19)

The coefficient matrices in state-space representation of (4.19) take the form

C =

 0 1

0 0

 , D =

 0 0

(−p− d) d

 (4.20)

In order to keep track the delayed positions during the piecewise solution of (4.19), one

has to introduce an extended discrete state vector as z = [x′j, xj, xj−1 , . . . , xj−l−1]T.

With this, the transition matrix L can be obtained in the form

L =



1 0 0 0 . . . 0 0 −p− d d

1 1 0 0 . . . 0 0 −p+ d

2

d

2

0 1 0 0 . . . 0 0 0 0

0 0 1 0 . . . 0 0 0 0

0 0 0 1 . . . 0 0 0 0
...

...
...

. . .
...

...
...

0 0 0 0 . . . 1 0 0 0

0 0 0 0 . . . 0 1 0 0

0 0 0 0 . . . 0 0 1 0



(4.21)

To ensure stability, as explained in Chapter 2, the eigenvalues of this matrix

must lie inside the unit disk of the complex plane. To obtain stability conditions

in closed-form, it is advantageous to first construct the characteristic polynomial
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of the transition matrix L. For this purpose, with the indicated partitioning, the

characteristic polynomial can be expressed as

det (L− Iλ) = det

L1 L2

L3 L4

− λI

 =

det(L4 − λI)× det
(
(L1 − λI)− L2(L4 − λI)−1L3

) (4.22)

where I denotes different, appropriately sized identity matrices. By considering the

special structure of L, it can be shown that

det(L4 − λI) = (−λ)l+1 (4.23)

(L4 − λI)−1L3 =


0 1/λ

0 1/λ2

...
...

0 1
/
λl+1

 (4.24)

(L1 − λI)(−L2(L4 − λI)−1L3) =

 1− λ d

λl+1
− p+ d

λl

1
d

2λl+1
− p+ d

2λl

 (4.25)

Then substituting these results into (4.22), the generic characteristic polynomial reads

pl(z) = zl+3 − 2zl+2 + zl+1 +
p+ d

2
z2 +

p

2
z − d

2
(4.26)

For analyzing the effect of delay, two cases will be considered below. First the

case without delay (l= 0) is briefly summarized, then the stability of the model with

one sampling time delay (l= 1) is discussed.

For the case when there is no delay in the system, the polynomial in (4.26) is

considered for l = 0. By applying the Moebius transformation, the transformed

characteristic polynomial can be obtained as

pl=0(σ) = pσ3 + 2dσ2 + (4− p− 2d)σ + 4 (4.27)
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4.1 RIGID-BODY MODEL

Then the Routh-Hurwitz criterion (Appendix A) can directly be applied to this poly-

nomial to analyze its stability, which results in satisfying conditions as

p > 0, d > 0, and p < 4− 2d

D2 =

∣∣∣∣∣∣ 2d 4

p 4−p−2d

∣∣∣∣∣∣ = −2(d+ 2)p+ 4d(2− d) > 0
(4.28)

which implies the condition

p <
2d

d+ 2
(2− d) (4.29)

This is the same condition as in (4.14) which was derived for the analysis of rigid-body

model when β tends to zero. This boundary is shown in Fig.4.2.

When the processing delay is one sampling period the transformed characteristic

polynomial is

pl=1(σ) = p σ4 + (2d− p)σ3 − (4d+ p− 4)σ2 + (2d+ p+ 8)σ + 4 (4.30)

The application of the Routh-Hurwitz stability criterion shows that the virtual stiff-

ness has to be positive and the stability is limited by the positiveness of the third

Hurwitz determinant as

∆3 =

∣∣∣∣∣∣∣∣∣
2d− p 2d+ p+ 8 0

p −4d− p+ 4 4

0 2d− p 2d+ p+ 8

∣∣∣∣∣∣∣∣∣ =

− 16p2 − 8(d2 + 12)p− 16(d3 + 4d2 − 4d)

(4.31)

Thus the stability boundary for physically meaningful (positive) virtual stiffness val-

ues reads

p <
1

4

(
−12− d2 + (2 + d)

√
36− 20d+ d2

)
. (4.32)

The resulting dimensionless stability boundary corresponding to this model is shown

in Fig.4.2 and compared to that of obtained for the case without time delay. The

analysis of this boundary gives the maximum virtual wall impedances as pmax≈ 0.686,
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Figure 4.2. Dimensionless stability charts

d(pmax)≈ 0.828, and dmax = 2. The maximum renderable stiffness is considerably

smaller than that of without delay.

4.2 Model with Structural Flexibility

As was discussed before the rigid-body model cannot be representative in the

entire parameter region. In many cases, the structural flexibility of the device needs

to be considered.

Let us consider the two-DoF model in (2.43) which was developed in Chapter

2, and validated experimentally in Chapter 3. As was discussed in Chapter 2, this

model can be approximated with a single-DoF flexible model considering the dominant

characteristic frequency of the system. This model is used in this section for derivation

of closed-form parametric stability conditions. The usability of such conditions will

be discussed later in this chapter.
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We note that such a flexible model can also represent the human impedance.

Using a single-DoF model, a detailed semi-analytical study on the effect of the im-

portance of the human operator is presented in (Hulin et al., 2008). In that work, it

is concluded that the stiffness of the human operator is generally in a range that does

not influence much the stable domain. Here, the stiffness is associated with structural

flexibility and the interpretation of the model is different. We focus on the effect of

flexible components with relatively high stiffness, and provide new analytical results

that are valid for both cases, when flexibility originates from structural elements or

the human operator.

Let us consider the model in (2.44). Employing the representation in (2.36) for

virtual interaction forces and using the backward differentiation formula for velocity

approximation the dynamic equation of this model becomes

me2ẍ2(t) + kex(t) = λ, , t ∈ [tj, tj+1)

with λ = (−kp −
kd
∆t

) xj−l +
kd
∆t

xj−l−1

(4.33)

where parameters me2, ke are effective mass and stiffness, which were interpreted

in more detail in Chapter 2. For development of closed-form stability conditions,

constructing the discrete mapping in closed-form is required. For this purpose the

process described in Section 4.1 is followed here for this model. Scaling the time by the

sampling frequency, equation (4.33) can be rewritten with dimensionless coefficients

as

x′′(T ) + Ωnx
′(T ) = (−p− d)xj + d xj−1 (4.34)

where Ωn =
√

ke
me2

∆t is the dimensionless natural frequency of the system.

The coefficient matrices in state-space representation of (4.34) can be obtained

as

C =

 0 1

−Ω2
n 0

 , D =

 0 0

−p− d d

 (4.35)

In this case, the discrete state of the system can be characterized by the higher

dimensional state vector zj = [x′j, xj, xj−1]T. With this, the mapping zj+1 = Lzj has
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the form

L =


cos Ωn −(d+ p+ Ω2

n) sin Ωn

Ωn

d sin Ωn

Ωn

sin Ωn

Ωn

cos Ωn−
(d+ p) (1− cos Ωn)

Ω2
n

d(1− cos Ωn)

Ω2
n

0 1 0

 . (4.36)

The same transition matrix can be obtained using the two-Dof flexible model in (3.2),

if rm = rk → 0 and me1 →∞.

The characteristic polynomial of (4.36) can be given by

pz = −z3 − d+ p− (d+ p+ 2Ω2
n) cos Ωn

Ω2
n

z2 − p+ Ω2
n − p cos Ωn]

Ω2
n

z +
d (1− cos Ωn)

Ω2
n

,

(4.37)

and using the transformation z = (σ + 1)/(σ − 1), it can be rewritten as

pσ = µ3σ
3 + µ2σ

2 + µ1σ + µ0 (4.38)

where

µ3 =
2 (p+ Ω2

n) (1− cos Ωn)

Ω2
n

,

µ2 =
2 (2d+ Ω2

n) (1− cos Ωn)

Ω2
n

,

µ1 =
2 (−2d− p+ Ω2

n + (2d+ p+ Ω2
n) cos Ωn)

Ω2
n

,

µ0 = 2(1 + cos Ωn) .

(4.39)

To ensure stability, based on the Routh-Hurwitz criterion, conditions µi> 0, i= 0, 1, 2, 3

and ∆2 =µ1µ2−µ3µ0> 0 has to be simultaneously satisfied. From µ3> 0 it follows

that p>−Ω2
n for any value of d, which boundary is a vertical line in Fig. 4.3. Simi-

larly, µ2> 0 implies that d>− Ω2
n/2, and µ1> 0 results in

d< − 1/2
(
p− Ω2

n

/
tan (Ωn/2)2 ) (4.40)
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And finally condition ∆2 > 0 can be written as

∆2 =
16 sin

(
Ωn

2

)2

Ω4
n

(
−2d2 − d p− Ω2

n p + d
(
2d+ p+ 2Ω2

n

)
cos Ωn

)
> 0 (4.41)

Based on (4.8) and the definition described for the equation of a hyperbola, it can

Figure 4.3. Stability charts: mass-spring model without damping

be seen that the equation in (4.41) is a hyperbola. The solution of ∆2 = 0 for p> 0

gives a limit as

p <
−2d2(1− cos Ωn) + 2dΩ2

n cos Ωn

d(1− cos Ωn) + Ω2
n

. (4.42)

The corresponding boundaries described above intersect the line p = −Ω2
n at the

same point as the hyperbola in (4.41), and result in the stability boundary as

−Ω2
n < p <

−2d2(1− cos Ωn) + 2dΩ2
n cos Ωn

d(1− cos Ωn) + Ω2
n

. (4.43)
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By searching for the maximum dimensionless virtual stiffness value that satisfies this

condition one can obtain

pmax =
4Ω2

n

(
1−
√

2 cos
(

Ωn

2

))
+ 2Ω2

n cos (Ωn)

1− cos (Ωn)
(4.44)

d(pmax) =
−Ω2

n

(
1−
√

2 cos
(

Ωn

2

))
1− cos (Ωn)

(4.45)

In addition, the maximum dimensionless virtual damping can be obtained by substi-

tution of p=−Ω2
n into (4.40) which results in

dmax = Ω2
n

/
(1− cos Ωn) (4.46)

The closed-form stability conditions in equations (4.43) to (4.46) make it possible

to investigate the effects of structural flexibility on the performance of haptic devices.

For values of the dimensionless frequency parameter Ωn∈ [0, π/2], the stable domains

are presented in Fig. 4.3. In this figure, the points with maximum stiffness are

also shown by crosses for different values of Ωn. The connecting continuous line is

plotted by using (4.44) and (4.45). It can be seen that for increasing values of Ωn

the maximum renderable stiffness is gradually decreasing, while at Ωn =π/2 (half

of the Nyquist frequency) the stable domain of physically meaningful virtual wall

parameters disappears. This shows that at frequencies higher than half of Nyquist

frequency, stable rendering of virtual environments is not possible. It can be seen from

this that the selection of physical stiffness such that the undamped natural frequency

matched the Nyquist frequency in (Colgate and Schenkel, 1997) is very conservative

and far from practical applications.

This analysis illustrates that the structural flexibility can seriously limit the sta-

bility of haptic systems. However, for the case when the flexibility corresponds to the

human representation, in the range of human impedance parameters, the Ωn is very

small and the stability boundary is close to the case Ωn = 0.

By limiting the further investigation to the physically meaningful positive domain

of virtual stiffness and damping and substituting the cosine function by its second
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order truncated Taylor series, the condition in (4.43) simplifies to

0 < p <
2d

d+ 2
(2− d− Ω2

n) (4.47)

Note that (4.47) with Ωn = 0 reduces to the stability condition for the rigid-body

model presented in (4.14). Based on (4.47) the stability condition for small virtual

damping values,i.e., d� 2 can be given as

d >
p

2− Ω2
n

⇔ kd >
kp∆t

2− Ω2
n

(4.48)

This linear stability condition is an important extension of (4.17) for the case when

structural flexibility needs to be considered. Note that in the derivation of this linear

condition, the effect of physical dissipation is neglected. Although its use is limited to

low virtual impedances, it shows that higher virtual damping is required to achieve

stability compared to the rigid-body case with perfect joints. It can be concluded

that the achievable maximum stiffness, and therefore the performance of haptic de-

vices with structural flexibility depends on the dimensionless frequency Ωn, which is

analytic function of system inertia, stiffness properties and the sampling time.

4.3 Practical Usability of Different Models

As we have seen, two simplified models allow for the derivation of closed-form

results and formulas that are analytic functions of the parameters of the system. Such

formulas can generally be helpful in several different aspects of haptic system analysis

and design. However, the practical usability, validity, and role of the supporting

simplified models need further consideration. Besides the representativeness of the

simplified models, another more fundamental question is whether a rigid body model

or a model with structural flexibility is the right representation for a haptic system.

Overall, we will consider that a haptic system representation that incorporates the

structural properties of the mechanical elements gives a more accurate description.

However, the rigid-body model results in a simpler representation, has its own validity,

and can also be applicable in some situations. We also note here that most haptic
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analysis studies use a simple point-mass model, which, as was shown earlier, can be

derived with the assumption of a rigid body model.

The full, flexible model can be represented with (2.16) and (2.17) for haptic

equilibrium. As discussed, the modified model based on the two generalized inertia

representation (2.35) can represent the dynamics and may be used to replace the full

flexible model. If we have pure force or moment rendering only then this leads to the

two-dof model of (2.43).

For further illustration here, where needed, we will also use the parameters of

the experimental system used in Chapter 3. The various models lead to the stability

charts shown in Fig. 4.4. This figure includes results from four models: the 2DoF

flexible model with physical damping, the 1DoF flexible model (2.44) with physi-

cal damping, the 1DoF flexible model without damping, and the 1DoF rigid-body

model without damping. For the latter two models the closed-form analytical re-

sults were obtained in this chapter. For the first two models with physical damping

the analysis was carried out numerically in Chapter 3. The applicability of different

models primarily depends on the dominant vibration frequency of the device-virtual

environment system. When this frequency is far below the first natural frequency

of the device then the rigid body model approximates well the physical system. For

higher virtual impedances, however, the dominant frequency may be close to the first

natural frequency of the haptic device. In these cases structural flexibility has to be

considered. This is illustrated in Figs. 4.4 for a representative set of parameters. This

can also be illustrated via Fig. 3.8 in Chapter 3, which shows how the ratio between

the dominant vibration frequency and the natural frequency changes. This separates

the stability boundary into two parts. The part of the stability boundary with low

dominant vibration frequencies is represented by the curve that can be obtained based

on the rigid body model with no damping (see Fig. 3.8 ). As was discussed in Chap-

ter 3, this part is very close to a straight line. For the other part of the stability

boundary characterized by high dominant vibration frequencies, the curve obtained

using the single-DoF flexible model with damping gives good representation. The
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overall behaviour for the entire stability domain is well-captured by the 2DoF flexible

model with damping that was obtained considering the model reduction described in

Chapter 2.

Figure 4.4. Stability charts: mass-spring model without damping

As can be seen in Fig. 4.4, the single-DoF flexible model with no damping, which

was analyzed to obtain closed-form formulas, gives more conservative results for the

stable area. However, this can give a useful representation for designing haptic sys-

tems as conservativeness may also be desirable. Generally, it can be required to have

settings and parameters that ensure functioning inside this area. The way how pa-

rameter changes influence this domain can give important information for design and

operation. On the other hand, for lower values of virtual damping the rigid-body

model can also be used.
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CHAPTER 5

Performance Measures in Haptics and

Effects of Design Parameters

Design and performance evaluation of haptic devices are more challenging compared

to other robotic manipulators. In this chapter, closed-loop performance measures

are developed in terms of mechanical design parameters of the system for haptic

application. These indices measure the renderable virtual environment impedance

range and the fidelity of the force feedback. These parametric performance measures

are compared with those of traditionally used in design of robotic mechanisms and

their properties are discussed for applications in haptics.

5.1 Common Performance Measures in Robotic Mechanisms

Mechanical design of a haptic interface is a challenging problem in general. This

is because it is important for a haptic device to be light-weight, and stiff at the same

time, while being stable in interaction with stiff virtual environments. Initial design

of a haptic device includes the basic requirements which are typically considered in

design of robotic systems. However, optimization of mechanism parameters can be

done based on requirements of haptic application, such as workspace size, static and

dynamic load requirements. There are several studies in the literature dedicated to

the optimization of mechanism parameters of haptic devices (Hayward et al., 1994;
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Vlachos et al., 2004; A. Frisoli and Salsedo, 2007; S. Li and Bergamasco, 2010; Khan

et al., 2011; Gil et al., 2012). This was discussed in more detail in Chapter 1. Most

of the performance indices in these studies are related to kinematic and dynamic

dexterity considering the Jacobian and inertia matrices of the mechanism, which

depend on the mechanical design parameters of the system.

A frequently used performance index in robotic mechanisms is the manipulability.

Manipulability is proposed in (Yoshikawa, 1985) as a measure of easiness of changing

arbitrarily the position and orientation of the end-effector, and it can be defined as

w =

√
det(JJT) (5.1)

where J is the Jacobian matrix of the mechanism, and w is proportional to the

volume of the manipulability ellipsoid. It is shown in (Yoshikawa, 1985) that the

volume of the force ellipsoid is inversely proportional to w. It can be shown that

the manipulability and force ellipsoids have the same principal axes and their radii

in each principal axis are inversely proportional. This implies that the direction in

which a large force can be generated at the end-point via joint torques is the one

along which manipulability is low. In haptic applications, this corresponds to the

case of rendering virtual environments with high stiffness.

Another frequently used performance measure is the kinematic isotropy. It is

argued that the concept of kinematic isotropy over a given workspace is a good mea-

sure of design quality for many applications where high accuracy at low velocity is

required (Stocco et al., 1997), this is the case in haptic applications.

When the condition number of the Jacobian matrix reaches the minimum value

of unity, the manipulator is called isotropic (Salisbury and Craig, 1982), and it can

be defined as

κ(J) = ‖J‖‖J−1‖ (5.2)

where using the 2-norm results in the ratio between the largest and the smallest singu-

lar values of the Jacobian matrix. However, the Frobenius norm has the advantage of
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resulting in an analytic function. The kinematic isotropy of serial and parallel manip-

ulators are studied in (Angeles and Lopez-Cajun, 1992) and (Zanganeh and Angeles,

1997), respectively. The index for kinematic isotropy has been considered in haptic

device design for position accuracy, and minimization of joint torque distortions when

transferred from actuators to the human operator at the end point (A. Frisoli and

Salsedo, 2007; S. Li and Bergamasco, 2010; Khan et al., 2011).

For higher precision manipulation like in haptic applications it is also necessary

to consider the dynamics of the device in the design. Several measures of the dynamic

performance of robotic systems have been introduced in the literature. Dynamic ma-

nipulability was introduced originally in (Yoshikawa, 1985) to measure the capability

of the device in changing acceleration in different directions in the workspace via

joint actuators. By considering the realizable end point accelerations, the dynamic

manipulability can be defined as

wd =

√
det(J(MTM)−1JT) (5.3)

where M is the inertia matrix of the device represented in the joint-space. In haptic

applications, the dynamic manipulability measure can be related to the capability of

the haptic device of rendering virtual environments through joint actuators.

The concept of dynamic isotropy (Ma and Angeles, 1993) may also be applied. A

mechanism is said to be dynamically isotropic in a configuration at which the gener-

alized inertia matrix of the device is isotropic. This can be quantified by measuring

the condition number of the inertia matrix represented in a coordinate system which

can be defined based on the analysis. Isotropy of the inertia matrix of the device has

advantages such as possible decoupling of the dynamics of the system. This can result

in decoupled inertia torques, and weak joint coupling, which may be advantageous in

terms of control and dynamic analysis of the system.

The performance indices discussed so far are local measures of kinematic and

dynamic performance. Therefore, they are configuration dependent. Global measures

are presented in the literature to describe the behaviour throughout the workspace.
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An example of this is shown in (Gosselin and Angeles, 1991) by integrating the local

performance measure over the workspace. Another approach is presented in (Stocco

et al., 1997) which defines a global isotropy index. In such approaches, normalization

of the design matrix is necessary to make the different entries homogeneous in physical

units.

5.2 Closed-Loop Performance Measures in Haptics

In haptic applications, considering the closed-loop performance of the system is

of great importance. There is no agreement on which performance measure is most

appropriate to be considered for haptic applications (Hayward and Astley, 1996).

As discussed in Chapter 1, most of the closed-loop haptic performance indices are

measurement based rather than being model based. However, the relation between

mechanical parameters and haptic performance is important for design of new haptic

devices or optimizing the existing interfaces.

The results of the dynamic modelling and parametric analysis conducted in the

previous chapters are employed here to develop closed-loop performance measures

reflecting the effects of mechanical design parameters. Quantitative measures of the

stable virtual impedance range and fidelity of the virtual interaction force are devel-

oped for both rigid-body and flexible models.

5.2.1 A Measure for the Range of Stable Virtual Impedances. The

closed-loop performance of haptic interfaces, which includes the effect of digital con-

trol realization, can be quantified via stability conditions. We place emphasis on the

characterization of the maximum achievable stiffness in the view of stability of the

digitally controlled system. As discussed before, the interaction with a virtual wall

can be considered as a typical example for haptic system analysis. It was shown in

Chapter 2 that different models can be representative depending on the operating

conditions.

When the rigid-body model in (2.42) is employed, by eliminating the effect of

physical damping and without the human operator’s sustained touch, i.e., fd = 0
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and fh = 0, equation (4.14) gives a representative yet slightly conservative stability

condition. It was also shown in Chapter 3 that the physical damping and the human

operator can contribute to the stabilization of the system. However, the focus here

is to investigate the effects of mechanical design parameters of the device on the

performance. Conservativeness on the other hand may be desirable in the design of

haptic devices.

The condition in (4.14) results in a boundary in the space of dimensionless vir-

tual environment parameters p and d, where pmax = 0.686 and dmax = 2. Considering

these, the maximum stable virtual stiffness and damping in terms of physical param-

eters can be obtained as

kp,max = 0.686
me1

∆t2
, and kdmax = 2

me1

∆t
(5.4)

where me1 is the effective mass of the device interpreted for the rendered directions

as described in Chapter 2. This shows that for the case when the rigid-body model

is representative, the maximum stable virtual environment parameters have relation

with the effective mass, and the sampling time of the system. The effective mass, as

can be seen in (2.28), is obtained via considering the inertia and Jacobian matrices

of the system. Therefore, the maximum renderable virtual environment parameter

can be changed based on the selected architecture of the mechanism, dimensions, and

material used for the device.

The stable area of dimensionless virtual environment parameters can be obtained

by integrating the area bounded by (4.14), with integration limit d = 0 to d = 2.

This area can specify the range of all stable virtual environment parameters which

can be rendered by a haptic device, when the rigid-body model is representative. This

can be considered as a performance indicator containing information similar to that

of the z-width (Colgate and Brown, 1994). The resulting index in terms of physical

parameters of the system can be obtained as

ws = 0.91
m2
e1

∆t3
(5.5)
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For low virtual damping, the linear condition in (4.17) can be used. In this case,

the maximum achievable stiffness is limited by the physical and virtual damping, and

the actuator saturation. The inertia of the system has little or no influence on the

stability. Based on this, mechanical design parameters cannot influence the stability

of the haptic system in this range of applications.

In the case when filters are employed in haptic rendering, as shown in Chapter 3,

the delay introduced by filters can considerably decrease the stable domain of virtual

environment parameters. The dynamics of the system in that case can be studied

by modelling the filter as an additional dynamic subsystem. However, this is not

the intention in this chapter, since the focus is on investigating effects of mechanical

design parameters. As a simplified solution, one can consider the model in (4.19)

for the case when rigid-body model with time delay is considered. For this case, one

sampling time delay is considered, as a very specific example of time delay, and the

stability condition was obtained in (4.32). This results in a stability boundary in

p-d plane with pmax = 0.144 and dmax = 0.828. These can be extended in terms of

physical parameters which results in

kp,max = 0.144
me1

∆t2
, and kd,max = 0.828

me1

∆t
(5.6)

This is similar to (5.4) with different coefficients, where the coefficients depend on the

time-delay. Although the stable domain in this case is much smaller than the case

with no delay, but still the maximum achievable virtual stiffness is governed by the

effective mass of the system at the point of contact with the virtual environment and

the sampling time.

When the structural flexibility of the device is taken into consideration, condition

in (4.43) has to be considered for positive virtual stiffness values. This condition forms

a hyperbola in the space of virtual environment parameters, while the maximum
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virtual stiffness and damping can be obtained as

kp,max = ke

[
4(1−

√
2 cos Ωn

2
) + 2 cos Ωn

1− cos Ωn

]

kd,max = ke∆t

[
cos Ωn

1− cos Ωn

] (5.7)

The corresponding area of the stable domain can be obtained as

ws =
m2
e2

∆t3
Ω4
n

sin(Ωn

2
)

[1 + 4 cos Ωn + cos 2Ωn − 4(1 + cos Ωn) ln(1− cos Ωn)] (5.8)

where me2 is the smaller effective mass of the model as defined in Chapter 2. The

conditions in (5.7) and (5.8) show that the closed-loop performance in cases where

the flexible model is considered can be specified via the dimensionless natural fre-

quency Ωn. As described in Chapter 4, the Ωn depends on the smaller effective mass

of the system, me2, the effective stiffness, ke, and the sampling time, ∆t. In case

of the experimental haptic device described in Chapter 3, the inertia and stiffness

properties of the actuator mechanisms define the smaller effective mass and the ef-

fective stiffness. Therefore, the selection of the actuator systems can have significant

effects. It is important to note that the Jacobian matrix of the device still appears in

interpretation of the effective parameters. This means that the kinematic parameters

of the device are still important in the design, where the Jacobian depends on the

physical dimensions and the configuration of the system.

5.2.2 A Measure for Fidelity. In this section, we look at the system from

a different perspective. Consider the common Kelvin-Voigt model based virtual wall

as a simple virtual environment. In terms of the mathematical formulation, this

is similar to a PD controller in motion control in robotics. However, there is a

fundamental difference. In motion control, the gains can be tuned to obtain a required

performance, while in haptics they carry physical meaning and refer to stiffness and

damping of a virtual wall or environment. In such a case, for stable rendering of a

specific virtual wall parameters, i.e., fixed values of P and D, tuning of the mechanical

design properties can be of interest.
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For the case when structural flexibility plays an important role in the behaviour of

a haptic device, the fidelity of the perceived force at the end point can become a critical

issue. This is because the vibration of the flexible parts can significantly influence

the force sensation. For this case, we can consider the single-DoF flexible model

represented in (2.44). The corresponding stability analysis is presented in Chapter

4. It is shown that, to ensure stability, all the roots of the characteristic polynomial

of the transition matrix (4.36) must lie within the unit disk of the complex plane.

It was discussed in Chapter 2 that in this case the system loses its stability when

the magnitude of one of the complex conjugate pairs of eigenvalues exceeds unity.

Therefore, the system loses stability with oscillatory behaviour. It is of interest to

identify how fast these oscillations decay. The fastest decaying transient vibration

can be obtained by the minimum spectral radius of the characteristic multiplier z in

(2.40). For this purpose, we can consider transformation z = ρz̃, where ρ ∈ [0, 1] is

the spectral radius. This transformation maps the unit disk to a unit circle in the

complex plane, which leads to

|z| < ρ←→ |z̃| < 1 (5.9)

and the characteristic polynomial in (4.37) can be rewritten as

p3(z) =
3∑
i=0

λi(ρz̃)i =
3∑
i=0

(λiρ
i)z̃i (5.10)

As described in Chapter 2, applying the Moebius transformation of z̃ = σ̃+1
σ̃−1

makes it

possible to apply the Routh-Hurwitz stability criterion, using which one can make sure

that the roots of the original characteristic polynomial are within a specific spectral

radius. In this case, the transformed characteristic polynomial can be written as

p3(σ̃) = (σ̃ − 1)3

3∑
i=0

(ρiλi)(
σ̃ + 1

σ̃ − 1
)i =

3∑
i=0

µ̃iσ̃
i (5.11)
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where the coefficients µ̃i depend on the system parameters and the spectral radius.

By factoring 1/Ωn for simplification purpose, these coefficients can be written as

µ̃3 = [ρΩ2
n(1 + ρ) + (1− ρ)(d(ρ− 1) + pρ)− (d(ρ2 − 1) + ρ(p+ ρp+ 2ρΩ2

n)) cos(Ωn)]

µ̃2 = [3ρ3Ω2
n − 3d(cos(Ωn)− 1)− ρ(p+ Ω2

n − ρ cos(Ωn)) + ρ2(d+ p− (d+ p = 2Ω2
n) cos(Ωn))]

µ̃1 = [−d(3 + ρ2)− ρ(p+ pρ+ Ω2
n + 3ρ2Ω2

n) + (d(3 + ρ2) + ρ(p+ pρ+ 2ρΩn)) cos(Ωn)]

µ̃0 = [d+ pρ− ρ2(d+ p) + ρΩ2
n(1 + ρ2) + ((ρ− 1)(d+ (d+ p)ρ) + 2ρ2Ω2

n) cos(Ωn)]

(5.12)

Based on the Routh-Hurwitz criterion, satisfying conditions µ̃i > 0, i = 0, ..., 3,

and ∆2 > 0 result in a boundary in p− d plane, which can be described in terms of

physical parameters as

c2x
2 + c1x+ c0 = 0 with x = cos

(√
k/me2∆t

)

c0 = kdkp∆tρ
2 + k2

d(1 + ρ2) + k∆t2ρ4(k + kp − kρ2)

c1 = −2k2
d − 2kd(kd + (k + kd)∆t)ρ

2 − k kp∆t2ρ4

c2 = kd(kd + (kd+ (2k + kp)∆t)ρ
2)

(5.13)

where, with a fixed virtual stiffness and damping value, the design parameters are

me2 and ke. Then considering the case when the effective mass can be changed

independently of the effective stiffness by design, me2 can be expressed as

m2 =
ke∆t

2

arccos

(
c1±

√
c2

1 − 4c0c2

2c2

) (5.14)

In order to obtain the fastest decaying vibration at the border of the sability domain,

spectral radius ρ should be minimized. Using (5.14) results in the definition of the

optimal spectral radius as

ρopt =
2
√

2
√
kekd∆t+ kdkp∆t√

4k2
d + 8kekd∆t+ 4kdkp∆t+ k2

p∆t
2

(5.15)
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Substituting the optimum spectral radius (5.15) in (5.14) results in the determination

of me2,opt at which the high frequency components optimally decay. This index may

be used as a measure for fidelity improvement of the force feedback. This can also

has positive effect on the accuracy of the velocity estimation.

5.3 Example of the Five-Bar Linkage Based Haptic Device

The experimental haptic device described in Chapter 3 (Fig. 3.1) is considered

for further analysis in this section. The parameters of the device are given in Table

3.2. This device was originally developed to satisfy global dexterity requirements

in the workspace. The intention here is to investigate effects of mechanical design

parameters on the performance indices described earlier.

The kinematic and dynamic manipulability, and the kinematic isotropy repre-

sentations can be obtained for this device. For the case of rigid-body modelling, M

and J are 2 × 2 joint-space inertia and Jacobian matrices of the device as described

in Appendix B. These indices are determined for the entire workspace of the haptic

device, and are presented in Fig. 5.1. It can be seen in this figure that the kinematic

isotropy is almost constant and close to unity in most of the workspace, where the

kinematic and dynamic manipulability are maximum. Dexterity of the device is low

at locations close to the workspace boundary.

In addition to these indices, the proposed closed-loop performance in terms of

impedance range for both rigid-body and the flexible models can be interpreted for

this device. The maximum virtual stiffness, kp,max, in (5.4) and (5.7); and the range

of stable virtual parameters, ws, in (5.5) and (5.8) can be used for the rigid-body

and flexible models, respectively. The resultant measures over the workspace of the

device are shown in Figs. 5.2 and 5.3 for rigid-body and flexible models, respectively.

It can be seen in these figures that changes of indices show similar characteristics

for both rigid-body and flexible models. However, these changes are in contrast with

dexterity measures as shown in Fig. 5.1. We discussed earlier that for the directions

along which the kinematic manipulability is higher, smaller end-point force can be
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Figure 5.1. Kinematic manipulability, w, dynamic manipulability, wd, and
kinematic isotropy, κ(J), over the workspace of the two-DoF experimental
haptic device

achieved via a set of constant joint torques. It can be seen that best performance in

terms of impedance range can be achieved at locations where the condition number

and manipulability are low. However, in design of haptic devices, higher dexterity of

the device is also of interest. In applications where rendering stiff virtual environment

is required, achieving both dexterity and high stable virtual stiffness is in contrast;

therefore, there should be a compromise between these performance requirements.
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Figure 5.2. Maximum virtual stiffness, kp,max, and stable area of virtual
parameters, ws, over the workspace of the rigid-body model of the haptic

device

Figure 5.3. Maximum virtual stiffness, kp,max, and stable area of virtual
parameters, ws, over the workspace of the flexible model of the haptic device

For better comparison of these measures, contour plots corresponding to the

manipulability, condition number of the Jacobian matrix and maximum renderable

virtual stiffness for the rigid-body model are shown in Fig. 5.4. In this figure, ma-

nipulability at w = 0.015 m2, kinematic condition number at κ = 1.3, and effective

mass me1 = 0.2 kg, which is an indicator of the maximum renderable stiffness in

rigid-body model (5.4), are selected for the contour plots. These values were selected

for the illustration purpose, and they correspond to the locations in the workspace

close to the reference configuration of the device as described in Chapter 3. The area

in the workspace satisfying the selected value of kinematic manipulability and condi-

tion number are shown via a light gray area with dash-dotted line, and dashed line,
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Figure 5.4. Contour plots of performance indices over the workspace

respectively. The area corresponding to the selected effective mass for the rigid-body

model is indicated via the dark-gray area with solid line. The area in the workspace

simultaneously satisfying the selected value of manipulability, condition number, and

the effective mass is shown by bold dotted line and is indicated as “common area” in

the figure. This area of the workspace corresponds to locations where high dexterity

and rendering stiff environment can be achieved at the same time. However, if a

stiff virtual wall is the main requirement, then maximizing the effective mass in the

rendered direction can be the main objective. This can be achieved either by design

optimization, or in case of a redundant/reconfigurable mechanism, by changing the

configuration of the mechanism for a certain workspace position.

5.3.1 Effects of Mechanical Design Parameters on the Impendence

Range. In the current design of the device, the distance between the axes of

the two driven joints is zero and cannot be changed (Fig. 3.2). We can consider a

modified design that is reconfigurable for different applications. This can be achieved

by introducing one more kinematic pair to assess the capability of changing the dis-

tance between the driven joints, indicated by parameter d in Fig. 5.5(a). For various

values of parameter d, the range of kp,max for the rigid-body and flexible models are
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(a)

(b)

Figure 5.5. Maximum virtual stiffness, kp,max, versus x for different values
of parameter d, (a) rigid-body and (b) flexible model
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shown in Fig. 5.5. For this purpose, values of d = −0.2m to d = 0.2m are considered.

The sign of parameter d corresponds to the direction in which the axis of the driven

joints are located with respect to each other ( see Fig. 5.5(a)). For each case, the

indices are determined at workspace points where −0.25 m < x < 0.25 m with a

fixed y-position at y = 0.25m. The configuration of the device corresponding to each

selected value of parameter d is given on top of the fig. 5.5(a) for the case where the

end-point is located at (x = 0 m, y = 0.25 m).

It should be indicated that for comparison reasons each curve is shifted by d/2 to

the centre in the x direction. The range of kp,max in the rigid-body model is symmetric,

while in the case of the flexible model is asymmetric. This is because the structural

properties of the device also show an asymmetric character, as discussed in Chapter 3.

This investigation shows that with the ability to change the operating configuration

of the device, we are able to achieve different values for maximum renderable virtual

stiffness, which can lead to different haptic performance in terms of impedance range.

This can also affect the uniformity of the performance over the workspace. As can

be seen, in both models, the case of d = 0m provides the most uniform behaviour,

but limited performance in terms of maximum renderable virtual stiffness. As the

distance d increases, the uniformity in behaviour decreases. However, this can make

it possible to achieve higher performance at certain locations in the workspace. In

the case when d = −0.2m, the maximum virtual stiffness increases to three times of

the minimum value that can be archived in this case. This clearly shows that the

renderable virtual stiffness and the stability of the haptic interface can be considerably

influenced by the reconfiguration of the device.

It should be noted that by the ability to change the parameter d, we are able

to change the configuration of the device, while keeping the reference point in the

workspace at the same location. To further investigate the effect of parameter d on

the maximum renderable virtual stiffness, kp,max, and the range of renderable virtual

environment parameters, ws, these indices are determined for a range of −2m < d <

2m at a fixed end-point location in the workspace (x= 0 m, y= 0.25 m). The results
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(a) (b)

Figure 5.6. Maximum virtual stiffness, kp,max, (a) and range of stable vir-
tual parameters, ws, (b) versus parameter d, for the flexible model, elbow
up (dash line) and elbow down (solid line)

(a) (b)

Figure 5.7. Maximum virtual stiffness, kp,max, (a) and range of stable vir-
tual parameters, ws, (b) versus parameter d, for rigid-body model, elbow up
(dash line) and elbow down (solid line)

are shown in Fig. 5.6 and 5.7 for the flexible and rigid-body models, respectively.

The solid and dashed lines indicate the elbow-down and elbow-up configurations

as shown in 5.6(a). These figures show that the impedance range can be influenced

considerably for different configurations of the device at the same operational position

in the workspace.

As another example, the maximum virtual stiffness for both rigid and flexible

models versus changes in length of the first link, L1, are shown in Fig. 5.8. The five-bar

linkage is shown in this figure for different values of parameter L1, where the end-point
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is located at the reference location in the workspace. It is interesting to mention that

for the elbow-down configuration with the value of L1 = 0.146m, which is equal to the

current value of L1 for the experimental device, the minimum value for virtual stiffness

can be achieved. This indicates that the current design of the device provides the

minimum renderable virtual stiffness. Therefore, for higher virtual stiffness, larger

value of L1 can be considered. It is important to note that changes in the inertia

(a) (b)

Figure 5.8. Maximum virtual stiffness, kp,max, versus length of the first
link of the device, L1, for the rigid-body (a) and flexible model (b), in elbow
down configuration

and flexility of the driving mechanism can have significant effect on the performance

in applications where structural flexibility is considered. The dimensionless natural

frequency Ωn which is function of me2, ke and ∆t can represent these effects. Effects

of the change of Ωn on the dimensionless virtual stiffness is shown in Fig. 5.9(a).

This figure shows that the maximum virtual stiffness can considerably change with

respect to change of Ωn. For more detailed investigation, the change of the driving

mechanism parameters can also be studied by investigating the change in kp,max when

one of the motor inertias, Im1 is modified. This is illustrated in Fig. 5.9(b).

5.3.2 Effects of Mechanical Design Parameters on the Fidelity. An-

other closed-loop performance measure proposed earlier was the optimum spectral

radius to provide a tool for haptic rendering fidelity, and how mechanical design pa-

rameters can affect that. To illustrate this, we consider the two-DoF flexible model
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(a) (b)

Figure 5.9. Maximum dimensionless virtual stiffness, pmax, versus dimen-
sionless natural frequency, Ωn, (a), and maximum virtual stiffness, kp,max,
versus motor inertia, Im1, for flexible model in elbow up configuration

in (3.2). The behaviour of this model was studded in Chapter 3 and compared to

experimental results (Fig. 3.1). Parameters of this model are listed in Table 3.4.

The structural damping was modelled with the addition of 5% modal damping, and

modal decomposition was used for the analysis. The analysis in Chapter 3 indicates

that the stability of this model can be studied via a five dimensional discrete transi-

tion matrix. The resulting numerical and experimental stability charts are shown in

Fig. 5.10, where the boundaries obtained using the model are shown by solid lines for

different spectral radii, and the experimental measurement points along the stability

boundary are shown by crosses (see also Chapter 3).

As described in Chapter 2, the eigenvalues of the transition matrix of the discrete

mapping should lie within the unit circle in the complex plane. It is interesting to

see how these eigenvalues change in the complex plane for different values of virtual

stiffness and damping. As an example, we consider the stability boundary in Fig. 5.10.

The trajectory of the eigenvalues in the complex plane associated with kp = 4000 N/m

are plotted in the right hand side of Fig. 5.10 for different values of kd from the lower

to the higher virtual damping range of this stability boundary. It can be seen from

these trajectories that the eigenvalues leave the unit circle crossing the imaginary axis.

This shows that by increasing virtual damping, for a fixed virtual stiffness, the system
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Figure 5.10. Left: Experimentally validated stability chart of the two-DoF
flexible model with different spectral radii, Right: The eigenvalue trajectory
in complex plane for kp = 4000 N/m and kd ∈ [−2, 35]

gets unstable when the complex eigenvalues with higher frequencies leave the unit

circle. These high frequency eigenvalues mainly originated from the flexible elements

characterized by the smaller effective mass me2 in the model. The other eigenvalues

remain inside the unite circle and experience very small changes for different virtual

environment parameters.

For further analysis, the point associated with the optimal spectral radius is

considered here, which is displayed as point A in Fig. 5.10. The five eigenvalues

corresponding to this point are indicated by dots in the figure; where two of the real

eigenvalues are collocated. The three eigenvalues on the real axis mainly characterize

the dynamics of the rigid-body mode (characterized by me1). By looking at the

stability domain corresponding to the rigid-body model in Fig. 3.9, it can be seen

that point A is located well inside the stable domain of this model. This explains

why the variation of parameter kd has little effect on these three eigenvalues, and the

system loses its stability due to oscillations originating from the effects of the smaller

effective mass me2. This also illustrates the usability of the single-DoF flexible model

in (2.44) that contains only the smaller effective mass me2.
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Figure 5.11. Stability charts corresponding to the two-DoF flexible model
(white area) and the single-DoF flexible model (gray area) with different
spectral radii

Stability analysis of the single-DoF flexible model was studied in detail in Chapter

4. The boundaries corresponding to this model for different spectral radii are shown

in Fig. 5.11 together with the stability domain of the two-DoF flexible model with

white and gray domains, respectively. Here points B, C and D are selected for further

analysis. Point B, where kp = 3000 N/m and kd = 15 Ns/m, is located inside both

stability boundaries. The associated eigenvalue trajectories at this point for different

values of smaller effective mass, me2, are shown in Fig. 5.12 for the two-DoF and

single-DoF flexible models by solid and dashed lines, respectively.

For further investigation, the behaviour of the two-DoF flexible model is simu-

lated, considering the values of virtual stiffness and damping corresponding to point

B. The resulting behaviour of this model in terms of (x1 − x2) is shown in the right

hand side of Fig. 5.12 by the thin solid line. The variable (x1−x2) corresponds to the

superimposed vibrations, which can have important influence on the fidelity of haptic

rendering. The goal here is to decrease the high frequency content in the feedback

force. This can be achieved for example by considering the smaller effective mass,

me2, as a design variable, and changing the mechanical properties of the system such

that the high frequency oscillations dampen out as fast as possible. For this purpose,
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Figure 5.12. Left: Eigenvalue trajectories of the two-Dof flexible model
(dashed line) and the single-DoF flexible model (solid line) at kp =
3000 N/m, kd = 15 Ns/m, Right: Simulation of the dynamics behaviour
associated with the original and optimized values of me2

in this case the minimum spectral radius can be obtained by (5.15) as ρopt = 0.8729.

This can be substituted in (5.14), which results in the optimum effective mass as

me2,opt = 0.0603 kg. The corresponding eigenvalues are shown with crosses in the

complex plane in the left hand side of Fig. 5.12. The resulting dynamic behaviour

of the system with me2,opt is shown by the thick solid line in Fig. 5.12. It can be

seen that the system response becomes smoother and the vibrations due to structural

flexibility decay much faster.

Figure 5.13. Left: Eigenvalue trajectories of the two-Dof flexible model
(dashed line) and the single DoF flexible model (solid line) at kp = 4000 N/m,
kd = 20 Ns/m, Right: Simulation of the dynamics behaviour associated with
the original and optimized values of me2

101



CHAPTER 5. PERFORMANCE MEASURES IN HAPTICS AND EFFECTS OF DESIGN PARAMETERS

The same analysis is repeated for the virtual stiffness and damping values at

points C (kp=4000 N/m, kd=20 Ns/m) and D (kp=5000 N/m, kd=25 Ns/m) (see

Fig. 5.11). Point C is located outside of the stability domain of the single-DoF flexible

model, and Point D is outside of the stability domains corresponding to both models.

The optimum effective masse and spectral radius are obtained as me2,opt=0.0510 kg

and ρopt = 0.8956 for the parameters at point C, and me2,opt=0.1315 kg and ρopt =

0.71627 for point D.

The eigenvalue trajectory in the complex plane and the behaviour of the model

with the original and optimum smaller effective mass are shown in Fig. 5.13 for virtual

parameters at point C. It can be seen that the high frequency vibrations associated

with the smaller effective mass, me2, decays in case of optimumme2, and the behaviour

of the system improves considerably.

The result of the analysis corresponding to parameters at point D is shown in

Fig. 5.14. The dynamic behaviour of the system with the original parameters in this

case is unstable and is not shown in this figure. For such a set of virtual parameters,

in order to make the system stable, the smaller effective mass of the system me2 must

be increased. It can be seen in Fig. 5.14 that the system with optimum parameters

becomes stable and the oscillations decay much faster than the other two cases at

points B and C. This is because point D is located outside of the stable domains,

and the parameters of the system have to be changed more than in the other two

cases (points B and D). The previously unstable point D is now moved to well inside

the stable domain due to the change in mechanical system parameters. Therefore,

the resulting stability chart of the system with the optimum effective mass, m2,opt,

becomes much larger. In this case point D is located well inside the stability domain

corresponding to the optimum parameters of the system.

These analyses show that an optimum selection of mechanical design parameters

of haptic systems can significantly influence the closed-loop performance of these

systems.
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Figure 5.14. Left: Eigenvalue trajectories of the two-Dof flexible model
(dashed line) and the single-DoF flexible model (solid line) at kp = 5000
N/m, kd = 25 Ns/m, Right: Simulation of the dynamics behaviour associ-
ated with the original and optimized values of me2
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CHAPTER 6

Conclusions and Recommendations for

Future Research

Haptic systems can exhibit complex dynamics behaviours due to the coupling of the

physical and virtual domains. This thesis particularly investigated the effects of me-

chanical systems on haptic dynamics. A general model formulation was developed

in Chapter 2 considering multi-degrees of freedom representation for the system con-

sisting of the articulated haptic device and the human operator. The concept of

haptic equilibrium was introduced to develop simplified, linearized models to reflect

the aforementioned effects of mechanical system dynamics. Two types of models are

considered primarily. In the first, the haptic device was considered as an articulated

system of rigid bodies; while in the second type the structural flexibility was also

taken into account. It was shown that in both cases, if the operator primarily de-

velops forces/moments associated with the virtual interaction inrection, the rendered

directions, then the entire system behaviour can be governed by the dynamics of the

subspace defined by the rendered directions. An important point of the formulation

is the decomposition of the dynamics of the system into the rendered and admissible

subspaces. In the case of a single rendered direction, this analysis resulted in the

derivation of a single-DoF model in the case of the rigid-body representation, and a
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two-DoF model if the structural flexibility is considered. Effective parameters of these

models were derived as analytical functions of the mechanical system parameters.

The simplified flexible model was developed via two effective generalized inertia

representations connected with an effective stiffness of the system. This model can

be further simplified to a single-DoF flexible model, in case when the characteristic

vibrations of the system at high virtual wall impedances is primarily influenced by

the inertia of the flexible parts of the device and the structural properties.

The usability of these models in haptic applications was investigated in Chapter

3 using a five-bar linkage based haptic device. In this chapter, the behaviour of the

experimental haptic device was compared with those achieved using the proposed

models. Two types of experiments were carried out; the first type was without the

human operator’s sustained touch, and the second type was when the human operator

holds the reference element of the device and develops sustained interaction with the

virtual environment. In the first set of experiments, it was shown that for the case

of single rendered direction, the two-DoF flexible model appeared to represent well

the stability behaviour for a broad range of the virtual environment parameters.

However, it was illustrated that in the case of incorporating filters, the single-DoF

rigid-body model can represent well the stability behaviour in the entire domain of

virtual environment parameters. As a result of this investigation, it was shown that

the space of virtual environment parameters can be divided into two regions. In each

region, a different simplified single-DoF model of the haptic system can capture the

characteristic dynamics.

The second set of experiments were conducted to study the effects of the human

operator on haptic system dynamics. It was shown that the human operator is able

to compensate for the unwanted dynamic effects, in the region of virtual environ-

ment parameters where rigid-body model is represented. However, when structural

dynamics of the device has to be considered, dynamics of the human operator has

small effect on stability of the haptic systems.
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Both the analytical results and the experiments also confirm that structural flex-

ibility can be the dominant factor to limit system stability, and can play a role more

important than that of quantization in the development of oscillatory behaviours.

More detailed parametric analysis was conducted in Chapter 4 using the simpli-

fied models. Closed-form stability conditions were developed in this chapter. These

extend the linear stability conditions that are commonly used in the literature. It was

shown that in cases when the single-DoF rigid-body model with damping is represen-

tative, the maximum achievable virtual stiffness is limited by the physical and virtual

damping, and the actuator saturation. However, in the presence of delays, such that

can come from filtering, the maximum virtual stiffness is governed by the effective

mass of the device associated with the rendered directions. To achieve high values

of virtual stiffness and damping the structural properties of the mechanical system

have to be considered. In those cases, the single-DoF model, derived based on consid-

ering structural flexibility and with damping, may be representative. If damping is

neglected then the resulting single-DoF mass-spring model can provide a conservative

basis for the design. In this case, the maximum renderable virtual stiffness can be

quantified by the effective dimensionless natural frequency of the model.

This was then discussed in more detail in Chapter 5, where performance mea-

sures for the range of stable virtual environment parameters and for the fidelity of the

virtual interaction force were developed. It was illustrated that mechanical system pa-

rameters can significantly influence both the range of renderable virtual environment

parameters and the fidelity of the force feedback. It was shown that the design re-

quirements for improving haptic performance do not necessarily satisfy the conditions

for improving dexterity of the mechanism. Therefore, a compromise should normally

be developed between these design requirements depending on the application.

6.1 Recommendations for Future Work

The focus of this thesis was to investigate effects of mechanical system parameters

on virtual contact dynamics. However, dynamics of such systems can be influenced
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by other factors such as the realization of the virtual environment. In this thesis the

case of a virtual wall representation was considered. However, the analysis can be

extended for more detailed virtual environment models.

In this thesis, the effect of computational delay was studied via considering a

time-delay equal to an integer multiple of the sampling time in the virtual interaction

force representation. However, more elaborated consideration of such effect can be

important in the virtual contact dynamics.

In addition, more detailed investigation of the effects of the human operator

dynamics on the virtual contact behaviour can provide more insight for improving

the haptic performance.

In the development of parametric mechanical models for haptic systems, physical

dissipation was approximated in this work by considering modal damping or linear

viscous models. However, as was discussed in this thesis, the behaviour of a haptic

system, and consequently the dissipation properties of the system can significantly

change while interacting with virtual environments of low or high virtual stiffness and

damping. This may require more elaborated dissipation models.

Closed-loop performance of haptic interfacing was quantified by considering the

range of stable virtual impedance parameters. Also fidelity of the force feedback was

represented by considering how fast the high-frequency oscillations of the system

decay. These are only two examples for quantifying haptic performance. Other

parametric performance measures may be developed using the proposed simplified

models.

It was also discussed that the mechanical system parameters of a haptic device

can have significant effects on haptic performance. Developing a design optimization

algorithm for haptic applications can result in an optimum design for a haptic device

before it is built.
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APPENDIX A. ROUTH-HURWITZ CRITERION

APPENDIX A

Routh-Hurwitz Criterion

Suppose the characteristic equation of the nth order system is:

a0s
n + a1s

n−1 + ...+ an−1s+ an = 0 (A.1)

The Hurwitz determinant is:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 0 0 . . . 0 0

a3 a2 a1 a0 0 0 ... 0 0

a5 a4 a3 a2 a1 a0 ... 0 0
...

...
...

...
...

...
...

...
...

a2n−1 a2n−2 a2n−3 . . . . . . . . . . . . an+1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.2)

Here the coefficients with indices larger than n are taken zero. Similarly, the

coefficients with negative indices are replaced with zero.

The conditions of the stability is that the n determinants formed from the prin-

cipal minors of the Hurwitz determinant will be greater than zero. That is,

∆1 = a1 > 0 ∆2 =

∣∣∣∣∣∣ a1 a0

a3 a2

∣∣∣∣∣∣ > 0 ∆3 =

∣∣∣∣∣∣∣∣∣
a1 a0 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣ > 0 . . . (> 0) (A.3)
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B.1 KINEMATIC ANALYSIS

APPENDIX B

Kinematic and Dynamic modelling of the

Five-bar Linkage Based Haptic Device

B.1 Kinematic Analysis

The two-DoF planar haptic device in Fig. B.1 is based on a five-bar mechanism

with two actuated DoF at the base.

Figure B.1. Five-bar linkage, modelling of haptic device

By using the dependent set of relative joint coordinates, q = [q1, q2, q3, q4]T, the

tip position of the five-bar mechanism can be calculated via two chains E1 formed by
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APPENDIX B. KINEMATIC AND DYNAMIC MODELLING OF THE FIVE-BAR LINKAGE BASED HAPTIC DEVICE

Link 1 and 2, and and E2 formed by Link 3 and 4. This position for chain E1, can

be written as

xE1 = L1cos(q1) + L2cos(q1 + q2)

yE1 = L1sin(q1) + L2sin(q1 + q2)
(B.1)

and for chain E2 as

xE2 = L3cos(q3) + L4cos(q3 + q4)

yE2 = L3sin(q3) + L4sin(q3 + q4)
(B.2)

Considering time derivative of Eqs. (B.1) and (B.2), the corresponding Jacobians

(ẋ = J1q̇12 and ẋ = J2q̇34) are defined as

J1 =

 −L1sin(q1)− L2sin(q1 + q2) −L2sin(q1 + q2)

L1cos(q1) + L2cos(q1 + q2) L2cos(q1 + q2)

 (B.3)

and

J2 =

 −L3sin(q3)− L4sin(q3 + q4) −L4sin(q3 + q4)

L3cos(q3) + L4cos(q3 + q4) L4cos(q3 + q4)

 (B.4)

where q̇12 = [q̇1, q̇2]T and q̇34 = [q̇3, q̇4]T. The Minimum set of generalized coordinate

can be defined as p = [q1, q3]. The corresponding Jacobian (ẋ = Jṗ), can be achieved

by considering the constrained equation of the manipulator. The two constrained

equations can be formed by considering xE1 = xE2 and yE1 = yE2, which results in

Φ1 = L1cos(q1) + L2cos(q1 + q2)− L3cos(q3)− L4cos(q3 + q4)

Φ2 = L1sin(q1) + L2sin(q1 + q2)− L3sin(q3)− L4sin(q3 + q4)
(B.5)

and using these equations, the constrained Jacobian of the linkage can be obtained

as

A =
∂Φ

∂q
= [J1 − J2] (B.6)

Considering the constrained equations in (B.5) at the velocity level, one can obtain

the minimum set Jacobian matrix as
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B.2 INVERSE DISPLACEMENT

J =
1

sin(q1 + q2 + q3 + q4)

 −L1sin(q2)sin(q3 + q4) L3sin(q1 + q2)sin(q4)

L1cos(q3 + q4)sin(q2) −L3cos(q1 + q2)sin(q4)


(B.7)

where q2 and q4 can also be replaced with the minimum set of coordinates as

q2 = asin(
L1

L2

sin(
q3 − q1

2
)

q4 = 2π − (asin(
L1

L2

sin(
q3 − q1

2
) +

q3 − q1

2
))

(B.8)

B.2 Inverse Displacement

The goal of the analysis here is to find the joint angles, given the end effector

position and orientation. Consider the E1 chain and the end point location in (B.1).

These equations can be rearranged as

xE1 − L1cos(q1) = L2cos(q1 + q2)

yE1 − L1sin(q1) = L2sin(q1 + q2)
(B.9)

where the sum of the square of both sides of these equations results in

x2
E1 + y2

E1 + L2
1 − L2

2 = 2xE1L1 cos(q1) + 2yE1 sin(q1) (B.10)

Via trigonometric relations, this leads ro development of a quadratic equation as

a2t
2 + a1t+ a3 = 0 (B.11)

where t = tan( q1
2

), and

a1 = x2
E1 + y2

E1 + L2
1 − L2

2 + 2xE1L1

a2 = −4yE1L1

a3 = x2
E1 + y2

E1 + L2
1 − L2

2 − 2xE1L1

(B.12)
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which results in derivation of q1 = 2 arctan (t), and by substituting it to (B.9), q2 can

be obtained. The same process can leads to derivation of q3 and q4. Note that the

resulting joint angles are not unique.

B.3 Dynamic Analysis

Lagrange’s equations of motion for the a minimum set of generalized coordinates,

p = [q1, q3]T, of the five-bar mechanism in Fig. 3.2 can be obtained as

d

dt
(
∂L

∂ṗk
)− ∂L

∂pk
= Qppl,nc

k (B.13)

where L = Ttotal − Vtotal is the Lagrangian, T and V are the total kinematic and

potential energies of the system. The intension here is the dynamic analysis of the

five-bar mechanism with rigid links and ideal joints. The plane of this mechanism

is perpendicular to the filled of the gravity. Therefore, the potential energy is equal

to zero, it means that the Lagrange function is equivalent with the kinetic energy

(L = T ). Due to symmetric geometry of the system, we consider half of the device

to calculate the kinematic energy, where the total energy can be obtained as

Ttotal = T1 + T2 (B.14)

while

T1 =
1

2
(ICM1 +m1L

2
CM1 +m2L

2
1 +m2L

2
CM2 + 2m2L1LCM2 cos (q2) +

1

12
m2L

2
2)q̇2

1

1

2
(m2L

2
CM2 +

1

12
m2L

2
2)q̇2

2

(m2L
2
CM2 +m2L1LCM2 cos (q2) +

1

12
m2L

2
2)q̇1q̇2

(B.15)

where ICM1 is the center of mass moment of inertia of the first link with the motor

connected to it at one end, m1, m2 L1, L2, LCM1, and LCM2 are the mass, length,

and center of mass length of links 1 and 2. The kinetic energy corresponding to the

second change composed of links 3 and 4 has the same structure. Considering the total
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kinematic energy, the mass matrix of the systems can be achieved via M = d
dt

( ∂T
∂ṗk

).

By introducing the notations cos(qi) = ci and sin(qi) = si the 4 × 4 mass matrix

corresponding to the non minimum set of generalized coordinates can be written in

the block diagonal form

M =

 M1 0

0 M2

 (B.16)

where

M1 =
ICM1 +m1L

2
CM1 +m2(L2

1 + L2
CM2 + 2L1LCM2 m2(L2

CM2 + L1LCM2cos(q2) + 1
12
L2

2)

cos(q2) + 1
12
L2

2)

m2(L2
CM2 + L1LCM2cos(q2) + 1

12
L2

2) m2(L2
CM2 + 1

12
L2

2)


M2 =

ICM3 +m3L
2
CM3 +m4(L2

3 + L2
CM4 + 2L3LCM4 m4(L2

CM4 + L3LCM4cos(q4) + 1
12
L2

4)

cos(q4) + 1
12
L2

4)

m4(L2
CM4 + L3LCM4cos(q4) + 1

12
L2

4) m4(L2
CM4 + 1

12
L2

4)


And the nonlinear inertial term can be obtained as c = − ∂T

∂pk
which results in

c2 =


0

−2m2L1LCM2 sin q2(q̇1(q̇1 + q̇2)

0

−2m4L3LCM4 sin q4(q̇3(q̇3 + q̇4)

 (B.17)

The equations of motion in terms of minimum set of generalized coordinates can

be obtained by the transformation q̇ = Bṗ, while the transformation matrix B can

be obtained as
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B =


1 0

−L1sin(q3+q4−q1)
L2sin(q3+q4−q1−q2)

− 1 L3sin(q4)
L2sin(q3+q4−q1−q2)

0 1

−L1sin(q2)
L4sin(q3+q4−q1−q2)

−L3sin(q3−q1−q2)
L4sin(q3+q4−q1−q2)

− 1

 (B.18)

And the equation of motion in terms of the minimum set of coordinates can be

obtained as

BTMBp̈ + BT (c + MḂṗ) = BTQ (B.19)
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