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ABSTRACT

Software approaches to Thread-Level Speculation (TLS) have been recently ex-

plored, bypassing the need for specialized hardware designs. These approaches, how-

ever, tend to focus on source or VM-level implementations aimed at specific language

and runtime environments. In addition, previous software approaches tend to make

use of a simple thread forking model, reducing their ability to extract substantial

parallelism from tree-form recursion programs. We propose a Mixed forking model

Universal software-TLS (MUTLS) system to overcome these limitations. Our work

demonstrates that actual speedup is achievable on existing, commodity multi-core

processors while maintaining the flexibility of a highly generic implementation con-

text, though memory-intensive benchmarks could be improved by further optimiza-

tions. Our experiments also indicate that a mixed model is preferable for paral-

lelization of tree-form recursion applications over the simple forking models used by

previous software-TLS approaches.

We then improve the performance of the MUTLS system by proposing memory

buffering optimizations. Traditional “lazy” buffering mechanisms enable strong iso-

lation of speculative threads, but imply large memory overheads, while more recent

“eager” mechanisms improve scalability, but are more sensitive to data dependencies

and have higher rollback costs. We thus describe an integrated system that incorpo-

rates the best of both designs, automatically selecting the best buffering mechanism.
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Our approach builds on novel buffering designs with specific optimizations that im-

prove both lazy and eager buffer management, allowing us to achieve 71% geometric

mean performance of the OpenMP manually parallelized version.

Fork-heuristics play a key role in automatic parallelization using TLS. Current

fork-heuristics either lack real parallel execution environment information to accu-

rately evaluate fork points and/or focus on hardware-TLS implementation which

cannot be directly applied to software-TLS. We propose adaptive fork-heuristics as

well as a feedback-based selection technique to overcome the problems. Experiments

show that the adaptive fork-heuristics and feedback-based selection are generally ef-

fective for automatic parallelization using software-TLS, achieving respectively 56%

and 76% performance of the manually annotated speculative version. More advanced

automatic workload distribution strategies can also help to improve the effectiveness

of the automatic parallelization approaches.

Finally, dynamic languages such as Python are difficult to statically analyze

and parallelize, which is an ideal context for the dynamic parallelization software-

TLS approach. We integrate the Python JIT specializing compiler Numba with

the MUTLS system to get a parallelizing compiler for Python. Experiments on 6

benchmarks show that the speculatively parallelized version achieve speedups from

1.8 to 16.4 and from 2.2 to 40.5 for the JIT compiled python programs with and

without accounting for JIT compilation time, respectively.

Overall, we demonstrate that software-TLS can be an efficient and effective

approach for automatic parallelization on commodity multi-core processors for a

variety of language contexts/execution environments.
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ABRÉGÉ

Plusieurs approches au niveau logiciel pour la spéculation des fils d’exécution

(TLS) ont récemment étées explorées, évitant la nécessité de concevoir du matériel

informatique spécialisé. Cependant, ces approches ont tendence à se concentrer sur

des implémentations au niveau du code source or des machines virtuelles qui sont

destinées à des langages ou environnements particuliers. De plus, les approches logi-

cielles précédentes ont eu tendance à utiliser un modèle de fork de fils d’éxécution

plutôt simple, réduisant leur capacité à extraire du parallélisme important à par-

tir de programmes récursifs de forme arbre. Nous proposons un système “Mixed

forking model Universal software-TLS (MUTLS)” afin de surmonter ces limitations.

Notre recherche démontre que des accélérations sont réalisables sur des processeurs

multi-core sur le marché aujourd’hui, tout en conservant la flexibilité d’un contexte

de mise en oeuvre très générique – cela dit, la performace sur des programmes de

référence à utilisation intensive de mémoire pourraient être améliorés par des optimi-

sations supplémentaires. Nos expériences indiquent aussi que, pour la parallélisation

d’applications récursives de forme arbre, un modèle mixte est préférable aux modèles

simple utilisés par les approches de TLS logicielles précédentes.

Nous améliorons ensuite la performance de système MUTLS en proposant des

optimisations de mise en mémoire tampon. Les mécanismes traditionnels “paresseux”

de mise en mémoire tampon permettent d’isoler efficacement les fils spéculatifs, au

coût de hautes surcharges de mémoire, tandis que les mécanismes “strictes” plus

récents sont plus évolutifs, mais plus sensibles aux dépendences de données et ont

ix



des coûts de restauration plus élevés. Nous décrivons donc un système intégré

qui incorpore le meilleur des deux conceptions, sélectionnant automatiquement le

meilleur mécanisme de mise en mémoire tampon. Notre approche se fonde sur

de nouvelles conceptions de mise en mémoire tampon avec des optimisations qui

améliorent la gestion“paresseuse” et “stricte” de la mémpire tampon, nous permet-

tant ainsi d’atteindre une performance moyenne géométrique de 71% par rapport à

une version parallelisée manuellement avec OpenMP. L’application de ces optimisa-

tions de mise en mémoire tampon est donc une composante importante de l’ensemble

d’optimisations nécessaire pour une mise en oeuvre TLS logicielle efficace et pratique.

Les heuristiques de fork jouent un rôle clé dans la parallélisation automatique

avec TLS. Les heuristiques n’ont pas suffisamment d’information sur l’environnement

d’exécution parallèle pour évaluer avec précision les points de fork et/ou se con-

centrent sur des implémentations matérielles de TLS qui ne sont pas applicables

aux implémentations logiciels de TLS. Nous proposons des heuristiques adaptives

ainsi qu’une technique de sélection réactive afin de surmonter ces problèmes. Des

expériences démontrent que les heuristiques adaptatives et notre technique de sélection

réactive sont généralement efficaces pour la parallélisation automatique avec TLS,

atteignant respectivement 56% et 76% de la performance des versions spéculative

annotées à la main. Des stratégies plus sophistiquées de distribution de charge de

travail pourraient aussi aider à améliorer l’efficacité des approches de parallélisation

automatique.

Finalement, les langages dynamiques tel que Python sont difficiles à analyser

statiquement et paralléliser, mais forment un context idéal pour l’approche logicielle
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TLS à la parallélisation dynamique. Nous intégrons Numba, le compilateur précialisé

en JIT pour Python, avec le système MUTLS, afin d’obtenir un compilateur par-

allélisant pour Python. Nos expérience sur 6 programmes de références démontrent

que la version parallelisée qui utilise TLS atteint des accélérations de 1.8 à 16.4 par

rapport à la version JIT si on inclus le temps de compilation et de 2.2 à 40.5 si on

exclus le temps de compilation.

Dans l’ensemble, nous démontrons que la TLS logicielle peut être une approche

efficace pour la parallélisation automatique sur des processeurs multi-core standard

pour une variété de langages et d’environnements d’exécution.
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CHAPTER 1
Introduction

As multi-core and many-core processing have been the trend of CPU archi-

tectures to advance performance, and stream processors such as GPUs have been

increasingly more capable for general purpose computing, thread-level parallelism is

becoming more and more critical to exploit computing powers from modern hard-

ware.

However, traditional shared memory [21] parallel programming paradigms such

as OpenMP [19], pthread [23] and OpenCL [18] are error-prone as they require the

programmer to explicitly deal with parallel execution details such as inter-thread data

communication and synchronization. In addition, parallel programs are difficult to

debug due to nondeterministic execution and subtle issues such as race condition

[25], deadlock [3] and memory inconsistency [14].

To address this problem, speculative, or optimistic, parallelism, has been pro-

posed [144, 152, 51, 132, 176, 60, 94]. Speculative parallelism guarantees correctness

of parallel programs in terms of sequential execution equivalence. The runtime sys-

tem tracks parallel execution and automatically rolls back offending threads, thereby

releasing the programmer from the responsibility for correctness of parallelization.

Parallelizing programs by speculative approaches is straightforward. Given their

sequential counterpart, if the sequential program is correct, the parallel program

is guaranteed to be correct. Another advantage of speculative approaches is that
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they can be applied to parallelize pointer-based irregular applications that are input-

dependent and cannot be parallelized by traditional approaches such as OpenMP [94].

1.1 Thread-Level Speculation (TLS)

Thread-level speculation (TLS), or speculative multithreading (SpMT) is a safety-

guaranteed approach to automatic or implicit parallelization [153, 128, 63, 162, 125,

135, 179]. Speculative threads are optimistically launched at fork points, executing a

code sequence from join points well ahead of their parent thread. Safety is preserved

in this speculative model by buffering reads and writes of the speculative thread.

Once the parent thread reaches the join point the latter may be joined, committing

speculative writes to main memory and merging its execution state into the parent

thread, provided no read conflicts have occurred. In the presence of conflicts the

speculative child execution is discarded or rolled back for re-execution by the parent.

The situations are illustrated in Figure 1–1.
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Figure 1–1: Thread-Level Speculation (TLS)

As shown in Figure 1–1(a), the sequential program is annotated with a pair of

fork point and join point, which can be performed manually by the programmer or
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automatically by tools such as the compiler or profiler, as will be discussed in later

chapters. During program execution in Figure 1–1(b), when a thread (in the left

blue box) reaches the fork point just before S2, the thread forks a speculative child

thread (in the right blue box) executing from S3 that is just after the join point.

To guarantee safety of the speculative execution, memory reads/writes of the child

speculative thread are buffered. When the parent thread reaches the join point just

before S3, it then signals the child thread to join, which now executes to some future

point just before S4.

When receiving notification from the parent thread to join, the child thread

validates its speculative buffering. A conflict is detected if the child speculative

thread has read from an address a value that is different from the current value in

the main memory (stale read). If there is no conflict, as illustrated in Figure 1–1(c),

the child thread commits its write buffer to the main memory, and the parent thread

jumps to the execution point S4 of the child thread and continues execution, in which

case the parent and the child threads are effectively parallelized. Otherwise, the

child thread execution is wasted and rolled back, while the parent thread continues

execution from S3, as shown in Figure 1–1(d).

As can be seen from the cases (c) and (d) of Figure 1–1, appropriate selection

of fork/join points is a critical factor of effective TLS. The selection of fork/join

points can be either automated with heuristics [51, 63, 162, 140, 177, 61, 103, 44] or

manually specified based on programmer directives [137, 124, 43]. Research into the

former has demonstrated TLS as a promising technique for automatic parallelization.
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Thread-level speculation has received significant attention in terms of hardware

development as a feasible technique for automatic parallelization [51, 63, 162, 140,

107]. Hardware-centric TLS uses dedicated hardware to manage speculative threads

and memory buffering, which usually are efficient and low-overhead runtime system

implementations: no memory buffering overhead and thread fork, validation, com-

mit and rollback overhead is in the order of 10 cycles. However, it also tends to be

constrained to small granularity parallelism due to limited hardware buffering re-

sources for maintaining the speculative data, which are typically 16KB to 64KB per

CPU/thread. Both reasons lead hardware-TLS to finer-grained parallelism in which

most threads are less than 1000 cycles. A tight analysis on the SPEC CPU2006

benchmarks showed that the speedup potential uniquely achievable by TLS at the

innermost loop level is the order of 1% [91], suggesting TLS needs be applied at a

larger granularity to be more effective [60].

Software approaches to TLS have been explored as well, which typically use

operating system (OS) level threads as speculative threads and main memory as

speculative buffering. Memory accesses of a speculative thread are redirected to its

own buffer and recorded in the read/write sets, which are usually implemented as

hash tables with memory addresses as hash keys for efficiency. With the advantage

of directly applying to existing commodity multiprocessors, software-TLS has been

receiving increasingly more attention [132, 124, 179, 45, 116]. Software-TLS also has

the advantage of much greater and more flexible resource limits, especially in terms

of memory. This potentially allows for larger granularity in the parallelism. However,
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software-TLS runtime systems incur larger overhead than their hardware counter-

part, which can be partially addressed by applying to larger granularity parallelism

to amortize the overhead. Research works have also been proposed to optimize the

software-TLS memory buffering [148, 52, 125, 179, 46].

1.2 MUTLS

TLS approaches differ in terms of forking models: how they create and man-

age speculative threads. Two main forking models exist: in-order and out-of-order.

Existing software models have been primarily based on one or the other of these

strategies, which allow for good exploitation of parallelism in loops and deep method

calls respectively, as will be discussed in sections 2.3.1 and 2.3.2. These simple forking

models, however, have limitations with respect to the ability to extract parallelism,

and a reliance on pure in-order or pure out-of-order design limits the amount of

parallelism that can be found in more complex programs with nested levels of paral-

lelism, including ones that make extensive use of tree-form recursion, such as found

in depth-first search and divide-and-conquer programs. These parallelism opportu-

nities can be effectively exploited using the mixed forking model, as will be discussed

in section 2.3.3.

The immediacy of application of software-TLS also requires some tradeoff in

terms of increased overhead and compilation complexity, with existing research ef-

forts based on prototype, language-specific implementations. Realistic and convinc-

ing evaluation of such designs, however, requires consideration of a full compiler

infrastructure, one that enables both deep investigation and application to a variety

of compilation contexts.

5



In this thesis we propose the Mixed-model Universal software-TLS (MUTLS)

system to overcome both limitations of existing software-TLS approaches. First,

MUTLS uses a mixed forking model to maximize the potential to extract paral-

lelism in more general classes of programs. Second, MUTLS is universal in that it

is language and architecture neutral. Our approach is to build a pure software-TLS

design using the popular LLVM compiler framework [7]. We integrate our design into

LLVM’s machine and language-agnostic intermediate representation (IR), enabling

generic application of TLS to arbitrary input and output contexts. This has the

advantage of providing a full and non-trivial compiler context for evaluating TLS, as

well as allowing the full range of source and hardware pairings enabled by the LLVM

framework.

As was discussed in section 1.1, the runtime system and selection of fork/join

points are two important issues for effective TLS implementation, which we will

address by proposing memory buffering optimizations and adaptive fork-heuristics,

respectively. Dynamic languages is difficult to statically analyze and parallelize due

to the lack of type information, which is an ideal context for software-TLS and

motivates us to explore the benefits of TLS for the dynamic language context.

1.3 Contributions

The thesis makes the following range of contributions.

• We propose the tree-form, mixed forking model which incurs less cascading

rollbacks than previous mixed forking models.

• We propose the language and architecture independent software-TLS system

MUTLS and modify front-ends for C/C++ and Fortran to support user-driven
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speculation. From this we are able to generate native executables (or JIT-based

execution) for non-trivial benchmarks to evaluate performance, illustrating the

potential of our approach as a means to explore and compare the use of TLS in

different language contexts. Software-TLS faces significant challenges in terms

of balancing overhead concerns with the many possible design decisions possi-

ble in TLS implementation. Our system simplifies this research exploration by

allowing for practical experimentation within an optimizing compiler context.

We also integrate the tree-form mixed forking model into the MUTLS frame-

work, demonstrating that the more advanced tree-form mixed forking model

can be implemented in a flexible software-TLS system across source languages

and target architectures.

• With a programmer-directed approach, we perform a deep experimental analy-

sis of the performance of the MUTLS software-TLS system, demonstrating real

speedup on both C/C++ and Fortran benchmarks. We also performed the

first experiment on depth-first search (DFS) and divide-and-conquer (D&C)

tree-form recursion benchmarks and show that a mixed model is preferable to

in-order and out-of-order models for tree-form recursion applications.

• We propose memory buffering optimizations to improve the performance and

scalability of software-TLS. One of the proposed optimizations also enables

the application of software-TLS to any granularity parallelism without caus-

ing buffering overflow. We also propose the readonly-page optimization and
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the buffering integration mechanism to automatically identify readonly, inde-

pendent and dependent variables on-the-fly and utilize appropriate optimiza-

tion/buffering for different variables, which can effectively combine the strength

of different optimization/buffering designs in each thread.

• We propose adaptive fork-heuristics to enable effective automatic paralleliza-

tion using software-TLS. We also propose a feedback-based selection technique

to reduce the adaptive fork-heuristics overhead through re-compilation using

the heuristics log files. We then integrate the adaptive fork-heuristics and

feedback-based selection technique into the MUTLS system and implement re-

lated compiler transformations and optimizations to achieve an effective auto-

matic parallelizing compiler using software-TLS, demonstrating that software-

TLS can be a practical approach for automatic parallelization on commodity

multi-core processors.

• We integrate the LLVM-based Python specializing JIT compiler Numba with

the software-TLS system MUTLS to obtain a parallelizing compiler for Python,

demonstrating that MUTLS can be an effective framework for parallelization

of dynamic languages. Our implementation and optimization takes relatively

small effort, which also demonstrates that the language and architecture in-

dependent software-TLS approach employed by MUTLS is as well valuable in

dynamic language context.

1.4 Roadmap

Chapter 2 describes the background for the subsequent chapters, including the

LLVM compiler infrastructure, TLS speculation and forking models as well as the
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software-TLS memory buffering implementations. In Chapter 3, using an incremen-

tal approach, we present the MUTLS software-TLS system design, implementation

and optimizations. We then perform experiments on the MUTLS system design

of Chapter 3 and present the results in Chapter 4. In Chapter 5, we address the

software-TLS runtime system issue as was discussed in section 1.1 by proposing

memory buffering optimizations to improve the performance of memory-intensive

applications for the MUTLS software-TLS system implemented in Chapter 3. In

Chapter 6, we address the problem of automatically selecting appropriate fork/join

points discussed in section 1.1 by proposing adaptive fork-heuristics and feedback-

based selection, which then allows us to implement automatic parallelization in the

MUTLS system. Chapter 7 implements and experiments with a software-TLS sys-

tem for Python by integrating the Python specializing JIT compiler Numba with

the MUTLS framework. We present related research works in Chapter 8 and finally

conclude the thesis and discuss possible future work in Chapter 9.

9



CHAPTER 2
Background

In this chapter, we introduce the background to implement and optimize the

MUTLS software thread-level speculation (TLS) system. First, we describe the

LLVM compiler framework [7] and intermediate representation, which is the in-

frastructure that MUTLS is integrated into and based on. Then we discuss TLS

concepts of speculation and forking models, which inform various design decisions of

the MUTLS system which will be discussed in Chapter 3. Finally, we present TLS

memory buffering mechanisms which form the basis of MUTLS memory buffering

optimizations of Chapter 5.

2.1 LLVM

MUTLS is purely based on the well-defined LLVM intermediate representation

(IR). LLVM [96] is a compiler framework that allows for multiple source languages

and target architectures through the use of a generic, Static Single Assignment (SSA)

based IR. This intermediate form is a type-safe, expressive assembly code which can

be regarded as a universal abstract machine capable of representing all high-level

languages.

There are many analyses and optimizations in LLVM, each implemented as a

pass. Each pass can specify its required and/or preserved analyses, so transformation

passes can use analysis information and assume the IR already underwent specific

transformations. There are two sorts of passes: LLVM-IR based passes and Machine
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Function passes. Transformations of the former are purely based on the LLVM-

IR—i.e. from well-formed LLVM-IR to well-formed LLVM-IR. Machine Function

passes are performed in the code generator for specific target architectures. The

approach we use implements an LLVM-IR based pass and thus is inherently target

independent. The LLVM intermediate representation and passes are illustrated in

Figure 2–1.

LLVM has three execution models: static execution, just-in-time (JIT) compi-

lation and interpretation. The first model compiles LLVM-IR to native executable

that can directly run on hardware, which is suitable for statically typed languages

such as C/C++ and Fortran. While the latter two use LLVM execution engine to

dynamically JIT compile/interpret LLVM-IR at runtime, which enables LLVM to

serve as backend for dynamically typed languages such as Matlab and Python that

typically run in a virtual machine (VM) and/or JIT runtime environment.

LLVM-IR has three equivalent forms: in-memory compiler IR, human readable

assembly language and machine bytecode. LLVM compiler analysis and transforma-

tion passes perform on the in-memory compiler IR form, which can be saved to and

loaded from external storage such as hard disks as the assembly language and/or

machine bytecode forms. The assembly language and machine bytecode forms each

has its own advantage: the former makes it easier for the user to debug passes and

visualize the IR, while the latter is more compact and structured, thus preferable for

processing by the compiler, particularly for JIT compilation and/or interpretation.

A sample C program as well as an excerpt of the corresponding LLVM-IR in

human readable assembly language form is presented in Figure 2–2. The C program

11



 

 

Source (C/C++/Fortran/…) 

LLVM-IR based passes 

Well-formed LLVM-IR 

Architecture-dependent IRs Machine Function passes 

Well-formed LLVM-IR 

… 

… 

Well-formed LLVM-IR 

MUTLS transformation pass 

LLVM frontend 

CPU object code/assembly 

Figure 2–1: LLVM intermediate representations and passes

is a translation unit that implements a function to compute the square root sum of

an array a of size n. The LLVM-IR in 2–2(b) is optimized by the LLVM compiler
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infrastructure using the O2 level optimization. In the assembly language form LLVM-

IR, global identifiers such as function names (@f and @sqrt) are prefixed with “@”.

While local identifiers such as register variables (%0 to %7, %exitcond and %.lcssa),

function parameters (%n and %a) and labels (%entry, %"3" and %"5") are prefixed

with “%”, except for basic block identifiers (entry, "3" and "5") which are suffixed

with “:”. Identifiers without “@” and “%” prefixes or “:” suffixes are LLVM keywords

such as function definition/declaration (define/declare), types (double, i1 and i64),

attributes (nocapture and readonly), and instructions (icmp, br, etc). The semicolon

“;” starts a comment line.

The parameter %a of the LLVM function @f has two attributes for passes to

perform better optimizations: the first attribute nocapture means that the function

@f does not store the pointer %a in an object with lifetime longer than @f, while

the second readonly indicates that @f does not write to an address derived from the

pointer %a. The body of the function @f consists of three basic blocks. The first

block entry has two instructions: the first instruction compares the 64-bit integer

argument %n with the constant 0, and assigns true/false to the boolean (i1) register

variable %0 if they are equal/unequal. The second instruction then jumps to the

block "5" if %0 is true (%n is 0), and to the block "3" otherwise.

The first two instructions %1 and %2 of the basic block "3" are phi-nodes, which

are a type of nodes specific to the SSA-form control-flow graph (CFG) or IR. In

SSA-form IR, each variable can only be assigned a value once (hence the name

Static Single Assignment), and in the case of multiple assignment to a variable (e.g.

the i and s variables of the function f in Figure 2–2(a)), phi-nodes are introduced to

13



 

define double @f(i64 %n, double* nocapture readonly %a) { 

entry: 

  %0 = icmp eq i64 %n, 0 

  br i1 %0, label %"5", label %"3" 

 

"3":                                              ; preds = %entry, %"3" 

  %1 = phi double [ %6, %"3" ], [ 0.000000e+00, %entry ] 

  %2 = phi i64 [ %7, %"3" ], [ 0, %entry ] 

  %3 = getelementptr double* %a, i64 %2 

  %4 = load double* %3, align 8 

  %5 = tail call double @sqrt(double %4) 

  %6 = fadd double %1, %5 

  %7 = add i64 %2, 1 

  %exitcond = icmp eq i64 %7, %n 

  br i1 %exitcond, label %"5", label %"3" 

 

"5":                                              ; preds = %"3", %entry 

  %.lcssa = phi double [ 0.000000e+00, %entry ], [ %6, %"3" ] 

  ret double %.lcssa 

} 

 

declare double @sqrt(double) 

#include <math.h> 

double f(size_t n, double a[]){ 

        double s=0; 

        for(size_t i=0;i<n;i++) s+=sqrt(a[i]); 

        return s; 

} 

(a) Sample C program 

(b) LLVM IR excerpt for the C program in (a) 

Figure 2–2: LLVM IR: human readable assembly language form
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discern the different versions of the variable. For this program, the phi-nodes %1 and

%2 are corresponding to the variables s and i, respectively. The phi-node register

variable %1 means that the value of %1 is 0.000000e+00 (floating point 0) if the block

"3" is branched to from entry, and is %6 if the block is branched to from "3". Similar

is for %2.

The register variable %3 is a pointer derived from the pointer %a with index %2,

%4 is the loaded double value from %3, and %5 is the value returned by the function

call sqrt(%4). The tail marker in the call instruction is a compiler hint indicating

that the function sqrt does not access the stack of the caller function @f and thus

is candidate for tail call optimization. Then %6 computes the sum of the s value

of previous iterations %1 and return value of the sqrt function call of the current

iteration %5, while %7 computes the loop index of the next iteration (%2+1). At

last, %exitcond compares the loop index %7 with the number of iterations %n, and

branches to the block "5" if %exitcond is true and to "3" to execute the next iteration

otherwise.

The last basic block "5" assigns the phi-node %.lcssa to 0 if it is branched to

from entry (%n is 0), and to %6 if branched to from "3" (square root sum of the array

%a). Finally, %.lcssa is returned from the function @f.

2.2 TLS Speculation Model

Traditionally, TLS approaches have been characterized by different speculation

models, based on the selection of fork/join points. Loop-level speculation [51, 63,

162, 125] speculates on loop iterations, with loop iteration boundaries as fork/join

joints (illustrated in Figure 2–3(a)). Method-level speculation (MLS) [50, 133] selects
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method (function) calls as fork points and speculates on their continuations (Figure

2–3(b)). Arbitrary point speculation [140, 60] generally imposes no constraints on

the selection of fork/join points as long as they reside in the same function (Fig-

ure 2–3(c)). In principle all these forms are equivalent, although the required code

transformations make conversion technically challenging.

 

  

void f(…){ 
    … 
#pragma tls forkpoint id 1 
// fork point 
    … 
#pragma tls joinpoint id 1 
// join point 
    … 
} 

void f(…){ 

    … 

#pragma tls speculate call 

 // fork point 

    g(…); 

// join point 

    … 

} 

(b) method-level speculation (c) arbitrary-point speculation

void f(…){ 
    … 
#pragma tls speculate loop 
    for(…){ 
// fork point 
        … 
// join point 
    } 
    … 
} 

(a) loop-level speculation 

Figure 2–3: Speculation Models. (a) Loop-Level Speculation. Speculative threads
are launched at the beginning of a loop iteration that speculatively executes the
next loop iteration. (b) Method-Level Speculation (MLS). Speculative threads are
launched when reaching a method (function) call that speculatively executes the
continuation of the call. (c) Arbitrary Point Speculation. Speculative threads are
launched at an annotated fork point that speculatively executes from the correspond-
ing (with the same id) annotated join point.

2.3 TLS Forking Model

Within any of these speculation models, different forking models can be used

to define how the existence of multiple speculative threads is managed. Each of

in-order, out-of-order and mixed, provides different choices, and has greater or lesser

affinity for different program contexts. The forking models are also orthogonal to
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the speculation models (e.g. an arbitrary point speculation can be either in-order,

out-of-order or mixed).

2.3.1 In-Order Forking Model

In the in-order forking model, only the most recently speculated (most specula-

tive) thread can fork a new speculative thread. This model is particularly appropriate

for loop-based speculation, with future loop iterations forked in iteration order. The

non-speculative parent begins the first iteration, forking a speculative child thread

to execute the second, which can then fork a speculative grand-child to execute the

third, and so on. Therefore, a typical scenario is that speculative threads are created

in the order of their sequential execution: if the start of thread A would be prior to

the start of thread B in sequential execution, then thread A is forked by its parent

prior to B, and hence the name of this fork model.

This model has the advantage that N threads can efficiently parallelize a loop of

N iterations, but the disadvantage that if a speculative thread has to rollback all sub-

sequently speculated threads should also cascade rollback, as well as the constraint

that parallelism not found in the most speculative thread may not be exploited.

The in-order forking model is demonstrated in Figure 2–4. The vertical green

lines represent parallel thread execution, with points further toward the bottom rep-

resenting sequentially later execution. Dash green lines indicate committed specula-

tive thread execution and thus reduced program execution time. Blue lines represent

forking a speculative thread at a fork point to start execution from the corresponding

join point. While red lines represent the thread joining process. In this case, the

non-speculative thread T1 forks a child speculative thread T2, which immediately
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T1 

T2 

T3 

T4 

Join T2 

T2 Commit 

Join T3 

T3 Commit 

T5 

Join T4 

Fork T2 

Fork T3 

Fork T4 

Fork T5 

Figure 2–4: In-order Forking Model. The non-speculative thread T1 forks specula-
tive thread T2, which then speculates T3, and so on. T2 and T3 in-order commit
during joining. When T1 joins T4, T4 detects dependency and rolls back, which
causes T5 to cascade rollback.
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forks the grand-child speculative thread T3, which continues the process to speculate

threads T4 and T5. If the example is an instance of loop-level speculation, then each

of the 5 threads executes one loop iteration. We can see that among the threads T1

to T5, the higher the thread number, the later the represented sequential execution.

It can also be noted that the non-speculative thread joins the speculative threads in

the same order as they are speculated (the speculative threads in-order commit). If

one of the speculative threads rolls back, for example, due to memory dependencies,

then all subsequently speculated threads need also rollback, as is the case for T4 and

T5.

2.3.2 Out-of-Order Forking Model

The out-of-order model usually applies to method-level speculation. As the non-

speculative parent thread enters a function call, a new thread is forked to execute the

method continuation. This process can continue recursively, resulting in speculative

threads being forked in the order that the parent descends into nested method calls,

and so joined in the reverse order, as the parent returns from each call.

Since all speculative threads are the direct children of the non-speculative thread,

this approach avoids the cascading rollback concerns found in in-order models due to

“increasing” speculation. It also easily applies to more arbitrary code constructions

as long as they exhibit nesting structures, such as C++ nested block statements.

The out-of-order model, however, has the disadvantage of limited parallelism on

loop-level speculation since the non-speculative thread has to complete an iteration

before reaching the fork point again to speculate another thread. The inability to

launch speculative threads from speculative threads prevents more than one iteration
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T1 

T4 

T3 

Join T4 

T4 Commit 

T2 

Join T3 

Join T2 

T2 Commit 

Fork T2 

Fork T3 

Fork T4 

Figure 2–5: Out-of-order Forking Model. The non-speculative thread T1 forks spec-
ulative threads T2, T3 and T4 that represent reverse sequential execution order (i.e.
T2 represents latest sequential execution, while T4 represents the earliest), and joins
in T4, T3, T2 order. Though T3 rolls back due to dependency, T2 does not cascade
rollback and can still commit.
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from executed speculatively, bounding parallelism to just two threads irrespective of

loop dependencies.

The out-of-order model is illustrated in Figure 2–5. The non-speculative thread

T1 first forks a speculative thread T2, and continues execution for a while. Then

thread T1 forks a second speculative thread T3 that starts execution from a sequen-

tially earlier join point, as opposed to in-order speculation. Afterward, T1 reaches a

third fork point and speculates thread T4 that represents sequentially earliest execu-

tion. Since the speculated threads T2, T3 and T4 represent sequential execution that

is reverse to their speculated order, they are also joined in the reverse speculation

order. For method-level speculation, T2, T3 and T4 are forked at different nested

call frames, and thus threads speculated at deeper call frames execute sequentially

earlier function call continuation and are joined earlier. As the speculative threads

are all children of the non-speculative thread T1, they have no control dependen-

cies among each other, and thus even if a speculative thread (T3) rolls back, the

remaining speculative threads (T4) can still commit.

2.3.3 Mixed Forking Model

Mixed model is by far the most powerful forking model. It maximizes paral-

lelism opportunities by allowing all threads to speculate new threads, and thus has

the strength of both in-order and out-of-order models. One scenario in which it

outperforms in-order and out-of-order models is tree-form recursion, where in-order

speculation can only extract the top-level parallelism and out-of-order can only de-

scend into one branch, while a mixed model theoretically can fork a whole tree of

threads.
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T1 

T2 

T4 

Join T2 

T2 Commit 

T5 

T3 

Join T3 

T1 

T2 

T3 

T4 

T5 

Thread 

structure 

Figure 2–6: Linear-form Mixed Forking Model. The non-speculative thread T1 out-
of-order speculates T4 and T2, which then speculate T5 and T3, respectively. When
T3 rolls back due to dependency, T4 and T5 cascade rollback though they are not
speculated by T3.

22



The flexibility of the mixed model also involves different designs. One part is

how the system organizes the speculated threads. Previous mixed model systems

assigned an order number to each speculative thread and organize them in a simple

linear form, as a sequence of execution of the program. This design has a similar

disadvantage to the in-order model: if a sequentially earlier thread rolls back, then all

subsequent threads roll back even if they present no conflicts, which is not rare since

function calls usually indicate independent tasks. An example of linear-form mixed

model speculation is shown in Figure 2–6. The non-speculative thread T1 forks

speculative threads T4 and T2 at two fork points. Then T4 and T2 speculate their

own child threads T5 and T3, respectively. However, since the linear-form mixed

forking model simply assigns order numbers to speculative threads and organizes the

speculative threads in a linear form as in-order speculation, if any speculative thread

rolls back, threads representing sequentially later execution also rollback, even if they

have no control dependencies, as is the case for T3, T4 and T5.

The approach we develop here uses a novel mixed model that organizes the

threads in a tree-form, and only has cascading rollbacks within its subtree, which is

demonstrated in Figure 2–7. The example present the same thread execution scenario

as the one in Figure 2–6, except that the thread structure is organized as a tree, with

each child thread represented as a child node of the parent thread node. It can be

seen that since T4 and T5 are not child nodes of the speculative thread T3, they do

not have control dependencies. Therefore, threads T4 and T5 are not affected and

can still commit after thread T3 rolls back due to memory access dependencies.
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T1 

T2 

T4 

Join T2 

T2 Commit 

T5 

Join T4 

Join T5 

T5 Commit 

T3 

Join T3 

T4 Commit 

T1 

T2 T4 

T3 T5 

Thread structure 

Figure 2–7: Tree-form Mixed Forking Model. The non-speculative thread T1 out-
of-order speculates T4 and T2, which then speculate T5 and T3, respectively. After
T3 rolls back due to dependency, T4 and T5 can still commit.
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2.4 Memory Buffering

There are different approaches to TLS memory buffering. Garzaran et al. [71]

proposed a 2-dimensional taxonomy of hardware-TLS memory buffering approaches.

One dimension is separation of speculative task state within a CPU and the other

is merging of speculative task state to the main memory. The former deals with

the issue of reducing CPU idle time to improve speculative work time coverage in

the hardware architecture, which is beyond the scope of the thesis which focuses

on software-TLS. The latter has three categories: Eager AMM (Architectural Main

Memory), Lazy AMM and FMM (Future Main Memory). AMM buffers speculative

state in the CPU and commits it to the main memory after a speculative thread

completes execution, while FMM directly accesses the main memory and buffers the

memory data, which is used to restore the main memory state if the speculative

thread rolls back. Eager AMM commits all buffered data at commit time while

Lazy AMM only commits a cache line when another speculative thread uses it again.

Lazy and eager version management software-TLS buffering implements Eager AMM

and FMM, respectively, while Lazy AMM has not been proposed for software-TLS

memory buffering.

2.4.1 Lazy Version Management Buffering

Two mechanisms to implement the lazy version management software-TLS buffer-

ing have been proposed, based on there being a non-speculative thread [133, 45] or

only speculative ones [148, 124, 179]. Both have their own advantages: the for-

mer does not buffer the non-speculative thread and thus can guarantee worst-case

run time excluding threading overhead, while the latter buffers memory accesses of

25



all threads which enables better optimizations for the speculative threads. In our

work we use a lazy version management buffering with a non-speculative thread, the

architecture of which is illustrated in Figure 2–8.

 
  

Non-Speculative Thread 

Memory 

Speculative Thread N-1 Buffer N-1 
R/W R 

V/C 

R/W 

…
 

…
 

Speculative Thread 2 Buffer 2 
R/W R 

V/C 

Speculative Thread 1 Buffer 1 
R/W R 

V/C 

Figure 2–8: Lazy Version Management Software-TLS Buffering with Non-Speculative
Thread

There is a non-speculative thread and N − 1 speculative threads. The non-

speculative thread directly reads/writes the main memory, while memory accesses of

each speculative thread t(1 6 t 6 N − 1) are redirected to the thread-private lazy

buffer t. If the data read by a speculative thread t is not in the buffer t, it is first read

from the main memory to the buffer, and then returned to the speculative thread.

When the non-speculative thread joins speculative thread t, the speculative thread

validates its buffer t, and then commits the buffer to the main memory if there is no

dependency, and discards the buffer otherwise.

The lazy buffer is usually implemented as part of the software-TLS system meta-

data, which is a separately allocated region of main memory that is disjoint from the
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program data main memory region. The lazy buffer memory region and the program

data memory region are thus conceptually referred to as the buffer and the main

memory, respectively. During buffering validation, the speculative thread compares

each read value in its buffer with the main memory version, and then commits the

buffer if all read values are equal to the main memory version and discards the buffer

otherwise. During buffer commit, all written data values in the buffer are copied

to the main memory. After buffer commit or if discarded during rollback, the lazy

buffer can then be re-initialized for use by the next speculative thread execution.

2.4.2 Eager Version Management Buffering

Existing eager version management buffering mechanisms such as SpLIP [125]

and MiniTLS [179] maintain a shadow buffer for each speculative thread, and adds a

new version to the buffer each time a variable is written, as the FMM implementation.

The architecture is shown in Figure 2–9.

There are N symmetric speculative threads, which read/write the shared load-

/store vector and have their own shadow buffer. When a speculative thread t read-

s/writes a memory address, it first checks the load/store vector; if there is another

thread accessing the address and at least one thread writes the address (i.e. the

two threads have RAW, WAR or WAW dependencies), then the thread representing

sequentially later execution rolls back (other threads may also need cascade rollback,

as SpLIP and MiniTLS are loop-level in-order speculation as was discussed in section

2.3), otherwise the speculative thread t registers the memory access in the load/store

vector and reads/writes the main memory address. In the case of memory writes, the

speculative thread also saves the written address/data pair into its shadow buffer t.
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Figure 2–9: Existing Eager Version Management Software-TLS Buffering

When a speculative thread rolls back, it scans each address/data pair in its shadow

buffer and restores the data to the main memory address. The load/store vector and

the shadow buffer are also usually implemented as part of the software-TLS system

metadata as was discussed in subsection 2.4.1.
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CHAPTER 3
MUTLS Framework

MUTLS (Mixed-model Universal software Thread-Level Speculation) [45] is

a language and architecture independent software-TLS system based on the well-

defined LLVM [7] intermediate representation (IR). LLVM is a popular compiler

infrastructure with many powerful analysis and transformation passes for program

optimization. Since the MUTLS transformation pass is a purely LLVM-IR based

pass (from well-formed LLVM IR to well-formed LLVM IR), it is fully integrated

into the LLVM compiler framework, which can take advantage of full optimizations

as well as all source languages and target architectures enabled by the LLVM frame-

work. With a mixed forking model, MUTLS is also able to exploit more parallelism

from tree-form recursion applications.

The MUTLS framework design of this chapter adopts a lazy version management

buffering as was discussed in section 2.4.1. MUTLS has two types of threads: a non-

speculative thread and speculative threads. The non-speculative thread represents

logically earliest execution that never rolls back and is not buffered. Memory accesses

of speculative threads are buffered and causes the offending threads to rollback if

validation detects RAW dependencies at thread join time. Since speculative threads

are usually slower than the non-speculative thread due to buffering cost, checkpoints

are inserted in loops and before nested function calls so that a speculative thread

can be joined whenever needed, which guarantees that the software-TLS system is
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efficient even for memory-intensive applications. This feature also allows MUTLS

to be an arbitrary-point speculation system [140, 60, 45] that has more parallelism

potential than loop-level speculation and method-level speculation.

The design of the system involves changes to the LLVM back-end and its front-

ends. The latter are minor, allowing easy portability of multiple languages. Most

of the complexity resides in the back-end, where we require code to support forking,

joining, buffering, and commit or rollback.

The front-end annotates fork/join/barrier points with LLVM intrinsic functions

to specify where to fork/join/barrier speculative threads. The annotation intrin-

sic functions can be inserted manually by the programmer, or automatically by the

compiler, profiler, or other tools. A speculative thread is created at a fork point,

starts execution from the corresponding join point, is joined (merged) when the non-

speculative thread reaches the join point, and barriered at a corresponding barrier

point if the speculative thread reaches it. The back-end comprises an LLVM spec-

ulator transformation pass and a TLS runtime library. The runtime library defines

application programming interface (API) functions for certain behaviours such as

forking/joining threads and buffering loads/stores. The speculator pass transforms

the incoming IR based on the annotated fork/join/barrier points and delegates spe-

cific speculation behaviours to the TLS runtime library.

This chapter makes the following contributions.

• We describe MUTLS, the first software-TLS implementation on a source lan-

guage and target architecture independent intermediate representation (IR).

Our design is capable of adding TLS features to any LLVM input language
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and executes on any architecture supported by LLVM, significantly extending

previous TLS systems which only support a single language context and/or

architecture.

• We integrate the tree-form mixed forking model proposed in section 2.3 into the

MUTLS system, demonstrating that complex mixed fork models can be hosted

in a language and architecture independent software-TLS implementation.

3.1 Front-End Design

LLVM has two official front-end distributions: Clang and GCC/DragonEgg. The

Clang front-end implements C-family languages of C/C++ and objective-C/C++,

while the GCC/DragonEgg front-end supports many GCC programming languages

such as C/C++ and Fortran. Since MUTLS is designed to support multiple families

of programming languages including Fortran, we choose to use the GCC/DragonEgg

LLVM front-end.

We add a built-in function builtin forkjoinpoints(type, id, model, hint,

arg) to the GCC front-end for the user to specify fork and join points. In order to

avoid unnecessary rollbacks due to thread interference, we also add a barrier point

which barriers the speculative thread if it is not in nested function calls (i.e. it is at

the same stack frame level as was speculated). The argument type specifies the type

of the point (fork point, join point, barrier point, etc). The id denotes the id of the

point: threads speculated at a fork point start execution from the join point with

the same id. The forking model of the fork point is specified by model. The hint is

used by adaptive fork heuristics and arg is point specific argument.
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The GCC tree intermediate representation is transformed to the LLVM-IR by

the DragonEgg GCC plugin [4]. We add an LLVM intrinsic function llvm.forkjoin-

points(type, id, model, hint, arg) to be processed by the LLVM speculator pass.

We then transform calls to the GCC built-in function builtin forkjoinpoints to

the llvm.forkjoinpoints intrinsic function calls in DragonEgg.

In order for MUTLS to be easier to use, we also add OpenMP-like fork/join/-

barrier point pragmas to the front-end. The GCC front-end then transforms the

pragmas to the builtin forkjoinpoints builtin function calls. Each pragma can

optionally specify an id number using the form “id n”. The fork point pragma can

also specify the forking model by “inorder|outoforder|mixed” and an adaptive fork

heuristics hint type “must|maybe”. For example, a fork point pragma for C program

can be “#pragma tls forkpoint id 3 maybe”. The default values for id, model and

hint are 1, mixed and must, respectively. Examples of input C and Fortran programs

are given in Figure 3–1.

Since loops are a common and important type of speculative regions, we specially

define two point types for loops: loop and loopblock. The back-end automatically

transforms these points to groups of fork/join/barrier points. The loopblock point

also performs the “blockize” transformation as will be discussed in section 6.2.1 that

statically distributes the workloads as blocks of loop iterations and speculates on the

blocks to reduce thread fork/join overhead. A C program with the loop fork point

and a group of fork/join/barrier point pragma directives is shown in Figure 3–2.
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void work(…) { 
… 

#pragma tls forkpoint [id] [model] [hint] 
S1; 
… 

#pragma tls joinpoint [id] 
S2; 
… 

#pragma tls barrierpoint [id] 
S3; 
… 

} 

subroutine work(…) 
… 

!$tls forkpoint [id] [model] [hint] 
S1 
… 

!$tls joinpoint [id] 
S2 
… 

!$tls barrierpoint [id] 
S3 
… 

end subroutine work 

(a) C program (b) Fortran program 

Figure 3–1: User-directed TLS source code. Before S1 the parent thread forks a
speculative thread to execute S2, and synchronizes with it once it reaches that point.
The speculative thread will be barriered before S3 if it reaches that point.

 

 

 

  

void work(…) { 

… 

for(…){ 

#pragma forkpoint loop [id] [model] [hint] 

  … 

} 

… 

} 

void work(…) { 

… 

for(…){ 

#pragma forkpoint [id] [model] [hint] 

  … 

#pragma joinpoint [id] 

} 

#pragma barrierpoint [id] 

… 

} 

 

(a) Loop Fork Point (b) Group of Fork/Join/Barrier Points 

Figure 3–2: MUTLS pragmas for loop speculative regions.

3.1.1 Front-End Implementation

To implement the front-end, we need to add the built-in function builtin fork-

joinpoints that has 5 integer parameters and returns an integer: DEF GTLS BUILTIN
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(BUILT IN GTLS FORKJOINPOINTS, "forkjoinpoints", BT FN INT INT INT INT INT INT,

ATTR NULL) in the added gcc/tls-builtins.def file that is included in gcc/builtins.def.

The main work is then to implement the pragmas that automatically generate

the built-in function calls. Our approach is to implement the same workflow as

the OpenMP implementation. We use the C front-end as as an example; the C++

and Fortran front-end implementations are different but generally follow the same

principle.

We first add pragma entries PRAGMA TLS FORKPOINT, PRAGMA TLS JOINPOINT and

PRAGMA TLS BARRIERPOINT in enum prgama kind, and then register to defer the pragma

processing to the parser in the preprocessor function init pragma. The parser then

parses each deferred pragma line in the c parser pragma function shown in Figure

3–3. The function returns true if it is an OpenMP construct statement such as

“#pragma omp for” and false if it is a function call. Since MUTLS pragmas are

transformed to built-in function calls to builtin forkjoinpoints, they all return

false. The c parser pragma function first peeks the pragma kind id and then processes

the pragma in the corresponding case clause of the switch statement. If the pragma is

not processed in the switch statement, then it is an external pragma and the function

calls c invoke pragma handler to process the pragma line.

We show the fork point implementation to demonstrate MUTLS pragma process-

ing. In the switch statement of the c parser pragma function, the PRAGMA TLS FORKPOINT

clause first checks the pragma context context to be pragma compound to ensure the

pragma is in a compound statement, and then calls the c parser tls forkpoint

function whose excerpt is presented in Figure 3–4. It first sets the pragma option
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static bool c_parser_pragma (c_parser *parser, enum pragma_context context){ 

  unsigned int id = c_parser_peek_token (parser)->pragma_kind; 

  gcc_assert (id != PRAGMA_NONE); 

  switch (id){ 

    case PRAGMA_TLS_FORKPOINT: 

      if (context != pragma_compound){ 

        if (context == pragma_stmt) c_parser_error (parser, "%<#pragma 

          tls forkpoint%> may only be used in compound statements"); 

        goto bad_stmt; 

      } 

      c_parser_tls_forkpoint (parser); 

      return false; 

 

    case PRAGMA_TLS_JOINPOINT: 

      … 

 

    default: 

      if (id < PRAGMA_FIRST_EXTERNAL){ 

        if (context == pragma_external){ 

        bad_stmt: 

          c_parser_error (parser, "expected declaration specifiers"); 

          c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL); 

          return false; 

        } 

        c_parser_omp_construct (parser); 

        return true; 

      } 

  } 

  c_parser_consume_pragma (parser); 

  c_invoke_pragma_handler (id); 

  … 

  return false; 

} 

 

Figure 3–3: GCC Front-End Parser for Pragmas
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static void c_parser_tls_forkpoint (c_parser *parser){ 

  int type = 1000, id = 1, model = 0, hint = 0, arg = 0; 

  location_t loc = c_parser_peek_token (parser)->location; 

  c_parser_consume_pragma (parser); 

  while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) { 

    if(c_parser_next_token_is (parser, CPP_NAME)) { 

      const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); 

      if (strcmp (p, "loop") == 0){ 

        type = 1100; 

        c_parser_consume_token (parser); 

      } 

      else if (strcmp (p, "id") == 0){ 

        c_parser_consume_token (parser); 

        id = TREE_INT_CST_LOW(c_parser_peek_token (parser)->value); 

        c_parser_consume_token (parser); 

      } 

      … 

    } 

    else{ 

      c_parser_error (parser, "%<#pragma tls forkpoint%> expect identifier"); 

      c_parser_consume_token (parser); 

    } 

  } 

  c_parser_skip_to_pragma_eol (parser); 

  add_stmt(get_tls_builtin_call (loc, type, id, order, hint, arg)); 

} 

tree get_tls_builtin_call (location_t loc, int type, int no, int order, int hint, int arg){ 

  tree x, arglist; 

  x = built_in_decls[BUILT_IN_GTLS_FORKJOINPOINTS]; 

  tree args[5] = { build_int_cst (NULL_TREE, type), build_int_cst (NULL_TREE, no),  

build_int_cst (NULL_TREE, order), build_int_cst (NULL_TREE, hint), 

build_int_cst (NULL_TREE, arg) }; 

  x = build_call_expr_loc_array (loc, x, 5, args); 

  return x; 

} 

Figure 3–4: GCC Front-End Parser for Fork Point Pragmas
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variables to the default values. Then in the while loop, it parses each pragma option

such as “loop”, “id”, “inorder” and “must” and sets the corresponding variable for

the parsed option. After the pragma line is parsed, it calls get tls builtin call

to create the built-in function call statement and then calls add stmt to add the

statement in the tree IR.

3.2 Back-End Overview

Our support for TLS in LLVM consists of two main parts: an LLVM speculator

transformation pass, and a TLS runtime library. The LLVM speculator pass modi-

fies the incoming IR based on the annotated fork and join points, delegating more

complex behaviours to the MUTLS runtime library.

The architecture of the MUTLS runtime library is shown in Figure 3–5. It

provides a set of application programming interface (API) functions that are called

by the speculated program generated by the LLVM speculator pass. The runtime

library contains 4 layers of classes/functions to implement the API functions, which

from top to bottom are the system module layer, support module layer, utility layer

and interface layer.

At the top layer, the API functions call the corresponding method of the Thread-

Manager module to perform the required operations. ThreadManager serves as the

top-level manager in charge of implementing the API functions, whose each method

invokes one or more of the MUTLS runtime library subsystems: thread data, global

buffer and local buffer.

The subsystems are independent of each other so that any subsystem can be

redesigned without disturbing others. The thread data subsystem maintains for
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each thread a ThreadData object to manage the thread status data. The local buffer

subsystem manages individual buffering of local variables for each speculative thread

through the per-thread ThreadLocalBuffer objects, while the global buffer subsystem

maintains both a SharedGlobalBuffer object for buffering of shared global variables

and ThreadGlobalBuffer objects for buffering of thread-private versions of global

variables.
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Figure 3–5: MUTLS Runtime Library Architecture
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The second layer is the support module layer, which provides support classes

to implement well-defined functionality commonly used by various subsystems of

the system module layer. The address space registration module is called by the

ThreadManager module to register the address spaces, and by the global/local buffer

subsystems for address space checking/mapping, as will be discussed in section 3.6. It

registers the address spaces (start and end addresses) of global variables and thread

stack frames, and finds the corresponding variable or thread stack frame of given

addresses during thread execution.

The threading module is used by the ThreadManager module to parallelize the

user program, and by the global buffer subsystem for TLS runtime system optimiza-

tions such as parallelized validation/commit and parallel shared buffer rollback that

will be discussed in sections 5.1.1 and 5.3, respectively. The threading module also

provides virtual CPUs for the upper system module layer. A virtual CPU is the

MUTLS abstraction of an operating system (OS) thread, and is identified by rank,

which is an ID number from 0 to P−1, where P is a configurable parameter denoting

the total number of virtual CPUs. It provides for the upper layer a unified inter-

face for accessing the thread resources by abstracting the underlying OS threads

as disjoint thread work groups. In this way, it is natural and efficient to support

both speculative computation and TLS runtime optimizations. The thread work

group class provides the method run work(f, id, n), which starts a work group of

n threads to execute the function f with the thread number id and group size n

arguments.
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The next layer is the utility layer, which provides utility classes for use through-

out the runtime library. The logging, statistics and timing utility classes implement

message logging, event statistics and timing for various purposes such as debugging,

diagnostics and profiling. The implementations allow flexible message format, data,

and event types and names, so that they are easy to use in a variety of modules. The

bottom layer is the interface layer that abstracts architecture and operating system

dependent utilities to provide a standard view of the underlying system functionality

such atomic operations, locking primitives and system CPU and memory resources.

The MUTLS runtime library is written in C++, and can be compiled into native

static or dynamic libraries for linking into any executable. However, to enable further

optimizations provided by LLVM such as inlining of library calls, we compile it into a

bytecode library to link with the speculated LLVM bytecode of the source program.

The following sections first discuss speculative thread state transition and the

forking models, then describe the transformations of the LLVM-IR for TLS exe-

cution and give further details on memory management. Finally we discuss two

optimizations to reduce the stack frame maintenance overhead and increase thread

work coverage, respectively.

3.3 State Transition

The speculative thread state transition of the baseline MUTLS framework design

is illustrated in Figure 3–6. For simplicity, the baseline design binds each thread to a

corresponding virtual CPU (OS thread, as was discussed in section 3.2). Each virtual

CPU can be BUSY or IDLE, and is initialized IDLE at the beginning of program

execution. If a CPU is IDLE, the corresponding speculative thread does not exist;
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only when the CPU is BUSY can a speculative thread with the corresponding rank

be created and scheduled to the CPU for running. This design has the advantage to

separate the ThreadData abstraction from the underlying threading implementation,

and enable simpler implementation of thread coverage optimizations.
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COMMIT 
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CPU BUSY 

CREATED 

Figure 3–6: Speculative Thread State Transition - Baseline MUTLS Framework
Design

Efficient thread polling and synchronization during the JOINING state is per-

formed using a simple flag-based barrier. The ThreadData object for each specula-

tive thread maintains two volatile variables: sync status which is set to JOINING

by the non-speculative thread if the speculative thread is notified to synchronize, and

valid status which is set to COMMIT or ROLLBACK by the speculative thread

after the global buffer validation and commit/rollback. The two variables are respec-

tively initialized to RUNNING and NULL during the fork process. When reaching a

join point, the non-speculative thread locates the corresponding ThreadData object

as will be discussed in section 3.4 below. It then sets sync status to JOINING and

busy-waits for the valid status to be non-NULL. The speculative thread busy-waits

for sync status to be JOINING if it enters a terminate point, or simply returns if
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it enters a check point and encounters a RUNNING. As will be seen in section 4.2,

the checking overhead in check points is small, even for the 3x+1 benchmark whose

inner loop iteration has few instructions. Once both threads are synchronized the

speculative thread can validate and commit/rollback. After the speculative thread

completes commit/rollback, the lifetime of the thread ends and the virtual CPU is

set to IDLE.

3.4 Forking Model

MUTLS is a tree-form mixed forking model software-TLS system. However, it

also natively supports in-order and out-of-order forking models since they are re-

stricted forms of the mixed forking model. This section mainly describes how the

tree-form mixed model is implemented in MUTLS. Other forking model implemen-

tations just add checking criteria when a thread tries to speculate a child thread in

the MUTLS get CPU library call that will be discussed in section 3.5.2.

The mixed forking model assumes that the direct children of a thread follow

the out-of-order model; that is, a later speculated thread represents logically earlier

sequential execution. It also assumes that a thread subtree represents a continuous

interval of execution with its root representing the earliest logical execution, and

that different thread subtrees represent disjoint intervals of execution. As a result,

a “reverse in-order traversal” of the thread tree follows the sequential execution

order. This assumption is similar to previous work [176, 101]. However, unlike their

approaches, the runtime system does not rely on the mixed-model assumption to be

correct. As a result, the compiler can enable mixed forking model speculation at

any fork point without having to guarantee that the program control flow satisfies
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the mixed order requirement. Mixed model can thus be selected based on heuristics,

profiling or programmer directive hints instead of relying on the compiler to prove

the mixed order control flow structure in different function call chains.

Each thread maintains a children stack storing the ranks of its direct children,

as well as a ranks array for each function call stack frame storing the speculated

thread ranks in the current stack frame. When forking a thread, it pushes the

new thread rank into children. In the MUTLS synchronize library call that will be

discussed in section 3.5.3, it pops a child rank from children and checks if it is equal

to the corresponding rank stored in the ranks array that stores the speculated child

thread ranks in the current stack frame. If it is not, then it means the program did

not follow the mixed-model assumption, i.e. not joining the last speculated child

thread, which can happen due to erroneous control flow or misspecified join points.

In this case, it sets the sync status of the child thread to be NOSYNC and the

process continues until the rank is found or children is empty. In either case, the

corresponding entry in ranks is set to 0 to allow speculation on that point again.

If children is empty, the child thread has already rolled back and false is returned.

Otherwise, it appends the children of the child thread to the children of the non-

speculative thread, synchronizes with the child thread and returns the rank in the

argument. Note that even if the child thread is invalid and requires rollback, other

speculative threads are still preserved in the children of the non-speculative thread.

This process is different from previous software approaches, having the advantage

that local conflicts do not incur global rollbacks.
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3.5 Back-End Transformation

Target dependent information such as access to the actual instruction pointer

(IP) and stack frame are generally not available in LLVM-IR, nor are some low-level

operations such as the ability to directly jump to another function. Maintaining

the LLVM SSA-form after each transformation is also required. These issues make

thread-level speculation for LLVM more difficult. We perform a number of IR-based

code transformations to support TLS. The following subsections discuss the various

steps involved in modifying the LLVM-IR for TLS execution. We first present the

basic code preparation, then trace through the implementation design from fork to

join, and describe a stack frame reconstruction mechanism to implement joining of

speculative threads into nested function calls.

3.5.1 Preparation Transformation

The LLVM speculator pass transforms each function with annotation of fork

and join points, as well as their nested function calls since we allow speculative

threads to enter nested function calls. For each such function we perform 4 basic

modifications to prepare for speculation. We need to (1) generate a speculative

version of the function, (2) generate helper functions for interaction with the TLS

runtime library, (3) split and number the basic blocks at appropriate points for

synchronization between the speculative and non-speculative versions of the function,

and (4) assign local buffering addresses (offsets from stack pointer) for local variables.

Below we detail these steps.

(1) We first clone the function and add two integer parameters counter and

rank to generate the speculative function. These arguments are used to direct the
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code entry to the correct starting point and track the CPU index, respectively. To

ensure safety, every load and store operation within the function is replaced by an

MUTLS runtime library API function call to MUTLS load {int32, int64, etc} and

MUTLS store {int32, int64, etc}. Note that since we inline the TLS runtime library

into the source LLVM code, these function calls are reduced to more efficient direct

memory accesses.

That we generate a separate speculative version instead of using one single func-

tion is for performance optimization and practical implementation: the speculative

version is buffered while the non-speculative version is not. Also, since the specu-

lative version has additional parameters counter and rank to support TLS, function

calls to the speculative version require different call arguments from those to the

non-speculative version. Other parallelization systems such as OpenMP also adopt

the separate function design.

(2) We generate a stub function with the suffix “.stub” as the entry point for spec-

ulative threads. This prologue function fetches arguments of the speculative func-

tion through the MUTLS get regvar {int32, ptr, etc} library calls, and then calls

the speculative function with the arguments. These arguments are stored by the

parent thread in a generated proxy function, which has the same signature as the

speculative function and stores the function arguments to the ThreadLocalBuffer

object by the MUTLS set regvar {int32, ptr, etc} library calls. The proxy function

then calls the MUTLS speculate library function with the stub function address to

fork a new thread.

45



The stub function is needed since thread entry functions should have the same

function prototype (function parameter and return types), while speculative versions

do not. The proxy function is for convenient implementation and IR visualization,

as calling the proxy function is more natural than its implementation.

(3) Speculative termination and synchronization require a number of checkpoints

to be inserted into the code. At each annotated fork point the basic block is split

to generate a speculation block, at each join point annotation the basic block is

split to generate a join point block, and at each barrier point annotation the basic

block is split generate a barrier point block. Speculation is necessarily terminated

at each external, indirect and exception handling function call through a terminate

point block (other than for known, safe external calls such as abs, exp, etc), and

prior to the method return point through a return point block. Before each internal

function call, a basic block is split to generate an enter point block, and inside each

loop a block is split to generate a check point block. Except for the speculation

block, all these blocks are potential synchronization blocks, and are numbered by the

synchronization counter starting from 1, which is then used to build the speculation

and synchronization tables, as will be discussed in subsections 3.5.2 and 3.5.3.

Though we allow speculative threads to enter nested function calls in the MUTLS

system, for ease of implementation we do not allow them to exit the speculative en-

try function (the stack frame at which the thread was speculated), as illustrated in

Figure 3–7. Therefore, we need to split the return point block to check whether the

speculative function is at the bottom speculative stack frame, and if so barrier the

speculative thread.
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void f(){ 

   … 

   g(…); 

   … 

} 

 

void g(…){ 

   … 

   while(…){ 

#pragma tls forkpoint 

      … 

      h(…); 

      … 

#pragma tls joinpoint 

   } 

   … 

} 

void h(…){ 

   … 

} 

 

Figure 3–7: The non-speculative thread enters function g from function f and then
speculates a child thread in function g. The child speculative thread can enter and
return from the speculative version of function h, but cannot return from function g

and execute function f.

That we need to split the speculation/synchronization blocks is because during

thread forking/joining, the speculative/non-speculative thread needs to jump to the

exact execution point of the parent/child thread. For the same reason, we number

the speculation and synchronization blocks so that a block in a speculative function

corresponds to the same execution point in the non-speculative function if the two

blocks have the same speculation or synchronization number. Since we barrier the

speculative thread at each barrier point annotation to avoid unnecessary rollbacks,

barrier points are also potential synchronization points. We note that check points

and barrier points are for performance optimization, but not correctness requirement

of the software-TLS system, though check points can also avoid potential infinite

loops in speculative threads due to misspeculation, as was analyzed in detail by

Garćıa-Yágüez et al. [69].
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(4) Registers cannot be used to transfer data between threads. Thus for each

local (register and stack) variable live at the beginning of a synchronization block of

the function, we allocate and assign an offset so we can save and restore such data

through the runtime library at speculation and synchronization points during thread

forking and joining, as will be discussed in subsections 3.5.2 and 3.5.3.

 

 

  

int work(args){ 

  S1; 

  for(i = 0; i < n; i++){ 

#pragma tls forkpoint id 1 

    S2; 

    a[i] = abs(b[i]); 

#pragma tls joinpoint id 1 

  } 

#pragma tls barrierpoint id 1 

  S3; 

#pragma tls forkpoint id 2 

  S4; 

  s = sum(n, a); 

#pragma tls joinpoint id 2 

  S5; 

  printf(“%d\n”, s); 

  S6; 

} 

void work.proxy(args, counter, rank){ 

  MUTLS_save_local(args, rank) 

  MUTLS_speculate(work.stub, counter, rank); 

} 

void work.stub(rank){ 

  args = MUTLS_restore_local(rank) 

  counter = MUTLS_restore_local(rank) 

  work.speculative(args, counter, rank); 

} 

int work.speculative(args, counter, rank){ 

  S1; 

  for(i = 0; i < n; i++){ 

    // check point block, synchronization block 3 

    // speculation block 1 

    S2; 

    tmp = MUTLS_load_int32(&b[i], rank); 

    MUTLS_store_int32(&a[i], abs(tmp), rank); 

    // join point block 1, synchronization block 1 

  } 

  // barrier point block 1, synchronization block 4 

  S3; 

  // speculation block 2 

  S4; 

  // enter point block, synchronization block 5 

  s = sum(n, a); 

  // join point block 2, synchronization block 2 

  S5; 

  // terminate point block, synchronization block 6 

  printf(“%d\n”, s); 

  S6; 

  // return point block, synchronization block 7 

} 

(a) Original version 

(b) Proxy and stub functions 

(c) Speculative version 

Statement markers 

MUTLS library calls 

MUTLS local variable library calls 

MUTLS speculator pass generated functions 

MUTLS speculator pass split blocks 

Figure 3–8: Preparation Transformations performed by the Speculator Pass
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A schematic of the preparation transformation is given in Figure 3–8. We use

C pseudo code instead of LLVM assembly for compactness. The program in Figure

3–8(a) has a loop fork/join/barrier point group (id 1) and a method fork/join point

group (id 2). It calls a safe external function abs that can be ignored by the MUTLS

system, a nested function sum that needs to be considered a synchronization point,

and an unsafe external function printf that should terminate speculation. A function

call is safe if it does not write global/argument memory and has no side-effect (no

I/O access, no fault/trap and not throwing exceptions), and unsafe otherwise.

The speculative version in Figure 3–8(c) demonstrates replacement of memory

reads/writes with MUTLS load/store * runtime library function calls as discussed in

the preparation transformation step (1), as well as the split and numbered basic

blocks discussed in the step (3). It generated 2 speculation blocks (one for each fork

point) and 7 synchronization blocks (two join point blocks and one each for check,

barrier, enter, terminate and return point block). The two speculation blocks and the

two join point blocks are split at the two fork point annotations and join point anno-

tations, respectively. We split a check point block in the loop header block, a barrier

point block at the barrier point annotation, an enter point block before the sum inter-

nal function call, a terminate point block before the unsafe printf external function

call and a return point block before the function return instruction. We number

the synchronization blocks in the order of join, check, barrier, enter, terminate and

return point, and assign the synchronization counter to each synchronization blocks.

The speculation and synchronization counters of the speculation and synchronization

blocks are maintained in the speculator transformation pass object, and will be used
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to build the speculation table and synchronization table to be discussed in sections

3.5.2 and 3.5.3, respectively.

The following sections will discuss the transformations in detail.

3.5.2 Fork

Since each function may contain multiple fork/join points, the speculator trans-

formation pass allocates an integer array ranks on the stack to store the ranks of the

child threads speculated in the current function frame. The length nranks of ranks is

the number of join points in the function. At most one thread can be speculated on

at each fork/join point id; if a fork/join point id is not speculated on, the correspond-

ing entry in ranks is 0. In this way, we can choose to speculate on a fork point in

some but not all of the call stack frames of the same function, enabling the ability to

effectively utilize CPU resources to extract substantial parallelism and reduce over-

head from recursive function calls. For example, since tree-form recursion programs

usually perform more work on higher-level recursive calls, we can apply the selected

speculation enabling optimization that enables speculation in the higher-level call

frames but disables it in deeper levels to make the speculative parallelization more

efficient, as shown in Figure 3–9.

At each fork point, the LLVM speculator pass generates a library call MUTLS get -

CPU to assign a rank to the speculative thread, passing the ranks array, the forking

model, fork/join point id and the thread rank. If no CPU is IDLE (not running a

speculative thread, as was discussed in section 3.3), speculation will not be performed;

otherwise the child rank is stored in the corresponding entry of ranks and control

is branched to the speculation block. The speculation block speculates the local
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recursion() 

recursion() … recursion() 

recursion() recursion() … recursion() recursion() … 

recursion() recursion() … 

Speculation enabled 

Speculation disabled 

Figure 3–9: Selected Speculation Enabling. MUTLS can enable/disable speculation
in different stack frames.

variables live at the beginning of the join point block as will be discussed in section

3.6.4, and then forks a speculative thread by calling the proxy function generated in

preparation step (2). After saving the function arguments to the runtime library, the

proxy function calls MUTLS speculate to initialize the ThreadData object and sets

the CPU state as BUSY. The resulting speculative thread retrieves the arguments

within the stub function, and then enters the actual speculative code.

The speculative entry point is conceptually somewhere within a function, but

since LLVM does not allow branching directly to this starting point some gymnastics

are performed to redirect entry control flow. For this we use the speculation table,

implemented as a switch LLVM instruction that directs incoming control flow to the
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block indicated by the counter argument. A 0-counter indicates normal entry, while

a non-0 value indicates some internal starting point. This approach bypasses the

inability of LLVM to branch directly into a function, and also allows both initial

and any subsequent (such as recursive) calls to the speculative function to coexist.

Upon initial entry, local variables need to be initialized to the same values found

in the non-speculative function at forking. For this we fetch the values previously

stored within the runtime library and assign them to the corresponding local vari-

ables. This process is slightly complicated by the fact that LLVM IR is in SSA form,

and so trivially re-assigning register variables is not possible. We thus add a sepa-

rate restore block to assign the local values, and then branch into the actual entry

point. Phi nodes are inserted at the beginning of the latter block to distinguish the

different versions of the register variables. The program in Figure 3–8 after the fork

transformation is presented in Figure 3–10.

3.5.3 Join

At each join point, the LLVM speculator pass adds instructions to check if a

thread was speculated on the join point; if so it synchronizes with the speculative

thread. This process is encapsulated by MUTLS synchronize, which returns true/false

if the speculative thread commits/rollbacks. If true is returned, the synchronization

counter and the speculative child thread rank are returned by the arguments c and r,

respectively, and control branches to the synchronization table. The synchronization

table itself is a switch LLVM instruction that branches to the code blocks indexed by

the synchronization counter. Unlike the speculation table which has nranks+1 entries,

the synchronization table has an entry for each possible synchronization block.
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int work.speculative(args, counter, rank){ 

  int ranks[2]={0}; 

  switch(counter){ 

    case 0: break; 

    case 1: goto join point 1 restore block 

    case 2: goto join point 2 restore block 

  } 

  S1; 

  for(i = 0; i < n; i++){ 

    MUTLS_get_CPU(ranks, 0, mixed, must, rank); 

    if(ranks[0] > 0){ 

      MUTLS_speculate_local 

      work.proxy(args, 1, rank); 

    } 

    S2; 

    tmp = MUTLS_load_int32(&b[i], rank); 

    MUTLS_store_int32(&a[i], abs(tmp), rank); 

  } 

  S3; 

  MUTLS_get_CPU(ranks, 1, mixed, must, rank); 

  if(ranks[1] > 0){ 

    MUTLS_speculate_local 

    work.proxy(args, 2, rank); 

  } 

  S4; 

  s = sum(n, a); 

  S5; 

  printf(“%d\n”, s); 

  S6; 

// restore blocks for join point blocks 

} 

(b) Speculative version 

Statement markers 

MUTLS library calls 

MUTLS local variable library calls 

MUTLS speculator pass generated functions 

MUTLS speculator pass added blocks 

int work(args){ 

  int ranks[2]={0}; 

  S1; 

  for(i = 0; i < n; i++){ 

    MUTLS_get_CPU(ranks, 0, mixed, must, 0); 

    if(ranks[0] > 0){ 

      MUTLS_speculate_local 

      work.proxy(args, 1, rank); 

    } 

    S2; 

    a[i] = abs(b[i]); 

  } 

  S3; 

  MUTLS_get_CPU(ranks, 1, mixed, must, 0); 

  if(ranks[1] > 0){ 

    MUTLS_speculate_local 

    work.proxy(args, 2, rank); 

  } 

  S4; 

  s = sum(n, a); 

  S5; 

  printf(“%d\n”, s); 

  S6; 

} 

 
(a) Non-speculative version 

Figure 3–10: Fork Transformation performed by the Speculator Pass

A speculative thread needs to terminate at a synchronization point if it may

execute instructions unsafe to perform speculatively, reaches a speculated join point,

reaches a barrier point whose corresponding fork/join point has been speculated

on at the bottom call stack frame, or if the parent thread is waiting to join with

it. The first three cases are enforced by adding a no-return runtime library call

MUTLS terminate point, MUTLS sync parent, MUTLS barrier point at each terminate
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point block, join point block and barrier point block, respectively. The last case,

however, requires polling to determine whether or not the speculative thread needs

to stop. This is implemented through calls to MUTLS check point, which are in-

serted prior to internal function calls and within inner loops to ensure that the non-

speculative thread need not wait overly long. In either case, if validation fails during

synchronization, the speculative thread rolls back within these functions; otherwise,

it commits and passes in its synchronization counter and rank to indicate its contin-

uation point and to identify itself. Live local variables needs to be saved in order for

the non-speculative thread to restore the values after committing. For performance,

this is not done before the MUTLS check point as check points are entered frequently.

Instead, the speculator pass adds a commit block at each check point, which saves the

local variables and calls MUTLS commit to complete the commit process. The program

in Figure 3–10 after the join transformation is illustrated in Figure 3–11.

3.5.4 Stack Frame Reconstruction

For simplicity we currently restrict speculative threads from returning from their

entry function, but do allow them to call and enter new functions, as was discussed

for Figure 3–7. Even this is non-trivial, however, since the non-speculative parent

thread may then need to reconstruct equivalent stack frames as part of a successful

join, but stack frames are not available at the LLVM-IR level, and may also differ in

layout due to the extra parameters added to speculative versions.

We propose a stack frame reconstruction scheme to address this problem. First,

we need to explicitly track stack frames as the speculative thread descends into a

call chain. At each enter point block, MUTLS enter point is called to register a new
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int work.speculative(args, counter, rank){ 

  int ranks[2]={0}; 

  switch(counter){ 

    case 0: break; 

    case 1: goto join point 1 restore block 

    case 2: goto join point 2 restore block 

  } 

  S1; 

  for(i = 0; i < n; i++){ 

    if(MUTLS_check_point(3, rank)){ 

      MUTLS_save_local 

      MUTLS_commit(rank); 

    } 

    MUTLS_get_CPU(ranks, 0, mixed, must, rank); 

    if(ranks[0] > 0){ 

      MUTLS_speculate_local 

      work.proxy(args, 1, rank); 

    } 

    S2; 

    tmp = MUTLS_load_int32(&b[i], rank); 

    MUTLS_store_int32(&a[i], abs(tmp), rank); 

    if(ranks[0] > 0){ 

      MUTLS_validate_local 

      MUTLS_save_local 

      MUTLS_sync_parent(1, rank); 

    } 

  } 

  if(ranks[0] > 0 && counter > 0){ 

    MUTLS_save_local 

    MUTLS_barrier_point(4, rank); 

  } 

  S3; 

  MUTLS_get_CPU(ranks, 1, mixed, must, rank); 

  if(ranks[1] > 0){ 

    MUTLS_speculate_local 

    work.proxy(args, 2, rank); 

  } 

  S4; 

  s = sum(n, a); 

  if(ranks[1] > 0){ 

    MUTLS_validate_local 

    MUTLS_save_local 

    MUTLS_sync_parent(2, rank); 

  } 

  S5; 

  MUTLS_save_local 

  MUTLS_terminate_point(6, rank); 

  printf(“%d\n”, s); 

  S6; 

// restore blocks for join point blocks 

} 

(b) Speculative version 

Statement markers 

MUTLS library calls 

MUTLS local variable library calls 

MUTLS speculator pass generated functions 

MUTLS speculator pass added blocks 

int work(args){ 

  int ranks[2]={0}, c, r; 

  S1; 

  for(i = 0; i < n; i++){ 

    MUTLS_get_CPU(ranks, 0, mixed, must, 0); 

    if(ranks[0] > 0){ 

      MUTLS_speculate_local 

      work.proxy(args, 1, rank); 

    } 

    S2; 

    a[i] = abs(b[i]); 

    if(ranks[0] > 0){ 

      MUTLS_validate_local 

      if(MUTLS_synchronize(ranks, 0, &c, &r)){ 

        goto synchronization_table; 

      } 

    } 

  } 

  S3; 

  MUTLS_get_CPU(ranks, 1, mixed, must, 0); 

  if(ranks[1] > 0){ 

    MUTLS_speculate_local 

    work.proxy(args, 2, rank); 

  } 

  S4; 

  s = sum(n, a); 

  if(ranks[1] > 0){ 

    MUTLS_validate_local 

    if(MUTLS_synchronize(ranks, 1, &c, &r)){ 

      goto synchronization_table; 

    } 

  } 

  S5; 

  printf(“%d\n”, s); 

  S6; 

synchronization_table: 

  switch(c){ 

    case 1: goto synchronization block 1 restore block 

    … 

    case 7: goto synchronization block 7 restore block 

  } 

// restore blocks for synchronization blocks 

} 

(a) Non-speculative version 

Figure 3–11: Join Transformation performed by the Speculator Pass
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int work.speculative(args, counter, rank){ 

  … 

  S4; 

  MUTLS_save_local 

  MUTLS_enter_point(5, rank); 

  s = sum(n, a); 

  … 

  S6; 

  MUTLS_save_local 

  MUTLS_return_point(7, rank); 

// restore blocks for join point blocks 

} 

(b) Speculative version 

Statement markers 

MUTLS library calls 

MUTLS local variable library calls 

MUTLS speculator pass generated functions 

MUTLS speculator pass added blocks 

int work(args){ 

  int ranks[2]={0}, c, r; 

  if(MUTLS_synchronize_entry(&c, &r)) 

    goto synchronization_table; 

  S1; 

  … 

} 

(a) Non-speculative version 

Figure 3–12: Stack Frame Reconstruction Transformation performed by the Specu-
lator Pass

stack frame in the ThreadLocalBuffer object for the nested function call. This is

matched at each return point block, where MUTLS return point is called to pop the

stack frame. (Note that this checks to ensure the speculative thread is returning

from a nested function call, and not its entry point.) The non-speculative parent

must then generate a corresponding call chain, restoring frame data as it descends.

This is initiated by the synchronization process, and fully enabled by a library call

MUTLS synchronize entry inserted at the top of each non-speculative function reach-

able from a speculative one. This function inspects the ThreadLocalBuffer object,

recognizes the existence of further frames, and if so restores the current frame data

and directs the thread to the correct call point in the current function. This process

continues until the non-speculative thread has replicated the entire call chain and
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frame state. The program in Figure 3–11 after the stack frame reconstruction trans-

formation is shown in in Figure 3–12. In this figure, common parts with Figure 3–11

are omitted with ellipsis (...).
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Frame 3 

Frame 1 

Frame b 

Frame c 
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Frame e 

Frame f 

Frame b 
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Non-speculative 
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Speculative 
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Non-speculative 
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existing frames 

speculated frames 

Join frame 

Same frame 

Figure 3–13: Stack Frame Reconstruction Running Example. Frame numbers 1-3
are the non-speculative stack frames and b-f are the speculative stack frames.

An example of the stack frame reconstruction scheme is shown in Figure 3–13.

The non-speculative thread forked a speculative thread, and then joined the specula-

tive thread. After forking, the non-speculative thread entered and then returned from

frames 2 and 3, and then begins to join the speculative thread. During this time,

the speculative thread entered frames b to f, calling MUTLS enter point each time

entering a new frame, and returned from frames e and f, calling MUTLS return point

each time returning from a frame. Then the speculative thread commits and the non-

speculative thread merges the stack frames b to d of the speculative thread, calling

MUTLS synchronize entry and jumping to the restore blocks of the corresponding
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synchronization blocks each time it enters a new function call frame. Then the non-

speculative thread continues execution from the synchronization point block where

the speculative thread commits.

3.6 Memory Buffering

The global buffer subsystem buffers variables that multiple threads may read-

/write, which include static and heap variables. Stack variables of the non-speculative

thread are also buffered in the global buffer subsystem since the non-speculative

and speculative threads may simultaneously read/write the stack variables of the

non-speculative thread. On the other hand, register and stack variables of specu-

lative threads are buffered in the local buffer subsystem, since only the speculative

thread can access its register/stack variables. We thus define static, heap and non-

speculative stack variables as non-local variables, and register and stack variables of

speculative threads as local variables, as shown in Figure 3–14.

 

Static variables 

Heap variables Stack frame 

Stack frame 

Stack frame 

… 

Stack frame 

Stack frame 

Stack frame 

… 

Stack frame 

Stack frame 

Stack frame 

… 

Non-speculative thread 

register and stack variables 

… 

Speculative threads 

register and stack variables 

Non-local variables Local variables 

Figure 3–14: Memory Buffering Variables

In the global buffer subsystem, the SharedGlobalBuffer object and the Thread-

GlobalBuffer object of each speculative thread are flat since non-speculative and
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speculative threads share the same address space (the same addresses for non-local

objects). The ThreadLocalBuffer object of each speculative thread is organized as an

array of stack frames, with each frame containing a RegisterBuffer and StackBuffer

for storing register and stack variables.

3.6.1 Address Space Registration

Memory buffering should guarantee that invalid addresses are not accessed. Also

required is to identify whether an address is in the global buffer (non-local variables)

or on the speculative stack (speculative stack variables). We solve the problem with

an address space registration mechanism. The address space (the start and the end

addresses) of each static and heap object is registered in the address space registration

module that was discussed for Figure 3–5 during the creation and deletion of the

object, that is, at the beginning of program execution for a static object and at

memory allocation and deallocation for a heap object. Adjacent spaces can be merged

to improve performance. The stack address space of a thread are the addresses

between its base and current stack pointers, and is also registered in the address

space registration module. A speculative thread is rolled back if it reads/writes an

address not in the global and local address spaces.

The current implementation of heap memory registration is to intercept language-

specific memory management library calls in LLVM-IR, for example, “malloc” in C

and Fortran, and “ Znwm” in C++. We realize that this approach is somewhat ad-

hoc and difficult to deal with customized allocators. We plan as future work to solve

the problem by hooking into OS system calls or handling page fault signals. As spec-

ulative threads may be rolled back, currently we do not allow speculative threads to
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allocate/deallocate memory to avoid memory leak, and rollback a speculative thread

if it attempts memory allocation/deallocation, which may cause unnecessary perfor-

mance degradation for some benchmarks. We plan as future work to address the

problem by maintaining allocated memory for each thread.

3.6.2 Global Buffer

This section describes the ThreadGlobalBuffer of the global buffer subsystem.

The SharedGlobalBuffer will be discussed in the memory buffering optimizations in

section 5.2. Each ThreadGlobalBuffer object maintains two maps: a read-set and a

write-set, with writes to the global address space redirected into the write-set. Global

loads either return the value from the write-set if found there, from the read-set if

previously read, or by loading the value from memory and saving it in the read-set

(first time).

Conflicts only occur when a speculative thread reads data from an address before

the non-speculative thread writes data to the address or other speculative threads

commit their write buffer to the main memory. Therefore, the validation process

iterates through the read-set of the ThreadGlobalBuffer object, comparing data with

the corresponding values in main memory; if they are not equal, then validation fails

and the buffer is discarded. Otherwise, validation succeeds and the data in the write-

set is committed. After global buffer validation/commit, the speculative thread

performs the finalization process to clear the buffer for use by a new speculative

thread. As opposed to validation/commit, finalization does not cause critical path

delay, as it is performed in parallel with the non-speculative thread execution after

thread polling and synchronization that was discussed in section 3.3.
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As the addresses of the global read and write operations can be arbitrary, and

there may be an arbitrary number of read and write operations, the read- and write-

set maps must be efficient. Normal hash maps frequently increase in size as data

is inserted, causing dynamic memory allocation and deallocation overhead. Our de-

sign is instead to use static memory. The map has a byte array buffer of a multiple

of the WORD size, a pointer array addresses and an integer stack offsets, all con-

taining a maximum of N elements, as illustrated in Figure 3–15. The two arrays

together implement a hash map while the stack guarantees that validation, commit

and finalization operations of threads accessing a small amount of data are fast.

 

WORD WORD … WORD buffer 

address address … address addresses 

WORD WORD … WORD mark 

N pointers 

N WORDs 

offset 

offset 

… 

offset 

offsets 

 

… 

N offsets 

buffered offsets 

Figure 3–15: Thread Global Buffer Data

The addresses are initialized zero at the beginning of program execution. Given

an address, the find/insert operation calculates its offset in buffer as the lower bits of

the address, and the array index in addresses as the offset divided by the WORD size.

Then addresses[index] is checked; if it is zero, meaning an empty slot, the address is

inserted into the addresses array, data of WORD size is inserted at buffer+offset, and
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the offset is pushed onto offsets; otherwise, if addresses[index] equals the address,

meaning the address has been inserted, then the data is accessed in buffer, otherwise

the hash buffer is conflict. In the buffer conflict case, we store the address and data

in a temporary buffer and the speculative thread will wait to be joined at the next

check point. If the temporary buffer is used up, the speculative thread rolls back,

although this is rare since check points are entered frequently. During validation,

commit and finalization, offsets is traversed to find addresses and data accessed by

the speculative thread.

Different size data accesses can be encountered. Assuming a read/write of data of

size size at address p, the MUTLS memory buffering supports read/write operations

if size is larger than, equal to, or smaller than WORD, given that one of size and

WORD is a multiple of the other, and that p is aligned by size. If size is larger than

WORD, we split the address into several WORD pointers and split data before write

or reconstruct data after read operations. To support the case that size is smaller

than WORD, a byte array mark with the same size as buffer is needed. First, a

normalized address np is calculated by making the lowest WORD bits of p 0. If

addresses[index] equals np, then the data is read/written at buffer+offset, and size

bytes from mark+offset are set to 0xFF if it is a write; otherwise, if it is an empty

slot, then WORD bytes of data are read from np and written to the buffer and size

bytes from mark+offset are set to 0xFF if it is a write; otherwise, it is a buffer conflict.

Validation of the read-set validates all read data, while commit of the write-set only

commits data marked by mark. An optimization for commit is that if WORD size
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data of mark is -1, then the WORD bytes of data in buffer can be committed all at

once.

3.6.3 Local Buffer

The local buffer subsystem is used to transfer local (register and stack) variables

between parent and child threads during fork and join though MUTLS (set|get) -

(regvar|stackvar) * library calls. At the preparation transformation step (4) of

section 3.5.1, the speculator pass assigns an offset for each register and stack vari-

able. MUTLS (set|get) regvar * passes the offset and the register value to the Reg-

isterBuffer object, which in turn stores/loads the register value in a static array.

If there are too many variables and the assigned offset exceeds the array size, the

speculator pass reports an error and speculation fails. MUTLS (set|get) stackvar *

is a similar case for stack variables, except that they pass the address and size of the

stack variable, and copy the stack data.

The above is complicated by the potential presence of pointers to stack variables.

If such a pointer is used in a speculative context, and the thread commits, the

pointer will be invalid since the speculative version of the stack variable no longer

exists. Instead, it should point to the non-speculative version. We propose a pointer

mapping mechanism to solve the problem, as illustrated in Figure 3–16.

During commit of pointers through MUTLS get (regvar|stackvar) ptr calls, the

value of the pointer is checked and if it is in the stack address space of the speculative

thread, it is mapped to point to the corresponding variable in the non-speculative

thread. Since the non-speculative and speculative functions may have different stack
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… 

int asp[N], *psp = &asp[i]; 

… 

… 

int anonsp[N], *pnonsp = psp - asp + anonsp 

… 

Speculative stack frame Non-speculative stack frame after join 

Figure 3–16: Pointer Mapping Mechanism

layouts, we cannot use a constant offset for mapping of all variables. The implementa-

tion thus records stack variable addresses of the non-speculative and the committing

speculative threads in a hash map during MUTLS set stackvar * calls. Then during

MUTLS get (regvar|stackvar) ptr calls, for each local pointer, the non-speculative

thread searches the stack variable in the hash map and calculates the non-speculative

pointer value based on the address of the non-speculative stack variable and the offset

of the pointer value within the stack variable.

A complication to this occurs when type-casts between pointers and integers are

present in a function—the pointer mapping mechanism may be unsafe as integer val-

ues may be used in various instructions including I/O. Our current implementation

is to disallow pointer-integer type-casts unless the value is inside the global address

space that is not mapped. Before type-cast instructions between pointers and in-

tegers, MUTLS ptr int cast library calls are inserted which barrier the speculative

thread if the pointer/integer value is not in the global address space.

Stack variable loads/stores in nested frames of a speculative function directly

access the function’s stack, since they do not affect the non-speculative thread and
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the stack acts as buffer itself. These variables are committed (copied) to the stack

of the non-speculative thread by MUTLS get stackvar * calls. Stack variables at the

bottom frame are accessed as non-local data, the non-speculative version of which

are buffered in global buffer subsystem during MUTLS (load|store) * calls.

3.6.4 Register Variable Validation

In the MUTLS speculate regvar {int32, ptr, etc} library calls generated in spec-

ulation blocks as was discussed in section 3.5.2, local register variables live at the

beginning of the join point block are initialized as they would be when normal ex-

ecution reaches the join point. Induction variables and expressions can be made

live by code transformations such as hoisting/sinking (moving to blocks before the

fork point/after the join point). If the variable is still not live at the fork point,

then it should be predicted by the forking thread, otherwise the speculative child

thread retrieves an uninitialized value. When the forking thread reaches the join

point, it should validate that the live local variables were correctly speculated, which

is implemented by the MUTLS validate regvar {int32, ptr, etc} library calls. The

speculative thread will rollback if this validation fails.

The MUTLS speculate regvar * and MUTLS validate regvar * library calls im-

plement the register variable value prediction. We use the offset assigned in the

preparation step (4) of section 3.5.1 as well as the fork point id to identify each reg-

ister variable. The MUTLS speculate regvar * function calls set the register variable

values to be retrieved by the MUTLS get regvar * calls of the speculative thread. The

MUTLS speculate regvar * functions also have a predictor type integer argument to
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specify the value predictor to be used for the register variable. Currently, we im-

plement the last value (LV) [98], stride (S) [72] and 2-delta stride (2DS) [151] value

predictors. Support for more advanced predictors is planned for future work. For live

register variables, the speculator pass sets the predictor type argument to NULL

so that they are not predicted. The MUTLS validate regvar * library calls save the

actual values of the register variables to the runtime library, which can then be used

by future MUTLS speculate regvar * calls for value prediction based on the history

register variable values.

3.7 Stack Frame Optimization

In the baseline stack frame reconstruction design shown in Figure 3–12, each

time a speculative thread enters/returns from a nested function call, it saves the

local variables into the MUTLS runtime library, which incurs unnecessary overhead

for returned nested function call frames since the saved local variables are not used.

This is an especially important problem for recursive applications as nested functions

are entered and returned frequently. We in turn propose the stack frame optimization

to address the issue.

The stack frame optimization is illustrated in Figure 3–17. The approach is to

save/restore local variables only at thread joining time. When the speculative thread

commits at a check point, to construct the nested call frames in the runtime library,

instead of exiting as is the case in 3–12, it calls the MUTLS commit frame library

function, passing the synchronization point counter, the current function counter,

and the speculative thread rank, and then returns from the current function call.

Then MUTLS commit frame function pushes a new stack frame in the runtime library
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int work.speculative(args, counter, rank){ 

  int stackptr; 

  switch(counter){ 

    case 0: break; 

    case 1: goto join point 1 restore block 

    case 2: goto join point 2 restore block 

  } 

  S1; 

  for(i = 0; i < n; i++){ 

    if(MUTLS_check_point(3, rank)){ 

      MUTLS_save_local 

      MUTLS_commit_frame(3, counter, rank); 

      return; 

    } 

    if(MUTLS_get_CPU(&stackptr, 0, mixed, must, rank)){ 

      MUTLS_speculate_local 

      work.proxy(args, 1, rank); 

    } 

    S2; 

    tmp = MUTLS_load_int32(&b[i], rank); 

    MUTLS_store_int32(&a[i], abs(tmp), rank); 

    if(MUTLS_get_speculated_child(&stackptr, 0, rank)){ 

      MUTLS_validate_local 

      MUTLS_save_local 

      MUTLS_sync_parent(1, rank); 

    } 

  } 

  if(counter > 0 && MUTLS_get_speculated_child(&stackptr, 0, rank)){ 

    MUTLS_save_local 

    MUTLS_barrier_point(4, rank); 

  } 

  S3; 

  if(MUTLS_get_CPU(&stackptr, 1, mixed, must, rank)){ 

    MUTLS_speculate_local 

    work.proxy(args, 2, rank); 

  } 

  S4; 

  if(MUTLS_check_point(5, rank)){ 

    MUTLS_save_local 

    MUTLS_commit_frame(5, counter, rank); 

    return; 

  } 

  s = sum(n, a); 

  if(MUTLS_is_committing(rank)){ 

    MUTLS_save_local 

    MUTLS_commit_frame(5, counter, rank); 

    return; 

  } 

  if(MUTLS_get_speculated_child(&stackptr, 1, rank)){ 

    MUTLS_validate_local 

    MUTLS_save_local 

    MUTLS_sync_parent(2, rank); 

  } 

  S5; 

  MUTLS_save_local 

  MUTLS_terminate_commit_frame(6, rank); 

  return; 

  printf(“%d\n”, s); 

  S6; 

// restore blocks for join point blocks 

} 

(c) Speculative version 

Statement markers 

MUTLS library calls 

MUTLS local variable library calls 

MUTLS speculator pass generated functions 

MUTLS speculator pass added blocks 

int work(args){ 

  int stackptr, c, r; 

  S1; 

  for(i = 0; i < n; i++){ 

    if(MUTLS_get_CPU(&stackptr, 0, mixed, must, 0)){ 

      MUTLS_speculate_local 

      work.proxy(args, 1, rank); 

    } 

    S2; 

    a[i] = abs(b[i]); 

    if(MUTLS_get_speculated_child(&stackptr, 0, 0)){ 

      MUTLS_validate_local 

      if(MUTLS_synchronize(&stackptr, 0, &c, &r)){ 

        goto synchronization_table; 

      } 

    } 

  } 

  S3; 

  if(MUTLS_get_CPU(&stackptr, 1, mixed, must, 0)){ 

    MUTLS_speculate_local 

    work.proxy(args, 2, rank); 

  } 

  S4; 

  s = sum(n, a); 

  if(MUTLS_get_speculated_child(&stackptr, 1, 0)){ 

    MUTLS_validate_local 

    if(MUTLS_synchronize(&stackptr, 1, &c, &r)){ 

      goto synchronization_table; 

    } 

  } 

  S5; 

  printf(“%d\n”, s); 

  S6; 

synchronization_table: 

  switch(c){ 

    case 1: goto synchronization block 1 restore block 

    … 

    case 7: goto synchronization block 7 restore block 

    case 8: goto synchronization block 8 restore block 

  } 

// restore blocks for synchronization blocks 

} 

(a) Non-speculative version 

void work.stub(rank){ 
  args = MUTLS_restore_local(rank) 
  counter = MUTLS_restore_local(rank) 
  v = work.speculative(args, counter, rank); 

  MUTLS_save_local(v, rank) 
  MUTLS.commit_stub(8, rank); 
} 

(b) Proxy and stub functions 

Figure 3–17: Stack Frame Optimization performed by the Speculator Pass
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and returns if the function counter is 0 (it is in a nested function call) and noti-

fies the non-speculative thread to join the stack frame if the counter is non-0 (it is

in the speculative entry stack frame). To be able to continue returning and con-

structing the stack frames in the runtime library until the speculative thread reaches

the entry stack frame, after each nested function call the runtime library function

MUTLS is committing is called to check whether the speculative thread is commit-

ting, and if so the speculative thread saves local variables, calls MUTLS commit frame

to commit the current frame and returns from the current function call. The specula-

tive thread may also return from the bottom frame to reach the stub function frame,

in which case the stub function saves the return value of the speculative function

call in the runtime library and calls MUTLS commit stub with a new synchronization

counter. The synchronization table of the non-speculative thread also adds an entry

to get the return value of the speculative thread function and return from the current

function.

Another optimization we apply is to remove the need of the ranks array for spec-

ulation/synchronization. This is beneficial because each time a speculative thread

enters a nested function call with fork/join points, the ranks array is initialized 0,

even if speculation is disabled for the stack frame. Without the ranks array, we still

need to determine whether a child thread has been speculated at the join point when

a thread reaches a join point. We propose a new thread naming mechanism to solve

the problem. The idea is to use both the speculated stack frame and the fork/join

point id to identify each speculative thread instead of just the fork/join point id, so
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that each actively running speculative thread can be uniquely identified by its par-

ent thread. Then we call the library functions MUTLS get CPU(stackptr, id, model,

hint, arg) at fork points and MUTLS get speculated child(stackptr, id, rank) at

join points and perform thread forking/joining if the functions return true.

3.8 Thread Task Optimization

In the baseline MUTLS virtual CPU design that was described in section 3.5.2,

threads are bound to virtual CPUs, which are usually set to no more than the number

of physical CPUs of the running machine to avoid performance degradation caused

by threads representing sequentially later execution competing with the CPU time

of sequential earlier threads. This design however, may unnecessarily limit thread

work coverage of the software-TLS system, as demonstrated by the example in Figure

3–18.

 

Non-speculative 

thread (T0) 

Loop iterations 

Speculative threads 

(T1-T3) 

Pending iterations 

T0 (T1) T2 T3 

Figure 3–18: Thread Coverage Problem of Baseline Virtual CPU Framework Design.
After T1 commits, only 3 threads are running.
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A loop with N iterations is speculatively parallelized with P virtual CPUs

(N > P ). In the figure, P is 4 and the non-speculative thread T0 in-order spec-

ulated threads T1, T2 and T3. When T0 completes its iteration, it joins T1 and T1

commits, after which there are only 3 threads running. As the speculative threads

need buffering and thus are slower than the non-speculative thread, more time is re-

quired before T3 reaches the end of the iteration to speculate a new thread, resulting

in less than optimal thread coverage.

We propose the thread task optimization to solve the problem. Instead of bind-

ing each thread to a virtual CPU that always corresponds to an operating system

(OS) thread, the optimization associates each thread with a thread task, which can

be in either running or pending state, as illustrated in Figure 3–19.
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Figure 3–19: Running and Pending Thread Tasks

A running task has a corresponding virtual CPU (OS thread) while a pending

task does not. Therefore, though running tasks should generally be no more than

physical CPUs, the total number of running and pending tasks can be larger than

the number of physical CPUs. After a running task exits (its speculative thread
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commits or rolls back), if there is a pending task, the pending task is assigned its

OS thread and becomes a running task, otherwise its OS thread is returned to the

underlying threading implementation. Though the number of tasks N is larger than

the number of virtual CPUs P , we note that N can be a bounded value with respect

to P , in particular, N < 2P . This is because each speculative thread needs to create

at most one pending task. Moreover, if using in-order forking model, then only the

most-speculative thread needs to create a pending task, and thus N = P + 1.
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(a) OS Thread Available at Fork Point 

(b) OS Thread Unavailable, Pending Task Available at Fork Point 

Figure 3–20: State Transition with Thread Task Optimization
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The state transition of the MUTLS framework with the thread task optimization

is illustrated in Figure 3–20. When a thread reaches a fork point, there are three

possibilities: a virtual CPU (OS thread) is available, no virtual CPU but a pending

task is available, and no pending task is available. If a virtual CPU is available, a

thread task data structure is registered and set to running state, and a child thread

is speculated on the thread task executing on the virtual CPU. If no virtual CPU is

available at the fork point, yet a thread task data structure is available, the thread

task data structure is registered and set to pending state, and a child thread is created

on the thread task. When a virtual CPU is available again, the pending thread task

is set to running state and scheduled on the virtual CPU for execution. If no pending

task is available, the fork point is ignored and no child thread is speculated.

 

Non-speculative 
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Figure 3–21: Thread Task Optimization - Normal Execution

The thread task optimization for the example of Figure 3–18 is demonstrated in

Figures 3–21 and 3–22. After threads T1, T2 and T3 are in-order speculated, there

are no available OS threads, and therefore T3 speculates a pending thread task T4.

After T1 commits, T4 is assigned the OS thread of T1 and scheduled to run on a
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Figure 3–22: Thread Task Optimization - Thread Joining

physical CPU. T4 then reaches a fork point and speculates a new pending thread

task T5. In implementation, T5 and T1 can share the same rank and thread status

and task data.

3.9 Chapter Summary

In this chapter, we presented the Mixed-model Universal software Thread-Level

Speculation (MUTLS) framework that is purely based on the LLVM intermediate

representation, and thus is capable to support all LLVM front-end source languages

and back-end target architectures. With a mixed forking model, MUTLS can exploit

more parallelism from tree-form recursion applications. We first described how to

implement fork point annotation in the GCC/DragonEgg LLVM front-end, and then

presented detailed design and implementation of the back-end, including the specu-

lator LLVM transformation pass and the MUTLS runtime library. For the back-end,

we first presented an overview of the MUTLS runtime library architecture, state

transition and forking models, then described the LLVM-IR transformation for each

step of preparation, fork, join and stack frame reconstruction, next put forward
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various memory buffering issues of address space registration, global/local buffer, lo-

cal pointer mapping and register variable validation, and finally proposed the stack

frame optimization to reduce stack frame maintenance overhead and the thread task

optimization to increase thread work coverage.
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CHAPTER 4
Experimentation of MUTLS

In this chapter, we experiment with the MUTLS framework design. The ex-

periment environment and the benchmarks in this and following chapters are pre-

sented in section 4.1. In section 4.2 we compare the speedups of baseline MUTLS

framework design with the stack frame and thread task optimizations, and cluster

the applications into high speedup, mediocre speedup and slowdown categories ac-

cording to their performance. In order to see how well the MUTLS software-TLS

framework performs with respect to the theoretically highest speedups, we show the

performance ratio of the speculatively parallelized benchmarks against the OpenMP

manually parallelized versions in section 4.3. As we will see that the performance is

not always ideal, for further improvement we analyse the performance characteristics

of the benchmarks in section 4.4, including critical path efficiency, speculative path

efficiency, power efficiency and the runtime breakdown. Afterwards, we compare the

strengths and weaknesses of different forking models in section 4.5 and finally exper-

iment with the rollback sensitivity performance characteristics of the benchmarks in

section 4.6.
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4.1 Experiment Environment and Benchmarks

We implement the MUTLS1 system on LLVM 3.5 with the GCC-4.6.4 and

DragonEgg front-end. For experimentation we use an AMD Opteron 6274 machine

with 64 2.2GHz processor cores (4×16-core, 8×2MB L2 cache) and 64GB memory.

The operating system is 64-bit Red Hat Enterprise Linux.

Table 4–1: Benchmarks

Benchmark Description Source
bh Barnes-Hut N-body simulation Lonestar [136]

raytracing ray tracing rendering c-ray [2]
smallpt path tracing global illumination rendering smallpt [27]

sparsematmul sparse matrix times vector SciMark [26]
bwaves blast waves simulation SPEC CPU2006 [81]
lbm incompressible fluids simulation SPEC CPU2006
3x+1 3x+1 problem in number theory MUTLS [42]

mandelbrot mandelbrot fractal generation mandelbrot [11]
md 3D molecular dynamics simulation md [13]
fft recursive Fast Fourier Transform MUTLS

matmult block-based matrix multiplication MUTLS
nqueen N-queen problem MUTLS
tsp travelling sales person (TSP) problem MUTLS

lavaMD 3D hierarchical particle simulation Rodinia [48, 49]
streamcluster online stream data clustering Rodinia

kmeans k-means clustering Rodinia
srad speckle reducing anisotropic diffusion imaging Rodinia
cfd 3D fluid computational dynamics Rodinia

heartwall heart wall image processing Rodinia
myocyte cardiac myocyte modeling Rodinia

1 MUTLS is available online at http://www.sable.mcgill.ca/~zcao7/mutls
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Table 4–2: Benchmark Characteristics

Benchmark Problem Size Language
bh 12800 bodies C++

raytracing 192 objects, 800×600 resolution C
smallpt 4 ray samples, 800×600 resolution C++

sparsematmul 2M×2M matrix, 100M non-zero elements C
bwaves train run Fortran
lbm train run C
3x+1 40M integers (enumerate) C/Fortran

mandelbrot 512×512 image, maximum 80000 iterations C/Fortran
md 512 particles, 400 iteration steps C/Fortran
fft 220 doubles C

matmult 2048×2048 matrices C
nqueen 14 queens C
tsp 12 cities C

lavaMD 10 boxes in each dimension C
streamcluster 65536 points, 256 dimensions, 1000 clusters C++

kmeans 494020 points C
srad 609×590 image, 0.5 saturation C
cfd 97046 elements C++

heartwall 104 609×590 images C
myocyte 1024 instances C

The benchmarks we experiment with are summarized in Tables 4–1 and 4–2.

These benchmarks are typical workloads used in a range of application domains,

and were selected because they exhibit a variety of workload characteristics while

exposing significant opportunities for parallelism. We select the Rodinia [48, 49]

benchmark suite as it includes important scientific computing applications and pro-

vides OpenMP manual parallelization implementations which we can compare with.

We use 7 but not all of its benchmarks because others are not suitable for TLS,

e.g. I/O bound. The SPEC CPU2006 [81] benchmark suite comprises representa-

tive application workloads; however, only 2 of its benchmarks are selected because
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other benchmarks require compiler analysis/transformation currently not available

in LLVM to expose the parallelism opportunities for TLS. We select the bh and

sparsematmul benchmarks from Lonestar [136] and SciMark [26] because they are

widely-used applications most suitable for TLS automatic parallelization: TLS can

effectively parallelize these benchmarks as memory dependencies do not exist in the

speculatively parallelized program, but static automatic parallelization approaches

cannot as the absence of memory dependencies cannot be proved by static compiler

analysis.

We also include stand-alone benchmarks for better evaluation of the MUTLS

software-TLS system. 3x+1 is a well-known number theory problem that avoids

memory access during the computation, and thus serves as an idealized benchmark

for our software-TLS system. The mandelbrot and md benchmarks are computation

intensive scientific applications and usually serve as synthetic benchmarks. We select

raytracing and smallpt as they are important computer graphics applications with

workload characteristics interesting for MUTLS: they have recursive function calls

and are neither too computation intensive nor too memory intensive. Though most of

the benchmarks are parallelized on loop iterations, we include 4 tree-form recursion

applications to evaluate the mixed forking model, including two divide-and-conquer

benchmarks fft and matmult, and two depth-first-search (DFS) benchmarks nqueen

and tsp. Matmult is a block-based matrix multiplication like Strassen’s algorithm.

These benchmarks give us a mix of CPU- and memory-intensive computation.

We consider 3x+1, mandelbrot, md and myocyte to be computation intensive, bh,

raytracing, smallpt, bwaves, fft, matmult, nqueen, tsp, lavaMD, kmeans, srad and

78



heartwall as locality memory intensive, and sparsematmul, lbm, streamcluster and

cfd non-locality memory intensive. Note that the computation/memory intensiveness

is not characterized by the total memory used, but by the memory access frequency

(density), defined as the number of read/writes divided by the program runtime ρ =

Nrw/T . Thus, although matmult has time complexity O(N3) and space complexity

O(N2), it is still considered memory intensive. We use train run for bwaves and lbm

because it takes long time to run all versions of the ref run data sets.

4.2 Speedup

Given the execution time of a parallelized program on N CPU cores TN , and of

the original sequential program Ts, the absolute speedup is defined as Ts/TN . The

speedups of the benchmarks are presented in Figures 4–1 to 4–6. The geometric

mean of the speedups of all benchmarks are shown in Figure 4–6(d). The “baseline”

results are speedups of the baseline MUTLS framework design that was described

from section 3.1 to section 3.6. The “stack frame”, “thread task” and “stack frame &

thread task” are the baseline design with the stack frame optimization of section 3.7,

the thread stack optimization of section 3.8 and both optimizations, respectively.

As expected, the stack frame optimization significantly improves the perfor-

mance of recursive benchmarks with frequent function calls, such as bh, raytracing,

smallpt, nqueen and tsp, resulting from reduction in the stack frame maintenance

overhead. The reason that fft and matmult are not improved much is that they are

memory intensive benchmarks and the dominant overhead is memory buffering. On

the other hand, applications with many loop iterations such as raytracing, smallpt

and mandelbrot benefit significantly from the thread task optimization, as a result
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Figure 4–1: Speedup versus number of CPUs; higher is better (1/6)
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(a) bwaves 
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(d) 3x+1 – Fortran 
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Figure 4–2: Speedup versus number of CPUs; higher is better (2/6)
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(a) Mandelbrot – C 
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Figure 4–3: Speedup versus number of CPUs; higher is better (3/6)
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Figure 4–4: Speedup versus number of CPUs; higher is better (4/6)
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Figure 4–5: Speedup versus number of CPUs; higher is better (5/6)
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Figure 4–6: Speedup versus number of CPUs; higher is better (6/6)
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of more parallel thread work coverage. Other benchmarks such as bh, 3x+1, md

and lavaMD are not improved by the optimization because we employ the “blockize”

transformation that statically distributes the loop iterations to the total number of

CPU cores and thus more thread tasks than the number of CPU cores are not ben-

eficial. For bwaves, the thread task optimization is beneficial from 2 to 6 cores, but

detrimental from 7 to 27 cores. This is because more speculative threads result in

more speculative thread work coverage that reduces critical path work time, but this

also results in more validation/commit time that increases the critical path thread

joining time. With more cores, the thread joining time of the benchmark becomes

dominant as will be discussed in section 4.4, and thus the runtime is slower. For the

geometric mean of all the benchmarks, the “stack frame”, “thread task” and “stack

frame & thread task” versions improve speedups of the baseline version from 3.60 to

3.77, 3.87 and 4.02 respectively, at 64 cores.

The following experiments are thus performed on the highest speedup “stack

frame & thread task” framework design. The performance of the “stack frame &

thread task” versions of the benchmarks with high speedups, mediocre speedups and

slowdowns are summarized in Figures 4–7, 4–8 and 4–9, respectively.

As can be seen from Figure 4–7, the high speedup applications generally have

computation-intensive workloads and exhibit linear speedups. The lower scalability

of the Fortran versions of the mandelbrot and md benchmarks is mainly because of

their additional memory buffering overhead, e.g., the shapes of arrays being allocated

on the stack. On the other hand, the mediocre speedup benchmarks in Figure 4–8

can be sorted into three categories: (1) nqueen and tsp that peek speedups at around
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32 CPU cores due to insufficient parallelism in deeper recursive calls; (2) raytracing

and bh that have linear but slowly increasing speedups due to memory buffering

time slowing the speculative threads; (3) fft, matmult, bwaves, kmeans, srad and

heartwall that are relatively memory intensive whose speedups are saturated at few

CPU cores. For fft and matmult, the small threads speculated in deeper recursive

calls also cause significant amount of idle time, as will be discussed in section 4.4

below. Larger problem sizes may relieve the problem, although a larger amount

of data also requires larger memory buffers for speculation not to overflow, which

would result in longer startup times for the programs. We can see from Figure

4–9 that the benchmarks with slowdowns are generally highly memory intensive,

with performance from 0.12 (lbm) to 0.40 (cfd) at 64 CPU cores; this is due to the

domination of validation/commit time.
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4.3 Theoretically Ideal Performance

To understand how well the MUTLS framework performs in a relative sense,

we compare the runtime of the MUTLS speculatively parallelized versions with the

OpenMP manually parallelized versions, which serve as the theoretically ideal per-

formance of the MUTLS software-TLS system. On N CPU cores, given the execu-

tion time of the speculatively parallelized program TN−mutls, and the runtime of the

OpenMP parallelized version TN−omp, the MUTLS/OpenMP runtime ratio is defined

as TN−mutls/TN−omp. The MUTLS/OpenMP runtime ratios of the benchmarks are

presented in Figures 4–10 to 4–13.
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Figure 4–10: MUTLS/OpenMP Runtime ratio; higher is worse (1/4)

We can see that computation intensive benchmarks such as 3x+1, mandelbrot,

md and myocyte generally achieve ideal speedups, which is expected. On the other
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hand, the extremely memory intensive benchmarks lbm, streamcluster and cfd per-

form much worse than the OpenMP versions. It is also interesting to note that

the tree-form recursion benchmarks fft, nqueen and tsp achieve significantly higher

speedups than the OpenMP version, as a result of the efficient mixed forking model

implementation. For other loop-based benchmarks, generally less memory intensive

workloads have better performance ratios with respect to the OpenMP versions. On

average, the benchmarks have a factor of around 2.37 to 2.54 slowdowns (39% to

42% performance) with respect to the OpenMP manually parallelized versions using

16 to 64 cores.

4.4 Analysis of Parallel Execution

We are more concerned with the non-speculative thread since (1) it is on the

critical path, (2) it does not rollback, and (3) it is the fastest thread, since it does

91



not have speculative buffering overhead. As a result, we define two indicators: crit-

ical path efficiency which is the useful work time divided by the runtime of the

non-speculative thread ηcrit = Tworktime nonsp/Truntime nonsp, and speculative path ef-

ficiency which is the sum of the work time divided by the sum of the runtime of the

speculative threads ηsp = Tworktime sp/Truntime sp. The two efficiencies are illustrated

in Figures 4–14 and 4–15.

We can see that the benchmarks can be clustered into 3 categories with respect

to critical path efficiency: (1) bh, raytracing, smallpt, 3x+1, mandelbrot - C, mat-

mult, nqueen, tsp, lavaMD, heartwall and myocyte that maintain high critical path

efficiency (ηcrit > 0.88) with any number of CPU cores; (2) mandelbrot - Fortran

and md and with slowly decreasing critical path efficiency; (3) fft, bwaves, kmeans,

srad, sparsematmul, cfd, streamcluster and lbm that sharply decrease critical path

efficiency at few cores and then gradually stabilize to a low efficiency. The geometric

mean of the critical path efficiency over all benchmarks is 0.48, which we will improve

by reducing the critical path serial validation/commit time in Chapter 5.

According to speculative path efficiency, the benchmarks can also be sorted

into 3 categories: (1) bh, raytracing, smallpt, 3x+1, mandelbrot, md, nqueen, tsp,

lavaMD, kmeans, heartwall and myocyte that have high speculative path efficiency

(ηsp > 0.70) for more than 8 cores; (2) sparsematmul, bwaves, fft, matmult and

srad that stabilize to medium speculative path efficiency (0.32 < ηsp < 0.51); (3)

streamcluster, cfd and lbm with low efficiency (ηsp < 0.14) at 64 cores. The many

benchmarks have lower speculative path efficiency with few (less than 8) cores is

because of the thread task optimization: when the non-speculative thread joins a
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Figure 4–14: Critical Path Execution Efficiency; higher is better

speculative thread, if there is a pending thread task after the last loop iteration, the

pending task then forks a thread executing the continuation of the loop, which is

always idle at the loop barrier. The geometric mean of the speculative path efficiency

for all benchmarks is 0.81 at 64 cores.
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Figure 4–15: Speculative Path Execution Efficiency; higher is better

As expected, all the benchmarks achieving relatively high (larger than 4) speedups,

including bh, raytracing, smallpt, 3x+1, mandelbrot, md, nqueen, tsp, lavaMD and

myocyte, have both high critical and speculative path efficiency, while the slowdown

benchmarks cfd, streamcluster and lbm have both low critical and speculative path

efficiency. Other benchmarks with low critical path efficiency have low speedups,
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such as fft, bwaves, kmeans and srad, or slowdown, such as sparsematmul. The

matmult benchmark has high critical path efficiency (larger than 0.98), illustrating

the benefit of data reuse (spatial locality) of efficient memory buffering using the

block-based approach. However, its medium speculative path efficiency weakens its

speedups.
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Figure 4–16: Power Efficiency; higher is better
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Power consumption is a major concern in modern systems as well. We approx-

imate power efficiency as the sequential runtime divided by the sum of the run-

time of the non-speculative and all speculative threads ηpower = Ts/(Truntime nonsp +

Truntime sp), giving us an inverse measure of relative waste. This is shown in Figure 4–

16. It can be seen that applications with higher speedups usually have higher power

efficiency. The 3x+1 and mandelbrot benchmarks have highest power efficiency of

0.63 to 0.76 at 64 cores, while slowdown ones have the lowest of 0.0035 to 0.012.

The geometric mean of all benchmarks is 0.16, which we will improve in Chapter 5.

The matmult benchmark has a power efficiency of 1.57 at 1 core, showing that the

TLS transformation can sometimes improve the performance and power efficiency

for sequential programs.

The parallel execution coverage is defined as the sum of the speculative path

runtime divided by the critical path runtime C = Truntime sp/Truntime nonsp. All our

benchmarks have significant parallel execution coverage of 14.4 to 61.1, as expected

of the mixed forking model.

To further understand the overhead, we breakdown the executions of some typ-

ical benchmarks from each category of the critical and speculative path efficiency.

The results are presented in Figures 4–17 and 4–18. The execution time percentages

of the “average” results in Figure 4–17(f) and 4–18(f) are computed as the arith-

metic mean of the corresponding percentage of all the benchmarks. We cannot use

geometric mean as the execution time percentage of one part would be eliminated if

the percentage is 0 in only one benchmark.
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Figure 4–17: Critical Path Runtime Breakdown

It can be seen that almost all overhead of the critical path can be attributed

to the “idle” time spent on polling and synchronizing with the speculative threads

as was discussed in section 3.3, mainly waiting for them to validate and commit

their memory buffers. The “join” time is the thread joining time after the thread
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polling synchronization, mainly including the thread status maintenance time of

section 3.4 and the stack frame reconstruction time of section 3.7. We can see that

most benchmarks have small “find CPU”, “fork” and “join” time, demonstrating

the thread fork/join and stack frame reconstruction implementations are efficient,

which is encouraging. For the nqueen benchmark, a significant amount of time is

spent on thread joining, for two reasons: (1) a significant number of threads are

speculated as a result of the mixed forking model, and (2) the thread joining of the

benchmark usually reconstructs deep levels of recursive nested call stack frames. The

md - Fortran and srad benchmarks also have notable thread joining time, since they

speculatively parallelize loops within an outer loop iteration and thus fork/join large

numbers of threads.

The speculative path is more interesting. For the loop workloads bwaves, lbm

and kmeans, the thread task optimization causes significant thread idle time even

with few cores, as was discussed for Figure 4–15. The reason that the percentage

of idle time first decreases with more CPU cores for lbm and kmeans is that we

blockize the loops to distribute the loop iterations evenly to the cores for these

benchmarks, and thus the last iteration execution time is smaller with more cores.

Then with more cores, the idle time increases, due to the fact that some speculative

threads complete execution and wait to join the non-speculative thread while other

speculative threads are validating/committing during the serial commit process. We

could not speculate more threads to use the idle cores as the loop continuation usually

has dependency with the loop iterations. For the divide-and-conquer fft benchmark,

idle time also accounts for most of its time, up to 56% at 64 cores; this is partly
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Figure 4–18: Speculative Path Runtime Breakdown

because we fork a thread to execute the second recursive call and barrier it after the

call, preventing it from accessing parent data and causing unnecessary rollbacks. In

our experiments, matmult is the only benchmark that exhibits rollbacks: although

we split the computation into 4 sub-tasks each multiplying one sub-matrix, if the
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sub-tasks split their own sub-tasks, then different “sub-sub-tasks” may read/write

the same data and cause rollbacks. Like fft, though, idle time still dominates, again

due to speculative execution barriers. It can also be seen that more memory-intensive

benchmarks generally have larger validation/commit/finalization time.

4.5 Comparison of Forking Models

A comparison for different forking models is illustrated in Figure 4–19, normal-

ized to the speedup of the full mixed model. We enable full optimization of the

MUTLS framework design (stack frame and thread task optimizations, as discussed

in section 4.2) for all these forking models.
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Figure 4–19: Comparison of Forking Models

With more than 4 cores, the mixed model beats in-order and out-of-order models

for almost all benchmarks. The only exceptions are in-order nqueen from 5 to 19
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cores and tsp from 10 to 13 cores. With no more than 4 cores, the fork models

generally have limited effect on the performance of the benchmarks. It can also be

seen that for divide-and-conquer benchmarks with few branches such as fft, the out-

of-order forking model usually outperforms the in-order model, demonstrating the

effectiveness of out-of-order model for method-level speculation. On the other hand,

for benchmarks with significant amount of parallelism at the top frame level such

as the depth-first-search (DFS) benchmarks nqueen and tsp, the in-order model is

usually more beneficial.

4.6 Rollback Sensitivity

Thread rollback is always a concern in TLS systems. As the parallel execution

of a rolled back speculative thread has to be executed sequentially by the non-

speculative thread instead, rollback generally causes program performance degrada-

tion in a way we would expect from Amdahl’s law: Speedup = 1/(B + (1− B)/P ),

where B is the percentage of the sequential execution time and P is the speedup fac-

tor of the parallel execution. Given the same parallel speedup factor P > 1, program

performance would degrade more significantly if rollback causes a larger proportion

of sequential execution B. On the other hand, for programs with similar non-rollback

and rollback sequential execution proportions B, those with higher speedup factors

P suffer from more severe performance degradation.

Since most of our benchmarks (other than matmult) do not generate rollacks due

to their embarrassingly parallel properties, here we intentionally make the MUTLS

system randomly cause rollbacks with specific probabilities in order to see the effect

on performance. We do not validate a speculative thread if it is probability rolled
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back, as validation usually takes a small amount of time if a speculative has memory

dependencies. We characterize this as Rollback Sensitivity, which is the relative

slowdown with respect to the non-rollback scenarios. The rollback sensitivity is

experimented using 64 CPU cores, and computed as the geometric mean over 10

random runs. The results are shown in Figures 4–20 to 4–23.
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Figure 4–20: Rollback Sensitivity on 64 CPUs (1/4)

It can be seen that loop benchmarks with linear speedups are more sensitive

to rollbacks with low rollback probabilities. On the other hand, the performance

of tree-form recursion applications degrade significantly only with high probability

rollbacks. This is as expected, since just one thread rollback in a loop speculative

region would almost double the execution time of the speculative region, due to

the fact that after rollback the non-speculative thread has to complete the current

loop iteration before reaching the fork point to speculate another group of parallel
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Figure 4–21: Rollback Sensitivity on 64 CPUs (2/4)
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Figure 4–22: Rollback Sensitivity on 64 CPUs (3/4)
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Figure 4–23: Rollback Sensitivity on 64 CPUs (4/4)

threads, which essentially splits the speculative parallel region to two disjoint parallel

regions, causing significant load imbalance and/or parallel under-coverage. On the

other hand, for tree-form recursion applications, even if a few speculative threads are

rolled back, the performance would not degrade severely, as there are still significant

parallelism opportunities in deeper recursive calls thanks to the mixed forking model.

We can also see that programs with less speedups are generally less sensitive to

rollbacks, which is expected from Amdahl’s law.

The rollback overhead of the MUTLS framework is relatively low: the thread

global buffer is just discarded and buffer finalization does not cause critical path de-

lay, as was discussed in section 3.6.2. This is demonstrated in the figures: programs

with low speedups do not have significant performance degradation even with 100%

104



rollbacks. Also, for some benchmarks with slowdowns, rollbacks can improve per-

formance, as a result of reduced validataion/commit time delaying the critical path.

On average, these benchmarks preserve 79% and 52% of the speedups with 1% and

5% rollbacks, respectively.

4.7 Chapter Summary

In this chapter, we first described the experiment environment and the bench-

marks used in this and following chapters. Then we compared the speedups of the

MUTLS framework design with the stack frame and the thread task optimizations,

with the “stack frame & thread task” version achieving 22.3 to 49.1, 1.0 to 15.8 and

0.12 to 0.40 for computation intensive, locality and non-locality memory intensive

benchmarks, respectively. Then we compared speedups categorizing the benchmarks

into high speedups, mediocre speedups and slowdowns, which roughly corresponds

respectively to the computation intensive, locality and non-locality memory intensive

except for lavaMD and smallpt. For better understanding of the MUTLS software-

TLS framework, we compared the performance of the MUTLS and OpenMP par-

allelized benchmarks, showing that the MUTLS versions have on average 41% per-

formance of the OpenMP versions, and that memory intensive benchmarks do not

achieve theoretically ideal performance and thus can be improved with further op-

timizations. We then analyzed the parallel execution and power efficiencies, and

broke down the runtime to study the overhead of the MUTLS system. Afterwards,

we compared different forking models, demonstrating that the mixed forking model

usually achieves higher speedups for tree-form recursion applications. Finally, we
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experimented with the rollback sensitivity of the benchmarks speculatively paral-

lelized using the mixed forking model on the MUTLS system, showing that rollback

performance characteristics can generally be expected from Amdahl’s law.
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CHAPTER 5
Memory Buffering Optimization

As can be seen from the results in Chapter 4, the MUTLS framework design

achieves ideal performance for computation intensive benchmarks but not for memory

intensive ones. The main cause is the memory buffering overhead, which both incurs

high thread joining idle time that delays the critical path, and increases memory

access cost that slows down the speculative path. We will address the memory

buffering issue in this chapter.

Two approaches to software TLS memory buffering have been proposed: lazy

version management (deferred updates) and eager version management (in-place up-

dates) [125, 179]. Most software TLS systems, such as SableSpMT [133], SpLSC

[124], Lector [179] and the MUTLS [45] design in Chapter 3 adopt the lazy ver-

sion management approach, which buffers data accessed by speculative threads and

employs a serial commit phase to validate/commit the speculative buffer to main

memory. This design, however, has also been blamed for limiting scalability [125].

The large buffering costs inherent in the design of software isolation and validation

mechanisms result in significant memory traffic, impacting cache performance and re-

sulting in long validation/commit times. If there are a significant number of threads

running, the serial commit phase may become a scalability bottleneck for memory

intensive applications due to it delaying the critical path, something we do observe

in our benchmarks.
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Recent software TLS systems such as SpLIP [125] and MiniTLS [179] apply

eager version management to address the problem, allowing speculative threads to

directly access main memory and thereby eliminating the serial commit phase. In

this approach, history versions of accessed data are maintained in shadow buffers

and are used to recover the main memory state when rolling back offending threads.

This comes with a trade-off, however, and despite the advantage of higher scalabil-

ity, eager version management has the disadvantage of incurring expensive rollback

overhead if dependency occurs, as well as causing rollbacks for all RAW, WAR and

WAW dependencies. While lazy version management just discards the buffer if RAW

dependency is detected.

Since lazy and eager version management have complementary weaknesses and

strengths, it would be more effective to integrate them into one system to get the

strengths of both [125]. Here we propose the first such software TLS buffering so-

lution which can automatically determine which version management buffering to

apply to which variables. This approach is integrated with and complemented by a

number of other optimizations that reduce buffer size and improve buffer manage-

ment. More specifically, in this chapter we describe the following contributions.

• To improve lazy version management, we propose a per-thread page-table mem-

ory buffering scheme that enables direct parallelization of the validation/com-

mit (V/C) operations themselves. Our parallelized V/C takes advantage of

extra processors still available once scalability has been saturated in order to

reduce the overhead of one of the more important overhead concerns in lazy
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buffering schemes. We also use vector processing to accelerate both address-

space checking and memory-buffering V/C through common SIMD instruc-

tions, demonstrating application of both coarse and fine-grain parallelism as

a means of helping the TLS system itself, and indicating an interesting opti-

mization point exists in balancing the parallel resources applied to the base

program with the resources used to implement that parallelism.

• For eager version management, we describe a shared address-owner memory

buffering design where the space overhead is bounded by a constant factor of

the program data size, as well as a buffer preserving optimization that reduces

the buffer metadata clearing overhead at the beginning of each speculative re-

gion. The size of shadow buffers is a significant concern in eager approaches,

and can limit the ability to exploit parallelism at larger granularity. Our de-

sign allows buffers to be allocated sufficiently large to enable speculation of

any granularity without causing buffering overflow. Previous eager buffering

approaches frequently clear/re-initialize buffering metadata, including at the

beginning of each speculative region that incurs significant overhead. We pro-

pose a buffer preserving optimization to reduce the overhead.

• Significant reductions to data management costs are also possible if we know

data is not changed at runtime, and so does not require temporary buffer space

or need to participate in validation. Pure readonly data is uncommon and

difficult to find in programs, but in a TLS context opportunities are improved

by the fact that we only require variables be readonly during actual periods

of overlapping speculative executions, and this has been the basis of previous
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approaches that accurately find readonly variables with the help of profiler

support [60] or through manual programmer specifications [124]. We describe a

design that automates the process, using page markers to identify and optimize

readonly and independent memory pages on-the-fly, giving us a less precise but

low overhead and fully dynamic means of finding readonly data that can be

applied to either buffering strategy.

• Finally, we propose a buffering integration mechanism that can automatically

select the appropriate buffering technique for each variable. It can quickly iden-

tify variables as independent (without RAW, WAR, WAW dependencies, i.e.

readonly or access disjoint memory) or not, and apply the optimized address-

owner buffering for independent variables and the page-table buffering for de-

pendent ones. In this way, we can benefit from the higher scalability of ea-

ger version management for independent variables, while still enabling TLS in

the presence of dependent ones in a speculative region. This design includes

adaptive buffering selection heuristics to dynamically choose the appropriate

buffering based on the program execution characteristics.

In sections 5.1 to 5.3, we describe our optimized designs for lazy and eager

buffering approaches and their adaptive integration. First, we present the page-table

memory buffering for lazy buffering, which allows us to exploit coarse and fine grain

parallelism in the validation/commit phase through the parallelized V/C and SIMD

acceleration optimizations. Next, we describe the shared address-owner buffering

that enables higher scalability and reduced buffer overflow in an eager design. For

the eager buffering we also propose a buffer preserving optimization to reduce the
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buffer metadata clearing/re-initialization overhead when entering each speculative

region. Readonly data detection and adaptive buffering heuristics are related in

their integration, and so are described together in section 5.3.

Note that we adopt page-based designs to both the buffering integration mech-

anism and the page-table thread memory buffering implementation. These pages,

however, are independent of each other and have different characteristics: the former

need only improve performance in the most common cases and thus is not required

to be accurate, while the latter is expected to support a wide range of applications

as long as they do not exhibit true RAW dependencies, and hence accurate, one-

to-one mapping of each byte from the main memory to the buffering is important.

The two page-based designs also serve different purposes. The former is to reduce

the TLS system overhead by maintaining optimization meta-data at a coarser gran-

ularity with page-based data structures. The latter exposes coarse and fine grain

parallelism to reduce validation/commit time for the thread memory buffering.

5.1 Lazy Per-Thread Page-Table Buffering

The basic MUTLS buffering approach does not buffer the main, non-speculative

thread, following a lazy version management approach [45]. Page-table thread mem-

ory buffering implements this same behaviour, but organizing data to facilitate par-

allelization in the final V/C stage of each speculative thread. Note that these page-

table buffer are thread-specific, and thus synchronization between speculative threads

is not needed.

The page-table thread memory buffering implementation is detailed in Figure 5–

1. The buffering maintains a page table (table, pages), a read-set (markR, bufR) and
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29  template<typename T> 

30  T load(T* addr){ 

31    size_t p = find_page((size_t)addr); 

32    size_t ofs = (p * PAGE) + (addr % PAGE); 

33    if(*(T*)(markW + ofs) == (T)all_one) 

34      return *(T*)(bufW + ofs); 

35    if(*(T*)(markW + ofs) != 0) 

36      rollback(PART_ACCESS, rank); 

37    if(*(T*)(markR + ofs) == (T)all_one) 

38      return *(T*)(bufR + ofs); 

39    if(*(T*)(markR + ofs) != 0) 

40      rollback(PART_ACCESS, rank); 

41    *(T*)(markR + ofs) = (T)all_one; 

42    *(T*)(bufR + ofs) = *addr; 

43    return *addr; 

44  } 

45  template<typename T> 

46  void store(T* addr, T data){ 

47    size_t p = find_page((size_t)addr); 

48    size_t ofs = (p * PAGE) + (addr % PAGE); 

49    *(T*)(markW + ofs) = (T)all_one; 

50    *(T*)(bufW + ofs) = data; 

51  } 

52  bool validation(){ 

53    for(each p in pages){ 

54      if(!validate_page(p)) 

55        return false; 

56    } 

57    return true; 

58  } 

59  void commit(){ 

60    for(each p in pages) 

61      commit_page(p); 

62  } 

1   class ThreadBuffer{ 

2     int rank; 

3     char* table[PAGE_NUM]; 

4     array<size_t, PAGE_NUM> pages; 

5     char markR[SIZE], bufR[SIZE]; 

6     char markW[SIZE], bufW[SIZE]; 

7   private: 

8     size_t find_page(size_t addr){ 

9       size_t n = PAGE_NUM / K; 

10      size_t index = (addr / PAGE) % n; 

11      for(; index < PAGE_NUM; index += n){ 

12        if(table[index] == addr) return index; 

13        if(table[index] == NULL){ 

14          table[index] = addr; 

15          pages.push_back(index); 

16          return index; 

17        } 

18      } 

19      rollback(OVERFLOW, rank); 

20    } 

21  public: 

22    template<typename T> 

23    T load(T* addr); 

24    template<typename T> 

25    void store(T* addr, T data); 

26    void commit(); 

27    bool validation(); 

28  }; 

rank: the rank of the thread (1 to N-1) 

K: associativity of the hash mapping (4) 

SIZE: the size of the thread buffer 

PAGE: the size of each page (4KB) 

PAGE_NUM = SIZE / PAGE 

 

Figure 5–1: Lazy Per-Thread Page-Table Memory Buffering

a write-set (markW, bufW) (Line 3–6). A memory store directly inserts the address-

value pair to the write-set, while a memory load returns the buffered data from its

write-set or read-set if found, and otherwise inserts the address and the read data to

the read-set and returns the data. During validation, if the buffered data in the read-

set is not equal to the main memory version, then RAW dependencies are detected
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and the thread is rolled back; otherwise, validation succeeds and the thread commits

all buffered data in the write-set to main memory.

The thread memory buffering can buffer at most SIZE bytes or SIZE/PAGE

pages. The offset ofs of each byte of the read-set and write-set can be calculated

as ofs = i ∗ PAGE + o given page index i and the offset o within the page. When

buffering an address addr, the page index and offset within a page are calculated

using hash mapping by the find page method. To support the case that multiple

addresses are hashed to the same page, find page implements a K-way associative

hash mapping, which considers the buffer to comprise K consecutive blocks and each

address can be hashed to any of the K blocks. The load method calls find page

to find the page index (Line 31) and then computes the buffer offset of the address

(Line 32). If the address is fully buffered in the write-set or read-set, the data is

returned (Line 33–34, 37–38). If part is buffered, it means the program uses aliasing

of different data types (unions), which we consider rare and in which case we simply

rollback the thread (Line 35–36, 39–40). If the data is not buffered, it is inserted

into the read-set and returned (Line 41–43).

In addition to exposing different granularities of parallelism, the page-table

memory buffering has other advantages over previous software TLS buffering im-

plementations. First, the memory buffer can accurately track dependencies with

mixed load/store data types. Different threads accessing adjacent memory locations

will not cause thread rollbacks, even for those accessing different integers or char-

acters within the same 8-byte boundary on a 64-bit machine. Second, the K-way

associative hash mapping can effectively reduce rollbacks caused by hashing conflicts
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for programs with many variables such as memory allocation/deallocation intensive

applications. However, we also note that these advantages come at costs. To support

accurate dependency tracking, the average buffering space overhead for each word is

2 + ϵ words for read-only or write-only variables and 4 + ϵ for read-write variables,

where ϵ is the paging overhead, compared to 2 (a buffered word and an address)

for SpLSC and Lector. The K-way hash mapping also incurs performance overhead.

Nevertheless, we find the benefits outweigh the overhead, as the page-table buffering

is utilized in the fallback path expected to support general cases.

5.1.1 Parallelized V/C

To enable parallelized V/C and/or SIMD acceleration, it should be guaranteed

that validation/commit within and/or across pages are independent and not subject

to sequential ordering, which is the case for the page-table memory buffering. Other

software-TLS approaches such as SpLSC [124] and Lector [179] do not enable these

optimizations since in their designs multiple writes to the same address by a specu-

lative thread are all stored in the write-set, and therefore must be committed serially

to guarantee the last write is the last to commit. Also, the addresses in the write-set

are not necessarily adjacent.

If a speculative thread accesses a large number of memory buffering pages, we

can validate/commit the memory buffering pages in parallel to reduce the critical

path idle time, which helps to achieve scalable speedups for memory intensive appli-

cations. Our current implementation needs additional CPUs other than those of the

speculation runtime system for parallelized V/C, which is not an important problem

for many-core machines. Also, power consumption issues may prevent all cores from
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being utilized all the time, and this is an especially suitable scenario for the paral-

lelized V/C optimization. For machines with fewer cores, dedicated V/C cores may

be detrimental to performance, in which case we can use the same speculation cores

as V/C cores while setting higher priority to V/C threads to prevent more threads

delaying the critical path.

5.1.2 SIMD acceleration

Vector processing of data on consecutive memory locations can be accelerated

by SIMD instructions such as SSE2, SSE4 and AVX2, and this can be applied to

validation/commit and address space checking in our design, as the page-based vali-

dation/commit exposes fine grain parallelism opportunities for SIMD vectorization.

Validation and commit of 16-byte data on a page using SSE4 intrinsics are demon-

strated in Figure 5–2. SSE2 and AVX2 implementations are similar. One issue is

that mm maskmoveu si128 needs a memory fence after buffering commit to ensure

cache coherency, and this overhead may cause SIMD commit to be unprofitable.
 

 

  

void commit_data(__m128i* p, __m128i* q, 

    __m128i* mark){ 

  __m128i va = _mm_load_si128(mark); 

  if(_mm_testz_si128(va, va)) return; 

  __m128i vp = _mm_load_si128(p); 

  _mm_maskmoveu_si128(vp, va, (char*)q); 

} 

bool compare_data(__m128i* p, __m128i *q, 

    __m128i* mark){ 

  __m128i va = _mm_load_si128(mark); 

  if(_mm_testz_si128(va, va)) return true; 

  __m128i vp = _mm_load_si128(p); 

  __m128i vq = _mm_load_si128(q); 

  __m128i vc = _mm_cmpeq_epi8(vp, vq); 

  return _mm_testc_si128(vc, va); 

} 

Figure 5–2: Validation/Commit of 16-byte Data Using SSE4 Intrinsics

SIMD can also help improve the performance of MUTLS address space checking.

Before buffering a memory load/store, MUTLS checks that the address is valid to
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avoid segmentation fault. The addresses and sizes of global and heap variables as

well as the non-speculative thread stack are registered and merged to form disjoint

address space intervals, on which address space checking can be vector processed by

SIMD instructions.

5.2 Eager Shared Address-Owner Buffering
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Figure 5–3: Shared Address-Owner Memory Buffering - Architecture

The address-owner buffering is an eager version management memory buffering

with the property that a single buffer is shared by all threads. The architecture of

the buffering is illustrated in Figure 5–3, and should be compared with the typical

multiple buffer eager buffering design shown in Figure 2–9. Notably, our design

uses a single shadow buffer for all threads, and its space complexity is proportional

to the amount of data accessed, irrespective of the number of memory stores, as

opposed to the multiple buffer designs of other software-TLS systems such SpLIP

[125] and MiniTLS [179]. This ensures that the space overhead of the buffering is
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bounded by a constant factor of the amount of program data, and further enables

optimizations that can generally assume the buffering is sufficiently large that it

has a one-to-one mapping of the main memory for any parallelism granularity, since

allocating more memory by a constant factor is usually not a severe problem. As a

result, K-way hash mapping implementation, and thus the page table, is not needed.

As a trade-off, however, we need to include the non-speculative thread (Thread 1,

with “Speculative” italicized) in the buffering design, in order to be able to detect

interference between speculative threads and the non-speculative thread.

The granularity of the buffering is WORD; different threads accessing the same

WORD with at least one writing are considered to have dependencies. WORD can

be set as the native word of the machine, or smaller to achieve higher precision of

dependency tracking. By our design, using smaller WORD such as 8, 16 or 32 bit is

still as efficient as using larger WORD such as 64 bit for large word accesses, though

smaller WORD overflows earlier as more threads are speculated and thus requires

more frequent buffer flushes. However, for relatively large WORD such as 32-bit,

overflow occurs once every 231 threads, which is rare. By comparison, the SpLIP and

MiniTLS systems need to flush buffer once every 256 and 32 threads, respectively.

 

 

 

  

? t < t0 

(a) not owned 

0 t0 ≤ t ≤ tmax 

(b) only read by thread t 

1 t0 ≤ t ≤ tmax 

(c) written by thread t 

0 ~0 

(d) shared 

Figure 5–4: Shared Address-Owner Memory Buffering - Owner Number

For each WORD, the buffering maintains an owner for dependency tracking

and a shadow memory copy for rolling back the WORD if dependency occurs. The

encoding of the owner WORD is illustrated in Figure 5–4: the last bit of the owner
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WORD is 1 if the buffering WORD has been written by a thread and thus is exclu-

sively owned by the thread and 0 otherwise. Higher bits denote the thread accessing

the WORD (the owner thread number of the WORD), or an all-one value if it is

read by more than one thread (shared), in which case the last bit is 0. The non-

speculative thread has the lowest thread owner number t0. If the owner number t

of the WORD is smaller than t0, the WORD is not owned by any actively running

thread (case (a), accessed by committed threads or not accessed by any thread); if t

is the owner number of a running thread, the WORD is owned by the thread (case

(b) or (c), non-exclusively or exclusively owned by the thread depending on whether

the last bit is 0); if t is ∼0, the WORD is shared (case(d), can be read by all running

threads).

To identify owner threads, speculative threads need globally unique thread owner

numbers, for which the flexibility of arbitrary point speculation that is used by

MUTLS and was discussed in section 2.2 imposes its specific difficulties. As fork/join

points can be inserted anywhere in a function, it is not possible to use loop iteration

numbers to identify threads, as pure loop-level speculation systems such as SpLIP

and MiniTLS do. In addition, the non-speculative thread needs to update its thread

owner number after joining speculative threads so that the non-speculative thread

can access the WORDs owned by committed threads. We propose a thread owner

numbering mechanism to resolve these issues. We maintain a global owner counter

and for each thread an owner number. Each time a thread is speculated, we increment

the counter and assign it to be the owner number of the speculative thread. After

the non-speculative thread joins a speculative thread, the non-speculative thread
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is assigned the owner number of the speculative thread. Since the non-speculative

thread should have the lowest thread owner number of all actively running threads as

was discussed for Figure 5–4, the joining speculative thread should have the lowest

thread owner number of all running speculative threads. In order to guarantee this

property, we use the in-order forking model of the MUTLS system, in which only

the most speculative thread can fork a new thread.
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Figure 5–5: Shared Address-Owner Memory Buffering - Timeline

A running instance is demonstrated in Figure 5–5. The non-speculative thread

T0 runs on CPU 0. The speculative threads T1, T2 and T3 are in-order speculated
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running on virtual CPU 1, 2 and 1, respectively. The thread owner numbers are

incrementally allocated to each thread as they are created, and therefore threads

representing sequentially later execution have larger thread owner numbers. Since

the non-speculative thread T0 then joins the speculative threads in the same order

as they are speculated, it always joins the speculative thread with the lowest thread

owner number. As can be noted in the figure, the non-speculative thread T0 always

has the lowest owner number among the running threads (horizontally) anywhere in

the (vertical) wall time-line.

The first time an address is written, the memory data is copied to the shadow

buffer, so it can be restored to main memory if the speculative thread rolls back. It

should also be guaranteed that the data only be copied the first time it is accessed,

since we only maintain one version of each buffering WORD and should ensure

the buffered data be the original memory version not written by any speculative

thread. This enables the shared address owner buffering to use a single global shadow

buffer with constant size and larger hash space, as opposed to the multiple buffer

architecture shown in Figure 2–9.

The shared address-owner memory buffering implementation is presented in Fig-

ure 5–6. Thread owner numbers of speculative threads are assigned by register -

start thread (Line 26) and the non-speculative thread owner number thread own-

ers[0] is updated by register join thread (Line 27). The owner and shadow mem-

ory copy WORDs are stored in owners and buf, respectively. The register load

method returns true to indicate the load is valid if the buffering WORD of the ad-

dress addr is shared or is already owned by the thread (Line 8). Otherwise it registers
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the owner if the buffering WORD is not exclusively owned by another thread (Line

9–12); if it fails, then another thread is simultaneously registering the owner, in which

case it tries to register the owner as shared if the buffering WORD is not registered

as exclusively owned by another thread (Line 13). If it cannot register a valid owner,

false is returned (Line 15) and rollback is initiated. The register store method

returns true if the buffering WORD is already exclusively owned by the thread (Line

19). Otherwise, it tries to register its owner (Line 20) and copy the memory value

to the shadow buffer (Line 21). No other threads can register ownership of the

buffering WORD again after the thread registers itself as an exclusive owner, thus

guaranteeing the copy-only-once requirement of the buffering.

If a thread detects dependencies in the shared buffering, all speculative threads

are rolled back, and then the buffering data is restored to the main memory. The

rollback page nonsp method rolls back a buffering page of size size for address

addr. For each buffering WORD in the page, if its owner number is larger than the

non-speculative thread owner number and it is written, the shadow memory copy is

restored to the main memory, and then the owner WORD is reset to 0 (Line 30–

33). If a speculative thread is rolled back not as a result of the shared buffering

dependency, e.g. attempting to call I/O functions, other speculative threads are not

required to rollback since they cannot access variables written by the rolling back

thread, although speculative threads representing sequentially later execution may

need cascade rollback. When such a speculative thread is rolling back, it calls the

rollback page sp method whose implementation is similar to rollback page nonsp,

except that it determines whether to rollback a WORD by checking whether the
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1   class AddressOwnerBuffer{ 

2    static const intptr_t SHARED = ~1LL; 

3     char owners[SIZE], buf[SIZE]; 

4     WORD thread_owners[N], counter; 

5   public: 

6     bool register_load(WORD* addr, int rank){ 

7       WORD* p = (WORD*)(owners + (addr & SIZE)), owner = *p, t = thread_owners[rank]; 

8       if(owner == SHARED || (owner & SHARED) == t) return true; 

9       if((owner & 1) == 0 || owner < thread_owners[0]){ 

10        T new_owner = (owner < thread_owners[0] ? t : SHARED); 

11        T o = __sync_val_compare_and_swap(p, owner, new_owner); 

12        if(o == owner) return true; 

13        if((o & 1) == 0 && (__sync_val_compare_and_swap(p, o, SHARED) & 1) == 0) return true; 

14      } 

15      return false; 

16    } 

17    bool register_store(WORD* addr, int rank){ 

18      WORD* p = (WORD*)(owners + (addr & SIZE)), owner = *p, t = thread_owners[rank]; 

19      if(owner == (t | 1)) return true; 

20      if((owner < thread_owners[0] || owner == t) &&__sync_bool_compare_and_swap(p, owner, t | 1)){ 

21        *(WORD*)(buf + ofs) = *addr; 

22        return true; 

23      } 

24      return false; 

25    } 

26    void register_start_thread(int rank){ counter += 2; thread_owners[rank] = counter; } 

27    void register_join_thread(int rank){ thread_owners[0] = thread_owners[rank]; } 

28    void rollback_page_nonsp(WORD* addr, size_t size){ 

29      WORD* p = (WORD*)(owners + (addr & SIZE)), *q = (WORD*)(buf + (addr & SIZE)); 

30      for(size_t i = 0; i < size / sizeof(WORD); i++){ 

31        if(p[i] > thread_owners[0] && (p[i] & 1) == 1) addr[i] = q[i]; 

32        p[i] = 0; 

33      } 

34    } 

35    void rollback_page_sp(WORD* addr, size_t size, int rank){ 

36      WORD* p = (WORD*)(owners + (addr & SIZE)), *q = (WORD*)(buf + (addr & SIZE)); 

37      for(size_t i = 0; i < size / sizeof(WORD); i++){ 

38        if((p[i] & SHARED) == thread_owners[rank]){ 

39          if((p[i] & 1) == 1) addr[i] = q[i]; 

40          p[i] = 0; 

41        } 

42      } 

43    } 

44  }; 

 

SIZE: the size of the shared address owner buffer 

Figure 5–6: Shared Address-Owner Memory Buffering - Implementation
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WORD thread owner number is equal to the speculative thread owner number (Line

38).

5.2.1 Buffer Preserving Optimization

Before entering each speculative region, the eager buffering should be cleared/re-

initialized to avoid unnecessary rollbacks caused by the threads of the new speculative

region accessing stale buffering metadata. This requires resetting the parts of the

owners array of all global variables to 0, which has significant overhead, especially

for benchmarks frequently entering speculative regions, for example, those iteratively

computing parallel regions such as lbm.

We can reduce the buffer clearing/re-initialization overhead by the buffer pre-

serving optimization. Before entering a speculative region, we do not reset the owners

array but just call register start thread(0) to set the non-speculative thread owner

to be higher than the owner numbers of previous speculative threads of the specu-

lative region, which can simply be achieved by increasing the owner number of the

non-speculative thread. From the discussion of Figure 5–4 we can see that this es-

sentially sets all non-shared owners to be case (a) (not owned by any threads that

will be speculated in the speculative region). The shared owner of case (d) is not

affected as it does not consider the owner number. However, shared owners gener-

ally cause rarer unnecessary rollbacks as speculative regions usually access common

shared data.

5.3 Readonly-Page Optimization & Buffering Integration

Speculative regions often contain readonly variables, and this can include larger

data structures such as matrices, trees, and graphs that consume significant buffer
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space and thus validation time. Aggressively pruning out readonly data is thus

worthwhile, and can be efficiently done at the page level. Our readonly-page opti-

mization maps the address of each read to its address and optimizes the read by not

buffering it if the page address is marked readonly. If a thread then attempts to

write an address whose page is marked readonly, all speculative threads are rolled

back.
 

Variable Definition Memory Intervals Variable Pages 

char a[10000]; global variable id 1: [0x16000, 0x18710) variable id 1 pages: [0x16, 0x18] 

void insert_tree_node(tree* root, int data){ 

  tree* node = (tree*)malloc(sizeof(tree)); 

  … 

} 

heap variable id 2: [0x3108, 0x3128) 

heap variable id 2: [0x5770, 0x5790) 

heap variable id 2: [0x20350, 0x20370) 

… 

variable id 2 pages: 

0x3, 0x5, 0x20, … 

  

Figure 5–7: Variable Pages

In order for the optimization to not cause excessive rollbacks, we register the

page addresses of each global and heap variable in the TLS runtime library, as demon-

strated in Figure 5–7. If one page address of a variable is written by a thread, we

mark all pages of the written variable as not-readonly, which can usually find all

readonly and not-readonly pages within short amount of time after entering a loop

speculative region. One issue to be considered is pointer-based heap data structures.

If we consider different nodes to be different variables, the optimization would be

ineffective: if a tree is not readonly, writing a node could only mark the single node

not-readonly and each write would cause rollbacks. We solve this problem by treat-

ing each heap allocation call instruction as a single heap variable since the nodes of

a data structure are usually allocated by the same instruction.
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variable B 

… 

Figure 5–8: Buffering Example. Threads T1, T2 and T3 read/write variable A,
which has pages 23, 101 and 102.

Our readonly-page optimization actually builds on a more general buffering

mechanism that identifies pages as either readonly (2), independent (1), or depen-

dent (0), using this distinction to help drive the choice of eager or lazy buffering.

Before entering a speculative region, all pages are optimistically set to the default

type (2, or readonly). If an address causes rollback and its page type is not at 0 (de-

pendent), all pages of the variable that contains the address are reduced to a lower

type. Figure 5–8 includes an example: the variable A spans three pages 23, 101 and

102, which are initialized to 2 before entering the speculative region. After entering

the speculative region, the non-speculative thread T1 and 2 speculative threads T2

and T3 read A, and as long as none write A the TLS runtime system assumes the
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variable is readonly and does not buffer it. If A is written the speculative threads

are rolled back and restarted with A set to be independent and buffered using eager

version management buffering. This continues as long as T1, T2 and T3 only read

each given word or read/write different words of A. When different threads write

the same word of A, speculative threads again rollback and restart with A set as

dependent using the lazy version management buffering.

To avoid unnecessary rollbacks, we apply the page type preserving optimization

that does not reset the page types if the fork point id of the speculative region is the

same as that of the last entered speculative region whose fork point is not disabled.

This alleviates performance degradation for applications that iteratively compute

speculative regions, such as the md and heartwall benchmarks. To prevent the eager

buffering from slowing down the non-speculative thread within a non-parallelizable

region, we use the sequential region optimization that the non-speculative thread

checks at each memory access if it is the only running thread, and if so then skips

the buffering integration mechanism and directly accesses main memory.

The memory buffering integration mechanism, which is also the top-level imple-

mentation of the memory buffering, is present in Figure 5–9. To efficiently find the

variable of an address and all pages of a variable/memory allocation instruction, we

maintain the address and size of each variable and the allocated variables of each

memory allocation instruction by registering the variable pages in the buffering (Line

14–16). For each page, we also register all variables accessing the page. We reset the

all pages before entering speculative regions (Line 18). When a speculative thread

accessing an address of a non-0 type page causes rollback, it sets the rbk addr to
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1   class MemoyBuffering{ 

2     int page_types[PAGE_NUM], rbk_page_type; 

3     char* page_addresses[PAGE_NUM], *rbk_addr; 

4     array<size_t, PAGE_NUM> pages; 

5     ThreadBuffer threads_buffer[N]; 

6     AddressOwnerBuffer owner_buffer; 

7   private: 

8     size_t get_page(char* addr){ return (addr & SIZE) / PAGE; } 

9     int get_page_type(char* addr){ 

10      size_t p = get_page(addr), paddr = addr & ~(PAGE – 1); return (page_addresses[p] == paddr) ? page_types[p] : 0; 

11    } 

12  public: 

13    void register_variable_node(char* addr, size_t size){ 

14      size_t p = get_page(addr), pe = get_page(addr + size); 

15      for(; p <= pe; p++, addr += PAGE) 

16        if(page_addresses[p] == NULL){ page_addresses[p] = addr & ~(PAGE – 1); pages.push_back(p); } 

17    } 

18    void reset(){ for(each p in pages) page_types[p] = 2; } 

19    template<bool sp, typename T> 

20    T load(T* addr, int rank){ 

21      if(is_self_stack_address(addr, rank)) return *addr; 

22      int t = get_page_type(addr); 

23      if(t == 2) return *addr; 

24      if(t == 1){ 

25        if(owner_buffer.register_load(addr, rank)) return *addr; 

26        if(sp) rollback_self_sp(addr, 0, rank); else rollback_self_nonsp(addr, 0); 

27      } 

28      return sp ? threads_buffer[rank].load(addr) : *addr; 

29    } 

30    template<bool sp, typename T> 

31    void store(T* addr, T data, int rank){ 

32      if(is_self_stack_address(addr, rank)){ *addr = data; return; } 

33      int t = get_page_type(addr); 

34      if(t == 2) sp ? rollback_self_sp(addr, 1, rank) : rollback_self_nonsp(addr, 1); 

35      else if(t == 1){ 

36        if(owner_buffer.register_store(addr, rank)) *addr = data; 

37        else if(sp) rollback_self_sp(addr, 0, rank); else rollback_self_nonsp(addr, 0); 

38      } 

39      else if(sp) threads_buffer[rank].store(addr, data); else *addr = data; 

40    } 

41    void register_start_thread(int rank){ owner_buffer.register_start_thread(rank); } 

42    void register_join_thread(int rank){ owner_buffer.register_join_thread(rank); } 

43    void check_valid(){ if(rbk_addr == NULL) return; rollback_self_nonsp(addr, rbk_page_type); rbk_addr = NULL; } 

44    void rollback_self_sp(char* addr, int type, int rank){ 

45      rbk_addr = addr; rbk_page_type = type; rollback(INVALID_PAGE, rank); 

46    } 

47    void rollback_self_nonsp(char* addr, int type){ 

48      rollback_all_speculative_threads(); var = find_variable(addr); 

49      for(each p in var.get_pages()){ page_types[p] = type; owner_buffer.rollback_page(page_addresses[p], PAGE); } 

50    } 

51  }; 

SIZE: the size of the shared address owner buffer; PAGE: the size of each page (4KB); PAGE_NUM = SIZE / PAGE 

Figure 5–9: Buffering Integration Implementation
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the address and the rbk page type to the appropriate lower type and then rolls back

itself (Line 45). When the non-speculative thread accesses an invalid page, it aborts

all speculative threads, rolls back the eager address-owner buffering and resets the

page types of the variable that contains the address (Line 48–49). Since rolling back

each page of a variable is independent, the loop can be parallelized, and as there are

no speculative thread running when the non-speculative thread rolls back the eager

buffering, the parallelized loop can be scheduled to run on the speculative computa-

tion cores. The non-speculative thread also frequently calls check valid and initiates

thread rollbacks if it finds that a speculative thread has accessed invalid pages (Line

43).

5.3.1 Thread Stopping Optimization

To rollback and restart the speculative threads for the readonly-page optimiza-

tion and the buffering integration mechanism, such as the example shown in Figure

5–8, we have different design choices. In the MUTLS framework design of Chapter 3,

all speculative threads/tasks can be rolled back. When the non-speculative thread

reaches a fork point again, a child thread is then forked to continue speculative

parallel execution.

An example of this design is illustrated in Figure 5–10. The non-speculative

thread T0 in-order speculates threads T1, T2, T3 and the pending task T4. Then

a thread writes a readonly page and initiates speculative threads/tasks rollback-

/restart, which causes all speculative threads/tasks to rollback. This design has the

drawback of reduced parallel thread work coverage: after the speculative thread tasks

are rolled back, the non-speculative thread has to complete the rest of its iteration
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T0 T1 T2 T3 Pending task T4 

Rolled back thread tasks 

Figure 5–10: Speculative Threads/Tasks Rollback/Restart without Thread Stopping
Optimization

before speculating a child thread again, resulting in unnecessarily longer program

execution time.

We propose the thread stopping optimization to resolve this issue. When the

speculative threads need to be restarted, the non-speculative thread initiates specu-

lative threads/tasks stop/rollback/restart, which stops its direct children, and then

indirect children are cascadingly rolled back. Then after rolling back the eager buffer-

ing and resetting the variable page types, the non-speculative thread restarts the

stopped child thread tasks.

The example of Figure 5–10 with the thread stopping optimization is demon-

strated in Figure 5–11. When the speculative threads/tasks T1 to T4 need to restart,

the speculative thread T1 is stopped, which in turn cascadingly rolls back T2, T3 and

T4. Then as there are no speculative threads running, the non-speculative thread

T0 can maintain the buffering metadata and global main memory. Afterwards, it
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Figure 5–11: Speculative Threads/Tasks Stop/Rollback/Restart with Thread Stop-
ping Optimization

restarts the stopped speculative thread task T1, which in turn re-speculates child

threads/tasks T2, T3 and T4.
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Figure 5–12: State Transition of Thread Stopping Optimization Design

The state transition of the MUTLS framework design with the thread stopping

optimization is illustrated in Figure 5–12. When a speculative thread has an invalid
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buffering memory access such as writing a readonly page or reading/writing an inde-

pendent WORD and needs to restart, it waits for its state to be STOPPING. When

the non-speculative thread has an invalid buffering memory access or finds one of a

speculative thread in the check valid call as was discussed for Figure 5–9, it sets

the states of the speculative threads/tasks to STOPPING. If a speculative thread

finds its state is STOPPING in a synchronization point as was discussed in section

3.5.3 or during waiting after an invalid buffering memory access, there are two cases,

depending on whether the speculative thread is a direct child of the non-speculative

thread: if it is, it sets its state to STOPPED and exits; otherwise, it transits to

STOP ROLLBACK and calls the rollback self sp method of Figure 5–9 to rollback

itself. The reason that indirect child threads do not transit to the ROLLBACK state

is that, instead of calling rollback self sp of Figure 5–9, a thread normally rolling

back from the ROLLBACK state calls the rollback page sp method of Figure 5–6

for all its accessed pages, as was discussed for the figure. After the non-speculative

thread rolls back the eager buffering and resets the buffering metadata, it resets the

states of the stopped direct child threads to RUNNING and restarts the threads.

5.3.2 Adaptive Buffering Selection Heuristics

Since eager version management buffering has higher scalability, the buffering

integration mechanism defaults to selecting the eager shared address-owner buffering

whenever possible. However, when there are few processor cores, or the validation/-

commit time is small, the way eager buffering delays the non-speculative thread
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becomes the dominant overhead, and it can be more efficient to use the lazy page-

table buffering. We thus propose adaptive buffering selection heuristics to address

this problem.

The adaptive buffering selection heuristics is similar to the adaptive fork heuris-

tics [44] that will be discussed in Chapter 6 in that it dynamically profiles the parallel

program execution and adapts to the appropriate buffering on-the-fly. At the be-

ginning of program execution, the lazy page-table buffering is the default selection

since it does not cause unnecessary rollbacks for dependent variables. The runtime

system records the number of memory accesses m, work time Twork (the time from

being speculated to the start of validation/commit), and validation/commit time Tvc

of each speculative thread. When a speculative thread commits, the expected run-

time of lazy and eager buffering are estimated as follows. Assume each speculative

memory access has overhead C cycles and the eager buffering delays each thread by

a constant factor of K: if there are N−1 speculative threads, the work time speedup

of the N threads for the lazy buffering is S = 1 + (N − 1) ∗ (Twork − C ∗m)/Twork.

For an assumed workload of L loop iterations, the estimated runtime of the lazy and

eager buffering is then tlazy = L ∗ Twork/S + L ∗ Tvc and teager = L ∗ Twork ∗ K/N ,

respectively. If tlazy/teager = N/K ∗ (1/S + Tvc/Twork) > 1, then the eager buffer-

ing is considered more efficient and should be enabled. In our experiments, we use

parameters C = 20 and K = 8.

5.4 Experiments

We perform experiments of the buffering optimizations using the MUTLS frame-

work design with the highest speedups that enables the stack frame and thread task
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optimizations, as shown in section 4.2. Since the eager shared address owner buffer-

ing requires the in-order forking model, as discussed in section 5.2, we perform two

groups of experiments for each measurement in the following subsections, according

to whether the eager buffering is used.

As more parallel thread work generally requires more validation/commit (V/C)

time, we use more cores for parallelized V/C as more cores are used for speculative

parallelization. For the experiment, we use Npvc =1, 1, 2, 3, 4, 6, 8, 8 and 8 cores for

parallelized V/C, when there are N =1, 2, 4, 8, 16, 32, 48, 56 and 64 available CPU

cores, thus leaving for working threads Nwork =1, 2, 3, 6, 13, 27, 41, 49 and 57 cores,

respectively. The reason that Npvc + Nwork = N + 1 is because the non-speculative

thread can also be used for parallelized V/C and thus save one dedicated V/C core.

We use SSE4 instructions for SIMD acceleration.

5.4.1 Speedup of Lazy Page-Table Buffering

We first experiment with the effectiveness of the lazy per-thread page-table

buffering optimizations. The speedups are presented in Figures 5–13, 5–14 and 5–

15. The noopt curves show the speedups of the non-optimized lazy buffering of the

MUTLS framework design (with the stack frame and thread task optimizations) in

Chapter 3. The simd, pvc and ro mean the SIMD acceleration, parallelized V/C and

readonly-page optimization, respectively.

It can be seen that the readonly-page optimization is highly efficient and ef-

fective for benchmarks with large readonly variables, significantly improving the
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     (a) bh        (b) raytracing        (c) smallpt 

 
   (d) lavaMD         (e) StreamCluster        (f) kmeans 
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Figure 5–13: Speedups of Lazy Buffering; higher is better (1/3). The readonly-page
optimization is most effective for benchmarks with large readonly variables.

performance of the bh, raytracing, smallpt, lavaMD, streamcluster, kmeans, sparse-

matmul, bwaves, srad, cfd and heartwall benchmarks. It also shows improvement for

other benchmarks with generally negligible overhead.

The SIMD acceleration optimization improves performance considerably for

bwaves, fft, srad and md, and moderately for others. The parallelized V/C optimiza-

tion significantly benefits more memory intensive benchmarks such as sparsematmul,

bwaves, lbm, fft, srad, cfd and streamcluster, as a result of reduced critical path de-

lay, while degrading the speedups of computation intensive benchmarks such as bh,

raytracing, smallpt, 3x+1, mandelbrot, lavaMD and myocyte due to less thread re-

sources allocated for speculative parallel computation. The bwaves, fft, srad and
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   (a) SparseMatMul       (b) bwaves          (c) lbm 

 
  (d) fft        (e) srad        (f) cfd 
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Figure 5–14: Speedups of Lazy Buffering; higher is better (2/3). The parallelized
V/C and SIMD acceleration optimizations benefit memory-intensive benchmarks.

cfd benchmarks also show the interesting behaviour of the parallelized V/C opti-

mization, which degrades the speedups with fewer cores but has benefits with more

cores, demonstrating the trade-off between the speculative execution time and the

validation/commit time.

As are exhibited in the geometric mean and most benchmarks, generally few

or no dedicated parallelized V/C cores are needed on machines with no more than

8 cores. On average, the simd-pvc-ro version improves the geometric mean of the

speedups by a factor of 1.59 from 4.06 to 6.46 at 64 cores.
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     (a) 3x+1 - C        (b) 3x+1 - Fortran       (c) Mandelbrot - C 

 
   (d) Mandelbrot - Fortran        (e) md - C       (f) md - Fortran 

 
     (g) matmult         (h) nqueen       (i) tsp 

 
     (j) heartwall         (k) myocyte        (l) geometric mean 
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Figure 5–15: Speedups of Lazy Buffering; higher is better (3/3). The geometric
mean performance is 59% faster with lazy buffering optimizations.
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5.4.2 Speedup of Eager Address-Owner Buffering

We then experiment with the eager shared address-owner buffering optimiza-

tions. The results are shown in Figures 5–16, 5–17 and 5–18. The eager-nolazy

version uses the eager buffering and rolls back threads with RAW, WAR or WAW

dependencies. The simd-eager tries to use the eager buffering for independent global

variables and falls back to the simd lazy buffering for dependent ones, and simd-eager-

ro also enables the readonly-page optimization. We enable the thread stopping and

buffer preserving optimizations for these eager versions and will experiment with the

two optimizations in section 5.4.3. We also show the speedups of the simd-pvc-ro

version for comparison with the optimized lazy buffering.

It can be seen that the readonly-page optimization also significantly benefits the

eager buffering, demonstrating its effectiveness and low overhead. It significantly

improves the speedups of bh, raytracing, smallpt, kmeans, srad and cfd, bwaves,

streamcluster and sparsematmul, and moderately improves others. The only bench-

mark with slower performance is heartwall, which has independent variables that

are written late in loop iterations and thus causes long wasted executions for the

readonly-page optimization.

As expected, for most loop-based benchmarks such as bh, raytracing, smallpt,

lbm, 3x+1, md, lavaMD, kmeans, cfd, heartwall, myocyte, mandelbrot and srad,

the integrated buffering version simd-eager-ro demonstrates higher scalability and

speedups with more cores than the optimized lazy buffering only version simd-pvc-ro,

as a result of the higher scalability of the eager buffering, yet lower with few cores due

to the eager buffering slowing down the non-speculative thread. In addition, other
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     (a) bh        (b) raytracing        (c) smallpt 

 
     (d) lbm        (e) 3x+1 – C        (f) 3x+1 - Fortran 

 
    (g) md - C        (h) lavaMD         (i) kmeans 

 
      (j) cfd       (k) heartwall        (l) myocyte 
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Figure 5–16: Speedups of Eager Buffering; higher is better (1/3). The eager buffering
has higher scalability and speedups with more cores for most loop-based benchmarks.

138



 

 

 
     (a) fft        (b) matmult        (c) nqueen 

 
     (d) tsp         (e) bwaves        (f) StreamCluster 
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Figure 5–17: Speedups of Eager Buffering; higher is better (2/3). The eager buffering
is less scalable and slower for tree-form recursion benchmarks due to the required
use of in-order forking model.

than for cfd and srad, even without the readonly-page optimization, the integrated

buffering implementation simd-eager is more scalable and faster with more threads

than the simd-pvc-ro version which enables the readonly-page optimization.

On the other hand, the eager versions of the tree-form recursion benchmarks

fft, matmult, nqueen and tsp have significantly lower speedups with more cores than

the lazy buffering versions. This is because the eager buffering requires the use

of in-order forking model, resulting in less parallel thread work coverage than the

lazy buffering versions that utilize the mixed forking model. Overall, the integrated

buffering version simd-eager-ro improves the geometric mean performance of the
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  (a) SparseMatMul        (b) Mandelbrot – C     (c) Mandelbrot – Fortran 

 
   (d) md - Fortran       (e) srad         (f) geometric mean 
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Figure 5–18: Speedups of Eager Buffering; higher is better (3/3). The geometric
mean performance is 9% faster than the optimized lazy buffering.

optimized lazy buffering version simd-pvc-ro by 9% to 7.06, despite the slowdown

of the tree-form recursion benchmarks due to required use of the in-order forking

model.

The eager-nolazy version shows degraded performance for the bh, md, cfd, heart-

wall, nqueen, tsp, bwaves and srad benchmarks, due to unnecessary rollbacks. A

common scenario is the access of privatized variables that incurs WAW dependen-

cies, for example, temporary variables that are initialized at the beginning of each

loop iteration. While for the bwaves benchmark, the rollback cause is memory ac-

cess to the stack variables of the non-speculative thread. We cannot apply the eager

buffering to the non-speculative stack, since speculative threads may access spilled
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register variables and/or stack pointers, and thus misspeculation may corrupt the

non-speculative stack. That the plunge of the eager-nolazy version of streamcluster

at 48 and 56 cores is because the benchmark uses a boolean array while we track

dependency of the eager buffering using 32-bit WORD, as was discussed in section

5.2, and thus causes rollbacks due to false dependencies. On the other hand, this

benchmark demonstrates the advantage of accurate dependency tracking of the lazy

page-table buffering.

5.4.3 Effectiveness of Buffering Optimizations

The performance results of the buffering integration mechanism are presented in

Figures 5–19, 5–20 and 5–21. For better clarity and easier comparison, we scale the

speedups to the best speedup version simd-eager-ro. Therefore, these versions have

higher/lower speedups than simd-eager-ro if the speedup ratios are larger/less than

1, and higher/lower scalability if the curves go upward/downward with the number of

cores. The nostop version does not enable the thread stopping optimization and uses

the design of Figure 5–10 that rolls back all speculative thread tasks for restarting.

The nopreserve version does not enable the buffer preserving optimization for the

eager address-owner buffering. The simd-eager-pvc-ro version enables parallelized

V/C for the lazy buffering of the simd-eager-ro version. The heuristics version enables

the adaptive buffering selection heuristics for the simd-eager-ro version. We also show

the simd-ro results for comparison with the corresponding optimized lazy buffering

for the adaptive buffering selection heuristics.
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     (a) bh         (b) bwaves        (c) 3x+1 - C 

 
  (d) 3x+1 - Fortran        (e) lavaMD        (f) myocyte 

 
    (g) lbm        (h) srad        (i) cfd 
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Figure 5–19: Effectiveness of Buffering Optimizations, scaled to the simd-eager-ro
version; higher is better (1/3). The thread stopping optimization benefits loop-based
benchmarks with shared readonly and independent variables.

The thread stopping optimization is effective for benchmarks with shared read-

only and independent variables in loop speculative regions, and is especially bene-

ficial for those with less iterations, for example, with the “blockize” transformation

to statically distribute the loop iteration workloads. With more than two cores,
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  (a) SparseMatMul      (b) StreamCluster       (c) fft 

 
    (d) matmult         (e) nqueen        (f) tsp 
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Figure 5–20: Effectiveness of Buffering Optimizations, scaled to the simd-eager-ro
version; higher is better (2/3). The adaptive buffering selection heuristics cannot
improve some benchmarks due to buffering integration overhead or mixed forking
model.

the optimization significantly improves the speedups of bh, bwaves, 3x+1, lavaMD,

myocyte, srad, cfd and sparsematmul, as a result of more parallel thread work cov-

erage. That the md and heartwall benchmarks do not have noticeable speedups is

because the page type preserving optimization discussed in section 5.3 significantly

reduces the number of threads that are needed to rollback. On the other hand, using

two cores the speedups of the lbm, srad and cfd benchmarks are significantly higher

without the thread stopping optimization, as a result of the sequential region opti-

mization of section 5.3, for which the non-speculative thread directly accesses the

main memory without the eager buffering.
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    (a) raytracing        (b) smallpt        (c) Mandelbrot – C 

 
   (d) Mandelbrot - Fortran       (e) md – C       (f) md - Fortran 

 
   (g) kmeans        (h) heartwall      (i) geometric mean 
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Figure 5–21: Effectiveness of Buffering Optimizations, scaled to the simd-eager-ro
version; higher is better (3/3). The parallelized V/C optimization is not beneficial
for most benchmarks with eager buffering.

The buffer preserving optimization improves the speedups of lbm, srad and

cfd, but degrades bwaves due to the presence of data structures mixing shared and

independent variables. From the geometric mean and most benchmarks, we can also

see that the lazy buffering parallelized V/C optimization is generally not beneficial
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for the integrated eager and lazy buffering implementations as a result of the higher

scalability of the eager buffering.

The adaptive buffering selection heuristics helps to select the appropriate buffer-

ing. For memory intensive benchmarks such as lbm, srad, cfd and heartwall, the

heuristics select the lazy buffering for fewer cores for its lower overhead on the non-

speculative thread, and the eager buffering for more cores to benefit from its higher

scalability, resulting in optimal solutions for different environments. However, for

some benchmarks such as lavaMD, myocyte and kmeans, if eager buffering is se-

lected, the heuristics may degrade the speedups due to extra rollbacks. We also see

that there are scenarios where the buffering integration overhead could not be re-

duced by the heuristics, possibly due to various factors such as i-cache miss, branch

prediction and more control flow/data access disabling compiler optimization. For

example, while the heuristics select the lazy buffering for sparsematmul and stream-

cluster, the performance is still similar to that of the simd-eager-ro version. The

heuristics is also unable to improve the tree-form recursion benchmarks since it as-

sumes the potential presence of the eager buffering and uses the in-order forking

model.

5.4.4 Speedup Comparison

The speedups of the benchmarks speculatively parallelized with the simd-eager-

ro version that shows the highest geometric mean speedups are compared in Figures

5–22 and 5–23.

Here all benchmarks achieve speedups at 64 cores, and all linear speedup bench-

marks including the bh and raytracing have high instead of mediocre speedups. Also
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Figure 5–22: Eager Buffering Speedup Comparison - High Speedup
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Figure 5–23: Eager Buffering Speedup Comparison - Mediocre Speedup
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notable is that the speedups of nqueen and tsp are generally stable from 14 and

11 cores, respectively, until 32 cores, after which the performance start to degrade

due to extra inter-socket messages on the non-uniform memory access (NUMA) [16]

architecture machine.

The speedups of the benchmarks speculatively parallelized using the optimized

lazy buffering version simd-pvc-ro are compared in Figures 5–24 and 5–25. For easier

comparison of the buffering, we categorize the benchmarks the same way as in Figures

5–22 and 5–23.
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Figure 5–24: Lazy Buffering Speedup Comparison - High Speedup

It can be seen that the lbm benchmark still has a slowdown trend in the simd-

pvc-ro lazy buffering implementation, though all other benchmarks achieve more than

2 times speedups at 64 cores. We can also see that the bh benchmark has significantly
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Figure 5–25: Lazy Buffering Speedup Comparison - Mediocre Speedup/Slowdown

less scalability than the eager buffering implementation, partly due to the presence

of data structures mixing shared and independent variables. Another interesting

benchmark is kmeans, which has a speedup trend but a periodically fluctuating

performance that results from workload imbalance.

5.4.5 Theoretical Ideal Performance

The runtime ratios of the benchmarks speculatively parallelized using the MUTLS

best speedup simd-eager-ro eager buffering to those manually parallelized using

OpenMP are presented in Figures 5–26 to 5–29.

We can see that for all benchmarks except heartwall, the MUTLS simd-eager-ro

version has similar or better scalability than the OpenMP version from 4 cores, which

is encouraging. It can also be seen that for most benchmarks, the runtime of the
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Figure 5–26: Eager Buffering MUTLS/OpenMP Runtime ratio; higher is worse (1/4)
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Figure 5–27: Eager Buffering MUTLS/OpenMP Runtime ratio; higher is worse (2/4)
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Figure 5–28: Eager Buffering MUTLS/OpenMP Runtime ratio; higher is worse (3/4)
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Figure 5–29: Eager Buffering MUTLS/OpenMP Runtime ratio; higher is worse (4/4)
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MUTLS version is less than twice that of the OpenMP version at 64 cores; the only

exceptions are heartwall (7.26), lbm (3.95), kmeans (2.34), cfd (2.67) and matmult

(2.89). The geometric mean of all the benchmarks improves from the non-optimized

buffering implementation of 2.43 slowdown (41% performance) in section 4.3 by 74%

to 1.40 slowdown (71% performance).

We consider the performance overhead is reasonable, as parallelizing with MUTLS

just needs to specify the fork point annotation and guarantees correctness, while

OpenMP parallelization requires annotation of private/shared variables and does

not guarantee safety.

5.4.6 Analysis of Parallel Execution

The critical path parallel execution efficiency ηcrit and the power efficiency ηpower

of the simd-eager-ro eager buffering implementation are shown in Figures 5–32 and

5–33, respectively.

As expected, the eager buffering significantly improves the critical path effi-

ciency: for all benchmarks at 64 cores, ηcrit > 0.75, and the geometric mean is

improved from 0.48 of the non-optimized buffering version in section 4.4 to 0.90.

The scalability of the power efficiency is also improved significantly as a result of

higher speedup scalability. The three benchmarks with the lowest power efficiency

at 64 cores are lbm (0.030), sparsematmul (0.042) and streamcluster (0.083), as op-

posed to lbm (0.0035), streamcluster (0.0042) and sparsematmult (0.0077) of the

non-optimized buffering version. However, we can also see that the power efficiency

is lower at few cores than the non-optimized lazy buffering implementation due to

the eager buffering overhead on the non-speculative thread. The geometric mean of

151



0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

bh raytracing smallpt sparsematmul

bwaves lbm 3x+1 - C 3x+1 - Fortran

mandelbrot - C mandelbrot - Fortran md - C md - Fortran

fft matmult nqueen tsp

lavaMD streamcluster kmeans srad

cfd heartwall myocyte geometric mean

Figure 5–30: Eager Buffering Critical Path Execution Efficiency; higher is better

the power efficiency is improved from 0.16 to 0.34 at 64 cores with respect to the

non-optimized buffering version, using less than half the energy for the speculative

parallel programs, but degraded from 0.88 to 0.55 at 1 core.

The critical path efficiency and the power efficiency of the simd-pvc-ro lazy

buffering implementation are shown in Figures 5–32 and 5–33, respectively.

152



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

bh raytracing smallpt sparsematmul

bwaves lbm 3x+1 - C 3x+1 - Fortran

mandelbrot - C mandelbrot - Fortran md - C md - Fortran

fft matmult nqueen tsp

lavaMD streamcluster kmeans srad

cfd heartwall myocyte geometric mean

Figure 5–31: Eager Buffering Power Efficiency; higher is better

We can see that the optimized lazy buffering also improves the critical path

efficiency and the power efficiency to 0.75 and 0.26, respectively, although the im-

provement is not as much as the eager buffering. On the other hand, the power

efficiency of the optimized lazy buffering is higher than that of the eager buffering

and the non-optimized lazy buffering at few cores, which is as expected since it does
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Figure 5–32: Lazy Buffering Critical Path Execution Efficiency; higher is better

not incur overhead on the non-speculative thread while optimizing the speculative

threads for the non-optimized lazy buffering. The three benchmarks with the lowest

critical path efficiency are lbm (0.12), cfd (0.18) and srad (0.32), improved from lbm
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Figure 5–33: Lazy Buffering Power Efficiency; higher is better

(0.017), streamcluster (0.021) and cfd (0.030) of the non-optimized buffering imple-

mentation. The three benchmarks with lowest power efficiency at 64 cores are lbm

(0.016), kmeans (0.049) and sparsematmul (0.050).
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5.5 Chapter Summary

In this chapter, we proposed several optimizations to reduce memory buffering

overhead for software-TLS. First we described the lazy per-thread page-table buffer-

ing that enables both coarse and fine grain parallelism for validation/commit, as well

as the parallelized V/C and SIMD acceleration optimizations to exploit the paral-

lelism. Then we presented the eager shared address-owner buffering whose space

overhead is bounded by a constant factor of the program data size to enable specula-

tion at any granularity without causing buffering overflow. The address-owner eager

buffering design also enables the buffer preserving optimization to reduce the thread

clearing/re-initialization overhead. Afterwards, we proposed the readonly-page opti-

mization, buffering integration mechanism and adaptive buffering selection heuristics

to automatically identify readonly, independent and dependent variables on-the-fly

and apply the suitable optimization/buffering for each variable. We also proposed the

thread stopping optimization to improve thread coverage for the readonly-page opti-

mization and buffering integration mechanism. Experimental results show that the

proposed memory buffering optimizations are helpful to achieving efficient software-

TLS: (1) both the optimized lazy and eager buffering achieve significantly higher

scalability, speedups and critical path and power efficiency than the non-optimized

buffering; (2) the readonly-page optimization is one of the most effective memory

buffering optimizations for benchmarks with large readonly variables, and the buffer-

ing integration mechanism can effectively combine the strengths of the eager and lazy

buffering; (3) the SIMD acceleration, buffering preserving and thread stopping op-

timizations are generally beneficial and should be enabled for both eager and lazy
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buffering, while the parallelized V/C optimization should be applied for the lazy

buffering but is generally not beneficial if eager buffering is enabled. In all, the best

speedup simd-eager-ro version achieves speedups of 24.3 to 50.3 and 1.2 to 17.3 for

computation and memory intensive benchmarks, respectively, and on average 71%

performance of the OpenMP manually parallelized version.
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CHAPTER 6
Fork Heuristics

TLS can be applied to enable automatic parallelization, as it guarantees the

safety and correctness of speculative parallel program execution dynamically at run-

time. However, the selection of fork/join points plays a key role in the performance

of TLS, especially for software implementations as a result of higher overhead than

its hardware counterpart. Fork heuristics have been proposed to enable the effective

selection of fork/join points for automatic parallelization using TLS.

So far there are three sorts of fork-heuristics: static heuristics [61], static pro-

filing heuristics [51, 140, 162] and dynamic profiling heuristics [103]. The first build

mathematical cost-benefit models of speculative execution using compile-time pro-

gram information, and use the models to predict profitable fork/join points. This

approach has the limitation that some model parameters, such as thread depen-

dency probability and iteration count of nested loops, are unknown at compile-time,

which in turn limits its effectiveness and application. The second heuristics compile

and run the sequential program, collect profiling execution traces, and then use the

traces to determine the best fork/join points. The drawback of this approach is lack

of real parallel execution environment information, which limits accuracy of the fork

point selection decision. The third approach is more promising for real estimation,
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but is currently based on hardware implementation, which is inappropriate and can-

not be directly applied to software TLS without accessing architecture-dependent

performance counters.

6.1 Contribution

In this chapter we propose adaptive fork-heuristics to solve the above problems.

Adaptive heuristics are dynamic profiling heuristics for software TLS, which insert

all potential fork/join points into the speculative program and rely entirely on the

runtime system to determine profitable fork/join points and disable inappropriate

ones. Since fork/join points are evaluated during real speculative parallel execution,

all necessary information such as the thread conflict ratio and thread execution time

is available, enabling accurate estimation of cost-benefit of each thread and thus

each pair of fork/join points. On-the-fly fork/join point selection also eliminates the

requirement of profiling runs and enables adaptation to different fork/join points

for different input data. Our investigation demonstrates feasibility of this approach,

as well as providing concrete data on actual performance in a realistic thread-level

speculative system.

6.2 Adaptive Fork-Heuristics

Adaptive fork-heuristics add potential pairs of fork/join points to the speculative

program, evaluate the cost-benefit of each pair during parallel execution and disable

unprofitable ones. The design involves three aspects: (1) what the potential fork/join

points are, (2) how to estimate the cost-benefit of each pair of fork/join points, and

(3) how to disable fork points.
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6.2.1 Potential Fork/Join Points

Since loops usually take the majority of program’s execution time and function

calls usually represent independent computation tasks, the loop-level speculation and

method-level speculation speculate on loop iterations and function (method) calls,

respectively, as was discussed in section 2.2. We can also combine the two choices

to take advantage of both. Arbitrary point hardware-TLS systems such as Mitosis

[140] consider any pairs of basic blocks as candidate fork/join points irrespective of

the control flow. For efficient implementation and simpler evaluation of the adaptive

fork heuristics, we choose to speculate on loop-iterations. Other design choices of

potential fork/join points are planned as future work.

We also apply two optimizations for each loop: “blockize” and “end-barrier.”

Suppose there are n processors. Blockize splits the loop iterations into n blocks

and speculates on the loop blocks, which in turn avoids creating too many small

threads. The exception is loops with a small constant number of iterations, which

do not need this optimization. The end-barrier optimization adds a barrierpoint just

after the end of the loop. This optimization is beneficial because loops usually have

dependency with their continuation, particularly for loop nests, in which case an

inner loop thread may cause cascading rollbacks of the outer loop threads.

6.2.2 Cost-Benefit Estimation

The design uses a cost-benefit model to evaluate the profitability of each thread

and each pair of fork/join points. The model assumes a constant time Toverhead of

overhead (thread creation, cache miss, buffering, etc) for each thread. Although this
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is an inaccurate approximation since threads with different memory access frequen-

cies have different buffering overhead, we find it works well for our estimation, partly

because we are only concerned with whether a thread is profitable, and not how

profitable it is.

The runtime Tt,run of a speculative thread t comprises two parts: work time

Tt,work and synchronization/validation/commit/rollback time, which are available

through timing. If thread t commits, its cost-benefit is estimated as ηt = Tt,work/(Tt,run+

Toverhead). If it rolls back, its cost-benefit is 0. Given a minimum cost-benefit thresh-

old ηthreshold, if ηt < ηthreshold, then thread t is considered not profitable and should

not have been speculated.

If the assumption holds that threads speculated at the same fork point always

show similar behaviour (they always commit/rollback and have similar work time /

runtime ratio), then we can directly use ηt to estimate the cost-benefit of the fork

point. However, the assumption generally does not hold, as the characteristics of

future program execution may differ from history. Also, for speculative regions with

rare dependencies, speculation may cause nondeterministic rollbacks even though the

fork/join points should be selected.

We propose 3 independent mechanisms to address this issue: global hint, local

hint and interval hint. Global hint uses at least Nwarmup threads instead of one

thread to determine the cost-benefit of a pair of fork/join points. When a thread

completes execution, its runtime plus overhead is accumulated to the runtime Trun of

the pair Trun = Trun+Tt,run+Toverhead. The exception is when it is cascadingly rolled

back or stopped by the thread stop optimization as was discussed in section 5.3.1,
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as these cases do not represent the cost-benefit of a thread. If it commits, its work

time is accumulated to the work time Twork of the pair Twork = Twork +Tt,work. After

N >= Nwarmup threads completes, the cost-benefit of the pair is then estimated

as η = Twork/Trun. The hint disables the fork point if the cost-benefit is below a

threshold. We use a default threshold 0.5 to indicate overhead should not take more

time than useful work. The threshold value may be set differently or dynamically

for specific benchmark characteristics.

For local hint, if a thread decides not to speculate on a fork point then none of

its child threads, grand-child threads, etc can speculate on the fork point. In other

words, a local hint affects the sub-tree of a thread, hence the name. Interval hints

directly use the cost-benefit of a thread to decide profitability of its fork point; if a

fork-point is disabled, it will try to speculate again after certain amount of time has

passed. We find the global hint is the most effective for our benchmarks. It seems

to work well on independent loops while the other two might suit more irregular

applications. We plan to compare these hints in future work.

6.2.3 Disabling Fork Points

Each fork point has a globally unique id. The TLS runtime system maintains

the attributes of the fork point, which can be accessed given the id. When a thread

reaches a fork point, it calls the MUTLS get CPU library function as was discussed in

section 3.5.2, which queries the runtime system with the id whether it can speculate

on the fork point. The runtime system then checks a flag variable of the fork point

attributes and returns the result. When a thread commits/rollbacks, if the adaptive
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fork-heuristics decide that one fork point is not profitable as was discussed in sub-

section 6.2.2, the runtime system then sets the flag variable to false to disable the

fork point.

If a loop nest has independent outer loops, such as enumerating elements on a

matrix, then we can select to speculate on any or all of these loops. Speculating

on outer loops enables coarser granularity parallelism but tends to consume more

memory than inner ones, while speculating on all loops maximizes parallelism. These

decisions have important influence on performance. As disabling inner ones usually

yields further speedups as a result of less thread overhead, we apply the “nest-loop-

disabling” optimization to disable an inner loop if its parent nest loop is selected.

If a thread is waiting to be joined, it should be counted as work time only if

the thread is waiting to join its child thread, since the current thread should have

continued working if it had not speculated the child thread. If the thread is blocked

at a terminate point or barrier point, the time should just be counted as thread

overhead. We add a point type parameter to the update time function, and check if

the speculative thread is waiting at a join point. We need not check the join point

id, since a speculative thread can only wait for synchronization at a join point with

the same fork point id as it was speculated.

We also propose an optimizing technique called feedback-based selection to achieve

ideal speedups from the second compilation for our benchmarks. After the program

completes execution, it records the cost-benefit of each fork point to a feedback-based

selection log file. The next time the TLS compiler compiles the program, it reads the

log file and does not insert inappropriate fork/join points as potential candidates.
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For points that behave differently depending on the input, the programmer can an-

notate them so that the compiler still insert them even though they are in the log file.

The optimization prevents unprofitable fork/join points from hurting performance

repeatedly for each compilation.

6.3 Implementation Framework

We implement the adaptive fork-heuristics into the MUTLS software-TLS sys-

tem. As was discussed in section 3.1, MUTLS supports compiler directives to anno-

tate fork/join/barrier points. Each annotation also specifies an id. Threads specu-

lated at a fork point will start execution from the join point with the same id, and

will be joined when the non-speculative thread reaches that join point. A thread will

also stop execution when it reaches a barrier point with the same id.

Since MUTLS fork/join/barrier point annotations can be inserted both man-

ually by the programmer and automatically by the compiler or other tools, as dis-

cussed in Chapter 3, the fork heuristics can be implemented either semiautomatically

with manually added fork heuristics annotations, or automatically with compiler

fork heuristics annotations and related optimizations. Both have their application

scenarios: the former can simplify manual parallelization and/or diagnosis of the

parallelized program with the feedback-based selection log file, while the latter can

automatically parallelize the program without manual parallelization effort.

A sample program as well as its semiautomatically parallelized program anno-

tated with adaptive fork-heuristics and feedback-based selection log file generated by

the MUTLS compiler is illustrated in Figure 6–1. Given the log file, there are var-

ious criteria to decide inappropriate fork/join points, such as whether a fork point
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is disabled, whether the cost-benefit is below a threshold, and whether the ratio

of committed/total threads is below a threshold. Combination of these criteria is

also possible. In the current implementation, we simply decide not to add a pair of

fork/join points as potential ones if the fork point is disabled. However, feedback-

based selection can be iterated over each program compilation/run using different

criteria and machine-learning approaches can be used to combine strengths of differ-

ent runs to produce optimal versions, which we plan as future work.

 

 

 

  

void work(int n) { 

 … 

 for(i = 0; i < n; i++){ 

  for(j = 0; j < 8; j++){ 

   x = f(i, j); 

   s[i][j] += x*x; 

  } 

 } 

 … 

} 

void work(int n) { 

 … 

 for(p = 0; p < P; p++){ 

#pragma tls forkpoint loop id 1 maybe 

  for(i = n * p / P; i < n * (p+1) / P; i++){ 

   for(j = 0; j < 8; j++){ 

#pragma tls forkpoint loop id 2 maybe 

#pragma tls forkpoint id 3 maybe 

    x = f(i, j); 

#pragma tls joinpoint id 3 

    s[i] += x*x; 

   } 

  } 

 } 

 … 

} 

(a) Original Program 

(b) Program with Adaptive Fork-Heuristics 

fork point id 1 selected 

cost-benefit 0.9 commit 80 rollback 0 

fork point id 2 disabled 

cost-benefit 0.3 commit 15 rollback 0 

fork point id 3 disabled 

cost-benefit 0 commit 0 rollback 10 

(c) Feedback-based Selection Log File 

Figure 6–1: Semiautomatic-Parallelization of a Program

6.4 Automatic Parallelization

This section describes how we implement automatic parallelization in the MUTLS

framework using adaptive fork heuristics. We present the LLVM transformations to
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automatically insert the fork/join/barrier point annotation built-in functions and the

implementation of related adaptive fork heuristics optimizations.

For each loop, we insert a fork point at the beginning of its header block, the

corresponding join point at the end of its latch block, and a barrier point at the

beginning of each exit block. An exit block is the destination block outside the loop

that a block inside the loop branches to. We do not speculate on loops that have

no latch blocks. For performance, for each loop nest, we do not speculate on the

innermost loop unless it contains function calls, as such a loop usually does not have

sufficient speculative work even with the “blockize” optimization as was discussed

in section 6.2.1, while the speculative transformation for the loop fork/join/barrier

points incurs significant overhead.

When speculating a child thread at a fork point, the parent thread needs to

save register variables live at the join point to the runtime library as was discussed

in section 3.6.4. Therefore, the program transformation should try to guarantee that

register variables live at the join point also be live at the fork point; otherwise the

child thread would have to apply value prediction for the register variables, which

would cause thread rollback if the value was incorrectly predicted. Our approach is

to hoist and sink non-live register variables. For each register variable live at the join

point, we first check whether it is live at the fork point; if not, we try to hoist it above

the fork point as a loop induction variable using LLVM ScalarEvolutionExpander; if

not possible, we try to sink it below the join point; if still not possible, in the current

implementation we consider the loop has data dependency on the register variable
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and do not speculate on it. Speculation on loops with value prediction is planned

for future work.

To implement the “blockize” optimization of section 6.2.1, for each loop, we

add a block-header basic block and a block-latch basic block, each inserted with the

fork and join point annotation built-in function, respectively. In the block-header

block, we add the induction variable phi-node of the blockized loop iterating from 0

to n− 1 and check the exit condition of the blockized loop in the block-latch block.

For each phi-node of the original loop, we compute the values of the beginning and

the end loop iterations of each blockized iteration using LLVM SCEVAddRecExpr

in the block-header and assign the values to the phi-node. If the value of a phi-node

of the original loop cannot be computed given the blockized iteration number (the

phi-node is not SCEVable), we do not apply the “blockize” optimization to the loop.

The fork/join/barrier points for each loop should have the same unique point

id within the function, and the same unique hint id globally, as was discussed in

section 6.2.3. For this we maintain a point id counter for each function and a hint

id counter for the module, and increment the counters if a fork/join/barrier point id

group is added. To create the loop-nest structure for implementation of the “nest-

loop-disabling” optimization of section 6.2.3, we assign the ids of each loop-nest in

a pre-order traversal, and for each loop assign the loop id of its outer loop to be the

parent loop id. At the beginning of the speculatively parallelized program execution,

the loop id and parent loop id pairs are passed to the MUTLS runtime library to

construct the loop-nest metadata structure.
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6.5 Experimental Results

In this section we experiment with the adaptive fork-heuristics and the feedback-

based selection. We use buffering version simd-eager-ro with the highest geometric

mean speedups of section 5.4 for the experiments in this section. First we compare

the speedups of the benchmarks automatically parallelized by the MUTLS system

using the adaptive fork heuristics and then improved by the feedback-based selection.

Then we show the number of enabled fork points during each iteration of compilation

with the adaptive fork heuristics and feedback-based selection.

The speedup results of the automatically parallelized benchmarks are shown in

Figures 6–2 to 6–5. The heuristics version is the automatically parallelized version

using adaptive fork heuristics without the feedback-based selection. The feedback-1

and feedback-2 versions are automatically parallelized using adaptive fork heuristics

with the feedback-based selection log file generated by the heuristics and the feedback-

1 versions, respectively. For each benchmark, we show two figures: the one with the

“-b” suffix is applied the “blockize” optimization while the one with the “-n” suffix is

not. For easier comparison, we also show the manually annotated version simd-eager-

ro of section 5.4, which is the higher speedup version of the ones with and without the

“blockize” optimization. Therefore, both figures of the manually annotated simd-

eager-ro version are either blockized or not irrespective of the “-b” and “-n” suffixes:

all benchmarks except raytracing, smallpt, bwaves and mandelbrot are applied the

“blockize” optimization. However, we also note that the “blockize” optimization is

irrelevant for the manually annotated version of the tree-form recursion benchmarks
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fft, matmult, nqueen and tsp, since they speculate on function calls instead of loop

iterations.

It can be seen that the adaptive fork-heuristics and feedback-based selection are

effective approaches to automatic parallelization using software-TLS. For loop-based

benchmarks with long inner loop iterations such as raytracing and smallpt, sparse-

matmul, bwaves, lavaMD, myocyte, 3x+1, mandelbrot and md, the heuristics version

achieves comparable or similar speedups to the manually annotated version simd-

eager-ro for the corresponding blockized or non-blockized figures, demonstrating that

the adaptive fork heuristics can effectively and efficiently parallelize such benchmarks

on-the-fly without the need for re-compilation, which is encouraging. Currently, we

use a compiler option to specify whether to apply the “blockize” optimization for

the automatically parallelized versions, which may be inconvenient for the user and

may not achieve ideal speedups if different loops suit different blockization strategies.

We plan to implement adaptive blockization such as OpenMP guided loop iteration

scheduling for future work.

On the other hand, for loop-based benchmarks witb small nested inner loops,

such as lbm, kmeans, srad and cfd, the feedback-based selection is essential to achiev-

ing effective automatic parallelization. The feedback-based selection also significantly

improves the performance of the heuristics versions of the bh, streamcluster, fft

and tsp benchmarks. The speedups of the corresponding blockized or non-blockized

feedback-based selection versions of these benchmarks are also comparable or similar

to the manually annotated version, though the kmeans benchmark shows unstable

speedups.
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  (a) raytracing – b      (b) smallpt – b      (c) SparseMatMul – b 

 
  (d) raytracing – n      (e) smallpt – n      (f) SparseMatMul – n  

 
   (g) bwaves – b       (h) lavaMD – b      (i) myocyte – b 

 
     (j) bwaves – n       (k) lavaMD – n      (l) myocyte – n 
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Figure 6–2: Speedup; higher is better (1/4). Adaptive fork-heuristics achieve close
speedups to the manually annotated version for benchmarks with long loop iterations.
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   (a) 3x+1 – C – b       (b) 3x+1 – Fortran – b     (c) Mandelbrot – C – b 

  
   (d) 3x+1 – C – n       (e) 3x+1 – Fortran – n     (f) Mandelbrot – C – n 

 
  (g) Mandelbrot – Fortran – b     (h) md – C – b       (i) md – Fortran – b 

 
  (j) Mandelbrot – Fortran – n     (k) md – C – n       (l) md – Fortran – n 
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Figure 6–3: Speedup; higher is better (2/4). Adaptive fork-heuristics achieve close
speedups to the manually annotated version for benchmarks with long loop iterations.
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   (a) bh – b       (b) lbm – b      (c) StreamCluster – b 

 
   (d) bh – n       (e) lbm – n      (f) StreamCluster – n 

 
     (g) kmeans – b         (h) srad – b         (i) cfd – b 

 
     (j) kmeans – n         (k) srad – n         (l) cfd – n 
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Figure 6–4: Speedup; higher is better (3/4). Feedback-based selection achieves close
speedups to the manually annotated version for benchmarks with small inner loops.
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   (a) fft – b       (b) matmult – b      (c) nqueen – b 

 
   (d) fft – n      (e) matmult – n      (f) nqueen – n 

 
   (g) tsp – b         (h) heartwall – b      (i) geometric mean – b 

 
   (j) tsp – n      (k) heartwall – n      (l) geometric mean – n 
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Figure 6–5: Speedup; higher is better (4/4). Feedback-based selection is slower due
to inaccurate fork point selection or selected speculation enabling optimization.
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For some benchmarks such as raytracing, smallpt, bh and heartwall, the feedback-

based selection version has lower speedups than the manually annotated version, due

to inaccurate selection of fork points. For the tree-form recursion benchmarks nqueen

and tsp, that the feedback-based selection version is slower is because of the selected

speculation enabling optimization that was discussed in section 3.5.2, which utilizes

CPU resources more effectively and reduces overhead for the speculative parallel

execution.

The geometric mean of the speedups of the heuristics, feedback-1 and feedback-2

versions over all the benchmarks are 4.0, 5.4 and 5.4 with blockization, and 3.4,

4.3 and 4.2 without blockization, respectively. The geometric mean of the simd-

eager-ro version is 7.1. We can see that generally it is not necessary to apply the

feedback-based selection more than once for the current implementation.

The number of fork points enabled by the MUTLS automatic parallelization

compiler are presented in Figures 6–6 to 6–9. The all is the number of potential

loop fork points for the adaptive fork heuristics as was discussed in section 6.2.1.

The no-feedback is the number of loop fork points without register dependencies

which are enabled by the compiler transformation that was discussed in section 6.4.

The feedback-1 and feedback-2 are the number of fork points selected by adaptive

fork heuristics for the heuristics and feedback-1 version, respectively, of the speedup

figures. For the manually annotated simd-eager-ro version, we speculate on one fork

point for all benchmarks except matmult, which has three fork points parallelizing

the computation of the four submatrixes. The all version covers the fork point of the
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  (a) bh – b        (b) raytracing – b       (c) smallpt – b 

 
 (d) bh – n        (e) raytracing – n        (f) smallpt – n 

 
  (g) SparseMatMul – b       (h) bwaves – b        (i) lbm – b 

 
  (j) SparseMatMul – n       (k) bwaves – n        (l) lbm – n 

 

 

  

all no-feedback feedback-1 feedback-2

0

5

10

15

20

1 2 4 8 16 32 48 56 64

0

5

10

15

20

1 2 4 8 16 32 48 56 64

0

1

2

3

4

5

6

7

1 2 4 8 16 32 48 56 64

0

5

10

15

20

1 2 4 8 16 32 48 56 64

0

5

10

15

20

1 2 4 8 16 32 48 56 64

0

1

2

3

4

5

6

7

1 2 4 8 16 32 48 56 64

0

1

2

3

4

5

6

1 2 4 8 16 32 48 56 64

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 48 56 64

0

5

10

15

20

1 2 4 8 16 32 48 56 64

0

1

2

3

4

5

6

1 2 4 8 16 32 48 56 64

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 48 56 64

0

5

10

15

20

1 2 4 8 16 32 48 56 64

Figure 6–6: Enabled Fork Points by Adaptive Fork Heuristics and Feedback-based
Selection (1/4)
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   (a) 3x+1 – C – b       (b) 3x+1 – Fortran – b     (c) Mandelbrot – C – b 

 
   (d) 3x+1 – C – n       (e) 3x+1 – Fortran – n     (f) Mandelbrot – C – n 

 
  (g) Mandelbrot – Fortran – b    (h) md – C – b      (i) md – Fortran – b 

 
  (j) Mandelbrot – Fortran – n    (k) md – C – n      (l) md – Fortran – n 
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Figure 6–7: Enabled Fork Points by Adaptive Fork Heuristics and Feedback-based
Selection (2/4)
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     (a) fft – b       (b) matmult – b      (c) nqueen – b 

 
     (d) fft – n       (e) matmult – n      (f) nqueen – n 

 
    (g) tsp – b       (h) lavaMD – b       (i) StreamCluster – b 

 
    (j) tsp – n       (k) lavaMD – n       (l) StreamCluster – n 
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Figure 6–8: Enabled Fork Points by Adaptive Fork Heuristics and Feedback-based
Selection (3/4)
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     (a) kmeans – b         (b) srad – b         (c) cfd – b 

 
     (d) kmeans – n         (e) srad – n         (f) cfd – n 

 
     (g) heartwall – b      (h) myocyte – b      (i) arithmetic mean – b 

 
     (j) heartwall – n      (k) myocyte – n      (l) arithmetic mean – n 
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Figure 6–9: Enabled Fork Points by Adaptive Fork Heuristics and Feedback-based
Selection (4/4)
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manually annotated version for all the 19 loop-based benchmarks. For the depth-

first search (DFS) tree-form recursion benchmarks nqueen and tsp, the all version

covers the fork point of the loop enclosing the recursive function call speculated

by the manually annotated version, which can be considered equivalent for in-order

speculation. However, the all version does not cover the manual fork points for the

divide-and-conquer benchmarks fft and matmult, which we plan to address as future

work by including function calls as potential fork points.

It can be seen that both the static compiler transformation and the dynamic

feedback-based selection disable a significant number of potential fork points. In

addition, though not shown in the figures, they did not disable any fork point corre-

sponding to those speculated by the manually annotated version. This demonstrates

that both static compiler analysis and dynamic heuristics are valuable for automatic

parallelization using thread-level speculation. We can also see that the two feedback

versions select similar number of fork points for the benchmarks. The arithmetic

mean over all the benchmarks for the all, no-feedback, feedback-1 and feedback-2 ver-

sions of the blockized and non-blockized figures are 18.4, 13.6, 8.2, 7.7, and 18.4,

13.6, 7.7, 7.5, respectively. Here we use arithmetic mean instead of geometric mean,

for similar reasons as the Figures 4–17 and 4–18 of section 4.4: if no fork point is

selected in only one benchmark, the geometric mean would be 0.

We can see that the feedback-based selection generally reaches stable decision

for different running environments with varying number of CPU cores. Notable

exceptions are the benchmarks that iteratively computes data-parallel kernels such

md, streamcluster and kmeans, as well as the tree-form recursion benchmark tsp. For
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these benchmarks, generally more fork points are disabled with more CPU cores until

32 cores, after which the number of enabled fork points tends to be stable for md,

streamcluster and kmeans, while more fork points are enabled with more CPU cores

for the tsp benchmark. For the non-blockized fft benchmark, though feedback-based

selection disables all fork points from 2 cores, the MUTLS transformation makes

more effective use of hardware resources such as i-cache and branch predictors that

also results in speedups.

6.6 Chapter Summary

In this chapter, we proposed the adaptive fork-heuristics for automatic paral-

lelization using TLS which automatically inserts potential fork/join/barrier points

and purely relies on the TLS runtime system to disable unprofitable ones on-the-fly,

which has the benefit to optimally adapt to different input data and execution en-

vironments. We also presented the feedback-based selection technique to reduce the

heuristics overhead through recompilation based on the log file generated by adaptive

fork heuristics. We integrated adaptive fork-heuristics and feedback-based selection

into the MUTLS software-TLS framework and then implemented the related com-

piler transformations and optimizations to enable automatic parallelization. Experi-

mental results demonstrate that though adaptive fork-heuristics and feedback-based

selection are generally effective, appropriate workload distribution strategy such as

adaptive blockization is also important for effective automatic parallelization using

software-TLS. It is also encouraging that adaptive fork-heuristics can efficiently par-

allelize many benchmarks on-the-fly without re-compilation. We also see that both

static compiler analysis and dynamic heuristics are helpful to disable unappropriate
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fork points. On average, the blockized heuristics and feedback-based selection ver-

sions achieve respectively, 4.0 and 5.4 speedups, and 56% and 76% performance of

the manually annotated simd-eager-ro version. This could be improved with better

automatic workload distribution strategies.
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CHAPTER 7
Dynamic Language Context

A direct and very practical application of our language and architecture inde-

pendent TLS design is for ready incorporation into the execution context of more

dynamic languages such as JavaScript, Matlab, and Python, where parallelism likely

exists but is difficult to extract using traditional, conservative analyses and optimiza-

tions.

Some compiler frontends/runtime environments of dynamic languages such as

Python and Matlab use LLVM for backend code generation. For example, The just-

in-time (JIT) specializing Python compiler Numba [17] compiles decorator-annotated

Python functions to LLVM functions and links them to a LLVM module. The McLab

project [12] provides compilers and virtual machines for scientific programming lan-

guages such as Matlab and Aspect Matlab. Its backend is the McVM virtual ma-

chine and McJIT JIT compiler, which specializes type-specific function versions of

each frontend function and generates executable code using LLVM. In this chapter,

we develop a software-TLS system for Python based on the Numba and MUTLS

frameworks and evaluate its performance.

7.1 Background on Numba

Numba is a JIT specializing Python compiler that dynamically translates dec-

orated Python program at runtime to LLVM-IR, and then invokes LLVM execution

engine to JIT compile and execute the generated LLVM code.

182



Numba uses Python decorators to annotate/transform functions that is intended

to be JIT compiled into LLVM code. A decorator is a Python function that takes

the decorated function as the input parameter and returns another Python function

representing the decorated function, i.e. binding its name in the namespace. Numba

has two important decorators: @jit and @autojit. The types of the parameters and

optionally local variables are specified in the @jit decorator, which transforms the

decorated function when Python parses the decorator. While @autojit transforms

the decorated function based on the runtime type knowledge when the function is ac-

tually called. As a result, @autojit usually does not need type specifications, though

the user can give hints to the type inference system by specifying type templates

such as 2-dimensional arrays of arbitrary types.

Each @jit/@autojit decorator generates two LLVM functions for its decorated

Python function: the working function that specializes the Python function, and

the wrapper function serving as the decorator returned function that adapts the

working function to the CPython interpreter. The prototype (parameter and return

types) of the working function is Numba-defined and thus the working functions can

directly call each other. The wrapper function gets the arguments of the working

function through PyArg Parse* Python/C API calls and wraps the return data by

Py BuildValue API calls. Not all Python features are currently supported in Numba.

The working function coerces to and from unsupported Python objects such as lists

and tuples using Python/C objects layer API calls.

Since Numba is mainly written in Python, while LLVM in C++, Numba uses

llvmpy [8] to construct, JIT compile and execute the LLVM code. The llvmpy
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framework is Python binding to LLVM that wraps the LLVM intermediate represen-

tation, analysis and transformation passes and execution engine. It comprises several

Python modules providing similar interfaces to LLVM classes, and a CPython ex-

tension module linking with LLVM libraries.

When a Python programming is running, CPython processes each decorator

annotated function one by one, specializing and transforming the function to an

LLVM function. Numba maintains an LLVM context manager for the specialized

functions in the environment. The LLVM context manager maintains a global LLVM

module containing all transformed LLVM functions. Each time Numba specializes a

function, it creates a new LLVM module for the generated LLVM function. In the

linking stage, the LLVM context manager calls LLVM pass managers on the module

to optimize the generate function, links the module to the global module, and then

JIT compiles the function and updates the global variable and function pointers in

the LLVM execution engine.

7.2 Python Frontend for MUTLS

AsMUTLS is purely based on the language and architecture independent LLVM-

IR, it is easy to add an LLVM front-end language for MUTLS. In this section, we

first describe how we integrate Numba and MUTLS to get a primitive software-TLS

system for Python, and then discuss improvements to make the system effective and

efficient.

7.2.1 Primitive System Design

During initialization of the LLVM context manager, we first create a MUTLS

module pass manager and add the MUTLS transformation pass to it, and then call
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llvmpy’s load library permanently function which in turn calls the corresponding

LLVM method to load the MUTLS runtime dynamic library (shared object).

In the linking stage, after the generated function’s module is linked to the global

module, we first run the MUTLS pass manager on the global module to specu-

latively parallelize the module, which will speculate on functions annotated with

fork/join/barrier points, as well as their nested called functions. The MUTLS pass

generates a speculative version and transforms the original version for each spec-

ulated function. If a function has already been speculated (it already has a spec-

ulative version), it is not speculated again. Then we call the execution engine’s

recompile and relink function method on the non-speculative version of the specu-

lated function to update the JIT function pointer. The recompile and relink function

method was not in llvmpy; we added it to call the corresponding LLVM method.

The fork/join/barrier points are annotated in MUTLS using LLVM intrinsic

functions, which Numba currently does not support. We work around this by defin-

ing an empty Numba decorated Python function MUTLS forkjoinpoint for annota-

tion. The MUTLS transformation pass then treats a function call with name prefix

numba specialized and suffix MUTLS forkjoinpoint as the annotation point. It

would not be removed by optimization as each specialized function is optimized in

its own module. Another problem is that MUTLS automatically add MUTLS finalize

to a module’s main function, while Numba modules does not have main function. We

adopt a similar workaround by adding an empty Python MUTLS finalize function

which is transformed to the MUTLS library function call.
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7.2.2 Optimization

The primitive Python software-TLS system of the above subsection 7.2.1 is

inefficient with unnecessary rollbacks. We then address several issues specific to

Python, in particular, reference counting, address space registration, and library

inlining.

CPython uses reference counting for automatic heap memory management. Ref-

erence counts of Python objects can be incremented/decremented by Py {Inc|Dec}Ref

Python/C functions. To avoid type coercion in LLVM modules for performance,

Numba re-implements reference counting subroutines Py {|X}{INC|DEC}REF for Numba

LLVM objects, which reads the reference count and writes back the updated one.

If the reference count drops to zero, the subroutine calls Py DecRef function. When

the speculatively parallelized program is running, if the non-speculative thread up-

dates the reference count of an object after the speculative thread reads the reference

count, then memory conflict is detected at validation time which would cause the

speculative thread to rollback.

We avoid such rollbacks by redirecting the Numba reference counting subroutines

to MUTLS library call versions. The library does not keep track of the real reference

count of an object, but the “reference count difference”, i.e. the number (possibly

negative) that should be incremented to the reference count by the speculative thread.

A reference counting map with the object pointer and the reference count difference as

key-value pairs is maintained for each speculative thread. When a reference counting

function is called on an object, the reference count difference is fetched from the

reference counting map given the object pointer. If the object is not in the map, then
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the reference count difference is initialized 0. The reference count difference is then

incremented/decremented according to the called function and updated in the map.

During commit time, for each object in the reference counting map, the reference

count is read from memory, added the reference count difference and written back.

If the reference count drops to zero, Py DecRef is called. This technique for handling

Numba reference counting can also be generalized for other reduction operations.

During buffering load/store of each speculative thread, the MUTLS system

needs to know whether the given address of the load/store is global (heap, static

or the non-speculative thread stack address), local (the speculative thread stack

address) or invalid (the speculative thread should be rolled back). In order to

achieve this, address spaces of global objects and stack frames should be regis-

tered in the MUTLS runtime library. Objects allocated in LLVM modules are

automatically registered by the MUTLS speculator transformation pass that in-

serts MUTLS register {heap|static} and MUTLS set {self|child} stackptr library

calls in the module. However, objects allocated by the Python interpreter cannot

be registered by the MUTLS speculator pass, which causes unnecessary rollbacks if

accessed. We then call MUTLS register heap in CPython’s PyMem {Malloc|Realloc}

and link the MUTLS runtime library to rebuild CPython. Since MUTLS library is

written in C++, g++ instead of gcc should be used when linking the library. We

also call MUTLS register heap in Numpy’s PyArray {NEW|RENEW} functions to register

the address spaces.

MUTLS runtime library can be built to LLVM bitcode and link with the spec-

ulated LLVM module to enable further optimizations such as inlining library calls.
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However, we cannot directly replace the dynamic runtime library with the bitcode

library, since we added the MUTLS register heap library call in CPython. To resolve

this problem, we split the runtime library into two components of address space

registration and thread management. The former only implements address space

registration API functions which is built to a static or dynamic library and linked

to CPython, while the latter references the former and implements all the other

MUTLS library API functions, which is built to a bitcode module and a dynamic

library. Then the system can be configured to run in either inline or non-inline

mode. In inline mode, the global LLVM module links the MUTLS bitcode module

and runs its constructors during initialization of the LLVM context manager. In non-

inline mode, the MUTLS dynamic library is loaded and initialized after speculative

transformation. Function inlining as well as some other optimization passes such as

CFG simplification and dead code elimination are also added to the MUTLS pass

manager in inline mode. Global function aliases cause recursive compilation errors

in the LLVM JIT execution engine, which we resolve by optimizing to remove such

aliases in the bitcode module.

7.3 Experimental Results

We experiment with the Python software-TLS system in this section, using 3

computation intensive benchmarks 3x+1, mandelbrot and md, and 3 memory inten-

sive benchmarks fft, nqueen and filter2d. We re-implement the MUTLS benchmarks

3x+1, mandelbrot, md, fft, nqueen of Chapter 4 in Python, while filter2d is a Numba

benchmark that computes 2D image filtering.
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The speedup results of the speculatively parallelized benchmarks are shown in

Figures 7–1 to 7–4. Since in a JIT environment there is a trade-off between par-

allelized program running time reduction and JIT compilation/optimization time

overhead, we show the speedup results both without and with the JIT speculative

compilation/optimization time in Figures 7–1, 7–3 and Figures 7–2 and 7–4, respec-

tively.
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Figure 7–1: Compiled Program Speedup - Computation Intensive; higher is better

As expected, the computation intensive benchmarks achieve significantly higher

speedups than memory-intensive ones, due to the memory buffering overhead of the

MUTLS software-TLS system discussed in previous chapters. The reason that the

speedups of 3x+1 between 32 and 63 cores are generally stable and jump up at 64

cores is our workload distribution strategy, which splits the computation into 64 loop

iterations, and thus at least two iterations are computed sequentially. It can be seen
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that the tree-form recursion benchmarks fft and nqueen exhibit similar performance

characteristics as the C versions of Chapter 4, whose speedups saturate at around 32

cores, for similar reasons of the limited parallelism in deeper recursive function calls

and inter-socket extra message cost of the NUMA architecture machine.

We can also see that the JIT speculative compilation/optimization overhead is

considerable for these programs/workloads, reducing the highest speedups from be-

tween 15.2 to 40.5 to between 6.7 and 16.4 for computation intensive benchmarks,

and from between 1.9 and 6.6 to between 1.0 and 4.0 for memory intensive ones. How-

ever, with larger problem size and longer program execution time, we expect that the

amortized overhead of JIT compilation/optimization will be reduced. On the other

hand, the inlining optimization benefits the performance of the speculatively paral-

lelized programs significantly, improving the speedups of 3x+1, mandelbrot, md, fft,
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nqueen and filter2d from 18.6, 15.3, 20.2, 2.7, 4.4 and 1.9 to 40.5, 23.7, 23.9, 2.8,

6.6 and 2.2, respectively. As a result, there is a trade-off between more optimization

resulting in more efficient executable programs and more JIT compilation/optimiza-

tion overhead. This is demonstrated by comparing the whole program speedups of

the inline and noinline versions: the inline versions have higher speedups than the

noinline versions for the mandelbrot (12.6/12.5) and nqueen (4.0/3.8) benchmarks,

but lower speedups for the 3x+1 (13.4/16.4), md (6.7/11.9), fft (1.0/2.0) and filter2d

(1.7/1.8) benchmarks.

7.4 Chapter Summery

Dynamic languages such as Python are difficult for compilers to analyze, opti-

mize and parallelize due to lack of type information, where dynamically parallelizing

techniques such as TLS are more effective. In this chapter, we presented a software-

TLS system for the dynamically typed language Python based on the Numba JIT

specializing Python compiler and the MUTLS software-TLS framework. We also

proposed three optimizations that reduce unnecessary rollbacks to enable effective

speculative parallelization: using reduction to process Numba reference counting,

address-space registration of Python objects, and MUTLS runtime library inlining

into the Numba JIT compiled LLVM module. This work further demonstrates that

the language and architecture independent software-TLS approach of the MUTLS

system is valuable for both static and dynamic languages. Experimental results show

that significant speedups can be achieved for the JIT compiled Python by software-

TLS, with from 1.8 to 16.4 for whole program speedups and from 2.2 to 40.5 for

compiled program speedups. While memory buffering still accounts for significant
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performance overhead, JIT compilation/optimization overhead is also considerable,

and there are optimization trade-offs such as inlining between efficient program ex-

ecution and JIT compilation overhead.
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CHAPTER 8
Related Work

In this chapter, we present related research works for the MUTLS software-

TLS system and related optimizations, heuristics and programming language/ex-

ecution environments discussed in previous chapters, in particular, hardware and

software TLS, software transactional memory, software-TLS memory buffering, fork-

heuristics, dynamic language context and hardware acceleration.

8.1 Hardware-centric TLS

Many compiler frameworks have been proposed for thread-level speculation.

These typically require significant hardware support, with the most efficient and

modern designs involving different, hybrid forms of software and hardware coopera-

tion.

The bulk of these works focus on loop-level in-order speculation, for which a

number of feasible performance models have been proposed. The Java runtime par-

allelizing machine (Jrpm) [51], for instance, identifies the best loops to parallelize

by analyzing speculative loops with dynamic compilation and a hardware profiler,

and speculatively parallelizes the loops on the Hydra chip multiprocessor [128]. The

runtime speculative automatic parallelization (RASP) [83] technique speculatively

parallelizes loops of compiled x86 binary on-the-fly using dynamic binary transla-

tion on the DBT86 [28] runtime environment and TLS and performance monitoring

hardware. Du et al. propose a misspeculation-based cost-model driven compilation
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framework to select effective loops for speculative parallelization [63]. STAMPede is

a cooperative approach with unified hardware support for TLS [161, 163, 162]. The

speculative parallel iteration chunk execution (Spice) [143] technique improves the

probability of speculative thread commit by proposing a software value prediction

mechanism with high prediction accuracy for some loop iterations and only specu-

lating on those iterations. Cascadia [183] is a hardware-only TLS architecture that

selects the best loop level for speculation based runtime heuristics of loop nest across

function calls.

Research on hardware MLS has suggested MLS is more amenable to unstruc-

tured parallelism, as is often found in method-heavy programming contexts, such as

object-oriented languages [50]. This direction includes work on specific aspects of

hardware MLS, such as determining appropriate fork heuristics to reduce speculative

overhead [174, 177] and misspeculation [175], and a limit study on the potential spec-

ulative method-level parallelism in imperative and object-oriented programs [173].

MLS can work well with an out-of-order design, but for simplicity of hardware im-

plementation these works usually assume in-order speculation.

Ioannou et al. [87] compared different hardware-centric TLS paradigms with

various configurations such in-order/out-of-order and loop/method/both, suggesting

that TLS performance varies significantly on different hardware architectures, and

that performance is hindered by both data dependence and load imbalance/parallel

thread coverage.

The Anaphase compiler/architecture [106, 107] exploits fine-grain speculative

thread-level parallelism by decomposing independent program instructions in basic
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blocks to different speculative threads based on profiled Program Dependence Graph

(PDG) [67]. Therefore, parallelism is achieved at instruction task level. Forking

model is not important in the current study since there are at most two threads

running simultaneously.

Bhowmik and Franklin [38] propose an arbitrary point speculation compiler

framework on the SUIF-MachSUIF [77] platform targeting linear-form mixed forking

model hardware TLS. It partitions the loops and basic block groups of a function for

speculative parallelization based on profiling and data/control dependence analysis.

The Mitosis [140, 105] compiler/architecture is a linear-form mixed model arbitrary

point TLS system. It uses a profiling-based estimation model to find fork/join point

pairs called SP/CQIP. The order of a new speculation is defined to be just after the

last thread speculated on the same SP/CQIP pair. POSH [101, 145] is another linear-

form mixed model TLS system targeting both loop- and method-level parallelism. It

requires the compiler to insert the fork/join points such that threads speculated by

the same thread are joined in reverse order, which is used to assign the order of the

speculative threads. Therefore it relies on a correct compiler control-flow analysis to

distinguish nested structures such as function calls or loop-nests. Given the order of

threads, these systems treat speculative threads the same as in-order speculation.

In most models thread joining is a highly linear process, with the rollback of one

thread potentially causing cascaded rollbacks of all subsequent speculative threads in

execution order. Garćıa-Yágüez et al. propose a mechanism to avoid such cascades,

rolling back only threads that have consumed values from an aborted thread [70].
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Our design for tree-based rollback also reduces these dependencies, more coarsely,

but without the need to build a thread dependency matrix.

Hardware-centric approaches generally use compiler-based fork heuristics to find

appropriate fork/join points. Of course the same underlying techniques can be ap-

plied through manual specification based on programmer directives [137, 138, 129],

a general design approach adopted by most software approaches, as well as by us to

simplify our current implementation.

Praun et al. [170] propose the Implicit Parallelism with Ordered Transactions

(IPOT) deterministic parallel programming model to support speculative paralleliza-

tion based on hardware-TLS. It also presents an online tool to effectively identify fine-

grain parallelization opportunities by recommending transaction boundaries based

on sequential execution.

8.2 Software-only TLS

With the absence of readily available TLS-specific hardware and growing ubiq-

uity of commodity multiprocessors, pure software-based approaches have seen in-

creased attention. We survey software-TLS approaches for traditional statically

typed languages/runtime environments in this section and dynamic languages/run-

time environments in section 8.6.

Focusing on out-of-order MLS in Java, Pickett and Verbrugge describe the

SableSpMT software-TLS system, based on an interpreted virtual machine con-

text [132, 133, 134, 131]. SableSpMT was then extended to allow mixed forking
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model [135], and could be extended even further though method outlining to sup-

port arbitrary point speculation. This effort aimed primarily at facilitating TLS

analysis, but other works have focused directly on showing speedup.

Ding et al. propose the in-order, arbitrary-point speculation system behavior

oriented parallelization (BOP), showing that even a coarse-grained strategy based

on spawning system processes (rather than threads) can generate speedups of 2.08

to 3.31 for 3 SPEC CPU benchmarks on an 8-core Intel Xeon 7140M machine,

while still providing safety [60]. Fast-track [92] is another in-order arbitrary point

software speculation system, whose programming interface indicates the fast track

to execute sequentially and the normal track to be speculatively parallelized running

on different processes. It is applied to parallelize the GCC memory safety-checking

library Mudflap [64], reducing the checking time by factors from 2 to 7 for 4 SPEC

CPU2000 and SPEC CPU2006 benchmarks.

Other, more TLS-specific approaches have also been proposed. Oancea and My-

croft present an optimistic C++ library for in-order software thread-level specula-

tion SpLSC [124] as well as an in-place implementation SpLIP aimed at independent

loops that rolls back for all WAW, WAR and RAW dependencies [125]. SpLSC and

SpLIP achieve speedups of 0.09 to 5.86 and 1.44 to 5.88 respectively, for 7 applica-

tions from SciMark2, BYTEmark and JOlden benchmark suites on an 8-core AMD

Opteron 2347HE machine. Yiapanis et al. [179] described two loop-level in-order

Java software-TLS systems MiniTLS and Lector based on eager and lazy version

management that achieve 7x and 8.2x speedups, respectively, for seven benchmarks

using 32 threads on a UltraSPARC T2 machine. JaSPEx-MLS [33, 32] is an in-order
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software method-level speculation (MLS) framework based on the OpenJDK Hotspot

virtual machine (VM).

Safe futures [176] is an explicit, transaction-based speculative parallelism ap-

proach for Java. Safe futures are like MLS except that the future thread can be

explicitly claimed (joined) in the continuation thread by the programmer. Safe fu-

tures apply the linear-form mixed forking model using logical semantics to order the

threads and join as in-order speculation.

Garćıa-Yágüez et al. [69] address and present efficient solutions for robustness

issues that should be solved for software-TLS to be used in productive environ-

ment, including speculative exceptions such as floating-point exception (FPE) and

segmentation fault, out-of-bound memory access corrupting speculative metadata,

branching out of speculative region, and falling into endless loop. Ke et al. [90]

present dynamic dependence hints to support safe parallelization of do-across loops

in the BOP speculative parallelization system [60]. Aguilar and Campero [31] study

explicit software speculative parallelism on different speculative regions such con-

ditional branches, loop iterations and mutual exclusion critical sections, achieving

around 1.8x speedups for 4 SPEC CPU2000 benchmarks on a 4-core Intel Pentium

machine.

While design of all these software and library approaches have informed our

overall design, we extend them by developing a true cross-language, cross-platform

design with a tree-form mixed forking model, fully incorporated into a compiler

context. Table 8–1 provides a summary of the main approaches, how they differ, and
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Table 8–1: Comparison of TLS systems

Language Forking Model Speculative Region

H
ar
d
w
ar
e

Jrpm [51] Java in-order loop iteration
SPT [63] C in-order loop iteration

STAMPede [162] C in-order loop iteration
Mitosis [140] C mixed (linear) arbitrary
POSH [101] C mixed (linear) nested structure
Spice [143] C in-order loop iteration

Cascadia [183] C in-order loop iteration
RASP [83] arbitrary in-order loop iteration

S
of
tw

ar
e

SableSpMT [132] Java out-of-order method call
Safe futures [176] Java mixed (linear) method call

BOP [60] C in-order arbitrary
SpLSC/SpLIP [124, 125] C++ in-order loop iteration

Fast track [92] C in-order arbitrary
JaSPEx-MLS [33, 32] Java in-order method call
MiniTLS/Lector [179] Java in-order loop iteration

MUTLS [45] arbitrary mixed (tree) arbitrary

where our design is situated. However, we do not consider hardware-TLS systems to

be architecture independent as they need dedicated TLS hardware support.

8.2.1 LLVM

Our approach is built on the Low Level Virtual Machine (LLVM) [7]. LLVM is a

popular framework for compiler research of various forms. Tristan et al., for example,

present an approach to translation validation, verifying intra-procedural optimiza-

tions within LLVM [169]. Other work on parallelism has also used LLVM. Work on

enforcing deterministic scheduling has been based on LLVM traces [53], and Prabhu

et al. build a commutativity based programming extension on LLVM enabling mul-

tiple forms of implicit parallelism [139]. As far as we are aware, however, our work
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is the first to use LLVM for speculative parallelism, although there has been recent

work proposing to use LLVM to target IBM’s BlueGene/Q TLS architecture [37].

8.3 Software Transactional Memory

Software Transactional Memory (STM) is a concurrent/parallel programming

technique using optimistic concurrency control [20] to address lock-based program-

ming issues such as contention [10], deadlock, livelock [3] and priority inversion [24].

As with software-TLS, STM buffers/logs the words/objects accessed by each transac-

tion and rolls back conflicting ones when dependencies are detected. Here we present

an overview of some related STM works.

Shavit and Touitou [152] introduced STM with a lock-free implementation based

on Load Linked/Store Conditional (LL/SC) [9]. Herlihy el al. [82] proposed the

Dynamic Software Transactional Memory (DSTM) to support dynamic-size data

structures, which is based on a weaker non-blocking form obstruction-freedom [15]

and thus is simpler and more efficient than lock-free implementations. It can use

modular contention managers to implement different strategies for conflict resolution

with information such as time, operating system scheduling and hardware environ-

ments. A variety of contention management strategies have been presented, such as

Polite, Karma [85], PublishedTimestamp, Polka [86], Greedy [75], Timid [57, 65], and

comprehensive strategies with good performance for both short and long transactions

[62], and both low and high contention workloads [155].

There are also researches on STM conflict detection and validation. Spear et

al. [157] presents a survey of conflict detection and validation strategies, proposing
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the global commit counter heuristics to reduce validation overhead and mixed inval-

idation to delay read-write conflict detection since both transactions can succeed if

the reader commits first. The Lazy Snapshot Algorithm (LSA) [146] provides trans-

actions with consistent view of objects though a global clock counter, which is then

improved to reduce contention by using an external or multiple synchronized clocks

for time-based transactional memories [147]. This idea has been used by many STMs

such as TL2 [57], McRT-STM [149], TinySTM [65] and SwissSTM [62]. Ramadan

et al. [141] propose dependence-aware transactional memory (DASM) model and

prove DASM accepts all conflict-serializable concurrent interleavings. InvalSTM [73]

uses commit-time invalidation that resolves conflicts with in-flight transactions to

increase throughput.

Other techniques to improve STM performance such as eager version manage-

ment [80, 149] and runtime system parallelism [118, 142] have also been proposed,

which we will overview in section 8.4.

Many optimized STMs have been proposed, of which most are lock-based block-

ing designs. The transactional locking II (TL2) [57] STM based on the transac-

tional locking (TL) [58] framework achieves competitive performance with manual

fine-grained concurrent structures on small transactions by guaranteeing consistent

memory state though version-clock validation. JudoSTM [127] uses dynamic binary

rewriting to support C/C++ programs with irreversible system calls and library

functions with locks. RingSTM [158] only requires at most one read-modify-write

operation for a transaction by representing read and write sets as Bloom filters [39].

TinySTM [65] achieves significant performance gains by dynamically tuning runtime
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parameter configuration such as cache locality with varying workloads. SwissSTM

[62] increases inter-transaction parallelism by using commit-time and encounter-time

conflict detection for read/write and write/write conflicts, respectively, and uses a

two-phase contention manager to prioritize long transactions with no overhead for

short transactions. Spear [154] proposes a lightweight STM that dynamically adapts

different parameters of a given STM implementation, between different STM im-

plementations and between STM and coarse-grained locks, which can substitute

contention management.

Non-blocking STM optimizations have also been proposed. RSTM [109] re-

duces cache-misses on common-case path by not allocating transactional metadata

dynamically, and makes reader transactions to writers without additional metadata

copying though epoch-based storage management. Marathe and Moir [110] uses own-

ership stealing in a non-blocking STM to enable blocking STM optimizations such as

timestamp-based validation and streamlined fast path. Based on a Java language-

level STM JVSTM [40], Fernandes and Cachopo [66] implemented a lock-free STM

which scales up to 192 cores.

There are also researches devoted to enhance the correctness guarantees and

applicability of STM. Privatization addresses that transactional commit must be

atomic and invalid transactions must abort safely, on which both correctness criterion

[76] and strategies [156] have been proposed. Marathe et al. [159] propose partially

visible reads to reduce transparent privatization overhead. Spear el al. [160] explore

alternatives to inevitable execution of irreversible operations such as interactive I/O

to improve scalability. Researches on open [123] and closed [34] nested transactions
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have also been proposed, in which committed nested transactions are visible to the

global main memory and only to the enclosing transactions, respectively.

Barreto et al. [36] propose a middleware TLSTM to combine software thread-

level speculation (STLS) and STM based on SwissTM [62], achieving 48% throughput

increase over SwissTM for long read-dominated transactions.

As both STM and TLS are optimistic parallelizing techniques using buffering,

they are often considered similar. However, we note that there are differences, re-

sulting from the fact that STM is to address issues of parallel programming while

TLS is to parallelize sequential programs. Since STM is used for parallel programs,

synchronization and commit ordering among transactions is generally not required

for correctness. As long as a transaction completes without conflicts, it could commit

irrespective of the execution of other transactions. While for TLS, to maintain se-

quential semantics, a speculative thread may only commit after the non-speculative

thread reaches the join point from which the speculative thread started, as will be

discussed in detail in section 9.1.4.

8.4 Memory Buffering

Memory buffering has been the concern of many researches on software-TLS and

other speculative parallelization approaches.

The LRPD test [144] proposes speculative parallelization of loops using DOALL

runtime checking based on array variable privatization and reduction parallelization,

which targets distributed shared-memory architecture efficiently if the number of

processors is comparable to the number of iterations. To avoid re-execute the whole

loop in case of rare dependencies the R-LRPD test [55] is proposed using the sliding
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windows strategy. Cintra and Llanos [52] propose a software-TLS scheme that also

applies sliding window to reduce memory overhead and improve load balance. As

with the lazy version management buffering, these approaches use the serial commit

phase that reduces scalability.

Rundberg and Stenstrom [148] put forward a software-TLS system targeting

shared memory multiprocessors, which enables parallel commit after speculative ex-

ecution by detecting dependency and forwarding data on-the-fly during speculative

loads/stores. The parallel commit design explores parallelism at a coarser granular-

ity than parallelized V/C, but the approach may have impractically large memory

space overhead in the presence of aliasing [125].

Oancea et al. [125] propose SpLIP, a lightweight, in-place update (eager version

management) software-TLS approach to achieve higher scalability. We make use of

this general technique as well, exploring it in conjunction with an optimized lazy

version management scheme that also improves scalability, rather than as a direct

replacement.

Yiapanis et al. [179] present a compact version management data structure and

applied it to propose an eager and a lazy version management software-TLS systems,

MiniTLS and Lector, achieving average speedups of 7x and 8.2x respectively using 32

threads. The rollback procedure of MiniTLS is parallelized, while the serial commit

procedure of Lector is not. Our lazy version management buffering exploits coarse

and fine grain parallelism of the runtime system to improve its scalability during

serial validation/commit.
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Eager version management has been proposed for software transactional mem-

ory (STM). Harris et al. [80] propose the eager version management direct-access

Bartok-STM, supporting short scalable concurrent benchmarks with less than 50%

overhead over the thread-unsafe baseline, and long atomic blocks comprising millions

of shared memory accesses with 2.5x to 4.5x slowdown. Saha et al. [149] propose the

eager version management McRT-STM, analysing STM design tradeoffs such as pes-

simistic/optimitic concurrency control, eager/lazy version management, and cache

line/object based conflict detection. It is then improved by compiler and runtime

optimizations [30] to support composable [79] and nested memory transactions.

Parallelism of the runtime system has also be explored by STM approaches.

STMlite [118] removes lock overhead of transactional execution by centralizing trans-

action bookkeeping in a single core so that it runs in parallel with work threads. Ra-

man et al. [142] proposed a Software Multi-threaded Transaction (SMTX) system

that exposes data parallelism by dividing loop iterations to different pipeline stages

while still committing them together. SMTX uses a separate centralized commit

process to reduce inter-core communication latency on the critical path.

Several speculative parallelization systems propose efficient memory buffering

load/store implementations. BOP [60] uses processes instead of threads for data

protection. It enables strong isolation where memory overhead is proportional to

the data size accessed instead of the number of data accesses, which benefits appli-

cations with high temporal locality. Abadi et al. [29] introduce a strong atomicity

transactional memory by using page memory protection hardware to detect transac-

tional and non-transactional memory access conflicts, achieving within 25% of a weak
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atomicity implementation on C# versions of many STAMP [122] benchmarks. Tian

et al. [167] proposed the Copy-or-Discard (CorD) speculative execution model that

finds multi-versioned variables using a mapping table, and optimized it for dynamic

pointer-intensive data structures [166] and to support incremental rollback recovery

[168]. LSA-STM [146] improves lazy version management for object-based software

transactional memory (STM) with eager ideas, which uses validity ranges to avoid

revalidating previously read objects for each new reads.

BOP [60] and SpLSC [124] propose optimizations for readonly shared vari-

ables, but required profiling tools support or programmer specification to find likely-

readonly variables. We propose the readonly-page optimization to automatically find

and optimize readonly variables on-the-fly during speculative execution. Oancea et

al. [125] discussed that integrating different memory buffering approaches should be

more beneficial than single buffering implementation. We provide the first buffer-

ing integration solution, which seamlessly integrates different buffering or pseudo-

buffering implementations into one buffering framework and automatically utilizes

the most appropriate one for each variable.

DynTM [104] and SEL-TM [182] are hardware transactional memory (HTM)

systems with hybrid conflict management policies that permit eager and lazy version

management to cooperate during transactional execution. ASTM [108] and adapt-

STM [130] use heuristics to select eager or lazy version management for software

transaction memory (STM) threads. We propose the first software-TLS solutions to

allow speculative threads to utilize both eager and lazy version management buffer-

ing.
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Garzaran et al. [71] analyze complexity-benefit tradeoffs of different hardware-

TLS memory buffering approaches. It discussed strengths and weaknesses as well as

the required hardware supports for each approach, and compared the mechanisms

using 7 benchmarks with different memory access patterns. Our work improves

software-TLS memory buffering approaches and integrates them into a unified frame-

work with the aim to maximize their combined strengths.

8.5 Fork Heuristics

The bulk of proposed fork-heuristics are static profiling heuristics. Java runtime

parallelizing machine (Jrpm) [51], for instance, first profiles execution of a sequential

program with a hardware profiler, and then dynamically speculates on the selected

prospective loops after collecting enough profiling data to decide the best loops to

parallelize. Du et al. [63] propose a cost-model-driven compilation framework SPT to

select candidate loops for speculative parallelization, which builds control-flow graphs

and data-dependence graphs with profiling information of a sequential execution and

uses the graphs to evaluate candidate loops based on the cost model. The STAMPede

[162] TLS approach selects speculatively parallel loops based on several filter criteria:

the loop execution coverage and iteration count are above a threshold and the loop

body is neither too large nor too small. The Mitosis [140] compiler/architecture uses

arbitrary pairs of basic blocks as fork/join points and models parallel execution based

on profiling traces to estimate candidate pairs. The POSH [101] compiler simulates

sequential execution on a train input set and models TLS parallel execution to select

beneficial fork/join points.

208



There is also research dedicated to static profiling heuristics. Warg and Sten-

strom propose heuristics to reduce speculative threading overhead based on the mod-

ule (method) run-length threshold [174], and to reduce misspeculation using history-

based prediction [175]. Whaley and Kozyrakis [177] propose three classes of heuris-

tics for method-level speculation, and found that single-pass heuristics lead to best

speedups while simple/complex multi-pass heuristics tend to over/under specula-

tion. Wang et al. [172] constructed a loop-graph and used it for global loop selection

to maximize program performance. Liu et al. [102] proposed an online-profiling ap-

proach to speculatively parallelize candidate loops. Online static profiling approaches

[51, 102] have the advantage over offline-profiling that they do not require additional

profiling input and can dynamically profile on the real data. However, these still

lack parallel execution environment information for accurate estimation of fork/join

points. Pure static heuristics are less common, since they lack runtime parameters.

Dou and Cintra [61] proposed a thread-tuple cost-model to estimate speedups of

candidate loops. As well, some heuristics combine profiling and static approaches,

such as SPT [63].

Dynamic profiling heuristics have recently been studied. Luo et al. [103] pro-

posed a dynamic performance tuning technique for selection of candidate loops. It

used hardware performance monitors to profile runtime statistics such as instruction

fetch penalty and cache miss, and estimated the efficiency of each thread and loop

with the statistics. Unfortunately, this approach cannot be directly applied to soft-

ware TLS without low-level and machine-specific access to hardware performance

monitors.
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All the above are hardware-TLS heuristics, which tend to focus on finer-granularity

parallelism due to hardware resource constraints. In software-TLS, heuristics should

focus on coarser-granularity parallelism as software TLS has higher overhead than

hardware implementation. So far as we know, the adaptive heuristics we propose are

the first heuristics specifically proposed for and validated in software TLS.

Adaptive software speculation [89] improves the usability of BOP [60] by dy-

namically predicting the profitability of each possibly parallel region (PPR) based

on misspeculation rate. HEUSPEC [178] is a software speculation parallel model

that dynamically adapts to different value predictors and granularity tasks. While

adaptive fork-heuristics target the problem of fork point selection of software-TLS.

8.6 Thread-Level Speculation for Dynamic Languages

Recently there are researches to apply software-TLS for dynamically-typed lan-

guages such as JavaScript in addition to static languages such as C/C++, Java and

Fortran. Martinsen et al. [111, 112, 113, 114, 115, 116] implemented method-level

linear-form mixed model speculation software-TLS system in Rhino and Squirrelfish

JavaScript engines and achieved significant speedups on some popular web applica-

tions such as YouTube (8.4x), BlogSpot (4.5x), WordPress (3.8x), Imdb, Myspace,

Ebay, MSN and Wikipedia (2-3x) on an 8-core computer. Mehrara et. al [119] devel-

oped an loop-level in-order dynamic parallelization system ParaScript for JavaScript

applications, which combines data-flow analysis and runtime dependency detection

based on reference counting and array index range checking, achieving an average of

2.18x for SunSpider benchmark suite and Pixastic image processing library filters over

the SpiderMonkey Firefox engine on an 8-core machine. Fortuna et al. [68] conducted
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a potential speedup limit study on JavaScript speculative parallelism for popular web

pages and standard JavaScript benchmarks and showed encouraging speedups of av-

eraging 8.9 and as high as 45.5. Crom [121] is a JavaScript-implemented event-based

speculative engine that generates speculative event handlers for precomputation in

the browser, achieving an order of magnitude speedup of subsequent page loads by

speculative page fetching and layout precomputing. Tan et al. [165] explored specu-

lative parallel optimization in JIT compilers and showed at most 23.7% speedups in

V8 JavaScript engine.

8.7 Hardware Acceleration

With the trend of increasing CPU capability and system heterogeneity, more

effective and efficient software-TLS designs with the aid of special commodity hard-

ware acceleration such as hardware transactional memory (HTM) [41, 117, 59, 47]

and Graphics Processing Unit (GPU) [84, 35, 120] have been proposed.

After decades of intensive research, hardware transactional memory (HTM) has

finally made into commodity architectures, such as the HTM of IBM Blue Gene/Q

[171, 95] and System z [88], and Intel Transactional Synchronization Extensions (Intel

TSX) of the Haswell microarchitecture [180, 54, 97]. Odaira and Nakaike [126] study

thread-level speculation implementation using the Intel TSX hardware transactional

memory and get up to 11% speedup but slowdown in most cases, suggesting that to

implement effective TLS future HTM should support not only ordered transactions

but also data forwarding, synchronization, multi-version cache and word-level conflict

detection.
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Samadi et al. [150] propose a static/dynamic CPU-GPU collaborative compiler

platform to automatically speculate possibly-parallel loops on GPUs and achieve up

to 12x, 24x and 37x speedups for 6 rewritten Polybench [22] benchmarks over 4-, 2-

and 1-thread CPU execution, respectively. Diamos and Yalamanchili [56] propose a

Kernel Level Speculation (KLS) technique to extract parallelism from heterogeneous

systems with multiple GPUs and achieve 41.2% to 98.6% of the theoretical ideal

performance and 1.02x to 6.13 speedups over the non-KLS version on a system

with a 4-core CPU and 6 GPUs. Liu et al. [99, 100] explore the performance

of value prediction and speculative execution on GPUs and found that hardware

extension reduces control divergent operations significantly with moderate hardware

and power consumption overheads. Sun and Kaeli [164] exploit aggressive value

prediction on a GPU and obtained up to 6.5x speedup on selected kernels from

SPEC CPU 2006, PARSEC and Sequoia benchmark suites. Zhang et. al [181]

propose the GPU-TLS runtime system to speculatively parallelize possibly-parallel

loops and achieve 5x to 160x speedups on two machines with Nvidia GPUs. Based

on GPU-TLS, Han et al. [78] propose the Japonica compiler framework and runtime

system to automatically parallelize DOALL loops statically by the compiler and

possibly-parallel loops speculatively at runtime, using a 16-core Intel Xeon CPU

and an Nvidia Fermi GPU achieving on average 10x, 2.5x and 2.14x speedups than

sequential, GPU-only and CPU-only versions, respectively.
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CHAPTER 9
Conclusions and Future Work

The complexity of even a relatively plain implementation of TLS makes explo-

ration of the many possible design choices difficult, a problem exacerbated by the

potential for interaction with other aspects of an optimizing compiler and execution

environment. The MUTLS system is intended to improve that situation, providing

a full-featured TLS compiler framework that accommodates a wide variety of input

and output contexts. With a mixed forking model, MUTLS has more potential to

extract parallelism from tree-form recursion applications.

Efficient memory management is critical to the design of effective software ap-

proaches to thread-level speculation, with the competing buffering strategies used to

either enforce isolation or to preserve undo information having different costs and

potential benefits. We initially approached the problem as one of establishing which

technique is better, developing highly optimized, but separate implementations of

the buffering approaches. To reduce the expensive validation/commit phase in lazy

management, for instance, we implemented a streamlined, page-table memory de-

sign that enables both coarse and fine grain parallelization of that overhead. Eager

version management, on the other hand, has scalability limitations due to the need

to keep multiple versions of data, a problem we address by using a single, shared

address-owner buffering approach with better space complexity. Both techniques im-

prove performance, and both benefit from further optimizations to identify readonly
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data and so reduce buffering costs, but it depends very much on the benchmark

and resource limits. By combining the techniques and performing an adaptive, run-

time selection of the buffering mechanism we are thus able to demonstrate a design

that gains the benefits of both, with a more general application that accommodates

different benchmarks and numbers of available cores.

To enable effective and efficient automatic parallelization, we proposed adap-

tive fork-heuristics for software-TLS, which inserts all potential fork/join points and

purely relies on the heuristics and runtime system to disable inappropriate ones.

These adaptive heuristics have the ability to utilize the real parallel execution envi-

ronment information to maximize performance. In addition, we proposed a feedback-

based selection technique to reduce the heuristics overhead through recompilation

using the log file generated by adaptive fork-heuristics. We integrated adaptive fork-

heuristics and feedback-based selection into the MUTLS software-TLS framework

and implemented related compiler transformation to achieve a fully automatic par-

allelizing compiler, demonstrating that software-TLS can be a practical approach to

automatic parallelization of real-world applications on commodity multi-core proces-

sors.

Dynamically typed languages such as Matlab, Python and JavaScript are dif-

ficult for static analysis, optimization and parallelization, which are an ideal con-

text for dynamic parallelization approaches such as software-TLS. We integrated the

Python JIT specializing compiler Numba with the MUTLS framework to implement
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a software-TLS system for Python, showing that software-TLS is effective to auto-

matically parallelize dynamic languages and that there is a trade-off for optimization

between efficient program execution and JIT compilation time overhead.

9.1 Future Work

Future work involves more fully fleshing out the design as discussed in pre-

vious chapters, adding in features and capabilities that enable deeper exploration

of different aspects of TLS. This includes heap address space registration (section

3.6.1), value prediction (section 3.6.4, 6.4), potential fork points (section 6.2.1), fork-

heuristics hints (section 6.2.2), feedback-based selection criteria (section 6.3) and

adaptive blockization (section 6.5), as well as other improvements to the interface

that simplify usage.

The following subsections put forward several other possible issues to be re-

searched for more effective and efficient software-TLS design and implementation,

which are organized into 5 categories: runtime system, compiler analysis and fork

heuristics, dynamic languages, hardware transactional memory (HTM) acceleration

and GPU acceleration.

9.1.1 Runtime System

For memory buffering optimization, future work involves further tuning the

buffering integration mechanism—our adaptive buffering design are effective, but

could perhaps be improved by maintaining different buffering integration data for

different fork points, which should reduce the rollback time ratio for programs with

iterations containing different speculative regions such as bwaves. More precise, and
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ideally ahead-of-time identification of independent or readonly variables may also be

possible through static analysis, profilers, user annotation and/or feedback logs.

We are also interested in exploiting common hardware accelerators such as

hardware transactional memory (HTM) and graphics processing unit (GPU), as a

means of alleviating memory buffering overhead without sacrificing the advantages of

software-TLS in applying to existing, commodity hardware, which will be discussed

in subsections 9.1.4 and 9.1.5.

Write-buffer value forwarding. This optimization may help reduce rollbacks

for programs with RAW dependencies such as fft. If a speculative thread reads an

address not in its write-set, it tries to read from the write-set of a thread representing

sequentially earlier execution. If the address is not in the write-sets of those threads,

it reads from its read-set or the main memory. We propose two approaches to

implement this. One is to make each speculative thread read from the write-sets of

its ancestor threads starting from its direct parent, since a thread always represents

sequentially earlier execution than its child threads in our forking models. The other

is to allow each speculative thread to read from the read-set of any sequentially

earlier thread with the help of a shared store vector maintaining which threads write

to each address. A sequential execution order number is assigned to each speculative

thread at fork time and the threads in the store vector are ordered by the order

number. Incorrect ordering may incur unnecessary rollbacks but does not produce

incorrect results.
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Preference forking models. Different forking models suit different program

structures and/or execution environment; for instance, nested loops may prefer in-

order speculation while head-recursive function calls may be most effective for out-of-

order speculation. We may explore program characteristics and dynamically assign

forking model preference values for each fork point. If several forking models are

available at a fork point, probability or scheduling based approaches can be used to

select a forking model based on the preference values. A child thread may not be

speculated if the selected forking model does not permit speculation for the current

thread. Speculative threads can also have preference values, inherited from the parent

thread and the fork point where it was speculated, in which case the preference values

of the thread also affect forking model selection at a fork point. Preference values can

be adjusted during program execution to adapt to optimal forking models accounting

for cost-benefit of the speculative threads.

Parallel thread joining model. Most software TLS systems adopt a serial

commit model, which only allows the non-speculative thread to join threads and

thus keeps all ready-for-validation speculative threads idle. While a parallel thread

joining model allows speculative threads to join each other, making more efficient

use of the processors. It can also reduce overhead on the critical path, including

thread forking/joining, as well as memory buffering validation/commit if speculative

threads share read/write memory addresses. Threads representing adjacent sequen-

tial execution can be joined if they are both waiting for validation and commit.

The memory buffering and thread status of one thread is then merged to the other
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if validation succeeds, and its thread resource is reclaimed and allocated for new

speculative work.

9.1.2 Compiler Analysis and Fork Heuristics

For adaptive fork-heuristics, we can exploit more effective and stable heuristics

and hints. With the help of hardware performance counters, we may implement

more accurate cost-benefit estimation. We can also combine static compiler analysis

cost model and/or static profiling data to guide potential fork/join/barrier point

selection.

Analysis-aided TLS. Alias analysis may be utilized to enable optimizations

otherwise impossible for memory buffering. We propose two scenarios for this op-

timization: (1) If alias analysis tells that a load/store must access global or local

memory, we can eliminate the test of its address space and directly use the corre-

sponding speculative memory buffering. (2) In a speculative region (such as a loop)

if some memory reads are analyzed not to be aliased by memory writes of the region,

then we can optimize the speculative region by not speculating these memory reads

and directly reading the main memory, provided that the non-speculative thread

is barriered when it reaches exits of the speculative region. LLVM has several alias

analysis implementations such as basicaa, steens-aa, and scev-aa, which we can use to

compare the effectiveness of the optimizations. Program performance and compila-

tion time may both be concerns in some situations. The study would also experiment

the sensitivity of the optimizations to the analysis and explore trade-offs.

Reduction delaying. If we speculate on the loop “for i=1 to n do x+=a[i];”,

then x will cause all speculative threads to rollback. However, this issue can be
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resolved by delaying the reduction until commit time. Given a speculative thread

with a sequence of instructions “x=load p; y=x+d; store p, y”, then it remains

sound if x is not validated and p is incremented by d during commit, provided that

the speculative thread is barriered before x or y is used again. The optimization

can be generalized: “x=x0=load p; for i=1 to n do x+=f(i); store p, x”, then x is

not validated and p is incremented by x − x0 during commit. When to apply this

optimization is a decision of compiler analysis and transformation. We can study

use cases of reductions and effectively implement the optimization.

9.1.3 Dynamic Languages

Numba coerces objects such as lists and arbitrary-digit integers and redirects

them to the interpreter by CPython object-layer API calls, which stalls speculation.

However, such stalls can be eliminated by specific processing of the API calls. We

can make a shallow copy of each API-returned object using Python standard library

calls and add the copy to the read-set. Before an object is written, we can make a

shallow copy of the object, write the copy and add it to the write-set. The shallow

copies can be validated and committed using Python standard library calls. However,

this optimization might be inefficient; for instance, setting an item of a list would

make a copy of the whole list. The inefficiency could be removed if Numba natively

supported lists and/or other objects without using the object layer. We can study the

effectiveness of this optimization and find whether further speedups can be achieved

for Python objects.

We can integration the McVM/McJIT interpreter/JIT compiler of McLab and

the MUTLS software-TLS system to implement software-TLS for Matlab, which
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should be more straightforward than Numba since they are written in C++. Dur-

ing initialization of the JIT compiler, we can create MUTLS module pass manager

and load the MUTLS runtime library. After a function is JIT compiled, we run the

MUTLS pass manager to speculate the module. However, there is a problem that

some functions may be partially compiled and speculation on those functions are in-

valid. We in turn add a global variable for each function in the LLVM module to in-

dicate whether the function has completed compilation, and check the variable before

speculating on a function. McVM/McJIT calls Matlab standard library functions

by building objects and arrays as arguments, which unnecessarily stalls speculation

for native scalar argument types since building objects/arrays is not thread-safe. We

can transform Matlab library function calls with native scalar arguments to native

LLVM function calls and exploit more parallelism opportunities.

9.1.4 Hardware Transactional Memory Acceleration

Intel Haswell microarchitecture processors provide hardware transactional mem-

ory (HTM) support Intel Transactional Synchronization Extensions (TSX). Intel

TSX provides a new software HTM programming instruction set interface Restricted

Transactional Memory (RTM), which has three instructions XBEGIN, XEND and

XABORT. XBEGIN and XEND mark the beginning and the end of a transactional

region while XABORT explicitly aborts a transaction. XBEGIN also specifies a fall-

back instruction address where execution resumes if the transaction aborts, due to

either buffering conflicts or XABORT instruction. Intel TSX also adds an instruction

XTEST to test whether the current CPU is in transactional execution. The fallback

path may acquire a lock and re-execute the transactional region non-transactionally,
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or retry the transaction again. Currently RTM detects conflicts at the granularity

of a cache line and rolls back a transaction for RAW, WAR and WAW conflicts. For

the current implementation, other events such as interrupts, page faults and cache

replacement also cause transactions to abort.

We can accelerate memory buffering using hardware transactional memory. We

can start RTM transactions at the beginning of a speculative thread function, and

end the transactions in check points and terminate points when the non-speculative

thread synchronizes the speculative thread. The fallback instruction address is after

the RTM transaction begin marker in the speculative function, so that the speculative

thread re-executes non-transactionally. Since speculative threads redirect memory

loads/stores to runtime library function calls, we use XTEST to check whether the

speculative thread is executing RTM transactions in the function calls, and return

without memory buffering if it is. We may also generate a separate RTM specula-

tive function version that does not redirect memory accesses to avoid the XTEST

overhead. The speculative thread entry function then jumps to the corresponding

version for the transactional and the fallback paths. We can also utilize compiler

analysis to determine not to use RTM transactions for speculative threads that have

WAR or WAW dependencies and/or access memory addresses within the same cache

line.

Each speculative thread is only allowed to commit after the non-speculative

thread reaches the join point from which it started execution; otherwise, after the

speculative thread commits, the non-speculative thread may write the same variables

read by the speculative thread before the non-speculative thread reaches the join
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point, which incurs RAW true dependencies. However, in the current Intel TSX

implementation, if a transactional CPU accesses the same cache line with any other

CPU and at least one writes, the transaction is aborted, which prevents any shared

variable synchronization between CPUs/threads.

We propose a synchronizing timestamp based approach to address the problem.

The speculative thread redirects memory writes to its write buffer. For each memory

read, the speculative thread reads from the write buffer if its address is in the write

buffer and from memory otherwise. No validation is needed at join time, and the

write buffer is committed to the main memory if speculation succeeds. When a

speculative thread is forked, a timestamp field Tn is initialized to 0. When the non-

speculative thread reaches the join point, it reads the CPU timestamp with RDTSC

instruction and writes it to the Tn field of the speculative thread to be joined. Then

it spins waiting for the valid status of the speculative thread to be non-NULL, as

was discussed in section 3.3. When a speculative thread reaches a terminate/barrier

point, it reads the CPU timestamp Ts and commits the transaction. The speculative

thread then compares its Tn and Ts; if Tn < Ts, meaning the non-speculative thread

reached the join point before it committed the transaction, it thus commits its write

buffer to the main memory and set valid status to COMMIT; otherwise it sets

valid status to ROLLBACK.

In the following list, we present some possible extensions to the RTM imple-

mentation for support of more effective synchronization, from the easiest to the most

difficult in the software implementation of the MUTLS system.
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• Non-transactional address space. This address space can be used to maintain

TLS system metadata. The address space is not necessarily cached as it is only

accessed during forking/joining.

• Synchronization status register. A CPU can set its synchronization status

register, which can be read by another CPU.

• Temporary non-transactional execution. A transactional thread can temporar-

ily leave (out of) a transaction without commit/abort and then re-enters the

transaction. When a thread is out of a transaction, the transaction can be

aborted if other threads access memory addresses in its transaction buffer, but

addresses only accessed when the thread is out of the transaction do not affect

the transaction.

• Two-phase transaction commit. The first phase commit does not commit the

write buffer to the main memory. After the first phase commit, the trans-

action does not have to abort if the thread only reads memory written by

other threads. The second phase commit commits its write buffer to the main

memory if no dependency is detected.

• Tree-form transaction nesting. A transaction can start a nested transaction,

whose status can indicate whether a variable is accessed by another thread.

• Write-buffer dump. A transactional thread can dump its write buffer and abort

the transaction. Then the buffer dump can be committed to the main memory

after synchronizing timestamp/dependency checking.
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9.1.5 GPU Acceleration

Stream processors such as GPUs exhibit massively parallel processing capabil-

ities. If exploited appropriately, they can be of immense help to speculative paral-

lelism. Previous software TLS researches have proposed various approaches to utilize

GPU’s computation power, such as CPU-GPU collaboration, kernel-level speculation

and value prediction, as was discussed in section 8.7. With the advent of integrated

architectures such as Accelerated Processing Unit (APU) [1], where the data-sharing

cost between CPU and GPU can be minimized, there are increasingly more op-

portunities to use heterogeneous computing [5] for the design and implementation

of efficient and effective software-TLS. The third/fourth generation APU provides

unified address space and fully coherent memory features of the Heterogeneous Sys-

tem Architecture (HSA) [6], on which CPU and GPU share the same address space

and cached data, which can be programmed by OpenCL 2.0 shared virtual memory

(SVM) [74]. We can target the MUTLS system to this architecture and automati-

cally generate speculative OpenCL/SPIR-V [93] kernels and study how well the GPU

can accelerate the speculative parallelization system.
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Extending MUTLS for new languages/architectures

Since MUTLS adopts a language and architecture independent approach to

software-TLS, it is fairly straightforward to extend MUTLS to support additional

source languages and/or target architectures.

Add Front-End Language for MUTLS

To add a new front-end programming language for MUTLS, the front-end com-

piler needs to use the same version of LLVM as MUTLS does. The following are

necessary steps to enable effective parallelization using MUTLS.

(1) The front-end compiler compiles the source program and generates the

LLVM-IR modules.

(2) The front-end compiler adds fork/join/barrier point annotations in the gen-

erated LLVM-IR using the LLVM intrinsic function llvm.forkjoinpoints as was

discussed in section 3.1. This step may be ignored if the front-end compiler decides

to use adaptive fork-heuristics of Chapter 6 for automatic parallelization.

(3) The front-end compiler registers the address spaces of global and heap vari-

ables with MUTLS runtime library API function calls MUTLSLIB register static,

MUTLSLIB register malloc and MUTLSLIB register free, as was discussed in sections

3.6.1 and 7.2.2. This avoids unnecessary rollbacks if the speculative threads access

global and heap variables. This step may be ignored if the front-end language/-

compiler uses standard C library functions such as malloc/free for memory alloca-

tion/deallocation.
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(4) The driver of the front-end compiler invokes the “-speculation” LLVM

pass (MUTLS speculator pass described in Chapter 3) to transform the LLVM-

IR. If using adaptive fork-heuristics and/or blockization, then before invoking the

“-speculation” pass, the front-end compiler invokes the “-mutls-auto=$MUTLS -

AUTO TYPE -forkpointmarker -blockizeloop” passes, where MUTLS AUTO TYPEmay be

blockize or noblockize, meaning using adaptive fork-heuristics to automatically in-

sert loop fork point annotation with or without blockization, respectively. MUTLS -

AUTO TYPE may also be none to denote using the LLVM-IR llvm.forkjoinpoints

annotation instead of adaptive fork-heuristics.

(5) The driver of the front-end compiler links the transformed LLVM-IR with

the MUTLS runtime library.

Add Back-End Architecture for MUTLS

Since MUTLS speculator pass does not use architecture dependent instructions

such as inline assembly, it is not difficult for MUTLS to support other LLVM back-end

architectures. It is just necessary that the compiler and runtime library of MUTLS

are re-compiled for the target architecture.

One subtlety is the implementation of the MUTLS runtime library as well as

the application binary interface (ABI) between the MUTLS transformed LLVM-IR

and the library, as different architectures may have different implementations of C

data types such as pointer bit-length. Nevertheless, we expect the effort to be small

to add other back-end support for MUTLS.

226



MUTLS runtime library API functions

void MUTLSLIB_arch_check(const char* arch)

void MUTLSLIB_set_main_stack(int* stackptr)

void MUTLSLIB_register_static(int id, char* addr , size_t size , char* name)

void MUTLSLIB_register_malloc(int id, char* addr , size_t size , int rank)

void MUTLSLIB_register_realloc(int id, char* prev_addr , char* addr , size_t size , int

rank)

void MUTLSLIB_register_free(char* addr , int rank)

void MUTLSLIB_set_readonly_globalvar_id(int id)

void MUTLSLIB_set_readonly_heapvar_id(int id)

int MUTLSLIB_get_task(int model , int hint , int hintid , int self_ptid , int selfrank)

void MUTLSLIB_speculate(int model , char* stackptr , int ptid , int hintid ,

MUTLSLIB_stub_func_type f, int taskrank , int selfrank)

void MUTLSLIB_initialize_speculative_thread(int rank)

int MUTLSLIB_get_speculated_rank(char* stackptr , int ptid , int rank)

char MUTLSLIB_synchronize(char* stackptr , int ptid , int *child_rank , int* bb)

void MUTLSLIB_sync_parent(char* stackptr , int ptid , int rank)

void MUTLSLIB_default_sync_point(char* stackptr , int rank)

char MUTLSLIB_sync_entry(char* stackptr , int* bb , int* child_rank , int rank)

void MUTLSLIB_prefork(int hintid , int rank)

void MUTLSLIB_end_speculative_region(int hintid , int rank)

void MUTLSLIB_intrin(int type , int arg1 , int arg2 , int arg3 , int rank)

bool MUTLSLIB_barrier_point(int self_ptid , int ptid , int rank)

void MUTLSLIB_rollback_point(int no, int rank)

void MUTLSLIB_invalidate_point(int no, int rank)

void MUTLSLIB_unsupported_point(int no , int rank)

bool MUTLSLIB_check_point(int rank)

bool MUTLSLIB_check_joining(int rank)

void MUTLSLIB_reclaim_joined_frame(int rank)

void MUTLSLIB_set_self_stackptr(char* addr , int rank , int selfrank)

void MUTLSLIB_set_child_stackptr(char* addr , int rank)

void MUTLSLIB_return_frame(char* stackptr , int bb, int self_ptid , int rank)

void MUTLSLIB_start_validation_frame(int rank , int selfrank)
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void MUTLSLIB_end_validation_frame(int rank , int selfrank)

void MUTLSLIB_commit_stub_frame(int retno , int rank)

void MUTLSLIB_llvm_memset(uint8_t* addr , uint8_t val , int size , int align , int rank)

void MUTLSLIB_llvm_memcpy(uint8_t* dest , uint8_t* src , int size , int align , int rank

)

void MUTLSLIB_llvm_memmove(uint8_t* dest , uint8_t* src , int size , int align , int

rank)

void MUTLSLIB_llvm_ptrtoint(char* ptr , int bb, int rank)

void MUTLSLIB_check_not_div_zero(uint64_t v, int bb , int rank)

void MUTLSLIB_c_assert_fail(char* assertion , char* file , int line , char *func , int

rank)

void MUTLSLIB_Py_INCREF(NumbaRefCount* p, int rank)

void MUTLSLIB_Py_DECREF(NumbaRefCount* p, int rank)

void MUTLSLIB_Py_XINCREF(NumbaRefCount* p, int rank)

void MUTLSLIB_Py_XDECREF(NumbaRefCount* p, int rank)

void MUTLSLIB_set_local_int8(int index , uint8_t value , int rank , int selfrank)

void MUTLSLIB_set_local_int16(int index , uint16_t value , int rank , int selfrank)

void MUTLSLIB_set_local_int32(int index , uint32_t value , int rank , int selfrank)

void MUTLSLIB_set_local_int64(int index , uint64_t value , int rank , int selfrank)

void MUTLSLIB_set_local_float(int index , float value , int rank , int selfrank)

void MUTLSLIB_set_local_double(int index , double value , int rank , int selfrank)

void MUTLSLIB_set_local_longdouble(int index , long double value , int rank , int

selfrank)

void MUTLSLIB_set_local_ptr(int index , int* value , int rank , int selfrank)

uint8_t MUTLSLIB_get_fork_local_int8(int index , int rank , int selfrank)

uint16_t MUTLSLIB_get_fork_local_int16(int index , int rank , int selfrank)

uint32_t MUTLSLIB_get_fork_local_int32(int index , int rank , int selfrank)

uint64_t MUTLSLIB_get_fork_local_int64(int index , int rank , int selfrank)

float MUTLSLIB_get_fork_local_float(int index , int rank , int selfrank)

double MUTLSLIB_get_fork_local_double(int index , int rank , int selfrank)

long double MUTLSLIB_get_fork_local_longdouble(int index , int rank , int selfrank)

int* MUTLSLIB_get_fork_local_ptr(int index , int rank , int selfrank)

uint8_t MUTLSLIB_get_join_local_int8(int index , int rank , int selfrank)

uint16_t MUTLSLIB_get_join_local_int16(int index , int rank , int selfrank)

uint32_t MUTLSLIB_get_join_local_int32(int index , int rank , int selfrank)
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uint64_t MUTLSLIB_get_join_local_int64(int index , int rank , int selfrank)

float MUTLSLIB_get_join_local_float(int index , int rank , int selfrank)

double MUTLSLIB_get_join_local_double(int index , int rank , int selfrank)

long double MUTLSLIB_get_join_local_longdouble(int index , int rank , int selfrank)

int* MUTLSLIB_get_join_local_ptr(int index , int rank , int selfrank)

void MUTLSLIB_speculate_local_int8(int index , uint8_t value , int predictor_type , int

rank , int selfrank)

void MUTLSLIB_speculate_local_int16(int index , uint16_t value , int predictor_type ,

int rank , int selfrank)

void MUTLSLIB_speculate_local_int32(int index , uint32_t value , int predictor_type ,

int rank , int selfrank)

void MUTLSLIB_speculate_local_int64(int index , uint64_t value , int predictor_type ,

int rank , int selfrank)

void MUTLSLIB_speculate_local_float(int index , float value , int predictor_type , int

rank , int selfrank)

void MUTLSLIB_speculate_local_double(int index , double value , int predictor_type ,

int rank , int selfrank)

void MUTLSLIB_speculate_local_longdouble(int index , long double value , int

predictor_type , int rank , int selfrank)

void MUTLSLIB_speculate_local_ptr(int index , int* value , int predictor_type , int

rank , int selfrank)

void MUTLSLIB_validate_local_int8(int index , uint8_t value , int rank , int selfrank)

void MUTLSLIB_validate_local_int16(int index , uint16_t value , int rank , int selfrank

)

void MUTLSLIB_validate_local_int32(int index , uint32_t value , int rank , int selfrank

)

void MUTLSLIB_validate_local_int64(int index , uint64_t value , int rank , int selfrank

)

void MUTLSLIB_validate_local_float(int index , float value , int rank , int selfrank)

void MUTLSLIB_validate_local_double(int index , double value , int rank , int selfrank)

void MUTLSLIB_validate_local_longdouble(int index , long double value , int rank , int

selfrank)

void MUTLSLIB_validate_local_ptr(int index , int* value , int rank , int selfrank)

void MUTLSLIB_save_alloca(int self_ptid , int id , char* data , int size , int rank , int

selfrank)
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void MUTLSLIB_get_alloca_data(int id, char* data , int size , int rank , int selfrank)

void MUTLSLIB_map_alloca_ptr(char** ptr , int rank , int selfrank)

void MUTLSLIB_map_alloca_array_ptr(char** ptr , int n, int elementSize , int rank , int

selfrank)

uint8_t MUTLSLIB_load_int8(uint8_t* addr , AddressScope scope , int rank)

uint16_t MUTLSLIB_load_int16(uint16_t* addr , AddressScope scope , int rank)

uint32_t MUTLSLIB_load_int32(uint32_t* addr , AddressScope scope , int rank)

uint64_t MUTLSLIB_load_int64(uint64_t* addr , AddressScope scope , int rank)

int* MUTLSLIB_load_ptr(int** addr , AddressScope scope , int rank)

float MUTLSLIB_load_float(float* addr , AddressScope scope , int rank)

double MUTLSLIB_load_double(double* addr , AddressScope scope , int rank)

uint64_t MUTLSLIB_load_mem(uint8_t* addr , int size , AddressScope scope , int rank)

void MUTLSLIB_load_nonsp_int8(uint8_t* addr , AddressScope scope)

void MUTLSLIB_load_nonsp_int16(uint16_t* addr , AddressScope scope)

void MUTLSLIB_load_nonsp_int32(uint32_t* addr , AddressScope scope)

void MUTLSLIB_load_nonsp_int64(uint64_t* addr , AddressScope scope)

void MUTLSLIB_load_nonsp_ptr(int** addr , AddressScope scope)

void MUTLSLIB_load_nonsp_float(float* addr , AddressScope scope)

void MUTLSLIB_load_nonsp_double(double* addr , AddressScope scope)

void MUTLSLIB_load_nonsp_mem(uint8_t* addr , int size , AddressScope scope)

void MUTLSLIB_store_int8(uint8_t* addr , uint8_t data , AddressScope scope , int rank)

void MUTLSLIB_store_int16(uint16_t* addr , uint16_t data , AddressScope scope , int

rank)

void MUTLSLIB_store_int32(uint32_t* addr , uint32_t data , AddressScope scope , int

rank)

void MUTLSLIB_store_int64(uint64_t* addr , uint64_t data , AddressScope scope , int

rank)

void MUTLSLIB_store_ptr(int** addr , int* data , AddressScope scope , int rank)

void MUTLSLIB_store_float(float* addr , float data , AddressScope scope , int rank)

void MUTLSLIB_store_double(double* addr , double data , AddressScope scope , int rank)

void MUTLSLIB_store_mem(uint8_t* addr , uint64_t data , int size , AddressScope scope ,

int rank)

void MUTLSLIB_store_nonsp_int8(uint8_t* addr , uint8_t data , AddressScope scope)

void MUTLSLIB_store_nonsp_int16(uint16_t* addr , uint16_t data , AddressScope scope)

void MUTLSLIB_store_nonsp_int32(uint32_t* addr , uint32_t data , AddressScope scope)
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void MUTLSLIB_store_nonsp_int64(uint64_t* addr , uint64_t data , AddressScope scope)

void MUTLSLIB_store_nonsp_ptr(int** addr , int* data , AddressScope scope)

void MUTLSLIB_store_nonsp_float(float* addr , float data , AddressScope scope)

void MUTLSLIB_store_nonsp_double(double* addr , double data , AddressScope scope)

void MUTLSLIB_store_nonsp_mem(uint8_t* addr , uint64_t data , int size , AddressScope

scope)

void MUTLSLIB_check_nonsp_load ()

void MUTLSLIB_check_nonsp_store ()

void MUTLSLIB_check_nonsp_load_store ()

void MUTLSLIB_set_func_name(const char* name , int rank)

void MUTLSLIB_set_pointer_name(int* addr , const char* name , const char* fname , int

rank)

void MUTLSLIB_set_hintid_num(int n)

void MUTLSLIB_set_nest_hintid(int idc , int idp)

void MUTLSLIB_disable_hintid(int id)

void MUTLSLIB_compiler_timing_begin(int id , int rank)

void MUTLSLIB_compiler_timing_end(int id, int rank)

void MUTLSLIB_bb_trace(int bb, char* func_name , char* bb_name , int rank)
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