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Abstract

Let G be a graph and T an even cardinality subset of its vertices. We call (G, T ) a

graft. A T -join is a subgraph of G whose odd-degree vertices are precisely those in T , and

a T -cut is a cut δ(S) where S contains an odd number of vertices of T . An interesting

question from a combinatorial optimization perspective is that of finding optimal T -joins

and T -cuts. These have applications in various places. We give an overview of several such

optimization problems, as well as several algorithms for finding optimal T -joins and T -cuts

from the literature.

We then consider a packing problem in grafts. It is a simple observation that the

number of edge-disjoint T -joins is at most the number of edges in any T -cut. However it

is not known exactly when these quantities are equal. It has been conjectured by Guenin

that if G is planar and all T -cuts of G have the same parity and the size of every T -cut

is at least k, then G contains k edge-disjoint T -joins. The case k = 3 is equivalent to the

Four Colour Theorem, and the cases k = 4, which was conjectured by Seymour, and k = 5

were proved by Guenin. Recently, the case k = 6 was settled by Dvořak, Kawarabayashi

and Král’. In this thesis, we give a proof of the case k = 7.
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Abrégé

Soit G un graphe, et T un sous-ensemble de ses sommets de cardinalite pair. Nous

appelons (G, T ) une greffe. Définissons par T -jointure tout sous-graphe de G dans lequel

les sommets de degré impair sont précisement ceux de l’ensemble T , et par T -coupure tout

coupure δ(S) où |S ∩ T | est impair. Une question intéressante en optimisation combina-

toire est celle de trouver les T -jointures et T -coupures optimales. Nous donnons un aperçu

de divers problèmes d’optimisation auxquels ceux-ci s’appliquent, ainsi que plusieurs algo-

rithmes pour trouver les T -jointures et T -coupures optimales.

Nous considérons ensuite un problème d’empaquetage dans les greffes. C’est une ob-

servation facile que le nombre de T -jointures arête-disjointes dans le graphe G est au

maximum le nombre d’arêtes dans quelconque T -coupure. Cependant on ne sait pas ex-

actement quand ces quantités sont égales. Il a été conjecturé par Guenin que si G est

planaire, que tous les T -coupures de G ont la même parité et que et le nombre d’arêtes

dans chaque T -coupure est au moins k, alors G contient k T -jointures arête-disjointes .

Quand k = 3 la question est équivalente au théorème des quatre couleurs, et le cas k = 4,

ce qui a été conjecturé par Seymour, et k = 5 ont été prouvés par Guenin. Récemment, le

cas k = 6 a été réglé par Dvořak, Kawarabayashi et Král’. Dans cette thèse, nous donnons

une preuve pour le cas k = 7.
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Chapter 1

Introduction to T -joins and T -cuts

This thesis focuses on the theory of T -joins and T -cuts. We begin with a short review of

definitions and simple lemmas. The reader is assumed to have knowledge of basic graph

theory and linear programming. A glossary of terms is provided as an appendix.

Let G = (V,E) be an undirected graph and S ⊆ V . The cut δ(S) ⊆ E consists of those

edges in E which have exactly one endpoint in S. When it is not clear from the context, we

write δG(S) to specify that G is the graph in question. If S or its complement Sc consists

of a single vertex v, we call the cut trivial and often write δ(v) instead of δ(S). Otherwise,

the cut is non-trivial. The size of a cut is |δ(S)|. In the case where S is a single vertex v,

we write d(v) (the degree of v) for the number of edges incident to v. A cut δ(S) is odd if

S or Sc contains an odd number of vertices. Accordingly, in a graph with an odd number

of vertices, every cut is odd. Let γ(S) denote those edges in E which have both endpoints

in S.

Suppose T ⊆ V with |T | even.

Definition 1.0.1. A set J ⊆ E is called a T -join if for each v ∈ V , v ∈ T if and only if

|J ∩ δ(v)| is odd.

Definition 1.0.2. A cut δ(S) is called a T -cut if |T ∩ S| is odd.
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We call a pair (G, T ) a graft. In this document, unless stated otherwise, G is assumed to

have vertex set denoted by V (or V (G)) and edge set denoted by E (or E(G)). A packing

of T -joins is a collection of edge-disjoint T -joins; packings of T -cuts are defined similarly.

Suppose that we are given some cost function c ∈ RE on the edges of G. If F ⊆ E,

we denote by c(F ) =
∑

e∈F ce the c-cost of F . Following [Gue03] and [Sey81] we use the

following notation for the costs of minimum T -joins and T -cuts and the sizes of maximum

packings of T -joins and T -cuts.

Definition 1.0.3. Let (G, T ) be a graft. We write

• τc(G, T ) to denote the cost of a minimum c-cost T -cut in G.

• νc(G, T ) to denote to denote the size of a maximum collection C of T -joins in G

where each edge e is contained in at most ce T -joins in C.

Definition 1.0.4. We write

• ρc(G, T ) to denote the cost of a minimum c-cost T -join in G

• µc(G, T ) to denote the size of a maximal collection C of T -cuts in G where each edge

e is contained in at most ce T -cuts in C.

When c ≡ 1 it is often convenient to drop the subscript c on τ, ν, ρ and µ. In this

case, ν(G, T ) and µ(G, T ) refer to the sizes of the largest packings of T -joins and T -cuts,

respectively. Sometimes don’t specify the graft when it is obvious from the context.

Much of this document is concerned with comparing the quantities τc and νc, and ρc

and µc for a particular graft and cost function.

The following observation is easy and appears in [CCPS98].

Lemma 1.0.5. Let (G, T ) be a graft. Let J be a T -join and let S ⊆ V . Then |J ∩ δ(S)|
is odd if and only if δ(S) is a T -cut.
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Proof. Every edge in J is in one of γ(S), γ(Sc) or δ(S). The graph induced by γ(S) has

an even number of vertices of odd degree. There are an odd number of vertices in S which

have odd degree in the graph (V, J) if and only if S ∩ T is odd. It follows that there must

be an odd number of edges in J ∩ δ(S) if and only if S ∩ T is odd.

In particular, Lemma 1.0.5 implies that any T -join J and any T -cut δ(S) have nonempty

intersection. Hence the following two corollaries.

Corollary 1.0.6. For every graft (G, T ), ν(G, T ) ≤ τ(G, T )

Corollary 1.0.7. For every graft (G, T ), µ(G, T ) ≤ ρ(G, T )

We investigate these inequalities in more detail in later chapters. Indeed the motivation

for this thesis is a conjecture due to Guenin [Gue03], which proposes that grafts (G, T )

where G is planar and where all T -cuts have the same parity satisfy the equality ν(G, T ) =

τ(G, T ). The original contribution of the thesis is a proof of the special case of Guenin’s

conjecture for grafts with τ(G, T ) = 7.

In Chapter 2, we study optimizations of T -joins and T -cuts from polyhedral and algo-

rithmic perspectives and give some applications in combinatorial optimization. In Chapter

3 we discuss some known results about packings of T -joins. We then present Guenin’s con-

jecture and introduce a direction for proofs of special cases. Finally, Chapter 4 contains

our proof of Guenin’s conjecture when τ = 7.
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Chapter 2

Optimal T -joins and T -cuts

In this chapter, we study optimal T -joins and T -cuts. The first optimization problem that

we look at is that of finding minimum-cost T -joins. Given a graft (G, T ) and a cost vector

c ∈ RE we wish to find the T -join J with minimal cost c(J). In other words, we seek the

solution to the following integer program.

Minimize cTx

subject to x(δ(v)) ≡ 1(mod 2) for all v ∈ T
x(δ(v)) ≡ 0(mod 2) for all v /∈ T

xe ∈ {0, 1} for all e ∈ E

(2.0.1)

Observe that when each edge e ∈ E has unit cost ce = 1, the problem amounts to finding

a T -join J with total cost equal to ρ(G, T ). This problem can be solved in polynomial time

for any cost function c, and we give two different algorithms in this chapter, both presented

by Edmonds and Johnson in [EJ73]. The algorithm presented in Section 2.3 relies on a

reduction from T -joins to perfect matchings, and in Section 2.2 we study the polytope of

T -joins and discuss Edmonds and Johnson’s primal-dual algorithm for non-negative cost

instances. We begin in Section 2.1 by outlining some related problems and show how

optimal T -joins can be used to solve them. The material covered in Sections 2.1 to 2.3 is

covered in much greater detail in Chapter 5 of [CCPS98].
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We briefly discuss algorithms for computing minimum-cost T -cuts in Section 2.4.

2.1 Applications

We now motivate the study of optimal T -joins with several connections to other combina-

torial optimization problems.

2.1.1 Chinese Postman Problem

Perhaps the most well-known application of T -joins is to the Chinese Postman Problem

(CPP). Suppose a postman needs to deliver mail to houses along each street of a certain

neighbourhood and return to his starting point, while minimizing the amount of walking

that he must do. Restated in graph theoretic terms, the problem is to find the minimum

length closed walk which visits each edge at least once in a graph. Such a walk is called

a postman tour. Consider the following integer program whose solution is the incidence

vector of an optimal postman tour.

Minimize 1Tx

subject to x(δ(v)) ≡ 0(mod 2) for all v ∈ V
xe ∈ N+ for all e ∈ E

(2.1.1)

If a graph is Eulerian, then by definition, there exists a circuit in G which visits each

edge. This is clearly an optimal postman tour, and xe = 1 ∀ e is a feasible and therefore

optimal solution to 2.1.1. Such graphs are easily characterized as follows.

Theorem 2.1.1. Let G = (V,E) be a connected graph. Then G is Eulerian if and only if

every vertex in V has even degree.

See, for example, [LPV03] for a proof of this fact and a linear-time algorithm for finding

an Eulerian circuit when one exists. The problem is slightly trickier in graphs which are

not Eulerian. The postman may need to walk along some streets more than once.
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Observe that any optimal solution x∗ to 2.1.1 satisfies x∗e ∈ {1, 2} ∀ e, for otherwise

the solution obtained by subtracting 2 from each component with value larger than 2 is

feasible and has lower cost. Consider an optimal solution x∗ to 2.1.1 and the graph G′

obtained from G by adding x∗e − 1 copies of each edge to G. G′ has an Eulerian circuit

which corresponds to a postman tour of G. Therefore in order to solve the CPP, we can

simply find a smallest set of edges whose duplication in the graph renders it Eulerian. Such

a set of edges is called a postman set. Let T = {v ∈ V ; d(v) is odd}. Then a T -join is a set

of edges whose addition to the graph renders the degree of every vertex even. It follows

that a solution to the CPP can be achieved by solving a minimum-cost T -join problem

with unit costs.

2.1.2 Shortest paths

T -joins can also be used to solve shortest path problems in undirected graphs with some

negative edge costs but no negative cost cycles. Given a graph G = (V,E), a cost vector

c ∈ RE and two vertices r, s ∈ V , this is the problem of finding a minimum c-cost path in

G from r to s. Assuming that all cycles in G have positive c-cost, the shortest (r, s)-path

is the solution to the following integer program.

Minimize cTx

subject to x(δ(v)) ≡ 0(mod 2) for all v ∈ V \{r, s}
x(δ(v)) ≡ 1(mod 2) for v ∈ {r, s}

xe ∈ Z+ for all e ∈ E

(2.1.2)

When c ≥ 0, the shortest path can be found using Djikstra’s Algorithm (see for example

Chapter 5 of [CCPS98] for a complete discussion of shortest path algorithms). However,

classical shortest path algorithms for undirected graphs fail when the cost vector is allowed

to take negative values. We now explain how T -joins solve this problem. As an aside, we

note that algorithms for finding shortest paths and detecting negative cycles in directed

graphs with some negative costs have been known since the 1950’s and are due to Bellman-

Ford (see [Bel58]) or Floyd-Warshall-Roy ([Flo62]).
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If G contains a cycle C with c(C) < 0, then 2.1.2 is unbounded from below, i.e. there

exist (non-simple) (r, s)-paths of arbitrarily small cost. To see this, let x be any feasible

solution to 2.1.2, and let x− be obtained from x by adding 1 to the variable corresponding

to each edge in C. The vector x− is a feasible solution with cost cTx− = cTx+ c(C) < cTx.

On the other hand, when there are no negative cost cycles in G, we can find shortest paths.

Observe that any feasible solution to 2.1.2 is an {r, s}-join. Conversely, let J be a

minimum-cost {r, s}-join. The edges of J clearly contain an (r, s)-path. Under the as-

sumption that there are no negative-cost cycles in G, the edges of J in fact form the union

of a simple (r, s)-path and possibly some cycles with cost 0. Otherwise, if J contained a

positive-cost cycle, we could remove the edges of the cycle to obtain an (r, s)-path of smaller

cost. Therefore we can find the shortest simple (r, s)-path by finding the least cost edge-

minimal {r, s}-join. Indeed, the algorithm discussed in Section 2.3 finds the minimum-cost

edge-minimal T -join in instances where G contains some edges with negative costs, but no

negative cycles.

2.2 Linear programs for optimal T -joins

In [EJ73], Edmonds and Johnson study the connection between the Chinese Postman Prob-

lem and the previously well-studied field of matching theory. They present two algorithms

which solve the special case of minimizing T -joins in grafts (G, T ) where the set T consists

of the odd-degree nodes of G. This can easily be generalized to all grafts. We discuss their

results in the next two sections.

2.2.1 T -join polytope

We have seen that the integer program 2.0.1 describes the optimal T -join. Unfortunately,

the corresponding linear program relaxation only provides a lower bound on the optimum

which is not exact. To illustrate this, consider the graft (G, T ) where G is the graph in

Figure 2.2.1 with edge labels corresponding to edge costs and T = V (G). The optimal
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Figure 2.1: Example: a graft for which the LP relaxation of 2.0.1 does not give an integral
optimal solution

3

3

3
1 1

1

1

1

1

T -join has cost 5, however setting xe = ce
5

, ∀e ∈ E we obtain a fractional feasible solution

to 2.0.1 with cost 3.

Edmonds’s Matching Polytope Theorem [Edm65] provides a sharper linear program for

the problem. Given b ∈ ZV+(G), a b-factor in G is a set M ⊆ E satisfying |M ∩ δ(v)| = bv

for each vertex v. Edmonds and Johnson observed in [EJ73] that letting bv = 1 for v ∈ T
and bv = 0 for v /∈ T , we can rewrite the problem of finding a minimum-cost T -join as one

of finding a minimum-cost b-factor, then study the following integer program for b-factors.

Minimize cTx

subject to x(δ(v))− 2wv = bv for all v ∈ V
wv ∈ Z for all v ∈ V
xe ∈ {0, 1} for all e ∈ E

(2.2.1)

This is useful because the problem of finding minimum cost b-factors has been well

studied, and there is a known polyhedral description of the solutions and an efficient

algorithm for finding solutions to problems of this type. (See [CCPS98] for a detailed

discussion of matching problems) Edmonds [Edm65] showed that the incidence vector of a

minimum cost b-factor, if it exists, is an optimal solution to the following linear program.



2.2. LINEAR PROGRAMS FOR OPTIMAL T -JOINS 9

Minimize cTx

subject to x(δ(v)) = bv for all v ∈ V
x(δ(S)\F ) + |F | − x(F ) ≥ 1 for all S ⊆ V and F ⊆ δ(S)

such that |F |+ b(S) is odd.

0 ≤ xe ≤ 1 for all e ∈ E

(2.2.2)

Let us take a closer look at the second set of inequalities (known as the blossom inequal-

ities) in 2.2.2 from the perspective of our problem. By Lemma 1.0.5, the incidence vector

x of any T -join J satisfies x(δ(S)) ≡ |S ∩T | (mod 2). Thus if F ⊆ δ(S) and |F | 6≡ |S ∩T |,
then there must be some edge in δ(S) which is either in J\F or in F\J . Therefore x

satisfies

x(δ(S)\F ) + |F | − x(F ) ≥ 1 for each S ⊆ V and F ⊆ δ(S) (2.2.3)

where |F | 6≡ |S ∩ T | (mod 2).

Thus the polytope of T -joins is the convex hull in RE of the integral points which satisfy

the first two sets of constraints of 2.2.1 and which satisfy the inequalities 2.2.3. In fact,

the inequalities 2.2.3 imply the first set of inequalities in 2.2.1, so it follows that given any

graph G = (V,E) and T ⊆ V with |T | even, and c ∈ RE, the cost of the minimum-cost

T -join in G is given by the optimal solution to the following linear program 2.2.4.

Minimize cTx

subject to x(δ(S)\F ) + |F | − x(F ) ≥ 1 for each S ⊆ V and F ⊆ δ(S)

where |F | 6≡ |S ∩ T | (mod 2)

0 ≤ xe ≤ 1 for all e ∈ E
(2.2.4)

Further, Edmonds and Johnson remark in [EJ73] that when c ≥ 0 the inequalities 2.2.3
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can be simplified quite a bit and the cost of the minimum-cost T -join in G is given by the

optimal solution to the following linear program 2.2.5.

Minimize cTx

subject to x(δ(S)) ≥ 1 for each S ⊆ V where |S ∩ T | is odd

0 ≤ xe ≤ 1 for all e ∈ E
(2.2.5)

Their proof of this fact is algorithmic. Indeed a consequence of the fact that minimizing

T -joins is a case of b-factors is that the primal-dual Blossom Algorithm for finding optimal

b-factors can be used to find optimal T -joins in polynomial time. This algorithm constructs

an integral feasible solution to 2.2.5 and one to its dual which have equal objective values.

The result follows from strong duality of linear programs.

2.2.2 Reduction to non-negative edge costs

It is worth noting that when studying linear programs and algorithms for minimum-cost

T -joins it is actually sufficient to restrict our attention to graphs with non-negative edge

costs as we now explain. For any two sets A and B their symmetric difference A∆B =

(A ∪B)\(A ∩B). The following fact is useful.

Lemma 2.2.1. Let G = (V,E) be a graph, and (G, T ) and (G, T ′) be grafts. Suppose that

J is a T -join. Then J ′ ⊆ E is a T ′-join if and only if J∆J ′ is a T∆T ′-join.

Proof. First, observe that since

J∆(J∆J ′) = (J ∪ (J∆J ′))\(J ∩ (J∆J ′)) = (J ∪ J ′)\(J\J ′) = J ′,

we just need to show that a vertex v is in T∆T ′ if and only if v is incident to an odd

number of edges in J∆J ′.
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Let v ∈ T∆T ′. Then v is in exactly one of T or T ′. If v ∈ T , then |δ(v)∩ J | is odd and

|δ(v)∩ J ′| is even. Therefore regardless of the parity of |δ(v)∩ (J ∩ J ′)|, |δ(v)∩ (J∆J ′)| is
even. The case when v ∈ T ′ is similar.

Conversely, suppose that v ∈ V is incident to an odd number of edges in J∆J ′. Then

|δ(v)∩J | and |δ(v)∩J ′|must have different parity. Hence v ∈ T or v ∈ T ′ but v /∈ T∩T ′.

Now, let (G, T ) be a graft and c ∈ RE. LetN = {e ∈ E; ce < 0}, and T ′ = {v ∈ V ; v has odd degree in the graph (V,N)}.
N is clearly a T ′-join. By Lemma 2.2.1, for any T -join J , (J∆N) is a (T∆T ′)-join.

Further,

c(J) = c(J \N) + c(J ∩N)

= c(J \N)− c(N \ J) + c(N \ J) + c(J ∩N)

= |c|(J∆N) + c(N)

where |c|e = |ce|. Therefore we can find the optimal T -join by first finding the minimum

|c|-cost (T∆T ′)-join J ′. The minimum c-cost T -join is then J ′∆N . For the remainder of

this chapter we will focus on grafts with c ≥ 0.

2.2.3 Dual LP

The dual to 2.2.5 is the linear program below.

Maximize 1TZ

subject to ∑
(Zδ(S) : e ∈ δ(S), δ(S)a T -cut) ≤ ce for all e ∈ E

Zδ(S) ≥ 0 for all T -cuts δ(S)

(2.2.6)

As previously mentioned, Edmonds and Johnson’s proof of correctness of the Blossom

Algorithm for minimizing T -joins constructs a feasible solution to 2.2.6 with optimal value
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equal to the optimal objective value of 2.2.5. In fact, their proof shows the following

theorem, also proved by Lovász.

Theorem 2.2.2 (Edmonds and Johnson [EJ73], Lovász [Lov75]). Let (G, T ) be a graft

and let c ∈ ZE+. If the total c-cost of every cycle in G is an even integer, then 2.2.6 has an

integral optimal solution.

From this it follows that if the edge costs are integers, then 2.2.6 has a half-integral

optimal solution. To see this, consider doubling the cost of each edge.

Seymour proved the strengthening of Theorem 2.2.2 below. Sebő gave an alternate

proof in [Seb87].

Theorem 2.2.3 (Seymour [Sey81]). Let (G, T ) be a graft, and suppose that G is a bipartite

graph. Then the size of the largest collection of edge-disjoint T -cuts is equal to the number

of edges in the smallest T -join. In other words, ρ(G, T ) = µ(G, T ).

To see that Theorem 2.2.3 implies Theorem 2.2.2, it suffices to replace each edge e of

G with a path of length 2ce to obtain a bipartite graph.

When T contains only two vertices, say T = {r, s}, it is easy to see that ρc(G, T ) =

µc(G, T ), regardless of whether the graph is bipartite. Seymour also gave in [Sey81] a

necessary and sufficient condition for ρc(G, T ) = µc(G, T ) to hold when |T | = 4. He

also observes that in such cases, ρc(G, T ) − µc(G, T ) ≤ 1. Korach and Penn proved a

generalization of these observations.

Theorem 2.2.4 (Korach and Penn [KP92]). Let (G, T ) be a graft and let c ∈ ZE. Suppose

that there exists a minimum c-cost T -join J ⊆ E made up of nJ connected components.

Then ρc(G, T )− µc(G, T ) ≤ nJ − 1.

To see the implications of Theorem 2.2.4, observe that when |T | = 2, there exists a

connected optimal T -join in G (a shortest path), and that when |T | = 4 there exists an

optimal T -join with at most two connected components.
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2.3 Reduction to perfect matchings

We now present another algorithm for finding minimum-cost T -joins, also due to Edmonds

and Johnson [EJ73]. This algorithm works by reducing the problem to two other well-

studied combinatorial problems, namely those of finding perfect matchings and finding

shortest paths. First, observe the following property of the optimal T -join.

Lemma 2.3.1. Every edge-minimal T -join is the union of |T |
2

edge-disjoint paths joining

distinct pairs of nodes in T .

Proof. Consider any set of |T |
2

edge-disjoint paths joining distinct pairs of nodes in T .

Because the paths are edge-disjoint, the only vertices that will have odd degree in the

subgraph formed by the union of the paths are the endpoints of the paths. These are

precisely the vertices in T . The union of the paths thus forms a T -join. It remains to show

that any T -join J ⊆ E must contain a union of |T |
2

edge-disjoint paths joining distinct pairs

of nodes in T .

Given J , pick any node u ∈ T and consider the component H of G′ = (V, J) that

contains u. H must have an even number of nodes with odd degree, so it must also contain

some v ∈ T \ {u}. Let P be a simple u− v path in H. Then P is a {u, v}-join. Hence by

Lemma 2.2.1, J \E(P ) is a T ′-join, where T ′ = T \ {u, v}. (Because J
a
E(P ) = J \E(P )

and T
a
{u, v} = T \ {u, v}.) Repeat the process inductively on J \ E(P ) to obtain the

result.

In fact, when J is a minimum-cost T -join, each of these paths is the shortest (minimum-

cost) path between the given pair.

Lemma 2.3.2. Let G = (V,E), T ⊆ V with |T | even, c ∈ RE
+ and J a minimum c-cost

T -join. Let J = {P1, . . . , P |T |
2

} be expressed as a union of edge-disjoint paths where ui

and vi are the endpoints of the path Pi. Then for each i ∈ {1, . . . , |T |
2
}, Pi is the shortest

(ui, vi)-path in G (with respect to the cost function c).
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The idea of Edmonds and Johnson’s algorithm is to exploit this fact and find the

partition of T into pairs which minimizes the sum of the costs of paths between them. In

order to achieve this, we begin by computing the lengths of the shortest paths between each

pair of vertices in T . Then we find a minimum-weight perfect matching in the complete

graph on T , where edge costs wuv are the lengths of the shortest (u, v)-path for each pair

{u, v} ∈ V . The set of paths in G corresponding to the perfect matching is edge-disjoint,

except possibly for some edges with cost 0, so their symmetric difference is an optimal

T -join.

2.3.1 Perfect matchings and all-pairs shortest paths

The key to the simplicity of this algorithm is that it relies on the solutions to two other

combinatorial problems. Firstly, the question of how to efficiently find the shortest path

between all
(|V |

2

)
pairs of vertices of a graph G = (V,E) with non-negative edge costs was

resolved by Floyd, Warshall and Roy independently. This simple dynamic-programming

style algorithm is described in [Flo62]. A perfect matching is a subset M ⊆ E where

|M∩δ(v)| = 1 for each v ∈ V . Hence a perfect matching is simply a 1-factor. As mentioned

above, Edmonds’s Blossom Algorithm efficiently finds a minimum-weight perfect matching

in the graph. Edmonds’ study of matchings is fundamental and arises ubiquitously in the

field of combinatorial optimization. For a thorough introduction to matching theory, the

reader is referred to [CCPS98] or [Sch03].

2.4 Algorithms for minimum T -cuts

The problem of finding a minimum cost T -cut for a graft (G, T ) is not quite as easy as

that of finding a minimum cost T -join. For one, the problem of finding a minimum T -cut

when some edge costs are negative is NP -complete. In other words, no known polynomial

time algorithm can find such a cut. Indeed, when T = {s, t} and c ∈ RE, finding the

minimum −c-cost T -cut gives a solution to the problem of finding the maximum c-cost

{s, t}-cut (that is, a cut δ(S) where |S ∩ {s, t}| = 1) and this problem is well-known to be
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NP -complete. See [Kar72] for a proof of this fact and [GJ79] for a discussion of problem

tractability.

When the edge costs ce are non-negative, there do exist polynomial time algorithms to

find the minimum T -cut. We now discuss two algorithms.

A Gomory-Hu tree is a powerful combinatorial structure introduced by Gomory and

Hu [GH61] which given a graph G with edge costs c ∈ RE
+, encodes the minimum {s, t}-cut

for each pair of vertices {s, t} and can be computed in polynomial time. More precisely,

the Gomory-Hu tree is defined as follows.

Let G = (V,E) be a graph and R = (V, F ) be a tree with the same vertex set. For any

edge f ∈ F , we denote by δR(Sf ) the cut in R containing only the edge f . Accordingly,

Sf and V \ Sf correspond to the vertex sets of the two trees obtained from R by deleting

f . δG(Sf ) is called the fundamental cut in G associated with f .

Definition 2.4.1. Let G = (V,E) be a graph with edge costs c ∈ RE
+. A tree R = (V, F )

with edge costs w ∈ RF
+ is a Gomory-Hu tree if the following holds. Let {s, t} ⊆ V , and

suppose that uv ∈ F is the minimum w-cost edge on the unique (s, t)-path in R. Then the

fundamental cut associated with uv is a minimum c-cost {s, t}-cut in G.

For any pair of vertices {s, t}, the minimum {s, t}-cut can be found in polynomial time

via Ford and Fulkerson’s maximum-flow algorithm [FF56] implemented by Edmonds and

Karp [EK72]. Gomory and Hu gave an algorithm to construct a Gomory-Hu tree that

invokes a minimum {s, t}-cut algorithm |V | − 1 times, as opposed to the
(|V |

2

)
times that

would be necessary to compute all minimum {s, t}-cuts directly.

Given a graft (G, T ) and Gomory-Hu tree for G, it is easy to compute the minimum

T -cut in G, as the next lemma shows.

Lemma 2.4.2 (Padberg and Rao [PR82]). Let (G, T ) be a graft with edge costs c ∈ RE
+,

and let R = (V, F ) be a Gomory-Hu tree for G with edge costs w ∈ RE
+. Then if δR(S) is

the minimum w-cost T -cut in R, δG(S) is a minimum c-cost T -cut in G.

Proof. Let δG(S) be a minimum T -cut in G. It is sufficient to show that there exists an

edge f ∈ F such that δR(Sf ) is a T -cut in R and w(δR(Sf )) = c(δG(S)). Consider the forest
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Z obtained from R by removing the edges in the cut δR(S). Since S∩T is odd, there must

be some tree Q in S ∩ Z containing an odd number vertices from T . Let g = xy ∈ δR(S)

with x ∈ Q. Since w(δR(Sg)) = w(xy) is the cost of the minimum {x, y}-cut in G, and

δG(S) is an {x, y}-cut, it follows that w(δR(Sg)) ≤ c(δG(S)). But δR(Sg) is a T -cut in R so

the result follows.

More recently, Rizzi [Riz03] gave a simple algorithm for finding a minimum T -cut that

requires between |V |
2

and |V |− 1 minimum {s, t}-cut computations, and thus is faster than

the Gomory-Hu algorithm on average.
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Chapter 3

Packing T -joins

In this chapter, we turn our attention to a packing problem in grafts. Recall that given

a graft (G, T ), a packing of T -joins is a collection of edge-disjoint T -joins and that we

use τ(G, T ) to denote the number of edges in a minimum T -cut, and ν(G, T ) the number

of T -joins in a maximum packing. Recall also Corollary 1.0.6, which states that ν ≤ τ

for every graft. When equality holds in this equation, we say that the graft packs. An

interesting open question in combinatorial optimization is to find a precise characterization

of grafts which pack. We now overview some of what is known about this question. In

Section 3.1 we give a structural description of packing grafts, and in Section 3.2 we discuss

some conjectures related to packing grafts.

3.1 Characterization of packing grafts

3.1.1 Graft minors and a structure theorem

We begin with an important example of a graft which does not pack. Consider the graft

(K2,3, T ), where K2,3 is the complete bipartite graph with independent sets of size 2 and 3,

and T contains all vertices except one vertex of degree 3. This graft is called the odd K2,3

and is pictured in Figure 3.1. It is simple to check that the smallest T -cut contains 2 edges
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Figure 3.1: An odd K2,3

v1

v2

v3

v4

v5

(for example, δ({v3}) is minimal), while it is impossible to find 2 edge-disjoint T -joins in

the odd K2,3 (there exist four T -joins which all pairwise intersect).

We now introduce the concept of a graft minor before explaining the significance of the

odd K2,3. Given a graph G = (V,E), and T ⊆ V with |T | even, we define the following

three operations.

• To delete an edge uv is to replace E with E \ {uv}. We write G \ e to denote the

resulting graph.

• To contract an edge uv is to replace V with V \{u, v}∪{w}, where w is a new vertex

and to replace every edge xu or xv in E with a new edge xw. We write G/e to denote

the resulting graph.

• To T -contract the edge uv is to replace V with V \ {u, v} ∪ {w}, where w is a new

vertex, to replace every edge xu or xv in E with a new edge xw, and to replace T

with T \ {u, v} if |T ∩ {u, v}| is even, or with T \ {u, v} ∪ {w} if |T ∩ {u, v}| is odd.

We write G(T )/e to denote the resulting graph.

Definition 3.1.1. We say that a graph G′ is a minor of a graph G if G′ can be obtained

from G by performing a series of edge deletions and contractions.
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Definition 3.1.2. We say that a graft (G′, T ′) is a T -minor of another graft (G, T )

if (G′, T ′) can be obtained from (G, T ) by performing a series of edge deletions and T -

contractions.

Observe that if (G′, T ′) is a T -minor of (G, T ), then G′ is a minor of G, but the converse

is not necessarily true.

The following theorem is a consequence of Seymour’s max-flow min-cut theorem for bi-

nary matroids (see [Sey77]). Codato, Conforti, and Serafini also gave a short combinatorial

proof in [CCS96]. We give their proof below.

Theorem 3.1.3. Let (G, T ) be a graft. Then ν(G, T ) < τ(G, T ) if and only if the odd K2,3

is a T -minor of (G, T ).

Proof. Let (G, T ) be T -minor-minimal such that ν = ν(G, T ) < τ(G, T ) = τ . That is,

every T -minor of (G, T ) packs. In particular, for every edge e ∈ E(G), we have

τ − 1 ≤ τ(G \ e, T ) = ν(G \ e, T ) ≤ ν ≤ τ − 1.

Thus, we may assume that ν = τ − 1 and further that every edge is contained in some

minimal T -cut. Let Θ = {v ∈ T ; d(v) = τ}. We claim that |V \ Θ| ≥ 2. Indeed, let

F1, . . . , Fν be a packing of ν T -joins. Then E ′ = E(G) \ {F1 ∪ · · · ∪ Fν} is not a T -join.

However |δ(v)∩E ′| = 1 for each v ∈ Θ. Since T∆{v ∈ V ; |δ(v)∩E ′| is odd} has (nonzero)

even cardinality and is contained in V \Θ, we have |V \Θ| ≥ 2. Now, let x, y ∈ Θ such

that their distance in G is minimized amongst all pairs of vertices in Θ.

Claim 3.1.4. (a) If δ(U) is a minimum T -cut, then δ(U) = δ(v) for some v ∈ Θ.

(b) If {u, v} is a 2-vertex cutset in G, then u, v /∈ Θ.

(c) There exist three internally vertex-disjoint (x, y)-paths P1, P2, P3.

Before proving the claim, we show how it implies the lemma. For i = 1, 2, 3 let xi denote

the neighbour of x on the path Pi. By the claim and because every edge is contained in

some minimum T -cut, x1, x2, x3 ∈ Θ. We now consider two cases.
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Case 1. G \ {x1, x2, x3} is connected. Let F ′ = (P1 ∪ P2 ∪ P3) \ {x, x1, x2, x3} and extend F ′

into a spanning tree F of G\{x1, x2, x3}. Let e be an edge incident to x in F and let

F1, F2 be the two components of F \ e. T -contracting the edges of F1 into {x} and

the edges of F2 into {y}, then deleting edges between vertices in {x1, x2, x3} yields

an odd K2,3.

Case 2. G\{x1, x2, x3} is disconnected. Let C1, . . . , Ck be the components of G\{x1, x2, x3},
numbered so that |Cj ∩ T | is odd for 1 ≤ j ≤ l and even for l < j ≤ k, for some l.

Since x1, x2, x3 ∈ T , l is odd. Indeed, since not every δ(Cj) is a minimum T -cut, we

have

lτ <
k∑
j=1

|δ(Cj)| ≤
2∑
i=1

|δxi| ≤ 3τ

so l = 1. T -contract the edges in C1 and C2. For 3 ≤ j ≤ k, T -contract the edges

of Cj and the edges in δ(x3) ∩ δ(Cj) (such edges exist by the claim). Finally, delete

edges between the vertices in {x1, x2, x3}. The resulting minor is an odd K2,3.

Proof of Claim: Suppose that either (a) or (b) is false. Then there exists a minimum

T -cut δ(U) and two subgraphs G1 = (V1, E1) and G2 = (V2, E2) of G such that E1 and E2

are both nonempty and partition E \ δ(U) and such that:

(i) V1∆V2 = V (if claim (a) is false)

(ii) V1 ∩ V2 = {v} and V \ (V1 ∪ V2) = {u} = U (if claim (b) is false)

Let (G′1, T1) be obtained by T -contracting E2 in G and (G′2, T2) be obtained by T -

contracting E1. We have τ(G′1, T1) = (G′2, T2) = |δ(U)| = τ . Hence, for i = 1 and i = 2,

there exist τ edge-disjoint T -joins F i
1, . . . , F

i
τ in G′i, with |δ(U)∩F i

j | = 1 for j = 1, . . . , τ . We

may assume that δ(U) ∩ F 1
j = δ(U) ∩ F 2

j for each j. For each j = 1, . . . , τ , let Fj = F 1
j ∪ F 2

j .

Since ν < τ , we may assume that F1 is not a T -join, soW (F1) = T∆{v ∈ V ; |δ(v) ∩ F1| is odd}
has nonzero, even cardinality. On the other hand, clearly (V1∆V2) ∩W (F1) = ∅, so (i) can-

not hold. Hence (ii) holds and W (F1) = {u, v}. However, u ∈ T and |F1 ∩ δ(u)| = 1, so

u /∈ W (F1) which is a contradiction.
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Now, suppose that (c) is false. Then there is a 2-vertex cutset U separating x and y.

Because we chose x and y to minimize their distance in G, at least one element, say u of

U is in Θ. Hence by (b), |U | = 1. But then δ(u) properly contains a T -cut, which is a

contradiction if u ∈ T .

Theorem 3.1.3 does give a characterization of those grafts which pack, albeit not an

elucidating one, since an efficient way to recognize grafts without an odd K2,3-minor is not

known.

3.1.2 Lower bounds on τ

As there exist grafts which do not pack, a natural next step is to look for a lower bound

on ν(G, T ) in terms of τ(G, T ). DeVos and Seymour proved that such a lower bound does

exist for every graft.

Theorem 3.1.5 (DeVos and Seymour, [DS]). Let (G, T ) be a graft. Then ν(G, T ) ≥
1
6
dτ(G, T )e.

Adding an assumption on (G, T ) allows the lower bound to be increased. As we will

see in Section 3.2, the assumption that G is Eulerian, or that E(G) is a T -join is a useful

one.

Theorem 3.1.6 (DeVos and Seymour, [DS]). Let (G, T ) be a graft. Suppose that G is

Eulerian, or that E(G) is a T -join. Then ν(G, T ) ≥ d1
2
τ(G, T )e.

On the other hand, Devos and Seymour also gave in [DS] a construction of a family of

grafts Fr with τ(Fr) = 3r and ν(Fr) = 2r. The grafts Fr do not satisfy the assumption of

Theorem 3.1.6. Rizzi [Riz99] also constructed a family of grafts for which ν ≤ b2
3
τc − 1.
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3.2 Guenin’s conjecture

In this section our primary focus is a conjecture due to Guenin, posed in [Gue03] for which

we give a proof of a base case in Chapter 4.

3.2.1 The conjecture and background

The parity of a T -cut δ(S) is the parity of |δ(S)|. Guenin studied grafts in which all T -cuts

are of the same parity. The following facts appear in [Gue03, Proposition 1.2].

Lemma 3.2.1. Let (G, T ) be a graft, with T 6= ∅. Then all T -cuts in G are odd if and

only if E(G) is a T -join.

Proof. The reverse implication follows from Lemma 1.0.5, since for every T -cut δ(S), we

have E(G) ∩ δ(S) = δ(S). Suppose now that all T -cuts in G are odd. Since T 6= ∅, there

exists some T -cut δ(S). Suppose there exists v /∈ T . Then δ(S∆{v}) is a T -cut as well

and thus has the same parity as δ(S). Observe that

δ(v) = δ(S∆S∆{v}) = δ(v)∆δ(S∆{v}),

so d(v) is even. We may assume that there exists a vertex w ∈ V (G) of odd degree, for

otherwise G is Eulerian and has no odd cuts. Since w ∈ T , to finish the proof it remains to

be shown that for every vertex u ∈ T , d(u) is odd. Since δ(S) is a T -cut, so is δ(S∆u∆w).

Now observe that

δ(u)∆δ(w) = δ(S∆S∆δ(u)∆δ(w)) = δ(S)∆δ(S∆{u}∆{w}).

Since δ(S), δ(S∆{u}∆{w}) and d(w) are all odd, d(v) must also be odd.

Lemma 3.2.2. Let (G, T ) be a graft, with T 6= ∅. Then all T -cuts in G are even if and

only if G is Eulerian.

Proof. The proof follows easily from the proof of Lemma 3.2.1.
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A planar graph is a graph that can be drawn in the plane in such a way that edges may

only intersect at their common endpoints. Wagner’s Theorem [Wag37] characterizes planar

graphs as those which have neither the complete bipartite graph K3,3 nor the complete

graph K5 as a minor.

Guenin’s conjecture proposes a sufficient condition for a graft (G, T ) to pack.

Conjecture 3.2.1 (Guenin). Let (G, T ) be a graft where all T -cuts in G have the same

parity. Then (G, T ) packs if G is planar.

Observe that K2,3 is planar, and there exist T -cuts of both odd and even parity in the

odd K2,3. Hence the parity condition in Conjecture 3.2.1 cannot be omitted. The planarity

condition may not be removed either. The Petersen graph Gp is not planar, however it

can be verified that all V (Gp)-cuts in Gp are odd, and that τ(Gp, V (Gp)) = 3. Since Gp is

3-regular, if there exist 3 disjoint V (Gp)-joins in Gp, then each one is a perfect matching.

However it is well-known that there do not exist 3 disjoint perfect matchings in Gp.

It is a fact that if (G, T ) is any graft where each connected component of G contains an

even number of vertices from T , there exists a T -join in G. For example, one way to find a

T -join is to partition T arbitrarily into |T |
2

pairs of vertices, find paths joining the vertices

in each pair, and take the symmetric difference of all |T |
2

paths. This construction yields

a T -join by Lemma 2.2.1. This implies that Conjecture 3.2.1 is true if the assumption is

made that τ(G, T ) = 1. The case when τ(G, T ) = 2 follows from Lemma 3.2.2, for in

an Eulerian graph G, E(G) \ J is a T -join, for any T -join J . In [Gue03], Guenin proved

Conjecture 3.2.1 for the cases when τ(G, T ) ≤ 5. We discuss his proof in some detail in

Section 3.2.2. Recently, Dvořák, Kawarabayashi and Král’ [DKK10] settled the case when

τ(G, T ) = 6, and Edwards and Kawarabayashi [EK11] proved the case τ(G, T ) = 7. This

proof constitutes the original contribution of this thesis, and is presented in full in Chapter

4.

Let us remark that Conjecture 3.2.1 would be implied by the following conjecture, for

it is well-known that no planar graph has a Petersen minor (The Petersen graph has both

K3,3 and K5 as minors).
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Conjecture 3.2.2 (Guenin [Gue03]). Let (G, T ) be a graft where all T -cuts in G have the

same parity. Then (G, T ) packs if G does not contain the Petersen graph as a T -minor.

Given r ∈ N, an r-edge-colouring of a graph G is an assignment of colours from the

set {1, . . . , r} to the edges of G such that each vertex in V (G) is incident to at most one

edge of any given colour. If such an assignment exists we say that G is r-edge-colourable.

An r-edge-colouring determines a partition of the edges of G into colour classes of edges

which share the same colour.

In [CJ87], Conforti and Johnson made a weaker version of Conjecture 3.2.2, the parity

condition replaced with the requirement that all T -cuts are odd. In particular, as pointed

out by Guenin, this case would imply a conjecture of Tutte, recently proved by Robert-

son, Sanders, Seymour and Thomas (see [RST97], [Tho99]), which states that 3-regular,

bridgeless graphs with no Petersen minor have a 3-edge-colouring. To see this, let G be

such a graph, T = V (G). Then E(G) is a T -join, so all T -cuts contain at least 3 edges and

3 disjoint T -joins in G would form the colour classes of a 3-edge-colouring.

3.2.2 Outline of Guenin’s proof

We now examine Guenin’s proof more closely, in preparation for the proof of the special case

of Conjecture 3.2.1 when τ(G, T ) = 7. Consider a graft (G, T ) which is a counterexample

to Conjecture 3.2.1. That is, G is planar and all T -cuts in G have the same parity, but

(G, T ) does not pack. Suppose that (G, T ) is minimal in the sense that amongst all such

counterexamples, the following are minimized (in order of priority): |V (G)| , τ(G, T ) and

|E(G)|. To simplify notation, let k denote τ(G, T ). Note that we may assume G is a

connected graph.

The following two lemmas allows us to study edge-colourings rather than packings of

T -joins.

Lemma 3.2.3 (Guenin, [Gue03]). Let (G, T ) be a minimal counterexample to Conjecture

3.2.1. Every non-trivial cut in G has size at least k + 2.
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Proof. Suppose that there exists a cut δ(S) in G of size k. Let S1 = S and S2 = V \ S.

First, observe that the induced subgraph G[Si] on each vertex set Si (i = 1, 2) must be

connected. Otherwise, suppose that we can partition Si into two sets S ′i and S ′′i such that

there are no edges between S ′i and S ′′i in G. Since |Si ∩ T | is odd, we may assume that

|S ′i ∩ T | is also odd. Since G is connected, there must be at least one edge between S3−i

and S ′′i , so δ(S ′i) is a T -cut of size less than k, a contradiction.

Now, let (Gi, Ti) be the graft obtained by identifying all vertices in Si into a single node

vi and deleting all loops, and letting Ti = T \ Si ∪ {vi}. Gi is a minor of G and hence is

planar. Further, since the Ti-cuts in Gi correspond to T -cuts in G where all vertices in

Si lie on the same shore it follows that τ(Gi, Ti) = k and that all Ti-cuts have the same

parity.

By the minimality of (G, T ) there exist packings {Bi
1, . . . , B

i
k} of Ti-joins in Gi, each

containing exactly one edge in δ(vi). We may assume that B1
j and B2

j contain the edge

incident to v1 and v2 which correspond to the same edge in G, for j = 1, . . . , k. But then

{B1
1 ∪B2

1 , . . . , B
1
k ∪B2

k} is a packing of k T -joins in G, a contradiction.

Lemma 3.2.4 (Guenin, [Gue03]). Let (G, T ) be a minimal counterexample to Conjecture

3.2.1. Then G is k-regular and T = V (G).

Proof. Suppose for a contradiction that there exists v ∈ V (G) with v /∈ T or d(v) ≥ k. We

first prove the following claim.

Claim: Not all edges incident to v are parallel.

Proof of claim: Suppose for a contradiction that all edges in δ(v) are parallel. We

first handle the case where v ∈ T , and thus d(v) ≥ k + 2. Let e1, e2 ∈ δ(v) and let

G′ = (V,E \{e1, e2}) be the graph obtained from G by removing the edges e1 and e2. Then

τ(G′, T ) = k, so there exists a packing J of k T -joins in G′ by the minimality of G. But

J is also a packing of k T -joins in G, a contradiction. Now, suppose that v /∈ T , and let

G′ = (V,E \δ(v)). Since the edges incident to v are all parallel, it is clear that no minimum

T -cut in G contains any edge in δ(v), so τ(G′, T ) = k. By minimality of G, there exists a
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packing J of T -joins in G′ which is also a packing of T -joins in G, a contradiction.

Now, consider a planar embedding of G. Consider the edges of δ(v) in clockwise order.

By the claim, there must exist two consecutive edges u1v and u2v where u1 6= u2. Let

G′ = (V,E \ {u1v, u2v} ∪ u1u2). Observe that the planar embedding of G is easily trans-

formed into a planar embedding of G′ and that there are no loops in G′. Let δ(S) be a

T -cut in G. If S is a non-trivial cut or S = {v}, then |δG(S)| > k by the assumption on

v and by Lemma 3.2.3. In fact since all T -cuts have the same parity, |δG(S)| ≥ k + 2. It

follows that τ(G′, T ) = k. By minimality of G, there exists a packing J = {B1, . . . , Bk} of

T -joins in G′. If none of these T -joins contains the edge u1u2, then J is also a packing of

T -joins in G. Otherwise, say B1 does contain u1u2. Then {B1\{u1u2}∪{u1v, u2v}, . . . , Bk}
is a packing of T -joins in G. In either case, we have reached a contradiction.

A graft (G, T ), where T = V (G), G is k-regular, and τ(G, T ) ≥ k is sometimes called

a k-graph.

Suppose that G has a k-edge-colouring. Then Lemma 3.2.4 implies that for any

v ∈ V (G) = T , v is incident to exactly one edge of each colour. Thus the edges in each

colour class form a T -join, and (G, T ) packs.

It follows that in order to prove Conjecture 3.2.1 it is sufficient to prove the following.

Conjecture 3.2.3. Let G be a k-regular planar graph, and suppose that |δ(S)| ≥ k for

each cut δ(S) where |S| is odd. Then G is k-edge-colourable.

The case k = 3 of Conjecture 3.2.3 is of particular interest. Tait [Tai80] showed that

the statement is equivalent to the Four-Colour Theorem, which affirms that the vertices of

every planar graph can be coloured using four colours in such a way that the two endpoints

of each edge have different colours. This important result in graph theory was proved by

Appel and Haken [AH76]. Thus Conjecture 3.2.1 is a strengthening of the Four-Colour

Theorem. The proofs of Conjecture 3.2.3 for k = 4, 5, 6, 7 all rely on the discharging
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method, a proof technique which is at the core of the proof of the Four-Colour Theorem.

We defer further discussion of the discharging method to Chapter 4.

Observe that the converse of Conjecture 3.2.3 is always true. That is, if G is a k-regular,

k-edge-colourable planar graph, then all cuts δ(S) where |S| is odd have at least k edges.

This is because each colour class in a k-edge-colouring is a V (G)-join and must contain

an edge from each V (G)-cut by Lemma 1.0.5. We close this section with the remark that

Seymour has made the following unpublished conjecture which would extend Conjecture

3.2.2 in a fashion analogous to the connection between Conjectures 3.2.1 and 3.2.3.

Conjecture 3.2.4 (Seymour, see [Gue03]). Let G be a k-regular graph with no Petersen

minor. Then |δ(S)| ≥ k for each cut δ(S) where |S| is odd if and only if G is k-edge-

colourable.
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Chapter 4

Packing seven T -joins in planar

graphs

4.1 Introduction

In this chapter, we prove the following theorem.

Theorem 4.1.1. Let G be a 7-regular plane multigraph. If G has no odd cut of size less

than 7, then G has a 7-edge-colouring.

The strategy of the proof is to exclude the existence of a minimal counterexample. We

clarify just what we mean by minimal counterexample in Section 4.3, and begin in Section

4.2 with an overview of some important definitions. In the sections that follow, we prove

Theorem 4.1.1 by means of a discharging argument.

4.2 Definitions

In the proof of Theorem 4.1.1, we study 7-regular plane graphs with no odd cuts of size

less than 7 which are not 7-edge-colourable. We now review some terminology.
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Figure 4.1: Illustration of Definition 4.2.2: f ′ and f ′′ are f -incident. (dashed lines represent
edges in series)

f

f ′ f ′′

Let G = (V,E) be a 2-edge-connected plane multigraph. A face f = v1v2 . . . vd is

an open, connected region in the plane bounded by edges v1v2, . . . , vd−1vd, vdv1, called

the boundary of f . We sometimes say that f contains or is adjacent to the edges on its

boundary. Two faces of G are adjacent if they share a bounding edge in common, and a

pair of edges or faces is incident if they share one vertex in common.

The size of a face f is the number of edges on its boundary. A d-face is a face bounded

by exactly d edges. We use an ≤ d-face and an ≥ d-face to denote a face of size at most d

and at least d, respectively.

Before continuing, we point out the following observation about a minimal counterex-

ample to Theorem 4.1.1, which appears as Lemma 2.10 in [Gue03].

Lemma 4.2.1 (Guenin [Gue03]). Let G be a minimum counterexample to Theorem 4.1.1.

Any pair of faces in G share at most one edge. In particular a d-face is adjacent to d

distinct faces.

For the remainder of this chapter, the graphs we study are assumed to be minimum

counterexamples to Theorem 4.1.1.

Definition 4.2.2. Let f, f ′ and f ′′ be faces of G. If f ′ and f ′′ are both adjacent to f and

the edge that f shares with f ′ is incident to the edge that f shares with f ′′, then we say

that f ′ and f ′′ are f-incident. (See Figure 4.1)

We use the term multigon of order d to denote the set of 2-faces formed by d parallel

edges. Multigons of order 2,3,4,5 are called bigons, trigons, quadragons and quintagons,
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respectively. We make use of the notation vw to denote a multigon whose two endpoints

are v and w. We say that a face f is adjacent to a multigon uv if uv is an edge on the

boundary of f . We say that f is incident to a multigon if they share one vertex. Two

multigons are incident if they share a vertex. In order to avoid ambiguity, we always take

the order of a multigon to be maximal in the sense that a multigon can only be adjacent

to ≥ 3-faces.

In our arguments, we often refer to edge-colourings of graphs. To simplify our argu-

ments, we will use the letters α, β, δ, γ, ε, φ and µ to denote the colours used on edges. We

refer to edges by their pairs of endpoints. For example we write e = vw for the edge e with

endpoints v and w. Since we are dealing with multigraphs, there may be parallel edges.

When we say an edge vw, we simply mean one of the edges with endpoints v and w.

4.3 Structure of the proof

By Lemma 2.2 from [Gue03], in order to prove Theorem 4.1.1, it is enough to exclude the

existence of a minimal counterexample to Theorem 4.1.1. A minimal counterexample G

satisfies the following assumptions:

• G is a 7-regular plane graph,

• every odd cut of G has size at least 7.

• G has no 7-edge-colouring, and

G is minimal in the sense that

• subject to the previous conditions, G has the smallest order,

• subject to the previous conditions, G has as many quintagons as possible,

• subject to the previous conditions, G has as many quadragons as possible,
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• subject to the previous conditions, G has as many trigons as possible, and

• subject to the previous conditions, G has as many bigons as possible.

The following lemma is a first observation about such a graph.

Lemma 4.3.1. The maximum order of a multigon in a minimal counterexample is at most

5 and the sum of the orders of two incident multigons is at most 6.

Proof. A minimal counterexample G must be connected, for if G is 7-regular and has no

odd cuts of size less than 7 then so too must be each connected component, making each

component a smaller counterexample. Hence G cannot have any multigons of order 7.

Suppose G has a multigon of order 6. Let v and w be the endpoints of the multigon,

and let v be joined by an edge e1 to another vertex v′ and w be joined by en edge e2 to

another vertex w′. Consider the graph G′ obtained from G by contracting the edges of the

multigon and e2 into a single vertex. G′ is 7-regular and every odd cut in G′ has size at

least 7. By minimality of G, G′ has a 7-edge-colouring. From this colouring, we can obtain

a 7-edge colouring of G by assigning the colour of e1 to e2, assigning the other six colours to

the edges of the multigon and keeping all other colours the same. This is a contradiction.

Now, suppose that G has two adjacent multigons whose orders sum to 7. Then the

graph G′′ obtained by contracting the two multigons into a single vertex adjacent to all

neighbours of the endpoints of the multigons is 7-regular and has no odd cuts of size less

than 7. By minimality of G, G′′ has a 7-edge colouring which can be easily extended to a

7-edge-colouring of G where the seven edges on the multigons receive seven distinct colours,

a contradiction.

In the coming sections, we rule out the existence of a counterexample to Theorem 4.1.1

using the discharging method.
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4.4 Discharging

4.4.1 Distribution of charges

We now describe the discharging. Let G be a minimal counterexample to Theorem 4.1.1.

We distribute charges to the faces, multigons and vertices of G as follows. Every d-face

(d ≥ 3) receives a charge of d−3. Every bigon receives a charge of -1, every trigon a charge

of -2, every quadragon a charge of -3 and every quintagon a charge of -4. Finally, every

vertex receives a charge of 0.5. The total amount of charge distributed is

V

2
+ 2E − 3F =

V

2
+ 7V − 3F = 3

7V

2
− 3V − 3F = 3(E − V − F )

(where V, F,E denote the number of vertices, faces, and edges in G, respectively) since

G is 7-regular. Euler’s formula for planar graphs shows that the total amount of charge

distributed is negative.

We then move the distributed charges according to the rules in Section 4.4.3. We say a

face, multigon or vertex x sends a quantity q of charge to a face y to mean that x’s amount

of charge is decreased by q and that of y is increased by q, thus preserving the total amount

of charge in the graph. Note that a face or vertex is allowed to send positive quantities of

charge even if it does not possess positive charge. Also, fractional quantities of charge may

be moved. We proceed through the list of rules in Section 4.4.3, applying each one once,

to any vertex, face or multigon where it applies. We then examine the new distribution

of charges. In order to prove Theorem 4.1.1, we show that there is a discrepancy between

the total amount of charge in the graph before and after applying the discharging rules.

More precisely, we show that every vertex and every face has non-negative charge after

application of the rules.

4.4.2 Further definitions

Before stating the discharging rules, we need to give a few more definitions, for which we

now give some motivation. The ultimate goal of the discharging is to increase the charge of
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Figure 4.2: Example: f ′ ∈ T1(f) and f ′′ ∈ T2(f).
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f ′′

f

multigons to at least 0, without reducing the charge of ≥ 3-faces or vertices, whose initial

charge is non-negative, by too much. For our purposes, we prefer for a large face to send

some charge to a ≤ 3-face than to a ≥ 4-face. Therefore, it is useful to keep track of the

number of ≥ 4-faces adjacent to a given face.

Definition 4.4.1. A face is d-big (respectively ≤ d-big, ≥ d-big) if it is adjacent to d

(respectively at most d, at least d) ≥ 4-faces.

Let G be a minimal counterexample to Theorem 4.1.1 and let f be a ≥ 4-face in G.

We classify the ≥ 4-faces adjacent to f into two collections T1(f) and T2(f) as follows.

Suppose f ′ = xyv1v2 . . . vl shares the edge xy with f . Let the set Ef (f
′) = {v1v2 . . . vl−1vl}

be the edges on the boundary of f ′. We define T1(f) to be the set of faces f ′ adjacent to

f for which each edge in Ef (f
′) is adjacent to a multigon of order ≥ 3. We also define

T2(f) to be the set of edges f ′ adjacent to f for which some edge in Ef (f
′) is adjacent to

a bigon or a ≥ 3-face. (See Figure 4.2 for an example.) Clearly each face f ′ adjacent to f

is in exactly one of T1(f), T2(f).

Definition 4.4.2. Let f be a ≥ 4-face in a minimal counterexample G. Suppose |T2(f)| =
d. Then we say that f is d-large.

This definition is extended in the obvious way to characterize f as ≥ d-large or ≤ d-

large. It follows from the definitions that if f is d-big and d′-large then d′ ≤ d.

Finally, as we closely study the structure of 3-faces in the coming sections, we adopt

the following convenient naming convention for 3-faces to reflect the set of multigons to
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Figure 4.3: Example of rules for a dangerous 3-face adjacent to a ≤2-big ≥4-face

≥3-big ≤2-big

↑ ↑
0 0

←−0

←−0.50.5−→

1−→

≤2-big ≤2-big

↑ ↑
0.5 0.25

←−0

←−0.50.25−→

0.5−→

which they are adjacent. Accordingly, a 1-trigon-3-face is a 3-face adjacent to a trigon and

no other multigons, a 1-trigon-1-bigon-3-face is adjacent to a trigon, a bigon and no other

multigons, and a 0-multigon-3-face is not adjacent to any multigons. A 1-bigon-3-face is a

3-face adjacent to one bigon and no other multigons, a 3-bigon-3-face is adjacent to three

bigons and finally, a 3-face is called dangerous if it is adjacent to exactly two bigons.

4.4.3 Rules

1 A face f which is ≥6-large sends

1.1 1.5 to adjacent quintagons

1.2 0 to adjacent faces which are f -incident to a quintagon

1.3 1 to adjacent quadragons, trigons and bigons, 3-faces, and faces in T1(f)

1.4 0.5 to all other adjacent ≥4-faces

2 A face f which is 4-large or 5-large sends

2.1 1 to adjacent quadragons, trigons and bigons, 3-faces, and faces in T1(f)

2.2 0.25 to all other adjacent ≥4-faces

3 A face f which is 3-large

sends 1 charge to each adjacent ≤3-face and to each face in T1(f).
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4 A 3-face f which is not dangerous sends charge according to at most one of the following

seven cases:

4.1 adjacent to a quadragon: sends 1 to the quadragon

4.2 adjacent to a trigon and a bigon: does not send any charge

4.3 adjacent to one trigon and no bigons: if the trigon is not adjacent to a ≥3-big face,

sends 0.5 to the trigon, otherwise does not send any charge.

4.4 adjacent to three bigons: does not send any charge

4.5 adjacent to just one bigon: 0.5 charge to the bigon if it is not adjacent to a ≥3-big

face and 0 if it is.

4.6 adjacent to a ≥3-big face: sends 0.5 to each ≤2-big ≥3-face adjacent to f

4.7 adjacent to two ≥3-big faces: sends 1 to each ≤2-big ≥3-face adjacent to f

5 A dangerous 3-face f sends charge according to at most one of the following three cases:

5.1 adjacent to a ≥3-big face: sends 0.5 to each adjacent bigon.

5.2 adjacent to a ≤2-big ≥4-face f ′: For each bigon adjacent to f , (see Figure 4.4)

5.2.1 If the bigon is adjacent to a ≥3-big face: f sends 0 charge to the bigon.

5.2.2 If the bigon is not adjacent to a ≥3-big face, but is incident to a trigon: f

sends 0.5 charge to the bigon.

5.2.3 If the bigon is not adjacent to a ≥3-big face nor incident to a trigon, but is

incident to a 3-face adjacent to f ′: f sends 0.25 charge to the bigon.

5.2.4 If the bigon is not adjacent to a ≥3-big face, but is incident to a bigon

adjacent to f ′: f sends 0 charge to the bigon.

5.2.5 Otherwise: f sends 0.5 to the bigon

5.3 adjacent to a 3-face: sends 0.5 to each bigon of f adjacent to only ≤2-big faces

6 A ≤2-big ≥4-face f sends

6.1 1 to adjacent quadragons
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Figure 4.4: Rules for a dangerous 3-face adjacent to a ≤2-big ≥4-face

↑
0.5 + 0.5 = 1

≤2-big ≤2-big

↑
0 + 0.5 = 0.5

≥3-big ≤2-big

↑
0 + 0.5 = 0.5

≤2-big ≤2-big

↑
0.25 + 0.25 = 0.5

≤2-big ≤2-big

↑
0.25 + 0.5 = 0.75

≤2-big ≤2-big

6.2 to an adjacent trigon t which is also adjacent to a ≥3-big face: 0.25 for each other

trigon that is incident to t but not adjacent to f .

6.3 to an adjacent trigon t which is also adjacent to a ≤2-big face: 0.5 plus an additional

0.25 for each trigon that is incident to t but not adjacent to f .

6.4 0.5 charge to those adjacent bigons which are not adjacent to a ≥3-big face and 0

to those bigons which are.

6.5 Further, for each bigon on an adjacent dangerous 3-face f ′, (see Figure 5)

6.5.1 If the bigon is adjacent to a ≥3-big face: f sends 0 charge to f ′.

6.5.2 If the bigon is not adjacent to a ≥3-big face, but is incident to a trigon: f

sends 0.5 charge to f ′.

6.5.3 If the bigon is not adjacent to a ≥3-big face nor incident to a trigon, but is

incident to a 3-face adjacent to f : f sends 0.25 charge to f ′.

6.5.4 If the bigon is not adjacent to a ≥3-big face, but is incident to a bigon

adjacent to f : f sends 0 charge to f ′.

6.5.5 Otherwise: f sends 0.5 to f ′

6.6 and sends 0.25 to any adjacent 3-face f ′′ which is adjacent to one ≤2-big face and

one bigon that is only adjacent to ≤3-big faces

7 A vertex sends charge according to at most one of the following seven cases:

7.1 incident to a quintagon: sends 0.5 to the quintagon

7.2 incident to a quadragon: sends 0.5 to the quadragon

7.3 incident to one trigon: sends 0.5 to the trigon
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7.4 incident to two trigons: sends 0.25 to each trigon

7.5 incident to three bigons:

7.5.1 If one of the bigons is adjacent to a ≥3-big face, sends 0.25 to each of the

other bigons which is not.

7.5.2 Otherwise, if the vertex is incident to exactly one of the bigons on a dangerous

3-face sends 0.5 to that bigon.

7.6 incident to two bigons and no trigon: If only one of the bigons lies on a dangerous

3-face, sends 0.5 to that bigon, otherwise sends 0.25 to each bigon

7.7 incident to one bigon and no other multigons: sends 0.5 to the bigon

4.5 Final charge of vertices and ≥ 3-big faces

We now begin to analyze the final amount of charge in G. In this section, we establish

the non-negative final charge of vertices and ≥ 3-big faces. In order to analyze the final

charge of multigons and ≤ 3-big faces we need to gain further insight into the structure

of the minimal counterexample G. The remainder of the proof is organized as follows.

In Section 4.6 we introduce some tools which are useful for analyzing the faces of G. In

Section 4.7 we analyze the structure of 3-faces and their adjacent faces, then prove that

3-faces have non-negative final charge. Then in Section 4.8 we show that all multigons

have non-negative final charge. Finally Sections 4.9 and 4.10 are devoted to analyzing the

structure and final charge of ≤ 3-big 4 and ≥ 5-faces, respectively. This will exclude the

existence of G and therefore complete the proof.

4.5.1 Final charge of vertices

The initial charge of every vertex is 0.5, and none of Rules 1 through 6 involve vertices.

Therefore it follows directly from Rules 7 and Lemma 4.3.1 that the final amount of charge

of every vertex is non-negative.
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4.5.2 Final charge of ≥ 3-big faces

Lemma 4.5.1. The final charge of every ≥ 3-big face is non-negative.

Proof. Let f be an l-face and suppose that f is d-big for some d ≥ 3. Then if f is d′-large,

clearly d′ ≤ d.

First, suppose f is ≥6-large. Then Rules 1 dictate how f sends charge. By Rule 1.4

there are at least 6 faces to which f sends at most 0.5 units of charge. Since the initial

charge of f is l − 3, f can distribute at least (l − 3)− 0.5 ∗ (6) = l − 6 charges amongst

the l − 6 remaining faces. If f is adjacent to a quintagon, then by Rules 1.1 and 1.2, f

sends 1.5 charge to the quintagon and 0 to the each face f -incident to the quintagon. f

sends at most 1 charge to each remaining face, so the final charge of f is non-negative.

Now, suppose f is 4-large or 5-large. Then f sends charge as dictated by Rules 2.

There are at least 4 faces to which f sends 0.25 units of charge by Rule 2.2. Since the

initial charge of f is l − 3, f can distribute at least (l − 3) − 0.25 ∗ (4) = l − 4 charges

amongst the remaining l − 4 faces. According to Rule 2.1, f sends at most 1 charge to

each of those faces, so the final charge is non-negative.

If f is 3-large, then the initial charge of f is l − 3. Since Rule 3 is the only rule which

has f send any charge, there are at least three faces adjacent to f to which f sends 0

charge. f sends at most 1 charge to each of the remaining l − 3 faces, so the final charge

is non-negative.

Finally, if f is 0-, 1- or 2-large, then there is no rule by which f sends charge, so the

final charge is at least l − 3 ≥ 0.

4.6 Properties of a minimal counterexample

We now examine the structure of a minimal counterexample G more closely. The ideas

developed in this section are frequently used and are crucial to an easy understanding of
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the proofs in the coming sections. The next lemma is analogous to Lemma 3 in [DKK10].

The next result follows directly from Lemma 3.2.3 and the fact that G is 7-regular.

Lemma 4.6.1. Every non-trivial odd cut in a minimal counterexample has size at least

nine.

Definition 4.6.2. Let G be a plane graph. Suppose that for some set of vertices v1, v2, ..., vm

(m even), G contains edges v2v3, v4v5, ..., vm−2vm−1, vmv1 (G may or may not contain edges

v1v2, . . . , vm−1vm) and it is possible to draw a closed curve in the plane that intersects G

only at v1, ..., vm. Then we say that the ordered set of vertices (v1, v2, ..., vm) are eligible.

Given such a set of eligible vertices, the operation of removing an edge vivi+1 and adding

an edge vi−1vi for every even i (taking indices modulo m) is called a v1...vm-swap.

If G is a plane graph then it is clear that the resulting graph is also a plane graph. We

will now see that when m is 4 or 6, the key properties of the minimal counterexample are

preserved by swapping.

Lemma 4.6.3. Let G be a minimal counterexample and let m be either 4 or 6. Any graph

G’ obtained by a v1v2...vm-swap for eligible vertices v1, v2, ..., vm is 7-regular and has no

odd cut of size less than 7.

Proof. It is clear from the definition of the swap that G′ is 7-regular. Let δG′(S) be an odd

cut in G′. Observe that any edge which doesn’t have endpoints vi and vi+1 for i ∈ {1, ...,m}
is in the cut if and only if it is in the corresponding cut δG(S) in G. By symmetry, we may

assume that S contains at most 3 vertices in {v1, ..., vm}. For vl ∈ S, the vertices vl−1, vl+1

may either lie on the same side of the cut or on different sides. Further, S contains at most

2 vertices vl in {v1, ..., vm} with the property that only one of vl−1, vl+1 is in S. If vl ∈ S and

|{vl−1, vl+1}∩S| = 0 or 2 , then δ(vl)∩δG′(S) = δ(vl)∩δG(S). If |{vl−1, vl+1}∩S| = 1 then

|δ(vl) ∩ δG′(S)− δ(vl) ∩ δG(S)| ≤ 1. Hence ||δG′(S)| − |δG(S)| ≤ 2|. From Lemma 4.6.1, it

follows that |δG′(S)| ≥ 7.

While the graph G is assumed not to be seven edge colourable, Guenin showed that

there does exist a colouring of the edges of G which is similar to a 7-edge-colouring.
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Definition 4.6.4. Let G be a 7-regular plane graph and e = uv be an edge of G. An

e-colouring of G is a colouring of the edges of G with seven colours such that each edge

except e is assigned one colour and e is assigned a set of three or more colours. Further

both u and v are incident to an odd number of edges of each colour and every other vertex

is incident to exactly one edge of each colour. Finally, the number of colours assigned to e

is minimized among all such colourings.

Lemma 4.6.5 (Guenin [Gue03]). Let G be a minimal counterexample to Theorem 4.1.1.

Then for every edge e of G, there exists an e-colouring of G.

Definition 4.6.6. Let G be a minimal counterexample to Theorem 4.1.1, let e be an edge

of G and let c be any colour. An odd cut Mc ∈ E(G) with e ∈Mc is called a c-mate if the

following property holds. For every colour c′ 6= c, Mc contains exactly one edge (possibly

e) coloured with c′.

Guenin showed the following strengthenings of Lemma 4.6.5.

Lemma 4.6.7 (Guenin [Gue03]). Let G be a minimal counterexample to Theorem 4.1.1,

let e be any edge of G and let c be any colour. There exists a non-trivial c-mate in G for

this e-colouring.

We now show two more properties of e-colourings.

Proposition 4.6.8. Let G be a minimal counterexample and e an edge of G. In each

e-colouring, every non-trivial c-mate contains at least five edges (possibly including e) as-

signed the colour c.

Proof. Let Mc be a c-mate. Lemma 4.6.1 implies that Mc contains at least 9 edges. Since

at least 3 colours appear on e, and Mc only contains one edge of every colour other than

c, at least 5 edges must be coloured with c.

Lemma 4.6.9. In any e-colouring of G, no colour is assigned to more than one edge of a

given multigon.
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Proof. Given an e-colouring of G, suppose there is some multigon with two edges assigned

the colour α. Clearly e must be an edge of the multigon. By relabelling the colours on

the multigon we may assume that α is assigned to e and to some other edge e′. Let β be

another colour assigned to e. Then by assigning β to e′ instead of α and removing α and

β from the list of colours assigned to e, we obtain either a proper 7-edge-colouring of the

edges of G or a colouring of the edges of G satisfying the conditions of an e-colouring, but

where e receives fewer colours. Both cases are a contradiction.

We now state a fact that will be useful for several proofs in the coming sections.

Proposition 4.6.10. Let G be a minimal counterexample, and let G′ be obtained from G

by a v1v2v3v4-swap for some eligible vertices (v1, v2, v3, v4). If G′ has a 7-edge-colouring,

then no edge v1v2 can have the same colour as any edge v1v3, v2v4 or v3v4.

Proof. Consider a 7-edge-colouring of G′. Suppose that some edge v1v2 is coloured α. It is

clear that no other edge incident to v1 or v2 can be coloured α. Suppose for a contradiction

that some edge v3v4 is coloured α. Then consider the following colouring of G: Let an

edge v2v3 and an edge v1v4 have colour α and all other edges keep the same colour as

in the 7-edge-colouring of G′. It is straightforward to check that in this colouring every

vertex in G is incident to one edge of every colour, so it is a 7-edge-colouring of G, which

is impossible.

A consequence of Proposition 4.6.10 is the following useful fact that we will now state

as a proposition.

Proposition 4.6.11. Let G be a minimal counterexample and suppose that for some eligible

set of vertices (v1, v2, v3v4), the graph G′ obtained from G by the v1v2v3v4-swap has a 7-

edge-colouring. Then if there exists an edge e = v1v2 in G there exists an e-colouring of

G where e is coloured with three colours, say α, β and φ, an edge v2v3 as well as an edge

v4v1 are coloured φ and all other edges are coloured with the same colour as in the edge

colouring of G′.



4.6. PROPERTIES OF A MINIMAL COUNTEREXAMPLE 42

Proof. By the definition of the swap, G′ contains at least one edge v3v4 and at least two

edges v1v2. By Proposition 4.6.10, every 7-edge colouring of G′ assigns three distinct

colours to these three edges, say α, β and φ. Then by assigning colours α, β and φ to e

and the colour φ to v2v3 and v4v1 and assigning each other edge the colour it received in

the 7-edge-colouring of G′ we obtain the desired e-colouring of G.

To demonstrate how we can use the the lemmas in this section to show properties

of a minimal counterexample, we give an application in the next lemma. The key to

solving Lemma 4.6.12 is that given the e-colouring, we find a set of edges (the edges of the

quintagon) that must be in every c-mate for every c. We then use the existence of mates

for every colour to show that there exist many cuts (one for each colour) which pairwise

intersect only in the edges of the quintagon. This allows us to draw conclusions about the

sizes of faces that contain edges from these cuts.

Lemma 4.6.12. In a minimal counterexample G, every face f adjacent to a quintagon is

≥6-big.

Proof. Let e be the edge of the quintagon adjacent to f and consider an e-colouring of

G. Since e receives at least three colours, we may assume by Lemma 4.6.9 that all seven

colours appear on edges of the quintagon. Let c be any of the seven colours assigned to

edges in the e-colouring. Then every c-mate Mc must contain the edges of the quintagon

and the remaining edges in Mc are coloured with c by the definition of mates. Further,

Proposition 4.6.8 implies that that there are at least five edges coloured c in Mc. Because

G is planar, every cut must contain an even number of edges on the boundary every face.

Therefore Mc contains an edge ec 6= e which is adjacent to f and to some other face fc 6= f

(recall that any pair of faces in G have at most one boundary edge in common and that

ec cannot be parallel to e by Lemma 4.6.9). Mc also contains an edge e′c 6= ec adjacent to

fc. Because ec and e′c are both coloured c, as long as ec is not incident to the quintagon

they cannot share an endpoint in common so the face fc is a ≥4-face. (See Figure 4.5) The

faces fc are distinct for distinct colours c, and there are at most two colours c for which ec

is incident to the quintagon (since there are two edges f -incident to the quintagon) hence
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Figure 4.5: Illustration for Lemma 4.6.12.
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f is ≥5-big. We now argue that we may assume there is actually at most one colour c for

which ec is incident to the quintagon.

In fact, we may assume that the four edges incident to the quintagon have the same

colour, from which it follows that f is ≥6-big. To see this, let v and w be the endpoints

of the quintagon and let v′ and w′ be neighbours on f of v and w respectively. Since f

is ≥5-big (and therefore not a triangle), v′ 6= w′. Consider the graph G′ obtained from G

by the vww′v′-swap. G′ has a multigon of order 6, and G doesn not by Lemma 4.3.1 so

by minimality G′ has a 7-edge-colouring. In this colouring we may assume by Proposition

4.6.10 that the edges between v and w are assigned colours α, β, δ, γ, φ and ε and the edge

v′w′ as well as the other two edges incident to v or w have colour µ. It follows that there

exists an e-colouring of G where the edges between v and w receive all seven colours, the

other four edges incident to v or w receive the colour µ and all other colours remain the

same as in the colouring of G′.

The next two lemmas generalize the ideas in the previous lemma. The idea is that

we are given a set S of edges which is contained in every mate, upon which appear many

different colours. We can then use the existence of mates for every colour to show that

there exist many cuts which pairwise intersect in the edges contained in S. This allows us

to draw conclusions about the sizes of faces that contain edges from these cuts. We will

use them extensively in the remainder of the proof.
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Proposition 4.6.13. Let G = (V,E) be a minimal counterexample, e = uv an edge of

G. Fix an e-colouring and a colour φ. Suppose that both u and v are incident to exactly

one edge of each colour, except possibly φ. Suppose that there exists S ⊆ E containing

exactly one edge of each colour (possibly including e). Suppose further that for each c 6= φ,

and every c-mate Mc, S ⊆Mc. Let f ′ and f ′′ be two distinct nonadjacent faces in G, and

suppose that these are the only pair of faces intersecting S in an odd number of edges. Then

f ′,f ′′ are both 6-big.

Proof. For c 6= φ, consider any c-mate Mc where c 6= φ. Recall that since Mc is a cut,

it must contain an even number of edges adjacent to every face. By Proposition 4.6.8,

Mc \ S consists of at least four edges, each of which is coloured with c. Therefore f ′ must

be adjacent to an edge ec ∈ Mc \ S coloured with c. f ′ shares the edge ec with some face

fc (fc 6= f ′′). fc contains another edge e′c ∈Mc \S coloured with c, because by assumption

fc has an even number of edges in S on its boundary. Since no vertex has more than one

incident edge coloured with c, fc is ≥4-face. Because fc are distinct for different colours

c, f ′ is adjacent to at least six ≥ 4-faces and hence is ≥6-big. Symmetrically, f ′′ is also

≥6-big.

Proposition 4.6.14. Let G = (V,E) be a minimal counterexample, e = uv an edge of G.

Fix an e-colouring of G and colours φ and µ. Suppose that both endpoints of e are incident

to exactly one edge of each colour (possibly including e) , except possibly φ. Suppose that

there exists S ⊆ E containing one edge of each colour except µ. Suppose further that for

each c 6= φ, and every c-mate Mc, S ⊆Mc. Let f ′ and f ′′ be two distinct nonadjacent faces

in G, and suppose that these are the only pair of faces intersecting S in an odd number of

edges. Then f ′,f ′′ are both 4-big.

Proof. Let c 6= φ and let Mc be any c-mate where c 6= φ. Mc must contain an even number

of edges adjacent to every face. Mc contains the edges in S, so by Proposition 4.6.8 the

remaining edges consist of at least four edges, each of which is coloured with c plus one

edge coloured with µ. Therefore either f ′ or f ′′ must be adjacent to an edge ec ∈ Mc \ S
coloured with c which it shares with some face fc (fc 6= f ′orf ′′). fc contains another edge
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Figure 4.6: Swap used in the proof of Lemma 4.7.1
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e′c ∈ Mc \ S coloured with c since by assumption it has an even number of edges in S

on its boundary. Since no vertex has more that one incident edge coloured with c, fc is

≥4-face. Because for this is true for every colour c 6= φ, and when c = µ, both f ′ and f ′′

are adjacent to such a face, at least one of f ′ or f ′′ must be ≥4-big.

4.7 Final charge of ≤ 2-big 3-faces

4.7.1 Structure of 3-faces

In this section, we discuss the structure of 3-faces in a minimal counterexample. This

will allow us to analyze the final charge of 3-faces and of multigons. In the hypotheses

of Lemmas 4.7.1 through 4.7.11, the graph G in question is assumed to be a minimal

counterexample to Theorem 4.1.1.

Lemma 4.7.1. If a 3-face f = v1v2v3 is adjacent to a quadragon v1v2, then f is adjacent

to no other multigon, the endpoints of the quadragon are incident to no other multigon,

the other face adjacent to the quadragon v1v2 is ≥6-big, and the faces adjacent to both f

and one of the edges v2v3 and v3v1 are ≥6-big.

Proof. Let f ′ be the face adjacent to the edge v1v3, f
′′ the other face adjacent to the

quadragon and f ′′′ the face adjacent to the edge v2v3. Let v4 6= v3 be a neighbour of v1

on the boundary of f ′. Consider the graph G′ obtained from G by the v1v2v3v4-swap (see

Figure 1). G′ contains one more quintagon than G and therefore by the minimality of G

has a 7-edge-colouring. From symmetry and Propositions 4.6.10 and 4.6.11 it follows that
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for any edge e = v1v2, G has an e-colouring where the edges v1v2 receive colours α, β, δ, γ, ε

and φ, the edge v2v3 is coloured µ and v1v3 is coloured φ.

Because v1v3 is coloured φ, for any colour c 6= φ, every c-mate Mc must contain both

the quadragon v1v2 and the edge v2v3. Proposition 4.6.13 shows that both f ′ and f ′′ are

≥6-big. Observe that the other two edges incident to v2 must have the same colour so v2

cannot be incident to another multigon. Repeating the argument with the roles of v1 and

v2 reversed shows that f ′′′ is also ≥6-big.

Lemma 4.7.2. If a 3-face f is adjacent to a trigon, then f is adjacent to at most one other

multigon which, if it exists, must be a bigon.

Proof. Let f = v1v2v3 and consider the odd cut {v1, v2, v3}. Let A = {vivj ∈ E(G) : i, j ∈
{1, 2, 3}}. Since G is 7-regular, the number of edges in the cut is

21− 2|A|.

Therefore, by Lemma 4.6.1, there can be at most 6 edges in A. The lemma follows.

Lemma 4.7.3. If a 3-face f is adjacent to a trigon and a bigon, then the trigon and the

bigon are both adjacent to ≥6-big faces.

Proof. Let f = v1v2v3 and suppose that there is a trigon v1v2 and a bigon v1v3. Let f ′

and f ′′ be the other faces adjacent to the trigon and the bigon respectively and let v4 6= v3

be adjacent to v1 on the boundary of f ′′. Consider the graph G′ obtained from G by the

v1v2v3v4-swap. Since G′ has one more quadragon and as many multigons of higher order

as G, it follows from the minimality of G that G′ has a 7-edge-colouring. By Propositions

4.6.10 and 4.6.11, for any e = v1v2 there exists an e-colouring of G where e is assigned

colours α, β, and γ, the edges parallel to it are coloured δ and φ, the edges v1v3 are coloured

with ε and µ, the edge v1v4 and v2v3 are both coloured φ and all other colours are the same

as in the 7-edge-colouring of G′.
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For any colour c 6= φ, every c-mate must contain both the trigon v1v2 and the bigon

v1v3. Proposition 4.6.13 shows that f ′ and f ′′ are ≥6-big.

Lemma 4.7.4. If a 3-face f is adjacent to a trigon, then at least one of f and the trigon

is adjacent to a ≥4-big face.

Proof. Let f = v1v2v3 and suppose that there is a trigon v1v2, let f ′ be the face adjacent

to the edge v1v3 and let f ′′ be the face adjacent to the trigon. Let v4 6= v3 be adjacent to

v1 on the boundary of f ′ and consider the graph G′ obtained from G by the v1v2v3v4-swap.

Since G′ has one more quadragon than G, it follows from the minimality of G that G′ has

a 7-edge-colouring. By Propositions 4.6.10 and 4.6.11, for any edge e = v1v2, there exists

an e-colouring of G where e is assigned colours α, β, and γ, the edges parallel to it are

coloured δ and φ, the edges v1v4 and v2v3 are both coloured φ, and all other edges have

the same colours as in the colouring of G′.

For any colour c 6= φ, every c-mate Mc must contain both the trigon v1v2 and the edge

v1v3. Proposition 4.6.14 shows that at least one of f ′ and f ′′ is ≥4-big.

Lemma 4.7.5. If a 3-face f is adjacent to three bigons, then at least two of those bigons

are adjacent to ≥4-big faces.

Proof. Let f = v1v2v3, let f ′ be the face adjacent to the bigon v1v3 and let f ′′ be the face

adjacent to the bigon v1v2. Let v4 6= v3 be adjacent to v1 on f ′ and consider the graph

G′ obtained from G by the v1v2v3v4-swap. Since G′ has one more trigon and as many

multigons of higher order as G, it follows from the minimality of G that G′ has a 7-edge-

colouring. By Propositions 4.6.10 and 4.6.11, for e = v1v2, there exists an e-colouring of G

where e is assigned colours α, β, and γ, the edge parallel to e is coloured φ, the edge v1v4

is coloured φ, the edges of the bigon v2v3 are assigned φ and µ, the edges of the bigon v1v3

are coloured δ and ε, and all other edges have the same colours as in the colouring of G′.
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Since φ appears on the bigon v2v3, for any colour c 6= φ, every c-mate Mc must contain

both the bigon v1v2 and the bigon v1v3. Proposition 4.6.14 shows that at least one of f ′

and f ′′ is ≥4-big.

Repeating the argument with the roles of v1 and v2 reversed, and again with those of

v2 and v3 reversed shows that at least one of the other two bigons on f is also adjacent to

a ≥4-big face.

Lemma 4.7.6. If a 3-face f = v1v2v3 is adjacent to three bigons, then neither v1, v2 nor

v3 is incident to a trigon.

Proof. Let f = v1v2v3 and suppose for a contradiction (without loss of generality) that G

has a trigon v3v4. Consider the graph G′ obtained from G by removing two edges v1v2 and

two edges v3v4 and adding edges v1v4, v2v4, v1v3, v2v3 as in Figure 2. Observe that G′ is

a 7-regular planar graph. It can also be verified using Lemma 4.6.1 that every odd cut in

G′ contains at least seven edges. G′ has one more quadragon and as many multigons of

higher order as G and therefore has a 7-edge-colouring. We may assume by symmetry that

in this colouring, the edges v1v3 are coloured α, β, γ, the edges v2v3 are coloured δ, ε, φ, the

edge v3v4 is coloured µ and the edges v1v4 and v2v4 are coloured δ and α, respectively. But

then we can obtain a 7-edge-colouring of G by colouring two edges v1v2 and two edges v3v4

with α and δ, colouring the bigon v1v3 with α, β, the bigon v2v3 with ε, φ and giving all

other edges the same colour as in the colouring of G′. This is a contradiction.

Lemma 4.7.7. If a trigon t is adjacent to a 3-face, then t cannot be incident to another

trigon.

Proof. Suppose that G contains a trigon t = v1v2 and another trigon t′ = v2v3. Further,

suppose for contradiction that for some other vertex v4, G has a 3-face v1v2v4. Consider

the graph G′ obtained from G by the v1v2v3v4-swap. G′ has one more quadragon than G,

and therefore has a 7-edge-colouring. We may assume that in this colouring, the edges of
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Figure 4.7: Swaps used in the proof of Lemma 4.7.6
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the quadragon v1v2 are coloured α, β, γ and δ. The other three edges incident to v2 must

then be coloured φ, µ and ε. Then the edge v3v4 must be coloured with one of α, β, γ or δ.

But this is a contradiction to Propostion 4.6.10.

Lemma 4.7.8. If a vertex v is incident to two bigons and one trigon, then the trigon

cannot be adjacent to a 3-face.

Proof. Suppose that for vertices v1, v2, v3 there is a trigon vv1, a bigon vv2 and another

bigon vv3, and suppose for contradiction that there is also an edge v1v2. Then consider

the graph G′ obtained from G by the vv1v2v3-swap. G′ has one more quadragon than

G, so by the minimality of G it has a 7-edge-colouring. We may assume that the edges

of the quadragon v1v are coloured α, β, γ and δ and the other three edges incident to v

are coloured φ, µ and ε. Then the edge v2v3 is coloured either α, β, γ or δ which is a

contradiction to Proposition 4.6.10.

Lemma 4.7.9. Every bigon in G is be adjacent to at most one dangerous 3-face.

Proof. Let f = v1v2v3 be a dangerous 3-face, with bigons v1v2 and v2v3, and let f ′ = v2v3v4

be another dangerous 3-face.

First, suppose that the bigons adjacent to f ′ are v2v3 and v3v4. Then consider the

graph G′ obtained from G by the v1v2v4v3-swap. Since G′ has two more trigons and as
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many multigons of higher order as G, there exists a 7-edge-colouring of G′. Observe that

in this colouring one of the edges v3v4 must have the same colour as one of the edges v1v2,

a contradiction to Proposition 4.6.10.

Now, suppose that the bigons adjacent to f ′ are v2v3 and v2v4. Then G′ obtained from

G by the v1v2v4v3-swap has one more trigon than G and consequently, a 7-edge-colouring.

In this colouring, one of the edges v3v4 has the same colour as an edge v1v2, a contradiction

to Proposition 4.6.10.

Lemma 4.7.10. If a dangerous 3-face f = v1v2v3 is adjacent to a 3-face f ′ = v1v3v4 then

f ′ cannot be adjacent to any multigon. Further, either the bigon v2v3 or the edge v1v4 is

adjacent to a ≥4-big face, and either the bigon v1v2 or the edge v3v4 is adjacent to a ≥4-big

face.

Proof. f is adjacent to bigons v1v2 and v2v3 and shares the edge v1v3 with f ′. Suppose

that there is a bigon v1v4. Then the graph G′ obtained from G by the v2v3v4v1-swap has

two more trigons than G and consequently a 7-edge-colouring. But in this colouring, one

of the edges v1v4 must have the same colour as one of the edges v2v3, a contradiction to

Proposition 4.6.10. It follows that f ′ can not be adjacent to any multigon.

It remains true however that G′ has a 7-edge-colouring as G′ has one more trigon than

G. By Propositions 4.6.10 and 4.6.11, for an edge e = v2v3, G has an e-colouring where

the bigon v2v3 is coloured with α, β, γ and φ, the edges of the bigon v1v2 are coloured δ

and φ, the edge v3v4 is coloured φ, and all other colours are as in the colouring of G′.

Then for any colour c 6= φ, any c-mate must contain the bigon v2v3, the edge v1v3 and

the edge v1v4. From Proposition 4.6.14 it follows that either the bigon v2v3 or the edge

v3v4 must be adjacent to a ≥4-big face. Symmetrically, either the bigon v1v2 or the edge

v3v4 is adjacent to a ≥4-big face.

Lemma 4.7.11. If a 3-face f = v1v2v3 is adjacent to a bigon b = v1v2 and a 3-face

f ′ = v1v3v4, then at least one of f ′ and the bigon is adjacent to a ≥4-big face.
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Proof. Lemma 4.7.10 implies that one of the following cases must occur.

1. f ′ is adjacent to a trigon. If the trigon has endpoints v3 and v4, then the graph G′

obtained from G by the v1v2v3v4-swap has one more quadragon than G and therefore

has a 7-edge-colouring. Observe that in this colouring, one of the edges v3v4 must

have the same colour as one of the edges v1v2, a contradiction to Propostion 4.6.10.

Similarly, if the trigon has endpoints v1 and v4, then the graph G′′ obtained from G

by the v2v3v4v1-swap is a contradiction to Proposition 4.6.10. Therefore, f ′ cannot

be adjacent to a trigon.

2. f ′ is adjacent to a bigon v1v4. In this case, consider the graph G′ obtained by the

v1v2v3v4-swap. G′ has one more trigon than G and therefore has a 7-edge-colouring.

By Propositions 4.6.10 and 4.6.11, for e = v1v2, there exists an e-colouring of G where

the edges v1v2 are coloured α, β, γ and φ, the edges of the bigon v1v4 are coloured µ

and φ, and the edge v2v3 is coloured φ. It follows that for c 6= φ any c-mate must

contain the edges v1v2, v1v3 and v3v4. From Proposition 4.6.14 it follows that either

the bigon v1v2 or the edge v3v4 is adjacent to a ≥4-big face.

3. f ′ is adjacent to a bigon v3v4. In this case, as in Case 2, the v1v2v3v4-swap shows

that G has an e-colouring where for every c 6= φ every c-mate must contain the edges

v1v2, v1v3 and v3v4. Since v3v4 is a bigon, all seven colours appear on these edges and

it follows from Proposition 4.6.13 that both the bigons v1v2 and v3v4 are adjacent to

≥6-big faces.

4. f ′ is not adjacent to any multigons. In this case, the graph G′ obtained by the

v1v2v3v4-swap has one more bigon than G and hence has a 7-edge-colouring. By

Propositions 4.6.10 and 4.6.11, for e = v1v2, there exists an e-colouring of G where

the edges v1v2 are coloured α, β, γ and φ, and the edges v1v4 and v2v3 are both

coloured φ. It follows that for c 6= φ any c-mate must contain the edges v1v2, v1v3

and v3v4. Just as in Case 2, it follows that either the bigon v1v2 or the edge v3v4 is

adjacent to a ≥4-big face.
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4.7.2 Analysis of final charge

Lemma 4.7.12. The final charge of every 3-face is non-negative.

Proof. Let f be a 3-face. The initial charge of f is 0. By Lemmas 4.6.12, 4.7.1 and 4.7.2,

one of the following cases must be true.

1. f is adjacent to a quadragon. In this case, by Lemma 4.7.1, f is adjacent to two

≥6-big faces, and hence receives 2 units of charge. By Rule 4.1, f sends only 1 charge

to the quadragon, so the final charge is non-negative.

2. f is adjacent to a trigon and a bigon. Then f sends 0 charge by Rule 4.2, so the final

charge is non-negative.

3. f is adjacent to a trigon and no other multigon. If f is adjacent to a ≥4-big face,

from which it receives 1 charge, then f sends at most 0.5 to the trigon by Rule 4.3

and possibly 0.5 to another adjacent face by Rule 4.6. Otherwise, by Lemma 4.7.4

the trigon is adjacent to a ≥4-big face, so f sends 0 charge by Rule 4.3. In both

cases the final charge is non-negative.

4. f is adjacent to one bigon. In this case, if f is adjacent to a ≥3-big face, then f

receives at least 1 charge by Rule 3, and must send at most 0.5 to the bigon, and

possibly 0.5 to another face by Rules 4.5 and 4.6, so the final charge is non-negative.

If the bigon is adjacent to a ≥3-big face but f is not, then f sends 0 charge by Rule

4.5. If neither the bigon nor f is adjacent to a ≥3-big face, and f is adjacent to two

≤2-big ≥4-faces, then f receives 0.25 charge from each one by Rule 6.6 and sends

0.5 to the bigon by Rule 4.5. Finally if f is adjacent to a 3-face f ′, f ′ cannot be a

dangerous 3-face by Lemma 4.7.10. Further, by Lemma 4.7.11 either f ′ is adjacent

to a ≥4-big face, in which case it sends at least 0.5 charge to f by Rule 4.6, or the

bigon is adjacent to a ≥4-big face and f need not send any charge to it by Rule 4.5.

In all cases, the final charge of f is non-negative.
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5. f is adjacent to two bigons. Then f is a dangerous 3-face. If f is adjacent to a

≥3-big face, then f receives 1 charge by Rule 3 and sends at most 0.5 to each of

the bigons by Rules 5 and the final charge is non-negative. If f is adjacent to a

≤2-big ≥4-face, then by Rules 5.2 and 6.5, for each bigon adjacent to f , f receives

a certain amount of charge and sends exactly the same amount to the bigon. The

charge sent is at most the charge received in this case. Finally, if f is adjacent to a

3-face, then Lemma 4.7.10 shows that f receives at least 0.5 charge per bigon which

is not adjacent to a ≥4-big face by Rules 1.3 and 2.1 and sends 0.5 to each such bigon

by Rule 5.1. Hence the final charge of f is non-negative.

6. f is adjacent to three bigons. In this case, f sends out 0 charge, so its final charge is

non-negative.

7. f is not adjacent to any multigons. In this case f only sends out charge if it is

adjacent to one or two ≥3-big faces by Rules 4. In this case it follows from Rules 1.3

and 2.1 and Rules 4.6 and 4.7 that f sends out at most the amount of charge that it

receives from other faces so the final charge is non-negative.

4.8 Final charge of multigons

There are no rules by which multigons ever send charge to other faces, so we just need to

show each multigon receives at least enough charge to make their final charge non-negative.

Lemma 4.8.1. The final charge of every quintagon is 0.

Proof. The initial charge of a quintagon is -4. By Lemma 4.6.12, every quintagon is

adjacent to two ≥6-faces and therefore receives a total of 3 charges from adjacent faces

by Rule 1.1. Also, each quintagon receives 0.5 units of charge from both of its vertices by

Rule 7.1. The total charge received is 4, so the final charge of every quintagon is 0.
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Lemma 4.8.2. The final charge of every quadragon is 0.

Proof. The initial charge of a quadragon is -3. Each quadragon receives 0.5 units of charge

from both of its vertices by Rule 7.2. By Rules 1.3, 2.1, 3, 4.1 and 6.1, a quadragon receives

1 charge from each adjacent face. Therefore the total charge received is 3, and the final

charge is 0.

Lemma 4.8.3. The final charge of every trigon is non-negative.

Proof. Let t be a trigon. Its initial charge is -2.

If t is adjacent to two ≥3-big faces, then it receives 1 charge from each one by Rules

1.3, 2.1 and 3 and the final charge is non-negative.

Suppose t is adjacent to a 3-face. Then by Lemma 4.7.7, each of its endpoints sends

0.5 charge to it according to Rule 7.3. If the other face adjacent to t is a ≥ 3-big face then

that face sends 1 charge to t by rules 1.3, 2.1 and 3 and the total charge received is 2. If

t is adjacent to a 3-face and a ≤ 2-big ≥ 4-face then each of those faces sends at least 0.5

to t by Rules 4.3 and 6.3. Otherwise, if t is adjacent to two 3-faces, then by Lemma 4.7.3,

neither of them is adjacent to any other multigons. Each sends 0.5 charge to t by Rule 4.3

and the total charge received is at least 2.

If t is adjacent to one ≥3-big face, and the other face adjacent to t is a ≤ 2-big ≥4-face,

it follows from Rules 6.2, 7.3 and 7.4 that the total charge received from the endpoints of

t and the ≥4-face is at least 1, so the final charge of t is non-negative.

Finally, if t is adjacent to two ≤2-big ≥4-faces, then it follows from Rule 6.3 that t

receives 0.5 from each adjacent face, plus an additional 0.25 for each endpoint which is

incident to another trigon. By Rules 7.3 and 7.4, each vertex sends 0.25 if it is incident to

another trigon, otherwise it sends 0.5 so the total charge received is 2 and the final charge

is non-negative.

Lemma 4.8.4. The final charge of every bigon is non-negative.
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Proof. Let b be a bigon. Its initial charge is -1.

If b is adjacent to a ≥3-big face, then it receives 1 charge from that face by Rules 1.3,

2.1 and 3, so its final charge is non-negative.

Suppose that both faces adjacent to b are ≤2-big. Every such ≥4-face sends 0.5 units

of charge to b by Rule 6.4. If b is adjacent to a 3-face f , then by Lemma 4.7.3, f cannot be

adjacent to a trigon. If f is adjacent to no other bigons, then b receives 0.5 charge from f

by Rule 4.5. If f is adjacent to one other bigon (f is dangerous), then it follows Rules 5.2,

6.5 and 7.5, 7.6, 7.7 that the total amount of charge received from f and the endpoints of b

is at least 0.5. If f is adjacent to two other bigons, then the other two bigons are adjacent

to ≥4-big faces by Lemma 4.7.5. Lemma 4.7.6 and Rules 7.5.1, 7.6 and 7.7 imply that

each endpoint of b sends at least 0.25 charge to it. By Lemma 4.7.9, b cannot be adjacent

to two 3-faces which are both adjacent to more than one bigon, so the Lemma is proved.

4.9 Final charge of ≤ 2-big 4-faces

4.9.1 Structure of 4-faces

Lemma 4.9.1. If a 4-face f = v1v2v3v4 is adjacent to a quadragon v1v2, then f can not

be adjacent to any other multigon.

Proof. First, suppose there is a bigon v2v3. Then the graph G′ obtained from G by the

v1v2v3v4-swap has one more quintagon than G and hence has a 7-edge-colouring by the

minimality of G. By symmetry we may assume that in this colouring the colours assigned

to the edges of the quintagon are α, β, γ, δ and ε, and that the edge v2v3 is coloured φ. Then

one of the two edges between v3 and v4 must be coloured with α, β, γ, δ or ε, a contradiction

to Proposition 4.6.10. Similarly, there cannot be a multigon between v1 and v4.

Now, suppose there is a bigon v3v4. Then the graph G′ obtained from G by the v1v2v3v4-

swap has a quintagon v1v2, a trigon v3v4 and consequently a 7-edge-colouring. In any
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7-edge-colouring of G′ some colour, must appear on both the trigon and the quintagon.

This is a contradiction to Proposition 4.6.10.

Lemma 4.9.2. If a 4-face f = v1v2v3v4 is adjacent to a quadragon v1v2, then both the

quadragon and the edge v3v4 are adjacent to ≥6-big faces.

Proof. The graph G′ obtained from G by the v1v2v3v4-swap has one more quintagon than

G and therefore by the minimality of G has a 7-edge-colouring. In this colouring, we may

assume by Proposition 4.6.10 that the edges of the quintagon are coloured with α, β, γ, δ

and ε and that the two edges v3v4 are coloured φ and µ. Hence for any e = v1v2 there

exists an e-colouring of G where the edges on the quadragon are coloured α, β, γ, δ, ε and

φ, the edges v2v3 and v1v4 are coloured φ and the edge v3v4 is coloured µ.

Then for any colour c 6= φ, any c-mate must contain the quadragon v1v2, and the edge

v3v4. It follows from Proposition 4.6.13 that both the quadragon v1v2 and the edge v3v4

must be adjacent to a ≥6-big face f ′. More strongly, observe that f ′ is ≥6-large and that

f ∈ T1(f ′).

Lemma 4.9.3. If a 4-face f = v1v2v3v4 is adjacent to a trigon v1v2, then f is adjacent to

at most one other multigon which, if it exists, must be a bigon.

Proof. First, suppose there is a trigon v2v3. Then the graph G′ obtained from G by the

v1v2v3v4-swap has a quadragon between v1 and v2 and hence has a 7-edge-colouring by the

minimality of G. By symmetry we may assume that in this colouring the colours assigned

to the edges of the quadragon are α, β, γ and δ, and that the two edges between v2 and v3

is coloured ε and φ. Then one of the two edges between v3 and v4 must be coloured with

α, β, γ or δ, a contradiction to Proposition 4.6.10.

Now, suppose there is a trigon v3v4. Then the graph G′ obtained from G by the

v1v2v3v4-swap has a quadragon v1v2, and another quadragon v3v4 and consequently has a
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7-edge-colouring. In any 7-edge-colouring of G′ some colour must appear on both of the

quadragons, a contradiction to Proposition 4.6.10.

Lemma 4.9.4. Suppose a 4-face f = v1v2v3v4 is adjacent to a trigon v1v2. Let f ’ be the face

adjacent to v3v4. Then either the trigon is adjacent to a ≥4-big face or f ∈ T1(f ′).Further,

f ’ is not a dangerous 3-face.

Proof. Let f ′ be the other face adjacent to v3v4 and f ′′ be the other face adjacent to the

trigon. The graph G′ obtained from G by the v1v2v3v4-swap has one more quadragon

than G and as many multigons of higher order and therefore, by the minimality of G, a

7-edge-colouring. By Proposition 4.6.10, we may assume that in this colouring, the edges

of the quadragon receive colours α, β, γ and δ and the two edges v3v4 are coloured φ and

µ. It follows that for an edge e on the trigon v1v2, there exists an e-colouring of G where e

is coloured with α, β, γ, the edges parallel to it with δ and φ, the edges v2v3 and v1v4 are

coloured φ and the edge v3v4 is coloured µ. Then for every colour c 6= φ, any c-mate must

contain both the trigon v1v2 and the edge v3v4. Since 6 colours appear on those edges it

follows from Proposition 4.6.14 that either f ′ or f ′′ is ≥4-big and it is also clear that f ′

cannot be a dangerous 3-face. If f ′ is ≥4-big, then it is ≥4-large with f ∈ T1(f), as the

only face adjacent to f that is not f -incident to f ′ is a trigon.

Lemma 4.9.5. If a 4-face f = v1v2v3v4 is adjacent to a trigon v1v2 and a bigon v3v4, then

the trigon and the bigon are each adjacent to a ≥6-big face.

Proof. Let f ′ and f ′′ be the other faces adjacent to the trigon and the bigon, respectively.

The graph G′ obtained from G by the v1v2v3v4-swap has one more quadragon and as many

multigons of higher order as G and therefore, by the minimality of G, a 7-edge-colouring.

In this colouring, suppose that the edges between v1 and v2 are coloured α, β, γ and δ.

Then by Proposition 4.6.10 the edges between v3 and v4 must have colours φ, µ and ε. It

follows that for an edge e on the trigon v1v2, there exists an e-colouring of G in which e is
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Figure 4.8: Swap used in the proof of Lemma 4.9.6
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coloured with α, β, γ, the edges parallel to it with δ and φ, the edges v2v3 and v1v4 with

φ, and the edges of the bigon v3v4 with ε and µ.

Then for every colour c 6= φ, any c-mate must contain both the trigon v1v2 and the

bigon v3v4. From Proposition 4.6.13 it follows that f ′ and f ′′ are both ≥6-big.

Lemma 4.9.6. If a 4-face f = v1v2v3v4 is adjacent to a trigon v1v2, then f is adjacent

to at most one dangerous 3-face. If f is adjacent to a dangerous 3-face f ′ then f ′ must be

f -incident to the trigon. Further, either the other face that is f -incident to the trigon, or

the face adjacent to the bigon on f ′ which is not incident to the trigon must be ≥4-big.

Proof. By Lemma 4.9.4, the edge v3v4 is not adjacent to a dangerous 3-face. Suppose that

the edge v2v3 is adjacent to a dangerous 3-face v2v3v5. Then the graph G′ obtained by

the v2v4v3v5-swap has one more trigon than G and just as many multigons of higher order

and therefore has a 7-edge-colouring. In this colouring, we may assume by symmetry and

Proposition 4.6.10 that the edges v3v5 are coloured α, β, γ, the edge v2v3 is coloured δ, v2v5

is coloured ε and v2v4 is coloured φ. It follows that there exists an e-colouring of G where

the edges of the bigon v3v5 are coloured α, β, γ and φ, the edge v3v4 and one edge v2v5 are

coloured φ. Therefore, for c 6= φ, every c-mate must contain the bigon v3v4 and the edges

v2v3 and v1v4. The result follows from Proposition 4.6.14.



4.9. FINAL CHARGE OF ≤ 2-BIG 4-FACES 59

Lemma 4.9.7. Let f = v1v2v3v4 be a 4-face. Suppose f is not adjacent to any multigons

of order ≥3. Then

(a) If f is adjacent to four bigons, then either b = v1v2 or b′ = v3v4 is adjacent to a ≥4-big

face.

(b) If f is adjacent to a bigon b = v1v2 and a 1-bigon-3-face f ′ adjacent to v3v4 which is

adjacent to one bigon b′, then either b, f ′ or b′ is adjacent to a ≥4-face.

(c) If f is adjacent to a bigon b = v1v2 and a dangerous 3-face f ′ adjacent to v3v4, then

both b and one of the bigons on f ′ are adjacent to ≥6-big faces.

(d) If f is adjacent to zero or one bigon, then f cannot be adjacent to two dangerous

3-faces which are not f -incident.

(e) If f is adjacent to zero or one bigon, then if f is adjacent to a dangerous 3-face f ′ and

a 1-bigon-3-face f ′′ which are not f -incident, then both f ′′ and one of the bigons on f ′

are adjacent to ≥6-big faces.

Proof. (a) Let f ′ be the other face adjacent to b and f ′′ be the other face adjacent to b′.

Since the graph G′ obtained from G by the v1v2v3v4-swap contains two more trigons

and as many multigons of higher order as G, it follows from the minimality of G that

G′ has a 7-edge-colouring. By symmetry and Proposition 4.6.10, we may assume that

in this colouring the edges of the trigon v1v2 are coloured α, β and γ, the edges of the

trigon v3v4 are coloured δ, ε and φ and the edges v1v4 and v2v3 are both coloured with

µ. It follows that for an edge e with endpoints v1 and v2, G has an e-colouring where e

is coloured with α, β and γ, and the edge parallel to e with φ. The edges of the bigon

between v3 and v4 are coloured δ and ε, and the edges of each of the other two bigons

are coloured φ and µ and all other edges have the same colour as in the colouring of

G′. Neither v1 nor v2 has more than one incident edge of any other colour than φ and

for any c 6= φ any c-mate Mc must contain both the bigon v1v2 and the bigon v3v4 so

Proposition 4.6.14 implies that either f ′ or f ′′ is ≥4-big.
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(b) Let f share the edge v3v4 with the 3-face f ′ = v3v4v5 and v4, v5 be the endpoints of b′.

The graph G′ obtained from G by the v1v2v3v4-swap has one more trigon and as many

multigons of higher order as G and therefore has a 7-edge-colouring. By symmetry

and by Propostion 4.6.10, we may assume that in this colouring, the edges v1v2 are

coloured α, β, γ and the edges v3v4 are coloured φ and δ. It follows that for an edge e

on b there exists an e-colouring of G where e is coloured α, β, γ, and the edge parallel

to e as well as an edge v1v4 and an edge v2v3 are coloured φ. For any c 6= φ, every

c-mate must contain b and the edge v3v4. If the edges of the b′ are coloured ε and µ,

then Proposition 4.6.13 shows that both b and b′ are adjacent to ≥6-faces. If not, then

the edge v3v5 is coloured either ε or µ and Propostion 4.6.14 shows that either b or

v3v5 is adjacent to a ≥4-big face.

(c) Let f share the edge v3v4 with the dangerous 3-face f ′ = v3v4v5. The same argument

as in part (b) applies here to show that for e = v1v2 there exists an e-colouring of G

where e is coloured α, β, γ, v3v4 is coloured δ, and the edge parallel to e as well as

an edge v1v4 and an edge v2v3 are coloured φ, but in this case the edges of either the

bigon v3v5 or the bigon v4v5 must be coloured with ε and µ and Proposition 4.6.13

shows that both that bigon and b are adjacent to ≥6-big faces.

(d) Suppose that the edge v1v2 is adjacent to a dangerous 3-face v1v2v5 and the edge

v3v4 is adjacent to a dangerous 3-face v3v4v6. The graph G′ obtained from G by the

v1v2v3v4-swap contains at least one more bigon than G and as many multigons of

higher order, so G′ has a 7-edge-colouring. By Proposition 4.6.10, we may assume that

in this colouring the edges v1v2 are coloured α, β, the edges v1v5 are coloured γ, δ, the

edges v2v5 are coloured ε, φ, and one of the edges v3v4 is coloured φ. Let e = v1v2 and

consider the e-colouring of G where e is coloured α, β, φ, an edge v1v4 as well as an

edge v2v3 are coloured φ, and all other edges have the same colour as in the e-colouring

of G′. Then for any c 6= φ, every c-mate must contain the bigon v1v5, the edges v1v2

and v3v4, and either the bigon v3v6 or the bigon v4v6. But both v3v6 and v4v6 must

contain an edge coloured with a colour that appears on v1v5, v1v2 or v3v4 so this is a

contradiction.
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(e) Suppose that the edge v1v2 is adjacent to a dangerous 3-face v1v2v5 and the edge v3v4

is adjacent to a 3-face v3v4v6 adjacent to a bigon v3v6. As in the proof of part (d), for

e = v1v2, there exists an e-colouring of G where e is coloured α, β, φ, the edges v1v2

are coloured α, β, the edges v1v5 are coloured γ, δ, the edges v2v5 are coloured ε, φ, an

edge v1v4 as well as an edge v2v3 are coloured φ, and the edge v3v4 is coloured δ. Since

the bigon v3v6 must contain an edge coloured with some colour that appears on v1v5,

v1v2 or v3v4, for c 6= φ, every c-mate must contain the edges v1v5, v1v2, v3v4 and v4v6.

The desired result follows from Proposition 4.6.13.

4.9.2 Analysis of final charge

Lemma 4.9.8. The final charge of every 4-face is non-negative.

Proof. Let f be a 4-face. The initial charge of f is 1. Lemmas 4.6.12, 4.9.1 and 4.9.3 imply

that one of the following cases must occur.

1. f is adjacent to a quadragon. In this case, f must send one charge to the quadragon

by Rule 6.1. By Lemma 4.9.2, f is adjacent to a≥6-large face f ′ from which it receives

1 charge by Rule 1.3. Observe that if the quadragon is f -incident to a dangerous

3-face f ′′, then one of the bigons adjacent f ′′ lies on the same ≥6-big face as the

quadragon, so f only needs to send at most 0.5 charge to f ′′ by Rules 6.5. Since by

Rule 6.6 f sends at most 0.25 charge to non-dangerous 3-faces and by Lemma 4.9.1

f is adjacent to no other multigons, the total charge sent by f is no more than 2 and

the final charge is non-negative.

2. f is adjacent to a trigon. In this case, if the trigon is adjacent to a ≥4-big face, then

by Lemma 4.7.7 and Rule 6.2, f only sends 0.25 to the trigon if one of the faces

f -incident to it is ≥4-face (to which it sends 0 charge). f sends 0.5 to the trigon if

both faces f -incident to it are ≥4-faces by Rule 6.3. It follows from Lemma 4.9.6 that

f sends a total of at most 0.75 charge to the trigon and the two faces f -incident to
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it. If the remaining face adjacent to f is a 3-face, it cannot be dangerous by Lemma

4.9.4, so it receives at most 0.25 charge from f by Rule 6.6. If the remaining face is

a bigon then by Lemma 4.9.5 f sends no charge to it by Rule 6.4.

If the trigon is not adjacent to a ≥4-big face, then Lemma 4.9.4 implies that f is

adjacent to a ≥4-big face from which it receives 1 charge by Rule 2.1. Lemma 4.9.6

shows that f sends at most a total of 2 charges to the trigon and the two faces

f -incident to it combined by Rules 6. Therefore the final charge of f is non-negative.

3. f is adjacent to zero, one, two, three, or four bigons and no multigons of order ≥2.

Lemma 4.9.7 and Rules 6.4, 6.5 and 6.6 imply that f sends at most 0.5 to any pair

of its adjacent faces which are not f -incident. In this case it is easy to see that the

final charge of f is non-negative.

4.10 Final charge of ≤ 2-big ≥ 5-faces

4.10.1 Structure of ≥ 5-faces

Lemma 4.10.1. If a ≥5-face f = v1, . . . , vl is adjacent to a quadragon q = v2, v3 then f is

also adjacent to a ≥4-face f ′ which is not f-incident to q. Further, if f is a 5-face then f ′

is ≥ 6-big.

Proof. The graph G′ obtained from G by the v1v2v3v4-swap has one more quintagon than

G and therefore has a 7-edge-colouring. By Propositions 4.6.10 and 4.6.11, for e = v2v3,

there exists an e-colouring of G where the edges of q are coloured with α, β, γ, δ, ε, φ and

there are edges v1v2 and v3v4 coloured φ. For c 6= φ, every c-mate Mc must contain the

edges in q. The other edges in Mc consist of one edge coloured µ and at least four edges

coloured c. Mc must contain an edge ec which is adjacent to f but not f -incident to q.

Observe that eµ must be coloured µ and be adjacent to a ≥4-face f ′. If f is a 5-face, we



4.10. FINAL CHARGE OF ≤ 2-BIG ≥ 5-FACES 63

may assume that the edge v4v5 is coloured with µ and v5v1 is coloured α so all mates of

colours β, γ, δ, ε, µ must contain v4v5, and there must exist at least five ≥4-faces with which

the face f ′ adjacent to v4v5 shares an edge. Since f is ≥5-face, f ′ is ≥6-big.

Lemma 4.10.2. Let f = v1 . . . v5 be a 5-face. Suppose that v1v2 is adjacent to a trigon

t. Denote by f ′ and f ′′ the faces adjacent to the edges v3v4 and v4v5, respectively. Denote

by f ′′′ the other face adjacent to t. Then f ′ and f ′′ cannot be any combination of only

dangerous 3-faces, trigons, and quadragons. Further, if f ′ is a dangerous 3-face or a

multigon of order ≥3, then at least one of f ′′ or f ′′′ must be ≥4-big. If f ’ and f” are some

combination of bigons and 1-bigon-3-faces, then both t and one of f ′ or f ′′ is adjacent to

a ≥5-big face.

Proof. The graph obtained from G by the v1v2v3v5-swap has one more quadragon than G

and therefore has a 7-edge-colouring. By Propositions 4.6.10 and 4.6.11, for e = v1v2 there

exists an e-colouring of G where the edges v1v2 are coloured α, β, γ, δ and φ, and one edge

each of v2v3 and v5v1 is coloured φ.

Suppose first that each of f ′ and f ′′ is a dangerous 3-face or a multigon of order ≥3.

For any c 6= φ, any c-mate must contain all the edges v1v2 (on which appear five colours)

plus a set of three edges incident to either v3, v4 or v5. There are only a total of 4 possible

such sets and some colour appearing on the trigon v1v2 appears on each of them. It follows

from the definition and existence of c-mates that this is a contradiction.

Now, if f ′ is a dangerous 3-face, a trigon or a quadragon then a similar argument shows

that all c-mates for c 6= φ must contain the edge v4v5 which must be coloured ε or µ. It

follows from Proposition 4.6.14 that either f ′′ or f ′′′ is ≥4-big.

If f ′ and f ′′ are bigons, then in the e-colouring, two edges of one of them, say without

loss of generality f ′ are coloured ε and µ. For c 6= φ, every c-mate must contain both edges

of f ′ as well as the three edges v1v2 so Proposition 4.6.13 implies that both t and f ′ are

adjacent to ≥6-big faces.
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If f ′ is a 1-bigon-3-face and f ′′ is a bigon or a 1-bigon-3-face, then two edges of one of

f ′ or f ′′ are coloured ε and µ, and mates of at most one colour can contain edges of the

other. An argument similar to the proof of Proposition 4.6.13 shows that both t and one

of f ′ and f ′′ are adjacent to ≥5-big faces.

Lemma 4.10.3. Let f = v1 . . . v5 be a 5-face. Suppose that v1v2 is adjacent to a dangerous

3-face f1, and denote by f2 and f3 the faces adjacent to the edges v3v4 and v4v5 respectively.

Suppose that neither of the faces adjacent to v2v3 and v5v1 are multigons. Then f2 and f3

cannot be any combination of only dangerous 3-faces, trigons and quadragons. Further, if

f2 is a bigon and f3 is a trigon or a dangerous 3-face, then both f2 and a bigon adjacent

to f1 must be adjacent to ≥3-big faces.

Proof. The graph G′ obtained from G by the v1v2v3v5-swap has one more bigon than G

and just as many multigons of higher order so G′ has a 7-edge-colouring. By Propositions

4.6.10 and 4.6.11, for e = v1v2 there exists an e-colouring of G where e is coloured α, β, γ

and the edges v2v3 and v5v1 are both coloured φ.

First, suppose f1 and f2 are both dangerous 3-faces. Then for c 6= φ, every c-mate

must contain the edge v1v2, both edges of a bigon adjacent to f1, as well as either v3v4 and

a bigon adjacent to f2 or v4v5 and a bigon adjacent to f3. There must be three colours

c1, c2, c3 for which a ci-mate Mci contains the same bigon adjacent to f1. If this bigon is

coloured with δ and ε, then the other remaining edges in Mci are two edges coloured with

φ and µ and some additional edges coloured ci. But at most one such mate can contain

the edge v3v4 and a bigon adjacent to f2 and at most one can contain the edge v4v5 and a

bigon adjacent to f3, a contradiction. Similar arguments show that a contradiction is also

reached if f1 and f2 are both trigons, or if they are a trigon and a dangerous 3-face.

Also, if f2 is a bigon and f3 is a dangerous 3-face or a trigon, then as above, there must

be 3 colours c1, c2, c3 for which some ci-mates Mci all contain the same bigon adjacent to

f1. It follows that they all three must contain the edges of the bigon f2 as well. We may

assume by symmetry that the bigon adjacent to f1 that they all contain is coloured with
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δ and ε and that f2 is coloured φ and µ. A similar argument to the proof of Proposition

4.6.13 shows that both f1 and f2 are adjacent to ≥3-big faces.

Lemma 4.10.4. Let f = v1 . . . v5 be a 5-face. If f is not adjacent to any multigons of

order ≥3, and f is adjacent to three bigons which are not adjacent to three consecutive

faces around the boundary of f , then at least one of the bigons is also adjacent to a ≥3-big

face.

Proof. Suppose there are bigons adjacent to the edges v1v2, v3v4 and v4v5. The graph

G′ obtained from G by the v1v2v3v5-swap has one more trigon than G and just as many

multigons of higher order, and therefore has a 7-edge-colouring by the minimality of G. It

follows from Proposition 4.6.10 and Proposition 4.6.11 that for e = v1v2, there exists an

e-colouring of G where the edges v1v2 are coloured α, β, γ, φ and an edge v2v3 as well as an

edge v5v1 are coloured with φ. For c 6= φ, every c-mate must contain the edges of the bigon

v1v2, as well as both edges of either the bigon v3v4 or the bigon v4v5. Therefore we may

assume without loss of generality that the edges v3v4 are coloured δ and ε, and the edges

v4v5 with µ and α. For c 6= φ or α, every c-mate contains the edges v3v4 and a similar

argument to the proof of Proposition 4.6.14 shows that one of the bigons v1v2 or v3v4 is

adjacent to a ≥3-big face.

Lemma 4.10.5. Let f = v1 . . . vl be a 2-big l-face, for l = 6 or 7. Suppose that v1v2 is

adjacent to a quadragon q and v2v3 is adjacent to a ≥ 4-face. Then one of the faces in the

set F of faces adjacent to the edges {v3v4, . . . , vlv1}, say f ′, is ≥ 4-big. Further, if F \ f ′

contains only dangerous 3-faces, quadragons, and trigons then f ′ is ≥ 6-big.

Proof. By Lemma 4.10.1, at most one of the ≥ 4-faces is f -incident to the quadragon.

Consider the graph obtained from G by the vlv1v2v3-swap. This graph has one more

quintagon than G so by Propositions 4.6.10 and 4.6.11, for e = v1v2 there is an e-colouring

of G where the edges of the quadragon are coloured α, β, γ, δ, ε and φ and the edges vlv1

and v2v3 are both coloured φ.
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For any c 6= φ, a c-mate Mc must contain the edges of the quadragon q. The remaining

edges in Mc consist of one edge coloured µ and at least four edges coloured c. Mc must

contain an edge ec ∈ F which cannot be adjacent to a multigon of order ≥3, a dangerous

3-face or a 1-trigon-1-bigon-3-face. Therefore, if F \ f ′ contains only dangerous 3-faces,

quadragons, and trigons then for each c 6= φ, ec is adjacent to f ′ so f ′ is ≥ 6-big by

Proposition 4.6.13.

Lemma 4.10.6. Let f = v1 . . . vl be a 2-big l-face, for l = 5, 6 or 7. Suppose that every

≤ 4-face adjacent to f is a trigon or a dangerous 3-face. Suppose that v1v2 is adjacent to a

≥ 4-face and v2v3 is adjacent to a trigon t. Let e′ 6= v1v2 on the boundary of f be adjacent

to a ≥ 4-face. Let f ′ be the other face adjacent to t. Then either f ′ is ≥ 3-big, or e′ is

adjacent to a ≥ 4-big face. Finally, e′ cannot be incident to t.

Proof. The graph obtained from G by the v2v3v4v1-swap has one more quadragon than G

and hence has a 7-edge-colouring. By Propositions 4.6.10 and 4.6.11, for e = v2v3 there

exists an e-colouring of G where the edges of t are coloured α, β, γ, δ, φ and the edges v1v2

and v3v4 are coloured φ.

For c 6= φ, there is a set of edges coloured with α, β, γ, δ, φ that must be contained in

every c-mate Mc. Mc must also contain another edge ec adjacent to f . If ec is adjacent to

a trigon or a dangerous 3-face, then mates of at most one colour can contain ec, and the

edges in Mc which share a vertex with ec are coloured ε, µ and c. The other edges in the

mate consist of at least three more edges coloured c so there exists a ≥4-face which shares

an edge coloured c with f ′.

Further, since e′ 6= v1v2 is adjacent to a ≥4-face, every µ-mate and ε-mate must contain

e′. We may assume by symmetry that e′ 6= v3v4 and is coloured µ so f ′ as well as the face

that f shares with e′ each share an edge coloured ε with a ≥4-face. Consider the mates of

the remaining colours α, β, γ, and δ. If there exist mates of at least two of those colours

that don’t contain e′ then f ′ is a ≥3-big face. Otherwise there exist mates of at least three

of those colours which do contain e′, so either f ′ is a g ≥3-big face, or e′ is adjacent to a

≥4-big face (to see this, observe that f is also a ≥4-face adjacent to e′.)
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Lemma 4.10.7. Let f = v1 . . . vl be a 2-big l-face, for l = 5, 6 or 7. Suppose that every

≤ 4-face adjacent to f is a trigon or a dangerous 3-face. Suppose that v1v2 is adjacent to a

≥ 4-face and v2v3 is adjacent to a dangerous 3-face v2v3w. Let e′ 6= v1v2 on the boundary

of f be adjacent to a ≥ 4-face. Let f ′ be the other face adjacent to v2w. Then either f ′ is

≥ 3-big, or e′ is adjacent to a ≥ 4-big face.

Proof. The graph obtained from G by the v2wv3v1-swap has one more trigon and just as

many multigons of higher order as G and therefore has a 7-edge colouring. By Propositions

4.6.10 and 4.6.11, there exists a 7-edge-colouring of G where the edges v2w are coloured

α, β, γ, φ, the edge v1v2 and an edge v3w are coloured φ and the edge v2v3 is coloured δ.

The remainder of the argument is identical to the proof of Lemma 4.10.6 and is left to the

reader.

Lemma 4.10.8. Let f = v1 . . . vl be a 0-big l-face, for 6 ≤ l ≤ 10. Suppose that f is not

adjacent to either

· four faces, each of which is either a bigon, a 1-bigon-3-face or a 1-trigon-3-face,

· two faces, each of which is are either a bigon, a 1-bigon-3-face or a 1-trigon-3-face,

plus one 0-multigon-3-face, or

· three 0-multigon-3-faces.

Then if t is a trigon adjacent to f , the other face adjacent to t is ≥ 3-big.

Proof. Suppose that the edge v1v2 is adjacent to t. Following previous arguments, for

e = v1v2 on t there exists an e-colouring of G where the edges of t are coloured α, β, γ, δ

and φ and the edges vlv1 and v2v3 are both coloured φ. For c 6= φ, every c-mate must

contain the edges of t plus some other edge ec adjacent to f but not incident to t. If ec is

adjacent to a trigon or to a dangerous 3-face then mates of at most one colour can contain
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ec. In this case, since ec and the two edges in the mate with which ec shares a vertex

are coloured φ, µ and c, the remaining edges in the mate consist of at least three edges

coloured with c. Therefore there is a ≥4-face which shares an edge coloured c with the face

adjacent to t. Similarly, if mates of more than one colour contain the edges of a bigon, a

1-bigon-3-face or a 1-trigon-3-face, then there must exist edges coloured ε and µ contained

in all mates of all but at most one of those colours. Further, for every such colour the face

adjacent to t must share an edge of the colour of the mate with a ≥4-face. The same is

true if mates of more than two colours contain edges of a 0-multigon-3-face. It follows from

6 ≤ l ≤ 10 and that f is not adjacent to any of the combinations of faces in the statement

of the lemma that the face adjacent to t is ≥3-big.

4.10.2 Analysis of final charge

The following easy observation follows from the fact that any face sends at most 1 charge

to any face which is adjacent to it and will be the principal criterion that we will use for

proving that the final charge of a ≥5-face is non-negative.

Fact 4.10.9. If there exists a set of six (resp. five, four, three) edges adjacent to f such

that the difference between the total amount of charge sent to those faces and the amount of

charge received by f from all other faces is at most 3 (resp. 2,1,0), then f has non-negative

final charge.

Let f be an l-face, for l ≥ 5. The initial charge of f is l − 3.

It is easy to see from Rules 6 that f sends either 0, 0.25, 0.5, 0.75 or 1 charge to each of

its adjacent faces. f sends 0 charge to any ≥4-face. By Lemma 4.6.12, there are eight other

types of faces that may be adjacent to f ; they are quadragon, trigon, bigon, dangerous

3-face, 1-bigon-3-face, 1-trigon-3-face, 1-bigon-1-trigon-3-face, 0-multigon-3-face.

Reading Tables 4.1, 4.2 and 4.3

We now analyze the final charge of 2-big, 1-big and 0-big faces separately. In the proofs of

Lemmas 4.10.10, 4.10.11 and 4.10.12, the charges that a face f of each kind (2-big, 1-big,
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0-big) sends according to the rules in Section 4.4.3 are summarized in Tables 4.1, 4.2 and

4.3. Each table should be read as follows. Let f be a ≥ 5-face. Suppose that a face f ′ is

adjacent to f and f -incident to faces f1 and f2 and that we know the amount of charge

that f sends to f ′. Locate the row of the table amongst those where the entry in the

second column corresponds to the type of f ′, for which the corresponding entry in the first

column is the smallest amount of charge greater than or equal to the amount sent to f ′

by f . Then one of the faces f -incident to f ′, say f1, must be of one of the types specified

in the third column entry and receive at most the amount of charge in the fourth column

entry from f . Similarly for the type and amount of charge sent to the other face f2. Note

that the order of the faces around the boundary of f does not matter for the purposes of

reading the tables.

For example, according to Table 4.1 if a 2-big ≥ 5-face f sends 1 charge to a dangerous

3-face, then each of the faces f -incident to it must be a trigon, 1-trigon-3-face, ≥4-face

or 1-trigon-1-bigon-3-face. It can be observed from Tables 4.1, 4.2 and 4.3 that a ≤ 2-big

≥ 5-face f never sends a total of more than 1.75 charge to any two f -incident faces.

The entries in Tables 4.1, 4.2 and 4.3 are all easy to deduce from Rules 6, however we

point out the more subtle observations.

First, since f is ≤2-big, it follows from Propostion 4.6.14 that any quadragon adjacent

to f must also be adjacent to a ≥4-big face. Because G is 7-regular, if a dangerous 3-face

is f -incident to a quadragon, then one of the bigons adjacent to it is also adjacent to a

≥4-face. From this, Rule 6.5.1 and Lemma 4.3.1 it follows that f sends at most 0.5 charge

to any face f -incident to a quadragon. Second, according to Rules 6.2 and 6.3, f may

send 0.75 charge to a trigon only if at least one endpoint is incident to another trigon, and

may send 1 charge to a trigon only if both of its endpoints are incident to other trigons.

Because G is 7-regular and from Lemma 4.7.7, it follows that if G sends 0.75 to a trigon

then it must be f -incident to a ≥ 4-face, and if G sends 1 charge to a trigon then it must

be f -incident to two ≥ 4-faces.

Lemma 4.10.10. The final charge of every 2-big ≥ 5-face is non-negative.

Let f be a 2-big l-face. Let f = v1 . . . vl.
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Table 4.1: Summary of charges sent by a 2-big ≥5-face to adjacent faces
Charge
to f ′

Type of f ′ f1 can be... Max
charge
to f1

f2 can be... Max
charge
to f2

1 quadragon any except trigon or
quadragon

0.5 any except trigon or
quadragon

0.5

1 dangerous 3-face trigon 0.75 trigon 0.75
1-trigon-3-facea 0 1-trigon-3-facea 0
≥4-face 0 ≥4-face 0
1-trigon-1-bigon-3-facea 0 1-trigon-1-bigon-3-facea 0

1 trigon ≥4-face 0 ≥4-face 0
0.75 dangerous 3-face dangerous 3-face 0.75 trigon 0.75

1-bigon-3-face 0.25 1-trigon-3-facea 0
1-trigon-3-faceb 0 ≥4-face 0
1-trigon-1-bigon-3-faceb 0 1-trigon-1-bigon-3-facea 0
0-multigon-3-face 0

0.75 trigon ≥4-face 0 any face 1
0.5 dangerous 3-face quadragon 1

any except quadragon 0.75 any except quadragon 0.75
0.5 trigon any except quadragon 1 any except quadragon 1
0.5 bigon quadragon 1 quadragon 1

trigon 0.75 trigon 0.75
any except trigon or
quadragon

0.5 any except trigon or
quadragon

0.5

0.25 1-bigon- 3-face quadragon 1 quadragon 1
any except quadragon 0.75 any except quadragon 0.75

0 1-trigon-3-face any face 1 any face 1
0 1-trigon-1-bigon-

3-face
any face 1 any face 1

0 0-multigon-3-face any face 1 any face 1

Proof. a f ′ incident to the trigon on the 1-trigon-3-face or 1-trigon-1-bigon-3-face

b f ′ not incident to the trigon on the 1-trigon-3-face or 1-trigon-1-bigon-3-face

First, suppose l ≥ 8. f sends 0 charge to each of the two ≥ 4-faces adjacent to it. If

there are four other faces to which f sends at most 0.75 charge, then the final charge of f

is non-negative by Fact 4.10.9. Otherwise, if there are less than four other faces to which

f sends at most 0.75 charge, then there are at least three faces to which f sends 1 charge.

Because any face that is f -incident to a face that receives 1 charge from f receives at

most 0.75 from f , it follows that f sends charge to adjacent faces as follows (possibly after

relabeling vertices). The faces receiving 1 charge from f are adjacent to v1v2, v3v4 and
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v5v6 and the ≥ 4-faces are adjacent to v2v3 and v4v5. But then, since the faces adjacent

to v6v7 and vlv1 are not f -incident to ≥ 4-faces they must receive at most 0.5 charge each

from f . Then f sends a total of at most 3 charge to the faces adjacent to vlv1, v1v2, v2v3,

v4v5, v5v6 and v6v7, so the final charge of f is non-negative by Fact 4.10.9.

Suppose now that l ≤ 7. We consider the following cases.

1. f is adjacent to a quadragon v1v2.

1.1 l = 5.

Lemma 4.10.1 implies that one of the faces which is not f -incident to the quadragon is

≥6-big and sends 0.5 charge to f by Rule 1.3. Since f sends at most 0.5 charge to any

face f -incident to a quadragon and 0 charge to the ≥6-big face, f sends out at most 2.5

charge, so the final charge of f is non-negative.

1.2 l = 6 or 7.

If neither of the two ≥4-faces is f -incident to the quadragon, then the quadragon, the two

faces f -incident to the quadragon and the two ≥4-faces form a set of five faces to which f

sends at most 2 charge, so the final charge of f is non-negative by Fact 4.10.9.

Otherwise, let f ′ be the ≥4-face which is not f -incident to the quadragon, and let f1

and f2 be the pair of ≤3-faces amongst those not f -incident to the quadragon, to which the

total amount of charge sent by f is minimized. Then there are two possibilities according

to how Rules 6 were applied.

· The total amount of charge sent to f1 and f2 is 1.75 or 2. Then both f1 and f2 are

dangerous 3-faces, quadragons or trigons so f ′ is ≥6-big by Lemma 4.10.5 and sends

at least 0.5 charge to f by Rule 1.4.

· The total amount of charge sent to f1 and f2 is at most 1.5.
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The difference between the total amount of charge sent to f ′, f1 and f2 and the amount of

charge received by f is at most 1.5 and the total amount of charge sent to the quadragon

and the two faces f -incident to it is at most 1.5, so by Fact 4.10.9 the final charge is

non-negative.

2. f is not adjacent to any quadragons.

If f is adjacent to a 0-multigon-3-face, a 1-trigon-3-face or a 1-trigon-1-bigon-3-face, then

there are three faces to which f sends 0 charge by Rules 6. Therefore, we may consider

the following two subcases.

2.1 f is adjacent to a bigon or a 1-bigon-3-face b.

Since f sends at most 0.5 charge to b and 0 charge to each of the two ≥ 4-faces, if there

are two other faces which each receive at most 0.75 charge from f , then f has non-negative

final charge by Fact 4.10.9. Suppose there do not exist two faces which each receive at

most 0.75 charge from f . If l = 6 or l = 7, then there are at least two faces to which f

sends 1 charge. Because no two f -incident faces both receive 1 charge form f , and because

no face that is f -incident to a bigon or 1-bigon-3-face receives 1 charge, it follows that

f sends charge to adjacent faces as follows (possibly after relabeling vertices). The faces

adjacent to v1v2 and v3v4 receive 1 charge from f . The faces adjacent to v2v3 and v4v5 are

the ≥ 4-faces. The face adjacent to vlv1 cannot be b, and since the face adjacent to vlv1 is

not f -incident to a ≥ 4-face, it cannot receive more than 0.5 charge from f . Therefore f

sends a total of at most 1 charge to b, the faces adjacent to b, vlv1, v2v3 and v3v4 and has

non-negative final charge by Fact 4.10.9.

If l = 5, there is at least one face that receives 1 charge (call it f ′) from f . Note that f ′

cannot be f -incident to b. If the two ≥ 4-faces are f -incident, then f ′ must be f -incident

to a ≥ 4-face and to a face which receives at most 0.5 charge (because it is not f -incident

to a ≥ 4-face), so the total charge sent out by f is at most 2. Finally, we consider the case

where the two ≥ 4-faces are not f -incident. It follows from Lemma 4.10.2 that if there is a
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trigon f -incident to both ≥ 4-faces, then it receives at most 0.5 charge from f by Rule 6.2.

Therefore, f ′ is a dangerous 3-face. Either f ′ or b is f -incident to the remaining ≤ 3-face,

which if it receives 0.75 charge must be a trigon. By Lemma 4.10.2, since that trigon is

f -incident one ≥ 4-face, then either f sends to it at most 0.25 charge by Rule 6.2, or f

is adjacent to a ≥ 4-big face from which it receives at least 0.25 charge. Therefore the

difference between the charge sent to other faces and the charge received by f is at most

2 so the final charge of f is non-negative.

2.2 Except for the two ≥4-faces, f is adjacent to only trigons and dangerous

3-faces.

Without loss of generality, suppose that v1v2 is adjacent to a ≥4-face, and v2v3 is not. Let

f ′ be the ≥ 4-face adjacent to f but not to v1v2.

It follows from Lemma 4.10.6 that no trigon can be f -incident to both ≥4-faces, and

that if v2v3 is adjacent to a trigon t, then either t is adjacent to a ≥ 3-face, or f ′ is ≥ 4-big.

Therefore t receives at most 0.75 charge and the difference between the amount of charge

sent to t and the amount of charge received by f ′ is at most 0.25.

Similarly, by Lemma 4.10.7 and Rules 6.5, if v2v3w is a dangerous 3-face, the difference

between the amount of charge sent to v2v3w and the amount of charge received by f

from f ′ is at most 0.75 if the other face f -incident to the dangerous 3-face is a trigon,

1-trigon-3-face, 1-trigon-bigon-3-face or ≥4-face and at most 0.5 otherwise.

Therefore, for any pair of f -incident faces, one of which is f -incident to a ≥4-face, the

difference between the total amount of charge sent to those faces and the amount of charge

received by the other ≥4-face is at most 1.25. Any other pair of f -incident faces receives

a total of at most 1.75 charge. It follows that there always exists a set of five edges such

that the difference between the total amount of charge sent by f to those faces and the

total charge received is at most 2, so the final charge of f is non-negative by Fact 4.10.9.

Lemma 4.10.11. The final charge of every 1-big ≥ 5-face is non-negative.
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Proof. Let f be a 1-big l-face. Let f = v1 . . . vl.

Table 4.2: Summary of charges sent by a 1-big ≥5-face to adjacent faces
Charge
to f ′

Type of f ′ f1 can be... Max
charge
to f1

f2 can be... Max
charge
to f2

1 quadragon any except trigon or
quadragon

0.5 any except trigon or
quadragon

0.5

1 dangerous 3-face trigon 0.75 trigon 0.75
1-trigon-3-facea 0 1-trigon-3-facea 0
≥4-face 0 ≥4-face 0
1-trigon-1-bigon-3-facea 0 1-trigon-1-bigon-3-facea 0

0.75 dangerous 3-face dangerous 3-face 0.75 trigon 0.75
1-bigon-3-face 0.25 1-trigon-3-facea 0
1-trigon-3-faceb 0 ≥4-face 0
1-trigon-1-bigon-3-faceb 0 1-trigon-1-bigon-3-facea 0
0-multigon-3-face 0

0.75 trigon ≥4-face 0 any face 1
0.5 dangerous 3-face quadragon 1

any except quadragon 0.75 any except quadragon 0.75
0.5 trigon any except quadragon 1 any except quadragon 1
0.5 bigon quadragon 1 quadragon 1

trigon 0.75 trigon 0.75
any except trigon or
quadragon

0.5 any except trigon or
quadragon

0.5

0.25 1-bigon- 3-face quadragon 1 quadragon 1
any except quadragon 0.75 any except quadragon 0.75

0 1-trigon-3-face any face 1 any face 1
0 1-trigon-1-bigon-

3-face
any face 1 any face 1

0 0-multigon-3-face any face 1 any face 1
a f ′ incident to the trigon on the 1-trigon-3-face or 1-trigon-1-bigon-3-face

b f ′ not incident to the trigon on the 1-trigon-3-face or 1-trigon-1-bigon-3-face

f sends 0 charge to the ≥4-face adjacent to it. f can only send 0.75 charge to a trigon

if the trigon is f -incident to the ≥4-face. To any pair of f -incident faces, neither of which

is f -incident to the ≥4-face, f sends a total of at most 1.5 charge. If f sends 0.75 to a

trigon t, then the total charge that f sends to t, the ≤3-face f -incident to t and the other

face f -incident to that face is at most 2.25. Therefore if x denotes the number of trigons
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to which f sends 0.75 charge, the total charge sent to other faces by f is at most

0 + 2.25x+ 1.5(
l − 1− 3x

2
) ≤ l − 3

when l ≥ 9.

Suppose l = 5, 6, 7 or 8. By Lemma 4.6.12 f is not adjacent to a quintagon. We

consider the cases when f is and is not adjacent to a quadragon separately.

1. f is adjacent to a quadragon v1v2.

1.1 l = 5.

In this case, we may assume by Lemma 4.10.1 that the edge v3v4 is adjacent to a ≥ 6-big

face which sends 0.5 charge to f . Further f sends at most 0.5 charge to each of the faces

adjacent to the edges v2v3 and v5v1. Therefore, if f sends at most 0.5 charge to the face f ′

adjacent to v4v5 then the final charge is non-negative. Suppose that f sends more than 0.5

charge to f ′. By Lemma 4.10.1, f ′ cannot be a quadragon and by Lemma 4.10.2 f cannot

be a trigon. By Lemma 4.10.3, if f ′ is a dangerous 3-face then the face f ′′ adjacent to v5v1

cannot be a multigon, and it can easily be verified using Table 4.2 that the total amount of

charge that f sends to f ′ and f ′′ is at most 1. Thus the final charge of f is non-negative.

1.2 l ≥ 6.

If there are either

· four faces, each of which is a bigon, 1-bigon-3-face, 1-trigon-3-face, dangerous 3-face

f -incident to a bigon or dangerous 3-face f -incident to two other dangerous 3-faces,

· two faces, each of which is a bigon, 1-bigon-3-face or 1-trigon-3-face, plus one 0-

multigon-3-face, or

· two 0-multigon-3-faces
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adjacent to f . Then the reader may verify with Table 4.2 that using these faces, the two

faces f -incident to the quadragon, the ≥ 4-face and if necessary some other arbitrary faces,

we can find a set of five faces to which f sends a total of at most 2 charge and so the final

charge of f is non-negative by Fact 4.10.9.

Otherwise, by an argument similar to Lemma 4.10.10, Case 1.2, the ≥ 4-face adjacent

to f is ≥ 6-big and sends 0.5 charge to f . If there are two faces adjacent to f , other than

the faces f -incident to the quadragon and the ≥ 4-face, to which f sends a total of at most

1.5 charge, then the final charge of f is non-negative. It is straightforward to verify using

Table 4.2 that this must be the case.

2. f is not adjacent to a quadragon

Let the ≥4-face be adjacent to the edge v1v2. Suppose that f is adjacent to two f -incident

faces f1 and f2 such that f1 is a bigon, a 1-bigon-3-face, a 1-trigon-3-face, a 1-trigon-1-

bigon-3-face, or a 0-multigon-3-face and f2 is not f -incident to the ≥4-face. Then f sends

at most 0.5 charge to f1 and further the total amount of charge sent to f1 and f2 by f is

at most 1. Therefore the reader may verify using Table 4.2 that if l ≥ 6 and there are

· Three consecutive faces each of which is a bigon, 1-bigon-3-face, 1-trigon-3-face, 1-

trigon-1-bigon-3-face, or 0-multigon-3-face, or

· Two f -incident faces each of which is a 1-bigon-3-face, 1-trigon-3-face, 1-trigon-1-

bigon-3-face, or 0-multigon-3-face, or

· Two non f -incident faces each of which is a bigon, 1-bigon-3-face, 1-trigon-3-face,

1-trigon-1-bigon-3-face, or 0-multigon-3-face, or

· A 0-multigon-3-face and another face which is a bigon, 1-bigon-3-face, 1-trigon-3-face,

1-trigon-1-bigon-3-face, or 0-multigon-3-face

adjacent to f , then using these faces, the faces f -incident to them, the ≥4-face and possibly

some other arbitrary faces we can find a set of six faces to which f sends a total of at most

3 charge. Similarly, if l = 5 and there are
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· Four consecutive faces each of which is a bigon, 1-bigon-3-face, 1-trigon-3-face, 1-

trigon-1-bigon-3-face, or 0-multigon-3-face, or

· Three non-consecutive faces each of which is a bigon, 1-bigon-3-face, 1-trigon-3-face,

1-trigon-1-bigon-3-face, or 0-multigon-3-face, or

· A 0-multigon-3-face and another face which is a 1-bigon-3-face, 1-trigon-3-face, 1-

trigon-1-bigon-3-face, or 0-multigon-3-face, or

· A 0-multigon-3-face and a bigon, neither of which is f -incident to the ≥4-face

adjacent to f , then the total charge that f sends to adjacent faces is at most 2 so the final

charge is non-negative.

It remains to investigate the case when f is not adjacent to any set of faces described

above. Consider the two faces f -incident to the ≥ 4-face. If each of vlv1 and v2v3 is a bigon,

1-bigon-3-face, 1-trigon-3-face, 1-trigon-1-bigon-3-face, or 0-multigon-3-face, then the total

amount of charge that f sends to the faces adjacent to vl−1vl, vlv1, v1v2, v2v3, and v3v4 is at

most 2, so the final charge is non-negative. Thus, for the remainder of the proof we may

assume that the ≥ 4-face is f -incident to only trigons or dangerous 3-faces.

We first consider the case where one of the faces f -incident to the ≥4-face is a trigon t.

Without loss of generality, assume t is adjacent to v2v3. The graph obtained by performing

the v1v2v3vl-swap on G has one more quadragon than G and as many multigons of higher

order and therefore has a 7-edge-colouring. From Propositions 4.6.10 and 4.6.11 it follows

that for e = v2v3 there exists an e-colouring of G where the edges of t are coloured

α, β, γ, δ, φ and the edges v1v2 and v3v4 are both coloured φ. For c 6= φ, every c-mate Mc

must contain the edges of t, plus an edge coloured ε, one coloured µ and at least four more

coloured c. Mc must also contain an edge ec adjacent to f but not f -incident to t. Observe

that neither eε nor eµ can be adjacent to a trigon or dangerous 3-face. Therefore we may

assume (since f is not adjacent to any of the combinations of faces listed above) that the

l−3 faces adjacent to the edges v4v5, . . . , vlv1 contain two f -incident faces g1 and g2 where

either
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· g1 is a bigon, and g2 is either a bigon, a 1-bigon-3-face, 1-trigon-3-face, 1-trigon-1-

bigon-3-face, a trigon or a dangerous 3-face, or

· g1 is either a 0-multigon-3-face, a 1-bigon-3-face, or a 1-trigon-3-face, and g2 is either

a trigon or a dangerous 3-face

and the remaining l− 5 edges are a collection of trigons and dangerous 3-faces. Further, eε

and eµ must be the same edge, adjacent to either g1 or g2. We will assume that eε = eµ is

adjacent to g1 and the argument is similar if it is g2. Both Mε and Mµ contain two edges

adjacent to g1 coloured ε and µ so the face adjacent to t as well as the face adjacent to g1

(not f) must be adjacent to two ≥4-faces with which they share edges coloured ε and µ

respectively.

If an edge e′ = vivi+1 (i = 4, ..., l) is adjacent to a trigon or dangerous 3-face then mates

of at most one colour may contain e′. Also, no mates can contain the edge which f shares

with g2. Since l ≤ 8, at least one more mate Mc, for c 6= ε, µ must contain the edge that f

shares with g1. If g1 is not a 0-multigon-3-face, then Mc contains the two edges adjacent

to g1 coloured ε and µ so t and g1 are adjacent to ≥3-big faces. If g1 is a 0-multigon-3-face,

then t is still adjacent to a ≥3-big face. This is since mates of at most one colour can

contain the edge adjacent to g1 which is not coloured with ε nor µ and because if for some

c, a mate Mc contains an edge which f shares with a trigon or dangerous 3-face then the

face adjacent to t shares an edge coloured c with a ≥4-face.

Therefore, f sends at most 0.25 charge to t, and 0 charge to g1. Since at least one of the

faces f -incident to g1 receives at most 0.75 charge and one of every pair of f -incident faces

receives at most 0.75 charge, and l ≥ 5 there is at least one other face to which f sends at

most 0.75 charge. These, along with the ≥4-face adjacent to v1v2 form a set of four faces

to which f sends a total of at most 1 charge, so the final charge of f is non-negative by

Fact 4.10.9.

Finally, if both faces f -incident to the ≥4-face are dangerous 3-faces, then consider the

dangerous 3-face v2v3w. By performing the v2wv3v1-swap on G and applying Propositions
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4.6.10 and 4.6.11, it can be seen that for e = v2w there exists an e-colouring of G where

the edges of the bigon v2w are coloured α, β, γ and φ, an edge v3w and the edge v1v2 are

coloured φ and the edge v2v3 is coloured δ. For c 6= φ, every c-mate Mc must contain the

bigon v2w and the edge v2v3, plus another edge adjacent to f . The faces adjacent to the

edges v4v5, . . . , vlv1 consist of two edges g1 and g2 as described above plus a collection of

trigons and dangerous 3-faces. If follows that the bigon v2w is adjacent to a ≥ 3-big face,

so f sends at most 0.5 charge to the dangerous 3-face adjacent to v2v3. Similarly, f sends

at most 0.5 charge to the dangerous 3-face adjacent to vlv1. f sends a total of at most 1

charge to g1 and one of the faces f -incident to g1. Therefore the faces adjacent to vlv1,

v1v2, v2v3, g1 and one face f -incident to g1 form a set of five edges to which f sends at

most 2 charges, so the final charge of f is non-negative by Fact 4.10.9.

Lemma 4.10.12. The final charge of every 0-big ≥ 5-face is non-negative.

Proof. Let f be a 0-big l-face. Let f = v1 . . . vl.

f never sends more than a total of 1.5 charge to any pair of f -incident faces. Therefore

when l ≥ 12, the total charge sent out by f is at most l − 3 and the final charge is non-

negative. In fact, there is at least one face adjacent to f to which f sends at most 0.5

charge so when l = 11, f sends at most 7.5 to the other 10 faces and the final charge is

non-negative.

Consider the case when l ≤ 10. We will analyze the cases for l = 5 and l ≥ 6 separately.

Note that f is not adjacent to a quadragon by Lemma 4.10.1.

1. 6 ≤ l ≤ 10.

If f is adjacent to either

· four faces, each of which is either a bigon, a 1-bigon-3-face or a 1-trigon-3-face,



4.10. FINAL CHARGE OF ≤ 2-BIG ≥ 5-FACES 80

Table 4.3: Summary of charges sent by a 0-big ≥5-face to adjacent faces
Charge
to f ′

Type of f ′ f1 can be... Max
charge
to f1

f2 can be... Max
charge
to f2

1 dangerous 3-face trigon 0.5 trigon 0.5
1-trigon-3-facea 0 1-trigon-3-facea 0
≥4-face 0 ≥4-face 0
1-trigon-1-bigon-3-facea 0 1-trigon-1-bigon-3-facea 0

0.75 dangerous 3-face dangerous 3-face 0.75 trigon 0.5
1-bigon-3-face 0.25 1-trigon-3-facea 0
1-trigon-3-faceb 0 ≥4-face 0
1-trigon-1-bigon-3-faceb 0 1-trigon-1-bigon-3-facea 0
0-multigon-3-face 0

0.5 dangerous 3-face any except quadragon 0.75 any except quadragon 0.75
0.5 trigon any except quadragon 1 any except quadragon 1
0.5 bigon any except quadragon 0.5 any except quadragon 0.5
0.25 1-bigon- 3-face any except quadragon 0.75 any except quadragon 0.75
0 1-trigon-3-face any face 1 any face 1
0 1-trigon-1-bigon-

3-face
any face 1 any face 1

0 0-multigon-3-face any face 1 any face 1

a f ′ incident to the trigon on the 1-trigon-3-face or 1-trigon-1-bigon-3-face

b f ′ not incident to the trigon on the 1-trigon-3-face or 1-trigon-1-bigon-3-face

· two faces, each of which is are either a bigon, a 1-bigon-3-face or a 1-trigon-3-face,

plus one 0-multigon-3-face, or

· three 0-multigon-3-faces,

then by taking these faces, the faces f -incident to them, and possibly some other

arbitrary faces we can find a set of six faces to which f sends a total of at most 3 charges

so the final charge of f is non-negative by Fact 4.10.9.

Otherwise, by Lemma 4.10.8, every trigon adjacent to f is also adjacent to a ≥ 3-big

face, and receives no charge from f . Further if f sends 1 charge to a dangerous 3-face

d, then each of the faces f -incident to d must be either a trigon, a 1-trigon-3-face or a

1-trigon-1-bigon-3-face to which f sends 0 charge. If f sends 0.75 to a dangerous 3-face

f1, then one face f -incident to it receives 0 charge from f , and the other is a 3-face f2. If



4.10. FINAL CHARGE OF ≤ 2-BIG ≥ 5-FACES 81

f2 is not dangerous, then the total charge sent to f1 and f2 is at most 1. If f2 is dangerous

then the total charge sent to f2 and the other face f -incident to f2 is at most 0.75.

If f sends 0.75 charge to each of a pair of f -incident faces, then they are both dangerous

3-faces and f sends 0 charge to each of the two faces f -incident to them. When l ≥ 6,

along with any other pair of f -incident faces, these form a set of six edges to which f sends

at most 3 charge, so the final charge is non-negative. Otherwise f sends a total of at most

1 charge to each pair of f -incident faces, so when l ≥ 6 the total charge sent by f is at

most l − 3.

2. l = 5.

It is sufficient to consider the following cases.

2.1. f is adjacent to a trigon t.

Let t be adjacent to the edge v1v2 and let f1, f2, f3 and f4 be the faces adjacent to

v2v3, v3v4, v4v5 and v5v1, respectively so that f1 and f4 are f -incident to t. It follows

easily from the proof of Lemma 4.10.2 that at most one of f2 and f3 can be a trigon,

dangerous 3-face or 1-trigon-1-bigon-3-face.

Suppose that one of them (without loss of generality, f2) is a trigon, dangerous 3-face

or 1-trigon-1-bigon-3-face. Then f3 must be a bigon, a 1-bigon-3-face, a 1-trigon-3-face or a

0-multigon-3-face and by Lemma 4.10.2, must be adjacent to a ≥3-big face and receive no

charge from f . If f2 is a trigon or 1-trigon-1-bigon-3-face then it also receives 0 charge from

f , so the final charge of f is non-negative. If f2 is a dangerous 3-face and f3 is a bigon, then

the charge sent to each of f1, f2, f3 and f4 is at most 0.5 so the final charge is non-negative.

If f2 is a dangerous 3-face and f3 is not a bigon, then by Lemma 4.10.3, it cannot be the

case that both f1 and f4 are dangerous 3-faces, so Table 2 shows that the total amount of

charge sent to f1, f2 and f4 is at most 2 and the final charge is non-negative.

If neither of f2 and f3 is a trigon, dangerous 3-face or 1-trigon-1-bigon-3-face, then the
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total amount of charge sent to f1 and f2 is at most 1, as is the total amount of charge sent

to f3 and f4, so the final charge of f is non-negative.

2.2. f is adjacent to no multigons of order ≥ 3.

Recall from Rules 6.5 that if a dangerous 3-face is f -incident to one bigon then it receives

at most 0.5 charge from f , and if it is f -incident to 2 bigons it receives no charge from f .

Therefore it follows from Lemma 4.10.4 that if f is adjacent to four or five bigons then its

final charge is non-negative. If f is adjacent to three bigons, then each of the other faces

adjacent to f is f -incident to either two bigons or one bigon and a 3-face so f sends a total

of at most 0.5 to each of those faces, and at most 0.5 to each of the bigons so the final

charge is non-negative. If f is adjacent to one or two bigons, and the other faces adjacent

to f are 3-faces, then it is clear from the Rules 6 for dangerous 3-faces adjacent to f and

the rules summarized in Table 2 that f sends out a total of at most 2 charges.

2.3 f is not adjacent to any multigons.

Then f sends charge only to dangerous 3-faces and 1-bigon-3-faces. Lemma 4.10.3 implies

that f cannot be adjacent to three non-consecutive dangerous 3-faces, or more than three

dangerous 3-faces. When f is adjacent to three consecutive, or fewer than three dangerous

3-faces, it follows from the fact that f sends at most 0.5 charge to a dangerous 3-face which

is f -incident only to 1-bigon-3-faces or dangerous 3-faces, that the total amount of charge

sent out by f is at most 2.

4.11 Finale

Recall that we would like to prove Theorem 4.1.1 by excluding the existence of a minimal

counterexample. Accordingly, let G be a minimal counterexample and assign charges to
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the faces and vertices of G as described in Section 4.4, and apply the rules of Section 4.4.3.

Since the initial amount charge assigned to G is negative and the final charge of every

face and vertex is non-negative, this is a contradiction to the assumption that the rules

conserve charge in G.
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Chapter 5

Conclusion

We close with a brief summary. In Chapters 1 and 2 we studied optimizations of T -joins

and T -cuts with some applications. In Chapter 3 we introduced the main problem of

interest to our endeavour, Conjecture 3.2.1 and in Chapter 4 we gave a proof of the special

case when k = 7. Along the way we have noted several existing conjectures, and we now

restate those open problems which are of highest interest to us.

Does Conjecture 3.2.1 hold for grafts where τ ≥ 8?

Conjecture (Guenin). Let (G, T ) be a graft where all T -cuts in G have the same parity.

Then (G, T ) packs if G is planar.

A proof of Guenin’s more general conjecture, which would imply Conjecture 3.2.1 would

also be a beautiful and deep result.

Conjecture (Guenin [Gue03]). Let (G, T ) be a graft where all T -cuts in G have the same

parity. Then (G, T ) packs if G does not contain the Petersen graph as a T -minor.
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Terminology

Graph Basics

Term Notation Definition

Graph G = (V,E) A set V of vertices along with a set E of pairs of vertices

(edges)

Edge e = uv An unordered pair of vertices u, v ∈ V (called the end-

points of e)

Vertex set of G V (G) The set of vertices of a graph G

Edge set of G E(G) The set of edges of a graph G

Simple graph A graph with at most one edge between any pair of

vertices

Multigraph A graph where multiple edges between any pair of ver-

tices are allowed

e incident to v There exists an edge e = uv ∈ E
u adjacent to v There exists an edge uv ∈ E
Degree of v d(v) The number of edges incident to v

k-regular graph A graph where all vertices have degree k

k-edge-colouring of G An assignment of k colours to the edges of G such that

no pair of edges that share an endpoint are assigned the

same colour

Subgraph of G A graph whose vertex set is a subset of V (G) and whose

edge set is a subset of E(G)

Induced subgraph of G G[S] For S ⊆ V (G) , the subgraph of G with vertex set S

and edge set containing all edges in E(G) with both

endpoints in S
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Graph Connectivity

Term Notation Definition

Path v1v2 . . . vl A sequence of vertices, where each vertex is adjacent to

those preceding and following it in the sequence

(u, v)-path A path whose first vertex is u and whose last vertex is

v

Cycle v1v2 . . . v1 A path with no repeated vertices, except for the first

and last which are the same

Tour e1e2 . . . e1 A sequence of edges, where each edge shares an endpoint

with those preceding and following it in the sequence

such that no edge is repeated except the first and the

last edge which are the same.

Eulerian graph A graph in which there exists a tour containing all edges.

Cut δ(S) Given S ⊆ V , the set of edges which have exactly one

endpoint in S

{u, v}-cut A cut δ(S) where |S ∩ {r, s}| = 1

Connected graph A graph in which there exists a (u, v)-path for every pair

of vertices u, v ∈ V
Bridgeless graph A graph which contains a cut of size 1

k-edge-connected graph A graph which contains no cut of size k − 1
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Types of Graphs

Term Notation Definition

Complete bipartite graph Km,n The graph with vertex set V = V1 ∪ V2, V1 = [n], V2 =

[m] and edge set E = {uv; u ∈ V1, v ∈ V2}
Complete graph Kn The graph with vertex set V = [n] and edge set E =

{uv; u, v ∈ V }
Tree T A graph not containing any cycles

Planar graph A graph which can be drawn in the plane such that

pairs of edges may intersect only at their common end-

points

Plane graph A planar graph, embedded in the plane such that pairs

of edges may intersect only at their common endpoints

Miscellaneous

Term Notation Definition

Matching A family of pairwise disjoint edges

Perfect matching A matching containing an edge adjacent to each vertex v ∈ V
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