
 

A rapid, object-oriented approach to mapping and 

classifying wetlands at a regional scale in the central 

Congo River basin 

 

Gregory William Bunker 

 

Degree of Master of Science 

 

Department of Geography 

McGill University 

Montreal, Quebec, Canada 

January 25, 2010 

 

A thesis submitted to McGill University in partial fulfillment of the 

requirements of the degree of Master of Science. 

 

© Copyright 2010, Gregory William Bunker.  All rights reserved. 



ii 

 

Acknowledgements 

I would like to thank the Natural Sciences and Engineering Research 

Council (NSERC) of Canada, the Department of Geography at McGill 

University, the Global Environmental and Climate Change Centre (GEC3), 

and my supervisor, Bernhard Lehner, for their financial support for this 

project.  I would also like to thank Craig von Hagen for supplying the FAO 

Africover data, and my supervisor for supplying the JERS-1/SAR GRFM 

Africa and SWBD Lakes datasets.  Also, many thanks to Raja Sengupta 

and Karina Benessaiah for lending the image analysis software.  I would 

like to thank the members of my thesis advisory committee, Nigel Roulet 

and Margaret Kalacska, for their consultations, and Günther Grill and 

Elizabeth Heller for their technical support.  Lastly, I am indebted to my 

supervisor for his patience, understanding and encouragement while I 

pursued this research.  Completing this degree has presented many 

challenges and opportunities, and I was fortunate enough to benefit from a 

supervisor who made it all seem possible.  For his ceaseless optimism 

and support, I am grateful. 



iii 

 

Table of Contents 

Table of Contents ................................................................................................................ iii 

List of Tables ....................................................................................................................... v 

List of Figures ..................................................................................................................... vi 

1. Rationale, Objective, Research Questions and Literature Review ................................. 1 

1.1 Rationale ................................................................................................................... 1 

1.2 Objective and Research Questions .......................................................................... 3 

1.3 Literature Review: Remote Sensing of Tropical Floodplain Wetlands ..................... 4 

1.3.1 Optical Data ....................................................................................................... 7 

1.3.2 Radar Data ........................................................................................................ 8 

1.3.3 Ancillary Data .................................................................................................. 12 

1.3.4 Image Analysis ................................................................................................ 14 

1.3.5 Tropical Floodplain Wetland Classification ...................................................... 15 

1.3.6 Accuracy Assessment ..................................................................................... 17 

1.3.7 Case Studies: the Central Congo and Amazon River Basin Floodplains ....... 21 

2. Approach, Study Area and Methods ............................................................................. 28 

2.1 Approach ................................................................................................................ 28 

2.2 Study Area .............................................................................................................. 30 

2.2.1 Physical Setting ............................................................................................... 30 

2.2.2 Central Congo Floodplain Wetlands ................................................................ 34 

2.3 Methods .................................................................................................................. 35 

2.3.1 Data Collection and Preparation ..................................................................... 37 

2.3.2 Data Analysis ................................................................................................... 51 

2.3.3 Accuracy Assessment ..................................................................................... 61 

3. Results and Interpretation ............................................................................................. 63 

3.1 Full Equateur Wetlands Map .................................................................................. 63 

3.1.1 Floodplain Forest and Woodland Misclassifications ....................................... 66 

3.1.2 Upland ............................................................................................................. 67 

3.1.3 Lake ................................................................................................................. 70 

3.1.4 River ................................................................................................................ 70 

3.1.5 Floodplain Shrub ............................................................................................. 71 

3.1.6 Floodplain Herbaceous Vegetation ................................................................. 73 

3.2 Simplified Wetlands Map ........................................................................................ 74 

3.2.1 Tall Floodplain Vegetation ............................................................................... 74 

3.2.2 Short Floodplain Vegetation ............................................................................ 75 

3.3 Basic Floodplain Map ............................................................................................. 78 



iv 

 

3.3.1 Open Water ..................................................................................................... 78 

3.3.2 Floodplain ........................................................................................................ 80 

4. General Discussion and Conclusions ........................................................................... 82 

4.1 Simplified Wetlands and Basic Floodplain Maps: Comparison to Africover ........... 82 

4.2 Simplified Wetlands and Basic Floodplain Maps: Comparison to other maps ....... 83 

4.3 Full Equateur Wetlands Map .................................................................................. 88 

4.4 New Insights ........................................................................................................... 90 

4.5 Limitations and Future Work ................................................................................... 93 

4.6 Conclusions ............................................................................................................ 96 

References ...................................................................................................................... 100 

 



v 

 

List of Tables 

Table 2.1: Definitions of Equateur wetlands map and Africover.............................. 53 

Table 2.2: LCCS labels used for reclassification of the Africover dataset............... 54 

Table 3.1: Error matrix of the full Equateur wetlands map....................................... 64 

Table 3.2: Comparison of quantity for the full Equateur wetland classes................ 64 

Table 3.3: Error matrix of the simplified wetlands map............................................ 76 

Table 3.4: Comparison of quantity for the simplified wetland classes..................... 76 

Table 3.5: Error matrix of the basic floodplain map................................................. 79 

Table 3.6: Comparison of quantity for the basic floodplain classes......................... 79 



vi 

 

List of Figures 

Figure 1.1: How different wavelengths interact with typical floodplain conditions.........9 

Figure 1.2: Aerial videography snapshots of two different forest types.......................24 

Figure 2.1: Selected political and physical features of the Congo River basin............31 

Figure 2.2: Rivers, lakes and settlements of Equateur Province, D. R. Congo...........32 

Figure 2.3: A visual overview of each dataset used....................................................36 

Figure 2.4: Landcover classification key according to the UN LCCS..........................46 

Figure 2.5: LANDSAT scene acquisition dates...........................................................48 

Figure 2.6: Reclassification rules of Africover mixed mapping units...........................50 

Figure 2.7: The three polygons reclassified from upland to floodplain forest..............52 

Figure 2.8: The adapted parallel-piped classifier of Hess et al. (2003).......................55 

Figure 2.9: Flowchart of the segmentation and classification rules.............................58 

Figure 3.1: A visual comparison of the full Equateur wetland map to Africover...........65 

Figure 3.2: A visual comparison of the simplified wetlands map to Africover.......... ....77 

Figure 3.3: A visual comparison of the basic floodplain map to Africover....................81 

Figure 4.1: Accuracy obtained for the three levels of wetland class aggregation.........83 

Figure 4.2: The leading wetland map of the central Congo River basin.......................86 

Figure 4.3: The leading wetland map of the Equateur region.......................................87 

Figure 4.4: A comparison of probability density functions for two important classes....90 



vii 

 

Abstract 

Tropical floodplain wetlands are important from various perspectives, 

including hydrology, biogeochemistry and conservation, while facing 

imminent threats aggravated by insufficient baseline information.  Recent 

advances in remote sensing and image analysis can address this problem.  

The integration of radar imagery (L-HH) with topographic datasets 

(elevation, slope and waterbodies) in an object-oriented analysis was 

tested as a method of rapid wetland mapping in the Equateur Province, 

Democratic Republic of Congo.  Three classification schemes at different 

aggregation levels were produced to test thematic detail against accuracy.  

The highest level classifications include upland, lake, river, flooded forest, 

nonflooded forest, shrub and herbaceous vegetation.  The maps range 

from 47% accuracy for the 7-class wetland map to 78% accuracy for the 3-

class floodplain map compared to a reference map (FAO Africover).  The 

method shows promise for developing inventories and monitoring 

programs to support wetland management in the central Congo River 

basin and other tropical riverine environments. 
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Abrégé 

Les marécages tropicaux de zone inondable sont importants de diverses 

perspectives, incluant l'hydrologie, la biogéochimie et la conservation, tout 

en faisant face à des menaces imminentes aggravées par l'information 

insuffisante de ligne de base. Les avances récentes dans la télédétection 

et l'analyse d'image peuvent aborder ce problème. L'intégration des 

mosaïques de radar (L-HH) avec des ensembles de données 

topographiques (altitude, pente et cours d’eau) dans une analyse “object-

oriented” a été examinée comme méthode de cartographie rapide pour les 

marécages dans la province d'Equateur, République Démocratique du 

Congo. Trois arrangements de classification à différents niveaux 

d'agrégation ont été produits pour examiner le détail thématique contre 

l'exactitude. Les classifications les plus detaillées incluent le terrain haute, 

le lac, le fleuve, la forêt inondée, la forêt non-inondée, l'arbuste et la 

végétation herbacée. Les cartes s'étendent de l'exactitude de 47% pour la 

carte de 7 classes à l'exactitude de 78% pour la carte de 3 classes 

comparée à une carte de référence (FAO Africover). La méthode se 

montre bien pour des inventaires et des programmes de surveillance qui 

soutiennent la gestion de marécage dans le bassin fluvial central du 

Congo et d'autres environnements riverains tropicaux.
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1. Rationale, Objective, Research Questions and Literature Review 

1.1 Rationale 

The organic soils and proximity of wetland ecosystems to navigable water 

has led to their widespread conversion to agriculture and settlement.  This 

traditional view of wetlands has caused between 26% and 50% of wetlands to be 

lost worldwide (Dugan 1993, Sterling and Ducharne 2008).  Within the past 20 

years, however, the global profile of wetlands has changed considerably because 

of their significance as modulators of climate and flooding and as habitat for 

many species and life stages of birds and fishes.  Wetlands are now considered 

among the most valuable ecosystem types on Earth (Costanza et al. 1997).  

However, population and development pressures coupled with a lack of scientific 

information to ground policy virtually guarantees continued wetland loss 

(Davidson and Finlayson 2007). 

Tropical floodplain wetlands face many imminent threats and challenges 

for management due to rapid population growth in combination with 

deforestation, agricultural expansion, and new hydropower projects (Junk 2002).  

Establishing policy to mitigate this loss is difficult because current wetland 

inventories and monitoring are not sufficient (Davidson and Finlayson 2007).  

Regional-scale tropical wetland inventories are absent or incomplete due to the 

lack of resources, indifferent political attitudes, and the difficult wetland terrain 
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generally found in tropical countries (Junk 2002).  Inventories are the first step 

towards developing effective wetland policy and are essential for hydrology and 

biogeochemistry modeling, in addition to conservation planning.  Although these 

motivations have led to wetland inventories of several Amazonian floodplain 

areas, these areas are in less danger of immediate loss or degradation than most 

other large tropical wetland areas (Junk 2002). 

The Congo River basin is second only to the Amazon River basin in 

tropical wetland area, but will experience far greater demographic and 

development pressures than the Amazon by 2025 (Junk 2002).  Although it is 

assumed that the majority of Congo wetlands remains intact (Campbell 2005), 

the population of the D. R. Congo (which comprises 60% of the basin area and 

the majority of Congo River wetlands) will more than double from 51 million 

people in 2000 to 115 million people in 2025 (United Nations 2000).  At the same 

time, the vast natural resources of the country are being developed, which has 

motivated the planning of a massive hydropower project on the Congo River now 

undergoing a feasibility study (International Rivers 2008).  These developments 

will affect the people who depend on the food (e.g., fish, rice) and building 

materials (e.g., reeds, clay) of the Congo wetlands, which cannot be readily 

substituted by the poor national or household economies of most countries in the 

basin (Coughanowr 1998).  The physical functions of these wetlands (i.e., water 
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and carbon regulation, habitat structure) will also be affected but it is unclear 

how. 

Although inventories have traditionally been collated from local knowledge, 

maps, reports, and aerial photography, these methods are time consuming and 

take years for large regions such as the Congo (e.g., White 1983).  Recent 

advances in satellite remote sensing technology, image analysis and the growing 

availability of global and near-global, wetland-relevant, digital datasets provide 

standardized data that can be automatically classified, and show promise for 

developing rapid and repeatable large-scale wetland mapping methods 

(Houhoulis and Michener 2000, Mertes 2002). 

1.2 Objective and Research Questions 

The objective of this research is to develop a rapid, regional-scale method 

of tropical floodplain wetland classification without the use of field-based 

information based on the wetland-rich, 100,000 km2 Equateur Province of the D. 

R. Congo in the central Congo River basin.  The classification scheme is to be 

tailored to hydrologists, biogeochemists, and conservationists.  Three important 

research questions follow from the trade-off between a “useful” and “rapid” 

classification method: 

1. What tropical floodplain wetland classes are useful for hydrologists, 

biogeochemists, and conservationists? 
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2. What classes are achievable with reasonable effort and quality? 

3. What is the best compromise between rapid analysis, thematic 

detail, and accuracy? 

To familiarize the reader with this topic, previous work related to the 

satellite remote sensing of tropical floodplain wetlands at regional scales is 

described below. 

1.3 Literature Review: Remote Sensing of Tropical Floodplain Wetlands 

Floodplains are areas periodically inundated by the lateral overflow of 

rivers or lakes, and are extensive in the tropics because of the strong seasonal 

flooding of the low-gradient, well-weathered basins found there (Junk et al. 

1989).  These seasonal hydrologic pulses affect the development of floodplain 

geomorphology, soil, and vegetation depending on the amplitude, duration, and 

extent of flooding, and can be expressed as a gradient of physical and chemical 

conditions from the river proper to the surrounding uplands (Junk et al. 1989).  

This concept is known as the Aquatic-Terrestrial Transition Zone, or ATTZ, and it 

is the essential feature that maintains the diverse functions of tropical floodplain 

wetlands (Junk et al. 1989).  The term “wetland” can be defined in many ways, 

but a common definition includes areas over which the water table is at or near 

the soil surface for a specified period of time during the year while also being 

vegetated (Sahagian and Melack 1998). 
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Tropical floodplain wetlands are interesting areas from several points of 

view.  They are important as reserves for agriculture and settlement 

(Coughanowr 1998), as regulators of water and carbon and climate, (Chen and 

Prinn 2006, Lehner and Döll 2004), and as habitat for maintaining fisheries and 

biodiversity (Welcomme 1979, Hamilton et al. 2007).  Mapping the seasonal 

extent of flooding and the distribution of wetland types is important for 

parameterizing hydrological and climate models (Lehner and Döll 2004); 

improving current and future carbon dioxide and methane emission estimates, 

processes and feedbacks (Richey et al. 2002, Melack et al. 2004); and for 

establishing and monitoring change of non-substitutable ecosystem services to 

humans and habitat to birds, fishes, and mammals (Coughanowr 1998, Thieme 

et al. 2007, Keddy et al. 2009).  However, the large size, remoteness and 

dynamic nature of tropical floodplain wetlands have made them difficult to 

characterize with traditional methods of wetland classification. 

Regional-scale vegetation maps exist for most of the tropics; however, 

they are based on traditional methods of landcover classification, which most 

often involves local knowledge, reports, and aerial photography (e.g., White 

1983, Hughes et al. 1992).  These methods are extremely time consuming and 

take years to compile for large regions (Ausseil et al. 2007).  In most cases, 

tropical floodplain wetlands are not the focus of such landcover mapping efforts 
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and are reduced to a single class (e.g., White 1983).  As these methods are not 

readily repeatable, they are not appropriate for monitoring the distribution, 

condition, and extent of tropical floodplain wetlands.  Additionally, the many 

different sources of data used and the subjective nature of their interpretation 

cause wetland terminology to be ill-defined and inconsistent with classifications 

elsewhere (Lehner and Döll 2004).  Regularly collected, standardized data and 

their objective analysis are required to inform policy development and large-scale 

questions of hydrology, biogeochemistry and conservation. 

Satellite remote sensors are ideally suited to address this problem 

because they are able to make synoptic, regular observations for any given 

location on Earth.  The convenience and consistency of applying satellite remote 

sensing to wetland mapping has led to nearly every type and size of wetland 

being studied this way (Ozesmi and Bauer 2002), especially large and remote 

floodplain environments (Mertes 2002).  However, wetlands remain notoriously 

difficult to delineate and classify.  Unlike other ecosystem types, wetlands are 

defined by water depth, seasonal extent, and water quality in addition to 

vegetation and soil types (Semeniuk and Semeniuk 1997).  Characterizing 

wetland features has traditionally been constrained by limitations of information 

extraction from remotely sensed data (Mertes 2002), but the growing availability 

of global and near-global digital datasets and improvements in image 
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classification techniques show great potential to address these shortcomings 

(e.g., Hamilton et al. 2007, Durieux et al. 2007). 

1.3.1 Optical Data 

Most remote sensing approaches to wetland mapping involve one or two 

types of data: optical and (or) radar data.  Optical sensors detect the relatively 

short wavelengths of solar radiation reflected from the Earth’s surface, and are 

passive sensors because they rely on reflected solar radiation as the signal 

source.  Optical data are most useful for detecting differences in leaf pigment 

concentrations between plant species (i.e., wavelengths in the visible spectrum), 

and detecting differences in leaf morphology and water content (i.e., wavelengths 

in the infrared spectrum).  While spaceborne optical satellite systems (e.g., 

MODIS, LANDSAT, SPOT, IKONOS) are usually incapable of discriminating 

vegetation at the species level, their data are useful for mapping wetland 

vegetation communities, both emergent and submerged (Silva et al. 2008).  The 

spectral signatures of emergent aquatic vegetation often overlap with terrestrial 

vegetation, water, and occasionally soil as well, which can affect visual 

interpretation of optical imagery (Ozesmi and Bauer 2002, Silva et al. 2008), but 

the use of a decision-tree classifier has been shown to improve wetland 

discrimination and accuracy (Baker et al. 2006).  The reflectance of submerged 

aquatic vegetation is often very low and makes isolating the signal from water—
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which absorbs most visible and infrared radiation—the primary challenge of 

identifying submerged vegetation (Silva et al. 2008).  This step usually requires 

more sensitive techniques of atmospheric haze correction than the traditional 

Dark Object Subtraction method, which simply subtracts the value of open water 

(assuming it reflects zero radiation) from the spectral response of areas of 

interest elsewhere in the imagery (Silva et al. 2008).  Although extensive 

vegetation information can be obtained from optical data, the inability to 

penetrate clouds and dense vegetation—a common phenomenon over wetlands, 

especially tropical ones—prevents optical data from becoming a reliable source 

of vegetation and flood extent data for large-scale inventory methods (Figure 1.1, 

De Grandi et al. 2000a, Hess et al. 2003, Rosenqvist et al. 2007). 

1.3.2 Radar Data 

Unlike the passive nature of optical sensors which depend on reflected 

solar energy, radar sensors are active, sending a pulse of radiation from the 

satellite to the target and then recording the amount reflected (Figure 1.1).  The 

active nature and comparatively long (microwave) wavelength of radar signals 

mean that data can be collected independent of time of day or cloud cover.  The 

most common radar bands used for tropical wetland mapping are C-band (5.6 

cm) and L-band (23.5 cm) (De Grandi et al. 2000a, Costa et al. 2002, Mayaux et 

al. 2002, Hess et al. 2003, Hamilton et al. 2007, Durieux et al. 2007).  Longer 
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Figure 1.1: How optical (a to c) and radar (d to f) wavelengths interact with typical forested floodplain conditions.  Blue arrows represent a source 

of electromagnetic energy, red arrows represent return signals to the sensor, black straight arrows represent signals reflected elsewhere, and 

black curved arrows represent absorbed energy.  In diagrams (d to f), arrow thickness is proportionate to energy.  Adapted from Rosenqvist et al. 

2007. 
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wavelengths penetrate deeper into vegetation canopies, but lose sensitivity to 

smaller biophysical vegetation characteristics such as leaf distribution, density, 

orientation, canopy structure, and plant biomass (Silva et al. 2008).  It is 

important to note that radar systems are side-looking, the inclination of which 

also affects the amount of energy that is returned as well as specularly reflected 

(Figure 1.1).  Radar pulses can be returned to the sensor via the volumetric 

backscattering characteristic of vegetation canopies, and via the corner or di-

hedral reflection characteristic of urban areas and flooded vegetation, where 

many surfaces occur at perpendicular angles (Figure 1.1).  The longer 

wavelengths of radar data, compared to optical data, cannot penetrate water, so 

they are not sensitive to submerged vegetation, but can be sensitive to flooded 

vegetation stands. 

C-band radar provides information about forest canopy structure via 

volume backscattering since it is often completely attenuated there (De Grandi et 

al. 2000, Mayaux et al. 2002), but also shows strong di-hedral reflectance from 

flooded herbaceous vegetation (Costa et al. 2002, Mayaux et al. 2002).  The 

longer wavelength of L-band radar almost completely penetrates forest canopy 

vegetation and reflects a portion back to the sensor via corner-bouncing between 

the flooded surface and tree trunks (Silva et al. 2008).  For this reason, L-band 

radar has long been used to reliably estimate the flood extent of flooded forest, 
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but is less successful at mapping wetland vegetation with less biomass such as 

shrub and herbaceous classes (e.g., Hess et al. 1995, Hess et al. 2003).  

However, radar data are increasingly considered a critical component of tropical 

wetland classifications due to their ability to penetrate cloud cover and their 

sensitivity to the presence of standing water beneath vegetation (Rosenqvist et 

al. 2007). 

The latest generation of radar platforms provides an additional dimension 

of information with the ability to send and receive radar signals in different 

polarizations (e.g., RADARSAT-2, ALOS/PALSAR).  Polarized electromagnetic 

radiation vibrates linearly. Traditionally, radar sensors have only recorded signals 

in same- or co-polarized wavelengths such as HH (sending and receiving a 

horizontally polarized wavelength, e.g., JERS-1/SAR) or VV (sending and 

receiving a vertically polarized wavelength, e.g., RADARSAT-1).  The most 

advanced radar satellites now enable cross- (e.g., HV), dual- (e.g., HH+HV) and 

quad-polarization (HH+HV+VV+VH) techniques for much more complex 

vegetation structure analyses.  Plant density, distribution, orientation, foliage 

shape, dielectric constant, canopy height, and soil moisture are all characteristics 

that radar still has the potential to capture in this way (Costa 2004).  However, 

unlike optical spectral signatures, polarization signatures can be the same for two 

different scatterers (CCRS 2007). 
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1.3.3 Ancillary Data 

Using only satellite imagery to classify tropical wetlands can be 

problematic (Sader et al. 1995).  Tropical floodplain wetlands cannot necessarily 

be defined by their vegetation or flooding extent in a single satellite image, since 

wetland vegetation and flood extent are seasonally variable.  Comparing or 

compositing multi-temporal imagery is one solution to this problem, but caveats 

remain.  Coarse-resolution datasets provide regularity and homogeneity of 

acquisition dates at the expense of losing small features, which invariably 

includes most wetlands (Mayaux et al. 2004, Vancutsem et al. 2009).  Fine-

resolution datasets provide the necessary spatial and spectral detail to identify 

and classify wetlands, but suffer from the heterogeneity of acquisition dates and 

image availability (Vancutsem et al. 2009).  Adding complimentary datasets can 

be a logical solution to the problem of temporally inconsistent imagery and rapid 

wetland mapping.  Many wetlands are restricted to certain soils, slopes, and 

topography as well as to relationships with other landscape features that are not 

directly evident in satellite imagery (Sader et al. 1995).  In this way, ancillary data 

add to the convergence of evidence needed for accurate wetland detection and 

classification (Sader et al. 1995). 

Ancillary data are often added as a thematic layer in a Geographic 

Information System (GIS) for analysis, and typically improve wetland 
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classification provided that the data are co-registered accurately (Ozesmi and 

Bauer 2002).  Common themes include soil types, elevation and other wetland 

maps (Ozesmi and Bauer 2002).  In two of the earliest examples of multiple 

dataset analysis in a GIS, Bolstad and Lillesand (1992) and Sader et al. (1995) 

both found soil and elevation data aided in accurately classifying wetlands.  

Overall accuracy improved from 69% to 83% when soil texture and topographic 

position were considered.  For floodplain wetland classification, Digital Elevation 

Models (DEMs) are particularly useful because they can readily highlight the low 

slope and elevation characteristics of floodplain geomorphology (Mertes 2002).  

Hamilton et al. (2006) combined the imagery from LANDSAT-7/ETM+ and JERS-

1/SAR over a reach of the Madre de Dios River in the Peruvian Amazon with a 

DEM.  The DEM was used in the initial step of their analysis to distinguish 

floodplain from nonfloodplain areas (Hamilton et al. 2007).  This study employed 

a rule-based approach similar to Bolstad and Lillesand (1992) and Sader et al. 

(1995) which, being a knowledge-based method of analysis, is served well by 

ancillary data (Daniels 2006).  Although ancillary data are useful for improving the 

accuracy and detail of wetland classification, ultimately it is the responsibility of 

the analyst to interpret and classify such data for practical use. 
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1.3.4 Image Analysis 

Conceptually, pixel-based classification methods lack an intrinsic 

relationship to the boundaries of ecosystems since the boundaries of pixels are 

imposed during data processing (Hess et al. 2003).  Pixel-based classification 

can also be problematic for ecological applications because the low statistical 

separability of classes results in either low accuracy or the use of very general 

classes (Lobo 1997).  An object-oriented approach, in contrast, segments an 

image into more or less homogeneous regions (objects) that are then classified 

based on aggregate statistics of the pixels within the object. 

Additionally, some software packages can semi-automatically, and thus 

rapidly, integrate several datasets of varying spatial and spectral resolutions into 

objects that can then be classified based on shape, texture, area, context, and 

information from other hierarchical object layers (e.g., Hamilton et al. 2007, 

Durieux et al. 2007).  The object-oriented approach is proving to be an effective 

tool for improving the accuracy of and discriminating between wetland classes 

(Costa et al. 2002, Hess et al. 2003, Hamilton et al. 2007, Durieux et al. 2007).  A 

distinct advantage of the object-oriented approach is that both descriptive and 

strategic information used for image segmentation and wetland classification are 

explicitly represented and changeable in the decision tree (or process tree), 
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allowing incremental improvement and new datasets and techniques to be added 

when applying or adapting a particular analysis elsewhere. 

The concept of image segmentation as applied in an object-oriented 

approach is also very useful when analyzing radar data in particular.  Radar data 

always include spurious data values known as speckle or noise.  In a traditional 

pixel-based classifier these values would be classified differently from their 

neighbours despite the context of the situation (Oliver and Quegan 1998).  An 

object-oriented approach builds objects from a single pixel and then, based on 

user-defined rules of homogeneity, grows and merges the single pixel with 

neighbours in an iterative process (Oliver and Quegan 1998).  This technique 

alleviates the speckle issue of radar data and has been widely adopted for radar-

based tropical wetland classification (Costa et al. 2002, Hess et al. 2003, Costa 

and Telmer 2007). 

1.3.5 Tropical Floodplain Wetland Classification 

For the purposes of large-scale hydrology and biogeochemistry research, 

especially for methane emissions, satellite radar imagery is sufficient for mapping 

functional wetland types.  This is because hydrological models do not yet 

incorporate wetland functional vegetation classes, and because methane 

emissions from tropical wetlands are dependent on three basic floodplain 

environments with distinct differences in canopy structure (open water, emergent 
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herbaceous vegetation, and flooded forest) (Devol et al. 1990).  Each of these 

environments involves different rates of water retention and evaporation, as well 

as production, oxidation and pathways of methane to the atmosphere.  There 

remains considerable variability of methane release from each of these 

environments, but greater uncertainty lies in estimating the changing extent of 

these environments during the flooding cycles of tropical basins (Melack et al. 

2004).  The wetland classification scheme of Hess et al. (2003) successfully 

followed this approach and has since been used to improve the estimates of 

carbon dioxide degassing from the Amazon River (Richey et al. 2002) as well as 

to estimate the regional methane emissions from the Amazon basin (Melack et 

al. 2004). 

Tropical floodplain wetland maps motivated by biodiversity and 

conservation concerns also benefit from a physiognomic-hydrologic classification 

scheme since such environments also provide information regarding fish habitat 

and fisheries management (Hess et al. 2003).  The Ramsar Convention on 

Wetlands, an intergovernmental treaty meant to provide a framework for national 

and international cooperation towards the wise use and conservation of wetlands, 

also promotes remote sensing as a key tool for establishing national wetland 

inventories and monitoring programs to measure and achieve its goals 

(Rosenqvist et al. 2007).  However, as radar data are generally incapable of 
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providing species-specific information, the addition of optical data provides more 

vegetation-based classifications that are necessary to distinguish important 

tropical wetland classes such as Raphia spp., for example (Hess et al. 2003, 

Hamilton et al. 2007).  Wetland classification, regardless of thematic detail, must 

also include some measure of accuracy relative to ground conditions to be 

useful. 

1.3.6 Accuracy Assessment 

Map accuracy is the degree of correspondence between classification and 

reality on the ground (Congalton and Green 2009).  It is determined by 

comparing the map of interest against other maps, imagery or, traditionally, 

observations in the field.  The latter method is called ground-truthing, and it is the 

only true method of accuracy assessment for maps based on remotely sensed 

data.  However, the time, finances and logistics of conducting field campaigns for 

large scale map verification—especially maps with a temporal element—can 

make it an impractical method of accuracy assessment (Mayaux et al. 2002).  An 

effective alternative adopted in large-scale landcover studies in both the Amazon 

and Congo basins used videography combined with GPS during low-altitude 

flights across the area of interest as validation (De Grandi et al. 2000, Hess et al. 

2003).  This approach remains out of the financial realm of most map producers, 

however.  Consequently, comparing one map to another map or type of imagery 
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is the most common method of large-scale assessments (De Grandi et al. 2000, 

Mayaux et al. 2002, Durieux et al. 2007, Congalton and Green 2009). 

There are several considerations with this approach: the timing of data collection 

for producing each map; the spatial resolution of each map; the minimum 

mapping areas of each class in each map; class definitions used in each map; 

and lastly, the positional and thematic accuracy of the reference map (Congalton 

and Green 2009).  If these qualities do not match, or if the accuracy of the 

reference map is not acceptable, a quantitative assessment between the maps 

will not be useful, and a simpler qualitative, visual comparison between the maps 

must suffice (Congalton and Green 2009). 

If these qualities match and if the accuracy of the reference map is 

acceptable, then a quantitative assessment can be performed.  An error matrix 

(also known as a confusion matrix or contingency table) is the most common and 

useful method of comparing the level of correspondence between thematic maps 

(Congalton and Green 2009).  An error matrix displays not only the number of 

mapping units (e.g., pixels, pixel groups, or polygons) from each class of the 

producer’s map (in rows) correctly classified according to the classes of the 

reference map (in columns), but also how misclassified mapping units were 

classified instead (e.g., see Table 3.1).  Therefore, an error matrix yields several 

measures of accuracy as explained below. 
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Overall accuracy is the sum of all correctly classified mapping units, 

regardless of class, divided by the total number of mapping units, and it is usually 

expressed as a percentage.  There are no established thresholds for acceptable 

levels of overall accuracy: ultimately, what qualifies as acceptable is decided by 

the user.  Large-scale tropical wetland studies show overall accuracies from 

approximately 75% with one to four classes to 95% with eight classes (see Case 

Studies in section 1.3.7 below). 

Producer's accuracy is a measure of the accuracy of a particular 

classification scheme and shows what percentage of a particular reference class 

was correctly classified (CCRS 2009).  Put another way, producer’s accuracy is a 

measure of omission, excluding a mapping unit (pixel or object) from the category 

to which it truly belongs. Producer’s accuracy is calculated by dividing the 

number of correct mapping units of a given class by the actual number of 

mapping units of that class in the reference map (CCRS 2009).  Since producer’s 

accuracy reflects the success of the producer to replicate a given class of the 

reference map, there could be an over-quantification error that could cause 

producer’s accuracy to be high for a class.  For example, in the field, it may be 

found that the given class, while mapped correctly according to the reference 

map, is overestimated at the expense of correct classifications elsewhere. 
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Providing user’s accuracy helps to alert this possibility to the map user.  User's 

accuracy is a measure of the reliability of an output map generated from a 

classification scheme, telling the user of the map what percentage of a class 

corresponds to the ground-truthed class (CCRS 2009).  User’s accuracy is a 

measure of classifying a mapping unit User's accuracy is calculated by dividing 

the number of correct mapping units of a given class by the total number of 

mapping units assigned to that class (CCRS 2009).  It reflects the success of 

properly quantifying and locating the mapping units of a given class. 

Another statistic widely used to determine the robustness of a 

classification is the Kappa Index of Agreement (KIA, also known as the Kappa or 

Khat statistic) (Congalton and Green 2009).  It is given by subtracting the 

proportion of randomly, correctly classified mapping units (pr) from the proportion 

of correctly classified mapping units (pc), divided by the difference between 1 (a 

perfect classification) and the proportion of randomly, correctly classified 

mapping units (pr) (i.e., [(pc) - (pr)] / [1 - (pr)]).  It can be interpreted as the 

proportion of correctly classified units beyond what could be explained by 

randomly labeling mapping units.  Despite its wide use, the KIA confounds 

quantification and location error (Pontius Jr. 2000).  It also does not penalize for 

large quantification errors or reward for accurate quantification (Pontius Jr. 2000).  
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Therefore, the KIA is not a perfect statistical descriptor and its weaknesses must 

be acknowledged in its interpretation. 

Generally, it has been proposed that a KIA greater than 0.80 indicates 

strong agreement; a KIA between 0.40 and 0.80 indicates moderate agreement; 

and a KIA less than 0.40 indicates poor agreement (Landis and Koch 1977).  

However, when referring to and interpreting these thresholds one must also 

consider the quality of the reference data.  Although no KIA has been reported in 

regional studies of the central Congo and Amazon basins, other means of 

accuracy have been employed to interpret the accuracy of these maps. 

1.3.7 Case Studies: the Central Congo and Amazon River Basin Floodplains 

The most studied wetlands of the Congo River basin lie in the cuvette 

centrale congolaise, its vast, well-weathered central floodplain.  The wetlands of 

the central Congo basin were first mapped by White (1983) who took 15 years to 

compile national vegetation maps, consult local experts, and produce his 

continent-wide vegetation map based on physiognomy and floristics.  White’s 

swamp forest, the single wetland class of his exhaustive vegetation map of the 

continent, is composed of herbaceous swamp, aquatic vegetation, edaphic 

grassland, and riparian forest descriptions (White 1983).  Although White’s map 

is spatially simple, it contains considerable description of the swamp forest class.  
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However, this method is not appropriate for developing a consistent method of 

wetland inventories and updates needed for this rapidly developing region. 

The first satellite-produced vegetation maps of the region focused on establishing 

a baseline for forest cover in the basin.  The spatial (1 km) and spectral 

resolution (4 bands visible, 2 bands infrared) of the optical composite imagery 

(NOAA/AVHRR) used in these studies was only able to distinguish between 

disturbed and undisturbed forest types, and overestimated forest cover by up to 

20% due to the large spatial resolution (Laporte et al. 1995, Laporte et al. 1998, 

Mayaux et al. 1999a).  Separating swamp forest from the tropical forest class 

with remotely sensed imagery was not possible until studies began to include 

radar imagery. 

A single C-band radar dataset (ERS-1/SAR) of 100 m spatial resolution 

was used by De Grandi et al. (2000a) to distinguish lowland rain forest from 

swamp forest across the entire central basin, and Mayaux et al. (2000) 

incorporated the same dataset with optical datasets of larger resolution to make 

the same distinction in addition to other nonwetland classes.  The C-band dataset 

enabled discrimination between lowland and swamp forest based on the texture, 

or variability, of the backscatter response over each type of canopy (Figure 1.2, 

De Grandi et al. 2000a, Mayaux et al. 2000).  The difference in radar texture was 

verified using aerial videography, which showed that the lowland rain forest 
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canopy had considerably more variation in tree height, greater crown size, and 

more species, causing greater texture compared to the less diverse, flatter 

swamp forest canopy (De Grandi et al. 2000a).  However, no underlying flooding 

could be detected with the C-band dataset since it was completely attenuated 

within the first 50 cm of the dense, closed lowland canopy (Mayaux et al. 2000).  

The overall accuracy of each map was determined by comparison to a D. R. 

Congo forest map derived from the visual interpretation of Landsat imagery 

corroborated with field and aerial surveys (SPIAF 1995).  The map presented in 

De Grandi et al. (2000a) shows slightly lower overall accuracy at 71% compared 

to the multisensory approach of Mayaux et al. (2000), which found 75% overall 

accuracy.  Most of the overall error was confusion between lowland rain forest 

and swamp forest. 

To solve this, Mayaux et al. (2002) used a combination of C-VV (ERS-

1/SAR) and L-HH (JERS-1/SAR) radar mosaics each taken from different time 

periods.  There were several complications, however, when georegistering these 

radar data because of the different dates, resolutions, incident angles, and paths 

on which the data were collected.  The analysis of these data was based on a 

rule-based hierarchical classifier.  The rules were derived from training sets and 

visual inspection of local maps of the area of interest.  From these data, eight 

classes were determined at 200 m resolution, three of which were wetlands:
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Figure 1.2: Aerial videography snapshots of swamp forest (above) and upland, or terra firme, 

forest (below) in the central Congo basin.  From De Grandi et al. 2000a. 
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permanently flooded forest, periodically flooded forest, and swamp grassland.  In 

addition to the added wetland class, the accuracy for this map was slightly higher 

than that of De Grandi et al. (2000a) and Mayaux et al. (2000) at 76% when 

compared to SPIAF (1995).  Most of the error was the result of the enhanced 

wetland sensitivity of radar in comparison to the optical data used to produce 

SPIAF (1995), so 76% is likely an underestimate of the accuracy of the map.  

However, both the C-VV and L-HH data were unable to identify strips of 

secondary forest along river networks, whereas this forest type is easily 

discernable using optical imagery (Mayaux et al. 2002). 

The most recent remote sensing of Congo vegetation used daily optical 

composites (SPOT/VGT) from the year 2000 at 1 km resolution to produce a new 

vegetation map of the D. R. Congo (Vancutsem et al. 2009).  Of the six classes 

defined, two wetland classes were described: (1) edaphic forest and (2) aquatic 

grassland and swamp grassland.  These classes constitute the smallest area of 

the landcover classes mapped.  When experimenting with aggregated classes, 

Vancutsem et al. (2009) found that aquatic vegetation was responsible for most 

of the overall error with 56% underestimation compared to a reference map 

based on 30 m optical (LANDSAT) data (further detail regarding this dataset--

Africover--is given in Methods below).  Most of this inaccuracy was the result of 

the large resolution of the composites compared to the high resolution of the 
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reference map, which was able to identify typically small and linear wetland 

features (Vancutsem et al. 2009).  This result of underestimating wetlands is 

similar to that found in Mayaux et al. (2004), which also used 1 km optical 

composites (NOAA/AVHRR).  Finer spatial resolution than 1 km is necessary, 

therefore, to accurately determine wetland quantities for regional tropical 

floodplain wetlands.  A study that addresses the issue of temporal and spatial 

resolution with an explicit focus on tropical floodplain wetlands comes from a 

study of the central Amazon. 

Hess et al. (2003) provide an exemplary application of radar imagery for 

classifying tropical floodplain wetlands at a regional scale.  Hess et al. (2003) 

were able to distinguish between wetland and nonwetland classes over the 

central basin of the Amazon River with 95% accuracy using two L-HH mosaics at 

100 m resolution taken at high- and low-water conditions in the basin.  The 

classification scheme was designed to improve regional hydrologic parameters 

(Sahagian and Melack 1998), carbon dioxide and methane emission estimates 

(Richey et al. 2002, Rosenqvist et al. 2002a), as well as fishery management, 

since many fish species depend on the flooded forests for nutrition or organic 

matter from floodplain algae (Forsberg et al. 1993).  The eight wetland classes 

mapped include water, nonflooded bare or herbaceous, flooded herbaceous, 

nonflooded shrub, flooded shrub, flooded woodland, nonflooded forest, and 
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flooded forest.  It was concluded that although L-HH is the best single-band 

sensor for mapping wetlands in the central Amazon basin, the backscatter from 

the most common nonwetland cover (nonflooded forest) overlaps with forest and 

aquatic macrophyte cover and serves as a major source of confusion for 

traditional, pixel-based classification methods. 

These studies illustrate that coarse-resolution (> 1 km) though frequently 

collected optical imagery alone is not capable of reliably determining flooded 

vegetation classes, and suggest radar imagery as a primary source of flooded 

vegetation extent in tropical floodplain environments. 
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2. Approach, Study Area and Methods 

2.1 Approach 

Previous work demonstrates that radar imagery is useful for mapping 

several kinds of flooded vegetation in the tropics (De Grandi et al. 2000a, 

Mayaux et al. 2002, Hess et al. 2003, Rosenqvist et al. 2007).  Indeed, Hess et 

al. (2003) was remarkably successful mapping the floodplain wetlands of the 

central Amazon basin using only two L-HH radar mosaics. 

Therefore, to achieve the objective of a rapid, regional-scale method of 

tropical wetland classification, two L-HH radar datasets from the JERS-1/SAR 

GRFM Africa project were selected as the primary source of wetland information.  

Given the consistent confusion of non-floodplain forest with floodplain forest 

classes in previous radar floodplain wetland studies of the central Congo and 

Amazon basins (De Grandi et al. 2000a, Mayaux et al. 2002, Hess et al. 2003), 

and given the improvement that topographic information provides (Ozesmi and 

Bauer 2002, Hamilton et al. 2007), the addition of elevation data (HydroSHEDS 

DEM) and elevation derivatives (slope, HydroSHEDS Rivers, SRTM Water 

Bodies, for details see section 2.3.1) have also been selected as sources of 

wetland information. The rapid and transparent integration and analysis of these 

datasets is possible with an object-oriented approach (e.g., Hess et al. 2003, 

Hamilton et al. 2007, Durieux et al. 2007). 
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To address the first research question, appropriate classes for 

hydrologists, biogeochemists, and conservationists will be achieved by mapping 

similar classes to Hess et al. (2003). To adapt the classifier of Hess et al. (2003) 

to the varied hydrological conditions captured in the radar imagery of the Congo, 

the flooded and nonflooded hydrologic states of the vegetation classes must be 

eliminated, simplifying the classifier to 7 classes from 13.  This simplification 

removes the requirement of an area to transition from nonflooded to flooded from 

the low-water to high-water mosaics, and instead indicates that an area was 

flooded in one or the other or both (see Data Analysis and Figure 2.8 below for 

more detail).  The addition of topographic datasets also helps to distinguish 

classes and improve accuracy. 

To address the third research question of reaching the best compromise 

between rapid analysis, thematic detail and accuracy, three maps of decreasing 

thematic detail of 7, 5 and 3 wetland classes are compared to similarly 

reclassified reference maps in order to determine the effect of a reduced number 

of classes on different measures of accuracy. 

The study area, datasets, dataset preparation, analysis, and accuracy 

assessment are described in further detail below. 
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2.2 Study Area 

The Equateur Province is an administrative area of the D. R. Congo 

located in the centre of the 500 m elevation contour of the Congo River basin 

(Figure 2.1).  It is approximately 100,000 km2 in size and is representative of 

many wetland types.  As a part of the central basin, Equateur has been included 

in previous wetland descriptions and remote sensing products (Hughes et al. 

1992, De Grandi et al. 2000a, Mayaux et al. 2000, Mayaux et al. 2002).  These 

qualities make it an excellent test area for a method of wetland delineation, 

classification, and validation in this otherwise little studied basin. 

2.2.1 Physical Setting 

As its name implies, Equateur straddles the equator and extends from 

approximately 2°N to 2°S and from 16°E to 21°E.  Equateur experiences 1800-

2400 mm of rainfall per year (Runge 2007) with mean annual temperatures of 25 

to 27°C that change little seasonally (Bultot 1971). 

The portion of the Congo River that passes through this region is known 

as the Middle Congo, and is characterized by very low slope (1/15,000) and slow 

flow, with practically lacustrine conditions surrounding the islands of this 

approximately 15 km-wide, anastomosing reach (Hughes et al. 1992, Figure 2.2).  

The Congo River flows from Sumba Island in the northeast to a small town called 

Yumbi in the southwest of Equateur (Figure 2.2).  At Mbandaka, the Congo River 
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Figure 2.1: Selected political and physical features of the Congo River basin.  The Equateur 

Province is highlighted in light grey within the 500 m elevation contour (grey-black area) of the 

basin. 
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Figure 2.2: Rivers, lakes and settlements of Equateur Province, D. R. Congo.  The Congo River 

flows from the northeast to the southwest. 
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has an average annual stage rise of 1.8 m, which is much less than the 15 m 

found at Manaus on the Rio Negro of the Amazon (Campbell 2005). 

The confluence of the largest tributary of the Congo River, the Oubangui, 

as well as the Giri, Lulonga, Ikelemba, and Ruki Rivers occur in Equateur (Figure 

2.2).  Since the Congo River crosses the equator twice with large tributaries 

flanking on either side, Equateur tributaries show both uni-modal and bi-modal 

discharge patterns depending on their size and location relative to the equator.  

The right-bank tributaries (the Oubangui and Giri Rivers) both show unimodal 

hydrographs (Runge 2007).  The Oubangui has the largest floodwave in the 

basin, rising up to 8 m in October and November with a stage low in March and 

April (Runge and Nguimalet 2005).  The left-bank tributaries (Lulonga, Ikelemba 

and Ruki Rivers) of this region share bimodal discharge patterns, with peaks 

occurring from November to January and a lesser peak in March to May 

(Rosenqvist and Birkett 2002).  Lake Tumba, the second largest lake of the 

central basin at approximately 500 km2, lies in the southern portion of Equateur. 

The alluvial plains of the middle Congo, Oubangui and Giri are composed 

of sands and clays high in organic matter (Campbell 2005).  Sands dominate in 

the alluvium of the southern tributaries, and in some backwater swamps peat 

deposits occur up to 17 m deep (Campbell 2005).  The waters of the central 

Congo River are black with relatively high dissolved organic matter (5 mg/L) 
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comprising 86% of its total organic carbon load, comparable to the Rio Negro of 

the Amazon (Coynel et al. 2005). 

2.2.2 Central Congo Floodplain Wetlands 

The Middle Congo exhibits extensive wetlands.  On the right bank, where 

the Oubangui River converges with the Congo, 231,000 ha of flooded forest and 

perhaps another 100,000 ha in minor riparian swamps are estimated to occur 

(Hughes et al. 1992).  The wetlands associated with this river are similar to those 

associated with the Congo mainstem, i.e., fringing flooded forest.  Behind the 

levees of the Oubangui are backwater swamps that are periodically flooded and 

can extend up to 35 km from the river (Hughes et al. 1992). 

The Giri River drains the area between the Oubangui and the Congo 

Rivers, joining with the Oubangui shortly before its confluence with the Congo 

River.  The Giri is unique in this region for its extensive shrubs and herbaceous 

vegetation in its floodplain, in addition to having several channels connecting it 

with the Congo River as it meanders between the Oubangui and the Congo 

(Hughes et al. 1992).  There are approximately 3 million ha of waterlogged 

flooded forest area between the Congo, Giri and Oubangui Rivers, forming a 

triangle of flooded forest from the confluence of the Congo and Oubangui 

approximately 375 km long and 165 km across (Hughes et al. 1992). 
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Of the left bank tributaries, the Ruki and Lulonga Rivers both exhibit 

extensive flooded forest at their confluences with the Congo River, along their 

lengths and beyond along the convergence of their tributaries: the Momboyo and 

Busira of the Ruki River, and the Maringa and Lopori of the Lulonga River.  The 

largest continuous area of permanently and seasonally flooded forest occurs 

along the left bank of the Congo River immediately south of the Ruki, covering 

about 5 million ha and surrounding Lake Tumba (Hughes et al. 1992). 

2.3 Methods 

All datasets were prepared using the Mercator projection and the WGS84 

datum in the geographic information systems suite ESRI ARC/INFO v. 9.3 © as 

described in “Data collection and preparation” below.  All datasets except the 

reference dataset were analyzed in the Definiens Professional v. 5.0 © object-

oriented software package as described and presented in Figure 2.3 below and 

in the following section, “Data analysis.”  Finally, the resulting wetlands map, 

herein referred to as the Equateur map, was exported back to ESRI ARC/INFO v. 

9.3 © for reformatting in preparation for accuracy assessments that were 

executed in the IDRISI Andes 32 © software package using the error matrix 

(ERRMAT) module. 
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Figure 2.3: A visual overview of each dataset used for the Equateur floodplain wetland delineation and classification. 
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2.3.1 Data Collection and Preparation 

2.3.1.1 JERS-1/SAR GRFM Africa Mosaics 

Description 

The main dataset used in this study for wetland information is from the 

Japanese Earth Resources Satellite Synthetic Aperture Radar sensor (JERS-

1/SAR).  One of its missions was to establish, for the first time, wall-to-wall 

estimates of the world’s tropical forest using L-HH radar at high resolution (12.5 

m).  Known as the Global Rain Forest Mapping Project (GRFM), the mission 

imaged most of the tropics over its lifespan from 1992 to 1998.  Several research 

centres were charged with developing custom algorithms to produce mosaics of 

acceptable radiometric and geometric calibration for particular regions.  The 

European Commission Joint Research Centre (EC JRC) in Ispra, Italy, was 

responsible for the GRFM Africa products, which include two 8-bit mosaics 

downsampled to 100 m resolution over most of central Africa. 

The two mosaics were compiled from over 3,900 scenes collected 

between January and March 1996 and again between October and November 

1996.  The collection of these scenes was from north to south, east to west, and 

it took approximately one month to image the whole basin once (Rosenqvist and 

Birkett 2002).  While these mosaics are not “snapshots” of the hydrological and 

vegetation conditions across the basin, the timing of these collections was 



 

38 

 

designed to coincide with the low- and high-water conditions over the Congo 

River basin (Figure 2.3).  Using correlations between altimeter readings 

(TOPEX/POSEIDON) and historical stage data, Rosenqvist and Birkett (2002) 

found that the mosaics represent high-water conditions in the basin well, but the 

“low-water” (January to March 1996) mosaic is not representative of actual low-

water conditions in most areas.  In Equateur, the Oubangui, Giri and Lulonga 

Rivers as well as the lower portion of the Congo River by Yumbi display good 

stage separation, whereas the stage separation upstream on the Congo River 

and the Ruki River is poor, and river stage separation is very poor (essentially 

unchanged between the mosaics) for the Busira and Maringa tributaries 

(Rosenqvist and Birkett 2002).  Information does not exist on the stage 

separation for the Ikelemba River.  This prevents the use of these mosaics to 

determine the full dynamics of flooding extent across Equateur (Hess et al. 

2003).  Ultimately, the complex hydrology of the basin makes bi-temporal 

mapping insufficient for flood extent studies in the Congo (Rosenqvist and Birkett 

2002).  Despite these shortcomings, the JERS-1/SAR GRFM Africa mosaics 

provide the most extensive and consistent source of radar data over the region, 

and the successor to the JERS-1/SAR, the ALOS/PALSAR, is designed to 

address this deficiency with new data products that can be incorporated into 

future analyses (see Discussion in Chapter 4). 
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Another important property of these data is that the mosaics are not 

orthorectified.  This can cause geographic displacements in areas of high 

elevation, especially over mountainous terrain where the off-nadir angle of radar 

signals reflect off of steep slopes causing foreshortening and shadow effects.   

With the exception of mountainous areas, Birkett and Rosenqvist (2002) 

concluded that the geometric accuracy of the mosaics is still appropriate for 

hydrological applications and for use with other datasets.  The absolute 

geolocation accuracy of the basin is 240 m, which is considered excellent for 

such a large area (De Grandi et al. 2000b).  The 8-bit, 100 m data are available 

free for non-commercial purposes as a set of 15 tiles for each low and high-water 

season by request from the EC JRC. 

Preparation 

The metadata of the JERS-1/SAR GRFM Africa mosaics included the 

projection and coordinate information for each tile so that the entire mosaic could 

be reconstructed; however, the provided coordinates were not precise enough to 

do so.  As suggested in the metadata, a manual “sliding” technique was needed 

to ensure that there were no gaps between the tiles.  The coordinates of each tile 

were shifted to match seamlessly, without overlap, to the edges of the centre tile 

for both mosaics.  The centre tile was chosen as the reference tile because it is 

most central to the basin and also happens to be where the majority of wetlands 
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occur.  The cumulative error involved with sliding a set of tiles to a single 

reference tile is also reduced this way, and maximizes the cumulative error at the 

periphery of the basin where wetlands are least likely to occur.  Ultimately the 

largest shift required was 70 m, or less than a pixel’s distance. 

The tiles were then merged to form a single mosaic for the low-water and 

also for the high-water conditions.  Each mosaic was converted to normalized 

radar cross section (RCS) values, that is, from 8-bit digital numbers (DNs) to 32-

bit floating point decibel (dB) values following an equation given in the metadata.  

The result is an improvement in scaling upon the 8-bit DNs, making them suitable 

for map-making using automatic supervised image classification such as in an 

object-oriented approach (De Grandi et al. 2000b). 

The mosaics were then georectified to the SRTM Water Bodies dataset 

using thirty-six ground control points (GCPs) with at least one point from each tile 

(the characteristics of the SRTM Water Bodies dataset is given below).  Areas of 

high elevation and mountainous terrain were avoided in this step since the 

mosaic tiles were not orthorectified and thus GCPs in these areas would affect 

the resulting error and transformation significantly.  The mosaics were rectified 

using a cubic-convolution kernel and a third-order polynomial function.  The 

residual mean square error was 87 m. 
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To improve computational efficiency and the stability of the image analysis 

program, the RCS-transformed data were subsequently converted to fit within an 

8-bit range, while retaining the RCS values to one decimal place.  The typical 

range for L-band radar data is approximately from -20 dB for areas such as 

water, to -3 dB for areas such as settlements and flooded forest.  Therefore, a 

value of 25 was added to the RCS values to convert to positive values, and then 

the numbers were multiplied by 10 to preserve one decimal place, and finally the 

numbers were truncated to whole numbers to produce unsigned 8-bit data. (e.g., 

using [ RCS + 25 ] * 10 with truncation, the RCS range of the low-water mosaic 

was transformed from {(-21.9) – (-1.2)} to {31 – 238}).  Finally, the mosaics were 

clipped to Equateur’s coverage. 

2.3.1.2 HydroSHEDS DEM and Derivatives 

Description 

The HydroSHEDS project (Hydrological data and maps based on shuttle 

Elevation Derivatives at multiple Scales) (Lehner et al. 2006) provides several 

types of hydrographic information for regional and global-scale studies based on 

the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). 

The SRTM was flown by the space shuttle Endeavor for eleven days in February 

2000.  A Shortwave Infrared (SIR) C-band (5.3 cm) sensor imaged the elevation 

of the Earth between 60°N and S at 1-arc second (approximately 30 m) 
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resolution.  It was a joint project between NASA (National Aeronautics and Space 

Administration), NGA (National Geospatial-Intelligence Agency of the U.S. 

department of defense), the German Aerospace Centre (DLR) and the Italian 

Space Agency (ASI).  The SRTM 3-arc second (approximately 90 m) DEM was 

originally created by NASA’s Jet Propulsion Lab (JPL) and processed to Digital 

Terrain Elevation Data (DTED) standards by NGA.  More detail about the mission 

is provided in Farr and Kobrick (2000).  The HydroSHEDS datasets of interest 

derived from the SRTM DEM are the HydroSHEDS DEM and HydroSHEDS 

Rivers, which were downloaded free of charge from the USGS SRTM 

HydroSHEDS server (http://hydrosheds.cr.usgs.gov/). 

The HydroSHEDS DEM combines the advantages of the SRTM-3 and 

DTED-1 data because the SRTM-3 data are averaged and reduce radar noise 

while the DTED-1 was sampled and more clearly represents shorelines and 

waterbodies (Lehner et al. 2006).  However, an important artifact of the source 

data is its inability to penetrate dense vegetation since the C-band wavelength 

cannot penetrate dense canopies such as tropical forest.  This causes error in 

the height estimation, especially over areas such as the Congo floodplain forest 

where canopies can reach or exceed 40 m in height.  For technical reasons the 

data were shifted 1.5 arc-seconds (approximately 45 m) to the north and east 

and each tile’s overlapping right column and row were removed (Lehner et al. 
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2006).  The HydroSHEDS Rivers dataset is based on a flow accumulation layer 

derived from the DEM data at 15 arc-second (approximately 450 m) resolution 

with a threshold of 100 upstream cells (Lehner et al. 2006) (Figure 2.3). 

Preparation 

Twenty-three tiles were required to cover the basin and were merged into 

a single mosaic.  The mosaic was then reprojected using cubic-convolution 

resampling, shifted 45 m south and west to correct for the displacement in its 

production, and, along with the basin’s HydroSHEDS Rivers dataset, clipped 

using the Equateur theme (Figure 2.3). 

With the HydroSHEDS DEM of Equateur, a slope layer (in degrees) was 

produced.  The 32-bit floating point dataset was transformed to 8-bit data by 

multiplying the result by 10 to preserve a decimal place and by truncating the 

number to provide a whole number, changing the range of slope from {0 – 

13.9038} to {0 – 139} (Figure 2.3). 

Since these datasets are based on the same elevation data as the SRTM 

Water Bodies (Lakes) dataset—the georeference dataset—georectification was 

not required or performed for the DEM or river network. 
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2.3.1.3 SRTM Water Bodies (Lakes) 

Description 

The SRTM Water Bodies Dataset (SWBD) was developed as a by-product 

of NGA’s editing of the SRTM DEM.  Ocean, lake and river shorelines were 

identified and delineated from 1 arc-second (approximately 30 m) DTED-2 data 

and saved as polygons.  An important artifact of these data is the timing of the 

acquisition: the world’s waterbodies are delineated as they appeared in February 

2000.  The accuracy of the dataset is within 20 m in the horizontal and 16 m in 

the vertical direction (SWBD 2003).  Only lakes greater than 600 m in length and 

183 m in width are included.  Islands with a medial length greater than 300 m are 

included, as are smaller islands if more than 10% of the area exceeds 15 m 

above the surrounding water.  The dataset used in this study had all river 

polygons, which are also part of SWBD, removed previously. 

Preparation 

The SWBD Lakes dataset was clipped to the Equateur region. 

2.3.1.4 Reference Map dataset: FAO Africover 

Description 

The United Nations Food and Agriculture Organization (FAO) began a 

landcover mapping initiative for Africa to improve the natural resource 

management of this data-poor region.  The FAO Africover project began with 
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countries in east and central Africa with the eventual goal of creating an Africa-

wide, exhaustive, multi-purpose landcover map (Di Gregorio and Jansen 2005).  

The maps are derived separately for each country using optical, 30 m 

(LANDSAT) imagery as the data source. The imagery is interpreted and digitized 

into polygons by local experts according to the UN’s Land Cover Classification 

System (LCCS) with the flexibility of custom classes where deemed appropriate. 

The LCCS proceeds in two phases.  The first phase is strictly dichotomous 

which sorts a polygon in three steps, producing eight basic classes (Figure 2.4).  

The second phase of classification is also hierarchical but the classifiers are 

specific to each of the eight basic classes (Figure 2.4).  Many classifications are 

possible; for the Africover data available for the D. R. Congo, for example, over 

80 classes are used, approximately twenty of which could be considered wetland 

(i.e., a vegetated area that is flooded for at least 2 months of the year).  The 

accuracy of the dataset is reported to exceed 60% for the eight primary classes 

derived from the first phase of classification, but no accuracy assessment has 

been conducted for the classes derived in the second phase of classification (Di 

Gregorio and Jansen 2005).  

Each polygon has at least one classification.  It is possible to have more 

than one classification in the case that a feature is too small to be mapped alone 

according to the minimum mapping area used.  The minimum mapping area 
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Figure 2.4: Landcover classification key according to the UN LCCS as used for reclassifying wetland polygons in the D. R. Congo Africover 

dataset.  The classifiers used for wetland reclassification are highlighted in the black boxes, whereas the terrestrial branches of the dichotomous 

phase classification and the modular-hierarchical classifiers not used for wetland reclassification are faded in grey boxes. 
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(MMA) concept is applied by cartographers when addressing the smallest area 

that can be shown on a map (Di Gregorio and Jansen 2005).  In Equateur, the 

MMA of wetland classes is 34 ha.  In the case of two classifications given for a 

polygon, one feature dominates the cover of the other within the polygon, and the 

second cover still covers at least 20% of the polygon (Di Gregorio and Jansen 

2005).  In the case of three classifications, the dominant feature approximates 

40% cover, while the remaining two features each approximate 30% cover (Di 

Gregorio and Jansen 2005).  However, no polygons were composed of three 

features in the Equateur Province.  This mixed mapping unit description allows 

some degree of fuzziness or thematic uncertainty to be expressed in the polygon 

classification (Di Gregorio and Jansen 2005). 

The imagery used for creating the D. R. Congo Africover portion of the 

Equateur Province was collected from 2000 to 2001 (Figure 2.5).  With no 

seasonal or annual consistency between the scenes, interpreting the hydrology 

classifier of potential wetland polygons bears a few caveats.  Firstly, as the 

scenes are not from a single season, the hydrological conditions across Equateur 

are not consistent.  Secondly, the hydrology classifier has three levels: inundation 

for at least 2 months of the year; inundation between 2 and 4 months of the year; 

and waterlogged conditions.  Since the imagery is not multi-temporal, there is no 

way to ascertain the length of time an area has been flooded for.  This is in
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Figure 2.5: LANDSAT scene acquisition dates used for the visual interpretation of landcover 

classes for Africover (in grey polygons) in Equateur. 

 



 

49 

 

addition to the difficulty of determining the extent of flooding under vegetation 

canopies using optical imagery.  Therefore, it is assumed that the hydrology 

classifier was based upon the expert knowledge and interpretation of wetland 

vegetation as an expression of flooding characteristics. 

Preparation 

The full-resolution datasets for the D. R. Congo were received free of 

charge from the Africover program.  All records were clipped using the Equateur 

theme.  Additional fields were added to reclassify polygons according to the 

hydrology-physiognomy class definitions adapted from Hess et al. (2003) (see 

following section), following the rules shown in Figure 2.6 in the event of mixed 

mapping units. 

It is also important to note that no ground-truthing was conducted in this 

area to verify the accuracy of this classification.  Africover has been sparsely 

ground-truthed in general.  An obvious example is the upland classification of the 

areas between the Congo, Giri and Oubangui Rivers.  According to the original 

Africover data, the polygons in this area do not have any element of flooding.  

However, this area is well documented as one of the largest continuous 

expanses of permanently and seasonally flooded forest in the central basin 

(Hughes et al. 1992), and has been classified as such in independent satellite
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Figure 2.6: Reclassification rules of Africover mixed mapping units. 
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studies of flooded forest in the region (De Grandi et al. 2000a, Mayaux et al. 

2000, Mayaux et al. 2002, Vancutsem et al. 2009).  Therefore the largest 

polygons of this area were considered misclassified and were reclassified from 

upland to floodplain forest for comparison to the Equateur map (Figure 2.7). 

2.3.2 Data Analysis 

2.3.2.1 Adapted Classifier from Hess et al. (2003) 

The physiognomic-hydrologic scheme employed by Hess et al. (2003) 

follows the “functional parameterization” (Sahagian and Melack 1998) of 

wetlands suitable for hydrological and carbon biogeochemical modeling (Melack 

and Forsberg 2001), fish habitat quality, and the occurrence of agricultural 

potential (Gutjahr 2000).  The classifier was derived from the dual-season GRFM 

Amazon L-HH RCS probability density functions (PDFs) of 13 different 

environments in the central Amazon basin (Tables 2.1 and 2.2).  The parallel-

piped classifier makes the decision boundaries between classes transparent and 

easily modified (Hess et al. 2003, Figure 2.8).  However, the hydrologic 

component of this classifier assumes a consistent, unidirectional rise in river 

stage from one radar mosaic to another, which does not hold true for the GRFM 

Africa L-HH mosaics over most of the Congo basin and Equateur region 

(Rosenqvist and Birkett 2002).  



 

52 

 

 

 

Figure 2.7: The three polygons reclassified from upland to floodplain forest.  Data source: FAO Africover. 
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Table 2.1: Definitions of hydrology, life forms and classes of Equateur wetlands map (adapted from Hess et al. 2003) and the UN LCCS (as used in Africover). 

        

    

 TERM EQUATEUR DEFINITION AFRICOVER DEFINITION 

        

    

HYDROLOGY Flooded 
Water table is above surface; instantaneous in 

either radar mosaic 

Water table is at or near surface for > 2 mo./yr.; implied through 

vegetation 

     

    

LIFE FORM 

Tree > 5 m, woody, single stem > 5 m, woody 

Shrub 0.5 to 5 m, woody, bushy 0.3 to 5 m, woody 

Herbaceous Non-woody 0.03 to 0.3 m, non-woody 

     

    

CLASS 

Upland Not flooded on either date; not consistent with 

floodplain geomorphology 

Polygon does not experience any flooding. 

  

Open water (lake, river) < 1% vegetation cover < 4% vegetation cover > 10 mo./yr 

   

Floodplain forest Closed tree canopy (60 - 100%) Closed tree canopy (60/70 - 100%); 

   

Floodplain woodland Open tree canopy (25 - 60%) Open tree canopy (10/20  - 60/70%); 

   

Floodplain shrub Closed to open shrub canopy Closed to open shrub canopy 

   

Floodplain herbaceous < 25% woody canopy cover, >25% herb. Cover Closed to open herbaceous canopy 
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Table 2.2:  LCCS labels used for reclassification of the Africover dataset. 

      

   

Reclassified as Map Code LCCS Label 

      

Lake 

7WP Artificial Perennial Waterbodies (Standing) 

8WP Perennial Natural Waterbodies (Standing) Salinity: Fresh, < 1000 ppm of TDS 

8WN Non-Perennial Natural Waterbodies (Standing) 

River 

8WFP Perennial Natural Waterbodies (Flowing) Salinity: Fresh, < 1000 ppm of TDS 

8WFN2 Non-Perennial Natural Waterbodies (Flowing) (Surface Aspect: Bare Soil) 

8WFN1 Non-Perennial Natural Waterbodies (Flowing) (Surface Aspect: Sand) 

Forest 

4TCFF1Y Broadleaved Evergreen Forest On Permanently Flooded Land/Water Quality: Brackish 

4TCIFF1-rh Broadleaved Evergreen High Forest On Permanently Flooded Land (Persistent)/Water Quality: Fresh/Floristic Aspect: Raphia L. 

4TCIF1 Broadleaved Evergreen High Forest On Temporarily Flooded Land/Water Quality: Fresh 

4TCMF218 Semi-Deciduous Medium High Forest With High Shrubs On Temporarily Flooded Land/Water Quality: Fresh 

4TCIFF18 Broadleaved Evergreen High Forest With High Shrubs On Permanently Flooded Land/Water Quality: Fresh 

Woodland 
4TPMFF18 Broadleaved Evergreen Medium High Woodland With High Shrubs On Permanently Flooded Land/Water Quality: Fresh 

4TPMF218 Semi-Deciduous Medium High Woodland With High Shrubs On Temporarily Flooded Land/Water Quality: Fresh 

Shrub 

4SCJFF Closed Medium To High Shrubs On Permanently Flooded Land/Water Quality: Fresh 

4SCJF Closed Medium To High Shrubs On Temporarily Flooded Land/Water Quality: Fresh 

4SPJFF6 Open Medium To High Shrubs With Medium To Tall Herbaceous Vegetation On Permanently Flooded Land/Water Quality: Fresh 

4SPJF6 Open Medium To High Shrubs With Medium To Tall Herbaceous Vegetation On Temporarily Flooded Land/Water Quality: Fresh 

Herbaceous 

4H(CP)FF Closed to Open Herbaceous Vegetation On Permanently Flooded Land/Water Quality: Fresh Water 

4HCF Closed Herbaceous Vegetation On Temporarily Flooded Land/Water Quality: Fresh 

4FCLFF-j Closed Short Forbs On Permanently Flooded Land (Persistent)/Floristic Aspect: Jacintus sp. 

4HPJFF Open Medium To Tall Herbaceous Vegetation On Permanently Flooded Land (Persistent)/Water Quality: Fresh 

4HPJF Open Medium To Tall Herbaceous Vegetation On Temporarily Flooded Land/Water Quality: Fresh 

4H(CP)F8 Closed to Very Open Herbaceous Vegetation With Sparse Shrubs On Temporarily Flooded Land/Water Quality: Fresh Water 
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Figure 2.8: The parallel-piped classifier of Hess et al. (2003) with the original class labels superimposed over their colour-coded aggregation as 

used in the Equateur method. 
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In order to meaningfully adopt the classifier of Hess et al. (2003), the 

flooded and nonflooded hydrologic states of the vegetation classes are 

combined, simplifying the classifier into 7 classes from 13 (Figure 2.8).  This 

simplification removes the requirement of a vegetated area to transition from 

nonflooded to flooded in the low-water to high-water mosaics, and instead 

indicates that an area is flooded in one or the other or both.  When transferring 

this classifier from the floodplain environments of the central Amazon to the 

central Congo, the assumption is made that the vegetation structure and flooding 

response in the radar mosaics remains the same for each class, which may not 

hold true if canopy structure or densities differ between the same physiognomic 

classes (e.g., forest) as a result of different floristics (i.e., species), for example.  

2.3.2.2 Segmentations and classifications 

After preparation, all of the datasets except the reference dataset were 

loaded into the object-oriented software, which is capable of integrating raster 

and vector datasets of different spectral and spatial resolutions while taking into 

account other contextual information. 

The fundamental step in an object-oriented approach is the segmentation 

of an image into homogenous regions, or objects. Unlike pixel-based 

classification, segmentation is a region-growing method that starts with a single 

pixel and aggregates neighbouring pixels into objects provided that their value 
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meets the level of homogeneity with their neighbour as specified by the analyst.  

It therefore asserts that images are made up of regions and separated by edges 

within which a parameter such as the RCS is constant (Oliver and Quegan 1998).  

Image segmentation is the most important step of an object-oriented approach 

because it produces the fundamental units for classification. 

Five segmentation levels were used in this study (consult Figure 2.9 for 

details to the following explanations).  The first segmentation reduced the number 

of objects to a computationally manageable number, as well as distinguished 

areas within Equateur from areas outside of Equateur. (The object-oriented 

software still considered data imported as “no data” as real data.)  

The second segmentation derived upland objects (Figure 2.9). Finding the 

appropriate layers, scale and shape factors to segment an area into objects that 

reflect landscape units is a process based on inference and trial and error.  This 

was the most experimental and crucial step of the segmentation processes 

because the objects derived at this level were the objects on which the landcover 

classifiers acted. 

A third segmentation procedure was necessary to delineate open water 

objects since radar data, not elevation data, are most sensitive to this feature. 

Lake and river objects were further distinguished using the SWBD Lakes dataset 

(Figure 2.9).  
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Figure 2.9: Flowchart of the segmentation and classification rules.  A legend is highlighted in the 

dark grey box. 
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A fourth, growing-region segmentation was applied based on the spectral 

difference between unclassified objects (Figure 2.9).  This effectively merged 

objects with neighbouring objects that are most spectrally similar based on a 

user-defined threshold.  This extra grow-region segmentation produced a more 

continuous and robust river classification based on the open water RCS ranges 

in the parallel-piped classifier.  Since the grow-region segmentation merged 

objects to a level too large for appropriate wetland classification, a fifth and final 

segmentation was required for floodplain wetland classification. 

The fifth and final segmentation derived floodplain wetland objects. The 

fifth segmentation procedure was exactly the same as the third, using only 

information from the radar mosaics (Figure 2.9).  Only radar information was 

required at this level because floodplain wetland objects were classified 

according to their mean RCS given by the classifier adapted from Hess et al. 

(2003).  Since the thresholds are crisp and do not overlap (i.e., not fuzzy), the 

order of floodplain wetland object classification was not important, but for 

purposes of clarity, were classified in the order of: forest, woodland, shrub, and 

lastly, herbaceous vegetation. 

After all segmentation and classification steps were completed, a minimum 

mapping area of 50 ha for all classes was enforced, following Mayaux et al. 

(2002) and Hess et al. (2003) (Figure 2.9). 
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Finally, as there remained considerable confusion between the river and 

herbaceous classes at this stage, an additional rule reclassified all smaller, 

thinner herbaceous objects as river objects (Figure 2.9). 

2.3.2.3 Simplified Wetlands Map and Basic Floodplain Map 

Two additional maps were produced from the full, seven-class Equateur 

map described above, namely a “simplified” wetlands and a “basic” floodplains 

map.  Both contain fewer classes as the result of combining classes in strategic 

ways. 

The simplified wetlands map contains five classes and is based on the a 

priori knowledge that dual-season L-HH mosaics are excellent for mapping 

flooded trees but have difficulty distinguishing between shrub and herbaceous 

vegetation (Hess et al. 2003).  Therefore, this map combines the floodplain forest 

with the floodplain woodland classes to effectively create a floodplain trees class, 

termed “tall vegetation.”  The floodplain shrub and herbaceous classes are also 

combined to form the “short vegetation” class.  The simplified wetlands map 

maintains the upland, lake and river classes from the Equateur map without any 

change. 

The basic floodplain map reduces the number of classes to three to test 

the ability of the Equateur method to distinguish the floodplain environment from 

upland and open water.  It could effectively serve as a wetland mask, for 
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example.  A wetlands mask—or, in the case of the tropics, areas that are not a 

part of the floodplain,—would include areas that are vegetated but are not 

flooded in either radar mosaic nor are consistent with floodplain geomorphology 

(upland), as well as areas that are flooded in both mosaics but are not vegetated 

(open water).  These two conditions translate into the two basic non-wetland 

classes of upland and open water and bound the floodplain environment as a 

result.   This basic classification serves as a benchmark for maximum 

correspondence between the Equateur method and the reclassified Africover 

map.  

2.3.3 Accuracy Assessment 

The full Equateur map was exported from the object-oriented software as 

a raster file in a Mercator projection with 92.5 m resolution into the GIS in 

preparation for accuracy assessment.  The Africover data were rasterized to 92.5 

m pixels.  The Equateur map was shifted east approximately 16.5 m and south 

22.1 m to correspond areas of data and no data perfectly with the Africover map, 

as required for error matrix generation by the accuracy assessment software. To 

achieve this, both maps were masked so that only pixel locations that show data 

in both maps are preserved, and those pixels that overlap with “No data” in either 

map were eliminated.  The class reductions to produce the simplified wetlands 

map and basic floodplain map and corresponding reference maps were 
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performed in the GIS with a straightforward reclassification command.  All maps 

were imported into the accuracy assessment software, where three error 

matrices were produced, including measures of overall, producer’s and user’s 

accuracy as well as the Kappa Index of Agreement (KIA) between maps.  

Quantification, or total area, of each class for each map was also tabulated.  The 

results for and interpretations of each map and each class are presented below. 
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3. Results and Interpretation 

3.1 Full Equateur Wetlands Map 

The full Equateur wetlands map includes seven classes: upland, lake, 

river, floodplain forest, floodplain woodland, floodplain shrub and floodplain 

herbaceous vegetation.  It is the most thematically detailed map of the three 

produced in this study and is the source of the simplified wetlands map and basic 

floodplain map described further below.  The Equateur wetlands map and 

corresponding Africover map are shown in Figure 3.1. The floodplain woodland 

class, however, was discovered to be a misnomer, and is more appropriately 

labelled nonflooded forest in contrast with floodplain forest, which is itself more 

appropriately labelled flooded forest, for reasons given further below. 

The overall accuracy of the full Equateur wetlands map is 47% compared 

to the Africover reference map, with a KIA of 28% (Table 3.1).  The majority of 

the overall map error is confusion between flooded forest and nonflooded forest 

pixels.  The majority of nonflooded forest commission error (user’s accuracy) 

(75%) and omission error (producer’s accuracy) (73%) involves confusion with 

Africover’s flooded forest class.  Compared to Africover, the flooded forest class 

is underestimated by approximately 4,100,000 pixels, whereas nonflooded forest 

is overestimated by 4,400,000 pixels: nearly the same amount (Table 3.2). 
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Table 3.1: Error matrix and accuracy measures of the full Equateur wetlands map, in hectares. 

  Reference Data Classified 

Total   U L R Forest Woodland S H 

C
la

s
s
if
ie

d
 D

a
ta

 

U 3,432,894 344 3,215 920,936 51,431 10,571 2,472 4,421,863 

L 957 75,316 0 683 0 174 236 77,365 

R 13,244 119 221,049 18,304 11,376 8,289 6,039 278,420 

FF 124,565 1,538 30,763 1,009,377 118,199 73,279 11,112 1,368,833 

NF 1,000,673 606 5,762 2,905,147 29,798 52,991 8,736 4,003,713 

S 2,839 46 91 1,755 263 32,101 857 37,952 

H 46,161 731 3,367 12,285 631 61,857 7,433 132,466 

Reference 

Total 
4,621,333 78,699 264,247 4,868,487 211,698 239,263 36,885 10,320,612 

   Producer's 

Accuracy 

User's 

Accuracy 

     

         

 U = Upland 74% 78%      

 L = Lake 96% 97%      

 R = River 84% 79%      

 FF = Fl. Forest 21% 74%      

 NF = Nonfl. For. 14% 1%      

 S = Shrub 13% 85%   Overall Accuracy 47% 

 H = Herbaceous 20% 6%   KIA  28% 

 

 

Table 3.2: Comparison of quantity between the mapped and reference full Equateur wetland classes. 

     

Class 
Mapped ha 

(M) 

Reference ha 

(R) 

Difference 

(D = M - R) 

% Difference 

(%=D/R*100) 

     

Upland              4,421,863               4,621,333  -199,470 -4 

Lake                   77,365                    78,699  -1,334 -2 

River                 278,420                  264,247  14,173 5 

Flooded Forest              1,368,833               4,868,487  -3,499,654 -72 

Nonfl. Forest              4,003,713                  211,698  3,792,015 1791 

Shrub                   37,952                  239,263  -201,311 -84 

Herbaceous                 132,466                    36,885  95,581 259 
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Figure 3.1: A visual comparison of the full Equateur wetland map and the reclassified Africover reference map. 
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3.1.1 Floodplain Forest and Woodland Misclassifications 

Several sources indicate that almost the entire floodplain is covered by 

closed forest canopy and is either permanently or intermittently flooded (Hughes 

et al. 1992, De Grandi et al. 2000, Mayaux et al. 2002).  This is in agreement with 

Africover (Figure 3.1).  According to the parallel-piped classifier adapted from 

Hess et al. (2003), the majority of the floodplain environment is considered 

floodplain woodland, or to have a tree canopy cover between 25% and 60% and 

to be semi-permanently to permanently flooded.  Because no ecological 

distinction is made in descriptive (Hughes et al. 1992) or visual (De Grandi et al. 

2000, Mayaux et al. 2002) accounts of the area that explain the pattern of 

floodplain forest and woodland shown in the Equateur wetlands map, it is likely 

that ecologically there is little or no difference between the vegetation type or 

canopy closure of the forest and woodland classes. 

While the vegetation classification is the same, the hydrological 

classification is not.  The hydrological definitions and indicators differ: for an 

Equateur object to be classified as flooded, the area must show water above the 

surface at the time of observation; for an Africover polygon to be classified as 

flooded, its hydrology is inferred from vegetation that indicates the area has a 

water table at or near the surface of the ground not necessarily at the time of 

observation, but for at least two months of the year.  Therefore, the hydrology 
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classifiers differ with respect to time: the Equateur classifier is based on two 

instantaneous points in time, whereas the Africover classifier is not one of flood 

extent but hydrophytic vegetation extent.  This explanation is consistent with the 

distribution of floodplain forest in the Equateur wetlands map, where the brightest 

floodplain wetlands are next to rivers.  This is expected when interpreting L-HH 

radar response.  Since floodplain woodland is likely the same or similar to 

floodplain forest in vegetation structure and canopy closure, floodplain woodland 

is a misnomer: in the Equateur wetlands map, it is likely also floodplain forest, but 

nonflooded.  Although the remaining misclassifications in other classes are 

comparatively minor in relation to this error, the accuracies and their likely 

explanations are provided below.  

3.1.2 Upland 

For the upland class, producer’s and user’s accuracies are approximately 

equal at 74% and 78% respectively (Table 3.1).  In both cases, the majority of the 

error is the result of confusion with a single class.  About 84% of the error 

associated with producer’s accuracy (omission error) is confusion with 

nonflooded floodplain forest (formerly floodplain woodland).  Approximately 93% 

of the error associated with user’s accuracy (commission error) is confusion with 

Africover’s forest class.  In terms of quantification, the Equateur upland class 
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approximates Africover’s upland class well with 4% fewer upland pixels (Table 

3.2). 

The source of greatest confusion is the difference between the 

distributions of upland and floodplain areas (flooded and nonflooded floodplain 

forest).  While they generally approximate visually (Figure 3.1), there are 

explanations for their small though consistent discrepancies. 

The first is that the boundaries of the largest upland areas are scaled back 

when compared to the Africover map (Figure 3.1).  This is likely a result of the 

different sensitivities of L-HH radar and optical imagery to forest canopies, as 

well as a result of the subjective nature of delineating boundaries between 

landcovers with a relatively fuzzy transition in optical imagery, as the transition 

between forest types is extremely gradual in this region (Hughes et al. 1992).  De 

Grandi et al. (2000a) found this to be the most likely explanation for the 

discrepancies between their C-VV radar-based swamp forest map and the optical 

imagery based reference map of the region.  This explains much of why the 

quantity of upland is lower (by 4% or 233,350 pixels) and floodplain is higher (by 

3% or 218,331 pixels) by nearly the equivalent amount in the Equateur wetlands 

map (Table 3.2). 

A second, though comparatively minor, explanation is that the Equateur 

method does not allow floodplain to exist as an isolated area inside an upland 
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region.  This is based on the reasoning that floodplain is an environment 

continuous with running water bodies.  It is for this reason that the upland rule 

implies that no upland object may overlap with the HydroSHEDS River vector.  In 

the Africover map, however, there are several instances where secondary 

floodplain appears to be cut off from the primary floodplain, which would also 

cause the Equateur method to produce comparatively less upland and more 

floodplain (Figure 3.1).  These “cut offs” do not necessarily mean that there is no 

hydrologic connectivity between the secondary and primary floodplains, but 

rather that the floodplain was not discernible from the LANDSAT imagery (e.g., in 

the case of a narrow gorge). 

Finally, although the minimum mapping area is smaller for Africover (34 ha 

vs. 50 ha), the Equateur map exhibits many small upland areas along all river 

courses where Africover shows none (Figure 3.1).  The heightened sensitivity to 

upland of this method would slightly increase the quantity of upland compared to 

the less-sensitive Africover method, which uses only optical data (and thus the 

spectral reflectance of vegetation canopy) to derive landcover classes.  As De 

Grandi et al. (2000a) and Mayaux et al. (2000) note, the visual interpretation of 

satellite imagery tends to eliminate small and narrow features, and this is likely 

responsible for the difference. 
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3.1.3 Lake 

Of all classifications, producer’s and user’s accuracies are highest for lake 

at 96% and 97% respectively (Table 3.1).  Most of the omission error is explained 

by confusion with flooded forest (46%), herbaceous (22%) and nonflooded forest 

(18%).  Most of the commission error is explained by confusion with upland 

(47%) and forest (33%).  In terms of quantification, the Equateur lake class 

closely matches the Africover lake class, underestimating it by 2% (Table 3.2). 

The lake classification is both well quantified and located.  This is not 

surprising given the ease of identifying open water with both optical and radar 

data and the accuracy of the SWBD ancillary dataset, whose overlap with open 

water objects serves as the primary rule for this class.  The extent of lake area is 

slightly less in the Equateur wetlands map which may be a consequence of 

greater flooding during the Africover imagery acquisition compared to the timing 

of the SRTM data collection.  Overall, the lake class is very well represented in 

this method. 

3.1.4 River 

Producer’s and user’s accuracies are similar for the river class at 84% and 

79% respectively (Table 3.1).  The omission error is composed of confusion with 

forest (71%) and nonflooded forest (13%).  Commission errors are split among all 

of the vegetated classes: forest (32%), upland (23%), woodland (20%), shrub 
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(14%), and herbaceous (11%).  Compared to Africover, the quantity of the 

Equateur river class approximates well, overestimating by 5% (Table 3.2). 

This over-quantification may be the result of the greater sensitivity of radar 

to rivers than optical sensors, particularly as L-HH radar is capable of penetrating 

vegetation canopies that may otherwise hide shorelines in optical imagery.  This 

could also be explained by the tendency of eliminating small (or in this case, 

narrow) features during the visual interpretation of Africover.  River 

overestimation may also be the consequence of differences in objectivity and 

consistency between the methods of map making.  The multi-resolution and 

spectral segmentation procedures identify small, spectrally distinct objects 

objectively.  The Busira River, for example, terminates earlier in the Africover 

dataset compared to the Equateur map.  Compare this to the relatively early 

termination of the Lopori and Maringa Rivers (Figure 3.1).  This can explain the 

commission errors of river with the flooded vegetation classes.  Generally, the 

river class is well classified without significant quantification or location error. 

3.1.5 Floodplain Shrub 

Of all classifications, producer’s accuracy is lowest for shrub at 13%, with 

a user’s accuracy of 85% (Table 3.1).  Most of the omission error is confusion 

with flooded forest (35%), herbaceous (30%), and nonflooded forest (26%).  Most 

of the commission error is confusion with upland (49%), forest (30%), and 
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herbaceous (15%).  In terms of quantification, 84% less shrub is quantified by the 

Equateur method compared to Africover (Table 3.2). 

The clearest example of shrub underestimation occurs on the left bank of 

the Congo River as it enters the area in the north and along the left shoreline 

further south (Figure 3.1).  There is also considerable confusion with herbaceous 

vegetation for shrub along the Giri River and on the left bank of the Congo River 

where it exits the Equateur district (Figure 3.1).  The Giri River is well known to 

show complex mosaics of flooded herbaceous and shrub vegetation (Hughes et 

al. 1992, Mayaux et al. 2002).  It also is the most accurate in terms of the low- 

and high-water mosaics representing true low- and high-water conditions 

(Rosenqvist and Birkett 2002).  Therefore, the unidirectional change in stage 

assumed during the development of the Hess et al. (2003) parallel-piped 

classifier holds truest for this river and, when corroborated with the Directory of 

African Wetlands and a previous wetland map of the region (Mayaux et al. 2002), 

is likely more representative of ground truth than Africover.  The other areas of 

shrub vegetation cannot be verified.  Visually, the shrub class of Africover tends 

to coincide with the shrub and herbaceous classes of the Equateur map, except 

for the large patch near Bolombo (Figure 3.1).  



 

73 

 

3.1.6 Floodplain Herbaceous Vegetation 

Producer’s accuracy is 20% and user’s accuracy is 6% for the herbaceous 

class (Table 3.1).  The error associated with the low producer’s accuracy comes 

from confusion with flooded forest (38%), nonflooded forest (30%), and river 

(21%).  The commission error is explained mostly by confusion with shrub (49%) 

and upland (37%).  The Equateur method over-quantifies herbaceous cover by 

259% or approximately 112,000 pixels; the largest quantification discrepancy 

(Table 3.2). 

The majority of the shrub confusion occurs along the Giri River, which is 

known to contain mostly herbaceous vegetation, both rooted and floating 

(Hughes et al. 1992, De Grandi et al. 2000a).  Large sedges also occur along the 

Giri, and it is well documented that emergent herbaceous vegetation greater than 

1.5 m in height can be mistaken for shrub in L-band frequencies (Silva et al. 

2008), and that interpretation of such vegetation from LANDSAT imagery is often 

confused for shrub as well.  It is possible that this can also explain the confusion 

between flooded herbaceous and shrub on the southern left bank of the Congo 

River, but no documentation exists to confirm this.  It is important to note that 

where Africover indicates flooded herbaceous (e.g., north of the confluence of the 

Ruki River with the Congo River and along the right bank of the Congo in the 

northern reach), the Equateur method also shows flooded herbaceous vegetation 
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(Figure 3.1).  Therefore, it is reasonable to assume that the method presented 

here better represents flooded herbaceous vegetation than Africover, especially 

along the Giri River. 

3.2 Simplified Wetlands Map 

The simplified wetlands map includes five classes: upland, lake, river, tall 

vegetation and short vegetation.  The tall vegetation class is the combination of 

the flooded floodplain forest and nonflooded floodplain forest classes.  The short 

vegetation class is the combination of the floodplain shrub and herbaceous 

vegetation classes.   The simplified wetlands map and corresponding Africover 

map are shown in Figure 3.2. 

Strategically collapsing the classes from seven to five increased the 

overall accuracy from 47% to 76% and doubled the KIA from 28% to 57% (Table 

3.3).  All of the classes were well quantified except short vegetation, which was 

underestimated by 38% (Table 3.4). 

3.2.1 Tall Floodplain Vegetation 

The tall vegetation class combines both the floodplain forest and woodland 

classes to effectively become a flooded trees class.  The producer’s and user’s 

accuracies are 80% and 76% respectively (Table 3.3).  Nearly all of the omission 

and commission error is with upland at 96% and 86% respectively.  Compared to 
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Africover, the tall vegetation class is well quantified with 6% difference (Table 

3.4). 

3.2.2 Short Floodplain Vegetation 

The short vegetation class collapses the shrub and herbaceous classes of 

the full wetland map into a single class.  The producer’s and user’s accuracies 

are 37% and 60% respectively (Table 3.3).  Most of the producer’s error is 

explained by confusion with tall vegetation (84%), and user’s error is associated 

with confusion with upland (72%) and tall vegetation (22%).  Quantification of 

short vegetation by the Equateur method is 38% less than indicated by the 

corresponding Africover class (Table. 3.4). 

The shrub and herbaceous classes which make up the short vegetation 

class remain difficult to correspond with Africover.  L-HH is well known to be most 

sensitive to flooded forest with decreasing sensitivity to shrub and herbaceous 

vegetation (Hess et al. 2003).  This may explain the confusion between the two 

classes, but not its confusion with the tall vegetation class. 



 

76 

 

Table 3.3: Error matrix and accuracy measures for the simplified wetlands map, in hectares. 

  Reference Data Classified 

Total   U L R TV SV 

C
la

s
s
if
ie

d
 D

a
ta

 U 3,432,894 344 3,215 972,367 13,044 4,421,863 

L 957 75,316 0 683 409 77,365 

R 13,244 119 221,049 29,680 14,328 278,420 

TV 1,125,238 2,144 36,525 4,062,521 146,119 5,372,546 

SV 49,000 777 3,459 14,934 102,248 170,418 

Reference 

Total 
4,621,333 78,699 264,247 5,080,185 276,148 10,320,612 

   Producer's 

Accuracy 

User's 

Accuracy 

   

       

 U = Upland 74% 78%    

 L = Lake 96% 97%    

 R = River 84% 79%    

 TV = Tall veg. 80% 76% Overall Accuracy 76% 

 SV = Short veg. 37% 60% KIA  57% 

 

 

Table 3.4: Comparison of quantity between the mapped and reference simplified wetland classes. 

     

Class 
Mapped ha 

(M) 

Reference ha 

(R) 

Difference 

(D = M - R) 

% Difference 

(%=D/R*100) 

     

Upland              4,421,863               4,621,333  -199,470 -4 

Lake                   77,365                    78,699  -1,334 -2 

River                 278,420                  264,247  14,173 5 

Tall vegetation              5,372,546               5,080,185  292,361 6 

Short vegetation                 170,418                  276,148  -105,730 -38 
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Figure 3.2: A visual comparison of the simplified wetlands map and the reclassified Africover reference map. 
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3.3 Basic Floodplain Map 

The basic floodplain map includes three classes: upland, open water and 

floodplain.  The open water class is a combination of the lake and river classes, 

and the floodplain class is a combination of tall and short vegetation classes from 

the simplified wetlands map.  The basic floodplain map and corresponding 

Africover map are shown in Figure 3.3. 

The overall accuracy of the basic floodplain map, compared to Africover, is 

78% with a KIA of 59% (Table 3.5).  Since quantification is generally comparable 

for all classes between the Equateur and Africover wetland mask maps (Table 

3.6), most of the error is related to location. 

3.3.1 Open Water 

The open water class more closely corresponds to Africover’s open water 

class with producer’s and user’s accuracies of 86% and 83% respectively (Table 

3.5). Most of the error is confusion with the floodplain environment, which 

explains 92% of omission error and 76% of commission error.  This is expected 

given that floodplain by definition borders open water.  The difference in quantity 

of open water in the Equateur and Africover maps is small, with 4% more open 

water in the Equateur map (Table 3.6). 
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Table 3.5: Error matrix and accuracy measures for the basic floodplain map, in hectares. 

  Reference Data 
Classified Total 

  

  U OW FP   

C
la

s
s
if
ie

d
 

D
a
ta

 U 3,432,894 3,559 985,411 4,421,863   

OW 14,201 296,483 45,101 355,785   

FP 1,174,238 42,905 4,325,822 5,542,965   

Reference 

Total 
4,621,333 342,946 5,356,333 10,320,612 

  

  

   Producer's 

Accuracy 

User's 

Accuracy 

   

       

 U = Upland 74% 78%    

 OW = Open water 86% 83% Overall Accuracy 78% 

 FP = Floodplain 81% 78% KIA  59% 

 

 

 

Table 3.6  Comparison of quantity between the mapped and reference basic floodplain classes. 

     

Class 
Mapped ha 

(M) 

Reference ha 

(R) 

Difference 

(D = M - R) 

% Difference 

(%=D/R*100) 

     

Upland              4,421,863               4,621,333  -199,470 -4 

Open water                 355,785                  342,946  12,838 4 

Floodplain              5,542,965               5,356,333  186,631 3 
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3.3.2 Floodplain 

The floodplain class represents all areas that are neither upland nor open water.  

The producer’s and user’s accuracies are high at 81% and 78% respectively 

(Table 3.5).  The primary source of confusion from a producer’s and user’s 

perspective is with upland at 96% of the error for each.  This can be explained by 

the discussion of upland discrepancies above, where upland is underestimated 

compared to Africover.  Therefore, the floodplain environment will be  

overestimated by a similar amount (Table 3.6).  Quantification of the floodplain 

environment is slightly closer to the quantity specified by Africover than upland or 

open water with 3% more floodplain area in the Equateur map (Table 3.6).
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Figure 3.3: A visual comparison of the basic floodplain map and the reclassified Africover reference map.
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4. General Discussion and Conclusions 

4.1 Simplified Wetlands and Basic Floodplain Maps: Comparison to Africover 

While the comparison to Africover as a measure of accuracy is not robust 

and could be, without explanation, misleading, it provides a structure to assess 

discrepancies between the maps, and highlights the pitfalls of comparing maps 

derived using different source data and methods. 

Similar overall accuracies and KIAs for both the simple wetlands map and 

basic floodplain map indicate that the mapping method for these levels have 

achieved maximum correspondence with Africover (Figure 4.1).  Africover has 

only demonstrated 60% accuracy at the termination of the first phase of 

classification, so the purpose of these comparisons is not to replicate Africover 

but to use it as an indicator of map quality.  Therefore, it is reasonable to assume 

that the simplified wetlands and floodplain maps are at least comparable to 

Africover in accuracy given that the errors found in the Equateur maps are 

corroborated by other sources (Hughes et al. 1992, De Grandi et al. 2000a, 

Mayaux et al. 2002). 

Given the different source data, classification methods, and the 

questionable accuracy of Africover, the similarity in quantification and overall 

accuracies and KIAs of the classes of both the simplified wetlands and floodplain 

maps indicate that this method is successful as a rapid method of tropical 
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floodplain wetland classification at these levels of classification.  This is possible 

because the L-HH radar and topography datasets are more sensitive to and 

consistent with the physiognomic-hydrologic wetland classification scheme used, 

and because the object-oriented segmentation and classification is a more 

objective, semi-automated, and consistent approach to image analysis than 

visual interpretation. 

 

Figure 4.1: Accuracy obtained using Africover as reference data for the three levels of wetland 

class aggregation. 

 

4.2 Simplified Wetlands and Basic Floodplain Maps: Comparison to other maps 

Further, though qualitative, insight to the quality of these maps is gained 

from the visual comparisons of the simple wetlands and floodplain maps to 

leading, similar maps of the region. 
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De Grandi et al. (2000a) produced a map based on C-VV that arrived at a 

very similar distribution of floodplains as the basic floodplain map (Figure 4.2).  

The central-basin-wide map shows similar thematic classes with comparable 

overall accuracy of 71% against a LANDSAT-derived forest inventory map 

(SPIAF 1995).  De Grandi et al. (2000a) did not present a measure of KIA.  

However, when comparing producer’s and user’s accuracies for floodplain 

(“swamp forest” in De Grandi et al. [2000a]), correspondence is much higher at 

81% and 78% respectively, versus 67% and 53% found by De Grandi et al. 

(2000a).  Visually, the basic floodplain map tends to show more floodplain 

compared to De Grandi et al. (2000a), but shows a similar pattern of upland, 

particularly along the Oubangui, Giri and Congo River courses (Figure 4.2). 

The distribution of upland is similar in the most thematically detailed 

wetland map of the central Congo basin, which was derived from combining one 

mosaic of C-VV radar with L-HH radar (Figure 4.3).  Swamp grassland, 

permanently flooded forest, and periodically flooded forest are mapped in 

Mayaux et al. (2002).  Swamp grassland is analogous to the short vegetation 

class of the simplified wetlands map, and appears disjointed and with less total 

quantity compared to the simple wetlands map (Figure 4.3).  Within the Equateur 

Province, Mayaux et al. (2002) indicate that swamp grassland only occurs along 

the Giri River, which is in disagreement with the simplified and full wetlands map 
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presented here, as well as with Africover (e.g., see areas by Yumbi in the 

southwest, around Lake Tumba, and north of Mbandaka).  The periodically 

flooded forest and permanently flooded forest classes match well with the 

nonflooded and flooded floodplain forest in the full Equateur wetlands map.  Only 

between the Oubangui and Giri Rivers in the north is there significant regional 

difference between the two: the Equateur map indicates periodically flooded 

forest where Mayaux et al. (2002) indicate lowland rain forest (i.e., upland).  

Similar to De Grandi et al. (2000a), the Equateur map appears to exceed the 

nonflooded floodplain forest class at the expense of upland in comparison to 

Mayaux et al. (2002). 

A more quantitative comparison between the simplified wetlands map and 

the map of Mayaux et al. (2002) shows producer’s accuracies for lowland rain 

forest, swamp forest, swamp grassland and water to be 87%, 59%, 80%, and 

80% respectively compared to the 74%, 80%, 37%, and 86% for corresponding 

classes (upland, tall vegetation, short vegetation, and open water) in the 

wetlands map of Figure 4.2.  User's accuracies for the same classes were 75%, 

72%, 80%, and 86% compared to the 78%, 76%, 60%, and 83% of the Equateur 

method.  Both maps have comparable overall, producer's and user's accuracies 

compared to their reference maps.  As in this study, both reference maps were 

derived from visually interpreted LANDSAT imagery with different sensitivities 
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Figure 4.2: Basic Equateur floodplain map (inserted left) and the leading wetland map of the central Congo River basin: De Grandi et al. (2000a).  

Notice the close correspondence between Equateur upland and lowland rain forest, and Equateur floodplain and swamp forest. 
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Figure 4.3: Simplified Equateur wetlands map (left) and the leading wetland map of the Equateur region: Mayaux et al. (2002).  Notice the close 

correspondence between Equateur flooded forest and permanently flooded forest, Equateur nonflooded forest and periodically flooded forest, and 

Equateur short vegetation with swamp grassland. 
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that suggest that discrepancies are actually improvements over their respective 

reference maps (Mayaux et al. 2002).  With the exception of overestimating the 

area of floodplain, the Equateur method appears to approximate the classes of 

the leading wetland maps of the region well, and may produce a more accurate 

short vegetation class. 

4.3 Full Equateur Wetlands Map 

The Equateur method is also useful for providing additional classes 

previously unmapped in the region, distinguishing between shrub and 

herbaceous vegetation.  However, the accuracy of these classes can only 

currently be verified by the single available high-resolution landcover map of the 

region: Africover.  As indicated in the results presented above, the distribution of 

shrub and herbaceous vegetation between the Equateur and Africover maps is 

similar.  The Equateur map shows considerably more herbaceous vegetation 

where Africover indicates shrub, particularly along the Giri River, but other 

descriptive and mapping sources support the results of the Equateur map.  This, 

in addition to the visual comparison of the flooded floodplain forest, nonflooded 

floodplain forest, and short vegetation classes to Mayaux et al. (2002) above, 

indicates that the accuracy of the full Equateur wetlands map is higher than 

indicated by its comparison to Africover, but it is unknown to what degree. 
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An interesting failure of the classification scheme was to correctly identify 

floodplain woodland. This class was adapted directly from the parallel-piped 

classifier derived in Hess et al. (2003) from the PDF of flooded woodland found 

from training samples in the central Amazon.  When comparing the distributions 

of classes to the map of Mayaux et al. (2002), it is evident that the flooded 

woodland classifier of Hess et al. (2003) represents nonflooded forest in the full 

Equateur wetlands map.  Since L-HH is sensitive to volumetric scattering in the 

canopy (increasing backscatter with denser canopy) and to flooded, vegetated 

surfaces via a double-bounce mechanism, it is possible that the dual-mosaic 

response of the flooded woodland in the central Amazon (high double bounce 

return, lower volumetric scattering) approximates that of nonflooded forest in the 

central Congo (low double bounce return, higher volumetric scattering).  This is 

supported by a comparison of the PDFs illustrated in Hess et al. (2003), which 

shows the flooded woodland class PDF entirely overlapping and peaking 

similarly to the narrower nonflooded forest class PDF (Figure 4.4). 
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Figure 4.4: A comparison of probability density functions derived from training sites in the central 

Amazon and used to determine the parallel-piped classifier thresholds of Hess et al. (2003).  

Notice the overlap between the woodland-flooded and forest-nonflooded classes.  From Hess et 

al. (2003). 

   

4.4 New Insights 

Of the 100,000 km2 of Equateur, approximately 40,000 km2 qualify as 

floodplain wetland.  No previous estimates of wetland extent have been 

published for this specific area, but Hughes et al. (1992) suggest a conservative 

120,000 km2 of permanently or seasonally inundated forest in the D. R. Congo 

portion of the central Congo basin and a further 65,000 km2 in the Republic of 

Congo portion, for a total of 185,000 km2.  If the same proportion of land at the 

same elevation as Equateur (255 to 455 m) in the Congo basin (820,000 km2) is 
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assumed wetland—which, given Equateur’s central location, makes this a 

maximum estimate of wetlands in the central basin—then approximately 330,000 

km2 of wetlands could be calculated as the maximum wetland area for the central 

Congo basin.  This estimate is much higher than given by the conservative 

estimate in Hughes et al. (1992).  Therefore, it is hypothesized here that at least 

185,000 km2 and no more than 330,000 km2 of wetlands exist in the central 

Congo basin.  In terms of wetland distribution, the results are visually comparable 

to the most detailed wetland assessment of the area, although the floodplain 

nonflooded forest of the Equateur map is generous compared to previous maps 

(Figures 4.2 and 4.3), indicating that the total amount of wetlands in the central 

basin is closer to the 185,000 km2 proposed by Hughes et al. (1992). 

More importantly, the Equateur method provides more classes and a rapid 

method of reassessing wetland quantity and distribution than any available 

method for the region.  Large-scale hydrological models do not currently include 

aquatic vegetation in their calculations, which is important in determining 

floodwave attenuation as well as evapotranspiration fluxes.  This study has also 

produced vegetation classes of interest to carbon modelers but still requires their 

seasonal flooding dynamics for incorporation into carbon models.  Rosenqvist 

and Birkett (2002) indicate that high-water conditions are captured fairly well in 

this region, therefore, the results shown here can be taken as a first estimate of 
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maximum wetland extent for Equateur.  Although flooding dynamics are not 

captured in this study, it is not a limitation of the method but rather of the 

datasets.  Upon further releases of L-band datasets for the region, this method 

could be expanded to include the full physiognomic-hydrologic classifications 

used in Hess et al. (2003).  The seasonal wetland distribution information that 

would result can be used in conjunction with field measurements of methane 

emissions, as calculated for the Amazon by Melack et al. (2004).  The same 

information on the type and distribution of wetlands illustrated in this study can be 

used for fishery management, as fishing is a major source of protein and 

economic activity in the region.  However, one wetland class that these data 

could not resolve that is important to ecological and cultural welfare is Raphia 

palms.  It is well documented that Raphia spp. (a cosmopolitan wetland palm) is 

the primary habitat of the otherwise little studied and endemic lowland gorilla, in 

addition to significant food and cultural value (grubs, wine) to the local Bantu and 

Pygmy peoples (Hart and Hart 1986).  Africover includes a custom Raphia spp. 

class in the D. R. Congo dataset, and these polygon outlines were used for 

training to identify other floodplain objects that qualified as Raphia spp.  The 

radar backscatter was not distinguishable from nonflooded floodplain forest, and 

was left out of the classification.  In this case, optical imagery would be of use in 

capturing this special class, as was successfully done by Hamilton et al. (2007) 
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using LANDSAT imagery in conjunction with radar and elevation data over the 

Madre de Dios subbasin of the Amazon River basin.  It is also possible that the 

multi-polarized radar imagery now made available by the ALOS/PALSAR satellite 

could also distinguish this class, however, no study has yet determined this. 

4.5 Limitations and Future Work 

A clear limitation of this method is the availability of dual-season L-HH 

datasets.  The radar datasets used here exist—though only in dual-season form 

for the Amazon and the Congo—for the rest of the tropics.  Dual-season L-HH 

mosaics were essential for distinguishing the flooded shrub and herbaceous 

vegetation classes. With single-season L-HH data, only flooded and nonflooded 

forest wetland classes could be reliably classified. The multipolarized 

ALOS/PALSAR L-band sensor has since succeeded the JERS-1/SAR L-HH 

sensor, and currently releases 500 m mosaics of the African continent every 

cycle, or 46 days.  In addition, a new radar dataset based on ALOS/PALSAR 

consisting of 50 m resolution, orthorectified mosaics is soon to be released from 

the EC JRC with the objective of capturing low- and high-water conditions over 

the Congo basin. 

However, even with well-timed L-band radar mosaics, Hess et al. (2003) 

found that their classifier did not perform well in tidally inundated areas, 

interfluvial white-sand wetlands with low biomass shrubs and sedges, and in 
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wetlands within large savannas where there is low-biomass and the herbaceous 

vegetation is rooted and emergent rather than high-biomass and floating.  The 

Congo River has little tidally inundated area at its mouth but does exhibit 

extensive savannas to the north and south of the central basin.  Important, large 

wetland systems lie in the southern portion of the basin such as in the 

Kamolondo Depression, where the Upemba Lakes and approximately 800,000 

ha of forested and herbaceous wetlands occur (Hughes et al. 1992).  Therefore, 

the data and classifier presented here—though simpler than that used in Hess et 

al. (2003)—may require changes to adapt to the vegetation and geomorphology 

of different regions and (or) to capture important classes not included in this 

wetland scheme. 

Perhaps the most beneficial additional information would be an optical 

dataset, which could further distinguish forest types and include species-specific 

classifications such as Raphia spp. palms, which were indistinguishable from 

flooded forest in Hess et al. (2003) and from nonflooded floodplain forest in this 

study.  Hamilton et al. (2007), for example, were successful identifying a Raphia 

spp. palm class in a sub-basin classification of the Amazon using 

LANDSAT/ETM+ imagery.  Although the problem of cloud cover precludes 

optical imagery from being the principle source of rapid tropical floodplain 

wetland mapping method, the recent availability of optical, 300 m resolution 
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global composites from the MERIS/Globcover initiative could serve as a 

complimentary dataset in future, large-scale wetland mapping studies, especially 

as the multipolarized C-band ENVISAT/ASAR sensor is also employed in this 

initiative to delineate wetland from humid tropical forests. 

C-band radar data would also provide complimentary information by 

improving the distinction between the herbaceous and shrub classes, since these 

vegetation covers are difficult to distinguish between in the L-band wavelength.  

Simard et al. (2002), for example, found that merging L-HH and C-VV data could 

effectively map woody and herbaceous wetlands along the coast of Gabon.  The 

recent release of 150 m resolution C-band mosaics from the ENVISAT/ASAR 

program could be incorporated to improve the accuracy of the short vegetation 

classes of this method and to potentially make further differentiations between 

forest types based on canopy backscatter signatures or texture. 

The TERRA/ASTER 30 m global DEM was recently released for public 

use, and exceeds the HydroSHEDS DEM in spatial resolution with approximately 

the same accuracy (ASTER 2009).  With a higher resolution DEM, sinuous 

meader scrolls and smaller channel bars common to the floodplain environment 

of large rivers could be detected.  These objects could then be distinguished from 

upland based on proximity to river and length-to-width ratios, for example. 
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4.6 Conclusions 

This study has achieved a rapid method of tropical floodplain classification 

comparable in thematic detail to the leading wetland map of the central Congo 

basin (Mayaux et al. 2002) and in accuracy to the only publicly available, high 

resolution wetland map of the region: Africover.  It also provides a limit of 

maximum wetland area in the central Congo basin and a first estimate of 

floodplain shrub and herbaceous vegetation classes in the Equateur 

administrative region.  The method demonstrates the power of integrating several 

wetland-relevant, digital datasets, and indicates that the parallel-piped classifier 

derived from Hess et al. (2003) is valid for use in the central Congo basin with 

the exception of confusing nonflooded floodplain forest for flooded woodland. 

The addition of elevation and slope datasets and the HydroSHEDS Rivers vector 

layer reduced the reliance on L-HH radar for the upland class, since it was found 

that backscatter of upland overlapped with forest and herbaceous cover in the 

parallel-piped classifier of Hess et al. (2003).  The addition of the SWBD Lakes 

dataset enabled the distinction of lakes from rivers.  In addition, the study 

provides further evidence that image segmentation is both a practical and 

effective method for large raster dataset analysis (Costa et al. 2002, Hess et al. 

2003, Durieux et al. 2007).   
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There are several advantages to the object-oriented approach employed 

in this study: the ability to incorporate other datasets in a transparent way (via the 

process tree) without complex image fusion procedures involved with traditional 

pixel classifications.  This capability allows the method to be customized or 

improved upon with the growing number of global and near-global digital 

datasets relevant to wetland mapping.  The object-oriented approach is also 

unbiased compared to visual interpretation and manual delineation of satellite 

imagery (e.g., Africover).  

There are limitations, however, since classification rules will likely need to 

be adapted to different geomorphological and ecological settings outside of the 

central basin.  Also, the scale parameters reported here do not refer to any 

known algorithm, only to the scale factor unique to the image analysis software 

used in this study.  Therefore, it is unknown how the data are actually treated to 

create image objects of the appropriate size and shape.  Lastly, dual-season 

radar data are necessary to determine shrub and herbaceous vegetation from L-

HH radar.  However, adding C-band radar or potentially multi-polarized L-band 

data may provide enough information to better distinguish these classes.  

Greater availability of high-resolution, large scale optical composites may also 

improve classification accuracy and would also provide more ecologically 

important wetland classes such as Raphia spp. palm stands. 
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As no extensive fieldwork has been conducted to verify Africover, the 

accuracy of this method cannot be ascertained, though it is comparable to 

previous maps of the region.   While computer classification of remote sensing 

data should never supersede field observations and data, their outputs can be 

used to improve hydrological and biogeochemical models, in addition to affecting 

science-based conservation strategies that are urgently needed in many rapidly 

developing tropical countries such as the D. R. Congo that depend upon many 

floodplain wetland ecosystem services (Thieme et al. 2007). 

A rapid method of tropical floodplain wetland mapping over a large area of 

the central Congo floodplain has been produced with relevance to hydrologists, 

biogeochemists, and conservationists that is comparable to the thematic detail 

and accuracy of previous work in addition to providing two new classes of wide 

interest: floodplain shrub and herbaceous vegetation.  Africover is the only 

dataset with comparable spatial and thematic detail; however, it suffers from a 

dependency on cloud-free imagery that makes it difficult to acquire multi-

temporal imagery from different seasons, in addition to an inability to penetrate 

dense tropical canopies to determine flood extent.  Thematic detail is improved 

with the Equateur method in comparison with Africover with better discrimination 

between the shrub and herbaceous classes.  The semi-automated nature of the 

Equateur method also makes for a consistent and rapid method of monitoring 
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wetland classes in comparison to the interpretation of LANDSAT imagery used in 

Africover.  Finally, this study highlights the potential of wide area, high-resolution 

L-HH radar and topography datasets for mapping tropical floodplain wetlands at 

an appropriate scale for regional inventory and monitoring purposes, and can be 

further improved by the growing availability of relevant, digital datasets and their 

consistent, semi-automatic integration in an object-oriented analysis. 
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