SPACE OPTIMIZATION OF GREENHOUSE POTTED FLOWERS IN QUEBEC: A LINEAR PROGRAMMING APPROACH

ۍ ۲

BY

IBRAHIM TABCHE

1991

A Thesis submitted to The Faculty of Graduate Studies and Research of McGill University in partial fulfillment of the degree of Masters of Science in Agricultural Economics

Montreal, Québec

CANADA

ABSTRACT

Space Optimization of Greenhouse Potted Flowers in Québec: A Linear Programming Approach

By Ibrahim Tabche, M.Sc.

Department of Agricultural Economics Advisor: Dr. Randall Westgren

A linear programming (LP) model is formulated to reflect economic, climatic conditions, and cultural practices followed in the pot flower industry of Québec. The objective is to determine the optimal crop mix that maximizes net returns and optimizes space usage given production and marketing constraints. Decision variables are composed of nine major pot flower varieties with several pot sizes produced for different marketing periods during the year. Data are collected from producers in the Montreal area in 1990, and is supplemented by interviews with ornamental counsellors and citations of governmental publications.

Results have shown that the use of LP as a design tool can be of benefit to ornamental producers and managers in decision making. Increasing the amount and quality of available information to producers can lead to improved decisions that increase production efficiency and space productivity, and thus lead to a more competitive industry.

ii

RESUME

Optimisation de l'Espace pour les Potees Fleuries dans les Serres du Quebec: Une Méthode de Programmation Lineaire

Par Ibrahim Tabche, Maitrise

Département d'Agro-économie Consultant : Dr Randall Westgren

Un modèle de programmation lineaire tenant compte des conditions economiques, climatiques et pratiques culturales utilisées par l'industrie des fleurs a pots au Quebec est developpe. L'objective est de determiner la combinaison des plantes qui permet de maximiser le revenu net et d'optimiser l'espace utilisee compte venu donnees des contraintes de production et de commercialisation. Les variables influençant la prise de décision sont composees de neuf varietes de fleurs produites dans des pots de differentes grandeurs pour des plusieurs periodes de commercialisation durant l'annee. Des donnees ont ete collectees aupres de producteurs dans la région de Montreal en 1990 ainsi qu'aupres de consultants en horticulture ornamentale et par des informations provenant des publications gouvernementales.

Les résultats de cette etude montrent que l'utilisation de la programmation linéaire comme methode de planification s'avère un outil efficace prise de decision par les producteurs de fleurs ornamentales et les gestionnaires. La disponibilite d'informations de qualite amene le producteur à prendre de meilleurs decisions qui augmentent l'efficacite de la production le rendement par unite de surface et qui de fait ameliorer la competitivité de l'industrie.

iii

ACKNOWLEDGEMENTS

I wish to express my gratitude to my thesis supervisor, Dr. Pandall Westgren, for his support, encouragement, and quidance during the course of this study.

Sincere appreciation is expressed to the members of my thesis committee: Dr. Katrine Stewart and Mr. Laurie Baker for their invaluable advice and comments on the initial drafts of the thesis.

Special thanks are extended to Mr. David Wees and Mr. Michel Ladouceur for their generous supply of technical data and suggestions.

Finally, This work would not have been possible without the help of many ornamental counsellors. namely, Mr.Jean-Francois Goulet, Mr. Jean Raymond, Mr. Daniel Vaillancourt, Mr. Michel Senecal, Mr. Jean-Claude Tessier, Dr. Blanche Dansereau, and Mr. Jean-Pierre Giran, who enriched this research with ideas and comments. Also, I wish to thank several kind greenhouse producers, whose names will remain unrevealed according to their will, for their data contributions.

iv

TABLE OF CONTENTS

Page

ABSTI	RACI	Г	• •	• •	• •	•	 •	•	•	•		•	• •	•	•	•		•		•	•				•	• •	 			ii
RESU																														
ACKN	OWLI	EDG	GEM	IEN	TS	5	•		•	•	•		• •			•	•	• •			•	• •					 			iv
TABLI																														
LIST																														
LIST																														
LIST																														

CHAPTER 1 INTRODUCTION

•••	
•••	1
	1
'	,
[.]	5
(6
8	3
	· · · · · · · · · · · · · · · · · · ·

CHAPTER 2 REVIEW OF LITERATURE

2.1 2.2	Introduction	9
	Industry in Quebec	9
2.2.1	Market Capacity	
2.2.2	Suggested Solutions	
2.3	Linear Programming Models	12
2.3.1	Linear Programming: Introduction	
	and Importance	12
2.3.2	Established LP Models in the Pot	
	Flower Industry	13

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introduction	18
3.2	Estimation of the Input Data	18
3.2.1	Data Collection	18
3.2.2	General Procedures	19
	Production Costs	
	Plant Cultural Practices	
	General Practices	
3.3.1.2	Specific Practices	22
3.3.2	Fixed Costs	32

TABLE OF CONTENTS-Continued

		Page
3.3.3	Variable Costs	32
3.3.3.1	Heating Costs	32
3.3.3.2	Labor Costs	35
3.3.3.3	Material Costs	37
3.4	Model Input Coefficients	37
3.4.1	• • • • • • • • • • • • • • • • • • • •	
	Prices	
3.4.3	Plant Spacing Requirements	
3.4.4	Other Assumptions	
3.5	The Linear Programming Technique	41
3.5.1	General Structure of the	
	Suggested LP Model	
	The Decision Variables	
	The Objective Function	
	Constraints	
3.5.2	Linear Programming Models	51
3.6	Summary	55

CHAPTER 4 RESULTS AND DISCUSSION

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Summary and Conclusion)
5.2	Implication of Research	2
5.3	Recommendations for Further Research 93	3

APPENDICES

3,

Server.

Ĩ

Α		•	•	•	•	•			•	•		•	•	•	•	•	•	•	•		•	•	•	• •	 	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		99	
В	•	٠	•		•		•		•	•		•	•	•	٠	•		•	•	•	•	•	•	• •	 	•	•	•	•			•	•	•		•	•	•	•			•	•	10	2
С	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	 •	•			•				•	•	•	•	•	•		•	•	•	•	10	5
D	•	•		•		•			•			•		•	•		•	•	•	•	•	•	•	• •	 	•	•	•		•		•	•	•	•	•	•		•	•		•	•	11	3
Ε	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12	6

LIST OF TABLES

united.

TABLE		PAGE
3.1	Heating requirements and costs per period at 18 C night temperature	. 3.4
3.2	Labor requirements per task for different pot sizes	. 36
3.3	Labor requirements in seconds for plants in different periods	. 38
3.4	Total material costs of plants produced in cents per pot	. 40
3.5	Adjusted selling price of plants produced in cents per pot	
3.6	Space requirements for plants produced in square meters	. 10
3.7	List of decision variables	. 44
3.8	Pot size quota for all plants	. 49
4.1	Optimal production plan	. 57
4.2	Production plan for different periods	. 57
4.3	Values of opportunity costs	. 59
4.4	Input costs of the optimal plan per plant variety	. 60
4.5	Financial plan for the optimal plan per period	. 62
4.6	Area used per period for the plants in the optimal plan	. 68
4.7	Labor use per period for the plants in the optimal plan	. 69
4.8	Labor and space surplus with dual price period	. 71
4.9	Sensitivity analysis for available labor hours in the right hand side	. 75
4.10	Sensitivity analysis for available space area in the right hand side	. 75

LIST OF TABLES-Continued

TABLE

Ì

3

Ť

4.11	Sensitivity analysis for the objective function	76
4.12	Optimal plans for additional constraints	81
4.13	Summary of the marketing constraints models	82
4.14	Values of the objective function for different input costs and % change	84
4.15	Optimal plans for seasons and single holidays	84

LIST OF FIGURES

FIGURE		PAGE
1.1	Agricultural regions of Quebec	?
3.1	Flow chart of the other models	53
4.1	Net returns per period in the optimal plan	63
4.2	Heating costs per period in the optimal plan	65
4.3	Labor costs per period in the optimal plan	66
4.4	Material costs per period in the optimal plan	67
4.5	Use of greenhouse planting area period	1.2
4.6	Level of labor hours used per period	13
4.7	Values of the objective functions for the other models in a flow chart	
	form	79

ŧ

*

Word

Ĩ

*

è

Kg. Lit.	Kilogramme Liter
LP	Linear Programming
Qsb	Quantitative Systems for
	Business Software
/	Per

CHAPTER 1

INTRODUCTION

1.1 Background

ί.

The greenhouse industry is relatively new in the province of Québec. Started 20 years ago, it involves about 1200 producers occupying a total area of 195 ha. of production under glass and plastic. Of those producers, 650 are involved in the production of ornamental plants and occupy 41% of the total area covered with greenhouses in Quebec (Carrier, 1988).

Most of the ornamental production in the province of Québec 1s concentrated in the area of Montreal, 1n designated regions 6,7,10 where about 70% of the production area exist (Carrier, 1988). Central Quebec (regions 4,5,11) has 15% of the production area. The agricultural regions of Quebec are shown in Figure 1.1.

Ornamental greenhouse production is divided into several categories: annual (bedding plants), potted flowers, cut flowers, house plants, and bulbs. Annual flowers have the largest covered greenhouse area, whereas potted flowers, with 300 full and partial production enterprises, use a total covered area of 97,000 square meters (Carrier, 1988).

In a study published by Agriculture Canada in 1984, titled " La Rentabilite des Productions Serricoles au Québec", the problems facing greenhouse producers were quoted by Lebeau (1984a) as follows,

"I consciously simplify the problems of greenhouse producers into three main points : 1) Weak plant productivity per unit area, 2) Very high global consumption of labor, 3) Very high heating costs." (Lebeau, Universite Laval, 1984, p.384)

In addition to the above mentioned problems, producers

1

1-Bas Saint-Laurent, Gaspèsie, Iles de la Madeleine Saint Laurent 2-Rives Nord et Sud du Saint Laurent 3-Beauce, Dorchester, Mégantic, Prontenac 4-Nicolet 5-Les Cantons de L'Est 6-L'Est de Montreal 7-Sud-Ouest de Montreal 8-Region Agricole de l'Outaouais 9-Le Mord-Ouest Québécois 10-Rive Nord du Pleuve Saint Laurent 11-La Mauricie 12-Saguenay Lac St. Jean

Figure 1.1: AGRICULTURAL REGIONS OF QUEBEC

Source: "Les Régions Agricoles du Québéc". By Michèle Dumas-Rousseau. MAPAQ.Undated.

N

also face strong competition from products imported from areas with lower production costs such as the United States, Latin America, and Europe.

These and other problems threaten the future progress and development of this important industry which generated, "Federation Interdisciplinaire according to the de 1'Horticulture Ornementale" (FIHOQ), 650 million dollars in total sales and services in 1984 (Anonymous, 1989). As profitable production depends on both technical and managerial skills, improving technical knowledge and the decision making ability of managers and owners could insure long run profitability and business growth.

In other words, some of the possible solutions to industry difficulties include, in addition to the use of improved production techniques and technologies, the application of better managerial skills to improve the quality of decisions. Production decisions include varieties to plant, quantitles, pot sizes, and timing of production. These decisions should be driven by the context of market demand, acceptable profit margins, and available production skills. Market demand involves three factors: 1) the plant variety desired for certain holidays and occasions, ?) consumer preference for type, pot size and color, 3) and prices.

The development of the theory and tools of operations research in general, and mathematical programming in particular, have brought a useful and powerful set of decision aids to agricultural production. Coupled with the availability of advanced computer hardware and software, this development has enhanced the ability to solve complex models in decision making. Linear programming, a technique widely used in agriculture, could form the basis for a decision support system for improved decision making in the pot flower industry.

3

1.2 Hypothesis

It is hypothesized that it is possible to formulate a linear programming (LP) model that simulates the economic conditions and cultural practices followed in the pot flower industry in the province of Québec. The use of the LP model in production design will lead to inferences about production efficiency, optimal product mix, and lower costs.

1.3 Objectives of the Study

The objective of this study is to construct several computer models using linear programming which simulate cultural, climatic, and economic conditions facing greenhouse pot flower producers in the province of Québec. These models will be used to determine the optimal production plan and distribution of greenhouse space among several varieties and pot sizes of potted flowers to maximize profits for different periods during the year including the major holidays. In addition to the optimal production plan, the analysis will include a sensitivity analysis for varying production constraints and prices.

1.4 Scope of the Study

The study is based upon data collected from greenhouse producers in the area of Montreal in 1990. The study concerns the following potted flower plants: African Violet, Azalea, Begonia, Chrysanthemums, Cyclamen, Easter Lily, Geraniums, Hydrangea, and Poinsettia.

A number of single period linear programming models will be built, each representing a different set of production and marketing constraints. Production constraints include availability of labor and space, while marketing constraints include pot size and holiday quotas. Other minor models will include the development of optimum production plans for specific occasions.

4

1.5 Overview of the Québec Pot Flower Industry

It will be useful to discuss two issues, the effect of climate on practices and market conditions, to reach a comprehensive understanding of the background of the pot flower industry of Quebec. It should be noted however, that although this section will focus on the pot flower industry, most of the discussions would apply to other ornamental production in Québec.

1.5.1 Climate Effect on Production

The cold weather prevailing in the region of Montreal and the province of Quebec in general, relative to the United States and other parts of Canada like Ontario and British Columbia, has discouraged some practices and favoured the adoption of others. Of those practices we can note the following:

- 1-The production season has been !imited or reduced to certain periods of the year of moderate temperatures, since producers were rejuctant to provide products at times of year when production costs are high due to high heating costs while imported products, from the United States and other parts of Canada, had easy access to the market.
- 2-The production of some plant varieties with a long production season like Cyclamen, which requires a period of about eight months, were discouraged for their high heating costs. Consequently, plant varieties with less heating requirements or short production seasons such as Geranium and others, were more popular.

As a consequence of these problems, producers have resorted to the following practices:

1-Several producers have been importing semi-finished

plants of several varieties includirg Azalea and Hydrangea and finishing them in Québec.

- 2-Producers have delayed their planting dates until early spring to reduce heating costs.
- 3-Producers grow smaller pot sizes in order to maximize the number of pots per greenhouse unit area. This divides the cost over a larger number of plants.
- 4-Increasing numbers of producers are using higher levels of mechanization to decrease total operating costs. Production costs will be discussed in more detail in section 3.3.

1.5.2 The Market Conditions

Although few studies have been done on the market capacity to absorb production of potted flowers in Québec, this market is characterized by some distinctive features which affect market size.

- 1-Season-specific demand : This is shown in the large increases of volume demanded for holidays in comparison to other parts of the year. In fact, several producers have indicated that the demand level at these times, which accounts for 4 to 5 times the regular demand level, exceeds supply and therefore has to be supplemented by imports.
- 2-Product-specific demand : Demand is for specific products. Some plant varieties are more in demand than others at particular occasions, for example, Poinsettia for Christmas, Lilies for Easter, etc.

Those factors do not lead to stable production and marketing plans.

1.5.3 <u>Market Potential</u>

Several ornamental counsellors interviewed in 1990 believed that the market was not well exploited and that

there are two opportunities that need to be further developed. The first is the need to market pot flowers outside holiday periods especially Mums, Poinsettias, and African Violets. This practice is more common in Europe where pot flowers are marketed all year round. The second point stresses the importance of fulfilling the demands of the ethnic communities of Montreal. The presence of these communities which have different tastes and holiday dates, could provide an additional market where producers could fill the demand gap.

1.5.4 Trends in Production Management

As a consequence of the above mentioned climate and market conditions, producers have realized that any effort to increase production has to be coupled with an increased level of efficiency. This could be achieved by two means: the use of advanced cultural techniques and/or by improved management practices. In this manner, several producers have resorted, on a small scale, to advanced technologies such as the application of hydroponic methods, use of thermal blankets, application of carbon dioxide enrichment, and environmental computer control. Such cultural advances have helped to extend production periods and reduced operating costs.

In order to improve their management, producers have resorted to practices that could either reduce costs or increase returns. Some of the practices currently used include continuous production during the summer season even when profit is low. This is justified since it would help to recover some of the winter'. high heating costs, maximize the use of fixed cost inputs (plastic cover), and maintain a steady operation inside the greenhouse. The rule, however, is to maintain operation as long as there was a break-even in recovering variable operating costs.

Most producers have realized the importance of improving their decision making ability. The use of computers in the

7

planning and design process, appears to be an attractive option. In the United States and Europe, several researchers have developed decision support systems for production planning in the pot plant nurseries (Gortzig, 1976; Basham and Hanan, 1983; and Saedt and Annevelink, 1988). In Québec, however, computer usage in nurseries, has been limited to word processing and database operations.

Despite the current problems, several producers interviewed were optimistic about the potential of Quebec producers to export to other parts of Canada and the United States with proper management. However, the chances to compete internationally can only occur with an increase in efficiency and productivity.

1.6 Organization of the study

Chapter 2 will present the review of literature on economic studies and linear programming models in the field of ornamental horticulture. Chapter 3 which is composed of 3 sections, will describe the methodology used in the analysis. The first section will discuss the data collection process and calculation of input parameters. Section two will examine the calculation of input production costs. Section three will present a detailed description of the linear programming methodology and will discuss the structures of the models which include the decision variables and constraints. Chapter four will then illustrate and discuss the results of the models described in chapter three. Finally, chapter five will present a summary of the study with concluding remarks and some recommendations for further research.

8

CHAPTER 2

REVIEW OF LITERATURE

2.1 Introduction

This section will discuss the relevant literature related to the pot flower industry in Quebec. The review will be divided into two sections. The first section will review previous economic studies and will describe the conditions of the industry, market capacity, and some previously suggested solutions to the present problems. The second section will cover earlier applications of the linear programming technique in the pot flower industry.

2.2 Economic Studies of the pot flower industry in Quebec

Lebeau (1984a) has indicated that previous economic studies performed by governmental agencies have shown the greenhouse production sector in Canada, and Quebec in particular, to be facing precarious financial conditions. In a study performed to evaluate the profitability of greenhouse production under various floral and vegetable production systems (traditional and modern), using several fuel types, Lebeau concluded that modern production systems using techniques such as hydroponics, artificial lighting, carbon dioxide enrichment, and mechanization of production yielded positive returns in contrast processes, to traditional production practices which were followed by the majority of greenhouse producers in Quebec. The latter practices did not enable producers to repay their initial investment. Furthermore, floral production was more profitable than vegetable production as it has more production options and faces less domestic competition. Improving productivity was the most important factor influencing the recovery of invested capital, even when considering savings made by less expensive fuel types and more efficient fuel systems (Lebeau, 1984a). Traditional greenhouse producers have to rely on external sources of income, whereas dynamic and innovative producers, who use more efficient production techniques, will have a better structured commercial production with lower costs.

Carrier (1984), reported that a study performed by the "Direction des etudes economiques du MAPAQ" in 1982, showed that 56% of producers interviewed attribute problems facing the greenhouse sector to production, while 32% believed that marketing was the main obstacle. Production problems include the high costs of heating and labor which made up 85% of total variable costs. Furthermore, greenhouse workers are characterized by low productivity as they are mostly nonspecialized. The harsh working conditions combined with low salaries and seasonal employment did not promote interest in greenhouse jobs, preventing greenhouse workers from reaching optimum efficiency (Carrier, 1984). Marketing problems, on the other hand, varied according to the product type and region. These problems stem from the absence of product quality standards, lack of joint action by producers as only 15% belong to marketing syndicates, and poor dissemination of price information. Solutions include better grouping of producers to maintain a stable product supply with higher concentration levels. Grouping can also reduce the negative effects of imports and unfair competition and practices among producers, produce unified standards in production and packaging, and enhance promotion.

2.2.1 Market Capacity

Carrier (1988) states that although the market is not very large, self sufficiency has not been attained. The degree of self-sufficiency varies for different varieties of pot flower. For example, in 1983 it ranged from a high of 96% for African Violets, and 92% for Geraniums to as low as 31% and 16% for Azaleas and Easter Lilies respectively. Cheap imports, however, might not be the solution. In fact, Carrier reported in 1984 that imports, in many cases, did not respond to the specific quality requirements of the local market. Consequently, a local specialized production would respond better to that.

2.2.2 Suggested Solutions

Several solutions have been suggested to increase the efficiency of greenhouse producers. Carrier (1984), has stressed the need for a better orientation of research in several aspects of cultural practices and technological advances to reduce production costs. However, this has to be coupled with better information and communication among counsellors, researchers, and producers. Increased mechanization, and the use of computers as a decision and might be an attractive option especially to large enterprises.

Carrier (1984) contends that there would be a future to expand production of several pot flowers such as Geranium, African Violet, Begonias, and others. In 1988, Carrier urged producers to pursue innovations in production and marketing techniques which could lead to expand consumption. In this manner, producers should follow the change in consumers' tastes, or work on consumers attitudes by developing new preferences. This include new colors, pot sizes, and new varieties. In brief, Carrier (1988) believed that, in the pot flower industry, there would always be a future for moderately sized and priced products.

In summary, the literature has indicated that high input costs, perishable nature of the product, and the short and specific marketing periods combined with lack of sufficient expertise, and under-utilization of the greenhouse have led to low productivity in the greenhouse industry. Proposed solutions to increase productivity include the use of increased levels of mechanization and introduction of innovative production and marketing techniques.

2.3 Linear Programming Models

It is essential to start with a brief introduction of linear programming (LP) before discussing previous models. A detailed description of the methodology will follow in the methodology chapter.

2.3.1 Linear Programming: Introduction and Importance

Heady and Candler (1958) have described linear programming as :

"A procedure which provides <u>normative</u> answers to problems so formulated. By normative we refer to the course of action which ought to be taken by an individual business unit, area, or other economic sector when (a) the end or objective takes a particular form, and (b) the conditions and restraints surrounding the action or choice are of a particular form." (Heady and Candler, 1958, p.8)

Hazell and Norton (1986) have defined linear programming as " a method of determining a profit maximizing combination of farm enterprises that is feasible with respect to a set of fixed farm constraints." (Hazell and Norton, 1986, p.10). Agrawal and Heady (1972) reported that linear programming falls under the broader category of mathematical programming which also includes nonlinear programming and dynamic programming. However, linear programming has been the simplest and most widely used technique in agriculture. It was developed after the second world war to deal with complex planning and investment problems.

Agrawal and Heady (1972) reported that linear programming has been used in agriculture since its very inception. Heady, in 1954, was the first to apply linear programming in the field of farm management and agricultural economics (Gortzig, 1976). Barker (1964), concluded in a study on the use of linear programming in farm management, that it assists the farmer in decision making by providing quantitative estimates of returns for specified alternatives and levels of resource use. King (1953) reported that linear programming has proven to be one of the most powerful tools for analysis of resource allocation choices at the firm and sector level.

Linear programming is applicable to almost all fields of agriculture where the individual farm is the unit of observation. This includes minimizing cost of feed rations for livestock, and farm planning (optimizing crop rotation plans, machinery use and others). Farm planning was initiated by Heady and Love in 1954 (Agrawal and Heady, 1972). Further applications of linear programming to farm management can be found in Agrawal and Heady (1972), and Rae (1977). Moreover, LP has been used on a macro level to solve problems in agricultural marketing, spatial analysis, and transportation models.

Hales (1972) believed that LP was a valuable technique in horticultural crop production management due to the nature of horticultural businesses, which is characterized by a large number of enterprises, and complex labor and marketing operations. However, Gortzig (1976) reported that LP has been more extensively applied in general agriculture than in commercial floriculture management.

2.3.2 Established LP Models in the Pot Flower Industry

An extensive search of the literature did not reveal any established LP models used in ornamental production in Canada. However, the situation was different for the United States and Europe.

Gortzig (1976) reported that few applications of LP have been developed for floriculture production management in the United States before 1976. Besides some applications by several cooperative extension agents and university centers (Mississippi State and Pennsylvania), the author referred to a single publication by Vaut et al. (1973) who simulated a small family operated flower production enterprise.

This assessment of few applications was shared by Sowell

et al. (1982) who referred to an additional model done by Boyd et al. (1982). However other works published after 1982, have been identified. This includes, in addition to the works of Sowell et al. (1982), Basham and Hanan (1983), Lippert (1983), Weston and Schumacher (1983), and Sabota et al. (1987).

study on the economics of pot In а flower space allocation, Sowell et al. (1982) applied linear programming to optimize production management decisions for commercial flower production in North Carolina. Specifically, the intent was to demonstrate the usefulness of the technique as a research tool to examine alternative management schemes. The model included three sets of crops: Chrysanthemums, Easter Lilies, and bedding plants. These crops given different varieties and marketing dates, constituted a total of 881 different decision variables. Resource limitations included unskilled of skilled availability and labor, space availability, market restrictions such as plant type and color preference, and market quotas which included minimum and maximum limits on production as required by contracts and market absorption for both color and type.

and Schumacher (1983) reported Weston that linear programming has a significant future in the floriculture industry due to it's flexibility in accommodating different crops, time periods and market restrictions. A linear illustrate programming design was presented to the application of the technique for a glasshouse production plan. The model focused on how formulation of LP proceeded in both a single and multiple product case. However, the expanded model, containing ten products, assumed that the greenhouse had three physical areas with different night temperatures. The model had to find the optimum crop mix to satisfy temperature restriction and plant movement between the glasshouse compartments along the production year. Weston and Schumacher (1983) believed that the value of the model

was in its ability to model crops grown as a function of the night-time temperature and production periods within the year.

ł

Lippert (1983), reported that production planning in pot plant nurseries is often difficult to estimate due to the broad number of production alternatives. Moreover, the problem becomes more complicated if financial consequences of the planning are considered. However, LP had proved to be an efficient tool for solving complex planning problems in pot plant nurseries. Lippert (1983) illustrated briefly the principles of LP and described an example, and concluded that in order for the LP planning to be widely used, it was essential to "have a good pre-program to build up the matrix, and a post-program so that the LP solution is practical to work with." (Lippert, 1983, p.121). In other words, the process of data input and reporting of results should be easily accessible to farmers and other users. Commenting on the work of Lippert, Bloch (1983) concluded that for a production plan to be successful it is necessary to look upon it as an integrated part of the whole farm management plan and not as an isolated part.

Basham and Hanan (1983) found that greenhouse producers specializing in potted plants have one of the most complex scheduling problems in agriculture. Therefore, the use of LP and computer systems is essential for the design of an operating schedule for such enterprise. Basham and Hanan (1983) applied LP to allocate space within a greenhouse to a range of crops so as to maximize profits. They concluded that successful application of this practice depends on the close cooperation between the decision maker and the analyst.

Sabota et al. (1987) concluded that "successful nurserymen must continually re-evaluate and develop more efficient production methods." (Sabota et al., 1987, p.506). In this manner, LP can improve the decision making ability of managers by providing more information to make better informed and up to date decisions. The authors developed multi-period models for three different sizes of nurseries to determine the optimum product mix plan to maximize profits. Constraints included equipment, materials, and labor.

Gortzig (1976), applied the LP technique to study a series of management decisions concerning alternative cropping systems to find optimal crop mixes that maximize profits subject to input availability. Various systems studied included, in addition to pot flowers, single crop several production options for each of with systems Carnations, Snapdragons, Chrysanthemums, Geraniums, and poinsettias. Other systems included cut flowers specialization, bedding plants, and a diversified crops program. It was concluded that the potted crop specialization model ranked second in profitability to the diversified crop program.

Saedt and Annevelink (1988) have reported that a decision support system has been developed in the Netherlands, for pot plant nurseries. This system, which constructs or modifies the production plan by simulation or optimization using LP, is being used by a number of nurseries. The system was considered an adaptive planning system since it takes into consideration changing space requirements, variations in selling prices, occurrences of plant diseases, and delays in inputs supply. Saedt and Annevelink (1988) concluded that the system still had some weak points which included long decision intervals (4 weeks), and other structural issues.

In summary, previous literature has indicated that the use of LP to optimize space use for floricultural products and pot flowers has been an effective tool for the planning process. Moreover, it can increase production efficiency and productivity in the greenhouse industry.

Based on this conclusion, data will be collected to formulate a single period model that will simulate economic conditions and cultural practices followed in the pot flower industry in Quebec. The followed methodology which include the data collection process and the model's components, will be discussed in the next chapter.

· · · · · ·

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Introduction

This chapter will be divided into four sections. The first section will discuss procedures used to estimate the input data as well as the process of data collection. The second section will present the methodology and assumptions used to evaluate the costs of production which include fixed costs, and variable costs such as labor, heating, and materials. The third section will describe the technical coefficients and assumptions used to build the model, while the fourth section will describe the technicue of linear programming (LP) with a detailed description of the pot flower LP model and it's components.

3.2 Estimation of the Input Data

3.2.1 Data Collection

The data required to build the model includes prices, constraints, and other technical coefficients, which were partially obtained from census reports and other costs of production reports prepared by governmental agencies. Supplemental data were obtained from discussions and interviews with marketing specialists and horticultural counsellors from the "Ministere de l'Agriculture, des Pêcheries et de l'Alimentation du Quebec", (MAPAQ) and other related research centers (Institut de Technologie Agro-Alimentaire (ITA), and Institut Quebecois du Developpement de l'Horticulture Ornementale (IQDHO). Additional information was acquired through a questionnaire sent to several representative production firms in regions 6,7, and 10.

The questionnaire, listed in Appendix A, aimed to gather detailed information regarding the costs of production, in addition to other related information such as specific cultural practices followed, market demand and constraints, common pot sizes, and spacing requirements for the plants under study. Data published by the CREAQ, MAPAQ, Statistics and Agriculture Canada were cited for additional references.

3.2.2 <u>General Procedures</u>

The data collected were used to simulate economic and cultural practices for a model greenhouse, located in the area of Montreal. The modelled greenhouse, with a bench area of 2000 square meters, is made up of several gutter-connected houses, and is covered with a double polyethylene layer. The planting area represents about 80% of the provincial average greenhouse size in 1988 (Statistics Canada, 1989). (¹)

The model greenhouse is irrigated with a drip irrigation system and heated using a bi-energy system, which uses both electricity and number two oil, in a 40:60 proportion. It should be noted that the data were collected in 1990 and reflects the production costs incurred in 1989.

3.3 Production Costs

Production costs depend on many factors which differ between production firms. Such factors include location, size, managerial skills, time of the year, greenhouse type and age, facilities available, crops produced, production plan, and others. Several assumptions were made concerning the production costs and cultural practices followed. The discussion of these cultural practices, presented in section 3.3.1, will help to outline the production costs.

The production costs, which are composed of both fixed and variable operating costs, are discussed in sections 3.3.2 to 3.3.3.3.

¹ Statistics Canada has reported that the average size of greenhouses operated in the province of Quebec for the year 1988, averaged 2557 square meters.

3.3.1 Plant Cultural Practices

Cultural practices and production scheduling vary tremendously among producers due to different management skills, experience, greenhouse location, and facilities available. It is beyond the scope of this study to outline such exact production schedules and practices. However, those data would be needed to outline labor hour requirements, heating costs, and spacing associated with the plants under study. For this reason, cultural practices followed for these plants will include some general or common practices that will be followed for all the plants, and other specific practices, that vary from one plant to another. The general practices include the frequency of irrigation, and the application of fertilizers, pesticides and growth regulators. Other specific practices associated with the production of these potted flowers, such as pruning, pinching, lighting or shading, and others will be mentioned in the production practice schedule.

3.3.1.1 General Practices

A detailed description of the general practices followed for all the plants are listed as follows :

1-Frequency of irrigation : The frequency of irrigation depends on many factors such as the plant requirement which vary according to growth stage, climate, por size, and potting media. In this study, irrigation will be supplied daily through a drip irrigation system except for the first and last weeks of the production cycle where it will be supplied every two days to enhance rooting in the beginning, and to increase hardiness for marketing in the end. Different water requirements due to the above mentioned factors will be accommodated by varying the length of the irrigation cycle to give more or less water. The irrigation system will have check valves to control the water distribution.

- 2-Fertilizer application : Fertilizer application varies according to various needs of the plants, growth stage, planting media, chemical composition and solubility of the product. In this study it will be assumed that except for fertilizer the initial applicat .on that will be incorporated in the soil, a constant feeding through the irrigation system (fertigation) will be followed except for the first and last week. In this manner, a separate fertilizer tank will be connected to different sections of the main water pipes to be distributed to various sections of the greenhouse by different drip networks. It should be noted that no fertilizer name or rate will be mentioned due to the various combinations of chemicals present on the market.
- 3-Pesticide application : Pesticide application depends on the type of pest (weed, fungi, or insect), propagation method, and growth stage. A pest preventive program that employ the use of fungicides, insecticides, and acaricides, will be applied via the drip irrigation system at 14 days interval. If other problems emerge, specific pesticides will be used and sprayed by a manual sprayer. Care should be taken in order not to spray any pesticides during the flowering stage to avoid injury of the inflorescence. Again, it should be noted that no pesticide name or rate will be mentioned due to the variety of trade names and chemical compositions of products available on the market.
- 4-Growth regulators : The application of growth regulators depend on the plant vigour and growth stage, the purpose of application (to retard or enhance vegetative or reproductive growth), the production or cultural practices followed, and product concentration. In this manner, specific growth regulators will be applied to different plants at different time intervals as required by the production practice followed. This application will be done manually using sprayers. The main category of growth

regulators used will include growth retardants.

5-Pot size : It will be assumed that one final pot size will be used from the beginning of the production cycle until the end. This practice will reduce the labor hours needed to repot the plants. However, plants will be respaced frequently according to the plants' growth stage and requirements. It will be assumed that a 5 cm larger pot will require one additional week of production.

3.3.1.2 Specific Practices

These include the set of cultural practices specific to each of the potted flower plants under study. This will include pruning, pinching, lighting or shading, respacing and others. These practices will be described along with plant requirements. The list of plant varieties used in this study is listed in Table 3.7 (page 44). The schedules of cultural practices will be presented in Appendix D.

1-African Violet

The African Violet (Saintpaulia ionantha) is considered one of the most popular hobby plants. Consumers show a high demand for this flowering plant because it can thrive with minimum care. It has a high tolerance to low light intensity, warm temperatures, and dry atmospheres. For these reasons, the plant is one of the few potted flowers, besides Chrysanthemums, that can be grown for sale on a year round schedule. It is noted, however, that the peak demand of Violets is during the main holidays. In this study Violets will be produced for sale on a bi-weekly schedule through out the year including the major holidays. Some of the cultivars used in Quebec include Optimara, Rhapsodie, and Antoflorens. In Quebec, many producers have found difficulty in the production process. In fact, it is believed that there are only 2 or 3 major producers for this plant in the province. Producers can start from either seeds, leaf cutting, or

seedlings. In this study, imported seedlings will be used. The plant requires an average of 10 weeks of production. This depends on the season of production which could vary the production period between 8 to 11 weeks. In this study, a production period of 10 weeks on average, will be used. African Violets, unlike other plants, seem to grow better with a warmer night temperature and a cooler day temperature. Additional light on short days, plays an important role in flower initiation and plant growth. The planting medium should be loose, well drained, and rich in organic matter to help keep the roots wet. The plant enjoys a good fertility rate, but care should be taken to avoid increasing the salt level since Violets are sensitive to high soluble salt levels. The most important pot size produced for the Quebec market is the 10 cm pot. Those pots are spaced pot to pot for the first 2 weeks after which they are respaced to occupy an area of 0.40 square meters until marketing dates. Table 1 in Appendix D shows the schedule of cultural practices followed.

<u>2-Azalea</u>

Azalea (<u>Rhododendron obtusum</u>) is imported as a semifinished plant to be forced in Quebec. Azalea cultivars have a large variety of colored flowers with various sizes and shapes. The plant is produced for sale for the four holiday marketing periods. Producers could propagate the plant from seeds or cuttings. In this study, imported pre-budded finished plants will be used. These plants require from 6 to 8 weeks of forcing before marketing. In this study, a production period of 8 weeks will be used.

Since Azalea is a long day plant, light plays an important role in flower initiation. During the winter the daylength must be extended by the use of artificial lights. Other special treatments include the application of growth regulators to enhance flowering. This is done once every week after two weeks from the starting date. Other special treatments include pruning of side shoots to maintain a well branched plant. The planting medium should be porous with a organic matter (mainly percentage of peat hiqh moss 50%-100%). A planting medium with a pH level between 4.5 to 5.5 should be maintained as higher pH levels might cause leaf chlorosis. The plant requires a constant supply of nutrients, but care should be taken to avoid using fertilizers that increase the soil pH and soluble salt level. The most important pot sizes produced for the Quebec market are 15 cm and 17.5 cm. Other less important pot sizes such as 11.25 cm pots are available. The 15 cm and 17.5 cm sizes will be used in this study. Those pots are spaced directly using the final spacing. This is 30 by 30 cm for the 15 cm pots, and 35 by 40 for 17.5 cm pots. Tables 2 and 3 in Appendix D show the schedule of cultural practices followed for Azalea.

<u>3-Begonia</u>

Tuberous Begonia (Begonia tuberhybrida) is considered one of the most versatile of all commercial potted plants. The plant has a tremendous variability in flower size, form, color, and texture. Other Begonia species could be grown as foliage or bedding plants. This classification differs according to the root systems. The plant is mainly produced for the spring season and Easter and Mother's day although it can be produced for Christmas, but producers in Quebec avoid this because of high costs. In this study, Begonias will be produced for sale for Easter and Mother's day. Several varieties are used in Québec, some of which include the Nonstop varieties. Producers could start from either seeds, tubers, or cuttings. In this study, seedlings will be used. The plant requires an average of 10 to 12 weeks before it becomes ready for marketing in spring. In this study, a production period of 10 weeks on average will be used.

Light plays an important role in flower initiation and plant growth. In this manner, additional artificial light

24

have to be supplied to the plants during excessive light reduction in winter which can reduce growth and affect plant formation. On the other hand, tuberous Begonia requires shading from intense light between April and September. The planting medium should be porous and well drained with high percentage of organic matter such as peat moss (25-50%) to help keep the roots moist at all times, since a water shortage might harden the growth and dry the foliage. Care should be taken to avoid increasing the soluble salt level. Ten and fifteen cm pots are the most widely produced for the Quebec market. Those pots are spaced pot to pot for the first 3 weeks after which they are respaced at 20 by 20 cm for the 10 cm pot, and 30 by 30 cm for the 15 cm pots. Tables 4 and 5 in Appendix D show the schedule of cultural practices followed for tuberous Begonia.

4-Chrysanthemum

Chrysanthemums (Dendranthema grandiflorum) are considered to be the most important potted flowers produced in Quebec as far as wholesale value is concerned. This plant is one of the few potted flowers that could be grown for sale on a year round schedule. Although this practice is more common in Europe, several ornamental counsellors interviewed believe that the market is under-exploited in Quebec. Depending on the cultivar's growth characteristics, mums are sold as potted flowers or as cut flowers. In this study, mums will be produced for sale every two weeks through out the year including the major holidays. There are a large number of varieties used in Québec. Those vary according to color, type and growth characteristics. The Yoder Company, one of the major producers of cuttings, classified the demand in North America according to color and plant type. In terms of color it was estimated that demand was 40% for yellow, 27% for white, 23% for pink, and 10% for red/bronze color. As for type, preference is given to decorative plants (68%), where the center bud is pinched, daisy (23%), and 7% for anemones. Most producers could start from rooted or unrooted cuttings. In this study, rooted cutting will be used.

The plant requires an average of 9 to 12 weeks before it becomes ready for marketing depending on the season of production. In this study, a production period of 10 weeks on average will be used. Mums are classified according to their this to temperature and light. In manner, response thermoneutral or thermonegative cultivars, which require a temperature less than 16 Celsius degrees to initiate flower bud development, could save on the energy costs in Québec. Light plays an important role in flower initiation. Short days will enhance the process while long days can be used to enhance vegetative growth and delay flowering. Other special treatments include pinching and application of growth regulators. The former practice is done to control plant height and increase lateral buds and branching, while the latter practice is done to control plant height and growth. In addition to other fertilizers, Phosphorous is particularly needed for proper plant growth. Ten and fifteen cm are the most common pot sizes produced for the Quebec. However, there is greater demand for the 15 cm pot. The 15 cm pots contain five plants per pot, while the 10 cm pots have only two plants. Pots touch for the first 2 weeks of growth after which they are respaced to a 30 by 35 cm for the 15 cm pot, and 20 by 25 cm for the 10 cm pot. Tables 6 and 7 in Appendix D show the schedule of cultural practices followed for Chrysanthemums.

<u>5-Cyclamen</u>

Cyclamen (<u>Cyclamen indicum</u>) is a small plant with an attractive flower. Several ornamental counsellors believe that the development of improved cultivars which have a longer shelf life and fast flowering time, combined with the development of accelerated production techniques, which
require a shorter production cycle (8 to 9 months rather than 12 to 15 months), have re-established this plant as an important commercial product. In Europe, Cyclamens are produced year round. But in North America and Quebec, the plant is mainly produced for Christmas. Other less important occasions include spring holidays such as Valentine, Easter and Mother's day. In this study, Cyclamens will be produced for sale at Easter, Mother's day, Valentines, and Christmas.

Producers could start from either seeds, or seedlings. In this study, seedlings will be used. The plant requires an average of 7 to 8 months before it becomes ready for marketing. In this study, a production period of 30 weeks will be used. Since light plays an important role in flower initiation and plant growth, artificial lights will be used during the winter nights to enhance growth. Other special treatments include the application of growth regulators to induce early and more uniform flowering. This is done 1.5 to 2 months before the desired blooming date. The planting medium should be porous with a high percentage of organic matter to help retain sufficient water. A planting medium with a pH above 5.5 should be maintained. The plant requires a constant moderate supply of nutrients, but excessive nutrients slow growth. Care should be taken to avoid increasing the soluble salt level to a high extent. The most important pot size produced for the Quebec market is 15 cm although a 10 cm pot is not uncommon. Those pots are spaced pot to pot for the first 10 weeks after which they are respaced at 30 by 30 cm for the 15 cm pot, and 20 by 20 cm for the 10 cm pots. Tables 8 and 9 in Appendix D show the schedule of cultural practices followed for Cyclamen.

6-Easter Lily

Easter Lily (<u>Lilum longiflorum</u>) is the main plant produced for Easter. The most commonly used cultivars in the United States and Canada are Ace and Nellie White (Senecal and Bigras, 1987). Most producers buy vernalized bulbs and finish them in their greenhouses. Since larger bulbs produce more flowers, bulbs are graded according to size (circumference). The plant requires an average of 110-120 days before it is ready for marketing. In this study, a period of 16 weeks will be used for the production cycle.

Special treatments include daylength extension during winter, and the application of growth regulators to obtain a shorter and more uniform products. Planting media should have a pH of 6.0 and allow for a good drainage. The most common pot size produced for the Quebec market is the 15 cm pot diameter. As for fertilization, nitrogen, calcium and phosphorus are the most important elements for this crop. Pots were initially spaced size by size (15 cm by 15 cm center to center) for the first 6 weeks after which they were respaced to 20 cm by 30 cm (0.06 square meters). Pesticide application should not be applied when flower buds start to appear. The schedule of cultural practices of Easter lily is presented in Table 10 of Appendix D.

<u>7-Geranium</u>

Geranium (Pelargonium hortorum) is the plant that is most widely sold for Quebec gardens. It is sold as a potted flower plant or in trays for landscaping. The quantity produced has increased yearly over the last 10 years. The method of production known as "fast crop" is the most profitable and is the most commonly used in Quebec. This method consists of the optimal combination of plant stock variety, medium, fertility level, and temperature manipulation. The geranium is produced tor spring, especially Easter and Mother's day. In this study, the geranium will be produced to be marketed at biweekly intervals between the period of March 19 and June 18 (eight times). There are a large number of varieties used in Quebec, some of which include Oglevees, Fischer, Kim, Veronica, and Yours Truly. Most producers start from rooted

28

cuttings bought from the local market, however large producers buy mother plants to produce their own cuttings in the spring. In this study, a rooted cutting bought from the market will be used. The plant requires an average of 6 to 8 weeks before it becomes ready for marketing in the spring.

Temperature and light play an important role in the timing of production. Light affects flower initiation, and the plant will not flower until it has accumulated a certain number of light hours. High temperature, on the other hand, has a positive effect on the flower bud initiation and elongation. Other special treatments include the application of growth regulators to control vegetative growth and enhance the development of side shoots. The Geranium can withstand a planting medium which is less porous than other potted plants, but the plant requires an elevated supply of fertilizers. Phosphorous and Magnesium are particularly important. The most important pot sizes produced for the Québec market are the 10 and 15 cm. It is not uncommon for many producers to use a 11.25 cm pot size but the 10 cm was found to be the most common. Other producers tend to use the larger pot size to produce a better quality plant with higher selling price. However, the larger plant requires two additional production weeks. In this study, both the 10 and 15 cm pots will be used. These pots are spaced pot to pot for the first two weeks after which they are respaced to a 15 by 15 cm for the 10 cm pot, and 20 by 20 cm arrangement for the 15 cm pot. Tables 11 and 12 in Appendix D show the schedule of cultural practices for Geranium.

<u>8-Hydrangea</u>

5

Hydrangea (Hydrangea macrophylla) is a potted plant characterized by a spectacular inflorescence. Flower color can be pink, blue, or white. Several ornamental counsellors believe that the cultivation of this plant is in decline due to it's long season of production and difficulty to conserve the flower for a long period. The color preference in Québec is mainly pink (85%) followed by blue (10%), and white (5%). (Senecal and Bigras, 1986). This plant is mainly produced for Easter and Mothers' day. There are a large number of cultivars grown in Québec, two of the more popular ones include Merritt Supreme, and Rose Supreme. Due to the difficulty and high cost of production, most producers in Quebec buy finished plants from the United States or Ontario and force them in Quebec. In this study, a finished plant will be used. Forcing requires an average of 12 to 14 weeks, depending on the greenhouse temperature, before the plant becomes ready for marketing in spring. In this study, a production period of 13 weeks will be used. Aluminum and pH level are important factors that influence flower color. Flowers have a blue color if aluminum is abundant, and pink if supply is low. PH will control the availability of aluminum which will be more available at lower pH levels. Light plays an important role in flower initiation and long days delay flower formation.

Other special treatments include the application of growth retardants to control plant height. The planting medium should be well aerated with a high water holding capacity since water deficiency severly slows crop growth and damages tissues. In addition to other fertilizers, Phosphorous is particularly needed for proper plant growth. The most common pot sizes produced for the Québec market are the 15 and 17.5 cm pots. Those pots are spaced pot to pot for the first 4 weeks after which they are respaced at 40 by 45 cm, and 45 by 50 cm for the 15 and 17.5 cm pots respectively, for the rest of the forcing cycle. The 17.5 cm pot requires an additional two weeks of production. Tables 13 and 14 of Appendix D show the schedule of cultural practices followed for Hydrangea.

30

<u>9-Poinsettia</u>

Poinsettia (Euphorbia pulcherrima) is considered the main potted flower plant produced for Christmas. In the United States, it is considered to be the leading potted flower in terms of wholesale value. In Quebec, it ranks second after the Chrysanthemum (Dansereau, 1990). It's popularity has been attributed mainly to the use of improved varieties which keep their leaves and flowers for longer periods of time. However, doubts have risen concerning the profitability of this plant because of the large supply compared to demand on one side, and due to the high heating costs in the production period, on the other hand. The most commonly used cultivars in Quebec are Annette Hegg Dark Red (80%), Pink (5%) and White (5%).

Most producers start from locally produced cuttings purchased in July or August. Cuttings can be bought with or without roots, pinched or unpinched. In this study, we will be starting from a rooted pinched plant. The plant requires an average of 110-120 days before it being marketable in early December. Since Poinsettia are short day plants, light plays important role in flower initiation. Other special an treatments include the application of growth regulators to shorten the plants, strengthen the stem, and intensify the colors of the leaves and flowers. An unpinched cutting should be pinched about 15 days after potting to remove the terminal bud and increase branching. The planting medium should be porous and well drained. The plant needs continuous fertiliza--tion, however, chemicals that increase soil salinity should be avoided due to root sensitivity. The most important pot sizes produced for the Québec market are those of 15, 20 and 25 cm. The 15 cm pots contain one plant whereas the 20 cm may contain 2 to 3 plants and the 25 cm pot has 3 to 4 plants. Pots touch for the first month after which they are moved to a 30 by 35 cm, 50 by 45 cm, and 55 by 60 cm for the 15, 20, and 25 cm sizes, respectively. Tables 15 to 17 in Appendix D list the schedule of cultural practices used for Poinsettia.

3.3.2 Fixed Costs

Fixed costs are the costs incurred regardless of the number of plants or crop varieties produced in the greenhouse. These costs include managerial salaries, taxes, insurance, depreciation, interest on loans, repairs, greenhouse structure, heating and irrigation systems, office expenses, and repairs and maintenance.

These costs differ among various greenhouse firms depending on the production methods followed, managerial skills, styles and preferences, plants produced, as well as the location of the greenhouse as it affects rent, labor wages, and heating requirements.

Moreover, since the calculation of the fixed costs would not affect the results obtained from the optimization procedure, which depends on the variable costs, the fixed costs required for the modelled greenhouse were not specified. Further information on fixed costs of greenhouses, are cited in the publication of "Le Comité de Réferences Economiques en Agriculture du Québec" (CREAQ, 1989a).

3.3.3 <u>Variable Costs</u>

The variable costs are composed of heating, material, and labor costs. These costs were estimated per unit of plant variety produced for a certain occasion. These costs, listed in Appendix C, were estimated and calculated as follows:

3.3.3.1 <u>Heating Costs</u>

One of the major costs in the production of pot flowers in greenhouses under northern climates is maintaining proper temperatures inside the greenhouse. As energy sources have become more costly, heating expenses associated with production have increased.

The total annual heating cost is divided into the system and fuel costs. While the system costs are considered part of fixed costs, fuel costs are added to operating costs. Fuel costs vary depending on the location of the greenhouse, temperatures required, crops produced, and greenhouse structure. These costs will be included in the variable costs as the cost of heating per plant unit. This was estimated depending on the time the plant was present in the greenhouse and area occupied.

The variable heating costs were based on the heating requirements as tabulated by the "Comite de References Économiques en Agriculture du Quebec" (CREAQ) for the region of Montreal (1987). The method used by CREAQ to estimate the heating requirements takes into consideration meteorological data such as solar radiation, average day and night temperature, fuel type, and greenhouse structure (single or attached).

The CREAQ tables (Appendix the B) show monthly requirements for number 2 oil in liters per square meter needed to achieve a certain night temperature in an attached structure in the region of Montreal. Heating Requirements depend on the required temperature difference between day and night inside the greenhouse. In this case, the modelled greenhouse was kept at 18 degrees Celsius. A conversion table (Appendix B) was prepared by CREAQ (CREAQ, 1987), to change the required energy from oil to other forms of energy including electricity. This is particulary important since a bi-energy system, which depends on oil and electricity in a 60:40 ratio respectively, was used. The price of a liter of oil was calculated to be 22 cents, while the price of a kilowatt-hour (Kw-Hr) of electricity was estimated to be 4.81 cents (D-rate, Hydro Québec, 1990). Based on this data, the heating costs for different periods of the year are calculated and presented in Table 3.1. It is noted that most of the heating costs occur in a few months of the year.

In order to calculate the heating cost associated with the production of one plant unit, the area occupied by the plant was multiplied by the heating costs of both electricity

	· · · · · · · · · · · · · · · · · · ·	•	ENERGY REQ	JIREMENT	ENERGY CO	DSTS	TOTAL
PERIOD	DATI	E	ELECTRICITY	Oil	ELECTRICITY	Oil	
			(Kwh/m^2)	(lit./m^2)	(cent	s/m^2)	(cents/m ²)
1 st	2 weeks Jan 8	- Jan.21	20.1768	3 7394	97.05	82 27	179 32
2 nd	2 weeks Jan 22	2 – Feb 4	19.3144	3 5794	92 90	78 75	171 65
3 rd	2 weeks Feb 5	 Feb 18 	17.1584	3.1794	82 53	69 95	152 48
4 th	2 weeks Feb 19	9 - Mar 4	15 5976	2 8902	75 02	63 58	138 61
5 th	2 weeks Mar 5	– Mar 18	11.6956	2 1672	56 26	47 68	103 93
6 th	2 weeks Mar.1	9 – Apr 1	11 3242	2 0984	54.47	46 16	100 63
7 th	2 weeks Apr 2	– Apr 15	6 4960	1.2040	31 25	26.49	57 73
8 th	2 weeks Apr.16	6 – Apr 29	6 4960	1 2040	31 25	26.49	57 73
9 th	1 week Apr 30) – May 6	1.6544	0 3068	7 96	6.75	14 71
10 th	2 weeks May 7	– May 20	2 7776	0.5152	13.36	11.33	24.69
11 th	2 weeks May 2	1 – Jun 3	2 3765	0.4408	11.43	9.70	21.13
12 th	2 weeks Jun 4	– Jun 17	0.3058	0 1680	4 36	3.70	8 05
13 th	2 weeks Jun 18	3 - Jul 1	0 8619	0.1599	4.15	3 52	7.66
14 th	2 weeks Jul 2	– Jul 15	0.2912	0.0546	1.40	1.20	2.60
15 th	2 weeks Jul 16	– Jul 29	0 2912	0.0546	1 40	1 20	2 60
16 th	2 weeks Jul 30	- Aug 12	0.6680	0.1242	3 21	2 73	5 95
17 th	2 weeks Aug 1	3 – Aug 26	0.7308	0.1358	3.52	2.99	6 50
18 th	2 weeks Aug 2	7 – Sep 9	1.7172	0.3185	8.26	7.01	15 27
19 th	2 weeks Sep 1	0 – Sep 23	2.2652	0.4200	10.90	9.24	20.14
20 th	2 weeks Sep 2	4 – Oct 7	4.1293	0.7658	19.86	16 85	36.71
21 st	2 weeks Oct 8	- Oct 21	5.9934	1.1116	28.83	24.46	53 28
22 nd	2 weeks Oct 22	2 – Nov 4	7.4322	1.3780	35.75	30 32	66.06
23 rd	2 weeks Nov 5	– Nov 18	11.0292	2.0440	53.05	44.97	98 02
24 th	2 weeks Nov 1	9 – Dec 2	12 0854	2.2398	58.13	49 28	107 41
25 th	2 weeks Dec 3		18 4226	3.4146	88 61	75.12	163 73
26 th	3 weeks Dec 1	7 – Jan 7	29.8269	5.5282	143.47	121.62	265 09
					YEARLY SUBT	OTAL =	1881.70

TABLE 3.1: HEATING REQUIREMENTS & COSTS PER PERIOD AT 18 C NIGHT TEMPERATURE FOR MONTREAL REGION

L

34

and oil, in the assigned proportions, for the period the plant was present in the greenhouse.

As for the fixed system costs, CREAQ reported that the cost of a bi-energy system, which uses both electricity and oil, was estimated to be 55.60 dollars per square meter (CREAQ, 1989a). This value could be multiplied by the total area of the greenhouse, to find the total fixed costs of the heating system. Annual fixed costs could then be determined by dividing the total fixed costs by an estimated life of the system.

3.3.3.2 Labor Costs

Labor costs were measured in terms of the time needed to produce a unit of crop, hence it was necessary to estimate the labor hours involved in the production of a plant unit. However, since most growers interviewed were unable to state with confidence the labor requirements needed (in terms of time) for the production of a plant unit, producers were asked, instead, to approximate the amount of time needed for certain cultural practices such as planting, spacing, pruning, and others. The time required depended on the worker's skills, past experience, available facilities, plant variety, and pot size.

Averaging the producers' approximations with other estimates from consultation with ornamental counsellors and horticultural specialists, the amount of time needed for a certain cultural operation was estimated according to the pot size. This estimation, listed in Table 3.2, was used for all the pot flowers under study. This table lists the time needed to perform certain operations such as potting, spacing, pinching, watering, pesticides and fertilizer applications, harvesting, and other maintenance activities.

Labor requirements for different plant varieties in different periods of the year, were estimated according to the schedule of cultural practices cited in several

	10 cm	15 cm	17.5cm	20 cm	25 cm
Operation\Time	(sec)	(sec)	(sec)	(sec)	(sec)
DF: Drench Fungicide	5	6	65	7	8
FW Fertigate & Irrigate	3	3	3	3	3
GR. Spray growth regulator	3	4	4.5	5	6
IR [.] Irrigate	1.5	1.5	1.5	15	1.5
PA ⁺ Pesticide Application	3	4	4.5	5	6
PKG·Package plant	9	12	13.5	15	18
PG ⁺ Place in greenhouse	5	6	6.5	7	8
PMD:Prepare media & fill pot	3	4	4.5	5	5
PP: Plant cutting (rooted)	4.5	6	7	8	10
Pl [.] Pinch or prune	5	7	8	9	10
RS. Respace plants	2	3	3.5	4	5
SA Soak bulb in acaricide	6	6	6	6	6
S&H·Shipping & handling	5	6	6.5	7	8
SH: Shade plants	1.5	2	2.25	25	3
US Unshade plants	2.5	3	3.25	35	4

TABLE 3.2: LABOR REQUIREMENTS PER TASK FOR DIFFERENT POT SIZES

. •

•

.

ornamental production books and technical references. The schedule of cultural practices used for the studied plants, listed in Appendix D, was discussed in detail in section 3.3.1. A summary of the total time needed per plant unit is listed in Table 3.3. It should be noted that labor wage was estimated at 5.50 dollars per hour.

3.3.3.3 Material Costs

Material costs make up a major part of the variable costs of production. These include the costs of plants, pots, planting media, fertilizers, pesticides, and packaging materials. Material costs were calculated using producers estimation and other published governmental data (CREAQ, 1989b).

Total material costs for the plants under study are listed in Table 3.4. These costs are presented in more detail in Appendix C.

3.4 Model Input Coefficients

This section illustrates in detail the steps and assumptions taken to simplify the construction of the model input coefficients. This will also include the discussion of the plants production practices.

3.4.1 Periods Marketed

The production year was divided into 26 periods each covering a two-week time except for two periods one with one and the other for three weeks. The year was divided in this manner in order for the periods to coincide with the marketing dates associated with the holidays. It was felt that a period of two weeks would be sufficient since a longer period such as one month time would be too long for accuracy while a one week period would lead to a very large matrix. The division of the year into periods was illustrated in Table 3.1. It should be noted that the four major holidays

	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	Mktng	Total
Period/Plant	2 wks	Date *									
African Violet, 10 cm	0	0	0	0	50.5	47	45	45	37 5	5	230
Azalea,15 cm	0	0	0	0	0	46	61	54	45.5	6	212 5
Azalea,17.5 cm	0	0	0	0	23.5	42	63.5	55 5	30	65	221
Begonia,10 cm	0	0	0	0	50.5	47	50	50	37.5	5	240
Begonia,15 cm	0	0	0	38	46	49	53	53	41 5	6	286 5
Cyclamen,10 cm	0	0	40	90 5	90.5	90 5	90 5	92.5	90 5		
			34.5	34.5	34.5	37 5	37.5	34 5	31.5	5	834.5
Cyclamen,15 cm	0	45 5	105.5	105 5	105.5	105.5	108.5	105.5	105.5		
			35.5	35.5	35.5	39.5	39.5	35.5	35 5	6	1049.
Mums,10 cm	0	0	0	0	35.5	102	109	104	37.5	5	393
Mums,15 cm	0	0	0	0	56	126	127	120	41.5	6	473.5
Easter Lily,15 cm	0	62	46	46	53	46	46	46	41.5	6	392.5
Geranium,10 cm	0	0	0	0	0	50.5	53	48	37 5	5	194
Geranium,15 cm	0	0	0	0	41	40	57	50	41.5	6	235.5
Hydrangea,15 cm	0	0	37	48	57	89	123	123	41.5	6	524.5
Hydrangea,17.5 cm	0	0	54	55.5	59	94	131.5	131.5	43.5	65	575 5
Poinsettia,15 cm	0	56	53	88	116	120	46	46	41.5	6	572 5
Poinsettia,20 cm	47	41	56	98	131	136	47	47	45 5	7	655 5
Poinsettia,25 cm	67	58	53	152	146	152	48	48	49.5	8	781.5

TABLE 3.3: LABOR REQUIREMENTS IN SECONDS FOR PLANTS IN DIFFERENT PERIODS

for the 1989 production year, fell on the following dates: Christmas on December 25th, Valentine's Day on February 14th, Easter on March 26th, and Mother's Day on May 14th. The marketing periods for these holidays were about one week before the holiday date.

3.4.2 Prices

. 🗯

Since most producers sell their products to wholesalers, the value used for the price of the pot flowers was the wholesale price adjusted by a 5% loss factor. The value of loss factor was the average figure reported by producers interviewed. In this manner, the wholesale price was multiplied by a factor of 95% to account for the 5% loss factor. Price data were collected from producers and ornamental marketing unions. Moreover, it was assumed that prices of plants produced for the holidays will be sold at a 5% higher rate than at other times of the year. This price increase was concluded from discussions with counsellors of the marketing unions in Quebec. The adjusted prices are listed in Table 3.5.

3.4.3 Plant Spacing Requirements

Plants require different pot spacings during their growing cycle. Spacing should provide optimum air circulation and light distribution for the whole plant in all seasons.

In this study, plants started from seedlings were kept at pot to pot adjacent spacing and shifted to larger spacings after several weeks. On the other hand, plants which were finished in the greenhouse, were spaced at the final spacing from the beginning. Table 3.6 lists the spacings followed for the studied plants according to age.

It should be noted that a more efficient use of space through close (dense) spacing, could lead to a lower heating cost per plant. However, this would increase space competition among plants and lead to an inferior quality

TABLE 3.4 TOTAL MATERIAL COSTS OF PLANTS PRODUCED IN CENTS PER POT

Plant	Pot	Material	Plant	Pot	Material
Variety	Size	Cost	Variety	Size	Cost
African Violet	10 cm	71 00	Easter Lily	15 cm	191 25
Azalea	15 cm	554 50	Geranium	10 cm	85 30
Azalea	17 5 cm	697 00	Geranium	15 cm	140 00
Begonia	10 cm	68 00	Hydrangea	15 cm	356 50
Begonia	15 cm	123 25	Hydrangea	17 5 cm	375 00
Chrysanthemum	10 cm	78 50	Poinsettia	15 cm	151 25
Chrysanthemum	15 cm	195.25	Poinsettia	20 cm	305 00
Cyclamen	10 cm	98 50	Poinsettia	25 cm	431 30
Cyclamen	15 cm	155 25			

IABLE 3 5	ADJUSTED SAL	E PRICE OF	PLANTS PRODU	JCED IN	CENTS PER POT

Plant	Pot	Sales	Plant	Pot	Sales
Variety	Size	Price (c)	Variety	Size	Price (c)
HOLIDAY	PRICES		Geranium	15 cm	339.50
African Violet	10 cm	131 00	Hydrangea	15 cm	582.00
Azalea	15 cm	824 50	Hydrangea	17 5 cm	776 00
Azalea	17 5 cm	1018 50	Poinsettia	15 cm	388 00
Begonia	10 cm	194.00	Poinsettia	20 cm	582 00
Begonia	15 cm	388 00	Poinsettia	25 cm	824 50
Chrysanthemum	10 cm	218 25	All YEAR	PRICES	
Chrysanthemum	15 cm	388 00	African Violet	10 cm	124 45
Cyclamen	10 cm	218 25	Chrysanthemum	10 cm	207 34
Cyclamen	15 cm	436 50	Chrysanthemum	15 cm	368.60
Easter Lily	15 cm	339 50	Geranium	10 cm	147 44
Geranium	10 cm	155 20	Geranium	15 cm	322 53

TABLE 3.6	SPACE REQUIREMENTS FOR PLANTS PRODUCED IN SC	DUARE METERS
-----------	--	---------------------

PLANT	FIRST	NO OF	SECON	NO. OF	TOTAL
VARIETY	SPACING	WEEKS	SPACING	WEEKS	WEEKS
African Violet,10 cm	0 01	2	0 04	8	10
Azalea,15 cm	0	0	0.09	8	8
Azalea,17 5 cm	0	0	0 14	85	85
Begonia,10 cm	0 01	3	0 04	7	10
Begonia,15 cm	0 0225	3	0 09	8	11
Chrysanthemum,10 cm	0 01	1	0 05	8	9
Chrysanthemum,15 cm	0 0225	2	0 105	8	10
Cyclamen,10 cm	0 0 1	10	0 04	18	28
Cyclamen,15 cm	0 0225	10	0 09	20	30
Easter Lily,15 cm	0 0225	6	0 06	10	16
Geranium,10 cm	0 01	2	0 0225	6	8
Geranium,15 cm	0 0225	3	0 04	6	9
Hydrangea,15 cm	0 0225	3	0 18	10	13
Hydrangea,17 5 cm	0 0306	4	0 225	10	14
Poinsettia,15 cm	0 0225	4	0.105	12	16
Poinsettia,20 cm	0 04	4	0 225	13	17
Poinsettia,25 cm	0 0625	4	0.33	14	18

plant with a lower selling price. On the other hand, larger spacings between plants, due to a single large spacing or successive movements of the plants, would increase labor and heating costs per plant unit, but result in a higher selling price due to better quality. This issue represents one of the difficulties in the design of pot flower production.

This compromise in resource allocation and cost distribution depends on several factors such as labor availability, heating costs, plant varieties (late or short season), greenhouse location, market demand and purchasing power, and time of the year.

In this manner, larger spacings could be used when net returns are expected to be high while smaller spacings are used for the reverse case. It should also be noted that larger spacings would reduce the number of plants per unit area. This would affect the expected profitability of the fixed greenhouse space.

3.4.4 Other Assumptions

The following additional assumptions were considered to increase simplicity :

- The greenhouse temperature was maintained at 18 degrees Celsius for the whole year. In summer, this was achieved by increased ventilation and shading.
- 2) The study started from an empty greenhouse, void of any ongoing production.
- 3) The simulated study used a single space layer for plantation in the greenhouse. It should be noted that the use of multiple layers, is not an uncommon practice.

3.5 The Linear Programming Technique

LP problems have three components: an objective function that aims to maximize net profits or minimize costs, decision variables or activities which represent alternative methods to attain the objective, and constraints or restrictions on resource availability and use.

The structure of the LP model has been illustrated by Hazell and Norton (1986) in mathematical statements as follows:

Maximize

 $Z = \sum_{j=1}^{n} CjXj$

for all j=1 to n

such that

for all i=1 to m and j=1 to n

and

Xj≥0

for all j=1 to n

where

Xj = the level of the j th activity, (j=1 to n)

- Cj = the forecasted gross margin of a unit of the j th activity (j=1 to n)
- Aij= the quantity of the i th resource required to
 produce one unit of the j th activity, (i=1 to m;
 j=1 to n)
- Bi = the amount of the i th resource available, (i=1
 to m)

In other words, this implies that the optimal plan should include a set of activity levels (Xj) to yield the largest sum of gross margins (Z) such that it does not exceed any resource constraint (Bi) or include any negative activity levels. The use of these components in the pot flower model is illustrated in section 3.5.1.

3.5.1 General Structure of the Suggested LP Model

The model consist of the following components: an objective function, 9 sets of decision variables which correspond to the nine plant varieties under study, and production and marketing constraints. The basic matrix contains 128 columns and 52 rows. The model components will be discussed in the following sections.

3.5.1.1 The Decision Variables

The decision variables are those whose values are determined by the linear programming optimization process. In this case, it is the number of plant units of a certain species with several pot sizes, that is to be marketed at specific periods of the year including the holidays.

Table 3.7 summarizes the list of decision variables used in this model, which include the plant varieties, pot sizes, and marketing periods specific to that variety. A detailed listing of the decision variables of the model is found in Appendix E.

3.5.1.2 The Objective Function

The objective function in the pot flower model reflects the aim of maximizing the difference between the market value or the selling price of the crops produced minus the sum of the operating costs associated with those crops, within the production and marketing constraints.

Gross margin can be defined as the net returns to

TABLE 3.7: LIST OF DECISION VARIABLES

- -

PRODUCTION	POT SIZES	MARKETING DATES	PLANTING	COUNT
OPTIONS	(cm)		MATERIAL	
AFRICAN VIOLET	10	All year including VV,EE,MD,XX	Seedling	26
AZALEA	15,17.5	VV,EE,MD,XX	P.F.Plant (1)	8
BEGONIA	10,15	EE,MD	Bulb	4
CHRYSANTHEMUM	10,15	All year including VV,EE,MD,XX	R.Cutting (2)	52
CYCLAMEN	10,15	VV,EE,MD,XX	Seedling	8
EASTER LILY	15	Easter	Precool Bulb	1
GERANIUM	10,15	Spring (19 Mar18 June) + V,E,M	R.Cutting (2)	18
HYDRANGEA	15,17.5	VV,EE,MD,XX	P.F.Plant (1)	8
POINSETTIA	15,20,25	Christmas	R.Cutting (2)	3
			TOTAL :	128

. .

VV: VALENTINES, EE: EASTER, MD: MOTHER'S DAY, XX: CHRISTMAS

(1): Prefinished plant

(2): Rooted cutting

44

overhead, management, capital investment and marketing. It may also be considered the income which the manager/owner receives beyond his salary compensation for his management skills.

The linear programming objective function is stated mathematically as follows :

$$Max \sum_{n=1}^{9} GMn_{1k} = \sum_{n=1}^{9} TRn_{1k} - \sum_{n=1}^{9} TVCn_{1k}$$

for all i=1 to m and all k=1 to 26

where

-

9
Σ GM n = the summation of the gross margins from all
n=1 ik units of plant variety n of pot size 1 produced
for market in period k, for all plant varieties.
9
Σ TR n = the summation of the total returns from all
n=1 ik units of plant variety n of pot size i produced
for market in period k, for all plant
varieties. Total returns (TR), is equal to the
weighted selling price of one plant unit of
variety n of pot size i produced for period k
times the number of plant units of that variety.
9
Σ TVC n = the summation of the total variable costs
n=1 ik from all units of plant variety n of pot size
i produced for market in period k for all plant
varieties. Total variable costs (TVC), is equal
to the sum of labor, heating, and material
costs of one plant unit of variety n of pot
size i produced for period k times the number
of plant units of that variety.

In other words, the objective is to maximize the sum of net returns which is equal to the sum of weighted selling price per pot for all plant varieties times the number of pots produced minus the sum of total variable operating costs per pot times the total number of pots produced. A detailed listing of the equation of the objective function of the model is found in Appendix E.

3.5.1.3 Constraints

Constraints are restrictions imposed on the set of allowable alternatives due to limited available resources or restrictive decisions. Constraints in the linear programming model are of different types. Some represent limited production resources such as planting area, greenhouse space, and labor hours, while others represent market restrictions such as quotas and maximum market absorption rates. In this manner, the presentation of the constraints identifies two groups as follows:

A- Total Available Resources: Labor and area.B- Marketing Constraints: Pot size and holiday quotas.

A-Total Available Resources

This group of constraints includes available labor hours, and greenhouse planting area. It insures that the total amount of labor hours and space utilization required for all the crop varieties in all periods do not exceed the amount available for that period.

1-Available labor Hours

Labor requirements can be filled from two sources: 1)full time employees who work 40 hours per week, and 2) part time employees that could be hired in rush periods (February to the end of May) and could work up to 40 hours per week. The available hours include 3 full time workers, and an additional 2 part time workers, working 40 hours per week during the periods extending from February 5th to June 3rd, and from October 22nd to December 16th. Since the year is divided into 26 marketing periods, there are 26 labor constraints, each corresponding to a period. The mathematical statement of this group constraint is stated as follows :

$$\sum_{n=1}^{4} Ln_{1jk} * Xn_{1k} \leq \sum_{j=1}^{26} TTL_j$$

for all i=1 to m j=1 to 26 k=1 to 26

where

- Ln = Number of hours of labor required during ijk period j for production of one unit of plant variety n of pot size i for marketing in period k.
- Xn = Number of plant units of variety n of pot size i
 ik produced for marketing in period k
- TTL = Total hours of labor available during period j. j = 1 to 26

The detailed listing of this constraint group is found in Appendix E.

2- Available Greenhouse Planting Area

This group of constraints is related to another limited resource, the production area. This group insures that the sum of the space used by the crops in the greenhouse each period does not exceed the total space available in that period (2000 square meters). Consequently, there are 26 constraints in this group corresponding to the number of periods.

The mathematical statement of this group constraint is stated as follows :

 $\sum_{n=1}^{9} Sn_{1jk} * Xn_{1k} \le \sum_{n=1}^{26} TTS_{j}$

for all j=1 to 26 i=1 to m k=1 to 26

where

1

ŧ

- Sn = Space area in square meters required during ijk period j for production of one unit of plant variety n of pot size i for marketing in period k.
- TTS = Total space area in Square meters available in j period j. j = 1 to 26

The detailed listing of this constraint group is found in Appendix E.

B-Marketing Constraints

This group of constraints imposes limits on the number of plant units of certain plant varieties produced for various holidays. It includes two sets of constraints: 1) pot size quota which imposes a maximum percentage of plants of pot size i within a certain variety, and 2) holiday quota which production distribution among holidays. controls The estimates of these limitations were calculated from interviews with ornamental counsellors and producers.

1-Fot Size Quota

This constraint insures that the production of a certain plant variety is distributed according to a certain percentage of different pot sizes. This limits the maximum number of plants produced of a certain pot size. Such a distribution reflects the market demand and product absorption rate. Table 3.8 lists the pot size constraints for different plant varieties.

48

TABLE 3.8: POT SIZE QUOTA FOR ALL PLANTS

	PERCENTAGES OF POT SIZES							
PLANT	10 cm	15 cm	17 5 cm	20 & 25 cm				
AFRICAN VIOLET	= 100%	-						
AZALEA		>= 70%	<= 30%					
BEGONIA	>= 80%	<= 20°⁄o						
CHRYSANTHEMUM	<= 30%	>= 70%						
CYCLAMEN	<= 30%	>= 70%						
EASTER LILY		= 100%						
GERANIUM	>= 50%	<= 50%						
HYDRANGEA		<= 15%	>= 85%					
POINSETTIA		>= 75%		<= 25%				

= Equal to

Ì

>= More than or equal to

<= Less than or equal to

The mathematical statement of this group constraint is stated as follows :

$$\frac{Xn_1}{\sum_{i=1}^{m} (Xn_i)} \ge Pn_1$$

for all i=1 to m n=1 to 9

where

Xn = Total number of plant units of variety n and pot i size i produced for the whole year.

Pn = The desired percentage of plant variety n i of pot size i.

<u>2- Holidays Quotas</u>

This constraint divides the production volume of certain plant varieties among various holidays of the year. This distribution reflects the relative importance of the holiday. In this manner, the production will be distributed among the four main holidays, in the following manner: 40% for Easter, 30% for Mothers Day, 20% for Christmas, and 10% for Valentines Day. However, it should be noted that this distribution, or maximum limit imposed, concerns the plants produced for the four occasions and not the plant varieties produced for one or two occasions such as Poinsettia for Christmas, Easter Lily for Easter and others. The list include African Violet, Chrysanthemums, Azalea, Cyclamen, and Hydrangea.

The mathematical statement of this group constraint is stated as follows :

$$\frac{\sum_{i=1}^{m} Xn_{ik=F}}{(\sum_{i=1}^{m} Yn_{ik=VV} + \sum_{i=1}^{m} Xn_{ik=EE} + \sum_{i=1}^{m} Xn_{ik=MD} + \sum_{i=1}^{m} Xn_{ik=\Lambda})} P_{n}$$

for all i=1 to m n=1 to 5

where

- Xn = Total number of plant units of variety n and pot ik size i produced for marketing in period k.
- PB = Production probability for occasion B.
 - B = Holiday marketing period, VV=Valentines, EE=Easter, MD= Mother's Day, XX= Christmas.

3.5.2 Linear Programming Models

Several models will be formulated in this study. The base model is designed to find the optimal product mix for a full production year as restricted by only two sets of production constraints, labor and space. The ommission of marketing constraints, whose effect is studied in additional models, will be based on the assumption that the production of the modelled greenhouse is small enough so as not to affect the whole market output. Other minor models will simulate increasing factor costs such as heating, labor, materials, and will account for varying sale prices. This will help to show which input cost has the largest effect on total gross In addition to that, optimal plans will be margins. determined for several periods of the year to compare the profitability of various holidays and seasons. This will help to design production plans for the producers with part time operations.

increase models Tn other words. these available information that can lead to better decisions. and demonstrate the flexibility in modelling to satisfy various objectives. In summary, optimal plans will be determined for three sets of cases as follows: I) various periods of the year, II) varying input and sale prices, and III) marketing constraints.

I. Various periods which include 1-The whole year. (Main model) 2-The 4 main holidays of the year.

- 3-The spring period which will be divided into 3 parts:
 - A-All Spring Holidays: Valentines, Easter, and Mothers Day
 - B-Late Spring Holidays : Easter and Mothers Day.
 - C-All spring period extending from Valentines to Mothers Day including the holidays.

4-The winter holidays: Christmas and Valentines5-Single holidays: Christmas, Valentines, Easter, Mothers Day.

II. Varying input costs and sale prices

1-10 to 40% increase in the costs of heating, labor, and materials. This chosen range is believed to be a possible range of variation for the coming five years. 2-10 to 40% increase in the sale price.

III. Marketing constraints

1-Pot size quota. 2-Holiday quota. 3-Pot size and Holiday Quotas.

Over all, there will be 29 model formulations in the simulated pot flower greenhouse. These are illustrated in a flow chart format in Figures 3.1A and 3.1B.

It should be noted that the formulation and solution of the LP model will be performed using the "Quantitative Systems for Business" (QSB) software package.

FIGURE 3.1A: FLOW CHART OF OTHER MODELS

.

.

FIGURE 3.1B: FLOW CHART OF OTHER MODELS

3.6 <u>Summary</u>

The simulated model aims to optimize the use of greenhouse space for pot flowers, in order to maximize net profits within the limitations of available space, labor hours, and market restrictions. An optimal production plan will be generated to determine the number of plants of a certain variety and pot size, produced for certain marketing periods. In addition to that, the model will imply some conclusions regarding the following points:

- 1-The importance of LP as a tool to improve production decisions in the pot flower industry, through a well structured plan, that reflects the level of resource use and productivity. This includes a sensitivity analysis which estimates ranges of net profits and constraint variations that would preserve the optimum plan.
- 2-The profitability and importance of off-season crops which are produced outside the holiday occasions. This would show whether the market could still be exploited and profits made.
- 3-The relative profitability of different marketing dates, and production sizes under local conditions.
- 4-The profitability of pot sizes other than the traditionally demanded ones, which reflects the importance of producing better quality crops, and represents one way of adding value to the crops.
- 5-The importance of cost accounting which increases the understanding of the factors affecting the profitability equation. This includes a comprehensive knowledge of the input costs involved in production. Such knowledge will reflect inefficiencies, and lead to better control of costs, use of improved production techniques, technologies (mechanization), and marketing practices.

CHAPTER 4 Results and discussion

4.1 Introduction

This chapter will present a discussion of the results obtained from the main linear programming model. This will include the optimum plan of production followed to optimize space use and maximize net returns of pot flowers. In addition to that, a detailed discussion of the plan's sensitivity analysis, which reflects resource productivity, will be presented. Results of other models will be listed and discussed.

4.2 The Optimal Plan of the Main model

The optimal plan shows the optimal combination of plant product mix, to yield the maximum net returns after total variable costs, in the production year.

This plan, listed in Table 4.1, shows the number of plant units produced of certain varieties. However, it should be noted that these figures should be rounded to give complete unit values and not decimal figures, but they were left in this manner for mathematical purposes.

The plan shows that Azalea of pot size 15 cm, produced for Christmas, was the crop with the highest level of production for a single period with 20091 units. On the other hand, Chrysanthemum of pot size 15 cm, marketed in the 23rd period (November 5th) was the plant with the lowest level of production with 101 units. Overall, the plan is composed of three plant varieties with different pot sizes: Geranium, Chrysanthemum and Azalea. Geranium 15 cm, was the plant most widely produced for the year with a total of 37853 units. It was followed by Azalea 15 cm (36048 units), Chrysanthemum 15 cm (16367 units) and 10 cm (3625 units), and Azalea 17.5 cm (3579 units).

The production or sales plan during various periods of

TABLE 4.1. OPTIMAL PRODUCTION PLAN

PLANT	POT SIZE	PERIOD	QUANTITY	PLANI	POT SIZE	PERIOD	QUANTITY
VARIETY	(Cm)		(Units)	VARIETY	(Cm)		(Units)
Geranium	15	3(VV)	8524 55	Chrysanthemum	15	18	4255 51
Geranium	15	6(EE)	8626 19	Chrysanthemum	15	19	1621 74
Geranium	15	8	10532 56	Chrysanthemum	15	21	2135 47
Geranium	15	12	1704 11	Chrysanthemum	15	22	3923 22
Geranium	15	13	8465 08	Chrysanthemum	15	23	100.61
Chrysanthemum	10	24	2453 15	Azalea	15	6(FE)	323 47
Chrysanthemum	10	25	1171 61	Azalea	15	10(MD	15633 88
Chrysanthemum	15	15	3661 21	Azalea	15	26(XX)	20091-08
Chrysanthemum	15	17	669 67	Azalea	17.5	6(EE)	3578-66
	OBJEC.	TIVE FUN	CTION VALU	E = \$150,501.10			
MAL MALLER	FF. F.	1103 14	41	XXX 01			

VV: Valentines EE: Easter MD Mothers Day XX Christmas

TABLE 4 2: PRODUCTION PLAN FOR DIFFERENT PERIODS

Period		TOTAL							
	Gl	Mt	MI	ZI	Zs	(Units)			
1						0			
2						0			
3(VV)	8524 6		······			8524 55			
4						ō			
5						0			
6(EE)	8626 2			323 5	35787	12528 32			
7						0			
8	10532 6					10532 56			
9						0			
10(MD)				15633 9		15633 88			
11						0			
12	17041					1704 11			
13	8405 1					8465 08			
14						0			
15			3661 2			3661 21			
<u> </u>						0			
17			669 7			669 67			
18			4255 5			4255 51			
19			1621 7			1621 74			
20						0			
21			2135 5			2135 47			
22			3923 2			392322			
23			100.6			100 61			
24		2453 15				2453 15			
25		1171 61				1171 61			
26(XX)				20091 1		20091-08			
TOTAL	37852 5	3624 8	16367.4		3578 7	97471.77			
PERCENT	38 83	3 72	16 79	36 98	3.67	100			
VV: Valenti			MD Mothe			mas			
(1) Gf: Geranium, 15 cm Zf. Azalea, 15 cm									
M ¹ Mums, 10 cm Zs Azalea, 17 5 cm									

Mf. Mums, 15 cm

the year is shown in Table 4.2. This table shows the periods with the largest production. In this manner, the Christmas period was the busiest marketing period of the year. Such an illustration could help to allocate the equipments for distribution along with sufficient labor.

The number of plants produced for the optimal plan reflects the relative profitability of those plants, and is also a function of the allocation of available resources and binding constraints during the year. The total net returns of this plan, after subtracting the total variable costs, amounted to 150,501.10 dollars.

This plan will remain valid as long as the values of the objective function, which represent the net returns for a plant unit of a certain variety, remain within the minimum and maximum range as calculated by QSB. The same idea would apply to the range of values of the right hand side, which represent the values of the constraints. The value of these ranges, listed in Appendix E, will be discussed in section 4.4.

4.2.1 Penalty Costs

The computer output, presented in Appendix E, lists the values of the penalty or reduced costs for those decision variables (plant type * pot size * marketing period) which do not appear in the optimal solution. These values represent the amount by which the objective function value would be reduced if the plants were forced to enter the optimal plan. Table 4.3 lists the values of these costs. This table shows that about 44% (48 plants) of the remaining plants (110) would enter the optimum plan if their net returns increase by values up to one dollar (total of the first two columns of Table 4.3).

4.2.2 Costs of the Optimal Plan

The total costs incurred to produce the optimal

Mit 14 2 61 Vt 19 35 45 Zs VV 85 29 Vt 11 158 96 Mf 4 263 30 C1 FE 419 20 M1 20 6 07 Vt 21 37 31 Gt 8 86 73 Vt VV 163 14 Ct XX 265 35 H1 VV 451 86 M1 25 7 38 Gf 11 37 55 Gt 12 90 45 PNf 176 69 Mt 11 2.77 14 C1 MD 531 26 Zs MD 849 M 14 38 56 Vt 1 96 27 EL EL 178 76 Mt MD 293 57 PNt 655 36 Zt VV 9 54 Gt 13 41 21 Vt 2 104 07 Vt 9 180 79 Hs XX 305 29 PNt 655 36 Mt 17 972 Gt 7 45 79 Bt MD 106 65 Vt MD 180 98 Ct VV 312 01 Mt 19 12 70					F OPPOP										-		1.0.	7.0		
MI 23 0.302 V1.16 31.18 Mt 1 83.07 Mt 7 152.67 Mt 9 251.45 Ht MD 408.22 MI 24 1.390 V1.25 32.95 Bt EE 84.07 Vt EE 154.22 Mt 6 255.14 Ht VU 42.457 MI 24 26.07 Vt.19 35.45 Zs VV 85.29 Vt 11 158.96 Mt 4 263.0 Ct E4.19.20 MI 22 6.07 Vt.21 37.31 Gt 8 67.3 Vt Vt 83.14 Ct XX 87.55 Mt XX 174.13 Its EE 271.50 PNIW 159.45 Mt 193.79 Nt VX 94.4 143.856 Vt XX 87.57 Nt 17.78 180.79 Ht MD 271.45 10.165.36 36 21.45 Nt 10.79 16.74 46.77 Vt 81.75 Nt 17.19 180.79 Nt 18.10.	1					_											'			5
MI 24 1 390 V1 25 32 95 Bt EE 84 07 Vt EE 154 22 MI 5 255 14 Hist VV 424 52 M1 14 2 61 Vt 19 35 45 Zs VV 85 29 Vt 11 158 96 MI 4 263 30 C1 FE 419 20 M1 20 607 Vt 21 37 31 Gt 86 73 Vt VV 163 14 C1 XX 451 86 M1 25 738 Gt 11 3758 Gt XX 87 55 MI XX 176 69 Mt 11 277 14 C1 MD 53 42 Zs MD 849 M 14 38 56 Vt 1 96 27 EL EE 178 76 Mt Mt Mt 120 35 29 Mt 11 121 44 14 145 16 160 53 76 PNt 120 30 52 9 Mt 12 104 07 Vt 9 180 79 31 20 3 Mt 12 206 51 M 12 14 30 M 180 98 Ct XX 31 20 3 <td< td=""><td>Nat</td><td>ne</td><td></td><td>Name</td><td>Cost</td><td>Nar</td><td>nc</td><td>Cost</td><td>ir≃ -</td><td></td><td></td><td>- 1</td><td>vame</td><td></td><td></td><td></td><td>ŧ .</td><td></td><td></td><td>1</td></td<>	Nat	ne		Name	Cost	Nar	nc	Cost	ir≃ -			- 1	vame				ŧ .			1
Mit 14 2 61 Vt 19 35 45 Zs VV 85 29 Vt 11 158 96 Mf 4 263 30 Ct FE 419 20 M1 26 607 Vt 21 37 31 Gt 8 867 3 Vt VV 163 14 Ct XX 25 35 H1 VX 451 86 M1 22 738 Gf 11 37 58 Vt XX 87 55 M1 XX 77 64 M1 12 27 14 Ct M1 56 4.1 12 90 45 PNf T7 66 9 M1 MD 293 57 PNit 655 36 Zf V9 95 V1 7 45 79 Bt MD 106 65 Vt MD 180 98 Ct V3 305 29 PNit 12 13 14 14 97 0 M1 9 321 03 M1 9 321 03 M1 9 321 03 M1 9 321 03 M1 18 15 48 B1 MD 53 26 Gt EE 119 56 V1 7 19 18 Ct XX 324 68 M1 13 31 79 V1 20 2307 V1 14 63 28 </td <td>Mt</td> <td>23</td> <td>0 302</td> <td>Vt 16</td> <td>31 18</td> <td>Mt</td> <td></td> <td>83 07</td> <td>Mt</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	Mt	23	0 302	Vt 16	31 18	Mt		83 07	Mt								1			
MI 20 6 07 Vt 21 37 31 Gt 8 86 73 Vt VV 163 14 Ct XX 25 35 HI VV 451 86 MI 25 738 G1 11 37 55 Vt XX 87 55 MI XX 176 69 MI 11 277 14 C1 MD 531 26 Zs MD 84 9 M1 4 38 56 Vt 1 96 27 EL E 178 69 MI 107 14 C1 MD 531 26 Zs MD 94 14 38 56 Vt 1 96 27 EL E 178 76 MI MI 277 14 C1 MD 531 26 MI 17 972 G1 7 45 79 Bt MD 166 65 Vt MD 180 79 HI 201 9 03 MI 9 321 03 MI 18 15 48 Bf MD 53 26 Gt EE 119 50 MI 20 53 MI 03 21 03 MI 13 130 33 MI EE 231 03 MI 13 310 33 <td>MI</td> <td>24</td> <td>1 390</td> <td>Vt 25</td> <td>32 95</td> <td>Bt</td> <td>ΕE</td> <td>84 07</td> <td>٧t</td> <td>EE</td> <td>154.2</td> <td>2 N</td> <td>.11 5</td> <td>2</td> <td>255</td> <td>14</td> <td>115</td> <td>٧v</td> <td>424 0</td> <td>v7 </td>	MI	24	1 390	Vt 25	32 95	Bt	ΕE	84 07	٧t	EE	154.2	2 N	.11 5	2	255	14	115	٧v	424 0	v7
MI 25 7 38 GT 11 37 58 VT XX 87 55 MT XX 174 13 H18 EE 21 50 PNiw 159 4. MI 22 8 29 M 16 37 65 Gt 12 90 45 PNif 176 69 Mt 11 2.77 14 C1 MD 531 26 Zs MD 8 49 M 14 38 56 Vt 1 96 27 EL EE 178 76 Mt 11 2.77 14 C1 MD 531 26 MI 17 972 Gt 7 45 79 B MD 166 5 Vt MD 180 98 Ct VV 312 01 M1 19 12 70 Gf 7 46 47 Vt 8 115 54 Mf 2 190 53 MT 9.31 20 M1 15 16 70 Gf MD 53 47 Vt 4 198 02 HT 31 32 M1 14 198 02 MT 8 207 21 MT 13 31 52 M1 13 121 30 33 MT	Mt	14	2 61	Vt 19	35 45	Zs	٧V	85 29	Vt	11	158 9	6 N	.1f -1	2	263	30	CL	FE	4197	'0
MI 22 8 29 M 16 37 65 Gt 12 90 45 PNf 176 69 MI 11 2/7 14 C1 MD 531 26 Zs MD 8 49 M 14 38 56 Vt 1 96 27 EL EL EE 177 66 MI MD 203 57 PNI 655 36 Zi VV 9 54 Gt 13 41 21 Vt 2 100 65 Vt MD 180 98 Ct VX 305 29 MI 17 9 72 Gt 7 45 79 Bt MD 106 65 Vt MD 180 98 Ct VX 312 61 M1 19 12 70 Gf 7 46 47 Vt 8 115 54 Mf 2 100 53 Mf 9 321 03 M1 15 16 70 Gf MD 53 47 Gt 11 121 35 MI 2 100 53 Mf 9 321 03 M1 10 53 47 Gt 11 121 35 MI 12 206 61 Ct KE 339 33	МГ	20	6 07	Vt 21	37 31	Gt	8	86 73	Vt	٧V	163 1	4 C	t X	K 2	265	35	Hf	٧V	451 8	16
Zs MD 8 49 M 14 38 56 Vt 1 96 27 EL EE 178 76 MI MD 29 3 57 PNU 655 36 ZI VV 9 54 Gt 13 41 21 Vt 2 104 07 Vt 9 180 79 Hs XX 305 29 MI 17 972 Gt 7 45 79 Bt MD 106 65 Vt MD 180 98 Ct VV 312 01 M1 19 1270 Gt 7 4647 Vt 8 115 54 Mf 2 190 53 Mf 9 321 03 Mt 15 16 70 Gt MD 53 47 Gt 11 121 35 Mf 4 198 02 Hf EF 331 52 Mt 20 1920 Gt 9 54 74 Vt 4 121 255 Mt 200 61 Ct FF 333 31 52 Vt 18 23 69 Gt VV 67 78 Mt 13 120 52 Mt 520 003 Hs MD	МГ	25	7 38	G[11	37 58	Vt	ΧХ	87 55	1		174 1	3 1	Is Ef				PN	tw	159-1	1.'
ZI VV 9 54 Gt 13 41 21 Vt 2 104 07 Vt 9 180 79 Hs XX 305 29 MI 17 9 72 Gt 7 45 79 Bt MD 106 65 Vt MD 180 98 Ct VV 312 01 MI 21 9 75 Vt 7 45 47 Vt 8 115 54 Mf 2 190 53 Mf 9 321 03 MI 18 15 48 Bt MD 53 26 Gt E 119 55 Vt 7 19 18 Ct XX 374 68 Mt 13 15 26 Gt E 113 121 55 Mt 4 198 02 Hf EF 331 52 Mt 20 19 20 Gf 9 54 74 Vt 4 121 35 Mt 8 200 72 Mt MJ 331 52 Vt 18 23 60 MV 14 62 82 Mt 13 130 33 Mt E2 300 3 Hs MJ 364 73 Vt	ML	22	8 29	M 16	37 65	Gt	12	90 45	ΡN	f	176 6	9 N	At 11				CL	MD	5312	°6
MI 17 9 72 Gt 7 45 79 Bt MD 106 65 Vt MD 180 98 Ct VV 312 01 MI 21 9 76 Vt 17 46 00 Vt 5 112 51 Mf 1 187 89 MI EE 314 06 MI 9 17 46 47 Vt 8 115 54 MI 2 190 53 MI 9 321 03 MI 18 1548 Bf MD 53 26 Gt EE 119 56 Vt 7 191 88 Cf XX 324 68 MI 10 1920 Gf 9 54 74 Vt 4 121 35 MI 8 200 72 MI 11 331 79 Vt 20 23 07 Vt 14 121 35 MI 8 200 72 MI MD 354 07 Vt 20 23 07 Vt 14 121 30 99 Mf 7 242 00 HI XX 364 73 Vt 15 26 05	Zs	MD	8 49	M 14	38 56	Vt	1	96 27	EL	EE	178 7	6 1	At M	D 2	193	57	PN	t f	655 7	36
M1 21 9 76 Vt 17 46 00 Vt 5 112 51 M1 1 187 89 Mt EE 314 06 M1 19 12 70 Gf 7 46 47 Vt 8 115 54 Mf 2 190 53 Mf 9 321 03 Mt 18 15 48 Bf MD 53 26 Gt EE 119 56 Vt 7 191 88 Cf XX 324 68 Mt 10 19 20 Gf 9 54 74 Vt 4 121 35 Mf 8 200 72 Mf 11 331 79 Vt 20 20 7 Vt 14 63 28 Vt 13 121 55 Mt 12 206 61 Ct FF 339 33 Vt 18 23 03 Vt 13 120 30 Mt 13 103 33 Mt EE 230 03 Hs MD 354 07 Vt 13 23 27 60 M X 7 387 Gt MD 133 96 Mt 12 24 56 4 Ct <t< td=""><td>Zſ</td><td>٧V</td><td>9 54</td><td>Gt 13</td><td>41 21</td><td>Vt</td><td>2</td><td>104 07</td><td>Vt</td><td>9</td><td>180 7</td><td>9 1</td><td>ts X</td><td>K 3</td><td>305</td><td>29</td><td></td><td></td><td></td><td> </td></t<>	Zſ	٧V	9 54	Gt 13	41 21	Vt	2	104 07	Vt	9	180 7	9 1	ts X	K 3	305	29				
Mit 19 12 70 Gf 7 46 47 Vt 8 115 54 Mf 2 190 53 Mf 9 321 03 Mt 18 15 48 BFMD 53 26 Gt EE 119 56 Vt 7 191 88 Cf XX 324 68 Mt 15 16 70 Gf MD 53 47 Gt 11 121 34 Mt 4 198 02 Hf EF 331 52 Mt 20 19 20 Gf 9 54 74 Vt 4 121 35 Mt 4 198 02 Hf EF 333 52 Vt 20 20 7 Vt 14 63 28 Vt 13 125 20 Mt 52 09 97 Mt D3 363 28 Vt 12 26 05 M 2 73 30 Vt 12 130 93 Mt EE 230 03 Hs MD 363 28 Vt 12 23 0 9 Mt 7 242 64 Cf V 387 58 Vt 24 27 94 Mt	Мι	17	9 72	G1 7	45 79	Bt	MD	106 65	Vt	MD	180 9	8 (t v	/ 3	312	01				
Mt 18 15 48 BF MD 53 26 Gt EE 119 56 Vt 7 191 88 Ct XX 324 68 Mt 15 16 70 GF MD 53 47 Gt 11 121 34 Mt 4 198 02 Hr EF 331 52 Mt 20 19 20 GF 9 54 74 Vt 4 121 35 Mf 8 200 72 Mf 11 331 79 Vt 20 23 07 V1 14 63 28 Vt 13 125 20 Mt 5 209 97 Mf MD 363 28 Vt 15 26 05 M 2 73 00 Vt 12 130 93 Mt EE 230 03 Hs MD 363 28 Vt 15 26 05 M 2 73 0 Vt 12 130 90 Mf 7 24 40 Hf XX 364 73 Vt 12 24 56 4 Cf VV 387 56 Kt Vt 14 8 96 76 7 7 7	Mt	21	9 75	Vt 17	46 00	Vt	5	112 51	Mf	1	187 8	19 N	ME EI	5 3	314	06				1
Mit 15 16 70 GI MD 53 47 Gt 11 121 34 Mit 4 198 02 HI EF 331 52 Mit 20 19 20 Gf 9 54 74 Vt 4 121 35 Mit 8 200 72 Mit 11 331 79 Vt 20 23 07 Vt 14 63 28 Vt 13 121 55 Mit 12 206 61 Ct FF 339 33 Vt 18 23 69 Gt VV 67 78 Mit 13 125 20 Mit 5 209 97 Mit MD 354 07 Vt 15 26 05 M 2 73 30 Vt 12 130 99 Mit 7 242 40 Hit XX 364 73 Vt 23 27 60 M XX 73 87 Gt Mt 133 96 Mit 12 245 64 Ct VV 387 58 Vt 14 28 52 Mt Mt 14 8 96 20 7 7 7 7 7 7 7	Mt	19	12 70	Gf 7	46 47	Vt	8	115 54	ĺMf.	2	190 5	53 N	M - 9) (321	03				
M1 20 19 20 Gf 9 54 74 Vt 4 121 35 Mf 8 200 72 Mf 11 331 79 V1 20 23 07 Vt 14 63 28 Vt 13 121 55 Mt 12 206 61 Ct FF 339 33 V1 18 23 69 Gt VV 67 78 Mt 13 125 20 Mt 5 209 97 Mf MD 354 07 V1 22 24 16 Zs XX 72 27 Mf 13 130 33 Mt EE 230 03 Hs MD 363 28 V1 12 26 95 M 2 73 30 Vt 12 130 99 Mf 7 242 40 Hf XX 364 73 V1 23 27 60 M XX 73 87 Gt MD 133 96 Mf 12 245 64 Cf VV 387 58 V1 24 27 94 Mt 8 148 77 Gt 9 48 96 20 20 7 7 COUNT T 22 19 22 20 20 7 <td>Mt</td> <td>18</td> <td>15 48</td> <td>BI MD</td> <td>53 26</td> <td>Gt</td> <td>EE</td> <td>119 56</td> <td>Vt</td> <td>7</td> <td>1918</td> <td>88 ¦C</td> <td>Cf X</td> <td>X S</td> <td>324</td> <td>68</td> <td>1</td> <td></td> <td></td> <td></td>	Mt	18	15 48	BI MD	53 26	Gt	EE	119 56	Vt	7	1918	88 ¦C	Cf X	X S	324	68	1			
V1 20 23 07 V1 14 63 28 V1 13 121 55 Mt 12 206 61 C1 FF 339 33 V1 18 23 69 Gt VV 67 78 Mt 13 125 20 Mt 5 209 97 Mf MD 354 07 V1 22 24 16 Zs XX 72 27 Mf 13 130 33 Mt EE 230 03 Hs MD 363 28 V1 12 26 05 M 2 73 30 V1 12 130 99 Mf 7 242 40 Hf XX 364 73 V1 23 27 60 M XX 73 87 Gt MD 133 96 MI 12 245 64 C1 VV 387 58 V1 24 27 94 Mt 8 148 77 Gt 9 148 96 7 COUNTT 22 19 22 20 20 20 7 A Arrican Violet B Begonia C Cyclamen EL Easter Lily	Mt	15	16 70	GIMD	53 47	Gt	11	121 34	Mt	4	198 0)2 ł	If E	F (331	52				
V1 18 23 69 Gt VV 67 78 Mt 13 125 20 Mt 5 209 97 Mt MD 354 07 V1 22 24 16 Zs XX 72 77 Mt 13 130 33 Mt EE 230 03 Hts MD 363 28 V1 15 26 05 M 2 73 00 Vt 12 130 99 Mt 7 242 40 Ht XX 364 73 V1 23 27 60 M XX 73 87 Gt MD 133 96 Mt 12 245 64 Cf VV 387 58 V1 16 28 52 Mt 8 148 77 Gt 9 148 96 20 7 7 7 8 EX 20 20 7 7 8 EX PLANATION OF VARIABLES SYMBOLS EL Easter Lily Z Aza	Mt	20	19 20	Gf 9	54 74	Vt	4	121 35	Mf	8	200 7	2	ME 1.	1 3	331	79				
V1 22 24 16 Zs XX 72 Mf 13 130 33 Mt EE 230 03 Hs MD 363 28 Vt 15 26 05 M 2 73 00 Vt 12 130 99 Mf 7 242 40 Hf XX 364 73 Vt 23 27 60 M XX 73 87 Gt MD 133 96 Mf 12 245 64 Cf VV 387 58 Vt 24 27 94 Mt VV 134 00 Mf VV 245 75 Ct MD 397 24 Mt 16 28 52 Mt 8 148 77 57 Ct MD 397 24 7 81 EE 28 87 Gt 9 148 96 7 A Af	Vt	20	23 07	Vt 14	63 28	Vt	13	121 55	Mt	12	206 6	51 (0	Dt E	F (339	33				I
Vt 15 26 05 M 2 73 30 Vt 12 130 99 Mf 7 242 40 Hf XX 364 73 Vt 23 27 60 M XX 73 87 Gt MD 133 96 Mf 12 245 64 Cf VV 387 58 Vt 24 27 94 Mt VV 134 00 Mf VV 245 75 Ct MD 397 24 Mt 16 28 52 Mt 8 148 96 -<	Vt	18	23 69	GtVV	67 78	Mt	13	125 20	Mt	5	209 9	97	Mf M	D 1	354	07				
V1 23 27 60 M XX 73 87 Gt MD 133 96 Mf 12 245 64 Cf VV 387 58 V1 24 27 94 Mt V 134 00 Mf VV 245 75 C1 MD 397 24 M1 16 28 52 Mt 8 148 77 61 9 148 96 7 COUNT T 22 19 22 20 20 7 7 • EXPLANATION OF VARIABLES SYMBOLS I It First letter indicates plant variety 7 A African Violet B Begonia C Cyclamen EL Easter Lily G Geranium H Hyadrangea M Chrysanithemum Z Azalea II Second letter indicates pot size I Ten cin s Seventeen & half cin III Last two letters/digits indicate marketing period III III Last two letters/digits indicate marketing period XX Christimas	VI	22	24 16	Zs XX	72 27	Mf	13	130 33	Mt	EE	230 0)3 ł	is M	υ.	363	28				
V1 24 27 94 Mt VV 134 00 Mf VV 245 75 Ct MD 397 24 M1 16 28 52 Mt 8 148 77 Gt 9 148 96 7 B1 EE 28 87 Gt 9 148 96 7 COUNT T 22 19 22 20 20 7 • EXPLANATION OF VARIABLES SYMBOLS 1 1 EL Easter Lily 7 • EXPLANATION OF VARIABLES SYMBOLS 1 1 EL Easter Lily 7 • Geranium H Hyadrangea M Chrysanthemum Z Azalea Il Second letter indicates pot size 1 Fifteen cm t Ten cin s Seventeen & half cm Il Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNf Poinsettia fifteen cm 1	Vt	15	26 05	M 2	73 30	Vt	12	130 99	Mf	7	242 4	10 ł	Hf X	X :	364	73				
MI 16 28 52 Mt 8 148 77 BI EE 28 87 Gt 9 148 96 COUNT T 22 19 22 20 20 7 • EXPLANATION OF VARIABLES SYMBOLS I First letter indicates plant variety A African Violet B Begonia C Cyclamen EL Easter Lily G Geranium H Hyadrangea M Chrysanthernum Z Azalea Il Second letter indicates pot size I Ten cin s Seventeen & half cin Il Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNf Poinsettia fifteen cm If the com	VI	23	27 60	M XX	73 87	Gt	MD	133 96	M	12	245 E	54 (Cf V	V :	387	58				
BI EE 28.87 Gt 9 148.96 7 COUNT T 22 19 22 20 20 7 • EXPLANATION OF VARIABLES SYMBOLS I 1 1 22 20 20 7 • EXPLANATION OF VARIABLES SYMBOLS I I E 28 7 A African Violet B Begonia C Cyclamen EL Easter Lily G Geranium H Hyadrangea M Chrysanthemum Z Azalea Il Second letter indicates pot size I Ten cin s Seventeen & half cin III Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations IV Other Notations EVE PNf Poinsettia filteen cm	Vt	24	27 94			Mt	٧V	134 00	Mf	٧V	245 7	75 0	Ct M	D :	397	24				
COUNTT 22 19 22 20 7 • EXPLANATION OF VARIABLES SYMBOLS I First letter indicates plant variety EL Easter Lily A African Violet B Begonia C Cyclamen EL Easter Lily G Geranium H Hyadrangea M Chrysanthemum Z Azalea Il Second letter indicates pot size I Ten cin s Seventeen & half cin Il Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines IV Other Notations ELEE Easter Lily for Easter PNf Poinsettia filteen cm Filteen cm	1WI	16	28 52			Mt	8	148 77									1			
EXPLANATION OF VARIABLES SYMBOLS I First letter indicates plant variety A African Violet B Begonia C Cyclamen EL Easter Lily G Geranium H Hyadrangea M Chrysanthemum Z Azalea Il Second letter indicates pot size I Fifteen cm t Ten cin s Seventeen & half cm Ilf Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNF Poinsettia filteen cm	BI	EE	28 87			Gt	9	148 96				_							- •	
I First letter indicates plant variety A African Violet B Begonia C Cyclamen EL Easter Lily G Geranium H Hyadrangea M Chrysanthemum Z Azalea Il Second letter indicates pot size I Fifteen cm t Ten cin s Seventeen & half cm Il Last two letters/digits indicate marketing period II EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter PNF Poinsettia filteen cm It leen cm	-	-									2	20				20	L .			7
A African Violet B Begonia C Cyclamen EL Easter Lily G Geranium H Hyadrangea M Chrysanthemum Z Azalea Il Second letter indicates pot size I Fifteen cm t Ten cin s Seventeen & half cm Il Last two letters/digits indicate marketing period III Last two letters/digits indicate marketing period XX Christmas IV Other Notations ELEE Easter PNf Poinsettia fifteen cm	*	EXPI	LANAT	ION OF	VARIAB	LES	SYN	ABOLS					.							-
G Geranium H Hyadrangea M Chrysanthemum Z Azalea Il Second letter indicates pot size I Fifteen cm t Ten cin s Seventeen & half cm Il Last two letters/digits indicate marketing period III Last two letters/digits indicate marketing period III Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lify for Easter PNf Poinsettia fifteen cm	l Fi	rst le	tter ind	icates p	lant varie	ety													-	
Il Second letter indicates pot size 1 Fifteen cm t Ten cin s Seventeen & half cm Ill Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNF Poinsettia filteen cm	Ā	Afric	an Viole	et		В	Beg	onia			СС	ycla	men		~		EL	Ēa	ster Lil	y
1 Fifteen cm t Ten cin s Seventeen & half cm 11 Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNF Poinsettia filteen cm	G	Gera	າມາມ			Н	Нуа	drangea			M C	Chrys	santh	em	лm		Ζ	Azai	ea	
1 Fifteen cm t Ten cin s Seventeen & half cm 11 Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNF Poinsettia filteen cm							·	÷				-								
III Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNf Poinsettia filteen cm	II S	ecor	d letter	indicate	es pot siz	ze														
III Last two letters/digits indicate marketing period EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNf Poinsettia filteen cm	I I	fifter	n cm			t	Tend				s Se	even	nteen	& h	alf		- <u>-</u>			
EE Easter MD Mother's Day VV Valentines XX Christmas IV Other Notations ELEE Easter Lily for Easter PNf Poinsettia fifteen cm	1					•														
IV Other Notations ELEE Easter Lily for Easter PNF Poinsettia filteen cm	111	.ast 1	wo lette	ers/digit	s indicati	e ma	arket	ing perio	d								-	-		
ELEE Easter Lily for Easter PNf Poinsettia filteen cm	EĒ	Eas	ter			MD) Mo	ther's Da	ay		VV N	/ale	ntine	5			XX	Ch	astma	ς,
ELEE Easter Lily for Easter PNf Poinsettia filteen cm																				
	====													. .						
PNtw Poinsettia twenty cm PNtf Poinsettia twenty five cm	ELI	ELEE Easter Lily for Easter PNI Poinsettia filteen cm																		
	PN	PNtw Poinsettia twenty cm PNtf Poinsettia twenty five cm																		

•

-

I ABL I	TABLE 4.4 INPUT COSTS OF OPTIMAL PLAN PER PLANE VARIELY										
(Xi)	(XI) QUANTITY			COST	MATERIAL	COST	HEATING	COST	NET REVEN	UES(1)	
	(Units)	%	\$	% (2)	\$	% (2)	\$	% (2)	\$	<u>% (3)</u>	
G18	10532 56	10.8	3788 56	9 35	14745 59	4 72	1614 64	7 07	13821 88	9 18 [°]	
G112	1704 11	175	612 97	1 51	2385 75	076	9107	0 41	2403 47	1 60 '	
GH3	8465 08	8 68	3044 89	7 51	11851 11	3 79	319 98	1 40	12086-44	8 03	
GIEF	8626 19	8 85	3102 84	7 66	12076 67	386	1870 16	819	12236 23	8 13	
GIVV	8524.55	875	3066 28	7 56	11934 37	3 82	2283 73	10 00	11656 47	7 75	
M124	2453 15	2 52	1472 87	3 63	1925 72	0 62	316 46	1 39	1371 31	0 91	
1/125	1171 61	1 20	703 43	1 74	919 71	0 29	193 32	0 85	612 75	0.41	
MI15	3661.21	3 76	2646 69	6 53	7148 50	2 29	172 08	075	3527 94	2 34	
14117	669.67	0.69	484 10	1 19	1307 53	0 42	14 46	C 06	662 30	0 44	
M[18	4255 51	4 37	30,631	7 59	8308 89	2 66	86 39	0 38	4214 23	2 80 ¹	
MI19	1621 74	1.66	1172 36	2 89	3166 45	1 01	52 54	0 23	ⁱ 1586 39	1 05 '	
ML21	2135.47	2 19	1543 73	3 81	4169 50	1 33	179 17	078	1978 94	131	
MI22	3923 22	4 02	283F 10	7 00	7660 09	2 45	522 18	2 29	3442.63	2 29	
MI23	100.61	0 10	72 73	0 18	196 45	0 06	18 96	0 08	82 72	0 05	
ZIEF	323 47	0 33	105 00	0 26	1793 64	0 57	164 97	072	603 40	0.40 (
ZIMD	15633 88	16 0	5074 76	12 52	86689 87	27 73	3978 82	17 41	33157 90	22 03	
ZIXX	20091 08	20.6	6521 57	16 09	111405 1	35 64	7869 68	34 44	39854 68	26 48	
2see	3578 66	367	1208 16	2 98	24943 29	7 98	3095 90	13 55	7201 34	4 78	
IOTAL	97471 8	100	40533 3	10.8	312628 2	83 1	22847 5	61	150501 1	100 0	

(1) NET REVENUES = TOTAL REVENUES - TOTAL VARIABLE COSTS

(2) PERCENTAGE IS THE PLANT'S SHARE FROM TOTAL INPUT COSTS

(3) PERCENTAGE IS THE PLANT'S SHARE FROM TOTAL NET REVENUES

EXPLANATION OF VARIABLES SYMBOLS

Erist letter indicate	s plant variety		
G Geranium	M Chrysanthemum	Z Azalea	
Il Second letter indi	cates pot size		
E Eilteen om	t Ten cm	s Seventeen & half c	m
III Last two Jetters/d	igits indicate marketing period		
EF Easter	MD_Mother's Day	VV Valentines	XX Christmas
-			

combination of plants, is listed in Table 4.4. This table, which helps to show the cost structure of the optimal plan, is important as it shows the distribution of labor, material, and heating costs among different plant variaties. It was concluded that Azalea 15 cm, produced for Christmas (CfXX), had the higher percentages of input costs and net returns. This could be justified since this plant was the one produced in the largest quantity for a single period.

The same information can be displayed in a different pattern. This is shown in Table 4.5 which presents a financial plan per period for the optimal product mix. This plan shows the distribution of input costs, namely labor, heating, and material costs between different periods. In this manner, it was shown that except for a few periods, material costs constituted the largest share of expenses among input costs in most periods.

Moreover, this plan will help to indicate periods with maximum and minimum total variable input costs and returns. This table shows that the largest percentage (30.5%) of the total input costs was incurred in period 22, which falls between October 22 and November 4, while the lowest percentage (0.3%) was incurred in periods 9, 15, and 21. As for net revenues, the largest figure, 163,560.10 dollars, was generated in the Christmas period (26). This is justified since Azalea 15 cm, the plant with the largest number of units, was produced for that period. It should be noted that the sum of the total revenues, reported in Table 4.5, was 0.16% greater than the value reported in the optimal plan. This was attributed to minor calculation errors which resulted from the process of rounding off at various stages. Figure 4.1 shows the variation of net returns during different periods of the year. The distribution of total input costs in the optimal plan, listed in the last row of Tables 4.4 and 4.5, indicates that material costs comprised the largest share of input costs with a 83.09 % share. This

TABLE 4 5: FINANCIAL PLAN FOR THE OPTIMAL PLAN PER PERIOD

Period	LABOR		HEATING		MATERIAL		TOT	AL.		INET	
	COST(1)	% (4)	COST(2)	% (4)	COST(3)	% (4)	cos	TS	% (5)	REVENUES	% (5)
1	1320 00	3 35	1042 16	2 65	37019 95	94 00	3938	32 11	105	1-39362 11	-26.2
2	1320 00	26 71	1828 41	37 00	1793 64	36 29	494	2 05	13	-4942.05	-3 29
3(VV)	1866 41	10 30	1515 14	8 36	14745 59	81 35	1812	27 14	48	1081372	7 20
4	1632 73	51 44	1541 56	48 56	0 0 0	0 00	317	74 29	08	-3174 29	-2 11
5	2200 00	2 42	2078 60	2.28	86689 87	95 30	9096	58 47	24 2	-90968 47	-60 5
6(EE)	2200 00	54 46	1839 87	45 54	0 0 0	0 00	403	39 87	11	64361 75	42 84
7	2200 00	38 85	1077 64	19 03	2385 75	42 13	566	53 39	15	-5663 39	-3 77
8	2200 00	14 65	961 60	641	11851 11	78 94	150-	1271	40	18957 97	12 62
9	876 24	76 66	266 81	23 34	0 00	0 00		13 05	03	-1143 05	-0 76
10(MD)	1323 89	15 41	120 77	1 4 1	7148 50	83 19		93 16	23	120308 19	80 07
11	1459 47	89 72	167 18	10 28	0 00	0 00		26.64	04	-1626 64	-1 08
12	1320 00	49 13	59 42	2 21	1307 53	48.66	268	36 94	07	2809 31	1.87
13	1241 81	12.95	42 17	0 44	8308 89	86 62		92 87	25	17709 55	11 79
14	1320 00	29.26	24 39	0.54	3166 45	70 20		10 84	12	-4510 84	-3.00
15	1294 21	98 64	17 87	1.36	0 00	0 00		12.08	03	12183 13	8 11
16	1320 00	23 86	43 76	0.79	4169 50	75 35		33 26	1.5	-5533 26	-3 68
17	1320 00	14 60	60 42	0.67	7660 09	84 73		40.51	24	-6572 12	-4 37
18	1320 00	80 49	123 49	7.53	196 45	11 98		39 94	04	14045 88	9 35
19	1320 00	39 07	132 72	3 93	1925 72	57.00		78 45	09	2599 29	1 73
20	1320 00	52 29	284 59	11.27	919 71	36.43		24 30	07	-2524 30	-1 68
21	877 86	73 18	321 67	26.82	0 00	0 00		99.53	03	6671 81	4 44
22	2039 18	1.78	1321.20	1.15	111405.1	97 07	1 1	765 4	30 5	-100304 5	-66.8
23	2200 00	53.01	1950 04	46 99	0 00	0 00		50 04	11	-3779 18	-2 52
24	1743 38	46 51	2005 11	53.49	0 00	0 00		48 48	1.0	1337 88	0 89
25	2200 00	12 64	3274 60	18 81	11934.37	68.55		08.97	4 6	-14979.77	-9 97
26(XX)	1186.99	56.77	903 91	43 23	0 00	0.00		90 90	06	163560 09	-997 1089
TOTAL	40622.2	10.80	23005.11	6.11	312628.2			255.5	100	150254 62	100 3

٠

1 · LABOR COST DEPEND ON LABOR HOURS USED PER PLANT PER PERIOD

2 · HEATING COST DEPEND ON AREA USED PER PLANT PER PERIOD

3 · MATERIAL COST FOR EACH PLANT IS TOTALLY ADDED AT PLANTING TIME

4 . SHOWS PERCENTAGE AMONG TOTAL INPUT COSTS PER PERIOD

5. SHOWS PERCENTAGE OF EACH PERIOD PER TOTAL YEARLY REVENUES

VV: VALENTINES EE. EASTER MD: MOTHERS DAY XX: CHRISTMAS

63

.

was followed by labor (10.8%), and heating costs (6.11%). The distribution of input costs in the optimal plan is shown in Figures 4.2 to 4.4.

4.3 <u>Resource Use and Opportunity Costs</u>

The optimum production plan satisfied the objective function subject to the constraints of available resources and other marketing restrictions for all periods. In this manner, production resources, such as labor and space, were used at various levels for different periods. These levels calculated by QSB, were listed in the model output presented in Appendix E. This is also shown in Tables 4.6 and 4.7. The first two tables show the space area used per period to produce each plant variety included in the optimal plan. This detailed illustration is helpful to show space distribution among different varieties along the year. In addition to that, Table 4.6 presents the total space used per period. This shows that except for few periods (5,22, and 25), the greenhouse space was not fully exploited. This vacant space could be used for other filling plants such as house plants, however, labor availability and costs in addition to material costs have to be taken into consideration since the optimal plan will be changed. It was noted that space was least used in the Christmas and new year period (26th) because this period is characterized by high heating costs.

Table 4.7 show the level of labor hours used per period for the plants included in the optimal plan. This indicated that Azalea 15 cm produced for Christmas, required the greatest amount of labor hours during the year. This amounted to 1185.9 hours and represented 16.06% of the total labor hours used during the year. On the other hand, Chrysanthemum 15 cm, produced for the 23rd period, used the least number of labor hours at a rate of 13.32 hours which represented 0.18%. It was also observed that the available labor hours constraint was binding in more periods than the available

.

ERIOD	1 Mt24 -	Mt25	M/15	Mf17	M118	Mf19	Mt21	Mf22	Mf23	ZIEE	ZfMD	ZfXX	ZsEE	GfVV	GIEE	G18	Gf12	Gf13	TOTAL	°~ (1
1													143 15	340 98	97 04				581 17	29 06
2	1					I		1		29 11			501 01	340 98	194 09	•			1065 20	53 26
3.VV)	1							1		29 1 1			501 01		345 05	118 49			993 66	49 68
4	1							1	1	29 11			501 01	1	345 05	236 98			1112 16	55 6
Ę	1		1					1		29.11	703 52		501 01		345 05	1421 30			2000 00	100 0
6(EE)	1					1		i	1		1407 05	1	•	1	·	421 30		 	1828 35	914
7	1		1					1	1		1407 05		······································	• 	•	421 30	38 34		1866 69	93 3
8						1					1407 05		•		4	**************************************	68 16	190 46	1665 68	83 2
9	1						1	4	1	1	1407 05				1	·+	68 15	338 60	1813 82	90 6
10(MC)	1 1		82 38					1	,	L	i	1	1	1	1		68 15	338 60	489 14	24 4
11			384 43					i	i .		1					· · · · · · · · · · · · · · · · · · ·	68 16	338 60	791 19	39 5
12	1		384 43	15 07			1	i	I				1	1	1	1		338 60	738 10	36 9
13	1		384 43	70 32	95 75]		!	1	1	1		1	1	1		1	1	550 49	27 5
14	;		384 43	70 32	446 83	36 49				l .			1	1		1	1	1	938 C6	46 9
15				70 32	446 83	170 28		1				1	1		1	t	t		687 43	34 3
16	1			70 32	446 83	170 28		48 05		}					1	1			735 47	36 7
17	Γi				446 83	170 28		224 22	88 27				I	1	1	1	(929 61	46.4
18						170 28		224 22	411 94			I	1	I		1	(, ,	808 1	40 4
19	12 27				1			224 22	411 94	I				1	1				€58 99	22.9
20	122 66	5 86	1			1	1	224 22	411 94	t	1		4	1					775 24	38 /
21	122 66	58 58			1	1	1	1	411 94	L		1	1	T	!			·	603 74	30 1
22	122 66	58 58	1		1	1	1		1			1808 20	1		I	1			2000 00	100 0
23	122 66	58 58	1			1		1				1808 20			1	1		1	1999 44	99.4
24		58 58			1	1	1		i i			1808 20		1	Ì		1		1866 78	93 3
25	1							1	1			1808 20	1	191 80	l				2000 00	100 0
26(XX)	1				1	1	1	1	1	I			1	340 98	1			1	340 98	17 0

TABLE 4.6 GREENHOUSE AREA USED (Sq Meters) PER PERIOD FOR PLANTS IN THE OPTIMAL PLAN

(1) % INDICATES AREA USED FRON TOTAL GREENHOUSE PLANTING AREA VV VALENTINES EE EASTER MD MOTHERS DAY XX CHRISTMAS

-

.

、 •

PERIOD	1 1124	Mt25	- M115	M117	Mf18	MI19	MI21	M122	MI23	ZIEE	ZIMD	ZIXX I	ZsEE	GIVV	GIEE	G!8	G/12	G113	LITOTAL .	1%(2)
1	1 1		1					1		1		· 1	23 36	118 40	98 24				\$240 00:	1.100 00
2	1		1	I		1	-	1		4 13			41 75	98 27	95 85				1+240 00.	100 00
3(14)			1	1				1		5 48			53 12	14 21	136 58	119 95			H#209 35	1=84 84
4	I, I		1	J						4 85 1			55 17		113 81	117 03			3296 86	1 374 21
5	1		1	1	1	· · ·				4 09 1	93 85	1	29 82 1	1	99 44	156 77			1. 400 00	1100 00
5185	1		1		1	1		1		0.54	232 34	1 1	6 46 1	1	14 38	145 29			12400 00	1100 00
-	1		1					•			243 71	• •				2:42	28 88		1"400 CO	100 00
3	1 1		•			1				1	216 05	1 1	1			.7 55	22.96	143 44	#400 00	100 00
9	1 1									,	C3 89	1	1				13 49	47 03	1:4159 32*	1-79 68
10(4/2)	1		56 35 +								26.06	1					23 57	.34 03	1 .240 71-	1.60 18
11	1		128 14 1										1				•3 E4	117 57	1 3265 06	1-26 34
12	Ī		129 16 1	10 42								1	i				2 84	97 58	1 1240 00.	1,100 00
3	1		102 04 1															411	225 73	1: 94 08
14	1		42 21 1	13 E2 1	148 94	25.23						1							1 240 °O	1100 00
·5	1		5.01	22.32	150 13	56 76						1							1=1235 31	1498 05
•6	1 /		1	2 7 2	141 85	57.21	32.02					1				•			12240.00	1100 00
17	1			1 1 2	49 06	54.6	-4-4	61 CC											£240 00	1100 00
18	1 1		1		7 09	18 70	15.03	107 01	1 5 7										. 240 CO	1100.00
19	24,9,					2 10	~ 8	109.40	0.50										4 240 00	1100 50
20	1 59 5 1	1 55			_		24 E2	·20 -7	0.55										240 00	1100 00
		23.25					2.56	45.20	2.05										159.5.	1 56 53
- 22	TC 57	05.47						6.64	÷.			256 72				-			1 370 75	92 59
22	25 55	22.55										240.40							+400 50	1.00.00
24	2 4 1	2 20										20101							315 38	79.24
25		23			-							253 93		*44 44					1400.00	1100 00
25(23)								<u></u>				22.49		82.33		-			:215 82	53.95
	1 257 83			88 54	563 25	214 66	282 55	519.28	10 02	19 09	922 83	185 93	219 69	557 65	564 00	+C 633	48	553 76	,7085 85	
PERCENT	1 0.60	· - 2	6 56	• 20	60	2 91	2.83		2.8	0.25	12 49	1 16 06	2 97	7 55	7.54	9.03	1 5.	7.50		

21 % FROM TOTAL AVA LABLE LABOR HOURS PER PER CO

W VALENTINES DE EASTER NO HOTHERS DAY I XX, CHRISTMAS

TABLE 47 - LABOR USE (Hours) PER PERIOD FOR PLANTS IN THE OPTIMAL PLAN

space constraint. In this manner, labor was fully used in 15 of the 26 periods per year as compared to 3 periods for space. This is also shown in Table 4.8 which lists the amount of surplus labor hours and space area in real figures and percentage forms. This indicates that maximum labor and space surpluses were found in period 26. On the other hand, minimum labor and space surpluses, were found in periods 15 and 23 respectively. This is also shown in Figures 4.5 and 4.6 which illustrate respectively the usage level of greenhouse area and labor hours per period in the optimal plan.

4.3.1 Opportunity Costs

The QSB output, present in Appendix E, lists the values of the opportunity costs or dual prices for the maximum available resources or right hand side values. This gives the rate of improvement in the objective function value as the level of available constraint is increased by one unit keeping all other resources fixed. In other words, this price reflects the marginal value product from a unit increase in the resource. The dual prices of the labor constraints, shown in Table 4.8, indicate that a one hour increase in available labor for the second period, would yield the maximum value of 78.76 dollars to increase the objective function. This is much higher than the hourly labor wage (5.5 dollars), and hence additional labor should be hired since marginal revenue (MR) is larger than marginal cost (MC). The same conclusion of hiring additional labor could still be valid for 11 additional periods since MR > MC for these periods. However, changing the level of labor hours would increase the value of the objective function as long as the level of resource change would still fall within the ranges of sensitivity analysis for the optimal plan. These ranges will he discussed in the next section. It should be noted that a zero dual price would reflect a non-binding or surplus constraint.

As for space which was fully used for only three periods,

	LABOF	}			SPACE		
	Surplus		Dual Price		Surplus		Dual Price
Period	(hours)	% *	(dollars)	Period	(sq m)	40 ·	(dollars)
1	0 00	0 00	1 57	1	1418 83	70 94	0 00
2	0 00	0 00	78 76	2	934 80	46 74	0.00
3(VV)	60 65	15 16	0 00	3(VV)	1006 34	50 32	0 00
4	103.14	25 79	0 00	4	887 84	44 39	0 00
5	0.00	0 00	20 76	5	0 00	0 00	6 21
6(EE)	0.00	0 00	22 79	6(EE)	171 65	8 58	0 00
7	0 00	0 00	26 41	7	133 31	6 67	0.00
8	0.00	0 00	68 63	8	334 32	16 72	0.00
9	40 68	20 34	0 00	9	186 18	9 31	0.00
10(MD)	159.29	39 82	0 00	10(MD)	1510 86	75 54	0.00
11	134 64	33 66	0 00	11	1208 81	60 44	0 00
12	0 00	0 00	22 97	12	1261 90	63 10	
13	14 22	5 92	0 00	13	1449 51		0.00
14	0.00	0 00	13.28	14	1061 94	53 10	0 00
15	4 69	1 95	0 00	15	1312 57	65 63	0.00
16	0 00	0 00	13 32	16	1264 53	63 23	0.00
17	0.00	0.00	5 68	17	1070 39	53 52	0.00
18	0 00	0 00	9 58	18	1191 29	59 56	0.00
19	0 00	0 20	1 22	19	1341 01	67 05	0.00
20	0 00	0.00	12 32	20	1224 76	61 24	0.00
21	80 39	33.50	0.00	21	1396 26	69 81	0 00
22	29.24	7.31	0 00	22	0 00	0 00	1 69
23	0.00	0 00	10 88	23	10 56	0 53	0.00
24	83 02	20 76	0 00	24	133 22	6 66	0.00
25	0 00	0 00	1 89	25	0 00	0 00	18 0/
26(XX)	144.18	40 05	0 00	26(XX)	1659 02	82 95	0.00

TABLE 4.8: LABOR AND SPACE SURPLUS WITH DUAL PRICE PER PERIOD

* · PERCENTAGE FROM AVAILABLE

.

-

**** *

VV: VALENTINES EE: EASTER MD MOTHERS DAY XX CHRISTMAS

LEVEL OF LABOR USE

it was concluded that the maximum dual prices or returns per additional square meter were found to be 18.04 dollars in the 25th period. Other lower returns were calculated at 6.21 dollars for the fifth period, and 1.69 dollars for the 22nd period. Therefore renting or buying additional space for planting would be a profitable decision, if total returns exceeded the cost. However, in this case, additional factors have to be considered such as land availability, location, and fixed costs.

4.4 <u>Sensitivity Analysis</u>

Sensitivity analysis, or post-optimality analysis, shows the range over which the optimum production plan remains optimal. This analysis helps the management to increase the level of certainty facing any changes in the coefficients of the objective function which represent net revenues, or changes in the right hand side or constraint levels.

In other words, finding the allowable maximum and minimum ranges reflects how sensitive is the optimal solution to data changes. The allowable ranges for available labor are presented in Table 4.9. This indicated that the minimum allowable range for labor varied between -40.05% in the 26th period, as compared to the original available limit, to -0.91% in the 19th period. As for the maximum allowable range, it varied between +1.08% for the 23rd period to +infinity for several periods.

Table 4.10 shows the sensitivity analysis range for available space area. The minimum allowable limit ranged from -0.34% in the 22nd period to -82.95% for the 26th period. However, the maximum limit of space was found to be more flexible, as 24 of the 26 periods were at +infinity. The sensitivity analysis for the objective function values are listed in Tables 4.11 A and 4.11B. These show the allowable change in the net profits for every plant, keeping all other data fixed, to keep the optimal plan valid, or in other

Period	Minimum		Original	Maximu	ım
	Limit	%	Limit	Limit	%
1	157 57	-34 35	240	243 43	1 43
_ 2	237 17	-1 18	240	267 90	11 63
3	339 35	-15 16	400	+ INFINITY	+ INFINITY
4	296 86	-25 79	400	+ INFINITY	+ INFINITY
5	367 49	-8 13	400	420 49	5 12
6	380 35	-4 91	400	419 16	4 79
7	371 12	-7 22	400	465 24	16 31
8	360 16	-9 96	400	418 95	4 74
9	159 32	-20 34	200	+ INFINITY	+ INFINITY
10	240 71	-39 82	400	+ INFINITY	+ INFINITY
11	265 36	-33 65	400	+ INFINITY	+ INFINITY
12	227 11	-5 37	240	261 25	8 85
13	225 78	-5 92	240	+ 114FINITY	+ INFINITY
14	229 52	-4 37	240	243 73	1 55
15	235 31	-1 95	2:0	+ INFINITY	+ INFINITY
16	231 60	-3 50	2 ‡0	247 40	3 C8
17	230 11	-4 12	240	245 64	+ INFINITY
18	237 51	-1 04	240	243 10	1 29
19	237 81	-0.91	240	244 36	182
20	161 48	-32 72	240	250 45	4 36 '
21	159 61 '	-33 50	240	'+ INFINITY	+ INFINITY
22	370 76	-7 31	400	+ INFINITY	+ INFINITY
23 İ	394 18	-1 45	400	404 34	1 08
24	316 98	-20 76	400	'+ INF _i N'TY	+ INFINITY
25 1	394 05	-1 49	400	408-28	2 07
26	215 82	-40 05	360	+ INFINITY	+ INFINITY

TABLE 4.9: SENSITIVITY ANALYSIS FOR AVAILABLE LABOR HOURS IN PHS .

TABLE 4.10: SENSITIVITY ANALYSIS FOR AVAILABLE GREEN HOUSE AREA IN SQUARE METERS

Period	Minimum		Original	Μαχιπι	ım
	Limit	%	Limit	Limit	%
1	581.1732	-70 94	2000	+Infinity	+Infinity
2	1065 196	-46 74	2000	+Infinity	+Infinity
3	993 6641	-50 32	2000	+Infinity	+Infinity
4	1112 155	-44 39	2000	+Infinity	+Infinity
5	1718 987	-14 05	2000	2061 26	3 06
6	1828 351	-8 58	2000	+Infinity	+Infinity
7	1866 694	-6 67	2000	+Infinity	+Infinity
8	1665 678	-16 72	2000 .	+Infinity	+Infinity
9	1813 816	-9 31	2000 1	+Infinity	+Infinity
10	489 1446	-75 54	2000	+Infinity	+Infinity
11	791 1940	-60 44	2000	+Infinity	+Infinity
12	738 0972	-63 10	2000	+Infinity	+Infinity
13	550 4908	-72 48	2000	+Infinity	+Infinity
14	938 0598	-53 10	2000	+Infinity	+Infinity
15	687 4267	-65 63	2000	+Infinity	+Infinity
16	35 4747	-63 23	2000 '	+Infinity	+Infinity
17	, 929-608 2	-53 52	2000	+Infinity	+Infinity -
18	808 7068	-59 56	2000	+Infinity	+infinity
19	658 9926	-67 05	2000,	+Infinity	+Infinity
20	775 2425	-61 24	2000	+Infinity	+Infinity
, 21	603 7406	-69.81	2000 '	+Infinity	+Infinity
22	1993 218	-0.34	2000	2012 51	+Infinity
23	1989 435	-0 E3	2000	+Infinity	+Infinity
24	1866 777	-6 66	2000	+inf.nity	+Infinity
25	1984 509	-C 77	2000	2007 83	039)
26	340 9820	-82 95	2000	+Infinity	+Infinity

*

TABLE 4 11A	SENSITIVITY	ANALYSIS FOR	OBJECTIVE	FUNC	HON

			NSIIIVIIY A	Maximum			Minimum		Maximum	
	,	Limit	Coefficient	Limit		·/	Limit	Coefficient	Limit	
-			-5 97	90 30	Mt	7	-Infinity	43 20	196 08	
VI.	1	-Infinity		90 30 94 76	Mt	8	-Infinity	47 99	196 76	
Vt	2	-Infinity	-9 32	94 70 158 69	Mt	9	-Infinity	52 18	306 63	
Vt	VV	-Infinity	-4 45		Mt	MD	-Infinity	67 13	360 70	
Vt	4	-Infinity	-10 61	110 74	Mt	11	-Infinity	58 04	335 18	
Vt	5	-Infinity	-9 14	103 37		12	-Infinity	61 16	267 78	
Vt	EE	-Infinity	0 41	154 64	Mt		-	63 64	188 84	
Vt	7	-Infinity	-3 22	188 66	Mt	13	-Infinity	65 60	68 21	
VI	8	-Infinity	076	116 30	Mt	14	-Infinity		83 40	
Vt	9	-Infinity	4 13	184 92	Mt	15	-Infinity	66 70 67 67	105 32	
Vt	MD	-Infinity	12 73	193 71	Mt	16	-Infinity	67 67 67 82	77 54	
Vι	11	-Infinity	9 09	168 06	Mt	17	-Infinity	67 82		
Vt	12	-Infinity	11 64	142 63	Mt	18	-Infinity	67 88	83 36	
Vt	13	-Infinity	13 84	135 39	Mt	19	-Infinity	67 27	79 97	
Vt	14	-Infinity	15 42	78 70	Mt	20	-Infinity	66 39 64 84	85 59	
Vt	15	-Infinity	16 50	42 55	Mt	21	-Infinity	64 84	74 60	
Vt	16	-Infinity	17 27	48 45	Mt	22	-Infinity	63 75	72 04	
Vt	17	-Infinity	17 49	63 49	Mt	23	-Infinity	59 88	60 18	
Vt	18	-Infinity	17 54	41 23	Mt	24	55 59	55 90	58 94	
Vι	19	-Infinity	17 08	52 53	Mt	25	46 82	52 30	53 27	
Vι	20	-Infinity	16 38	39 45	Mt	XX	-Infinity	59 68	133 55	
∣Vt	21	-Infinity	15 12	52 43	Mf	1	-Infinity	37 62	225 52	
Vt	22	-Infinity	13 24	37 40	Mf	2	-Infinity	28 87	219 40	
Vt	23	-Infinity	11 12	38 72	Mſ	VV	-Infinity	44 40	290 15	
V!	24	-Infinity	7 96	35 90	Mf	4	-Infinity	26 50	289 80	
Vι	25	-Infinity	4 96	37 91	Mf	5	-Infinity	31 63	286 77	
Vt	XX	-Infinity	6 93	94 48	Mſ	EE	-Infinity	56 93	370 99	
Mt	1	-Infinity	39 05	122 12	Mſ	7	-Infinity	45 15	287 56	
Mt	2	-Infinity	34 98	108 28	Mf	8	-Infinity	55 53	256 26	
Mt	VV	-Infinity	47 27	181 27	Mf	9	-Infinity	64 34	385 37	
Mt	-4	-Infinity	34 23	232 26	Mf	MD		88 20	442 27	
Mt	5	-Infinity	35 80	245 78	Mf	11	-Infinity	77 18	408 98	
Mt	EE	-Infinity	50 48	280 52	Mf	12	-Infinity	83 83	329 48	
•	EXPI	.ΑΝΑ ΓΙΟΙ	N OF VARIAL	BLES SYMB	OLS					
I Fu	st le	tter indica	tes plant vari	ety						
Ă A	Africa	n Violet	Ē	Begonia				C Cyclame	n	
H H	Hyad	rangea	C	Geranium	1			M Chrysan	themum	
1	zale									
II S	есон	d letter in	dicates pot si	70						
=		n cm		Ten cm				s Seventee	n & half cr	
1			/digits indicat		nen	nd		0.00101100		
	Eas			AD Mother'				VV Valenti	nos	
1		ustmas		no mother	s Da	/		vv valenti	103	
		Notation	s							
					DNI	Dour	nsettia fifte			
		aster Lily								
זערין	Ntw. Poinsettia twenty cin PNtf Poinsettia twenty five cm									

(X)	}		n Original	Maximum		(X_i)		Minimup	n Original	Maximun		
				1								
		Limit	Coefficient	Limit				Limit	Coefficient	Limit		
Mſ	13	-Infinity	90 18	220 51	0	Cř	MD	-Infinity	25 79	560 05		
Mf	14	-Infinity	93 62	132 18		Cf	XX	-Infinity	71 13	395 82		
Mf	15	94 32	96 36	103 80	E	EL	EE	-Infinity	32 56	211 32		
Mſ	16	-Infinity	98 39	126 91		Gt	vv	-Infinity	26 69	94 47		
Mf	17	95 11	98 90	99 76	0	Gt	FE	-Infinity	29.67	149 23		
Mf	18	98 58	99 03	101 65		Gt	7	-Infinity	23 26	69 05		
Mf	19	94 93	97 82	98 19		Gt	8	-Infinity	25 22	111 95		
Mf	20	-Infinity	95 98	102 05	0	Gt	9	-Infinity	26 61	175 58		
Mf	21	92 23	92 67	97.86		Gt	MD	-Infinity	35 00	168 97		
Mf	22	83 09	87 75	88 97		Gt	11	-Infinity	28 88	150 22		
Mf	23	80 36	82 22	87.52	0	Gt	12	-Infinity	29 92	120 37		
Mf	24	-Infinity	73 93	75 32		GI	13	-Infinity	30 86	72 07		
Mf	25	-Infinity	66 13	73.51		Gf	vv	134 08	136 74	225 94		
Mſ	XX	-Infinity	73 56	247 70	0	Gf	EE	139 36	141 85	143 69		
Zf	vv	-Infinity	174 72	184 26	0	Gf	7	-Infinity	127 56	174 03		
Zf	EE	149 84	186 54	188 20	0	Gf	8	129 17	131 23	138 28		
Zf	MD	203 75	212 09	214 53		Gf	9	-Infinity	134 17	188 91		
Zſ	XX	178 79	198 37	209 02		Gf	MD	-Infinity	152 84	206 31		
Zs	VV	-Infinity	183 48	268.77	0	Gf	11	-Infinity	138 61	176 19		
Zs	EE	197.62	201 23	223 44	0	Gf	12	123 41	141 04	171 23		
Zs	MD	-Infinity	244 00	252 49	0	Gf	13	138 65	142 78	156 93		
Zs	XX	-Infinity	224 68	296 95	}	Hſ	٧V	-Infinity	-8 81	443 05		
Bt	EE	-Infinity	70 57	154.64	ł	Hf	ΕE	-Infinity	5 13	336 65		
Bt	MD	-Infinity	78 45	185 10	}	Hf	MD	-Infinity	59 74	467 97		
Bf	EE	-Infinity	163 93	192 80		Hf	XX	-Infinity	47 40	412 13		
Bf	MD	-Infinity	191 24	244 50	ł	Hs	VV	-Infinity	105 27	529 84		
Ct	VV	-Infinity	-53 49	258 52	1	Hs	ΕE	-Infinity	134 61	406 12		
Ct	EE	-Infinity	-61 29	278 05		Hs	MD	-Infinity	214 22	577 51		
Ct	MD	-Infinity	-46 07	351.18	H	Hs	ΧХ	-Infinity	201 43	500 72		
Ct	XX	-Infinity	-29 40	235 95	F	PNI		-Infinity	93 35	270 04		
Cf	vv	-Infinity	14 26	401.84	F	PNt	w	-Infinity	55 32	514 75		
Cf	EE	-Infinity	-4 15	445 05	F	PN	f	-Infinity	92 57	747 93		
* : E	EXPI	ANATIO	N OF VARIA	BLES SYMBO	ΞĹ	S		Arana <u>an araan</u> and a				
I.Fır	st le	tter indica	tes plant vari	ety ·								
		In Violet		Begonia					C Cyclamen			
		angea		G Geranium					M Chrysantl			
	zale	•	-						in onlysain			
			dicates pot si	ze :								
t : Filteen cm t Ten cm s' Seventeen & half cir												
III.La	ast t	wo letters	digits indicat	e marketing	P	irio	d					
	Eas			MD. Mother's		-			VV [.] Valentir	ies		
		istmas	-		-	,						
		Notation	<u> </u>									
ELE	E: E	aster Lily	for Easter		PN	٩f	Poir	settia fifte	en cm	had adam		
PNI	w: P	Ntw: Poinsettia twenty cm PNtf. Poinsettia twenty five cm										

TABLE 4.11B. SENSITIVITY ANALYSIS FOR OBJECTIVE FUNCTION (Continued)

words, so as not to alter either the variables or their values in the optimal mix. The minimum coefficient was -infinity for most variables (110 out of 128), whereas the range for maximum coefficient varied from a low of 0.3 cents for Chrysanthemums 10 cm produced for the 23rd period (Mt23), to a high of 655.36 cents for Poinsettia 25 cm (PNtf).

4.5 Results of Other Models

Other models were formulated, based on the main model, to simulate increasing factor costs and to compare the profitability of various production periods within the year. This comparison would allow part time producers to choose a favourable production season that maximizes their net returns depending on their cost structure. Other models reflect additional marketing constraints. The results of these models, listed in flow chart form in Figures 4.7A and 4.7B, are discussed in the following sections.

4.5.1 Models with Marketing Constraints

Three additional models were built to simulate marketing constraints that include pot size and holiday quotas. The results of these models along with the values of the objective functions are presented in Tables 4.12 and 4.13.

Simulating the constraint of pot size quota, model 12 has shown that the distribution of pot sizes in the optimal plan, satisfied the designed percentages. In this manner, pots of Chrysanthemum 15 cm, restricted at a quota of over 70%, were 91.79% of the total Chrysanthemum pots produced. Geranium 10 and 15 cm were produced at 50% each, and Azalea 15 cm constituted 100% of all Azalea produced. The latter two plants satisfied the pot size quotas of 50% and above 70% respectively.

As for the holiday quota, which divided the number of plants produced for the four major holidays according to designed percentages, model 11 showed that only Azalea 17.5

1

.

FIGURE 4.7A: VALUES OF THE OBJECTIVE FUNCTIONS FOR THE OTHER MODELS IN A FLOW CHART FORM

Towns.

å

1

ā

.

FIGURE 4.7B: VALUES OF THE OBJECTIVE FUNCTIONS FOR THE OTHER MODELS IN A FLOW CHART FORM

.

•

CONSTRAINTS PLANT PLANT UNITS PER MODEL •											
VARIETY	11	12	13								
VIEE		· · · · · · · · · · · · · · · · · · ·	678 37								
Mt1	1487 33										
Mt25		1744 93									
Mf15	1735 06	4606 36	2284 54								
Mf17	1941 03	570 1	1550 41								
Mf18	3876 51	3725 4	3983 43								
Mf19	1018 65	2339 87	1256 73								
Mf21	3373 18	1716 59	2893 6								
Mf22	932 16	3730 36	797 75								
Mf23		1009 119									
MI24	1707 76	769 02	546 28								
M125		1037 83									
ZIVV		8509 4	690 0								
ZIEE		10365 7									
ZIMD		17815 3									
ZIXX	·	17967 5									
ZsVV	1380 9		anna an								
ZsEE	5523 7		295 7								
ZsMD	4142 78										
ZsXX	2761 85										
Gt7		9913 327	18569 54								
Gt8	1		732 47								
G19			4219 44								
Gt13		848 93	7863 34								
GIVV	13002 3		13603 3								
GIEE											
G17	1243 44										
G18	18030 93	1058 8	463 29								
GIMD											
G111	3810 08		3465 16								
G112	4147 07	5280 59	10781 32								
Gf13	12290 8	4422 9	30717								
HsEe			1785 91								
HsMD			2069 99								
HsXX	1		1379 99								
Pnf	4511 1		5713 2								
OFV. (\$)	120094 5	144192 3	81106 4								
• MODEL	A										
	2 POT SIZE										
	3 POT SIZE		AY QUOTAS								
	NATION OF V										

TABLE 4.12- OPTIMAL PLANS FOR ADDITIONAL CONSTRAINTS

~

,

Gf: Geranium, 15 cm

Zf Azalea, 15 cm Mt[·] Mums, 10 cm Zs Azalea, 17.5 cm Mf. Mums, 15 cm

	MODEL										
CONSTRAINT	11 (1)	12 (2)	13 (3)					
	ESTIMATED	REQUIRED	ESTIMATED	REQUIRED	ESTIMATED	REQUIRED					
I POT SIZE QUOTA		,									
Chrysanthemum, 10 cm	-		8 21%	<= 30°0	0%	<= 30%					
Chrysanthemum, 15 cm			91 79%	>= 700%	100%	>= 700,0					
Azalea, 15 cm			100%	>= 70%	7015	>= 70°6					
Azalea, 17 5 cm			0%	<= 30%	30%	<= 30%					
Geranium, 10 cm	NOT REQU	JIRED	50%	= 50%	50%	= 50%					
Geranium, 15 cm			50%	= 50%	50%	= 50%					
Hydrangea, 15 cm			0%	<= 15%	0%	<= 15%					
Hydrangea, 17 5 cm			036	>= 85%	100%	>= 85%					
Poinsettia, 15 cm			0%	>= 75%	100%	>= 75%					
Poinsettia, other			0%	<= 25%	0%	<= 25%					
II HOLIDAY QUOTA				*							
Valentine Day	10%	= 10%			10%	= 10%					
Easter	40%	= 40%	NOT REQUIRED		40%	= 40%					
Mothers day	30%	= 30%			30%	= 30%					
Christmas	20%	= 20%			20%	= 20%					

.

TABLE 4 13 SUMMARY OF MARKETING CONSTRAINTS MODELS

(1) MODEL 11 INCLUDES THE HOLIDAY QUOTA
(2) MODEL 12 INCLUDES THE POT SIZE QUOTA
(3) MODEL 13 INCLUDES BOTH QUOTAS

cm, was produced for the four main holidays. Consequently, the number of Azalea units produced for these occasions, indicated that the holiday quota, of 40%, 30%, 20%, and 10% for Easter, Mother's Day, Christmas, and Valentines respectively, was fulfilled.

Model 13 simulated both the pot size and holiday quotas. As a result, Chrysanthemum 15 cm, Hydrangea 17.5 cm, and Poinsettia 15 cm made up 100% of the produced pot sizes of the relevant varieties. Geraniums, on the otherhand, were divided equally for the two pot sizes, whereas Azalea 15 cm constituted 70% of the total Azalea produced. As for the holiday quota, there were four plants produced for the main holidays, African Violets 10 cm, Azalea 15 and 17.5 cm, and Hydrangea 17.5 cm. Again the production of these plants was distributed among the holidays according to the designed quota. Therefore both of the quota marketing constraints were satisfied.

It was noted that the value of the objective function for the holiday quota constraint (120,094.50 \$) was lower than that of the pot size constraint (144,192.30 \$). This value was lowest when both constraints were considered together (81,106.40 \$).

4.5.2 Simulation of Input and Output Price Increase

Sixteen models were built to simulate increases in the selling price and input costs such as heating, labor, and materials. These increases ranged from 10% to 40% of the original values for each of the inputs. This would show the degree of variation and sensitivity of the total net returns of the main model, with respect to changes in input costs. Table 4.14 lists the values of the objective functions for different input costs. In this manner, it was noted that of the input costs, changes in material costs had the largest effect on the value of the total net returns. A 10% increase in material costs decreased the net returns by 20.3% as

TABLE 4 14	VALUES OF	OBJECTIVE	FUNCTION FO	R DIFFERENT IN	OT TU'	OSIS & S	% CHANGF

PERCENTAGE	1				INPUT			
CHANGE	MATERIAL	% •	LABOR	% *	PRICES(1)	% *	HEAT	% •
10 %	119963 3	-20 3	146447 7	-27	206215 8	37 0	148223 2	-15
20 %	97374 9	-35 3	142434 4	-54	2641979	75 5	145935 1	-30
30 %	X	X	138486 2	-80	322000 4	114.0	143664 1	-4 5
40 %	653613	-56 6	134543 9	-106	430453 9	186 0	141698 3	-58
	ORIGINAL N	ODEL :	= \$150,5	01.10				

* AS PERCENTAGE CHANGE FROM THE VALUE OF ORIGINAL MODEL

(1) SALE PRICES ARE INCREASED BY RESPECTIVE PERCENTAGE

TABLE 4.15. OPTIMAL PLANS FOR SEASONS AND SINGLE HOLIDAYS

PLANT	PLANT UNITS PER MODEL (1)								
VARIETY	2	3	4	5	6	7	8	9	10
ZIVV					6327.9		2994 0		
ZIEE			5428 7	5428.7					
ZIMD	19642.1	21776 0	19642 2	19240 6					'9642 1
ZIXX	20964 9				16905 6	22222 2			
ZsVV			9469 1	9469.1			12361 0		
ZsEE	3369.4	1362.1						11591 8	
GIVV	5029 3				8610 7				
GIEE	12844 2	20169.8	8255 2	8255 2				9428 6	
GIMD	5805 2	1004 0	5805 2	4604 8					5805 2
G18				2103 9					
OFV (\$)	123997	79071.1	89742 2	89816 8	56366 0	44082 2	27911.1	36700 7	50531 7
O.F V OBJECTIVE FUNCTION VALUE									
(1) MODEL	DESCRIP	TION							
MODEL 2 VV,EE,MD & XX			MODEL 7: XX						
MODEL 3 EE & MD			MODEL 8. VV						
MODEL 4" VV, FE, & MD			MODEL 9 EE						
MODEL 5 VV UNTIL MD			MODEL 10 MD						
MODEL 6	XX & VV								
(2) EXPLANATION OF VARIABLES SYMBOLS									
Gf. Geranium, 15 cm			Zs · Azalea, 17 5 cm						
71 Azaloa	15 cm								

ZI Azalea, 15 cm

×

compared to 2.7% and 1.5% for labor and heating costs respectively. This table indicates that heating costs were not the most sensitive input in the production costs.

An increase in the selling prices had a large positive effect on the net returns. This ranged from a 37% for a 10% increase in price to a 186% increase for a 40% price increase. This showed that increasing the product price would have a larger effect on the net returns than decreasing any of the input costs. This result reflects the importance of adopting means that can increase prices, such as the addition of value to crops, or other ways that will increase the demand levels.

4.5.3 Models for Other Occasions

Nine models were formulated to maximize net returns for various periods of the year. These periods included seasons such as spring and winter, and the four main holidays. The optimal plan was also obtained for a production year which included only the four main holidays (model 2). The results of these models, were listed in Table 4.15. It was shown that the latter model, with four production periods, had lower net returns (123,997 \$) than the original model (150,510.10 \$) which included 26 periods. In this manner, the value of the holiday period amounted to about 82.4% of the value of the original model. This can be explained by the fact that the main model included larger choice of decision variables.

In comparing the spring models, it was found that model 5, which included all the spring periods (Valentines till Mother's Day), yielded larger net returns than models 3 and 4, which included parts of the spring. The same reason as the previous case could explain this result.

As for seasons, the spring model (model 4) which optimized production plans for Easter and Mother's Day, resulted in larger net revenues than the winter model (model 6) which involved the Christmas and Valentines holidays. This could be attributed to higher production costs in winter.

In the case of individual holidays, the production plan for Mother's day (10) yielded the highest net returns of 50,531.70 dollars. Production for Christmas (7) ranked second in income with 44,082.20 dollars. It was followed by Easter (9) and Valentines (8) with 36,700.70 and 27,911.10 dollars respectively.

4.6 Summary and Discussion

The main linear programming model to maximize net returns in pot flowers, indicated that Azalea 15 cm, marketed for Christmas, was the plant with the highest level produced for a single period with 20091 units. This figure amounted to 20.61% of the total yearly production. As for variety, Geranium 15 cm, produced for five main periods during the spring, accounted for the largest production during the year (38.83% of total production), while Azalea 17.5 cm, was the variety with the lowest production (3.67% of total production).

It should be noted that a long season of production coupled with high heating costs, have discouraged the complete production process of Azalea in Québec, and resulted in the import of semi-finished plants to be forced locally. Therefore, the model results depend on the presence of low prices of the imported product. In contrast, Geranium, the variety with the highest level of production in the optimal plan, has a relatively shorter season of production (6-8 weeks) with lower production costs. This plant which is produced totally in Québec, has a wide popularity among fact. producers and consumers. In several ornamental counsellors (Senecal, 1989) have indicated that the production of this plant was largest among many ornamental plants in the province. However, it should be noted that this plant has been more widely used for landscaping purposes than as a pot flower.

Geranium used for landscaping is largely sold in trays or 10 cm pots. The optimal plan, which suggested the production of 15 cm Geranium pots, might have indicated the importance of marketing better quality plants, as far as plant and flower size were concerned.

Moreover since Geranium was to be produced for periods eight (16th to 29th of April), twelve and thirteen (June 4th to July 1st), which are not holiday periods, draws the attention to off-season marketing periods. These two factors might constitute reasons for the success of the 15 cm pots of Geranium.

The same result was found for Chrysanthemum, which was to be produced for several non-holiday periods throughout the year. This approach is more common in Europe, where plants are marketed all year round. However, it should be noted that the importance of these marketing periods, as calculated by the optimal plan, reflect the cost and resource distribution as performed by the optimization process, and not the importance of the dates per se.

This indicates that improved and aggressive marketing techniques, such as discount packages and price concessions, might encourage production and increase profits during those periods where production costs and resource allocation are optimum.

Cost accounting performed in this study, which showed the distribution of costs among different inputs, has revealed interesting results. The material costs accounted for major portions of production costs (83.1%), while heating costs accounted for 6.1%. However, this could be attributed to the method used in this study, which calculated heating costs depending on the area used per plants. However, unless the greenhouse could be built in a way to separate or isolate heated compartments every period (2 weeks) based on the used area, the heating costs should be calculated for the whole 2000 square meters. Consequently, the total heating costs were estimated at 37,633.90 dollars per year. This figure was calculated based on the energy requirements listed in Table 3.1. This figure amounts to 9.63% of the total costs but is still below labor costs (10.37%) and material costs (80%).

and the second se

This method of calculation will reduce the total net returns to 135,714.70 dollars. With total costs in mind, this indicates that the ratio of net benefits to total operating or variable costs is about 34.73%, which reflects a relatively high rate of return. A comprehensive evaluation of profitability, however, has to include portions of the fixed costs.

The optimal plan also reflected the rate of resource use and productivity. In this respect, it was concluded that the greenhouse space area was not fully used in most periods, in contrast to available labor hours, which were fully used in 15 of the 26 periods.

Additional units of labor hours in deficient periods, had high values of marginal productivity. This ranged from 78.76 dollars per hour in period 2 to 1.22 dollars in period 19. The wage rate of 5.50 dollars per hour, was exceeded in 11 of the 15 periods when labor was deficient. This encourages the hiring of additional part time workers to increase net returns. The plan would remain viable as long as available labor hours do not exceed the range set in the sensitivity analysis. The situation was different for space, in which the value of marginal productivity ranged from a maximum of 18.04 dollars to 1.69 dollars in three space deficient periods.

The analysis also included a sensitivity analysis, which indicated the ranges of plant net profits, and variations in constraints levels that would keep the the optimum plan feasible. These were listed in Tables 4.9 to 4.11B.

Marketing constraints, such as pot size and holiday quotas were added to the main model. The values of these constraints were estimated based on interviews with producers and ornamental counsellors. The pot size quota, divided the production of a certain plant variety among different pot sizes, in a designed percentage. The optimal plan, produced Chrysanthemums 15 and 10 cm, into 91.79% and 8.21% portions respectively. Geraniums 15 and 10 cm were divided equally, while Azalea 15 cm made up 100% of the produced Azaleas.

The holiday quota, on the other hand, distributed the production of the plants commonly produced for the four main holidays into a distribution of 40%, 30%, 20%, and 10% for Easter, Mother's Day, Christmas, and Valentines respectively. The optimal plan, which produced one plant variety common for the four holidays, Azalea 17.5 cm, satisfied this requirement.

Net roturns for the models with additional marketing constraints were found to be lower than the main model, which only had space and labor constraints. However, the model with the pot size quota yielded higher net returns than the model with the holiday quota.

Other models which maximized net returns for different periods of the year, indicated that the spring model, which included Easter and Mother's Day, had higher net returns than the winter model, which included Christmas and Valentines. This could be attributed to higher production costs during the winter season. As for individual holidays, production for Mother's Day yielded the highest net profits. This was followed by Christmas, Easter, and Valentines.

The value of the objective function was analyzed for varying percentages of input costs and selling prices. It was concluded that variations in material costs had the largest effect. A 10% increase in material costs reduced the net returns by 20.3% compared to 2.7% and 1.5% for labor and heating costs respectively. Increased selling prices, raised substantially the value of net returns. This varied from 37% for a 10% price increase to 186% for a 40% price increase.

This analysis has thus increased available information, and contributes to better decisions being made in the production of greenhouse pot flowers.

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusion

1

This study simulated the economic conditions and cultural practices followed in the production of major pot flowers in the province of Quebec. This was done to optimize the use of greenhouse space and maximize net returns. A linear programming model was formulated to investigate the optimal crop mix given limitations of labor and space availability, and market restrictions. In this process, variable production costs, which include labor, material, and heating, were estimated from interviews with producers and ornamental counsellors in the area of Montreal, and other governmental publications. It should be poted that the discussed model is a normative one, therefore the results imply optimality for the given set of prices and resources.

Results of the optimal plan showed that Azalea 15 cm, produced for Christmas, had the largest production level for a single period (20.61% of total output), while Geranium 15 cm, was the crop produced with the highest level for the (38.83% of total output). The plan also whole year recommended the production of off-season crops which were produced for periods other than the holiday periods. This included Chrysanthemums 10 and 15 cm, and Geranium 15 cm. Moreover, non-traditional pot sizes, such as Geranium 15 cm, and Chrysanthemums 10 cm were included in the plan. However, it should be noted that the conclusion to include off-season crops and non-traditional pot sizes in the optimal plan, were due to the relative profitability of these plants when marketed for a specific period, and the satisfaction of resource constraints in these periods. Considerable care has to be taken in the formulation process so as to reflect production conditions related to the investigated production firms.

The optimal plan reflects levels of resource use for and assigned values for different seasons resource productivity. This increases the understanding of the related factors affecting profitability, and shows timing of resource that production efficiency. constrain Successive use application of this technique in Quebec can lead to a better allocation of production resources, and improved decisions and practices. These practices include the choice of mother plants, level of mechanization, production techniques, plant spacings, and levels of labor use.

The model's sensitivity analysis, which includes various levels of input and output price changes, indicates the range of values for which the plants' net returns and levels of resource use, could vary to keep the optimal plan valid. This increases the level of certainty and quality of information for management. In other words, it shows the robustness of the optimal production plan in the face of uncertain prices and resource availabilities. This study also provides a general idea concerning the relative profitability of different periods and holidays of the year.

In conclusion, the use of linear programming as an optimizing technique to allocate space use in the pot flower industry, has the potential to be a powerful tool to improve the quality of decision making in the greenhouses of Quebec. Improving the productivity of the greenhouse space due to more efficient use of greenhouse facilities, will reduce production costs, and increase profitability. Moreover, LP as a flexible management tool is very important for the pot flowers which are designed for various holidays of the year. Since some of the holiday dates vary between years, and affect the cost structure of plants, a flexible design tool as LP, was found to be most appropriate.

Moreover, the use of LP, which contributes to improving the producer's managerial abilities, will allow the greenhouse growers, which operate in a rapidly growing and

competitive environment, to remain viable, competitive, and successful.

5.2 Implications of Research

Į

The following points, achieved in this study, are considered to be contributions to knowledge:

- 1-This study represents one of the ways to illustrate the usefulness of the computer as a horticultural production aid. Producers could implement this technique in everyday planning to improve decisions with minimum costs. However a good pre-program to translate operating data into the proper format and a post-program to explain output data are necessary for efficient use of this technique.
- 2-The application of LP in the pot flower industry, is believed to be the first trial in this field in the province of Quebec. It is hoped that this might open the door for further LP applications and research in ornamental production in this province.
- 3-The process of model formulation, illustrated in this study, required a sound knowledge in cost accounting. Such knowledge would allow producers to allocate production costs for each plant product; to better evaluate production practices; and to understand resource productivity and associated limitations. Thus gathering this information in the process of model formulation, will act as an information system to direct corrective cost reduction actions (such as methods of production, or plant quantity, or variety).
- 4-This study showed the usefulness of LP as an improved decision making ability tool to increase the amount of available information for greenhouse managers in the floral industry. This included the optimal product mix, values of resource use and productivity, quantities of input use, estimates of net profits, and sensitivity of results.

5.3 Recommendations for Further Research

Based on the above summary and conclusion, the following recommendations for further research can be made regarding the use of LP in the pot flower industry:

- To include additional secondary pot flowers such as Asiatic lily, Rose bush, Impatiens, and some bulb plants like Tulips, Iris, and others.
- To simulate several production layers in the greenhouse. Since many greenhouses use hanging baskets, multiple layer benches, and to use the space under the benches.
- 3) To include other filling plants with pot flowers such as house plants and bedding plants so as to maximize the use of space in all periods.
- 4) To formulate a multiple period model which permits an optimization process for two or three year periods.
- 5) To include other non-traditional pot sizes of plants to the list of production variables.
- 6) To study the effect of using a larger number of plant spacings during the production cycle. This may show a better use of space but will result in higher labor costs.
- 7) To compare results of the LP model with other forms of mathematical programming such as integer programming.

LIST OF REFERENCES

Agrawal, R.C., and E.O. Heady. 1972. <u>Operations Research</u> <u>Methods for Agricultural Decisions</u>. The Iowa State University Press. Ames, U.S.A. 303pp.

Ţ

Anonymous. 1989. "L'Horticulture Ornementale". Received in personal communication.

Ball, G. 1975. <u>The Ball Red Book</u>. Geo. J. Ball Inc. U.S.A., 13 th edition. 502 pp.

Barker, R. 1964. "Use of Linear Programming in Making Farm Management Decisions." Cornell University Agriculture Experimental Station Bulletin 993.

Basham, C.W. and J.J. Hanan. 1983. "Space Optimization in Greenhouses with Linear Programming." <u>Acta Horticulturae</u>, 147:45-51.

Bloch, N. 1983. "The Application of Production Planning in Practice." <u>Acta Horticulturae</u>, 147:125.

Bowers, C. G. 1968. <u>Rhododendrons and Azaleas: Their Origins</u>, <u>Cultivation, And Development</u>. The Macmillan Company. New York, U.S.A. 525 pp.

Boyd, R., T.D. Phillips, T.M. Elessington, and S.P. Myers. 1982. "Costs of Producing Selected Floricultural Crops." AEC Research Report No. 113, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University. Mississippi, U.S.A.

Carrier, A. 1984. "Point des Conseillers en Horticulture." Symposium International sur la Serriculture: Perspective <u>d'Avenir</u>. Universite Laval. Quebec, Canada. pp. 393-408.

Carrier, A. 1988. "Etat de L'Industrie de la Serriculture au Quebec et Perspective d'Avenir." Quebec. Canada.

Catterall, E. 1984. <u>Growing Begonias</u>. Timber Press, Oregon, U.S.A. 132 pp.

Comité de References Economiques en Agriculture du Quebec (CREAQ). 1987. "Couts de Chauffage." Agdex 717/290. Ministere de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ). CREAQ. Septembre 1987.

CREAQ. 1989a. "Production en Serre, Budgets." Agdex 290/821. Ministere de l'Agriculture, des Pécheries et de l'Alimentation (MAPAQ). Fevrier 1989. CREAQ. 1989b. "Production en Serre, Potees Fleuries." Agdex 295/821. Ministere de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ). Fevrier 1989.

CREAQ. 1989c. "Serre." Agdex 731/200. Ministere de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ). Fevrier 1989.

Dansereau, B. 1990. "La Production du Chrysantheme et du Poinsettia. Departement de Phytologie." Universite Laval. Quebec, Canada.

Duguay, C. and R.W. Anderson. 1986. "The Canadian Cut Flowers Industry." Marketing and Economics Branch, Agriculture Canada, Ottawa, Canada.

Dumas-Rousseau, M. Undated. "Les Régions Agricoles du Quebéc." Ministere de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ).

Eppen, G.D. and F.J. Gould. 1985. <u>Quantitative Concepts for</u> <u>Management: Decision Making without Algorithms</u>. Prentice Hall, New Jersey, U.S.A. 689 pp.

Gortzig, C.F. 1976. "Profit Maximization in Commercial Greenhouse under Northern United States Production and Marketing Conditions: A Linear Programing Approach." Ph.D. Thesis, Michigan State University, U.S.A.

Hales, A.W. 1972. "Experiences with Linear Programming in Horticultural Advisory Work". Proceedings of the Second Meeting on Horticultural Economics. Montpellier, France. <u>Acta</u> <u>Horticulturae</u>, 25:148-167

Hazell, P.B. and R.D. Norton. 1986. <u>Mathematical Programming</u> for Economic Analysis in Agriculture. Macmillan Publishing Company. New York, U.S.A. 400 pp.

Heady, E.O. 1954. "Simplified Presentation and Logical Aspects of Linear Programming Techniques. <u>Journal of Farm</u> <u>Economics</u>, 36:1035-1048.

Heady, E.O., and H.C. Love. 1954. "Optimum Allocation of Resources between Pasture Improvement Crops and Other Investment Opportunities on Southern Iowa Farms." Iowa Agricultural Economics Experimental Station Bulletin number 437.

Heady, E.O., and W. Candler. 1958. <u>Linear Programming</u> <u>Methods</u>. Iowa State University Press. Ames, Iowa, U.S.A.

Hydro Quèbec. 1990. Personal communication.

James, T. Jr. 1983. <u>How to Select and Grow African Violets</u> <u>and Other Gesneriads</u>. HP Books, Fisher Publishing Inc Arizona, U S.A. 144 pp.

1

Jozwik, F. 1984. <u>Plants for Profits: A Complete Guide to</u> <u>Growing and Selling Greenhouse Crops</u>. Andmar Press, Mills, Wyomig, U.S.A. 334 pp.

King, R.A. 1953. "Some Applications of Activity Analysis in Agricultural Economics." <u>Journal of Farm Economics</u>, 25: 823-833.

Larson, R. 1980. <u>Introduction to Floriculture</u>. Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina. Academic Press Inc. New York, U.S.A.

Lebeau, J. 1984a. "Point de Vue d'un Economiste." Symposium <u>International sur la Serriculture: Perspective d'Avenir.</u> Universite Laval. Quebec, Canada. pp. 384-392.

Lekeau, J. 1984b. " La Rentabilite des Productions Serricoles au Quebec." Agriculture Canada. Ottawa, Canada.

Lippert, T. 1983. "Linear Programming, Input and Output." Acta Horticulturae, 147:117-124.

Rae, A. N. 1977. <u>Crop Management Economics</u>. St. Martin's Press. U.S.A. 525 pp.

Sabota, C.M., D.J. Williams, and R.E. Westgren. 1987. "Linear Programming Models for Wholesale Nursery Product Mix Planning." Journal of American Society of Horticultural Sciences, 112(3):506-510.

Saedt, A.P.H. and E. Annevelink. 1988. "A Decision Support System Based upon a Transition Model for Production Planning in Potplant Nurseries." <u>Acta Horticulturae</u>, 223: 234-241.

Senecal, M. and F. Bigras. 1986. "Culture de l'Hydrangee." Conseil des Productions Vegetales du Quebec. Ministère de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ). Bulletin Techniques # 12. Quebec, Canada.

Senecal, M. and F. Bigras. 1987. "La culture du Lis de Paques." Conseil des Productions Vegetales du Quebec. Ministère de l'Agriculture, des Pécheries et de l'Alimentation (MAPAQ), Agdex 295/20. Quebec, Canada.

Senecal, M. 1989. "Regard sur la Production Serricole de la Pegion 10: Les Cultures Arbitees du Quebec." <u>Le Producteur Horticole</u>. Avril 1989. Quebec, Canada.

Sowell, R.S., D. H. Willits, P.V. Nelson, and A.J. Coutu. 1982. "Optimizing Greenhouse Production Management Decisions Using Linear Programming." Proceedings of American Society of Agricultural Engineers. Michigan Paper 82-5021. U.S.A.

Statistics Canada. 1989. "Greenhouse Industry 1987-1988." Agriculture Division. Catalogue 22-202. Ottawa, Canada.

Thierauf, R. and R. Grosse. 1970. <u>Decision Making through</u> <u>Operations Research</u>. John Wiley and Sons Inc. New York, U.S.A. 570 pp.

Vaut, G.A., R.L. Christensen, T.C. Slane, and J.F. Smiarowski. 1973. "Greenhouse Linear Programming." Department of Agriculture and Food Econemics. University of Massachusetts, Amherst. Publication no. 93:1-29.

Weston, F.C. and S. Schumacher. 1983. "Linear Programming: Economic Interpretation of Model Results in a Glasshouse Floriculture Environment." <u>Acta Horticulturae</u>, 147:89-98.

Williams, H.P. 1985. <u>Model Building in Mathematical</u> <u>Programming</u>. John Wiley and Sons Inc. New York, U.S.A. 349 pp. APPENDICES

*
Appendix A

i

Listing of the questionnaire distributed to producers

INFORMATION GENÉRALE

Nom de la Pépinière	
Endroit :	
Nom du gérant :	
Date :	
No. d'employés :	Temps plein :* hrs/semaine
:	Temps partiel:* hrs/semaine
Surface Totale :	
Surface Plantée:	
Type : (Vitre/plastique) Epaisseur(S/D) : (Single/double) Age Couverture :	
Forme ** :	
Chauffé par :	
Ventilation : (Fan/Naturellle) Autre Remarques:	
:	
*- Surface Plantée : Passages Long.=	Dimension des bancs : Long.= * Larg.= * Larg.=
** Forme : Gothique (DU semi-circulaire
	Liste des Plantes Présentes
Azalées Begonias	Lil de Pâques Géraniums Ilydrangée Poinsettia

e

•

Item	 	 	 	
/arietés plus Importantes				
Specifications *		11		
Commencé en (bouture,bulbe.)				
Source (Local/Importe)		11		
Saicon de Croissance				
de/à				
Jours		11		
Saison de mise en marché				
Nombre de plants par pots				
Grandeur de pot plus import.		11		
listance d'espacement				
a âge en jours				
à âge en jours				
a age en jours		11		
Grandeur de Production **				
Ji Milliour de l'roduceron				
COUTS DES MATÉRIAUX				
Bouture(Si plus multiplier)				
[erre/pot))		
ot				
Fertilisants/pot				
Pesticides/pot		[]		
Emballage				
lain d'oeuvre/pot				
Chauffage/pot				
'ransport/pot		{ }		
Entretien/pot				
lectricité/pot		11		
lsage de CO2/pot				
Coûts fixee/pot		ĮĮ		
lutres (Précisez)				
AUTRES INFORMATIONS				
lélange de Medium Utilisé				
ourcentages %		11		
-		<u>}</u>		
Iddition au medium Besoin en Main d'oeuvre				
		11		
(heures/100 pots/semaine)				
(heures/100 pots/saison)		11		
lombres d'heures de gestion				
(/100 pots/semaine)				
(/100 pots/saison)				
Salaire/heure		11		
fan d'vre exprimnt Salare/hr				
'rix de vente moyen				
moyen perte dans producton				
)emande				
Temp.moyenne de la serre		11		
· · · · · · · ·				

alle.

1. A. A.

Ę

** Grandeur de Production : Grand (plus de 20,000), Moyen(entre 10-20,000) Petit (moins de 10,000)

•

Appendix B

Ť.

*

常

- Tables of CREAQ : 1) Heating requirements for the region of Montreal
 - 2) Conversion table for different energy sources

TABLE B-1:	HEATING	REQUIREMENTS FOR L JOINT GREENHOUSE
	FOR THE	MONTREAL REGION

	(Consom	mation	mensue	lle de	combu	stible	par ur	iité di	surfa	ice			
Fempérat: Jour	ure intérieure Nuit	jan	fév	mars	avr	ma 1	juin	jull	août	sept	oct	nov	déc	total
- °C	+		· · · · · · · · · · · · · · · · · · ·			<u> </u>		1/m² -						
26	26	18.3	14 3	11 6	7.3	4.4	2.4	17	2.3	4.1	7.6	11.4	17.1	102.5
••	24	17 6	13 7	11 0	6.8	4 0	2.0	1.3	1.9	3.6	7.0	10.7	16.4	96.0
	22	16.9	13 1	10.4	6.3	3 6	1.7	1.0	14	3.1	6.3	10 0	15 7	89.7
	20	16.2	12 6	9.9	5 9	J.2	13	0.7	11	2.6	5.7	9.4	15.0	83.5
	18	15 5	12.0	9 Ĵ	54	2.8	1.0	0.5	0.8	2.1	5.1	8.7	14.3	77.5
	16	14.8	11 4	8.7	49	2.4	08	0 4	0.6	1 7	4.5	8.0	13 6	72.0
	14	14.1	10.8	8 2	4.5	2.1	0.7	0.3	0.0	1.4	4.0	7 4	.2.9	60.7
			10.3	76	4.0								-	
	12	13.4				1.8	0.6	0.)	04	1.1	34	6.7	12.2	61.8
	10	12.7	9.7	70	3.6	1.6	0.5	0.2	0.3	1.0	3.0	6.1	11.5	57.2
24	24	17.1	13.4	10 7	6.5	3.7	1.9	1.2	1.8	3.4	6.7	10.3	16.0	92.6
	22	16.4	12.8	10 1	6.1	3.3	1.5	0.8	1.3	2.9	60	9.7	15.3	86.2
	20	15.7	12 2	9.5	5.6	2.9	1.1	0.6	0.9	2.4	5.4	9.0	14.6	80.0
	18	15.0	11.6	90	5.1	2.5	0.9	0.4	0.6	1.9	4.8	8.1	13 9	74.1
	16	14.4	11 0	8.4	1.6	2.2	0.6	0.2	0,4	1.5	4.2	7.7	13.1	68.5
	14	13.7	10.4	7.8	4.2	1.8	0.5	0.2	0.3	1.2	3.7	7.0	12.4	63.2
	12	13.0	9.9	7.3	3.7	1.6	0.4	0.1	0.2	0.9	3.1	6.3	11.7	58.3
	10	12.3	9.3	6.7	3.3	1.4	0.4	0.1	0 2	0.8	2.7	5.7	11.0	53.8
22	22	16.0	12 4	9.7	5.8	3.1	1.4	0.8	1.2	2.7	5.8	9.3	14.8	83.0
	20	15.3	11.8	9.2	5.3	2.7	1.0	0.5	0 9	2.2	5.2	86	14.1	76.8
	18	14.6	11.3	8.6	4.8	2.3	0.7	0.3	06	1.7	4.5	8.0	13.4	70.9
	16	13.9	10.7	8.0	4.4	1.9	0.5	0.2	0.4	1.3	4.0	7.3	12.7	65.3
	14	13.2	10.1	7.5	3.9		0.4	0.1					12.0	
						1.6			0,2	1.0	3.4	6.6		60.0
	12 10	12.5 11.8	9.5 8.9	6.9 6.3	3.5 3.0	1.3	0.3 0.2	0.1 0.1	0.2	0.7 0.6	2.8 2.4	6.0 5.3	11.3	55.1 50.5
						. ,								
20	20	14.9	11 5	88	50	25	0.9	0.5	0.8	2.1	4.9	8.3	13.7	73.8
	18	14.2	10.9	8.'	4.6	2.1	0.6	0 3	0.5	1.6	4.3	7.6	13.0	67.9
	16	13.5	10.3	7.7	4.1	1.7	0.4	0.1	0.3	1.2	3.7	7.0	12.3	62.3
	14	12.8	97	7.1	3.6	1.4	0.3	01	0.2	0.9	3.1	6.3	11 6	57 0
	12	12 1	9.2	6.6	3.2	1.1	0.2	0.0	0,1	0.6	2.6	5.6	10.9	52.1
	10	11.4	8.6	6.0	2.8	0.9	0.1	0.0	0.1	э.	2.1	5.0	10.1	47.6
18	18	13.8	10.6	80	4.3	1.9	0.6	0.2	0.5	1.5	4.1	7.3	12.6	65.2
	16	13.1	10.0	7.4	3.8	1.5	0.3	0.1	0.3	1.1	3.5	6.6	11.8	59.6
	14	12.4	94	6.8	3.4	1 2	0 2	0.0	0.1	0.7	2.9	6.0	11.1	54.3
	12	11.7	8 8	6.3	2.9	0.9	0.1	0 0	0 1	0.5	2.3	5.3	10.4	49.4
	10	11.0	8.3	5.7	2.5	0.7	0.1	0.0	0.0	0.3	1.9	4.7	9.7	44.9
16	16	12.7	97	7.1	3.6	1.4	0.3	0.1	0.3	1.0	3.3	6.3	11.4	57.2
	14	12.0	9.1	6.5	3.2	1.4	0.2	0.0	0.1	0.7	2.7	5.7	10.7	51.9
	12	11.3	8.5	6.0	27	0.8	0.1	0.0	0.1	0.4	2.1	5.0	10.0	47.0
	10	10.6	7.9	5.4	2.3	0.6	0.0	0.0	00	0.3	1.7	4.4	9.)	42.4
14	14	11.6	8.8	6 3	3.0	1.0	0.2	0.0	0.1	0.6	2.5	5.4	10.3	49.
	12	10.9	8.2	5.7	2.5	0.7	0.1	0.0	0.1	0.4	2.0	4.7	9.6	44.8
	10	10.2	7.6	5.1	2.1	0.5	0.0	0.0	0.0	0.2	1.5	4.1	8.9	40.3
12	12	10.5	79	5.1	2.4	0.6	0.1	0 0	0,1	0.3	1.8	4.5	9.2	42.8
	10	9.8	7.4	4.9	1.9	0.4	0.0	0.0	0.0	0.2	1.4	3.8	8.5	38.3
10	10	9.5	7.1	4.6	1.8	0.3	0.0	0.0	0.0	0.2	1.3	3.6	8.2	36.0

Source: CREAQ, Agdex 717/290, September 1987

1

Source d'énergie	Unité de mesure	Energie brute (Kilojoule)	Efficacité (%)	Emergie nette (Kilojoule)	Facteur de conversion à utiliser
Electricité Mazout n° 6 Mazout n° 5 Nazout n° 4 Mazout n° 2	kWh litre litre litre litre	3 600 42 200 4.1 100 40 000 38 850	100 75 75 75 75 75	3 600 31 650 30 825 30 000 29 138	8.0939 0.9206 0.9453 0.9713 1.0000 réf.
Gaz naturel Gaz naturel Gaz propane Gaz propane Charbon Bois mou (1) 201 d'hum. (276 kg/m ³)	mètre cube mètre cube litre litre kilogramme kilogramme	37 890 37 890 25 529 25 529 30 328 17 910	90 65 92 80 75 60	34 101 24 628 23 487 20 423 22 746 10 746	0 8545 1,1831 1,2405 1,4267 1,2810 2,7115
Bois dur (l) 20% d'hum. (476 kg/m ³) Résidus de bois 35% d'hum.	kilogramme kilogramme	17 '45 13 956	65 60	11 339 8 374	2.5697 3.4796

TABLE B-2: TABLE OF CONVERSION FOR DIFFERENT ENERGY SOURCES

Source: CREAQ, Agdex 717/290, September 1987

Appendix C

ъ.

1

Costs of production : labor, heating, and materials

Plant	Pot size	Cutting	Medium	Pot	Fertilizer	Pesticide	Package	Transport	Subtotal
African Violet	10 cm	33	4	8	3	3	15	5	71
Azalea	15 cm	500	0	0	2	6	30	16 5	554 5
Azalea	17 5 cm	625	0	0	3	7	40	22	697
Begonia	10 cm	30	4	8	3	3	15	5	68
Begonia	15 cm	30	14	17	10 5	10 5	30	11.25	123 25
Chrysanthemum	10 cm	20*2	4	8	2	45	15	5	78 5
Chrysanthemum	15 cm	20*5	14	17	7	16	30	11 25	195.25
Cyclamen	10 cm	60	4	8	2	4.5	15	5	98 5
Cyclamen	15 cm	60	14	17	7	16	30	11 25	155 25
Easter Lily	15 cm	100	14	17	6	13	30	11 25	191 25
Geranium	10 cra	43	5.8	85	3	5	15	5	85 3
Geranium	15 cm	43	14	17	7.25	17 5	30	11 25	140
Hydrangea	15 cm	300	0	0	4	6	30	16 5	356 5
Hydrangea	17 5 cm	300	0	0	6	7	40	22	375
Poinssettia	15 cm	55	14	17	8	16	30	11 25	151 25
Poinssettia	20 cm	55*2	21	61	11 5	23	56	22 5	305
Poinssettia	25 cm	55*3	28	88	15	30	75 3	30	431 3

* *

TABLE C-1: TOTAL MATERIAL COSTS PER POT IN CENTS

e 3.44

ł

			Costs (ce		Selling	Net	
Plant	Pot size	Labor	Heating	Material	Subtotal	Price	Returns
African Violet	10 cm	35 130	17 940	71 000	124 070	131 000	6 9 3 0
Azalea	15 cm	32 460	39.170	554 500	626 130	824 500	198 370
Azalea	17 5 cm	33 760	63 060	697 000	793 820	1018 500	224 680
Chrysanthemums	10 cm	60 040	20 030	78 500	158 570	218 250	59 680
Chrysanthemums	15 cm	72 290	46 900	195 250	314 440	388 000	73 560
Cyclamen	10 cm	127 400	21.750	98 500	247 650	218 250	-29 400
Cyclamen	15 cm	160 300	49.820	155 250	365 370	436 500	71 130
Hydrangea	15 cm	80 130	88 970	356 500	525 600	582.000	56 400
Hydrangea	17.5 cm	87.920	111.650	375.000	574.570	776.000	201 430
Poinssettia	15 cm	87 460	55.940	151 250	294 650	388.000	93 350
Poinssettia	20 cm	100.100	121.580	305 000	526 680	582 000	55 320
Poinssettia	25 cm	119.300	181.330	431.300	731.930	824 500	92 570

TABLE C-2: TOTAL COSTS AND NET RETURNS OF PLANTS PRODUCED FOR CHRISTMAS

TABLE C-3. TOTAL COSTS AND NET RETURNS OF PLANTS PRODUCED FOR VALENTINES

			Costs (ce		Selling	Net	
Plant	Pot size	Labor	Heating	Material	Subtotal	Price	Returns
African Violet	10 cm	35.130	29.320	71.000	135 450	131.000	-4 450
Azalea	15 cm	32.460	62.820	554.500	649 780	824.500	174.720
Azalea	17.5 cm	33 760	104 260	697.000	835 020	1018 500	183 480
Chrysanthemums	10 cm	60.040	32 440	78 500	170.980	218 250	47 270
Chrysanthemums	15 cm	72 290	76.060	195 250	343 600	388 000	44 400
Cyclamen	10 cm	127.400	45 840	98.500	271.740	218 250	-53 490
Cyclamen	15 cm	160 300	106 690	155.250	422 240	436 500	14 260
Geranium	10 cm	29 630	13 580	85 300	128 510	155 200	26 690
Geranium	15 cm	35 970	26.790	140.000	202 760	339.500	136 740
Hydrangea	15 cm	80 130	154.180	356 500	590.810	582.000	-8 810
Hydrangea	17.5 cm	87.920	207.810	375 000	670.730	776 000	105 270

1

1

•

			Costs (ce	ents/pot)		Selling	Net
Plant	Pot size	Labor	Heating	Material	Subtotal	Price	Returns
African Violet	10 cm	35 130	24 460	71 000	130 590	131 000	0 110
Azalea	15 cm	32 460	51 000	554 500	637 960	824 500	186 5 10
Azalea	17 5 cm	33 760	86 510	697 000	817 270	1018 500	201.230
Begonia	10 cm	36 660	18 770	68 000	123 430	194 000	70 570
Begonia	15 cm	43 770	57 050	123 250	224 070	388 000	163 930
Chrysanthemums	10 cm	60 040	29 230	78 500	167 770	218 250	50.480
Chrysanthemums	15 cm	72 290	63 530	195 250	331 070	388 000	56 930
Cyclamen	10 cm	127 400	53 640	98 500	279 540	218 250	61.290
Cyclamen	15 cm	160 300	125 100	155 250	440 650	436 500	4 150
Easter Lily	15 cm	59 960	55 730	191 250	306 9 10	339 500	32 560
Geranium	10 cm	29 630	10 600	85 300	125 530	155 200	29.670
Geranium	15 cm	35 970	21 680	140 000	197 650	339 500	141 850
Hydrangea	15 cm	80 130	140 240	356 500	576 870	582 000	5 130
Hydrangea	17 5 cm	87 920	178 470	375 000	641 390	776 000	134 610

TABLE C-4. TOTAL COSTS AND NET REFURNS OF PLANTS PRODUCED FOR LASTER

TABLE C-5. TOTAL COSTS AND NET RETURNS OF PLANTS PRODUCED FOR MOTHER'S DAY.

	ten da anti-tano districti de antidi se ta cada y		Costs (co		Selling	Net	
Plant	Pot size	Labor	Heating	Material	Subtotal	Price	Returns
African Violet	10 cm	35 130	12 140	71 000	118 270	131 000	1.2730
Azalea	15 cm	32 460	25 450	554 500	612 410	824 500	212 090
Azalea	17 5 cm	33 760	43 740	697 000	774 500	1018 500	244 000
Begonia	10 cm	36 660	10 890	68 000	115 550	194 000	78.450
Begonia	15 cm	43 770	29 740	123 250	196 760	388 000	191 240
Chrysanthemums	10 cm	60 040	12 580	78 500	151 120	218 250	67 130
Chrysanthemums	15 cm	72 290	32 260	195 250	299 800	388 000	88 200
Cyclamen	10 cm	127 400	38 420	98 500	264 320	218 250	-46 070
Cyclamen	15 cm	160 300	95 160	155 250	410 710	436 500	25 790
Geranium	10 cm	29 630	5 270	85 300	120 200	155 200	35 000
Geranium	15 cm	35 3 70	10 690	140 000	186 660	339 500	152 840
Hydrangea	15 cm	80 130	76 630	356 500	513 260	582 000	68 740
Hydrangea	17 5 cm	87 920	98 860	375 000	561 780	776 000	214 220

Ŧ Ā

NON-HOLIDAY PERIODS												
			Costs (ce			Selling	Net					
Period	Date	Labor	Heating	Material	Subtotal	Price	Returns					
1	Jan 8	35 130	24 290	71 00	130 420	124 450	-5 970					
2	Jan 22	35 130	27 640	71 00	133 770	124 450	-9 320					
4	Feb 19	35 130	28 930	71 00	135 060	124 450	-10 610					
5	March 5	35 130	27 460	71 00	133 590	124 450	-9 140					
7	April 2	35 130	21 540	71 00	127 670	124 450	-3 220					
8	April 16	35 130	17 560	71 00	123 690	124 450	0 760					
9	April 30	35 130	14 190	71 00	120 320	124 450	4 130					
11	May 21	35 130	9 230	71 00	115 360	124 450	9 090					
12	June 4	35 130	6 680	71 00	112 810	124 450	11 640					
13	June 18	35 130	4 480	71 00	110 610	124 450	13 840					
14	July 2	35 130	2 900	71 00	109 030	124 450	15 420					
15	July 16	35 130	1 820	71 00	107 950	124 450	16 500					
16	July 30	35 130	1 050	71 00	107 180	124 450	17 270					
17	Aug 13	35 130	0 830	71 00	106 960	124 450	17 490					
18	Aug 27	35 130	0 780	71 00	106 910	124 450	17 540					
19	Sept 10	35 130	1 240	71 00	107 370	124 450	17 080					
20	Sept 24	35 130	1 940	71 00	108 070	124 450	16 380					
21	Oct 8	35 130	3 200	71 00	109 330	124 450	15 120					
22	Oct 22	35 130	5 080	71 00	111 210	124 450	13 240					
23	Nov 5	35 130	7 200	71 00	113 330	124 450	11 120					
24	Nov 19	35 130	10 360	71 00	116 490	124 450	7 960					
25	Dec 3	35 130	13 360	71 00	119 490	124 450	4 960					

TABLE C 6 TOTAL COSTS & NET RETURNS OF AFRICAN VIOLET 10 CM, FOR NON-HOLIDAY PERIODS

* 1

		IDAY PERI	Costs (ce	ents/pot)	-	Selling	Net
Period	Date	Labor	Heating	Material	Subtotal	Price	Returns ⁴
1	Jan 8	60 040	29 750	78 500	168 290	207 340	39 050
2	Jan 22	50 040	33 820	78 500	172 360	207 340	34 980 +
4	Feb 19	60 040	34 570	78 500	173 110	207 340	34 230
5	March 5	60 040	33 000	78 500	171 540	207 340	35 800
7	April 2	60 040	25 600	78 500	164 140	207 340	43 200 ¹
8	April 16	60 040	20 810	78 500	159 350	207 340	47 990 I
9	April 30	60 040	16 620	78 500	155 160	207 340	5.2 180
11	May 21	60 040	10 760	78 500	149 300	207 340	58 0 10
12	June 4	60 040	7 640	78 500	146 180	207 340	61 160
13	June 18	60 040	5 160	78 500	143 700	207 340	63 6 10
14	July 2	60 040	3 200	78 500	141 740	207 340	65 600
15	July 16	60 040	2 100	78 500	140 640	207 340	66-700
16	July 30	60 040	1 130	78 500	139 670	207 340	67 670
17	Aug 13	60 040	0 980	78 500	139 520	207 340	67 820
18	Aug 27	60 040	0 920	78 500	139 460	207 340	67 880
19	Sept 10	60 040	1 530	78 500	140 070	207 340	67.270
20	Sept 24	60 040	2 4 1 0	78 500	140 950	207 340	– 6ь 390
21	Oct 8	60 040	3 960	78 500	142 500	207 340	64 840
22	Oct 22	60 040	5 050	78 500	143 590	207 340	63 750
23	Nov 5	60 040	8 920	78 500	147 460	207 340	59 880
24	Nov 19	60 040	12 900	78 500	151 440	207 340	55 900
25	Dec 3	60 040	16 500	78 500	155 040	207 340	52 300

TABLE C-7 TOTAL COSTS AND NET REFURNS OF CHRYSANTHEMUMS 10 CM, FOR NON-HOLIDAY PERIODS

•

		JDAT PERI	0100		·····		,
			Costs (ce	ents/pot)		Selling	Net
Period	Date	Labor	Heating	Material	Subtotal	Price	Returns
1	Jan 8	72 290	63 440	195 250	330 980	368 600	37 620
2	Jan 22	72 290	72 190	195 250	339 730	3€8 600	28 870
4	Feb 19	72 290	74 560	195 250	342 100	368 600	26 500
5	March 5	72 290	69 430	195 250	33€ 970	368 600	31 630
7	April 2	/2 290	55 910	195 250	323 450	368 600	45 150
8	April 16	72 290	45 530	195 250	313 070	368 600	55 530
9	April 30	72 290	36 720	195 250	304.260	368 600	64 340
11	May 21	72 290	23 880	195 250	291 420	368 600	77 180
12	Jura 4	72 290	17 230	195 250	284 770	368 600	83 830
13	June 18	72 290	10 880	195 250	278 420	368 600	90 180
14	July 2	72 290	7 440	195 250	274 980	368 600	93 620
15	July 16	72 290	4 700	195 250	272 240	368 600	96 360
16	July 30	72 290	2 670	195 250	270 210	368 600	98 390
17	Aug 13	72 290	2 160	195 250	269 700	368 600	98 900
18	Aug 27	72 290	2 030	195 250	269 570	368 600	99 030
19	Sept 10	72 290	3 240	195 250	270 780	368 600	97 820
20	Sept 24	72 290	5 080	195 250	272 620	368 600	95 980
21	Oct 8	72 290	8 390	195 250	275 930	368 600	92 670
22	Oct 22	72 290	13 310	195 250	280 850	368 600	87 750
23	Nov 5	72 290	18 840	195 250	286 380	368 600	82 220
24	Nov 19	72 290	27 130	195 250	294 670	368 600	73 930
25	Dec 3	72 290	34 930	195 250	302 470	368 600	66 1 30

TABLE C-8 TOTAL COSTS AND NET REFURNS OF CHRYSANTHEMUMS 15 CM FOR NON HOLIDAY PERIODS

			Costs (ce	ents/pot)	-	Selling	Net
Period	Date	Labor	Heating	Material	Subtotal	Price	Returns
5	March 5	29 630	12 200	85 300	127 130	147 440	20 310
7	April 2	29 630	9 250	85 300	124 180	147 440	23 260
8	April 16	29 630	7 290	85 300	122 220	147 440	25 220
9	April 30	29 630	5 900	85 300	120 830	147 440	26 610
11	May 21	29 630	3 630	85 300	118 560	147 440	28 880
12	June 4	29 630	2 590	85 300	117 520	147 440	29 9:0
13	June 18	29 630	1 650	85 300	116 580	147 440	30 860

TABLE C-9: TOTAL COSTS AND NET RETURNS OF GERANIUM 10 CM, FOR NON-HOLIDAY PERIODS

٠

TABLE C-10: TOTAL COSTS AND NET RETURNS OF GERANIUM 15 CM, FOR NON-HOLIDAY PERIODS

			Costs (co	ents/pot)		Selling	Net
Period	Date	Labor	Heating	Material	Subtotal	Price	Returns
5	March 5	35 970	24 680	140 000	200 650	322 530	121 880
7	April 2	35 970	19 000	140 000	194 970	322 530	127 560
8	April 16	35 970	15 330	140 000	191 300	322 530	131 230
9	April 30	35 970	12 390	140 000	188 360	322 530	134 170
11	May 21	35 970	7 950	140 000	183 920	322 530	138 610
12	June 4	35 970	5 520	140 000	181 490	322 530	141 040
13	June 18	35 970	3 780	140 000	179 750	322 530	142 780

.

Appendix D

Schedules of cultural practices for the produced plants

¥ 4.

Ŧ

PLANT		1 st	2 nd	3 rd	4 th	5 th	Mkting	Total
African Violet,10 cm	secs	2 wks	Date	secs				
DF: Drench Fungicide	5	1						
FW Fertigate & Irrigate	3	10	14	14	14	7		
GR. Spray growth regulator	3							
IR Irrigate	1.5					3		
PA Pesticide Application	3	1	1	1	1	1	1	
PKG:Package plant	9]			1	1	}
PG: Place in greenhouse	5	1						
PMD:Prepare media & fill pot	3	1]	ł]		
PP ⁻ Plant cutting (rooted)	4.5	1						
PI Pinch or prune	5							
RS: Respace plants	2	1	1	[1	1	
SA [.] Soak bulb in acaricide	6							
S&H:Shipping & handling	5		}	ł	ł		1	
SH. Shade plants	1.5							
US ⁻ Unshade plants	2.5							
Total Labor (seconds/pot/perio	d)	50.5	47.0	45.0	45.0	37 5	5.0	230.0

TABLE D-1: SCHEDULE OF CULTURAL PRACTICES FOR AFRICAN VIOLET

à

TABLE D-2: SCHEDULE OF CULTURAL PRACTICES FOR AZALEA

PLANT		1 st	2 nd	3 rd	4 th	Mkting	Total
Azalea,15 cm	secs	2 wks	2 wks	2 wks	2 wks	Date	secs
DF: Drench Fungicide	6						
FW. Fertigate & Irrigate	3	10	14	14	7		
GR ⁻ Spray growth regulator	4		2	2	1		
IR Irrigate	1.5				3		
PA Pesticide Application	4	1	1	1	1		
PKG [.] Package plant	12				1		
PG: Place in greenhouse	6	1	Į			ł	
PMD:Prepare media & fill pot	4						
PP. Plant cutting (rooted)	6						
PI Pinch or prune	7		1				
RS: Respace plants	3						
SA: Soak bulb in acaricide	6						
S&H:Shipping & handling	6	1				1	
SH: Shade plants	2						
US [.] Unshade plants	3						
Total Labor (seconds/pot/period)	46.0	61.0	54.0	45.5	60	212.5

PLANT		1 st	2 nd	3 rd	4 th	5 th	Mkting	Total
Azalea,17.5 cm	secs	2 wks	Date	secs				
DF [·] Drench Fungicide	65						ļ — — — — — — — — — — — — — — — — — — —	
FW Fertigate & Irrigate	3	2	14	14	14	7		
GR. Spray growth regulator	4.5			2	2	1		ĺ
IR: Irrigate	1.5	1	1					
PA Pesticide Ar plication	4.5	1		1	1	1	}	
PKG:Package plant	13.5						}	
PG: Place in greenhouse	6.5	1						
PMD [·] Prepare media & fill pot	4.5							
PP: Plant cutting (rooted)	7							
PI. Pinch or prune	8			1			1	
RS: Respace plants	3.5							
SA. Soak bulb in acaricide	6							
S&H:Shipping & handling	6.5	1					1	
SH: Shade plants	2.25							
US Unshade plants	3.25							
Total Labor (seconds/pot/perio	d)	23.5	42 0	63.5	55.5	30.0	6.5	221.0

_ _ _

TABLE D-3: SCHEDULE OF CULTURAL PRACTICES FOR AZALEA

н

* ~ ~

• TABLE D-4: SCHEDULE OF CULTURAL PRACTICES FOR BEGONIA

PLANT		1 st	2 nd	3 rd	4 th	5 th	Mkting	Total
Begonia, 10 cm	secs	2 wks	Date	secs				
DF: Drench Fungicide	5	1						
FW: Fertigate & Irrigate	3	10	14	14	14	7		
GR. Spray growth regulator	3			}				
IR: Irrigate	1.5	ł			i i	3		{
PA ⁺ Pesticide Application	3	1	1	1	1	1		
PKG:Package plant	9	1				1		
PG. Place in greenhouse	5	1				ļ		
PMD.Prepare media & fill pot	3	1					1	
PP: Plant cutting (rooted)	4.5	1	[
PI: Pinch or prune	5			1	1			
RS: Respace plants	2		1					
SA: Soak bulb in acaricide	6							
S&H:Shipping & handling	5						1	
SH: Shade plants	1.5]
US: Unshade plants	2.5	,						
Total Labor (seconds/pot/period)	50.5	47.0	50.0	50.0	37.5	5.0	240.0

PLANT		1 st	2 nd	3 rd	4 th	5 th	10 th	Mkting	Total
Begonia, 15 cm	Secs	2 wks	Date	secs					
DF: Drench Fungicide	6	1							
FW: Fertigate & Irrigate	3	4	14	14	14	14	7		
GR: Spray growth regulator	4					Ì			
IR- Irrigate	15						3		1
PA: Pesticide Application	4	1	1	1	1	1	1		
PKG Package plant	12						1	ļ	1
PG [.] Place in greenhouse	6	1			1				
PMD Prepare media & fill pot	4	1							, ,
PP. Plant cutting (rooted)	6	1						}	
PI [.] Pinch or prune	7				1	1	{	ĺ	
RS: Respace plants	3	1		1					
SA [.] Soak bulb in acaricide	6		1						
S&H [.] Shipping & handling	6					ļ		1	
SH. Shade plants	2	}]]	1			
US [,] Unshade plants	3								
Total Labor (seconds/pot/period)	38 0	46 0	49 0	53 0	53 0	41.5	60	286.5

TABLE D-5. SCHEDULE OF CULTURAL PRACTICES FOR BEGONIA

1

TABLE D-6 SCHEDULES OF CULTURAL PRACTICES FOR CHRYSANTHEMUMS

PLANT		1 st	2 nd	3 rd	4 th	5 th	Mkting	Total
Chrysanthemums, 10 cm	secs	2 wks	Date	secs				
DF Drench Fungicide	5	1						
FW [.] Fertigate & Irrigate	3	5	12	14	14	7		
GR Spray growth regulator	3] 1	1			
IR. Irrigate	1.5					3		
PA Pesticide Application	3	1	1	1	1	1		
PKG Package plant	9					1	ł	
PG Place in greenhouse	5	1						
PMD Prepare media & fill pot	3	1						
PP Plant cutting (rooted)	45	1						
PI Pinch or prune	5		1	1				
RS Respace plants	2	i I	1]			
SA ¹ Soak bulb in acaricide	6							
S&H Shipping & handling	5						1	
SH ⁻ Shade plants	15		14	14	14			
US [,] Unshade plants	25		14	14	14			
Total Labor (seconds/pot/period)		35 5	102.0	109 0	104 0	37.5	50	393 0

,

PLANT		1 st	2 nd	3 rd	4 th	5 th	Mkting	Total
Chrysanthemums, 15 cm	secs	2 wks	Date	secs				
DF Drench Fungicide	6	1						
FW Fertigate & Irrigate	3	10	14	14	14	7		
GR Spray growth regulator	4			1	1			
IR Irrigate	1.5					3		
PA Pesticide Application	4	1	1	1	1	1		
PKG Package plant	12					1		
PG Place in greenhouse	6	1						
PMD Prepare media & fill pot	4	1						
PP Plant cutting (rooted)	6	1						
PI Pinch or prune	7		1	1				
RS Respace plants	3		1	r.				
SA Soak bulb in acaricide	6		1					
S&H Shipping & handling	6						1	
SH Shade plants	2		14	14	14			}
US Unshade plants	3		14	14	14			
Total Labor (seconds/pot/period))	56.0	126.0	127.0	120.0	41.5	6.0	473.5

TABLE D-7: SCHEDULES OF CULTURAL PRACTICES FOR CHRYSANTHEMUMS

PLANT		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
Cyclamen, 10 cm	secs	2 wks							
DF: Drench Fungicide	5	1							
FW Fertigate & Irrigate	3	3	7	7	7	7	7	7	7
GR [.] Spray growth regulator	3								
IR [.] Irrigate	15	7	7	7	7	7	7	7	7
PA Pesticide Application	3	1	1	1	1	1	1	1	1
PKG:Package plant	9								Ì
PG ¹ Place in greenhouse	5	1				İ	ĺ		
PMD Prepare media & fill pot	3	1						ļ	ļ
PP: Plant cutting (rooted)	45	1							
Pl [.] Pinch or prune	5						[
RS ⁻ Respace plants	2			0	0	0	1		
SA ¹ Soak bulb in acaricide	6	1							
S&H:Shipping & handling	5]	}
SH: Shade plants	15	0	14	14	14	14	14	14	0
US Unshade plants	25	0	14	14	14	14	14	14	0
Total Labor (seconds/pot/period)	40.0	90 5	90 5	90 5	90 5	92.5	90 5	34 5

.....

TABLE D-8: SCHEDULE OF CULTURAL PRACTICES FOR CYCLAMEN

PLANT		9 th	10 th	11 th	12 th	13 th	14 th	Mkting	Total
Cyclamen, 10 cm	secs	2 wks	Date	secs					
DF: Drench Fungicide	5	[
FW. Fertigate & Irrigate	3	7	7	7	7	7	3		
GR: Spray growth regulator	3			1	1				
IR: Irrigate	15	7	7	7	7	7	7]	
PA: Pesticide Application	3	1	1	1	1	1	1		
PKG Package plant	9						1	Í	
PG. Place in greenhouse	5	(
PMD.Prepare media & fill pot	3							ł	
PP: Plant cutting (rooted)	45							}	
PI: Pinch or prune	5							ļ	
RS: Respace plants	2								
SA: Soak bulb in acaricide	6]	
S&H:Shipping & handling	5							1	
SH: Shade plants	1.5							1	
US ⁻ Unshade plants	25						1		
Total Labor (seconds/pot/period)	34 5	34 5	37.5	37.5	34 5	31 5	50	834 5

PLANT		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th
Cyclamen, 15 cm	secs	2 wks								
DF Drench Fungicide	6	1								
FW Fertigate & Irrigate	3	3	7	7	7	7	7	7	7	7
GR Spray growth regulator	4							[
IR Imgate	15	7	7	7	7	7	7	7	7	7
PA Pesticide Application	4	1	1	1	1	1	1	1	1	1
PKG Package plant	12								Į	
PG Place in greenhouse	6	1								
PMD Prepare media & fill pot	4	1								
PP Plant cutting (rooted)	6	1								
PI Pinch or prune	7							}		[
RS Respace plants	3				0	0	1			
SA Soak bulb in acaricide	6		}	}						1
S&H Shipping & handling	6		0	1						
SH Shade plants	2	0	14	14	14	14	14	14	14	
US Unshade plants	3	0	14	14	14	14	14	14	14	
Total Labor (seconds/pot/period)		45.5	****	****	****	105.5	108.5	105.5	105.5	35.5

I ABLE D-9- SCHEDULE OF CULTURAL PRACTICES FOR CYCLAMEN

1

Tour

PLANT		10 th	11 th	12 th	13 th	14 th	15 th	Mkting	Total
Cyclamen, 15 cm	secs	2 wks	Date	secs					
DF Drench Fungicide	6								
FW Fertigate & Irrigate	3	7	7	7	7	7	3		
GR Spray growth regulator	4			1	1				
IR Irugate	1.5	7	7	7	7	7	7		
PA Pesticide Application	4	1	1	1	1	1	1		
PKG.Package plant	12						1		
PG Place in greenhouse	6								
PMD.Prepare media & fill pot	4					1			
PP Plant cutting (rooted)	6								
PI Pinch or prune	7								
RS Respace plants	3 -								
SA. Soak bulb in acaricide	6								
S&H Shipping & handling	6							1	
SH ⁻ Shade plants	2								
US Unshade plants	3								
Total Labor (seconds/pot/period))	35.5	35.5	39.5	39.5	35.5	35.5	6.0	1050

PLANT		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	Mkting	Total
Easter Lily, 15 cm	secs	2 wks	2 wks	2 wks	Date	secs					
DF Drench Fungicide	6	1								1	
FW Fertigate & Irrigate	3	10	14	14	14	14	14	14	7		1
GR Spray growth regulator	4				1						1
IR Irrigate	15		Ì						3	ł	}
PA Pesticide Application	4	1	1	1	1	1	1	1	1		
PKG Package plant	12								1		
PG Place in greenhouse	6	1					l j				
PMD Prepare media & fill pot	4	1					1	([1	[
PP Plant cutting (rooted)	6	1		ł			ł				
PI Pinch or prune	7		}	}							
RS Respace plants	3				1						
SA Soak bulb in acaricide	6	1]	ļ]		
S&H Shipping & handling	6								1	1	
SH Shade plants	2										
US Unshade plants	3									1	
Total Labor (seconds/pot/period)	62 0	46 0	46 0	53.0	46 0	46 0	46.0	41.5	60	392.5

TABLE D-10: SCHEDULE OF CULTURAL PRACTICES FOR EASTER LILY

PLANT		1 st	2 nd	3 rd	4 th	Mkting	Total
Geranium, 10 cm	secs	2 wks	2 wks	2 wks	2 wks	Date	secs
DF Drench Fungicide	5	1					
FW Fertigate & Irrigate	3	10	14	14	7		
GR. Spray growth regulator	3		2	1			
IR [.] Irrigate	15			1	3		
PA ⁻ Pesticide Application	3	1	1	1	1		
PKG [.] Package plant	9				1	1	
PG Place in greenhouse	5	1		1			
PMD.Prepare media & fill pot	3	1]]			
PP Plant cutting (rooted)	4.5	1				ĺ	
PI Pinch or prune	5						l
RS ⁻ Respace plants	2		1				
SA: Soak bulb in acaricide	6						
S&H.Shipping & handling	5			l		1	
SH [.] Shade plants	1.5						
US. Unshade plants	2.5						
Total Labor (seconds/pot/period)		50.5	53.0	48.0	37.5	5.0	194.0

TABLE D-11: SCHEDULE OF CULTURAL PRACTICES FOR GERANIUM

FABLE D-12: SCHEDULE OF CULTURAL PRACTICES FOR GERANIUM

PLANT		1 st	2 nd	3 rd	4 th	5 th	Mkting	Total
Geranium, 15 cm	secs	2 wks	Date	secs				
DF. Drench Fungicide	6	1						
FW. Fertigate & Irrigate	3	5	12	14	14	7		
GR [.] Spray growth regulator	4			2	1			
IR: Irrigate	1.5]	3		
PA: Pesticide Application	4	1	1	1	1	1		
PKG:Package plant	12		1			1		
PG: Place in greenhouse	6	1		(t			
PMD:Prepare media & fill pot	4	1	1	}				
PP: Plant cutting (rooted)	6	1	1		1			
PI: Pinch or prune	7				1			
RS: Respace plants	3			1	1		}	
SA: Soak bulb in acaricide	6		[
S&H:Shipping & handling	6	1	ļ	}	ļ		1	
SH: Shade plants	2]			
US: Unshade plants	3							
Total Labor (seconds/pot/period)	41.0	40.0	57.0	50.0	41.5	6.0	235.5

TABLE D-13 SCHEDULE OF CULTURAL PRACTICES FOR HYDRANGEA

Ì

Ţ

PLANT		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	Mkting	Total
Hydrangea, 15 cm	secs	2 wks	Date	secs						
DF Drench Fungicide	6	1								ĺ
FW Fertigate & Irrigate	3	5	12	14	14	14	14	7		
GR Spray growth regulator	4		2	2	2					
IR Imgate	15		ļ					3		
PA Pesticide Application	4	1	1	1	1	1	1	1		
PKG Package plant	12							1		
PG Place in greenhouse	6	1				1				
PMD Prepare media & fill pot	4									
PP Plant cutting (rooted)	6						ł			
Pl Pinch or prune	7					1	1			
RS Respace plants	3			1						
SA Soak bulb in acaricide	6			ŧ				1		
S&H Shipping & handling	6	1							1	
SH Shade plants	2				7	14	14			
US Unshade plants	3				7	14	14			
Total Labor (seconds/pot/period)	370	48 0	57.0	89 0	123 0	123 0	41 5	60	524 5

TABLE D-14 SCHEDULE OF CULTURAL PRACTICES FOR HYDRANGEA

PLAN1		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	Mkting	Total
Hydrangea, 17.5 cm	secs	2 wks	2 wks	2 wks	2 wks	2 wks	2 wks	2 wks	Date	secs
DF Drench Fungicide	65	1								
FW Fertigate & Irrigate	3	10	14	14	14	14	14	7		
GR Spray growth regulator	45		2	2	2					
IR Irrigate	15							3		
PA Pesticide Application	45	1	1	1	1	1	1	1	0	
PKG Package plant	13 5							1		
PG Place in greenhouse	65	1								
PMD Prepare media & fill pot	45								-	
PP Plant cutting (rooted)	7									
PL Pinch or prune	8					1	1			
RS Respace plants	3.5			1				ł	ļ	
SA Soak bulb in acaricide	6									
S&H Shipping & handling	6.5	1							1	
SH Shade plants	2.25	ļ			7	14	14			
US Unshade plants	3 25				7	14	14			
Total Labor (seconds/pot/period	otal Labor (seconds/pot/period)			59 0	94.0	131.5	131.5	43 5	65	575 5

PLANT		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	Mkting	Total
Poinsettia,15 cm	secs	2 wks	Date	secs							
DF Drench Fungicide	6	1						1			
FW Fertigate & Irrigate	3	10	14	14	14	14	14	14	7		
GR Spray growth regulator	4		[1	[1	[1	1		
IR Imgate	1.5								3		
PA Pesticide Application	4	1	1	1	1	1	1	1	1	1	
PKG Package plant	12		{						1	1	
PG Place in greenhouse	6	1					1	1			
PMD Prepare media & fill pot	4	1	}	}				}	}		
PP Plant cutting (rooted)	6	1	1		l						1
PI Pinch or prune	7	1	1								
RS Respace plants	3		0	1						}	
SA Soak bulb in acaricide	6	}									
S&H Shipping & handling	6		[1						1	
SH Shade plants	2			7	14	14					
US Unshade plants	3			7	14	14				1	
Total Labor (seconds/pot/perio	d)	56.0	53.0	88.0	116.0	120.0	46.0	46.0	41.5	6.0	572.

TABLE D-15: SCHEDULE OF CULTURAL PRACTICES FOR POINSETTIA

PLANT		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	Mkting	Total
Poinsettia,20 cm	secs	2 wks	2 wks	Date	secs							
DF Drench Fungicide	7	1										-=
FW Fertigate & Irrigate	3	5	12	14	14	14	14	14	14	7		
GR Spray growth regulator	5				1		1					
IR Imgate	15									3		
PA Pesticide Application	5	1	1	1	1	1	1	1	1	1		
PKG Package plant	15									1		
PG Place in greenhouse	7	1										
PMD Prepare media & fill pot	5	1]						
PP Plant cutting (rooted)	8	1										
PI Pinch or prune	9			1								
RS Respace plants	4				1							
SA Soak bulb in acaricide	6											
S&H Shipping & handling	7										1	
SH Shade plants	25				7	14	14					í.
US Unshade plants	35				7	14	14		[[
Total Labor (seconds/pot/period)	47.0	41.0	56 0	98 0	131.0	136 0	47 0	47.0	45.5	70	655 5

P .4

TABLE D-16: SCHEDULE OF CULTURAL PRACTICES FOR POINSETTIA

* 48

PLANT		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	Mkting	Total
Poinsettia,25 cm	secs	2 wks	Date	secs								
DF Drench Fungicide	8	1										
FW Fertigate & Irrigate	3	10	14	14	14	14	14	14	14	7		
GR Spray growth regulator	6				1	0	1					
IR Irrigate	15									3		
PA Pesticide Application	6	1	1	1	1	1	1	1	1	1		
PKG Package plant	18									1		
PG Place i greenhouse	8	1										
PMD Prepare media & fill pot	5	1							1			
PP ⁻ Plant cutting (rooted)	10	1										
PI Pinch or prune	10		1									
RS Respace plants	5			1								
SA Soak bulb in acaricide	6				ļ							
S&H Shipping & handling	8								[1	
SH Shade plants	3				14	14	14					
US Unshade plants	4				14	14	14					
Total Labor (seconds/pot/period)	67.0	58.0	53.0	152.0	146.0	152.0	48 0	48.0	49 5	8.0	781.5

TABLE D-17: SCHEDULE OF CULTURAL PRACTICES FOR POINSETTIA

Appendix E

- 1) List of abbreviations for decision variables
- 2) Mathematical formulation of model componenets
- 3) Listing of model results (QSB format)

Ì

Ţ

	VARIABLES		
I.DECIS	ON VARIABLES		
Symbol	Plant	Pot Size	Period
Vti	African Violet	10 cm	I=1 to 26
VtXX	African Violet	10 cm	Christmas
VtVV	African Violet	10 cm	Valentine
VtEE	African Violet	10 cm	Easter
VtMD	African Violet	10 cm	Mother Day
Mti	Chrysanthemums	10 cm	i=1 to 26
MtXX	Chrysanthemums	10 cm	Christmas
MtVV	Chrysanthemums	10 cm	Valentine
MtEE	Chrysanthemums	10 cm	Easter
MtMD	Chrysanthemums	10 cm	Mother Day
Mfi	Chrysanthemums	15 cm	I=1 to 26
MfXX	Chrysanthemums	15 cm	Christmas
MfVV	Chrysanthemums	15 cm	Valentine
MfEE	Chrysanthemums	15 cm	Easter
MfMD	Chrysanthemums	15 cm	Mother Day
ZfXX	Azalea	15 cm	Christmas
ZfV√	Azalea	15 cm	Valentine
ZfEE	Azalea	15 cm	Easter
ZfMD	Azalea	15 cm	Mother Day
ZsXX	Azalea	17.5 cm	Christmas
ZsVV	Azalea	17.5 cm	Valentine
ZsEE	Azalea	17.5 cm	Easter
ZsMD	Azalea	17.5 cm	Mother Day
BtEE	Begonia	10 cm	Easter
BtMD	Begonia	10 cm	Mother Day
BIEE	Begonia	15 cm	Easter
BfMD	Begonia	15 cm	Mother Day
CtXX	Cyclamen	10 cm	Christmas
CtVV	Cyclamen	10 cm	Valentine
CtEE	Cyclamen	10 cm	Easter
CtMD	Cyclamen	10 cm	Mother Day
CfXX	Cyclamen	15 cm	Christmas
CfVV	Cyclamen	15 cm	Valentine
CIEE	Cyclamen	15 cm	Easter
CfMD	Cyclamen	15 cm	Mother Day
EIEE	Easter Lily	15 cm	Easter

TABLE E-1: LIST OF ABBREVIATIONS OF DECISION	
VARIABLES	

•

....

VAHIABLES					
I.DECISI	ON VARIABLES-Co	ntinued			
Symbol	Plant	Pot Size	Period		
Gtı	Geranium	10 cm	ı= 7-13		
GtVV	Geranium	10 cm	Valentine		
GtEE	Geranium	10 cm	Easter		
GtMD	Geranium	10 cm	Mother Day		
Gfi	Geranium	15 cm	I= 7-13		
GfVV	Geranium	15 cm	Valentine		
GfEE	Geranium	15 cm	Easter		
GfMD	Geranium	15 cm	Mother Day		
HfXX	Hydrangea	15 cm	Christmas		
HfVV	Hydrangea	15 cm	Valentine		
HfEE	Hydrangea	15 cm	Easter		
HfMD	Hydrangea	15 cm	Mother Day		
HsVV	Hydrangea	17.5 cm	Valentine		
HsEE	Hydrangea	17 5 cm	Easter		
HsMD	Hydrangea	17.5 cm	Mother Day		
HsXX	Hydrangea	17 5 cm	Christmas		
Pnf	Poinssettia	15 cm	Christmas		
Pntw	Poinssettia	20 cm	Christmas		
Pntf	Poinssettia	25 cm	Christmas		

TABLE E-1: LIST OF ABBREVIATIONS OF DECISION VARIABLES

ŀ

.

Ì

2) MATHEMATICAL FORMULATION OF MODEL COMPONENTS

I.Decision Variables

*

In mathematical formulation, this is illustrated as follows:

Xn = Where X is the number of plant units of variety n ik with pot size i that is to be marketed at period k.

Using the plants abbreviations :

- (Xav) = units of african violet of pot size i produced for ik market in period k. (i = t (ten cm), k = 26 periods including holidays)
- (Xbg) = units of begonia of pot size i produced for market ik in period k. (i = t,f (ten cm, fifteen cm), k = EE, MD)
- (Xcm) = units of cyclamen of pot size i produced for market ik in period k. (i = t,f (ten cm, fifteen cm), k = VV, EE, MD, XX)
- (Xgm) = units of geranium of pot size i produced for market ik in period k. (i = t,f (ten cm, fifteen cm), k = Spring including VV, EE, MD ; k= 8 periods.)
- (Xhn) = units of hydrangea of pot size i produced for market ik in period k. (i = f,s (fifteen cm, seventeen & a half cm), k = VV, EE, MD, XX)
- (Xpn) = units of poinsettia of pot size i produced for ik marketing in period k. (i = f,s,tf (fifteen cm, seventeen & a half, twenty five cm), k = XX)

II.Objective Function

In mathematical formulation, this is illustrated as follows:

$$MAX\sum (Xav_{1k} * Pav_{1k} + Xaz_{1k} * Paz_{1k} + Xbg_{1k} * Pbg_{1k} + Xmm_{1k} * Pmm_{1k})$$

$$+Xcm_{1k}*Pcm_{1k}+X <_{1k}*P <_{1k}+Xgm_{1k}*Pgm_{1k}+Xhn_{1k}*Phn_{1k}$$

$+Xpn_{1k}*Ppn_{1k}$)

for all i=1 to m all j=1 to 26

where

- Pav = the net profits from one unit of african violet of
 ik pot size i produced for market in period k
- - Pcm = the net profits from one unit of cyclamen of pot ik size i produced for market in period k
 - Pll = the net profits from one unit of easter lily of
 ik pot size i produced for market in period k

 - Ppn = the netprofits from one unit of poinsettia of pot ik size i produced for market in period k

1-Available labor hours per period

In mathematical formulation, this is illustrated as follows:

$$MAX \sum (Xav_{1k} * Lav_{j1k} + Xaz_{1k} * Laz_{j1k} + Xbg_{1k} * Lbg_{j1k} + Xmm_{1k} * Lmm_{j1k})$$

+ XCm_{1k} + LCm_{1k} + $X <_{ik}$ + $L <_{ik}$ + Xgm_{k} + Lgm_{1k} + Xhn_{1k} + Lhn_{1k}

$+Xpn_{ik}*Lpn_{ik}) \leq TTL_i$

for all i=1 to m all j=1 to 26 k=1 to 26

where

-7

- (Lav) = hours of labor required during period j for ijk production of one unit of african violet of pot size i for market in period k.
- (Laz) = hours of labor required during period j for ijk production of one unit of azalea of pot size i for market in period k.
- (Lbg) = hours of labor required during period j for ijk production of one unit of begonia of pot size i for market in period k.
- (Lmm) = hours of labor required during period j for ijk production of one unit of chrysanthemum of pot size i for market in period k.
- (Lcm) = hours of labor required during period j for ijk production of one unit of cyclamen of pot size i for market in period k.
- (Lll) = hours of labor required during period j for ijk production of one unit of easter lily of pot size i for market in period k.

- (Lgm) = hours of labor required during period j for ijk production of one unit of geranium of pot size i for market in period k.
- (Lpn) = hours of labor required during period j for ijk production of one unit of poinsettia of pot size i for market in period k.
- TTL = total hours of labor available for period j, j = 1
 j to 26

2-Available space area per period

In mathematical formulation, this is illustrated as follows:

$$MAX \sum (Xav_{1k} * Sav_{j1k} + Xaz_{1k} * Saz_{j1k} + Xbg_{1k} * Sbg_{j1k} + Xmm_{1k} * Smm_{j1k}$$

+ Xcm_{1k} + Scm_{1k} + $X <_{1k}$ + $S <_{1k}$ + Xgm_{1k} + Sgm_{1k} + Xhn_{1k} + Shn_{1k}

$$+Xpn_{1k}*Spn_{j1k}) \leq TTS_{j}$$

for all i=1 to m all j=1 to 26 k=1 to 26

where

- (Sav) = Space area in square meters required during period j
 ijk for production of one unit of african violet of pot
 size i for market in period k.
- (Saz) = Space area in square meters required during period j
 ijk for production of one unit of azalea of pot size i
 for market in period k.
- (Sbg) = Space area in square meters required during period j
 ijk for production of one unit of begonia of pot size i
 for market in period k.
 132

- (Smm) = Space area in square meters requiredduring period j
 ijk for production of one unit of chrysanthemum of pot
 size i for market in period k.
- (5cm) = Space area in square meters requiredduring period j
 ijk for production of one unit of cyclamen of pot size
 i for market in period k.
- (S11) = Space area in square meters requiredduring period j
 ijk for productionof one unit of easter lily of pot
 size i for market in period k.
- (Sgm) = Space area in square meters requiredduringperiod j
 ijk for production of one unit of geranium of pot size i
 for market in period k.
- (Shn) = Space area in square meters requiredduringperiod j
 ijk for production of one unit of hydrangea of pot size
 i for market in period k.
- (Spn) = Space area in square meters required during period j
 ijk for production of one unit of poinsettia of pot size
 i for market in period k.

Listing of the results for the Pot Flower LP Model in QSB format

	iables Names	Solution	Opportunity Cost	1	iables Names	Solution	Opportunit Cost
	+			+			,
1	vt1	0	+96.269882	16	vt16	0	+31.178577
2	vt2	0	+104.07543	11	vt17	0	+46.004128
3	vtvv	0	+163.14359	18	vt18	0	423.694553
4	vt4	0	+121.35314	19	vt19 (0	+35.451130
5	vt5	0	+112.51233	20	vt20	0	123.067625
6	vtee	0	+154.22734	21	vt21	0	+37,313553
7	vt7	0	+191.88277	22	vt22	0	+24.161144
8	vt8	0	+115.54488	23	vt23	0	+27.596832
9	vt9	0	+180.79086	24	vt24	0	+27.937582
10	vtmd	0	+180.98232	25	vt25	0	+32.949135
11	vt11	0	+158.96704	26	vtxx	0	+87.546333
12	vt12	0	+130.99257	27	mt1	0	+83.071854
13	vt13	0	+121.55462	28	mt2	0	+73.297203
14	vt14	0	+63.281277	29	mtvv	0	+134.00293
15	vt15	0	+26.054903	30	mt4	0	1+198.02809

Var	iables		Opportunity	Var	iables		Opportunity
No.	Names	Solution	Cost	NO.	Names	Solution	Cost
31	mt5	0	+209.97527	46	mt20	0	+19.203310
32	mtee	0	+230.03546	47	mt2l	0	+9.7578030
33	mt7	0	+152.87671	48	mt22	0	+8.2921572
34	mt8'	0	+148.77318	49	mt23	0	+.30230340
35	mt9	0	+254.45323	50	mt24	+2453.1528	0
36	mtmd	0	+293.57495	51	mt25	+1171.6061	0
37	mt11	0	+277.14349	52	mtxx	0	+73.867477
38	mt12	0	+206.61746	53	mfl	0	+187.89838
39	mt13	0	+125.20306	54	mf2	0	+190.53113
40	mt14	0	+2.6136103	55	mfvv	0	+245.75453
41	mt15	0	+16.697±13	56	mf4	0	+263.30127
42	mt16	0	+37.648708	57	mf5	0	+255.14366
43	mt17	0	+9.7181301	58	mfee	0	+314.06479
44	mt18	0	+15.477635	59	mf/	0	+242,40982
45	mt19	0	+12.704782	60	mf8	0	+200.72505

	iables Names	Solution	Opportunity Cost	Var No.	iables Names	Solution	Opportuni Cost
 61	mf 9	+	+	+ 76	 mf24	0	+1.390702
62	mfmd		+354.07175	77	mf25	0	+7.376197
63	mf11	0		78	mfxx	0	+174.1399
64	mf12	0		79	zfvv	0	+9.535502
65	mf13	0	+130.33403	80	zfee	+323.47046	1
66	mf14	0	+38.555103	81	zfmd	+15633.881	
67	mf15	+3661.2058	0	82	zfxx	+20091.084	
68	mf16	0	+28.518593	83	zsvv	0	+85.29376
69	mf17	+669.66827	0	84	zsee	+3578.6636	
70	mf18	+4255.5132	0	85	zsmd	0	+8.486554
71	mf19	+1621.7399	Ó	86	2SXX	0	+72.27228
72	mf 20	0	+6.0679502	87	btee	0	+84.06733
73	mf 21	+2135.4690	0	88	btmd	0	+106.6546
74	mf22	+3923.2205	0	89	bfee		+28.86668
75	mf 23	+100.61419	0	90	bfmd	0	+53.26389
			the OBJ =				e : 4
	Maxin	Sumr	marized Resu	lts Var	for THI	ESIS Pag	
No.	Maxin iables Names	Sumr	marized Resu Opportunity Cost	lts Var No.	for THI iables Names	ESIS Page Solution	e : 4 Upportuni Cost
No. 91	Maxin iables Names ctvv	Sumr Solution O	Deportunity Cost	lts Var No.	for THI iables Names gtll	ESIS Page Solution	e : 4 Upportuni Cost +121.3416
No. 91 92	Maxin iables Names ctvv ctee	Summ Solution 0 0	narized Resu Opportunity Cost +312.01163 +339.33768	lts Var No. 106 107	for THI iables Names gtll gtl2	ESIS Page Solution 0 0	e : 4 Upportuni Cost +121.3416 +90.45393
No. 91 92 93	Maxin iables Names ctvv ctee ctmd	Summ Solution 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960	lts Var No. 106 107 108	for THI iables Names gtl1 gt12 gt13	ESIS Page Solution 0 0 0	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005
No. 91 92 93 94	Maxin iables Names ctvv ctee ctmd ctxx	Summ Solution 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257	lts Var No. 106 107 108 109	for THI iables Names gtl1 gt12 gt13 gfvv	ESIS Page Solution 0 0 +8524.5527	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005
NO. 91 92 93 94 95	Maxin iables Names ctvv ctee ctmd ctxx cfvv	Summ Solution 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377	lts Var No. 106 107 108 109 110	for THI iables Names gtl1 gt12 gt13 gfvv gfee	ESIS Page Solution 0 0 +8524.5527 +8626.1895	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005
No. 91 92 93 94 95 96	Maxin iables Names ctvv ctee ctmd ctxx cfvv cfee	Summ Solution 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129	lts Var NO. 106 107 108 109 110 111	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7	ESIS Page Solution 0 +8524.5527 +8626.1895 0	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843
No. 91 92 93 94 95 96 97	Maxin iables Names ctvv ctee ctmd ctxx cfvv cfee cfmd	Summ Solution 0 0 0 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129 +534.26129	lts Var No. 106 107 108 109 110 111 112	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7 gf8	ESIS Page Solution 0 +8524.5527 +8626.1895 0 +10532.563	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843
No. 91 92 93 94 95 95 96 97 98	Maxin Maxin Names Ctvv Ctee Ctmd Ctxx Cfvv Cfee Cfmd Cfxx	Summ Solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129 +534.26129 +324.68835	lts Var No. 106 107 108 109 110 111 112 113	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7 gf8 gf9	ESIS Page Solution 0 +8524.5527 +8626.1895 0 +10532.563 0	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843 +54.73990
No. 91 92 93 94 95 96 97 98 99	Maxin maxin mables Names ctvv ctee ctmd ctxx cfvv cfee cfmd cfxx elee	Summ Solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129 +534.26129 +324.68835 +178.76445	lts Var No. 106 107 108 109 110 111 112 113 114	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7 gf8 gf9 gfmd	ESIS Page Solution 0 +8524.5527 +8626.1895 0 +10532.563 0	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843 +54.73990 +53.46875
No. 91 92 93 94 95 96 97 98 99 100	Maxin maxin mables Names ctvv ctee ctmd ctxx cfvv cfee cfmd cfxx elee gtvv	Summ Solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129 +534.26129 +324.68835 +178.76445 +67.776001	lts Var No. 106 107 108 109 110 111 112 113 114 115	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7 gf8 gf9 gfmd gf11	ESIS Page Solution 0 0 +8524.5527 +8626.1895 0 +10532.563 0 0 0 0 0	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843 +54.73990 +53.46875
No. 91 92 93 94 95 96 97 98 99 100 101	Maxin iables Names ctvv ctee ctmd ctxx cfvv cfee cfmd cfxx elee gtvv gtee	Summ Solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129 +534.26129 +324.68835 +178.76445 +67.776001 +119.56433	lts Var No. 106 107 108 109 110 111 112 113 114 115 116	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7 gf8 gf9 gfmd gf11 gf12	ESIS Page Solution 0 +8524.5527 +8626.1895 0 +10532.563 0 0 +1704.1075	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843 +54.73990 +53.46875 +37.57629
No. 91 92 93 94 95 96 97 98 99 100 101 102	Maxin Maxin Maxin Mames Names Ctvv Ctee Ctmd Ctxx Cfvv Cfee Cfmd Cfxx elee gtvv gtee gt7	Summ Solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129 +534.26129 +324.68835 +178.76445 +67.776001 +119.56433 +45.790825	lts Var No. 106 107 108 109 110 111 112 113 114 115 116 117	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7 gf8 gf9 gfmd gf11 gf12 gf13	ESIS Page Solution 0 +8524.5527 +8626.1895 0 +10532.563 0 +1704.1075 +8465.0791	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843 +54.73990 +53.46875 +37.57629
No. 91 92 93 94 95 96 97 98 99 100 101 102 103	Maxin maxin	Summ Solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129 +534.26129 +324.68835 +178.76445 +67.776001 +119.56433 +45.790825 +86.732811	lts Var NO. 106 107 108 109 110 111 112 113 114 115 116 117 118	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7 gf8 gf9 gfmd gf11 gf12 gf13 hfvv	ESIS Page Solution 0 +8524.5527 +8626.1895 0 +10532.563 0 +1704.1075 +8465.0791 0	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843 +54.73990 +53.46875 +37.57629 +451.8606
No. 91 92 93 94 95 96 97 98 99 100 101 102 103 104	Maxin Maxin Maxin Mames Names Ctvv Ctee Ctmd Ctxx Cfvv Cfee Cfmd Cfxx elee gtvv gtee gt7	Summ Solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	marized Resu Opportunity Cost +312.01163 +339.33768 +397.24960 +265.35257 +387.58377 +449.20129 +534.26129 +324.68835 +178.76445 +67.776001 +119.56433 +45.790825	lts Var No. 106 107 108 109 110 111 112 113 114 115 116 117 118 119	for THI iables Names gtl1 gt12 gt13 gfvv gfee gf7 gf8 gf9 gfmd gf11 gf12 gf13 hfvv hfee	ESIS Page Solution 0 +8524.5527 +8626.1895 0 +10532.563 0 +1704.1075 +8465.0791 0 0	e : 4 Upportuni Cost +121.3416 +90.45393 +41.21005 +46.46843 +54.73990 +53.46875 +37.57629

*

-

Variables No. Names	}	Opportunity Cost	Variables No. Names		Opportunit Cost
121 hfxx	0	+364.73044	136 S8	0	+1,9064981
122 hsvv	0	+424.57330	137 S9	+146460.58	0
123 hsee	0	+271.50903	138 510	+573454.31	0
124 hsmd	0	+363.28796	139 SII	+484713.72	0
125 hsxx	0	+305.29276	140 S12	0	+.63815939
126 pnf	0	+176.69029	141 S13	+51177.902	0
127 pntw	0	+459.42834	142 S14	0	+.36900613
128 pntf	0	+655,36292	143 S15	+16883.191	0
129 S1	0	+.04348177	144 S16	0	
130 S2	0	+2.1876786	145 S1/	0	
131 S3	+218348.02	υ	146 S18	0	
132 S4	+371304.81	0	147 S19	0	
133 S5		+.57662874	148 S20	0	
134 S6		+.63298362	149 S21	+289402.34	0
135 S7	0	+.73353904	150 S22	+105262.42	0
		the OBJ = 1			
		narized Resu	lts for THI		2 : 6
Maxin			lts for THI	ESIS Page	e : 6
Maxin Variables No. Names	Summ Solution	Opportunity Cost +.30224070	lts for THI Variables No. Names	ESIS Page Solution +1261.9027	e : 6 Opportunit Cost
Maxin Variables No. Names 151 S23 152 S24	Summ Solution	narized Resu Opportunity Cost +.30224070 0	Variables No. Names 166 S38 167 S39	ESIS Page Solution +1261.9027 +1449.5092	e : 6 Opportunit Cost 0 0
Maxin Variables No. Names 151 S23 152 S24 153 S25	Summ Solution +298880.59 0	marized Resu Opportunity Cost +.30224070 0 +.05238785	lts for TH Variables No. Names 166 S38 167 S39 168 S40	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402	e : 6 Opportunit Cost 0 0 0
Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26	Summ Solution 0 +298880.59 0 +519062.97	marized Resu Opportunity Cost +.30224070 0 +.05238785 0	lts for TH Variables No. Names 166 S38 167 S39 168 S40 169 S41	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732	e : 6 Opportunit Cost 0 0 0 0 0
Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0	lts for TH Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0
Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28	Summ Solution 	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0	lts for TH Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28 157 S29	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268 +934.80341 +1006.3358	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0 0 0	lts for TH Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43 172 S44	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917 +1191.2911	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maxin Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28 157 S29 158 S30	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268 +934.80341 +1006.3358 +837.84448	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0 0 0 0 0	lts for TH Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43 172 S44 173 S45	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917 +1191.2911 +1341.0073	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maxin Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28 157 S29 158 S30 159 S31	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268 +934.80341 +1006.3358 +837.84448 0	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lts for TH Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43 172 S44 173 S45 174 S46	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917 +1191.2911 +1341.0073 +1224.7575	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maxin Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28 157 S29 158 S30 159 S31 160 S32	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268 +934.80341 +1006.3358 +837.84448 0 +171.64815	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lts for THI Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43 172 S44 173 S45 174 S46 175 S47	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917 +1191.2911 +1341.0073 +1224.7575 +1396.2594	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maxin Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28 157 S29 158 S30 159 S31 160 S32 161 S33	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268 +934.80341 +1006.3358 +837.84448 0 +171.64815 +133.30573	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lts for THI Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43 172 S44 173 S45 174 S46 175 S47 176 S48	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917 +1191.2911 +1341.0073 +1224.7575 +1396.2594 0	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maxin Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28 157 S29 158 S30 159 S31 160 S32 161 S33 162 S34	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268 +934.80341 +1006.3358 +897.84448 0 +171.64815 +133.30573 +334.32205	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lts for THI Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43 172 S44 173 S45 174 S46 175 S47 176 S48 177 S49	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917 +1191.2911 +1341.0073 +1224.7575 +1396.2594 0 +10.564489	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maxin Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28 157 S29 158 S30 159 S31 160 S32 161 S33 162 S34 163 S35	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268 +934.80341 +1006.3358 +837.84448 0 +171.64815 +133.30573 +334.32205 +186.18318	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lts for THI Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43 172 S44 173 S45 174 S46 175 S47 176 S48 177 S49 178 S50	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917 +1191.2911 +1341.0073 +1224.7575 +1396.2594 0 +10.564489 +133.22214	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Maxin Maxin Variables No. Names 151 S23 152 S24 153 S25 154 S26 155 S27 156 S28 157 S29 158 S30 159 S31 160 S32 161 S33 162 S34	Summ Solution 0 +298880.59 0 +519062.97 +1418.8268 +934.80341 +1006.3358 +897.84448 0 +171.64815 +133.30573 +334.32205	marized Resu Opportunity Cost +.30224070 0 +.05238785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lts for THI Variables No. Names 166 S38 167 S39 168 S40 169 S41 170 S42 171 S43 172 S44 173 S45 174 S46 175 S47 176 S48 177 S49	ESIS Page Solution +1261.9027 +1449.5092 +1061.9402 +1312.5732 +1264.5253 +1070.3917 +1191.2911 +1341.0073 +1224.7575 +1396.2594 0 +10.564489	e : 6 Opportunit Cost 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Sensi	tivit	y Ana	alysıs	for	RHS	Page :	1
B(i) Min. B(i)	Original	Max.	B(i)	B(i)	Min.	B(i)	Origina	1 Max.B(
B-2 +853820.25 B-3 +1221652.0 B-4 +1068695.3 B-5 +1322948.5 B-6 +1369261.1	+1440000. +1440000. +720000.0 +1440000. +1440000. +864000.0 +864000.0 +864000.0 +864000.0 +864000.0 +864000.0	+9644 +Infi +1nfi +1513 +1508 +1674 +1508 +1674 +1074 +1071 +9404 +1071 +8774 +1071 +8906 +8843	53.1 nity 755. 9869. nity 9869. nity 90. 13 90. 13 90. 13 90. 15 90. 15 90. 15 90. 15 90. 15 90. 15 90. 15 90. 15 90. 15 90. 10 10 90. 10 10 10 10 10 10 10 10 10 10 10 10 10	B-20 B-21 B-22 B-23 B-24 B-25 B-26 B-27 B-28 B-29 B-30 B-31 B-32 B-33 B-34 B-35	+5813 +5745 +1334 +1419 +1141 +1418 +7769 +581. +1065 +993. +1112 +1718 +1828 +1866 +1665 +1813	29.00 97.62 737.6 054.8 119.4 572.5 37.00 17322 .1965 66418 .1555 .9874 .3518 .6943 .6780 .8168	$\begin{array}{r} +864 \\ +864 \\ +864 \\ +864 \\ +864 \\ +864 \\ +144 \\ +144 \\ +144 \\ +144 \\ +144 \\ +1296 \\ +200 \\ +$	+901637 +Infinit +Infinit +145560 +Infinit +1469793 +Infinit +Infinit +Infinit +Infinit +2061.22 +Infinit +Infinit +Infinit +Infinit

Sensitivity Analysis for RHS Page : 2							
B(i) Min. B(i)	Original Max.	B(i) B(i)	Min. B(i)	Original	Max. B(i)		
B-37 +791.19409 B-38 +738.09729 B-39 +550.49084 B-40 +938.05981 B-41 +687.42676 B-42 +735.47473 B-43 +929.60828 B-44 +808.70886	+2000.00 +Inf +2000.00 +Inf +2000.00 +Inf +2000.00 +Inf +2000.00 +Inf +2000.00 +Inf	inity B-46 inity B-47 inity B-48 inity B-49 inity B-50 inity B-51	+775.2425 +603.7406 +1993.218 +1989.435 +1866.777 +1984.509	+2000.0000 +2000.0000 +2000.0000 +2000.0000 +2000.0000 +2000.0000	+Infinity +Infinity +2012.508 +Infinity +Infinity +2007.834		

ダ作人

I

1

137

.

		Sensitivity /	Analysis for	OBJ Coeffic	ients Page :
C(j)	Min. C(j)	Or:ginal Max.	C(j) C(j)	Mın. C(j)	Original Max. C(
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(10) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18)	<pre>- Infinity - Infinity</pre>	$\begin{array}{c} -9 & 31999 \\ +94.7 \\ -4.44999 \\ +158. \\ -10.6100 \\ +110. \\ -9.14000 \\ +103. \\ +.410000 \\ +154. \\ -3.22000 \\ +188. \\ +.759999 \\ +116. \\ +4.13000 \\ +184. \\ +12.7300 \\ +193. \\ +9.09000 \\ +168. \\ +11.6400 \\ +142. \\ +13.8399 \\ +135. \\ +15.4200 \\ +78.7 \\ +16.5000 \\ +42.5 \\ +17.2700 \\ +48.4 \end{array}$	299889 C(19) 7532 C(20) 69359 C(21) 74314 C(22) 37232 C(23) 63734 C(24) 66277 C(25) 30488 C(26) 92087 C(27) 71231 C(28) 05705 C(29) 63257 C(30) 39462 C(31) 701279 C(32) 554905 C(34) 48578 C(34) 94129 C(35) 234554 C(36)	<pre>- Infinity - Infinity</pre>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		Sensitivity A			cients Page : Original Max. C(j
C(37) C(38) C(39) C(40) C(41) C(42) C(42) C(43) C(44) C(45) C(44) C(45) C(46) C(47) C(48) C(47) C(48) C(50) C(51) C(52) C(53) C(54)	- Infinity - 55.592915 + 46.818916 - Infinity - Infinity - Infinity	+58.0400 +335 +61.1600 +267 +63.6399 +188 +65.5999 +68. +66.6999 +83. +67.6699 +105 +67.8200 +77. +67.8799 +83. +67.2699 +79. +66.3899 +85. +64.8399 +74. +63.7500 +72.0 +59.8800 +60. +55.9000 +58.9 +52.2999 +53.	.18350 C(55) .77747 C(56) .84306 C(57) 213608 C(58) 397110 C(59) .31870 C(60) 538132 C(61) 357635 C(62) 974777 C(63) 5933C7 C(64) 597801 C(65) 042160 C(66) 182304 C(67) 936005 C(68) 269985 C(69) .54749 C(70)	<pre>- Infinity - Infinity - Infinity - Infinity - Infinity - Infinity - Infinity - Infinity - Infinity</pre>	

- --

	Sensitivity Analys	is for O	BJ Coefficie	ents Page :
C(j) Min. C(j)	Original Max. C(j)	С(ј) М	in. C(j) Or	iginal Max. C(
C(73) +92.232521 C(74) +83.090492 C(75) +80.360283 C(76) - Infinity C(77) - Infinity C(77) - Infinity C(78) - Infinity C(79) - Infinity C(80) +149.83752 C(81) +203.75400	+92.6699 +97.855118 +87.7500 +88.972702 +82.2200 +87.520050 +73.9300 +75.320702 +66.1299 +73.506195 +73.5509 +247.69992 +174.720 +184.25551 +186.539 +188.19902 +212.090 +214.52699 +198.370 +209.01683	C(91) - C(92) - C(93) - C(94) - C(95) - C(95) - C(96) - C(97) - C(98) - C(99) - C(99) - C(100) -	Infinity -5 Infinity -6 Infinity -4 Infinity -2 Infinity +1 Infinity +4 Infinity +2 Infinity +7 Infinity +3	53.4900 +258.52 51.2900 +278.04 66.0700 +351.17 29.4000 +235.95 4.2600 +401.84 4.15000 +445.05 25.7900 +560.05 71.1299 +395.81 52.5600 +211.32 26.6899 +94.465
C(84) +197.62447 C(85) - Infinity C(86) - Infinity C(87) - Infinity C(88) - Infinity C(88) - Infinity C(89) - Infinity	+201.230 +223.43649 +244.000 +252.48656 +224.679 +296.95227 +70.5700 +154.63734 +78.4499 +185.10463	C(102)- C(103)- C(104)- C(105)- C(106)- C(107)-	Infinity +2 Infinity +2 Infinity +2 Infinity +3 Infinity +2 Infinity +2	23.2600 +69.050 5.2199 +111.95 26.6100 +175.57 5.0000 +168.96 28.8799 +150.22 9.9200 +120.37

į

.

Sensitivity Analysis for OBJ Coefficients Page :						
C(j) Min. C(j)	Original Max. C(j)	C(j) Min. C(j) Origi	nal Max. C(
C(110)+139.36206 C(111) - Infinity C(112)+129.16890 C(113) - Infinity C(114) - Infinity C(115) - Infinity C(115) - Infinity C(116)+123.40804 C(117)+138.64516	+141.850 +143.68607 +127.560 +174.02843 +131.230 +138.28410 +134.170 +188.90991 +152.840 +206.30876 +138.610 +176.18630 +141.039 +171.23326 +142.780 +156.93065	C(119) - Infinity +5.13 C(120) - Infinity +5.7 C(121) - Infinity +47.4 C(122) - Infinity +105. C(123) - Infinity +134.4 C(124) - Infinity +214.3 C(125) - Infinity +214.3 C(125) - Infinity +201.4 C(126) - Infinity +93.3 C(127) - Infinity +55.3 C(128) - Infinity +92.5	400 +467.969 000 +412.130 270 +529.843 510 +406.119 220 +577.507 429 +506.722 499 +270.040 200 +514.748			