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Abstract

The scientific aim of computational neuroanatomy using magnetic resonance imaging (~lRI)

is to quantify înter- and intra-subject morpho1ogical variabilities. A unmed statistical frame

work for analyzing temporally varying brain morpho1ogy is presented. Based on the math

ematical framework of differential geometry, the deformation of the brain is mode1ed and

key morpho1ogical descriptors such as length, area, volume dilatation and curvature change

are computed. To increase the signal-to-noise ratio, Gaussian kemel smoothing is app1ied

to 3D images. For 2D curved cortical surface, diffusion smoothing, which generalizes Gaus

sian kernel smoothing, has been developed. Afterwards, statistical inference is based on the

excursion probability of random fields defined on manifolds.

This method has been applied in localizing the regions of brain tissue growth and 10ss

in a group of 28 normal children and adolescents. It is shown that children's brains change

dramatically in localized areas even after age 12•
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RéSUIné

La neuroanatomie numérique, utilisant l'imagerie par résonnance magnétique (MRI), a pour

but de quantifier les variabilités morphologiques intra et inter-sujets. Une analyse statis

tique de la variabilité temporaire de la morphologie du cerveau est présentée. Basé sur

des principes de géométrie différentielle, la déformation du cerveau est modelée, et des car

actéristiques morphologiques sont calculées: les dilatations de la longueur, de la surface et

du volume du cerveau, ainsi que les changements de courbure. Afin d'augmenter le ratio

signal/bruit, un lissage gaussien est appliqué aux images tridimensionnelles. Pour les images

des surfaces corticales en 2 dimensions, le lissage par diffusion a été utilisé; celui-ci généralise

le lissage gaussien de manifolds arbitraires. L'inférence statistique est basée sur la probabilité

d'excursion des champs aléatoires définis sur les manifolds.

Cette méthode a été appliquée à un groupe de 28 enfants et adol~scents, afin de localiser

les régions de croissance et de perte du tissus cérébraL On montrera que les cerveaux de ces

enfants changent considérablement, contredisant certaines hypothéses préalables au sujet du

développement du cerveau.
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Chapter 1

Introduction

1.1 Deformation-Based Morphometry

Brain morphology across the span of human aging is not uniform. Brain growth spurts

during childhood are followed by a brief period of morphological stability as 10ss of brain

volume begins in middle age. The advancement of magnetic resonance imaging (MRl) gives

us a new computational tool for the characterization ofsuch temporally varying brain mor

phology and this is emerging as the new field of computational neuroanatomy [59}. lVIRI

depends on the response of magnetic fields to produce digital images that provide structural

information about brain tissue. This noninvasive but somewhat expensive procedure has

become a standard neuro-imaging modality in examining the structure of the brain.

In order to characterize temporally varying brain morphology, we must compare different

individual images taken at different times. Such comparisons require a reference coordinate

system which can be obtained via image registration. The objective of the image registration

problem is to deform as smoothly as possible from one brain image to another brain image.

For the complete treatment of various image registration techniques, see the book "Brain

Warping" edited by A.W. Toga [114} and an article by H. Lester and RA. Simon [70}. One

of the most widely used registration method is the intensity-based matching, which tries

to align one image to another in such a way that the correlation of the image intensity is

maximized [25, 26}. Altemate methods based on elastic deformation and fluid dynamics

13



models are also available [21, 32, 44, 111, 113].

• Via image registration algorithms, biologically homologous points in two different im-

ages are identified and the mathematical transformation between these two points, called

deformation, can be computed. The deformation is given as a 3-dirnensional vector at each

voxeL 1tlathematically this deformation can be represented as a transformation from a point

x to a homologous point x +"U(x) in a fixed coordinate system. The 3-dimensional vector

U is usually called displacement field in elastic deformation theory [75} and it measures a

relative movement of the point x. Morphological studies based on studying this deformation

is called the deformation-based morphometry [8}. Although the idea of deformation orig

inates from elastic theory and continuum mechanics [19, 75], perhaps the first person to

apply this concept to deform one biological structure to another closely related structure is

D'arcy Thompson in his classical book "On Growth and Form" [109}, where he deformed the

skulls of human and primates, and other biological structures using deformable grids. Unlike

classical morphometry in shape analysis [12, 13, 40, 62, lOI} , the deformation-based mor

phometry tries to avoid anatomical landmarks in characterizing morphological changes. An

anatomical landmark is a point assigned by an expert that corresponds between organism in

• sorne biologically meaningful way [40]. However, it is very hard to identify such anatomical

landmarks in brain images systematically and this is the one reason why automatic im

age registration methods are preferred to image registration methods based on anatomical

landmarks.

In many morphological studies, temporally varying morphological differences in the brain

have been ~"{amined primarily by ~IRI-based volumetry until now. Classical NIRI-based

volumetry requires segmentation of the region of interest, either manually or by spatial

normalization, in two Nffi images taken at different times tl and t2. Then the total volumes

Vi and V2 of the homologous regions are calculated by counting the total number of voxels.

Afterwards, the volume variation av = V2 - Vi is used as an index of morphological changes

[47,85,89, 107}_ So the advantage ofdeformation-based morphometry over the classical ~IRI

based volumetry is that it does not require a priori knowledge of the region of interest to

perform the morphological analysis_ Moreover1 the deformation-based volumetry improves

the power of detecting the regions of volume change within the limits of the accuracy of the

• registration algorithm_ These two advantages of the deformation-based volumetry over the
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standard ~IRI-basedvolumetry have aIso been noted in [8, 32].

As a part of deformation-based morphometry, a new technique caIled deformation-based

volumetry is emerging; this method does not require segmentation of a priori regions of

interest [8, 32}. In deformation-based volumetry, the Jacobian of the deformation field that is

required to register one brain to another is used to detect volumetrie changes. By introducing

the concept of local volume dilatation, which is the first order approximation of the Jacobian

change, the local volume change at each voxel can be computed and used to measure possible

brain tissue growth or loss [22, 23}. By definition, the J acobian of the deformation is the

volume of the unit-cube after the deformation. Assuming that one can find the deformation

field at any voxel, volume change can be detected at a voxel level. Although it seems

that there are many different ways of detecting morphological changes in deformation-based

morphometry, a translation, a rotation and a strain are sufficient for detecting a relatively

small displacement and, in turn, for characterization of morphological changes over time.

Because the deformation-based morphometry (DBM) is a relatively new method, there

are very few morphological studies that have used the Jacobian for local volume-change. C.

Davatzikos et al. used the Jacobian of the 2D deformation field as a measure of local area

change in 2D cross-sections of the corpus callosum to test gender-specific shape differences

[34]. P. Thompson et aL applied the Jacobian of3D deformations as a measure of the regional

growth of the corpus callosum [113]. J.-P. Thirion used the divergence of the displacement

vector field, which is equivalent to the dilatation, for detecting growth of brain tumors [107}.

Aiso P. Thompson et al. used local rates of dilatation, contraction and shearing from the

deformation field ta detect morphological changes in brain development [110}. Although

these researchers are using the same or closely related concept of Jacobian, most ofprevious

deformation-based volumetrie studies lack: systematic statistical treatments. The major aim

of this thesis is to develop the unified statistical methodology for the deformation-based

morphometry based on the mathematical framework of tandom fields.
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T 2 fielcls, a11 of which are discussed through the thesis. For example, the X2 field with m

degrees of freedom is defined as
m

~V(x) =E.Xl(x),
i=l

where Xt, ... t Xm are independent, identically distributed Gaussian fields with zero mean

and the variance equals to one [1]. Similarly, we can define t and F fields [121} as weil as

Hotelling's T2 field [17}. The Hotelling's T2 statistic for the displacement field U has been

widely used in detecting morphological changes [17, 27, 43, 59, Ill}. In particular, J. Cao

and K.J. Worsley in [17} were able to derive the e..xcursion probability of the Hotelling's T2

random field and applied it to detect gender specifie morphological differences. However, the

Hotelling's T2 field only measures the amount of relative translation and it is not sufficient

to characterize local morphological changes.

Statistical inferences for a random field )( have been usually based on the series expansion

of X of the form
oc

X(x) = E Zi~i(X),
i=l

where {tPi(X)} are basis functions and {Zd are random variables. Then the statistical infer

ence is performed on the realizations of coefficients {Zd [11]. For a Gaussian random field,

the most well known series expansion is called the Karhunen-Loeve expansion [38,66, 126].

Alternately, statistical inference can be based on the extreme distributions of X [1, 69]. For

a finite domain nE RN, a random variable ID3X:J:eo X(x) has been used as a test statistic in

both functional and structural brain imaging studies [4, 17, 23, 119, 125}.

1.3 Cortical Surface

vVe can extend the deformation-based morphometry to the cortical surfaces. Brain tissue is

usually classified into two types:: gray matter (GM) and white matter (WNl) (Figure LI).

The empty space between the brain and the skul1 is filled with a liquid called cerebral spinal

ftuid (CSF). The cerebral cortex (outer cortical surface) is the boundary layer between CSF

and gray matter. It has the topology of a 2-dimensional highly convoluted sheet and the most

of the cortical surface is buried deep inside. This bas been partially confirmed by computing

• the total surface area of the outer cortical surface in the thesis. Most of the features that
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Figure 1.1: Cortical anatomy~

distinguish these cortical regions can only be measured relative to the local orientation of

the cortical surface [31]. The inner cortical surface is the boundary layer between gray

matter and white matter~ As brain develops over time, cortical surface area as weIl as

cortical thickness and the curvature of the cortical surface change. It is highly Iikely that

sucb age-related changes of the cortical surface area and cortical thickness are not uniform

(Figure 1.2)~ By measuring how sucb morphological descriptors change over time, brain

tissue growth or loss of cortical regions can be localized [24]. The first obstacle in developing

surfaced-based morphometry is automatic segmentation or extraction of the cortical surfaces

from MRI . The segmented surface is usually represented as a triangular mesh. The most

widely used method for triangulating the surface is the marching cubes algorithm [72]. Level

set method [97] or deformable surfaces method [33] are also available. In our thesis, we have

used the anatomie segmentation using proximities (ASP) method [73, 74], which is a variant

of the deformable surfaces method, in order to generate cortical triangular meshes consisting

of 81,920 triangles. Once we have a triangular mesh as the realization of the cortical surface,

we can model the cortical surface deformation~ In modeling the surface deformation, a proper

mathematical framework can be found in bath differential geometry and fluid dynamics~ The
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concept of the evolution of phase-boundary in fluid dynamics [39, 53], which describes the

geometric properties of the evolution of boundary layer between two different materials due

to internal growth or extemal force, can be used to derive the mathematical formula for

surface deformation~

It is natural to assume the cortical surfaces to be a smooth 2-dimensional Riemannian

manifold parameterized by u l and u2 :

A more precise definition of a Riemannian manifold and a parameterized surface can be

round in the classical books by W.M. Boothby [14], ~I.P.D. Carmo [18] and E. Kreyszig

[64]. The pair of the mapping X and its range X(n) is called a coordinate neighborhood

or a local chart. A local chan can be approximated at each point on the surface by locally

approximating the diffeomorphism by up to the quadratic terms in its Taylor series. If n is

a unit square in ]R2 and a surface is topologically equivalent to a sphere then at least two

different local charts are required. Due perhaps to the computational difficulty of extracting

the cortical surfaces of human brain, there are not many studies that models the cortical

surfaces as Riemannian manifolds. Gaussian and mean curvatures of the brain surface have

been used to characterlze its shape [33, 50, 60]. In particular, S.C. Joshi et al. used the

quadratic surface in estimating the Gaussian and mean curvature of the cortical surfaces [60}.

S. Angenent et al. used a conformal mapping to Hatten the brain surface in a way which

preserves angles [6]. Bakircioglu et al- and P. Thompson et al. used spherical harmonies in

cortical surface registration [10, 112].

1.4 Image Smoothing

AlI brain images are inherently noisy due to errors associated with image acquisition. Com

pounding the image acquisition errors, there are errors caused by image registration and sur

face parameterization. In order to increase the SNR (signal-to-noise ratio), image smoothing

is most often used. The SNR is defined as the ratio:

SNR = Variance of signal
Variance of noise·
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Figure 1.2: Outer cortical surface of a single subject a. at age 14 and b. at age 19 showing
globally similar cortical patterns although slight sulcal variations can he found inside the
marked circles. On the other hand, cortical surfaces of different inmviduals show more sulcal
variahilities.

The precise definition ofSNR usingthe spectral densitycan he found in [38,91,124]. Among

many possible image smoothing methods, Gaussian kernel smoothing has emerged as a de

facto smoothing technique among hrain imaging researchers [63, 79]. .J.\.n integral version

of Gaussian kemel smoothing of an n-dimensional image f(x) , x = (Xlr··· ,xn ) E Rn with

smoothing parameter h > 0 is defined by

F"(x,h) = L. K(X h Y)f~:) dy,

where a Gaussian kernel is K(x) = (27r)-n/2 exp(-lIxIl2f2). F*(x, h) is the scale-space repre

sentation of the image f(x) first introduced hy A. Witkin [117]. Gaussian kernel smoothing,

as the name implies, tends ta blur images as h gets large. Sa each P*(x, h) for different

values of h produces a blurred copy of its original. The resulting scale-space representa

tian from coarse to fine resolution can be used in multiscale image processing approaches

such as hierarchical searches and image segmentation. See articles [71, 81, 82, 83, 98, 124]

for the review of the major problems in scale-space and multiscale descriptions of images.

F(x, t) = F*(x, V2t) is known to satisfy the diffusion equation

8F
ôt =~, F(x, 0) = f(x),

where a = -Er + ... + a~ is the Laplacian in r. See an article by A. Grigor'yan [51] for a
1 ft-

• brief overview of the relations between a Gaussian kemel, diffusion equations and Brownian
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motion. Hence, Gaussian kernel smoothing can be derived by solving a diffusion equation.

The most widely used methods in soLving diffusion equations are the finite element method

(FEM) and the finite difference method (FDM). The earliest mathematical treatment of

the. FE~I can be found in an article by R. Courant [28]. It has been a standard tool for

solving PDEs and variational problems. The books by M.N.O. Sadiku [93], and J. Oden

and G. Garey [77] would serve as good text books for the FE~L Also see the book hy J .C.

Strikwerda for the review of FDM [102]. The FEM usualLy requires four steps [92]: 1)

discretizing the solution region into finite number of subregions called finite elements, 2)

deriving goveming equations for an element, 3) assembling of a11 elements, 4) and solving

the system of equations.

The drawback ofGaussian kernel smoothing is that it does not respect the natural bound

aries ofobjects. We would like to encourage smoothingwithin a region rather than smoothing

across the boundaries. This could be achieved by solving the diffusion equation with the

condition F(x, t) = 0 on the boundaries. Solving a partial differential equation with such

boundary condition is called the BVP (boundary value problem) and sucb smoothing method

is usually referred as diffusion smoothing or diffusion filtering. J.O. Ramsay has soLved the

BVP to smooth data constrained within a region [86]. Extending the work of A. Witkin

[117], P. Pemona and J. Malik [79] first introduced the concept of anisotropie diffusion in

the problem of edge enhancement and detection by running the diffusion equation backwards

in time. Diffusion smoothing has been aIso used in the analysis of functional magnetic reso

nance imaging (fMRI) data on the brain surface [4] and detecting the regions of surface area

change in brain development [24].

1.5 Outline of the Thesis

Chapter 2 presents the deformation-based morphometry in 3D whole brain MRI and m
troduce the concept of local volume dilatation, which will he modeled in the mathematical

setting of random fields. The statistical methodology will be tested to normal brain devel

opment and comparisons will he made with previous brain developmental studies.

Chapter 3 contains the further generalization of diffusion smoothing in an to an arhitrary
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Riemannian manifold using the Laplace-Beltrami operator. 1t is essential to have surface

based smoothing algorithm that generalizes Gaussian kemel smoothing, in order to apply

the results of random field theory without major modification. We will present two different

methods to solve a diffusion equation on manifolds. The first method uses quadratic poly

nomials for local surface parameterization. The second method will be based on the finite

element method, which will be used to derive the exact mathematical form of the estimated

Laplace-Beltrami operator.

Chapter 4 extend the deformation-based morphometry developed in Chapter 2 to the

cortical surfaces by modeling the cortical surface as a Riemannian manifold. Morphological

descriptors based on the geometry of the manifold will be used to detect surface area, cortical

thickness and curvature changes over time.

Finally, Chapter 4 presents a brief summary of the thesis as weIl as the future research

topics which have been left out in the thesis.
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Chapter 2

Deforrnation-Based Morphollletry in

3D Volullles

In this chapter, we present a unified statistical framework for detecting brain tissue growth

and 10ss in temporally varying brain morphology. As an illustration, we will demonstrate

how the method can be applied in detecting regions of tissue growth and 1055 in brain images

longitudinally collected in a group of the same children and adolescents.

2.1 Deformation Model

Unlike other brain morphological studies that try to characterize the structural variabili

ties among diff'erent individuals of similar age groups, morphological studies of temporally

varying brain structure have an extra temporal dimension. Therefore, a diff'erent approach

to morphometry is required to fully understand the spatio-temporal complexity of brain

development.

Let U(x, t) = (Ult Uz,U3) be the 3D displacement vector field required to move the

structure at position x = (Xlt xz, X3) of the atlas or template brain {}aUa8 and at the reference

time 0 to the corresponding position after time t. Thus the structure at x deforms to

x + U(x, t) with respect to a fixed reference coordinate. The displacement U at fixed time

t is usually estimated via volume-based non-linear registration techniques on two images
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Figure 2.1: The structure at x defonns to the homologous structure at x+U(x, t) after time
t.

taken at time 0 and t. Then we propose to test the following stochastic mode! of brain

development:

(2.1)

where L is a partial differential operator involving spatial components and E(x) is· the 3

x 3 symmetric positive-definite covariance matrix, which allows for correlations between

components of the deformations and depends on the spatial coordinates x only. Since E is

symmetric positive-definite, the square-root of E always exists. The components of the error

vector €. are independent and identically distributed as smooth stationary Gaussian random

fields with zero mean and unit standard deviation. The error structure E1{2€ was first intro

duced in [122] and [17].•.\n equation of the type (2.1) is usually called a stochastic evolution

equation and it models how the structure evolves over time. Any smooth morphological

change can be completely described with the stochastic evolution equation (2.1) within the

hound set by the error structure E1/2€. If the deformation is assumed to follow a diffusing

behavior, then L can he chosen as the Laplacian L = u2(~+~+~). If the morphological
O%i v%z 0%3

changes are assumed to follow a fluid dynamics model, L becomes a Navier-Stokes operator

given in [67]. Sînce the displacement U is a function of both time t and space x, the partial

differential operator L applied ta U is again a function of both time and space.
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Longitudinal analysis based on (2.1) is essentially the inverse problem of brain registra

tion. This analysis tries ta determine the partial differential operator L from given displace

ment fields. On the other hand, in brain registration, the objective is ta find the displacement

field U that matches homologous points between two images based on minimizing a cost func

tion or actually solving partial differential equations. The most widely used physical models

that have been used in brain registration are elastic deformations and fluid dynamics models

[21, 32, 44, 113]. Suppose that the displacement field U is obtained as a solution of the

elastic deformation equation given by

au () 1/Zôt = Lelalltic U + E E,

where the operator

Lelcutic(U) = À1VZU + ÀzV(Y' . U) + F

and Y' is the gradient operator, V· is the divergence operator and Àt,Àz are called the Lamé

constants [116]. Then using this displacement field U as given data, we try to estimate

(2.1) which minimizes a certain error criterion based on El/ZE. Then the best estimator of

L is heavily biased toward the prior operator Lela3tic. It indicates that the estimation of the

evolution equation should be based on an image registration method that does not assume

an a priori physical model or on an empirical Bayesian framework. We will use intensity

based registration algorithms that do Dot have explicit physical mode1 assumptions to warp

one brain to another [26, 9], but there should be further comparative studies of the different

image registration methods to draw any general conclusions.

It can be assumed that, in the case of morphological changes occurring in a healthy brain

over a relatively short period of time, deformation occurs continuously and smoothly, 50 the

higher order temporal derivatives of the displacement U are relatively small compared to

the displacement itself. In such a case, the first order approximation to L(U) is sufficient to

capture most of the morphological variabilities over time. Therefore, we approximate L(U)

with oo1y a mst arder term P.o (x), which is constant over time, i.e.

By taking the expectation E on the both sicles of (2.2), we see that P.o = E(a;{), the mean

displacement rate. Under the linear model (2.2), the problem ofdetecting local displacement•
au
-at(X, t) = p.o(x) + E1/Z(x)e(x). (2.2)
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can be solved with a simple hypothesis testing problem:

• Ho: JLo(x) =0 for aU x E natlas

vs.

•

•

Hl : J.to(x) =F 0 for some x E natlas.

If one wishes to assess the convexity of the growth curve, we may use a second-order model:

au
8t = J.to(X) + /-LI (x)t + E l/2(x)€(x).

Unlike estimating the fust-order linear term JLo, the problem of estimating the second-arder

nonlinear term /-LI requires a large amount of data to have a statistically stable result due

to intra-subject variabilities across spatial and temporal dimensions. We have limited our

discussion to the detection of the first order morphological changes and we will not attempt

to analyze the full model (2.1) in our thesis.

2.2 Detecting Local Displacement

We are interested in detecting regions of statistically significant changes in displacement

using the linear model (2.2). This is a standard multivariate statistical inference problem

and can be solved using the Hotelling's T 2 statistic [17, 43, 59, Ill}.

Let Ui(x, ti) be the 3D displacement vector field required ta deform the structure x E

n~ to the corresponding homologous position after time ti, where ~ is the whole brain

volume of subject j. Let Vi = Uj~~ttj} be the displacement velocity. Then the sample mean
1

displacement velocity il" is given by

V(x) = ~tVi(X)
i=l

while the sample covariance matrix C of the displacement velocity is given by

CCx) = n 1 1t (Vi(x) - V(x) )(Vi(x) - V(x)r.
j=l

where the superscript t denotes the matrix: transpose. Then the Hotelling's Tl. field H(x) is

defined as

(2.3)
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•
At each voxel x, under the hypothesis of no mean displacement velocity, i.e. J.Lo(x) = 0, H(x)

is distributed as a multiple of an F-distribution with 3 and n - 3 degrees of freedom, i.e.

D n-1
H(x) -3--

3
F3n- 3•

n- •

Then the p-value of the maxima of H(x) , which corrects for searching across a whole brain

volume, is used ta localize the region of statistically significant structural displacement [17].

As pointed out in [8], the Hotelling's T2 statistic based on the displacement does not

directly localize regions within different structures, but rather identifies brain structures

that have translated to different positions. It measures relative position of two particular

voxels before and after the deformation. Therefore, in the conte.."<t of temporally varying

brain morphology, where the brain tissue growth 1S an important concem, the statistic based

on the displacement field should be taken as an indirect measure of brain growth. The

more direct morphological cntenon that corresponds to the actual brain tissue growth is the

Jacobian of the deformation field, which we will look at in the ne..xt section.

• 2.3 Detecting Local Volume Change

The deformation in the Lagrangian coordinate system Le. fixed coordinate system at time t

is

x ~ x + U(x, t).

The local volume-change of the defonnation in the neighborhood x E nt and at time t is

determined by the Jacobian J which is defined as J(x, t) = det(I + VU), where l denotes

an identity matrix and VU is the 3 x 3 displacernent gradient matrix of U given by

aUt aUt aUI
aZl aX2 aX3

VU= aUa aUa aUa (2.4)
aXl aX2 aX3

aU3 aUa aUa
8:1:1 aX2 aX3

•
The component :~: is called the displacement tensor and, in tensor-based morphometry [8},

these nine components form scalar fields used ta measure the second-order morphological

variabilities. Note that local translation captures the fust-order morphological variability.

[8} separated the deformation-based morphometry iota that utilizing the displacement fields
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and that utilizing the displacement tensor~ However, in our statistical frameworkt we have

only one statistical model on the displacement and a model for the displacement gradient

VU can be directly derived from (2~1) by taking the partial derivative with respect ta the

spatial coordinates x. Hence, by modeling the morphological changes in the mathematical

framework of random fields [lJ, the situation of having two possibly incompatible statisti

cal models on the displacement U and the displacement gradient VU can be avoided. In

our unified statistical modeling approach using (2.1), aU possible statistical distributions of

morphological test criteria can be directly derived and easily manipulated from (2.1).

Since the Jacobian J measures the volume of the unit-cube after deformation, the rate

of the Jacobian change, Le. ~i is the rate of the local volume change. In brain imaging, a

voxel can be considered as the unit-cube; therefore, ~ (x) essentially measures the amount

of change in the volume of voxel x during the deformation. Expanding the Jacobian J, we

get

J - det(I + VU)

- 1 + tr(VU) + detr2(VU) + det(VU) ,

where detr2(VU) is the sum of 2 x 2 principal minors of VU [54]. For relatively small

displacements, which is the case in brain development, we may neglect the higher order

terms and get J ~ 1 + tr(VU). Taking the partial derivative with respect to the temporal

coordinate t, we get

8J
8t

•

where V· is the divergence operator. In elastic theory, the volume dilatation is defined as

evolume(X) = V . U [75]. Therefore, the rate of the Jacobian change is approximately the

rate of the volume dilatation change for relatively small displacements, Le.

(2.5)
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•
where we term A'l1olume ta be the volume dilatation rate. Since derivatives of a Gaussian field

and the sum of components of a multivariate Gaussian field are again Gaussian field, from

(2.2), we have a linear model on the volume dilatation rate Âvolume given by

A.uoLume(x) = Àuotume (x) + €voLume (x), (2.6)

(2.7)

•

•

where ÀvoLume is the mean volume dilatation rate and €uoLume is a Gaussian random field

with zero mean. When ÀuoLume(X) = 0 in the neighborhood of x, the deformation is incom

pressible 50 there is no volume change. However, if Àuolum~(X) > 0, the volume increases

while ÀvoLume(X) < 0, the volume decreases after the deformation. In certain registration

algorithms, the Jacobian J is forced to he larger than a certain threshold to ensure the

homologous correspondence between two brains [201. When such a registration algorithm

is used, the power of detecting the region of statistically significant volume change may be

reduced. Statistical inference on the linear model (2.6) is easier thao that of (2.2) since it is

a univariate Gaussian.

Let ~olume denote the volume dilatation of the displacement Ui - (ut, u4, U') for

subject j after time ti. Then the volume dilatation rate or growth rate A~oLume of subject j

is
i _ lei _ 1 (aut aui aUi)

Avolume - ti volume - fi 8Xl + aX2 + 8X3 •

In the actual numerical implementation, the ctisplacement tensor ~~! cao be computed by

the finite difference on rectangular grid. For example, at voxel position x = (X17 X2, xa),

au{ U{(XI + 5XbX2,Xa) - U{(Xt,X2,Xa)
--~--=~----~~_....:::-~~;;;.";",,..~

&1 ~l '

where 5Xl is the length of the edge of a voxel along the Xl axis. Theo the T random field is

defined as

T(x) = .;nNlvoLume(X) ,

Svolume(X)

where };[volume and SvoLume are the sample mean and standard deviation of A~olume. Under

the assumption of no local volume change at x, Le. .ÀuoLume(X) = 0, T(x) e tn - 17 a student

t-wstributioo with n - 1 degrees of freedom. As we shall see in the Result section, the

sample mean dilatation-rate MVoLume(X) does Dot provide accurate information about where

the brain growth is dominant but the T(x) does (Figure 2.2). Then the p-value of the
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where X(A:) is the Euler characteristic of Ar [1251~ Compared to other approximation meth

ods such as the Poisson clump heuristic and the tube formu1ae, the advantage of using the

Euler characteristie formulation is that a simple e.."<act expression can be found for E X(Ar).

If Z is isotropie,

N

lE X(Az) = L (Pï(n)Pi(Z)r
i=O

(2.9)

•

where Pi is the i-dimensional EC density of the random field Z and tPi(n) is the Minkowski

functional of n [119]. Let Kan be the curvature matrix of an and detri(Kan) be the sum of

the detenninant of aU i x i principal minors of Kan. For i = 0,··· 1 N -1 the Minkowski

functional tPi(n) is defined as

and tPN(n) = IInu, the Lebesgue measure of n. Aiso the EC density Pi is defined as

where Z and Z are the first and second derivatives of Z and the subscript i represents the

first i components of Z and IZ
i

is the multivariate density of Zi~ For a Gaussian field with

zero mean and unit variance,

where c = Var(Zd and H~ is the Hermite polynomial of degree i. The exact expression

for the EC density Pi can he found for other random fields sucb as t, X2 , F fields [121],

Hotelling's T 2 fields [17] and scale-space random fields [98]. In each case, the EC density Pi

is proportional to ct and it changes depending on the smoothness of the field. If the random

field Z is given as the convolution of a smooth kemel Kh(x) = K(x/h)/hN with a white

Gaussian noise [98, 123], the covariance matrix of Z = ~; is given by

Vi (Z) = fRlV K(~)f<t(f) dx
ar h2 fRN .l(2(i) dx .

Applying it to a Gaussian kemel K(x) = (27r-)-n/2e- II:z:1I2/2 gives c = Var(Zt) = ~_ In terms

• of the full width at halfmaximum (FWHM) of the kemel K h as defined in (3.2), c = ~~ti-
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Figure 2.2: The statistical analysis of local volume change data on the mid-sagittal section.
a. The sample mean dilatation-rate Mvolume. It gives an incorrect impression that the local
volume change only occurs near the outer cortical boundaries due, perhaps, to registration
error. b. t-map of local volume change. Local maxima appear around the corpus callosum.
A lot of noise on the cortical boundaries disappears. c. t-map of local volume change after
lOmm Gaussian kemel smoothing. The smoothing is applied directly to the displacement
fields and the signal-to-noise ratio improves. d. Thresholded t-map superimposed on the
mid-sagittal section of the atlas brain. The corpus callosum shows volume increase. When
the corrected threshold of t > 6.5 is applied, most of the red regions disappears except the
local maximum in the splenium. and the isthmus of the corpus callosum.

•
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2.5 Important Measures in Brain Development

We have presented two different statistics (2.3) and (2.7), based on local translation and

local volume changes to measure morphological changes over time. One might ask if these

two statistics are sufficient to capture temporally varying morphological changes in brain and

how one statistic is related to the other. Do they measure common morphological properties

or different aspects of morphological changes? In this section, we will give some answers to

these questions.

For a relatively small displacernent, neglecting higher order terms in the Taylor expansion,

the displacement U at x + dx can be written as

U(x + dx, t) ~ U(x, t) + VU(x, t) dx.

As we have pointed out already, sorne elements of VU are used to measure morphological

changes [107, 8, 110]. The displacement tensor can be further decomposed into two parts

depending on whether it is symmetric or antisymmetric:

au; = ! (au; _ 8Ui ) + !.(au; + 8ai ). (2.10)
aXi 2 8Xi ax; 2 8Xi ax;

The antisymmetric first part corresponds to a rotation or vorticity [94] of the deformation

and the symmetric second part corresponds to a strain. Then the displacement U can he

decomposed into three parts:

U(x + dx, t} ~ U(x, t) - w(x, t) x dx + e(x, t) dx,

where w = ~(V x U) is the vorticity vector and ê = (êi;) = ~(VU + (VU}t) is the strain

matrix. By taking the temporal derivative, we have the displacement velocity V decomposed

into three parts:

aw Be
V(x + dx, t) ~ V(x, t) - 8t (x, t) x dx + 8t (x, t) dx. (2.11)

•

(2.11) captures most of the spatio-temporal variabilities of the displacement velocity into

three components: the rate of changes in a translation, a rotation and a strain for relatively

small displacements.

The straîn-rate tensor a~j can he further separated into two parts: the diagonal elements

a;:; describing the length change of the volume element in each Xt, X2 and X3 coordinate, and
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Figure 2.3: Square grid under translation, rotation and volume change. Red: volume in
crease, Blue: volume decrease, Gray: rotation, Yellow: translation. 8. square grid under
no deformation. b. Horizontal translation caused by local volume increase on the left side.
c. 45 degree clockwise rotation. The rotation induces the outer region of the center of the
rotation to translate. d. Volume expansion in the middle causes the grid to radially translate
outward.

the off-diagonal elements a;? (i =F j) describing the shearing rate of the volume element. The

volume element is a mathematical abstraction defined as an infinitesimally small cube, but

because the smallest unit in brain imaging is a voxel, we may take the voxel as the volume

element. Shearing is the deformation that preserves the volume of a voxel but distorts its

shape. Note that the sum of the diagonal elements of the strain rate lS the first order

approximation to the rate of the Jacobian change, Le.

8J ,-..; ft.. _ 8ell 8(;22 8e33
ôt - volume - ât + ôt + ât .

It seems that we may have to cODsider translational, rotational and strain changes for a

complete morphological description. However, the most meaningful measurement of brain

tissue growth or 1055 lS the rate of the Jacobian change because it directly measures the

volumetrie changes in the brain. The local translation, the local rotation and the local
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shearing change cao all be considered as readjustments and reorientations of the local brain

structure due to the volumetrie changes in the neighboring regions (Figure 2.3). In between

subject morphological studies of different clinical populations, such measurements might be

useful criteria of shape differences. However, in temporally varying within-subject brain

morphological studies, we are more interested in regions of brain tissue growth or loss that

cause the volumetrie changes. Hence, the rate of the Jacobian change is the most meaningful

morphological measure of brain tissue growth or 105s in deformation-based morphometry.

Finally, the dilatation statistic that consists of spatial derivatives of the displacement

field is statistically independent from the local translation statistic at each fixed point. To

see this, note that any partial derivative of a stationary Gaussian random field is statistically

independent from the field itself at a single point [II. Since the dilatation consists of spatial

derivatives of the displacement, it must be statistically independent of the displacement.

Sa the Hotelling's T 2 field of the displacement and the T field of the dilatation measure

morphologically different properties at the same voxeL

• 2.6 Detecting Global Volume Change

•

Standard lVIRl-based volumetry, where we are interested in detecting volume changes of the

regions of interest (ROI), can be considered as a special case of deformation-based volumetry.

Let OrO l be the 3D region of interest with smooth 2D boundary anrO I at time t. The region

O~Ol deforms ta Oral under the deformation x ~ x + U(x, t). Note that the volume of

Oral is given by

Iln~OII[ = r dx = [ J(x, t) dx.
lnr-ol locol

Theo the ROI volume--dilatation rate AROI is given by

1 a Il ROIIIAROI - IIn:ol ll8t nt (2.12)

1 r aJ
- nn:oIIl lncol 8t dx (2.13)

"" IIn~OIIi Le'" A..xume dx. (2.14)

Therefore, the global ROI volume dilatation rate ARal is equivalent to the average of the

local volume dilatation rate Avolume taken over ail n/fOI. Since Avolume is distributed as a
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Gaussian random field, AROl becomes a Gaussian random variable. So testing the hypothesis

whether there is any volume change between n:OI and nrOl can be performed through a

simple t-test.

It is also possible to test the global volume change via surface-based deformation analysis.

Gauss's Divergence Theorem states that

(2.15)

•

•

where n is a unit normal vector on the surface an:OI and dA is the surface area element

[75]. It follows that

ARDI "'" IIn; DI II LRO/ V· n dA,
o

where Y = ~~ is the surface displacement velocity on the boundary an:O f • In Chapter 4,

we will develop more sophisticated surface-hased local analysis.

2.7 Detecting Global Displacement Change

Instead of testing local translational change, we can test translational change on a global

scale. We assume that the displacement vector field is .1V-dimensional. Suppose that the

covariance matrix E is known in the linear model (2.2). We are interested in testing the nnU

hypothesis:

Ho : JLo(x) = 0 for ail x E n.

Similar ta the Hotelling's Tl field in (2.3), we define l-V(x) = Y t(X)E-l (x)Y(xL where V is

the displacement velocity. Under Ho, I-V(x) = EI:l4(x) is distributed as a stationary X~

random field [121], where e(x) = (er,··· ,eN)t is the error term defined in (2.2).

Consider another null hypothesis:

The two hypothesis Ho and H~ are equivalent over the equivalent class of a function g which

satisfies In Ig\2(X) dx = o. Therefore, instead of testing the nu1l hypothesis HOr we test H~.

Under H~, the exact distribution of the random variable In ~V(x) dx can be round via the

Karhunen-Loève expansion [2, 38, 66, 126].
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Karhunen-Loéve expansion states that for a mean zero Gaussian random field Z(x) with

mean square continuity property over a bounded domain n c RN l there exist independent

mean zero Gaussian random variables {Zi} and orthonormal bases {~à such that

«Xl

Z(x) = E ~~i(X).
i=O

(2.16)

Let cif = EZl < 00 and R(x l y) be the covariance function of Z (x). It can be shawn that ur
and lPi are the î-th eigenvalue and eigenfunction of the integral equation

ln R(x, Y)t/>i(Y) dy = art/>i(X), (2.17)

•

Equation (2.17) is a Fredholm equation of the first kind and lPi and ur can be estimated

numerically if the kemel R(Xl y) is given [7]. The bases {lPi} are orthonormal with respect

to the inner product defined by <l, g) = In I(x)g(x) dx such that

The error components €i are distributed as Li.d. isotropie Gaussian random fields 50 they

have the orthogonal expansion of the form €i(X) = ~~o€iilPi(X) with lECeri) = uJ and €ii

are independent Gaussian random variables for aU il j. Then it follows that

N1W(x) dx = E(Ei,E;)
n i=l

N 00

- ~~ fs EijEikt/>j(t)t/>k(t)dt
1=1 J,k=O

N 00

- EE~i
i=l j=O

«Xl N

- EE~j·
j=O i=l

Note that
N
~Ë D 22LJ fj""" (jjXN,
i=l

where xiv is the chi-squared distribution with N degrees of freedom. Sl1mming up the above

results, we have the exaet distribution for global displacement change:

• LW(x) dx !!. f:,ojXj ,

S i=O
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•
where X j i-j;f~ X~ and 07- = faxa R(x, Y)tPj(X)tPj(Y) dxdy~ The sum of the independent chi

squared random variables in (2~18) can be approximated by another chi-square distribution

[95]~ Note that

Then approximately,

00

lE(Eo-JXj ) -

j=O
00

var(EuJxj ) -

j=O

00

NEuJ
j=O

00

2NEu1·
j=O

00

E uJ}(j e ex;,
j=O

where c= ~~o u1 / ~~o uj and the approximate degrees of freedom

A. similar test procedure that does not use the Karhunen-Loève expansion for testing the

null hypothesis of no functional activation can be found in [118] .

• 2.8 Results

Twenty eight normal subjects were selected based on the same physical, neurological and

psychologïcal criteria described in [47]. Two TL-weighted ~IR scans were acquired for each

subject at different times on the same GE Sigma 1.5 T superconducting magnet system.

The first scan was obtained at the age 11.5 ± 3.1 years (min. 7.0 yr, max. 17.8 yr) and the

second scan was obtamed at the age 16.1 ± 3.2 years (min. 10.6 yr, max. 21.8 yr). The time

difference between the first and the second scan was 4.6±0.9 years (min. time difference 2.2

yr , max. time difference 6.4 yr). Table 4.1 shows the complete description of the ages. Using

the automatic image-processing pipeline [128], a total of 56 1JIR images were transformed

into standardized stereotactic space via a global affine transformation [104] followed by a

nonlinear deformation ta match the atlas brain nat1as• The global affine transformation

removes most of the intra- and inter-subject global differences in brain size; adult brains are

approximately 5% larger than those of five year old children [35, 36]. Because we are only

• interested in finding local morphological changes, these global morphological variabilities
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error would he smaller~ However, the displacement fields obtained by the direct registration

method still have to be registered ante the atlas hrain in order to form statistical parametric

maps. The reason for such statistical treatment to analyze the structural data is obvious

considering that the displacement field ohtained from image registration algorithms for brain

development contains a fairly large component of error. Tl,1e length of the displacement

velocity we have observed for the spatially normalized MR scans of 28 normal subjects is

usually less 1mmjyear, i.e~ J.Lo = lE(~~) < 1 mm/year in average. Optimistically assuming

that the image registration algorithm is accurate ta within one voxel distance (usually 1 or 2

mm), the registration error seems to be relatively large in brain development~ So one may be

skeptical about whether the deformation-based morphometry can possibly detect such smaH

changes~ Nevertheless it is still possible to pick out the signal when there are enough data;

Figure 2.2 illustrates how image smoothing and the statistical treatments improve the power

of detection. Statistical trea.tments compensate for some of sucb registration errors~ Finally

the displacement velocity field is smoothed with a 10mm FWH~IGaussian kernel to increase

the signal-to-noise ratio (the smoothing parameter FWH~I is defined in 3.2). Without the

smoothing, it may have been more difficult to detect morphological patterns illustrated in

Figure 2.2. However, Gaussian kemel smoothing sometimes tends to blur the fine details of

deformation pattern (Figure 2.5).

The regions of statistically significant displacement have been detected (Figure 2.6, yeL

low) by the Hotelling's T 2 field with the corrected threshold [17]:

P ( max H(x) > 60.0) ~ 0.05.
zE!latlu

Most of the structural movements have been 0 bserved in the frontal lobe without any ac

companying significant change in local volume~ This may indicate that there are continued

readjustments of the exact position of brain structures in the frontal lobe without any brain

tissue growth or loss in adolescence. Also note that the statistically significant displacement

occurs evenly and shows some degree of symmetry between the left and the right hemi

spheres. Because the local translation statistic measures the relative displacement of brain

structure, it does not truly reflect the brain tissue growth process~ However, it does indicate

the principal direction of the brain growth as shawn in the purple box in Figure 2.6 and en

larged in Figure 2.8~ Hence, the local translation statistic should be used in conjunction with

the local volume change statistic to fully understand the complex dynamics of temporally
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changing morphological pattem_

Previous developmental MRI studies have provided evidence for age-related increase in

total white matter volume and decrease in total gray matter volume [30, 57, 80, 85, 89} but

the analytic procedures used in these studies did not allow the investigators to detect local

volume change. The local volume change statistic T(x) is computed using the fonnula (2.7)

with tj = ~1 - ~2. The t-statistic map is thresholded at

p( max T(x) > 6.5) ~ 0.025,
:z:EOGllu

P ( max T(x) < -6.5) ~ 0.025.
:z:EOGtl4.

At this threshold, most of the local volume increase observed around the corpus callosum

in Figure 2.2 disappears except for very few localized statistically significant "peaks" in the

isthmus and splenium. There was no volume change detected in the rostrum and genu.

Figure 2.6 also shows the localized growth in the splenium of the corpus callosum on the

coronal section (the single red dot). Therefore, we observe highly focused regions of brain

tissue growth at the corpus callosum. [46, 84, 110] reported similar results of growth at the

corpus callosum.

The growth at the corpus callosum seems relative1y small when compared to the global

peaks observed predominantly in somatosensory and motor cortex (the largest red cluster in

Figure 2.6). Localized brain tissue loss was also detected at the same time as tissue growth.

This tissue loss was highly localized in the subcortical region of the left hemisphere (Figure

2.6, blue). Simîlar results were also reported in [110], where the extent of the peak growth

is wider and less localized than our study has found. It seems our statistical treatments

based on the large sample size (n = 28) tend to remove a lot of intra-subject variabilities

and pick out the common morphological pattern among subjects compared. to the smaller

sample size (n = 6) studied in [110]. Slightly different growth patterns observed between

our study and [110] may be due to many factors. Our approach is based on the systematic

statistical treatments of large sample size (n = 28) with a less accurate intensity based

automatic registration algorithm. While the approach taken in [110] is based on a sample

size ofsix without any statistical approach, a more accurate elastic model based. registration

algorithm with manually matched sulcallandmarks was used. Howevert the most important

difference between the two studies is the age distribution of the subjects. In [110}, the age
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Figure 2.6: Left: 3D statistical parametric maps of local volume increase Cred), vol
ume decrease (bIue) and structural displacement (yelIow) thresholded at the probability
0.025, 0.025,0.05 (corrected). Right: Statistical parametric maps are superimposed on tb.e
axial, sagittal and coronal sections of the atlas brain MRL The cross-sections are taken at
the interior of the largest red cluster inside the purple box (parietal cortex). The white lines
indicate where the CIoss-sections are taken.
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Figure 2.7: 3D statistical parametric map shown in Figure 2.6 is superimposed with the
outer cortical surface of the template brain showing dominant local volume increase around
the primary motor cortex in the left hemisphere while local volume decrease in the right
hemisphere.

distribution of the six subjects is in most part younger than our mean age of 11.5 for the first

scan and 16.1 for the second scan. So although there are similar growth patterns common

to both studies such as predominant growth at the parietal lobe, localized peak growth at

the corpus callosum etc., the two studies are detecting morphological changes in ditrerent

but nonexclusive age groups.

Finally in answering the question of whether the local translation statistic and the local

volume change statistic are measuring ditrerent morphological variabilities, we have COID

puted the overlapping regions between the significant volume change and the translation

statistics. The volume of the overlapping regions is less than 10% of the total volume of the

two statistics combined together. We have already shown that these twO statistics are dis

tributed independently at the same voxeL The voxel-by-voxel computation seems to support

our claim that these two statistics are indeed measuring ditrerent aspects of morphological

change. Although they measure different morphological properties, we have observed very

interesting relations between these two statistics as illustrated in Figures 2.6 and 2.8. Figure

2.8 is the c1ose-up of the parietal region of the left hemisphere (the purple box in Figure 2.6),

showing a large local displacement from the region of volume growth to a region of volume

loss, indiC8ting how the structure boundary has moved from the increasing volume to the
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Figure 2.8: A close up of part of the outer left hemisphere inside the purple box in Figure
2.6. Black arrows represent the sample mean displacement velocity subsampled every lOmm
and scaled by 50 mmjyear:. The direction of the mean displacement velocity suggests how
the local volume expansion (red) causes the translational movement of the structure (yellow)
toward the region of atrophy (blue). The heads of arrows are manually enhanced to clearly
indicate the direction of the displacement.

decreasing volume. This phenomenon is aIso schematically illustrated in Figure 2.3 b, where

the square grid is undergoing a horizontal translation from the region of volume increase on

the left to the region of volume decrease on the right, and Figure 2.3 d, where the volume

expansion in the middle causes the neighboring structures to radially translate outward. It

seems that by studying these two statistical parametric maps simultaneously, the comple.x

dynamic patterns in temporally varying brain morphology can he captured.
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Chapter 3

Diffusion Srnoothing on Manifolds

•

We will present two conceptually different approaches to diffusion smoothing on a trian

gulated cortical surface via the Laplace-Beltrami operator, which generalizes an ordinary

Laplacian in Euclidean space to manifolds. The first method uses quadratic polynomials for

local surface parameterization. Then using a conformai coordinate transform, the Laplace

Beltrami operator is reduced to the planar Laplacian. The second method is based on the

finite element method of estimating the Laplace-Beltrami operator. As an illustration, the

mean curvatures on the outer cortical surface is smoothed to show how the the smoothing

incorporates the geodesic curvature information of the surface.

3.1 Diffusion Smoothing

The most general forro of Gaussian kemel smoothingofthe function f(x), x = (Xb' •• ' xn ) E

r is defined as the convolution of Gaussian kemel K H with f:

FH(x) = 1KH(x -y)f(y) dy,
Rn

(3.1)

where KH(x) = K(H-1x) { det(H) and the Gaussian kemel is

K(x) = 1 e-llxIl2/2.
(21r)n/2

The n x n symmetric matrix H is called bandwidth matrix [96, 100] and it controis the extent

• of smoothfug. Note that KH(x) is a multivariate normal density with the mean zero and
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the covariance matrix H 2
• By choosing H = hln for some smoothing parameter h > 0, we

have isotropie Gaussian kernel smoothing. The smoothing parameter h controls the extent

of smoothing. We will restrict our attention to isotropie Gaussian kernel smoothing and its

kernel Kh(x) =KhIJI.(X) = K(x/h)/hn • As h -+ 0, Kh(x) becomes a Dirac delta function

8(x) [127], which is defined as

1 5(x) dx = 1,
Rn

5(x) = 0 if X ;f O.

From the property of the Dirac delta function,

lim Fh(x) = 1 o(x - y)f(y) dy = f(x).
h-.O Rn.

Sa when the bandwidth parameter i8 too small, we have undersmoothing while when it

gets larger, we tend to have oversmoothing. Both oversmoothing and undersmoothing have

problems: oversmoothing has small variability but large bias but undersmooting has small

bias but large variability. In order to measure over ail smoothness, mean integrated square

error (~IISE) has been used as a cntenon in most of the theoretical works [15, 96, 100]. The

optimal bandwidth parameter h is chosen to minimize ~IISE. Among imaging researchers,

FWHM (full width at hall maximum) is often used as the smoothing parameter in Gaussian

kemel smoothing. FWHM 15 defined as the the full width at the half maximum of Gaussian

kernel (Figure 3.1):

FWHM = 4(ln 2) 1/2y't = 2(2In2)1/2h. (3.2)

Let t = h2 /2 and F(x, t) = F.j2t(x). We may consider t as time. Using the Fourier

transform [41], it can be shown that F(x, t) is the integral solution of the n-dimensional

isotropie diffusion equation

8F
-=aF
fJt

(3.3)

with the initial condition F(x,O) = f(x) , where ~ = ~ + ... + Er is the Laplacian
1 JI.

in n-dimensional Euclidean space. Rence Gaussian kernel smoothing of f i5 equivalent to

the diffusion of the initial data f. The duration of the diffusion of the initial function

f determines the extent of smoothing via the relationship t = h2 /2. We shall calI the

• smoothing method that is based on solving a diffusion equation as diffusion smoothing.
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Figure 3.1: FWHM of the Gaussian kemel K(x).

•

Although diffusion smoothing uses the Laplacian, it is different from Laplace smoothing,

which penalizes higher powers of the Laplacian ~ in spline smoothing [88]. Because the

partial differential equation (PDE) fonnulation is more adaptable to various situations where

the Gaussian kemel smoothing fails, diffusion smoothing has been used in many applications.

In anisotropie diffusion, for instance, the extent of smoothing depends on proximity to edges

so that it has been mainly used in edge detection [79]. Another application of diffusion

smoothing can be found in [86] where it is used to smooth data in a planar region, while

constraining the solution to remain within the region via the boundary value problem (BVP)

ofPDE.

3.1.1 Diffusion Smoothing in lR.

Let us illustrate diffusion smoothing in R and shows why it is more robust than Gaussian

kemel smoothing. The discrete version of Gaussian kemel smoothing (3.1) on N data points

Xl < ... < xN E R is

(3.4)

•

which approximates (3.1). Despite the simplicity of Gaussian kernel smoothing, it becomes

unstable near the boundary ofan area in which. the data is defined and this instability worsens

as the bandwidth parameter gets larger although it is possible to correct such boundary bias

ofGaussian kemel smoothing by using boundary kernels [87,96, 100}. Consider 1-dimensional
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Figure 3.2: Comparison between Gaussian kemel smoothing with the bandwidth parameter
h = 1 (solid line) and diffusion smoothing (dotted line). a. before the iteration. b. after
0.05.seconds (5th. iteration). c. after 0.25 seconds (25th. iteration). d. after 0.5 seconds
equivalent to h = 1 (50th. iteration).

diffusion equation

ôF !PF
7ft = ôx2' F(x, 0) = tex). (3.5)

(3.6)

The diffusion equation (3.5) can be solved iteratively by the finite difference method [102J:

. . ffiF .
F(xt, tj+d = F(xt, ti) + (ti+l - ti) ôx2 (Xl, tj ),

•
where :{(xÎ

, ti) is an estimator of ~{(Xi, ti). To simplify the problem, take the same

iteration step me Llt = ti+l - ti and iterate until ti hits h2/2 (Figure 3.2). Estimating the

second derivative of a function requires at least three data points. One way of estimating
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Diffusion smoothing solved with the boundary condition (biue dotted Hne). a. after 0.25
seconds (25th. iteration). b. after 0.5 seconds equivalent to h = 1 (50th. iteration).

a2t~f) is to differentiate a quadratic function that passes through three points

•
It can be shown that the estimation based on the quadratic interpolation is

We can not interpolate at the end points Xl and x N so we are forced to set up boundary

conditions F(xt, tj) = f(x l ): F(xN : t j ) = f(:eN) for ail tj in our iteration scheme. With these

boundary conditions, we are numerically solving a BVP of POE and this is why diffusion

smoothing will outperform Gaussian kemel smoothing near boundary. Figure 3.3 shows

the comparison between Gaussian kemel smoothing in (3.4) and the equivalent diffusion

smoothing in (3.6). Note that there are slight discrepancies near the edges due to the fact

that the diffusion equation was solved with the boundary conditions while Gaussian kemel

smoothing is note

3.1.2 Smoothing Random Fields

•
Consider smoothing random noise X(x). We may take X(x) to be a mean zero stationary

Gaussian random field in JR!l with the covariance function Rx(x: y). Then Gaussian kemel

50



•
Consider the following penalty

~Vh(X) - lE IY(x) - X(x) 1
2 + Var Y(x)

- 2lE(y2(x») - 2E(Y(x) ...y(x») + E(X 2 (x»)

- 2Ry (x, x) - 2Rxy (x, x) + Rx(x, x),

(3.8)

(3.9)

(3.10)

•

where Rxy is the cross-covariance function of X and Y. When h --+ 0, the first term

lE IY(x) -X(x)l2 vanishes while the second term obtains its maximum Var Y(x) = Rx(O, 0).

As t -+ 00, the diffusion process will reach the stability condition ~~ = 0 and the covari

ance funetion will Hatten out to satisfy the harmonie condition V R = o. So when h --+ 00,

Var Y(x) vanishes while the first term obtains its ma.ximum. Because X and Y are sta

tionary, the penalty function is constant with respect to x, Le. ~Vh(X) = ~Vh(O). But if X

is a non-stationary random field, then ~Vh(X) becomes a function of both x and h. In sucb.

a case, the optimal bandwidtb. h will be different for each x and we get spatially adaptive

smoothing. For a non-stationary random field X, we can fix the bandwidth by minimizing

the integrated penalty over a finite domain n, Le.

min r~Vh(X) dx.
h>O ln

For a stationary random field X t the minimum can be obtained by differentiating (3.10) with

respect to h:

or equivalently

2E(~~(x)Y(x») = lE(~~ (x)X(x»). (3.12)

•

The integral equation (3.12) is similar to the Wiener-Hopf equation [38}, which is used to

find an optimallinear filter and can he solved numerically via the Karhunen-Loève expansion

explained in (2.16). Solving (3.12) in general is not easy for a non-trivial covariance funetion

but for a simple case the exact optimal bandwidth can be obtained without resorting to

numerical methods. Consider a mean zero stationary Gaussian random field X with the

covariance function Rx(x, y) = pKg(x, y) for sorne constant p. We will use the following two

identities:
1

Kh(x)Kg(x) = (21r)n/2f3n KQ/p(x) ,
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h2

Kh(x) Kg (x - y) = Ko:{p(x - f32Y)Kp(y),

• where a = hg and fJ = v'h2 + g2. From (3.7) and using the fact that Ry(x, x) = Ry(O, 0),

Ry(x, x) - pll Kh(x)Kh(y)Kg(x - y) dx dy
Rn. Rn-

- pl f(p(y)Kh(y)1 Ket{p(x - {3h: y) dx dy
Rn Rn

- (21r)~/27n Ln Kphh(Y) dy
p

-
(27r)n{2'Yn '

where 'Y = v'h2 + fJ2 = J2h2 + 92• Aiso

Rxy(x, X) - 1Kh(x - y)Rx(x, y) dy
R.n

p' 1- (27r)n/2{3n Rn Ket{p(x - y) dy
p

Solving (3.11), we get

• _ (41/(n+2) - 1) 1{2
h - 9 2 _ 41/(n+2) •

When n = 1,2,3, we get h = 1.12g J h = 0.84g J h = 0.699 respectively. So once we can

estimate the FWH~I of the covariance function Rx , it can be used to pick up the optimal

bandwidth based on the penalty J.Vh(x).

Diffusion smoothing has also round applications in the problem of smoothing flIIRl data

to increase the signal-to-noise ratio on the cortical surfaces of the human brain [4]. When

using diffusion smoothing on a curved surface, the smoothing somehow has to incorporate the

geometrical features of the curved surface and the Laplacian ~ should change accordingly.

For example, on a unit sphere, the spherlcal L~placian is

1 8 (. 8F) 1 82F
~F = sin (J 8(J SIn (J 88 + sm2 (J 84J2 (3.13)

•
when the spherical coordinates (Xt,X2,Xa) = (sÏn(J cos<p, sin8 sin4J, cosq,) are used. Ifwe use

a different coordinate system on the sphere, we will have a different fOIm of the Laplacian

since it depends on the coordinate system used. The extension of the Euclidean Laplacian

ta an arbitrary Riemannian manifold is called the Laplace-Beltrami operator [51,64]. In the
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sorne constants dul and du2 _ Then the length of the vector dE in the Cartesian coordinate is

(3.15)

where the coefficients 9ij = (Xit Xj) are called the Riemannian metric tensor and they

rneasure the amount of deviation from the Cartesian coordinate system. The bilinear form

(3.15) is called the first fundamental Jorm. The first fundamental form enables us to compute

intrinsie properties of the surface such as lengths, angles and areas. If a curve on the

surface an is given by X(u(s)), where the curvilinear coordinates u(s) = (ul(s) , u2(s)) is

parameterized by a single parameter s, its length is given by

f f ( aui aUj ) 1/2
IIûll ds = ~9ij as as ds.

l,}

The angle (J between two vectors ç, Tl E Tp(an) can be computed in terms of the Riemannian

metrie tensor in the following way:

~ - Tl ~iJ 9ijçîrf
cos (J = lIçlllll1l1 = CL,i,f 9ijçiçj)l/2(~i.j 9ijTli"p) 1/2·

The total surface area of a region A c an is

r y'detg du1du2
,JX-l(A.)

where clet 9 = 911922 - gr2 and does not depends on the parameterization X [18, pp. 97]. Note

that Jdet 9 is the local surface area element, which will he used in Chapter 4 in measuring

the amount of local surface area change.

3.2.2 Gaussian and Mean Curvatures

The unit outward normal vector n ta the surface is given by

X l XX2n= _
v'aet9

Theo the vectors (Xt , X 2 , n) form. an orthogonal basis in the 3D Euclidean space. So the

partial derivative of the basis vectors Xl, X2 and n can be expressed in terms of the basis:

aXi
- r;l-Xl + r;j-X2 + r~J.nt

Buj

Bn
Bui - rijXt + rij X2 + r~jnt
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•
where the constants rt are called the Christoffel symbols~

The second fundamental {OTm is given by

(3.16)

•

where lij = (JYijt n) and

8JYi (82
X l éPx2 82X3)t

Xij = 8ui = 8ui8ui' 8ui8ui' 8ui8ui ~

Let 9 = (gii) and l = (lii)~ The principal curvatures ~l and K2 are defined as the eigenvalues

of g-ll and the mean curvature KM and the Gaussian curvature Ka can he given in terms

of the principal curvatures as

In estimating the Gaussian curvature on a triangulated mesh, there is an alternative method

based on the covariance matrix of the surface normaIs [5] ~ There is also a finite element

version of the mean curvature estimation [37, 78]~

For the surface of the form

(
1 2 1 2X3 = Z Xl, X2) = /30 + fJtXl + ,S'lX2 + 2.B3X1 + /34 Xlx 2+ 2.BsX2 + ~ ~ ~ ,

we can parameterize it by X(ul ,U2 ) = (Ul,u2,Z(Ul,U2))~ A simple computation shows that

Xl = (1,0, .Bd, X2 = (0, l, fJ'l), X 11 = (0,0, .83), Xl2 = (0,0, .B4), X 'l'l = (0,0, .Bs) at the origin~

Then the normal vector n is
(-fJl' -fJ2, 1)

n = (1 + fJi + .B~)1/2 ~

From (3.15) and (3~16), the coefficients of the fundamental forms at the origin are given by

_(1 + .Br /31.B2)g- ,
/3lfJ2 1 + fJi

(3.18)

(3~19)

Then the mean curvature is given by

K - .83(1 + fJi) + /3s(l + .Br) - 2fJlfJ'lfJ4
M - (1 +.Br + fJi)3/2 ~

Sa it is easy to compute geometric quantities such as local surface area, length and curvatures

when the local quadratic surface patch is used~ Because of this simplicity, quadratic surface

• fitting has been used in estimating curvatures of a macaque brain surface [60].
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3.2.3 Laplace-Beltrami Operator

• The gradient Vx of F on the tangent plane Tp(an) is defined as

~ -·8F
Vx F = 4-! gl] 8ujXi:

lJ

(3.20)

where (giJ) = g-l [75, p. 69]. Then the generalized Laplacian called the Laplace-Beltrami

operator ~x corresponding to the surface parameterization X is defined as the divergence

of the gradient operator such that

_. __1_",~( 1/2 ij8F )
~xF - V x (Vx F ) - Ig11/2 4-! 8ui Igl 9 auj

lJ

(3.21)

•

•

[64, 75]. For the derivation of the Laplace-Beltrami operator without using differential

geometry, one may approach the problem in terms of a curvilinear coordinate transform

[29]. One of the most important properties of the Laplace-Beltrami operator is that it is

independent of the parameterization of an, Le. ifX= )( 0 ~ is another parameterization of

the surface an,
- --~xF=~xF.

However, this equivalence may fail numerically when we estimate ~F with different param

eterizations, so that great care should be taken to choose a proper parameterization wmch

stabilizes the numerical computation and minimizes the variances of errors in estimating the

Laplace-Beltrami operator. Another important property of the Laplace-Beltrami operator,

which will be used in the finite element method, is that the operator is self-adjoint. If F and

Gare twice differentiable functions on an, then

1GâF dS = ( F~G dB = -1 (VF, VG) dS,
an Jan an

where the inner product

(VF, VG) =~lj:~
11

and the surface area element dS = y'detg du1du2 [51, pp.1431.

Conformal coordinates are defined as a coordinate system 'li. = (u l , u2 ) whose metric is

given by dç2 = À(dU1)2+À(du2)2 forsome function À = À(u). With respect ta the conformaI

coordinates, the Laplace-Beltrami operator can he simplified to

1( CP CP)
Â x = À 8(u1)2 + a(u2)2 •
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Figure 3.4: A typical triangular mesh of the outer cortical surface consisting of 81,920
triangles and 40,962 vertices.

For an arbitrary smooth surface and a fixed point p, we can always find conformaI coordinates

such that X(u) = p and À(u) = 1 [18}. Therefore, ifwe find a conformai coordinate system

at each pEan, the computation of the Laplace-Beltrami operator at p = X(u) becomes

the planar Laplacian at u. In the following section, we will explain a way to find such

conformai coordinate systems on a triangulated surface by a simple affine transformation of

the coordinates.

3.3 Parametric Method

The standard method for triangulating the surface is the marching cubes algorithm (72}.

Alternative methods such as the leve! set method [97} or deformahle surfaces method [33}

are availahle. '\Ve have used the anatomie segmentation using proximities (ASP) method

[74} t which is a variant of the deformahle surfaces method. In triangulating cortical surfaces

of the human hrain from 3D ~IRIt we have used the ASP method to extraet 81,920 triangles.

At this surface sampling rate, the average intervertex distance is about 3mm. (Figure 3.4)•
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Figure 3.5: A typical triangulation in the neighborhood of P = Po. The triangulation is
either pentagonal or he..xagonal in ASP algorithm for 81920 triangles.

3.3.1 Estimating Normal Vectors

In order ta compute the Riemannian metrie tensors on the triangulated surface, we first

• estimate the tangent plane and its normal vector at each node then find a local parame

terization in the neighborhood of each node. Usually normal vectors are computed during

the triangulation process. In the ASP method, the outward unit normal vector n at each

node p is computed as the weighted average of the unit normals of the incident triangles.

If Pl, ... ,Pm are m neighboring points of p = Po in the counter-clockwise direction with

respect to the tangent plane Tp(an) at P (Figure 3.5), then the unit normal vector n is

estimated as

n - E~l ~iIlï
- E~l 'Pi '

where the unit vectors Ilï are normal to each triangle 1i.

~ = (Pi+l-P) X (Pi -p)
Il (Pi+1 - p) X (Pi - p) Il

•
and the interior angles are
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Altematively, we mayemploy a method similar to principal components analysis (PC}\)~

The equation of the plane with the unit normal vector n passing through the point p is

(n, x} = (n,p}. The distance from the point Pi to the plane is the length of the projection of

Pi - P onto the unit normal vector n, Le. (n, Pi - p). Then we find the best fitting tangent

plane in the sense of minimizing the sum of squared distance of the points Pb ... , Pm to the

plane:
m

min~ (n, Pi - p}2 = min ntCn,
n L.J n

i=l

where C = E~l (Pi - p) (Pi - p) t • If the fitting plane is not forced to pass through the point

p, C becomes the sample covariance matrix of Pl, . ~ . ,Pm and the optimization problem

is exactly the standard PCA. Since ntn = l, using the Lagrange multiplier 'Y minimize

n'Cn - 'Y(n'n -1). Differentiating with respect to n, Cn - 'Yn = O~ Thus~ 'Y is an eigenvalue

of C. Note that we are minimizing n'Cn = n'ïD = ï. So the unit normal vector n of

the best fitting tangent plane should be the eigenvector n that corresponds to the smallest

eigenvalue~

If the interior angle of triangles joining the verte.x P is acute, the best fitting plane

passing through P might end up perpendicular to the tangent plane Tp (80). In this case,

the unit normal vector n to Tp (8n) should be the eigenvector that corresponds to the largest

eigenvalue.

3.3.2 Global Parameterization: B-Splines

The ASP algorithm provides a one-to-one mapping from the surface to a sphere [74}. Using

spherîcal projection, every point except the north pole on the sphere can be mapped onto the

plane. Spherical projection has been used as a global parameterization in flattening the whole

brain surface onto a single plane [6}. One of the most widely used surface parameterization

method is to extend the B-Spline curves to surfaces via tensor product~ Let us review special

B-spline curves called Bézier curues [52, 76}. Consider m + 1 given points Po, . ~ - , Pm E RN.

The simplest Bézier curve is a Une segment Pij(U) joining two points Pi and Pj:

Pij(U) = (1- U)Pi +uPi' U E (0,1) .
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For three points Po, Pl and llz, a quadratic Bézier curve is given by

In general, rn-th order Bézier curve is

m

Po,m(u) = L tPj,m(u)Pjr U E (0,1)
j=O

where the basis functions {l/>j,m(u) = (7)(1- u)m-juiri = 0, ... rrn} are Bernstein polyno

mials of degree m. Cubic Bézier curves are the most often used Bézier curve because cubics

satisfy the minimum curvature or strain energy propertyr which make them a more suitable

tool for a smooth curve approximation [52r 76]. To avoid increasing the degree of the Bézier

curve, we need to piece together Bézier curves. If continuity conditions are satisfied for each

Bézier curve segments, the result is aB-spline .curve. In general, aB-spline curve of degree

K - 1 \Vith m + 1 vertices Po, •.. Pm is defined as

m

X(u) = LBj,K(U)pft
j=O

where the B-spline functions {Bj,K(U) , i = 0, - - - ,m} are defined recursively in [52, 76] .

Then we can use these B-spline curves to generate surfaces_ Consider a rectangular mesh of

vertices {Vij}. A B-spline surface parameterization )( of degree K - 1 for points Pij E R.3 can

be defined by the tensor product:

X(U1
, u2

) =L Bi,K(u
1)Bi ,K(U2)Pii_

ij

(3.22)

•

The advantage for using B-spline to represent the surface is that it is easy to evaluate the

curvature of a surface or other geometric characteristics of the surface because polynomial

functions can be differentiated easily. The disadvantage of using the tensor B-spline is that

it is not easy to modify the above formulation which works so well for a rectangular mesh

to a irreguiar triangular mesh.

3.3.3 Local Parameterization: Quadratic Surface

Instead of using B-splines to forro a parametric surface, there is a simpler method based

on the polynomial regression [9a}• This i5 a smoothing technique ta fit the given points
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Po, ... , Pm by the least-squares method to a polynomial function of the form

t(x, y) = L Pij xiyi.
i+j9>

Then for Pi = (xi, yi, zi), P = (P+l~P+2) unlmown coefficients (3i/S are chosen to minimize

the residual
m

L [zi - f(x i , yi)] 2.

i=O

The drawback of the polynomial regression is that there is a tendency to weave the outer most

vertices to find vertices in the center. Therefore, poLynomial regression is not recommended

for global surface parameterization. Our surface-based morphometry will try to avoid using

any global surface parameterization. Other families of surface parameterizations have been

suggested but are rarely used. One of them is to use finite Fourier series:

f(x, y) = L (aijsin(iwlx) sîn(jw2Y) + bijsîn(iwIX) COS(jw2Y)
O~ij~r

+Cij COS(iWIX) sin(jw2Y) + dij COS(iWIX) COS(jW2Y))'

Sucb a surface requires a large number of coefficients aij, bij, Cij, c4j plus the fundamental

frequencies Wl, W2 to be estimated_ Hence r surface fitting based on finite Fourier series on

the large data set is computationally intensive although the fit would be better than the

standard polynomial regression.

However, in estimating the Laplace-Beltrami operator or curvatures, it is not necessary

to find such global parameterization of the surface an. A local surface parameterization

in the neighborhood of p can be obtained via the projection of the local surface onto the

tangent plane Tp(an). Let Q be an orthogonal matrix which rotates the normal vector n to

align with the X3 axis, Le. Qn = (0,0, l)t. It is easy to see that

Q=

nI n2 0
Jnf+ni Jnt+ni

na nt 0
vnt+ni v'ni+ni

0 0 1

•
is snch an orthogonal matrix assuming nt, n2 :F O. If nt = n2 = 0, we can take Q = [a

Let x E an he a point in the neighhorhood of p. Consider the transformation defined by

y = (Yb Yz, Ya)t = Q(x-p)_ Under this transformation, the local surface region translates to
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(3.23)

•
the origin and then rotates by Q~ Then with respect ta the new coordinates (Yh Y2, Ya), the

local surface can he explicitly written as Ya = Z(Yl, Y2) for sorne function Z assuming local

smoothness of the surface~ Renee by identifying (YI, Y2) as our parameter space, we have the

following local parameterization in the neighborhood of p:

X(ut, u2
) = p + Qt ( ul

, 'lI.2, z(ut, u2 ») t ~

Then the basis on the tangent plane is

t( 8z I)t t( az 1 )tXl = Q 1,0, au t (0,0) and X2 = Q 0,1, au2 (0,0) ~

Thus the Riemannian metric tensor is given by

(3.24)

•

where the derivatives are evaluated at (0,0). Renee the metric tensor at p is completely

determined by the derivatives of the function z evaluated at (0,0) and it is independent of

the rotation of the tangent plane by Q. Similarly, the coefficients of the second fundamental

forro. are invariant under such a transformation~

In the neighborhood of (0,0), we have the Taylor approximation of the function z:

(3.25)

Since we are forcing the function z to pass through the origin, there is no constant term in the

Taylor expansion. The problem of estimating the coefficients Pi can be formulated in terms

of least-squares estimation~ For m neighboring points Pb ... , Pm, let Uï = (ut, ur, ut)t =
Q(Pi - p). Then the unknown coefficients Pi are chosen to be the least-squares estimates of

a system of linear equations Y = X{3: where {3 = (Pb··· tf3s)t, y = (ut,··· ,u~)t and the

m x 5 matrix X is given by

x=

•
The least-squares estimation is

(3.26)
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where - denotes a generalizéd inverse, which can be obtained through the singular value

decomposition [68]. Then from (3.24), the fundamental forros can be estimated and conse

quently the mean and the Gaussian curvatures. In practice, gii can be any number bigger

than L The smoother the triangular mesh, the doser 91t, g22 are ta the value L When

9u = 5i;, we have locally Euclidean space.

3.3.4 Local Conforma! Coordinates

Because gi; =F 5i;, the Laplace-Beltrami operator (5.1) has many terms. As we have seen

in the previous section, the mathematical form (5.1) reduces ta the planaI Laplacian when

locally confonnai coordinates are used. Such local conforma! coordinate can be obtained by a

linear transformation. Let us define new coordinates v = (Vl ,V2)t = A -lU, where A = (O-i;) is

an invertible constant matrix in the neighborhood of p = Jl( (u). Then we have the new local

surface parameterization Y(v) = X(u) = X"CAv). Let g* = (gi;) be the new metrie matrix

corresponding ta the new parameterization. Then from the chain rule, Z = L:k aki :U1i and

* ay ay" ax ax "
gi; = (a i' a j) = L-- akialj(a k' FT} = L. akialjgkl-

v v k,L U U k,L

In matrLx notation, g* = A'gA. Sînce 9 is symmetric positive definite, there exists 9-1/ 2 =
(gij1 /2). Sa by choosing A = g-1/2 in the neighborhood of p, 9i; = 5i; and we have the

local confonna! coordinates (VI, v2 ). In sncb a coordinate system, the surface (3.25) can be

written as

for sorne constants 11, 12, .• - and the Laplaee-Beltrami operator becomes

82 82

~x = 8(Vl)2 + 8(V2)2-

3.3.5 Least-Squares Estimation of the Laplace-Beltrami operator

Using the above conforma! mapping, we have reduced the problem ofestimating the Laplace

Beltrami on an irregular triangulation in 3D ta the problem of estimating the planar Lapla

cian on an irregular triangulation in a 2D fiat plane. Estimating the planar Laplacian on an

• irregular triangulation can be solved. as a Ieast-squares estimation problem [4, 56}.
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The i-th neighboring point Pi of p under the local conformal transformation becomes

Vi = (vI, vr, vt)t = gl/2Q(Pi -p). Now expand the function F = F(v) as a Taylor expansion

and evaluate at Vi:

where Fj = ::; and Fu = ~:JvJ. Let

and

y = (F(vt} - F(O), . •• , F(vm ) - F(O))t.

Then we solve a system of linear equations Y = Xa, where the î-th row of the matrix X is

The least-squares estimation to Y = Xa is & = (&1, ••• , &5) = (xtX)-xtY, where - denotes

a generalized inverse. Therefore, the Laplace-Beltrami operator of F at vertex p is estimated

by
m

M(p) = &3 + &5 =L wi(F(Pi} - F(p»),
i=L

where the weight Wi is equivalent to the the sum of the i-th component of the 3rd and 5th

rows of (X'X)- xt. We will show in the ne.xt section how the weights Wi can be estimated

via the finite element method. However, it has been shown that the approximation of the

Laplacian based on least-squares estimation is one of the best performers on an irregular

triangulation of a sphere [56}. The explanation lies in the fact that the above least-squares

approximation is based on a Taylor expansion, thus explicitly minimizing the difference

between the analytical and the approximated Laplacian.

3.4 Finite Element Method

In this section we present a finite element method (FE}JI) to solve the diffusion equation on

the cortical surface. The FEM has its origin in the field ofstructural analysis and since then

it has been used in diverse areas. Because the ASP algorithm already provides a triangular

65



•
mesh, there is no need to discretize the surface an 50 it has the advantage of avoiding local

surface parameterizations. In general, the finite element discretization of a PDE requites a

corresponding variational principle [93]. However, in our approach we have avoided using

the variational method.

3.4.1 Barycentric Coordinates

Let NT be the number of triangles in the triangular mesh. We seek an approximate solution

Fi within the i-th triangle Ti sucb that the solution Fi (x, t) is continuous across neighboring

triangles. The approximate solution F for the whole region is then

NT

F(x, t) ~ E Fi(x, t).
i=L

(3.27)

•
The most common fOIm of approximation for F within each triangular element is linear

interpolation [93]. Let Pin Pi:!' Pi3 be the vertices of a triangular element 11. We interpolate

the solution Fi by

(3.28)

where Çik are given by the barycentric coordinates, which is a special case of element shape

functions [99, 93]. It is possible ta expand the solution F at each vertex of the triangula

tion, which has been used in estimating the Laplace-Beltrami operator in the brain surface

flattening problem [6J; however, from (3.27) and (3.28), we immediately see that these two

expansions are equivalent.

In the barycentric coordinates, any point x E 11 is uniquely determined by

(3.29)

•

Ifx ft 1}, we may let Çik = Q. So the barycentric coordinates satisfy 0 <Çilt < L Solving the

equations (3.29), we get
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3.4.2 Discrete Diffusion Equation

• Let G be an arbitrary piecewise linear function given by

NT

G(x) = LÇil(X)Git +Çi2(X)Gh +Çi3(X)Gi3 ,
i=l

where Git' Gizt Gi3 are the values of function G at the three vertices of the triangle Ti. Note

that the Laplace-Beltrami operator is self-adjoint with respect to the L2 norm defined on

the space of continuous piecewise linear functions [51]. Thus the diffusion equation (4.24) at

each triangular element 1i becomes

1..G~ dS =1.. GdF dS = - 1.. (VF. VG) dS.

The left-hand term in (3.30) can be written as

(3.30)

3rGôF dS =~ G· 8F(Pip t) 1~. ~. dS = [Go]t[Ai]!!.-[F,.] (3.31)l'I- ôt L 1k ôt . ~lk~ll 1 dt 1 t
Tl k,l=l n

where [Gi]t = (Git' G i1t G i3 ), [Fi] = (F(Pin t), F(Ph, t), F(Pi3' t))t and the kt-th element of

the matrix [Ai] is A~l = JmÇikÇil dB. It can be shown that• 1 1

[Ai] = l!il 1 2
12

1 1

where ITiI is the area of the triangular element 1i [93, pp. 459-465]. Similarly the right-hand

term in (3.30) can be written as

31..(VF, VG) dS = ~lG••F(P."t) 1.. (Vç•• , Vç.,) dS = [G.]'[G'][Fi], (3.32)

where the Id-th element of [Ci] is CLt = In (VÇik' VÇiL) dS. Because Ti is planar, the gradient

V becomes the standard 2-dimensional Euclidean gradient. The matrix [Ci] is usually called

the element coefficient matrix and its exact e.xpression can be computed using the property

of the element shape functions [99, 931:

•
cet 8i2 + cet 8'3 -cot8i3 -cot8i2

. 1
[cal =- -cot8- cet 8it + eût 8i3 -cot8it2 13

-cot8- -cot8it cot Oil + cot 8i212
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where (}iTe: is the interior angle of vertex PiTe: of the triangle 1i~ From (3.31) and (3.32), the

equation (3.30) becomes• [Gi]'[AiJ d~;J = -[Gi]'[Gi][F;]. (3.33)

Since the equation (3.33) should be satisfied for an arhitrary column vector (Gi}t, we have a

system of ordinary differential equation given by

(3.34)

for each triangle Ti. The equation (3.34) is a discretized diffusion equation within each

triangle 1i.

3.4.3 Assembling Elements

Having discretized a triangular element, the next step is to assemble aU such elements in m

incident triangles around the central node p. We do not need to assemble aU elements in the

triangular mesh but only m incident triangles around the node P because the diffusion of

• signal for a relatively small time interval is strictly a local phenomenon. Let Pl,··· ,Pm he

the m neighboring nodes around P = Po in the counter-clockwise direction. Let p, Pit Pi+l

he the vertices of the triangular element Ti (Figure 3.5). Then from (3.32),

L.u-..vr_(VF, VG) d8 = t;L(VF, VG) d8

m

- E(Gi]t(Ci}[Fi ]

i=l

- [G]t[C] [F],

where the column vectors are

[FI = [F(p, t), F(pt, t),·.· ,F(Pm, t)]t,

(3.35)

(3.36)

(3.37)

The (m+1) x (m+1) matrix [CI is called the global coefficient matrix, which is the assemblage

of individual element coefficients. The contribution to the ij-th element Cij of the matrix
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[Cl cornes from aIl finite elements containing nodes i and j (0 < i, j < m) ~ In the case of a

hexagonal triangulation in Figure 3.5, the 7 x 7 matrix [Cl is given by

cJo + ... + ego CJl +C81 CJ2 +C~2 C63 +C83 C84 +C~4 eis +C8s C86 +C86

C61 +C81 Cfl +C~1 Ct2 0 0 0 C~6

CJ2 +C~2 et2 Ci2+C~ Ci3 0 0 0

C53 +C83 0 Ci3 C§3 +Cî3 Cî4 0 0

C84 +C~4 0 0 Cî4 Ct4 +C:4 C:5 0

C~5 +C85 0 0 0 cis cts +C~5 CÉ6

C86 +cg6 C~6 0 0 0 cg6 cg6 +c:6

AIso from (3.31),

i a
8F

dB - ti a
8F

dB (3.38)
T1U•••uTm, 8t i=L 'li 8t

- t[Gi]t[Ai ]d[Fil (3.39)
i=L dt

- [aJt[A]d~] , (3.40)

where the ij-th element Ai; of the matrLx [A] has the same structure as [C}, Le. Aa1 =

AB1 + Ag l instead of COI = C61 + cgl in the first row and the second column. Combining

(3.37) and (3.40), we have

(3.41)

Since equation (3.41) should be satisfied for an arbitrary piecewise linear function G, we

have a discrete diffusion equation on m elements Tl, ~ ~~ ,Tm given by

d~] = _[A]-l[C][F]. (3.42)

The first row of the simultaneous ODE (3.42) gives the discrete diffusion equation at the

vertex P = Po:

(3.43)

where A;l is the Ok-th element of A-l. The right-hand side of the equation (3.43) is the

• estimation of the Laplace-Beltrami operator based on the FE~[ at p. Simplifying the matrix
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computation using the computational algebra software Nlaple, we have the FENI estimation

for the Laplace-Beltrami operator given by•
with the weights

m

M(p) ~E wi(F(Pi) - F(p))
i=l

(3.44)

•

cot (J, + cot tPi
Wi= IT\

where (Ji and tPi are the two angles opposite to the edge Pi - P and ITI = I:~l\Til is the

sum of the areas of the incident triangles (Figure 3.5). In terms of Cartesian coordinates,

we have

When m = 4 with the fLxed angles (Ji, 4>i = 7r/4, the triangular mesh becomes a square

grid and M(p) in (5.1) reduces to the finite difference estimation of the Laplacian "in the

square grid [56, 102J.

3.5 Finite Difference Scheme

So far we have presented two methods of estimating the Laplace-Beltrami operator as a

weighted linear smoothing of the forro M(p, t) = E~l wi(F(Pi' t) - F(p, t)). In both

methods, the diffusion equation can be solved by the finite difference scheme:

(3.45)

•

with the initial condition F(p, 0) = I(p) for each Dode p on the triangular mesh. We may

fix the iteration step size t n+1 - t n = cft. The value cft controis the spread of the diffusion

smoothing and it should be chosen with respect to the smoothness of the Laplace-Beltrami

operator of F. If Pl, .•. ,Pm are neighboring nodes of p, then the diffusion of heat should

satisfy the following approximate boundary condition for small cft

(3.46)
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•
The inequality (3.46) simply states that the diffused heat must he anywhere hetween the

highest and the lowest heat. Since the Laplace-Beltrami operator can he transformed to the

the planar Laplacian via local conformal transform, we only need to show (3.46) is in R2.

Let Ap C R2 he a hounded set containing a point p. Suppose that

maxF(x, t) = F(Pmaz, t).
xE/lp

For infinitesimally small 8t, F(p, t + St) restrieted to Ap will also attain ies maximum at

Pmaz. At the local maximum Pmaz, the second derivatives of F will he negative. Renee

~F(Pmaz, t) < o. Then

F(p, t + St) < F(Pmaz, t + 5t)

1
1ft

- F(Pmaz, t) + t ~F(Pmaz' s) ds

< ma'"<F(p, t).
xEAp

The minimum case follows similarly. The inequality (3.46) may break down if St is large.

From (3.45) and (3.46), the iteration step size must satisfy

5t < min CI ma."C; F~tn) - F (p, tn) l, 1min; F (~tn) - F(p, t,.) D. (3.47)
~F(p, tn) .~F(p, tn)

• The denominator M hehaves like the sample covariance of F at P, Pl,··· ,Pm. The

smoother the function F 1S, the smaller the Laplace-Beltrami operator of F 15. In such

a case, the iteration step size St can he large. By changing the iteration step size 8t with

respect to the inequality at each node p, we will have spatially adaptive smoothing, which

depends on the smoothness of the function F. In order ta determine the critical iteration

step size for the isotropie diffusion (with respect to the local conformal coordinates) with

the spatially fixed 5t, it is best ta measure the smoothness of the function F first and then

estimate the 5t accordingly. The signal F (p, tn ) tends to hecome smoother as n inereases, in

which case, the ratio in (3.47) gets larger. Therefore, if 5t satisfies the inequality (3.47) at

every node p at the first iteration n = 1, the inequality (3.46) will he satisfied for the later

iteration n > L Note that the iteration time step should he in the order of

r: dal di· l the first derivative of F 1ut < no stance x . .
the second denvatlves of F

to guarantee the convergence and the stahility of the finite difference scheme. The relation

between the critical iteration step size and the nodal distance has also heen briefiy pointed

• out in [4}.
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Figure 3.6:- Diffusion smoothing of an artificial heat distribution on the triangulated mesh of
the brain stem consisting of 1280 triangles. The artificial signal was generated with Gaussian
noise to illustrate how the finite difference scheme works with different iteration step sizes.
a. The initial heat distributiont b. After 10 iterations with dt = O.St c. After 20 iterations
with dt = 0.5 t d. After 50 iterations with 5t = 0.2 t e. After 10 iterations with 5t = 1.5.
Because the iteration step size is larget the iteration breaks down and a singularity (the
white spot) begins to appear.
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If the iteration step size is bigger than the desired inequality, the iteration will diverge as

illustrated in Figure 3.6 e., where the large iteration step size 5t = 1.5 causes the instability of

the iterations producing the sudden singularity (the white spot). Ideally, the finite difference

scheme should converge to the stationary solution of the diffusion equation, Le. aF = O.

After lV iterations, the finite difference scheme gives an approximate solution of the diffusion

of the initial heat f after time N 5t. If the diffusion were applied to Euclidean space, it

would he equivalent to the Gaussian Kernel smoothing with FWHhtI = 4(ln2)l/2v'N5t.

In order ta have lOmm FWHNI Gaussian kernel smoothing in Euclidean space, we should

have N5t = 4.33. Hence if the Iteration step size is taken as 5t = 0.2, then N = 22

iterations are sufficient to get the lOmm FWHhtI smoothing assuming the Iterations are

stable. Equivalently 5t = 0.1 \Vith N = 44 will have the equivalent result. So the number of

iterations that is required is inversely proportional to the iteration step size 5t. The smaller

the iteration step size, the longer it takes ta achieve the same result. This has been illustrated

in Figure 3.6 c. and d. which show almost identical results. It should he rememhered that

the above discussion about 10mm FWHM Gaussian kernel smoothing is only an analogy

applied to the curved surface and should not be taken literally. To see this, note that the

Laplace-Beltrami operator in general orthogonal coordinate system (1'1,. u2 ) can he written

as
82 82 a a

~ = 8(ul )2 + 8(1'2)2 + P2 8ul + Pl 8u2 '

where Ph P2 are the geodesic curvatures of the u i
, 1'2 axes [64]. In the conformaI coordinate

system we are using, Pl, P2 are zeros. So locally in the conformaI coordinates, the FWInvI

has the same meaning as in Euclidean space. But in general with respect to the orthogonal

coordinates, the Laplace-Beltrami operator involves the geodesic curvatures of the surface.

Therefore, how the surface is curved influences the smoothing and FWlDJI does not have

the same meaning as in Euclidean space.

3.6 Result: Smoothing the Mean Curvature

The surface hased diffusion smoothing has heen used to increase the signal to noise ratio

in MR.I activation on the cortical surface [4, 48}. Another application of the smoothing

• technique would he in the area ofenhancing structural information such as the mean and the
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Figure 3~7: The mean curvatnre of the outer cortex is mapped ante an ellipsoid consisting
of 81920 triangles preserving the connectivity~ Note that the diffusion was run directlyon
the cortical surface and mapped onto the ellipsoid later~ a. Before the iteration~ b. After
40 iterations with 6t = 0~02 c. After 100 iterations with 6t = O.02~ If the smoothing were
based on simple internodal averaging, snch sulcal pattern can not be obtained.

Gaussian curvatures on the outer cortex [60], the cortical thickness [58J, and the displacement

vector fields on the cortical surface deformation problem~ Just like smoothing functional

activation, it is aIso possible to smooth coordinates of the triangular mesh resulting in a

mesh smoothing problem [78]. So with slight modification of our algorithm, triangular mesh

smoothing might be another application of the diffusion smoothing although care should be

taken to avoid the inherent mesh shrinkage problem [105].

Among many possible applications related to brain surfaces, we have picked np an ex

ample of segmenting sulci and gyri of the cortical surface based on the segmentation of the

• mean curvature~ Suici and gyri can be characterlzed as the crowns and the hollows of the
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Figure 3.8: Comparison of the parametric method and the finite element method of the
diffusion smaothingof the mean eurvature in Figure 3.7 c. The extent ofsmoothing is roughly
equivalent ta 5mm FWHM Gaussian kemel smoothing in 2D Euclidian space (dt = 0.02,
N = 100 iterations). a. Parametric method. b. The finite element method. The smoothing
patterns are slightly different inside the black circle.

brain surface [103}. Gaussian and mean eurvatures of the brain surface have been used to

characterize its shape [33, 50, 60]. Then this geometrie information can be further used

as landmarks for the brain registration process. The problem of segmenting sulci and gyri

has usually been done via multiscale or multiresolution methods in eomputing curvatures.

However, one can achieve similar result using the diffusion smoothing. As shown in Figure

3.7 a., b. and C., the maximum mean eurvature can identify the sulci although they aiso

identify some unwanted regions which do not belong to the suleL Then by applying diffusion

smoothing to the mean curvature of the cortical surface, the sulcal regions can he enhanced

(Figure 3.7 d, e. and f.). Basically the same principle has been used in extracting the edge

[79, 42].

There are two ways to compute the eurvatures. The FEM version [37, 78] estimates the

mean curvature KM as

1 m

KM = 41T I~(cot 11; + cot tPi){n, Pi - p).

In the parametric version, which we will be using in our example (Figures 3.7), the mean

curvature KM is estimated using the formula (3.17). Then in terms of the local quadratic

surface (3.25), we have the mean eurvature estimation (3.19) .
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Chapter 4

Deforlllation-Based Morphollletry on

2D Surfaces

This chapter is the extension of the Chapter 2, where we have introduced a unified statis

tical approach for deformation-based morphometry in 3D ~IRI. Using the same stochastic

assumption on the deformation field as before, we derive the statistical distributions of the

morphological variables sucb as area dilatation rate, cortical thickness and curvature changes.

These statistics can be used in statistical inferences on surface-based morphometric analy

sis. As an illustration, we will demonstrate how the surface-based statistical analysis can be

applied in localizing the cortical regions of gray matter tissue growth and 108s in the brain

images longitudinally collected in the same group of children and adolescents previously

analyzed in Chapter 2.

4.1 Surface Deformation

Let U(x, t) = (Ult U2t U3 )t be the 3-dimensional displacement vector required to deform the

structure at position x = (XttX2,X3) in the gray matter no to the homologous structure

after time t. The whole volume no will deform continuously and smoothly to nt via the

deformation x -+ x + U while the cortical boundary ano will deform to OOt. Note that the

cortical surface ônt consists of two parts: the outer cortical surface aOft between the gray
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matter and CSF and the inner cortical surface a~n between the gray and white matter (see

Figure LI and Figure 4.1), i.e.

Although we are dealing exclusively with the cortical boundaries, our surface-based analysis

can be equally applicable to the deformation of the surface of any brain substructure.

Any statistical Inference on structural deformation requires a basic stochastic mode!. The

proposed stochastic model on the displacement velocity V, which has been already used in

Chapter 2 is

(4.1)

•

where J.L is the mean displacement velocity and El{2 is the 3 x 3 symmetric positive definite

covariance matrLx, which allows for correlations between components of the displacement

fields. The components of the error vector € are are assumed to be independent and iden

tically distributed as smooth stationary Gaussian random fields with zero mean and unit

variance. The statistical model (4.1) is based on the whole gray matter volume no so it is

not truly a surface based mode!. However by restricting the domain of the displacement U

to the cortical surface ano, we have the surface based model:

(4.2)

It can be shown that the normal component of the displacement velocity V = ~~ re

stricted on the boundary ano uniquely determine the evolution of the cortical surface. As

suming the surface ant to he smooth enough, it can be locally expressed in an implicit

form

F(x, t) = D,x E ant (4.3)

•

By taking the time derivative in (4.3), the kinematic equation [39, pp. 33} for the surface

deformation is given hy

8Fat + (V; VF) = 0, (4.4)

where V F = C::,~ ,:~) t is the gradient vector. The unit normal vector ta the surface is

given by

(4.5)
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From (4.4) and (4.5), the kinematic equation becomes

8Flit = -[IVFI\Vn , (4.6)

•

•

where Vn = (v: n) is the normal component of the surface displacement velocity. Ifwe let \tt

denote the tangential component of V, then V = Vn + lit. There are infinitely many surface

displacement velocities that gives the same normal component Vn and in turn, the same

kinematic equation (4.6), which describes the evolution of the cortical surface over time.

Renee, translation of the surface in the tangential direction does not change the geometry

of the surface and only the normal component Vn uniquely determines the evolution of the

cortical surface at a given point.

The major impediment to the practical use of cortical surface-based approaches in brain

imaging is the difficulty of automating the surface extraction, registration and analysis. Cor

tical surfaces are usually extracted as triangular meshes via the ~IarchingCubes algorithm

[72}, the level set method [97} or deformahle surfaces method [33}. In our analysis, we have

used the anatomie segmentation using proximities (ASP} method [74}, which is a variant of

the defonnable surfaces method. In triangulating cortical surfaces of the human brain from

3D MRI, the ASP method generates 81,920 triangles evenly distributed in size. In order to

accomplish the statistical analysis on the cortical surface, mathematical representation of

the cortical surface is an essential part. The most natural mathematical representation of

the cortical surface is by surface parameterization [14, 18, 64, 76}. We model the cortical

surface as a smooth 2-dimensional Riemannian manifold parameterized by two parameters

u1 and u2 such that any point xE ano can be uniquely represented by

for some parameter space u = (ut, u2 ) EDe R2 • We will try to avoid global parameteriza

tion such as tensor B-splines in (3.22), which are computationally expensive compared to a

local surface parameterization. Instead, a quadratic polynomial

will be used as a local parameterization fitted via least-squares estimation. Using the least

squares solution in (3.26), these coefficients {Ji can he estimated. There is a slightly differ

ent quadratic surface parameterization, which has heen used in estimating curvatures of a

macaque monkey brain surface [60}.

79



•
4.2 Surface-Based Morphological descriptors

4.2.1 Riemannian Metric Tensor Change

As in the case of local volume change in the whole brain volume, the rate of cortical surface

area e.xpansion or reduction may not be uniform across the cortical surface. Extending the

concept of volume dilatation, we introduce a new concept of surface area dilatation and its

rate of change over time via differential geometry.

Suppose that the cortical surface ant at time t can be parameterized by the parameters

u = (U l ,U2 ) such that any point x E ant can be written as x = X{u,t). Following the

convention of differential geometry, we will suppress the spatial parameter u in X(u, t) and

write it as X(t) whenever there is no ambiguity. Then we have

X(t) = X(O) + U{X(O), t). (4.7)

Let Xi = ~ be a partial derivative vector defined in (3.14). The Riemannian metric tensor ~

gij of the surface an t is given by gij(t) = (Xi(t) , Xj{t)}. The Riemannian metric tensor gij

• measures the amount of the deviation of the cortical surface from a fiat Euclidean plane. It

enables us to measure lengths, angles and areas in the cortical surface and that is why gij is

called the metric tensor. For a fiat plane, gij = dij. Differentiating (4.7) with respect to the

parameter u i ,

(4.8)

where VU = (~) is the 3 x 3 displacement gradient matrix defined in (2.4). The metric

tensor Bij(t) can be written as

gij(t) - (Xi(t) , Kj(t)}

- 9ij(O) + 2.Kt(O)(VU)Xj (O) + X:(O)(VU)t(VU)~j(O),

(4.9)

(4.10)

•
where t is the matrix transpose. For relatively small displacement, the higher order term

involving (VU)t(VU) can be neglected:
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Let g(t) = (9ij(t)) be a 2 x 2 matrix of metric tensors of ant • In matrix notation, the rate

of metric structure change is given by• : ::::: 2(VX)t(VV)VX,

where VX = (Xt (O),X2(O)) is a 3 x 2 gradient matrL"c

4.2.2 Local Surface Area Change

The infinitesimal surface area element [64, pp. 114} is defined as

(4.11)

(4.12)

•

It measures the transformed area of the unit square in the parameter space D via the

transformation X : D ~ aOt. The total surface area of aO t is then given by

\tant!l =1 Jdetg du1du2
•

X-l(ant}

Thus, the local area dilatation rate Aa.l'ea. or the rate of local surface area change per unit

surface area becomes
a ~ 1 8(detg)

Âa.l'ea. = 8t ln V det 9 = ? d at·_ etg

If the whole brain volume nt is parameterized by 3-dimensional curvilinear coordinates

u = (u l
, u2 , u3), then ~ ln v'ëIë'tY is equivalent to the local volume dilatation rate Âvolume,

discussed in (2.5). Therefore, in terms of the curvilinear coordinate system, the area dilata

tion and volume dilatation are the same concept. A simple matrix manipulation [54, pp.

304-308} shows that

The partial derivatives of Gaussian random fields are again Gaussian [1, pp. 31}. Under the

stochastic model (4.1), the area dilatation rate is distrïbuted as Gaussian:

•

1 (-189)
Âa.l'ea. = 2"tr 9 at .

From (4.11) and (4.13), the rate of local surface area change becomes

Âa.rea. ~ tr[g-l(VX)t(~VU)VX}.

Aa.rea. = .Àa.rea.(x) + €a.rea.(x),
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Figure 4.1: Cortical thickness change under the deformation x -+ x + U(x, t). The linkage
between x and y is defined by the ASP algorithm and the cortical thickness i5 defined a5 the
Euclidian distance IIx - yll. a. Before the deformation. b. After the deformation.

where Àarea(x) = tr[g-l(VX)t(Vp,)VX] 15 the mean area dilatation rate and Earea(X) 1S

a mean zero Gaussian random field defined on the cortical surface. The area dilatation

rate is invariant under parameterization, Le. the area dilatation rate will always be the

same no matter which paramerization is chosen. Afterwards, statistical inference of brain

tissue growth near the cortical surface can be performed via the T random field defined on

the cortical surface [120, 125]. As in the case of local volume dilatation model (2.6), the

Var(Earea ) should not depend on t in arder ta apply the random field theory developed in

[120, 125].

4.2.3 Cortical Thickness Change

The average cortical thickness for each individual i5 about 3mm [55}. Cortical thickness

varies from 2mm to 4mm depending on the location of the cortex. When the brain develops,

it is highly likely that the change ofcortical thickness may not be uniform across the cortical

surface. We will show how to localize the cortical regions of statistically significant thickness

change in brain development. Our approach introduced here can also he applied to measuring

the rate of cortical thinning, possibly associated with Alzheimer's disease. As in the case

of volume dilatation, we introduce the concept of length dilatation, which measures cortical

thickness change per unit thickness_ There are many different computational approaches to

measuring cortical thickness but we will use the Euclidean distance from a point x on the
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outer surface a~out to the corresponding point y on the mner surface an~n: as defined by the

automatic linkages used in the ASP algorithm [74] (Figure 4.1). A validation study for the

assessment of the accuracy of the cortical thickness measure based on the ASP algorithm has

been performed and found to he valid for the most of the cortex [61]. There is an altemate

method for automatically measuring cortical thickness based on the Laplace equation [58}.

Let !Ix - yll be the cortical thickness computed as the Euclidean distance between x =
(Xl.r X2r X3) and y = (Yl: Y2: Y3L Le.

Under the deformation (4.7): the cortical thickness at xE anr't can he written as

I\x(t) - y(t) Il = IIx(O) - y(O) + U(x(O), t) - U(y(O), t) \1

For relatively small displacement, we may neglect the higher order terms of U in the Taylor

expansion of the cortical thickness:

IIx(t) - y(t) Il '" IIx(O) - y(O) Il + (ut (x{O) , t) - U'{y{O), t)) Il:~~~=~~~lll'

Furthermorer U(x(O)r t) - U(y(O), t) ~ VU(x(O): t) (x(O) - y(O)). It follows that

a x(O) - y(O)
atl\x-yl\ = (x(O) -y(O))(VV)l\x(O) -y(O)II·

Hence the length dilatation rate Alength 1S given as a quadratic form in d such that

where the unit vector d = (dt, d2r d3 ) t = Il:~~~==f~~II. From (4.1), we have a linear model on

the length dilatation given by

Alength = Àlength(x) + ~length(x) r

where Àlength = dt Cvp.) d is the mean cortical thickness dilatation rate and ~length is a mean

zero Gaussian random field. In practice, the cortical thickness dilatation rate Afength for

subject j is given by the discrete approximation:

Ai _ I\x(ti) - Y(ti) Il -l\x(O) - y(O)!\
length. - tillx(O) -y(O)1\ '
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Figure 4.2: Cortical thickness dilatation rate for a single subject. The red (bIue) regions
show more than 67% thickness increase (decrease). a. The outer cortical surface. b., d.
The same data as in a. projected onto the average outer cortical surface of 28 subjects.
c. The inner cortical surface. Note the high variabilities of the cortical thickness dilatation
rate across the cortex. Due to such large variabilities, surface-hased smoothing is required
to increase the signal-to-noise ratio.
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where tj is the time difference between two scans. Afterwards the t-statistic is formed by

Ti - t=lVI"ength.
length. - V n S t

length.

where AiI,ength. and Slength. are the sample mean and standard deviation of n subjects respec

tively.

4.2.4 Curvature Change

When the surface aoo deforms to aOt t curvatures of the surface change. The mean and the

Gaussian curvature can characterlze the shape and location of the sulci and gyri, which are

the crowns and hollows of the brain surface [60, 103]. By measuring the rate of change of the

mean and Gaussian curvature, rapidly folding and unfolding cortical regions can be localized.

Let us first consider a special case of the displacement restricted to U(x, t) = l(t)n(x, t}t

where l is independent of x E aoo. Under this parallel deformation, the deformed surface

aOt is called a parallel surface of anD and its parametric fonn x(Ut t) is given by

X(u, t) = X(u, O} + l(t}n(u, t} .

Then the mean curvature KM (x, t) and Gaussian curvature Ka(x, t) at x E aOt can be

computed (see [108, pp. 102-107]) as

KM(x, 0) - 2Ka(x, O)l(t)
KM(x,t) -

1 + Ka(x, 0}l2(t) - 2KM (x, 0)
KG(x, 0)

KG(x, t} - 1 + KG(x, O)l2(t) - 2KM(XTO)l(t)

(4.15)

(4.16)

For relatively small displacement, the first two terms of Taylor expansions in (4.15) and

(4.16) are given by

•

KM(x,t) ~ K],[(xTO) + 2(Kil(XT0) - KG(xtO»)I(t},

KG(x, t) ~ KG(xT0) + 2KM (x, O}KG(x, O}l(t).

Then from (4.17) and (4.18), the rate of the curvature changes over time are

8KM dl
8t - 2(Kir(O) - KG(O» dt

8Ka dl
8t - 2KM (O)KG (0) dt·
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In general, the displacement vector field U is not always parallel to the surface normal

n in the deformation of hrain and we need to generalize the concept of parallel surface in

differential geometry to nonparallel surface. Based on the kinematic equation (4.4), the

rate of the change of curvatures are given as a system of simultaneous partial differential

equations [39, pp. 206-210]. Let ~l and ~2 he the two principal curvatures defined in Section

3.2.2. then it can he shown that the rate of the curvature change are

(4.19)

where ~ 1S the Laplace-Beltrami operator defined on the surface. From (3.17), which relates

the principal curvatures to the mean and Gaussian curvatures, we have

For relatively small displacement, we can neglect the higher order derivatives of Vn ,

•
From the statistical model (4.1), the normal velocity component is

Vn = (~n) = J.Ln + Ev,

(4.20)

(4.21)

(4.22}

•

where P.n = <IL, n} is the mean normal velocity and Ev is a mean zero Gaussian random field.

It follows that the mean curvature change i5,

where EKM is a mean zero Gaussian random field.

4.3 Diffusion Smoothing

In order to increase the signal-to-noise ratio, kemel smoothing 15 desirable in many statistical

analyses. For example, Figure 4.2 shows high noise data on the outer cortical surface of
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(4.23)

•
the average brain atlas. By smoothing the data on the curved surface, the signal-to-noise

ratio will increase if the signal itself is smooth and in turn, it will be easier to localize the

morphological changes. However, due to the convoluted geometry of the cortex, which is

non-Euclidean, we can not directly apply Gaussian kemel smoothing on the cortical surface.

Gaussian kemel smoothing of the data f(x),x = (Xl, .•. ,xn ) E Rn with FvVH~I (full width

at hall maximum) = 4(ln 2) 1/2Vl is defined as the convolution of the Gaussian kemel with

f:

F(x t) = 1 r e-<x-y)2/4tf (y)dy
, (4nt)n/2 Jan. •

As we have introduced earlier in Chapter 3, the convoluted data F(x, t) is the integral

solution of the n-dimensional diffusion equation

8F
-=ÂF
8t

(4.24)

•

•

with the initial condition F(x,O) = f(x), where Â = pa']. + ... + aa
2

2 is the Laplacian in
Xl Xn.

n-dimensional Euclidean space [411. Hence the Gaussian kemel smoothing of the function

f(x) is equivalent to the diffusion of the initial heat f(x) after time t. The indirect approach

of solving the PDE (4.24) rather than Gaussian kernel smoothing gives diffusion smoothing,

which is adaptable to curved surfaces by generalizing the Laplacian Â defined in an to

Riemannian manifolds. When using diffusion smoothing on curved surfaces, the smoothing

somehow has to incorporate the geometrical features of the curved surface and the Laplacian

Ll should change accordingly. The extension of the Euclidean Laplacian to an arbitrary

Riemannian manifold is called the Laplace-Beltrami operator [641. Diffusion smoothing on

the cortical surface has been used in the problem of the smoothing ~IRI to increase the

signal-to-noise ratio (SNR) [4} (See [38, 91, 1241 for the precise definition of the SNR). The

approach taken in [4} is a local flattening of the cortical surface and estimating the planar

Laplacian, which may not be as accurate as our estimation based on the parametric and the

finite element method. There should be further comparative investigation between these two

methods. However, instead of flattening the cortical surface first and then doing Gaussian

kernel smoothingJ it is possible to solve the diffusion equation on the curved surface via the

Laplace-Beltrami operator. If the surface an is given by the parameterization X = XCul
t u2 ),

the surface Laplacîan a should take a different form which. is determined by the Riemannian

metric tensor Yij. From [7, pp. 158-167}, we can show that the Laplace-Beltrami operator
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•
takes the following metric tensor formulation:

_~_1_~( 1/2 ii 8F )
~F - ~ Igll/2 8ui Igi g 8ui '

1.]

(4.25)

•

•

where (gii) = g-l. Such a surface Laplacian is called the Laplace-Beltrami operator cor

responding to the parameterization X. Using the FE~I on the triangular cortical mesh

generated hy the ASP algorithm, we estimated the Laplace-Beltrami operator as the linear

weights of neighhoring data in Chapter 3. Let Pl,··· ,Pm he m neighboring nodes around

the central node P = Po. Then we have shown in (5.1) that the estimated Laplace-Beltrami

operator is
m

M(P} =L wi(F(Pi) - F(p))
i=l

with the weights
cot th + cot 4>i

Wi = L~lll1i1l '
where (Ji and 4>i are the two angles opposite to the edge connecting Pi and P, and 1I1i1! is the

area of ith triangle (Figure 3.5). Note that this is an improved formulation from the previous

attempt of diffusion smoothing used in smoothing tNIRI data in [4}, where the Laplacian is

estimated as the planar Laplacian after local fattening of the triangular mesh consisting of

nodes Po,··· ,Pm onto a fiat plane. In the actual numerical Implementation using ~[atlab,

we have used formulas

t (J . - (Pi+l - P, Pi+l - Pi) t,i,. _ (Pi-l - P, Pi-l - Pi)
co 1 - 2111111 t co 0/1 - 21!T

i
ll

and 111111 = ~1I(Pi+l - p) x (Pi - p)l!. Afterwards, the finite difference scheme is used to

iteratively solve the diffusion equation at each node p:

with the initial condition F(p,O) = l(p). After N iterations, the finite difference scheme

gÏves an approximate solution of the diffusion of the initial heat f after time N5t. If the dif

fusion were applied to Euclidean space, it would he equivalent to Gaussian kemel smoothing

with

FWffiiI = 4(ln2}1/2VN5t.

It should he emphasized that Gaussian kemel smoothing is a special case oÎdiffusion smooth

ing restrlcted to Euclidian space. Computing the linear weights for the Laplace-Beltrami
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•
operator takes a fair amount of time (the parametric method takes about 3 minutes and

FE~l method takes about 6 minutes in ~ratiab running on a Pentium. III machine), but once

the weights are computed, it is applied through the whole Iteration repeatedly and the actual

finite difference scheme takes only two minutes for 100 Iterations.

4.4 Statistical Inference on 2D Surfaces

AH of our morphological descriptors A(x) sucb as surface area dilatation, cortical thickness

change, curvature change are modeled as Gaussian random fields on the respective cortical

surfaces, Le.

A(x) = À(x) + e(x), x E anatla", (4.26)

•
where the deterministic part À is the mean of the morphological descriptor A and e is a

mean zero Gaussian random field. As we have explained earlier in (2.6), we need ta assume

that Var(e) does not depends on time t. In order to do statistical inference about structural

changes, we need to map these morphological descriptors to a template cortical surface

anat1a.t. The T random field on the manifold anat1a" is defined as

iVI(x)
T(x) = Vii. S(x) , xE anatla"

where iVI and S are the sample mean and standard deviation of the morphological descriptor

A over the n subjects. Under the null hypothesis

Ho : À(x) = 0 for aIl x E anatla",

i.e. no structural change based on the morphological descriptor A, T(x) becomes a student's

t-distribution with n - 1 degrees of freedom at each fixed voxel x. The p-value of the local

maxima of the T field will give a conservative threshold, wmch has been used in brain imaging

for a quite some time now [125}. From (2.9), we have

where the Minkowski functionai rPi are

•
(4.27)
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•
and lIanatlas ll is the total surface area of anatlas. In order to have more smoothed sig

naIs, we apply diffusion smoothing witl1 given FWH~I ta the morphological descriptor on

natals. vVhen diffusion smoothing with given FWH1'I lS applied to A(x), x E 00atlas , the

2-dimensional EC-density [125] becomes

1 4ln2 r(~) ( y2 )-(n-2)!2
P2(y) = FWHlVI2 (21r)3!2 (nï1)1!2rcnï1) y 1 + n - 1 .

Hence, the excursion probability on the cortical surface can be approximated by the following

simple formula:

The total surface area varies from subject to subject. We can approximate the total surface

area Il anatlas Il by summing the area of each triangle in a triangulated surface. The total

surface area of the average atlas brain is 275,800 mm2 , which is roughly the area of 53cm x

53cm sheet. Note that the surface area of the mean atlas brain lS different from the mean

surface area of28 subjects (Table 4.1). When 20mm FWHM diffusion smoothing is used on

the template surface anatlas , 2.5% thresholding gives

• P ( max T(x) > S.l)::::: 0.025,
:z:Eanl1 ccl1.a

P ( max T(x) < -5.1) ~ 0.025.
:z:Eanl1 ccl16

4.5 Detecting Global Surface Deformation

•

Sa far our anaIysis has concentrated on detecting local regions of rapid morphological changes

on the cortical surface. Global morphological analysis is relatively easier than local analysis

in terms of its modeling and numerical computation. As we have shown in Chapter 2,

global volume dilatation rate can be approximately modeled as a Gaussian random variable.

Similarly, global surface area dilation rate can be modeled with a Gaussian random variable.

Global morphological measures are important in the characterization of brain deformation.

The total area of the cortical surface 80t is given by

1180t ll = 1 Jdet(g) du,
X-1(8!lt)
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where 9 is the metric matrix corresponding to the global parameterization X (u) ofthe surface

ant~ 118nt l\ can be estimated by the SUffi of the areas of 81,920 triangles generated by the

ASP algorithm~ Then we define the total surface area dilatation as

lIônt l[ -1180.0 \1
etotal area = 118noIl

and the total surface area dilatation rate as

Atotal area = ôt
8

ln I[antll\ ~
t=O

These measures will be used in showing that the total surface area decreases in both outer

and inner cortical surfaces between ages 12 and 16. Note that

At.t.t ...... - lIa~olll ~ y'detg du

- Ila~III A.T,.y'det 9 du,

(4.28)

(4.29)

•
where D = J"(-l (ana) and Aarea lS local surface area dilatation, which lS distributed as

Gaussian in (4.14) ~ Hence, the total surface area dilatation is distributed as a Gaussian

random variable and a statistical inference will he based on a simple t-test.

Let h(x) = IIx - yI! he the cortical thickness measured at x E aogut with the linkage y

defined by the ASP algorithm~ The gray matter nt can he considered as a thin shell bounded

by two surfaces 8nFt and an~n. Then the total volume ofgray matter lS approximately given

by

(4.30)

•

with respect to the outer cortical surface~ (4.30) is only valid for relatively small thickness

h(x). A better approximation can be obtained by using the both outer and mner cortical

surfaces at the same time. Sïnce there are 81,920 triangles for each surfaces and each triangle

has the corresponding triangle on the other surface, nt consists of 81,920 triangular prisms~

Let Pll P2, Pa he the three vertices of a triangle on the outer cortical surface and Q.I., Q2t q3

be the corresponding three vertices on the inner cortical surface such that Pi lS linked to qi
by ASP algorithm (Figure 4~3). The triangular prism consists of three tetrahedra with the

vertices {Pb P2t Pa, QI.}, {P2l Pa, Qi,~} and {Pa, <Ir, Q2, q3}. Then provided the sides of the
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Figure 4.3: A triangular prism. 81 t920 triangular prisms will form the gray matter.

prism are fiat: the volumes of the trianguiar prism is given by

~\ det(Pl - Cll: P2 - qt, Pa - Cll) 1

+ ~I det(p2 - <bt Pa - <12, ql - '(2) \

+ ~I det(ql - Pat <12 - Pa, qa - Pa) 1·
The total volume Ilnt 1\ can be estimated using the above cliscrete computation. Similarly we

define the total gray-matter volume dilatation

e - IIntil -llnol!
gray - 1\0

0
Il

and the total gray-matter volume dilatation rate as

Agray = ~ ln I!nt ll\ .
vc. t=o

From (2.14),

AgrOll:::: lI~ollLA.olume dx,

where Âvolume is local volume dilatation rate distributed as a mean zero Gaussian random

field. 50 Agray is approximately distributed as a mean zero Gaussian random variable.

4.6 Results

MR images of the same twenty eight normal subjects studied for the 3D deformation analysis

in Chapter 2, were again used in the surface-hased analysis. A triangular mesh for each
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cortical surface was generated by deforming a mesh ta fit the proper boundary in a classified

volume using the ASP algorithm [741 ~ Each voxel was pre-ciassified as CSF, gray matter

and white matter based on its intensity~ For the first scan at time th the outer cortical

surface was triangulated in two steps: first, an ellipsoïdal mesh placed outside the brain was

shrunk down to the inner cortical surface, whïch is the white-gray matter boundary~ The

resulting mesh was used as the initial estimate in the second step that expands the mesh

to fit the outer cortical surface, which is the gray-CSF boundary~ To generate the outer

surface for the second scan at time tz, we start with the inner surface from the first scan

taken at time tt, and then e..xpand it outwards to match the outer surface on the classified

volume of the second scan~ Starting with the same mesh for the inner surface in the two

expansion steps, each node in the initial mesh gets mapped ta a point on the outer surface for

each scan~ Since the two scans were affinely normalized ta start with, two points to which

the node gets mapped will he roughly homologous~ From this modified ASP registration

method, the displacement vector fields from the point on the outer surface of the first scan

ta the corresponding point on the second scan are 0 btained~ The modified ASP registration

method assumes heavily that the shape of the cortical surface does not appreciably change

between the first scan and the second scan. This assumption is vaUd in the case of brain

development for a short period of time as illustrated in Figure 1.2, where the global sulcal

geometry remains stable for live year interval, although local cortical geometry shows sorne

visible changes.

Total surface area dilatation.. We measured the total surface area dilatation rate

A!otal area for subject j by computing the total area of triangular meshes on the bath outer

and inner cortical surfaces. The mean total area dilatation rate was

1 28 .

28 L A:otal area = -0~0094.
i=1

This O~9% decrease of the total cortical surface area per year is found ta be statistically

significant (t-value of -9~25). On average, there was 4.3% decrease in the total cortical

surface area between the first scan taken at age 11.5 and the second scan taken at age

16.1. There has been suhstantial developmental studies on gray matter volume reduction

for children and adolescents [30, 57, 80, 85, 891, but the ROI-based volumetry used in these

studies did not allow investigators to detect the total surface area reduction in both outer
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Figure 4.4: t-map of the cortical surface area dilatation rate showing the statistically sig
nificant region of area expansion and reduction. The red regions are statistically significant
surface area expansions while the blue regions are statistically significant surface area reduc
tions between ages 12 and 16. As in the case of local volume dilatation, it shows asymmetric
growth patterns.

and inner cortical surfaces.

Local surface area dilatation. In order to localize surface area change, the surface

area dilatation rates were computed for ail subjects, then smoothed with 20mm FWHlVl

diffusion smoothing to increase the signal-to-noise ratio. The growth pattern of cortical

surface area change is different from that of the cortical thickness change. On average, local

surface area changed from -15.79% to 13.78% peryear. In one subject, we observed between

-106.5% and 120.3% of the local surface area change over a 4 year time span. Figure 4.4

is the t-map of the cortical surface area dilatation. Surface area growth and decrease were

detected by T > 5.1 and T < -5.1 (P < 0.05, corrected) respectively, showing statistically

significant growth in localized temporal and parietal cortical regions of the left hemisphere

and a localized area decrease in the right hemisphere. However, these relatively smaller

regions of local surface area change may indicate that local surface area is not the dominant

feature in brain development between ages 12 and 16.

Validation. Ta validate our surface-hased morphometry, a small artificial bump was

added to the triangular mesh ofcerebel1um with 1280 triangles with Gaussian random noise

(Figure 4.5). Generating 30 such random cerebellum surfaces, we tried to see if local surface

area change around the bump cao be detected. By fitting the surfaces with local quadratie

polynomials, we estimated the Riemannian metrie tensor gij using (3.18). Local surface area
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15

. ·15

Figure 4.5: Simulation on artificial data. a. The cerebellum surface with 1280 triangles. b.
30 artificially deformed surfaces are generated with a bump at a fixed location with Gaussian
noise. c. t-map of local surface area dilatation after 5mm FvVH~I diffusion.

element (4.12) is computed by

Jdetg = (1 + f3r + f3i)1/2.

By subtracting the local surface area elements from b to a in Figure 4.57 we get surface

dilatation for each random surface. Then 30 dilatation fields on the cerebellum surface are

smoothed with 5mm FWHM diffusion smoothing and t-map is formed. c in Figure 4.5 shows

very high t-value of 15 around the bump validating our methodology.

Total gray-matter volume dilatation. The total gray-matter volume dilatation rate

A~ay for subject j was computed. The mean total gray-matter volume dilatation rate is

1 28 •

28 E A~av = -0.0050.
i=l

This 0.5% decrease in the gray-matter volume per year is statistically significant (t-value of

-4.45) ~ So we have the global morphological patterns of both shrinking cortical surface area

and shrinking gray-matter volume between ages 12 and 16 although there is sorne localized

cortical regions where cortical surface expansion has been detected~

Cortical thiclmess dilatation. Also we computed the mean cortical thickness dilata

tion rate Mthick(x) at each voxel x defined by

1 28 .

!t[thick(X) = 28 ~Afhick(X).
]=1

Then the average cortical thickness dilatation across the cortical surface is given by

II~ 111 Mthick(X) dx = 0.0267

avg %Eana.vg
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Figure 4.6: t map of the cortical thickness dilatation rate showing the statistically significant
regions of cortical thickness increase (red &. yellow). The red region exhibits extremely high
t-values indicating that this is a region of extreme cortical thickness increase. There was no
region of statistically significant cortical thinning showing that the cortical thickness tends
to increase rather than decrease between ages 12 and 16.

where 8navg is the outer cortical surface of the average atlas brain. There is a persistent

global morphological pattern of cortical thickness increases by 2.6% per year and 11.3%

over 4.6 year time span. We localized the region of statistically significant cortical thickness

increase by thresholding the t-map of the cortical thickness dilatation rate by 5.1 (Figure

4.6). It is noted that there is no statistically signmcant cortical thinning detected on any

region of the cortical surface. We conclude that, over ail, gray matter gets thicker from ages

12 and 16. Further, there is an extremely localized region on the left hemisphere showing

dominant cortical thickening as illustrated in Figure 4.6.

Therefore, the cortical surface area and gray-matter volume shrinks, while the cortical

thickness tends to increase between ages 12 and 16 with a highly localized area of cortical

thickening in the left hemisphere•
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Subject Age lIôngut ll lIôn~tll Ilan~nll Ilan~nll lino Il IInell
1 14.05-19.13 2.8440 2.6279 2.2341 2.1342 7.4053 7.1212
2 12.73-17.05 2.9196 2.7315 2.1802 2.1237 7.3156 7.2197
3 10.02-16.41 3.0397 2.8584 2.3517 2.1665 7.6754 7.5205
4 13.94-18.66 3.0370 2.8911 2.3927 2.2740 7.8623 7.5949
5 13.62-18.40 2.9102 2.8473 2.1742 2.1951 7.5943 7.1588
6 16.41-20.99 2.7442 2.6063 2.1305 2.0991 7.3460 7.2084
7 17.07-21.75 2.9705 2.9194 2.2726 2.2517 7.6856 7.6156
8 14.87-21.20 2.9657 2.7553 2.4481 2.3758 7.7043 7.3001
9 8.97-14.86 3.2839 3.1537 2.3632 2.2858 8.1128 7.7807

10 9.85-15.93 3.0223 2.9745 2.4538 2.3637 7.8178 7.5884
Il 16.41-21.47 2.8655 2.7851 2.2575 2.2151 7.3117 7.2331
12 8.28-13.18 3.1398 3.1078 2.2911 2.2150 7.8969 7.7978
13 8.45-13.09 2.9811 2.8123 2.2729 2.1097 7.4548 7.5112
14 11.82-16.08 2.9605 2.7772 2.3074 2.2053 7.7615 7.5062
15 9.18-13.29 3.0675 2.9695 2.2396 2.2056 7.8531 7.6688
16 12.72-17.01 2.7546 2.5915 2.0335 1.9352 7.5793 7.2319
17 8.15-12.66 3.0707 2.7841 2.2696 2.1558 7.8365 7.1807
18 9.48-13.93 3.0290 2.7762 2.1743 1.9861 7.6984 7.3084
19 7.72-12.67 3.2150 3.1199 2.4930 2.4298 7.7814 7.8242
20 11.67-15.64 3.0980 3.0895 2.5191 2.4574 7.4377 7.6239
21 11.75-15.85 2.9646 2.7631 2.2507 2.0337 7.5835 7.2833
22 7.02-11.28 3.1425 3.0747 2.3166 2.2015 7.9344 8.0303
23 11.61-16.04 3.0077 2.7930 2.2689 2.1558 7.7683 7.3123
24 11.88-15.93 3.3111 3.1970 2.4125 2.3790 8.2071 8.0173
25 10.25-14.77 3.2974 3.1423 2.4211 2.3037 7.8385 7.8556
26 17.84-21.21 2.8572 2.8156 2.1970 2.1790 7.4161 7.4805
27 9.15-12.71 2.9364 2.8679 2.3416 2.3394 7.4969 7.6005
28 8.41-10.61 3.1745 3.1437 2.3165 2.2476 7.6836 7.4952

~[ean 11.55-16.14 3.0218 2.8920 2.2994 2.2152 7.6807 7.5025

. Table 4.1: Total cortical surface area of 28 subjects ( x 105mm2). The last two columns are
the total gray-matter volume (x105mm3) •
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Subject Age 8total area Atotal area 8 gTay Agray

1 14.05-19.13 -0.0760 -0.0150 -0.0384 -0.0076
2 12.73-17.05 -0.0644 -0.0149 -0.0131 -0.0030
3 10.02-16.41 -0.0596 -0.0093 -0.0202 -0.0032
4 13.94-18.66 -0.0480 -0.0102 -0.0340 -0.0072
5 13.62-18.40 -0.0216 -0.0045 -0.0573 -0.0120
6 16.41-20.99 -0.0503 -0.0110 -0.0187 -0.0041
7 17.07-21.75 -0.0172 -0.0037 -0.0091 -0.0019
8 14.87-21.20 -0.0709 -0.0112 -0.0525 -0.0083
9 8.97-14.86 -0.0396 -0.0067 -0.0409 -0.0070

10 9.85-15.93 -0.0158 -0.0026 -0.0293 -0.004S
Il 16.41-21.47 -0.0280 -0.0055 -0.0108 -0.0021
12 8.28-13.18 -0.0102 -0.0021 -0.0125 -0.0026
13 8.45-13.09 -0.0566 -0.0122 0.0076 0.0016
14 11.82-16.08 -0.0619 -0.0145 -0.0329 -0.0077
15 9.18-13.29 -0.0320 -0.0078 -0.0235 -0.0057
16 12.72-17.01 -0.0592 -0.0138 -0.0458 -0.0107
17 8.15-12.66 -0.0933 -0.0207 -0.0837 -0.0186
18 9~48-13.93 -0.0835 -0.0188 -0.0507 -0.0114
19 7.72-12.67 -0.0296 -0.0060 0.0055 0.0011
20 11.67-15.64 -0.0028 -0.0007 0.0250 0.0063
21 11.75-15.85 -0.0680 -0.0166 -0.0396 -0.0097
22 7.02-11.28 -0.0216 -0.0051 0.0121 0.0028
23 11.61-16.04 -0.0714 -0.0161 -0.0587 -0.0133
24 11.88-15.93 -0.0345 -0.0085 -0.0231 -0.0057
25 10.25-14.77 -0.0470 -0.0104 0.0022 0.0005
26 17.84-21.21 -0.0145 -0.0043 0.0087 0.0026
27 9.15-12.71 -0.0233 -0.0066 0.0138 0.0039
28 8.41-10.61 -0.0097 -0.0044 -0.0245 -0.0111

Mean 11.55-16.14 -0.0432 -0.0094 -0.0230 -0.0050

Table 4.2: Total cortical surface area dilatation 8total arell and its rate A total area. The last
two columns are the total gray-matter volume dilatation 8gray and its rate Agray•
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

The deformation-based morphometry presented in this thesis can localize the regions where

local volume growth or 1055 occurs over temporally varying brain morphology by measuring

the rate of local volume changes. By using the displacement velocity instead of the dis

placement itself in detecting the anatomical changes, temporal variabilities in MR images

for different age groups and different time intervals can be accounted for. Extending the

concept of deformation-based morphometry in Euclidean space to non-Euclidean space, we

have developed a complete statistical procedure for surface-based morphometry, which can

he used in detecting gray-matter deformation and its outer and inner cortical boundary.

In brain imaging, smoothing can enhance signal-to-noise ratio, making functional and

structural effects easier to detect. In 3D volumetrie images of fMRI, PET and ~IRI, the

standard smoothing technique is the Gaussian kemel smoothing. Therefore, it is natural

to extend Gaussian kemel smoothing to 2D surface data. The most naturai generalization

of Gaussian kemel smoothïng on a curved surface is via the diffusion equation hased on

the Laplace-Beltrami operator. We have developed two different approaches to diffusion

smoothing: the parametric method and the finite element method. In sorne applications,

the parametrlc method may he more suitahle than the finite element method and vice versa.

For the Riemannian metric ds2 = L;'i=l Yii duidui on a Riemannian manifold ~[, the
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Laplace-Beltrami operator ~ is defined by

1 ~ a ( 1/2 i- aF )
~F = 1 11/2 LJ a i 191 g]ai'9 .. l U U

1,)=

(5.1)

•

•

where Igi = det(gij) and g-l = (gii). Using the finite element method, we estimated (5.1)

on the triangular mesh of the brain surfaces. Let F(Pi) be the data on the i-th node Pi in

the triangular mesh. If Pl '.··TPm are m-neighboring nodes around the central node PT the

Laplace-Beltrami operatoris estimatedas M(p) = E~l wi(F(Pi)-F(p» with the weights

Wi = (cot lh +cot ifJi)IITI, where 8i and ifJi are the two angles opposite to the edge connecting

Pi and PT and ITI is the sum of the areas of the rn-incident triangles at p. Mterwards, the

diffusion equation is solved 'fia the finite difference scheme:

with the initial condition F(PT ta) = I(p) for each Dode p on the triangular mesh. After

N-iterations, the diffusion smoothing is locally equivalent to Gaussian kemel smoothing with

smoothing parameter h = /2(tN - tO)1/2.

As an illustration, we have applied the methods to ~IR scans of 28 normal children and

adolescents and detected regions of brain tissue growth or 10ss in both whole brain volume

and on the cortical surface. Between age 12 and 16, it is round that the brain tissue growth

oceurs most rapidly on the somatosensory and motor cortex as weIl as in the isthmus and

splenium of the eorpus callosum. Applying the surface-based morphometry, we round no

statistically significant cortical thinning process. Instead, there is a dominant global pattern

of cortical thickness increase over time while the both inner and outer surface areas and the

volume of the gray-matter decreases. Aiso we were able to localize the regions of surface

area increase on the left hemisphere and surface area decrease on the right hemisphere.

Our unified statistical framework based on the deformation-based morphometry can be

further used as a tool for future investigations of neurodevelopmental disorders where volu

metrie analysis would be relevant. It can also be applied to a general morphological studies,

such as testing for structural shape differences between two different groups of subjects.
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5.2 Future Research

• 5.2.1 Growth Curve Model

The linear growth model (2.2) is a special case of the full model (2.1). It would be interesting

to develop nonlinear brain growth model. It requires combining both standard longitudinal

analysis techniques [65} with random fields setting. Let J(x, t) be the Jacobian at the position

x and time t of the deformation

x -.. x + U(x, t).

A proposed brain growth model is

where E(X, t) is a Gaussian random field and {'Pi} are temporal basis functions. From the

Karhunen-Loeve expansion in (2.16), the error term can be decomposed as

•

•

E(X, t) =E Ei(X)tPi(t) ,
i

where {Ei} are independent Gaussian random fields and {tPi} are orthonormal bases. Without

10ss of generality, we may let 'Pi = l{Ji. Then we have

where and €(x) is a Gaussian random field. The problem is to estimate the unknown coef

ficient functions {Th} possibly by minimizing the mean squared error. Altemately, we can

also model brain development using nonparmetric kemel smoothing techniques [65}.

5.2.2 Membrane Spline Energy

In our thesis, morphological descriptors were based on length, area and volume changes,

which directIy measures the amount of brain tissue growth or loss. It is possible to develop

more sophisticated morphological descriptor that measures completely different morphologi

cal properties in brain deformation. Consider two geometrie: objects n1 and O2 in]RN which

have slight shape variations. We are interested in identifying the regions of maximum shape
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field constructed from w(x) is not the Hotelling's T2 field~ So it would be of interest to he

able to compute the excursion prohability based on this Hotelling's T2 like random field~

The vorticity tensor Wij is given by

W
.. _ !(8Ui _ ÔUj )
'LJ - •

2 ÔXj ÔXi

Let €ijk be the Levi-Civita tensor [94, 75}, then the i-th element of W can be given in terms

of the vorticity tensor

The angular speed is defined as
N

IIwll = CEw;) 1/2.

i=l

The angular speed is a useful scalar morphological descriptor which measures the amount

of rotation per unit time in deformation. Finding the e..xact statistical distribution and its

p-value based on the maximum of its field seems somewhat complicated.

5.2.4 Generalized Variance Field

In (2.4), we defined the 3-dimensional ctisplacement gradient matrix. We introduce a new

morphological descriptor hased on the determinant of the matnx. Suppose components of

the ctisplacement vector U(x) E aN are identically and independently distrlbuted as a mean

zero stationary Gaussian field with the covariance function R(x, y) = f(x - y). Let

and VU he the lV-dimensional displacement gradient matrix defined by

(
,t

VU = VUl ,·_·,VUN ) =

•
The generalized variance field is defined as the determinant of l'V = (VU)tvu~ Note that

N

l'V(x) = EV[}iCV[Ji)t.
i=l
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It would be very useful to approximate the e.xcursion probability of the generalized variance

field. Unfortunately, it IS not easy to compute the expected Euler characteristic of the

excursion set of liV.

The covariance function of the field liVl/2 can he easily computed. By expanding the

determinant liVl / 2 = det(VU) ,

T'Vl/2 _ ~ () aUt aUN
~ - L.J sgn q a ...a '

S XD'(l) XD'(N)
D'E .v

where SN is a symmetric group of order N and sgn(u) is the sign function of the order

of permutation q [54]. Since aaUt , ••• , ô8UN are independent mean zero Gaussian fields,
:l:cr(l) X"cr(N)

E(liVl/2) = o. The covariance function R- of liVL/2 is

•

R·(x, y) _ E[liV1/2 (x) liV1/2(y)J

_ lE [ L sgn(u)sgn(,) aUt(x) aUl(y) ••• aUN(X) aUN(Y)]
(J".-rES.v aXa(l) aY-r(t) aXa(N) aY-r(N)

L sgn(u)sgn(,)E [aUt(r) aUlCY)] ••• lE [aUN(X) 8UNCY)]

S aXa(l) aY-r(l) aXD'(N) 8Y-r(N)
(J",-rE N

L sgn(u)sgn(,) Ra(l)-r(l) (x, y) •• ·RD'(N}-r(N) (x, y),
(J",-rESN

•

where ~jCx,y) = a::~iR(x, y). There exists a permutation p E SN sucb that , = pu and

sgn(p) = sgn(r)sgn(q). Then by summing up over the index p,

R-Cx,y) = L L sgn(P)RD'(l)pa(l) (x, y) • ··Ra(N)pa(N)(X,y)
D'ESNPESN

- L det (a~tR(X'Y))
D'ES.v

- N!det (a:~tR(X,y))

- (_l)N det (H/CX - y»),

where Hf = (~lj) is the Hessian matrix of f .
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Note

The ~Iatlab program used in computing the corrected thresholds of the T random field and

the Hotelling's T2 random field can be found at

http://www.math.mcgill.ca/keith/BICstat

The lVlatlab program used in diffusion smoothing can be round at

http://www.math.mcgill.ca/chung/diffusion
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