
INFORMATIDN TO USERS

TIüs manuscript has been reproduced from the microfilm master. UMI

films the text directIy from the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typewriter face, while others may be

from any type ofcomputer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignrnent can adversely affect reproduction.

In the unIikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be notOO. AIso, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is aIse photographed in one exposure and is included in reduced

forro at the back ofthe book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations

appearing in this eopy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 Nonh Zeeb Road, ADn Arbor MI 48106-1346 USA
313n61-4700 800/521-0600

(

\,

Towards the Sonification of the World Wide Web:
SprocketPlug

Elijah Breder

Faculty of Music
McGiII University

Montreal, Canada

March 1997

A thesis submitted to the Faculty of
Graduate Studies and Research

in partial fulfilment of the degree of
Master of Arts

© Elijah Breder, March 1997

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A ON4
canada

Your fiJe Votre relerf1(lC8

Our file IIkJtre rStérflflCB

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, lo~ distribute or sell
copies of this thesis in microfonn,
paper or electronic formats.

The author retains o\vnership of the
copyright in this thesis. Neither the
thesis nor substantial extracts frOID it
may be printed or otherwise
reproduced without the author' s
permISSion.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-29484-6

Canadtl

(Abstract

The goal of the thesis presented herein is to provide an overview of

current issues in auditory display design and to suggest how these issues may

be applied to the development of applications for the World Wide Web

(WWW). The software developed as part of this thesis, the SprocketPlug plug­

in for Netscape Navigator, provides a tool for exploring various auditory

display techniques at three leveIs of WWW developrnent: HTML, Javascript,

and Java.

The strength of SprocketPlug is that it enables WWW developers to

incorporate interactive spatialized sound as an integrated cornponent of

WWW documents and applications. The irnplementation of SprocketPlug is

based on currently available technology: the Netscape plug-in architecture,

Netscape LiveConnect, and the Apple SoundSprocket.

(Résumé

Le but fondamental de la thèse suivante est de fournir une sommaire

de la recherche en interface audio et de suggérer comment appuyer ces

principes aux development des applications pour le World Wide Web

(WWW). Le logiciel développer comme partie de cette thèse, SprocketPlug,

permer d'explorer plusieurs concpets des interfaces audio au trois niveaux de

programmation pur le WWW: HTML, Javascript, et Java.

L'avantage de SprocketPlug est qu'il permet aux programmeurs

d'incorporer le son interactif en 3D comme une partie intégrante des

applications et documents du WWW. SprocketPlug est baser sur des

technologies disponible aujourd'hui: l'architecture plug-in de Netscape,

Netscape LiveConnect, et Apple SoundSprocket.

ii

(Acknowledgements

1 would like ta thank my thesis supervisor Bruce Pennycook, who has

provided continuous support throughout the course of my thesis research.

Besides being an important source of information, his creative outlook on

CUITent technologies helped shape my own ideas. 1 would aiso like to thank

my fellow colleagues Mark Ballora, David Mcintyre, Elbert McLaughlin, and

Kyle Dawkins. Their input was most valuable not only because they were

fellow students, but because they were friends who were always open for

discussion.

iii

(TABLE OF CONTENTS

Abstract i

Résumé ii

Acknowledgements iii

TABLE OF CONTENTS i v

1. INTRODUCTION 1

2. A SOUND BASIS 2

2.1 Important Attributes of Sound 2

2.2 The Capabilities of Our Auditry System 4

2.3 Why Use Sound? 7

2.4 The Slow Adoption of Auditory Displays 8

3. AUDITORY DISPLAY DESIGN Il

3.1 Preliminary Considerations Il

3.1.1 Assessment of Audio Related Problems 11

3.1.2 Auditory Scene Analysis 12

3.1.3 3D Sound 16

3.1.3.1 Interaural Time and Intensity Differences 16

3.1.3.2 The Precedence Effect 19

3.1.3.3 Head Movement in Localization 19

3.1.3.4 The Doppler Effect 21

3.1.3.5 Spectral eues 21

3.1.3.6 Spatialized Sound andAuditory Displays 24

3.2 Elements of Auditory Display Design 25

3.2.1 The Function of Sound 26

3.2.2 Mapping Sound to Data 28

3.2.3 Sound Design 30

3.2.4 Sound Generation 32

4. THE USE OF SOUND ON THE WWW 34

4.1 General Aspects of the WWW 34

4.2 CUITent Uses of Audio on the WWW 36

4.2.1 Audio File Download 36

iv

(4.2.2 Streaming Audio 37

4.2.3 Embedded Audio 38

4.3 Auditory Displays for the WWW 39

4.3.1 WWW Browsers 39

4.3.2 Network Administrative Tools 40

4.3.3 Communication Tools 41

4.3.4 General WWW Applications and Documents 43

5. THESIS SOFTWARE 44

5.1 Interactive Content on the WWW 44

5.1.1 Traditional WWW Communication 44

5.1.2 Extending Client-side Functionality 48

5.1.3 Integrating Local and Remote Resources 49

5.2 SprocketPlug Enabling Technologies 50

5.2.1 Apple SoundSprocket. 50

5.2.2 Netscape's LiveConnect SDK 51

5.3 Thesis Software Overview 52

5.3.1 The SprocketPlug Plug-in 52

5.3.2 The SprocketPlug Theme Editor Utility 53

5.4 Using SprocketPlug 56

5.4.1 HTML Authoring 56

5.4.2 Javascript Programming 59

5.4.3 Java Applet Programming 61

5.4.4 The SprocketPlug LiveConnect Interface 62

5.5 SprocketPlug Demonstrations 73

5.5.1 Enhancement of A Standard Web Site 73

5.5.2 Sonification of User Events 74

5.5.3 An Auditory Display Component for a Java Applet 75

5.6 Critical Assessment 76

6. CONCLUSION 78

BIBLIOGRAPHY 79

v

(1. INTRODUCTION

The thesis presented herein will explore the current state of auditory

display research and discuss how this body of knowledge may be applied to

the World Wide Web (WWW). Important issues regarding auditory

perception, auditory display design, and the current state of sound tools for

the WWW will be discussed. It will be shown that although these tools are

rapidly achieving high levels of sophistication, their main purpose is for

sound delivery and do not rneet the dernands of an integrated auditory

display component.

The software developed as part of this thesis, the SprocketPlug plug-in,

provides WWW developers with interactive spatialized sound services

which can be integrated at three important levels of WWW programming:

HTML, Javascript, and Java. Rather than being an outside helper application

or stand alone sound player (although it can be used as such), SprocketPlug is

designed to be an integrated part of WWW development. After presenting

the functionality of the thesis software, dernonstrations will be discussed and

assessed.

1

(2. A SOUND BASIS

Until recently, sound has remained an underutilized component in

human-machine/computer interactions. Although we use our remarkable

listening abilities in our day to day lives, the use of audio in human­

computer interfaces has been relegated to a few system beeps or "cute" sound

effects. Sound has always taken a back seat ta graphies development and

remains an afterthought in many system designs. By discussing various

aspects of sound and our auditory system, this chapter will describe how

computer interfaces and user interactions may incorporate sound as a

functional element of the computer system. The chapter will conclude with

sorne possible explanations of why the use and development of audio has

lagged behind graphic development at the computer interface.

2.1 Important Attributes Of Sound
Sound is a powerful communicative medium. It describes the physical

worid around us, informs us of ongoing events, and alerts us ta take action.

Very often aIl this information is presented to us at once, yet we are still able

ta decode and understand this conglomerate of acoustic information.

Imagine the following: You're driving your car with a passenger next

to you. The radio is on at low volume, and you are engaged in conversation

with the passenger. The radio catches your attention because the weather

forecast is on. While you're listening to the weather report you hear a strange

sound come from the car's engine. You decide to pull over and see if there is

anything wrong. You pull to the side of the road and are about to get out of

the car when you hear an ambulance siren behind you. You decide to wait for

the ambulance ta pass to get out of the car. You open the hood and hear sorne

hissing. Being an expert mechanic, you have an idea of what could cause such

a sound. You are able ta locate the source of the sound and fix the problem.

You get back in the car and continue on to your destination.

2

(This scenario points out sorne very important aspects of sound and our

listening abilities. Sound is omnidirectional and transparent. It describes the

physics of events in our environment. We are able to monitor a number of

simultaneous sound sources and shift our auditory attention to any source at

will, aIl while performing other activities. We are also able to interpret the

meaning of various sounds and take action based on these understandings.

The omnidirectional nature of sound allows us to hear what we can

not see (Kramer 1994b, 4). While vision has a rather narrow area of focus and

requires us to face the abject ta perceive it, we are able to hear sound aIl

around us. This gives sound the ability to draw our attention to events

outside our field of view.

Sound is also transparent: auditory abjects do not occlude one another.

Bregman (1990) describes this situation as follows:

The auditory world is like the visual world would be if aU
objects were very, very, very transparent and glowed in
sputters and starts by their own light, as weIl as reflecting the
light of their neighbors (Bregman 1990, 37).

This attribute of sound allows hidden abjects ta be heard even though they

are not seen.

Perhaps the most important aspect of sound is its ability to convey

information about events in the environment. The following example

describing a computer desktop from Gaver (1986) illustrates:

The file hits the mailbox, causing it ta emit a characteristic
sound. Because it is a large message, it makes a rather
weighty sound. The crackle of paper indicates a text file - if
it had been a compile program, it would have clanged like
metal. The sound cames from the left and is muffled. The
mailbox must be in the window behind the one that is
currently opened on the left sicle of the screen. And the
echoes sound like a large empty room, sa the load on the
system must be fairly low. AIl this information from one
sound!

As Gaver (1989) states, "sound is produced by the interaction of materials at a

location in an environment". This points out the multidimensional nature

of auditory information. Not only can a given sound inform us of the

probable source, but it can aiso point out salient features of the source, the

3

(materials involved, and the environment in which the event occurred.

2.2 The Capabilities of Our Auditory System
The human auditory system has evolved ta take advantage of the

various aspects of sound described above in arder to help us make sense of

the world around us. While the system is not responsive ta aU existing

stimuli (the human audio range is approximately 20 Hz to 20 kHz), it has in

essence tuned itself to the most frequent and ecological vaIid auditory

characteristics of the environrnent (Bregman 1990, 13). Important aspects of

the human auditory system include pressure and frequency sensitivity,

temporal acuity, pattern recognition, locaIization abiIities, and attentional

capacities.

Our auditory system has developed finely-tuned responses to a wide

range of stimuli. The first of these is pressure sensitivity. Although levels

above IOOdB are undesirable , the most intense sound we can hear without

damaging our ears has a level of about 120dB above the faintest sound we can

detect (Moore 1982,47). This corresponds to an intensity ratio of 1 000 000 000

000:1 (a pressure amplitude of approximately 2 x 10-5 N / m 2). What is

remarkable here is that while we are responsive to a wide dynamic range, the

amplitudes of soundwaves are extremely small fluctuations in atmospheric

pressure (where atmospheric pressure corresponds to 105 N/m2). The

minimum pressure fluctuation to which we are sensitive ta corresponds to

less than a change of one billionth of atmospheric pressure while the

threshoid of pain is stilliess than one one-thousandth of atmospheric

pressure (Rossing 1990, 85).

For frequencies lying between 20Hz and 20kHz, the auditory system has

a finely tuned frequency response as weIl. The critical band theory is

commonly used to explain frequency resolution by describing the peripheral

auditory system as a bank of bandpass filters, with continuously overlapping

center frequencies (Moore 1982, 85). Begault (1994) describes this system as

follows:

4

(A complex sound is analyzed by the ear with a bank of 24
filters, each tuned with a successive center frequency and
bandwidth so as to coyer to the entire audio range (just
like a graphie equalizer). The size of the critical band
approximates a 1/3 octave bandwidth; harmonies falling
within a critical bandwidth will be integrated in such a
way that the strongest harmonie will mask other
harmonies within the same band, more so than if these
other harmonies were in other bands.

Begault goes on ta point out how this system is made more complex by the

variable nature of these bandwidths. The width and placement of each band

depend on various factors such as pressure level and spatial orientation of the

listener. In addition, frequency sensitivity varies across the audible range. It

must be noted that most humans do not respond to the entire audio range

and frequency sensitivity deteriorates with age. This deterioration mostly

affects the transients and high partial of sounds.

The auditory system is also capable of great temporal acuity, which is

especially important for sound localization. Studies have shown that for

frequencies below 105kHz, the auditory system localizes sound sources by

detecting the on-set time difference (or phase difference) between the two ears

of an incoming waveform. This corresponds ta interaural time differences

(ITD) in the range of 0.005 ta 1.5 milliseconds (Begault 1994, 44). Similarly, the

precedence effect describes how ITD values are used ta discriminate a sound

source from its echoes. If the echoes occur within 35 milliseconds of the direct

sound, the direction of the sound is associated with the wavefront which first

arrived at the ear - the direct sound. Echoes within this time frame tend to

reinforce the direct sound (Rossing 1990, 462). In other words, they do not

distract us from localizing the direct sound. We begin hearing independent

onsets at around 20 milliseconds and for continuously repeated sounds, we

may perceive rhythmic regularities and even pitch. Pitch will be perceived if

onset times are in the broad range of .05 milliseconds, producing 20kHz tone,

ta 50 milliseconds resulting in a 20Hz tone (Kramer 1994b, 5).

The auditory system's ability ta establish the direction of a given sound

source complements the omnidirectional nature of sound. By examining the

time, intensity, and timbraI differences between the two ears, we are able to

5

(determine the direction of a particular sound and hence, the position of the

source. While vision focuses in a very specifie direction, audition can

monitor sonic objects and events from aIl around the Iistener. Very often our

ears act like pointers for our eyes - they tell the eyes where to look.

Our ability to learn and recognize familiar sounds is facilitated by our

auditory pattern recognition skills and auditory memory. We are able to

distinguish and categorize a great number of sounds and pick out a familiar

voice in a crowd. Often our survival depends on this ability: for example,

hearing an approaching vehicle or the cracking branches of a prowling

predator. We also use pattern matching skills when we attempt to classify

unfamiliar sounds by comparing them to known sounds. This happens when

someone says "it sounds like" when describing the unfamiliar sound.

The attentional capacities of the auditory system allow us to address the

issue of sound's transparency and its omnidirectional nature. We are able to

focus on sorne auditory abjects and leave others in the background. This

alIows us to cope with our lack of "ear-lids" (Kramer 1994, 13) and ta tune

into important events. Related to the auditory system's attentional capacities

are its monitoring abilities. Although we can focus our auditory attention on

a particular object, we can simultaneously monitor a number of background

events. Changes in these background events are detected by the auditory

system, inforrning us that we might want to shift our attention to that

particular event. A weIl known example of this is the "cocktail party effect"

where a person engaged in one conversation can tune into another

conversation upon hearing their own name (Cherry 1953, and Eysenck and

Keane 1990).

Our auditory monitoring abilities also give cise ta auditory gestalt

formations. These describe our perceptual system's ability to hear a complex

sound field as whole, without necessarily directing attention to its component

parts (!<ramer 1994, 8). For example, when listening to a choir, we are able to

hear it as a single entity even though it is made up of many individual voices

often singing in mutli-part harmony.

Auditory gestalts may be grouped into synthetic and analytic listening,

first described by Helmholtz (Helmholtz 1859, adapted from Bregman 1990,

6

314-315). Synthetic listening interprets auditory percepts as generally as

possible. For example, hearing the murmur of a crowded raom rather than a

large number of individual voices. Analytic listening takes place when we try

to identify individual components of an auditory scene. An example is when

we try to listen to a specific instrument in an orchestra.

2.3 Why Use Sound?
The simplest answer to the question of why sound should be used is

because it forms an integral part of normal human experience (Gaver 1989).

Many diverse professions even rely on sound a great deal: mechanics listen ta

automobile engines and doctors listen to heartbeats (Gaver 1989). People also

listen to the states of various machinery they use. For example, drivers listen

to their cars' engines, and computer users listen to their modems connecting

and hard drives whirring to confirm read and write operations.

Furthermore, sound production is prevalent in today's computer

technology and can be found in even the simplest home computer systems. In

the past few years, computer audio components have greatly improved, going

from simple low fidelity system beeps to full bandwidth, CD quality audio.

The entertainment industry has embraced this technology and relies on it to

deliver top-selling products. Video games are approaching Hollywood style

productions in both the visual and audio aspects. Yet these resources remain

untapped by the more general and "serious" computing systems in areas such

as business and engineering.

The issue of noise and sound pollution is an important one. Great

measures are taken to make the workplace as noise free as possible. Wouldn't

aIl these computers making sounds create distractions and a chaotic

atmosphere? Wouldn't the office tum into a kind of noisy video game

arcade? Indeed it would, unless an organized and systematic approach to

auditory display design is adopted. By studying the task at hand and designing

an appropriate acoustic environment, we stand to benefit from auditory

displays by exercising greater control over the sounds around us (Buxton

7

1989).

A great deai of auditory display research is devoted to the use of non­

speech sounds. Another common question asked of auditory display

researchers is: Why not just use speech to convey messages and information?

Aithough speech may be appropriate in certain situations, the disadvantages

seem to outweigh the advantages. First, speech requires more processing on

the part of the listener than familiar sounds to be understood. For exampIe,

your response to a fire alarm is probably quicker than to sorne one shouting

"Everybody out, there's a fire!". Similarly (to use the automobile example

again), the mechanic Ieams a great deal more about the state of an engine by

listening to it, rather than listening to someone explain the problem. Speech

messages also add to the noise pollution problem by interfering and

competing with real world speech.

Sound is aiso important because it compliments visual information.

Practically aIl visuai events and actions in the reai world are accompanied by

sonic events. Not only do we see an airplane fly overhead, but we hear it as

weIl. A collision between objects is affirmed by the sound of the two objects

hitting each other. This is part of the natural world (being the result of the

physics of events) which we expect and depend on. Human-computer

interactions can incorporate these types of sonic assurances by accompanying

user actions and system events with appropriate sounds. Sounds can not only

heighten the sense of realism and engagement, but may increase user

enthusiasm and the perceived quality of a given system (Kramer 1994, 10).

2.4 The Slow Adoption Of Auditory Displays
In spite of the powerful communicative aspects of sound, the

development and use of audio in computing environrnents has always been

dominated by graphie developments. This section will offer several

explanations why this has been the case.

As vision is the principle means of acquiring information in our

society, the development of computer system visual display was of high

8

(priority. CRT display technology and graphie user interfaces have taken great

strides in research and development. Although these developments have

parallels in the audio industry, it is only recently that sophisticated audio

features have been incorporated into computer systems. While the computer

entertainrnent industry has welcomed and embraced these technologies,

general computing systems have practically ignored them, using the

expanded audio capabilities of the hardware merely for improved system

beeps. There is however, a growing interest in more sophisticated uses of

audio by the general computing public, largely due to the increased

availability and accessibility of high-fidelity audio computer hardware and

software.

The laek of extensive scientific auditory research also aecounts for

audio lagging behind graphie development. As Bregman (1990) points out, up

until the nineteen-sixties, vision had received almost aIl the attention.

Studies on vision would have ineluded treatments on lower-Ievel

psychophysieal and physiological aspects, as weIl as higher-Ievel perceptual

and cognitive processes. In contrast, the few studies on audition focused only

on basic physical properties of sound and perhaps sorne psychophysical

aspects of our auditory system.

Bregman goes ante to offer sorne possible explanations for the lack of

auditory researeh. One explanation suggests that "the fathers of Gestalt

psychology, who opened up the whole question of perceptual organization,

had focused on vision and never quite got around to audition" (Bregman

1990, 2). Another explanation has to do with the visual arts: "the desire for

aecurate portrayalled ta an understanding of the eues for distance and certain

facts about projective geometry." (Bregman 1990, 2). Although one might

argue that music could have provided these same opportunities, music (and

sound in general) is inherently abstract and more difficult to understand.

There aiso wasn't the need to reproduee objects from the environment as

there was in drawing, painting, and other visual arts.

Begault (1994) offers sorne explanations as weIl: First, audio is

expendable because it isn't necessary for the successful operation of most

computer systems. Next, the audio that is incorporated tends to be added as an

9

(afterthought of system design. Consequently, the sounds are of low quality

and quickly become annoying and even jarring (e.g. talking cars and piercing

microwave oven timers). Lastly, audio manipulation and high fidelity audio

equipment have remained the domain of musicians and electronic

composers. As stated above however, the proliferation of high quality

consumer oriented audio products has given the general public and research

community exciting tools for auditory exploration.

10

(3. AUDITORY DISPLAy DESIGN

The addition of sound to computer interfaces is not simply a matter of

arbitrarily assigning sounds to actions and events. The design of auditory

displays requires careful investigation into how sound can function as an

integral and informative component of a given system. This chapter will

discuss current approaches to a structured framework of auditory display

design.

3.1 Preliminary Considerations

3.1.1 Assessment of Audio Related Problems

Sounds are inherently transient and lack persistence because they can

only exist in time (Gaver 1989). Although sounds are suitable for the display

of changing events, they are only available for limited amounts of time. As

Kramer (1992, 13) states, "simultaneous comparisons and reminiscences [of

auditory events] are problematical... [and] may produce cacophonous and

incomprehensible results." In contrast, most visual objects are static and exist

over time, allowing us to sample and examine them for as long as required.

In particular, the auditory presentation of spatial extent and volumetrie data

is problematic (Kramer 1992, 13). The absolute and relative sizes of an

auditory representation of objects are difficult to represent in sound.

Kramer (1994b) discusses several weIl known properties of sound in

terms of auditory displays. These include the lack of absolute values of

auditory variables, lack of orthogonality, and other factors such as user

limitations. Although we are responsive to minute changes in various sound

attributes such as amplitude, pitch, and timbre, we can not determine the

absolute values these changes represent. Kramer compares this with Xy

graphs, where points and values are easily obtained visuaIly. Although people

with perfect pitch may have an advantage at determining absolute pitch

values, similar abilities in amplitude and timbre detection are not known.

Il

(Kramer (1994b) aIso discusses how the lack of orthogonality of auditory

parameters contribute to a lack of precision. When mapping data variables to

the physical attributes of sound a change in one variable may be perceived as

affecting a second variable even though this change is not found in the raw

data.

User limitations present problems as weIl. Kramer (1994b) suggests that

individual differences conceming auditory display interpretability may be no

more problematic than similar differences conceming vision (e.g. color blind

versus tone deaf). However, listener shortcomings regarding complex sanie

environments are poorly understood.

3.1.2 Auditory Scene Analysis

Auditory scene analysis is concerned with the perception of complex

sonic environments. Bregman (1990, 641) describes the central issue of

auditory scene analysis as follows:

ILAlthough we need to build to separate mental
descriptions of the different sound-producing events in
our environment, the pattern of acoustic energy that is
received by our ears is a mixture of the effects of the
different events."

Auditory scene analysis examines how our auditory system extracts elements

of this acoustic mixture and Il groups them sa that each group has been

derived from the same environmental event" (Bregman 1990, 641).

Essentially, it studies the sequentiai and spectral integration of spectral

elements which give rise to the pereeptuai phenomenon of auditory streams.

An auditory stream is a perceptual unit which groups related

environrnentai happenings. Bregman (1990) explains the difference between a

sound and an auditory stream as follows: While a sound is a distinct event, a

stream may incorporate more than one sound in its description of an event.

He gives the example of a music performance where the sounds of an

accompanying piano and a singer create a coherent unit or stream. In this way

the musical performance forms a perceptual unit which is separate from

other ongoing events such as coughing in the audience or the shuffling of

program notes. Sound also "refers indifferently to the physieal sound in the

12

(world and our mental experience of it" (Bregman 1990, 10), while a stream is a

perceptual representation which lIacts as a center for our description of an

acoustic event" (Bregrnan 1990, 10). In this way, Bregrnan explains, an

auditory stream plays a similar role in auditory mental experiences as objects

do in vision: Il it acts as a center for our description of an event" (Bregman

1990, 10).

Auditory streams are formed by the auditory system through analysis

of incoming acoustic signaIs in both the temporal and spectral domains.

Bregman (1990) refers to these as sequential integration and spectral

L.~tegration respectively. While Gestalt psychologists were primarily

concemed with visual perception, many of the Gestalt factors which promote

grouping in visual perception, influence sequential and spectral integration.

Williams (1994) outlines these factors and relates them to auditory grouping

as follows:

1 - similarity

Components which share the same attributes are

perceived as related. Auditory grouping factors include

common onset, common offset, common frequency,

common frequency modulation, common amplitude

modulation, and timbre.

2 - proximity

Components close ta each ather are more likely to be

grouped together. Auditory grouping factors include

temporal proximity, frequency proximity, and spatial

location.

3 - good continuation

Components that display smooth transitions from one

state to another are perceived as related. Auditory

grouping factors include proximity in time of offset of one

component with the onset of another, frequency

proximity of consecutive components, constant glide

trajectory of consecutive components, and smooth

transitions from one state to another state for the same

13

(parameter.

4 - habit or familiarity

Relationships between components that have been

attributed in the past will preferably be assigned the same

meaning when they occur again. Knowledge of familiar

patterns and complex structures are stored in what

cognitive psychology calls schemas. Once learned, schemas

may be used "top-down" to assist in understanding a

complex acoustic signal. The activation of a particular

schema depends on the level of familiarity and the

closeness with which it matches new, incoming auditory

evidence. Schemas operate for particular classes of signaIs

such as music, speech, machine noises, and other familiar

sounds of our environment. (Bregman 1990, 10)

5 - belongingness

A component can normally form part of only one

disjunctive object at a time and its percept is relative to the

rest of the figure to which it belongs. Related to this is the

principle of exclusive allocation. In terms of auditory

grouping, this principle states that once a given sound is

allacated to one stream, it tends to be excluded from other

possible streams.

6 - cammon fate

Components that undergo the same kind of changes at the

same time are perceived as related. Auditory grouping factors

include common onset, common offset, common frequency

modulation, and common amplitude modulation.

7 - closure

Incomplete forms tend to be completed. In audition, this

refers to our ability ta perceive the continuity of a given

sound even in the presence of a masking sound. In order for

this to be successful, the auditory system must have sufficient

energy at the appropriate frequencies ta stimulate the same

14

(

(

parts of the auditory system as the missing, or masked,

components.

Although these seven points have been weIl defined in terms of visual

perception, Williams (1994) states that "it is becoming evident that the gestalts

identified as being of prime importance in vision research may not be directIy

reflected in audition".

In many situations, auditory streams do not result from a simple

summation of factors which influence grouping. Complex interactions arise

due to the competitiveness and collaboration between these factors (Bregman

1990). Bregman (1990) describes this process of competition and collaboration

in the following way:

It is as if each acoustic dimension could vote for a
grouping, with the number of votes it cast being
determined by the degree of similarity in that dimension
and on the importance of the dimension. Then the
streams whose elements were grouped by the most votes
wouid be formed. (Bregman 1990, 652)

Bregman goes on to say that "such a voting system would be valuable in a

natural environment in which it is not guaranteed that sounds that resemble

one another in one or two ways will always have arisen from the same

source" (Bregman 1990, 652).

Bregman (1990) also discusses the effects and consequences of

streaming. Among these, the most important ones have to do with attention

and the computation of with-in stream emergent properties. As Bregman

states, it is easy to follow and focus our attention on a stream because "an

integrated stream is the natural subject for an act of attention" (Bregman 1990,

10). Due to this, and the principles of belongingness and exclusive allocation

described above, elements of one stream williess likely interfere with those of

another stream when a stream's emergent properties are calculated. These are

global features of a stream formed by higher levels of processing when lower

level perceptual units are grouped.

Auditory scene analysis is important ta the study and design of

auditory displays because it provides researchers with an understanding of

how complex acoustic signaIs may be interpreted by the listener. One of the

15

(most important attributes of auditory displays is the intelligibility of

simultaneously occurring sound streams: system alerts, background processes,

and user action assurances. These auditory streams need to be detected and

unambiguously identified by the user. By taking into account the factors

which promote auditory grouping, auditory displays can be designed to

provide a coherent sonic environment, modeled on real-world listening.

3.1.3 3D Sound

The ability to localize sound in three-dimensional space is a very

important aspect of real-worid auditory perception. ft provides for a sense of

situational awareness and self-orientation by allowing us to estimate the

position of sounds which may be outside the current field of view. This

section will present aspects of human localization and how auditory displays

may benefit by incorporating sound spatialisation techniques.

3.1.3.1 Interaural Time and Intensity Differences

Interaurai difference eues are probably the most important Iocalization

cues we use ta localize sound sources on the horizontal plane. From an

evolutionary standpoint, this makes perfect sense: humans are terrain-based

animaIs whose auditory system has been optimized through evolution ta

deal with terrain-based sound sources, including those sources which are

outside the field of view. The horizontal placement of our ears maximizes

interaural differences for sound waves emitted by a source on the horizontal

plane. Our auditory system has the ability to detect interaural differences in

phase, amplitude envelope onset, and intensity. By minimizing these

differences with head movement, we are able ta direct our focal vision ta

items of interest which may not be in our current field of view.

One of the first people to study and explain binaural localization of

sound was Lord Rayleigh who, in 1876, performed experiments to determine

his ability to localize sounds of different frequencies (Rossing 1990, 75). He

found that lower frequencies were much harder ta localize than higher

frequencies. His explanation was that high frequency sounds coming from

one side of the head produce a more intense sound in the ear closest ta the

16

(source (ipsilaterai ear) than in the opposite ear (contralateral ear). In these

cases, the head casts a "shadow" on the contralateral ear, thereby reducing a

given sound's intensity. This did not occur for lower frequencies because the

wavelengths were long enough to diffract around the head. In a second

localization experiment performed in 1907, Rayleigh went on ta show how

the diffraction of soundwaves around the head caused interaural phase

differences. He proposed that these phase differences were use in the

localization of low frequencies.

Modem experiments have investigated the raIe of interaural time and

intensity differences and have confirmed Rayleigh's initial findings. Figure 3­

1 shows the travel path of sound waves for two sources. We see that for the

source directly in front of the listener (source A), the sound waves reach the

two ears at the sarne time. In this case the interaural time and intensity

differences are minimized (they are not exactly equal due to the asymmetry of

the human head and ears). However, the sound waves emitted by the second

source ta the right of the listener (source fi), will produce significant

interaural differences.

In general, if source B is below approximately 1 kHz, localization will be

dependent on the interaural phase or time differences (ITD). If the source is

greater than about 1.5 kHz (wavelengths are now smaller than the diameter of

the head), the interaural intensity differences will be used (IID). This head

shadow effect increases with increasing frequency (Middlebrooks and Green

1991).

17

(figure 3-1 - interaural difference

A

The use of IIDs and ITDs by the auditory system is commonly referred

to as the "duplex" theory of localization. The theory suggests that IIDs and

ITDs operate over exclusive frequency regions. Although in the laboratory it

is relatively easy to estimate the boundary point (around 1.5 kHz) where the

system switches from using ITDs to HDs, the interaction of the two

mechanisms in the real world are not fully understood. There have been

studies which investigated the role ITD of amplitude envelope onset times in

the higher frequency region (Begault 1994, 472). In the frequency region above

1.5 kHz, the phase relationship between the two ears leads to an ambiguous

situation: it is hard to tell which is the leading soundwave. These studies

have shown that if an amplitude envelope is imposed on the test signal, the

auditory system is able to detect the differences in envelope onset times, thus

providing useful ITD cues.

Sound sources in the real world typically contain frequency

components above and below the cutoff (about 1.5 kHz) suggested by the

18

(duplex theory. It is quite likely that the auditory system does not really rely on

any one mechanism for localization. Rather, aH available information is used

ta provide the most suitable answer. The use of pan pots on conventional

stereo mixing boards iHustrates how amplitude changes independent of the

sources' frequency content are sufficient in separating and placing individual

sounds on a horizontal plane (the stereo field). Amplitude differences

between the left and right channels are interpreted by the listener as various

spatial locations. For example, a sound can appear ta move across the horizon

by continuously varying the amplitude difference of the left and right

channels (Begault 1994).

3.1.3.2 The Precedence Effect

The precedence effect (other names include the Haas effect and

Blauert's "the law of the first wavefront") describes the auditory system's

ability ta localize a sound source within a reverberant environment.

Localization experiments have studied the precedence effect by delaying one

side of the left-right pair (either through headphones or loudspeakers) and

noting the perceptual effects on the listener when varying the delay time.

Results show that as the delay time is increased from 1.5 msec. to 10 msec., the

virtual sound position will be associated with the undelayed channel but its

width will seem to încrease. At sorne point between 10 msec. and 40 msec.,

depending on the sound source, a distinct echo will be heard coming from the

delayed channel. However, the original event is still perceived as coming

from the undelayed channel. In terms of real world localization, the

Precedence effect explains how we are able to localize the original sound

source (or direct signal) in spite of potentially confusing reflections and echoes

(Begault 1994, 46).

3.1.3.3 Head Movement in Localization

In real-world perception and localization, our head acts as a pointer,

helping us integrate information from both our visual and auditory senses.

We use auditory information to locate and focus on particular abjects which

may or may not be part of the current visual scene. Head movements help us

19

(minimize interaural differences, and essentially point us in the right

direction. The following example (adapted frOID Begault, 1994) shows how

head movements are used to locate a source at right 150 degrees azimuth

which may potentially be confused with a source at right 30 degrees azimuth.

Figure 3-2 illustrates the situation.

figure 3-2 - minimizing lID and ITD with head movement

At first the interaural difference cues suggest that the source is to the

right of the listener. As the listener starts tuming his/her head towards the

right, if the interaural differences are minimized, then the source must be in

front. If, on the other hand, the differences increase, then the source is further

in back.

Head movements are aiso very important in front and back

disambiguation. Studies have shown that the listener is able ta integrate

changes in IIDs, ITDs, as weIl as spectral changes, due to head movement and

use this information in localization judgments (Begault 1994, 50). A simpler

20

example of the importance of quick judgments based on head movements is

"if l don't see it but hear it, it must be in back."

3.1.3.4 The Doppler Effect

The Doppler effect (Rossing 1990, 42) is another important localization

eue. It is the perceived pitch change of sound sources caused by listener

and/or sound source motion. If the the listener and source are moving

towards each other, there will be an increase in perceived pitch. On the other

hand, if the two are moving away from each other, the perceived pitch will be

lower. The situation is explained as follows (adapted from Rossing, 1989): If a

given stationary sound source emits 100 sound waves per second, a stationary

listener will count exactly 100 waves per second. If the listener starts moving

towards the source, he/she will meet more soundwaves per second, thereby

increasing the perceived pitch. If the listener is moving away from the source,

less soundwaves will be received per second, resulting in a lowering of

perceived pitch. Similarly, the listener receives more sound waves per second

as a sound source is moving towards him/her, and less if the sound source is

moving away.

The Doppler effect is an important localization eue because it helps us

detect moving and accelerating sound sources. However, although it has been

studied and understood as a perceptual phenomenon, further investigation is

needed ta examine the interaction of the Doppler effect with other

localization cues, including cognitive processes such as experience and

familiarity.

3.1.3.5 Spectral eues

Although IIDs and ITDs are probably the most important cues for

localization of sound sources on the horizontal plane, they provide rather

ambiguous eues for sources located on the median plane. Although IID and

ITD values won't be exactIy the same due to the asymmetrical construction of

our head and pinnae, interaural difference values will be minimal along the

median plane. This would lead to confusion when trying to determine

whether a source is directIy in front (0 degrees azimuth) or directly in back

21

((180 degrees azimuth) solely based on interaural difference cues. The Cone of

Confusion (Moore 1982, 203) illustrates how for any two points on a conical

surface extending outwards from a listener's ear, identical (hence ambiguous)

IID and ITD values may be calculated (points A & B, and C & 0 in figure 3-3).

It is in these situations that spectral eues provide further aids for localization.

They help the listener disambiguate sound source positions between front

and back, and above and below.

figure 3-3 - Cane of Confusion

The pinnae are responsible for the spectral alterations of incoming

soundwaves. They acts as directional filters, imposing amplitude and phase

changes as a function of sound source location. Most of these spectral

alterations are caused by time delays (0 - 300 Jlsec.) due to the complex folds of

the pinnae (Begault 1994, 52). Because of the asymmetrical construction of the

pinnae, sound coming from different locations will have different spectral

changes imposed on it. The listener recognizes these modifications as spatial

eues. The result of the filtering process of the outer ears is most often called

22

(the Head Related Transfer Function (HRTF). Other terms include Head

Transfer Function (HTF), pinnae transform, Outer Ear Transfer Function

(OETF), and Directional Transfer Function (DTF) (Begault 1994,53).

Modem experiments and studies record, analyze, and simulate HRTFs

in order to gain a better understanding of the process of using spectral eues for

Iocalization. In generaI, studies have shown that aithough different people

exhibit different ear impulse responses, or HRTFs, most measurements share

similar spectral patterns (Hiranaki and Yamasaki 1982, and Asano, Suzukï,

and Sone 1990). Although people do better in locaIization tests when using

their own HRTFs, they are able ta make quite accurate localization judgments

when using HRTFs of others. These studies have aiso shown that sorne

people even do better with "foreign" HRTFs than with their own, implying

perhaps, that sorne people have more suitably shaped ears for localization.

Besides the pinnae, other parts of the body can influence the spectrum

of an incoming soundwave. These can be broken down into directional and

non-directional spectral modifications. For example, the upper body will

cause directionally-dependent alterations to the spectrum in the 100Hz - 2kHz

range (Genuit 1984, adapted from Begault 1994). The ear canal on the other

hand, is a non-directionai influence due to its natural resonance between

2kHz - 5kHz. Figure 3-4 lists the various directional and nondirectional

influences on HRTFs (adapted from Begault 1994).

23

(figure 3-4 - directional and nondirectional HRTF components

DIRECTIONAL

NONDIRECTIONAL

~ 3kHz
~---4/Lcavum conchea 1

head dilfraction and
reflection 1----1

0.1 - 2 kHz

torso :t-------~

0.8 - 1.2 kHz

shouIder reflection 1...-.......
0.5 -1.6 kHz

2 -14 kHz

pinnae..
cavum
conchea
reflection

3 - 18 kHz
earcanat
eardrum
impedence

3.1.3.6 Spatialized Sound and Auditory Displays

Auditory displays may become more realistic, and immersive when

spatialized sound is incorporated. These enhancements are similar to those

provided by three dimensional graphic systems: objects look more realistic

and navigation through virtual worlds is more intuitive. Three dimensional

sound engages our auditory system in similar ways, and can enhance a user's

auditory display experience.

A summary of the benefits spatialized sound brings to auditory displays

is provided by Wenzel (1994). 5he describes the two most important

performance advantages of spatialized auditory displays as enhanced
24

(situational awareness and enhanced comprehension of multiple,

simultaneous auditory streams. The roles that spatialized sound plays in

supporting these two performance advantages include: direct representation

of spatial information, spatial metaphors for displaying nonspatial

information, enhanced stream segregation, and an enhanced sense of realism.

Wenzel goes on to describe how applications in various fields may henefit

from the use of spatialized sound including architectural acoustics, large-scale

database and information systems, data visualisation, aeronautics, and

telerobotic control. Other benefits of spatialized auditory displays include a

decrease in visual search times (Perrot et al. 1991, and Begault 1993) and a

reduction of noise through spatial and spectral release from masking (Doll

and Hanna 1995).

Another impetus for the incorporation of 3D sound in auditory

displays, is that enabling technologies are now becoming available to the

general public. Sound spatialization was once the sole domain of researchers

with access to expensive computer workstations. 3D sound capabilities are

now being offered to the general public in the form of desktop computer

hardware, software, and consumer audio gear.

3.2 Elements of Auditory Display Design
The successful use of audio in human-computer interfaces and

interactions requîres system designers to consider sound as an integrated and

functional element of the system. Too many systems and applications

incorporate audio as an afterthought and assign sounds to various system

elements in an ad hoc manner. This section will discuss the important issues

that need to be addressed in a successful design of auditory displays: the

function of sound, the mapping of sound to data, sound design, and sound

generation mechanisms.

25

(3.2.1 The Function of Sound

The fundamental question of auditory display design is: what function

will audio serve in this application or system? Buxton (1989) gives an

overview of three general types of information capable of being conveyed

through non-speech audio messages (Buxton 1989):

1 - alarms and warnings

2 - status and monitoring indicators

3 - encoded messages

Alarms and warning messages are discrete events and convey urgency.

They are meant to disrupt any ongoing tasks and bring to the user's attention

sorne vital aspect of system performance or state. These types of acoustic

signaIs have been in use in eomputing systems and various other sorts of

machinery for sorne time. However, not much attention has been paid to

important aspects of their sound design. For example, alarms play a vital role

in high stress environment such as medicai centers and airline cockpits. Due

to their loud and jarring characteristics however, alarm sounds often

becoming annoying and can even induce more stress (Begault 1994). Research

addressing the specifies of auditory alarms has shown that important aspects

of alarm design include overallievel, temporal characteristics, and spectral

eharacteristics (Patterson 1982, adapted from Kramer 1994).

Status and monitoring indicators provide feedbaek on current system

states and on-going processes. These can take the form of discrete auditory

feedhack signaIs, or eontinuous sounds. As an example of the former, Buxton

(1989) describes how the changing pitch of key click sounds can inform the

user of a text processor whether the application is in edit mode or view mode.

Continuous sounds on the other hand, can represent on-going internaI

system processes, and last for as long as the process is in progresse If

appropriately designed, these sounds can take advantage of the user's ahility to

monitor background auditory streams. Changes in these background streams

will be detected by the listener and will point to changes in the underlying

processes. As Buxton (1989) states however, auditory display design needs to

take into consideration the fact that "although we ean recognize and

simultaneously monitor a number of different audio eues, we can normally

26

(only respond ta one or two at a time."

Encoded messages are used to convey quantitative or numerical data in

patterns of sound. These are designed to take advantage of a listener's

auditory pattern matching and recognition skills. An example of these types

of messages would be the mapping of sounds ta multivariate data sets such as

statistical and financial information. The user would then listen for sound

patterns which may either be familiar and expected, or completely new

leading to novel conclusions. These techniques are similar to those found in

data visualization systems.

The functionality that audio can provide, points to two broad categories

of auditory display applications: monitoring systems, and data analysis

systems. Each requires different approaches towards design and user training

(Kramer 1994b). It should be noted however, that many tasks involve an

overlap between these two categories.

Monitoring applications allow the user to monitor various on-going

pracesses and examine system states. Although this implies a certain level of

data analysis, the purpose of the analysis in this case is to recognize and attend

to familiar patterns representing normal and problematic system states.

In terms of design, an auditory display used for monitoring events

needs to unambiguously provide the user with process and system state

information. User training involves leaming a limited, but nat necessarily

small, set of auditory messages corresponding to various system elements and

processes. Examples of monitoring applications include medical data

monitoring systems, air traHie control equipment, and general computer

interfaces.

In contrast, data analysis systems are used for data exploration where

the data is often time-varying and multidimensional in nature. Although the

user may recognize certain system states, the goal of data exploration is ta

examine the interaction of various data variables by listening for and

exploring unfamiliar sound patterns. Due to the nature of the task, auditory

displays used in data analysis systems need to provide far more interactivity

than monitoring systems. Users need to be able to tweak and tune various

parameters as they explore unfamiliar data sets. This requires a higher level of

27

.(

(

end user training, which in sorne ways is similar to that of musicians. Users

need to leam to "listen" to the system with an analytical ear, and be able to

draw conclusions from what they hear. This also implies that users need to be

able to hear data in multiple ways (Kramer 1994b). Auditory data exploration

can prove to be useful in sorne of the same areas as data visualisation systems.

These include scientific studies dealing with environmental, chemical, and

physical modeling, as well as more commercial applications such as statistical

and financial analysis.

3.2.2 Mapping Sound To Data

The success of using audio in human-computer interactions is

dependent on the user's capability of extracting and understanding relevant

information from the sounds produced by the system. The well implemented

mapping of sound to data is therefore a crucial element in the design of

auditory displays. This section will present several of the most common

mapping techniques used in current auditory displays.

Buxton (1989) and Gaver (1986) state that most auditory display research

has been based on the traditional understanding of sound and our auditory

system. Mapping schernes based on this approach map data to the

psychophysical attributes of sound: pitch, timbre, and amplitude. Bly (1982,

1987, 1992) has shown that this type of mapping can be successfully used in

representing time-varying multivariate data. Similarly, Kramer (1991, 1994a)

uses a technique he calls parameter nesting. Essentially, he maps data to

various levels of the psychophysical attributes of sound. For example, there

are five levels of loudness nesting: pulse speed, d uration, envelope, cluster

speed, and master volume, each of which can represent a unique data

variable. Pitch can be controlled at various levels as weB, including overall

pitch, modulation frequency, and musical scale.

Earcons are also based on mapping data to the psychophysical attributes

of sound. They are abstract, synthetic tones that can be used in structured

combinations (Brewster et al. 1994). In many ways earcons resemble motives

in music compositions in that they bath take the form of short, malleable

rhythmic and melodic fragments.

28

(Blattner et al. (1989) discuss a hierarchical approach to earcon design

which lead ta families of related messages. They give the following example

of how an error-message family may he built: At the top level of the hierarchy

is a unique rhythm which identifies the errar-message family. The next level

down would then assign various pitch collections to the different types of

errors. For example, program execution errors can be identified by a

descending minor arpeggio coupled with the distinct rhythmic pattern of the

error message family. Using the same rhythmic pattern, a descending

diminished seventh chord may signal an operating system error. Various

types of error messages within these categories can then be distinguished by

unique timbres. For example, a descending diminished arpeggio with a

trumpet sound can signal a write to disk error, while the same pattern with a

flute sound can signal a read from disk error. Similarly, register and dynamics

can be applied to earcons to further categarize related system events.

In contrast to these mapping techniques, are those which use real­

world sounds or auditory icons, to present information. Gaver (1986, 1989,

1994) has proposed a mapping scheme based on a theory of sources rather

than one based on the proximal or psychophysical stimuli of sound discussed

above (Buxton 1989). His argument is that our normal mode of hearing

invalves listening to sounds in order to identify their sources. When

someone hears footsteps behind them in a dark alley, they are more likely to

hear that they are being followed than to focus on the timbre, rhythmic

regularity, and pitch of those footsteps. Real-world sounds carry information

describing the physics of the events that caused them. This includes the

material and size of objects, as weIl as the type of event (e.g. glass breaking,

door slamming, sandpaper scraping, etc). Auditory icons apply these concepts

to elements of the computer system where text files sound like shuffling

paper, large applications sound like large metallic objects, and background

processes sound like machines at work. There has been a great deal of work

with auditory icons based on Gaver's approach, including that of Jonathan

Cohen (1994) and Elizabeth Mynett (1994).

Auditory icons may provide an intuitive approach to understanding

what is being represented by a given sound (in terms of both object and

29

(event). Earcons on the other hand, are inherently more abstract, making a

particular mapping useful only after the user is given a certain amount of

training. While interpreting auditory icons is based on exîsting real-world

listening skills, interpreting earcons requîres listening skills similar ta those

employed when listening to music and may be more difficult to develop for

sorne people.

Although auditory icons convey the notion of sources and interacting

objects, much research is needed to investigate what aspects of sound give us

this information. On the other hand, the psychophysical attributes of sound

have been well studied and may offer a higher dimensionality in terms of

data representation: data variables may be mapped to the many parameters of

sound (pitch, timbre, amplitude, frequency modulation rate, etc.). The

selection of an appropriate mapping scheme for a given auditory display

system depends on what kind of data needs ta be represented and who the

end-users of the system will be.

3.2.3 Sound Design

Computer users often tum off the sound features of their systems

because they find the sounds annoying, distracting, and uninformative.

Clearly, the choice of sounds and their design have a great impact on the

success of a given auditory display (similar to the impact of music and sound

effects in movies, video games, etc.). This section will discuss sorne general

issues that sound designers need to be concemed with.

The fidelity of sound is of great importance. Most sounds used in

computer systems are of low fidelity. In the past this was due ta hardware

restrictions: high fidelity sound playback was not available and the storage of

high fidelity sound files was not practical. The trend to use low fidelity sound

has continued even today where systems with greatly improved sound

playing capabilities and storage space, as weIl as greater processing power, are

widely available to the general public. This reflects the consideration of audio

as an afterthought or "bonus" feature in many system designs.

Besides offering a more enjoyable user experience, high fidelity audio

provides for greater functionality in auditory display systems. In describing

30

(
\

how sound fidelity affects user interpretability of audio messages, Bargar

(1992) states that high fidelity audio allows the differentiation of similar

sounds used in complex representations. He goes on to say that low fidelity

sound changes the listener's task from differentiation ta categorization. This

is similar to comparing high and low quality photos: more detail is present in

the higher quality picture, hence conveying more information to the viewer.

Patterson (adapted from !<ramer 1994, 44) suggests sorne other

guidelines for auditory display sound design. Although he worked on

auditory warning systems used on civil aircrafts, rus findings may influence

sound design in general. Patterson states that the main design issues include

overall sound level, temporal characteristics, and spectral characteristics. For

audio messages to be informative, they need to be detected by the user. Loud

sounds are annoying, distracting, and in Patterson's study, tend to incapacitate

users. He found that auditory messages need to be at least 15 dB above the

noise floor or masked threshold, but should not exceed 30 dB. As far as a

alarm sound's temporal characteristics are concerned, onset and offset times

should not be too abrupt 50 as not to startle the user. Patterson found that

onset times between 20 and 30 milliseconds were preferable. He also found

that similar temporal patterns tend to lead to confusion between messages.

Similarly, spectral patterns of individual sounds need ta be diverse as well.

When faced with the decision on how much control to give to the user when

making preference adjustments, auditory display designers may take

Patterson's findings as base values.

Other important, yet poody understood, aspects of sound design are

the affective and emotional responses that sounds elicit in Iisteners (Kramer

1994a). One only needs to examine the various effects that music has on

people: it has the ability to convey a whole palette of emotions including

pleasant and unpleasant feelings. In terros of auditory displays, these aspects

of sound can influence how information is interpreted (Kramer 1994a).

Kramer (1994a, 214-215) gives a partial list of affective associations with sound

which includes ugliness, richness, hollowness, and unsettling. Although

music provides us with examples of how sound is used to convey these

feelings, more scientific study is needed for a better understanding of how

31

(

(

these factors may be controlled and put to use in auditory displays.

3.2.4 Sound Generation

Auditory display designers have three broad categories of sound

generating techniques at their disposaI: sample playback, reai-time synthesis,

and MIDI.

Sample playback is currently the most widely used playback

mechanism. Practically an computer systems today offer the user sorne form

of capturing (sarnpling) a sound, storing it, and playing it back. In terms of

auditory display, this situation is deceptively simple. Gaver (1994) outlines

sorne difficulties related to using sarnpled sounds. The first is that finding a

real-world sound that best represents a certain auditory display element may

be difficult: while emptying the computer desktop trash has a real-world

counterpart, copying a file from one directory to another does not. Second,

shaping and real-time modification of sampled sounds in terms of auditory

display parameters is difficult. Most sound design software is designed for

musical purposes and not for addressing auditory display issues. Lastly, high­

fidelity sampled sounds require large amounts of storage mernory.

Real-time synthesis addresses sorne of the problerns of using sampled

sounds. Sound designers are able to create their own sound generating

algorithrns and generate tones best suited to the requirernents of a given

auditory display. This provides a rich opportunity for sound exploration and

manipulation. However, most synthesis programs are standalone

applications and are not easily integrated with other system functionality.

Furthermore, direct synthesis requires auditory displays to maintain their

own synthesis engines in either software or hardware, increasing the size and

complexity of the auditory display system.

A middle ground between the above two methods of sound generation

is MIDI. MIDI provides the communication protocol to control devices

capable of both real-time synthesis and sample playback. MIDI devices have

become affordable and widely accessible to the general public in the form of

musical instruments, computer sound cards, and software. Auditory display

systems may easily incorporate outboard MIDI gear for sound generation,

32

(freeing up valuable proeessing resources.

The problems with MIDI are sunHar ta those of sound design software.

These devices are prirnarily designed for applications in music and not for

dealing with the specifies of auditory displays. In addition, the low resolution

of MIDI data (128 possible values for most MIDI messages) and its maximum

seriaI transfer rate of 31.25 Kb may be insufficient for complex auditory

displays.

33

(4. The Use of Sound on the WWW

Although the Internet originated in the nineteen sixties, it wasn't until

the development of the World Wide Web (WWW) in the early nineteen

nineties that the Information Superhighway was embraced by the general

public. The WWW has provided easier access to the Internet in the form of a

graphic user interface (GUI) - essentially a window into a vast pool of

information. It has become a powerful communication tool, providing

connectivity across the globe.

As with most computer system developments, the visual component

of WWW applications is far ahead of audio support. WWW research and

development is mainly concemed with extending the GUI paradigm to

accessing the Internet. For the WWW to be a true multimedia interface to the

Internet, the communicative power of sound cannat be ignored.

4.1 General Aspects of the WWW
Fluckinger (1995, 274) describes the WWW as follaws:. First, it is the

name of a project started at CERN, the European Laboratory far Particle

Physics, in 1989. The impetus for this project was the need for researchers to

manage and share large amounts of information with fellow collaborators

who were spread around the world. Second, it is a collection of specifications

and protocols designed to address how this body of information may be

managed and shared. These specifications include the structure of WWW

documents, how to access these documents, and how they may be transferred

over computer networks. The development of these pratocols was quickly

adopted by the general Internet community. This in tum lead ta the

establishment of a world wide organization concemed with the continued

development of WWW standards in 1995, led by MIT in the USA and INRIA

in Europe. Lastly, Fluckinger describes the WWW as IIthe space of digitized

information, the hyperspace, available over the Internet and supported by a

set of interlinked information servers".

34

(

(

Fluckinger (1995) offers two fundamental reasons for the wide spread

popularity of the WWW:

1- the lack of a central authority

2- the universality of the WWW

A lack of a central authority provides the opportunity for anyone to publish

and integrate information with preexisting WWW documents. World wide

connectivity, the ability to exchange information over heterogeneous

computer networks, and the standardization of communication protocols aIl

contribute in making the WWW a universally accessible information

resource. For example, the WWW can provide students across the globe with

easier access to research material which would otherwise be buried in the

corners of sorne distant library.

These defining characteristics of the WWW also point ta sorne

inherent problems. Although the ease of WWW publishing facilitates the

dissemination of useful information, it also allows for Uhyperspace

pollution": just because something is published does not mean it is important

or useful, and may waste valuable resources like storage space and network

bandwidth. As in the real world, the Internet community is very much

concemed with human right issues like freedom of speech and censorship.

The main problem with the universality of the WWW, is that the

development of tools to be used over heterogeneous networks must be

designed to deal with the lowest common denominator. This often results in

sacrificing the use of higher-end system functionality ta be compatible with

lower-end systems.

Over the past couple of years, the WWW has experienced an explosive

growth in both the development of related technologies and the number of

people accessing online resources. This has increased the complexity of the

WWW in terms of the volume of available information, how information is

accessed, and the very nature of the information itself. It is no longer simply a

playback mechanism for static hyperlinked documents, but has developed

into an interactive medium full of dynamic content.

The use of the WWW has quickly evolved from the exchange of

knowledge through simple documents, to general, multimedia

35

(

(

communication. Today's interactive WWW applications include commercial

transactions, entertainment and "edutainment" applications, and computer­

supported cooperative work. WWW technologies will continue to develop as

computer companies and software developers look to integrate Internet

accessibility and services with more traditional desktop computer systems.

4.2 Current Uses of Audio on the WWW
The use of audio on the WWW faIls under three main categories:

audio file download, streaming audio, and embedded audio. The following

section will discuss each of these categories and how they relate to the

demands of interactive WWW auditory displays.

4.2.1 Audio File Download
The most conventional use of audio on the WWW is that of the

distribution of audio files. Users first select which sound file(s) they wish to

hear and initiate a download. Web sites usually offer sound files in several

formats (e.g. AIFF, WAVE, MPEG, etc.) and leave it up to the user to select

which one is the most suitable for their particular system. Once downloaded,

the audio file is played with an appropriate sound playing application set up

by the user. Very often this consists of configuring the WWW browser to

launch an appropriate application responsible for playing the sound file.

However, it is becoming more common for WWW browsers to handle audio

(as weIl as other media) playback themselves as an integrated feature of the

browser application.

Audio file transfers have become quite popular with musicians. For

example, composers are able to set up web sites containing archives of "sound

bytes" from recent compositions, making examples of their material available

to anyone who has access to the WWW. Similarly, record companies are

posting sound files in an attempt to promote the sales of recordings.

Audio file downloads however, do not meet the demands of auditory

display systems. In contrast to the real-time interactive aspects of auditory

displays, the nature of conventional audio file downloads is that of a selection
36

(

(

process and information request. It is up to the user to select a file, wait for it

to download, and make sure that the playback application is properly

installed. In addition, the latencies inherent in transferring files over the

Internet dispel the notion of real-time system response.

4.2.2 Streaming Audio

Streaming sound files enable the real-time transmission of audio on

the WWW. Instead of having to wait for the whole file to be downloaded in

order to hear it, audio is played back on the user's system as it is being

transferred over the network.

Fluckinger (1995) describes four critical performance criteria related to

the real-time transmission of time-dependent media:

1- The throughput of the network, usually expressed as

the number of bits the network is capable of accepting and

delivering per unit time.

2- The transit delay. This is the time elapsing between the

transmission of the first bit of a data block by the

transmitting system and its reception by the receiving end­

system.

3- The delay variation is the variation over time of the

transit delay.

4- The error rate measures the behavior of the network

with respect to alteration, 1055, duplication, and out of

order delivery of data.

Fluckinger (1995) aiso discusses the demands placed on underlying

networks by reai-tirne audio transmissions. He states that for uncompressed

audio streams, telephone quality audio requires a bit rate of 64 kilo-bits per

second (Kbps) while CO quality audio requires a throughput of 1.4 mega-bits

per second (Mbps). On the other hand, compressed audio streams require

lower bit rates: telephone quality can require 32, 16, or 4 I<bps (depending on

compression algorithm used), and CD quality can vary from 384 down to 192

Kbps (again, dependent on compression algorithm). Sorne compression

aigorithms, such as MPEG-Audio Layer 3, even offer near CO quality with bit

37

(

(

rates as low as 64 Kbps. If other media (e.g. video) accompany the audio,

streaming technologies also need to address the issues of synchronization

between the various elements of the given real-time transmission.

Numerous companies are involved in developing streaming

technologies, and have made great strides in a rather short amount of time.

The three major types of Internet applications which benefit from this

technology are telephony, audio/video broadcasting, and teleconferencing

(Lombardi, 1995). Internet telephony is mainly used for bypassing the long

distance costs of regular telephone service. Whether or not this is a waste of

network resources is open for debate. Internet-based audio/video

broadcasting and teleconferencing are perhaps more useful applications. They

extend the capabilities of traditional information media Like news casts and

educational seminars, by offering new far-reaching broadcasting

opportunities. The viewer/ participant base is no longer confined to a small

local area, and can now include people across the world.

Both audio streaming and auditory displays are concerned with time

critical issues in audio delivery. While the former is mainly concemed with

maintaining the integrity of a given audio stream, auditory display systems

have the additional task of performing with minimal response times. The

main purpose of auditory displays is to provide immediate feedback to the

user regarding the state of the system and user actions. An Internet broadcast

of radio news, for example, does not need start at the moment the radio

transmission begins, unlike an auditory display which needs to inform the

user immediately about the state of some mission critical process. Due to

inherent network latencies, auditory displays can not (yet) rely on sending

immediate informative auditory messages and cues across a network.

4.2.3 Embedded Audio

This third category of audio use on the Internet is more directIy related

to auditory displays. Embedded audio involves hiding the complexities of

audio file download and streamed audio: an audio or MIDI file is

automatically downloaded and begins playing when a given web page is

visited.

38

(

(

Applications of embedded audio range from simply setting a mood to

enhancing elaborate interactive content. Technologies like the Virtual Reality

Modeling Language (VRML), Macromedia's Shockwave, Sun's Java, and

Netscape's ONE programming suite provide the tools necessary for

developing sophisticated, WWW multimedia environments. In tum, these

technologies afford the opportunity to implement various auditory display

techniques as part of the embedded interactive content.

4.3 Auditory Displays for The WWW
The WWW is a relatively young area of application development. By

incorporating auditory dispIay techniques early on, sound can become an

integral and expected component of the WWW user experience rather than a

"special" feature. Audio can complement visually presented material,

heighten user engagement, and increase the perceived quality of the

application. This section will discuss how a variety of WWW applications

stand to benefit from various sonification techniques.

4.3.1 WWW Browsers
WWW browsing has brought with it a whoIe new set of user interface

issues. Much like the rest of the computing world, most information is

displayed visuaIly. The sole sound these applications make is a system beep

accompanying alert boxes. Sound can not only enliven the WWW

experience, but provide services and functionality which may be difficult, or

impossible, to present visually.

Many of the benefits of conveying information through sound can be

applied to WWW browsers. At the most basic sonification level, audio can

provide assurances and feedback for user actions. These include basic

operations shared by aIl applications such as menu selections, button presses,

and the success or failure of various commands such as file saves. Auditory

messages can aIso be applied to elements and operations specifie to WWW

browsing. Our ability to a monitor a number of simultaneous background

39

(~
auditory streams, can be used ta indicate cannectivity status and the state of

downloads in progress. The telephone provides sorne examples of these types

of auditory eues. Dial tones, busy signaIs, and noisy lines aIl canvey the

current status of telephone connectivity ta the user. In WWW browsing

environments, the user is nat always aware of whether the state of their

onIine connection(s) unless they look for visual indications in the forro of

windows and progress bars (which may be hidden from view). Connectivity

status can be represented aurally with the use background ambient sounds.

Any changes in connectivity (e.g. interruption, staIl, loss of connection, etc.)

can be indicated by changes in the background sounds. The user is able ta

notice these changes without being distracted frOID whatever task he/she may

be involved with such as reading an onscreen document.

Hypertext navigation can also be made more productive through

auditory eues. Very often the user does not know what's "on the other side"

of a particular hypertext link: a text file, an application, a sound file, etc. One

solution might be to play identifying sounds as a user passes the mouse over a

particular link. For example, links to text files can sound like paper being

shuffled, while links to downloadable applications may sound like metallic

containers. In addition, the approximate size of linked objects may be

conveyed through sound: large text files may sound like large books and large

applications may sound like large, full metallic containers. This "mouse­

over" technique has the benefit of providing file information without having

the user activate a particular link.

Other elements which may be sonified can include the user's bookmark

file. Sounds can be used to indicate not only the file type and size, but age as

weIl. For example, the older a bookmarked document is, the more muffled it

sounds.

4.3.2 Network Administration Tools
Network monitoring and WWW server applications can be enhanced

by incorporating status and monitoring sonification techniques. For example,

network administrators can listen to a WWW server in order to hear how

busy it is: the greater the load, the busier it sounds (these eues can be similar to

40

(what an overloaded car engine may sound like in the real world). The

server's auditory display can also offer the capability to be tuned into specifie

processes to determine their particular states. For example, the administrator

might hear that mail deamon is still running (e.g. an identifiable continuous

background sound) but that the FTP service is down (e.g. the absence of the

"FTP deamon" sound). Similarly, the status of individual nodes of a network

may checked. For example, a network ping (sending out and getting back a test

packet over the network to a particular machine) can have an auditory

counterpart.

There are a growing number of data analysis applications written for

analyzing WWW traffie. These applications are used by web site managers ta

analyze various server system states such as incoming network traffic and

web server log files. These applications employ techniques quite similar in

nature to data visualization techniques used by the financial and scientific

communities. Variables such as how often requests are made for various

services, from where the WWW server is being hit, and the times of greatest

load on the server are presented visually in the forms of graphs and

customized reports. These multivariate data sets can be sonified using

auditory data analysis techniques. Various data parameters may be mapped to

auditory variables such as pitch' amplitude, and timbre. Consequently,

various trends in the data may be heard which might otherwise be missed

when attempting to correlate a number of data values visually.

4.3.3 Communication TooIs
The use of the WWW has gone from the simple exchange of

documents ta providing novel communication tools. Examples include

computer telephony and teleconferencing tools, and Computer-Supported

Cooperative Work (CSCW) applications are examples of other ernerging

WWW communication tools. Although text-based CSCW applications have

been around for quite sorne time on the Internet (e.g. e-mail, MUDs, chat

lines, etc), these have traditionally consisted of Unix applications with

command line interfaces. The WWW has made the use of these applications

more intuitive and accessible to the general public through the use of GUIs.

41

(

(

Instead of rernembering command line options and arguments, users can

now make menu selections and operate graphic buttons.

Sorne exarnples of CSCW VVWW applications include chat-rooms and

message-posting areas. These take the form of simple windows with various

menu options and buttons for entering and using chat-rooms or postïng

areas. Auditory displays can provide sonic assurances. For example, auditory

cues can be used for hearing when a new user has joined (or left) a chat

session, the success or failure of posting new messages, and connectivity

status. Chat rooms may also take the form of more complex VRML worlds,

complete with avatars (graphic representation of logged on users) and

landscapes. Spatialized sound can make these worlds even more complete

where objects and user actions not only look real, but sound real as weIl.

Other popular uses of CSCW include shared whiteboard tools and and

shared application tools (Fluckinger 1995). Shared whiteboards allow multiple

participants ta viewa common virtual whiteboard from their respective

computer monitors. This shared space can then either be used as a common

sketching pad, or a container for imported documents where multiple

participants can annotate, highlight, or markup a given document without

actually altering its original contents. Shared application tools extend the

shared whiteboard paradigm, allowing multiple users to work on a single

document or share a single application. In this case, various users alter the

actual contents of a shared document. Examples include collaborative graphie

design tools, multimedia authoring suites, and programming environments.

A common issue shared by these applications is conveying to aIl

participants information conceming who is the active speaker, who is making

the current annotations, and who is actually present at the session. This

information, called floor control (Fluckinger 1995, 143), is usually presented

visually in one form or another. For example, a given user types text in a

window ta notify the other participants that they wish to perform sorne action

(e.g. speak, highlite, draw, etc.). Each participant is also assigned a color so that

everyone can identify who marked what on the whiteboard. Finally, the list of

people present at the given session is displayed in a window.

While audio/video teleconferencing tools are often used to establish

42

(

(

more elaborate communication channels, they place heavy demands on the

underlying network. These may result in long latencies, thereby reducing the

productivity of a cooperative session.

Spatialized auditory displays can complement the graphic nature of

these applications. For example, auditory displays may more conveniently

address the issues related to floor control. Instead of assigning colors ta

individual participants, they can each be assigned a position in 3D space.

Then, when someone makes changes to a given shared document, perhaps

drawing a figure or typing sorne text, appropriate sounds would come from

assigned "seating" positions. These sounds can consist of typical drawing and

typing sounds like paint brush strokes and typewriter keys. Auditory eues

would reduce the visualload placed on users and allow for less distractions

while working on the primarily visual tasks of document and application

sharing.

4.3.4 General WWW Applications and Documents

More general W'WW and Internet applications may also incorporate

auditory display techniques. Among these are tools used to store and retrieve

data on remote computers (FTP applications), connect to remote computers

(telnet clients), and perform W'WW information searches (search engines and

web robots). AIl of these need ta relay to the user the status of data transfers

and connectivity, and may integrate many of the auditory cues described

above.

While the applications discussed thus far are means of sonifying the

tools for accessing the W'WW and the Internet, WWW users and developers

may contribute to the sonification of the web by creating sonified web

documents. HTML documents have gone from being static documents to

interactive content full of graphie elements like menu bars, image maps,

animations, and games. More and more web-site developers are now

incorporating embedded background music to provide ambience and set a

mood while visiting their sites. Embedded sounds may also be used to

identify the type of web site Ce.g. education, commercial, organization, etc) as

weIl as web site areas Ce.g. recent events, press releases, product info, etc.).

43

(

(

5. THESIS SOFTWARE

The software developed as part of this thesis consists of the Netscape

plug-in for Macintosh PowerPC called SprocketPlug, and a companion

Macintosh utility program Theme Editor. SprocketPlug offers WWW

developers the opportunity ta incorporate interactive spatialized sound in

numerous WWW project settings. The Theme Editor utility is used to create

collections of sounds known as SprocketPlug Themes, which cantain the

actual sounds to be played by SprocketPlug. Theme Editor may also be used by

end-users to customize these theme files.

This chapter will begin by discussing how extending client-side

functionality has enabled elaborate interactive content ta be delivered on the

WWW. Next, the technologies specifie to the development of the

SprocketPlug plug-in will be presented. The remainder of the chapter will

describe the thesis software and how programmers can incarporate

SprocketPlug functionality at various levels of WWW document/application

development (namely HTML, Javascript, and Java).

5.1 Interactive Content On The WWW

5.1.1 Traditional WWW Communication

The WWW is based on a client-server model of computer networking.

A WWW client is a web browser running on the end-user's machine which

communicates with web servers via the Hypertext Transfer Protocol (HTTP).

The communication consists of client requests and server responses. Figure 5­

1 illustrates this pracess.

44

a.
~
I

figure 5-1 - client server communication

Client Computer

(~Bromer)

J~

server response

.----- - --------

------- -----.------.......------t-"--~.
cl ient request

~,

Server Computer

(HTTP server)

t
1 HTML 1Files

45

(Communicatio:l. begins with a client requesting a file from a particular

HTTP server. The server then looks for the file and, if available, sends the file

to the client. If the server can not locate the file or the client is denied access to

the file, the server sends an appropriate error message indicating the reason

the file was not delivered. Immediately preceding the delivery of the file

however, the server informs the client of the file's type. The server sends the

client a message (or header) describing the file's contents using a subset of the

Multi-purpose Internet Mail Extensions (MIME) specification. This message is

typically "Content-type: text/html", which informs the client it is about to

receive an HTML document. Other MIME type messages are used to describe

various other types of documents including AIFF sound files (Content-type:

audio/aiff), JPEG images (Content-type: image/jpeg), and MPEG encoded

videos (Content-type: video / mpeg).

The Common Gateway Interface (CGI) describes the mechanism used

by servers to process more complex client requests such as form processing

and database searching. Instead of processing these requests themselves,

servers invoke external prograrns (CGI scripts) to do the work for them. The

results of the CGI script are then sent back to the client. Figure 5-2 depicts this

process.

46

(figure 5-2 - client server communication incorporating CGT

Client Computer

server response

------ ------
~:et ~ ~ ~~)
'~ -~------- --------......-----.........-~

cl ient request

Server Computer

HTIP Server

Common
GateYvaY
Interface

CG1scriptJprogram

47

(

(
\

The CGr specification is essentially an interface through which servers pass

parameters to external programs and receive results from them. Although

CGr programs allow for sorne interactive client-server communication, due to

network latencies and potential server load, they do not meet the demands of

real-time, interactive multimedia content delivery.

5.1.2 Extendinc Client-side Functionality

Several technologies exist to address the issue of more efficient

multimedia delivery over the WWW. These include Netscape's plug-in

architecture and Sun's Java language. Instead of placing aIl the load on the

server side of WWW communication, these technologies give the client

computer the ability to process information locally. Client-side processing

al10ws for more complex and efficient behavior to be integrated into a web

pagelsite than was previously available through CGr programming.

Netscape plug-ins are software modules which extend the functionality

of the Netscape Navigator WWW browser, and hence, client-side processing.

A plug-in may be created to display various custom data types without having

to update or modify the browser application itself. A simple example might

involve the display of 3D graph data. The client computer wouId retrieve the

data from a company server, and then proceed to interpret and display the

data itself. Previously, server-side CGr programs or external applications were

required to execute these types of tasks.

Plug-ins can not only display data within a WWW document, but can

also behave like any other application. For example, Macromedia's

Shockwave plug-in allows multimedia presentations (prepared with the

Director authoring program) to run from within a standard WWW

document. Another popular plug-in is Netscape's Live3D, which processes

user-navigable three dimensional graphie environments coded in VRML.

However, plug-ins consist of compiled native code. Various versions of a

given plug-in must be created to accommodate different computer platforms.

Java (Sun Corp. 1996), is a platform-independent, interpreted object­

oriented programming language. Although Java may be used to write

standalone applications, it's real power is the ability to write Java applets,

48

(which are applications and data embedded in standard WWW documents. In

contrast to plug-ins, a Java applet's code is downloaded with the WWW

document. This code is then executed by a Java interpreter running on the

client machine in conjunction with the WWW browser. Sorne examples of

Java applets include educationai programs, games, and utilities.

Netscape and Sun have also developed the Javascript language. This is

is a less complex interpretive language, and consists of lines of code written

directly into HTML documents. Javascript can communicate directly with

other elements on the HTML page, allowing more elaborate processing than

is possible with standard HTML. Many of the tasks previously requiring CGI

programs, can now be accomplished using Javascript. These include dynamic

web page construction based on user input, and user event-processing.

Javascript rnay aise be used to lighten the load of server-side processing.

5.1.3 Integrating Local and Remote Resources

A growing nurnber of applications are being developed which integrate

local and remote resources. These "Internet savvy" or "hybridl/ applications

combine the dynamic nature of the WWW (remote resources) with assets

stored on client computers (local resources).

There are two approaches to developing applications which integrate

local and remote resources. The first approach involves an application

running on the client machine reaching over the WWW for content stored

on a server. An example rnight be an educational CD-ROM on space

exploration with WWW links to the most recent snapshots of space from

NA5A's web site.

The second approach in integrating local and remote resources consists

of remote applications, or applications running in a WWW browser (e.g. Java

applets), accessing locally stored content. By using locally stored content,

download and startup times of remote applications can be greatly reduced.

Examples include multi-user WWW educational programs and games which

use locally stored images and sounds. Local1y stored media can then be

updated, edited, or even replaced by the user without making any changes to

the parent application (found somewhere on the WWW).
49

(

(

The SprocketPlug plug-in developed as part of this thesis, extends

client-side functionality by providing a mechanism for interactive spatialized

sound handling. In particular, SprocketPlug addresses the issues of limited

audio handling in Java and the non-interactive nature of current Netscape

Navigator audio plug-ins. Although Java provides basic sound playing

capabilities (play, stop, loop), it limits the use of sound to 8 kHz/8 bit

monophonie JlLaw eneoded audio files. In eontrast, SproeketPlug ean play CD­

quality, full bandwidth (44 kHz/16 bit) audio, and provides real-time 3D

sound proeessing (while many audio plug-ins also support full bandwidth

audio, they act as standalone players). The sounds used by SprocketPlug are

stared loeally in sound collections called SprocketPlug Themes. These themes

are created and customized using the Theme Editor utility without having to

change any source code in the application using SproeketPlug.

5.2 SprocketPlug Enabling Technologies
This section will present the technologies directIy related ta the

development of the SprocketPlug plug-in. Specifically, SprocketPlug

ineorporates Apple's SoundSprocket technology for sound spatialization, and

provides a LiveConneet interface for accessing SprocketPlug functionality

from HTML, Javascript, and Java applets.

5.2.1 Apple SoundSprocket
The Apple SoundSprocket API is part of the larger Apple Came

Sprockets software developer's kit aimed at game and multimedia

development for macintosh PowerPCs (there is no version available for

Macintoshes based on the Motorola 68000 family). In addition to the

SoundSprocket, this kit includes APIs for input device handling

(InputSprocket), graphies (DrawSprocket), and networking (NetSprocket).

SoundSprocket works on top of Apple's Sound Manager to provide real-time

three dimensional audio filtering (position and distance in 3D space),

reverberation, and Doppler effects. It consists of the SoundSprocket Filter

50

(

(
...

system extension, the SoundSprocketLib shared library, and requires Sound

Manager version 3.2 or higher. SoundSprocket can be configured to work

with headphones, stereo speakers, or a mono output. The difference between

headphone and loudspeaker playback is that crosstalk cancellation filtering is

active only for the latter. Directional eues are obviously lost during mono

playback, but reverberation and Doppler effects are still present to sorne

degree.

5.2.2 Netscape's LiveConnect SDK

Netscape's LiveCannect architecture allows the integration and

interaction of Javascript, Java, and pIug-ins within the Netscape Navigator

environment (version 3.0 and higher). It gives programmers the following

possibilities:

1 - caU a Java applet's public variables and methods from

Javascript

2 - cali Javascript functions and abjects from a Java applet

3 - caIl Java methods from pIug-ins

4 - calI pIug-in methods from Java applets.

5 - caH pIug-in methods from Javascript

Although points 1, 2, and 3 are useful, points 4 and 5 are perhaps the

most interesting. Point 4 describes the ability of Java applets to calI native

methods implemented by a plug-in. The way this works is that a Java wrapper

class is defined for the plug-in which defines the methods the plug-in wishes

te export. This class extends Netscape's own netscape.pIug-in.plug-in class and

appears te Java applets as another available class (the plug-in's Java wrapper

class must be in Netscape's pIug-ins foider aiong with its associated plug-in).

The ability to implement and calI native methods was previously enly

available to standalone Java applications.

Regarding point S, an embedded plug-in is accessed from Javascript as

an element of the HTML page, much like various other standard HTML

elements like form input fields and buttons. Similarly, a given pIug-in's

methods are called using standard Javascript syntax.

51

(

(

5.3 Thesis Software Overview

5.3.1 The SprocketPlug Plug-in
The SprocketPlug plug-in is a Netscape plug-in for Macintosh PowerPC

which implements a virtual audio environment. This environment consists

of a listener, one or more sound sources, and a set of room characteristics.

These elements have various parameters associated with them ':A.'r-Jch affect

audio processing. This section will give an overview of the plug-in's

functionality, while section 4.4 will describe the specifics of using

SprocketPlug in various settings.

The listener and sound source(s) are located in a three-dimensional

space defined by azîmuth, elevation, and distance. Each of these may also

have associated velecities, giving rise te Doppler effects as the listener and

seund sources move and pass each ether. In addition, a sound source has

several other characteristics including a reference distance and an angular

attenuation cone. The reference distance is the distance at which the given

sound source was recorded. When the source is exactly at this distance from

the listener, no attenuation of the source's sound occurs. For distances further

away, the sound source is attenuated, while at distances closer than the

reference distance, the sound is amplified. A sound source's angular

attenuation cone determines the direction of maximum sound intensity and

the amount of attenuation applied relative to the angle between the listener

and the sound source. A sound source is always the loudest when the listener

is directly facing it. As the angle between the source and listener increases, the

sound is gradually attenuated, as defined by the source's attenuation cone.

The audio environment also has parameters related te room reverberation

including room size, room reflectivity, and the amount of reverberated signal

in the final output.

Associated with the SprocketPlug plug-in are SprocketPlug themes.

These are Macintosh resource files containing a collection of sounds to be

played by the plug-in. For example, a Java applet game developer using

SprocketPlug for the game's sound handling, puts aIl the required sound

52

(

(

effects and theme music for the game in one SprocketPlug theme. When

SprocketPlug is initialized by the game applet, the given theme file is opened

and its sound resources are made available for the duration of the game.

SprocketPlug theme files are a convenient method of organizing, distributing,

and storing the various sounds required by a project.

5.3.2 The SprocketPlug Theme Editor Utility

The Theme Editar is a small Macintosh utility program which allows

the creation and editing of SprocketPlug themes. SprocketPlug themes are

resource files containing three types of resources: a custom resource 'spkr', a

template resource of type 'TMPL', and the 'snd ' resource. The 'spkr' resource

specifies the number of sounds in the file. The 'TMPL' resource is used for

editing the 'spkr' resource when working with the ResEdit resource editing

program. The 'snd ' resource contains aIl the sound resources for a given

SprocketPlug theme. Sorne, or even aIl, of these sound resources may be

compressed, thereby reducing the storage space required for the given

SprocketPlug theme.

A new theme file is created by choosing /1 New••• " under the File

menu. The Theme Creator window pop-ups up (figure 5-3), displaying the

theme's sound list (initially empty) and a set of buttons. These allow the user

to add, remove, replace, record, and play sounds. The user does not need to

explicitly save any operations because Theme Editar automatically updates

the theme file it is working on.

53

(figure 5-3 - the Theme Creator window

An existing SprocketPlug theme file may be edited by choosing

"Open..." in the File menu. After selecting which theme file to open, the

user is presented with the Theme Editor window. This window displays the

theme's sound list and buttons for replacing, exporting, and recording sound

files (figure 5-4). As when creating new themes, any changes to the file are

automatically saved by Theme Editor. When editing a theme, the user is able

to replace, export, and record sound.

54

(figure 5-4 - the Theme Editor window

Theme Editor imports (Le. adding and replacing sounds), exports and

records System 7 sound files. As mentioned above, imported sound files may

be compressed files, stored in either standard Apple compression formats

(MACE 3:1 and MACE 6:1) or in !MA 4:1(Interactive Media Association)

format.

55

c.

(

5.4 Using SprocketPlug
The SprocketPlug plug-in provides functionality on three leveIs of

WWW development: HTML, Javascript, and Java programming. This section

will discuss how the plug-in's functionality may be accessed from each of

these three modes.

5.4.1 HTML Authoring

At the HTML Ievel, using the SprocketPlug plug-in is similar to using

most other plug-ins. The HTML author uses an <EMBED> tag to initialize an

instance of the plug-in and set various parameters. When embedding a

SprocketPlug instance, the embed tag's type parameter must be set to

"audio/SprocketPlug", which is SprocketPlug's MillE type. Note that this

MIME type does not need to be known by the server since aIl the data (Le. the

SprocketPlug themes) is on the client machine.

The following line of HTML embeds the SprocketPlug and sets some of

its parameters:

<EMBED TYPE="audio/SprocketPlug ll WIDTH=16 HEIGHT=16

NUMCHANNELS=IIS"
SETTHEME=IINature"
PLAYLOOP="l 1">

The above tag initializes a SprocketPlug instance with five sound channels,

opens the Nature SprocketPlug Theme file, and starts playing a looped sound

on channel 1. The sound played is the first sound in the theme file.

The following are descriptions of aIl available SprocketPlug embed tag

parameters:

1 - NUMCHANNELS numChannels

- sets the number of channels ta be allocated where

nurnChannels is the number channels

- this should only be set once for the whole sonified site

- Le. only the site's main/home page

56

(

(

2 - PLAYLOOP theChannel soundID

- starts playing a looped sound on the given channel

- S oundID is an index into the open SprocketTheme file,

specifying which sound to play

- theChannel specifies which channel to use for playback

3 - PLAY theChannel soundID

- starts playing a sound on the given channel

- S oundID is an index into the open SprocketTheme file,

specifying which sound to play

- theChannel specifies which channel ta use for playback

4-SETVOLUA1EtheChannel theVolume

- sets the volume on the given channel

- theChannel specifies on which channel to set the

volume

- theVolume specifies a volume level (integer in the range

0-255)

5 - SETDISTANCE theChannel theDistance

- sets the distance of the sound source, affecting it's attenuation

- theChanne l specifies on which channel to set the distance

- theDistance is a floating point number representing the

distance between the listener and sound source in meters

6 - SETPOSITION theChannel theAzimuth theElevation

- sets the azimuth and elevation for the sound playing or about

to be played on the channel specified by theChannel

- theAzimuth and theElevation are floating point numbers

specifying the azimuth and elevation in degrees of the sound

source

- positive azimuth values are positions ta the right of the

listener while negative values are ta the left

57

(

(

- positive elevation values are positions above the listener and

negative values are below

7 - SETRDDM roomSize roomReflectivity reverbAttenuation

- sets the global reverb parameters

- roomSize is a floating point number specifying the

distance in meters between reverberant walls

- roornReflectivity is a floating point number specifying

the amount of attenuation in dB (less than or equal to 0.0)

that occurs each time a sound bounces of a wall

- reverbAttenuation is a floating point number

specifying the amount of attenuation applied to the

reverberated signal in the final output signal in dB (less

than or equal to 0.0)

8 - SETTHEME themeName

- specifies the name of the Sound Theme file to use

- if this tag is not used, then the Default theme file will be

used

- the theme files are located in Netscape's Plug-ins folder

inside the SprocketPlug Themes folder

While most of these parameters are optional, the HTML author must

specify the number of channels to be opened for sound playback. These

channels are global. Channels only need to be initialized for the very first

instance of SprocketPlug. AIl subsequent instances of the plug-in will share

these channels. For example, when creating a multi-page web site, the first

SprocketPlug instance will probably be found on the site's main page. In the

case of a site which uses frames, the first SprocketPlug instance might be

loaded into the frame used as the site's index. Once the channels have been

initialized, any other SprocketPlug instances can send various playback and

processing commands to these channels.

If the HTML author does not specify a theme name (using the

58

(

(

SETTHEME parameter), a default theme will be opened. While setting the

theme is not required for SprocketPlug to operate, the default sounds will

most likely not correspond with the nature of the given web page/site. Unlike

SprocketPlug channels, themes are not global. Meaning, that unless a given

instance specifies the same theme as a previous instance, the sounds used by

the new instance will net come from the same theme file. Although this may

seem an inconvenience, it allows individual SprocketPlug instances to play

sounds from different theme files.

If SprocketPlug is nat a hidden plug-in (Le. the <EMBED> tag parameter

HIDDEN is set to FALSE), the SprocketPlug icon will appear. When the user

clicks on the icon, a pop-up menu will appear, allowing the user to adjust the

volume (including muting) of the sounds embedded in the given page.

5.4.2]avascript Programming
Javascript allows simple logic and behavior te be embedded within an

HTML document. It is a scripting language whose capabilities lie somewhere

between HTML autharing and Java programming. Netscape's LiveConnect

extends the available predefined Javascript object hierarchy ta include Java

applets and plug-ins. Figure 5-5 shows the Javascript hierarchy.

59

(

(

figure 5-5 - the Javascript abject hierarchy

navigator

~ plugins (an array of inslalled plugins)

LMIMEtypes

window

parent, rrames, seIt top

location

history
document

~
forms ---elements (text fie Ids, text area, checkbox)

links

anchorslthrough LiveConnect

1 plugins Ca document's embedded plugin(s))

L-applets

To caU on SprocketPlug's functionality from Javascript, the plug-in

needs to be embedded in an HTML document using HTML's EMBED tag. AU

SprocketPlug functionality (including channel initialization and SprocketPlug

theme setting) is then accessed via LiveConnect by calling SprocketPlug

methods. The following is an exarnple of ernbedding a SprocketPlug instance

for Javascript use:

<EMBED TYPE=ll audio/SprocketPlug" NAME="sprockets ll

MAYSCRIPT=true HIDDEN=true>

60

(

(

In arder for Javascript to be able to communicate with embedded plug­

in, the embed tag's MAYSCRIPT parameter must be set to true. In addition, the

embedded instance is given a name for easier Javascript referencing, and the

HIDDEN parameter is set to true 50 that the SprocketPlug icon is not displayed.

Although the other SprocketPlug embed parameters (described in section

4.4.1) may be used to set the initial state of the SprocketPlug instance, calling

SprocketPlug methods from Javascript allows the WWW developer to

incorporate interactive spatialized sound within an HTML document.

Once a SprocketPlug instance has been embedded, its methods are

accessed using standard Javascript syntax. Using the above embed tag

declaration, the following Iines of Javascript code initialize the SprocketPlug

instance, set the 3D position of the sound to be pIayed on channel one, and

plays a looped sound on that channel. The sound played is the third sound in

the Space SprocketPlug theme:

document.sprockets.Sprlnit{5, "Space" , 1};

document.sprockets.Spr_LoLvlSetPosition(l, -90.0,

0, O} ;

document.sprockets.SprPlayLoop(l, 3);

5.4.3 Java Applet Programming
LiveConnect gives Java applets access ta the full Javascript object

hierarchy including plug-ins and other Java applets. In order to do so, the

applet must first import the netscape. javascript Java package provided by

Netscape in its "java_30.zip" file (found in Navigator's Java folder). The

applet then has access to the JSObj ect class through which the Javascript

window object can be retrieved. In tum, this window abject then enables the

Java applet ta retrieve the document abject which contains the embedded

plug-in instance. A local instance of the plug-in's class can then obtained

through the document abject. The following is a snippet of Java code

illustrating this chain of caUs:

61

(

(

the import statements:

irnport netscape.javascript.*;

irnport SprocketPlug;

the code to get a local instance of the plug-in:

JSObject win, doc;

SprocketPlug sprockPlug;

Il The SprocketPlug class must be with

Il the SprocketPlug plug-in in Navigator's Plug-ins

Il folder

win = JSObject.getWindow(this) ;

doc = (JSObject) win. getMernber ("document ") ;

sprockPlug = {SprocketPlug};

doc.getMernber("instanceNarne");

In addition to importing the netscape . j avascript package, the

applet needs to import the c1ass which defines the plug-in's Java class to be

used for LiveConnect communication between the applet and the plug-in.

This class needs to reside in Netscape's plug-ins folder, along side the plug-in

for which it provides the interface. Once the applet has a local instance of the

plug-in, aIl of the plug-in's associated methods are available. The following

code example initializes the SprocketPlug instance, positions a sound in three

dimensienal space, and plays a non-looped sound:

sprockPlug.Sprlnit(2, "Space", l};

sprockPlug.Spr_LoLvlSetPosition(l, O.Of, O.Of);
sprockPlug.SprPlayOneShot(l, 3);

5.4.4 The SprocketPlug LiveConnect Interface
To expert LiveConnect functionality, a plug-in needs to have an

associated Java class. This class is essentially a wrapper c1ass for a plug-in's

exported functions, and allows the plug-in to appear as a predefined Java

object. A plug-in's Java class extends the netscape. plugin. Plugin class

provided by Netscape, and may consist of standard Java methods and native

methods. The native methods are the methods implemented by the plug-in.

62

(

(

The public methods of this class constitute the plug-in's LiveConnect

interface: the methods that a programmer may calI from Javascript and/or

Java.

The compiled class needs to reside in Netscape Navigator's Plug-ins

folder along with its asso'ciated plug-in, in order to be accessible to Javascript

and Java via LiveConnect.

The SprocketPlug LiveConnect interface (Le. SprocketPlug's associated

Java class) is divided into four groups of methods: setting up and freeing

SprocketPlug, general controIs, low-Ievel caUs, and high-Ievel caBs. The first

group contains the methods for initialization, freeing up resources, and

configuring output settings. They are as follows:

public native void SprInit(int numChan, String themeName, int

modeFlag)

Initializes the SprocketPlug plug-in, allocates the number

of channels specified by nurnChan, sets the current

SprocketPlug theme to the file specified by themeName,

and sets the SprocketPlug to use either the low-Ievel or the

high-Ievel SoundSprocket API as specified by modeFlag,

where a value of 1 sets SprocketPlug to use the low-Ievel

API, while a value of 2 sets it to use the high-level API.

(The difference between using the low-Ievel and high­

level caUs will be discussed shortly.)

public native void SprConfigureOutputO

This method pop-ups the SoundSprocket configuration

dialog. The user is able to select headphone, stereo

speaker, or mono playback. The difference between

headphone and stereo speaker playback is that

SoundSprocket's cross cancellation filters are active in the

latter case. In addition, the user is able to set the angle of

the stereo speakers. Although 3D positional data is lost

during mono playback, reverberation, Doppler, and

63

(

(

distance eues are still present to sorne degree.

public native void SprCleanUp()

This method is responsible for releasing any resourees used by the

current SproeketPIug instance (e.g. the listener and sound sources).

The next group of methods provides generai SprocketPIug controls

which are as follows:

public native void SprPlayLoop(int chanID, int soundID)

Plays a Iooped sound on the channel specified by chanID. The sound

played is determined by soundID, which is an index into the current

SprocketPlug theme file.

public native void SprStopLoop(int chanID, int nowFlag)

Stops playback of a Iooped sound on the channel specified by

chanID. The nowFlag determines whether to stop the sound

immediately (a value of 1), or to stop the sound when the current

Ioop finishes (a value of 0).

public native void SprPlayOneShot(int chanID, int soundID}

Plays a sound on the channel specified by chanID. The sound played

is determined by soundID, which is an index into the current

SprocketPlug theme file.

public native void SprStop(int chanID)

Irnmediately stops the playback of a sound on the channel specified

bychanID.

public native void SprSetVolurne(int chanID, int volume)

Sets the playback volume of the channel specified by chanID to the

value of vo 1 ume (must be in the range of 0 - 255).

64

(

(

public native void SprSetRateMult(int chanID, float rateMult)

Multiplies the rate of playback on the channel specified by chanID by

a factor specified by rateMul t. This affects bath the time and pitch of

the currently playing sound. Normal playback speed is represented

by the value of 1. Higher values increase the playback speed, while

lower values slow it down. For example, a value of 2 doubles the

playback speed, a value of 0.5 slows it down in half, and a value of 0

essentially pauses playback. Legal rateMul t values are in the range

of 0 - 200.

public native void SprSetTheme(String themeName)

Closes the currently open SprocketPlug theme (if any) and opens the

theme specified by themeName. If the new theme is not found,

SprocketPlug's default theme is used instead.

public native void SprSetRoom(int chanID, float roomSize,
float roomReflectivity, float reverbAttenuation)

Sets the room reverberation parameters of the virtual environment

maintained by SprocketPlug. roomSi ze specifies the distance in

meters between reverberant walls of the environment,

roornRe f lec tivi ty specifies the amount of attenuation (in dB)

each time a sound bounces of a reverberant wall, and

reverbAttenuation specifies the alnount of attenuation (in dB) of

the reverberated signal in the final output. roomReflectivityand

reverbAttenuation must be equal to or less than 0.0. Although

reverberation parameters affect aIl channels, a channel number

needs ta be specified ta maintain consistency with the Apple's low­

level SoundSpracket API.

SprocketPlug can be set ta operate in one of two modes: low-Ievel and

high-Ievel. These make use of SoundSprocket's own low-Ievel and high-Ievel

API. When using the low-Ievel methods, aIl sound source positions are

specified using listener-relative polar caordinates (Le. azimuth and elevation

angles). Distances are specified in meters. If SprocketPlug is set ta use the

65

(

(

high-Ievel calls, alliocations are specified using Cartesian coordinates. Besides

these differences, the high-Ievel mode of operation allows the user ta specify

the size of a sound source in terms of length, width, and height. In addition,

the relative distances and velocities between sound sources and the listener

are calculated by SprocketPlug with a single cali to the high-Ievel method

Spr_HiLvlSourceCalcLocalization. In contrast, this information needs ta

be set explicitly if SprocketPlug is set ta use low-Ievel methods. Note that low­

level methods can not be called if SprocketPlug is set to high-Ievel mode and

vice versa. The following are the low-Ievel methods:

public native void Spr_LoLvlSetPosition{int chanID, float

azimuth, float elevation)

azimuth and elevation are the azimuth and elevation angles in

degrees used to position the sound playing or to be played on the

channel specified by chanID. Positive azimuth values specify

positions to the right of the listener, while negative values specify

positions on the left.Positive elevation angles specify positions

above the listener, while negative values specify positions below the

listener. The default position of a sound source is at a degrees

azîmuth and a degrees elevation (Le. straight ahead of the listener).

public native void Spr_LoLvlSetDistance{int chanID, float

distance}

This method sets the distance (in meters) specified by distance, of

the sound source playing or to be played on the channel specified by

chanID. The default distance value is 1 meter.

public native void Spr_LoLvlSetReferenceDistance{int chanID,

float refDistance)

The reference distance specified by refDis tance is the distance

from the listener at which the sound source was recorded. This

method sets the reference distance of the sound playing or to be

played on the channel specified by chanID. The value for the

reference distance must be greater than 0.0. The default reference

66

(

(

distance value is 1 meter.

public native void Spr_LoLvlSetProjectionAngle(int chanID,

float projectionAngle)

This method sets the cosine of the angle between the sound source's

attenuation cone axis and the vector from the source to the listener.

A value of 1.0 indicates that the attenuation cone points directly at

the listener, since the cosine of 0 equals 1. The value specified by

proj ectionAngle sets the projection angle of the sound playing or

to be played on the channel specified by chanID. The default value is

1.

public native void Spr_LoLvlSetConeAngleCosine(int chanID,

float coneAngleCosine)

coneAngleCosine specifies half of the cosine of the angle at the

apex of the sound source's attenuation cone. This value is set for the

sound playing or to be played on the channel specified by chanID.

The default value is 1.

public native void Spr_LoLvlSetConeAttenuation(int chanID,

float coneAttenuation)

This method sets the amount of attenuation (in dB), specified by

coneAt tenuation, occurring outside of the angular attenuation

cone of the sound playing or to be played on the channel specified by

chanID. The default value is 0.0 attenuation.

public native void Spr_LoLvlSetSourceVelocity(int chanID,

float sourceVelocity)

This method sets the velocity in meters per second, specified by

sourceVeloci ty, of the sound source playing or to be played on the

channel specified by chanID. The default value is 0.0.

67

(public native void Spr_LoLvlSetListenerVelocity(int chanID,

float listenerVelocity)

This method sets the velocity in meters per second, specified by

listenerVeloci ty, of the listener along the vedor from the

listener to the sound source on the channel specified by chanID. If

there is more than one sound source in the virtual audio

environment, this method needs to be called for each sound (i.e.

each channel). The default value is 0.0.

The following code example pans a sound source from the listener's

right to left in increments of 5 degrees using SprocketPlug's low-Ievel method

calls.

localSprocketPlug.SprPlayLoop(1, 1);

(for newAzimuth = 90. Of; newAzimuth >= -90. Of; newAzimuth -= 5. Of)

{

localSprocketPlug.Spr_LoLvlSetPosition(1, newAzimuth,

O.Of) ;

}

In this example, the sound source moves in arc in front of the listener. To

incorporate a Doppler effect, distance and velocity values need to be set using

the Spr_LoLvlSetDistanceO and Spr_LoLvlSetSourceVelocityO

methods.

As mentioned previously, the main difference between the low-level

API and the high-level API is that the high-level methods take Cartesian

coordinates while the low-Ievel methods take polar coordinates ta specify

positions in three-dimensional space. In addition, while low-Ievel methods

directIy set the velocity and positional data of sound sources relative to the

listener, when using the high-Ievel routines,

Spr_HiLvlSourceCalcLocalization () must be called to have

SprocketPlug calculate these relative values. Spr_HiLvlSourceSetlnfo ()

then needs ta be called to send these calculations to the specified channel. AlI

positional values of the listener and sound sources are in listener units set

68

(

(

with the Spr_HiLvlListenerSetMetersPerUnitO method.

The following are the methods available when SprocketPlug is set to

high-level mode:

public native void Spr_HiLvlListenerSetPosition(float x,

float y, float z)

This method sets the position of the Listener, specified by the values

of x, y, and z. The default position of the listener is at the origin (0,

0, 0), looking straight down the x axis.

public native void Spr_HiLvlListenerSetOrientation(float x,

float y, float z}

This method sets the orientation vector of the listener specified by

the values of x, y, and z. This is the unit vector which points

forward from the listener's position. The default orientation vector

is the unit x vector (1, 0, 0).

public native void Spr_HiLvlListenerSetUpVector(float x,

float y, float z)

This method sets the up vector of the listener specified by the values

of x, y, and z. This is the unit vector which points straight up from

the listener's position. The default up vector is the unit y vector (0,

1, 0).

public native void Spr_HiLvlListenerSetVelocity(float x,

float Y, float z)

This method sets the velocity vector of the listener specified by the

values of x, y, and z. The actual velocity of the listener is calculated

when the Spr_HiLvlSourceCalcLocalization () method is

called. Velocity is specified in listener units per second where the

listener units are set by the

Spr_HiLvlListenerSetMetersPerUnit () method. If this method

is not called, SprocketPlug automatically computes the relative

velocity values of a moving listener between successive caUs to

69

(

(

Spr_HiLvlSourceCalcLocalization () . The default velocity

vector is (0, 0, 0).

public native void Spr_HiLvlListenerSe~etersPerUnit(float

metersPerUnit}

metersPerUni t specifies the number of meters per listener unit to

use for subsequent calculations. For exarnple, calling this method

with a metersPerUni t of 0.3408 would set one listener unit ta be

equal to foot. The default listener unit is 1 meter.

public native void Spr_HiLvlSourceSetposition(int chanID,

float x, float y, float z)

This method sets the position, specified by the values of x, y, and z,

of the sound source playing or ta be played on the channel specified

by chanID. The default position of a sound source is at the origin (0,

0, 0) looking down the x axis.

public native void Spr_HiLvlSourceSetReferenceDistance{int

chanID, float refDistance);

The reference distance specified by refDis tance is the distance (in

listener units) from the listener at which the sound source was

recorded. This method sets the reference distance of the sound

playing or to be played on the channel specified by chanID. The

value for the reference distance must be equal ta or greater than 0.0.

The default reference distance is one listener unit.

public native void Spr_HiLvlSourceSetOrientation{int chanID,

float x, float y, float z)

This method sets the orientation vector, specified by the values of

x, y, and z, of the sound source playing or to be played on the

channel specified by chanID. This is the unit vector which points

forward from the sound source's position. The default orientation

vector is the unit x vector (1, 0, 0).

70

(

(

public native void Spr_HiLvlSourceSetUpVector (int chanID 1

float X, float Y, float z)

This method sets the up vector, specified by the values of x, y, and

z, of the sound source playing or to be played on the channel

specified by chanID. This is the unit vector which points straight up

from the sound source's position. The default up vector is the unit y

vector (0, 1, 0).

public native void Spr_HiLvlSourceSetVelocity(int chanID ,

float X, float y, float z};

This method sets the velocity vector, specified by the values of x, y,

z, of the sound source playing or to be played on the channel

specified by chanID. The actual velocity of the sound source is

calculated when the Spr_HiLvlSourceCalcLocalization ()

method is called. Velocity is specified in listener units per second. If

this method is not called, SprocketPlug automatically computes the

relative velocity values of a moving sound source between

successive caIls ta Spr_HiLvlSourceCalcLocalization () . The

default velocity vector is (0, 0, 0).

public native void Spr_HiLvlSourceSetSize(int chanID, float

length, float width, float height} ;

The length, width, and height values are used ta set the size of

the sound source playing or ta be played on the channel specified by

chanID. The default size values are (0, 0, 0)

public native void Spr_HiLvlSourceSeCAngularAttenuation(int

chanID, float coneAngle, float coneAttenuation);

The coneAngle and coneAttenuation values are used ta set the

angle of the apex of the angular attenuation cane and the amount of

attenuation for the sound source playing or ta be played on the

channel specified by chanID. Angles are specified in radians and

should be between 0 and 21t. Attenuation is specified in dB. The

default angle is 21t, while the default attenuation is 0 dB (i.e. no

71

(

(
\

attenuation in any direction).

public native void Spr_HiLvlSourceCalcLocalization(int

chanID)

This method is used to tell SprocketPlug to calculate the relative

positions and velocities of the listener and the sound source playing

or to be played on the channel specified by chanID. Specifically, this

method should be called after setting the position, up vector,

orientation vector, and/or velocities of the listener and/or sound

source(s).

public native void Spr_HiLvlSourceSetInfo(int chanID)

Although the Spr_HiLvlSourceCalcLocalization () performs

the necessary calculations of any recently made positional and

velocity changes, the Spr_HiLvlSourceSetInfo () method must

be calIed for any of these changes to be sent to the channel for

processing.

The following code example uses high-Ievel SprocketPlug caUs to

move a sound from the listener's right to left in increments of 0.1 listener

units:

localSprocketPlug.SprPlayLoop(l, 1);

(for newZ = 5.0; newZ >= -5.0; newZ -= 0.1)

{

localSprocketPlug.Spr_HiLvlSourceSetPosition(l, 1.0f,

O.Of, newZ);
localSprocketPlug.Spr_HiLvlSourceCalcLocalization(l) ;

localSprocketPlug.Spr_HiLvlSourceSetInfo(l) ;
}

In the above example, SprocketPlug processïng includes positional fil tering,

distance attenuation, and pitch modulation due to the Doppler effect. To

cancel the Doppler effect, sound source velocity should be set to 0 by placing

the caH Spr_HiLvlSourceSetVeloci ty(l, O.Of, O.Of, O.Of) right before the calI
72

(

(

to Spr_HiLvlSourceCalcLocalization () .

Note that Spr_HiLvlSourceSetlnfo (1) must be called to actually process

the sound playing on channel 1 with the most recent SprocketPlug

calculations.

5.5 SprocketPlug Demonstrations

5.5.1 Enhancement of A Standard Web Site
The first demonstration involves the use of SprocketPlug as a

background audio player in a conventionai HTML document setting (i.e. no

Javascript or Java applets). A WWW site was designed for a fictitious

provincial park where online users can obtain generai information about the

park, and the various services and activities offered to visitors. The WWW

site layout consists of three frames contained in a single browser window. The

top window was used ta display the park's logo. The left frame provides an

index (hypertext links) to various areas of the park's WWW site. The frame

on the right is the main content viewing area. This layout is depicted in figure

5-6.

figure 5-6 - window layout

park logo

vveb
site
index main contentviewing area

73

(An instance of the SprocketPlug plug-in is embedded in the index frame as

weIl as in each HTML page loaded into the main content viewing area.

When the site is fust visited, the SprocketPlug instance in the index

frame begins playing a looped background sound. The sound is that of a

typical nature scene made up of chirping birds, a quietly flowing river, and the

soft rustling of trees. A short non-looping melodic fragment is played as weIl.

These sounds are meant to set an appropriate mood and invoke a sense of

being out in nature. As each area of the site is visited, various sounds are

played to enhance the information displayed in the main content area. For

example, when the user visits the page describing the park's wolf howling

expeditions, wolf howls are heard in the background. Similarly, when the

page describing canoe trips is accessed, paddling sounds are played. Another

area serves as the park's special bulletin area and has a news-theme type

sound associated with it. AIl these sounds are spatialized, creating an

enveloping sound field around the listener.

This SprocketPlug demonstration is similar to the common use of

embedded MIDI files as background music for WWW pages. Although MIDI

music may be appropriate in sorne cases (e.g. used as a jingles for WWW

advertising, school theme songs, etc.), this demonstration attempts to

illustrate how SprocketPlug may be used in creating more immersive

environments on the WWW by incorporating real-world sounds.

5.5.2 Sonification of User Events With SprocketPlug and Javascript

A second SprocketPlug demonstration was built to demonstrate how

various user interface elements common in WWW pages lnay be sonified.

This demonstration uses the same page Iayout as the the first demonstration

in creating a fictitious home page: the top frame contains the site's title, the

left frame contains a graphie navigation bar (made up of a vertical row of

buttons), and the third frame is used as the main content area.

A key feature of this demonstration is the sonification of user events.

When the user passes the mouse over various areas of the graphic navigation

bar, the buttons change their visual appearance and short thumping sounds

are heard coming from the listener's left side. By clicking on a given button, a

74

(

(

sound is heard panning from left to right as a page is loaded into the main

viewing area. Passing the mouse over hypertext links in the main document

viewing area is also accompanied by sounds. Different types of links are

accompanied by various sounds indicating the linked document's type and

relative size. For example, links to text files sound like sheets of paper being

shuffled, while links to large text documents sound like pages flipping in a big

book. Other sounds used include camera snapshots for picture files, and

metallic containers for files available for download (e.g. software).

5.5.2 An Auditory Display Component for a Java Applet

Work undertaken by Pennycook, Breder, and Dawkins (1996) involved

the development of an auditory display component for the Java application

called Merz. The following is a description of the Merz project:

Merz is an environment written in Java for the WWW
which supports personal information management and
knowledge work. Merz information visualization
emphasizes personalization of views, the rapid
generation of multiple views of information through
zooming and filtering, and smooth transition between
views under user control. Moreover, Merz aims at
integrating automatic processes, "agents," into the
visualization environment in order to aid tasks like
querying and the monitoring of information.
(online document at
http://www.merzcom.com/eng/products/products.html)

The auditory display component, called the Merz Soundscape,

developed by Pennycook et al. consisted of native code libraries (for

Macintosh PowerPC and Pentium Windows 95 systems) integrated with the

Merz Java application. These libraries were responsible for handling the

sonification of various elements of the Merz visual display including

onscreen information representation, the state of background automatic

processes, and user interaction. At the time however, there was no solution to

provide this kind of functionality for the version of Merz running as a Java

applet; Java applets (as specified in the original Java specifications from Sun

Corp.) could not he integrated with native methods.

75

(

(

As part this thesis, a third demonstration was created to show how

SprocketPlug can provide the Merz Java applet with the missing auditory

display functionality. AlI the original Merz Soundscape functionality

described by Pennycook, Breder, and Dawkins (1996) is now accessible to the

Merz Java applet including real-time auditory spatialization of

simultaneously occurring sound streams (e.g. background looping sounds and

foreground user events), and the use of specially designed Soundscape theme

files (Le. SprocketPlug themes). While the functionality is there, SprocketPlug

has not been integrated and tested with the actual Merz Java applet.

5.6 Critical Assessment
Auditory display research reviewed in this thesis has shown that

human-computer interactions can be enhanced with sound. This involves

the design and implementation of auditory display companents which are

integrated with the systems they serve. SprocketPlug was designed with these

considerations in mind. The demonstrations of the thesis software have

shown that SprocketPlug can be easily incorporated with current WWW

development environments.

However, SprocketPlug is not a complete solution. In particular,

sounds are manipulated by SprocketPlug in terms of their psychophysical

attributes such as pitch (ar rate of playback) and amplitude, rather than with

more general auditory display parameters such as abject material, object size,

and surface impact (Gaver 1994).

FormaI studies on the effectiveness of auditory displays for the WWW

have not been undertaken largely due to a lack of supporting tools.

SprocketPlug addresses this issue by providing the means to incarporate

auditory display techniques, if only for testing purposes. The demonstrations

described above are informaI assessments, and while interesting, more

research is required to evaluate haw useful sonically enhanced WWW

applications are from the standpaint of end-users.

Another limiting factor of SprocketPlug as a general auditory display

component for the WWW is its platform-dependance. While a great part of

76

(the success and popularity of the WlNW is the fact that it provides

communication across a multi-platform network, SprocketPlug is based on

native Apple Sound Sprockets technology, available only on the Macintosh

PowerPC platform. This requires WlNW developers to include "platform.

checking" routines in their otherwise platform.-independent code in order to

take advantage of the SprocketPlug plug-in.

Related to the issue of platform-dependence is the fact that

SprocketPlug functionality is only available to Java applets running under

Netscape's Java Runtirne Interface environment (JRI). While Netscape has

made its technology available to most platforms, not aIl WlNW clients are

running Netscape software. Unless other WWW client software is made to be

Netscape compliant, JRI and LiveConnect technologies (and hence

SprocketPlug) will be unavailable ta clients running non-Netscape software.

Finally, SprocketPlug was designed to interface with Java, and it is yet

to be determined to what degree Java will play a role in WWW application

development. Java is a robust language, but due ta its abstraction layers and

interpreted nature, Java code tends to execute much slower than compiled

native code. However, the advent of Just-In Time compiIers and specialized

Java chips (e.g. Pico chips from Sun Corp.) are likely to bring Java

performance up to the speeds of applications written in C/C++. While Java

has become widely recognized and adopted by many developers, there are

several competing technologies, mast notably Micrasoft's ActiveX, which may

adversely impact Java acceptance by WWW developers.

Programming efforts are moving away from hardware platforms to

"software platforms" distributed via the WWW. Which "software platform"

will become the dominant one, as well as the most viable solution for WlNW

auditory displays, remains to be seen.

77

(6. CONCLUSION

Basea on auditory display research, this thesis has suggested that

auditory display systems in conjunction with WWW browsers could

significantly enhance information space and pleasure of using an essentially

visual medium. Due to a lack of tools however, sound has not yet become an

integrated component of the user experience.

The software developed as part of this thesis, SprocketPlug,

incorporates many of the currently available technologies, to provide

elaborate interactive sound services to WWW developers. Although not a

final solution, SprocketPlug was demonstrated as effective in implementing

various auditory display techniques at the three most popular levels of

WWW development: HTML, Javascript, and Java.

78

(

(

BIBLIOGRAPHY

Albers, M., and E. Bergman 1994. "The Audible Web: Auditory Enhaneements
for WWW Browsers.''http://www.isye.gateeh.edu/ehmsr
/Mike_Albers / papers / www/ www-AW.html

Apple Computer, Ine. 1996. Game Sprockets Guide. Reading, MA: Addison­
Wesley.

Apple Computer, Ine. 1994. lnside Macintosh: Sound. Reading, MA: Addison­
Wesley.

Asano, F., Y. Suzuki, , and T. Sone 1990. "Role of Spectral Cues in Median
Plane Loealization." Journal of the Acollstical Society of America, 88(1),
p.159-168.

Ballas, J. A. 1994. "Delivery of Information Through Sound." Allditory
Display: Sonification, Audification, and Auditory Interfaces. Reading,
MA: Addison-Wesley.

Bargar, R. 1994. "Pattern and Reference in Auditory Display." Allditory
Display: Sonification, Audification, and Allditory Interfaces. Reading,
MA: Addison-Wesley.

Begault, D. R. 1991. "Challenges to the Sueeessfui Implementations of 3-D
Sound."Journal of the Audio Engineering Society, 39(1), 864-870.

Begault, D. R. 1993. "Head-Up Auditory Display for Traffie Collision
Avoidanee System Advisors: A Preliminary Investigation." Hllman
Factors, 35(4), p. 707-717.

Begault, D. R. 1994. 3-D Sound for Virtual Reality and Multimedia. San Diego,
C..c\: Academie Press.

Blattner, M. M.,D. A. Sumikawa, and R. M. Greenberg 1989. "Eareons and
Ieons: Their Structure and Common Design Prineiples." Human­
Computer lneraction, 4(1), p. 11-44.

Blattner, M. M., A. L. Papp, and E. P. Glinert 1994. "Sonie Enhancement of
Two Dimensional Graphie Displays." Auditory Display: Sonification,
A udification, and Auditory Interfaces. Reading, MA: Addison-Wesley.

79

(

(

Bly, S. 1994. "Multivariate Data Mappings." Auditory Display: Sonification,
Audification, and Auditory Interfaces. Reading, MA: Addison-Wesley.

Bregman, A. S. 1990. Allditory Scene Analysis. Cambridge, MA: MIT Press.

Brewster S. A., P. C. Wright, A. D. N. Edwards 1994. IlA Detailed Investigation
into the Effectiveness of Earcons." Auditory Display: Sonification,
Alldification, and Allditory Interfaces. Reading, MA: Addison-Wesley.

Butler, R. and K. Belendiuk 1976. "Spectral Cues Utilized in the Localization
of sound in the Median Sagittal Plane." Journal of the ACollstical
Society of America, 61(5), p.1264-1269.

Buxton, W. 1989. "Introduction to This Special Issue on Nonspeech Audio."
Human-Computer Ineraction, 4, p. 1-9.

Cherry, E. C. 1953. "Sorne Experiments on the recognition of Speech with One
and Iwo Ears." Journal of the AColistical Society of America, 25 (1953),
p.975-979.

Cohen, J. 1994. "Monitoring Background Activities." Auditory Display:
Sonification, Audification, and Auditory Interfaces. Reading, MA:
Addison-Wesley.

0011, T. J., and T. E. Hanna 1995. IISpatial and Spectral Release from Masking
in Three-Dimensional Auditory Displays." Human factors, 37(2), p.
341-355.

Eysenck, M. W., and M. I. Keane 1990. Cognitive Psyochology: A Student's
Handbook. (second edition) London, England: Lawrence Erlbaum
Associates.

Fowler, C. A. 1990. "Auditory perception is not special: We see the world, we
feel the world, we hear the world." Journal of the Acoustical Society of
America, 89(6), p. 28910-28915.

Fitch, W. T., and G. Kramer 1994. "Sonifying the Body Electric: Superiority of
an Auditory over Visual Display in a Complex, Multivariate System."
Auditory Display: Sonification, Audification, and Auditory Interfaces.
Reading, MA: Addison-Wesley.

Fluckinger, F. 1995. Understanding Networked Multimedia Applications and
Technology. Englewood Cliff, New Jersey: Prentice Hall. Gardner, M.
andR.

80

(

(

Gardner, M. 1972. "Problem of Localization in the Median Plane: Effect of
Pinnae Cavity Occlusion." Journal of the Acoustical Society of America,
53(2), p.400-480.

Gardner, M. 1973. "Some Monaural and Binaural Facets of Median Plane
Localization." Journal of the Acousticai Society of America, 54(6),
p.1489-1495.

Gaver, W. 1986. "Auditory Icons: Using Sound in Computer Interfaces."
Human-Computer Ineraction, 2, p. 167-177.

Gaver, W. 1989. "The Sanie Finder, An Interface That Uses Auditory Icons./I
Human-Ineraction, 4, p. 67-94.

Gaver, W. 1994. "Using and Creating Auditory icons." Auditory Display:
Sonification, Audification, and Auditory Interfaces. Reading, MA:
Addison-Wesley.

Hapeshi, K., and D. Jones 1992. "Interactive Multimedia for Instruction: A
Cognitive Analysis of the RaIe of Audition and Vision." International
Journal of Human-Computer Interaction, 4(1) p. 79-99.

Hiranaka, Y. and H. Yamasaki 1982. "Envelope Representations of Pinnae
Impulse Responses Relating To Three-Dimensional Localization of
Sound." Journal of the Acoustical Society of America, 73(1), p.291-296.

James, F. 1995. IIPresenting HTML in Audio: User Satisfaction with Audio
Hypertext (Pilot Experiment)." http://www-pcd.stanford.edu
/ --fjames/pilot/

Jameson, D. 1994. "Sonnet: Audio-Enhanced Monitoring and Debugging."
Auditory Display: Sonification, Audification, and Auditory Interfaces.
Reading, MA: Addison-Wesley.

Kendall, G. S. 1996. /lA 3D Sound Primer." Computer Music Journal, 19(4), p.
23-46.

Kendall, G. S. and W. Martens. 1984. "Simulating the Cues of Spatial Hearing
in Natural Environrnents." Proceedings of the 1984 International
Computer Music Conference. San Fransisco: International Computer
Music Association.

Kramer, G. 1994a. "Some Organizing Principles for Representing data with
Sound." Auditory Display: Sonification, Audification, and Auditory
Interfaces. Reading, MA: Addison-Wesley.

81

(

(

Kramer, G. 1994b. 1/An Introduction to Auditory Display." Auditory Display:
Sonification, Audification, and Auditory Interfaces. Reading, MA:
Addison-Wesley.

Kramer, G., ed. 1994c. Auditory Display: Sonification, A udification, and
AuditonJ Interfaces. Reading, MA: Addison-Wesley.

Lombardi, V. 1995. Audio and the Internet. http://www.nyu.edu/ncm/library
/ papers / internet.audio

Madhyastha, T. M., and D. Reed 1994. liA Framework for Sonification Design."
Auditory Display: Sonification, Audification, and Auditory Interfaces.
Reading, MA: Addison-Wesley.

McCabe, K., and A. Rangwalla 1994. 1/Auditory Display of Computational
Fluid Dynamics Data." Auditory Display: Sonification, Audification,
and Auditory Interfaces. Reading, MA: Addison-Wesley.

MerzCom, Inc. 1996. IIProducts: NetScope." http://www.merzcom.com/eng
/ products / praducts.html

Moore, B. 1982. An Introduction ta the Psychology of Hearing. (second
edition) London, England: Academie Press.

Moore, F. Richard 1990. Elements of Computer Music. Englewood, New
Jersey: Prentice Hall.

Neilsen, J. 1996. URelationships on the Web." http://www.useit.com/alertbox
/9601.html

Neilsen, J. 1996. uThe Internet desktop.1I http://www.useit.com/alertbox
/9603.html

Neilsen, J. 1996. "Features for the Next Generation of Web Browsers."
http://www.sun.com/950701/columns/alertbox/

Pennycook, B. uThe Merz Soundscape." http://www.music.mcgill.ca:80
/ -brp / merzscape.html.

Pennycook, B., E. Breder, and K. Dawkins 1996. "The Merz Soundscape
Project." Final report submitted to Michael Century at the Center for
Information Technology Innovation. Laval, Canada.

82

(

(
\

Perrot, D. R., K. Saberi, and T. Z. Strybel 1990. "Aurally Aided Visusal Search
in the Central Visual Field: Effects of Visual Loads and Visual
Enhancement of the Target." Human Factors, 33, p. 389-400.

Plenge, G. 1972. "On the Differences Between Localization and Lateralization."
Journal of the Acoustical Society of America, 56(3), p. 944-951.

Rossing, D. 1990. The Science of Sound.. (second edition) Reading, MA:
Addison-Wesley.

Scaletti, C. 1994. "Sound Synthesis Algorithms for Auditory Data
Representation." Allditory Display: Sonification, Audification, and
Auditory Interfaces. Reading, MA: Addison-Wesley.

Sekuler, R., and R. Blake 1990. Perception. (second edition) New York, NY:
McGraw-Hill.

Seligman, D., R. Mercuri,and J. T. Edmark 1995. "Providing Assurances in a
Multimedia Interactive Environment." Computer-Human Interactions
'95 Proceedings.

Schmandt, C., and A. Mullins 1995. IlAudioStreamer: Exploiting Simultaneity
for Listening." Computer-Human Interactions '95 Proceedings.

Sikora, C. A., L. Roberts, and L. T. Murray 1995. "Musical vs. Real World
Feedback Signais." Computer-Human Interactions '95 Proceedings.

Smith, S., R. M. Pickett, M. G. Williams 1994. "Environments for Exploring
Auditory Representations of Multidimnesional Data." Auditory
Display: Sonification, Audification, and Auditory Interfaces. Reading,
MA: Addison-Wesley.

Sorkin, R. D., O. S. Kistler, and G. C. Elvers 1989. IIAn Exploratory Study of the
Use of Movement-Correlated Cues in an Auditory Head-Up Display."
Human Factors, 31(2), p.161-166.

Wenzel, E. 1994. "Spatial Sound and Sonification." Auditory Display:
Sonification, Audification, and Auditory Interfaces. Reading, MA:
Addison-Wesley.

Williams, S. M. 1994. "Perceptual Principles in Sound Grouping." Auditory
Display: Soniftcation, Alldification, and Auditory Interfaces. Reading,
MA: Addison-Wesley.

83

(

(

Young, O. A. 1997. Netscape Developer's Guide To Plug-ins. Upper Saddle
River, NI: Prentice Hall.

84

IMAGE EVALUATION
TEST TARGET (QA-3)

1.0 : I~ 12
.5

1I111§~ Li: 132

~ W 11111

2
.
2

1.1 ~ ~ 11111

2
.
0

~~:

1111/1.8

111111.25 111111.4 111111.6

L.. 150mm-- --J-
~

-~
1

- 6" -------~-I.......a

..1--

APPLIED .:a II\MGE 1_ .ne
~ 1653 East Main Street
~-= Rochester. NY 14609 USA
~-= Phone: 7161482·0300
__ Fax: 7161288-5989

Q 1993. Applied 1mage. lne.• Ail Rights Reserved

