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Abstract 

The optimization of open pit mine production scheduling (OPMPS) is an intricate process due to 

its size and uncertainty of key input parameters. Over the last decade, substantial effort has been 

made towards the development of new stochastic frameworks that incorporates uncertainty into 

the decision process. However, due to the intrinsic complexity of the mathematical programming 

formulation and the large size of mineral deposits, finding an exact solution for the OPMPS is 

likely intractable. In addition to that, modelling the joint spatial uncertainty of mineral deposits 

accounting for several correlated geological attributes, significantly increases the complexity of 

these stochastic frameworks. These observations motivate the development of new 

computationally efficient approaches for generating joint stochastic simulations of a deposit and 

for solving the OPMPS under geological uncertainty. This thesis considers both aspects in its 

two main parts. 

In the first part of this thesis, an efficient heuristic solution approach is applied and tested to the 

stochastic mine production scheduling of a relatively large gold mine containing about 120 

thousand blocks and considering a set of fifteen geological scenarios generated stochastically. 

The stochastic integer programming (SIP) formulation addresses multiple processing streams and 

a 'grade' stockpile which adds flexibility to the specific operation by advancing the processing of 

highly valuable material. The solution approach tested herein, first generates an initial feasible 

solution by sequentially solving the stochastic OPMPS period by period and afterwards, a 

network flow algorithm is used to sequentially search for further improvements. In this network 

graph the nodes identify candidate blocks which might have their extraction either postponed or 

advanced, aiming for new schedule with higher values and lower risk. The results show that 

production schedules with low deviations from production expectations can be generated in a 

reasonable time for an actual mining environment. 

In the second part, an efficient joint simulation framework is demonstrated though an application 

to Vale's Puma deposit, a major nickel laterite asset in Brazil. To integrate the variability of the 

revolting profiles, their 'true' thicknesses are jointly simulated using min/max autocorrelation 

factor (MAF). The realizations serve as geological boundaries within which Ni, Co, Fe, SiO2, 

MgO and dry-tonnage factor (DTF) can be jointly simulated directly at block support scale. The 
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final result is a set of equiprobable representations of the deposit that incorporates both grade and 

tonnage uncertainty. These simulations can be used to assess the uncertainty about key aspects of 

the project, such as strict control of the ore's quality that feeds the metallurgical plant. The 

framework explored takes advantage of the MAF and direct block simulation approaches which 

facilitate the joint simulation of large multi-element deposits. 
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Résumé 

Le problème d‘optimisation de la production des mines à ciel ouvert (POPM) est un problème 

complexe en raison de sa taille et de l'incertitude associée à ses paramètres clés. Au cours de la 

dernière décennie, des efforts considérables ont été déployés pour élaborer des nouveaux cadres 

stochastiques intégrant l'incertitude dans le processus de décision. Toutefois, en raison de la 

complexité intrinsèque de la formulation mathématique du problème et de la grande taille des 

dépôts minéraux, trouver une solution exacte pour le POPM est probablement impensable vu 

temps de calcul induit. De plus, la modélisation de l'incertitude spatiale commune de gisements 

minéraux tenant compte de plusieurs attributs géologiques corrélés augmente de manière 

significative la complexité de ces cadres stochastiques. Ces observations motivent le 

développement de nouvelles approches efficaces pour générer des simulations stochastiques 

communes d'un dépôt et pour résoudre le POPM sous incertitude géologique. Cette thèse 

considère ces deux aspects dans ses deux parties principales. 

Dans la première partie de cette thèse, une approche de résolution heuristique efficace est 

appliquée et testée pour la planification stochastique de le production d'une mine d'or 

relativement grande contenant environ 120 000 blocs et considérant un ensemble de quinze 

scénarios géologiques générés de façon stochastique. La formulation de programmation 

stochastique en nombres entiers tient compte de plusieurs installations de traitement et d‘une « 

réserve » qui ajoute de la souplesse à l'opération en avançant le traitement des blocs ayant une 

grande teneur en minerai. L'approche de résolution testée génère d'abord une solution initiale 

réalisable en résolvant successivement des sous-problèmes du POPM stochastique, où chaque 

sous-problème est associé à une période. Par la suite, un algorithme de flot dans les réseaux est 

utilisé séquentiellement pour obtenir des améliorations supplémentaires. Dans le réseau associé 

au problème de flot, les nœuds représentent les blocs candidats qui pourraient voir leur extraction 

retardée ou avancée pour générer un nouveau calendrier de production de valeur plus élevée et 

présente un risque moindre. L‘approche de résolution décrite ci-dessus a été testée dans un 

environnement minier réel et les résultats montrent que des calendriers de production proches 

des prévisions peuvent être générés en un temps de calcul raisonnable. 
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Dans la deuxième partie de la thèse, l‘efficacité d‘un cadre de simulation est démontrée à travers 

une application au cas du dépôt minéral Puma de Vale, une importante latérite de nickel située au 

Brésil. Pour intégrer la variabilité des profils révoltants, leurs épaisseurs « réelles »  sont 

simulées conjointement en utilisant le facteur d'auto-corrélation min /max (MAF). Les 

réalisations servent de limites géologiques dans lesquelles Ni, Co, Fe, SiO2, MgO et le facteur de 

tonnage (DTF) peuvent être conjointement simulés directement à l'échelle du bloc. Le résultat 

final est un ensemble de représentations équiprobables du dépôt minéral qui intègrent 

l‘incertitude associée aussi bien à la teneur du minerai qu‘au tonnage. Ces simulations peuvent 

être utilisées pour évaluer l'incertitude liée aux aspects clés du projet, tels que le contrôle strict de 

la qualité du minerai qui alimente l'usine métallurgique. Le cadre exploré tire parti de la MAF et 

des méthodes de simulation directs à l‘échelle du bloc qui facilitent la simulation de grands 

dépôts qui contiennent des éléments multiples. 
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Chapter 1 

Introduction 

“If you are in a shipwreck and all the boats are gone, a piano top buoyant enough to keep you afloat that 

comes along makes a fortuitous life preserver. But this is not to say that the best way to design a life 

preserver is in the form of a piano top.” 

Operating manual for Spaceship Earth, R. Fuller 

 

Mining is a largely capital intensive venture, because it demands high efficiency on 

management decisions, which are taken under conditions of uncertainty. Over the past 

decades, mining has experienced important trends: increasingly complexity of mineral 

deposits, more strict environmental regulations, a more competitive global market and the 

everlasting pressure over operational costs. As a result, robust and concise methodologies 

are increasingly required for the assessment of mineral projects, building the basis for 

solid investment decisions.   

Mine planning is one of the core decision making processes during mineral project 

evaluations and it aims to provide a realistic plan to profitably exploit the mineral 

resources. The uncertainty regarding several parameters, such as the orebody delineation 

and its metal content, or the future commodity prices, prevents the definition of a truly 

optimal plan. For forty years now, (David, et al., 1974), it has been well known that 

estimated orebody models established for assessment of ore resources may not be 

satisfactory for planning purposes, since it is not able to reveal the spatial uncertainty and 

true variability of the deposit. During the last decade, several authors have proposed new 

stochastic driven frameworks to incorporate uncertainty into mine planning process (e.g., 

Godoy, 2003; Ramazan and Dimitrakopoulos, 2013). In the case of geological 

uncertainty, stochastic simulation techniques are used to generate multiple equally 

probable representations of the deposit (e.g., Journel, 1974).  

Despite of the significant achievements in the field, the practical implementation of 

stochastic driven approaches in the mining industry is still limited. The main contributor 

for that is the additional complexity involved for the incorporation of multiple scenarios 
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and the generation of these scenarios themselves, meaning a heavy allocation of 

additional time and resources. This has strongly motivated the development of new 

efficient methods for the generation of stochastic simulations and for solving the 

stochastic optimization problem during the last few years. 

1.1 Goal and Objectives 

The goal of this thesis is to test efficient frameworks for both the generation of stochastic 

joint simulations of mineral deposits, and open-pit mine production scheduling under 

geological uncertainty. To achieve this goal, the following objectives are set: 

 Review the literature concerning incorporation of uncertainty into mine planning 

routines, in particular to open-pit mine production scheduling, and review the 

literature of conditional stochastic simulation methods, focusing on joint 

simulation techniques. 

 Apply a heuristic solution approach to solve a stochastic integer programming 

formulation for the open-pit mine production scheduling in a gold deposit, 

highlighting different options to generate an initial solution and for dealing with a 

stockpile. 

 Apply minimum/maximum autocorrelation factor and direct block simulation 

techniques for the joint simulation of geological domains, and multi-elements, in a 

nickel laterite deposit. 

 Provide conclusions and suggest further works related to the topic.    

1.2 Thesis Outline 

The thesis is organized according to the following chapters: 

 Chapter 1 introduces the subject of the thesis, along with the goals, objectives and 

the thesis outline.   

 Chapter 2 brings a literature review on the incorporation of uncertainty into mine 

planning, in particular to the life-of-mine open-pit mine production scheduling. In 

addition, a literature review on stochastic simulation is shown, stressing joint 

simulation of multivariate deposits. 
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 Chapter 3 describes a heuristic solution approach for solving a stochastic integer 

programming formulation of the open-pit mine production scheduling, with an 

application to a gold deposit. 

 Chapter 4 describes efficient methodologies for joint simulation of multivariate 

deposits, and their application to a major nickel laterite deposit.    

 Chapter 5 addresses the main conclusions and suggests related future work. 
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Chapter 2 

Literature Review 

“Life is uncertain. Eat dessert first”  

 Ernestine Ulmer 

 

In long-term mine planning, several decisions must be taken with incomplete knowledge 

about key input parameters. This inherent uncertainty of mining projects may arise from 

different sources (e.g., technical, market prices, market costs, environmental, political, 

social, etc.) and their relative importance depends on several features intrinsic to each 

project. Nevertheless, geological uncertainty is usually seen as one of the major 

contributors for projects to not meet their expectations (Vallee, 2000; Baker and 

Giacomo, 2001; Dimitrakopoulos et al., 2002). Such uncertainty is mainly associated to 

the characteristics of the deposit itself, for example, its intrinsic variability, and the 

degree of knowledge gathered from it, as the geological information about the deposit is 

based on sparse drilling and a limited number of samples. 

In traditional open-pit mine production scheduling (OPMPS) framework, all the input 

parameters, including the spatial distribution of geological attributes, such as grades, is 

deemed to be known (Lerchs and Grossman, 1965; Johnson, 1969; Piccard, 1976; Kim, 

1979; Dagdelen and Jonhson, 1986; Whittle, 1988; Tolwinski and Underwood, 1996; 

Cacceta and Hill, 2003; Boland et al. 2009). An average type representation of the 

deposit is used as input to a decision making process, which aims to provide a feasible 

sequence of extraction that maximizes the discounted economic return. However, as one 

may note in a later example, even if this sequencing is optimal for a given set of inputs, it 

might lead to very different results as the reality departs from the initial assumptions. In 

mine planning when uncertainty is not ignored, it is often treated in very simplistic 

frameworks, such as through the practice of conservatism (e.g., overestimating costs 

and/or underestimating grades) or sensitivity analysis. Ravenscroft (1992) calls the 
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attention to the deliberate use of measures for confidence limits to assess risks in mine 

production.  

Several authors (David et al., 1974; Ravenscroft, 1992; Dowd, 1994, 1997; 

Dimitrakopoulos, et al., 2002) show the impact of geological uncertainty by means of 

conditional simulations, for a risk-analysis on the operational and financial performance 

of mining schedules. Pioneering work is carried out by David et al. (1974), where the 

authors perform a study to analyse the ability of kriging on providing an interpolated 

model to the definition of an ultimate pit. In their study, a simulated orebody model is 

used to emulate a real deposit. After sampling this simulation, a kriged model is derived 

and the Korobov algorithm is used to calculate the final pit boundaries at different cut-off 

grades. Their results show significant discrepancies between the emulated reality and 

forecasted returns, raising important questions about the matter.   Dimitrakopoulos et al. 

(2002) perform a risk analysis, overlapping different geostatistical simulations on 

optimized pit shells of an Australian gold mine. Assessing the probability distributions of 

the net present value associated to each of those nested pits, they develop a case study 

which shows that the estimated model substantially overestimates the net present value. 

For the ultimate pit chosen in their case study, the probability is about 2-4% on achieving 

the same results as suggested by the ordinary kriging model and the most likely NPV is 

25% smaller than the one forecasted with the kriging model. This study helps to highlight 

that, using an average type model as input to conventional optimizers, does not result in 

an average type of response.  

All studies above converge to a common conclusion that, using a smoothed image 

representation of the geological reality may lead to unpredictable response parameters of 

interest, when applying non-linear transfer functions, such as optimization routines for 

scheduling and design. In general, interpolated orebody models reduce the intrinsic 

variability of the deposit and to do not reproduce its spatial pattern of variability 

(Goovaerts, 1997).  

2.1 Moving forward from deterministic models 

An intuitive introduction about how stochastic models may enrich the mathematical 

formulations and lead to better decisions is demonstrated by King and Wallace (2012). 
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They show an example of a news vendor, who has to take a decision about the total 

amount of newspapers to bring every day. There are three different newspaper editions: 

political, business and regional. He knows that the first two newspapers are among the 

primary preference of the customers (these are also the most profitable), but if they do not 

find their preferred newspaper they necessarily buy the regional one. Hence, if the news 

vendor knows the exact number of customers who are willing to buy either political or 

business newspapers in a given day, he does not need to bring regional ones, since 

everybody will leave happy his newspaper stall. Therefore, assuming the demands are 

known, the solution of the deterministic problem becomes trivial. However, if the reality 

is different of what he is expecting, he will not cover the demand of either political or 

business newspaper, and some customers will leave without a newspaper because the 

owner did not hedge his business by bringing any regional papers (which would be the 

customer‘s second option). This shows that the model will be actually ‗infeasible‘ for any 

demand different of the one initially expected. These results highlight that optimization 

procedures aim to find their best with the information they have, but they might result in 

very poor result if the reality comes to be different.   

From this news vendor example, it can be concluded that modelling the demand of each 

newspaper as uncertain and incorporating it in the mathematical formulation of the 

problem, leads to a result that the seller must always take regional papers. This should be 

an intuitive solution from the beginning, because it is very unlike that the vendor will 

correctly guess the demand for political and business papers. In the case this happens, he 

would still have regional papers to sell and shelter himself from major losses (get stuck 

with left over business/political newspapers). This observation leads to another important 

observation, which is related to the fact even if some property is present in every 

deterministic solution (for any demand forecasted, he would never take regional 

newspapers), it does not necessarily carry over to the optimal solution when uncertainty 

is incorporated, with severe effects on downstream engineering process, as for example 

long documented in petroleum reservoir forecasting (e.g., Wolcott and Chopra, 1993).  
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2.2 Incorporation of uncertainty into mine planning routines 

Once several limitations regarding the use of a smoothed representation of the deposit 

into mine planning decision processes were understood, researches started to focus on the 

development of new tools which are able to incorporate such geological uncertainty. An 

intuitive way of accomplishing that is to independently apply a conventional optimizer to 

multiple simulated geological scenarios.  Based on this idea, Whittle and 

Bozorghebrahami (2007) propose a hybrid-pit framework to find the intersection of 

multiple ultimate pits generated one for each conditional simulation, aiming the design of 

―robust‖ ultimate pit limits. Aiming to find robust mining phases and pit limits, 

Dimitrakopoulos et al. (2007) carry out several risk-analysis for multiple candidate mine 

designs, trying to find the one with high probabilities to fulfill the mill requirements and 

at the same time maximizes the upside potential and minimizes the downside risks 

relative to an economic reference point termed minimum acceptance return (MAR).  

Such method is tedious in as much as multiple designs must be done one for each 

simulated model and the solution does not correspond to the optimal one since it only 

considers a small set of alternatives.  

The next logical step is to develop novel tools which are able to incorporate geological 

uncertainty directly into their formulation for the mine production scheduling. One of the 

avenues of research to accomplish such a goal is to formulate the problem as a mixed 

integer programming (MIP) model, but now taking into account the local uncertainty 

associated to each of the blocks. Dimitrakopoulos and Ramazan (2004) incorporate the 

probabilities of each block to have a quality within a desired interval through a constraint 

that limits the possible deviations from a production target. An important concept brought 

by the authors in this paper is the geological risk discounting (GRD), postponing larger 

risks to later periods. A major drawback of this approach, and other probabilistic based 

approaches that only incorporates local uncertainty through summarized probabilities is 

their inability to incorporate spatial uncertainty into the optimization process (Ramazan 

and Dimitrakopoulos, 2004b; Grieco and Dimitrakopoulos, 2007). A very simple 

example that shows such a limitation can be illustrated as follows. Imagine two 

neighboring blocks of the deposit which are likely to be mined together (given a realistic 
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operation which seeks minimum equipment relocation). In one simulated orebody model, 

the first of these blocks is ore and the other is waste, but in a second scenario their 

destinations are inverted (i.e., the second block is ore and the first is waste). If one limits 

the scheduler to look at each of those blocks individually, they are indeed very uncertain 

(the odds of having ore/waste are 50/50 for each block). However, if the optimizer could 

assess their joint uncertainty, it would be actually observed that by mining both blocks it 

is very likely (100% certainty, regarding the two simulated scenarios) that 50% of the 

material is ore and 50% is waste.  

Morales and Rubio (2010) also propose a robust approach that aims to maximize the 

number of scenarios for which production goals are achieved. However, the effects of the 

―bad cases‖ are not well captured by such approach, which is a common problem seen in 

chance-constrained models.       

Menabde et al. (2007) develop a Mixed Integer Programming model that accounts for a 

variable cut-off grade (COG) during the LOM and handles geological uncertainty 

through constraints that do not allow processing and mining capacities to be exceeded on 

the average of the multiple conditional simulations. In other words, the formulation 

simply enforces that the expected performance of the mining operation meets the desired 

targets, but does not minimize the deviations from production targets and hence, it cannot 

guarantee a robust performance under uncertainty.     

2.2.1 Two-stage formulations for a stochastic OPMPS 

An approach on how to incorporate uncertainty into decision problems is brought by the 

field of stochastic programming, which is built over the pillar that decisions can be 

separated in two different sets: the ones that have to be taken without full knowledge of 

the random process and the ones that can be taken after the random experiment takes 

place (King and Wallace, 2012; Birge and Louveaux, 2011). Such approach brings the 

idea that recourse decisions can then be made in a second stage in order to compensate 

for any bad effects that might have been experienced as a result of first stage decisions. 

Stochastic programming is based on splitting the problem in multiple stages, which are 

points in time where decisions are made. Usually, the information available at each of 

those stages is very different. In the news vendor example of King and Wallace (2012), 
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the first stage is the point in time when the orders are placed and the second stage 

corresponds to the amounts to be sold after the demand is revealed. In one way or 

another, the methodologies to be presented in the following paragraphs share a multi-

stage structure, either incorporated into heuristic approaches or in a more explicit way, 

through a formal mathematical programming model.  

Godoy (2003) implements a multi-stage mine production scheduling framework, adapting 

a combinatorial optimization algorithm based on Simulated Annealing (Kirkpatrick et al., 

1983; Geman and Geman, 1984). In Godoy‘s approach, the goal is to generate a final 

sequence of extraction which combines multiple mining sequences, one for each 

simulated orebody model, in order to minimize the risks related to deviations from 

production targets. This is accomplished by minimizing the following objective function:  

  𝑛   ∑(∑|  
 (𝑠)    |  

 

   

∑|  
 (𝑠)    |

 

   

) 

 

   

 (2.1) 

which consists on minimizing the differences between the ore and waste production 

(  
 (𝑠) and   

 (𝑠)) respectively, when considering the S different geological scenarios, 

and the desired targets (   and   ) over all the production periods P.  

The algorithm proceeds as follows, from the initial set of mining sequences the 

probabilities of each block to be mined in each period (transition probability); when the 

same scheduling decision to a given block is the same over all the scenarios, its period is 

frozen; otherwise, it is considered during the annealing process which consists on 

randomly selecting blocks to have their period swapped to feasible candidate periods 

accordingly to its transition probability. Hence, the system is iteratively perturbed in 

order to provide a single schedule that minimizes the deviations from production targets, 

which is assessed through (2.1). All favourable perturbations (         ) are accepted 

and unfavourable ones are accepted accordingly to an exponential distribution, 

  𝑝(          ⁄ ), which varies with time accordingly to the so-called annealing 

temperature T. The annealing starts with a high-temperature, which increases the 

probability of accepting unfavourable perturbations and reduces the chances of the 
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optimization to get trapped into local minima. Then, a cooling factor is sporadically 

applied to assist the process to converge into a final solution.  

As one may note, in one stage, Godoy‘s approach explores different parts of the solution 

space, generating different feasible mining sequences, with ―performances‖ assessed 

through different geological scenarios in a second stage, fully incorporating geological 

uncertainty into the mine production scheduling. Thus, the evaluation of the objective 

function in Eq. (2.1) works as a recourse action that guides the perturbation mechanism 

for the creation of new schedules. In a case study for the Fimiston pit in Western 

Australia, Godoy (2003) shows that the stochastic approach has a potential of increase by 

28% the NPV of the project when compared to the forecasted value reported by the 

conventional OPMPS routine. Godoy (2003) observes that the major contribution to this 

difference comes from the fact that despite that the same total amount of metal is 

comprised in both schedules, the stochastic approach is able to advance the metal 

production to earlier periods and at the same time deferring the extraction of waste. 

Coupled to the potential economic improvements, the stochastic approach is able to 

provide more realistic schedules, inasmuch as risk analysis shows that the largest 

deviation from ore target production is expected to be no larger than 4% while for the 

conventional schedule the deviations are in order of 13% during several years.  

As one may note, Godoy‘s approach provides not only a risk resilient solution to the 

OPMPS (by driving the schedule through zones where the risk of not achieving 

production targets are minimized), but it also increases the asset value by considering an 

inherent source of uncertainty and risk. The approach is also flexible to incorporate other 

sources of uncertainty and goals in Eq. (2.1). Major shortcomings are the setup process of 

several abstract parameters for the annealing mechanism and the definition of multiple 

schedules, one for each simulated model.  

Leite and Dimitrakopoulos (2007) further explores the capability of the simulated 

annealing framework for the stochastic mine production scheduling of a disseminated 

copper deposit, showing that even for a deposit with relative low-variability the 

stochastic approach is able to improve the NPV by 26% when compared to the forecasts 

of a conventional scheduler. Albor and Dimitrakopoulos (2009) test the sensitivity of the 
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methodology regarding different parameters. In addition, a case study is performed to 

compare stochastically generated optimal pit limits to conventional ones, along with the 

related production schedules both generated stochastically. Their results show that the 

stochastic approach leads to larger pit limits, increasing the LOM by one year and the 

NPV by 10%.  The authors conclude that this difference in economic performance is 

associated to a ‗cost‘ on ignoring uncertainty and assuming a ‗perfect knowledge‘ of the 

metal content and distribution in the deposit. In contrast to the deterministic optimization, 

the stochastic approach is able to aggregate value and to explore potential opportunities, 

such as by expanding the LOM. 

More recently, Montiel and Dimitrakopoulos (2013a) implement the approach in a more 

complex mining environment, adapting the objective function to account for multiple 

processing destinations and material types. In their application, the deviations of ore and 

waste production from desired targets are significantly reduced.  Goodfellow and 

Dimitrakopoulos (2013a) extend the idea of simulated annealing to generate stochastic 

pushbacks in multi-process operations. Their algorithm is successfully applied to BHP 

Billiton‘s Escondida Norte mine showing a reduction up to 61% of the variability in 

terms of quantities of material sent to the various processes with respect to the 

conventional design.  

2.2.1.1 Stochastic Integer Programming (SIP) 

In mathematical programming, the classical two-stage stochastic linear programming 

with fixed recourse, originally defined in Dantzig (1955) is the problem of finding: 

           ,   𝑞( )
  ( )- (2.2) 

𝑠 𝑡        (2.3) 

  ( )    ( )   ( ) (2.4) 

    ( )    (2.5) 

In this formulation, the objective function in Eq. (2.2) contains a deterministic 

component, led by the vector of first stage decision variables  , and the expectation of a 

second-stage objective 𝑞( )  ( ) taken over all the realizations of the random process 
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 . Therefore, for each realization  , the second-stage decision variables  ( ) are the 

solution of a linear program, such that: 

 (   )      
 
*𝑞( )      ( )   ( )       + (2.6) 

Therefore, for each scenario  , optimal decisions regarding the second-stage decision 

variables will be taken with a prior knowledge of first-stage decision variables. The 

formulation (2.2)-(2.5) is the simplest form of a stochastic two-stage program and 

extensions can be easily modeled. For example, if some of the first-stage or second-stage 

decisions are to be integers, constraint (2.5) can be replaced to restrict the variables to an 

integer space (Birge and Louveaux, 2011). Such a formulation is called stochastic integer 

programming (SIP). 

Ramazan and Dimitrakopoulos (2007) introduce a SIP optimization model for the 

OPMPS. This work was an initial start-up of a fully developed model in Ramazan and 

Dimitrakopoulos (2013). In this model, the NPV is maximized over the life-of-mine 

(LOM), accounting with a recourse action to minimize deviations in tonnage, grades, and 

metal production from desired targets. The objective function is: 

 

The Part 1 of the objective function accounts for the total expected NPV of all blocks 

mined in a given period. The decision variable   
  represents the fraction of a block   

which is mined in a period 𝑡. If such variable is binary, it is equal to one if block   is 

mined in period 𝑡 and zero otherwise. Part 2 adjusts the total value previously accounted 

from Part 1, considering that a percentage of the blocks being mined (   
 ) will be sent to 

the stockpile and not processed at period 𝑡. Therefore, from the total value added in Part 

1, only the mining cost (   
 ) actually incur during that given period. Part 3 adds the 

value of an amount of ore (  
 ) reclaimed from the stockpile. The unitary value 

max  = ∑  ∑   (𝑁𝑃𝑉) 
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(dollars/ton) associated to this material is given by the parameter  𝑆𝑉 . One may note 

that, in contrast to the decisions in Part 1 and 2, the amount of material considered in this 

part is scenario dependent. First, the model must take the decision when to mine a given 

block, without the full information being known. However, the model assumes that at the 

time of the decision about the amount of material to be reclaimed from the inventory, 

complete information about the mined blocks is known: whether the material from the 

mine is enough to supply the processing plant or not, and what is the shortage. Part 4 is 

devoted for the management of geological risks. Such risk is assessed through lower (𝑑  
  ) 

and upper (𝑑  
  ) deviations from ore tonnages (𝑜), grades (𝑔) and metal targets (𝑞), for 

each scenario 𝑠. Associated to these deviations there are costs (    
  ) to be incurred at 

each period, in order to penalize the risk of not attending the project expectations. 

Usually, it is desired to meet production targets at early stages of the LOM, so that the 

initial capital expenditures can be recovered as earlier as possible and the financial risks 

minimized. To accomplish such risk management over time, the concept of geological 

risk discounting (GRD) is used. Therefore, the costs associated to the excess and 

deficient production decreases over the LOM by the application of a discounting rate.  

The deviations of Part 4 are calculated through scenario-dependent constraints in the 

formulation. Equation (2.8) exemplifies how it is modelled for the case of ore tonnage 

targets (    ): 

∑      
  ∑       

 

     

   

   
  𝑑  

   𝑑  
       

       

   

   𝑠 𝑡 (2.8) 

The first two sums account for the total tonnage of material mined in period 𝑡 which is 

sent straight to the processing plant (    is the tonnage of a given block in a given 

scenario 𝑠).   
  accounts for the amount of ore reclaimed from the stockpile and feeding 

the processing plant in period 𝑡. Thus, if the total tonnage of ore feed in a given period is 

equal to the target (    ), no deviations are accounted for. Otherwise, the equality forces 

one of the deviation terms to assume a value, addressing either an excess or a shortage in 

ore production. It is noteworthy that, because these deviations are associated to costs in 

the objective function (2.7), only one of them takes place at a time. Constraints of the 
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same nature of (2.8) are built for assessment of grade and metal deviations from targets. 

An additional set of constraints is introduced for flow stream control of material 

associated to the stockpile; slope constraints guarantee geotechnical stability for the 

mining operation, setting predecessors of blocks that are mined to reach an underlying 

block; reserve constraints guarantee that blocks mined only once during the LOM; and 

mining capacity constraints force the total rock movement (ore and waste) to be inside a 

desired range.  As one may note, the introduction of penalties in the objective function 

(2.7) adds a great flexibility for managing risks over the LOM. One may choose, for 

instance, to asymmetrically control the risks associated to excess or shortages, penalizing 

one more than the other.  

The application of SIP for the OPMPS is presented in Ramazan and Dimitrakopoulos 

(2013) for a small gold mine (~20 000 blocks). The stochastic approach was able to 

reduce the risks of not meeting production targets and to increase the NPV of the project 

by 10% if compared to the results given by a deterministic OPMPS.   

This SIP approach introduced by Ramazan and Dimitrakopoulos (2013) formed the basis 

for further studies. Using the same formulation, a case study is shown for a copper 

deposit in Leite (2008) and Leite and Dimitrakopoulos (2009), but without considering 

stockpiles or controlling risks over grades and metal productions. The authors report an 

improvement of 29% for NPV when compared to the results of a conventional 

deterministic framework. Albor and Dimitrakopoulos (2010) use SIP to assist on finding 

robust and valuable pushback designs. In their framework, a series of nested pit shells is 

found by a pit parameterization technique (Whittle, 1988). Then, for the different number 

of pushbacks desired, intermediate pits are found by grouping the nested pits that lead to 

maximum NPVs. In a final stage, when the problem is reduced to the decision about the 

optimal number of pushbacks, each design previously defined is used to guide in the 

generation of different LOM production schedules through SIP. In the end, the design 

that leads to the best performance in terms of NPV maximization and risks minimization 

is chosen. Although their results lead to a larger pit and an increase of 30% for NPV 

when compared to a conventional approach, it is a laborious workflow because a SIP 

model needs to be solved several times.    
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Benndorf (2005) and, Benndorf and Dimitrakopoulos (2013) show an application to a 

multivariate iron ore deposit in Australia. In their proposed framework, a joint-simulation 

methodology similar the one to be presented in Chapter 4, is used to model the joint 

spatial uncertainty of the elements considered. Then, a SIP model is used to minimize the 

deviations from production targets, in terms of tonnes and ore quality, and at the same 

time providing a smoothed schedule to facilitate equipment management and relocation 

during the operation. Their results demonstrate the ability of the approach to control risks 

of deviating from production targets for critical quality-defining elements in iron ore 

operations such as SiO2 and Al2O3. Jewbali (2006) and, Dimitrakopoulos and Jewbali 

(2013) describe an application of a SIP model which integrates long and short-term 

planning. This is done by first extracting the spatial relationship of exploratory drill holes 

and grade control data from mined out areas, which serves as basis for a joint-simulation 

to be used as future grade control data in unexploited sites of the deposit. Secondly, a 

conditional simulation based on successive residuals is used in order to update existing 

representations of the orebody, incorporating future data that will be gathered by the time 

of the exploitation. Finally, the SIP approach is applied on the updated model of 

uncertainty, which is now coherent with the level of information available by the time of 

the mine operation. Their case study at Surnrise Gold Mine in Australia has shown an 

increase of 230M (AUD) if compared to the values reported by the conventional mine‘s 

LOM studies of the same year.  

Boland et al. (2008a) develop a multi-stage stochastic programming approach for the 

OPMPS. In their formulation, the authors consider aggregates rather than blocks, 

modelling both mining and processing decisions through linear variables (Boland et al., 

2008b). The work is founded on the principle that mining is a ‗learning process,‘ such 

that new information gained through the excavation ought to influence in future mining 

schedule decisions. For the authors, schedules should be able to adapt over time in 

response to information acquired during the mining process. For that, they use non-

anticipative constraints, also called implementable constraints, commonly used in 

scenario tree structured problems (King and Wallace, 2012). Because in the mine context 

the values are drawn from a continuous space and simulated models tend to be strictly 

different one from the other, the authors needed to define their own measure to quantify 
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how dissimilarities of two simulated orebody models, based on aggregate‘s properties. 

Based on that, non-anticipative constraints are modelled in order to ensure that, if the 

optimizer is not yet able to distinguish between two scenarios in a time period 𝑡 or in any 

earlier period, the same set of decisions must be taken under both scenarios. Therefore, in 

theory, solving such a model with relaxed non-anticipative constraints leads to the wait-

and-see solution (Birge and Louveaux, 2011), in which optimal sequences are found for 

each simulated model and then averaged out. Their case studies show an average 

improvement of an order of 2% in NPV if compared to the application of their 

deterministic formulation (out of an average 5% improvement brought by the ―perfect 

information‖).  

A major drawback of this multistage approach developed by Boland et al. (2008a) is the 

practicality for mining engineers, since it generates a dynamic schedule that is not 

directly applicable and cannot be used for subsequent studies. Moreover, the solutions 

might be unstable if tested with other geological simulations, and the method does not 

easily accommodate additional elements of a mining complex, such as stockpiles and 

several processing stream options.  

2.2.1.1.1 Seeking for efficient solution approaches for the SIP 

OPMPS models are in the class of NP-hard problems (Gleixner, 2008; Bienstock and 

Zuckerberg, 2010), which means that there is no known polynomial-time algorithm for 

this problem. In addition, because mineral deposits usually comprises thousands to 

several millions of blocks, it is most likely not appropriate to solve large-scale OPMPS 

models using exact methods for integer programing. One way to deal with the prohibitive 

size of the OPMPS model is to reduce the number of integer variables, for example by 

aggregating blocks into larger units (e.g., Ramazan, 2007; Boland et al., 2008).  Another 

way is through the development of solution approaches based on heuristic and 

metaheuristic methodologies for solving realistic-size instances, providing good feasible 

solutions in a reasonable amount of time when compared to mathematical programming 

solvers such as CPLEX.   
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In the case study presented in Ramazan and Dimitrakopoulos (2013), the authors 

implement the following strategies for solving the SIP model: (a) linear relaxation of 

binary variables associated to waste blocks (in a previous paper, Ramazan and 

Dimitrakopoulos (2004a) show that such approach significantly reduces the number of 

binary variables without generating major issues, because waste blocks are linked to ore 

blocks and the later forces the complete extraction of waste blocks); (b) a first stage 

relaxing the stochastic constraints to provide an initial solution for the second stage 

where the original problem is solved; (c) a divide and conquer scheme to solve the model 

sequentially for different group of periods.  

Heuristic and metaheuristic algorithms can also be used to solve complex problems such 

as OPMPS more quickly than exact methods, or for at least finding an approximate 

solution when exact methods fail to find any feasible solution, which is the case of large 

mineral deposits. Focusing on providing an efficient solution method to tackle large 

instances of the stochastic OPMPS, Lamghari and Dimitrakopoulos (2012) propose a 

metaheuristic method based on tabu search (TS). The model used in their paper is similar 

to the two-stage SIP model with recourse from Ramazan and Dimitrakopoulos (2012) 

with just minor differences. Their methodology starts from an initial feasible solution, 

which is iteratively modified by looking for different solutions in its neighbourhood. 

These new solutions are generated by shifting the period of some blocks, keeping the 

feasibility of the problem and improving the objective value. A tabu list is used to avoid 

reversing short-term shifts. When the tabu search terminates (a given number of 

successive non-improving iterations is reached), a diversification strategy is applied to 

generate new starting solutions for a further tabu search. The authors test two 

diversification strategies: a long-term memory diversification strategy, which move 

blocks to periods that they have rarely been; and a variable neighbourhood strategy, 

which takes the best solution found so far and applies a period shifting to k different 

blocks while maintaining feasibility. Their results show that the first diversification 

strategy outperforms the second strategy and also a pure tabu search. Such variant has 

produced very good results with gaps (measured as the relative difference from the exact 

solution obtained for the corresponding linear relaxation) no bigger than 4% for several 

instances for great part of the tests.  
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Another metaheuristic based on a variable neighbourhood decent algorithm to solve a 

similar SIP formulation is proposed by Lamghari et al. (2013).  Similar to the solution 

approach previously discussed (Lamghari and Dimitrakopoulos, 2012), the methodology 

starts by generating an initial feasible solution by two different methodologies similar to 

the ones discussed in Section 3.1 of this thesis.  This initial solution is improved by 

applying an adaptation of a variable neighbourhood decent (VND) method, which 

consists on combining different descent heuristics based on different neighbourhood 

structures to escape from local optima. The schedule is iteratively modified aiming the 

generation of better solutions, in terms of maximizing value and minimizing risks. Three 

neighbourhood structures are implemented: (a) exchanging N
1
: tries to swap two blocks 

scheduled in consecutive periods; (b-c) shift-after/before: tries to make room for new 

blocks in a given period by postponing/advancing the extraction of a group of blocks 

currently mined in such period. During the VND, a neighbourhood strategy is fully 

explored before starting new search using another structure. The process of looking for 

better solutions stops when no move in any of the three neighbourhoods improves the 

value of the objective function. The case studies in the paper show very promising results 

with solutions found in few hours within an average gap of less than 3%. In order to 

better explore the solution space, Lamghari and Dimitrakopoulos (2013) propose a new 

heuristic methodology based on very similar neighbourhood structures described before, 

but now using a network-flow algorithm in order to link all periods. This novel 

framework for solving a stochastic OPMPS, accounting with multiple processing streams 

and a stockpile, is the one further explored in this thesis. 

2.2.1.1.2 Incorporating additional elements of the mining complex 

Recent developments have been made towards more realistic frameworks through the 

incorporation of additional intricacies for the mine supply chain. Montiel and 

Dimitrakopoulos (2013b) use a multi-stage heuristic approach which starts with an initial 

solution and seeks for better solutions in the neighbourhood through sequential 

perturbation following a given outlined strategy. Their model accounts for multiple 

processing destinations which are able to operate under different processing options (e.g., 

coarse vs. low silica), blending restrictions, different material types, stockpiles, and 
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processing additives. A particular aspect of their methodology is the fact that processing 

decisions are robust regarding uncertainty (i.e., such decisions are not scenario 

dependent). Goodfellow and Dimitrakopoulos (2013b) assume a static multi-mine 

production schedule and proposed a general model to the mine supply chain, which is 

further tailored to a non-linear MIP formulation. Given the complexity of the problem, 

the authors use a clustering framework for aggregating initial block destinations (which 

entails that blocks with similar characteristics are sent to the same destinations across 

different scenarios) coupled to a metaheuristic approach called particle swarm 

optimization (Kennedy and Eberhart, 1995). The supply chain is modeled as a graph such 

that the nodes are related to different locations (e.g., mines, processing facilities, etc.) and 

the arcs indicate the flow of material. It is assumed that such graph is acyclic, which 

allows for a sequential updating when material flow is active throughout the supply 

chain. A key aspect is that, within a given destination, the model allows materials to be 

transformed  to intermediate/output materials by transforming properties using non-linear 

expressions (e.g., metal recovery might be treated as a non-linear function of head 

grades). A two-stage recourse stochastic model is built with initial cluster destinations in 

first stage followed by recourse actions regarding processing decisions and risk 

assessments. An interesting feature of the framework is that the clustering scheme allows 

robust decisions during the actual blending operation, not limited to single cut-off values. 

In addition, algorithmically evaluating the supply chain gives flexibility for the model to 

assess expected value of recovered metal from blended material sent to the processing 

streams rather than assigning economic value to blocks as it is conventionally done.  

2.2.2 Other stochastic approaches in mine planning: final pit and pushback design 

In conventional mine planning, a common practice is to use efficient parametric 

maximum flow algorithms to find optimal mine designs (Picard, 1976; Hochbaum and 

Chen, 2000). Meagher et al. (2009) extend such an idea, formulating a stochastic 

approach to solve the ultimate pit limit and phase design, accounting for price, exchange 

rates and geological uncertainties. The core modification is done in the graph structure, 

which now supports multiple scenarios, and allows conventional parametric maximum 

flow methodology to be used for finding the optimal design. Asad and Dimitrakopoulos 
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(2012) extend such an idea by introducing production capacity constraints and by 

incorporating a Lagrangian relaxation of these constraints to exploit the classical 

structure of the maximum flow algorithm.  

2.3 Assessment of spatial uncertainty 

The previous section highlighted the importance of stochastic frameworks for the 

OPMPS. In order to incorporate the spatial geological uncertainty and intrinsic variability 

of the deposit, a set of geostatistical simulations are needed. This section brings a 

literature review on the main principles and algorithms for generation of these stochastic 

scenarios, focusing on joint simulation techniques. 

Geostatistics is a discipline devoted to the development of Random Field (RF) models of 

a spatial phenomena characterized by the distribution of one (or more) attribute(s)  ( ) 

over a field   (Matheron, 1963; David, 1977; 1988; Journel and Huijbregts, 1978; 

Journel, 1989; Goovaerts, 1997; Chiles and Delfiner, 2012). In this context, stochastic 

simulation is the process of building alternative, equally probable models of the spatial 

distribution of  ( ) conditioned to data values sampled at certain locations and 

honouring the inferred statistics of the deposit (univariate distribution(s) and spatial 

variability, such as measured by (cross)-variograms).  

A straight way of generating equally probable realizations of the related Random Field 

(RF) is by directly drawing alternative realisations from its multivariate multi-point 

cumulative distribution function of the RF. In practice, because such complete knowledge 

is rarely available, simulation algorithms are mostly built upon assumptions of ergodicity 

and stationarity of the RF (Journel and Huijbregts, 1978).  

Most of the modern geostatistical simulation methods rely on a sequential simulation 

paradigm, which uses the chain rule of probability (Rosenblatt, 1952; Kolmogorov, 

1956) to write the spatial law of the RF as products of univariate conditional distribution 

functions as follows (Rosenblatt, 1952): 

 (               )    (𝑢    )   (𝑢       (  ))     (𝑢       (  )       (    )) 

Different frameworks are used to obtain these ccdfs (conditional cumulative distribution 

functions) during the sequential process. The most common algorithms based on such 
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framework are: sequential Gaussian simulation (SGS), which assumes multi-Gaussianity 

of the RF, and by consequence, the conditional expectation and variance, which are 

identified by the simple kriging estimator and variance (Journel, 1984), are sufficient for 

characterizing the ccdf; and the sequential indicator simulation (SIS), which is based on 

an indicator framework for estimating a non-parametric ccdf (Journel and Alabert, 1988).   

2.3.1 Joint spatial simulation 

In mine planning, it is very common the need of modelling multiple spatially correlated 

geological attributes, for example, evaluation of recoverable resources in polymetallic 

deposits, assessment of deleterious elements such as phosphorous in iron ore deposits, 

and so on. The assessment of the joint spatial variability of such corregionalized variables 

is done through joint simulation techniques, which aims at building realizations that 

reproduces both the spatial variability of each variable and their joint spatial correlation.  

Initial efforts for co-simulation in multivariate geostatistics are achieved in Chiles (1984) 

and Dowd (1984). The first aims the co-simulation of multi-elements in a nickel laterite 

deposit and the second thicknesses ratios in an oil formation. Both used a non-conditional 

simulation algorithm based on turning bands (Matheron, 1973; Journel, 1974), but the 

multivariate spatial relationship of the attributes was not directly accounted, since the 

random fields were independently simulated and then conditioned by kriging. Carr and 

Myers (1985) develop a Fortran-based tool called COSIM, which attempts to explicitly 

account for the corregionalization by using cokriging during the conditioning step. At 

that time, this approach provides a better accuracy in the simulations if compared to the 

previous methods. Later on, the Lower/Upper (LU) decomposition algorithm described 

by Davis (1987) for the univariate simulation of a mutiGaussian RF, was extended by 

Myers (1989) for the multivariate case. However, such approach requires the 

decomposition of very large cross-covariance matrices, which imposes practical 

limitations for its application. In the same way that the original LU simulation proposed 

by Davis (1987) relates to the SGS approach (Dimitrakopoulos and Luo, 2004), it is 

natural to imagine an extension of Myers (1989) framework to sequential Gaussian 

cosimulation, relying on the solution of cokriging systems at each node. Such 

implementation is demonstrated in Gomez-Hernandez and Journel (1993) and Verly 
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(1993) who generalize the SGS algorithm to the vectorial simulation of multiple 

variables. In order to simplify such approach, Almeida and Journel (1984) further 

develop the idea by implementing a collocated cokriging approximation assuming a 

Markov type model, simulating each variable at a time, accordingly to a hierarchical 

outline. Under such corregionalization model, the dependence of the secondary variable 

on the primary is limited to the collocated primary datum, since this one screens out the 

contribution of the rest of the data (Goovaerts, 1997). This model assumes that the 

variogram of the primary variable is proportional to the cross variogram. Markov-type 

assumption significantly reduces the complexity of the cosimulation process (Almeida 

and Journel, 1984). However, such a model is most likely to be an oversimplification of 

the corregionalization model, and may be limited in several applications. The algorithm 

proposed by Almeida and Journel (1984) is later modified by Soares (2001), who uses a 

direct simulation algorithm without performing any normal score transformation. The 

basic idea is to simulate the primary variable all over the grid and then, simulate the 

secondary variable using this exhaustive co-located information, and so on through the 

outlined hierarchy.  

The major drawback with these joint simulation algorithms, which explicitly considers 

the corregionalization model of the multivariate random field, is that they either rely on 

too simplistic models (e.g., Markov-type), or they require the full inference of the 

corregionalization models in terms of variograms and cross-variograms. In addition to 

that, for a large number of correlated variables on large simulation grids, joint simulation 

algorithms may be computationally costly, due to the solution of very large cokriging 

systems (e.g., iron ore deposits with several variables to be modelled, such as, Fe2O3, 

Al2O3, P, SiO2, LOI, over a realization grid comprising millions of nodes).  

An alternative approach consists on replacing the simulation of the K dependent variables 

  ( ) by the independent simulation of K uncorrelated factors   ( ), from which the 

original   variables can be rebuilt (David, 1988). Such framework is considerably faster 

than the previous frameworks proposed because no cokriging systems need to be solved, 

and neither  (   )   cross variograms need to be inferred.  A series of transformation 

techniques can be found in the literature, where most of them are based on a linear 
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relationship between original variables and factors. A well-known technique in 

multivariate analysis is principal component analysis (PCA), which aims the 

transformation of correlated variables into a linear combination of orthonormal factors 

through spectral decomposition of the covariance matrix (Johnson and Wichern, 2007). 

Relying on such approach, David et al. (1984) use principal components to joint simulate 

arsenic and uranium grades and Luster (1985) for simulating the corregionalization of 

limestone components. However PCA is straightforward to implement, it can only 

guarantee decorrelation at zero lag, but not for all separation distances, except for the 

special case where the correlation structure of attributes does not depend on the spatial 

scale, such as in the case of an intrinsic model of corregionalization (Goovaerts, 1993).  

Therefore, such approach is not able to control the reproduction of spatial cross 

correlations between variables at lags different than zero. Another transformation that 

only guarantees decorrelation at zero lag distance is proposed by Leaungthong and 

Deutsch (2002). Their stepwise conditional transform (SCT) produces transformed 

variables following a multivariate Gaussian distribution, allowing the straight application 

of Gaussian based simulation algorithms. The technique is known from Rosenblat (1952) 

and it is very similar to the normal score transform for the univariate case. For bivariate 

cases, the normal scores transformation of a secondary variable is conditional to the 

probability class of a primary variable and so on for the higher dimensional cases. 

Besides not guaranteeing decorrelation for distances other than zero, SCT suffers from 

some major drawbacks: sparse data leads to inference of erratic and nonrepresentative 

conditional distributions. Therefore, a large amount of data is required for a good 

performance of the technique; the order in which variables are treated in the stepwise 

procedure affects the final result, increasing its practical complexity; as a global 

transformation, it does not allow the exploration of local spatial correlation. A positive 

feature of such transformation is the direct transformation into multiGaussian space and 

in contrast to PCA, it is a non-linear transform and explicitly accounts for 

heterocedasticity. 

In order to overcome the limitations of the previous methodologies which were only able 

to provide uncorrelated factors at zero distances, Desbarats  and Dimitrakopoulos (2000) 

bring to geostatistical context the approach of minimum/maximum autocorrelation 
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factors (MAF), which was first introduced by Switzer and Green (1984) for the 

minimization of noise in a remote sensing application. This technique is a linear 

transformation that decorrelates a set of spatially correlated variables into spatially 

uncorrelated factors for all lags, provided that the corregionalization model of the 

multivariate RF can be fully characterized by a linear model of corregionalization 

(LMC). The usual procedure for determining the MAF factors is through the application 

of two successive PCA rotations.  As thoroughly reviewed in Rondon (2012), the MAF 

transformation matrix can be derived by either directly using the theoretical LMC or 

through a ‗data driven‘ approach which only relies on the experimental covariance-

variance plus a selected experimental (cross-)variograms/covariance matrices during its 

calculations. When the experimental approach is used, a series of MAF transformation 

matrices need to be derived using a number of alternative experimental variogram 

matrices at different lags and selecting the one that yields to the best spatial decorrelation 

structure. 

In practice, the ‗data driven‘ approach is often preferred to avoid the explicit inference of 

a theoretical LMC model. In addition, most of the frameworks used for the independent 

simulation of the MAF factors rely on algorithms for simulation of multiGaussian RFs 

(Desbarats and Dimitrakopoulos, 2000; Fonseca and Dimitrakopoulos, 2003; Eggins, 

2006; Lopes et al., 2011). Therefore, in such applications, the data must be firstly 

transformed to Gaussian space to be further decorrelated through MAF.  

Observing the fact that the process of deriving MAF factors (or principal components) 

does not require the assumption of a multiGaussian RF, Bandarian et al. (2008) suggest 

the direct transformation of sample data into MAF factors, without any prior normal 

score transformation, to be further simulated through a direct simulation algorithm. 

Although such approach avoids problems associated to a normal score transformation 

(e.g., it is usually impractical to ensure and validate the assumption of multiGaussianity, 

possible deterioration of correlations and principle of maximum entropy), the approach 

suffers with the common pitfalls of common direct simulation algorithms. 

Observing the principle that transformation methods such as PCA and MAF are based on 

diagonalization of covariance-variance and/or variogram matrices (i.e., vanishing with 
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off-diagonal terms to destroy correlation among original variables), Bandarian (2008) 

explores the idea of joint diagonalization (JD) for the joint simulation of spatially 

correlated variables. As in Afsari (2008), such problem can be stated as: given a set of N 

square symmetric matrices *  +   
 , the goal is to find a non-singular matrix   such that 

all the N products     
  are ―as diagonal‖ as possible. Such problem can only be 

exactly solved, if the symmetric matrices commute pairwise. Therefore, in practice, one 

is expected to find an approximate diagonalization. In his application, Bandarian (2008) 

tests several methods of JD, but the one that leads to the most interesting results was the 

ACDC approach, which stands for Alternating Columns and Diagonal Centres, 

introduced by Yeredor (2000). Briefly, this algorithm is designed to minimize the 

following objective: 

 (         )  ∑    ‖       
 ‖ 

 
 

   
 (2.9) 

where    is a set of non-negative weights to give assymetric importance on the 

diagonalization of different matrices   , and    are the set of approximate diagonal 

matrices produced by the diagonalization of each matrix   . The operator ‖ ‖ 
  is the 

squared Frobenius Norm, which is simply the sum of the absolute squares of all elements 

of a given matrix. In order to test a similar algorithm but with a faster convergence, 

another JD algorithm called U-WEDGE is explored in Ferreira and Muller (2011). This 

algorithm, introduced by Tichavsky and Yeredor (2009), incorporates in the objective 

funtion (2.10) both ways of expressing a joint diagonalization property, either by 

isolating the ―approximate‖ diagonal matrix or the original matrices, given that the 

optimization criterion for one way might not be optimum for the other way round.      

 (   )  ∑  ‖      
     𝑑𝑑  𝑔(    

 )   ‖ 
 

 

   
 (2.10) 

where the operator  𝑑𝑑  𝑔  nullifies the off-diagonal elements of a square matrix, 

𝑑𝑑  𝑔( )       ( ). In an exact diagonalization,   would be the diagonalization 

(transformation) matrix and   its inverse, therefore     
  would lead to a diagonal 
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matrix   . Now, for any matrix   one can find a matrix    that minimizes (2.10) with 

respect to  .  

Such methodologies based on JD show a great freedom for the determination of the 

transformation matrix, in as much as one can easily incorporate different weights for the 

approximate diagonalization of different matrices, even splitting anisotropic directions. 

However, such freedom heavily relies on a set of ―noisy‖ experimental variogram 

matrices, which may result in instabilities arisen from inconsistencies from one matrix to 

the other. As a linear transformation method, it also has same limitations of MAF in this 

context. 

Linear transformations such the ones through PCA, MAF or JD, might find difficulties in 

reproducing complex multivariate relationships such as non-linearity and 

heteroscedasticity. A recent paper presented by Barnett and Deutsch (2012) brings a 

practical transformation to be applied as a pre-processing step for removal of these 

complex multivariate features. The approach is attractively simple: a secondary variable 

   is conditionally standardized by a primary variable   , by subtracting from each value 

of    its corresponding conditional expectation regarding the primary variable  *     + 

and dividing the result by the standard deviation, also conditional to   , i.e.,   *     +. 

The derivation of such conditional statistics may be determined either parametrically 

through forms of regression or non-parametrically by discretization of the distribution of 

the secondary variable conditionally to the primary. The extension of such transformation 

is straightforward for more than two variables. This ―conditional standardization‖ 

transformation heavily relies on the inference of the conditional statistics to accurately 

describe the non-linear and heteroscedasticity of the multivariate distribution. Therefore, 

as any other transformation which aims to the extraction of ―deterministic trends‖, its 

practical application is limited for cases where such inference is reasonably reliable and it 

might also suffer with overfitting. Moreover, it is noteworthy that such transformation is 

only able to exploit multivariate relationships at co-located positions, disregarding the 

spatial multivariate heterocedasticity. Barnett and Deutsch (2012) also discuss the 

application of logratios transformations prior to a factorization transformation (e.g., 

through PCA or MAF), for the removal of stoichiometric constraints (e.g., compositional 
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data) as first suggested in Aitchinson (1984). Such consideration is of extreme 

importance to be incorporated in methods for simulation through uncorrelated factors, 

which do not explicitly account for stoichiometric balance of multi-elements, which 

might be of high relevance as in iron ore deposits.  

Also aiming to tackle issues arisen by complex non-linear relationships, Barnett and 

Deutsch (2014) suggest the application of an exploratory projection pursuit algorithm, 

introduced by Friedman (1987). Barnett and Deutsch (2014) use projection pursuit to 

seek for non-Gaussian structures to be sequentially gaussianized, aiming that at some 

point (e.g., after M iterations) the multivariate distribution eventually approximates to a 

multiGaussian one. Major drawbacks found in such approach proposed by Barnett and 

Deutsch (2014) for the joint simulation context is that, it only considers decorrelation at 

zero lag distances (a way of tackling this in a linear sense, is to apply a second PCA 

rotation over an experimental variogram lag of the transformed variables). Moreover, the 

multiGaussian transformation does not ensure multiGaussianity of the RF itself, since it 

does not introduce any spatial multivariate relationship in the procedure. Back-

transformation also appears as a major issue of the approach.   

2.3.2 Efficient framework for joint spatial simulation 

In mining, the stochastic simulation of orebody models usually requires very efficient 

methods that are able to handle a large number of nodes (thousands to several millions) to 

be simulated conditionally to drilling information. Efficient methods ought to provide 

stochastic realizations able to reproduce desired statistics and features, in a tractable time, 

at a low memory cost and with no laborious steps for fitting and modelling many 

parameters. In the last section, it has been shown a series of methodologies that by, 

simulating uncorrelated factors instead of directly simulating coregionalized variables 

significantly alleviates the computational burden of joint simulation techniques based on 

cokriging. However, the simulation of multiple fields related to each of the factors and 

the back rotation, still demands a high computational cost and complex memory 

management for large datasets, typical in mining applications.  
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Usually, the final goal is to represent these simulated orebody models at block support 

scales, to mimic the mining operation that works in such selectivity scale. Therefore, 

instead of naively simulating several nodes that will be further averaged out to provide 

simulated fields at point-support scale, it would be much more efficient to generate 

stochastic realizations directly at block-support scale. An efficient algorithm developed 

for such goal is presented in Godoy (2003) for the univariate simulation of multiGaussian 

RF. Direct block simulation (DBSim) is a sequential Gaussian simulation that uses 

similar principles of a generalized sequential Gaussian simulation (GSGS) 

(Dimitrakopoulos and Luo, 2004): a group of internal nodes discretizing a block is 

simulated, the block value is calculated and the simulated points are discarded; only the 

simulated block value is added to the set of conditioning data on the realization grid. For 

integrating conditioning information at both point (samples) and block supports, the 

algorithm is developed in terms of a joint point-block LU simulation (Myers, 1989). As 

pointed out by Godoy (2003), and Benndorf and Dimitrakopoulos (2007), the Direct 

Block Simulation framework is computationally efficient for several reasons. First, it 

incorporates the advantages of the GSGS algorithm, which relies on the idea that adjacent 

nodes tend to share common neighbourhood, performing fewer searches than pointwise 

simulations and accelerating the process for suitable discretization and neighbourhood 

size (Dimitrakopoulos and Luo, 2004). In addition, discarding the internal points of 

simulated blocks represents a decrease in memory allocation that is directly proportional 

to the number of nodes N discretizing the blocks. A key assumption of this algorithm is 

that the normal score transformation entails in multiGaussianity of the RF, inclusively for 

the joint relationship between point and block supports.  

For multivariate simulation directly at block support, Boucher and Dimitrakopoulos 

(2009, 2012) extend DBSim to incorporate the MAF framework. Now, for the internal 

nodes of a given block, K univariate simulations are carried out one for each uncorrelated 

factor. For the back transformation step, the normal score variables are obtained by linear 

combination of the uncorrelated factors before they are back transformed to the data 

space and average out, in order to output the simulated multi-elements at block supports. 

This efficient procedure, couples the advantages brought by an indirect multivariate 
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simulation of corregionalized variables through uncorrelated factors with the efficiency 

of a framework of a direct block simulation technique.  

2.4 Comments on multiple-point techniques for multivariate simulation 

All the joint simulation frameworks presented above rely on second-order statistics, such 

as through the modelling and reproduction of (cross)variograms. Although second-order 

statistics are adequate for the complete statistical characterization of Gaussian random 

fields, they are inadequate for modeling geological phenomena which typically deviate 

from Gaussianity and exhibit complex non-linear spatial patterns (Guardiano and 

Srivastava, 1993; Journel, 2007). Such a limitation motivated the development of several 

multiple-point frameworks (MPS) for the simulation of categorical and continuous RFs 

(e.g., Strebelle, 2002; Arpat, 2005; Zhang et al., 2006; Mustapha and Dimitrakopoulos, 

2010; Honarkhah, 2011). However, the incorporation of multiple-point statistics in the 

context of joint simulation remains a challenge, and very few works have been developed 

towards this direction.  Mariethoz et al., (2010) show an adaptation of the direct sampling 

algorithm to address the joint simulation of multivariate RFs, defining multiple 

conditioning data events through several variables. A high order simulation algorithm, 

such as HOSIM (Mustapha and Dimitrakopoulos, 2010) that explicitly aims to build 

conditional cumulative distribution functions during the sequential simulation, can also 

be extended to accommodate multiple variables for joint simulation. During the analytical 

construction of the multivariate probability distribution, different variables can be used 

for the calculation of the high-order spatial cumulants.  The challenges here are on how to 

generate training images honoring high-order joint spatial relationships of the deposit and 

the excessive number of high-order spatial (cross)cumulants that need to be calculated, 

which may represent a very large computational cost. A way of tackle such an issue is by 

factorizing the original variables considering their high-order spatial relationship. 

Techniques such as principal cumulants component analysis (Morton and Lim, 2009) and 

independent component analysis (Hyvärinen et al., 2004) might be probably useful for 

extending the previous factorization frameworks (e.g., PCA and MAF) for the cases of 

multiple-point simulation. 
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Chapter 3 

Solving a Large SIP Model for Production Scheduling at a Gold Mine 

with Multiple Processing Streams and Uncertain Geology  

3.1 Introduction 

Open-pit mine production scheduling (OPMPS) generates the optimal sequence of 

extraction of mining units over the life-of-mine (LOM), given a set of physical and 

technical constraints. Such a decision process needs to be made under conditions of 

uncertainty, however, conventional approaches for optimizing OPMPS (e.g., Johnson, 

1969; Dagdelen and Jonhson, 1986; Gershon, 1987; Whittle, 1988; Tolwinski and 

Underwood, 1996; Cacceta and Hill, 2003; Hustrulid and Kuchta, 2006) tend to assume 

that parameter inputs are fully known, ignoring potential risks and opportunities that 

might arise from the different sources of uncertainty (Ravenscroft, 1992; Dowd, 1994, 

1997). An example in Dimitrakopoulos et al. (2002) shows that the results in key 

performance indicators of a conventional mine design are misleading in the presence of 

geological uncertainty, highlighting the limits of deterministic optimization techniques.  

Spatial uncertainty of geological attributes can be modelled through stochastic simulation 

techniques which are able to provide a series of equally probable scenarios of the orebody 

(Goovaerts, 1997; David, 1988). The availability of these models leads to the 

development of stochastic optimization frameworks that are able to integrate uncertainty 

into the decision process, minimizing downside risks and maximizing potential upsides. 

During the last decade, a substantial focus has been given for the development of new 

models and solution approaches for the stochastic version of the OPMPS. For example, 

Godoy (2003) introduces a stochastic framework where multiple schedules derived from 

each geological scenario are firstly joined up. Thereafter, a combinatorial optimization 

problem is solved by an algorithm based on simulated annealing in order to provide a 

single schedule with a higher NPV (improvements of 28%) and substantially lower 

deviations from production targets, when compared with the results reported by the 

conventional schedule. Similar conclusions are drawn in Leite and Dimitrakopoulos 
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(2007) for an application of the framework in a copper deposit. Albor and 

Dimitrakopoulos (2009) show for a specific case study that the application of this 

stochastic framework leads to a larger ultimate pit with an NPV 10% larger than the one 

obtained by constraining the schedule with a conventional pit limit.  

Menabde et al. (2007) develop a mathematical formulation to maximize the expected 

NPV over several scenarios while minimizing deviations from production targets in an 

average sense. Dimitrakopoulos and Ramazan (2008) bring a stochastic integer 

programming (SIP) formulation which maximizes the expected net present value (NPV) 

and incorporates recourse actions to tackle the uncertainty modelled through stochastic 

simulations, by minimizing possible deviations from production targets over the life-of-

mine. Ramazan and Dimitrakopoulos (2013) extend this SIP formulation to introduce a 

stockpile option, reporting an increase of 10% in the NPV if compared to the economic 

performance reported by a conventional schedule. In addition, the method provides more 

realistic schedules that minimize the chance of deviating from production targets, 

regarding geological uncertainty. These results highlight the ability of stochastic 

schedules on simultaneously maximising economic returns and driving the mining 

sequence through zones where the risk of not achieving the target ore production is 

minimised. Other variants and applications of SIP have also shown significant 

improvements over the deterministic OPMPS: Leite and Dimitrakopoulos (2014) show 

through an application to a porphyry copper deposit that, even for a low grade variability 

deposit, the NPV can be increased by 29%; Dimitrakopoulos and Jewbali (2013) 

incorporate in the SIP model simulated future data information, outperforming the NPV 

of the conventional mine design of a gold mine; Benndorf and Dimitrakopoulos (2013) 

extend the model to account for several elements of an iron-ore operation, showing that 

the capability of the stochastic approach to controlling risks of deviating from production 

targets for critical quality-defining elements. Boland et al. (2008) incorporate metal 

uncertainty via a multistage stochastic programming approach in such a way that, 

decisions made in later time periods might depend on observations of the properties of 

the material mined in earlier periods.  
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The stochastic models proposed by Ramazan and Dimitrakopoulos (2012), Menabde et 

al. (2007) and Boland et al. (2008), are all solved using a mixed integer programming 

solver such as CPLEX (ILOG, 1998), which limits their practical application to instances 

of relative small sizes, typically accounting for less than 20 thousands blocks (Lamghari 

and Dimitrakopoulos, 2012). As a result, over the past few years, several authors have 

been seeking the development of new solution approaches, which can efficiently tackle 

large instances of the stochastic OPMPS.  Lamghari and Dimitrakopoulos (2012) 

introduce a metaheuristic approach based on Tabu search for solving large-scale SIP 

models within a few minutes up to few hours (while a commercial solver would take days 

for some instances), with a deviation of less than 4% from optimality for most of their 

runs. Comparable results are obtained in Lamghari et al. (2013b) who use two variants of 

a variable neighbourhood decent algorithm and average deviations of less than 3% from 

optimality for several instances.  

The present paper focuses on an application of a heuristic approach introduced by 

Lamghari et al. (2013a) which incorporates geological uncertainty, multiple processors, 

stockpiles, and is capable of solving large-size mining schedule problems in a reasonable 

time. The solution approach can be seen as a very large-scale neighbourhood search 

method (Ahuja et al., 2002) and it basically involves two stages: (i) the generation of an 

initial solution and (ii) the application of an improvement algorithm based on network 

flow. In the following sections, the SIP formulation and the solution approach are 

revisited, followed by the application at a gold mine employing two processing streams 

and one ‗grade‘ stockpile. Discussions and conclusions follow.  

3.2 Stochastic Integer Formulation Revisited 

The stochastic integer formulation proposed by Lamghari et al. (2013a) is briefly 

outlined in this section. The following notation is used: 

• N is the total number of blocks and i is the block index with i = 1,…,N; 

• T is the total number of periods and t is the period index with t = 1,…,T; 

• S is the total number of scenarios used to model the geological uncertainty and s 

is the scenario index with s = 1,…,S; 
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• P is the total number of processing streams and p is the processing index with p = 

1,…, P (e.g., a mill and a leaching facility). 

• Pred(i) is the set of predecessors for a given block i, which means that all blocks 

in this set must be exploited before i in order to satisfy the slope constraints; 

• dr is the economic discount rate over the time basis being considered; 

• dips is a parameter indicating the most profitable destination for a block i under 

scenario s. Therefore, comparing the block grade gis to the cut-off policy adopted, 

dips is equal to one for its most profitable destination stream for scenario s and it is 

equal to zero for all other destinations.  

• wi is the total tonnage of a given block i; 

• E[BEVi] is the expected block economic value (BEV) of a given block i. This 

value is calculated for each geological scenario, considering the best destination 

of the block accordingly to the cut-off policy of the project, which is given by the 

dips.    

• 𝑆  
  and    

  are both undiscounted costs related to stockpile activities for a given 

process p during period t. The former cost stands for sending material to the 

stockpile and the latter for reclaiming material from the stockpile.  

• �̃�  
  is the discounted revenue returned, if a tonne of ore under a given scenario s is 

reclaimed from the stockpile and sent to process p during production period t.  

• W
t
 and   

  are the maximum mining and processing capacities (for each 

processing option p) respectively, for a given period t.  

• Ip is the initial amount of material in the stockpile of processor p. 

• Binary variables (  
  ) for each block i and period t. It is considered that   

   is 

equal to one if the block i is already mined by period t, otherwise it assumes the 

value of zero. It means that, if a block I is mined in period t
*
,    

    for all t = 

1… t
*
-1 and   

    for all t = t
*
… last period.  In consequence,    

    
    only 

assumes the value of one for the period t when the block is mined. To simplify the 
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notation, a set of N dummy decision variables   
  (    𝑁) are introduced, all 

having a fixed value equal to zero. 

• Linear variables (   ) related to processing streams. In the model proposed,    
  

  

and     
  

  represent the surplus and shortage of material in a given period t, for a 

process destination p, regarding a specific scenario s. These variables are used to 

model the stockpile streams related to each process p. In case of surplus under a 

given scenario,    
   is the amount of material that must be stockpiled in order not 

to violate the processing capacity available. In case of shortage,    
   accounts for 

the amount reclaimed from the stockpile to fulfil the processing capacity. Finally, 

the variables    
  denote the amount of ore in the stockpile at the end of period t.   

The mathematical model aims to maximize the discounted cash flow (Eq. 3.1) given 

some physical and technical constraints related to the mining operation (Eqs. 3.2 to 3.10) 

as summarized below: 
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As per Eq. 3.1, the objective function can be separated in two major terms: the first one 

refers to the mining decisions, without having access to full information about the 

material that is underground (scenario independent); the remaining is associated to 

scenario dependent variables (stockpile actions), because once a block is mined, the 

operation can take the most suitable decision about where to send a given mined block, 

leading to different stockpile actions under each scenario. The first part of the stockpiling 

term refers to the total approximated undiscounted cost related to send exploited material 

from the mine to the stockpile of processor p in period t under scenario s; and the second 

part refers to the total approximated undiscounted net revenue after reclaiming material 

from the stockpile of processor p in period t under scenario s. As one may note, the 

option of using the stockpile incurs additional costs in the objective function. Thus, in an 

optimal solution the use of the stockpile is minimized, which means that the risks of 

overproduction regarding all geological simulations are also minimized. 

The addition of a stockpile to the mathematical model adds the number of quadratic terms 

to the formulation of the OPMPS. The calculation of the parameters �̃�  
  in the objective 

function (3.1) depends on the knowledge of the average grades ( ̃  
 ) of the material that 

is sent/reclaimed in/from the stockpile. For a realistic approximation of the average grade 

of the stockpile in a given period, one should track the average grade of the material 

being extracted and sent to the stockpile up to this period.  However, the notion of which 

blocks ought to be extracted are related to decision variables of the model, resulting in a 

cross relationship with the revenue generated by processing the material from the 

stockpile, and giving rise to a non-linear term in the objective function. To maintain the 

linearity of the model, Lamghari et al. (2013) use a single initial approximation for the 

average grade of the stockpile associated to each processor, which is fixed for all the 

scenarios and over all the periods. In this paper, the set of average grades  ̃  
  is 

iteratively approximated and may vary from period to period and scenario to scenario. 

This iterative approximation is performed in the following way: first, the schedule is 

solved using a approximated average grade, which might come from the average grade of 

all blocks in the deposit which are candidates to go to the destination related to the 

stockpile, or the average grade of materials within the cut-off between its processor and 
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the low-grade processor. After solving the OPMPS with this approximation, the 

optimizer outputs the amount of material going in and out of the stockpile (respectively 

given by the linear variables    
   and    

  ), but it does not track which blocks specifically 

are being stockpiled. Since no blending constraints are considered, it is assumed that in 

each period, from the set of blocks scheduled to be sent to a given destination, the ones 

that go to the stockpile are the ones with the lowest grades, because in an optimal 

solution, due to the time value of money, the low-value material is stockpiled in order to 

leave room for the processing of high-value material. By doing such an analysis, it is 

possible to calculate the ―expected‖ average grade of the stockpile for that given 

schedule. These average grades by period are then fed as input to the optimizer to 

generate a new schedule. The same process of approximating the grades and rerunning 

the solver keeps looping until the difference between the input grade and the ―expected‖ 

one is less than a threshold ε (e.g., 10%). A similar approach is used by Sarker and Gunn 

(1997) to solve nonlinear problems, where the authors iteratively solve multiple linear 

programming problems approximating the quality of the blended material at different 

locations in terms of sulfur, ash and BTU content. The same authors show that, not only 

it is a simple and fast way of dealing with nonlinear problems, it is able to provide 

solutions near optimality after few iterations. A comparison between the approximation 

for the average grade of the stockpile shown herein and the one in Lamghari et al. (2013) 

is shown in the Appendix. 

Constraints in Eq. (3.2) are the reserve constraints, which guarantee that each block is 

mined at most once. Constraints in Eq. (3.3) are the slope constraints, which entails that 

to access a given block, a set of predecessors must be mined before, assuring the slope 

angles are predefined. Constraints in Eq. (3.4) are the mining constraints which enforce 

that the total amount of material mined in a given period t cannot be higher than the 

mining capacity available for that period. Constraints in Eq. (3.5) are the processing 

constraints, which imposes an upper bound for the total material sent for a given process, 

in period t and under scenario s. Constraints in Eq. (3.6) are the stockpiling constraints 

which balance the mass flows of each stockpile. At the end of each period t, the stockpile 

of a processor p under scenario s must contain the amount of material initially available 
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at the end of period t-1, plus the amount of material stockpiled minus what was reclaimed 

during period t.  

It is noteworthy that, although the model does not consider explicitly a lower bound 

capacity for the processing streams in order to better control the ore feeding, the 

optimizer always tries to use all the capacity available, mostly in earlier periods as an 

attempt to increase the NPV of the project. From this constraint one may also note that, in 

an optimal solution, either stockpiling or reclaiming is active, since both incur costs in the 

objective function. Thus, the surplus variable (   
  ) will assume positive values when it is 

worthy to mine and send to a given processor more material than it can handle during that 

period, which is an attempt to reach as fast as possible the high-grade zones of the 

deposit, stockpiling low-grade material that had to be mined previously. On the other 

hand, the shortage variable (   
  ) will only assume a positive value either if it is better to 

reclaim material from the stockpile than fulfilling the processor capacity with material 

from the ground, or when the material mined is not enough to fulfill the processor 

capacity. Moreover, inasmuch as the stockpile actions incur costs to the objective 

function (both associated to rehandling and opportunity cost of postponing the process 

valuable material in the stockpile), in an optimal solution the use of the stockpile is 

minimized, which means that the risks of overproduction regarding all geological 

simulations are also minimized. These features are expected to drive the optimizer to 

maximize value and minimize geological risk throughout the life-of-mine. 

3.3 A Review of the Solution Approach 

For solving the OPMPS model introduced in the previous section, a multistage heuristic 

algorithm described in Lamghari et al. (2013a) is used. It comprises two major steps: 

generation of an initial feasible solution and then its improvement by using a network 

flow based algorithm which efficiently searches for improving solutions over a large 

neighbourhood. 

3.3.1 Generating an initial feasible solution 

Two heuristics methodologies are used to test different initial solutions. Both of them are 

based on the ―divide and conquer‖ principle, by solving the model period by period, and 
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thus, each period composes a reduced sub-problem. As soon as an earlier period is 

solved, the mining blocks scheduled to this period are taken out from the model to reduce 

the problem‘s size. The later periods are sequentially solved in a similar way. After this 

sequential process, the solutions found are merged, providing an initial feasible solution.  

The differences existing between the two heuristic methods used are basically in the way 

each one solves the sub-problems. In the first method, the solutions are given by an exact 

mathematical programming method implemented in CPLEX. The second method is a 

greedy heuristic procedure (GH) which at each iteration tries to include in the set of 

mining blocks scheduled for a given production period t, a set of blocks represented by a 

base block (i) and its predecessors (Pred(i)) not mined yet, in such a way as to maximize 

the objective function of the sub-problem model, respecting the mining capacity 

constraint and at the same time postponing the extraction of waste and advancing the 

extraction of ore, thus, deferring costs and advancing profits to earlier periods. This 

greedy heuristic incorporates a look ahead feature, since it looks after blocks with all 

their unmined predecessors instead of treating blocks separately one by one. In both 

methods for generating initial feasible solutions, blocks that are not included in the sets of 

mined blocks in each period until the last one (T) are left behind. To represent these 

unmined blocks, they are included in a set corresponding to a fictitious period (T+1).  

3.3.2 Improving the initial solution with a network flow algorithm 

It is well known that sequentially solving the mine production schedule does not lead to 

an optimal solution of the long-term production schedule (Gershon, 1983). Therefore, in 

a second stage, the goal is to improve the initial solution generated by any of the two 

heuristic approaches explained above, providing a new schedule with a higher NPV. To 

achieve this, the improvement algorithm proposed basically tries to postpone the 

extraction of blocks responsible to decrease the objective function (3.1) and advance 

those which improve it.  

The algorithm is based on a network-flow structure, where each problem is defined on a 

graph G = (V, E) (V is the set of nodes and E is the set of arcs). Different graphs are built 

according to the problem being solved: delaying (backward pass) or advancing (forward 
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pass) extraction of blocks. Only the construction of the first case is shown henceforth, 

since the formulation of the forward structure is straightforward. Thus, for the backward 

structure, the set of nodes represent blocks which matches the following characteristics: 

• the total expected economic value of a given block and all its successors 

scheduled for the same period t  is negative, since NPV increases as the costs are 

deferred, and; 

• the total tonnage of this same group of blocks, summed to the total tonnage 

already scheduled for the next period (t+1), minus the total tonnage of a candidate 

group of blocks scheduled to period (t+1) which can be postponed to (t+2), must 

not exceed the mining capacity W
t+1

. This condition ensures that the mining 

capacity is not violated when blocks are moved from one period to another.  

Each node of the graph is associated to a block and its predecessors scheduled for the 

same period, respecting the conditions stated above. To complete the network, an 

additional node is added to the fictitious period T+1 which represents the set of blocks 

that will not be extracted; for each period, one extra node is added for fictitious blocks 

with neither weight nor costs, representing a path through where no modifications are 

done to the current schedule. In addition, two extra nodes must be added to the network 

referring to its source and sink. In this formulated graph, the set of arcs E involves all 

possible connection between two nodes currently scheduled in consecutive periods t and 

t+1. In addition, some arcs are added connecting the source to the nodes belonging to the 

first period and one more arc is connected from the fictitious node in T+1 to the sink. As 

a result, each path from the source to the sink, passing through nodes in consecutive 

periods, represents a new solution to the stochastic mine production schedule, where a 

given mining block and its successors represented in a node has their extraction delayed 

to the next period and so on. Blocks at the head of the arc are moved to the following 

period and the blocks represented by the node at the tail of the arc are mined in their 

place. Figure 3.1 shows a simplified illustration of graph G. 
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Figure 3.1 - Illustration of the graph built for the network-flow algorithm (Backward Case). 

Thus, the goal is to find a single feasible path which improves the value of the objective 

function as in Eq. (3.1). If no such path is found, the solution given by the algorithm is 

the path which includes the set of fictitious nodes introduced before, and no block would 

be moved from one period to the other and the value of the objective function remains the 

same. To identify the feasible path which increases the value of the objective function the 

most, each arc is weighted accordingly to the feasibility of the delaying movement and 

the gain it brings to the objective function. After weighting each arc the model becomes a 

longest path problem, which consists in finding the simple path of maximum length, 

where the length in this case is represented by the sum of the weighted arcs. The weights 

(pij) of each arc (i,j) ∈ E are defined as follows: 

• Arcs connecting nodes associated to real blocks in each period t = 1,…,T+1, 

represent movements of blocks associated in node i from their period t to t+1 and 

movements of blocks associated to node j from their period t+1 to t+2. So, if this 

move results in a violation of mining capacity at (t+1), the weight associated to 

this arc (i,j) is a large negative number, which flags its infeasibility. Otherwise, a 

weight pij is associated to the arc, indicating the delta change in the two first parts 

of the objective function (Eq. 3.1). The last part, which accounts for the value of 

reclaimed material from the stockpile, is not considered because it cannot be 

evaluated in the network structure, since one needs to know what is available in 

the stockpile before knowing how much can be reclaimed; 
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• Arcs connecting the source to nodes in the first period are always feasible, (the 

upper bound of the mining capacity is always satisfied in period 1, because only 

delaying action can be taken). Thus, the pij weights are simply associated to the 

modifications in the two first terms of the objective function; 

• A pij = 0 is associated to the arcs between the fictitious nodes created for each 

period. A null weight is also assigned to the arc from the dummy node in T+1 to 

the sink. 

As mentioned earlier, once the graph is built, solutions are generated by solving the 

longest path problem, associating each arc to a binary variable and sending a unitary flow 

from the source to the sink, which guarantees that the solution provided is always a 

simple path. It is interesting to note that the constraint matrix (nodes-arcs incidence 

matrix) of this integer programming problem is unimodular. This property indicates that 

the integrality constraints can be dropped and only restricts zij ∈ [0,1]   (i,j) ∈ E. 

Subsequently, the problem can be efficiently solved using linear programming or 

network-flow techniques.  

In summary, the algorithm works in an interactive way such as the following: first, it 

performs a backward pass (initial mode), trying to delay the extraction of blocks. If the 

solution changes, a new network is built for the new current schedule and another 

backward pass is carried out. Otherwise, if the longest path found identifies the set of 

fictitious nodes, meaning that no improvement can be made, the problem is switched to a 

forward pass, and the algorithm looks for blocks to advance their extraction. In the same 

way as in the first, several passes are performed until no improvement is achieved, and 

then the problem switches its mode again. The algorithm stops when it executes two 

consecutive modes, that is, backward and forward passes (and vice-versa) without any 

improvement in the value of the objective function. 

3.4 Case Study at a Gold Mine 

To demonstrate the application related aspects of the method previously described, a case 

study of a gold mine is presented here. The deposit being mined consists of an intensely 

mineralized shear system localized in mainly steeply dipping, NNW to NW striking 
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lodes. Gold lodes can be up to 1,800 m (5,900 ft) long, have vertical extents of 1,200 m 

(3,900 ft) and be up to 10 m (33 ft) wide. The mine feeds two processing streams, a mill 

and a leaching facility, with the first having an associated stockpile. Fixed 

stockpiling/reclaiming costs are used throughout the LOM and no material is in stock for 

the first production period.     

A set of 15 stochastic simulations, discretized in about 120 thousand blocks of 

20x20x20m
3
 and generated by direct block simulation (Godoy, 2003), are used to model 

the spatial uncertainty of grades  though the deposit. This number of scenarios is used 

because past works, such as in Albor and Dimitrakopoulos (2009) and Leite (2008), 

indicate that after about such number of representations of an orebody, the stochastic 

schedules tend to converge to a stable final schedule and to provide stable forecasts of 

production performance. Such results are not surprising because, despite the spatial 

uncertainty modeled over blocks with few cubic meters, a production schedule of a mine 

represents a grouping of several hundreds to thousands of these blocks in one mining 

period under different constraints. Thus, with this significant increase of support (from 

blocks to production in mining periods), the stochastic schedules tend to be less sensitive 

to additional scenarios after a relatively small number of scenarios.  

The general parameters for the stochastic mine production schedules are summarized in 

Table 3.1.  

Table 3-1 - Technical and economic parameters for OPMPS 

Mining Cost $ 1.80/t   Mining Capacity 90 Mta 

Metal Price $ 730/oz Selling Price $5.0/oz 

Discount Rate 8.0% Slope Angle 45
o
 

Mill - High Grade  

Recovery 90% Proc. Cost $ 9.50/t   

Stockpiling Cost $ 0.50/t   Reclaiming Cost $ 0.85/t   

Proc. Capacity 22.0 Mta Stockpile Capacity 20 Mt 

Leaching - Low Grade  

Recovery 50% Proc. Cost $ 5.00/t   

Proc. Capacity 1.0 Mta   
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The case study is split in two subsections in order to show the differences obtained when 

using branch-and-cut (Wolsey, 1998), an exact mathematical programming method 

implemented in CPLEX (ILOG, 2008) or a greedy heuristic to generate the initial 

solution. The computations are performed in a Intel Xeon 5650 (2.66GHz) with 24GB 

RAM. In both case studies, CPLEX is used to solve the longest path problem over the 

network during the improvement stage of the algorithm.  

3.4.1 Stochastic Schedules  

Two different schedules are generated, each respectively using CPLEX and the greedy 

heuristic (GH) to generate the initial feasible solutions.  The risk profiles for the ore 

throughput for the mill and the material stockpiled by the end of each period are 

respectively shown in Fig. 3.2 and Fig. 3.3. In these graphs, the blue and red solid lines 

refer to the expected ore input to the mill in the schedules generated by respectively using 

CPLEX and GH as initial solutions. The dashed lines represent the percentiles P10 and 

P90 for the ore throughput over the different geological scenarios  

 

Figure 3.2 - Expected ore tonnage throughput for the mill and related risk profiles, using CPLEX 

(blue) and GH (red) to generate initial solutions. 
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Figure 3.3 - Expected ore tonnage at the mill stockpile and related risk profiles, using CPLEX 

(blue) and GH (red) to generate initial solutions. 

The schedule using CPLEX as initial solution considers an additional year to the LOM, 

shown in blue (Fig. 3.2) and an ultimate pit 1.1% bigger than the schedule using GH as 

initial solution. As seen in Fig. 3.2, the range of variability about the expected value of 

throughput for the mill is quite low, which suggests that this process is likely to operate 

with low uncertainty for the expected throughput. For the schedule obtained using the 

initial solution from CPLEX, the mill will potentially work at full capacity (22Mt) during 

the first sixteen years, while for the OPMPS using the GH as initial solution, this period 

is shortened to eleven years. During these time spans, the mill potentially works with 

almost no risks of over/under production. This occurs because during those periods, the 

tonnage uncertainty is somehow ―shifted‖ to the stockpile, since for each scenario, the 

overproduction is sent to the stockpile and in case of shortages, material can be reclaimed 

from the stockpile. During the years for which the mill works below its capacity (Fig. 

3.2), the mine operates at full mine capacity (90Mt) and not enough material is available 

in the stockpiles under all geological scenarios (Fig. 3.3). These factors lead the optimizer 

to work below the mill‘s maximum capacity, since the mining rate entails in a bottleneck 

for the operation and no penalties are incurred for underproduction in the SIP formulation 

presented in a previous section. A way of dealing with this would be to explicitly 
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incorporate penalties for idle capacity (shortage in production) in the formulation, in such 

a way that they do not compete with the reclaiming variables, or allow a flexibility to the 

mine to increase its capacity during later periods, through the acquisition of mining 

equipment.   

Figure 3.3 shows that, for both schedules generated, the first period is when most of the 

material is sent to the stockpile, which allows the mill to advance the metal production, 

by working with a high grade material as shown in Fig 3.4. These results show, as 

expected, the flexibility added to the project by the use of a stockpile: (i) it allows the 

operation to reach high grade material earlier during the LOM and (ii) ‗buffers‘ the risks 

of oversupply of ore and/or having idle processing capacity, with respect to geological 

uncertainty. 

 

Figure 3.4 - Expected metal input to the mill and related risk profiles, using CPLEX (blue) and 

GH (red) to generate initial solutions. 

Regarding the differences between the two schedules generated, Fig. 3.2 shows that the 

OPMPS using CPLEX to generate the initial solution is able to advance the production of 

ore (see years 13 to 18) and to reach high grade areas during earlier periods if compared 

to the solution by using the GH as initial solution. The metal content for the ore input to 

this processor during the first year is about 40% larger in the first production schedule 

than in the second. Figure 3.3 shows that these differences are mostly related to the fact 
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that, in the first solution approach the greater use of the stockpile provides a larger 

flexibility to the operation.  

In contrast to the behaviour seen for the mill, Fig. 3.5 shows that the leaching process 

will potentially work under its nominal capacity of 1Mt and with a much more variable 

throughput. Such a result is expected because the SIP formulation used in this paper, 

controls the geological risks exclusively through the use of a stockpile associated to the 

mill, which is not the case for leaching. Figure 3.6 shows the risk profile for the metal 

production of this same processing destination. 

 

Figure 3.5 - Expected ore tonnage throughput for the leaching and related risk profiles, using 

CPLEX (blue) and GH (red) to generate initial solutions. 

 

Figure 3.6 - Expected metal input to the leaching and related risk profiles, using CPLEX (blue) 

and GH (red) to generate initial solutions. 
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Regarding the economic performance of the project, the risk profiles of the cumulative 

NPV are shown in Fig. 3.7. These curves show a very low uncertainty about the expected 

NPVs for the project (less than 3% of upper/lower deviations regarding the P10 and P90). 

In addition, Fig. 3.7 shows that, the OPMPS using the GH as initial solution has an 

overall NPV 7.9% (M$215) lower than the one obtained by using CPLEX as initial 

solution. In this specific case study, this difference is mostly related to the ability of the 

latter solution to produce a larger amount of metal during the first period. In this year, its 

NPV is 56% (M$245) higher than the one achieved by the mine production scheduling 

obtained by using GH as initial solution.  

While CPLEX takes hours to generate an initial solution, the GH takes only seconds. In 

addition, the final OPMPS using CPLEX as initial solution took a total time of 32 hours 

against the 38 hours required for the generation of the final solution by the approach 

using the GH as initial solution. This excessive time reported by this last approach is 

related to the size of the neighbourhood found in each iteration when it tries to make a 

backward move. In many of these iterations, the graph built has contained more than 2.7 

thousands of nodes and 22 millions of arcs. This represents a very large linear 

programming problem, requiring more than 30 minutes to be solved. Thus, as one may 

observe, for this case study, besides providing a higher NPV, the final schedule generated 

using CPLEX‘s initial solution also demands a smaller computational time than the 

approach using GH to generate an initial solution.  
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Figure 3.7 - Expected cumulative NPV and related risk profiles, using CPLEX (blue) and GH 

(red) to generate initial solutions. 

Figure 3.8 brings South-North cross sections of the schedules, illustrating the differences 

in their physical sequence of extraction. Using CPLEX as initial solution produces a less 

smooth sequencing pattern than the one provided by employing GH as initial solution. 

For this case study, this latter approach tends to maintain the ―clustered‖ structure 

intrinsic from its formulation 

 

Figure 3.8 - South-North vertical cross-section of the physical sequences of extraction for the 

schedules using different initial solutions (a) CPLEX and (b) GH. 
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3.5 Conclusions 

The present study highlights the practical aspects and performance of a neighborhood 

search method based on a network flow algorithm, developed to solve a stochastic 

version of the open-pit mine production scheduling. A case study was performed at a 

relatively large gold mine comprising about 120 thousand blocks, two processing streams 

and a stockpile. This consists of a very large mathematical programming model, with 

about 3 million integer variables. Two different ways of generating initial feasible 

solutions to be input to the network flow algorithm were tested. The first uses CPLEX 

and the second a greedy heuristic to sequentially solve the mine production schedule 

period-by-period. For the specific case study, although the greedy heuristic was able to 

find the initial solution in a few seconds and the exact method demanded hours for the 

same task, the improvement stage was much longer when using the greedy heuristic 

solution. This latter approach took 38 hours to generate a final schedule, against 32 hours 

required by the optimizer when the CPLEX initial solution is used. This behavior is 

different to the common trend observed in previous tests (Lamghari et al, 2013). Note 

that, when CPLEX was used to produce the linear relaxation of the stochastic integer 

programming model of this case study, it could not provide an optimal solution after two 

weeks, highlighting the advantages of looking for computationally efficient solutions, 

such as the one used in this paper.  

In this case study, the production schedules generated showed that by using the initial 

solution from CPLEX, a better final solution can be achieved in terms of NPV (7.9% 

higher than starting from the initial solution generated by the GH). All results have 

shown that the stochastic mine production schedules have controlled deviations in ore 

production for the processor with a stockpile associated to it, since the SIP formulation 

used in this paper, considers that the recourse actions to control the geological risk are 

incorporated in the stockpiling actions. The overproduction under any scenario is sent to 

the stockpile and shortages are only controlled if there is material available in the 

stockpile. These actions imply costs associated to rehandling of material and the 

opportunity cost of leaving valuable material in the stockpile, and therefore, penalizing 
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deviations related to uncertainty. The shortcoming is that, if in a giving production 

period, no material is available at the stockpile, shortages are not explicitly penalized. 

These observations highlight that the heuristic method tested in this paper is able to tackle 

large SIP formulations for realistic mine environments, producing mine production 

schedules with low deviations about expected production rates. 

3.6 Chapter Appendix 

To illustrate the differences of using an iterative approach to approximate the average 

grade of the stockpile, a third schedule is generated and shown in this Appendix.  This 

schedule is generated using a single initial approximation for the stockpile average 

grades, which is the average grade of all resources that will be potentially sent to the mill 

accordingly to the marginal cut-off grade of the operation. For this schedule, CPLEX is 

also used to generate an initial feasible solution. The results have shown that, the biggest 

differences are related to the management of the stockpile (Fig. 3.9), given that for 

iterative approach, the OPMPS considers a more extensive use of the stockpile than the 

schedule obtained from using a single approximation. In this specific case study, this lead 

to a NPV of only 1.3% (M$35.66) larger for the first schedule than the one obtained by 

the second approach tested herein. 

 

Figure 3.9 - Risk profiles for tonnage at mill stockpile - Schedules generated by iterative 

approximation (CPLEX(1)) and by a single approximation (CPLEX(2)) of the stockpile grade. 
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Chapter 4 

Simulation of weathered profiles coupled with multi-element block-

support simulation of the Puma Nickel Laterite Deposit, Brazil 

4.1 Introduction 

Over the years, stochastic simulation has been shown to be an important tool for 

assessment of spatial geological uncertainty in mineral deposits. Modelling uncertainty 

leads to a better understanding and quantification of risks at different decision levels in 

mining, such as in grade-tonnage curves, mine planning, grade control, etc. (e.g., Journel, 

2007; Peattie and Dimitrakopoulos, 2013) 

In several cases, it is of interest to model the spatial variability of not only one but a set of 

multiple spatially correlated variables. In contrast to the univariate case, traditional 

methods for multivariate simulation show cumbersome features that limit their practical 

use in the industrial environment (Boucher and Dimitrakopoulos, 2012). The main 

contributors for this complexity are the impractical computational requirements and 

tedious inference of an explicit model of corregionalization, which substantially increases 

with the number of attributes being jointly simulated (Goovaerts, 1997). 

An alternative to those co-simulation frameworks is to transform the initial set of 

spatially correlated attributes into a new set of uncorrelated (orthogonal) factors. These 

factors are independently modelled and simulated, and later back-transformed to the 

original space of the multivariate dataset, aiming the reproduction of their cross 

correlations. Earlier efforts in multivariate geostatistics using such strategy are based on 

principal component analysis (PCA) (David, 1984, 1988). Although this methodology is 

simple to implement, it can only guarantee that the factors are uncorrelated at lag zero but 

not for all separation distances, except under very specific cases such as when assuming 

an intrinsic model of corregionalization (Goovaerts, 1993; Wackernagel, 2003). 

Leuangthong and Deutsch (2002) use a stepwise conditional transformation (SCT) to 

transform the data into multiGaussian variables uncorrelated at lag zero. Among the main 

drawbacks associated to this step-wise transformation are: the need of a large amount of 
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data required when dealing with several variables and the fact that, as other global 

transformation procedures, it may deteriorate some existing local spatial connectivity of 

the grades. With similar goals as SCT but solving the curse of dimensionality, Barnett 

and Deutsch (2014) use a projection pursuit algorithm (PPMT) to iteratively search for 

‗least Gaussian‘ structures of the multivariate distribution and sequentially ―gaussianize‖ 

them. Such a process eventually transforms the multivariate data into a multivariate 

Gaussian distribution decorrelated at lag zero, but nevertheless that still carries a spatial 

structure. Tercan and Sohrabian (2013) use independent component analysis (ICA) to 

find non-Gaussian factors that are mutually independent (hence uncorrelated) at lag zero. 

In a different way than in previous frameworks (SCT and PPMT) that rely on a 

multiGaussian based algorithm to independently simulate the factors, here the authors use 

a direct simulation algorithm. 

Aiming to find factors that are uncorrelated not only for lag zero but also at any other 

distance, Desbarats and Dimitrakopoulos (2000) utilize minimum/maximum 

autocorrelation factors (Switzer and Green, 1984) in a geostatistical context. Relying on 

the linear model of corregionalization (LMC) for the multivariate random field, MAF is 

able to provide a set of factors uncorrelated at any distance. Stochastic simulations 

through MAF has been increasingly used in a series of other geostatistical studies, mostly 

using a multiGaussian framework for the independent simulation of the uncorrelated 

factors (Dimitrakopoulos and Fonseca, 2003; Eggins, 2006; Lopes et al. 2011; 

Goodfellow et al., 2012). Observing the fact that the orthogonalization does not relies on 

multinormality of the random field, in Bandarian et al. (2008) MAF transformation is 

directly applied to the dataset, without prior transformation to Gaussian space, and 

proceeding with a direct simulation algorithm afterwards. Although the approach reduces 

reliance on the multiGaussian paradigm, it suffers with the pitfalls related to direct 

simulation techniques. Rondon (2012) provides a thorough review about the MAF 

transformation.  

An alternative methodology is suggested by Mueller and Ferreira (2011), who explore the 

application of an approximate joint diagonalization technique (AJD) called U-WEDGE. 

This method sets out to find a rotation matrix which is able to simultaneously diagonalize 
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(approximately) a set of symmetric matrices corresponding to the series of cross-

variograms at different lags.  

For mineral deposits, the target support to be simulated (selective mining unit) is usually 

much larger than the available drilling data (typically considered as point support). Thus, 

the common practice consists on simulating the entire deposit at point support followed 

by a post-processing step to average the point grades inside each mining block. Such 

approach can be cumbersome in practical terms when large deposits are simulated, 

comprising several millions of blocks. A simulation alternative for univariate 

multiGaussian random fields directly at block support is proposed in Godoy (2002) and 

extended to the joint simulation with MAF in Boucher and Dimitrakopoulos (2009, 

2012), significantly increasing efficiency and reducing memory requirements during the 

simulation. 

This paper details the application of MAF and direct block simulation for modelling the 

joint spatial uncertainty of multiple geological attributes of Puma, a major nickel laterite 

deposit in Brazil. The nickel enrichment is result of intensive weathering and laterization 

of ultramafic ridge complexes within the Amazon Craton of the Brazilian Precambrian 

Shield. Above the bed rock, a saprolitic zone is found, characterized by high content of 

Nickel, relatively high silica and magnesia and low iron contents. Near to the surface, an 

iron-rich unit is formed, with a lower nickel, silica and magnesia contents. The supergene 

enrichment of the regolith, leaching and erosional processes result in a highly complex 

environment, which accounts with a large spatial variability of thicknesses and grades.  

Due to the great disparity of their chemical composition, very different metallurgical 

routes are needed to process limonitic or saprolitic ore. In its current operation, the mine 

produces ferronickel from the saprolitic ore, while the limonitic ore type is treated as an 

opportunity material. The process efficiency is extremely sensitive to the head grades, 

requiring a strict control over the quality of the ore feed, which reinforces the necessity of 

jointly modelling the spatial variability of multiple elements.  

The following sections include a summary of the joint simulation framework through 

MAF and its extension for direct block simulation; a thorough description of the deposit 

and available data; joint simulation of bottom layers of limonite and saprolite domains, 
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by means of modelling their respective thicknesses, followed by subsequent joint 

simulation of Ni, Co, Fe, SiO2, MgO and Dry-Tonnage Factor (DTF), aiming to a 

geological plausibility of the complex orebody and control over operational quality 

required by the ferronickel plant. Thereafter, the results from the generated grade-tonnage 

curves are discussed, followed by conclusions. 

4.2 A recall on joint simulation of multiple correlated attributes through min/max 

autocorrelation factors (MAF) 

Let  ( )  ,  ( )   ( )     ( )-
  denote a stationary and ergodic random field 

(RF) over a region  , representing K correlated continuous attributes of a natural 

phenomenon measured on isotopic point support samples. Now, consider its pointwise 

normal score transformation  ( )  ,  ( )     ( )-
  

,  (  ( ))     (  ( ))-
 , which is  deemed a multiGaussian RF with zero mean and 

unit variance.  The minimum/maximum autocorrelation factors     ( ) are defined as 

pairwise orthogonal linear combinations of the Gaussian variable  ( ) as following 

(Desbarts and Dimitrakopoulos, 2000): 

    ( )    
  ( ) (4.1) 

For which the coefficients of the transformation matrix   are obtained from: 

     
   

   ⁄   
  (4.2) 

where    and    are respectively the matrices of eigenvectors and eigenvalues obtained 

from the spectral decomposition of the symmetric covariance-variance matrix   of the 

RF  ( ) at zero lag distance. Matrix    is the matrix of eigenvectors resulted from the 

following spectral decomposition:  

          ( )  
  (4.3) 

where matrix      ( ) is an experimental variogram matrix at lag   for PCA factors 

derived from: 

    ( )    
   ⁄   

  ( ) (4.4) 
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In practice, to ensure that the transformed variables are orthogonal at all distances, 

several experimental lags   must be tested, selecting the one which provides the best 

decorrelation of the factors. This ‗data-driven‘ approach of MAF avoids the tedious 

modelling and fitting of a linear model of corregionalization, since the transformation 

matrix is directly derived from the experimental data. 

These new defined factors     ( ) can be independently modelled and simulated since  

they are spatially uncorrelated for any distance. Moreover, because of the initial 

multiGaussian assumption, they also follow the same distribution law, which allows the 

use of sequential Gaussian simulation (SGS) to provide point support realizations for 

each factor. More general and efficient frameworks can also be applied such as direct 

block simulation. 

4.2.1 Direct Block Simulation 

Aiming to increase efficiency and to alleviate computational requirements associated to 

memory and data management during geostatistical simulation, Godoy (2002) has 

proposed a direct block simulation framework (DBSim).  This method produces  

univariate simulations of multiGaussian random fields. Boucher and Dimitrakopoulos 

(2009) have extended the idea for direct block simulation of multiple correlated variables, 

independently simulating the MAF factors for each of the blocks inside the domain. 

Thus, the simulation at block-support scale using MAF calls for the block support RF  

  ( ) defined as following: 

  ( )   
 

𝑁
∑   ,(  )      (  )-

 

   

     ∈      (4.5) 

where each block 𝑉 ∈   is discretized by a set of N points indexed by   . 

The algorithm follows a random path to visit each of the blocks inside the domain and, 

for each one of the factors (indexed by 𝑙     ), the N discretizing points are 

simulated by performing a joint LU simulation (Myers, 1989). Intuitively, it can be seen 

as a pointwise simulation using an extension of the generalized group sequential 

Gaussian simulation (Dimitrakopoulos and Luo, 2004), implementing joint LU to 
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incorporate conditioning information at different supports (samples and internal nodes at 

point support plus previously simulated blocks).  Let      
  be the covariance matrix of all 

conditioning information and      
  the covariance matrix between the discretizing nodes 

and the neighboring information at point and block supports for the 𝑙   factor. Those can 

be expanded as: 

     
  [

   
    

 

   
    

 ]      and        
    𝑝𝐼

  𝑝𝑉
𝑙  (4.6) 

where    
 
,    

 
 and    

 
 are point-to-point covariance matrices, point-to-block, and 

block-to-block covariances, respectively for the 𝑙   factor;    
 
 and    

 
 are the 

covariances between the discretizing nodes and the neighboring information at point and 

block supports respectively.  

Finally, the vector of N simulated factors   
   inside a given block for each factor 𝑙, is 

obtained by solving the following system of equations (Godoy, 2002; Boucher and 

Dimitrakopoulos, 2009): 

  
      

     
  
  
   

     
   (4.7) 

where    
  is the vector containing neighboring samples at point support and previously 

simulated blocks for the factor 𝑙,   is a vector of random numbers following a standard 

normal distribution and     
 
,    

 
 and     are obtained from the following Cholesky 

decomposition: 

[
     

     
 

    
    

 ]  [
   

  

   
    

 ] [
   

     
  

    
  
] (4.8) 

One may note that, once the conditioning neighbourhood is retrieved, the system of 

equations shown in (4.7) and (4.8) must be solved   times, one for each factor 𝑙. 

Moreover, it is important to note that, because the simulation process is conditioned by 

previously simulated blocks at MAF space and that, there is no direct transformation 

from this orthogonal space to the original space of the multivariate attributes at block 

support, after the simulation of internal nodes, the process must be split in two parts:  (i) 

the block values   
  ( ) for each one of the factors are obtained by averaging the 
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simulated factors   
   at point supports, and (ii) the internal nodes are back rotated to 

the data space and averaged to generate the desired block values as previously shown in 

Eq. (4.5). 

The direct block MAF simulation algorithm (Boucher and Dimitrakopoulos, 2009) 

proceeds as following: 

1. Transform the data  ( ) to normal scores  ( ). 

2. Orthogonalize  ( ) through MAF transformation to obtain     ( ). 

3. Define a random path visiting each block. 

4. For each block V, simulate for each factor 𝑙 the discretizing N internal points 

  
  (  )       𝑁, using the LU decomposition as shown in Eq. (4.8). 

Afterwards: 

a. For each factor 𝑙, average   
  (  ) over the block to obtain the simulated 

block values   
  ( ) for each corresponding factor. 

b. Back-transform of   
  (  ) at all discretizing nodes and for all factors, in 

order to obtain the simulated block value   
 ( ) as in Eq. (4.5). 

5. Repeat step 4 until all blocks are simulated.  

4.3 Simulation of the Puma Nickel Laterite Deposit  

4.3.1 Deposit description and data available 

The lateritic deposit studied herein (Puma) is located in northern Brazil and it has 

developed from layered ultramafic complexes intruding Pre-Cambrian Brazilian shield. 

Supergene and residual concentrations of nickel have developed along an elongated ridge 

for some 23km, for which only 3.5 km are comprised in this study.  The ridge is an 

elevated area with its northerly slopes range up to 30
o
-45

o
 and its southerly slopes 10

o
-

15
o
. An important characteristic of the deposit are extensive silica caps on the ridges, 

which was likely responsible to preserve saprolitic ores from erosion (Canico Resources 

Corporation [CRC], 2005). The main structures of variability of the deposit are controlled 
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by the geometry of the ridge, which was aligned along East-West. The vertical direction 

comprises the direction of major variability. 

The data set used in this study comprises 1 938 drill holes with 59 821 core samples 

regularized in interval lengths of 1m, assayed for Ni, Co, Fe, SiO2, MgO and Dry-

Tonnage-Factor (DTF). For confidentiality reasons the grades and DTF were modified by 

a constant factor. The vertical drill holes retrieved for this study cover an area of 

approximately 4.8 km
2
 (Fig. 4.1). The holes are at shallow depths (mode of 

approximately 9.0m) and the sampling grid spacing is approximately 25 m in most of the 

areas of the ridge. In some denser areas, the separation can be as close as 6m and 

approximately 100 m in more external parts of the deposit.  

 

Figure 4.1 - Plan view showing the drill hole locations along the deposit ridge. 

The lithologies are grouped according to their characteristics and they can be simplified 

into three distinct layers:  

a. Limonite (Rock Code = 0), which is the uppermost horizon and has been 

completely altered by chemical weathering. Primary textures are absent, with 

iron-rich minerals increasing to the top, becoming pisolitic.  It  contains  some 

nickel, low MgO and high Fe. 

b. Saprolite (Rock Code = 1), which is the primary source of nickel for the 

ferronickel process in the actual mine. Zone with somewhat altered bed rock, with 
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preserved structures and textures of minerals. It is rich in hydrous Mg silicates. 

Shows a low content of Fe and high MgO. 

c. Bedrock (Rock Code = 2), which is the parental rock lightly weathered. It can be 

characterized by low nickel grades, high MgO and low Fe. 

4.3.2 Joint Simulation of Weathered Profiles  

In this section, the main goal is to simulate the geometry of the main lateritic units in 

order to model their joint spatial uncertainty. This is accomplished by jointly simulating 

the bottom surfaces of limonite and saprolite. It is noteworthy that the weathering and 

leaching mechanisms in lateritic deposits, usually act in a way that bottom layers of the 

lateritic domains are well correlated to the topography. This reference level can be treated 

as a regional trend, thus, each bottom layer is modelled in terms of its residual part, 

which corresponds to the thickness. In other words, to obtain the simulated elevations of 

each geological unit, the thicknesses of the different profiles of the regolith are 

stochastically modelled and subtracted from the topography. 

In addition, one may recall that the vertical drillholes do not directly capture the true 

thicknesses of the geological units, hence, the sample thicknesses are calculated after 

applying an unwrinkle process to the bottom levels using the topography level as 

reference (Deutsch, 2005). After simulating, the thicknesses are added back to the 

―flattened‖ topography in order to generate the bottom layers‘ elevations of each unit. 

Then, those layers are ―folded‖ back to the original space of the deposit, and they are 

taken as reference levels to build the categorical orebody models at block support of 

12x12x3m
3
.  

In order to extract representative univariate statistics of the thickness for both limonite 

and saprolite units, declustering cells of 25m are used.  Table 4.1 brings a summary of 

these declustered statistics.  As one may note, both distributions are positively skewed, 

with  limonite showing a higher variability.  One important feature from the distributions 

is the remarkable discontinuity at the origin. This is shown in Table 4.1 as the percentage 

of missing thicknesses, which relates to the percentage of locations where each profile is 

absent. These ―missing thicknesses‖ are mostly associated with eroded locations, mainly 
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located at steep slopes. As mentioned above, besides the fact that it is the uppermost 

geological unit, the limonite is also more easily eroded than the saprolite, because the 

latter is protected by a siliceous cap over it. 

Tabela 4.1 - Summary of declustered statistics for true thickness (TTK) of main units 

  Mean 

(m) 
CV Skewness Kurtosis 

Min 

(m) 

P 25 

(m) 

P 50 

(m)  

P 75 

(m) 

Max 

(m) 

Missing 

TTK (%)   

Limonite 2.41 1.23 2.73 12.15 0 0 1.98 3.02 28 35.55 

Saprolite 9.22 0.72 1.27 2.04 0 4.52 7.67 12.52 45 2.44 

The global correlation between the thicknesses of both units is practically absent (ρ < 

0.1). At first glance, as the thicknesses showed no correlation, they could be simulated 

independently on the basis of their individual regionalization, but nevertheless this could 

lead to some geological inconsistencies where local correlations exist.  For example, 

information such as absence of limonite actually increases the probability of also eroded 

saprolite. In this study, it has been decided to jointly simulate saprolite and total 

thicknesses, with the limonite being indirectly obtained by subtracting the saprolite from 

the total thickness. Figure 4.2 brings a scatterplot showing the correlation between those 

variables: 

 

Figure 4.2 - Scatterplot for Saprolite and Total thicknesses (ρ = 0.92). 
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4.3.2.1 Normal score and MAF transformations of thicknesses 

Prior to applying MAF transformations to the spatially correlated variables, each of them 

are transformed to a standard normal distribution. It is noteworthy that, the correlation 

between the normal score variables are kept very similar to the ones in the data space (ρ = 

0.90), which suggests that the correlation is well preserved after the transformation. The 

lag distance ( ) used in Eq. (4.3) is 25m and is derived after experimentally testing 

several distances to assure suitable decorrelation of the MAF factors. The omnidirectional 

correlogram between them is depicted in Fig. 4.3, showing the absence of correlation 

over all distances.   

 

Figure 4.3 - Correlogram between MAF1 and MAF2. 

Fig. 4.4  shows the experimental variograms of each factor fitted by their respective 

models. They both are assumed to contain a nugget and a spherical structure. One may 

note that MAF1, which has the larger eigenvalue associated to it, absorbs great part of the 

variance, which is revealed by its smaller spatial continuity if compared to MAF2. 

 

Figure 4.4 - Experimental variogram (dotted) and fitted models (lines) of each MAF factor for 

the main directions, NS (red) and EW (black). 
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4.3.2.2 Conditional simulation of MAF factors 

Conditional simulation is independently performed on the two MAF factors using the 

pointwise sequential Gaussian simulation (SGS) on a grid of 3x3m
2
, resulting in a total of 

approximately 400,000 nodes. Five simulations are generated for each factor. The 

validation of MAF simulations is not presented herein since the subsequent sections show 

the validation of realizations directly in data space. 

4.3.2.3 Validation of simulated thicknesses 

In addition to a visual inspection, validation of jointly simulated variables involves the 

calculation of univariate distributions, experimental variograms and cross-variograms of 

the simulated realization in the data space to ensure the reproduction of statistics inferred 

from the original data. Fig. 4.5 shows that both declustered cumulative distributions of 

saprolite and total thicknesses are well reproduced by the simulated models. 

 

Figure 4.5 - Cumulative distributions of declustered data in red and simulated models in gray for 

saprolite (left) and total thickness (right). 

Figures 4.6 to 4.8 show that the conditional simulations honour the variograms and cross-

variograms of the original drillhole data. Recall that the variograms and cross variograms 

of the original variables are not directly used during the simulation, since it only requires 

the variograms of the uncorrelated MAF factors. 
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Figure 4.6 - Experimental variogram (blue dots) and simulated models (red dashed lines) for 

Saprolite thickness along the main directions NS and EW. 

 

Figure 4.7 - Experimental variogram (blue dots) and simulated models (red dashed lines) for 

Total thickness along the main directions NS and EW. 

 

Figure 4.8 - Experimental cross-variograms (blue dots) and simulated models (red dashed lines) 

between Saprolite and Total thicknesses along the main directions NS and EW. 
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In a post-processing step, the limonite thicknesses are derived from the subtraction of the 

saprolite from the total thickness. The validation of its spatial variability and univariate 

distribution are depicted in the Chapter Appendix A. In addition to this, the indicator 

variograms of the categorical model generated after back transforming the simulated 

bottom layers of the mineralized units, are also well reproduced.   

4.3.3 Multivariate block-support simulation of grades and Dry-Tonnage factor 

Joint simulations directly on the block support (12x12x3m
3
) for Ni, Co, Fe, MgO, SiO2 

and Dry-Tonnage-Factor, are constrained by previously simulated saprolite and limonite 

units. Although the actual mine  operates a pyrometallurgical plant and only saprolitic ore 

is processed, the joint simulation of the elements inside the limonitic horizon is motivated 

by the fact that it is actually enriched in nickel and that such approach may lead to a 

better model of dilution. As mentioned previously, a strict control of the silica (SiO2) to 

magnesia (MgO) ratio and iron (Fe) content is required to ensure minimal disruptions of 

the ferronickel plant.  

Fig. 4.9 shows the declustered distribution of the main attributes of interest for the 

processing plant (Nickel, Iron, SiO2:MgO ratio), inside the different lithological units. 

 

Figure 4.9 - Distribution of the samples‘ Ni grades over the different lithological horizons. 
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These curves highlight the dissimilarities of the populations inside the different 

weathered profiles of the Ni laterite. It clearly shows that limonite and saprolite are the 

main horizons enriched in Nickel. Saprolite shows a higher Ni average grade and 

variability than the limonite. The opposite behavior is verified for the iron content and 

Si:Mg ratio.  

Vertical trends are commonly seen in laterite nickel studies. For this case study in 

particular, trends inside the saprolitic unit are not as significant as the ones found for the 

limonite. Therefore, inside this latter unit, the simulation is carried out on the residuals of 

each attribute after modeling their respective trends. The scatterplot matrix showing their 

multivariate correlation between the elements inside each domain are depicted in Fig. 

4.10, also highlighting both Pearson and Spearman (ranked) correlation coefficients. 

 

Figure 4.10 - Scatterplots of elements modeled (upper diagonal pannel) and correlation 

coefficients in lower diagonal pannel, with Pearson above and Spearman below, for both 

geolocial units, Saprolite and Limonite. 

As expected, Fig. 4.10 shows that the correlations between the elements may 

significantly vary from one geological unit to the other. For instance, even though nickel 

shows a moderate correlation to most of the other elements inside the saprolite horizon, it 

shows very low correlations with Co and Fe for the limonite.  
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4.3.3.1 Normal score and MAF transformations of multi-elements 

Similar to the steps carried out for the simulation of thicknesses, each of the attributes 

modeled herein is transformed to normal score space. Recall that for the limonite, the 

variables considered are the residuals obtained for each element after subtracting their 

modelled trends. 

For deriving the loading matrix of the MAF transformations, a lag distance ( ) of 25m is 

used in Eq. (4.3), i.e. the same values as in the joint simulation of thicknesses. Fig. 4.11 

shows that, there are no spatial cross-correlations between the six different factors inside 

each geological unit, suggesting that the MAF factors have been reasonably well 

decorrelated. 

 

Figure 4.11 - Omnidirectional correlogram between MAF factors taken in pairs for saprolite 

(left) and limonite (right). 

The variography on each factor are performed and the experimental variograms are fitted 

using exponential models. Those variograms are shown in Chapter Appendix B.  

4.3.3.2 Conditional simulation of MAF factors 

Conditional simulations for each of the factors in each of the domains previoulsy 

simulated are performed independently using Eq. 4.7 and averaged into blocks using Eq. 

4.5. Five simulations are generated inside each geological unit (total of 5 x 5 = 25 

simulations) using blocks of 12x12x3m
3
 and a 4x4x3 node discretization, resulting in an 

an average of 50 and 20 thousand blocks inside saprolite and limonite units, respectively. 

For comparison, at point support scale, this corresponds to a simulation of about 900,000 

and 2,500,000 nodes inside each of these geological units. 
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It is noteworthy that, for the case of limonite, an additional step is needed during the 

direct simulation at block support. In Eq. 4.5, besides the back transformations from 

MAF and normal score spaces, the trend also need to be added back to the simulated 

residuals at the discretizing nodes, before their average is calculated to obtain the 

simulated block value in data space. Once again, the validation of MAF simulations is not 

presented herein since the subsequent sections show the validation of realizations directly 

in data space. 

4.3.3.3 Validation of multi-elements simulation 

For validations purposes, the point-scale simulated values for some simulations in both 

saprolite and limonite units are retrieved. Then, the same validations performed for the 

simulation of thicknesses in Section 4.3.2 are repeated herein in the data space. Fig. 4.12 

shows that the cumulative distributions of each simulated attribute honour the declustered 

statistics infered from the drillholes with some ergodic fluctuations. 

 

Figure 4.12 - Experimental cumulative distribution functions of declustered samples (red) and 

simulated models at point supports (gray) for saprolite (left) and limonite (right). 
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Figures 4.13 to 4.16 show some plots of variograms and cross-variograms for drillhole 

samples and conditional simulations at point support scales inside the saprolite unit. All 

results suggest that geostatistical realizations are able to reproduce the main spatial 

features seen for the original data.     

 

Figure 4.13 - Saprolite - Experimental direct variograms (dotted) and point-support simulated 

models (lines) for each element in data space over the horizontal direction (NS in red and EW in 

black). 

 

Figure 4.14 - Saprolite - Experimental direct variograms (dotted) and (point-support)  simulated 

models (lines) for each element in data space along the vertical direction. 
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Figure 4.15 - Saprolite - Experimental cross-variograms (dotted) and point-support simulated 

models (dashed lines) for nickel and other five elements, in data space, over the horizontal 

direction (NS in red and EW in black). 

 

Figure 4.16 - Saprolite - Experimental cross-variograms (dotted) and point-support simulated 

models (dashed lines) for nickel and other five elements, in data space, along the vertical 

direction. 
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The reproduction of spatial statistics for the limonite are also very good, but for the sake 

of brevity
1
, only the vertical variogram of nickel and its cross variogram with MgO are 

shown in Fig. 4.17, in order to highlight the reproduction of vertical trends seen in these 

experimental variograms of the data.  

 

Figure 4.17 - Limonite - Experimental Ni variograms and Ni-Mg cross-variograms (dotted) and 

point-support simulated models (dashed lines), in data space, along the vertical direction. 

4.3.3.4 Validation of high-order spatial statistics 

The joint simulation framework used in this thesis relies on two-point simulation 

techniques, which are not able to incorportate complex, non-linear and non-Gaussian, 

geological features of the deposit. In order to assess the reproduction of high-order 

statistics by the simulated models, high-order spatial cumulants can be used (De Iaco and 

Maggio, 2011). These high-order statistics provides a way to characterize non-Gaussian 

random fields, and they have been shown to carry important information about the in situ 

behavior of geological entities or processes (Dimitrakopoulos et al., 2010). Third-order 

cumulant maps were calculated for samples and simulations using different spatial 

templates. Figs. 4.18  and 4.19 respectively show the third-order cumulant maps for 

nickel and iron for two different spatial templates. The first comprising the vertical and 

East-West directions, and the second oriented to follow the structure of the ridge (in 

which the supergene and residual concentrations of nickel have developed), dipping 15 

degrees to north and south directions.   

 

                                                      

1 All (cross)-variograms for both saprolite and limonite domains are shown in the Appendix A,B of this thesis. 
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Figure 4.18 – Third-order cumulants maps of nickel for both samples (top) and simulated models 

(bottom), with their respective spatial templates on the left.  

 

Figure 4.19 – Third-order cumulants maps of iron for both samples (top) and simulated models 

(bottom), with their respective spatial templates on the left.  
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One may note that, because the framework used herein aims to indirectely add some 

high-order complexity into the simulation process, by for example using unwrinkling for 

the simulation of the geological units and considering the spatial correlation of several 

variables, some high-order spatial features of the samples are honoured by the 

simulations (see Fig 18 and 19). However, many other high-order features are not well 

reprocuced, and these are specially notable for the third-order cumulant maps in Fig. 

4.19.  

4.3.4 Visualization of conditional simulations  

Fig. 4.20 shows the example of a joint simulation at block support scale for the different 

lateritic zones and a joint simulation of Ni, Fe and SiO2:MgO constrained by it.  As 

suggested by the data set, the plan view of categorical simulation shows how saproltite 

tends to outcrop at the surface in many places where limonite was eroded because of the 

steep relief . The other plan views for the continuous elements split the simulations inside 

each of the lateritic zones. Thus, the most of the saprolite shown in those maps actually 

lies underneath the limonite layer. These maps highlight the spatial differences between 

limonite and saprolite and reinforce the previous validations, which suggest that the 

simulated models honour the spatial features from the dataset.  
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Figure 4.20 - Different plan views for one joint simulation at block support (12x12x3m3). The 

cattegorical simulation is shown on top followed by the continuous simulations constrained by 

their simulated lateritic zones. 
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4.3.5 Risk assessment 

In lateritic nickel deposits, a strict control of SiO2, MgO and Fe grades is required. The 

range of grades for those key elements may vary accordingly to the metallurgical route 

designed for the project. The entire mining project that includes the deposit considered in 

this study (Onça-Puma complex), represented a total investment of about $2.3 billion 

dollars. The operation produces ferronickel via rotary kiln-electric furnace process and 

because of the characteristics of this pyrometallurgical process, only saprolitic ore is 

processed (Vale S.A., 2014). The performance of the metallurgical plant is strongly 

influenced by the SiO2:MgO ratio, which for this kind of operation ought to be usually 

kept between 1.5 and 2.0 depending on the operational conditions, and with iron grades 

between 12-16% (Xavier and Ciminelli, 2008; Goodfellow and Dimitrakopoulos, 2013). 

The high investment associated to the mineral asset and its metallurgical complexity 

highlights the importance of asessing the risks by means of the jointly simulated 

geological scenarios in order to ensure the viability of the project. 

Although the mine currently does not process limonitic ore, it ought to be treated as 

opportunity material since it contains a significant amount of nickel. Therefore, for a 

better assessment of the uncertainty within the in-situ resources,  this study considers 

both saprolitic and limonitic ore types. 

 

Figure 4.21 - Grade-tonnage curves for simulated block models (12x12x3m3).Tonnages and Ni 

average grades above given cut-off grades 
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Figure 4.21 highlights the relative importance of saprolitic ore in terms of its nickel 

content. Furthermore, the graph indicates that as the Ni cut-off grade increases, the 

uncertainty about the tonnage of material above the given cut-off decreases. In contrast, 

the uncertainty about the average grades of Ni and Fe such as the Si:Mg ratio increases 

for both saprolitic and limonitic ore types (see Fig. 4.22). It  is noteworthy that in the 

approach presented here, the uncertainty regarding the tonnages incorporates both the 

lithological and Dry-Tonnange factor uncertainty modelled by the different geological 

realizations.  

 

Figure 4.22 - Fe(%) average grades (left) and SiO2:MgO ratio (right) curves for simulated 

models as function of different Ni cut-off grades. 

The graphs in Figs. 4.21 and 4.22 show that the assessment of the global uncertainty of 

the in-situ resources can be scrutinized by integrating all the main elements to keep high 

performance of the metallurgical plant. For instance, if one considers an operational 

Nickel cut-off grade of 1.0% Ni, Fig. 4.21 suggests that the tonnage of material above 

such thershold is likely to fall between 23-24Mt and 9.8-10.8Mt respectively for 

saprolitic and limonitic ore types, with nickel grades varying from 1.95-2.05% and 1.54-

1.60% and so on. Fig. 4.22 shows that independently of the nickel cut-off grade saprolitic 

ore is very likely to have iron grade and Si:Mg ratio within the range required for a 

ferronickel plant. However, such observations are rather limited to an assessment of 

global uncertainty about the in situ resources since grade-tonnage curves do not bring any 

information about local uncertainty. Therefore, they do not allow the modelling of the 

uncertainty of the material to be fed in the metallurgical plant during the mining 

operation, since it depends on the spatial variability of the deposit. Such assessment is 
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only possible by explicitly applying the transfer-function on the stochastic simulations for 

the probabilistic assessment of its response parameters (e.g., stochastic mine production 

scheduling for assesing the uncertainty on Fe% and Si:Mg over the Life-Of-Mine as in 

Goodfellow and Dimitrakopoulos (2013)).   

4.4 Conclusions 

This paper showed the practical aspects of an efficient framework for joint simulation of 

multiple correlated variables, based on minimum/maximum autocorrelation factors in 

order to assess both the volumetric and multi-element uncertainty at a major nickel 

laterite deposit in northern Brazil.  

The joint simulation of the limonitic and saprolitic weathered profiles is done by first 

extracting the influence of the topography though an unwrinkle process and modelling 

their true thicknesses. The joint simulation in two-dimensions is done with MAF, 

transforming spatially correlated geological attributes into uncorrelated service variables 

that can be independently simulated while avoiding the inference of a corregionalization 

model for the original variables. The different geological scenarios simulated for limonite 

and saprolite are used to constrain the joint simulation of nickel and five other correlated 

elements. For this purpose, the three-dimensional joint simulations are carried out by 

employing MAF directly at block support scale. The application of such an approach 

required fitting only 12 variograms for the uncorrelated factors (6 for each geological 

unit), instead of two sets of 21 variograms and cross-variograms needed for a full model 

of corregionalization inside each unit. It is clear that direct simulation at block support 

scale is computationally more efficient and simplifies memory management during 

simulation of large datasets.  

The output of this study is a set of multiple equally probable scenarios of the nickel 

laterite deposit, validated by the statistics infered from the drillhole samples. Despite of 

the good reproduction up to second-order statistics, the simulations do not reproduce all 

the high-order features of the data samples. Even though unwrinkling and the 

consideration of multiple joint-spatial relationship among several variables help on the 

reproduction of some non-linear features of the deposit by the simulated models, they are 
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not sufficient. Such result highlights the limitation of simulation methods based on 

second-order statistics, such as the one tested herein, and the needs to pursuit the 

development of new methods which can incorporate   

The stochastic realizations of the deposit can be further used for assessment of 

uncertainty of in-situ resources, such as revealed by the graphs of grade-tonnage. Results 

indicate that, in overall, uncertainty about nickel and iron grades, as well Si:Mg ratio, for 

the in-situ resources is quite low. However, such observations do not guarantee the 

uncertainty regarding the ore feed to the metallurgical plant, that depends on local 

uncertainty rather than global. 
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4.5 Chapter’s Appendix A – Validation simulated limonite’s thickness 

 

 

 

Figure 4.23 - Cumulative distributions of declustered samples in red and simulated models in 

gray for the limonite thickness. 

 

 

Figure 4.24 - Experimental variogram (blue dots) and simulated models (red dashed lines) for 

Limonite thickness along the main directions NS and EW. 
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4.6 Chapter’s Appendix B – Modelling MAF variograms for saprolite and limonite 

 

 

Figure 4.25 - Saprolite - Experimental variograms (dotted) and fitted models (dashed lines) for 

each MAF factor along the main directions, NS (red) and EW (black). 

 

 

Figure 4.26 - Saprolite - Experimental variograms (dotted) and fitted models (dashed lines) for 

each MAF factor along the vertical direction (DTH: ―Down the Hole‖). 
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Figure 4.27 - Limonite - Experimental variograms (dotted) and fitted models (dashed lines) for 

each MAF factor along the main directions, NS (red) and EW (black). 

 

 

Figure 4.28 - Limonite - Experimental variograms (dotted) and fitted models (dashed lines) for 

each MAF factor along the vertical direction (DTH: ―Down the Hole‖). 
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Chapter 5 

Conclusions 

“I am certain there is too much certainty in the world.” 

Michael Crichton 

 

In this thesis, the main steps for a stochastic mine planning framework are shown. Two 

efficient methodologies are tested, one for the generation of joint stochastic simulation of 

coregionalized variables and the other for solving a SIP formulation of the OPMPS.  

Chapter 2 starts by presenting a literature review on the main developments regarding 

stochastic mine planning, in particular to the OPMPS. Past works have converged to the 

conclusion that stochastic frameworks tend to provide robust solutions resilient to risks, 

and at the same time adding value to the project. (Meta-)Heuristic approaches allow for 

efficient implementations with high-quality solutions near to the optimality achieved by 

exact methods. Chapter 2 also reviews methodologies for modeling the geological 

uncertainty of multivariate mineral deposits, showing two mainstream approaches to 

achieve this goal: direct co-simulation of spatially correlated variables by explicitly 

modeling their coregionalization model or by factorization of original variables into 

uncorrelated variables. It was shown that the last approach tends to be significantly more 

efficient, because it relieves the modeling and inference of several coregionalization 

models and the solution of large cokriging systems.  

Chapter 3 describes the application of a heuristic solution approach for a SIP formulation 

to the OPMPS. Such formulation accounts for the maximization of the discounted cash 

flow over the LOM and for the minimization of risks in not attending production targets 

of processing facilities. For a case study using a gold deposit comprising about 120 

thousands blocks, the linear relaxation could not be solved by CPLEX after two weeks, 

but the heuristic solution approach could provide solutions in hours. The stochastic 

solutions provide feasible mine production schedules with high value, minimum risks on 

deviating from production targets. Results reinforce the efficiency of the methodology for 

solving real-size instances, and at the same time incorporating geological uncertainty. 
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Chapter 4 discusses the application of joint simulation techniques based on 

minimum/maximum autocorrelation factors (MAF) and direct block simulation. An 

application to a major nickel laterite deposit in Brazil was shown through the simulation 

of geological domains and the joint simulation of multi-elements that are deemed 

important for geological control and quality for the processing plant. The use of MAF 

overcome the need of laborious inference and modeling of multiple corregionalization 

models, and coupled to a direct simulation technique, it can provide multiple stochastic 

orebody models honoring the joint spatial distribution of the variables in a very efficient 

way, with low computational costs and better memory management. Validations shown 

that simulated models are able to reproduce well up to the second order statistics of the 

drill hole data. However, validations of high-order statistics have shown that, despite the 

complexity on generating the geological boundaries and considering the spatial 

correlation between several variables, the simulations are not able to reproduce well high-

order spatial cumulants from the samples, which highlights the limitation of second-order 

simulation frameworks on reproducing complex and non-Gaussian structures of the 

deposit.  

The methods presented in Chapter 3 and Chapter 4 show that efficient methods are 

available for the practical implementation of the stochastic OPMPS framework in the 

industry environment.  However, there is still a large space for further improvements and 

developments:  

 For the heuristic solution presented in Chapter 3: (a) consider a more efficient 

algorithm for solving the longest path problem  other than using CPLEX; (b) 

exploration of alternative initial solution methods, such as the sequential heuristic 

proposed in Amina et al. (2014); (c) extend the formulation to incorporate market 

uncertainty, such as through stochastic price simulation. 

 For joint stochastic simulation through factorization: (a) exploration of non-linear 

methods for decorrelation and dimensionality reduction such as non-linear PCA 

and independent component analysis, and kernel methods; (b) study the 

application of log-ratio transformation for dealing with compositional data; (c) 

develop algorithms to deal with heterotopic sampling configurations.    
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Appendix A – Complete validation of (cross)variograms, Saprolite unit 

 

 

Figure A.1 - Saprolite - Experimental direct variograms (dotted) and point-support simulated models 

(lines) for each element in data space over the horizontal direction (NS in red and EW in black). 
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Figure A.2 - Saprolite - Experimental direct variograms (dotted) and (point-support)  simulated models 

(lines) for each element in data space along the vertical direction. 
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Figure A.3 - Saprolite - Experimental cross-variograms (dotted) and point-support simulated models 

(dashed lines) for nickel and other five elements, in data space, over the horizontal direction (NS in red 

and EW in black). 
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Figure A.4 - Saprolite - Experimental cross-variograms (dotted) and point-support simulated models 

(dashed lines) for nickel and other five elements, in data space, along the vertical direction. 
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Appendix B – Complete validation of (cross)variograms, Limonite unit 

 

Figure B.1 - Limonite - Experimental direct variograms (dotted) and point-support simulated models 

(lines) for each element in data space over the horizontal direction (NS in red and EW in black). 
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Figure B.2 - Limonite - Experimental direct variograms (dotted) and (point-support)  simulated models 

(lines) for each element in data space along the vertical direction. 
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Figure B.3 - Limonite - Experimental cross-variograms (dotted) and point-support simulated models 

(dashed lines) for nickel and other five elements, in data space, over the horizontal direction (NS in red 

and EW in black). 
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Figure B.4 - Limonite - Experimental cross-variograms (dotted) and point-support simulated models 

(dashed lines) for nickel and other five elements, in data space, along the vertical direction. 
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