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Lattice Structure Design and Optimization With
Additive Manufacturing Constraints
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Abstract— Lattice structures with different desired physical
properties are promising for a broad spectrum of applications.
The availability of additive manufacturing (AM) technology has
relaxed the fabricating limitation of lattice structures. However,
manufacturing constraints still exist for AM-fabricated lattice
structures, which have a significant influence on the printing
quality and mechanical properties of lattice struts. In this
paper, a design and optimization strategy is proposed for lattice
structures with the consideration of manufacturability to ensure
desired printing quality. The concept of manufacturable element
is used to link the design and manufacturing process. A meta-
model is constructed by experiments and the artificial neural net-
work to obtain the manufacturing constraints. Sizes of struts are
optimized by a bidirectional evolutionary structural optimization-
based algorithm with these manufacturing constraints. An arm of
quadcopter is redesigned and optimized to validate the proposed
method. Its result shows that optimized heterogeneous lattice
structures can improve the stiffness of the model compared
to the homogeneous lattice structure and the original design.
Both the Von-Mises stress and the maximum displacement are
reduced without increasing the weight of designed part. And
by considering the manufacturability constraints, the optimized
design has been successfully fabricated by the selected additive
manufacturing process.

Note to Practitioners—Lattice structures might fail to be fab-
ricated by the additive manufacturing technique if the designed
model exceeds the processability of the machine. Our approach
has the capability of considering the manufacturing constraints in
the design and optimization process. We conducted experiments
to investigate the manufacturability and proposed a method
that can give the domain of the design variables for a selected
manufacturing process. And we also designed an algorithm that
can optimize the lattice structure inside the domain of design
variables. It ensures that the lattice model can be successfully
fabricated by the selected process and the performance is
dramatically increased compared to the original design. Engi-
neers can use our approach to optimize the lattice structure
automatically without knowing the knowledge of optimization
and manufacturability.

Index Terms— Additive manufacturing (AM), design, lattice
structure, manufacturing constraints.
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I. INTRODUCTION

THE word “lattice” originally describes a framework or
structure of crossed woods or metal strips and can be

extended to regular geometrical arrangements of points or
objects over an area and space [1]. In this paper, the lattice
structure is defined as a mesoscale (0.1–10 mm) or
microscale (<0.1 mm) truss-like structure which consists
of interconnected struts and nodes with a certain repeated
arrangement in 3-D space. In this sense, lattice structures can
be regarded as a type of cellular structure on a mesoscale.
Compared to other types of cellular structures including foams
and honeycombs, lattice structures are more flexible to achieve
a wide range of different desired physical properties, such
as high stiffness-weight ratio [2], low thermal expansion
coefficient [3], negative Poisson ratio [4], and high heat
dissipation rate through active cooling [5]. Moreover, it can
also be designed as a bioimplant to enhance the ossesoin-
tegration as well as alleviating stress-shielding effect. Due
to its outstanding performance, lattice structures have been
used in a broad spectrum of applications, including bone and
dental implants [6]–[8], ultralight structures [9], [10], energy
absorbers [11], low thermal expansion structures [12], and
conformal cooling [13].

Traditionally, lattice structures can be fabricated via casting,
sheet metal forming, or wire bonding processes [14]. However,
manufacturing constraints of these processes severely restrict
the complexity of designed lattice structures. These processes
can only be applied to fabricate lattice structures with few
simple unit cell topologies in a regular shape on a macroscale.
This manufacturing limitation has been relaxed by using
additive manufacturing (AM) to fabricate lattice structures.
By fabricating a part layer by layer, AM enables the design
of complex structures without significantly increasing the
cost. Thus, the geometrical freedom provided by AM greatly
enlarges the design space of lattice structures. Lattice struc-
tures with multiscale complexities can be easily fabricated for
a better functional performance. For instance, on a macroscale,
conformal lattice structures [15] can be produced to fit a
complex macroshape with a relatively smooth surface bound-
ary. On a mesoscale or microscale, complex lattice unit cells
have been designed and fabricated to achieve a given gradient
of elastic properties [16]. However, it should also be noted
that every manufacturing process has limitations. AM is no
exception. In particular, some recent research has observed and
studied on the manufacturing constraints of lattice structures
fabricated by different AM processes. The manufacturability
of gyroid lattice structures made of 316L stainless steel

1545-5955 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 1. Comparison between: (a) homogeneous lattice and (b) heterogeneous
lattice [9].

with selective laser melting (SLM) process has been studied
in [17]. In this research, the lattice structures with unit cell
sizes ranging from 2 to 8 mm with 15% volume fraction
can be successfully manufactured. Based on the fabrication
experiments, it shows that the minimum unit cell size which
can be fabricated mainly depends on particle sizes of metal
powders, since the trapped powders with a big particle size in
a small unit cell are difficult to be removed. Moreover, it also
concludes that the unit cell whose size is larger than 8 mm
is problematic to be fabricated due to the longer distance
of the overhang area. Similar research has been done by
Santorinaios et al. [18] on the lattice cells with vertical and
cross struts fabricated by SLM process. This research also
shows that the lattice structures with large cell size (larger
than 5 mm) are difficult to be fabricated. Since their struts tend
to “slag” during the manufacturing process. To further eval-
uate the manufacturability of lattice structures with different
geometrical configurations, a manufacturability table is used
in [19]. In this research, two different topologies of lattice
cells, gyroid and diamond, are fabricated by SLM process
with Ti6Al4V powders. The building conditions of each type
of cells with different cell sizes and volumes are recorded.
The result shows the lattice structures with a low volume
fraction and 4–5 mm cell sizes mostly failed. Instead of the
study on some lattice topologies, design rules are provided by
Wang et al. [20] to achieve a better manufacturability of 316L
lattice structures fabricated by SLM process. Several set of
benchmark parts have been designed to individually evaluate
the effects of inclined angles and sizes of minimum struts
on the manufacturability of lattice structures [20]. Based on
these benchmarks, a design guideline shows that the struts
with inclined angles smaller than 35° are hard to fabricate.
It also indicates that the minimum fabricatable size of struts
is 0.15 mm.

To help designers consider both freedom and constraints of
AM processes for lattice structures, several design methods for
lattice structures have been proposed. Generally, these design
methods can be divided into two groups: the design of homo-
geneous lattice structures and the design of heterogeneous
lattice structures. As it is shown in Fig. 1(b), a homogeneous
lattice structure consists of unit cells with exactly the same
shape periodically distributed in the design space. Thus, this
type of lattice structures can be considered as homogeneous
materials on a macroscale during the design process. Com-
pared to the shapes and sizes of cells in homogeneous lattice
structures, those of cells in heterogeneous lattice structures
may vary from point to point to achieve a certain type of
functional gradient. A typical example of heterogeneous lattice
structures is shown in Fig. 1(a). By varying thickness of struts,

this lattice structure can achieve a certain elastic properties
gradient along the x-axis.

For homogeneous lattice structure, most of research is
focusing on its unit cell. Topology optimization and homog-
enization techniques can be applied to generate the lattice
unit cell which can achieve the desired properties. In order to
achieve the fabricatable unit cell, the manufacturing constraints
such as the minimum member size [21] can be considered in
the optimization procedure of microcell structure. To further
improve the functional performance of homogeneous lattice
structures, some concurrent optimization methods [22]–[24]
have been developed to update the cell topology as well
as the macroshape of lattice simultaneously. Compared to
other methods only focusing on single design scale, these
concurrent methods generally show a better performance on
multifunctional applications [22].

Compared to homogeneous lattice structures, heterogeneous
lattice structures generally provide more design freedom.
Designers can control the distribution of some lattice parame-
ters to achieve a better functional performance. To achieve this
goal, several design and optimization methods for this type of
lattice structures are proposed. A general framework for lattice
structures fabricated by AM processes is proposed in [10]. This
general framework can be divided into two stages. In the first
stage, size optimization is applied to optimize the size of lattice
struts for a better mechanical performance. In the optimization
procedure, the size of lattice struts is constrained in a prede-
fined range based on the manufacturability of the machine.
Then in the second stage, another optimization process is
applied to obtain the optimal process parameters for each strut
based on the proposed concept manufacturable element (ME).
Besides the size optimization, several density-based topology
optimization methods [25]–[30] have also been applied to
design the heterogeneous lattice or cellular structures for a bet-
ter mechanical performance. Among them, different types of
material interpolation functions are used to establish the rela-
tionship between the properties and parameters of mesoscale
structures. Based on these interpolation functions, a topology
optimization problem is formalized and solved to get the opti-
mal relative density distribution. Then, the mapping functions
are further used to convert the result of topology optimization
to the distribution of the lattice relative density. In the mapping
functions of some proposed methods, like Rosen’s method,
predefined manufacturing constraints are considered. In alter-
native of density-based optimization methods, bidirectional
evolutionary structural optimization (BESO) method [9] has
also been modified and applied to design heterogeneous lattice
structures. This method tries to simulate the bone remolding
process by moving materials from low stress struts to high
stress struts. Compared to density-based optimization methods,
BESO-based method can easily deal with those stress-related
constraints during the optimization process. To further reduce
the size of design variables, a heuristic optimization method
has been developed by Nguyen et al. [31]. This method gener-
ally converts the original problem into the optimization process
with two design variables: maximum and minimum sizes of
struts. Then, size matching and scaling method have been
applied to determine the size of each strut in the design domain
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with the consideration of local stress states. Like other methods
mentioned here, predefined upper and lower bounds of struts’
size are considered as constraints from manufacturing.

In summary of those existing design and optimization meth-
ods of lattice structures for AM, it is notable that the functional
performance of parts can be further improved by using hetero-
geneous lattice structures. Moreover, as to the manufacturabil-
ity of AM-fabricated lattice structures, most design methods
only simply consider the constraints on the thickness of struts.
However, other geometrical parameters such as the inclined
angle [20] and the horizontal overhang [17] may also affect the
fabrication quality and manufacturability of lattice structures,
and the effects of those parameters are not totally independent.
Even though some design rules [20] have been provided, most
of them failed to consider the interaction between different
geometrical parameters. Thus, it is difficult to directly integrate
those rules into a general design and optimization process of
lattice structures.

To solve the mentioned issues, a design and optimiza-
tion method of lattice structures is proposed in this paper
with the consideration of manufacturability constraints of
AM processes. In this method, a concept called ME is used
to link the design and manufacturing process. To predict
the quality and manufacturability of each ME, the artificial
neural network (ANN) is established as a meta-model for the
selected AM process for a certain type of material. Based
on the predicted value, the manufacturing constraint of each
ME can be obtained. Then, obtained constraints will be used
in the BESO-based lattice optimization process to get the
optimal size distribution of lattice struts. In this paper, fused
deposition modeling (FDM) process, one of the most widely
used AM processes for thermal plastic polymers, is used as an
example to illustrate the proposed method. However, it should
be noted that this methodology can be further applied to
other different types of AM processes with different materials.
Moreover, compared to existing design methods, the proposed
method can automatically consider the effects of different
geometrical parameters on the manufacturability of lattice
structures in the optimization procedure. Thus, it can guarantee
the processablity of designed lattice structures.

In order to clearly describe the proposed method, this paper
is organized as follows. In Section II, several basic concepts
which are used in the proposed method are presented first.
Based on these concepts, the proposed design method and its
related meta-model of the manufacturing process are carefully
explained in Section III. In Section IV, a case study is used
to further illustrate and validate the proposed method, and
a discussion on the design results under different types of
constraints is provided. At the end, this paper is wrapped up
with conclusions and future research directions.

II. BASIC CONCEPTS

A. Physical Entity

To represent the design space of lattice structures, the con-
cept named as physical entity is used in this paper. According
to the previous research [32], physical entity is defined as a
concrete entity which is implemented for physical behaviors
required by given functions. Physical entity mainly consists

Fig. 2. Example of FSs and FVs [35].

of the information of the design boundary for the detailed
design stage. It can be considered as the input for the proposed
design method. This input can be obtained from the functional
design step in the conceptual stage [33] or directly extracted
from the existing parts. Generally, a physical entity should
include two types of information: geometrical information and
material information. Material information includes a set of
feasible materials which can achieve the defined functions of
a physical entity. In most cases, the shape of physical entity
is only defined on a macroscale. As to the information related
to mesostructure or microstructure of physical entity, they are
also considered as the material information in this paper.

Besides the material information, concepts of functional
surfaces (FSs) and functional volumes (FVs) [34] are used
to represent the geometrical information of a physical entity.
In this paper, an FS is referred to the key surface of a physical
entity to realize the requested functions, such as assembly
surfaces or loading surfaces. An FV is a geometrical volume
of a physical entity which is used to link the surfaces and assist
FSs to achieve the required functions. A typical example of
FSs and FVs is provided and shown in Fig. 2. In this figure,
those green-tagged surfaces represent FSs, while the FV is
shown in the gray color to connect those FSs. The FSs of this
example are designed for three different purposes. The bottom
two surfaces are used to provide a vertical support. Another
two cylindrical surfaces with connected surfaces on their top
are designed for the assembly of bolts. The cylindrical hole on
the top of the part is used to hold a bearing. It should be noted
that in some design cases, the FSs or FVs for a given physical
entity after the conceptual design stage is not totally fixed.
For these design cases, the parametric representation for FSs
and FVs is needed. The detailed information of parametric
representation is beyond the scope of this paper. A detailed
discussion of parametric representation of FV can be found
in [33].

B. Lattice Unit Cell Model

To represent the topology of a repeating element inside the
lattice structures, lattice unit cell model is proposed. In this
model, the node of a lattice cell is defined in a unit cubic space
shown in Fig. 3, which can be represented by a 3-D tuple p

p = (e1, e2, e3) ∈ P ⊆ [0, 1]3 (1)

where ei is the i th component of the tuple and P is the set
which contains all the nodes of a lattice unit cell. To represent
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Fig. 3. Unit cubic defined in a parametric space.

Fig. 4. Graphical view of data structure of ME for lattice structures.

each strut of lattice unit cell, the node pair l is used and
expressed as

l = {pi , p j }, pi p j∈P. (2)

Based on the definition of lattice nodes and struts, the topology
of lattice unit cell can be expressed as a unidirectional graph G

G = {P, S} (3)

where S is the set that contains all the struts inside the lattice
unit cell. According to different design requirements, different
lattice unit cell topologies are selected by designers. Based
on the defined lattice unit cell model, lattice frame which
represents the topological skeleton of lattice structures can be
built. This process is discussed in Section III-C.

C. Manufacturable Element of Lattice Structures

To link the design and manufacturing process, a concept
called ME is used in this paper. This concept is originally
defined in [10] as a predefined, parametrized decomposition
of a volumetric region of a part. Based on this original concept
and the characteristics of lattice structures focused in this
paper, an ME of lattice structure is defined as a lattice strut
with its related geometry, material, and process information.
To parametrically represent each ME of lattice structures in the
proposed design method, a data structure of ME is proposed
and its graphical view is shown in Fig. 4.

It is clear that ME of lattice structures consists of three
types of data. They are geometrical data, material data, and
process data. The geometrical data of ME can be further
divided into two categories: the line segment and the cross-
sectional shape. A line segment consists of a pair of nodes

Fig. 5. General design flow of proposed design method.

to represent the midline of a strut, while the cross section
can be defined by the shape and its related parameters, such
as the diameter of a circle or the size of a square. Besides
geometrical data, the material data are another very important
factor. To clearly describe material compositions of fabricated
lattice struts, both the material type and its grade should be
included in the data model of ME. The last key factor for
ME is the process data. It should be noted that different
AM machines may have different manufacturing capabilities,
even though they belong to the same type of AM technologies.
Thus, as to process data of ME, a certain AM machine should
be determined first. Then, based on the selected machine, its
related fabrication strategy and fabrication parameters can be
decided. Among these three types of data, the geometrical
data are the primary concern of the proposed design method
in this paper. Thus, they have been considered as design
variables during the optimization process. As to material
data and process data, they can both be decided during the
early conceptual design stage based on material selection and
process selection strategy. Thus, these two types of information
are regarded as the input of the proposed design method.

III. METHODOLOGY

A. General Design Flow

The general design flow of the proposed design method is
shown in Fig. 5. As it is shown in this figure, four types
of data are considered as the input of the proposed design
method. Among them, functional and design requirements are
the most important factors, since it should be determined
at the beginning of the whole design process. This type
of data describes the functional behaviors and the related
requirements of a designed part or product. Based on the
functional and design requirements, other three types of data
can be obtained from the conceptual stage. The general goal
of this proposed method is to generate a manufacturable lattice
structure with a better performance under given functional
and design requirements. To achieve this purpose, the general



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TANG et al.: LATTICE STRUCTURE DESIGN AND OPTIMIZATION WITH AM CONSTRAINTS 5

design flow of the proposed design method is given and
shown in Fig. 5. Its entire process can be generally divided
into four steps which are discussed in the following sections,
respectively. Besides these four major steps, an ANN-based
meta-model of selected AM process is built and applied to
obtain the manufacturing constraints for each ME during the
design and optimization process. Thus, this model and its
related experiments are also going to be explained in detail.

B. Initial Design

In the initial design step, some macroscale design parame-
ters such as the weight or volume target for each FV should be
determined. These parameters will be regarded as the design
constraints in the following optimization step. To achieve this
purpose, the density-based topology optimization is used in
the initial design stage. Specifically, for a design problem of
a minimum compliance with a constrained volume, the math-
ematical formulation of density-based topology optimization
can be expressed as

Find : x ∈Rn, x = (x1, x2, . . . ,xn)

Minimize: c = f T u

s.t. : K (x)u = f∑
xivi ≤ V

0 <ε<xi≤ 1 (4)

where x represents an n-D vector which contains the relative
density of each element inside the FVs of physical entity; c is
the structural compliance which can be calculated from the
global external force vector f and a global displacement vec-
tor u; K (x) is the global stiffness matrix; vi is the volume for
i th element, and V is the upper limit of the total volume; ε is
a small positive value which is slightly larger than 0 to avoid
the singularity of the stiffness matrix during the optimization
process. In this paper, ε is selected as 0.001. To solve the
topology optimization problem defined in (1), several methods
including solid isotropic material with penalization (SIMP)
[36] can be applied. Based on these methods, the optimal
relative density distribution can be obtained. This distribution
can be used as a reference to determine the volume target for
each FV. Particularly, for FV j , its volume target VFV j can be
calculated based on the following equation:

VFV =
∑

xivi (5)

where xi is the volume of the i th element inside FVj , and
vi is its optimal relative density obtained from topology
optimization. For those FVs with solid material, this volume
constraint can be achieved by removing materials in the low
relative density area like traditional topology optimization
routine. As to those FVs filled with lattice structures, the cal-
culated volume constraint from (5) can be used to calculate
the struts’ thickness of homogeneous lattice structures which
will be regarded as the initial design in the BESO-based
lattice optimization method. Since BESO-based optimization
method used in this paper only moves materials from the low
stress region to the high stress region, it can guarantee that
the total volume of lattice structures unchanged during the

Fig. 6. Comparison between: (a) uniform lattice and (b) conformal lattice [9].

design optimization process. Generally speaking, the volume
constraints generated in the initial design stage provide a
foundation for the following optimization process.

C. Lattice Frame Generation

In the second step of the proposed design method, lattice
frame which represents the topological skeleton of lattice
structures is generated for the given FVs. To achieve this
objective, several parameters including type of lattice frame
and size of lattice cell need to be determined. Generally,
lattice structures can be divided into two different types
according to its frame configuration. They are uniform lattice
structures (also known as periodic lattice structures) and
conformal lattice structures. A comparison between these two
types of lattice frames is given in Fig. 6. As it is shown
in Fig. 6, the lattice frame of uniform lattice structures
consists a periodically distributed lattice cell. Thus, each cell
in the uniform lattice has the same size, shape, and topology.
As to the conformal lattice, the size and shape of lattice
cell’s frame may vary to adapt to the macroshape of design
boundary. Compared to uniform lattice structures, conformal
lattice structures can guarantee the integrity of cells on the
boundary of an FV. Thus, it can avoid some poorly connected
struts located on the boundary of FV which are shown
in Fig. 6(a). However, it should be noted that to generate
conformal lattices for an FV with a complex geometry is
not an easy task. Even though there is some research on
conformal lattice generation [32], [37], most of them are
limited to simple or regular shape. Moreover, the property
of uniform lattices is comparatively easy to be controlled by
carefully choosing the right cell size and topology. To consider
both advantages and disadvantages of those two types of
lattice structures, a general guideline is provided here to assist
designers in decision-making. Generally, if an FV is bounded
by the FSs which play roles as aesthetic or assembly purposes,
then this FV is suggested to be filled with conformal lattice
structures. Otherwise, uniform lattice structures can be used.

After the determination of lattice types, the topology of the
lattice unit cell also needs to be determined. For both uniform
and conformal lattice structures, the topology of a unit cell can
be selected from the cell library which is a database for unit
cell models. In this database, different lattice cell topologies
are linked to different types of properties. For example, based
on the loading condition of lattice struts, lattice cells can be
divided into two types: bending dominant lattice and stretching
dominant lattice [38]. In the structural design for a better
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stiffness, stretching dominant lattice cell is preferred, since the
strut of this type of lattice is only under an axial load, which
may exhibit better stiffness than its counterpart. However,
in the design of compliant structures or energy absorption
structures, bending dominant lattice structures are preferred.
To further assist designers in selecting a suitable lattice unit
cell from the unit cell library, material selection strategy [39]
can also be used based on the material chart with effective
properties of different cell topologies.

The size of lattice structure is another parameter needs
to be considered in the current design stage. The size of
the uniform lattice structure can be precisely controlled by
three independent parameters. They are sizes on X, Y, Z -axes
of the cell coordinate system. As to conformal lattice struc-
tures, their size is defined as a diameter of a circumscribed
sphere of bounding box of lattice cell. Unlike uniform lattice
structure, the size of conformal lattice structures cannot be
accurately controlled, since both size or shape of lattice cells
may vary inside the FV. Thus, in this design step, an average
size of conformal lattice is used. To help designers select an
appropriate cell size, two design guidelines are provided.

Guideline 1: The lattice cell size is suggested to be smaller
than the minimum size of functional features.

Guideline 2: The lattice cell size l is suggested to satisfy
the following condition:

p(l, tmin) < ρ∗
l (6)

where the ρ∗
l is the upper bound of the minimum relative

density that lattice structures can achieve; tmin is a vector
which contains the minimum fabricatable thickness of each
strut in the lattice unit cell. Once the cell topology and process
data are determined, the value of vector tmin is fixed. p(l, t) is
the function to calculate the relative density of a given lattice
cell. The form of this function varies between cells with
different topologies and struts’ cross-sectional shape. However,
they all depend on two independent variables: cell size l and
a vector t which contains the thickness of each strut inside
the cell. For example, the function pcubic(l, t) which is used
to calculate the relative density of cubic cell with struts in
square cross-sectional shape can be expressed as

pcubic(l, t) = 1 − 3

(
1 − t

l

)2

+ 2

(
1 − t

l

)3

(7)

In (7), all the struts are assumed to have the same thickness.
Thus, in this equation, t is a scalar which represents the
uniform thickness of struts in a lattice unit cell.

These two guidelines generally provide two limitations on
the size of a lattice cell. Based on the first guideline, it can
be concluded that the cell size cannot be too large. If it is
larger than the minimum size of functional features, the lattice
structures cannot be guaranteed to fully fill every corner of
the design space. In the other word, there might be some void
regions in the design space when the first guideline is violated.
Designers will lose controllability on those regions in the sub-
sequent optimization process. The second guideline provides
a lower bound of cell size based on the manufacturability
of selected AM process. Once the AM process and material
are determined, the minimum fabricatable strut’s thickness

is fixed. The decreasing of the cell size will significantly
increase the minimum achievable relative density. It limits
the freedom of designers in the sebsequent optimization
process. Moreover, it will also make the lattice structures
lose the porosity which leads some issues on the simulations;
therefore, the value of ρ∗

l defined in (6) is suggested to be
equal or smaller than 0.3 for efficient optimization as well as
simulation. It should also be noted that the change of cell size
inside the bounded region defined by the above two guidelines
will lead slight change of the optimal functional performance.
In order to achieve the optimal performance, designers can
do the optimization with several different cell sizes and then
select the cell size which can achieve the best performance.

Based on those design parameters determined at the begin-
ning of this step, the lattice frame can be generated inside
the design space. The general lattice frame generation method
is given in this paper. Its process can be further divided
into two substeps. In the first substep, hexahedron primitives
can be generated inside the given FVs. For a uniform lattice
structure, its hexahedron primitives should be exactly periodic.
Thus, the kernel generation method discussed in the previous
research [9] can be used. As to conformal lattice, the vol-
ume meshing technique can be used to generate hexahedron
primitives in FVs with regular geometry. For an FV volume
with complex geometry, auxiliary volume [32] can be built
to convert a complex geometry into a simple and mapped
shape. Since both ways have been exhaustively discussed
in [9] and [32], this paper will not repeat them again.

In the second substep, the selected lattice cell topology can
be populated into the generated primitives from the last sub-
step. The generated hexahedron primitive can be represented
by the positions of eight corners which are denoted as Cijk ,
i, j, k = 0, 1. Once the positions of eight corners of hexahe-
dron primitive are determined, the positions of all the lattice
node inside this hexahedron primitive can be calculated by a
tri-linear interpolation function. For example, the position cp

of node p inside the given hexahedron primitive Cijk can be
calculated by

c jk = c1 j ke1+c0 j k(1−e1) (8)

ck = c1ke2+c0k(1−e2) (9)

cp = c1e3+c0(1−e3) (10)

where (e1, e2, e3) is the 3-D tuple represents the node p
inside the lattice unit cell model discussed in Section II. After
calculating the position of each node, the frame of lattice
struts can be built based on unidirectional graph G by linking
the related nodes. Finally, to trim those connected struts with
the boundary of FV, the final frame of lattice structures can
be obtained. To illustrate these two substeps of lattice frame
generation, an example of arc shape FV is given and shown
in Fig. 7.

D. Manufacturable Element Construction

To link the design and manufacturing process, a concept of
ME is used in this paper. As mentioned in Section II-C, each
ME mainly consists of three types of information. They are
geometrical data, material data and process data. Both material
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Fig. 7. Lattice frame generation.

and process data can be obtained as the input of the proposed
design method. Thus, in this section, the focus is on how to
build geometrical data based on the input lattice frame and
physical entity.

As shown in Fig. 4, the geometrical data of lattice ME can
be further divided into two types of data. They are line seg-
ments to represent the midline of the strut and its cross section.
It should be noted that the line segment of the lattice ME is
defined in the processing coordinate system rather than the
design coordinate system where the lattice frame is generated.
Thus, to construct the line segment of ME, the transformation
matrix between the design coordinate system and the process-
ing coordinate system is needed. This transformation matrix
can be easily calculated once the fabrication orientation is
determined. To simplify the process, the FVs with lattice struc-
tures will be considered as a solid volume temporarily. Based
on this simplification and summarization of existing research
related to orientation determination, two general guidelines are
provided in this paper. These two general guidelines should be
considered sequentially.

Guideline 1: To select the orientation which can guarantee
the geometrical quality of FSs.

Guideline 2: To select the orientation with minimal volume
of support structures.

Based on the processing orientation, a lattice strut can be
easily converted to a line segment for the geometrical data
of ME. As for cross-sectional data, the shape of the cross
section can be predefined by users. But, it is impossible to
finally decide the size of a lattice strut in current step. Thus,
instead of using one value as the size parameter, a set of

all the possible sizes of a lattice strut is set as the size
parameter in this step. The manufacturing quality of this set
of size parameters will be evaluated based on the proposed
meta-model discussing in the following section. Based on the
predicted results, a subset of them which can satisfy the quality
requirement is chosen as the design space of BESO-based
lattice optimization algorithm discussed in Section III-F.

E. Meta-Model for AM Constraints

The objective of using meta-model in this research is to
obtain the manufacturing constraints for each ME during the
design and optimization process. To simplify the process of
getting meta-model, only the influence of the geometrical
parameters on the manufacturability is considered in this paper.
Therefore, the material and process parameters are set to be
constant in the whole process. Based on the minimum recog-
nition of the machine and the properties of lattice structure,
like porosity, a design domain of geometrical data of MEs is
obtained. This predefined domain is imported to the meta-
model, and by setting printing quality in the meta-model,
the design domain is adjusted to satisfy this printing quality.
The meta-model is expressed as

W = �(U, q); W ⊂ U (11)

where U is the predefined design domain, q is the required
manufacturing quality, � represents the function of the meta-
model, and W is the design domain with the consideration of
manufacturing constraints.

To obtain the meta-model of a selected AM process, several
experiments are conducted to get the raw data of the printing
quality at first. To obtain the relation between design parame-
ters of lattice struts and its geometrical deviation, ANN model
trained by the obtained raw data is utilized in this paper. For
different types of MEs, the geometrical data could be different.
Multiple ANNs would be trained by different categories of
raw data. Then, the meta-model of a selected AM process
is constructed by the trained ANNs. In this paper, FDM
process is selected to fabricate samples for the experiment, and
the obtained meta-model is only valid for this manufacturing
process. However, the method of constructing the meta-model
can be implemented on other AM process.

1) Design of Experiment:
a) Geometrical parameters of the lattice structure: In the

experiment, three types of geometrical data, the diameter D,
the length L, and the inclined angle θ are defined to build
the ME. D is the size of the cross section of the ME, L is
the length of the line segment of the ME, and θ is the angle
between the line segment of the ME and the printing platform.
The formulation of L and θ are defined as

L = |−→ps−−→pe | (12)

θ = 90° −
∣∣∣∣∣cos−1

(−→ps−−→pe
) ·−→z

|−→ps−−→pe |

∣∣∣∣∣ (13)

where ps and pe are the position of the start point and endpoint
of the strut, �z is the unit vector perpendicular to the printing
platform.

According to the different tool paths shown in Fig. 8,
lattice struts can be divided into three types, the horizontal
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Fig. 8. Tool paths for different types of struts. (a) Horizontal strut.
(b) Inclined strut. (c) Vertical strut.

Fig. 9. Models of test samples in the experimental and geometrical data.
(a) Horizontal group. (b) Nonhorizontal group.

struts (θ = 0°), vertical struts (θ= 90°), and slanted
struts (0° <θ< 90°). Because the tool path of vertical struts
and slanted struts are similar, vertical struts can be seen
as a special case of slanted struts with 90° inclined angle.
Therefore, the experiment contains two groups of samples:
one is the horizontal group, and the other is the nonhorizontal
group, as shown in Fig. 9.

After doing the preliminary test of the selected FDM
machine, proper values of defined geometrical data are cho-
sen for the experiment to find the relationship between the
manufacturability and these data. For the horizontal group,
L has six levels from 10 to 60 mm. For the nonhorizontal
group, θ has nine levels from 10° to 90°. And for both groups,
D has five levels from 1 to 5 mm. It should be noted the
number of experimental groups is not always fixed. If the
trained ANN model is not accurate enough, more groups of
experiments can be added in those critical regions following
the procedure as the initial set of experiments. These extra
experiments can further refine the ANN model and make it
more accurate especially on those highly nonlinear regions.

b) Manufacturing process: This paper concentrates on
the influence of manufacturing constraints on topology opti-
mization under a certain fabricating condition. Therefore, man-
ufacturing parameters are constants during the whole printing
process. FDM process is used to fabricate the MEs. The
STereoLithography (STL) file is sliced by Z-Suite software.
And the FDM printer is Zortrax M200. The printing material
is Z-ABS [40]. All the process parameters are summarized
in Table I. The printing speed of M200 only has two levels
without a specific value, and normal level is selected in this
paper. To get a more reliable result, each sample is printed
three times, and the result is obtained from the average value.

TABLE I

PROCESS PARAMETERS

Fig. 10. Deflection of horizontal struts. (a) Deformed area. (b) Definition
of Df.

Fig. 11. Cantilever area of slanted struts.

2) Measurement and Result:
a) Criteria of manufacturability: To find the manufactur-

ing constraints for lattice structures under a certain fabricating
process, proper criteria of manufacturability should be pre-
defined. There are several critical issues for horizontal struts
and slanted struts. For horizontal struts, while printing the first
layer of overhang struts, the filament is melt and extruded
by the nozzle at a high temperature, so it cannot be cooled
immediately. Because of no support structure, the first layer
tends to deform due to its gravity and the deposition force of
the second layer. Therefore, the thickness in the middle of the
strut is larger than its two ends, which is shown in Fig. 10(a).
If the deflection of the bottom is too large, the geometry
will be inconsistent with the design model. Consequently,
the deflection can be a criterion for horizontal struts. The
deflection, which is shown in Fig. 10(b), is defined as

D f = Tmax − Tmin (14)

where D f is the deflection of the strut, and Tmax and Tmin are
the maximum and minimum thickness of the strut.

For slanted samples, the difficulty is concentrated on the
cantilever area of each new layer, which is shown in Fig. 11.
With the inclined angle decreasing, the length of the cantilever
area Lc is getting longer. It is encountering the same problem
as the first layer of the horizontal strut. Lc is calculated by

Lc = t/ sin θ (15)

where t is the thickness of each layer, θ is the inclined angle
of the slanted strut.

Lc will affect the thickness of the strut in certain directions.
ta and tb are defined as the thickness of the strut in two
directions to illustrate the different influence of Lc, as shown
in Fig. 12. The thickness in certain direction is significantly
influenced by Lc, as shown in Fig. 12(b). But in some direc-
tions, the phenomenon is not obvious, as shown in Fig. 12(a).
Therefore, tb, as defined in Fig. 12(b), is measured to
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Fig. 12. Thickness of slanted struts in different directions. (a) Thickness in
the direction that is not affected by Lc. (b) Thickness in the direction that is
greatly affected by Lc.

Fig. 13. Image analysis of the horizontal strut. (a) Original image.
(b) Sharpened image for edge detection.

Fig. 14. Experimental result of horizontal group.

investigate the influence of an inclined angle on the deviation
of the strut thickness.

b) Result of horizontal group: Because it is hard to find
the largest deflection of the horizontal strut directly measured
by a caliper. The image analysis method is used to find
the maximum deflection point and measure it by pixels. The
image of one strut is shown in Fig. 13. Fig. 13(a) shows the
photograph taken by a camera. Then the image is sharpened
to find the edge of the strut by MathWorks Image Processing
Toolbox [41], which is shown in Fig. 13(b). A gauge block is
measured by this approach to calibrate the size of the pixel.
The resolution of this measurement method is 0.03 mm. The
deflection ratio Rh is defined in (16) to illustrate the deflection
of horizontal struts compared to the strut thickness

Rh = D f

D
×100% (16)

where D f is the deflection and D is the design diameter of
the horizontal strut.

The result of Rh is shown in Fig. 14. The result indicates
that the Rh is increasing with the increase of the L. When
D gets larger, the percentage of deflection will decrease. So it
can be concluded that the ratio of the deflection of horizontal
struts is not only related to the length of the strut, but also
related to the design diameter. Therefore, when considering the
manufacturability of horizontal struts, both the diameter and
the length of horizontal line segments should be considered.

Fig. 15. Experimental result of nonhorizontal group.

c) Result of nonhorizontal group: The thickness of
inclined struts tb is measured by a caliper with 0.01 mm
accuracy. The ratio of the thickness deviation of slanted
struts Rs is defined in (17) to measure the discrepancy ratio
compared to the designed thickness

Rs =
( |tb−D|

D

)
×100% (17)

where tb is the thickness defined in Fig. 12(b) and D is the
design diameter.

The results of Rs are shown in Fig. 15. As the plot shows,
the value gets a huge increase when θ decreased to 10°.
Rs of 1- and 2-mm struts is higher than that of thicker struts.
And 1- and 2-mm struts tend to be less stable when the
θ is less than 60°. It can be concluded that the thickness of
the discrepancy is influenced by the diameter as well as the
inclined angle of the strut.

3) Artificial Neural Network: In this paper, the ANN is used
to predict the manufacturability of the lattice structure and
build the meta-model. ANN is a massively parallel distributed
processor consists of simple processing units. Due to large
scale of parallel distributed structure as well as the ability
to learn and generalize, ANN has computing power to solve
complex problems that are currently intractable [42].

Because the data obtained from the experiment are not
sufficient to determine the manufacturability of the lattice
struts with specific geometrical data. The relationship between
the manufacturability and geometrical data should be more
comprehensively established. Since ANN is a nonlinear model.
And it is often used when the relationship between the input
and output variables is not completely understood or even
unknown. Therefore, it is suitable for this research to build
the nonlinear relationship between the manufacturability and
geometrical parameters. And this model can analyze more
input parameters without much effort so that if designers want
to consider the influence of process parameters as well as
design parameters the ANN model is also valid to predict the
result. Another advantage of ANN is that when new data are
obtained in the later fabrication, it can be imported to the
network to improve the performance.

Multilayer perceptrons are used for this research. Typically,
the network consists of three types of layers, the input layer
that collects the input data, one or more hidden layers that
makes connections between the input and output layer and
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Fig. 16. Regression plot of horizontal group.

analyze data, and an output layer that returns the learning
results. The algorithm used for this problem is a back-
propagation. It contains a forward pass which fixes the synap-
tic weights, and a backward pass which adjusts the synaptic
weights in accordance with an error-correction rule [42].
A sigmoidal nonlinearity defined by the logistic function, as
shown in (18), is used to model the nonlinear relationship

y j = 1

1 + exp(−v j )
(18)

where v j is the weighted sum of all synaptic inputs plus bias
of neuron j , and y j is the output of the neuron. The weights
will be tuned in the training process until the error reduces to
an acceptable level.

The data obtained from the experiment are trained in
the MATLAB ANN tool. The input data of the horizon-
tal group contain 30 samples. Each sample consists of
2 elements, L and D. The output data only have one element,
which is the Rh . Thirty samples are divided into the training
group (22 samples), validation group (4 samples), and testing
group (4 samples). The number of hidden neurons is set
to be 5. Mean square error is used as the error evaluation
function. And the regression R values measure the correlation
between outputs and targets. The regression plots across all
samples for the percentage of deflection are shown in Fig. 16.
It shows the relationship between the actual network outputs
and the associated target values. If the linear regression fits
to this output–target relationship closely alongside the line
connecting the bottom-left and top-right corners of the plot,
it means the network has been successfully trained to fit the
data [43].

The data of the nonhorizontal group contain 45 samples.
The input sample consists of two elements, the diameter and

Fig. 17. Regression plot of nonhorizontal group.

Fig. 18. Interpolation of horizontal group.

the inclined angle. The output sample only has one elements
that is Rs . The training group, validation group, and testing
group have 35 samples, 5 samples, and 5 samples, respectively.
Other settings are the same with those of horizontal struts. The
regression plot of the nonhorizontal group is shown in Fig. 17.
After establishing the neural network of the input data and
output data, it can be used as an interpolation approach to
predict the result that was not obtained by the experiment. For
the horizontal group, D is interpolated from 0.5 to 5 mm with
0.1 mm as the interval, and L is from 1 to 60 mm with 1 mm
as the interval. The interpolation result by the neural network
is shown in Fig. 18. The z-axis is the ANN predicted Rh . For
the nonhorizontal group, θ is from 1° to 90° with 1° as the
interval. The range of the D is the same as that of horizontal
struts. The interpolation result is shown in Fig. 19. The
z-axis is the ANN predicted Rs . These two interpolation plots
visualize the ANNs for horizontal and nonhorizontal struts.
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Fig. 19. Interpolation of nonhorizontal group.

Fig. 20. (a) Inclined strut with stringing. (b) Horizontal strut with stringing.

Fig. 21. Quality of inclined strut with Rs (a) over and (b) less than 10%.

If more types of geometrical data are defined, the ANNs could
be more complex which may not be visualized. When using the
meta-model, the first step is to choose the ANN according to
the type of the strut. A user-defined quality tolerance is set for
the meta-model. Particularly for this research, it is found that
the horizontal struts whose deflection ratio is larger than 25%
and that the vertical or slanted struts whose discrepancy ratio
is larger than 10% may have the printing quality issues like
stringing phenomenon as shown in Fig. 20. The filament will
be detached and the printed shape is no longer the cylindrical
shape as what it supposed to be. For the horizontal strut,
the maximum deflection only happens at the middle region
of the strut. It is found that the acceptable ratio is larger
than the inclined strut. For the inclined struts, as shown in
Fig. 21, it is found if the discrepancy ratio is larger than
10%, the stringing phenomenon happens, and the strut gets
unstable at the tip which will influence the connection between
each strut. This has been verified by printing the unit cell
of the strut (shown in Fig. 22). This may not significantly
influence the strength of a single strut, but it may affect the
quality of the following printing and the strength of the whole
structure. Due to this reason, those specific values are selected
as the quality tolerance in this paper. It should be noted
that different designers can select different quality tolerance
based on their requirements. In some special cases, more than
one type of quality tolerance is needed. Then, the predefined
design domain will be imported into the meta-model. Finally,

Fig. 22. Failure at the joint of the strut with Rs equal 20%.

the acceptable design domain can be determined by the quality
tolerance and manufacturing constraints are obtained.

F. BESO-Based Lattice Optimization

The last step of the proposed method is to optimize the
size of each strut for a given lattice frame with respect to the
volume constraints from initial design stage. In this process,
the manufacturing constraints from the meta-model described
in Section III-E. should also be satisfied. To achieve this
purpose, a BESO-based optimization algorithm is used. This
algorithm is originally proposed by Querin et al [44] to update
the shape and topology of structures for a better functional
performance. It simulates the remodeling process of human’s
bone which is known as Wolff’s law [45]. Recently, this
algorithm has been modified and successfully applied to the
design of heterogeneous lattice structures [9]. Compared to
other optimization methods for lattice structures, there are
three advantages of BESO method for lattice structures. First,
like other heuristic optimization method, it does not require the
calculation of gradients. Thus, it is easier for implementation.
Second, compared to other heuristic optimization methods
such as pattern search, the convergence rate can be increased
by considering the stress inside the heuristic function dur-
ing the design optimization process. Apart from these two
advantages, the manufacturing constraints are also easier to
be considered during the optimization. Due to these reasons,
the BESO-based optimization method is chosen in this paper.
Its mathematical representation can be expressed as

To find : t =(t1, t2, . . . , tn)

Minimize: P I =
(

i=n∑

i=1

σVMi Vi (ti )

)
/(F · L)

s.t. : K (t)u − P = 0
i=n∑

i=1

Vi (ti ) ≤ Vconst

t i
min≤ti≤t i

max (19)

where t is the n-dimensional vector contains the size of each
strut ti in the generated lattice frame. PI is the performance
indicator of a structure to measure how well the overall
structure is performing against an idealized fully stressed
design [44]. σVMi and Vi represent the maximum Von-Mises
stress of the i th strut and its related volume, respectively.
F and L are two parameters used to describe an idealized
load case, where F is a representational force and L is a
reference length. Their values can be predefined by designers
based on the size of FV and its related loading condition.
During the optimization process, the values of these two
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Fig. 23. General work flow of BESO-based optimization algorithm for
heterogeneous lattice structures.

parameters will keep unchanged. K is the global stiffness
matrix of the lattice structure which can be regarded as a
function of design variable t in this problem. u is the vector
of nodal displacement in lattice structures and P is the nodal
load. Vconst is the value of volume constraint which can be
calculated from the initial design stage by (5). Vi (ti ) is a
function to calculate the volume of i th strut inside the lattice
structure. The form of this function may vary depending on
the cross-sectional shape of the strut and its length. t i

min, t i
max

represent the lower and upper boundary of the size of lattice
struts. The minimum size of struts t i

min may vary strut by
strut, since it is mainly determined by the manufacturability
of struts. Its value can be obtained from the proposed meta-
model described in Section III-E. As to the upper bound of
struts thickness t i

max, it is mainly controlled by the maximum
allowable porosity of designed lattice structures. This value
can be predefined by designers.

To solve the problem defined in the (19), the BESO-based
optimization algorithm is used in this paper, and its general
working flow is shown in Fig. 23. The key of this algorithm
is the relocation of materials from low stress struts to high
stress struts. To control this process, three parameters can be
used. They are rejection ratio (RR), size remove ratio (RT),
and RR incremental value ri. Among them, RR is the ratio to
control the threshold of stress for the struts whose material
needs to be removed. Suppose σMAXVon is the maximum
Von-Mises stress of all the struts in the lattice frame,
if the Von-Mises stress σVMi of strut si satisfy
σVMi < RR × σMAXVon, then a certain amount of volume
should be removed from this strut until it reaches the lower
bound of strut’s size t i

min.
RT is used to control the material removal rate for lattice

struts. The following equations can be used to calculate the
removed volume Vr total of each lattice strut:

tri =
{

RT × ti , if ti > t i
min/(1 − RT)

t i
min, if ti ≤ t i

min/(1 − RT)
(20)

Vr total =
i=n∑

i=1

(A(ti ) − A(ti − tri ))li (21)

Fig. 24. Arm of quadcopter and its loading condition, (a) arm of quadcopter,
original design, (b) loading condition.

Fig. 25. Physical entity of the arm of quadcopter.

where tri is the target size of lattice after material removal
process; A(ti ) is the function to calculate the area of cross
section with respect to the size of cross section ti . li is the
total length of i th strut.

Between two iterations, the incremental value ri is used to
update the current RR based on the following equation:

RRn+1 = RRn + ri (22)

where RRn and RRn+1 are the RR values used in the nth and
n + 1th iteration, respectively.

To judge the convergence of the optimization process,
the difference of PI values between two iteration steps is used.
If the difference is smaller than a given value, the optimization
process can be stopped. For the detailed steps of this algorithm,
readers can refer the previous research paper [9].

After the optimization process, size of each lattice strut can
be obtained. Based on the data and lattice frame, geometrical
model of lattice structures for a given FV can be generated.
To combine this model with other FVs with solid material,
the final design can be obtained.

IV. CASE STUDY AND DISCUSSION

To further illustrate the proposed design and optimization
method, a design case of the quadcopter arm is given in this
section. Its original design and loading condition are shown
in Fig. 24.
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TABLE II

MATERIAL PROPERTIES OF ABS

The major function of this part is to transfer the lifting
force from the propeller to the frame of quadcopter. To achieve
this function, four design requirements which are summarized
based on general design and fabrication guidelines of quad-
copter [46], [47] are listed in the following.

1) The maximum displacement at point c should be smaller
than 7 mm under given load condition.

2) The maximum stress should be smaller than the yield
stress of selected materials.

3) The total weight of part should be smaller or equal
to 33 g.

4) The main body of frame should be porous to minimize
the drag force when the air passes through it vertically.

Based on the functional description and design require-
ments mentioned above, a physical entity with 16 FSs and 3
FVs (shown in Fig. 25) is built on the conceptual design stage.
Acrylonitrile-butadiene-styrene (ABS) is selected as material
for this physical entity. Its material properties used in this
paper are summarized in Table II. This generated physical
entity is regarded as the input of the proposed design method.
Among those sixteen FSs, FS1 to FS9 are assembly surfaces
for the motor, while FS10 to FS16 are assembly surfaces
for the main frame of a quadcopter. To connect those FSs,
three FVs are used. Among them, FV1 and FV2 are filled
with solid material, while lattice structure is used in FV3 to
reduce drag force when air passes through. Based on those
FSs and FVs, the design space and nondesign space can be
built for the topology optimization. They are shown in Fig. 26.
The topology optimization formulation shown on (4) has been
applied to this design and solved by an SIMP-based topol-
ogy optimization solver called OptiStruct [48]. In this initial
optimization process, the volume constraint has been added
to control the total volume of optimized shape. The result is
shown in Fig. 26. Based on this result, volume constraints of
each FV are calculated by (5) and listed in Table III. Since
the FV1 and FV2 are filled with the solid material, its shape
can be directly obtained from the initial topology optimization
process by removing the material in the low relative density
region. The optimized shape of FV1 and FV2 is shown
in Fig. 27. As to FV3, the volume constraint from the initial
design stage is regarded as the volume constraint for lattice
optimization which will be discussed in the following portion
of this section.

After the initial design, the lattice frame is built to fill
the FV3. To build the lattice frame, two types of parameters
need to be determined. The first parameter is the lattice
topology. In this case study, a cubic-center lattice cell is
selected due to its stretching-dominant properties. As to cell
size, general guidelines provided in Section II have been
considered. Moreover, since FV3 is in a regular shape, with
careful selection of cell size, it is possible to make the

Fig. 26. Topology optimization of initial design.

TABLE III

CONSTRAINTS OF VOLUME

Fig. 27. Updated FVs after initial design.

TABLE IV

DIMENSION OF THE UNIT CELL

boundary of FV3 smooth. In other words, the FV3 can be
divided by lattice cell size without remainders on the boundary.
Based on these rules, the cell size is selected and summarized
in Table IV, and the uniform lattice frame has been built which
can full fill the FV3.

In order to provide the manufacturing constraints for the
following lattice optimization process, the MEs of designed
lattice frames need to be built. During the construction process
of MEs, the printing orientation of lattice structures needs
to be decided at first. To determine this parameter, three
criteria are considered. First, to avoid the support structure
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Fig. 28. Printing orientation.

TABLE V

GEOMETRICAL PARAMETERS AND CONSTRAINTS
IN OPTIMIZATION ALGORITHM

in the cylindrical surface, those functional surfaces FS2–FS9
and FS11–FS14 should be perpendicular to the printing plat-
form. Therefore, only two orientations can satisfy the first
criterion. The second criterion is that for the functional vol-
ume FV1, the printing orientation should minimize the support
structure. Obviously when the functional surfaces FS1 and
FS10 are placed at the bottom of the platform, FV1 can
be printed without supporting structures. The last criterion is
that the printing layout of the model should fit the printing
volume of the selected machine. Consequently, the printing
orientation is determined, as shown in Fig. 28. Besides the
printing orientation, the predefined design domain of struts’
thickness is also determined in this stage. This predefined
domain ranges from 0.6 to 5 mm. The upper and lower
bounds of this domain are determined based on the minimal
resolution of the machine as well as the porosity constraints.
Based on those parameters mentioned above, the MEs of
designed lattice structures can be built and input into the
established metal-model. the manufacturing constraints can be
obtained with the given quality tolerance (Rh is set to be
less than 25% for horizontal struts and Rs is set to be less
than 10% for slanted and vertical struts in this case study).
Then the lower and upper bounds of the design domain with
manufacturing constraints are found. All the geometrical para-
meters and constraints are summarized in Table V. The arm
of the quadcopter is optimized under those manufacturability
constraints and given parameters for optimization algorithm
summarized in Table VI. After 52 iterations, the optimization
converged (the change of the PI index is less than a given
value 0.001), which is shown in Fig. 29. The CAD model of
the optimized quadcopter arm shown in Fig. 30(a) is success-
fully fabricated [Fig. 30(b)] by the selected FDM machine. The
arm of the quadcopter is also optimized without considering
the manufacturability constraints of lattice structures. This part
is failed during the manufacturing process.

The simulation results of different types of design configu-
rations are summarized in Table VII. Compared to the original

TABLE VI

VALUE OF PARAMETER USED IN THE OPTIMIZATION ALGORITHM

Fig. 29. PI index with respect to number of iterations.

Fig. 30. Optimized quadcopter arm with manufacturing constraints.
(a) CAD model. (b) FDM-fabricated part.

design and the design of homogeneous lattice structures, it is
obvious that optimized heterogeneous lattice structures can
significantly improve the structural stiffness without increasing
its weight. To further verify this conclusion, physical tests
on both homogeneous lattice and optimized heterogeneous
lattice have been done. In the physical tests, a tensile test
machine (ADMET MicroEP series with 45N load sensor) is
used to apply the given load and measure the displacement
on the end of arm. A clamp is used to fix the other end
of arm. The experimental setup used in this paper is shown
in Fig. 31. The results of physical tests are also summarized
in Table VII. It shows a small deviation (less than 0.1 mm)
between experimental results and physical testing results. This
deviation is mainly caused by the anisotropic material proper-
ties of printed ABS material which has not been considered in
the current paper. However, both simulation and experimental
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TABLE VII

COMPARISON OF SIMULATION RESULTS

Fig. 31. Setup of physical test.

data show a clear trend that the designed lattice structure can
significantly improve the structural stiffness compared to its
original design (shown in Fig. 24) and homogeneous lattice.
Generally, the efficiency of the proposed design method has
been validated by both simulation and physical results.

To further evaluate the efficiency of the proposed lattice
design and optimization method, the part [shown in Fig. 32(b)]
directly obtained from traditional topology optimization rou-
tine (SIMP) has also been considered as a benchmark part
in this paper. The displacement contours of optimized lattice
structures and topology optimization result are compared and
shown in Fig. 32. Even though the topology optimization
results can achieve slightly better stiffness, the large area of
the overhang region in the topology optimized part makes it
difficult to be directly fabricated without support structure.
Moreover, as it is shown in Table VII, optimized lattice
structures may achieve a smaller maximum Von-Mises stress
compared to topology optimization result.

Another interesting fact which can be observed from
Table VII is that the optimized lattice with uniform constraint
can achieve a better stiffness than that of nonuniform con-
straints obtained from the proposed method as well as the
result of topology optimization. In this paper, the uniform
constraint refers smallest cylinders that can be printed by the
selected machine. Its value is 0.6 mm for the selected machine.
This constraint is uniformly applied to all the struts during the
optimization process. Compared to the optimized lattice with
nonuniform constraints, the uniform constraints can provide a
larger design freedom for designers. Thus, the structure can
be further optimized to achieve better performance. However,
this structure cannot be fabricated with the selected machine,
since the dimension of optimized struts violates the constraints

Fig. 32. Comparison between optimized lattice structures and topology
optimization result. (a) Displacement contour of optimized lattice structures.
(b) Displacement contour of topology optimization result.

summarized in Table V. Based on this fact, it can be inferred
that if the process related parameters, such as printing strategy
and process parameters, can be optimized to alleviate the
existing manufacturing constraints, the performance of parts
can be further improved by the proposed design method.

V. CONCLUSION

In this paper, a design method of lattice structures under
the manufacturability constraints of AM process has been
proposed. The meta-model for the selected AM process is
obtained from experiments and ANN. A BESO-based opti-
mization process is used to find the optimum struts’ thickness
distribution.

Several conclusions can be drawn from this paper are as
follows.

1) The lattice structures generated by the proposed design
method can improve the stiffness of the model.
Von-Mises stress and displacement can be reduced with-
out increasing the volume.
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2) The heterogeneous lattice structure optimized by the
proposed method has a better performance compared to
the homogenous lattice structure.

3) The meta-model obtained from the experiment and
ANN has ensured the manufacturability of the lattice
structure by certain AM process.

4) If the design domain can be enlarged, which in this paper
means that if the lower bound of the struts’ thickness can
be smaller, the performance can be further improved.

Future research will be focused on the following prospects.
First, relations between struts’ geometrical dimensions and
mechanical properties need to be further investigated. This
relation can provide a feedback to lattice simulation and
optimization model with more accurate material properties.
Second, other two aspects of MEs including the material data
and the process data, can be further investigated in the future
research to build a more comprehensive meta-model for lattice
structures. Finally, the process parameter can be optimized to
obtain a larger feasible area for design and optimization.
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