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ABSTRACT 

People are efficient when they make decisions under uncertainty, even when their 
decisions have long-term ramifications, or when their knowledge and their perception 
of the environment are uncertain. We are able to experiment with the environment 
and learn, improving our behavior as experience is gathered. Most of the problems 
we face in real life are of that kind, and most of the problems that an automated 
agent would face in robotics too. 

Our goal is to build Artificial Intelligence algorithms able to reproduce the rea­
soning of humans for these complex problems. We use the Reinforcement Learning 
framework, which allows to learn optimal behaviors in dynamic environments. More 
precisely, we adapt Partially-Observable Markov Decision Processes (POMDPs) to 
environments that are partially known. 

We take inspiration from the field of Active Learning : we assume the existence of 
an oracle, who can, during a short learning phase, provide the agent with additional 
information about its environment. The agent actively learns everything that is useful 
in the environment, with a minimum use of the oracle. 

After reviewing existing methods for solving learning problems in partially ob­
servable environments, we expose a theoretical active learning setup. We propose an 
algorithm, MEDUSA, and show theoretical and empirical proofs of performance for 
it. 



iii 

, , 
RESUME 

Les humains sont efficaces lorsqu'ils prennent des décisions en présence d'incertitude, 
y compris dans les cas où leurs actions peuvent avoir des conséquences à long terme, 
ou lorsque leur connaissance et leur perception de leur environnement est partielle. 
Nous sommes capables d'expérimenter avec notre environnement et d'apprendre. La 
plupart des problèmes auxquels l'on fait face dans la vie sont de ce type, et pour un 
agent automatisé, la problématique est souvent rencontrée en robotique. 

Notre but est de construire des algorithmes d'Intelligence Artificielle capables de 
reproduire le raisonnement des humains pour ce type de situation. Pour cela nous util­
isons l'Apprentissage par Renforcement, qui permet d'apprendre des comportements 
optimaux dans les environnements dynamiques, et plus précisément, nous utilisons 
les Processus Décisionnels de Markov Partiellement Observables (PDM-POs) et les 
adaptons aux environnements incertains. 

Nous utilisons les techniques d'Apprentissage Actif: nous faisons l'hypothèse qu'il 
existe un oracle capable, pendant une courte période d'apprentissage, de fournir sur 
demande de l'information additionnelle à l'agent. L'agent apprend activement tous les 
paramètres utiles de son environnement en utilisant un nombre minimal de requêtes. 

Nous présentons les méthodes qui existent pour résoudre les problèmes d'apprentissage 
dans les environnements non-stationnaires, puis nous expliquons comment nous en­
visageons la résolution de la problématique d'un point de vue théorique. Nous pro­
posons ensuite un algorithme, MEDUSA, et fournissons des preuves théoriques et 
expérimentales de sa performance. 
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Chapter 1 

Introduction 

Making an optimal decision is a very complex process. Rumans are usually good 

at this. But from a theoretical point of view the problem can be very hard, and 

finding an automated way to make optimal decisions can be challenging. The main 

difficulties encountered when someone makes a decision are the following: 

1. Complex goals. It can be hard to specify what exactly is an optimal decision. 

The goal can be to maximize immediate gain, long-term gain, a combination of 

the two, or to reach a particular state of the environment. 

2. Stochasticity. Actions can have non-deterministic consequences. AlI the pos­

sible outcomes of a given action may need to be considered. 

3. Long-term consequences Actions can have long-term consequences, that 

might not be easy to determine at first thought. A good action in a short-term 

horizon may end up being bad if we don't consider long-term consequences. 

4. Partial Observability The current state of the environment might be only 

partially observed. Actions might need to be taken for the sole purpose of 

1 



CHAPTER 1. INTRODUCTION 2 

bringing more information about the state of the environment and help improve 

future decisions. 

5. Uncertain Environment The knowledge of the environment might be uncom­

piete. Actions might need to be taken for the sole purpose of finding out their 

consequences, so that the model of the environment is improved, and better 

decisions be taken in the future. 

The issue of optimal decision-making has been weil studied in the literature and 

solutions have already been found for these mentioned facts (?). Classical planning 

techniques and Markov Decision Processes (Sutton and Barto, 1998) are among them. 

This thesis considers problems in which ail these points arise at the same time. 

We actually believe that to be effective a decision-maker has to take themall into 

account, as ail of them arise very often in reallife, and can arise with complex robotics 

settings. 

In order to solve this problem we focus on two fields of the literature: the first is 

the field of Partially Obsevable Markov Decision Pro cesses (POMDPs), which allow 

to behave optimally in partially observable environments, and the second is Active 

Learning, which allows to learn optimally in uncertain environments. Our goal is to 

combine them. 

1.1 Active Learning and POMDPs 

Reinforcement Learning (Sutton and Barto, 1998) is a computational approach that 

allows a software agent to learn a way of maximizing its reward by making sequential 

decisions in stochastic dynamic environments which are characterized by a particular 

state at any given time. The Reinforcement Learning field gives a way of choosing 
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actions, called a policy, so that the overall reward is maximized. The agent's policy 

takes into account the stochasticity of the environment's dynamics. 

Within the reinforcement learning field, Partially Observable Markov Deci­

sion Processes (Kaebling et al., 1998) (POMDPs) allow an agent to make optimal 

sequential decisions in partially observable environments. They combine complex 

goals, stochastic effects of actions, long-term consequences of actions and partial ob­

servability of the environment and can pro duce efficient policies. However POMDPs 

cannot give an optimal behavior for cases where the environment is not perfectly 

known. 

On the other hand, the field of Active Learning (Cohn et al., 1996) is able to 

give methods to try the most useful actions from a learning point of view. Given an 

uncertainty model, active learning approaches are able to find the experiment that 

most reduces uncertainty in the mode!. 

Active learning methods usually suppose that perfect information can be obtained, 

and obtaining this information can be difficult in partially observable problems. In 

order to get this information, and ensure that the parameters are learned correctly, 

we need to make an assumption, which is the existence of an oracle. This oracle can 

reveal the hidden state of the POMDP, upon request. 

Using this assumption allows an optimal active learning approach. With it, we 

can guarantee that the parameters of the environment are learned precisely and fast. 

We are able with this setting to make the perfect trade-of between the active learning 

of the environment and its exploitation. However, even if the method would be 

theoretically optimal, it is intractable from a computational point of view. 

In order to correct this, we build an algorithm able to find an approximate solution 

to the problem. This algorithm, called MEDUSA, for "Markovian Exploration 

with Decision based on the Used of SAmples", inspired from the Bayesian Learning 
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techniques, uses combinations of approximate solutions of POMDPs, combined to a 

model of the uncertainty, to find decisions that are good from an exploratory point 

of view, while using the oracle to learn the model of the environment. 

1.2 Thesis Outline 

The outline of our thesis is the following: 

• In Chapter 2, we explain the elements of background material. We explain 

the POMDP framework in detail, we present methods that can be used to act 

optimally and to learn in a POMDP framework. We also present the Active 

Learning field and the Bayesian Learning perspective. 

• In Chapter 3, we explain how we can theoretically combine Active Learning and 

POMDPs, and why it is a very difficult problem to solve exactly. 

• In Chapter 4, we explain the MEDUSA algorithm for Active Learning in POMDPs, 

how it works and intuitive justification of its mechanisms. 

• In Chapter 5, we explain why MEDUSA is guaranteed to converge under certain 

conditions, and we show theoretical properties of the policy it executes in the 

limit. 

• In Chapter 6, we present our experimental results with MEDUSA on different 

problems, from very simple settings to problems inspired from possible robotics 

applications. 

• In Chapter 7, we conc1ude our Thesis by explaining what our contributions are, 

and what would be possible areas of future work. 



Chapter 2 

POMDPs and Learning 

Our work builds on several frameworks and ideas. This chapter describes them in 

detail. Our main basis is the POMDP framework, which allows optimal sequential 

decision-making in partially observable stochastic domains. We show existing meth­

ods to solve and learn POMDPs, and discuss their limitations. Then, we explain 

what are Active Learning and Bayesian Learning. 

2.1 POMDPs 

When an agent is confronted with a decision, there is a number of different alternatives 

(actions) it can choose from. Choosing the best action requires thinking about more 

than just the immediate effects of its actions. The immediate effects are often easy 

to see, but the long term effects are not always as transparent. Sometimes actions 

with poor immediate effects can have better long term ramifications. An gent should 

choose the action that makes the right tradeoffs between the immediate rewards and 

the future gains, to yield the best possible solution. 

5 
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What usually makes this particularly difficult is that there is uncertainty about the 

future. The outcome of certain actions may not be entirely predicable, and sometimes 

one doesn't even know if the action will even matter in the future. 

The state is the way the world currently exists and an action will usually have 

the effect of changing the state of the world. Note that in the POMDP framework, 

we make the Markovian assumption, which states that the state is sufficient 

to summarize everything that happened in the pasto The previous states we went 

through, in a POMDP, need not be considered. 

In a POMDP the state of the world is not perfectly known to the agent. However 

it is partially observed. At each time step, before each decision, the agent obtains an 

observation, which is probabilistically linked to the current state of the world and 

the action that was last done. 

POMDPs are able to model problems so that the process of decision making in 

uncertain environments is formalized. If the problem is modelled as a POMDP, one 

can use algorithms to automatically solve the decision problem. 

2.1.1 Definition 

A POMDP is made of the foIlowing components (Sondik, 1971): 

A set of States S: This set gathers aIl the possible ways the world cou Id be. It 

is usuaIly assumed to be discrete and finite. 

A set of Actions A: The actions are the set of possible alternative choices the 

agent can choose to make at each time step. This set is also assumed to be discrete 

and fini te. 
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A set of observations Z: These are the set of aH the different outputs the agent 

can receive at each time step from the environment. This set is also assumed to be 

discrete and fini te. 

Transition probabilities: 

{P:'s'} = {P(St+l = s'Ist = S,St = a)}, Vs E S,Va E A, Vs' ES 

These parameters describe how the different actions affect the state of the world. In 

a POMDP the effects of an action can be probabilistic: for each statejaction pair 

[s, a], the parameters P:'s' correspond to the probabilities of the state of the world 

resulting in each of the different states s'. We assume that time passes in uniform, 

discrete intervals, at each transition. 

Observation probabilities: 

{O~,z} = {p(Zt = zist = s, at-l = a)}, Vz E Z, Vs E S, Va E A 

These parameters describe how the environment outputs its different observations. 

In a POMDP the observation is linked to the last executed action a and to the 

current state of the world s. For a given statejaction pair [s, a], the probabilities O~,z 

correspond to the probabilities for each of the possible observations z. 

Immediate Rewards: R : S x A x S x Z -+ R This is sorne measure of either the 

cost or the reward an action gives when a certain transition occurs. This is usually a 

function of s,a, s' and z. When the transition [s, al -+ s' occurs and observation z is 

perceived, the immediate reward is equal to R(s, a, s', z). In order to use the resolution 

algorithms, it is usually required that these immediate rewards be positive. However 

if they are negative they can be easily shifted. 

The Discount Factor: 1 E [0; 1] This factor represents the decrease of utility 

wh en a given immediate reward is received at time t + 1 instead of time t. It is an 

indicator of the trade-of between long-term reward and short-term reward. 

The Initial Belief: bo E RIsI. It is the distribution over the possible states of 
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the environment at time O. 

At each time step, the agent is in an unknown state St E S. It chooses and executes 

an action at E A, arrives in an unknown state St+1 ES and observes Zt+1 E Z, which 

is probabilistically linked to StH and at. 

Agents using the POMDP framework to make their decisions usually maintain a 

belief state b E B1 , which is the distribution over the states, taking into account the 

initial belief state bo and the whole history of actions and observations. In order to 

maintain the belief state, we need to do, each time action a is executed and observation 

Z is obtained, a Bayesian update, which has the following equation: (ba,z,b is the 

new belief state and b is the old beHef state): 

(2.1) 

This allows to compute, for a given initial beHef and a given history of actions 

and observations, the current belief bt . 

A policy: 'If : [0; 1]18 1 ~ A is a function that gives for each possible belief state 

the corresponding action. 

To solve a POMDP is to find the policy 'If* that maximizes the return p,defined 

by: 

00 

p(II) = E [I: 'l R(st, at = II(bt ), St + 1, Zt)] 
t=o 

lThe beHef space Bis actually the subset of [Di 1]18 1 where the condition L:l!11 b(i) = 1 is verified. 

b(i) is equal to the probability of the agent being in state i 
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Note that since R is bounded and 1 < 1 the return is bounded. 

The value function in the type of V : [0; 1]181 -+ R associates to a given belief 

state the expected return the agent can have if it follows an optimal policy starting 

in it. Its main property is that for a given horizon length the value function is a 

piecewise-linear convex function over the belief state (Sondik, 1971). 

POMDPs can be used for many different applications, in domains like industry: 

elevator control policies (Crites, 1996), network maintenance (Thiebeaux et al., 1996), 

helicopter control (BagneIl and Schneider, 2001), accounting (Kaplan, 1969)), high­

level decision making in robotics (Simmons and Koenig, 1995; A. Cassandra et al., 

1996; Nourbakhsh et al., 1995), gesture recognition (Darrell and Pentland, 1996), di­

alogue management systems (Roy et al., 2000), medical diagnosis (Hauskrecht, 1997), 

and medical treatment policies (Smallwood et al., 1971). 

For example, in a robotics navigation task, we use the following setting. The state 

of the world is the position and orientation of the robot. The robot itself cannot know 

it directly, since it only has access to its sensors. AlI the possible sens or outputs (laser 

sensors, sonar sensors) become the set of observations. The set of actions is the set 

of aIl the possible control inputs we can give. A positive reward can be associated to 

the robot reaching a given position. 

The POMDP framework can aIlow the robot to infer what its current believed 

position is by considering the sequence of actions and observations it experienced since 

the beginning of the run. Furthermore, an optimal policy in a POMDP framework 

can aIlow the robot to be cautious in its movements, because actions like staying in 

the same place in order to have more precise sensor readings can become optimal. 

Therefore the POMDP framework is very weIl adapted in cases where the sensors 

are not of good quality. It can also solve problems like perception aliasing (in which 

different parts of the environment produce the same observation). 



CHAPTER 2. POMDPS AND LEARNING 10 

We now describe a classical simple POMDP that will be used as an example to 

illustrates our ideas and algorithms. It is the Tiger problem (Kaebling et al., 1998). 

In this problem, we have two doors. Behind one of them we have a tiger and we don't 

know behind which one. The tiger does not move. We can try to listen in order to 

determine behind which door is the tiger, but we're not guaranteed to hear correctly. 

We have a reward of -100 if we open the door with the tiger and + 10 if we open the 

correct one. Each time we open a door the problem resets. 

More formally, the parameters of the Tiger POMDP are the following: 

S = {TigerLeft,TigerRight} 

A = {Listen,OpenLeft,OpenRight} 

Z = {HearLeft,HearRight} 

The parameters of the model are described in Table 2.1. 

The initial belief is {0.5; 0.5}. Each time one of the two "open do or" actions is 

chosen the belief state cornes back to {0.5;0.5p. However, when the Li st en action 

is performed, the belief state is modified. If HearLeft is obtained, according to the 

Bayesian update rule, the belief state becomes {0.85; 0.15} (it is likelier that the state 

is TigerLeft). On the other hand, if HearRight is obtained it is likelier that we are in 

TigerRight. The more we obtain HearLeft the likelier the state TigerLeft is, and it is 

the same for HearRight and TigerRight. The optimal policy actually, whose policy 

graph is shown on Figure 2.1 (taken from (Kaebling et al., 1998)) takes count on 

how many HearLeft and HearRight are obtained. When the difference between the 

counts is greater than 2, we open the corresponding non-tiger door. 

2Because the received observation is uniformly random and the transitions are {O.5j O.5}. 
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Transitions Action Listen Action OpenLeft Action OpenRight 

From \ To TigerLeft TigerRight TigerLeft TigerRight TigerLeft TigerRight 

TigerLeft 1.0 0.0 0.5 0.5 0.5 0.5 

TigerRight 0.0 1.0 0.5 0.5 0.5 0.5 

Observations Action Listen Action OpenLeft Action OpenRight 

State \ Obs. HearLeft HearRight HearLeft HearRight HearLeft HearRight 

Tigerleft 0.85 0.15 0.5 0.5 0.5 0.5 

TigerRight 0.15 0.85 0.5 0.5 0.5 0.5 

Rewards Action Listen Action OpenLeft Action OpenRight 

Tigerleft -1 -100 +10 

TigerRight -1 +10 -100 

Table 2.1: Parameters of the Tiger problem 

IR 

Figure 2.1: The optimal policy for the Tiger Problem. 
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2.1.2 Solving POMDPs 

Finding the exact solution in an infinite horizon POMDP is very costly, but many 

methods can find approximate solutions. We distinguish three kinds. Heuristic meth­

ods (Cassandra, 1998; Roy and Thrun, 1999) are fast methods that focus on solving 

the fully-observable problem and then using heuristics to make the decision. They are 

very fast, but completely fail in certain cases; in particular, they don't consider the 

effect an action has on the precision of the knowledge. Value-based methods (Kae­

bling et al., 1998), which are more interesting, compute an exact or approximate value 

function in order to determine the policy. They are intractable on big problems when 

exact, and suboptimal when approximate. Policy search methods (Ng and Jordan, 

2000), on the other hand, search through the policy space without computing values. 

They give near-optimal policies fast, but necessitate a prior expression of the optimal 

policy. 

Value-based methods Most methods to solve POMDPs estimate the value func­

tion over the belief state. 

For a given horizon length the value function is a piecewise-linear convex function 

over the belief state (Sondik, 1971), which is therefore usually represented as a set of 

hyperplanes H = {Hj}. Each hyperplane is represented as a vector Hj of dimension 

ISI such that Hj(b) = L:i b(i)Hj(i) = b . Hj. The value at a given belief state point is 

equal to the value on the highest hyper-plane. 

(2.2) 

Note that each hyperplane is also associated with an action. So the optimal 

policy associated to a given value function is to execute the action corresponding to 

the highest hyperplane in the current beHef point. 
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When we initialize the algorithm, we build lAI hyperplanes, each hyperplane being 

associated to one of the actions: hyperplane Hi is such that its value in the parts of 

the state space where astate is certain it is equal to the expectation of the immediate 

reward associated to action ai for that state. 

Va E {1 .. ·IAI}Ha(i) = 'E 'E P:'s,O~',zR(a, Si, z, S') (2.3) 
zEZ s'ES 

Then at each time step we consider a finite number of belief points, which are 

usually a representative set of the belief points that can be reached. For each of these, 

we consider, for each action-observation pair associated with a non-zero probability, 

the associated resulting beHef states, and see what the current value is for this state 

(as we said before, this value is equal to the maximum value over all the different 

hyperplanes. Then we add this value, multiplied by the discount factor, to the value of 

the point we were considering. To obtain the new value for our point for a given action, 

we simply do the weighted sum over the possible observations of these resulting action­

observation values. The values are weighted by the probability of each observation. 

Then, to finally find the value of our belief point, we pick the value of the best action, 

which becomes the action associated to the hyperplane that goes through our point. 

The value update equation is the following: 

vneW(b)=max~ ~ b(s)P:s,O~'z[R(a,s,z,s')+'YVold(bazb)l (2.4) 
aEA ~ L..J " ' , zEZ s,S'ES2 

Here, ba,z,b is defined according to Equation 2.1. 

Using Equation 2.4 for every belief point allows to find the new value function. 

Usually, algorithm prefer to manipulate directly hyperplane vectors. The setup is 

usually the following: The intermediate hyperplane sets ra,o are computed: 
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Va E AVz E Z ra,o = {r L P:'s,O~',zHj(s'), VHj EH} (2.5) 
s'ES 

The new set of hyperplane becomes: 

Va E A H new = UaEA[R(·, a) + ra,ol,j EI7 r a,02,j ..• ra,olzIJ] (2.6) 

Here, EI7 represents the cross-sum operator3 , R(·, a) represents the vector such that 

R(·, a)(i) = L:s'ES,zEZ I{~s,O~',zR(i, a, s', z). 

The resulting set of hyperplanes unfortunately contains too many hyperplanes. 

Sorne of them are completely dominated. Finding out which one are completely 

dominated to prune them out is necessary, and the easiest way to do it is to use 

linear programming. 

Aigorithms can use different variations of this method. Instances of such algo­

rithms include: witness (Kaebling et al., 1998), incremental pruning (Zhang and 

W.Liu, 1996),two-pass (Sondik, 1971), PBVI (Pineau et al., 2003), heuristic value 

iteration (Smith and Simmons, 2004), PERSEUS (Spaan and N.Vlassis, 2005), grid­

based value iteration (Brafman, 1997). PBVI and grid-based value iteration and 

heuristic-based value iteration are the most efficient algorithms the literature can 

offer. However, they are usually tractable only wh en the horizon is finite. 

Heuristic methods The idea behind these methods is simple. First, the optimal 

policy for the fully-observable problem is computed, using a classical MDP-solving 

method (Singh et al., 2003). The policy 1[" giving the best action for any given state 

is obtained. The following decision-making heuristics can then be used. 

3For instance let A = {al, a2} and B = {bl, b2}. Then A$ B = {al+bl, al +b2, a2+bl, a2+b2}. 
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• Most likely: Il(b) = 7f[argmax(b(s))] This heuristic takes the action recom­

mended by 7f for the most likely state. 

• Voting: Il(b) = arg max[L:s,7r(s)=a b(s)] This heuristic takes the action that is 

recommended in the majority of cases. 

• Q-MDP: Il(b) = argmax L:s b(s)Q(a, s). Q(s, a) here is the expected return of 

performing action a in state s. This heuristic allows to consider aIl the possible 

states and aIl the possible values a given action could have in these states. 

There also exist other heuristic methods, like the Augmented MDP (Roy and 

Thrun, 1999) method, that introduces in a MDP an additional state feature corre­

sponding to the amount of entropy4 in the belief state, which is a measure of state 

uncertainty, and plans on the augmented state space. 

Policy search methods Sorne methods do not try to learn the value function 

of the POMDP. For instance, the PEGASUS algorithm, designed by Ng and Jor­

dan (Ng and Jordan, 2000), considers a class of policies and optimizes its parameters. 

Their method involves the transformation of the stochastic POMDP into a determin­

istic POMDP, in which aIl the transitions are deterministic (a new feature, which 

represents the "dice roIls" of the different transitions, is added to the state space). 

Using this deterministic POMDP they are able to maximize the return by varying 

the parameters of their policy class. This method is able to solve very large POMDP 

problems. However a good policy class needs to be provided. 

4The entropy is a classical measure of uncertainty, it is defined by E = - L: b(i) log(b(i)). 
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2.1.3 Learning POMDPs 

We now study methods that can learn POMDP parameters. These methods usually 

learn the parameters by interacting with the environment. We present three types 

of methods. The first kind try to find out, for a given trace of experimentation 

through the environment, what was the most likely hidden states visited. From 

them it computes what are the most likely parameters of the mode!. It is a simple 

learning algorithm that may find unprecise values for the parameters. The second type 

finds out the underlying structure of the POMDP by resolving perceptual aliasing 

; it can learn the setup of the states but need to have a prior knowledge of the 

observation probabilities. The third type is purely experience-based. It maintains 

the probabilities of " core tests" of succeeding and how the different actions affect the 

core test probabilities. It is able to learn a POMDP without any prior at al! but 

needs large amounts of experimentation. 

Expectation-Maximization methods This straightforward method uses gradi­

ent descent to find the model that explains best the sequence of actions and obser­

vations (Chrisman, 1992; Shatkay and Kaelbling, 1997; Kaebling et al., 1998). The 

method alternates between: (a) using the Baum-Welch algorithm (Baum, 1972) to 

find the most likely underlying states at each time step in the experiment given the 

current set of parameters and (b) computing the most likely parameters for the tran­

sitions and observations by taking counts, considering the current assignment of real 

states. Such a setting is prone to local minima. There is no guarantee that the ob­

tained model will be correct or that the corresponding policy will be optimal, and for 

complex problems with many local minima the correct policy jmodel is rarely found. 

Utile Suffix Memory methods McCallum built the Utile Suffix Memory algo­

rithm (McCallum, 1995) to learn Perceptual Aliasing Problems, which are a sub-class 
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of POMDPs in which the observation is always deterministic. Recently, Shani et al. 

presented methods to adapt this setting to learn POMDPs. In (Shani and Brafman, 

2004) they analyzed how they could modify this framework to take into account prob­

abilistic observations. In (Shani et al., 2005b) they showed how POMDPs could be 

learned from experience when the learner has a prior knowledge of the observation 

probabilities of the different kinds of states there can be in the environment. In 

their method they use USM to determine what the different states and state transi­

tions probabilities are, and an on-line version of the Perseus algorithm (Spaan and 

N.Vlassis, 2005) to build a policy for the POMDP model of the environment. The 

same group also has a method to adapt a POMDP policy to non-stationary envi­

ronments with small changes (Shani et al., 2005a) which uses an online fixing of the 

policy produced by the Perseus algorithm. These are good algorithms which address 

topies similar to ours, yet they cannot be applied in every case ( we might not know 

perfectly the observation probabilities of the different kind of states, the changes in 

the environment might not be small). Furthermore their approach also laek theo­

retical guarantees, although it shows good experimental performance on the classical 

POMDP domain (Cassandra, 2004). 

Predictive State Representations The other main approach is to use a slightly 

different framework to represent the problem, whieh is Predictive State Representa­

tions (PSRs) (McCallum, 1996; Shani and Brafman, 2004; Singh et al., 2003). It is a 

model-free experience-based framework, which allows to learn how the environment 

behaves without finding out its parameter. It is a very reasonable approach, since 

series of actions and observations ean be produced by many different underlying mod­

els; this set of methods find the underlying dynamics of the system, without explicitly 

keeping track of an underlying state. Instead it keeps track of the probabilities of 

core tests succeeding. 

Unfortunately, these approaches need huge amounts of training samples (even for 
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simple problems), over a very stable model of the environment. And what they learn 

cannot be easily re-used, as it is difficult to understand what the resulting parameters 

mean in the real world. The learned parameters are evolutions in the probabilities 

of core tests and not state transitions. PSRs does not allow easily to inject prior 

knowledge about the world, and we may possess such knowledge. 

Limitations of existing learning methods AlI existing methods have one of the 

following limitations. They are either not guaranteed to converge and learn the exact 

model at every run (like EM methods), or they need a huge amount of queries (like 

PSR methods). They might need some prior information about the model (like USM 

methods). Furthermore it might be difficult to incorporate prior information about 

the model in them or to understand what they learn (like with PSR methods). We 

would like to build a learning method that does not have these limitations. 

2.2 Active Learning 

Active Learning focuses on finding out what is the best learning action to take given 

a prior knowledge. In an active learning setup, we consider how best we could reduce 

our uncertainty in order to accomplish several tasks. What we would like to do is to 

use the active learning techniques to act optimally in a partially-observed Markovian 

environment (a POMDP) when the parameters of the environment are uncertain. 

Active Learning should be able to tell us how to learn optimally. 

Efficient active leaming techniques have been proposed by Cohn (Cohn et al., 

1996), for classification tasks in which some examples don't have a label. The agent 

has the possibility of obtaining the label for some of them, but this is costly. Solutions 

that are usually proposed for these problems involve evaluating the information gain 

that obtaining a label would bring, which actually is the variance the learner has con-
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sidering this label. As Anderson and Moore show (Anderson and Moore, 2005), these 

ideas can be extended to dynamical models like Hidden Markov Models (HMMs). 

A Hidden Markov can be seen as a POMDP in which there is only one action. 

In a HMM we usually try to find what is the underlying state at each time step 

by considering the whole sequence. The Active Learning techniques consider queries 

that reveal the hidden state at a given time step. The method Anderson and Moore 

proposes is able to find the query answer that would reduce the variance of the learner 

the most. 

Our approach is to adapt these kind of learning techniques to POMDPs. However, 

the problem is slightly different since in a POMDP what we're interested in is to find 

the optimal policy and not to determine the sequence of underlying states. Further­

more, determining the exact value of the underlying parameters may be useless, since 

some of them may have no influence over the optimal policy. Furthermore, we have a 

control over the sequence of actions we execute, so we have an influence over the states 

that are visited. This makes the problem far more complicated, since we have two 

decisions to make: the action we take and the time step at which we should identify 

the underlying state. So unfortunately, Anderson and Moore's method (Anderson 

and Moore, 2005) cannot be applied directly. 

Our goal will therefore be to use an active learning setting that is able to find 

the optimal policy by selecting sequences of actions and selected identifications of the 

hidden state. 

2.3 Dirichlet distributions and Bayesian Learning 

Our work also inspires from the methods called Bayesian Learning (Dearden et al., 

1999; Strens, 2000), which use Dirichlet distributions to model the uncertainty over 
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a model and use them to have an efficient exploration/exploitation tradeof. Their 

method is used for completely observed Markovian environments (MDPs) but we 

believed that they could be applied to POMDPs. 

Dirichlet distributions are distributions over multinomial distributions. Since, 

in a POMDP,the transition and observation probabilities are specified according to 

multinomial distributions, we need to use Dirichlet distributions to model uncertainty 

over them. 

Definition Let us consider a multinomial distribution over N values, of parameters 

(el, ... eN). A Dirichlet distribution is a distribution over these parameters e. It is 

defined by the hyper-parameters (ŒI, ... ŒN)' With this setting, the likelihood of a 

multinomial distribution given the Dirichlet distribution is equal to: 

rrN ()oj-l rrN r( ) 
(() () ID) i=l i h Z(D) i=l Œi 

Pl·" N = Z(D) ,w ere = (N .) r L:~=l Œ~ 
(2.7) 

We precise that the most likely multinomial distribution has the following param­

eters: ()r··. ()N, where 

(2.8) 

Updating Dirichlet distributions Dirichlet distributions can be used to model 

the evolution of our uncertainty as learning progresses. Let us suppose that we are 

trying to estimate the parameters of an unknown multinomial distribution. Then, the 

following setting can be used to set the evolution of the Dirichlet as we accumulate ex­

perience. Each time i is sampled from our distribution, we increment hyper-parameter 

Œi by an amount of >. E R~. With this setting, the most likely distribution will be 



CHAPTER 2. POMDPS AND LEARNING 

equal to: 

Vi= 1, ... N e; 
~r:=1 aOk + À ~k=l N Ck 

Ci+~ 

21 

(2.9) 

Here, Ci represents the number of times we have experienced the event i. The aOi 

represents the values at which the hyper-parameters of our distribution are initialized. 

We can see COi as "fake" experience counts which depends of the initialization of the 

parameters. The way we initialize our parameters depend on the prior we have over 

the value of the parameters of our multinomial distribution. For example, if according 

to our prior the distribution is uniform, we initialize ail the ai to the same value. 

Then the above equation can be seen as having the following meaning: the most 

likely distribution has for each of its parameters a value equal to the number of time 

the value was obtained (counting the fake counts of the prior) divided by the total 

number of overall samples (counting the fake counts of the prior). 

Variance in Dirichlet distributions It can be shown that the expression of the 

variance on one of the parameters in the Dirichlet has the following expression. 

(2.10) 

So if we cali COk + Ck the overall confidence we can say the following: for a 

given value of the estimation, the variance is inversely proportional to the overall 
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confidence. We also see that according to this the variance is always higher wh en we 

are near 0.5 than when we are near 0 or 1. 

Sampling from Dirichlet distributions We can sample from a Dirichlet distri­

bution by proceeding as follows: we consider the Gamma distribution of parameters 

Œl' .. ŒN and sample N values Xl ... XN from them5 . Then the multinomial distribu­

tion of parameters Vi (Ji = 'Et' is a sample from our Dirichlet distribution. 
k=lXk 

Bayesian Learning Dirichlet distributions are used in Bayesian Learning methods 

of Markov Decision Processes (Dearden et al., 1999; Strens, 2000). In these methods, 

models are sampled from the Dirichlet distributions and the agent follows policies that 

are computed according to the sampled models. The parameters of the Dirichlet are 

updated as the experiment goes. The event [s, al -t s' increases the hyper-parameter 

corresponding to PS~SI by a fixed amount. They show that their method allows a good 

tradeof between exploration and exploitation and that they can learn optimal policies 

for MDP models quickly while obtaining a reasonable reward through the learning 

phase. 

These methods are convenient in MDPs, because we know the underlying state 

at every time step, so we know which parameter in the Dirichlet distributions to 

update. However, in a POMDP, we don't know the underlying state, so updating 

these parameters can be hard. However we will use the idea and try to adapt it. Since 

we will use an active learning and allow the hidden state to be perfectly identified 

by an oracle, we will know in some cases which is the right parameter to update and 

therefore we will manage to adapt these methods. 

5To sample from Gamma distribution for our algorithm, we used a code written by Radford M. 

Neal. which uses the method described in (Devroye, 1986). 
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2.4 Conclusion 

We have presented Partially Observable Markov Decision Processes, which can effi­

ciently model problems of decision-making in partially observable sequential settings. 

We have presented the main methods one can use to solve them. We will not use 

heuristic methods, since they are too unprecise and fail in many cases, and we will 

not use policy search methods, since they need prior information about the optimal 

policy. We will focus on approximate value-based methods. 

However, the setting we presented in Chapter 1 supposes that we are in a partially 

observable environment that is partially known. To address this problem, we reviewed 

three approaches. 

POMDP learning methods POMDP learning methods usually don't have a way 

of making optimal decisions, since they rely mostly on learning samples in which 

random actions are performed. Furthermore, we would like to have a method that 

uses only a reduced number of experimentation, that is guaranteed to learn the true 

model, that requires no particular prior knowledge, and that gives information easily 

understandable and reusable. We have shown that the main existing methods (EM, 

USM, and PSR) all fail for at least one of these conditions. 

Active learning methods The active learning setup gives methods to find the 

best possible learning action. This would be interesting, however our problem is only 

to learn the parameters well enough so that the optimal policy is learned, and current 

Active Learning methods cannot help us for this particular. However Active Learning 

methods suggest that we should require in our learning the existence of an oracle, 

that can provide the identity of the Hidden State. 
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Bayesian learning methods Bayesian learning allows to represent explicitly the 

uncertainty in the model that is currently learned, and to incorporate past experimen­

tation and prior information to the uncertainty mode!. Furthermore, these methods 

can give efficient methods to produce near-optimal policies for uncertain environ­

ments. Unfortunately, these methods can be applied only to Markov Decision Pro­

cesses where the hidden state is perfectly known. 



Chapter 3 

Adapting Active Learning ta 

POMDPs 

We have explained the POMDP framework and different learning methods to learn 

these models. However the existing methods have many drawbacks: they did not 

provide an optimal way of acting during learning. Sorne of them were prone to local 

minima. Sorne of them required huge amounts of experimentation. Sorne of them 

required specifie conditions about the prior information. In this chapter we want to 

introduce a method, based on active learning, that is theoretically guaranteed to find 

the optimal way to behave and learn, so that the learning phase is minimal and so 

only the most useful features are learned. 

The idea of active learning is to explore the environment intelligently, so as to 

make the learning as quick as possible. Active learning also introduces the concept 

of active learning queries, that allows the environment to be learned in an efficient 

way. We present in this chapter a decision-theoretic approach to solve the problem of 

applying active learning to POMDP environments, and present experimental results 

of this method on a simple problem. 

25 
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3.1 The active learning setting 

POMDP models are very hard to learn because they have the hidden state, that 

sometimes can never be known with full certainty when one looks at the sequence of 

actions and observations. 

Yet we do assume the existence of an underlying state. It means that, even though 

this state is at a given time only partially known, it is the indicator of something that 

happens in the world beyond the agent 's perception. 

Because there is something beyond the agent's perception, it means that someone 

can have access to it. If not the agent itself, maybe an external agent. This brings 

us to our main assumption. We will assume the existence of this external agent, that 

can identify the hidden state. It will be called the oracle. 

This external agent will play the role of a teacher, and it will help our agent in its 

learning. First, we will assume that the teacher already has sorne knowledge (even 

limited) about the dynamics of the world, and will give it to the agent. 

Then, and because we want the learning to be as fast and efficient as possible, we 

want our agent to act in the environment and we will give him, in order to learn more 

than what it immediately perceives, the possibility to ask queries to the external 

agent. This process, of experimenting certain actions under certain circumstances 

and asking to the external agent the resulting hidden state, is what we caB active 

learning for POMDPs. 

3.1.1 Our goal 

We focus on learning the sets of parameters {P8~8/} and {O~,z}' since they are char­

acteristics of the real world that have a big impact on the optimal policy of our 
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problem. 

But we have to state that it is not necessary to learn them aIl. The reason is 

that in sorne cases sorne of the parameters have no influence on the optimal policy. 

For example, there might be sorne states that can never be reached. The value of 

the parameters corresponding to them has therefore non influence at aU on the value 

function. We caU these parameters useless parameters. More formaUy, a set of 

parameters {P:'*} is useless if and only if for ail possible series of actions state s has a 

probability of zero of being obtained, and parameter {O~,*} is useless if and only if for 

all possible series of actions in which the last action is a, state s has a probability of 

o of being obtained. 1 t is useless to learn these parameters, and furthermore it might 

be impossible to learn them. So our active learning should not try to learn them at 

aIl. 

There are other parameters that are not useful to be learned; these are the pa­

rameters that have no influence on the value function. More formally, the set of 

parameters {P8~*} has no influence on the value function if and only if for aU the pos­

sible values this parameters have, the value of the optimal policy for a given history 

is the same. We can easily prove that if a parameter is useless, it has no influence on 

the value function. Our algorithm will try to avoid learning these parameters. We 

precise that these parameters can, for example, correspond to actions that would not 

be taken under an optimal policy. It is common that in a POMDP problem sorne of 

the parameters may be completely irrelevant. 

Furthermore, we have to remark that sorne parameters need to be learned more 

precisely than others. A small variation of one parameter could bring a huge difference 

in the policy, whereas some other parameter may take a large interval of possible 

values without changing the optimal policy. For instance, in the Tiger problem, the 

most important parameter is the probability of receiving the correct observation when 

the Listen action is performed. However, a clearly non-critical parameter would be the 
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transition probabilities when an incorrect door is opened. Since this event happens 

only rarely under an optimal policy, the associated parameters need not be estimated 

precisely, as its exact value may have only little influence over the resulting policy. 

So what we really want to do is to learn each useful parameter with a precision that 

is proportional to its influence on the optimal policy. 

To help the agent learn we assume the existence of an external agent that can 

provide information during the learning phase. Ideally, an application of our desired 

setting would give the following procedure: during a first, active learning phase, 

our agent would be in partial autonomy, an external agent giving it information about 

the underlying state of the world. Once this phase is over, the agent could finish its 

learning by itself and acquire full autonomy. 

Such a setup is desirable in many applications. For instance, in robotics, where 

we can afford to make someone spend sorne time to calibrate the robot before letting 

it act autonomously, such an algorithm cou Id have good applications. 

Our goal is to minimize the length of the active learning phase, and to minimize 

the number of requests that are asked, so that the most relevant parameters of the 

model are learned as quickly as possible. 

3.1.2 Our assumptions 

We will assume the existence of an oracle. This entity can, upon request, provide 

the identity of the underlying state. 

In most tasks, it is possible, for a certain cost, to find the identity of the hidden 

state. Because we use the POMDP framework, and because we use a model-based 

approach, the states do have a signification in the real world. And we believe that in 

most cases a human (or another automated system) can identify it, either during the 
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experimentation or after. It should merely be consulting information that are beyond 

the agent's sensors. 

Querying the oracle is costly since there is additional work needed to answer them 

so we should try to minimize their number. Actually, we explicitly associate the 

querying to an additional cost. We underline that querying the oracle has a role 

equivalent to doing the active learning queries in the classical active learning setting. 

Assuming the existence of an oracle will allow a learning algorithm to avoid un­

desirable local minima, will guarantee the convergence of the algorithm to the true 

model, and will also accelerate the learning process greatly. 

We are not learning the reward function. We assume that it is perfectly known. 

The reason for this is that the reward function is not necessarily part of the environ­

ment; it is a function we build so that our agent executes what we want. Furthermore, 

if we had indeed non-deterministic rewards, they could be incorporated into the set of 

observations, and we would fix our reward function so that each of these "reward ob­

servations" has according to the function R a reward that is associated to their value. 

This would have the advantage of automatically include the information brought by 

the reward in the belief updates, and the information we would need to know would 

only be the different set of values the reward can be. As a result, we assume in this 

thesis that the reward function R is perfectly known. 

We are not learning bD, since we assumed it is known. Note that our algorithm 

could easily be modified to learn bD. We just made this assumption to simplify our 

implementation a little. Theoretically, bD could be learned as one of the parameters1
. 

1 Actually, the algorithm we present in Chapter 4 does regular "restarts" of the POMDP during 

learning. Therefore, querying after each restart brings information about the initial belief, so our 

algorithm can very easily be adapted. The solution proposed in Section 3.2, however makes no 

restart. 
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We will also assume that we have prior knowledge about the environment. At the 

very least, we will assume that the number of states, actions of observations is known. 

Whereas it is reasonable to assume that the number of actions and observations is 

known beforehand, it is a strong assumption that the number of states is known. 

This assumption is not entirely necessary in model-free methods (McCallum, 1996) 

or in Shani's method (Shani et al., 2005b). But we believe that in most realistic 

POMDP applications we already have prior information about the states anyways. 

Our algorithm is specially made for the case where we have an agent in a partially 

observable stochastic environment in which we already have an idea of what each state 

means and what the values of the parameters can be. We mostly want to correct their 

estimation by interacting with the environment. 

3.2 Decision-Theoretic planning 

We will now study what would be the optimal way of solving the active learning 

problem. We propose the Decision-Theoretic Planning method, which builds a larger 

POMDP from the initial one and solves it in order to find the best way to combine 

queries and actions so that learning is optimal. 

Therefore, we integrate into our initial POMDP that (1) we do not know exactly 

sorne of its parameters. (2) The agent can do active learning requests to obtain the 

hidden state of the POMDP. (3) These requests have an associated cost, and we want 

to minimize their number. 

3.2.1 The algorithm 

A theoretically optimal solution is to modify our initial POMDP model by doing the 

following modifications: (1) For each uncertain parameter, we add a feature to our 
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state space. It represents the value the uncertain parameter has. We set the initial 

belief such that the distribution of the state space over this feature is uniform (or 

equal to an initial prior if we have one). The transition parameters are set so that 

the transitions occur only between states that have the same values for each of the 

features. (2) Then, we add to the action set an action called "Query", which does not 

change the state but give as an observation the identity of the real state. (3) Finally, 

we set the reward function such that the" Query" action is always associated with a 

penalty. This gives a meta-POMDP that can be solved according to classical solving 

method (Kaebling et al., 1998). 

Unfortunately, this theoretically optimal setup gives a meta-POMDP with an 

infinite number of states. Since few methods can solve such POMDPs exactly, we 

need to consider approximations. We will therefore discretize the additional features 

into n levels. The number of states will be multiplied by n each time we have an 

uncertain parameter, so that we obtain nk group of states, where k is the number of 

incertain paramers. Each of these groups will correspond to a different assignment 

for the values of the unknown parameters, and within a group the transitions and 

observations will be made according to these values. 

Note that the method not only gives a theoretically optimal way of making the 

decisions, but also gives the most likely value of the parameters. One just has to 

check what the belief state is at the end of the experiment, to find what is the prob­

ability distribution among possible parameter assignments. This method is therefore 

theoretically very powerful, as it gives the perfect method between learning and ex­

ploiting. 
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3.2.2 Experimental results 

We present an example of the application of this method to the Tiger POMDP prob­

lem (Kaebling et al., 1998), presented in Section 2.1.1. 

We use the following setting: we suppose that the parameter p (which is the 

probability of having a correct observation when the" Listen" action is performed) 

is unknown. We consider that its value is in the range [0.7 ... 0.9]. We consider 

three hypotheses for the value of p: p E {0.7, 0.8, 0.9}. All the other parameters are 

supposed to be certain. 

We pro duce a POMDP according to the technique described in Section 3.2.1: 

Rq < 0 is the penalty associated to the query. The initial belief is uniform among the 

three possible values of p. 

To solve the resulting POMDP, we used the ft,nite grid method, from Cassan­

dra (Cassandra, 2004), with a bounded number of grid points and a finite horizon 

(the grid points we consider are a representative set of the belief states that can be 

reached, and we always update the value for the same belief points). We used a 

number of grid points around 1000 and horizons around 30. This method is also used 

in the next chapters of the thesis, each time we compute an approximate policy for a 

POMDP. 

Figure 3.1 summarizes the behaviors obtained for different values of Rq. There 

is mostly two kinds of policies: if Rq is low, the agent alternates between the query 

action and the door-opening action (and therefore it never learns the value of p). On 

the other hand, if Rq is high it never uses any query: however the return observed is 

still quite high: the agent manages to behave optimally even though it does not use 

queries to learn what the value of pis. There is only a small range of values of Rq 

where we have mixed policies, that use queries at first and then switch to a classical 
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Figure 3.1: Experimental results with the "Tiger" problem, with the setting described in Sec­
tion 3.2.1, for different values of Rq. 

policy. 

This suggests that non-query learning can indeed work when the setting is simple, 

and points out how it is delicate to set up the query penalty value when we use 

Decision-Theoretic planning. 

We can see that we can get a good performance even if we never do any query. 

The queries become useful only if their cost is low enough: then they can slightly 

increase the resulting reward. 

3.3 Conclusions 

We have described our main ideas for doing a decision-theoretic active learning of 

POMDPs. We involve the use of an oracle, that can provide upon request the identity 

of the hidden state in the POMDP. We focus on learning the parameters that have 

the greatest influence on the learning policy 

We have shown a theoretically optimal method to extend active learning to a 
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POMDP model. We have introdueed the oracle assumption, and deseribed exaetly 

the learning problem we were trying to solve. We have presented a theoretically 

optimal method to solve it, Decision-Theoretie Planning, to solve it, and we have 

applied it suecessfully to a simple problem. 

However, even if it is theoretieally sound, this approaeh has many disadvantages. 

First, it ean't be used for POMDPs with a large number of states. Sinee we multi­

ply the number of states by nk , the researeh of the optimal poliey beeomes quiekly 

intraetable (the eomplexity of the beHef spaee inereases by exp(nk )). Furthermore, 

even with small POMDPs we have the following problem: it is very hard to specify 

the penalty that we should assoeiate to the query action. It needs to be high enough 

so that it is used only for learning and not as a part of a permanent poliey, and it 

needs to be low enough so that queries ean be used to do learning. 



Chapter 4 

The MEDUSA algorithm 

In the previous chapter we have presented a setup for active learning in POMDPs, and 

a simple algorithm to solve it optimally. Unfortunately, this algorithm fails to scale 

to complex environments, and we have to find a different approach. The algorithm 

proposed in this chapter, MEDUSA, is more robust, and can scale to larger problems. 

MEDUSA uses the Bayesian Learning techniques (Dearden et al., 1999; Strens, 

2000), in order to combine a partial model of the environment with direct experi­

mentation, so that we execute policies that can resist to model uncertainty. Bayesian 

Learning could not be applied to POMDPs because in order to update the correct 

parameters we needed to know the underlying state. But since we make the oracle 

assumption, there is a way to know the underlying state with full certainty, and so 

we can adapt Bayesian Learning methods to POMDPs. 

With the Bayesian Learning setting, our agent is able to handle uncertainty ex­

plicitly, as a part of the model and to make decisions that take it into account. We 

allow the agent to learn and to correct its model as it gather experience through the 

environment and with the help of the oracle. 

35 
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4.1 Main features 

Our algorithm, called MEDUSA for" Markovian Exploration with Decision based on 

the Use of Sampled Models Aigorithm" is an approach based upon the following facts: 

• It is not necessary, if we want to find the optimal policy of a POMDP, to learn 

perfectly aIl its parameters. To evaluate if the parameters we have learned are 

good enough, we can estimate the variance over the value function taking our 

prior information and our experience into account. 

• Each query brings information about the transition and the observation which 

just happened. This information, used with the prior information we have, 

allow us to update the information we have over the real model. The more 

we experience some transitions, the more our estimation of the corresponding 

parameters are precise. 

• We want to minimize the amount of data needed for learning and the number of 

queries. Since a "random" exploration of the environment would not be optimal 

to evaluate the important parameters, it is necessary to have an approach that 

can explore the environment in an intelligent manner, in order to provide a more 

precise evaluation of the important parameters. We will therefore do queries on 

runs where what we believe can be a reasonable policy is executed. 

• It is necessary to consider a pool of models instead of just one that would be 

evolving because of the following facts: different sampled models are hypotheses 

about the world, that can have very different resulting policies. The actions 

we try are actions that are likely to be optimal considering our current model 

of the uncertainty. The only actions we never try are actions that could never 

be optimal, for any value of the parameters. If we considered only one model, 

we wou Id always follow the policy corresponding to the most likely hypothesis: 

but it might always be the wrong policy and we might never try actions that 
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could bring more knowledge about our environment; sorne of the optimal ac­

tions would never be taken in sorne cases. So, as one model would mean only 

exploitation, considering several models bring something that does a very clever 

tradeof between exploration and exploitation. 

The setting of the algorithm is the following. First, we build a set of 

Dirichlets that gathers the prior information we have on our POMDP model. For 

each uncertain transition distribution and for each uncertain observation distribution 

we build a Dirichlet distribution, whose initial parameters depend on our prior over 

the model, as explained in 4.2. We can also use a smaller number ofhyper-parameters. 

We maintain a pool of POMDP models which are drawn according to the Dirichlet 

distributions. We compute the optimal policy 'Tri for each of these. Each of the models 

maintains its own belief state bi . At each time step, we choose an action according 

to the methods described in Section 4.3. 

Each time our agent acts, it receives an observation. It can then decide to make a 

query in order to identify the hidden state of the system. Whether or not the query 

is made, the parameters of the corresponding Dirichlet distributions are updated. 

At regular intervals, we improve our pool of models by resampling POMDPs 

according to the current prior and eliminating the most unlikely models. Each time 

a model is sampled, we compute its optimal policy. Since it is used to improve the 

choice of actions, the quality of the overall policy increases. Therefore, the learning 

takes place mostly in regions of the state space visited by policies that are optimal in 

at least one of the likely environments. 

We precise that at regular intervals we restart the problem. This is needed if we 

want to have the theoretical guarantees of convergence (see 5.2). 
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The script is detailed in Table 4.1. Figure 4.1 is a chart that illustrates the 

mechanics of the algorithm. 

4.2 The integration of prior information 

An important asset in our approach is that it is easy to use prior information about 

the model if we have sorne. This takes place at the beginning of our algorithm, when 

we build the Dirichlet structure. First, we needn't use one Dirichlet distribution for 

each uncertain distribution. We may use a restricted number of hyper-parameters. 

Secondly, we can set the initial values of the hyper-parameters as to incorporate our 

prior know ledge. 

Certain parameters If we consider that in our model sorne parameters are certain, 

we can sample models that always have the corresponding values for this parameter. 



CHAPTER 4. THE MEDUSA ALGORITHM 39 

For example, if an agent is navigating through a labyrinth, we can consider that we 

know that the action "do not move" does not change the hidden state. We can also 

incorporate the idea that one action cannot move the agent to more than two cells of 

distance. 

Therefore, in our experiments, we usually considered that parameters having the 

values 0 or 1 in the true model are known with full certainty. Each time we sample a 

model from our Dirichlet system, we set the corresponding parameters to their certain 

value. When we would update the hyper-parameter corresponding to it we just do 

nothing. 

Related parameters There are other ways to diminish the number of hyper­

parameters. For instance, the observation distributions may be identical for the same 

kinds of states. Or, in sorne cases the observation may be independent of the last 

executed action, and we might know these facts beforehand. If it is the case, we just 

use the same Dirichlet distribution D for all the similar distributions. That is, when 

we sample a model, we sample a multinomial distribution from D, and we set aIl 

the parameters of the POMDP that corresponds to this distribution to the sampled 

values. Furthermore, when we would update the hyper-parameter corresponding to 

it we just update the right hyper-parameter of the Dirichlet distribution. 

If we take aIl this into account, we actually obtain a Dirichlet structure, which 

consists of a set of Dirichlet distributions, represented by their hyper-parameters, and 

an array of pointers, that give, for each parameter in the POMDP: 

• Either its value, if it is certain. 

• Or a pointer to one of the parameters corresponding to a Dirichlet in the Dirich­

let structure. 
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We explain in the experimental section examples of Dirichlet structures on sorne 

POMDPs. The ability to diminish the number of alpha-parameters usually make the 

learning problems more tractable. 

Priors on the parameters When we have prior information about the estimate 

of sorne of the parameters, it is very easy to use it when we set the initial values of 

the hyper-parameters in the Dirichlet distributions (see Section 2.3). Let's say that 

given our prior information we suppose that the value of parameter p is p, and that 

the confidence we have over this value and all the values corresponding to the same 

distribution is Cp, By confidence, we mean a number that is inversely proportional to 

the variance we have in our estimation (since both are linked according to Equation 

2.10. 

If it is the case, we initialize the parameters with the following setting: Œo ~ p*Cp' 

In our experiments we used a confidence of 1 and uniform distributions. 

Note that since we used a model-based approach, the models that we have learned 

for one task can easily be used as priors for other tasks. This is a very useful asset 

for robotics applications. 

4.3 Action selection during learning in MEDUSA 

In this Section we describe the different Decision-making functions we can use in 

MEDUSA. Even though with queries at every step we would converge to the real 

model if we did random actions, we might want to accumulate reasonable reward 

through the pro cess, and we might want to have a minimum number of time steps 

and queries. We present three methods that we tested. 
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4.3.1 The exploratory decision-making 

Each of the sampled models in the representative pool can be seen as an expert. The 

agent maintains a certain confidence in each of the experts, which depends on its 

knowledge of the world. The experts have different views of the world, and always 

recommend the action that is optimal according to their view of the world. One 

of them might be right and recommend the action that is really best but the agent 

doesn't know which one. So if we want to have a chance of trying the really best 

action, the best way to do it is to choose randomly an expert (according to the 

confidence the agent has in it). If we had only one expert which would have the 

most likely vision of the world, he might always recommend a wrong action, as most 

likely is different from true. We might end up al ways doing a wrong action and never 

learning anything. 

The exploratory decision-making relies on a simple assumption. If an action can 

be good, it needs to be tried, only then can we know if it was good or bad. More 

formally, an action that is optimal for a certain setting of the uncertain parameters 

should have a non-zero probability of being taken. Furthermore, the probability 

should be proportional to the probability this action has of being optimal, according 

to our current uncertainty model. 

As we show in the theoretical Section 5.1.2, we can approximate this formaI setting 

by using the following stochastic policy: 

In it, ai = 1fi(bi) is chosen with probability Wi, where 

. Pi 1 
V~ Wi = O. I:n .a. 

P ~ k=l Pok 

( 4.1) 

Here Pi is the current likelihood of model i according to the set of Dirichlets and 

pOi the initial likelihood this model had when it was sampled. 
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4.3.2 The safe decision-making 

Note that some of the experts can be completely wrong and have very bad visions of 

the world and would recommend disastrous actions. So if we want to have a risk-free 

behavior in our environment, at the cost of less exploration, the best is to listen to the 

advice of every expert for every actions, weight the experts' advice by the confidence 

the agent has in them and take the action that is the best in the average (though 

maybe not a single expert recommends it). This is also still better than following 

the policy corresponding to the most likely expert. The problem is that the expert 

corresponding to the most likely model does not have any idea about what would 

happen if his view of the world was different, even slightly. He does not know that 

the action he recommends, which seems optimal to him, could be disastrous with 

slightly different parameters of the world. 

Whenever we are not in a learning phase (for instance, if at the moment queries 

can't be processed or if we have finished our learning phase and begun our exploitation 

phase), we should use this safer policy. The process is the following: each POMDP, 

once solved, can give the value associated to each action for the current history. Let 

V : A x M x H ~ R be the function that returns, for an history h EH, a model 

m E M, an action a E A, the optimal associated value. Let Mt be the current 

population of models and Wm the weight defined by Equation 4.1 

According to safe decision-making, the chosen action is a* such that: 

a* = argmax[ L wmV(a, m, h)] (4.2) 
mEMt 

This decision making procedure has a performance always higher to the exploratory 

policy. However, if we consider long term gain and learning, we have to say that this 

procedure will never take a "risky" action to do exploration. That's why this proce­

dure can only be used when we exploit our learned model and not while learning. 
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Therefore, in each of our experiments, when we stop the learning process to evalu­

ate the quality of the learned model, we evaluate the return by using this safe policy. 

4.3.3 The Boltzman decision-making 

We have also implemented a Boltzman decision-making, because it is a classical way 

of solving the exploration/exploitation tradeoff. Here, we determine the action taken 

stochastically in the following way. 

(A) (2:mEMwmV(a,m,h)) p = a = exp 
T 

(4.3) 

T is the temperature factor, which decreases with time and the Wi are defined 

according to Equation 4.1. T decreases by a fixed amount at each step and when it 

reaches 0 the safe decision making is used. 

Experimental results show that the performance of the Boltzman decision-making 

is not good, especially because at the beginning of the experiment the agent almost 

always does a random action, which can get the agent to be trapped in sorne bad states 

of the POMDP: under this setting, actions that are sub-optimal in every possible 

parameter setting can still be chosen, and taking these actions might be disastrous. 

Furthermore, when the temperature becomes lower, the agent becomes too concerned 

about exploitation to do any exploration. That's why the final version version of 

MEDUSA doesn't use it. 
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4.4 Learning in MEDUSA 

We now describe how the learning is made in MEDUSA. We consider two types of 

learning. The first has a convergence to the true model guaranteed, as shown in 5.2 

and uses the oracle queries. The second has no convergence guarantees but does not 

require queries. In practice, the second approach converges to a local minimum of 

the space of POMDP models. 

In order to easily make the learning updates we use for each model an alternate 

beHef state (Ji' Its purpose is to keep track of how we can use the latest query to 

get an idea of what the current underlying state is. 

The alternate belief of model i (Ji is defined by the following rules. 

1. At each query, when the result is Sq, (li(S) = 8(s, Sq), where 8(i,j) is equal to 0 

when i =1= j and to 1 when i = j 

2. When an action is made and an observation received, a Bayesian update (see 

Equation 2.1) is performed on {li, according to the parameters of modei i. 

This alternate belief state allows us to follow, for each model, the information still 

available since the last query. The consequence is that if sorne actions or observations 

are deterministic, then the alternate belief state may stay certain during severai steps 

after a queryl. 

1 For instance, in the Tiger problem, if a query is made at a given time step, the alternate belief 

state will remain certain as long as Listen actions are performed. 
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4.4.1 Query learning 

Equations 4.4 and 4.5) show the updates executed when we do a query-Iearning 

update. 

Vsa(s,a,s') ~ a(s,a,s')+2:Wi!3i(S)À 

a(s', a, z) ~ a(s', a, z) + À 

(4.4) 

(4.5) 

By a(s, a, s') we mean the hyper-parameter that corresponds to the transition 

parameter ~81 wh en the parameter is uncertain (if it is certain then no update is 

made). By a(s', a, z) we mean the hyper-parameter corresponding to the observation 

parameter O~,81. When this setting is used only one observation hyper-parameter is 

updated. The alternate belief state !3 is used to update the transition parameters. 

Note that if a request had been done at the previous time step (or if the alternate 

belief state is at 1, only one transition parameter is updated. 

If our algorithm uses a query at every step it can converge to the true model and 

to the optimal policy (as shown in Section 5.2.1. However we have studied how it was 

possible to learn without query. Actually the sole action-observation information can 

be used to update the parameters. 

4.4.2 Non-Query learning 

If we can't or don't want to use queries, or when the query result is invalid or if 

the query fails, we can make a non-query learning update. For this update, we use 

the alterna te transition belief Bt(s, s') which is defined according to Equation 4.6: 

it is the distribution over the transitions that could have occurred during the last 

step. The non-query learning updates the transition hyper-parameters according to 
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Equation 4.7. For the observation hyper-parameters, the update is done using the 

mean alternate belief state /J' which is defined according to Equation 4.8: 4.9. 

Vs, s' Bt(s, s') = 
t [Oil;I,A [~l~A ,Bi(S) 
i=l Wi L:I7ES[Oi];,A [~]~,A 

(4.6) 

Vi E [1. .. n] V(s, s') CYt(s, A, s') f- CYt(s, A, s') + À Bt(s, s') (4.7) 
n 

Vs /J'(s) = z= Wi,B~(S) (4.8) 
i=l 

Vi E [1. . . n]Vs' ES cyAs',A,Z) f- CYz(s', A, Z) + À ,B~(S')Wi (4.9) 

Another method is to sample a query result according to the alternate belief and 

use a query learning update as if the sampled query result was a real query result. 

But our experimental results show that this offers no better performance than the 

above setting. 

The properties of the non-query learning are the following. Contrary to query 

learning, we lose the guarantee of convergence towards the real model. However, 

experimental results show that we always do observe convergence, but we converge to 

local minima. It is logical, since that in most cases the action/observation sequence we 

observe can be explained by several models (they don't produce the same policies and 

rewards, however). The problems encountered here are the same that EM methods 

have to deal with. We converge to a model which is not necessarily the true one. 

We also observe the following facts: the variance of the learning increases a lot. 

In order to have a convergence we need to use a lower learning rate (on the order of 

100 times lower). We also observe that if the initial prior is good enough at the start, 

we obtain the convergence to the true model. 
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4.4.3 The heuristics 

We present here heuristic methods we tested to decide whether or not a query should 

be made. Not aIl of them were selected, but aIl of them were studied. In aIl these 

equations, the Wi are the weights defined in 4.3.1. 

Do N queries then stop This heuristic is simple: it just recommends doing queries 

at every step for N step and then not do queries anymore. Since a near-optimal policy 

is executed, the traces of experience through information should always bring good 

information and the quality of query learning is superior to the quality of non-query 

learning in all cases. So, this might not be a bad heuristic to use. 

Decreasing frequency of queries p(Query) = min(l, Pll) 

This approach is purely stochastic and therefore should bring no bias in the conver­

gence. The idea here is simply to decrease the probability with the number of time 

steps N, so as to progressively replace query learning by non-query learning. 

Variance on the belief state BeliefVariance= l:k=l Wk l:iES(bk(i) - b(i))2, 

where 'IIi, b(i) = l:k=l Wkbk(i) 

This heuristic measures the variance on the belief state considering every model. It is 

high when the belief state uncertainty over models is high and it can be an indicator 

of the learning that still needs to be made. 

PolicyEntropy Entropy= -l:~~1 p('lt, a) ln(p('lt, a)) 

This heuristic is the entropy of the resulting policy. The higher this is, the more 

stochastic our decision making is. Queries should be made as long as the models 
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recommend different actions, so as long as this heuristic is greater than O. 

Variance on the value function Variance= L:i wi(V(mi, II(h, mi)) - V)2 

V(mi, II(h,mi)) is the value corresponding to the optimal action in model mi' V 

is the mean value, V = L:iwiV(mi,II(h,mi). 

This heuristic evaluates the uncertainty we currently have over the expected return 

at the current time. The intuition is that when this becomes 0 no more learning need 

to be done since the policy is optimal. This is one of the main heuristics we used. We 

show in Section 6.1.1 its evolution during an experiment and explain why it is useful. 

Gainofinformation InfoGain=L:~=1[WkL:i,jES2[Bt(i,j)(2: 1 t +2: 1 z )]] 
k' ES Q: A,1,k' k' EZ Ct' A,].k' 

This heuristic evaluates how much information the answer to a query would expect 

to give. Bt is defined according to Equation 4.6. Furthermore, we will consider that 

1 - 0 (1 = 0) when the corresponding transition/observation 
LklES a~.i.kl - LklEZ a~.j.kl 
parameters are certain. 

The" information" a query brings is, in this setting, inversely proportional to the 

confidence we have over the parameters that the query would help to refine. So it can 

also be seen as an indicator of the variance we have for the parameters that would be 

updated. Note that this heuristic is close to zero when a request would not bring new 

information, either because of a very high confidence in the parameters or because 

the parameters are certain (and in this case it is equal to 0). The higher this is, the 

more uncertain the parameters that cou Id be updated by the query are. 

Alternate beHef state entropy AltEntropy= 2:sEs -[2:!1 ,Bi (S)] 10g(L:!1 ,Bi(S)) 
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This heuristic indicates how imprecise a non-query update would be. It uses the 

current alternate belief, which is an indicator of how much information can still be 

used from the last query result. This heuristic allows to extract as much information 

as possible from each query. A very interesting feature with this heuristic is that if the 

transition that just occurred was certain, and we had a full certainty in the alternate 

belief state, the full certainty remains and the value of the heuristic is zero. So wh en 

a sequence of deterministic transitions occur, only one query needs to be done. 

4.4.4 The query decision 

As we show experimentally in Section 6.1.1, the most useful heuristics are AltEntropy, 

Variance and InfoGain. ActuaIly, we have found out that the most efficient query 

decision used the following setting: 

doQ = (AltEntropy > Ed(InfoGain > E2)(Variance > E3)II(NReq < Nmin)) (4.10) 

The first condition ensures that a request can be made only if the state is suf­

ficiently known because of a previous query result. The second condition ensures 

that a request is not made if we already know the parameters it corresponds too weIl 

enough. The third condition ensures that we will stop querying when the learning 

has stopped improving the value function. We also incorporate the number of queries 

to the decision in the third condition because in cases when we have nearly no prior 

information, aIl the drawn models are at the beginning uniformly bad and so the 

value of the Variance heuristic can be 0 for aIl of them. As we explain in Table 4.1, 

when we don't make queries the following behaviors are executed: 
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When the gain of information is negligible When InfoGain< 1'02, no update is 

made. Actually if we are in a subpart of the model where the parameters are certain, 

there would be no update to make anyways. And if we are in a subpart of the model 

where the confidence we have in the parameters is already high, it is probably because 

we used a good number of requests already. Since the quality of non-query learning is 

lower than the quality of query-Iearning, we prefer to stop doing any learning instead 

of using non-query learning, since the only thing non-query would do would be risking 

to lower the quality of our estimation. 

When the confidence in a parameter becomes above a threshold (~), we consider 

it as certain and stop trying to estimate it more precisely. We used E2 = 10-5 , 

since we believe that a confidence of more than 105 in a parameter means that the 

parameter is certain. Actually, if the confidence is 105 , if the value of the parameter 

is 0.5, the probability of the parameter having a difference of 1 % with our estimate 

is approximately 0.01%. In a realistic problem this would be a very good precision 

rate, but if one believes that the precision should be higher one can lower E2. 

When queries can be spared When Al tEntropy< El, then doing a non-query 

update has nearly the same effect as doing a query update. (since we can determine 

with high certainty what the result of the query would be). In this case, the non­

query update uses the same learning rate. We used El = 10-2: when a transition 

begins to be estimated as being more than 99.9% certain, we consider it certain. We 

acknowledge that we did not test this setting on POMDPs which had transitions in 

which some transitions occurred with less than 0.1% probability. However, if one 

believe this can be the case, one can simply lower 1'02. This heuristics works really well 

to economize queries in cases where some transitions are certain at the beginning. 

When queries are not useful anymore When (Variance> E3)II(NReq < Nmin), 

the estimation of the value function is good enough, so we can begin to do a non-
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query learning of the parameters. However, in the current setting we use a lower 

learning rate when this is the case. (we divide the normallearning rate by 100). This 

allows to compensate the great variance introduced by non-query learning. Wh en 

the condition is fulfilled, having more precision on the value of the parameters do not 

influence the return much. Note that since it can be useful to still have finer values for 

the parameters (we might want to use the model we built later on for other tasks in 

the same environment), we still use non-query learning, so that we can learn a model 

that brings the optimal reward and that is coherent with the sequence of actions and 

observations. The value of 103 depends on the problem we are solving, and especially 

on the order of magnitude of the reward function, and on the quality we're willing to 

get by the use of queries. We mostly used values around 0.5 for the threshold of this 

heuristic. 

4.4.5 The learning phases 

A typical execution of the algorithm goes through the following phases: in a first 

phase, we use a learning of good quality, with a high learning rate. Queries are 

made at every step, except when we can avoid making them because of certainties in 

the model. The first phase ends when the variance of the value function becomes low 

enough. Then we go through a second-phase which is a learning with full autonomy, in 

which the parameters are still improved. Wh en we believe our parameters are certain, 

we can then switch to a third phase in which no learning is made anymore and we 

can just use an optimal policy for our learned model. With such an algorithm, we can 

sometimes converge to a model that is not the true one, but that (1) is coherent with 

the sequence of actions/observations experienced and (2) has an optimal policy that 

is the same than the true optimal policy. If we really wanted to have a guaranteed 

exact model, we wou Id need to do queries at every step. 
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4.5 Non-stationarity adaptation 

We want our algorithm to adapt to non-stationary environments. In non-stationary 

environments, the parameters of our POMDP model may be varying in time. This is 

a setting to consider if we want to apply POMDP framework techniques to real-world 

robotics, since the precisions of sensors and the motion behavior of robots may very 

well vary with time. Very few algorithms in the literature are able to cope with a 

non-stationary partially-observable setting. But in our case, adapting MEDUSA so 

that it can manage non-stationary environment can be simple: we need to give more 

weight to recent experience in the Dirichlet structure. For this, we proceed to the 

following: each time a hyper-parameter a is increased byan amount of xÀ, we decay 

all the hyper-parameters corresponding to the updated multinomial distribution by 

zr, where 1/ E [0; 1] is the decaying factor; this decreases the confidence of the model 

but do not change the value of the most likely parameters2 . 

. * 1/xai = ai _ ()* 
'th = 1, ... N, (). new = N N -. old ., " x "EV ., 

L..Jk=l 1/ ak L..Jk=l uk 

The consequence of these update rules is that the older an update is, the least 

its influence over the current uncertainty model is. We note that the equilibrium 

confidence Ceq, according to the way updates are made, has the following expression: 

Ceq = Àl~V' This confidence is obtained after an infinite number of time steps. It is 

an indicator of the confidence we globally have in past experience. The higher this 

value is, the more stable we expect our environment to be, since the confidence is 

inversely proportional to the variance we have. 

2When a query is made x is equal to 1. In this case we multiply aH the parameters in the 

modified distribution by v, which (as shown) only modifies the confidence associated to the updated 

distribution. When a non-query update is made, x can be smaller than one. The setting will then 

guarantee that when the non-stationarity adjustment is made the most likely value in all the modified 

distributions does not change, but their confidence is decreased in an amount that is proportional 

to the amount of the update. 
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Note that whenever we know that our environment might have experienced a 

change we should decay all the parameters of the Dirichlet structure by sorne amount. 

We might know that our environment have experienced a change if we changed sorne 

parts of our robot in a robotics application; we might also expect our environment to 

change each time we turn off and on our system. 

Note that when the environment is non-stationary, we should al ways set the 

threshold 102 of Equation 4.10 to 0, since an uncertain parameter is never completely 

learned. Non query learning should always be accomplished to keep track of the 

parameters. 

Our experiments show that if the parameters vary slowly enough, it is indeed 

possible to follow the evolution of the model by using non-query learning. Our ex­

periments also show that if there is a big change in the environment, the system can 

detect it and ask for queries until the parameters converge to their new values (see 

Section 6.1.5). 

We specify that in a non-stationary environment in which we believe changes are 

small, the safe decision-making should be preferred. 

4.6 Imperfect queries 

We now investigate how MEDUSA can handle imperfect queries, since the oracle may 

make mistakes while identifying the hidden state. If we believe it might be the case, 

we need to consider the following modifications. 

• Query results need to be filtered. If none of the models can explain the query 

result (if the belief of the returned state is ° in every model), we proceed as if 

the request had not been answered. 
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• If a request remains without answer, we do a non-query update with a lower 

learning rate instead. 

• Non-query learning updates should use the belief state instead of the alternate 

belief state in their process. Since query results may be wrong we do not want 

to use them more than once. 

• The threshold El (see Equation 4.10should be set to a negative value (the Alter­

Entropy heuristic should not be used at aU). This a consequence of the previous 

point. 

• The learning rate should be lower, since the variance in the learning is higher. 

• Noise in the query answer introduces bias when query learning is made. We can 

make this bias slowly disappear if we consider that the model is non-stationary. 

Therefore, we should also use the non-stationary setting described in Section 

4.5, even if we believe our model is stationary. ActuaUy, the noisy query answers 

can be seen as an additional non-stationarity in the model. 

Note that when the query is noisy we lose aU theoretical guarantees of convergence, 

and the higher the noise is, the higher the variance of our learning becomes. We show 

experimental results with noisy queries in 6.4 

4.7 Technical issues 

In this section we discuss some implementation details that are pertinent to MEDUSA. 
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4.7.1 Solving the models 

The method we used for the computation of the policies is the finite grid method, 

implemented by Cassandra (Cassandra, 2004): it is a grid-based method (see Sec­

tion 2.1.2) that finds an approximate solution for a finite horizon by using a grid of 

a finite number of belief points. This method is able to find an approximate solution 

fast. It needs two parameters, which are the maximum number of grid points on 

which the value updates will be performed and the planning horizon. The higher the 

horizon is the more time the solving takes and the higher the number of grid points 

is, the more memory is needed. By tuning these parameters we can therefore do a 

tradeoff between computational requirements and the quality the solution for each 

sampled model. 

In the setting we tested, we had very weak prior information at the beginning. As 

a result, the POMDPs sampled at the beginning produced very poor policies; yet if 

we supposedly have to solve aIl of them exactly nonetheless. On the other hand, in 

the end of the execution, we needed to have very precise value functions and to solve 

the new sampled models as weIl as possible. 

The higher the planning horizon and the number of grid points are, the more 

precise our solutions are. We diminish computation time intelligently by starting 

with low values for this parameters, and increasing them progressively with time. 

In the same logic, we also start with a small pool of models, that increases at each 

sampling, until a maximum number of samples is reached. 
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4.7.2 Lost models 

In large state space problem, with uninformed priors, especially at the beginning, sorne 

models are very poor. According to them, a sequence of actions and observation they 

experience will have a probability of happening that is nearly zero. Since very low 

probabilities tend to become 0, the beHef state ends up being at 0 for every state. 

In order to take this into account, the first thing we do is to detect when this hap­

pens and flag the models as "lost". The models are then removed from all procedures 

and weight computations and wait to be pruned out and replaced by another model 

or wait for the next scheduled restart, to be re-activated. When too many models are 

lost, the decision making procedures take random actions until the next scheduled 

restart, and non-query learning is disabled. 

We have experimented ways of improving this simple setting. The first way was to 

diminish the weight of the lost model each time it gets lost, and to put the beHef to a 

uniform beHef in order for its beHef to recover a legal value. Instead of putting them 

to an uniform belief, we also considered setting them to the belief of the non-Iost 

model that was the closest3 to them. 

Actually this does not improve matters, since models that get lost once tend to 

be lost again and again, so with our first setting their weight tend to 0 anyways: 

pruning them out is the best thing we can do with them. But it is still useful to 

detect these lost models and remove them from the computations because otherwise 

the procedures can be flawed. Note that this issue happens only on large domains, at 

the beginning of the execution, when the prior is poorly informed. In realistic settings 

(our prior would be more reasonable) this would probably not happen. 

3We used a simple sum-of-squared-parameter-differences metric. 
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Nreq= 0; h = {}; 

D =1ni tStructDirichlet(Prior1nformation); (Cf Section 4.2). 

for (i = 1 ... n)-(n = 20) do 

P, =Sample(D); 

pO, = p, =ComputeLikelihood(D); (See Eq. 2.1). 

11", = ComputeOptimalPolicy(P,); (Pineau et al., 2003). 

b, = bo; 

f3, = bo; (bo is known). 

end for 

for 1'1 loops do 

a =DecisionMaking(D, h, Pl ... Pn , 11"1 •• • 1I"n); (See Section 4.3. 

z =ExecuteAction(a); h = {h,a,z}; 

for (i = 1 ... n) do 

b; =BayesianUpdate(b" a, z); 

f3; =BayesianUpdate(f3" a, z); (See Equation 2.1). 

end for 

if (1nfoGainO> f2)-(See Section 4.4.3) then 

if «Variance(» f3)&( NReq < Nmin»-(See Section 4.4.3) then 

if (AltEntropyO> fl)-(See Section 4.4.3) then 

s' = OracleActi veLearningQueryO; NReq++; 

if (QueryFilteringOk(s, Pl ... Pn»-(See Section 4.6) then 

Vs a(s,a,s') <- a(s,a,s') + L:,w,f3,(s)À; 

a(s', a,z) <- a(s',a, z) + À; 

Vi E {1 ... n}f3;(s') = 1 'Ix E S {s'}f3;(x) = 0; (À = 0.2). 

else 

NonQueryUpdate (D, a, z, Pl ... Pn, À'); (See Eq. 4.7 and 4.9, >.' = 0.002). 

end if 

else 

NonQueryUpdate(D, a,z, Pl ... Pn, À); (See Eq. 4.7 and 4.9, À = 0.2). 

end if 

else 

NonQueryUpdate(D, a, z, Pl ... Pn , >.'); (See Eq. 4.7 and 4.9, À' = 0.002). 

end if 

end if 

for (i = 1 ... n) do p, =ComputeLikelihood(D) end for. 

D =NonStationarityUpdate(D,v, misesAJour); (Cf Section 4.5). 

if (Current1ntervalEnds) then 

Pn +! =Sample(D); 

n <- n + 1; pOn+! = Pn+l =ComputeLikelihood(D); (See Equation 2.1). 

1I"n+l = C(Pn + 1); (Pineau et al., 2003). 

bn +l =BayesianUpdate(bo, hl; 

f3n+l =BayesianUpdate(bo, h,LastQuery); (See Equation 2.1). 

if (n = nmax) then 

DeletePOMDP(arg min(pl, ... ,pn»; 

DeletedPOMDP<- Pn+l ; 

else 

n<-n+1; 

end if 

end if 

end for 

Table 4.1: The MEDUSA script. 
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4.8 Conclusion 

We have proposed an algorithm, MEDUSA, that brings a nearly optimal learning 

of a partially known POMDP model with the help of an external agent (or oracle). 

The algorithm is an extension of Active Learning to the POMDP framework that 

uses Bayesian Learning ideas to produce a robust setup, able to learn quickly. Even 

though the algorithm is not theoretically optimal as Decision-Theoretic Planning 

was, its heuristics are clever, and it can scale easily to large problems, as we show in 

Chapter 6. 

MEDUSA allows two phases of learning; the agent first goes through an active 

learning phase during which it follows an explorative policy and has access to the 

oracle to enhance its learning; once this phase is finished the agent can continue its 

learning by itself, so that it can refine his model of the environment and become fully 

autonomous. 

The MEDUSA algorithm allows applications in robotics, where the first phase 

would simply be a short calibration phase, where a human can be the oracle. Fur­

thermore, since it is a model-based approach, once a model is learned it can be used 

as a prior for another task; this is made easy by the fact that MEDUSA allows to 

easily use priors; in robotics, the algorithm would therefore allow the calibration done 

for the first use of a given robot to be applied for other uses of the robot, even if the 

task is different. 



Chapter 5 

Theoretical properties of the 

MEDUSA algorithm 

We have proposed the MEDUSA algorithm for active learning in POMDPs but we 

have only justified it intuitively. In this chapter we study the theoretical properties 

of our proposed algorithm. We analyze how our decision-making procedures behave 

when the number of models is infinite, and how this behavior is actually the best 

exploratory behavior one could have. 

Furthermore, we explain the theoretical conditions under which MEDUSA is guar­

anteed to converge and learn the true model. This is a very crucial thing to study, 

since if with sorne conditions the algorithm is guaranteed to converge, it will, as long 

as the conditions are verified, give guarantees of convergence to anyone that would 

apply our work. 
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5.1 MEDUSA with an infinite number of sampled 

models 

We analyze in this Section the policies executed by MEDUSA when the number of 

sampled models is infinite. 

We use the notations of Section 2.1 for POMDPs. Dt is the Dirichlet structure 

corresponding to the POMDP at time t of the process. We calI M the ensemble of 

PODMPs having ISI states, lAI actions and IZI observations. 

Let f be sorne function, mapping M to a subset of R. Ji is the ensemble of aIl the 

possible histories (containing aIl the possible sequences of actions and observations). 

Let E(fIDt ) be defined by Equation 5.1 

E(fIDt ) = r f(m)p(mID)dm 
lmEP 

(5.1) 

Here, p(mIDt) is the likelihood of m E P according to the distribution Dt. It is 

equal to the normalized product over the different Dirichlet distributions of the indi­

vidual likelihoods. The likelihood of a set of parameter given a Dirichlet distribution 

is given by Equation 2.7. 

E(fIDt) therefore represents the expectation of function f(m) when m was sam­

pIed from the Dirichlet system Du. 

5.1.1 Preliminary theorem 

We first present a preliminary theorem, that proves that the way the models are sam­

pIed in MEDUSA, combined to the way the weights are defined, allows to approximate 
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without bias the probability an action has to be optimal given an uncertainty mode!. 

Theorem 1: Take N models ml ... mN, which were sampled according to the 

Dirichlet systems 'Dt! ... 'DtN . Let pOl . .. pON be the likelihood of each of the models 

according to their corresponding distribution. Let Pl ... PN be the likelihood of the 

models according to the current distribution 'Dt. Let FE M x'H x A ~ {O; 1} be the 

function returning, given a model m E M, a history h E 'H, and an action a E A, 

the value 1 if the action is optimal and the value 0 if it is not. Th en, as N ~ 00: 

Nm p. Nm p 
Vh E 'H, Va E A, L -K t F(h, a, mi) ~ E(F(h, a, m)l'Dt ), with K = L _k (5.2) 

i=l pOi k=1 pOk 

We will make an application of the importance sampling techniques. It is 

necessary to use correction factors because we want to evaluate the expected value 

of a function over a distribution by using samples which were drawn from other 

distributions. According to the importance sampling techniques, we have: 

So, the function applied to the samples is an unbiased estimation of the expec­

tation of the function F(h, a, m) when m is sampled by the Dirichlet system Dt. 
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So, when the number of samples is infini te, the mean of this estimation therefore 

converges towards the expectation. 

Importance Sampling is an efficient method to reduce bias when a process corre­

sponding to a given distribution is evaluated to another distribution, UsuaIly this is 

done at the cost of increasing the variance. ActuaIly in our case the variance is not 

increased that much, since models are re-sampled regularly: each time a new model 

is sampled, its weight before normalization is 1. Big variance problems happen only 

when aIl the weights before normalization converge to 0, which therefore does not 

happen. We also rarely have a weight that dominates aIl others since aIl the weights 

ultimately converge to 0 (this is not true however for the real model which, if it is 

sampled, will have its weight before normalization converge to 00, yet this just implies 

that if the real model happens to be sampled, the policy executed by MEDUSA will 

converge to the deterministic optimal policy of the real model, and this is not su ch a 

bad setting). 

Note that when we drop the model with the lowest likelihood this usuaIly has no 

influence on the estimations, since most of the time the associated weight of the model 

is nearly O. Yet we drop models mostly to keep memory requirements manageable. 

5.1.2 Limit of policies and heuristics 

In Theorem 1 the left side of the equation is the probability action a has to be taken 

according to the exploratory DecisionMaking procedure in MEDUSA if the cur­

rent situation is {h, ml, ... ,mNm , 'Dl, .. . 'DNm , 'Dt} (see Section 4.3.1). The Theorem 

therefore implies that in the limit of an infinite number of models, this probability is 

the probability a model drawn according to 'Dt would have a as an optimal action. 

This means that the exploratory policy defined in Section 4.3.1 is, in the limit of 
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an infinite number a policy that selects actions proportionally to the probability they 

have of being optimal according to the current uncertainty model. 

Because executing a policy allows MEDUSA to estimate more precisely the pa­

rameters the policy "uses" , this is therefore an optimal method to learn. 

Theorem 2: The value function estimated by MEDUSA for history h, action a 

is unbiased and therefore converges to its expected value given an infinite number of 

models. 

Nm p' Nm p 
Vh E H, Va E A, z= K ~O V(h, a, mi) ~ E(V(h, a, m)IDt ), with K = z= _k (5.5) 

i=l P i k=l pOk 

The proof is identical to the pro of of Theorem 1, we just have to replace function 

F by function V. 

Theorem 2 implies that if we pick the action with the greatest estimated value 

function like we do in the safe decision-making case (see Section 4.3.2), it is actually 

the action whose expectation has the greatest value. So it is indeed, if we don't 

consider learning perspectives, the best possible action. 

Furthermore, if we consider Boltzman decision-making, this also guarantees that 

the values that are put into the computation of the probabilities are unbiased. 

If we use proofs analog to the proof of Theorems 1 and 2, we can also prove 

that the heuristic functions InfoGain, AltEntropy and PolicyEntropy are also un­

biased estimators. It means that the information gain estimation converges to the 

expected InfoGain given the Dirichlet, that the AltEntropy estimation converges to 

the expected alternate state entropy given the Dirichlet, and that the PolicyEntropy 

heuristic really converges to the real expected policy entropy. 



CHAPTER 5. THEORETICAL PROPERTIES OF THE MEDUSA ALGORITHM64 

However, the proof does not hold for BelieNariance and ValueVariance. For these, 

we have no guarantee that our variance estimation will converge to the real variance. 

5.2 Convergence of MEDUSA 

We now study the conditions needed for the convergence of MEDUSA. We first explain 

what theoretical conditions are needed, and then explain how MEDUSA can meet 

them. 

5.2.1 Conditions of convergence 

Consider the following conditions: (Cl) The learned model is stationary (and there­

fore the parameter 1/ defined in Section 4.5 is set to 1). (C2) through the Dirichlet 

system structure we do not impose any conditions that contradicts the true mode!. 

Theorem 3: If (Cl) and (C2) are met, and if a query is made at every step, 

the estimation we have of the useful parameters converges with probability 1 ta their 

true value if: (1) at each time step, each action has a non-zero probability of being 

taken. (2)the POMDP is reset ta its initial state at regular intervals. 

As we said in Section 3.1, we cali useful the parameters that can be evaluated 

through certain action sequences. Parameters that are not useful do not influence 

neither the value function nor the optimal policy. 

Proof: The estimation we have for each parameter (the most likely value given 

the Dirichlet) is equal to the maximum likelihood estimation of the parameters given 

the sampi es seen since the beginning of the algorithm and given the prior which is 

Vi E [1 ... N] e; = Lfi . We know that the maximum likelihood estimate always 
k=l ak 
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converges to the true value if there is an infinite number of samples. Note that the 

prior does not matter here: an infinite number of samples weights more than any prior 

we may have set. If a given parameter p is useful, there exists a sequence of action 

that from a starting state has some probability of ta king the agent to a point where 

it can estimate parameter p. Since every action has a non-zero probability of being 

taken, this sequence has a non-zero probability of being performed. Furthermore, 

since we perform an infinite number of traces, we do obtain an infinite number of 

sample for parameter p. Therefore aIl useful parameters get an infinite number of 

samples and the convergence is proven. 

5.2.2 Theoretically-guaranteed MEDUSA 

The script presented in Table 4.1, with the exploratory decision-making, does not 

guarantee that each action has a non-zero probability of being taken at each time 

step. However, we can build a Theoretically-guaranteed MEDUSA by doing this 

sm aIl modification. Let EE be the exploration rate: at each time step the agent has 

the probability EE of accomplishing a completely random action. 

Theorem 4: If (Cl) and (C2) are verified, if we use the values El = 0, 102 = ° et 

103 < 0, and if we add an exploration rate EE > ° then the useful parameters converge 

towards their true values given an infinite run. 

Proof: If InfoGain= 0, querying has no effect on the model we're learning, so 

skipping a query does not change anything. Furthermore, if Al tEntropy= 0 it means 

that we do a non-query update with exactly the same effects as if we did a query. 

103 < 0 implies that we do not use the Variance heuristic. So, the algorithm we use 

is in this case is equivalent to doing a query at every step, except that we remove 

the queries that can be economized. Since using an exploration rate guarantees 

that each action has a non zero probability of being taken at every time step, the 
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conditions of Theorem 3 are therefore aIl fulfiIled, and we can apply it, thus proving 

the convergence. 

However, our experimental analysis of MEDUSA shows that giving a significant 

value to EE has a very bad influence on the quality of the policies executed during 

learning and on the quickness of convergence to the optimal policy. So if we want to 

have this theoretical guarantee, we need to lower our performance. 

5.2.3 Why our implemented version still works 

In most of the POMDP environments (in every POMDP in (Cassandra, 2004)), the 

reward structure is such that for any history, for every action, there exists at least 

one model such that the action is optimal. Note that this implies that there is an 

infinite number of them, since the optimal action function is constant per interval. 

We call this property the non-coercion property. 

We can argue that if it is not the case, an action that would given a certain history, 

be sub-optimal for every assignment of the parameters has associated parameters that 

would have no influence on the optimal value function and on the optimal policy. So 

we might actually consider not learning these parameters. 

Theorem 5: If the reward structure has the non-coercion property, if (Cl) and 

(C2) are fulfilled, if the query strategy is the same as in theorem 4, and if we use an 

infini te number of models, then our MEDUSA algorithm with the exploratory policy 

is guaranteed to converge to the true model. 

Proof: If the condition on the POMDP is fulfiIled, then according to the analysis 

made in Section 5.1.2 every action will have a non-zero probability of being taken for 

aIl possible history. We can therefore apply Theorem 3, which proves the convergence. 



CHAPTER 5. THEORETICAL PROPERTIES OF THE MEDUSA ALGORITHM67 

Theorem 5 justifies why we did not use an exploration rate in our experiments 

and why our tests were successful. We precise that the property described in this 

section is actually verified in all of the POMDPs to which we applied our algorithm. 

5.3 Conclusion 

Throughout this chapter we made a theoretical study of the MEDUSA algorithm. 

We have proven that the learned policies converge to the optimal as the number 

of sampled models goes to infinity. We have proven that under certain conditions, 

and in particular under an infinite number of queries from the oracle, the agent was 

guaranteed to learn the exact model and to find an associated optimal policy. We 

have discussed that, though a strictly positive exploration rate would be required for 

convergence, in most cases the convergence can be obtained without it. 

We have proven that MEDUSA is more than a heuristic algorithm. It is actually 

a theoretically sound method, and is in the limit as optimal as the Decision-Theoretic 

Planning setting. Its learning is guaranteed and is guaranteed to be optimal under 

certain conditions, which were described in this chapter. 



Chapter 6 

Experimental analysis of MEDUSA 

We have justified the MEDUSA algorithm intuitively and theoretically. However, 

for the sake of completeness we need to proceed to an experimental validation. We 

test many different settings, in order to prove the robustness of MEDUSA wh en 

confronted to problems of various size or difficulty, and do a study of the influence of 

its parameters. 

6.1 Experiments on the tiger POMDP 

The first set of experiments were done on the Tiger POMDP, that we described in 

2.1.1. This environment has the property of being quick to solve, and so we did many 

experiments in it. We postulated three different kinds of prior information one could 

have about the problem. 

68 



CHAPTER 6. EXPERIMENTAL ANALYSIS OF MEDUSA 69 

6.1.1 With a single unknown parameters 

In this first experiment we know with full certainty every parameter except the prob­

ability of receiving the correct observation. We actually initialize it at 0.5, with a 

confidence of 1. We also know that this parameter applies in both states (with a 

symmetry). 

The following experiment uses a model redraw at every step, and the graphs on 

Figure 6.1 are the means over 10 runs. We chose parameters that brought a reliable 

convergence with a minimum number of queries. 

The mean discounted reward graph is built with the following experimental set­

ting. At regular intervals, we simulate a pause in the learning, keep the current 

sampled models and the current uncertainty model. With these we apply the safe 

decision-making during a good number of runs (20,000). We compute the mean dis­

counted reward associated to them, and then pursue learning. This setting allows to 

measure the reward returned by MEDUSA if we stopped learning at the current time 

step. 

We first discover that very few time steps are actually needed to learn this param­

eter (300), and even fewer queries. The number of needed queries is usually around 

33. Lots of queries can be spared because the transition when the Hear action is 

certain and it happens very often, We also see that the optimal reward is al ways 

reached quickly, and that the parameter converges to its true value (with a 0.5% 

precision). We see that on this problem, a 0.5% precision is sufficient to obtain the 

optimal policy. 

Let us comment on the evolution of the heuristics. As we described in Sec­

tion 4.4.3, these are used to decide when to do queries. A good heuristic is one 

that is low when the currently executed policy is optimal. As we can see, Information 
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Figure 6.1: Mean results for MEDUSA on the Tiger experiment, where only one parameter is 
unknown. 
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Gain, Belief Variance, and Value Variance have very similar behavior: they decrease 

exponentially. This is a good behavior, since at the same time the reward increases 

in the same way. 

We kept Information Gain because it is able to identify steps in which the queries 

are useless. However it is a bad indicator of how good our model already is. Even 

though Belief Variance and Value Variance have similar performance on this example, 

and both could be used, it is preferable to use Value Variance because the case might 

arise when the uncertainty over the belief state does not influence the value function, 

and in this case queries become useless. We can also see that Value Variance decreases 

more slowly than Belief Variance. 

We also see that Policy Entropy is a bad heuristic to use, as its variance is very 

high. For instance we see that it continues to have positive values long after the 

optimal policy has been reached. 

Plotting the mean of Alternate State Entropy over 10 runs would be pointless, 

since this heuristic is only used to decide when we can spare queries and is not 

supposed to be an indicator of convergence, so we plotted it over 1 run instead. It is 

cleared that it becomes non-zero as soon as a door is opened, and that it goes back 

to zero when a query is made. We can see that in the non-query learning part of the 

algorithm, it does not go back to zero anymore (since no query is made anymore). 

We can see that when the query learning stops, around time step 120, the value 

of the parameter is still unprecise (0.87 in mean, instead of 0.85). During the steps of 

non-query learning it converges towards 0.85. Here the non-query learning does not 

faB into a local minimum and the parameter converges to the correct value. This is 

an indicator that non-query learning can work. It means that if we had an estimation 

of the parameters'd value, we could learn to correct it using non-query learning. 
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6.1.2 Justification of the query decision 

We now compare the performance of different methods for the query decision. In 

Section 4.4.4, we have described the combination of heuristics we used for the query 

decision in MEDUSA. In this section we bring an experimental proof for the perfor­

mance of the ch os en query decision compared to a set of other query decisions. We 

show the performance of a set of query decisions, on the same Tiger problem with a 

single unknown parameter. 

Since, as we showed on the previous Section, the policy entropy is a biased indica­

tor, and since the variance on the belief state has a behavior similar to the variance 

of the value function, we selected only three heuristics. For each of these heuristics, 

Variance, InfoGain, and AltStateEntropy, we pick an optimal threshold and run ex­

periments using each of these. We compare the resulting performances on Figure 

6.2, where we plot the evolution of the mean discounted reward with the number of 

time steps for different possible query decisions, and on Figure 6.3, where we plot the 

evolution of the mean discounted reward with the number of queries. 

The query decisions we study are the following. First, we use the variance on 

the value function. As we can see on the results, using only this heuristic may not 

be very efficient. We do not always converge to the optimal performance when the 

threshold is too high. The main advantage is that the number of queries is always 

bounded. 

We also study a decision based on the InfoGain heuristic. From our experimental 

results, we see that it is more efficient than the Variance heuristic. It is actually the 

fastest heuristic to converge. But it takes more queries to reach the optilI!-um than 

with the combinat ion. 

The third heuristic we study is the Alternate State Entropy heuristic. It 
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Figure 6.2: Evolution of the performance with the number of time steps for a query decision based 
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Figure 6.3: Evolution of the performance with the number of queries for a query decision based on 
different heuristics. 

actually converges each time, it also does not stop doing queries. A lot of time step 

is also needed to reach convergence, and queries are made at nearly every time step. 

The combination of the three heuristics that we used in final is better than each 

of them individually. This is particularly visible since the number of queries needed 

to reach the optimum is the lowest overall. However the convergence is slightly slower 

to reach in mean than when only Infogain is used. But the combination is better than 

infogain because less queries are made and because the process stops earlier. 

These experiments therefore show that combining the heuristics brings better 

results than using each heuristic separately. 
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Figure 6.4: Mean results for MEDUSA on the Tiger experiment, where many parameters are un­
known. 

6.1.3 With several unknown parameters 

In our second experiment, the prior information is the following: we assume that 

we know only one thing about the Tiger problem, and it is the fact that the Hear 

action does not change the state. AlI the other parameters are initialized at 0.5 with 

a confidence of 1. In this experiment we know anything about symmetries in the 

environment (for instance, the parameter of having a correct observation wh en Listen 

is performed is supposed to be different in the two states): the number of uncertain 

parameters is 22 and so we have 22 Dirichlet distributions. Experimental results are 

shown on Figure 6.4. 
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These experimental results show the following: since the variance on the value 

function has a different evolution depending on the run, in some of the runs it doesn't 

get under the threshold before 2, 000 time steps and the algorithm keeps making 

queries even though the optimal policy has already been reached. We should probably 

have set the parameters differently to fix this. However, this perfectly illustrates the 

difficulty of picking a correct threshold value to make the query decision. 

The parameters that are learned the most precisely are the correct observation 

probabilities (precision is around 2% in mean): this is a consequence of the fact 

that they are the parameters which influence the optimal policy the most (it is very 

important that they are learned precisely). The other parameters are learned only 

approximately (up to 10% difference for some of them on some of the runs). However 

some of these parameters have almost no effect on the optimal policy, in particular 

the parameters that correspond to the transitions when the incorrect door is opened. 

Overall, 100 queries are needed to get a reasonable reward and 300 queries are needed 

to find the best policy. 

Furthermore, we see that non-query learning fails to correct the parameters. They 

fall ta a local minimum. It does not wark as weIl as in the previous experiment because 

here we have many uncertain parameters at the same time so there are many more 

local minima. To avoid them, we should probably use more query learning. However, 

even though the parameters does not converge to their exact correct values, the policy 

is still the optimal one. And this is what we wanted: we wanted to prioritize obtaining 

an optimal policy over finding exact values for the parameters. The ValueVariance 

heuristic helps ensure this actually happens. 
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6.1.4 With all parameters unknown 

In this experiment, we have no knowledge at ail about the POMDP model, and we 

learn everything from data Ail parameters are ail initialized at 0.5 with a confidence 

of 1. This is a harder problem since the agent has ta learn that the Listen action 

does not change the state. Note that this is the usuallearning setting for the learning 

of POMDPs (Chrisman, 1992; Shatkay and Kaelbling, 1997; Kaebling et al., 1998). 

Experience-based approaches manage ta solve this problem sa it is important ta check 

if our algorithm is able ta solve it. 

As the value variance heuristic had tao much variance ta see when the model 

was good enough under this setting, it was necessary ta use a coherent minimum of 

queries. We found out that in arder ta find out the optimal policy every time, it 

was necessary ta impose at least 1,500 queries. As we can see on the experimental 

results shawn on Figure 6.5, after 1,500 queries the parameters of the model are still 

not learned perfectly. And we can see that the model learned by non-query learning 

is not quite correct (the probabilities that the tiger moves when we listen that the 

algorithm finds is in mean of 0.9, whereas the true probability is 1.). However, one 

can see that the learned model has the same optimal policy as the real one and that 

the inexact learned model can very weIl explain sorne of the sequences of actions and 

observations experienced. We ais a observe that the probability of receiving the correct 

observation when Listen is performed is the only one that is estimated correctly, and 

it is because it is nearly the only parameter that has a relevant influence on the 

optimal policy. 

This experiment shows that it is indeed possible ta learn completely a model with 

queries. And it also shows that in arder ta find the best policy one need not learn 

the exact model. An approximate model can be sufficient ta act optimaily. 
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Figure 6.5: Mean results for MEDUSA on the Tiger experiment, where every parameter is unknown. 
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Figure 6.6: Evolution of the reward on the Tiger problem. There is a sudden change in the parameter 
pat time step O. 

6.1.5 Changes in the environment 

We consider the question of whether MEDUSA is robust to changes in model pa­

rameters. This arises in non-stationary environments, where parameters can either 

(1) slowly drift over time (e.g. slow decay in the wheel alignments), or (2) change 

abruptly (e.g. the sensors are damaged and become less precise, or there was another 

agent in the environment that suddenly changed its behavior). Throughout these 

cases, as we showed in Section 4.5, MEDUSA is designed to adapt to the changes 

and learn the new correct mode!. The ideas is that if the change in parameters is 

small, the non-query learning is sufficient, however if there are large changes, it is 

more efficient to resort to queries. 

We perform tests on the Tiger domain, where we assume that the probability p 

of correctly detecting the tiger when Listen is performed suddenly changes. We set 

the parameter l/ described in Section 4.5, that characterize the decrease in confidence 

for our past estimates, to different values. Figure 6.6 summarizes the results. As 

expected, the speed at which MEDUSA learns the new model depends on the con­

fidence (sum of Dirichlet parameters). In each case, the algorithm detects quickly 
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that the parameter as changed (the value of the variance heuristic goes quickly above 

the threshold), and switches to query learning so that it adapts to the new param­

eter. This would be an interesting feature to have on a robot. If it senses that is 

environment has changed, it caUs for the operator asking for a new calibration phase. 

When the confidence is low «100), the agent quickly adapts to the new param­

eters, even when there is a large shift in the model (however the performance before 

and after the change is slightly sub-optimal since we are cautious about further pa­

rameter changes). When confidence is high (> 1000), the agent takes many more 

steps to learn new parameter values (and when the change is smali (from 0.75 to 

0.85) the agent actually takes around 100 time steps to realize that the environment 

has changed and to cali for queries). Note that the optimal reward is reached at the 

end of the experiment and was reached at the beginning of the experiment. 

6.2 Experiments on classical POMDP problems 

We now show that MEDUSA can work on many problems other than Tiger. In this 

section we apply it to classical POMDP problems with very different settings. 

A set of POMDP problems is available for standard evaluation of algorithms in 

(Cassandra, 2004). For each of them, we build the Dirichlet structure using the 

foUowing procedure: for each parameter that correspond to a deterministic transition 

or observation, we set the parameters as certain to 1. For each parameter that 

correspond to an impossible transition or observation we set the parameters as certain 

to o. Ali the other parameters are completely unknown. We also impose constraints 

on the parameters to accelerate learning: for example if in the real model one of the 

distribution is [0.1 0.2 0.7] and another is [0.70.2 0.1], we detect it and impose that 

these two distributions use the same hyper-parameters. The correspondence is not 

the same in the second case. None of these constraints contradict the true model, 
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PDM-PO -S- -A- -z- Na Req.Med. N.Ex.PSR Return % 

Paint 4 4 2 6 700 4000 3.27 100 

Shuttle 8 3 5 10 0 1024000 32.80 100 

Network 7 2 4 36 1300 2048000 244 95 

Id maze 4 2 2 3 100 - 1.25 100 

4x4 maze 16 4 2 15 200 - 3.73 100 

4x3 maze 11 4 6 16 800 1024000 1.90 100 

Cheese 11 4 7 10 100 32000 3.48 100 

Mini-hall 2 13 3 9 12 75 - 2.71 100 

HaUway 60 5 21 84 450 - 1.02 90 

Table 6.1: Description of the POMDP problems of the repository. 

and most of the time they are reasonable hypothesis that one can make given the 

problem, considering for instance state symmetries1
. 

In Table 6.1, we give the total number of hyper-parameter corresponding to our 

system Na; we also give, for each model. its number of states, of actions and of 

observations. "Return" is the optimal return for the true model. N.Ex.PSR indi­

cates the number of samples needed to learn the model with an experience-based 

method (Wolfe et al., 2005), without any prior: our results are also given in the table: 

% is the percentage of the optimal return that we manage to reach and "N.Req" is 

the number of requests that is needed to reach this value. 

Note that aU these experimental results were obtained with the same set of values 

for the parameters of the algorithm. The only parameter that we changed was the 

minimum number of queries needed: it can be 0 for the Shuttle problem and needs 

to be at least 1000 for the Network problem. 

1 Even when the exact same distribution was found for a transition probabilities set and for an 

observation probabilities set, we used a different set of hyper-parameters, sinee it is very unlikely 

that the two are actually related. 
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Figure 6.7 shows the return evolution for aIl these learning problems. Here are 

sorne comments: 

In sorne cases the policy is very good at the start, even though we have not learned 

anything yet. It means that the parameters that are uncertain do not influence 

the optimal policy at aIl. In the Shuttle problem, the uncertain parameters do not 

influence the optimal policy at aU so no learning is needed. 

In sorne cases (like 4x3) the true distributions that are uncertain are actually 

uniform. Since we initialize our Dirichlet parameters in every case at a uniform 

distribution with low confidence, the policy is actually better at the beginning than 

what it gets after the learning has begun. This is because the first sampI es modify 

our uniform distribution so the policy becomes worse. After, the agent does realize 

that the distribution is uniform and the policy becomes optimal again. 

In mostly every case the optimal policy is reached. In Hallway and Network the 

policy we find is slightly sub-optimal. However if we didn't use a Variance threshold 

and switched to non-query learning we would observe convergence. 

Our learning is orders of magnitude faster than experience-based approaches, 

which can require millions of steps to learn problems with less than a do zen states. 

We note however that experience-based approaches do not require an oracle. 

6.3 Influence of the precision of the prior 

We present experiments with MEDUSA on the Tiger-grid POMDP problem (Littman 

et al., 1995). We have considered three kind of priors. The first one, simple, only 

supposes that the structure of the maze is known, and we do basic symmetry assump­

tions: the number of corresponding alpha-parameters is 164. The second one, more 
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Figure 6.8: Experimental results on Tiger-Grid. 

complex, supposes we know the relationship between the observation distributions: 

the corresponding number of alpha-parameters is 61. We also tried a third experi­

ment, in which we used only 8 alpha-parameters. There was 4 distributions, 3 for 

each action and 1 for the observations. We learned only one probability, which was 

the probability of the action "succeeding", or the probability of the observation being 

"true". We supposed that ail the other transition outcomes or wrong observations 

were equally likely. 

The following figure shows the experimental results corresponding to the first 

and second setting. In the third case, the reward does not increase at al!. The 

optimal policy remains "do nothing". Actual!y with the setting we had we could not 

capture the right set of parameters, and as we said earlier there is only a smal! set of 

parameters that leads to an interesting policy. 

We have to tell, however, that this experiment needs huge amount of computation 

time. Furthermore, the parameters have to be tuned very precisely. And even then, 

the convergence sometimes do not always happen. This is known to be a difficult 

POMDP problem to solve, even wh en the parameters are perfectly known. Learning 
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it is an especially difficult task, because the range of parameters in which the policy 

is other than "do nothing" is very narrow. Figure 6.8 shows results with the 2 first 

settings. They, however, show only one run, in a case where the convergence did 

happen. Note that the optimal policy is not obtained, we only have approximately 

60% of the optimal reward. 

6.4 Experiments with a noisy oracle 

We investigate MEDUSA's robustness to mistakes in the query responses. MEDUSA's 

query learning assumes that an oracle can provide exact state identification on de­

mand. However it is more realistic to assume sorne amount of noise in the state iden­

tification provided by the oracle. This allows us to broaden the class of information 

sources we can use as oracle. For example in robotics, one could use a high-precision 

(but expensive or obtrusive) sensor to answer queries while the model is being built, 

and then remove the sensor for standard operation. We have investigated the issue 

in the context of the standard Hallway domain (Littman et al., 1995). It is a small 

maze, and its characteristics were given in Table 6.1. We consider two cases. In 

the first, whenever a query is made, there is a 10% probability that the oracle will 

identify the wrong state (picking one at random), and a 90% that the oracle will 

give the correct answer. In the second case, the probability of a correct answer is 

80%. As we see from Figure 6.9, the quality of the learned model is quite good when 

the oracle is correct in 90% of queries, though it takes more steps of query learning 

(and thus fewer steps of non-query learning) than when the oracle is always correct. 

The performance is significantly degraded for the higher error rate. However the 80% 

query precision model may not have converged yet, as we see in Figure 6.9 that the 

number of queries is still climbing. Only one run is shown, yet we have made several 

and discovered that the variance over the process is very high, especially in the 80% 

case. The mistakes made by the oracle give the learning pro cess a very high variance. 
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Figure 6.9: Results for queries with a noisy oracle. (a) Plot of the discounted reward as a 
fun ct ion of the number of time steps. (b) Plot of the number of queries as a function of the 
number of time steps. 

6.5 A robotics application 

We have investigated applications of MEDUSA on real robotics problems, as the 

algorithm was designed especially for this kind of applications. We used the Carmen 

robotics simulator (Thrun et al., 2000). We allow MEDUSA to get data from the 

simulator (we get a map from it and discretize it) to pro duce a POMDP and to build 

a prior associated to it. We then execute MEDUSA to learn the resulting POMDP. 

The exact POMDP that we investigated is a version of the HIDE problem (Pineau 

et al., 2003). In this environment the agent has to reach a moving person. The posi­

tion of the robot is supposed to be perfectly known, and the movements of the robot 

are perfectly known and deterministic. However, the position of the person at the 

start is unknown, as is the model of its movements. The person can move only to 

the neighboring cells, which it does, stochastically. Furthermore, in the observation 

model, when the robot is one square away from the person he has a non-zero proba­

bility of seeing it in the appropriate direction. Wh en the robot is in the same cell as 

the person it is certain to see it. The prior knows ail these facts: it knows that the 
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Figure 6.10: Map used for the Carmen experiment. 

probabilities of the person moving two cells away is zero, and that the probabilities 

of seeing the person is zero except when near it, and it knows that the probability of 

seeing the person when in the same cell is 1. The behavior of the person is unknown, 

as is the precision of the sensors when the robot is near it. 

When the robot is in the same cell as the person, it can use the catch action, and 

if the person really is here it gets a high reward and the problem ends. If the robot 

uses the catch action and the person isn't here it gets a bad reward. 

We discretize the map into 19 cells. The associated POMDP has 362 states, 24 

observations and 5 actions. MEDUSA is trying to learn 52 alpha parameters, which 

are the parameters that correspond to the person's behavior and the parameters that 

correspond to the robot sensors. 

As we can see from Figure 6.11, MEDUSA converges within roughly 12,000 time 

steps, after having received answers to approximately 9,000 queries. The high number 

of queries required by MEDUSA for this problem is in large part a consequence of the 

fact that the initial model prior is completely uninformed. Using a more informed 

prior would lead to faster learning, but would require more knowledge engineering. In 

the end, it's debatable wh ether it's preferable to provide more precise priors, or require 

more data labelling. To reduce the number of queries, we could also build a simpler 

model with fewer alpha-parameters. The main purpose of these results is to show that 

MEDUSA can in fact learn models for problems with hundreds of states and that the 

approach is applicable to realistic robotic domains. MEDUSA's flexible approach to 
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knowledge-engineering (i.e. combination of model priors, labelled data a.k.a. queries, 

and non-labelled data a.k.a. non-query learning) make it particular attractive for 

real-world domains where parts of the problem can be specified differently . 

.... 
... .... 

(a) (b) 

Figure 6.11: Results for the robot simulation domain. (a) Evolution of the discounted reward 
with the number of time steps. (b) Evolution of the number of queries with the number of 
time steps. 

6.6 Influence of the parameters 

MEDUSA has many parameters (see Table 4.1) and aB of them have an influence on 

the performance. As it would have been tedious to run every experiment on every 

set of parameters, we summarize here what we discovered experimentally when we 

changed the parameters. 

On the hardest problems (Ride, Tiger-grid), it is difficult to find parameters such 

that convergence is obtained in a reasonable amount of computation time and time 

steps. The main issue is that when the quality of the computed policies is diminished, 

the exploratory behavior may not be very good; on the other hand, when the com­

puted policies are of good quality, they take time to be computed. The right tradeoff 

needs to be made. 
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Learning rate À: The learning rate can be equal to 1. A bigger learning rate can 

lead to a convergence to a local minimum. A lower learning rate increases the number 

of step needed to learn and can be used to compensate for a low re-sampling rate (in 

which case 0.2 can be used). 

Non-Query learning rate X: we usually took 0.01)., but this might need to be 

lower. Actually, if we are willing to spend a lot of time steps doing non-query learning, 

it can be very low. It also should be low if the sampling frequency is low. When it is 

high, the convergence to a local minimum is accelerated, which we may not wish. 

Resampling frequency : This definitely should be as high as possible. Drawing 

one model at every time step is the best possible setup (the experimental results with 

Tiger are made with this frequency). The minimum frequency should be around every 

20 time steps. Having a low resampling diminishes the quality of the heuristics, of the 

non-query updates and of the policies executed. We recommend using a frequency as 

high as computationally possible. 

Restarting frequency : Some POMDPs don't even need restarts to be learned 

whereas some need frequent ones. When one is setting this parameter, one should 

consider if the agent can become stuck in some subparts of the state space under 

some circumstances. If it is the case, restarts need to be done. Then they should not 

be too frequent. Note that in a real setting, with an operator, it would be easier to 

decide when to restart. A way to decide the restarting frequency would be to consider 

the smallest N such that Rmax'YN < E. 

Value Variance threshold : This parameter is tricky to set. If it is too low, 

unnecessary queries will be made. If it is too high, non-query learning will be done 
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too early and we will converge to a sub-optimal policy. If there is a lot of certain 

parameters it can be quite high, sinee non-query learning is more efficient. However, 

when the number of certain parameter is low it can be very low. Typical values range 

from 0.1 to 1. 

Minimal N umber of Queries : This parameter varies a great deal between do­

mains. In sorne cases it can be equal to 0 (Tiger) and in others it needs to be 5,000. 

It should be high when the initial prior confidence is low and when the number of 

uncertain distributions is high. If one has no clue, the best is to set it to the amount 

of queries the oracle is willing to answer. 

Value of information threshold : This parameter should be very low. For ex­

ample, 10-5 is a good value. It depends on the precision of model we want to learn. 

Alternate entropy threshold : This parameter should be at most 10-2 • Actually 

if we believe that sorne transitions may occur with very low probabilities, it should 

be decreased. If we do not know, it might be better to simply set it to O. 

StartingjMaximum number of models : The maximum number of models 

should be such that the memory needed by the program is not too high (on big 

problems 10 is a maximum). Furthermore, if the frequency of re-sampling is low we 

need to have a low maximum number of models, as we do not want inadequate models 

to live too long. The starting number should be low if the prior is poor and high if it 

is good. 

Exploration rate : Empirically, 0 is the best value. Random actions usually lead 

to bad performance. However, on sorne complex problems in whieh a very good 
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knowledge of the environment is needed to find an approximatively good policy (for 

instance, Tiger-grid), or in cases where the prior information is weak, it might be 

useful to set it to a strictly positive value. But note that as soon as the exploration 

rate is set to a non-zero value lots of useless parameters are learned so the learning 

always takes more time. 

6.6.1 Tirne and Mernory Requirernents 

A good property of our setting is that the corn pl exit y is only linearly inereased with 

respect to the POMDP solving complexity. However, MEDUSA uses lots of memory. 

The memory resources of the computer are mostly used to main tain the Dirichlet 

priors, the pool of models and their solutions. For the bigger problems (Hallway, 

Tiger-Grid), the memory used can be up to 200 megabytes of memory for 10 models 

(with 1000 grid points). Note that we can diminish the memory requirements by de­

creasing the number of models or decreasing the number of grid points per model: we 

ean do a tradeoff between memory ressources and the quality of the poliey executed. 

New point-based algorithms have been proposed, which are more efficient in their use 

of the belief points (Pineau, 2004; Pineau and Gordon, 2005) 

The costly operation in time in MEDUSA is the redrawingjsolving of a new model, 

which happens in our current setting at regular intervals. For the complex problems 

like Tiger-Grid, the redrawingjsolving can take up to 60 minutes (with a horizon of 30 

and 1000 grid points). Note that we can accelerate the solving routine by decreasing 

the horizon eonsidered but this deereases the quality of the poliey exeeuted. 
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6.7 Conclusion 

Throughout this chapter we have shown experimentally the performance of MEDUSA 

on many different problems. We have shown that with our setup and reasonable priors 

we were able to learn a near-optimal behavior in all the environments considered. 

The necessary number of queries and time steps was usually very small, even for 

large problems. The reliable behavior of the algorithm through different setups (non­

stationarity, noisy queries, different levels of priors, different problem sizes) is a very 

good asset for applications on real problems. However, we do acknowledge that on 

the most complex learning problems, our algorithm can have a high variance and can 

also be parameter-sensitive. 



Chapter 7 

Conclusion 

This thesis studies the problem of making optimal decisions in Markovian environ­

ments that are stochastic, partially observable and partially known. It is a problem 

in which the aim is to make good decisions despite uncertainty in the model, and by 

learning the most useful parameters of the model quickly so that the learning period 

is minimal. 

We presented the POMDP framework, and explained how it allowed agents to 

make optimal sequential decisions in partially-observable stochastic environments. 

We described existing methods to learn parameters and explained how a more efficient 

approach was desirable in order to solve large realistic problems. 

We described the active learning setting for partially observable environments. 

Using ideas from the Active Learning field (Cohn et al., 1996; Anderson and Moore, 

2005), we have made the oracle assumption, and built the theoretically optimal 

Decision-Theoretic Planning algorithm. 

However Decision-Theoretic Planning is intractable to large environments, so we 

built the MEDUSA algorithm, which is an adaptation of Bayesian Learning ap-

92 



CHAPTER 7. CONCLUSION 93 

proaches (Dearden et al., 1999; Strens, 2000) to partiaUy observable encironments. 

It also uses the oracle assumption. MEDUSA is a robust algorithm, able to include 

aU kinds of prior information, to learn in the presence or absence of an oracle, to 

economize the requests to the oracle, and to whistand non-stationarity and noise in 

the oracle. 

We have studied the theoretical properties of MEDUSA, and in particular its 

optimality when it used an infinite number of models and its convergence to the true 

model with an infinite number of oracle queries. 

We have exposed experimental results of MEDUSA on sever al problems, of dif­

ferent sizes and settings, including problems that were inspired from robotics appli­

cations. We have showed that it was an efficient algorithm, able to learn an optimal 

policy quickly when a reasonable prior was available. 

7.1 Contributions 

We have studied a new problem. Even though learning in POMDPs had already been 

studied no one had studied how an oracle could be used to accelerate the learning 

and guarantee its convergence. Furthermore, previous approaches did not explicitly 

minimize the length of the learning period, and mostly used random actions through 

the environment in order to learn. 

This problem is relevant in many areas and especially in robotics, in which the 

underlying state is something that can be measured by an external agent. The active 

learning phase is then a calibration phase, in which the external agent can be a human 

that supervises the learning agent. 

Both approaches proposed in this thesis are model-based in the sense that we can 
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use ail the prior knowledge we have about the environment to accelerate learning 

and in the sense that model parameters are estimated explicitly during learning. 

These parameter estimations can easily be used as priors for other tasks in a similar 

environment. 

Our MEDUSA algorithm also brings an answer to previously unanswered prob­

lems: how can an agent act optimally from an exploitation point of view in the 

presence of partial observability and uncertainty in the parameters of the model, and 

how can the agent detect and follow changes in the parameters of the model when 

the model is non-stationary. The safe decision-making allows the first and the non­

stationarity adjustments aUow the second. It is very useful that the agent be able to 

detect unpredicted changes in the environment and request a new calibration phase 

to correct its estimations when necessary. This is a useful feature to have in a robot. 

Another important fa ct is that, while the oracle assumption is a strong one, we show 

results demonstrating that MEDUSA can be adapted to noise in the query answers. 

If we compare our solutions to previously existing methods, we make the fol­

lowing remarks: decision-making in model-free POMDP approaches can learn and 

plan despite uncertainty in both state and model (Chrisman, 1992; McCallum, 1996; 

Shatkay and Kaelbling, 1997; Singh et al., 2003; Shani and Brafman, 2004; Shani 

et al., 2005b). However these approaches have not scaled to large-scale domains, due 

to their intensive data requirements. Our methods propose a more flexible trade­

off between knowledge engineering and data requirements. Initial knowledge can be 

introduced through model priors. Our prior engineering and the queries allow the 

agent to learn very quickly nearly optimal policies even on very large domains. Our 

method is more flexible than the method based on USM (Shani et al., 2005b) which 

requires a perfectly known model of the observations; we can use any kind of prior. 

Furthermore, the queries aUow us not to faU into local minima as it happens with 

EM methods (Chrisman, 1992; Shatkay and Kaelbling, 1997). 
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7.2 Future work 

About the Decision-Theoretic Planning approach that we studied in Section 3.2, 

we need to investigate if we can use a more appropriate solving method, that is 

more adapted to the structure of the resulting hyper-POMDP than classical solving 

methods. We also want to investigate if there can be a theoretical method to set 

the query cost so that the queries are used only to learn. For instance, we have 

considered having an additional state feature keeping track of the number of queries 

already made. The cost of the queries would increase with this new state feature. 

We also want to improve MEDUSA in several ways. Its main drawback is currently 

the weak performance of the non-query learning. We can improve this: since the 

decision-making procedure is not directly influenced by the learning procedure, we 

can, before we do any non-query learning, wait for the next query (or wait for the next 

time the belief state becomes certain in one state). We can then execute the Baum­

Welch algorithm (Baum, 1972) in order to find what was the most likely sequence 

of states we went through given our actions and observations, and do query updates 

for this sequence. This setting wou Id allow the future to influence the learning of 

the current step, which is not the case right now. This would give a more efficient 

non-query learning and help diminish the number of needed queries. However we 

would then have to consider a different set of heuristics for the query decision. 

We also want to work on how we can re-use the models that are already solved to 

solve similar ones. In our current setting we waste ressources re-solving parts of our 

POrvIDPs that do not change from one model to another. Furthermore we focus on 

parts of the model that are not used at all while the model is maintained. In order to 

correct this, we consider the possibility of solving the model on-line, by doing updates 

only on the belief state points that are being visited, in a setting similar to the RTBSS 

algorithm described in (Paquet et al., 2005). 
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To apply MEDUSA to real robots, we intend to make the redrawingjsolving rou­

tine in a thread separated from the decision making routine so that the time spent 

in the redrawingjsolving routine does not penalize the rapidity of the robot. There 

would be a third thread applied to the queryingjlearning subroutine since these does 

not affect directly any of the other two processes except when we update the weights of 

the models. This third thread would aIlow sorne delay in a query answering, without 

affecting either of the two other processes. 

The next versions of MEDUSA will certainly use this setting, with three paraIlel 

processes. Actually the idea is to use different processes for the" Decision-Making" , 

"Learning", and "Re-Sampling" boxes in the MEDUSA chart of Figure 4.1. The 

algorithm could even be more efficient if a good number of processors could be used 

in parallel, since it would be possible to run several redrawing subroutines in parallel. 

Of course, our study will also focus on how to economize computational power, sin ce 

we often solve many models which are nearly the same: we would like to use the 

information given by the solution of one model to help building the solution to another 

one. 

With aIl these modifications MEDUSA should be well-adapted to complex robotics 

problem. The system could probably be adapted to a multi-agent setups wh en the 

behavior of the opponent or partner is anticipated and learned. The algorithm should 

also have a wide range of applications outside robotics. 

7.3 Conclusion 

We presented a new way to look at sequential decision-making in stochastic, partiaIly­

observable and partially known environments. Our approach gathers ideas from 

POMDPs, Active Learning, and Bayesian Learning. Our algorithms, Decision­

Theoretic Planning and MEDUSA, offer a way to do an efficient model-based active 
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learning. Experimental results show that the setting can be applied successfully to 

large domains, and that applications on real robots are feasible. We strongly believe 

that the methods presented here will allow to build reliable Artificial Intelligence 

agents that are adapted to real-life problems. 
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