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Abstract 

 

k-space image correlation spectroscopy (kICS) is a recently developed technique that can 

be used to measure the transport dynamics and number density of fluorescently labeled 

molecules in living cells, while being completely unbiased for transport measurements by 

fluorophore photobleaching or blinking. Whereas the precision of fluorescence 

correlation spectroscopy (FCS) and temporal image correlation spectroscopy (TICS) have 

been investigated in detail, no such study exists for kICS. In this thesis, we present a 

thorough characterization of the accuracy and precision of kICS for measurements of 2D 

diffusion over a range of imaging frame rates, spatial dimensions, and particle 

distributions. We use computer simulations as a primary tool to vary simulated imaging 

conditions and data analysis parameters, and thereby obtain a statistical description of 

kICS error. 

We find that kICS measurements of diffusion are consistently biased low for 

image regions smaller than ~100 μm2 and we examine two alternative methods for 

correcting the bias. We also report the surprising discovery that kICS can measure 2D 

particle diffusion that is at least ten times faster than can be measured with other methods 

that compute correlations between successive image frames; this is possible because kICS 

measures long-range correlations that persist after particles have exited the specific 

volume of the laser focus where they were found in a previous frame. In addition, we 

show that unlike FCS or TICS, kICS measurements are accurate even when analyzing 

highly nonuniform particle distributions, as would be found after local release or 

photoactivation of fluorescently-tagged biological molecules. Finally, we describe a 

method of estimating the uncertainty from a single kICS measurement of diffusion, which 

is useful when measurements cannot easily be repeated. 

We use experimental fluorescence microscopy image series of diffusing 

microspheres to confirm that bias in kICS depends on the size of the image region analyzed, 

and we test the two methods of correcting the bias. We also apply kICS to measure the 

diffusion of membrane biomolecules tagged with blinking quantum dots in living cells, 

and compare the results with single particle tracking analyses of the same data. 
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Résumé 

 
La spectroscopie par corrélation d’images dans l’espace vectoriel (kICS) est une nouvelle 

technique qui permet de mesurer la dynamique du transport moléculaire ainsi que le 

nombre de molécules fluorescentes à l’intérieur de cellules vivantes et de leurs 

membranes. Cette technique présente l’avantage de fournir des mesures de dynamique de 

transport non biaisées par le photo-blanchiment et le clignotement des fluorophores. 

Alors que la précision des techniques de spectroscopie de corrélation de fluorescence 

(FCS) et de spectroscopie par corrélation temporelle d’images (TICS) a déjà été étudiée 

en détail, aucune étude n’existe concernant la technique kICS. Dans cette thèse, je 

présente une caractérisation approfondie de l’exactitude et de la précision de kICS sur des 

mesures de diffusion 2D pour une large plage de fréquences d’acquisition d’image, de 

tailles d’image et de distributions spatiales du nombre de particules. J’ai principalement 

utilisé des simulations par ordinateur afin de pouvoir modifier les conditions 

d’acquisition et d’analyse d’image et ainsi d’obtenir une description statistique des 

erreurs de kICS. 

Il ressort de mes analyses que les mesures de diffusions effectuées par kICS 

donnent des valeurs systématiquement trop faibles lorsque les régions imagées ont une 

surface de moins de ~100 μm2, j’ai donc étudié deux méthodes alternatives afin de 

corriger ce biais. J’ai aussi pu constaté que kICS permet de mesurer des diffusions de 

particules en 2D pour des vitesses au moins dix fois supérieures à celles des diffusions 

mesurées par des méthodes corrélant des images successives. Ceci est rendu possible par 

le fait que kICS mesure des corrélations à longue distance qui persistent même lorsque la 

particule quitte le point focal d’illumination du laser qu’elle occupait lors de la prise de 

l’image précédente. En outre, je montre que, contrairement à FCS ou TICS, les mesures 

effectuées par kICS sont exactes y compris lorsque des régions ayant une distribution 

spatiale de particules fortement hétérogène sont analysées, cas rencontré notamment lors 

de la libération locale ou la photo-activation de molécules biologiques marquées par un 

fluorophore. Finalement, je décris une méthode permettant d’estimer l’incertitude de la 
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mesure à partir d’une seule donnée de diffusion obtenue par kICS. Ceci est 

particulièrement utile par exemple lorsqu’il est difficile de répéter une acquisition. 

J’ai utilisé des mesures expérimentales de diffusion de microsphères pour 

confirmer que le biais de kICS dépend bien de la taille de la région analysée et j’ai testé 

l’efficacité des deux méthodes proposées pour corriger ce biais. J’ai également employé 

kICS afin de mesurer la diffusion dans des cellules vivantes de biomolécules 

membranaires marquées par point quantique et j’ai comparé ces résultats avec ceux 

effectués sur les mêmes images par suivi de particules isolées. 
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Statement of Originality 

 
The author claims the following aspects of the thesis constitute original scholarship and 

an advancement of knowledge: 

1. Bias in k-space image correlation spectroscopy (kICS) measurements of diffusion. 

The necessary use of finite Fourier transforms in kICS results in spectral leakage, a 

commonly known phenomenon in power spectrum estimation. This causes kICS 

measurements of diffusion to be biased low by an amount that depends on the size of 

the image relative to the point spread function. Chapter 3 is the first report that this 

bias exists, and Chapter 4 presents an experimental test of two methods of correcting 

the bias. 

 
2. Accuracy and precision of kICS diffusion measurements. Chapter 3 describes a 

complete characterization of the dynamic range, accuracy and precision of kICS 

measurements of diffusion using computer simulations over a wide range of spatial 

and temporal sampling. It was found that kICS is accurate over a larger dynamic 

range than temporal image correlation spectroscopy (TICS), and that kICS is also 

more precise within this range. 

 
3. kICS diffusion measurements with nonuniform particle distributions. It was 

discovered that that kICS can accurately measure diffusion in cases where the initial 

particle distribution is highly nonuniform, in contrast to most other known 

fluorescence correlation measurement techniques. Three different types of 

nonuniform distributions were investigated via kICS analysis of computer-simulated 

image series, and kICS provided accurate measurements in all cases. 

 
4. Method to estimate the error in a single kICS diffusion measurement. Because one 

must select cut-offs for certain parameters when analyzing a fluorescence microscopy 

image series with kICS, a significant component of measurement uncertainty is 

associated with cut-off selection. Chapter 3 describes a method to determine this 

contribution to the measurement uncertainty in a single kICS analysis. 
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1. Introduction 

In the quest to understand the complex inner workings of living cells, tools are needed 

that can probe many aspects of cell function, at different spatial and time scales. Optical 

microscopy has long been one of the main tools for this purpose because living cells, in 

cell culture and even in intact animals, can be resolved and observed for extended time 

periods without apparent damage to the cells. In the past decade in particular, 

fluorescence imaging and spectroscopy techniques have become ubiquitous tools in cell 

biology and biophysics, owing to improvements in microscope technology, the 

development of genetically encoded fluorophores, and detectors that are sensitive enough 

for imaging single molecules. Despite these advances, optical microscopy in the far field 

(i.e. more than a few nm from the sample) is limited in resolution by the diffraction of 

light and cannot resolve objects separated by less than ~200 nm in living cells. Thus, it is 

challenging to obtain information on the dynamic processes of biomolecules and 

molecular complexes, which are generally smaller than 10 nm. 

This thesis explores the capabilities and limits of a fluorescence fluctuation 

spectroscopy method called k-space image correlation spectroscopy (kICS), which has 

significant practical advantages for measuring the diffusion or flow of fluorescently 

labelled macromolecules in cell membranes. We characterize the accuracy of kICS over a 

range of imaging conditions, and describe two ways of correcting for a bias that occurs 

when analyzing small image subregions. We then show novel applications of kICS, 

including measuring relatively fast diffusion in planar membranes and accurately 

measuring diffusion despite highly nonuniform initial particle distributions.  

In this chapter we provide an introduction to topics needed to understand kICS and 

the context in which it is applied. We begin with an overview of eukaryotic cell 

membranes, and the diffusion or directed motion of membrane components that are 

essential to membrane function. We next describe the phenomenon of fluorescence, the 

types of fluorophores used in research on living cells, and some common fluorescence 

microscopy imaging modalities. Finally, we review a variety of image analysis techniques 

that can access information on molecular diffusion, directed motion, aggregation, 

immobility, and number density (i.e. concentration) of labelled biomolecules. 
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1.1 The Cell Membrane 

From single-celled bacteria to multi-cellular plants and animals, cells are the fundamental 

units of all living organisms. Animal cells are separated from the outside environment 

and from other cells in the organism by a phospholipid bilayer, called the plasma 

membrane, which acts as a barrier to passage of polar molecules and defines the cell’s 

volume. Inside the cell, a variety of organelles (with their own membranes) carry out the 

functions necessary for life. The plasma membrane is directly involved in many cellular 

processes such as cell adhesion and motility, uptake of nutrients and excretion of waste, 

and cell signalling. These functions are generally carried out by proteins that are 

embedded in the membrane. The importance of membranes to life is reflected in the 

human genome, where 20 to 30% of coded information corresponds to membrane 

proteins [1-2]. 

In the model of membrane structure proposed by Singer and Nicolson in 1972, 

membrane proteins are randomly distributed in a homogeneous, viscous fluid that is the 

lipid bilayer [3]. Since then our understanding of membrane structure and dynamics has 

changed considerably. Rather than being homogeneous, the numerous types of lipids 

found in the membrane are laterally organized into domains with different composition. 

Liquid ordered domains, sometimes called lipid rafts, are enriched in cholesterol and 

sphingolipids, and coexist with more fluid domains composed primarily of phospholipids 

with unsaturated hydrocarbon tails [4-5]. Specific proteins partition preferentially into 

rafts, creating functional domains with roles in membrane signalling and trafficking. 

Proteins, which may span the entire membrane or may be attached to the membrane by 

lipid anchors or hydrophobic peptide segments, comprise a significant fraction of the 

membrane area. A number of studies have found total protein densities in cell membranes 

of around 30,000 per μm2 [6]. Membrane-embedded proteins may also have large 

domains that extend outside the membrane region, and can have interactions with other 

macromolecules inside the cell that organize them into functional complexes [7]. Fig. 1.2 

shows a cartoon depiction of a biological membrane with embedded proteins. 
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FIGURE  1.2:  A modern view of the cell membrane: the membrane is dense with 
proteins of different types, some of which extend out of the membrane or change the 
local membrane thickness. Lipids segregate into dynamically changing domains, and 
some proteins partition preferentially into one type of lipid domain. The lipid bilayer is 
~5 nm in thickness. Reprinted by permission from Macmillan Publishers Ltd: Nature, 
Ref. [7], copyright 2005. 
 

Membranes and other cellular components are not static, as they might appear in 

drawings, but are in constant motion. Membrane proteins may undergo diffusion, directed 

transport, or be transiently immobilized, all of which can be important for biological 

function [8]. Indeed, diffusion is the norm for any molecule that is not either being 

actively transported or immobilized by attachment to a larger structure. Thus, 

measurement of lipid and membrane protein diffusion has been one of the means used to 

investigate membrane heterogeneities [9-10], and to detect molecular interactions that 

slow a protein’s diffusion or immobilize it [11]. 

Diffusion measurements are commonly done by attaching fluorescent probes to 

specific membrane proteins or lipids so that they can be imaged with high sensitivity via 

fluorescence microscopy. In the following sections we introduce the use of fluorescence, 

as well as optical microscopy and analysis techniques that are used to measure diffusion 

or transport of molecules in membranes. 
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1.2 Fundamentals of Fluorescence 

Luminescence is the emission of light that occurs when a molecule transitions from an 

excited electronic state to its ground state. Luminescence is termed either fluorescence or 

phosphorescence, depending on the nature of the excited state prior to emission. 

Fluorescence occurs when a molecule transitions from an excited singlet electronic state 

to the singlet ground state (S1→S0). When the transition is from an excited triplet 

electronic state to the singlet ground state (T1→S0), a quantum mechanically “forbidden” 

transition, the resulting photon emission is called phosphorescence. Because the 

transition is forbidden, phosphorescence occurs at much lower rates than fluorescence, 

and is thus not useful in imaging. 

The processes involved in molecular excitation and fluorescence emission can be 

summarized in a simplified Jablonski diagram (Fig. 1.3). The ground, first, and second 

singlet electronic states are referred to as S0, S1, and S2 respectively, and vibrational states 

are labeled 0, 1, and 2, though higher states also exist. A molecule begins in the singlet 

ground electronic state (S0) and the lowest vibrational state because at physiological 

temperatures there is not enough thermal energy for excited states to be significantly 

populated. The molecule absorbs a photon of light (hνA), which promotes an electron to 

an excited singlet electronic state (S1, S2, …) and generally to a vibrationally excited state 

as well. Absorption of the photon occurs almost instantaneously (~10-15 s), after which 

the molecule relaxes to the lowest vibrational level of S1. This vibrational relaxation is 

called internal conversion, and occurs within about 10-12 s. Fluorescence emission occurs 

after a time that typically ranges from 10-9 to 10-8 s, which is called the fluorescence 

lifetime. The energy of the fluorescence photon emitted (hνF) is thus the energy 

difference between the lowest vibrational state of S1 and one of the vibrational states of 

S0 which the molecule enters upon fluorescence emission (this could be an excited 

vibrational state). 
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FIGURE  1.3:  A Jablonski diagram, showing the processes that lead to fluorescence and 
phosphorescence.  
 

Note that the energy of the fluorescence photon emitted, represented by the length of 

the vertical arrow, is less than the energy of the absorbed photon. This is true of all 

fluorescent molecules, and results in the emission spectrum being shifted to longer 

wavelengths than the absorption spectrum, as in Fig 1.4. This red shift in fluorescence 

emission wavelength, called the Stokes shift, occurs because non-radiative decay 

processes such as internal conversion and solvent relaxation release some of the energy 

initially absorbed. The Stokes shift is one of the factors that enables the tremendous 

sensitivity of fluorescence detection, since filters can be used to block wavelengths of the 

exciting light while passing the emitted fluorescent light of longer wavelength. 

When a molecule is in the excited state, pathways other than fluorescence can also 

occur. Most prevalent is internal conversion from S1 to S0, whereby the excited state 

energy is released as heat. A molecule in the S1 state can also undergo spin conversion to 

the first triplet state, T1, a process called intersystem crossing. The lifetime of the excited 

triplet state typically ranges from 10-3 to 1 s, and emission from this state is called 

phosphorescence. Importantly, molecules in excited states are much more prone to 

chemical reactions, particularly redox reactions such as oxidation by molecular oxygen. 

Due to its longer lifetime, T1 is considered to be the most photochemically active state. In  
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FIGURE  1.4:  Normalized absorption (blue) and fluorescence emission (red) spectra of 
AlexaFluor 488 hydrazide in water. Figure created using raw data on product spectra 
available from www.invitrogen.com. 
 

the case of excited fluorescent molecules, chemical reaction usually renders them 

nonfluorescent. This is called photobleaching, and will be revisited later in this thesis as it 

is a problem frequently encountered in fluorescence microscopy. Certain reagents can be 

used to minimize photobleaching, such as an enzymatic oxygen-scavenging system [12] 

or a reducing and oxidizing system [13], but these are often not compatible with living 

cells. Thus, the intrinsic brightness and photostability of the fluorophore used is 

important for live cell imaging. 

Some additional mechanisms not shown in Fig. 1.3, such as energy transfer and 

quenching, can also lead to de-excitation of the molecule without emission of a photon. 

Because of these non-radiative decay processes, the number of fluorescence photons 

emitted is lower than the number of photons absorbed. The quantum yield, q, of a 

fluorophore is the ratio of the number of photons emitted to the number of photons 

absorbed, and is an important parameter that characterizes the brightness of a fluorescent 

molecule. 
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1.3 Fluorophores 

1.3.1 Organic Dyes 

In 1845 Sir John Herschel observed that a solution of quinine, although appearing 

transparent and colourless under most conditions, would exhibit a “beautiful celestial 

blue colour” under certain incidences of sunlight [14]. Indeed, modern tonic water glows 

blue under an ultraviolet lamp (black light) because of the fluorescence of quinine; 

despite its bitter taste, the practice of adding quinine to tonic water began because it also 

has antimalarial properties. Like most organic fluorescent dyes discovered since then, 

quinine is a small molecule with conjugated aromatic rings. The small size of organic 

dyes means that when they are used to label a desired molecule, they are less likely than 

larger probes to perturb the labelled molecule’s natural function. When monitoring active 

transport the size of the label may not be very important, but for diffusing molecules a 

large tag is likely to alter the diffusion by changing the effective Stokes-Einstein radius of 

the complex [15]. 

Organic dyes are available in a wide variety of colours, which makes it possible to 

select a dye that is most suitable based on the laser wavelengths and emission filters 

available in the lab. They have also been industrially optimized for increased brightness, 

improved photostability, and reduced self-quenching, and modern dyes are greatly 

improved over those used in the past. Because of this long history of optimization, it is 

believed that further improvements in organic dye properties are likely to be small [15]. 

Yet, as researchers push the limits of spatial and temporal resolution in cellular imaging, 

it is still a challenge to obtain a sufficiently bright and photostable fluorescence signal 

from small numbers of labelled molecules. Thus, to maximize the fluorescence signal a 

high excitation intensity is often used, which results in photobleaching a significant 

fraction of the dye over a series of images. At best, photobleaching simply causes a 

reduction in signal over time; at worst, certain methods of analyzing a fluorescent signal 

will return incorrect measurements, and the by-products of photobleaching are often toxic 

to cells. 

The most common method of labelling samples with organic dyes is 

immunofluorescent staining, in which fluorophore-decorated antibodies (Fig. 1.5 (A)) are 

used that bind specifically to the target molecules. This can produce brilliant still images, 
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as in Fig. 1.5 (B), but it is not often applied to live cells; cells are normally chemically 

fixed, as the pair of antigen binding sites on each antibody would induce protein cross-

linking. Newer and more advanced techniques exist for attaching organic dyes to proteins 

in living cells, but for many applications organic dyes have been superseded by 

genetically encoded fluorescent proteins. 

 

         

 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE  1.5:  (A) General structure of a fluorescently-labelled antibody, with two 
binding sites that can bind to antigens. (B) Immunofluorescence image of endothelial 
cells. Microtubules are labelled by an antibody tagged with a green fluorophore; actin 
filaments are labelled red using phalloidin and nuclei are stained blue with DAPI. Images 
for (A) and (B) are in the public domain and were copied from the Wikipedia article on 
antibodies. 
 

1.3.2 Fluorescent Proteins 

Background fluorescence and imperfect specificity of labelling are common problems 

with chemical labelling strategies such as immunofluorescent staining. Ideally, every 

copy of the target protein in a cell would be fluorescently labelled with a probe of the 

same brightness. Fluorescent proteins can be used to achieve this level of control. 

Although many proteins in cells have a natural weak fluorescence due to the amino acid 

tryptophan, this is not useful for observing specific proteins in cells, and thus it mainly 

contributes to an undesired background autofluorescence. The key advance came with the 

discovery of the green fluorescent protein (GFP), isolated from the jellyfish Aequoria 

victoria. The fluorophore in GFP is formed from an autocatalytic cyclization reaction of 

BA 
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three amino acid residues, which are located at the center of the 11-stranded β-barrel 

structure of the protein (Fig. 1.6) [16]. Thus, when GFP is synthesized inside a cell, it is 

not immediately fluorescent, but becomes fluorescent after maturing into the correct 

folded structure and forming the chromophore. The DNA sequence for GFP can be fused 

with the DNA sequence of another protein at either the C- or N-terminus, and then 

transfected into cells. Because the two will be translated as a single unit in the cell, every 

copy of the target protein will be labelled with a covalently-attached fluorescent GFP. 

 

 
FIGURE  1.6:  X-ray crystal structure of the green fluorescent protein shown in ribbon 
representation. Figure created from protein data bank structure 1EMA [16] using Jmol. 
 

A number of research groups have found mutations in the amino acid sequence of 

GFP to create improved versions. Dr. Roger Tsien shared the 2008 Nobel Prize in 

chemistry for his work that led to an enhanced GFP (EGFP) with improved brightness 

and more rapid folding [17]. Other mutations have created fluorescent proteins with 

emission peaks that range from blue to yellow [16, 18], and the discovery and 

optimization of fluorescent proteins from coral has filled the gap at the red end of the 

visible spectrum [19]. The photostability and brightness of GFP are comparable to that of 

many organic dyes, although some of the variants with different colours exhibit reduced 

brightness or photostability [20]. A drawback of fluorescent proteins is their moderately 
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large size (27 kDa, about 3 x 4 nm) in comparison with organic dyes, which is larger than 

some cellular proteins that could be tagged. Compared with newer fluorescent “quantum 

dot” probes, fluorescent proteins have fairly broad emission spectra, which can cause 

bleed-through between detection channels and complicate multicolour experiments where 

two or more proteins are fluorescently labelled. Additionally, when cells are transfected 

with a GFP-target protein fusion construct, the level of expression will vary between 

cells, and the protein concentration may not reflect endogenous levels. Overexpression 

has been shown to alter dynamics of cell surface receptors [21], and presumably has 

effects when other protein types are labelled as well. 

In the past few years a new class of fluorescent proteins has been developed whose 

emission can be switched “off” and “on” in response to light [22]. This switching 

capability has enabled new experiments and types of microscopy. Because a subset of 

labelled proteins can be activated at one time, the diffraction patterns from individual 

fluorescent molecules can be resolved sequentially despite a high overall density. Thus, 

by fitting the centroids of the imaged fluorescence diffraction spots from single 

molecules, one can obtain “super-resolution” microscopy images with three-dimensional 

position resolution (10 – 50 nm) far better than standard diffraction-limited optics [23]. 

Due to the necessity of sequentially activating and deactivating subsets of labelled 

molecules, these techniques have poorer time resolution than conventional microscopy, 

and thus are currently less useful for measuring dynamics of molecular diffusion and 

transport. 

 

1.3.3 Quantum Dots 

Quantum dots (QDs) are single semiconductor nanocrystals a few nanometres (2 – 5 nm) 

in diameter whose absorption and fluorescence emission wavelengths depend on their 

size. QDs have become widely used labels for single-biomolecule detection because of a 

number of advantages they have over organic dyes and fluorescent proteins. Foremost is 

their fluorescence brightness, which is up to an order of magnitude greater than most 

organic fluorophores. This results from high extinction coefficients (100,000 to 1,000,000 

M-1cm-1), and similar quantum yields and emission saturation levels [24]. QDs are also 

nearly 100 times more photostable than conventional fluorescent probes, and single 
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particles have been observed and tracked for hours without permanent photobleaching 

[24-25]. However, QDs also intermittently enter non-emissive states, and this “blinking” 

fluorescence can make single particle tracking difficult, and can also complicate 

correlation spectroscopy methods which measure fluorescence fluctuations [26]. By 

tuning core size and composition, QDs with emission wavelengths ranging from 400 nm 

to 2 μm are available. Other spectral properties also make QDs especially suitable for 

multicolour imaging. Their broad excitation spectra, which increase towards the UV, 

enable different colours of QDs to be excited with a single laser source. QDs also have 

very narrow emission spectra (full width at half maximum about one third that of 

conventional fluorophores [25]), which enables efficient separation of colour channels 

with minimal bleed-through. A new synthesis method has been found that completely 

eliminates QD blinking, but these modified QDs also have multiple emission 

wavelengths, which prevents their use in multicolour labelling [27]. 

Like organic dyes, to be used as labels QDs must first be attached to the desired 

target. Thus, layers are added to the QD core first for solubilisation and then for 

bioconjugation, yielding a structure like that shown in Fig. 1.7. When bioconjugation is 

done in vitro, target proteins can be conjugated directly to a simple organic 

solubilisation/adaptor layer exposing carboxylic acid groups. For in vivo conjugation, 

larger adaptor molecules such as streptavidin are more often conjugated to the QD first, 

so that it can be more easily attached to a target protein displaying the complementary 

group. The final size of the QD including its shell and surface biomolecules tends to be 

10 to 20 nm [24]. Thus, even more so than with fluorescent proteins, one must keep in 

mind that QDs may affect the diffusion and interactions of labelled molecules due to their 

size and possible steric effects. The size of QDs also poses difficulties in introducing 

them inside cells. QDs are therefore most often used to label cell surface proteins [28]. 

Finally, when QDs are surface functionalized with multiple biomolecules, it is possible 

for QDs to induce clustering by conjugating to multiple targets simultaneously [29]. 
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FIGURE  1.7:  Diagram of a typical QD nanocrystal structure. The core, typically made 
of CdSe and 2 – 5 nm in diameter, is surrounded by a thin shell of ZnS which improves 
quantum yield and photostability. A polymer coating is added to solubilise the QD and 
provide a surface for conjugating biomolecules. Target biomolecules for labelling may be 
coupled in vitro, or functionalized for easy conjugation in vivo such as by attaching 
monomeric streptavidin. 
 

1.4 Fluorescence Microscopy 

Fluorescence microscopes are now common in cell biology laboratories, but come in a 

variety of configurations that have different benefits and costs. Fundamental to all far-

field optical microscopy techniques is the point spread function (PSF), which maps the 

3D spread of photons collected by a microscope objective lens from a point object. At 

high magnification, light from the point object is diffracted by the lens aperture and the 

image appears as a blurred ellipsoid. The shape of a diffraction-limited PSF is often 

modeled as a Gaussian function in three dimensions, with its radius in the vertical axis (z-

axis) being two to three times its radius in the image plane. The size of the PSF is 

dependent on both the wavelength of emission (λem) and the numerical aperture (NA) of 

the objective lens. Using the Rayleigh spatial resolution criterion, the distance at which 

two objects must be spaced to be separately resolved is approximately: 

 
Thus, for the fluorescence emission of EGFP (λem ~ 525 nm) collected with an objective 

of NA 1.4, two fluorescent particles must be separated by about 230 nm to be resolved. 
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This resolution limit is approximate, but in practice resolution is often slightly worse than 

this due to factors such as optical aberrations, imperfect beam alignment, and detector 

noise. 

 

1.4.1 Wide-field Microscopy 

Wide-field fluorescence microscopy is a simple and widely used technique for observing 

fluorescent samples [30]. Light from a laser or a mercury lamp is focused onto the sample 

through an objective lens so that the desired field of view is uniformly illuminated (see 

Fig. 1.8). Fluorescence is emitted by the sample in all directions; a fraction of the 

fluorescence emission is collected through the same objective, and due to its longer 

wavelength (a result of the Stokes shift) is separated from the exciting light by a dichroic 

mirror. Additional emission filters can select specific wavelength ranges for detection and 

also remove residual excitation light that was not reflected by the dichroic mirror. The 

fluorescence can either be directly viewed through an eyepiece or can be recorded as an 

image by a detector such as a charge-coupled device (CCD) camera. The entire field of 

view is recorded on a CCD camera simultaneously, and thus the speed at which 

successive image frames can be recorded is limited mainly by the speed of the camera. 

 

FIGURE  1.8:  Schematic of a fluorescence microscope; see text for description. 
Image reproduced from the Wikipedia article on epifluorescence microscopy under the 
Creative Commons Attribution-Share Alike license. 



28 
 

In any wide-field microscopy setup, out-of-focus light from above and below the 

focal plane is collected by the microscope, and leads to blurring of the image. To a 

certain extent the image can be improved by deconvolution algorithms that attempt to 

“restore” out-of-focus blur to its in-focus position [30]. While useful for sharpening 

images, the success of deconvolution is dependent on the signal to noise ratio in the 

original image. When one desires to image a single plane of a specimen, confocal 

microscopy generally provides superior resolution, though the imaging frame rate is 

slower. Wide field fluorescence microscopy is thus especially useful in cases where the 

fluorescence of the sample is two dimensional itself. This technique was used with the 

quantum dot labelling of cell membranes described in Sec. 4.2 of this thesis. 

 

1.4.2 Confocal Laser Scanning Microscopy (CLSM) 

In confocal laser scanning microscopy (CLSM), rather than illuminating the entire field 

of view of the sample, the laser illumination source is focused to a diffraction-limited 

spot on the sample. This laser spot is scanned rapidly across the sample, sequentially 

exciting fluorescence at each position and ultimately recording fluorescence intensity in 

discrete pixels in an image. Because light from a single spot is collected at one time, 

photomultiplier tubes (PMTs) are commonly used to detect fluorescence, but more 

sensitive and expensive avalanche photodiodes (APDs) can also be used. The key 

improvement in confocal microscopy is the placement of a pinhole in the confocal image 

plane, which rejects light coming from planes above and below the focal plane of interest 

(see Fig. 1.9). This both improves the contrast of the focal plane, and makes it possible to 

image multiple thin slices of a 3D biological specimen with axial resolution of ~1 μm 

(this is called optical sectioning). 

Though confocal microscopy is frequently used to image 3D samples, it can also be 

used to study cell membranes by placing the axial focus position in the plane of the 

membrane. In Sec. 4.1 we use a confocal microscope to image microspheres diffusing in 

solution. 
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FIGURE  1.9:  Schematic showing rejection of out-of-focus light by the pinhole in a 
confocal microscope. Light from the focal plane (solid red line) is focused through the 
pinhole and is collected; light from planes above and below this plane (pink line and 
dashed line) is not focused through the pinhole, so is not recorded by the PMT. Adapted 
with kind permission from Ref. [31]. 
 

1.4.3 Super-Resolution Microscopy Methods 

In the past decade, a number of innovative techniques have been devised that “break the 

diffraction limit”, enabling resolution of structures in cells that could not be resolved with 

standard optical microscopy methods. Techniques such as stimulated emission depletion 

(STED) microscopy sharpen the PSF by suppressing fluorescence emission from 

fluorophores located off the center of the excitation [32]. This suppression is achieved by 

stimulated emission: when an excited state molecule encounters a photon with the same 

energy as the difference between the excited and ground electronic states, it may be 

stimulated to emit a second photon of the same direction and energy, thereby going back 

to the ground state before spontaneous fluorescence emission occurs. Thus, a second laser 

of the appropriate (longer) wavelength is adjusted to have near-zero intensity at the center 

of the focus but nonzero intensity at the periphery (Fig. 1.10). The nonlinear dependence 

of stimulated emission on the depletion beam means that essentially all fluorophores are 

depleted except for a very narrow PSF at the focus. STED has been used to investigate 

the structure of lipid raft nanodomains [10], which are smaller than the resolution limit of 

standard optical microscopy. 
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FIGURE  1.10:  Example images acquired with (a) confocal and (b) STED microscopy. 
(Bottom row) How STED microscopy works: fluorophores are excited by one laser beam 
(yellow), but a second laser (red ‘STED pattern’) is tuned to a wavelength to cause 
stimulated emission of the excited fluorophores. The effective PSF of the excitation laser 
is greatly reduced in size. Adapted by permission from Macmillan Publishers Ltd: Nature 
Methods, Ref. [33], copyright 2007. 
 

Super-resolution imaging can also be achieved whenever individual molecules can 

be distinguished, because one can fit the pattern of photons collected (the PSF) to more 

precisely determine the center of fluorescence emission for the molecule. This depends 

on having a high signal-to-noise ratio and on molecules being spaced far enough apart to 

be separately resolved. New techniques such as photoactivated localization microscopy 

(PALM) [34] and stochastic optical reconstruction microscopy (STORM) [35] can be 

done with dense samples, and have achieved an order of magnitude improvement in 

resolution in all three dimensions over conventional light microscopy. PALM has been 

used to observe single molecule trajectories at high densities in living cells [36]. 

As super-resolution techniques develop they will impact the use of fluorescence 

correlation methods discussed in the next section, because they change the time and 
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spatial scales accessible. For example, STED can be used to improve the lateral 

resolution (reduce the focal volume) of FCS down to a beam radius of 30 nm [10], but 

PALM could only be applied in an imaging context. We discuss in later sections how 

super-resolution microscopy will affect kICS. 

 

1.5 Measuring Protein Diffusion and Transport 

At a general level of analysis, directed transport within cells is a simple process. Cargo, 

whether individual proteins or vesicles, is attached to a motor protein and transported 

with a specific average velocity along a microtubule or actin filament of the cell’s 

cytoskeleton. Nowhere is this more essential than in neurons, where cargo from the cell 

body must be transported the length of the axon, a distance that can reach up to a metre in 

humans [37]. Directed transport always requires energy input, usually via ATP hydrolysis 

to drive motor proteins. 

At length scales ranging from nanometres to micrometres, diffusion can be a more 

efficient means of transporting molecules because no external energy input is required. In 

any fluid at a temperature above absolute zero, the thermal motion of individual 

molecules or particles appears as a random walk due to collisions with other molecules. A 

random walk is a path characterized by a certain step size (which could be a fixed or a 

variable length), a time between steps, and a random direction taken at each step. An 

example is shown in Fig. 1.11. The mean expected displacement that a particle has 

traveled in two dimensions after a time t is √4ݐܦ, where D is the diffusion coefficient. D 

is dependent on the step size and time between steps, and it represents the overall rate of 

diffusion. It is straightforward to simulate particle diffusion on a computer as a random 

walk, as will be described in Chapter 3. 

A wide variety of methods exist for measuring the diffusion or directed transport of 

proteins and lipids in cells and cell membranes, with differing advantages and 

applications. Fluorescence correlation spectroscopy (FCS) is a well-established technique 

for measuring diffusion, flow, and binding dynamics, and forms the basis for more 

recently developed image correlation spectroscopy (ICS) methods, including the main 

technique investigated in this thesis, k-space ICS. We briefly introduce these techniques, 
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as well as the complementary techniques of single particle tracking (SPT) and 

fluorescence recovery after photobleaching (FRAP), which can be used to measure the 

same underlying processes. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE  1.11:  A random walk in two dimensions. The inset shows a magnified segment 
of the start of the track. Note that in a random walk, transport may appear directed for a 
short time, but over long times the path often crosses back over itself. 
 

1.5.1 Fluorescence Correlation Spectroscopy (FCS) 

FCS is a fluorescence fluctuation technique that was introduced in the 1970’s to measure 

the speed and mode of molecular transport, and the binding kinetics of small molecules to 

macromolecules, with minimal perturbation of the system studied [38-39]. Molecules in 

solution and in cell membranes are in constant motion. When a laser beam is focused to a 

small open subvolume (femtolitres) in a solution, any process that changes the number or 

brightness of fluorophores in the detection volume, such as diffusion or transport of 

molecules, or photochemical/photophysical changes, will cause fluctuations in the 

recorded fluorescence intensity (see Fig. 1.12). In FCS, the fluorescence intensity is 

sampled rapidly enough (microseconds) so that the fluctuations reflect the average 

residency time of fluorescent molecules within the focal volume. A time series of the 

fluctuations is recorded, and a time autocorrelation function calculated from the data and 

fit with appropriate decay models based on the molecular dynamics giving rise to the 

fluctuations. It has thus been possible to measure translational diffusion, chemical 
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reactions, conformational changes, and fluorophore concentrations. A drawback of 

traditional FCS is that results depend heavily on the size and shape of the focal volume, 

which must be carefully calibrated before each measurement using a fluorophore solution 

of known diffusion coefficient. Newer variants of FCS, such as two-focus FCS [40] and 

z-scan FCS [41] can be used without the need for calibration. FCS is also limited in that 

the measurement is made from only one spot within the sample. 

 

 

 

 

 

 

 

 

FIGURE  1.12:  (A) As particles enter and exit the focal volume this causes fluctuations 
in fluorescence intensity about the mean. (B) Fluorescence intensity is recorded over 
time. The average duration of fluorescence fluctuations is determined by the time it takes 
a particle to traverse the focus of the laser, which in turn depends on the particle’s 
diffusion or transport speed.  (C) An autocorrelation function calculated from the 
intensity trace in (A) can be fit to a model to determine transport dynamics. 
 

Molecules in solution or the cell cytoplasm move rapidly enough through the 
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seconds and statistically precise measurements can be obtained. Since cell membranes are 

much more viscous, motion in membranes is slower and single-spot FCS would require 

extremely long measurement times to sample enough fluctuations of labelled proteins 

moving in the membrane. Alternatives were developed for measuring dynamics in cell 

membranes such as scanning FCS [42], where the beam is scanned in a line or circle 

across the sample to obtain spatial samples in addition to the temporal samples, and 

various image correlation spectroscopy methods [43-46], where entire image frames are 

used. 

 

1.5.2 Fluorescence Recovery After Photobleaching (FRAP) 

While correlation methods measure systems at equilibrium, the FRAP technique perturbs 

the system by photobleaching a spot with a pulse of intense laser light so that no 

fluorescence remains, and then monitors the return to equilibrium. Fluorescence intensity 

recovers over time due to diffusion of new fluorophores into the bleached region, and this 

recovery curve can be fit to an analytical model to determine the diffusion coefficient. 

Comparing the fluorescence intensity before bleaching with the maximum intensity 

attained after a long recovery period can also be used to infer the immobile fraction of 

fluorophores. The main disadvantages of FRAP are that the high illumination power used 

can damage biological samples and may even affect the dynamics of the system, and that 

fluorophores are destroyed so that the measurement cannot be repeated in the same area 

[47]. Unlike FCS, FRAP cannot determine the concentrations or aggregation states of 

labelled molecules. 

 

1.5.3 Single Particle Tracking (SPT) 

In SPT, the imaged diffraction patterns of individual particles are tracked over time by 

video microscopy imaging. To achieve single molecule localization, the density of 

labelled molecules must be very low, so that the PSFs of separate particles do not 

overlap. Since the particles are moving, they must generally be spaced much farther apart 

than the width of the PSF to minimize events of particles “merging” together as they 

travel near one another. This density is much lower than the concentration of most 

endogenous proteins in cells, and so SPT cannot generally be done with genetic fusions to 



35 
 

fluorescent proteins using standard expression levels. Although single organic 

fluorophores and fluorescent proteins can be detected with sensitive CCD cameras now  

available, probes with very high contrast and greater photostability are usually preferred 

for SPT. Traditionally, colloidal gold beads or latex spheres (~40 nm in size) could be 

detected because they scatter light [48]. A drawback of these probes is that their large 

size raises the question of how much they perturb the natural behaviour of the much 

smaller labelled molecules. More recently, QDs have been used in SPT experiments [25, 

49-50] for their bright fluorescence and photostability. In this case, the blinking emission 

of the QDs complicates tracking the particles, and tracking algorithms have been 

developed that attempt to account for this [51]. Newer tracking algorithms have also 

improved the ability to handle slightly more dense samples by efficient merging and 

splitting of particle tracks [52] and using global optimization to determine the most likely 

combined set of trajectories [53]. 

 To measure particle diffusion with SPT, one analyzes the trajectories of individual 

molecules as in Fig. 1.13 (A). A plot of the mean squared displacement (MSD) of the 

particle versus time (Fig. 1.13 (B)) can be used to determine the rate and mode of 

transport (free diffusion, confined diffusion, or active transport). One of the great 

strengths of SPT is that, because the PSF originating from a single particle can be 

observed, the particle’s location can be determined with high precision (usually 5 – 40 

nm) by fitting the imaged particle diffraction spot to determine the centroid of its 

fluorescence emission peak. Thus, SPT has been used to measure cell membrane 

properties that occur at length scales below the diffraction limit (~200 nm), such as 

diffusion of molecules transiently confined by the cell’s cytoskeleton [48, 54]. SPT is also 

capable of distinguishing heterogeneity in individual particle movement that is not 

accessible with ensemble-averaged techniques. In many cases the mobility of identical 

particles differs, with some appearing confined, whereas others diffuse freely (see results 

in Sec. 4.2). Individual particles can also change between modes of free diffusion, 

confined diffusion, and immobility within a single trajectory [11, 55]. 
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FIGURE  1.13:  (A) Simulated single molecule trajectories, as might be acquired in an 
SPT experiment. Different tracks are represented by different colours. (B) A plot of the 
mean squared displacement versus time. The MSD from a single trajectory or multiple 
trajectories is calculated by averaging a particle’s displacement between all time points in 
its trajectory spaced by a given time window. The MSD plot can examined to determine 
whether diffusion is free or confined, and fit with a model to measure the diffusion speed.  
 

Despite its many advantages, SPT can be difficult to apply: a high signal-to-noise 

ratio is required, the labelling density must be very low, and tracking can be time 

consuming and often requires manual linking of trajectory segments. Also, a large 

number of experiments usually need to be done to have adequate statistical sampling of 

particle motion. 

 

1.5.4 Temporal Image Correlation Spectroscopy (TICS) 

While FCS records fluorescence fluctuations at a single position over time, ICS examines 

spatial fluctuations that occur in individual fluorescence images. Thus, when particle 

motion is relatively slow, or even when cells are fixed, one can use ICS to quickly sample 

a large number of independent fluctuations for accurate determination of membrane 

protein densities and aggregation states [43, 56]. ICS has also been extended to the time 

domain by calculating the time autocorrelation decay across multiple images, referred to 

as temporal image correlation spectroscopy (TICS) [44]. TICS has been applied to 

measure diffusion of cystic fibrosis transmembrane conductance regulator [57] and the 
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flow speed of cell adhesion proteins [58]. A key consideration when applying TICS is 

that photophysics of the fluorescent labels strongly affect the correlation decay and can 

lead to biased results [59]. Bias due to photophysics also affects one- and two-photon 

FCS [60-61]. When an appropriate model for the photophysics can be determined, the 

bias can be corrected for. 

 

1.5.5 k-Space Image Correlation Spectroscopy (kICS) 

kICS is a correlation technique developed recently in the Wiseman lab which, like TICS, 

computes correlations between image frames to determine particle motion dynamics. 

However, in kICS, each individual image is first 2D Fourier transformed to its k-space 

spatial frequency representation, and the time correlations are then computed from the k-

space image stack. The k-space time correlation decay is fit to an analytical model to 

determine diffusion or flow. In Chapter 2 we present the theory behind kICS and describe 

with examples how to extract diffusion or flow parameters. kICS has numerous 

advantages over TICS, such as insensitivity to particle photophysics (blinking or 

photobleaching), the ability to measure flow direction, increased precision, and improved 

dynamic range. When analyzing small spatial regions, however, kICS suffers from bias 

introduced by the discrete nature of the Fourier transform. The advantages of kICS and 

corrections for the bias are examined in more detail in Chapter 3. 

 

1.5.6 Fourier Image Correlation Spectroscopy (FICS) 

Fourier Image Correlation Spectroscopy (FICS) is a technique very similar in principle to 

kICS, though the data is acquired differently. With FICS, an interference pattern is 

generated by two overlapping laser beams to excite a single spatial frequency in the 

sample [62]. The total sample fluorescence is collected over time and is autocorrelated. 

Information about different spatial frequencies can be collected in sequential 

measurements, and typically only a few spatial frequencies are probed, under the 

assumption that the measured dynamics are isotropic. FICS has a very wide dynamic 

range, and can theoretically sample fluorescence fluctuations occurring on time scales 

from 10-8 to 102 s, at any single spatial scale above the diffraction limit. FICS has been 
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used to measure motion of the mitochondrial reticulum [63], and the diffusion coefficient 

of fluorescent proteins in solution [64]. 

FICS can be much more sensitive than kICS because fluctuations at the chosen 

spatial frequency are measured by a lock-in detection method, where the phase of the 

excitation pattern is modulated at high frequency (~50 kHz). This excludes both noise 

and density fluctuations that occur at other frequencies. FICS also makes more efficient 

use of the collected photons than imaging methods, which enables longer time series to 

be collected before photobleaching occurs. However, despite being described a decade 

ago, FICS has seen only limited use. This could be because of the specialized equipment 

required: a custom-built apparatus to focus two laser beams to interfere at the sample, a 

lock-in amplifier for detection, and a translation stage or movable grating to modulate the 

interference. In contrast, kICS can be used with a standard fluorescence microscope of 

any type: a wide-field microscope, CLSM, or total internal reflection fluorescence (TIRF) 

microscope. Also, kICS probes many spatial frequencies in a single, brief (1 – 2 min) 

measurement. Finally, though photobleaching may be reduced in a FICS measurement, 

FICS is not completely insensitive to photobleaching, as is the case for kICS. 

 

1.5.7 Other Techniques and Variants 

Other correlation techniques exist for measuring particle diffusion, directed transport, and 

number densities, but will be mentioned here only briefly. 

Spatiotemporal image correlation spectroscopy (STICS) is an extension of TICS 

which computes the full spatiotemporal correlation function from an image series; thus, 

all spatial correlations are considered as well as temporal correlations. This enables 

STICS to accurately determine the direction and magnitude of molecular flow within 

small image regions. STICS has been applied in a number of systems to measure directed 

motion, including flow of adhesion related proteins in cells [45], movement of myosin II 

and actin during cytokinesis [65], movement of vesicles in growing pollen tubes [66], and 

migration of cells during wound healing after injury [67]. 

Raster image correlation spectroscopy (RICS) is a clever technique that takes 

advantage of the hidden time structure within individual images collected on a CLSM 

[68]. In a CLSM image adjacent pixels in the horizontal (scan) direction are acquired 



39 
 

microseconds apart in time, while adjacent pixels in the vertical direction are sampled 

milliseconds apart due to the raster scan of the laser beam. RICS thus has a very high 

dynamic range and is able to measure diffusion coefficients greater than 100 μm2/s, or as 

low as those measured with TICS via correlation between image frames. RICS analysis 

software is now included directly with new commercial confocal microscopes from Zeiss. 

Because it is dependent on time structure within an image, RICS cannot be used with 

TIRF microscopy or wide-field microscopy. 

The pair correlation function (pCF) approach was introduced as a way to measure 

barriers to diffusion within a cell, though it can also be applied to general diffusion 

measurements [69]. Like STICS, correlations between pixel intensities are calculated 

with both spatial and temporal lag variables. When a pCF is computed at a given spatial 

separation between points, the maximum correlation occurs after a specific time delay 

that is related to the separation distance and the average diffusion speed. A similar 

correlation between spatially separated regions is computed in the technique called 

imaging total internal reflection fluorescence cross-correlation spectroscopy (ITIR-

FCCS) [70]. With ITIR-FCCS, the sensitivity of TIRF microscopy and the use of a high-

speed electron-multiplied CCD camera made it possible to measure the relatively fast 

diffusion of lipids in supported lipid bilayers [71] and of a lipid raft marker in cells [70]. 

 

In this chapter, we have introduced concepts relating to fluorescence microscopy of 

living cells, and discussed a number of techniques for measuring the dynamics of 

fluorescently labeled macromolecules. In the next chapter, we delve into the details of the 

kICS technique, first deriving the key kICS equations, and then describing data fitting 

procedures using examples. 
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2. k‐Space Image Correlation Spectroscopy: Theory and Data 
Analysis 

 

A variety of techniques are available for measuring diffusion and directed transport of 

fluorescently labelled molecules in living cells, as discussed in the previous chapter. Of 

these, fluorescence correlation techniques have the advantage of being able to measure 

samples with a very wide range of concentrations, including the range of natural protein 

expression levels in cells. The ability to distinguish single molecules is not required, and 

the available techniques can access a wide range of time scales, from microseconds to 

minutes. Because a large amount of data is collected in a single experiment, precise 

statistical determination of average diffusion or flow behaviour is possible. However, a 

factor that must be considered in all such experiments is how photophysics of the 

fluorophore labels influences the measurements, since they are based on analysis of 

fluorescence fluctuations. 

Organic fluorophores such as fluorescent proteins can undergo both permanent and 

reversible photobleaching [72-73]. Quantum dots are less commonly used in fluorescence 

correlation studies because of their widely known emission blinking, which usually 

follows power law statistics and has no characteristic time scale [24, 26]. In both FCS and 

TICS, if intensity fluctuations due to fluorophore photophysics are not corrected for, the 

experimental data may appear to be well fit by a model that accounts only for molecular 

transport, but the measured values may be highly erroneous due to hidden systematic 

error [59-60, 74-75]. Because photobleaching and blinking are time-dependent, any 

technique that fits a time-dependent correlation decay will be biased unless these 

fluorophore photophysics are explicitly and correctly accounted for. In contrast, kICS fits 

a spatial correlation decay in reciprocal space. Under the assumption that the 

photophysics are not spatially dependent, then in kICS photophysical fluctuations are 

separated from transport fluctuations, and the transport properties may be measured 

without this bias, as has been shown in the seminal paper introducing kICS [46]. 

In this chapter, we introduce the theory behind kICS and the models that can be fit to 

measure a sample’s diffusion or flow. We also describe the data fitting procedures with 

examples of different scenarios. 
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2.1 kICS Theory 

Here, we derive an equation for the kICS correlation function, and show how it can be 

used to extract information on the number density and transport dynamics of the 

fluorescent particles in the sample. This derivation closely follows that in the original 

kICS publication [46]. 

To apply kICS one first acquires a time series of fluorescence microscopy images, 

i(r,t), from the sample. Any standard microscopy method can be used, including 

epifluorescence, laser scanning microscopy, or TIRF microscopy. One computes the 2D 

spatial Fourier transform for each image in the series, ଓሶሚሺܓ,  ሻ, so that the transformedݐ

images are now a function of the reciprocal space variable k rather than real space 

position r. One then calculates the k-space time correlation function, r(k,τ), for a series of 

time lags τ: 

,ܓሺݎ ߬ሻ ൌ ,ܓଓሶሚሺۃ ,ܓሻଓሶሚሺݐ ݐ ൅ ߬ሻۄ 

Here, ଓሶሚሺܓ, ,ܓሻ is the Fourier transform of the image acquired at time t, ଓሶሚሺݐ  ሻ is itsݐ

complex conjugate, and the angular brackets denote averaging over time, t, with τ being 

the time lag variable for the correlation. Thus, r(k,τ) is simply the average product of the 

Fourier transformed images separated by a time lag τ. We now consider how to represent 

the Fourier transform of an image in terms of particle positions and the microscope PSF. 

In a physical model of a fluorescence microscopy image, the microscopic density of 

labeled particles, ρ(r,t), is convolved (*) with the microscope’s PSF, I(r), to produce the 

image, ݅ሺܚ,  :ሻݐ

݅ሺܚ, ሻݐ ൌ ሻܚሺܫݍ כ ,ܚሺߩ  ሻݐ

where q is a constant that includes the quantum yield of the fluorophore, the photon 

collection efficiency, and the detector gain. We will assume here that a 2D sample is 

being imaged, but note that the kICS correlation can be computed and fit without any 

modifications if the sample includes 3D movement (see Ref. [46]). The microscopic 

number density of fluorescing particles at point r and time t is given by: 

,ܚሺߩ ሻݐ ൌ ෍ Θ୧ሺtሻδሺܚ െ ܚܑ ሺtሻሻ

N

୧ୀଵ

 

(2.1)

(2.2)

(2.3)
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Here, the sum is over all N particles in the system, δ is the Dirac δ-function, and ri(t) is 

the position of the ith particle at time t. This expression for the number density only 

includes particles that are emitting fluorescence at time t due to the factor Θi(t): 

 Θ୧ሺݐሻ ൌ ቄ  1    if i is emitting at time ݐ
     0    otherwise                             

.  

We assume that Θi(t) is dependent only on time and not on particle position (which 

implicitly assumes constant illumination across the field of view). The PSF of the 

imaging system can be approximated as a 2D Gaussian function characterized by its e-2 

radius in the lateral direction, ߱଴
ଶ: 

ሻܚሺܫ ൌ ଴exp ቈെ2ܫ ቆ
ଶݔ ൅ ଶݕ 

߱଴
ଶ ቇ቉ 

I0 is the illumination intensity at the center of the focus. 

The convolution theorem states that the Fourier transform of a convolution is simply 

the product of the individual Fourier transforms. In real space the image is a convolution 

of two functions, I(r) and ρ(r,t); thus, the Fourier transformed image, ଓሶሚሺܓ,  ሻ, is theݐ

product of the spatial Fourier transforms of these functions: 

 ଓሶሚሺܓ, ሻݐ ൌ ,ܓ෤ሺߩሻܓሚሺܫݍ   ሻݐ

where ሚ݂ሺ݇ሻ is the Fourier transform of function f (x) for variable x. The 2D spatial 

Fourier transform of the PSF (Eq. 2.5) is: 

ሻܓሚሺܫ ൌ
଴߱଴ܫ

ଶߨ
2

exp ቈെ
߱଴

ଶ|ܓ|ଶ

8
቉ 

The 2D spatial Fourier transform of the number density (Eq. 2.3) is: 

,ܓ෤ሺߩ ሻݐ ൌ ෍ Θ௣ሺݐሻexp ሾ݅ܓ · ሻሿݐሺ࢖ܚ

ே

௣ୀଵ

 

where subscript p represents a particle in the count, and i = √െ1. We can substitute these 

last two equations into Eq. 2.6 to obtain an expression for the k-space image in terms of 

particle positions and the PSF: 

ଓሶሚሺܓ, ሻݐ ൌ
଴߱଴ܫݍ

ଶߨ
2

෍ Θ௣ሺݐሻexp ቈܓ · ሻݐሺ࢖ܚ െ
߱଴

ଶ|ܓ|ଶ

8
቉

ே

௣ୀଵ

 

Recall that the kICS correlation function, r(k,τ), is the average product of pairs of k-space 

images separated by a time lag τ. Substituting Eq. 2.9 into Eq. 2.1 we now have: 

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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,ܓሺݎ ߬ሻ ൌ
଴ܫଶݍ

ଶ߱଴
ସߨଶ

4
෍ۃ Θ௣ሺݐሻ݁ܚ·ܓ೛ሺ௧ሻି

ఠబ
మ|ܓ|మ

଼

ே

௣ୀଵ

෍ Θ௤ሺݐ ൅ ߬ሻ݁ିܚ·ܓ೜ሺ௧ାఛሻି
ఠబ

మ|ܓ|మ

଼

ே

௤ୀଵ

                    ۄ

If we assume that the fluorescent particles are sufficiently dilute that they are 

independent, and thus only correlate with themselves, then the cross-product terms from 

the two sums average to zero (i.e. ܚ·ܓ݁ۃ೛ሺ௧ሻ݁ܚ·ܓ೜ሺ௧ାఛሻۄ ൌ 0 for p ് q). We can thus drop 

the p and q subscripts and only sum once over all particles. Furthermore, if we assume 

that particles are identical, and given our assumption that the fluorescence emission 

function, Θ(t), depends only on time and not on any other dynamic processes, Eq. 2.10 

becomes: 

,ܓሺݎ ߬ሻ ൌ ܰ
଴ܫଶݍ

ଶ߱଴
ସߨଶ

4
ݐሻΘሺݐΘሺۃ ൅ ߬ሻۄ expۃ ቈ݅ܓ · ൫ܚሺݐሻ െ ݐሺܚ ൅ ߬ሻ൯ െ

߱଴
ଶ|ܓ|ଶ

4
቉ۄ             

Following sections 5.4 and 5.8 of Berne and Pecora [76], for a system with one population 

of particles undergoing diffusion, flow, or both (i.e. diffusive flow), Eq. 2.11 becomes: 

,ܓሺݎ ߬ሻ ൌ ܰ
଴ܫଶݍ

ଶ߱଴
ସߨଶ

4
ݐሻΘሺݐΘሺۃ ൅ ߬ሻۄexp ቈ݅ܓ · ߬ܞ െ ଶ|ܓ| ቆ߬ܦ ൅

߱଴
ଶ

4
ቇ቉ 

where D is the diffusion coefficient, and v is the velocity of the flowing particles.  

Though Eq. 2.12 appears complex, the parameters of interest, namely D and v, are 

linked to decay of the correlation via their dependence on |k|2 and ik, respectively; the 

remaining factors are independent of k. Rather than fitting directly to Eq. 2.12, we follow 

the method outlined in Ref. [77] and divide r(k,τ) at each time lag τ by the zero-time-lag 

correlation, r(k,0), to obtain a “normalized” correlation function that is independent of 

the point spread function (PSF) of the microscope. After log transforming, this gives: 

ଶ  

With this normalization, all factors that are not time dependent have dropped out of the 

equation. This includes fluorophore concentration and brightness, illumination intensity, 

and also the PSF of the microscope. In the next section we show examples of how to 

extract the flow velocity and diffusion coefficient from the kICS correlation function. 

  

(2.10)

(2.11)

(2.12)

(2.13)
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2.2 kICS Data Analysis for Single Population Diffusion 

When directed transport can be ignored, we can measure diffusion for a single population 

by fitting directly to Eq. (2.13) assuming that v is zero. To do this, we first circularly 

average the correlation function at identical (|k|2,τ), where |k|2 = kx
2 + ky

2. We then plot 

ln[r(|k|2,τ) / r(|k|2,0)] versus |k|2 to obtain a linear plot, which we term a |k|2 plot. At a 

given time lag τ, the initial slope of the correlation function decay in a normalized |k|2 

plot is –Dτ. For the specified time lag τ, there will be a maximum |k|2 value at which 

correlations are lost and above this value a white noise “floor” is reached. The fitting of 

the |k|2 plot takes this into account, as is described below (Fig. 2.1 A). Theoretically we 

could determine D directly from a single |k|2 plot, but better results are obtained when 

multiple time lags are considered. We thus determine the slopes from |k|2 plots for each 

temporal lag of the correlation function. Finally, these slopes, –Dτ, are plotted as a 

function of time lag, τ, as in Fig. 2.1 (B). We call this the dynamics plot. A linear 

regression to this plot has a slope of –D. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE  2.1:  (A) The normalized |k|2 plot for time lag 2.5 s from kICS analysis of 
simulated diffusion, showing a bilinear fit to the circularly averaged k values. The slope 
of the first segment is –Dτ, and corresponds to the point at 2.5 s in the dynamics plot.   
(B) The dynamics plot for the same kICS analysis, from which D is determined. The error 
bars are the standard error from linear regressions in the corresponding |k|2 plots. 
 

Note that in Fig. 2.1 (A) a bilinear fit to the data (black line) is shown. As |k|2 and τ 

increase, correlations due to particle motion become insignificant compared to noise. The 
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first linear segment models correlation decay due to diffusion and is the slope we want to 

measure, while the second segment is the noise. In a kICS measurement, one must choose 

cut-off values for |k|2 and τ to avoid fitting noise and introducing bias in the 

measurement. In general, one cannot know suitable cut-off values before performing the 

analysis and having an estimate of the diffusion coefficient; thus, a bilinear fit is an 

efficient and unbiased way to fit the data without specifying arbitrary cut-off values. 

Unfortunately, the nonlinear fit that determines the two linear segments is itself sensitive 

to noise occurring near and after the transition point. At best, the first linear segment 

includes correlation function values that have already decayed significantly into the 

noise. At worst, in some cases the assignment of the transition point is clearly wrong and 

the slope determined is spurious. 

A solution to such problems is to do the data fitting in two stages. First, a bilinear fit 

is done to get an estimate of the diffusion coefficient and to determine visually what cut-

off values of |k|2 and τ enable a linear fit that remains above the noise level for the highest 

τ used. Second, the data fitting is redone with a linear fit to the data that is within these 

cut-offs, which gives a more accurate measurement of the diffusion coefficient. 

Sometimes it is useful to look at the full two-dimensional correlation function itself; 

in Sec. 3.2 we will see that the kICS correlation function can be perturbed due to spectral 

leakage resulting from the finite nature of the spatial Fourier transforms used in kICS. 

Fig. 2.2 shows an example of the real part of both the raw and normalized correlation 

functions computed from an image series of simulated particle diffusion. (More details on 

these and other simulations are given in section 2.3.)  

When measuring diffusion, there are a number of advantages to normalizing the 

correlation function by dividing r(k,τ) by the zero time lags correlation r(k,0). First, the 

transition to noise is clearly visible in the normalized correlation function (Fig. 2.2, C and 

D), with the noise having a slope of zero. In the raw correlation function (Fig. 2.2, A and 

B) the noise occurs at exactly the same values of k, but this is hidden by the underlying 

shape of the correlation function; one is thus more likely to choose a |k|2 cut-off that 

includes noise when fitting the data if normalization is not used. Another practical benefit 

of normalization is that the value now represents the fraction of the original correlation 

that remains at any given value of |k|2 and τ. For example, when the correlation in a 
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normalized |k|2 plot has decayed to –2 (= ln[r(k,τ) / r(k,0)]), this indicates that e–2 = 

13.5% of the original correlation still persists at that  |k|2 and τ. We have found that with 

both simulated and experimental data, the transition to noise generally occurs when the  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
FIGURE  2.2:  The real portion of correlation functions from kICS analyses of simulated 
particle diffusion. A and B show the raw correlation function at time lags of 0.5 s and 3 s, 
respectively. C and D show the normalized correlation function at the same time lags. 
Either form of the correlation function can be fit as described in the text to extract the 
diffusion coefficient of the sample. In the normalized correlation function the transition to 
noise is more clearly visible. The simulation had 10,000 frames at size 32x32 pixels with 
an image frame time-step of 0.5 s, had periodic boundaries, and D was set to 0.01 μm2/s.  
 

correlation has decayed to between 2 and 13% of its original value, which occurs between 

–2 and –4 on a normalized |k|2 plot. In an experimental measurement the threshold at 

which the signal is lost in noise will depend on a number of factors, such as the 

fluorophore brightness, level of background noise, and the amount of spatial and 

temporal sampling. As a rule of thumb, it is usually safe to choose cut-off values of |k|2 

and τ for which the normalized correlation decay is less than –2. 

Because the k-space correlation for diffusion decays according to exp(–|k|2Dτ), one 

can adjust the |k|2 fitting cut-off while compensating with an adjustment to the τ cut-off to 
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achieve an equivalent maximum correlation decay. An example of such a change is 

summarized in Fig. 2.3. This flexibility can be seen as a strength of kICS, since the cut-

offs can be adjusted to match the time scale of the actual sample diffusion; this is 

investigated in more detail in Section 2.5 on measurement of fast diffusion dynamics. It 

can also be seen as a risk, as it introduces an element of experimenter subjectivity into the 

measurement. A method for estimating uncertainty in a single measurement is based on 

the trade-off between |k|2 and τ cutoffs, and is discussed in Section 3.7. 

 

  

 

 

 

 

 

 

   

 

 

 

 

 
 
 
 
 
 
FIGURE  2.3:  Two kICS analyses of the same simulated image series data as used in 
Fig. 2.2 using different |k|2 and τ cut-offs. Top row: analysis using cut-offs |k|2=40 and 
τ=6 frames (0.5 s each), where (A) shows the |k|2 plot at the highest time lag and (B) 
shows the dynamics plot. Bottom row: analysis using cut-offs |k|2=10 and τ=24 frames, 
where (C) shows the |k|2 plot at the highest time lag and (D) shows the dynamics plot. 
The measured diffusion coefficient is similar in each case, and is close to the set value of 
D=0.01 μm2/s.  

0.5 1 1.5 2 2.5 3

-0.03

-0.02

-0.01

 (s)

-D
 

( 
m

2 )

Dynamics

Diffusion coefficient = 0.010348

0 10 20 30 40
-2

-1.5

-1

-0.5

0

|k|2 (m-2)

ln
 [

|k
|2 , 

 
=

 3
 s

)]

 = 3 s

2 4 6 8 10 12

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 (s)

-D
 

( 
m

2 )

Dynamics

Diffusion coefficient = 0.01007

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

|k|2 (m-2)

ln
 [

|k
|2 , 

 
=

 1
2 

s)
]

 = 12 s
DC 

BA 



49 
 

kICS can also be used to measure the direction and speed of a flowing population 

of fluorescent particles. As with diffusion, flow has been examined in the original kICS 

publication [46]. Because flow is not investigated further in this thesis, the equations and 

data fitting methods relating to flow are not described here. Measurements of flow often 

require less spatial and temporal sampling than measurements of diffusion, because flow 

is deterministic whereas diffusion is random. For example, with TICS, flow speed can be 

accurately measured even when the image series spans a single correlation time [59]. In 

the next chapter, we proceed directly to examine the accuracy of kICS for measurements 

of diffusion.  
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3. k‐Space Image Correlation Spectroscopy: Accuracy and 
Precision Explored Via Simulations 

 

Whereas the accuracy and precision of the TICS and FCS methods have been well 

characterized [59, 78-79], such a study is lacking for the recently developed kICS. Both 

TICS and FCS can be biased under some measurement conditions, and it is thus 

important to know what experimental and data fitting parameters influence such 

measurements. In this chapter, we explore a range of spatial and temporal sampling 

parameters using computer-simulated image series to determine the limits of spatial and 

temporal resolution with kICS. 

We report three unexpected findings. First, kICS measurements of diffusion are 

consistently biased low; this effect relates to spectral leakage in the Fourier transforms of 

the images, and is negligible for large images but becomes significant for image regions 

smaller than ~100 μm2 (assuming the optical resolution is diffraction-limited). Second, 

kICS can accurately measure particle diffusion that is at least ten times faster than could 

be measured with TICS using the same image frame acquisition rate. We show that at 

video rate sampling, kICS is capable of measuring 2D diffusion up to 12 μm2/s. This 

finding is particularly interesting because, like TICS or ITIR-FCS, kICS is limited to 

correlations between successive image frames. Third, by normalizing the kICS correlation 

function by its zero-time-lags value, kICS accurately measures diffusion even with a highly 

inhomogeneous initial distribution of particles. Because of this, kICS can be used to 

measure diffusion in systems that until now required fitting by special-purpose models, 

such as after localized fluorophore photoconversion [80], or photouncaging [81-82]. 
 

3.1 Computer Simulations 

3.1.1 Particle Diffusion and Flow 

Computer simulated image time series are the primary tool used in this chapter to 

investigate the accuracy and precision of kICS, and so will be described in some detail. 

The software routines to make simulated image series are implemented in Matlab (The 

MathWorks, Natick, MA) and the core routines have been described previously [59]. The 

simulations are meant to model a series of fluorescence microscopy images acquired over 
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time from a two dimensional sample containing fluorescent point emitters such as a cell 

membrane. Image dimensions are specified by an integer number of pixels in x and y, and 

by the width of a square pixel as a floating-point number measured in micrometers. The 

total number of images and the time between images is also specified. Initial particle 

positions are assigned by drawing from a uniform probability distribution over the range 

of coordinates in each dimension, and particle positions are always stored as double 

precision floating-point numbers. To create an image modeling that acquired on an 

optical microscope, particle coordinates are rounded and assigned to a position in a 

matrix, and the matrix is convolved with a 2D Gaussian filter to simulate excitation with 

a laser beam having a Gaussian intensity profile (or a Gaussian optical PSF). Pixel 

intensity values are multiplied by a gain factor that represents the number of photons 

emitted by each fluorescent particle. The values are then rounded to integers in the range 

0 to 4095, simulating a 12-bit analog-to-digital conversion as done in a photomultiplier 

tube (PMT) detector. Fig. 3.1 shows an example image created with this procedure. 
 

 

  

 

  

 

 

 
 
 
FIGURE  3.1:  Example of a computer simulated image. (A) Positions of point source emitters in 
the image matrix before convolution. The image is 128 x 128 pixels2 with a pixel size of 0.1 μm 
and a particle density of 5 particles/μm2. The scale bar represents the number of particles. (B) The 
image formed after convolving the matrix in (A) with a Gaussian filter with an e–2 radius of 4 
pixels. No noise has been added to the image. The scale bar represents integrated intensity. 
 

To simulate diffusion, at each timestep the x- and y- coordinates of each particle are 

separately changed by adding a pseudorandom number drawn from a normal distribution 

with a mean of zero, and standard deviation σ: 

ߪ  ൌ  (3.1) ݐ߂ܦ2√
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where D is the diffusion coefficient and Δt is the time between successive images in the 

series. Thus, a particle diffuses as a 2D random walk with uniform time steps and spatial 

step sizes selected from a Gaussian distribution. Two kinds of boundary conditions can 

be implemented for particle movement near the edge of an image: circular or open. With 

a circular boundary condition, particles that exit one side of the image appear on the 

opposite side of the image. Also, the Gaussian filter is circularly convolved so that the 

PSF of a particle near the edge of the image wraps around to the other side. Edge 

boundary conditions have a significant effect when the Fourier transform of an image is 

considered, as will be discussed later. An open boundary condition can also be 

implemented. This is done simply by increasing the size of the image in the x and y 

dimensions by a number of pixels equal to 5 PSF radii. Thus, a particle that exits the 

image on one side may later re-enter on the same side, or eventually may enter on the 

opposite side after it has traveled a distance of 5 PSF radii. 

Particle flow is simulated by adding a constant floating point value separately to the 

x and y coordinates of each particle at each time step. Diffusion and flow can 

simultaneously be present in a simulation, in which case the new particle coordinates are 

the sum of the separate changes due to diffusion and flow.  

These simulations do not account for a number of possible real-world effects that can 

cause non-ideality in particle diffusion or fluorescence emission. Particles are assumed to 

be independent at the densities simulated in this work, with no attractive or repulsive 

interactions, and no excluded volume effects. We also assume that there is no 

fluorescence resonance energy transfer (FRET) or quenching. All simulations were done 

within the dynamic range of the 12-bit image representation (i.e. there was no saturation). 

All particles were assumed to be in focus, which is not always the case in microscopy 

experiments. 

 

3.1.2 Background and Photon Counting Noise 

In any real fluorescence microscopy image there are always noise contributions that get 

recorded in the image. Noise can be defined as any detectable signal that does not 

originate from the real object (molecule/fluorophore) of interest. One such undesired 

component is background signal, which is background intensity that can result from 
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sources such as scattered laser light, cell autofluorescence, nonspecifically bound 

fluorophore, or weak fluorescence from the sample medium. In an image correlation 

analysis one should first correct the region analyzed by subtracting the mean intensity of 

an off-cell region. This correction removes the average background signal itself, but does 

not remove the positive fluctuations from the background signal, which we call the 

background noise. To simulate this residual background noise we add a random value to 

each pixel of the image as follows. A noise matrix, U, is created with the same 

dimensions as the noise-free image matrix, A. The values, uij, of U are random numbers 

from a normal distribution with a mean of zero and standard deviation of 1. To create the 

noisy image matrix C, the absolute values of the elements of U are multiplied by a 

scaling coefficient, σ, that enables one to control the signal to background ratio (S/B), and 

are then added to A: 

 ܿ௜௝ ൌ ܽ௜௝ ൅   |௜௝ݑ|ߪ 

The S/B of the image series is defined as: 

ൌ ܤ/ܵ  
mean of the peaks in ሺۯሻ

σ
 

Photon counting noise occurs due to random fluctuations in the number of detected 

photons in any photon counting detection scheme. Since fluorescence emission can be 

modeled as a stochastic process, we also model our underlying detection with Poisson 

counting statistics. Thus, the number of photons collected will vary according to a 

Poisson distribution about the mean number, N. For large enough N, the Poisson 

distribution approaches a normal distribution with standard deviation √ܰ. An analog 

detector such as a PMT broadens the underlying Poissonian photon counting noise 

distribution so that the real standard deviation is greater than the √ܰ expected purely 

from a Poisson process. We thus create a counting noise matrix, U, with normally 

distributed random numbers having mean zero and standard deviation 1, and then scale it 

according to both the expected √ܰ Poisson noise as well as a width factor, WF, which is 

the ratio of the real counting noise to the purely Poisson noise expected. This noise 

matrix is added to the image matrix, A, to give the final image matrix: 

 ܿ௜௝ ൌ ܽ௜௝ ൅  WFඥܽ௜௝ݑ௜௝  

(3.3)

(3.2)

(3.4)
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Examples of simulated images with differing amounts of background and counting noise 

are shown in Fig. 3.2. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE  3.2:  Matlab simulated images with differing amounts of noise. The top row 
shows increasing background noise from left to right. The bottom row shows Poisson 
noise with width factors of 2 and 5 in the first and second images. The maximum 
intensity is around 3000, so the signal-to-noise ratio in the image with WF=5 is around 
11. The bottom right image has both background noise (S/B=3) and counting noise 
(WF=5); this noise setting was the one used in Sec. 3.4 to test kICS accuracy with 
different sampling conditions. The scale bar is the same for all images. 
 

The simulated noise attempts to model the main sources of noise encountered in a 

typical microscopy experiment, but cannot fully represent all real types of noise. The 

simulated background noise is perfect “white noise” in that it is completely uncorrelated 

between image frames. In a real experiment, imperfections in laser alignment, scanning, 

and finite time response of the detectors may mean that some noise sources are not 

completely uncorrelated between frames. Detector afterpulsing is one example, where a 

bright pixel’s intensity causes adjacent pixels to have spuriously high readings. In 

addition, the excitation laser intensity can fluctuate, which adds noise to the image. 

Finally, cell movements, stage drift or slight changes in focus can occur over time in an 

image series. 

No noise S/B = 10 S/B = 3 

Poiss WF = 2 Poiss WF = 5 S/B=3 & WF = 5 

5 μm 
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3.1.3 Photobleaching 

To model photobleaching in a simulation, the particle bleaching rate constant, α, is 

specified. This rate corresponds to a mono-exponential decay in the average image 

intensity as in: 

௧ۄ݅ۃ  ൌ   ሿݐߙ଴expሾെۄ݅ۃ 

where ۄ݅ۃ௧ is the average intensity of an image at time t after the start of the image series. 

Individual particles are bleached by setting their quantum yield in the simulation to zero. 

The number of particles to bleach after frame n, ௡ܰାଵ
௕௟௘௔௖௛, is a Poissonian random variable 

determined using the poissrnd built-in Matlab function as follows: 

௡ܰାଵ
௕௟௘௔௖௛ ൌ ሺ݀݊ݎݏݏ݅݋݌ ௡ܰ െ ௡ܰ expሾെݐ߂ߙሿሻ 

where Δt is the time between image frames and Nn is the number of unbleached particles 

in frame n. When we want to achieve a specific fraction of bleaching over a simulated 

image series, we rearrange Eq. 2.8 to determine the appropriate bleaching rate constant: 

 
୪୬ቀ

೟ۄ೔ۃ
బۄ೔ۃ

ቁ

N௱௧
  

where N is the number of images in the series and Δt is the time between image frames. 

In an experimentally acquired image series, photobleaching may not be uniform 

over the sample and may not be mono-exponential as in these simulations. For example, 

exchange of bleached fluorophores may occur near the edges of the imaged region, and 

some fluorophores may have multi-exponential bleaching curves or reversible bleaching 

[73]. However, as evidenced in Eq. 2.13, the transport coefficients determined by kICS 

are completely independent of the fluorophore photophysics even in these cases. Since 

mono-exponential photobleaching is fairly common, and the other techniques discussed 

are biased even under this simple scenario, this implementation of stochastic mono-

exponential bleaching was used in the tests of kICS accuracy to follow. 

 

3.1.4 Default Simulation Parameters 

Most details of specific simulations are given in the individual sections where the results 

are described. Unless otherwise noted, simulation images were 128 by 128 pixels and had 

a pixel size of 0.1 μm, a PSF size (Gaussian convolution radius) of 0.4 μm, a density of 

10 particles per μm2, and a D of 0.01 μm2/s (to model slow membrane protein diffusion). 

(3.5)

(3.6)

(3.7)
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Background noise was added to give a S/B of 10, and counting noise was added with 

WF=2. By default, no photobleaching was included. For simulations used to test the 

accuracy of kICS at a variety of image sizes (Sec. 2.6), we used higher levels of noise 

(S/B=3, WF=5) and included photobleaching of 50% of particles over the image series. 

 

3.2 Bias in kICS Measurements with Low Spatial or Temporal Sampling 

We studied the effects of spatial and temporal sampling on kICS measurements using 

simulated fluorescence microscopy image time series, varying the number of images, 

time between frames, and image size, but keeping constant the transport, particle density, 

background noise, and PSF size. 

In image correlation studies the unit of sampling is the fluorescence spatial 

fluctuation, so the most relevant unit in which to represent spatial sampling is the beam 

area (BA = ݎߨଶ, where r is the e-2 PSF radius). Because kICS samples fluctuations at 

multiple spatial scales simultaneously through the k-space representation of an image, 

there is no single spatial fluctuation sample size; however, the focal spot area still 

represents the smallest independent fluctuation that can be resolved by the optics and 

hence defines the largest meaningful k-vector. We represent temporal sampling in units 

of the characteristic “correlation time”, τD or τF (for diffusion or flow), which is the 

expected mean time for a particle to travel a distance equal to the e–2 radius of the focus. 

As with spatial sampling, there is no single correlation time in kICS, but we use this unit 

for the purpose of comparison with standard time correlation techniques. 

We discovered that when analyzing small regions of computer-simulated images of 

a diffusing population, kICS analysis returned results that were consistently biased lower 

than the set D. The bias was absent when image series were simulated with a periodic 

boundary condition, whereby particles that exit one side of the image appear on the 

opposite side of the image (and moreover, the fluorescence of a particle near an edge 

boundary wraps around to the opposite side). Since real systems do not have periodic 

boundaries, any such bias is a significant concern. To fully characterize the bias, we 

analyzed simulations that lacked periodic boundaries over a variety of image sizes. Here, 

the image size in pixels was varied from 32x32 to 256x256, but other factors such as the 
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pixel size (0.1 μm) and PSF size (0.4 μm radius) were kept constant. Fig. 3.3 shows the 

results, indicating that kICS analysis of diffusion is biased low by as much as 60% for 

very small image regions (~5 beam areas; 2.5 μm2 in our simulations), but that the bias 

becomes negligible (less than 5%) for large image regions (≥ 500 beam areas; 250 μm2 in 

our simulations). The bias is not affected by increased sampling in time, as we show with 

additional simulations described below. 

 

FIGURE  3.3:  Mean diffusion coefficients recovered by kICS analyses on 500 “open-
area” simulations of 2D particle diffusion at each image size. Values shown are relative 
to the set value of D. Images series were analyzed with no correction (squares, □) or were 
multiplied by a Welch window function before applying kICS (diamonds, ♦). Each 
simulated image series had 500 images and a frame rate of 10 frames per τD. Error bars 
are the standard deviation of recovered diffusion coefficients. 
 

There is a clear theoretical reason for bias towards lower measured diffusion with 

kICS, which relates to spectral leakage in the calculated discrete Fourier transform [83]. 

Every real image of finite dimensions is effectively windowed by a square window 

function, w(x,y), which is 1 for locations inside the image boundaries and zero outside the 

image. The discrete image collected by the microscope, i(x,y), can thus be seen as a 

product of the “infinite-extent” real image, iinf(x,y), and the window function, w(x,y): 
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When a discrete Fourier transform is applied to the image, the product becomes a 

convolution: 

 ଓሶሚ൫݇௫, ݇௬൯ ൌ ଓሶሚ୧୬୤൫݇௫, ݇௬൯ כ ,෥൫݇௫ݓ ݇௬൯  

Because the square window function drops so rapidly at the edges, its Fourier transform 

has considerable high-frequency components. The spacing of discrete pixels in a digital 

image cannot equal the Nyquist frequency for the square window function, and so 

spectral power from these high-frequency components is convolved with the true 

spectrum of the image. This causes leakage between frequency bins in the Fourier 

transform of the image. For kICS, this is particularly significant because for diffusion 

measurements we fit a correlation function that decays exponentially with |k|2. Even a 

small fractional leakage from one k vector to the next will be significant on a logarithmic 

scale and influence the fit. The effect of spectral leakage cannot readily be detected in the 

circularly averaged |k|2 plots, but it can easily be seen when looking at the 2D log-

transformed correlation function (Fig. 3.4). Note that the leakage is present at all values 

of k, including the central dome, though it is more visually apparent in the “wings” at 

high k. 

 

FIGURE  3.4:  Change in the normalized kICS correlation function for diffusion due to 
spectral leakage. (A) When periodic boundaries are present in simulations then the 
correlation function appears normal; (B) when particles do not wrap around the image 
edges, as in real systems, the correlation function is perturbed due to spectral leakage. 
 

The standard remedy for the problem of spectral leakage is to multiply the data 

(each image in this case) by a window function that goes to zero more gradually at the 

edges [83]. We again analyzed simulated image series over a range of image sizes, this 

time multiplying each image by a Welch window function before Fourier transforming. 
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This reduced the bias, but did not remove it completely, as was seen in Fig. 3.3. No 

matter what window function is used, some spectral leakage will still occur. Moreover, 

any window function, which is a type of data filter, effectively discards a fraction of the 

data; Fig. 3.5 shows example data before and after applying a window function. In the 

case of a two dimensional Welch window, nearly three quarters of the data is discarded. 

Because of this, data windowing should only be done after first obtaining a diffusion 

estimate with the unwindowed data, and only if there is sufficient sampling that the 

correlation decay can still clearly be fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE  3.5:  Image series can be multiplied by a 2D window function to correct for 
bias in kICS, but this discards a large fraction of the data. A simulated image is shown 
with intensity on the vertical axis (top left). This is multiplied by a Welch window 
function in two dimensions (top right), resulting in an image (bottom) that goes smoothly 
to zero at the edges. 
 

It is important to know whether bias in kICS is purely dependent on the amount of 

spatial sampling, or whether other factors influence the bias. To determine this, we ran a 

variety of other simulations and analyses. First, we varied the temporal sampling, 

measured in number of correlation times, τD, by varying the number of images in a series. 

The simulated image series had open boundaries and the number of beam areas was kept 

constant. In Fig. 3.6 (A) we see that once a sufficient number of correlation decays are 
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sampled, the bias remains constant as temporal sampling increases; however, it appears 

as if the bias is reduced when temporal sampling is low. This actually results from a 

second bias, a result of low temporal sampling, which offsets the bias due to spectral 

leakage in kICS. This second source of bias is a common phenomenon that affects both 

TICS [59] and FCS [79]. We confirmed that this bias also occurs in kICS by analyzing 

simulations with the same parameters as in Fig. 3.6 (A), but which had periodic 

boundaries and thus were not biased by spectral leakage. These results are shown in Fig. 

3.6 (B). Consistent with findings by Kolin et al. for TICS [59], the bias due to finite 

temporal sampling becomes negligible once the image series is at least 10 τD in length. 
 

 

 

 

 

 

 

 

 
 
 
 
FIGURE  3.6:  Spectral leakage bias in kICS is consistent at a given level of spatial 
sampling (number of beam areas), regardless of the temporal sampling in number of 
images or actual time. kICS was applied to simulated image series with a number of 
images that varied from 50 to 1600. Simulations for graph (A) had open boundaries, 
while simulations for graph (B) had periodic boundaries. When there are open boundaries 
as in (A) there can be bias due to both low temporal sampling (< ~10 τD) and low spatial 
sampling (limiting value of D recovered was on average 0.85 of the set value, i.e. biased 
15% low). When boundaries are periodic, only bias due to low temporal sampling is 
observed. Other simulation parameters were kept constant: pixel dimensions were 64x64, 
PSF size 0.4 μm, pixel size 0.1 μm, set D=0.01 μm2/s, time between frames 0.2 s; the 
number of beam areas was thus 81. Values shown are the average D / Dset from 200 
simulations, and error bars are the σD / Dset.  
 

Next, we ran simulations where the size of the PSF was varied but the image size 

remained fixed; thus, these image series had different numbers of beam areas but the 

same pixel dimensions. The results are shown in Fig. 3.7 (A), where it is clear that the 
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kICS bias scales with the number of beam areas in a way similar to when the image size 

was varied (cf. Fig. 3.3). We also varied both the PSF and image size together, so that the 

same number of beam areas were sampled at a variety of image pixel dimensions. These 

results are shown in Fig. 3.7 (B), and in this case the bias remains approximately constant 

despite a changing image size, since the number of beam areas was fixed. Note that when 

the size of the PSF is varied, it is necessary to also vary the imaging frame rate and the 

|k|2 analysis cut-off accordingly. A larger PSF means that spatial resolution is reduced, 

and the |k|2 value at which the signal is lost in noise is also reduced. Also, with a larger 

PSF, fluctuations can only be sampled over larger spatial scales; since the mean diffusion 

distance scales with the square root of time, the simulated frame time must be increased 

as the square of the PSF size in order for particles to on average travel the same distance 

relative to the PSF size. 

 

 

 

 

 

 

 

 

 
 
 
 
FIGURE  3.7:  (A) Bias in kICS scales with the number of beam areas when the radius of 
the PSF is changed (from 0.2 to 3.2 μm) but image dimensions are kept constant (64x64 
pixels). Values shown are the mean D / Dset recovered from kICS analysis of 200 
simulations of particle diffusion, while error bars are σD / Dset. Image series had 400 
images, and set D=0.01 μm2/s; the image frame time was 0.4 s when the PSF was 0.4 μm, 
and varied as (PSF size / 0.4 μm)2. (B) Bias in kICS is constant (~15% low) when the 
image size is scaled with changes in the PSF size so that the number of beam areas 
sampled remains constant. Values are the mean D / Dset from kICS analysis of 200 
simulations of particle diffusion. Image series had 200 images, and the simulation 
timestep was varied as in (A), while the |k|2 cut-off varied inversely with the square of the 
PSF size.  
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Finally, we analyzed simulations using a range of data fitting parameters. As 

detailed in Sec. 2.2.1, in a kICS analysis different cut-off values for |k|2 and τ are 

possible. Using a set diffusion coefficient of D=0.01 μm2/s we chose three pairs of |k|2 

and τ cut-offs so that in each case the maximum expected correlation decay in a |k|2 plot 

would be ln[r(k,τ) / r(k,0)] = –1.6. As shown in Fig. 3.8 and in Table 3.1, the extent of 

the measurement bias differs slightly between the three cases. For the smaller image sizes 

in our simulations, from 32x32 to 48x48 pixels, it would not be possible to restrict the |k|2 

cut-off further (below 20) while increasing the τ cut-off, as there would be fewer than 

four points to fit in the |k|2 plot. It also would not be appropriate to fit to higher |k|2 values 

while decreasing the τ cut-off, since the range of time lags covered would then be less 

than half of one correlation decay – i.e. on average a particle would move less than half 

of one beam radius (0.4 μm) at the maximum time lag. Thus, the range of cut-offs used in 

these simulations covers most of the reasonable range that could be used. 

 

 

FIGURE  3.8:  kICS bias differs only slightly when different data fitting settings are 
used. Values shown are the mean recovered D / Dset from 100 simulations, each of which 
had 500 images. The bias is slightly reduced when restricting the fit to lower |k|2 values 
(and thus fitting higher τ). However the uncertainty in the measurement increases, as seen 
in an increase in the size of the error bars. The smallest image sizes cannot be fit with a 
|k|2 cut-off lower than 80 since there would be too few points to fit in the |k|2 plot. 

 

Although the bias in kICS due to spectral leakage is not completely independent of 

fitting parameters, the difference (~5%) is in all cases less than typical measurement 
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uncertainty due to other factors (e.g. real differences due to the stochastic nature of 

diffusion, and differences between cells or regions sampled). Thus, a reasonable estimate 

of bias based on spatial sampling can still be made. Some kICS users may prefer a simple 

post-analysis correction over applying a window function that is, as we have shown, not 

completely effective. Table 3.1 shows the bias from the kICS results of Fig. 3.8 averaged 

over the different fitting parameters used. An unbiased estimate of the diffusion 

coefficient from a kICS analysis can be obtained by multiplying the kICS result by the 

inverse of this average bias; this correction factor is the last column in Table 3.1. 

 

Image Size  

(beam areas) 

Mean Relative D Recovered (for given cut-offs) Mean D 
(for all cut-offs)  

Correction 
factor k2=80, 

τ=5 
k2=57, 
τ=7 

k2=40, 
τ=10 

k2=20, 
τ=20 

5  0.47        0.470  2.13 

8  0.65  0.63     0.636 1.57

11  0.61  0.72 0.72   0.685 1.46

16  0.72  0.71 0.77   0.734 1.36

20  0.70  0.80 0.76 0.77 0.755 1.32

32  0.77  0.82 0.80 0.84 0.781 1.28

46  0.78  0.85 0.87 0.86 0.839 1.19

62  0.82  0.85 0.87 0.91 0.854 1.17

81  0.80  0.87 0.87 0.90 0.861 1.16

127  0.85  0.89 0.91 0.93 0.893 1.12

183  0.87  0.91 0.93 0.93 0.910 1.10

326  0.90  0.93 0.95 0.96 0.933 1.07

733  0.93  0.96 0.97 0.98 0.960 1.04

1304  0.95  0.98 0.99 1.02 0.986 1.01

 
TABLE  3.1:  Correction factors for kICS diffusion measurements for image sizes of 
1300 beam areas or smaller. Column 5 (“Mean D”) is the mean of columns 2 to 4, and so 
represents the relative bias expected for average fitting parameters at a given image size. 
A kICS diffusion measurement should be multiplied by the value in the last column, 
based on the spatial sampling in beam areas, to obtain an unbiased estimate of the 
diffusion coefficient. 
 

The number of beam areas in an image can be determined easily, and requires no 

extra measurements. One first determines the PSF radius, ω0, using ICS or a calibration 

measurement [43-44], and calculates the size of a beam area: BA = πω0
2. The number of 

beam areas is the total image area divided by the beam area. This procedure is applied in 

Sec. 4.1 to correct bias in an experimental measurement of diffusing microspheres. 
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3.3 Recovery of Fast Diffusion Dynamics via kICS 

A previous study found that the TICS analysis technique (introduced in Sec. 1.5.5) 

requires that at least two image frames are acquired per correlation time for results to be 

accurate [59]. In contrast, we found that kICS can recover accurate diffusion coefficients 

with image frame sampling at least ten times slower than this. To characterize this 

capability, we analyzed simulated image series of diffusing particles over a range of 

imaging frame rates using both kICS and TICS. These results are shown in Fig. 3.9. 

Simulated image series were 128x128 pixels with 100 total images, and the frame time 

was varied from 4 frames per τD to 0.05 frames per τD. A high level of noise was added to 

the image series: background white noise was added to give a signal:background of 3:1, 

and counting noise was added with WF=5. Rather than adjusting D to examine the effects 

of temporal sampling, we adjusted the imaging frame rate, which is equivalent for our 

simulated data. Note that while kICS results decrease in precision with fewer 

observations per correlation time, they remain centered around the set D value (i.e. 

accurate) over a wide range of frame rates, in contrast with TICS. Also, the precision 

from kICS analysis was better than for TICS in all cases. No photobleaching was  

 

  

 

 

 

 

 

 

 

 
 
 
FIGURE  3.9:  Error in kICS and TICS measurements of diffusion as a function of the 
sampling frequency. (A) Mean diffusion coefficients, relative to the set value, recovered 
by kICS and TICS analyses of 500 simulations of particle diffusion. Error bars are σD / 
Dset. (B) Root mean square deviation of the recovered diffusion coefficient from the set 
value, divided by the set value. kICS error is lower that TICS in all cases. 
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included in the simulations so that all factors apart from the frame rate would be optimal 

for TICS analysis. When photobleaching was included (50% of particles bleached over 

the 100 images of a series), kICS results were unaffected, whereas TICS results were 

biased, as previously reported [59], for all frame rates (data not shown). 

Video rate imaging (30 Hz) is easily achieved with modern CCD cameras at an 

image size of 128x128 pixels (or larger). As shown in Fig. 3.9 (B), the relative standard 

deviation of kICS measurements is within 20% of the set value when the frame time is 10 

τD or less. With an imaging frame time F = 10τD, the maximum 2D diffusion coefficient 

that can be accurately measured with video rate imaging can be calculated as follows: 

ܦ ൌ  
߱଴

ଶ

4τD
ൌ  

߱଴
ଶ

4൫ܨ
10ൗ ൯

 

For the parameters used in our simulations (ω0=0.4 μm), and with F = 33 ms (video rate), 

the maximum diffusion speed that can be accurately measured with kICS is ~12 μm2/s. 

This is important since it encompasses the range of diffusion for membrane lipids (~1-10 

μm2/s ) which diffuse more quickly than the larger embedded proteins. 

Since the simulated image frame rate is slow relative to the diffusion of the point 

particles, we determined how kICS was able to measure the particle transport while TICS 

failed. Fig. 3.10 presents an intuitive explanation. The key is that in reciprocal space (k-

space), small values of k correspond to large spatial scales in real space. Based on Eq. 

2.13, decay of the correlation due to diffusion depends on the product of |k|2 and τ, and 

this decay can be fit to determine D so long as it remains above the noise level. We are 

free to choose the tradeoff between what values of |k|2 and τ to fit. By restricting the fit to 

low |k|2, we remain above the noise level and probe only correlation decay due to particle 

motion over relatively larger spatial scales. The conceptual equivalent in r-space would 

be to compute a pair correlation function for each possible pixel separation vector, which 

corresponds to the k vector in k-space. 

The ability of kICS to measure relatively faster diffusion gives it a greater dynamic 

range than TICS. In addition, if an experimenter unknowingly chooses an imaging rate 

that is “too slow” based on the actual diffusion, kICS results will remain unbiased, 

providing the decay can be fit at all. This is also of interest as it relates to new super-

resolution microscopy techniques. If TICS is used, then as the effective PSF of a point 

(3.10)
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object becomes smaller, the correlation time decreases, and the imaging speed must be 

increased accordingly for results to remain accurate. With kICS, no such adjustments 

need to be made, and super-resolution further increases the dynamic range accessible 

with kICS analysis. 

 

 

 

 

 

 

 

 

 

 

 
 
 
FIGURE  3.10:  Restricting a kICS diffusion fit to low k values probes relatively longer 
distance correlations in real space. (A) When the imaging frame time is short relative to 
the diffusion speed, particles have moved a short distance between frames (inset, single 
particle tracks) and most (kx,ky) values remain above the noise in the |k|2 plot. (B) When 
the frame time is long relative to the diffusion speed, particles have moved out of the 
beam area (size of grey circle) where they were found in the previous frame (inset), 
precluding use of TICS due to loss of correlation. However, low k values can still be fit 
in the |k|2 plot, as shown by the regions boxed in blue. 
 

Other techniques, such as FCS, FRAP, and RICS, can measure faster diffusion than 

kICS, which has an upper limit that depends on the imaging rate. FCS measures a single 

diffraction-limited spot in a cell or solution at s binning rates, so it can be applied to 

very fast-diffusing particles such as cytosolic proteins. However, a specialized optical 

setup with an attached hardware autocorrelator is generally required, and no spatial 

information is acquired at the same time [84]. Unlike FCS, RICS is an image-based 

technique and thus gives spatial information, yet can still measure diffusion coefficients 

greater than 100 μm2/s. However, RICS images must be acquired on a scanning laser 

microscope. Like other techniques based on correlation between image frames, kICS 
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measurements are limited by the frame rate of the microscope. But unlike RICS, kICS 

can be applied to any microscope image series, including those acquired by 

epifluorescence, total internal reflection fluorescence (TIRF), wide-field structured 

illumination, or CLSM. 

The Wohland group has recently proposed a new technique, imaging total internal 

reflection FCS (ITIR-FCS), as a highly parallel alternative to single-spot FCS, whereby a 

high-speed EMCCD camera collects images from a TIRF microscope to enable multiplexed 

FCS measurements [71]. This technique was initially used to compute time correlations 

within single pixels, as in TICS, but was later extended to perform cross-correlations in 

time between different regions of the image [70]. Because ITIR-FCS fits a time-dependent 

decay, it is subject to bias resulting from photobleaching, as was noted [70]. kICS can be 

applied to the same high-speed EMCCD-based image series to obtain diffusion 

coefficients or flow velocities but with no bias due to bleaching or blinking of particles. 

 

3.4 Accuracy and Precision of kICS Measurements 

Two key experimental parameters that determine whether kICS can reliably measure 

transport coefficients are the number of images in the series and the size of each image. 

The practical benefit to analyzing small image subregions of interest and shorter 

durations is that one could obtain a map of diffusion or flow that is spatially and 

temporally resolved in a cell. We wanted to determine the limits at which kICS would no 

longer be accurate as we reduced the size of the images and the number of frames 

sampled. We therefore simulated image series with a range of sizes and numbers of 

frames and analyzed them with kICS. We used challenging simulated imaging 

conditions: in all cases background noise was added to effect an average S/B of 3, 

counting noise was added with WF=5, and mono-exponential photobleaching was 

included so that half of the particles were bleached over the image series (regardless of 

how many images were in the series). At this high level of noise and high particle 

density, correlations in image structure are difficult to discern visually (see Fig. 3.11 (B)). 

Fig. 3.11 shows the relative standard deviation of 200 simulations and kICS 

analyses at each combination of image size and number of τD sampled. Rather than 
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plotting the number of image frames on the x axis, we plot the number of τD sampled, as 

this is a better measure of the amount of temporal sampling (assuming that the frame rate 

chosen is reasonable). All simulations were “open volume” so that particles could exit 

from the edges of the image, and a post-analysis correction was applied based on the 

number of beam areas as described earlier. Corrected measurements using kICS remained 

accurate within error regardless of the spatial and temporal sampling, and thus the results 

in Fig. 3.11 indicate the relative precision of the measurements. 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE  3.11:  (A) Relative standard deviations of diffusion coefficients recovered by 
kICS over a range of simulated image sizes and number of τD sampled. Simulations for 
images larger than 30 beam areas had a frame rate of 4 frames per τD (total number of 
images was thus 40, 80, 160, and 400). So that there were enough points to fit in the |k|2 
plots, simulated images smaller than 30 beam areas had a frame rate of 8 frames per τD 
(total number of images was thus 80, 160, 320, and 800). (B) Example of first and last 
images from one of the simulated image series. 

 
Measurements had a standard deviation of about 20% from the set value for images 

with 20 beam areas and which sampled 20 τD, or for images of just 5 beam areas which 

sampled 100 τD. With image correlation techniques it is often possible to trade off 

temporal sampling with spatial sampling to achieve results with equivalent precision. 

This is largely true in kICS, although we find that increasing temporal sampling has a 
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beam areas) but with ten times less temporal sampling (10 τD). Knowing the 

measurement precision is important if one wishes to compare different measurements, 

such as from different cell regions, or before and after a treatment; when individual 

measurements are not sufficiently precise, differences cannot be distinguished. Fig. 3.11 

can be used to determine the minimum sampling needed for a desired level of 

measurement precision. In general, of course, one will not know the diffusion coefficient 

before the measurement. In this case, one can only guess a reasonable value or range for 

the diffusion coefficient and choose an imaging frame rate that gives sufficient temporal 

sampling. Once a first measurement is obtained, it is then possible to determine the 

approximate number of τD that would be sampled when a given number of images are 

collected, and estimate what measurement precision should be achievable. 

 

3.5 Nonuniform Particle Distributions 

One of the strengths of FCS, and by extension most image correlation techniques, is that 

they are applied to systems at equilibrium or steady state and no external perturbation is 

needed to measure the quantity of interest. However, in some cases one desires to 

introduce a local perturbation, such as by photouncaging an effector molecule at a 

specific location [85], and it is now possible to trigger fluorescence simultaneously with 

photouncaging [80-82]. The assumption of a random, Poisson distribution of particles in 

space underlies the theory of FCS and TICS, and measurements are biased when this 

assumption breaks down. We found that kICS, however, can accurately measure particle 

diffusion even with highly localized initial particle distributions if the correlation function 

is normalized. We simulated three kinds of image series: 1) all particles initially located 

at the center of the image, and 2) all particles initially located in a vertical strip 1 μm 

wide, and 3) clusters of particles (20 particles per cluster) that would appear at random 

times and places. This last scenario could model vesicle fusion with a membrane and 

fluorescent protein or lipid release into the membrane. In each case, particles diffused 

randomly from their initial positions in the image series over a time span of 30 τD. As can 

be seen in Fig. 3.12, the particle distributions remained nonuniform throughout the image 

series. With kICS, the set diffusion coefficient was recovered within error in all cases; in 

contrast, TICS measurements were systematically biased (Fig. 3.13). 
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FIGURE  3.12:  Example images from simulations with nonuniform initial particle 
distributions. (A1, A2) First and last images from series with all particles initially located 
at the image center. (B1, B2) First and last images from series with particles initially 
located in a vertical strip 1 μm wide. (C1 – C4) Images 1, 10, 25, and last image from 
series with particle clusters that would appear at a random point and then diffuse in 2D. 
All image series were 20 τD in length, 128x128 pixels, and had other parameters 
(including noise) at default levels described earlier. 
 

 

 

 
 
FIGURE  3.13: Mean diffusion coefficients, relative to the set value, recovered by kICS 
and TICS analyses of simulated diffusion with nonuniform initial particle distributions. 
Error bars are the standard deviation from 500 simulations and analyses. kICS results 
remained accurate, whereas TICS results were strongly biased. 
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Some caveats should be noted to ensure that kICS can be effectively applied in 

these scenarios. Although the initial distribution of particles was nonuniform, it is 

important that they subsequently diffused freely. Also, to obtain accurate diffusion 

measurements with kICS under these conditions, one must normalize the kICS 

correlation function by its value at zero time lags, as in Eq. 2.13. Frames in which a 

significant number of pixels are saturated should be excluded from the diffusion analysis. 

Finally, the time series must still sample a sufficient number of correlation times to place 

it in a non-biased regime (i.e. at least 10 τD). 

 

3.6 Estimating kICS Measurement Uncertainty 

The uncertainty (or conversely, the precision) associated with an experimental 

measurement informs us of the confidence we can have that the measured value is close 

to the true value, assuming there is no systematic bias (i.e. measurements are accurate). 

The best way to determine measurement uncertainty is to repeat the measurement a 

number of times. The standard error of these independent measurements can be reported, 

or can be used to determine specific confidence bounds. In some cases, however, it is not 

possible to repeat a measurement multiple times. Alternatively, it may be desirable to 

estimate the measurement uncertainty associated solely with our method of analysis. 

In this section, we propose a simple method to estimate the uncertainty associated 

with a single kICS diffusion measurement. When applying kICS there is some 

subjectivity in deciding what |k|2 and τ cut-offs are optimal, such that kICS analyses 

performed on the same image series by different experimenters will return different 

results. Thus, the uncertainty associated with a kICS analysis itself can be estimated by 

running the analysis multiple times, and using different |k|2 and τ cut-offs each time. We 

illustrate this approach by estimating the uncertainty from three kICS analyses of a single 

image series using different |k|2 and τ cut-offs. These analyses are summarized in Fig. 

3.14. In each case the cut-offs are adjusted so that the maximum expected correlation 

decay is the same. If possible, one should do analyses with more than three sets of 

different fitting parameters, using maximum τ cut-offs both above and below the analysis 

that best fits the data. The standard deviation of diffusion coefficients recovered from 
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Analysis 1: max |k|2 = 100, max τ = 4 frames (1.6 s) 

  

Analysis 2: max |k|2 = 50, max τ = 8 frames (3.2 s) 

   

Analysis 3: max |k|2 = 20, max τ = 20 frames (8 s) 

  

FIGURE  3.14:  Three kICS analyses, using different |k|2 and τ cut-offs, of the same 
image series of simulated particle diffusion with set D=0.01 μm2/s. The standard 
deviation of diffusion coefficients recovered from these analyses is an estimate of 
uncertainty in the kICS diffusion measurement.  
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these analyses is an estimate of the measurement uncertainty. For the example of Fig. 

3.14, the reported diffusion coefficient measurement would be the central analysis value, 

0.0105 μm2/s (vs. set value of 0.0100 μm2/s), and the uncertainty would be 0.0008 μm2/s 

(the standard deviation of the three values in Fig. 3.14). This method of uncertainty 

estimation is applied in Sec. 4.2 when measuring the diffusion coefficient of QD-labeled 

membrane molecules from single image time series. 

In computer simulations, a number of assumptions are made that may not hold true 

in actual experiments. Other sources of uncertainty will contribute to the variability in 

repeated independent measurements, such as variability in the underlying biological 

dynamics, deviations from ideal behaviour (i.e. particle interactions), or the presence of 

multiple populations with different diffusion dynamics. Some of these sources of 

variability will widen the variability of kICS results when fitting with different |k|2 and τ 

cut-offs. For example, the presence of multiple populations with different diffusion 

coefficients will cause curvature in |k|2 plots, and thus the measurement can differ 

depending on what |k|2 cut-off is used. With kICS it is possible to fit the correlation decay 

with a two-population model to determine the fraction of each population and their 

diffusion coefficients. However, this can no longer be done with a linear fit of the log-

transformed correlation in a |k|2 plot; instead, a non-linear fit to the untransformed 

correlation must be done. Such a non-linear fit is more sensitive to noise, and is 

unreliable when one population is a small fraction of the other. Moreover, the 

experimenter may not be aware that multiple populations exist. Regardless, the smaller 

population will modify the |k|2 plots at least slightly, and this will increase the 

dependence of the measurement on the cut-offs used.  

Fig. 3.15 shows an example of both the untransformed correlation and the log-

transformed correlation (|k|2 plot) for a kICS analysis of simulated diffusion where there 

are actually two diffusing populations with fractions of 20% and 80%. The smaller 

population diffuses ten times faster than the larger one. Fig. 3.16 shows kICS analyses of 

the same simulation fit to a single population model. When the cut-offs are |k|2=50 and 

τ=8, the diffusion coefficient reported is 0.0092 μm2/s, lower than that of either 

population. When a lower |k|2 cut-off is used, a considerably higher diffusion coefficient 

measurement of 0.0122 μm2/s is obtained. Thus, the variability in kICS analyses using  
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FIGURE  3.15:  kICS analysis of simulated particle diffusion where there are two 
populations in a ratio of 8:2. (A) The untransformed correlation function |k|2 plot. 
(B) The log-transformed correlation function |k|2 plot. The larger population had set 
D=0.01 μm2/s, and the smaller population had D=0.1 μm2/s. Plot (A) has a bi-exponential 
decay that can be fit to extract two diffusion coefficients. Plot (B) is what one would see 
in a normal (log-transformed) |k|2 plot. The slope at low |k|2 is somewhat greater than the 
slope at higher |k|2. 
 

different cut-offs can reveal not only uncertainty arising from the analysis itself, but also 

variability in the measured dynamics, such as the presence of multiple populations of 

diffusing species. 
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Analysis 1: max |k|2 = 50, max τ = 8 frames (3.2 s) 

 

 

 

 

Analysis 2: max |k|2 = 10, max τ = 20 frames (8 s) 

 

 

 
FIGURE  3.16:  Two kICS analyses, using different |k|2 and τ cut-offs, of simulated 
particle diffusion where there are two populations in a ratio of 8:2. The larger population 
had set D=0.01 μm2/s, and the smaller population had D=0.1 μm2/s. When a lower |k|2 
cut-off is used (bottom row) the diffusion measurement is considerably higher than with a 
higher cut-off. In analysis 1 (top row) it can be seen that the |k|2 plot is slightly curved. In 
analysis 2, the dynamics plot is curved. In this case, no single set of fitting parameters 
will result in perfect residuals of the linear regressions. 
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In this chapter we investigated the accuracy and precision of kICS under a variety of 

scenarios using computer simulations. In the next chapter we apply kICS to experimental 

data to verify that the discoveries made via simulations are relevant to real situations. 
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4. k‐Space Image Correlation Spectroscopy Applied to 
Microspheres and Live Cells 

 

In Chapter 3, we applied kICS to computer-simulated image series, and through these 

investigations we discovered both the capabilities and limitations in applying kICS. 

However, real systems rarely behave as ideally as the equations we use to model them. 

Particles can have attractive or repulsive interactions that modify their diffusive 

behaviour; detectors can exhibit nonlinear response or introduce undesired correlations; 

noise may not be ideal and could be correlated between image frames. Moreover, cells 

are living systems that are far from chemical equilibrium, and their responses to imaging 

conditions or experimental treatments can change during the course of a measurement. 

In this chapter we apply kICS to experimental data to verify that the discoveries 

made via simulations in silico are valid. 

 

4.1 Measuring Diffusing Microspheres 

When image boundaries are open, kICS measurements of diffusion have a bias that 

depends on the size of the region analyzed. In Sec. 3.2 we used simulations to determine 

correction factors that can be applied to obtain unbiased measurements for any image 

size. To confirm that bias in kICS diffusion measurements can be corrected in real 

experiments, we imaged 0.105 μm fluorescent microspheres diffusing in a sucrose 

solution of known concentration on a CLSM. We then determined how the kICS 

measurement of D differed depending on the size of the subregions analyzed. 

 

4.1.1 Microsphere Sample Preparation and Confocal Imaging 

An aqueous solution of 800 g/L sucrose (Sigma-Aldrich, Oakville, Ontario, Canada) was 

prepared in milliQ distilled water. A stock solution of microspheres (carboxylate coated, 

radius 0.105 ± 0.005 μm, excitation/emission maxima of 505/515 nm, obtained from 

Invitrogen, Burlington, ON) was sonicated for 15 min before use, and then 2 μL of this 

stock solution was added to 198 μL sucrose solution. The diluted microspheres were 
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sonicated for an additional 15 min, and then pipetted into the cavity of a glass-bottomed 

Petri dish (No. 1.5; MatTek, Ashland, MA) for imaging. The cavity was sealed with a 

coverslip. 

Samples were imaged in a temperature-controlled chamber at 21°C with an 

Olympus FV300 IX71 CLSM (Olympus, Melville, NY), using the 488 nm laser line of an 

Ar+ laser for excitation. Fluorescence was collected by a 60X PlanApo oil immersion 

objective (NA 1.4) using a 488 nm bandpass dichroic in combination with a BA510IF 

long-pass filter (Chroma, Rockingham, VT). The PMT was adjusted such that no pixels 

were saturated, and no thresholding was applied. Two imaging settings were used: (A) 

128x128 pixels with a frame time of 0.247 s and a pixel size of 0.09207 μm, and (B) 

320x240 pixels with a frame time of 0.457 s and a pixel size of 0.2778 μm, referred to 

hereafter as image series A and B. We collected 2000 images so that the kICS analysis 

would not be limited by temporal sampling, and to ensure that sufficient signal would 

exist even when small image regions (e.g. 16x16 pixels) were analyzed. Fig. 4.1 presents 

example images from these series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE  4.1:  CLSM images of fluorescent microspheres diffusing in sucrose solution. 
(A) A 128x128 pixel image with pixel size 0.09207 μm. (B) A 320x240 image with pixel 
size 0.2778 μm. 
 

 

 

 

A 

B 
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4.1.2 kICS Analysis 

We used spatial ICS [44] to determine the e–2 radius of the PSF for image series A with 

pixel size of 0.09207 μm, which was ω0 = 0.223 ± 0.013 μm. This enabled us to calculate 

the number of beam areas for any subregion of the image. We assumed the same PSF 

radius for image series B since ICS cannot reliably be applied when the pixel size (0.2778 

μm) is larger than the PSF size, and the same CLSM optics were used for both series. 

There were two reasons for using a larger pixel size for image series B. First, since the 

image is larger it takes longer to scan, and the maximum frame rate is slower. With a 

larger pixel size, the particle residency time within a pixel is longer, and this enabled 

accurate kICS measurements with small subregion sizes. Second, using a different pixel 

size provides another test of the effectiveness of the correction we apply based on the size 

of a subregion in number of beam areas. 

We next applied kICS to the full data set of each image series to determine 

reference measurements for the diffusion coefficients of the samples. Image series B 

covered an area of over 37,000 beam areas, and so the measured value D=0.0618 μm2/s 

did not have to be corrected for low spatial sampling bias. Image series A covered an area 

of only 889 beam areas, and so the diffusion measurement from the full image was itself 

corrected (upwards by ~3%) according to the correction factors in Table 3.1 to obtain a 

reference value D=0.0590 μm2/s. This agrees well with the measurement from image 

series B, which is expected since the same sample was imaged. Temperature fluctuations 

will lead to changes in the viscosity of the solution and can be expected to cause minor 

variations in experimentally measured diffusion. 

We next split the image series into square subregions of different sizes, which 

ranged from ~14 to 7000 beam areas, and reanalyzed the subregions. Fig. 4.2 shows the 

mean diffusion coefficients recovered for these subregions, where it is clear that 

uncorrected kICS measurements are biased low for small image regions.  

We then applied a bias correction based on Table 3.1; since the number of beam 

areas was generally in between those in the table listings, we linearly interpolated a 

correction value between the nearest two rows. With this correction, the results from the 

subregions agree well with the reference measurements made using the full-size image 

series. These results are summarized in more detail in Table 4.1.  
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FIGURE  4.2:  Post-analysis correction of kICS bias for differently sized regions in 
samples of diffusing fluorescent microspheres. Samples A and B are shown, as described 
in the text. As in simulations, uncorrected values (squares, □) are biased low for small 
image sizes. Applying the correction factors from Table 1 gives values (diamonds, ♦) that 
agree well with the reference diffusion measurement for the entire sample. 
 

 

 

Image Series A    Image Series B

Region 
size (px) 

# Beam 
Areas 

Mean 
D/Dref 

Corr 
factor

Corrected 
D/Dref  

# Beam 
Areas

Mean 
D/Dref

Corr 
factor 

Corrected 
D/Dref

16  ‐  ‐  ‐ ‐   126 0.838 1.120  0.939

20  21.7  0.720  1.314 0.946    198 0.897 1.097  0.984

24  31.3  0.767  1.282 0.984    284 0.909 1.079  0.981

32  55.6  0.838  1.178 0.988    506 0.920 1.057  0.972

40  86.8  0.892  1.155 1.031    790 0.950 1.037  0.985

48  125  0.908  1.122 1.019    1138 0.955 1.019  0.972

56  170  0.920  1.105 1.017    1549 0.967 1.009  0.975

64  222  0.925  1.092 1.010    2023 0.965 1.006  0.971

80  347  0.956  1.068 1.022    3161 0.973 1  0.973

96  500  0.967  1.057 1.022    4552 0.987 1  0.987

120  781  0.962  1.037 0.998    7112 0.989 1  0.989

128  889  0.969  1.032 1.000    ‐ ‐ ‐  ‐

 
TABLE  4.1:  Mean corrected and uncorrected diffusion coefficients measured for 
differently sized subregions of image series A and B, shown as values relative to the 
reference diffusion coefficients for the samples.  
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We also determined the effectiveness of applying a Welch window function to the 

subregions of image series A and B before kICS analysis. In this case, no correction 

factor is applied to the recovered diffusion coefficient. As seen in Fig. 4.3, this method of 

correction was fairly effective for image series B, but less so for series A, which had 

fewer beam areas. We speculate that this could occur because two dimensional data 

windowing discards around three quarters of the data; for small images this may mean 

that some of the |k|2 values fit have very little sampling despite the length of the image 

series. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE  4.3:  Correction of kICS bias by data windowing for differently sized regions in 
samples of diffusing fluorescent microspheres. Samples A and B are shown, as described 
in the text. 
 

Although bias in diffusion measurements can be seen as a drawback of using kICS, 

in practice even relatively small image regions suffer from only minor bias, which can be 

easily corrected. As a typical example, an image of 40 by 40 pixels with a pixel size of 

0.1 μm and a PSF radius of 0.25 μm contains 80 beam areas and is biased by around 

15%. If super-resolution imaging methods such as stimulated emission depletion 

microscopy (STED) [32] or structured illumination microscopy [86] are used, the number 

of effective beam areas increases and the bias in measuring small image regions 

decreases. 
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4.2 Measuring Diffusion in Live Cells with Quantum Dot Labels 

One of the primary advantages of kICS over other fluorescence correlation techniques is 

that kICS is unbiased by blinking or bleaching of the fluorophore labels. This presents a 

unique opportunity to use kICS in conjunction with QDs, whose fluorescence is very 

bright but whose emission is also intermittent. QDs are also especially suitable for 

multicolour labeling because their emission spectra are narrow, which enables splitting 

the signals from different colours of QDs in a single sample based on their emission 

wavelengths. As described in Sec. 1.5.3, QDs are thus often used as labels for single 

particle tracking of membrane proteins. However, even when the requirements of an SPT 

experiment are met, i.e. a high signal-to-noise ratio and low labeling density are achieved, 

SPT analysis can be time-consuming. This is due to the fact that SPT is computationally 

intensive, requiring nonlinear curve fitting to locate the center of fluorescence emission 

for each particle in each image frame, followed by linking of particle positions into 

trajectories. Statistical criteria typically need to be used to discriminate true particles from 

accidental detections and to link trajectories accurately [87]. These multiple steps often 

require manual checking of the trajectories mapped. It would thus be useful to have a 

complementary technique that is faster to perform, but that gives comparable and 

accurate measurements of the ensemble dynamics for comparison with the single 

molecule results. 

In this section, we compare the use of kICS and SPT to analyze diffusion in the cell 

membrane. Specifically, we labeled three different membrane species with QDs of 

different colours and imaged them simultaneously in live cells. The membrane species 

were the sphingolipid GM1 labeled with 705 nm-emission QDs, a lipid-anchored acyl 

carrier protein, ACP-GPI, labeled with 655 nm-emission QDs, and a biotin ligase 

acceptor peptide fusion with the epidermal growth factor receptor protein (BLAP-EGFR) 

labeled with 605 nm-emission QDs. All cell culture, labeling, imaging and SPT work was 

done by collaborators Eva Arnspang Christensen and Mathias Clausen in the lab of Prof. 

Christoffer Lagerholm at the MEMPHYS Center for Biomembrane Physics, University 

of Southern Denmark, Odense, Denmark. These results are thus presented in sufficient 

detail to ensure the SPT data is clear. I performed all kICS analyses described below. 
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4.2.1 Methods 

Cell Culture, Transfection and Labeling 

Mouse embryonic fibroblasts (MEFs) were grown in a humidified atmosphere at 37 °C, 

using Dulbecco’s modified eagle’s medium (DMEM) with standard concentrations of 

glutamate (Gibco), penicillin-streptomycin (Sigma) and 10% fetal bovine serum (Sigma). 

For transfection and imaging, cells were seeded on No. 1.5 glass coverslips in 6-well 

plates at a density of 25,000 cells per well and were transfected at 24 h and imaged within 

the next 24-48 hours. 

Addition of the proteins epidermal growth factor receptor (EGFR) tagged with 

biotin ligase acceptor peptide (BLAP) and acyl carrier protein glucosylphosphatidylinositol 

(ACP-GPI) fusion protein (Covalys) to MEF cells was done by co-transfection of four 

DNA plasmids, BirA-KDEL (1 μg), BLAP-EGFR (1 μg), ACP-GPI (1 μg), and a plasma 

membrane fluorescent protein marker, K-Ras2-YFP (0.25 μg, ATCC plasmid 10089283) 

per 25,000 cells. Transfections were done using JetPEI (Polyplus transfection) at the 

recommended 2:1 (v/w) ratio to the DNA. Transfected cells were grown overnight in 10 

μM biotin to enable specific biotinylation of BLAP-EGFR by co-expressed BirA-KDEL 

plasmid as has been described [88]. 

For orthogonal three QD color labeling, we performed the labeling in two steps. 

First, we labeled the ACP-GPI fusion protein with custom conjugated coenzyme A (CoA) 

QDs (peak emission 655 nm). Cells were first washed 3X in Dulbecco’s PBS with 0.1 

g/L CaCl2 and 0.1 g/L MgCl2 (D-PBS), then were labeled for 15 min at room temperature 

(RT) in 300 µL of labeling solution with 1 nM of CoA-QDs, 10 mM MgCl2, and 0.4 µM 

ACP-Synthase in DMEM with 10% FBS. The labeled cells were washed 3X in D-PBS 

and blocked in D-PBS with 1% BSA for 1-2 min. Cells were then simultaneously labeled 

with stock solution composed of 200 pM custom-conjugated cholera toxin subunit B QDs 

(peak emission 705 nm) and 1 nM commercial streptavidin-conjugated QDs (peak 

emission 605 nm) in D-PBS with 1% BSA for 2 min at RT, and blocked with 100 μL of 1 

mM biotin for 2 min at RT. The cells were finally washed 3X in D-PBS and imaged in D-

PBS with 1% BSA and 25 µM β-mercaptoethanol (Sigma) to minimize QD blinking. 
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Imaging 

The QD imaging was done with an Olympus IX-81 inverted microscope by use of a 100 

W Hg arc lamp for excitation, and a QuadView (MAG Biosystem) image splitter and an 

EMCCD (Andor, DV887-ECS) for simultaneous excitation and detection of 3 colors of 

QDs and YFP. A 100X objective lens (NA 1.3) was used and the EMCCD pixel size was 

16 μm, so the image pixel size was 0.16 μm. We used a combination of a 470/40 nm 

excitation bandpass filter, a Q495LP dichroic filter, and a HQ510LP emission filter 

(Chroma Technology) all placed in a filter cube in the microscope. The emission was 

subsequently split into four separate color channels in the QuadView image splitter by 

use of dichroics at 585 nm, 630 nm, and 690 nm, and emission filters at HQ535/30m (for 

YFP), D605/40m (for 605 nm QDs), D655/20m (for 655 nm QDs) and an empty position 

for 705 nm QDs. Fluorescence time-lapse image series of labeled cells were acquired at 

10 ms integration time for 567 image frames with a size of 256x256 pixels at 25 Hz at RT.  

 

4.2.2 Data Analysis 

SPT Analysis 

We selected a region of the full image series in which to compare SPT and kICS 

analyses. The region was chosen because of a suitable labeling density and homogenous 

background fluorescence. The four channels of the image series, each corresponding to a 

single QD colour, were analyzed independently using the Particle Tracker plug-in for 

ImageJ [87]. This analysis determines particle positions in each image frame as well as 

trajectories describing the motion of individual QDs over time. To minimize inaccurate 

linking of positions into trajectories we used conservative linking criteria: a maximum 

link delay of 5 image frames and a maximum allowed particle displacement of one pixel 

per image frame. Because of QD blinking, many short trajectories were produced. Since 

the real particle trajectories were much longer, we post-processed the generated data with 

custom-written Mathematica routines. These routines further linked those trajectories that 

were longer than a cut-off value of between 10 and 20 frames and that coincided within a 

space of 8 pixels. Fig. 4.4 shows an example image from each colour channel, and a 

diagram of the SPT trajectories determined. 
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FIGURE  4.4: (A) Example image frames from each colour channel. (Top left) 605-sAv-
QDs which target biotinylated tyrosine kinase receptor, BLAP-EGFR. (Top right) 655-
CoA-QDs which target GPI-anchored ACP. (Lower left): 705-CTB-QDs which target 
ganglioside GM1. (Lower right) Sum of all frames in the YFP channel. 
(B) Overlay of the outline of the cell and the recorded trajectories of the three different 
kinds of QDs from 567 image frames and a total duration of 22.8 s. 

BLAP‐EGFR 
ACP‐GPI 
GM1 

A 

B 

BLAP‐EGFR: 605‐sAv‐QDs  ACP‐GPI: 655‐CoA‐QDs 

GM1: 705‐CTB‐QDs  YFP‐PM 
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We calculated the mean squared displacements (MSDs) as a function of time for 

each single trajectory, m, that contained n > 20 image frames, and for all possible time 

intervals, nτ [89]: 
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where τ is the frame acquisition time and N is the total number of frames in a trajectory. 

We determined the average diffusion coefficient in two different ways. First, we 

calculated the average MSD at each time interval, nτ, as an average of the MSD of all 

trajectories at that interval: 

൏ ሺ݊߬ሻܦܵܯ ൐ൌ
1
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We fit the initial five time points of this single average trajectory to the theoretical 

expression for free 2D Brownian diffusion plus a constant, c: 

൏ ሺ݊߬ሻܦܵܯ ൐ൌ ஻௥௢௪௡௜௔௡߬ܦ4 ൅ ܿ 

with fit weights equal to the inverse variance at each point (1/σ2), and DBrownian is the 

diffusion coefficient. We call this the “average trajectory analysis”. The constant c is an 

offset that relates to the spatial precision by which we can determine the position of a 

single molecule. We also determined the average diffusion coefficient by separately 

fitting the MSD of each trajectory that contained n > 50 frames to Eq. 4.3 (first five 

frames fit) to determine a diffusion coefficient for each. We determined the average 

diffusion coefficient as the mean of these single-trajectory diffusion coefficients. We call 

this the “separate trajectory analysis”. Fig. 4.5 shows the full set of analyzed trajectory 

displacements for each QD colour. These plots reveal that there is a high degree of 

heterogeneity in individual particle diffusive behaviour. The pure blue, green, or red 

trajectories in the respective figures correspond with the “average trajectory” determined 

as described above. Although some QDs appear to be immobile in the image series, all 

observed QDs were included in the SPT analysis. 

  

(4.1)

(4.2)

(4.3)
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FIGURE  4.5:  Log(MSD) vs. log(time) for detected trajectories longer than 10 image 
frames, shown for each of the three membrane molecules investigated: BLAP-EGFR, 
ACP-GPI, and GM1. The average trajectory MSD for each of these species is marked by 
pure blue, green, and red, respectively. 
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kICS Analysis 

An important consideration with kICS is how to handle an image series that has an 

immobile population of fluorescent molecules. Indeed, this is a ubiquitous concern 

because even when all fluorophores are mobile, there can be an average background 

intensity that is not simply white noise, and hence will contribute artificial correlations to 

the correlation function. Immobile fluorescence intensity will always bias a kICS analysis 

to lower diffusion measurements. Thus, in any measurement on cells, where 

autofluorescence or immobile features are frequently present, a method is needed to 

remove immobile fluorescence. Immobile fluorescence removal has previously been done 

in correlation spectroscopy experiments with STICS [45] and RICS [68]. Prior to 

analysis, one subtracts the “mean intensity image” of the entire image series from each 

image in the series. An efficient way of computing this is to Fourier filter in time each 

pixel stack in the image separately by setting its DC component to zero [90]. 

We analyzed the same region of the QD-labeled image series with kICS as was 

done with SPT. Analyses were done both with and without immobile fluorescence 

removal by Fourier filtering. In each case we used a |k|2 cut-off that restricted the 

normalized kICS correlation decay to less than –2, and used a cut-off of τ = 5 frames (200 

ms) to correspond with the 5 frames fit in the SPT diffusion model. Since a single image 

series was analyzed for each QD colour, we estimated the uncertainty in each kICS 

measurement by varying the |k|2 and τ cut-offs to achieve the same theoretical correlation 

decay, as described in Sec. 3.6. No spatial sampling bias correction was applied to the 

results, since each image series analyzed contained ~5000 beam areas. 

The dynamics plot and the maximum time lag |k|2 plot from kICS analysis of the 

BLAP-EGFR QD colour channel, after immobile fluorescence removal, are shown in Fig. 

4.6. Plots for the ACP-GPI and GM1 colour channels are not shown, but looked similar. 
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FIGURE  4.6:  kICS analyses of QD-labeled membrane molecule diffusion after Fourier 
immobile removal. Shown are (A) the maximum time lag |k|2 plot and (B) the dynamics 
plot for BLAP-EGFR. Plots for the other QD colour channels, corresponding to ACP-GPI 
and GM1, were similar. 
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4.2.3 Results 

Diffusion measurements from the kICS and SPT analyses described above are shown in 

Table 4.2. The results obtained with kICS after immobile fluorescence removal are very 

close to the SPT results in the cases of ACP-GPI and GM1, but are lower than the SPT 

results for BLAP-EGFR (0.051 µm2/s with kICS vs. 0.07 µm2/s with SPT). The kICS 

results without immobile fluorescence removal are considerably lower, indicating that 

background fluorescence and immobile QDs bias the results. This was especially the case 

for the GM1-ChtoxB-QDs, where the measured diffusion coefficients before and after 

immobile removal were 0.027 µm2/s and 0.060 µm2/s, respectively. 

 kICS 
(no immobile 

removal) 

kICS 
(with immobile 

removal) 

SPT Average 
Trajectory  

SPT Separate 
Trajectories 

D ± Error 
estimate (µm2/s)

D ± Error 
estimate (µm2/s)

D ± SE (µm2/s) D ± SD (µm2/s)

BLAP-EGFR/ 
  sAv-QD605 

0.038 ± 0.001 0.051 ± 0.001 0.074 ± 0.003 
(N=60) 

0.070 ±  0.048 
(N=60) 

ACP-GPI/ 
  CoA-QD655 

0.090 ± 0.002 0.106 ± 0.002 0.103 ± 0.002 
(N=62) 

0.100 ± 0.039 
(N=62) 

GM1/  
  ChtoxB-QD705 

0.027 ± 0.002 0.060 ± 0.001 0.060 ± 0.003 
(N=51) 

0.057 ± 0.064 
(N=51) 

TABLE  4.2:  Measured diffusion coefficients, using kICS and SPT, for each of the three 
labeled membrane molecules over the first five time lags. The error estimate for kICS is 
the standard deviation from kICS analyses run on the same image series using different 
|k|2 and τ cut-offs, where τ ranged from 3 to 10 frames. 
 

We can postulate a reason for the large discrepancy between the kICS results with 

and without immobile removal for GM1. By examining the GM1-QD colour channel, it is 

apparent that there are a few very bright particles that are completely immobile. Two 

example images highlighting this, before and after immobile removal, are shown in Fig. 

4.7. A major difference between SPT and fluorescence correlation methods is that SPT is 

independent of particle brightness, provided that a given particle can be tracked at all. In 

contrast, with kICS the weight given to a particle depends on the square of its fluorescence 

intensity, since the correlation is a product of two k-space images. If immobile particles 

are abnormally bright, as appears to be the case for the GM1 image series, they will be 

disproportionately represented in the ensemble-averaged correlation decay in kICS. 
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FIGURE  4.7:  An image of QD-labeled GM1 sphingolipid (A) before immobile 
fluorescence removal, and (B) after. Circled in red are particles that were completely 
immobile during the entire image series; the yellow-circled particle was almost 
completely immobile. Notice that the immobile particles are brighter than most other 
particles, which explains why they dominate the kICS measurements made without 
immobile fluorescence removal.  

A 

B After immobile removal 
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Even when no immobile particles are present, kICS results may differ from SPT 

results because of differences in particle brightness. For example, some molecules may 

be doubly labeled, or some QDs could be clustered even before labeling. Larger particles 

can be expected to diffuse more slowly, and clusters are more apt to be hindered by 

obstacles in the membrane or on the glass surface. These particles will also be brighter 

than singly-labeled molecules, and so their lower mobility will be given higher weight in 

the kICS correlation. With SPT, a cluster of particles with lower mobility will appear as a 

single bright particle. This could be a factor causing the discrepancy between kICS and 

SPT in the measured diffusion of BLAP-EGFR, where a few very bright particles appear 

to have low mobility, but are not immobile. 

Overall, diffusion of single particles measured using kICS compares quite well with 

diffusion measured by more time-consuming SPT analysis. kICS can be applied to image 

time series of particles that are blinking or bleaching, and subregions of an image can 

easily be selected for analysis. This makes kICS a useful tool to complement SPT, 

because kICS analyses can be done quickly, and unlike other fluorescence correlation 

methods kICS is not biased by fluorophore photophysics. 
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5. Conclusion 

 

Fluorescence microscopy is a versatile tool for studying the dynamic processes that occur 

in living cells and cell membranes. In this thesis we have explored a technique, k-space 

image correlation spectroscopy (kICS), that is particularly well suited to analyze 

fluorescence microscopy image time series when the fluorophores exhibit photobleaching 

or blinking emission. 

Using computer simulated image series of fluorescent particle diffusion, we 

examined the effect of spatial sampling on kICS measurements. We found that when small 

image regions are analyzed with kICS, the reported diffusion coefficient is systematically 

biased below the true value. This bias results from spectral leakage in the finite Fourier 

transforms that are computed for the kICS correlation function. We developed two ways 

in which this bias can be corrected: by multiplying the image data by a suitable window 

function before applying kICS, or by applying a post-analysis correction to the measured 

diffusion coefficient. Applying a post-analysis correction has the advantage that no data 

is discarded, but it is possible that a slight bias remains depending on the particular 

parameters chosen in the analysis. We confirmed with confocal microscopy image series 

of diffusing microspheres that bias in kICS depends on the size of the image region 

analyzed, and that both methods of correction are effective in correcting most of the bias. 

Measurement bias is clearly a potential drawback of using kICS. If an experimenter 

analyzes diffusion in image regions of different sizes, then a direct comparison of the raw 

measurements will not be valid. It would be highly desirable to find an analytical 

correction for bias in kICS; however, attempts to find such a correction have so far been 

unsuccessful. Fortunately, for images of just 40 beam areas (~8 μm2 on a diffraction-

limited sample) the bias is only 20%, and it is less for larger images. Moreover, this is 

similar to the degree of bias that can occur with other techniques when photobleaching is 

not properly accounted for [59], and the bias can be easily corrected as described above. 

We also examined the accuracy and precision of kICS over a wide range of both 

spatial and temporal sampling in simulated image series. We found that kICS measurements 

were more precise than TICS under all conditions examined. In addition, kICS can 
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measure diffusion that is ten time faster than TICS at the same imaging frame rate. This 

means that one need not be as concerned with selecting the optimal frame rate when 

applying kICS, whereas TICS could return erroneous results if the frame rate is too low. 

Although there are techniques that can measure faster diffusion than kICS, such as FCS, 

FICS, and RICS, these techniques also have drawbacks. FCS and FICS require 

specialized equipment, and provide information either only at a single point (FCS) or 

only averaged over an entire field of view (FICS). RICS can only be applied to images 

acquired with a confocal laser scanning microscope. In contrast, kICS can be used with 

image series acquired on wide-field, confocal, and TIRF microscopes, kICS can analyze 

image subregions, and kICS is not affected by fluorophore photobleaching or blinking. 

We demonstrated that when normalized by the zero-time-lags correlation, kICS can 

accurately measure diffusion even when the initial distribution of particles is highly 

nonuniform, which would be the case after localized photouncaging or photoconversion 

of biological effector molecules. We also explained how the transition to noise is more 

clearly visible in normalized kICS |k|2 plots, and how this helps to compute reasonable 

cut-offs to use as kICS analysis parameters when the diffusion speed can be estimated. 

Indeed, the ability to tradeoff between the |k|2 and τ cutoffs is the basis for a method we 

proposed to estimate the uncertainty in a single kICS measurement, which is to perform 

multiple analyses of the same data using different cut-offs. This uncertainty estimate 

includes a contribution from underlying variability in the biological sample as well as a 

contribution from the subjective choice of optimal |k|2 and τ fitting parameters. When it is 

not possible or convenient to perform multiple measurements, this uncertainty estimate is 

better than one determined from a single kICS analysis of the data. 

In this thesis we have presented a number of findings that will benefit anyone using 

kICS to measure diffusion of fluorescently labeled macromolecules in living cells. 

Although outside the scope of this thesis, the methods we developed to examine the 

accuracy of kICS diffusion measurements could be extended in a straightforward way to 

kICS measurements of flow.  
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