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SUMMARY,

The flﬁw in-a-ﬁiﬁgle turbulent trailing vortex with
superimposed jet or wake is considered. This is a means of
-increasing the turbulence level in the vortex_and hence the
diffusion of mean axial vortlcity In this way the rotational
velocltles in-the vnrtex are reduced and 1t provides a method -
fcr_reduclng delay between the operation of aircraft at airports,

Measurements have been made on a vortex generated in
the centre of a circular wind tunnel on five caseé, two jets,
two wakes, and a flow for which the excess longltudlnal momentum
1s nearly zern. The measuremants 1n¢lude the three mean velaclty
companeuts, and the six components of Reynolds stress, all made
u51ng a hot wire anEmmmeter._ The second order closure thecry of
Launder, Raece and Rﬂdl has ‘been applled ta mndel the Reynolds
stress equatlcns, and these plus the momentum equatlans are then
solved numerlcally using the upstraam results as startlng con—.
dltlons. The results at the remalnlng two dcwnstream statlana
are predicted Well hy the theory. The numerlcal_results are_
then carried far dawnstream, | | |

The above results are ﬁsed.td show that the rotational
velaclties in the tralling vortic eg from a 3091ng ?4? Jumbo jet
:in the take-off mode are reduced by less than 5% Etwo and one
half kilometers downstream), if 10% of the total gngiﬁg thrust

is used to modify them.
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RESUME

CALCULS DE PREDICTION ET MESURES DE LA TURBULENCE DANS UN

TOURBILLON DE BORD DE FUITE,

Dans ce mémoire on se propose d'étudier 1'effet d'un jet
aval surimposé au tourbillon qui se erée dans le sillage d'un
profil d'aile sectionné. L'addition du jet a pour but
d'augmenter la turbulence dans le tourbillon et ainsi d'accrottre
la diffusion de la composante axiale moyenne du vecteur tourbillon.
Cela réduit les vitesses de rotation dans le tourbillon diminvant
ainsi le laps de temps qu'il est nécessaire de maintenir entre
le passage de deux avions dans un adroport.

Au cours des expériences on a effectud des mesures sur
un tourbillon creée au centre d‘une soufflerie circulaire dans
les cing cas suivants : deux jEtE dlff&rents, deux sillages
différents et un &coulement dans lequel la guantité de mouvement
longitudinale excédentaire &tait pratiquement nulle, Las
mesures prises comprennent les trois composantes du vecteur
vitesse moyen et les six compcsantes du tenseur de Reynolds.
Elles ont toutes été effectudes i 1'aide d'un anémométre A
£il chaud. Les équations des contraintes de Reynolds sont
basées gur le modlle mathématique du deuxidme ordre de Launder,
Reece et Rodi. La solution numérigque de ces Equations et des
équations de gquantité de mouvement utilise comme conditions
initiales les donndes expérimentales pPrises en amont. Cette
théorie permet une bonne prédiction des résultats obtenus aux
deux stations de mesures avales,

Le calcul numérigue des paramétres de 1"&cculement,
pPoussé assez loin vers 1'aval, indique gqu'un supplément de
quantité de mouvement d' environ 10% de la Poussée totale du
moteur induit une vitesse rotationnelle dans eviron 75% de la
distance du tourbillon naturel,
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Cijkn- Tenecr representing part of the redistribution teim.

C : General constant. |

o ~ Wing Area/Span = Average Wing Chord, (= 5.08 cms.)

gij%gij Metric tensor (Appendix A),

h = rq.vife.

h Scale factor {Appendix a),

J Axial recmentum_incrementf = 21rpfvz [vz - 1].xdr

I{z) - ..Angular mcmeneum decrement, B |

Lo.. Radial w;ﬂth at half maxlmum ax1e1 velcclty perturbation.
_.ﬁE _ D1531patlcn length scale,

£ Characteristic length.

p : _. Preeeure.”'

c- Turbulence Kinetic Energy (= lfz{v + v; +-;€]}

Qp _ Effective cooling velocity (Appendix A).

0 Instantan€ous velccity {Appendix A).
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1. INTRODUCTION

1.1 GENERAL.

When 1if£ is generated by a three dimensiocnal wing,
the vortex sheet shed by it is unstable and rolls up into
two discrete vortices which trail behind the wing. The
-strength of the vortices is directly related to the 1ift
geherated by the wing and inversely to the épan and the free
stream velncity apﬁrﬁaching'it;.and hence those trailing behind a
1ﬁ:ge aircraft can cause considerable dangef to following
aircf&ft. :The danger is enhanced by the fact that the
vortices perslst for 5omﬂ tlme {about ten minutes fcr a
”Jumbo jet) before decaylng or hreaklng dnwn. Wlth the hlgh
frequency throughput of aircraft at large alrports, the
tralllng vortex problem is of ccnSLderable 1mportance and
has recEntly stlmulated much research 1nto 1ts origin. and
hature. |

| From a high aspect ratio ﬁiné tﬁe vortex hés threé
étages,[l} the rollup stage as the vortex sheet leaves the
wing.and rolls up, (2} the intermediate stagé when it is
completely rolled up and begins to- deeay, ‘and {3} the final
stage when the twc tralllng vortices 1nduce a mutual instab-

. ility between themselves, and develop into vortex rings. .



1,2 PREVIOUS WORK

The concepﬁ of roll-up Waé first discovered by
P;andtl ane the equations governing the motion (for the
" finite case) rémain ﬁnsolved- they are steady three dim-
ensional, | Betz {1932} approacheﬁ the problem by consid-
ering an 1nv1scld seml-lnfinlte vortex sheet of known
o dnitigl clrculatlon, and postulated that the angular im-
pulse of vo;ticity remained constant during roll-up, this
dllows.an eétimaﬁe of the final roll-up state to be found.
However the approximation cannot be used for the finite
case_becaqﬁe it fails to conserve energy, -ﬁestwater{;QBS),.
Takami (1964), Mmré (1971, 1974), c1emeﬁts and r&aul 973y
'and others have reframed the problem to an unateady cne in
two dlmenslons and 51mulated the vortex sheet by a finite
numher of line vortlces. Takanmi {lBEd}_and~M¢qre (1971}
found that an accurate numerical.approachflead to.a chaotic
mess, and only after céreful gsimulation of the.regicn of
iz ¥ inmm vortieity could consistent results be obtained, Moore
.{19?4}.- Another approach was by Xaden (1931} who solved
the- prcblem for a semlulnflnlte w1ng, he assumed a two dlmr
aensional: hydrodynamlcally self similar flcw-and a 11m1t1ng
fcrﬁ for the circulation as a function: of radius. He found
" the self similar shape of the deforming vcrtex sheet to be

given by a spiral, Moore and Saffman (1973) have since



cxtended this to the case of a finite wing. It remaing to
include the axial velocity perturbation inherent in the
vortex during roll up. ' |

Dncg the vortex sheet has rolled up and the turns
: in the spiral.have merged together, the vortex may be con-
-gldared as one havin§ developed from an infinite line
vortex. For the laminar case with no axial veloéity perturb-
. ation, the gdverﬁing equations were first solved by Oseen
{1511}, and subsequently by Hamel (1916), Lamb {1232) and
others; Hllton {19381 howaver notlced that axial velocities
existed in the vortex Newman {1959) then'ccnsidered this
property, and by llnearizinq the eﬁuétions of motion {the

11nearlzat10n requlres that the axlal veloclty perturbatlon

'1_he small ccmpareﬁ to the free stream ve1001tyj,sclveﬂ thEm

His equatlons ware uncaupled Kirde (1962) cnn31dered the
'.tw¢ dlmen31ﬂnal case- w1th a power law swirl dlstrlbutlan
and solved the equatlons numarlcally, Batchelar-{1964]
used coupled equatlons and | 51m11ar1ty technlque and proved
that axlal flow was dynamlcally necessary. Mmore and
Saffman {1273) have since solved for the more qeneral case
with axial flow which recovers the SGIHthHS of both Kirde
and Batchelor. Thevy have also extended the analysis to in-
clude the wake deficit due to the laminar Eoundary layer .
developed on .the generating wing sﬁrface. They also used

linearized equations.



For tha turbulent case Squire (1954) utilized the

solutlan of Lamb{1932) and instituted an edly vlsaoalty,
4 gimilar approach was proposed by Newman (1959). Hoffman
and Joubert (1963) dlscovaraﬂ a log law region almllar in
form to that near the wall in a turbulent boundary layar
and Govmndaraju and Saffman (1971) found that the equations
of motion evoked a phenomenon callad overcirculation. That
15 the vortex would praduce # clrculatlan greater than that
generated by a w1ng Owen (1970) proposed a model for a
turhulant vartax and davelopad a formula for the aacay in
maximum tangential valacity with time,

| In the late nineteen sixties and aariﬁ seventies,
much axpariﬁaatal work was done on the turbulent vortex, all
- with the objact cf 1ncraaslng the diffualon rate of the mean
'vnrt1c1ty aﬂntalnad Wlthln lt - MeCormick et al (1968) , Mason
and Marchman EIBTE}, Kantha et-al (19?2} and Pcpplatan {19?0}
all parformad axperiments Wlth varying lavals of axlal mom-
.antum, all flndlng that VOIthltY‘ﬂlfqulﬂn. was related
to the axial momentum andﬁar turhulenca 1ava1 in the vortex
¢ore, In an affort to datarmlna the undarlylng mechanism
involved, Papplatcn {1870} attempted to measure the Reynolds
shraaaas: his results hcwavar.cantainad'much scatter.
Graham et-al {1974) hypothesized that tha vortex is initially
jet (or aaka} dominated, and by using small increment thaary
.EVQkad a ralatlanshlp betwaen the axial momentum increment,

the circulation and the maximum tangential velocity. At a



given strain rate ratie Ehey proposed that the Jjet would
:ceaee to demlnate this lead to a series of curveas reletlng
the three variables. 8Snedeker {1972} incerperateﬂ Donaldson
et~al's tWD dlmen31enel model of lnvarlant scales to numerle-
“ally solwve the eguationsg ef.metlen. Startmng with Poppeiton's
:eeeulte at his z/c = 78 station, £hey.pre&ieted the situation
. atr his z/¢c = 109 etatien their findings 1nd1cated that a two
dlmen51enal.medel of turbulence was not adequate to 31mulete
the flow.
B Work was also preeeedlng in the areas ef.mutuel
.1nstab111ty between two tralllng Vertleee and vertex break-
dewn,{the abrupt ehange of a eW1rling flew in the axlal
dlrectlon which reeulte in a preneunced retarﬁetlen of the
flew} Grew {19?&} presented the first analyele ef mutyal
:_lnetablllty between two 1nv1se1d 1nf1n1te vertlces, end thls _
was later. 1mpreved and generallzed by Moore and Saffmen {19?21.
vertex breakdown has also received lively ettentlen, and |
.severel peetuletee have been put forward regarding ehe
phencomencn ; theee are well described in Hall tlETE]; _The |

most promising aepeers to bhe that breakdeen_ie a, ceneeqeenee

of a critical state. .Rendei and Leibevich_{lﬂ?i} heve
_exteneively aﬁalyeed thisg cencept.end-eheir reeulte prediet

" much of that measured experimentally by Sarpkava (1972},



1.3 PRESENT WORK,

The area of tnie dissertation lies in the second
stage of the treiling vortex development, that of a fnlly
rolled up turbulenn vortex., Its aim wag to conduct an ex-
 periment in a turbulent vortex and measure the downstream
change in Reynolds stresses and mean velocities,and then
numerically solve the equations governing the vortex motion
end'tc_ccmpenegﬁne results with the downstream measurements.
- Measurements were made fcr five cases of axial mcmentum
neing hot wire anemométers, and readings were taken at three
downstream stations. ) o

o Tc-deriﬁe.a tractable een of edueticne, the eeccnd.
crder elosure procedure of Launder et-al was- ntlllzed ThlS
prccedure had not prevlcuely been ueed in an axmeymmetrlc
'cccrdlnete eyetem and thue the prcject beceme ee much a teet
cf 1t as tc explcre the dcwnstream behavlcur cf the vcrtex
The C¢losure procedure wcrked very well and S0 predlctlcne of
the fer downstream eltnetlcn ware pDSElblE Wlth reagonable
ccnf;dence. The Reynolds number dependence cf vortex decey,
apparent from many experimental and flight meeeuremente is
clearly seen and so. is the effect of enhanclng the tnrbulence

_level in the vcrtex core,



2. THEORY.

-2.]1 THE EGUATIONS OF MOTION,

The mﬂtisn of a steady, incombressible , fully rolled up

.turbulent vortex is deflned by the three momentum equatlnns,*

{1n tensor notation).

-H

. | p.i ik
o 5 Ij + Er VU Ik 2.1.1

_ s s . *
the six Reynolds stress eguations,

ki3, . _ 3 ki o0 1k LTRSS
Uuu Jk = -{uju U ]k + uu Ujfk} - (2va™]| ujlk}
_PRODUCTION DISSIPATION
i k
ﬂu I - v{uluj][k + P{ulglk + ujglk}]i }
. f : k
DIFFUSION - T
Py igd 3ii
+ E
p(u | +u |5y 2.1.3
REDISTRIBUTION
and the continiity equation*
i | -
U, =0 _ 2.1,3

il ) _ .
In the cylindrical peolar goardinate,system {fig. 2A) and

taking the.vortex axis to lie in the z direction, the vortax has

- the boundary conditions;’

o N . E _ r
VT Vg = 0 oo :
Vi = yi 3 0 b ¥ =0 2.1.4 &
r £
i
f;3‘0 /
- Figure 24,

* The relevant covariant derivatives to transpose these tensorial
equations into cylindrical polar cocrdinates are given in

Appendix B.
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2.2 SIMPLE SOLUTIONS.

Squire (1954) used the laminar solution of Lamb {1832}
. which assumgd that the mean motion was independent of & and
z and replaced the kinematic viscosity v with an eddy vis-

ccsity.u + ol , giving the expression for the tangential

velocity.
F rZ
v = . 1l - w — r————— :
8 T S=h | SXP (- [ ToT a7 3¢l 2.2.1

- HoFfman and Joubert (1963) assumed an equilibrium
.'layer (i.e. one ln whlch productlnn equals dlsslpatlon £) to
ex15t in the vortex. From Equatlon 2. 1 2 in the E or 3
dlrectlmn (sae Appendlx B), if terms of small magnltude are
neglected, the equatlan re&ucea to,
*$;_éh_.H£_JL = g o2.2,2
r ar T " o

Utilizing the similatity expressions of Townsend {1961) vié{

e = QEXEKLE and v}va = ‘gonst.qg 2,2.3
'leaﬁs to  (where { = {cgnst}SKE.LE}
g8l _  _imTye o T3
B 2 LR 2.2.4

‘T Ar r .
‘now' as the streamlines are circular,the flow procesdses are

"iikely té depend only upbn the local curvature, hence
# = f(r), and since no other characteristic lengths are .in-

vmlvéd, % = Br. Substituting into equation 2.2.,4 then and



integrating gives;

C 1z

E: in{r) + const. o 2.2.5

Hence it is plausible that a logarithmic region with consténﬁ
" slope will.exist in the vortex.

Govindaraju and Saffman (1971} considered the
steady theta-wise mgﬁentum.equation {3 direction in 

equation 2,1.1), and knowing that

vey = [D/2nr 2.2.6

substituted into equation 2.1.1-and used the boundary

layer assﬁmption_ (3/3z<< 5/5r ) , this lead to;

v, Te) o 3 E’_JL) .l_ir"r"ey 5.2
" odm2mr 0 p?3 sri2rl rZar ’

multiplying by © and integréting with respect to r gives;

- ] . : . s fr .
L - . e g 2.2.8
* 5z (r T jrdr = Er( T * 2T vrve

o o 0.
For the case that %vﬂ approaches zero faster than lfrz,
the second term of the rlght hand side of equation 2.2.8

equals zerce, then;
e

2, r o~ I'jdr = 2v . 4.2.9
oz ———— . | R
5" Tw : L

integrating with respect to z and taking £ = rfrl where
r, is the radius at which the maximum circumferential

velocity occurs, then gives:



11

-
J(2) = (EE‘“_' gag 2.2.10

*which is the angular moment um defret, and for the case

" oited abova thlE equals;

-z .
J(z} = 'éh + %iE_E__olv 2,2,11
r] ry U

'whara A is a constant whose value is defined by the 1n1t1al

conditions, IF fl increases faster than f%{z - zUJKU
~ then J(z) must decrease, and anall J(z) implies that
/T > 1 for some value or r, i.e. the vortex is over-
~circulating. For a Rankine vortex J{a} = .25 and for a
plane laminar one J{z) = 45,

Graham Newman and Phillips (1974) hypothesized
that when the ax1al velocity perturbatlon is enhanced by a
Jat or wake that this lnltlally dominates the vortex. By
using small increment thanry for the awxial contrlbutlcn,

and equatlon 2. 2 1 to describe the clrcumfarantlal motion,

they found that '

o, 3 U,z [Ji . |
—_— e | =0 351 2,2.12
where the constant of pProportionality is'difactly related
'to the addy viscosity Reynnlds number, When the strain

rate ratio betwean the axial andg clrcumferantlal velocity

qonpnnants fell below a given value (chosen as 1.0}, the

jet or wake was considered to no longer have an effect

t



nd the decay was then solely defined by equation 2.2.,1 with

‘the edﬂy V130051ty given to it by the jet.

12



2.3 SECOND ORDER CLOSURE PROCEDURE.

The numerlcal solution of equaticns 2. 1.1, 2.1.2,
and 2 1.3 is possible providing the terms on the right
hand zide of the Reynolds Stress equations (2, 1.3} are
modelled, Hanjallc and Launder [19?2} pre$ented a nmodel
which permite this and it has since been improved by Launder
Reece and Rodi {1973). The model is based upon the aséumptioﬁ

that the turbulence is locally isotropic._ The dissipation term;

1k 3
[2vu™ | ?.!kj
is then equal to 2/3.4%7,¢ _ ; 2,3.1
And following Chou (1945}, the reﬂlstrlbutlﬂn term iz

Bratid 4 uji%}_ = ol Loel 550

where ¢§ = ~a;e/q. { uled - a3, gt 2.3.3 (Rotta 1951)

and 937 = g |, oyl

Cmnij_= alnqn]umul_+ a?{gmnuluj + g Jule® 4 gtIu™a® + g My

+a,g™uud 4 gra g™gnd ag (g™ g7 + gmjgln}I 2.3.5

hare I ce. . are constants, (see Appendix B),

r rF .
In the diffusioh term the viscous dependent term is neglected
and the pressure velocity diffusion term . ig assumed to be

incorporated inte the redistribution term. The triple

velocity correlation utylyF is found by approximating the

triplie vélocity correlation transport equation, leaving;
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: 2.3.6
S T aEqKE[ulun{u]uk]In + u]un{ukul}| + u u® (u uj}[
- The modelled form of equation 2.1.2 may now be written as;
ENCE ki 1 k.3 i
Pku u][k = —[ulu'u |, + u'u Ujlk] - 2/3.9779.¢
- a,¢/q. utad - 273, atd.q) + vl e AL XS

+ag qfe[ulun{uquk}fn + ujun{ukul}l- y o ~{u u]}[ ]|k]

Anether'equation mast be introduced to determine the
'dissipatioﬁ g, this results from the approximated transport
energy equation yielding;

bl . ' —--—

ki k | e
U s[k = ayfu una[n.qfe]]k- 4eu ] fq 95 Ul]k 5§2{q 2,3.8



2.4 .TB.E MOBELLED EQUAT TONS.,

With these assumptions it is now possible to
derive a numefically tractable set of equations deseribing
~the motion of é turbulént vortex. Ineorporating the.
relevant covariant derivatives given in Appendix B for a
:cy;indrical'polar coordinate system, the_complete equatiﬁn
"in modelled form were derived. Two assumptions were then
made, namely that.the_bcundary Layer approximation is
' ﬁalidt{ afaz.<<3f3r )} and that the flow is.independent of
The-resulting equations then.are; |

the continuity equation,

Efz + iﬁﬁfr = o ' S 2,4.1

_Bz : par_ .

The ‘momentun equaticns;

in the z direction

v. V2 b v Efz = -5?2 +.E§.IUEEZJ— .Eﬁjrvzvflm EE 2.4
o Far - paz rir 3ar rix 8z

_in the f direction (neglecting the szEr term)

d=
N SN o BT
Ar T par rivir rz - rar

“As this equation is a function of r only we may integrate

with respect to r. Integrating then and neglecting terms

+
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;- ‘small order gives,

T

i

_Pj‘ - J g dr
P ¥

if

fp 2.4.4
0 :

In the 6 direction r eXpresged as an angular momentum,

Brva Brﬁe laprory

A T *__*ﬂ _ 233335 _ Ervivb _ ViVé_ TV Ty 2.4.5
- Bag Tar rars dr rar ar dz

ﬂ-The Reynolds stress équations are;

; ;E eéuaticn,
e — ) — -
3v2. Iv? 1y 11 J'EJ 11 . .!
¥_—2z + v z = 8l "h + ] . _
23z r]" r J; . dr? 2.4.6 :
;ﬁ equation, ?
L9 N 22, YA\ . .22
V= + v V. = 1 é%f h %I ) + 5 2.4,7
B P Pir T " . ' ‘
Vs -equation, - N | o
— T3 . _ 'i
W 1 _ ' | |
.V'-—ﬁu + ¥ —£ = e é{mjjh Jﬁ%) + 533 " 3.,4.8 :
R _ _ ;
.vé?}_ equatiqn, ) ' ' J
B ey IV VY 1 @712 g—J 12 -
V Zr -+ v = = [ - h V} V’ + S 2'4.9
Z.az : _ Pér r 3{" E-Pz r
ViVy equation, |

Yoo

v 1 At 23 J'T_") 23
Yo, X2 + v, re = " hdv | o+ 3 2.4,10
B3z . Tdr r_cl'(r grt ®

P v!‘iﬂ ;3;“(5311 g'izvre) * 57 - l
£ r
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where

h = r.q.v L ' . 2.4.12

and

st —2/3z + ti}il + 1}%1 + Evﬁ _Jl[r‘vr,] - Ev’zvfrgvz

22 22 22 -
Hocanes @S0 e wFE L
r r '
33 _ ' 33 33 ' Nz
§7 = -2/5e + 977+ {57 - 2vvy g - “¥g'r¥o - 2V¥s 2.4.18
a}— ro.. T
12 _ .12 12 Ty —— ,
S = 9° 4 ¢2 - ?sz? + %I?vave + Vé??i? 2516
r . r T '
5%3 = ¢23 + 4323 -} v, + v {E:r'g - ;TE - v ?’ qﬁr
1 2 r '8 _e'"'e 2.4,17
ir r E? &“_ i
gll | ¢13 + ¢23 - av - vV, gve - VYLV + v =va Jv
t}r* o T 31*
and the g3 'sa are given in ﬁppendlx B, Z.4.18
Equatlon 2, 3.8 for the dissipation « becomes;
vie + v e =Ll o se) |, T A |
Bz Ty pop 37 39/ 5 E'r‘ re_ EA 2.4.19
n B ry B
- a,t - ' 4
ay, /q Vo T+ vzv %Ez + v véﬁve +_E;VE __Iﬁv;vé

rar sr ap r T
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With th§ boundafy conditions 2.1.4 and 2.1.5, these equations
may now Ee golved numerically., fThis was done using the
finite difference procedure proposed by Spalding and |
Patankar {1967). The problem is of the initial value
type and hehce a ccmplete solution must be knowh at one
tlme in order to preﬂlct salutlons at another later tlme

The only 1n1tlal condition not avallable from the
results of Graham and Phillips is the dissipation ¢ , and
.-fqr_the_first.étep this was approximated by

e = o, S 24420

where the dissipation lehgth.sdale L. was taken to ‘equal
Ly the radial width at which the axial valoe;ty reaches

half of -its max1mum perturbation, For case (c), the initial

guess for L, was taken to be 1/c.
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2.5 CHECK ON THE NUMERICAL PROCEDURE .

As there are no analytical solutions to the motion
of a turbulent'verfex a direct check of the numerical -
- solution to the eleven partial differential eqﬁatiene is
not possible., Checks egainst laminar solutions both with
and without (initial) axial velocity check only parts
of the axial and tangential momentum equations, but as
nethlng else {apart fer the experimental reeulte} was
-available thie was dene o cases were considered, the
‘ first with elmply a two-dimensional vortex, the second
with the same initial conditions as the first but here the
axiel.equatien was elee'eel?ed downstream. Over.a down-
stream distance of cne hﬁndred chord lengthe*ehe numerical
solution predleted a maximum tangentlal veleelty that wag -
11y2 % lower than the analytical; in the second case the
exlel profile develeped a very small deflclt hut this hagd
‘8 negllglble effect on Vl ever the dletence ceneldered

The eeeend eheck was done with an axleymmetrlc jet

in  streaming flow w1th 4 zero pressure gradient, thlS

» checked parts ef the turbulence medel -and the axial mom—

'entum egquation, The reeulte were compared with the meeeur—
 ‘ments of Graham and Phllllps. The numerlcal results predleted
an axial veleclty decay rate elewer than that. measured by

5%, This is in gualitative agreement with the predletien

+

*
¢ was used to nondimensionalize z because at this stege F, was

" not known accurately, thus excluding the group U.5/T,,
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¢f the decay of a plane 4jet in streaming flﬁw done by
Launder et-al {1973} and appears to.he indicative ﬁf'what
they call weak shear flows or flows in which the importance
of the production term diminishes downstream, and leads

to a relatively large éonvective term; They suggest that
this is partly relisved by including the normal stress
terms which are generally important in this type of flow,
ana this ﬁas done. It is also possible to imprhve the decay
': rate by changing the diffusion constant a, {= 1.45) to 1.35,,

thig increases the axial shear stress v;v% and the turb-

ulence level ﬁﬁ, and the predicted axial prdﬁile then agrees

S well {withiﬁ 2%) with that measured. From the point of

view of a:general turbulence.mm&el.however.it'Was not possible
_to substantiate this change and so in sﬁite éf the slﬁw6r decay

rate a, = 1.45 ﬁaé used throughout the investigation.



2l

3. EXPERIMENT |

3.1, AIM _OF THE. EXPERIMENT.

The aim of the experiment was to generate a turbulent
vmrtex and to measure the change in VEloclty components
and Reynolds stresses of the vortex w1th_distance downstr&am.
This was done for Five different values of axial momentum,
In two cases there would be an axiail velocity increment (jet)
and- in two a_&efiéit {waké} about the free stream velocity
'prnfilg. The remaining case would have zero increment or
deficit, in.the vortex generated, a small deficit eﬁisted
in the axial ?eloqity prcfile; hence the gzero angd incrEment
casas were é¢ﬁieved by blowing a jet of air along the vortex
axis . To lncrease the axlal velocity deflclt, a hluff hody
was placed alang the vortex ax1s. ‘Readings were taken;;t
three_downstream-staélons,_z{c = 45, ?B,.lﬁg}.where:g 1{_=5.I[’.I!3r:_m‘.:I

is the average chord of the wing,



3.2 EXPERIMENTAL APPARATUS,

The experiment was conﬁucted in the McGill circular
blower tunnel previously used.by Vogel (1968} and Poppleton
{1970G;. The'tunnei has.a 6.4 motre wofkinq section and is
.76 m. in diameter, it is constructed from seven, .915 m,
long modules, each of perforated sheet metal, thus enabling
the free stream pressure gradient to be adjusted by blanking
off the;perfq;aticns_with tape.

| The voftex was genéréted by two half wings mcunted
at equal and opposite incidence to the free stream. They
were designed (by P0p§13£0n{19?ﬂ}}_tD.develop.cnnsﬁagt
circuiation_alonq each spén with a sinuéoidal variation of
clrculatlon between them, hence prcduclng Aan area of hlgh
.vcrtlclty between the wing halves Separatlng the two WLngs
was a nacelle enc1031ng a ? 75 mm, 1nternal dlameter plpe,
thls Was useﬂ to supply the jet and also. hald the bluff’
body (fig,2). The clrculat;an developed_by_theuwlngs with
a free stréam velocity ﬁf 21.33 mfé and an incidence angle.
of §° was_ﬂ;Tﬂd mzfs,_{see Section 4.4},

- -Tﬁe pressuré gradient along the tunnel wés_adjusted
~ {by ﬁrigl] to be close {ﬁithin'ﬁ.é% on dynamic pressure) to
.zero.t' |
| The mean and fluctuating veldcitg compenents were
measured with a conétant tgmperature hot wire probe, this

was mounted in a traversing mechanism capable of motion in

22
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the x and v directions (fig, 1la)., The probe holder was
also capable of azimuthail fotatien (¢ in fig, 1A). To
-ensure accurate alignment of the probe with the streaming
flow the traverse gear was moved to the four extremities
of its travel {f 17.8, t 17.8 em), and with the wings eet
at zerg ineidenee an inclined hot wire was rotated azi-

muthally. If the probe is parallel to the streaming flow

the reading from it is independent of $, fine adjuetmente
on the traverse gear allow this to be approached and the
probe was elweys breught w1th1n * 1X4° of the exlel velocity

vector.

Traverse movement in'the ¥ direction ﬁas menuei and posit-
ion was indicated by a graduated merker sthis could be
attalned w1thln l mm. Movement in the Y dlreetlen was
similax altheegh here.pesitien was indicated by a counter,
' The e31muthal rotation of the probe was in 1ncremente of
45“ by a emall servo metor. - | |
The hot wire prebee ueed ware DISA type 55&22

nermel and DISA type- 55&25 1nc11ned connected with lmﬁ. of five
mieren tungeten_wire. The'prebe was connected to a DISA _ |
type 55D01 constant temperature anemometer and then to a

BISA type 55017 linearizer.



3.3 HOT WIRE CALIBRATION, -

Calibration of the wires {normal ang inclined) were
done initially at the beginning. of each experiment, hewever
due to the cleenlinese of the air in the tunnel (filtered
- to about 1 micron) and almost constant temperature of the
alreendltlened laberetery, very little change (< 1%} in
calibration occurred; as a result the wires were only recal-
ibreted after several experiments.

.._Celibratieﬁ was done in the tunnel at (17.8,17.8 om)
with the wings at zere incidenee- at leaet nine pelnte were
taken and to these a least equaree etralght line was fltted

.-The callbratlon ecoefficients fer pitch and yaw were dene in

the Aeredynemle Labereterlee callbretlen drum {(Arnot Smith
.{19?3}}, and the angle of the inclined w1res were meaeured
with a 50X lekor profile prejeeter Eaeh W1re {1 e, nermel
and lnclined}.had its own enememeter end 11nearlzer and

were nefmelized to an output of 5,0 volts at a free stream

velocity of 21,33 m/s,.
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3.4 VELOCITY AND TURBULENCE MEASUREMENTS.

The signal from the linearizer fed wvia a DIéh tyvpe
535p25 filter to a DISA type 55D35 R.M.S. meter; the filter
removed all fregquencies above 20K Hz. A schematic diagram
- is given in figqure 1. To deduce the three veloci£y cCompon-—
- ents and 5ix Reynolds stresses,mean and fluctuating readings
were required at six different azimuthal ¢ positions with an
inclined hot wire, and one:¢ pogition with a normal hot wire
at each'poinﬁ-in the flow. .The-velﬁcity'ccmponents and

- Reynolds stresses wére then derlved frcm these. the analysms
_suhstantlatlng thlS TEductan is given in hppendlx A. 1In
tha analysms the mean veloclty readlngs are: taken ko secénd
.order,_and the fluctuating to thlrd{ Readlngs were taken at
azimuthal ¢ angles of 0°,45°,90°,135°,180°, and 270°; Erom

| these Ez was derived-usiﬁg a nofmal wire at ¢.= 9ﬂ°,fGE from
the sum of two readlngs from an lnclined wire at ¢ a9Q° and
2?0“, va frﬂm the sum of two inclined readlngs at ¢ = 0° and
. 180°. The cross coupled _values were all found from the
.différence betweén two readings, for ﬁ?ﬁl.they were ¢ = 90°
‘and 270°, Ffor V ve,¢'= 45° aﬁd.135° and for v’v%,¢ = 0% and
.léﬂ°. Thé axial valocity was found ‘both from a normal wire
§E ¢.= Bﬂé:and also from the sum of two readings from an
inclined wirE'a£:¢ =:GP.and 180¢, Thé radial and tangential

velocities were found from the difference between two readings



from an incliﬁeﬂ wire; fox Vgy® = %07 and 270° and for v_,
¢ = 0° and 180°.
The free stream velocrty was determined from the

pressure drep acreee the threat of the wind tunnel anﬁ was

' measured with a Statham pressure transducer

26
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3.5 Dpara ACQUISITION,

The readings from the llnearlzer R.M.8, meter ang
Pressure transducer were linked wia high quality triple
shielded cable top gz VIDAR integrating digital volt meter,
lnterfeclng to a GEPAC 4020 computer. The yIpar lntegrated
readings ccer 166, 16.6, gy 1.66 mllllseccndc and then
Suimed the reeult OVer any peariod ranging frcm I.EE_milliu
seccnde to 30 mingtes, Those chosgen fcr the experiment
wWere 15.5 ms and ten geconds. The Summed readlng from
the VIDAR was then pleced in core etcrege and when 10&03
words of 1nfcrmat1cn hed been collected in core, the inform-
atlcn was autcmetlcelly treneferreﬂ to a predetermlned area
on disc, Thie'lnfcrmatlcn was leter reccrﬁeﬂ on megnetlc
tepe. The prcgrem uzead tc reccrd these evente wao
develcped by Frccmcn end Grehem{lﬂ?B} and was baeed cpcﬁ

dn eerlle: version by Pcppletcn flE?D}.

2.b DATA REDUCTION,

iment, The information hag first to be retrieved from disc
and trensferred into core {thle eectlcn of the Program wae
written by Vroomen ang Graham), the 1nfcrmetlcn was then

Proceszed and +he results were printed and plotted out,
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3¢/ CHECK ON EXPERIMENTAL PROCEDURE,

To check the experimental procedure and data
reduction, the_traverse gear was removed from the bloﬁer
tunnel and ﬁligned at fhe exit of the Aerodynamics’
Laboratory 7.62 cm. diameter llm. long pipe. An experiment
was than performed using fully develapeﬂ pipe flaﬁ with
R

a2 Reynolds number of Re, = 3.48 x 107, . The wall shear

D
étress was maasﬁred_via the pressure drop along the pipe
and compared with that measured by the hot wire, and the
normal, stressea were compared with those of Laufer {1953)
at'an Rey = 5 x 10° r and Guitton at Re, =.3.50 x 109,
| The shear_stress agreesg wéll with those predicted
{(fig. 4}, the normal stress in the axlal direction is
sllghtly hlgher than Laufer 's and the transverse and
lateral stresses are lowar, {flg. 3)+ They are in very

close agreement with those of Guitton {1968) however, whp

who made his measurements in the same pipe,



‘3,8 STABILITY OF THE VORTEX.

Experinenters generatlng vortlces in rectangular
wind tunnels &, g. Mason and Marchman (1972), have found
the downstream trajectory of the vortex to be affected by
the introduction and motiocn af_thé measuring probe., This
'ﬁroblem was not'appareht in the pregent experiment.
To check this , a pitot tube was attached parallel to and
2.5 cms from the hot.wire probe; the pitot tube was 2 mm.
in diameter. Both instruments were then succesgsively used
to find the center of the vortex; they agreed upon the
po51t10n within 1, 5 mm.
| The stablllty was further exemplifled by taklng
both a vertlcal and hUrlZDﬂt&l trav&rse through the vartex
and checklng the axlal symmetry, the results revealed no
abnormal effects* It WES important that the _vortex tra]ectory
should be stahle because then, provlding the probe traverse
passed tbrcugh its center, the hot wire readings relatiye
fo the coordinate system x*,y" .2 {fig. 1A} were exactly
.equivalent to.those relative to the vortex coordinate
-sfstem x,0,2z (fig. lhj. Consequently considexrable care |

was taken to Find the vortex center prior to each experiment,
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3.9 CASES MEASURED,

- Five cases were measured, each at three downstreanm
‘stations zfc'= 45,782,109, At the z/c = 45 station these

Gases ware:

_ Case., ' ) _ ‘I_.Q
—= —F J{z)
U, el
w [
{a) High Jet . 0.26 5,17 1.55 0,228
(b} Low Jet 0.077  0.33 0077 0.44
{c)  Zero Jet w0 -0.025 -
“{d) Natural Wake -0.08 -0,225 0.56 0,892

- The vortex Reynélds numbexr {%m} was constant throughout the

experiments and was approximately 5.7 x 10%
g = 21.33 n/s. w
' - I
I, = 0.7938 m%/s 3{z) =‘/Trw feax
e = 5,08 om. - @ Foo

. o
J = zwp‘};z[l - vz] rdx



4, DISCUSSION.

S 4.1 EXPERIMENTAL RESULTS,

The results in general contalned much lass scatter

_than those of Pmppleton (1970} and gave a reasohable quant-
itative indication of the effect of turbulence enhancement
in the core region of a vortex. Tha tangsential velcéity

' measurements figures 5-7, a1l exhibited 2 central cors

region of c¢lose to solig body rotation, and in the outer

‘part collapsed about the circulation value I, estimated- for
_:the”wings,-{see Sect, 4.4} thus demonstrating that the outer

‘part of the vortex is potentlal The two reglons were sep-

P_arated by one of hlgh straln and shear stress. Wlth the

exceptlon of the hlgh jet {case{a}}, ail had the hlghEEt

.tangentlal veloc1ty gradlent Ev Sax  at the centre Thls

case had an inner core region of lower angular veloclty than

..the outer which slowly merged 1nto the mere highly sheared

sectlon of the vortex as the flow developed downstream. The

inner reglon grew downstream and by zfc = 109 completely"

. cccupied the rotatlonal part of the vortex {flg. 7). exhibiting

a tangential velcclty proflle very slmllar to that of a

Rankine vortex, - Thls case also exhibited over-
clrculatlon relatlve to the value of . predlcted for the
wings. It is p0331b1e that I'. is greater for this case
becayse of the Jocal ingrease in velocity Gver the wings .
due to entrainment of air by the jet, However it is diff-

icult to know by how much because at z/¢ = 45 {fig,5) the

+



points at large x/c fall well within the scatter of the other
resﬁlts, and for this reason Fw_was taken tqibe the samelfor'
all cases.

The increase of turbulence level in the cﬁre due to
the insertion of a jet or wake had a significant effect upon
the radlal diffusion of vorticity and h0n$Equent decrease in
magnitude.of v, » the maximum circumferential velocity. This
is clearly seen in figures 5-7. In case {d), {(fig.5) that of
the natural wake, a definite_kink appears in the tangential
Velécity profile {fhis was first noticed by Poppléten {1970)).
Checks of axial symmetry for this éase.and for case {é}, {by
taking both vertlcal and horlzontal traverses}, lndlcated that
V1 varled hy only + 2%, thus 1mp1ylng that the roll up process
was almpst cpmplete at z/¢ = 45. A similar klnk also agpears_
in the ;orrespcndiﬁg z/c = 20 and 30 profiles of Mason and
Marchman*{1872), (thgir fiqureé 26 and 28) but dqeé_npt,app&ar
in their ?fc = 10 ?rofile. :In caée fc}.a kink appearg&_;n
one side énd not on tﬁe other, if 1s probable tﬁgt_for this
case roll up is not complete., o |

The stress level increased markadly with IJ[; for .
example the normal stresses vz of cases[a] remain approx-
1mately one ordex of magnltude higher than for case (d)
over the range z/c = 45 to 10%9. Going downstream the
turbulence intensity level decays rapidly, and by z/c = '10%
{for case {a}}, is only 20% of its z/c = 45 value. The '

normal stresses for cases (b}, {c), and {4} ali exhibit a

*fhese correspond to U, _z/T_ values of 74 & 111 compared %o
61.5 in this report.
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region of highest turbulence in the core (due perhaps to

the wake caused by the nacelle betwean the wing halves)

which rapidly decays, merging Iinto an area of almoet constant
stress in the rotational region of the vortex, For all

cases the radial turbulence quantity ;2 is greater than both
the axial ang tangential; +his is typical of flows in

which the production term is significantly smaller than the
diffusion term: for example the central region of an
axisymmetric wake,

| The shear sffesses ?;?; Qnd ?;?% for the two extreme
cases (a) and {e) are clearly defined Efigs. 15 and 18}, For
the inner caéeé [b},{c}, and {d) the ¥ _;?} and ¥ “;?E stresses
are an order of magnltude lower than cases {a} and {e} but
‘the form of the profiie is vlslble. The results are |
effectlvely ant1~5ymmetr1ca1 but only one gside is drawn The
Stress of most interest in controlllng the tangentlal MOtan
hQWEver lS v*va and as thls is the most difficult to measyre
the results are not as clearly. deflned {flg. 27). Profiles
for .most vrve stresses were found by. flttlng smooth proflles
to the original hot wire readlngs 645 - 135 (equation 31a

. in appendix A), and all other measurements reguired for 1ts
caloculation, and then rederiving: it,

| The log law region predicted by Hoffman and Joubert
is evident. from the experimental resultis {fig. 10}, which

were plotted as a function of T/T_ against rjrl; the respective
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values of rl.and vy being taken from figures 5 to 7. The
r&giun is very deflnlte and WLthln the experlmental scatter
can accemadate a llﬂe of slope = logéflﬂ], (as predicted
.by-Govindaraju and Saffman) for cases {h},{c},{d} and {e},

but in case (a) the slope is higher and not as well defined.
In the derivation of the log law in Section 2.2, an assumptlon
"was made that an equilibrium layer {i.e. one in which
production equals dissipation) was present. A study of the
predlcted terms in the energy equatlon 1ndlcate that this

15 nat the case.
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4,2 NUMERICAL RESULTS

ﬁsing the upstream {(z/¢ = 45} experimental resulis as
initial vonditions, the mcmentum and modelled Reynolds stress
equations given in Section 2.4 were solved numerically to
predict the results at the remaining downstream stations. This
was a severe test fe; the turbulence model of Launder et al,
firstly beceuee it had not previeusly been ueed in an axisymmetric
cuur&inate system and 5ecendly the constants {el b} in the
nmdel ware chesen frem cemperisens with strong shear flowe, that
is flows in which the averege preduetlen and dlSSlpathn levels
are almest equel ACrOSS the flow. The preeent flew is a weak
shear flew (1 €. one 1n whlch the 1mpertance ef the prcductien
term decreases dewnstream leadlnq to a relatlvely large cenveetlve
term} end 85O trylng te predlet it prebed the generallty ef the
turbulenee model. The model fared very Well and altheugh Bome
dlsagreement oocurs bebtweaen the meaeured enﬁ predlcted reeults,
' the varlanee is not catastrephlc.

The exial veleelty preflles exhlbet a slower rate of
-decay than the experimental and thl$ is most noticeable in the
twe extreme cases (a) and (e) which are both about 10% high on
. the vortex axis at z/¢c = 109 (fig. 8-9). This is not unexpeeted
as the same effect is notieeable in the prediction of the
e%isymmetrie"jet in streaming flow without a vortex (Sect. 2.5),
- consequently the downstream grcwth_{which ae affected conslderably

by the presence of the vortex) is alsc slower. ©Due to the

+



svbdilonal mollon of the vortex a radial pressure gradient is
generated across it and as the vortex decays downstream

this causes an axial preeeufe gfadient.. The axial gradient is
small » 0({.1) N/m*/m, and this caused the momentum increment

of cases (a) and (b} to decrease , and tle momentum decreﬁent of
cases (¢), (d) and {e) to increase elewly downstream. With zero
pressure gradient, |J| must remain constant and this property:
wag ueed:te check the accuracy wieh which the numericel scheme
ceneerved Momentum, Dver the experlmental range {W1th Bpfaz
set te zere} ]J] varled by only 0. 0l% ; this was felt to be
accepteble.

The tangential velecity_p;efiiee are predicted well for
the extreme cases (a) and (e}, eltheugh ‘the numerical scheme
tends to predict. 2 ellghtly greater everclreulatlen than thet
meeeured {flge 11 and 14} The spread ef the core reglen ef
case (a) is predlcted very well {flg. 14} altheuqh by z/c = 109
both ry and v, are about 10% hlgh. In_caee_{e]] rl_end vI agreae
almeet exeetly w1th the meeeuremente. In the 1ntermed1ate cases
[b}, {c} and {d] a slow downstream deeey in vy is predlcted while
the measurements indicate a Sllght 1nereaee, thus by z/c = 199:
the predictions of v v, are about 10% low. and the predicted ve;ue
1.1s
peeeible feee Sect. 4.5) but unlikely for the present low Reynelde

of rl is slightly high, This downstream increase in v

number and is teken to be experimental error,
Thea turbulence levele are low in the core region ef all

flewe, case {(a) being the worst {v ﬁ;, vg_are all = 40% low),

followed by case (e) where v and v are 30% low, f?g surprisingly

Sl

B



.is in close agreement with the measurements in this case). In
cases (b}, (c) &nd (d) the central peak which is prominent in
the measurements.at all stations, is not predicted. Outside
the core region, the predicted levels are in good aqreemént
with the maaéurements in all cases except (a):; here they remain
25-30% low.

The predicteﬁ shear stressez for casez (a) and (e) follow
the general form of tﬁe measured stresses_but some deviate in
magnitude, In case (e) #he ?;?E stress is 25% low and peaks at
ébﬁut £yy {thE'experiméntal points peak at abOutIEKBrl}, ?;?}
i# also about 25% loﬁ,_ Thg_pyedicted ?;EE stresses apprcgimately
divide ﬁhe écaﬁter in the measured.results at z/c = 78,8108, (fiqg.
15} and as the vy -profile is well predicted for.this case (and

D il

v.vy is the dominating shear stress in the tangential momentum
;equaticn}; this is a good cross check for both the measurements
and pre&icfiﬁngﬂ in case.[a]_ﬁzﬁz is abput 12% low at z/c = 78
‘but almost correct at z/¢ = 109 although its peak value occurs
at a larger radius_than the experimental. At bath_dqwnstreém
stations.ﬁz?g is about 30% high.. The ?E?E stress again divides
the experimental points at zfc.= 78, but the neéative region
present in the z/c = 45 and 109 measurements is not predictea.

In the remaining cases jh}, {c) and (D) both the measured
and predicted stresses are an order of magnitude lower than for
cases (a) and (e), and the predipted profiles véry from the

meésured_as follows. 1In case (d) {fig. 16) the predicted A

follﬁws the measured profile well but spreads over a larger
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r&dius and is 25% low at z/c = 109 {the péak values are almost
equal at z/¢ = 78)., The v%vi profiles are predicted very badly
being only abcut 1ﬂ% of that measured,. The predicted and measured
???E are about the same magnitude (NE. the experimental points

are given in fig. 27) but the predicted profile has two peaks at
.2/c = 78: the measured has nn;y one. Tn case {bY the ﬁ;ﬁ%
predictions again follow the measured profile well with magnitudes
- almost equal at z/c = 78 and 230% low at z/c = 109, and very badly
predicted Frﬁ? profiles. fThe. predlcted VIVy proflles are also

' much lcwer (60%)} than tho$e measured. Case {c} follows the same
pattern as both case (b) and fa}, however here the ! v% pgcf;les,
' although being lower than thaexperlmental, do fol;ow the same

pfofile.



:'dependent upon local isotropy

- ghear flew Howaver it 15 fee51ble that the criterion

" shear flow such as= the Present one:

ex:tete to Support ox rejeet thls.
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L 4,3 VALIDITY oF TURBULENCE MODEL ASSUMPTIONS.

All of the assumptions in the turbulence model are

existing in the shear flow and

cenfldenee in the downstream predictions is reeeeneble only

if thig assumption is velld Bradshaw {1267) hase ehewn that

the turbulence Reynolds number Re, = v [15/ve] ¥ can he as

small as 100 for an inertial Subrange te exlet in a plane
for
'en 1nert1el eubrenge would be dlfferent for a highly curvlllneer

but no experimentel wark

For the experlments

{Re— 5 7 % 10* ) the turbulence Reynelde number Rel fell areund

lﬂﬂ the actnal velue depending wvery much upon r}e. ThlS

{ verlatlen iz given in figures 24 and 25 which gives two down-

: Fer beth <ages Re

- region * 200-250 {z/c =

:and decreeses te remain elmcst constant (lfr 2

stream eltuetlene {z/¢ = 109 ang 14&} for cases (d} end {a).
» 1€ seen to have a maximum in the cere

109} and then decreases rapidiy as

the vortex becomes potential at larger radii. For cage {d)

the microscale l = f15uv2KE}1& also hag a maxlmum in the core region

% 0.05) once

the core region has passed; case (a) remains almost cenetant

across the flow {lfr ~U 007). -Both Re, and } increase

slowly downstream.

For local  isotropy u/x » 10u/% (Tennekee and Tumley 1972}

and taking the characteristic length geale of the flow to

+
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f’be Ty+ then £ = ry and so ry is at least » 104 and should
i probably be.>'lDDA. For the experimental cases b and 4 this

condition. is barely satisfied ry = 504 and going downstream

i-increases until. A = ry at ?25 = 10G0. " For case e this
: occurs at approximatelf_Zﬂﬂﬂ;mthe problem was not experienced
.in gase a.

. By this definition of leocal isotropy then_it is
f doubtful whether the far downstream predictions for Re ~ 0{10")
- in_cases b and 4 are valid. 1In fiquré 23 an arrow ls used
'éo_indicaté where ry = 10X {at r = rl}_oecurs fof thase cases.
. As ‘the Reynelds nuﬁber increases however the local isotropy
'assumptlcn becomes much easier. ta satlsfy and for Re v D{lﬂ }
Uz

for case 4, rl_ 10)A does not occur until “u? a 1009,
: - L L A

o



.4 DETERMINATION OF THE FREE 3TREAM CIRCULATION.

The free stream circulation Iy, was initially estimated

from lifting line theory using a liff slope coafficient of
| 2rk (k = 0.7) as suggested by Poppleton (1970}. For a wing
incidence angle of 9° and a free stream velocity of 21,33 m/s,
thié gave T as 0.749 mzfs. The experimental results fell
close to this vaiue but in general slightly above it; k = 0,75
(T, = 0.802 m*/s) was therefore tried and this curve appeared
_ﬁo'approxiﬁaté the scatter more ccnvineingly (see
.figures 3-7}. This value was then used as the initial boundary
condition for P. iﬁ the numerical gchems,

| | 3 one percent change in T has.virtually no éffect upon
the smlutlon of Vg but causes the lntegral 'IﬁTm—F?Fm}rdr

to change by as much as tEn percent, Hence 1n the region far
dawnsﬁream where ?;ﬁ% + 0 faster than 1fr and gquatlan 2.2.11

is valid;

f[ err - B - g 4.4.1
U, : _ .
and the evaluated value of A can only remain constant if the
.'value of T being used is correct. Over this range the
computed value of A did vary sllghtly and 50 another estimate
of F was found by taking a T prcflle at each end of the
range and evaluating A for different values of F, (in incre-

ments of 0.01%) until they agreed, this lead to a value of
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I, = 0.793 m?/s for case (&) and Te = 0.7945 m?/s for case (d).
These values are about 1% less than that estimated by 1lifting
line thecff;i'In all fuiture cases r, was taken to be the

average of these namely I = 0.7938 m®/s,



43

4.5 THE THREE DOWNSTREAM REGIONS,

The decay af the tangertial wvelocity in the turbulent
vortex passes through three stages with dietence downstream The
first is a region of rapid decay which occurs up to about U_z/T
= BU,_in this region the decay -rate is independent of the vortex
Reynolds number but clogely related to the axlal momentum increment’
orldeerement imposed upon the vortex. The second reglen is a trans-
ition region between the first and third and ends at about U W2/ T
~ * 100. .In the third reglon the vortex decay is Reynolds number
.-dependent'te Reynelde numbers T /v of " O(10°) but virtually inde-
~pendent of Reynolds number above this value. The three regions are
'vieible from the experimentei results but are mere_elearly indicated |

in the numerical results which -are extended much further dewnstream |
(figure. 23}. | ' i

Tt is interesting to consider the relative magnitudes of
the terms in the tangential momentumn equetien as the vortex passes '{
through the three stages. Equation 2.4.5 may be .written in the ferm!

4.5,.1 (with av’v /3z neglected) with the convection term broken into

RPN [mi v Ei] = ”[i_"'[ FLl0e - vl - %Y EDH v :
dz r Cdr ar? rir r? ror I 4‘5'ﬂ-
!-—....,._.r 'L——.-_.ﬁ._._._.____} i\ - ; kY r—— e

tWo parts £ + n. From an order analysis nﬂv % D{——} and so if

'vr u OE }- then n o O(R}, where B is the viscous etneee tarm. In
etage_nne Vo b D[E}; this is seen because v, = ,/}:: dr R |
ol 4 J
{continuity) and at small z, v fBz is larger than at large z (the |3
magnitude being closely related to the decay rate of the jet or Wake,:

which is in turn related to the turbulence level present in the

jet or wake)., Hence n *> 0(B} and so the £ tarm iz negligible; L
. . 'i



.;that ig in stage one the decay of v, with z is independent of
;Rﬂynolds number, 1 now 1s the order of v {the Reynolds stress term),
%ﬁnd g0 15 L. It is interesting to nota that the sign of v, is dif-
i&erent for a jet and wake and thus an identidal decay rate in !vz|
for both will not result in the same decay rate for the tangential
velocity Vg .
Proceedinq downstream as.[avzfaz[ decreases so in turn does
v, and by stage two v, v O(2), and s0 n v O(B) but F is still much
;;ess than v. By stage three V.. =3 D{E} and?soon becomes much less
ithan F and is therefore negligible. The only convective term remain-
iing then is ¢ , being controlied by B~ v. For Reynplds numbers
_ﬂ_ﬂ{lﬂwl, B+ O{v) as the vortex proceeds downstream, and as

Tﬁ = f{Re) and v 1s wvirtually independent of Reynolds number, for
Revnelds numbers less than 0{10%) the decay of Vg with =z will be

:Reynolds;number dependent, {see Sect. 4.6).

The region of wvalidity of equation 2.2.11 occurs after
ebout U z/T' = 500, and in this region the constant ﬂ is

S 8.45 x 10‘3,.1.02 % 10°2 and 1.46 x L0 ? for cases z,d and b
.respecti{relyF in case a this region was not reached. Dvér—

¢irculation of the form predicted by Govindaraju and Saffman (1971)

BRI

became apparent shortly after the region was reached, it began

at large r/c and spread slowly inwards with downstream distance,

the amount of overcirculation being very small (<5%)., This

LG ST o

iz physically different to the ovemirculation occuﬁlng at

BN IE ) it

around uoz/l @ 100 in cases a and o which was induced by

the high radia)l diffusion of worticity and in case a continuves

SRR e e

far downstream.
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- 4.6 REYNOLDS NUMBER DEPENDENCE.

Csmparlson of flight and laboratory measyrenents
havs always suggsstsd that there is a Reynolds number depand-
ence for the dscay of a turbulent vortex. The gimple theory of
of Owen (1970) tried to include this effact and the more
ssphistiested analysis of Saffman (1973) attempted to explain
it. The reagon for it is rsadlly Been from flqurs 26, where
the terms in squatlcn 4.5.1 are plottead agalnst radial distance.

The example is case d at s{c = 78. Two plots are given; in

:'-flgure 26a ths vrv profile that was used was a smooth profile

- through the experimental points {fig.27}, in flgsrs 26k the

'vivé profile was as predicted. 'The V. and Vg terms are as

: predicted in both cases. Ths polnt sf 1ntsrsst whlch is

smlnsnt in. both plsts is thst the wigcous stresses 2 are

only one crder of msgnltuds lowsr than thaRsynglds stressss Y,
and by z/¢c = 1&9 ths_msrgln is conslderably-lsss {ths,zfq-:
lﬂﬂ.sxpsrimsntal points for E;?E_ars alsc given.in figure 27).
Thus as the Reynolds stresses are effectively independent of
Rsynslds numbsr} as ths Reynolds number ﬁecrsasss-{sr the

Reynolds strsssss'ﬁecay going downstream} the viscous stresses

'-becoms more dominant.,  Hence in the range where most experimants

- were carried out [Re & 0(10°-10%)] the dscay rate (assuming

the ¥ term in equatlon 4.5,1 to be pogitive, ths B term is

- always negative) will be much higher than the real flight



51tuatlon ‘where Reynolds numher is O{lﬂ?} This is seen
_1n flgure 28 where the Reynolds number is varled from 5.7 x 102

to 5.7 % 10%, (the initial candltlons are for case d). Over

the small downstream distance 1nd1catgd;the dependence on’

T e R R R A T D

Reynolds number ia clearly seen. Tt should be noted tﬁat
in the Re = 5.7 x 10% curve Re, is only about 25 at f'='r1
and it is unlikely that logal isotropy exists, - ther examples

;’lat higher Reyﬂolds nﬁmbers are given in fiéure'ES which aisc
extends further Hcﬁnstream.
In figure 29 the predicted E;FE_shgar stress_is plotted
.for various'dQWnétream gtations £9'zfc = 1i46. ?Efy-shqrt;y
" after z/¢ = 109 the shear'stresé changes éign for r < rl.and
this remains until z/c = 1000 ( a negative shear stress in this
région of the ?;?E-profiles is also seen in the gtarting
:.profiles for cases é,ﬁ and e}, 'This means thﬁt ¥ will be
 negative. in this region, and from equation 4.5.1 if v > ﬂ[ﬁi
“and é is large enoﬁgh'éo that v, < 0&—] making n negllgible,
‘then providing 3 (vov va}faz is < vy, ZBVBKBZ becomes positive
.{as v, is always positive). Tor the experimEntal results
case e ?T?E is negative in this regicn'{figuré 15} and
Yo B{V*v ]Xﬁz. As these stresseé are virtually indepenﬂénﬁ
¢f Reynolds number r if we increase it until ¥ >> B, then
_'Hvefaz will be positive, |
That is the tangential velocity will iﬁdreése &ownsﬁréam._j
Angular mcmentum.mpst be cdnserved and this is possible by.
'theinwanddiffusior of VGrtic1ty. By.ZJc = llSﬂ,Egﬁg;is'

+



pUsLLLVE Qygally 10 4all r oand avéfﬂz ig then negative and
decay once again occurs, In the far downstream examnples

(fig.23) this occured for a Reynolds number of 5.7 x 10°

(case d). At the onset of positive szfaz the turbulence

Reynolds number was 2650 at r = r, and the microscale was
lfrl = 3.5 x 107* and so the assumptions in the turbulence

wodel are well satisfied (Sect. 4.3). Tt is probable that
this slow pulsation will be damped with downstream distance
but no evidence is available to support this. Tt is alse interest-
ing to note that the curve for this case neatly divides the
experlmental results of vErstynen and Dunham {19?3} who
mﬂasured the decay of tralllng vortlces downstrean of ﬁ C5a
Jumbo jet transport. They measured cases with-flaps thh up
and down with Rethlds numbers_Re = 2.9 # lu%_ané Ra = 4.ﬂ be iu?
respactively. .

From thig same figure {23],_it is possible to estimate
the.real situation. Consider a Boeing 747 jet in the take off
mode travelling at. about 65 m{st with a wing drag coefflcient of

0.05, this gives a |JT|/pT? of about 0.005 which corresponds

'closely to case (¢}, ZIf 103 of the total thrust from the Pratt

and. Whltney JTID engines is used to mmdlfy the vortex, a [J]/o0?

of about 0.08 results, and as the closest jet curve (case (b))

 on'the figure has a |3]|/pT? of about 0.33, an estimate of the

0.08 case may be found by interpolat ing between the curves of

cases (b)Y and {c}f ﬁt about two and one half kilometers down-

stream (where U,z/T, = 200}, the case (b) cutve gives a- U, /v,

*Re = 5, x 107

* Remember that these curves are at Re = 5.7 x 10* and so give an
oggé%&ggégldecay rate for the higher Revnolds number undéer
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;'value of 10.3 and this value occurs at U_z/T_ = 150 on the 0,08
E interpolated curve, that is. the =zame tangential velocity is
reached in about 75% of the distance of the unmodified vortex,
By U _z/T_ = 2&9, the.moﬂified'vortex has decayed to a value of
?:Umfvl = 10.7, a aedrease_in tangential velocity of less than 58%.
As 10% of the total thrust from the engines is a realistic

" upperbound that can be used to modify the trailing vortic es,

it appears likely that this is not a practical method for

reducing the hazard caused Ly them,



CONCLUSIONS,

{1}, An axisymmetric, fully turbulent vortex of
Reynolds number I'_/v = 5,7 % 10" was qeneréted at the exit
of the McGill circular blower tunnel. <The velocity and
turbulence components of the Reynolds stress tensor were
measured at three downstream stations z/c = 45,778,109, for
five.cases of axial mOmentum} two jets, two wakes and a case
with zero axial momentum inéreﬁent. The results conktair,
less scatter than these of Poppleton (1970) thus giving a
better indication of the velocity and streaé distribution
throughout the vortex: the two most noteahle results being
that a circulation greater than the far field value oocurred
in case f{a), and in case {d] the viscous stresses are enly
one order of magnitude lower than the turbulent stresses at

the second and third stations.

{2} . - Inereasing the momentum increment or decrement

49

|J| causes z marked increase in the ghear stress and turbulence

levels within the wvortex and thus a more xaplid diffusion of
vorticity. This causes a marked increase in radial
_velocity v,. (related to szfaz, which in turn ‘is :élated to
the turbulence level present}. if V. v O[E] the term n.=

av
Vr {ﬁ“ﬂ

+ %H] in the tangential momentum equation is of v O(B},
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where B is the viscous term. When the turbulence level is
increased V. ¥¥ O{E} thus making B negligihle and the -decay
ot Va independent of Reynolds number. The Reynolds stress term

Yy also increases and is the same order as 7.

(3}, As the turbulence level decays the value of v,
. decreases and far downstream v. becomes less than_D{E}.

The decay of vy is then controlled by the combination B~ ¥
where £ is always negative and v cén be either positive.cr

' negative or Loth with r, {all cecurred in the measurements

- but the negative v was confined to r < ¢ as |Bf ~ ot}

1 '
at Re v 0{10*) and B = f(Re), it iz seen that the decay of
vortic-es for Refnolds numbers less than about 10° are Reynolds
number dependent. Hence it is plausible that turbulent

vortic és generated in the laboratory will decay more rapidly

than full scale ones with higher Reynolds numbers.

(4}, By using the second order closure theory of
Launder ,Reece and Rodi . (1973}, the Reynolds stress equations
were méﬁelled, and these plus the momentum eguations and
relevant boundary conditions were cast to simulate the motion
of a steady, full? rolled uﬁ,axisymmetric, turbulent vortex.

Using the upstream experimental results as initial conditidns
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the above equations were sclved numerically to predict the
experimental results at the remaiﬁing two downstream stations,
Over the experiméntal range the aésumpticn'of local isobropy
ugad in the closure mode1 is well satisfied for the high jet (a)
and deep wake {e) cases but only just sati;fied for the rae-

maining cases at Re » O(10%).

(5). The turbulence model predicts a slower axial rate-
of aecay for the axial component of mean velocity than that
mgasufed: this discrepancy is evident for jets in streaming flow
both with and without a superimposed vortex., The érowth.énd
magnitude of the tangential veloclty profiles are predicted well,
especially in the most extreme cases (a) and {e) with large [J].
The torbulence predictions tended to be 19# in the ctore region
but agreed well cutsiﬁe it for all cases except (a) where they
;emained lowr. The shear stresses in cases {a) anﬂ_{E} wers also
slightly low. TIn the remaining ¢a595.{511_fcj and {a} tﬁe
mﬂasu;ed shear strasses are an Qrder-cf magnitude lower than for
cases (a}) and (e) and the shear stress predictions for cases (b),
fc) and (4) do not cmmparé well with tﬁeir respective experimental

rasults,

fﬁj. o The numerical calenlations were carried far down-
.Stréam ftc Umszm_= Eﬂﬁﬂ} but it is doubtful whether the predict?
ions fcr casas {B} aﬁd {(d) at Re_% D{lﬂ“i are wvalid becauée the
fléw ié_nc ldnger 10caily isgtropic. The turbulence Reyhdlds
number increases slﬁwly with_z and relative to r, so does the

turbulence microscale.



PR SRR SUd LM wele SOlVEed numerlcally To predict the
experimental results at the remaining two downstream stations.
“over the experiméntal range the aésumption'of local isotropy

. used in the closure model is wéll satiéfied for the high jet (a)
and deep wake (e} cases but only just satlsfled for the re-

' malnlng cases at Re v O(10%).

{5). . The.turbulenee model predicts a slower axial rate
of aecay for the axial component of mean velocity than that
measured; this discrepancy is evident for jets in streaming flow
both with and without a superimposed vortex, The growth and
magnitude of the tangential velocity profiles are predicted well,
especially in the most extreme cases (a) and (e) with large |J].
The turbulence predictions tended to be low in the core region
but agreed well outside it for all cases except (a} where they
remained low. Tﬁe_shear stresses in cases (a) and {e) were also
slightly low, In the rémaining cases (b}, (c) and {d) the
measure@ shear stresses are an order of magnitude lower than for
cases (a) and (e} and tﬁe shear sfrass predictions for cases_{bj,
{c) and (d) do not compare well with their respective experimental

regults,

fé]. " The numerical calculatiaﬁs.were_cafried far down-
streaﬁ.{to 0 z/T_ = 2000} but it'is doubtful whether the pfedict-
ions for cases {b) and {dy at Re 0[10“} are valld hecause the
flow is no longer locally 150troplc The turbulence Reynolds
number increases slawly with_z and relative to r, s does the

turbulence microscale.
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hf?l. The conditions reéuired fpé overﬂiréulation of the
;fcrm preﬁicted by Covindaraju and Saffman (1971) were satisfied
“at about U_2/T, = 500, giving values of their constant A = §.45
:x 10%, 1,02 x 10% and 1.46 x 107 respectively for cases (e), (d)

and (b). Overcirculation of this kind was not encountcered for

- ecage (a).

{8}. The numerical results are used to show that the
{rqtatioﬁal velogiﬁies in the frailing vortic es two and one half
_kilnmeters'dnwnstream'{Uﬁzfrm # 200) of-a Jumbe 747 in the take-—
- off m@de,_ﬁre reduced by only 5%, if 10% of the total engine
tﬁrust is usea.tﬂ mcdify them, It is.ﬂeduc;ﬁ therefore,_that
this is.ggg a practical way of causing tralling wortic es from

}1arge airecraft to decay more rapidly.
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HOT WIRE ANALYSIS., . APPENDIX A

kf;:;; Stream

Y

VORTEX

COORDINATE SYSTEM OF HOT

 WIRE AND VORTEX.
- 'FIGURE. 1A.

The equations 14 - 94 of this analysls are identieal to
- those of Champagne and Sleicher (1967) and are included
- fop cempleteness. In equation 94 thislanalysis retains

all thind order terms rather than discarﬁing some as was

done in the above analysls. The present anzalysis also
includes corrections for blockage and pitch as well as
the previously included yaw.



From fig.Jh it can be shown by the cosine rule that the sine of
 the :aetnglts:ﬁ:3 betweern the instantaneous velocity vector QI and the
hot wire is;

' -Sinﬁ3 [Cos - S ESindCcsatTanﬁa + Sin otTan ﬁ? + SinaTan)Jb(
Cosﬁ# I{]:::s}gI+

-1 - sin“d 1 cospCosh,
Gc’:si& zﬂos? 28ind

and similarly that; (where Qg is the free stream velocity)

sind, « %[(Qs s a )% e o .qn] - | .. oA

14

sing, = q.J(a, + gsJE 4 qﬁ ] 34
0osf, = [(QStqs)a-q‘E]é[ _(Qsm_s}z. l-.q%‘ ' qﬁ ] -y
Cospy, = (Qg 4 a ) [[QS‘? qs}z + q‘%];*% 54

If these are substituted into equation 1A andreabranged then,
-Sing, = (Qurq, ) (-Sinasq, Cosx(@+a ) 1) ({Q+q )%l '+qn} e
and squaring gives;

Sinﬁ3 [(1+q /@ }2 ¥ {q +qn}fﬁa2]'1 [ Siuzxilq»_qsfﬂs}‘?

4 qﬁf&ﬁccszai - 28inxg /Q _Cos«(1 + qsﬂas}] A

If the denominator is expanded into a Taylor sartes rirstly
in termsg of qs and then q; @d finally q

E1+q /R R {qt+q )/Q ] = 1+ 2e/q, * 3q§f@,§

—EQ%-pqi}ng 3 qugfag + quﬂliﬁ QSQEJ;"Q:; + etc. ©A



. Substituting back into equation 7A gives:

. . 2 .
Csingy = [-(af + 0B)/a% v2q (0B+a?) /a2 - Had/ad - %Sfaﬁ:l sin%x
+ 8in« +[ E;’Q - 2q qEKQBJ Gr:-s o

_231mcas«[qnqu-qnqsfa‘: ~a,95/90 3a,0%/8) - /3] en

where only fourth and higher order terms are neglected,

By using the trigonometric eguation Cose + sinf@ = 1, it is

eagily shown that; :
I 3in“4 2

Cos /53 + k Sin'/% Cos uf.{ + kBTan o +{l{3*l}[—‘£§gﬁ3 fTan ac]} 104

- Now the instantaneous .velccity. vector Qr is;

Q? QZ {1 + {q +q +qt}fQ + 29 KQE] 11

And the 1nstantaneous effective cooling veloclt}r QE is
MQI[ccs/% + ks:i.njsj o | 12

Hence Q = Q Cos uc{k (1 + 2q &/ Qg + {qz-qﬂ}fﬂl ) |

+ szcos a:{(ng JfQ + 121:13!&3 + bg KQS} |

+2kaanx.{qn!Q. + g nde I'QE 4:1 g KQB} + kz[ ki (q +2an£&

- k/cosh {(aBra?) /62 + 12a2/0] + 4a?/el}

-zkffranx{qnqu + qnqsfﬂﬁ - 4qnq§ff=22}

2. 2
+ EpTan {1 + (a2 + af + ofy/a? 4 zqsfag].} | 134
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i;where K, k,, and kj are corrections for blockage, piteh and
E yaw rospectively. They were ta ken to be 1.0, 0.98% and 0. 17
¥ respectively and Wre found from the calibration diagrama,

;-As Qp is required, an approximation to the square root of

E. equation 134 must be sought. This can be achieved by gxpanding
é into & Taylor series; firstly in terms of q,, then q, end
ﬂjfinally Gy Before doing this however, it 10 convienient to

|- regroup the t erms in eguation 134 viz;

PG = [k + o /a8 ¢ /el v ad/adn va /0 + oZale + oBc

- qnqéngH- v q.0%/00 1] Gos®x o 1ha

" whepe, - | N

A= K2+ kP2 Tana | |

173 | A

B = 2k5 + zkfkg Tan,m - -
¢ = ¥+ tkfsec + K2k %T %x - 4k2k§53c%x
:.ﬁ = {1 ~ kg} 12k§5&c2m

E = 2k“Tana (1 - kzj - . 158

F = -k + koSeo + zkfkg - k2k2580%ﬂ " kfkgman%x

G = RESec%x + kfk% + kfkgTan%x - k%k%Sec%&

H = zkaanw_{; - k3]




g : T LR L P R
b 0 = K@ 0osx[1 + q/Q £+ a,/Q ¥+ af/Q0% + a5/ 0t o/ A

* a/al8'+ o/l b+ a /i v+ aal/ader qal/el A

VR FM LB DS P = w ' S
i

' 2 4 2 .
* G ay/A K+ qnqtfﬂg ﬁ] | . 164
where,
K, = &
1 -
= %BA‘l
= 2EA™T
-1 .
_ %GA-1 2,0 42/
= $CA”" - B/8 AT /2
= -Ezﬂ'532;8 + 3FAT
= (O . _ )
= 1/16 EA™T/% _ %EEﬁ“5fz - 174
= 3ERA" 7% & amar? -
= 3/16 BESA~/2 _ 3pa~5/2 , appa-/2
- -30EA™Y/2 4+ 317t & 3/16m8%a T2 | puma/2
= - %GBﬁ'ﬁfz
= -4pea=/? -
At thls stage mll third order terms are dropped from this eguation.

Now if the above terms are expressed as mean and fluctuating
' components, then;
g QE.=ﬁ+q

g dg = u tu 18A
Uy = (W + w}Cos® (¥ + v)5ine

(¥ + v)Cos8 ~ (W + w)3ing

g
t
Substituting 184 into 16A and separating Gp into mean and

fluctuating components yields; -

g = -KluﬂCesg{;ufUD + X(vSinej + chsB}fUG + 1

+'§Eﬁsine - ?Gose}z + (WSiné - vGosG}%]ng +11{ﬁ2+ u?fug
+A[¥Sine + WCose)® + (vsine + woose)] /Ut

+ ¥ [(a¢sSing + 6%¥Cose) + (TVSine + Tﬁr‘CosEH/U,:} 194



X

: and _
:' . . _ 2
4= e, ¥ Gasxiﬁufﬂﬂ + ¥{v3ineg + wCosleUﬂ + znuuguﬂ

+3[2um/0251n%  + 2v7/uZCos®e - 2(Fw + vi¥)$in0C0s6/UZ]
+A (2vTsine + 2wiGos®e + 2(Vw + vit)SineCose} V7

+1)[Sine {ﬁv + u¥) + Cozg (iiw + uﬁjj fﬂg_} 204

- Mow it is possible to obtain the velociﬁy coipponents U, ¥,and W
* from equation 194 but it will not yiel¢ the coupled velacity

q" = KEUEGoszﬂ{uEEUgﬁl + c?liv‘?'SinEe + woCos

components uiuj ,these are found from the square of eguation 204A.

2 2

1 g + vaSinchse}fﬂg

+ bt 522 HU .+ 2p [ uvsine + uchsQ}ng + Q£Ru2ﬁjﬂg

2

+ ﬂ;ﬁ[uwwSin & + uv¥Cos“® - (u¥w + uv#)SineCosd] fﬁg

+4@ﬂﬁvﬁ$in29 + UWiWCosZe + (uvw + uviW)3ingCoss ] HUS

+ zﬁﬁ[r{ﬁﬁv + v*§}Sine + fﬁuw + uvﬁ}dﬂsa] KUS

2. 2,

+ Q%}[:vwwSinSG + vzvsinﬂccs 8 - {vvw + ve W}Sin 8Cos&

o+ WERSIn“6Cose + Fvwlos @ - {vw + YW@ )5ineCos e 1 ng

+ badlauvsine + uuwcosa]fU3

+ A 3] v*T5in’0 + vwAsineCos®e + (Fvw + v %a)stn’ecose

2

+ FrwlosOSin©e + w WCGSBE + {w ¥ + vww181necos 8:1 ng

+ 23?{:(v2ﬁ + uvi}SinEG + {Qvw + vzﬁ}SinECosB

2

# (@ + vwi)Cos®® + (v + uiw)SineCoss ] /03 | 214

where all fourth order terms {with the exception of u uz} ha?e
been dropped.. This may sppear inconslstent with equation 204 ‘where
only second order and lower terms Were retained, in fact it is

not because the same expression for equation 214 results whether

‘the third order terms in 204 are retained or not, simply

hecause during the squared expansion their order is increased
by at lsast one.

+

Ab



EVALUATION OF VELOCITY THRMS,

The three velocity components can all be obtained from a single
inclined hot wire, each via two readings taken 186° apart.
From equation 194 then,

B/U, = 24K,V Cose] -1 | (G, + 3,g4) -2K,U_Cosa{t +§ (% + vz}ng

v (% +.'uz]ﬁj§ r M2+ WEJ;’UE}] 224
/0y = L2¥ky U Cose]™ [ (g - &,n0) - 20K, Cos (¥ + WW)/U] 23
7/, = [2rE U Cosd] " [ (&, - d,5,) - 20K Cosx(im + WA)/U_]  24a

The axial velocity component ﬁjUD can also be evaluated from

__a gingle narmal bot wire wending . WAz it




- The Reynolds stress terms are fogn& by difference batween two
; readlngs from inclined hot W1res,huv and UW the readings are
- 180° apart, hvw, they are §$0° apart., Hence from equation 214;

[3f + whasu, + Bﬂaﬁfug*l[ﬁ(%ﬂ - %?ﬂjftnicosng

| uvaﬂ

- /UL BHE/T, - wI/UR g - vR/ut bS] aga

1l

w/U% = [ s wvpasu )+ sadi/u)t UaR(eR - o2y )/ (02cosia)
- TR/ AR/ - T 7ML TR T VA B

/U

O b

[28° + w/ZA%5/0, 4 m&amﬂ]*l[gfr;ﬁS - %ﬁmugccsﬁ}
- TR/US(2/ZPY - WIS/U + MafT/U 2/E0BA/U 4
WZa/U, + 2WT/U )

- ﬁ;uz{.#}ﬁi&m + %&ﬁg’u .' + yﬁ‘%wﬁg

-V f’U { 2/'233 + . 2/20% + 239) R/

AB

_wm (2/‘35+ z/ms),w;u] | - | 314 .

SOLUTION OF BQUATIONS 224 - 314.

Due to the form of these equations it 18 not possible to
solve them exactly. They are sclved therefore by a simple
iteration technique. To ensure convergence,; damping is
applied to /U, in the form of ﬁfUcln being replaced by

B/, + W0 ] L )+ R, - EANPEY

About fite iterations were generally required for convergence,



. EVALUATION OF CALIBRATION CONSIANTS.

- Before equations 22A4 - 314 can be evaluated , s relationship
between the measured voltages e and e? and § and qz must be
. found. It wes noted in equation 124 that,

£4f = QZoos®A( 1+ Wiranh,)

e =L

50, Qp ® QIG“};J,{ 1 +'%R§Tan‘3.53} 1B

_ -Duri'ng calibraetion the wire is placed in a2 region of the
. tunnel where both WUO and IT-T;"UO arg very small {<.05%) and

f‘ hence f.’:3 Sl therefore, i
- .
3 S
- Qp = QEf(ACDSMJ : . €. 2B
ﬁ.The calibrated 1inearizéd slgnal is
??ecal = Mgy 4 /// 3B
% henece,
Qcal"aEfQI' = {Ecal -~ di/m . Ap/Qy 4B
| = 'ﬂD + ﬂlﬁcal | T | . ' _SB
'theﬁfﬂre, :
_.Ao = _d ACos«/m B
Al = ACozu/m YB
'In general then, -
Ao'* ﬂlie + &) =g+ {d . 85
.Eaking the mean of equation 8B yields,
A + 3,8 =4§ | 9B

which may then be used in equations 224 - 254 to find the velocity
terms. Squaring 5B and taking the mean gives.

2 s . .2, 2 . - - 2
A+ 2888+ a%(e? + %) 2P g 105

ra—

This can now be used in equations 26A - 314 to find the coupled
velocity berms.
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COVARIANT DERIVATIVES. APPENDIX B

- In & cylindricai coordinate system, the fhysical componerts
' 3

1
are X© = Z [ X7 =r ; x = 0 ; hence

?1 = Xl ; EE = xzﬂosxa J

j ¥ o= xESin}:3

and so0 the metric tensors are,
578 =& =gyl

33 = 1;1‘2, g33 = 1‘2

hence the scale factors are,

The non zero Christoffel symbols then atre

{332} =r {323} = -z {23 } = t/r .

Now the covariaht derivatives of first and second ordsr tenscr'
quantities are '
j - J I,k
A ]i = a4 {i R}AI
and

;E;Erk R LA {kin}gﬁgj * {ﬁjn}ﬂlﬂn

which in physical compoments leed to,

&vz bvz v,
3z 3r rdg
= Jv v Jv v
udl. = r r r 8
1 3z T rdd "~ 7
QEE _ %EE Jve . V.,
dz ir rog T
. A




and r

——n n}

J =
wrutf

E Jv'zv‘r Jv'zv'a
Az \ 3z JZ
c‘l%‘f Jv'rv’e
de \ Iz
Symmetrical \\ -
| Qvg / dz
3;5 Qv‘zv‘r Qv’zvé
BF_\ i a7
| N o
v : v v
N r'e
oT \ 7
Symmetrical h@ '
vy /
*'f. r 1 r 1 '-_-_r|
;.535 évzvr ¥ év’zva + 'vévr
rae \ rda e roe T
. ~ _ |
¥ r | 12 '2
vy Ay vV Vi - Vg
rag r Py i
Jv_"é' 2v v!
) + g
Symmetrical rd6 r

B2

3



List of constants;

a1 = 1.5
8, = 0.4 -
aj = ﬂ'slﬁ
aq = 1-45
5.6 = 0.11
8oy = ~{2.0 + j.ﬂaz}fll.ﬂ

ag = -[5D.Daz-+.#.ﬂ}f55.ﬂ

(20a, + 6.0)/55.0

{0
el
L

2 + 10.0;/11.0

10

= (4.0a,

Diffusion constants;

[+ 2 2

ot = a2 3 2




NUMERICAL SOLUTION. _ APPENDIX C.

The numerical procedure used was the finite difference
scheme proposed by Spalding and Patankar (1967). In this

procedure all equations are forced into the form;

39 {atbu)dd a(caqa)
7 R TR Y I P

and hence all of the coupled and most of the nonlinear terms



The radial momentum equation (2.4,4);

) . 2
B F v
_E — _r - f a."_e—dr
p P o r

is differentiated with respec£ te z , thus giving the downétream
pressure gradient which is required in the axial mnmﬂntuﬁ
equatiqn. The fadial velocity is then obtained from the -
continnity equation; viz

—;f&ggzdr
' 24

The program is in four segments and follows the
dpproach sugq&sted by Spalding and Patankar . Routine MAIN
is the main calling program in which the initial data is
read in and the boundary conditions are defined. It also
determines the non dimensional radial grid step size, calculates
the entrainment rate ang finally prints out the reguired
information.

Subroutine AUﬁ calculates the parameters reguired
. for the turbulence model, sets up Gij,_miﬁ, Uj|i and 579 ana
then calculates the source terms, Thig routine cé;ls sub-
routine CHOU in which cmnij’¢%j and ¢§j are ecalculated,
Subroutine STRIDE is principally Irwin's (1974) wversion
ﬁf the_subrcutine originally written by Spalding and Patankar
contracted to account for axisymmetric conditions only, It
gonsists of three main rarts; STRIDE I where the radial

coordinate spacing is calculated; STRIDE II where the boundary



c3

conditions are put into the form required by STRIDE ITI where
the equations listed earlier afe solved. For specific detalls
of the solution Procedure the reader is referred to Spalding
and Patankar {1967) .

The program reguires about 30&003 words of core storage
and takes abount 60~80 seconds of central procesgsor time (IBM-360)
to predict from z/c = 45 statlon to the z/c = 109 station,

The ﬂcwnstraam.step size is controlled by the factor FRA in
MATN and 13 equal to FRA*Y{NPBJ where Y({NP3} is the maxlmum
non dlmen31onal radlal ordlnate. ThlS product must not exceed
1.0; which was fcunﬁ to be the largest value that cculd be used
bafore the program departed into a world of wistful {but what

‘appears on the surface reasonable) fantasy,



C4

i I i

EOMMON/GENRAL Y AJECR) . AJE (¥ ), CEALFA, DFDX (40), DX,
1 FSO7, 40, M IFIN INDE{S, INDI(P), ISTER, ITEST, IUTRAP, REX, £IN, KRAD.
Z 0 Bl NEQ NPH. NP, NP2, MNP, M40 ), FEI, FROP) FEIE, FEI1.
3 RCEO), RME, RMI. RUCA0), X0, Xu, YE, YI.UT, UTE, CU , TACT
COMMONATEDAY 4403, U400, REQOSO ), EMUO40 ), KHL
COMMOMARENYAF{9, 403, PREF (T, 40, S, 40), 2002, 40), VR{401, vO(40)
CBFMDNIEIT&XFIS&:F?la,TEL
LRUN=1
0o 27 IR0N = 1:LRUN
iz = P90 =
CU = |, 00001 '
CORD = 2.0
ALEN = 1, O/ C0RD
LASTEF = 3000
OMPOZP=]1,
Moo= ZE
ML =p+1 _ ,
NPZ=N+2 _ L oM ETARTE
NFZ=N+32
. KHL = NFZ
Xy = 4%,
o o= X -
XULAST = 2000
ISTERP=0
FR& = , IS
CEALFA=1,
- NEE = 9
MNFH=NER—1
na 11 1, NPZ
CRHOCTI) 1. ¢
RHOL = 1,0
FII = 3. 1415
READ{S, 3 YLD, Y, WRCT),VO0TD, F(l;IJ:FIE;I};F(B.I};F{4JI};
1 F(S5, 1), Fltr 1)y I = Z:NFZ)
EMIIL. = 2. QE-5
FORMRART{IOFE 2)
Ood I o= Z, NP2

40

MRLI) = VRII)% 01
V3L = VI I)® Of
Fel,I) = F{4, 1% Q1
FI(Z. 1) = F(2, 1% 01
Fl=E 1) = F(Z 1)% O1
F{g, 1) = Fi4, I)# 00Ol
FiS, Iy = FoS, 1)+ Q0L
Fif, 1} = Fid, Iys, 0001

Y{l} = Y(I}/CORD

oo 4 J = 1,3

F{: I)=FC¢J: LINF (L 13 FRATNG  VALUE FOR - &
FLZ. 1) = {4{F{E, IY+F L2, Ti4+F (3, T2+ Sixsl. S/ALEN
Y(1)=0. ¢



By i e T s b

I e b ™

Y(2) = 1. /73 #Y(3)

Uig) = U

Y{NFI)=¥{MFT)

L{NFI I =SLI{NFZ)

VR{1) = VR{Z)

VOLL) = Wiz

YRZ = {Y(Z¥=Y(1))/¢Y(2)=¥Y(1))
VR{Z) = VR{IJ+YRI#{VR{E)}I=-VR(1))
VB(Z) VO L)+ YREF (VDI ~VO(1 )}
VRIMNFZ) = VRINFZ)

VOINFZ) = YOINFZ)

Do 5 J
F¢d, 1)
E.d, B
Do & J
Fid, NF2)
F{uJ,2Z) =

O"-...l

0ot I

1,7
Ftud, .
= Q.
1.7
=08
Fih 1

COM{1)=0. O

1

OM¢Zz)=0, ¢
OMCSY=(¥ (3= Y (1) )R #Y () +U1( Y
oo 7 I = &, NF3

b
FEII=0 0
FSIE=CUM{NFS)
FEI=FEIE~FSII
OO 2 I = 1,MPE
OMCE)=0M0 L) AOMINPE)

O % J o= 1, NPH -
INDI () =t '
INDGE(J) =1
oo 101 =
FQ{iJ I}y =
0o 10 J =
SUC, 1)=0.
CALL STRIDE(T)

DO 17 I = 2, NP1

FO23 I = YOCThey(T)

EMUCT) = EMUL (Y (I+E)—Y(T))
EMUCTI) = EMUCT )% S#(ROTI+R(I+1))
F(E, 1) = 0.0 :

F8 NFZ) = VOINFS)#Y(NFZ)
FU8, NP3 = F(g, NP2)

DX=FRA* (Y(NPZ)~Y(1))

r = X4 o+ Ox-

IF (XD, GE. 77., AND. XD LE. 7%, ) F1S

IF{XD. GE. 1'I.TJ"*'-r AND, XLL LE. 111} PEI

DF=0, 0
g 14 1 = 1, NPT
OFOX{I)=-0F

YEYLL)IHRHO( L) A2, ©

EAQM¢-:5£W3 EF%CmJQ
oS TOOED Mﬁ_rE-E: ]

X[

8 = iD

4 E)'DUHDAE,\-" {:QMDmG\] 2.

3+IYE2J-Y{13Jf(Y(a)-ﬂ(l}}*(F(JJBJ —Ft, 1))

OMEI)={Y({I)=Y(I~ 133*(Ui1?*¥(1)+q(I 13#¥Y(E—1))#RHO{I=13/,2 & +0OM({I-1

i



UFR=. 1 _ ce
UMAX=0, O -

BO 15 I = 1, NP3
JIFCUCTY, LT UMAX) GO TO 1S

YMAX=Y (1)

UMAX=U{I)

IMAX=E

CONT INUE

UMAX S T=UMAX

IF GNP, GT, 0. 1SLMAX ) LIMAX=U(NFS)
IFCH{NFE), GT. O, 1#MAX ) UFR=. ¢ L TR AT
0o 16 1 = 1, N '

JENFE— T _

IFCABS (BINFE)-LIC ) /UMAX . 6T, UFR )60 10 17
CONT TMUE _

IFCUUCI+1-00d) ), LE. 1. DE-10) GOTOZ7
OMPOZ=ON Y FAES ( (O (1) 0N (D )/ (L L) =0 ) ) * (ABS CUINPE ) —01d) ) =
ILFR#AIMAX)

IF (ISTEF. EQL Q) OMPOZT=0MFO2
IF{OMPOZ. ER 1. 0)GOTOZ7

RME=-PEI#( (I C#OMPOZ-OMPOZF ) /IMNFOZT~1, 0) /DX
OMPOZR=MFO2

IF (RME. GT. 0. 0)RME=0. 0

RMI = 0. 0

UMAX=UMAXET

CALL AlIX

CALL STRIDE(Z)

IF (X5 E@ F90. OR. X0. 0. P196. DR, XD. Ef. FZ1E) Gﬂﬂa1d
GOTO 19
WRITE (6, 25)
WRITE (&, ZE)CYCE), UCTY VRODY, VOUTY, FUL, 1), FLZ|13, F(GE, 1), I=1, NF3)
X = XD#CORD
WRITE (&0 2643 XL ' _
WRITE (6, 26) CYC 10, Fids 100 F Q5 13, F(& 1) FUZ, TV 11, NPE)
X8 = 1. 0.

TEL = 0.0 L

IF (XD, ERL PZLE) GUTO2Z

IFCIFIN. ERL 1)G0 TGO 22 §
IF(ISTEF, LT. LASTEP. AND. XL. LT. XULAST)GO TO 20

IFIN=1 '

CONT INUE

CALL STRIDE(E)

OO 21 1= 1, NFZ

IF (F(7,1).LE. €. 0) F(7, 1} = 1 E~%

oo 21 4 o= 1,3

IF(F (4 I LT O DF (W 1) =CUSLHNFT ) UL NP3)

CONT INUE
L GOTOD 11

CONT IME

FORMAT(7E135. 4)

FORMAT(SELS. 4)

FORMAT ( 1HI, 10X, 1HY, 15X, 1H, 15X, ZMVR, 14X, ZHVO, 12X, ZHUZE, 11X, 4HVRIE,
11X, AHVTRES A ) _

FORMAT (11, 10X, IHY, 15X, 4HUVRE, 10X, SHYRVOE, 11X, 4HUVOE, 12X, IHDIS,

1 10X, HXOIST = ,F7. 1//)

STOR

END

- SUTeUT
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SUBRCHJTINE Atlx

DIMENSION SI(9), EXT(9), REDI(S) ERODIS), DIES (A

COMMON/TUE/FHT (5, 2, 2), DUDX(E, 3), U{3, 3}, ALPHA, CETA, ETA, LIPS _

COMPMONSRENY /F (P, 40), PREF (9, 40), SUIT, 403, SO(2, 40), VRIA0}, WI{40)

COMMON/TEDAY (400, LH40), RHD( G0}, EMU(R0) , NPT

COMMONBITE/F 154, P18, TEL

1 = 1,5 ]

CE o= . 40

CE =, 11

ggi m“i?45 . - CONSTRTS 9 A APANON G,

CEZ = 1.9

ALFHA = (4 QO#0Z+160. Q) /11,

BETA = —{(Z O3 O®C5) /11,

ETA = —(S0. O¥C3+4, 0) /55,

UFS = (20, ORCZ+6, 6) /59,

Dot I=i,3

Dol J=1. 3

DfI.r AJ} .= ‘-1

DuDx <1, Jy =

D1, 1)

oz, 2

bz, 3

g [ = 2, NFZ .

AKE CSECFLL, I + FUZ, 1) + FU3, 102

ni1s (FU7, I+1)+F (7, I-1))%. 5 '

DISZ = (F(7, 1}4+F(7, I+13)3/2 0O

IF(RIS. LE. O ) GOTOS

IFCCY ()Y (I+13 ), EQ. 0. Q) GOTOR

LFTR = DESAKE#(YC(II+Y{T+1) ) /2 O#{F(Z, 1)4F{Z, I+1)) /02 O&D1oTs
1 AY{I+1d=¥iL10) . _

FREF(S, 1) = EMUCTII®{Y IR Tw1) 3 /02 #(YLI+1)=Y(1)D)

—

I.
00 L 3

C
1.0
1 Q
1.0

e n

GOTOA
SIE7) = 0.0

CFTP = . O . -

FREF(E, I) = 0. O

FREF(L, I} = (CFTR

FREF{2Z, 1) = 3 #% CFTPF .

FREF(Z, 1) = CFTF ' L oc®

FREF(4, I} = 2 0% CFTF

FREF{S, [} = Z Ox0ETF

FREF(&, 1) = CFTP

FREF(7, I} = CFTR&CE/TS

DY ={¥{1+1) — ¥(I-1)1% S

D1S23 = 2 0/3. 0x0IS  3DY : I
ORVR =CY(I+1r3VROT+1) - Y{I-1)#VR{I-1)) # 5 A
DUDR =(L(I+1) =~ U{I=1})}% 5 dutys - .
DVROR =(VR{I+1) ~ WR{I-1))% 5 D s
DVODR =(VO(I+1} = VO(I-1))% 5 Noa, .

UZB = . S#{F (3, I+1)+F (1, I—1}1 _ v

VRZE = | S#(F{Z, I+13+F (2, I—-131 et

VEIZG = | SH#{F(3, I+1)+F (3, I~1}) ~ TE

LVRE = | S#{F{4, I+1)+Fid4, -1} v

VRVUIE = | SH(F{S, I+1}+F(5, I~1)} VoVa

W3R = | S%(F (4, I+13+F (&, I=11) g



Y(2) = | S#Y(3)

IFUILLE 3) VOR = uwi(3) /v

IFCLLLE. 3) VRR = VROZ)AY(D)

IF(I LE 3) GoTow

VRR = ,E*EUR(I+1}/Y(I+1}+UH{I—1JIY{I—i))
VOR = ,5*{UD{I+13IYEI+1J+UG(I—1)X?(I“1}}
DUDXC(1, 1) = ~1, 0/Y{ 1) #0RVR

DUDX<L, 2) = [UDR

DUDX(Z, 2) = DURDR ' _ UJE APPENDIX B |
DUDX (2, 3) = —\WoRsDy

DUDX(Z, 2) = DVODR

DUDX (3, 3) = YRR#OY

CALL CHOU (3, <1, C2, AKE, DI, 1. TV)

Dﬂlﬂd=14? '
EXT(J) = 0 0 :

CONT INUE |
SIC1Y=-DISZ3+PHI (L, L 1)#PHI (1, 1, 202, O%UZE/Y (13 #DRVR-2. 0%LIVRESDLDR
1 ~EXTe1)

SI(2) = —DISEE+PHI$2}2:1}+PHI(242:2}—2,G*UHZB*DURDR+4.Q*VDR%URUDE#

1 DY ~ EXT(ZI43 0

. BI(3) = -DI523+PHI{3.3;1}+PHI(3;3;2}*2.G*?HVDB*DVDDH—E.G*UER#VHVGE
1 #0Y - 2 O¥VRERVOZE#DY — EXT(3) : .

£I{4} = PH1<1,2,1J+PHI{1,2;2:-VH23*DUDR+2,G*VQR*UVDE*B¥

I = EXT(4)%Z O +UVRESYRRADY

SI(5) = PHI(E;S:1)+PHI{2,3,EJ-VRZE*DVGDR+UDR*{2.G#UUZE -VRZE}#0DY
1= EXTI(T)*Z. 0 ~ VRVOR4DEVREY(D) i '

Slta) = FHIEi;z,13+PH1¢1,3,2:hvHUGEﬁﬂunﬁ—uvamﬁavnnﬁmvuR*UVHE*Ev

1 ~EXT{&) + LNOE#PVROR - I

SIi{s) ='—2tG%EHUfIJ*fVDR#DY+DVDBH}—2.G#URUUE*BYfY{I}*IF(SJI+1]—F€5
1. [} I".l }}

IF{DIS LE 0. ©) GOTO7 g

IF(AKE. LE. 0. 0) SI1(7) = 0. 0 ST ERNS 2-4.17 Ao 2.4.12
IF(AKE. LE. O 0) aoTny . _ '
SIi7s ='-cEI*nzaxﬁﬂE*f—Uiﬂ*nRvaVfIJ+uvHE*DunR+vRqu*BVGEH

1 ~VORSYRYOGEOY _

1  + VRR#VOZE#DY) « CEZSOIS#87/A0E #0Y - EXT(7)

Y{Z)} = YHz : ' ' -

OOz K o= 1,8 _ )

BUCK, 1) = SI(KY # RHOLI) # Y1)

nos e=4,5 SOURCE  TERMS

SHHK, I) = 0.0

CONT INUE

. RETURRN

END
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SUEROUTINE CHOU(N, T1, CZ, &K, G155, MK, DY)

TOIMEMSION W03 3), 802, I, & 5

COMMOMNS RENY SE 0T, 40, FREF ER GiFd, ZLNOE, GO, SEOP, 400, VRIAD), VT 400
AR T ST _'Hi-{-...z EFINGE P ELRTEN S PP I A e Fic B ﬁLF’HF‘n EETH, ETA, UPw

it 1) = Fo1, MK
i1, 3y = =c4,.”3
{1, 2} = E{A, MR

: LEZ, 1) = F{4, M) T3

i e, 2y = FUX, i) - WA

Iz, 2y = FOS, MDD

; 3, 1) = S, NED

. Hi{E, 2) = FI{5, MK)

; UGZi 3 = Foa N

. 0 1 I=st, N ST
Do 1 g = 1N _
IF(OIS. LE & 0y PHICI. L 1) = 0. 0
IF(OIs LE & 0y GaToz '
IFfakE LE, . 'i:“ FHI{I,Jd, 1) = &, ‘:"

IF{AKE. LE 0, LSOTOZ o
: PHICE, 4y 1) = ~C1%DL5/AKES (L(T, J1=Z O/3 O*DUL, ) RAKE) #DY b, BNZED
2 Dot M= 1, N
L1 L=, N
ACT, LML) = AL PHasDL, JY#, 1)
1 + BETA%(DOM, LYSUCI. ) B0, eI, i
1 S DT, Ly#lidM, d) & LGOI, & LI(M, LD L. C*‘lﬁtj
1 + CFeloM, Trellol, J) .
1 +AKE # (ETH%L(M, I}*EEL.J'.-:'

Ead Z2.35.

- 4 + ”’:""*{-{DE""IJL,}*D"I“JJ' + El“hu-.rﬁﬁEHI;L:J'}

1 COMTINUE -

Dern 2
Doz U=
UM = Q0 _ . .

Oz M= rq ' ' i z.3. 0
DOSLa, : ®, T . '
E:F.|H_='D|.-|E:’:.' *%{ﬂnuut"n:_‘*--.f-‘t(:,h IoMeLd) + 5%
FHICI, Jy2) = 21k .

3. CONT T : : -
RETLRN .

-

o N _ : -

= 1
1N
0.
1,

b




S0

€19
STRIDE

BUBROUTIHNE BTRIDEC Sk
DIMENSION @09, @20, ALCET), BOF 33, BUORE) . O0f 835, CULES L, FOIFE(T),
1 FOIFIOR): GEAPYFICR). TTREOP) L WOLEED Y |, QOLC40) o UZEXE40)
CEPMOMS GENRAL S AUE (D), Sl {8, SSALFA, DRDX 4G, 0K,
ETOF, 400, W IFTA, INDE (3, InGIiw), [STER, ITEST, IUTRAR, KEX, KIM, KRAD,
M, NES MNP, MEL MED, MR, GOS0, PELL, FROP), PSIE, FETL,
FlaQ), amE, RMI, BUCG0), XD 2. vE, Y1, UT. GTE, Sus, TACT
COMMIES RENY F (7, 403, FREFCF, 430, ST, 400, SECF, 40, VRGO, VT 60)
COMMOR TEDAY (403, LAG), RRTU4T ), EMLITHG)  , KZMLE
GO TO (1000, OG0, 3005, [S

[CCl el

(D B R R R R R A X S R L A N T e = T R I OE 1 FHEEESESSES RS S5

1000 IFTIZYER OT. &0 GO TR 1100

T L d =0
LM {2 b =0

CIp e NP ) =1,

CME Ry =]

COMIm. SEQM{T) .
TME=, S 1, =OMINFT )
EFE=1.

1100 1 =1, NP3
1101 RLHIY=RHOC T #U( I
RILZ=FLI(Z
RUMT=ALICNE L)

Y 1102 =2, NP1

RO(I= Sx{RU{IIFRUCIFL Y
IFORUITY 57, & 30 T 1oz
IF(ITEST. ECL Q) WRITE(A, 32000

PEOQ FORMAT(I&HOAN AU 1% ZERT OR NEGATIVE]

ITEZT=1
; . IFIh=]
1102 CONT ENUE
e S e CALCULATION OF Y Y8 AND R TS e —mmmm
e e e e ¥’ FOR PLANE GEOMETRY

YI=FREI#OMIL A BRI SRLICT) )
Y2 =Y +PEI# M (S AR Sy LRSS
Y2 =Y (O =—FETH0ME S SRRSO
¥ 1102 I=4, bz
TI0Z Yi 1 sy i It 0 +PEI R (DM (I b~ I~13 ) /REICF =3 Y
WHEG=Y (MPL HPETH {1, ~OMeNFLY Fr (RUTMPL )RR
CYESPE[SOMES (BESERUCNET Y )
YIMEZ =Y SeyE

et YOS OAND RUS.FOR AXISYMMETRICAL GEOMETRY
L T e e e e e e CSALFE ME ZER0 )



hLL

EICI 1 I':'l"_ I .-_: 1"\4";':'_:)

WITI=SRRT{AES (Y (L »/OI0E0ZE )
P10 RIOIM=Y(I)#DSALFS

YI=ZORT(ARS (Y I o0z )]

Y IE=SnRT (ARS (YR IS ADETIE) 3

RED = R{LI+YIHCoRALER

HplS=R( 1+ yMI E#C5ALFD

YE=Y(MEZ i —-YNi1S
 RETLURM

£ e e e e e e e CSALEA BB ZERD
Cobdpdh b e b e e B RS S F SR E A SRR EN L R eed 5 T R I O E 2 #ddddddaesedieud
L et e e s e e FRELIMIMARIES FUOR COAEFFICIENTS
2000 FPX=PELSTX '

Fl.@ = 1.2

G=RMI-~REE

_ Pivg= 135X
Fh4= Z5&FX
FE=FX+0G
FODg= 135G
FEO4=PEIT+PG0E
RF10Zs, SehMl
GL&=, F5%0G
DEMP = 35 5 20

FHOME =PG4 # BORF
PACMF=F LI * B
[ = i GRID POINT 2
= 0.0 |
IF(TACT. BDL 2 ) UZBX(2) = Fii, 3 . S
L RN = -RHO{EISF (4, DIFRIT  —iF (1, 3 -LIEX(I) ) /DXERIT YD KX 0
£ e BOUNGARY COEFTISIENTS FOR VELOCITY M

EFI = (R{1I#{, TARULI+RUI I ) +2 #RZ50%
1 ERUCLyRUIE) ) I e AIR{IIFRIZZ) ARG
FO0F HLF=RWMIOZ—GE0SS (OMOZY+0M 3D
. SR F=AES CHLR
THLF=HLF+HLE -

TE=gM LI .
TTE=YP+AHLF+AES { TR~GHLF 3
Al=TTP-THLF T | ~FGOMP
EO=Z #{Ti+RMI}

FE(X, Z) = =DFOX (2 (R IFRETIHYI+ALI]

ChO=PA0MES {3 &I U {2)I=FS{d, B

El=Al+R0+F X & EOMF

IFIPLA EQ 12 HITO4

Bl 2y =A0s T

BU{Z I =ELATL

A 3 b =T
K e e e e e o e o o EQRNDARY COEFFICIENTS FOR F S
a4 IF(MER. EQ 1) GOTOEDOS : '



Py ZE0G0 Jd=1. MNPH

TREZ=FREF (.} 2

TTREL N =TRFEZ+AHLF+FARS { TRFFE—aHLF)
TiF = Q. &

FOIFI(.JTy=D

L e o e m - CNEEFICIENTE

AOE=TTPF () =THLP-TIF=FEOME+ SeSh L, 33
GOF=Z #{TIF+RMI}

OF =A0F+ROF+R X4 DOMF -2, #25 (0, 2}
T=—T1FFOIFI (.0} '

T 2305 '

2303 ADF=TTPF{. ) —THLF=-FEEME+ S#204., 20
- BLF =0,
: DF=QDF+PY4LAMP—3, 2T (), 2r+RMIes
: TeRMIEF (4, LY FRSI (38801 )
L REDS TT=3 (4, 2)+E(J, I
- COF=FGOMPRTT 2 {75008, 33 )
g IF(L BE. 4. AND, 4 LE. &) SOTOzemss
Al 2 =A0F T
B, Zy=pOFs DOF
Gl &) =CoFADF
GIOTR ZEG0
ZZIOD2 AL Zre0, 0
¢ B0 Z=00 0
COLEY = 0.0
TI00 CONTINUE '
e e e e e ——— BRIE POINT NEZ
e e et e e TALE: BPE. TNP3:
IECGE O TNFT = 0.0 oo '
IFITARCT. BEQL 2 Q) LZEEXINFPL) = E{1, MFL
AT =RHOINFL ) & Fid, MPLD
EFE = (RINFIIE(E SRAUINFS I SRITMNEL Y Y +3 #EN] S
i TRIMESIARUNP LV b ad, ACRINEDS )+ SMIS) ARUINS L)
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