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Abstract

The bottleneck concept in reinforcement learning has played a prominent

role in automatically finding temporal abstractions from experience. Lacking

significant theory, it has however been regarded by some as being merely a trick.

This thesis attempts to gain better intuition about this approach using spectral

graph theory. A connection to the theory of Nearly Completely Decomposable

Markov Chains (NCD) is also drawn and shows great promise. An options

discovery algorithm is proposed and is the first of its kind to be applicable in

continuous state spaces. As opposed to other similar approaches, this one can

have running time O(n2 logn) rather than O(n3) making it suitable to much

larger domains than the typical grid worlds.
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Résumé

L’identification automatique de goulots d’étranglement dans la structure de

solution a joué un rôle important en apprentissage par renforcement hiérar-

chique au cours des dernières années. Bien que populaire, cette approche

manque toujours de fondements théoriques adaptés. Ce mémoire tente de pal-

lier ces lacunes en établissant des liens en théorie spectrale des graphes, espérant

ainsi obtenir une meilleure compréhension des conditions garantissant son appli-

cabilité. Une revue des efforts réalisés concernant les chaines de Markov presque

complètement décomposable (NCD) permet de croire qu’elles pourraient être

utiles au problème ici considéré. Un algorithme de découverte d’options motivé

par la théorie spectrale des graphes est proposé et semble être le premier du

genre à pouvoir être aussi appliqué dans un espace d’états continu. Contraire-

ment à d’autres approches similaires, la complexité algorithmique en temps peut

être de l’ordre de O(n2 logn) plutôt que O(n3), rendant possible la résolution

de problèmes de plus grande envergure.
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1
Introduction

The breakthroughs in hierarchical reinforcement learning (HRL) at the beginning of

the last decade have promised to propel the field to new levels. Its development has

however been hindered by an easily explainable, but yet challenging problem: how

can temporal abstractions be discovered automatically ? It is the “elephant in the

room” for HRL which, despite much effort, remains unsolved. The existence of this

problem has been acknowledged by many authors. In T. G. Dietterich 2000, the

author of the MAXQ framework goes as far as qualifying it as being the “biggest

open problem” in HRL. Lacking automatic methods for decomposing the problem

structure into simpler sub-problems, hierarchical approaches are of limited interest as

the effort for manually specifying them can quickly become insurmountable. Hengst

2002 even refers to manual problem decomposition as being an “art-form” .

The bottleneck concept arose early in the field of HRL as an intuitive response to

this issue. Bottlenecks have been defined as those states which appear frequently on

successful trajectories to a goal but not on unsuccessful ones (McGovern and Barto

2001; Stolle and Precup 2002) or as nodes which allow for densely connected regions

of the interaction graph to reach other such regions (Menache, Mannor, and Shimkin

2002; Şimşek and Barto 2004; Kazemitabar and Beigy 2009). Şimşek and Barto 2004

qualifies such states as access states, allowing difficult regions of the state space to be

reached. The canonical example for the bottleneck concept often explains it with the

doorways of some navigation problem in a grid-world domain.

1



CHAPTER 1. INTRODUCTION 2

The ideas presented in this thesis found their roots early in the history of HRL.

It seems that two lines of approach have since been studied by a number of authors

and could be recognized as either belonging to some graph clustering, or classification

perspective. While aiming towards the same goal, the classification perspective might

have been more influenced by the online and model-free requirements traditionally

sought for in RL. It will be argued in chapter 4 that bottlenecks are intrinsically

related to graph clustering and can be tackled more easily under this angle.

1.1 Graph Clustering Perspective

Hauskrecht et al. 1998 described a state space partitioning approach leading to an

abstract MDP being overlaid to the periphery of the partitions. Macro-actions would

then be learnt as transitions between such peripheral states. While a decomposition

is assumed to be available a priori, a contribution of this paper was to prove that such

a model can lead to a reduction in the size of the state or action spaces. A similar

state space partitioning intuition had been previously explored by a collaborator in

Dean and Lin 1995. Even though the method of Dean and Lin 1995 was not cast

yet under the framework of reinforcement learning, it showed how a global planning

problem could be decomposed into smaller locally-solvable problems which could be

then be recombined into an optimal policy. The machinery or HRL being in its

infancy, the Dantzig-Wolfe method of decomposition (Dantzig and P. Wolfe 1960) –

a linear programming algorithm – was used to solve the abstract MDP. The problem

of obtaining a proper partitioning was also sidestepped in this work.

Along the same line of work, Menache, Mannor, and Shimkin 2002 also proposed

a decomposition algorithm called Q-Cut based on graph partitioning view of the

state-transition graph. The Max-Flow/Min-Cut algorithm was used for finding the

bottleneck states for which flat policies were constructed to reach them. The problem

of representation and learning for temporal abstraction was cast under the options
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framework (R. S. Sutton, Precup, and Singh 1999) in which the SMDP Q-Learning

algorithm could be applied. The approach was revisited in Mannor et al. 2004 where

an agglomerative graph clustering algorithm was applied. Under this other perspec-

tive, options where defined between pairs of clusters rather than from arbitrary states

to bottleneck states. Two types of graph clusterings were also defined: topological and

value-based. The former attempted to group states into clusters based on structural

regularities of the environment while the latter considered the reward information

collected during learning. This agglomerative approach has recently been reformu-

lated under an online setting in the Online Graph-based Agglomerative Hiearchical

Clustering algorithm (OGAHC) of Metzen 2012.

The L-Cut algorithm of Şimşek, A. P. Wolfe, and Barto 2005 can be seen as an

extension of Q-Cut under a local knowledge of the environment only. Rather than

setting up the graph bisection problem under the Max-Flow/Min-Cut formulation,

the NCut criterion of Shi and Malik 2000 was used to measure the quality of the

partitioning and solved as as generalized eigenvalue problem. A local graph repre-

sentation was obtained by collecting samples of experience through a random walk

process. After a certain number of iterations, the spectral bipartionning algorithm

was applied and a policy, encoded as an option, was learnt to reach the identified sub-

goals. A statistical test was applied on the set of boundary states of each partition

to discriminate useful subgoals from noise.

The spectral clustering approach was revisited more recently in Mathew, Peeyush,

and Ravindran 2012 under the Robust Perron Cluster Analysis of Weber, Rungsari-

tyotin, and Schliep 2004 and their PCCA+ algorithm. While NCut and PCCA+

are both spectral techniques sharing much in common, Perron Cluster Analysis lends

itself more easily to an interpretation in terms of metastability and invariant subsets

of Markov chains. Intuitively, metastable regions correspond to subsets of states in

which the stochastic process spends more time, switching to other such subsets on

rare occasions. The cascade decomposition technique of Chiu and Soo 2010 is another
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recent attempt to find bottlenecks by computing the second eigenvector of the nor-

malized graph Laplacian. It is in essence very similar to L-Cut which uses NCut

Shi and Malik 2000, also derived from the normalized graph Laplacian.

Trying to address both the discovery problem and the related one of transfer learn-

ing, Bouvrie and Maggioni 2012 builds upon the diffusion maps framework of Coifman

and Lafon 2006 and sharing ideas from Mahadevan 2007. A spectral partitioning ap-

proach is also adopted to identify geometric bottlenecks of the environment, avoiding

to take the reward structure into consideration. Policies and reward functions as-

sociated with these partitions are obtained by an intricate blending procedure across

scales. The diffusion framework can be explained in terms of the random walk process

on a graph and the spectrum of the corresponding normalized graph Laplacian. To

that account, the algorithm presented in this thesis shares much in common.

Instead of the general graph partitioning paradigm considered so far, Kazemitabar

and Beigy 2009 attempts to find strongly connected components (SCC). While similar

in spirit, this approach raises some questions regarding ergodicity. It seems that this

scheme could be highly sensible to the sampling strategy, resulting in many cases with

only a single component being found. The author’s viewpoint is that the SCC con-

straint might be too strong. Surprisingly, the HEXQ framework of Hengst 2002 is not

mentioned by Kazemitabar and Beigy 2009. HEXQ was an early attempt to auto-

matically discover hierarchical structure based on a SCC decomposition of individual

state variable. The author gave an interpretation of the resulting decomposition in

terms of maximum predictability within those regions. Such a viewpoint could also

admit an information theoretic interpretation which is hinted to the reader later in

this thesis.
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1.2 States Classification Approaches

Rather than explicitly partitioning the state space using graph theoretic tools, another

body of work focused on directly classifying out bottleneck states based on a visitation

frequency principle. This view of bottleneck detection is in a sense closer to the

philosophical principles of reinforcement learning. The proposed solutions tended to

be cheaply computable online and without a complete model of the environment.

It seems however that they rely abundantly on heuristics, making it even hard to

compare them . On the other hand, the graph partitioning approach appears to be

justifiable more easily in theory as argued in chapter 4.

The bottleneck discovery problem was formulated in McGovern and Barto 2001

as a multiple-instance learning problem over bags of feature vectors collected by in-

teracting with the environment. Two sets of bags were obtained from observations

collected along successful and unsuccessful trajectories. The notion of diverse den-

sity then served during either exhaustive search or gradient descent to find regions of

the feature space with the most positive instances and the least negative ones. The

authors acknowledged that this method can be particularly sensitive to noise. The

classification constraint imposed by McGovern and Barto 2001 between good and bad

trajectories was lifted in Stolle and Precup 2002. It rather tried to directly extract

those states which have been visited frequently and define them as subgoals. The

initiation sets of the options was found by interpolation over the states which appear

frequently enough (above average) on the paths to the subgoals.

Şimşek and Barto 2004 identified subgoals by looking for access states, leading to

the regions of the state space that have not been visited recently: a notion which

they called relative novelty. The time frame within which novel events can happen is

parameter of the algorithm and has a direct influence on which subgoals are detected.

The use of a standard network centrality measure called betweenness is investigated

in Simsek and Barto 2008. Betweenness centrality measures the fraction of shortest
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paths passing through a given vertex of the graph. Nodes with high betweenness are

deemed more important as they would appear more frequently on short, therefore

more likely to be optimal, trajectories to the goal. The reward function is somehow

taken into account into this measure by weighting the paths depending on weather

they successfully reached the goal or not. A new graph centrality measure is proposed

in Rad, Hasler, and Moradi 2010 called connection graph stability and is argued to

be a better fit than betweenness centrality for discovering bottlenecks. Some of the

contributors then exploited slight variations of this definitions under different names

such as connection bridge centrality or co-betweenness centrality (Moradi, Shiri, and

Entezari 2010).

1.2.1 Outline

Basic theory of stochastic processes and Markov chains is first presented in chapter

2. The inclusion of this material is motivated by the probabilistic interpretation of

spectral graph theory studied in chapter 4. The theory of Markov Decision Processes

is presented in section 2.2 as a necessary prerequisite for the appreciation of the

techniques developed in reinforcement learning. Chapter 3 focuses on the presentation

of the options framework (R. S. Sutton, Precup, and Singh 1999) in reinforcement

learning as a way to represent temporal abstraction and learn optimal control over it.

The connection from graph structure to system dynamics is developed throughout

chapter 4 and is instrumental is understanding the strengths and pitfalls of the graph

partitioning approach for options discovery. It also allows a better understanding of

the relevant work on Nearly-Completely Decomposable Markov Chains (NCD) for

future theoretical research on the bottleneck concept. The NCD theory seems to call

for an information theoretic comprehension of temporal abstraction which is briefly

developed at the end of this section.

A new algorithm for options discovery is proposed in chapter 5 based on the
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Walktrap community detection algorithm of Pons and Latapy 2005. Although

Walktrap finds its roots into spectral graph theory, its running time is only order

O(mn2) rather than O(n3) by avoiding to compute the eigenvectors explicitly. The

problem of options discovery and construction is also set under the assumption of a

continuous state space. Techniques for constructing proximity graphs in Euclidean

space are developed in section 5.1. Section 5.3.1 shows how approximate nearest

neighbors algorithms can be used to properly define the initiation and termination

components of options under continuous observations.

An illustration of the proposed algorithm is provided in chapter 6 with the Pinball

domain of Konidaris and Barto 2009. Practical difficulties having to do oscillations

and off-policy learning are analysed. The proper empirical choices for the number

of nearest neighbors, type of proximity graph and time scale for the Walktrap

algorithm are discussed.



2
Sequential Decision Making under

Uncertainty

2.1 Markov Chains

A discrete-time stochastic process is a family of random variables (r.v.’s) {X(t), t ∈ T}

indexed by a time parameter t ∈ N = {0, 1, 2, ...}. The value of Xn is referred to

as the state of the process. When the family of random variables is defined over a

discrete sample space Ω, the stochastic process is said to be discrete-valued. Stochastic

processes are useful in modelling probabilistic phenomena evolving in time such the

price of a stock, or the number of connections to a web service over the day for

example. Due to the complexity of many systems in real life, it is desirable to assume

certain properties to make the modelling exercise more tractable. One could, for

instance, decide to treat the r.v.’s as being independent and identically distributed

(iid), but only at the cost of loosing the ability to capture correlation among them.

The so-called Markov assumption is often used when the iid property is deemed too

restrictive.

Definition 2.1.1. AMarkov Chain is a discrete-time and discrete-valued stochastic

process which possesses the Markov property. The Markov property implies that for

all times n ≥ 0 and all states i0, . . . , i, j ∈ Ω:

P (Xn+1 = j|X0 = i0, X1 = i1, ..., Xn = i) = P (Xn+1 = j|Xn = i) (2.1)

8
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The Markov property (or memoryless property) could be stated simply by

saying that the future is independent of the past, given the present state. Therefore,

knowing the current value of Xn = i is enough to characterize the future evolution of

the stochastic process {Xn+1, Xn+2, . . . } and the history {X0, X1, . . . , Xn−1} can be

discarded.

A Markov chain is completely specified by the one-step transition probabilities

pij = P (Xn+1 = i|Xn = j) contained in its Markov or stochastic matrix. For a

finite state-space X , we have:

P =



p11 p12 · · · p1m

p21 p22 · · · p2m

... ... . . . ...

pm1 pm2 · · · pmm


(2.2)

Furthermore, P must satisfy the following properties:

pij ≥ 0 and
M∑
j=1

pij = 1 (2.3)

Let P? denote the adjoint of P. If P? = P holds, then the stochastic matrix is

said to be time-reversible.

Those elements of P for which pii = 1 are said to be absorbing and once entered,

the Markov chain can never escape.

If the elements of P are independent of the time index, the Markov chain is said

to be time-homogeneous and has stationary transition probabilities. If this

property is satisfied and one knows the transition probabilities of a Markov Chain,

the problem of computing probability distributions is greatly simplified and can be

succinctly expressed using matrix multiplication.

The Chapman-Kolmogorov equation lets us express the probability of going

from state i to j in n steps by [Pn]ij = [P×P× · · · ×P︸ ︷︷ ︸
n times

]ij. The probability of

transitioning from state i to any other state under n steps then becomes:

P (·, n|i) = eiPn (2.4)
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Here ei stands for the vector with zero components everywhere except of for its ith

component set to 1.

Using the Chapman-Kolmogorov equation, a state j is classified as being acces-

sible from i if [Pn]i,j > 0 for some n ≥ 0. When the relation holds in both direction,

i and j are said to communicate. If every possible pairs of states can communicate,

the Markov chain is classified as being irreducible. Given that a state j has been ini-

tially encountered once, it is said to be recurrent if the probability of visiting it again

is nonzero. That is, denote Tj the time at which the chain returns to j, the recurrence

property expresses the fact that P (Tj <∞|X0 = j) > 0. When E(Tj|X0) <∞, state

j is said to be positive recurrent.

These last definitions are essential for defining the ergodicity property: a condi-

tion often assumed in the analysis of Markov Decision Processes.

Definition 2.1.2. A Markov chain is ergodic if it is irreducible and positive recur-

rent.

It often occurs that one is interested in knowing how the probability distribution

for Xn would evolve in time. Denote the distribution of Xn by the row vector µn and

the initial distribution by µ0. The follow relation can be shown to hold

µn = µ0Pn (2.5)

by noting that the Markov property implies that

P (X0 = i0, X1 = i1, X2 = i2, . . . , Xn = in) =

P (X0 = i0)P (X1 = i1|X0 = i0)P (X2 = i2|X1 = i1) . . . P (Xn = in|Xn−1 = in−1)

(2.6)

and that our Markov chain is time-homogeneous (P is fixed).

If it happens that the distribution of µn does not change with n, then the Markov

chain is said to be stationary.
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Definition 2.1.3. AMarkov chain said to be stationary if it satisfies P (X0 = i0, X1 =

i1, . . . , Xn = in) = P (Xm = i0, Xm+1, . . . , Xm+n) for any m ∈ Z+.

Using 2.5, the stationarity problem for a Markov Chain amounts to finding a vector

π such that

πᵀP = πᵀ (2.7)

The stationary distribution πᵀ can understood as being the left eigenvector of P

associated with the eigenvalue 1. Furthermore, it must be that ∑k πk = 1 in order for

π to be a well-defined probability distribution. When the Markov chain reaches the

stationary distribution, it is said to be in its steady-state mode.

An important characterization of the properties of stochastic matrices comes from

the theory of nonnegative matrices in the form of the Perron-Frobenius theorem.

First, define the spectral radius of a square matrix as

ρ(A) def= max
i

(|λi|) (2.8)

The theorem in its original form by Horn and C. R. Johnson 1986 is about irre-

ducible matrices and amounts to the following.

Theorem 2.1.1 (Perron-Frobenius Theorem). Let A be an irreducible and nonnega-

tive matrix, then the following claims hold

1. The spectral radius ρ(A) > 0

2. ρ(A) is an eigenvalue of A

3. There exists a positive vector x such that Ax = ρ(A)x and ρ(A) is a simple

eigenvalue of A.

4. The unique eigenvector whose components sum to 1 is called Perron vector,

that is

Ap = ρ(A)p, p > 0 and ‖p‖1 = 1 (2.9)
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The theorem can also be conveniently adapted to Markov chains under the follow-

ing lemma proven in Montenegro and Tetali 2006.

Lemma 2.1.2. Let P be the stochastic matrix associated with a irreducible and re-

versible Markov chain over a state space X of size n. P must then have a complete

spectrum of real eigenvalues of magnitude at most 1 and of the form

1 = λ0 ≥ λ1λ ≥ · · · ≥ λn−1 ≥ −1 (2.10)

2.2 Markov Decision Processes

The theoretical treatment given about Markov chains has not considered so far the

influence of an external input or control. The case of controlled Markov chains under

the framework of Markov Decision Processes is studied in this section. The theory

of Markov Decision Processes was instrumental in the development of the field of

Reinforcement Learning studied later in this chapter. The following presentation

adopts most of the notation from Szepesvári 2010.

Definition 2.2.1. A finite-action discounted Markov Decision Process (MDP) is

a tuple M = 〈X ,A, r,P , γ〉 where X is a non-empty countable set of states, A is a

finite state of actions, P is a transition probability kernel giving rise to a distribution

P (·|x, a) over X given any x ∈ X and a ∈ A, r is the reward function r : X ×A 7→ N

and γ ∈ [0, 1] is a discount factor.

A deterministic policy π is a mapping π : X 7→ A. In the theory of MDPs,

stochastic policies of the form π : X 7→ Ω(A) are also considered, in which case

actions are drawn from a conditional probability distribution over states according to

At ∼ π(·|Xt) (here At and Xt are r.v.’s at time t).

Fixing a policy for an MDP induces aMarkov Reward Process (MRP) 〈X ,Rπ,Pπ, γ〉

with the reward function Rπ(x) = r(x, π(x)) and state transition probability kernel



CHAPTER 2. SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY 13

P (·|x) = P (·|x, π(x)). An MRP can be thought of as a Markov chain augmented with

a reward at every state. The concepts of induced Markov chains and Markov Reward

Processes are particularly useful in the analysis of MDPs. At the level of the induced

Markov chain of an MDP, the existence of a stationary distribution is not necessarily

guaranteed.

2.2.1 Value Function

The notion of a value function goes on par with the principle of optimality that

underlies the decision theoretic framework of MDPs. It is assumed in this context

that a decision maker, or agent, is acting in such a way as to optimize some intrinsic

notion of appropriateness in its behaviour. In the definition 2.2.1 of an MDP, the

reward function r captures this idea. Under this setting, an agent tries to optimize a

quantity known as the return

Definition 2.2.2. The return of an Markov Decision Process is the total discounted

sum of the rewards originating from the induced Markov Reward Process.

R =
∞∑
t=0

γtRt+1 (2.11)

Fixing the value of γ < 1 leads to a kind of return where the immediate reward

is worth exponentially more than the far future. In this case, the resulting MDP is

called a discounted Markov Decision Process. On the other hand, setting γ = 1

makes the immediate reward at each step equally important: one then talks of an

undiscounted Markov Decision Process

Knowing the desirability, or value, of a state at any moment makes the problem

of finding an optimal way of behaving much easier.

Definition 2.2.3. The value function V π : X 7→ R of a stationary policy π is

the conditional expectation of the return (discounted or undiscounted) given a state.
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Under the discounted model,

V π(x) = E
[ ∞∑
t=0

γtRt+1

∣∣∣∣∣ X0 = x

]
, x ∈ X (2.12)

A behaviour is said to be optimal when the value of its policy is also optimal.

An optimal value function V ∗ : X 7→ R is one which obtains the maximum possible

expected return for every state.

The action-value function of a policy π is closely related to the notion of value

function presented above. Instead of being defined only over states, it specifies the

expected return of initially being in state x, choosing a first action a and subsequently

committing to π.

Definition 2.2.4. The action-value function Qπ : X ×A 7→ R of a stationary policy

π is the conditional expectation of the return given an initial state-action pair.

Qπ(x, a) = E
[ ∞∑
t=0

γtRt+1|X0 = x,A0 = a

]
, x ∈ X , a ∈ A (2.13)

If the action-value function yields the maximum expected return for every state-

action pair, it is said to be optimal and is denoted by Q∗. One can go from the

action-value function to the value function by noting that for a finite-action MDP

V ∗(x) = max
a∈A

Q∗(x, a) (2.14)

In the more general case of a countable non-empty sets of actions, the max operator

should be replaced with the supremum (sup) of A. The optimal action-value function

can also be recovered from the value function as follow:

Q∗(x, a) = r(x, a) + γ
∑
y∈X

P (y, a, x)V ∗(y), x ∈ X , a ∈ A (2.15)
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2.2.2 Bellman Equations

Similar to equation 2.15, given an MDP, the so-called Bellman equations are ex-

pressed under

V π(x) = r(x, π(x)) + γ
∑
y∈X

P (y, π(x), x)V π(y) (2.16)

The recursive formulation of the Bellman equations relates the value of states to

that of its possible successor states, weighted by their probability of occurrence. For

a finite d-dimensional state space X , V π and rπ can be thought to be vectors in Rd

with P being a transition matrix P : Rd×d. It can be seen that the Bellman equations

define a linear system of equations in d unknowns whose unique solution is V π

Vπ = rπ + γPπVπ (2.17)

Solving for the left hand side,

Vπ = (I− γPπ)−1rπ (2.18)

Under the framework of reinforcement learning adopted in this work, P and rπ

are not available a priori, making the direct solution of 2.18 impossible to compute.

Furthermore, since matrix inversion is generally of order O(n3), the computational

cost would quickly become impractical for large state spaces. Reinforcement learning

algorithms generally solve this problem in an iterative fashion at a very low cost per

iteration.

2.2.3 Bellman Operator

The notion of Bellman operator subtends the theoretical justification of the online

methods of RL for computing the value function of policies.
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Definition 2.2.5. The Bellman operator T π : RX 7→ RX underlying a policy π for

an MDP is defined as

(T πV ) = r(x, π(x)) + γ
∑
y∈X

P (y, π(x), x)V (y), xX (2.19)

Similarly, one can define the Bellman operator T π : RX×A 7→ RX×A for the action-

value function as

T πQ(x, a) = r(x, a) + γ
∑
y∈X

P (y, a, x)V (y), x ∈ X (2.20)

At first blush, it can be easy to miss the difference between the overall form of

the Bellman equations 2.16 and that of equation 2.19. One must in fact observe that,

even though T π is defined for a given policy, the V term on the other hand might not

correspond to V π. The Bellman operator happens to be a special type of function

called a contraction mapping. This characterization allows the Banach fixed-

point theorem to be applied for proving convergence. Starting with an estimate of

the value function for a policy, the iterative application of the Bellman operator will

converge in the limit to a unique fixed point corresponding to V π. The same principle

underlies the value and policy iteration algorithms for computing the optimal value

function.

Before delving into the details of these algorithms, the Bellman optimality

operator must be introduced. Just as T π, T ? : RX × RX is a maximum-norm

contraction mapping but is defined this time as

(T ?V ) = max
a∈A

r(x, a) + γ
∑
yX
P (y, π(x), x)V ?(y)

 , x ∈ X (2.21)

The optimal value function V ? satisfies the fixed-point equation T ?V ? = V ?.

2.2.4 Solving MDPs

The Banach fixed-point theorem mentioned in the previous section lays the founda-

tions of two important approaches for solving MDPs: the value and policy iteration
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Policy Space Πstat Value-function Space

π V π

Policy Evaluation

Figure 2.1: The policy evaluation problem consists in finding the value function cor-
responding to a given policy π. The focus here is on the space of stationary policies
Πstat

algorithms. By solving and MDP, one generally refers to finding the optimal value

function underlying an MDP. If the value function found in that way is indeed optimal,

an optimal policy can be derived by greedily picking the best action from it.

The two main problems of RL which consist in finding the value of a policy or

finding an optimal policy are usually called the prediction (figure 2.1) and control

(figure 2.2) problems. In the control problem, one tries to derive an optimal policy by

taking the greedy policy with respect to the optimal value function (see theorem 2.2

of Ross 1983 for a proof). The optimal stationary greedy policy maximizes the right

side of

π?(x) = arg max
a∈A

r(x, a) + γ
∑
y∈X

P (y, a, x)V ∗(y)
 , x ∈ X , a ∈ A (2.22)

Finding V ∗ thus allows the control problem to be solved using equation 2.22.

The value-iteration algorithm is one way in which V ? can be obtained. Let V0 be

some arbitrary initial bounded function, this method consists in applying the Bellman

optimality operator T ? successively in the following manner

Vk+1 = T ?Vk (2.23)

Vk can be shown (proposition 3.1 of Ross 1983) to uniformly converge to V ∗ as

k →∞
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Policy Space Πstat Value-function Space

π∗
π∗

π∗
V ∗

Policy Evaluation

Policy Derivation

Figure 2.2: The control problem aims at finding an optimal policy i.e. one for which
the corresponding value function is optimal. There might be multiple optimal policies,
but the optimal value function must be unique (Ross 1983).

With policy iteration, two steps are interleaved: policy evaluation and policy

improvement. The general idea goes as follow: from an initial policy π0 compute its

corresponding value function (policy evaluation) and derive the greedy policy πk+1

from it (policy improvement), then repeat these two steps as necessary. It can be

shown that the policy computed by policy iteration after k steps is not worse than

the greedy policy computed by value iteration. Because of the policy evaluation step,

policy-iteration is computationally more expensive. It plays however an important

role in the Actor Critic architectures (R. Sutton 1984).

The policy and value iterations algorithms belong to a class known as dynamic

programming (DP) methods. Assuming a perfect knowledge of the transitions dy-

namics and reward function, the computational burden is greatly reduced compared

to a naive direct policy search approach which could be order |X ||A|. Under the frame-

work of reinforcement learning, it will not be possible to maintain these assumptions.

DP remains of great importance for the understanding of RL algorithms.

2.3 Reinforcement Learning

Reinforcement Learning (RL) considers the problem setting of a situated agent learn-

ing to optimize a loss (return) from the direct experience provided by the environ-
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Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 2.3: Reinforcement Learning. An agent executes an action at in the environ-
ment at time t producing a state transition and instantaneous reward dictated by the
environment dynamics.

ment (figure 2.3). Historically, the field has been influenced by the work on trial-

and-error learning from psychology (R. S. Sutton and Barto 1998). RL hinges heavily

upon the theory of Markov Decision Processes introduced in the previous section.

The DP assumption of an environment model being known is lifted under the

RL framework and model-free learning becomes the focus. The presence of a model

can still be accommodated and subtend a set of RL methods for planning, i.e. de-

termining the best course of action for accomplishing a goal by simulating the conse-

quences of actions in the model. Additionally, RL is concerned with the problem of

acquiring relevant experience from the environment in an online fashion: a problem

of joint exploration and control. The way in which the acquired experience relates

to the target policy depends on the learning algorithm which is either classified as

on-policy or off-policy.

In the following sections, the Monte-Carlo (MC) method will be presented as a

way to learn about the value of states in the absence of a model. Then the Temporal

Difference (TD) learning algorithm will be introduced and shown to encompass the

MC methods. Finally, the off-policy Q-Learning algorithm will be presented.
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2.3.1 Monte-Carlo

The Monte-Carlo approach for solving the control problem estimates the value of a

state by taking online samples of the return directly from the environment or with

simulated experience using a model. Throughout multiple episodes, independent sam-

ples of return are averaged to obtain an estimate of the true expectation. According

to the law of large number, as the number of samples goes to infinity, the average

becomes an unbiased estimator.

The procedure described above is however not sufficient for solving the control

problem as it only answers the prediction one. In the absence of a model, it is necessary

to obtain an action-value function for control. Since certain state-action pairs might

be difficult to sample frequently enough in large state spaces, it is often assumed that

the agent can be reset in some arbitrary state-action configuration: an exploring

start. In practice this assumption is often impossible to meet. Fortunately, it can be

overcome using soft-policies.

The Monte-Carlo method for control is based on the general framework of policy

iteration where the current policy is improved greedily with respect to some estimate

of its value function. It must be noted that policy iteration only requires to update

the policy towards the greedy policy. Soft-policies of the form π(x, a) > 0 consider a

slightly perturbed instance of their greedy policy such that the previous condition is

not completely violated. It then becomes possible to explore non-greedy actions and

the need for exploring starts is eliminated (R. S. Sutton and Barto 1998). A class of

soft policies commonly used is the ε-greedy one, where a random action is chosen

with probability ε, and the greedy action for 1− ε.

The general scheme described so far could be described as an on-policy learning

approach, where the value of a policy is simultaneously being evaluated and used for

control. If the policy used to obtain samples, the behavior policy, is different from

the one being evaluated and improved upon, the estimation policy, importance
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sampling techniques must be applied to compensate for the discrepancy in the action

selection distributions. Algorithms capable of learning the value of a target policy

while following a different behavior policy are said to be off-policy methods.

2.3.2 Temporal Difference Learning

The main drawback of using Monte-Carlo methods in an online setting is the need

to wait for the complete execution of an episode before updating the value function

estimate. The Temporal Difference (TD) learning algorithm of R. Sutton 1984 showed

how to overcome this problem and was instrumental in making the RL approach prac-

tical. In TD learning, immediate predictions are used as targets, a technique known

as bootstrapping, and alleviates the need to wait for a full backup. The TD(λ) is a

extension of the original algorithm that unifies DP and Monte-Carlo methods.

Recalling the definition of the value function, for all x ∈ X

V π(x) = E
[ ∞∑
t=0

γtRt+1

∣∣∣∣∣ X0 = x

]

= E
[
Rt+1 + γ

∞∑
k=0

γkRt+k+2

∣∣∣∣∣ Xt = x

]

= E [Rt+1 + γV (Xt+1) | Xt = x] (2.24)

The TD(0) algorithm incrementally updates the value function estimate using

samples of the form Rt+1 + γV (Xt+1) exposed in equation 2.24. The value function

estimate is updated by

V̂t+1(x) = V̂t(x) + αt
[
Rt+1 + γV̂t(Xt+1)− V̂t(Xt)

]
(2.25)

TD is a Stochastic Approximation (SA) method and can be shown to converge

(Szepesvári 2010) to the true V π by treating the sequence V̂t as a linear ordinary

differential equation (ODE). The sequence of step sizes α must also be subject to the

Robbins-Monro (RM) conditions according to which
∞∑
t=0

αt =∞,
∞∑
t=0

α2
t < +∞ (2.26)
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Algorithm 1 shows how the TD update is performed procedurally.

Data: An arbitrary initialized vector V , a policy π to be evaluated
Result: The value of π
x← initial state
while x is not terminal do

a← π(x)
r, x′ ← Step(a)
V (x)← V (x) + α [r + γV (x′)− V (x)]
x← x′

end
Algorithm 1: Tabular TD(0) algorithm for policy evaluation. The Step function
performs the state transition in the environment and returns the immediate
reward and new state.

2.3.3 Eligibility Traces

An important extension to the original TD algorithm is the TD(λ) family (R. Sutton

1984), unifying TD(0) at one end and Monte-Carlo prediction at the other. Eligi-

bility traces act as kind of memory modulating the propagation of backups at a

given state. Instead of updating the value function based on a single n-steps esti-

mate, TD(λ) computes an average, known as the λ-return, over a range of multi-step

predictions of the return. The multi-step discounted return is defined as

Rt:k =
t+k∑
s=t

γs−tRs+1 + γk+1V̂t(Xt+k+1) (2.27)

The λ-return is a mixture of multi-step return with weight (1−λ)λk on each term

Rλ
t = (1− λ)

∑
k≥0
Rt:k (2.28)

As λ goes to 0, equation 2.28 simplifies to Rt+1 + γV̂t(Xt+1) and amounts to a

one-step TD backup of the TD(0) algorithm. On the other hand, as λ goes to 1

samples of the return from time t until the end of the episode are obtained as in the

MC method.
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TD(λ) is implemented using an additional vector of size |X | where each component

gets incremented by 1 each time the corresponding state is visited. A decay of λγ is

also applied upon each component for every time step.

2.3.4 Sarsa

The TD algorithm only solves the policy evaluation problem but not control one.

Following the general policy iteration paradigm and the MC algorithm for control,

Sarsa is an on-policy control algorithm making use of TD for policy evaluation under

a soft-policy exploration strategy. Similar to equation 2.25, the action-value function

is updated as follow

Q̂t+1(x, a) = Q̂t(x, a) + α
[
Rt+1 + γQ̂t(Xt+1, At+1)− Q̂t(Xt, At)

]
IXt=x,At=a (2.29)

Data: An arbitrary initialized matrix Q
Result: An optimal action-value function for control
foreach episode do

x← initial state
a← Greedy(x)
while x is not terminal do

r, x′ ← Step(a)
a′ ← Greedy(x′)
Q(x, a)← Q(x, a) + α [r + γQ(x′, a′)−Q(x, a)]
x← x′

a← a′

end
end

Algorithm 2: The on-policy Sarsa algorithm based on a TD(0) policy evaluation
scheme. The Greedy function is the soft greedy policy derived from the current
estimate of the action-value function. An ε-greedy exploration strategy would
be commonly used.

As the number of samples for each state-action pair goes to infinity, limt→∞ ε = 0,

and under the RM conditions, Sarsa is guaranteed to converge to an optimal policy

(R. S. Sutton and Barto 1998).
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2.3.5 Q-Learning

Since TD learning is an on-policy learning method, the choice of exploration strategy

directly impacts the convergence to the estimation policy. Q-Learning (C. Watkins

1989) decouples the exploration and evaluation problems and allows for any behavior

policy to be followed while still converging to Q?. In this case, the updates to the

action-value function estimate consist in

Qt+1(x, a) = Qt(x, a)+αt
[
Rt+1 + γmax

a′∈A
Qt(Xt+1, a

′)−Qt(Xt, At)
]
IXt=x,At=a (2.30)

The corresponding procedural form is given in algorithm 3.

Data: An arbitrary initialized matrix Q
Result: An optimal action-value function for control
foreach episode do

x← initial state
while x is not terminal do

a← Greedy(x)
r, x′ ← Step(a)
Q(x, a)← Q(x, a) + α [r + γmaxa′AQ(x′, a′)−Q(x, a)]
x← x′

end
end

Algorithm 3: The Q-Learning algorithm under some arbitrary exploration
scheme. ε-greedy could once again be used for this task.

2.4 State-Abstraction

The algorithms presented so far assumed tabular update rules where value or action-

value functions were expressed as vectors and matrices respectively. For many prob-

lems, the state space might have infinite cardinality or be simply too large to fit in

memory. Furthermore, as the number of dimensions increases, the computational cost

also increases exponentially. It matters then to seek for a representation of the value

function capable of generalizing across possibly unseen states or state-action pairs.
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By expressing the value function as a parametrized function, the incremental up-

dates are performed upon the entries of some parameter vector θ. For large state

spaces, the number of components in θ would be much smaller than the number of

possible states. Value function approximation can be seen as an instance of a super-

vised learning problem with a training set consisting of states as inputs and samples

of the return (one-step TD, or full Monte-Carlo) as targets.

Any existing method from supervised learning could potentially be used for this

task: neural networks, or k-nearest neighbors for regression for example (Szepesvári

2010). TD-Gammon of Tesauro 1995 is considered to be one of the great success story

or RL and used neural networks for value function approximation. In this thesis, the

attention will be mainly drawn upon the so-called linear methods. They are simple,

but yet expressive, function approximators of the form

Vθ(x) = θᵀϕ(x) (2.31)

Linear methods represent the value function as a linear combination of features.

In equation 2.31, θ ∈ Rd and ϕ : X → Rd with its components being defined by a set

of basis functions ϕi : X → R. The way in which ϕ is obtained specifies a feature

extraction method which can be non-linear.

Value function approximation most commonly relies on gradient-descent meth-

ods to derive update rules for θ. Because of the simple form of equation 2.31, taking

the gradient of the value function with respect to θ yields

∇θVθ(x) = ϕ(x) (2.32)

Gradient-descent methods update the components of θ by small increments in the

direction of the gradient, pointing in the direction of the steepest error. A typical

error function minimized in supervised learning techniques is the mean-squared error

(MSE). Casting the function approximation problem under a setting where the true
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(yet unknown) underlying value function V π is a target, and Vθ is some approximation

using the parametrized form of equation 2.31, the MSE is

MSE(θ) =
∑
x∈X

P (x) [V π(x)− Vθ(x)] (2.33)

The P (x) term here accounts for probability of observing a given state x ∈ X as

an input.

TD(λ) with linear function approximation (algorithm 4) can be shown to converge

under the usual RM conditions on the α parameter (Tsitsiklis and Van Roy 1997).

Data: An arbitrary initialized vector θ, a policy π to be evaluated
Result: The value of π
x← initial state
while x is not terminal do

a← π(x)
r, x′ ← Step(a)
δ ← r + γθᵀϕ[x′]− θᵀϕ[x]
z← ϕ[x] + γλz
θ ← θ + αδz
x← x′

end
Algorithm 4: TD(λ) with linear function approximation

2.4.1 Basis functions

The choice of proper function space and feature extraction techniques is a challenging

problem which can have a great impact on the quality of the approximation. If one

has prior knowledge about certain regularities of the optimal value function for the

problem at hand, relevant features could be specified explicitly. However, when facing

the problem of solving a broad class of problems for which little is known about its

structure, general set of basis functions must be used. Two feature extraction schemes

are presented below, chosen for their wide applicability and ease of use.
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2.4.2 Radial Basis Functions

Given a state x ∈ X , each component of ϕ is specified by a radial basis function with

the property that ϕi(xi) = ϕi(‖x − ci‖), where ci specifies the center of the basis.

Gaussian functions are most commonly used as radial basis functions (RBF) and are

defined as

ϕi(x) = exp
(
‖x− ci‖

2σ2
i

)
(2.34)

The σi parameter specifies the width of the Gaussian and must be tuned by hand

or using some model selection technique together with the layout of the basis functions

and their number. Decreasing the width and increasing the number of basis functions

would result in a finer approximation but also incur a higher computational cost.

The choice of norm in equation 2.34 is not restricted to the Euclidean distance

and other metric could be used. In Sugiyama et al. 2008 for example, the Geodesic

distance taken over the graph induced by some MDP attempts to better capture

intrinsic geometrical features.

2.4.3 Fourier Basis Functions

The use of Fourier basis functions for value function approximation was introduced

in Konidaris, Osentoski, and P. Thomas 2011 but relies on the well established theory

of Fourier analysis.

The nth order Fourier expansion of some univariate periodic function f with period

T is given by

f̂(x) = a0

2

n∑
k=1

[
ak cos

(
k

2π
T
x
)

+ bk sin
(
k

2π
T
x
)]

(2.35)

with Fourier coefficients ak and bk defined as

ak = 2
T

∫ T

0
f(x) cos 2πkx

T
dx, and bk = 2

T

∫ T

0
f(x) sin 2πkx

T
dx (2.36)
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Since V ? is unknown, the Fourier coefficients cannot be obtained directly from

2.36. They must rather be treated as weights and approximated under the linear

approximation framework. The Fourier expansion of f results in 2n + 1 terms but

Konidaris, Osentoski, and P. Thomas 2011 showed how it can be simplified to only

n+ 1 terms if some assumptions are made on the periodicity of the value function. A

function f is even if f(x) = f(−x), in which case the sin terms of equation 2.35 can

be droped. A similar observation can be made if f is odd −f(x) = f(−x) and the

cos terms can be omitted.

Setting the period to T = 2, the nth order univariate Fourier basis is defined as:

φi(s) = cos(iπx) ∀i = 0, ..., n (2.37)

The multivariate Fourier expansion of some function F with period T up to order

n bears a similar form

F̂ (x) =
∑

c

[
ac cos

(2π
T

c · x
)

+ bc sin
(2π
T

c · x
)]

(2.38)

The c term in equation 2.38 is the Cartesian power X d of the d-dimensional

state space such that c = [c1, . . . , ci, . . . , cd] where ci ∈ [0, . . . , n]. The number of

basis functions required for the nth order expansion under this scheme is 2(n + 1)d.

Fortunately using the same argument as for the univariate case, only half of the terms

must be kept. The ith basis function is then defined as

ϕ(x)i = cos
(
πci · x

)
(2.39)

While Fourier basis severely suffer from the curse of dimensionality, the approach

has the merit of being simple and effective empirically. Experiments conducted during

this thesis support this claim. Furthermore, the only choice practitioners have to make

is the order of the expansion. Reasonable results can usually obtained by using only

the few first lower frequencies of the expansion.



3
Temporal Abstraction

It was shown in the previous chapter how the value function over large (possibly in-

finite) state spaces can be represented compactly using function approximation. It

would then appear natural to harness a similar idea for exploiting temporal regu-

larities. In the context of planning, reasoning at different abstract time scales can

drastically reduce the problem complexity. The importance of temporal abstraction

can be overlooked when considering simple everyday human tasks such as prepar-

ing coffee, going on a camping trip, changing a bicycle tire, etc. A decomposition

of these activities at the level of muscle twitches would however quickly expose the

impossibility of carrying any form of learning at this level. A form of hierarchical

organization must then exist from the micro to the macro-scales. Under the view

adopted in this work, the task of preparing coffee would rather consist in a sequence

of coarse closed-loop policies executed sequentially towards the overall goal of having

coffee in a cup.

Many authors have tried to formalize this idea under the framework of reinforce-

ment learning: the MAXQ method of T. Dietterich 1998, the Hierarchical Abstract

Machines (HAM) of R. Parr and Russell 1997 or Macro-Actions of Hauskrecht et al.

1998 for example. These other approaches will not be covered in this thesis and the

options framework of R. S. Sutton, Precup, and Singh 1999 will rather be adopted.

For a survey of the early work on HRL, the interested reader is referred to Stolle 2004;

R. S. Sutton, Precup, and Singh 1999.

29
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3.1 Options Framework

Definition 3.1.1. An Option is a triple 〈I ⊆ X , π : X ×A → [0, 1], β : X → [0, 1]〉

consisting of an initiation set, a policy π and a termination condition β.

An option o ∈ O can be executed in a call-and-return fashion only if under the

current state x ∈ X , x ∈ I. When o is chosen, the agent acts according to the option

policy π until β dictates termination, at which point the agent must choose a new

option again.

The initiation component is meant to facilitate the decision procedure by reduc-

ing the number of possible options to consider at a given state. Its presence could

also had been motivated by historical considerations to accommodate STRIPS-style

planning (Fikes, Hart, and Nilsson 1972) more easily. The definition of the initiation

set is sometimes neglected by some authors, assuming that all options are available

everywhere. The algorithm proposed in this thesis automatically curtails admissible

states to form a well-defined initiation set for every option. It should be noted finally

that primitive actions can be seen as a special kind of options which are available

everywhere, have a policy which always chooses the same action, and last exactly one

step.

The options framework is at the crossroad of Markov Decision Processes and semi-

Markov Decision Processes of Bradtke and Duff 1994. It considers a base MDP over-

laid with variable length courses of action represented as options. It is shown in R. S.

Sutton, Precup, and Singh 1999 (theorem 1) how an MDP and a pre-defined set of

options form a semi-Markov Decision Process. Most of the theory on SMDP can thus

be reused for options. As opposed to the usual theory of SMDP that treats extended

actions as indivisible and opaque decision units, the options framework allows to look

at the structure within. Furthermore, options can be either Markov or semi-Markov.

In the fictitious coffee domain, waiting a predefined amount of time for the coffee to

percolate would most likely be a semi-markov option unless the state representation
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is changed to compensate for the non-markovianity.

3.2 Bellman Equations for Options

Let µ : X ×O → [0, 1] be a general (Markov or semi-Markov) policy where O is any

set of options. The value of µ is defined as

V µ(x) = E
[
Rt+1 + · · ·+ γk−1Rt+k + γkV µ(Xt+k)

∣∣∣ ε(x, µ, t)] (3.1)

where k is a random variable denoting the duration of the first option selected by

µ and ε(x, µ, t) is the event that the policy over options µ is executing at time t in

state x. Similarly, an option-value function for control can be defined as

Qµ(x, o) = E
[
Rt+1 + · · ·+ γk−1Rt+k + γkV µ(Xt+k)

∣∣∣ ε(x, o, t)]
= E

Rt+1 + · · ·+ γk−1Rt+k +
∑
o′Ox

µ(Xt+1, o
′)Qµ(x, o′)

∣∣∣∣∣∣ ε(x, o, t)
 (3.2)

Ox in the equation 3.2 is the subset of options which can be initiated under state

x. The optimality principle is carried over to the following set of optimal Bellman

equations

V ?
O(x) = max

o∈Ox

E
[
Rt+1 + · · ·+ γk−1Rt+k + γkV ?

Ox
(Xt+k)

∣∣∣ ε(x, o, t)] (3.3)

The optimal option value function is in turn

Q?
O(x, o) = E

[
Rt+1 + · · ·+ γk−1Rt+k + γkV ?

Ox
(Xt+k)

∣∣∣ ε(x, o, t)]
= E

[
Rt+1 + · · ·+ γk−1Rt+k + γk max

o′∈Oxt+k

Q′O(o′, Xt+k)
∣∣∣∣∣ ε(x, o, t)

]
(3.4)

If the optimal option value function is available, the greedy policy is guaranteed

to be optimal. A policy over options is optimal if given a set of options, its underlying

option value function is the optimal value function, i.e. V µ?
O(x) = V ?

O(x) ∀ x ∈ X .
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3.3 Learning Behavior Policies

Assuming that an options set O is specified, existing theory of semi-Markov Decision

Processes in continuous time can be applied to solve the control problem (M. L.

Puterman 1994; Bradtke and Duff 1994). Under the SMDP model, decision are taken

at certain epochs spaced by random time intervals during which the system dynamics

can be arbitrary. The optimal control problem can be solved by an extension of

Q-Learning to the SMDP case.

Definition 3.3.1. SMDP Q-Learning

Qt+1(x, o)← Qt(x, o) + α
[
R+ γk max

o′∈O′
x

Qt(x′, o′)−Qt(x, o)
]

(3.5)

The semantics of equation 3.5 holds the under the event of ε(x, o, t) where option

o is executed for k time steps with cumulative discounted reward R. Convergence

results are provided in R. E. Parr 1998.

An identical algorithmic construct called Macro Q-Learning is also often en-

countered in the literature. It stems from the work on macro-actions by Mcgov-

ern, R. S. Sutton, and Fagg 1997 in an attempt to extend the deterministic macro-

operators of Korf 1985 to closed-loop policies. As opposed to the more general SMDP

Q-Learning algorithm of equation 3.5, Macro Q-Learning treats macro-actions

and primitive actions separately. The SMDP update rule is applied for macro-actions

while primitive actions are updated using 2.30. Clearly, SMDP Q-learning encom-

passes Macro Q-Learning and can be expressed identically as

Qt+1(x, o)← Qt(x, o) + α
[
R+ γk max

o′∈O′
x

Qt(x′, o′)−Qt(x, o)
]

(3.6)

but where O necessarily contains all of the primitive actions wrapped as options.

Macro Q-Learning is thus equivalent to SMDP Q-Learning where the options

set O is augmented with single-step options for each primitive action.
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3.3.1 Intra-Option Learning

In order for the SMDP Q-Learning algorithm in equation 3.5 to provide a good

estimate of the optimal option value function, sufficient experience must be obtained

about every option. While executing an option to completion, fragments of experience

of experience relevant for the current option could potentially be used to learn about

other options. Since it is possible to look within an option, such an idea can be

realized and leads to a sample efficient algorithm.

Intra-Option Learning is an off-policy algorithm which leverages the valuable

experience taking place within options. While an option is executing, it can simulta-

neously updates the value function estimate of all the consistent options which would

have had taken the same action under a given state. It is thus required that the

options be defined using deterministic policies so that this idea of consistency can be

established.

Definition 3.3.2. Intra-Option Value Learning

U(x, o) = (1− β(x))Qt(x, o) + β(x) max
o′∈O

Qt(x, o′) (3.7)

Qt+1(x, o) = Qt(x, o) + α [Rt+1 + γU(x, o)−Qt(x, o)] (3.8)

The update rule takes place under the event ε(x, o, t) after each primitive transition

and is applied over every other consistent option for which π(Xt) = At.

Intra-Option Learning being an off-policy method, it is susceptible to suffer

from instabilities and divergence issues just as Q-Learning with function approx-

imation. GQ(λ) was introduced in Maei and R. S. Sutton 2010 as an extension of

Q-Learning but with special treatment against the aforementioned problems. Al-

though the theory for GQ(λ) is provably correct, sufficient empirical understanding

is still lacking. Importance sampling corrections similar as those used in Precup,

R. S. Sutton, and Dasgupta 2001 for off-policy TD(λ) could be used as a substitute

to GQ(λ).
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Finally, in order to learn the policy π for an option, it is customary to adopt the

notion of subgoals. Subgoal options can be seen as optimizing some intrinsic notion of

reward consistent with the overall task objective. A terminal subgoal value assigns

a value for reaching the terminal states of an option determined by β. A subgoal value

function thus arises from the combination of the original underlying MDP plus the

overlaid discounted subgoal value function. This concept is often referred to as a

pseudo-reward function: a term coined in T. G. Dietterich 1999 about the MAXQ

framework.



4
From Structure to Dynamics

Graph theory has deep ramifications in many fields. The field of Markov Decision

Processes is one such example where taking a graph perspective provides a natural

language for describing and understanding many fundamental properties. As shown in

this section, spectral graph theory provides powerful tools for studying the dynamical

properties of Markov chains. Some of the early applications of this connection can be

traced back to the work of Simon and Ando 1961; Donath and Hoffman 1973; Fiedler

1973.

Spectral graph theory will provide the theoretical justification for the heuristic

approach to options discovery algorithm proposed in this work. This presentation

should be seen as an initial foray towards a better theoretical understanding of the

bottleneck concept. Random walk processes on arbitrary graphs G will first be intro-

duced, followed by a characterization of the properties of the graph Laplacian and its

definition for MDPs. It will then be shown how graph partitioning can be achieved

on the basis of the dynamics induced by the random walk process. Finally, it will be

argued that the mixing time property of the MDP-induced graph is relevant to the

problem of options discovery and can be related to spectral graph partitioning.

35
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4.1 Random Walk

The notion of random walk is necessary in the presentation of some important spec-

tral properties related to the graph Laplacian in section 4.2. Given a graph G, we can

generate a random sequence by picking a vertex uniformly at random in the neigh-

borhood of an initial vertex and carrying on the procedure over to the newly obtained

vertex. This procedure corresponds to the realization of a type of random process

called random walk. More precisely, we define a simple random walk on a graph

G = (V,E) as a Markov Chain with state space V and for which the transition matrix

is given by:

Pij =


wij

d(i) if i ∼ j

0 otherwise
(4.1)

wij above is an edge weight and d(i) is the degree of i.

Using matrix notation, the stochastic matrix of the random walk can be written

as

P = D−1W (4.2)

If each vertex of G has the same degree, in which case G is said to be d-regular,

the stationary distribution of the random walk is the uniform distribution.

4.2 Graph Laplacian

The combinatorial (unnormalized) graph Laplacian of a weighted graph G is defined

as

L = D−W (4.3)
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and corresponds to the symmetric matrix

L(u, v) =



dv if u = v,

−1 if u and v are adjacent,

0 otherwise

(4.4)

Where D = diag(d1, d2, . . . , dn) and W are the diagonal degree and weight (adja-

cency) matrices for G respectively.

Because of its easier stochastic interpretation, the normalized version of the graph

Laplacian is often preferred. The interested reader is referred to the highly influential

monograph by Chung 1997 which offers an in-depth treatment on the topic.

The normalized graph Laplacian is defined as

L = D−1/2LD−1/2 = I−D−1/2WD−1/2 (4.5)

where L is the unnormalized Laplacian defined in equation 4.3. The elements of

the matrix L then become

L(u, v) =



1 if u = v and dv 6= 0,

− 1√
dudv

if u and v are adjacent,

0 otherwise

(4.6)

Clearly, L is also symmetric since

Lᵀ =
(
D−1/2

)ᵀ
Lᵀ
(
D−1/2

)ᵀ
= L (4.7)

The spectral theorem for symmetric matrices (D. S. Watkins 2010) also ensures

that L only has real eigenvalues. Furthermore, eigenvectors corresponding to distinct

eigenvalues must be orthogonal.

The normalized Laplacian is closely related to the transition matrix P of the

random walk process presented in section 4.1. It can be seen through the identity

I− L = D−1/2WD−1/2 (4.8)
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that

P = D−1/2 (I− L) D1/2 (4.9)

= D−1/2
(
D−1/2WD−1/2

)
D1/2

= D−1W

and P must be similar (in the linear algebra sense) to I− L. It follows that they

also share the same eigenvalues and the right eigenvectors of I − L can be obtained

from the eigenvectors of P by multiplying them by D1/2

Pv = λv

D−1/2 (I− L) D1/2v = λv

(I− L) D1/2v = λD1/2v

(I− L) u = λu (4.10)

u = D1/2v (4.11)

Because of this connection to random walks, some authors have also defined the

normalized random walk Laplacian as

Lrw = D−1L = I−D−1W (4.12)

The Laplacian can then be thought of as an operator acting upon the space of

functions F : V → R, with V denoting the vertex set. Expressing such functions as

vector f ∈ R|V |, the normalized Laplacian can be shown to satisfy

Lf(u) = f(u)−
∑
v

u∼v

f(v)√
dudv

= 1√
du

∑
v

u∼v

f(u)√
du
− f(v)√

dv

 (4.13)
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The same could also be said about the normalized Laplacian generalized over

weighted graphs, in which case

Lf(u) = 1√
du

∑
v

u∼v

f(u)√
du
− f(v)√

dv

wuv (4.14)

where wuv denotes the edge weight between adjacent vertices u and v.

An n× n symmetric matrix A is said to be positive semidefinite (PSD) if for any

vector x ∈ Rn, xᵀAx ≥ 0. The normalized Laplacian admits a quadratic form from

which the PSD property becomes clear

fᵀLf = fᵀ
(
I−D−1/2WD−1/2

)
f

= fᵀf − fᵀD−1/2WD−1/2f

=
∑
i

f 2
i −

∑
i

fi√
di

∑
j

wij
fj√
dj

= 1
2

∑
i

f 2
i − 2

∑
i,j

fi√
di

fj√
dj
wij +

∑
j

f 2
j


= 1

2
∑
ij

f 2
i − 2 fi√

di

fj√
dj
wij + f 2

j


= 1

2
∑
ij

wij

f 2
i

di
− 2 fi√

di

fj√
dj

+
f 2
j

dj

 by defn. di =
∑
j

wij

= 1
2
∑
ij

wij

 fi√
di
− fj√

dj

2

(4.15)

Clearly, fᵀLf ≥ 0, and L must be positive semidefinite. Under the definition of

the combinatorial Laplacian, a similar quadratic form is induced (Mohar 1991)

fᵀLf =
∑
ij

wij(fi − fj)2 (4.16)

The quadratic form can be interpreted as a measure of smoothness of a function

over the graph. Intuitively, if f is smooth over each pair of vertices, fᵀLf must be

small. On the other hand, if f locally varies is a more drastic manner, this quantity

should grow larger. The weighting factor in equation 4.15 also helps to understand
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how local density might influence this measure of smoothness. In regions of higher

density, the proximity or similarity encoded through wij is higher; hence the greater

amplification of the (fi − fj)2 term. This property is exploited in semi-supervised

learning to encode the so-called cluster assumption and force the decision boundary

to lie in low density regions Chapelle, Weston, and Schölkopf 2002.

4.3 Laplacian of MDPs

Consider the Markov Reward Process induced by fixing a policy π for an MDP and

let Pπ denote the corresponding transition probability matrix. As shown earlier, a

kind of Laplacian closely related to the normalized Laplacian can be obtained from

the transition matrix of a random walk process. Clearly, Pπ also defines a stochastic

matrix encoding the dynamics induced by π in the environment. The notion of graph

Laplacian can naturally be extended for MDPs.

Definition 4.3.1. Given a transition probability matrix Pπ underlying an MDP for

a fixed policy, the Laplacian of an MDP is

Lπ = I−Pπ (4.17)

The Laplacian view of Markov Decision Processes was adopted by a number of

authors (Lamond and M. Puterman 1989; M. L. Puterman 1994; Filar 2007) for the

study of their chain structure. While the term Laplacian was not explicitly used,

their analysis relied on the properties of the so-called Drazin inverse (Drazin 1958) of

I−Pπ. More recently, the work on Proto-Value Functions (PVF) (Mahadevan 2009)

also exploited the concept and terminology of the graph Laplacian for the purpose of

representation and control.

An obstacle to studying the spectrum of Lπ occurs when the induced Markov

chain is not reversible. Furthermore, the assumption that Pπ is available from an
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existing MDP is problematic. Under the reinforcement learning framework, the tran-

sition matrix is generally unknown and it is necessary to resort to sampling-based

methods. In certain scenarios, the control problem is itself very hard to solve. There-

fore, requiring the knowledge of Lπ to facilitate the problem would be nothing other

than a chicken-and-egg scenario. In the approach proposed in this thesis, the random

walk Laplacian is considered as a practical replacement. Such a substitution is also

adopted in Mahadevan 2009 for the same reasons.

4.4 Graph Partitioning

Through the study of the set of eigenvalues associated with the graph Laplacian, some

remarkable results on the subgraph structures can be obtained. The set of problems

concerning the optimality of graph cuts with regard to the size of their components

is commonly referred to as isoperimetric problems. Edge cuts are of particular

interest because they relate to spectrum of L through the so-called Cheeger constant.

Let A,B ⊆ V be subsets of the vertices of a graph G and E(A,B) denote the set

of edges having one end in A and the other in B. It is also convenient to describe the

set of edges having only one end point some S ⊆ V as the boundary (Chung and

Yau 1994), edge boundary (Chung 1997) or coboundary (Mohar 1991) of S, that

is

∂S = {{u, v} ∈ E : u ∈ S and v 6∈ S} (4.18)

The volume for S also corresponds to the sum of the degrees of its vertices

vol(S) =
∑
x∈S

dx (4.19)

The conductance of G, also known as the Cheeger constant (Chung 1997), is

defined as

hG = min
S
hG(S) where hG(S) = |E(S, S̄)|

min
(
vol(S), vol(S̄)

) (4.20)
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The Cheeger inequality relates it to the spectrum of L as follow (Chung 1997)

Lemma 4.4.1.

2hg ≥ λ1 >
h2
g

2 (4.21)

The spectrum of L can be elegantly exploited for graph partitioning. The problem

of graph bipartitioning is first considered before the more general multi-partitioning

case. A graph bipartition can be obtained under the Min-Cut formulation and solved

in timeO(n3) using the Ford-Fulkerson algorithm (Ford and Fulkerson 1956). The

resulting partitions however tend to be highly imbalanced and in certain cases can

degenerate to singleton partitions (Hagen and Kahng 1992). A related problem to

consider is then the minimum-width bisection which attempts to find a minimum

cut with partitions of equal size. Unfortunately, the problem was shown to be NP-

complete by Garey, D. Johnson, and Stockmeyer 1976. A natural response is then

to relax the optimization criterion in such a way as to maintain balanced partitions

without requiring them to be of same size. The ratio-cut criterion is defined by Wei

and Cheng 1989; Wei and Cheng 1991; Hagen and Kahng 1992 as

RCut(S) = min
S

|E(S, S̄)|
|S| · |S ′|

(4.22)

and is very much related to the modified Cheeger constant also called the isoperi-

metric number by some author 1. Once again, finding the minimum ratio cut is

also NP- complete but a spectral relaxation based on the combinatorial Laplacian is

proposed in Hagen and Kahng 1992.

A similar measure called the normalized cut was made popular by Shi and Malik

2000 and rather tries to optimize

NCut(S) = |E(S, S̄)|
vol(S) + |E(S, S̄)|

vol(S̄)
(4.23)

1Although some authors seems to make no distinction between the terms (Shi and Malik 2000;
Levin, Peres, and Wilmer 2008), Chung 1997 shows in chapter 2 how they relate differently to the
eigenvalues of L.
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Just as the ratio cut, the normalized cut also falls short of an exact solution which

is not NP-complete (Shi and Malik 2000). The normalized qualification in the name

normalized cut might seem misleading at first glance when considering the following

optimization setting (Luxburg 2007) based on the combinatorial Laplacian.

min
A

fᵀ (D−W) f (4.24)

subject to Df ⊥ 1, fᵀDf = vol(V )

fi =


√

vol(A)
vol(Ā) if vi ∈ A

−
√

vol(Ā)
vol(A) if vi ∈ Ā

where D −W can be recognized to be the combinatorial Laplacian as defined

in equation 4.3. By relaxing f to values in R and setting g = D1/2f , the problem

becomes

min
g∈R|V |

gᵀD−1/2 (D−W) D−1/2g (4.25)

subject to g ⊥ D1/21, ‖g‖2 = vol(V )

(4.26)

Under this form, the normalized Laplacian L finally appears. By the Rayleigh-

Ritz theorem, this quantity is minimized when g equals the second eigenvector of L

(Chung 1997). From the real vector g, the partition membership can be recovered by

thresholding its components. The problem of multi-partitioning or k-way partitioning

can be solved by applying the spectral bipartitioning approach in a top-down recursive

manner in each partition.

The normalized cut criterion is not only reported to produce better empirical

results, but also provides an intuitive interpretation in terms of random walks. Recall

the connection between I−L and the normalized random walk Laplacian in equation

4.9 where they were shown to be similar. If λ is an eigenvalue of L, then 1−λ must be
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an eigenvector of P. Maila and Shi 2001 showed how this can be further exploited to

express the Ncut criterion in terms of probability distributions of the random walk

process. The stationary distribution of a random walk on a connected, non-bipartite

graph is equal to (Levin, Peres, and Wilmer 2008)

πi = di
vol(V ) (4.27)

The probability of transitioning from a partition A to B if at the stationary dis-

tribution the initial state is in A becomes

P (A→ B|A) =
∑
x∈A,y∈B π(x)P (x, y)

π(S) (4.28)

which, for a random walks, boils down to

P (A→ B|A) =
∑
x∈A dx

vol(A) (4.29)

From equation 4.28 and 4.23, it is then easy to see that

NCut(S) = P (S → S̄|S) + P (S̄ → S|S̄) (4.30)

Interestingly, Levin, Peres, and Wilmer 2008 calls this measure in 4.28 the bot-

tleneck ratio and defines the bottleneck ratio for a Markov chain as

Φ? = min
S : π(S)≤ 1

2

P (S → S̄|S) (4.31)

which corresponds to the Cheeger constant presented in equation 4.20. Such a quan-

tity happened to have been studied intensively as a way to bound the mixing time

of Markov chains through the notion of conductance (a term referring to the same

Cheeger constant or the bottleneck ratio presented here). The notion of mixing time

can described intuitively as the number of steps necessary for a Markov chain to reach

its stationary distribution. It is customary to define the notion of mixing time as the

number of steps needed for being close to the steady-state distribution (Jerrum and

Sinclair 1988).
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Figure 4.1: Some arbitrary graph presenting a bottleneck. The mixing time can be
bounded using the bottleneck ratio of a Markov chain.

The smaller the conductance is, the longer the chain is expected to mix. Fur-

thermore, the Markov chain would spend more time within a given partition of the

graph and with lower probability, transition to a different adjacent partition (see fig-

ure 4.1). It can then be understood that low conductance would also result in lower

probabilities of inter-partition transitions.

It has shown above how the second smallest eigenvector of L minimizes the relaxed

NCut criterion and can also bound the Cheeger inequality. It turns out that it can

also bound the mixing time through the spectral gap 1 − λ1 The interested reader

is referred to Jerrum and Sinclair 1988; Lovász 1996; Levin, Peres, and Wilmer 2008

for some of these results.

4.5 Relevance for Options Discovery

The definition of what makes for interesting options has remained vaguely defined

throughout the vast body of work on bottleneck-like approaches in reinforcement

learning. The intuition developed in this chapter might provide further developments

on this question. After having distilled the essence of the bottleneck concept through

the graph Laplacian, it is also easier to take an historical perspective and situate it

along the work on Nearly-Completely Decomposable Markov Chains (NCD).

It was shown in this chapter how the optimal graph bipartitioning problem relates

to the Cheeger constant or bottleneck ratio which in turn, provide bounds on the
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mixing time of Markov chains. It might seem then that bottlenecks allow for the

discovery of fast mixing regions of the state space. In the planning problem, fast

mixing might also translate into computational speedup, making policies simpler to

compute in those regions. Efficient random sampling techniques over large state spaces

are also often concerned with fast mixing time (Boyd, Diaconis, and Xiao 2004). In

reinforcement learning, the same problem would be translated under the question

of designing smart exploration strategies. Optimal partitioning of the MDP-induced

graph Laplacian could thus help to identifying regions of fast mixing time and create

options tailored for exploration.

It also seems that good options are those which are intrinsically simple, acting as

elementary building building blocks of an increasingly complex hierarchy. Traces of

this ideal of simplicity can be found under different forms. For example, it is known

from (Maila and Shi 2001), that the stochastic matrix P has piecewise constant eigen-

vectors with respect to the NCut criterion. This suggests that optimal partitions can

be described more succinctly (simply). The authors also note the potential connection

with the notion of lumpability introduced by Kemeny and Snell 1976. Lumpability

is concerned with the aggregation of states with similar dynamics to simplify large

Markov chains.

The idea of matrix decomposition was initiated by Ando and Fisher 1963 from

economics for the study of linear dynamical systems with nearly decomposable struc-

tures. The class of Markov chains with strong intra-cluster interactions and weak

inter-cluster ones has been studied under the name of Nearly Completely Decompos-

able Markov chains (NCD) (Gaitsgori and Pervozvanskii 1975). Courtois 1977 also

dedicated a book on the topic in the field of queuing theory. The control problem of

Markov chains with such structure was considered in Teneketzis, Javid, and Sridhar

1980; Delebecque and Quadrat 1981; Phillips and Kokotovic 1981; Coderch et al. 1983

building upon Courtois’ work. This approach treats the slower inter-cluster transi-

tions as matrix perturbations. Similar ideas were also brought closer to the framework
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of Markov Decision Processes with Haviv 1985; Aldhaheri and Khalil 1991; Zhang,

Yin, and Boukas 1997.

From an information theoretic point of view, lumpability can be seen as a lossy

compression scheme (Watanabe and Abraham 1960; Lindqvist 1978). On the more

general topic of graph clustering, the infomap algorithm of Rosvall and Bergstrom

2008 also exploits some compression intuition. By taking random walks in the graph,

their algorithms seeks a partitioning of minimum length. More recently, Deng, Mehta,

and Meyn 2011 gave a characterization of the optimal aggregation of uncontrolled

NCD systems in terms of the Kullback-Leibler divergence. They showed that optimal

partitioning yields aggregates of maximum predictability as measured by the mutual

information between X(t) and X(t + 1). Similar derivations could be attempted for

MDPs by considering the rate distortion for a fixed value function as proposed in Still

and Precup 2012 for the problem of exploration.



5
Building Options

The dual perspective offered by spectral graph theory for studying the dynamics

of Markov chains is exploited in this chapter for options discovery. As opposed to

other similar algorithms (Menache, Mannor, and Shimkin 2002; Mannor et al. 2004;

Mathew, Peeyush, and Ravindran 2012; Bouvrie and Maggioni 2012), the problem of

discovering and constructing options in continuous state space is tackled. This set-

ting brings along additional challenges in terms of computational efficiency, function

approximation and graph representation.

The main distinction between the control techniques of RL and those of the more

traditional stochastic dynamic programming approach is that the latter assumes some

knowledge of the transition and reward probabilities. Therefore, the graph Laplacian

underlying an MDP cannot be assumed to be available under the RL setting. By

sampling a large number of state-action transitions, the dynamics could certainly be

recovered in the limit. The curse of dimensionality would however quickly render this

approach hopeless.

One way to address this problem is by building a proximity graph over sampled

states. While such a representation is not faithful to the Markov chain induced by

some optimal policy, useful geometrical properties can still be inferred by resorting to

the random walk process. This reduction is not without consequence as the precious

optimality-preserving transitions of Pπ are completely ignored. The random walk

graph Laplacian can capture relevant geometrical features of the state space, which in

48
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certain environments, also reflect optimal structures of the solution space. Mahadevan

2007 also had recourse to the same strategy but argued for its merits in transfer

learning.

5.1 Graph Construction

When dealing with a discrete state space, the task of estimating the state-transition

graph is much easier than with its continuous counterpart. It suffices indeed to collect

sample trajectories and setting graph edges between any two temporally successive

states. In the continuous case, temporal ordering can be enough to reconstruct a

single geodesic from a trajectory but merging them to form a graph is problematic.

Furthermore, with a countably infinity state space, the probability of encountering

exactly the same state twice is infinitely small. In machine learning, a common

approach for estimating the low-dimensional manifold assumed to underly a set of

points consists in building a proximity graph. The same technique is adopted in

this work for estimating the random walk Laplacian.

Proximity graphs arise from the general problem of extracting geometrical struc-

ture from a set of points in the plane. In machine learning, they are commonly found

in non-linear dimensionality reduction techniques (Tenenbaum, Silva, and Langford

2000; Roweis and Saul 2000), clustering (Luxburg 2007) or non-parametric classi-

fication (G. T. Toussaint and Berzan 2012). Under the manifold assumption, in a

small enough region around a point, the topological space is assimilable to the Eu-

clidean space. Edges in a proximity graph then capture the notion of distance in this

neighborhood.

5.1.1 Empty Region Graphs

Definition 5.1.1. The circle passing through all three vertices of a triangle is called

the circumcircle of a triangle.
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Figure 5.1: The Delaunay triangulation of a set of points in the plane. The red points
indicate the circumcenters. It can be seen that no vertex is within the circumcircle of
some triangle.

Definition 5.1.2. The Delaunay Triangulation (DT) of a set V is the dual of

the Voronoi diagram decomposing Rd into |V | cells. The Delaunay Triangulation

is obtained by setting edges between any two adjacent cells in the Voronoi diagram.

The DT also has the property that no point can be found in the circumcircle of any

triangle.

From a practical point of view, the Delaunay triangulation offers the advantage

of producing connected graphs. However, it only comes at the cost of having a much

larger edge set. In Rd where d ≥ 3, the number of triangles in the Delaunay graph is

known to be Ω(nd d
2 e). Furthermore, the worst case runtime complexity for computing

it in d ≥ 3 is O(nd d
2 +1e) using the gift-wrapping algorithm (Fortune 1997).

Definition 5.1.3. Let B(x, r) denote the sphere or radius r centered at x and δ(p, q)

be the distance between two points p and q (figure 5.2). Let the neighborhood of two

points be defined by Πp,q = B(p+q2 , δ(p,q)2 ). The Grabriel graph (GG) of a set of

vertices V is such that for all edges (p, q) ∈ E the space within Πp,q is empty. That

is, Πp,q ∩ V = ∅
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p q

(a) GG

p q

(b) RNG

Figure 5.2: Empty regions of the GG and RNG. The shaded area represents the empty
region.

The Gabriel graph was introduced in Gabriel and Sokal 1969 for the analysis

of geographic data. In the worst case, the GG of a set of points yields Ω(n2) edges

(Jaromczyk and G. Toussaint 1992). The expected number of edges of the GG was also

studied by Devroye 1988 and shown to be order of 2d−1n for most probability densities.

In d-dimensional Euclidean space, the trivial brute-force algorithm in O(dn3) time

complexity is the only one known to date (G. T. Toussaint and Berzan 2012).

Definition 5.1.4. The intersection of the two balls centered at p and q and of radius

δ(p, q) respectively is called a lune (figure 5.2); Λp,q = B(p, δ(p, q))∩B(q, δ(p, q)). The

Relative Neighborhood Graph (RNG) is the graph for which the set of edges E

is such that (p, q) ∈ E if and only if Λp,q ∩ V = ∅

The Relative Neighborhood graph was introduced by G. T. Toussaint 1980 and

studied for its ability to capture perceptually meaningful regularities. It was also

shown that in the Euclidean plane, the minimum spanning tree (MST) is a subgraph

of the RNG which in turns is contained in the DT. In Rd where d > 3, the maximum

number of edges in the RNG is Ω(n2) (Jaromczyk and G. Toussaint 1992) and the

brute-force algorithm for computing it is O(n3) (G. T. Toussaint 1980).

Definition 5.1.5. The Euclidean Minimum Spanning Tree (EMST) is the minimum

tree that connects every vertices with minimum weights sum. The EMST is a sub-

graph of the Delaunay triangulation.

The fastest algorithm for computing the EMST was recently obtained by March,

Ram, and Gray 2010 and appears to be approximately O(n log n) even in Rd.
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(a) Delaunay triangulation (b) Gabriel Graph

(c) RNG (d) EMST

Figure 5.3: Empty region graphs, ordered according to EMST (V ) ⊆ RNG(V ) ⊆
GG(V ) ⊆ DT (V ). A set of 250 points were drawn uniformly at random in R2

5.1.2 Nearest Neighbor Graphs

While the empty region graphs presented in the last section are geometrically ap-

pealing, their density (exponential for the GG) is problematic. Furthermore, the

computational cost for obtaining them is prohibitively expensive for the general large

scale problems envisioned in this thesis. The class of nearest neighbor graphs tends

to be a good replacement against these issues and have a long history in spectral

clustering (Luxburg 2007).

Definition 5.1.6. The Nearest Neighbor Graph (NNG) is a directed graph con-

necting vertex p to q if q is the nearest neighbor of p.

The nearest neighbor relation is not symmetric and thus forgo a definition of
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NNG as an undirected graph. When admitting k nearest neighbors, the concept can

be generalized to the K-NNG (Miller et al. 1997) and the NNG appears to be only a

special case where k = 1.

Definition 5.1.7. The Symmetric K-Nearest Neighbor Graph (K-NNG) is

graph in which an edge connects vertex p to q only if q is among the k nearest

neighbors of p. Let Nk(p) denote the set of k points closest to p, the edge set is

defined as

E = {(p, q) : p ∈ Nk(q) or q ∈ Nk(p)} (5.1)

Definition 5.1.8. The Mutual K-Nearest Neighbor Graph (K-NNG) is graph

for which an edge connects vertex p and q only if q is among the k nearest neighbors

of p and similarly for q in the other direction. That is,

E = {(p, q) : p ∈ Nk(q) and q ∈ Nk(p)} (5.2)

Definition 5.1.9. The ε-Graph is the graph connecting vertex p and q only if q is

within a ball of radius ε centered at p. That is,

E = {(p, q) : δ(p, q) < ε} (5.3)

The choice of an appropriate radius for the ε-graph tends to be difficult in practice.

Furthermore, if the sampled data exhibit varying densities, a fixed value for ε would

do poorly and potentially result in a disconnected graph. The mutual graph is usually

sparser and can better function over constant densities. It however also leads more

easily to disconnected graphs as shown in figure 5.4. Finally, the symmetric graph

better handles data at different scales but produces more edges.

K-NN graphs can be implemented effectively using a KD-Tree structure (Friedman,

Bentley, and Finkel 1977) in low dimensions but otherwise suffers from the curse of

dimensionality. When allowing for approximate neighbors, very efficient algorithms

have recently been proposed to solve this problem based on the concept of locality-
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(a) Input points (b) Symmetric Graph

(c) Mutual Graph (d) ε-graph

Figure 5.4: K-NN Graphs. The number of nearest neighbors was set to k = 5 for the
first two examples while ε was set to 0.01 for the last.

sensitive hashing (Andoni and Indyk 2008). As opposed to the KD-Tree approach,

these algorithms perform efficiently in high dimensional spaces.

5.2 Graph Clustering

Chapter 4 showed how the spectral properties of the graph Laplacian can reveal the

clusters structure. In general, computing the eigenvectors of dense matrices is O(n3),

making the NCut criterion difficult to apply over large state spaces. The community

detection algorithm of Newman 2006, the archetypical spectral clustering approach

of Ng, Jordan, and Weiss 2001, or the PCCA+ algorithm of Deuflhard and Weber

2005 all exhibit the same running time.
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The random walk perspective of graph partitioning is taken in the Walktrap

algorithm by Pons and Latapy 2005 to reduce the time complexity. The intuition

underlying this algorithm is that of a random walker visiting the graph and spending

more time getting trapped into densely connected regions and on rare occasions, jump

to a different set of vertices.

This probabilistic interpretation of graph partitioning had already been exploited

thoroughly in the literature on NCD systems (section 4.5) and highlighted by Maila

and Shi 2001, a corner stone for spectral clustering techniques in machine learning.

The contribution of Walktrap was to show how a probabilistic distance measure

can be defined between vertices and used to obtain clusters using a fast agglomerative

method.

Given the random walk transition matrix P, the distance measure between two

vertices is defined as

rij =

√√√√ n∑
k=1

P t
ik − P t

jk

dk
= ‖D−1/2[Pt]i −D−1/2[Pt]j‖2 (5.4)

where ‖ · ‖2 is the Euclidean norm and [P]ti is the ith row of matrix P. It appears

that the same measure was presented under the name of diffusion distance in the

same year by Nadler et al. 2005. Both papers also relates it to the spectrum of P

by showing that it amounts to explicitly computing the embedding and taking the

Euclidean distance in that space (what Nadler et al. 2005 calls the diffusion space).

Intuitively, the diffusion distance measures the L2 distance between two probability

distributions. The vector [P t]i contains the probabilities of starting from vertex i and

reaching any other vertex j in t steps, taking into account all possible paths between

them. For two vertices within a community, their probability vector are expected to

be very close as they are both likely to reach the other vertices using the same paths.

However, two vertices in different communities see very different sets of vertices under

t steps and their distance must be thus larger. Nadler et al. 2005 refers to this notion

of distance as the dynamical proximity since it depends on the dynamics of the random
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walk over the graph. Varying the number of steps t also has for effect to expose the

dynamics at different scales. In dense graphs, fewer steps are required to cover a

larger portion of the graph. On the other hand, in sparser graphs larger values for t

would not impact as much the locality of the vertices being visited.

The distance measure defined in equation 5.4 yet remains to be incorporated into a

clustering scheme. Ward’s agglomerative method (Ward 1963) is used in Walktrap

to obtain sets of vertices which are as similar as possible with respect to this measure.

Initially, the algorithm starts with |V | singleton partitions. At each iteration, com-

munities are merged in a pairwise manner and the distances for the new partitions are

updated. The notion of distance between communities is a straightforward extension

of equation 5.4 and expresses the probability of going from a given community C to

any vertex j in t steps.

P t
Cj = 1

|C|
∑
i∈C

P t
ij (5.5)

rC1,C2 = ‖D−1/2P t
C1• −D

−1/2P t
C2•‖ (5.6)

The vectors P t
C• are thus probability distributions over the graph expressing the

probabilities of choosing uniformly at random a vertex from C and reaching some

other vertex j under t steps. What makes Ward’s algorithm efficient in this setting

is that the distances after merging can be updated efficiently. Each distance com-

putation requires O(n) and an upper bound is given as a function of the height of

the dendogram. The number of distance computations is O(mn(H + t)) (Pons and

Latapy 2005 theorem 7). For sparse graphs where the number of edges m = |V | and

the height of the dendogram is O(log n), the worst case complexity then becomes

O(n2 log n). In the general case, the complexity is otherwise O(mn2).
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5.3 Algorithm

A fast method for discovering and learning subgoal options is presented in algorithm

5. For each option, a terminal subgoal value (pseudo-reward) g is overlaid to the

underlying reward function of the base MDP. The type of features or optimal control

algorithm is left unspecified. In the experiments presented in the next chapter, Fourier

features and Sarsa were used. The Least-Square Policy Iteration (LSPI) (Lagoudakis

and R. Parr 2003) algorithm could equally do well and make efficient use of the batch

data collected in the first step. In order to make the algorithm capable of handling

large state spaces, the Walktrap algorithm is used to discover dynamically stable

regions of the state space from the random walk process.

The symmetric K-NN proximity graph construction was retained for its computa-

tional efficiency, better adaptation across different scales and sparsity. In the spectral

clustering literature the problem of obtaining a similarity graph is sometimes neglected

by simply assuming a complete graph with n2 edges. Such a dense representation how-

ever quickly leads to poor computational performance. K-Nearest Neighbor graphs

are also used for spectral clustering and their empirical properties are discussed in

Luxburg 2007. The family of empty regions graphs consisting of the beta-skeleton

graph, GG and RNG was also investigated in Correa and Lindstrom 2012. The use

of EMST graphs was ruled out in this algorithm because of its extreme sparsity. It

is worth nothing however that Carreira-Perpiñán and Zemel 2004 experimented with

ensembles of perturbed EMST. The resulting denser combined graph was reported to

perform well for clustering.

5.3.1 Initiation and Termination in Continuous Space

When applying algorithm 5 in continuous state spaces, the definition of the initiation

and termination components needs to be generalized over regions rather than only

discrete states. Having already constructed a nearest neighbor index for the proximity
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Data: An environment from which to collect experience, terminal subgoal
reward Rsubgoal, number of random walk steps t, number of nearest
neighbors k

Result: A set of options

1. Acquire experience
dataset ← collect samples of experience {(xt, at, xt+1, rt)} through some fixed
policy. A random walk process can be used if the optimal policy is not known.
dataset ← optionally subsample the dataset uniformly at random if too large
index ← build an approximate nearest neighbor index over the sampled states

2. Build the symmetric K-NN graph
vertices ← set of sampled xt in dataset
edges ← ∅
foreach state x in dataset do

knn ← query the k nearest neighbors of x
foreach nearest neighbor nn in knn do

edges ← edges ∪ (x, nn)
end

end

3. Discover and learn options
communities ← Walktrap(Graph(vertices, edges), t)
options ← ∅
foreach community c in communities do
I ← c
subgoals ← ∂(c)
β ← 1subgoals
g← 1subgoals ·Rsubgoal

π ← LearnSubgoalMDP(g)
options ← options ∪ Option(I, β, π)

end
return options

Algorithm 5: Bottleneck-Options construction algorithm
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graph, an efficient solution is also to use it in the definition of the termination function

as

β(x) =


1 if N1(x) ∈ Cx

0 otherwise
(5.7)

where N1(x) is the first NN of x and Cx stands for the community to which x

belongs to. For better robustness against noise, the majority vote among k nearest

neighbors can be taken.

Membership to the initiation set can be determined by a logical negation of β. Let

C be the community associated with the initiation set of an option, a membership

query consists in

N1(x) ∈ C ⇒ x ∈ C (5.8)

Once again, majority voting can be used to reduce the effect of noise.



6
Empirical Evaluation

The continuous Pinball domain of Konidaris and Barto 2009 was chosen to better

understand the practical implications of the options construction algorithm presented

in the last chapter. All of the options discovery algorithms surveyed in this work have

only shown results for small grid-world domains. The choice of using Pinball thus

stems from the desire to show the scalability of the proposed algorithm over signifi-

cantly larger state spaces. This environment consists in arbitrarily shaped obstacles

laid out on the plane and among which an agent must learn to navigate a ball to the

target (figure 6.1(a)). The agent has access to four primitive discrete actions which

increase or decrease the velocity of the ball in the x and y directions as well as a

fifth null action. Collisions with the obstacles are elastic and a drag coefficient of

0.995 effectively stops ball movements after a finite number of steps when the null

action is chosen repeatedly. Each thrust action incurs a penalty of -5 while taking no

action costs -1. The episode terminates with +10000 reward when the agent reaches

the target. A four-dimensional continuous observation vector [x, y, ẋ, ẏ] is available to

the agent at every time step and is prone to sharp discontinuities. While the pinball

environment as presented originally in Konidaris and Barto 2009 is purely determin-

istic, normal noise with standard deviation σ = 0.03 was added exactly as in Tamar,

Castro, and Mannor 2013.

For easier comparison with the results presented in Konidaris and Barto 2009, the

obstacles layout named pinball_simple_single.cfg from the open source imple-

60
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(a) Pinball (b) Graph construction and
pruning

(c) Graph clustering

Figure 6.1: Pinball domain for reinforcement learning

mentation 1 of the author was used. It has been chosen to implement 2 Pinball in

Python rather than using the Java package already made available. One reason for

this was to simplify the integration with the Python-RL 3 project from which some

components had been used. Great care has however been taken in ensuring that the

two implementations behave exactly in the same way.

The main reason for presenting results in only one environment has to do that

with the fact that most standard RL domains are designed with small discrete state

spaces suitable only for tabular representation of the value function. The machinery

used in the proposed algorithm was intended for the continuous case. Even though

it would be possible to deploy it over grid world domains, this would make for a

poor demonstration of the algorithmic qualities sought for in this design. A second

problem pertains to the availability of software implementations for the standard RL

domains. The RL-Glue project of Tanner and White 2009 offers some of the RL

domains through a socket interface but still lacks sufficient maturity to make it easily

usable – to truly use it as a black box. Finally, it has to be understood that the idea

of machine learning datasets does not translate directly to that of RL environments.

When an environment is released to the community, it is not under the form of a
1http://www-all.cs.umass.edu/~gdk/pinball/
2https://github.com/pierrelux/pypinballl
3https://github.com/amarack/python-rl

http://www-all.cs.umass.edu/~gdk/pinball/
https://github.com/pierrelux/pypinballl
https://github.com/amarack/python-rl
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dataset of sampled transitions but rather as a full-blown simulator which can be acted

upon by the learning agent. This has to do with the fact that RL is fundamentally

concerned about the learning problem for situated learning agents having no prior

knowledge of their environment. It brings about the problem of exploration which

requires the ability to actively sample transitions from the environment. A static

dataset of transitions could not satisfy this requirement.

6.1 Graph Construction

Instead of collecting samples from a random walk process, a Sarsa(λ) agent was trained

with α = 0.001, γ = 0.9, λ = 0.9, ε = 0.01 and 50 trajectories were collected from it.

This choice was motivated by the practical need of keeping the number of samples

as low as possible and only collect the most relevant ones. The set of trajectories

was then merged into one dataset resulting in 48060 sampled states. The dataset

was later uniformly subsampled to 5000 data points for easier experimentation.The

FLANN library of Muja and Lowe 2009 was then used to build an approximate nearest

neighbors index for the construction of the symmetric KNN graph. The igraph library

of Csardi and Nepusz 2006 was used to manipulate the graph more easily.

In practice, it was found that k had a major impact on clustering. Since it is

a data-dependent parameter, it must be chosen on a case-by-case basis and cannot

be decided in advance. Little is known in the spectral clustering literature about the

effect of this parameter and even less about the general problem of choosing a suitable

proximity graph construction. This lack of guidance often leads practitioners to simply

settle on a k that ensures connectedness. Maier, Luxburg, and Hein 2008 provide some

theoretical results about the convergence of graph clustering as a function of k but fail

to provide practical guidelines. In the experiment considered here, k was obtained

by manually searching for the smallest value producing a connected graph, while

minimizing the number of communities found by Walktrap and maximizing the so-
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called modularity. As more communities get merged, the modularity is also expected

to increase. Therefore, the optimization is not over conflicting objectives. However,

smaller values of k result in sparser graphs which in turn induce a larger number

of communities. This brings about a tradeoff between computational resource and

succinctness of the options set. It is up to the implementer to decide on this question

as a function the available computation resource.

A given graph partitioning among c clusters or modules has a high value of mod-

ularity when the density of connections within a module is high compared to the

inter-module ones. A definition of this measure given by Newman 2006 is

Q =
c∑
i

(
eii − a2

i

)
(6.1)

eii =
∑
j

Aij
2mδ(ci, cj) (6.2)

ai =
∑
j

eij (6.3)

The eii term here above is the fraction of edges within module i while ai is of

those edges with at least one vertex in i. Walktrap does not directly optimizes the

modularity but rather uses the diffusion-like distance as presented in section 5.2. The

vertex dendogram produced by Ward’s algorithm is however cut at its maximum of

modularity.

As K increases, the graph becomes denser and drives the communities to be more

compact and less numerous. Walktrap being O(mn2), higher values of K also have

a direct impact on the running time as the number of edges m gets larger. The

presence of error bars in figure 6.2(a) is due to the approximate nearest neighbour

graph construction which results in probabilistic edge assignments. As K gets larger,

the graph gets denser and the clustering becomes more stable. Intuitively, adding more

edges in an already dense graph should have less of an impact on the inter-community

transition probabilities than for a very sparse one. A perturbation analysis could shed
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Figure 6.2: Effect of K and t during graph construction and clustering

some light on this phenomenon. Based on the curves shown in figure 5.4, K = 25

was retained for this experiment as it yielded good clustering stability and an edge

set |E| = 90348 of tractable size.

The number of random walk steps in Walktrap affects the scale at which the dy-

namical proximity is measured. As discussed in section 5.2, the graph density should

be considered in this choice. For large values of K, the resulting denser graph will

blur away faster the difference between pairs of vertices under longer random walks.

Figure 6.2(b) shows this phenomenon starting from t = 8 where the number of com-

munities sharply decreases from 26 to 16 as the vertices get dynamically more similar.

A smaller number of time steps t = 4 was deemed appropriate for this experiment,

providing big enough communities, a modularity of 0.7852 and fast computation.

A post-processing step was added in this experiment in order to prune infeasible

edges and improve the graph representation. In the Pinball domain, the observation

space leads to a graph representation where edges are set between four-dimensional

Euclidean points of the form [x, y, ẋ, ẏ]. While it can be difficult to establish the

feasibility of a transition between any two such points, it is clear that no edge should
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Figure 6.3: Learning with options

cross the obstacles in the x-y plane. A line intersection test is thus performed over

the symmetric graph to remove any such edge (figure 6.1(b)). The options construc-

tion algorithm can be dispensed with this step in the absence of such domain specific

knowledge. The experience has however shown that it can greatly improve the clus-

tering quality.

6.2 Learning

The bottleneck options algorithm 5 was applied over the clustering for the definition

of the initiation, policy and termination components of the options. The bottleneck

construction seeks option policies which can bring the agent at the boundary of their

respective cluster from any state within the initiation set. It was found however that

the vanilla bottleneck concept appears to be flawed when it comes to the continuous

case. The canonical HRL domain for motivating the bottleneck concept has been

mainly concerned with the doors and rooms domains in discrete state space. In an

environment such as the four-rooms domain (R. S. Sutton, Precup, and Singh 1999),

bottlenecks are precisely those single rectangular cells connecting two rooms in the
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x-y plane.

The situation becomes much more complex for the type of community structures

found in Pinball. The problem is twofold: the number of adjacent communities is

larger and the bottleneck regions are wider. The difficulty stems mostly from the fact

that bottlenecks are now identified in a four-dimensional space rather than only across

x-y coordinates. In the four-rooms domain, learning a policy which bring the agent to

any of its two doors arbitrarily at random would not impact the rate of convergence as

much. In general, the agent should however be constrained to an optimal stochastic

choice about which of the bottleneck states should be reached in order to obtain

maximum payoff. Furthermore, as the number of adjacent communities gets larger,

the number of possible outcomes arising from a transition to any of them might

increase and become difficult to evaluate. This intuition was verified empirically by

training the bottleneck options using the Sarsa(λ = 0.9) algorithm with learning rate

α = 0.001, discount factor γ = 0.9 and an epsilon-greedy exploration strategy with ε =

0.01. A policy over such options was then obtained using Intra-Option Learning

with α = 0.001, γ = 0.9, ε = 0.01. A linear fourth-order Fourier approximation of the

action-value function was used for every flat or options-based agent. Figure 6.3(b)

compares the number of steps taken per episode with that of a flat Sarsa(λ) learning

agent. The latter shows steady convergence to some successful policy which can take

the ball from its initial position to the goal. No learning however seems possible under

the naive bottleneck construction and intra-option learning is very unstable.

6.3 Navigation Options

The need to impose a stochastic choice on which bottlenecks to reach on the boundary

leads to slightly different kind of options referred to as navigation options in this thesis.

This designation highlights the fact that such options specify policies to navigate

between fixed pairs of adjacent communities.
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Data: An environment from which to collect experience, terminal subgoal
reward Rsubgoal, number of random walk steps t, number of nearest
neighbors k

Result: A set of options

1. Acquire experience
2. Build the symmetric K-NN graph
3. Discover and learn options
3.1 Establish relevant adjacent communities
communities, membership ← Walktrap(Graph(vertices, edges), t)
adjacencies ← [∅, . . . ,∅]︸ ︷︷ ︸

|communities|

foreach community c in communities do
foreach node n in c do

knn ← query the k nearest neighbors of n
label, frequency ← Mode(knn)
if label 6= membership[n] and frequency ≥ dk2e then

adjacencies[membership[n]]← adjacencies[membership[n]] ∪ label
end

end
end
3.2 Learn options
options ← ∅
foreach 〈label, adjLabel〉 in adjacencies do
I ← communities[label]
subgoals← communities[adjLabel]
β ← 1subgoals
g← 1subgoals ·Rsubgoal

π ← LearnSubgoalMDP(g)
options ← options ∪ Option(I, β, π)

end
return options

Algorithm 6: Navigation-Options construction algorithm
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Figure 6.4: Navigation options found using algorithm 6. Each arrow corresponds to
an option for transitioning across the given pair of communities. Macro transitions 1
to 7, 5 to 6, 6 to 1, and 7 to 0 were manually selected for learning.

Algorithm 6 is identical to 5 on the sampling and graph construction steps. It

however differs in the option discovery and construction approach by defining op-

tions between communities. The adjacent communities could be discovered simply

by considering the bottleneck edges and the label of their adjacent vertices. While

this approach would be valid in a perfect graph representation, the identification of

relevant bottleneck states is hindered by the high edge density needed for clustering.

Under such densities, most vertices of a community are also bottleneck states. It is

thus desirable to identify adjacent communities on the basis of a sparser proximity

graph. Algorithm 6 for navigation options thus queries the k nearest neighbors and

the most frequent label appearing among them is subject to majority test before es-

tablishing the adjacency relation. This procedure both reduces the number bottleneck

outliers and irrelevant adjacent communities.

The navigation options construction was applied over the 18 communities found

by Walktrap at maximum modularity under t = 4. It lead to 34 adjacency relations

being established, pruning at the same time small communities consisting of only a

few vertices. The learning curve in figure 6.4 was obtained by averaging 10 Intra-
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Option learning agents with α = 0.1, γ = 0.9, ε = 0.1 and a fourth order Fourier

approximation.

The off-policy Intra-Option Learning is known to diverge under function ap-

proximation. Such a problem was encountered during experimentation and motivated

the decision to manually select a subset of four options from the 34 found automat-

ically. Such a simplification reduced the learning complexity and made the task of

finding suitable learning parameters more easy. The options set used in 6.4 thus con-

sisted of the five primitive actions of pinball augmented with these four navigation

options. From the very few first episodes, it can be seen that the agent having access

to options successfully learnt to reach the target under approximately 300 steps while

the Sarsa agent having access to only primitive actions flattens off above 1000.

One of the main benefit from using options is to speed up learning R. S. Sutton,

Precup, and Singh 1999. This experiment clearly demonstrates that the proposed

algorithm can produce useful options in that regard. Compared to an agent using

no options, it learns much more quickly. Options discovered and learned in the early

phases are then effectively exploited by the hierarchical agent to quickly discover a

solution. Options in that sense did capture some structure in the solution space.

This can be observed in figure 6.4 where options were extracted over the geometrical

bottlenecks defined by the obstacles layout. Learning policies to traverse such regions

are useful since a stricter control over the actions choice is needed. A wrong choice

of action in such a neighborhood could quickly result in an uncontrollable bouncing

behavior from which it would be difficult to recover. An agent having access to options

for stepping over bottleneck regions can thus explore more safely, making the process

of discovering a solution to reach the goal easier.

A comparison with other methods would certainly be useful. However, none of

the surveyed method could be readily applied to this problem because of their limited

scope to discrete state spaces. Despite the higher time complexity, the betweenness

algorithm of Simsek and Barto 2008 would be applicable only if the bottleneck states,
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defined as states of high betweenness, could somehow be generalized to regions of

the continuous state space. Furthermore, it would be necessary to put in place a

mechanism for identifying initiation and termination as suggested in this work. The

graph clustering approach of Mathew, Peeyush, and Ravindran 2012 or Bouvrie and

Maggioni 2012 would also require a similar extension. Future work could include a

comparison to the skills chaining algorithm of Konidaris and Barto 2009 which

was shown to produce useful options in the Pinball domain. This would however go

beyond the objectives of this study as Skills chaining is arguably more of backward

chaining approach for planning rather than a bottleneck one.



7
Conclusion

The bottleneck approach to options discovery can be rebuttal because of the lack

of proper theoretical foundations. This thesis attempted to motivate this family of

heuristics by establishing a connection to spectral graph theory and relating it to the

vast body of work on Nearly Decomposable Markov Chains (NCD) spanning across

more than three decades. Furthermore, an algorithm based on these principles was

proposed for discovering options in continuous state spaces. While many bottleneck-

like approaches have succeeded in discrete domains, none of them had yet shown how

to extend these ideas in a continuous domain such as Pinball. The empirical evalu-

ation of the proposed algorithm showed its feasibility but also highlighted practical

difficulties to use it as a black-box approach.

A frequent critique brought against this class of algorithms has to do with the

reward structured being apparently ignored. After having studied the properties

of the graph Laplacian in section 4, this claim can be dismissed. It is true that

algorithm proposed here constructs a graph representation which does not capture the

underlying transitions probabilities of some optimal policy. The resulting clustering

can then be understood in terms of the dynamics of a random walk process over

it; a different stochastic process than the Markov chain induced by some optimal

policy. Bottlenecks captured in this way are thus related to those of the random walk

Laplacian rather than the true Laplacian of the MDP. If such a substitution does not

preserve the reward structure, how can it then succeed in practice ?

71
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A plausible reason might have to do with the kind of domains commonly chosen

in HRL. In the four-rooms domains for example, doors appear as natural bottleneck

states but also happen to be in structural elements in solution space. The four-rooms

domain is so ubiquitous that bottlenecks are often explained in terms of doors. Such

references have the unfortunate effect of misguiding practitioners into conceiving bot-

tlenecks as merely state features, or saliencies, rather than as an effective coarsening

of the dynamics induced by an MDP.

The empirical results presented in this work depart from those obtained by pre-

vious authors in the fact that a bottleneck-like option construction algorithm for

continuous state space was proposed and evaluated under a new HRL domain. While

subject to the same oversimplification concerning the reward structure, a useful op-

tions decomposition was still obtained in the Pinball domain, but also uncovered

practical obstacles.

It seems at this point that a proper research methodology should be concerned

with not only a more diverse set of domains but also consider the generation of random

MDPs with varying degrees of decomposability. The approach of Archibald, McKin-

non, and L. C. Thomas 1995 for the generating MDPs seems to be an appropriate fit

with the mixing rate being controllable as well as other structural properties of the

transition matrix.

The recurrence of the bottleneck concept in the literature should motivate the

establishment of a research agenda to equip this notion with proper theoretical foun-

dations. The theory of NCD Markov chains, and more generally that of MDPs from

operations research, seems to have been overlooked in in HRL. The problem of options

discovery should be first tackled using the theory of MDPs and extended to more of a

model-free and online setting compatible with the reinforcement learning framework.

A promising research avenue might lie in some information theoretic approach similar

to Deng, Mehta, and Meyn 2011 under a rate distortion perspective of the value func-

tion as initiated by Still and Precup 2012. Such results would not only benefit our
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understanding of temporal abstraction in RL but also provide insights to the line of

work initiated by Botvinick 2012 on the cognitive process involved in human subgoal

discovery.
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