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Abstract

A spectrogram is a visual representation of the spectrum of frequencies in a signal
as it varies with time. A critical problem in radio astronomy is removing radio
frequency interference (RFI) from the spectrograms produced by radio telescopes.
Given the performance of diffusion models in image inpainting and the structural
similarity of spectrograms to image data, these methods can be useful for address-
ing RFI corruption. However, applying diffusion models to this problem presents
significant challenges. In particular, the astronomical data we are dealing with is
corrupted, which makes the existing methods that depend on clean training data
inapplicable.

This thesis explores methods to improve solutions to the problem of spectro-
gram inpainting, specifically designed for scenarios where all training data is cor-
rupted. We further propose a positional encoding scheme to address the assump-
tion of translation symmetry, in Convolution-based architectures such as UNET,
and enable the models to capture frequency-dependent patterns in spectrograms
better.

We evaluate our methods on CIFAR-10, synthetic spectrograms, and real-world
spectrograms from radio astronomy. Our results demonstrate the effectiveness of
these approaches in reconstructing corrupted data, highlighting the potential of
diffusion-based inpainting for spectrograms. This work provides a foundation for
applying generative models in astrophysical data recovery and paves the way for

turther exploration in this domain.
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Sommaire

Un spectrogramme est une représentation visuelle du spectre des fréquences d'un
signal au fil du temps. Un probleme majeur en astronomie radio est I’élimination
des interférences radiofréquences (RFI) dans les spectrogrammes produits par les
radiotélescopes. FEtant donné les performances des modeles de diffusion pour
le inpainting d’images et la similarité structurelle entre les spectrogrammes et
les données d’image, ces méthodes peuvent étre utiles pour traiter la corruption
causée par les RFI. Cependant, appliquer ces modeles de diffusion a ce probléme
présente des défis importants. En particulier, les données astronomiques avec
lesquelles nous travaillons sont corrompues, ce qui rend les méthodes existantes
dépendant de données d’entrainement propres inapplicables.

Cette thése explore des méthodes visant a améliorer les solutions pour le in-
painting de spectrogrammes, spécifiquement congues pour des scénarios ot I’ensemble
des données d’entrainement est corrompu. Nous proposons également un schéma
d’encodage positionnel pour répondre a I'hypothese de symétrie par translation
et permettre aux modéles de mieux capturer les motifs dépendant des fréquences
dans les spectrogrammes.

Nous évaluons nos méthodes sur les ensembles de données CIFAR-10, des
spectrogrammes synthétiques et des spectrogrammes réels issus de ’astronomie
radio. Nos résultats démontrent I’efficacité de ces approches pour reconstruire des
données corrompues, soulignant le potentiel des techniques de inpainting basées

sur les modeles de diffusion pour les spectrogrammes. Ce travail pose les bases de
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I"application de modeles génératifs pour la récupération de données astrophysiques

et ouvre la voie a des explorations futures dans ce domain.



Previously Published Material

This thesis is based on work previously published in the Machine Learning for
the Physical Sciences (ML4PS) Workshop at NeurIPS 2024, titled “Diffusion-Based
Inpainting of Corrupted Spectrogram”. The core ideas and methods presented in this
thesis, particularly those in Chapters 3, originated from this publication.

I was the primary contributor to the work, leading the research from prob-
lem formulation, algorithm development, and experimentation on astronomical
spectrograms to the writing of the paper. My co-authors supported the research
through valuable discussions and feedback. This thesis extends the workshop
paper with a more thorough literature review, enhanced methodology, and ad-

ditional experimental analysis.

vi



Dedicated to my beloved parents and sister,

whose unwavering love, and support carried me through every step of this journey.

And to my wonderful friends,

for their encouragement, laughter, and companionship.



Acknowledgments

To begin, I want to sincerely thank my supervisor, Prof. Siamak Ravanbakhsh, for
his unwavering support, mentorship, and flexibility. I am deeply grateful for the
opportunity to be part of his lab at McGill University and the Mila community. His
guidance and encouragement have been invaluable in helping me build the best
path for my career and fostering my growth in a research environment. Under his
guidance, I have learned not only about research but also about making thoughtful
life decisions.

Special thanks to Prof. Adrian Liu, whose guidance on the interdisciplinary
aspects of this project was inspiring. I also want to extend my gratitude to my
collaborators, especially Reyhane Askari, for her amazing guidance, kind heart,
and encouragement. Her support and positivity have made this journey even more
meaningful.

I also want to thank the amazing community of the McGill Computer Science
Graduate Society (CSGS) and the Mila-Quebec Al Institute. Both became like a sec-
ond home where I built lasting friendships, made meaningful connections, picked
up new hobbies, and shared incredible travel experiences—and so much more.

Finally, a special thank you goes to my family, who I really miss and wish could
be here with me right now. Their unwavering support has been my strength. Fi-
nally, to my friends, both in Montreal and around the world, thank you for mak-
ing these past two years so enjoyable and unforgettable. You've made this journey

truly special.

viii



Table of Contents

Abstract. . . . . . . . iii
Sommaire . . . . . ... iv
Previously Published Material vi
Listof Figures . . . .. .. ... ... .. .. .. .. .. ... xiii
Listof Tables . . . . . . . . . . o xiv
List of Abbreviations . . . . . ... ... ... .. ... XV

1 Introduction 1
1.1 Background and Motivation . . . . ... ..... ... ... ..., . 1
1.1.1 Inpainting . . .. ... ... ... ... ... ... 1

1.1.2 Radio Frequency Interference (RFI) . .. ... ... ... ... 5

1.2 Problem Statement . . ... ... ... ... ... 6

1.3 ObjectiveoftheStudy . ... ... ... ... ... .. ... .. .... 8

1.4 Contributions of the Thesis . . . . . ... ... ... ... ....... 8

2 Literature Review 10
2.1 InpaintingMethods . . . . .. ........ ... ... . 0L 10
2.1.1 GenerativeModels . . . . .. ... ... 11

2.1.2 Applications of Generative Models in Image Inpainting . . . . 13

2.1.3 Methods that Modify the Sampling . . . ... ......... 14

214 Methods that Modify the Training . . . . ... ......... 15

2.1.5 Methods that Modify Both Sampling and Training . . . . . . . 15

X



2.1.6 Traditional methods for Inpainting . . . . . . ... ... .... 16

2.1.7 Challenges and Future Directions . . ... ... ... ..... 18
2.2 Mathematics behind the Denoising Diffusion Probabilistic Models
(DDPM) . . . 19
23 UNet . . ... e 20
23.1 Application of UNetin Our Work . . ... ... ........ 21
24 RePaint . . . . . ... 22
2.5 RFIand its Mitigation Techniques . . . . . . ... ... ... ...... 24
251 CLEAN Algorithm . . . ... ................... 24
2.5.2 Other RFI Mitigation Techniques . . . . . ... ... ...... 25
2.5.3 Applications in HERA and Other Observatories . . . . . . .. 26
Methodology 27
31 Overviewofmethods. . . . ... ... ... ... ... ... ... 27
311 Method1. ... .. ... ... .. L 27
312 Method2. . ... ... ... 30
313 Method3. . ... ... . .. 35
3.14 Positional Encoding . . . ... .... ... ... .. ... ... 37
Experimental Results and Discussion 42
4.1 Introduction to Experiments . . . . ... ... ... ... ........ 42
42 Datasets . . . . . ... 42
421 CIFAR-10 . ... ... e 42
422 DermaMNIST . . . ... ... ... ... o 43
42.3 Synthetic Spectrograms . . .. ... ... o0 0oL 43
424 Real Spectrograms (HERA) . . ... ............... 45
43 ExperimentalSetup . . .. .. ... ... .. ... .. . L. 45
43.1 EvaluationMetrics . . . . . . .. ... 46
44 Results . . .. .. . 47



441 CIFAR-10 . . . . . 47

442 DermaMNIST . . .. ... ... ... ... ... ... .. 49

443 Synthetic Spectrograms . . . ... ... ... ... ....... 50

444 Real Spectrograms (HERA) . . . ................. 51

45 Discussion . . ... ... ... Lo Lo 51
5 Conclusion 53

xi



List of Figures

1.1 RFI from different sources [31] . .. ... ... ... ... ... ....

2.1 generative Adversarial Models [15] . . . . . ... ..... ... ...
22 DDPMPipeline[20] . . . . .. .. ... ..
2.3 Image Inpainting Methods . . . . . ... ....... ... .. .....
24 RePaintDiagram [29] . . . . . ... .. ... ... . oL
25 RePaintDiagram [29] . . . .. .. ... ... ... . ... . .o L.

3.1 Method 1 simple form: We penalize the model output on parts of
images where there isno hatching . . ... ... ... ...... ...

3.2 Ilustration of the amplitude and phase of a spectrogram sample.
We input the positional encoding along with the mask amplitude
and phase into the diffusion process. Two sets of masks are used:
m (pre-existing mask in black) and m' (additional masks in yellow).

The U-Net diffusion model is trained by computing V,(1 —m')al; +

3.3 Method 2 simple form: We add fake makes on top of the real one,
and not telling the model which is which. Then, we define our loss
based on the hatches we know the ground truth of, and the intact
part where thereisnomask. . . .. .. ... ... ... . .00

3.4 Illustration of Positional Encoding for Different Dimensions . . . . .

Xii



3.5

4.1

4.2

4.3

44

4.5
4.6

Visualization of sinusoidal positional encodings for a spectrogram.
The x-axis represents frequency bands, the y-axis represents differ-
ent encoding dimensions, and the color intensity represents the en-

codingvalues. . . ... ... .. ... ... ...

Visual comparison of phase, amplitude, and mask data across two
datapoints. . ... ... ... ... L
Mask Difference between two datapoints: Red parts indicate the
narrow band masks we care to inpaint accurately . . ... ......
Inpainted example from the CIFAR-10 dataset. On the left, the clean
sample and the mask applied to it are plotted. We then show the
final inpainted image using different methods. . . . . ... ... ...
Visualization of results for the DermaMNIST dataset with method 3 .
Visualization of results for the Synthetic dataset. . . . .. ... .. ..

Visualization of results for the real astronomical dataset. . . . .. ..

xiii

48
50
50
51



List of Tables

4.1 Inpaintingresults for CIFAR10. . . .. ... ... ... ........ 49
4.2 Performance metrics for DermaMNIST dataset. The table reports
PSNR and MSE for the three methods. . . . . ... ... ... ..... 49

4.3 Results for Synthetic spectrograms. . . . . .. ... ... ... ... 51

Xiv



List of Abbreviations

RFI Radio Frequency Interference

DDPM  Denoising Diffusion Probabilistic Model
GAN Generative Adversarial Network

VAE Variational Autoencoder

UNet U-shaped Convolutional Neural Network
MSE Mean Squared Error

PSNR Peak Signal-to-Noise Ratio

HERA Hydrogen Epoch of Reionization Array
CNN Convolutional Neural Network

DPSS Discrete Prolate Spheroidal Sequences
GPR Gaussian Process Regression

LSSA Least Square Spectral Analysis

NLN Nearest-Latent-Neighbours

PDE Partial Differential Equation

XV



Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Inpainting

Inpainting is a fundamental problem in computer vision and deep learning with
widespread applications across various fields such as image restoration, medical
imaging, and digital content creation. The primary goal of inpainting is to recon-
struct missing or corrupted parts of data in a way that is coherent and consistent
with the surrounding information. This task plays a crucial role in enhancing the
quality of images and improving the accuracy of subsequent analyses in many do-
mains.

In computer vision research, the quality and completeness of images signifi-
cantly impact some important downstream tasks such as object detection, segmen-
tation, and scene understanding. Missing data or corrupted regions in images can
lead to inaccurate results in these tasks, potentially compromising the reliability
of Al systems. Inpainting techniques help to restore these missing parts, ensur-
ing that the data remains useful for further analysis and processing. The ability

to effectively reconstruct missing information has far-reaching implications, from



improving the robustness of vision systems to enabling new applications, image
editing, image interpretation ability, etc.

A novel approach to tackle the inpainting problem is to train diffusion mod-
els exclusively on corrupted data to generate reconstructed, filled-in images. This
method represents a significant departure from previous techniques that rely on
paired datasets of corrupted and original images. The core idea is to develop a
model capable of learning the underlying structure and patterns of images from
corrupted data alone. By doing so, the model can potentially generalize better to
real-world scenarios where the original, uncorrupted data may not be available.
This approach is particularly relevant in fields such as astronomy, where certain
data may be inherently corrupted or incomplete due to various factors like Ra-
dio Frequency Interference (RFI). The training process involves feeding the model
with corrupted images and optimizing it to predict the noise added during the
forward diffusion process. Through iterative refinement in the backward process,
the model learns to denoise and reconstruct the image, effectively filling in miss-
ing or corrupted regions. This thesis aims to explore and develop such a model,
leveraging the power of diffusion-based approaches while addressing the unique
challenges posed by training solely on corrupted data. The potential benefits of

this method include:

¢ Improved generalization to real-world, naturally corrupted data specifically

in the astronomical signals

* Potential for application in domains where uncorrupted data is scarce or un-

available

By focusing on this innovative approach, we aim to contribute to the field of
image inpainting and explore its applications in areas such as astronomical data

reconstruction.



Before the rise of deep learning, traditional inpainting methods were widely
used. These methods can be broadly categorized into techniques based on Par-
tial Differential Equations (PDEs), patch-based methods, and graphical models.
Techniques based on PDEs , as demonstrated by Bertalmio et al [2], propagate in-
formation from the edges and boundaries to achieve smooth inpainted images.
Patch-based methods, such as those proposed by [9], try to find and replicate sim-
ilar patches from known areas to reconstruct the missing regions. Graphical mod-
els, including Markov Random Fields and Conditional Random Fields, have also
been extensively used to represent and infer missing parts based on probabilistic
dependencies within the data [12,35].

Deep learning has revolutionized the field of image inpainting, enabling the
development of models that can handle more complex scenarios with higher accu-
racy. These techniques can be categorized based on the underlying architectures
and methodologies. Convolutional Neural Networks (CNNs) are a class of feed-
forward neural networks that have been extensively used for image inpainting due
to their ability to capture spatial hierarchies in images.

In astronomical research, the quality of celestial images significantly impacts
the analysis and measurement of features. One major challenge is Radio Frequency
Interference (RFI), which necessitates frequent data flagging in radio photon mea-
surements. RFI poses significant challenges for current and future radio telescopes,
with the number, variety, and overall disruption to observations increasing [8].
These interfering signals, primarily originating from terrestrial transmitters and
satellites, often result in certain data being marked as potentially important dur-
ing analysis. RFI can corrupt weak cosmic signals and severely impact the quality
of astronomical data [28]. The complex nature of RFI, as summarized by [28], in-

cludes:

* Increasing prevalence due to the growing number of electronic devices



* Varied sources, including internal (generated by instruments) and external

(man-made radio emissions)

Removing RFI from data analysis is crucial, but it introduces gaps that can cause
artifacts within the spectrum. These gaps pose a direct challenge to data analy-
sis pipelines that strive to separate foregrounds from cosmological signals in the
Fourier domain. This scenario can be framed as an inpainting problem in computer

vision, aiming to fill these gaps coherently with the rest of the observed data.

Application to Astrophysical Data

In the context of this thesis, we focus on the application of inpainting techniques
to astrophysical data, specifically from the Hydrogen Epoch of Reionization Ar-
ray (HERA) experiment. HERA is a large radio interferometer consisting of 300
radio dishes, located in the South African Karoo Desert. Its goal is to characterize
the three-dimensional spatial properties of our Universe around the time that first-
generation galaxies were forming. The raw data from HERA comes in the form of
complex-valued visibilities, which are functions of frequency and time. These vis-
ibilities can be viewed as two-dimensional functions on the frequency-time plane,
analogous to images. However, they are often contaminated by Radio Frequency
Interference (RFI), which is orders of magnitude brighter than any astrophysical
source of radio waves. This contamination leads to parts of the data being masked,

creating a scenario similar to traditional image inpainting problems.

Unique Challenges in Astrophysical Data Inpainting

Two major challenges distinguish this problem from general inpainting tasks: The
entire training dataset is corrupted by RFI, necessitating novel approaches to learn
the true signal distribution. Unlike typical image data, spectrograms lack transla-
tion symmetry along the frequency axis, which is inconsistent with the assump-

tions of convolutional neural networks. To address these challenges, we propose
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three progressively more accurate solutions and introduce a positional encoding
scheme for frequencies. This approach aims to improve the model’s ability to han-
dle the unique characteristics of astronomical spectrograms while maintaining the

benefits of convolutional architectures.

1.1.2 Radio Frequency Interference (RFI)

Radio Frequency Interference (RFI) is a significant challenge in radio astronomy
data collection. It refers to any unwanted radio signals that interfere with the weak
cosmic signals astronomers want to study. RFI can originate from various sources,
both internal (generated by instruments) and external (man-made radio emissions)
[28].

The impact of RFI on astronomical observations is substantial. It can corrupt
weak cosmic signals, potentially impacting the integrity and scientific value of the
collected data [28]. As radio telescopes become more sensitive, the problem of RFI

is expected to become even more pronounced [28].
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Figure 1.1: RFI from different sources [31]

RFI can manifest in different forms:



1. Narrow band interference: This includes continuous wave (CW) or modu-
lated CW signals, often appearing as narrow vertical lines or slightly wider mod-
ulated vertical bands on a spectrum analyzer [39].

2. Broadband interference: This typically includes emissions from switch-mode
power supplies, such as electrical discharges from power cables, or digital systems
like Wi-Fi or Bluetooth. On a spectrum analyzer, it appears as broad ranges of
signals or an increase in the noise floor [39].

The detection and mitigation of RFI have become crucial tasks in radio astron-
omy. Traditional methods often involve manual inspection and flagging of con-
taminated data, but this approach becomes impractical with the increasing volume
of data from modern radio telescopes. As a result, there’s a growing interest in au-
tomated RFI detection methods, particularly those leveraging machine learning
and deep learning techniques [28].

Recent advancements in this field include the application of convolutional neu-
ral networks, generative adversarial networks, and other sophisticated algorithms
to identify and characterize RFI more effectively [28]. These approaches aim to
improve the accuracy and efficiency of RFI detection, ultimately enhancing the

quality and reliability of radio astronomical observations.

1.2 Problem Statement

To address the effects of Radio Frequency Interference (RFI) on the power spec-
trum, a common approach in radio astronomy is to detect RFI-affected frequency
bands and then mitigate its impact by avoiding those bands entirely. Detection
is about identifying where the interference occurrence is, and mitigation includes
techniques used to reduce or eliminate its impact on the data. While this approach
works, it often comes at the cost of losing valuable frequency channels, which lim-

its analysis and reduces the quality of the results. Consequently, researchers face



restrictions in accessing different redshifts, which can lead to a reduced signal-to-
noise ratio. This reduction makes data interpretation and analysis complicated. It
can also cause challenges in extracting meaningful cosmological information from
the observations.

Traditional RFI detection and mitigation techniques, such as CUMSUM [3], sin-
gular value decomposition [13], and wavelet-based methods, have been widely
implemented in real-time at observatories [28]. These methods generate RFI masks
for archived data, but they come with some limitations. They often lack adaptabil-
ity to dynamic or evolving RFI patterns and can be sensitive to the choice of param-
eters. Furthermore, traditional techniques may struggle with complex RFI signals,
particularly those that exhibit Gaussian or near-Gaussian distributions. The com-
putational demands of processing large datasets in real-time also pose significant
challenges [32].

In contrast, recent advancements in deep learning have shown promise in im-
proving RFI detection. Supervised learning methods have demonstrated effec-
tiveness; like how authors of [1] train U-Net architecture in a supervised manner;
however, they require extensive labeled datasets, which can be costly and imprac-
tical to obtain. Additionally, these models may face issues with generalization, as
they can overfit specific telescope data or frequency ranges, and their “black box”
nature can hardly be interpretable [8].

Unsupervised learning approaches offer a potential alternative by reducing de-
pendence on labeled data. For instance, methods like the Nearest-Latent-Neighbours
(NLN) algorithm frame RFI detection as an anomaly detection task; this can let the
learning benefit from the vast amount of existing radio telescope data [30]. How-
ever, these methods are not without their challenges. They may produce false pos-
itives by misidentifying unusual but valid astronomical signals as RFI, and their

implementation can be complex.



In summary, while traditional methods and some deep learning approaches for
RFI mitigation and detection have made progress, they still have limitations. This

indicates a need for better techniques to handle RFI in astronomical data.

1.3 Objective of the Study

The objective of this study is to develop an effective inpainting method using De-
noising Diffusion Probabilistic Models (DDPMs) to address the issues introduced
by RFI in astronomical data. This research aims to design a proper setup that
generates unmasked images without corruption from natural datasets by training
diffusion models on corrupted data.

To achieve the best possible inpainting results, the study will focus on testing
and optimizing three main steps in the proposed inpainting algorithm iteratively.
This iterative process (Inpainting) will ensure that the inpainting method can ef-
fectively restore the integrity of the data while maintaining coherence with the
existing imagery.

Finally, the effectiveness of the proposed method will be validated using actual
astronomical datasets such as HERA. The goal is to demonstrate the potential of
the inpainting approach to improve the quality of the astronomical dataset and

improve the accuracy of astronomical analyses.

1.4 Contributions of the Thesis

This thesis makes the following contributions:

* A novel pipeline that employs diffusion models for inpainting corrupted as-

tronomical data, trained on datasets with deliberately introduced masks.



* An iterative algorithm with three key steps that enhance the quality of in-
painting results, ensuring seamless integration of new content with existing

data.

¢ Experimental validation of the proposed method on astronomical datasets,
highlighting its efficacy in restoring continuous and coherent images, thereby

improving the quality of astronomical analyses and feature measurements.



Chapter 2

Literature Review

2.1 Inpainting Methods

Inpainting is the process of filling in missing or damaged parts of an image. There
are several common approaches to this problem. Traditional methods include
techniques based on mathematical equations, for example extending edges to fill
gaps [2], and patch-based methods that copy similar textures or patterns [4]from
surrounding areas. While these methods can work well in simple cases, they often
fail when dealing with complex or irregular gaps. Deep learning has introduced
more advanced techniques, such as generative models like GANSs or autoencoders,
which learn patterns from data to generate realistic reconstructions. Among these
approaches, diffusion-based methods have become particularly effective. These
methods use an iterative process to refine the missing regions step by step, achiev-
ing highly accurate results. Diffusion-based inpainting can be grouped into three
main types: modifying the sampling process, modifying the training process, or
combining both. Our work builds on this last category to address the specific chal-

lenges of reconstructing corrupted spectrograms.
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2.1.1 Generative Models

Generative models are a class of machine learning models that aim to generate new
data samples that resemble a given dataset. These models learn the distribution of
the data and can produce new instances that are statistically similar to the training
data. Generative models have numerous applications in various fields, including

image generation, text synthesis, data augmentation, etc.

Types of Generative Models

There are several types of generative models, each with its unique approach to

learning and generating data:

Generative Adversarial Networks (GANSs)

Generative Adversarial Networks (GANSs) [15] consist of two neural networks: a
generator and a discriminator. The generator creates synthetic data samples, while
the discriminator evaluates their authenticity compared to real data. The two net-
works are trained simultaneously in a competitive manner, where the generator
aims to produce realistic samples to fool the discriminator, and the discriminator
aims to distinguish between real and generated samples. GANs have been widely

used for image generation, inpainting, and style transfer.

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) [26] is a type of generative model that extends
traditional autoencoders by introducing a probabilistic latent space. Instead of
encoding the input into a fixed vector, VAEs encode the data as a distribution in

the latent space, typically represented by a mean (1) and variance (o?):

2z~ N(p,a?), (2.1)

11
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Figure 2.1: generative Adversarial Models [15]

where 2 is the latent variable sampled from the learned distribution. The de-
coder then reconstructs the input by sampling from this latent representation. To
train a VAE, the loss function includes both a reconstruction loss, ensuring the
output resembles the input, and a regularization term, the Kullback-Leibler (KL)

divergence, to enforce the latent space to follow a standard normal distribution:

‘CVAE = Ereconstruction + 6 DKL(Q(Z|$) ||p(z)) (22)

Here, ¢(z|z) is the learned posterior, p(z) is the prior (typically A(0,1)), and
3 balances the two terms. This probabilistic framework allows VAEs to generate
new data by sampling from the latent space, distinguishing them from traditional

autoencoders.

Denoising Diffusion Probabilistic Models (DDPMs)

Denoising Diffusion Probabilistic Models (DDPMs) [38] are a class of generative
models that iteratively apply denoising steps to reduce noise in data samples.

Starting from a noisy sample, DDPMs progressively refine the sample through a

12



series of denoising steps until a clean data sample is obtained. These models have
shown remarkable performance in generating high-quality images and have been

successfully applied to image inpainting tasks.

Forward Diffusion Process

v

Reverse Denoising Process

Figure 2.2: DDPM Pipeline [20]

2.1.2 Applications of Generative Models in Image Inpainting

Generative models have significantly advanced the field of image inpainting by
providing robust methods to fill in missing or corrupted regions of images. The
ability of these models to learn complex data distributions and generate realistic

samples makes them ideal for inpainting applications.

GAN-based Inpainting

GAN-based inpainting methods leverage the adversarial training mechanism to
generate realistic image completions. For example, the AOT-GAN model [45] en-
hances context reasoning and texture synthesis by aggregating contextual transfor-
mations from various receptive fields. This approach allows the model to capture
both distant image contexts and fine-grained textures, resulting in high-quality in-

painted images.

13



VAE-based Inpainting
Diffusion Model-based Inpainting

Diffusion model-based inpainting methods, such as the RePaint approach [29], it-
eratively denoise images to fill in missing regions. These methods leverage the
powerful denoising capabilities of DDPMs to generate inpainted images with high
accuracy and detail. The iterative nature of the process ensures that the inpainted
regions align well with the known parts of the image.

On top of the above, we can categorize the inpainting method into three main

methods of modification, based on training and sampling time.

2.1.3 Methods that Modify the Sampling

Sampling modifications involve altering the denoising steps in diffusion models to
better align inpainted regions with the known unmasked areas. In [16], the authors
introduce a method called GradPaint, which uses a custom loss to measure the co-
herence of the denoised image estimation with the masked input image at each
step in the denoising process. This includes a mean squared error loss outside the
inpainting mask and an alignment loss to maintain smooth transitions at the mask
boundaries. Similarly, RePaint [29]conditions the diffusion process on known re-
gions, iteratively improving the reconstruction of masked areas. This approach
can be applied to any pre-trained diffusion model and only requires modifying
the denoising scheduling of DDPM for inpainting. In another work, the authors
of [44] suggest a different approach for sampling; they designed a multimodal in-
painting framework that combines diffusion models with text and shape guidance.
While it wasn’t explicitly trained on every modality, its use of pre-trained diffusion
models and flexible conditioning mechanisms allows it to adapt to various types

of data, including text-guided and shape-guided inpainting tasks. This general-

14



ization capability makes it versatile across data types. However, Uni-Paint lacks

frequency-specific adaptations, which limits its applicability to spectrograms.

2.1.4 Methods that Modify the Training

Training modifications focus on adjusting the learning process of diffusion mod-
els to ensure the reconstructed regions align seamlessly with the unmasked areas
In [36], the authors guide the model to fill in masks based on the context provided
by the existing parts of the image. This approach refines the training process by
introducing conditional loss functions that guide the model to generate contextu-
ally consistent results. This allows the model to leverage the information in the
visible regions to predict and generate the missing parts. Another example is La-
tentPaint [42] which modifies the latent space representation during training to
improve reconstruction efficiency, especially for irregular gaps. However, spectro-

grams require handling unique frequency-specific while training the model.

2.1.5 Methods that Modify Both Sampling and Training

In [6], the authors propose a new approach for image inpainting using diffusion
models that do not require expensive training and are fast at inference time. This
is achieved by performing the forward-backward diffusion step in the latent space
rather than the image space. A mask is applied to the latent space representation
to simulate the missing parts. During training, a loss function measures the dif-
ference between the reconstructed latent space (after inpainting) and the original
latent space. During inference, the trained diffusion model tries to generate the
inpainted representation for the masked regions.

By going through recent works in the field of computer vision, we can ob-
serve that generative models have a significant impact by enabling the creation

of highly realistic images and reconstructions. These models, including GANSs, au-
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toencoders, and diffusion-based frameworks, form the foundation for many mod-
ern inpainting techniques. Generative models have a great impact on the various
domains of computer vision, enabling the creation of highly realistic images in-
cluding inpainting methods. The next section delves into the principles and appli-
cations of generative models, highlighting their significance in the field of image

inpainting.

2.1.6 Traditional methods for Inpainting

Before the era of deep learning, traditional inpainting methods laid the ground-
work for filling missing regions in images. According to the survey by these
techniques can be broadly categorized into diffusion-based methods, patch-based
approaches, and exemplar-based methods, each with its unique advantages and
limitations.

In the figure below, the diagram illustrates the summary of the methods:

Diffusion-Based Methods: These methods rely on propagating pixel informa-
tion from known areas into missing regions, using mathematical principles such
as Partial Differential Equations (PDEs). Early works, like those by Bertalmio et
al. [5] and Ballester et al. [2], formulated inpainting as a smooth continuation
of image structures, that were effective for smooth filling of images structures.
these methods were basically used for repairing small gaps or extending simple
edges. Tschumperlé [40] advanced these ideas by introducing anisotropic diffu-
sion, which enhanced the stability and directional coherence of the reconstructed
areas. In this diffusion process, the algorithm adaptively follows the local geom-
etry of the image, to preserve sharp edges while smoothing out noise in homoge-

neous regions. A common PDE used in this context is:

ol

5 = V- cla.y)v), 23)
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Figure 2.3: Image Inpainting Methods

Patch-Based Approaches: Patch-based methods reconstruct missing regions by
copying patches from known areas with similar textures. Efros and Leung [9] uti-
lized this idea of to create smooth textures. Building on this, Barnes et al. [4] intro-
duced PatchMatch, which accelerated the search for similar patches. Later, meth-
ods like those by Darabi et al. [7] and Huang et al. [22] improved patch blending,
allowing for better reconstructions of highly textured or complex regions.

If we show known parts with (F;) and unknown regions with(P,):

E(Py, P,) = Z 1P (i, 7) — Pui, 5)]|I%, (2.4)

17



Exemplar-Based Methods: Exemplar-based techniques can be viewed as a re-
tined subset of patch-based methods, designed to handle larger missing areas with
complex structures. These approaches identify the most representative patches
(exemplars) from the known regions to fill gaps. For instance, [24] highlighted
how methods like those by Herling and Broll [18] and Guo et al. [17] incorporated
structural and semantic constraints to reconstruct challenging textures and objects
effectively.

The selection process focuses on high confidence areas first, iteratively expand-
ing the known region. The inpainting follows this priority:

., CGL)

Confidence(P,) = AR (2.5)

where C(i, j) is the confidence value of each pixel and |P,| is the patch size. The
method prioritizes areas with the highest confidence for filling.

Although these traditional methods performed well for their time, especially
with small gaps and uniform textures, they struggle when faced with large missing
regions or complex patterns. These challenges have driven the transition toward
deep learning-based solutions, which leverage neural networks to learn more so-

phisticated representations of image data.

2.1.7 Challenges and Future Directions

Despite the significant progress made by generative models in image inpainting,
several challenges remain. Ensuring the semantic coherence of inpainted regions,
handling high-resolution images, and reducing computational overhead are ongo-
ing areas of research. Future work may focus on developing more efficient training
and inference algorithms, improving the interpretability of generative models, and

exploring new applications in various domains.
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Generative models continue to be a promising area of research, with the po-
tential to revolutionize image inpainting and other computer vision tasks. Their
ability to generate realistic and contextually consistent data samples makes them

invaluable tools for addressing complex inpainting challenges.

2.2 Mathematics behind the Denoising Diffusion Prob-

abilistic Models (DDPM)

Denoising Diffusion Probabilistic Models (DDPM) are a class of generative mod-
els that learn to model the conditional distributions of data under sequential levels
of diffusion. In our notation, we define z, as the original, clean data sample (i.e.,
the lowest temperature sample), while z; denotes the final state of the forward
diffusion process (i.e., the highest temperature sample, representing nearly pure
Gaussian noise). Given an initial noisy sample, DDPM iteratively applies denois-
ing steps to reduce the noise level until reaching the desired distribution. Formally,
DDPM models the conditional distribution p(x;|x,), where x; represents the data
at time step ¢ during the reverse process that reconstructs z, from z.

During training, DDPM methods define a diffusion process that transforms an
image z, into a noise distribution over 7' time steps. The final state 7 is modeled
as Gaussian noise, zr ~ N (0,I). The forward process adds Gaussian noise at each

step ¢, transitioning from x,_; to z; using;:

Q(It‘xtfl) = N(iUt; V1-— Bewi—1, 5tI)- (2.6)

where f3; is a variance schedule that controls the amount of noise added at each

timestep t. /3; is typically chosen as a small, increasing sequence over 7. for exam-

ple:
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ﬂmax - ﬁmm
)

Bt = Pmin + ¢ - 7 (2.7)
with Onin and Bmax as the minimum and maximum noise levels.
To simplify computations, we define a; and its cumulative product &; as:
t
ap=1—0, a= HOés- (2.8)
s=1

Here, oy indicates how much of the original signal remains at each step, while
& represents the total remaining signal across all steps. These terms help simplify
the forward process for efficient sampling.

The DDPM is trained to reverse this process. The reverse process is modeled by
a neural network that predicts the parameters py(z¢,t) and Xg(z¢, t) of a Gaussian

distribution. The reverse process of denoising is modeled by:

Po(Ti-1|ze) = N (2415 pro(24, 1), Lo (4, 1)). (2.9)

The introduction of diffusion models, especially highlighted in the “RePaint”
papetr, represents a major breakthrough in this area. These models employ a pre-
trained diffusion model and incorporate a defined mask during inference time to
iteratively denoise images, enabling them to fill in gaps with remarkable accuracy

and detail that align with the surrounding context.

2.3 UNet

UNet is a convolutional neural network (CNN) architecture initially proposed for
biomedical image segmentation tasks. Its encoder-decoder structure, combined
with skip connections, allows it to capture high-level contextual information. UNet

has an image-to-image end and has been widely used in various fields, including
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computer vision and spectrogram processing. It is capable of handling structured

data and reconstructing missing regions with high accuracy.

UNet Architecture

The UNet [34] architecture is made of a symmetrical encoder-decoder design, and
is named”UNet” due to its U-shaped structure. The encoder, or downward path,
progressively reduces the spatial dimensions of the input through a sequence of
convolutional layers followed by pooling operations. These convolutional layers
start to detect simple features (e.g. edges) and gradually capture more complex
teatures (like shapes and regions of the input image). This method brings a hier-
archical representation of data to the model, which is essential in inpainting tasks.
The decoder, or expanding path, mirrors the encoder but in reverse. It restores
the spatial connections by upsampling the feature maps and combining them with
corresponding feature maps from the encoder via skip connections. Skip connec-
tions will directly transfer the spatial details from the encoder to the decoder; This
ensures if any detailed features are lost in the downward path, it will be recovered
via skip connections.

Figure 2.4 illustrates the structure of UNet, highlighting its symmetrical struc-

ture and the use of skip connections to connect the encoder and decoder paths.

2.3.1 Application of UNet in Our Work

In this work, we adapt the UNet architecture for the task of spectrogram recon-
struction, to address the challenge of inpainting corrupted regions. The input to
the network is a 2-dimensional (time x frequency)spectrogram with masked re-
gions representing missing or corrupted data, and the output is a reconstructed
spectrogram with the gaps filled.

To incorporate UNet in our inpainting algorithm, we make the following mod-

ifications:
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Figure 2.4: RePaint Diagram [29]

* The input layer is designed to handle spectrogram data with frequency and
time dimensions, ensuring compatibility with the unique structure of the in-

put.

¢ In some methods, the positional encoding is added to the input spectrogram,
to provide the network with spatial context along the frequency axis, which

will enhance its ability to learn frequency-dependent relationships.

* The number of layers and feature maps is adjusted to balance reconstruction

quality and computational efficiency.

2.4 RePaint

The RePaint approach [29] for inpainting involves conditioning on known regions
of the image. The inpainting process begins with initializing x; from a normal

distribution A(0, ). The algorithm then iterates from the last timestep 7" down
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to 1. During each timestep, the image z; is processed to estimate z,_;. Authors
assume that in each step we have a known and an unknown part of the final image,
denoted by z}"°*™ and z"*"v" respectively.

The known part 29" is sampled using:

270 o N (y/ago, (1 - a)),

Here, a; is a factor that controls how much the starting or known state of the
image, and x, affects the process as the algorithm works backward in time.

The unknown part z#"f"°v" is computed based on:

1
l,;mllgnown _ (zt _ LEOCBt’ t)) + 042,

- \/Et V31—
where ¢(x,,t) is the predicted noise for timestep ¢ provided by the neural net-
work, and z is sampled from N (0, I).

The final step for calculating z;_; combines known and unknown regions:

k k
T =mOa " + (1 —m) © e,

In RePaint,m is a binary mask that indicates known (unmasked) and unknown
(masked) regions. The algorithm involves two loops: an outer loop iterates over all
timesteps 7', while an inner refinement loop updates the image at each timestep.
During the inner loop, the model refines the masked regions by leveraging the
known context and the predicted noise. This iterative process ensures better esti-
mation of the unknown regions as the model iteratively denoises the image. After
completing the outer loop, the reconstructed initial image z is returned as the final

output.
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2.5 RFI and its Mitigation Techniques

As mentioned in the previous chapter, Radio Frequency Interference (RFI) poses a
significant challenge in radio astronomy. RFI can originate from various sources,
both internal (generated by instruments) and external (man-made radio emissions).
The impact of RFI on astronomical observations is substantial, potentially corrupt-
ing weak cosmic signals and altering the integrity of collected data.

There are several works that explore specific techniques to restore corrupted

data affected by RFIL

2.5.1 CLEAN Algorithm

The CLEAN algorithm [23] is a widely used deconvolution method designed to
extract and reconstruct real astrophysical signals from radio interferometric data.
In the context of HERA data, CLEAN is applied for Radio Frequency Interference
(RFI) mitigation, based on the assumption that RFI is highly localized, in contrast
to the spatially extended cosmic signal. The algorithm iteratively identifies and
subtracts the brightest points, or “clean components,” in the observed data. These

components are treated as point sources and are iteratively convolved with the

24



telescope’s point spread function (PSF) to construct a model of the true signal. The

process involves the following steps:

1. Identify the brightest point in the data and assume it corresponds to a true

source.
2. Subtract a scaled version of the PSF centered at this point from the data.
3. Record the position and intensity of this source (the “clean component”).
4. Repeat the process until the residual data is reduced to noise levels.

5. Add back the clean components convolved with an idealized PSF to recon-

struct the final image.

This iterative approach ensures that noise and interference are minimized while
preserving the true signal. CLEAN is effective for mitigating RFI by treating it as
a bright contaminant, though it assumes that RFI is sparse and does not overlap
significantly with the cosmic signal. Its limitations include difficulty in handling
diffuse RFI or overlapping sources, which has led to the development of modified

versions.

2.5.2 Other RFI Mitigation Techniques

Beyond CLEAN, several other techniques have been explored for mitigating RFI,

each with unique strengths and applications:

Least Square Spectral Analysis (LSSA): This method fits a model spectrum to
the observed data using least squares minimization [27]. By selecting and remov-
ing spectral features associated with RFI, LSSA can effectively clean the data while

preserving the actual astronomical signal.
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Gaussian Process Regression (GPR): GPR [14, 25] models the data as a combi-
nation of a smooth signal and RFI using a probabilistic framework. By leverag-
ing correlations in the data, GPR can separate the smooth background from high-
frequency interference. However, it requires a careful choice of kernel functions to

balance signal and noise.

Discrete Prolate Spheroidal Sequences (DPSS): DPSS [11,37] are used to isolate
specific frequency bands affected by RFI. These sequences provide optimal spectral

concentration and are suitable for band-limited RFI removal.

2.5.3 Applications in HERA and Other Observatories

In the HERA data analysis pipeline [33], authors have used a modified version
of CLEAN tailored to their inpainting requirements. Moreover, they investigated
other techniques including Least Square Spectral Analysis (LSSA), Gaussian Pro-
cess Regression (GPR) [14,25], and Discrete Prolate Spheroidal Sequences (DPSS)
[11,37]. These approaches leverage uncorrupted data to construct a basic model
for the corrupted data, which is then substituted into the RFI-flagged regions. This
can help mitigate the impact of RFI on the spectrum. However, the restored data

may introduce potential errors in the analysis.
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Chapter 3

Methodology

3.1 Overview of methods

We present our approach to address the inpainting problem with corrupted data.
We have developed three primary methods, each building upon the previous one,
to enhance our model’s capability in reconstructing missing or corrupted image
regions. Before delving into the details, we begin with a simple baseline. Our
minimal baseline assumes the dataset is not corrupted. While this assumption is
problematic, it provides a starting point. We will now discuss how we define the

training and inference-time (inpainting-time) details for each method.

3.1.1 Method 1

Method 1: Training with Masked Data In this method, the model is trained
using only the unmasked (observed parts) regions of the training data. The goal
is to ensure that the model learns to have a valid prediction for the uncorrupted
parts. The loss is penalized on the observed parts of the spectrogram. The RePaint
algorithm was used during sampling, leveraging the model trained on clean data

to refine the prediction in each step. This approach showed some limitations:
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* The model can overfit to the clean regions without sufficient incentive to pre-

dict masked regions accurately.

o [t treats the mask as independent parts of the image which will not incorpo-

rate the actual correlation values with its surroundings.

Algorithm 1 Method 1: Training with Masked Data

Require: Training data x(, binary mask m

1: Definition of m: m is a binary matrix of the same shape as z,, where:

1 for observed (unmasked) parts

o 0 for unobserved (masked) parts.
2: repeat
3:  Sample clean input ¢ ~ ¢(xo)
4: Apply mask to isolate unmasked regions:
Tunmasked = 1 * Lo
5: Predict # using the model:
Z = Unet Model(Zmasked)
6: Compute loss over unmasked regions:
L=m-(zo— )|
7: Update model weights ¢ according to the loss function

8: until Convergence

28



Algorithm 2 Inpainting algorithm for Method 1

Require: Mask m.

1: zp ~ N(0,1)

2: fort=1T,...,1do

3: foru=1,...,U do

4 e~N(0,I)ift >1,elsec=0

5: ZKrOWn — /Gmg 4 (1 — ay)e

6: z~N(0,I)ift >1,elsez=0

7: a:}‘flfnown = \/% <:1ct - \/f_t—@tﬁe(%,t)) + 042
8: T =m Ok 4 (1 — m) @ gynknown

9: ifu<Uandt>1then

10: Ty~ N(mxt—la Bi—11)

11: end if

12: end for
13: end for

14: return zg

Input Image with mask

Maodel input (everywhere

except the Hatched area) Expected output

Diffusion
Model

Figure 3.1: Method 1 simple form: We penalize the model output on parts of im-

ages where there is no hatching
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Algorithm Explanation The inpainting process begins by initializing the image
xp with Gaussian noise. The algorithm then performs a reverse diffusion process,
iterating from time step 7" down to t = 1. At each time step ¢, the algorithm executes
U refinement iterations to enhance the inpainting quality. This loop adds noise
back to the data during certain iterations rather than strictly removing it. This step
helps the algorithm to achieve a coherent image as it prevents overfitting to a poor

initial prediction for the masked regions.

1. Noise Sampling: For each iteration, noise ¢ is sampled from a standard nor-

mal distribution if ¢ > 1; otherwise, it is set to zero to finalize the denoising.

2. Known Regions Update: The known regions of the image are updated us-
ing the original image z, and the sampled noise ¢, scaled by the diffusion

parameters.

3. Unknown Regions Prediction: The algorithm predicts the unknown regions
by denoising x; using the trained Unet €y(x;,t), and adjusts it with the diffu-

sion parameters, and adds additional noise = for stochasticity.

4. Image Reconstruction: The updated known and unknown regions are com-

bined using the mask m to form the image z,_; for the next iteration.

After completing all iterations and time steps, the algorithm outputs the final

inpainted image .

3.1.2 Method 2

Method 2: Improved Inpainting with additional fake masks We identified a
limitation with Method 1: the denoising network had no incentive to focus on
the masked regions of the input and fill them. To address this, we introduced
fake random masks. The model is penalized for errors in denoising these fake

masked regions, where ground truth is available. As the model cannot distinguish
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Figure 3.2: Illustration of the amplitude and phase of a spectrogram sample. We
input the positional encoding along with the mask amplitude and phase into the
diffusion process. Two sets of masks are used: m (pre-existing mask in black)
and m’ (additional masks in yellow). The U-Net diffusion model is trained by

computing V(1 —m/)al; + (1 — a)|z, — 2]* where l; = [[(1 — m)z, — (1 — m)Z)1..

between real and fake masks, it attempts to denoise all masked regions, improving
overall performance. This fake mask is shown by m’ in the algorithms and it has
the same distribution as the real mask. Moreover, we ensured that these masks do

not overlap with each other.
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Input Image with mask mask

Maodel input (everywhere
except the Hatched area) Expected output

Figure 3.3: Method 2 simple form: We add fake makes on top of the real one,
and not telling the model which is which. Then, we define our loss based on the

hatches we know the ground truth of, and the intact part where there is no mask.
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Algorithm 3 Training with Mixed Masking

Require: Training data z, real mask m, fake mask m’, weight factor a

1: repeat
2: Sample clean input o ~ ¢(x)
3: Generate real mask m, where:
1 for observed parts
m =
0 for unobserved parts.
4: Generate fake mask m' randomly, where:

1 for randomly selected unobserved parts

0 otherwise.

5: Apply masks to simulate input:

/
Tmasked = M - To + MM - Tg

6: Predict # using the model:

T = Model(xmasked)

7: Compute loss for both real and fake masks:

L=alm-(zo—2)|I* + (1 - a)[m - (w0 — )|

8: Update model weights 6 using loss function

9: until Convergence
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Algorithm Explanation The training algorithm follows the same structure as the
training algorithm for method 1. The only difference is introducing and applying
the fake masks. As mentioned before, this fake mask is randomly generated and
applied to the training input. Fake masks introduce a similar distribution to the
real one. While training, the model does not distinguish between real and fake
masks; however, the critical point is that for fake masks, the ground truth is avail-

able, allowing the model to learn to fill them with exact ground truth values.

Algorithm 4 Inpainting algorithm for Method 1

Require: Mask m.
1: zp ~ N(0,1)
2: fort=1T,...,1do

3: foru=1,...,Udo

4: e~N(0I)ift >1,elsec=0

5: KW = /ax0 4 (1 — ay)e

6: z~N(0,I)ift >1,elsez=0

7: x;‘flfnown = \/117 (xt — %Ge(mt, t)) + 042
8: T = m O P + (1 — m) @ gynknown

9: ifu<Uandt > 1then

10: Ty~ N(mxt—h Bi—11)

11: end if

12: end for
13: end for

14: return zg

The inpainting algorithm for Method 2 follows the same structure as the inpainting

algorithm described in Method 1.
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3.1.3 Method 3

Method 3: Consistency Between Training and Sampling A key limitation we
identified in Method 2 is the misalignment between the training and sampling pro-
cesses. During training, the model learns to reconstruct masked regions (including
fake ones and real ones) while noise is consistently added to these regions. How-
ever during the generation with RePaint, the network will be receiving unmasked
inputs; this is different from its training, where parts of the input were masked,
and only had the gaussion noise corresponding to that timestep. In this method,
we apply the artificial mask m’ to the model input along with the correct amount
of noise to ensure that the input during sampling resembles the data seen by the
model during training. The key addition is the inclusion of x}, which is computed

in line 7 of the RePaint algorithm:

ry =2, Om + (1 —m') (1 — &),

where z} has the artificial mask m’ to appropriately introduce noise in the masked
regions. This ensures that regions where m’ = 1 remain untouched, while regions
where m’ = 0 are adjusted to include the correct level of noise (1 —a;)e. In addition,
m’ is designed such that regions where m = 0 (real masked regions) and m’ = 0
(fake masked regions) ideally do not overlap.
The z; is the updated input to mimic the training input in sampling time to the
denoising function at each timestep ¢. This fake mask m’ is produced solely to
mimic the artificial masking used during training, and z} has no other role beyond
being the input to the denoising function.

This alignment ensures that the model processes masked regions during sam-
pling like training, which can help improve the reconstruction quality and coher-

ence in the final output.
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Algorithm 5 Inpainting algorithm for Method 3

Require: Mask m.
1: zp ~ N(0,1)
2: fort=1T,...,1do

3: foru=1,...,Udo

4: e~N(0]I)ift >1,elsec=0

5: KW = /ax0 + (1 — ay)e

6: z~N(0,I)ift >1,elsez=0

7: y=z,0om + (1 —m)(1—ae

8: ginknown \/% (:zjff — \/%69(1‘2, t)) + oz
9: Ti1 =m© 2k 4 (1 —m) @ ginknown
10: ifu<Uandt > 1then

11: zp ~ N (/1= Bi1 211, Bi—11)

12: end if

13: end for

14: end for

15: return x

Algorithm Explanation Our work applies positional encoding to spectrograms
to address the lack of translation symmetry along the frequency axis. This is par-

ticularly important because:

* Different frequency bands in a spectrogram often have distinct characteris-

tics.

¢ The relationship between adjacent frequency bands can vary across the spec-

trum.

* Some phenomena in radio astronomy are frequency-dependent, and their

position in the spectrum is informative.
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By incorporating positional encoding, we enable our model to distinguish be-
tween different frequency bands while processing them with the same convolu-
tional filters. Also, the model learns the frequency-dependent patterns more ef-
fectively and captures the absolute frequency positions, which can be crucial for

identifying specific astronomical phenomena.

3.1.4 Positional Encoding

In transformer architectures, such as those used in natural language processing
[41], the model processes input sequences in parallel, which inherently lacks the se-
quential order information present in traditional recurrent models like RNNs [10]
or LSTMs [21]. To address this limitation, positional encoding is introduced to in-
ject information about the position of each token within the sequence. This mech-
anism lets the model capture the order of elements which is essential in structured
data like spectrograms, where positional relationships are important.

Traditional sequence models process inputs sequentially, which inherently includes
a sense of order. Without positional encoding, the models cannot distinguish be-
tween different arrangements of the same set of tokens, which is critical for tasks
such as language translation, or spectrogram analysis, where the position of fre-
quency bands conveys meaningful patterns.

Translational symmetry means that a feature or pattern in the data looks the
same even if it is shifted to a different position. Convolutional Neural Networks
(ConvNets) assume this symmetry because they use shared filters across the input,
making them effective for tasks like image processing, where patterns (like edges
or shapes) are consistent across the image.

However, spectrograms do not have this symmetry along the frequency axis.
Each frequency band contains unique information, and the relationship between
neighboring bands can change. This makes it difficult for ConvNets to capture the

structure of spectrograms properly.
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To solve this, we use positional encoding, which adds positional information to
the model input for the frequency axis.
This allows the network to recognize differences between frequency bands and
capture the unique patterns in spectrogram data. This can help to fix the challenges
posed by the assumption of translational symmetry.
Positional Encoding Mechanism
Positional encoding adds positional information to the input embeddings. The
commonly used method, as proposed by Vaswani et al. [41], employs a combina-
tion of sine and cosine functions of varying frequencies These functions encode
positions into continuous spaces, which allow the model to learn relative posi-
tions. The periodic nature of these functions can support generalization for all the
sequence lengths.

The positional encoding vector for a token at position pos is defined as:

P E(pos 2i) = sin (_pos % ) (3.1)
10000 modet
0S
PE(pos,2i+1) = COs <p—21) (32)
10000 Fmodel

where:
* pos is the position of the token in the sequence.
e ;is the dimension index.
® dmodel is the dimensionality of the embeddings.

These sinusoidal functions create unique encoding patterns for each position pos
and each dimension i. By design, these encodings enable the model to infer rela-
tive positions. For any fixed offset k, the positional encoding PE,,s; can be rep-
resented as a linear function of PE,,,,. This feature makes it easier for the model to

capture relationships between tokens at varying distances.
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Also the constant “10000” is a scaling factor that adjusts the frequency of the
sinusoidal patterns, ensuring the positional encodings span a wide range of values
across different dimensions.

Visualization of Positional Encoding
Figure 3.4 illustrates the positional encoding vectors for different positions and
dimensions. The sinusoidal patterns enable the model to capture positional rela-

tionships effectively.
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Figure 3.4: Illustration of Positional Encoding for Different Dimensions

Implementation Details
In practice, the positional encoding vectors are added to the input embeddings

before they are fed into the model layers. This addition can be represented as:

Input ., oz = Embedding + PE (3.3)

Addition operation is commonly used over concatenation because it is computa-
tionally simpler and does not introduce additional parameters, making it more

efficient, especially in large-scale models.

39



Sinusoidal Positional Encoding for frequency

To incorporate spatial positional information into our model, we applied positional
encoding to the spectrograms, a technique borrowed from Vaswani et al. [41].
Given a phase or amplitude tensor z € RF*7*¢ where f €0,...,F —1,t €0,...,T
and c € 0,...,C — 1 represent frequency, time, and channels respectively, we com-

pute positional encodings (independent of time) as follows:

PE(f,1,¢) = sin (%) (3.4)

This technique enables different channels to encode different frequencies, provid-
ing our model with an inherent understanding of spatial relationships within the

spectrogram.

Channel 1 Channel 2 Channel 3

0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600

Figure 3.5: Visualization of sinusoidal positional encodings for a spectrogram. The
x-axis represents frequency bands, the y-axis represents different encoding dimen-

sions, and the color intensity represents the encoding values.

Specifically, we observed:
* Improved accuracy in reconstructing frequency-dependent features.

* Enhanced ability to distinguish between the RFI and genuine astronomical

signals.
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These improvements showcase the importance of providing the model with ex-

plicit positional information when dealing with structured data like spectrograms.
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Chapter 4

Experimental Results and Discussion

4.1 Introduction to Experiments

In this chapter, we want to evaluate the effectiveness of our proposed algorithms

on various datasets.

4.2 Datasets

421 CIFAR-10

The CIFAR-10 dataset consists of 60,000 color images of size 32 x 32 distributed
evenly across 10 classes. We used this dataset as a benchmark to assess the effec-
tiveness of our inpainting methods in scenarios with simple, colorful, and natural
image data. Corruptions were introduced by applying random masks to the im-
ages, simulating missing or masked regions. After, we compared the results with

the uncorrupted clean CIFAR images (baseline).
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4.2.2 DermaMNIST

DermaMNIST is a dataset designed for skin lesion classification and related med-
ical image analysis tasks [43]. It consists of 10,015 labeled dermatoscopic im-
ages categorized into seven classes representing various skin conditions, such as
melanocytic nevi, basal cell carcinoma, and benign keratosis. Each image has been
resized to 28 x 28 pixels. We picked this dataset to further validate the effectiveness

of our algorithms.

4.2.3 Synthetic Spectrograms

The synthetic spectrogram dataset was generated using the Vispb software, simu-
lating radio telescope outputs with controlled corruption. Each sample is a complex-
valued tensor of size 640x 480, representing the amplitude and phase of the frequency-
time plane.

Below is a sample of the synthetic data showing the mask, which is divided
into two parts. The white regions represent areas that are completely blocked,
where meaningful predictions are not possible due to the large portions of fre-
quency bands missing; therefore, these regions are not our focus. The red regions,
however, indicate the differences in masks between nights, which vary from night
to night. Unlike the permanent white mask that remains the same across all data

points, the red regions are where we need to make an accurate prediction.
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Figure 4.2: Mask Difference between two datapoints: Red parts indicate the nar-

row band masks we care to inpaint accurately
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4.2.4 Real Spectrograms (HERA)

The HERA dataset includes real spectrograms from radio astronomy observations.
Unlike synthetic spectrograms, the HERA data is inherently corrupted by Radio
Frequency Interference (RFI), and no ground truth is available for the missing re-
gions. To evaluate the quality of generated samples by the inpainting methods,
the consistency of the reconstructed regions with the expected astrophysical signal

was measured.

4.3 Experimental Setup

For all of the datasets, We utilized a U-Net architecture in the DDPM setup while
training the model. To optimize the model’s performance, we conducted a hyper-
parameter sweep, testing various combinations of learning rates, batch sizes, total
loss weight coefficients, and the number of filters in each convolutional layer. The

hyperparameter search was conducted as follows:

e Learning Rates: {0.0001, 0.00001, 0.000001 }

* Loss Weight contribution Coefficients (observed parts versus the masks):

{0.3,0.6,0.9}
e Batch Sizes: {16, 32, 64, 128}

e Number of Filters per Layer: {64, 128, 256, 512}

Each combination was evaluated based on the validation loss, measured through
the same number of epochs during training. The optimal set of hyperparameters
was determined to reach the lowest validation loss before overfitting occurred. The

final chosen hyperparameters were:
¢ Learning Rate: 0.001
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e Batch Size: 32
e Number of Filters per Layer in UNet: 64, 128, 256, 512

¢ Optimizer: Adam.

These hyperparameter values were selected for the synthetic astrophysical spec-
trogram dataset. However, batch sizes were adjusted for other datasets to get the
best results for each. For the MNIST and DermaMNIST datasets, we used a batch
size of 256 to ensure the model processed more data in each batch, which resulted
in faster convergence. For the real spectrogram dataset, a smaller batch size of 4
was chosen due to memory constraints when handling the larger and more com-
plex data samples.

The data used in this study was in the complex number format, where both
phase and amplitude information were preserved. For the synthetic data, we gen-
erated samples to simulate the corrupted spectrograms. The real dataset contained
259 samples and the synthetic dataset includes.

To adapt the UNet architecture for this data format, we adjusted the network
layers and inputs accordingly. For Method 3, the positional encoding function of
the frequencies was concatenated along with the 2D input, which included both
the phase and amplitude components of the data. This addition helped the model
leverage frequency-specific spatial context, improving the overall inpainting per-

formance.

4.3.1 Evaluation Metrics

To evaluate the performance of our inpainting methods, we used two widely adopted
metrics: Fréchet Inception Distance (FID) and Peak Signal-to-Noise Ratio (PSNR).
We elaborate more by giving a summary of each score:

FID Score:
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The FID score [19] measures the similarity between the distribution of reconstructed
images and the ground truth images in a feature space learned by a pre-trained
neural network. Lower FID scores indicate a closer match, with smaller values
corresponding to higher visual fidelity in the reconstructed images.

PSNR:

The PSNR (Peak Signal to Noise Ratio), is a pixel-wise metric that quanti-
fies the reconstruction accuracy by comparing the similarity between the recon-
structed and ground truth images at a pixel level. It is expressed in decibels (dB),
with higher PSNR values indicating better reconstruction quality. PSNR is espe-
cially useful for assessing datasets where ground truth data is available and pixel-
accurate restoration is important.

For this study, we used the FID score for both of CIFAR10 and DermaMNIST
datasets; These datasets were chosen because they contain ground truth images,
and they include a high number of samples that can be sufficient for covering their
distribution. their reconstruction is primarily focused on local pixel-level details
rather than frequency-related structures. By using these metrics, we evaluated the
inpainting quality in terms of both perceptual realism (via FID) and pixel accuracy

(via PSNR).

4.4 Results

441 CIFAR-10

The CIFAR-10 dataset was used to evaluate the inpainting performance of the pro-
posed methods on natural image data. Figure 4.3 illustrates sample inpainting
results, showing the clean samples, the applied masks, and the outputs gener-
ated by various methods, including baseline, Simple RePaint, and the proposed
approaches (Methods 1, 2, and 3). It is important to note that RePaint has been

trained on much larger and clean datasets, such as Celeb-HQ and ImageNet. This
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makes it an infeasible choice for the astrophysical applications of interest, as Re-
Paint needs a clean (uncorrupted) and large dataset for its optimal practicability; in
fields such as astrophysics clean and large-scale training data is often unavailable.
Here, RePaint is included only for comparison purposes, as it provides an upper
bound on the performance that can be achieved when training on corrupted data.
This comparison helps to provide context for the results of our methods relative to
a theoretically ideal scenario.

Table 4.1 reports the FID scores for each method. The baseline with no masking
achieves the best FID score, as expected since it has access to the original unmasked
images. The corrupted baseline demonstrates the highest FID score, indicating
poor reconstruction quality. Among the proposed methods, Method 3 achieves a
marginal improvement over Methods 1 and 2, which show its ability to generate

realistic reconstructions while closely matching the data distribution.

Clean Sample Mask RePaint Inference  DDPM Inference Method 1 Method 2 Method 3

%
4
>

Figure 4.3: Inpainted example from the CIFAR-10 dataset. On the left, the clean

sample and the mask applied to it are plotted. We then show the final inpainted

image using different methods.



Table 4.1: Inpainting results for CIFAR10

Method FID Score

Baseline (No mask) 3.812

Corrupted Baseline ~ 18.546

Method 1 3.834
Method 2 3.817
Method 3 3.820

4.4.2 DermaMNIST

For the DermaMNIST dataset, the performance metrics are summarized in the Ta-
ble below. The baseline method means the model training happens on clean and
unmasked data.

Table 4.2: Performance metrics for DermaMNIST dataset. The table reports
PSNR and MSE for the three methods.

Method Average PSNR Average MSE
Baseline (model trained with no mask) 47.9335 1.9273
Corrupted Baseline (Model trained on masked images) 32.2578 4.5814
Method 1 46.7960 3.0519
Method 2 47.8519 2.2406
Method 3 47.8894 2.2165
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Figure 4.4: Visualization of results for the DermaMNIST dataset with method 3

4.4.3 Synthetic Spectrograms

For the Synthetic Spectrograms, figure 4.5 presents visualizations of the input,

masks, and outputs from the baseline and proposed methods.

Table 4.3 highlights the reconstruction performance using PSNR. The baseline

(model trained on data with no mask) method achieves the highest PSNR due

to the absence of masking. Among the proposed methods, Method 3 with posi-

tional encoding (PE) outperforms the other ones, showing the role of positional

encoding in improving frequency-sensitive reconstructions. These results show

the effectiveness of incorporating frequency-specific patterns in spectrograms.
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Figure 4.5: Visualization of results for the Synthetic dataset.
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Table 4.3: Results for Synthetic spectrograms.

Method Average PSNR
Baseline (No mask) 56.9176
Method 1 46.9958
Method 2 47.2915
Method 3 47.7325
Method 3 + PE 48.3748

4.4.4 Real Spectrograms (HERA)

Input Method 1 Method 2 Method 3 Without PE
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Figure 4.6: Visualization of results for the real astronomical dataset.
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The HERA dataset (real data) was used to evaluate the inpainting performance
of the proposed methods on data with complex frequency-dependent structures.
Figure 4.6 shows the input, masked regions, and the reconstructions produced by

each method.

4.5 Discussion

It’s useful to note that although inpainting does not aim to recover the original,
corrupted measurements, it helps to ensure smoother downstream processing. In-
stead of treating the masked regions as irretrievably lost, inpainting provides co-
herent reconstructions that reduce artifacts introduced by hard masking and alias-
ing. Thus, while these models do not increase the raw information content, they

help preserve the structural and statistical coherency of the data, which is the im-
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portance of this application in this application, and this can support more stable

and accurate analysis.
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Chapter 5

Conclusion

In this thesis, we explored the application of diffusion probabilistic models for in-
painting corrupted spectrograms, particularly addressing the challenges caused
by radio frequency interference (RFI) in astrophysical data. The problem was the
unavailability of clean data in the spectrograms driven from satellites. To address
this, we leveraged a diffusion model combined with embedded frequency posi-
tions to generate a smooth signal. Our approach builds upon an existing method
for diffusion-based image inpainting. These proposed methods demonstrate im-
provements in both visual quality and quantitative metrics across various datasets.

One of the contributions of this work lies in proposing positional encoding to
address and fix the model’s assumption on the translational symmetry along the
frequency axis of spectrograms. The positional encoding enables the model to dif-
ferentiate between frequencies and exploit the inherent structure of spectrogram
data. This approach is beneficial in domains that use spectrogram data, where
frequency-dependent features often contain important information.

Through some experiments on datasets such as CIFAR-10, DermaMNIST, and
synthetic spectrograms, we demonstrated the effectiveness of our methods. On
synthetic spectrograms, the combination of positional encoding and Method 3 re-

sulted in the highest PSNR scores, showing its ability to handle frequency-dependent
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masking. Similarly, for CIFAR-10 and DermaMNIST datasets, our methods were
competitive with the clean baseline (training on input with no mask), and also sig-
nificantly outperformed the corrupted baseline (input with masks on top). This
highlights the robustness of the proposed methods across different datasets.

In future work, we plan to validate the quality of the reconstructions by ana-

lyzing the power spectrum of the inpainted signals.
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