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Abstract

lt is found experimentaly that total cross sections increase with
energy. Partonic total cross sections can be calculated in perturbative
QCD provided the coupling constant is small, though multiloop diagrams
must be included at high energies. Such calculations are difficult and
can usually be carried out only in the leading-log approximation. The
resulting BPKL Pomeron violates the Froissart bound, which forbids
total cross sections asymptotically to grow faster than the square of
the logarithm of energy. To restore unitarity and the Proissart bound,
subleading contributions of aIl orders must be included. Unfortunatley
existing techniques for computing Feynman diagrams prove to be
inadequate for this difficult task. The purpose of this thesis is to
develop new techniques capable of solving this problem. Since
factorization in the impact-parameter space is a main ingredient needed
to reach unitarity, such a technique must be capable of implementing
factorization in an efficient way. We introduce the non-abelian eut
diagrams for that purpose. We use it to compute quark-quark scattering
amplitude to the two-loop order and show how the new technique can
overcome the inadequacies of the existing method. We are also able to
use this method to prove factorization of a class of Feynman diagrams,
which we shall refer to as 's-channel ladder diagrams', though the
proof of general factorization is not attempted in this thesis. We have
also developed a more efficient method to calculate the high-energy
dependences of individual Feynman and non-abelian cut diagrams. This
method relies on a systematic study of the paths used by momenta to
flow through the diagram, and will thus be referred to as the path
method for flow diagrams. These new techniques can be used to implement
unitarity and to restore the Froissart bound, but this final goal is
not carried out here.
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ABSTRACT

Expérimentalement. il a été démontré que la section efficace totale augmente avec
l'énergie. Les sections efficaces panoniques totales peuvent être calculées en QCD
perturbatif tant que la constante de coupling est petite, sans toutefois oublier que les
diagrammes à boucles multiples doivent être inclus aux énergies élevées. De tels calculs
sont complexes et ne peuvent être effectués qu'à l'approximation du logarithme
dominant. fi en résulte que le Poméron BFKL viole la limite de Froissart, laquelle stipule
que la section efficace ne peut varier de façon asymptotique plus rapidement que le carré
du logarithme de l'énergie. Pour restorer l'unitarité ainsi que la limite de Froissart, des
contributions de tous ordres doivent être inclues. Malheureusement, les méthodes
actuelles pour calculer les diagrammes de Feynman sont inadequates pour ce genre de
tâche. Le but de cette thèse est donc de déveloper de nouvelles techniques capable de
résoudre ce problème. Étant donné que la factorisation dans l'espace de paramètre
d'impact est un élément essentiel pour atteindre l'unitarité, une telle technique se doit
d'implimenter la factorisation de manière efficace. C'est dans ce but qu'on introduit des
diagrammes coupés non-Abéliens. On les utilise pour calculer l'amplitude de dispersion
quark-quark à l'ordre de la double boucle et on démontre que la nouvelle technique est la
solution aux faiblesses des techniques actuelles. Cette méthode peut aussi être utilisée
pour prouver la factorisation d'une classe de diagrammes de Feynman, les diagrammes
échelle dans le canal s. Toutefois, la preuve de cette factorisation de fera pas panie de
cette thèse. Nous avons aussi développé une méthode plus efficace pour calculer les
diagrammes individuels de Feynman ainsi que les diagrammes coupés non-Abéliens aux
hautes énergies. Cette méthode se base sur une étude systématique des parcours de
l'impulsion à travers le diagramme: Ces nouvelles techniques peuvent être uùIisées pour
restorer et la limite de Froissart.
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• Chapter 1. Introduction

It i. we1l-JmOW1l that there are four fuadamental forea in the UDivene, namely

gravity, eleeiromapetic, weak, and .ironl forces. They lovera the interaction.

amonl ail the e1emeDt. iD the univerae, ulule u & planet and u .mall u an

atome To better UDder.tand theae four fundamental force. i. Itill the central theme

of modern theoretical phyliel. The topie of thia ihail explora the repoD of ItroDS

interaction.

The lironl interaction il one of the fundamental Corea ai the Duclear ud IUb-

nuclear level. A nucleua il mown to be made up of neuirona and proionl, which

in tum connli of quark. and gluon•• AccordiDl to the 'conltituent' quark model

invented by Gell-M&DJl and ZweiS [1], quub are couidered u fundamental parti·

dei. They carry fractional e1ectrie charla u we11 u a ne. kind of quantum number

called color. Afterwarda, Quantum Chromodynamica (QCD) wu deve10ped to de­

scribe ÏDieractiou between Quaro. JUlt like iD Quantum Electrodynamie. (QED)

whole quantum i. called 'photon' and coupla to charle in a univerlal manner, there

il alao a quantum called 'puon' in QCD, which coupla to color UDÏvenally. Bence

quark. with dift'erent colon iDteract \Viih each othet by exchanginl gluonl. But

what malta QCD more complic&ied than QED i. thai the gluou, themae1va car-

• ryinl color, CaD alao mteraci with one another directly. Throulh these interactionl,

1



•
quarks and puons are strongly bound together to fotm di1ferent kinds of strongly..

interacting particles iD the UDÏverse. Theae particles are all colorIes. although gluon.

and quarb carry color.

The mo.t important featUles of QCD are uymptotic freedom and the confine­

ment of quarks. They refer to the fact that the interaction between quarks and

gluou at .hort distance i. weak, while at long di.tance becomes so strong that

the colored objecta can Dever be isolated from one another. UsinS perturbation

theory, QCD can IUccessfully explain ail the experimental phenomena in the large

momentum-tranner rqion.

• However, there are still areu requiring more effort•. One of the un.olved prob..

lems at hand i. the behavior of the total cros. section of hadron-hadron scattering.

It wu found iD experiment. that the total cro.s section (1 of the proton-proton scat­

temg remainl roughly constant iD a regioD 10GeV< Ji < 10'GeV, when " the

square of center..of..mu. energy, ÏDcreuel. But aCter Ji goes beyond lOJGeV, (1

begins to rise slowly. Thi. tise can be fitted by [2]

tr""- ,0.01 (1.1)

Qualitatively, ibi. phenomenon of riaing cro....section can be explained &1 follows. In

the region of 10GeV< .;; < lOJGeV, (1 i. determined by the me of the proton, which

is about l/m. But as , increues funher, the Muai gluon cloud. surrounding the

• protons become less and less transparent. Then the contribution from tbis opaque

2
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Fipre 1: HERA experiment of electron-proton co1liJioD.

gluon cloud CaDDot be iporecl, and equivalen'il, thil ÎJlcreua the effective lise of

the proton and leadl to the nie of the total CIOII leetion.

• More recentll, HERA [3] hu meuured the total Croii IeCtion of & rirtual photon

collidinl with a proton. It wu foud th., thia crOiI IeCtion can alao be deacribed

by a power 1aw behavior

(1.2)

The exponent l varia with the rirtuality Q2 of the photon, heinl choaen to 0.08 at

Q2 = 0, and increuea to about 0.2 to 0.3 at the lugeat QavaUable. Thil experiment

in BERA il performed bl makiDS aD e1ectroD coWde with a proton. The e1ectron

emita a photon with high virlualitl QI t and thi. virtual photon interact. with the

proton u shown in Fig. 1.

To get the data for the total CfOilaectioDllike equ. (1.1) and (1.2) experimentally,

• we can either meuure the total crOiI section directly, or altemativell 1re can meuure

3



•
the correapondins fonrard e1utie scattering amplitude. These two are lmown to be

re1ated by the Optical Theorem u will be bridyexplained be1ow. The forward

elutic scatierïng amplitude meuurea the 1011 of the incoming beam in the forward

direction. Aecordins to the eouervation of probabUity, thil 1011 il eauled by e1utie

and ine1utie scatteriDgl inc1uded in the total crOl1 section. Bence the Optical

Theorem. FOr aimplicity, in the following, we shall foeui on near·forward dutie

seattering amplitude u a means of getting the dutie and the total efOlS section.

Seatterins. are caused by the exch&Dge of objects between the interactiDg par­

tides. Particu1arly, in e1utic leatteringl ihil object muat cany vacuum quantum

• number in order to preserve the quantum numberl of the Icattered partides. At

high ener!y, the object which gives rise to the dominant contribution to the elutic

seattering ÎI called the PomeroD. The contribution to equ. (1.2) i. referred as the

hard Pomeron [4] because the viriual photon cames large virtuality Q2. The one

contributing to equ. (1.1) il called the 10ft Pomeron [5] sinee partidea are always on­

shell. ft il diftieult to calculate the 10ft Yomeron because conflnement eft'ects cannot

•

be negleeted in the correlpondïng region. On the other hand, aince in equ. (1.2)

the virtual photon cames large momentum tranlfer, it is pOlsible that perturbative

QCD can he applied to explain the hard Pomeron etfect. The fundamental degrees

of &eedom in QCD are quarb and gluons, and it il lmown thai UlÏDg the dipole

mode! [6, 7], quark-quark eluiic IcatteriDg ean be re1ated to the hadron-hadron

elutie scatteriDg. As a result, &om nowon in thia thm., we shall foeus on neat

4
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forward elutic lcattering of quarb and pUODl.

The fint model to explain Pomeron employius perlurbative QCD i. the Low­

NUI.inov mode! [8]. It CaD be illu.trated by uaiDg the electron-proton IcatteriDg

shoWD in Fil. 1. The Muai photon emitted br the e1ectron Iplit. mto a quark­

antiquark pair. They interact. with the quarb iDaide the incolDÏDl proton br ex·

chanlÏDl gluou. Since siuon curies octet color, a IiDgle gluon exch&llie C&Dllot

contribute to proton-proton e1utic IcatteriDl, althoup it hu the .ma11eat power

of the couplinl conltant.. The two-puon procesl, on the other hand, contributea to

both the color IiDglet ud octet ch&lUlelJ. Therefore, u a fint. approximation, Low

ud Nu.lÏDov propOied that QCD Pomeron be coutructed by two PUOnt.

ID the Low·Nu'lÎDov mode1, ail the hicher order procellel are iporecl. Theae

procates &le however important {or improviDl thi. mode!, eapecially at the high

enerl1 limit 'Re are tÙÎDg. The reuon i. beeauae calculatioua .how that ÎD the

high enerl)' limit., the coupliDl con.tut g2 oRen appearl with a factor of ln,.

Together they form aD effective coupliDl cout.aut, which lovem. iDteractionl at

thi. enerl1 leve1. Potentia1ly, thil eft'ective couplinS conltant CaD be dOte to 1 or

even larger when • ÎI larle, eVeD if the couplinl con.tant it.ell remainl very .malI

in the perturbative QCD region. A. a reluit, hiper order eorrectioDl C&lUlot be

ipored when we try to explain the hard Pomeron by perturbative QCD, and what

we reaUy need then ia a summation up to ail ordera of the coupliDl coutant iD the

perturbative expamion.

5



•

•

•

It ia clear that IUch a lummation il not an euy one, lince in perturbative QCD,

the scatteMg amplitude il calculated ortler 6, ortler umg Feynme diagraml. At

high order, the number of the Feynman eüasr&llll becomes very large, and each

of them becomea very complicateci to compute. It i. beyond our computational

ability to calculate every one of them without any approximation, let alone doing

the sUDlDlatioD. A conceivable solution il to ilolate ihe leadiDg contribution from

each Feynman diagram, and do the lummation over these leadiDg terml ai the high

enerlD' limite Thi. can greatly simplify the calculation., becaule th~ leading terml

have relative1y simpler structures compared with the non.leading ones. At large "

the leading term appearl &1 a power of ln" and thi. approximation il u.ual1y called

the leading logarithm approximation.

The leading logarithm approximation wu used by Balilkii, Lipatov and others[10,

Il, 13, 14], u weU u by Lipatov and hia colleapes to investigate the QCD Pomeron

problem. They firat calculatecl the iDelutic Icattemg of two quark. going to two

quarks and n gluonl. It wu found that the leading contribution from Feynman

diagram. to ibil ine1utic scattering can be summed up in the high energy limite

Fürthermore, by the he1p of dispersion relation, the abave result wu used to cal·

culate quark-quark two-body Icaiterins. Lipatov and bis colleagues were able to

show that the final reauIt latÎlfiea &Il intesral equation, calI the BFKL equation [la].

This equation can be lolved for the color octet channel exactly, and for the singlet

channel approximately.

6
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(a) (b) (e) (d)

•

•

Figure 2: Regeon exchule diasram.

For the octet ch&lUlel IOlution, the amplitude computed by Lipatov i. propor-

tiona1 to ,o(A), where â i. the momentum traufer, and the actual exprealÎoD of a(â)

i. given 1ater in Chapter ill. A. we mow, if two particle. Icatter by exchanging an

elementary object with .piD i, then the amplitude at high energy i. proportiona1 to

,i. Therefore thia reluit .how. that the object beinl exchanged in the color octet

channel c&rrie. &Il effective .pin of a(A). Such aD object ÎI called a R.egeon, and

thi. effective .pin a(~) i. called a Reae trajectory. Thia proces. cu be .hown in

Fig. 2(a), where 1re Ule lolid liDe to repreaent the R.egeon, or the reggeuetl gluon.

It should be noted that a ainsle diqram like Fig. 2(a) .hould be viewed u the .um

of an infinite number of Feynman cüapaml .uch u Fil.2(b, c, and dl.

The solution iD the IÛlpet channelleada to a crol. IeCtion which i. approximately

(1.3)

where a = 9214ft. At the enerB1 of the mu. of Z (91Gev), 9 can be tùen u 0.2, and

7
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lhil makes the power of , to be 0.529, which il twice .. larse u the hard Pomeron

reluit from BERA. Althoup the recent1y publiJhed 2nd order correction [15] malte.

thi. power lower, the numerical disagreement, either biS or small, ia however only

the resuIt of a more senou problem about the BFKL Pomeron, al we shall explain

be1ow. Now 3rd order correction is oder discussion in [16].

Thi. lerioui problem of the BFKL Pomeron il that it violates the Froissart bound

[17} if extrapolated to the infiDite energy limite In quantum field theory, there il a

theorem statins that to preserve unitary, the ••dependence of the total ero•• section

in the uymptotic limit C&DDot exceed ln2
1. Thi. i. DOwn al the Froi.sart bound.

• Thi. boud i. violated br the BFKL Pomeron al can be seen in equation (1.3).

At the energylevel of BERA, 1 il larse but not infinite. So an apparent violation

of the Froi.sart bound i. Dot dilutrou.. Bowever, rince the BFKL Pomeron il

calculated by UlÎDs the leadiDSIOSarithm approximation, equation (1.3) should be

more applicable for larse 1. Thil then will mevitably lead tO a violation of the

Fioissart bound.

•

The real reuon for tm. violation i. that BFKL Pomeron does not obey the

fundamental priDciple of probability conservation, othenrise DOwn as unita.rity.

Thil has been a Ions standing and difticult problem, becaule the unita.rity equation

il hishly nonlinear and difticult to solve. The purpose of thiJ thesil il to make a

pre1iminary investisation of tbi. problem, and to deve10p theoretical tooIs needed for

it. solution. The new toou are diacuI'ecl maiDly in Chapter V, with an illustration

8



• of their application in Chapter VI. They will be uaed to investilate a factorization

property needed for UDitarisation. Thia ia curiecl out iD Chapten VU and VIn for

special let. of cliap&IDI; the applicatioa of th_ t001l to the full IOlution of the

unitarity problem CaD be found in Ref. [11]

To undentand the role of UDitarity, 1re Ulume that in the hip enerulimit QCD

interaction. are dncribed br multiple regeoD exchange u well u productioDJ and

ab.orptioDi of PUODI between theae regeoDl. AlI the puoa &1onl the ,-ch&Dllel are

regeiJled. AccordiDl to the UDitanty relation, the imasiD&rJ pari of the .caUeriDl

•
amp.litude Mli C&Il be expreased u

~ 4H Mj"M...
lm MI' = 1/2 L-,(211') .-(~ - P,,) fi Il '

ft • •

(1.4)

•

where Pi and PI are the total four-dimeDIÎonù momenta of the initial and final

states, and 1. ÎI defiDed to be E./m for a fermion with enerlY E, and mu. m, or

2E. for a bOlOn. It CaD be leeD that if there ÎI a tw~reaeon contribution in the

scatterins amplitude M, puttiDg thia on the ript hand ode of the above equatioD

will generate the imasiDary pan of a four-regeon exch&llse amplitude. That i. to

say, if the two regeoD exchanle contribution ÎI induded in the IcatteriDg amplitude,

the UDitarity relation above requirea the four-regeoa exchanle amplitude to be there

&1 well. U.ml a limilar procedure, it cu be .hown further that keepÎllI the two and

four regeon exchaage amplitudes willleauate the six reaeon exch&llle amplitudes

etc. A. a resuIt, the mulü-regeoll exchule amplitudes are interre1ated, and the

9



•
two reggeon exchanse amplitude C&IlJlot be ilOlated without violatins UDitarity.

From the above disculsion, it i. cleu that in order to UDitarize the BFKL

Yomeron it is necessary to indude the multi-regeon exchanse contributiolll pro.

vided the ulumption 1re made above il true. Therefore, the firat question we need

to anlwer il whether the e1utic Icattering amplitude at the high enersy limit can

be delcribed by multi-regeon amuse contributioDl, even though 3-reaeon con-

tribution, called Odderon[19], and 4-regeon contribution[20], have already been

studied.

Sînce in perturbative QCD, IcaUering amplitude i. given by lummiDI Feynman

• diagram. of dül'erent orden, thi. queatioD CaD then be re-phrued u to whether

multi-reggeon acbanse contributioDl can be obtained by lummiDI Feynman di-

agrams in the 1eadinl lOSarithm approximation. It i. far from obvioUi that the

Regeon diasraml and the Feynman diasram. are re1ated. Although the regeon

diagraml shown in Fil_ 2 look like Feynman diasram., they are actually very dift'er-

ent. First of a1l, the regeon, althoup carryiDl the lame color al the gluon, hu a

different propagator shown u

2
L,(CI(A»
~2 •

(1.5)

Secondly, the production and absorption of sIuon from & regeon are described

by a new coupling called a Lipatov vertex[21], inatead of the triple liuon vertex

• in ordinary Feynman diagram[22]. In addition, the partides involved in regeon

10
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•

•

diagraml carry tw~dimensiODal momentum, while panides in & Feynman diagram

carry four-dimenlioDal momentum. Finall" UD1ike PUODl, the regeoDi exchanged

in the t-ch&DJlel are lodorizetl aloDI the ,-chUUle1, and the)' do not eroa. each other.

To plOye that the regeoll diapama in Fil. 2 can be obtained from .ummjug

Feynman diasr&llll, we neecl to .atidy ai leui thue four point.. Lipatov and hi.

c~workerl haye dOlle a lot[10] about the fini two point. u we are l0ing to review

in the nm lectioDl, and in thia thai. the lui two point. are the main topie.

To "reduce" the four-dimeuliollal momaium mio a tw~dimeDlÏollal one, we

need to make UIe of the high enerl1 approximatioll. In a near-forward scaiiering

iD the high enerlY limit, the moment. of the two incominl panic1ea .pan the longi­

tudinal .ub.pace. AlI the momenta in the tranaverae .ub.pace are coDJidered to be

order of 1 u , -.. 00. Thereiore, to get to the fini point Aboye, 1re neecl to perform

the intellatioll of the longitudinal momenta to lei the • dependence for individuù

Feynman diagram, and then lUIIl up the reault.. Ii ahould be noticed that ulua1ly

thia calculation for each Feynman diagram can only be performed for the 1eadinl

logarithm order becaue of the complicateci Itnclure of each multiloop cüaaram of

high order. Bowever, u shown by calculatioDi in the literaturea, the leading log­

arithm &om iDdividual Feynman CÜ&llUD. UDfortunate1y let cance1led quite olten

when we SUDl up Feynman di&ll&llll, and the fint clifIiculty we encounter il that

to obtaiD uaeful rault, we are forced to ret&Ïll lubleading or eyen aubaubleading

contribution•

11



•
A good example to see this cancel1ation il the e1ectron·e1ectron e1utic scattering

in QED by exchangïng photons. As stated belore, each loop in a Feynman diagram

can potentia11y contribute a factor of g2ln,. FOr an n.loop level Feynman diagram,

the leading contribution can pOlsibly be of the order of ln" " which can euily exceed

the Froi.sart boud because n varies from 0 to 00.· Practical calculationa show that

ail the contributionl from individual Feynman diagraml of the order of ln", with

n ~ 1 get cancelled in the summatioD [23]. Thil meana thal for each Feynman

diagram, 'ft must keep the contribution to the order independent of " and so a

direct calcu1atioD uaing Feynman diagraml il extremely dülicu1t, if not impossible.

• For the QCD cue, Cheng, Wu and their colleagues calculated the quark.quark

e1utic scattering by usiDg Feynman diasraml. They were able to prove up to the 6th

order of the coupliDS constant that lumming Feynman diasraml does give the multi­

regeon exchanse amplitudes. Ii is these cancel1ations thal mûe the computations

complicated in hiper order, so Cheng and colleaguea were omy able to parti&1ly

calculate them up to the 8th and the lUth order [24, 25, 26]. Simîlar dilcussion can

also been found in [27].

•

The cance1latioD of the leadinS contributions is DOt an accident to mûe life

difficult. It i. actually easential for the unitarity to be preaerved. According to the

multi.regeon amplitudes, the leading contributions are of the order of

(1.6)

12
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•

where fi i. the corresponCÜDg number of RegeoDi. .In the cue of the 8th order

ca1cu1atioDl, if " = 3, then the contributioDi to retain are of order ln,. Sïnce

a ihree-loop Feynmaa diapam CaD 'potentia1ly pve Ina" thia mean. the leading

and .ubleadiDl contributioDl will ail be c&Dcellecl, and lublubleacliDl order muat he

m&intained.

To deal with thia cWlicu1ty, it il worth_hile to look at the aimilar procea. in

QED in more detail. The l&lDe difticulty aiatl in the QED eue. It wu 101ved by

u.ing the Io-called eikonal formula[28, 29]. For an n photon exchule proceal, the

n! Feynman diapaIDI required byg&ule iDvuiaace can be repreleDied by a aiDpe

expra.ion wmch ÏI iDdependent of,. SiDce notbinl elle il prelent to cancel it, it

cu be evaluated juat UIÏDI the leadinl approximation.

Thi. problem can be viewed &om different ansle. The photoDi obey Boae.

Ein.tein Itati.tice. In & multi-photon procal, the involvecl photoDi interfere with

each othet and leneraie narrow· peab, which euential1y are 6 fu11ctiolll. Ii tuma out

that thi. i. & destructive ÏDterference. The final exprealion, which i. the eïkonal[29]

expre••ion iD the eue of QED, hu &1ready taken accouni ihia ÎDterference.

Bowever the eikonal formula i••uitable for verticea that are eft"ectively number,

or a .c&lar. Thia i. true for QED. But for QCD, beca1lle the PUODI carry color and

cu couple to themaelvea, ii i. deacribecl by a non-abe1ian gauge theory[30], and the

corre.ponding vertica in thia theory are color matricea[22], which do not commute

with each oiher. The original eikonal formula C&IUloi be applied on QCD. On the

13



•
other hand, gluons are alao Boae-Einatein partidea. As an analogy to QED, one

might expect the presence of a similar destructive interference in QCD would lead

to a similar formula. If tbil idea ia right, the formula we are leeking i. an extelllÎon

of the mODal formula, which can be Uled to IUID the QCD Feynman diagr&ID1 before

the &ctual calculations of the individual onel. The lummation should include ail

the correlponding cancellationl, alter which it needl to be calculated up to leading

contributions only. Indeed, tms formula hu been found recently, and i, called

the multiple commutator formulo [311. UlÎDg tbil formula, Feynman diagraml in

QCD are re-organized. Unlike the cue in QED where a single expression can be

• achieved after uaing Monal formula, due to the complexity of QCD, alter making

ule of the multiple commutator formula, the result il represented by a number of

terml. For conyenience, graphical representation hu been inyented for these term.,

and they are called nonG6eliGn cut diGgnJ11Y [32]. The nonabelian diagram hu an

advantage that the delieate eancel1atioDl mentioned aboye have been removed, and

it thu. provides a powerful tool to bypasl the difticulty of having to calculate up to

subleading contribution of individual Feynman diagrams.

The second issue of thia theai. il the f&ctomation problem. AI we pointed out

above, uaing the monal formula alone, we ean p'Oye that the e1ectron-e1eetron scat-

tering in QED in the high energy limit can be factorized as ringle-photon exchuge

amplitudes. Bence we can lay photonl are not regeized in the high energy limite

• Ta prove that multi-regeon exchange can be obtained from 811mming Feynman

14
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•

diagrUDI, we need to demon.trate that the .um of QCD Feynman diasr&llll &1Jo

po••e•• thiJ factorilable characteri.tic. However the Don-abe1ian fe.tue of the gluon

complicatea tm. proof. AU the FeYJUll&ll diacr&IDI are re1ated in a more complicateci

way due to the nOIl-abe1ian featue [33]. A. a reluit, PUODI combiDe œto regeon.

at the hip enerolimit, and it it the aiDp. regeon-exchanse amplitude that C&ll

be factorized. AIl theae complicate the provinl of the factorisation iD QCD, and a

complete proof by explicit computiDl QCD Feynman diqrUD' hu ollly been done

up to 6th order by Cheng and hia colleapea.

To dari with ample cue, 1re ir.i concattate on Feynman diqraml con­

Itructecl by purely gluon-quark verticel. Thil it a fit.t order approximation in the

sen.e of u.WDÏDg that each gluon doea not emit or abaorb &DY othet partide when

it proP&latea between thOte two enerleUc quarb. Uainl the non-abe1ian cut dia­

gram., we can praye the regeized factorilatioD hypotheaia for thi. du. of diasram.,

which will be refened u ..ch&Dlle1 cii&lf&ml later.

In all the diacuauon above, to let the ,-dependence of the amplitude, we need

to perform the mtqraiioDl of the lonlÎtudiDal momenta. Thi. intell'ation i. done

by ulÏDl cOlltour iniegral, u dilcoyered br Chenl and Wu [28]. They invented a

method by puitiDl arro•• on each iatemalline of a FeynmaD diapam 10 u ta

identify the pole poaition for each loop momentum întegral. Thi. method work.

weIl for the 10. order calculatioD, bui when we deal with multi-loop diapama, it

becomea difticuli to identify ail the pOiaibilitiea. ThUi we have ÏDyented a new 'IIay
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•
[34] to set ail the poles for a multi.loop Feynman diagram. In addition, by using

thil ne", way, we can bypui a potential problem overlooked br the original method

of Cheng and Wu.

To provide detaiIJ for the above disculaion, thia theai. i. organized u folloWI. In

Chapter II, we brieiy review the regge pole theory. The discussion about the BFKL

pomeron i. prelented in Chapter ID, together with it. problem of unitarity violation.

The unitarity problem can be lolved by induding multiple.Regeon exchange•. This

will be dilculaed iD Chapter IV. The implementation of IUch a unitarization program

requires new techniques wmm 1re will disCUIS in Chapter V. Using these techniques,

• the 6th order diagram. are recalculated in Chapter VI. In Chapter VII, 1re Ihall

use the Don-abelian eut diagram to prove the factorization of one special clus of

Feynman diagram.. Finally, Chapter VIII eontain. the conclulÎon.

•
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• Chapter II. Regge pole theory and
Reggeon

A. mentioned in the introduction, puon. ezchuled iD a .catteriDl are regeized

at the bip enulJ limit. Accordinl to the Rea- theory[35], thil Reaeon con-

tributes a liDgularity to the .catteriDl amplitude daaibed by the corrapond-

ing Relie trajectory, and u we .hall aee later, thia trajectory determiDa the ,-

•
dependence of thi. amplitude at the hîp enerlY limite

To Me the relation between the property of the exchule particle, the IiDplarity

and the ,.dependence of the amplitude iD the hiP enuU' Umit, we h.t look at hro

.imple exampla. Conaider an elutic proc:eu A + B ~ A + B. A••ume that all

the particla are .calar., then the amplitude ia -g2/t ""- ,0 where 9 ia the coupling

conltant; t i. the Iquare of the momentum t~uafer; , i. the Iquare 01 the total enerlY

in the CM frame. Now if thia i. a QED procal, then t!:le coupliDl between e1ectroDJ

and photon will give &Il extra lactor 01 ,. Thua the amplitude i. proportional to ,1.

In general, the exchange of a partide of .piD.' will contribute a factor of " to the

sc.tteml amplitude. When more internai particla are involved, the power willget

modified, and even becomea dependent OD t. The raultinl exponent cu be regarded

.. aD eft'ective anplar momentum, or Reae trajectory. It hu the property that

• . euh trajectory C&D contaïD one or more cWrereat partida, u lonl &1 ail the particles

17



•
have the lame internal quantum numberl. In addition, thiJ trajectory turnl out to

be the singularity of the amplitude in the complex angular momentum plane. AIl

these are covered by the Reae Theory as reviewed briely belo1r.

2.1 Regge pale theory

2.1.1 Sommerleld·Wat,oD tru.formation

Consider a proces. A + B ...... A + B as shown in Fig. 3. The Icatienng amplitude

•
I(COI 9, E) can be decompoled into a Legendre leriel

oc

I(coi 9, E) = ~(21 + l)(I,(E)~(col 9) ,
'=0

(2.1)

where 4,(E) il ulually called the partial tuave (JmplituJe, E il the energy, and ~ is a

r;egendre polynomial. If1re generalize (J, and ~ into analytic fuctions of a compler

variable l, the summatioD can be changed into a contour integral:

il (21+1)l(coIS,E) = -2 · 1 4(I,E)P(I,-cos9)dl.
Cl sm 11'

(2.2)

•

The cholen contour Cti. Ihown in Fig. 4. To get from equ. (2.1) to (2.2), we have

made ule of the following. rUlt we bave ulumed that a(l, E) contain. only simple

poles located in the complex plane away from the real axis. These poles are shown

in Fil. 4 U Q.i(E). Secondly, we have used pe',- cOlI) = (-)'P(l, cos 'l for integer

,.
We can now open up Ct, and deform it continously to C2 , which fUnS paral1e1 to
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A

B
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B

•
Fipre 3: An e1utic pIGea. A + B- > A + B.

the imasinary ui. throup the point (-1/2,0), The Rege polea cu be exduded

by addingloop••hown u dotted circ1a iD Fil, 4.

With .uitable CODversence, the iDtepal aloq 01 giva Nciground terma. The

doUed cirdealive & .um of characteriltic tenDl, depenCÜDI on the Rege polea ote

The Relie pola are leDera1ly !uDdioDi of eneqy,and CaD be written U Oï(E).

Usinl thi. Dotation, we have

l(coal,E) j -l /1+too 21 +1
- i/2 ~IG(I,E)P(I,-cOIS)dl

-1/1-ioo IUll"

- E 1I'(~Oï +1)I3,P(ot, - COlI) .
, nn1ra.a

(2.3)

A. & fuDctioD of enerl)', Oï i. ÙIO called Rege trajedory. From equ. (2.3), we

can see that 1<COI ',E) hu IiDplarities u ot talla OD aD integer value. Theae

• singularitiea represent. raonanCel.
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Fipre 4: Contour integral•

There i. a lubtle point, which hu been lkippecl belore. H iD the above process,

particle A i. it. own &Dtiparticle A =À, then there ia a forward- backward Iymmetry

(or the f-chanDel procea. ÏJ +B ~ Ji + Â. Thua the amplitude i. , ~ u symmetric.

Thi. requires that in the decompOlition shown in equ. (2.1) only even angulu ma.

menta 1contribute, or lay 4, YaDi.hel for &DY odd ïnteger ,. A. a resuIt, we should

tirlt decompoae the amplitude I(COI 9, E) mto itl , ~ U Iymmetricfanti.ymmetric

parti 1:(COI 8, E):

oc

1: (COI f, E) =E(21 + l)CJ,(E)(~(co. 8) ± ~(- COI 9» , (2.4)
1=0

and then perform the Sommerfeld-WâllOll tr&l1lformatioll for them reapective1y. The

• resulting ar(E) in equ.(2.1) will in gellerai have ditferent singuiarities, &Dd give two
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• dif[ereni Rege trajectoriea. Signature. +/- are uecl to identify thae two clliI'erent

trajectoriel.

fz(coa9,E) 1-
1/ 2+taD 21 + 1

- i/2 -:--,G("E)(~(coa')::i:li(-coa9»dl
-1/2-too lUl '1'

E 1I'(~Oï + 1)a.(P(Oï,COI') ± Pr(ae,- COI'» .
i l1D"ae

(2.5)

•

2.1.2 Alymptotic behavior

Let u. look at the uymptotic behavior of equ. (2.3). To limplify the CÜlcualÎon,

we conuder hip enerlY IcatteriDg of equal-mua Ipinleal panida. We use , and

t here. , i. the Iquare of center-of-mu. (cm) eneqy, and -t il the .quare of cm

momenium. tran.fer. 50 that we have

t - -2,:(1 - COI B,) . (2.6)

Here p and co., are momentum and anl1e, and the lub.cripi , il to Ipecify ,-

channel. Now look at the cro•• ch&Dlle1 (t-ch&lUlel), t DOW repreaeni. the ICluare

of total enerl1. Accorclinl to Mudelatam repreaentatioB [36] t a lingle invariant

amplitude repreaentl both the,- and t- channel proceaaea; &lthoup their phyaical

region. correspond to dift'erent faDlea of , and t. 50 that we have

, - 4(",2 + ,~) =-2,:(1 +c0lge)

t - 4(m2 +,:) =-2,:(1- co. 8,)

• COi 9.
' - 2m2 +1/2t (2.7)- 2m2 -1/2t
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•

•

Therefore, the hip-enerlY Imall-&DaIe rqion in the. channel correspond., in the t

channel, to an unphyncal rqioD with large COI 8e• Under thia 1imit, we can see that

cos8e -. ,.

Bence, by ulumïDg that the Ic&ttering amplitude hu singularitiea, Rege theory

tel1l us that theae linplaritiea are determined by the partide or efFective particle

heing exchanged between the iDcomiDg particlea. In addition, alter taking the high

enersy limit, the uymptotic behavior of the Icattering amplitude hu a simple form

,a(t), with , being the total enetl1lquare &Dd a(t) beinl the trajectory.

2.2 ReggeizatioD of gluons in QCD

Rege theory prondea UI a leDeral framework about particle interactions. This

framewor. still need. to be proven by nain, d)'Damic theory like QED or QCD. Now

we look at SU(3) QCD .pecifica1ly and consider the same proceal mentioned at the

beginDiDg of thia section. The incomiDg partidea are two quaro; the partidea heinS

exchansed are gluons. Pair-productiolll are nqlected in thi. theai. U a fitst order

approximation. The Feynman ciiasram shown in Fil. 5(a) i. the loweat order one, in

which only one sluon prop..atea aloDI the t-ch&lUlel. The Icattering amplitude at

this order il determined by the Ipin of the gluon. Bowever, hiper order correctioDs

will enter &1 shown br the Feynman diapama in Fil. 5(b,c,d). They all contribute

to the octet color channel. In theae di&lfam., more than one gluon propagate

along the t-channel, and the anplar momentum in thi. channel ÏI not fixed. As a
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• reluit, in lelleral the .caUeriDl amplitude for the octet color ch&Dlle1 ÏI much more

complicatecl tha , to the power of the .piD of the sluon.

Bowever, in the high enerlY limit it tlUDl out that a aimple reault can still

be obtainecl. UaiDl leadiDl logarith!D, it hu been proven that the oD1y chanle of

the, dependence of the .catterinl amplitude ia the exponent [21, 37]. Bence the

IcaUerÎDl amplitude can he eUen u proponïonal to ,elI(I). Accordiq to Rege

theory, a Icatterme &D1plitude like thia CaD be iDterpretecl u two quarb exchansml

an ariificial particle c&rryÎD1 eft'ective .piD a(t). Thi. artificial particle il ca1led the

Relleon, or regeiled sluon. It cama the .ame color factor u a puon t and it.

•
eft'ective prop&lator ia siva by

J
L,(elI(A»
â l •

(2.8)

•

Usml thi. ReUeon concept, the .cattems amplitude can he representecl by aimple

diagram••uch u Fil_ 2(a) where the .olid he repreaent. a Regeon.

The above argument ÏI jut & .pecial cue of & more general reluit tirat shown

by FadiD, Kuraev, and Lipatov [21]. AccordiDl to their calculation, in an e1utic

IcatterÎDl proc•• qq -. qq+"f, oder leadiDllolarithm approximation ad takiDl

the multi-rege limit u defined in the Dut lubaection, the final amplitude cu be

reprelented br two quarks exchaDlÎDl a Regeon which emit. gluou. Thi. reault

wu Uled to coutruct the BFKL Pomeron u .hOW1l in the nm section, but belore

we 10 to the detaila, we fir.t look at the defiDitioll of rapidity and the multi-rege
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Figure 5: Feymnm diasrama in QCD contributinS to aD octet exchanse.

limit which will be used throupout thi. thesil.

2.2.1 Rapiclity and lilht-cone coordinate

In the hip energlimit, it i. conveDÏent to ule rapidity, because under one special

kind of Lorentz transformation, the booet &lons the beam direction, the rapidity

obeys an additive rule. Thi. mues the calculatioDl euier.
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• Rapidity 11 i. defined u the foUowiDl.

(2.9)

•

where Pli il the lonptudinal momenium, E i. the enerlY and JI i. rapidity. The tirlt

equation in equ.(2.9) tella UI that lonlÏtudinal momentum and the enerlY Icale llke

sÏnhJl and co.h, relpectively. From the relation betweeD momentum Md energy, we

set

(2.10)

If we define

Then equ.(2.10) can be rewritten u

(:~f -(~~r = 1 •

which givel

(2.11)

(2.12)

(2.13)

It i. often convenient to introduce lipt-cone coordinatea too. In theae coordi-

•
nates the longitudinal momentum is combined with energy u foUo••:

,± =E ±1Jt1 ,

25
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•
where p = (p+ ,P-; PJ..). In thi. coordinate system, the metric i.

(2.15)

where z and y stand. for the transverle component•.

The dot product of two vector. i.

(2.16)

•
Using the equ.(2.10) and equ.(2.12), the 4-momentum of a partide can be rewrit-

ten"Y

(2.11)

For mUllesl partidee the definitioD of rapidity in equ. (2.10), we can lee that

ta.nky = COI 8 , (2.18)

where 8 il the angle betweell the direction of the Icattered partide and the beam.

Inverting thil we get for the mUllesl p&rtide

11 = ! ln 1 + COI
8 =-ln (tan~) .

2 1 - COI 8 2
(2.19)

•
FOr massive p&rtidel, equ. (2.19) defines the p,eudo-rtJpidity, which we will denote

by 11. Thil" =y when m =0, and '1 ,... 11 when m # 0 but the partide moving with

extremely re1ativiltic Ipeed. Pseudo--rapidity ia euy to meuure experimentally, but

it il the rapidity that transforml additively under boolts in the beam direction.
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• 2.2.2 Multi-Reae limit

Let u.look at an ine1utic .catteriDl iD .bich ,,+2 partidea are produced al .hown in

Fig.6. We chooae the center-of-mu. frame. The m.omenta of the incominl partiele.

(J and " are parameterised &1:

,. = (";;~A' 0; 0) ,

•

The momenta of the outgoÏDI panide. are givell by

with i = 0,1,2,3, ..., JI + 1•

Momentum cOlllervatioll can be writtell al

"+1
o = E iïJ. ,

i-o

"+1 L_
ZA - E ~e" t

iaO Ji
~ 1lïJ. _Ut

Z. = ~-e­
izO Ji .

The Mandelatam invariant. cu be expreaaed u functioll of rapidity

(2.20)

(2.21)

(2.22)

"+1
; = ZAZB' = E ~.l'i.leW-Vi

i.j=O

,,+1
Je, - -2,•. " =- E ....L"i..Le-<W-lIi)

i:O

,,+1
i. = - 2,. . lrï = - E ~J..iJ. eW-Vi

i=O

• ;ii - 2" . Ici = 211ïJ. 1ciJ.[CO,l&b'i - Yi) - 1] · (2.23)
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• ka

kn

pa

•
kn+l

Figure 6: An inelutic IcatteriDg of gluons.

Now we look at a special resion where the outgomg partides are Itrongly ordered

in rapidity and have comparable tranlverle momentum of me k~,

'0 » YI » ... » '"+1 ; kil. ~ Ic.l ,

Then the Mandelstam invariants are approximately

(2.24)

,; ~ lco.lkn+l.L ea--h +1
,

.i•• ....... -Iro~ kt.L e""-w ,

;6i ~ -ka~A:,.+l.L eW-v.+l ,

• .i'i ....... /:t.L Ici~el. -'IIj1 • (2.25)
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•

•

Therefore, equ.(2.23) cau a1ao be written u

· · 1.., >> 'ii >> "'J. ,

" "E ;i.i+l ~ ; E "1J. ·
i=O i=l

Thi. defines the multi-Regge anemo'ic: regioft.

29
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•
Chapter III. BFKL Pomeron

The BFKL Pomeron and the ulociated violation of UDitarity will be dilcussed

in this chapter.

As mentioned previously, Pomeron i. the effective abject nOie exchuge gives

rise to the high-energy growth of total crOl1 sections. Optical theorem relates total

crOl1 section to the düfractive part of the e1utic amplitude, thUJ requiring the

P"omeron to carry a vacuum quantum number. The question in QCD is how to

• construct the Pomeron in tenns of gluons, and maybe quarks.

In order for it to be colories. the Pomeron muat contaïn at leut two glUODI.

This two-gluon picture of a Pomeron wu mat proposed by Law and NUllinov (8]

and wu the very firlt mode! of the Pomeron in QCD. Now that we mow the

gluon to be reggeized, the natual generalization for the PomeroD il a two-Reggeon

model. Taking into account that these two Reggeonl can ÏDteract through emilsion

and ablorption of sIuon., what emergel i. the BFKL Pomeron (10] which 'Re shall

review below.

•
3.1 BFKL equation

A brie! review of the BFKL PomeroD will be presented in thia section. Sïnce the

mathematici is a bit complicated, it might be uaeful itat to outline the main steps
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•

•

involved in gettinl to the final reluit, that the exch&Dge of a BFKL Pomeron will

produce a total crOi. lection growiDl with serI)' like ,A, with A beinl a coutant

given in eqn. (3.32).

A DFKL Pomeron i. made up of two mutually iDteractinl Regeon.. In the

original approach, the difüactive two-body amplitude i. obtlined from the diapenioD

relation (3.9), &Ild it. dilcoDtinuity (3.21) i. computed !rom the ablOlute .quare of

the fI-gluoD production amplitude (3.2) and (3.25). Via the di.perlÏon relatioD,

the t-ch&1lDe1 partial .ave amplitude can be computed, and tm. i. uaed in the

So~erfe1d-WatIOD tran.formation to obtain an expreiaioD for the amplitude (3.19),

suitable for takiD.1 the uymptotic limit of Iarle , and fixed t. From tm. exprealÏoD

the exponent A for the energy growth CaD he exiracted.

We .tan by computiDl the lo.est order Feynman graph for one puon production,

in the 1eadinl-Iol approximation. The amplitud. correlpondinl to Fil'. 7(a), (b),

iM1 ~ (g•.r-..g......)~

· (g,r~'t:I) (;(91 +Q2)" +2;ull': - 2;.11() ~
t2

· (ig,jWat:l g".,,,,) ;

iM1 - (g.I"C1g"..~)i:-".1
· (g,/e,tJ1t:l) (iY:) ~

t l

· (ig,r- ca g".,,..) ;
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•

(a) (b)

--

(c)

Figure 7: Firlt order Feynman diagram. in Lipatov vertex.

•
iMa _ (J_c1 ) 1

9. g,..". il

. (g,JctIlLCJ) (;J()~
'.1

(3.1)

Jacobi identity hu been uled to decompole the color factor of Figl. 1(b) and 7(c).

Now we can limplify the lum of theae three terms u

iM - iM1 + iM2 + iMs

••

. (ig./W,CJgfj,,..,) ,

where the Lipatov veriex can be exprelled al

32
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• It can be proven that thit vertex i. gaule invariant becauae

(3.4)

It hu been IhOWD by Dickinlon [3T] that the hiper order correction for the

lame proces. in the lame color ch&lUlel efective1y reaeba the puon. in the t-

chaDDe1. Therefore the amplitude contaiDinl aU the conectioDi CaD be obtained !rom

equ. (3.2) above br changinl the gluon propacaton into the Regeon propagator

(3.5)

•
where a(t,) i. the ReUe trajectory pva br

(3.6)

Lipatov proved that for a general n, the amplitude hu a .imilar Itructure &1

equ. (3.2). The only thins we need i. to &cid iD more regeized gluon propagator.

and more Lipatov verticea [la, 21]. In thi. waYt we get the n·g1uoD amplitude to be

• (3.7)
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•
AccordinS to Lipatov'l method, the dutie ampütude il evaluated by uainS the

dilpersion relation. The amplitude u a function of ; hu two brana cutl over the

real &Xia of compler; plane, -t ~ ; < oc and -00 < ; ~ 0, hence 1re can rite a

Cauchy inte81al for an senerallea1&r amplitude A(i, i) to be

•

A( " "= fO tU' Di.cA(,', i) foo d.4' Di,eA(,', i)
',t} 2 . .. + 2· ..,

-00 11'1 " - , -E 11" " - ,

where the dilcontinuity of the amplitude i. defined &1

Di,cA(,',i) = A(" + i~, i) - A(.t' - i~, i) .

Since we have

%.=-(1+ 2
:) ,

(3.8)

(3.9)

(3.10)

the dispersion relation can aIJo be written u an intesral over the complex plane of

A( " "- f- 1 dz~ Di,cA(z~,i) 100 dz~ Di,cA(z~,i)
" t J - 2· 1 + 2·' ·

-00 11" .le - Zt 1"'" .le -Zt
(3.11)

In the physical regioD -1 $ Zt ~ 1, the t-channel amplitude can be used to project

out the partial wave:

•
Ums the &llOciated Legendre t1mdion defined br

1 fl dz'QI(Z') = -2 -,-~(z) ,
-1 % -z

34

(3.12)

(3.13)



• we can lub.titute the dispenion relation equ. (3.11) into the partial wave amplitude

equ. (3.12). U.inl the identity [38]

the lth partial wave amplitude becoma

A,(Î,i) = [1 + (-1)'] t:JQ 2
4r

.Q'(")Di.eA(z',i) .Il ...

(3.14)

(3.15)

Now we introduce the Sommerfeld·WatlOn repretentation of the amplitude A(i, i)

The path Cl i. the lame u we uled iD Sec n. Under the hip enell1limit: .i -+ 00•
in the compiez plane of the angu1ar momentum 1u dilcualed in Chapter n,

... Î\ i dl &\ ~( - z.)A(.,t] = -2·(21 + l)A,(;,t] · ,.
Cl , llD 1r'

(3.16)

at fixed i, we have

2;
z. -+ -~ .

t

~(z) -+ (2z)' •

Q,(z) -+ (z)-'-1 t (3.17)

the partial wave amplitude in equ. (3.16) can be rewntten u

•

A('" i' = _..!.. i dl e-1)' + 1 Iv~(i'
l, ~) 4 · 1 ~ 1 ~] ,

1r' Cl 1111.

where Ii( i) i. the Laplace tran.form of the diacontinuity of the amplitude
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•

•
with

,,,,,
1,,,

.

,
,,,

1.
1

1
1

1,,

Figure 8: One of the diagrams eontributing to BFKL Pomeron.

y' = In(%:/2) , 11 = In(.:./2) . (3.20)

It il shown in equ. (3.19), to ealculate aD e1utic amplitude, we need ta ealeu1ate

the dileontinuity of the amplitude. To that end, 1re need to lum OVe! ail Cutkolky

eut diagrams like Fil_ 8 for ail n, with intermediate gluon linel eut. This is aceom-

pliahed by rep1acins the Feynman propqator with the Cutkolky propagator,

which hu the eifect of putting ail the eut lines on mu. Ihe1l

le: =0 .

(3.21)

(3.22)

•
With the kinematiea1 factor
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•
(3.23)

•

the di.continuity of the amplitude in Fil_ 8, with " lummed !rom 0 -+ 00 becomel

Dise[iM=.,,,.. (;,i)] =

f: J';.tio.L(21r)1 (ft d'idllrï~) cII"'+~J. (211')262(E IelJ.)
ra::O 2. '=1 411'(2.) (2.) i=O

· (2i; )26~·' 6i."''' (ig./Mee1 )(ig.r't••')

· .!.eGl(i,)(_-va)!.G1(ii)C1M-va)
• 1 ~t 1 t1

· (ig.JC1~,ea)(ig./elcI,ci )r'" (~t 92)( -g","Î )r~ (q - th tq - th)

· .!.eGl(lt)(WI-_) !.Q(~)(WI-_)· ., ~
t 2 t 2

· _l_eQ(I.+,)(~-~+d_l_eGl(I'.+I)("'-.+I)
• 1t"+1 t"+l

· (ig.J"+lc.+1 )(ig.r'.+''''+l'') , (3.24)

where i = q2 i. the momentum tran.fer and i, = (q - q,)2. The contraction of two

Lipatov veriicet ÏI

Now we need to decompole equ. (3.24) into .inglet and octet contributiolll. It

• can he checked that the octet contribution jUit giVet the regeized gluon exchange,
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•
which provide. a .elf-consi.tency check. But we are more interesteci in the singlet

achange, which i. identified u the BFKL pomeron. Alter we change the integration

variables from I:ï to tli 11IÎDg the conservation of the trauverse momentum, the siDglet

part A(i, i) can be written in a compact fonn

•
We can perform the integral of the rapidity. Firlt we iniroduce a Laplace tranl-

formation ta the left hand aide of the above equation. And then we change the

integration variables to be the rapidity clliferences. The integral over 1/. can be

performed euily and we get

Fl(i) - 10"" d,e-1vDilCA(.i, i)
00 ,,+1

- - 2it(411'a,)2N: E f II
n=O j=l

1 1
· ;;--:- ".,

fi ti 1- 1 - a{tt - t 1 )

· (-2a,Nc )K{th, q2)

1 1

i2i~ l - 1 - a(il - i~)

•
· (-2a,Ne)K(q,., q,,+l)

1 1

i"+l~+ll- 1 - a(i"+l - t',,+1)
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• If we define a function /'(91, i) latilfyinl the foUomg recur.ive relation

Then we CaD tee F,(i) i. re1ateci to thia function u

( t\ . -( 22/ tl'91J.. 1 ("Il t) = - 21t 4rQ,) Ne (2 )2 ( )2 /1 91, t) ·
11' ChJ.. q - th J.

The above recurlÏve relation ÎI the DFKL equation.

(3.29)

After di.cu.aion of the c&Dcellation of the iDfra and ultraviolet cüverlencea, the

Pomeron solution can be found u

• with

(3.30)

Thi. will give a total cro•• section

-,A
(Jeoe =, ·

3.2 Unitarity problem of the BFKL pomeron

(3.32)

•
A. we can .ee from the derivation above the total cro.. section i. proportional to

jÂ, with A = 41n 2a e:'. In SU(3) QCD, Ne = 3. For a coupliDg con.tant a. =0.2,

we get A =1.53•
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•

•

Since A > 1, the total crots section obtained &om BFKL pomeron violate the

Fioissart bound, and thus violata the UDitarity condition. The reuon for this

violation is because only two-regeon exchange amplitude. are inc1uded in the BFKL

P"omeron. For unitarity to be latiafied, an ÎIlfiDite number of Regeon exchanges i.

required. We .hall di.cus. that in the nexi Chapter.
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• Chapter 4. Multi-Reggeon
exchanges

A. we can He iD the above IeCtiOll, the BFKL PomerOD il computed &om tw~

Reaeon-exchanse amplitude, which il actual1, ciominant in the leadiDl-lol approx-

imation u describecl in the introductioD of thil theli.. A. we will He later, the

multi-Regeon amuie amplituda .hown in Fis. 9(c,d,f,... ) are of the order of

• coUplinl con.tant g, the multi-Regeon exchaqe amplitudes pOilai loyer powen

of ln., and can be exdudecl in the leacliDllOIarithm approximation. aD the othel

hand, the UDitarity condition lener.ta hiper mu1ti-Regeon amplitudes from the

tw~Reaeon amplitude, and the ableDce of them cu leu to the violation of uni-

taritY at uymptotie limit. To ratore UDitarity, one themore needl to 10 beyond

the 1eadinl-lol approximation to iDdude ail multi-Regeon exchuse amplitude•.

Before we .tan the calcul.tion in QCD, il i. worthwhüe at thiJ point to review

the calculation of e1ectroD-e1ectron elutic IC&&leriDS iD QED in the high enersy

lîmit. It .hara many ÂmiJarities with the quark-quark e1ulie IC&iterinl at hud,

and hopefully il can sive UI lome pidaace. Couequently, in the folloWÏDI section,

we shall review the QED ca1culatioD int, and then diaCU.I how to leneralize the

• idea to QCD calcul&tioDl, _here the real diflicultiea are.
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(a)

+

(b)

(e)

(i)

(e)

(~)

+

(j)

(d)

(g)

(k)

+ . . . . . .

(11)

+ . . . . . .

•

+1[+][+ ......
(1) lm)

Figure 9: Multi-regeon exchange diqraml in QCD.
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• 4.1 QED eikonal formula

Here we focu on e +e .... e +e e1utie leatteriDl' It hu been mown that the hip

enerlY forward leattering in QED hu the fonoWÏDg propeny [28]:

1. The enerl)' dependence i. the reluit of creation of e+e- in the intermediate

state. It i. of arder of (e4)(e4 ln ,) and ÎI imaginary.

2. The lum of these leading term. liva a total ClOl. aection <l',. = ;J, with

J =1 + 11:;". Thi. riolatel the Froitlart bOUlld[17].

3. The photon rem&Ïnl elementary, Dot reaeized.

• 4. Alter induCÜDg the multi-photoD acha••, the final relult ÎI UDiiary.

The problem of unitarity violation .hoWJl iD point 2 for e1ectron-e1ectroD elutic

scattering in QED i. lÏmi1ar to the problem encounterecl in quark-quark Icattering.

To reltore uniiarity, we need to add in multi-photon exchange. For aimplicity, ta

illuatrate thi. point, we are goinS to foeu. in 'hi. theai. on the limpleai eue by

ignoring pair production. In thi. cue, accorCÜDS to the point 1) above, we Ihall

reproduce a total croal .eciion that i. independeni of ener81. What we need to

ca1culate is ail the pOlaible Feynman diqrama with N-photon exchuged in the t

channel, and then.um N from 0 to oc. Thi. i. Ihown in Fig. 10 for diqr&Dl1 up to

6th order. Ii t11llll out that ail theae diasram. can he lummed mto a compact form

by ulÏDg the eikonal formula and the reaultinl cut diaar&llll. Theae t\Vo techniques
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•
I

Figure 10: QED di&graml for ee ~ ee. Bëre IOlid linel are uled to denote fermion,

and the thin linea are used for photons.

•
1 2 3 n-l n

Figure Il: A tree level Feynman diagram in QED.

will he later seneralized to QCD.

4.1.1 eikonal formula for QED

We look at a tree di&lfam al shown in Fig. 11. First we ule a number to label each

extemal photon line as shown in the picture. We then use a convention a[12··· n}

to denote the amplitude of thi. tree [12··· ft], where the ordering iDlide the square

• bracket il the same al the ordering of the memal photon lines alons the fermion



• line. Let [T1TJ 0 0 0 TH] denote the tree by merlinl ail these [7i] treea tOiether. An·

other u.eful Dotation il {Tl; TI; . 0 • ; Ta}, .hicll ia UJed to denote the .um of aU

tree dialfam. obtaiDecl by interleGtlÎng the tr.. Tl' TI, 0.0, TA iD ail poalible _ay••

For example if Tl = [123], TI = [45], Thea [TITI] = [12345], and {Tl; TI} contaiD

the followinl 10 tres: [12345], [12435], [12453], [14235], [14253], [14523], [41235],

[41253], [41523], and [45123]. We alao UJe o{T1; TI; 0 0 • ; TN} to denote the .um of

a1l the amplituda carT] for every tree T in the let of {Tli T2;·· • ; TH}'

Conaider the limit where the momentum , camee! by the fermion liDe i. much

larger than the momentum ~ camee! by the ith photon line, we can rewrite the

•
denominatior of a fermion prop&lator u

, i

(, +E kJ)1 - m' + ie ~ 2,· I1 kJ + ie t

j=l j-l
(4.1)

Usinl the notation above, the amplitude of the 'ree diagram iD Fig. Il ca be wriUen

"("-1 1 )(1[12··· n] = -211'i6(E kil E E~ le.' c.
;=1 '=1 /=1 ,. ,+ le

{4.2}

where C containa &Il the QED factor•. Ta let equ. (4.2), we have uaed high enerS1

a.pproximation. (See App. B for normalisation 1re choo.e.)

It hu been found in [31] that under thi. hip energy approximation, the ampli-

•
N

ca{T1; TI;' .. ;TH} = I14[2i] ·
i=l
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•

•

Thil can be proven al (OUOWI. Conader [T] =[t1t2 ••• t,,], ths 4[T] il itl amplitude

arT] =(-i)"100

d"'e.l°O° d"'e._1 100

• o. (00 d'rel exp (it ",,,r,,). (4.4)-00 -"''' -'_1 J""" ,=1

Yerforming the intqral of 'r, 1re CaD set back to &Il exprellÏon similar to equ. (4.3).

Note that the integration variables are ail in the order 00 ~ 1"'1 ~ 'ret ~ ... ~ rte.

When 'Ile aum oVe! all the treea be10DlÏDg to {tl; t2; ... ;t,,}, the intqratioD variables

re. retainl the ordering ouly within each individual tree Ti, and (or each tree they

integrate !rom -00 ta +oc. Therefore, it i. just the produd of the amplitudes

of the correapoDdiDg tren. This factorizatioD formula ÎI limilar ta the strins-Iike

representatioD in Ref.[39]. It remailla valid when the photon linel are oft"':lhe1l.

Thia factorizatioD can be exhibited sraphically br putting a cut (a vertical bar) in

every propagator between treea Ti and 7i+l' thereby chaDPI the Feynman tree

a Feynman propagator with factor 1/[(, + X)2 - m2 + if] ~ 1/[2p . X + if] into

a Cutkosky propagator with factor -2~i6[(,+ X)I] ~ -21fi6[2p· KI. With the

definition of 4[7il given in (4.2), it il DOW obvioUI that (4.3) can be written u

a{T1; Ta;·· .; TN} = n~l 4[T,] = 4[T1ITal·. ·ITN]. In ahort, a aemi-colon "i" can

be replaced by a vertical bar "1", and both can be interpreted u a Iymbol for the

factorisation of the amplitude.
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(a)

(d)

(b)

(e)

(e)

•

•

Figure 12: 6th order Fe)'1UDaD cüapam. in QED.

4.1.2 eut diqram in QED

We Ihall cü.cu•• in thi. section QED electron-electron elutic .catteriDl in the hip

enerl7 Iimit. We fint look at the 6th order calculatioD, then we give a geDeral

argument for biper order calculation•.

Allia Feynm&ll diapaIDI at the 6th order are .hoWD in Fil. 12(a)-12(f). If we

label the bottom of the photon lina accordin. to the orderinl they are joined to

the bottom fermion line, the n! = 3! = 6 cüapama are re1ated by the permutation

of the upper scla of the photon line•. U.inl equ. (4.2) and (4.3), we can apply the

factorization formula Aboye to the top liDe, and cut ail the fermionic propagator. on

it. In general, for (2n)th order, there are n! Feynman cüagrama, and every fermion
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(a)

-- 1
6

(b)

•

Figure 13: A relation between Q"ED eut cliagram••

propagator on the top fermion line can be cut &1 well. Thi. il Ihown in Fig. 13(a) for

ft =3. Sïnce putting & eut on a line il eff'ectively makinl it on-sheD, the ft photon

linea joined to the top fermion line CaD. be permuted al will. A. a reault, further

permutation of these photon lin. &lonl the bottom fermion line will Dot change

anythinl. If we IUID up ail the n! permutationl of these " photon lines, we can use

the f&ctomation formula "Iain and ÏDtroduce a eut to ail the fermion propagators

on the bottom line u well. Thui we can let the identity shown in Fig. 13.

To perform the loop momenta integrala, we ule the lipt-cone coordinate we

introduced belore. The loop momentum integral for each independent loop can be

written &1

loopl ~ choose, there are two oD-shell 6-functions, one on the top line, the other

We will choose the n - Ilma1leat loop. to be the independent loopl. For each of the•
. 1 JI 1 ,1A-dq+ 1 .J2
'(21r}4 a-q = 81f2~ (2r}2a-q~. (4.5)
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• on the bottom line. Theae two 6-fuDctiolll willget rid of the q+ and q- intqralat

and leavinl behind om)' the tralllverae momentum intqra1l. For (2n)th order t thiJ

amplitude il .impl)'

where â i. the momentum tran.fer. We CaD aee that the function l,,(â) i. the nth-

power convolution of Il with itae1f. Thu if .e perform a Fourier tran.formation

and chanse it into the impact-parameter-.pace, it will become a limple product:

i,,(6) = [11(b)]" . (4.7)

Thu. the (2n)th order of the T-matrix iD the impact-parameter-.pace can be i. given

• by

1',,(6) . 1 [ . Il- (1.)]"- =-1- -19 1 0' •2. n!

It can then he .ummed up for ft from 1 to 00 to let

~ 1',,(b) .~ [-ig l i1(6)]" . (' 21- (1.» 1'-' -- = -1~ r = -1 exp -lg 1 0' - •
tt=1 2, n=1 n.

(4.8)

(4.9)

To get back to the momentum .pacet we carry out the inverae Fourier tran.orm.

Thilyie1da

(4.10)

which i. called the eiionGljormulo. The amplitude giva by thia formula i. UDitary.

Note that it i. important to indude the contribution of multi-photon. to obtain

• . unitarity.
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•

•

There i. no , dependence on the right-hand ode of (4.10). It i. important

to realize that thi. i. not the eue for individual Feynman diqram., which may

contaïn (even high) powers of ln,. When Feynman diasraml are .ummed and the

factorization formula (4.3) ia uaed, these ln, power. ail let cance1led ta yie1d (4.10).

Thi. i. becauae the Bom amplitude with one-photon exchange i. , mdependent, 10

if the multi-photon amplitude ie factorized mto product of one-photon amplitudes,

it must be , independent as well. Somethinl similar alao happen. in QCD, 50 it is

important to underatand in a more general way how factorisation (4.3) is re1ated to

cancel1ation of ln, factors.

A. noted belote, factorization i. equivalent to replacing certain Feynman prop­

agators 1/(2,· X + if) =l/(z +iE) by the CutkOlky propagatore -21ri6(2p· X) =

-21ri6(z). H a ln, factor arises !rom the oripal Fëynman diagram in a loop con­

taininl thi. propagator, it cames trom integr&1a of the form 1tk/ (z + if) - ln"

in which the lowet limit of integration i. proportional to 1/'. In the corresponding

eut diagram where liez + if) i. replaced by - 6(z), the integral i. converlent, thus

losing the ln, factor.

4.2 Generalization to QCD and- related difBculties

Now let u. look at quark-quark e1utic scaUering in QCD. ni Don-abelian nature

prevent. simple factorisation ta occur &1 in the eue of QED. However, it i. known

from leading-ios calculationl [4O} that gluons are regeized at hîp energy though
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photonl are note So one mipt think that sJ,uona Ihould be replacecl by Regeona

before factorÏlatioD CUl take place. Thil tuma out to be the cue u we Ihall dilcul'

in the nm Chapter.

The factorisation of RegeoDi alao let. rid of IOme of the ln. dependence of

the correlpondiDl loop, u diaculled at the end of the lut aectioll. Thia can help

UI eltimate the ln, dependence of the bal UIlplitude. AI pointecl out belore, a

Reaeon ia made up of numerou. l1uona. In ,meral, in an n-Regeoll achule

amplitude, n - 1 factorl of ln, are removed b, factorization, 10 thia pva u. a

pow:er of ln, u bounded by

(4.11)

In principle, equ. (4.11) tel1l ua that 1re neecl to calculate cliapUDI up to thia

subleadinl order, in order to prove that 11Imm jDI Feynman diasrUlll can yield a

multi-reaeon exchule unplitude. Direct calculatioDi were carried out to the aixth

order [28], which Ihow. that IUch multiple RegeoDl are indeecl preaent. However,

direct calculatioD' to the 8th and lOth order. encountered intrinuc dülicultiea unable

ta be overcome with the Ulual teduùquea, 10 now twenty yean later, we are still

searchinl for the complete proof of the emerleace of multi-Regeona from lumminl

Feynman diagrunl. We Ihall make IOme propea. in tbis theaia uainS a new technique

to be clilcuaaed in the Dm Chapter.

Teclmically, there are the foUoWÎDI difticultia to be overcome:
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1. The calculations in Non-Abelian theorin are more difticult the thole in QED,

becaule the vertex of interaction in Yang-Mille theoriee[30] are more compli­

cated. AI one of the relultl, QCD involvel muy more Feynmu diqrlUlll

comparee! to the lame order calculation of QED. It wu reported that for the

8th order calculat.ion, thoulancit of diapaml have to be included in the com­

putation. And the sit.uation getl even woree when higher order calculations

are under consideration.

2. The Yang-Mille vector meson, here the gluon, canin color and may emit other

vector mesons. This contruts with the situation in QED, where the photon

is chugeless and cannot emit other photons. It makes the Feynman diagrams

in QCD more complicated. When we intesrate the lonpt.udinal components

of each loop momentum, we will encounter a multi-dimenaional integral.

3. The hip energy amplitude due to the exchanle of lauge bOlOnl il always

proportional to • timea a power of ln.. For most Fëynman diagrams, thi.

power exceed. two. Thua the contribution to the Icattemg amplitude from

individual Fëynman diasram alwaYI violates the unitary bound , ln2
,. Since

the lum of all these Feynman diasraml muat. satiafy the unitarity condition,

extensive cance1latioDl must occur in the lummation. According to equ. (4.11),

contribution of powera of ln. larger than m will be cance1led in the sumo

Consequently beyond the leading IOSarithm approximation, which i. usua1ly
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an impo.aïhle tulle We will diacu.. a method in Chapter 5 wherehy thi.

unpleu&Ilt c&llcellaûon cu he avoidecl.

4. On account of the preaence of non-commutiDl color matrices, QCD amplitude.

do Dot factorise u mply u the QED amplitudea, and QCD .-ch&lUle1 dia­

gram. like Fil. 12 cannot be .ummecl up to be a .ingle di&Fam di.played in

Fig. 13, where no ln, factor. appear. The up.hot ia that there are many more

nOIl-trivialln, dependencel to compute iD QCD. To compute them we follow

the technique in the book of Chenl ad Wu [28] where Iightcone eoorclinatea

are u.ecl for loop intepatioDi. If Ir. il the 100p momentum of the 4th loop,

the intepatioD oVe! 11.+ il done exact!y Ulmg relidue calcula. To carry out

thi. intqratioD it i. necea.ary to mow .hich of the pola lie iD the upper

k.+ plane and which lie in the lo.er p1aae, U omy pola in one half plane

contributea to the intesral. For that purpOle Chenl and Wu inventeci /lOti) di­

CJgnI"", which C&D be resarded u & lIaphica1 ..ay to keep track of the location

of thele pola. For ODe 100p thia method worb beautifully, but u the number

of 100p. mue... the .traight-forward application of thia method becomea Dot

only difticuIt, but IOmetimn even problematical. We .hall di.cul. in Sec. S.l

the problema encountered with tm. method and & Dell' pGt1a metAod to lolve

the difticultiea.

S. A. we found iD the above calculatioDl of QED, the final rauIt CODtaïna two
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parti: , and ln. to a certain power, and the coeftieient of the tranlverse

momentum intesraIJ. In QCD, the iranaverle momentum intesral for certain

Feynmu di-.raml ia diversent. Accordins to the 6th order calculationl [28],

part of thia divergence contribution comes &om infra divergence, and can be

renormalized by introdueinS mu. to the gluou [41]. The reat sets CaDcelled

when we lum up the corresponcling Feynman diasr&DlJ. The cancellation part

is complicated for hiper order calculation, u a reauIt, for the publiahed 8th

and 10th order calculations [24, 45], this kind of cancellation wu usumed to

be irue without prooi. We .hallshow in Chapter VI that by UJÏDI Don-abe1ian

eut di&p'aJDJ, 1re can reorsanize a special kind of Feynman diasram. in such

a ""'y that ibis kind of cancel1ation tùea place before the actual calculatious.
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Chapter 5. Relevant techniques

In thia Chapter, we ~e 10iDi to deal \Vith the clifticultiea mentioned at itema 2

and 3 at the end of the lut Ch.pter. Item" will be diacu.aed iD Chapter 5.1 and

item 3 will be dilculled iD Chapter 5.2.

5.1 Path method for integratioD

S.l.l Re.idue ealculu8 aDd 80. dl.ram

• Given aD '·loop Feynman diapam, we eu write itl amplitude u

( i )' (' ) NT =- 2(2 )4 f II 'Ir.~tUt.-tl1I.+ II: D.·
1f ••1 _=1 •

(5.1)

The numeraior N cont&iDJ the venica and oiher necealary factor.. Each ïndepen·

dent loop momentum Ihall be intepateci from -oc to +00. In what followi we focui

on quark·quark e1utic IcatteriDl, and talle the high enerlY limit , >> -te We will

alao ulume that ail the particle. are mulla.. We will UJe the lame convention. as

thole uled for QED Feynman di&Fam in the lut Ch.pter. In addition, we .hall cali

the upper fermionline of a Feynman diacram the top line. !t. momentum hu onl)'

"+" componentl with mapiiude v'ï. Simllarly, the lower quark line .hall be called

bottom line. Ii hu om)' "." component with mapitude of,fi. For euh propacator,
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•
the corre.ponding Di ia

(5.2)

•

where tli ia the momentum pU1ÎD1 throup that prop&lator. Since q, ÎI a11ray. linear

in ~, the independent loop momentum, 10 i. Di. Therefore, 1re can carry out the

dlco+ integratioDi by uaiDg residue calculua. We chooee the contour to be the real

&Xia and a semi-circle at infinity. Thi. aemi-cirde can be either on the upper half

plane or the lower one, determined by conveDÏence. Each of the internai lines in

the "loop gives nse to a pole, and our tuk i. to determine whether tbit pole ÎI on

the upper plane or the lower one. For thi. purpoee, flo....diasrama _ere introduced

by Cheng and Wu [28], wmch will be brieS, reviewed here. We will then point

out difticultiea emerginl in hiper order caleu1atioDi that have Dot been mentioned

previoualy. We ,hall provide 101utioDi to theae probleDll in Chapter 5.1.2 [34].

Whether the pole at dt = 0 of the d"-. intesral i. on the upper plane or the

lower plane depend. on the aip of the coefticient of 1:.. in that denominator. See

equ. (5.2). A low diasram i. a cODvenient way to keep track of the reiation. between

these signa. Sïnce the coefficient of '-+ in the ith prop&lator i. just q,_, the location

of the ith pole depend. on the IÎp of qi-. The low diasram ia jUit a Feynman

diagram with aD arrow on each line inclicatÎDI the direction of the low of the "-"

component of the momentum of thia line, vis., the aip of 9i-. To .atilfy momentum

• conservatioD, there muat be lome incoD1ÎDg momenta and IOme outgoing momenta at
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Fipre 14: Two examplea of 80'" cliapam••

each vertex. The lina with the ano•• poiDtiDl iD the lame (clockwiae or cOUDter·

dockwiae) direction eontribute to pole in the .ame hall plane, while thoae with

ano•• pointinl in oppoaite directioDi pve ri.e to pola in the other half plane. A

Feynman cliasram can have several 80w diapama, each of them correaponda to a

dift'erent integration regioD of the "-" component of the momentum. For example,

Fig. 14(1.) depict. a Sow cliapam of .. two.loop Feynman diagram, and Fig. 24(b) i.

a flow cliasram for a four.loop Feynman cliapam. In the 100p (1,5,3,6) of Fil. 14(&),

the poles for lina 1 and 6 lie in one hall·plane, and the pola for linea 3 and 5 lie

in the other hall. Similarly, iD the loop (2,6,4,7), the pole for linea 2 lia in one half

plane of th..t loop variable, and the lin. 6,4, and 7 lie in the other half plane.

Tbere are two general aimplificatioJll that C&D be made on low diap&IDI. Fir.t,

at high energiea, a proP&l..tor OD the top line can be approximately written ..

•
(5.3)
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It il independent of the "+" eomponent of the loop momentum, and can be ipored

in the integration of "-+. For tbis reuon, we may merle ail the propagatorl on the

top line in a So. diagram and ignore them.

Secondly, a flo. diasram with a loop with ail the &rrO.. poiDtins in the lame

direction can be neglected. The reUOD ia that thil meui all the poles are OD the

lame hall-plane in the intqration of the loop momentum of tbil loop. When we

choole the other half-plane to dOle the contour, we lee that the amplitude for thil

Fëynman diagram vanilhee.

To lummarize, given a Feynman diasram, we mUlt fint decide ho. the minus

component of the momentum IOes around the diagram accorcling to momentum

conservation lubject to the condition that the)' do Dot fio. ail in the lame direction

around any closed loop. Thil will give u. ail the pOluble fiow diagraml for to

tbil Feynman diagram. Thi. il buically the method invented b)' Chens and Wu.

HOwever there are severa! lubile point. in the approach which have been ipored

before. Theae points are quite seneral, not limited to quark-quark elutic scattering.

They will be CÜICUlaed be1ow.

5.1.2 Line reversai and path method

From the above discussion, we can lee that the position of a pole ÏI determined by

the op of qi-, or equivalently by the anow direction on the flow diagram. This

• il true belore any k.+ intqration ia performed. Bowever for multüoop diagrams,
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• we perform IOme of the "-+ integratioDI, the arrow mipt Dot indicate the IÏp of the

"-" component any more. The reUOD for that wiI1 be explaiDed be1ow. Nevenhe­

lei', it turBl out that thia problem cu Uluall,. he bypuaed iD low order calculations

by choolÎDl luitahle independent loopa, and/or cWrerent orden of iDtepatioDi. A.

a reluIt, it il a point that hu been DecIected Ua the literature.

To undentaad the problem iD ulÏBliow cti&lf&lllJ for multi-loop IÏtuaûonl, let

ua IUPPose thue are "1 pola picked up b,. the Ant loop iDtesratioD Jdlct+, each

contributinl to a term in the iDtepal. AI a reauIt of the mtepation Jel + acquires aa

imaginary part =Fif./fli- &om the ith pole. The IÎp il -/+ if the direction of kt +

and qi- are the lame/oppOlite. Thia imasiDUJ part in tum imparti &Il imasiDary

• part on every fIJ+ of the fint loop, which ÎI wh,. the location of poles for the second

and subsequent int.atioDi ma,. be altered. For mpliat)', we Ihall alume from

now on that (i. bite &Ild poaitive, and hu a commOD value iD ail the propasaton.

Thia imasiDuy part of '1+ affectl the locatioD of poles in lubaequent iDtepationl

anly for line. j lyiDl in loop 1. In that cue, the imasiDary part of the quantit)' Di

in (5.2) i. chulecl ûom if. to

if.(=f/lj-/ fi- + 1) , (5.4)

.-
with sigD -/+ -hen lina ; and i are in the lame/oppoaite diredioDi around the

loop 1. UnIe•• the lip il - and fIJ > ft, the imasiDary pari of Di remaiDa pOiitive

and the location of pole j in lubaequent iDtesratioDi ia once &laiD determinecl lolely
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by the direction of its &rIOW &round the intepation loop, vïz., it can be determined

directly from the ilow diqram. Bowever, if linea i and i are in the lame direction

around the fint loop, and that 9i > 'li, then the IÏp of the imagiDary part of

Di becomet nesative, and the pole location (upper or lower plane) will now be

opposite to naïve expectatiolll from the fow diapam. Thil situation can still be

accommodateci œto the ilow diagram ü we aimply revene the anow of thil line.

Thil is floVl "ver.al.

To see how fow reversai work., we ir.t look at a simple example .hown in

Fig. 14(a). This is a tW4>loop fiow-diasram. The COrresponclinl Feynman diagram

hu two fow diacr&llll. The othet one can be obtaiDed bylipping line-6.

We have the freedom to chooae difFerent independent loop.. Here we tùe Il =

(2,6,4, 7) and 12 =(1,5,3,6) u iDdependent loop•. We can perform the loop integral

of either one fit.t.

II irat : For Il, we can tùe the pole on line-2. Thea alter the integration of thisloop

momentum, the loop left i. 12, and ft can take 1ine-5 u the pole(remember

the remark iD equ. (5.3». So the poles lie in lins (2,5).

12 fU.t : For 12, of coune, we C&Il choose only 1ine-5 u the pole. But 1re can &Iso

chooae both line-l and line-6 u polee. It i. the latter eue that givee problem.

So we look at thil cue here. When 1re take the contribuÛDI pole &am line-

• 1 to perform the loop intepal of 12, then the loop left alter thia ia still Il t
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• and we can pick 11p line-2 u the pole. Now take the pole of 12 from liDe-6.

Sïnce line-6 ÏI on the bOUDdary of Il ad 12, the remaiDiDl intepation mUlt

be conducted ol1loop 13 = (1,5,3,4,7,2). Without liDe revenal, tmlloop hu

two pola: line-l, and line-2, 10 we bail)' ad up tÙÏDI the pole contributioDl

!rom (1,2) + (6,1) + (6,2), which il Ilot the lame u the above one. To get

the right an.we!, 1re have to tùe ÎIlto accouni line revenal. When 1re chooae

line-6 to perform the 12 iDtesral, becauae " < 91, 1ine-1 leil revened. So that

in the intepal of 13, omy liDe-2 .hould be taken u eontributiDl pole. Thui

the an.wer i. actual1y (2, 1) + (2,1), which il jUit the .ame u (2,5).

A. we ean tee &om the above eumple, line revenal mut be t&ken into account

in order to let the ripi &DIwer. At 10. order calcu1atioDl, then mipt be waYI to

bypu. liDe rever.al U 1re poiDted out above, but at the multi-loop leve1, when the

independent loop. become more iDvolved lib Fil. 14(b), line ~venal il mentable.

The situation becomea even worle, becalUe there i. Dot a UIlique way to chooae

the independent 100p., nor a UDique way to chooae the order of intepatioDi. Allo,

when the pole 1re pick up ÎI on the boundary of the independent 100p. 1re choole,

the loop. IhariDl tm. boundary will be merled alter we perform the correapondïng

integration. Tho iD seneral for a multi-loop diapam detailed calculatioDi mu.t tùe

place 100p br 100p, \Vith careful eoDlideraiioD of liDe rever.al and loop merginl, 10

u to obtaiD the correct cOlltributinl pola. Thia maka the explicit calculatioDi at

• higher order extremely mes.y.
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To demonairaie how tedioUi ibis procedure is when the old method is used, we

conlÎder a four..loop level diagram shown in Fig. 14(b). ARer trying clliferent choices,

one will bd out that the IÎmplett eue for independeni loop. ia Il =(4,8,12,13, 7),

12 = (5,9,3, 11,12,8), 13 = (13,12,10, 1,6), and 14 = (10,12, Il,2). We do the

întegraiionl accorCÜDg to tbis order, becaule ii tuml out to be the most convenient

order. Firat we introduce lome notation to simplify the dilculsion. We Ule 11(3) to

denote taking line-3 u the pole in the intqratioD of loop 11. And we ule 11.12 to

denote the union loop of theae two. Thi. union loop can be conltruct by mergiDg Il

and 12, and deleting all the boundary Unes.

For Il, we can take line-7 u the only pole. Becauae line-7 is Doi on the boundary

of &DY of the independeni loop. we chooae, 10 that we are left with three independent

loops 12, 13, 14. For 12, there are two pOiaible polet: 12(3) and 12(11). And we need

to consider these two pOiaibiliiies leparately:

1. 11(7)12(3)

For 13, because agaiD 1iDe-3 i. Dot on the boundary of the independent loop.

we choose, 10 when we perform the integratioD of 13, we can choose 13(1) and

13(10).

(a) 11(7)12(3)13(1)

We can talle line-10 and line-l1 u the poles for 14, and get 11(7)12(3)13(1)14(10)+

Il(7)12(3)13(1)14(Il).
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(b) 11(7)12(3)13(10)

SiDce lin.l i. on the bounduy of 13 and 14, therefore the loop left i.

13.14. In addition, becaule 91 :> 910, 10 that line-l ÏI revenecl. Therefore,

we have omy one coDtributiDl pole for thiJ cue: 11(7)12(3)13(10)14.13(2).

2. 11(7)12(11)

Becaule line-ll ÏI on the bOUDdUJ of 12 and 14, 10 what ia Ieft no. il 13 and

12.14. It i. limpler to do the intepal of 12.14 ir.t. Note that 1ine-3 i. reveraed

due to the fact that ql1 > qa iD lm. cue, 10 for 12.14 omy 1ine-2 i. taken u a

contributinl pole. We have then 11(7)12(11)12.14(2). And for 13, we take line­

1 and lîne-l0. And the contributioll pole il then 11(7)12(11)12.14(2)13(10) +

11(7)12(Il )12.14(2)1(1).

Therefore, in total thereare 5 contributiDl pola for thia diasram: 11(7)12(3)13(1)14(10)+

11(7)12(3)13(1)14(11) +11(7)12(11)12.14(2)13(10) +11(7)12(11)12.14(2)1(1).

Thi. i. DOt the only way to let to the &DIwer, and taking another way would be

many more compücated. For example, ifwe chooae to do 14 alter we perform Il, then

we get to 11(7)14(11) +11(7)14(10). For thae two C&IeI, we need to compare 910­

with 911-. Thil complicates the diaCUaioD a lot, &lthough alter careful dilcu.lion

we can still get to the right anlwer.

Fortunately, there i. a recipe to solve thia problem. We ,hall call thi. the ,oth

metlaod in the folloWÎllg.
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For a general mwti..loop flow di&!fam, we tirat choote a path P of the "-" flowi.

It i. defined to be one of the continuoUi tree patba in which the "-" momentum

goea throup from the bqinniDs to the end. In principle, &DY one of these path.

can be usecl to bd the contributinS poles, but for a reuoa 1ft: will Iee later, we

choole the longeat path 10 &1 to malte the practical calculation simpler.

Let UI lee how ta let contributÏDg poles from the path. For &D I.loop flow

diagram, after we chOOle the longeat path, the internai lines that are not on the

path are called removetllines. In general, the number of these removed liDel Np can

he larger ihan or equal to 1. A contributms pole Ïlilinei se1ected &am Np removed

• linel. We can bd ail the contributing pola accordins to the folloNS tlirectionG1

MUe6.

Rule.l If Np = Z, then ail iheae Np removed linel are the on1y contributing pole ta

the tlo. di&lfam.

•

Rule.2 If Np > l, then there ÏI more than one cODtributms pola. Any one of them

contaiu Zhea. Theae llinea will latidy the fol1owinl condition.. (i)RemoVÏDg

thele '·ha from the orisinall.loop dialfam render it into a tree;(ü) When

AnY one of thae lliDa ÏI iJuerted back to the tree, a loop i. formed. It il

called nGtunalloo,. And the direction of thil inleneclline mu.t be opposite to

the naturalloop it recoutructed.

Belore we prove ibi. directional method, we fint coDlider the example of a
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four-loop diacrun .hown in Fil. 14(b). The IODaeat path can he tùen to be

P = (6,13,12,8,5,9). The removecllinea are (7,3,1,2,10,11). We can tee, if

we inaen line-7 to the path, it latida the directional rule. So every contribut·

ing pole Ihould contain line-7. We .till need to chooae 3 linea &am the rem&ÎD·

iDg (1,2,3,10,11). There are 10 po.libilitia. (7,2,3,11) and (7,1,2,10) violate

rule.2.(i), becauae there i. a loop remaiDinl even alter theae 4 linea are removed.

(7,3,10, Il) violates rule.2.(ü) when Une-11 i. inaeneci; (7, l, 10, Il) violates the

same one when line-10 i. iDaeried; and (7, 1,2,3) violata that rule _hen liDe-2 i. in·

serted. Therefore there are 5 contributiDl poIes: (7,3, l, 10), (7,3, l, Il), (7,3,10,2),

(1, Il,2, 1), (7, Il,2, 10). A compariaon with the ordinary meihod uaecl above shows

the high efticiency of our method. A. &Il additioDal aclvantase, thil method can be

easüy implemented into computer prolf&llll [42]. A luccalful example hu been

written up in M 4tAemGticaJl and C.lanP&le.

In .ummary, thia method 101ves two problelDl at the lame time, i. e. it choolea

independent loop. and the contributiDa pola.

Now we proceed to prove the above rule•.

ruIe.1 It i. euy to prove tm. rule; notice the fact that we are uaina 80. diacr&Dl'.

If N. = l, thm when we inIert any of theae llina to the path, it forma the

correapondinl natura! 100p. In thia loop, only the inlerted he i. Dot on the

path. Accordinl to the defuütion of the path, all the othet lina are in the

lame direction. The ÎIlaeried line muat he in the opposite direction becaule
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thia il a flow diagram. Thui it i. the pole we take for thiJ loop.

rule.2 For an l-loop diapam, 1re can choose the path P accordins to HI ddinition.

Allo from tm. diqram, we can obiain treea br removiDs llinea. We call the

sei of these trees thai .hue path P .. iheir common backbone 5[P]. T[P] i. a

sub.et of S[P] latialyins the condition that each tree in T[P] correspond. to 1

removed lines which are a lei of contributinS poles. Then there i. a one.to.one

conespondence between the contributinS poles and the trees in T[P]. A tree

t in T[P] defines 1naturalloop. N[t]. The special feature of N[t] is that the

removed lines are Dever on the boundary of two naturalloop. of the original

diagram.

The proof i. thm bued on the fonowine three ...umptiODl, which will be

proven in the Appenctix. They are : i) T[P] i. never empty; ü) none of the

lines in the contributiDs polet are in the reversed direction when a pole i.

taken !rom them; and (üi) the lame contributinS poles never occur more than

once in the let.

There are also two observationa: i) the contributinS poles we ta.ke Ihall al·

ways have anow. numïnS in the opposite direciion .. tho.e on P; ii) these

contributinS poles are îndependent of the choice of loop. and the order of

integrations from which they are obtainecl.

Talle to from S[P], we have a let of naturalloop. N[to], accordins to Ulump-
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5.2

tian il. Beaule of ulumptioD ü), we CaD perform the intqratiolll iD theae

loop. and obtain the cootributiDl po1eI, each of them correspoodiDl to & tree

in S(P] obtained by removinl the contributiDl poles !rom the original di&llam.

Thi. let of treea will be deooted bJ T'[P]. We need to .ho. T'[P] =T[P].

Any tree in T'[P] mut .atilfy the directiona1 rWes, 10 1re have T'[P] < T[P].

On the other hand, if 1re take a tree frOID T[P], and ule the correapondinl

Ilatua! loop. N[t] to compute the contributiDl poles, and bued on the two

ob.erv&tion., we CaD cOlldude that the lin.. removed to get t from the original

diagram. are olle let of the contributin, pola. Thu. T[P] < T'[P].

Therefore, we cu tee that T[P] =TirP], &Del it proves our directional method.

Non-abelian eut diagram

The multiple commutator formula i. a lener&lisation of the mona! formula to the

non-abe1ian amplitude [31]. We will fint present the formula here, and then give

example. to illUitrate how ta Ule tm. formula. The complete praof will be preleoted

in the Appenclix.

When 1re compute a tree proce•• in a Don-abelian gauge theory, we rite the

amplitude of & Fe1JllllaD di&ll&D1 in two part. u belore.

4[123· .. n1· t[123 ... n] == 4[123· .. n]tlt2t3 ... t" , (5.5)

• where t. ia the non-abelian color factor ulOciated with the vertex. The multiple
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commutator formula states that

E G[D']t[D'] = E G[D']et[~ ,
'e~ ,e&.

(5.6)

where Sft = {li 2;·· . ;n} i. juat ail the permutation of (1,2,·· . ,n), G[D']c i. & cut

amplitude for the cut diagram [D']e, and t[D']~ is the correaponCÜDlnonabe1ian factor

computed !rom the complementGry cut diGgram [D']~. The cut di&!fam and the

complementary cut diagram are defined in the folloWÏDS way. Proceeding !rom left

to right along the tree [D'], a eut i. put &!ter a number iff there is Dot a smaller

•
number to its ript. Bence, we can have the followiDg example:

[1234]c = [1121314], [2314]c =[23114], [4321]c =[4321] . (5.7)

The complementary cut diasram [D')~ i•. the one where linel eut in [D'le are Dot

cut iD [D']~, and vice versa. Therelore we have

[1234]~ = [1234], [2314]~ = (213114), [4321]~ =-[4131211] . (5.8)

To calculate the Don-abe1ian factor from the complementary cut diagram, we

replace a eut with a commutator. So that

proof in App.A.

Bere we jUit look at two examplel for n =2 a.nd n =3, and leave the complete•

[2314]~ = (213114) = [t2, [t3 , t 1]]t. ,

[432l)~ = [4131211] = [t., [t3 , [t2, t1]]] • (5.9)
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• 1. n=2:

Accordinl to the rule above, we C&D have the cu, CÜ&F&IDI u:

G[lI2]t[12] +G[21]t[211] • (5.10)

•

•

To lee dU. i. the rip' an.wer of the .umm.tion of aIl the Feynman diagram.

for" = 2, we CaD ju.' expand all the eut.:

4[lI2]t[12] + 4[21]t[211] = (G[12] +4[21])t[12] + (I[21](t[21] - t[12])

= G[12]t[12] + (I[21]t[21] . (5.11)

2. n=3:

The amplitude can &gain be written u:

4[11213]t[123] + 4[1132]t[1312] + 4[2113]t[2113] + 4[231][21311J

+ 4[3112]t[3112] + 4[321]t[31211] • (5.12)

Alain a .traightfonrard expanaion of all the cut. can re'tore the 6 Feynman

diagraml.

69



•

•

•

Chapter 6. Calculation of­
diagrams up to 6th order

In tm. section, 1re are soinS to use the techniques iDtroduced iD the previoui

chapter to re-do the calculation of ail the Feynman diasrama up to 6th order. Fur·

thermore, we will use the calculatioDI here U aD illustration of ho.. to do higher

order computation•• All the Feynman diasrama are siven iD FiS. 15. Note that from

now on, for aimpllcity, we cira.. the fermion lina ( the top line and the bottom ÜDe)

the lame &1 the sluon line.

As we can aee from the QED cue, br iDtroduCÏDI cuts to the top line of the

Féynman diasrama, we can aimplify calcu1atioDi. With tm. in mind, 1re iDtend

to do the lame thins for Don-Abe1ian Feynman diagram. up to 6th order in tbis

chapter. All the relevant Feynman diagrUlll are shown in Fil. 15, ulmS the lame

convention &1 iD Ref.[34]. All the diasrams can be divided iDto 2 !lOups according to

the different topolosy. The ir.t group contaiD. aU the diagraml with lame number

of gluon lines joined to the top ÜDe and the bottom line, the second group consistl

of all the rest.

Group 1 Thil group conlÏ.tl of the 2nd order diasram Al, the 4th order diagrams Bl

and B2, tOiether with the 6th order diagrams GIS, C16, 017, C18, C19, 020,
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• IJII
Al BI 82

TIIIIIIXIX
Ca C9 CIO Cu Cl2 CI3 Cl4

TIIXITlIXXX
Cl' C16 Cl7 Cil C19 C20 C21

• Fipre 15: Feynman cli&ll&IDJ for quark-quark e1utic IcatteriDlat 6th order.

C2l, Cl, and C2. We cu iDtroduce cut. to t.he top liDe by a direct applicat.ion

of the Don-abeUu cut cliapUDI mentionecl iD. the lut chapter. Fint we look

at Al, BI, 82, C15, C16, C17, Cil, 019, and C20. Theae cliapUlll contain.

omy fermionic vertica. We Ihall cali them ,·cMrarael'Gtltler tliGgrarru [34]. If

we remove the boitom line of a ..ch&lUle11adder diasram, it will hecome & tree

diagram. Bere -e 11Ie C18 U aD example. The reau1tiDl tree by remoVÎDI the

bottom he i. ahoWD in Fig.lS. Each puoa liDe ÏI giva a number u illuatrated

in Fil. l6(a). UIÎDI the rule introducecl iD the lut chapter, we mow that the

•
Ipacetime diapam CaD he cut u in Fil. l6(b). A. for the color cliapam, it C&D

be cut accordiDl to the complementary ru1e U followi. Sïnce the propagator
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2 1 3 2 1 3

X 1 X 1
2 3 1 2 3

(a) (b)

2 1 3 2 1 3

>< 1 x [
2 3 1 2 3

(C) (d)

•

•

Figue 16: AD example of ulÏIlS non-abe1ian eut diasram.

between lins 1 and 3 ia cut in the spacetime diagram FiS. 16(b), it should

not be eut in the color diasram FiS. l6(e). And the propasator between line

2 and 1 il DOt. eut in Fis. 16(b), so it .hould be cut in FiS. 16(c). Br putting

back the bottom line, we let the non-abelian eut diagram for C18 u .hoWD in

FiS. 16(d). Thil eumple .ho•• how t.o apply the rule introduced in the lut

chapt.er t.o loop diapamae FolloWÎDS the lame way, we can get the non-abelian

eut diagrama corresponcling to ail the .-ch&1Ulelladder diagraml. The result

i. shown in Fig. 17. Bere Al i. & special .-ch&1Ulelladder diagram since there

i. not propasator on the top line. So Al. = Al.

Alain, a eut on a spacetime diagram meana a 6 funetion replacing the ordinary

propagator in the FeynmaD rule. On the ot.her hand, & eut. in a color diasram
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• I TI l
Ale Ble B2e

IIT l Ir
CISe Cl6c Cl7e

JI X 1l
CISe Cl9c C20e

Figure 17: Non-abelian eut cliagraml.

•
meui a commutator of the color matricea t., t. of a quark: [t.lf,] = [t., t.] =

[tcat.] - [t.t.]. Graphical1y thit identity cu be shown u Fil. 18(a). To get the

lut diasram of tml identity, we have uleCl the folloWÎDI equation:

(6.1)

•

together with the f&ct the color factor of a triple gluon veriex ÏI jUlt il•.

Other uleful identitiea are given in Fil. 18(b, c, dl, where c: =Nc/2 for a color

SU(Nc) group. Note that Fig. 18(b) hu aD extra minu. np compared with

Fil. 18(a). Thi. minus aign coma from the different orientation of the triple

gluon veriex. A. lor identity Fil. 18(c,d), they are the graphical representation

of the folloWÎDI two equatioDl:

(6.2)

These identitiea will be Uled later to UDcrOi. the gluon lines 10 u to get delired

73



• b

~C
if.

a b b a

(a) --LL -_X~

(b)

X
b a

a b a b

=--LL =l

=IT=T
a b a b

(e) --<=)-- =2c

• (d)
=c

•

Figure 18: Graphical representation of the identitiea in SU( Ne) algebra.

pianu color diagraml.

Now we look at the remainiDs three diagrams in thil sroup, name1y Cl, C2,

and C21. We can combine part of C2l with Cl to form ël, and combine the

rest of C2l with C2 to form ë2, u done br Cheng and Wu [281. We keep on

ulms the lame pictures to repreaent Cl and 02. They are the lame &1 the

s..channel diagr&ID1 above in the sense that the number of g1uon lines joined to

the top fine il the lame to the numher of gluon lines joineci to the bottom line.
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CIe

X
C2e

•

•

Figure 19: Reorl&DÏsatioli of 01 and 02 for 6th order.

A. & reluit, if we ignore the hOrdollta1l1uon line, then they become 4th order

l-ch&DJlel diapUDI. Similarly w. Call ÎDtroduce cut to the upper fermion Une.

Then ë1 and ë2 CaD be reorlaniJecl u eut diacr&Dll .hoW1l in Fil. 19.

Group 2 Thi. group containJ the relt of the diqr&ll1l from Fil. 15. Note that each of

theae diapaml contain. & triple lIuon venex. We W&Dt to put cut. on the top

line of each cüagram &1 welle

Thil group CaD be further clivided ÎDto two lubgroupi accordiDl to the number

of gluon line. joined to the top and bottom linet. We .hall UJe a difFerent way

to put cut. 011 the top linea for theae two Iubgroup. reapectively.

(a) Thi. lubpoup COlllÎltl of CS, C6, C9, CIO, 013, and 014 from Fil. 15.

All theR diap&llll cont&in a triple PUOIl vertex .hoWÏDI al &Il upaide-

down Y. To apply the rule we uaed in Group l, we jUlt need to ignore

the right bruch of the triple slUOIl vertex. Take C6 for example. Il i.

shown u in Fil. 20(&). If we ipore the ript br&Dch of the triple gluon

vertex, then we set a fourth order ,-ch&lUlel diapam Fil. 20(b), and it

can be cut &1 Fig. 20(c) accordiDl to the rule belore. Thu C6 can be
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(a) (b) (e) (d)

Figure 20: An example of how to cut diagram cs.

[TIIT
]XX
CSc C13c C14c

• C6c ClOc C9c

•

Figure 21: ReorganizaUon of 6th order diagram. with up.ide-down Y vertex.

cui &1 Fig. 20(d), which we .hall call C6c laler. The .ame is true for ail

the other diagr&IDI in tbis subsroup. We put an the corresponding eut

diagram. in Fig. 21. It is worth rememberiDg that there ia no equivalence

between individu&! Feynman diagram and its correaponding cut diagram.

Only the sum of diagrams in tbis subgroup equala to the sum of the

corresponding cut diagrama in FiS. 21.
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(b) ThiI.ublfOuP coniaiD. C3, 04, C7, C8, CIl, and C12. A. a senerai rule,

the non-abe1ian cut clialfam uaecl above ÎI ÙIo applicable to ail diagraml

in thil lubsroup by chOOlÏDI appropriate numberiDl of the puon linea.

Bowever, thil will get to 2. 3! =12 cut cliqr&IDI u .hown m [32], where

3! comes from the permutation of aU three line on the top, and the factor

of 2 reault. from two cWferent choie. to number thoae two gluon lina

joininl to a triple sluon vena. To .void computiDl more diapam., an

alternative "'.Y il to decompoae the color factor of each Feynman di&Fam

mto pianu diagraml. The CÜlat1vantace though il that we C&IUlot let the

cut diagrams directif. Inltead, we have to uae the factorization formula

equ. (4.3) alter ."e decompoae all the color facton. To do it, ."e fil.t

use 04 u an example. The colot factor of C4 can be represented by

Fil. 22(a). We CaD use the identity .hown in Fil. 18 to UDcrO'1 the puon

liDea, then Fil. 22(a) CaD be expreaaed U lum of two term.a: Fil. 22(b, cl.

Thele two CaD be further .implified œto pianu diagrams u Fil. 22(d,e).

We can do the .ame tluug for the other diagraml iD thia .ubgroup, and the

reault. il put in Fil. 23. Here each diapam hu been exprealed u product

of spacetime diagrallll and the color diqr&IDI inside the bracket, which

have been deeompoaed mto pianu diap&ml. To let the eutl OD the top

liDe of the apacetime diasr&Dll, we can sroup them accorCÜDg to color

facton. For example, C8, 04, and Cil ail contributa to a color diagram
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(a) (b)

+

+

/

(e)

•

•

(d) (e)

Figure 22: Decomposition of the color factor of C3 œto pianu color diagram.

Fig. 24(a). So we C&Il IUID them up. If we Dumber the gluon linea as

shown in Fig. 24, ft can see that [123] + [132] + [213) = {2; 13} = [2113].

(See section 4.5.1). We cali the resulting diagram on the right hand .ide

08c.

C7, C12, and ca a1ao contribute to the lame color factor. We did Dot

mix them with the previoUi three diagram., becaUJe it turnl out that

they theuuelvei can be lummed up into a cut diagram shown &1 07e in

Fig. 25. By doinl the lame thing for each color factor, we find that an

the diagrlUlll in thiJ lubgroup can be organized into cut diasraml shown

in Fig. 25. Again we put the color diagraml in bracketa.

Next we are soinS to compute these cut diagraml. In addition, we wani to show

by our calculation that up to this order, multi-Rege amplitude can be obtained

!rom lummjDI theae cut diagram., which in tum come from Feynman diagrams.

We are going to do tbis in two ItepS. Firat we muai decompoae ail the remaiDing

78



•
C4 li·( [ + TI )=li .( li + II )
C3 li·(]> II )=li .( li + II )
CI II·( II) =II·( II)
a TI·( TI) =TI .( II)
Cil 1·( l + II) =1 ·el + il)

• C12 X·( X+ II )=1 ·el + il )
Figure 23: Colot decompolitioD of 6th arder diagrama with Y vertex.

Figure 24: Colot decompolition of 6th order diagraml with Y vertex.
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CSc TI*~II)
C4c [*([)

Cllc X*eI)

C7c n*~II)

C3c ]>(])

C12 x*eI)

• Figure 25: Color decompolition of 6th order diasr&IDI with y venex.

non-p1aDar COlOf factor. of each eut diagram into luma of the pianu colof diagraml,

&1 done iD Fig. 23. Second1y, we are going to 1UD1 up aU the contributions to each

pianu colof factor and show that multi-Regeon feature doea exist.

AIl the color factou of the relevant cut diagraml can be calcuIated. The resuIts

are col1ected in FiS. 26. Bere we have uaed the lame convention al in [34] br calling

the CUt diagram. Cne with n= 1,2,..21.

Bued on thia reluit, aU the cut diasr&IDJ will be computed accofding to different

pianu color facton Ba follo.l.

G4 There i. only one eut diagram CISe contributing to ibi. color factor. This

• diasram i. exactly the .ame al the abelian eut diasram for QED. Therefore,

80



~1amI
01 01 01 04

for SU(3) l JI li JI[DiapImI• IIT 0 00

C15c

l 9/4 0 0 0

C16c

II 0 -312 0 0

Cl7c

li 0 -3/2 -1 0

C20c

II 0 -3/2 0 0

Cl8c

I 914 0 0 0

C19c:

nnrrTI 0 -3/2 0 0

C7c: Oc C9c: CIOc:

iR 0 0 0

• Oc C4c

IIXI ·9/4 0 0 0

elle e12c: C13c Cl4c

rr 0 -312 0

C6c

JI 0 0 0

Clc

X 9/4 0 0 0

Oc

] 9/4 0 0 0

Oc

l 0 0 0

Ac

TI 0 0 0

Ble

X 312 0 0 0• B2c:

Figure 26: Color deeompoeitioD of aU the eut diagrama at 6th arder.
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the T matrix element is pven by

(6.3)

•

•

Again, I,,(â) il the "th-power convolution of Il with itlelf. (See equ. (4.6».

Gl Amon! othen, there are two .-ch&lll1elladder diap&ml C16e and C19c con-

tributin! to thil color factor. But in these two diagrama, none of the propa-

gaton on the top line are cut. According to a theorem introduced in Ref.[34],

diagrama (space-time) with two adjacent uncut propagaton il unsaturated, in

the senle that they give rise to lubleading contributioDi. Thil theorem will

be proven in App.B. Therefore, these two diagrama C&ll be nqlected at high

energy approximation. That leavea contributionl &om Alc, Bic, C2c, Clle,

C12c, C13c, Cl4c, and OSc. Ale is jUlt the Bom term, and its resuIt can be

euily obtaiDed u Ale =- 25~i .
Ble ÎI shown in Fig. 27 with all the Unes labeled. We can see that the longest

path is (1,2,3), and the contributing pole i. (4). Therefore, the integral of the

longitudinal component. can be euily obtained u Ble: = ,~ t3c(ln , )12, where

t3 =92/(211'). The detaila of the calculation will be given in App. B.

To compute C2c, we need to perform the iDtegral of the longitudinal momenta.

We fint need to dtaw the flow diagrams. There is oulf one tIow diagram for

this scalar diagram. We label the Iinea u shown in Fig. 27(C2c ). Then we

choose the longest path u (6,8,9,10,7). And the contributing pole can be
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• immediately recopized &1 (5,11). And the retult i.

• gl (2 [1 2 1 .,.,] 1 - f tl'qJ.. 1
- 2ml411'2 ln ,) 2~ 12 - "2.12 C ; J2 = (211')2 ri. ·

Alain the detail to let thia rauIt will be pven in App. B.

(6.4)

A. for Clic .hown in Fil. 27(b), the 10DIat path will be (1,2,3,4,5) and the

contributinl pole i. (6,7). So it CaD be euûy calculated al

•
And we can lee that

Clic =012e = 013. = Cl4c .

OSe can he computed to be

(6.5)

(6.6)

(6.7)

Sïnce it i. lubleadinl compared to the other S diagram., it. contribution CaD

be ipored here.

Therefore, the reauIt. can be lummed to he

(6.8)

•
Ga As for the color factor of Gs, the relevant diagrama are: O-lc, 020u C6c:, C3c,

and 04c.
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1 8 9

4

3

1

B2c
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2

1

•

10

7

3

Il

s

8

6

4

10

3 6 S 4

The low diagram for ëlc il shawn in Fig. 27. The longest path is (6, 7,8,9, 10),•
Cie C20c

and the contributing pole ÏI (5, Il). The resuIt CaD be obtained ta be:

(6.9)

The reault for cec can a1ao be euüy computed u

(6.10)

Thil resuIt il juat the same al the sum of C3c and C4c.

The other diagram contributing to Gs il C20c• ni low diagram il alao drawu

•
in Fig. 27 with longest path being (7,8,10). It CaD be computed al

(6.11)
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• By IUmmiDI aU the reaultl above, we can let the contribution to G3 to be

(6.12)

•

G, Thi. color factor receivea contributioDl &am one 4th order ad three 6th arder

,·channe11adder diagrama. Inateacl of calculatinl the cut diacram. one by

one, we use the formula shown in equ. (4.3) to relum them fir.t. It ium. out

thai thi. raummation i. in general tRe for ail orden al proven in the nm

section. For the 4th order cut diapam B2c, we can do the .imilar thinl al

for QED .hoWD Fil. 13. Then 1re can let a cut on the lower line. And thi•

•imply siva B2e =(1/2) 2:'5 ig41,.

A. for the 6th order, the diagrama 1re need to sum up are CITe, C18e, and

C20e We redraw them iD Fil. 28 u (a), (h), and (c) reapective1y. Note that

they are ail spacetime diagram.. The diacram for C17 in Fil, 28 i. the same

al that in Fil, 26 beeauae the top end of1ine-3 can be moved back to the left of

line-l ulÏ1l1 the commutable property of. cut. Now if 1re look at the bottom

line, 1re have the fol1owiDl identity &am equ. (4.3).

[321] + (231) + [213] ={21; 3} =(2113) .

Graphically, thia identity i••hOWD in Fil. 28(1).

(6.13)

•
Therefore, IummiDI theae three diapUDI, we C&ll get & cut on the bottom line

al shown in FiS.28(d). The computation of thil diagram il .traightforward
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3

12 3
(e)

12
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12 3

+

123
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(1)

•

(2) + + --

Figure 28: SlJmmjng cut diagrams to introduce cut in the lower fermion line.

--+(3)

•
becauae of thOie two cuts. In the lonsitudinal component .pace, becaule of

the 6·functions, the line beinS cut on the top mut carry momentum Pt and

the line beinS eut on the bottom mut carry momentum PJ. Thil means

that the longitudinal component of thi. diasram is limply the product of the

longitudinal componentl of Al and BI. As for the tranlverse component,

becauae the pr~pasatorl of the eut line. are replaced by delta-functionl, it is

jUlt the convolution of the tranlverse componentl of Al and BI. Therefore,

the reeuIt can be mUen &1

•
(6.14)

The other cut diqrama contributing to thi. color fadot Call he divided into
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• two group.: 07c + CSc, and Cee + C9. + C10c • U.ing the .ame idea al

above, we cu obtain the identitia .ho.. u Fil. 28(2,3). It C&Il be euüy teen

that the 10Dptudinal part of the rilht·haad aide of identitia (2) and (3) in

Fig. 28 can alao be repreieDtecl u product of a 2nd order cUapam and a 4th

order diacram. Note that the 4th orda diasram i. jUlt a vertex conection

[48], 10 that thee two diagrama can be iporecl compared with equ. (6.12).

In summary, we can sum aU calculationa! relult u follow

•
(6.15)

This relult i. the lame u shown iD Chenl and WU'I book [28] calcu1ated directIy

!rom Feynman diagrUD', Dot cut diapUDJ. Alain one of the acivantasel of nling

non-&belian cut diacram ia th.t for each cut diagram 1re need to keep omy leading

contributionl. For example, if we UIe Fe)'1llD&D diagram directIy, we will see that

the leading contributionl from BI and B2 cancel each other in the color amplitude

proportional to G2. 50 we need to calculate up to the lubleading order.

ln summary, although the above calculatioDJ ia only up to the 6th order, the

• result in equ. (6.15) .ho•• the folloWÏDg important pointl:
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1. FoctorUotion

If we take a look at the coefficient of G. in equ. (6.16), the conesponding cut

diagram i. CISe. The tran.verse component i.

l ' (JI 'li.!. 1 ) 2 :1 ( a )1, = JI (211')2 T (21r) 6 ~ qil. - à ,
~l ~l. ~l

(6.16)

Thi. i. the 3rd power convolution of Il with it.elf. PerformiDg a Fourier

transformation, we can change it into a product in the impact parameter

space,

•
. 1~ '4. -,Is(b) = (I-bel

' 1, =Il . (6.11)

•

al convolution. generally change into product.. ThUi to thil order X. il

jUlt one-aixth (l/3!) of the third power of Xl in the impact parameter .pace.

Simüarly, to thil order, X2 i. jUlt one half(1/2!) of Xl in the impact parameter

space. Thi. il what we reter al /octorUGtion.

Thi. f&ctomation i. crucial for the multi-Regeon interpretation, &1 ~ shall

see iD the nm item. Up to the 6th order, factorizatioll emerges in the final

resuIt, and the question il whether it i. true al we1l in higher orderl. If it

doe., do we need to calculate aU the relevant ciiasrama to .how it? To get an

idea, let us look at the 6th order calculationa more carefully. X. i. represented

by a eut diagram like Fig. 13(b). The cuts 011 60tA the top and bottom lines

actua1ly separate this diagram into three parts, each of which i. e5sentially an
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Al. Smce Al determinel the lowat order of Xl' thi. showi a dOle cOlUlection

between cutl and faetorization.

Actual1y, we can prove in gener&1 that puttinl cutl on 60tla the top and bot-

tom lina to aeparate a diapam iDto part. il equivalent to factorizing theae

separatecl parti into productl iD the impact parameter space. To show it, let

u.look at a gener&1 Feynman diapam Fil. 29(a), which contributea to e1utic

Icatterinl at the high enerlY limite We ulume thai the iDcoming momenta

are Pl, and PJ relpectively, and the total momentum tranlfer i. A, which i.

transverle. In Fig. 29(a), we have drawn hro prop&laton explicitly cODllectml

two shaded areu, whim repreaent pOllibl, very complez Itructurea. We alao

ulume that the propagator on the top line camea momentum PJ + le. Then

the amplitude of thi. di&gram CaD be ritten al

where A and B are the amplitudes represented br thole two .haded areu.

We WlÎte them u functions of momentum tranafer. P(k> is the propagator.

Now if we put cutl on those two proP&latorl al shown in Fig. 29(b), those two

propqaton P are replaced by 6 functioDl. The amplitude for the cut di&gram

will be:
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(a) (b)

•

•

Figure 29: The eonneciion between euta and factorization.

In the impact parameter .pace, 1re have

M; = - 4:
2 f dk+dk-'kJ.6(k-)6(k+)A(O,O,kJ.)B(O,O,l1- kJ.)e,4.·"l1

_ _ 411"2 A(b)B(b) . (6.20)
•

Bence to show factorisation of higher order diasraml, we need to put cuts on

both the top and hottom Unes. The non-Abe1ian eut diasram. give UI a rule

to introduce cuts to the top line. To put eut. on the bottom Une, as 1re can see

from the example in Fig. 28, 1re need to Ule the f&ctomation formula to sum

the relevant non-Abelian eut diagram•• This i. not an euy tuk in general.

Nevertheles., 1re are going to show that thia CaD he done for the ,-channel

ladder diagrams in the nm chapter.
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• 2. Multi-Reggeora ezcJaGnge

We can now .how that up to the 6th order, equ. (6.15) contabu multi-Regeon-

exchangel, with the regeized-puoD prop..ator given by:

To .ee it, we fil.t look at Born term Al. If we replace the gluon propagator in

thi. diagram by a Reaeon prop••tor, lIaphical1y represent it by Fig. 9(a),

thi. diapam CaD be interpreted u a linpe RegeoD exchange. UI amplitude

•
il given by

1 1 (2 4C 2 ( ) t:'. 42 0( 1))
2m2 4 2 9 - 9 211'~ 12 ln, + 411'29 ~ 12 + 9 , (6.22)

•

where we have expanded the exponential. We can see that the ript-hand .ide

of equ. (6.22) il jUlt the lame .. the coefticient of Gt in equ. (6.15) up to

thi. order. Note that the coefticieDt of Gt receives contribution. from Alc,

B2c , and C2c• Thil meanl a Regeon can be thought of al cODstructed &om

numberou. gluon•.

Furthermore, u we .howed above, in the impact parameter .pace, X2 -

exchange amplitude, theae two can then be identified respectively u 2-Regeon

and 3-Reaeon exchange ampütudea. We can 1ft: that up to thi. order they
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•
agree with an n-Regeon exchange amplitude pven by

(6.23)

•

•

A. for XI it i. siven by the loweat order tw~Reaeon exchange amplitude like

Fig. 9(e), with the gluon-Regeon coupliDg deacribed by the Lipatov veriex

given iD equ. (3.3).

Rence the color ainglet component XI and X, gives the 6th order BFKL

Pomeron, and the color singlet component of X4 gives the loweat order Odd-

eron [19, 49] .
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Chapter 7. High order calculation

If the lum of Feynman diagraml cu he iDterpreted u pven by ft-Regeon ex­

changea, then equ. (4.11) hu to be .atilfiecl for the lum. However, u dilcu.sed in

the Introduction, the effective coupliDl con.tant i. t ln" 10 that a (2i)th order

Feynman diagram C&ll contribute an amount g2(r ln.)(11-1), ",hich il much biger

than (g2)ft(ln')(II-ft) in the region 92 << 1. Thia me&DI that & tremendoUi amount

of cancellation mUlt talte place to yield • multi-Regeon (ft > 1) amplitude ",hen

Feynman diagr&llll are lummecl. We have leeD how ihi. occurred iD the 6th order

calculation. of the lut chapter for ft = 2 &Ild" =3. H calculated directly, it meui

that euh Feynman di&lfam mUlt he computed to the &Ccuracy of equ. (4.11), and

Dot jUlt to the leadinl..IOl precilion. Thia i. &Il extremely diflicult tuk, so it is

almo.t impolaïble to calculate the multi..Regeon contribution. directly iD the u.ual

way, much les••howiDlwhether they factorize mto productl of IÏDgle-Reaeon am­

plitudes or note Thi. difticulty il however Dot preaent iD the non-.bellan eut diagram

approach, for theae cancel1atiolll have efectively t&ken place already to {orm each

non-abelian cui diacram. In fact, we will Ihow that a non-abelian diagram with

n - 1 cuta hu an energy dependence bounded above by equ. (4.11).
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e
To p'Oye thia Itatement, fint 1re look at a complementary cut diasram with n-l

uncut propagaton (on the top line). Uling Fil. 18, IUch color diasraml can alwaYI

he reduced to thole with at mOit ft gluon exch&Dgea. Now the correaponding Ipace­

time diasram hu fa -1 cut propagaton. Remember from App. B that the ln, factor

comes !rom the ,,_ft intqration of the Feynman prop&!ator, and this ln.. factor

would be ableDt if the Feynman propasator i. replaced by a 6·!unction. Therefore,

& eut diasram with (ft - 1) cut propalatora eliminate fa - 1 potentialln, factorl, 10

the correlpondïnl apace-time diagram contributea at moat like g2ft(g'J ln,)('-ft), the

same &1 equ. (4.11). H ail the pOlaïble ln, factors in an ,-ch&lUlelladder di&!fam

e are present iD. the amplitude, we call it a lalurated diasram, otherwise, the diagram

il UDsaturateci. AI proven iD App. S, diqraml without adjacent uncut linel are

saturated, the othen are UDlaturatecl. Qmy the former ODei are needed iD 1eadinS­

log computation.; the latter ODa can ail be ipored in the discullion of lm. chapter.

In what follows, we shall Ule the abbreviatioD SC for ,·ch&lUlellaclder cut dia­

gram, and the notation sec for ,·ch&DJlellaclder complementary cut diagram.

For (2k)th order amplitude, there are Ic! ,·channelladder Feynman diagram•.

Since there is a one-to-one correspondence between Feynman diagrams and cut

diagrams, the number of SC is also lat

One Vlay to obtain ail these II! SC is to label the gluons aitached to the lawet

line in the arder [123 ... le], then the order of the gluou aloDI the top line can be

used to apeCÜY the whole SC diagram. The Ja! cillferent SC diagrams correspond to
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• aJl pos.ible permutatioDi of theae le gluou. Cut. on a SC diagram i. determined

by the rule introduced belore, i.e., they are p1aced behind a Dumber if and only Ü

there i. Dot a smaller number to it. ript. Some 8th order SC diap&ml are Ihown

in Fig. 30 u illuatration•.

For euier description for the f&ctomation, 1re introduce another ...., to delcribe

the diagram.. We can .tut from the pianu cüapam and obtaiD the othen by Pullinl

the upper enda of IOme l1uon linel leftVJonl in all pOl.ible .aYI. It ia obvioUi that we

can reltore the ~! pOlaibilities in dOÏDI that. The only queation i. _here to put the

cutl. The pianu diagram hu all ita prop&lator. on the top Une cut, which can be

under.tood if we atill imagine that we number the l1uon Une. u belore. AI for the

other SC diagram., onc:e a gluon line iJ moved leftward, the moved line hu a larger

number than the new neighbor to it. ript. Therefore, according to the multiple

commutator rule, the propagaior to it. ript .hould be uncut. Bence, .hen a gluon

line i. moved, the eut to it. righi di.appear.. UIiq thi. rule, we can actually forget

about the number. labeliDg the gluon liDea. Fil. 30 can be uaed &gaiD u illuatration

about how tm. worb. Thi. time we do it u if the number. were Dot there. We

can start from the pianu diagram Fil. 30(a). A. a convention, we &1waYI keep &Il

the gluon linel a pIanu diagram verticaL Fil. 30(a) i. a1ready draWB in luth a way.

When the upper end of a gluon line ÎI moved, it becomea ,ltJnted. A SC di&gram

usually contaiDa .lanteci lines and vertical liDea. Accordinl to the rule above, the

• propagator to the risht of a llanted line ÏI UDcui, but every oiher prop&lator i. cut.
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2 J .. 2 1 l .. 3 1 2 ..

2 3 ..
(a) (b) (C)

l 3 2 .. .. 1 2 ] 1 .. 2 J

J'II J'IL
(d) (e) (i)

• 1 2 .. 3 2 1 .. 3 3 1 .. 2

JJ'r J:J\ ]Sb:
(g) (b.) (1)

.. 1 3 2 321 4

li ~[
(j) (1c)

Figure 30: Examplea of 8th order SC diagraml.

•
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Sïnce a .aturated diacram C&llJlot have hro adjacent Gcut lines, diagr&IDI with two

slanted lines adjacent to each othet alOD' the top line are UJlIaturated and can be

ignored. For a ••turated SC diapam, the neipbor to the bpt of a .lanteci line

aIong the top liDe mut alway. be • venicalliDe. Toseiher they fOnD a ,ieletofl

cro". The rest of the verticallines have cuts on both aide., or a cut on one aide

and an exiemalliDe on the othel lide. Bec.use of the eommutability reaultinl from

the cut., the upper end of theae lines cu he movecl without afectÎDI the amplitude

of the SC diagram. For thil reuon, theae venicalliDes are called mo6ile linea. In

cont~..t, the Unes that fOnD .keletoll crOlles ue called ,ieletofl liflu. Skeletonlinea

have one cut propasator, or extemalline on one lide, and an uncut line on the other

aide. The propacator in.ide the .ke1etoD croa. ia alway. uncut for a SC diapam.

AccorCÜDg to the complemelltary rule, we C&Il determine the correapoDCÜDg sec

diagram .. having cuts ïnaide the .ke1etoD croIleI, and DOt cut elaewhere.

We will cali vertical .ke1etoD linea velines, danteci .keletoD linea ,-Unes, and

mobile Une. m·linea. We label theae lines reapectively uv" ,,(1 S i ~ le), and

mj(l S j S b = " - 21e) for dift"erent m. Here ft i. the total number of the gluon

linea, and le i. the total number of akeleton ClOllel. Becauae of the mobility of the

m ÜDe., and the .keleton ClOiIeI, the order of the na Iinea and the .ke1etoD cro••es

aIong the top line are Dot important. We .hall then UIe the order &long the lower

line to .pecify SC diapUlll and sec diqr&IDI. Therefore a SC diapam ia alway•
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in the set

(7.1)

•

•

Note that AnY permutation of the , skeleton cro'leI and the b mobile bes will give

the lame diagram, therefore the number of distinct diasr&IDI it only (2k+b)!f2'k!b!.

We then denote the set of diltinct diagrame by S.... It contaiDI the diagr&llll which

are in 8.16 and latisfy the rule that VI < V2 < ... < v" and ml < m, · .. < m.. We

use (1 < b to denote that line-a is to the left of line-b &long the lower line.

7.1 Color factors

We have already learned ho.. to decompole a SCC diagram into pla.nar color facton,

what 1re want to DOW now ÏI the inverse procedure: how to bd al1 the sec that

contain a given pianu color factor.

To do that, we need to introduce severa! new convention. fint. We define prim­

itive color factor, al color factor. that remain cOlU1ected alter the upper and lower

lines are removed. For example, Fig. 9(a), (e), (k) and (1) are primitive, but others

in the lame figure are not. We Ihall prove in App. C that in the leading-log approx­

imation, every color factor that hu the lame number of primitive color unitl can be

considered to be the lame, no matter where the unite are 10eated. Therefore, 9(f)

i. the lame u 9(g), and 9(i) ÎI the lame u 9(j). The complete color factor ÏI given

by. = na t!'a'
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The primitive color factor of 9(a) will be denoted al 1. The primitive color factor

of (e) will be denotecl al H. Therefore, the color factou of 9(b), 9(c), 9(d), 9(f),

9(1), 9(h), 9(i), 90) are then he written u ]'J,l', Hl, Ht', B", 1t'. Tranl1ated into

the notation uaed in ehapter VI, 1 =G1, H =GI , t' =G", and l' =G4•

Now we review bridy ho. to decompOle a sec diasram into a lummation of

color factor.. The main tuk i. to UDClOI. the gluon line. that over1ap. We use

the graphical commutation relaiiona Ihown iD Fil. 18 to move the lower end of a

,-Une leftward, untü it come. to the ript of the correapondins v-line, thu. fonninS

a skeleton crol. with the ,-Iine. We call thi. the home position. OperatioDi llke

thi. decompoae a sec diagram Înto .. lum of muy reduced diGgNmI, each of which

have the bottom end of any .-1ine lrin. to the left of thm original positions, or hu

a eut to the ript alonl the lower line. An .-line at the home position may or may

not have lUth a eut; both IÏtuationa are aIlowecl. In addition, each reduced diagram

il weighted with a minUl aip if there are aD odd Dumber of eut.. Fil. 31 i. an

illustration.

il we remove the upper line and the lower line, the color factor of a reduced

diagram may or may Dot be connected alter we use the commutation relation. to

remove ail the cutl. ThOie Ihown in Fil. 32 are cOlUlected Uld the ODe shown in

Fig. 33 i. not.

To judge connectivity of a reduced diagram, we C&Il conaider the eut in a sec

&8 a device to aglutiDate tosether the pair of gluon linel it connectl. Cuts on the
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(a)

XI[ X[
(b) (e)

=rn + =rn

•
(e) (i)

Figure 31: An example of the decompoliiion of sec diapam. into aum. of reduced

diagrama.

upper line merle the upper end. of gluon linee, while eut. on the lower line merge

the lower encla of gluon lina. Since the cui. on the top Unea are al"ay. bet1Ren the

ske1eion crOlI, ihui we can determiDe the connectivity of a reduced diagram by only

looms at the lower Une. For example, the reducecl dialfam .hown in Fig. 32(c)

can be ..mtta U [l1.\m] accordiDg to the convention above. By only 100mB ai tbis

exprelsion, 1re mow that the v·liDe and the .1iDe are cOlUlected becaule they form

a Ikeleton croal, and the m·line i. aglutiDated to them br the cut. Therefore, it il

a connected diagram.

The color factor of a diaconnected reduced diagram i. given by the product of

the color factor of ii. cODDectecl componentl, accordinl to the discussion above. So,

• in the followinB we Ihall focui on the discu.sion of the connected componeDtl.
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The color factor of a connected component mayor may Dot be primitive, de­

pending on whether it i. one of thoae .hOWD in Fil. 32. The color facton in Fig. 32

are primitive, while thole in Fig. 34 and Fil. 3S are Dot. Fortunately, it can he

shown in App. C. that all non primitive colol facton tum out to he zero, therefore

we donot need to worry about them, at !eut for SCC diagr&llll.

AlI the primitive color factor. encoUDterecl iD SCC diqraml are collected in

Fig. 32, together with thole similar to Fil. 32(d) but with , > 2 .keleton crol.es.

Fig. 32(c) showi a .tructure like an H, and Fil.32(d) look. like two H'. merging

together. So p i. uaed to denote the number of B. Specially, Fig.32(a) and (b) donoi

look like H at al1, and they are called 8_1 and Ho reapective1y. Al.ao we CaD.ee thai

p ~ °i. alao the number of the hOrDontal puon bea. By defiDition, , = -1 alao

meu.O horizontal gluon line. A primitive color factor hu , horizontal gluon lines

(p ~ -1), and the horizontal gluon line to the ript ia dway. locatecl at a hiper

level. Thu. we can denote the.e color factor. br Hp, with p = -1,0,1,2--- (.ee

Fig. 32 for illu.tration).

The primitive color factor defined belore ud .hawn in Fig. 32 CaD be written u

the followU11 cut tree along the lawer line.

[H_1] = [ml

[Bo] = [v.]

[Hl] = [v. lm]
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• m

l
m

v s

l
5 V

=c l
s v m

=n
H_1 = 1

(a)

Ho = cl

(b)

Hl - H

(C)

~ = H(+)

(d)

• Figure 32: Examplet of how-primitive color factors are obtainecl from reduced com·

ponents.

(7.2)

•

Given a reue color factor' = n,s-d(-1)'B,]/., we can obtain the reduced

diagraml that contribute to this color factor br interleaving 1, copiel of [H,] together

in an pOlsible waYI. We can write

where the ellipses alter each [B,} is an instruction to repeat the same [H,] f, times,

separated by semicoloDl. The notation in the above equation for interleaving the cut

treea in Co il similar to the notation {Tt; T2;···} explaiDed in Sec. V for ïnterleaving
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(a)

--
(b)

Figure 33: An example of a di.connected reduced diagram and the corteapondinl

•

reue color factor.

o

•

Figure 34: An example of a connected reduced diagram that il Dot primitive.

uncut treea Ti. But there are two difFerencea needed to be noticed. Firat, line.

separated by cuta .hould be thought of u bein, aglutinated by the cuta, 10 linea

from other cut treea CaD never be inaerteci between them. SecoDd1y, each cut diagram

in {[Hp];···} repeat. I.! times becaule of the identical nature of theae diagrama.

Sînce we allow only distinct diagrama in {.}, the division by IIpIp! in equ. (7.3) i.

a formal ."ay to remove such overcountinl•
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=J[=][-J[ o

•
Figure 35: Another example of a connected reduced diqram that ia not primitive.

The sec diagrama in S that contaïn the reduced diasrama in {'} will be denoted

{t }s. They can be obtaiDed from the cut treet in {t} by lettÏDI rid of their cula,

which can be accompliahed by movinl the ,-line riptward in ail poslible waya.

Inatead of firat interleaviDl the eut treea [Hp] and then lettÎDI rid of the eutl, {'}s

can alao be obtained by reverlÏDl the two operation. by first removiDl the cuta and

then interleaviDl the uncut treea, u discuaaed below in detail.

We can stan from [H,] E Co, and remove the cut. by moYÎDI the ,-lines right-

ward, to CODItruCt ail h~ E S(i =1,2,· .. ) that reduce to [Hp]. In cueslike Fig. 32(a)

to 32(c) where there ia on1y one tree for each [Hp], the degeneracy index i = 1 will

be omitted. Thil index il however needed in othe C&lel. For example, [H2] =
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•
ail h~ E S for a fixed p will be denotecl b, {HII} s.

7.2 FactorizatioD of sums of spacetime amplitudes

We continue to compute the lum of corraponding .pacetime amplitude. of ail lat-

urated SC diagraml with a common relie color factor t = n,«-1f H,)J. . The

relevant .pacetime diagraml are thole in the let {t}s.

UImg the facton.ation formula for the Iowa tree, we can get

(7.4)

• where

(7.5)

with the lum taken over ail ma S 0 lubject to Ei"" = 1,. Therefore, 4{H,}s =

Ei 4 [h~]. The factoriala in the denomiDaton of equ.(7.4) arise becaule of the Dece.-

sity to keep on1y distinct diagram. in {t}s.

The factorisation iD equ. <7.4) and (1.5) for the lowel tree can alao be applied

to the SC &lDplitudea. To do thil we need to mùe explicit use of the cut property

of the upper tree, that the on1y uncut prop-saton are thole between the two line.

formins skeleton crOllel. Let u. fint look ai aD example u an illu.tration. In

Fig. 36, bath <a) and (b) belons to the the set {231; 5M}, but if we keep the upper

• . end. of the gluon linea fixed in FiS. 36(a) and (b), permutiDg the lower end. of the
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(a)

2 5 3 6 1 4

(b)

2 5 3 6 1 4

(e)

Figure 36: An example of re-org&DÎZiJl1 diacrlUDl.

lines to get from 326(a) to 36(b) doesnot change the SC diagram Fig. 36(a) back to

another SC diacram. Fig. 36(b), with lines 5 and 6 .lantins the wrong way, cannot

be an SC diagram. Bolftver, by makinS explicit UIe of the commutmg propertiel

• of the amplitude of the upper tree, 0[121314416] =0[12]0[3]0[45]0[6} =0[121451316],

Fig.36(b) can be redrawn u Fil.36(c), which il a 1.&1 SC diagram. Thi. can always

be done so that factorization of the lowet tree really leada to a factorization of the

sum of saturated SC amplitudes.

Now we deal with the gluon propagaton, quark prop-saton, vertex factors, and

loop integrationa. In Iight·cone coordinates, the meuure of loop-integration is

(7.6)

•
We usume that the Dirac spinon are normalized to üu = l, and a common

factor ia taken out of the T·matrix amplitude T = -(./2M2)A, then each fac·

torizeci amplitude o{Bp } = E. CI.ï[1a~] corre.pondJ to a saturateci SC amplitude

A{Hp}s(â) = Eï A[1a~](â), where we have indicated explicitly the dependence on
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• the momentum tr&DJfer 4. The product of two lower tree amplitudes 4{H.}CJ{H.}

i. tumed into .. convolution of two SC amplitudes:

In obtaininl the above equation, 1re have Uled the identity

(7.8)

•

•

The lum of aU .aturated SC amplitudes with the rege color factor • i. then

given by

(7.9)

AIl the productl in the above equation are meut to be convolution.. In particu1ar,

[A{Hp}s]-I. i. taken to mean/, convolutiou of the lame amplitude. In the impact-

parameter .p&Ce, IUch convolutiolll are replaced by limple product•.

Therefore, we have proved in tm. chapter the f&ctomation of the l-ch&DDel

diagram•.
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Chapter 8. Conclusion

In the 1eadiDS logarithm approximation of penurbative QCD, oD1y the 2-Regeon

exchanse &D1plitude contributes to the quark-quark forward e1utic Icatterins ampli­

tude. The reaultins BFKL Pomeron amplitude violatea UDitarity at the uymptotic

limite Thil reveala the importance of soiDS beyond the 1eaclinS logarithm (n > 2 in

equ. (4.11» iD order to UDitarize the BFKL Pomeron. If ail theae lubleaclinl con·

tributionl can be lummed and interpreted u multi-Regeon exchange amplitudes,

then unitarity can be restorecl.

Cheng and Wu fint demonltrateci by direct calculatioD up to 6th order [28) that

multi-Regeon exchanse can be obtaiDed by IUmmiDS Feynman diasr&ml. They

also Ihowed that the multi-Regeon exchanse amplitude factol'ÎZel in the impact

paramter Ipace into productl of single Regeon amplitude. Unfortunately, it il hard

to apply theae methoda to higher order calculationl because of difticulties encoun­

tered in the UJual techniques. One of theae difticulties comes from the {aci thai the

leading contribuiioDl of individual Feynman diapaml tend to have higher powers of

ln, than the one pven in equ. (4.11). Therefore if multi-Regeon exchaDsea can be

obtaiDed from Feynman diagrama, theae extra powen of ln, mUlt alliet caDcelled in

thm IWD. In order to let a fiDite sum, we are forced by the Ulual techniques to keep

subleaclins, or even lublubleadins, contributioDl in computinl individual Feynman
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diagrama. Thia kind of c&l1cellation can already be seen ai the 4th and 6th order in

the multi·Regeon ch&1Ulela u ahoWD by the direct calculatioDl of Chenl and Wu

[28]. Although the daired aubleaclinl contributioDi cu be aucceaaful1y obtained in

an inleDioUi Vlay lot theae orden, they become 10 cW!icult iD hiper ordera that even

the 8th order calculatioDi Wete om)' putiaUy fiDiahed uainS the uaual techniqua.

That ia one of the motivatioDl for introducinl non..AbeliaD cut diapama. Aa

shown in the previoUi chapterl of tm. thaia, the difliculty mentioned above i.

circumvented in a non·Abelian cut diapam approach. The reuon il that the leading

contribution of a non·Abeli&ll cut diapam cu be ahoVID to be bounded above

by equ. (4.11), therefore there ÎI no neecl for caDce1latioD. to OCCU, 10 we omy

need to compute the leadiDl contribution of each cut diacram. In other worda,

the cance1lationl have alreacly been taken mto accouat iD formilll individual cut

diagrama. Thia Ifeatl,. simplifia the calculatio...

The , ..dependence of either a Feynmaa diapam or a non..Abeliaa cut diagram

coma from the longitudiDa1 întegrala in the momentum .pace. Contour integrationa

are u8ed in thm evaluationa. Chens and Wu invented /fOUl diGgrtJm.t [28] to identify

the contributinl pola for the.e contour mtesrationa. In thi. theail we have extended

their tedmique by introduCÎDI the path method. Our technique sready simplifia

the extraction of the , ..dependence of multi·loop diagram•.

Both theae techniques have been uaed to confirm the exi1tinl reault up to the

6th arder, and to illuatrate the relative aimplicity of the new methodl. To exam·
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•
ine whether multi.Regeon exchanges emerge from higher order diapama, and if 10

whether the multi·Regeon amplitudes factorizes or Dot, we have chOien to inves·

tisate the probleIDI in a du. of Feynman diagram. (.-ch&lUlel ladder diagrams).

We have .hown that multi·Regeou do emerse, and that their amplitude. indeed

factorise u hoped. Sucb properties are crucial for the UDitarization of the BFKL

Yomeron amplitudes, al discuased in the Introduction.

In thi. thesi., we have Dot attempted to .how the presence of multi-Regeons,

nor the factorization of their amplitudes, beyond the 6th order and beyond the ,­

channelladder diagrlUDl. Neither have we demonstrated for QCD how factorization

• of multi·Regen amplitudes leada explicitly to unitarizatioD al we did for QED in

Chapter IV. These problem. have been partially lolved recently[18] UlinS the new

techniques developed in thil theli••

•
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•
A Multiple commutator formula

To prove equ. (5.6), we·fint neecl ta prove &DO~her one: foldiq formula, wmch ÎI

expreaaed &1 folIo.:

N N
a[L,Rl =E(-)'G{L;c71.Jlo'}G[C1••1.N] =E(-l)JlCI{L;il~o'ltI"+t.N}. (A.l).=0 bO

The notationa we uaed are explained in the folloWÏDI. [L,R] ÎI a tree contaÎDÎDl a

•
subtree L, a line [a], and another lubtree [R]. Nia the total number of linea induded

in tree [RI. C1'J ia a lubtree of [R] contaÎDÎDl the iih liDe to jih line. Specia11y,

(11,0 and tTN+I.N are defuaed to be null tree [0]. Alao 4[0] =1. The notation il.JI

meui the tree C11~ read in the revene order. Therefore, if [R] =[28137546], then

a'l,1 = [28137], C1'.' =[546], and i l •1 = [73182]. Another notation appearing in the

above equation {Tl i Ti; 0 •• ; TA.t} meau the following. [t] i. an arbitrary tree, which

mayor may not have cut•. The above Iymbol denotea the lei of ttee [Tt] for all

the [T] E {Tl; TJ; o •• ; TA}' We a1ao uaed G{Tt ; Tli···; TAit} to denote the IUIn of all

these amplitude 4[Tt] 1

The above idenetïty re-exprelaes the original amplitude G[L,R] al luma of prod-

uctl of amplitudea, in euh of which line-, i. moved ta the end of the tree. This

reshuftlinl will enable ua later to reaum the nonabe1ian cliapam. mto cui di&ltamao

• The foldin. formula il &110 called cutting and folding formula. Ii cu be graphi-
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Figure 37: Foldinl formula.

cally explained &1 Ihown in Fig. 37. We fint cut of' the the tree ao'+l.N at the end of

• [L,R], and then fold the remainiDg tree about the point ,. FiDally, both branches

of the folded tree Ihould be interleaved to obtain the treea {L; il.'.'}.

NOW 1re proceed to prove thia formula ulÎnl induction. Firlt 1re look at N =1.

Rememher N i. the lensth of the tree R. For N =-1, 1re can write the formula

explicltly. The left hand ode i. 4[L,R], and the right hand side can be written u

a[L'IR] - 4{L; R.,} = 4{L,; R} - a{L; R.,} . (A.2)

From the definition of the cut, 1re C&ll euily recopize that the firlt term of the

right aide can be written &1 4[L,RI + CI{L; R.,}. Subsitute thiJ hack to the above

equation, 1re can see that the foldinl formula hold. for N =1. ASlumÎnl it il true

for N :S m - 1, and 1re need to prove it ia true for N = m.

•
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• We .tan from equ. (A.l), and ...ume that R = [t1t2'" t",]

(A.3)

where "". = [t,t....l··· t.]. The left hand aide of the above equatioD CUl he re-

ananged al .umm.tion accorcling to number le of linea in R appeariDl to the left of

line..,. So that the above equation CaD he written u

fil

G[L']G[R] =G[L,R] +E G{L; ~I,II.'C111+1,,,,} •
'+1

(A.4)

Now for le :5 1, there are at mOit (m -1) lin. to the ript of ,. Therefore, for each

individual amplitude appearing in the lummation of the ript hand aide above, we

• can appl, the induction hypotheaiJ. Then the IeCOnd can he written u

",-il
G{L; D't,It.'''II+l,,,,} = E(-)'G{L; 61,1t; iil+l,11+I.O}4("iI+l+l,,,,] • (A.5)

1=0

Putting thi. back mto equ. (A.ci), we C&Il obtaiD

'" ",-II
G[L.R] = 4[L,]ca[R] - E E (-)'G{L; erl.lI; ÜII+l ,iI+I'O}4[erll+l+l."'] • (A.6)

11=1 1=0

Introducinl a ne. variable le' = le +1and change the arder of summation, we get

•
The summation over le can be simplified by ulÎDg the relation

Il'
E(-)w4{L;CJ'1,Il;ill+1,lt,.O} = 0,
bO
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•
whieh will be proven 1ater. NoW' equ. (A.7) becoma

'"4[L,Rl = 4[L'l4[R] + E(-)·'4{L;6't,Jt/.O}4[cr"+1."'] , (A.9)
"=1

which ÏI juat the N = m eue for the foldinS formula.

Let UI 10 bw to proye equ. (A.8). we-use 4 < "to mean line-Glyïns to the left

of line-b in a tree. We ean ignore L and , mit. Look at a tree T. ={crl,,; 6"+1." },

a1l the linet on it obey the order tl < ti < ... < t., and t" < ... < t.+ l • Becaule

the semico1on meui interleaving, so that in (- )'G{T - '} there are two kinds of

•
terml: t. > t'+l or t. < t'+l. The fint kind of terms will be cancelled by similar

terma in (- )'+Ic&[T'+ll. Specially, the term. in , = 0 are completely CaDcelled by

terml in Ic = 1, and terma in , = Ic' are completelf cancelled by terma in , = "-1.
Therefore, we have proven that equ. (A.l) i. true, and finish the proof of the {olding

formula. Adeling in L and 0 does not dect the proof above.

The nut .tep i. to 1lIe the {oldinS formula to plOye the multiple commutator

formula. Take aDY Feynman daillaID (the Ipace-time part). Use the {olding formula

to eut and foId, 10 U to move the number '1' to the end. What we let il a product

of two 4[...], the fint one having '1' at the end, and the second one not eontaining

"1". Applf the folding formula &Iain on the seond 4[' . ·l, and thi. time move the

smallest number in it. argument to the right most end. Continue this process, and

• . the final resuIt will be IUJD of productl ol leyeral4[...l, each of which hu the Imallest
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number in it. arpment being at the ript mOit end. Recallinl the definition of a

cut, we cu immediately recopise that each term in the .um .atÏlfiea the cut rule

for .pace time diasram.

Now we CaD tee that each Fe)'llDl&ll di&Fam (.pace-time part) corraponda to a

sum of .evetal cut diapama. There il .tiD the color part 1re neecl to deal with. What

we need to do ia to orl&DÏZe the aum of diap&llll accordinl to the .pace-time cut

diagram, or .ay, for certain eut eüasram CI[P]c, we need to bd out ail the Feynman

diagram. that contribute to it. Thu. we need to wold the 'ree [P]c. If there il Dot

cut on (P]c, it will be of the fona p]c = [rI]. Thea 1re bd ail the ri that .atiJie.

['1'1] E {r1; r2.1}, and UDfold the tree to let [<1] =(r11rJ]. The IiSD involved il (-).,

where le i. the number of linea in tree [1"2]. We.umm up all the pOlaibilitiea and

get the color factor ulOciateci \Vith thia .pace-time cut ctiasram u E(- )·t[r111'J] ,

which can be recopized .. the multiple commutator t[p]~. If [P]c hu explicit cut.,

then we can UR the above way to deal \Vith each of the cut sectioDl, and obtain

a multiple commutator of the color factor for each IeCtion. Thia then fiDiJha the

proof of the multiple commutator.

B Spacetime amplitudes

Assume that there are n·gluon connected to the upper fermion line. The incoming

fermion curia on-Ihell momentum Pt =(Ji, 0, 0), while the outloing fermion car-
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•
ries on-Ihell momentum Pi = (.Ji, 0, â). The enerBY of each gluon il far les. than

Ji. At high energy, the Dumerator of a fermion CaD be written u

"Y' P =2mE Ul(Pt)Ül(Pt),
1

(B.10)

Then each fermion vertex can be approximated by 2,r t and each fermion line hu

an overall normalization factor 1/(2m).

Bued on the above approximation, to calculate a Feynman diagram, we can

either ule Feynman-parameter repreaentation [47] &1 done by CheDS and Wu [28],

• or ule Iipt-cone coordinats in momentum Ipace. We chOOle the latter approach

here. Ulin1 the lame convention u iD Ref. [28], 1re uaume that the momentum of

the incominl fermion on the top contaïDa omy + component, and the momentum

of IncominS fermion on the bottom cont&ÎDI only - COmpODeDt. Calculationl ulÎnl

ihil approach follo.1 three Itep.:

1. use residue calcului to carry out the + momentum. îniegratioDS;

2. carry out the - component întepation to obtain the ln, dependence;

3. express the tranaverae momentum intepatioDi in tenDI of 1,. and J,.,

•
We alwaYI clole intqration contours in the lower hall planes. The contributing

pole. are pvm by the path method. For a ICalar diasram, the T -matrix element

equall to the product of J propqaton D-l =(q2 - ",2 +1E)-t, integrated over the
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Sînce there i. a factor -2ri from each '+' iDt.atioD, the T-matrïx Ïlpven by

where

Û
• 4'-_) 1T =- E/ DI.Jo E.- Et. D. 1

al"" =1'
(B.ll)

(B.12)

il the meuure for tran.verle momentum intepation, and Di i. either the propagator

evaluated at the c:ontributinl pole or the raidue of the contribution pole.

Now 'Re CUl calculate amplitude B2c. A. .hoWD in FiS. 38(a), we chooae the

momentum of line-l to be Il, &1ld line-4 to he the contributiDl pole, then ail the Di

• can wriUen al

Dl - ,i i

D1 - -('4 +~)J ;

Ds - -,+,,- .2 1

D. - .1 . (B.13)- .L ,

The '-' intesration only come. &om D1, and 'Re have

(+00 tllc_
Jo Ic- 11 ..ji.

- ./, ..jiz

- ln ... (B.14)

•
Therefore the amplitude i. pvs by
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•
reluIt given in Chapter 6.

The Den diagram we neecl to compute hue i. C2c. We label the propasator. the

same u in Fig. 27, and the momentum carried by each of them ia pvm in Fig_ 38(b).

Again, he 5 and Une 11 are the contributmg poles. AD the Di '. are liated below:

DI = pî ;

D. - -~ .J. t

DT = - ('2)-('1.1 - '2J.)2
- (~)t ;Je;

D. = -,:(1'2)- ;• ('2)-('1.1 -'2.1)2
- ('2)~ ;D. = ij

Dto - -(k1J. + A)' ;

Du - 1r;. (B.16)

AI for the Dumerator N, after combiDe part of 022 foUoml Ref. [28]. (A complete

lilt of Feynman rules CaD be foud in [50].) Then 1re have

(B.17)

•
Thu. the Dumerator i. independent of Icï and 1cï. A. for the kt and le; integratioDl,

we CaD Re that the leading contribution comee from the resiOD

(B.18)
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• Thil give. UI the final &IlIwer

Figure 38: B2c and C2c

(B.19)

•

Now we want to prove in general that the diagraml \Vith two adjacent meut

propacator. on the top line il unlaturated, or lay, i. a diapam in lower order of ln ..

than the that .hoW1l in equ.(4.11).

For a ,·ch&lUlel diqram without adjacent uncut propagator. on the top line,

these i. alway. on1y one 1Iow diasram. For tbi. low diagram, the pole for the "+"

integrationl CaD alway. be taken &lonl the lowel line. Alter taken these poles, ail

the gluon prop&laton become f'tw l/qll.' and can be considered to be 0(1). Then

on1y the uncut propasator &loDI the top line are relevant to the "-" integrationl.

119



•

•

•

E"ach of theee uncut propagaton contributes a factor of ln, via "-" integration of

the type 1,-1 <!.z'/2i. Therelore, .uch diasrama have their full .hare of ln, factou

and are saturateci.

For diqrama wh two or more adjacent uncut line, there are &1ways more than

one flow diagrama correspondinl to each of them, becauae the 10. direction &long

the boundary of the two adjacent ecut loopw C&DDot be uniquely determinded.

This reaults in that at leut one pole of the "+" integratioll mu.t Dot come from the

lower line. Explicit calculation then shows that IUch diasrama are at leut one ln,

down from the saturated onel.

The reuon for thil reductiOD CaD be tr&ceci hack u folio... Alter the mtestation

of "+" momenta, the "+" momentum of the pole linel can be eatimated al inverse1y

proportional to its ,,_ft momentum. The "+" momentum for other linea can be

then determineci by momentum conaervation. Sïnce the large "-" momentum flowi

mainly &1onl the lower line, a pole t&ken on a gluon line will have a relative1y larger

"+" component that a pole on the lower line. According to momentum conlervation,

there must a return flow pumg through part of the lower Une and another gluon

line. The Feynman propagators of these line. are large due to the large "+" 1l0w

through them. This brings about at leut two smaIl factors of 2i, overcompensating

the large factor !rom the residue of the pole. Therefore, at leut a ln , factor will he

10lt from the "-,, mtestations u a reault. This ia the reuon that these diagrams

are unlaturatec1.
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C Color factors of Donabelian eut diagrams

To get rid of a cut on a sec diapam, we CUl uae the rule praented iD FiS. 18.

A. & reluit, a cut &1waYI elimiDate the number of Iina attached to the upper line,

and diasrlUDl with na - 1 mcut prop&laton alolll the upper liDe CUl have at mOlt

m gluon linel joinecl to it. SÏDce Cutl on a sec diagram ÏI &lway. OD the upper

line, then alter we elimiDate them, the numba of lin~ jiODeci to the upper liDe m i.

ulually Imaller thUl the number of lin. joinecl to the lower line ft. Thia C&IlIlot be

a reue color factor, IÏDce the reaeoll exchuled between the hro enerletic fermion

linel i. cODlerved. But we have leen leveral cua that by UÏDg the rWea in Fil. 18

again to manipu1ate the lines attached to the loyer tree, we CaD reduce the line•

attached to the lower liDe to be m.

li i. pOlsible that for very complicatecl di&lfUDI we C&1Ulot reduce ft to na UI­

ing the rulea in Fil. 18 &lone. Then bec.ue of the couenation of the exchanle

reggeoD, the reaultml color factor \Vith " > na C&1Ulot contribute to the final an­

Iwer if the regeisation PlOpoa&1 ÎI true. Therefore, 1re .hall define the leadinS-log

approximation to exdude all .uch color facton that C&DIlot be recluced to ft = m.

Now we want to plOye why Rege color factor with the lame primitive color

factor. but in dift'erent politioDl are the lame in leadiDg-Iog approximation. Ulinl

the rule in FiS. 18, 1re CaD achule the poaitioDi of gluon linea attached to the

upper line or lower line, and the compeu.tion for thil exchUlge ÏI a diasram \Vith
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Figure 39: Cuce1lation of the non primitive colot factor.

•

•

--

(a)

(e)

(b)

(d)

= 0

•

one les. lIuon line attached to the upper (lowet) line, which meui lesl number of

exchange Reaeonl. According to equ. (4.11), thia compensation can be ipored in

the leadinl-Iog approximation. Therefore, the primitive color factora can ero•• each

other in any way &long the upper line and the lower line, and the rege color factor

obtained i. still the lame u the original one.

Fina1ly, we wut to prove that any color factor with an ,-line climbing onto

the underlide of a horizonta1line, like those found in Fig.34 and Fig. 35 are zero.

The proof is shown in Fig. 39, where the .haded area represent a pOllibly very

complicated structure. Using the commutator rule in Fig. 18 on the right most

verticalline, we can Re that Fil. 39 (b) and 39(c) can be combiDed ÏDto 39(a). AIso
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• Ulinl the lame rule alonl the middle vertica1liDe, we CaD Re that (d) and (e) can

alIo he combiDed to let (a). Ulin1 the .bove arpment, _e DOW that in the leadiDl­

lOI approximation, 1re CUl move the midd1e vertical line of FiS' 39 (d) and (e) to

the ript mOit pOlition, and they remaia the lame color fadon. Thia thm telb UI

that Fil. 39(d)=(c) and Fil. 39(b)=(e). Beaee Fil. 39(a)=(b)-(c)=(c)-(b)=O.
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