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Abstract

It is found experimentaly that total cross sections increase with
energy. Partonic total cross sections can be calculated in perturbative
QCD provided the coupling constant is small, though multiloop diagrams
must be included at high energies. Such calculations are difficult and
can usually be carried out only in the leading-log approximation. The
resulting BFKL Pomeron viclates the Froissart bound, which forbids
total crcsa sections asymptotically to grow faster than the square of
the logarithm of energy. To restore unitarity and the Froissart bound,
subleading contributions of all orders must be included. Unfortunatley
existing techniques for computing Feynman diagrams prove to be
inadequate for this difficult task. The purpose of this thesis is to
develop new techniques capable of solving this problem. Since
factorization in the impact-parameter space is a main ingredient needed
to reach unitarity, such a technique must be capable of implementing
factorization in an efficient way. We introduce the non-abelian cut
diagrams for that purpose. We use it to compute quark-quark scattering
amplitude to the two-loop order and show how the new technique can
overcome the inadequacies of the existing method. We are also able to
use this method to prove factorization of a class of Feynman diagrams,
which we shall refer to as “s-channel ladder diagrams', though the
proof of general factorization is not attempted in this thesis. We have
also developed a more efficient method to calculate the high-energy
dependences of individual Feynman and non-abelian cut diagrams. This
method relies on a systematic study of the paths used by momenta to
flow through the diagram, and will thus be referred to as the path
method for flow diagrams. These new techniques can be used to implement
unitarity and to restore the Froissart bound, but this final goal is
not carried out here.



ABSTRACT

Expérimentalement, il a €éié démontré que la section efficace totale augmente avec
I'énergie. Les sections efficaces partoniques totales peuvent étre calculées en QCD
perturbatif tant que la constante de coupling est petite, sans toutefois oublier que les
diagrammes a boucles multiples doivent étre inclus aux énergies élevées. De tels calculs
sont complexes et ne peuvent étre effectués qu'a |'approximation du logarithme
dominant. II en résulte que le Poméron BFKL viole la limite de Froissart, laquelle stipule
que la section efficace ne peut varier de fagon asymptotique plus rapidement que le carré
du logarithme de ’énergie. Pour restorer I’unitarité ainsi que la limite de Froissart, des
contributions de tous ordres doivent étre inclues. Malheureusement, les méthodes
actuelles pour calculer les diagrammes de Feynman sont inadequates pour ce genre de
tiche. Le but de cette thése est donc de déveloper de nouvelles techniques capable de
résoudre ce probleme. Etant donné que la factorisation dans I’espace de paramétre
d’impact est un élément essentiel pour atteindre |’unitarité, une telle technique se doit
d’implimenter la factorisation de maniére efficace. C’est dans ce but qu’on introduit des
diagrammes coupés non-Abéliens. On les utilise pour calculer I’amplitude de dispersion
quark-quark a I’ordre de la double boucle et on démontre que la nouvelle technique est la
solution aux faiblesses des techniques actuelles. Cette méthode peut aussi étre utilisée
pour prouver la factorisation d’une classe de diagrammes de Feynman, les diagrammes
échelle dans le canal s. Toutefois, la preuve de cette factorisation de fera pas partie de
cette thése. Nous avons aussi développé une méthode plus efficace pour calculer ies
diagrammes individuels de Feynman ainsi que les diagrammes coupés non-Abéliens aux
hautes énergies. Cette méthode se base sur une étude systématique des parcours de
I’impulsion a travers le diagramme: Ces nouvelles techniques peuvent étre utilisées pour
restorer et la limite de Froissart.
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Chapter I. Introduction

It is well-known that there are four fundamental forces in the universe, namely
gravity, electromagnetic, weak, and strong forces. They govern the interactions
among all the elements in the universe, as large as a planet and as small as an
atom. To better understand these four fundamental forces is still the central theme
of modern theoretical physics. The topic of this thesis explores the region of strong
interaction.

The strong interaction is one of the fundamental forces at the nuclear and sub-
nuclear level. A nucleus is known to be made up of neutrons and protons, which
in turn consist of quarks and gluons. According to the ‘constituent’ quark model
invented by Gell-Mann and Zweig (1], quarks are considered as fundamental parti-
cles. They carry fractional electric charges as well as a new kind of quantum number
called color. Afterwards, Quantum Chromodynamics (QCD) was developed to de-
scribe interactions between quarks. Just like in Quantum Electrodynamics (QED)
whose quantum is called ‘photon’ and couples to charge in a universal maaner, there
is also a quantum called ‘gluon’ in QCD, which couples to color universally. Hence
quarks with different colors interact with each other by exchanging gluons. But
what makes QCD more complicated than QED is that the gluons, themselves car-
rying color, can also interact with one another directly. Through these interactions,

1



quarks and gluons are strongly bound together to form different kinds of strongly-
interacting particles in the universe. These particles are all colorless although gluons
and quarks carry color.

The most important features of QCD are asymptotic freedom and the confine-
ment of quarks. They refer to the fact that the interaction between quarks and
gluons at short distance is weak, while at long distance becomes so strong that
the colored objects can never be isolated from one another. Using perturbation
theory, QCD can successfully explain all the experimental phenomena in the large
momentum-transfer region.

However, there are still areas requiring more efforts. One of the unsolved prob-
lems at hand is the behavior of the total cross section of hadron-hadron scattering.
It was found in experiments that the total cross section o of the proton-proton scat-
tering remains roughly constant in a region 10GeV< /s < 10°GeV, when s, the
square of center-of-mass energy, increases. But after \/s goes beyond 10°GeV, ¢

begins to rise slowly. This rise can be fitted by [2]
o~ 0 (1.1)

Qualitatively, this phenomenon of rising cross-section can be explained as follows. In
the region of 10GeV< /3 < 10°GeV, ¢ is determined by the size of the proton, which
is about 1fm. But as s increases further, the virtual gluon clouds surrounding the

protons become less and less transparent. Then the contribution from this opaque



Figure 1: HERA experiment of electzon-proton collision.

gluon cloud cannot be ignored, and equivaleatiy, this increases the effective size of
the proton and leads to the rise of the total cross section.

More recently, HERA [3] has measured the total cross section of a virtual photon
colliding with a proton. It was found that this cross section can also be described

by a power law behavior
o~ (1.2)

The exponent A varies with the virtuality Q? of the photon, being chosen to 0.08 at
Q? = 0, and increases to about 0.2 to 0.3 at the largest Q available. This experiment
in HERA is performed by making an electron collide with a proton. The electron
emits a photon with high virtuality Q?, and this virtual photon interacts with the
proton as shown in Fig. 1.

To get the data for the total cross sections like equ. (1.1) and (1.2) experimentally,
we can either measure the total cross section directly, or alternatively we can measure
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the corresponding forward elastic scattering amplitude. These two are known to be
related by the Optical Theorem as will be briefly explained below. The forward
elastic scattering amplitude measures the loss of the incoming beam in the forward
direction. According to the conservation of probability, this loss is caused by elastic
and inelastic scatterings included in the total cross section. Hence the Optical
Theorem. For simplicity, in the following, we shall focus on near-forward elastic
scattering amplitude as a means of getting the elastic and the total cross section.
Scatterings are caused by the exchange of objects between the interacting par-
ticles. Particularly, in elastic scatterings this object must carry vacuum quantum
number in order to preserve the quantum numbers of the scattered particles. At
high energy, the object which gives rise to the dominant contribution to the elastic
scattering is called the Pomeron. The contribution to equ. (1.2) is referred as the
hard Pomeron [4] because the virtual photon carries large virtuality Q2. The one
contributing to equ. (1.1) is called the soft Pomeron (5] since particles are always on-
shell. It is difficult to calculate the soft Pomeron because confinement effects cannot
be neglected in the corresponding region. On the other hand, since in equ. (1.2)
the virtual photon carries large momentum transfer, it is possible that perturbative
QCD can be applied to explain the hard Pomeron effect. The fundamental degrees
of freedom in QCD are quarks and gluons, and it is known that using the dipole
model [6, 7], quark-quark elastic scattering can be related to the hadron-hadron

elastic scattering. As a result, from now on in this thesis, we shall focus on near



forward elastic scattering of quarks and gluons.

The first model to explain Pomeron employing perturbative QCD is the Low-
Nussinov model [8]. It can be illustrated by using the electron-proton scattering
shown in Fig. 1. The virtual photon emitted by the electron splits into a quark-
antiquark pair. They interact with the quarks inside the incoming proton by ex-
changing gluons. Since gluon carries octet color, a single gluon exchange cannot
contribute to proton-proton elastic scattering, although it has the smallest power
of the coupling constant. The two-gluon process, on the other hand, contributes to
both the color singlet and octet channels. Therefore, as a first approximation, Low
and Nussinov proposed that QCD Pomeron be constructed by two gluons.

In the Low-Nussinov model, all the higher order processes are ignored. These
processes are however important for improving this model, especially at the high
energy limit we are taking. The reason is because calculations show that in the
high energy limit, the coupling constant g? often appears with a factor of lns.
Together they form an effective coupling constant, which governs interactions at
this energy level. Potentially, this effective coupling constant can be close to 1 or
even larger when s is large, even if the coupling constant itself remains very small
in the perturbative QCD region. As a result, higher order corrections cannot be
ignored when we try to explain the hard Pomeron by perturbative QCD, and what
we really need then is a summation up to all orders of the coupling constant in the

perturbative expansion.



It is clear that such a summation is not an easy one, since in perturbative QCD,
the scattering amplitude is calculated order by order using Feynman diagrams. At
high order, the number of the Feynman diagrams becomes very large, and each
of them becomes very complicated to compute. It is beyond our computational
ability to calculate every one of them without any approximation, let alone doing
the summation. A conceivable solution is to isolate the leading contribution from
each Feynman diagram, and do the summation over these leading terms at the high
energy limit. This can greatly simplify the calculations, because the leading terms
have relatively simpler structures compared with the non-leading ones. At large s,
the leading term appears as a power of In s, and this approximation is usually called
the leading logarithm approximation.

The leading logarithm approximation was used by Baliskii, Lipatov and others[10,
11, 13, 14], as well as by Lipatov and his colleagues to investigate the QCD Pomeron
problem. They first calculated the inelastic scattering of two quarks going to two
quarks and n gluons. It was found that the leading contribution from Feynman
diagrams to this inelastic scattering can be summed up in the high energy limit.
Furthermore, by the help of dispersion relation, the above result was used to cal-
culate quark-quark two-body scattering. Lipatov and his colleagues were able to
show that the final result satisfies an integral equation, call the BFKL equation (10].
This equation can be solved for the color octet channel exactly, and for the singlet

channel approximately.
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(a) (b) (¢) (d)

Figure 2: Reggeon exchange diagram.

For the octet channel solution, the amplitude computed by Lipatov is propor-
tional to s2(4), where A is the momentum transfer, and the actual expression of a(A)
is given later in Chapter III. As we know, if two particles scatter by exchanging an
elementary object with spin j, then the amplitude at high energy is proportional to
s’. Therefore this result shows that the object being exchanged in the color octet
channel carries an effective spin of a(A). Such an object is called a Reggeon, and
this effective spin a(A) is called a Regge trajectory. This process can be shown in
Fig. 2(a), where we use solid line to represent the Reggeon, or the reggeized gluon.
It should be noted that a single diagram like Fig. 2(a) should be viewed as the sum
of an infinite number of Feynman diagrams such as Fig.2(b, c, and d).

The solution in the singlet channel leads to a cross section which is approximately
o~ s'tMe (1.3)

where @ = g?/4x. At the energy of the mass of Z (91Gev), g can be taken as 0.2, and



this makes the power of s to be 0.529, which is twice as large as the hard Pomeron
result from HERA. Although the recently published 2nd order correction {15} makes
this power lower, the numerical disagreement, either big or small, is however only
the result of a more serious problem about the BFKL Pomeron, as we shall explain
below. Now 3rd order correction is under discussion in [16).

This serious problem of the BFKL Pomeron is that it violates the Froissart bound
[17] if extrapolated to the infinite energy limit. In quantum field theory, there is a
theorem stating that to preserve unitary, the s-dependence of the total cross section
in the asymptotic limit cannot exceed In? s. This is known as the Froissart bound.
This bound is violated by the BFKL Pomeron as can be seen in equation (1.3).
At the energy level of HERA, s is large but not infinite. So an apparent violation
of the Froissart bound is not disastrous. However, since the BFKL Pomeron is
calculated by using the leading logarithm approximation, equation (1.3) should be
more applicable for large s. This then will inevitably lead to a violation of the
Froissart bound.

The real reason for this violation is that BFKL Pomeron does not obey the
fundamental principle of probability conservation, otherwise known as unitarity.
This has been a long standing and difficult problem, because the unitarity equation
is highly nonlinear and difficult to solve. The purpose of this thesis is to make a
preliminary investigation of this problem, and to develop theoretical tools needed for

its solution. The new tools are discussed mainly in Chapter V, with an illustration



of their application in Chapter V1. They will be used to investigate a factorization
property needed for unitarization. This is carried out in Chapters VII and VIII for
special sets of diagrams; the application of these tools to the full solution of the
unitarity problem can be found in Ref. [18]

To understand the role of unitarity, we assume that in the high energy limit QCD
interactions are described by multiple reggeon exchange as well as productions and
absorptions of gluons between these reggeons. All the gluons along the s-channel are
reggeized. According to the unitarity relation, the imaginary part of the scattering

amplitude My; can be expressed as

T My = 1/25(20) 6P - p.)MHI}‘ , (14)

where P; and P; are the total four-dimensional momenta of the initial and final
states, and f, is defined to be E,/m for a fermion with energy E, and mass m, or
2E, for a boson. It can be seen that if there is a two-reggeon contribution in the
scattering amplitude M, putting this on the right hand side of the above equation
will generate the imaginary part of a four-reggeon exchange amplitude. That is to
say, if the two reggeon exchange contribution is included in the scattering amplitude,
the unitarity relation above requires the four-reggeon exchange amplitude to be there
as well. Using a similar procedure, it can be shown further that keeping the two and
four reggeon exchange amplitudes will generate the six reggeon exchange amplitudes

etc. As a result, the multi-reggeon exchange amplitudes are interrelated, and the



two reggeon exchange amplitude cannot be isolated without violating unitarity.

From the above discussion, it is clear that in order to unitarize the BFKL
Pomeron it is necessary to include the multi-reggeon exchange contributions pro-
vided the assumption we made above is true. Therefore, the first question we need
to answer is whether the elastic scattering amplitude at the high energy limit can
be described by multi-reggeon exchange contributions, even though 3-reggeon con-
tribution, called Odderon{19], and 4-reggeon contribution[20], have already been
studied.

Since in perturbative QCD, scattering amplitude is given by summing Feynman
diagrams of different orders, this question can then be re-phrased as to whether
multi-reggeon exchange contributions can be obtained by summing Feynman di-
agrams in the leading logarithm approximation. It is far from obvious that the
Reggeon diagrams and the Feynman diagrams are related. Although the reggeon
diagrams shown in Fig. 2 look like Feynman diagrams, they are actually very differ-
ent. First of all, the reggeon, although carrying the same color as the gluon, has a

different propagator shown as

9’ A
Tyaean . (15)

Secondly, the production and absorption of gluon from a reggeon are described

by a new coupling called a Lipatov vertex(21], instead of the triple gluon vertex

in ordinary Feynman diagram[22]. In addition, the particles involved in reggeon
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diagrams carry two-dimensional momentum, while particles in a Feynman diagram
carry four-dimensional momentum. Finally, unlike gluons, the reggeons exchanged
in the t-channel are factorized along the s-channel, and they do not cross each other.

To prove that the reggeon diagrams in Fig. 2 can be obtained from summing
Feynman diagrams, we need to satisfy at least these four points. Lipatov and his
co-workers have done a lot[10] about the first two points as we are going to review
in the next sections, and in this thesis the last two points are the main topic.

To “reduce” the four-dimensional momentum into a two-dimensional one, we
need to make use of the high energy approximation. In a near-forward scattering
in the high energy limit, the momenta of the two incoming particles span the longi-
tudinal subspace. All the momenta in the tzansverse subspace are considered to be
order of 1 as 4 — oco. Therefore, to get to the first point above, we need to perform
the integration of the longitudinal momenta to get the s dependence for individual
Feynman diagram, and then sum up the results. It should be noticed that usually
this calculation for each Feynman diagram can only be performed for the leading
logarithm order because of the complicated structure of each multiloop diagram of
high order. However, as shown by calculations in the literatures, the leading log-
arithm from individual Feynman diagrams unfortunately get cancelled quite often
when we sum up Feynman diagrams, and the first difficulty we encounter is that
to obtain useful result, we are forced to retain subleading or even subsubleading

contribution.
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A good example to see this cancellation is the electron-electron elastic scattering
in QED by exchanging photons. As stated before, each loop in a Feynman diagram
can potentially contribute a factor of g?In s. For an n-loop level Feynman diagram,
the leading contribution can possibly be of the order of In" s, which can easily exceed
the Froissart bound because n varies from 0 to oc.” Practical calculations show that
all the contributions from individual Feynman diagrams of the order of In" s with
n > 1 get cancelled in the summation [23]. This means that for each Feynman
diagram, we must keep the contribution to the order independent of s, and so a
direct calculation using Feynman diagrams is extremely difficult, if not impossible.

For the QCD case, Cheng, Wu and their colleagues calculated the quark-quark
elastic scattering by using Feynman diagrams. They were able to prove up to the 6th
order of the coupling constant that summing Feynman diagrams does give the muiti-
reggeon exchange amplitudes. It is these cancellations that make the computations
complicated in higher order, so Cheng and colleagues were only able to partially
calculate them up to the 8th and the 10th order [24, 25, 26]. Similar discussion can
also been found in [27].

The cancellation of the leading contributions is not an accident to make life
difficult. It is actually essential for the unitarity to be preserved. According to the

multi-reggeon amplitudes, the leading contributions are of the order of

(8*)*s(g’ln’ &)™, (1.6)
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where n is the corresponding number of Reggeons. In the case of the 8th order
calculations, if n = 3, then the contributions to retain are of order Ins. Since
a three-loop Feynman diagram can-potentially give In®s, this means the leading
and subleading contributions will all be cancelled, and subsubleading order must be
maintained. |

To deal with this difficulty, it is worthwhile to look at the similar process in
QED in more detail. The same difficulty exists in the QED case. It was solved by
using the so-called eikonal formula[28, 29]. For an n photon exchange process, the
n! Feynman diagrams required by gauge invariance can be represented by a single
expression which is independent of s. Since nothing else is present to cancel it, it
can be evaluated just using the leading approximation.

This problem can be viewed from different angle. The photons obey Bose-
Einstein statistics. In a multi-photon process, the involved photons interfere with
each other and generate narrow peaks, which essentially are § functions. It turns out
that this is & destructive interference. The final expression, which is the eikonal(29]
expression in the case of QED, has already taken account this interference.

However the eikonal formula is suitable for vertices that are effectively number,
or a scalar. This is true for QED. But for QCD, because the gluons carry color and
can couple to themselves, it is described by a non-abelian gauge theory(30], and the
corresponding vertices in this theory are color matrices(22], which do not commute

with each other. The original eikonal formula cannot be applied on QCD. On the
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other hand, gluons are also Bose-Einstein particles. As an analogy to QED, one
might expect the presence of a similar destructive interference in QCD would lead
to a similar formula. If this idea is right, the formula we are seeking is an extension
of the eikonal formula, which can be used to sum the QCD Feynman diagrams before
the actual calculations of the individual ones. The summation should include all
the corresponding cancellations, after which it needs to be calculated up to leading
contributions only. Indeed, this formula has been found recently, and is called
the multiple commutator formula [31]. Using this formula, Feynman diagrams in
QCD are re-organized. Unlike the case in QED where a single expression can be
achieved after using eikonal formula, due to the complexity of QCD, after making
use of the multiple commutator formula, the result is represented by a number of
terms. For convenience, graphical representation has been invented for these terms,
and they are called nonabelian cut diagrams [32]. The nonabelian diagram has an
advantage that the delicate cancellations mentioned above have been removed, and
it thus provides a powerful tool to bypass the difficulty of having to calculate up to
subleading contribution of individual Feynman diagrams.

The second issue of this thesis is the factorization problem. As we pointed out
above, using the eikonal formula alone, we can prove that the electron-electron scat-
tering in QED in the high energy limit can be factorized as single-photon exchange
amplitudes. Hence we can say photons are not reggeized in the high energy limit.

To prove that multi-reggeon exchange can be obtained from summing Feynman
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diagrams, we need to demonstrate that the sum of QCD Feynman diagrams also
possess this factorizable characteristic. However the non-abelian feature of the gluon
complicates this proof. All the Feynman diagrams are related in a more complicated
way due to the non-abelian feature (33]. As a result, gluons combine into reggeons
at the high energy limit, and it is the single reggeon-exchange amplitude that can
be factorized. All these complicate the proving of the factorization in QCD, and a
complete proof by explicit computing QCD Feynman diagrams has only been done
up to 6th order by Cheng and his colleagues.

To start with a simple case, we first concentrate on Feynman diagrams con-
structed by purely gluon-quark vertices. This is a first order approximation in the
sense of assuming that each gluon does not emit or absorb any other particle when
it propagates between those two energetic quarks. Using the non-abelian cut dia-
grams, we can prove the reggeized factorization hypothesis for this class of diagrams,
which will be referred as s-channel diagrams latez.

In all the discussion above, to get the s-dependence of the amplitude, we need
to perform the integrations of the longitudinal momenta. This integration is done
by using contour integral, as discovered by Cheng and Wu [28]. They invented a
method by putting arrows on each internal line of a Feynman diagram so as to
identify the pole position for each loop momentum integral. This method works
well for the low order calculation, but when we deal with multi-loop diagrams, it

becomes difficult to identify all the possibilities. Thus we have invented a new way
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(34] to get all the poles for a multi-loop Feynman diagram. In addition, by using
this new way, we can bypass a potential problem overlooked by the original method
of Cheng and Wu.

To provide details for the above discussion, this thesis is organized as follows. In
Chapter II, we briefly review the regge pole theory. The discussion about the BFKL
pomeron is presented in Chapter III, together with its problem of unitarity violation.
The unitarity problem can be solved by including multiple-Reggeon exchanges. This
will be discussed in Chapter [V. The implementation of such a unitarization program
requires new techniques which we will discuss in Chapter V. Using these techniques,
the 6th order diagrams are recalculated in Chapter VI. In Chapter VII, we shall
use the non-abelian cut diagram to prove the factorization of one special class of

Feynman diagrams. Finally, Chapter VIII contains the conclusion.

16



Chapter II. Regge pole theory and
Reggeon

As mentioned in the introduction, gluons exchanged in a scattering are reggeized
at the high energy limit. According to the Regge theory(35], this Reggeon con-
tributes a singularity to the scattering amplitude described by the correspond-
ing Regge trajectory, and as we shall see later, this trajectory determines the s-
dependence of this amplitude at the high energy limit.

To see the relation between the property of the exchange particle, the singularity
and the s-dependence of the amplitude in the high energy limit, we first look at two
simple examples. Consider an elastic process A + B — A + B. Assume that all
the particles are scalars, then the amplitude is —g?/t ~ s® where g is the coupling
constant; ¢ is the square of the momentum tzansfer; s is the square of the total energy
in the CM frame. Now if this is a QED process, then the coupling between electrons
and photon will give an extra factor of s. Thus the amplitude is proportional to s*.
In general, the exchange of a particle of spin-l will contribute a factor of s' to the
scattering amplitude. When more internal particles are involved, the power will get
modified, and even becomes dependent on ¢. The resulting exponent can be regarded
as an effective angular momentum, or Regge trajectory. It has the property that
each trajectory can contain one or more different particles, as long as all the particles
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have the same internal quantum numbers. In addition, this trajectory turns out to

be the singularity of the amplitude in the complex angular momentum plane. All

these are covered by the Regge Theory as reviewed briefly below.

2.1 Regge pole theory
2.1.1 Sommerfeld-Watson transformation

Consider a process A+ B — A + B as shown in Fig. 3. The scattering amplitude

f(cos 8, E) can be decomposed into a Legendre series

f(cos8, E) = $°(21 + 1)ai( E)P(con ) , 2.1)

®

where ai( E) is usually called the partial wave amplitude, E is the energy, and Py is a
Legendre polynomial. If we generalize a; and P into analytic functions of a complex-

variable /, the summation can be changed into a contour integral:

(21 +1)
o a(l, E)P(l, — cos§)dl . (2.2)

f(cos 8, E) = %/c‘

The chosen contour Ciis shown in Fig. 4. To get from equ. (2.1) to (2.2), we have
made use of the following. First we have assumed that a(l, E) contains only simple
poles located in the complex plane away from the real axis. These poles are shown
in Fig. 4 as a;(E). Secondly, we have used P(l, — cos §) = (=)' P(l, cos 8) for integer
l.

. We can now open up C,, and deform it continously to C,, which runs parallel to
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B B

Figure 3: An elastic process A+ B~ > A+ B.

the imaginary axis through the point (-1/2,0). The Regge poles can be excluded
by adding loops shown as dotted circles in Fig. 4.

With suitable convergence, the integral along C, gives dackground terms. The
dotted circles give a sum of characteristic terms, depending on the Regge poles a;.
The Regge poles are generally functions of energy, and can be written as a;( E).

Using this notation, we have
~1/34ie 2] + 1
8, =i :
flcos$, ) /2 -1/3-is sinwl

- 2%t Dspan - cost) (2.3)

) i

a(l, E)P(l, - cos 0)d!

As a function of energy, a; is also called Regge trajectory. From equ. (2.3), we
can see that f(cosd, E) has singularities as a; takes on an integer value. These
singularities represent resonances.
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Figure 4: Contour integral.

There is a subtle point, which has been skipped before. If in the above process,
particle A is its own antiparticle A = A, then there is a forward- backward symmetry
for the t-channel process B + B — A+ A. Thus the amplitude is s — u symmetric.
This requires that in the decomposition shown in equ. (2.1) only even angular mo-
menta [ contribute, or say a; vanishes for any odd integer I. As a result, we should
first decompose the amplitude f(cosd, F) into its s — u symmetric/antisymmetric

parts fi(cosd, E):
fu(cos6, B) = $°(21 + 1)ar( E)(Pi(cos 6) £ A(~ cos6)) , 2.4)
=0

and then perform the Sommerfeld- Watson transformation for them respectively. The

resulting a(E) in equ.(2.1) will in general have different singularities, and give two
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different Regge trajectories. Signatures +/— are used to identify these two different

trajectories.
fulcond B = ij2 [ 2 a(l, E) P(cond) £ R~ cor b))l
- STt D g Plascond) £ Bla-cord)) . (25)

2.1.2 Asymptotic behavior

Let us look at the asymptotic behavior of equ. (2.3). To simplify the discussion,
we consider high energy scattering of equal-mass spinless particles. We use s and
t here. s is the square of center-of-mass (cm) energy, and —¢ is the square of cm

momentum transfer. So that we have

' = Am g,

t = -2p}(1-cosb,). (2.6)
Here p and cosé are momentum and angle, and the subscript s is to specify s-
channel. Now look at the cross channel (t-channel), ¢ now represents the square
of total energy. According to Mandelstam representation {36], a single invariant

amplitude represents both the s— and ¢— channel processes; although their physical

regions correspond to different ranges of s and ¢. So that we have
s = 4(m?+5) = ~2p}(1 + cosy)

t = 4(m?+pl)=-2p3(1 - cosb,)

s—2m?+1/2
2m3 - 1/2¢

cos b, (2.7)
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Therefore, the high-energy small-angle region in the s channel corresponds, in the ¢
chaanel, to an unphysical region with large cos §;. Under this limit, we can see that
cosf, — s.

Hence, by assuming that the scattering amplitude has singularities, Regge theory
tells us that these singularities are determined by the particle or effective particle
being exchanged between the incoming particles. In addition, after taking the high
energy limit, the asymptotic behavior of the scattering amplitude has a simple form

s2(), with s being the total energy square and a(t) being the trajectory.

2.2 Reggeization of gluons in QCD

Regge theory provides us a general framework about particle interactions. This
framework still needs to be proven by using dynamic theory like QED or QCD. Now
we look at SU(3) QCD specifically and consider the same process mentioned at the
beginning of this section. The incoming particles are two quarks; the particles being
exchanged are gluons. Pair-productions are neglected in this thesis as a first order
approximation. The Feynman diagram shown in Fig. 5(a) is the lowest order one, in
which only one gluon propagates along the ¢-channel. The scattering amplitude at
this order is determined by the spin of the gluon. However, higher order corrections
will enter as shown by the Feynman diagrams in Fig. 5(b,c,d). They all contribute
to the octet color channel. In these diagrams, more than one gluon propagate

along the t-channel, and the angular momentum in this channel is not fixed. As a
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result, in general the scattering amplitude for the octet color channel is much more
complicated than s to the power of the spin of the gluon.

However, in the high energy limit it turns out that a simple result can still
be obtained. Using leading logarithm, it has been proven that the only change of
the s dependence of the scattering amplitude is the exponent [21, 37]. Hence the
scattering amplitude can be written as proportional to s2(*). According to Regge
theory, a scattering amplitude like this can be interpreted as two quarks exchanging
an artificial particle carrying effective spin a(t). This artificial particle is called the
Reggeon, or reggeised gluon. It carries the same color factor as a gluon, and its

effective propagator is given by

g (a(a))
Fl . (2.8)

Using this Reggeon concept, the scattering amplitude can be represented by simple
diagrams such as Fig. 2(a) where the solid line represents a Reggeon.

The above argument is just a special case of a more general result first shown
by Fadin, Kuraev, and Lipatov {21]. According to their calculation, in an elastic
scattering process gqg — qq + ng, under leading logarithm approximation and taking
the multi-regge limit as defined in the next subsection, the final amplitude can be
represented by two quarks exchanging a Reggeon which emits gluons. This result
was used to construct the BFKL Pomeron as shown in the next section, but before

we go to the details, we first look at the definition of rapidity and the multi-regge
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(d)

Figure 5: Feynman diagrams in QCD contributing to an octet exchange.

limit which will be used throughout this thesis.

2.2.1 Rapidity and light-cone coordinate

In the high energy limit, it is convenient to use rapidity, because under one special
kind of Lorentz transformation, the boost along the beam direction, the rapidity

obeys an additive rule. This makes the calculations easier.
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Rapidity y is defined as the following.

tanhy = EEl =y,

_1, E+p

where p is the longitudinal momentum, E is the energy and y is rapidity. The first
equation in equ.(2.9) tells us that longitudinal momentum and the energy scale like
sinhy and coshy respectively. From the relation between momentum and energy, we

get
E’:m’+p’=m'+p|'|+p1 . (2.10)
If we define

mi =m’+p} , (2.11)

Then equ.(2.10) can be rewritten as

(.1‘3_)' _ (ﬂl_)' -1, (2.12)

m. my
which gives
P = mysinhy;
E = m_coshy . (2.13)

It is often convenient to introduce light-cone coordinates too. In these coordi-

nates the longitudinal momentum is combined with energy as follows:

p* - E :tp“ ’ (2.14)
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where p = (p*,p~;p.). In this coordinate system, the metric is
204-=29-4 =—Gea =gy =1, (2.15)

where z and y stands for the transverse components.

The dot product of two vectors is

p-9=(1/2)(p*¢ +p ¢*) —pravr . (2.16)

Using the equ.(2.10) and equ.(2.12), the 4-momentum of a particle can be rewrit-

ten as

p="pipL) = (moe¥,m_ e¥;p,), (2.17)
For massless particles the definition of rapidity in equ. (2.10), we can see that
tanhy = cos 8 , (2.18)

where 6 is the angle between the direction of the scattered particle and the beam.

Inverting this we get for the massless particle

1, 1+cosf 0
y—ahm——h(tmi) . (2.19)

For massive particles, equ. (2.19) defines the pseudo-rapidity, which we will denote
by 5. This n =y when m = 0, and  ~ y when m # 0 but the particle moving with
extremely relativistic speed. Pseudo-rapidity is easy to measure experimentally, but
it is the rapidity that transforms additively under boosts in the beam direction.
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Let us look at an inelastic scattering in which n+2 particles are produced as shown in
Fig.6. We choose the center-of-mass frame. The momenta of the incoming particles

a and b are parameterized as:
Pe = (V824,0;0)
p = (0,Vsz5;0) . (2.20)
The momenta of the outgoing particles are given by
ki = (kise® kije™ k) , (2.21)

with i = 0,1,2,3,...,n + 1.

Momentum conservation can be written as

n+l
0 = Z kn'J. ’
=0
nl g
2y = —e¥ ,
=X
'fjl ki (2.22)
Zp = —e¥, .
PTGVl
The Mandelstam invariants can be expressed as function of rapidity
n+l
i = TAZpS = z k.-,,k,;e""’“
ij=0
n+l
bai = =2 -ki=- Z ki.Lij.e-(“-w)
i=0
n+l
o= —dm k== ki en
=0
3.',' = 2k.' . k,' = 2k.-1_k,-4_[coah(y.- - y,-) - 1] . (223)
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Figure 6: An inelastic scattering of gluons.

Now we look at a special region where the outgoing particles are strongly ordered

in rapidity and have comparable transverse momentum of size k_,
Yo OO Y D> - DD Yns1 s hiL 2k, (2.24)

Then the Mandelstam invariants are approximately

§ =~ korknyie® ¥,

Sai > ~korkiLe®7¥

S = —kitknyrie® T

b~ kiokj el (2.25)
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Therefore, equ.(2.23) can also be written as

i>> 5 >> kK,
n n
Z bigy1 3 z h."; . (2.28)
=0 =l

This defines the multi-Regge kinematic region.
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Chapter III. BFKL Pomeron

The BFKL Pomeron and the associated violation of unitarity will be discussed
in this chapter.

As mentioned previously, Pomeron is the effective object whose exchange gives
rise to the high-energy growth of total cross sections. Optical theorem relates total
cross section to the diffractive part of the elastic amplitude, thus requiring the
Pomeron to carry a vacuum quantum number. The question in QCD is how to
construct the Pomeron in terms of gluons, and maybe quarks.

In order for it to be colorless the Pomeron must contain at least two gluons.
This two-gluon picture of a Pomeron was first proposed by Low and Nussinov (8]
and was the very first model of the Pomeron in QCD. Now that we know the
gluon to be reggeized, the natural generalization for the Pomeron is a two-Reggeon
model. Taking into account that these two Reggeons can interact through emission
and absorption of gluons, what emerges is the BFKL Pomeron [10] which we shall

review below.

3.1 BFKL equation

A brief review of the BFKL Pomeron will be presented in this section. Since the
mathematics is a bit complicated, it might be useful first to outline the main steps
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involved in getting to the final result, that the exchange of a BFKL Pomeron will
produce a total cross section growing with energy like s4, with A being a constant
given in eqn. (3.32).

A BFKL Pomeron is made up of two mutually interacting Reggeons. In the
original approach, the diffractive two-body amplitude is obtained from the dispersion
relation (3.9), and its discontinuity (3.37) is computed from the absolute square of
the n-gluon production amplitude (3.2) and (3.25). Via the dispersion relation,
the t-channel partial wave amplitude can be computed, and this is used in the
Sommerfeld-Watson transformation to obtain an expression for the amplitude (3.19),
suitable for taking the asymptotic limit of large s and fixed ¢. From this expression
the exponent A for the energy growth can be extracted.

We start by computing the lowest order Feynman graph for one gluon production,
in the leading-log approximation. The amplitudes corresponding to Figs. 7(a), (b),

(c) are respectively M;, M;, My, and are given by

. 1
M, ~ (g.f“'“‘g“.‘.. )'f'l'

(00°47) (i + @) + 2ort — 2ourk)
(190 Jupua ) i

iMy ~ (y.f“"‘g...‘..)’.l:
(94 (i)
(19,4 Gurin) 5
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(a) (b) (c)
Figure 7: First order Feynman diagrams in Lipatov vertex.

My ~ (g.f“‘“g,..p. )%
(0u4) k) 3
(194 Gupsn) 5 (3.1)

Jacobi identity has been used to decompose the color factor of Figs. 7(b) and 7(c).

Now we can simplify the sum of these three terms as

iM = iMy+iM; +iM,s
vaps c 1
= 2“('9lf“° ‘gu.m)t‘-
1
. e 1
(igafr=T (@1, 0)) T
2

(igcf“‘qgmm) ’ (3.2)

where the Lipatov vertex can be expressed as

Pone) = [+t - (B2 e (B4 a6
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It can be proven that this vertex is gauge invariant because

(g q)( —@)u=0. (3.4)

It has been shown by Dickinson (37) that the higher order correction for the
same process in the same color channel effectively reggeizes the gluons in the t-
channel. Therefore the amplitude containing all the corrections can be obtained from
equ. (3.2) above by changing the gluon propagators into the Reggeon propagator

1 L atmei-w (3.5)

t; t
where a(t;) is the Regge trajectory given by

Pk, 1
(2x)* k(g - k)1

a(t;) = a,N.i; / (3.6)

Lipatov proved that for a general n, the amplitude has a similar structure as
equ. (3.2). The only thing we need is to add in more reggeized gluon propagators

and more Lipatov vertices [10, 21]. In this way, we get the n-gluon amplitude to be

; Mdedi-das ~ 2 (ig. jd-.ex g,.....) ilee(t'n)(a -n)
1

Helidiio iy asl

(ig.f hearin (ky, k:)) (t.le"(‘.')(”' ‘"'))
2

(iga feodncari T (kny kst )) (-rl-e"“‘“)(’-'lh-n ))

tu+1

(ig. fonrrcan 9»w-+x) . (3.7)
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According to Lipatov’s method, the elastic amplitude is evaluated by using the
dispersion relation. The amplitude as a function of 4 has two branch cuts over the
real axis of complex-§ plane, -~ < 5 < 00 and —o0 < § < 0, hence we can write a

Cauchy integral for an general scalar amplitude A(3,{) to be

A ) = /o ds’ DucA(; ,£) + /'°: ;i:; Du‘c/i(: ) (3.8)
where the discontinuity of the amplitude is defined as
DiscA(s',t) = A(s' +ie,t) — A(s' - ic, i) . (3.9)
Since we have
(1 + 2:) , (3.10)

the dispersion relation can also be written as an integral over the complex plane of

Zs 28

AG5,) = / dz DucA(z,,t) / dz; DucA(z,,f) (3.11)

2xi Z— 2ri
In the physical region —1 < z, < 1, the ¢t-channel amplitude can be used to project

out the partial wave:
. 1n .
AGa,D) =3 [ dnP(z)AGD) . (3.12)
Using the associated Legendre function defined by

Qz(Z’)=% : z,d" (3.13)
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we can substitute the dispersion relation equ. (3.11) into the partial wave amplitude
equ. (3.12). Using the identity [38]
Q(-2z) = (-1)""'Qu(2),

_DiscA(-z,t) = =-DiscA(z,t) (3.14)

the ith partial wave amplitude becomes

G =1+ (-1 [ 22Qu(#)DiscA(2,1) (3.15)

i
Now we introduce the Sommerfeld-Watson representation of the amplitude A(3,¢)

in the complex plane of the angular momentum [ as discussed in Chapter II,
. _‘ dl P(-z)
A(3f) = jc HE+ DA (3.16)

The path C, is the same as we used in Sec II. Under the high energy limit: § — oo

at fixed ¢, we have

Qz) — ()™, (3.17)
the partial wave amplitude in equ. (3.16) can be rewritten as
ca_ 1 (=)' +1
AGH = - /c A F(d), (3.18)
where Fi(t) is the Laplace transform of the discontinuity of the amplitude
F(d) = ./; > dy'e™" DiscA(z,t) , (3.19)
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Figure 8: One of the diagrams contributing to BFKL Pomeron

with
=in(z/2), y=In(2/2). (3.20)

It is shown in equ. (3.19), to calculate an elastic amplitude, we need to calculate
the discontinuity of the amplitude. To that end, we need to sum over all Cutkosky

cut diagrams like Fig. 8 for all n, with intermediate gluon lines cut. This is accom-

plished by replacing the Feynman propagator with the Cutkosky propagator,

k—; ~ 2n5(KY) (3.21)
which has the effect of putting all the cut lines on mass shell
kl=0. (3.22)
With the kinematical factor
8/ 8= [ v - E
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1 2 o dyidhi, | & L, :3“13
= [ 558 (2%) (13]1 41(2'),) (:;‘;, (2x)%8 (§ k,-J_) : (3.23)

the discontinuity of the amplitude in Fig. 8, with n summed from 0 — oo becomes

Disc[iM:="Y (i) =

= _1'_ i d!lid'hu. d‘hn«HJ. 3¢3 pads ’)
5[ w3t ) Taptanre (S
(P I (ig, [ (ig, %)
L aiw-n) L a@)an-n)
t t
+ (9. f4) (39, f349 )T (1, @a)(— Gy )T* (9 — @109 — @)
L atiym-n) L a@)n-n)
2 2

+ (igafeetacatt )(ig, f29as1 )14 (gny Gnt1 )= Gumut, T“* (9 = Gny 4 — Gns1)

. A_l_eﬂ(‘-n)(h'hﬂ) . 1 eﬂ("-u)(h-m:)
/

tn+l tn+1

o (igafuereast)(ig, frandn¥y | (3.24)

where { = ¢? is the momentum transfer and ¢/ = (¢ ~ ¢;)*. The contraction of two

Lipatov vertices is

— &) +(q— )

M(¢is gi+1)Tu(g — 419 — Git1) =2 (qi _la-a ?* (_q q,‘“);*) . (3.28)
(gL — @411)

Now we need to decompose equ. (3.24) into singlet and octet contributions. It

can be checked that the octet contribution just gives the reggeized gluon exchange,
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which provides a self-consistency check. But we are more interested in the singlet
exchange, which is identified as the BFKL pomeron. After we change the integration
variables from k; to ¢; using the conservation of the transverse momentum, the singlet

part A(3,%) can be written in a compact form

DiscAi,d) = SN [T

l-l J“‘l (2,)2
n+l 1

2“11;! fgffe(“-l‘m)[a(fz) +a(t ”E[1 2K (gm)gm+1) » (3.26)

We can perform the integral of the rapidity. First we introduce a Laplace trans-
formation to the left hand side of the above equation. And then we change the
integration variables to be the rapidity differences. The integral over y; can be

performed easily and we get

F(t) = f * dye " DiscA(s, t)

n+l

= -2ii(4ra,)’N? Z / I
j=1
1 1
fli’ll -1- a(fl - t.’l)
(—2a,N.)K(q1, 1)

1 1
byl -1 - alty — )

(—2a,N:)K(gn, gn+1)
1 1

£n+1£:‘+1 I-1- a(£ﬂ+l - t.'ﬂ'l'l)

(3.27)
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If we define a function fi(q,,?) satisfying the following recursive relation

i = 1 P K(g,a)
fl(qlat) = 1-1- Cl(t.;) _ a(t"l)(l - 20.”:)/ (2')3 q;;(q _ q’)i fl(%,f) ’ (3.28)

Then we can see Fi(£) is related to this function as

d‘Qu, 1
(2*)P qi(g-a

Fi(f) = -2if(4ra,)* N? 7 filand) (3.29)

The above recursive relation is the BFKL equation.
After discussion of the cancellation of the infra and ultraviolet divergences, the

Pomeron solution can be found as

fi(ka, k) =~ (21_), TR kl{,.)i A= 1'_ A)]me-ultn(bh/hu)l . (3.30)
with
A=4ln 25‘-'% . B= 14:,(3)3';& - ("—;;—A)’ . (3.31)
This will give a total cross section
Troe = i4 . (3.32)

3.2 Unitarity problem of the BFKL pomeron

As we can see from the derivation above the total cross section is proportional to
§4, with A = 4In224% In SU(3) QCD, N, = 3. For a coupling constant a, = 0.2,

we get A = 1.53.
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Since A > 1, the total cross section obtained from BFKL pomeron violate the
FYoissart bound, and thus violates the unitarity condition. The reason for this
violation is because only two-reggeon exchange amplitudes are included in the BFKL
Pomeron. For unitarity to be satisfied, an infinite number of Reggeon exchanges is

required. We shall discuss that in the next Chapter.
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Chapter 4. Multi-Reggeon
exchanges

As we can see in the above section, the BFKL Pomeron is computed from two-
Reggeon-exchange amplitude, which is actually dominant in the leading-log approx-
imation as described in the introduction of this thesis. As we will see later, the
multi-Reggeon exchange amplitudes shown in Fig. 9(c,d,f,g..) are of the order of
(g%)"s(9%In?s), with n being the number of Reggeons. Hence for & fixed order of the
coupling constant g, the multi-Reggeon exchange amplitudes possess lower powers
of In s, and can be excluded in the leading logarithm approximation. On the other
hand, the unitarity condition generates higher multi-Reggeon amplitudes from the
two-Reggeon amplitude, and the absence of them can lead to the violation of uni-
tarity at asymptotic limit. To restore unitarity, one therefore needs to go beyond
the leading-log approximation to include all multi-Reggeon exchange amplitudes.

Before we start the calculation in QCD, it is worthwhile at this point to review
the calculation of electron-electron elastic scattering in QED in the high energy
limit. It shares many similarities with the quark-quark elastic scattering at hand,
and hopefully it can give us some guidance. Consequently, in the following section,
we shall review the QED calculation first, and then discuss how to generalize the
idea to QCD calculations, where the real difficulties are.
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Figure 9: Multi-reggeon exchange diagrams in QCD.



4.1 QED eikonal formula

Here we focus on e + ¢ — e + e elastic scattering. It has been known that the high

energy forward scattering in QED has the following property (28]:

1. The energy dependence is the result of creation of e*e~ in the intermediate

state. It is of order of (e*)(e'ln s) and is imaginary.

2. The sum of these leading terms gives a total cross section 7, = i7, with

J =1+ UZ*, This violates the Froissart bound(17].
3. The photon remains elementary, not reggeized.
‘ 4. After including the multi-photon exchange, the final result is unitary.

The problem of unitarity violation shown in point 2 for electron-electron elastic
scattering in QED is similar to the problem encountered in quark-quark scattering.
To restore unitarity, we need to add in multi-photon exchange. For simplicity, to
illustrate this point, we are going to focus in this thesis on the simplest case by
ignoring pair production. In this case, according to the point 1) above, we shall
reproduce a total cross section that is independent of energy. What we need to
calculate is all the possible Feynman diagrams with N-photon exchanged in the ¢
channel, and then sum N from 0 to oo. This is shown in Fig. 10 for diagrams up to
6th order. It turns out that all these diagrams can be summed into a compact form

. by using the eikonal formula and the resulting cut diagrams. These two techniques

43



11l X
1L XL 1X
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Figure 11: A tree level Feynman diagram in QED.

will be later generalized to QCD.

4.1.1 eikonal formula for QED

We look at a tree diagram as shown in Fig. 11. First we use a number to label each
external photon line as shown in the picture. We then use a convention 412 - - n]
to denote the amplitude of this tree [12--n], where the ordering inside the square

bracket is the same as the ordering of the external photon lines along the fermion



line. Let [T\T3 - Tn| denote the tree by merging all these [T;] trees together. An-
other useful notation is {T};Ty;---;Tn]}, which is used to denote the sum of all
tree diagrams obtained by interleaving the trees T:, T3, - -, T4 in all possible ways.
For example if T} = [123], T3 = (45], Then [T1T;3] = [12345], and {T}; T3} contain
the following 10 trees: t12345], (12435], [12453], [14235], (14253, [14523], [41235],
(41253), [41523], and [45123]. We also use a{T;Ts;-:-;Tn} to denote the sum of
all the amplitudes a[T] for every tree T in the set of {T};Ts; - -; Tn}.

Consider the limit where the momentum p carried by the fermion line is much
larger than the momentum k; carried by the ith photon line, we can rewrite the

denominatior of a fermion propagator as

P+ ki) —m?+ie~2p- [ k; +ie, (4.1)
i=1 i=l

Using the notation above, the amplitude of the tree diagram in Fig. 11 can be written

(12 -n] = —2xib(3" k;) (")ff ! )c. (4.2)

= o Tim Pk tie
where C contains all the QED factors. To get equ. (4.2), we have used high energy
approximation. (See App. B for normalization we choose.)

It has been found in [31] that under this high energy approximation, the ampli-

tude a{T1;T3; - -; Tn} can be factorized as follows:
N
a{Ty; Ta;---; Tw} = [J o[T}] . (4.3)
=1
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This can be proven as follows. Consider [T] = [ty¢; - - - ta), then a[T) is its amplitude

a[T] = (=i)" /_: dr,. j_‘: dr_, /°° /:dr.‘exp(iiw.‘.f.‘) . (44)

~Tie1 =1
Performing the integral of r; we can get back to an expression similar to equ. (4.3).

Note that the integration variables are all in the order o0 > 7, > 7, > -+ > 7.

7;; retains the ordering only within each individual tree T;, and for each tree they
integrate from —oc to +o0o. Therefore, it is just the product of the amplitudes
of the corresponding trees. This factorization formula is similar to the string-like
representation in Ref.[39]. It remains valid when the photon lines are off-shell.
This factorization can be exhibited graphically by putting a cut (a vertical bar) in
every propagator between trees T; and T,,, thereby changing the Feynman tree
diagram [T1T; - - - Ty} into a cut diagram [T}|T| - - - |Tn]. By definition, the cut turns
a Feynman propagator with factor 1/[(p + K)® — m? + i¢] >~ 1/[2p - K + i¢] into
a Cutkosky propagator with factor —27i6((p + K)?] ~ —2xi§(2p - K]. With the

definition of a[T;] given in (4.2), it is now obvious that (4.3) can be written as

be replaced by a vertical bar ”|”, and both can be interpreted as a symbol for the

factorization of the amplitude.
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Figure 12: 6th order Feynman diagrams in QED.

4.1.2 Cut diagram in QED

We shall discuss in this section QED electron-electron elastic scattering in the high
energy limit. We first look at the 6th order calculation, then we give a general
argument for higher order calculations.

All six Feynman diagrams at the 6th order aze shown in Fig. 12(a)-12(f). If we
label the bottom of the photon lines according to the ordering they are joined to
the bottom fermion line, the n! = 3! = 6 diagrams are related by the permutation
of the upper ends of the photon lines. Using equ. (4.2) and (4.3), we can apply the
factorization formula above to the top line, and cut all the fermionic propagators on

it. In general, for (2n)th order, there are n! Feynman diagrams, and every fermion
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Figure 13: A relation between QED cut diagrams.

propagator on the top fermion line can be cut as well. This is shown in Fig. 13(a) for
n = 3. Since putting a cut on a line is effectively making it on-shell, the n photon
lines joined to the top fermion line can be permuted at will. As a result, further
permutation of these photon lines along the bottom fermion line will not change
anything. If we sum up all the n! permutations of these n photon lines, we can use
the factorization formula again and introduce a cut to all the fermion propagators
on the bottom line as well. Thus we can get the identity shown in Fig. 13.

To perform the loop momenta integrals, we use the light-cone coordinate we
introduced before. The loop momentum integral for each independent loop can be

written as

.1 P 1
imd.q = s—”z-dq dq+(2l—)2J‘Q¢ . (4.5)

We will choose the n — 1 smallest loops to be the independent loops. For each of the
loops we choose, there are two on-shell -functions, one on the top line, the other
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on the bottom line. These two §-functions will get rid of the g* and ¢~ integrals,

and leaving behind only the transverse momentum integrals. For (2n)th order, this
amplitude is simply

o= - L f (ﬁ (2?:;&) @83 g~ A) = L3 (=i 1(8) 49

=1 (3

where A is the momentum transfer. We can see that the function I,(A) is the nth-
power convolution of I; with itself. Thus if we perform a Fourier transformation

and change it into the impact-parameter-space, it will become a simple product:
In(®) = (h(O)™ . (4.7)
Thus the (2n)th order of the T-matrix in the impact-parameter-space can be is given

by

L0 i Lighor. (4.8)

It can then be summed up for n from 1 to oo to get

w(d —igdh(O) . . 23
2 2(‘ ) = - 2 L;g—l(—)] = ~jexp(—ig*Li(b)) - 1. (4.9)
n=1
To get back to the momentum space, we carry out the inverse Fourier transorm.
This yields
T . id, - . 2%
=i / &bt (expl~ighi(0)] - 1) , (4.10)

which is called the eskonal formula. The amplitude given by this formula is unitary.
Note that it is important to include the contribution of multi-photons to obtain
unitarity.
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There is no s dependence on the right-hand side of (4.10). It is important
to realize that this is not the case for individual Feynman diagrams, which may
contain (even high) powers of Ins. When Feynman diagrams are summed and the
factorization formula (4.3) is used, these In s powers all get cancelled to yield (4.10).
This is because the Born amplitude with one-photon exchange is s independent, so
if the multi-photon amplitude is factorized into product of one-photon amplitudes,
it must be s independent as well. Something similar also happens in QCD, so it is
important to understand in a more general way how factorization (4.3) is related to
cancellation of In s factors.

As noted before, factorization is equivalent to replacing certain Feynman prop-
agators 1/(2p - K + i¢) = 1/(z + ie) by the Cutkosky propagators —2xi6(2p- K) =
—2x16(2). If a In s factor arises from tke original Feynman diagram in a loop con-
taining this propagator, it comes from integrals of the form [dz/(z + i¢) ~ In s,
in which the lower limit of integration is proportional to 1/s. In the corresponding
cut diagram where 1/(z + i¢) is replaced by ~ §(z), the integral is convergent, thus

losing the In s factor.

4.2 Generalization to QCD and related difficulties

Now let us look at quark-quark elastic scattering in QCD. Its non-abelian nature
prevents simple factorization to occur as in the case of QED. However, it is known

from leading-log calculations [40] that gluons are reggeized at high energy though
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photons are not. So one might think that gluons should be replaced by Reggeons
before factorization can take place. This turns out to be the case as we shall discuss
in the next Chapter.

The factorization of Reggeons also gets rid of some of the Ins dependence of
the corresponding loop, as discussed at the end of the last section. This can help
us estimate the In s dependence of the final amplitude. As pointed out before, a
Reggeon is made up of numerous gluons. In general, in an n-Reggeon exchange
amplitude, n — 1 factors of In s are removed by factorization, so this gives us a

power of In s as bounded by
(@")"(g'lns)™ . (4.11)

In principle, equ. (4.11) tells us that we need to calculate diagrams up to this
subleading order, in order to prove that summing Feynman diagrams can yield a
multi-reggeon exchange amplitude. Direct calculations were carried out to the sixth
order {28, which shows that such multiple Reggeons are indeed present. However,
direct calculations to the 8th and 10th orders encountered intrinsic difficulties unable
to be overcome with the usual techniques, so now twenty years later, we are still
searching for the complete proof of the emergence of multi-Reggeons from summing
Feynman diagrams. We shall make some progress in this thesis using a new technique
to be discussed in the next Chapter.

Technically, there are the following difficulties to be overcome:
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1. The calculations in Non-Abelian theories are more difficult than those in QED,
because the vertex of interaction in Yang-Mills theories[30] are more compli-
cated. As one of the results, QCD involves many more Feynman diagrams
compared to the same order calculation of QED. It was reported that for the
8th order calculation, thousands of diagrams have to be included in the com-
putation. And the situation gets even worse when higher order calculations

are under consideration.

2. The Yang-Mills vector meson, here the gluon, carries color and may emit other
vector mesons. This contrasts with the situation in QED, where the photon
is chargeless and cannot emit other photons. It makes the Feynman diagrams
in QCD more complicated. When we integrate the longitudinal components

of each loop momentum, we will encounter a multi-dimensional integral.

3. The high energy amplitude due to the exchange of gauge bosons is always
proportional to s times a power of Ins. For most Feynman diagrams, this
power exceeds two. Thus the contribution to the scattering amplitude from
individual Feynman diagram always violates the unitary bound sln’s. Since
the sum of all these Feynman diagrams must satisfy the unitarity condition,
extensive cancellations must occur in the summation. According to equ. (4.11),
contribution of powers of Ins larger than m will be cancelled in the sum.

Consequently beyond the leading logarithm approximation, which is usually
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an impossible task. We will discuss & method in Chapter 5 whereby this

unpleasant cancellation can be avoided.

. On account of the presence of non-commuting color matrices, QCD amplitudes

do not factorize as simply as the QED amplitudes, and QCD s-channel dia-
grams like Fig. 12 cannot be summed up to be a single diagram displayed in
Fig. 13, where no In s factors appear. The upshot is that there are many more
non-trivial In s dependences to compute in QCD. To compute them we follow
the technique in the book of Cheng and Wu (28] where lightcone coordinates
are used for loop integrations. If k, is the loop momentum of the ath loop,
the integration over k., is done exactly using residue calculus. To carry out
this integration it is necessary to know which of the poles lie in the upper
ke+ plane and which lie in the lower plane, as only poles in one half plane
contributes to the integral. For that purpose Cheng and Wu invented flow di-
agrams, which can be regarded as a graphical way to keep track of the location
of these poles. For one loop this method works beautifully, but as the number
of loops increases the straight-forward application of this method becomes not
only difficult, but sometimes even problematical. We shall discuss in Sec. 5.1
the problems encountered with this method and a new path method to solve

the difficulties.

5. As we found in the above calculations of QED, the final result contains two

53



parts: s and Ins to a certain power, and the coefficient of the transverse
momentum integrals. In QCD, the transverse momentum integral for certain
Feynman diagrams is divergent. According to the 6th order calculations [28],
part of this divergence contribution comes from infra divergence, and can be
renormalized by introducing mass to the gluons (41]. The rest gets cancelled
when we sum up the corresponding Feynman diagrams. The cancellation part
is complicated for higher order calculation, as a result, for the published 8th
and 10th order calculations {24, 45], this kind of cancellation was assumed to
be true without proof. We shall show in Chapter VI that by using non-abelian
cut diagrams, we can reorganize a special kind of Feynman diagrams in such

a way that this kind of cancellation takes place before the actual calculations.



Chapter 5. Relevant techniques

In this Chapter, we are going to deal with the difficulties mentioned at items 2
and 3 at the end of the last Chapter. Item 4 will be discussed in Chapter 5.1 and

item 3 will be discussed in Chapter 5.2.

5.1 Path method for integration
5.1.1 Residue calculus and flow diagram

Given an [-loop Feynman diagram, we can write its amplitude as

T=- (W)‘/ (I #rsthein) 05 (51

't 3y

The numerator N contains the vertices and other necessary factors. Each indepen-
dent loop momentum shall be integrated from —oo to +oc. In what follows we focus
on quark-quark elastic scattering, and take the high energy limit s >> —t. We will
also assume that all the particles are massless. We will use the same conventions as
those used for QED Feynman diagram in the last Chapter. In addition, we shall call
the upper fermion line of a Feynman diagram the top line. Its momentum has only
“+” components with magnitude /5. Similarly, the lower quark line shall be called

bottom line. It has only “-” component with magnitude of /5. For each propagator,
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the corresponding D; is

G+ di- — q1 +1e, (5.2)

where g; is the momentum passing through that propagator. Since ¢; is always linear
in k;, the independent loop momentum, so is D;. Therefore, we can carry out the
dk,; integrations by using residue calculus. We choose the contour to be the real
axis and a semi-circle at infinity. This semi-circle can be either on the upper half
plane or the lower one, determined by convenience. Each of the internal lines in
the loop gives rise to a pole, and our task is to determine whether this pole is on
the upper plane or the lower one. For this purpose, flow-diagrams were introduced
by Cheng and Wu [28], which will be briefly reviewed here. We will then point
out difficulties emerging in higher order calculations that have not been mentioned
previously. We shall provide solutions to these problems in Chapter 5.1.2 [34].
Whether the pole at d; = 0 of the dk,, integral is on the upper plane or the
lower plane depends on the sign of the coefficient of k., in that denominator. See
equ. (5.2). A flow diagram is a convenient way to keep track of the relations between
these signs. Since the coeflicient of k.. in the ith propagator is just g;-, the location
of the ith pole depends on the sign of ¢;—. The flow diagram is just a Feynman
diagram with an arrow on each line indicating the direction of the flow of the “-"
component of the momentum of this line, vis., the sign of ¢;_. To satisfy momentum

conservation, there must be some incoming momenta and some outgoing momenta at
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Figure 14: Two examples of flow diagrams.

each vertex. The lines with the arrows pointing in the same (clockwise or counter-
clockwise) direction contribute to pole in the same half plane, while those with
arrows pointing in opposite directions give rise to poles in the other half plane. A
Feynman diagram can have several flow diagrams, each of them corresponds to a
different integration region of the “—" component of the momentum. For example,
Fig. 14(a) depicts a flow diagram of a two-loop Feynman diagram, and Fig. 24(b) is
a flow diagram for a four-loop Feynman diagram. In the loop (1,5,3,6) of Fig. 14(a),
the poles for lines 1 and 6 lie in one half-plane, and the poles for lines 3 and 5 lie
in the other half. Similarly, in the loop (2,6,4,7), the pole for lines 2 lies in one half
plane of that loop variable, and the lines 6,4, and 7 lie in the other half plane.
There are two general simplifications that can be made on flow diagrams. First,

at high energies, a propagator on the top line can be approximately written as
D; ~ Vagi- — @}, +iex~ Vg . (5.3)
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It is independent of the “+” component of the loop momentum, and can be ignored
in the integration of k,,. For this reason, we may merge all the propagators on the
top line in a flow diagram and ignore them.

Secondly, a flow diagram with a loop with all the arrows pointing in the same
direction can be neglected. The reason is that this means all the poles are on the
same half-plane in the integration of the loop momentum of this loop. When we
choose the other half-plane to close the contour, we see that the amplitude for this
Feynman diagram vanishes.

To summarize, given a Feynman diagram, we must first decide how the minus
component of the momentum goes around the diagram according to momentum
conservation subject to the condition that they do not flow all in the same direction
around any closed loop. This will give us all the possible flow diagrams for to
this Feynman diagram. This is basically the method invented by Cheng and Wu.
However there are several subtle points in the approach which have been ignored
before. These points are quite general, not limited to quark-quark elastic scattering.

They will be discussed below.

5.1.2 Line reversal and path method

From the above discussion, we can see that the position of a pole is determined by
the sign of ¢;-, or equivalently by the arrow direction on the flow diagram. This

is true before any k,. integration is performed. However for muitiloop diagrams,
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we perform some of the k.. integrations, the arrow might not indicate the sign of the
“—" component any more. The reason for that will be explained below. Neverthe-
less, it turns out that this problem can usually be bypassed in low order calculations
by choosing suitable independent loops, and/or different orders of integrations. As
a result, it is a point that has been neglected in the literature.

To understand the problem in using flow diagrams for multi-loop situations, let
us suppose there are n, poles picked up by the first loop integration S dk,., each
contributing to a term in the integral. As a result of the integration k;. acquires an
imaginary part Fie/q;_ from the ith pole. The sign is —/+ if the direction of k;,
aad g;_ are the same/opposite. This imaginary part in turn imparts an imaginary
part on every g;; of the first loop, which is why the location of poles for the second
and subsequent integrations may be altered. For simplicity, we shall assume from
now on that ¢ is finite and positive, and has a common value in all the propagators.

This imaginary part of k,, affects the location of poles in subsequent integrations
only for lines j lying in loop 1. In that case, the imaginary part of the quantity D;

in (5.2) is changed from ie to

ie(Fg-/q- +1), (5.4)

with sign —/+ when lines j and ¢ are in the same/opposite directions around the
loop 1. Unless the sign is — and g; > ¢;, the imaginary part of D; remains positive

and the location of pole j in subsequent integrations is once again determined solely
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by the direction of its arrow around the integration loop, viz., it can be determined
directly from the flow diagram. However, if lines j and i are in the same direction
around the first loop, and that ¢; > ¢, then the sign of the imaginary part of
D; becomes negative, and the pole location (upper or lower plane) will now be
opposite to naive expectations from the flow diagram. This situation can still be
accommodated into the flow diagram if we simply reverse the arrow of this line.
This is flow reversal

To see how flow reversal works, we first look at a simple example shown in
Fig. 14(a). This is a two-loop flow-diagram. The corresponding Feynman diagram
. has two flow diagrams. The other one can be obtained by flipping line-6.

We have the freedom to choose different independent loops. Here we take [1 =
(2,6,4,7) and 12 = (1,5, 3, 6) as independent loops. We can perform the loop integral

of either one first.

{1 first : For [1, we can take the pole on line-2. Then after the integration of this loop
momentum, the loop left is {2, and we can take line-5 as the pole(remember

the remark in equ. (5.3)). So the poles lie in lines (2,5).

[2 first : For 12, of course, we can choose only line-5 as the pole. But we can also
choose both line-1 and line-6 as poles. It is the latter case that gives problem.
So we look at this case here. When we take the contributing pole from line-

. 1 to perform the loop integral of [2, then the loop left after this is still {1,

60



and we can pick up line-2 as the pole. Now take the pole of [2 from line-6.
Since line-6 is on the boundary of [1 and 2, the remaining integration must
be conducted on loop I3 = (1,5,3,4,7,2). Without line reversal, this loop has
two poles: line-1, and line-2, so we finally end up taking the pole contributions
from (1,2) + (6,1) + (6,2), which is not the same as the above one. To get
the right answer, we have to take into account line reversal. When we choose
line-6 to perform the [2 integral, because ¢¢ < ¢, line-1 gets reversed. So that
in the integral of {3, only line-2 should be taken as contributing pole. Thus

. the answer is actually (2,1) + (2,6), which is just the same as (2,5).

As we can see from the above example, line reversal must be taken into account
in order to get the right answer. At low order calculations, there might be ways to
bypass line reversal as we pointed out above, but at the multi-loop level, when the
independent loops become more involved like Fig. 14(b), line reversal is inevitable.
The situation becomes even worse, because there is not a unique way to choose
the independent loops, nor a unique way to choose the order of integrations. Also,
when the pole we pick up is on the boundary of the independent loops we choose,
the loops sharing this boundary will be merged after we perform the corresponding
integration. Thus in general for a multi-loop diagram detailed calculations must take
place loop by loop, with careful consideration of line reversal and loop merging, so
as to obtain the correct contributing poles. This makes the explicit calculations at

higher order extremely messy.
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To demonstrate how tedious this procedure is when the old method is used, we
consider a four-loop level diagram shown in Fig. 14(b). After trying different choices,
one will find out that the simplest case for independent loops is I1 = (4,8,12,13,7),
2 =(5,9,3,11,12,8), 13 = (13,12,10,1,6), and 14 = (10,12,11,2). We do the
integrations according to this order, because it turns out to be the most convenient
order. First we introduce some notation to simplify the discussion. We use I1(3) to
denote taking line-3 as the pole in the integration of loop /1. And we use [1.12 to
denote the union loop of these two. This union loop can be construct by merging I1
and {2, and deleting all the boundary lines.

For 1, we can take line-7 as the only pole. Because line-7 is not on the boundary
of any of the independent loops we choose, so that we are left with three independent
loops 12, i3, I4. For [2, there are two possible poles: [2(3) and [2(11). And we need

to consider these two possibilities separately:

1. 11(7)12(3)

For [3, because again line-3 is not on the boundary of the independent loops
we choose, so when we perform the integration of {3, we can choose [3(1) and

13(10).

(a) 11(7)I2(3)13(1)
We can take line-10 and line-11 as the poles for 14, and get {1(7)I2(3)13(1){4(10)+

11(7)i2(3)I3(1)i4(11).
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(b) 11(7)12(3)I3(10)
Since line-1 is on the boundary of {3 and 4, therefore the loop left is

13.14. In addition, because ¢, > g0, 80 that line-1 is reversed. Therefore,

we have only one contributing pole for this case: 11(7)I12(3){3(10)14.13(2).

2. 11(7)i2(11)

Because line-11 is on the boundary of I2 and 4, so what is left now is {3 and
[2.14. 1t is simpler to do the integral of [2./4 first. Note that line-3 is reversed
due to the fact that ¢;; > gy in this case, so for [2./4 only line-2 is taken as a
contributing pole. We have then [1(7)12(11){2.14(2). And for I3, we take line-
1 and line-10. And the contribution pole is then 11(7)I2(11){2.14(2){3(10) +

1(7)12(11)12.04(2)i(1).

Therefore, in total there are 5 contributing poles for this diagram: 11(7)2(3)I3(1)I4(10)+
11(7)12(3)13(1)i4(11) + 11(7)12(11)12.14(2)13(10) + 11(7)I2(11)i2.14(2)i(1).
This is not the only way to get to the answer, and taking another way would be
many more complicated. For example, if we choose to do {4 after we perform [1, then
we get to [1(7)I4(11) + [1(7)I4(10). For these two cases, we need to compare gyo_
with ¢1;-. This complicates the discussion a lot, although after careful discussion
we can still get to the right answer.
Fortunately, there is a recipe to solve this problem. We shall call this the path

method in the following.
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For a general multi-loop flow diagram, we first choose a path P of the “—" flows.
It is defined to be one of the continuous tree paths in which the “—” momentum
goes through from the beginning to the end. In principle, any one of these paths
can be used to find the contributing poles, but for a reason we will see later, we
choose the longest path so as to make the practical calculation simpler.

Let us see how to get contributing poles from the path. For an [-loop flow
diagram, after we choose the longest path, the internal lines that are not on the
path are called removed lines. In general, the number of these removed lines N, can
be larger than or equal to I. A contributing pole is ! lines selected from N, removed

. lines. We can find all the contributing poles according to the following directional

rules.

Rule.l If N, = [, then all these N, removed lines are the only contributing pole to

the flow diagram.

Rule.2 If N, > [, then there is more than one contributing poles. Any one of them
contains [ lines. These ! lines will satisfy the following conditions. (i)Removing
these [-lines from the original I-loop diagram reader it into a tree;(ii) When
any one of these [ lines is inserted back to the tree, a loop is formed. It is
called natural loop. And the direction of this inserted line must be opposite to

the natural loop it reconstructed.

‘ Before we prove this directional method, we first consider the example of a
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four-loop diagram shown in Fig. 14(b). The longest path can be taken to be
P = (6,13,12,8,5,9). The removed lines arze (7,3,1,2,10,11). We can see, if
we insert line-7 to the path, it satisfies the directional rule. So every contribut-
ing pole should contain line-7. We still need to choose 3 lines from the remain-
ing (1,2,3,10,11). The.re are 10 possibilities. (7,2,3,11) and (7,1,2,10) violate
rule.2.(i), because there is a loop remaining even after these 4 lines are removed.
(7,3,10,11) violates rule.2.(ii) when line-11 is inserted; (7,1,10,11) violates the
same one when line-10 is inserted; and (7,1,2, 3) violates that rule when line-2 is in-
serted. Therefore there are 5 contributing poles: (7,3,1,10), (7,3,1, 11), (7,3, 10, 2),
(7,11,2,1),(7,11,2,10). A comparison with the ordinary method used above shows
the high efficiency of our method. As an additional advantage, this method can be
easily implemented into computer programs (42]. A successful example has been
written up in Mathematica® and C-language.

In summary, this method solves two problems at the same time, i.e. it chooses
independent loops and the contributing poles.

Now we proceed to prove the above rules.

rule.l It is easy to prove this rule; notice the fact that we are using flow diagrams.
If N, =, then when we insert any of these [ lines to the path, it forms the
corresponding natural loop. In this loop, only the inserted line is not on the
path. According to the definition of the path, all the other lines are in the
same direction. The inserted line must be in the opposite direction because
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rule.2

this is a flow diagram. Thus it is the pole we take for this loop.

For an [-loop diagram, we can choose the path P according to its definition.
Also from this diagram, we can obtain trees by removing ! lines. We call the
set of these trees that share path P as their common backbone S[P]. T[P)is a
subset of S[P] satisfying the condition that each tree in T'[P)] corresponds to !
removed lines which are a set of contributing poles. Then there is a one-to-one

correspondence between the contributing poles and the trees in T[P]. A tree

~ tin T(P] defines / natural loops N(t]. The special feature of N[t] is that the

removed lines are never on the boundary of two natural loops of the original

diagram.

The proof is then based on the following three assumptions, which will be
proven in the Appendix. They are : i) T[P] is never empty; ii) none of the
lines in the contributing poles are in the reversed direction when a pole is
taken from them; and (iii) the same contributing poles never occur more than

once in the set.

There are also two observations: i) the contributing poles we take shall al-
ways have arrows running in the opposite direction as those on P; ii) these
contributing poles are independent of the choice of loops and the order of

integrations from which they are obtained.

Take to from S{P], we have a set of natural loops N(to], according to assump-
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tion i). Because of assumption ii), we can perform the integrations in these
loops and obtain the contributing poles, each of them corresponding to a tree
in S[P) obtained by removing the contributing poles from the original diagram.
This set of trees will be denoted by T'[P). We need to show T'(P] = T[P].

Any tree in T'[P] must satisfy the directional rules, so we have T'(P] < T[P|.
On the other hand, if we take a tree from T'[P], and use the corresponding
natural loops N|[t] to compute the contributing poles, and based on the two
observations, we can conclude that the lines removed to get t from the original

diagrams are one set of the contributing poles. Thus T{P] < T'[P].

Therefore, we can see that T[P] = T'(P], and it proves our directional method.

5.2 Non-abelian cut diagram

The multiple commutator formula is a generalization of the eikonal formula to the
non-abelian amplitude [31]. We will first present the formula here, and then give
examples to illustrate how to use this formula. The complete proof will be presented
in the Appendix.

When we compute a tree process in a non-abelian gauge theory, we write the

amplitude of a Feynman diagram in two parts as before.
a(123---n]-¢{123---n] = a[123---n]titats - - tn , (5.5)

where ¢, is the non-abelian color factor associated with the vertex. The multiple
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commutator formula states that

Y aloltle] = 3 alo]et(ot. , (5.6)

7€Sa 7€S,

where S, = {1;2;---;n} is just all the permutation of (1,2,:--,n), a[o]. is & cut
amplitude for the cut diagram [¢]., and ¢[c]. is the corresponding nonabelian factor
computed from the complementary cut diagram [o].. The cut diagram and the
complementary cut diagram are defined in the following way. Proceeding from left
to right along the tree (o], a cut is put after a number iff there is not a smaller

number to its right. Hence, we can have the following example:
(1234). = [1/2(3]4] , [2314]. = [231]4] , [4321) = [4321]. (5.7)

The complementary cut diagram (o]’ is the one where lines cut in [o]. are not

cut in [o]., and vice versa. Therefore we have
[1234), = [1234] , [2314], = (2(3]14] , [4321], =[4]3]2]1] . (5.8)
To calculate the non-abelian factor from the complementary cut diagram, we
replace a cut with a commutator. So that
[1234], = [1234] = ¢t tatsts
(2314], = (2(3(14] = [t2, [ts, 1]}t ,
(4321]; = [4[3{2(1] = [ta, [ta, [tas ] - (5.9)
Here we just look at two examples for n = 2 and n = 3, and leave the complete

proof in App.A.
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n=2:

According to the rule above, we can have the cut diagrams as:
a[1[2]¢(12] + a[21)¢[2]1] . (5.10)

To see this is the right answer of the summation of all the Feynman diagrams

for n = 2, we can just expand all the cuts:

a[1]2]¢{12] + a[21]¢[2]1]

(a{12] + a(21])2[12] + a[21]([21] - ¢[12])

a[12]¢(12] + a[21]¢[21] . (5.11)

. n=3:

The amplitude can again be written as:

a[1]2|3]2[123] + a[1/32]¢[13]2] + a[21(3]¢[2]13] + a[231][2/3]1]

+ a[312]¢[3112] + a[321]¢[312]1] . (5.12)

Again a straightforward expansion of all the cuts can restore the 6 Feynman

diagrams.
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Chapter 6. Calculation of
diagrams up to 6th order

In this section, we are going to use the techniques introduced in the previous
chapter to re-do the calculation of all the Feynman diagrams up to 6th order. Fur-
thermore, we will use the calculations here as an illustration of how to do higher
order computations. All the Feynman diagrams are given in Fig. 15. Note that from
now on, for simplicity, we draw the fermion lines ( the top line and the bottom line)

. the same as the gluon line.

As we can see from the QED case, by introducing cuts to the top line of the
Feynman diagrams, we can simplify calculations. With this in mind, we intend
to do the same thing for non-Abelian Feynman diagrams up to 6th order in this
chapter. All the relevant Feynman diagrams are shown in Fig. 15, using the same
convention as in Ref.[34]. All the diagrams can be divided into 2 groups according to
the different topology. The first group contains all the diagrams with same number
of gluon lines joined to the top line and the bottom line, the second group consists

of all the rest.

Group 1 This group consists of the 2nd order diagram Al, the 4th order diagrams Bl

‘ and B2, together with the 6th order diagrams C15, C16, C17, C18, C19, C20,
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A

Al Bi B2
N /]
1 X 4 N
Ci C2 Cs Cs Cs Cs C
i X X
\
Cs Co Cio Cu Ciz Cn Cis

X LA 8 X X

Cis Cis Ci7 Cis Ci Co Ca
. Figure 15: Feynman diagrams for quark-quark elastic scattering at 6th order.

C21, C1, and C2. We can introduce cuts to the top line by a direct application
of the non-abelian cut diagrams mentioned in the last chapter. First we look
at Al, Bl, B2, C15, C16, C17, C18, C19, and C20. These diagrams contains
only fermionic vertices. We shall call them s-channel ladder diagrams (34]. If
we remove the bottom line of a s-channel ladder diagram, it will become a tree
diagram. Here we use C18 as an example. The resulting tree by removing the
bottom line is shown in Fig.16. Each gluon line is given a number as illustrated
in Fig. 16(a). Using the rule introduced in the last chapter, we know that the
spacetime diagram can be cut as in Fig. 16(b). As for the color disgram, it can

be cut according to the complementary rule as follows. Since the propagator
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1 2 3 1 2 3
(a) (b)

2 1 3 2 1 3

1 2 3 l 2 3
(c) (d)

Figure 16: An example of using non-abelian cut diagram.

between lines 1 and 3 is cut in the spacetime diagram Fig. 16(b), it should
not be cut in the color diagram Fig. 16(c). And the propagator between line
2 and 1 is not cut in Fig. 16(b), so it should be cut in Fig. 16(c). By putting
back the bottom line, we get the non-abelian cut diagram for C18 as shown in
Fig. 16(d). This example shows how to apply the rule introduced in the last
chapter to loop diagrams. Following the same way, we can get the non-abelian
cut diagrams corresponding to all the s-channel ladder diagrams. The result
is shown in Fig. 17. Here Al is a special s-channel ladder diagram since there

is not propagator on the top line. So Al, = Al.

Again, a cut on a spacetime diagram means a § function replacing the ordinary

propagator in the Feynman rule. On the other hand, a cut in a color diagram
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1 I X

Alc Blc B2,
Ci15c Cl6¢ Cl17.
C18. C19c C20.

Figure 17: Non-abelian cut diagrams.
means a commutator of the color matrices ¢,¢; of a quark: [t,|ty] = (2, 8] =
[tats] — [tate]. Graphically this identity can be shown as Fig. 18(a). To get the

last diagram of this identity, we have used the following equation:

[tl! ti] = 1 fobale (6.1)

together with the fact the color factor of a triple gluon vertex is just ifas..
Other useful identities are given in Fig. 18(b, c, d), where ¢ = N./2 for a color
SU(N.) group. Note that Fig. 18(b) has an extra minus sign compared with
Fig. 18(a). This minus sign comes from the different orientation of the triple
gluon vertex. As for identity Fig. 18(c,d), they are the graphical representation

of the following two equations:

faseSard = 28ca i fadgfrad fege = Cifabe - (6.2)

These identities will be used later to uncross the gluon lines so as to get desired
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a b b a a b a b
N I D S I
(b) R

X 1 Tk

a b b a a b a b

@ A . L

Figure 18: Graphical representation of the identities in SU(N.) algebra.

planar color diagrams.

Now we look at the remaining three diagrams in this group, namely C1, C2,
and C21. We can combine part of C21 with C1 to form C1, and combine the
rest of C21 with C2 to form C'2, as done by Cheng and Wu [28]. We keep on
using the same pictures to represent C1 and 2. They are the same as the
s-channel diagrams above in the sense that the number of gluon lines joined to

the top line is the same to the number of gluon lines joined to the bottom line.
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Group 2

Clc C2

Figure 19: Reorganisation of C1 and C2 for 6th order.

As a result, if we ignore the horizsontal gluon line, then they become 4th order
s-channel diagrams. Similarly we can introduce cut to the upper fermion line.

Then C'1 and €2 can be reorganized as cut diagrams shown in Fig. 19.

This group contains the rest of the diagrams from Fig. 15. Note that each of
these diagrams contains a triple gluon vertex. We want to put cuts on the top

line of each diagram as well.

This group can be further divided into two subgroups according to the number
of gluon lines joined to the top and bottom lines. We shall use a different way

to put cuts on the top lines for these two subgroups respectively.

(a) This subgroup consists of C5, C6, C9, C10, C13, and C14 from Fig. 15.
All these diagrams contain a triple gluon vertex showing as an upside-
down Y. To apply the rule we used in Group 1, we just need to ignore
the right branch of the triple gluon vertex. Take C6 for example. It is
shown as in Fig. 20(a). If we ignore the right branch of the triple giuon
vertex, then we get a fourth order s-channel diagram Fig. 20(b), and it

can be cut as Fig. 20(c) according to the rule before. Thus C6 can be
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(a) (b) (c) (d)

Figure 20: An example of how to cut diagram C86.

' 1
L T

N N /

Cé6c C10c C9c

WX £

Csc C13c Cl4c

4
L

Figure 21: Reorganization of 6th order diagrams with upside-down Y vertex.

cut as Fig. 20(d), which we shall call C6c later. The same is true for all
the other diagrams in this subgroup. We put all the corresponding cut
diagrams in Fig. 21. It is worth remembering that there is no equivalence
between individual Feynman diagram and its corresponding cut diagram.
Only the sum of diagrams in this subgroup equals to the sum of the

corresponding cut diagrams in Fig. 21.
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(b) This subgroup contains C3, C4, C7, C8, C11, and C12. As a general rule,
the non-abelian cut diagram used above is also applicable to all diagrams
in this subgroup by choosing appropriate numbering of the gluon lines.
However, this will get to 2+ 3! = 12 cut diagrams as shown in (32], where
3! comes from the permutation of all three line on the top, and the factor
of 2 results from two different choices to number those two gluon lines
joining to a triple gluon vertex. To avoid computing more diagrams, an
alternative way is to decompose the color factor of each Feynman diagram
into planar diagrams. The disadvantage though is that we cannot get the
cut diagrams directly. Instead, we have to use the factorization formula
equ. (4.3) after we decompose all the color factors. To do it, we first
use C4 as an example. The color factor of C4 can be represented by
Fig. 22(a). We can use the identity shown in Fig. 18 to uncross the gluon
lines, then Fig. 22(a) can be expressed as sum of two terms: Fig. 22(b, c).
These two can be further simplified into planar diagrams as Fig. 22(d,e).
We can do the same thing for the other diagrams in this subgroup, and the
result is put in Fig. 23. Here each diagram has been expressed as product
of spacetime diagrams and the color diagrams inside the bracket, which
have been decomposed into planar diagrams. To get the cuts on the top
line of the spacetime diagrams, we can group them according to color

factors. For example, C8, C4, and C11 all contributes to a color diagram
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(a) (b) (c)

"
+

(d) (e)
Figure 22: Decomposition of the color factor of C3 into planar color diagram.
Fig. 24(a). So we can sum them up. If we number the gluon lines as
shown in Fig. 24, we can see that [123] + {132] + [213] = {2;13} = [2/13].
(See section 4.5.1). We call the resulting diagram on the right hand side

C8e.

C7, C12, and C3 also contribute to the same color factor. We did not
mix them with the previous three diagrams, because it turns out that
they themselves can be summed up into a cut diagram shown as C7¢ in
Fig. 25. By doing the same thing for each color factor, we find that all
the diagrams in this subgroup can be organized into cut diagrams shown

in Fig. 25. Again we put the color diagrams in brackets.

Next we are going to compute these cut diagrams. In addition, we want to show
by our calculation that up to this order, multi-Regge amplitude can be obtained
from summing these cut diagrams, which in turn come from Feynman diagrams.
We are going to do this in two steps. First we must decompose all the remaining
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(a)

ear X (X T)=X-CT+{])
e« XX+ TH-X-CL-1D

Figure 23: Color decomposition of 6th order diagrams with Y vertex.

123 132 113 1312

(HI0-00)-T0- (D)

(b) (c) (d) (e)

Figure 24: Color decomposition of 6th order diagrams with Y vertex.
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e | *(= ) crc |\ *(c )
cae *( i ) Cic N *( 1 )
Cllc X *(3 ) c12 X*(c’:_)

Figure 25: Color decomposition of 6th order diagrams with Y vertex.

non-planar color factors of each cut diagram into sums of the planar color diagrams,
as done in Fig. 23. Secondly, we are going to sum up all the contributions to each
planar color factor and show that multi-Reggeon feature does exist.

All the color factors of the relevant cut diagrams can be calculated. The results
are collected in Fig. 26. Here we have used the same convention as in [34] by calling
the cut diagrams Cn, with n= 1,2,..21.

Based on this result, all the cut diagrams will be computed according to different

planar color factors as follows.

G4 There is only one cut diagram C'15. contributing to this color factor. This

diagram is exactly the same as the abelian cut diagram for QED. Therefore,
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0 0 0 1
ClSe
AN w oo 0
'_El6c
' \ 0 -2 0 0
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y | 0 <32 -1 0
C2(1c
\ 0 2 0 0
Cl8c
WK 94 0 0 0
Cl9¢c
0 32 0 0

Clc C8c C9¢ Cloc

AR
® Irgx - - o

Cllc Cl2¢ Ci3c Cléc

EI 0 X7 l 0

Céc
b 0 0 1 1}
Clc
5 94 0 0 0
C2c
/4
A 9 0 0 0
CSc
T-
1 0 0 0
Ac
0 | 0 0
Ble

X in 0 0 0
. B2c

Figure 26: Color decomposition of all the cut diagrams at 6th order.
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the 7 matrix element is given by
ANV
i g 13(A)Ga . (6.3)
Again, I,(A) is the nth-power convolution of I) with itself. (See equ. (4.6)).

Among others, there are two s-channel ladder diagrams C16. and C19, con-
tributing to this color factor. But in these two diagrams, none of the propa-
gators on the top line are cut. According to a theorem introduced in Ref.[34],
diagrams (space-time) with two adjacent uncut propagators is unsaturated, in
the sense that they give rise to subleading contributions. This theorem will
be proven in App.B. Therefore, these two diagrams can be neglected at high
energy approximation. That leaves contributions from Al., Bl., C2., Cll.,
C12., C13., Cl4., and C5.. Al. is just the Born term, and its result can be

easily obtained as Alc = -4y,

Blc is shown in Fig. 27 with all the lines labeled. We can see that the longest
path is (1,2,3), and the contributing pole is (4). Therefore, the integral of the
longitudinal components can be easily obtained as Blc = f:—.‘gﬂc(ln s)1,, where

B = g3/(2x). The details of the calculation will be given in App. B.

To compute C2., we need to perform the integral of the longitudinal momenta.
We first need to draw the flow diagrams. There is only one flow diagram for
this scalar diagram. We label the lines as shown in Fig. 27(C2.). Then we
choose the longest path as (6,8,9,10,7). And the contributing pole can be
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immediately recognized as (5,11). And the result is

d’q;_l

1 -
-_..—(ln’ s) [EA’I,’ - J:Iz] ¢ = Gy g

2m3? 4x? (6.4)

Again the detail to get this result will be given in App. B.

As for C11. shown in Fig. 27(b), the longest path will be (1,2,3,4,5) and the

contributing pole is (6,7). So it can be easily calculated as

PSS (6.5)

2m

And we can see that
Cll.=C12,=C13,=C14. . (6.6)
C5. can be computed to be
-——(ln s)aly . (6.7)

Since it is subleading compared to the other 5§ diagrams, its contribution can

be ignored here.

Therefore, the results can be summed to be

2
2;, (—%4-— o(ln 8)I; - 2 (2 ), 2)A ) : (6.8)

As for the color factor of Gy, the relevant diagrams are: C1., C20,, C6,, C3.,

and C4..
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7 1" 9
2 4 5 1
10 6
1 3 5 4 6
BZc C2c Cllc
1 9 2 1 8 9 2

of . |s Xg .

3 S 4 3 6 5 4

Cl. C20.
Figure 27: Flow diagram for B2. ,C1., C1l., C2., and C19. .

The flow diagram for C1. is shown in Fig. 27. The longest path is (6,7, 8,9, 10),

and the contributing pole is (5,11). The result can be obtained to be:

—2—:‘—29‘iﬁ(ln ) [%A’I; - szz] . (6.9)

The result for C6. can also be easily computed as

s 1 ...
—ﬁag ,3 ].nanI: . (6'10)

This result is just the same as the sum of C3. and C4..

The other diagram contributing to Gs is C20.. Its flow diagram is also drawn

in Fig. 27 with longest path being (7,8,10). It can be computed as

2"? ‘i(ln s)15Gs . (6.11)
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By summing all the results above, we can get the contribution to Gj to be
s . 1
mtg‘ﬂ(ln J)(Ia - EA’I;) . (6.12)

This color factor receives contributions from one 4th order and three 6th order
s-channel ladder diagrams. Instead of calculating the cut diagrams one by
one, we use the formula shown in equ. (4.3) to resum them first. It turns out
that this resummation is in general true for all orders as proven in the next
section. For the 4th order cut diagram B2c, we can do the similar thing as
for QED shown Fig. 13. Then we can get a cut on the lower line. And this
simply gives B2, = (1/2)34xig'ls.

As for the 6th order, the diagrams we need to sum up are C17., C18,, and
C20. We redraw them in Fig. 28 as (a), (b}, and (c) respectively. Note that
they are all spacetime diagrams. The diagram for C17 in Fig. 28 is the same
as that in Fig. 26 because the top end of line-3 can be moved back to the left of
line-1 using the commutable property of a cut. Now if we look at the bottom

line, we have the following identity from equ. (4.3).
(321) + [231] + [213] = {21;3} = [21]3] . (6.13)

Graphically, this identity is shown in Fig. 28(1).

Therefore, summing these three diagrams, we can get a cut on the bottom line
as shown in Fig.28(d). The computation of this diagram is straightforward
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(1)

(2)

(3)

1 2.3 12 .3 12 3 12 3

LAy \ L) L g
+ \k +
1 2 3 1 23 12 3 12 3
(a) (c) (d)

(b)
1-1-K

V. T [/

Figure 28: Summing cut diagrams to introduce cut in the lower fermion line.

because of those two cuts. In the longitudinal component space, because of
the &-functions, the line being cut on the top must carry momentum p; and
the line being cut on the bottom must carry momentum p;. This means
that the longitudinal component of this diagram is simply the product of the
longitudinal components of A1 and Bl. As for the transverse component,
because the propagators of the cut lines are replaced by delta-functions, it is
just the convolution of the transverse components of Al and Bl. Therefore,

the result can be written as

-2—;? *Bi(ln 8)I5cG, . (6.14)

The other cut diagrams contributing to this color factor can be divided into
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two groups: C7. + C8,, and C6, + C9, + C10. . Using the same idea as
above, we can obtain the identities shown as Fig. 28(2,3). It can be easily seen
that the longitudinal part of the right-hand side of identities (2) and (3) in
Fig. 28 can also be represented as product of a 2nd order diagram and a 4th
order diagram. Note that the 4th order diagram is just a vertex correction

(48], so that these two diagrams can be ignored compared with equ. (6.12).

In summary, we can sum all calculational result as follow

T (2";),’( Z, ach:I,—Erc’A’I’ln’ )G,+

(2:;): (-%g‘f: + gcfshl) G; +
- s
ik (-9—(1n o) - %A’r:)) Gs +

(2 t)’a ('g 9 )

( t)a

(X1G1 + XaGy + X3Gy + X4GQ) (6.15)

This result is the same as shown in Cheng and Wu’s book (28] calculated directly
from Feynman diagrams, not cut diagrams. Again one of the advantages of using
non-abelian cut diagram is that for each cut diagram we need to keep only leading
contributions. For example, if we use Feynman diagram directly, we will see that
the leading contributions from Bl and B2 cancel each other in the color amplitude
proportional to G2. So we need to calculate up to the subleading order.

In summary, although the above calculations is only up to the 6th order, the
result in equ. (6.15) shows the following important points:
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1. Factorization

If we take a look at the coefficient of G, in equ. (6.16), the corresponding cut

diagram is C'15.. The transverse component is

I=[ [:1l (%Q_:I) (27)6? (2:; g — A) , (6.16)

This is the 3rd power convolution of I, with itself. Performing a Fourier
transformation, we can change it into a product in the impact parameter

space,
i) = / PV A A (6.17)

as convolutions generally change into products. Thus to this order X, is
just one-sixth (1/3!) of the third power of X, in the impact parameter space.
Similarly, to this order, Xj is just one half (1/2!) of X, in the impact parameter

space. This is what we refer as factorization.

This factorization is crucial for the multi-Reggeon interpretation, as we shall
see in the next item. Up to the 6th order, factorization emerges in the final
result, and the question is whether it is true as well in higher orders. If it
does, do we need to calculate all the relevant diagrams to show it? To get an
idea, let us look at the 6th order calculations more carefully. X, is represented
by a cut diagram like Fig. 13(b). The cuts on bdoth the top and bottom lines

actually separate this diagram into three parts, each of which is essentially an
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Al. Since Al determines the lowest order of X, this shows a close connection

between cuts and factorization.

Actually, we can prove in general that putting cuts on both the top and bot-
tom lines to separate a diagram into parts is equivalent to factorizing these
separated parts into products in the impact parameter space. To show it, let
us look at a general Feynman diagram Fig. 29(a), which contributes to elastic
scattering at the high energy limit. We assume that the incoming momenta
are p;, and p, respectively, and the total momentum transfer is A, which is
transverse. In Fig. 29(a), we have drawn two propagators explicitly connecting
two shaded areas, which represent possibly very complex structures. We also
assume that the propagator on the top line carries momentum p; + k. Then

the amplitude of this diagram can be written as
M= /d‘kA(k*,k',kL)B(k*,k',A -k )P(py + k)P(pr — k), (6.18)

where A and B are the amplitudes represented by those two shaded areas.
We write them as functions of momentum transfer. P(k) is the propagator.
Now if we put cuts on those two propagators as shown in Fig. 29(b), those two
propagators P are replaced by § functions. The amplitude for the cut diagram

will be:

M, = _47"’ / dk*dk=d*k 5(k")6(k*)A(0,0,k.)B(0,0,A - k) . (6.19)
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Figure 29: The connection between cuts and factorization.

In the impact parameter space, we have

-—— ’ 3
M o= - = [ di*dic- R, 6(k7)6()A(0,0, kL)B(0,0, A — ki )ei*4dA

-4—”'4(5)3(5) (6.20)

Hence to show factorization of higher order diagrams, we need to put cuts on
both the top and bottom lines. The non-Abelian cut diagrams give us a rule
to introduce cuts to the top line. To put cuts on the bottom line, as we can see
from the example in Fig. 28, we need to use the factorization formula to sum
the relevant non-Abelian cut diagrams. This is not an easy task in general.
Nevertheless, we are going to show that this can be done for the s-channel

ladder diagrams in the next chapter.
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2. Multi-Reggeon ezchange

We can now show that up to the 6th order, equ. (6.15) contains multi-Reggeon-

exchanges, with the reggeized-gluon propagator given by:
1 _ cg’ \1
Ri(A,8) = 5 exp(-a(A)Ins) ,&(8) = 5 -A'N(A) . (6.21)

To see it, we first look at Born term Al. If we replace the gluon propagator in
this diagram by a Reggeon propagator, graphically represent it by Fig. 9(a),
this diagram can be interpreted as a single Reggeon exchange. Its amplitude
is given by

1 1 c ¢
gt (- POl + Setat +olsh) (622

where we have expanded the exponential. We can see that the right-hand side
of equ. (6.22) is just the same as the coefficient of G, in equ. (6.15) up to
this order. Note that the coeflicient of G, receives contributions from Al.,
B2., and C2.. This means a Reggeon can be thought of as constructed from

numberous gluons.

Furthermore, as we showed above, in the impact parameter space, X; =
(1/29) X, X1, and X, = (1/3)X; X, X;. If X, is interpreted as a single Reggeon
exchange amplitude, these two can then be identified respectively as 2-Reggeon

and 3-Reggeon exchange amplitudes. We can see that up to this order they
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agree with an n-Reggeon exchange amplitude given by

=1

As for Xj it is given by the lowest order two-Reggeon exchange amplitude like
Fig. 9(e), with the gluon-Reggeon coupling described by the Lipatov vertex
given in equ. (3.3).

Hence the color singlet component X; and X; gives the 6th order BFKL

Pomeron, and the color singlet component of X, gives the lowest order Odd-

eron [19, 49].
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Chapter 7. High order calculation

If the sum of Feynman diagrams can be interpreted as given by n-Reggeon ex-
changes, then equ. (4.11) has to be satisfied for the sum. However, as discussed in
the Introduction, the effective coupling constant is g?ln s, so that a (2k)th order
Feynman diagram can contribute an amount g?(g?Iln s)*-1), which is much bigger
than (g?)*(ln s)(*-" in the region g* << 1. This means that a tremendous amount
of cancellation must take place to yield a multi-Reggeon (n > 1) amplitude when
Feynman diagrams are summed. We have seen how this occurred in the 6th order
calculations of the last chapter for n = 2 and n = 3. If calculated directly, it means
that each Feynman diagram must be computed to the accuracy of equ. (4.11), and
not just to the leading-log precision. This is an extremely difficult task, so it is
almost impossible to calculate the multi-Reggeon contributions directly in the usual
way, much less showing whether they factorize into products of single-Reggeon am-
plitudes or not. This difficulty is however not present in the non-abelian cut diagram
approach, for these cancellations have effectively taken place already to form each
non-abelian cut diagram. In fact, we will show that a non-abelian diagram with

n ~ 1 cuts has an energy dependence bounded above by equ. (4.11).
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To prove this statement, first we look at a complementary cut diagram with n—1
uncut propagators (on the top line). Using Fig. 18, such color diagrams can always
be reduced to those with at most n gluon exchanges. Now the corresponding space-
time diagram has n — 1 cut propagators. Remember from App. B that the In s factor
comes from the “—" integration of the Feynman propagator, and this In s factor
would be absent if the Feynman propagator is replaced by a §-function. Therefore,
a cut diagram with (n — 1) cut propagators eliminate n — 1 potential In s factors, so
the corresponding space-time diagram contributes at most like g?*(g%In s)(*—"), the
same as equ. (4.11). If all the possible In s factors in an s-channel ladder diagram
are present in the amplitude, we call it a saturated diagram, otherwise, the diagram
is unsaturated. As proven in App. B, diagrams without adjacent uncut lines are
saturated, the others are unsaturated. Only the former ones are needed in leading-
log computations; the latter ones can all be ignored in the discussion of this chapter.

In what follows, we shall use the abbreviation SC for s-channel ladder cut dia-
gram, and the notation SCC for s-channel ladder complementary cut diagram.

For (2k)th order amplitude, there are k! s-channel ladder Feynman diagrams.
Since there is a one-to-one correspondence between Feynman diagrams and cut
diagrams, the number of SC is also k!.

One way to obtain all these k! SC is to label the gluons attached to the lower
line in the order {123 - - - k], then the order of the gluons along the top line can be

used to specify the whole SC diagram. The k! different SC diagrams correspond to
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all possible permutations of these k gluons. Cuts on a SC diagram is determined
by the rule introduced before, i.c., they are placed behind a number if and only if
there is not a smaller number to its right. Some 8th order SC diagrams are shown
in Fig. 30 as illustrations.

For easier description for the factorization, we introduce another way to describe
the diagrams. We can start from the planar diagram and obtain the others by pulling
the upper ends of some gluon lines leftward in all possible ways. It is obvious that we
can restore the k! possibilities in doing that. The only question is where to put the
cuts. The planar diagram has all its propagators on the top line cut, which can be
understood if we still imagine that we number the gluon lines as before. As for the
other SC diagrams, once a gluon line is moved leftward, the moved line has a larger
number than the new neighbor to its right. Therefore, according to the multiple
commutator rule, the propagator to its right should be uncut. Hence, when a gluon
line is moved, the cut to its right disappears. Using this rule, we can actually forget
about the numbers labeling the gluon lines. Fig. 30 can be used again as illustration
about how this works. This time we do it as if the numbers were not there. We
can start from the planar diagram Fig. 30(a). As a convention, we always keep all
the gluon lines a planar diagram vertical Fig. 30(a) is already drawn in such a way.
When the upper end of a gluon line is moved, it becomes slanted. A SC diagram
usually contains slanted lines and vertical lines. According to the rule above, the

propagator to the right of a slanted line is uncut, but every other propagator is cut.
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Figure 30: Examples of 8th order SC diagrams.
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Since a saturated diagram cannot have two adjacent uncut lines, diagrams with two
slanted lines adjacent to each other along the top line are unsaturated and can be
ignored. For a saturated SC diagram, the neighbor to the right of a slanted line
along the top line must always be a vertical line. Together they form a skeleton
cross. The rest of the vertical lines have cuts on both sides, or a cut on one side
and an external line on the other side. Because of the commutability resulting from
the cuts, the upper end of these lines can be moved without affecting the amplitude
of the SC diagram. For this reason, these vertical lines are called mobile lines. In
contrast, the lines that form skeleton crosses are called skeleton lines. Skeleton lines
have one cut propagator, or external line on one side, and an uncut line on the other
side. The propagator inside the skeleton cross is always uncut for a SC diagram.
According to the complementary rule, we can determine the corresponding SCC
diagram as having cuts inside the skeleton crosses, and not cut elsewhere.

We will call vertical skeleton lines v-lines, slanted skeleton lines s-lines, and
mobile lines m-lines. We label these lines respectively as v;,5,(1 < s < k), and
m;(l £ j £ b =n - 2k) for different m. Here n is the total number of the gluon
lines, and k is the total number of skeleton crosses. Because of the mobility of the
m lines, and the skeleton crosses, the order of the m lines and the skeleton crosses
along the top line are not important. We shall then use the order along the lower

line to specify SC diagrams and SCC diagrams. Therefore a SC diagram is always

97



in the set

Sis = {v182;v283; - s vpap; My Mgy - -y} (7.1)

Note that any permutation of the k skeleton crosses and the b mobile lines will give
the same diagram, therefore the number of distinct diagrams is only (2k + b)!/2%k!b!,
We then denote the set of distinct diagrams by Sy 4. It contains the diagrams which
are in Sij and satisfy the rule that vy < v3 < - < vy, and my <My .- < Mmy. We

use @ < b to denote that line-a is to the left of line-b along the lower line.

7.1 Color factors

We have already learned how to decompose a SCC diagram into planar color factors,
what we want to know now is the inverse procedure: how to find all the SCC that
contain a given planar color factor.

To do that, we need to introduce several new conventions first. We define prim-
itive color factors as color factors that remain connected after the upper and lower
lines are removed. For example, Fig. 9(a), (e), (k) and (1) are primitive, but others
in the same figure are not. We shall prove in App. C that in the leading-log approx-
imation, every color factor that has the same number of primitive color units can be
considered to be the same, no matter where the units are located. Therefore, 9(f)

is the same as 9(g), and 9(i) is the same as 9(j). The complete color factor is given

by @ = [l fa-
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The primitive color factor of 9(a) will be denoted as I. The primitive color factor
of (e) will be denoted as H. Therefore, the color factors of 9(b), 9(c), 9(d), %(f),
9(g), 9(h), 9(i), 9(j) are then be written as I2,I®, HI, HI?, H?, H?. Translated into
the notation used in Chapter VI, I = Gy, H = Gy, I? = G, and I* = G,.

Now we review briefly how to decompose a SCC diagram into a summation of
color factors. The main task is to uncross the gluon lines that overlap. We use
the graphical commutation relations shown in Fig. 18 to move the lower end of a
s-line leftward, until it comes to the right of the corresponding v-line, thus forming
a skeleton cross with the s-line. We call this the home position. Operations like
this decompose a SCC diagram into a sum of many reduced diagrams, each of which
have the bottom end of any s-line lying to the left of their original positions, or has
a cut to the right along the lower line. An s-line at the home position may or may
not have such a cut; both situations are allowed. In addition, each reduced diagram
is weighted with a minus sign if there are an odd aumber of cuts. Fig. 31 is an
illustration.

If we remove the upper line and the lower line, the color factor of a reduced
diagram may or may not be connected after we use the commutation relations to
remove all the cuts. Those shown in Fig. 32 are connected and the one shown in
Fig. 33 is not.

To judge connectivity of a reduced diagram, we can consider the cut in a SCC

as a device to agglutinate together the pair of gluon lines it connects. Cuts on the
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Figure 31: An example of the decomposition of SCC diagrams into sums of reduced
diagrams.
upper line merge the upper ends of gluon lines, while cuts on the lower line merge
the lower ends of gluon lines. Since the cuts on the top lines are always between the
skeleton cross, thus we can determine the connectivity of a reduced diagram by only
looking at the lower line. For example, the reduced diagram shown in Fig. 32(c)
can be written as [vs|m] according to the convention above. By only looking at this
expression, we know that the v-line and the s line are connected because they form
a skeleton cross, and the m-line is agglutinated to them by the cut. Therefore, it is
a connected diagram.

The color factor of a disconnected reduced diagram is given by the product of
the color factor of its connected components, according to the discussion above. So,

in the following we shall focus on the discussion of the connected components.
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The color factor of a connected component may or may not be primitive, de-
pending on whether it is one of those shown in Fig. 32. The color factors in Fig. 32
are primitive, while those in Fig. 34 and Fig. 35 are not. Fortunately, it can be
shown in App. C. that all non primitive color factors turn out to be zero, therefore
we donot need to worry ;bout them, at least for SCC diagrams.

All the primitive color factors encountered in SCC diagrams are collected in
Fig. 32, together with those similar to Fig. 32(d) but with p > 2 skeleton crosses.
Fig. 32(c) shows a structure like an H, and Fig.32(d) looks like two H’s merging
together. So p is used to denote the number of H. Specially, Fig.32(a) and (b) donot
look like H at all, and they are called H_; and Hj respectively. Also we can see that
P 2 0 is also the number of the horizontal gluon lines. By definition, p = —1 also
means 0 horizontal gluon line. A primitive color factor has p horizontal gluon lines
(p 2 ~1), and the horizontal gluon line to the right is always located at a higher
level. Thus we can denote these color factors by H,, with p = —1,0,1,2--- (see
Fig. 32 for illustration).

The primitive color factor defined before and shown in Fig. 32 can be written as

the following cut tree along the lower line.

[H-1] = [m)]
[Ho| = [vs]
[H,] = [vs|m]
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Figure 32: Examples of how primitive color factors are obtained from reduced com-

ponents.
[Ha] = [vimi|myvass|ma]

(H] = [ni1|myvasaims - - -vpsyimy] , (p2 1) (7.2)

Given a regge color factor = [I,<_,[(~1)H,|’», we can obtain the reduced
diagrams that contribute to this color factor by interleaving f, copies of [ H,] together

in all possible ways. We can write

(8 = (TI-1P» B} = (Boile s (a3 Bl -5 Bl --i--- by (73)

where the ellipses after each [H,] is an instruction to repeat the same [H,] f, times,
separated by semicolons. The notation in the above equation for interleaving the cut
trees in C, is similar to the notation {T};T3;-- -} explained in Sec. V for interleaving
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Figure 33: An example of a disconnected reduced diagram and the corresponding

regge color factor. $1 Vi 5; vV, m,
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Figure 34: An example of a connected reduced diagram that is not primitive.

uncut trees 7;. But there are two differences needed to be noticed. First, lines
separated by cuts should be thought of as being agglutinated by the cuts, so lines
from other cut trees can never be inserted between them. Secondly, each cut diagram
in {[Hp); -} repeats f,! times because of the identical nature of these diagrams.
Since we allow only distinct diagrams in {®}, the division by [], f,! in equ. (7.3) is

a formal way to remove such overcounting,.

103



S; V8, v, m,

Vi VS, 8, m,

1
I

]

|

]
o

Figure 35: Another example of a connected reduced diagram that is not primitive.

The SCC diagrams in S that contain the reduced diagrams in {#} will be denoted
{®}s. They can be obtained from the cut trees in {®} by getting rid of their cuts,
which can be accomplished by moving the s-line rightward in all possible ways.
Instead of first interleaving the cut trees [H,] and then getting rid of the cuts, {®}s
can also be obtained by reversing the two operations by first removing the cuts and
then interleaving the uncut trees, as discussed below in detail.

We can start from [H,] € Co, and remove the cuts by moving the s-lines right-
ward, to construct all A} € S(i = 1,2, - ) that reduce to [H,]. In cases like Fig. 32(a)
to 32(c) where there is only one tree for each [H,], the degeneracy index i = 1 will
be omitted. This index is however needed in other cases. For example, [Ha] =

[v181|myvasa|m,] in Fig. 32(d) gives rise to the uncut trees Al = [vims,vamss,
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h; = [v;hvglzm;ﬂh], h: = [vlmlv,mguh], and h; = [vlm;vgmgagu]. The set of

all A} € S for a fixed p will be denoted by {H,}s.

7.2 Factorization of sums of spacetime amplitudes

We continue to compute the sum of corresponding spacetime amplitudes of all sat-
urated SC diagrams with a common regge color factor & = [[,((~1)"H,)’>. The
relevant spacetime diagrams are those in the set {$};.

Using the factorization formula for the lower tree, we can get

(@)= T aT]=Y fi!(a{ﬂ,}s)f- , (7.4)
(TIe{®}s >
where
2 (a(B,}s) = —(alh))™ (7.5)
f'! t 4 - m‘! f b} .

with the sum taken over all m; < 0 subject to 3, m; = f,. Therefore, a{H,}s =
T, a(hy]. The factorials in the denominators of equ.(7.4) arise because of the neces-
sity to keep only distinct diagrams in {®}s.

The factorization in equ. (7.4) and (7.5) for the lower tree can also be applied
to the SC amplitudes. To do this we need to make explicit use of the cut property
of the upper tree, that the only uncut propagators are those between the two lines
forming skeleton crosses. Let us first look at an example as an illustration. In
Fig. 36, both (a) and (b) belong to the the set {231;564}, but if we keep the upper
ends of the gluon lines fixed in Fig. 36(a) and (b), permuting the lower ends of the
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Figure 36: An example of re-organizing diagrams.

lines to get from 326(a) to 36(b) doesnot change the SC diagram Fig. 36(a) back to
another SC diagram. Fig. 36(b), with lines 5 and 6 slanting the wrong way, cannot
be an SC diagram. However, by making explicit use of the commuting properties
of the amplitude of the upper tree, a[12|3|44(6] = a[12]a(3]a(45]a(6] = a[12]|45/|3|6],
Fig.36(b) can be redrawn as Fig.36(c), which is a legal SC diagram. This can always
be done so that factorization of the lower tree really leads to a factorization of the
sum of saturated SC amplitudes.

Now we deal with the gluon propagators, quark propagators, vertex factors, and

loop integrations. In light-cone coordinates, the measure of loop-integration is

d'q _ d*q, dq.dq-
(2x)* ~ (2x)? 8x3

(7.6)
We assume that the Dirac spinors are normalized to %4y = 1, and a common
factor is taken out of the T-matrix amplitude 7 = —(s/2M?)A, then each fac-
torized amplitude a{H,} = ¥;a;[h;] corresponds to a saturated SC amplitude

A{H,}s(8) = ¥; A[h;)(A), where we have indicated explicitly the dependence on
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the momentum transfer A. The product of two lower tree amplitudes a{ H,}a{ Hy}

is turned into a convolution of two SC amplitudes:

(Al + ABNA) = (-0) [ GEIAELIA - AN @) - (1)

In obtaining the above equation, we have used the identity
i [ B i) a (/30 )(2) = =i (7.8)
The sum of all saturated SC amplitudes with the regge color factor ® is then
given by
(A(@)s1(8) = T AU }el"(2) - (7.9)

All the products in the above equation are meant to be convolutions. In particular,
[A{H,}s]*% is taken to mean £, convolutions of the same amplitude. In the impact-
parameter space, such convolutions are replaced by simple products.

Therefore, we have proved in this chapter the factorization of the s-channel

diagrams.
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Chapter 8. Conclusion

In the leading logarithm approximation of perturbative QCD, only the 2-Reggeon
exchange amplitude contributes to the quark-quark forward elastic scattering ampli-
tude. The resulting BFKL Pomeron amplitude violates unitarity at the asymptotic
limit. This reveals the importance of going beyond the leading logarithm (n > 2 in
equ. (4.11)) in order to unitarize the BFKL Pomeron. If all these subleading con-
tributions can be summed and interpreted as multi-Reggeon exchange amplitudes,
then unitarity can be restored.

Cheng and Wu first demonstrated by direct calculation up to 6th order [28] that
multi-Reggeon exchange can be obtained by summing Feynman diagrams. They
also showed that the multi-Reggeon exchange amplitude factorizes in the impact
paramter space into products of single Reggeon amplitude. Unfortunately, it is hard
to apply these methods to higher order calculations because of difficulties encoun-
tered in the usual techniques. One of these difficulties comes from the fact that the
leading contributions of individual Feynman diagrams tend to have higher powers of
In s than the one given in equ. (4.11). Therefore if multi-Reggeon exchanges can be
obtained from Feynman diagrams, these extra powers of In s must all get cancelled in
their sum. In order to get a finite sum, we are forced by the usual techniques to keep
subleading, or even subsubleading, contributions in computing individual Feynman
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diagrams. This kind of cancellation can already be seen at the 4th and 6th order in
the multi-Reggeon channels as shown by the direct calculations of Cheng and Wu
[28]. Although the desired subleading contributions can be successfully obtained in
an ingenious way at these orders, they become so difficult in higher orders that even
the 8th order calculations were only partially finished using the usual techniques.

That is one of the motivations for introducing non-Abelian cut diagrams. As
shown in the previous chapters of this thesis, the difficulty mentioned above is
circumvented in a non-Abelian cut diagram approach. The reason is that the leading
contribution of a non-Abelian cut diagram can be shown to be bounded above
by equ. (4.11), therefore there is no need for cancellation to occur, so we only
need to compute the leading contribution of each cut diagram. In other words,
the cancellations have already been taken into account in forming individual cut
diagrams. This greatly simplifies the calculations.

The s-dependence of either a Feynman diagram or a non-Abelian cut diagram
comes from the longitudinal integrals in the momentum space. Contour integrations
are used in their evaluations. Cheng and Wu invented flow diagrams (28] to identify
the contributing poles for these contour integrations. In this thesis we have extended
their technique by introducing the path method. Our technique greatly simplifies
the extraction of the s-dependence of multi-loop diagrams.

Both these techniques have been used to confirm the existing result up to the

6th order, and to illustzate the relative simplicity of the new methods. To exam-
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ine whether multi-Reggeon exchanges emerge from higher order diagrams, and if so
whether the multi-Reggeon amplitudes factorizes or not, we have chosen to inves-
tigate the problems in a class of Feynman diagrams (s-channel ladder diagrams).
We have shown that multi-Reggeons do emerge, and that their amplitudes indeed
factorize as hoped. Such properties are crucial for the unitarization of the BFKL
Pomeron amplitudes, as discussed in the Introduction.

In this thesis, we have not attempted to show the presence of multi-Reggeons,
nor the factorization of their amplitudes, beyond the 6th order and beyond the s-
channel ladder diagrams. Neither have we demonstrated for QCD how factorization
of multi-Reggen amplitudes leads explicitly to unitarization as we did for QED in
Chapter IV. These problems have been partially solved recently(18] using the new

techniques developed in this thesis.
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A Multiple commutator formula

To prove equ. (5.6), we first need to prove another one: folding formula, which is

expressed as follow:

a{LsR] = 2( —)*a{L; 514" s}alonnn] = Z(‘l)bG{L;éu“lﬂﬂ.N}- (A.1)

The notations we used are explained in the following. [LsR) is a tree containing a
subtree L, a line [s], and another subtree [R]. N is the total number of lines included
in tree [R]. o;; is a subtree of (R} containing the ith line to jth line. Specially,
010 and on4y v are defined to be null tree [0]. Also a[0] = 1. The notation &,
means the tree o, , read in the reverse order. Therefore, if [R] = [28137546], then
015 = (28137), 0e s = (546], and &, 5 = (73182]. Another notation appearing in the

above equation {T;Ty; - - - ; T4.t} means the following. [t] is an atbitrary tree, which

the [T) € {T1;Ty;---; Ta}. We also used a{Ty;Ty;---; Ta.t} to denote the sum of all
these amplitude a{T't].

The above idenetity re-expresses the original amplitude a[LsR| as sums of prod-
ucts of amplitudes, in each of which line-s is moved to the end of the tree. This
reshuffling will enable us later to resum the nonabelian diagrams into cut diagrams.

The folding formula is also called cutting and folding formula. It can be graphi-
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Figure 37: Folding formula.

cally explained as shown in Fig. 37. We first cut off the the tree o)., ¥ at the end of
(LsR), and then fold the remaining tree about the point s. Finally, both branches
of the folded tree should be interleaved to obtain the trees {L; 71 4.5}.

Now we proceed to prove this formula using induction. First we look at N = 1.
Remember N is the length of the tree R. For N =1, we can write the formula

explicitly. The left hand side is a{LsR], and the right hand side can be written as
a(Ls|R] — a{L; R.s} = a{Ls; R} — a{L; R.s} . (A.2)

From the definition of the cut, we can easily recognize that the first term of the
right side can be written as a[LsR] + a{L; R.s}. Subsitute this back to the above
equation, we can see that the folding formula holds for N = 1. Assuming it is true

for N < m -1, and we need to prove it is true for N =m.
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We start from equ. (A.1), and assume that R = [t)t; - - tm)
a{Ls;01m} = o[La]a[oy ] . (A.3)

where 0,0 = (tytps1::-¢g]. The left hand side of the above equation can be re-
arranged as summation according to number k of lines in R appearing to the left of

line-s. So that the above equation can be written as

a[Ls]a[R] = a[LsR} + i a{L; o1 4.90041m} - (A.4)
(e

Now for k < 1, there are at most (m — 1) lines to the right of s. Therefoze, for each
individual amplitude appearing in the summation of the right hand side above, we

can apply the induction hypothesis. Then the second can be written as

m-k

G{L;"x.b-ldhn,m} = E (-)‘G{L; 01.‘-;5h+1.b+l-°}¢[¢h+l+1.m] . (A.5)
=0

Putting this back into equ. (A.4), we can obtain

m m-bk

a[LsR| = a[Ls]a[R] - ,,; ; (=) a{L; 01 4} Tas1.441-0}a[Chtis1,m] - (A.6)

Introducing a new variable ' = k + ! and change the order of summation, we get
m [
o[LsR] = a[Lsja[R] - ¥ (=)*a[ows1,m] 2(-1)"’6{L;al,.;c'n..,,;,,.:.o} (A.7)
k=1 k=1

The summation over k can be simplified by using the relation
hl
S (¥ a{L; 014 50410} =0, (A.8)
k=0
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which will be proven later. Now equ. (A.7) becomes

a[LsR| = a[Ls]a[R) + b‘i (=)¥a{L; 10 -0)a[O0s1m)] , (A.9)
=1

which is just the N = m case for the folding formula.

Let us go back to prove equ. (A.8). We'use a < b to mean line-a lying to the left
of line-b in a tree. We can ignore L and s first. Look at a tree T}, = {01 4; Fus1a ),
all the lines on it obey the order t; < ¢3 < --- < ty,and ty < --- < ty4;. Because
the semicolon means interleaving, so that in (—)*a{T — k} there are two kinds of
terms: ty > t34 or ¢y < ty41. The first kind of terms will be cancelled by similar
terms in (—)*~'a[Ts-1], and the second kind of terms will be cancelled by similar
terms in (—)**'a[Ths1]. Specially, the terms in k = 0 are completely cancelled by
terms in k = 1, and terms in k = k' are completely cancelled by terms in k = &' - 1.
Therefore, we have proven that equ. (A.1) is true, and finish the proof of the folding
formula. Adding in L and o does not affect the proof above.

The next step is to use the folding formula to prove the multiple commutator
formula. Take any Feynman daigram (the space-time part). Use the folding formula
to cut and fold, so as to move the number '1’ to the end. What we get is a product
of two af- - -, the first one having 1’ at the end, and the second one not containing
“1”. Apply the folding formula again on the seond g[: - -], and this time move the
smallest number in its argument to the right most end. Continue this process, and

the final result will be sum of products of several a[...], each of which has the smallest
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number in its argument being at the right most end. Recalling the definition of a
cut, we can immediately recognize that each term in the sum satisfies the cut rule
for space time diagram.

Now we can see that each Feynman diagram (space-time part) corresponds to a
sum of several cut diagrams. There is still the color part we need to deal with. What
we need to do is to organize the sum of diagrams according to the space-time cut
diagram, or say, for certain cut diagram a[p]., we need to find out all the Feynman
diagrams that contribute to it. Thus we need to unfold the tree [p].. If there is not
cut on [p]., it will be of the form p]. = [r1]. Then we find all the r; that satisfies
[r1] € {r1; 3.1}, and unfold the tree to get [¢] = [r,17]. The sign involved is (—)*,
where k is the number of lines in tree [r;]. We summ up all the possibilities and
get the color factor associated with this space-time cut diagram as 3(—)*t[r 17y},
which can be recognized as the muitiple commutator ¢[p].. If [p]. has explicit cuts,
then we can use the above way to deal with each of the cut sections, and obtain
a multiple commutator of the color factor for each section. This then finishes the

proof of the multiple commutator.

B Spacetime amplitudes

Assume that there are n-gluon connected to the upper fermion line. The incoming

fermion carries on-shell momentum p;, = (1/3,0,0), while the outgoing fermion car-
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ries on-shell momentum p; = (/3,0,A). The energy of each gluon is far less than

V3. At high energy, the numerator of a fermion can be written as

y-p= 2mgul(h)il(h)’

@x(p)ux(p) = bun - (B.10)

Then each fermion vertex can be approximated by 2p{, and each fermion line has
an overall normalization factor 1/(2m).

Based on the above approximation, to calculate a Feynman diagram, we can
either use Feynman-parameter representation (47) as done by Cheng and Wu [28],
or use light-cone coordinates in momentum space. We choose the latter approach
here. Using the same convention as in Ref. (28], we assume that the momentum of
the incoming fermion on the top contains only + component, and the momentum

of Incoming fermion on the bottom contains only — component. Calculations using

this approach follows three steps:
1. use residue calculus to carry out the + momentum integrations;
2. carry out the — component integration to obtain the In s dependence;
3. express the transverse momentum integrations in terms of I, and J,.

We always close integration contours in the lower half planes. The contributing
poles are given by the path method. For a scalar diagram, the 7-matrix element
equals to the product of J propagators D! = (¢> — m? + I¢)~}, integrated over the
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| loop momenta d*k, = ldk,dk_d*k,, with an overall numerical factor —[i/2x ).

Since there is a factor —2xi from each '+’ integration, the 7-matrix is given by

L, dk,-
7’=-Z/Dh g ::r)Z:LI,D.-’ (B.11)

where

ldjh‘
Dk;sn(z—')}

't 3§

(B.12)

is the measure for transverse momentum integration, and D; is either the propagator
evaluated at the contributing pole or the residue of the contribution pole.

Now we can calculate amplitude B2¢. As shown in Fig. 38(a), we choose the
momentum of line-1 to be k, and line-4 to be the contributing pole, then all the D;

can written as

D, = p1;

D, = —(k.+4);

Dy = -pik™;

D, = —k; (B.13)

The ’—’ integration only comes from D;, and we have

f+ond}¢_ _ 1 /sdz
[}

k—" B a/e \/;8
= Inas. (B.14)
Therefore the amplitude is given by
T= e (B.15)



Putting back the QED vertex and normalization factor (2s)2g*/(2m)?, we get the
result given in Chapter 6.

The next diagram we need to compute here is C2c. We label the propagators the
same as in Fig. 27, and the momentum carried by each of them is given in Fig. 38(b).

Again, line 5 and line 11 are the contributing poles. All the D;’s are listed below:

Dy = p1;
D = ""h;
- _ 2
b = bl
Dy = -pi(ka)”;
Dy = _(k2)‘(lc1:%-’lu)’_(kz)1;
Dy = -'(ku.‘*'A),;
Dy = k. (B.16)

As for the numerator N, after combine part of C22 following Ref. (28]. (A complete

list of Feynman rules can be found in [50].) Then we have
N = —28’/002m’[(k1.L + kz;) . (h;L + ku_ -— 2A) + (k;; hd ku_)z] ’
= —220%/ov2m?[k3, + k3, — A- (ks + kal)] . (B.17)

Thus the numerator is independent of k and k; . As for the k] and k; integrations,

we can see that the leading contribution comes from the region

k;,kg S>>k —ky . (B.IS)
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Figure 38: B2¢c and C2c

This gives us the final answer

T=-

g's 3 i
i o)Ay ~ Lh (B.19)

Now we want to prove in general that the diagrams with two adjacent uncut
propagators on the top line is unsaturated, or say, is & diagram in lower order of In s
than the that shown in equ.(4.11).

For a s-channel diagram without adjacent uncut propagators on the top line,
these is always only one flow diagram. For this flow diagram, the pole for the “+”
integrations can always be taken along the lower line. After taken these poles, all
the gluon propagators become ~ 1/¢? , and can be considered to be O(1). Then

only the uncut propagator along the top line are relevant to the “—" integrations.

119



Each of these uncut propagators contributes a factor of In s via “~" integration of
the type [,-1 dz;/z;. Therefore, such diagrams have their full share of In s factors
and are saturated.

For diagrams with two or more adjacent uncut line, there are always more than
one flow diagrams corresponding to each of them, because the flow direction along
the boundary of the two adjacent uncut loopw cannot be uniquely determinded.
This results in that at least one pole of the “+” integration must not come from the
lower line. Explicit calculation then shows that such diagrams are at least one In s
down from the saturated ones.

The reason for this reduction can be traced back as follows. After the integration
of “+” momenta, the “+” momentum of the pole lines can be estimated as inversely
proportional to its “~" momentum. The “+” momentum for other lines can be
then determined by momentum conservation. Since the large “—" momentum flows
mainly along the lower line, a pole taken on a gluon line will have a relatively larger
“4” component that a pole on the lower line. According to momentum conservation,
there must a return flow passing through part of the lower line and another gluon
line. The Feynman propagators of these lines are large due to the large “+” flow
through them. This brings about at least two small factors of z;, overcompensating
the large factor from the residue of the pole. Therefore, at least a In s factor will be
lost from the “—” integrations as a result. This is the reason that these diagrams

are unsaturated.
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C Color factors of nonabelian cut diagrams

To get rid of a cut on a SCC diagram, we can use the rule presented in Fig. 18.
As a result, a cut always eliminate the number of lines attached to the upper line,
and diagrams with m ~ ] uncut propagators along the upper line can have at most
m gluon lines joined to it. Since cuts on & SCC diagram is always on the upper
line, then after we eliminate them, the number of lin+s jioned to the upper line m is
usually smaller than the number of lines joined to the lower line n. This cannot be
a regge color factor, since the reggeon exchanged between the two energetic fermion
lines is conserved. But we have seen several cases that by using the rules in Fig. 18
again to manipulate the lines attached to the lower tree, we can reduce the lines
attached to the lower line to be m.

It is possible that for very complicated diagrams we cannot reduce n to m us-
ing the rules in Fig. 18 alone. Then because of the conservation of the exchange
reggeon, the resulting color factor with n > m cannot contribute to the final an-
swer if the reggeization proposal is true. Therefore, we shall define the leading-log
approximation to exclude all such color factors that cannot be reduced to n = m.

Now we want to prove why Regge color factor with the same primitive color
factors but in different positions are the same in leading-log approximation. Using
the rule in Fig. 18, we can exchange the positions of gluon lines attached to the

upper line or lower line, and the compensation for this exchange is a diagram with
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Figure 39: Cancellation of the non primitive color factor.

one less gluon line attached to the upper (lower) line, which means less number of
exchange Reggeons. According to equ. (4.11), this compensation can be ignored in
the leading-log approximation. Therefore, the primitive color factors can cross each
other in any way along the upper line and the lower line, and the regge color factor
obtained is still the same as the original one.

Finally, we want to prove that any color factor with an s-line climbing onto
the underside of a horizontal line, like those found in Fig.34 and Fig. 35 are zero.
The proof is shown in Fig. 39, where the shaded area represent a possibly very
complicated structure. Using the commutator rule in Fig. 18 on the right most

vertical line, we can see that Fig. 39 (b) and 39(c) can be combined into 39(a). Also
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using the same rule along the middle vertical line, we can see that (d) and (e) can
also be combined to get (a). Using the above argument, we know that in the leading-
log approximation, we can move the middle vertical line of Fig. 39 (d) and (e) to
the right most position, and they remain the same color factors. This then tells us

that Fig. 39(d)=(c) and Fig. 39(b)=(e). Hence Fig. 39(a)=(b)-(c)=(c)-(b)=0.
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