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Abstract

A bilateral model of central processing in the 3D slow-phase vestibulo-ocular reflex

(VOR) bas been deve1oped. Two possible implementations of the model have been

examined, one placing required nonlinearities in a feedforward pathway and the other

using an additional feedback path instead. The behaviour of the two forms was in

vestigated for parameter variation and under artificiallesion conditions. A literature

review was conducted to propose an anatomical substrate for the model and possi

ble sites for required cross-talk between the horizontal and vertical/torsional path

ways. Neural network models of the VOR and oculomotor integrator were reviewed

and discussed. A neural network simulation was presented ta illustrate how simple

thresholding and saturation of neuron responses may aid in generating the proposed

nanlinearities without separate specialized computing stages.
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Résumé

Un modèle bilatéral des processus centraux dans le réflexe vestibulcroculaire (VOR)

en 3D a été developé. Deux formes du modèle ont été examinées, une avec toutes

les nonlinéaritées requises placées avant, et une les plaçent dans un circuit fermé. Le

comportement des deux formes a été étudié avec des paramètres variés et en cas de

lésion artificielle. Une revue de la litérature a été exécutée dans le but de déterminer

une structure anatomique pour le modèle. Une autre revue résume des modèles du

VOR qui emploit des réseaux neuronaux. Un simple réseau neuronal a été présenté

pour démontrer que la présence de simples seuils d'activation et de saturation pourrait

suffire pour créer les effets nonlinéaires désirés.
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Chapter 1

Background

1.1 Introduction

The vestibulo-ocular reflex (VOR) is a mechanism used to keep the line of sight stable

in space as the head moves. It consists of a slow phase during which the gaze is kept

stable, and a fast phase that resets the eye position as it approaches the limits of its

physical range. This thesis presents a 3D model of central processing for the slow

phase component of the VÜR. The following sections will give a brief overview of eye

movement, relevant anatomy and physiology, and existing models of the oculomotor

integrator and VÜR.
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• 1.2 Relevant Anatomy and Physiology

•

1.2.1 The Eye

A diagram of the eye and its muscles is shown in Figure 1.1. Light passes through

the pupil to a sensitive region on the back of the eye, the retina. In some animais,

there is a central region on the retina, the fovea, with increased sensitivity for more

specialized visual functions sucb as target tracking. Horizontal movements of the eye

are controlled largely by the lateral and medial rectus muscles; vertical and torsional

movements by the inferior and superior rectus and inferior and superior oblique mus-

cles. The direction of pull of the superior oblique muscle is altered as it passes through

a loop of cartilage, the trochlea. A detailed description of eye orbital anatomy and

mechanics can be found in ([91], [78]).

•

D

Figure 1.1: The eye and its muscles, reprinted. from [11) with the permission of the
Royal Society. A,C- lateral and media! rectus muscles; B,O- superior and inferior
rectus muscles; E,G- superior and inferior oblique muscles; a- trochlea.
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1.2.2 The Vestibular Sense Organs

The otolith organs and semicircular canals provide the body's mechanism for detecting

linear and angular head accelerations. The canals are oriented in the head such

that one lies roughly horizontal when the head is upright, and the others lie almost

perpendicular to the horizontal, mutually perpendicular at about 45 degrees with

respect to the media! plane of symmetry of the body. A diagram of the canals and

otolith organs, and their location on each side of the head, is shown in Figure 1.2.

For a more detailed description of semicircular canal orientation in man, the reader

is referred to [12] .

Figure 1.2: The semicircular canals and otolith organs, reprinted from [56] by per
mission of John Wiley and Sons, Inc.

The canals and otolith organs are filled with a fluid that is displaced as the head

accelerates. They are lined with receptor cells that have hair-like projections extend-

ing through this fluid into a gelatinous substance. The firing rates of these cells are

3
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sensitive to the hair bending in a particular direction. In the canals, the hairs are

aggregated in a watertight flap, the cupula. The canal hair cells are ail oriented for

sensitivity in the same direction, sa the canals are one-dimensional motion detectors.

When the head rotates in the canal plane, the fluid tends ta stay where it is, bending

the cupula and stimulating the embedded haïr cells. The degree of bending and re

sulting stimulation will depend on the component of angular acceleration in the canal

plane.

The otolith organs are the utricle and the saccule, which detect linear acceleration

magnitude and direction in the horizontal and vertical planes respectively. The otolith

organs differ from the semicircular canals in that the hair cells attach to a weighted

substance that is free-ftoating in the ftuid to a1low bending in any direction within a

plane. Each organ is sensitive to two-dimensional motion, as the receptor cells are

oriented in a variety of directions.

The canal responses are more important than those of the otoliths for the angular

VOR dealt with in this thesis. While the responses are elicited by angular acceleration

of the head, the dynamics of the canals are such that the receptor cell firing rates are

more representative of angular velocity during naturaI movements. Thus, the canal

output is generally taken to he proportional to the angular velocity rather than the

angular acceleration of the head [19] .

4



• 1.3 Eye Movements

•

•

1.3.1 Major Categories of Eye Movement

Eye movements may be divided into severa! categories, reflexive and voluntary [19].

The following paragraphs summarize the main types of eye movements.

Vestibular eye movements are reflexive and occur in response to head acceleration.

Responses that occur as a result of linear acceleration due to postural changes are

referred to as static; those that occur as a result of time-varying linear or angular

acceleration are called dynamic. In the dark, the object of these movements is to

keep the gaze stationary in space as the head moves. Dynamic vestibular movements

are comprised of two alternating phases; a slow phase in which eye angular velocity

is equal and opposite to head angular velocity, and a fast phase which resets the eye

position as it approaches the limits of its physical range.

Optokinetic and smooth pursuit eye movements serve to minimize the slip of an

image across the retina. Optokinetic movements occur when a large part of the image

moveS uniformly across the retina during head-turning or locomotion. Smooth pursuit

movements are used when the eye is tracking a moving target, responding to the slip

of the target image over the retina. This image does not necessarily cover a large

part of the retina. Smooth pursuit movements can override the optokinetic tendency

to keep the retinal image as a whole stable.

Saccades are fast, voluntary eye movements used to foveate a different part of the

visual field. Saccades are also associated with reflexive movements; the fast phase of

the VOR is an example.

5
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In frontal-eyed animais (animais with both eyes facing forward), the visual fields

of th~ eyes overlap considerably. Vergence movements occur when a target object is

too near to be foveated properly on both eyes for parallel eye positions. They allow

the eyes to move separately, 50 even close targets can be focused on the retina.

1.3.2 The Angular VOR (aVOR)

The object of the aVOR is to generate an eye angular velocity roughly equal and

opposite to the current head angular velocity. The passive and active tissues sur

rounding the eye provide a torque of the form T(t) = K~(t)7Î(t) + TW(t), where c)(t)

is the angular displacement of the eye about axis n, w(t) is the current angular ve

10city, and K and r are scalar constants [86]. The contribution required to overcome

the eye's inertia is very small compared to these forces, 50 the required motor com

mand is generally taken to he let) = -M;l(t)(Kc)(t)n(t) + riJ(t»/S, where S is a

constant relating innervation ta muscle force and Mo. (t) is a matrix describing the

current muscle pull axes, usually assumed to be constant. The position component

is often referred to as the step component, and the velocity component as the pulse

component. As expected, extraocular motoneuron firing rates have been found to

vary with both eye position and velocity [105].

The backbone of the VOR circuitry is a three-neuron arc involving primary affer

ent vestibular neurons, secondary vestibular neurons, and motoneurons. The primary

neurons lead from the semicircular canals to the vestibular nucleus (VN), and are char

acterlzed bya resting discharge rate and positive sensitivity to ipsilaterally-directed

6
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head velocity. Secondary vestibular neurons Iead from the vestibular nucleus to the

oculomotor, abducens, or trochlear nuciei. These VN cells have a resting discharge

rate modulated byeye position and eye or head velocity, depending on the protocol

and the cell classification approach used. The motoneurons have a resting discharge

rate modulated by eye position and velocity within a particular plane. They lie in

the oculomotor nuciei and their axons terminate on the extraocular muscles.

There are numerous other structures involved in the VOR, baving connections

with the vestibular and oculomotor nuclei. These structures are involved in creating

the eye position sensitivity observed. in the secondary vestibular neurons and ma

toneurons, and in converting the signais from the canal coordinate system to that of

the extraocular muscles. The neural process converting sensory velocity signaIs into

estimates of eye position is called the neural integrator (NI). The implementation of

this neural integrator is still a matter of debate, as is the relationship between the

horizontal and the verticalftorsional pathways.

1.4 ID VOR and Integrator Models

In the following subsections, descriptions of one-dimensional models have been in

cinded because they formed the basis for three-dimensional models. Furthermore,

some aspects of the one-dimensional model proposed by Galiana and Outerbridge

[48) have not been used in other three-dimensional models and are incorporated into

the model developed for this thesis. The transfer functions in the sections that follow

describe actions on ooly the modulated component of each neuron's firing rate; each

7
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neuron a1so exhibits a constant background firing rate that sums with the modulated

component, but this is ignored here.

1.4.1 Robinson Model of the VOR

D.A.Robinson proposed a four-stage model of the one-dimensional VOR ([90], [92])

shown in Figure 1.3. The basic elements of this model have been used in all subsequent

models, with some extensions and modifications.

Figure 1.3: Robinson model of 10 VOR, redrawn from [92].

The first stage describes the transfer function of the semicircu1ar canals, relating

the primary vestibular afferent firing rate changes (He) to head angular acceleration

Hc sTe sTa (T )
H = s (sTe + 1) (sTa + 1) s z + l , (1.1)

•

where Tc is the dominant cupula time constant and the term with TG represents

the peripheral adaptation of the canals. The Tz term describes the high frequency

dynamics.

The second and third stages occur at the level of the secondary vestibular neurons.

They serve to replace the cupula time constant with the larger VOR time constant,

8



• and to generate appropriate velocity and position sensitivities via direct and indirect

pathways. The corresponding transfer functions are given below for Tn » 1, where

Tn is the time constant of the NI.

H' _ Tuor (sTe + 1)
He - Tc (sTvor + 1)

~Rm (sTe! + 1)
-.- =-g

E' s

(1.2)

(1.3)

The motoneurons weight the outputs of the secondary vestibular neurons to form the

extraocular muscle commands, represented here by ~Rm. The fourth stage of the

model describes the eye plant dynamics:

•
E e-&T'

~Rm = (sTe! + 1)(sTez + 1) .

This gives an overall equation:

E sTuor sT", [(sTz + l)e-5'T]
H = -g (sTuor + 1) (sTa + 1) (sTez + 1) .

(1.4)

(1.5)

The terms in the square brackets are high-frequency terms that roughly cancel each

other at low frequencies. The eye plant is often approximated without its high-

frequency terms, becoming simply

E 1
~Rm = (sTe! + 1) .

(1.6)

Discarding the remaining high-frequency terms gives an overall transfer function:

E sTuor sT",
H = -g (sTvor + 1) (sTa + 1) . (1.7)

•
Adjustments to this model have included a one-dimensional bilateral version using an

alternative implementation of the third-stage transfer function [48], and the extension

of the integrator stage to three dimensions [114].

9



• 1.4.2 Galiana/Outerbridge Model

Galiana and Outerbridge proposed a modified model of the one-dimensional VOR [48].

The significant features of this model are a bilateral structure, and filtering feedback

loops in place of the conventional feedforward integrator. A simplified diagram of the

model structure is given in Figure 1.4.

•

H

-g

H

Figure 1.4: Galiana/Outerbridge bilateral model of 10 slow-phase VüR.

These two modifications give a model more consistent with certain neurophysi-

ological findings. The feedback approach is supported by the observed eye position

dependencies of VN neuron firing rates, and by experimental results that demon-

strate the effect of VN lesion on gaze holding. The bilateral structure gives the reflex

a larger expected range of linearity than that predicted by previous models [106], also

in keeping with experimental observation. The equations for firing rate on the right

•
and left aides reduce ta:

FR = (1 - H)XR - gXL

(1 - H + g)(1 - H - g)

10
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• F
L

= (1 - H)XL - gXR
(1 - H + g)(I- H - g)

(1.9)

where H = (0.1~+1). This gives dift'erent time constants for difference mode (XL =

-XR) and common mode (XL = X R ) inputs. To illustrate this, let XD = XBïXt and

Xc = XS!xC.. Then X R = Xc + XD and XL = Xc - X D • Replacing XR and XL in

the above equations yields:

•

F Xc XD
R= +----

1-H+g 1-H-g

F
L

= Xc X D

1-H+g I-H-g

or,

(0.158 + I)Xc (0.158 + I)XD

- 0.15(1 + g)8 + (1 + 9 - K) + 0.15(1- g)s + (1- 9 - K)
F

L
_ (0.158 + I)Xc (0.15s + I)XD

0.15(1 + g)8 + (1 + 9 - K) 0.15(1 - g)s + (1 - 9 - K) .

(1.10)

(1.11)

(1.12)

(1.13)

•

Thus, TD = 0.15(1-9) and ~ - 0.15(1+9) Here, TD implements the equivalent NI
(1-g-K) C - (l+g-K)·

function described by Tn in the previous section. Rearranging the expression for TD

gives the desired relation between K and g: K = (1 - ~~5)(1 - g).

1.5 3D Integrator and VOR Models

There are two main issues that lead to differences between one-dimensional and three-

dimensional VOR models: the non-commutativity of rotations, and the geometry of

the canals and extraocular muscles. This section describes these problems and how

Il



• they have been investigated.

1.5.1 3D vs 1-D: Commutativity Issue

The first question one might ask is 'Why not simply have three separate integrators,

one each for horizontal, vertical, and torsional directions?'. The problem is that

rotations are noncommutative. Consider the following scenario, depicted in Figure

1.5.
z z z

x
z z z

yyy

x•
y y y

x x x

Figure 1.5: Rotational non-commutativity.

Define a coordinate system with perpendicular x, y, and z axes, and assume an

•
object (say, the pupil) to lie some distance R along the x axis. Now consider 2

rotations, one 90 degrees about the y axis and the other 90 degrees about the x axis.

fi the y axis rotation is performed first, the pupil lands at a point R along the y

axis. If the x axis rotation is performed first, the pupil lands at a point R along the

12
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z axis. Thus the rotations cannot be considered without also considering the current

position of the pupil. This problem does not arise in the one-dimensional case because

when rotation is limited. to one plane, the angular position does simply reduce to the

integral of angular velocity.

1.5.2 Tweed/Vilis Model

Tweed. and Vilis [114) proposed a quaternion model for the oculomotor integrator

which accounts for the non-commutative properties of three dimensional rotations. A

brief introduction to quaternion math is provided in Appendix A. Using the properties

of quaternions, Tweed. and Vilis showed that the time derivative of a quaternion (q)

describing position for rotation at angular velocity w is given by ri =~. Setting

q = 2 cos i + 2nsin i = qo + q, where il = an = q-1tiôq describes the current eye

orientation, they modeled the motoneuron firing rate as m= Kif+ rw, where f( and

if were fixed matrices. Ideally, m= Kil + TW, but if differs from il by less than four

percent for angles up to 55 degrees, 50 the approximation was valid for the range of

eye movements considered in their simulations. This gives a net model as shown in

Figure 1.6.

This model predicts that eye position signais and head velocity signaIs converge

multiplicatively on vestibular nucleus neurons, and that tonic neurons carrying differ

ent components of the eye position signal are interdependent. This model was tested

behaviourally in conjunction with the VOR and Saccadic systems, though cell firing

rates were not examined. ([114], [112], [110], [107]).
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•

Figure 1.6: Tweed/Vilis model of the 3D oculomotor integrator. The required mo
toneural firing rate F combines current head angular velocity with computed eye
orientation q.

1.5.3 Schnabolk/Raphan Model

Schnabolk and Raphan [102] modeled the three-dimensional velocity to position trans-

formation for saccades using three parallel, non-interconnecting pathways, as shown

in Figure 1.7. The matrices Gp,ëp,D,lÏp, and M were diagonal, with static scalar

elements.

-------tHp~-....,

-CIJ--~ Output

Torque

•

Figure 1.7: Schnabolk/Raphan model of the 3D saccadic integrator.

Their justification for ignoring the non-commutative nature of rotations was that

the CNS generates muscle torques rather than an eye orientation vector, and a given

set of muscle torques corresponds to a particular equilibrium eye orientation regardless

of past torque and position values. Direct integration of each of the three angular
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velocity components will give a set of torques that is independent of the order in

which the rotations occured, yielding a unique equilibrium orientation. The eye plant

dynamics ensure that the eye quicldy settles to a position independent of the order

of rotations, and the non-commutativity of the rotations will only be reflected in the

paths taken to reach the equilibrium orientation. The differences in results between

this model and the Tweed/Vilis model are negligible for angles less than 15 degrees.

Schnabolk and Raphan argue that non-linear eye plant dynamics play a much larger

role than rotational non-commutativity in determining eye position, and that the

integrators need not and do not account for it. While this model may work for

saccades [86], there are problems in extending this model to the VOR [107] (see

section 1.5.5).

1.5.4 Geometrical Issues

The integrator models discussed 50 far have not dealt with the issue of the geometrical

misalignment between the canal and muscle intrinsic reference frames. However,

severa! investigators bave looked at the transformation of the velocity component.

Two ~ain approaches have been taken: matrix analysis ([93], [117], [94]), and tensor

analysis ([83], [82], [85], [84], [80]).

The matrix approach breaks down the VOR into 3 parts: sensory detection of

angular velocity by primary canal afferents, central processing, and motor implemen

tation of the processed signal. In this case, the semicircular canals and extraocular

muscles are each lumped together into 3 coplanar pairs. The VOR is assumed to
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be exactly compensatory, giving an equation ~ = MÏJëil = -li, where the ma

trices ë, ÏJ, and kt represent the canal, brainstem, and eye muscle transformations

respectively. Anatomical data was used to determine the average maximal activation

directions of the 2 canals/muscles in each coplanar pair, and the M and ë matri

ces were generated accordingly. For a perfectly compensatory VOR, Ï:J was therefore

taken to be (M-l)(-Ï)(ë-l ), where Ï is the identity matrix. Note that ê-1 and J(i-l

serve to compensate for the non-orthogonality of the canals and muscles in addition

to their relative misalignment.

While the matrix approach can be used to represent net movement of the eye

as a result of a given input, it is limited in that it ignores the issue of how the

brain translates a three-dimensional intended movement vector into an appropriate

6-dimensional set of muscle commands.

Pellionisz ([83], [82], [85], [84]) developed a tensor network based model of the

VOR that allows the system to be decomposed in a relevant fashion and deals di

rectly with the above problem. As with the matrix approach, the analysis dealt only

with the issue of generating an appropriate velocity component, not with the posi

tion commando Pellionisz still paired coplanar canals (the differences between canal

pair planes are less radical than those between muscles), but noted that the method

does not necessitate this pairing. This model was aIso investigated in the context of

position-dependent muscle pull directions [80].

For the tensor and matrix models, it is important ta understand the difference

between covariant and contravariant representations of a vector in a reference frame.
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An explanation of this difference is included in Appendix A.

The Pellionisz model breaks down the VOR into the following stages:

• Covariant perception of angular head velocity by the semicircular canals (rep

resented by a 3x3 matrix).

• Conversion of the covariant perceived signal into a contravariant internai repre

sentation of the sensed signal (3x3 matrix).

• Covariant representation of the contravariant sensory signal (taken to he the

desired motor command) in terms of the 6 muscle axes (6x3 matrix).

• Conversion of the covariant representation of the motor command ioto a con

travariant representation that will give the correct eye movement (6x6 matrix).

The authors noted that, as the VOR is a 3-neuron arc, some of the transformations

must be contracted.. Whether the first two or last two steps were the ones combioed

would not result in differences at the output level. The authors aIso mentioned the

issue of temporal transformation required because of various delays in the system,

but this will not he addressed here. The crucial difference between this approach

and the matrix method lies in the fourth step. There are six muscles controlling

3 degrees of freedom, leading to an infinite number of possible solutions. The ma

trix approach hypasses the issue hy assuming that paired extra-ocular muscles are

copianar and reciprocally innervated. The tensor approach dealt with this prohlem

using the Moore-Penrose generalized inverse to form the 6x6 conversion matrix. This

allows a unique solution by imposing the additional restriction that the eigenvectors

of the matrix converting from covariant to contravariant representation he the same

as those of its inverse. They cited several justifications for this choice [85], including
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experimental evidence and the fact that this generates a rninimal-energy set of muscle

commands.

The tensor analysis was applied to the cat [85], and the results indicated that in

the case of the VOR, the muscles do act largely in agonist-antagonist pairs, and that

the horizontal and vertical eye movers act mostly separately.

Although the Tweed/Vilis and Schnabolk/Raphan 3D integrator models did not

consider the issue of geometry, Smith and Crawford [107] incorporated non-orthogonal

coordinate transformations into the quaternion model using Robinson's matrix ap

proach. This initially lead to unstable results, but they found two solutions to the

problem:

• Separate brainstem coordinate transformation into two (sensory and motor)

transformations to undo non-orthogonalities.

• Compute correct tensor components in arbitrary coordinates.

They hypothesized that the VOR uses a dual coordinate transformation to opti

mize intermediate brainstem coordinates.

1.5.5 The Extraocular Muscles and Commutativity

A number of investigations have been conducted to examine a possible role for ex

traocular muscles in dealing with the commutativity issue for saccades ([86], [89]).

While the torque supplied by the restoring tissues is generally agreed to be as de

scribed earlier, the actions of the muscles are a matter of some debate. One of the

major issues is whether or not the muscle pull axes remain constant. Traditionally it
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• has been assumed that the muscle pulling planes remain more or less constant with

eye orientation, and the required innervation is a constant combination of current

orientation and angular velocity. Recent studies indicate that this assumption may

not be correct [30]. Demer et al. have found evidence of fibromuscular pulleys that

could alter the direction of muscle pull by a fraction of the current eye orientation.

Thus, Ma(t) = R(fJ, n)MeaQ, where Mao describes the muscle pull axes in primary

orientation, and R is the matrix representing the rotation of the muscle pull axes by

f3 about the current orientation axis n. Then the necessary innervation signaIs are

. Ï(t) = Mao -1H(fJ, n)-l(K.(t)n(t) + rw(t» . (1.14)

•

•

Using the matrix properties that R(fJ, n)n = n and !l({3, n)T = H(P, n)-l = R(-P, n),

(1.15)

That is, the muscles have position-dependent effects on the pulse component, but not

the step. Quaia and Optican [86] demonstrated that given proper pulley placement,

the required pulse component R-1rw(t) is very close to the derivative of the step.

This means that a commutative control1er (ie. one that integrates the three pulley

components individually) will not give much drift, although this final position may

Dot be the desired one if the pulse is not chosen appropriately. Praof that these

pulleys are properly oriented remains to he established.

While the pulley model may mean that a commutative integrator can he used

for saccades, it could not he used without adjustment in the case of the VOR as

the semicircular canals detect angular head velocity rather than the derivative of eye

orientation. In the case of the VOR, some means of converting from angular velocity
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• to the derivative of eye orientation prior to integration would be required. From a

VOR standpoint, the only issue is whether the desired muscle command is

or

Kët(t)n(t) + rw(t)

K+(t)n(t) + T d(+(~tn(t» .

(1.16)

(1.17)

•

•

ët(t)n(t) must he computed using a mechanism that converts w(t) to d(.(~ti(t» before

integration, as final desired eye orientation cannot be known apriori. For this thesis,

the desired output was taken to be m = K Ë + rË, where Ë is the current eye

orientation, some representation of ~(t)n(t).

Recently, Smith and Crawford [107] investigated the performance of the Tweed

Vilis and Schnabolk-Raphan models in the context of the VOR. The eye was simulated

with both standard constant muscle pull axes and with the pulley model of the axes

(in the pulley case, the quaternion model was adjusted slightly to give m= K Ë + r~

rather than m= K Ë+rw). They found that a multiplicative interaction was required

in both the direct and the indirect paths for the pulley plant, and in the indirect path

for the standard plant. They confirmed that the commutative integrator would not

he sufficient for the VOR in either case.

1.6 Thesis Outline

The objectives of this thesis were two-fold. The first goal was to create a 3D model

of slow-phase central processing of the VOR, using a feedback neural filter instead
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of separate velocity and integrating pathways. The second goal was to propose an

approximate anatomical substrate for this model, based on available literature con

cerning Deuron anatomy, firing rates and lesion studies. The layout of the remainder

of this thesis is as follows.

Chapter Two develops a monocular 3D feedback filter model ofslow-phase VOR.

Two possible implementations of the mode! are considered.

Chapter Three considers the bilateral extension of the monocular forms.

Chapter Four reviews literature concerning the horizontal and vertical integra

tors, and provides a compilation of information regarding the cross-talk between them.

Neural network implemeDtations of VOR and integrator models and their implica

tions are also reviewed and discussed here. A simple neural network to iDvestigate

one aspect of the proposed 3D model is presented.

Chapter Five contains the discussion and conclusions, including recommenda

tions for future work.
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Chapter 2

A Monocular Model

This chapter describes a new model for 3D slow-phase processing in the central VOR.

The objective was to extend the Galiana and Outerbridge [48] feedback filtering

loop implementation of the integrator to three dimensions, and to determine what

sort of interconnections between horizontal and vertical/torsional systems might he

expected. It is important to note that there are two reasons why such interconnections

may be required. First, the semicircular canal planes don't correspond exactly ta the

planes of pull of the extraocular muscles. Second, 3D cross-connections are required

to account for the non-commutativity of rotations. This thesis deals primarily with

the investigation of the second point.

For simplicity, a monocular version of the model was first considered, as relevant

for purely conjugate eye movement. The bilateral extension of the model will he

discussed in a later chapter, to explore the disconjugate eye movements that could

result from malfunctioning sensors or unilaterally lesioned brain structures.

22



• 2.1 Assumptions and Simplifications

•

•

The following assumptions and simplifications were made in constructing an initial

model:

• The coordinate system chosen was an orthogonal head-fixed system with the x

axis extending forward through the line of sight when the eye is in primary orienta

tion, the y axis pointing towards the left temple, and the z axis extending upwards

perpendicular to the x and y axis. Canal sensitivities and primary orientation muscle

pull directions were assumed. ta align with the main axes of this frame.

• It was assumed that the signal entering the system was a desired eye angular

velocity. Differences between head angular velocity and desired eye angular velocity

due to the eye rotating about its center rather than the head center were ignored.

• It was assumed that the desired outputs of the system correspond to a horizontal

command for movement about the z axis, a vertical command for movement about

the y axis, and a torsional command for movement about the x axis. The output of

the model was taken ta be F = Ï(Ë + ifË, where Ë is a vector composed of the three

components representing eye orientation, and K and if are diagonal matrices.

• Copianar muscles were paired.

• The effects of time delays in neuronal implementation were not considered.

• It was assumed that the eye would not exceed 90 degrees of rotation from

primary position in any direction (in fact, less is observed).

• Qnly the modulated component of neuron firing rates was considered.
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• 2.2 Representation of Orientation

•

•

The first issue that one must tackle in forming a 3D model is how to represent

orientation. For rotation about a single axis, the net rotation about that axis is

a simple and logical representation. However, in three dimensions there are many

di1ferent ways to interpret orientation- as sequences of 3 consecutive rotations about

space-fixed or abject-fixed axes, as a single rotation about a general axis, or in terms

of more abstract quantities sucb as quaternions. An outline of some of the more

common systems for describing 3D orientation is given in Appendix A.

H one wishes ta consider the ideal VOR and does not wish to try ta map indi

vidual functions to different anatomical sites, the representation used is irrelevant.

H an anatomical mapping is desired though, the representation chosen could become

very important. For instance, the Nucleus Prepositus Hypoglossi (NPH) is thought to

encode mainly the 'horizontal' component of eye position and velocity, but expressing

position with these different representations yields many alternatives for a 'horizontal'

position component. Even if one eliminates the representations that break down ori

entation into consecutive rotations as unphysiological and assumes that the reference

frame is that of the canals or muscles, it is still possible to come up with alternative

representations.

For the purposes of this thesis, only two representations will he considered. The

first representation defines three variables, two corresponding to the current gaze

direction in space and one corresponding roughly to torsion about this gaze line in

space. The second representation defines three variables corresponding to the net
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angular displacement multiplied by the components of the current orientation axis.

These both reduce to standard definitions of ID horizontal, vertical and torsional

displacement for rotations from primary orientation about the primary axes.

With the simplifying assumption that the canals and muscles align with the refer

ence frame given above, both representations assume a canal/muscle based coordinate

system. The difference between the two is conceptual- whether the line of gaze in the

head is represented apart from the torsion about this line, or whether ail three de

grees of freedom are represented identically. The argument for the first representation

would be that the VOR is probably learned and adapted with the aid of retinal slip.

Rotation about the gaze line corresponds to rotation of the image about a point on

the retina, whereas a change in direction of the gaze line corresponds ta slip of the im

age off the retina. One could imagine then that rotation of the gaze line and rotation

about the gaze line might be regarded separately, particularly if the integrator were

shared with other systems that could benefit from this type of representation. The

argument for the second representation is that the VOR doesn't need to make this

distinction- its purpose is to avoid retinal slip of any kind, rotating the eye opposite

to the head without regard for the slip direction. The simplest representation would

then be a direct mapping of canal responses to muscle commands, with the mjnjmal

adjustments required to account for rotational non-commutativity and canal/muscle

misalignment.

These alternative interpretations are examined only to illustrate that results are

affected by how orientation is represented for non-ideal VOR. Even if canal and mus

cle plane geometry were accounted for, more would have to be known about how
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the VOR is learned and adapts before choosing an appropriate representation. A

three-variable representation may prove to be insufficient, particularly for the first

representation. It is important to note that the first reprffientation would require

position-dependent mapping of its output to the muscles, as it doesn't give the com

ponents of rotation about the three axes directly. Neurons involved in the VOR

display a range of thresholds and sensitivities ([105], (76), [61], [103]). These may just

account for eye plant nonlinearities, or they may have some other role. There may

be other unexamined nonlinearities that could perform this conversion.

For both representations, the method used to convert from ID to 3D was the

same: a position-dependent matrix converting angular velocity to the derivative of

eye orientation was placed before three parallel 10 pathways of the form used in

the Galiana/Outerbridge horizontal VOR mode!. An alternative set of pathways was

also considered: it provides the same instantaneous transfer function by placing the

position dependency in a feedback loop.

2.2.1 First Representation

The first representation was developed as follows. Let il be a rotation matrix de

scribing the current orientation of the eye relative to primary gaze position. Then

~ 1 ~ 0

YG = R ° and y,p = R -1 (2.1)

ZG ° z,p 0

describe the location of the pupil and a point corresponding to the oblique attachment

(under the assumption that the pupillies at (1,0,0) and the obliques attach at (0,-1,0)
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• for the right eye in primary orientation).

The following three variables were then defined:

tP - arcsin (Ye / p)

8 - arcsin(ze/P)

1f; - arcsin (z,p / P)

(2.2)

(2.3)

(2.4)

•

where pis the radius of the eye. For rotations about the primary axis from primary

orientation tP reduces to the standard 10 horizontal variable, 8 to the vertical, and

'I/J to torsion. t/J will not change for rotations about the y axis from any orientation;

8 and 'I/J will Dot change for rotations about the z axis. The gaze line is determined

completely by f/J and 8; 1/J sets the torsion about this line. In the remainder of the

model development, the measurement units will be defined sucb that p has a value of

one. The desired outputs were taken to be:

FtP - Kq,t/J + T q,cÏJ

F, - K,8 + T,8

F", - K",'I/J + T",,,j,

(2.5)

(2.6)

(2.7)

•

with K and r dependent on the gain and time constant of the eye plant. For the

purposes of this thesis, K=1 and r=0.15. Now consider the relationship between the
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• attachment point positions and the general rotation matrix R. Letting

R= (2.8)

The locations of the attachment points become

-TU

Ye

Ze

and (2.9)

To examine how these change as the eye rotates, let Rw~t be a matrix corresponding

of change of the attachment points with time will be described by:

to a rotation wât about general axis (w~;, wll , wz )/ 1w1. Then the instantaneous rate

• 1 1

o

and

Za

o
= lim ---------

~t-O ât
(2.10)

o o

= lim ~---~--~--
~t-O

(2.11)

• for current orientation Rand current angular velocity w. Combining the above equa-

tions, rewriting Rw~t. with the expression given by Spong and Vidyasagar for a general
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rotation matrix in terms of its angle and rotation axis [108] (800 Appendix A), ex-

panding the matrices into their individual components, and taking the limit as dt

approaches zero,

.,p ~ ..!12- 0 W% W%cœ'" cœt/1
d

=1' (2.12)
dt 8 - .In.. =!:l1. 0 wll W llcos, costl

rP -rai 0 ..!:1L Wz W zC08~ C08~

Here, the relations ":ta = cos rP~, tUa = cosS':' and tU", = cos1./J~ have beendt dt

substituted in for ~, ~ç, and ,,::. Ta implement the model, it is necessary ta

express the orientation matrix R in terms of t/J, 9, and.,p. From the definitions given

earlier, T21 = sin cP, T31 = sin 8, and T32 = - sin.,p. Using the fact that rotation

matrices do not change the length of a position vector, six equations relating the

remaining components to T21, T31, and T32 can he found and solved (considering initial

conditions and small rotations ta determine ambiguous signs) to give:

TU - VI - (sin t/J)2 - (sin 8)2 (2.13)

T12
-TllT31T 32 - T21JI - T~l - T~2

(2.14)- (cos 8)2

T22
-T21T31T 32 + TU JI - T~l - T~2

(2.15)- (cosS)2

as weIl as expressions for T13, T23 and T33, though these are not included here since

they don't enter into model calculations. Using a unilateral version of the feedback

filter model, the modeI is as shawn in Figure 2.1. Ïf is o.li.+l Ï(, where Ï( is a diagonal

mat~. Note that the input is scaled by ailS = (l~·t) to get a position gain of 1 for

desired time constant TD (for large TD this approaches 0.15). fi the three pathways
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• have different time constants, the sca1ing is represented. by a diagonal matrix 10 after

the T matrix. This yields F = ÏlF + ÏoTX, which gives F a velocity component

0.ISj\••1 ..3 X and an integrated component with a time constant 0.15 where K,',- is
K.. (l-Kii)'

the feedback filter coefficient for the pathway under consideration.

x

H

t--------------"-----.-.;·F

•

Figure 2.1: 3D monocular model, first form. l' is the position-dependent matrix of
equation 2.12 .

To check that the model was tracking the correct orientation, the integrator time

constant was set at a high value (500s) and the model was simulated with small

increments for a sequence of rotations about various axis. The results were compared

to those determined using the rotation matrices of Spong and Vidyasagar, and found

to agree as shown in Figure 2.2.

2.2.2 Second Representation

In this representation of position, 4J = ~kz, (J = .ky , and 1/J = ~k%, where the current

orientation is a rotation. about axis k = k%x + kyy + kzz. Using the expressions of

Spong and Vidyasagar (see Appendix A), 4J, (J, and "p can be re-expressed in terms

of the components of the general rotation matrix R:

•
~

(J - 2 sin. T13 - T31

30

(2.16)
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Figure 2.2: Testing model output for a sequence of rotations about varions axes.
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• where

~ = Jtjjl + 82+ 1/J2 = arccos (TU + T22
2
+ T33 - 1) .

Taking the derivative of Ïl. to he

0 -Wz wJI

dÏl
lim ïlw"'tÏl- ft R,-- - W z 0 -W:r;dt "'t-O t.t

-wJI W:r; 0

(2.17)

(2.18)

and expressing the components of ft in terms of cP, 8, and 1/J, the derivatives of cP, 8,

and 'I/J can he solved for in terms of current angular velocity W= w:r;x + wJI'Y + wzz to

give

1/J W:r; 1 2 (J
W:r;2 -2• il - l' WJI - -~ 1 É wJI + (2.19)

2 2

tÏJ Wz
(J _É 1 W z2 2

-(82 + f/J2) .,pO 1/Jf/J W:r;

(1- ~ cot (~»
81/J _(.,p2 + t/J2) 8f/J~2 wJI

t/J1/J cP8 _(1/J2 + 82) W z

Although this expression looks complicated, the position dependencies cancel to give

the iqentity matrix if the current angular velocity is about the same axis as the current

orientation. For angular velocities about other axes, there is partial cancellation.

•
Thus, for both orientation representations, the 3D extension of the 10 model can

be achieved with a model of the form shown in Figure 2.1, the only difference being

the nature of the position dependencies in the t matrix. In primary orientation, the
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'Ï' matrix reduces to the identity matrix in both cases (discounting signs, which mere1y

indicate the chosen definitions for positive rotations about a gÏven axis). This reflects

the collapse of .,p, il, and ;p to torsional, vertical, and horizontal angular velocities

respectively.

2.2.3 Effect of Orientation Representation

To illustrate the relevance of orientation representation, consider a non-ideal inte

grator, with vertical and horizontal variable time constants of 30s, but a torsional

variable time constant of 28. The 308 time constant is used for illustrative purposes

because it falls within the range of experimentally determined gaze-holding values,

but the effects of representation would also be observed for other values. Figure 2.3

shows the results for the cases where the first and second representations are used to

implement the model. The second representation results have been re-expressed in

terms of the first representation for comparison. The plots labeled 'Ideal' in Figure 2.3

and in subsequent illustrations show the output of a perfect (infinite time constant)

integrator. The verticalline in the three position plots indicates when the extemal

input goes to zero.

The differences result from the fact that in the first representation, the torsional

variable is arcsin(kllkz(l- cos~) +k:l:sin~) rather than k:l:~ for the second repre

sentation. This makes no difference for the case where all three variables decay at the

same rate, but does affect the results when the time constants vary. To determine

the expected effects, consider the decay of tj), (J, and 1/J in the two representations. For
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Figure 2.3: Demonstration of the effects of different orientation representations for
the case where the vertical and horizontal time constants are 30s, but the torsional
constant is 2s. AIl results are expressed in terms of the first representation.
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• zero input, the cross-talk between pathways disappears, and the position variables

decay independently:

tPnetD - tPo exp (-t/ r",)

1/.1f1evJ - 1/;0 exp (- t/ r",) .

In the first representation,

(2.20)

(2.21)

(2.22)

tP - arcsin (k%Ie,,(l - cos () + kz sin~) (2.23)

8 - arcsin (k%kz(1 - cos () -le" sin () (2.24)

1/.1 - - arcsin (kJlkz(l - cos c) + k% sin~) . (2.25)•
Now consider re-representing the second representation variables in terms of the first

representation. The general axis-angle description for the new position is:

(exp (-t/r1/J)k%z + exp (-t/r,)klly + exp (-t/r",)kzz)
- Jexp (-2t/r1/J)k~ + exp (-2t/r,)k: + exp (-2t/rt/)k;

- ~oJexp (-2t/rt/J)k~ + exp (-2t/T,)k~+ exp (-2t/Tt/)k;

(2.26)

(2.27)

•

If these values are substituted back into the first representation, the k%kv( l-cos cl»

component of f/J and the k%kz(l - cos c) component of (J will decay faster than they

would in the original representation. As the k%ky(1 - cos () component has the same

sign as the k. sin ~ component in the illustrated case, f/J appears to decay faster than

it should. In the case of 8, the two contributions are of opposite signs, and (J actually
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.

becomes more negative as the opposing positive contribution decays faster than the

-k" sin. contribution. 1/1 appears to decay at a similar rate in both cases, but to an

offset in the second representation. The apparent offset is actually the contribution

of the k.,kz(l - cos ~) term, which is decaying, but with a much slower time constant.

2.3 Alternate Forms of the Model

The above model can be implemented in other ways without altering its input or

output. Although it is not linear, the nonlinearities are dealt with entirely by the

position dependent gains of the T matrix. If the model is frozen at any instant, the

functions. Now consider the structure shawn in Figure 2.4.

structure appears linear and, with caution, can he thought of in terms of transfer

•
-X -t-------------~----..... F

Figure 2.4: 3D monocular model, second forme

If C = Ï - ÏoT"evJ(ÏoT)-l for any given position, where Ï denotes the identity

matrix, this gives the instantaneous equation:

•
where li = (O.l~+I)' which simplifies ta

-- --1- -- - -- --1--loTnft/(IoT)- F = IoTnevJX + IoTftft/(IoT)- HF

36
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•

•

Multiplying through both sides by ÏoT{ÏoTnew)-l gives the same equation (and trans

fer function for F) as the original model. This form is interesting in that it allows

some or ail of the position dependencies to be removed from feedforward and placed

in feedback, with appropriate choice ofTnew. This form would require a velocity com

ponent in the feedback loop for some non-primary orientations. It also assumes there

are no delays in the system- slight errors would be introduced for uncompensated

delays in an actual implementation. It should be noted that having identical înstan

taneous frequency-domain equations is not sufficient for ensuring correct results; the

nonlinearities must encounter the same dynamic elements for both forms (for the

above case this holds).

For this thesis, TnetU was chasen to be the primary orientation value of T, ie. from

Figure 2.4, Tnew = 1't/J,I,tIJ=o. Figure 2.5 shows the net feedback input to the summing

junction for the horizontal pathway for various values of vertical eye position and

angular eye velocities plotted versus horizontal eye position, assuming the first orien

tation representation. Thus, this altemate model form predicts position-dependent

velocity sensitivity changes in output firing rate as before, but additionally imbeds

these changes in a feedback pathway rather than on the direct feedforward projec

tion. This leads to position-dependent velocity sensitivities in the feedback pathway

as weIl as at the output level. It is interesting to note that the feedback contribution

to the diagonal component depends only on the magnitude of 9, not on its direction.

Some neurons in the VN and INe, known as type III neurons, display the rectified

behaviour that might be expected in this case ([71], [28]).
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Figure 2.5: Feedback contribution to horizontal pathway for varions positions and
angular velocities, lst representation, 2nd model forme
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• 2.4 A Commutative Variation

•

•

The models developed here assume that the brainstem will account for the non-

commutativity of rotations. The feedback filter integrator model is not limited to

this approach, however. Consider the first structure with l' = MD and Ïl =
-- - -- -- 1 - - - - -CpG,,(Ds + (CpGp - HpD»- , where Cp, Gp , D, Hp and M are the matrices of

the Schnabolk/Raphan model (Figure 1.7). This form of Figure 2.1 should give re.

sults identical to those of the Schnabolk/Raphan mode1 when interpreted using the

second representation, but uses a different internai structure. Schnabolk and Raphan

focused on 3D saccadic eye movements, where the input is assumed to come from

burst neurons, known to encode the derivative of eye orientation. However, because

the canal afferents encode angular velocity rather than the derivative of eye orienta-

tion, this form would not be a viable option for the VOR and was not investigated

further (see section 1.5.5 of chapter 1).
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Chapter 3

Bilateral Extension of the Model

Chapter two presented a monocular (conjugate) form for central VOR processing that

uses a feedback filter instead of the standard feedforward integrator used in other

three-dimensional models of VOR integration. This chapter will consider bilateral

extensions of this monocular mode!. The first sections describe how the two model

forms were extended to the bilateral case, and the third section investigates the model

output for various parameter values and for some artificial lesioDS. Simulations were

conducted using the first orientation representation, although the analysis is general

and applies to both representations. The details of the position dependencies will

vary with representation. This thesis considers mainly conjugate eye movement.

3.1 Extension of the First Form

The first suggested form for the three-dimensional integrator is much like three parallel

one-dimensional integrators, the only difference being the position dependence of the
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• primary afferent contribution. This suggests that a logical bilateral extension of this

model form would be as shown in Figure 3.1.

•

X. F.

(j

XI. FI.

Figure 3.1: Bilateral 3D model, first fonn (afferent projection nonlinearity).

fi is the same as in the monocular 3D case and (; is a diagonal scalar matrix

since there is no cross-talk after the initial position dependent gains. Here, TL and

TR are the l' matrix of the monocular (onn, calculated with tPL, (JL, WL and tPR, (JR,

1/JR respectively. X~ and XL are the right and left canal inputs. This model now

follows the equations

(3.1)

(3.2)

•

•• - T - TFor normal canal mputs m the VOR, X R = (w:.:, W,,' wz ) and XL = (-w:.:, W,,' -wz )

for a head angular velocity of -(w:.:x, w"y, wzz)T. Note that the two sides of the model

inhibit each other for t/> and 1/1, but excite each othèr for (J. The necessary extraocu-

lar muscle commands for conjugate movement are equal and opposite for movement

about the x and z axes, but equal for movement about the y axis because of the
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• minor symmetry of the muscles across the midline (the x-z plane). In the actual

VÜR, this excitation is more likely accomplished by mutual inhibition of CW-up

and CCW-down and CCW-up and CW-down integrators of opposing sides, but this

was represented in this model by mutually exciting vertical and mutually inhibiting

torsional integrators for simplicity.

For notational simplicity in some of the following calculations, Ï( and G will

sometimes be broken down as follows:

•
K -

G -

k1/1 0 0

0 k, 0

0 0 kt/J

-1 0 0 91/1 0 0 -1 0 0

0 1 0 0 g, 0 - 0 1 0 9

0 0 -1 0 0 Yt/J 0 0 -1

(3.3)

(3.4)

Referring to the calculations in 1.4.2,

1- 9., 0 0

K = (1- 0.15) 0 1- y, 0 (3.5)
TD

0 0 1-Yt/J

should give a conjugate movement time constant of TD in each pathway. The Ï o

matrices must be changed to allow different g's for the three pathways:

0.15(11t1KD 0 0(1- )D,p

10 = 0 0.15C11!iKp 0 (3.6)
(1- )D•• 0 0 0.15(I~KD

(1- )
D.
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•

where K D is the desired. difference-mode (conjugate movement) gain.

It should be noted that it is actually necessary that one set of pathways be effec

tively mutually exciting. This is because of the result that the sequence of rotations

l/JI a~out -kl and l/J2 about -Îc2 does not in general give a net rotation that is the

negative of that given by the sequence l/JI about Îcl and tP2 about k2 • Thus, a bilateral

model where one side is tracking position for rotations ~iÎct and the other tracking

for -~iÎct will fail. However, a sequence of rotations ~i about (-kri , kyi, -kzi)T will

yield a result ~Ret about (-kznet , k1J7leh -kZRet)T, where ~net about (kzneh kynet, kZRet.)T

is generated by the sequence of rotations ~i about (kri , kyi, kzi)T, i = l. ..N. Thus,

a bilateral model which tracks ~(-k%, lev, -kz ) on one side and ~(k%, kIl' kz ) on the

other with mutually inhibiting x and z pathways and mutually exciting y pathways

should work. Tracking with ~(kz, -kIl' -kz ) or ~(-kz, -k", kz ) could aIso work, but

these would not be appropriate in this case, as the extraocular muscle symmetry is

about the xz plane. Although the first representation tracks

•

r/J - arcsin (kzk,,(l - cos~) + kz sin~)

8 - arcsin(kz kz(l- cos<) - k"sin~)

1/1 - - arcsin (~kz(l - cos <) + k z sin~)

the overall tracking is the same because

arcsin (k%k"v. + kz sin~) - - arcsin « -kz)k"v. + (-kz ) sin~)

arcsin(kzkzv. - kvsin~) - arcsin«-kz)(-kz)v. - kllsin~)
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• (3.12)

•

where v. denotes (1- cos (). This property has implications for vergence (disconju

gate) movements as well. Torsional and horizontal vergence movements would result

from having both sides track ()(k:ra k", kz)T. However, vertical vergence movements

in addition to horizontal and torsional (ie. one side tracking ()(k%, -k", kz)T) would

again bring up the problem of the net rotations not maintaining the same form as the

individual ones relative to the side tracking ~(k%, kfl , k%)T. This will not be considered

further here, but would be relevent in extending this model to include other types of

eye movement.

To examine the bilateral model output, define two new difference and common

modes XD and Xc:

•

1 0 0

o -1 0 'Ï'LXL

001
XD = ----~---...;....--

2

100

o -1 0 'Ï'LXL

001
Xc = --------..;....---

2

This gives an output:
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•
0.15(1 - 9)KDXC 0.15(1 - 9)2KDXc
(1 - ~~5)(1 + g) + (1 + g)(0.15(1 + g)8 + (1 + 9 - K»
0.15KoXD 0.15(1 - g)KOXD

+ (1 - ~~5) + (0.15(1- g)8 + (1- 9 - K»

(3.15)

and

100

o -1 0 [
0.15(1 - g)KoXc
(1- ~~Ij)(1 + g)

(3.16)

001

0.15(1 - g)2KDXc
+(1 + g)(0.15(1 + 0)8 + (1 + 0 - K»

0.15KDXo 0.15(1 - 9)KDXD ]
(1 - ~~5) - (0.15(1- 9)8 + (1 - 9 - K»•

which, for To » 1 and K D = 1, gives:

- 0.15(1 - g) X 0.15(1 - g)2XC
FR - (1 + g) C + (1 + g)(0.15(1 + O)s + (1 + 0 _ K» (3.17)

- Xo+O.15XD +
8

•
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• 100

o -1 0 [
0.15(1 - g) X

(1 + g) c
(3.18)

001

0.15(1 - g)2Xc
+ (1 + g)(0.15(1 + g)8 + (1 + 9 - K»

- XD]-0.15XD -7 .

For strictly conjugate movement when the eyes have identical starting positions,

TR and TL change together sucb that only the X D mode is activated and the bilateral

model output is the same as that of the monocular case. If there are mixed modes in

•
the input or if the eyes have different starting positions, TR and TL will not change

in a complementary fashion, and deviations from the monocular model occur. The

relative weights of g and K can be different for each dimensional pathway without

affecting XD mode output, provided g and K are chosen such that the overall X D

d . T 0.15{I-g.> T 0.15(1-g,) d T 0.15(I-gÉ> f h
mo e tune constants Dt/J = (l-g.-~>' DB = (l-g,-k,)' an D1/J = (l-g.-k.> 0 eac

pathway are identical.

3.2 Extension of the Second Form

The extension of the feed.back position-dependent fonn is a bit more complicated than

the feedforward case. With the ë L and ë R matrices recalculated with the new values

•
of Ï o, scalar cross-midline gains Yield:

(3.19)
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• (3.20)

instead of

(3.21)

(3.22)

- ---- 1- - ---- 1-
for the first forme However, if GLtoR = IoTo(IoTR )- G and GRIoL = IoTo(IoTL )- G

the equations reduce to those of the first model forme With this modification, the

output of the second form of the model is now the same as the output of the first.

Figure 3.2 shows the second hilateral model forme

•
X.

X..
l-----------r------.p

L

•

Figure 3.2: Bilateral 3D model, second farm (central feedhack nonlinearity).

The output of the second (central feedhack nonlinearity) model form under normal

conditions should he the same as that of the first (primary afferent nonlinearity)

form for identical parameter values. This can now he used. as an exploration hase to
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• examine predictions regarding the eff'ect of localized lesioDS.

3.3 Effects of Parameter Variation and Lesion

3.3.1 Effects of Commissural Gains on Time Constants

For parameter variation, the first and second forms of the model give the same resuits,

as they were designed to have the same transfer function in non-lesion conditions. The

difference mode time constant is a function of g and k:

T
D

= 0.15(1 - g)
(1- 9 - k)

(3.23)

•
The integrator's response to common-mode input can he varied without affecting

the conjugate response via the relative weightings of g and k, provided the input is

scaled properly. For a given g,

Tc = 0.15(1 + g)
(1 + 9 - k)

or, in terms of the düference mode time constant TD,

Tc = 0.15(1 + g)TD

2TDg + 0.15(1 - g)

(3.24)

(3.25)

•

Figure 3.3 shows how Tc decreases as a function of g for constant TD = 30s.

The common mode gain also decreases with increasing g, its velocity component gain

varying as 8~:J and its position component gain with ~~~:J: (see Equations 3.17 and

3.18).
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Tc vs. g tarT.:tOI
3Or------.----r----T----r----r-~-~-__r_-__r_-...,

25

20

10

5

.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

g

Figure 3.3: Common mode time constant as a function of g for a difference mode
time constant of 30s (both model forms).

3.3.2 Sensory Projection Pattern Anomalies

Although this thesis is largely concerned with conjugate movement, the following

analysis and figures are included to give an idea of what might be expected in the

case of malfunctioning sensors. Figure 3.4 displays the output of the model for the

case where the horizontal and torsional inputs increase together. This is an artificial

condition that wouldn't occur for normal sensor function, but was chosen to demon-

strate the lower time constant of X~ mode inputs. Sucb a situation might arise in

abnormal conditions if input pathways were crossed. The results were plotted along

with the kinematically correct tracking of the right side inputs for comparison. The

parameter values are K=O.74625 and g=0.25 for all 3 coordinates.

The r/J and 1/J components of the output show reduced gain and faster decay, but

the decay of the vertical response (dashed line, Figure 3.4) is unaffected. The gain
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Figure 3.4: Model output when horizontal and torsional pathways are operating in
vergence mode.
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of the vertical response appears to be higher, reflecting the fact that the position-

dependent desired vertical gain has changed because q, and 1/J no longer have their

original values. The 4J and 1/1 components of the left and right eyes now have opposite

directions.

3.3.3 Unilateral Labyrinthectomy

Figure 3.5 displays the output of the model for the case where the right inputs take

their original values but the left inputs are zero. This is equivalent to the case where

one set of canals is destroyed.

- - 'l'-In this case, X D = Xc =~. The two sides should have a long time constant

component from XD with a magnitude of hall that of the normal conjugate case.

In addition, there should be a short time-constant contribution with components

of opposing signs for the two sides. It is the latter contribution that leads to the

initial slight tise in 4J and 1/J magnitude for the left eye just after the extemal input

goes to zero in Figure 3.5. The common mode component decays quickly, such that

the decrease in this opposing contribution temporarily outweighs the decay of the

difference mode contribution to give a net increase in magnitude. The right eye

shows complementary dips in output magnitude. The dips are small relative to the

overall response, a reflection of the reduced gain and time constant of the common

mode.
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Figure 3.5: Model output for the case where there are only unilateral inputs.
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• 3.3.4 Commissural ImpHcatioDS

fi the commissural connections of the model are eut, the integrator reduces to the

monocular case with a smaller position gain and time constant (l~};ii) for pathways

i=1..3 of both model forms. This can be seen by setting the cross-term contributions

ta zero. In the feedforward case,

or

or

p _ lo1'RXR (0.15s + 1)
R - 0.158 + (1 - K)

F _ loTLXL(0.15s + 1)
L - 0.158 + (1 - K)

(3.26)

(3.27)

•
This gives a gain reduced by a factor of (1 - 9ii) and a time constant (l~~ii) -

O.15(lC:~:~:'9iiTD for each pathway because 9ii is now zero, but the remaining circuit is

still scaled ta be appropriate for the original value of 9ii •

In the feedback case,

... - - -. - - - - - 1" - ~ - -..
FR = loToXR + (1 - (IoTo)(IoTR)- )(FR - HFR) + HFR

FL = lo'Ï'oxL + (1- (ÏoTo)(ÏoTL)-l)(FL - HFL) + ilFL

Recombining,

(3.28)

(3.29)

(3.30)

(3.31)

• the FL equation and rearranging, the results are the same as for the feedforward case.
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This may seem counterintuitive given the position dependency of the cross-midline

gains in the feedback case. In actuality, these serve only to undo the unwanted

position dependencies that will be introduced to this contribution by the additional

feedback loop of the second model form. The effective contribution of the cross

midline components is the same for the primary afferent nonlinearity and central

feedback nonlinearity model forms once this is considered.

In normal VOR operation, the relative weights of g and K affect the strength

of the feedback contributions in both model foons. The addition, the commissural

pathways, supplies a third component to the VN summing junction that reduces

the required position and velocity contributions of the ipsilateral input and feedback

components. In the first model form., this means that the feedforward input is scaled

diHerently and the feedback neural filter coefficients are reduced. In the second model

form, the input scaling and feedback neural filter coefficients are reduced as in the

first form, and the C matrices change to accomodate the new values of 10 (unchanged

if the K's and g's of aIl pathways are the same, as then 10 takes the form loI and

loI = fol, 50 C = 1-101'01'-1101 reduces to C = l - 1'01'-1). Consider the

case where the K's and g's of all three pathways are the same, so the C matrices

are unchanged and the velocity components are the same as in the monocular case.

For a difference mode gain of 1 and large time constant, the changed feedback filter

coefficients lead to a net ipsilateral feedback component ÏlF + (1 - 1'01'-1)(F - ÏlF).

When all is functioning properly, HF = (1- g)(l- ~~5)('f/J,8, t/»T ~ (1- g)("p, 8, t/J)T

(for large Tv) and i' = O.151'w + (1/1,8, t/J)T, 50 the feedback component becomes

(1 - 1'o1'-lg)(.,p, 8, t/J)T + (f' - th)O.I5W. This introduces a position dependence to
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the position sensitivities, and position component cross-talk between pathways. For

the monocular case, only the velocity components were position dependent, and there

was no position component cross-talk between pathways.

3.3.5 Corrective Feedback Effects (Second Madel Form)

In the second model fOrIn, the required position-dependent corrections are impIe-

mented with a second feedback loop, C, rather than in the forward path (first model

form). The effects of removing this additional feedback loop from the second form

can he investigated by setting ë R = 0 (Figure 3.6). Letting Ïl = (O.l~+l)' l be the

identity matrix, and absorbing the scalar factor 10 into To, TL and TR for notational

simplicity, this gives the equations

or

(3.32)

(3.33)

(1- Ïl)-l[(ToXR ) + To'Ï'i1G(I- Ïl)-l(TLXL)]
1 - (1- H)-lToTi1G(1 - H)-lG

(l - H)-l[(TLXL ) + G(l- H)-l(ToXR )]

1 - (1 - H)-lG(1 - H)-lToTilG

(3.34)

(3.35)

•
fi the g's and K's are different for each dimension, this is very difficult to break down

further, as the (1 - Ii)-l matrices don't commute with ToTi l . However, if the g's
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Figure 3.6: Effects of removing the right C matrix pathway in second model form.
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• and K's are the same for each pathway,

-1 0 0

G= 0 1 0 9

0 0 -1

- - -1 _ Ï
(1 - H) - (1 _ H)

(3.36)

(3.37)

and the above equations ean be rewritten (where division implies left hand side mul-

tiplieation by the inverse):

•
- - - - --1---(1 - H)ToXR - gToTR IgTLXL

(1 - H)2 - ToTRl g2

CÏ - ïi)1'LXL - gÏ9'Ï'OXR
- - -1-

(1 - H)2 - IgToTR Igg2

(3.38)

(3.39)

where

1 0 0

Ï g = 0 -1 0

o 0 1

(3.40)

•

Htwo matrices bL and bR are defined sucb that bl = 1'o'Ï'i l g2 and h~ = Ï gToTRl Ïgg2,

FR can be divided into two modes with position dependent transfer funetion denom-

inatoIS (Ï - Ïl ± bR) and likewise for FL. hL and bR collapse to gÏ when the right eye

is in primary orientation. These results imply that the dynamics of responses from

both eyes will depend on the position of the right eye.

It is possible to get a more qualitative feel for what is oecuring by looking at the

simulation plot for the ease of a unilateral C lesioD (Figure 3.6). The decay rates of
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both sides are clearly affected- the magnitude of 9 continues ta increase even in the

absence of input, while the other two components decay more quickly. Considering

the previously developed equations, FR = ÏIFR + GFL for zero extemal input in the

absence of lesion. With the lesion (O = 0), the equation for FR reduces to FR =

fIFR + 'Ï'o'Ï'i1GFL, sa the change in contribution of FL to FR is {ToTi l
- Ï)GFL • For

the right side, the horizontal path firing rate is positive and the other two firing rates

are negative. Accounting for the mirror symmetry of the required muscle commands,

the horizontal and vertical path firing rates are negative and the torsional firing rate

is positive on the left side. From this information, the signs of the terms of ToTi l can

be computed to show that there is now a negative contribution from the left torsional

pathway to the right horizontal and vertical pathways, leading to an increase in the

magnitude of 8 and a decrease in 4J on the right side. These changes are then partially

carried over to the left side via the cross-midline contribution of FR ta FL • The other

cross-terms and changes in diagonal terms also contribute ta the dynamics. Thus, a

unilateral C lesion introduces positioD-dependent dynamics on both sides, eveD in the

absence of extemal input (provided the eyes are Dot initially in primary orientation).

If C is removed on both sides,

(3.41)

(3.42)

•
which is again position dependent. In this case, the instantaneous transfer function

seen by the modes of each eye will depend on the positions of bath eyes. It is
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• interesting to consider decay in this case:

(3.43)

(3.44)

fi all the input has been of the form XL = - ÏgXR , then by symmetry

-1 0 0
~

FRFL - 0 1 0

0 0 -1

-1 0 0 -1 0 0

aFL - 9 0 1 0 0 1 0 FR = gFR

• 0 0 -1 0 0 -1

(3.45)

(3.46)

Substituting this into the equation above for FR, with Ïf = O.l~+l' rearranging and

converting from Laplace to time domain,

..;

FR =
- - - 1 -

(1 - ToTi 9 - K) -
1 ) FR0.15(1 - ToTi 9

(3.47)

•

fi there were no cross-talk, this would reduce to an exponential decay with position

depeildent time constants provided the terms (Ï - 'Ï'O'Î'i.1g - K) and (Ï - 'Ï'O'Ï'i1g)

remained positive. With cross-talk, oscillatory components could be introduced, as

the solutions to equations of the form
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• are oscillatory. The results of Equation 3.47 will be more complicated, as there will

be both oscillatory and exponential decay components, and all the coefficients vary

with position.

Figure 3.7 shows a simulation where both ë matrices have been removed. The

movements are conjugate, as expected, and 8 and 1/J appear to display damped oscil-

latory components.
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Figure 3.7: Effects of removing both C matrix pathways in 2nd model forme

•
As the matrix coefficients depend on position, orientation representation would

be an important consideration if more specific predictions of eye trajectory were
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required. For the orientation representation use<! here, there are no cross-terms from

the horizontal pathway ta the vertical and torsional pathways cross-midline, but all

other cross-terms are non-zero.

3.3.6 Lesions of the Neural Filters (Both Model Forms)

Lesions of the neural filter can be simulated by setting the numerator of (0.1;.+1) in

Ïl to a value less than one for one or more of the 3D coordinates. Experimentally,

this would correspond to lesioning of the nucleus prepositus hypoglossi (NPH) or

interstitial nucleus of cajal (INe). This has two effects on the model. First, the

position component coefficient and time constant of the affected pathway will be

reduced. Even the non-lesioned side will be affected strongly, as it sees a reduced cross

midline contribution for the pathway(s) corresponding to the contralateral lesion,

leading to effects similar to those of a eut in commissural pathways. Second, the

calculation of the 'Ï' (first form) or ë, GLtoR and GIUoL (second form) matrices on

the lesioned side will be thrown off by the miscaculation of the position component

corresponding to the affected pathway. This has the same effect on both model forms,

as the equations reduee to FR = T'aXR+HRFR+GFLand FL= TLXL+HLFL+GFR

in bath cases, where T'a and Tf denote the modified first model form T matrices. The

ë and G matrices of the second form are based on the same miscalculated position

components as in the first form case, sa the overall effect is the same.

The second effect will be more noticeable when the velocity component dominates

the motor command (i.e. during saccades). The first effect will tend ta bring the
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• affected position component to zero in the absence of velocity input, reducing the

magnitude of matrix miscalculations.

Figures 3.8 and 3.9 show the effects of unilateral and bilateral reduction of the

horizontal neural filter numerator by half.
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Figure 3.8: Effects of unilateral (right) horizontal neural filter reduction.

Unilateral filter reduction reduces the gain and time constant of f/J on both sides,

•
affecting the lesioned side more. The time constants of the other two coordinates

are not affected (the slight decay seen in 1/J and 8 relative to the ideal result is due

to the non-infinite 308 time constant observed in normal VOR operation). The 'I/J
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• component gain in this case is aIso slightly reduce<!. On the left side, the decay in

the value of tP affects the desired changes in 1/J (the matrix gains are still calculated

correctIy). On the right side, this effect is compounded by the fact that the desired

changes in 1/J are calculated based on a reduced estimate of f/J. The (J component is

also affected, for the same reasons.
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Figure 3.9: Effects of bilateral horizontal neural filter reduction.

•
In the bilateral neural filter reduction case, the yaw response is further reduced and

not maintained. The change in 1/J and (J values is more noticeable than in the unilateral

lesion case. There is a further change in required gains due to the additional decrease

63



•

•

•

in horizontal component, and this is now compounded by the internai underestimation

of t/J in calculating position-dependent matrices on both sides rather than just one. As

the structure is again symmetric, the movements are still conjugate, though incorrect,

for normal inputs.

The following chapter will explore possible anatomicaI substrates for the compu

tational elements in the postulated model forms.
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Chapter 4

Linking Anatomy to 3D

Formulation

This chapter will deal with how the brain actually implements the mathematics pro

posed in the preceding chapters. It is divided into two parts, the first concemed with

the brain structures and interconnections involved in slow-phase VOR processing, and

the second discussing neural network implementations of the oculomotor integrator.

A summary of the abbreviations used here is provided in Appendix B.

4.1 Anatomical Pathways of the VOR

The objective of this section is to develop an anatomically relevant substrate for the

3-D slow-phase of the VOR. These pathways are based on the cat except where oth

erwise stated; some düferences are observed in rabbits and monkeys. Structures such

as the paramedian pontine reticular formation (PPRF) and Forel's Field H that are
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considered more important for saccades and other types of eye movement have been

left out. The first two subsections will review previously proposed anatomical inter

connections for the horizontal and vertical pathways, and will consider them in the

context of other literature and more recent studies. The third subsection proposes

connections that may be relevant for crosstalk. It should be noted that literature deal

ing with cross-talk and 3-D eye movements is incomplete, 50 this study focused on

interconnections between known important components of the horizontal and vertical

integrators. It is possible that later studies may reveal other structures important for

cross-taIk. The final subsection summarizes these sections with a suggested anatom

ical mapping of the bilateral model given in chapter 3.

4.1.1 The Horizontal VOR

A bilateral feedback model of the horizontal integrator circuit was proposed by

Galiana and Outerbridge in 1984 [48] and revised by Green and Galiana [55]. The

relevant connections were the following:

• Excitatory horizontal canal (HC) neurons in the vestibular nucleus (VN) project

ing to the contralateral nucleus prepositus hypoglossi (NPH) and abducens nucleus,

and ta inhibitory HC neurons in the contralateral VN ([74], [37]).

• Inhibitory He VN neurons projecting to ipsilateral excitatory HC VN neurons

and to ipsilateral NPH and abducens nucleus.

• Excitatory projection of canal afferents to both excitatory and inhibitory ipsi

lateral He VN neuroDS.
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• Excitatory projection of NPH to contralateral VN excitatory He neurons, and

inhibitory projection of NPH to ipsilateral inhibitory He neurons.

Referring to the I-D bilateral model of Figure 1.4, the NPH is proposed to perform

the neural filtering function and VN neurons are taken to be the output nenrons.

Motomeurons in the abducens nucleus are assumed to take the foon of a weighted

sum of NPH and VN outputs. The inhibitory cross-midIine contributions with gain

g are accomplished via the connections mentioned in the first two points above.

There are numerous studies that support the role of the NPH as the horizontal

neural integrator ([22], [16], [77]). The NPH contains a continuum of horizontal

movement-related neurons ranging from largely velocity-sensitive to purely position

sensitive in their firing rates ([29], [69]). Bilateral lesions to the NPH drastically

reduce the time constant of horizontal gaze-holding- in one study, sucb lesions reduced

the constant to 200ms [16]. In this case, the VOR response was reduced to a step

in eye position instead of a ramp for constant head velocity input. In another study,

unilateral injections of muscimol into the NPH lead to bilateral gaze holding fallure

and inappropriate, asymmetric VOR responses [77]. A review of studies concerning

the role of the NPH in horizontal oculomotor integration is provided in [44].

The argument for a feedback neural filter model of the NPH rather than a model

of the NPH as a feedforward integrator stems from the position sensitivity of VN

neurons [37]. Many VN neuron firing rates vary with eye position as weIl as eye

velocity [103). This would not be required in a purely feèdforward model of the

integrator pathways, but is predicted by a feedback neural filter mode!. This idea is

further supported by the anatomical projection of the NPH back to the ipsilateral
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and contralateral VN [44].

The bilateral model also has commissural connections, shown by the pathways

of gain g. Removal of these pathways should result in gaze-holding failure as the

position component time constant is reduced to that generated with the unilateral

neural filter alone. A study conducted by Godaux and Cheron [50] investigated the

effects of severing the vestibular commissural pathways in the cat, and found the

results to be consistent with those predicted by the Galiana/Outerbridge bilateral

model of I-D horizontal VOR pathways.

Fukushima et al. [43] also proposed an anatomical basis for the horizontal integra

tor, though they did not attempt to map individual structures to separate mathemat

ical functions. This circuit showed connections between bilateral NPH as important,

as weIl as an inhibitory connection from the medial flocculus to ipsilateral HC related

neurons in the VN. They indicated an excitatory, contralaterally-projecting floccular

target neuron (FTN), although literature indicates that He FTN's are ipsilaterally

projecting and probably inhibitory [98]. The flocculus is not thought to play a large

role in the normal horizontal VOR, but has been included here because it is significant

for the vertical VOR, 50 may be relevant for cross-talk.

Further literature review revealed projections of MVN and NPH HC-related neu

rons to the contralateral medial flocculus ([21],[36]). The NPH also sends ipsilateral

excitatory and contralateral inhibitory afferents to the abducens nucleus [38]. A sum

mary of the main horizontal VOR-related pathways is shown in Figure 4.1. In the

diagram, the MVN-contralateral flocculus projections are assumed to be excitatory.

The abducens nucleus projections were left out to avoid clutter.
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Figure 4.1: Horizontal integrator pathways. Clear circles denote excitatory cells,
filled nodes are inhibitory; NPH- nucleus prepositus hypoglossi, F- flocculus, VN
vestibular nucleus. Owing to the large number of connections, some pathways are
drawn with dashed Unes to avoid confusion.

4.1.2 The VerticaljTorsional VOR

The verticaljtorsional VOR pathways start with the anterior and posterior canal

afferents, which sYnapse on secondary neurons in the medial and superior vestibular

nuclei. As with the horizontal case, the secondary VN neurons of the vertical pathways

display both position and velocity sensitivity [61], consistent with a feedback neural

filter model for position signal creation. In the case of the vertical and torsional VOR,

it is the interstitial nucleus of Cajal (INC) that is thought to perform the feedback

neural filtering. Neurons in the INC display strong vertical eye position sensitivity

[41], and unilateral and bilaterallesions of the INC impair gaze holding and vertical

VOR [39]. A comprehensive description of the role of the INC in eye movement is
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provided. in [39], and arguments for its importance in vertical/torsional position signal

generation are given in [44].

Fukushima et al. [43] provided. a summary of important connections for the ver

tical integrator circuit. These are:

• From excitatory anterior canal (AC) and posterior canal (PC) VN neurons to

contralateral INC, contralateral oculomotor and trochlear nuclei, and contralateral

inhibitory intemeurons. For further details on these connections, the reader is referred

to ([54], [53], [116], [20J, [58], [61], [62]).

• Excitatory connections from INC to ipsilateral AC and PC inhibitory type II

intemeurons, and from these intemeurons to ipsilateral excitatory PC and AC type

1 neurons, respectively (see aIso [47]).

• From INC to contralateral INC ([28], [67], [81]- these references refer to primate

studies).

• From excitatory PC neurons to contralateral middle and caudal flocculus [40].

• Inhibition from rostral flocculus to ipsilateral excitatory and inhibitory type 1

AC neurons ([98J, [59]) and from caudal flocculus to neurons in the ipsilateral dorsal

cell Y group ([100], [97]).

• Excitatory connections from cells in Y group to the contralateral oculomotor and

trochlear nuclei and contralateral INC. Note that the oculomotor and INC projections

are done by separate dorsal and ventral groups within the Y group [97]. It has been

suggested that these connections may help compensate for a relative lack of posterior

anterior commissural connections in the VN.

These connections were simplified.; not aIl neurons in a given group necessarily
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project or receive all efferent/afferent projections. In particular, AC and PC canal

related neurons in the SVN differ from those of the MVN subdivision. Inhibitory

vertical canal-related neurons in the MVN don't project to the oculomotor nuclei;

those in the SVN do [115]. Most of the AC cells that are inhibited by the flocculus

are in the SVN [59]; PC cells aren't inhibited by the flocculus in the cat. Furthermore,

the inhibitory PC neurons in the SVN receive contralateral inhibition [115] although

the inhibitory AC neurons in the SVN don't. These inhibitory type 1 PC neurons, not

included in the Fukushima circuit, project ipsilaterally to the 10 and SR motomeuron

pools. The Y group aIso projects back to the SVN bilaterally [20]. The SVN does not

receive many INC inputs [20]. A summary of the major connections for the vertical

torsional system is shown in Figure 4.2. For illustrative simplicity, type 1 inhibitory

and type II inhibitory VN neurons are represented together, and projections to the

oculomotor nuclei are left out.

4.1.3 Possible Sites of Cross-Talk

Most models of the 3D VOR have treated the horizontal and vertical/torsional reflex

pathways separately. Although Tweed and Vilis ([114], [110]) do propose intercon

nection between the two systems, no attempt is made to map these transformations

onto known anatomical connections. Tensor and matrix approaches have been used

to analyze what transformations must take place, but do not indicate precisely where

they occur. This section will examine known projections and neuron firing properties

and propose tentative sites for cross-talk for the movement planes.
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Two probable sites for interaction are the NPH and the INC. A study exarnining

116 ceUs in the NPH of the alert cat found their on-directions to be 59 percent

horizontal, 17 percent vertical, and 24 percent oblique [69]. Other studies have also

shown mixed vertical and horizontal sensitivities in the cat NPH ([9), [29]). In one

of the studies, several NPH neurons carrying signais related to vertical and oblique

eye position and/or velocity were found to project to the ipsilateral INC and to

be antidromically activated from it [29]. In another study, 3/10 cat BT cells in

the INC were found to respond to horizontal rotation with a gain 14-17 percent

of their maximal vertical gain [42]. It therefore seems likely that the connection

between ipsilateral!Ne and NPH may play a role in cross-talk. Connections between

contralateral INe and NPH may also exist, or they may occur indirectly as a result of

cross-midIine INC-INC or NPH-NPH interaction combined with the known ipsilateral

projection; however, the ipsilateral influence is stronger [44].

Another possible site for interaction is from the VN to the NPH. In one study

examjning the anatomical and physiological characteristics of the VOR in the squir

rel monkey, some of the vertical movement related MVN neurons projected to the

contralateral NPH [75). Three of the four neurons shown displayed sorne horizontal

sensitivity as weIl. In a study on rabbits and cats, excitatory posterior canal neurons

were shown to send collaterals to the contralateral NPH in both species [54]. A later

study on cat anterior-canal related neurons did not display an NPH collateral, though

many did branch to the contralateral VN [53]. In the cat,-weak bilateral projections

from the SVN to prepositus were also observed [73] .

The possibility of convergence of more than one primary canal afferent onto a

73



•

•

•

single VN nemon has been examined directIy by Kasahara and Uebino [64]. Kasahara

and Uebino stimulated the six ampullary nerves of both labyrinths separately in

anaesthetized cats and recorded VN responses. Most responded with monosynaptic

excitation to stimulation of one ipsilateral nerve and with disynaptic inhibition to

stimulation of the contralateral same-plane nerve. The authors found some nemons

that responded to stimulation of more than one ipsilateral canal nerve, but upon doser

examination found that this could have been due to stimulus spread. They concluded

that there was no definite evidence for primary afferent convergence upon individual

canal neurons. A later paper by Baker et al. [8] found widespread canal convergence

at the VN level, but suggested that this could be attributed to monosynaptic input

from one canal coupled with polysynaptic input from others.

While the former studies failed to show signs of primary afferent convergence, they

did demonstrate another possible means of convergence. In the Kasahara/Uchino

study, 6/28 neurons responding with a monosynaptic excitatory post-synaptic poten

tial (EPSP) to ipsilateral nerve stimulation and disynaptic or trisynaptic inhibition

(IP8P) to contralateral nerve stimulation were not plane-specific in this pairing. Two

lateral and four posterior ipsilaterally-responding neurons displayed non plane-specific

convergence, the horizontal nemons receiving contralateral anterior canal inhibition,

and the posterior canal neurons receiving contralateral horizontal (3) or posterior (1)

canal inhibition. Although they didn't say explicitly what inhibition was displayed,

they did say that of the 28 neurons exhibiting ipsilateral EPSPs and contralateral

IPSPs, 13 showed anterior canal inhibition, 10 showed horizontal canal inhibition,

and 5 showed posterior canal inhibition. They further stated that, of those display-
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ing plane-specific inhibition, Il showed AC inhibition- PC excitation, 7 showed HC

inhibition- HC excitation, and 4 showed PC inhibition- AC excitation. This leaves

2 AC, 3 HC, and 1 PC inhibition unaccounted. for. As AC inhibition- PC excitation

would be plane- specifie, the 2 AC inhibitions must have been imposed upon the

HC neurons displaying non-plane specifie inhibiton, and the 4 PC neurons must have

shown contralateral HC (3) and PC (1) inhibition. Some other non-plane specifie

combinations were also observed, including some contralateral EPSPs.

Possible Role for Non Plane-Specific Canal Convergence

To illustrate what sort of effects contralateral non plane-specific canal convergence

could have, consider the two types of non-specifie convergence observed more than

once in Kasahara/Uchino studYi that is, AC inhibition of contralateral HC neurons,

and HC inhibition of contralateral PC neuroDS. Figures 4.3 and 4.4 show possible

complete circuits for these two types of non-plane specifie inhibition. As the neurons

in these cases did not exhibit mixed. contralateral effects, the circuits allow only one

type of contralateral inhibition on each eell.

Considering first Figure 4.3, application of Mason's rule (see Appendix C) to the

pathways gives the following equations for the neurons M R and ML (assuming the

VN units act as linear summing junetions):

(4.1)

(4.2)

Thus the two sides will be modulated with both pitch and torsion; they will
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Figure 4.3: VN crosstalk pathway, vertical-horizontal.
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• modulate symmetrically with pitch and asymmetrically for torsion. The torsional

component will appear to he that of the ipsilateral vertical canals, since the ipsilateral

contribution is excitatory and the inhibition increases as the opposing contralateral

torsional component increases.

Now consider the H-P circuit.

ML MR

•

PL PR

HR

Figure 4.4: VN crosstalk pathway, horizontal-vertical.

A similar analysis yields

(4.3)

(4.4)

•

Again, this gives symmetric pitch and asymmetric torsion and horizontal results

for the two sides. The horizontal component modulation is ipsilateral to the torsional

component.

These calculations are meant only to illustrate the potential of such convergence in

contributing to cross-talk; obviously it would be premature ta draw conclusions based
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on five neurons. However, it is interesting to note that in both cases, the horizontal

component appears ipsilateral to the torsional component. In an article concerning

sensorimotor transformations of the cat VOR [52), Graf et al. noted that 18/22 PC

neurons receiving HC input had ipsilateral convergent input. They also noted that all

the AC neurons receiving HC input (9 contralaterally projecting and 2 ipsilaterally

projecting) received it from the ipsilateral side. In another study regarding vertical

eye movement related secondary VN neurons, Iwamoto et al [61] noted that in the 12

units whose activity was found to he correlated with horizontal movement, the units

always increased their firing rate for contralateral horizontal eye positions.

It is also interesting to note that the convergence maintained the antisymmetric

(across the midline) torsional and horizontal, and symmetric vertical, responses gen

erated by the canals. In frontal-eyed animaIs, the extraocular muscles are oriented

sucb that the commands should be antisymmetric for rotation about the z and x

(horizontal and torsional) axes, but symmetric about y (vertical) for conjugate move

ment. A more thorough examination of secondary vestibulo-ocular neurons by direct

stimulation (similar to the Kasahara-Uchino study) might shed more light on the raIe

of commissural cross-talk in VOR transformations.

'Integrator'-VN Cross-Talk

The INC-MVN connection also provides a possible site for cross-talk. Studies have

shown that stimulation of the ipsilateral INC excites horizontal type II neurons in

the MVN at monosynaptic or polysynaptic latencies ([47], [71], [70]). Lesions of the

ipsilateral INC have been found ta reduce the gain of HC VN type II neurons and to

increase the gain of HC VN type 1 neurons [45]. Thus, ipsilateral INC excitation of
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horizontal type II neurons should be investigated as a possible cross-talk site.

Sirnilarly, there may be cross-talk from the NPH to the SVN. Labelling studies

revealed weak projections from the NPH to the SVN in the cat [73]. Other studies

showed modest projections from the caudal NPH to the SVN and Y group in the cat

[20],[10].

The possibility of horizontal-responding neurons projecting to the INC was raised

by Markham et al [71], who found 10 instances of antidromic activation of type 1

HC neurons from the contralateral INC and 5 from the ipsilateral. However, a later

study by Fukushima et al. [46] indicated that these probably project preferentially

to interstitiospinal and reticulo..spinal neurons in the INC region. They found that

vestibular-projecting INC neurons did not respond to HC nerve stimulation, though

they did respond frequently to vertical canal stimulation. Thus the probability of an

MVN HC-INC connection playing a direct role in cross-talk seems slim.

Flocculus-VN Interconnections

The flocculus provides another site where cross-talk may occur. The flocculus

is known to inhibit VOR relay neurons, its middle zone affecting some horizontal

inhibitory intemeurons, its rostral zone inhibiting excitatory and inhibitory anterior

canal-related neuroDS, and its caudal zone influencing the dorsal cell group y ([98],

[59], [96], [99], [100], [97]). These last two relations are important for the vertical

VOR in cats. Anatomical studies have indicated bilateral projections from the MVN

to the flocculus in the rabbit and cat ([35], [109], [101]). In studies conducted on

middIe floccular-projecting MVN and PH neurons in the cat ([21], [36]), Cheron et

al. and Escudero et al. found largely contralateral MVN-HC neuron projections, but
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some ipsilateral ones. They suggested that MVN axons with ipsilateral projections

terminate mainly in the rostral and caudal zones of the flocculus, and as some of the

ipsilaterally-projecting neurons were HC responding, cross-talk could occur here. A

study by Zhang et al. on floccular-projecting neurons (FPNs) in the SVN of monkeys

found that some displayed both horizontal and vertical eye position sensitivities [118].

The flocculus is known to be essential for VOR adaptation [34], and is required for

generation of downward eye position signaIs in the vertical system [40]. The flocculus

projects ipsilaterally as weIl as contralaterally ta the NPH and MVN ([72], [73]), and

excitatory PC neurons project contralaterally to the medial flocculus as weIl as the

caudal [40]. These connections may play a role in vertical-horizontal cross-talk.

For simplicity, this investigation has considered only connections between the sites

that are thought to be mast important for VOR integration; namely, the VN, the

NPH, the INC, and the flocculus. However, there are numerous other places where

cross-talk could occur as well- the superior colliculus, the PPRF, and many other

structures receive projections from, and project back to, neurons of both pathways.

These connections could be particularly important once other eye movements sucb as

saccades are considered. Cross-talk can also occur at the level of the motoneurons,

for example between contralateral abducens and oculomotor nuclei [23], but Figure

4.5 summarizes only the premotor pathways.
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Figure 4.5: Summary of potential cross-talk pathways. INC- interstitial nucleus of
Cajal, F- flocculus, NPH- nucleus prepositus hypoglossi, VN- vestibular nucleus.

4.1.4 Model Mapped ta Anatomy

Based on the literature, a possible mapping of the 3D model onto anatomy might be

as shown in Figure 4.6, where the flocculus (F) implements the ë matrix, the Tnew

matrix is implemented in the VN, and the NPH and INC represent the neural filter

if.

This would be consistent with the interpretation of the INC and NPH as leaky

integrators [44]. The cross-midline pathways correspond to the VN-VN and possibly

INC-INC and NPH-NPH interactions. The flocculus was proposed to implement the

ë matrix for two reasons:

• There are connections from the VN and NPH to the flocculus and back for both

horizontal and vertical canal-related neurons.
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Figure 4.6: Suggested mapping of bilateral model to anatomical pathways. NPH
nucleus prepositus hypoglossi, INC- interstitial nucleus of Cajal, VN- vestibular nu
cleus, F- flocculus. Contralateral projections from VN to NPH and F and back have
been drawn with dashed lines for illustrative simplicity.
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• Experimental results concerning the effect of floccular lesion on the VOR vary,

with the effects generally being more noticeable in vertical/torsional VOR than in

normal horizontal VOR. In [66], two theories of the floccular effect on the VOR

are cited; one that would lead to the flocculus increasing VOR gain and the other

decreasing it. Exarnining the second model form (Figure 3.2), the diagonal terms

of the C matrix would lead to decreasing gain, but the off-diagonal terms would

have mixed effects. Furthermore, the magnitude of floccular lesion effects would

depend on the relative distribution of the position dependencies between the 'Ï'new

matrix (proposed to he VN implemented) and the C matrix. Decreased gain for

pure horizontal, torsional, or vertical VOR might also occur if some of the primary

orientation gain was transferred to the feedback loop. For example, if 'Ï'new = 0.91,

ë = 1 - 'Ï'new'Ï'-l would he o.lf in primary orientation.

A number of prohlems still remain to be worked out. For instance, in a 1987 study

hy Cannon and Robinson [16], bilaterallesions of the NPH were found to reduce the

time constant of the horizontal integrator to 200ms, but also the time constant of

the vertical integrator to 2.5s. Bilateral INC lesions, by contrast, have little effect on

horizontal integration [44] . Some of the INC's actions may be routed through the

NPH or other structures. Cross-midline INC-INC and NPH-NPH connections may

be important for this function. A more detailed mapping of the proposed anatomical

structure to the model will have to he formed to explain the distribution of neural

filtering between the !NC and NPH. This thesis considered only a very simple bilateral

model in the context of slow-phase conjugate movement. The model will have to he

re-examined in the context of vergence movements and saccades, along with further
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literature review.

The diagrams in subsections 1-3 above give known connections based on the lit

erature, but further study will be required. before the diagram of Figure 4.6 can be

mapped more precisely onto these connections.

4.2 Neural Network Models of the Oculomotor

Integrator

This thesis has so far proposed a model of the three dimensional integrator in the

VOR, expressed in the form of a block diagram. An important consideration from a

biological perspective, however, is whether or not such a model can he implemented

using nemons, and how the distributed nature of their processing might affect model

predictions in the case of lesion or disease [26]. A number of articles have been written

on this subject ([4], [95], [26]). Neural networks have been constructed to simulate

velocity storage ([1], [2]), the integrator itself ([63], [18], [17], [5], [6), [7J, [33], [32],

[2]), and the VOR arc as a whole ([87], [88]). The following subsections will outline

the major considerations involved, and the evolution of the models around them. A

small neural network model to implement one aspect of the proposed 3D model is

also presented.
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4.2.1 Issues to CODsider

The issues involved in creating a neural network implementation of the oculomotor

integrator include:

• Avoiding integration of the resting firing rates of the neurons, even in the case

where the background rate varies from neuron to neuron.

• Increasing the time constant of the network without putting unreasonably tight

restrictions on the underlying physiology. For instance, if the network were trYing to

achieve integration through positive feedback, the synaptic weights between individual

neurons should not all be required to stay within a small percentage of their total

magnitude.

• The network should he robust to loss or change of a small percentage of its

connections.

• Allowed connections should follow known anatomical pathways. Learning should

only affect those that are known to adapt.

• The network must be consistent with experimentally observed phenomena sucb

as Dale's law (neurons are either inhibitory or excitatory, not both).

• The network should have a physiologicallearning algorithm. Arnold and Robin

son [7) suggested that such an algorithm should only use information readily avail

able to the pre and post-synaptic neuron, shouldn't requite complex computation and

memory tasks, and should converge in a length of time independent of the number of

neurons in the network.

The final network should give results and neuron characteristics in agreement with
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experimentally observed values. Lesions to the network could be simulated by setting

some weights ta zero, and used as a test of the model to see if the modified network

outputs resemble experimental lesion and disease results.

4.2.2 Existing Models

The models that follow generate the integrating properties of the oculomotor integra

tor via the interconnections of the neurons involved. This section will not describe

proposals sucb as that of Shen [104] in whicb the integration is achieved through

special properties of the membrane in certain types of neurons, (in the Shen case

short-term potentiation), rather than through neuron interconnections.

One of the earliest neural network models of the oculomotor integrator was pro

posed by Kamath and Keller [63]. In this model each neuron has a firing rate of the

form y(x, t) = y(x)(1 - e-t/-r) in response to a step input, or y(x, s) = S(Y'::S) in the

Laplace domain, where x is the effective input and T (5 ms) is the membrane time con

stant of an individual neuron. y(x) is zero until some cell threshold XT, beyond which

it increases asymptotically with x to sorne saturation firing rate. The ceU thresholds

and saturation firing rates are drawn from Gaussian distributions. The model con

sists of two populations of neurons. The summed output of the first population of

neurons, denoted by Y, forms the output of the oculomotor integrator. These neurons

have feedback connections of strength k to every neuron in the population, including

themselves. This population on its OWD can act as an integrator, but is tao sensitive

to changes in k ta be physiological and would tend to be leaky. The introduction
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• of a second population of neurons, this time composed of uninterconnected neurons,

was designed to increase the time constant further. The resu1tant model is shown in

Figure 4.7.

----------_!~~~--------

1(5) --~.0..-..--r-1

~----------------------._---_.

2dd Popalmoa

Figure 4.7: Kamath/Keller model, redrawn from [63]

Y(s)

•

•

This gives an increased integrator time constant that is relatively insensitive to

changes in c. The model is still sensitive to changes in k, but the second population

could compensate for fluctuations in k if allowed to adapt. Both forInS would have to

he modified to avoid integration of the neurons' resting rates, and require constant

magnitude input to function properly.

Cannon et al [18] proposed a lateral inhibitory model of the oculomotor integrator

that avoids integration of the background rates and the extreme parameter sensitivity

of the Kamath/Keller mode!.

This model was comprised of a pool of 32 homogeneous neurons whose firing rates

obeyed the equation TX(t) + x(t) = i(t), where x(t) was the firing rate, i(t) was the

net effective presynaptic input, and T was the time constant of the first order cell

dynamics. The neurons were assumed to be operating in a linear range about their
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• background rates. The net presynaptic input to neuron i was given by

i(t) = E Vij'Uj(t) - E WijXj(t)
j=l..M j=l ..N

(4.5)

•

•

where 'Uj, j=l...M were the inputs to the network, and the weights Wij represented

the lateral inhibition of other neurons. The distribution of the weights was chosen to

optimize the time constant of the network, achieving net positive feedback through

the mutual inhibition of nearby neurons. The network was taken to have a ring-like

structure to avoid the edge effects that would be introduced by end neurons having

fewer laterally- inhibiting neurons. In the case where balf the neurons receive a net

extemal input +a and the other half -~ at regular spacings, this results in a push-

pull integrating network that is robust to noise on the connection weights and to the

loss of one neuron.

Cannon and Robinson [17] later modified this network in two respects:

• They allowed a Gaussian distribution of afferent background rates.

• Neurons were permitted to carry both eye velocity and eye position signaIs, as

is observed experimentally.

This was accomplished using a double-layer network of inhibitory and excitatory

ceUs. The velocity inputs were only presented to local areas of the network, resulting

in ceUs that carry different eye- velocity signaIs for different types of eye movements,

as weil as the integrated signal. The neurons of both layers received input afferents

and projections from other neurons within their layer and from the other layer. The

weights were consistent with Dale's law. Both layers served as outputs. This model

still has shortcomings in that it would lead to firing rates less than zero for saccades
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• because nonlinearities have not been accounted for yet, and it does not give an idea

of how the network would learn the appropriate connection weights to start with.

Quinn et al. ([87], [88]) formed an 8-neuron model of the bilateral integrator as

a part of their model of the entire 3-neuron VOR arc. The model is shown in Figure

4.8. They used a method of global optimization described by Bremermann [14] to set

the weights. This method gave low errar solutions and allowed unbiased exploration

•

of computational solutions.

NI

N2

N3

-------
ûc:iwory

Inhibitory

•

Figure 4.8: Quinn model, redrawn from [88].

Arnold and Robinson [6] proposed a self-organizing neural network that learned ta

integrate vestibular velocity cammands using retinal image slip as an error signal. The

method employed did not require backpropagation of information. The basic network

consisted of push-pull input from 2 canals, a variable number of intemeurons, and two

motoneurons. Each input projected to each Ï!ltemeuron, each intemeuron projected

ta aIl other intemeurons, to itself, and to both motoneurons. The network leamed
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• by considering the rms value of gaze velocity error over a set time period:

E=

The weight changes were calculated using

.DL
1 _ •• _ &Ii;

Wij - w., k(E) 1 .ML 1
8w'j m4%

(4.6)

(4.7)

•

•

where 1!..~. lmoz is the maximum value of !..~. for that iteration over all network
~~ uw~

connection weights Wij. The values of !.~. were estimated using a brute-force method:
UlUI'

by changing one weight at a time by an amount ~Wij, and calculating the new error

E(Wij + ~Wij) over the trajectory.

(4.8)

k(E) was an adaptive learning rate to prevent rapid, unstable changes.

Two versions of the model were constructed: one to generate only a position

command, the other to generate the velocity component as welle The networks were

constructed with constraints on the weights to satisfy observed effects of neurons

on each other within and between groups, and the necessary changes for this were

described.

Arnold and Robinson [7] described an updated version of this model that learns

using a more physiologically plausible Hebbian-like learning algorithme This model

attempted to make the network connections reflect known anatomy more closely,

using four groups of neurons representing vestibular (V), NPH-MVN (Pl,P2), and

motoneurons (M) as shown in Figure 4.9.

This model was also trained first as an integrator, then to compensate for eye

orbital mechanics as welle The learning rule was ~Wii = ±kij x RB x a/Vi' where
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Figure 4.9: Arnold/Robinson model, reprinted from [7] with the penmSSlon of
Springer-Verlag New York, Inc. Some types of connections are shown only once
to avoid clutter.
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â/7Ji is the change in firing rate from resting rate, RS is the retinal slip, ~i is a scale

factor controlling learning rate. This rule goes to zero as the retinal slip does. Some

frequency dependent modifications were used for the plant-compensating network,

but the basic idea was the same.

Draye et al. ([33], [32]) used the 1991 model of Arnold and Robinson as a basis for

their model, but sought to improve it by requiring the neurons to follow Dale's law

(Dale's law states that a neuron's actions on other nemons must be either excitatory or

inhibitory, not both), and by introducing a notion of distance in the form of synaptic

delays between units to avoid an over-distributed mode!. The learning algorithm of

this model involved adaptation of both the classical weights between units and the

time constant associated with each neuron. They found that the constraint that the

weights obey Dale's law 100 to the spontaneous emergence of clusters of particularly

strong interconnections between some neighbourhoods of intemeurons. This was an

interesting development, as such clusters have been observed in Goldfish NI and in

the NPH of the cat [33]. Draye et al. used a biologically plausible learning process

involving the Levenberg-Marquardt minimization technique [49] for their recurrent

network.

A number of neural network models have been constructed to deal with other

aspects of VOR such as velocity storage ([1], [2]), the coordinate transformation

between canal and muscle frames [4], and the combination of oculomotor signaIs of

different origins [3].
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4.2.3 Further Considerations

It should be noted that the models constructed sa far have used retinal slip as an error

source, but it may be possible that extraocular muscle afferent feedback plays a role

in generating a teaching signal as weIl, as severa! articles have indicated evidence of

EOM afferents influencing neurons in the vestibulo-oculomotor system [15], [31], [65].

The nature of the retinal slip error for 3D movement should he considered thoroughly

before deciding on representations and learning algorithms. Some researchers have

started to investigate 3D retinal slip [51], and demonstrated a spatial preference for

its coordinate system, similar to vestibular sensors. Other important considerations

will include the degree of interconnectivity (distributivity) of the network, and the

number of groups of neurons representing the INC, NPH and flocculus, each of which

have more than one functional group ([72], [28]).

4.2.4 A Possible Use for Neural Tbresholds in 3D

Although a full neural network model for the 3D integrator is beyond the scope of

this project, one interesting aspect was investigated: that is, the use of thresholds and

saturation in generating the required nonlinearities for the 3D mode!. The nonlinear

ities of the models described in the second and third chapters could he accomplished

by neurons in a number of ways, but one feature stands out as interesting: that is,

the wide range of neuronal thresholds, and their dependence upon the cell's position

sensitivity. This has previously been attributed to the need to accomodate eye plant

nonlinearities, but could potentially also play a role in accounting for rotational non-
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commutativity. The model described in this thesis requires matrix gains that depend

on position. However, if some neurons only turned on for position/velocity combina

tions above a certain value, the overall input seen at the VN level could vary with

position even if the individual neurons behaved linearly once activated. As many VN

neurons do appear to have almost linear rate-position responses ([103], [76]), it was

felt that this would be an interesting point to examine.

To test this idea, a simple feedforward neural network consisting of 3 input units,

20 hidden units and one output unit was constructed and trained using a backprop

agation algorithme The inputs were w z , 8, and t/J, referring respectively to input

torsional angular velocity, vertical position, and horizontal position in the model of

Figure 2.1. The hidden unit outputs were taken to he Ii for weighted summed inputs

helow their threshold Ti, and equal to the weighted summed input above the thresh

old until a saturation point at a fixed level ahove the on-threshold, beyond which the

neuron's output was taken to he the saturation value. The output unit had a thresh

old of zero and no saturation value, as it had to supply the full output for the whole

range of inputs. AlI input units were connected to aIl hidden units, and aIl hidden

ones to the output, with initially random weightings. The network was trained using

a hackpropagation algorithm (see Appendix D for code).

It should he noted that the idea of this exercise was solely to investigate whether

thresholds and saturation alone could aid in linearizing the required 3D neuron func

tions. No attempt was made to use a plausible learning algorithm or to examine the

effects of other nonlinearities, as these would require much more detailed knowledge
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• of the system. The network was trained to produce the output wz ::, the desired

contribution of roll input to ; as a function of position for the first representation in

Chapter 2. This was chosen for illustration because the desired response is zero for

any value of w% when 8 is zero, but a position-dependent constant times w% for non-

zero 8. Thus, any non-position dependent approximation will perform terribly. After

4000 iterations, the network output was as shown in Figure 4.10, with the desired

output shown beside it.
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Figure 4.10: Torsional angular velocity contribution ta horizontal neuron firing rate
as a function of (J for t/J equal to 15 degrees. Plots show neural network and desired
output versus w% (deg/s).

Although this response is far from perfect, it does nonetheless display a posi-
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tion dependent response that is better than a constant gain would be. Thus, with

an ad-hoc network of only 20 hidden units behaving linearly except for à. threshold

and saturation, already there is significant capacity for position-dependent behaviour.

Although neurons have other means of adjusting gains, the threshold/saturation so

lution might be appealing over the long term because it wouldn't involve control of

synaptic gains on the fly: by accepting a feedback efference copy of eye position, these

nonlinearities alone could account for some of the position dependence.

This result may soom trivial, gjven that it has been proven theoretically that

feedforward neural networks employing somewhat similar activation functions can

approximate any static function to arbitrary accuracy given an appropriate number

of input, hidden and output units and proper interconnecting weights [27]. However,

it does serve as a reminder that complex 3D math computations could be achieved in

a straightforward manner, without requiring special separate computational stages.

96



•

•

•

Chapter 5

Discussion/Conclusions

A 3D model of VOR central processing to provide for the non-commutativity of eye

rotations was presented. It is based on feedback through a neural filter in place of

a feedforward integrator. The necessary adjustments to account for rotational non

commutativity could be achieved with a position- dependent matrix in either the for

ward or a feedback path, or distributed between the two. A bilateral implementation

of the model that gives different common mode and difference mode time constants

was aIso considered.

A possible anatomical substrate for the model was aIso presented based on lit

erature regarding horizontal and vertical integrator pathways and their interaction.

This solution is compatible with known anatomy linking VN brainstem sites to INC,

NPH, and cerebellar flocculus. A small neural network model to illustrate how the

position dependent gains might be accomplished was presented. The issue of orienta

tion representation and how it could affect the interpretation of experimental results

was also discussed.
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• 5.1 Predicted Responses and Effects of Lesions
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The conclusions drawn base<! on bilateral model simulations were as follows:

• The gain between the canals and extraocular muscles must he position-dependent

for rotations that are not about the current orientation axis.

• Cutting commissural fibres will still have the same result in 3D responses as in

one dimension: reduction of the overall time constant, but no new position depen

dencies.

• Eliminating feedback corrections (ë matrix) on one or both sides of the model in

the feedback implementation will result in eye position dependent dynamics (assuming

the commissural connections are left unaffected and are still position-dependent).

• Lesions to the feedback filter will have potentially two effects: 1) The time con

stant of the affected pathway will be reduced, and 2) The estimated position for that

component will he tao small, which could affect other pathways via miscalculation

of their appropriate matrix gains. The first effect would tend to make the affected

component go to zero, sa the second effect may not be noticeable except when the

velocity component is large enough to dominate and keep the affected component

nonzero.

5.2 Anatomical Support of 3D Bilateral Model

For the second part of the thesis, an anatomical mapping of the second bilateral model

form was proposed as follows based on literature review:

• VN implementation of the feedforward matrix T'flew and the cross-midline gain
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matrices GLtoR and GRIoL. Bilateral VN-VN connections would be involved here.

INC-INC and NPH-NPH connections may augment the cross-midline contributions.

• INC implementation of the vertical and torsional neural filters, and NPH Îm

plementation of the horizontal neural filters.

• Floccular implementation of the ipsilateral feedback position-dependent correc

tions (ë matrices).

A substrate for cross-talk between the horizontal and vertical pathways was aIso

proposed, the main connections being the following:

• Bidirectional connections between ipsilateral INC and NPH.

• Excitatory connections from type 1 posterior canal VN neurons to contralateral

NPH (rabbit, cat and monkey), and from excitatory anterior canal VN nemons to

contralateral NPH in monkeys.

• Inhibitory connections from type II anterior canal VN neurons to type 1 hor

izontal VN neurons, and from inhibitory type II horizontal and posterior canal VN

nenrons to type 1 posterior canal VN neurons. Other VN-VN connections may also

existe

• Excitatory connections from ipsilateral INC to type II horizontal canal VN

nenrons.

• Connections from the VN to the ipsilateral flocculus.

Although this thesis restricted the search to interconnections between structures

known to be important for normal horizontal and vertical slow- phase VOR, it is

possible that other structures may be important specifical1y for cross-talk. These

sites should be considered if models involving the above connections prove to be
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iDsufficient, or if other types of eye movements are aIso being considered.

5.3 Neural Network Approaches

A review of neural network models of the VOR and ocuIomotor integrator was con

ducted, and a small neural network was constructed to demonstrate how thresholding

and saturation of units that behave linearly between these values might contribute to

the desired position-dependent behaviour. Based on the review, the following consid

erations were thought to be relevant for a future neural network implementation of

the current model.

• Allowable neural network connections shouId be anatomically based; the con

nections given in sections one through three of chapter four might be a good starting

point. The properties of individual neurons and the relative number of neighboUIS

they project to should also be a consideration. The INC, NPH and flocculus may

each require several groups of neuIons for adequate representation.

• The learning algorithm should be physiologically plausible. The nature of reti

nal slip error and extraocuIar muscle proprioception and their representation in the

system should be investigated thoIOUghly before deciding upon an appropriate algo

rithm.

• The resulting network should be consistent with experimentally observed phe

nomena sucb as Dale's law.
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• 5.4 Recommendations for Future Work

•

•

There are a number of areas that remain to be explored. The interaction of the

slow-phase VOR with its fast phases and with other types of eye movement sucb as

vergence and saccades has not been considered yet. Modifications may he required

for an appropriate 3D vergence response, as the model was designed and studied in

the context of conjugate movement. The geometrical misalignment of the canals and

extraocular muscles was not examined, as it was fe1t that further knowledge of VOR

interaction with vision during learning and adaptation would have been required to

choose an appropriate representation for these transformations. The effects of time

delays in neuronal implementation were also not considered.

In conclusion, two considerations are of immediate importance if the proposed

model is to be eventually made clinically relevant. First, the interaction of VOR fast

and slow phases must be extended to 3D. Second, an appropriate representation of

orientation for the oculomotor system should be chosen, based on a consideration of

how the VOR is learned and adapted. Direct comparison of simulation results and

experimentally observed 3D VOR movements will be required for both goals, as well

as for validating and revising the anatomical substrate proposed in this thesis. The

studies described in ([24), [25), [113), [111), [79]) would he a good starting point for

exarnining the issue of orientation representation.
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Appendix A

Rotational Math Appendix

There are a number of ways to describe the 3D orientation of an object ([108], [13],

[57]). Rotation matrices can be used to describe orientation in terms of consecutive

rotations about three space-fixed or object-fixed axes, or in terms of a single rotation

about a general axis in the space-fixed coordinate frame. Quaternions provide an al

ternative means of describing orientation in terms of a single rotation about a general

axis in the space-fixed frame. This appendix provides a review of these methods.

•
A.l 3D Representations of Orientation

•

A.I.l Sequential Rotation Representations

Consider a general vector Ta = (xo, Yo, zo)T in a coordinate frame defined by axes X, y,

and z, where X, y, and z are orthogonal. For a rotation about any of the three axes,

the component of Ta along that axis will Dot change. The components of Ta initially

along the other two axes will project onto each other with iDcreasing rotation angle.
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• Thus, rotations of 'I/J, 8, and t/J about the x, y and z axes respectively can he described

by the rotation matrices

1 0 0

Rz= 0 cos 'I/J - sin 1/J

0 sin 1/1 cos1/J

cos 8 0 sin 8

Ru= 0 1 0

-sin8 0 cos(J

cos t/J - sin t/J 0

Rz = sin t/J cos t/J 0

• 0 0 1

(A.1)

(A.2)

(A.3)

•

These rotation matrices allow only orientations that are achieved through rotation

about one of the principal axes. As there are three degrees of freedom, a general

orientation can he described by a composite of rotations about each of these axes.

For instance, if Ta underwent a rotation 1/1 about X, then (J about y, then t/J about

z, the new position T would be described by r = RzR"RxTa. This describes the new

position in terms of sequential rotations about three space-fixed axes; however, there

is another interpretation. Consider a coordinate system that rotates with the object.

A rotation of t/J about the z axis will rotate the x and y axes into new positions in

the original x-y plane. If the eye is then rotated by 8 about the new y axis, this is

equivalent to a rotation RzR"R;l in the head-fixed frame (this rotates Ta and y back
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to the original frame, rotates r about fi, then rotates back to the eye-fixed frame). fi

a third rotation about the object- fixed x axis is then considered, the equivalent head

fixed rotation is Rz~RzR;lR;l. Combining these rotations gives a net rotation

R = (RzR.RzR;lR;l)(Rzll"R;1)Rz = RzR.Rz.

Thus the rotation R = RzR,,~ can be thought of either as the sequence of ro

tations 1/J, 8, and f/J about the x, y and z axes in the space-fixed reference frame, or

as the sequence cP, 8, 1/J about the z, y and x axes in the object-fixed coordinate sys

tem. This latter interpretation is known as the Fick-gimbal representation. Another

gimbal representation, the Helmholtz gimbal system, is identical to the Fick system

except that the orientation is broken down into rotations about the y, z and x axes

respectively, giving R = R"RzRz instead of R = RzR"Rz. For further details, the

reader is referred to [108], [57].

A.l.2 Rotation about a Single, Arbitrary Axis

The above descriptions break down the overall rotation matrix into three sequential

simple rotations. However, any general orientation can aIso be achieved by a single

rotation if the axis of rotation is permitted to be general rather than only one of the

three main axis. For a rotation of angle e about an axis (k2:7 ky, k z ), Spong and

Vidyasagar [108] give the corresponding rotation matrix:

k~ve +ce kzkyVa - kzsa kzkzVa + kyse

Rk,a= kz~ve+kzse k:ve + ce kvkzva - kzsa (A.4)

• kzkzvQ -k"sa k"kzva + kzse k:va + ce

104



• where ce = cos 9, Se = sin 9, and Va = 1-cos8. The angle and axis can be retrieved

from a general rotation matrix R using:

e (TU + T22 + T33 - 1)
- arccos 2 (A.5)

k -
1

2sin8 T13 - T31 (A.6)

•

where Ti; corresponds to an element in the Rk.e matrix in the i th row and jth column.

A.l.3 Quaternions

Invented by Sir William Rowan Hamilton in 1843, quaternions are four-component

rotational operators that provide an elegant alternative to the matrix approach for

describing rotations. A general quaternion has the form q = qo + ql i + q2j + q3k where

qo, q., q2 and q3 are real, i 2 = j2 = k2 = -1, ij = -ji = k, jk = -kj = i, and

ki = -ik = j [13]. With these definitions of directions i, j, and k, the quaternion can

be regarded as the sum of a scalar and a vector. Quaternion addition, subtraction,

multiplication, and division can be defined for two general quaternions p and q as

foUows:

p±q - (Po ± qo) + (p± () (A.7)

pq - Poqo -P' q+Poq+ qoP+px q (A.8)

• pq-l - Poqi)l - p. q::l + POq::1 + qi)lp+ px q::l (A.9)
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• where q-l =~, ± denote vector addition and subtraction, . denotes the vector
v~+1412

dot product, and x denotes the vector cross product. A quaternion can also be

rewritten as

ê -

q - 1q 1(cosS + êsinS) =1 q 1(cos ~ + êsin~)

q1i + q2; + q3k

Jqf+q~+qi

(A.10)

(A.11)

•

where S is called the angle of q. It can be shown that for a general quaternion q

and vector T, the quaternion product fi = qrq-l will he the vector T rotated conically

about ê through 8 (twice the angle 8). As the scalar component of the unit quaternion

contains no new information, a rotation vector r = 1; = tan(~) x ~ = tan(~) x il, can

be used to represent the same information more concisely [57]. The rotation vector

of a general rotation matrix R is given by

_ 1
T= X

1 + TU + T22 + T33
(A.12)

A.2 Covariant vs. Contravariant Representations

•

Given an orthogonal extemal reference frame described by axes ~, 1 and k, and a

non-orthogonal intrinsic reference frame described byaxes X, y, and Z, there are two

different ways that a general vector il = Tii + T;l + Tkk could he represented in the

reference frame defined by X, Yand z. These are illustrated in Figure A.1.

In the covariant representation, the x, y, and z components are the orthogonal
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Figure A.l: Covariant and contravariant representations of a vector in a non
orthogonal reference frame.

projections of il onto the fi, y, and z axes respectively. These components will not

generally SUIn to give the original Êl if re-expressed in the original ijk coordinates. In

•
the contravariant representation, the x, y and z components expressed in the ijk frame

sum to give il in the ijk frame. The x component in this representation would be

obtained as fol1ows: 1) project ii. onto the xz plane sucb that il. and the xz intersection

point form a line parallel to the y axis. 2) project the xz plane intersection point onto

the x-axis snch that the line segment between them is parallel to the z axis. 3) the x

component is the line segment from the origin to the x-axis intersection point formed

in 2). The y and z coordinates are obtained in an analogous fashion. The covariant

and contravariant representations are identical only for orthogonal reference frames.

•
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Appendix B

Abbreviations

(P)PRF- (Paramedian) Pontine Reticular Formation

HC- Horizontal Canal

PC- Posterior Canal

AC- Anterior Canal

VN- Vestibular Nucleus (M- medial, S- superior)

NPH- Nucleus Prepositus Hypoglossi

F- Flocculus

y- Cell y Group

FTN- Floccular Target Neuron

FPN- Floccular Projecting Neuron

INC- Interstitial Nucleus of Cajal
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Appendix C

Mason's Rule

Mason's Rule is used to determine the relationship between input and output nodes

on a signal fiow graphe The formula is as follows:

(C.I)

where ~ is called the graph determinant

(C.2)

•

Mie is the forward gain of the kth direct forward path between input (1) and output

(0), and ~Ie is the graph determinant for the system after removing the ke" forward

path (68). In equation C.2, Pmr is the gain product of the me" possible combination

of r non-touching loops. EmPml is a special case adding the loop gains of an distinct

loops in the graphe

To demonstrate how this is used, consider one output, ML, in the circuit of Figure

C.l. Assuming the clear nodes to be summjng junctions and the filled norles to be

Sllmmjng junctions folIowed by gain -1, there are two non-touching loops of gain
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Figure C.1: AC neuron inhibition of HC neurons.

(-g)(-g) = 92 in the circuit. Therefore, ~ = 1_(g2+g2)+g4 = (1_g2)2. Considering

the inputs, there are pathways from HL, PL and ..4.R to ML with feedforward gains

of 1, g2, and -g, respectively. There are no pathways from HR, PR, or AL to ML.

The ~k values for each of the feedforward pathways must then be computed. For the

HL pathway, elimination of the feedforward pathway nodes gives a graph as shown

in Figure C.2.

This has the same ~ as before, as neither loop is affected. For PL, the graph

reduces to the one shown in Figure C.3.

This has one intact loop, giving ttA PL = (1 - g2). For AR, the graph is as shown

Combining these results,

•
ML = ~HL(I)HL + ~AR(-g)AR + ttAPL (g2)PL

ttA
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M.

Figure C.2: Circuit with nodes joining HL ta ML remaved.

Figure C.3: Circuit with nodes jaining PL to ML removed.
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or,

Figure C.4: Circuit with nodes joining AR to ML removed.
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Appendix D

Neural Network Code

The following Matlab code was used to create and test the feedforward network in

section 2.4 of chapter 4.

XNeural network training code to try to generate required nonlinearities
%using units vith thresholds and saturation (linear response between these
%values).

%Training input values
v=[O 50 100 150 200; 10 60 110 160 210; 20 70 120 170 220;

30 80 130 180 230; 40 90 140 190 240];
a=[O 10 20 30 40 50; 2 12 22 32 42 52; 4 14 24 34 44 54;

6 16 26 36 46 56; 8 18 28 38 48 58] ;
po=zeros(900.4); ~ columns: w. theta*200/45. phi*200/45. desired o/p

%Generate input patterns and corresponding desired outputs
for 1=0:4
for i=1:5
for j:=1:6
for k=1:6
ind-(i-l)*36+(j-l)*6+k+180*N;
po(ind.l)=v(N+l.i);
po(ind.2)=a(N+l.j)*200/45; %want phi. theta to
po(ind.3)=a(N+l.k)*200/45; %deteraine active structure- scale so all
po(ind.4)=v(N+l.i)*sin(a(l+l.j)*pi/180)/cos(a(N+l.k)*pi/180); % inputs have
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• end;
end;
end;
end;

%siailar ranges

~ Ba'tch mode training.
~ Use 5 different sets of patterns so the netvork trains vith
~ a higher resolution of v, phi, theta vithout taking too long at
X each iteration (choose the set randomly at each iteration).

Xnumber of iterations
X coefficients controlling learning rate

Xmaximum partial derivative observed so
y. far (used to adapt learning rate)
X save maximum error of all patterns at each
~ iteration as a lIeasure of the netvork's
X learning evolution.

set

~ Activity of hidden units
XActual output
~ Error for each pattern in the
~ Partial derivatives dE/dwjk
X dE/dvij

NJ=20; XRumber of hidden units
Tn_arr=randn(RJ,l)*50; XHidden unit thresholds
S_arr=randn(NJ,l)*50+250+Tn_arr; XHidden unit saturation
vij=randn(3,NJ)*O.3+ones(3,BJ)*O.2; XInput-Hidden unit veights
vjk=randn(l,NJ)*O.15; X Hidden unit-Output veights
vijO=wij; XStore initial veights for comparison
vjkO=vjk;
J_arr=zeros(NJ,180);
Oa=zeros(180,l);
E=zeros(180,l);
tellpEjk=zeros(RJ,180);
tempEijv=zeros(RJ,180);
tempEijt=zeros(RJ,180);
tempEijp=zeros(RJ,180);
itnUID=2000;
kij=0.03;
kjk=O.015;
clEijmax= [0 0 0];
dEjkmax=O;
Earr=zeros(itnum,l);

•

X # of units that are betveen thres. and sat.
Xpattern set to use.

othervise)
to hidden u.

y. unit saturated

for it=l: itnum
nonzero=zeros(NJ,l);
pnum=fix(rand*4.9999);
for ind=1:180

p=pnum*180+ind;
uthres=zeros(RJ); ~ unit is either under threshold
for unit=l:RJ ~ or at saturation if uthres==l (0

J_arr(unit,ind)=po(p,l:3)*wij(1:3,unit); %effective input
if (J_arr(unit,ind)<Tn_arr(unit» X unit belov thres.

J_arr(unit,ind)=Tn_arr(unit);
uthres(unit)=l;

elseif(J_arr(unit,ind»S_arr(unit»
J_arr(unit,ind)sS_arr(unit);•
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X if unit at sato or belov thres.
X its deriv. vrt. ip. veight is o.

•

•

•

uthres(unit)=l;
end;

end;
Oa(ind)=max(vjk*J_arr(l:RJ,ind),O); XRetvork Output
E(ind)-po(p,4)-Oa(ind,l); XE'=O.S*EA 2
tempEjk(:,ind)=-l*J_arr(:,ind)*E(ind); XdEJ/dvjk=dEJ/dOa*dOa/dvjk

1 Note: technically dE/dvjk is 0 if the output unit is belov threshold, but
1 tempEjk provides a measure of vhat the derivative vould be if the unit vasn't
1 belov threshold. If 0 vere used, the netvork vouldnJt adapt to
1 accomodate patterns that require non-zero output but vhose inputs aren't
1 sufficient to put the unit above threshold for the current veightset
1 (this vould Dot be a problem if Many output units vere used, as then at
1 least some vould be above threshold and could adapt).

for unit=l:NJ Xhidden u. derivs.
if (uthres(unit»O.5)

tempEijv(unit,ind)=O;
tempEijt(unit,ind)=O;
tempEijp(unit,ind)=O;

else
tempEijv(unit,ind)=-po(p,l)*vjk(unit)*E(ind);
tempEijt(unit,ind)=-po(p,2)*vjk(unit)*E(ind);
tempEijp(unit,ind)=-po(p,3)*vjk(unit)*E(ind);
nonzero(unit)=nonzero(unit)+l;

end;
end;

end;
for unit=l:NJ

denom=max(nonzero(unit),l)j 1 for vijJs, use the average deriv. for the
dEij(l,unit)=sum(tempEijv(unit,:»/denom; Y. unite that are betveen
dEij(2,unit)=sum(tempEijt(unit,:»/denom; Y. thres. and saturation- if
dEij(3,unit)=sum(tempEijp(unit,:»/denom; Y. this pulls veights out of
dEjk(l,unit)=sum(tempEjk(unit,:»/180; 1. good range, errors in next

end; Y. iteration vill bring back
for ip=1:3 1. compare deriv. magnitudes to previous max.

dEijmax(ip)=max(max(abs(dEij(ip,:»),dEijmax(ip»j
end;
dEjkmax=max(max(abs(dEjk»,dEjkmax)j
for unit=l:NJ l update veights

for ip=1:3
. vij(ip,unit)=vij(ip,unit)-kij*dEij(ip,unit)/dEijmax(ip);
end;
vjk(l,unit)=vjk(l,unit)-kjk*dEjk(l,unit)/dEjkmax;

end;
Earr(it)-max(abs(E»;

end;
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• X Testcode: look at results for values betveen training patterns

X mate nnplot.ps
load nn0806a.mat
theta=[O 15 30 45];
phi-1S;
v-0:S:195;
Od-zeros(4,40);
Oa=zeros(4,40);
jarr=zeros(NJ,l);

%netvork veights. thresholds, saturation

•

•

for i=1:4 %Desired outputs
Od(i,:)=sin(theta(i)*pi/180)*v/cos(phi*pi/180);

end;

in3=phi*200/45; %scale input to what netvork is trained vith
for i=1:4

for k=1:40
for unit=l:NJ

in2=theta(i)*200/45;
j arr (unit)=vij (1.unit).v(k)+vij (2.unit)*in2+wij (3.unit)*in3;
jarr(unit)=max(jarr(unit),Tn_arr(unit»;
jarr(unit)=min(jarr(unit).S_arr(unit»;

end;
Oa(i.k)=max(vjk*jarr.O);

end;
end;
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