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Abstract

The goal of the thesis presented herein is to provide an overview of
current issues in auditory display design and to suggest how these issues may
be applied to the development of applications for the World Wide Web
(WWW). The software developed as part of this thesis, the SprocketPlug plug-
in for Netscape Navigator, provides a tool for exploring various auditory
display techniques at three levels of WWW development: HTML, Javascript,
and Java.

The strength of SprocketPlug is that it enables WWW developers to
incorporate interactive spatialized sound as an integrated component of
WWW documents and applications. The implementation of SprocketPlug is
based on currently available technology: the Netscape plug-in architecture,
Netscape LiveConnect, and the Apple SoundSprocket.



Résumé

Le but fondamental de la thése suivante est de fournir une sommaire

de la recherche en interface audio et de suggérer comment appuyer ces
principes aux development des applications pour le World Wide Web
(WWW). Le logiciel développer comme partie de cette thése, SprocketPlug,
permer d’explorer plusieurs concpets des interfaces audio au trois niveaux de
programmation pur le WWW: HTML, Javascript, et Java.

L’avantage de SprocketPlug est qu’il permet aux programmeurs
d’incorporer le son interactif en 3D comme une partie intégrante des
applications et documents du WWW. SprocketPlug est baser sur des
technologies disponible aujourd’hui: I’architecture plug-in de Netscape,
Netscape LiveConnect, et Apple SoundSprocket.
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1. INTRODUCTION

The thesis presented herein will explore the current state of auditory
display research and discuss how this body of knowledge may be applied to
the World Wide Web (WWW). Important issues regarding auditory
perception, auditory display design, and the current state of sound tools for
the WWW will be discussed. It will be shown that although these tools are
rapidly achieving high levels of sophistication, their main purpose is for
sound delivery and do not meet the demands of an integrated auditory
display component.

The software developed as part of this thesis, the SprocketPlug plug-in,
provides WWW developers with interactive spatialized sound services
which can be integrated at three important levels of WWW programming:
HTML, Javascript, and Java. Rather than being an outside helper application
or stand alone sound player (although it can be used as such), SprocketPlug is
designed to be an integrated part of WWW development. After presenting
the functionality of the thesis software, demonstrations will be discussed and

assessed.



2. A SOUND BASIS

Until recently, sound has remained an underutilized component in
human-machine/computer interactions. Although we use our remarkable
listening abilities in our day to day lives, the use of audio in human-
computer interfaces has been relegated to a few system beeps or “cute” sound
effects. Sound has always taken a back seat to graphics development and
remains an afterthought in many system designs. By discussing various
aspects of sound and our auditory system, this chapter will describe how
computer interfaces and user interactions may incorporate sound as a
functional element of the computer system. The chapter will conclude with

some possible explanations of why the use and development of audio has

lagged behind graphic development at the computer interface.

2.1 Important Attributes Of Sound

Sound is a powerful communicative medium. It describes the physical

world around us, informs us of ongoing events, and alerts us to take action.
Very often all this information is presented to us at once, yet we are still able
to decode and understand this conglomerate of acoustic information.

Imagine the following: You're driving your car with a passenger next
to you. The radio is on at low volume, and you are engaged in conversation
with the passenger. The radio catches your attention because the weather
forecast is on. While you're listening to the weather report you hear a strange
sound come from the car’s engine. You decide to pull over and see if there is
anything wrong. You pull to the side of the road and are about to get out of
the car when you hear an ambulance siren behind you. You decide to wait for
the ambulance to pass to get out of the car. You open the hood and hear some
hissing. Being an expert mechanic, you have an idea of what could cause such
a sound. You are able to locate the source of the sound and fix the problem.
You get back in the car and continue on to your destination.



This scenario points out some very important aspects of sound and our
listening abilities. Sound is omnidirectional and transparent. It describes the
physics of events in our environment. We are able to monitor a number of
simultaneous sound sources and shift our auditory attention to any source at
will, all while performing other activities. We are also able to interpret the
meaning of various sounds and take action based on these understandings.

The omnidirectional nature of sound allows us to hear what we can
not see (Kramer 1994b, 4). While vision has a rather narrow area of focus and
requires us to face the object to perceive it, we are able to hear sound all
around us. This gives sound the ability to draw our attention to events
outside our field of view.

Sound is also transparent: auditory objects do not occlude one another.
Bregman (1990) describes this situation as follows:

The auditory world is like the visual world would be if all
objects were very, very, very transparent and glowed in
sputters and starts by their own light, as well as reflecting the
light of their neighbors (Bregman 1990, 37).

This attribute of sound allows hidden objects to be heard even though they
are not seen.

Perhaps the most important aspect of sound is its ability to convey
information about events in the environment. The following example
describing a computer desktop from Gaver (1986) illustrates:

The file hits the mailbox, causing it to emit a characteristic
sound. Because it is a large message, it makes a rather
weighty sound. The crackle of paper indicates a text file - if
it had been a compile program, it would have clanged like
metal. The sound comes from the left and is muffled. The
mailbox must be in the window behind the one that is
currently opened on the left side of the screen. And the
echoes sound like a large empty room, so the load on the
system must be fairly low. All this information from one
sound!

As Gaver (1989) states, “sound is produced by the interaction of materials at a
location in an environment”. This points out the multidimensional nature
of auditory information. Not only can a given sound inform us of the
probable source, but it can also point out salient features of the source, the



materials involved, and the environment in which the event occurred.

2.2 The Capabilities of Our Auditory System

The human auditory system has evolved to take advantage of the

various aspects of sound described above in order to help us make sense of
the world around us. While the system is not responsive to all existing
stimuli (the human audio range is approximately 20 Hz to 20 kHz), it has in
essence tuned itself to the most frequent and ecological valid auditory
characteristics of the environment (Bregman 1990, 13). Important aspects of
the human auditory system include pressure and frequency sensitivity,
temporal acuity, pattern recognition, localization abilities, and attentional
capacities.

Our auditory system has developed finely-tuned responses to a wide
range of stimuli. The first of these is pressure sensitivity. Although levels
above 100dB are undesirable , the most intense sound we can hear without
damaging our ears has a level of about 120dB above the faintest sound we can
detect (Moore 1982, 47). This corresponds to an intensity ratio of 1 000 000 000
000:1 (a pressure amplitude of approximately 2 x 10-5 N/m?2). What is
remarkable here is that while we are responsive to a wide dynamic range, the
amplitudes of soundwaves are extremely small fluctuations in atmospheric
pressure (where atmospheric pressure corresponds to 105 N/m2). The
minimum pressure fluctuation to which we are sensitive to corresponds to
less than a change of one billionth of atmospheric pressure while the
threshold of pain is still less than one one-thousandth of atmospheric
pressure (Rossing 1990, 85).

For frequencies lying between 20Hz and 20kHz, the auditory system has
a finely tuned frequency response as well. The critical band theory is
commonly used to explain frequency resolution by describing the peripheral
auditory system as a bank of bandpass filters, with continuously overlapping
center frequencies (Moore 1982, 85). Begault (1994) describes this system as

follows:



A complex sound is analyzed by the ear with a bank of 24
filters, each tuned with a successive center frequency and
bandwidth so as to cover to the entire audio range (just
like a graphic equalizer). The size of the critical band
approximates a 1/3 octave bandwidth; harmonics falling
within a critical bandwidth will be integrated in such a
way that the strongest harmonic will mask other
harmonics within the same band, more so than if these
other harmonics were in other bands.

Begault goes on to point out how this system is made more complex by the
variable nature of these bandwidths. The width and placement of each band
depend on various factors such as pressure level and spatial orientation of the
listener. In addition, frequency sensitivity varies across the audible range. It
must be noted that most humans do not respond to the entire audio range
and frequency sensitivity deteriorates with age. This deterioration mostly
affects the transients and high partial of sounds.

The auditory system is also capable of great temporal acuity, which is
especially important for sound localization. Studies have shown that for
frequencies below 1.5kHz, the auditory system localizes sound sources by
detecting the on-set time difference (or phase difference) between the two ears
of an incoming waveform. This corresponds to interaural time differences
(ITD) in the range of 0.005 to 1.5 milliseconds (Begault 1994, 44). Similarly, the
precedence effect describes how ITD values are used to discriminate a sound
source from its echoes. If the echoes occur within 35 milliseconds of the direct
sound, the direction of the sound is associated with the wavefront which first
arrived at the ear - the direct sound. Echoes within this time frame tend to
reinforce the direct sound (Rossing 1990, 462).In other words, they do not
distract us from localizing the direct sound. We begin hearing independent
onsets at around 20 milliseconds and for continuously repeated sounds, we
may perceive rhythmic regularities and even pitch. Pitch will be perceived if
onset times are in the broad range of .05 milliseconds, producing 20kHz tone,
to 50 milliseconds resulting in a 20Hz tone (Kramer 1994b, 5).

The auditory system’s ability to establish the direction of a given sound
source complements the omnidirectional nature of sound. By examining the
time, intensity, and timbral differences between the two ears, we are able to
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determine the direction of a particular sound and hence, the position of the
source. While vision focuses in a very specific direction, audition can
monitor sonic objects and events from all around the listener. Very often our
ears act like pointers for our eyes - they tell the eyes where to look.

Our ability to learn and recognize familiar sounds is facilitated by our
auditory pattern recognition skills and auditory memory. We are able to
distinguish and categorize a great number of sounds and pick out a familiar
voice in a crowd. Often our survival depends on this ability: for example,
hearing an approaching vehicle or the cracking branches of a prowling
predator. We also use pattern matching skills when we attempt to classify
unfamiliar sounds by comparing them to known sounds. This happens when
someone says “it sounds like” when describing the unfamiliar sound.

The attentional capacities of the auditory system allow us to address the
issue of sound’s transparency and its omnidirectional nature. We are able to
focus on some auditory objects and leave others in the background. This
allows us to cope with our lack of “ear-lids” (Kramer 1994, 13) and to tune
into important events. Related to the auditory system’s attentional capacities
are its monitoring abilities. Although we can focus our auditory attention on
a particular object, we can simultaneously monitor a number of background
events. Changes in these background events are detected by the auditory
system, informing us that we might want to shift our attention to that
particular event. A well known example of this is the “cocktail party effect”
where a person engaged in one conversation can tune into another
conversation upon hearing their own name (Cherry 1953, and Eysenck and
Keane 1990).

Our auditory monitoring abilities also give rise to auditory gestalt
formations. These describe our perceptual system’s ability to hear a complex
sound field as whole, without necessarily directing attention to its component
parts (Kramer 1994, 8). For example, when listening to a choir, we are able to
hear it as a single entity even though it is made up of many individual voices
often singing in mutli-part harmony.

Auditory gestalts may be grouped into synthetic and analytic listening,
first described by Helmholtz (Helmholtz 1859, adapted from Bregman 1990,
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314-315). Synthetic listening interprets auditory percepts as generally as
possible. For example, hearing the murmur of a crowded room rather than a
large number of individual voices. Analytic listening takes place when we try

to identify individual components of an auditory scene. An example is when

we try to listen to a specific instrument in an orchestra.

2.3 Why Use Sound?

The simplest answer to the question of why sound should be used is

because it forms an integral part of normal human experience (Gaver 1989).
Many diverse professions even rely on sound a great deal: mechanics listen to
automobile engines and doctors listen to heartbeats (Gaver 1989). People also
listen to the states of various machinery they use. For example, drivers listen
to their cars’ engines, and computer users listen to their modems connecting
and hard drives whirring to confirm read and write operations.

Furthermore, sound production is prevalent in today’s computer
technology and can be found in even the simplest home computer systems. In
the past few years, computer audio components have greatly improved, going
from simple low fidelity system beeps to full bandwidth, CD quality audio.
The entertainment industry has embraced this technology and relies on it to
deliver top-selling products. Video games are approaching Hollywood style
productions in both the visual and audio aspects. Yet these resources remain
untapped by the more general and “serious” computing systems in areas such
as business and engineering.

The issue of noise and sound pollution is an important one. Great
measures are taken to make the workplace as noise free as possible. Wouldn’t
all these computers making sounds create distractions and a chaotic
atmosphere? Wouldn't the office turn into a kind of noisy video game
arcade? Indeed it would, unless an organized and systematic approach to
auditory display design is adopted. By studying the task at hand and designing
an appropriate acoustic environment, we stand to benefit from auditory
displays by exercising greater control over the sounds around us (Buxton



1989).

A great deal of auditory display research is devoted to the use of non-
speech sounds. Another common question asked of auditory display
researchers is: Why not just use speech to convey messages and information?
Although speech may be appropriate in certain situations, the disadvantages
seem to outweigh the advantages. First, speech requires more processing on
the part of the listener than familiar sounds to be understood. For example,
your response to a fire alarm is probably quicker than to some one shouting
“Everybody out, there’s a fire!”. Similarly (to use the automobile example
again), the mechanic learns a great deal more about the state of an engine by
listening to it, rather than listening to someone explain the problem. Speech
messages also add to the noise pollution problem by interfering and
competing with real world speech.

Sound is also important because it compliments visual information.
Practically all visual events and actions in the real world are accompanied by
sonic events. Not only do we see an airplane fly overhead, but we hear it as
well. A collision between objects is affirmed by the sound of the two objects
hitting each other. This is part of the natural world (being the result of the
physics of events) which we expect and depend on. Human-computer
interactions can incorporate these types of sonic assurances by accompanying
user actions and system events with appropriate sounds. Sounds can not only
heighten the sense of realism and engagement, but may increase user
enthusiasm and the perceived quality of a given system (Kramer 1994, 10).

2.4 The Slow Adoption Of Auditory Displays

In spite of the powerful communicative aspects of sound, the

development and use of audio in computing environments has always been
dominated by graphic developments. This section will offer several
explanations why this has been the case.

As vision is the principle means of acquiring information in our

society, the development of computer system visual display was of high



priority. CRT display technology and graphic user interfaces have taken great
strides in research and development. Although these developments have
parallels in the audio industry, it is only recently that sophisticated audio
features have been incorporated into computer systems. While the computer
entertainment industry has welcomed and embraced these technologies,
general computing systems have practically ignored them, using the
expanded audio capabilities of the hardware merely for improved system
beeps. There is however, a growing interest in more sophisticated uses of
audio by the general computing public, largely due to the increased
availability and accessibility of high-fidelity audio computer hardware and
software.

The lack of extensive scientific auditory research also accounts for
audio lagging behind graphic development. As Bregman (1990) points out, up
until the nineteen-sixties, vision had received almost all the attention.
Studies on vision would have included treatments on lower-level
psychophysical and physiological aspects, as well as higher-level perceptual
and cognitive processes. In contrast, the few studies on audition focused only
on basic physical properties of sound and perhaps some psychophysical
aspects of our auditory system.

Bregman goes onto to offer some possible explanations for the lack of
auditory research. One explanation suggests that “the fathers of Gestalt
psychology, who opened up the whole question of perceptual organization,
had focused on vision and never quite got around to audition” (Bregman
1990, 2). Another explanation has to do with the visual arts: “the desire for
accurate portrayal led to an understanding of the cues for distance and certain
facts about projective geometry.” (Bregman 1990, 2). Although one might
argue that music could have provided these same opportunities, music (and
sound in general) is inherently abstract and more difficult to understand.
There also wasn’t the need to reproduce objects from the environment as
there was in drawing, painting, and other visual arts.

Begault (1994) offers some explanations as well: First, audio is
expendable because it isn’t necessary for the successful operation of most
computer systems. Next, the audio that is incorporated tends to be added as an

9



afterthought of system design. Consequently, the sounds are of low quality
and quickly become annoying and even jarring (e.g. talking cars and piercing
microwave oven timers). Lastly, audio manipulation and high fidelity audio
equipment have remained the domain of musicians and electronic
composers. As stated above however, the proliferation of high quality
consumer oriented audio products has given the general public and research
community exciting tools for auditory exploration.
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3. AUDITORY DISPLAY DESIGN

The addition of sound to computer interfaces is not simply a matter of
arbitrarily assigning sounds to actions and events. The design of auditory
displays requires careful investigation into how sound can function as an
integral and informative component of a given system. This chapter will
discuss current approaches to a structured framework of auditory display
design.

3.1 Preliminary Considerations

3.1.1 Assessment of Audio Related Problems

Sounds are inherently transient and lack persistence because they can
only exist in time (Gaver 1989). Although sounds are suitable for the display
of changing events, they are only available for limited amounts of time. As
Kramer (1992, 13) states, “simultaneous comparisons and reminiscences [of
auditory events] are problematical... [and] may produce cacophonous and
incomprehensible results.” In contrast, most visual objects are static and exist
over time, allowing us to sample and examine them for as long as required.
In particular, the auditory presentation of spatial extent and volumetric data
is problematic (Kramer 1992, 13). The absolute and relative sizes of an
auditory representation of objects are difficult to represent in sound.

Kramer (1994b) discusses several well known properties of sound in
terms of auditory displays. These include the lack of absolute values of
auditory variables, lack of orthogonality, and other factors such as user
limitations. Although we are responsive to minute changes in various sound
attributes such as amplitude, pitch, and timbre, we can not determine the
absolute values these changes represent. Kramer compares this with XY
graphs, where points and values are easily obtained visually. Although people
with perfect pitch may have an advantage at determining absolute pitch
values, similar abilities in amplitude and timbre detection are not known.

11



Kramer (1994b) also discusses how the lack of orthogonality of auditory
parameters contribute to a lack of precision. When mapping data variables to
the physical attributes of sound a change in one variable may be perceived as
affecting a second variable even though this change is not found in the raw
data.

User limitations present problems as well. Kramer (1994b) suggests that
individual differences concerning auditory display interpretability may be no
more problematic than similar differences concerning vision (e.g. color blind
versus tone deaf). However, listener shortcomings regarding complex sonic

environments are poorly understood.

3.1.2 Auditory Scene Analysis

Auditory scene analysis is concerned with the perception of complex
sonic environments. Bregman (1990, 641) describes the central issue of
auditory scene analysis as follows:

“Although we need to build to separate mental
descriptions of the different sound-producing events in
our environment, the pattern of acoustic energy that is
received by our ears is a mixture of the effects of the
different events.”

Auditory scene analysis examines how our auditory system extracts elements
of this acoustic mixture and “groups them so that each group has been
derived from the same environmental event” (Bregman 1990, 641).
Essentially, it studies the sequential and spectral integration of spectral
elements which give rise to the perceptual phenomenon of auditory streams.
An auditory stream is a perceptual unit which groups related
environmental happenings. Bregman (1990) explains the difference between a
sound and an auditory stream as follows: While a sound is a distinct event, a
stream may incorporate more than one sound in its description of an event.
He gives the example of a music performance where the sounds of an
accompanying piano and a singer create a coherent unit or stream. In this way
the musical performance forms a perceptual unit which is separate from
other ongoing events such as coughing in the audience or the shuffling of
program notes . Sound also “refers indifferently to the physical sound in the
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world and our mental experience of it” (Bregman 1990, 10), while a stream is a
perceptual representation which “acts as a center for our description of an
acoustic event” (Bregman 1990, 10). In this way, Bregman explains, an
auditory stream plays a similar role in auditory mental experiences as objects
do in vision: “it acts as a center for our description of an event” (Bregman
1990, 10).

Auditory streams are formed by the auditory system through analysis
of incoming acoustic signals in both the temporal and spectral domains.
Bregman (1990) refers to these as sequential integration and spectral
integration respectively. While Gestalt psychologists were primarily
concerned with visual perception, many of the Gestalt factors which promote
grouping in visual perception, influence sequential and spectral integration.
Williams (1994) outlines these factors and relates them to auditory grouping
as follows:

1 - similarity
Components which share the same attributes are
perceived as related. Auditory grouping factors include
common onset, common offset, common frequency,
common frequency modulation, common amplitude
modulation, and timbre.

2 - proximity
Components close to each other are more likely to be
grouped together. Auditory grouping factors include
temporal proximity, frequency proximity, and spatial
location.

3 - good continuation
Components that display smooth transitions from one
state to another are perceived as related. Auditory
grouping factors include proximity in time of offset of one
component with the onset of another, frequency
proximity of consecutive components, constant glide
trajectory of consecutive components, and smooth
transitions from one state to another state for the same
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parameter.

4 - habit or familiarity
Relationships between components that have been
attributed in the past will preferably be assigned the same
meaning when they occur again. Knowledge of familiar
patterns and complex structures are stored in what
cognitive psychology calls schemas. Once learned, schemas
may be used “top-down” to assist in understanding a
complex acoustic signal. The activation of a particular
schema depends on the level of familiarity and the
closeness with which it matches new, incoming auditory
evidence. Schemas operate for particular classes of signals
such as music, speech, machine noises, and other familiar
sounds of our environment. (Bregman 1990, 10)

S - belongingness
A component can normally form part of only one
disjunctive object at a time and its percept is relative to the
rest of the figure to which it belongs. Related to this is the
principle of exclusive allocation. In terms of auditory
grouping, this principle states that once a given sound is
allocated to one stream, it tends to be excluded from other
possible streams.

6 - common fate
Components that undergo the same kind of changes at the
same time are perceived as related. Auditory grouping factors
include common onset, common offset, common frequency
modulation, and common amplitude modulation.

7 - closure
Incomplete forms tend to be completed. In audition, this
refers to our ability to perceive the continuity of a given
sound even in the presence of a masking sound. In order for
this to be successful, the auditory system must have sufficient
energy at the appropriate frequencies to stimulate the same



parts of the auditory system as the missing, or masked,
components.

Although these seven points have been well defined in terms of visual
perception, Williams (1994) states that “it is becoming evident that the gestalts
identified as being of prime importance in vision research may not be directly
reflected in audition”.

In many situations, auditory streams do not result from a simple
summation of factors which influence grouping. Complex interactions arise
due to the competitiveness and collaboration between these factors (Bregman
1990). Bregman (1990) describes this process of competition and collaboration
in the following way:

It is as if each acoustic dimension could vote for a
grouping, with the number of votes it cast being
determined by the degree of similarity in that dimension
and on the importance of the dimension. Then the
streams whose elements were grouped by the most votes
would be formed. (Bregman 1990, 652)

Bregman goes on to say that “such a voting system would be valuable in a
natural environment in which it is not guaranteed that sounds that resemble
one another in one or two ways will always have arisen from the same
source” (Bregman 1990, 652).

Bregman (1990) also discusses the effects and consequences of
streaming. Among these, the most important ones have to do with attention
and the computation of with-in stream emergent properties. As Bregman
states, it is easy to follow and focus our attention on a stream because “an
integrated stream is the natural subject for an act of attention” (Bregman 1990,
10). Due to this, and the principles of belongingness and exclusive allocation
described above, elements of one stream will less likely interfere with those of
another stream when a stream’s emergent properties are calculated. These are
global features of a stream formed by higher levels of processing when lower
level perceptual units are grouped.

Auditory scene analysis is important to the study and design of
auditory displays because it provides researchers with an understanding of
how complex acoustic signals may be interpreted by the listener. One of the
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most important attributes of auditory displays is the intelligibility of
simultaneously occurring sound streams: system alerts, background processes,
and user action assurances. These auditory streams need to be detected and
unambiguously identified by the user. By taking into account the factors
which promote auditory grouping, auditory displays can be designed to

provide a coherent sonic environment, modeled on real-world listening.

3.1.3 3D Sound

The ability to localize sound in three-dimensional space is a very
important aspect of real-world auditory perception. It provides for a sense of
situational awareness and self-orientation by allowing us to estimate the
position of sounds which may be outside the current field of view. This
section will present aspects of human localization and how auditory displays
may benefit by incorporating sound spatialisation techniques.

3.1.3.1 Interaural Time and Intensity Differences

Interaural difference cues are probably the most important localization
cues we use to localize sound sources on the horizontal plane. From an
evolutionary standpoint, this makes perfect sense: humans are terrain-based
animals whose auditory system has been optimized through evolution to
deal with terrain-based sound sources, including those sources which are
outside the field of view. The horizontal placement of our ears maximizes
interaural differences for sound waves emitted by a source on the horizontal
plane. Our auditory system has the ability to detect interaural differences in
phase, amplitude envelope onset, and intensity. By minimizing these
differences with head movement, we are able to direct our focal vision to
items of interest which may not be in our current field of view.

One of the first people to study and explain binaural localization of
sound was Lord Rayleigh who, in 1876, performed experiments to determine
his ability to localize sounds of different frequencies (Rossing 1990, 75). He
found that lower frequencies were much harder to localize than higher
frequencies. His explanation was that high frequency sounds coming from
one side of the head produce a more intense sound in the ear closest to the
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source (ipsilateral ear) than in the opposite ear (contralateral ear). In these
cases, the head casts a “shadow” on the contralateral ear, thereby reducing a
given sound’s intensity. This did not occur for lower frequencies because the
wavelengths were long enough to diffract around the head. In a second
localization experiment performed in 1907, Rayleigh went on to show how
the diffraction of soundwaves around the head caused interaural phase
differences. He proposed that these phase differences were use in the
localization of low frequencies.

Modern experiments have investigated the role of interaural time and
intensity differences and have confirmed Rayleigh’s initial findings. Figure 3-
1 shows the travel path of sound waves for two sources. We see that for the
source directly in front of the listener (source A), the sound waves reach the
two ears at the same time. In this case the interaural time and intensity
differences are minimized (they are not exactly equal due to the asymmetry of
the human head and ears). However, the sound waves emitted by the second
source to the right of the listener (source B), will produce significant
interaural differences.

In general, if source B is below approximately 1 kHz, localization will be
dependent on the interaural phase or time differences (ITD). If the source is
greater than about 1.5 kHz (wavelengths are now smaller than the diameter of
the head), the interaural intensity differences will be used (IID). This head
shadow effect increases with increasing frequency (Middlebrooks and Green
1991).
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figqure 3-1 - interaural difference

A

The use of IIDs and ITDs by the auditory system is commonly referred
to as the “duplex” theory of localization. The theory suggests that [IDs and
ITDs operate over exclusive frequency regions. Although in the laboratory it
is relatively easy to estimate the boundary point (around 1.5 kHz) where the
system switches from using ITDs to IIDs, the interaction of the two
mechanisms in the real world are not fully understood. There have been
studies which investigated the role ITD of amplitude envelope onset times in
the higher frequency region (Begault 1994, 472). In the frequency region above
1.5 kHz, the phase relationship between the two ears leads to an ambiguous
situation: it is hard to tell which is the leading soundwave. These studies
have shown that if an amplitude envelope is imposed on the test signal, the
auditory system is able to detect the differences in envelope onset times, thus
providing useful ITD cues.

Sound sources in the real world typically contain frequency
components above and below the cutoff (about 1.5 kHz) suggested by the
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duplex theory. It is quite likely that the auditory system does not really rely on
any one mechanism for localization. Rather, all available information is used
to provide the most suitable answer. The use of pan pots on conventional
stereo mixing boards illustrates how amplitude changes independent of the
sources’ frequency content are sufficient in separating and placing individual
sounds on a horizontal plane (the stereo field). Amplitude differences
between the left and right channels are interpreted by the listener as various
spatial locations. For example, a sound can appear to move across the horizon
by continuously varying the amplitude difference of the left and right
channels (Begault 1994).

3.1.3.2 The Precedence Effect
The precedence effect (other names include the Haas effect and

’ "

Blauert’s “the law of the first wavefront”) describes the auditory system'’s
ability to localize a sound source within a reverberant environment.
Localization experiments have studied the precedence effect by delaying one
side of the left-right pair (either through headphones or loudspeakers) and
noting the perceptual effects on the listener when varying the delay time.
Results show that as the delay time is increased from 1.5 msec. to 10 msec., the
virtual sound position will be associated with the undelayed channel but its
width will seem to increase. At some point between 10 msec. and 40 msec.,
depending on the sound source, a distinct echo will be heard coming from the
delayed channel. However, the original event is still perceived as coming
from the undelayed channel. In terms of real world localization, the
Precedence effect explains how we are able to localize the original sound
source (or direct signal) in spite of potentially confusing reflections and echoes

(Begault 1994, 46).

3.1.3.3 Head Movement in Localization

In real-world perception and localization, our head acts as a pointer,
helping us integrate information from both our visual and auditory senses.
We use auditory information to locate and focus on particular objects which
may or may not be part of the current visual scene. Head movements help us
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minimize interaural differences, and essentially point us in the right
direction. The following example (adapted from Begault, 1994) shows how
head movements are used to locate a source at right 150 degrees azimuth
which may potentially be confused with a source at right 30 degrees azimuth.
Figure 3-2 illustrates the situation.

figqure 3-2 - minimizing IID and ITD with head movement

right 30 deg. azimuth

right 150 deg. a2imuth

At first the interaural difference cues suggest that the source is to the
right of the listener. As the listener starts turning his/her head towards the
right, if the interaural differences are minimized, then the source must be in
front. If, on the other hand, the differences increase, then the source is further
in back.

Head movements are also very important in front and back
disambiguation. Studies have shown that the listener is able to integrate
changes in IIDs, ITDs, as well as spectral changes, due to head movement and
use this information in localization judgments (Begauit 1994, 50). A simpler
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example of the importance of quick judgments based on head movements is
“if I don’t see it but hear it, it must be in back.”

3.1.3.4 The Doppler Effect
The Doppler effect (Rossing 1990, 42) is another important localization

cue. It is the perceived pitch change of sound sources caused by listener
and/or sound source motion. If the the listener and source are moving
towards each other, there will be an increase in perceived pitch. On the other
hand, if the two are moving away from each other, the perceived pitch will be
lower. The situation is explained as follows (adapted from Rossing, 1989): If a
given stationary sound source emits 100 sound waves per second, a stationary
listener will count exactly 100 waves per second. If the listener starts moving
towards the source, he/she will meet more soundwaves per second, thereby
increasing the perceived pitch. If the listener is moving away from the source,
less soundwaves will be received per second, resulting in a lowering of
perceived pitch. Similarly, the listener receives more sound waves per second
as a sound source is moving towards him/her, and less if the sound source is
moving away.

The Doppler effect is an important localization cue because it helps us
detect moving and accelerating sound sources. However, although it has been
studied and understood as a perceptual phenomenon, further investigation is
needed to examine the interaction of the Doppler effect with other
localization cues, including cognitive processes such as experience and

familiarity.

3.1.3.5 Spectral Cues
Although IIDs and ITDs are probably the most important cues for

localization of sound sources on the horizontal plane, they provide rather
ambiguous cues for sources located on the median plane. Although IID and
ITD values won't be exactly the same due to the asymmetrical construction of
our head and pinnae, interaural difference values will be minimal along the
median plane. This would lead to confusion when trying to determine
whether a source is directly in front (0 degrees azimuth) or directly in back

21



(180 degrees azimuth) solely based on interaural difference cues. The Cone of
Confusion (Moore 1982, 203) illustrates how for any two points on a conical
surface extending outwards from a listener’s ear, identical (hence ambiguous)
IID and ITD values may be calculated (points A & B, and C & D in figure 3-3).
[t is in these situations that spectral cues provide further aids for localization.
They help the listener disambiguate sound source positions between front
and back, and above and below.

figure 3-3 - Cone of Confusion

The pinnae are responsible for the spectral alterations of incoming
soundwaves. They acts as directional filters, imposing amplitude and phase
changes as a function of sound source location. Most of these spectral
alterations are caused by time delays (0 - 300 psec.) due to the complex folds of
the pinnae (Begault 1994, 52). Because of the asymmetrical construction of the
pinnae, sound coming from different locations will have different spectral
changes imposed on it. The listener recognizes these modifications as spatial
cues. The result of the filtering process of the outer ears is most often called
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the Head Related Transfer Function (HRTF). Other terms include Head
Transfer Function (HTF), pinnae transform, Outer Ear Transfer Function
(OETF), and Directional Transfer Function (DTF) (Begault 1994, 53).

Modern experiments and studies record, analyze, and simulate HRTFs
in order to gain a better understanding of the process of using spectral cues for
localization. In general, studies have shown that although different people
exhibit different ear impulse responses, or HRTFs, most measurements share
similar spectral patterns (Hiranaki and Yamasaki 1982, and Asano, Suzuki,
and Sone 1990). Although people do better in localization tests when using
their own HRTFs, they are able to make quite accurate localization judgments
when using HRTFs of others. These studies have also shown that some
people even do better with “foreign” HRTFs than with their own, implying
perhaps, that some people have more suitably shaped ears for localization.

Besides the pinnae, other parts of the body can influence the spectrum
of an incoming soundwave. These can be broken down into directional and
non-directional spectral modifications. For example, the upper body will
cause directionally-dependent alterations to the spectrum in the 100Hz - 2kHz
range (Genuit 1984, adapted from Begault 1994). The ear canal on the other
hand, is a non-directional influence due to its natural resonance between
2kHz - 5kHz. Figure 3-4 lists the various directional and nondirectional
influences on HRTFs (adapted from Begault 1994).



figure 3-4 - directional and nondirectional HRTF components
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3.1.3.6 Spatialized Sound and Auditory Displays

Auditory displays may become more realistic, and immersive when
spatialized sound is incorporated. These enhancements are similar to those
provided by three dimensional graphic systems: objects look more realistic
and navigation through virtual worlds is more intuitive. Three dimensional

sound engages our auditory system in similar ways, and can enhance a user’s

auditory display experience.
A summary of the benefits spatialized sound brings to auditory displays
is provided by Wenzel (1994). She describes the two most important

performance advantages of spatialized auditory displays as enhanced
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situational awareness and enhanced comprehension of multiple,
simultaneous auditory streams. The roles that spatialized sound plays in
supporting these two performance advantages include: direct representation
of spatial information, spatial metaphors for displaying nonspatial
information, enhanced stream segregation, and an enhanced sense of realism.
Wenzel goes on to describe how applications in various fields may benefit
from the use of spatialized sound including architectural acoustics, large-scale
database and information systems, data visualisation, aeronautics, and
telerobotic control. Other benefits of spatialized auditory displays include a
decrease in visual search times (Perrot et al. 1991, and Begault 1993) and a
reduction of noise through spatial and spectral release from masking (Doll
and Hanna 1995).

Another impetus for the incorporation of 3D sound in auditory
displays, is that enabling technologies are now becoming available to the
general public. Sound spatialization was once the sole domain of researchers
with access to expensive computer workstations. 3D sound capabilities are
now being offered to the general public in the form of desktop computer

hardware, software, and consumer audio gear.

3.2 Elements of Auditory Display Design

The successful use of audio in human-computer interfaces and
interactions requires system designers to consider sound as an integrated and
functional element of the system. Too many systems and applications
incorporate audio as an afterthought and assign sounds to various system
elements in an ad hoc manner. This section will discuss the important issues
that need to be addressed in a successful design of auditory displays: the
function of sound, the mapping of sound to data, sound design, and sound

generation mechanisms.



3.2.1 The Function of Sound

The fundamental question of auditory display design is: what function
will audio serve in this application or system? Buxton (1989) gives an
overview of three general types of information capable of being conveyed
through non-speech audio messages (Buxton 1989):

1 - alarms and warnings

2 - status and monitoring indicators

3 - encoded messages

Alarms and warning messages are discrete events and convey urgency.
They are meant to disrupt any ongoing tasks and bring to the user’s attention
some vital aspect of system performance or state. These types of acoustic
signals have been in use in computing systems and various other sorts of
machinery for some time. However, not much attention has been paid to
important aspects of their sound design. For example, alarms play a vital role
in high stress environment such as medical centers and airline cockpits. Due
to their loud and jarring characteristics however, alarm sounds often
becoming annoying and can even induce more stress (Begault 1994). Research
addressing the specifics of auditory alarms has shown that important aspects
of alarm design include overall level, temporal characteristics, and spectral
characteristics (Patterson 1982, adapted from Kramer 1994).

Status and monitoring indicators provide feedback on current system
states and on-going processes. These can take the form of discrete auditory
feedback signals, or continuous sounds. As an example of the former, Buxton
(1989) describes how the changing pitch of key click sounds can inform the
user of a text processor whether the application is in edit mode or view mode.
Continuous sounds on the other hand, can represent on-going internal
system processes, and last for as long as the process is in progress. If
appropriately designed, these sounds can take advantage of the user’s ability to
monitor background auditory streams. Changes in these background streams
will be detected by the listener and will point to changes in the underlying
processes. As Buxton (1989) states however, auditory display design needs to
take into consideration the fact that “although we can recognize and

simultaneously monitor a number of different audio cues, we can normally
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only respond to one or two at a time.”

Encoded messages are used to convey quantitative or numerical data in
patterns of sound. These are designed to take advantage of a listener’s
auditory pattern matching and recognition skills. An example of these types
of messages would be the mapping of sounds to multivariate data sets such as
statistical and financial information. The user would then listen for sound
patterns which may either be familiar and expected, or completely new
leading to novel conclusions. These techniques are similar to those found in
data visualization systems.

The functionality that audio can provide, points to two broad categories
of auditory display applications: monitoring systems, and data analysis
systems. Each requires different approaches towards design and user training
(Kramer 1994b). It should be noted however, that many tasks involve an
overlap between these two categories.

Monitoring applications allow the user to monitor various on-going
processes and examine system states. Although this implies a certain level of
data analysis, the purpose of the analysis in this case is to recognize and attend
to familiar patterns representing normal and problematic system states.

In terms of design, an auditory display used for monitoring events
needs to unambiguously provide the user with process and system state
information. User training involves learning a limited, but not necessarily
small, set of auditory messages corresponding to various system elements and
processes. Examples of monitoring applications include medical data
monitoring systems, air traffic control equipment, and general computer
interfaces.

In contrast, data analysis systems are used for data exploration where
the data is often time-varying and multidimensional in nature. Although the
user may recognize certain system states, the goal of data exploration is to
examine the interaction of various data variables by listening for and
exploring unfamiliar sound patterns. Due to the nature of the task, auditory
displays used in data analysis systems need to provide far more interactivity
than monitoring systems. Users need to be able to tweak and tune various
parameters as they explore unfamiliar data sets. This requires a higher level of
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end user training, which in some ways is similar to that of musicians. Users
need to learn to “listen” to the system with an analytical ear, and be able to
draw conclusions from what they hear. This also implies that users need to be
able to hear data in multiple ways (Kramer 1994b). Auditory data exploration
can prove to be useful in some of the same areas as data visualisation systems.
These include scientific studies dealing with environmental, chemical, and
physical modeling, as well as more commercial applications such as statistical
and financial analysis.

3.2.2 Mapping Sound To Data

The success of using audio in human-computer interactions is
dependent on the user’s capability of extracting and understanding relevant
information from the sounds produced by the system. The well implemented
mapping of sound to data is therefore a crucial element in the design of
auditory displays. This section will present several of the most common
mapping techniques used in current auditory displays.

Buxton (1989) and Gaver (1986) state that most auditory display research
has been based on the traditional understanding of sound and our auditory
system. Mapping schemes based on this approach map data to the
psychophysical attributes of sound: pitch, timbre, and amplitude. Bly (1982,
1987, 1992) has shown that this type of mapping can be successfully used in
representing time-varying multivariate data. Similarly, Kramer (1991, 1994a)
uses a technique he calls parameter nesting. Essentially, he maps data to
various levels of the psychophysical attributes of sound. For example, there
are five levels of loudness nesting: pulse speed, duration, envelope, cluster
speed, and master volume, each of which can represent a unique data
variable. Pitch can be controlled at various levels as well, including overall
pitch, modulation frequency, and musical scale.

Earcons are also based on mapping data to the psychophysical attributes
of sound. They are abstract, synthetic tones that can be used in structured
combinations (Brewster et al. 1994). In many ways earcons resemble motives
in music compositions in that they both take the form of short, malleable

rhythmic and melodic fragments.
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Blattner et al. (1989) discuss a hierarchical approach to earcon design
which lead to families of related messages. They give the following example
of how an error-message family may be built: At the top level of the hierarchy
is a unique rhythm which identifies the error-message family. The next level
down would then assign various pitch collections to the different types of
errors. For example, program execution errors can be identified by a
descending minor arpeggio coupled with the distinct rhythmic pattern of the
error message family. Using the same rhythmic pattern, a descending
diminished seventh chord may signal an operating system error. Various
types of error messages within these categories can then be distinguished by
unique timbres. For example, a descending diminished arpeggio with a
trumpet sound can signal a write to disk error, while the same pattern with a
flute sound can signal a read from disk error. Similarly, register and dynamics
can be applied to earcons to further categorize related system events.

In contrast to these mapping techniques, are those which use real-
world sounds or auditory icons, to present information. Gaver (1986, 1989,
1994) has proposed a mapping scheme based on a theory of sources rather
than one based on the proximal or psychophysical stimuli of sound discussed
above (Buxton 1989).His argument is that our normal mode of hearing
involves listening to sounds in order to identify their sources. When
someone hears footsteps behind them in a dark alley, they are more likely to
hear that they are being followed than to focus on the timbre, rhythmic
regularity, and pitch of those footsteps. Real-world sounds carry information
describing the physics of the events that caused them. This includes the
material and size of objects, as well as the type of event (e.g. glass breaking,
door slamming, sandpaper scraping, etc). Auditory icons apply these concepts
to elements of the computer system where text files sound like shuffling
paper, large applications sound like large metallic objects, and background
processes sound like machines at work. There has been a great deal of work
with auditory icons based on Gaver’s approach, including that of Jonathan
Cohen (1994) and Elizabeth Mynett (1994).

Auditory icons may provide an intuitive approach to understanding
what is being represented by a given sound (in terms of both object and
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event). Earcons on the other hand, are inherently more abstract, making a
particular mapping useful only after the user is given a certain amount of
training. While interpreting auditory icons is based on existing real-world
listening skills, interpreting earcons requires listening skills similar to those
employed when listening to music and may be more difficult to develop for
some people.

Although auditory icons convey the notion of sources and interacting
objects, much research is needed to investigate what aspects of sound give us
this information. On the other hand, the psychophysical attributes of sound
have been well studied and may offer a higher dimensionality in terms of
data representation: data variables may be mapped to the many parameters of
sound (pitch, timbre, amplitude, frequency modulation rate, etc.). The
selection of an appropriate mapping scheme for a given auditory display
system depends on what kind of data needs to be represented and who the

end-users of the system will be.

3.2.3 Sound Design

Computer users often turn off the sound features of their systems
because they find the sounds annoying, distracting, and uninformative.
Clearly, the choice of sounds and their design have a great impact on the
success of a given auditory display (similar to the impact of music and sound
effects in movies, video games, etc.). This section will discuss some general
issues that sound designers need to be concerned with.

The fidelity of sound is of great importance. Most sounds used in
computer systems are of low fidelity. In the past this was due to hardware
restrictions: high fidelity sound playback was not available and the storage of
high fidelity sound files was not practical. The trend to use low fidelity sound
has continued even today where systems with greatly improved sound
playing capabilities and storage space, as well as greater processing power, are
widely available to the general public. This reflects the consideration of audio
as an afterthought or “bonus” feature in many system designs.

Besides offering a more enjoyable user experience, high fidelity audio
provides for greater functionality in auditory display systems. In describing
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how sound fidelity affects user interpretability of audio messages, Bargar
(1992) states that high fidelity audio allows the differentiation of similar
sounds used in complex representations. He goes on to say that low fidelity
sound changes the listener’s task from differentiation to categorization. This
is similar to comparing high and low quality photos: more detail is present in
the higher quality picture, hence conveying more information to the viewer.

Patterson (adapted from Kramer 1994, 44) suggests some other
guidelines for auditory display sound design. Although he worked on
auditory warning systems used on civil aircrafts, his findings may influence
sound design in general. Patterson states that the main design issues include
overall sound level, temporal characteristics, and spectral characteristics. For
audio messages to be informative, they need to be detected by the user. Loud
sounds are annoying, distracting, and in Patterson’s study, tend to incapacitate
users. He found that auditory messages need to be at least 15 dB above the
noise floor or masked threshold, but should not exceed 30 dB. As far as a
alarm sound’s temporal characteristics are concerned, onset and offset times
should not be too abrupt so as not to startle the user. Patterson found that
onset times between 20 and 30 milliseconds were preferable. He also found
that similar temporal patterns tend to lead to confusion between messages.
Similarly, spectral patterns of individual sounds need to be diverse as well.
When faced with the decision on how much control to give to the user when
making preference adjustments, auditory display designers may take
Patterson’s findings as base values.

Other important, yet poorly understood, aspects of sound design are
the affective and emotional responses that sounds elicit in listeners (Kramer
1994a). One only needs to examine the various effects that music has on
people: it has the ability to convey a whole palette of emotions including
pleasant and unpleasant feelings. In terms of auditory displays, these aspects
of sound can influence how information is interpreted (Kramer 1994a).
Kramer (1994a, 214-215) gives a partial list of affective associations with sound
which includes ugliness, richness, hollowness, and unsettling. Although
music provides us with examples of how sound is used to convey these
feelings, more scientific study is needed for a better understanding of how
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these factors may be controlled and put to use in auditory displays.

3.2.4 Sound Generation

Auditory display designers have three broad categories of sound
generating techniques at their disposal: sample playback, real-time synthesis,
and MIDL

Sample playback is currently the most widely used playback
mechanism. Practically all computer systems today offer the user some form
of capturing (sampling) a sound, storing it, and playing it back. In terms of
auditory display, this situation is deceptively simple. Gaver (1994) outlines
some difficulties related to using sampled sounds. The first is that finding a
real-world sound that best represents a certain auditory display element may
be difficult: while emptying the computer desktop trash has a real-world
counterpart, copying a file from one directory to another does not. Second,
shaping and real-time modification of sampled sounds in terms of auditory
display parameters is difficult. Most sound design software is designed for
musical purposes and not for addressing auditory display issues. Lastly, high-
fidelity sampled sounds require large amounts of storage memory.

Real-time synthesis addresses some of the problems of using sampled
sounds. Sound designers are able to create their own sound generating
algorithms and generate tones best suited to the requirements of a given
auditory display. This provides a rich opportunity for sound exploration and
manipulation. However, most synthesis programs are standalone
applications and are not easily integrated with other system functionality.
Furthermore, direct synthesis requires auditory displays to maintain their
own synthesis engines in either software or hardware, increasing the size and
complexity of the auditory display system.

A middle ground between the above two methods of sound generation
is MIDI. MIDI provides the communication protocol to control devices
capable of both real-time synthesis and sample playback. MIDI devices have
become affordable and widely accessible to the general public in the form of
musical instruments, computer sound cards, and software. Auditory display

systems may easily incorporate outboard MIDI gear for sound generation,
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freeing up valuable processing resources.

The problems with MIDI are similar to those of sound design software.
These devices are primarily designed for applications in music and not for
dealing with the specifics of auditory displays. In addition, the low resolution
of MIDI data (128 possible values for most MIDI messages) and its maximum
serial transfer rate of 31.25 Kb may be insufficient for complex auditory
displays.
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4. The Use of Sound on the WWW

Although the Internet originated in the nineteen sixties, it wasn’t until
the development of the World Wide Web (WWW) in the early nineteen
nineties that the Information Superhighway was embraced by the general
public. The WWW has provided easier access to the Internet in the form of a
graphic user interface (GUI) - essentially a window into a vast pool of
information. It has become a powerful communication tool, providing
connectivity across the globe.

As with most computer system developments, the visual component
of WWW applications is far ahead of audio support. WWW research and
development is mainly concerned with extending the GUI paradigm to
accessing the Internet. For the WWW to be a true multimedia interface to the

Internet, the communicative power of sound cannot be ignored.

4.1 General Aspects of the WWW

Fluckinger (1995, 274) describes the WWW as follows:. First, it is the
name of a project started at CERN, the European Laboratory for Particle

Physics, in 1989. The impetus for this project was the need for researchers to
manage and share large amounts of information with fellow collaborators
who were spread around the world. Second, it is a collection of specifications
and protocols designed to address how this body of information may be
managed and shared. These specifications include the structure of WWW
documents, how to access these documents, and how they may be transferred
over computer networks. The development of these protocols was quickly
adopted by the general Internet community. This in turn lead to the
establishment of a world wide organization concerned with the continued
development of WWW standards in 1995, led by MIT in the USA and INRIA
in Europe. Lastly, Fluckinger describes the WWW as “the space of digitized
information, the hyperspace, available over the Internet and supported by a
set of interlinked information servers”.
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Fluckinger (1995) offers two fundamental reasons for the wide spread

popularity of the WWW:

1- the lack of a central authority

2- the universality of the WWW
A lack of a central authority provides the opportunity for anyone to publish
and integrate information with preexisting WWW documents. World wide
connectivity, the ability to exchange information over heterogeneous
computer networks, and the standardization of communication protocols all
contribute in making the WWW a universally accessible information
resource. For example, the WWW can provide students across the globe with
easier access to research material which would otherwise be buried in the
corners of some distant library.

These defining characteristics of the WWW also point to some
inherent problems. Although the ease of WWW publishing facilitates the
dissemination of useful information, it also allows for “hyperspace
pollution”: just because something is published does not mean it is important
or useful, and may waste valuable resources like storage space and network
bandwidth. As in the real world, the Internet community is very much
concerned with human right issues like freedom of speech and censorship.

The main problem with the universality of the WWW, is that the
development of tools to be used over heterogeneous networks must be
designed to deal with the lowest common denominator. This often results in
sacrificing the use of higher-end system functionality to be compatible with
lower-end systems.

Over the past couple of years, the WWW has experienced an explosive
growth in both the development of related technologies and the number of
people accessing online resources. This has increased the complexity of the
WWW in terms of the volume of available information, how information is
accessed, and the very nature of the information itself. It is no longer simply a
playback mechanism for static hyperlinked documents, but has developed
into an interactive medium full of dynamic content.

The use of the WWW has quickly evolved from the exchange of
knowledge through simple documents, to general, multimedia
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communication. Today’s interactive WWW applications include commercial
transactions, entertainment and “edutainment” applications, and computer-
supported cooperative work. WWW technologies will continue to develop as
computer companies and software developers look to integrate Internet
accessibility and services with more traditional desktop computer systems.

4.2 Current Uses of Audio on the WWW

The use of audio on the WWW falls under three main categories:

audio file download, streaming audio, and embedded audio. The following
section will discuss each of these categories and how they relate to the
demands of interactive WWW auditory displays.

4.2.1 Audio File Download

The most conventional use of audio on the WWW is that of the
distribution of audio files. Users first select which sound file(s) they wish to
hear and initiate a download. Web sites usually offer sound files in several
formats (e.g. AIFF, WAVE, MPEG, etc.) and leave it up to the user to select
which one is the most suitable for their particular system. Once downloaded,
the audio file is played with an appropriate sound playing application set up
by the user. Very often this consists of configuring the WWW browser to
launch an appropriate application responsible for playing the sound file.
However, it is becoming more common for WWW browsers to handle audio
(as well as other media) playback themselves as an integrated feature of the
browser application.

Audio file transfers have become quite popular with musicians. For
example, composers are able to set up web sites containing archives of “sound
bytes” from recent compositions, making examples of their material available
to anyone who has access to the WWW. Similarly, record companies are
posting sound files in an attempt to promote the sales of recordings.

Audio file downloads however, do not meet the demands of auditory
display systems. In contrast to the real-time interactive aspects of auditory

displays, the nature of conventional audio file downloads is that of a selection
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process and information request. It is up to the user to select a file, wait for it
to download, and make sure that the playback application is properly
installed. In addition, the latencies inherent in transferring files over the

Internet dispel the notion of real-time system response.

4.2.2 Streaming Audio

Streaming sound files enable the real-time transmission of audio on
the WWW. Instead of having to wait for the whole file to be downloaded in
order to hear it, audio is played back on the user’s system as it is being

transferred over the network.
Fluckinger (1995) describes four critical performance criteria related to
the real-time transmission of time-dependent media:
1- The throughput of the network, usually expressed as

the number of bits the network is capable of accepting and
delivering per unit time.

2- The transit delay. This is the time elapsing between the
transmission of the first bit of a data block by the

transmitting system and its reception by the receiving end-
system.

3- The delay variation is the variation over time of the
transit delay.

4- The error rate measures the behavior of the network
with respect to alteration, loss, duplication, and out of
order delivery of data.

Fluckinger (1995) also discusses the demands placed on underlying
networks by real-time audio transmissions . He states that for uncompressed
audio streams, telephone quality audio requires a bit rate of 64 kilo-bits per
second (Kbps) while CD quality audio requires a throughput of 1.4 mega-bits
per second (Mbps). On the other hand, compressed audio streams require
lower bit rates: telephone quality can require 32, 16, or 4 Kbps (depending on
compression algorithm used), and CD quality can vary from 384 down to 192
Kbps (again, dependent on compression algorithm). Some compression
algorithms, such as MPEG-Audio Layer 3, even offer near CD quality with bit
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rates as low as 64 Kbps. If other media (e.g. video) accompany the audio,
streaming technologies also need to address the issues of synchronization
between the various elements of the given real-time transmission.

Numerous companies are involved in developing streaming
technologies, and have made great strides in a rather short amount of time.
The three major types of Internet applications which benefit from this
technology are telephony, audio/video broadcasting, and teleconferencing
(Lombardi, 1995). Internet telephony is mainly used for bypassing the long
distance costs of regular telephone service. Whether or not this is a waste of
network resources is open for debate. Internet-based audio/video
broadcasting and teleconferencing are perhaps more useful applications. They
extend the capabilities of traditional information media like news casts and
educational seminars, by offering new far-reaching broadcasting
opportunities. The viewer/participant base is no longer confined to a small
local area, and can now include people across the world.

Both audio streaming and auditory displays are concerned with time
critical issues in audio delivery. While the former is mainly concerned with
maintaining the integrity of a given audio stream, auditory display systems
have the additional task of performing with minimal response times. The
main purpose of auditory displays is to provide immediate feedback to the
user regarding the state of the system and user actions. An Internet broadcast
of radio news, for example, does not need start at the moment the radio
transmission begins, unlike an auditory display which needs to inform the
user immediately about the state of some mission critical process. Due to
inherent network latencies, auditory displays can not (yet) rely on sending
immediate informative auditory messages and cues across a network.

4.2.3 Embedded Audio

This third category of audio use on the Internet is more directly related
to auditory displays. Embedded audio involves hiding the complexities of
audio file download and streamed audio: an audio or MIDI file is
automatically downloaded and begins playing when a given web page is
visited.
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Applications of embedded audio range from simply setting a mood to
enhancing elaborate interactive content. Technologies like the Virtual Reality
Modeling Language (VRML), Macromedia’s Shockwave, Sun’s Java, and
Netscape’s ONE programming suite provide the tools necessary for
developing sophisticated, WWW multimedia environments. In turn, these
technologies afford the opportunity to implement various auditory display
techniques as part of the embedded interactive content.

4.3 _Auditory Displays for The WWW

The WWW is a relatively young area of application development. By
incorporating auditory display techniques early on, sound can become an
integral and expected component of the WWW user experience rather than a
“special” feature. Audio can complement visually presented material,
heighten user engagement, and increase the perceived quality of the
application. This section will discuss how a variety of WWW applications
stand to benefit from various sonification techniques.

4.3.1 WWW Browsers

WWW browsing has brought with it a whole new set of user interface

issues. Much like the rest of the computing world, most information is
displayed visually. The sole sound these applications make is a system beep
accompanying alert boxes. Sound can not only enliven the WWW
experience, but provide services and functionality which may be difficult, or
impossible, to present visually.

Many of the benefits of conveying information through sound can be
applied to WWW browsers. At the most basic sonification level, audio can
provide assurances and feedback for user actions. These include basic
operations shared by all applications such as menu selections, button presses,
and the success or failure of various commands such as file saves. Auditory
messages can also be applied to elements and operations specific to WWW
browsing. Our ability to a monitor a number of simultaneous background
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auditory streams, can be used to indicate connectivity status and the state of
downloads in progress. The telephone provides some examples of these types
of auditory cues. Dial tones, busy signals, and noisy lines all convey the
current status of telephone connectivity to the user. In WWW browsing
environments, the user is not always aware of whether the state of their
online connection(s) unless they look for visual indications in the form of
windows and progress bars (which may be hidden from view). Connectivity
status can be represented aurally with the use background ambient sounds.
Any changes in connectivity (e.g. interruption, stall, loss of connection, etc.)
can be indicated by changes in the background sounds. The user is able to
notice these changes without being distracted from whatever task he/she may
be involved with such as reading an onscreen document.

Hypertext navigation can also be made more productive through
auditory cues. Very often the user does not know what’s “on the other side”
of a particular hypertext link: a text file, an application, a sound file, etc. One
solution might be to play identifying sounds as a user passes the mouse over a
particular link. For example, links to text files can sound like paper being
shuffled, while links to downloadable applications may sound like metallic
containers. In addition, the approximate size of linked objects may be
conveyed through sound: large text files may sound like large books and large
applications may sound like large, full metallic containers. This “mouse-
over” technique has the benefit of providing file information without having
the user activate a particular link.

Other elements which may be sonified can include the user’s bookmark
file. Sounds can be used to indicate not only the file type and size, but age as
well. For example, the older a bookmarked document is, the more muffled it

sounds.

4.3.2 Network Administration Tools

Network monitoring and WWW server applications can be enhanced
by incorporating status and monitoring sonification techniques. For example,
network administrators can listen to a WWW server in order to hear how
busy it is: the greater the load, the busier it sounds (these cues can be similar to
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what an overloaded car engine may sound like in the real world). The
server’s auditory display can also offer the capability to be tuned into specific
processes to determine their particular states. For example, the administrator
might hear that mail deamon is still running (e.g. an identifiable continuous
background sound) but that the FTP service is down (e.g. the absence of the
“FTP deamon” sound). Similarly, the status of individual nodes of a network
may checked. For example, a network ping (sending out and getting back a test
packet over the network to a particular machine) can have an auditory
counterpart.

There are a growing number of data analysis applications written for
analyzing WWW traffic. These applications are used by web site managers to
analyze various server system states such as incoming network traffic and
web server log files. These applications employ techniques quite similar in
nature to data visualization techniques used by the financial and scientific
communities. Variables such as how often requests are made for various
services, from where the WWW server is being hit, and the times of greatest
load on the server are presented visually in the forms of graphs and
customized reports. These multivariate data sets can be sonified using
auditory data analysis techniques. Various data parameters may be mapped to
auditory variables such as pitch, amplitude, and timbre. Consequently,
various trends in the data may be heard which might otherwise be missed

when attempting to correlate a number of data values visually.

4.3.3 Communication Tools
The use of the WWW has gone from the simple exchange of
documents to providing novel communication tools. Examples include
computer telephony and teleconferencing tools, and Computer-Supported
Cooperative Work (CSCW) applications are examples of other emerging
WWW communication tools. Although text-based CSCW applications have
been around for quite some time on the Internet (e.g. e-mail, MUDs, chat
lines, etc), these have traditionally consisted of Unix applications with
command line interfaces. The WWW has made the use of these applications
more intuitive and accessible to the general public through the use of GUISs.
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Instead of remembering command line options and arguments, users can
now make menu selections and operate graphic buttons.

Some examples of CSCW WWW applications include chat-rooms and
message-posting areas. These take the form of simple windows with various
menu options and buttons for entering and using chat-rooms or posting
areas. Auditory displays can provide sonic assurances. For example, auditory
cues can be used for hearing when a new user has joined (or left) a chat
session, the success or failure of posting new messages, and connectivity
status. Chat rooms may also take the form of more complex VRML worlds,
complete with avatars (graphic representation of logged on users) and
landscapes. Spatialized sound can make these worlds even more complete
where objects and user actions not only look real, but sound real as well.

Other popular uses of CSCW include shared whiteboard tools and and
shared application tools (Fluckinger 1995). Shared whiteboards allow multiple
participants to view a common virtual whiteboard from their respective
computer monitors. This shared space can then either be used as a common
sketching pad, or a container for imported documents where multiple
participants can annotate, highlight, or markup a given document without
actually altering its original contents. Shared application tools extend the
shared whiteboard paradigm, allowing multiple users to work on a single
document or share a single application. In this case, various users alter the
actual contents of a shared document. Examples include collaborative graphic
design tools, multimedia authoring suites, and programming environments.

A common issue shared by these applications is conveying to all
participants information concerning who is the active speaker, who is making
the current annotations, and who is actually present at the session. This
information, called floor control (Fluckinger 1995, 143), is usually presented
visually in one form or another. For example, a given user types text in a
window to notify the other participants that they wish to perform some action
(e.g. speak, highlite, draw, etc.). Each participant is also assigned a color so that
everyone can identify who marked what on the whiteboard. Finally, the list of
people present at the given session is displayed in a window.

While audio/video teleconferencing tools are often used to establish
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more elaborate communication channels, they place heavy demands on the
underlying network. These may result in long latencies, thereby reducing the
productivity of a cooperative session.

Spatialized auditory displays can complement the graphic nature of
these applications. For example, auditory displays may more conveniently
address the issues related to floor control. Instead of assigning colors to
individual participants, they can each be assigned a position in 3D space.
Then, when someone makes changes to a given shared document, perhaps
drawing a figure or typing some text, appropriate sounds would come from
assigned “seating” positions. These sounds can consist of typical drawing and
typing sounds like paint brush strokes and typewriter keys. Auditory cues
would reduce the visual load placed on users and allow for less distractions
while working on the primarily visual tasks of document and application

sharing.

4.3.4 General WWW Applications and Documents

More general WWW and Internet applications may also incorporate

auditory display techniques. Among these are tools used to store and retrieve
data on remote computers (FTP applications), connect to remote computers
(telnet clients), and perform WWW information searches (search engines and
web robots). All of these need to relay to the user the status of data transfers
and connectivity, and may integrate many of the auditory cues described
above.

While the applications discussed thus far are means of sonifying the
tools for accessing the WWW and the Internet, WWW users and developers
may contribute to the sonification of the web by creating sonified web
documents. HTML documents have gone from being static documents to
interactive content full of graphic elements like menu bars, image maps,
animations, and games. More and more web-site developers are now
incorporating embedded background music to provide ambience and set a
mood while visiting their sites. Embedded sounds may also be used to
identify the type of web site (e.g. education, commercial, organization, etc) as

well as web site areas (e.g. recent events, press releases, product info, etc.).
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5. THESIS SOFTWARE

The software developed as part of this thesis consists of the Netscape
plug-in for Macintosh PowerPC called SprocketPlug, and a companion
Macintosh utility program Theme Editor. SprocketPlug offers WWW
developers the opportunity to incorporate interactive spatialized sound in
numerous WWW project settings. The Theme Editor utility is used to create
collections of sounds known as SprocketPlug Themes, which contain the
actual sounds to be played by SprocketPlug. Theme Editor may also be used by
end-users to customize these theme files.

This chapter will begin by discussing how extending client-side
functionality has enabled elaborate interactive content to be delivered on the
WWW. Next, the technologies specific to the development of the
SprocketPlug plug-in will be presented. The remainder of the chapter will
describe the thesis software and how programmers can incorporate
SprocketPlug functionality at various levels of WWW document/application
development (namely HTML, Javascript, and Java).

5.1 Interactive Content On The WWW

5.1.1 Traditional WWW Communication

The WWW is based on a client-server model of computer networking.
A WWW client is a web browser running on the end-user’s machine which
communicates with web servers via the Hypertext Transfer Protocol (HTTP).
The communication consists of client requests and server responses. Figure 5-
1 illustrates this process.
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Communication begins with a client requesting a file from a particular
HTTP server. The server then looks for the file and, if available, sends the file
to the client. If the server can not locate the file or the client is denied access to
the file, the server sends an appropriate error message indicating the reason
the file was not delivered. Immediately preceding the delivery of the file
however, the server informs the client of the file’s type. The server sends the
client a message (or header) describing the file’s contents using a subset of the
Multi-purpose Internet Mail Extensions (MIME) specification. This message is
typically “Content-type: text/html”, which informs the client it is about to
receive an HTML document. Other MIME type messages are used to describe
various other types of documents including AIFF sound files (Content-type:
audio/aiff), JPEG images (Content-type: image/jpeg), and MPEG encoded
videos (Content-type: video/mpeg).

The Common Gateway Interface (CGI) describes the mechanism used
by servers to process more complex client requests such as form processing
and database searching. Instead of processing these requests themselves,
servers invoke external programs (CGI scripts) to do the work for them. The
results of the CGI script are then sent back to the client. Figure 5-2 depicts this

process.
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The CGI specification is essentially an interface through which servers pass
parameters to external programs and receive results from them. Although
CGI programs allow for some interactive client-server communication, due to
network latencies and potential server load, they do not meet the demands of

real-time, interactive multimedia content delivery.

5.1.2 Extending Client-side Functionality

Several technologies exist to address the issue of more efficient
multimedia delivery over the WWW. These include Netscape’s plug-in
architecture and Sun’s Java language. Instead of placing all the load on the
server side of WWW communication, these technologies give the client
computer the ability to process information locally. Client-side processing
allows for more complex and efficient behavior to be integrated into a web
page/site than was previously available through CGI programming.

Netscape plug-ins are software modules which extend the functionality
of the Netscape Navigator WWW browser, and hence, client-side processing.
A plug-in may be created to display various custom data types without having
to update or modify the browser application itself. A simple example might
involve the display of 3D graph data. The client computer would retrieve the
data from a company server, and then proceed to interpret and display the
data itself. Previously, server-side CGI programs or external applications were
required to execute these types of tasks.

Plug-ins can not only display data within a WWW document, but can
also behave like any other application. For example, Macromedia’s
Shockwave plug-in allows multimedia presentations (prepared with the
Director authoring program) to run from within a standard WWW
document. Another popular plug-in is Netscape’s Live3D, which processes
user-navigable three dimensional graphic environments coded in VRML.
However, plug-ins consist of compiled native code. Various versions of a
given plug-in must be created to accommodate different computer platforms.

Java (Sun Corp. 1996), is a platform-independent, interpreted object-
oriented programming language. Although Java may be used to write

standalone applications, it’s real power is the ability to write Java applets,
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which are applications and data embedded in standard WWW documents. In
contrast to plug-ins, a Java applet’s code is downloaded with the WWW
document. This code is then executed by a Java interpreter running on the
client machine in conjunction with the WWW browser. Some examples of
Java applets include educational programs, games, and utilities.

Netscape and Sun have also developed the Javascript language. This is
is a less complex interpretive language, and consists of lines of code written
directly into HTML documents. Javascript can communicate directly with
other elements on the HTML page, allowing more elaborate processing than
is possible with standard HTML. Many of the tasks previously requiring CGI
programs, can now be accomplished using Javascript. These include dynamic
web page construction based on user input, and user event-processing.

Javascript may also be used to lighten the load of server-side processing.

5.1.3 Integrating L.ocal and Remote Resources

A growing number of applications are being developed which integrate
local and remote resources. These “Internet savvy” or “hybrid” applications
combine the dynamic nature of the WWW (remote resources) with assets
stored on client computers (local resources).

There are two approaches to developing applications which integrate
local and remote resources. The first approach involves an application
running on the client machine reaching over the WWW for content stored
on a server. An example might be an educational CD-ROM on space
exploration with WWW links to the most recent snapshots of space from
NASA’s web site.

The second approach in integrating local and remote resources consists
of remote applications, or applications running in a WWW browser (e.g. Java
applets), accessing locally stored content. By using locally stored content,
download and startup times of remote applications can be greatly reduced.
Examples include multi-user WWW educational programs and games which
use locally stored images and sounds. Locally stored media can then be
updated, edited, or even replaced by the user without making any changes to

the parent application (found somewhere on the WWW).
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The SprocketPlug plug-in developed as part of this thesis, extends
client-side functionality by providing a mechanism for interactive spatialized
sound handling. In particular, SprocketPlug addresses the issues of limited
audio handling in Java and the non-interactive nature of current Netscape
Navigator audio plug-ins. Although Java provides basic sound playing
capabilities (play, stop, loop), it limits the use of sound to 8 kHz/8 bit
monophonic plLaw encoded audio files. In contrast, SprocketPlug can play CD-
quality, full bandwidth (44 kHz/16 bit) audio, and provides real-time 3D
sound processing (while many audio plug-ins also support full bandwidth
audio, they act as standalone players). The sounds used by SprocketPlug are
stored locally in sound collections called SprocketPlug Themes. These themes
are created and customized using the Theme Editor utility without having to

change any source code in the application using SprocketPlug.

5.2 SprocketPlug Enabling Technologies

This section will present the technologies directly related to the
development of the SprocketPlug plug-in. Specifically, SprocketPlug
incorporates Apple’s SoundSprocket technology for sound spatialization, and
provides a LiveConnect interface for accessing SprocketPlug functionality
from HTML, Javascript, and Java applets.

5.2.1 Apple SoundSprocket
The Apple SoundSprocket API is part of the larger Apple Game

Sprockets software developer’s kit aimed at game and multimedia
development for macintosh PowerPCs (there is no version available for
Macintoshes based on the Motorola 68000 family). In addition to the
SoundSprocket, this kit includes APIs for input device handling
(InputSprocket), graphics (DrawSprocket), and networking (NetSprocket).
SoundSprocket works on top of Apple’s Sound Manager to provide real-time
three dimensional audio filtering (position and distance in 3D space),
reverberation, and Doppler effects. It consists of the SoundSprocket Filter
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system extension, the SoundSprocketLib shared library, and requires Sound
Manager version 3.2 or higher. SoundSprocket can be configured to work
with headphones, stereo speakers, or a mono output. The difference between
headphone and loudspeaker playback is that crosstalk cancellation filtering is
active only for the latter. Directional cues are obviously lost during mono
playback, but reverberation and Doppler effects are still present to some

degree.

5.2.2 Netscape’s LiveConnect SDK

Netscape’s LiveConnect architecture allows the integration and
interaction of Javascript, Java, and plug-ins within the Netscape Navigator
environment (version 3.0 and higher). It gives programmers the following
possibilities:

1 - call a Java applet’s public variables and methods from
Javascript

2 - call Javascript functions and objects from a Java applet
3 - call Java methods from plug-ins

4 - call plug-in methods from Java applets.

5 - call plug-in methods from Javascript

Although points 1, 2, and 3 are useful, points 4 and 5 are perhaps the
most interesting. Point 4 describes the ability of Java applets to call native
methods implemented by a plug-in. The way this works is that a Java wrapper
class is defined for the plug-in which defines the methods the plug-in wishes
to export. This class extends Netscape’s own netscape.plug-in.plug-in class and
appears to Java applets as another available class (the plug-in’s Java wrapper
class must be in Netscape’s plug-ins folder along with its associated plug-in).
The ability to implement and call native methods was previously only
available to standalone Java applications.

Regarding point 5, an embedded plug-in is accessed from Javascript as
an element of the HTML page, much like various other standard HTML
elements like form input fields and buttons. Similarly, a given plug-in's

methods are called using standard Javascript syntax.
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5.3 Thesis Software Overview

5.3.1 The SprocketPlug Plug-in
The SprocketPlug plug-in is a Netscape plug-in for Macintosh PowerPC

which implements a virtual audio environment. This environment consists
of a listener, one or more sound sources, and a set of room characteristics.
These elements have various parameters associated with them which affect
audio processing. This section will give an overview of the plug-in’s
functionality, while section 4.4 will describe the specifics of using
SprocketPlug in various settings.

The listener and sound source(s) are located in a three-dimensional
space defined by azimuth, elevation, and distance. Each of these may also
have associated velocities, giving rise to Doppler effects as the listener and
sound sources move and pass each other. In addition, a sound source has
several other characteristics including a reference distance and an angular
attenuation cone. The reference distance is the distance at which the given
sound source was recorded. When the source is exactly at this distance from
the listener, no attenuation of the source’s sound occurs. For distances further
away, the sound source is attenuated, while at distances closer than the
reference distance, the sound is amplified. A sound source’s angular
attenuation cone determines the direction of maximum sound intensity and
the amount of attenuation applied relative to the angle between the listener
and the sound source. A sound source is always the loudest when the listener
is directly facing it. As the angle between the source and listener increases, the
sound is gradually attenuated, as defined by the source’s attenuation cone.
The audio environment also has parameters related to room reverberation
including room size, room reflectivity, and the amount of reverberated signal
in the final output.

Associated with the SprocketPlug plug-in are SprocketPlug themes.
These are Macintosh resource files containing a collection of sounds to be
played by the plug-in. For example, a Java applet game developer using
SprocketPlug for the game’s sound handling, puts all the required sound
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effects and theme music for the game in one SprocketPlug theme. When
SprocketPlug is initialized by the game applet, the given theme file is opened
and its sound resources are made available for the duration of the game.
SprocketPlug theme files are a convenient method of organizing, distributing,

and storing the various sounds required by a project.

5.3.2 The SprocketPlug Theme Editor Utility

The Theme Editor is a small Macintosh utility program which allows
the creation and editing of SprocketPlug themes. SprocketPlug themes are
resource files containing three types of resources: a custom resource ‘spkr’, a
template resource of type “TMPL’, and the ‘snd ‘ resource. The ‘spkr’ resource
specifies the number of sounds in the file. The ‘TMPL’ resource is used for
editing the ‘spkr’ resource when working with the ResEdit resource editing
program. The ‘snd ‘ resource contains all the sound resources for a given
SprocketPlug theme. Some, or even all, of these sound resources may be
compressed, thereby reducing the storage space required for the given
SprocketPlug theme.

A new theme file is created by choosing “New...” under the File
menu. The Theme Creator window pop-ups up (figure 5-3), displaying the
theme’s sound list (initially empty) and a set of buttons. These allow the user
to add, remove, replace, record, and play sounds. The user does not need to
explicitly save any operations because Theme Editor automatically updates

the theme file it is working on.
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figqure 5-3 - the Theme Creator window
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An existing SprocketPlug theme file may be edited by choosing
“Open...” in the File menu. After selecting which theme file to open, the
user is presented with the Theme Editor window. This window displays the
theme’s sound list and buttons for replacing, exporting, and recording sound
files (figure 5-4). As when creating new themes, any changes to the file are
automatically saved by Theme Editor. When editing a theme, the user is able

to replace, export, and record sound.



( figure 5-4 - the Theme Editor window
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Theme Editor imports (i.e. adding and replacing sounds), exports and
records System 7 sound files. As mentioned above, imported sound files may
be compressed files, stored in either standard Apple compression formats
(MACE 3:1 and MACE 6:1) or in IMA 4:1(Interactive Media Association)
format.

55



5.4 Using SprocketPlug

The SprocketPlug plug-in provides functionality on three levels of
WWW development: HTML, Javascript, and Java programming. This section
will discuss how the plug-in’s functionality may be accessed from each of
these three modes.

5.4.1 HTML Authoring
At the HTML level, using the SprocketPlug plug-in is similar to using

most other plug-ins. The HTML author uses an <EMBED> tag to initialize an
instance of the plug-in and set various parameters. When embedding a
SprocketPlug instance, the embed tag’s type parameter must be set to
"audio/SprocketPlug”, which is SprocketPlug’s MIME type. Note that this
MIME type does not need to be known by the server since all the data (i.e. the
SprocketPlug themes ) is on the client machine.

The following line of HTML embeds the SprocketPlug and sets some of

its parameters:

<EMBED TYPE="audio/SprocketPlug" WIDTH=16 HEIGHT=16

NUMCHANNELS="5"
SETTHEME="Nature"
PLAYLOOP="1 1">

The above tag initializes a SprocketPlug instance with five sound channels,
opens the Nature SprocketPlug Theme file, and starts playing a looped sound
on channel 1. The sound played is the first sound in the theme file.

The following are descriptions of all available SprocketPlug embed tag

parameters:

1- NUMCHANNELS numChannels
- sets the number of channels to be allocated where
numChannels is the number channels
- this should only be set once for the whole sonified site
- i.e. only the site's main/home page
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2-PLAYLOOP theChannel soundID
- starts playing a looped sound on the given channel
- soundID is an index into the open SprocketTheme file,
specifying which sound to play
- theChannel specifies which channel to use for playback

3 - PLAY theChannel soundID
- starts playing a sound on the given channel
- soundID is an index into the open SprocketTheme file,
specifying which sound to play
- theChannel specifies which channel to use for playback

4 - SETVOLUME theChannel theVolume
- sets the volume on the given channel
- theChannel specifies on which channel to set the
volume
- theVolume specifies a volume level (integer in the range
0-255)

5-SETDISTANCE theChannel theDistance
- sets the distance of the sound source, affecting it's attenuation
- theChannel specifies on which channel to set the distance
- theDistance is a floating point number representing the
distance between the listener and sound source in meters

6 - SETPOSITION theChannel theAzimuth theElevation
- sets the azimuth and elevation for the sound playing or about
to be played on the channel specified by theChannel
- theAzimuth and theElevation are floating point numbers
specifying the azimuth and elevation in degrees of the sound
source
- positive azimuth values are positions to the right of the
listener while negative values are to the left



N

- positive elevation values are positions above the listener and

negative values are below

7 - SETROOM roomSize roomReflectivity reverbAttenuation
- sets the global reverb parameters
- roomSize is a floating point number specifying the
distance in meters between reverberant walls
- roomReflectivity is a floating point number specifying
the amount of attenuation in dB (less than or equal to 0.0)
that occurs each time a sound bounces of a wall
- reverbAttenuation is a floating point number
specifying the amount of attenuation applied to the
reverberated signal in the final output signal in dB (less
than or equal to 0.0)

8 - SETTHEME themeName
- specifies the name of the Sound Theme file to use
- if this tag is not used, then the Default theme file will be
used
- the theme files are located in Netscape's Plug-ins folder
inside the SprocketPlug Themes folder

While most of these parameters are optional, the HTML author must
specify the number of channels to be opened for sound playback. These
channels are global. Channels only need to be initialized for the very first
instance of SprocketPlug. All subsequent instances of the plug-in will share
these channels. For example, when creating a multi-page web site, the first
SprocketPlug instance will probably be found on the site’s main page. In the
case of a site which uses frames, the first SprocketPlug instance might be
loaded into the frame used as the site’s index. Once the channels have been
initialized, any other SprocketPlug instances can send various playback and
processing commands to these channels.

If the HTML author does not specify a theme name (using the
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SETTHEME parameter), a default theme will be opened. While setting the
theme is not required for SprocketPlug to operate, the default sounds will
most likely not correspond with the nature of the given web page/site. Unlike
SprocketPlug channels, themes are not global. Meaning, that unless a given
instance specifies the same theme as a previous instance, the sounds used by
the new instance will not come from the same theme file. Although this may
seem an inconvenience, it allows individual SprocketPlug instances to play
sounds from different theme files.

If SprocketPlug is not a hidden plug-in (i.e. the <EMBED> tag parameter
HIDDEN is set to FALSE), the SprocketPlug icon will appear. When the user
clicks on the icon, a pop-up menu will appear, allowing the user to adjust the
volume (including muting) of the sounds embedded in the given page.

5.4.2 Javascript Programming

Javascript allows simple logic and behavior to be embedded within an
HTML document. It is a scripting language whose capabilities lie somewhere
between HTML authoring and Java programming. Netscape’s LiveConnect
extends the available predefined Javascript object hierarchy to include Java

applets and plug-ins. Figure 5-5 shows the Javascript hierarchy.
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figure 5-5 - the Javascript obiject hierarchy

havigator
— plugins (an amray of instalied plugins)
L MIME types

window

— parent, frames, self, top
—— location

—— history

— document

— forms ———— elements (text fields, text area, checkbox)
— links
— anchors

through LiveConnect

4
— plugins (a document's embedded plugin(s))

—applets

To call on SprocketPlug’s functionality from Javascript, the plug-in
needs to be embedded in an HTML document using HTML’s EMBED tag. All
SprocketPlug functionality (including channel initialization and SprocketPlug
theme setting) is then accessed via LiveConnect by calling SprocketPlug
methods. The following is an example of embedding a SprocketPlug instance

for Javascript use:

<EMBED TYPE="audio/SprocketPlug" NAME="sprockets"”
MAYSCRIPT=true HIDDEN=true>
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In order for Javascript to be able to communicate with embedded plug-
in, the embed tag’s MAYSCRIPT parameter must be set to true. In addition, the
embedded instance is given a name for easier Javascript referencing, and the
HIDDEN parameter is set to true so that the SprocketPlug icon is not displayed.
Although the other SprocketPlug embed parameters (described in section
4.4.1) may be used to set the initial state of the SprocketPlug instance, calling
SprocketPlug methods from Javascript allows the WWW developer to
incorporate interactive spatialized sound within an HTML document.

Once a SprocketPlug instance has been embedded, its methods are
accessed using standard Javascript syntax. Using the above embed tag
declaration, the following lines of Javascript code initialize the SprocketPlug
instance, set the 3D position of the sound to be played on channel one, and
plays a looped sound on that channel. The sound played is the third sound in
the Space SprocketPlug theme:

document . sprockets.SprInit (S, “Space”, 1l);
document. sprockets.Spr_LoLvlSetPosition(l, -90.0,
0,0);

document . sprockets.SprPlayLoop (1, 3);

5.4.3 Java Applet Programming

LiveConnect gives Java applets access to the full Javascript object
hierarchy including plug-ins and other Java applets. In order to do so, the
applet must first import the netscape. javascript Java package provided by
Netscape in its “java_30.zip” file (found in Navigator’s Java folder). The
applet then has access to the JSObject class through which the Javascript
window object can be retrieved. In turn, this window object then enables the
Java applet to retrieve the document object which contains the embedded
plug-in instance. A local instance of the plug-in’s class can then obtained
through the document object. The following is a snippet of Java code

illustrating this chain of calls:
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the import statements:
import netscape.javascript.*;
import SprocketPlug;

the code to get a local instance of the plug-in:
JSObject win, doc;
SprocketPlug sprockPlug;
// The SprocketPlug class must be with
// the SprocketPlug plug-in in Navigator’s Plug-ins

// folder
win = JSObject.getWindow(this) ;
doc = (JSObject) win.getMember ("document") ;

sprockPlug = (SprocketPlug):
doc.getMember ("instanceName") ;

In addition to importing the netscape.javascript package, the
applet needs to import the class which defines the plug-in’s Java class to be
used for LiveConnect communication between the applet and the plug-in.
This class needs to reside in Netscape’s plug-ins folder, along side the plug-in
for which it provides the interface. Once the applet has a local instance of the
plug-in, all of the plug-in’s associated methods are available. The following
code example initializes the SprocketPlug instance, positions a sound in three

dimensional space, and plays a non-looped sound:

sprockPlug.SprInit (2, "Space", 1);
sprockPlug.Spr_LoLvlSetPosition(l, 0.Cf, 0.0f);
sprockPlug.SprPlayOneShot(l, 3};

5.4.4 The SprocketPlug I iveConnect Interface

To export LiveConnect functionality, a plug-in needs to have an
associated Java class. This class is essentially a wrapper class for a plug-in’s
exported functions, and allows the plug-in to appear as a predefined Java
object. A plug-in's Java class extends the netscape.plugin.Plugin class
provided by Netscape, and may consist of standard Java methods and native
methods. The native methods are the methods implemented by the plug-in.
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The public methods of this class constitute the plug-in’s LiveConnect
interface: the methods that a programmer may call from Javascript and/or
Java.

The compiled class needs to reside in Netscape Navigator’s Plug-ins
folder along with its associated plug-in, in order to be accessible to Javascript
and Java via LiveConnect.

The SprocketPlug LiveConnect interface (i.e. SprocketPlug’s associated
Java class) is divided into four groups of methods: setting up and freeing
SprocketPlug, general controls, low-level calls, and high-level calls. The first
group contains the methods for initialization, freeing up resources, and
configuring output settings. They are as follows:

public native void SprInit(int numChan, String themeName, int

modeFlag)
Initializes the SprocketPlug plug-in, allocates the number
of channels specified by numChan, sets the current
SprocketPlug theme to the file specified by themeName,
and sets the SprocketPlug to use either the low-level or the
high-level SoundSprocket API as specified by modeFlag,
where a value of 1 sets SprocketPlug to use the low-level
API, while a value of 2 sets it to use the high-level API.
(The difference between using the low-level and high-
level calls will be discussed shortly.)

public native void SprConfigureOutput()
This method pop-ups the SoundSprocket configuration
dialog. The user is able to select headphone, stereo
speaker, or mono playback. The difference between
headphone and stereo speaker playback is that
SoundSprocket’s cross cancellation filters are active in the
latter case. In addition, the user is able to set the angle of
the stereo speakers. Although 3D positional data is lost
during mono playback, reverberation, Doppler, and
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public

distance cues are still present to some degree.

native void SprCleanUp()
This method is responsible for releasing any resources used by the
current SprocketPlug instance (e.g. the listener and sound sources).

The next group of methods provides general SprocketPlug controls

which are as follows:

public

public

public

public

public

native void SprPlayLoop(int chanID, int soundID)

Plays a looped sound on the channel specified by chanID. The sound
played is determined by soundID, which is an index into the current
SprocketPlug theme file.

native void SprStopLoop(int chanID, int nowFlag)
Stops playback of a looped sound on the channel specified by

chanID. The nowFlag determines whether to stop the sound
immediately (a value of 1), or to stop the sound when the current

loop finishes (a value of 0).

native void SprPlayOneShot(int chanID, int soundID)
Plays a sound on the channel specified by chanID. The sound played

is determined by soundiID, which is an index into the current

SprocketPlug theme file.

native void SprStop(int chanlID)
Immediately stops the playback of a sound on the channel specified

by chanIb.
native void SprSetVolume(int chanID, int volume)

Sets the playback volume of the channel specified by chanID to the
value of volume (must be in the range of 0 - 255).
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public native void SprSetRateMult(int chanID, float rateMult)
Multiplies the rate of playback on the channel specified by chanID by

a factor specified by rateMult. This affects both the time and pitch of
the currently playing sound. Normal playback speed is represented
by the value of 1. Higher values increase the playback speed, while
lower values slow it down. For example, a value of 2 doubles the
playback speed, a value of 0.5 slows it down in half, and a value of 0
essentially pauses playback. Legal rateMult values are in the range
of 0 - 200.

public native void SprSetTheme(String themeName)
Closes the currently open SprocketPlug theme (if any) and opens the

theme specified by themeName. If the new theme is not found,
SprocketPlug’s default theme is used instead.

public native void SprSetRoom{int chanID, float roomSize,
float roomReflectivity, float reverbAttenuation)
Sets the room reverberation parameters of the virtual environment

maintained by SprocketPlug. roomSize specifies the distance in
meters between reverberant walls of the environment,
roomReflectivity specifies the amount of attenuation (in dB)
each time a sound bounces of a reverberant wall, and
reverbAttenuation specifies the amount of attenuation (in dB) of
the reverberated signal in the final output. roomReflectivity and
reverbAttenuation must be equal to or less than 0.0. Although
reverberation parameters affect all channels, a channel number
needs to be specified to maintain consistency with the Apple’s low-
level SoundSprocket APIL

SprocketPlug can be set to operate in one of two modes: low-level and
high-level. These make use of SoundSprocket’s own low-level and high-level
APIL. When using the low-level methods, all sound source positions are
specified using listener-relative polar coordinates (i.e. azimuth and elevation
angles). Distances are specified in meters. If SprocketPlug is set to use the
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high-level calls, all locations are specified using Cartesian coordinates. Besides
these differences, the high-level mode of operation allows the user to specify
the size of a sound source in terms of length, width, and height. In addition,
the relative distances and velocities between sound sources and the listener
are calculated by SprocketPlug with a single call to the high-level method
Spr_HiLvlSourceCalcLocalization. In contrast, this information needs to
be set explicitly if SprocketPlug is set to use low-level methods. Note that low-
level methods can not be called if SprocketPlug is set to high-level mode and

vice versa. The following are the low-level methods:

public native void Spr_LoLvlSetPosition(int chanID, float
azimuth, float elevation)
azimuth and elevation are the azimuth and elevation angles in

degrees used to position the sound playing or to be played on the
channel specified by chanID. Positive azimuth values specify
positions to the right of the listener, while negative values specify
positions on the left.Positive elevation angles specify positions
above the listener, while negative values specify positions below the
listener. The default position of a sound source is at 0 degrees
azimuth and 0 degrees elevation (i.e. straight ahead of the listener).

public native void Spr_LoLvlSetDistance(int chanID, float

distance)
This method sets the distance (in meters) specified by distance, of

the sound source playing or to be played on the channel specified by
chanID. The default distance value is 1 meter.

public native void Spr_LoLvlSetReferenceDistance(int chanlID,

float refDistance)
The reference distance specified by refDistance is the distance

from the listener at which the sound source was recorded. This
method sets the reference distance of the sound playing or to be
played on the channel specified by chanID. The value for the
reference distance must be greater than 0.0. The default reference
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distance value is 1 meter.

public native void Spr_LoLvlSetProjectionAngle(int chanID,
float projectionAngle)
This method sets the cosine of the angle between the sound source’s
attenuation cone axis and the vector from the source to the listener.
A value of 1.0 indicates that the attenuation cone points directly at
the listener, since the cosine of 0 equals 1. The value specified by
projectionAngle sets the projection angle of the sound playing or

to be played on the channel specified by chanID. The default value is
1.

public native void Spr_LoLvlSetConeAngleCosine(int chanID,
float coneAngleCosine)

coneAngleCosine specifies half of the cosine of the angle at the
apex of the sound source’s attenuation cone. This value is set for the
sound playing or to be played on the channel specified by chanIb.
The default value is 1.

public native void Spr_LoLvlSetConeAttenuation(int chanlID,
float coneAttenuation)
This method sets the amount of attenuation (in dB), specified by
coneAttenuation, occurring outside of the angular attenuation
cone of the sound playing or to be played on the channel specified by
chanID. The default value is 0.0 attenuation.

public native void Spr_LoLvlSetSourceVelocity(int chanID,
float sourceVelocity)
This method sets the velocity in meters per second, specified by
sourceVelocity, of the sound source playing or to be played on the
channel specified by chanID. The default value is 0.0.
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public native void Spr_LoLvlSetListenerVelocity(int chaniID,
float listenerVelocity)
This method sets the velocity in meters per second, specified by

listenerVelocity, of the listener along the vector from the
listener to the sound source on the channel specified by chanIb. If
there is more than one sound source in the virtual audio
environment, this method needs to be called for each sound (i.e.
each channel). The default value is 0.0.

The following code example pans a sound source from the listener’s
right to left in increments of 5 degrees using SprocketPlug’s low-level method

calls.

localSprocketPlug.SprPlayLoop(l, 1);
(for newAzimuth =90.0f; newAzimuth >=-90.0f; newAzimuth-=5.0f)

{
localSprocketPlug. Spr_LoLvlSetPosition(l, newAzimuth,

0.0£f);

In this example, the sound source moves in arc in front of the listener. To
incorporate a Doppler effect, distance and velocity values need to be set using
the Spr_LoLv1SetDistance() and Spr_LoLvlSetSourceVelocity()
methods.

As mentioned previously, the main difference between the low-level
API and the high-level API is that the high-level methods take Cartesian
coordinates while the low-level methods take polar coordinates to specify
positions in three-dimensional space. In addition, while low-level methods
directly set the velocity and positional data of sound sources relative to the
listener, when using the high-level routines,
Spr_HiLvlSourceCalcLocalization () must be called to have
SprocketPlug calculate these relative values. Spr_HiLvlSourceSetInfo ()
then needs to be called to send these calculations to the specified channel. All
positional values of the listener and sound sources are in listener units set
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with the Spr_HiLvlListenerSetMetersPerUnit() method.
The following are the methods available when SprocketPlug is set to
high-level mode:

public native void Spr_HiLvlListenerSetPosition(float x,
float y, float z)
This method sets the position of the listener, specified by the values

of x,y, and z. The default position of the listener is at the origin (0,
0, 0), looking straight down the x axis.

public native void Spr HiLvlListenerSetOrientation(float x,
float y, float z)
This method sets the orientation vector of the listener specified by

the values of x,y, and z. This is the unit vector which points
forward from the listener’s position. The default orientation vector
is the unit x vector (1, 0, 0).

public native void Spr HiLvlListenerSetUpVector(float x,
float y, float z)
This method sets the up vector of the listener specified by the values

of x,y, and z. This is the unit vector which points straight up from
the listener’s position. The default up vector is the unit y vector (0,
1,0).

public native void Spr HiLvlListenerSetVelocity(float x,
float y, float 2z)
This method sets the velocity vector of the listener specified by the

values of x,y, and z. The actual velocity of the listener is calculated
when the Spr_HiLvlSourceCalclocalization() method is
called. Velocity is specified in listener units per second where the
listener units are set by the
Spr_HilLvlListenerSetMetersPerUnit () method. If this method
is not called, SprocketPlug automatically computes the relative
velocity values of a moving listener between successive calls to
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Spr_HiLvlSourceCalcLocalization (). The default velocity
vector is (0, 0, 0).

public native void Spr_ HiLvliListenerSetMetersPerUnit(float

metersPerUnit)
metersPerUnit specifies the number of meters per listener unit to

use for subsequent calculations. For example, calling this method
with a metersPerUnit of 0.3408 would set one listener unit to be

equal to foot. The default listener unit is 1 meter.

public native void Spr_ HiLvlSourceSetPosition(int chanID,

float x, float y, float z)
This method sets the position, specified by the values of x, y, and z,

of the sound source playing or to be played on the channel specified
by chanID. The default position of a sound source is at the origin (0,
0, 0) looking down the x axis.

public native void Spr_HiLvlSourceSetReferenceDistance(int

chanID, float refDistance);
The reference distance specified by refDistance is the distance (in

listener units) from the listener at which the sound source was
recorded. This method sets the reference distance of the sound
playing or to be played on the channel specified by chanID. The
value for the reference distance must be equal to or greater than 0.0.

The default reference distance is one listener unit.

public native void Spr_HiLvlSourceSetOrientation(int chanID,

float x, float y, float z)
This method sets the orientation vector, specified by the values of

x,y, and z, of the sound source playing or to be played on the
channel specified by chanID. This is the unit vector which points
forward from the sound source’s position. The default orientation

vector is the unit x vector (1, 0, 0).
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public native void Spr_HiLvlSourceSetUpVector(int chanID,
float x, float y, float z)
This method sets the up vector, specified by the values of x,y, and
z, of the sound source playing or to be played on the channel
specified by chanID. This is the unit vector which points straight up
from the sound source’s position. The default up vector is the unit y
vector (0, 1, 0).

public native void Spr._HiLvlSourceSetVelocity(int chanID,

float x, float y, float z);
This method sets the velocity vector, specified by the values of x, v,
z, of the sound source playing or to be played on the channel
specified by chanID. The actual velocity of the sound source is
calculated when the Spr_HiLvlSourceCalcLocalization()
method is called. Velocity is specified in listener units per second. If
this method is not called, SprocketPlug automatically computes the
relative velocity values of a moving sound source between
successive calls to Spr_HiLvl1SourceCalcLocalization (). The
default velocity vector is (0, O, 0).

public native void Spr HiLvlSourceSetSize(int chanID, float
length, float width, float height);
The 1length, width, and height values are used to set the size of

the sound source playing or to be played on the channel specified by
chanID. The default size values are (0, 0, 0)

public native void Spr_HiLvlSourceSetAngularAttenuation(int
chanID, float coneAngle, float coneAttenuation});
The coneAngle and coneAttenuation values are used to set the

angle of the apex of the angular attenuation cone and the amount of
attenuation for the sound source playing or to be played on the
channel specified by chanID. Angles are specified in radians and
should be between 0 and 2r. Attenuation is specified in dB. The
default angle is 2w, while the default attenuation is 0 dB (i.e. no
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attenuation in any direction).

public native void Spr_ HiLviSourceCalcLocalization(int

chanlID)
This method is used to tell SprocketPlug to calculate the relative

positions and velocities of the listener and the sound source playing
or to be played on the channel specified by chanID. Specifically, this
method should be called after setting the position, up vector,
orientation vector, and/or velocities of the listener and/or sound

source(s).

public native void Spr_ HiLvlSourceSetInfo(int chanID)
Although the Spr_HiLvlSourceCalcLocalization () performs

the necessary calculations of any recently made positional and
velocity changes, the Spr_HiLvlSourceSetInfo () method must
be called for any of these changes to be sent to the channel for

processing.

The following code example uses high-level SprocketPlug calls to
move a sound from the listener’s right to left in increments of 0.1 listener

units:

localSprocketPlug.SprPlayLoop (1, 1);
(for newz = 5.0; newZ >= -5.0; newZ -= 0.1)

{
localSprocketPlug. Spr_HiLvlSourceSetPosition(l, 1.0f,

0.0f, newZ);
localSprocketPlug. Spr_HiLvlSourceCalcLocalization(1l) ;

localSprocketPlug. Spr_HiLvlSourceSetInfo(l);

In the above example, SprocketPlug processing includes positional filtering,
distance attenuation, and pitch modulation due to the Doppler effect. To
cancel the Doppler effect, sound source velocity should be set to 0 by placing

the call Spr_HiLvlSourceSetVelocity(l, 0.0f, 0.0f, 0.0f) right before the call
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to Spr_HiLvlSourceCalcLocalization().
Note that Spr_HiLvlSourceSetInfo (1) must be called to actually process
the sound playing on channel 1 with the most recent SprocketPlug

calculations.

5.5 SprocketPlug Demonstrations

5.5.1 Enhancement of A Standard Web Site

The first demonstration involves the use of SprocketPlug as a
background audio player in a conventional HTML document setting (i.e. no
Javascript or Java applets). A WWW site was designed for a fictitious
provincial park where online users can obtain general information about the
park, and the various services and activities offered to visitors. The WWW
site layout consists of three frames contained in a single browser window. The
top window was used to display the park’s logo. The left frame provides an
index (hypertext links) to various areas of the park’'s WWW site. The frame
on the right is the main content viewing area. This layout is depicted in figure
5-6.

figqure 5-6 - window lavout

park logo

web
site
index | main content viewing area
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An instance of the SprocketPlug plug-in is embedded in the index frame as
well as in each HTML page loaded into the main content viewing area.

When the site is first visited, the SprocketPlug instance in the index
frame begins playing a looped background sound. The sound is that of a
typical nature scene made up of chirping birds, a quietly flowing river, and the
soft rustling of trees. A short non-looping melodic fragment is played as well.
These sounds are meant to set an appropriate mood and invoke a sense of
being out in nature. As each area of the site is visited, various sounds are
played to enhance the information displayed in the main content area. For
example, when the user visits the page describing the park’s wolf howling
expeditions, wolf howls are heard in the background. Similarly, when the
page describing canoe trips is accessed, paddling sounds are played. Another
area serves as the park’s special bulletin area and has a news-theme type
sound associated with it. All these sounds are spatialized, creating an
enveloping sound field around the listener.

This SprocketPlug demonstration is similar to the common use of
embedded MIDI files as background music for WWW pages. Although MIDI
music may be appropriate in some cases (e.g. used as a jingles for WWW
advertising, school theme songs, etc.), this demonstration attempts to
illustrate how SprocketPlug may be used in creating more immersive
environments on the WWW by incorporating real-world sounds.

5.5.2 Sonification of User Events With SprocketPlug and Javascript

A second SprocketPlug demonstration was built to demonstrate how
various user interface elements common in WWW pages may be sonified.
This demonstration uses the same page layout as the the first demonstration
in creating a fictitious home page: the top frame contains the site’s title, the
left frame contains a graphic navigation bar (made up of a vertical row of
buttons), and the third frame is used as the main content area.

A key feature of this demonstration is the sonification of user events.
When the user passes the mouse over various areas of the graphic navigation
bar, the buttons change their visual appearance and short thumping sounds
are heard coming from the listener’s left side. By clicking on a given button, a
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sound is heard panning from left to right as a page is loaded into the main
viewing area. Passing the mouse over hypertext links in the main document
viewing area is also accompanied by sounds. Different types of links are
accompanied by various sounds indicating the linked document’s type and
relative size. For example, links to text files sound like sheets of paper being
shuffled, while links to large text documents sound like pages flipping in a big
book. Other sounds used include camera snapshots for picture files, and
metallic containers for files available for download (e.g. software).

5.5.2 An Auditory Display Component for a Java Applet

Work undertaken by Pennycook, Breder, and Dawkins (1996) involved
the development of an auditory display component for the Java application
called Merz. The following is a description of the Merz project:

Merz is an environment written in Java for the WWW
which supports personal information management and
knowledge work. Merz information visualization
emphasizes personalization of views, the rapid
generation of multiple views of information through
zooming and filtering, and smooth transition between
views under user control. Moreover, Merz aims at
integrating automatic processes, "agents,” into the
visualization environment in order to aid tasks like
querying and the monitoring of information.

(online document at

http:/ /www.merzcom.com/eng/products/products.html)

The auditory display component, called the Merz Soundscape,
developed by Pennycook et al. consisted of native code libraries (for
Macintosh PowerPC and Pentium Windows 95 systems) integrated with the
Merz Java application. These libraries were responsible for handling the
sonification of various elements of the Merz visual display including
onscreen information representation, the state of background automatic
processes, and user interaction. At the time however, there was no solution to
provide this kind of functionality for the version of Merz running as a Java
applet; Java applets (as specified in the original Java specifications from Sun
Corp.) could not be integrated with native methods.
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As part this thesis, a third demonstration was created to show how
SprocketPlug can provide the Merz Java applet with the missing auditory
display functionality. All the original Merz Soundscape functionality
described by Pennycook, Breder, and Dawkins (1996) is now accessible to the
Merz Java applet including real-time auditory spatialization of
simultaneously occurring sound streams (e.g. background looping sounds and
foreground user events), and the use of specially designed Soundscape theme
files (i.e. SprocketPlug themes). While the functionality is there, SprocketPlug
has not been integrated and tested with the actual Merz Java applet.

5.6 Critical Assessment

Auditory display research reviewed in this thesis has shown that

human-computer interactions can be enhanced with sound. This involves
the design and implementation of auditory display components which are
integrated with the systems they serve. SprocketPlug was designed with these
considerations in mind. The demonstrations of the thesis software have
shown that SprocketPlug can be easily incorporated with current WWW
development environments.

However, SprocketPlug is not a complete solution. In particular,
sounds are manipulated by SprocketPlug in terms of their psychophysical
attributes such as pitch (or rate of playback) and amplitude, rather than with
more general auditory display parameters such as object material, object size,
and surface impact (Gaver 1994).

Formal studies on the effectiveness of auditory displays for the WWW
have not been undertaken largely due to a lack of supporting tools.
SprocketPlug addresses this issue by providing the means to incorporate
auditory display techniques, if only for testing purposes. The demonstrations
described above are informal assessments, and while interesting, more
research is required to evaluate how useful sonically enhanced WWW
applications are from the standpoint of end-users.

Another limiting factor of SprocketPlug as a general auditory display

component for the WWW is its platform-dependance. While a great part of
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the success and popularity of the WWW is the fact that it provides
communication across a multi-platform network, SprocketPlug is based on
native Apple Sound Sprockets technology, available only on the Macintosh
PowerPC platform. This requires WWW developers to include “platform
checking” routines in their otherwise platform-independent code in order to
take advantage of the SprocketPlug plug-in.

Related to the issue of platform-dependence is the fact that
SprocketPlug functionality is only available to Java applets running under
Netscape’s Java Runtime Interface environment (JRI). While Netscape has
made its technology available to most platforms, not all WWW clients are
running Netscape software. Unless other WWW client software is made to be
Netscape compliant, JRI and LiveConnect technologies (and hence
SprocketPlug) will be unavailable to clients running non-Netscape software.

Finally, SprocketPlug was designed to interface with Java, and it is yet
to be determined to what degree Java will play a role in WWW application
development. Java is a robust language, but due to its abstraction layers and
interpreted nature, Java code tends to execute much slower than compiled
native code. However, the advent of Just-In Time compilers and specialized
Java chips (e.g. Pico chips from Sun Corp.) are likely to bring Java
performance up to the speeds of applications written in C/C++. While Java
has become widely recognized and adopted by many developers, there are
several competing technologies, most notably Microsoft’s ActiveX, which may
adversely impact Java acceptance by WWW developers.

Programming efforts are moving away from hardware platforms to
“software platforms” distributed via the WWW. Which “software platform”
will become the dominant one, as well as the most viable solution for WWW

auditory displays, remains to be seen.



6. CONCLUSION

Based on auditory display research, this thesis has suggested that
auditory display systems in conjunction with WWW browsers could
significantly enhance information space and pleasure of using an essentially
visual medium. Due to a lack of tools however, sound has not yet become an
integrated component of the user experience.

The software developed as part of this thesis, SprocketPlug,
incorporates many of the currently available technologies, to provide
elaborate interactive sound services to WWW developers. Although not a
final solution, SprocketPlug was demonstrated as effective in implementing
various auditory display techniques at the three most popular levels of
WWW development: HTML, Javascript, and Java.
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