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The purpose of this study is threefold: Pirstly,

to provide a succinct overview of available "best-practice”
’ technologies for estimation in linear regression. Secondly,

we léok at what economists do. Here we ask the important
quntio;z of how quickly advances in mt:l.;tiul theory are .
assimilated into research activities by economists. PFinally
we consider certain areas in economics that would benefit from
use of "best-pragtice” methods. .

Our results show that thers is an alarningly large gap
between advances in -mtiati.onl theory and its assimilation

‘ into economic naurei:. a
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REsumé

-~

Gette ftude & trois buts principaux: d‘abord
pour faire 1'inventaire des "meilleures techniques”
(best-practice technologies) existantes pour l'estimation
en régression linéare. Ensuite, pour jetter un regard
sur ce que font les 8conomistes dans ce domaine. ~ On se
pose la question importante concernant la rapidité avec
laquelle les Sconomistes assimilent dans leurs activites

de recherches les avances faites en théorie statistique.
Fimalement, nous considerons certain domaines dans la
science Sconomeque qui peuvent bénéficier le plus en
utilisant ces meilleures techniques (beat;-practico methods).
Nos résultats dfmontrent qu'il existe un écart
capsiderable entre les avances faites en théorie statistique

et leur assimilation en recherche économique.
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The Assimilation of "Best-Practice"

' Econometric Technohgy_




CHAPTER ONE

Introduction

v 1

- P4

In economic models involving heterogeneous capital, the spread of
new techniques in production is often discusged. We cannot assume
such techniques will be instantly adopted as soon as they appear.
This would be contrary to available evidence on the spread of new
techniqugs énd_ it would neglect the real cost of adjustment as
existing procedures are dislocated and amended. A superior approach
is to view new technigues as being assimilated at rates that will vary
-through time according to their embodiment in new capital gguipment
and to the pace of the general movement in economic activity,
especially' as it impinges ®* on capital accumulation. This process
serves as a useful analogy for introducing the importgnt issue of how
quickly advances in statistical theory find expression in the research
activities of economists. As vith capital, thexconcern is not with
small-scale activities in research laboratories but rather with the
wider adoption of technigues outsid; the con!jn‘Q of 1initial
developmental sources. . ,

There are three significant elements in the present economic
context that provide a tentative proposition concerning the speed of
assimilation.The general npnnntu- of empirical research in economics
and the availability of software packages that are constantly being
updated to '‘include new statistical procedures vould both seem to be

indicative of a favourable environment for the assimilation of

w
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statistical advances. To these two characteristics, we should add the
increasing stress being attached to statistical criteria for
evaluating research studies in professional literature and in
applications to funding agencies. Thus we might reasonably presume
that rates of assimilation are rapid with small delays between the
first appearance of new statistical technigues and their common use by
economists in applied research. Unfortunately, evidence that we shall
present below will reveal that this presumptic;n is quite un-
warranted. The true picture of econometric practice (through all of
the economics profession rather than among the much smaller coterie of
econometricians with narrower focus) is oné of senility. Published
studies reveal no sign of rapid advance in the assimilation of
statistical techniques. ~Indeed they show considerable persistence

with early methods, all of which stem from developments prior to the

' onset of the modern era in econometrics (about 1943 accopding to

Klein) and from developments associated with the first attacks on
autocorrelated errors in regression models (more than 30 years ago).
In 1983, the' journal Technometrics contained an exgellent review
by Hocking of developments in the methodology of 1linear regression
during the last quarter of a century. This survey reveals s"pectiacular
vitality in the expansion of the classical linear model. Although
economists' textbooks often emphasize the sinultaneous-équq;ions Mel
developed at the Cowles Commission from the pioneering efforts of’
Frisch, Hasvelmo, and Mann and Wald in the decade of the 1943“3,— the*‘-

predominant framework in much of 'wirica'l research by ec‘ono“nist;s' has

-
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remained the classical one of linear regression with some adjustments
for autocorrelation, heteroscedasticity and structural instability.
Hocking's review, therefore, provides a useful star;ing-point from
which to begin our exploratim}~ of assimilatiqn. The restriction to

single-equation techniques will not seriously distort our findings.

Indeed it could be argued that this restriction might make

p

assimilation more rapid given relative levels of computational costs

and mathematical coﬁplexity. (It shoulds be recognized too that the
twvo-stage least-squares estimator is the most discussed approach in
the simultaneous equations model and yet this is already more than 25
years old.) Hocking's review was directed fo an audience of applied
statisticians but ‘¢t can be read wig@out making excessive dema;ds of
statistical or mathematical knowledge.

Our purposes are straightforvard. Wwe Segin vith a brief account
of "best-practice” technologies for estimation in' lingar regression,

These are already excellent‘descriptions provided by Belsley, Kuh and

weiscp (1980), Leamer t1978), Bibby and Toutenburg (1977), and Cook,

and Weisberg (1982), These can be supplemented by parts of Judge et
!

al. (1980), Judge et al. (1982), and Greenberg and Webstqr (1983)

while the major listing of historical developments remains a series of

papers by /Harter (1974-1975) in the International Statistical Review,

Given this collective backdrop, our account is slight. It contains

. the delineation of some well-defined categories, broad descriptions of

particular techniques and citations for ma#jor references, The result

is a skeletal outline only. Obviously we have been selective, giving
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more weight to advances that fit the economic context. Preference for
technigues that have been shown computationally feasible and that have
had their application thoroughly explored does not need much
justification. We sought to make apparent certain developments and to
give general guidance for understanding the maze of available
literature. To provide these, we have augmented Hocking's review with
additional material from sources closer to economists (including those
cited above) and inadequately covered in his review.

Then we look at what economists do. An exploration on a larger
scale might look at responses to a questionnaire sent to a significant
proportion of the economics profession. Our alternative approach
involves checking the contents of many leading journals for evidence
of the use of the newer techniques cited in previous section. This
approach is quicker, less costly and perhaps even more informative
than that involving a questionnaire. In any case, the evidence on
assimilation of best-practice methods is so clearcut that we have no
grounds for believing other evidence might contradict our conclusions.
Choice of journals for inclusion in our brief literature search was
influenced by intangibles such as professional prestige as well as
such mundane considerations as our estimates of the relative size of
readership populations. From this search, we hope to explore the
overall picture of assimilation and also the differences among the
&cceptance rates for the various categories. Some technigues may have
been easier to implement or they might have enjoyed greater popularity

on other grounds. The results of our search can be used to judge the

[
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quality of empirical research by economists. A slow rate of
assimilation coupled with the <characteristics cited earlier is
indicative of an improper situation. Within th;s, unvarranted claims
(or demands) that economics involves in a fundamental way the
quantitative verification of its theoretically-based structures seems
to be unmatched by statistical sophistication. Evaluations would thus
be inadequate, misleading, or insincere.

In our final section, we turn from what is done to what might bg'
done. Thus we consider certain areas wvhere best-practice methods
could be used, giving both justification and potential gualifications
or constraints. The existence of techniques and a favourable attitude
to their adoption in economics are insufficient conditions for actual
use. The techniques must fit the economic context and their benefits,
as compared to those linked vith traditional approaches, must outweigh
the usual increases in co-plexitf and cost. Many adjustments to take
account of statistical advances also involve implicit challenges to
past habits of thought. For example, they often involve iteration,
multiple uses of data, or different critical values so the
Neyman-Pearson framework for statistical inference is not as simple as
before. The comfortable aspects of dealing with stable structures of
known form, with well- behaved errors, and reliable data disappear.
They often cease to provide the given underpinnings of the newer
techniques so that conclusions from research become more tentative.
Robustness and sensitivity nov appear as criteria for decisions at the

expense of such static notions as unbiasedness or consistency.
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Although ve touch on these issues briefly, they are incidental to our
primary objective. This remains throughout as the determination of
the readiness of economists to assimilate statistical advances into
their research practices. The readiness, in view of the availability
of suitable software, is to be identified with actual use rather than
with pious claims concerning the frequency of statistical anaiysis in
economic research.A qQuality dimension (the "best"™ in best-practice) is

essential. _
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CHAPTER TWO
The Statistical Background

The historical development of the least-squares principle for
estimating parameters of linear equations in the familiar classical
framevork can be traced back beyond 1809. Those interested in
assigning credit for its first introduction will be aware of one.of
the most famous priority disputes in statistics, with both Gauss and
Legendre claiming the prestige for the inception of the least-squares
principle. Papers by Plackett (1972) and Stigler (1981) have sought
to resolve this issue of priority but some aspects remain unsettled.
Prom our perspective of best-practice technology, this illustration is
very simila; to certain attempts in the economic literature on long
vaves of economic activity to locate dates of basic inventions (which
might have provided the initial impetus for increased growth in
critical sectors of national economies). Thus, in line with our focus
on the assimilation of techniques, our concern is not with the
priority issue for the least-squares principle but rather with what
has happened to this basic approach since its inception. Leaving
remote developments to the historical survey of Harter (1974-1975), we
conceAttate on the features of the last quarter century as changes En
computational feasibility and research criteria made additional
complexity less burdensome. .

An emphasis on computational burden is easy to justify. The

r

first one and half centuries after the inception of the least-squares
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method vere a period of remarkable stability. Although there were
important developments in the rapid evolution of theories of
statistical inference, these were not matched by pronounced changes in
real applications in economics. Practical difficulties affected the
implementation of adjustments to least-squares regression methodology
80 innovations were severely restricted. From 1809 to 1959, the user
of conventional regression methods had to be satisfied with analyses
of simple models with few exogenous varidbles. The solution of normal
equations with more than 3 or 4 variables remained difficult for most
users., Obviously the computational hazards of this period meant that
there was little incentive for users to forego simple linear equations
of 1low dimension and to turn towards khe asking of “interesting"
questions. The Qquality of their efforts remained unchallenged from a
technical viewpoint. Suitable tests of this quality were either
undeveloped or not feasible. This situation wvas radically amended by
the advent of high-speed computational facilities and by the increased
accessability of appropriate software. Opportunities arose for
extensions to larger and more complex moﬁels and for the search of
diagnostic teéhniques to check the relevagqe of various assumptions
within a framework of conditional specification. An inevitable
concomitant was a reappraisal of purpose with the traditional picture
of structural confirmation being augmented to include exploratory
elements and sequential search.

Turning to the last Quarter century, we would 1like to find a

straightforvard means of describing the changing stock of new
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techniques. Unfortunately the.various developments in "best-practice”
technologies have no clear pattern. Brratic shifts of intcro;; in
particular areas precludes, as yet, the presentation of an histhrical
tazonomy. We are compelled to tgllov an alternative ltraéchbvhich
associates techniques vwith their potential incidence. To facilitate
this, a particular paradigm is adopted here. This is represented by
the contents of Table 1. Similar adoptions may be found in Box
(1979-1980), Zellner (1975) and in Cook and Weisberg (1982). They are
becoming increasingly evident in statistical textbooks as the advocacy
for adoption of "best-practice” technologies becomes systesatic. Our

scheme was chosen to organize our brief account of them rather than

for advocacy.

s




TABLE ONE

Schematic Outline For Model Fitting

2.

' (1)
(i1)
(iii)

1. FORMULATION

(i) Assumptions
. (ii) Model Selection
\\/‘ ’ & 9
(iii) Collincatity
4.
(1)
(ii)
”

ESTIMATION ' -

Least Squares
Biased Regression
Robust Estimation |

L -

3. . INFERENCE

(i) )
(ii)
(iii)

Pitted Model Tests
Recursive Residuals
Jackknifing and
Pseudo-Replication

CRITICISM

Diagnostics

Transformation

10
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The schematic outline of thg table indicates four distinct stages '
that, for expositionary purposes, may be taken to be sequential in
practice. The stages are termed formulation, estimation, inference
and criticism. In fact, our study of best-practice does not exactly
follow the flow direction indicated in the schematic outline of Table
1. Rather we only discuss available robust techniques at the end of
this chapter. The reason for thiiv minor adjustment is really quite
simple. Since it is the criticism step vhich (through its assessment
of the appropriateness of our assumptions) dictates to us the
appropriateness of particular estimation procedures, it therefore
makes sense to defer discussion on the availability of alternatives to
least squares until the end of the chapter. In Table 2, we present
the general organization of our account. The reader is advised to
refer back to this table as he §ocs through our discussion on
best-practice since it provides a succinct overview of the literature
discussgd and should prove useful in deciphering the material
developed here. Table 2 also provides our resader with a select
reading reference on each technique, thereby, providing him a quick
reading list to the extensive literature.

We takev;; our starting point the classical linear framework for,
if the classical assumptions are satisfied, least squares estimators
are relatively efficient in a class containing many potential
estimators. This "optimality" property of least squares within the
classical framework is most often cited to justify its use {n

empirical work. We, therefore, take the classical framework as our

’ i
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"ideal® and direct our treatment of the availability of best-practice
tnchnbloqi-t tavardc~th¢ detection of any divtrgencc_frol this ideal."
This would seem to be consistent with the organiutip;l~ of many
econometric textbooks vh;ch begin with the classical linear model and
then present other ideal models, such as the Aitken framework or the
simultaneous equations model, as amendments to this ‘initinl point of
reference. The classical linear model, itself, is ‘chnractatizod by
four or five assumptions, (Al)-(A5) inclusive, that are listed below.
The fifth assumption of normally. distributed errors is frequently not
invoked and may be considered a valuable additional element when
statistical tests are sought. Our list uses the familiar matrix
notation. | o

ASSUMPTIONS OF CLASSICAL LINEAR MODEL

(Al) The observations on a lnalurid variable y are a linesr
combination of the observations on a collection of carriers,
with unknown fixed weights, and random errors;

y = XB +u
vhere y and u are vectors of length T (the number of observations),
X is a matrix of si:c.x b} T, and B is a vector of length K.
(A2) The expected valuéygt u is zero. '
(A3) The errors have a constant finite variance ¢* and are free
from autocorrelation. . /
(A4) X is non-stochastic and of rank K. /
(A5) The errors are normally distributed. “ﬁ /

|
|




A)

B)

C)

D)

TOPIC

BQUATION SELECTION TECHNIQUES

Selection Criteria

-

MULTICOLLINEARITY
Detection

Estimation

CRITICISM/INFERENCE

ROBUST ESTIMATION

TABLE TWO

General Organization Of Best Practice

SUB TOPIC

Stepwise Regression
All Possible Regression
Best Subset Regression

Rz
MSERP
R8S
PRESS

Cp

vir ,

Parrar/Glauber R.

Eigen Values, Condition Index
Decomposition Variance

" Ridge Regression

Principal Component -
Bayesian

Diagnostics

ransformations

Recursive Residuals \
Jnekkniflgg

M
L

Lp
Adaptive

4

SUGGESTED REFERENCE

Efroymson (1960)
Garside (1965)
Hocking and Leslie (1967)

Draper and Smith (1981)
Allen (1971a)

Daniel and Wood (1980)
‘Allen (1971b)

Mallows (1964)

Marquardt (1970)

Farrar and Glauber (1967)
Belsley et al. (1980)
Belsley et al. (1980)

Hoerl and Kennard (1970)
} Greenberg (1975)
Theil (1963)

" Belsley et al. (1980)

Box and Cox (1964)
Brown et al. (1975)
Miller (1974)

Huber (1964)

Hodges and Lehmann (1963)
Gastwirth (1966)

Taylor (1974)

Hogg (1974)

-y
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We turn in the following sections to the & basic topics; (A)
eguation selection technigues, (B) multicollinearity, (C) criticism
and inference, and (D) robust estimation. Thess topics are split into
24 subcategories. Ultimmtely this survey will yield tb; basic ligt of
best-practice statistical technigues that provided th‘ framevork for
our review of the contents of 15 professional journals. This basic ’

list is presented in our next chapter.
i . \,
A A
" ‘) ' -4 ) : it )

i) Stepwise Regression K -

¢

In many economic situa®ion vh;ri there is an iheclgncto
theorstical - background from economics, the problem of selecting
variables for a regression equation becomes an important one.™ Over
the last 25 yesrs, a large number of papers have been published on the
subject of variable selection. The selection of a "best" eguation
based on a subset of the original set of predictor variables 1led to
the development of “stepvise” rcgfossicn. (See Draper and Saith
(1981) for a d.tfﬁition of 'best';)

EBfroymson (1960) gave us a procedure for introducing the carrier
variables one at a time. At each step, his procedure chooses the
variable that gives us the greatest reduction in the residual sua of
squares. This process is continued either until all the cnndidats
variables are entered into the model or until it is stopped by an a

et s g e
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priori selected tolerance level. There are two basic versions,
forward selection and backward elimination.

" These stepvise technigues may be useful variable-selection
procedures. Howvever, some problems are evident. First, they
sometimes do not detect important variables. Second, the forward and
backvard procedures do not always give us the same conclusions. These
and other problems have been discussed in papers by Pope and Webster
(1972), Hocking (1976) and Thompson (1978a,b) and Hamaker (1962).
Important papers discussing stepwise techniques are Hemmerle (1967),
Jennrich (1977), Dixon (1964), .htk (1978), Beale .(1970b), Allen
(1971a), Pope (1969), Mantel (1970), Anscombe (1967), Beale et al.
(1967), Bendel and Afifi (1977), Lund (1971) .and Valiaho (1969).

ii) All Possible Regressions
m

With the availability of cheap high speed computational
facilities, attention focused on the development of algorithas to
examine and compute all possible equations from combinations of
candidate variables. This method involves fitting all possible subset
cquntions to a given body of data, thus with K candidate variable, ve
would fit 2* equations. Included in this is an equation -that has all
the K variables and another that contains only the sample mean.
Garside (1965) developed one of the early algorithms for this
approach. Calculating all possible rcqriuion. gives the analyst
maxinum information but the number of eguations éo be analysed is
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often large and not always feasible. For example, a set of 9
candidate variables implies 1looking at 512 equations. This drawback
prompted the development of best subset regression discussed below.

Available literature on all possible regression includes the book of

Daniel and Wood (1980) and papers by Furnival (1971), Morgan and
Tarter (1972) and Schatzoff et al. (1968).

iii) Best Subset Regression

Best subset regression methods try to reduce the
computational burden of cai;L;ating all possible regressions. The
braan- and-:ound procedures developed by Hocking and Leslie (1967)
and Lamote and Hocking (1970) ate designed to find the "best" subset,
without calculating all possible subsets. Purnival and Wilson (1974)
introduced a similar method which is highly efficient and has recently
qninch a great deal of popularity. The pspers by Beale (1970a),
Lindley (1968), Anderson et al. (1970), Welsch and Peters (1978),
Lamotte (1472), Beale et al. (1967), Allen (197la, 1974), -Mallows
(1973), Aitkin (1974), Helms (1974.), Rencher and Pun ,(1980), Hintze
(1980), Young (1982), McKay (1979), Baskerville and Toogood (1982) and
Hocking (1977) provide relevant accounts. »

§
SELECTION CRITERIA

The three variable selection technigques introduced so far assess

T UV

PP PPN
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each regression equation according to some arbitrary criterion. 1In
the case of "stepwise" regression, we generally use the value of Rz
from the least-square fits. In the 1last quarter Eentury, several
criteria have been’ ponsidered, some of these have been discussed

below.
2
i)R. L ]

oS 2 : . : :

The e of R as a selection criterion is straight forward and
does not seem to need further comment. Drapger and Smith (1981)
provide an excellent description of its use. Lovell (1983) should be

considered too. -

ii) MSEP

* Allen (197lai“iqtkoduces the mean square error of prediction
MSEP criterion,’£0t selecting an equation. This is given by z(§;- p)
vhen' p carriers are involved. For a further discussion see Hocking
(1972). Other closely related selection criteria have been QuEgeSted
by Mallows (1966,1967), Rothman (1968), Lindley (1968) and Gorman and
Toman (1966).

iii) RSS

Use of.the Residual Mean kquare,nss as a basis for selecting-

-
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regression equations is described by Draper and Smith (1981). The
relationship between RSS and the Cp (to .be defined below) has been
explored by Daniel and Wood (1980) and Chatterjee and Price (1977).
For applications of RSS and similar criteria, see Beale et al. (}967),

Hocking and Leslie (1967) and LaMotte and Hocking (1970).
iv) PRESS

Allen (1971b) suggested use of the predicted sum of sqguares
PRESS criterion as an alternative to RSS. A complete assessment is
provided by Thompson (1978a,b), Hocking (1972,1976), Younger (1979),
Draper and Smith (1981), Anderson et al. (1972) Cook and Weisberg

(1982).
v) Cp

The Cp statistic, introduced by Mallows (1964), has gained
considerable acceptance as a good selection criterion. It is much
easier to calculate than the PRESS statistic and may provide us with
the opportunity for tests of significance. The statistic is defined

as a simple sum of two components;

Cp=P+ Sp -oF (T-P),

E Y
4

vhere P is the number of parameters in the candidate model, Sp is the

Lo, B
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error mean sguare associated with the candidate model and ¢ is the
error mean square of the true best model. Now if our candidate model
is the true model then Sp -+ will be very close to zero and Cp = P.
Oon the other hand, if our candidate model is not very good, then Sp

* and Cp will not be near P. Clearly we are to

will be far fromge
choose that model that has a Cp closest to P. However, to use the Cp
statistic, we must estimate o independently. The method most
commonly used for this estimation is to take the Sp that is obtained
from the model containing all of the candidate variables. For a more
detailed explanation of the Cp statistic, see Daniel and Wood (1980).
Other references to the Cp sta‘tistic include Draper and Smith (1981),
Chatterjee and Price (1977), Younger (1979), Kennard (1971), Hocking
(1972), Helms (1974), Searle (1971), Mallows (1973) and Thompson
(1978a,b). The plot of Cp against P is discussed by Mallows (1973),
Gorman and Toman (1966) and Draper and Smith (1981).

These 5 criteria assume that "collinear" relationships between
the carrier variables are not severe. When ill conditioning of the
data matrix is detected, the ridge regression technique of Hoerl and
Kennard (1970a,b), provides us with a selection criterion vhereby the
ridge trace is used to eliminate variables from the equation. Rules
of elimination are discussed by Chatterjee and Price (1977). Other
important papers on selection criteria include Anderson et al. (1972),
Darling and Tamura (1970), Forsythe et al. (1973), Gunst and Mason
(1979), Haitovsky (1969 a), Kennedy and Bancroft (1971), Narula and

Wellington (1979) and Nordberg (1982).

RPN
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B) MULTICOLLINEARITY

DETECTION

Near-degeneracy of the signal matrix in a linear model is often
described as the problem of multicollinearity. Mason et al.(1975),
Wampler (1970), and Kumar (1975a) review some of the sources of
multicollinearity, wvhile Longley (1967) demonstrates some of its
conseqguences. Well known conseqguences of collinear data include
incorrect coefficient signs (see Mullet, 1976) and unstable parameter
estimates. These and other consequences make the task of variable
selection and inference very difficult . Belovw ve list some of the
nev technologies that are available to detect degeneracy in the signal

and some proposed remedies.
i) Variance Inflation Pactor

The variance inflation factor VIFi vwas suggested by Marquardt
(1970) and is defined as the reciprocal of (1-Ri), where Ri is the
Multiple Correlation Coefficient of any given carrier Ii regressed on
the remaining carriers. The problems with VIF summary statistic are
tvo fold. First, it cannot diltinguish between several coexisting
near dependencies. Second, there is no set rule when considering
vhich VIF is large. PFor a further discussion on the VIF measure see

Snee (1983), Belsley et al. (1980) and Chatterjee and Price (1977). A
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closely related statistic is that developed by Parrar and Glauber, to

which we now turn.
ii) Parrar and Glauber R Statistic.

Farrar and Glauber (1967) suégest that if the RL between one
carrier and the other carrier exceeds the R" of the original equation
then multicollinearity is a serious problem. Their diagnostic
technique involves using the correlation matrix R or (X'X) to measure
the degree of collinearity. They assume the data matrix X is a sample
of size T from a K-variate normal distribution, with columns of X
orthogonal. Then,in this context, transforutior; of the determinant
of R is approximately distributed as chi-square giving us a test for
collinearity.Por a further discussion on this statistic and its
dravbacks see HiRitovsky (1969b), O'Hagan and McCabe (1975), Kumar
(1975b) and Belsley et al. (1980).

iii) Bigenvalues, EBigenvectors and the Condition Index.

The use of eigenvalues and eigenvectors obtained from the
correlation matrix of the carrier variables to detect collinearity is
not new. A small eigenvalue \p is used to indicate a2 near perfect
collinear relationship. See, for example, Kendall and Silvey (1969).
The problem with this measure of collinearity is the fact that the

econometrician is not informed as to vwhat is "small".- The tendency
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is, therefore, to take small as close to zero making this measure
somevhat arSitrary. Chatterjee and Price (1977) suggested we compare
the largest eigenvalue with the smallest but did not futher develop
the idea. Belsley et al. (1980) take Chatterjee and Price's
suggestion and provide a summary index which gives us a2 measure of the
number of near dependencies there are among the columns of the data
matrix X. This measure is termed the "condition index”". This index
is obtained by taking all the eigcnvalueé of the matrix X and then
dividing the largest eigenvalue by all the others., Thus the Pth
condition index of a data matrix X, or Kp, is the ratio of A max to Ap
as p moves from 1 to K.

Belsley et al. suggest that the number of large values associated
with this index indicate the number of near dependencies, with index
values of say 5 or 10 being indicators of weak dependencies while
values of 30 to 100 indicating moderate to strong dependencies. In
this context, they can also define our overall measure statistic
provided by the condition index called the “"condition number” which is
defined as the ratio of ) max to ) min and clearly either exceeds or
is equal to unity. Their condition number is obviously the largest
value of the condition index and provides a quick diagnosis on the
conditioning of the data matrix. Other material on the subject is to
be found in Golub and Styan (1973), ionglcy (1967, 1976), Householder
(1964), wWilkinson (1965), Stewart (1973), Van der Sluis (1969),
Kennedy and Gentle (1980) and Hocking (1983).
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iv) Singular Value Decomposition and Variance Decompostion

—_—

"rho work of Goludb and Kashan (1965), Businger and Golub
(1969), Golub and Reinsch (1970), Golub (1969), Hanson and Lawson
(1969) and Becker et al.(1974) gave another approach. The data matrix
X can be decomposed since there exist orthogonal utriéu U and V and
a diagonal matrix S having non- negative elements so that X ~is usv’
and X'X is VSV' . The diagonal elements of S are called singular
values or eigenvalues of X. The u’ttricn U, VvV, and S contain only
real numbers and the singular values of X are unique, with the number
of nonzero singular values giving us the rank ofﬁ X. Tixe ratib of the
largest to smallest singular value, vhich indicate the conditioning of
X, is the condition number of X. -
It can be shown that the estimated variance of each regression
coefficient, can be dcco-po;od into a sum of terms, each associated
with a singular value. The "variance decomposition™ enables ;u to

determine the extent to which near-collinear relationship between the

columns of X “"degrade” each variance. For example, varisnce

decomposition of the least squares estimate ) is;
—~ -l
Var (B) = &*X'X) = o« VSV

Belsley et al. (1980) have an excellent exposition on the ua'é of this
decomposition. Other references on the subject are Businger (1970),
Golub (1968), Golub et al. (1976), Healy (1968), Longley (1976,1977),

M
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Van Loan (1976), Becker et al. (1974), Beisley (1976), Belsley and
Klema (1974), Golub et al. (1980) and Kennedy and Gentle (1980).
Having identified collinearity the next  question is how should we

proceed?

BIASED ESTIMATION
A number of alternatives to least.squares have been recommended.
These estimators are biased but may be preferable to least square

estimators on various counts. . Some corrective measures, of course,

-

may be considered befo ne applies biased estimation techniques.
Two of these are the eliminatiin of variables and the introduction of
new data. Both these measures have their drawbacks. Variablew
elimination often leads to poor estimates’ and new data are not alwvays

obtainable at reasonable cost.
i) Ridge Regression

The most populi; of biasc&’ techniqgues is the ridge estimator
introduced by 'Hoorl (1962) and Hoerl and Kennard (1970a, b). The
ridge-regression estimator, with a single ridge parameter k is defined
by the revised normal equations

(X'Z + kI) B = X'Y
or o

a -t
B (XX + kI) X'Y
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This estimator exhibits better mean squared error properties than the
least squares estimator, with the "ridge-trace" providing graphical
evidence of ,the effect of collinear data. ﬁc literature on ridge
regression is very large. Bibliographies 'are provided by Hoerl and
!ionnard (1981,1982), Alldredge and Gilb (1976) and Draper am:l3 Smith
(1981).

. Papers dealing with the choice of k are Dempster et al. (1977)
and Gibbons (1981), while papers criticil of the ridge technigque are
Coniffe and Stone (1973), Smith and Cunpboll' (1980), sSmith (1980),
Draper and Van Nostrand (1979), For the applications see Hoerl et al.
(1975), Anderson and Scott (1974), Lawless and Wang (1976), Vinod
(1976) and Mason and Brown (1975), Other illustrations include
Holland (1973), Obenchain (1977,1978), Marguardt and Snee (1975),
Vinod (1978), Stein (1956), Swamy et al. (1978), Nevhouse and Oman
(1971), and Dvivedi et al. (1980).

ii) Principal Component Estimation

'rhif estimation technique utiliu_l linear combinations of the
original dati matrix, "principal components”, to restate the linear
regression model in terms of a set of orthogonal predictor variables.
Details are available in the papers by Massy (1965), Jeffers (1967),
Mitchell (1971), Press (1972), Marquardt (1970), Kendall (1957), Lott
(1973), Hawkins (1973),Coniffe and Stone (1973), Hotelling (1933),
Greenberg (1975), Hocking et al. (1976) and Marquardt and Snee (1975).

~.,~_~Md
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Closely related to this approach is a method proposed by Webster et
al. (1974) called “"Latent Root Regression™. An npplicition of this is
given by Draper and Smith (1981) while technical aspects are discussed
by White and G\mct/ (1979), Gunst et al.(1975), and Jackson and Hearne

{
\

(1973).

\
¢

iii) Bayesian hnigues

Any discussion of biased estimstion technigques requires some
mention of Bayesian methods. Notable smong these are the use of prior
information to specify the distribution of B's, the imposition of
constraints on the B's bu‘tL on prior intormation, and the
introduction of dummy variables. These and other Bayesian techniques
have beén considered by Zellner (1971), Theil (1963), Lindley and
Smith (1972), Box (1980), and Leamer (1973, 1978).

The Bayes-like method of "mixzed estimation" developed by Theil
and Golberger (1961) and Theil (1963), deserves comment since it has
gained considerable popularity recently. It is easy to employ and
does not require a a full specification of the prior distribution.
Mixed estimation is useful when prior information is available but
incomplete, Belsley et al. (1980) give an illustr'ation using the

consumption function.
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C) CRITICISM AND INFERENCE

Our inalysic has so far involved making some initial assumptions,
selecting a model and checking for multicollinearity. Now we question
the validity'of our work so far, more specifically the appropriateness
of our assumptions and quality of data. Por this purpose, numerous
multiple-regression diagnostic methods have Dbeen developed.
Researchers are now able to examine the residuals that result from
fitting a model. Pioneer papers in residual analysis are Anscombe
(1961), Anscombe and Tukey (1963) and Tukey (1962). Anscombe (1961)
presented technigques for the detection of outliers and violations of
classical assumptions based upon examination of least-squares
residuals. He developed statistical tests by considering the
distribution of residuals and the relationship between the fitted
value and the squares of residuasls. The later paper by Anscombe and
Tukey further develops some of these technigques. Tukey (1962) showed
how to obtain information from cumulative residuals plotted on normal
probability paper. These papers proved to be the catalyst for an
explosion of material on the subject of residual analysis. 1In justﬂz
years after Anscombe's first paper, numerous other papers appeared.
SQQ) for example{ Goldberger and Jochems (196l1), Kabe (1963), Preund
et al, (1961), Goldberger (1961) and 1Zyskind (1963). The role of
residuals in revealing anomalous data later reéeived a great deal of
attention as can be seen in papers by Aigner (1974), Blomgvist (1972),
Levi (L973), McCallum (1972), Wickens (1972) and.Rao (1973).
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i) Diagnostics

Within the linear model the vector of least-squares residuals is

defined as

e= (e;) =y ~ ¥
- . Py
vhere P= (I-M) and M=(Mij) or X (x'x)-' X', M is often called the
"projection matrix® or "hat matrix" with well-known prai:ettics. The
relationship betwveen the residuals e and errors u is straightforvard

since e is the linear transformation Pu.
ia) The Projection Matrix

The projection matrix plays an important role in data analysis.
The "leverage” of the ith data point is the ith diagonal element of
the projection matrix M denoted by Mii. _This gives us our starting
point for revealing “"multivariate outliers”. Hoaglin and Welsch
(1978) suggest wve use a value of Mii in excess of 2K/T as an
indication of high leverage. Belsley et al. (1980) suggest a similar
diagnosis using an P test. Important prbperties of Mii, denoted as
Hii by Belsley et al. (1980) and Vii by Cook and Weisberg (1982), have
been discussed by Behuken and Draper (1972), Huber (1975), Davis and
Hutton (1975), Box and Draper (1975), Velleman and Welsch (1981) and

Hoaglin and Welsch (1978),

-
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ib) Ordinary Residuals

The use of ordinary least-squares residuals to infer departures
from classical assumptions is not new. They have long been used to
detect autocorrelation, heteroscedasticity and non-normality of the
errors. The correspondence between e and u is not invertable and
often large outliers among the true errors can be reflected in
residuals of modest size. This happens as the squared-error criterion

veighs extreme values heavily.
ic) Studentized Residuals

The studentization of the least-squares residuals is a
transformation to obtain a set of residuals with egual variances. The
term "studentization” was first used by Margolin (1977). David (1981)
makes a further distinction between “internal studentization" and
"external studontization'&vhich has been explored by Cook and woisbergm
(1982). The studnm:rizcd residual along wvith a scaled version called
RSTUDENT introduced by Belsley et al. (1980) are defined below: /

studentized residual or Ti

Ti =« o /svi-uli
RSTUDENT or Tit

N\

Ti* = & /5(i) vi-Mil
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vith S being the estimated standard error of the whole model, while
§(i) is the estimated standard error with the ith row having been
deleted. Other studies on the trangsformaton of residuals are
Srikantan (1961), Anscombe and Tukey.(1963), Ellenberg (1973;1976) and
Beckman and Trusell (1974). Welsch (1981) discusses the computional
aspect of this and other diagnostics. Some non—graphic#l techniques
using tables of criticgl values to test for outliers have been
considered by Cook and Weisberg (1982), Stefansky (1972), Lund (1975),
Prescott (1975), Miller (1966) and Weisberg (1980).

id) Diagnostics By Deletion

A large number of numerical diagnostics aimed at detecting
outliers that have an unwarranted influence on the estimated
coefficients have recently been developed. All of these use as their
building-block Ti and Mii. The books by Cook and Weisberg (1982) and
Belsley et al.(1980) have studied most of these techniques. It seems
appropriate that wve develop one such diagnostic technique as an
illustratién. A succinct summarization of these row deletion
diagnostics is provided by Hocking (1983). .

, The difference in the B coefficients caused by the deletion of

the ith rov is the measure called DFBETA by Belsley et al. (1980) and

is defined as;
~ ” N |
DFBETA = B - B(i) = (x'x)x; e;/ 1-Mii

-

vhere x;, is the ith row of the X matrix. B(i) denotes an estimate of
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B wheh the ith row has been deleted. A scaled version of DFBETA
called DFBETAS is also w introduced with the suggestion that
observations are influential if the absolute value of DFBETAS exceeds
2// T.

Other diagnostic summaries in this ;$tegory are the COVRATIO, and
DIFFITS considered by Belsley et al. (1980), the Andrews and Pregibon
(1978) APi statistic, the Cook (1977) Di statistic and the Wilks
(1963) A statistic. These and other multiple row diagnostics have
been discussed in Belsley et al.(1980). Other interesting papers
include Draper and John (1981) on the comparison between APi and Di:
Biggm (1977) and Welsch and Peters (1978) on multiple row diagnostics,
Velleman and Welsch (198l1) and Velleman and Hoaglin (1980) on
computational aspect of these diagnostics. Other recommended pape;;

are Dempster and Gasko (1981), Brady and Hawkins (1982), Coleman

(1977) and Welsch and Kuh (1977).

ie) Graphical Diagnostics

Graphical plots have long been used to identify violations of the
classical assumptions. The standard plot of Y, against é, generally
diagnoses nonlinearity, autocorrelation and heteroscedasticity.
However, in the multivariate case, these plots often fail to detelt
violations.  Recently various other.plots have been congidered in
providing better diagnosis. The qse' of studentized residual time and

probability plots have been favoured by Andrews and Pregibon (1978),

"
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Behnken and Draper (1972) and Belsley et al. (1980) in detecting
outlying data points and violations of our assumptions. The wuse of
"partial-regression leverage plots" to help decide if the inclusion of
a new variable enters linearly into a model and provide important
information on the effects of outlying data points has gained
considerable popularity with statisticians., Cook and Weisberg have
called these plots "added variable plots". The use of these plots
have been demonstrated by Belsley et al. (1980), Draper and _ Smith
(1981), Anscombe (1967), Mosteller and Tukey (1977), Weisberg (1980)
and Velleman and Welsch (1981). Two closely related plots serving the
same purpose are the "partial residual plots" as indicated by Atkinson
(1981,1982), and "residual plus component plots™ as noted by Wood
(1973) and Larson and McCleary (1972). The use of "probability plots”
to check if the distribution of the error is normal is an important
diagnostic tool. The shape of the probability plot will depend on the
difference between the assumed distribution (in our case normal) and
the sample distribution. If the sample distribution is short tailed
and we assumed a normal the probability plot will tend to be S-shaped.
A long tailed sample distribution on the other hand will give wus an
elongated S—-shaped plot. Skewed sample distributions usually lead to
a J-shaped normal probability plot. These Plots also can be used to
detect outliers in a particular sample. However, the proper use of
probability plots does require some practice. A good starting point
would be the training plots provided by Daniel and Wood (1980) and
Daniel (1976). The use of probability plots have been discussed by

T Aol e b A
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Draper and Smith (1980), 2ahn (1975a,b), Andrews and Tukey (1973),
Daniel (1959), Sparks (1970), Wilk and Gnanadesikan (1968), Belsley et
al. (1980), Atkinson (1982) and Mallows (1982). A summary statistic
for a probability plot has been provided by Shapiro and Francia (1972)
and is further discussed by Weisberg and Bingham (1975). Also see
Cook and Weisberg again.

Today numerous other plots are available. The techniques
associated with exploratory data analysis (EDA) are described in Tukey
(1977), Mosteller and Tukey (1977) and McNeil (1977). The Analysis
Center at the Wharton School has prepared an extensive collection of
programs designed for interactive analysis of data using EDA
techniques. The package enables the analyst to obtain Box andWhisker
plots, stem—and leaf plots, comparison box plots, and diagnostic plot
for nonadditivity. (See Stein (n.d.) for more information.) Also see
Anscombe (1967), Behnken and Draper (1972), Andrews(1972), Mallows
(1982), Pasternack and Liuzzi (1965) for further discussions on

plotting techniques.
ii) Transformations

The transformation of data is sometimes required so that our
model has a constant error variance, approximately normal errors and a
meaningful structure, The family of “power transformations” of the
response variable was first studied by Box and Cox (1964). They

(
worked with a parametric family of transformations from ¥y to y*),

© ede
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vhere the parameter A defined a particular transformation. They

considered the following tvo examples:

(») (y - 1)/a (x¢0)

b4 = for y>0
ln y (>»= 0)

and

Al
(_L.h) ((y +>) -1)/x, (A4 0)
b 4 = for y +2>0

1n (y + ) (M= 0)

\

Cook and Weisberg (1982) have a good generalization on this Box-Cox
technique. More methods for assessing the need to transform the
responses are provided by Atkinson (1973,1982) and Andrews (1971).
They cite methods that are based on predictor variables developed from
the original data set or “constructed variables”. Their msethods
provide quick and efficient diagnostics. Papers by Draper and Hunter
(1969) and Hill (1966) develop graphical techniques that help assess
the need for a transformation. Alternatives to the Box-Cox family are
modulus and folded power transformations suggested by John and Draper
(1980) and Mosteller and Tukey (1977). These prove superior under
certain conditions vhich have been outlined by Cook and Weisberg

(1982). Generalized versions of the Box-Cox transformations have been

—
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considered by Bickel and Doksum (1981), Carroll (1980), Carroll and
Ruppert ({981) and Hinkley (1975).

The transformation of variables is not just limited to that of
transforning the responses., Box and Tidwell (1962) proposed a
procedure to select transformations of the carriers. They assume that

the response y can be written in the form;

K
(3
Y, 'Z B, ‘ij')* Ui
j=1

( -
vhere xi;’)is the transformation of the jth carrier. Their method has
been further explored in papers by Dolby (19636 and Box and Draper
(1982).

iii) Recursive Residuals
}In economic analyses, the gquestion about the stability of
regression relationship over time is generally an important one. Two
important approaches that test this stability are that of Chow (1960)
and the “Cusum” and "Cusum squares” tests proposed by ‘lrovn, Durbin
and Bvans (1975), a preliminary account of which is given by Brown and
Durbin (1969). This latter test is useful vhen departures of the B's
from constancy are charactarized by many jumps with unknown
step-points. The coupututi&n of this test can be carried out using
the TIMVAR statistical package, a guide to which is proviécd by Bvans
(1973). The rth recursive residual is defined as

I
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Rr = For r=k+l,....,T

(1+ x(x X, )x,)

vhere Xr-1 is the data matrix containing all observations until the
(r-1)th time period. The Cusum test examines the plot of

r

Wr-z: Rj /&

against r for r = k+l1,.......,T to check for stability. Brown et al.
propose the use of a pair of lines lying symmetrically above and below
the line Wr = 0 since large departures of Wr from E (Wr) = 0 indicates
instability. .

The use of recursive residuals is. not limited to stability
testing. Hadayat and Robson (1970) and Harvey and Phillips (1974) use
these residuals to test for heteroscadisticity and autocorrelation.
Other papers on the /subject are Parebrother (1976) and Schveder
(1976).

iv) Jackknifing and Pseudo-Replication

The technique referred to as the jackknife can be traced back to
Quenouille (1949,1956). This technigque assumes that bias and sample
size are reciprocally related, wvith the bias being represented by a
pover series B + (1/T) =+ (1/?”)....., . Here T is the sample lize.\
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The j-ckkqitinq technique gives us an estimate for the va:iaqco of B
as noted by Tukey (1958), Hinkley (1977a) and Efron and Stein (1981).
It also provides us with bias reduction technigques as stressed by
Schucany et al. (1971) and Hinkley (1978). Miller (1974) is a good
survey of jackknifing. Other recent papers on the basic theory
include Finifter (1972), BEfron (1979a,b), Fox et al. (1979), Duncan
(1978) &n%v Mosteller and Tukey (1968). To calculate the "exact
jackknite”, we begin by splitting our sample y ......y, into g groups
each of size h. Let B be the least-squares estimator based on the
complete sample. Let 3(i) be the corresponding estimator based on the
reduced sample of size (g-1)h where the ith group of observations has
been left out. The consequence of generating 3(1) with this method is
that the g estimates B(i) are usually correlated. These estimates can

be made approximately independent by a linesr transformation to obtain
"Pseudo~values” by the formulas

B(i) =g B - ((g-1) B(1)) Por i » 1.v..s,ge

The mean of these pseudo-values is the approximately unbiased
jackknife estimate with reduction in bias by (1/T) snd calculated as

9
3. (Z ¥i) g
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The jackknife estimate of variance of B can now easily be computed as

~
TG} - (/g (DF)
S = g-1

D) ROBUST ESTIMATION

Robust estimators were developed 80 as to provide desired
protection against departures from the Gaussian framewvork by imposing
relatively less weight on outlying data points which have an
unwarranted effects on least-sguare estimates. Some of these
consequences have been discussed in Finney (1974), Pox (1972), Wilks
(1963) and Barnett and Lewis (1978). Developments in robust
estimation can be categorized into 5 distinct groups, and labelled M,
R, L, Lp and adaptive. Here ve discuss their basic differences and

provide the necessary references.

*i) M-Estimation

M estimators are a shorthand for maximum likelihood type

estimators. Given the usual linear model a robust estimate of B
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is obtained by minimizing

" ,
}E: PM(y ~= B)/& )
iml

vhere » is a suitably selected loss function and & is a robust
scale estimate that may be determined previously. A large number of
alternative loss functions have been suggested for use by different
authors. Huber (1964) suggested that we use for our robust estimator
the maximum likelihood estimator of the location parameter associated
vith a density that is like a normal in the middle, but a doubic
exponential in the tails. His » function is given by,

v

sle) = "/ 2, le] < &
' wk |e| - /2, |e] > k

The Princeton study undertaken by Andrews et al. (1913; analysed
the Huber p function considering wvarious alternative k values.
Further references are Andrews (1974), Huber (1972,1973), Anscombe
(1967) and Bickel (1975). Clearly the choice of 7 is an important

‘one and this choice depends on the type of distribution one assumes

likely for the errors. A choice of /fle)= /2 + ¢ (the normal loss

function) will lead to least- squares estimates. Other loss functions

L
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uide- mgqutd by Nampel: (1973), Aundvews (1974), Hiidch and Talwar
(1975). Applications gf some of these are given by Denby and Larsen
(1977) and Mallows (1979). Hogg (1977,1979) are appropriate review

papers.

ii) R-Estimation

R estimators are also a wodification of the least-square

procedure. In least—-squares ve minimize

. T _
F -
E (9; - x; B)
im]

Nov we denote the rank of (y,- x;B) by Ri, vhich is & function of B,.

" and then minimize

—

. Y g-uymm

- is1
Different generalisations of the choice of Ri lead to different R
estimates. Common choices are the Wilcoxon and Median scores. Other
modifications of R estimates have been discussed by Hodges and Lehmann
(1963), Wagman and Carroll (1977), Hettmansperger and McKean (1977),
Jaeckel (1972), Jureckova (1971) and Pglicollo (1876).

6
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iii) L-Bstimation

Estimates derived Dby taking linear conbinations\ of order
statistics are called L estimators. Examples of L estimators are
sample median, trimmed mean and veighted averages, Some common
estimators in this category are the "Gastwirth estimator”, by
Gastwirth (1966), which is a weighted average of the 33rd, 50th and
66th percentiles with respective weights of .3,.4, and .3. Other w;ll
known L. estimates are provided by Tukey (1962) and Jaeckel (1971a).
These and otg,r L estimates have.bosn discussed by Chernoff et al.
(1967) and Andrews et al. (1972).

iv) Lp-Bstimation

Lp estimation requires solving the problem of minimizing

T P
}E: ly -x B| for various fixed P
iwl

With P equal to 1 ve have the Ll estimator which has been referred to
(in the 1literature) by variety of names. Common among these are;

minimum or least sum of absolute errors (MSAE,LSAE), minimum or least

absolute deviations (MAD,LAD), minimum absolute errors _ (MAE), least

absolute value (LAE) and least absolute residual (LAR). Use of the

(>4
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double exponential function within the M estimation framework with
?(e) given by |e| + c yields none other than our L1 estimator.

When P equals 2 we have least-squares. cinarison of estimstes

. obtained by estimating P above and below 2 will provide knovledge of

unvarranted leverage. When we increase the value of P above 2 we put
greater weight on latggr residuals while as we fix values of P below 2
we reduce ;he veight on large tesiduals. Thus large changes in
estimated coefficients for a range of values of P indicate outliers.
Ll estimates cali be solved iteratively using generalized least-squares
algorithms. The idea being straight-forward. Obtain an initial
estimate of 8. One choice could be least-squares. Then consider the

weight chosen as vi = (y; - x;: B) and then minimize by choice of b

T 2

2 w;. |y -x; bj

i=1

1f continued iteratively, this. procedure gives us the L1 estimate.
Iteration is usually stopped wvhen cha'ngn in the ntiﬁtnd cosfficents |
are small. Alternatively ve could choose other weights. Papers on Lp
estimaetion are by Taylor (1974), Bassett (1978), Hill (1977),Marle and

- Spath (1974), Schlossmacher (1973) and Holland and Welsch (1977) who

further describe this technigque. The bibliographies by Gentle (1977)
and Kennedy and Gentle (1980) should also be consulted.
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v) Adaptive Robust Estimators
<N

Hogg (1974) suggests ve select our robust estimation procedure
based on obscf;i;g the sample data. In our discussion so far on
robust estimation, selection of a f function like Huber's choice and
the level of trimming were fixed by prior considerations before the
sample was observed. Adaptive procedures provide several selection
criterion that help us better select the appropriate robust procedure
after a sample has been assembled. Jaeckel (1971b) suggests that the
level of trimming (7) be selected so as to minimize the standard error
of m(7), the 7~trimmed mean. Hogg (1974) further suggests some test
statistics that help determine the choice of trimming based on the
sample kurtosis and two statistics called Q and Ql, which use order
statistics of the sample to identify tail length. These adaptive
robust estimators may give better results than non-adaptive approaches
as indicated by the Monte-Carlo studies undertaken by Wagman and
Carroll (1977). The Princeton study revieved some of these adaptive
versions but failed to consider the possibility of short tailed
distributions. Hogg (1974) sheds some light on the use of adaptive
versions in this context too. Papers by Takeuchi (1969,1971), Von
Eeden (1970) and Shorack (1971) provide further research on adaptive

robust estimators.
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Concluding Remarks

Finally as suggested by developments in this chapter, econometric
analysis is an iterative process in search of a useful model with the
number of iterations depending on our satisfaction with the assumed
model. As Snee (1983,p.232) interestingly puts it.

"Models are alwvays wrong because we will never
know the true state of nature. The relevant
Question is, is the model useful? Practioners
and methodology developers alike should keep
this view in mind as they evaluate the results
of their analysis and statistical research”.

Here we have outlined some of the available best-practice
technologies that could  help us evaluate the correctness and
consistenci of our model and data. Before ending, we would 1like to
draw attention to the ever increasing support from statisticians in
favour of ~robust estimation technologies. Criticism employing
diagnostic checks may be insufficient because some discrepancies are
not easily detectable. It is on these grounds' SO many argue,
suggesting that when developing models, one should robustify them
against such contingencies. This suggestion does not in any way
diminish the important role played by criticism. We must remember that
criticism and robustness are not substitutes but complementary in

nature. Both tools should be considered in practice.
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CHAPTER THREE ‘

Survey of Journals for use of Best—-Practice (1974-1982)

The primary goal of this study is to explore the assimilation of
best-practice statistical techniques in the empirical research of
economists. Our approach 1is a siﬁple one. We consider the contents
of 15 leading economic and statistical journals in the light of the
brief outline of statistical techniques that was provided in Chapter
2. The choice of journals to be appraised in this exploration was ‘
influenced by our own ranking of them by prestige. It was also
affected by the rankings given by Hawkins et al. (1973), Oster (1980)
and others. The 15 journals are listed in Table 1, which indicates
the mnemonic coding that we have followed in the two later tables
presenting the results of our survey. In the first column of Table 1,
our basic ranking is given. We differentiate between economic (E) and
statistical (S) journals and suggest two levels of quality. The

superior economic journals are the Quarterly Journal of Economics, the-

Journal of Political Economy, the American Economic Review, the

Review of Economic Studies and Econometrica. The second group of

economic journals includes the Journal of Business, the

Journal of Monetary Economics, the European Economic Review, the

Journal of Money, Credit and Banking,the Journal of Econometrics, and

the Review of Economics and Statistics. These 11 economic journals

seem to cover most of the areas of economics. We have not tried to

rank journals within the two groups but such rankings re given by
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Hawkins et al. and Oster. Among 8 journals identified by Oster, the
highest prestige and familiarity ratings were to be found in the
orders that are recorded in Table 2. Oster only considered American
publications. Her 1lists give strong support for our choice of
superior journals. Similar support comes from the rankings of Hawkins
et al. that are presented in Table 3. Our list does not include the

Economic Journal, Bconomica and the Journal of Economic Literature

wvhich are recorded as in the top 10 according to their prestige by
Havkins et al. The list also does not include the

Harvard Buisiness Review, the Oxford Economic Papers,the

Journal of Finance or the Southern Economic Journal which scored

highly in terms of familiarity. These omissions, taken as a whole,
are likely to lead to an exaggeration of best-practice use especially
vhen we recognize the alternative inclusion of newer journals such as

the Journal of Monetary Economics,the Buropean Economic Review and the

Journal of Econometrics with wvhich Hawkins et al. were unfamiliar a

decade ago. The choice of the Journal of the American Statistical

Association and the three journals of the Royal Statistical Society

does not seem to call for much explanation.

In the final column of Table 1, we provide an amended grouping
that might be appropriate if the incidence of best-practice
statistical techniques in papers were to be given high weight in
determining the quality of journals. A justification of potential
changes in ranking will be given later. Some of these changes may be

surprising. Among them wvas the need, as ve sav it, to introduce a



47
further category of E3.

Our inquiry surveyed the contents of the 15 journils throughout
the period extending from 1974 to 1982, searching for evidence of
usage of best-practice statistical technigues by economists. Results
of this survey are described in Tables 4 and 5. From the background
that was described in Chapter 2, we took a basic collection of 36
statistical technigues. These wvere assigned to 8 broad categories
with headings of (1) robust estimators, (2) diagnostic plots, (3)
diagnostic summary statistics, (4) equation selection, (5) recursive
residuals, (6) transformations, (7) jackknifing, and (8)
multicollinearity and imprecise estimates. The techniques are listed
on the left hand side of Table 4. Within the main body of this table,
we use af "X" to indicate vhether a specific technigue vas used or
suggested for use in an article. The code for the journal, its year,
and the initial page of each paper is indicated at the top of the
table for reference. Two illustrations can establish how the contents
of the table should be read. The first journal in our list, the

Quarterly Journal of Bconomics, contains .only 4 papers that use

best-practice methods during 1974-1982. One paper was published in
1974 and this i;:volved the generalized Box-Cox technique. The same
method wvas also used in a paper published in the journal during 1977.
In two other papers during the reference period, tvo other
best-practice wmethods (Box-Cox transformation, recursive residuals)

were found. Turning to our eleventh journal, Econometrica, ve find

isolated papers in 1974, 1975, 1976, 1977 (two),1978 (two), 1979,
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1980, 1981 and 1982 (two) that use such methods. One paper in the

1978 volume (beginning at page 33) uses robust estimators including
M-, L- and Lp- methods.

Although the paucity of entries in Table 4 speaks for itself, wve

felt that a list of findings might be useful. We turn to these now.

R

Pindings:

1) From 1974 to 1982, the general trend in assimilation of
best-practice statistical techniques is upward but the .relative change
in ‘the extent of use betveen 1974 and 1982 is not very large. This
view is suypported by the tendencies revealed in the entries of Table
5, vhich record the yearly incidence of usage for the 36 techniques.
The bottom rov of Table 5 indicates an incrpase from 20 cases of use
in 1974 to 33 cases in 1982. Taking 3-year averages for 1974-1976 and
1980-1982, we detect about a 30 percent increase.

2) The entries in the bottom row of Table 5 should also be
linked to the number of journals. It is clear that, even in the
"best” year, the incidence of papers involving any of the 36
statistical techniqQues is about two papers per journal per year.

3) Table 5 also providesa summary of the use of individual
technigues in its final column. It is clear that there 1is a
considerable range of individual entries here. Recursive residuals

and Box-Cox transformations are most in }vidence vhereas many other
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technigues are almost never cited. The individual entries, however,
should also be accumulated to form block totals. These are &5, 19,
10, 33, 28, 37, 5 and 43 for the 8 groups.

4) Robust estimation technigques seem to have gained some ground
through the period. Our survey found 45 instances of their use with
M-estimates more popular than the other ones. There is little
discernible trend toward increased usage, however, if we ignore the
first two years 1974-1975. Two-thirds of the cited instances are
found in the four statistical journals of our list. This leaves the
economic journals to share an average of just a little more than one
paper each in 9 years.

5) Precursors of the Chow test for structural stability can be
traced back about 35 years. Recursive residuals provide a more recent
alternative. They are simple to explore and represent a
straightforvard extension of the Chow test. We found 28 instances of
the use of recursive residuals, about 3 a year on average. This is
surprising in view of the general availability of the TIMVAR software
package. Indeed, although one of the more frequently used techniques
in our collection, its assimilation into economics is still inadequate
considering the numerous publications that persist wvith the Chov test.

6) The use of the jackknife and pseudo-replication seems to have
eluded the econoamic évo-unity totally. We found only 5 instances of
the use of the jackknife, of vhich only one was in an economic
journal. This neglect fits with the predominance of significance

testing and the general introduction of normality by economists even
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vhen the range of economic variables is obviously constrained (so as
to prelude normality). It also fits with txc neglect of plots of
residuals, pertial regression leverage elements and partial residuals.
These members of our second group of statistical technigques are seldom
found in economic journals.

7) Multicollinearity is often cited both in econometric
textbooks and in actual applied research as a major problem affecting
estimation by introducing bias and reducing efficiency. Yet the use
of the available best-practice techniques to detect multicollinearity
and to make appropriate adjustments is rare among economists. 46
instances of use wvere found. It may be that there is growing
acceptability of Dbiased estimates among statisticians and
econometricians but there is not basis for this viev in our data for
incidence. We can detect increased use of ridge regression but a
total of 10 instances in the last 5 years of our sample is clearly
insufficient to justify optimisa vi#h the rate of assimilation.

8) Among the techniques that we considered, the transformations
seem to have been assimilated most. Barly budget studies dealing with
consumption expenditures discussed the choice of mathematical forms
for the variables that they involved in fitted equations. The linesr,
logarithmic ang semi-logarithmic forms are familiar to readers of this
early litctaghrc. Since Box and Cox suggested their family of
povor-sciios transformations over two decades ago, wve should expect
them to be a common feature of economic models. Our results !in&

evidence that use of the Box-Cox transforsmstions is present in the
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journals withh an average of .about 4 papers per year involving such
transformations. However, the poor levels of }ncidence in 1979 and
1981 suggest that assimilation by economists has yet to advance still
further.

9) Tvo of the remaining groups of techniques are diagnostic
summary statistics and equation selection methods. The first of these
may be too "new" with more rapid assinilation to be expected only as
the efforts of Cook and Weisberg, Andrews and others become better
recognized, Our survey ends in the year of publication of the
textbook by Cook and Weisberg, which could serve as a major instrument
in the spread of these diagnostic statistics and the acceptance of
"criticism" as an integral part of the research process. The second
group is, we suspect, used but not reported. It is very unlikely that
many economists have not used stepwise regression as imbedded in
softvare packages. Stepwise and stagevise osethods may be hidden from
our sight because the users of softvare are unavare of the
implications of the choices that are presented to them in software
manuals.

10) Our survey of available graphical diagnostics provi&«l us
with further evidence on the limited assil‘ilntion of best-practice
into econometric analysis. Of the 5 technigues surveyed, normal
probability plots recorded the largest incidence of use(10), while the
other 4 have 1lowv rates of usage. Considering the important
information provided by these plots one would expect a far greater

rate of assimilation than that indicated by our survey. Again it is
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likely that ﬂecononists,in recent ycar:,“ have used some plottind
technigques but have not reported this practice in their papers.

1l1) Table 5 summarizes the incidence of best-practice techniques
in the 11 economic and the 4 statistical journals. The evidence
provided by this table points conclusively to the fact that the
Qquality of empirical research undertaken by economists is one of
senility. The assimilation of bcst-pnctién into economics is
negligable and the level of statistical sophistication embarrassingly
low. Although some techniques like recursive residuals and the Box-Cox
pover transformations have gained relatively higher rates of
assimilation - than others, the overall situation is one that is
disturbingly slov. PFinally our results clearly point out that the gap
betveen theory and practice is alarmingly large and economists must do
something sbout this discrepancy if they vant to sustain credibility.

12) In the final column of Table 1, wve provide an amended
ranking. based on incidence of " use of best-practice statistical
techniques in thc‘ 15 journals surveyed. These rankings have been
calculated giving high weight to the number of times best-practice
statistical techniques vere used in each journal. The scheme used in
this ranking is as follows; a rank of 3 was introduced for joumali
having less than 6 incidence of use, a rank of 2 wvas given to journals
having 6 to 10 incidence ‘ot use, vhile journals having more than 10
incidences have been given a top ranking of 1. Por example, the

Quarterly Journal of Bconomicg which is the first journsl surveyed in
table ¢ has in 9 years published only 4 articles using those

.
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best-practice statistical techniqugl considered by our survey. Based
on this we have given this cconoifél journal a rank of 35 in the final
column of table 1. We strongly recommend that this survey ranking be
considered vhen assessing the Quality of the various publications

surveyed.

~
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El
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El
B2
El
B2
s2
Sl
sl

TABLE ONE

Mngmonic Code Por Journals

JOURNAL cone SURVEY
N RANKING
p)
Quarteély Journal of ECONOBICS .o.ceeveeaiseas  Jl E3
Journal of Political BcONomy .........ecccevee J2 Bl
American Bconomic Review .....ciceccceecccsnae J3 B2
Applied Statistics ....cciceeccvetrcccssnvccnne Jé sl
Journal of Bt;sincu cececcsres s sesseccsssnssins JS B3
Journal of Monetary BcOnoOmICS ...cccevenncence J6 E3
Buropean Bconomic Review ......c.cecccvencssees J7 E3
Journal of Money, Credit and Banking ......... J8 B3
Review of Economic Studies ......cccce00000eee J9 B3
Journal of BcOnNOMEtrics ....cccceceacccecscsce J10 "Bl
BCOnOMEtLrica ..ccccvevcccccrrccsssccascaccsoes Jil Bl
Reviewv of Bconomics and Statistics ........... Jl2 El
Journal of the Royal Statistical Society, Ser.A Jl3 s2
Journal of the Royal Statistical Society, Ser.B Jl¢ sl
Journal of the American Statistical Association. Jl15 sl

54
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TABLE TWO

.. Rankings of Journals by Pfcstige and Familiarity, Oster (1980) '

Prestige: — .

| American Bconomic Reviev (Bl, J3)
Bgononotrica (El, Jll}},

Journal of Political Bconomy (EBl, J2)

Quarterly Journal of Bconomics (Bl, Jl)

Reviev of Economics and Statistics (E2, J12)

International Economic Review

Southern Bconomic Journal

Bconomic InQuiry

Pamiliarity:
American Bconomic Reviev (Bl, J3)
Journal of Political Bconomy (El, J2)
Quarterly Journal of Bconomy (E1l, Jl) /lcononctricn (E1,J11)
Southern ieono.ic Journal
Review of Economics and Statistics (B2, J12)
Bconomic Inquiry

International lcono;ic Revievw

Note: For mnemonics,ser Table 1.
Source: Oster, S§. (1980), "Optimal Order"®, rican NOM viev
Vol. 70' No. 3' J\lﬂ., PP 444-448. r
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\‘:' TABLE THREE

Rankings of Journals by Prestige and Pamiliarity; Hawkins et al. (1973)

Prestige:
l. American Economic Reviev (El, J3)
2. Journal of Political Economy (El, J2)
3. BEconometrica (El, J1l)
4. Quarterly Journal of Bconomics (El, Jl)
6. Review of Economics and Statistics (B2, J12)
9. Review of Economic Studies (E1l, J9)
Journal of the American Statistical Association (S1, J15)
>

21. Journal of Business (E2, J5)
22. Journal of Money, Credit and Banking (B2, J8)

Familiarity:
1. American Bconomic Reviev (El, J3)
2. Journal of Political Bconomy (Bl, J2)
3. Quarterly Journal of Economics (El, Jl)/Bconometrica (E1l,J11)
10. Reviewv of Bconomics and Statistics (E2, J12)

11. Journal of the American Statistical Association(S1,J15)

Note: For mnemonics, see Table 1.
Source: Hawkins, R.G., L.S. Ritter and 1. Walter (1973), “"wWhat

Bconomists Think of Their Journals®™, Journal of Political Economy,
Vol. 70,No. 3, pp. 1017-1032.
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Incidence of Usage, Selected Journals
1974-1982
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CHAPTER POUR

Suggestions for Assimilation of Best-Practice Methods in Economics

Certain areas in economics would obviously benefit from the use
of the best-practice techniqQues outlined in chapter 2. We cannot
point out all circumstances in economics where this use is beneficial.
Hence, discussion should be limited to specific situations in practice
which seem to demand using "best-practice” methods because their

benefits (as compared to traditional approaches) outweigh the usual

increases in complexity and cost. Our discussion encompasses four
1 .

basic areas i) spread and precision, ii) robustness, iii)
multicollinearity and 1iv) criticism. The use of equation selection
and recursive residuals technigques in economics does not require
further justification for assimilation. Since their purpose is

~

straight forward, we can refrain from further discussion.

i) Spread and Precision |

Most econometric work involves using finite sanmu;s to estimate
economic hypothesis and infer their consequences. What economists
very often fail to realize is that finite sample estimates have
infinite variances and therefore inference based on estimates of
sprggd generally provide misleading inferential conclusions. This
realization also carries forward to systems. It is a well known fact

that the commonly used two-stage least sguares estimates have

© e ez

ECTREORC PRV ST Y



73
infinite variances vhen finite samples are involved. We therefore
recommend that economists use robust estimates of sp;gad, obtained by
using the jackknife and pseudoreplication techniques outlined in
chapter 2 to generate confidence intervals using the sample at hand.
The use of jackknife and pseudoreplication techniques 1is not just
limited to obtaining estimates of spread. Often non-normality and
non-symmetry of errors can be checked by a plot of a distribution
generated by pseudoreplication techniques wusing the available sample.
This method also provides the economist with prior knovledge of what

kind of distribution to hypothesize.
ii) Robustness

Bconomic data are often characterized by non-normality. 1In such
situations least-square estimates often lose their attractiveness. Weéd
therefore recommend that robust estimators be considered in all
econometric practice with both least-squares and robust estimates
being computed. A comparison of the two will provide important
information on the distribution of the errors. If the two estimates
obtained differ to a large extent, the practioner is at once warned of
large leverage. Robustification does npot guarantee optimality.

Instead these estimators try to ensure thaé\they will be fairly good

over a wvide range of possible distributions likely to be encountered '

in practice. Bconomists cannot under any pretext rule out the

existende of short and long tailed characterization of their errors.
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This is clearly so wvhen economic variables like consumption,
investment and participation in the labour force are of a constrained
range making it impossible for the errors to be adequately
characterized by normality. This fact clearly sheds some light on the
Quality of estimates for consumption and i1nvestment functions that are
obtained by economists using the least-squares method. Finally, if in
doubt as to what distribution for the error is to be specified the
prudent course would be to use robust technigues at the cost of a

small premium.

iii) Multicollinearity

The problem of collinear carriers has long plagued econometric
estimation. This becomes even more acute wvhen the practioner is not
avare of the problem or the degree of damage caused by its presence.
We therefore, strongly recommend that economists put the collinearity
diagnostics provided by Belsley et al. into common practice. The
variance decomposition of the estimated parameters into a sum of terms
each associated with a singular value is an excellent tool. It
provides the economist with an accurate assessment as to the degree
of collinearity and the potential damage to his estimates,. The
obvious solution for estimating parameters with collinear carriers is
to use the biased estimation techniques outlined in chapter 2.
Economists might also consider extending these biased techniques to

systems vhich could lead to further theoretical developments.

f
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1v) Cri1tici1sm

Econometric research undertaken by economisté 18 a dynamic
process 1nvolving a nymber of 1iterations, a fact clearly brought out
by our discussion 1in the early part of chapter 2. Static analysis has
no part to play, since a great deal of important 1nformation is always
obtained through this dynamic process. Part of this dynamic process
involves the important role played by criticism vhich provides an
effective mechanism by which to check if the initially hyphothesised
assumpt ions are in fact true. The role of diagnostics using available
best-practice plots and residual analysis to detect outliers should be
routine practice in all econometric work. Economists should also be
aware of the pre-test bias affecting interpretation of significance
test routinely undertaken. Finally economists must incorporate both
criticism and robustification in :11 empirical work since criticism
performed may not always provide an effective check for model
performance, We, therefore, recommend robustification to support
analysis with potential failures of criticism,

Ultimately, economists must remember that use of available
best-practice is in no way limited to our findings which consider some
general areas of possible use. The potential for "best-practice”
methods in economic research is vast and a rapid assimilation of these

technologies will help foster more credible economic research.
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