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Ab stra ct 

Rapid progress has been made toward understanding the significance of CDK inhibitor 

proteins (CKls) in the regulation of cell cycle progression. The overall goal of this study 

has been targeted to further exp and our knowledge of CKI function through the 

investigation of a previously uncharacterized CKI named cki-2 during development in C. 

elegans. The characterization of cki-2 using a reverse genetic approach called 

co-suppression has revealed a novel mechanism that cki-2 and its related cell cycle 

regulators are required for the appropriate elimination of centrioles during oogenesis. Loss 

of cki-2 in the germ line caused perdurance of centrioles into the one-cell embryo, resulting 

in supemumerary centrosomes and aberrant cell divisions in the first cell cycle. This was 

significantly suppressed by reduction of cYclin E and a Cdk2 homologue, indicating that 

these cell cycle regulators are involved in this critical developmental pro cess. In order to 

further understand the function of cki-2, a yeast two-hybrid screen was conducted which 

allowed us to identify three CKl-2 interacting proteins: orthologues of PCNA (PCN-l), 

SUMO (SMO-I), and a RING finger protein called RNF-l. CKI-2 has functionally 

separable domains in its amino (Cyclin/Cdk binding)- and carboxy (PCNA 

binding)-terminus and they exert distinct roles in cell cycle progression. It was observed 

that CKI-2 is covalently modified by SUMO on its N-terminus and this causes CKI-2 to 

relocalize to thr nuc1eolus, which is associated with its rapid degradation. Since many 

RING finger proteins act as components of the multi-subunit E3 ubquitin ligases, we 

speculated that RNF-I might be involved in the CKI-2 degradation. This possibility was 

tested by co-expression of RNF-I with CKI-2, revealing that co-expression of RNF-I 

suppresses the embryonic lethality caused by the CKl-2 overexpression and moreover, this 

is correlated with an increased rate of CKI-2 degradation. In addition, western blot 

analyses performed on different genetic backgrounds suggested that the CKI-2 degradation 

occurs in an ubiquitin-dependent manner through the proteasome- mediated proteolysis 

pathway. Furthermore, a yeast-based assay developed to test a possible role of SUMO in 

modulating the CKI-2/RNF-l interaction demonstrated that SUMO may antagonize the 
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interaction between CKI-2 and RNF-l, these highlighting an intriguing model that 

appropriate levels of CKI-2 are regulated through ubiquitin-dependent proteolysis 

mediated by RNF-l, and which may be modulated by SUMO. 
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Résumé 

La compréhension de l'importance des inhibiteurs de CDK (CKl) dans la régulation de la 

progression du cycle cellulaire a connu un essor rapide. La présente étude a pour but 

général d'accroître encore notre connaissance de la fonction des CKI à travers l'étude de 

cki-2, un CKI qui n'a pas encore été caractérisé, durant le développement de C. elegans. 

Par le biais d'une approche génétique inverse appelée co-suppression, la caractérisation de 

cki-2 a dévoilé un nouveau mécanisme par lequel cki-2 et d'autres régulateurs du cycle 

cellulaire sont requis pour l'élimination des centrioles durant l'oogénèse. L'absence de 

cki-2 dans la lignée germinale engendre la perduration des centrioles jusqu'au stade 

embryonnaire d'une cellule, produisant des centrioles surnuméraires et des divisions 

aberrantes durant le premier cycle cellulaire. Ces phénotypes sont significativement 

supprimés par une réduction des niveaux de cycline E ou ceux d'un homologue de Cdk2, 

indiquant que ces régulateurs du cycle cellulaire sont aussi impliqués dans ce processus 

important du développement. Afin de mieux comprendre le rôle de cki-2, un criblage à 

deux hybrides a été entrepris dans la levure. Celui-ci a révélé l'identité de trois protéines 

interagissant avec CKl-2 : PCN-l, un orthologue de PCNA, SMO-l, un orthologue de 

SUMO et une protéine en doigts de RING, appelée RNF-l. CKl-2 possède deux domaines 

fonctionnels distincts, l'un à son extrémité amino (interaction cycline/Cdk) et l'autre à son 

extrémité carboxy (interaction PCNA), qui jouent des rôles différents dans la progression 

du cycle cellulaire. il a été montré que CKl-2 est modifié covalemment par SUMO à son 

extrémité amino, ce qui provoque sa relocalisation vers le nucléole et sa dégradation 

rapide. Étant donné que de nombreuses protéines en doigts de RING sont des composantes 

des ubiquitines ligases E3, nous pensons que RNF-l pourrait être impliqué dans la 

dégradation de CKl-2. Cette possibilité a été testée par une co-expression de RNF-l et 

CKl-2. Dans cette situation, l'expression de RNF-l supprime la létalité embryonnaire 

causée par la surexpression de CKI-2 et de plus, elle est corrélée à une augmentation de la 

dégradation de CKl-2. Des analyses Western effectuées à partir de différents backgrounds 

génétiques suggèrent que la dégradation de CKl-2 se fait d'une manière dépendante de 
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l'ubiquitine à travers une cascade protéolytique impliquant le protéasome. Finalement, un 

essai dans la levure, développé pour tester un rôle possible de SUMO dans la modulation 

de l'interaction CKI-2/RNF-l a démontré que SUMO serait capable d'antagoniser 

l'interaction de ces deux facteurs, révélant un modèle intéressant qui indiquerait que les 

niveaux normaux de CKI-2 sont régulés à travers la voie de protéolyse dépendante de 

l'ubiquitine par RNF-I dont la fonction serait modulée par SUMO. 
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Preface 

This thesis is a manuscript-based thesis and has been written by the candidate m 

collaboration with the candidate's thesis adviser. 

This thesis consists of five chapters: Chapter l is a literature review, providing a 

comprehensive description of the knowledge behind this study, as well as rationale and 

objectives of the study; the following three chapt ers (Chapter II-IV) are composed of the 

manuscripts which have been accepted, or submitted, or will be submitted, where each 

chapter is presented in the following order: Abstract, Introduction, Results, Discussion (or 

combined results and discussion for chapter II), Materials and Methods, References, 

Table(s), Legends to Figures and Figures; Chapter V is a general discussion. Appendix 

includes supplemental data for the chapters (II-IV) and a published paper with a permission 

letter from the publisher (The Journal of Cell Biology). 

This thesis has been written according to the "Guidelines for thesis preparation" from the 

Faculty of Graduate Studies and Research (http://www.mcgill.calgps/programs/thesis/ 

guidelines/preparationl). 
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Literature Review 
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1.1. Overview 

DNA synthesis (S phase) and segregation of the synthesized DNA into daughter cells 

(Mitosis or M phase) represent two major events typical of most cell division cycles 

(Figure 1.1). In the past decade, a variety of genetic and biochemica1 studies in yeast and 

Xenopus have contributed to the expansion of our understanding of the molecu1ar 

mechanisms implicated in the regu1ation of DNA rep1ication and mitosis. It is now known 

that same sets of molecular machinery act in an eukaryotic animaIs and that their activities 

are differentiaIly regulated in response to diverse intrinsic or extrinsic signaIs during 

development (Hartwell, 1991; Forsburg and Nurse, 1991; Murray and Hunt, 1993; Nurse, 

1994; King et al., 1998; Mendenhall and Hodge, 1998; Masui, 2001; Nigg, 2001; Vidwans 

and Su, 2001). 

During the synthesis phase, the repli cation of chromosomal DNA occurs through 

the assembly ofmultiple proteins which form the initiation complex at the origin ofDNA 

repli cation (Kelly and Brown, 2000). Once this complex is assembled, DNA synthesis is 

triggered by the catalytic activity of protein kinases called Cyclin-dependent kinases 

(CDKs), which are also required to avoid the reassembly of the initiation complex during 

DNA synthesis. This is accompli shed through the phosphorylation ofkey players involved 

in the assembly of the initiation complex (JaIlepaIli and Kelly, 1997; DePamphilis et al., 

2006). During prophase in mitosis, the two daughter chromosomes begin to condense and 

attach each other along their length to form sister chromatids which remain firmly attached 

to each other via proteinaceous structures. In the end of prophase, the nuclear env el ope 

breaks down, removing the nucleus/cytoplasm boundary, while a microtubule organizing 

center (MTOC), known as a centrosome in animaIs or as a spindle pole body (SPB) in yeast, 

begins to nucleate microtubules leading to the formation of the mitotic spindle. Between 

prometaphase and metaphase of mitosis, the chromosomes attach to the mitotic spindles 

via specialized regions on the chromosome caIled kinetochores and align midway between 

two MTOCs, forming a metaphase plate. Anaphase begins when the two sister chromatids 

are physically separated through a comp1ex interplay ofregulatory molecules and each 
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Figure 1.1. The canonical mitotic cell cycle. During G 1 phase, cells grow by the 

accumulation of genetic materiais and synthesis of organelles. When a cell reaches a 

certain size and receives an appropriate developmental eue, it is committed to enter DNA 

synthesis or S-phase during which the chromosomal DNA is duplicated. Between G2 

phase and mitosis, the chromosomes separate and segregate into daughter cells, ensuring 

each daughter cell receives an exact copy of the genome. CyclinlCdk2 complexes are 

central in driving the cell cycle from one phase to another in response to developmental 

and environmentai signaIs. It has been established that this driving force of the cell cycle is 

conserved among evolutionarily divergent eukaryotic organisms (from Murray and Hunt, 

1993; from http://nobelprize.org). 
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chromatid moves back toward the MTOC. Following segregation of the complete set of 

genetic material and an MTOC, daughter cells are created through a physicaI division 

called cytokinesis (Murray and Hunt, 1993; Nasmyth et al., 2000). To ensure a perfect 

partition of the duplicated genome during this division, different stages of the cell cycle 

must be tightly coordinated to avoid mitotic division prior to the completion of DNA 

synthesis and the initiation of DNA synthesis prior to the completion of the previous 

mitotic division. This strict regulation of events ensures that the quantity of the genetic 

material (ploidy) remains intact and is maintained following each division. 

In eukaryotic cells, two gap phases, Gland G2, occur between DNA synthesis and 

mitosis (G 1 before S phase and G2 before M phase). These serve to coordinate S phase and 

M phase by transducing the internaI and external signaIs provided by growth factors and 

other signaling molecules which emanate from the cellular environment. During G 1 phase, 

the cell prepares for S phase by accumulating cellular mass (proteins and RNAs) and 

synthesizing organelles that will be eventually partitioned between the two daughter cells. 

Developmental signaIs play a critical role in timing entrance into S phase (the GlIS 

transition), which determines whether the cell will progress to mitosis or arrest division. 

After this transistion, most cells are no longer responsive to extracellular signaIs and will 

be thereafter committed to completing mitotic division. This important cell cycle boundary 

is referred to as START in yeast or the restriction point in vertebrates (Murray and Hunt, 

1993; Sherr, 1994; Pardee, 1989). 

InitiaIly, START was defined as the position in the cell cycle at which cell cycle 

events such as budding, DNA synthesis, and duplication ofSPB became irresponsive to the 

loss of Cdc28, the CDK in buding yeast (Mendenhall and Hodge, 1998). Cdc28 has been 

identified from a genetic screen performed in budding yeast (Hartwell et al., 1974). Since 

cell division is essential, the first cell cycle mutants isolated were conditional mutants, 

which can grow at permissive temperatures (23°C) but not at non-permissive (or 

restrictive) temperatures (36°C). The cell division-specifie temperature-sensitive mutants 

(or cell division cycle (ede) mutants) were distinguished from other temperature-sensitive 
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mutants because such cdc mutants arrest at a specific position in the ceIl cycle, and as such 

aIl share the same morphology, suggesting that the mutated gene product is required to 

transit through a specific point in the ceIl cycle. Among the cdc mutants, the cdc2gs mutant 

showed a dramatic phenotype: no budding, no DNA synthesis, and no duplication of 

spindle pole body (SPB). This indicated that Cdc28 was a key determinant in control of 

these stages and was thus critical for ceIl cycle progression. In fission yeast, genetic 

screens have been performed in a similar manner as with budding yeast, and were pivotaI 

in the identification and characterization of Cdc2 as a key molecule in mitotic entry (Nurse 

and Thuriaux, 1980). Genetic studies have revealed that cdc2 encodes a protein kinase and 

that cdc28+ (wild type of cdc28) genetically complements the cdc2ts mutant in fission yeast 

(Beach et al., 1982; Simanis and Nurse, 1986). Subsequent studies have shown that both 

genes are highly similar in their protein sequences (63% identity) and play a critical role in 

both START and in the onset ofmitosis in both budding and fission yeasts. Furthermore, it 

has now been established that all eukaryotic organisms have a functional equivalent of 

cdc2/cdc28, indicating that the mechanisms that drive the cell cycle engine are strongly 

conserved among evolutionarily divergent organisms (Morgan, 1997). 

Physical and biochemical studies have revealed that the monomeric form of the 

CDK is catalytically inactive and that it is only through cyclin binding that the enzyme 

acquires its catalytic activity. The different cell cycle stages are driven by various 

combinations of cyclins/CDKs. Therefore, the activity ofthe cellular CDK in cell cycles is 

a key point of regulation and is thus subject to a series of both positive and negative 

influences, which respond to signaIs that promote proliferation or, altematively, 

quiescence (Morgan, 1995; Morgan, 1997). 

These CDK regulators act through several mechanisms: 1) protein-protein 

interaction (association or dissociation with Cyclins and CDK-inhibitory molecules 

(CKIs)) (Morgan, 1995; Sherr and Roberts, 1999), 2) transcriptional control (periodic 

fluctuation in the level of Cyclins in different phases of cell cycle) (Koch and Nasmyth, 

1994; Nasmyth, 1996), 3) post-translational modification (activating or inhibitory 
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phosphorylation by CAK (CDK-Activating Kinase) (Kaldis, 1996; Espinoza et al., 1996), 

or Wee-l family kinases(Fattaey and Booher, 1997; Lee and Yang, 2001; Kellogg, 2003); 

removal of inhibitory or activating phosphorylation by Cdc25 phosphatase (Nilsson and 

Hoffmann, 2000) or KAP (CDK-associated protein phosphatase) (Poon and Hunter, 1995)), 

4) spatial control (localization of cell cycle regulators (Wee 1, Cdc25, and CKl) to different 

subcellular compartments) (Pines, 1999), and 5) protein degradation (ubiquitin-dependent 

proteolytic degradation ofCyclins and CKIs) (Cardozo and Pagano, 2004). 

Although these mechanisms implicated in the regulation of CDK activity are 

largely mediated in a temporal manner, achieved through the timely control of synthesis, 

modification, or degradation of cell cycle regulators, a growing body of studies has 

indicated that this temporal control in cell cycle must be coordinated with the spatial 

localization of the cell cycle regulators to ensure proper progression of cell cycles (Pines, 

1999). In mammalian celIs, this spatial control allows different members of cell cycle 

regulators arising from multigene families to adopt non-redundant or non-overlapping 

functions at the same cell cycle stage: cyclin BI shuttles between nucleus and cytoplasm 

and, during mitosis, it translocates to the nucleus, while cyclin B2 is present in the ER and 

Golgi (Jackman et al., 1995); Weel kinase is nuclear (McGowan and Russell, 1993), 

whereas Mytl, a related Weel kinase, is localized to the ER and Golgi (Liu et al., 1997); 

Cdc25B is mostly cytoplasmic (Gabrielli et al., 1996), but Cdc25C accumulates in the 

nucleus (Girard et al., 1992). 

These differentiallocalizations of cell cycle regulators are acquired through several 

mechanisms: 1) intrinsic signaIs involved in protein sorting into organelles, such as nuclear 

import or export signaIs (Reynisdottir and Massague, 1997); 2) proteinlprotein interactions, 

such as Jab1 mediating the cytoplasmic translocation of p27Kipi (a mammalian CKl) 

(Tomoda et al., 1999); 3) post-translational modifications, such as the cytoplasmic 

localization of NEMO through its SUMO (small ubiquitin-related modifier)-dependent 

modification (Melchior, 2000; Huang et al., 2003); 4) anchoring proteins, such as the 

membrane tethering ofSmad2 (a transcriptional activator ofTGF-~ transduction pathway) 
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through its association with SARA (Smad anchor for receptor activation) m a 

TGF-p-dependent manner (Tsukazaki et al., 1998). 

A considerable body ofknowledge towards understanding cell cycle regulation has 

been obtained through genetic studies in yeast, however, given the importance of 

understanding the cell cycle progression in a developmental context where cells respond to 

diverse intrinsic and extrinsic developmental signals to mediate cell cycle-related events 

such as cell proliferation, cell growth, and cell differentiation, many recent studies have 

instead focused on understanding how cell cycle control is achieved. in multicellular 

organisms. 

In most multiceIlular organisms, cell proliferation must occur during periods of 

development where tissue generation is critical such as during embryogenesis or during 

organogenesis (Edgar and Lehner, 1996; Edgar et al., 2001; Vidwans and Su, 2001). 

However, it must also be arrested in a very timely manner priOf to terminal differentiation. 

In the absence of appropriate controls, uncontrolled cell proliferation can lead to 

developmental abnormalities or to diseases such as cancer. CKIs are upregulated during 

the initiation of differentiation in most tissues when cell division must be arrested in 

conjunction with the onset of specific gene expression. CKI misregu1ation has been 

observed in many types of transformed ceIls, suggesting that CKIs may be critical to 

appropriately arrest cell division at this critical stage. CKIs arrest cell division mainly at 

G liS, where cell cycle effectors including CKIs respond to growth promoting or impeding 

signaIs from the environment and from the developmental pro gram. As such, the activity of 

CKIs must be tightly regulated in accordance with numerous inputs to coordinate cell 

growth and proliferation with cell differentiation (Lehner and Lane, 1997; Hong et al., 

1998; Sherr and Roberts, 1999; Lehner et al., 2001; Lee and Yang, 2001; Raff et al., 2001). 

Caenorhabditis elegans (c. elegans) has been useful to study various aspects of 

cell division in a developmental context, mostly due to its fully documented invariant 

pattern of cell division from one-cell zygote to the adult animal. This provides the basis for 
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the use of this powerful genetic system to identify cell division-defective mutants in a 

forward or reverse genetic manner. Moreover, its transparent body facilitates the use of 

fluorescence markers such as GFP (green fluorescence protein), which allow for more 

sensitive and quantitative genetic screens. To date most cell cycle regulators identified in C. . 

elegans are highly conserved and play similar roI es to their mammalian counterparts 

(Lambie, 2002; Fay, 2005; Kipreos, 2005). 

The focus of this literature review is to describe the role of CDK inhibitors (CKIs) 

in the developmental regulation of cell cycle progression. The first part will focus on the 

mechanism of CKI-mediated inhibition of CDKs, largely based on knowledge obtained 

from the crystal structures of CDKs associated with various CKIs. The second part will 

concentrate more on how post-translationallevels ofCKIs are regulated by the proteolytic 

degradation pathway, which is highly conserved among diverse organisms. The third part" 

will review the developmental control of cell proliferation by CKIs and the relationship 

between CKIs and cancer, followed by a review of sorne emerging roles of CKIs acting in 

transcription, cell migration, DNA replication, and centrosome biology. Finally, l will 

describe the C. elegans system focusing on early embryonic cell divisions where my 

research interest resides. 
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1.2. Mechanistic Basis of Inhibitory Activity of CKI 

1.2.1. Overview 

Based on sequence compansons and protein structures obtained from CKIlCDK 

complexes, CDK inhibitors are largely divided into two families in mammalian cells: the 

INK4 (Inhibitors ofCDK4) family and the CIPIKIP family. INK4 family CKIs specifica1ly 

inhibit the cataIytic subunits of CDK4 and CDK6, in which four INK4 proteins are present 

in mammaIian cells: INK4a (P16), INK4b (P15), INK4c (P18), and INK4d (P19). This 

family of pro teins do es not interact with other CDK proteins or with D-type cyclins. On the 

other hand, the CIPIKIP family CKIs associate with a broader range of CDKs, which 

include cyclin D-, cyclin E-, and cyclin A-dependent CDKs. CIPIKIP CKIs aIso inhibit the 

activating phosphorylation of cyclinlCDK complex by CAK (CDK-activating kinase) 

(Pavletich, 1999; Sherr and Roberts, 1999). 

In mammalian cells, it has been shown that there are three CIP IKIP family CKI 

proteins: p21Cipl, p27Kipl, and p57Kip2 (Sherr and Roberts, 1999). Typically, these 

CKIs share a conserved cyclinlCDK inhibitory domain at the amino terminus (N-terminus), 

while their carboxyl terminal (C-terminus) regions are divergent. It is now established that 

these CIP/KIP family CKIs are conserved among diverse animaIs and plants: in 

Drosophila (D. melanogaster), a single CIPIKIP family member named Dacapo (Lane et 

al., 1996); in C. elegans, two CIPIKIP CKIs called CKI-l and CKI-2(Hong et al., 1998; 

Fukuyama et al., 2003); inXenopus (X laevis), four CIPIKIP family CKIs, p27Xicl(Su et 

al., 1995), p28Kixl(Shou and Dunphy, 1996), pl6Xic2(Daniels et al., 2004), and p17Xic3 

(Daniels et al., 2004); in Arabidopsis (A. thaliana), two CDK inhibitor proteins, 

ICKIIKRPI(Wang et al., 1998) and ICK21KRP2(Lui et al., 2000). Although they have 

adopted differential roles in their deve10pmental process during the passage of evolution, 

they aIl share the typicaI function of CIPIKIP family CKIs of inhibition of the catalytic 

function of CDK through their association with cyclinlCdk complexes which act at G liS 

(cyclin E/Cdk2), S-phase (cyclin AlCdk2), and G2IM (cyclin B/Cdkl). In addition, there 

are non-canonical CKIs, which share little similarity in their primary sequnce but 
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inactivate the catalytic function ofCDKs, in budding (p40Sic1) (Schwob et al., 1994) and 

fission yeast (Rurn1) (Labib and Moreno, 1996), as weIl as in Drosophila (Roughex) 

(Foley et al., 1999; Foley and Sprenger, 2001). Unlike the CIPIKlP family CKls, these 

CKls do not inhibit the G lIS-Cdk function. Instead, they block the Cdk activity acting at 

S-phase and mitosis. It has been known that they are present in high concentrations during 

G 1, which blocks the S- or M-phase Cdk activity, thereby preventing S-phase entry or 

mitosis from occurring during the period. In late G 1, the CKIs are targeted by a 

phosphorylation-dependent proteolysis, al10wing the S-phase entry and subsequent mitosis 

(Pagano, 1997). However, unlike Sic1, Far1 (a CKI in budding yeast) shows a distinct 

function. Far1 induces G1 arrest through the inactivation of the GlIS-Cdk activity in 

response to a mating pheromone (Valtz et al., 1995), which is reminiscent of p21 Cip 1, 

which induces G 1 arrest in response to DNA damage (Harper and Elledge, 1996). 

Intriguingly, the INK4 family CKls inactivate the G1-Cdks (Cdk4 and 6) through 

their association with the monomeric form of Cdk4 or Cdk6 thereby blocking their 

association with cyclin D. The CIPIKlP CKls are known to associate with the G1-Cdk 

complexes without blocking their activity, or in a manner to promote the assembly (Zhang 

et al., 1994; Blain et al., 1997; LaBaer et al., 1997). In proliferating cells, p27Kipl is 

sequestered by cyclin D/Cdk4 complex in the cytoplasm, resulting in decreased levels of 

nuclear p27Kipi thereby allowing S-phase progression (Toyoshima and Hunter, 1994). 

However, when the cells are exposed to TGF-~, INK4b (P15) which is transcriptionally 

induced by the TGF-~ transduction pathway binds to the cyclin D/Cdk4 complexes 

thereby forcing p2 7Kip 1 to associate with cyclin E/Cdk2 in the nucleus resulting in cellular 

arrest at Gl. It has been shown that this coordination of INK4b (P15) and p27Kipl is 

mediated by a differentiallocalization of the two CKls: INK4b (P15) is mostly cytoplasmic, 

while p27Kip 1 is localized in the nucleus. When both INK4b (p 15) and p27Kip 1 are forced 

to be expressed in the same compartment, either cytoplasmic or nUclear, INK4b (P15) 

cannot displace p27Kip 1, suggesting that the coordination of INK4b (p 15) with p27Kip 1 

occurs through their spatiallocalizations (Reynisdottir and Massague, 1997). These studies 

indicate that two different types of CKIs are coordinated to exert their role in response to 
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developmental signais, which ensures the timely control of cell proliferation which is 

eventually coupled with timing of cell differentiation. There is little conservation within 

the INK4 family ofCKls among evolutionarily divergent animaIs and plants. This suggests 

that the role of the INK4 family CKls has been specialized for mammalian animaIs. 

1.2.2. Structural aspects of CDK regulatory mechanisms 

To understand how CKls inhibit the activity of CDKs, the crystal structures of the CDK 

and cyc1inlCDK complexes (monomeric CDK2 (De Bondt et al., 1993), cyc1in AlCDK2 

(Jeffrey et al., 1995), phosphorylated cyc1in AlCDK2 (Russo et al., 1996(a)), and 

phosphorylated cyc1in A/CDK2-p27Kipl(Russo et al., 1996(b)), were determined, all of 

which have advanced our understanding of the mechanistic basis of how CKls regulate 

CDK activities (Figure 1.2). 

Monomeric CDK contains three major structural domains: an N-terminallobe rich 

in l3-sheets; a C-terminallobe rich in a-helices; and the A TP binding and catalytic pocket 

present between the two domains. The C-terminal a-helical region possesses a 

characteristic signature sequence (PSTAlRE; PLSTIRE in CDK6) onlypresent in the CDK 

family proteins, which performs a key role in cyc1inlCDK contact and acts as a secondary 

regulatory element in addition to the activating phoshorylation site present at the T loop 

(De Bondt et al., 1993; Pavletich, 1999). 

When cyc1in A binds the PST AIRE helix, this contact induces a conformational 

change in CDK2, moving the PSTAIRE helix into the catalytic c1eft and thereby causing a 

90° rotation of the helix. This results in the relocation of a glutamic residue (Glu51), which 

is normally located outside the catalytic site. The movement of this key amino acid residue 

into the catalytic site results in the formation ofa catalytic triad (Glu51, Asp145, Lys33) 

and renders the protein capable of catalysis. Cyclin binding also causes a conformational 

change in the T loop. In absence of cyc1in A binding, the T 100p is 10cated in front of the 

catalytic pocket, impeding the entry of protein substrates into the ATP-bound catalytic 

pocket. Once cyc1in A binds, however, the T loop moves away from the catalytic cleft, 
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Figure 1.2. The catalytic activities of Cdks are regulated by multiple mechanisms. (A) 

Monomeric Cdk (Cdk2) is partially activated through its assoctiation with cyc1in 

(Cdk2-CycA). This occurs through confonnational changes ofCdk2 induced by the cyc1in. 

Cyc1in A binding causes the T loop to move away from the catalytic c1eft, allowing 

substrates to access the ATP-bound pocket (marked by open rectangular boxes; ATP is 

shown in ball-and-stick representation). Cyc1in A binding also exposes the activating 

phosphorylation site (Thr 160) on the T loop. Phosphorylation of the CDK at this site on the 

T loop (Cdk2-P-CycA) causes additional structural changes to fully activate the CDK. 

p27Kipl inhibits the catalytic activity of cyc1in A/Cdk2 complex through its association 

with both cyc1in A and Cdk2 (cdk2-CycA-p27). (B) A helical element present in p27Kipl 

mimics binding of the protein substrate to the catalytic c1eft, effective1y inhibiting ATP 

binding. (C) Summary ofCdk regulation through its association with cyc1in and CKls. Cdk 

is partially or fully activated by cyc1in binding (Cyc-Cdk; partially active) and subsequent 

phosphorylation with CAK (Cyc-Cdk-P; fullY active). Whereas INK4 family CKIs 

associate with both the monomeric fonn of Cdk and the cyc1in/Cdk complex (Cyc-Cdk; 

partially active fonn) to inhibit their activity, CIPIKIP family CKls associate only with the 

cyclin/Cdk complex (Cyc-Cdk or Cyc-Cdk-P), but not with the monomeric fonn of Cdk. 

CIP /KIP family CKIs also block the phosphorylation of Cdk2 by CAK, thereby preventing 

the complex from becoming fully activated (from Pavletich, 1999). 
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allowing substrates to access the ATP-bound pocket. Cyc1in A binding aIso exposes the 

activating phosphorylation site (Thr160). Phosphorylation of the CDK at this site on the T 

loop causes additional structural changes involved in reorganising the substrate binding 

site to fully activate the CDK (Jeffrey et al., 1995; Russo et aI., 1996(a); Pavletich, 1999). 

p27Kip 1 inhibits the cyc1in NCDK2 complexes by interacting with both cyc1in and 

CDK. There are two proposed mechanisms for this interaction. In the first, a structural 

element (31O-helix) present in p27Kipl mimics binding of the protein substrate to the 

catalytic c1eft. When p27Kip1 binds CDK2, a tyrosine residue (Tyr88) in its 31O-he1ix 

interacts with the catalytic c1eft of CDK in a similar manner to ATP, effectively inhibiting 

ATP binding. In the second mechanism, p27Kip1 binding causes the j3 sheet rich catalytic 

c1eft to be flattened, resulting in a corresponding loss of ATP contacting sites. Thus, the 

effects of CKl binding to its target are bipartite and highly effective in blocking CDK 

activity (Russo et al., 1996(b); Pav1etich, 1999). 

14 



1.3. Regulation of CKIs by the Proteasome-Mediated Degradation 

1.3.1. Overview 

In eukaryotic cells, the transition from one cell cycle phase to another is irreversibly driven 

by proteolytic degradation of positive and negative regulatory proteins (cyclins and CDK 

inhibitors, respectively). This temporal destruction ofkey cell cycle regulators is mediated 

by the ubiquitin-proteasome system, a non-Iysosomal protein degradation pathway in 

which target proteins are covalently modified by attachment of ubiquitin chains in an 

ATP-dependent manner. These ubiquitinated-target proteins are subsequently recognized 

by the proteasome complex and are thereafter proteolytically digested (Baumeister et al., 

1998; Tyers and Jorgensen, 2000; Cardozo and Pagano, 2004). 

Ubiquitin, a highly conserved small polypeptide composed of 76 amino acids, is 

transfered to target pro teins by an enzymatic cascade that consists of separable catalytic 

steps executed by three enzymes (El, E2, E3) (Figure 1.3) (Hochstrasser, 1996; Hershko 

and Ciechanover, 1998; Hochstrasser, 2006). lnitially, ubiquitin is activated by an 

ubiquitin-activating enzyme (UBA or El) whereby a high energy thioester bond between 

the carboxy end ofubiquitin and a cysteine residue of the El enzyme is formed. Secondly, 

the activated ubiquitin is transfered to a ubquitin-conjugating enzyme (UBC or E2) 

through the formation of a thioester linkage between the E2 and ubiquitin. Finally, the 

ubiquitin becomes covalently linked to a lysine residue in the target protein. This step is 

mediated by an ubiquitin ligase (E3) that specifically recognizes target substrates and 

recruits the E2 to this target site. There are two classes of E3 ligases: enzymatically active 

E3 ligases (HECT (Homology to E6AP Carboxy Terminus) domain E3s), which mediate 

the ubiquitin transfer to target proteins, and RING E3 ligases, which recruit E2 to 

ubiquitinate the target protein (Joazeiro and Weissman, 2000). The multiprotein E3 ligase 

complexes involved in cell cycle regulation can be classified into two groups: SCF 

(Skp/CullinIF-box) complex and APC/C (anaphase promoting complex/ cyc1osome) 

(Townsleyand Ruderman, 1998; Cardozo and Pagano, 2004; Vodermaier, 2004). While 

the APC/C is required for the metaphase-to-anaphase transition and for mitotic exit, the 
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Figure 1.3. An ubiquitination pathway and the crystal structure of the canonical SCF. 

(A) ubiquitin is activated by an ubiquitin-activating enzyme (El) whereby a high energy 

thioester bond between ubiquitin (red comma-like shape) and a cysteine residue (Cys) of 

the El enzyme is fonned. The activated ubiquitin is then transfered to an 

ubquitin-conjugating enzyme (E2) through a thioester linkage (Cys-Cys) between the E2 

and ubiquitin. Finally, the ubiquitin becomes covalently linked to a lysine residue (Lys) in 

the target protein (S). This step is mediated by an ubiquitin ligase (E3) that recruits the E2 

to this target site. Two classes of E3 ligases have been characterized: RECT domain E3 

ligases and RING E3ligases (from Rochstrasser, 2006). (B) SKP2, a F-box protein, acts as 

substrate receptor to provide the substrate-binding module. While the F-box binds to the 

adaptor protein SKPl, the E2 ubiquitin-conjugating enzyme is recruited by the RING 

protein to fonn the catalytic core of SCF. CULl, a cullin protein, connect the substrate 

binding module with the catalytic core through its association with both the SKPl and the 

RING protein, thereby physically separating the substrate-binding region from the E2 

docking site in SCF, which is estimated to be -50 A in distance. Yellow spheres indicate 

zinc molecules, and the NEDD8 conjugation site on CULl protein is marked as red spheres 

(from Petroski and Deshaies, 2005). 
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canonical SCF complexes play an important role in determining the onset of S-phase and 

the mitotic entry.The canonical SCF E3 ubiquitin ligase complexes are composed ofSkpl, 

CuIlin, F box protein, and a RING domain protein such as Rbx11R0c1 (Cardozo and 

Pagano, 2004). Skp1 mediates substrate binding through the F box protein, which 

specifically binds the target protein through the WD40 or leucine repeats (in GIT, a 

different F box protein). cul-l, the first cullin gene identified, was isolated in a C. elegans 

genetic screen to identify mutants showing a defect in cell cycle exit (Kipreos et al., 1996). 

Loss of cul-l causes hyperp1asia in multiple tissues oflarvae and embryos. It is known that 

CUL-1-based Drosophila and mamma1ian SCF targets G 1 cyclins (Petroski and Deshaies, 

2005). Moreover, since the loss of cul-l rescues the phenotypes associated with low levels 

of maternai CYE-I (Fay and Han, 2000), it has been suggested that CUL-1 may be 

involved in the degradation of cyclins acting at G 1 or G 1/S. Cullin proteins along with a 

RING domain protein act to link the E2 to the E3 ligase complex (Petroski and Deshaies, 

2005). RING domain pro teins constitute a protein family that carries a cysteine-rich fold, 

which makes up two zinc finger-like structures that can bind E2 enzymes through this 

novel domain (Zheng et al., 2000; Joazeiro and Weissman, 2000). In higher eukaryotic 

animais, the RING finger protein Rbx1 associates with different cullin proteins (Cull, 

Cu12, Cu13, Cu14A, Cu14B, Cu15, Cu17). Each cullin protein adopts a different substrate 

adaptor module, which pro vides the basis to further classify SCF: in SCF1, SKP1/ 

CULl/F-boxIRbx1; in SCF2, Elongin B/CICUL2/S0CS-boxIRbx1; in SCF3, BTB (broad 

complex/tramtrackibric-a-brac)1 CUL3IRbx1; in SCF4, (unknown adaptor)/CUL4A1 

DDB1 (DNA-damage-binding protein1)lRbx1; in SCF5, Elongin B/CICUL51 SOCS-box! 

Rbx1; and in SCF7, SKP1/CUL7/F-box/Rbx-1 (Petroski and deshaies, 2005). Both 

Elongin BIC and the BTB domain are structurally homologous to Skpl. Although these 

non-Skp1-based SCFs are not weIl characterized, it has been demonstrated that CUL2 and 

CUL3 play a role in meiosis in C. elegans (F eng et al., 1999; Pintard et al., 2003; Liu et ai., 

2004). Cullin family proteins are regulated by an ubiquitin-like covalent modifier called 

NEDD8 (Parry and Estelle, 2004). Neddylation causes the dissociation of CANDI, an 

inhibitor of SCF, from CUL1, thereby promoting the binding of Skpl and F box proteins 

such as Skp2 to CUL1, resulting in the promotion of the assembly of the SCF ligase 

18 



complexes. On the other hand, deneddylation occurs through COP9-signallosome complex 

(CSN) (Bowerman and Kurz, 2006). 

The APC/C complex was identified as an E3 ubiquitin ligase involved in the 

degradation of mitotic cyclins and thereafter is known to have a secondary role in the 

promotion of the metaphase/anaphase transition through an ubquitination-dependent 

proteolysis of securine, which is an inhibitory subunit of separase that cleaves the cohesive 

linkage between the two chromatids at the metaphase/anaphase transition. It has been 

characterized that APC/Cs are activated by two essential proteins: Cdc20IFizzy (Fz) 

protein and CdhllFizzy-related (Fzr) protein (Twonsley and Ruderman, 1998; Vodermaier, 

2004). Although both Cdc20 and Cdh1 have conserved WD40 repeats in their protein 

sequence, it is unclear whether they can act as a substrate adaptor, as is the case ofF boxes 

in SCF complexes. Several proteins implicated in the inhibition of Cdc20 and Cdh1 have 

been identified, one ofwhich is Emil (early mitotic inhibitor)/Rca1(regulator of cyclin A) 

(Reimann et al., , 2001 a; Reimann et al., 2001 b). It has been shown that Emi 1 is involved in 

the entry into S-phase and mitosis through the inactivation of APC/C in late Gland at the 

point of mitotic entry, which results in accumulation of cylin A and mitotic cyclins, 

respectively. During the metaphase/anaphase transition, Emil is targeted by the SCF~-TICP 

via Cdk1- and Plk1 (polo-like kinase)-dependent phosphorylation, providing intriguing 

evidence that the SCF and the APC/C crosstalk to promote mitotic entry (Margottin

Goguet et al., 2003). 

1.3.2. Regulation of the cell cycle through degradation of CKIs 

In budding yeast, DNA replication is initiated by the S phase Cyclins (Clb5 and 6) in 

association with Cdc28 (Cdk1). These complexes are inactivated by a CKI called p40Sic1, 

which is abundant during G1 and inhibits B-type Cylins (Clb1-Clb6). During late G1 phase 

(the GlIS transition), the G1 cyclin (Cln1 and Cln2)-Cdc28 complexes phosphorylate 

p40Sicl and the yeast CKI is subsequently eliminated by ubiquitin-mediated proteolysis, 

catalyzed by a protein complex (SCFCdc4
) containing Skp1, Cdc4 (a F box protein), Cdc53 

(Cull), and Cdc34 (or Ubc3). This degradation of p40Sicl allows the S phase cyclins 
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(Clb5 and 6) to initiate DNA synthesis (Sheaff and Roberts, 1996; Tyers and Jorgensen, 

2000). Another CKI, Farl, which inhibits the Gl cyclins (Clnl and Cln2)-Cdc28 

complexes in response to mating pheromones, is also degraded by the SCFCdc4 complex 

through phosphorylation by the Cln1l2-Cdc28 kinase activity (Renchoz et al. 1997). 

In fission yeast, Ruml CKI prevents active Cdc2/Cdc13 (mitotic cyclin) complexes 

from forming prior to START, thereby avoiding premature S phase and mitotic entry. The 

Cdc2/Cig2 complex, which remains inactivated by Ruml until the minimal size threshold 

for division is achieved, promotes START and the onset ofS phase, afterwhich Cdc2/Cig2 

inactivates Ruml through phosphorylation (Labib and Moreno, 1996). Ruml is targeted by 

SCFPo
p1l2 (Pop1l2 are Cdc4 homologues and make a heterodimer), in which Pcu3 is a 

Cdc53 homologue (Kominami et al., 1998). The degradation ofRuml allows the cell to 

pass through START and progress into S-phase. 

This SCF /Cullin-based protein degradation pathway is also conserved in higher 

animaIs. In C. elegans, the SCF/Cullin-based degradation pathway is also conserved where 

CKI-l appears to be eliminated in a CUL-2-dependent manner. In the cul-2 mutant, germ 

cells arrest at Gl, which correlates with an increased level ofCKI-l (Feng et al., 1999). In 

Drosophila, Dacapo is also known to be degraded by a Cullin-based E3 ligase complex. In 

the absence of CUL4B in Drosophila, cells arrest in G 1 phase, which correlates with the 

post-transcriptional accumulation ofDacapo (Riga et al., 2006). 

In Xenopus, p27Xicl is degraded in an ubiquitin-dependent manner during the 

initiation of DNA synthesis, where Cdc34 (E2 enzyme) is required to initiate DNA 

synthesis through the degradation of p27Xicl. xSkp2, a frog Skp2 homologue, interacts 

with p27Xicl and promotes its destabilisation when it is associated with Skpl. The 

SCFxSkp2-depdendent degradation ofp27Xicl do es not need cyclinlCdk2 kinase activity 

(Lin et al., 2006). 

In mammalian ceIls, the level ofp27Kipl is high in quiescent cells, and decreases 
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upon cell cycle entry. This balanced level of p27Kip 1 is maintained largely through timely 

degradation ofp27Kip1, which is strictly controlled in response to diverse developmental 

signaIs (Pirpo et al., 1994; Nourse et al., 1994; Pagano et al., 1995; Bloom and Pagano, 

2003). p27Kipl is phosphorylated (Thr187) by cyclin E/Cdk2 kinase activity and the 

phosphorylated p27Kipl is recognized by the SCpSkip2 complex (Carrano et al., 1999; 

Tsvetkov et al., 1999). p27Kipl is stabilized in skp2-1
- mice (Nakayama et al., 2000) and 

conversely, exogenous Skp2 promotes the degradation of p27Kip 1 which induces S phase 

entry (Sutterluty et al., 1999). In addition, the loss of CUL4 (CUL4A) also causes 

accumulation ofp27Kipl (Riga et al., 2006). These data indicate that p27Kipl is targeted . 

by the conserved phosphorylation-dependent, SCF/Cullin-based, ubiquitin-dependent 

degradation pathway. 

The post-translational levels of p21Cipl are also regulated by 

proteasome-mediated degradation (Cayrol and Ducommun, 1998). Although it is unclear 

whether ubiquitin is required for the proteolytic degradation of p21 Cip 1 (Touitou et al., 

2001; Jin et al., 2003), recent evidence suggests that p21 Cip 1 degradation is also mediated 

by a conserved SCpSkp2/CuIlin-based proteolytic pathway (Yu et al., 1998; Bloom and 

Pagano, 2004). SCFSkp2 plays an important role in the degradation ofp21Cip1 specifically 

during S phase of the cell cycle (Bornstein et al., 2003). 

The SCP /Cullin-based ligases are also involved in the degradation of another 

CIP IKIP family member, p57Kip2. p57Kip2 coimmunoprecipitates with Skp2 and 

accumulates abnormally in Skp2-I-mice. Overexpression ofSkp2 promotes the degradation 

of p57Kip2, while dominant negative Skp2 stabilises p57Kip2, suggesting that SCFSkp2 

mediates the degradation of p57Kip2. Moreover, cyclin E/Cdk2-dependent 

phosphorylation of p57Kip2 is also required for the degradation of p57Kip2 (Kamura et al., 

2003). 

Taken together, these studies indicate that the cullin-based SCF pathway is 

conserved and involved in the degradation of CKI family members among evolutionarily 
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divergent animaIs. Therefore, future investigation will focus on gaining more insight as to 

how these conserved degradation pathways have evoIved to exert their distinct roIe to 

regulate CKI functions during development. 
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1.4. Developmental Control of CKIs and Its Relationship with Cancer 

1.4.1. Overview 

Cancer is a very complex disease that aImost always includes sorne aspect of mi sregulated 

control of cell division. This can occur through hyperactivationl overexpression of positive 

regu1ators such as Cyclins or hypoactivationl underexpression of negative factors 

including human turnor suppressors such as p53, Rb or CKls (Sherr and Roberts, 1999; Lee 

and Yang, 2001; Bloom and Pagano, 2003; Nakayama and Nakayama, 2006). Since CKls 

are capable of responding to diverse deve10pmental signaIs which impinge on the G liS 

transition, considerable study has been dedicated to understanding how misregulation of 

CKls can cause uncontrolled cell proliferation, hyperplasia and cancer. 

Genetic surveillance mechanisms called checkpoints evolved to ensure that all 

cellular progeny receive an "error-free" genome (Abraham, 2001). The most common 

function of checkpoints is to coordinate cell cycle progression with genome integrity 

(Zhou and Elledge, 2000; Canman, 2001; Nigg, 2001), which is frequently misregulated in 

cells undergoing turnorigenesis. Intriguingly, and especially true in yeast, most genes 

implicated in the checkpoints are usuaIly non-essential in a normal condition. Theyexert 

their role oruy under a genetically perturbed condition such as DNA damage. Under 

genotoxic stress, the A TM! A TR kinases initiate a cascade of checkpoint responses 

mediated bytwo protein kinases called CHK1/2 kinases in addition to downstream effector 

molecules such as p53, MDM2 (mouse double minute 2), and p21Cipi (Abraham, 2000). 

p53 is a turnor suppressor protein that acts as a transcription factor to induce a number of 

target genes in response to genotoxic stress (Levine, 1997). In response to DNA damage, 

p53 is phosphorylated by ATM!ATR and CHK112 kinases leading to its stabilization. In 

addition to this, MDM2, which normally targets p53 for degradation, is also targeted by 

ATM/ATR and CHKI/2, thereby further stabi1izing p53 and resulting in its increased 

transcriptional activity. p2I Cip I is a key transcriptional target protein induced by p53 

which causes G1 arrest through inhibition of the cyclin E/CDK2 comp1ex (Levine, 1997; 

Rotman and Shiloh, 1999). The ATM!ATR-p53 pathway is also involved in G2/M 
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checkpoint, which is mediated by transcriptional induction of downstream effectors 

including p21Cipl, GADD45 (Growth arrest and DNA-damage-inducible 45), and 14-3-3 

sigma proteins. This prevents mitotic entry following DNA damage (Taylor and Stark, 

2001). 

In mammalian cells, mitogenic growth signaIs induce the assembly of cyclin 

D-dependent Gl kinases (cdk4 and cdk6) and the CIPIKlP family CKls. One of the most 

influential paradigmes of mammalian cell cycle progression posits that the active cyclin 

D/Cdk4/6 kinase complex will then trigger Rb phosphorylation, resulting in the 

dissociation of E2F family transcription factors from Rb. The unbound form E2Fs then 

transcriptionally activate a number of genes required for S phase entry, including cyclin E 

and cyclin A. The cyclin E/Cdk2 kinase further phosphorylates Rb while also triggering 

the phosphorylation of p27Kipl. Following this, p27Kipl is degraded in an 

ubiquitin-dependent manner. Therefore, through this positive feedback loop that includes a 

complex interaction of kinases, CKls, transcription factors and the proteolytic degradation 

system, the onset of S-phase entry becomes linked to cellular growth during G 1. (Sherr and 

Roberts, 1999). 

1.4.2. DeveIopmentai understanding of CKIs: Regulators and deveIopmentai signaIs 

Considering their crucial role in coordinating cell proliferation with cell differentiation, 

which is often compromised during tumorigenesis, it is not surprising that in many cancer 

ceIls, CKIs have been the target of genetic alterations that affect their expression through 

either deletion or mutation. 

In many cancer cells, the levels of CKIs are frequently reduced both at the 

transcriptional or the post-translationallevel. Moreover, the reduced expression of CKls is 

correlated with poor prognosis in patients. Therefore, maintenance of appropriate levels of 

CKIs appears critical to limit the rate of cancer progression or tumorigenesis. The CIP IKIP 

CKIs are also transcriptionally silenced by inappropriate methylation in their promoters. In 

rhabdomyosarcomas (RMSs), the p21Cipl promoter is inappropriately methylated, 
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thereby resulting in downregulation ofp21Cip1 (Chen et al., 2000). AIso, the methylation 

of the promoter (5'CpG island) of p27Kip1, seen in sorne malignant melanomas, is an 

important way to control the transcriptional levels of p27Kip1 (Worm et al., 2000). 

Moreover, it is found that inappropriate methylation of the promoter region of p57Kip2 

represses the mRNA level ofp57Kip2 which is an important aspect of genomic imprinting 

to promote growth of tumors (Shin et al., 2000). These results indicate that transcriptional 

repression or silencing through inappropriate methylation in promoters provides an 

important mechanism to downregulate various members ofthis CKI family in cancer cells, 

thereby affording a considerable growth advantage. 

The transcriptional and post-translational levels of CKIs are tightly controlled 

under diverse mitogenic stimuli to prevent overproliferation. Since these signaIs are often 

targets of known growth factors or oncogene products, it is not surprising that many of 

these gene products converge on CIP IKIP CKIs to confer growth advantages to 

transformed cells. p21Cip1 is downregulated by a c-Myc oncogenic signal, while 

overexpression of c-Myc represses the transcriptionallevel of p21 Cip 1 thereby permitting 

S-phase entry in a c-Myc-dependent manner (Claassen and Hann, 2000). On the other hand, 

TGF-13 upregulates the transcriptionallevel ofp21Cip1, which seems to be mediated by 

downregulation of c-Myc (Datto et al., 1995a; Datto et al., 1995b). STAT1 (signal 

transducers and activators of transcription 1) also induces p21 Cip 1 through binding to the 

p21 Cip 1 promoter in response to diverse growth factors and cytokines such as y-IFN 

(interferon), thereby mediating growth suppression (Chin et al., 1996). Moreover, it is 

known that hypermethylation in the p21Cip1 promoter blocks the binding of STAT1 in 

rhabdomyosarcomas (RMSs), which compromises the STAT/y-IFN signaling pathway 

resulting in reduced p21Cip1 expression (Chen et al., 2000). p27Kipl is also negatively 

regulated by c-Myc. c-Myc sequesters p27Kip1 through the induction of D-type cyc1ins 

(cyc1in D and D2), thereby activating cyc1in E/CDK2 (Vlach et al., 1996). c-Myc also 

transcriptionally represses p27Kip1 through binding to the promo ter region of 

p27Kipl(Yang et aL, 2001). It is known that p57Kip2 is downregulated by TGF-13 through 

proteolytic degradation (Nishimori et al., 2001). 
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HER2/neu is a member ofthe epidermal growth factor receptor (EGFR) familyand 

plays a notable role in the pathogenesis ofbreast cancer. It is a membrane-bound tyrosine 

kinase and promotes cell growth (Slamon et al., 1989). HER-2 phosphorylates p21Cip1 

(Thr145) through the activation of AKT kinase via PI3K (phosphatidylinositide 3-kinase), 

which causes p21 Cip 1 to be relocated to the cytoplasm, resulting in a reduction of function 

(Zhou et al., 2001). Her2- overexpressing cancers also show downregulated p27Kip1, 

which suggests a link between HER2 oncogenic signalling and the level of p27Kip1 

(Newman et al., 2001; Yang et al., 2000). HER2 downregulates p27Kip1 by affecting its 

subcellular localization, through relocalization of the p27KipllJAB1 (an exporter of 

p27Kip1) complex from nucleus to cytoplasm via activation of the mitogen-activated 

protein kinase (MAPK) (Tomoda et al., 1999; Lee and Yang, 2001), thereby 

proteolytically degrading p27Kip1 in an ubiquitin-dependent manner. 

PTEN (phosphatase and tensin homolog) is a tumor suppressor which antagonizes 

the AKT kinase pathway by removing the 3' phosphate group of phosphatidylinositol 

(3,4,5)-triphosphate (PIP3) (Simpson and Parsons, 2001). PTEN is one of the most 

frequently lost tumor suppressor genes in human cancers (Lee and Yang, 2001). PTEN 

mediates cell cycle arrest by regulating p27Kip 1 protein stability through its effect of 

reducing Skp2, an important SCF component (F-box) required for p27Kip1 degradation 

(Mamillapalli et al., 2001). Depletion ofp27Kip1 by antisense oligonucleotides suppresses 

PTEN-induced cell cycle arrest, demonstrating that p27Kip1 is a downstream regulator of 

the PTEN pathway. 

VHL (Von Hippel-Lindau) protein is a tumor suppressor which acts as an E3 

ubiquitin ligase. Loss of VHL protein is correlated with many cancers and causes 

upregulation of angiogenic factors which result in uncontrolled blood vessel growth 

required for tumor development (Ivan and Kaelin, 2001). VHL negatively regulates cell 

cycle progression by mediating the upregulation of p27Kip 1. A study using a vhl-deficient 

cell line shows that the accumulation of p27Kip1 requires VHL protein in serum-free 

conditions, suggesting that p27Kip1 acts downstream of the VHL pathway. It is unclear, 
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however, how VHL causes upregulation ofp27Kipl (Pause et al., 1998; Kim et al., 1998). 

IGF (Insulin-like growth factor)-II has an important role during embryonic 

development, where misregulation of IGF-II correlates with the BWS (Beckwith

Wiedemann syndrome) and different tumors. Exogenous IGF-II in embryonic fibroblasts 

or a high level ofIGF-II in serum causes reduced expression ofp57Kip2, suggesting that 

p57Kip2 and IGF-II may play antagonistic roles (Caspary et al., 1999; Grandjean et al., 

2000). 

Mice lines lacking the CKIs have been generated to test the knowledge that has 

been accumulated using transformed cell line systems and have greatly enhanced our 

understanding of the role of CKIs in a developmental context. p21 Cip I-deficient mice 

(P21-1
-) develop normally although they show an impaired response to DNA damage (Deng 

et al., 1995). Moreover, unlike p53-deficient animaIs (P53-1
-) (Elson et al., 1995), p21-1

-

mice show no effect on tumor formation. This observation indicates that the role of 

p21 Cip 1 in the G 1 control might be geneticall y redundant and moreover, p21-independent 

p53 functions such as programmed cell death might be more significant during 

tumorigenesis than the G liS checkpoint. 

Mice Iacking p27Kipl activity (P2T1
-) are viable and show dosage-dependent 

enlargement of organismal size with higher number of cells in most organs without 

showing apparent morphological defects. Unlike p21 Cip 1 which has an unc1ear role in 

tumorigenesis, p27Kipl is c1early downregulated in a transcriptional and/or 

post-transcriptional manner in many cancer cells. The p2T1
- mice are susceptible to 

carcinogenesis, suggesting that the level of p27Kip 1 must be tightly maintained to prevent 

cellular transformation (Fero et al., 1996; Kiyokawa et al., 1996; Nakayama et al., 1996). 

Although there has been no evidence that p27Kipl is transcriptionally induced by p53, a 

recent study shows that p27Kipl transcriptional and/or post-transcriptional levels are 

downregulated in tumors of p53-1
- mice and that genetic alterations of p27Kip 1 in p53-1

-

mice, for example chromosomal deletions, enhance tumor development. These results 
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suggest that p27Kip1 cooperates with p53 in tumor suppression, a1though the basis ofthis 

cooperation is currently unc1ear (Phi1ipp-Stahe1i et al., 2004). p57Kip2 null mice (P5T1
-) 

show abnorma1 overgrowth and differentiation, which correlates with the BWS, a 

chi1dhood overgrowth syndrome (Yan et al., 1997; Zhang et al., 1997). 

Taken together, diverse signal transduction pathways and their downstream 

mediators are required to maintain the appropriate transcriptional or post-transcriptiona1 

1evels of CKIs. Since reduced 1evels of CKls are frequent1y observed in many cancer cells, 

it appears critical that the 1evels ofthese CKls be tightly controlled and very responsive to 

diverse growth stimuli. 

28 



1.5. Developmental Control of Cell Proliferation by CKIs 

During growth periods in multicellular organisms, cells proliferate until the fields in which 

they occur reach an appropriate size, after which, a cue signals the onset of terminal 

differentiation and instructs the cell to stop cycling. It is at this stage, where the CKls seem 

to play a key role. Upregulation of the levels of CKls is accompanied by initiation of 

differentiation in a broad range of tissues, therefore CKls must be controlled in response to 

extrinsic developmental signaIs as well as cell autonomous eues. Otherwise, the 

uncoordinated regulation of cell proliferation and differentiation would ultimately result in 

developmental catastrophe or could potentially give rise to hyperplasia and/or 

tumorigenesis. Therefore, it is pivotaI to better understand how these developmental cues 

impinge on the cell cycle machinery to mediate cell cycle regulation in developing 

multi-cellular organisms (Edgar and Lehner, 2001 ;Edgar et al., 2001; Raff et al., 2001). 

Drosophila and C. elegans are representative metazoan model organisms that have 

the same advantages as yeast in that they are genetically tractable and relatively easy to 

manipulate. They have been useful in pioneering forays into understanding cell cycle 

regulation in a developmental context, mostly due to their amenability to powerful genetic 

approaches which have allowed the identification of detailed genetic pathways involving 

cell cycle regulators and their downstream targets and effectors. 

1.5.1. Developmental regulation of cell cycle in Drosophila 

During embryonic development in Drosophila, maternally-ioaded cell cycle regulators 

drive rapid syncitial divisions (mitotic cycle 1-13) which are typified by repetitive SIM 

cycles without any intervening gap phases (G 1 or G2 phase) (Edgar, 1995). As such, these 

divisions are reductional and have no real growth phase. As development proceeds, the 

stores of maternaI regulators are exhausted and/or degraded and begin to be replaced by 

their zygotic counterparts. During interphase of mitosis 14, syncytial nuc1ei start to 

cellularize and the rapid syncytial divisions are arrested through inactivation of Cdkl. 

These early rapid divisions cause depletion ofmaternal S-phase regulators and result in an 
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increase in unreplicated DNA during the later divisions, thereby triggering the DNA 

repli cation checkpoint. The Drosophila DNA repli cation checkpoint response requires the 

activities of mei-41 (ATMlMEC1/Rad3 homologue) and grapes (CHK1 homologue), 

which together inactivate Cdk1, which is then further inactivated through degradation of 

maternaI Cdc25 phosphatases (Cdc25String and Cdc25Twinj beginning after mitosis 13 

(Sibon et al., 1997; Sibon et al., 1999; Edgar and Datar, 1996). The degradation of these 

phosphatases (String and Twine) mediates the maternal-to-zygotic transition (MZT) after 

which, the majority of mitotic divisions in many embryonic tissues, including the 

epidermis, are regulated at G2/M by the distinctive and pulsed transcription of Cdc25 String . 

This transcription is mediated by a complex spatio-temporal interplay of cell type-specific 

patterning proteins, which bind the upstream cis-regulatory region of Cdc25String
• This 

suggests that Cdc25String acts as a patterning sensor to time cell division with transcriptional 

cues provided by individua1 cell types (Edgar, 1995; Lehman, et al., 1999). 

After embryogenesis, Drosophila 1arvae prepare for metamorphosis during which 

the total mass oflarvae is highly increased (~200 fold). This increase ofthe mass is due to 

increased cell growth, which arises from a modified cell cycle known as an endocycle in 

endoreduplicative tissues (ER Ts) including most larval tissues such as the gut, salivary 

glands, and muscles. During late embryogenesis, the endocycle is dependent on 

inactivation of Cdk1 caused by the loss of Cdc25String and other mitotic cyclins (cyclin A 

and B) as well as the cyclic expression of cyclin E (Royzman et al., 1997). Consistantly 

high 1eve1s of cyclin E inhibit the endocycle, suggesting that the periodicity of cyclin E 

expression is important. This periodiocity seems to be dependent on E2F, a family of 

transcription factor responsible for the transcriptiona1 activation of cyclin E (Edgar et al., 

2001). 

The endocycle is regulated in response to nutrients (Britton and Edgar, 1998). 

Under starvation conditions, DNA rep1ication is not initiated in most ERTs due to reduced 

expression of cyclin E and E2F. Ectopic cyclin E or E2F in starved 1arvae induces entry 

into endocycle, suggesting that these proteins have a key role in triggering the endocycle. 
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Intriguingly, ectopic expreSSIOn of cell growth-related genes such as the d-Myc 
transcription factor (Johnston et ai., 1999) and PI3K (Weinkove et ai., 1999) can trigger 
DNA replication in starved larvae, suggesting that cell growth in response to these 
important factors is linked to nutritionaI/environmental status and is mediated most likely 
by key cell cycle regulators (Lehner et ai., 2001). 

In Drosophila, not aIl the tissues of the larvae undergo endocycles. Embryogenesis 
generates approximately 1000 imaginai disc cells which proliferate during larval and early 
pupaI development to form most adult structures (wings, antennae, legs, and eyes) (Bryant 
and Simpson, 1984; Lehner et al., 2001). During mid-embryogenesis, imaginaI cells arrest 
in G 1 until they are exposed to nutrients after hatching, suggesting that the imaginai disc 
cell cycle is also coupled to nutrient status and the environment. During late imaginaI 
development, cyclin E and Cdc25 String are Iimiting factors in the control ofthe G liS and the 
G2/M transitions, respectively. In late imaginai disc ceIls, G2/M is not coupled to cell 
growth but, instead, the cis-acting transcriptionai enhancers of Cdc25String mediate cell 
type-specific patterning (Edgar et al., 1994; Edgar et al., 2001). They do this through 
interaction with numerous patterning genes in response to a wide spectrum of 
deveIopmentai signaIs that include decapentalplegic (dpp) , wingless (wg), Notch, and 
EGFR (Johnston and Edgar, 1998; Edgar et al., 2001). On the otherhand, unlike the G2/M, 
G liS in the disc cells is coupled by cell growth-related factors such as d-Myc, PI3K, and 
Ras (Neufeld et ai., 1998). Ectopic growth factors increase the levels of cyclin E in a 
post-transcriptional manner in which 5' -untranslated region of cyclin E rnRNA seems to be 
playing a key role as a growth sensor to couple cell growth with G liS progression 
(Polymenis and Schmidt, 1997; Prober and Edgar, 2000). Intriguingly, cell patterning 
genes such as wg and dpp also stimulate cell growth and proliferation (Edgar et al., 2001). 
As such, in imaginai disc cells, cell patteming signaIs coordinate cell growth with cell 
proliferation which leads to appropriate motphology and size. 

1.5.2. Developmental role of CKIs in the cell cycle regulation in Drosophila 
In Drosophila, endodermai cells switch to endocycles after a brief pause in G 1 (Edgar, 
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1995). Embyronic epidermai cells, in contrast, arrest in G 1 after mitosis 16 and begin to 

differentiate raising the intriguing question ofhow the cell cycle knows the precise point at 

which to arrest. This cell cycle arrest is accompanied by a reduction in the Ievei of cyclin E 

(Knoblich, 1994) and moreover, ectopic cydin E causes extra rounds of the mitotic cell 

division in the embryo and the eye imaginal disc, suggesting that a reduction of cyclin E is 

important for mitotic exit. However, since sorne cyclin E is still detectable after the final 

mitosis, it was suggested that another factor may be required to ensure the mitotic exit. 

Genetic screens to identify molecules which are involved in the timely arrest of the 

embryonic cell cycle have isolated numerous mutations, one of which was a gene named 

dacapo which encodes a CIPIKIP family CKI in Drosophila and is essential for 

embryogenesis. dacapo mutant embryos die in the late embryo or early larval stages with 

several extra cells as a result of their inability to arrest at the appropriate time in response to 

the switch to larval development. dacapo is expressed in various tissues including the 

embryonic epidermis, postembryonic CNS (central nervous system) and PNS (peripheral 

nervous system). In these cells, dacapo expression is upregulated just prior to the mitotic 

exit (de Nooji et al., 1996; Lane et al., 1996). 

Dacapo protein (DAP) interacts with cyclin E/Cdk2 complexes and inhibits their 

associated kinase activity in vitro. Overexpression of DAP inhibits cell cycle progression 

in the eye imaginaI disc and genetically interacts with G 1 regulators such as Drosophila Rb 

(retinoblastoma) homologue (Rbf) and Cyclins. Moreover, premature expression of DAP 

causes precocious cell cycle arrest in G 1 phase, consistent with the role of CKIs in G 1 

control (Knoblich et al., 1994; de Nooji et al., 1996; Lane et al., 1996). 

dacapo is transientIy expressed before mitosis 16 during embryogenesis when 

many ceUs exit the mitotic ceU cycle, differentiate or prepare for larval development. 

During postembryonic development, in the eye imaginal dises, it was shown that 

upregulation of DAP is associated with mitotic exit prior to differentiation. High levels of 

DAP have been observed in the differentiating post-mitotic cells posterior to the 
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morphogenetic furrow, which traverses the disc in a posterior to anterior manner during 

development, and in doing so, synchronizes cells at the G 1 phase ofthe cell cycle prior to 

differentiation (Lane et al., 1996; de Nooji et al., 1996). 

dacapo mutants execute an extra round of mitotic division after mitosis 16 during 

embryogenesis and this also occurs in sorne postembryonic cells, including the central 

nervous system (CNS) and the peripheral nervous system (PNS), where an extra mitotic 

division occurs before mitotic withdrawal (de Nooji et al., 1996). It is unclear how the 

mutant is eventually capable of exiting the cell cycle after the extra round of mitosis, 

although successful mitotic exit might require the activity of Dacapo in concert with a 

reduction in the levels of positive G 1 regulators such as cyclin E. Although the dacapo 

mutant fails to exit mitosis at the appropriate time, no apparent defects in the embryonic 

morphology or cell fate determination are observed in dacapo mutants, suggesting that the 

embryonic lethality of the dacapo allele may be due to sorne additional essential role of 

dacapo in the embryo. 

Dacapo is also involved in Drosophila oogenesls, where it regulates meiotic 

progression and also distinguishes the oocyte from the developing cells (Hong et al., 2003). 

During oogenesis, the oocyte develops in the germline cyst that is comprised of 16 cells, of 

which, oruy the oocyte executes meiosis and remains in prophase of meiosis I, while the 

remaining 15 cells (nurse cells) go on to execute endocycles. dacapo is differentially 

expressed in the oocyte and the nurse cells, in which high levels of DAP present in the 

meiotic oocyte block DNA synthesis and help to maintain meiotic prophase. Interestingly, 

the level of DAP oscillates in the nurse cells, probably through each of the sequential 

rounds of DNA replication, in order to allow the nurse cells to become polyploid. In 

dacapo mutants, aIl cells in the developing egg chambers enter the endocyc1e, which forces 

all of the cells including the prospective oocyte to become nurse cells, suggesting that 

dacapo may be directly or indirectly required for the maintenance of oocyte differentiation. 

Since the sequential rounds of DNA synthesis require cyc1ic changes in cyc1in E activity, 

DAP may be critical to achieve this through its ability to inhibit cyc1in E/Cdk2 activity. 
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DAP does not work alone during Drosophila embryogenesis to regulate cell cycle 

progression. The roughex (rux) gene encodes a CKI which specifically associates with 

mitotic cyclin (cyclin A or B)/Cdkl complexes, thereby inhibiting Cdkl-dependent mitosis 

and S phase function (maintenance of GI state) in the cyclin AlCdkl-dependent manner 

(Foleyet al., 1999; Foley et al., 2001). Rux does not inhibit the cyclin E/Cdk2 complex, but 

rather it inhibits the Cdkl kinase by two different mechanisms: 1) through preventing the 

activating phosphorylation of Cdkl by CAK (ThrI61); and 2) Rux also inhibits the 

activated cyclin AlCdkl complex, suggesting that Rux can directly inhibit the Cdkl 

activity. Overexpression of cyclin E causes downregulation of Rux, suggesting that Rux is 

controlled post-translationally by cyc1in E/Cdk2-mediated phosphorylation during the 

GlIS transition (poley et al., 1999). 

In budding yeast, mitotic exit is initiated by the inactivation of the mitotic kinase 

(Cdkl) by degradation ofmitotic cyc1ins, and also by association with p40Sicl. However, 

in higher eukaryotes, the destruction of mitotic cyc1ins has been found to be an essential 

mechanism for the inactivation of Cdkl activity during mitotic exit. Consistent with this, 

rux mutants show a delayed metaphase-to-anaphase transition. In addition, overexpression 

of Rux is sufficient to drive mitotic cells arrested at metaphase into interphase, while rux 

mutants show a reduced capacity to overcome the arrest induced by ectopic expression of 

non-destructible form of cyc1in A. These results suggest that Rux is the first CKI that is 

necessary to inhibit mitotic kinase activities to mediate mitotic exit in a manner 

comparable to p40Sicl in S. cerevisiae. In fact, although there is no sequence homology 

between Rux and p40Sicl, p40Sic1 specifically inhibits the Drosophila mitotic 

cyclinlCdkl complexes but not the cyc1in E/Cdk2 complex (Foley et al., 2001). 

1.5.3. Developmental regulation of cell cycle in C. elegans 

Unlike Drosophila, where nuclear divisions occur without cytokinesis during early 

embryogenesis, in C. elegans, the early embryonic divisions occur asymmetrically by 

cytoplasmic cleavages without any obvious Gland G2 phase. Cell divisons occur 

asynchronously and division timing is mostly due to difference in the length of S-phase 
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(Edgar and McGee, 1988). Cell cycle control by timing S-phase occurs even at the two-cell 

embryo and perturbation of this division timing causes a defect in the embryonic polarity 

arising from missegregation of cell fate-determining proteins such as PIE-1 (germline 

determinant) (Encalada et al., 2000; Brauchle et al., 2003). 

Most somatic cells generated during embryogenesis stop dividing and terminal1y 

differentiate, while sorne somatic and germline blast cells continue dividing through cell 

lineage-specific patterns to form characteristic larval and adult structures during 

post-embryonic development (Lambie, 2002; Kipreos, 2005). In contrast to the embryonic 

divisions, most of the post-embryonic divisions that occur during four larval stages (LI to 

L4) undergo canonical cell cycles; that is they undergo two gap phases (G 1 and G2) that 

separate the DNA synthesis and mitotic stages of the cell cycle. Unlike during embryonic 

development, during post-embryonic development, cell division is mostly controlled at the 

level of G 1 /S progression, which responds to external developmental signaIs in addition to 

cell-intrinsic cues (Ambros, 2001). 

Heterochronic pathways control the timing or patterning of the deve10pmental cell 

cycle during post-embryonic deve10pment (Ambros, 2000; Ambros, 2001). Three 

heterochronic genes play a crucial role in the specification of developmental fates during 

the first two larval stages (LI and L2).lin-4, which encodes a small RNA (microRNA) and 

is induced in response to food at hatching and negatively regulates the translation of lin-14 

(encoding a novel nuclear protein) and lin-28 (encoding a cytoplamic RNA binding 

protein) mRNAs through its ability to associate with their 3' -untranslated region (UTR) 

(Ruvkun and Guisto, 1989; Wightman et al., 1991; Lee et al., 1993; Wightman et al., 1993; 

Euling and Ambros, 1996; Moss et al., 1997). LIN-14 protein is abundant in the early LI 

stage and specifies the LI stage-specific fates. As lin-4 accumulates during the LI, the 

level ofLIN-14 progressively declines, however, LIN-28 protein persists until the early L2 

to promo te L2 stage-specific fates. The loss of lin-14 or lin-28 causes the precocious onset 

ofvulval cell divisions. Normally, vulva precursor cells (VPCs) are formed in the LI stage 

and become quiescent through an extended G 1 arrest which continues until the L3 stage 
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when they begin to divide again (Sulston and Horvitz, 1977; Euling and Ambros, 1996). In 

lin-l4 or lin-28 heterochronic mutants, however, the VPCs divide prematurely in mid L2. 

Genetic studies show that lin-l4 acts through lin-28 and that the loss of lin-l4 is correlated 

with the loss of cki-l expression in the VPC (Hong et al., 1998; Ambros, 2001). However, 

LIN -14 does not seem to be a direct regulator of the cki-l expression because the 

embryonic expression of cki-l is not affected by the loss of lin-l4 (Hong et al., 1998). 

Moreover, loss of cki-l causes precocious VPC divisions (Hong et al., 1998), suggesting 

that the VPC division timing is largely dependent on the activityofthe heterochronic genes 

which impinge on cki-l. 

Cell cycle progression is also developmentally controlled at the level of G 1 

progression in response to extrinsic signaIs. Post-embryonic development stops or is 

suspended under unfavorable deve10pmental conditions during which cells arrest in G 1 for 

extended periods oftime: For example, in absence offood, newly hatched Lllarvae arrest 

and cell cycle progression do es not occur until food is provided (Hong et al., 1998; Baugh 

and Sternberg, 2006). Similary, in response to po or growing conditions, later 

post-embryonic deve10pment can be temporarily suspended in the L2 stage to become an 

alternative L3 stage called "dauer", which is accompanied by substantial morphological 

changes in addition to global arrest of the cell cycle progression in response to changes in 

developmental signals that include transforming growth factor-~ (TGF-~) and! or insulin-
\.. 

like molecules (Riddle and Albert, 1997). 

Like the endocycle in Drosophila larvae, two tissues (the intestine and the 

hypodermis) in C. elegans undergo endoreplication, in which DNA synthesis occurs 

without subsequent mitosis, resulting in a sort of controlled polyploidy. During the LlIL2 

transition, most intestinal nuclei (14 of 20) undergo an extra round of nuclear division 

without cytokinesis (karyokinesis) and thereafter undergo successive cycles of 

endoreplication, which increases the ploidy of these nuclei to 32C. Loss of SCFLIN
-
23 

causes a transition from the tirst endocycle to a second nuclear division without affecting 

the ensuing endocycles (Hedgecock and white, 1985; Kipreos et al., 2000), suggesting that 
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the nuc1ear division-endocyc1e transition involves the same SCF-like activity. 

In hypodennal cells, endoreplication occurs in two steps: 1) the hypodennal seam 

cell divides to generate a daughter cell which duplicates its DNA (becoming 4C ploidy) 

which thereafter fuses with the large syncytial cell hyp7; 2) during the adult stage, the hyp7 

syncytial nuc1ei undergo endoreplication. The endoreplication in the hypodennis is 

stimulated by the TGF-~ signaling pathway, which controls body size (Flemming et al., 

2000). 

Two gennline precursor cells generated during embryogenesis divide throughout 

the entire post-embryonic life of the organism to give rise to approximately 1000 genn 

cells in the adult (Schedl, 1997; Seydoux and Schedl, 2001). Two somatic cells called 

distal tip cells (DTCs) located at the distal ends of the somatic gonad are essential for the 

mitotic proliferation of genn cells, during which asynchronous mitotic division is triggered 

by Cdk1 kinase (Kimble and White, 1981; Ashcroft and Golden, 2002; Lamitina and 

L'Hernault, 2002). The DTCs maintain the mitotic proliferation of genn cells through 

LAG-2, a membrane-bound delta homologue, which activates the Notch receptor GLP-1 in 

the genn cells. The activated GLP-1 prevents genn cells from entering into meiosis and 

this occurs through inhibition ofGLD-1 (an RNA binding translational repressor) and the 

GLD-2/GLD-3 complex (a cytoplasmic poly (A) polymerase), which promote meiotic 

entry and/or antagonize mitotic proliferation of genn cells (Eckmann et al., 2004; 

Crittenden et al., 2002; Hansen et al., 2004). 

Sheath cells, which are descendants of somatic gonadal 1ineage and fonn the 

basement membrane surrounding the gonad, provide another source for the maintenance of 

the mitotic proliferation of genn cells by a yet unknown mechanism (Hall et al., 1999). 

Laser ablation of the sheath cell precursor does not e1irninate all the genn cells but results 

in a reduced proliferation rate, indicating that sheath cells are not essential for the genn cell 

proliferation but are required to maintain optimal proliferation rate (McCarter et al., 1997; 

Killian and Hubbard, 2005). 
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One intriguing question regarding developmental cell cycle control is how cell 

cycle decisions are linked with cell fate specification. In C. elegans, the time1y 

specification of cell fate in most somatic cells is largely invariant. However, these cell fate 

decisions can be influenced by several parameters including cell cycle status. In C. elegans, 

the determination of VPC fates demonstrates a link between the cell cycle phase and the 

final cell fate decisions adopted by these cells. The VPC lineage (P5.p, P6.p, and P7.p) 

gives rise to the cells that will make up the vulva cells. In G 1 or early S-phase, P6.p 

receives the highest levels of the inductive signal LIN-3, an EGF (epidermal growth 

factor)-like signal that is produced in the anchor cell (AC) to adopt the primary vulva fate 

(10). Then, P6.p pro duces a Notch ligand (a delta homologue) to activate a Notch receptor 

LIN-12 on P5.p and P7.p, which keep them from adopting the primary vulva fate. In late S 

or G2 phase however, the Notch ligand activates P5.p and P7.p and the VPCs adopt the 

secondary vulva fate (2°). This demonstrates that two different cell fates can be adopted in 

response to a single differentiation signal (Not ch) depending on the cell cycle phase of the 

signal-receiving cells (Ambros, 1999; Ambros, 2001; Fay, 2005; Kipreos, 2005). 

Most cell cycle regulators originally identified in mammalian cells have also been 

found and characterized in C. elegans, with the notable exception of the INK4 family CKls, 

showing that nearly all G 1 regulators are strongly conserved and share similar roles to their 

mammalian counterparts (Fay, 2005; Kipreos, 2005; Koreth and van den Heuvel, 2005). 

In higher eukaryotes, progress through G 1 is driven by the cyclin D/Cdk4/6 

complexes coupled with cyclin E/Cdk2 being regulated to transit into S-phase (Morgan, 

1997). In C. elegans, the D- and E-type cyclin homologues, CYD-l or CYE-l, have been 

identified and appear to play similar roles. On the other hand, the Cdk4/6 homologue 

CDK -4 has been identified and characterized, although the identity and function of the 

Cdk2 orthologue has not been clearly determined. CYD-l/CDK-4 are mostly required for 

cell cycle progression during larval stages, while CYE-l is required for both embryonic 

and post-embryonic cell divisions (Park and Krause, 1999; Fay and Han, 2000; Boxem and 

van den Heuvel, 2001). 
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cye-l was isolated from genetic screens to identify mutations causing Pvl 

(protruding vulva)-sterility in C. elegans (Seydoux et al., 1993; Fay and Han, 2000). 

Following genetic studies have revealed that maternaI, but not zygotic, CYE-I is essential 

for embryonic deve10pment and that CYE-l plays an important role in cell divisions in 

multiple larval tissues, vulva patterning, fertility, and intestine-specific endoreplication 

(Fay and Han, 2000; Brodigan et al., 2003). Moreover, recent data showed that LIN-35/Rb 

and the RNAi pathway cooperate to regulate the nuclear divisions occurring in C. elegans 

intestine and that this regulation appears to be mediated by the control of cye-l 

transcription (Grishok and Sharp, 2005). RNAi (RNA-mediated interference) is a 

post-transcriptional gene silencing mechanism induced by dsRNA in both germ line and 

soma of C. elegans (Fire et al., 1998; Grishok and Mello, 2002). It has been established that 

RNAi-related pathways including microRNA (miRNA) pathway are mediated through the 

degradation ofrnRNA (Elbashir et al., 2001), the transcriptional repression oftarget genes 

(Volpe et al., 2002), or the perturbation ofrnRNA translation (Olsen and Ambros, 1999). 

Intriguingly, genetic studies have shown that the RNAi pathways are also mediated 

through the repression of chromatin modifications CV olpe et al., 2002). Therefore, it is 

probable that LIN-35/Rb is involved in the transcriptional repression of genes in C. elegans 

soma, as is cye-l in the intestine, like1y through chromatin modification. In mammalian 

cells and Drosophila, it has been known that cyclin E is a major target induced by E2F 

transcription factors and negatively regulated by Rb protein (Duronio and O'Farrell, 1995; 

Geng et al., 1996). Thus, to gain more insight about cyclin E function, it will be critical to 

understand the regul~ltory mechanism that is exerted by these cell cycle regulators. 

In mammalian cells, Rb proteins associate with E2F transcription factors, which 

form heterodimers with DP transcription factors (Frolov and Dyson, 2004). E2F 

transcription factors can function as transcriptional activators or repressors, while Rb 

members bind to both forms of E2F and thus actively repress the trancription of S-phase 

genes. C. elegans has a single Rb family member, LIN-35, which was identified by class B 

synthetic multivulva (SynMuv) mutations (showing a multivulva phenotype only when 

associated with class A SynMuv mutations) (Lu and Horvitz, 1998). Although lin-35 is not 

39 



essential for cell cycle progression and viability, inactivation of lin-35 partially rescues the 

mutant phenotypes of cyd-l and cdk-4 (Boxem et al., 2001), suggesting that LIN-35 is a 

negative regulator acting downstream of CDK-4 and CYD-l. Two E2F homologues 

(efl-l/2) and a DP homologue (dpl-l) have been identified in C. elegans (Ceol and Horvitz, 

2001; Boxem and van den Heuvel, 2002). LIN-35 interacts with EFL-l as weIl as DPL-l in 

vitro and efl-l (RNAi) partially rescues the cell cycle defect of cyd-l mutant, suggesting 

that EFL-l functions in combination with LIN-35 (Boxem and van den Heuvel, 2002). The 

role of EFL-2 is unclear. On the other hand, DPL-l functions to promote or repress cell 

cycle progression depending on the developmental context, likely through its differential 

association with other interacting partners. 

1.5.4. Developmental role of CKIs in cell cycle regulation in C. elegans 

The C. elegans genome project has identified two CIPIKIP family CKIs on chromosome II, 

which were named CKI-I and CKI-2 (Hong et al., 1998; Feng et al., 1999; Fukuyama et al., 

2003). While cki-l has been well characterized, little was known about cki-2, mostly due to 

the fact that it shows no apparent RNAi phenotype. 

Ectopic expression ofCKI-1 causes Gl arrest in a cell-autonomous manner, which 

is reminiscent of most other known CKIs (Hong et al., 1998). The developmental 

expression of cki-l is mediated by regulatory elements present in the 5' upstream 

sequences through which cki-l is turned on and off in a spatial and temporal fashion in 

response to diverse developmental cues including heterochronic control (Ambros, 2001), 

GON-2 a TRP channel protein in the somatic gonad during LI (West et al., 2001), and 

downstream ofinsulin-like signaling at the onset oflarval development (Hong et al., 1998; 

Baugh and Sternberg, 2006). 

cki-l is dynamically expressed in a broad range of embryonic and post-embryonic 

tissues, in cells beginning to terminally differentiate or executing transient developmental 

cell cycle arrest. The developmental expression of cki-l correlates with the developmental 

arrest of the cell cycle in G 1: cki-l is not detectable in dividing vulva cells, while the 
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expression of c/d-l is increased after these final divisions; c/d-l is highly expressed in 

animaIs undergoing diapause such as at eclosion or during dauer (Hong et al., 1998). This 

suggests that c/d-l may link nutritional status with cell cycle changes very similar to the 

role of p27Kip 1 where its leve1s are elevated in the absence of serum (Pause et al., 1998). 

Therefore, this may be a conserved function of this CKI family. 

These conditional cell cycle arrests described ab ove are compromised following 

c/d-l (RNAi) (Hong et al., 1998): in the starved LI larvae, c/d-l (RNAi) causes 

hypodermal cells and M cells to undergo S phase; c/d-l (RNAi)-treated hypodermal cells 

and gonadal cells divide during developmental arrest in dauer larvae (daf-7 or daf-2). A 

recent study reveals that DAF -16/FOXO is involved in the transcriptional control of c/d-l 

and other genes important for diverse aspects of post-embryonic development, which 

mediate cell cycle arrest in response to unfavorable environmental conditions (Baugh and 

Sternberg, 2006). 

c/d-l (RNAz) causes a precocious extra round of cell division in VPCs in a cell 

autonomous manner, which results in extra VPCs that give rise to pseudovulvae in a gain 

of function mutant of lin-l2 (encoding a membrane-bound Notch receptor), suggesting that 

the extra VPCs that arise due to these supernumerary cell divisions maintain vulval 

potential (Greenwald, 1998; Hong et al., 1998). Although c/d-l (RNAi) causes extra VPCs 

due to the precocious divisions of VPCs, more than one extra division does not occur, 

suggesting that there may be other negative regulators acting in parallel to c/d-l. In fact, 

genetic studies reveal that c/d-l acts in paralle1 to lin-35/Rb. In C. elegans, the 

CYD-lICDK-4 complex positively regulates Gl progression, where LIN-35 acts 

downstream of CYD-lICDK-4 (Boxem and van den Heuvel, 2001). It has been shown that 

c/d-l inactivation causes the precocious S phase entry and an extra cell division in cyd-l or 

cdk-4 mutants, while lin-35 mutation does not compromise S phase timing, although lin-35 

does cause multiple rounds ofDNA synthesis. In addition, CKI-I interacts with CYD-I in 

yeast two-hybrid system (Boxem and van den Heuvel, 2001). Therefore, these results 

argue that CKI-l cooperates with LIN-35 in the Gl progression, which is under control of 
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the CYD-I/CDK-4 kinase activity. 

In addition to its cell-autonomous activity at GI arrest, cki-l aIso plays a 

cell-nonautonomous role in the somatic gonad to affect genn cell divisions. cki-l (RNAi) 

causes gennIine hyperplasia after the L3 stage, where the affected gonad is disorganized 

due to the appearance of extra distal tip cells (DTCs), or anchor ceIls, and even ectopic 

gonad arms (Kostic et al., 2003). Unlike the extra VPCs in the cki-l (RNAi)-affected 

animaIs, which are due to precocious extra division of the vulva precursor ceIls, the extra 

DTCs do not arise from the duplication of pre-existing DTCs, but rather from defective cell 

fate detennination during their fonnation. Genetic studies show that cki-l negatively 

controls cell divisions in the somatic gonadal precursor cells (ZI/Z4 lineage) around the 

time that the DTC cell fate is acquired. However, in cki-l (RNAi), a somatic cell type that 

arises from the divisions of the somatic gonadal precursors is transfonned to the DTC fate 

due to aberrant divisions in the precursors. Similar results have also been shown in the 

asymmetric division of C. elegans somatic gonadai precursor cell (SGP) where the loss of 

cyclin D delays the SGP division thereby disrupting the asymmetry of SGP daughters 

(Tilmann and Kimble, 2005). Although this study argued that simple delay of the SGP 

division is unlikely a cause of the disruption of the SGP asymmetry, these studies suggest 

that an alteration of cell division timing may play a critcai role for the appropriate 

specification of these key cells. 

Under mitogenic signaIs, CKIs such as p27Kip I are degraded by 

ubiquitin-dependent proteolysis at the G liS transition after which cells irreversibly 

undergo S phase entry (Slingerland and Pagano, 2000). Recent studies have revealed that a 

similar mechanism might also be conserved in C. elegans. In C. elegans, cul-2 is involved 

in the G liS transition and mitosis. In the cul-2 mutant, genn cells undergo G 1 arrest which 

correlates with an increased level of CKl-l in the nucleus. This suggests that cul-2 

mediates CKI-1 degradation during G 1 progression. Mitotic chromosomes in the mutant 

embryos are not correctly condensed resulting in aneuploidy (Feng et al., 1999). 
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Since the SCF-mediated protein degradation mostly occurs III a 

phosphorylation-dependent manner, it has been postulated that the stability of CKI-l can 

be regulated in a similar fashion. Inactivation of the C. elegans cdc-J4 phosphatase causes 

extra divisions in many tissues with no defect in mitosis, morphogenesis or cell fate 

determination (Saito et al., 2004). Genetic studies show that cdc-J4 acts upstream of cki-J , 

to maintain CKI-I in a hypophosphorylated form. This form is less efficiently recognized 

by the ubiquitin-dependent proteolysis machinery resulting in the accumulation of CKI-1 

in the nucleus. In budding yeast, Cdc14p dephosphorylates p40Sic1, stabilizing it (Visintin 

et al., 1998). p27Kip11s also known to be dephosphorylated by Cdc14A in vitro (Kaiser et 

al., 2002). These findings suggest that CDC-14 may play an evolutionarily conserved role 

in stabilizing CKIs through maintenance of the hypophosphorylated form. 

Although CKI-1 and CKI-2 appear quite similar in their N-termini, they are 

divergent in their C-terminal domains (Feng et al., 1999). Furthermore, a study using the 

regulatory elements in the 5' upstream sequences of cki-2 uncovered considerable 

differences in the developmental expression patterns between the two CKIs (Hong et al., 

1998; Fukuyama et al., 2003). While cki-J begins to express in the late stage embryo when 

the cells become post-mitotic, cki-2 is expressed at much earlier embryonic stages (at 

approximately the 64-cell stage) and its expression is maintained throughout 

embryogenesis. Similar to CKI-1, overexpression of CKI-2 causes an embryonic arrest 

with large blastomeres, suggesting that overexpression of CKI-2 may lead to premature 

cell cycle arrest (Fukuyama et al., 2003). These observations imply that cki-2 might play a 

role during embryogenesis, and which does not overlap with cki-J. 
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1.6. Other Functions of CKIs: Emerging Roles 

The characterization of many CKIs as cell cycle regulators has provided a means ofbetler 

understanding how intrinsic and extrinsic developmental cues are coupled to cell cycle 

progression. Although CKIs exert their role through their ability to inhibit the catalytic 

activity of cyclinlCdk complexes during specific stages of the cell cycle, recent studies 

show that CKIs do not only play a role in the inhibition of Cdks and in the induction of cell 

cycle arrest in response to various developmental cues, but are also involved in other 

biological processes in a Cdk-dependent or -independent manner, including cell migration, 

apoptosis, DNA replication, and centrosome duplication (Coqueret, 2003; Denicourt and 

Dowdy, 2004). 

1.6.1. Non-eanonieal funetions of the CIPIKIP family CKIs 

While p21Cipi mediates cell cycle arrest in the p53-dependent programmed cell death 

following DNA damage, p21 Cip 1 also provides a mechanism for transformed cells to 

survive the p53-dependent apoptotic pathway (Gorospe et al., 1997). Upon neuronal 

differentiation, p21 Cip 1 relocalises to the cytoplasm where it inhibits SAP and ASKI 

pro-apoptotic kinases to block cell death (Shim et al., 1996; Asada et al., 1999; Tanaka et 

al., 2002). p21Cipi also binds to procaspase-3 in mitochondria to inhibit caspase-3 

activation. Caspase-3 inhibits nuclear localization of p21 Cipl, forcing it to reside in the 

cytoplasm, where it plays a pro-survival role to protect the cell against apoptosis (Levkau 

et al., 1998). 

p27Kipi also exerts its function depending in a subcellular localization-dependent 

manner. The cytoplasmic detection ofp27Kipl is found in many cancers including sorne 

breast and colon cancers where it correlates with poor prognosis (Slingerland and Pagano, 

2000). During tumorigenesis the activated form of AKT kinase mediates the cytoplasmic 

localization of p27Kipl through phosphorylation on T157. Its non-phosphorylated form 

(p27Kipl-TI56A) accumulates in the nucleus and arrests cell cycle progression in an 

AKT-independent manner. Since it is known that the proteolytic degradation ofp27Kipl 
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occurs through phosphorylation on T187 (Ganoth et al., 2001), it is unlikely that the 

cytoplasmic localization would be linked to its ubiquitin-dependent proteolysis, although it 

could block programmed cell death, as observed with p21 Cip 1 (Reed, 2002; Viglietto et al., 

2002). Unlike p27Kipl, there is no evidence of the cytoplasmic relocalization ofp21Cipl 

in tumors, however, it is known to be relocalized to the cytoplasm in response to the 

HER2/Neu and E7-mediated oncogenic signals (Zhou et al., 2001). These findings show 

that the biological functions of CKls can be modified by specific cellular signaIs and that 

their function is often govemed by their cellular localization. 

In budding yeast, the function ofFarl also relies on its cellular localization. In the 

nucleus, Farl associates with Cdc28/Cln complexes to cause G 1 arrest. Interestingly, upon 

pheromone binding to a receptor on the cell surface during mating, Farl associates with a 

group of cytoplasmic cell polarity proteins, including Cdc24p, Cdc42p, and Beml p, which 

reorganize the actin cytoskeleton, consequently polarizing the cell toward its mating 

partner. This observation indicates that cytoplasmic Farl is involved in cell orientation in a 

Cdk-independent manner (Gulli and Peter, 2001). 

In addition to its anti-apoptotic function in the cytoplasm as described above, 

cytoplasmic p21Cipl also inhibits cell migration, or motility, in a manner similar to Farl in 

budding yeast. p21Cipl-derived small peptides inhibit cell spreading through dissociation 

of an integrin receptor from adhesion contacts (Fahraeus and Lane, 1999). Ectopic 

expression of p21 Cip 1 in the cytoplasm affects the formation of actin structures and 

promotes neuronal growth and branching which occur through association with 

Rho-kinase to inhibit its function in actin reorganization (Tanaka et al., 2002). p27Kipl 

also seems to play a role in cell motility (Boehm and Nabel, 2001). The vascular smooth 

muscle cells (VSMC) of adult arteries, which are normally quiescent, undergo G 1 progress 

upon stimulation by growth factors and following mechanical injury. Interestingly, VSMC 

can also migrate in response to mitogenic signaIs and this is antagonized by treatment with 

rapamycin. It was shown that rapamycin affects the VS MC migration in a 

p27Kipl-dependent manner. In wild type (p27+1+) mice, rapamycin inhibits VSMC 
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migration, while in mice lacking p27 (p2T/-), this migration is no longer inhibited and cells 

are capable of movement. It is unclear however whether the effect on the cell migration is 

linked to cell cycle, although these observations imply that the CIPIKIP CKIs, p21Cipl 

and p27Kip l, may have a regulatory role to limit cell spreading, a role that is particularily 

important for the metastatic potential spreading of cancer cells. 

A recent study showed that DNA repli cation is regulated by p27Kip 1 in a 

Cdk2-independent manner. p27Kipl interacts with a DNA replication component called 

MCM7, which is a member of the minichromosome maintenance (MCM) domain protein 

family essential for the initiation of DNA repli cation and the maintenance of genome 

integrity (Nallamshetty et al., 2005). p27Kipl binds to the conserved MCM domain of 

MCM7. This interaction inhibits its ability to license DNA replication which usually 

occurs in a growth factor-dependent manner, but is independent of the Cdk2 inhibitory 

activity ofp27Kipl. This finding suggests that CIPIKIP CKIs are present on the chromatin 

and that they may be coupled with DNA replication, likely through growth factor-mediated 

signal transduction pathway. 

CKIs also play a role in cell differentiation and/or cell fate determination, which 

seems to be independent of their inhibitory function. In X laevis, p27Xicl promotes 

primary neuron formation through stabilization of a proneural protein, X-NGNR-l which 

upregulates the NeuroD transcription factor (Vernon et al., 2003). p27Xicl is highly 

expressed in the cells that are destined to become primary neuronal cells. Loss ofp27Xicl 

prevents primary neural differentiation, while its forced expression promotes neurogenesis. 

Interestingly, overexpression ofthe N-terminus ofp27Xicl promotes neural differentiation, 

while overexpression of either the C-terminus or a p27Xicl variant (p27Xicl (35-96)) 

lacking Cdk2 inhibitory activity do es not have any such effect. This is consistent with a 

previous result from glial cell differentiation, which showed that overexpression of 

p27Xicl (35-96) does not induce glial cells (Ohnuma et al., 1999). These observations 

suggest that p27Xicl is implicated in cell differentiation in a cell cyc1e-independent 

manner. p27Xicl is also highly expressed in the developing myotome (tissue destined to 
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become muscle) and is involved in muscle differentiation in a similar manner to its role in 

primary neurogenesis, in which neither the C-terminus nor p27Xicl (35-96) demonstrated 

any effect on muscle differentiation. This suggests that its effect on differentiation is 

separable from its cell cycle role (Vernon and Philpott, 2003). 

Taken together, these data suggest that CKIs are not merely Cdk inhibitors but 

might be polyvalent regulators that act in a broad range of cell biological pathways 

including DNA replication, ceIl motility, apoptosis, ceIl differentiation and/or cell fate 

determination, both in a Cdk-dependent and -independent manner. 

1.6.2. CKIs and centrosome duplication 

In most animal cells, the mitotic spindle is bipolar and the segregation of the genetic 

materials into two daughters at a cell division requires pulling forces that are generated by 

microtubules that nucleate at the centrosomes. The centrosome, or spindle pole body as it is 

referred to in yeast, is composed of a pair of centrioles, where each centriole is an open 

cylinder consisting of nine sets of radially arrayed microtubules (triplets, doublets, or 

singlets depending on the cell type). These cylinders are surrounded by electrodense 

material called pericentriolar material (or PCM), which contains a number of proteins 

involved in the regulation of centrosome function and the nucleation of microtubules 

(O'ConneIl, 2000; O'ConneIl, 2002; Delattre and Gonczy, 2004; Leidel and Gonczy, 

2005). 

The centrosomes form the spindle poles and thus each cell possesses two. 

Following division the centrosome must therefore duplicate once per cell cycle in a manner 

that is coupled to DNA synthesis (Murray and Hunt, 1993). The resulting mother and 

daughter centrosomes segregate at mitosis into the daughter cells. Intriguingly, these 

processes occur through a similar manner to DNA repli cation, where duplication strictly 

relies on pre-existing centrioles and moreover, the centrosome cycle occurs in a 

semi-conservative manner such that the centriole of the centrosome is either a mother or 

daughter centriole. Centrosomal duplication and segregation must therefore be precisely 
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coordinated with other cell cycle events and when these pro cesses are unsynchronized the 

effects are drastic. Inappropriate maintenance of centrosome number in the cell results in 

mitotic defects due to abnormal segregation ofthe genetic material, a characteristic feature 

of many tumor cells (Lingle and Salisbury, 2000; Sankaran and Parvin, 2006). Not 

surprisingly, understanding how cell cycle regulators impinge on the various mechanisms 

involved in centrosome assembly, duplication, and segregation has become a major focus 

in cell biology. 

The pro cess of centrosome duplication is initiated at/or around the G l/S transition, 

where the two centrioles are separated from each other in a pro cess called "splitting", 

during which they undergo significant structural changes (Figure 1.4). Using an in vitro 

Xenopus system, it has been demonstrated that Cdk2 coup1ed with cyclin E and/or cyclin A 

is required for this centriole splitting beginning at the onset of S phase. The centriole 

splitting is inhibited by depletion of Cdk2, cyclin E, or cyclin A. This suggests that Cdk2 

might mediate the phosphorylation-dependent proteolysis of pro teins that are involved in 

the pairing of centrioles. Many studies have argued that this early step of centrosome 

duplication may be mediated through proteolytic degradation: inactivation of SCF E3 

ligase activities in Xenopus blocks the splitting of centrioles (Freed et al., 1999); 

perturbation of APCCdc20lFizzy function in Drosophila embryos also affects centrosome 

duplication by causing a de1ay in centriole splitting (Vidwans et al., 1999). 

During S phase, the two split mother centrioles begin to form daughter centrioles at 

which time, PCM accumulates around and on the centriole. Following S phase in G2 the 

centrosome begins to mature followed by the segregation of the newly formed centrosomes 

to their respective poles at mitosis, resulting in the formation of a bipolar mitotic spindle. It 

is now known that centrosome separation is mediated by a protein kinase N ek2 in G2 

through its ability to phosphorylate C-Napl which connects mother centrioles within the 

two centrosomes, thereby generating the two individual centrosomes (Fry, 2002). 

Recent studies in Xenopus and mammalian cells have revealed that cyclin E/Cdk2 
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activity is required for centrosome duplication during S phase (Hinchcliffe et al., 1999; 

Lacey et al., 1999; Matsumoto et al., 1999; Meraldi et al., 1999). Consistent with this 

observation, centrosomes undergo multiple rounds of duplication when the cycle is 

b10cked in S phase foIlowing hydroxyl urea (HU) treatment. Moreover, this effect can be 

suppressed by treatment with the Cdk2 inhibitor roscovitine (De Azevedo et al., 1997; 

Lacey et al., 1999). Overexpression of p21 Cip 1 or p27Kip 1 b10cks centrosome duplication, 

while only the N-terminal Cdk inhibitory domain ofp21Cipl or p27Kipl had an effect on 

duplication (Lacey et al., 1999), suggesting that this effect is dependent on their Cdk2 

inhibitory activity. cyclin E has also been found to localize to the centrosome (Hinchcliffe 

et al., 1999; Matsumoto and MaIler, 2004) and its overexpression causes premature onset 

of the centrosome duplication cycle, suggesting that the initiation of the centrosome 

duplication is coupled to the entry to S-phase which is thought to be mediated by cyclin 

E/Cdk2. 

Since centrosome duplication occurs only once per ceIl cycle, it would be of great 

interest to understand how this process is regulated to maintain centrosome number during 

the ceIl division cycle. It has been shown that the continued activity of Cdk2 in S-phase 

arrest does not give rise to the re-duplication of centrosomes in the same cell cycle, 

suggesting the possibility that CDK2 activity alone is not sufficient, and that another 

mechanism may be involved in controlling unscheduled re-duplication of the centrosomes. 

A cell fusion assay showed that only G 1 centrosomes, but not G2 centrosomes, maintain a 

potential to duplicate and that this discrepancy is intrinsic to the centrosome (Wong and 

Steams, 2003). Moreover, an ultrastructural study showed that there is a structural 

difference between Gland G2 centrosomes, where centrioles in G2 centrosomes remain 

tightly opposed or engaged, whereas they are disengaged in G 1 centrosomes. Furthermore, 

it has been shown that centrioles are present as an engaged form throughout the cell cycle 

except the late stage of mitosis or early G 1 (Kuriyama and Borisy, 1981). Taken together, 

these results argue that centrosome duplication may be licensed by the disengagement of 

centriole pairs, thereby ensuring the correct number of centrosomes. 
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Figure lA. The canonical centrosome cycle. After mitosis, cells contain a single 

centrosome (a pair of centrioles; black and grey rectangle: mother and daughter centriole, 

respectively) and surrounding PCM (shaded circle). In the boundarybetween anaphase and 

early G l, the centrioles, tightly opposed, are disengaged (or disoriented) and licensed to 

duplicate. In the G liS transition, the disengaged centrioles slightly split (A). In S-phase, 

new daughter centrioles begin to form at the distal ends of parental centrioles perpendicular 

to their proximal ends (B) and elongate (C). During mitosis, the duplicated centrosomes 

separate and segregate into daughter cells to generate (D-F). In the duplication cycle, 

mother centrioles are distinguished by their proximal appendages from daughter centrioles, 

where the appendages are completed at the end of each cycle (from Delattre and Gonczy, 

2004). 
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Recent data have shown that the centriole dis engagement is not dependent on 

cyclin E/Cdk2 but instead it requires APC/C and separase activity (Tsu and Stearns, 

2006(a); Tsu and Stearns, 2006(b)) which is involved in the separation ofsister chromatids 

through its ability to digest cohesin, a protein responsible for the two sister chromatid 

adhesion. The activity of separase is regulated through its association! dissociation with 

securin depending on the various cell cycle stages: when the cell is not di vi ding, securin 

associates with separase, inactivating its activity; during anaphase in mitosis, securin is 

proteolytically digested to generate the active form of separase in an APC/C-dependent 

manner (Nasmyth et al., 2000). Therefore, this study suggests that the "only once per cell 

cycle" control of the centrosome duplication is ensured by such a temporal separation of 

centriole growth, depending on cyclin E/Cdk2 in S-phase from the centriole 

dis engagement at the mitosis/G 1 boundary, so that premature onset of centriole 

disengagement cannot occur before the onset of anaphase where active separase is present. 

Considering the importance of maintaining the correct number of centrosomes during cell 

cycle progression, it is not suprising that this control is often compromised in the process of 

tumorigenesis, often causing genomic instability, a hallmark of cancer. 

A number of studies have linked loss or inactivation of p53 to genomic instability. 

p53-/- mice cells show a high incidence of aneuploidy, in part due to abnormal duplication 

of centrosomes (Tarapore et al., 2001; Tarapore and Fukasawa, 2002). p53 is involved in 

two mechanisms that affect centrosome biology: the initiation of centrosome duplication at 

G 1 and the inhibition of extra duplication. Addition of p2l Cip 1 to p53 -/- cells partially 

restores the centrosome duplication defect, while introduction of wild-type p53 almost 

completely restores the duplication cycle, suggesting that p53 controls centrosome 

duplication in a manner mediated at least in part by the p53 transcriptional target p2l Cip 1. 

Taken together, centrosome duplication occurs through a canonical cycle that is 

tightly coupled to the cell division cycle so that the centrosome is permitted to duplicate 

only once per cell cycle. This seems to be acquired through a temporal separation of the 

centriole duplication licensing step that occurs at anaphase from the centriole growth step 
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that begins at S-phase. Since centriole growth occurs through a cyc1in E/Cdk2-dependent 

manner, it is probable that CKIs are implicated in the control ofthis critical process, likely 

through their ability to inhibit Cdk2 activity. 
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1.7. C. elegans System: Early Embryonic Development 

1.7.1. Overview 

In C. elegans, one could conveniently divide the pro cess of embryogenesis into three 

stages: 1) formation of the zygotic embryo at fertilization and the subsequent early 

c1eavage divisions, inc1uding the generation of six founder cells which give rise to both the 

somatic and germ line cells (until -120 minutes after fertilization), 2) completion of cell 

c1eavages and the beginning of embryonic cell differentiation and organogenesis, 

inc1uding gastrulation (from -120 minutes after the first c1eavage until ~350 minutes), and 

then 3) completion of embryonic cell differentiation, morphogenesis, and organogenesis 

(-350 minutes after the first c1eavage until hatching). At 22°C, it takes about 14 hours from 

fertilization to hatching (Wood, 1988). During embryogenesis, 671 cells are generated, of 

which, 113 cells undergo programmed cell death, leaving 556 somatic cells and two germ 

ceIl precursors (Z2 and Z3) (Lambie, 2002). 

During post-embryonic development in C. elegans, the distaIly-located germ cells 

in each gonad are maintained in a mitoticaIly active state by Notch signaling. The mitotic 

germ ceIls escape from the Notch signaIs as they move from distal to proximal, causing the 

ceIls to enter a long period ofmeiotic arrest (meiotic prophase I). As the meiotic germ cells 

approach the proximal gonad arm, they become cellularized which is foIlowed by yolk 

accumulation and oocyte growth. The most proximal oocyte begins to mature in response 

to the signaIs from the spermatheca, during which nuc1ear envelope breaks down, rneiotic 

progression o ccurs , and cytoskeletal structures reorganize. The oocyte is fertilized by 

sperm, which in tum specifies the posterior pole of the zygote and triggers the onset of 

seriaI events that will eventuaIly specify the asymmetry typical of the first cell division in 

the C. elegans embryo (Schedl, 1997). 

The sperm entry signaIs the completion of meiosis CI and II) during which two polar 

bodies are extruded while also providing a pair of centrioles forming the sperm 

pronuc1eus/centrosome complex (SPCC) which plays a major role in establishing the 
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Figure 1.5. Asymmetric divisions of the C. elegans zygote. (A) At fertilization, 

completion of meiosis is triggered by the sperm entry (a), which results in the seriaI 

extrusion of two polar bodies (b) while also specifying the presumptive anterior pole. The 

sperm-derived centrosome induces cytoplasmic streaming (c), which pushes the sperm 

pronucleus/centrosomal complex (SPCC) towards the opposite side subsequently causing 

the SPCC to interact with the cortical membrane and specifying the presumptive posterior 

pole. During this time the sperm-derivedcentrosome duplicates to generate two 

centrosomes (d). Following this period, the maternaI pronucleus (M) migrates toward the 

paternal pronucleus (S) (e) which is accompanied by a pseudocleavage (f). In the mean 

time, the split paternal centrosomes migrate to opposite sides of the paternal pronucleus 

and nucleate microtubules (asters) (f). The two pronuclei meet in the posterior hemisphere 

and move back to the center (g), accompanied by centrosomal rotation causing the spindle 

axis to align along the established AlP axis (h). During metaphase, chromosomes are 

aligned midway between the two poles and interact with the kinetochore microtubules 

radiating from the centrosomes along the AIP axis (i). Thereafter, during anaphase, the 

mitotic spindle shifts slightly to the posterior (spindle displacement) G) which causes an 

asymmetric cleavage resulting in a larger anterior blastomere (AB) and a smaller posterior 

blastomere (Pl) (k,l). Broken and solid arrows indicate signaling events (unknown) and 

movement, respectively. Solid lines indicate spindles radiating from centrosomes. M and S 

mark maternaI and paternal pronucleus, respectively. Two spheres on the cortex are 

extruded polar bodies (from Schneider and Bowerman, 2003). (B) After completion of the 

first mitotic division, the Pl blastomere and its descendants (EMS, P2, and P3) 

subsequently divide asymmetrically and generate an additional four somatic founder ceUs 

(E, MS, C, and D) and one germ line founder cell (P4). These founder cells ultimately give 

rise to diverse organ tissues to form intact body as indicated. PO indicates a fertilized 

embryo. Anterior is to the left and posterior to the right (from Rose and Kempheus, 1998). 
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AlP polarity (Figure 1.5). The sperm-derived centrioles split and duplicate in the zygote to 

form two centrosomes that become aligned between the sperm pronuc1eus and the cortex in 

the presumptive posterior pole. This interaction initiates a series of early events, inc1uding 

cytoplasmic flux, pseudoc1eavage, and ruffling due to cortical movement, which results in 

the asymmetric distribution of cell fate-determining factors such as P-granules 

(germline-specific electrodense RNA containing complexes). During this period, the 

maternaI pronuc1eus (which arises from the oocyte) mi grates , initially slowly due to 

cytoplasmic components or flow, and then later quickly due to sperm-derived 

microtubules-mediated pulling force toward the paternal pronuc1eus (which originates 

from the sperm). The split and now duplicated paternal centrosomes migrate to opposite 

sides of the paternal pronuc1eus and nuc1eate microtubules (asters) finally making the 

spindle axis perpendicular to the AlP (anterior/posterior) axis. The two pronuc1ei meet in 

the posterior hemisphere and move back to the center, which is accompanied by 

centrosomal rotation causing the spindle axis to align along the now established AlP axis. 

The nuc1ear enve10pe breaks down following the alignment of the matemally and 

paternally-derived chromosomes at the metaphase plate. The centrosomes nuc1eate 

microtubules to form the first mitotic spindle along the AlP axis and thereafter, during 

anaphase, the mitotic spindle slightly shifts posteriorly which causes an asymmetric 

c1eavage resulting in a larger anterior blastomere (AB somatic founder cell) and a smaller 

posterior blastomere (P 1 ceIl) and effectively segregates the germ line from the soma. This 

asymmetry affects the cell division timing and the cell fate determination in the two 

blastomeres as weIl as, ultimately, their descendants (Golden, 2000; Schneider and 

Bowerman, 2003; Cowan and Hyman, 2004b; Lyczac et al., 2002). 

After completion of the first mitotic division, the Pl blastomere and its descendants 

(EMS, P2, and P3) subsequently divide asymmetrically and generate an additional four 

somatic founder cells (E, MS, C, and D) and one germline founder cell (P4). During the 

asymmetric and asynchronous early c1eavages, which produce the founder cells, 

intercellular signaIs inc1uding a Notch receptor GLP-l, the Wnt receptor MOM-5, and 

RAS/MAPK, in addition to others are known to play crucial functions in the ultimate 
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specification of cell fates. This indicates that cell/cell-interactions are required in addition 

to cell-autonomous signaIs for cell type-specific cell fate determination in the early embryo 

(Rose and Kempheus, 1998). 

1.7.2. PAR Pro teins and Their Role in Asymmetric Cell Division 

1.7.2.1. Overview 

In many cells, asymmetric cell divisions provide a means to increase complexity. The 

polarity of cell divisions therefore becomes an important step during the development of 

many organisms. Unlike in Drosophila, where polarity establishment occurs during 

oogenesis, C. elegans oocytes show no sign of asymmetry prior to fertilization. In C. 

elegans, the asymmetry begins following the entry of the sperm into the mature oocyte at 

fertilization, which ultimately triggers the uneven cortical localization of a group of 

conserved, cortical membrane-Iocalizing molecules called PAR proteins (Rose and 

Kempheus, 1998). This results in asymmetric distribution of cell fate-determining factors 

in addition to the positioning of the mitotic spindle. In par (partitioning-defective) mutant 

embryos, the first mitotic division occurs symmetrically following the synchronous 

division of daughter cells. Genetic screens have identified six PAR proteins (Figure 1.6). 

After the SPCC-induced polarization, PAR-1 (encoding a serine/threonine kinase) and 

PAR-2 (a RING domain protein) localize to the posterior, while the PAR-3 (three PDZ 

domain-containing protein)/P AR-6 (single PDZ domain-containing protein) complex 

associated with PKC-3 (an atypical protein kinase C) localizes to the anterior. PARA (a 

serine/threonine kinase) and P AR-5 (a 14-3-3 protein) are distributed evenly throughout 

the cortex (Watts et al., 2000; Morton et al., 2002). Genetic studies have shown that the 

SPCC signaIs exclude PAR-6 and other anterior PAR proteins from the posterior in order 

to establish the initial AfP polarity, while PAR-2 in the posterior cortex functions to 

maintain this polarity. Although it is largely unclear how the PAR proteins localize to the 

cortex, it is now known that the distribution ofP AR proteins require an intact cytoskeletal 

microfi1ament (Schneider and Bowerman, 2003; Cowan and Hyman, 2004). In the absence 

of non-muscle myosin NMY-2, PAR-3 distributes evenly and PAR-2 cannot be detected in 
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Figure 1.6. Summary of PAR proteins and their distribution in the C. elegans zygote. 

(A) Molecular nature of six PAR proteins (PAR-l to 6). aa, amino acid. The shaded boxes 

indicate conserved domains found in their primary sequences (kinase, PDZ, 14-3-3). (B) 

After the SPCC-induced polarization, PAR-l and PAR-2 localize to the posterior, while 

the two PDZ domain containing PAR proteins, PAR-3 and PAR-6, associate with PKC-3 

(an atypical protein kinase C) and localize to the anterior. PAR-4 and PAR-5 are 

distributed evenly throughout the cortex. Genetic studies have shown that P AR-5 acts 

upstream of the PAR proteins and PAR-2 in the posterior cortex functions to maintain the 

anterior restriction ofPAR-3/PAR-6/PKC-3. PAR-l appears to be downstream ofPAR-2. 

The cortical distribution ofPAR-4 is not affected by other par mutations (from Rose and 

Kempheus, 1998). 
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the cortex. This suggests that micro filament dynamics play a raIe in the cortical 

distribution of the PAR proteins. Orthologues of most of the PAR proteins, with the 

exception of PAR-2, have been found to regulate various aspects of cel1 polarity from 

insects to mammals (Pellettieri and Seydoux, 2002), suggesting that the mechanism for 

establishing cell polarity through cortical localization of the PAR proteins and their 

interplay with cytoskeletal elements has been conserved throughout evolution. 

1.7.2.2. PAR proteins and spin dIe positioning in the first cell division 

Our CUITent understanding of anterior/posterior (AlP) polarity specification at the first 

division of the zygote has been greatly enriched from studies of PAR proteins. However, 

re1atively less is understood about how this polarity mediated by PAR proteins is coupled 

with the characteristic asymmetric spindle positioning which results in an asymmetric 

mitotic division in the zygote. Recent studies are shedding light on how these critical 

developmental events are coordinated. It was shown that PAR proteins mediate the 

asymmetric positioning of spindles at the cortex which is in tum translated into differential 

pulling forces exerted on the two spindle poles (Grill et al., 2001). Through performing 

microtubule-severing experiments, they found that pulling forces external to the spindle 

mediate the separation of the spindle poles following severing. More intriguingly, it was 

shown that in the severed embryos, the posterior spindle pole migrates for a greater 

distance and at a higher velocity than its anterior counterpart following severing. This 

suggests that stronger net forces are exerted on the posterior pole, explaining overall 

displacement of spindles toward the posterior. Since disruption of actin filaments by 

cytochalasin treatment do es not affect the spindle positioning, it is unlikely that the 

asymmetry is mediated by actin filaments, but more likely by astral microtubules (Aist et 

al., 1993). Though it is still unknown how the pulling force is generated by astral 

microtubules, it is predicted that the force generation may be mediated by microtubule 

depolymerization on the cortex (Hyman and White, 1987; Korinek et aL, 2000; Lee et al., 

2000). A similar experiment performed in par mutants (par-2 and par-3) showed that in 

iITadiated par-2 mutant embryos, the peak velocity of the two spindle pol es is similar to 

that of the anterior spindle pole after severing in wild type embryos, while inpar-3 mutant 
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embryos, it is similar to that of posterior spindle pole after severing in wild type embryos 

(remember that PAR-2 and PAR-3 localize to posterior and anterior, respectively). This 

suggests that in par mutants, the pulling forces are equally exerted on the two spindle poles 

due to equally positioned spindles, resulting in the symmetric mitotic division. Taken 

together, these results strongly argue that polarity cues mediated by PAR proteins are 

translated into the generation of differential pulling forces that act on the two spindle poles, 

resulting in the asymmetry ofthe zygotic division. However, this did not explain how PAR 

proteins mediate this difference in net pulling forces or what molecules generate such 

forces. 

A global RNAi-based screen uncovered two genes, gpr-l and gpr-2, encoding 

coiled coil domain proteins carrying a GoLo co motif(Yu et al., 2000; Schaefer et al., 2000; 

Schaefer et al., 2001), whose inactivation caused symmetric zygotic division due to 

aberrant spindle positioning in the one-cell embryo, generating two blastomeres of 

identical size (Gonczy et al., 2000). Intriguingly, the initial NP polarity mediated by PAR 

proteins seems to be undisrupted by gpr-112 (RNAi), indicating that the equal zygotic 

division in gpr-112 (RNAi) is not due to ab normal NP polaity, and that GPR-1/2 act 

downstream of PAR proteins. As other GoLoco motif proteins regulating Ga subunits (De 

Vries et al., 2000; Kimple et al., 2001; Natochin et al., 2001), a number of observations 

suggest that GPR-112 might act through Ga signaling in the one-cell embryo: inactivation 

ofgoa-l (RNAi) or gpa-16 (RNAi) causes similar defects asgpr-112 (RNAi); inactivation of 

both goa-l and gpa-16 by RNAi does not enhance the gpr-112 (RNAi) phenotype; gpr-112 

genetically interacts with goa-l and gpa-16 which encode Ga subunits GOA-1 and 

GP A-16, respectively; GPR-I/2 physically interacts with GOA-1 through its GoLoco 

motif; inactivation of gpb-l (G~ subunit) or gpc-2 (Gy subunit) do es not rescue the gpr-l/2 

(RNAi) phenotype. Microtubule- severing experiments demonstrated that after severing in 

gpr-l/2 (RNAi) or goa-lIgpa-16 (RNAi) embryos, the two spindle poles have identical 

velocities which were considerably lower than that of the anterior or posterior spindle poles 

after severing in wild type embryos. Since the astral microtubules remain intact, this argues 

that Ga signaling mediates the generation ofpulling forces exerted on the two spindle poles 
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during the first division. Moreover, through immunostaining using GPR-1I2 antibodies 

and GFP fusions of GPR-1/2, it was shown that GPR-112 asymmetrically enriches at the 

posterior cortex during mitosis. Intriguingly, the cortical asymmetry of GPR-1I2 was 

disrupted in par mutants, where inpar-2 or par-3 mutant embryos, GPR-1I2 are evenly 

distributed at the cortex. 

Taken together, these results argue that Ga signaling is differentially activated at 

the cortex, likely due to asymmetric enrichment of GPR-1I2 during mitosis, which 

generates distinct pulling forces exerted on the two spindle poles, resulting in two 

blastomeres of different size. Given that Ga subunits such as Gai in Drosophila (Cai et a1., 

2003) are involved in spindle positioning, these factors may be components of an 

evolutionarily conserved mechanism to dictate spindle positioning through a Ga signaling 

pathway. 

1.7.3. Centrosome biology in C. elegans 

1.7.3.1. Molecules involved in the centrosome reproduction: Duplication and 

maturation 

Knowledge regarding centrosome reproduction has accumulated from studies carried out 

on the C. elegans embryo, mostly due to availability of powerful genetic tools in C. elegans. 

Moreover, the transparency of the one-cell embryo of C. elegans has facilitated live 

imaging and immunofluorescence microscopy at high resolution. Although serious 

concems have been proposed regarding generalization of the knowledge acquired in C. 

elegans, mostly due to its atypical structure of centriole and absence of several proteins, 

such as G-tubulin and centrin, known to be important for centrosome reproduction in other 

species, it is widely believed that the core molecules identified in C. elegans may play a 

conserved role among evolutionarily divergent species. Since aspects of this thesis deal 

with the biogenesis of centrioles, 1 will describe centrosome reproduction while focusing 

on a set of proteins identified to be essential for the centriole duplication in C. elegans 

(Figure 1.7). 
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Figure 1.7. Pro teins required for centriole formation in C. elegans and their dynamic 

recruitment into centrioles. (A) Proteins required for centriole formation in C. elegans 

embryos were schematically represented, where conserved domains or motifs on each 

protein were indicated by colored boxes. CP AP, HsSAS-6, and HsSPD-2 indicate human 

homologues ofSAS-4, SAS-6, and SPD-2, repectively. (B) Dynamic localization ofSAS-4 

(red) , SAS-6 (orange), and SAS-5 (yellow) to centrioles. Black and gray barrel indicate 

mother and daughter centrioles, respectively. Open or closed circles indicate proteins 

recruited into centrioles in previous (open circles) or CUITent (closed circles) cell cycles 

(from Leidel and Gonczy, 2005). 
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zyg-l (for zygotic defective) was uncovered as a conditional allele from forward 

genetic screens to identify maternal-effect embryonic lethal mutants (Wood et al., 1980; 

Kemphues et al., 1988) or mutants showing defects in both embryonic and post-embryonic 

cell lineages (O'Connell et al., 1998), where zyg-l alleles form a monopolar mitotic 

spindle at restrictive temperature. Genetic studies carried out in the one-cell embryo of C. 

elegans uncovered an essential role of zyg-l as a protein kinase in centriole duplication 

(O'Connell et al., 2001). The study revealed that zyg-l exerts its role through differential 

parental contributions to form centrioles in the one-cell embryo. In absence of paternal 

activity of zyg-l, onlya single centriole is formed during spermatogenesis due to a defect 

in the centriole formation. After fertilization, the centriole duplicates to form a centrosome 

by adopting maternaI activity of zyg-l present in oocyte during the first division. Since 

only a single centrosome is present in the zygote, the embryo fails to form a bipolar spindle, 

rather forming monopolar spindles which cause a cytokinesis defect. Although the 

centrioles separate and duplicate to form bipolar spindles during the second division, the 

embryo eventually arrests due to aneuploidy. If the maternaI activity of zyg-l is lacking, a 

pair of centrioles is normally donated from the sperm. Although the centrioles are not able 

to duplicate due to the absence of maternaI zyg-l, the centrioles still separate and each 

centriole recruits PCM componenets to form an aberrant centrosome during the first 

division. During the second division, however, the centrosome cannot be duplicated, 

resulting in an embryonic arrest with monopolar spindles at the two-cell stage. Taken 

together, ZYG-l has a dual maternaI and paternal activity to ensure proper formation ofthe 

centriole in the embryo. Although ZYG-l is a protein kinase known to be 

auto-phosphorylated, its substrates still remained to be identified. 

RNAi-based global scale genetic screens uncovered two genes, sas-4 and sas-6 (for 

spindle assembly), in whichsas-4 (RNAi) or sas-6 (RNAi) causes an embryonic arrest at the 

two-cell stage with monopolar spindles (Dammermann et al., 2004; Kirkham et al., 2003; 

Leidel et al., 2005; Leidel and Gonczy, 2003; Sonnichsen et al., 2005). SAS-4/6 are 

coiled-coil proteins present at the center of the centrosome, suggesting that they are 

associated with the centriole. Using fluorescence recovery after photobleaching (FRAP) 
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(Leidel and Gonczy, 2003; Leidel et al., 2005) and GFP-SAS-4/6 incorporation assay 

(Leidel and Gonczy, 2003; Kirkham et al., 2003; Leidel et al., 2005), it was revealed that 

SAS-4 is recruited into daughter centriole once per cell cycle, while SAS-6 is firstly 

incorporated into mother centriole and thereafter recruited into daughter centriole 

depending on SAS-4 activity. 

Another SAS family protein, SAS-5, was indentified by forward and reverse 

genetic screens (Dammermann et al., 2004; Delattre et al., 2004). Like SAS-4/6, SAS-5 is a 

coiled coil protein incorporated into centrioles throughout the cell cycle. SAS-5 has a dual 

paternal and maternaI role like zyg-l. However, unlike SAS-4/6, FRAP analysis showed 

that SAS-5 shuttles between the cytoplasm and the centrioles. SAS-5 physically associates 

with SAS-6 which seems to be required for their centriole localization. Although it is still 

unclear how SAS family proteins act in the centriole formation, genetic studies have 

suggested that they might exert their role in controlling the size of PCM (Kirkham et al., 

2003; De1attre et al., 2004; Leidel et al., 2005). It was shown that incomplete depletion of 

sas-4, sas-5, or sas-6 by RNAi causes smaller spindle poles due to reduced PCM, 

suggesting that the centriolar proteins might control the recruitment ofPCM by regulating 

centriole size. While centrioles are required for the accumulation of PCM proteins, sorne 

PCM components also play an important role in normal centriole formation. Lack of the 

PCM protein y-tubulin or SPD-5 (for spindle defective; Hamill et al., 2002) causes partial 

formation of the centriole, like1y due to aberrant loading ofSAS-4 at the centrioles. 

SPD-2 (for spindle defective) was identified as a conditional allele from a genetic 

screen to find mutants with defects in mitotic spindle assembly, where the mutation caused 

absence of early events involved in AlP polarity specification such as cortical ruffling, 

pseudocleavage (PC), and cytoplasmic streaming, resulting in mislocalization of 

P-granules and PAR proteins (O'Connell et al., 1998). Since AlP polarity is lost in spd-2 

mutants, it has been suggested that spd-2 might act at very early step ofthe process. SPD-2 

is a coiled coil protein, which enriches at the centrosome in an Aurora kinase and 

cytoplasmic dynein-dependent manner. SPD-2 is in turn required for the centrosome 
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recruitment of almost aIl known PCM proteins such as y-tubulin, ZYG-9, SPD-5, an aurora 

kinase (Aurora-A), and a polo-like kinase (PLK-l), indicating that SPD-2 acts at an early 

step of the centrosome assembly/maturation pathway through the centrosome recruitment 

ofPCM proteins. Although SPD-5 is required for the centrosome association ofSPD-2, the 

centriole localization of SPD-2 occurs independently of SPD-5. More intriguingly, lack of 

spd-2 causes loss of centriole duplication in the second cell division, suggesting that SPD-2 

also has a role in the centriole formation as weIl as its role in the centrosome maturation. In 

fact, spd-2 genetically interacts with zyg-l, where the heterozygous mother for both spd-2 

and zyg-l (spd-2/+; zyg-l /+) produces dead embryos forming monopolar spindles, similar 

to that ofthezyg-l homozygote, suggesting that both SPD-2 and ZYG-l act in a common 

pathway. Given that SPD-2 has a dual PCM assembly and centriole duplication role, it has 

been proposed that SPD-2 might act as a scaffold protein to localize and modulate ZYG-l 

and its catalytic substrates present in the pericentriolar region (Kemp et al., 2004; Pelletier 

et al., 2004; Leidel and Gonczy, 2005). 

Recent studies revealed the epistatic relationship that exists between the centriolar 

proteins (Delattre et al., 2006; Pelletier et al., 2006). It was shown that SPD-2 acts at the 

earliest step and is required for the centriole localization of ZYG-l and SAS-4/5/6. 

Thereafter, three SAS proteins are recruited depending on ZYG-l, where SAS-5 and 

SAS-6 are required for the SAS-4 recruitment. Therefore a complex interplay between 

components of the centrioles and the PCM seems critical to ensure appropriate centriole 

formation (Kemp et al., 2004; Pelletier et al., 2004). Since these proteins, essential for 

centriole formation, seem to have homologues in other species, they might play an 

evolutionarily conserved role in this critical developmental process (Hamill et al., 2002; 

Andersen et al., 2003; Leidel and Gonczy, 2003; Leidel et al., 2005). 

1.7.3.2. Centrosome and the asymmetric celI division 

As previously discussed, sperm entry triggers cortical polarity through the formation of 

two types of polarity domains along the AlP axis: PAR domains (uneven distribution of 

PAR proteins) and contractile polarity (such as anterior cortex ruffling and posterior 

65 



smooth domain). Many genetic studies have hinted or shown that the centrosome plays a 

central role in this developmental process (Sadler and Shakes, 2000; Goldstein and Hird, 

1996; Cuenca et al., 2003; Cowan and Hyman, 2004(a)); Cowan and Hyman, 2004(b); 

O'Connell et al., 2000; Hamill et al., 2002). It has been established that sperm entry is 

correlated with the posterior domain in C. elegans (Goldstein and Hird, 1996). However, it 

is unclear wh ether the sperm entry position provides a predetermined domain that attracts 

the centrosome or wh ether the centrosome is attracted to a random position ofthe posterior 

cortex in order to initiate cortical polarity. The role of the centrosome in polarity 

establishment in C. elegans appears to be mediated by microtubules (Wallenfang and 

Seydoux, 2000), although recent data showed that depletion of microtubules did not 

abolish polarty establishment (Cowan and Hyman, 2004(b)). Therefore, it is still debatable 

whether this event occurs in a microtubule-dependent or -independent process. Taken 

together, these data show that the centriole pair provided by the sperm plays a critical role 

during the period that establishes the intial polarity along the anterior/posterior axis. 

Although it is so far unclear how the centrosome plays a role in that process, it is widely 

accepted that the pro cess is mediated through interplay of microtubulel acto-myosin 

filaments, wherein the centrosome may exert its role to direct the traffic of cytoskeletal 

complexes. Therefore, a thorough study of the various roles of the centrosome in the 

zygote will provide a better understanding ofhow cell polarity is initially established. 

1.7.3.3. Elimination of centrioles: A conserved mechanism for proper number of 

centrioles at fertilization 

Canonical mitotic division generates daughter cells that inherit exact copies of DNA from 

their mother through precise coordination of DNA duplication with cytokinesis. This 

segregation requires the spindle and its associated centrosomes and it is important that 

centrosome duplication be tightly coordinated with the DNA replication cycle. Otherwise, 

the resulting aberrant number of centrosomes may abnormally attach to chromosomes and 

cause mitotic catastrophe. 

In addition to the problem ofhalving the genetic content of gametes during meiosis, 
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sexually-reproducing animaIs must also conserve centrosome number in the zygote. 

Supernumerary centrosomes would result in multipolar spindles in the zygote control over 

the number of centrosomes inherited by the zygote is critical. How then, can the 

centrosome number be achieved and properly maintained at fertilization? 

Although the solutions to this problem are manifold, many orgamsms use 

differential parental contribution of centrioles to ensure the formation of a bipolar spindle. 

In a clam species (Spisula solidissima) and a brown algae (Fucus distichus), each gamete 

contributes a pair of centrioles at fertilization but maternally-donated centrioles are 

silenced in the zygote and lose their ability to nucleate microtubules (Nagasato et al., 1999; 

Wu and Palazzo, 1999). A similar case is found in a startish (Asterina pectinifera), where 

one half ofthe maternally-donated centriole pair is lost during polar body exclusion and the 

other centriole remains silenced in the zygote (Uetake et al., 2002). More commonly, 

however, centrioles are differentially contributed from each gamete. In C. elegans, a pair of 

centrioles is paternally contributed by entry of the sperm into the oocyte (which loses its 

centrioles during oogenesis). Thereafter, the centrioles recruit PCM components present in 

the zygotic cytoplasm and reconstitute a centrosome (Albertson and Thomson, 1993). 

Although little is understood about these mechanisms, it is thought that the stabilization of 

centrioles may be involved, or that they are eliminated by an active process in response to 

developmental signaIs (Tassin et al., 1985; Connnollyet al., 1986; Ploubidou et al., 2000). 

In humans and Drosophila, a single centriole is also paternally contributed at 

fertilization. During spermatogenesis, the mother centriole is lost but the daughter remains. 

At fertilization, the daughter centriole in the zygote duplicates twice to generate four 

centrioles which give rise to two centrosomes prior to the tirst division (Schatten, 1994; 

Callaini et al, 1999; Manandhar et al., 2000). This elimination pro cess of centrioles occurs 

more rigorously during spermatogenesis of mice, during which both mother and daughter 

centrioles are lost, causing fertilization through joining of two acentriolar gametes. As a 

result, early embryonic divisions of mice oCCur in a centriole-independent manner until 

centrioles become visible at the preimplantation stage (Calarco-Gillam et al., 1983; 
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Abumuslimov et al., 1994). It is still unknown how new centrioles are generated without a 

preexisting anlage. De novo centriole formation is observed when parthenogenesis is 

artificially induced in sexually-reproducing animaIs, inc1uding D. melanogaster, sea 

urchin, and rabbit (Kallenbach, 1983; Szollosi and Ozil, 1991; Riparbelli and Callaini, 

2003). This suggests that centrioles might suppress de novo centriole formation during 

normal sexual reproduction. It is so far unknown whether de novo centriole formation 

occurs using the same machinery involved in canonical centriole synthesis. Considering 

that this critical process of maintaining the proper number of centrioles is compromised in 

various cancers, a better understanding ofthis critical developmental pro cess may allow us 

to identify novel pathways to intervene at this level of regulation. 
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1.8. Objectives and Rationales of the Research 

A steadiIy increasing body marks the significance of CKl proteins in the regulation 

of cell cycle progression from yeast to metazoan animaIs. In addition to the typical role of 

CKIs in antagonizing the catalytic function of cyclinlCDK complexes, their previously 

uncharacterized roI es (such as CDK-independent activities) are currently emerging 

through our greater understanding ofthese critical cell cycle regulators. Since C. elegans is 

an excellent modei organism to study cell cycle progression in various developmentai 

contexts, work on this animal will contribute significantIy in our understanding of its role 

in controlling cell cycle events during deve1opment. 

Although cki-2 has been annotated as second CIP/KIP family CKI in C. elegans, 

reiatively limited progress has been made in understanding its biological function, while 

cki-l has been well studied in a deveIopmental context. However, it has been suggested 

that cki-2 might play a non-redundant role with cki-l: cki-2(RNAi) causes impenetrant 

embryonic Iethality and cki-2 shows a distinctive pattern of deveIopmental expression 

(Feng et al., 1999; Fukuyma et al., 2003). Moreover, its overexpression causes embryonic 

arrest with obvious cell cycle defects (Fukuyama et al., 2003). These imply that 

maintaining appropriate Ievels ofCKI-2 is criticai to ensure proper embryogenesis. In fact, 

while a cullin-based degradation mechanism of CKI-1 has been weIl characterized, it is not 

clear how CKI-2 leve1s are appropriate1y maintained. Therefore, our overall research goal 

was to investigate the role ofCKI-2 during development in C. elegans, while also focusing 

on the regulation ofCKI-2Ieve1s and activity. 

Since cki-2 (RNAi) causes Iow, impenetrant embryonic lethality that did not allow 

us to further characterize the embryonic phenotype and in addition, no usefui al1e1e of this 

gene is avaiIabIe, in order to investigate 10ss of function of cki-2, we decided to use a 

reverse genetic approach cal1ed co-suppression, which depends on the use of high copy 

number transgenes to silence a specific gene activity in the germ line (Ketting and Plasterk, 

2000). Using this approach which caused reproducible embryonic Iethality, we observed 
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multiple defects in embryonic cell cycle progression. While the majority of the arrested 

embryos showed expanded endodermal and mesodermal fields, suggesting a role of cki-2 

as a negative cell cycle regulator, more intriguingly, we observed a low frequency of 

one-cell arrested embryos with supemumerary centrosomes. We reasoned that it could be 

due to a problem associated within appropriate cytokinesis during the first mitosis. Several 

lines of evidence, however suggested that the supemumaerary centrosomes were caused by 

inappropriate maintenance of centrioles during oogenesis, wherein we ohserved perduring 

centrioles in the late stages of oogenesis. Furthermore, based on the typical role of 

CKI-dependent inhibition of cyclin/CDK complexes, we reasoned that it might be 

mediated by a cylin E/Cdk2 complex. In fact, reduction of cyclin E or a Cdk2 homologue 

suppressed the frequency of the supemumerary centrosome phenotype, demonstrating that 

this critical pro cess during oogenesis might be dependent on the catalytic function of cyclin 

E/Cdk2 complex. Our finding provides an important step in understanding this critical 

developmental phenomenon in the cell biological/molecular level. These results were 

presented in chapter II. 

In order to gam further insight on the role of cld-2, we performed a yeast 

two-hybrid screen to identify CKI-2 interacting proteins. In this screen, we identified three 

interacting partners ofCKl-2: orthologue ofPCNA (PCN-l) and SUMO (SMO-1), and a 

RING fingerprotein called RNF-I. These suggest that CKI-2 may have a similar role as its 

mammalian counterpart, p21Cip1, during S-phase, since only p21Cip1 among the 

mammalian CIP/KIP CKIs interacts with both Cyclin/CDK and PCNA (Waga et al., 1994). 

In fact, like p21Cip1, we found that CKI-2 has two independent domains in its amino- and 

carboxy-terminus, which are functionally separable. Since SUMO has been well known to 

affect proteinlprotein interactions, the subcellular localization, and catalytic activity of a 

protein (Melchior, 2000), we speculated that C. elegans SUMO (SMO-l) might also have 

similar roles with its mammalian counterpart. In fact, we found that SMO-1 can affect the 

subcellular localization ofCKI-2, which is linked to the rapid destabilization ofCKI-2. We 

found that other CKIs such as p27Kipl possess a conserved SUMOylation motif in their 

CDK inhibitory domain and moreover, these same CKIs also contained a similar potential 
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nucleolar localization signal. Therefore, our findings highlight a potentially 

evolutionarily-conserved regulatory mechanism that is important to tightIy regulate the 

Ievels of CKI-2 to ensure appropriate cell cycle progression, while this occurs through 

SUMO-mediated subcellular Iocalization and degradation. We demonstrated the detailed 

results in chapter III. 

The last part of our study was devoted to understanding the role of the RING finger 

protein called RNF-1 which was identified as a CKI-2 interacting protein from the 

two-hybrid screen. As many RING finger proteins act through a multisubunit E3 ubiquitin 

Iigase such as SCF complex, we speculated that RNF-1 might target CKI-2 for degradation, 

probably in an ubiquitin-dependent manner. We found that RNF-1 interacted with the 

C-terminus of CKI-2, which seemed to be required for the destabilization of CKI-2 as 

described in chapter III. In order to investigate the relationship between CKI-2 and RNF-1, 

we tumed to overexpression ofRNF-1 as a gain offunction strategy since the function of 

RNF -1 seems redundant with other RING finger proteins. We observed that co-expression 

ofRNF-1 with CKI-2 suppresses the embryonic Iethality associated with mis expression of 

CKI-2, which is correlated with the increased rate of CKI-2 degradation. Moreover, we 

found that the CKI-2 degradation occurs in an ubiquitin-dependent manner through 

proteasome- mediated proteolysis. InterestingIy, using a yeast-based assay, we found that 

SMO-1 seems to antagonize the interaction between CKI-2 and RNF-l. Therefore, our 

study has umaveled a complex mechanism required to ensure that the Ievels of CKI-2 are 

appropriately regulated through RNF-1-mediated proteolytic degradation, which may be 

modulated by SUMO. These results are presented in chapter IV. 
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Chapter II 

Cell cycle regulators control centrosome elimination during 

oogenesis in C. elegans 
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2.1. Abstract 

In many animaIs the bipolar spindle ofthe first zygotic division is established following the 

contribution of centrioles by the sperm at fertilization. To avoid the formation of a 

multi-polar spindle in the zygote, centrosomes are eliminated during oogenesis in most 

organisms, although the mechanism of this selective elimination is poody understood. 

Here we show that cld-2, a C. elegans cyc1in-dependent kinase inhibitor, is required for 

their appropriate elimination during oogenesis. In the absence of cld-2, embryos have 

supemumerary centrosomes and form multi-polar spindles that result in severe aneuploidy 

following anaphase of the first division. Moreover, we demonstrate that this defect can be 

suppressed by reducing Cyc1in E or CDK2levels. This implies that the proper regulation of 

a Cyc1in E/CDK complex by cld-2 is required for the elimination of the centrosome that 

occurs prior to or during oogenesis in order to ensure the assembly of a bipolar spindle in 

the C. elegans zygote. 
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2.2. Introduction 

Experiments perfonned by Boveri over a century ago revealed the essential requirement 

for accurate centrosome inheritance and its role in regulating genome integrity in the 

developing embryo (Boveri, 1900). In many metazoans, the establishment of the bipolar 

spindle during the tirst zygotic cell division is dependent on the patemal contribution of a 

microtubule organising centre. Following fertilization, this organelle will recruit 

pericentriolar material present within the oocyte cytoplasm to assemble the two functional 

centrosomes that will detine the tirst mitotic spindle. In addition to this essential role of the 

centrosome in organising the spindle, in C. elegans this structure is also required to specify 

the anterior/posterior axis following spenn entry in a microtubule-dependent 

and-independent manner (Cowan and Hyman, 2004(a); Q'Connell et al., 2000; Wallenfang 

and Seydoux, 2000). Therefore, the appropriate regulation of centrosome number is pivotaI 

since aberrations in these controls result in asymmetrical chromosome segregation and/or . 
severe polarity defects. 

Although centrosomes are associated with most nuc1ei in C. elegans, including 

those in the genn line, they are absent in oocytes, although they are clearly detectable and 

required for fertility in the spenn (Kemp et al., 2004). The loss ofthe centrosome from the 

oocyte is common to many species, while the mechanism responsible for this elimination is 

currently unknown. 

During our characterisation of a C. elegans cyc1in-dependent kinase inhibitor 

(cki-2) we noticed that compromise of cki-2 function caused embryos to arrest at the 

one-cell stage with a multi-polar spindle. We show here that this defect is due to a role of 

cki-2 in centrosome elimination and our data provide pioneering evidence on how 

centrosomes are appropriately eliminated from the developing oocyte. 
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2.3. Results and Discussion 

Recently large-scale screens using RNA-mediated interference (RNAi)-based strategies 

have provided a framework for understanding many maternally-controlled embryonic 

pro cesses (Sonnichsen et al., 2005). However, not aIl genes respond equally to RNAi. Our 

initial use of RNAi analysis to understand the role of a C. elegans CDK inhibitor called 

cld-2 was not informative due to the variable penetrance and frequency of the 

RNAi-related phenotypes, while no cld-2 aIle1es are currently available. We therefore 

turned to an alternative reverse genetic approach called co-suppression, which is a 

RNAi-related post-transcriptional gene silencing mechanism that is conserved among 

many phyla (Ketting and Plasterk, 2000). 

In wild-type animaIs cld-2 mRNA is normally present in the hermaphrodite germ 

hne, but is exc1uded from the distal mitotic zone (Figure 2.1A). In order to test whether 

cld-2 could be compromised through the co-suppression pathway we expressed the 3' 

portion of the cld-2 gene (Dernburg et al., 2000), which could not encode a functional 

protein and shared a very low degree of sequence conservation with cid-l, a second C. 

elegans CDK inhibitor (Figure S 1.1). The co-suppression transgenic array inc1uded a GFP 

marker facilitating our detection of animaIs that possessed the transgene. We obtained 

several transgenic lines in different genetic backgrounds, aU of which indicated that 

reduction of cld-2 consistently resulted in reproducible embryonic lethality wherein 

approximately 60% of the GFP transgene-bearing embryos (GFP+) failed to complete 

embryogenesis (Table 2.1A). The abundance of cki-2 mRNA was reduced substantially 

throughout the gonad in these GFP+ animaIs (Figure 2.1B), while the observed embryonic 

lethality could be reversed by genetically disrupting this silencing mechanism using 

mutants in the downstream components of the co-suppression pathway (mut-7 and rde-2), 

indicating that the observed lethality was specifically due to the reduction of cld-2 through 

co-suppression (Table 2.1A). We therefore refer to these GFP+ animaIs as cld-2 

co-suppressed (cld-2cs). 
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Although approximately 40% of the cki-2cs embryos survive embryogenesis and 

continue larval development without visible abnormalities, we found that these animaIs are 

irradiation-sensitive (Figure 2.1H). This indicates that despite their wild-type appearance, 

the DNA damage response in cki-2cs animaIs is nonetheless compromised. Therefore, 

reduction of cki-2 function results in cell cyc1e-re1ated abnormalities that reflect the 

various thresholds of cki-2 activity required to appropriately execute these cellular 

processes. 

Among the embryonically-arrested embryos, we noticed that 7% of the embryos 

(n=558) arrested at the one-cell stage with multiple micronuc1ei (9.1 % (n=66)), consistent 

with abnormal chromosome segregation and/or cytokinesis (Figure 2.1C-E). Examination 

of the affected zygotes by DIC indicated that early events (contractions of the anterior 

membrane or ruffling and pseudoc1eavage) prior to the pronuc1ear meeting were not 

significantly different from wild-type (data not shown). Shortly after nuc1ear envelope 

breakdown however, the two pronuc1ei re-formed and several de nova micronuc1ei became 

apparent. Cleavage furrows appeared occasionally, but would regress and approxirnately 

50% (n=18) of the micronuc1ei-containing embryos did not form a c1eavage furrow. The 

remaining 50% were defective in c1eavage plane orientation, although both classes did 

undergo multiple rounds ofkaryokinesis (Figure 2.lC-E). 

To better understand the basis of the "one-cell" arrest phenotype, we imaged 

cki-2cs embryos that harboured GFP-histone and GFP-~-tubulin transgenes. In sorne 

embryos we observed a second maternaI pronuc1eus (4.5% (n=66)), a meiotic defect that 

arises due to abnormal polar body exclusion (Figure 2.lF). We also noted that 

chromosomes failed to align correctly following nuc1ear envelope breakdown, while the 

spindle microtubules appeared to be organised around multiple foci, typical of extra 

microtubule organizing centres or centrosome-like structures (Figure 2.1 G). 

To confirm that this unique multi-polar spindle phenotype was due to the reduction 

of cki-2 and not due to co-suppression-related phenomena or non-specifie effects on cki-l, 
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we used an RNAi-sensitive strain (Simmer et al., 2002) to reduce either c/d-} or c/d-2 

levels to reproduce the cld-2cs-associated multi-polar spindle phenotype. We did detect 

one-cell embryos with supernumerary centrosomes following cld-2(RNAi) in rrf-3 (Table 

2.lB; Figure 2.3E and F) although the penetrance of the defect was considerably lower 

than that observed in cld-2cs animaIs. On the other hand, despite causing a high frequency 

of embryonic arrest in the rrf-3 background, cld-} (RNAi) never caused a one-cell arrest or a 

multi-polar spindle phenotype (Table 2.1 B). Therefore we conclude that the 

supernumerary centrosomes and the resulting multi-polar spindle defect observed in 

cld-2cs embryos were not due to effects on cld-} function or due to co-suppression per se, 

but rather due to a loss or reduction of cld-2 function. 

To address whether cld-2 affected the centrosome cycle during spermatogenesis, or 

alternatively during oogenesis, we examined centrosome numbers in early pronuclear 

stage embryos using an antibody against SPD-2, a coiled-coil protein that associates with 

the centrosome (Kemp et al., 2004). We noticed that unlike wild-type embryos, strong 

SPD-2 expression was visible at distinct foci in both the paternal and maternaI pronuclei 

(pronuclear meeting stage) (Figure 2.2A and B). To as certain whether the presence of the 

extra centrosomes was indeed due to their contribution from the maternaI pronucleus, as 

opposed to defects associated with failed cytokinesis (Skop et al., 2004), we imaged 

embryos from meiosis to pronuclear meeting using GFP-y-tubulin, revealing that 

GFP-y-tubulin was associated with the maternaI pronucleus in pre-pronuclear migration 

stage embryos obtained from cld-2cs animaIs (6.7% (n=60); Figure 2.3B and C), while we 

never observed GFP-y-tubulin associated with the maternaI pronucleus in wild-type 

embryos (n=80; Figure 2.3A). 

Taken together, these results indicate that the supernumerary centrosomes were 

already associated with the maternaI pronucleus at the time of fertilization in cld-2cs 

embryos, possibly because they were not appropriately eliminated in the maternaI germ 

line due to a reduction in cki-2 function. However, since we could not show definitive live 

images of an embryonic cell division beginning in the pre-pronuclear stage to the first 
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mitotic division, we cannot fonnally rule out that the supemumerary centrosomes may 

arise from a cytokinesis failure after the first mitotic division. 

Therefore, to test whether centrosome elimination is defective in cld-2cs oocytes, 

we stained the gonads of affected (GFP+) and unaffected (GFP-) animaIs with an 

anti-SAS-4 antibody to detennine if centrioles were abnonnally present in the oocytes of 

cld-2cs animaIs. SAS-4 is associated with all centrioles in C. elegans and is required for 

their duplication (Leidel and Gonzcy, 2003). In wild-type animaIs SAS-4 is associated 

with all genn cell nuclei, although SAS-4-staining foci were noticeably absent from 

oocytes (Figure 2.4A). The absence of the SAS-4/centriole staining in oocytes is consistent 

with previous observations that the centrosomes are eliminated from the genn cell nuc1ei at, 

or around, the stage of oocyte commitment (Albertson and Thomson, 1993). 

Anti-SAS-4 staining of the oocytes from the cld-2cs hermaphrodite animaIs 

revealed that SAS-4 staining structures were present next to the oocyte nuc1ei at a 

frequency consistent with the penetrance of the extra centrosome defect caused by the 

cld-2cs transgene (8.9% (n=79)), while no obvious SAS-4 foci were ever observed in 

oocytes in wild-type animaIs (Figure 2.4B; data not shown). Although this is the strongest 

evidence that cld-2 is required for appropriate centriole elimination during oogenesis, we 

wanted to further confinn that the anti-SAS-4 staining recognized bonafide centrioles and 

not simply SAS-4 aggregates in the oocyte. We therefore stained the oocytes ofwild-type 

and cld-2cs animaIs using anti-SAS-4 and anti-SAS-6, both of which recognize the 

centriole (Dammennann et al., 2004; Leidel and Gonczy, 2005). Both antibodies 

recognized the centrioles of embryos, where they co-Iocalize with y-tubulin (Figure S 1.3 in 

appendix I). Following double staining we compared the number of overlapping signaIs 

between wild-type and cld-2cs genn lines (Figure 2.4C-E). Consistent with our previous 

observation (Figure 2.4B), we noted that significantly more SAS-6 staining oocytes 

showed overlapping positive signaIs with anti-SAS-4 in the cld-2cs animaIs (14/55 SAS-6 

positive oocytes) compared to wild-type (1/29 SAS-6 positive oocytes-this single 

overlapping SAS-4 signal may be due to juxtaposition of the signaIs during the 

deconvolution process) (Figure 2.4D and E). Therefore, our staining with two independent 
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centriole-specific antibodies suggests that the observed foci are indeed centrioles, which 

are not appropriately eliminated in the cld-2cs oocytes. 

In C. elegans, oogenesis occurs in an assembly line-like fashion (Figure 2.SA; 

Schedl, 1997). We observed that the SAS-4-staining structures persisted into the late stages 

of oogenesis in cld-2cs hermaphrodites (Figure 2.SB-D). These data are consistent with 

cld-2 playing a critical role in the timely elimination of the maternaI centrioles during 

oogenesis, and when its activity is reduced below a critical threshold the centrioles persist 

and eventually will give rise to the supernumerary centrosomes. Although our results 

strongly argue that cki-2 is involved in the elimination of maternaI centrioles, 

ultrastructural studies would provide more definitive evidence of centriolar perdurance. 

Intriguingly, although the maternally-contributed centrosomes are the likely cause of the 

abnormal division observed in the one-cell arrested cld-2cs embryos, we have been unable 

to show that these supernumerary centrosomes can nucleate microtubules and/or duplicate 

beyond the first division. We also noticed that the polarity of the affected embryos seems 

consistently normal based on GFP-PAR-2 (100% (n=17); Figure 2.2C and D) or P-granule 

staining (Figure 2.2E) (Cowan and Hyman, 2004(b)). Our observation that 

anterior/posterior polarity does not seem to be affected in cld-2cs zygotes suggests that 

although the maternally-contributed centrosomes appear competent to organise a mitotic 

spindle, they are seemingly not equivalent to the paternal centrosome in providing the 

polarity cue in the zygote. The basis of this difference between the centrosome pairs is 

currently unknown since no difference in centrosomal morphology or molecular 

composition has been identified between the centrosomes of paternal and maternaI origin. 

Our observations, although obtained with fixed embryos, suggest that a functional 

difference may distinguish the maternaI and the paternal centrosome in establishing the 

AfP polarity at fertilization, but because we have been unsuccessful in imaging the 

maternally-contributed centrosomes into and beyond the first division, while 

simultaneously monitoring the establishment of the P AR-2 domain, we cannot formally 

rule out that the polarity is established early by the sperm and the extra centrosomes we 
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observe in the multinuc1eate embryos are patemal in origin that have duplicated and appear 

later due to cytokinesis defects (Figure 2.2A-E). 

Because meiotic defects were also observed in cld-2cs embryos, we determined 

whether the abnormal presence of centrosomal components on the meiotic spindle might 

somehow disrupt the normal mechanism of the acentriolarmeiotic division. We found that 

the morphology of the meiotic spindle in early cld-2cs zygotes is disorganised (Figure 

S l.2C in appendix 1), while SPD-2 was detectable as a diffuse haze surrounding the spindle 

(Figure S1.2A and B in appendix 1). We also found that ZYG-l, a protein that is also 

required for centrosomal duplication (0' Connell et al., 2001), was similarly present on the 

meiotic spindle in cld-2cs zygotes (data not shown), suggesting that the atypical presence 

of these ectopic centrosomal materials may be responsible for the meiotic spindle 

abnormalities and the consequent meiotic defects observed in cld-2cs embryos. 

The loss of cld-2 could result in misregulated levels of CDK activity within the 

oocyte, causing a centrosomal anlage to persist and eventually form the tetra-polar spindle 

that results in a one-cell arrest. To test this scenario, we compromised Gl/S CDK activity 

by performing cye-l (RNA i) , which is the only E-type cyclin in C. elegans (Fay and Han, 

2000). 

Loss of cyc1in E has no effect on the tirst cell division in C. elegans (Fay and Han, 

2000). However, following cye-l (RNAi) in cld-2cs animaIs, the characteristic one-cell 

arrest phenotype was suppressed substantially, which was also reflected in the nearly 

two-fold reduction in the frequency of the multi-polar spindle defect (Figure 2.2F). A 

similar degree of suppression was also observed following K03E5.3(RNAi), where 

K03E5.3 is the predicted C. elegans CDK2 homologue (Liu and Kipreos, 2000; Figure 

2.2F). Control animaIs injected with dsRNA corresponding to cyc1in D showed no such 

effect (data not shown). 

That this effect of cyclin E occurs independently of CDK activity (Matsumoto and 

Maller, 2004) seems unlikely based on the current accepted mechanism of CKI function 

and our observation that K03E5.3(RNAi) suppressed the frequency ofthe persistence ofthe 
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maternaI centrosomes to levels comparable to cye-l(RNAi). Our data are thus consistent 

with the 10ss of cki-2 resulting in misregulated cyc1in E/CDK2 activity in the germ line that 

consequently allows centrioles to perdure irito the developing oocyte. 

That both ZYG-l and SPD-2 persist during oogenesis and are present on the 

meiotic spindle in cki-2cs embryos suggests that their levels may be regulated by cyc1in 

E/CDK activity, in a manner similar to Mpsl (Fisk and Winey, 2001). The loss of cki-2 

therefore reveals a previously undescribed function of cyc1in E/CDK complexes in 

centrosome stabilisation in the C. elegansgerm line. Through the timely regulation ofthis 

activity, the maternaI centrosomes are eliminated as the germ cell acquires its oocyte fate. 

This nov el function of CDKs and CKIs in centrosome inheritance would probably 

not have been uncovered through conventional gene targeting in mouse models. Unlike 

most animaIs, the sperm does not contribute the centriole(s) in the mouse; instead they 

arise de nova in the fertilised zygote (Schatten, 1994). Why then do most metazoans 

selectively eliminate the centrosomes within the maternaI germline? The answer may come 

from species that can develop parthenogenetically, where the oocyte is thought to harbour 

a centriolar anlage (Delattre and Gonczy, 2004.). This would be selected against in species 

that undergo a biparental mode of development based on sperm-specific centriolar 

contribution. The elimination of the maternaI centrosomes, either through CKI-mediated, 

or related mechanisms, would block the ability of the oocyte to develop 

parthenogenetically and strongly favour the union of sperm and egg to trigger the onset of 

cell division in the zygote. 

Because the mode of centrosome inheritance in C. elegans shares considerable 

parallels with that of many animaIs, identification of the CDK targets in this model may 

provide invaluable insight pertinent to the mode of centrosome inheritance shared by most 

metazoans, inc1uding humans. 
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2.4. Materials and Methods 

2.4.1. Nematode Strains 

The following C. elegans strains were used: N2 Bristol was used as the wild-type 

throughout. MR258 (N2; rrEx258 [fem-l::cki-2C; elt-2::GFP]), MR306 (N2; rrEx306 

[fem-l::GFP; elt-2::GFP]), MR294 (rde-2; rrEx294 [fem-l::cki-2C; elt-2::GFP]), MR303 

(mut-7; rrEx303 [fem-l::cki-2C; elt-2::GFP]), NL917 (mut-7 (Pk204)), WM29 (rde-2 

(ne22l)), MR446 (unc-ll9; ruls32 [unc-ll9(+); pie-l::GFP::H2B]; ajlsl [unc-ll9(+); 

pie-l::GFP::TBB-2]; rrEx258 [fem-l::cki-2C; elt-2::GFP]), XA3501 (unc-ll9; ruls32 

[uncll9(+);pie-l::GFP::H2B]; ajlsl [unc-ll9(+);pie-l::GFP:: TBB-2]), TH27 (unc-ll9; 

ddls6 [unc-1l9(+); pie-l::GFP:: TBG-l]), MR628 (itISl53 [ral-6(+); 

pie-l::PAR-2::GFP]; rrEx258 [fem-l::cki-2C; elt-2::GFP]), MR824 (uncll9; ddls6 

[unc-ll9(+); pie-l::GFP::TBG-l]; rrEx824 [fem-l::cki-2C; elt-2::GFP]), NL2099 

(rrf3(pk1426)), KK866 (itISl53 [ral-6(+);pie-l:: PAR-2:: GFP]). All C. elegans strains 

were cultured using standard techniques and maintained at 20°C unless stated otherwise 

(Brenner, 1974). 

2.4.2. Constructs 

For cki-2 co-suppression, 3kb of genomic sequence upstream of the fem-l translational 

start site was PCR-amplified from N2 genomic DNA followed by SphIl Pstl digestion and 

insertion into pPD49.26 to yield pMR220. The cki-2e fragment (amino acids 

1l6-259-1acking a translational start site (see Fig. SI)) was prepared by PCR and then 

inserted into pMR220 at the BamHI/XmaI sites to create pMR221. The fem-l promoter 

fragment was inserted into pPD95.77 at SphIlPstI sites to yield pMR266. For RNA 

interference (RNAi) of cki-2: a cki-2 template for dsRNA synthesis was generated by 

subcloning the cki-2 cDNA into the PstIlKpnI sites ofpBluescript II to generate pMR215. 

cye-l dsRNA was prepared as described (Fay and Han, 2000). cki-l dsRNA was prepared 

as described (Hong et al., 1998). K03E5.3 dsRNA template was amplified from a clone of 

the bacterial feeding RNAi library (I-ID09) using PCR and inserted into the SacIlSacII 

sites ofpBluescript II to generate pMR330. 
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2.4.3. cki-2 co-suppression and RNA interference 

pMR220 and pMR221 were co-injected (50/lg/ml) with 100/lg/ml elt-2::GFP as a 

co-injection marker into N2 hermaphrodites as described (Mello et al., 1991). FI progeny 

expressing elt-2: :GFP were singled and their progeny (F2) were scored for transmission of 

the extra-chromosomal array. Embryonic lethality was scored from each transgenic line. 

dsRNA was obtained by in vitro transcription reactions, annealing, and injection as 

described (Fire et al., 1998). Injected animaIs were transferred to new plates every 24 hours 

and the FI progeny was examined for visible abnormalities that affected development or 

cell division. 

2.4.4. Antibodies and Immunological methods 

The following primary antibodies were used: anti-a-tubulin (Sigma), polyc1onal 

anti-rabbit SPD-2 (a gift from Kevin O'Connell), rabbit polyc1onal anti-SAS-4 (a gift from 

Pierre Gonczy), Cy3-conjugated anti-SAS-6 and Cy5-conjugated anti-SAS-4 (a generous 

gift from Karen Oegema), rabbit polyc1onal anti-P-granule (a gift from Susan Strome). 

Secondary antibodies were anti-rabbit or anti-mouse Texas-Red or FITC-conjugated 

secondary antibodies or anti-rabbit Alexa Fluor 594 secondary antibody (aH Invitrogen). 

DAPI (4,6-diamidine-2-phenylindole, Sigma) was used to counterstain slides to reveal 

DNA. Embryos or hermaphrodite gonads was fixed and stained as described elsewhere. 

Indirect immunofluorescence microscopy was performed using a 60x oil-immersion 

objective lens in a Leica DMR compound microscope equipped with a Hamamatsu 

C4742-95 digital camera, imaging -0.5 /lm-thick optical section. Image analysis, 

computational deconvolution and pseudocolouring were performed using Openlab 4.0.2 

software (Improvision, UK). AlI images using Cy3-conjugated anti-SAS-4 and 

Cy-5-conjugated anti-SAS-6 were acquired (using a 60x oil-immersion objective lens) and 

deconvolved using a DeltaVision Image Restoration System (Applied Precision). Data 

were collected as a series of 35 optical sections in increments of 0.25 /lm under standard 

parameters using the SoftWoRx 3.0 pro gram (Applied Precision). Images were processed 

using Adobe Photoshop (version 8.0). AlI microscopic works were performed at 20°C. 
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2.4.5. In situ hybridisation 

Digoxigenin-labelled antisense and sense probes were generated using T7 and T3 kits with 

digoxigenin-11-UTP (Roche). In situ hybridization was perfonned on the gonads dissected 

from wild-type or cld-2cs (GFP+) adult hennaphrodites as described (Feng et al., 1999). 
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2.7. Legends to Figures 

Figure 2.1. cki-2 co-suppression (cki-2cs) causes multiple phenotypes typical of a 

negative cell cycle regulator. (A,B) in situ RNA hybridisation using an antisense eld-2 

probe on (A) wild-type, or (B) eld-2es gonads extruded from adult hermaphrodites. (C,D) 

Sequential DIC images of a eld-2es one-cell embryo showing normal pronuc1ear meeting 

(C), nuclear divisions without appropriate cytokinesis giving rise to supernumerary nuclei 

(D, arrowheads) with variable DNA content based on staining with DAPI (E). (F,G) A 

sequential GFP fluorescence image of eld-2es one-cell arrested embryo that expresses 

[H2B::GFP; ~-tubulin::GFP]. The open arrowhead indicates an extra maternaI pronuc1eus 

and asterisks (*) mark centrosomes. The arrows indicate polar bodies. (H) Irradiation 

sensitivity of eld-2es (GFP+) (closed square) or wild-type sibling (GFP-) animaIs (open 

circle). The values are presented as the percentage of embryos that hatched from a total 

population of embryos laid from irradiated, or not, parents that were examined at each 

point. At point zero (0) in each experiment, the survival (%) was normalized to 100%. The 

error bars represent the standard deviation (±SD) oftwo independent experiments (p<0.05, 

95% confidence). Scale bar is 10~m. 

Figure 2.2. Supernumerary centrosomes observed in cki-2cs embryos are contributed 

by the maternai pronucleus in a cyclin E/CDK2-dependent manner. (A-B) late 

pronuclear stage (A) wild-type, or (B) eld-2es one-cell embryo stained with DAPI (blue), 

anti-SPD-2 (green), and anti-a-tubulin (red). The small arrowheads indicate the pronuclei 

at different stages. (C-E) (C,D) PAR-2::GFP (red) in the posterior cortex (open 

arrowhead), of (C) a wild-type, or (D) a eld-2es one-cell embryo. (E) anti-P-granule 

staining (red spots; closed arrowhead) of a eld-2es one-cell embryo. Arrows indicate polar 

bodies (anterior) and the white asterisks (*) mark centrosomes. p and m, paternal and 

maternaI pronuc1ei, respectively. (F) Frequency (%) of eld-2es-associated one-cell arrest 

and the persistence of maternaI centrosome following eye-l (RNAi) or K03E5.3(RNAi). 

Standard deviation (±SD) of at least three independent experiments is shown and asterisks 

represent significant differences compared ta eld-2es controIs (p<0.05, 95% confidence). 

n.d, not determined. IThe one-cell arrest phenotype was presented as the percentage of 
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unhatched one-cell embryos from total number of progeny (embryos and larvae). 2The 

embryos from injected or uninjected (control) animaIs were labelled with DAPI and 

anti-SPD-2 antibody 24 hours after dsRNA microinjection and the resulting one-cell 

embryos were examined for supernumerary centrosomes. The results are presented as the 

percentage of the total number of embryos examined at the one-cell stage (n). AlI one-cell 

embryos examined were at, or prior to the first cell division. 3 The variation observed in the 

penetrance of the centrosome defect is due to the progressive silencing of the 

co-suppression transgene over time. 

Figure 2.3. cki-2(RNAi) causes defects in the elimination of the maternaI centrosome. 

(A) Early wild-type one-ceIl embryo (pre-pronuclear migration stage), or (B-C) cld-2cs 

embryos that express GFP-y-tubulin to visualize centrosomes. (D-F) Early one-cell 

embryos (pre-pronuclear migration stage) from (D) rrf-3, or (E,F) rrf-3; cld-2(RNAi) adult 

hermaphrodites stained with anti-SPD-2 antibody. The arrow indicates polar bodies 

stained with DAPI (anterior). White asterisks (*) mark centrosomes (maternaI and 

paternal). p and m, paternal and maternaI pronuclei, respectively. The white rectangular 

box in (A) shows the paternal centrosome that could not be observed in the same focal 

plane. The rectangular boxed regions in (B,D-F) were magnified to show greater detail. 

Figure 2.4. Centrioles are not appropriately eliminated during oogenesis in cki-2cs 

animaIs. (A,B) Extruded gonads from (A) wild-type, or (B) cld-2cs adult hermaphrodites 

stained with DAPI (red) and anti-SAS-4 (green). The bracket in (A) delineates the region 

that corresponds to oocyte commitment where about 50% of the germ cell nuclei stain 

positively for SAS-4. The region within the rectangular box is shown in detail and the open 

arrowheads indicate SAS-4 foci (centrioles), in this inset and throughout. The inset in (B) 

shows a magnified oocyte (from the white frame) with two SAS-4 staining foci. (C-E) (C) 

a wild-type meiotic genn cell, or (D) a wild-type oocyte, or (E) an oocyte from a cld-2cs 

adult hermaphrodite; aIl stained with DAPI (blue), Cy3-conjugated anti-SAS-6 (green), 

Cy5-conjugated anti-SAS-4 (red). The region within the rectangular box is shown at higher 

magnification. The scale bar is 10llm (A,B) or 2.51lm (C-E). 
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Figure 2.5. Centrioles persist into the Iater stages of oogenesis in cki-2cs animaIs. (A) 

Diagram of late stage oogenesis in the proximal gonad arm. The number indicates the 

position of the oocyte undergoing meiotic maturation. Oocytes in diakinesis of meiotic 

prophase l prior to maturation (-3, -2); the oocyte adjacent to the spermatheca is designated 

as -1. (B-D) A proximal gonad arm from (B) a wild-type animal, or (C,D) cki-2cs animaIs 

stained with anti-SAS-4 antibody. S, Spermatozoa and/or Spermatids and Sp, Spermatheca. 

Open arrowheads indicate SAS-4 foci detected in the oocyte nuclei (C,D). The white 

rectangular boxed region was magnified to provide greater detail. The scale bar equals 

lOJ..l.m. 
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line #1 
line #2 
line #3 

B 
Genotype 

rrf-3 
rrf-3; cki-l (RNAi) 
rrf-3; cki-2 (RNAi) 
N2; [fem-l: :cki-2C]3 

TH27; [fem-l,' :cki-2C]3 

% Ernbryonic Lethality (Ernb) 

(GFP+) (GFP-) 

n.a 0.29 (n=1384) 
n.a 5.5 (n=710) 

o (n=244)1 n.d 

26.9 (n=466)1 0.7 (n=280) 
23.3 (n=l03) n.d 

8.1 (n=186) n.d 

55.3 (n=159)1 27.6 (n=116) 
42.2 (n=436) 25.1 (n=231) 

29.1 (n=1257)1 1.7 (n=232) 
21.5 (n=395) n.d 
19.2 (n=198) n.d 

5.7 (n=357) 7.5 (n=374) 
Il.6 (n=404) 17.7 (n=561) 

17.9 (n=313) 20.2 (n=325) 
Il.4 (n=245) 12.1 (n=440) 
12.7 (n=181) 9.4 (n=276) 

%Ernb % Supemurnerary centrosorné 

23.0±1.2 (n=374) 
94.7 (n=570) 
27.5±3.7 (n=734) 
26.9 (n=466) 
29.1 (n=1257) 
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o (n=76) 
o (n=40) 

4.5 (n=111) 
13.5 (n=133) 
6.7 (n=60) 



Table 2.1. cki-2 co-suppression causes embryonic lethality. (A) A C. elegans strain that 

harbours an extrachromosomal array containing the [fem-l::cki-2CJ co-suppression 

transgene segregates animaIs that possess the array (GFP+), or not (GFP-), as indicated by 

the presence of the dominant e/t-2::GFP co-transformation marker. (B) Similar 

phenotypes were observed in cki-2(RNAi); rrf3 animaIs, while extra centrosomes were not 

observed in cki-l (RNAi) embryos. The embryonic lethality (Emb) was presented as the 

percentage of unhatched embryos from total progeny obtained from GFP (+) or (-) young 

adult animaIs. The frequency of the Emb phenotype in the various transgenic lines 

obtained is shown (n/n). n.a, not available and n.d, not determined. The embryonic lethality 

from GFP (-) animaIs was determined from only one transgenic line of each tested 

genotype. IThe transmission frequency (%) of the transgenic array in these strains was 

scored as the number of GFP (+) progeny from the total number of progeny, and the 

transmission rate of the cki-2cs strain employed throughout the study was approximate1y 

50%. 2Embryos were stained with anti-SPD-2 or y-tubulin::GFP and the results are 

presented as the percentage of the total number of one-ceIl stage embryos examined. AIl 

one-cell embryos examined were at, or prior to, the tirst ceIl division. 3The frequency of the 

supernumerary centrosome defect was determined in the most penetrant co-suppressed 

lines (line #1 of N2; [fem-l::cki-2C] and TH27; [fem-l::cki-2C]) for comparison. 
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Figure 2.1 
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ole DAPI GFP a-tub Merge 

F 
Genotype One-cel! arrest (%)1 Supernumerary centrosome (%)2 

cki-2cs 1.59:t0.45 (n=1860) 
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n.d 
n.d 
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Connecting text 

The data described in chapter II highlight the role of cld-2, a CDK inhibitor homologue, in 

the regulation of centrosome elimination in the germline of hermaphrodite C. elegans. We 

demonstrate that the loss of cld-2 in the germline results in the formation of a multipolar 

spindle in the first mitotic division ofthe embryo due to the presence of extra centrosomes. 

From detailed characterization of one-cell embryos and the maternaI germline using 

immuno fluorescence and real time imaging, we observed that the centrioles are not 

appropriately eliminated during oogenesis in the cld-2 co-suppressed animaIs, resulting in 

the maintenance of supernumerary centrosomes into the one-cell embryo. Moreover, we 

show that cyclin E (RNAi) or K03E5.3 (RNAi) considerably suppressed the frequency of 

one-cell embryos carrying the supernumerary centrosomes, suggesting that cyclin E /Cdk2 

must be controlled in a timely manner in the germline, presumably by cld-2 to ensure the 

proper elimination of centrioles. Overall, we have described a novel role of cki-2 in the 

elimination of centrioles during oogenesis, which provides a pioneering step toward 

understanding how centriole disassembly occurs, in addition to the potential non-cell cycle 

functions of CDK inhibitors. 
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Chapter III 

CKI-2 regulates embryonic cell divisions and is modulated by 

SUMO-mediated nucleolar localization and subsequent 

degradation 
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3.1. Abstract 

In many different cell types, progression through the cell cycle is controlled by regulating 

the G1-to-S phase transition and this is often achieved by the activity of CDK-inhibitor 

(CKI) pro teins of the CIP/KIP family. During postembryonic development in C. elegans 

diverse developmental and environmental cues impinge on the cld-} to confer 

developmentally-regulated G 1 arrest (Hong et al., 1998), however little is known about 

how cell division may be controlled in the closed environment of the developing embryo. 

A second C. elegans CIP/KIP family homologue, cld-2, has been identified but has been 

less weIl characterized due to its relative insensitivity to RNAi. We demonstrate here that 

cld-2 is an essential regulator of embryonic cell cycle progression and reduction offunction 

leads to extra cells in both the intestinal and pharyngeal fields during embryogenesis. 

Using a yeast two-hybrid screen we identified two CKI-2 interactors (c. elegans PCNA 

and SUMO). C. elegans SUMO covalently modifies CKI-2 resulting in its subsequent 

localization to the nucleolus followed by rapid degradation of CKI-2, suggestive of a novel 

mechanism to maintain appropriate cellular CKI-2 levels. Interestingly, evolutionarily 

divergent CDK inhibitor family proteins carry the consensus SUMOylation sequence at the 

CDK inhibitory domains and a predicted nucleolar localization signal in the C-terminus. 

Therefore, we suggest that this novel regulatory mechanism may represent an ancestral 

method of controlling the activities ofthese critical cell cycle effectors. 
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3.2. Introduction 

The morphological complexity typical of most animaIs is generated predominantly during 

the embryonic stages of development. During this period cell division and cell fate 

specification must occur synchronously to instruct cell populations to give rise to the 

tissues necessary for postembryonic life. Despite the importance ofthese divisions little is 

understood about how they are regulated, although the importance oflocalised degradation 

ofkey cell cycle effectors has been implicated (Su et al., 1998). Studies in C. elegans have 

indicated that division timing during embryogenesis is dependent on S-phase progression 

within the individual blastomeres (Edgar and McGee, 1988; Lambie, 2002). How these 

rapid cycles can occur in an environment where positive cell cycle effectors remain 

non-limiting, and remain regulated in a robust, invariant, oscillatory manner is also 

unclear. This becomes particularly important since any reduction in repli cation efficiency 

that may occur during these cleavage divisions could result in cell fate alterations, 

suggesting that the integrity of the DNA repli cation complex, or its timely function, is 

required to appropriately specify cell fates during these crucial divisions (Enca1ada et al., 

2000). 

In sorne organisms cyclin-dependent kinase inhibitors (CKIs) provide this control 

through their canonical function in S-phase regulation (Sherr and Roberts, 1999). 

p21Cipl/Wafl, a mammalian CIP/KIP family protein, negatively regulates the cell cycle 

through binding a variety of CDKs in addition to its ability to associate with the DNA 

repli cation processivity factor PCNA (proliferating cell nuclear antigen) (Waga et al., 

1994). In Drosophila and C. elegans G l/S progression during development is controlled, at 

least in part, by the CKI family members Dacapo and c/d-l, respectively (Lane et al., 1996; 

Hong et al., 1998). Both of these genes have roI es in cell cycle regulation during 

embryogenesis (Lane et al., 1996; Kostic and Roy, 2002), therefore it is conceivab1e that 

the regulation of S-phase progression which govems cell division during embryogenesis, 

could be regulated through the action of matemally-deposited CKI proteins or mRNA. 
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The role of cld-l has been characterised in numerous deve10pmental contexts in C. 

elegans (Hong et al., 1998; Kostic and Roy, 2002; Fukuyama et al., 2003; Baugh and 

Sternberg, 2006), but its role appears to be critical for later embryonic events and larval 

development. A second CKI present on chromosome II adjacent to cld-l is under different 

promoter control and is not functionally redundant with cld-l (Feng et al., 1999; Fukuyama 

et al., 2003). This CKI, referred to as cld-2, has been difficult to characterise due to its 

refractoriness to standard RNAi analysis. 

Here we show that cld-2 is an essential cell cycle regulator during early embryonic 

cell divisions. Its endogenous levels are very low and appear to be under strict control 

mediated through site-specific SUMOylation of lysine residues present in the N-terminal 

domain ofthe protein. This modification results in subsequent localization to the nucleolar 

compartment after which CKI-2 is rapidly degraded. This novel means of regulation may 

be a conserved mechanism of cell cycle control as other conserved CKI-2 orthologues 

share similar putative C-terminal nucleolar localization sequences in combination with 

consensus SUMOylation sites in their respective N-terminal domains. 
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3.3. Results 

3.3.1. CKI-2 interacts with PCNA and SUMO 

Although characterization of cki-} has shown that this CKI plays a critical role in the 

timing and specification of postembryonic cell divisions the role of cki-2 has remained 

somewhat enigmatic. Initial studies showed that cki-2(RNAi) caused embryonic lethality 

although the precise role of cki-2 in this embryonic arrest was not characterized in detail 

probably because of the associated invariable penetrance of the phenotype (Feng, et al., 

1999). Using a related post-transcriptional gene silencing strategy called co-suppression 

(Plasterk and Ketting, 2000) we showed that specifie loss of cki-2 resulted in reproducible 

embryonic lethality, whereby small subset of embryos arrested at one-cell stage with 

multipolar spindles, due to extra centrioles derived from maternaI germline (Kim and Roy, 

2006). Our study suggested that CKI-2 might be required for timely e1imination of 

centrioles during oogenesis, likely through its activity to inhibit the catalytic function of 

cyc1in E or cyc1in E/Cdk2 complex (Kim and Roy, 2006). Thus, in order to gain further 

functional insight concerning the role of cki-2 during development, we screened a C. 

elegans cDNA library for interacting partners using three different CKI-2 bait variants (full 

length (CKI-2(l-259)), N-terminal domain (CKI-2N(l-115)) and C-terminal domain 

(CKI-2C(1l6-259)) (Figure 3.1A; Figure S2.1A and B). We isolated two interacting 

proteins from independent screens: PCN-l, the C. elegans PCNA orthologue, was isolated 

with both the fulllength and the C-terminal variant; SMO-l, the SUMO orthologue, was 

identified from screens with the N-terminal variant only (Figure 3.1A, top). 

Because of the similarity shared between CKI-l and CKI-2 we tested whether the 

CKI-2 interacting proteins could also associate with CKI-l. Our data indicated that PCN-l 

interacted with both CKI bait targets in the directional yeast-two hybrid assay (Figure 3.1 A, 

bottom), while SMO-l seems specifie for CKI-2 (Figure 3.lA, bottom). We mapped the 

PCN-l-binding region of CKI-2 using a series of deletion constructs (LexA-DBD fused 

baits ofCKI-2) (Figure 3.1B), which indicated that the PCN-l interaction domain mapped 

to regions that shared considerable conservation with previously described PCNA-binding 
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motifs (Figure 3.1C) (Warbrick, 1998). These data implythat CKl-2 might act in a similar 

manner to mammalian p21Cip1 which comprises two separate domains (cyclinlCDK 

inhibitory domain and the PCNA binding domain) that are functionally independent and 

may be regulated by different mechanisms (Lio et al., 1995). 

3.3.2. Heat shock expression of CKI-2 and its variants show distinct phenotypic 

effects on developmental cell cycle progression 

Previous studies have revealed that the ability of p21 Cip 1 to inhibit CDK and PCNA is due 

to two separate domains and are functionally independent (Figure 3.2, top) (Luo et al., 

1995). Since CKl-2 possesses a conserved N-terminal domain that is critical for binding 

cyclinlCDK and a C-tenninal PCN-1 binding domain, we wondered whether each CKl-2 

domain might also possess distinct functional properties, whereby heat shock expression of 

truncated CKI-2 variants may have distinguishable effects on cell division or development 

consistent with their ability to interact with different binding partners through their various 

domains. 

Heat shock expression of the full-Iength CKl-2 (CKl-2::GFP) or the N-terminal 

variant ofCKI-2 (CKI-2N::GFP) caused substantial embryonic lethality, while expression 

of the C-tenninal variant (CKI-2C::GFP), which contained the PCNA interaction domain, 

but not the CDK-inhibitory domain, showed little to no embryonic lethality (Table 3.1). 

Both the fulllength CKI-2 and both of the CKI-2 variants were expressed in the nucleus at 

comparable levels (Figure 3.2, bottom). Therefore, presumed titration ofPCNA following 

heat-shock expression of the C-tenninal fragment of CKI-2 had little or no obvious effect 

on viability, while the contrary was true for the CDK-inhibitory domain-containing 

N-tenninal portion ofCKI-2 which caused embryonic lethality at a level similar as the full 

length protein, suggesting that the embryonic lethality caused by heat shock expression of 

CKI-2 may derive from elements present in the N-tenninal domain of the protein, and not 

due to its ability to titrate the replication factor PCNA. 
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Using a transcriptional fusion GFP reporter driven by 5 kb of cki-2 genomic 

sequence upstream ofthe translational start site, we found that CKI-2::GFP is zygotically 

expressed only in a restricted number of cells, namely in the vulval cells suggesting a role 

during the later stages of vulva formation (data not shown). Since we did not detect any 

visible postembryonic phenotypes following cki-2 (RNAi), we misexpressed CKI-2::GFP 

and its two variants (CKl-2N::GFP and CKl-2C::GFP) postembryonically and monitored 

the effects on vulval patterning or other aspects ofvulval formation. Our data revealed that 

heat shock expression ofCKI-2N::GFP, or CKI-2::GFP during early larval stages (L2 and 

L3) disrupted vulval morphology, resulting in an apparent protruding vulva (Pvl) 

phenotype, typical of factors that perturb cell cycle timing or division integrity in this 

epithelium (Table 3.2) (Ambros, 1999; Fay and Han, 2000; Wang and Sternberg, 2001). 

On the other hand, heat shock expression of CKI-2 and the variants at the LI stage had no 

such effect (Table 3.2). However, the frequency (%) ofthe Pvl phenotype was dramatically 

increased when CKI-2::GFP and CKI-2N::GFP were induced at the L2 stage, just prior to 

the initiation ofvulval specification, while almost aIl the animaIs expressing CKI-2N::GFP 

were Pvl following induction during the L3 stage; the period when the characteristic cell 

divisions and specification events occur in the vulval1ineage (Table 3.2). Our data showed 

that the fulliength CKI-2 was much less effective in disturbing vulva patterning than the 

N-terminal variant. This could reflect an antagonism between the CKI-2 C-terminal 

domain and the cyclinlCDK inhibitory domain in the fuIllength protein. 

Taken together, our findings indicate that the maintenance of appropriately low 

CKI-2 levels is important for correct embryonic and postembryonic development. 

Furthermore, this activity itself may be modulated through interactions between the 

N-terminal inhibitory domain with the C-terminal region ofthe protein. 

3.3.3. CKI-2 is SUMOylated in vivo 

Most protein targets that have been identified as SUMO-interacting partners from the yeast 

two-hybrid screen have also proven to be bona fide SUMO substrates (Gostissa et al., 

1999; Minty et al., 2000). By scanning the N-terminal domain of CKI-2 (1-115) we 
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identified two consensus SUMOylation target sites (\lfKxDIE) (Melchior, 2000), K20 and 

K40, where K20 (lysine 20) is strongly predicted (www.abgent.comlsumoplot.html) 

(Figure 3.1B and S2.1A). Our analysis did not identify a SUMOylation target site in CKI-1, 

consistent with the yeast two-hybrid result (Figure 3.1B). We therefore postulated that 

CKI-2 might be a substrate for SUMOylation in vivo. To verify wh ether CKI-2 is indeed 

SUMOylated in C. elegans, we used the transgenic strain that carried a heat-shock 

inducible cki-2 transgene (hs::CKI-2) (because endogenous levels ofCKI-2 are below the 

detectable levels of our antibody) to see if overexpression ofCKI-2 (~28 KDa) could give 

rise to higher molecular weight entities that contained CKI-2, typical of posttranslational 

modifications mediated by ubiquitin and its family members. In a western blot analysis 

performed with C. elegans extracts prepared from heat-shocked animaIs, two distinct 

proteins (~38 and ~64 KDa) were detected by anti-CKI-2 antibody (Figure 3.3A, lane 1). 

These molecular weights correspond to the predicted size of CKI-2 if one or both potential 

lysines present in the N-terminal domain (K20 and K40) were modified by SMO-l. We did 

not detect any such signal in control (non-heat shocked) embryo extracts (Figure 3 .3A, lane 

3). 

To test whether the presence of these modified CKI-2 variants required 

SUMOylation we repeated the heat shock experiment, but only this time we removed 

endogenous SMO-1 by feeding animaIs bacteria that expressed smo-l dsRNA. 

Immunoblot analysis of animaIs that overexpressed CKI-2, but were subjected to 

smo-l (RNAi) by feeding (Kamath et al., 2001), indicated that the higher molecular weight 

CKI-2 containing bands disappeared, while the lower band was still detected by CKI-2 

antiserum (Figure 3.3A, lane 2), indicating that the upper band requires SMO-l. This 

therefore suggested that the higher molecular weight band we observed in the extracts 

made from animaIs that overexpress CKI-2 Iikely corresponds to CKI-2 modified by 

endogenous SMO-l. 
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Although this implicates SUMO in the appearance of the higher molecular weight 

entities present following the ectopic expression of CKI-2, we wanted to show that SUMO 

was also present in these modified CKI-2-containing bands. To do this we generated a 

heat-shock inducible HA-tagged version of SMO-l (HA::SMO-l) and crossed it into the 

hs::CKI-2 background. We then performed immunoblot analyses using embryo extracts 

prepared from heat-shock induced transgenic embryos where we found that the anti-CKI-2 

antibody recognized two bands (~38 and ~64kD), consistent with SUMOylation on one or 

both potentiallysines (Figure 3.3B, left panel, column 3). Furthermore, when the anti-HA 

antibody was used for detection, the two bands recognized by the anti-CKI-2 antibody 

were also predominantly labeled with the anti-HA (Figure 3.3B, right panel, column 3), 

indicating that the HA::SMO-l and CKI-2 were present in the same bands, consistent with 

CKI-2 being SUMOylated following heat shock induction of the two proteins. The 

presence of the two bands suggests that CKI-2 could be SUMOylated on the predicted 

lysines (K20 and K40), and in support of this, when both lysines are mutated to alanine 

(CKI-2(~smo)), no higher molecular weight species are detectable consistent with the 

CKI-2 protein being modified at either one or two of the predicted SUMOylation sites in 

the N-terminal domain (data not shown). To show that this SUMOylated band is indeed 

associated with CKI-2 we performed an immunoprecipitation experiment to see if the 

HA::SUMO signal could be detected in the anti-CKI-2 immunoprecipitates. Our CKI-2 

antibody efficiently immunoprecipitates CKI-2 (Figure 3.3B, left panel, column 1 and 2) 

while in these fractions the CKI-2-specific band was also recognized by the anti-HA 

antibody indicating that both CKI-2 and HA::SUMO are present in the same band (Figure 

3.3B, right panel, column 1 and 2). Taken together, these data suggest that our anti-CKI-2 

antibody recognizes the overexpressed CKI-2, although endogenous levels are below the 

threshold of detection, and these increased levels of CKI-2 are SUMOylated in vivo, likely 

on lysine residues present in the N-terminus of CKI-2. 

3.3.4. CKI-2 is a nuclear protein that co-localizes with chromosomal DNA 

Since the expression levels of each ofthe CKI-2 variants were comparable (Figure 3.2), yet 

they showed distinguishable effects at different developmental stages, we wondered 
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whether SUMOylation could have a differential effect on the function of the CKI-2 

variants. SUMOylation has been implicated in regulating sub-cellular localization 

therefore the SUMOylation of CKI-2 could result in changes in its ability to interact with 

its targets. Therefore, to gain further insight of the CKI-2 localization, we raised 

anti-CKI-2 antisera to detect the endogenous CKI-2 protein. Although the antibodies 

clearly recognize CKI-2 protein produced in E. coli (data not shown) no signal could be 

detected in gonads, embryos, or larvae. However, when CKI-2::GFP expression is driven 

from a transgenic array using a heat shock-inducible promoter, the anti-CKI-2 antibodies 

recognized a single polypeptide band in extracts that corresponded to the expected size of 

the CKI-2::GFP fusion, but was not present in control animal extracts (Figure S2.2A, left 

panel). That this same band was detected using an anti-GFP antibody suggests that the 

anti-CKI-2 recognizes its target (Figure S2.2A, right panel, top). The anti-CKI-2 which 

was generated using the N-terminus ofCKI-2 (CKI-2N) did not recognize CKI-2C::GFP, 

while anti-GFP antibody detected the same band (Figure S2.2A, right panel, bottom). 

When transgenic animaIs were stained following heat shock, CKI-2 could be detected on 

or near the chromatin, which overlapped precisely with GFP (Figure 3.4A), while 

pre-immune serum did not stain the CKI-2::GFP-expressing embryo (Figure S2.2B). 

Moreover, the anti-CKI-2 antibody did not detect CKI-2C::GFP (Figure S2.2C). Our data 

therefore suggest that CKI-2 is normally maintained at very low levels which are below the 

limit of detection of our antibody and that when these levels are increased the protein 

accumulates in the nucleus, most likely in association with chromatin. 

Because we could not detect endogenous CKI-2 in situ we expressed CKI-2::CFP 

using a pie-l promoter in order to visualize the sub-cellular localization and expression 

dynamics of matemally-contributed CKI-2 during the early stages of embryogenesis and 

in the germ line. CKI-2::CFP was reproducibly detected in aIl germ cell nuclei including 

the oocytes. In prophase nuclei CKI-2::CFP appears to be associated with chromatin based 

on the overlap with the DAPI stained entity. Very little or no signal above background 

could be detected in non-transformed siblings (Figure 3.4B). 
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3.3.5. The C-terminai domain of CKI-2 possesses signaIs important for nucieolar 

Iocalization 

We next examined the localization of GFP-tagged CKI-2 and the variants following heat 

shock induction and in order to facilitate our imaging we focussed our attention on the 

largest individual cells in the growing larva; the intestinal cells. Heat shock induction of the 

various CKI-2 variants was sufficient to allow us to detect the fusion proteins within these 

cells. Consistent with our antibody staining results in the embryo, CKI-2::GFP and 

CKI-2N::GFP were present predominantly in the nuc1eoplasm, (Figure 3.5A-C), while 

quite surprisingly, CKI-2C::GFP was exc1usively nucleolar in most somatic cells including 

the intestinal cells, which was confirmed by staining with an anti-fibrillarin antibody that 

specifically recognizes this organelle (Figure 3.5D). 

Intriguingly, using a SMO-I::GFP translational fusion driven by 3kb of 

endogenous smo-l genomic sequence (smo-l::SMO-l::GFP) we found that SMO-l 

localized primarily to the nuc1eoplasm (Figure 3.5E), but was also present in nucleoli 

(Figure 3.5E). This was further corroborated by anti-HA antibody staining following heat 

shock induction ofHA::SMO-l. HA::SMO-l is seen predominantly within the nucleolus 

of the intestinal cells following heat shock, although relatively lower levels of the HA 

signal continues to be visible in patches within the nucleoplasm (Figure 3.5F). These 

observations suggest that the localization ofboth CKI-2 and SMO-l may be dynamic and 

may depend either on its various targets or specific signaIs received. 

3.3.6. Co-expression of CKI-2 and SMO-l results in nucleolar localization of CKI-2 

Because the C-terminal domain of CKI-2 constitutively localizes to the nucleolus, we 

conc1uded that this domain must contain important information for determining 

sub-nuclear localization. Furthermore, because the overexpression of the N-terminal 

domain of CKI-2 produced a significantly greater frequency of Pvl than the full-length 

protein, we propose that an interaction between these two domains may modulate CKI-2 

function. Interestingly, the canonical SUMOylation sites are also located in the N-terminal 

domain of CKI-2 indicating that SUMO may be a key regulator of CKI-2 activity via these 
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sites in the N-terminus adjacent to the cyclinlCDK inhibitory domain. Consistent with this 

possibility, co-expression of SMO-I suppressed the embryonic lethality caused by ectopic 

expression of CKI-2::GFP or CKI-2N::GFP (Table 3.2), Similarly, co-expression of 

HA::SMO-I was also able to suppress the frequency (%) of the Pvl phenotype caused by 

heat shock expression of CKI-2N::GFP following induction at both the L2 and L3 stages 

(Table 3.2), yet no suppression in the embryonic lethality, or in the frequency ofPvl could 

be detected when a CKI-2::GFP construct (CKI-2(i1smo)::GFP) that lacked the consensus 

SUMOylation sites in the N-terminus was used (Table 3.1 and 2), confirming that the 

SUMO-dependent suppression is indeed mediated through the N-terminal SUMOylation 

sites. 

SUMOylation has been recently implicated in vulval development and smo-l 

(RNAi) animaIs that survive embryogenesis exhibit Pvl phenotpes (Broday et al., 2004). 

Therefore, the SUMO-mediated suppression we observe in the vulva may arise from the 

ability of overexpressed CKI-2 or CKI-2N to titrate limiting amounts of SUMO from its 

normal physiological targets. This suppression could also be due to SMO-l-dependent 

regulation of sub-nuclear localization by modifying CKI-2 such that the SUMO moiety is 

recognized as a signal for nucleolar localization. Alternatively, SUMO- dependent 

conformational changes that permit accessibility to C-terminal regions that mediate 

nucleolar shuttling factors could also be involved. 

To investigate the possibility that SMO-I may affect the sub-cellular localization of 

CKI-2 either directly or indirectly, we imaged the intestinal cells of animaIs that 

co-expressed both CKI-2::GFP and HA::SMO-l after heat shock in order to monitor their 

localization patterns. Surprisingly, the GFP signal (CKI-2) was present predominantly in 

the nucleolar compartment wherein HA::SMO-I co-Iocalized with the GFP in the 

intestinal cells and in other cell types (Figure 3.5G). This change in sub-cellular 

localization is dependent on SUMO conjugation mediated through the consensus 

N-terminal SUMOylation sites since CKI-2(Llsmo)::GFP, although expressed at somewhat 

lower levels than the wild-type CKI-2::GFP, is clearly nuclear and upon co-expression 
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with SMO-l and do es not localize to the nucleolus (Figure 3.SH), attesting to the 

importance of SUMOylation of CKI-2 in triggering this sub-nuclear localization switch. 

These results strongly suggest that SMO-l can modify the sub-nuclear localization of 

CKI-2 and the conjugation of SMO-l precedes the localization of CKI-2 to the nucleolar 

compartment where its sequestration may counterbalance the negative effects of increased 

levels of CKI-2. However our data cannot distinguish whether indeed SUMOylation is 

directly associated with the observed sub-nuclear localization of CKI-2 ie ... SUMOylation 

is sufficient; or whether this modification results in a conformational change in the protein 

that is recognized by another factor(s) that shuttles to the nucleolus. 

Previous studies have shown that an in frame SUMO fusion can mimic the 

constitutively SUMOylated protein (Ross et a1., 2002; Taylor and LaBonne, 2005). 

Therefore, if SUMOylation of CKI-2 were sufficient for the nucleolar localization of 

CKI-2, an in frame SMO-l fusion to the N-terminal variant of CKI-2, which normally 

remains within the nucleoplasm when overexpressed, would be sufficient to instruct the 

CKI-2N::GFP to localize to the nucleolar compartment. We therefore generated an in 

frame HA::SMO-l fusion to the N-terminus of CKI-2N::GFP (HA::SMO-l:: 

CKI-2N::GFP) and expressed it using heat shock induction. Surprisingly, in most cells 

examined, and most obviously in the intestinal cells, the addition of a SUMO domain to 

CKI-2N::GFP was sufficient to localize the protein from the nucleoplasm where CKI-2 

normally resides, to the nucleolus, albeit not as efficiently as that observed for the 

CKI-2C::GFP fusions which are constitutively nucleolar (Figure 3.6A). 

Furthermore, we observed that even though the level of expression was comparable 

to the CKI-2N::GFP alone, the resultant embryonic lethality or the Pvl frequency was 

reduced in strains overexpressing HA::SMO-l::CKI-2N::GFP and was comparable to 

strains that coexpressed both CKI-2N::GFP and HA::SMO-l (Table 3.2). However, we 

cannot rule out that the SMO-l modification of, or in proximity to, the N-terminal 

inhibitory domain of CKI-2 may inadvertently compromise its inhibitory function in 

addition to its role in altering its capacity to localize to the nucleolus. Taken together, our 
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results indicate that SMO-l modifies the N-terminus of CKI-2 causing a change in the 

sub-nuclear localization of CKI-2, which correlates with its ability to suppress the 

embryonic lethality and the vulval patterning defects associated with increased levels of 

CKI-2. 

3.3.7. Nucleolar localization of CKI-2 coincides with its reduced stability. 

While examining protein expression levels following heat shock induction of transgenic 

lines that coexpressed the CKI-2 variants and HA::SMO-l we noticed that CKI-2::GFP 

peaks in expression approximately 8-12h post heat-shock (Figure 3.6B, top panel). 

However, when coexpressed with HA::SMO-l this peak is shifted substantially with a 

maximum between 2-5h, decreasing to baseline levels very quickly thereafter (Figure 3.6B, 

top panel, lane 1 and 2). Similarly, when the levels of CKI-2C::GFP (the variant that 

localizes to the nucleolus consitutively) were examined post heat-shock, we found that its 

kinetics were comparable to those observed when CKI-2::GFP is coexpressed with 

HA::SMO-l, that is it reached maximum levels between 2-5h (Figure 3.6B, top panel, lane 

3). In contrast, the levels of the nucleolar protein Fibrillarin remain unchanged during our 

experiments (Figure 3.6B, top panel, lane 4). Surprisingly, when we performed the same 

time course following induction of HA::SMO-l ::CKI-2N::GFP expression, the levels of 

HA::SMO-l::CKI-2N::GFP showed a similar pattern as the CKI-2N::GFP alone (Figure 

3.6B, bottom panel). This suggests that the nucleolar localization is not sufficient to 

destabilise CKI-2, but information present in the C-terminus of CKI-2 may have an 

important role to instruct the destabilisation of CKI-2 when sequestered within the 

nucleolar compartment. 

Taken altogether, these data show that SUMOylation ofthe N-terminus of CKI-2 is 

sufficient to trigger its nucleolar localization, which is independent of information present 

within the C-terminus. The C-terminus is aiso sufficient to take CKI-2 to the nucleolus 

independently of any SUMO modification, however its nucleolar localization results in the 

rapid destabilisation ofthe CKI-2 variant. These results suggest a novel, active mechanism 
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that includes a nucleolar-associated pathway that leads to degradation in order to maintain 

steady state levels of this essential cell cycle regulator. 

3.3.8. Elements in the C-terminus contribute to subnuclear localization of CKI-2 

Since the C-terminus of CKI-2 exc1usively localizes to nucleolus as previously shown 

(Figure 3.5C), we speculated that the C-terminus might include a sequence motifinvolved 

in the nucleolar localization. Using several C-terminal variants, we determined a region 

that is required for the nucleolar localization (Figure 3.7 A), which shares sequence 

conservation with known nucleolar-Iocalizing proteins (Figure 3.7B, bottom panel). From 

protein sequence analysis of other cell cycle regulators that possess consensus SUMO 

conjugation sites ('l'KxDIE), we found that mammalian p21Cipl and p57Kip2 lack such 

motifs, while p27Kipl and Dacapo, a Drosophila CDK inhibitor protein, carry putative 

SUMOylation sites (Figure 3.7B, top panel). Interestingly, like CKI-2, these CKIs also 

possess putative nuc1eolar localization sequences in addition to the putative SUMOylation 

sites suggesting that the combination of SUMOylation and nucleolar localization may be 

conserved as a cassette that is required for controlling these cell cycle effectors in specifie 

developmental contexts (Figure 3.7B, bottom panel). 
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3.4. Discussion 

Ensuring the correct integrity of embryonic cell divisions is critical in generating all the 

tissues required for postembryonic development. In addition to the role of cki-2 in 

eliminating the maternaI centrioles during oogenesis (Kim and Roy, 2006), we also noticed 

that reduction of cki-2 function results in a Pie-like (pharynx, intestine in excess) 

embryonic arrest associated with increased numbers of pharynge al precursors and 

intestinal cells, which were largely disorganized and apparently ungastrulated as an 

essential negative cell cycle regulator that controls cell divisions during embryogenesis. 

(Figure S2.3) (Mello et al., 1992). 

Based on the accepted mechanism of CKI function cki-2 likely exerts S-phase 

regulation by blocking CDK2-like activity during embryonic cell divisions. Interestingly, 

mutants in components ofthe replication machinery that impede cell cycle progress do not 

make pharynx or gut, and demonstrate a skn-}-like phenotype (Bowerman et al., 1992; 

Encalada et al., 2000). It is possible that the reciprocal scenario may occur in the absence of 

cki-2, causing embryonic divisions to occur prematurely prior to the establishment of 

appropriate specification cues, thereby resulting in an opposite phenotype. This role in 

timing fate specification and competence is true of cki-} during postembryonic 

development, where it is involved in coordinating G 1 arrest with fate determination (Hong 

et al., 1998; Kostic and Roy, 2002; Baugh and Sternberg, 2006). 

CKI-2 is not abundant and these low levels are likely regulated at the locailevel 

during cell cycle progression. Its interaction with PCNA infers that CKI-2 may have sorne 

role in DNA replication, while its association with SUMO reflects a novel regulatory 

mechanism that may govern the effective levels of CKI-2 within the cell. Because the 

SMO-lICKI-2 interaction occurs via the N-terminal domain ofCKI-2 adjacent to the CDK 

inhibitory domain we presumed that SUMO was involved in antagonising the CKI-2/CDK 

interaction, thereby promoting cell cycle progression. CKI-2 variants that Iack this domain 

have little cell cycle inhibitory effect based on the observed embryonic lethality or Pvl 
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frequency following their heat shock expression. However, we have found that these 

inactive variants localize to the nucleolus constitutive1y and therefore might not have 

access to key cell cycle regulators such as PCNA or the cyclinlCDK complexes. Nucleolar 

localization is triggered by N-terminal SUMOylation in the full-Iength protein, while 

CKl-2 is subsequently degraded. 

This degradation that occurs following nucleolar localization seems specific since 

levels of nucleolar structural protein (Fibrillarin) remains unaffected (Figure 3.6B). Our 

data do not clarify how this degradation occurs or even whether it occurs in the nucleolus. 

A recent proteomic survey of the nucleolus did not identify components of the proteasome 

in this organelle (Andersen et al., 2002), although data from numerous laboratories have 

shown that inhibition ofthe proteasome results in accumulation of specific proteins within 

the nucleolus(Arabi et al., 2003). This suggests that this organelle maybe a bottleneck that 

precedes the degradation of certain protein targets. Furthermore, recent experiments 

demonstrated that disruption ofthe nucleolus causes increased stability of p53 suggesting 

an important function of this organelle in maintaining steady state levels of important 

cellular effectors (Rubbi and Milner, 2003). Taken together these data suggest that the 

degradation of specific pro teins may require a transient association of the proteasome with 

this nuclear compartment, or that it may occur through a novel proteasome-independent 

pathway preceded by nucleolar localization. 

Our results obtained with the CKI-2(~smo) mutant however suggest that 

sub-cellular localization may not be the only role of SUMO. Although this mutation 

disrupts nucleolar localization in response to SMO-l expression causing CKI-2(~smo) to 

remain nuclear, this mutated variant do es not confer a strong embryonic lethality when 

induced in the embryo (Table 3.1). Therefore altering these lysines has a negative effect on 

the inhibitory function of CKI-2, presumably by disrupting its ability to interact with the 

cyclinlCDK complex (Chen et al., 1996). Since a modification of these lysines had 

significant effects on CKI-2 function, SUMOylation of these residues could have a 
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bipartite function in modulating the inhibitory capacity of CKI-2, while also targeting it for 

sub-nuclear re-allocation, thereby triggering its rapid degradation. 

At least two models might account for this translocation. A SUMO-mediated 

conformational change in the CKI-2 protein could expose signaIs within its C-terminus to 

efficiently direct the protein to the nucleolus. (Figure 3.7A). Since SUMO-fused 

N-terminus of CKI-2 goes to nucleolus, however, at present it is unclear how the signal 

within the C-terminus of CKI-2 may function and remains to be further characterized. 

More plausibly, SUMO modification of the N-terminus could disrupt a tether that retains 

CKI-2 in the nucleoplasm, perhaps bound to chromatin, or on proteins such as 

CDK2-containing complexes associated with origins of repli cation (Jackson et al., 1995; 

Furstenthal et al., 2001). Our finding that another CKI-2 interactor, RNF-1, a RING finger 

domain protein (Joazeiro and Weissman, 2000), binds specifically to the C-terminal 

domain ofCKI-2 (unpublished data) suggests that this factormight weIl fulfil this function, 

a possibility that is currently being investigated. 

Our study showed that an in frame fusion of SUMO to the CKI-2 N-terminal 

variant resulted in nucleolar translocation, but without the associated degradation (Figure 

3.6A and B). The importance of the nucleolus in sequestering important cell cycle 

regulators has been dearly demonstrated in several aspects of cell cycle regulation 

(Visintin and Amon, 2000). One striking example involves mitotic exit in S. cerevisiae, 

which is tightly controlled hy the timely release of Cdc14p from the nucleolus (Visintin et 

al., 1999). It is tempting to speculate that the progressive nucleolar localization and 

destabilisation of CKI-2 might confer the S-phase regulation that is typical of these early 

embryonic divisions. 

Is SUMOylation an evolutionarily conserved mechanism for cell cycle regulation? 

Dacapo, p27KIP play similar roles during development and these SUMOylation sites may 

indeed be relevant to their function and/or their regulation. It is therefore quite possible that 

this modification has been conserved as a means of initiating rapid change within the cell 
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in response to developmental cues such as during embryogenesis, when transcription is 

silent. Analysis of additional CKI proteins from diverse organisms may confirm this while 

searches for other proteins that might use this cassette may provide invaluable insight 

about the evolution ofthis novel SUMO-associated function. 
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3.5. Materials and Methods 

3.5.1. Nematode Strains 

The foIlowing C. elegans strains were used: N2 Bristol was used as the wild-type 

throughout. MR251 (unc-119; rrEx251 [hs::CKI-2::GFP; unc-119(+)]), MR253 (unc-119; 

rrEx253 [smo-l::GFP::SMO-l; unc-1l9(+)]), MR353 (unc-1l9; rrEx353 

[hs::CKI-2N::GFP; unc-1l9(+)]), MR354 (unc-1l9; rrEx354 [hs::CKI-2C::GFP; 

unc-119(+)]), MR377 (unc-119; rrEx377 [hs::CKI-2(~smo)::GFP; unc-119(+)]), MR378 

(unc-1l9; rrEx378 [hs::HA::SMO-l; hs::CKI-2::GFP; unc-1l9(+)]), MR390 (unc-1l9; 

rrEx390 [hs::HA::SMO-l; unc-1l9(+)]), MR397 (unc-1l9; rrEx397 [hs::HA::SMO-l; 

hs::CKI-2(~smo)::GFP; unc-1l9(+)]), MR408 (unc-1l9; rrEx408 [hs::HA::SMO-l; 

hs::CKI-2; unc-l 1 9(+)]), MR772 (unc-119; rrEx772 [hs::HA::SMO-l ::CKI-2N::GFP; 

unc-1l9(+)]). AIl C. elegans strains were cultured using standard techniques and 

maintained at 20°C unless stated otherwise (Brenner, 1974). 

3.5.2. Yeast two-hybrid screen 

Saccharomyces cerevisiae strain W303 Y1003 (URA3::lexAop-lacZ 8xlexA-ADE2:: URA3 

ura3-1 leu2-3 his3-11 trpl-l ade2-1 conl-100) was used and maintained according to 

standard procedures (Gietz et al., 1997). To generate the bait constructs, pEG202-NLS 

(9.8-kb), which is a LexA-DBD (DNA binding domain) fusion expression plasmid, was 

used and PCR was performed to generate each inserts (CKI-2 and CKI-2N) using cki-2 

cDNA as a template. The PCR prepared inserts were then inserted into BamHIISalI sites of 

pEG202-NLS. Yeast was transformed with one of each bait construct (LexA-DBD::CKI-2 

or LexA-DBD::CKI-2N) and grown on selective media deficient in histidine. The resulting 

bait strains were then transformed with 60~g of cDNA library expressing the GAL4-AD 

(transcriptional aqctivation domain) fused to mixed stage C. elegans cDNAs (a gift from A. 

La Volpe) and screened as described (Gietz et al., 1997). 

Directional two-hybrid assay. To generate LexA-DBD::CKI-l, cki-l cDNA was used as a 

template for PCR, which was then inserted into BamHI/SalI sites of pEG202-NLS. The 
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yeast strain containing LexA-DBD::CKI-l were transfonned with GAL4-AD::PCN-1 or 

GAL4-AD::SMO-1 independently and then subsequently grown on the selective media 

(Adenine(-)) to examine the association of the GAL4 activation domain 

(GAL4-AD)-fusion candidates with the LexA-DBD::CKI-l fusion bait. The O.D6oo ofthe 

yeast cells was adjusted to 5.0 followed by 10-fold dilutions. 

3.5.3. Mapping protein-protein interaction domains 

To map the CKI-2 interaction domains ofPCN-l (W03D2.4), constructs encoding CKl-2 

variants were generated using PCR and were inserted into the BamHIISalI sites of 

pEG202-NLS (9.8-kb) to yield the LexA-DBD fusion constructs pMR203 

(LexA-DBD::CKI-2 (amino acids 1-150)), pMR204 (LexA-DBD::CKI-2 (amino acids 

1-157)), pMR205 (LexA-DBD::CKI-2 (amino acids 1-163)), pMR206 (LexA-DBD:: 

CKI-2 (amino acids 164-259)), pMR207 (LexA-DBD::CKl-2 (amino acids 167-259)). 

3.5.4. C. elegans transgenes and heat shock experiments 

The following constructs were used for the heat shock-re1ated experiments (All the heat 

shock-related constructs were generated using pPD49.78 (heat shock promoter (hs) 16-2) 

and pPD49.83 (heat shock promoter (hs) 16-41), and both promoter containing constructs 

were co-injected to generate heat shock-related transgenic animaIs): hs::GFP::SMO-1, 

hs::CKI-2, hs::CKI-2(llsmo), hs::CKI-2::GFP, hs::CKl-2N::GFP, hs::CKI-2C::GFP, 

hs::CKI-2(llsmo)::GFP. For the SMO-1 translational GFP fusion construct, smo-l 

genomic upstream sequence was amplified and inserted into BamHVXmaI sites of 

pPD49.26 to make pMR218. GFP::SMO-1 was prepared by PCR using a 

[hs::GFP::SMO-1] as a template and then inserted into NheI/SacI ofpMR218 to generate 

pMR219. The constructs were microinjected into the C. elegans gonad to generate 

transgenic animaIs as described (Mello et al., 1991). 

Heat shock-induced expression was perfonned by floating parafilm-sealed culture 

plates in a 33°C water bath for 1 hour followed by a 4 hour-recovery period at 20°C. To 

check the embryonic lethality after heat shock, embryos laid from gravid adults were heat 
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shocked for up to 30 minute and the result was presented as the percentage of the 

unhatched embryos in a total population. 

3.5.5. Antibodies and Immunological methods 

Generation ofrecombinant proteins and antiserum. CKI-2N was prepared by PCR using 

cki-2 cDNA as a template, which was inserted into BamHIISalI sites of PGEX-5X-l 

(Amersham Pharmacia) GST fusion vector. GST::CKI-2N was over-expressed in E. coli 

XLi-Blue and purified as described (Amersham Pharmacia). GST::CKI-2N was further 

purified by electroelution (Bio-Rad) and rabbits were immunized using a standard 

protocol. 

Immunoblotting. Worms were picked into SDS sample buffer and were freezed/thawed 

twice at -80°C and 100°C. The supematant was subjected to 10% SDS-PAGE and proteins 

were transferred to nitrocellulose membrane (Hybond-C Extra, Amersham Pharmacia) and 

blotied as described elsewhere. Primary antibodies were rabbit polyclonal anti-CKI-2, 

monoclonal MCA-38F3 (anti-Fibrillarin antibody, Encore), and rabbit polyclonal 

anti-GFP (Clonetech). Secondary antibodies were HRP (Horse raddish 

peroxidase )-conjugated anti-rabbit or mouse antibodies. Protein bands were detected using 

a chemifluoresence (ECL Plus, Amersham Pharmacia) and imaged with a STORM™ 

(Amersham Pharmacia). 

Immunofluorescence. The following primary antibodies were used: rabbit polyclonal 

anti-CKI-2, monoclonal MCA-38F3 (anti-Fibrillarin a)1tibody, Encore). Secondary 

antibodies were anti-rabbit Texas-Red (Invitrogen). Embryos was fixed and stained as 

described elsewhere (Couteau et al., 2004). DAPI (4,6-diamidine-2-phenylindole, Sigma) 

was used to counterstain slides to reveal DNA. Indirect immunofluorescence microscopy 

was performed using a Leica DMR compound microscope (x60) equipped with a 

Hamamatsu C4742-95 digital camera, imaging ~0.5Jlm-thick optical section (z scan). 

Image analysis, computational deconvolution and pseudocolouring were performed using 
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Openlab 4.0.2 software (lmprovision, UK). Images were processed usmg Adobe 

Photoshop (version 8.0). 
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3.8. Legends to Figures 

Figure 3.1. PCN-l and SMO-l interact with CKI-2. (A) Summary of the interaction 

between LexA-DBD fused CKI-2 (top) or CKI-1 (bottom) and the GAL4-AD fused CKI-2 

interacting proteins (PCN-1 and SMO-1) using a directional yeast two-hybrid analysis. 

DBD or AD indicates DNA binding domain or transcriptional activation domain, 

respectively. The control (-control) carries LexA-DBD fused CKI-2 or CKI-1 bait plasmid 

and empty GAL4-AD fusion plasmid (preyplasmid). (+) or (-) in the table (right) indicates 

"interaction" or "no-interaction", respectively. (B) Mapping of the PCN-1 binding region 

in CKI-2. The yeast strain containing GAL4-AD::PCN-1 was transformed separately with 

the individual CKI-2 bait variants (LexA-DBD fused) followed by determination of lacZ 

expression from each transformant. (+) or (-) indicates "expression" or "no expression" of 

lacZ, respectively. The number indicates the position of the amino acid residue in the 

primary sequnce. The arrows indicate the minimal region that is necessary for PCN-1 

binding in CKI-2. CDI, CDK inhibitory domain. K20 and K40, lysine residue 20 and 40, 

respectively. The PCNA binding region in CKI-2 is shown by a black closed oval with 

arrow, while the predicted PCNA binding region in CKI-1 is indicated by bold underline. 

(C) Protein sequence alignment between known PCNA interactors and CKI-lICKI-2. 

Rectangular boxes mark amino acid residues conserved for the PCNA binding. In 

consensus, x, any amino acid residue; h, moderately hydrophobic residues (leucine, 

isoleucine, methionine); a, highly hydrophobic residues with aromatic si de chains 

(phenylalanine, tyrosine) (Warbrick, 2001). 

Figure. 3.2. CKI-2 comprises of two functionally distinct domains. Diagram of p2I Cip 1 

depicting the CDK and PCNA inhibitory domains (arrow), and CKI-2 (full-Iength) and the 

CKI-2 variants (CKI-2N and CKI-2C) based on the conserved cyc1inlCDK inhibitory 

domain at the N-terminus (See Figure S2.IA). The number indicates the position of the 

amino acid residue in the protein sequence. Arrows indicate binding domains for 

cyc1inlCDK and PCNA at the N- and C-terminus, respectively. Embryos were observed to 
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compare the levels or the localization of GFP after heat-shock (bottom). The arrowheads 

mark nuc1ei. 

Figure 3.3. CKI-2 is modified by SMO-l in vivo. (A) smo-l(RNAi) eliminates high 

molecular weight entities. Extracts obtained from [hs::CKI-2] or [hs::CKI-2; 

smo-l (RNAi)] embryo were analyzed by western blotting using anti-CKI-2 antibody. 

Embryo extracts prepared from non-induced animaIs were used as a control (-). (B) CKI-2 

is covalently modified by HA::SMO-I in transgenic strains co-expressing HA-tagged 

SMO-I (HA::SMO-l) and CKI-2. [hs::HA::SMO-I; hs::CKI-2] bearing animaIs were heat 

shocked and extracts prepared from embryos were analyzed using western blot (WB) and 

immunoprecipitation (IP). P.1, pre-immune serum. Black arrowheads indicate bands 

recognized by anti-CKI-2 (a-CKI-2), or anti-HA (a-HA) antibody. embryos, embryo 

extracts. The arrows indicate the position of 64 KDa and 38 KDa size markers. 

Figure. 3.4. CKI-2 is a nuclear protein that co-Iocalizes with chromosomal DNA. (A) 

Embryos carrying the hs::CKI-2::GFP transgenic array labelled with anti-CKI-2 antibody 

(A, red) and DAPI (B, blue) after heat-shock induction. (B) Germ line expression of 

CKI-2::CFP using the pie-l::CKI-2::CFP transgenic array. Insets correspond to detailed 

view of germ cell nuclei from the region outlined by the white rectangular frames. 

Figure. 3.5. CKI-2 localizes to the nucleolus following co-expression of SMO-l. (A-C) 

(A) CKI-2::GFP ([hs::CKI-2::GFP]), or (B) CKI-2N::GFP ([hs::CKI-2N::GFP]), or (C) 

CKI-2C::GFP ([hs::CKI-2C::GFP]) were induced by heat shock and imaged in the 

intestinal cell nuc1ei bymonitoring GFP expression (green) and DAPI (blue). (D) Intestinal 

nuc1ei in (A) were counterstained with anti-Fibrillarin (a-FBR) antibody (MCA-38F3; red). 

(E) Sub-nuclear localization of GFP-SMO-I expressed under an endogenous smo-l 

upstream promoter region ([smo-l::GFP::SMO-I]). (F) HA::SMO-I was induced by heat 

shock and imaged in the intestinal cell nuclei by immunostaining with anti-HA antibody 

(a-HA) and DAPI (blue). (G,H) (G) [hs::CKI-2::GFP; hs::HA::SMO-I], or (H) 

[hs: :CKI-2(ilsmo): :GFP; hs: :HA: :SMO-I] co-expressing intestinal nuc1ei labelled with 
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anti-HA antibody (a-HA; red). The open and c10sed arrowhead mark nuc1eolus and 

nuc1eoplasm, respectively. The white rectangular boxed region was magnified to show 

more detail of the nuc1ei. 

Figure. 3.6. SMO-l-dependent changes in CKI-2 subnuclear localization and 

subsequent degradation. (A) HA::SMO-1 ::CKl-2N::OFP expressed in intestinal cells 

with a schematic drawing of the HA::SMO-l::CKI-2N::OFP transgene. Western blot 

analysis (WB) shows the expression ofHA::SMO-1 ::CKl-2N::OFP in heat shock induced 

(+) and uninduced (-) animaIs. The open and c10sed arrowheads indicate the nuc1eolus and 

the nuc1eoplasm, respectively. (B) Time course analysis of CKI-2 levels by 

immunoblotting with anti-CKI-2 (a-CKI-2), or anti-OFP (a-OFP; used for detection of 

CKI-2C::OFP), or anti-Fibrillarin antibody. Protein extracts were prepared from a mixed 

population of the transgenic animaIs at various times after heat-shock (0.5 to 12 hours). 

Fibrillarin (asterisk) was used as a nuc1eolar control. The arrows indicate the position of 64 

KDa and 48 KDa standard size markers. 

Figure. 3.7. Mapping of a nucleolar localization signal in CKI-2. (A) AnimaIs with heat 

shock inducible transgenes that inc1uded full length CKl-2 and its truncated variants 

(CKI-2x::OFP) were expressed as OFP fusion proteins afterwhich subnuc1ear localization 

was determined. (++) indicates strong; (+) moderatel y strong specifie nuc1eolar 

localization "NoL", while (+/-) indicates weak or dispersed NoL. The number indicates the 

position of amino acid residue in the protein sequence. The arrows indicate the minimal 

region that is necessary for the nuc1eolar localization. (B) Diagram depicting the consensus 

SUMOylation target sites present among diverse CIP/KIP family of CDK inhibitors. The 

nuc1eolar localization signaIs ofp14ARF (Rizos et al., 2000) and human MDM2 (Lohrum 

et al., 2000), two known nuc1eolar localizing proteins, were aligned with the putative 

nuc1eolar localization signal of CKI-2 and other SUMOylation motif-containing CDK 

inhibitors (p27Kip1 and Dacapo) (Lane et al., 1996; Sherr and Roberts, 1999). Conserved 

amino acid residues are marked by rectangular boxes. The number indicates the position of 

amino acid residue in the protein sequence. 
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Genotype 

hs::GFP 

hs: :CKI-2: :GFP 

hs::CKI-2N::GFP 

hs::CKI-2C::GFP 

hs: :CKI-2(ilsmo): :GFP 

hs::HA::SMO-1 

hs::CKI-2::GFP; hs::HA::SMO-1 

hs::CKI-2N::GFP; hs::HA::SMO-1 

hs::CKI-2(ilsmo)::GFP; hs::HA::SMO-1 

hs::HA::SMO-l::CKl-2N::GFP 

Embryonic lethality (%) 

No heat-shock Heat-shock 

o (n=239) 1.76±1.8 (n=199) 

2.43 (n=525) 29.63±3.4 (n=481) 

0.9 (n=202) 18.26±4.7 (n=628) 

1.13 (n=177) 5.99±2.8 (n=770) 

n.d 9.02±5.0 (n=1075) 

n.d 1.70±1.02 (n=549) 

n.d 8.17±1.40 (n=903) 

n.d 9.99±1.38 (n=557) 

n.d 8.40±3.01 (n=787) 

n.d 7.18±1.87 (n=488) 

Table 3.1. CKI-2 heat shock expression causes distinct developmental abnormalities 

typical of cell cycle perturbation. Heat shock induction of CKI-2 or its truncated variants 

result defects in embryonic deve1opment. For embryonic lethality (%), embryos from 

young adult animaIs carrying each heat shock transgenes were heat-shocked and examined 

30 hours later for embryonic lethality determined by the number of LI larvae present on 

the plate. Non-heat shocked embryos were used as a control. The values represent the 

percentage ofunhatched embryos that arise from the initial population of embryos (n). n.d, 

not determined. The standard deviation (±SD) was obtained from at least two independent 

experiments. 
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Genotype 

hs::CKI-2::GFP 

hs: :CKI-2N: :GFP 

hs::CKI-2C::GFP 

hs: :CKI-2(~smo): :GFP 

hs::CKI-2::GFP; hs::HA::SMO-1 

hs::CKI-2N::GFP; hs::HA::SMO-1 

hs: :CKI-2(~smo): :GFP; hs: :HA: :SMO-l 

hs: :HA: :SMO-l: :CKI-2N: :GFP 

LI 

Protruding vu1va (Pv1) (%) 

L2 

o (n=I130) 

2.02±0.3 (n=911) 

o (n=907) 

n.d 

n.d 

n.d 

n.d 

n.d 

36.29±1.6 (n=1427) 

67.41±6.4 (n=1423) 

o (n=417) 

o (n=702) 

17.18±3.91 (n=392) 

19.79±0.21 (n=692) 

o (n=315) 

37.18±0.08 (n=495) 

L3 

16.41±2.7 (n=758) 

94.72±3.3 (n=l328) 

o (n=41O) 

0.2 (n=500) 

13.50±1.88 (n=524) 

58.17±2.l7 (n=424) 

0.2 (n=430) 

53.99±2.77 (n=505) 

Table 3.2. SMO-l suppresses the developmental defects caused by misexpression of CKI-2 and CKI-2N. For the frequency (%) 

of Pvl, developmentally synchronized animais were induced at different lavai stages (LI, L2, L3) and the frequency (%) of PvI was 

determined by scoring protruding vulvae in the animais. The values represent the percentage of Pvl animais in a total population of 

animaIs (n). The standard deviation (±SD) was obtained from at least two independent experiments. n.d, not determined. 
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Figure 3.4 

hs: :CKI-2: :GFP 

a-CKI-2 GFP DAPI 

CFP DIC CFP 

N2 pie-1: :CKI-2: :CFP 
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Figure 3.5 
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Connecting text 

In the chapter III, we describe the identification of two CKI-2 interactors that we 

uncovered using a yeast two hybrid-screen. Our data indicate that SMO-I and RNF-I 

might be unique for CKI-2 function and that CKI-2, like p2lCipl, is composed oftwo 

domains, which may be functionally independent. Misexpression of CKI-2 variants that 

contain these different domains causes defects in embryogenesis and vulva morphogenesis, 

where the N-terminus was consistently more potent in each context. Our data suggest that 

the levels of CKl-2 must be appropriately maintained to ensure proper embryonic or 

post-embryonic development. We showed that CKI-2 was covalently modified by 

SUMOylation which caused CKI-2 to localize where it was subsequently degraded. Since 

many RING domain proteins are intrinsic E3 ubiquitin ligases, we speculated that RNF-I, 

a third interactor identified by a yeast two-hybrid screening, could be involved in this 

degradation. 
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Chapter IV 

RNF-l, a Caenorhabditis elegans RING domain protein, 

modulates CKI-2 through ubiquitin-dependent proteolytic 

pathway 
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4.1. Abstract 

In many cell types, cell cycle progression is controlled at the point of entry into S-phase 

where afterward the cycle is committed to termination following mitosis. This control 

point is referred to as the restriction point in mammalian cells or S TART as it is referred to 

in yeast (Sherr and Roberts, 2004). During C. elegans development, the regulation of this 

transition is largely controlled by a CIP/KIP family Cyclin-dependent kinase inhibitor 

(CKI) homologue called cki-l, which responds to both developmental and environmental 

signaIs to mediate timely cell cycle arrest from late embryogenesis to adulthood (Hong et 

al., 1998; Kipreos, 2005). Although a second CIP/KIP family CKI, cki-2, has been 

suggested to play a non-redundant role with cki-l during embryogenesis, cki-2 has not 

been weIl characterized mainly due to its refractoriness to RNAi (Feng et al., 1999; 

Fukuyama et al., 2003). While the maintenance of appropriate levels of CKI-l has been 

characterized quite well in a developmental context, little is known about how CKI-2 

levels are maintained at the post-transcriptionallevel. Unlike CKI-l, CKI-2 do es not seem 

to be degraded by a canonical cullin-based SCF (Skpl/Cullinl F-box) pathway (Feng et al., 

1999). Here we show that a RING domain protein (RNF-l) interacts strongly with CKI-2 

and co-expression of RNF-l with CKI-2 suppresses the embryonic lethality caused by 

increased levels ofCKI-2 in the embryo. This suppression is mediated by the increased rate 

of CKI-2 degradation in a proteasome-dependent manner. In addition, we show that 

RNF-l is involved in the poly-ubiquitination of CKI-2. Furthermore, we have found that 

SMO-l, the C. elegans SUMO orthologue, can block the association between CKI-2 and 

RNF-l in a yeast-based competition assay. Therefore, our data suggest that RNF-l 

functions in a novel regulatory mechanism to maintain the appropriate levels of CKI-2 

through the differential regulation of a RING domain protein with SUMO. 
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4.2. Introduction 

Eukaryotic cell cycle progression is driven predominantly by the cyclical fluctuation of 

cyclin-dependent kinase (CDK) activities. These enzymes are regulated in a timely manner 

by an interplay of positive and negative regulators in response to diverse environmental 

and developmental cues that may exert their effects at different stages of cell cycle 

(Morgan, 1997; Sherr and Roberts, 1999). 

Progression through the cell cycle is irreversibly controlled by the proteolytic 

degradation of the major regulatory proteins (Krek, 1998; Cardozo and Pagano, 2004). In 

budding yeast, p40Sic 1 controls the G liS transition by blocking G 1 CyclinslCdk function 

until it is degraded at START, while progression through mitosis and eventual mitotic exit 

occurs through inactivation of the mitotic kinase (Cdk1) by the targeted degradation of 

mitotic cyclins, in addition to association with increasing levels ofp40Sic1 (Verma et al., 

1997; Deshaies, 1997). 

In mammalian cells that receive mitogenic signaIs, p27Kip1, a marnmalian CDK 

inhibitor protein, is eliminated at the G liS transition to allow S phase entry (Bloom and 

Pagano, 2003). The levels of this CKI then accumulate to finally reach a peak in the 

subsequent Gl phase. This oscillatory cycle of elimination is mediated by the 26S 

proteasomal complex, which is catalyzed by the covalent attachment of ubiquitin to a 

lysine residue on the targeted proteins (Pickart and Cohen, 2004). 

Ubiquitin is a highly conserved small polypeptide composed of 76 amino acids, 

which is transferred to target pro teins by a cascade that includes separate enzymatic 

activities referred to as El, E2, and E3 (Hochstrasser, 1996; Hershko and Ciechanover, 

1998). Initially, ubiquitin is activated by an ubiquitin-activating enzyme (UBA or El) in an 

ATP-dependent manner. Secondly, the activated ubiquitin is transferred to an 

ubquitin-conjugating enzyme (UBC or E2). Finally, E3 ubiquitin ligases recruit E2 

conjugating enzymes and mediate the ubiquitination of a lysine residue with target proteins. 
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Most E3 ligases act as multiprotein complexes, such as the SCF (Skp/CulliniF-box) 

complex which is required for the G liS and the G2/M transition, or the APC/C (anaphase 

promoting complex/cyclosome), which is required for the metaphase-to-anaphase 

transition and subsequent mitotic exit (Peter, 1998; Vodermaier, 2004; Nakayama and 

Nakayama, 2006). 

The cullin proteins are critical SCF components and this protein family plays an 

important role during diverse eukaryotic developmental processes, including cell cycle 

progression, cel1 fate determination, and cytoskeletal function (Petroski and Deshaies, 

2005). Cullins link the E2 enzyme to the E3 ubiquitin ligase complex together with the 

RING domain protein, which binds E2 enzymes through their RING domains (Zheng et al., 

2000). In higher eukaryotic cells, the RING domain protein Rbx1 associates with different 

cullin proteins (Cult to Cu15) and an F-box protein to constitute an active SCF complex 

(Petroski and Deshaies, 2005). 

In C. elegans, cullin-based multi-subunit E3 ligases are required for the regulation 

of cell cycle progression during embryogenesis (Bowerman and Kurtz, 2006). cul-2 

promotes the G liS transition by targeting key regulators where it also plays an important 

role in mitosis and in meiosis (Feng et al., 1999; Liu et al., 2004; Sonneville and Gonczy, 

2004). In cul-2 mutants, germ cells undergo G1 arrest which correlates with an increased 

leve1 of CKI-1 in their nuclei, while depletion of CKI-1 restores S phase entry in cul-2 

mutants. However, no nuclear accumulation of CKI-2 (a second CKI in C. elegans) was 

observed. These data suggest that cul-2 regulates CKI-1 levels, but not CKI-2, probably 

through timely degradation during G1 progression (Feng et al., 1999). Since most 

ubiquitin-mediated proteolysis occurs through a phosphorylation- dependent manner, it 

has been presumed that the degradation of CKI-I might be phosphorylation-dependent. 

Recent data showed that the inactivation of C. elegans cdc-14 phosphatase causes extra 

divisions in multiple tissues (Saito et al., 2004). Genetic studies have demonstrated that 

cdc-14 acts upstream of cki-l (Saito et al., 2004), where CDC-14 seems to maintain CKI-1 

in a hypophosphorylated state thus protecting it from ubiquitin-dependent proteolysis, 
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while consequently causing a nuclear accumulation of CKI-l. In budding yeast, Cdcl4p 

dephosphorylates p40Sic1, which stabilises p40Sic1 (Visintin et al., 1998). In mammalian 

ceIls, Cdcl4A is also known to dephosphorylate p27Kipi in vitro (Kaiser et al., 2002). 

These data are consistent with an evolutionarily conserved role of CDC-14 in the 

maintenance of more stable hypophosphorylated forms of CKIs. 

Whilethe regulation ofCKI-1levels through cullin-mediated mechanisms has been 

weIl characterized, little has been demonstrated conceming the role of CKI-2, which is 

located in tandem to CKI-1 on chromosome II. Since overexpression of CKI-2 causes 

embryonic arrest and morphological defects and, cki-2 shows a distinctive embryonic 

expression profile compared to that of cki-l (Fukuyama et al., 2003), it has been suggested 

that cki-2 might have a non-redundant role with cki-l during embryogenesis. Because 

reverse genetic analysis of cki-2 has not proven to be very informative due to RNAi 

refractoriness and the difficulties in obtaining mutations in this gene, we performed a yeast . 

two-hybrid screen to identify interacting partners of CKI-2 in order to better understand the 

pro cesses that are controlled by this CKI. 

Here we report a novel RING finger protein (RNF-1) interacts strongly and 

specifically with CKI-2. RNF-1 appears to antagonize CKI-2 function since co-expression 

ofRNF-1 with CKI-2 suppresses the embryonic lethality associated with misexpression of 

CKI-2 in the embryo which is mediated by the increased rate of CKI-2 degradation. In 

addition, we show that RNF-1 is involved in the ubiquitination of CKI-2. Moreover, a 

novel yeast-based competition assay developed to study the relationships between these 

factors indicates that C. elegans SUMO (SMO-1) antagonizes the interaction between 

CKI-2 and RNF-l. These data suggest that a novel regulatory mechanism may exist to 

maintain appropriate levels of CKI-2 through an interaction between the RING domain 

protein, RNF-1, and SUMO. 
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4.3. Results 

4.3.1. RNF-l interacts with CKI-2 

Unlike cki-l, RNAi has not been useful in characterizing the function of cki-2. Therefore, 

to gain further insight as to how cki-2 exerts its function during embryogenesis, we used a 

yeast two-hybrid analysis using the C-tenninus of CKI-2 as bait. From this screen we 

isolated two candidates, one of which corresponded to a novel RING finger protein that 

contained a conserved RING domain motif in its N-tenninus, and as such we refer to this 

protein as RNF-l (Figure 4.1A and D). 

Since there are two predicted CIPIKIP family CDK inhibitors (CKI-1 and CKI-2) 

located in tandem on C. elegans chromosome II, we wanted to know whether RNF -1 could 

interact with CKI-1 or ifit bound exclusively to CKI-2. By doing a directional two-hybrid 

analysis, we found that CKI-1 did not interact with RNF-1 (Figure 4.1A, bottom), 

suggesting that the RNF-1 interaction may be specific to CKI-2 and not a general 

interaction with an CKIs. 

To better understand the interaction between CKI-2 and RNF-1, we mapped the 

CKI-2 interaction domain on RNF-1 using a series of deletion constructs (LexA-DBD 

fused baits of CKI-2) (Figure 4.1B). Consistent with the yeast two-hybrid screen 

perfonned with the C-tenninus ofCKI-2 as bait (Figure S3.1 in appendix III), this analysis 

showed that RNF-1 bound to a specific region in the C-tenninus of CKI-2 (amino acid 

residues 201-212 (HNNKGAPKRPLR)). This domain is in close proximity with PCNA 

binding region (amino acid residues 151-163 and unpublished data) (Figure 4.1 C, top) and 

a putative nucleolar localization signal (amino acid residues 192-198 and unpublished 

data) (Figure 4.1C, bottom), suggesting that the RNF-l binding domain may cooperate 

with the other domains on the C-tenninus of CKI-2. In addition to the RING finger motif, 

we found that RNF-1 also has a conserved peroxisomal targeting sequence 2 (PTS2) in its 

C-tenninus (Figure 4.1D), although the role of the PTS2 remains to be sudied. 
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4.3.2. RNF-l is involved in the degradation of CKI-2 

Previous studies have shown that overexpression of CKI-2 causes embryonic lethality 

(Fukuyama et al., 2003), suggesting that it is important to maintain appropriate levels of 

CKI-2 to ensure proper embryonic development. Since many RING domain proteins act as 

components of multi-subunit E3 ubiquitin ligases (Joazeiro and Weissman, 2000), we 

speculated that RNF-l might target CKI-2 for subsequent degradation. If it is the case, 

co-expression of RNF-l should suppress the embryonic lethality associated with the 

misexpression of CKI-2, probably through its ability to increase the rate of CKI-2 

degradation. Thus, to test this possibility, RNF-I was co-expressed with CKI-2 in C. 

elegans and both embryonic lethality and CKI-2 levels were examined. Misexpression of 

RNF-l itself did not cause any embryonic defect (Table 4.1), although the embryonic 

lethality associated with the misexpressed CKI-2 was considerably reduced by the 

co-expression of RNF-l. This suggests that RNF-l antagonizes CKI-2 function. In 

addition, co-expression ofRNF-l with the N-terminus ofCKI-2, which does not bind to 

RNF-l (Figure 4.1 B), did not suppress the embryonic lethality caused by misexpression of 

the CKI-2 variant (Table 4.1), suggesting that suppression of the embryonic lethality may 

require a direct interaction between RNF-l and CKI-2. 

Based on the typical role of RING domain proteins, we reasoned that the 

suppression of the embryonic lethality might be due to a role ofRNF-l in increasing the 

rate ofCKI-2 degradation. To determine whether this was the case, we performed western 

blot analyses on whole C. elegans extracts prepared from transgenic lines co-expressing 

CKI-2 and RNF-l which were collected at various time points post heat-shock (Figure 

4.2A, top). The CKI-2::GFP peaks in expression approximately 5h post heat-shock, while 

when co-expressed with RNF-l this peak shifts substantially with a maximum 2-3h post 

heat-shock, decreasing to baseline levels at 6 h post heat-shock while it remains thereafter 

(Figure 4.2A, top), suggesting that RNF-l genetically interacts with CKI-2 and may 

enhance the degradation of CKI-2 thereby alleviating sorne of the negative effects caused 

by CKI-2 overexpression. 
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Since RNF-1 seems to play a role in the degradation of CKI-2, we point out again 

that there is degradation but past work indicates that it is not mediated by CUL-2-based 

SCF. We wanted to know whether the degradation of CKI-2 was mediated by the 

proteasomal complex. To test this possibility, we performed western blot analyses using 

protein extracts prepared from the transgenic animaIs co-expressing CKI-2 and RNF-1 in a 

pas-4 (RNAi) background, where P AS-4 is an essential component of the proteasomal 

complex (Davy et al., 2001). Interestingly, we found that the CKI-21evels remained stable 

even 5 hour post heat shock, indicating that CKI-2 most likely degraded in a 

proteasome-dependent manner although not by a cullin-based SCF E3 ligase system 

(Figure 4.2A, bottom). Taken together, RNF-1 is involved in the degradation of CKI-2 

through the proteasome-mediated proteoysis. 

4.3.3. RNF-l is involved in the ubiquitination of CKI-2 

Since multi-subunit E3 ubiquitin ligase complexes target the proteins mostly in an 

ubiquitin-dependent manner, we reasoned that RNF-1 may be involved in the 

ubquitination of CKI-2 and consequently its degradation. To test this possibility, western 

blot analyses were performed using protein extracts prepared from transgenic lines 

co-expressingCKI-2 and RNF-1. We found that in addition to a CKI-2 band (~64 KDa), an 

extra band with higher molecular weight (~84 KDa) was recognized by an anti-CKI-2 

serum, where a similar band was not observed in controls (non-heat shocked or 

misexpression of CKI-2 without RNF-1) (Figure 4.2B, top). The higher molecular weight 

band is detected beginning at abut 30 minute post heat shock and peaks at 1 h post heat 

shock, and thereafter high molecular weight entities become apparent in addition to the 84 

KDa band (Figure 4.2C). The higher molecular weight band was approximately 20 kDa 

greater than the molecular weight ofCKI-2, which was consistent with the possibility that 

CKI-2 was modified by ubiquitin. In recent two-hybrid studies, RNF-1 was found to 

interact with two E2 ubiquitin-conjugating enzymes (UBC-8 and UBC-20) (Jones et al., 

2002; Gudgen et al., 2004). Thus, if RNF-1 is involved in the ubiquitination of CKI-2 

through the E2 enzyme(s), removal ofUBC-8 or UBC-20 activity may result in the loss of 

the higher molecular weight band observed following heat shock induced accumulation of 
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CKI-2. We tested this possibility by perfonning western blot analyses. Protein extracts 

were prepared 1 hour post heat shock from ubc-20 (RNAi)-treated transgenic animaIs 

which co-express CKI-2 and RNF-I followed by a western blot analysis with anti-CKI-2 

serum. We found that the intensity of the higher molecular weight band was significantly 

reduced by removing ubc-20, indicating that the higher molecular weight band is very 

likely to be due to ubquitination (Figure 4.2B, top). Since no useful antibody that detects C. 

elegans ubiquitin is currently available, to further confinn that CKI-2 is ubiquitinated, we 

perfonned ubq-l (RNAi) , which removes UBQ-1, a C elegans ubiquitin orthologue 

(Stringham et al., 1992). If the higher molecular weight band contained ubiquitin, ubq-l 

(RNAi) should remove or reduce the apparent molecular weight of the band. We perfonned 

a western blot analysis in a similar manner as those perfonned following ubc-20 (RNAi) to 

show the greater molecular weight band eventually disappeared in animaIs treated with 

ubq-l (RNAi) (Figure 4.2B, bottom). This confinns that RNF-1 is involved in the 

ubiquitination of CKI-2. Because CKI-2 has been found to be a target of SUMOylation 

(Figure 4.1 C and unpublished data), we confinned that the greater molecular weight band 

was not due to a modification of CKI-2 by SUMO, which is a small ubiquitin-related 

protein familyand causes a similar molecular weight shift as in ubiquitination (Melchior, 

2000). We found that depletion ofUBC-9 (E2 SUMO conjugating enzyme) or SMO-1 (C 

elegans SUMO orthologue) by RNAi did not affect the presence or intensity of the higher 

molecular weight band, indicating that the extra band was not due to SUMOylation and 

most likely ubquitination (Figure 4.2B, bottom) (Jones et al., 2002). 

Interestingly, a similar extra band or high molecular weight entities were not 

observed in the co-expression ofRNF-1 with N-tenninus ofCKI-2 (Figure 4.2C). Because 

RNF-l interacts uniquely with the C-tenninus of CKI-2 (Figure 4.1B), these data suggest 

that the higher molecular weight bandes) may be mediated by direct interaction of CKI-2 

with RNF-I. This is consistent with the data that the embryonic lethality associated with 

the CKI-2 N-tenninal variant is not suppressed by the co-expression ofRNF -1 (Table 4.1). 
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Taken together, our data strongly argue that RNF-l is involved in the degradation 

of CKI-2 through an ubiquitin-dependent proteolysis, which seems to be mediated by 

direct interaction between CKI-2 and RNF-l. 

4.3.4. SMO-l may modulate the RNF-l function 

Previously we identified the C. elegans orthologue of PCNA (proliferating cell nuc1ear 

antigen) (PCN-l) (Warbrick, 1998) and SUMO (SMO-l) as CKI-2 interacting partners 

using a similar yeast two-hybrid strategy (unpublished data). Since SUMO has been 

demonstrated to modify proteinlprotein interactions (Melchior, 2000), we reasoned that 

SMO-l might antagonize these interactions. 

To investigate this possibility we developed a yeast-based competition assay using 

a galactose-inducible SMO-l expression system (Ronicke et al., 1997) (Figure 4.3). Using 

this approach, protein-protein interactions that can be antagonized by the binding of 

SMO-l result in reduced growth on galactose plates. To demonstrate that this system is an 

efficient means to test this idea, a yeast strain containing LexA-DBD (DNA binding 

domain)::CKI-2, GAL4-AD (transcriptional activation domain):: SMO-l and 

Gal1::SMO-l was used as a control wherein the CKI-2 binding domain of SMO-l driven 

by Gall promoter overlaps with that of the SMO-l fused to GAL4-AD 

(GAL4-AD::SMO-l). The induced SMO-l successfully competed the CKI-2/SMO-l 

interaction and thereby reduced the reporter gene (ADE2) expression (Figure 4.3, lane 5). 

We applied this system to test whether SMO-l could antagonize the association of 

CKI-2 with its known interacting partners. Co-expression of SMO-l blocked the 

CKI-2/RNF-l interaction, while the CKI-2/PCN-l interaction although slightly affected 

after galactose induction was not significantly blocked by SMO-l (Figure 4.3, lane 1-4). 

Since SUMO interacts with the N-terminus of CKI-2 (unpublished data), while RNF-l 

binds to the C-terminus of CKI-2, we postulated that interaction of SMO-l with the 

N-terminus of CKI-2 might play a major role in disrupting the CKI-2/RNF-l interaction 
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through like1y conformation but not due to a steric hindrance. No yeast growth defect was 

observed when a CKI-2C variant that lacks the consensus SUMO conjugation site was 

used (Figure S3.2 in appendix III), thus confirming that the interaction ofthe N-terminus of 

CKI-2 with SMO-I is required to antagonize the CKI-2/RNF-I interaction. Taken together, 

our results highlight that SUMO may play a role in disrupting the interaction between 

CKI-2 and RNF-l by acting as an N-terminal switch that probably changes the 

conformation of CKI-2. 
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4.4. Discussion 

Considering the significance of the post-transcriptional levels of CKI proteins in the 

regulation of cell cycle progression, it is not surprising that the CKI levels are frequently 

misregulated in many cancer cells (Nakayama and Nakayama, 2006). Although it has been 

suggested that appropriate levels of CKI-2 are critical to ensure proper ernbryonic 

development (Feng et al., 1999; Fukuyama et al., 2003), little has been characterized 

conceming a mechanism to maintain appropriate levels of CKI-2. While CKI-l has been 

known to be targeted by a canonical cullin-based SCF E3 ligase complex, it seems not the 

case for CKI-2 (Feng et al., 1999). 

No functional alle1e of rnf-l has been available. Moreover, rnf-l (RNAi) did not 

give rise to an apparent defect during deve10pment in C. elegans, although we have 

confirmed that the rnf-l (RNAi) significantly removes endogenous RNF-l (data not 

shown). Since a number of RING finger family proteins have been predicted in the C. 

elegans genome database, we speculated that the loss of RNF -1 could be tolerated by a 

redundant aetivity from other RING domain proteines). Thus, we tumed to a different 

strategy to study the role of CKI-2. Using a yeast two-hybrid sereen, we identified RNF-l 

as a CKI-2 interaeting partner, which is a C3HC4 type RING domain protein (Figure 4.1 D). 

This RING finger domain is eonserved among proteins involved in ubiquitination 

(Joazeiro and Weissman, 2000), suggesting that RNF-l may be implicated in proteolytic 

degradation. Although, to date, we have not been able to demonstrate an E3 ubiquitin 

ligase activity for RNF-l, our data provide a promising link that CKI-2 may be targeted by 

RNF-l in an ubiquitin-dependent manner. Moreover, this re1ationship seems specifie for 

the CKI-2 funetion since CKI-l did not interact with RNF-l in our analysis. This would not 

therefore be entirely unexpeeted since CKI-l levels are regulated by a SCFCUL
-
2 complex, 

which has presumably no role in regulating CKI-2 levels (Feng et al., 1999). 

A recent study showed that RNF-l interacts with at least two C. elegans E2 

ubiquitin-conjugating enzymes (Gudgen et al., 2004). Our data suggest a possible link 
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since we observed that the high molecular weight form of CKI-2 associated with the 

co-expression of RNF-1 disappeared following ubc-20 (RNAi) (Figure 4.2B). Moreover, 

the co-expression of RNF-1 is associated with the ubiquitination of CKI-2 (Figure 4.2B). 

Therefore, estab1ishing whether these E2 enzymes genetically interact with CKI-2, or 

wh ether the reduction of function of these E2 enzymes affects CKI-2 abundance in C. 

elegans will be critical. In addition, it would be interesting to characterize whether RNF-1 

acts as a component of multi-protein E3 comp1ex or through an unknown novel pathway. 

Using a directional yeast two-hybrid analysis, we determined that the RNF-l 

binding region of CKI-2 is in close proximity to a putative nucleolar 10calization signal 

(amino acid residues 192-198) that we have characterized (Figure 4.1C and unpublished 

data). Since the nucleolar localization of CKI-2 seems to be linked to its degradation 

(unpub1ished data), it is possible that RNF-1 might cooperate with the nuc1eolar targeting 

signal in an unknown manner. Because we observed that the C-terminus ofCKI-210calizes 

constitutively to the nuc1eolus (unpublished data), it would be of interest to test whether 

RNF-1 affects the localization of the CKI-2 variant. 

Interestingly, we noticed that in addition to RING finger motif, RNF-I possesses 

a PTS2 peroxisomal-matrix targeting sequence (Figure 4.1D) in its C-terminus, although 

the role ofthis motifremains unclear at present. Since it has been shown that peroxisome 

signaIs can affect nuclear gene expression in response to cellular stress (Corpas et al., 

2001), it is possible that RNF-1 may link cell cycle control to the stress response pathway, 

although this remains to be further characterized. 

Two previously identified CKI-2 interactors included the C. elegans orthologues of 

PCNA and SUMO. PCNA plays an essential role as a DNA repli cation factor and a1so has a 

role in DNA repair (Warbrick, 1998), while SUMO is a small ubiquitin-related modifier 

which modulates proteinlprotein interactions and/or sub-cellular localization of targeted 

polypeptides (Melchior, 2000). The fact that CKI-2 interacts with these partners suggests 

that it might be involved in the regulation of cell cycle progression controlling S-phase 
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entry, reminiscent of p21 Cip 1 in mammalian cells (Waga et al., 1994; Jackson et al., 1995). 

Furthermore, this function may be modulated by SMO-l through time1y modification of 

CKI-2. Using a yeast-based competition assay we demonstrated that SMO-l specifically 

antagonizes the interaction between CKI-2 and RNF-l, while the effect in the 

CKI-2/PCN-l interaction is minimal (Figure 4.3). These data suggest an intriguing model 

wherein SMO-1 may modulate RNF-1 function and as a result affect the leve1s of CKI-2. 

Taken together, our data show that RNF-1 may play a role in regulating the levels of 

CKI-2 by controlling its rate of degradation, particularly through an uncharacterized E3 

ubiquitin ligase activity or more intriguingly, that the RNF-l function may be modulated 

by the CKI-2/SMO-l interaction. Given that nothing has been reported conceming a 

mechanism ofthe CKI-2 degradation to date, we believe that our study provides an avenue 

for further expansion of the understanding of CKI biology. 
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4.5. Materials and Methods 

4.5.1. Nematode Strains 

The following C. elegans strains were used: N2 Bristol was used as the wild-type 

throughout. MR251 (unc-119; rrEx251 [hs::CKI-2::GFP; unc-119(+)]), MR353 (unc-119; 

rrEx251 [hs::CKI-2N::GFP; unc-1l9(+)]), MR664 (unc-1l9; rrEx664 [hs::GFP::RNF-l; 

unc-119(+)]), MR665 (unc-119; (rrEx251 [hs::CKI-2::GFP; unc-119(+)]; rrEx664 

[hs::GFP::RNF-l; unc-1l9(+)])), MR666 (unc-1l9; (rrEx353 [hs::CKI-2N::GFP; 

unc-119(+)]; rrEx664 [hs::GFP::RNF-l; unc-119(+)])). AlI C. elegans strains were 

cultured using standard techniques and maintained at 20°C unless stated otherwise 

(Brenner, 1974). 

4.5.2. Yeast two-hybrid screen 

Saccharomyces cerevisiae strain W303 Y1003 (URA3::lexAop-lacZ 8xlexA-ADE2:: URA3 

ura3-l leu2-3 his3-ll trpl-l ade2-l conl-100) was used and maintained according to 

standard procedures (Gietz et al., 1997). To generate the bait constructs, pEG202-NLS 

(9.8-kb), which is a LexA-DBD (DNA binding domain) fusion expression plasmid, was 

used. The yeast strains were transformed with a bait construct (LexA-DBD::CKI-2C) and 

grown on selective media deficient in histidine. The resulting bait strains were then 

transformed with 60/Jg of cDNA library expressing the GAL4-AD (transcriptional 

aqctivation domain) fused to mixed stage C. elegans cDNAs (a gift from A. La Volpe) and 

screened as described (Gietz et al., 1997). 

Directional two-hybrid assay. The yeast strain containing LexA-DBD::CKI-l was 

transformed with GAL4-AD::RNF-l and then subsequently grown on the selective media 

(Adenine(-)) to examine the association of the GAL4 activation domain 

(GAL4-AD)-fusion candidates with the LexA-DBD::CKI-l fusion bait. The O.D600 of the 

yeast cells was adjusted to 5.0 followed by 10-fold dilutions. 
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4.5.3. In vivo competition studies 

The yeast strains containing LexA-DBD::CKI-2 and GAL4-AD::RNF-1, or 

LexA-DBD::CKI-2 and GAL4-AD::PCN-1 were transformed with Gal1::SMO-1 

independently and then grown on selective media deficient in tryptophan, leucine, and 

histidine. Selected colonies were cultured in liquid to exponential phase (O.D600 = 0.5) and 

after 10-fold seriaI dilutions (10-1
, 10-2

, and 10-3
), the diluted cells were spotted onto 

Adenine (+); galactose (+) or Adenine (-); galactose (+) plates deficient in tryptophan, 

leucine, histidine, and incubated for 5 days at 30°C. Yeast strains containing 

(LexA-DBD::CKI-2; GAL4-AD::SMO-1; Gal1::SMO-1) were used as controls. 

4.5.4. Mapping protein-protein interaction domains 

To map the CKI-2 interaction domains of C06A5.9 (RNF-1), constructs encoding CKI-2 

variants were generated using PCR and were inserted into the BarnHIISalI sites of 

pEG202-NLS (9.8-kb) to yield the LexA-DBD fusion constructs LexA-DBD::CKI-2 

(arnino acids 1-115), LexA-DBD::CKI-2 (arnino acids 116-259), LexA-DBD::CKI-2 

(arnino acids 164-259), LexA-DBD::CKI-2 (amino acids 1-200), LexA-DBD::CKI-2 

(amino acids 1-212). 

4.5.5. Heat-shock experiments 

The following constructs were used for the heat shock-related experiments (AlI the heat 

shock-related constructs were generated using pPD49.78 (heat shock promoter (hs) 16-2) 

and pPD49.83 (heat shock promoter (hs) 16-41), and both promoter containing constructs 

were co-injected to generate heat shock-related transgenic animaIs): hs::GFP::RNF-1, 

hs::CKI-2::GFP, and hs::CKI-2N::GFP. Transgenes (10/lg/ml) were microinjected with 

UNC-119(+) rescuing plasmid (100/lg/ml) as a co-injection marker into unc-119 (ed-4) 

hermaphrodites as described (Mello et al., 1991). Heat shock-induced expression was 

performed by floating parafilm-sealed culture plates in a 33°C water bath for 1 hour 

followed by a 4 hour-recovery period at 20°C. To check the embryonic lethality after heat 

shock, embryos laid from gravid adults were heat shocked for up to 30 minute and the 

result was presented as the percentage of the unhatched embryos in a total population. 
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4.5.6. RNA mediated interference (RNAi) 

RNAi was performed by a feeding method as described (Fire et al., 1998; Kamath et al., 

2001). Briefly, LI or L2 transgenic larvae were transferred onto the plate containing 

IPTG-induced dsRNA producing bacteria and placed at 20°C. The transferred animaIs 

allowed to grow until adult stage were heat shocked to induce the transgenes followed by a 

preparation of protein extracts for western blot analyses. 

4.5.7. Antibodies and Western blot analysis 

Worms were picked into SDS sample buffer and were freezed/thawed twice at -80°C and 

100°e. The supernatant was subjected to 10% SDS-PAGE and proteins were transferred to 

nitrocellulose membranes (Hybond-C Extra, Amersham Pharmacia) and blotted as 

described elsewhere. Primary antibodies were rabbit polyclonal anti-CKI-2 (generated in 

our laboratory), monoclonal a-tubulin (Sigma), and anti-GFP (Clonetech). Secondary 

antibodies were HRP-conjugated anti-rabbit or mouse. Protein bands were detected using a 

chemifluoresence (ECL Plus, Amersham Pharmacia) and imaged with a STORM™ 

(Amersham Pharmacia). 
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4.8. Legends to Figures 

Figure 4.1. CKI-2 interacts with RNF-l. (A) Summary of the interaction between 

LexA-DBD fused CKI-2 (top) or CKI-l (bottom) and the GAL4-AD fused RNF-l using a 

directional yeast two-hybrid analysis. DBD or AD indicates DNA binding domain or 

transcriptional activation domain, respectively. The control (-control) carries LexA-DBD 

fused CKI-2 or CKI-l bait plasmid and empty GAL4-AD fusion plasmid (prey plasmid). 

(+) or (-) in the table (right) indicates "interaction" or "no-interaction", respectively. (B) 

Mapping of the RNF-l binding region on CKI-2. The yeast strain containing 

GAL4-AD::RNF-l was transformed separately with the individual CKI-2 bait variants 

(LexA-DBD fused) followed by determination of lacZ expression from each transformant. 

(+) or (-) indicates "expression" or "no expression" of lacZ, respectively. (C) Summary of 

interaction domains (top) and organelle targeting signaIs (bottom) on CKI-2. CDI, CDK 

inhibitory domain; PBD (black closed oval), PCNA binding domain; RBD (gray closed 

oval), RNF-l binding domain; SBD (black bar), SMO-l binding domain (K20 and K40 are 

predicted SUMOylation target sites); NoL, Nucleolar localization signal. (D) Conserved 

motives on RNF-1. (D, top) The primary sequence of the RING domain (amino acid 

residues 22-67) on RNF-l aligned with the consensus RING finger motif (C3HC4 type). 

Dots mark the conserved amino acid residues (Cysteine (C) and Histidine (H)). (D, bottom) 

A peroxisomal targeting sequence 2 (PTS2) was identified in the C-terminus of RNF-l 

(amino acid residues 340-347). R, arginine; K, lysine; L, leucine; l, isoleucine; x, any 

amino acid; Q, glutamine; H, histidine. The number indicates the position of amino acid 

residues in the primary sequence. The arrows indicate the minimal region that is necessary 

for RNF-I binding on CKI-2. The RNF-l binding region on CKI-2 is shown by a gray 

closed oval with arrow. 

Figure 4.2. RNF-l mediates CKI-2 degradation through ubiquitin-dependent 

proteolysis. (A, top) Time course analysis of CKI-2 levels using western blotting with 

anti-CKI-2 (a-CKI-2), or anti-tubulin (a-tubulin) antibody. Protein extracts were prepared 

from a mixed population of the transgenic animaIs expressing CKI-2 ([hs::CKI-2::GFPD, 
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or co-expressing CKI-2 and RNF-I ([hs::CKI-2::GFP; hs::GFP::RNF-I]) at various times 

after heat-shock (2 to 6 hours). (A, bottom) A western blot analysis performed using 

protein extracts prepared from pas-4 (RNAi)-treated transgenic animaIs co-expressing 

CKI-2 and RNF-I ([hs::CKI-2::GFP; hs::GFP::RNF-I]) at various post heat shock hours (2 

to 5 hours).a-tubulin was used as a loading control. (B, top) Western blot analyses were 

performed using protein extracts prepared from the transgenic animaIs expressing CKI-2 

([hs::CKI-2::GFP]), or co-expressmg CKI-2 and RNF-I ([hs::CKI-2::GFP; 

hs::GFP::RNF-I]) at two different time points (0.5 and I hour) after heat shock. (-) 

indicates "no heat shock". In a similar manner, a western blot analysis was performed 

using protein extracts prepared from the ubc-20 (RNAi)-treated transgenic animaIs 

co-expressing CKI-2 and RNF-l ([hs::CKI-2::GFP; hs::GFP::RNF-l]) at I hour post heat 

shock. (B, bottom) Western blot analyses performed using protein extracts prepared from 

the ubc-9 (RNAi), or smo-l (RNAi), or ubq-l (RNAi)-treated transgenic animaIs 

co-expressing CKI-2 and RNF-I ([hs::CKI-2::GFP; hs::GFP::RNF-I]) at I hour post heat 

shocIç. (C) Western blot analyses performed using protein extracts prepared from the 

transgenic animaIs co-expressing CKI-2 and RNF-I ([hs::CKI-2::GFP; hs::GFP::RNF-I]), 

or CKI-2N and RNF-I ([hs::CKI-2N::GFP; hs::GFP::RNF-I]) at 2 hour post heat shock. 

The arrows indicate the position of 64 KDa, or 48 KDa, or 84 KDa standard size markers, 

respectively. 

Figure 4.3. SMO-l antagonizes the interaction between CKI-2 and RNF-l. An in vivo 

competition assay using a galactose-inducible system in yeast. Gall, Gall promoter. Ade 

and Gal, Adenine and Galactose, respectively. (+) or (-) indicates possession (+) or 

deficiency (-) of the component on the media. 
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Embryonic lethality (%) 

Genotype No heat-shock Heat-shock 

hs::GFP o (n=471) 3.2 (n=472) 

hs::GFP::RNF-1 0.6 (n=498) 5.4 (n=463) 

hs::CKI-2::GFP 1.4 (n=439) 20.6 (n=402) 

hs::CKI-2::GFP; hs::GFP::RNF-1 1.2 (n=365) 6.6 (n=426) 

hs::CKI-2::GFP; hs::GFP 1.1 (n=437) 19.4 (n=458) 

hs: :CKI-2N: :GFP 1.2 (n=41O) 18.3 (n=437) 

hs::CKI-2N::GFP; hs::GFP::RNF-1 1.1 (n=365) 19.8 (n=414) 

hs::CKI-2N::GFP; hs::GFP 1.0 (n=396) 18.4 (n=425) 

Table 4.1. Co-expression ofRNF-l suppresses the embryonic lethality associated with 

misexpression of CKI-2 but not the N-terminal variant. For the embryonic lethality (%), 

embryos from young adult animaIs that carry heat shock constructs were heat-shocked and 

examined 30 hours later for embryonic lethality determined by the number of LI larvae 

present on the plate. Non-heat shocked embryos were used as a control. The values 

represent the percentage of unhatched embryos that arise from the initial population of 

embryos (n). 
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Chapter V 

General Discussion 
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5.1. Summary and Conclusions 

The research in this thesis has described the role of cld-2 in multiple aspects of 

development in C. elegans. Using a reverse genetic approach called co-suppression, we 

found that loss of cld-2 in the germ line causes the perdurance of centrioles unti1late stages 

of oocyte development, giving rise to supemumerary centrosomes in a fertilized embryo 

thereby resulting in embryonic arrest caused by severe aneuploidy. We also noticed that a 

catalytic function of cyc1in E/Cdk2 complex is involved in this critical developmental 

process. Therefore, our results reveal that cld-2 is required for the appropriate e1imination 

of centrioles during oogenesis presumably by blocking the catalytic function of a cyc1in 

E/Cdk2 complex. 

The chracterization of CKI-2 interacting proteins identified by a yeast two-hybrid 

screen provided a novel point of entry to describe how the post-translational levels of 

CKI-2 are regulated. We presented that CKI-2 is covalently modified by SMO-l and that 

this causes re-localization of CKI-2 to the nuc1eolar compartment followed by a rapid 

degradation of CKI-2. Furthermore, we found that RNF-l has the ability to increase the 

rate of CKI-2 degradation in an ubiquitin-dependent manner, which is correlated with the 

suppression of embryonic lethality associated with CKI-2 overexpression. We also noticed 

that SMO-l antagonizes the interaction between CKI-2 and RNF-l. Therefore, we 

conc1ude that the levels of CKI-2 are regulated by SUMO-mediated nuc1eolar localization 

where the degradation of CKI-2 occurs through an ubiquitin-dependent proteolysis 

mediated by RNF-l. 

Although our results have expanded our understanding of CKI in a developmental 

context, there are still a number of questions that remain to be answered. Therefore, in this 

chapter, 1 will discuss sorne of the major questions conceming the role of cld-2 that could 

not be discussed in detail in the previous chapters. 

5.2. Mechanisms involved in the Centriole Destabilization 
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Although it has been observed that centrioles disappear during specific developmental 

processes, such as during spennatogenesis in humans (the mother centriole is destabilized, 

while the daughter centriole is remains), in mice (both the mother centriole and the 

daughter centriole are destabilized), and in oogenesis in a number of organisms including 

C. elegans (both the mother centriole and the daughter centriole disappear), it is still 

unclear how this critical developmental event is driven (Schatten, 1994; Delattre and 

Gonczy, 2004). However, an intriguing finding that a viral infection induces disappearance 

of centrioles in HeLa cells suggested that there might be an active process to eliminate 

centrioles (Ploubidou et al., 2000). Our study of cld-2 in C. elegans has revealed a nove1 

mechanism to ensure the timely elimination of centrioles during oogenesis. The results 

presented in chapter II of this thesis have provided a breakthrough on which to further 

exp and our understanding of centriole assembly, maintenance, and disassembly at the 

molecular level. 

5.2.1. Molecules involved in the centriole destabilization 

In Chapter II, we showed that cyclin E/Cdk2 is somehow involved in the centriole 

stabilization/elimination decision. A series of studies perfonned using different cellular 

systems have revealed that a catalytic function of cyclin E/Cdk2 complex is required for 

centrosome duplication during S-phase and have suggested a mechanism indicating that 

centrosome duplication is coupled to DNA synthesis and mitotic division. Several studies 

have suggested that this occurs through the timely control of cell cycle regulators, namely 

Cdk2. In mammalian ceIls, degradation of p27Kip 1 is required for S phase progression 

prior to the intitation of DNA repli cation and this is mediated by Cdk2-dependent 

phosphorylation (Slingerland and Pagano, 2000). Ectopic expression of p21 Cip 1 o~ 

p27Kipi represses centrosome duplication as weIl as DNA synthesis (Waga et al., 1994; 

Lacey et al., 1999), while loss of p21 Cip 1 causes overduplication of centrioles (Mantel et 

al., 1999). Cdk2 also is involved in centrosome duplication through its role in stabilizing a 

Mps 1 kinase, a key protein implicated in this process. Like yeast Mps 1 kinase (Lauze et al., 

1995), mouse Mpsl kinase (mMpslp) is required for centrosome duplication and its 

protein stability is controlled by Cdk2-mediated phosphorylation (Fisk and Winey, 2001). 
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Inhibition of Cdk2 activity causes the destabilization of mMpsl p, resulting in the loss of 

mMpslp in centrosomes. This indicates that Cdk2 may promote centrosome duplication 

through its ability to stabilize Mpsl kinase. These results highlight the significant role of 

Cdk2 in regulating protein stability, which must be regulated to ensure appropriate 

maintenance of centrosome numbers during cell cycle progression. If it was also true in the 

germ line in C. elegans, the altered activity of Cdk2 caused by the loss of CKI-2 might 

affect the stability of the centriolar proteins and/or other Cdk2 target proteins. 

In C. elegans, genetic studies have identified a number ofproteins that are involved 

in centriole duplication. While ZYG-l is a protein kinase which localizes to centrioles 

only during mitosis (O'Connell, 2001), SAS-4/5/6 and SPD-2 are coiled-coil scaffold 

proteins associated with the centrioles throughout the cell cycle (Leidel and Gonczy, 2005). 

It has been shown that ZYG-l is involved in the centriolar localization of SAS-5 and the 

SAS-4/SAS-5 association is required for the centriolar recruitment of SAS-6. Since the 

loss ofzyg-l causes a monopolar spindle (MPS) in the zygote (due to paternal defect) or in 

the two-cell stage embryo (due to maternaI defect) quite similar to Mpsl kinase mutants in 

yeast, it has been postulated that ZYG-l might take its place in C. elegans, although there 

seems to be no apparent homologue of ZYG-l. In this thesis, we have presented that the 

loss of cki-2 causes accumulation of ZYG-l and SPD-2 on meiotic spindles (Appendix 1). 

This observation suggested that the catalytic function of Cdk2 may be involved in the 

regulation of ZYG-l, probably through its ability to stabilize ZYG-l. Since ZYG-l is 

present in centrioles only during mitosis, stabilization of ZYG-l might affect the 

centrosome cycle. It would be interesting to test the possibility using ZYG-l variants, 

which were mutated to affect its stability, with genetic and biochemical approaches. One 

very plausible scenario for such a regulatory mechanism would include the 

phosphorylation of key centriolar components via cyclin E/Cdk2. Such phosphorylation 

would be stabilizing and thus would be analogous to the Cdk- dependent phosphorylation 

of Mps 1 kinase 
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We have scanned primary sequences of the centriolar proteins for putative 

Cdk2-mediated phosphorylation sites using a bioinformatic algorithm (Xue et al., 2005) to 

find that a number ofhighly predicted Cdk2-mediated phosphorylation sites are present in 

many of the centriolar proteins (data not shown), suggesting that this stabilization may 

occur through multiple centriolar targets. Since it has been shown that centriole duplication 

can be studied using GFP-fused centriolar proteins (Leidel and Gonczy, 2005), it may be 

informative to examine the effects ofvariants ofthese centriolar proteins which have been 

mutated in their putative Cdk-phosphorylation sites. Through the molecular 

characterization of these centriolar proteins and the resulting centriolar behavior that arises 

from such modifications, it may be possible to elucidate the mechanisms involved in the 

stabilizationJelimination of centrioles in the context of oogenesis. 

5.2.2. Why do centrioles disappear during a specifie stage? 

Our observation, presented in chapter II, showed that centrioles disappear at late pachytene 

stage during oogenesis. Thus, a challenging question to be answered is why centrioles 

disappear in this specifie stage of oogenesis. During female germ cell development in C. 

elegans hermaphrodites, two major transitions occur: the mitotic/meiotic transition and 

pachytene exit (oocyte differentiation). The mitotic exit to the meiotic state occurs through 

downregulation of GLP-l signalling (see chapter 1). On the other hand, the meiotic switch 

to oogenesis occurs through exit from the pachytene stage, where LET-60 RAS/MPK-l 

MAP kinase pathway has been known to be required for progress through this stage 

(Church et al., 1995). In addition, it has been shown that GLD-l is also critically involved 

in oocyte differentiation. Whereas GLD-l is present in low levels in the mitotic region, 

consistent with a non-functional role of GLD-l in germ cell proliferation, entry into the 

meiotic state is accompanied by increased levels of GLD-l. Moreover, GLD-l is present in 

the germ line throughout the pachytene stage, however, at the point of pachytene exit prior 

to oocyte differentiation, GLD-l levels dramatically decrease and remain absent until the 

completion of oogenesis (Jones et al., 1996). These findings suggest that GLD-l may be 

involved in oocyte differentiation through its ability to repress the translation of maternaI 

mRNAs that are synthesized during the early meiotic stages until pachytene exit when they 
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aIl release from this inhibition. Since this coincides with the time that the centrioles 

disappear, it would be interesting to characterize whether there is a genetic interaction 

between these two different developmental events and more intriguingly, whether 

translational repression mediated by GLD-I is required for centriole maintenance. 

Unlike canonical cell cycles in which cell growth is coupled with cell division, 

variations of the cell cycle, which are normal and highly regulated, must also somehow 

confront the problem of regulating centrosome numbers. During endoreplication in 

Drosophila larvae and in the C. elegans intestine and hypodermis, the centrosome cycle is 

aiso uncoupled from DNA synthesis (see Chapter l in this thesis). However, little is 

understood as to wh ether the centrioles do indeed duplicate and are subsequently 

eliminated, or whether their duplication is uncoupled from the activity of cyclin E/Cdk2 

during S-phase. Thus, it will be of particular interest to examine each of these possibilities 

and test whether there is a novel link between cell cycle variation and the centriole 

destabilization/ disassembl y. 

5.3. SUMO-mediated Nucleolar Localization and CKI-2 Degradation 

In chapter III, we showed that CKI-2 is degraded following SUMO-mediated nucleolar 

localization. Moreover, in chapter IV, we showed that this degradation is mediated by a 

RING finger protein, RNF -1, in an ubiquitin-dependent manner. Since our study deals with 

a degradation of previously uncharacterized CKI through a novel mechanism, we believe 

that this will contribute to further understanding of the significance of post-translational 

modifications involved in maintaining appropriate CKI levels. 

5.3.1. Does CKI-2 shuttle between two compartments? 

The importance of the nucleolus in sequestering important cell cycle regulators has 

recently been brought to the forefront (Visintin and Arnon, 2000). Mitotic exit in S. 

cerevisiae is tightly controlled by the timely release ofCdcI4p from the nucleolus (Vistinin 

et al., 1999). Although Cdc14p controls late stages of the cell cycle, onecould envisage 
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that progressive nucleolar localisation and destabilisation of CKI-2 during the period in 

which daughter cells are refonning following a division might confer the S-phase 

regulation that is typical of these early embryonic divisions. Once levels of CKI-2 fall 

below a critical baseline threshold due to SUMOylation of an active CKI-2 population on 

or around origins of repli cation, the origins become active and S-phase proceeds. At 

mitosis the nucleolus disappears and then refonns in the daughters and the cycle resumes 

with the re-establishment of a functional nucleolus. This would allow for the cell cycle 

oscillations typical of embryogenesis without the necessity of cyclic bursts of 

transcription/translation to renew the levels of positive and negative regulators that drive 

mitotic cell cycle progression under zygotic control late in embryogenesis and during 

postembryonic development. Recent data have shown that treatment with a proteasome 

inhibitor causes a nucleolar accumulation of proteins (Mattsson et al., 2001; Pokrovskaja et 

al., 2001; Le Goff et al., 2004), suggesting that the nucleolus is involved in regulating sorne 

aspect of protein sorting associated with proteasome-mediated protein degradation. 

How can this possibility be tested? It has been shown that cki-2 begins to express at 

an early stage of embryogenesis (approximately 64 cell stage) and remains high throughout 

the course of embryonic development (Fukuyama et al., 2003). Thus, it would be 

infonnative to image CKI-210calization in real time using GFP-fused CKI-2 in embryonic 

cells during the early cell divisions prior to the onset of global zygotic transcription. In 

addition, a nucleolar marker such as Fibrillarin could be adopted to mark the nucleolar 

compartment and to use as a reference to monitor changes in CKI-2 localization during 

specifie times during the embryonic cell division cycles. Evidence of cyclical change in 

CKI-2::GFP localization to the nucleolar compartment would be consistent with this 

hypothesis. 

5.3.2. Mechanisms mediating the nucleolar localization of CKI-2 

Our results in chapter III argued that SUMO is sufficient for the nucleolar localization of 

CKI-2. Indeed, recent data have shown that nucleotide binding in the N-tenninal domain of 

MDM2 induces a similar nucleolar localization event, therefore modification of the 
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N-tenninus of CKI-2 by SMO-I may play a similar function (Poyurovsky et a1., 2003). 

However, our data demonstrated that a nucleolar signal in the C-tenninus ofCKI-2 seems 

to be conflicting with this model. In fact, the C-tenninal domain ofCKI-2, when expressed 

in intestinal cells, is strictly localized to the nucleolus, indicating that the C-tenninus is also 

sufficient for the nucleolar localization. How can these findings be accounted for? In the 

SUMO-fusion experiment presented in chapter III, we noticed that although SUMO was 

sufficient for the nucleolar localization of the CKI-2 N-tenninal variant, a considerable 

portion ofthe fusion protein was still present in the nucleoplasm. This observation suggests 

that the C-terminus of CKI-2 may have a major role in promoting efficient nucleolar 

localization. Because the C-terminus of CKI-2 localises constitutively to the nucleolus, a 

genetic screen using this fragment may be useful to identify the proteins that are involved 

in mediating this nucleolar translocation in C. elegans. 

5.3.3. Relationship between CKI-2 and PCNA 

The yeast two-hybrid screen that we conducted identified PCNA as a C-tenninal 

interacting protein of CKI-2. Studies in mammalian cells suggest that proliferating cell 

nuclear antigen (PCNA) may play an important role during DNA repli cation and repair 

since it recruits DNA polymerase 0 and G to replication origins after fonnation of 

pre-repli cation complexes, thereby stabilizing the enzyme on the chromatin. In addition to 

its role as a DNA polymerase accessory protein, PCNA also serves as a platfonn for a 

number of proteins involved in DNA replicationlrepair, cell cycle control, and other 

post-replicative processing (Warbrick, 2000). Therefore, PCNA plays a central role as a 

recruiting factor for a multitude of proteins required to coordinate DNA replication and 

repair with the cell division cycle. 

The data presented in chapter IV highlighted the possibility that SUMO might act 

to antagonize proteinlprotein interactions. Although SUMO did not seem to antagonize the 

CKI-2/PCNA interaction, we cannot formally exclude that the association of SUMO with 

CKI-2 could play a role in modulating the interaction of CKI-2 with the DNA replication 

factors. Moreover, a growing body of studies has demonstrated a critical role of SUMO in 
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the regulation of the function ofPCNA during DNA repli cation and repair (Ulrich, 2005). 

Recent data in yeast showed that SUMO modifies PCNA and this modification promotes 

recruitment of Srs2, a he1icase that blocks the recombinational repair through the 

disruption of Rad5l filaments, thereby preventing any unwanted recombination from 

occurring during DNA polymerization (Papouli et al., 2005; Pfander et al., 2005). 

Although it is so far unclear whether it is also the case for higher eukaryotic organisms, it 

would be interesting to investigate how CKI-2 interacts with PCNA and the proteins 

composing the DNA replication machinery to gain a more profound understanding of the 

role ofPCNA in S-phase regulation, particularly during the early embryonic divisions. 

5.4. Mechanisms mediating the Degradation of CKI-2 

As presented in chapter IV, a yeast two hybrid screen identified a RING finger protein 

called RNF-l as a CKI-2 C-terminal interactor. We showed that the degradation ofCKI-2 

is associated with RNF-l and this degradation seems to be mediated by 

ubiquitin-dependent proteolysis. Our data, therefore, provide further understanding of the 

appropriate maintenance ofthe regulation ofCKI-2Ieve1s in C. elegans. 

5.4.1. Does RNF -1 act as a component in a multi-subunit E3 ligase? 

At the moment, our foremost interest is whether RNF-l acts as a novel component of a 

multi-subunit E3 ligase. The canonical SCF complexes are composed of Skpl, Cullin, F 

box protein, and a RING domain protein such as RbxllRocl. However, recent data have 

shown that during synaptic formation in C. elegans neuron, FSN-l (a novel F-box protein) 

associates with SKP1, CUL-l, and RPM-l (a RING finger protein) to form a new type of 

SCF-like complex (Liao et al., 2004). This study suggests that a novel SCF can be formed 

in a tissue-specifie manner. It has been previously demonstrated that RING domain 

proteins recruit E2 ubiquitin conjugating enzymes through their RING fingers that will 

also interact with cullin proteins, thereby linking the E2 enzyme to the E3 ligase complex 

(Petroski and Deshaies, 2005). Although CKI-2 degradation does not seem to be mediated 

by CUL-2 (Feng et al., 1999), it cannot be formally excluded that other cullin members 
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may be associated with the CKI-2 degradation. In addition, sin ce F-box pro teins physically 

interact with RING domain proteins, it would be important to study whether there are any 

predicted F-box proteins in the C. elegans genome database that interacts with RNF-I. 

These possibilities may be tested by a biochemical approach such as 

co-immunoprecipitation using an anti-RNF-l antibody generated in our laboratory, or by a 

directional yeast two-hybrid analysis. These studies may reveal a new type ofSCF-like E3 

ligase that includes RNF -1. We believe that these studies will allow us to gain more insight 

conceming mechanisms involved in the maintenance of the appropriate levels of CKI-2 

and the degradation of CKI-2. 

5.4.2. SUMOylation and Ubiquitination: exclusive or sequential? 

In chapter IV, we presented that co-expression ofRNF-l with CKI-2 results in an increased 

degree of ubiquitination of CKI-2. Interestingly, right after the induction, 

mono-ubiquitination of CKI-2 begins to occur and this is preceded before high molecular 

weight CKI-2 entities are generated. Since co-expression ofRNF-l with the N-terminus of 

CKI-2 did not give rise to mono-ubiquitinated CKI-2 or the high molecular weight CKI-2 

ladders, it strongly supports that the C-terminus of CKI-2 is important, and that it is 

consistent with the ubiquitination of CKI-2 which may be mediated by a direct interaction 

between CKI-2 and RNF-l. 

It has been suggested that the function of many proteins is modulated through a 

crosstalk between mono-ubiquitination and SUMOylation (Ulrich, 2005). This is quite 

often an antagonistic or mutually exclusive relationship, as is the case for IKBa, or 

altematively, these steps can also occur in a sequential or successive manner, as is the case 

for NEMO where its ubiquitination requires an initial SUMOylation step. Since CKI-2 

seems modified through its two conserved SUMOylation motifs in the N-terminal 

inhibitory domain (see Chapter IIII), it would be informative to precisely characterize 

where the ubiquitination occurs. 
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Although our observations are by no means unequivocal, based on our CUITent 

results, the SUMOylation and the ubiquitination do not seem to be mutually exclusive, but 

rather they seem more sequential. However, a puzzling issue arises from our results shown 

in chapter III wherein SUMO antagonizes the interaction between CKI-2 and RNF-l in 

yeast, suggesting that the SUMOyaltion and the ubiquitination must also be antagonistic. 

Interestingly, however, a recent study showed that a SUMO-specifie isopeptidase localizes 

in the nucleolus during interphase (Nishida et al., 2000). Thus, opening the door for 

speculation that SUMOylated CKI-2 may be targeted by a nucleolar-specific SUMO 

protease during interphase and which allows RNF-l to interact with CKI-2 to trigger its 

degradation. However, this is speculative and remains to be further characterized. 

5.5. Synopsis 

Through our study ofthe role of cki-2 during deve10pment in C. elegans, we have provided 

sorne of the first results as to how centrioles can be appropriately destabilized during 

oogenesis. Future experiments will be focused on finding the target molecules which are 

involved in this and other contexts of centriole destabilization. Since many types of cancer 

show abnormal numbers of centrosomes (although it is unclear wh ether inappropriate 

maintenance of centrosome number is a cause or a consequence in tumorigenesis), our 

characterization of the target proteins involved in this pro cess may contribute to a better 

understanding of the role of centrosomes in tumorigenesis. Characterization of the CKI-2 

interacting proteins has uncovered a novel mechanism through which the levels of CKI-2 

may be appropriately maintained through SUMO-mediated nucleolar localization. Further 

investigation will be targeted toward understanding the mechanism in a more 

developmental context. In addition, more effort will be concentrated on identifying the 

players and their functions in this nov el pathway at the molecular level. Through these 

studies, we believe that our work will contribute considerable insight to our CUITent 

knowledge ofhow CKIs function during development in animaIs. 
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Original contributions to knowledge 

1. As presented in chapter II, in a process to study the loss of function of cld-2 using a 

reverse genetic approach called co-suppression in C. elegans, we have identified a novel 

mechanism that cld-2 is required for the specifie elimination of centrioles during oogenesis. 

We have demonstrated that this critical developmental pro cess is likely mediated through 

the catalytic activity of cyc1in E/Cdk2 complex. Intriguingly, we found that the maternaI 

centrosomes, originating from the perduring centrioles, do not seem to affect the 

determining pro cess of AfP polarity at fertilization, although supernumerary centrosomes 

in the zygote give rise to a severe aneuploidy. This suggests that although the 

matemally-derived centrosome retains the potential to nuc1eate and to associate with the 

kinetochore complex on the chromosomes, such abilities are short of determining the 

initial embryonic polarity, probably due to its inability to correctly contact with the 

embryonic cortex. Moreover, we have shown that the loss of cld-2 causes ectopie 

accumulation of centriolar proteins such as ZYG-1 and SPD-2 on the meiotic spindles in 

the zygote. Therefore, our results indicate that cyc1in E/Cdk2 complex may be involved in 

centriole stabilization through its ability to phosphorylate key target proteins, likely 

centriole-localizing proteins. Our work thus provides pioneering observations that will 

allow further study of this critical developmental pro cess at the molecular level. 

2. In chapter III, we presented that a yeast two-hybrid screen identified orthologues of 

PCNA and SUMO as CKI-2 interacting proteins. We mapped the PCNA binding region on 

CKI-2 and demonstrated that the region located in the C-terminus of CKI-2 is highly 

conserved among diverse PCNA interacting proteins. Moreover, through the 

overexpression of CKI-2 and its N- or C-terminal variant (CKI-2N or CKI-2C, 

respectively), we found that CKI-2 has two functionally separable domains, reminiscent of 

p21Cip1 in mammalian cells. We demonstrated that CKI-2 is covalently modified by 

SUMO through which CKI-2 localizes to the nuc1eolar compartment. Intriguingly, we 

have shown that this nuc1eolar localization is linked to the degradation of CKI-2. Using 

seriaI deletion constructs of CKI-2, we mapped a sequence element required for the 
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nucleolar localization of CKI-2. Since we noticed similar nucleolar localizing sequences 

on other CKIs (Dacapo and p27Kipl) containing conserved SUMOylation target sites, 

these data imply that this degradation through the SUMO-mediated nucleolar localization 

may be an evolutionarily conserved mechanism to maintain the appropriate levels of CKIs 

or other cell cycle regulators. Therefore, through the characterization of CKI-2 interacting 

partners, our work demonstrated a novel mechanism for the CKI-2 degradation and thus 

our results should help to further exp and our understanding of the mechanisms implicated 

in the maintenance of the CKI levels 

3. As we presented in chapter IV, a RING finger protein named RNF -1 was identified as a 

CKI-2 interactor in a yeast two-hybrid screen. We mapped the RNF-l binding region on 

the CKI-2 C-terminus, where we found that the RNF-l binding region is in close proximity 

to the PCNA binding region and the nucleolar localization element, suggesting that RNF-l 

may somehow interact with these sequence elements. Through genetic and biochemical 

studies, we have shown that RNF-l negatively interacts with CKI-2 through its ability to 

mediate an ubiquitin-dependent proteolysis of CKI-2 and that this degradation of CKI-2 is 

corre1ated with the suppression of embryonic lethality associated with CKI-2 

overexpression. Therefore, our work provided a molecular mechanism that may undertake 

the CKI-2 degradation. Moreover, using a yeast-based assay, we showed that SUMO 

antagonizes the CKI-2/RNF-l interaction. Thus, our results argue that the CKI-2 

degradation is mediated by RNF-l in an ubiquitin-dependent manner, where SUMO may 

be involved in this pro cess through its ability to associate with CKI-2. 
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Appendix 1 

Supplement al data for chapter II: Cell cycle regulators control 
centrosome elimination du ring oogenesis in C. elegans 

1.1. Legends to Supplemental Figures 

Figure S1.1. Protein sequence alignment of CKI-2 with CKI-l shows that the 

C-termini are divergent. The protein sequence of CKI-2 was aligned to that of CKI-1 

using Clustal W (Thompson et al., 1994). Asterisks (*) mark identical residues between the 

two CKIs. Strongly (:), or weakly (.) similar residues are shown. The underline marks the 

C-terminus of CKI-2 (CKI-2C) used for cki-2 co-suppression. The global sequence 

identity (%) of the two CKIs was 20.31 (53/261). At the N-terminus the identity (%) was 

29.91 (35/117) while 12.5 % (18/144) was shown at the C-terminus. The nuc1eotide 

sequence alignment of cki-2 with cki-l using MAFFT (v5.667) (Katoh et al., 2002; data not 

shown) revealed that the identity (%) in the 5' region was 38.15% (132/346) while it was 

29.4% (127/432) in the 3' region. This level of identity is far below the threshold for 

cross-reactivity of RNAi or co-suppression. 

Figure S 1.2. Centrosomal material persists on the meiotic spindle in cki-2cs one-cell 

embryos and is associated with ab normal morphology of the meiotic spin die. (A,B) 

(A) Wild-type, or (B) cki-2cs one-cell embryos stained with anti-SPD-2 and DAPI during 

the first meiotic division at fertilization. (C) The embryo shown in (B) is counterstained 

with anti-alpha-tubulin antibody (open arrowhead, red) (Matthews et al., 1998). The 

rectangular boxed region is magnified to provide greater detail. The asterisks (*) and 

arrows represent the patemal centrosome (green) and DNA (blue), respectively. The c10sed 

arrowhead represents SPD-2. S, sperm DNA. 
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Figure S 1.3. Both anti-SAS-6 and anti-SAS-4 recognize centrioles, and co-localize 

with y-tubulin in the early embryo. (A) a wild-type embryonic ceIl (the Pl blastomere in 

a two-ceIl embryo) Iabelled with GFP-y-tubulin (green), Cy3-conjugated anti-SAS-6 (red), 

and Cy5-conjugated anti-SAS-4 (bIue). The rectangular boxed region is magnified to 

provide greater detail. 
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Appendix II 

Supplemental data for chapter III: CKI-2 regulates embryonic cell 
divisions and is modulated by SUMO-mediated nucleolar localization 
and subsequent degradation 

2.1. Legends for Supplemental Figures 

Figure S2.1. The primary structure of CKI-2 and the CKI-2 variants (CKI-2N and 

CKI-2C), and summary of the yeast two-hybrid screen. (A) Amino acid sequence of 

CKI-2 and the CKI-2 variants (CKI-2N and CKI-2C). The dotted hne marks the region of 

CKI-2 (1-115) used as the N-terminal variant (CKI-2N) while the hne indicated by arrow 

shows the region of CKI-2 (116-259) used as the C-terminal variant (CKI-2C). Asterisks 

(*) indicate the lysine residues (K) of the consensus SUMOylation target sites (bold 

underlined). (B) Summary of the yeast two-hybrid screen. Yeast two-hybrid screens were 

performed with three different CKI-2 variants (fulllength CKI-2 (amino acids 1-259) and 

the N-terminus of CKI-2 (CKI-2N, amino acids 1-115)), and the C-terminus of CKI-2 

(CKI-2C, amino acids 116-259)) as baits. Two lacZ positives obtained with full length 

CKI-2 (1-259) corresponded to the C. elegans orthologue of PCNA (PCN-1), W03D2.4. 

Among three lacZ positives from the N-terminus of CKI-2 (1-115), one of the interactors 

interacted with fulllength CKI-2 and corresponded to K12Cll.2 (SMO-I), the C. elegans 

orthologue of SUMO-1 (small ubiquitin-related modifier-1). The remaining two 

interactors did not interact with the fulliength CKI-2. The C-terminus recovered two lacZ 

positives, one ofwhich corresponded to PCNA (PCN-1). 

Figure S2.2. The anti-CKI-2 antibody is specifie for CKI-2. (A) Western analysis with 

anti-CKI-2 (a-CKI-2, left panel) or anti-GFP (a-GFP, right panel, top) of embryos 

obtained from heat shock induced (+) or non-induced (-) animaIs that carry a 

hs::CKI-2::GFP transgene. CKI-2C::GFP expressing embryos were examined in an 
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identical manner (right panel, bottom). (B) Embryos carrying [hs::CKI-2::GFP] transgenic 

array was induced by heat shock followed by labelling with DAPI (blue) and pre-immune 

serum (P.!). (C) Embryos carrying [hs::CKI-2C::GFP] transgenic array was induced by 

heat shock followed by labelling with DAPI (blue) and anti-CKI-2 antibody (a-CKI-2). 

Figure S2.3. cki-2 co-suppressed (cki-2cs) embryos arrest with expanded endodermal 

and pharyngeal fields. (A,B) GFP/DIC overlay image captured at -250 minute 

post-fertilization in wild-type (A) or eld-2es embryos (B) visualized with elt-2::GFP, 

which is expressed in wild-type intestinal cells beginning at the 16E stage (-250 minute 

after fertilization) and maintained throughout development thereafter. (C,D) 

Immunofluorescence/DIC overlay image showing embryonic pharynge al cell nuc1ei in 

wild-type (C) or eld-2es (D) embryos detected by anti-PHA-4 antibody (red). Embryos are 

all -250 minute post-fertilization. Scale bar, 10)lm. 
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Appendix III 

Supplemental data for chapter IV: RNF-1, a Caenorhabditis elegans 
RING finger protein, modulates CKI-2 through ubiquitin-dependent 
proteolytic pathway 

3.1. Legends to Supplemental Figures 

Figure S3.1. The primary structure of CKI-2 and the CKI-2 variants (CKI-2N and 

CKI-2C). Amino acid sequence of CKI-2 and the CKI-2 variants (CKI-2N and CKI-2C). 

The dotted line marks the region ofCKI-2 (1-115) used as the N-terminal variant (CKI-2N) 

while the line indicated by arrow shows the region of CKI-2 (116-259) used as the 

C-terminal variant (CKI-2C). 

Figure S3.2. SMO-l dues not antagonize the interaction between CKI-2C and RNF-l. 

An in vivo competition assay using a galactose-inducible system in yeast. Gall, Gall 

promoter. Ade and Gal, Adenine and Galactose, respectively. CKI-2C, C-terminus of 

CKI-2. (+) or (-) indicates possession (+) or deficiency (-) ofthe component on the media. 
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REPORT 

~ Cell cycle regulators control centrosome elimination 
during oogenesis in Caenorhabditis elegans 

Dae Young Kim and Richard Roy 

Department of Biology, McGi11 University, Montreal, QUE bec H3A lB l, Canada 

l
n many animais, the bipolar spindle of the first zygotic 

division is established after the contribution of centri

oies by the sperm at fertilization. To Clvoid the formation 

of a multipolar spindle in the zygote centrosomes are 

eliminated during oogenesis in most organisms, although 

the mechanism of this selective elirnination is poorly 

understood. We show that cki-2, a Caer'orhabditis elegans 
cyclin-dependent kinase (Cdk) inhibitor, is required for 

their appropriate elimination during oogenesis. In the 

Introduction 

Experiments perlormed by Boveri (1900) over a century ago 
revealed the essential requirement for accunlte centrosome inher
itance and its role in regulating genome integrity in the develop
ing embryo. In many metazoans, the establi:·hment of the bipolar 
spindle during the first zygotic cell divisior is dependent on the 
patemal contribution of a microtubule org.mizing center. After 
fertilization, this organelle will recroit pericf ntriolar material pre
sent within the oocyte cytoplasm to assembe the two functional 
centrosomes that will define the first mitOtil spindle. In addition 
to this essential role of the centrosome in or ~anizing the spindle, 
in Caenorhabditis elegans, this structure is 1.1so required to spec
if Y the anterior/posterior axis after sperm er try in a microtubule
dependent and -independent manner (0'( onnell et al., 2000; 
Wallenfang and Seydoux, 2000; Cowan <lnd Hyman, 2004a). 
Therefore, the appropriate regulation of Cf ntrosome number is 
pivotal because aberrations in these controls 1 ~sult in asymmetrical 
chromosome segregation and/or severe pola ity defects. 

Although centrosomes are associated with most nuclei in 
C. elegans, including those in the germ lin·~, they are absent in 
oocytes, whereas they are clearly detectable and required for fer
tility in the sperm (Kemp et al., 2004). The l(ss ofthe centrosome 
from the oocyte is common to many specie:·, but the mechanism 
responsible for this elimination is currently lnknown. During our 
characterization of a C. elegans Cdk inrlÎbitor (CKI; cki-2) 

Correspondence to Richord Roy: richard.roy@mcgilLc ] 

Abbreviotions used in this paper: CKI, Cdk inl ibitor; dsRNA, double
stranded RNA. 

The online version of this article contoins supplementc moterioL 

© The Rockefeller University Press $8.00 
The Journol of Cell Biology, Vol. 174, No. 6, Seplem ,et Il, 2006 751-757 
hHp:/ /wwvv.jcb.orgl cgi/ doi/l O. 1 OIl3/icb.2005 121 .0 

absence of cki-2, embryos have supernumerary centrosomes 

and form multipolar spindles that result in severe aneu

ploidy after anaphase of the first division. Moreover, we 

demonstrate that this defect con be suppressed by reduc

ing cyclin E or Cdk2 levels. This implies that the proper 

regulation of a cyclin E-cdk complex by cki-2 is required 

for the elimination of the centrosome that occurs before or 

during oogenesis to ensure the assembly of a bipolar 

spindle in the C. elegans zygote. 

we noticed that compromise of cki-2 function caused embryos to 
arrest at the one-cell stage with a multipolar spindle. We show 
that this defect is due to a role of cki-2 in centrosome elimination, 
and our data provide pioneering evidence on how centrosomes 
are appropriately eliminated from the developing oocyte. 

Results and discussion 

Recently, large-scale screens using RNAi-based strategies have 
provided a framework for understanding many matemally con
trolled embryonic processes (Sonnichsen et al., 2005). How
ever, not all genes respond equally to RNAi. Our initial use of 
RNAi analysis to understand the role of a C. elegans CKI called 
cki-2 was not informative because of the variable penetrance 
and frequency of the RNAi-related phenotypes. Furthermore, 
no loss-of-function cki-2 alleles are currently available. We 
therefore tumed to an alternative reverse genetic approach 
called cosuppression, which is an RNAi-related posttranscrip
tional gene-silencing mechanism that is conserved among many 
phyla (Ketting and Plasterk, 2000). In wild-type animaIs, cki-2 
mRNA is normally present in the hermaphrodite germ line 
but is excluded from the distal mitotic zone (Fig. lA). To test 
whether cki-2 could be compromised through the co suppression 
pathway, we expressed the 3' portion ofthe cki-2 gene (Dernburg 
et al., 2000), which could not encode a functional protein 
and shared a very low degree of sequence conservation with 
cki-l, a second C. elegans CKI (Fig. SI, available at http:// 
www.jcb.org/cgi/contentifull/jcb.200512160IDCI). The cosup
pression transgenic array included a GFP marker facilitating our 
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Figure 1. eki-2es causes multiple phenotypes typical of a negative cell 
cycle regulator. (A and B) in situ RNA hybridization using an antisense 
cki-2 probe on wild-type (A) or cki-2cs (B) gonads extruded from adult 
hermaphrodites. (e and D) Sequential differential interference contrast images 
of a cki-2cs one-cell embryo showing normal pronuclear meeting (e) and 
nuclear divisions without appropriate cytokinesis giving rise to supernumer
ary nuclei (D, arrowheads) with variable DNA content based on staining 
with DAPI (E). (F and G) A sequential GFP fluorescence image of cki-2cs 
one-cell-arrested embryo that expresses [H2B::GFP; j3-tubulin::GFP]. The 
open arrowhead indicates an extra maternai pronucleus, asterisks mark 
centrosomes, and the arrows indicate polar bodies. (H) Irradiation sensitiv
ity of cki-2cs (GFP+; closed square) or wild-type sibling (GFP-) animais 
(open circle). The values are presented as the percentage of embryos that 
hatched from a total population of embryos laid from irradiated or not 
parents that were examined at each point. At point zero in each experi
ment, the survival percentage was normalized to 100%. The error bars 
represent the standard deviation of Iwo independent experiments 
(P < 0.05; 95% confidence). Bar, 10 f1m. 

detection of animais that possessed the transgene. We obtained 
several transgenic lines in different genetic backgrounds, ail of 
which indicated that reduction of cki-2 consistently resulted in 
reproducible embryonic lethality wherein rv60% of the GFP 
transgene-bearing embryos (GFP+ ) failed to complete embryo
genesis (Table 1). The abundance of cki-2 rnRNA was reduced 
substantially throughout the gonad in these GFP+ animais 
(Fig. 1 B), whereas the observed embryonic lethality could 
be reversed by genetically disrupting this silencing mechanism 
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using mutants in the downstream components of the cosuppres
sion pathway (mut-7 and rde-2), indicating that the observed 
lethality was specifically due to the reduction of cki-2 through 
cosuppression (Table 1). We therefore refer to these GFP+ ani
maIs as cki-2 cosuppressed (cki-2cs). Although rv40% of the 
cki-2cs embryos survive embryogenesis and continue larval 
development without visible abnormalities, we found that these 
animaIs are irradiation sensitive (Fig. 1 H). This indicates that 
despite their wild-type appearance, the DNA damage response 
in cki-2cs animaIs is nonetheless compromised. Therefore, re
duction of cki-2 function results in cell cycle-related abnorrnal
ities that reflect the various thresholds of cki-2 activity required 
to appropriately execute these cellular processes. Among the 
embryonically arrested embryos, we noticed that 7% of the 
embryos (n = 558) arrested at the one-cell stage with multiple 
micronuclei (9.1 %; n = 66), consistent with abnorrnal chromo
some segregation and/or cytokinesis (Fig. 1, C-E). Examina
tion of the affected zygotes by differential interference contrast 
indicated that early events (contractions of the anterior membrane 
or ruffling and pseudocleavage) before the pronuclear meeting 
were not significantly different from wild type (unpublished 
data). Shortly after nuclear envelope breakdown, however, the 
two pronuclei reformed and several de novo micronuclei be
came apparent. Cleavage furrows appeared occasionally but 
would regress, and rv50% (n = 18) of the micronuclei-containing 
embryos did not forrn a cleavage furrow. The remaining 50% 
were defective in cleavage plane orientation, although both 
classes did undergo multiple rounds ofkaryokinesis (Fig. 1, C-E). 
To better understand the basis of the "one-cell" arrest pheno
type, we imaged cki-2cs embryos that harbored GFP-histone 
and GFP-f3-tubulin transgenes. In sorne embryos, we observed 
a second maternaI pronucleus (4.5%; n = 66), a meiotic defect 
that arises because of abnormal polar body exclusion (Fig. 1 F). 
We also noted that chromosomes failed to align correctly after 
nuclear envelope breakdown, whereas the spindle microtubules 
appeared to be organized around multiple foci, typical of extra 
microtubule organizing centers or centrosome-like structures 
(Fig. 1 G and Video 1). 

To confirrn that this unique multipolar spindle phenotype 
was due to the reduction of cki-2 and not due to cosuppression
related phenomena or nonspecific effects on cki-}, we used an 
RNAi-sensitive strain (Simmer et al., 2002) to reduce either 
cki-} or -2levels to reproduce the cki-2cs-associated multipolar 
spindle phenotype. We did detect one-cell embryos with super
numerary centrosomes after cki-2(RNAi) in rif-3 (Table II and 
see Fig. 3, E and F), although the penetrance of the defect was 
considerably lower than that observed in cki-2cs animais. On 
the other hand, despite causing a high frequency of embryonic 
arrest in the rif-3 background, cki-}(RNAi) never caused a one
cell arrest or a multipolar spindle phenotype (Table II). There
fore, we conclude that the supernumerary centrosomes and the 
resulting multipolar spindle defect observed in cki-2cs embryos 
were not due to effects on cki-} function or due to cosuppres
sion per se but, rather, to a loss or reduction of cki-2 function. 

To address whether cki-2 affected the centrosome cycle dur
ing spermatogenesis or, alternatively, during oogenesis, we exam
ined centrosome numbers in early pronuclear stage embryos using 



Table 1. eki-2 cosuppression causes embryonk lethality 
----~----------------------------------------------------

Genotype 

N2 

N2; cki-2 (RNAi) 

N2; [Fem-1::GFP] (0/4) 

N2; [Fem-1 ::cki-2q (3/3) 

line #1 

line #2 

line #3 

rd-3; [Fem-1 ::cki-2Q (2/2) 

li ne #1 

line #2 

TH27 (pie-1 ::)I-tub::GFP); [Fem-1 ::cki-2Q (5/5) 

line #1 

line #2 

line #3 

rde-2; [Fem-1 ::cki-2Q (0/2) 

line #1 

line #2 

mut-7; [Fem-1 ::cki-2Q (0/3) 

li ne #1 

line #2 

line #3 

GFP+ 

% 

NA 

NA 

o (n = 244)° 

26.9 (n = 466)° 

23.3 (n = 103) 

8.1 (n = 186) 

55.3 ln = 159)° 

42.2 ln = 436) 

29.1 (n = 1257)° 

21.5 (n = 395) 

19.2(n= 198) 

5.7 ln = 357) 

1 1.6 ln = 404) 

17.9 (n = 313) 

11.4 (n = 245) 

12.7(n= 181) 

Embryonic lethality 

GFP-

% 

0.29 (n = 1384) 

5.5 (n = 710) 

ND 

0.7 (n = 280) 

ND 

ND 

27.6 (n = 116) 

25.1 ln = 231) 

1.7 (n = 232) 

ND 

ND 

7.5 (n = 374) 

17.7 (n = 561) 

20.2 (n = 325) 

12.1 (n = 440) 

9.4 (n = 276) 

A C. elegans strain that harbors an extrachromosoma array containing the [Fem-1: :cki-2q cosuppression transgene segregates animais that possess the arroy (GFP+) or 
not (GFP-), as indicoted by the presence 01 the domir Jnt elt-2::GFP cotranslormation marker. Embryonic lethality was presented os the percentage 01 unhatched embryos 
Irom total progeny obtained Irom GFP+ or GFP- your'9 adull animais. The frequency 01 the embryonic lethality phenotype in the various trangenic lines obtained is shawn 
in parentheses. The embryonic lethality Irom GFP- an'mals was determined Irom only one transgenic line 01 each tested genotype. 
oThe transmission Irequency 1%) 01 the transgenic arrcy in these strains was scored os the number 01 GFP+ progeny Irom the total number 01 progeny, and the transmis
sion rote 01 the cki-2cs strain used throughout the stu, Iy was ~50%. 

an antibody against SPD-2, a coiled-coill rotein that associates 
with the centrosome (Kemp et al., 2004). We noticed that unlike 
wild-type embryos, strong SPD-2 expressiOl was visible at distinct 
foci in both the paternal and maternaI pronu,;)ei (pronuclear meet
ing stage; Fig. 2, A and B). To ascertain wllether the presence of 
the extra centrosomes was indeed due to t1,eir contribution from 
the maternaI pronucleus, as opposed to dcfects associated with 
failed cytokinesis (Skop et al., 2004), we i naged embryos from 
meiosis to pronuclear meeting using GFP-I'-tubuIin, revealing 

that GFP-I'-tubulin was associated with the maternaI pronudeus 
in prepronudear migration stage embryos obtained from cki-2cs 
animaIs (6.7%; n = 60; Fig. 3, Band C), whereas we never ob
served GFP-I'-tubulin associated with the maternaI pronucleus in 
wild-type embryos (n = 80; Fig. 3 A). 

Collectively, these results indicate that the supernumerary 
centrosomes were aIready associated with the maternaI pronu
deus at the time of fertilization in cki-2cs embryos, possibly 
bec au se they were not appropriately eliminated in the maternaI 

Table II. Supernumerary centrosomes are present in the one-cell embryo of cki-2es animais 
----------------------------------------------------------------------

Genotype Embryonic lethality 

rrF-3 

rd-3; cki-1 (RNAi) 

rd-3; cki-2 (RNAi) 

N2; [Fem-1 ::cki-2C]b 

TH27; [Fem-1: :cki-2C]b 

% 

23.0 ± 1.2 (n = 374) 

94.7 (n = 570) 

27.5 ± 3.7 (n = 734) 

26.9 (n = 466) 

29.1 ln = 1257) 

Supernumerory centrosome· 

% 

o (n = 76) 

o ln = 40) 

4.5 ln = 111) 

13.5(n= 133) 

6.7 ln = 60) 

One-cell embryos obtained Irom the cki-2 cosuppr' 'ssion transgene-beoring animais (GFP+) were examined ta score the Irequency (%1 01 the supernumerory 
centrosomes. For RNAi 01 cki-1 or -2, each dsRNA " as injected into rrf-3 hermaphrodites os described Isee Materials and methods), and the Irequency (%) 01 bath 
the embryonic letholity and the supernumerary cent" sames was scored. The embryonic lethality was presented as the percentage of unhatched embryos From total 
progeny obtained Irom the RNAi-treated mothers. 

~ . °Embryos were stained with anti-SPD-2 or )I-tubulin:: ::;FP, and the results ore presented as the percentage 01 the total number 01 one-cell stage embryos examined. 
Ail one-cell embryos examined were at or belore the 'irst cell division. 
bThe Frequency 01 the supernumerary centrosome c efed was determined in the most penetrant cosuppressed lines (Iine # 1 01 N2; [Fem-1 ::cki-2CJ and TH27; 
[Fem-1 :·cki·2CJI lor comparison. 
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F 
Genotype One-cell arrest (%) 

cki-2cs 1.59.0.45 (n=1860) 
cki-2cs;cye-1 (RNAi) 0.82.022 (n=1720) 

cki-2cs 
cki-2cs; K03E5.3 (RNAi) 

n.d 

n.d 

Supemumerary centrosome (%) 

14.07.1.85 (n=133) 
5.05.3.99 (n=87) 

9.48.4.21 (n=102) 
4.58.383 (n=55) 

Figure 2. Supernumerary centrosomes observed in eki-2es embryos are 
contributed by the maternai pronucleus in a cyclin E/Cdk2-dependent 
manner. (A and B) Late pronuclear stage wild-type (A) or cki-2cs (B) one-cell 
embryo stained with DAPI (blue), anti-SPD-2 (green), and anti-a-tubulin 
(red). The small arrowheads indicate the pronuclei at different stages. 
Arrows indicate polar bodies, and asterisks indicate centrosomes. p and m, 
paternal and maternai pronuclei, respectively. (e and D) PAR-2::GFP (red) 
in the posterior cortex (open arrowheads) 01 a wild-type (C) or a cki-2cs 
(D) one-cell embryo. (E) Anti-P-granule staining (red spots; closed arrow
heod) 01 a cki-2cs one-cell embryo. The arrows indicate polar bodies 
(anterior), and the asterisks mark centrosomes. (F) Frequency (%) 01 cki-
2cs-associated one-cell arrest and the persistence 01 maternai centrosome 
after cye-l (RNAi) or K03ES.3(RNAi). Standard deviation 01 at least three 
independent experiments is shawn, and asterisks represent signilicant dil· 
lerences compared with cki-2cs contrais (P < 0.05; 95% conlidence). The 
one-cell arrest phenotype was presented as the percentage 01 unhatched 
one-cell embryas lrom the total number 01 progeny (embryos and larvae). 
The embryos Irom injected or uninjected (control) animais were labeled 
with DAPI and anti-SPD-2 antibody 24 h after dsRNA microinjection, and 
the resulting one-cell embryos were examined lor supernumerary centro
sames. The results are presented as the percentage 01 the total number 01 
embryos examined at the one-cell stage. Ali one-cell embryos examined 
were at or belore the lirst cell division. The variation observed in the pene
trance 01 the centrosome delect is due ta the progressive silencing 01 the 
casuppression transgene over time. 

germ line as a result of a reduction in eki-2 function. However, 
because we could not show detinitive live images of an embry
onic cell division beginning in the prepronuclear stage to the 
tirst mitotic division, we cannot formally rule out the possibility 
that the supernumerary centrosomes may arise from a cytokine
sis failure after the tirst mitotic division. 

Therefore, to test whether centrosome elimination is de
fective in cki-2es oocytes, we stained the gonads of affected 
(GFP+) and unaffected (GFP-) animais with an anti-SAS-4 
antibody to determine whether centrioles were abnormally pre
sent in the oocytes of cki-2es animais. SAS-4 is associated with 
ail centrioles in C. elegans and is required for their duplication 

754 c..lCB • VOL_UME 174. NUMBER 6 • 2006 

A 
.* 

p * 
m 

ole 
.. m 

/ 

Î P .... 

F 
p ID .... ... 

SPD-2 

-

* r 

* 

* 

, 

* 
L * 

* '- * 

C' 
p ~~. 

* m 
* * * 

DAPI 

, 

• 

• 
1 

Figure 3. eki-2(RNAi) causes defects in the elimination of the maternai 
centrosome. (A-C) Early wild-type one-cell embryo (A; prepronuclear 
migration stage) or cki-2cs embryos that express GFP--y-tubulin ta visualize 
centrosomes (B and C). (D-F) Early one·cell embryos (prepronuclear migra
tion stage) Irom rrf-3 (D) or rrf-3; cki-2(RNAi) (E and F) adult hermaphro
dites stained with anti-SPD-2 antibody. The arraws indicate polar bodies 
stained with DAPI (anterior). Asterisks mark centrosomes (maternai [ml and 
paternal [pl). The white rectangular box in A shaws the paternal centro
some that cou Id not be observed in the same local plane. The rectangular 
boxed regions in Band D-F were magnilied ta show greater detail. 

(Leidel and Gonczy, 2003). In wild-type animais, SAS-4 is 
associaled with ail germ cell nuclei, although SAS-4 staining 
foci were noticeably absent from oocytes (Fig. 4 A). The ab
sence of the SAS-4/centriole staining in oocytes is consistent 
wilh previous observations that the centrosomes are eliminated 
from the germ cell nuclei at or around the stage of oocyte com
mitment (Albertson and Thomson, 1993). 

Anti-SAS-4 staining of the oocytes from the eki-2es her
maphrodite animais revealed that SAS-4 staining structures were 
present next to the oocyte nuclei at a frequency consistent with 
the penelrance of the extra centrosome defect caused by the eki-
2es transgene (8.9%; Il = 79), whereas no obvious SAS-4 foci 
were ever observed in oocytes in wild-type animais (Fig. 4 Band 
not depicled). Although this is the strongest evidence that eki-2 is 
required for appropriate centriole elimination during oogenesis, 
we wanted to further confirm that the anti-SAS-4 staining recog
nized bon a fide centrioles and not simply SAS-4 aggregates in 
the oocyte. We therefore stained the oocytes of wild-type and 
cki-2es animais using anti-SAS-4 and anti-SAS-6, both of which 
recognize the centriole ( Dammermann et al., 2004; Leidel and 
Gonczy, 2005). Both antibodies recognized the centrioles of 
embryos. where they colocalize with -y-tu bu lin (Fig. S3, available 
at http://www.jcb.org/cgiJcontent/full/jcb.2005l2l60/DCl). After 
double staining, we compared the number of overlapping sig
naIs between wild-type and cki-2es germ !ines (Fig. 4, C-E). 
Consistent with our previous observation (Fig. 4 B), we noted that 
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Figure 4. Centrioles are not appropriately eliminated during oogenesis in 
eki-2es animais. (A and B) Extruded gonods Irol"1 wild-type (A) or cki-2cs 
(B) adult hermaphrodites stained with DAPI (red and anti-SAS-4 (green). 
The bracket in A delineates the region that corre ;ponds to oocyte commit
ment, where ~50% 01 the germ cell nuclei stain positively lor SAS-4. The 
region within the rectangular box is shown in de tail, and the open arrow
heads indicate SA5-4 foci (centrioles) in this inset ~nd throughout. The inset 
in B shows a magnilied oocyte (Irom the white Irc me) with Iwo SAS-4 stain
ing loci. (C-E) A wild-type meiotic germ cell (e), J wild-type oocyte (D), or 
an oocyte Irom a cki-2cs adult hermaphrodite (:). Ali were stained with 
DAPI (blue), Cy3-conjugated anti-SAS-6 (green). or Cy5-conjugated anti
SAS-4 (red). The region within the reclangular bo ( is shown at higher mag
nilication. Bars: (A and B) 10 j.1m; (C-E) 2.5 j.1m 

significantly more SAS-6 staining oocyte; showed overlapping 
positive signais with anti-SAS-4 in the c·d-2es animais (14/55 
SAS-6-positive oocytes) compared with w Id-type (1/29 SAS-6-
positive oocytes; this single overlapping ')AS-4 signal may be 
due to juxtaposition of the signais during t'1e deconvolution pro
cess; Fig. 4, D and E). Therefore, our stainmg with two indepen
dent centriole-specific antibodies suggests that the observed foci 
are indeed centrioles, which are not appmpriately eliminated in 
the eki-2es oocytes. 

In C. elegans, oogenesis occurs in :tn assembly line-like 
fashion (Fig. 5 A; Schedl, 1997). We ob5~rved that the SAS-4 
staining structures persisted into the late ~·tages of oogenesis in 
eki-2es hermaphrodites (Fig. 5, B-D). Thtse data are consistent 
with eki-2 playing a cri tic al role in the tirrely elimination of the 
maternai centrioles during oogenesis, an.! when its activity is 
reduced below a critical threshold, the '- entrioles persist and 
eventually will give ri se to the supernu merary centrosomes. 
Although our resuIts strongly argue thal eki-2 is involved in 
the elimination of maternai centrioles, u ltrastructural studies 
would provide more definitive evidence of ~entriolar perdurance. 
Intriguingly, although the matemally contributed centrosomes are 
the likely cause of the abnormal division observed in the one
cell-arrested eki-2es embryos, we have l)een unable to show 
that these supernumerary centrosomes c.m nucleate microtu
bules and/or duplicate beyond the first diVision. We also noticed 
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Figure 5. Centrioles persist into the later stages of oogenesis in eki-2es 
animais. (A) Diagram 01 late-stage oogenesis in the proximal gonad arm. 
The number indicates the position 01 the oocyte undergoing meiotic matu
ration. Oocytes in diakinesis of meiotic prophase 1 belore maturation 
(- 3, - 2); the oocyte odjacent to the spermatheca is designated as - 1 . 
(B-D) A proximal gonad arm Irom a wild-type animal (B) or cki-2cs ani
mais (C and D) stained with anti-SAS-4 antibody. S, Spermatozoa and/ 
or Spermatids; Sp, Spermatheca. Open arrowheads indicate SAS-4 loci 
detected in the oocyte nuclei (C and D). The white rectangular boxed 
region was magnified to provide greater detail. Bars, 10 j.1m. 

that the polarity of the affected embryos seems consistently nor
mal based on GFP-PAR-2 (100%; 11 = 17; Fig. 2, C and D) or 
P-granule staining (Fig. 2 E; Cowan and Hyman, 2004b). Our 
observation that anterior/posterior polarity does not seem to be 
affected in eki-2es zygotes suggests that although the mater
nally contributed centrosomes appear competent to organize a 
mitotic spindle, they are seemingly not equivalent to the pater
nal centrosome in providing the polarity cue in the zygote. The 
basis of this difference between the centrosome pairs is cur
rently unknown, as no difference in centrosomal morphology or 
molecular composition has been identified between the centro
somes of paternal and maternai origin. 

Our observations, although obtained with fixed embryos, 
suggest that a functional difference may distinguish the mat
ernai and the paternal centrosome in establishing the anterior/ 
posterior polarity at fertilization. However, we have been un suc
cessful in imaging the matemally contributed centrosomes into 
and beyond the first division while simultaneously monitoring 
the establishment of the PAR-2 domain. Therefore, we cannot 
formally rule out the possibility that the polarity is established 
early by the sperm and that the extra centrosomes we observe in 
the multinucleate embryos are patemal in origin that have dupli
cated and appear later due to cytokine sis defects (Fig. 2, A-E). 

Because meiotic defects were also observed in eki-2cs 
embryos, we determined whether the abnormal presence of 
centrosomal components on the meiotic spindle might disrupt the 
normal mechanism of the acentriolar meiotic division. We found 
that the morphology of the meiotic spindle in early eki-2es zygotes 
is disorganized (Fig. S2 C, available at http://www.jcb.org/cgil 
contentifull/jcb.200512160IDCl), whereas SPD-2 was detectable 
as a diffuse haze surrounding the spindle (Fig. S2, A and B). 
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We also found that ZYG-l, a protein that is also required for cen
trosomal duplication (O'Connell et al., 2001), was similarly pre
sent on the meiotic spindle in eki- 2es zygotes (unpublished data), 
suggesting that the atypical presence of these ectopie centrosomal 
materials may be responsible for the meiotic spindle abnorn1alities 
and the consequent meiotic defects observed in cki-2cs embryos. 

The loss of cki-2 could result in misregulated levels of Cdk 
activity within the oocyte, causing a centrosomal anlage to per
sist and eventually form the tetrapolar spindle that results in a 
one-cell aITest. To test this scenario, we compromised G liS Cdk 
activity by performing cye-l(RNAi), which is the only E-type 
cyclin in C. elegans (Fay and Han, 2000). Loss of cyclin E has 
no effect on the first cell division in C. elegans (Fay and Han, 
2000). However, after cye-l(RNAi) in eki-2es animais, the char
acteristic one-cell arrest phenotype was suppressed substantially, 
which was also reftected in the nearly twofold reduction in the 
frequency of the multipolar spindle defect (Fig. 2 F). A similar 
degree of suppression was also observed after K03E5.3(RNAi), 
where K03E5.3 is the predicted C. elegans Cdk2 homologue 
(Liu and Kipreos, 2000; Fig. 2 F). Control animais injected with 
double-stranded (dsRNA) cOITesponding to cyclin D showed no 
such effect (unpublished data). 

That this effect of cyclin E occurs independently of Cdk 
activity (Matsumoto and Mailer, 2004) seems unlikely based 
on the CUITent accepted mechanism of CKI function and our 
observation that K03E5.3( RNAi) suppressed the frequency of 
the persistence of the maternaI centrosomes to levels comparable 
to cye-l(RNAi). Our data are thus consistent with the loss of 
cki-2 resulting in misregulated cyclin E/Cdk2 activity in the 
germ line that consequently allows centrioles to perdure into 
the developing oocyte. 

That both ZYG-I and SPD-2 persist during oogenesis and 
are present on the meiotic spindle in cki-2cs embryos suggests 
that their levels may be regulated by cYclin E/Cdk activity, in a 
manner similar to Mpsl (Fisk and Winey, 2001). The loss of 
cki-2 therefore reveals a previously undescribed function of cyclin 
E-Cdk complexes in centrosome stabilization in the C. elegans 
germ line. Through the timely regulation of this activity, the 
maternai centrosomes are eliminated as the germ cell acquires 
its oocyte fate. 

This novel function of Cdks and CKIs in centrosome 
inheritance would probablynothave been uncovered through con
ventional gene targeting in mou se models. Unlike most animais, 
the sperm does not contribute the centrioles in the mou se; 
instead, they arise de novo in the fertilized zygote (Schatten, 
1994). Why, then, do most metazoans selectively eliminate the 
centrosomes within the maternai germline? The answer may 
come from species that can develop parthenogenetically, where 
the oocyte is thought to harbor a centriolar anlage (Delattre and 
Gonczy, 2004). This would be selected against in species that 
undergo a biparental mode of development based on spenn
specifie centriolar contribution. The elimination of the maternai 
centrosomes, either through CKI-mediated or related mecha
nisms. would block the ability of the oocyte to develop partheno
genetically and strongly favor the union of sperm and egg to 
trigger the onset of cell division in the zygote. Because the mode 
of centrosome inheritance in C. elegans shares considerable 
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parallels with that of many animais, identification of the Cdk 
targets in this model may provide invaluable insight pertinent to 
the mode of centrosome inheritance shared by mast metazoans, 
including humans. 

Materials and methods 

Nematode strains 
The following C. elegans strains were used: N2 Bristol was used as the 
wild type throughout. MR258 (N2; rrEx258 [Fem.l::cki-2C; elt-2::GFP]), 
MR306 (N2; rrEx306 [fem-l::GFP; elt-2::GFP]), MR294 (rde2; rrEx294 
[Fem.l::cki-2C; elt-2::GFP]), MR303 (mut]; rrEx303 [fem-l::cki-2C; elt-2:: 
GFP]), NL917 (mut·7 [pk204]), WM29 (rde-2 [ne221]), MR446 (unc·119; 
ru/s32 [unc-119(+); pie-l::GFP::H2B]; ai/51 [unc-119(+); pie-l::GFP:: 
TBB-2]; rrEx258 [Fem-l::cki-2C; elt-2::GFP]), XA3501 (unc-119; ru/s32 
[unc119(+); pie-l::GFP::H2B]; ai/51 [unc-119(+); pie-l::GFP::TBB-2]), 
TH27 (unc·119; dd/s6 [unc·119(+); pie-l::GFP:: TBG·1]), MR628 (it/S 153 
[rol.6(+); pie·l::PAR.2::GFP]; rrEx258 [Fem.l::cki-2C; elt-2::GFP]), MR824 
(unc119; dd/s6 [unc.119(+); pie-l::GFP::TBG-1]; rrEx824 [fem-l::cki-2C; 
elt·2::GFP]), NL2099 (rrf·3(pkI426)), and KK866 (it/5153 [ra/.6(+); pie-l:: 
PAR·2::GFP]). Ali C. elegans strains were cultured using standard techni
ques and maintained at 20°C unless stated otherwise (Brenner, 1974). 

Constructs 
For cki·2 cosuppression, 3 kb of genomic sequence upstream of the Fem·l 
translational start site was PCR amplified from N2 genomic DNA followed 
by Sphl-Pst1 digestion and insertion into pPD49.26 to yield pMR220. The 
cki·2C fragment (amino acids 116-259; lacking a translational start site; 
Fig. S 1) was prepared by PCR and then inserted into pMR220 at the 
BamHI-Xmal sites to create pMR221. The Fem·' promoter fragment was in· 
serted into pPD95.77 at Sphl-Pstl sites to yield pMR266. For RNAi of cki·2, 
a cki-2 template for dsRNA synthesis was generated by subcloning the 
cki-2 cDNA into the Pstl-Kpnl sites of pBluescript Il to generate pMR215. 
cye·' dsRNA was prepared as described previously (Fay and Han, 2000). 
cki·' dsRNA was prepared as described previously (Hong et al., 1998). 
K03E5.3 dsRNA templale was amplified from a clone of the bacterial feed· 
ing RNAi library (1·1 D09) using PCR and inserted into the Sad-Sadi sites 
of pBluescript Il to generate pMR330. 

cki-2 cosuppression and RNAi 
pMR220 and pMR221 were coinjected (50 ,..,g/ml) with 100 ,..,g/ml elt-2:: 
GFP as a coinjection marker into N2 hermaphrodites as described previ· 
ously (Mello et al., 1991). F1 progeny expressing elt·2::GFP were singled, 
and their progeny (F2) were scored for transmission of the extrachromo· 
somal array. Embryonic lethality was scored from each transgenic line. 
dsRNA was obtained by in vitro transcription reactions, annealing, and in· 
jection as described previously (Fire et al., 1998). Injected animais were 
transferred to new plates every 24 h, and the F1 progeny was examined 
for visible abnormalities that affected development or cell division. 

Antibodies and immunological methods 
The following primary antibodies were used: anti-a-tubulin (Sigma-Aldrich), 
polyclonal anti-rabbit SPD-2 (a gift from K. O'Connell, National Institutes of 
Health, Bethesda, MD), rabbit polyclonal anti-SAS-4 (a gift from P. Gonczy, 
Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland), 
Cy3-conjugated anti-SAS-6 and Cy5-conjugated anti-SAS-4 (a gift from 
K. Oegema, University of California, San Diego, La Jolla, CA), and rabbit 
polyclonal anti-P-granule (a gift from S. Strome, Indiana University, Bloom· 
ington, IN). Secondary antibodies were anti-rabbit or anti-mouse Texas red 
or FITC-conjugated secondary antibodies or anti-rabbit Alexa Fluor 594 
secondary antibody (ail obtained from Invitrogen). DAPI (Sigma-Aldrich) 
was used to counterstain slides to reveal DNA. Embryos or hermaphrodite 
gonads were fixed and stained as described elsewhere (Couleau et al., 
2004). Indirect immunofluorescence microscopy was performed using a 
60x oil·immersion objective lens in a compound microscope (DMR; Leica) 
equipped with a digital camera (C4742·95; Hamamatsu), imaging an 
~O.s.,..,m-thick optical section. Image analysis, computational deconvolu· 
tion, and pseudocoloring were performed using Openlab 4.0.2 software 
(Improvision). Ali images using Cy3-conjugated anti-SAS·4 and Cy5-
conjugated anti-SAS-6 were acquired (using a 60x oil·immersion objective 
lens) and deconvolved using an image restoration system (DeltaVision; 
Applied Precision). Data were collected as a series of 35 optical sections in 
increments of 0.25 ,..,m under standard parameters using the SoftWoRx 3.0 



progrom (Applied Precision). Images were processE ~ using Photoshop 8.0 
(Adobe). Ail microscopie works were performed at ~O°c. 

ln situ hybridization 
Digoxigenin-Iabeled antisense and sense probes Nere generated using 
T7 and T3 kits with digoxigenin-11-UTP (Roche). In situ hybridization was 
performed on the gonads dissected from wild-type, Ir cki-2es (GFP+) adult 
hermaphrodites as described previously (Feng et al , 1999). 

On li ne supplemental material 
Fig. SI shows protein sequence alignment of CKI-2 ",ith -1. Fig. S2 depicts 
centrosomal material persisting on the meiotic spil die in eki-2cs one-cell 
embryos. Fig. S3 shows an embryonic ceillabeied y.. ith GFP--y-tubulin, anti
SAS-6, and anti-SAS-4. Video 1 shows a cki-2es c le-cell embryo labeled 
with GFP histones and GFP-I3-tubulin. Video 2 sho "'s a wild-type one-cell 
embryo (pronuclear migration stage) labeled with "FP--y-tubulin. Video 3 
shows a cki-2es one-cell embryo (pronuclear migrat on stage) labeled with 
GFP4-tubulin. Video 4 shows a cki-2cs one-cell eml 'ryo (prepronuclear mi
gration stage) labeled with GFP--y-tubulin. Online s Ipplemental material is 
available at http://www.jcb.org/cgijcontentjfull/j b.200512160/DC1. 
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