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Abstract 

An important aspect of Diophantine Approximation deals with the problem of approx­

imating real or complex numbers by rational numbers or, more generally, by algebraic 

numbers of bounded degree. This study provides criteria to decide whether a given 

real or complex number is algebraic or transcendental. In this thesis we present sev­

eral such results. Following Davenport & Schmidt we look at the approximation of a 

real number by rational numbers, by quadratic irrational numbers and by algebraic 

integers of degree at most 3. We also look at the related problem of simultaneous 

approximation of a real number and its square by rational numbers with the same 

denominator. We conclude with a new Gel'fond type criterion in degree 2 and show 

that it involves an optimal exponent of approximation. 
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Resume 

Un aspect important de l'Approximation Diophantienne concerne le probleme d'ap-

proximer un nombre reel ou complexe par des nombres rationnels ou, de maniere plus 

generate, par des nombres algebriques de degre borne. L'etude de ces problemes four-

nit des criteres pour decider si un nombre reel ou complexe donne est algebrique 

ou transcendant. Dans ce memoire, on presente quelques resultats sur le sujet. 

En suivant Davenport & Schmidt, on considere l'approximation d'un nombre reel 

par des nombres rationnels, par des nombres irrationnels quadratiques et par des 

entiers algebriques de degre au plus 3. On etudie aussi le probleme connexe de 

l'approximation simultanee d'un nombre reel et de son carre par des nombres ra­

tionnels de meme denominateur. Enfin, on demontre un nouveau critere de type 

Gel'fond en degre 2 avec un exposant d'approximation optimal. 
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Introduction 

A complex number satisfying an irreducible integral polynomial of degree d is called 

algebraic of degree d. If a complex number is not algebraic of any degree, it is called 

transcendental. The height of an algebraic number is the maximum absolute value of 

the coefficients of its irreducible polynomial. It is usually a hard problem to decide 

whether a given real or complex number is algebraic, and if so, to bound its degree. 

Some sophisticated tools have been devised to examine these problems. 

It is known at least since Euler that a real number £ which is not rational can be 

approximated by infinitely many rational numbers p/q satisfying 

q. <- h 
This result can be used as a criterion for irrationality since, for a rational number a, 

there exists a constant Co > 0 such that for all rational numbers p/q / a w e have 

l<2 — P/Q\ > CQ/Q- Since rational numbers are algebraic numbers of degree 1, this is a 

very basic criterion to decide for algebraicity. Moreover, the exponent 2 in (1) cannot 

be replaced by 2 + e for any e > 0, since for a quadratic irrational number £, there 

exists a constant c\ > 0 such that |f —p/q\ > ciq~2 for all rationals p/q. Thus, we say 

that 2 is the optimal exponent of approximation of an irrational number by rational 

numbers. 

It is also possible to express the above result in terms of height, by saying that 

for an irrational number £, there exists a constant c2 = c2(£) > 0 such that £ admits 



Introduction 

infinitely many rational approximations a with |£ - a\ < c2H(a)~2. This estimate 

has again an optimal exponent, since it is possible to find irrational real numbers £ 

for which there exists only finitely many solutions a € Q to |£ — ct\ < H{a) e for 

every e > 0. 

The next step is to look at algebraic numbers of arbitrary degree d. In 1961, 

Wirsing proved that if £ is a real number not algebraic of degree at most d, then, for 

any e > 0, there exists infinitely many algebraic numbers a of degree at most d such 

that |£ - a\ < i7(a) _ ( d + 3 ) / 2 + e . Wirsing also pondered if the statement would remain 

true if the exponent (d + 3)/2 was replaced by d + 1. In the case d = 1, this follows 

from the above mentionned result of approximation by rational numbers, and hence 

the answer to Wirsing's question is affirmative. In 1967, this question was answered 

positively in the case d = 2 by Davenport & Schmidt. Schmidt also conjectured the 

question to be true for all d. This conjecture is still open for d > 3. 

In fact, Davenport & Schmidt showed that if £ G R is not algebraic of degree at 

most 2, then there exists infinitely many algebraic numbers a of degree at most 2 

satisfying |£ — a\ < c3H(a)~3 for a constant c3 > 0. This estimate has the optimal 

exponent 3. They also established in 1969 that for a real number £ which is not 

algebraic of degree at most 2, there exist infinitely many pairs (m/q, n/q) € Q2 with 

q > 0 such that |£ - m/q\ < c^f1 and |£2 - n/q\ < c^q"1 where C\ > 0 is a constant 

and 7 = (1 4- v /5)/2 denotes the golden number. 

Davenport & Schmidt also showed a connection between the approximation by 

algebraic integers of degree at most d + 1 of a real number £ not algebraic of degree 

at most d, and the simultaneous approximation of the first d powers of £ by rational 

numbers with the same denominator. In particular, they also proved in 1969 that if £ 

is a real number which is not algebraic of degree at most 2, then there exists infinitely 

algebraic integers a of degree at most 3 satisfying 0 < |£ — a\ < c5H(a)~1~'r for a 

constant c5 > 0. 



In a paper to appear, Roy [17] proves that the optimal exponent for approximating 

a real number £, not algebraic of degree at most 2, and its square £2 by rational 

numbers with the same denominator is in fact 1/7 = 0.618.. . . He demonstrates 

the optimality of this exponent by constructing real numbers which attain the above 

mentionned exponent. Examples of such numbers are the real numbers £aib whose 

continued fraction expansion is the Fibonacci word on two letters. 

The results mentionned above pertain to the approximation of a real number, but 

they can also be used to determine if a given real number is algebraic of bounded 

degree. However, there exist other methods to determine if a real number £ is al­

gebraic of bounded degree. For example, Gel'fond, in 1960, developped a criterion 

to determine if a real number £ is algebraic by bounding the value of integral poly­

nomials at the point £. Jointly with Roy, the author developped a new version of a 

Gel'fond's type criterion in degree 2 with an optimal approximation exponent: given 

a real number £, if for every large real number X > 0 there exists a non-zero integral 

polynomial of degree at most 2 and height at most X satisfying |P(£)| < (1/4)X - 7 , 

then £ is algebraic of degree at most 2. Surprinsingly, the continued fractions £ai(, 

constructed by Roy also attain the optimal exponent in this criterion. 

The following pages examine in details the results stated above (except for the 

results of Wirsing and Roy.) The proofs presented below will use a technique, similar 

to the one of Davenport & Schmidt, [8] and [9], and hence some preliminary results 

are needed before being able to jump in the heart of the matter. The exposition of 

the material will be as follows: Chapter 1 contains results about the Geometry of 

Numbers, polynomials, determinants and resultants. In Chapter 2 is constructed a 

sequence of polynomials which will be used in Chapter 3 to prove the criteria. Finally, 

Chapter 4 deals with the optimality of the approximation exponents. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

This chapter contains results about Geometry of Numbers, determinants, resultants 

and polynomials. A slight modification of the technique of Davenport & Schmidt, [8] 

and [9], is used to prove the main theorems, hence it is necessary to start from the 

ground and build up the tools that will ultimately be needed in the remainder of this 

text. 

Definition 1.1. 

1. We say that a € C is algebraic if it satisfies a polynomial relation 

Pa{a) = ada
d + ad_xa

d~x + • • • + a0 = 0 

where ad ^ 0 and Pa(T) <E Z[T] is irreducible. 

2. The polynomial Pa(T) is unique, up to sign, and is called the minimal polyno­

mial of a. 

3. The degree of an algebraic number a is 

deg(a) = [Q(a) : Q] = d, 
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where d is the degree of its minimal polynomial. 

4. We say that a number a e C is transcendental if it is not algebraic of any 

degree. In this case, we denote 

deg(a) = [Q(a) : Q] = oo. 

Definition 1.2. Let P(T) = adT
d + Od- i ^ " 1 + • • • + aQ e C[T]. 

1. The height of P(T) is 

H(P) = max {1*1}. 
i—0,...,a 

2. The height of an algebraic number a € C is the height of its minimal polynomial 

in Z[T]. (See Definition 1.1.) 

In addition, it will ease the flow of the text to use the following notations. 

Notation 1.3. 

1. Let £ 6 R. Then [£] denotes the integer part of £, and {£} denotes the fractional 

part of £. 

2. If R is a ring, we denote the set of polynomials of degree less or equal to d in 

R[T) by R[T]<d. 

3. Let A be a square matrix. Then 

| | A | | : = | d e t ^ ) | . 

1.2 Geometry of Numbers 

The Geometry of Numbers is a far-reaching theory due to Hermann Minkowski. It 

consists of the study of n-dimensional figures in Euclidean space along with their 
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connection to number theory. In this section, a brief introduction to the Geometry 

of Numbers is given, and we prove the existence of integral polynomials with small 

absolute value at a given point. For more information, see [7]. 

1.2.1 Lattices and Minkowski's Lemma 

We start with the study of lattices and convex bodies of Rn. 

Definition 1.4. A lattice A of Rn is a subgroup of Rn generated by n linearly indepen­

dent vectors. The determinant of a lattice A is the absolute value of the determinant 

of its underlying basis and is denoted by det(A). 

Definition 1.5. Let C c Rn. 

1. We say that C is symmetric about the origin if u € C implies that —u 6E C. 

2. We say C is convex if «i,tt2 £ C implies that the line segment between U\ and 

«2 is completely contained in C. 

This first lemma is very basic and concerns the determinant of a lattice. 

Lemma 1.6. Let A C Rn be a lattice and let A € GLn(R). Then AA is a lattice and 

det(AA) = ||A||det(A). 

Given a convex body of Rn, it is sometimes quite difficult to verify directly whether 

it contains a non-zero point of Zn . Replacing Zn by an arbitrary lattice complicates 

things further. The following theorem is needed to answer these problems. We state 

the theorem in its most general form (due to Van der Corput), while the case m = 1 is 

due to Minkowski and is called Minkowski's Theorem on convex bodies. For a proof, 

see [7, Theorem II, p.71] 
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Theorem 1.7 (Minkowski-Van der Corput). Let C G Rn be a convex set, sym­

metric about the origin and of volume V(C) (possibly infinite). Let m G Z>0 and A 

be a lattice of Rn. Suppose that one of the following two cases occur: 

• V(C) >m2ndet{A), 

• V(C) = m2ndet(A) and C is compact. 

Then C contains at least m pairs of non-zero lattice points ±ui with Ui ^ Uj for i ^ j . 

Definition 1.8. We say that a set C C W1 is a convex body if it is compact, convex, 

symmetric about the origin and has non-empty interior. 

As stated in the theorem, the number of lattice points in a convex body is de­

pendent on the volume of the convex body. What can be said about these points? 

Minkowski proved another theorem, namely Minkowski's second Theorem on convex 

bodies, stating "how much bigger" a convex body must be in order to contain n 

linearly independent lattice points. 

Definition 1.9. Let C C R" be a convex body. Define the first minimum of C, 

Ai = Xi{C), to be the infimum over all A G R>o for which AC contains a non-zero 

lattice point. Minkowski's Theorem clearly states that Ai is finite and provides an 

upper bound for it. For 2 < i < n let the i-th minimum of C, Aj = Aj(C), to be the 

infimum over all A G R>0 for which AC contains i linearly independent lattice points. 

(This must also be finite since C has non-empty interior.) We get a sequence 

0 < Ai < A2 < • • • < An < oo 

and we call {Ai, A2, . . . , An} the successive minima of C. 

Theorem 1.10 (Minkowski). Let C C W1 be a convex body. Then 

2n 

n 
, < AXA2... \nV{C) < T. 
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Minkowski's theorems clearly show the importance of being able to evaluate the 

volume of a convex body. 

Theorem 1.11. Let A G GLn(R). Given n constants C i , . . . , c n G R satisfying 

C1C2 ... cn > 0, the convex body C C Rn defined by 

J^ a. i] %} < Cj (1 < i < n) 

has volume 

V(C) = 
2nc\... cn 

U\\ 
In particular, i / A c K " is a lattice satisfying 

det(A) < ^ 

then C contains a non-zero point of A. 

Proof. Define 
n 

Xi := y^ o-tjXj (1 < i < n) 

for (xi,..., xn) G A. Consider the convex body V defined by the equations 

\Xi\ <Ci {l<i< n). 

It is clear that V{V) = 2nCi... cn. Since AC = V then 

V(V) 
V(C) = 

Thus if A C Rn is a lattice satisfying 

det(A) < 
C\ .. .cn 

~1AT 

then 

V(C)>2 ndet(A). 

Using Minkowski's Theorem, C contains a non-zero lattice point. • 
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Corollary 1.12. Let £ G C and A C Rn+1 be a lattice of determinant 1. For all 

X > 1 the convex body C C Rn+1 defined by 

C:= 
\xne + xn^

n-1 + --- + xQ\<X-n, 

\xi\ <X {l<i<n) 

has volume V(C) = 2n + 1 . In particular C contains a non-zero lattice point. 

Proof. Let c = (co,Ci,...,cn) = (X n , X , . . . , X ) and 

/ 

A = (fly) = 

1 £ £2 

0 1 0 

0 0 1 

0 

0 

\ 0 0 0 ... 1 J 

Then the convex body C can be rewritten as 

j=0 

Using Theorem 1.11, 

and since 

V(C) = 

<d (0 < i < n). 

o n + l „ r 

U\\ 
= 2r 

1 = det(A) = 
CQ . . .Cn 

the convex body C contains a non-zero lattice point. D 

Corollary 1.13. Let £ G R. For a// rea/ numbers X > 1 the convex body C C Kn+1 

defined by 

' Kl < X, 
k £ * - a;| < ^ " 1 / n (1 < i < n) 

contains a point (a0, a i , . . . , an) G Z n + 1 tm£/i ao 7̂  0. 
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Proof. Similarly to the proof of Corollary 1.12, we let c = {X, X~l/n,..., X~l/n) and 

/ 1 

£ 

e 

0 

- 1 

0 

0 .. 

0 .. 

- 1 .. 

0 

. 0 

0 

\ 

A = (dij) = 

y £n 0 0 . . . - 1 j 

to get, using Theorem 1.11, a non-zero integer point in C. Clearly \a0\ > 1. Otherwise, 

if a0 = 0, the integers Oj must satisfy |a0£l - at\ = \at\ < X~xln which has the only 

solution ai = 0 for all i. D 

We now translate the question about lattice points in convex bodies into polyno­

mials with small absolute value at a certain point. Notice that Zn and Z[T]<n_i are 

in 1 — 1 correspondance under the isomorphism 

(Xo, • • • , Xn-i) <—>• xn_,Tn + xn-2T
n + ... x0. 

Thus, Corollary 1.12 implies that for any £ G C and any X > 1, there exists a 

non-zero integral polynomial P of degree at most n satisfying 

H(P) < (1 + |£| + • • • + |£|n)X, |P(£)| < X~\ 

The next Proposition, due to Davenport & Schmidt [8], refines Corollary 1.12 in 

the case n = 2 and 0 < £ < 1. 

Proposi t ion 1.14. Let £ G R with 0 < £ < 1. For any sufficiently large real number 

X, there exists a non-zero polynomial P{T) G Z[T]<2 with 

H{P)<X and |P (£) |<-X~ 2 . 
o 

Proof. Let A = Zn . Consider the convex bodies A, B and C defined by 

A := {(x,y,z) G R3||:r| < X, \y\ < X, \z\ < X, |£2x + £y + z\ < \x~2}, 
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B := {(x,y,z) G R3||x| < X, \y\ < X, |£2z+£y| < X~X~\ |£2*+£y+z| < ^X~2}, 

C := {(x,y,z) G R3||x| < X, \y\ < X, \x + y\ < X,\?x + £y + z\ < -X~2}. 

We show that C C B C A for sufficiently large X. Fix {x, y, z) G tf. Then 

\z\<\Z2x + £y\ + \ex + ty + z\ 

<(x-^x-2) + ^x-2 

hence (x, y,z) £ A and B C A. Now let (x', y', z') G C. There are two cases: 

1. x' and y' have the same sign. Then, for X large enough, 

|£V + £y ' |=£V |+£ |y ' | 

<£|x' + y'| 

<£X < X - -X~2. 
-*> - 3 

2. a;' and y' have different signs. We get, for X large enough, that 

|£V + £y' |<max{£V|,£|y|} 

<£X < X - - X - 2 . 
3 

In all cases (x',y',z') G B and thus C c B. Since 

v ( C ) = / / / 
dzdydx 

\x\<X \y\<X | ^ 2 x + ^ + z | < | x _ 2 
|x+2/|<X 

- / I'v 
\x\<X \y\<X 

\x+y\<X 

=3X2 • -X-2 

3 

=8 = 23det(A), 

X dydx 
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we can apply Minkowski's Theorem to find out that the convex body C contains a non­

zero integer point for X large enough. This point is also contained in the convex body 

A, hence for any sufficiently large X > 0, there exists a non-zero integral polynomial 

P{T) of degree at most 2 satisfying 

H(P)<X and | P ( £ ) | < ^ X " 2 . 

• 

1.2.2 Polar bodies 

We now consider another object of importance in the Geometry of Numbers: the 

polar body to a convex body. There exist very interesting relationships between a 

body and its polar body (with respect to volume and successive minima) which are 

examined here. 

Definition 1.15. 

1. Let x, y G R" where x = {xu ..., xn) and y = (yu ..., yn). We define 

x - y :=Xi2/i H rxnyn. 

2. Let C C Rn be a convex body. We define the polar body C* of C to be 

C* :={y G R n | | x - y | < 1 V x G C}. 

Remark 1.16. One can show C** =C. See [7, p. 105]. 

We start with the interplay between volumes. The following theorem is proved in 

[7, Theorem VI, p. 118]. 

Theorem 1.17. Let C,C* c Rn be mutually polar convex bodies. Then 

-^- < v(C)v{c*) < r. 
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The next theorem explores the successive minima of a body and its polar body. 

For a proof, see [7, Theorem VI, p.219]. 

Theorem 1.18 (Mahler). Let C,C* C Rn be mutually polar bodies. Let A 1 ; . . . , An 

and X{,...,Xn be the successive minima of C andC* respectively. Then 

1 < A , A ; + W < n ! ( l < i < n ) . 

We now turn our attention to the calculation of polar bodies. This will be done 

after this quick definition. 

Definition 1.19. We define the sign of a real number a to be 

sgn(a) := < 

- 1 i f a < 0 , 

0 i f a = 0, 

1 if a > 0. 

Proposition 1.20. Let £ G R and X,Y G R>0. Then the convex bodies C,V C Rn 

defined by 

' |z0 | < X, 

l ^ o e - ^ l < ^ _ 1 (1 < z < n - l ) , 

|yn-i£n-1 + --- + yi£ + y 0 | < X - 1 , 

\Vi\<Y (l<i<n-l) 

C:= 

V 

satisfy \V C C* C V. 

Proof. First we note that 

x • y =x0y0 H r- xn_iyn_! 

= Z o ( y 0 + J/l£ + • • • + yn-lC'1) + (Zl - X0()yi + ••• + (xn_t - XoC'^Vn-l-

Thus, for x G C and y G V we get 

|x • y| < X X " 1 + (n - l ) ^ - 1 ^ = n (1.1) 
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which, by definition of the polar body, implies -V C C*. 

Conversely, let y G C* and define 

r = sgn(yn_1£n-1 + --- + y1£ + y0), rx = sgn(yl) ( l < i < n - l ) . 

Since the point 

x = (rX, n l ' " 1 + r X £ , . . . , rn.xY~x + rXf 1 " 1 ) 

belongs to C, we necessarily have |x • y| < 1. However, 

x • y = Xlyn^C-1 + • • • + y0| + Y-\\yi\ + ••• + \yn_J) 

and thus y eT>. Hence, C* C V, as the choice of y G C* is arbitrary. 

We conclude this section with a concrete example. 

Example 1.21. Let 

C = {(xu...,xn) GR"!!^! < 1 V Z } 

be the generalized cube and 

v=\(yu---,yn)eWl\ir\yl\<i 
i=l 

a 

be the generalized octahedron. Then C and T> are polar to each other. 

1.3 Polynomials 

In this section, we study some properties of polynomials. We need to introduce the 

Mahler measure of a polynomial and relate it to the height of polynomials. It will 

then be possible to bound the distance of a real number to the closest root of a given 

polynomial. 
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1.3.1 Gel'fond's Lemma 

Gel'fond's lemma relates the product of the height of given polynomials to the height 

of their product. We present here the general result and prove optimal estimates 

in the case of two polynomials of degree at most 1. Before doing so, we introduce 

Mahler's measure and Jensen's formula for analytic functions. 

Definition 1.22. Let P{T) = a0(T - ai)(T - a 2 ) . . . (T - an) G C[T}. We define the 

Mahler measure of P to be 

M{p).\ |aoiniU™*{l,kl} i^VO, 
y o ifP = o. 

It is clear from the definition that Mahler's measure is multiplicative, i.e., for any 

P,Qe C[T] we have M(PQ) = M(P)M{Q). 

Lemma 1.23 (Jensen's Formula). Let f(x) be a complex function analytic in an 

open neighborhood of the disk D — {x G C| |x| < p}. Let £ i ,£ 2 , . . . £n be the zeros of 

f(x) in the interior of D. Then 

1 r2% .n 

— jQ log \f{pe»)\d6 = log |/(0)| + £ > g | | j . 

This last result is very important since Jensen's formula provides an analytic 

expression for the Mahler's measure. The next lemma fully illustrates this equivalence. 

Lemma 1.24. Let P{T) = a0{T - ai){T - a2)... (T - an) G £[T}. Then 

\a0\ f[max{l, \a{\} = exp ( f log \P{e2l7rt)\dt\ . 

Proof. Let p = 1 and define # = 1 / ^ . Let f(z) = znP(l/z). On one hand, Jensen's 
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Formula gives 

f log|/(e2™e)|d0=log|ao | + £ log 

= log |a 0 |+ Yl l o s H 
| Q i | > l 

= log(|a0 | Yl H ) 
| a , |> l 

n 

= log( | a 0 | f jmax{ l , |ai|}). 

On the other hand, the change of variable 6 «-» —9 gives 

/1 log|/(c2 'w) |(W = - / ' l o g l / C e " 2 ^ ) ! ^ 
70 ^0 

= - / \og\e-2n*i0P{e2i*9)\dO 
Jo 

= f\og\P{e2™e)\de. 
Jo 

Thus, 

/ log \P(e2™9)\dO = log (|ao| J ] m a x { l , H } ) . 

D 

The following theorem is a version of Gel'fond's lemma, proved following Mahler. 

Lemma 1.25. Let P(T),Q(T) G C[T] be polynomials of degree m andn respectively. 

Then 
<}-(m+n) 

-H{P)H{Q) < H{PQ) < (m + 1)H(P)H{Q). (1.2) (m + n + 1)' 

Proof. The upper bound is obvious as it is obtained by simple multiplication of the 

two polynomials and by using the height as an upper bound for the coefficients. 

For the lower bound, we note that for P G C[T] of degree m, the inequality 

2~mH(P) < M{P) < (m + l)H{P) (1.3) 



(1.5) 

18 Preliminaries 

always holds. This must be so since, when P is expanded as P = a0]T™:i(^ — on), 

the number of terms in the coefficient of Tj is (m) < 2m . Moreover, each of these 

terms is bounded above by M(P), giving us the inequality 

H{P) < 2mM(P). (1.4) 

Using Lemma 1.24, 

M{P) =exp ( f log|P(e2 7 r i t)l^) 

< e x p ( J log ((m + 1)H{P))dt\ 

= exp (log ((m + l)H(P)) f dtj 

=(m + l)H(P). 

Together, (1.4) and (1.5) give (1.3). 

Coming back to the lower bound of (1.2), it follows from equation (1.3) that 

2~mH(P) < M(P), 2~nH(Q) < M(Q), M(PQ) <(m + n + l)H(PQ) 

while the multiplicity of M(P) implies 

2-mH(P)2-nH(Q) < M(P)M(Q) = M(PQ) < (m + n + l)H(PQ), 

hence giving the desired lower bound. • 

Notation 1.26. We denote the Golden Ratio by 

v^+l 
7 := . 1 2 

We can now prove the optimal Gel'fond lemma for two polynomials of degree at 

most 1. 
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Lemma 1.27. Let P{T),Q{T) G C[T] be polynomials of degree at most 1. Then 

-H{P)H(Q) < H(PQ) < 2H{P)H{Q). 

Moreover, both lower and upper bounds are optimal. 

Proof. Write P(T) = aT + b and Q{T) = cT + d. Then 

H(PQ) = max{|ac|, \bc + ad\, \bd\}, 

H(P)H{Q) = max{|a|, |6|} • max{|c|, |ri|} = max{|ac|, \ad\, \bc\, \bd\}. 

Starting with the upper bound, we note that 

H{PQ) < max{|ac|, \bc\ + \ad\, \bd\} 

< 2max{|ac|, \ad\, \bc\, \bd\} 

= 2H(P)H(Q), 

giving us the desired result. 

Clearly, if H(P)H(Q) = \ac\ or \bd\ then the lower bound is trivial. So assume, 

without loss of generality, that H(P) = \a\ and H(Q) = \d\ and hence, H(P)H(Q) = 

\ad\. We may also assume that a = d = 1, since dividing a polynomial by a constant 

does not affect the inequality. With the present assumptions, we want to show that 

- < max{|6|,|c|,|6c+ 1|}. 
7 

If |6| > I /7 or \c\ > I /7 , we are done. So, we assume \b\, \c\ < I /7 leading us to the 

equation 

|l + 6c| > l - | 6 c | > 1 - — = -
T 7 

which completes the proof of the lower bound. 

To show that the upper bound is optimal, we use the example P(T) = T + 1 = 

Q(T). For the lower bound, we let P(T) = jT - 1 and Q{T) = T + 7. • 
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Now that we have seen the relation between the height of a polynomial P and 

the height of the polynomials dividing P , it is interesting to look at the height of 

a root a of P. The case deg(P) = 1 is trivial as cH(a) = H(P) where c is the 

gcd of the coefficients of P. In the case deg(P) = d > 2, Lemma 1.25 states that 

H{a) < (d + l)2dH(P). However, the case d = 2 can be refined as is shown in the 

next lemma. 

Lemma 1.28. Let P(T) G Z[T] be of degree 2 and let a be a root of P. Then 

H{a) < H{P). 

Proof. This is clear if deg(a) = 2. Otherwise, for mT — n the minimal polynomial of 

a, we get that m divides the leading coefficient of P and that n divides the constant 

coefficient of P. Thus H(a) = max{|m|, \n\} < H{P). • 

1.3.2 Distance to the closest root of a polynomial 

Having studied the height of polynomials, it is now possible to bound the distance 

between a given real or complex number £ and the closest root of a polynomial to £. 

Our study remains at a basic level. 

Lemma 1.29. Let P(T) G C[T] be a polynomial of degree d. Let £ G C with P'(£) ^ 

0. Then there exists a root a of P satisfying 

l f - a l - " « 

Proof. If P(£) = 0, the result is trivial. So assume that P(£) ^ 0 and write P(T) = 

a0(T — ai)... (T — ad) with the roots ordered so that 

l £ - c * i | < | £ - a 2 | < - - - < | £ - a d | . 

Applying logarithmic differentiation on the polynomial P gives 

1^(01 1 1 d 
H + : r < \p(0\ K-<*ii i£-<*,ii - K-« i i 
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and the lemma follows. • 

Lemma 1.30. Let £ G R with [Q(£) : Q] > 2 and let 0 < e < 1/3. Any P(T) G Z[T] 

of degree 2 with non-zero discriminant satisfying |P(£)| < (e/4)H(P)~1 has a root 

a G C with 

Proof Let P(T) = a(T - a)(T - /?) where |£ - a | < |£ - /3|. Since the discriminant 

of P is a non-zero integer and can be written as 

we get 

and thus 

A = P ' (£ ) 2 -4aP(£ ) , 

l < | P ' ( £ ) | 2 + 4 i / (P ) |P (£ ) |< |P ' (£ ) | 2 + 6 

V T ^ < | P ' ( £ ) | . (1.6) 

Since the discriminant of P can also be written as 

A = a 2 | a - / ? | 2 > 1, 

we get 

U _ R\ > 
\a\ ~ H{P) 

| a - 0 l > r 7 > - E F 7 m - (i.7) 

Using Lemma 1.29 and (1.6) we deduce 

<-7=i=ip(0i 
V l - e 

<5^K)l 

<jH(P)-\ 
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This estimate, combined with (1.7) gives 

| £ - / 3 | > | a - / ? | - | < * - £ | 

> # (p)-1 - jH(py 

>\H{P)-1 

>t-l\t,-a\ 

and therefore 
1 1 

+ |P(OI l£-<*l ' |£-/5| 

\Z-P\. \S-a 
1 

< 
\£-a\ 

(1 + e). 

D 

Lemma 1.31. Let £ G C. / / P(T) G Z[T] is o/ degree d, then for z G C witfi 

12 — £| < 1 we /mue 

\p(z) - p(£)i < i* - Z\H(P) J2 (del +1)' - ier) • 
i = l 

Proof. Write P(T) = adTd + ad_xT
d-1 + • • • + a0. Then 

|P(*) -P(£) | EX*'-?) 
i=0 

<#(p)i* - ei E I2"1 + ^ 2 e+ • • • + z?~2+r'\ 
i=0 

d 

<H(P)\z - £| £ ( ( | £ | + i)»-i + . . . + (|£| + mf-2 + | ^ - i ) 
i=0 

d 
- f f ( P ) | . ?|y-(lfl + D'-ICI' 

=H(p)N-eiE((i«i+ir-i«r)-
i = l 

D 
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Corollary 1.32. Let £ G C and P{T) G Z[T]<2. If z G C with \z - £| < 1 then 

| P ( 2 ) - P ( £ ) | < ( 2 | £ | + 2 ) | 2 - £ | i / ( P ) . 

1.4 Results on determinants and resultants 

Determinants and resultants can be used to decide the linear dependency of polynomi­

als. We can also determine if two polynomials share a root by examining determinants 

and resultants. It is therefore essential to discuss these objects at this stage. 

Definition 1.33. We define the determinant of n polynomials of degree at most n — 1 

to be the determinant of the n x n matrix of their coefficients. 

Definition 1.34. We define the sign of a permutation a on n elements to be 

{ —1 if a is an odd permutation, 

1 if a is an even permutation. 

1.4.1 Working with determinants 

We define here a new object that is similar to the determinant and permanent of a 

matrix, and give some properties of this new object. 

Notation 1.35. Let A = (a^) be an n x n matrix. We define 

[[^]] : = E lflMl) I laM2) I • • • \ana{n) \ 
(7 

where a is taken over all permutations on the n symbols {1, 2 , . . . , n}. 

Clearly, 

det{A)\ = / y ( - l ) ai<7(i)a2o-(2) •• • ano-(n) < [[A]] 

where a is taken over all permutations on the n symbols {1 ,2 , . . . , n}. 

The proof of the following Proposition follows from the definitions. 



24 Preliminaries 

Proposition 1.36. Let A G Mn(R). Then 

1. [[aA]]=an[[A]]foraeR, 

2. [[A]} = 0 implies \\A\\ = 0, 

3. If A has a row/column of zeroes, then [[A]] = 0, 

4- [[•]] is not a norm. 

We now explain a technique for calculating determinants: let £ G C and let 

P(T),Q(T) G Z[T] be polynomials of degree m and n respectively. Write 

P(T) = pmTm + pm^Tm~l + • • • + po, 

Q(T) = qnT
n + q^T"-1 + • • • + q0. 

The absolute value of the resultant of P and Q is a non-negative integer defined by 

Res(P,Q)| = 

Pm Pm—1 

0 

Po 0 

0 Pm Pm-l ••• P o 

Qn qn-i . . . q0 0 . . . 0 

0 0 Qn qn-\ . . . <7o 

(1.8) 

Adding a multiple of a column to another column doesn't change the value of the 

determinant; we do this in a very ingenious manner. Following Brownawell [4], we 

consider two cases which depend on the choice of £: If |£| < 1, we add £m+n~J times 

the j-th column to the last column for 1 < j < m + n - 1 and use the properties of 
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[[•]] t o get 

Res(P,Q)| < 

Pm Pm-l ••• PO 0 

Qn Qn-1 

0 Pm Pm-l 

... qo 0 

e-lP(o 

P(0 (1.9) 

0 . . . 0 qn qn^ . . . Q(£) 

Expanding along the last column, the result is of the form 
n m 

i Res(p, Q)\ < £ i r i\\p(mw} + E I ^ I IQCOIM 
m J = l (1-10) 

<Eip(oi[[^]]+Ei^)i[[5,-]] 
i = i j = i 

where A{ and P^ are minors of order m + n — 1 extracted from the first m + n — 1 

columns of the matrix Res(P, Q). We therefore get a bound on the value of the 

resultant of the polynomials P and Q which takes into account their values at a fixed 

point £ G C. 

Similarly, starting at (1.8), if |£| > 1, we add £~(-?_1) times the j-th. column to the 

first column for 2 < j < m + n to get the inequalities 

rmP(0 Pm-l ... PO 0 . . . 0 

Res(P,Q) |< 
£~m-n+1P(£) ••• 0 Pm p m _ , . . . po 

£" n Q(£) qn_x ... qQ 0 . . . 0 

£-n-m +1Q(£) ••• 0 qn gn_! . . . q0 

m 

< E \cm-i+1\\p(t)\[[Ci]]+E irn-j+1HQ(oira 
i = l 

n 
J'=l 

<Eip^)i[^+Ei^)i[pi]] 
i = i 
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for Ci and Dj minors of order m + n - 1 extracted from the last m + n — l columns 

of the matrix Res(P, Q). We arrive at the same conclusion as above (with different 

minors). 

We can also use this idea for a determinant of n polynomials of degree at most 

n — 1. In proofs to follow, this technique is used without further explanation. 

1.4.2 Upper bounds for determinants and resultants 

Lemma 1.37. Let £ G C and let P(T), Q(T) G €[T] be non-constant polynomials of 

degree m and n respectively. Then, 

\Res(P,Q)\<H(PrH(Qr^J-^ + C 2 ^ ^ 

for some constants cx — Ci(m, n) > 0 and c2 = c2(m, n) > 0. 

Proof. We apply the formula established in the previous section. Assuming that 

|£| < 1, we get from equations (1.9), (1.10) and the properties of [[•]] that 

Res(P,Q)| < 

H{P) H(P) . . . H(P) 0 

0 

< Eip(oi[N]+Eiw)i[[^]] 
i = i J = I 

e~lP(o 

0 . . . 0 H(P) H(P) ... P(£) 

H(Q) H(Q) ... H(Q) 0 . . . £ — ^ ( 0 

0 H(Q) H(Q) . . . Q(£) 

<ciH(P)n-lH(Qr\P(t)\ + c2H{PYH{QT-'\Q{Z)l 

where cx counts the number of non-zero products in the determinant containing |P(£)| 

as a factor, and c2 counts the number of non-zero products in the determinant con­

taining |<2(£)] as a factor. We get the same result in the case |£| > 1. • 
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In fact, we can easily calculate the values for Ci and c2 of the previous lemma 

when m and n are small. 

m 

1 

1 

2 

1 

2 

3 

n 

1 

2 

2 

3 

3 

3 

Cl 

1 

3 

6 

6 

19 

54 

c2 

1 

1 

6 

1 

11 

54 

As the table shows, the coefficients ci and c2 become very large, very quickly. It 

is often difficult to calculate them for large values of m and n. However, we can find 

the trivial upper bound Ci + c2 < (m + n)\. 

Lemma 1.38. Let £ G C and let P(T),Q(T) G Z[T] be non-zero polynomials of 

degree m and n respectively. Let L(T) = gcd(P, Q) be of degree d. Then 

H{L)m+n-2d-l\L{0\ <H{P)n-dH{Q)m-d(kJP^ ' '- ' ^ ! + h 
H(P) <H(Q) 

for some computable, non-zero, positive constants k\ and k2. 

Proof. Let 

Pl(T) = w Ql{T) - w 
L{T)' ^L^' L{T) 

with deg(Pi) — mi = m - d, and deg(Qi) = nx = n - d. From Lemma 1.25, 

H{Pl)<2m{m + l)1^- and H{Q,) < 2n{n + 1)H^ 
H(L) H(L) 

Since Pi and Qi n a v e n 0 common factor, Res(Pi,<5i) is a non-zero integer. Using 
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Lemma 1.37 and the inequalities above, 

l< |Res (P 1 ,Q 1 ) | 

^^(PO^-^^iriPi^i+c^Pir^Qir1-1^!^)! 
711— 1 < c i r ( m + 1 ) |g)"- ,(2 . ( n + 1 )«er , p« ) 

H(L) Hi) 

+C2{^m+1)my (rin^m) 
mi — l 

-tjv-t ; \ 
H(L)J 

Q(0 
m 

Thus the lemma is proved for 

m—d fci =c12m ( 2 n-d-1 )-n d(m + l)n-d-\n + 1) 

k2 =c22
n{2m-d-l)-md{m + l)n-d{n + l)m~d-\ 

D 

Lemma 1.39. Let £ G C and /e* P(T),Q(T) G Z[T]<2 wit/i L(T) = gcd(P, Q) 6e of 

degree at least 1. Then 

H(L)\L(£)\<>y(H{P)\Q{Z)\ + H(Q)\P(£)\). 

Proo/. Since L = gcd(P, Q), we get that P/L, Q/L are polynomials of degree at most 

1 with Res(P/L, Q/L) being a non-zero integer since the two polynomials have no 

common factor. Thus, using Lemma 1.37 

1 < y-y 
*(f V (0 + # 'Q ' 

<7^lMlJ+ 7^)ip(0i 
a (« 

i / (L) |L(£) | 'P/(L) |L(£) | -

(We used c : = c2 = 1 as seen in the table following Lemma 1.37.) • 
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Lemma 1.40. Let £ G C and let Pl{T) G C[T]<n_i for 1 < i < n be non-zero 

polynomials. Then 

| det(P,, P 2 , . . . , Pn)\ < (n - 1)! ( f [ H(PJ) ( ] T ^ ^ ) • 

Proof. Write Pt{T) = p ^ ^ - 1 + phn.2T
n~2 + • • • +p l>0 for 1 < i < n. Then 

|de t (P 1 ,P 2 , . . . ,P n ) 

< 

P l , n - 1 P l , n - 2 

P2,n-1 P2,n-2 

Pn,n — 1 Pn,n—2 

" # ( P i ) H(P1) 

H(P2) H(P2) 

Pi,o 

P2,0 

Pnfi 

• P i ( 0 
• P2(£) 

H(Pn) H(Pn) ... Pn(£) 

=<-i>'(n"<«>)(sW: 

We now examine the case n = 3 in details. 

Lemma 1.41. Let Pu P2, P3 G C[T]<2 and /et £ G C. TTien 

|det(P1,P2,P3)| < E^P^))I^(2)^)HP-(3)(0I 
cr 

wftere a is taken over all permutations of the three symbols {1,2, 3}. 

Proof. Write P^T) = pli2T
2 + pl,{T + pifi for i = 1, 2, 3. Then, 

1 < 

Pl,2 P l , l 

P2,2 P2.1 

P3,2 P3,l 

Pl,0 

P2,0 

P3,0 

a 
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< 

Pl,2 2pi,2^+Pl,l Pl,2£2+Pl,l£+Pl,0 

P2,2 2p2)2£ + p2>i p2,2£2 + P2,l£ + P2,0 

P3,2 2p3,2£ + p3,l P3,2£2 + P3,l£ + P3,0 

' H(P1) P{(£) Px(£) 

H(P2) pm p2(£) 

.^(p3) m) p3(e) 

=E^(^(i))ip^)(oiip;(3)(e)i 

where a is taken over all permutations of the symbols {1, 2, 3}. 

We get, more generally, 

Lemma 1.42. Let PUP2,..., Pn G C[T]<n_i and let £ G C. Then 

| d e t ( P 1 , P 2 , . . . , P n ) | < ^ P ; ( P f f ( 1 ) ) | P a ( 2 ) ( £ ) | | P ; ( 3 ) ( £ ) | . . . | p y ) ( £ ) | 
a 

where o is taken over all permutations of the n symbols {1,2,... ,n}. 

• 



31 

Chapter 2 

Special sequences of real numbers 

and polynomials 

2.1 Construct ion of a polynomial sequence 

Definition 2.1. We say that a function </>: Z[T] —> R>0 is a norm if and only if for 

P G Z[T] and a G Z we have 

1. </»(P) = 0 if and only if P = 0, 

2. 0(aP) = |a|0(P), 

3. 0(P + Q)<0(P) + 0(<2). 

Proposition 2.2. Let <j> : Z[T]<n —>• R>0 6e o norm. Then there exists a strictly 

increasing sequence of nonzero positive integers (Xj)j>i and a sequence of nonzero 

polynomials {Pi{T)).>x C Z[T]<n such that 

l.H(Pi)=Xi (i>l), 

2. (f>(Pi+1) < HPi) (* > i)» 
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3. (f>(Pi) < 4>{P) for all P G Z[T]<n with 0 < H(P) < Xi+l, 

4- Pi and P j + 1 are linearly independent over Q for all i. 

Proof. For each j G Z > 0 define 

Qj := {Q(T) G Z[T]<n | Q ? 0, tf (Q) < j } 

and 

qj := min{0(Q)} > 0. 
Q€Qj 

From these we get two sequences, 

Qi C Q2 C . . . , gi > q2 > .... 

Let Xi = 1 and pick Pi G Qi such that #(Pi) = q\. Inductively, define Xi+i 

to be the smallest integer j G Z> 0 such that ĝ  < (j)(Pi). Pick P i + 1 G Qj such 

that 0(P i+i) = qj. If P G Z[T]<n with if (P) < Xi+1 for some i, then 0(P) > 9i 

by construction of the sequence and thus H(Pi+i) — Xi+1. Moreover, since the 

coefficients of Pt must be relatively prime, we get P{ and Pi+l linearly independent 

over Q. So the two sequences constructed satisfy the four properties listed. • 

Definition 2.3. We define (Pi)*>i C Z[T]<n to be a minimum polynomial sequence 

in degree at most n and (0, (Xi)i>u (Pj)i>i) to be a norm triplet in degree at most n. 

As a general rule, the only polynomial P(T) G Z[T]<n satisfying 

H(P) < Xi+1 and 0(P) < 0(Pi) 

is the zero polynomial. 

It is also clear that given a norm </>, the corresponding polynomial sequence is not, 

a priori, uniquely defined. 

Example 2.4. Here are two important examples of norms <f>. Fix £ G R such that 

[Q(£) : Q] >d. For a polynomial P{T) G Z[T]<d let: 
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1. (f)(P) = (f)({P) = |P(£)|- Since 0 is the absolute value of the real number 

P(£) ^ 0, (f> is a norm. The sequence (Pi)i>i is defined uniquely up to the sign 

of each P{. 

2- <KQ) = MQ) = ™™{\Q(0l\Q'(0l---AQ{d-1)(0\}- Since deg(£) > d and 

deg(Q) < d, we get that <j){Q) = 0 if and only if Q = 0. Moreover, for a G Z, 

4>{aQ) — \a\(p(Q) and 

<j>(P + Q) = max{|P(£) + Q(£) | , . . . , I P ^ O + Qid~l)((){} 

< max{|P(£) | , . . . , \ P ^ m + max{|Q(£)| , . . . , I Q ^ 1 ^ ) ! } 

=0(P) + 0(Q). 

Thus (f) is a norm and the sequence (Qi)i>i is defined uniquely up to sign of 

each Qi for i » 1. To see this, let R,S G Z[T]<d be such that (f)(R) = 4>(S) < 

1/2. We first note that if (p(R) < 1/2 then deg(P) — d. This is clear since 

|P (deg(d) )(£)| > I- So there exists 1 < i < j < d - 1 such that <j>(R) = |P(i)(£)l 

and (f)(S) = |5'^^(£)|} permuting R and S if necessary. Then P^(£) = ±S^(£) 

which implies that i — j and R^ — ±5*^. If i — j — 0, we are done as we 

get R = ±S. Otherwise, we get by integrating the polynomials that R(l~^ = 

±S^-V + a with a G Z. Thus \a\ = |P ( i_1)(£) ± S ( l_1)(OI < 1 and hence 

^>(i-i) _ -i-gC*-1). Recursively we get R = ± 5 and thus the sequence {Qi)i>\ is 

defined uniquely up to sign of each Qi whenever (f>(Qi) < 1/2. 

2.2 General properties 

It is now time to study in detail the polynomial sequence constructed in Proposition 

2.2 using an arbitrary norm <j). The linear dependence or independence of these 

polynomials is carefully examined here. Henceforth, let (</>, (Xi)i>i, (Pj)i>i) be a 

fixed norm triplet in degree at most n. 
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Lemma 2.5. The set {Pi, P^+i} is a basis over Z for the Z-module M = (P;, P J + I ) Q H 

Z[T]. 

Proof. Pick a non-zero polynomial P e (Pi, P ,+ I )Q n Z[T] and write P = wP* + vPi+i 

with u,v G Q. Let u', v' be the closest integers to u and i> respectively. Then 

P' = u'Pi + v'Pi+1 G A4 and 

P _ p ' = (w _ U')P. + (v _ v ' )p . + 1 G ^ 

with |w — u'|, |i; — 1 / | < | . We claim that this implies u' = u and v' = v. On one hand 

H(P - P') =H((u - u')Pi + (v- v')Pi+1) 

<|ti-u'|#(Pi) + |i>-i/|tf(P i+i) 
1 (2-1) 

<2 (# (P i ) + tf(Pi+1)) 

< # ( P m ) . 

On the other hand, 

HP - P') =*((« - u')Pi + (v- v')Pl+1) 

^I t i -uXPO + lv-w'I^Pi+i) 
1 , (2-2) 

< 2 ( ^ ) + 0(P<+i)) 

«t>{Pi). 

By construction of the norm triplet, (2.1) and (2.2) cannot hold at the same time 

unless P - P' = 0, and therefore u' = u and v' = i; as claimed. D 

Lemma 2.6. 7/i/ie polynomials P{_1} Pt and Pi+l are linearly dependent overQ then 

Pi-! ± Pi+l = UP% 

for u G Z. 
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Proof. Using Lemma 2.5 we know that { P ^ x , ^ } and {Pi,P i + i} form bases over Z 

for M = (Pi_i, PAQ n Z[T] = {Pi, Pl+1)Q n Z[T]. Thus 

Pi-i = uPi + vPi+i and Pl+1 = u'Pj_i + i/P» 

for u,v,u ,v G Z. So 

(1 — I'M )Pi_i = (u + vv )Pi 

which necessarily implies that vu — 1 since two consecutive polynomials P;_i and Pi 

are linearly independent. Hence v — ± 1 , and the lemma is proved. • 

Lemma 2.7. Let £ £ C with [Q(£) : Q] > 2. Assume that 

1. l im i^o oX i + 10(P i) = 0, 

& |P(£)| < HP) for all P G Z[T]<2. 

Then Pj-i, Pi and Pi+i are linearly independent for infinitely many i. 

Proof. Assume, on the contrary, that Pi_i, P» and Pi+\ are linearly dependent over Q 

for all i > i0. Then for all i,j>iowe have 

V = ( P l _ 1 , P i ) Q = ( P j _ i , P ; ) Q . 

Let {P, Q} C Z[T]<2 be a basis of V n Z[T]<2. Thus for all i > i0, P{ = aiP + hQ 

with ai, bi G Z and |aj|, \b{\ < cX{ for c = c(P, Q) > 0. Since Pi and Pi+i are linearly 

independent by construction, we get 

a,- bi 
1 < 

< 

a*+i h+i 

1 a* a,P(£) + bzQ(0 

ai+i a t +iP(£) + oi+1Q(£) IQ(0I 

|QiPi+i(0-QH-iPi(01 
IQ(0I 

< 
2c 

\Q(0\ 
Xi+l(j>(Pi)-

As we let i tend to infinity, we obtain a contradiction to our initial hypothesis. D 
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2.3 Study of a specific norm function 

We now elaborate on the second example of norm <j> defined in Example 2.4. For 

Q G Z[T]<2 and £ G C with [Q(£) : Q] > 2, let 0(Q) = max{|Q(£)|, \Q'(Z)\} and fix 

a norm triplet (0, (Xi)i>u (Qi),->i) in degree at most 2. Three main lemmas are seen 

below: one tells us that, under some hypothesis, Q{ does not have multiple roots, 

while the other two give bounds for (f>(Qi)- We denote 

Qi(T)=qi,2'I
a + qi,iT + qifi. 

Lemma 2.8. The polynomial Qi has degree exactly 2 for i > 2. 

Proof. Clearly, only Qi = 1 can have degree 0. So assume deg(Qj) = 1. Then 

Qi{T) = qi,iT + qitQ and 

HQi) = max{\qiA£ + qifi\, \qifi\} < 1 (i > 1). 

Since \qiti\ > 1, this is impossible and hence deg(Qi) = 2 . • 

Lemma 2.9. Let £ G C with [Q(£) : Q] > 2. Assume that 

\imXl/2HQi-i) = 0. 
I—>-oo 

Then Qi has distinct roots for all sufficiently large i. 

Proof. We know from Lemma 2.8 that for i > 2 Qi has degree 2, so assume it has 

only one root of multiplicity 2. Then 

Qi = ±L(T)2 

where L(T) = (mT + n) for m, n G Z with m / 0 . Recall that Lemma 1.27 states 

-H{L)2 < H{Qi) = X%< 2H(L)2. (2.3) 
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Since L(T) = 2 / (0 (T - £) + 2,(0 and |L(£)| = |Q<(0|1/2 < 1 < 1^(01 = H w e 

have 

H(L)=H(L'{Z)(T-Q + L(Q) 

<|Z/(£)|max{l,|£|} + |L(£)| 

<|L'(£)|max{2,l + |£|}, 

and using equation (2.3), 

H(L) 
\L'm > 

max{2,l + |£|} 

> 
X}'2 

v /2max{2,l + |£ |} ' 

Since 

105(01 = 121(0^(01 < W i ) , 

we get the upper bound 

<max{2,l + |£lW2i) 
v^xy2 

«^(Qi) 

2X1/2 

for K — y/2 max{2,1 4-1£|}. Consider the resultant of L and Q-^ , 

IResCL.QUJI^H^IQUCOI + ^ Q i - j m O l 

^x^m-j+KX^^ 

<(il/2 + K)xl/2m-i) 

x}/2 

which is, for i large enough, a real number smaller than 1. Since the resultant of two 

integral polynomials must be an integer we have 

|Res(L,Qj_1) |=0> (2.4) 
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which implies that Q/i_1 (of degree 1) is an integer multiple of L for i large enough. 

On the other hand, the resultant of L and the polynomial 2Qi^ -TQ'^ (of degree 

at most 1) is 

\ReS(L,2Qi.1-TQ,
i_1)\<H(L)\2Qi.1(i)^iQ'i_l(0\ + H(2Qi^-TQ't_1)\L(i)\ 

<y*Xl'\2 + |f | ) « 0 ^ 0 + AHiQ^)1^ 

<(71/2(2 + |£|) + 2K)Xl
1/20(gi_i), 

which is, again, clearly smaller than 1 for i large enough. Hence for large i 

\Res(L,2Ql-1-TQ'l_1)\=0 (2.5) 

and therefore 2Qi_x — TQ\_X is an integer multiple of L. 

Since equation (2.4) implies that L divides Qi_i, and equation (2.5) implies that 

L divides 2Qi-i — TQi_1? we get that L must divide Qi-\. Thus, Qi-\ and QJ_X share 

a common root. Since deg(Q;_i) = 2, we have 

gl_1(T) = ±L(r)2 . 

That is to say Qi and Qi-\ are linearly dependent, which is impossible by con­

struction of the polynomial sequence. Thus, for large i, Qi must have two distinct 

roots. • 

Lemma 2.10. Under the hypotheses of Lemma 2.9, for i large enough 

<W*)>(8 + 2|£|)-1X-1. 

Proof. Lemma 2.9 states that Qi does not have multiple roots for i > iQ. For such an 

i, the resultant of Q\ and 2Q{ - TQ\ is a non-zero integer, so 

l< |Res(2Q i -TQ; ,Q;) | 

<H(2Qi - T Q J ) I Q ; ( 0 I + H{Q\)\2Qm - £Q^(£)| 

<H(Ql)(4\Qm\ + 2\2Qm-^Q,m\) 

<Xi(4 + 2(2+\Z\))HQi) 
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• 

Lemma 2.11. Let £ G C with [Q(£) : Q] > 2. Suppose Qi-i, Qi and Qi+1 are linearly 

independent. Then 

1 < E •yg(i-l)0(Qtr(i))0(Qg(t+l)) 
a 

where a runs through the set of permutations of the three symbols {i — l,i,i + 1}. 

Proof. Lemma 1.41 states that 

1 <|det(Q,_1 ,Q l ,Q l + 1) | 

<EH(^(i-i))l^w(OIIQ;(i+i)(OI 
a 

< E Xa(i-l)4>{Qcr(i))4>{Qa(i+l)) 
a 

where a runs through the set of permutations of the three symbols {i — l,i,i + l}. • 
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Chapter 3 

Approximation to real numbers 

3.1 Introduction 

We now attack one of the main problems of Diophantine Approximation: how well 

can a real number be approximated by algebraic numbers? In particular, we look at 

approximations of real numbers by algebraic numbers of degree at most 2 or 3. We 

discuss this question by following its historical development, starting at the modern 

era of the Diophantine Approximation theory. As with all branches of mathematics, 

the theory is too broad and varied to give a complete account. Our focus is on 

precise theorems which motivate an optimal Gel'fond type criterion in degree 2. The 

standard notation X <C Y is used to mean that X < cY for a constant c > 0. 

3.2 Approximation to a real number by rationals 

3.2.1 Dirichlet 's Theorem 

The modern era of the theory starts with Dirichlet [10] and his famous theorem, 

stated and proved more than 160 years ago. 
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Theorem 3.1 (Dirichlet). Let a,Q G R with Q > 1. Then there exists p,q G Z 

un£/i 1 < q < Q satisfying 

N - P I < £ . 

Proof. Assume Q is an integer. Then the Q + 1 numbers 

0 , l , M , { 2 a } , . . . , { ( Q - l M (3.1) 

are distinct and contained in the interval [0,1]. Dividing the unit interval into Q 

subintervals 

Q-l 

[ Q 
,1 

u u + 1 
) (u = 0,l,...,Q-2), 

[Q Q 

we find that at least two numbers enumerated in (3.1) must lie in the same interval 

of length \/Q (clearly, the pair 0 and 1 is not). Thus, there exists rx,r2,sx,s2 G Z 

with 0 < r2 < r\ < Q such that 

\{rxa- sx) - {r2a- s2)\ < -
Q' 

Denoting p — rx-r2 and q = sx - s2 we have found integers p and q with 1 < q < Q 

satisfying 

I«a-Pl<£, 

proving the theorem whenever Q is an integer. 

If Q is not an integer, we apply the above procedure to [Q] + 1. • 

An obvious corollary is 

Corollary 3.2. Leta eR be an irrational number. Then there exists infinitely many 

rational numbers p/q G Q such that 

a -
P < 
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This result led Liouville [14], in 1844, to state the first theorem of Transcendental 

Analysis: on approximating algebraic numbers by rational numbers. 

Theorem 3.3 (Liouville). Let a G R be algebraic of degree d. Then there exists a 

constant c(a) > 0 such that for all p/q G Q with p/q ^ a and q > 0 we have 

P 
a 

a 

> 
c{a) 

Liouville's Theorem can be used to prove that a given real number is transcen­

dental by showing that it cannot be algebraic of any degree (as the next example 

demonstrates). In this sense, it was the first criterion to decide transcendence. The 

numbers to which this criterion applies are called Liouville numbers. 

Example 3.4. This example is attributed to Liouville: let 

oo 

i = l 

The claim is that £ is transcendental. Define 

p(k) = 2k-J2^^ q(k) = 2kl. 

Thus, 

i = i 

p(k) 

q(k) = J2 2_i! < 2 •2_(fc+1)! = 
i=k+l 

0(rC) fc+! 

If we assume £ is algebraic of degree d for some d G Z>0, then by Liouville's Theorem 

there exists a constant c(£) > 0 such that 

e - p > 
c(£) 

for all rationals p/q. But for k large enough, 

£ -
P(k) 

q(k) 

2 c(£) 
q(k)k+1 qu 

which means that by the same theorem, £ cannot be algebraic of degree d, and hence 

must be transcendental. 
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3.3 Approximation to a real number by quadratic 

irrationals 

3.3.1 Introduction 

In 1961, Wirsing [27] proved the following statement. 

Theorem 3.5 (Wirsing). For any e > 0 and any real £ which is not algebraic of 

degree less than or equal to k, there exists infinitely many real algebraic numbers a of 

degree at most k such that 

| £ -a |<22(a ) - ( f c + 3 ) / 2 + e . 

Wirsing also pondered whether the optimal exponent in the above theorem is k+1, 

not (k + 3)/2. Schmidt conjectured it true. For n = 1, we get Dirichlet's Theorem. 

The case n = 2 was proved by Davenport & Schmidt [8] in 1967. 

Theorem 3.6 (Davenport & Schmidt). Let £ G R with [Q(£) : Q] > 2. Then 

there exists infinitely many rational or real quadratic irrational numbers a such that 

|£ - a\ < CH(a)~z 

where 

c ( Co if | £ | < 1 , 

1 Coe if |£| > 1, 
and C0 > ±f. 

We slightly modify the approach of Davenport and Schmidt to prove this result. 

The fact that this theorem is optimal will be proved in the following chapter. 

Remark 3.7. Suppose 0 < £ < 1. Let a G R with [Q(£) : Q] < 2 be an approximation 

to £ satisfying Theorem 3.6, i.e., 

|£ - a\ < CH(a) - 3 
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Define £' = l /£ and a = I/a. Clearly, 

|£'-a' | = |(£-a)£V|. 

For a given e > 0 we have \a'\ < (1 + e)|£'| provided that H(a) is large enough. Since 

H(a) = H(a') we deduce 

|£' - a'\ < CH(a)-3\Z'd\ < C(l + e)\£\2H(a )~*. 

If C is a constant satisfying the theorem for 0 < £ < 1 then C(l + e)£2 is a constant 

satisfying the theorem for £ > 1. Similarly, if a is an approximation to £ then —a is 

an approximation to — £. Hence it is enough to prove the theorem for 0 < £ < 1. 

3.3.2 Proof of Theorem 3.6 

Proof. Fix £ G R satisfying [Q(£) : Q] > 2 and 0 < £ < 1, and fix C0 > 160/9. We 

prove this theorem by contradiction. Assume 

| £ - a | > C 0 2 f ( a ) - 3 

for all rationals and real quadratic irrationals a of sufficiently large height. 

Preliminary results 

By Proposition 1.14, for all large X there exists a polynomial P G Z[T]<2 satisfying 

H(P)<X and \P(0\<^X~2. 

Therefore, for the norm 0(P) = |P(£)|, the norm triplet (</>, (Xi)i>u {Pi)i>i) in degree 

at most 2 satisfies 

|Pi(OI < lXf+\ ( i » l ) . (3.2) 

Ifdeg(Pi) = 1 we can write Pt{T) = piyiT+pifi. Then the polynomial TP^T) G Z[T]<2 

satisfies H{TPX) = Xi and 

\Pi,it+Pi,o\ > |Pi,i^2+Pi,o^l 
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contradicting the choice of P*. Thus, we have deg(Pj) = 2 for all i. Define c*i to be 

the closest root of Pi to £. By hypothesis, for i large enough 

|£ -Oi l > Coif (cO -3- (3-3) 

The following lemma will help us find a bound for |P/(£)|. 

Lemma 3.8. The discriminant of Pi is non-zero for i sufficiently large. 

Proof. Assume otherwise. Then P{{T) = ±(uT - v)2 = ±L(T)2. Define v/u = at. 

Since 0 < £ < 1, the fact that |P;(£)| = |u£ - v\2 < 1 implies |u| > |v| and H(L) = 

H{ai) = \u\. Then 

|Pi(Ol1/2 

l£-<*i |=J 

\u\ 
/427(P t + 1 ) - 1 

" V 3 \u\ 

[4 H{L)~2 

< W - 7 — i — i — 

- V 3 7 |U | 

^iHia,)-3. 

This contradicts (3.3) for sufficiently large i. • 

Choose 0 < e < 1/3 such that 160/9 < Cx := (1 + e ) " 1 ^ . By (3.2) we 

have |Pi(£)| < (4/S)H{Pi+x)-
2 for all i > i0. This clearly implies that |Pi(£)| < 

(e/4)H(Pi)~l for i > i0. Since the discriminant of P{ is non-zero for i sufficiently 

large, Lemma 1.30 tells us that there exists a root on of Pi satisfying 

Then using (3.3) we get 

\PI{0\ < {-^H(al)*\Pl(0\ < ^ X 3 | P , ( £ ) | (t » 1) (3.4) 
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since H(oti) < H(Pi) (from Lemma 1.28). Moreover, Lemma 2.7 states that we can 

find infinitely many z's such that Pi-X, Pi and Pi+X are linearly independent. For 

these z's, Lemma 1.41 gives 

i < E ^ - i ) l p ^ ) ^ ) l l F ^ + D ^ ) l 

<W-i(OI(^|Pi+i(OI + ^+i|Pi(OI) 

+ |^'(OI(^-i|Pi+i(OI + ^+i|Pi-i(OI) 

+ |i?+1(OI(^-i|Pi(OI + ^|Pi-i(OI) 

<2ATi|JPy+1(0l|JPi-i(0l + 2ATi+1(|/V(0ll^-i(0l + l^-i(OII^(OI) 

<2X l |P/+1(£)||P I_1(£)| + ^XflP^OIXi+ilPi- ifOI by (3.4) 

< 2 X i | ^ + 1 ( 0 l | P i - i ( 0 l + ^ " by (3.2) 

where a runs through the set of permutations on the three symbols {i — l,i,i + 1}. 

Thus 
1 32 

^ I P / + I ( O I I P * - I ( O I > 2 - ^ ; ( 3-5 ) 

whenever Pf_i, Pi and Pi+X are linearly independent. 

Working out a contradiction 

To complete the proof of Theorem 3.6, let m be large and such that Pm_i, P m and 

Pm+X are linearly independent. Define n > m to be the smallest integer for which 

Pn_i, Pn and Pn+X are also linearly independent. For all i with m < i < n, we have 

that Pi_i, Pi and Pi+X are linearly dependent, hence the vector space 

V = \Pm, Pm+l) • • • > Pn-1) Pn/Q 

has dimension 2. Using Lemma 2.5 we know that the sets {Pi_i, P J for m+1 <i <n 

are bases for V 0 Z[T]. Thus we get 

\Pmi P m + l / Z = ( P n - 1 , P n / Z 
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and 

Pm = aPn-X + bPn, Pm+X = cPn_x + dPn 

for a, b, c, d G Z with ad-bc = ±l. Due to the multilinearity of the determinant, 

|det ((T - £)2, Pm , P m + 1 ) | =\ad - bc\\det ((T - £)2, P n_ l 5 Pn)\ 
(3.6) 

= | d e t ( ( T - £ ) 2 , P n _ ! , P n ) | . 

Estimating the determinant on the left hand side of equation (3.6) using relations 

(3.4) and (3.5) gives 

| d e t ( ( r - £ ) 2 , P m , P m + 1 ) | = | P ; + 1 ( £ ) P m ( £ ) - P ; ( £ ) P m + l ( £ ) | 

>ip;+i(0HPm(£)i-ip;(£)iipm+i(£)i 

- G ~ 9^) Xm|Pm-i(£)| " ^ l P - ^ H P ^ ^ ) l 
3 / l _ 32 30 \ 4 

— J xm|pm(OI - WiX
3
mx-2

+2\pm(t)\ 4 \2 9C 

On the other hand, using Lemma 1.41 together with (3.2) and (3.4) we find 

|det((r-o2,Pn-i,P»)|<l^-i(OIIPn(OI + l^(OI|P»-i(OI 

<^|Pn-l(0HPn(0l(*^l+*3 

^Xn2\pm\{xi_x+xi) 

<^n|P„(OI-

Thus, equation (3.6) now reads 

r ) ^ m | P m ( O I < ^ X n \ P n ( 0 \ 

or, since Ci > 160/9, 

8 Ci 

X m | P m (£ ) |<X n | P n (£ ) | 
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for n > m. But this is impossible since it gives us an infinite sequence of n for 

which Xn |Pn(£) | increases, while by (3.2), Xn\Pn(£)\ -»• 0 as n ->• oo. We have a 

contradiction, i.e., for all 22 > 1, there exists a real number a such that H(a) > H 

and 

|£ - a| < C0H(a)-3. 

As H goes to infinity, we have found an infinitude of such a. D 

3.4 Approximation to real numbers by algebraic 

integers 

3.4.1 Introduction 

To continue our study of Diophantine Approximation we change the problem of the 

previous section slightly. Now we want to approximate a real number by algebraic 

integers of degree at most 3. To be precise, we want to prove the following theorem 

(recalling that 7 = (1 + v /5)/2). 

Theorem 3.9 (Davenport & Schmidt). Suppose £ G C is such that [Q(£) : Q] > 2. 

Then there exists infinitely many algebraic integers a with deg(cn) < 3 such that 

0 < | £ - a | < 22(a)-1-7 . 

The problem of approximating a real number £ by algebraic integers of degree 

n + 1 is related to the problem of simultaneous approximations of the n first powers 

of £ by rational numbers with the same denominator. In the case n = 2, we need the 

following intermediate result. 

Theorem 3.10 (Davenport & Schmidt). Suppose £ G C is such that [Q(£) : (Qjj > 

2. Then there are arbitrary large values of X G R such that, for a suitable constant 
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c = c(£), the inequalities 

\x0\ < X, |a;o£ - * i | < cXl~\ |x0£2 - x2\ < cX1^ 

have no non-zero solution (x0,xx,x2) G Z3. 

Roy [17] showed that the exponent 7 — 1 = 1/7 = 0.618... in this statement is 

optimal against the natural conjecture that it should be 1/n in degree n. 

Remark 3.11. It is clear that if (xo,xx,x2) G Z3 is a non-zero solution of the system 

of equations in Theorem 3.10 and X is sufficiently large then x0 / 0. 

In fact, as will be seen below, Theorem 3.10 implies Theorem 3.9. For this reason, 

the dual problem is proved first. We follow the lead of Davenport and Schmidt [9] to 

prove the two theorems. Before going on, we need the following proposition. 

Proposition 3.12. Let £ G C be such that [Q(£) : Q] > 2. The following are 

equivalent: 

1. There exists c > 0 such that, for arbitrary large X, the system 

\xo\ < X, |x0£ -xx\< cXl~\ \xQe - x2\ < cX1-* 

has a solution (xo,xx,x2) G Z3 with XQ 7̂  0. 

2. There exists c' > 0 such that, for arbitrary large X, the conditions 

H(Q) < X, |Q(£)| < c'Xl~\ 1(^(01 < c'X1"7 

are satisfied by a non-zero integral polynomial Q(T) = q2T
2 + 2qxT+qQ of deqree 

exactly 2. 

Proof. Assume (x0, xx,x2) G Z3 with x0 =£ 0 is a non-zero solution to 

\x0\<X, \xo£-xx\ <cXl~\ \xo? ~ x2\ < cXl~i. 
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Then defining Q(T) = x0T
2 - 2xxT + x2, for X sufficiently large we get 

H{Q) =max{x0,x1,x2} < maxjA^cX1 - 7 + £X, cX1'1 + £2X} <X 

\Q(0\ =|2£(x0£ - xx) - (xoe - x2)\ < dXl~\ 

| Q / ( £ ) | = | 2 x 0 £ - 2 x 1 | = < c ' X 1 - 7 

for d — max{(2|£| + l)c, 2c}. Conversely, assume there exists a non-zero integral 

polynomial Q{T) — x0T
2 — 2xxT + x2 with x0 ^ 0 satisfying 

H(Q) < X, |Q(£)| < c'X'-\ |Q'(£)| < dXl-\ 

Then clearly 

\xo\<X, \xoZ-xx\<
d-X1-^ 

and 

\xoe - x2\ < |Q(0 | + 2|£||x0£ - xx\ < (1 + KDc'X1-7. 

Thus, for c = (1 + |£|)c' we have that the triplet (x0,xx,x2) G Z3 with xQ / 0 satisfies 

\xQ\ < X, |x0£ - xi | < cXl~\ \xoi2 - x2\ < cXl~\ 

D 

3.4.2 Proof of Theorem 3.10 

Proof. We prove the theorem by contradiction. Fix £ G C with [Q(£) : Q] > 2. 

Using Proposition 3.12 we transfer the problem at hand to the equivalent problem of 

polynomials. Fix c > 0. Suppose, for all sufficiently large real number X, there exists 

an integral polynomial Q G Z[T]<2 with 

H(Q)<X and <f,(Q) = max{|Q(£)|, |Q'(£)|} < cXl~\ (3.7) 

Fix a norm triplet ((f), (Xi)i>x, (Pi)i>i) in degree at most 2. Then (3.7) implies 

|<&(0I < c^Vi7, \Q'm\ < cX]~l (3.8) 
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Since 

lim X]l2HQi) < lim cXl/2Xl~7 = 0 
i—»oo i—>-oo 

we can use Lemma 2.10 which tells us 

(8 + m)-lX^<(f)(Ql)<cXl^ (3.9) 

for sufficiently large i. Consider such a large i for which Qi-X, Qi and Qi+X are linearly 

independent. (There exists infinitely many such i by Lemma 2.7.) Then Lemma 1.41 

gives us the inequality 

i < E^(^-i))i^(o(on%(i+i)(oi < E C 2 X ^ - D X ^ ) 7
+ I ^ S I H I (3-10) 

for a running through the set of permutations on the three symbols {i — 1, i, i + 1}. 

Estimating (3.10) using crude upper bounds gives 1 < 6c2X2^Xl~y, which can also 

be written as 

xr1 < zc2x2;?. (3.ii) 

Together, (3.9) and (3.11) give us 

Xtl? < (Gc'y-'X^-V < (6c2)7-1(c(8 + 2|£|))2-7X2-7 (3.12) 

for infinitely many i. Since (1 - 7)2 = 2 - 7, (3.12) implies that 

l<(6c2)7-1(c(8 + 2|£|))2-7 

which is impossible for c sufficiently small. • 

3.4.3 Proof of Theorem 3.9 

To prove Theorem 3.9 we need the following lemma. 



3.4 Approximation to real numbers by algebraic integers 53 

Lemma 3.13. Let £ G R, AG R>0 and n G Z>2. Suppose, for some c > 0, there 

exists arbitrarily large values of X such that the convex body 

\x0\ <X, 

\x0? - x{\ < cX~x ( l < i < n - l ) 

contains no non-zero point x = (x0,... , x„_i) £ Zn . Then there are infinitely many 

algebraic integers a of degree at most n such that 

0 < |£ - a| <C 22(a) - 1 - 1 / \ 

Proof. Assume, without loss of generality, that c < 1 and define Y — c~1Xx. Let 

A = Zn be the integer-point lattice of Rn. Let X > 1 be large enough so that the 

convex body C above contains no non-zero point (x0, • • •, xn-X) G Zn . By definition, 

the first minimum of C satisfies XX(C) > 1. Using Proposition 1.20, we get that the 

convex body V defined by 

f |xn_1£"-1 + --- + x1£ + a;o| < X~\ 

[ \xi\<Y (1 < 2 < n - l ) 

satisfies (l/n)C* C V C C*. Using Mahler's Theorem (Theorem 1.18), Xn{C*) < n\ 

and in particular, there exist n linearly independent integer points in the convex body 

Xn(C*)nV. This means that it is possible to find n linearly independent polynomials 

{Pi, P2,. - •, Pn} € Z[T]<n_i satisfying 

\Pi{$\ < nnlX-1 

and having coefficients of absolute value at most Y, except maybe for the constant 

one. Thus, these polynomials must also satisfy 

H(Pi) < nn!(l + |£| + • • • + l e l " - 1 )^ 

|P/(£)| < nn!(l + 2|£| + • • • + (n - l ) |0B" 2)y. 
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Define the polynomial 

Q(T) = (T - 0" + n2n!(2 + 2|£| + • • • + (n - lNO"" 1 ) ^ " 0-

Then Q is monic of degree n and Q(£) = 0. Thus, there must exist constants 

{6X,02, . . . A } c R such that Q{T) =Tn + 0XPX{T) + • • • + OnPn(T). Define 

P(T) = T" + [0i]Pi(T) + • • • + [9n]Pn(T). 

By construction 

H(P)<H(Q) + J2H(Pl)<t:Y, 
i = i 

n 

|P(£)l<El^)l^w2n!X_1 ' 
i = l 

|P ,(0l>IQ'(0l-El^)l = n2w!y-
i = l 

Let { a i , . . . , an] the roots of P(T). So 

H{at) < 22(P) < y (1 < i < n) 

and Lemma 1.29 tells us that 
min { | £ - a j } < n ^ & i 

{i=i,..,n>m llJ ~ |P'(£)| 

• ^ ( r x ) - 1 

«22(aO~1-1/A. 

By varying X we get infinitely many a satisfying the above relation. • 

We are now ready to prove Theorem 3.9. 

Proof of Theorem 3.9. Let £ G C such that [Q(£) : Q] > 2. Theorem 3.10 then states 

that there exists arbitrary large values of X G R such that for a suitable constant 

c > 0 the inequalities 

\x0\<X, \xo£-xx\ <cXl~\ \XQ?-X2\ <cX1-'y 
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have no non-zero solution (x0,xx,x2) G Z3. Then using Lemma 3.13, we know that 

there exists infinitely many algebraic integers a of degree at most 3 satisfying 

0 < | £ - a | < 22(a)"7-1 , 

hence proving Theorem 3.9 • 

3.5 A Gel'fond type criterion in degree 2 

3.5.1 Introduct ion 

In this section, we develop another criterion to decide if a given complex number 

£ is algebraic of degree at most two. This time, we do not compare £ to algebraic 

numbers, but rather study the value of polynomials of degree at most 2 at the point 

£. The work below is part of a joint paper with Roy [2]. The theorem we wish to 

prove is 

Theorem 3.14. Let £ G C Assume that for any sufficiently large X G Z>o there 

exists a nonzero polynomial P{T) G Z[T]<2 such that 

H{P)<X and |P(£)| < \x~^. 

Then [Q(0 : Q] < 2. 

3.5.2 Proof of Theorem 3.14 

Proof. Assume [Q(£) : Q] > 2. Fix c > 0 and assume that, for any sufficiently large 

number X, there exists a non-zero polynomial P G Z[T]<2 satisfying 

H{P)<X and |P (£) |<cX~ 7 2 . (3.13) 
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Define the norm <f>(P) = |P(£)| for P G Z[T] and fix a norm triplet ((f), (Xi)i>x, (Pj)i>i) 

in degree at most 2. Thus, (3.13) necessarily means that 

\m)\ < cx-+\2 < cxr2 ( t»i) . 

Let ci > c. Since Lemma 2.7 states that Pi-X,Pi and P i+i are linearly independent 

over Q for infinitely many i, for such large i Lemma 1.40 now states 

V y^i-i y^i y*-i+i / 

<4Xl_xXl+x\Pl(0\ + 2XlXl+x\Pl_m\ 

<4cX^xX-+\ + 2cXpXl+x 

<4cXJ-
1/7 + 2cX~1Xl+x 

meaning that 

^ < 2CXT. 

Thus, for large i we get the estimate 

X] < 2cxXl+x. (3.14) 

We need another inequality relating Xi and Xi+X. Assume P» and Pi+X have a 

common root z G C This root necessarily must be in Q since P G Z[T]<2 and we 

denote it by m/n. Then 

Pi(T) = L(T)Q(T), Pl+X(T) = L(T)R(T) 

where L(T) = gcd(P I,PJ+1) = {nT - m) and n < 22(L) < H(Pi) = Xi by Lemma 

1.28. But Lemma 1.39 then tells us that 

K -m| - ML) {XiX'« + x-+lX^ - ym" 
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which is smaller than 1 for i sufficiently large. In particular, we have |£ - m/n\ < 1. 

We can now use Corollary 1.32 to estimate the integer n2Pi_x{m/n): 

) <n22(L)(|P2_1(£)| + |P ;_ 1 ( m 

n n P,_i ( ^ ) | <n22(L)(|P l_i(£)| + | P i - ! ( ^ ) - Pi-i(Ol) 

<nH(L) (cXr2 + (2|£| + 2) | ^ - £| 22(P,_i)) 

- 7 

^cX]-1 + n22(L)(2|£| + 2) 27c^7 i 
^ ( P i - i ) nH{L) 

<cA- 7 + 27c(2|£| + 2)X-+
7Xl_1 

<( C +2 7 c(2 |£ | + 2))A:i
1-7 

which is again smaller than 1 for i large enough. Thus, m/n must be a root of Pi-X. 

That is to say P;_i, Pi and P*+i are linearly dependent, contradicting the hypothesis 

on the choice of i. Thus, two consecutive polynomials of sufficiently large index have 

no common root in Q. For large i the resultant of Pi and P^+i is therefore a non-zero 

integer, and using Lemma 1.37 we have 

1 < |Res(Pi,P i+i) | 

< ex.x^cx.x-^ + cX~+\) 

< 6 0 X ^ 7 ( 1 + 0(1)). 

We now have a second estimate 

i < e d X ^ ; 1 / 7 (3.15) 

for i large enough. 

To conclude, we combine (3.14) and (3.15) to get 

1 < 6 C I X 1 X 7 / 7 < 6 C I ( 2 C I ) 1 / 7 

and therefore cx > (6-21/7)"1/7. In particular, this means that if c = \ < (6-21/7)"1/7 

then [Q(0 : Q] < 2. D 
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Chapter 4 

Optimality of the exponents 

4.1 Introduction 

This chapter is devoted to another important question of Diophantine Approximation: 

how sharp are our estimates? This is a legitimate question since mathematicians 

always search for more precise results. Can we get better criteria? The answer is 

no for Theorem 3.6 and Theorem 3.14 with respect to the approximation exponents. 

The optimality of these criteria is shown in this chapter. 

4.2 Approximation to a real number by quadratic 

irrationals 

We start our study by showing that the exponent of approximation in Theorem 3.6 

is the best possible exponent. The following theorem does so. 

Theorem 4.1. Let e > 0. Then there exists a real transcendental number £ such 

that, for all algebraic numbers a with deg(ct) < 2, we have 

| £ - a | >H(a)-3~. 
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Proof. Let 

Vx = {P e Z[T]<2\H(P) =X and P is irreducible}. 

Since the number of polynomials of height X is the difference in the number of 

polynomials of height at most X and the number of polynomials of height at most 

X — 1 we get, 

| Vx |= (2X + l ) 3 - (2X - l ) 3 = 24X2 + 2. 

Let B(a, r) be the open ball of radius r > 0 around a G C and let \x be the Lebesgue 

measure on R. We will calculate 

M U U U (P(a,X-3-)nR)], 
\x=i Pevx P(Q)=O / 

which is the measure of the set of real numbers within radius X~3~e about an algebraic 

number of degree at most 2 and height at most X. We recall that for countably many 

sets 4 4 - c R w e have fi(Ax U A 2 U . . . ) < £ , ~ i (i(Ai). Then 

( oo 

U U U (PK*-3-£)nR) 
x=i pevx P(Q)=O 

oo / 

< E H U U (B(a,x-^)nm) 
X=l \P£VX P(a)=0 

< Y^2i24^X2 + 2) (2X~3~e) 
x=i 

oo 

«Er"r 
X=l 

< oo. 

Thus, there exists £ G R \ Q which is more than X~3~e away from all algebraic 

numbers a. This proves the theorem. Q 
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4.3 A Gel'fond type criterion in degree 2 

We now show the optimality of the approximation exponent in Theorem 3.14. This is 

done by constructing a real number £ which is transcendental and satisfies the main 

hypothesis of Theorem 3.14 provided that the constant 1/4 is replaced by a slightly 

larger number (in this case 1.27.) Thus, the theorem is an optimal criterion to decide 

whether a number is algebraic of degree at most 2, up to the value of the constant. 

Theorem 4.2. There exists a real transcendental number £ such that for all suf­

ficiently large real number X > 0 there exists a non-zero polynomial P G Z[T]<2 

satisfying 

H{P) < X and |P(£)| < 1.27X-72. 

4.3.1 Introduction to continued fractions 

For a more detailed exposition of continued fractions see [21, Chapter 1]. 

Let £ G R \ Q. Then £ can be written as £ = i0 + r0 where i0 = [£] is the integer 

part of £ and r0 = {£} is its fractional part. Since l / r0 > 1, applying the same 

procedure gives 
1 

£ = *o + i\ +rx 

where ix = [l/r0] and rx = { l / r 0 } . Following this pattern, we get formally 

1 
£ = z0 + . (4.1) 

1 
l̂ + — -

i2 + ... 

Expression (4.1) is called the continued fraction expansion o/£ and is denoted by 

£ = [»0»*1»*2,- • •]• 
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Definition 4.3. We define the j-th convergent o/£ to be 

Pj = [io,ii,...,ij] =io + 
Qj i 

k + 
1 

h -

Convergents hold very important information as the next lemma shows. For a 

proof, see [21, Lemma 4A, p.11] and [21, Lemma 4D, p.14]. 

Lemma 4.4. Let £ G R \ Q and let Pi/qi be the i-th convergent of £. Then the 

sequences (pi)i>x and (qi)i>x are strictly increasing and for n > 0 

1 c_Pn 
< ~2 

Qn 

Moreover, 

» < £ » < . . . < { < . . . < 5 > < a . 
Qo Q2 03 Qi 

In particular, Lemma 4.4 shows that 

lim « = (. 
I - K » qi 

Lemma 4.5. Let £ G R \ Q with 0 < £ < 1 and let £ = [0, ai, a2,... ] be its continued 

fraction expansion. Denote the j-th convergent o/£ bypj/qj. Then 

Qj Qj-i \ _ ( ax 1 \ I a2 1 \ ( a, 1 

PJ Pj-i J \ i o y ^ i o / ' y i o 

Proof. This follows by induction based on the recurrence relations 

Pi = OiPi_x + pi_2 and q{ - a^j_i + q{_2 

for i > 2. • 

For the proof of the next lemma, see [21, Lemma 3B, p.9]. 
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Lemma 4.6. Let £ G R \ Q with 0 < £ < 1. Let £ = [0, ax, a2 , . . . ] be its continued 

fraction expansion and letpk/qk be the k-th convergent o/£. Then 

c _ Pkt + Pk-l 

qkt + qk-X 

fort = [ak+x,ak+2,...]. 

4.3.2 A particular type of continued fractions 

The next sections are based on and are a continuation for Roy [17], [18] and [19]. 

Let E = {a, b} with a ^ b and let E* be the monoid of the words on E with word 

concatenation as product. We define the Fibonacci sequence in E* as the sequence 

{wi)i>o of words defined by 

w0 = b, wx = a, wt = wl^xwl-2 (i > 2). 

Since u;t-_i is the prefix of w{, the sequence (u^)i>o converges to an infinite word 

w = wxw2 • • • — abaaba... 

called the Fibonacci word on the alphabet {a,b}. Using this word, we define the 

Fibonacci number on two positive distinct integers {a, 6} as 

£a,6 = [0, w] = [0, a, b, a, a, b, a,...}. 

The real number £a>b constructed in this manner is a type of Sturmian continued 

fraction, which were proved to be transcendental by Allouche, Davison, Queffelec and 

Zamboni [1]. The following property of the Fibonacci word is due to J. Berstel. 

Lemma 4.7. For i > 1, the word mi formed by taking the word wi+2 and deleting 

the last two letters is a palindrome. Moreover, if we define 

ab i even 

ba i odd 
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then 

m0 — 0, mx — a, m2 = aba, mi = m;_iSj_imi_2 (i > 3). 

Proof. By recursion on i, it is clear that tUj = u>;_iu>i_2 finishes with Sj for i > 2. It 

is also clear that m^ is a palindrome for i = 1, 2,3. Now assume mj is a palindrome 

for j = 1 , . . . , i — 1 where i > 4. By definition, 

mj = mi_iSi_imj_2 = raj_2Sj_2raj_3Si_imi_2 

which is a palindrome since Sj_i and s;_2 are opposites. • 

4.3.3 Study of the Fibonacci continued fraction 

We now study the properties of the number £Q)b constructed above. For the remainder 

of this section, fix a, b G Z> 0 , let £ = £a>fc and put 6 = 1 + ab + (a + o)£ + £2. Defining 

' • { ' > ) • B ^ ( -
there exists a unique homomorphism of monoids $ : E* —> GL2(Z) such that 

$(a) = A, $(&) = B. 

We use this to simplify the proofs. 

Lemma 4.8. There exists a sequence of points (x;)j>i = ((XJI0, 3^1,2^2)). C Z3 

such that 

1. Xii2/xi^x and XitX/xitQ are consecutive convergents o/£. 

2. 0 < xit2 < xijX < xifi (i > 1), 

3. (Xi)i>x = (xito)i>x is an increasing sequence of positive integers, 
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4. det(xi) = xlfixlt2 - x\x = ±1 (i> 1), 

Proof. Let m; = [a, b, a,..., c], where c = a or b, be as in Lemma 4.7. Define 

Xi 0 3?i 1 1 
,,u l , i = <$>(ml) = ABA...C. 

Xi,X Xi<2 J 

Then Lemma 4.5 tells us xij2/xhX and xljX/xh0 are consecutive convergents of £. From 

Lemma 4.4, we know that the sequences of numerators and denominators of conver­

gents are increasing and thus we get 0 < Xit2 < X{tX < rr̂ o- Moreover, since x^o is the 

numerator of a convergent, Lemma 4.4 implies that (xi$)i>\ is an increasing sequence. 

To conclude, det(A) = det(P) = - 1 and det(xt) = det(APA . . . C) = ± 1 . • 

Theorem 4.9. Fix e > 0. Let ((xlfi,xitX,xia))i>1 C Z3 and (Xi)i>x be the sequences 

defined in Lemma 4-8. Then for i > io(e) 

1. maxJ=1)2{|o;i)o£; - xid\} < (£ + | + e)X~\ 

2. 0 - e < Y
 x

y < 0 + e, 

3. (0 - e)1/7A7_1 < Xt < (0 + e)1/7X7_x, 

4. |det(xi,Xi+i,Xj+2)| = \b-a\. 

Proof. 1.) By construction of the sequence ({xifi,Xiti,xii2))i>l we have that xii2/xitX 

and xi;X/xito are consecutive convergents of £. Thus, using Lemma 4.4, 

K o £ - ^ , i | < — , | ^ , i £ - x i i 2 | < 
2^,0 2-1,1 

Doing arithmetic on the previous two equations gives, for sufficiently large i, that 

max{\xlfie ~xhJ\} < m a x l - ! - , - ^ - + - M < (£ + i +e)Xf 1 . 
J = l,2 L ^ o X^o ^i.l J S 

2.) Under the correspondance (for i > 3) 

Mj = $(m;) = $(mi_iSi_imi_2) = Mi_iSi_iAfi_2 
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we get 

^i-2,0 

and thus 

Xi — Xifi — (xi-ito,Xi-iti)Si-i 
Xi-2,1 

Xi Xi-2,1 , ,xi-l,l , xi-XX Xi-2,1 
= 1 4- ab + a + b + Xi-iXi-2 Xi-2,0 ^i—1,0 ^i -1 ,0 Xi-2fi 

for i even and where a and b are permuted for i odd. As 

,. Xi-2,1 ,. ^ i -1 ,1 >. 
lim = lim = £ 
i->oo Xi-2,o i^o° Xi-X,o 

we have 

0 = lim Xl 

i-+oo Xi-iXi^2 

Choose 0 < n < e such that 

9 + 77 < ( e + iV / 7 \ (e-€-Y"< Q~r] 

(0-^)1/7 v 2/ ' v 2/ (e + v)1/^ 
Clearly, for i large enough, say i > ix, we have 

e - q < * ' < 0 + 77-
^ i - l A t - 2 

3.) Define 
X. 

Then 

ql:=^~ ( i > 2 ) . 

* -*f-Y7 ( i>3) 
Aj_iX;_2 

so that using the result found in 2), for i > i l5 we have (0—n)q^}x < q{ < (0+77)g~Y7 

which, for i > ii + 1, implies 

( 6 - i y ) 1/7« (© + 77) 1 /72 

By the choice of rj, 

(e-fr^<,<(e + i)'^. h2 

- 2 • 
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But for all i > ix we can write i = i2 + 2j where 

{ ii if i — ii = 0 mod 2, 

zi + 1 if i - ii = 1 mod 2, 
and we get, by recursion on i > ix, the formula 

(e - ^yy-^^r < *.•* < (e+|)*+*+--+*«r-
Since 

oo 

lim ^ = lim g ^ r = 1 and V ( l / 7
2 ) n = 1/7, 

j — > 0 0 ' J/—>-OG ' * ' 
1 = 1 

we deduce 

( e _ e ) i / 7 < g i < ( e + €) i /7 

for all sufficiently large i. 

4.) Since mi is a palindrome, we have for i > 3, under the homomorphism $, that 

Mx = Ml_i5l_iA/fl_2 =M i_25 i_2M i_i 

=Ml-2Sl-2Ml-2Sl-2Ml-3 (4.2) 

=(M l_25 t_2)2M l_3. 

The Cayley-Hamilton Theorem states for A G M2(C) that 

A2 = tr{A)A - det{A)I 

and thus, (4.2) gives the relation 

Mx =tr(M l_25 l_2)M l_25 l_2M l_3 - det(MI_25 l_2)M l_3 

= tr{Mi-2St-2)Ml-i±Ml-3. 

In particular, 

Xi = CiXt_i ± Xi_3 (4.3) 
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for Ci G Z. Using (4.3) and the multilinearity of the determinant, we see that 

det(x;_2,Xt_i,Xt) = ±det(xj_3,Xi_2,Xj_i). Using this recurrence relation we get 

det(xi_2,Xi_i,Xi) = ±det(xo,xi ,x 2 ) . 

Clearly, 

M0 = 

and thus 

1 0 

0 1 
M i 

a 1 

1 0 
M2 = 

bar + 2a ab+1 

ab + 1 b 

|det(xi ,Xi+i ,Xi+ 2) | = 

1 0 1 

a 1 0 

ba2 + 2a ab+1 b 

= \b-a\. 

Proposition 4.10. Let the sequences ((xi,o,Xi,i,Xi,2)) ^ C Z3 and (Aj)j>i be as 

Lemma 4-8. For k > 1, define 

D 

in 

Qk(T) = 

1 T T2 

Xk,0 Xk,i Xk,2 

^fc+1,0 ^ f c + i j Xk+X,2 

Then 

1. \Qm\ = \b-a\X^2 + 0(^), 

2. H(Qk) = ckXff- + 0(^), 

where 

ck 

c(a) = m a x { | ^ | , |l - ^ | , |£||l - &±&|} if k is odd, 

c(b) = max {|*±*|, |1 - 2-^\, |£||1 - ®±&\) if k is even. 
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Proof. By Lemma 4.7 we know 

{ mk+ibamk — mkabmk-i if k is even, 

mk+iabmk = mkbamk-i if k is odd, 

since mk+2 is a palindrome. Without loss of generality, assume k is even. Then 

£ = [0, a, b, a, a, b, a,... ] = [0, mk+2,... ] = [0, mk, t] 

where t = [a ,b,m k + i , . . . ] . Using Lemma 4.4, 

1 
t =a + b+ [0,mk+l,...] 

1 

o + £ + 0(X-+
2

1)-

It is now possible to use Lemma 4.6 and get 

t ^xk,it + xk,2 

Xkfit + Xk,i 

such that 
2 

xk,oXk,2 — xkl 
xk,oK - xk,i = -, j r 

itHfl+»+«+o(^1)j+sw 

det(xfc) 

X f c ( a + ^ + £ + 0(Xfc-
2)j (4-4) 

6 + e ( l + 0(Xfc-
2))det(xfc) 

0 * * 
a + £ 
0Xfc 

Clearly, if k is odd, we have 

det(xfc) + 0(Xfc-
3). 

a + £ _,_.,-. X , • V V - S N 
^,o£ - a;*,i = Q Y " de t(Xfc) + °(Xfc ) 
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which corresponds to (4.4) under the change a ++ 0. Since 

xk,o(xk,2 - 2 z M £ + xk,o£2) = det(xfc) + (xk>1 - xk,o£)2 = det(xfc) + Q(Xk
2), 

we have 

9 r c , r , 2 _ d e t ( x f c ) ^ ^ _ 3 , 
X i 

+ 0(X;3). 

The height of Qk{T) is 

H{Qk) = max 
£jfc,0 £fc,l 

Xk+1,0 xk+l,l 

Xkfi xk,2 

Zfc+l.O Xh+i,2 

Xk,l xk,2 

xk+l,l ^fc+1,2 

Since det(xfc) = ±1 and l^+i.il — l£|Xfc+i + 0(Xk+x) we estimate the above deter­

minants and get 

xk,Q xk,i 

Xk+lfl Xjfc+1,1 

^A:,0 Xk,i — Xk,o^ 

Xk+lfl Xfc+1,1 — £fc+l,o£ 

= \xkfi(xk+iti - a;fc+il0£) - z*+i,o(zjfc,i - xkfi£)\ 

= |zfc+i,o(zjfc,i -a;jt,oO| + ° \Y^~) 

^xf\b-¥\+0{^) if A; is even, 

Xk+i|a+( 
Xk 

Xk,Q Xk,2 

^Jfe+1,0 xk+x,2 

Xk,0 Xk,2 — Xfcio£ 

Xk+1,0 Zjfc+1,2 — £fc+l,o£ 

= \xk,o{xk+i,2
 _ ^fc+i,o£2) - xk+i,o{xk,2 - Xk,o£2)\ 

= \xk+ifi(xk,2 - £fc,o£2) \+0 I j ^ - J 

= \xk+i,0((xk,oZ2 - 2a;M£ + xk,2) - 2£(:rM£ - xktl)) \+o( 

^ | l - ^ | + 0 ( ^ ) if Ac is even, Xk 

xk 

xk 

Xk 

Xi fc+i. 
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Xk,l xk,2 

Ĵfc+l.l xk+i>2 

xk,i xk,2 - xjtii£ 

Zfc+1,1 Ĵfc+1,2 — £*;+l,l£ 

= \xk,i(xk+it2 - a;jfc+i,i£) - xk+i,i(xk,2 - xkti£)\ 

= \xk+i,i(xk,2-xkji0\+O f Y^j 

= | ^ + i , i ((£(^fc,o£ - xk,i) - (xkfii
2 - 2 £ x M + xk,2)) | + O I 

xk gb+o 
xk 

xk 

f l ? l l ^ 

xk 
0 

- l | | + 0 

- l l l + O 

( YJS^\ if k is even, 

\Xk+i) 
if k is odd. 

Thus 

H(Qk)=ck^+o(-^ 
y^k v^-fc+i 

where ck is as in the statement of the proposition. 

Write 

Zfc+2,o(l,£,£2) =X f c + 2 + Z 

where 

z = (0,xfc+2,o£ - £fc+2,i,a;fc+2,o£2 - xk+2,2). 

Using the multilinearity of the determinant, we have 

\xk+2,oQm\ = |det(x f c+2 ,Xfc,x f c+i)+det(z,x f c ,x f c + i) | . 

But using the estimates of Theorem 4.9, 

0 Xfc+2,o£ - Zfc+2,1 Zfc+2,o£2 - xk+2>2 

xkfi xk,0( - xk,i xfc,0£
2 - xk,2 

Zfc+1,0 Xk+lfl£ - Xfc+1,1 ^fc+i,o£ - xk+i,2 

<^xkl2(xk+lx;1 + xkxklx) 

det(z,x f c ,x f c + i) < 

X, fc+i 

Xfc-l 

xfc+2 

X, k+1 
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Again using Theorem 4.9, we find 

1 / I' X \ \ 
\Qk(K)\ =i 1 |det(xfc+2,xfc,x /fc+i)| + 0 Ffc+2,o| V \A< 

\b-a\+0fXk-i 
k+2. 

xk+2 \Xk+2J 

D 

Using the same notation as in Proposition 4.10, we can prove the following corol­

lary which brings us one step closer to our goal. 

Corollary 4.11. Fix K with K > \b — a|0max{c(a)7 ,c(6)7 }. Then, for any suffi­

ciently large positive real number X, there exists an index k such that the polynomial 

Qk{T) satisfies 

H(Qk)<X, |Q f c (£) |<«A- 7 2 . 

Proof. For X sufficiently large, there exists a k such that 

H(Qk) <X< H(Qk+1). 

For this choice of A;, we get the inequality 

X<ck+i^(l+o(l)) (4.5) 

and clearly, for X —> oo, we must have k —> oo. Since Theorem 4.9 states that 

X% 

Xi-iXi-2 

we get 

= 0 ( l + o(l)) 

ext_2 = -^ - ( i + 0(i)). 

Hence, equation (4.5) is equivalent to 

X 

Cfc+l© 
-<Xk(l+o(l)). 
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Using the estimates of Theorem 4.9 and Proposition 4.10, we have 

^ ( 0 1 = 1 6 - ^ ^ ( 1 + 0(1)) 

<\b-a\e-^Xk^(l + o(l)) 

<\b-a\e^X^2 (l + o(l)) 

^ l 6 - a l 0 - 7 ( c ^ 0 ) _ 7 2 ( 1 + o ( 1 ) ) 

= | 6 - a | c 7
+ 1 0 X " 7 2 (l + o(l)). 

Thus, for K satisfying K > \b — a|0max{c(a)7 , c(6)7 } we have 

\Qk(0\<KX-i2 

provided that X is sufficiently large. • 

Proposition 4.12. Let £ = £i,2 and let everything be defined as in Corollary 4-11-

Then 

0max{c(l)7 2 ,c(2)7 2}<1.27. 

Proof. Since a = 1, b = 2, we use the fact that the 18th and 19th convergents of £ 

act as upper and lower bounds for the value of £ (see Lemma 4.4) and get that 

0.7204846674 < £ < 0.7204846677. 

Then 

and 

0 = 3 + 3£ + £2 < 5.680552159 

c(l) < 0.5635696006 and c(2) < 0.4789120128. 

Clearly, 
„2 , ^ ~ 2 -

0max{c(l) 7 ,c(2)7 } < 1.265793309. 

D 
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4.3.4 Proof of Theorem 4.1 

Proof. Let £ = £1>2. As stated earlier, £ has been proved to be transcendental in [1]. 

Let Qk(T) G Z[T] be defined as in Proposition 4.10. Then each Qk has degree at 

most 2 and for X large enough, Corollary 4.11 and Proposition 4.12 together show 

that there exists an index k such that 

H(Qk)<X, |Qfc(£)| < 1.27X-72. 

• 
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Conclusion 

In this thesis, we studied optimal approximation exponents for problems in Diophan­

tine Approximation. We revisited several results of Davenport & Schmidt and proved 

a new and optimal Gel'fond type criterion to decide if a given complex number is 

rational or quadratic over Q. This leaves open many questions about optimal expo­

nents. In particular: 

1. Is the conjecture of Wirsing-Schmidt true for n > 3? 

2. What is the optimal approximation exponent for the simultaneous approxi­

mation of the real numbers £, £ 2 , . . . , £n by rational numbers with the same 

denominator for n > 3? 

3. What is the optimal approximation exponent of a real number by algebraic 

integers of degree at most n for n > 4? 

4. What is the optimal exponent for a Gel'fond type criterion in degree n > 3? 

The real numbers £a,b, having a Fibonacci continued fraction expansion, are known 

to achieve the optimal approximation exponent in degree n = 2 of the second and 

fourth problems listed above (proved here and by Roy [17]). It would be interesting 

to see if this connection exists in arbitrary degree n. 

There is still much work to do to solve these questions. At present, only the cases 

of low degree are solved, and no mechanism known to solve the problems in general. 
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Appendix A 

More versions of Gel'fond's 

criterion 

A.l Introduction 

We have seen in Chapter 3 a new version of what is usually referred to as Gel'fond's 

criterion. This criterion uses the value of integral polynomials at a given real or 

complex number to decide for the algebraicity of this number. We present below 

two more versions of this result as well as the original criterion. This is in no way a 

comprehensive survey of the history of the above mentionned criterion. 

A.2 Original Gel'fond's criterion 

We first state the original criterion due to Gel'fond [11, Chapter 3, §4, Lemma VII]. 

Theorem A . l . Let £ G K. be non-zero and a0 > 1. Let a, 9 : K. —> M>0 be monotonic 

increasing functions such that a(x) > x and 9(x) > 0. Moreover, for x > x0 > 0 we 

ask that \imx-^00a(x) = \imx-+0O9(x) = oo and a0a(x) > a(x + 1). If for all integers 
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N > N0 > 0 there exists a non-zero integral polynomial P satisfying 

\P(a)\ < e - ' W W , max{deg(P), logH(P)} < \a(N) 
o 

then a is an algebraic number. 

A.3 Roy and Waldschmidt's version 

This next version follows D. Roy and M. Waldschmidt [20]. In their paper, the authors 

prove the result over any field K. Here, we study the theorem over the field Q only. 

We first need another version of Gel'fond's Lemma (c.f. Theorem 1.25). For a 

proof, see [12, Chapter 3]. 

Lemma A.2. Let Px,... ,Pk G Z[T] be non-zero polynomials and let P = Pi- • • Pk 

be of degree n. Then 

e'nH{Pi)... H(Pk) < H(P) < enH(Px)... H(Pk). 

Theorem A.3. Let £ G R, n G Z > 0 and suppose that for X large enough there exists 

a non-zero polynomial P = Px G Z[T]<n with 

H(P)<X and ^M<cH(p)~nX~des{P) 

H(F) 

where c~l = e4n\n + l)(2n)!. Then £ is algebraic of degree at most n and the poly­

nomial P vanishes at £ for sufficiently large X. 

Proof Fix £ G R and n G Z> 0 . Without loss of generality, we may assume that 

all the polynomials we deal with are primitive (i.e. their coefficients are relatively 

prime.) We prove this by contradiction. Assume that for some large value of X 

P = Px G Z[T]<n satisfies 

H{P) < X, S S I < cH{P)-nX-A^p) 
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and P(£) ^ 0. 

Claim: For each integer m — l , . . . , n we can construct a primitive polynomial 

Q(T) G Z[T]<m of arbitrary large height which satisfies 

0 < 1 | M <c22(Q)- n - d e s W ) . (A.l) 

We will demonstrate the claim by induction. For m = n, the polynomials Px for 

which Px(£) # 0 satisfy (A.l). Moreover, as 

1 (̂01 
11111 

X->oo 

we get 

lim ]4TTM < lim cH{PynX-A^p) = 0, 
X^oo i f (PX ) ~ *^°° 

lim 22(Px) = oo 
A'-»oo 

and the claim is thus satisfied for m = n. Now assume that the claim is satisfied for 

some integer m with 2 < m < n. So choose Q(T) G Z[T]<m satisfying (A.l). Without 

lost of generality, assume H(Q) is large enough so that putting X = e~nH(Q) the 

polynomial P = Px above is defined. Let G(T) = gcd(P(T),Q(T)) G Z[T] be of 

degree d. As Q is primitive, we get that G is also primitive. Since H(P) < e~nH(Q), 

Lemma A.2 implies that G / ±Q and thus 0 < d < deg(Q) < m. Then 

H(P)<X, tf«3) = e»X, | g < e » , § | g < e». 

Denote deg(P) = dp and deg(Q) = dq. Using Lemma 1.38, and simplifying at each 

step with the above inequalities, we get 

IG«)I<(H(P)\d'-d(H(Q)\d'-d(k\m\, ymy 

<c (^)d'~d ( f ^ ) " ' " ' (hH(P)-"X-' + k2H(Q)->-*<) 
n+d-dq / r j / r > \ \ dp—d 

n \r—d =cH{G)-nX 
[H{Gy\n+d-aq ( H(Q) V 

kl\H(P)J \XH(G)J 
fH(G)y+d+d^( H(P) \dq-d

XdqH(G)-dq 

+ H w yxmo)) x H{G) 
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—n v—d <cH(G)-nX (H(Gy\n+d~dq ( H(Q) \ 
kl\H(P)) \XH(G)J 

dp—d 

(H(G)\n+d-d> ( H(P) y<-d
 do 

\H(Q)J \XH(G)J 
dv—d / i \ dq—d 

e~ndq <cH(G)-"X-d [fc (e»)n+d-dq ( ^ ) ' + ^2 (en)n+d-dp ( - ^ y ) ' 

=cH(G)-nX~d [kie
n{n+dp-d^H(G)d-dp + k2e

n{n+d~dp-dv)H(G)d-dq] 

<ce2n2H{G)-nX-d (kiH(G)d-dp + k2H{G)d-d<) . 

Since the constants Ci, c2 of Lemma 1.37 satisfy Ci, c2 < (2n)! and since 2-7(j+l) < e J + 1 

for j > 0, we get that the constants kx, k2 of Lemma 1.38 satisfy ckie2n ,ck2e
2n < 1. 

Then, we can rewrite the last inequality as 

^ | ^ < H{G)-nX-dm&x{H(G)d'dp,H{G)d-d"}. (A.2) 
22(G) 

Since Q(£) ^ 0 and G divides Q, we necessarily have G(£) / 0. If d = deg(G) = 0, 

equation (A.2) gives 

1 = TTTTTT < H{G)-nmax{H(G)-d",H(G)-d^} < 1 
H{G) 

which is impossible. Thus, we have d > 1. Moreover, (A.2) shows that |G(£)|/22(G) 

can be made arbitrary small by making X large enough, i.e., by choosing Q of height 

large enough. In particular, we can pick Q such that c~1en < H(G). Recall that 

1 < H(G) < enH{P) < enX. 

In the case d < dp we rewrite equation (A.2) as 

< 22(G)-n-1X~d < ce-n2H(G)-nX-d 

H(G) 

and hence 

\G&\ < rH(G)-n-de^ 
H(G)~ [ ) 
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If d = dp then G = ± P and so, by hypothesis, 

llM = rTTTrV < cH(P)-nX-dr < cH{P)-n-dp = cH'(G)-"-des(G). 
n{(j) ii\P) 

Thus, there exists polynomials G of degree at most m — 1 and arbitrary large height 

for which (A.l) is satisfied. This proves our claim. 

In particular, for m = 1, we can find a primitive polynomial Q G Z[T]<i of degree 

1 satisfying (A.l). Choose Q of height large enough so that putting X = e~nH(Q) 

the polynomial P = Px is defined. As noted above, if we let G = gcd(P, Q), this 

construction implies by Lemma A.2 that G ̂  ±Q and thus, Q does not divide 

P . Since P and Q are integral polynomials, we use Lemma 1.37 and the estimates 

Ci,c2 < (2n)! to get 

|Res(P,Q)| <22(P)d^)#(Q)deg(P) ^ J ^ M + C2\RM^ 

<H{P)H{Q)des{p) (acH{P)-nX-de^p) +c2cH{Q)-n-1) 

<Cmax{Cl,C2} ^deg(P)+^-n i / (Q)l-deg(P) + ^ 

<1, 

and thus | Res(P, Q)\ — 0. Hence P and Q share a root. This is impossible since Q 

has degree 1, is primitive and does not divide P . This construction of polynomials 

based on the hypothesis that Px(£) ¥" 0 leads us to a contradiction. D 

A.4 Brownawell's version 

We conclude with the following version of Brownawell. For a proof, see [4] 

Theorem A.4. Let c,d G Z>i with cd > 1. Suppose that {-yn)n>i C R and (8n)n>i C 

R are monotonic nondecreasing sequences such that 

lim 8njn = oo 
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and 

7 n + l < C-ln (n > 1 ) , $n+l < d8n (n > 1 ) . 

Let a G C. If there exists a sequence of polynomials (Pn)n>i C Z[T]<,jn with Pn ^ 0,1, 

height H(Pn) < eln and 

l o g | P n ( a ) | < - 5 n ( ( c + d + l ) 7 n + (2a '+l)5n) ( n > l ) , 

then a is algebraic and 

Pn(a) = 0 ( n > l ) . 
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