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Abstract

Parameter and state estimation of linear systems play a significant role in the realm of

control systems. More often than not, the parameters and the state values are not readily

available and must be deduced from the applied input and the measured output information.

Algebraic estimators have been introduced to combat the parameter identification problem,

under the major assumption that an accurate measurement of the output signal is available.

If the measured output is not noise-free, estimating the output states and their derivatives is

not possible. This thesis focuses on the algebraic estimation and filtering of the parameters

and the states of linear systems using a forward-backward kernel representation of differential

invariants of a system, that will be able to handle measured output signals with high noise

values. The kernels, working in tandem with the Kalman filter and Raunch-Tung-Striebel

(RTS) smoother, provide accurate parameters and state values even for high noise levels in

the measured output. Further, this thesis explains in detail, the construction of a python

based estimation library that modularises the algorithms used for state and parameter es-

timation. This would facilitate applications like implementing model based controllers, and

also help in further analysis of a system. This library provides a flexible infrastructure to test

the performance of different algorithms against the benchmark results from the Unscented

Kalman Filter(UKF). It is a collaborative effort to drive the research forward for further

advancements and handling more complex non-homogeneous and non-linear systems.
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Résumé

L’estimation de paramètres et états des systèmes linéaires joue un rôle important dans le

domaine des systèmes de contrôle. Presque toujours, les paramètres et les valeurs d’état ne

sont pas facilement disponibles et ils doivent être déduits par informations d’entrée appliquées

et de sortie mesurées. Des estimateurs algébriques ont été introduits pour combattre le

problème de l’identification des paramètres, en partant de l’hypothèse principale, qu’une

mesure précise du signal de sortie est disponible. Si la sortie mesurée n’est pas exonérée

de bruit, l’estimation des états de sortie et de leurs dérivés n’est pas possible. Si la sortie

mesurée n’est pas exempte de bruit, l’estimation des états de sortie et de leurs dérivés n’est

pas possible. Cette thèse se concentre sur l’estimation algébrique et le filtrage des paramètres

et des états des systèmes linéaires en utilisant une représentation par noyau avant-arrière

des invariants différentiels d’un système, qui sera capable de traiter des signaux de sortie

mesurés avec des valeurs de bruit élevées. Les noyaux fonctionnant en conjonction avec

le filtre Kalman et un adoucisseur Rauch-Tung-Striebel (RTS), fournissent des paramètres

précis et des valeurs d’état même pour des niveaux de bruit élevés dans la sortie mesurée.

En outre, cette thèse explique en détail la construction d’une bibliothèque d’estimation

basée sur Python qui modularise les algorithmes utilisés pour l’estimation de l’état et des

paramètres. Cela faciliterait applications telles que la mise en œuvre de contrôleurs basés

sur des modèles, et aiderait également à une analyse plus approfondie d’un système. Cette

bibliothèque fournit une infrastructure flexible pour tester les performances de différents

algorithmes contre les résultats de référence du filtre de Kalman sans parfum (UKF). Il

s’agit d’un effort de collaboration visant à faire avancer la recherche en vue de nouvelles

avancées et de la manipulation de systèmes non-homogènes et non-linéaires plus complexes.
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Chapter 1

Introduction

1.1 Background and Motivation

Mathematical representation of a system is crucial to understanding the underlying dynam-

ics of a system, as well as establishing efficient control. This system, mathematically known

as a model, represents the essential characteristics of the system. However, the immedi-

ate challenge to this mathematical representation is the identification of system parameters,

which in most cases, remain unknown. The process of obtaining the parameters that govern

the dynamics of the system using the applied input and the observed output data is known

as system identification. The research on system identification is vast, and various proposals

were made that depend on the model characteristics. With the advancements in computa-

tional prowess, the system identification techniques improved to provide results faster and

with better accuracy. One such method, algebraic estimation and filtering of the parameters

and the states of linear systems using a forward-backward kernel representation of differen-

tial invariants of a system, is analyzed extensively in this thesis.

This solves only a part of the problem. It is also necessary to have knowledge of the state

of the system. The state of the system is the minimum set of variables whose present values

together with the values of input signals in the future, completely determine the future be-

haviour of the system[1]. The accurate estimation of system states is crucial to driving the

system to the desired future state. This poses a myriad of challenges, specifically because

of the underlying process and measurement noise in the system. It is not feasible to obtain

accurate parameters and output values in most applications. Hence it is vital for the state

estimation algorithm to filter the noise and provide an accurate state estimate. In this thesis,
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various techniques involved in state estimation are covered and their performance is analyzed

with examples.

1.2 State and Parameter estimation

A model is a mathematical representation of the essential characteristics of an existing sys-

tem. When a system model can be defined by a finite number of variables and parameters,

it is known as a parametric model. To implement a parametric model-based controller, it

is necessary to know precisely the structure of the model of the system and its associated

parameters[1]. This makes parameter identification one of the most crucial processes in-

volved in the control system design. In most often circumstances, the measured output

signal consists of a high level of measurement noise with unknown characteristics. Hence, it

is pivotal to have a robust algorithm that efficiently filters the noise in a short period and

provides an accurate description of the system parameters.

The least squares algorithm was the earliest known method for solving estimation problems,

which predates 1809 when Carl Friedrich Gauss[2] published his method of calculating the

orbits of celestial bodies. This method is based on the minimization of the sum of squares of

residuals (known as the error function or cost function). It was followed by the introduction

of maximum likelihood by Sir Ronald Aylmer Fisher in 1922. The inception of this method

and its evolution by R.A. Fischer is explained thoroughly in [3]. Later, linear estimation for

stochastic systems was introduced in the works of Wiener (1949) and Kolmogorov (1941)[1],

[4],[5]. There are recent developments in algebraic methods for parameter and state estima-

tion where time differentiations of expression, multiplications by positive powers of the time

variable, and iterated integrations are sufficient to obtain linear expressions in the parame-

ters without the knowledge of the initial condition of the system[1].

The joint parameter and state estimation of linear systems based on Hilbert-Schmidt forward-

backward double-sided kernel has the potential to handle high noise in output measurement[6].

This algebraic kernel estimator works over a finite time interval under the assumption that

the system is observable. A system is stated observable if its state-space can be reconstructed

at any finite instant, in terms of the input, the output, and their respective time derivatives

of finite order. One major challenge of this method is its sensitivity to measurement noise.

To address this issue, the integral regression equation is rewritten point-wise as a matrix

equation using finite, distinct time instances, known as knots [6]. This matrix equation is

then treated as a least squares problem. The performance of parameter estimation is further

improved by using multiple regression. The multiple regression algorithm can be extended
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to a computationally feasible Regularized Recursive Least Squares (RRLS) algorithm where

the covariance matrix, parameters and state are updated recursively from the previously es-

timated parameters and state values. This method is powerful and efficient since it doesn’t

require the complete information of the output in the time interval for parameter estimation.

The reconstruction of the state is instrumental for this algorithm and has to be performed

at every recursive step.

In addition to the parameters, the states of the system must be estimated simultaneously.

In the algebraic parameter estimation discussed above, the states of the system must be

reconstructed at each recursive step. Luenberger observer[7], proposed by D.Luenberger in

1964 is based on a simple feedback loop aimed at minimising the error in the estimated

states. But this observer ensures convergence of states under a major assumption that the

system is observable and deterministic. This limitation is addressed in the groundbreaking

work of Rudolf E.Kalman, which allowed estimation of states of stochastic systems using the

Kalman Filter[8]. This thesis proves the dexterity of the Kalman filter in its robustness to

noise, computational simplicity and ease of implementation. The major advantage that the

Kalman filter has over its contemporaries is that it accommodates the possibility of process

and measurement uncertainties and uses a stochastic optimization technique to filter the

noises. The Kalman filter is improved further by using a fixed interval smoother, namely

Raunch-Tung-Striebel smoother[9] developed by Raunch, Tung and Striebel.

1.3 Python based estimation library

The parameter and state estimation strategies for SISO LTI systems are discussed and ana-

lyzed in this thesis to a great extent. However, to have a practical implication of this research,

it is essential to ensure that the results are reproducible and the deployed algorithms are

user-friendly. It involves making the algorithms generic with configurable parameters and the

system of interest, order-agnostic. It is also important to keep in mind that to reap maximum

benefit from this research, the algorithms must be accessible to the students, universities,

companies and aspirants alike. Hence, developing this library in a community-driven, open-

source framework seemed beneficial. Python is one of the most commonly used open-source

programming languages with enormous support in terms of scientific libraries like NumPy,

SciPy, Pandas and Matplotlib, which facilitates both easy and stable implementation[10].

Owing to this record, a python based estimation library is meticulously constructed, taking

into consideration the factors of reliability, scalability, and ease of implementation. It ensures

that the developed algorithms are modular with clearly defined assumptions and adaptable
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to different applications with proper configuration. In addition, this library is accommo-

dating to improvisation and extension, like support for Linear Time Variant (LTV) systems

and non-linear systems[11],[12],[13] in future. This python library is developed through the

combined effort of my fellow lab partner Nithilasaravanan Kuppan[14] and myself, standing

testimonial to the years of painstaking research carried out by Dr Hannah Michalska and the

graduate students under her supervision. A comprehensive explanation of the construction

of this library and the method of usage is present in chapter 6.

1.4 Thesis objectives and organization

The primary objective of this thesis is to extend the parameter estimation algorithm devel-

oped using Hilbert-Schmidt forward-backward double sided kernel[6] and Recursive Regular-

ized Least Squares algorithm to perform accurate state estimation using Kalman filter and

RTS smoother for higher-order SISO LTI systems with various noise levels. It is followed by

the construction of the estimation library - python library, detailing the library architecture,

dependencies, usage, examples, and scope for future works.

The organization of this thesis can be summarized as follows:

Chapter 1 provides a background to the estimation problem, followed by a brief introduc-

tion to the research works which has already been carried out in that area. It also outlines

the scope and objective of this thesis.

Chapter 2 introduces the double sided kernel approach, which is detailed in [6] and focuses

on understanding the kernel equations and supporting theorems for SISO LTI systems.

Chapter 3 discusses the kernel-based multiple regression techniques, and the regression

equations are derived for a 4th order LTI system along with the Recursive Regularized Least

Squares (RRLS) algorithm. A case study is carried out with a 4th order LTI system and the

results are presented.

Chapter 4 provides a detailed analysis of a state estimation problem, indulging the working

of the Kalman filter and the Rauch–Tung–Striebel (RTS) smoother. It is followed by the

integration of the Kalman filter and the RTS smoother to the RRLS algorithm. Finally, the
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results are presented where the performance of the algorithm is discussed with a couple of

examples.

Chapter 5 discusses the working of the Unscented Kalman Filter (UKF) algorithm to simul-

taneously estimate the parameters and the states of the SISO LTI systems. The performance

of this algorithm is compared with the Kernel-based RRLS algorithm using a case study.

Chapter 6 elaborates on the necessity for a python based estimation library, followed by

the assumptions and requirements. This chapter explains in easy to follow procedures - the

steps involved in using this library like installation, input preparation, algorithm selection

and algorithm execution, with use cases and examples.

Chapter 7 extends the current research presented in the thesis to cover a particular use

case - state estimation of a SISO LTI system in the infinite horizon, the use case which is of

paramount importance for a control system design. The preliminary results and strategies

for future work follow.
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Chapter 2

Parameter and State Estimation of

LTI systems - Double sided Kernel

Approach

The general problem of system identification in Linear Time Invariant (LTI) Systems is

defined in this chapter. It is followed by the double-sided kernel approach [6] for parameter

estimation, which does not require any knowledge of the underlying dynamics of the system.

This method employs a forward-backward integration to convert a high order differential

equation into an integral form with no singularities at the boundaries of the finite time

interval.

2.1 Finite interval estimation problem for LTI systems[11]

Consider a general nth order, strictly proper and minimal Single Input Single Output (SISO)

LTI system in state space form evolving on a given finite time interval [a, b] ⊂ R:

ẋ = Ax+Bu

y = Cx

(2.1)
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with x ∈ Rn, the state vector; x(0) = x0, the initial state vector; ẋ = dx/dt; y ∈ R is the

measured output; u ∈ R is the applied input. The matrices A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n

are given by,

A =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 . . . −an−1


, (2.2)

(2.3)

B =


b1

b2
...

bn

 (2.4)

C =
[
1 0 0 . . . 0

]
(2.5)

with matching dimensions of the system matrices and the characteristic equation

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t) = 0 (2.6)

The input-output equation for system (2.1) becomes

y(n)(t) + an−1y
(n−1)(t) + ...+ a1y

(1)(t) + a0y(t) = −bn−1u
(n−1)(t)− ...− b0u(t) (2.7)

where bi for i = 0, ..., n − 1 are the coefficients of the polynomial in the numerator of the

rational transfer function for (2.1). The unknown parameters ai and bi for i = 0, .., n − 1

need to be estimated from noisy observations of the system’s output, yM(t) for t ∈ [a, b].
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The estimation problem is stated as follows. Given an arbitrary finite interval of time [a, b],

suppose that:

(1) The dimension of the state vector of the LTI system is known a priori.

(2) The system input function u(t) is equal to zero (No input).

(3) The output of the system is observed as a single realization of a ‘continuous’ measure-

ment process yM(t) := y(t)+η(t), t ∈ [a, b] in which η denotes additive white Gaussian

noise with unknown intensity (variance) σ2.

An implementable version of assumption (3) simply requires availability of an unrestricted

number of output measurements over the observation horizon [a, b].

2.2 Kernel representation of a system differential invariance[6]

The kernel representation of the nth order SISO LTI system was defined in [6]. The key to

finite interval estimation approach is the integral representation of the controlled differential

invariance of the system 2.7. The parameter estimation of a homogeneous system can be

viewed as the identification of a differential invariant I (I ≡ 0, ≡ is ’equivalent to’) which

remains constant in the absence of external input:

I(t, y(t), y(1)(t), · · · , y(n)(t))

= y(n)(t) + an−1y
(n−1)(t) + · · ·+ a0y(t) ≡ const. = 0 ; t ∈ [a, b] (2.8)

Equation 2.8 delivers additional measurement-noise independent information about the be-

haviour of the system in addition to the noisy signal yM . The zero-input response char-

acterization (2.8) has to be put in a form, which does not depend on the initial or boundary

conditions of the system, and that does not involve any time derivatives of the output as

they cannot be measured directly. Such a system characterization is given in terms of the

theorems below.

Definition 2.1.

A pair of smooth (class C∞) functions (αa, αb), αs : [a, b] −→ R, s = a or b, is an annihilator

of the boundary conditions for system (2.1) if the functions αs are non-negative, monotonic,

vanish with their derivatives up to order n − 1 at the respective ends of the interval [a, b];

i.e.
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α(i)
s (s) = 0; i = 0, . . . , n− 1; s = a, b; α(0)

s ≡ αs (2.9)

and such that their sum is strictly positive, i.e. for some constant c > 0

αab(t) := αa(t) + αb(t) > c ; t ∈ [a, b] (2.10)

A simplest example of such an annihilator for system (2.1) is the pair,

αa(t) := (t− a)n; αb(t) := (b− t)n; t ∈ [a, b]

αab(t) := αa(t) + αb(t) > 0

αab(s) = (b− a)n; s = a, b

(2.11)

Indeed, it is easy to see that (2.11) holds for all n ≥ 1 because αab(a) = αab(b) = (b−a)n > 0

and, for n ≥ 2, αab has a unique stationary point t∗ = 0.5(a + b) ∈ [a, b] at which αab(t
∗) =

(0.5)n−1(b− a)n.

Employing this particular annihilator the integral representation for system (2.1) is rendered

by the following:

Theorem 2.2.1 There exist Hilbert-Schmidt kernels KDS,y, KDS,u, such that input and out-

put functions u and y of system (2.1) satisfy

y(t) = α−1
ab (t, n)

[ ∫ b

a

KDS,y(n, t, τ)y(τ) dτ +

∫ b

a

KDS,u(n, t, τ)u(τ) dτ

]
(2.12)

with,

α−1
ab (t, n) =

1

(t− a)n + (b− t)n
(2.13)

Hilbert-Schmidt double-sided kernels of equation (2.12) are square integrable functions on

L2[a, b] × L2[a, b] and are expressed in terms of the forward and backward kernels given



Parameter and State Estimation of LTI systems - Double sided Kernel Approach 10

below:

KDS,y(n, t, τ) ≜

KF,y(n, t, τ), for τ ≤ t

KB,y(n, t, τ), for τ > t
(2.14)

KDS,u(n, t, τ) ≜

KF,u(n, t, τ), for τ ≤ t

KB,u(n, t, τ), for τ > t
(2.15)

The kernel functions KDS,y, KDS,u are n - 1 times differentiable functions of t. The forward

kernels KF,y(n, t, τ), KF,u(n, t, τ) and backward kernels KB,y(n, t, τ), KB,u(n, t, τ) in equation

(2.14) and (2.15) are given below:

KF,y(n, t, τ) =
n∑

j=1

(−1)j+1

(
n

j

)
n!(t− τ)j−1(τ − a)n−j

(n− j)!(j − 1)!

+
n−1∑
i=0

ai

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)n−i+j−1(τ − a)n−j

(n− j)!(n− i+ j − 1)!

(2.16)

KB,y(n, t, τ) =
n∑

j=1

(
n

j

)
n!(t− τ)j−1(b− τ)n−j

(n− j)!(j − 1)!

+
n−1∑
i=0

ai

i∑
j=0

(
i

j

)
n!(t− τ)n−i+j−1(b− τ)n−j

(n− j)!(n− i+ j − 1)!

(2.17)

KF,u(n, t, τ) =
n−1∑
i=0

bi

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)n−i+j−1(τ − a)n−j

(n− j)!(n− i+ j − 1)!
(2.18)

KB,u(n, t, τ) =
n−1∑
i=0

bi

i∑
j=0

(
i

j

)
n!(t− τ)n−i+j−1(b− τ)n−j

(n− j)!(n− i+ j − 1)!
(2.19)
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The proof for Theorem 2.2.1, can be found in [6] (pp. 153-157). The integral kernel rep-

resentation of the system in Theorem 2.2.1 eliminates the need for boundary conditions as

they are annihilated during every integration operation by the presence of the annihilating

factors αa and αb. The following conjecture is then quite obvious.

Corollary 2.2.2 For any given input function u, the output function y : [a, b] → R satisfies

the system input-output equation (2.7) on the interval [a, b] if and only if it satisfies the

integral equation (2.12) regardless of any boundary conditions that may be imposed. The

kernel representation of the system invariance provides a unique criterion whose reproducing

property unambiguously characterizes all zero input solutions of the SISO LTI system. In

particular all the fundamental solutions of the LTI system share the reproducing property

(2.12) as they span a subspace of the RKHS of dimension n.

□

Explicit kernel expressions for the derivatives of the output function:

The time derivatives of the system output y(k), k = 1, . . . , n−1 is obtained using the following

Theorem 2.2.3.

Theorem 2.2.3 There exist Hilbert-Schmidt kernels KF,k,y, KF,k,u, KB,k,y, KB,k,y, k = 1, . . . , n−
1 such that the derivatives of the output function in (2.1) can be computed recursively as fol-

lows:

y(k)(t) =
1

(t− a)n + (b− t)n

[ k∑
i=1

(−1)i+1

(
p+ i− 1

i

)
n!(t− a)n−iy(k−i)(t)

(n− i)!

+
n−1∑
i=p

ai

i−p∑
j=0

(−1)j+1

(
p+ j − 1

j

)
n!(t− a)n−jy(i−j−p)(t)

(n− j)!

+

∫ t

a

KF,k,y(n, p, t, τ)y(τ)dτ +

∫ t

a

KF,k,u(n, p, t, τ)u(τ)dτ

+
n−1∑
i=p

bi

i−p∑
j=0

(−1)j+1

(
p+ j − 1

j

)
n!(t− a)n−ju(i−j−p)(t)

(n− j)!
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−
k∑

i=1

(
p+ i− 1

i

)
n!(b− t)n−iy(k−i)(t)

(n− i)!

−
n−1∑
i=p

ai

i−p∑
j=0

(
p+ j − 1

j

)
n!(b− t)n−jy(i−j−p)(t)

(n− j)!

+

∫ b

t

KB,k,y(n, p, t, τ)y(τ)dτ +

∫ b

t

KB,k,u(n, p, t, τ)u(τ)dτ

−
n−1∑
i=p

bi

i−p∑
j=0

(
p+ j − 1

j

)
n!(b− t)n−ju(i−j−p)(t)

(n− j)!

]

where p = n− k and:

KF,k,y(n, p, t, τ) =

p∑
j=1

(−1)j+n−p+1

(
n

n− p+ j

)
n!(t− τ)j−1(τ − a)p−j

(p− j)!(j − 1)!

+

p−1∑
i=0

ai

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)p−i+j−1(τ − a)n−j

(n− j)!(p− i+ j − 1)!

+
n−1∑
i=p

ai

p∑
j=1

(−1)j+i−p+1

(
i

i− p+ j

)
n!(t− τ)j−1(τ − a)n−i+p−j

(n− i+ p− j)!(j − 1)!

(2.20)

KF,k,u(n, p, t, τ) =

p−1∑
i=0

bi

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)p−i+j−1(τ − a)n−j

(n− j)!(p− i+ j − 1)!

+
n−1∑
i+p

bi

p∑
j=1

(−1)j+i−p+1

(
i

i− p+ j

)
n!(t− τ)j−1(τ − a)n−i+p−j

(n− i+ p− j)!(j − 1)!

(2.21)

KB,k,y(n, p, t, τ) =

p∑
j=1

(
n

n− p+ j

)
n!(t− τ)j−1(τ − a)p−j

(p− j)!(j − 1)!

+

p−1∑
i=0

ai

i∑
j=0

(
i

j

)
n!(t− τ)p−i+j−1(b− τ)n−j

(n− j)!(p− i+ j − 1)!

+
n−1∑
i=p

ai

p∑
j=1

(
i

i− p+ j

)
n!(t− τ)j−1(b− τ)n−i+p−j

(n− i+ p− j)!(j − 1)!

(2.22)



Parameter and State Estimation of LTI systems - Double sided Kernel Approach 13

KB,k,u(n, p, t, τ) =

p−1∑
i=0

bi

i∑
j=0

(
i

j

)
n!(t− τ)p−i+j−1(b− τ)n−j

(n− j)!(p− i+ j − 1)!

+
n−1∑
i+p

bi

p∑
j=1

(
i

i− p+ j

)
n!(t− τ)j−1(b− τ)n−i+p−j

(n− i+ p− j)!(j − 1)!

(2.23)

The system parameters ai, bi, i = 0, . . . , n− 1 in Theorem 2.2.3 can be obtained using alge-

braic methods discussed in Chapter 3.
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Chapter 3

Finite interval estimation using

multiple regression

Chapter 2 provided the necessary background into the development of the double-sided

kernels. This chapter discusses the usage of these double-sided kernels for the joint estimation

of both the parameters and the states over a finite interval [a, b]. A specific case of 4th order

LTI system is considered in this chapter. However, this strategy can be extended to any

finite nth order system.

3.1 Kernel representation of a 4th order system [11]

Consider a fourth order homogeneous LTI system described by the characteristic equation

(3.1) consisting of four unknown parameters a0, a1, a2, a3.

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0, ∀t ∈ [a, b] (3.1)

The general idea of the Theorem 2.2.1 and Theorem 2.2.3 was to reduce the order of the

output derivatives in (3.1) until no derivatives appeared. The influence of any pre-existing

initial conditions were removed by pre-multiplying the annihilator functions that vanished

together with their derivatives at the endpoints of [a, b]. Thus, we pre-multiply (3.1) by
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(ϵ− a)4 and (b− ζ)4 (annihilator at ϵ = a and ζ = b ) to get

(ε− a)4y(4)(t) + a3(ε− a)4y(3)(t) + a2(ε− a)4y(2)(t)+a1(ε− a)4y(1)(t) + a0(ε− a)4y(t) = 0

(3.2)

(b− ζ)4y(4)(t) + a3(b− ζ)4y(3)(t) + a2(b− ζ)4y(2)(t) + a1(b− ζ)4y(1)(t) + a0(b− ζ)4y(t) = 0

(3.3)

The equations (3.2) and (3.3) are integrated four times on the intervals [a, a+τ ] and [b−σ, b].

It means, the equation (3.1) is integrated the forward direction for the interval [a, a+ τ ] and

in the backward direction for [b − σ, b]. The complete derivation is detailed in [15] and the

resulting forward and backward kernel is given below.

τ 4y(a+ τ) =

∫ a+τ

a

[
16 (ε′′′ − a)

3 − a3 (ε
′′′ − a)

4
]
y (ε′′′) dε′′′

+

∫ a+τ

a

∫ ε′′′

a

[
−72 (ε′′ − a)

2
+ 12a3 (ε

′′ − a)
3 − a2 (ε

′′ − a)
4
]
y (ε′′) dε′′dε′′′

+

∫ a+τ

a

∫ ε′′′

a

∫ ε′′

a

[
96 (ε′ − a)− 36a3 (ε

′ − a)
2
+ 8a2 (ε

′ − a)
3 − a1 (ε

′ − a)
4
]
y (ε′) dε′dε′′dε′′′

+

∫ a+τ

a

∫ ε′′′

a

∫ ε′′

a

∫ ε′

a

[
−24 + 24a3(ε− a)− 12a2(ε− a)2 + 4a1(ε− a)3 − a0(ε− a)4

]
y(ε)dεdε′dε′′dε′′′

(3.4)

σ4y(b− σ) =

∫ b−σ

b

[
−16 (b− ζ ′′′)

3 − a3 (b− ζ ′′′)
4
]
y (ζ ′′′) dζ ′′′

+

∫ b−σ

b

∫ ζ′′′

b

[
−72 (b− ζ ′′)

2 − 12a3 (b− ζ ′′)
3 − a2 (b− ζ ′′)

4
]
y (ζ ′′) ζ ′′ζ ′′′

+

∫ b−σ

b

∫ ζ′′′

b

∫ ζ′′

b

[
−96 (b− ζ ′)− 36a3 (b− ζ ′)

2 − 8a2 (b− ζ ′)
3 − a1 (b− ζ ′)

4
]
y (ζ ′) dζ ′dζ ′′dζ ′′′

+

∫ b−σ

b

∫ ζ′′′

b

∫ ζ′′

b

∫ ζ′

b

[
−24− 24a3(b− ζ)− 12a2(b− ζ)2 − 4a1(b− ζ)3 − a0(b− ζ)4

]
y(ζ)dζdζ ′dζ ′′dζ ′′′

(3.5)

Cauchy’s formula for repeated integration [16] is applied to equations (3.4) and (3.5) for

simplifying the repeated integration.
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Let f be a continuous function on the real line, then the nth repeated integral of f at a is

given by,

f (−n)(t) =

∫ t

a

∫ σ1

a

· · ·
∫ σn−1

a

f (σn) dσn · · · dσ2 dσ1 (3.6)

which is equivalent to a single integration.

f (−n)(t) =
1

(n− 1)!

∫ t

a

(t− s)n−1f(s)ds (3.7)

Assuming a + τ = t in (3.4), b − σ = t in (3.5) and by applying Cauchy’s formula in the

forward direction for the interval [a, a+ τ ] and backward direction for the interval [b, b− σ]

we arrive at,

αa(t)y(t) ≜
∫ t

a

KF,y(t, s)y(s)ds; where αa(t) = (t− a)4 (3.8)

αb(t)y(t) ≜
∫ b

t

KB,y(t, s)y(s)ds; where αb(t) = (b− t)4 (3.9)

with KF,y(t, s) given by,

KF,y(t, s) =

[
16(s− a)3 − a3(s− a)4

]
+

(t− s)1

1!

[
− 72(s− a)2 + 12a3(s− a)3 − a2(s− a)4

]
+

(t− s)2

2!

[
96(s− a)− 36a3(s− a)2 + 8a2(s− a)3 − a1(s− a)4

]
+

(t− s)3

3!

[
− 24 + 24a3(s− a)− 12a2(s− a)2 + 4a1(s− a)3 − a0(s− a)4

]
(3.10)
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and KB,y(t, s) as,

KB,y(t, s) =

[
16(b− s)3 + a3(b− s)4

]
+

(t− s)

1!

[
72(b− s)2 + 12a3(b− s)3 + a2(b− s)4

]
+

(t− s)2

2!

[
96(b− s) + 36a3(b− s)2 + 8a2(b− s)3 + a1(b− s)4

]
+

(t− s)3

3!

[
24 + 24a3(b− s) + 12a2(b− s)2 + 4a1(b− s)3 + a0(b− s)4

]
(3.11)

3.2 Multiple regression equations for 4th order system [11]

By integrating (3.4) and (3.5) multiple times using the Cauchy’s formula for repeated

integration[16], we arrive at the multiple regression equations. The complete derivation

for the forward kernel is shown below. Similar derivation can be carried out for the back-

ward kernel. This derivation is a taken from [11].

By simultaneously integrating both sides of (3.4) over the interval [a, t] and applying Cauchy

formula for repeated integration,

∫ t

a

(s− a)4y(s)ds =

∫ t

a

∫ s

a

[
16 (ε′′′ − a)

3 − a3 (ε
′′′ − a)

4
]
y (ε′′′) dε′′′ds

+

∫ t

a

∫ s

a

∫ ε′′′

a

[
−72 (ε′′ − a)

2
+ 12a3 (ε

′′ − a)
3 − a2 (ε

′′ − a)
4
]
y (ε′′) dε′′dε′′′ds

+

∫ t

a

∫ s

a

∫ ε′′′

a

∫ ε′′

a

[
96 (ε′ − a)− 36a3 (ε

′ − a)
2
+ 8a2 (ε

′ − a)
3 − a1 (ε

′ − a)
4
]
y (ε′) dε′dε′′dε′′′ds

+

∫ t

a

∫ s

a

∫ ′′′

a

∫ ′′

a

∫ ε′

a

[
−24 + 24a3(ε− a)− 12a2(ε− a)2 + 4a1(ε− a)3 − a0(ε− a)4

]
y(ε)dεdε′dε′′dε′′′ds

(3.12)
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=

∫ t

a

(t− s)1

1!

[
16(s− a)3 − a3(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)2

2!

[
−72(s− a)2 + 12a3(s− a)3 − a2(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)3

3!

[
96(s− a)− 36a3(s− a)2 + 8a2(s− a)3 − a1(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)4

4!

[
−24 + 24a3(s− a)− 12a2(s− a)2 + 4a1(s− a)3 − a0(s− a)4

]
y(s)ds

(3.13)

Similarly, integrating both sides of (3.4) twice over the interval [a, t] gives,∫ t

a

(s− a)4(t− s)y(s)ds =

∫ t

a

(t− s)2

2!

[
16(s− a)3 − a3(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)3

3!

[
−72(s− a)2 + 12a3(s− a)3 − a2(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)4

4!

[
96(s− a)− 36a3(s− a)2 + 8a2(s− a)3 − a1(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)5

5!

[
−24 + 24a3(s− a)− 12a2(s− a)2 + 4a1(s− a)3 − a0(s− a)4

]
y(s)ds

(3.14)

By further integrating (3.4) multiple times in a similar way as above yields the following

formula of the forward kernel of a 4th order system for kth order of integration

1

(k − 1)!

∫ t

a

αa(t, s)(t− s)k−1y(s)ds

=

∫ t

a

(t− s)k

k!

[
16(s− a)3 − a3(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)k+1

(k + 1)!

[
− 72(s− a)2 + 12a3(s− a)3 − a2(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)k+2

(k + 2)!

[
96(s− a)− 36a3(s− a)2 + 8a2(s− a)3 − a1(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)k+3

(k + 3)!

[
− 24 + 24a3(s− a)− 12a2(s− a)2 + 4a1(s− a)3 − a0(s− a)4

]
y(s)ds

(3.15)
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Equation (3.15) can be rewritten as

1

(k − 1)!

∫ t

a

αa(t, s)(t− s)k−1y(s)ds =

∫ t

a

KFk,y(t, s)y(s)ds for k = 1, ..,m (3.16)

By similar fashion, integrating both sides of (3.5) simultaneously k times over the interval

[t, b] and applying Cauchy formula for repeated integration, we get

1

(k − 1)!

∫ b

t

αb(t, s)(t− s)k−1y(s)ds

= −
∫ b

t

(t− s)k

k!

[
16(b− s)3 + a3(b− s)4

]
y(s)ds

−
∫ b

t

(t− s)k+1

k + 1!

[
72(b− s)2 + 12a3(b− s)3 + a2(b− s)4

]
y(s)ds

−
∫ b

t

(t− s)k+2

k + 2!

[
96(b− s) + 36a3(b− s)2 + 8a2(b− s)3 + a1(b− s)4

]
y(s)ds

−
∫ b

t

(t− s)k+3

k + 3!

[
24 + 24a3(b− s) + 12a2(b− s)2 + 4a1(b− s)3 + a0(b− s)4

]
y(s)ds

(3.17)

And (3.17) can be rewritten as

1

(k − 1)!

∫ b

t

αb(t, s)(t− s)k−1y(s)ds =

∫ b

t

KBk,y(t, s)y(s)ds for k = 1, ..,m (3.18)

Adding (3.16) and (3.18) gives,

1

(k − 1)!

∫ b

a

αab(t, s)(t− s)k−1y(s)ds =

∫ b

a

KDSk,y(t, s)y(s)ds for k = 1, ..,m (3.19)

where,

KDSk,y(t, s) ≜

KFk,y(t, s) : s ≤ t

KBk,y(t, s) : s > t
;αab(t, s) ≜

(t− a)4 : s ≤ t

(b− t)4 : s > t
(3.20)
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3.3 Parameter estimation using multiple regression for nth order

system [11]

The multiple regression equation for a 4th order system can be generalized for nth order

systems, only difference being the kernel definitions from Theorem 2.2.1. Therefore, we

can write the multiple regression equations for k = 1, ...,m(m ≥ n) in terms of component

kernels as follows ∫ b

a

αab(s)y(s)ds =
n∑

i=0

βi

∫ b

a

KDS1(i),y(t, s)y(s)ds (3.21)

∫ b

a

αab(s)(t− s)y(s)ds =
n∑

i=0

βi

∫ b

a

KDS2(i),y(t, s)y(s)ds (3.22)

1

2

∫ b

a

αab(s)(t− s)2y(s)ds =
n∑

i=0

βi

∫ b

a

KDS3(i),y(t, s)y(s)ds (3.23)

...

1

(m− 1)!

∫ b

a

αab(s)(t− s)m−1y(s)ds =
n∑

i=0

βi

∫ b

a

KDSm(i),y(t, s)y(s)ds (3.24)

In a noise-free deterministic setting, the output variable y becomes the measured output

coinciding with the nominal output trajectory yT . With ā := [a0; · · · ; an−1] and β :=

[a0; · · · ; an−1; an] = [ā; 1], let KDSk(ā) (t, yT ) be row vectors with integral components

KDSk(ā) (t, yT ) :=

[∫ b

a

KDSk(0),y(t, s)yT (s)ds, · · · ,
∫ b

a

KDSk(n−1),y(t, s)yT (s)ds

]
(3.25)

and KDSk(an) (t, yT ) be scalars

KDSk(an) (t, yT ) :=

∫ b

a

KDSk(n),y(t, s)yT (s)ds (3.26)

corresponding to βn := an = 1.
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Rearranging (3.21) - (3.24) for k = 1, . . . ,m(m ≥ n)
∫ b

a
αab(s)y(s)ds−KDS1(an) (t, yT )∫ b

a
αab(s)(t− s)y(s)ds−KDS2(an) (t, yT )

...
1

(m−1)!

∫ b

a
αab(s)(t− s)m−1y(s)ds−KDSm(an) (t, yT )

 =


KDS1(ā) (t, yT )

KDS2(ā) (t, yT )
...

KDSm(ā) (t, yT )




a0
...

an−1


(3.27)

Using the distinct time instants tj = t1, . . . , tN ∈ (a, b], known as knots, we define the

following

qk (tj, yT ) =
1

(k − 1)!

∫ b

a

αab (tj, s) (tj − s)k−1 yT (s)ds−KDSk(an) (tj, yT ) ; (3.28)

pk (tj, yT ) = KDSk(ā) (tj, yT ) :=
[ ∫ b

a
KDSk(0),y (tj, s) yT (s)ds · · ·

∫ b

a
KDSk(n−1),y (tj, s) yT (s)ds

]
=
[
pk0 (tj, yT ) · · · pkn−1 (tj, yT )

]
(3.29)

Thus, the equation (3.27) can be re-written in point-wise for discrete values k = 1, . . . ,m in

the form of another matrix equation as shown



q1 (t1, yT )
...

q1 (tN , yT )
...

qm (t1, yT )
...

qm (tN , yT )


Nm×1

=



p10 (t1, yT ) p11 (t1, yT ) · · · p1n−1 (t1, yT )
. . .

p10 (tN , yT ) p11 (tN , yT ) · · · p1n−1 (tN , yT )
...

pm0 (t1, yT ) pm1 (t1, yT ) · · · pmn−1 (t1, yT )
. . .

pm0 (tN , yT ) pm1 (tN , yT ) · · · pmn−1 (tN , yT )


Nm×n


a0
...

an−1


n×1

(3.30)

which can be represent in a concise way as follows

Q (yT ) = P (yT ) ā (3.31)
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where Q (yT ) ∈ RNk, P (yT ) ∈ RNk × Rn, ā ∈ Rn and k = 1, . . . ,m. Thus, the matrix equa-

tion (3.30) can be solved exactly using least squares error minimization with respect to the

parameter vector ā provided adequate identifiability assumptions are met and the output is

measured without error.

Identifiability of homogeneous LTI systems from a single realization of a mea-

sured output [17] [11]

A homogeneous LTI system such as

ẋ(t) = Ax(t); y = Cx; x ∈ Rn; x(0) = b (3.32)

is identifiable from a single noise-free realization of its output trajectory y on the interval

[0,∞). The identifiability condition is stated in its equivalent form:

Definition: System (3.32) is globally identifiable from b if and only if the functional mapping

b 7→ y(·;A, b) is injective on Rn where y(·;A, b) denotes the output orbit of (3.32) through b.

Theorem 3.3.1 [18] System (3.32) is globally identifiable from b if and only if the evolution

of the output orbit of (3.32) is not confined to a proper subspace of Rn.

The above criterion has limited use for reasons of practicality: it is difficult to verify com-

putationally, pertains to infinite time horizons [0,∞) and, most importantly, requires the

output trajectory to be known exactly. For the purpose of the present exposition it hence

suffices to invoke a practical version of identifiability as defined below.

Definition 2: Practical linear identifiability

The homogeneous system (3.32) is practically linearly identifiable on [a, b] with respect to a

particular noisy discrete realization of the output measurement process, yM(t), t ∈ [a, b], if

and only if there exist distinct knots t1, · · · , tN ∈ (a, b] which render rank of P (y) = n. Any

such output realization is then called persistent.

In practical applications the N distinct time instants needed can be placed equidistantly over

the interval (a, b] or else generated randomly. Since no assumptions are made about system

perturbations or measurement noise, the estimation equation (3.31) is solved in terms of a

pseudo-inverse P+ of P :
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a = P+(yM)Q(yM) (3.33)

It is worth noting that, parameter estimation can be conducted simultaneously with state

estimation. Under the assumption of system flatness, the system states are immediately re-

covered as functions of the time derivatives of the output. Following parametric estimation,

the output derivatives can be computed using the recursive kernels in Theorem (2.2.3).

3.4 Calculation of the error covariance matrix [17] [11]

In the Section 3.3, the regression equations were derived under the assumption that the mea-

sured signal is free from external disturbances (noise). In the presence of measurement noise,

the reproducing property fails to hold along an inexact output trajectory. To address this

issue, it is assumed that the measured signal is ingrained with additive white Gaussian noise

(AWGN), resulting in a stochastic regression problem. The stochastic output measurement

process, yM(t) adapted to the natural filtration of the standard Wiener process W on [a, b]

is

yM(t, ω) = yT (t) + σẆ (t, ω) ; t ∈ [a, b] (3.34)

where σẆ represents the generalized derivative of the standard Wiener process; see [19] i.e.

σẆ is identified with the white noise process having a constant variance σ2 and where yT is

the true system output.

The generalized expectation and covariance functions of white noise are given by:

E[Ẇ (t)] = 0 (3.35)

Cov[Ẇ (t)Ẇ (s)] = E[Ẇ (t)Ẇ (s)] = δ(t− s) (3.36)

V ar[Ẇ (t)] = E(Ẇ (t))2 = 1 t, s ∈ [a, b] (3.37)

where δ is the Dirac delta distribution but acting on a square integrable functions as an

evaluation functional: ∫ b

a

g(s)δ(t− s)ds = g(t) (3.38)
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Using the noisy realization of the signal(3.34), the kernel expression for k = 1, . . . ,m is given

by ∫ b

a

KDSk,y(t, s)yM(s)ds =

∫ b

a

KDSk,y(t, s)yT (s) ds+

∫ b

a

KDSk,y(t, s)σẆ (s) ds (3.39)

The stochastic regression equation is given by

1

(k − 1)!

∫ b

a

αab(t, s)(t− s)k−1yM(s)ds =

∫ b

a

KDSk,y(t, s)yM(s) ds+ e(t) (3.40)

which has the random regressor vector[∫ b

a

KDSk(a0),y(t, s)yM(s)ds, · · · ,
∫ b

a

KDSk(an),y(t, s)yM(s)ds

]T
(3.41)

The assumptions of the Gauss-Markov Theorem are violated in the linear regression problem

(3.40) because the random regressor is correlated with a regression error, which additionally

fails to be homoskedastic i.e. the vector of random variables don’t have the same finite

variance. The above regression is thus a typical ‘error-in-the-variable’ problem with het-

eroskedastic noise which has been tackled using the instrumental variable (IV) approach

adopted in [20]. The IV approach resulted in minor improvement in the results but at the

cost of high computational burden. Hence, the multiple regression equation approach was

considered to be the better choice.

The standard way to deal with unknown heteroskedasticity is to employ Generalized Least

Squares (GLS) approach, which is considered to be the BLUE (Best Linear Unbiased Esti-

mator). The GLS utilizes inverse covariance weighting in the regression error minimization

problem. Let Q(yM) and P (yM) be the matrices corresponding to N samples of the measure-

ment process realization yM at a batch of knots t1, t2, ..., tN . The matrix regression equation

(3.31) can be adapted for k = 1, . . . ,m as

Q(yM) = P (yM)a+ e (3.42)
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where

e :=



e1 (t1)
...

e1 (tN)
...

em (t1)
...

em (tN)


Nm×1

(3.43)

with

ek (tj) :=
σ

(k − 1)!

∫ b

a

αab (tj, s) (tj − s)k−1 Ẇ (s)ds−σ

∫ b

a

KDSk,y (tj, s) Ẇ (s)ds; k = 1, . . . ,m

(3.44)

The regression error minimization problem associated with (3.42) is solved using a Regu-

larized Least Squares (RLS). The standard regression error minimization of the parameter

vector a is

min
ā

(
(ā− ā0)

TW−1
0 (ā− ā0) + (Q(yM)− P (yM)ā)TS(Q(yM)− P (yM)ā)

)
(3.45)

where W0 is a given penalty matrix, which is a positive-definite matrix (initial guess), a0

is a given parameter vector (also an initial guess) and S ∈ RNk×Nk is the weighing matrix

defined as S := diag(S1, ..., Sk) for k = 1, . . . ,m and Sk ∈ RN×N are the inverses of the

corresponding error covariance matrices, as defined below:

[Sk]
−1 :=


Cov[ek(t1), e

k(t1)] · · ·Cov[ek(t1), ek(tN)]
. . .

Cov[ek(tN), e
k(t1)] · · ·Cov[ek(tN), ek(tN)]

 ; k = 1, . . . ,m (3.46)

As the kernel functions are Hilbert-Schmidt and hence are square integrable, using the prop-

erties (3.35) - (3.37) of white noise, the covariance matrix calculation for Cov [ek(ti), e
k(tj)]
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for the general nth order system with k = 1, . . . ,m(m ≥ n) is given by

Cov[ek(ti), e
k(tj)] = E[ek(ti)e

k(tj)]

= σ2E

[[ ∫ b

a

1

(k − 1)!
αab(τ)(ti − τ)k−1Ẇ (τ)dτ −

∫ b

a

KDSk,y(ti, τ)Ẇ (τ)dτ
]

[ ∫ b

a

1

(k − 1)!
αab(s)(tj − s)k−1Ẇ (s)ds−

∫ b

a

KDSk,y(tj, s)Ẇ (s)ds
]]

= σ2E
[ 1

((k − 1)!)2

∫ b

a

∫ b

a

αab(τ)αab(s)(ti − τ)k−1(tj − s)k−1Ẇ (τ)Ẇ (s)dτds
]

− E
[ 1

(k − 1)!

∫ b

a

∫ b

a

αab(τ)(ti − τ)k−1Ẇ (τ)KDSk,y(tj, s)Ẇ (s)dτds
]

− E
[ 1

(k − 1)!

∫ b

a

∫ b

a

αab(s)(tj − s)k−1Ẇ (s)KDSk,y(ti, τ)Ẇ (τ)dsdτ
]

+ E
[ ∫ b

a

∫ b

a

KDSk,y(ti, τ)KDSk,y(tj, s)Ẇ (τ)Ẇ (s)dτds
]

=
σ2

((k − 1)!)2

∫ b

a

∫ b

a

αab(τ)αab(s)(ti − τ)k−1(tj − s)k−1E
[
Ẇ (τ)Ẇ (s)

]
dτds

− σ2

(k − 1)!

∫ b

a

∫ b

a

αab(τ)(ti − τ)k−1KDSk,y(tj, s)E
[
Ẇ (τ)Ẇ (s)

]
dτds

− σ2

(k − 1)!

∫ b

a

∫ b

a

αab(s)(tj − s)k−1KDSk,y(ti, τ)E
[
Ẇ (s)Ẇ (τ)

]
dsdτ

+ σ2

∫ b

a

∫ b

a

KDSk,y(ti, τ)KDSk,y(tj, s)E
[
Ẇ (τ)Ẇ (s)

]
dτds

=
σ2

((k − 1)!)2

∫ b

a

αab(s)αab(s)(ti − s)k−1(tj − s)k−1ds

− σ2

(k − 1)!

∫ b

a

αab(s)(ti − s)k−1KDSk,y(tj, s)ds

− σ2

(k − 1)!

∫ b

a

αab(s)(tj − s)k−1KDSk,y(ti, s)ds+ σ2

∫ b

a

KDSk,y(ti, s)KDSk,y(tj, s)ds

3.5 Modified Regularized Least Squares [21] [11]

The covariance matrix derived in section 3.4 depends on the unknown variance σ2 and the

unknown parameter vector ā in KDSk,y kernels. Hence we use a modified version of the least
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squares algorithm in which the covariance matrix is estimated progressively as more data

about the multiple regression residuals are available. This is performed in a recursively where

the consecutive batches of samples are acquired from the realization of yM . The quadratic

cost function of the unknown parameter vector ā is given by

J(ā) = (ā− ā0)
TW−1

0 (ā− ā0) + ∥Q− P ā∥2S (3.47)

The major advantage of using (3.47) is that it ensures a unique solution to the least

squares problem, even when the matrix P is not full rank. When P is full rank, includ-

ing (ā− ā0)
TW−1

0 (ā− ā0) can improve the condition number of the matrix resulting in better

numerical behaviour.

The solution to (3.47) is of the form

ā = (W−1
0 + P TSP )−1P TSQ (3.48)

Ideally, equation (3.48) is most suitable when all the measurements are available beforehand.

Unfortunately, in practice this becomes computationally expensive and even unfeasible as

the measurements are obtained sequentially and we need to update our estimate ā with every

new batch of measurement. Hence, we adapt the recursive form of least squares to address

this issue.

Assuming that ā0 is 0 (for simplicity), at iteration j, the minimization function is given by

min
ā

[
āTW−1

0 ā+ ∥Q̄j − P̄j ā∥2Sj

]
(3.49)

where for k = 1, . . . ,m

Q̄j =


Q0

Q1

...

Qj

 ; P̄j =


P0

P1

...

Pj

 ; with Qj =


q1j (yM)

...

qkj (yM)

 and Pj =


p1j(yM)

...

pkj (yM)

 (3.50)
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and

S̄j = diag(S0, S1, . . . , Sj); with Sj = diag(S1j , . . . , Skj) (3.51)

The detailed derivation for the resulting RLS solution can be referred in [21] and [22].

3.5.1 Recursive Regularized Least Squares Algorithm (RRLS)

• Initialize the estimator:

ā0 = 0

W0 = δI

In case of no prior knowledge about parameters, simply let W0 ≈ ∞I. In the case of

perfect prior knowledge, W0 = 0.

• Iterate the following two steps.

(a) Obtain a new batch of knot points (measurements) and calculate the Qj, Pj and

Sj matrices

(b) Update the estimate â and the covariance of the estimation error as per the following

equations

Kj = Wj−1P
T
j (PjWj−1P

T
j + S−1

j )−1 (3.52)

Wj = (I −KjPj)Wj−1 (3.53)

âj = âj−1 +Kj(Qj − Pj âj−1) (3.54)

The initial estimate of S−1
j is calculated as the empirical variance of (yM − yE) where

yE is the estimated output corresponding to the parameter values obtained in iteration

j = 0. This is updated at each consecutive iteration by the same empirical method

until the difference in parameter values converges below a set threshold value.
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3.6 Reconstruction of Output trajectory and its derivatives [13]

Once the parameters of the system are estimated, the system output can be reconstructed

as follows:

From Theorem 2.2.1

y = α−1
ab (t, n)

∫ b

a

KDS,y(n, t, τ)y(τ) dτ (3.55)

However, the system output can be reconstructed from a noisy measurement more precisely

by orthogonal projection onto the finite dimensional subspace of RKHS spanned by the

fundamental solutions of the characteristic equation of the system 2.1, here denoted by

ξ1, . . . , ξn. Every solution of the characteristic equation along with the estimated parameter

vector â satisfies the reproducing property of Theorem 1. So, the projection on to the space

of fundamental solutions will be the noise free trajectory of the system.

The fundamental solutions for the characteristic equation of the system (2.6) are obtained

by integrating characteristic equation of the system using n independent vectors as initial

conditions for the homogeneous LTI system. The n-independent vectors are considered to

be the canonical basis vectors in Rn.

e1 = [1, 0, . . . , 0]

e2 = [0, 1, . . . , 0]

...

en = [0, 0, . . . , 1]

(3.56)

After integrating the characteristic equation with sets of n-initial conditions, the funda-

mental solutions set ξk, k = 1, . . . , n is orthonormalized into ζk, k = 1, . . . , n, using Gram-

Schmidt ortho-normalization procedure in L2 for computational efficiency. Since, the ortho-

normalizing transformation is linear we can write

span{ξk, k = 1, . . . , n} = span{ζk, k = 1, . . . , n}

⟨ζi|ζj⟩ = 0, i ̸= j ; ⟨ζi|ζi⟩2 = 1
(3.57)

where ⟨· | ·⟩2 is the inner product in L2. The estimated noise free ouput is a linear combination
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of the transformed fundamental solutions ζk.

yT =
n∑

i=1

ciζi ; with ci = ⟨yT |ζi⟩2, i = 1, . . . , n (3.58)

Similarly, we can write an expression for the estimator ŷT with linear estimators ĉi for the

coefficients ci in the form

ĉi := ⟨yM |ζi⟩2 =

∫ b

a

yM(τ)ζi(τ) dτ, i = 1, 2, . . . , n (3.59)

Hence, given a measurement process realization yM in the finite interval [a,b], the output

trajectory can be reconstructed using

yE(t) =
n∑

i=1

⟨yM |ζi⟩2ζi(t) ; t ∈ [a, b] (3.60)

3.6.1 Reconstruction of output derivatives

From Theorem 2.2, the estimated output yE(t) can be used to reconstruct the derivatives

using the following equation.

y(i)(t) =

∫ b

a

Ki
DS(t, τ)yE(τ) dτ i = 1, . . . , n− 1 (3.61)

where Ki
DS, i = 1, . . . , n− 1 are the kernel representation for the derivatives.
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3.7 Results

3.7.1 Example: Fourth Order System

Consider a fourth order Single Input Single Output (SISO) LTI system as given below.

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −5 −5 0

x ; y = x1 ; x(0) = [0, 0, 0, 1] (3.62)

with its corresponding characteristic equation

y(4)(t) + 0y(3)(t) + 5y(2)(t) + 5y(1)(t) + 1y(t) = 0 (3.63)

The poles of this system are 0.4562±2.334i,−0.633,−0.279. This makes the system unstable.

A case study of the analysis and the parameter estimation for this system is presented,

followed by the reconstruction of the state and its derivatives. The performance of the

RRLS algorithm for various noise levels is discussed below.

Fig. 3.1 Response of the System (3.63)
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In order to validate the robustness of the RRLS algorithm, Additive White Gaussian Noise

(AWGN) is superimposed on the signal to simulate real-world noisy signals obtained from

measuring devices such as sensors.

Fig. 3.2 Comparing true signal and measured signal (SNR of -9.5dB) of (3.63)

The following table summarizes the estimated parameter values for different noise levels.

STD (σ) SNR (dB) a0 a1 a2 a3 RMSE MAD MAE

- - 1 5 5 0 - - -

0 0.00 1.00 4.99 5.00 0 0.00 0.00 0.00

0.5 -4.75 1.02 4.42 5.02 0.08 0.004 0.013 0.003

1 -9.5 0.62 5.17 5.05 0.05 0.016 0.042 0.014

3 -18.45 0.14 4.44 5.21 -0.12 0.025 0.082 0.022

Table 3.1: Estimated parameter values of (3.63)
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3.7.2 Output and derivatives reconstruction:

The reconstructed output signal and their derivatives are compared with the true signal.

Noise level σ = 0, SNR = 0dB

Fig. 3.3 Estimated Output y(t)

Fig. 3.4 Estimated Output y1(t)
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Fig. 3.5 Estimated Output y2(t)

Fig. 3.6 Estimated Output y3(t)
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Noise level σ = 0.5, SNR = -4.75dB

Fig. 3.7 Estimated Output y(t)

Fig. 3.8 Estimated Output y1(t)
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Fig. 3.9 Estimated Output y2(t)

Fig. 3.10 Estimated Output y3(t)
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Noise level σ = 1, SNR = -9.5dB

Fig. 3.11 Estimated Output y(t)

Fig. 3.12 Estimated Output y1(t)
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Fig. 3.13 Estimated Output y2(t)

Fig. 3.14 Estimated Output y3(t)
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Noise level σ = 3, SNR = -18.45dB

Fig. 3.15 Estimated Output y(t)

Fig. 3.16 Estimated Output y1(t)
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Fig. 3.17 Estimated Output y2(t)

Fig. 3.18 Estimated Output y3(t)
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Chapter 4

State Estimation for LTI Systems

with Known Parameters

This chapter discusses the state estimation of a SISO LTI system utilizing the parameters

estimated in chapter 3. The focus is primarily on the Kalman filter, which is discussed in

the initial sections followed by the optimal smoothing using the Rauch-Tung-Striebel (RTS)

algorithm. The performance of this algorithm for various systems in analyzed in the results.

This work was derived together with my lab partner Nithilasaravanan Kuppan[14].

4.1 An overview of state estimation techniques

Under the constraints of process and measurement noise, state estimation poses a significant

challenge in generating accurate state values. Unmodeled dynamics, modelling approxima-

tions, and parameter uncertainties all contribute to process noise in the system. The physical

characteristics of the sensor and the measurement process itself are the primary determinants

of measurement noise.

The direct way to achieve convergence of a state irrespective of its initial condition is by

using a Luenberger observer[7]. The Luenberger observer provides feedback to the model

on the error caused by the discrepancy between the predicted and measured output. If the

system is observable, the state values converge to the actual state of the system. The major

limitation of this method is that it is suited only for deterministic systems. Unfortunately,

most real-world systems are stochastic due to the induced process and measurement noise.
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To circumvent this issue, Rudolph Kalman came up with the Kalman filter[8], which uses the

stochastic properties of the noise to perform accurate state estimation. In his paper, Kalman

proposed a recursive solution to the discrete-data linear filtering problem, assuming a normal

distribution of process and measurement noise. The Extended Kalman Filter (EKF) and

Unscented Kalman Filter (UKF) are subsequent adaptations of this method to a nonlinear

system.

4.2 Kalman filters for state estimation

Rudolf E. Kalman published his famous paper describing a recursive solution to the discrete-

data linear filtering problem in 1960. The Kalman filter is essentially a set of mathematical

equations that implement a predictor-corrector type estimator that is optimal in the sense

that it minimizes the estimated error covariance when some presumed conditions are met[23].

4.2.1 Kalman filter algorithm - an overview[24]

This section provides the Kalman filter algorithm which is used for accurate estimation of

system states x ∈ Rn, given a noisy signal. The rigorous derivation for the algorithm can be

found in [25].

Consider a discrete-time controlled system governed by the stochastic difference equation

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1 (4.1)

And the measurement z ∈ Rm

zk = Hkxk + vk (4.2)

Here, uk is the control input and the initial state x0 is a random vector with known mean

µ0 = E[x0] and covariance P0 = E[(x0 − µ0)(x0 − µ0)
T ].

The random vector wk represents the process noise and vk is the measurement noise. Both the

random vectors are temporally uncorrelated (white noise), zero mean random sequences with

known covariances E[wkw
T
k ] = Qk, E[vkv

T
k ] = Rk where Qk is process noise covariance matrix

and Rk is measurement noise covariance matrix. In reality, the process and measurement

noise covariance matrices change with each time step and measurement. In this thesis, it is

assumed that they are constant.
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The initial state x̂0 and the process noise covariance P0 is given by

x̂0 = µ0 = E[x0] (4.3)

P0 = E[(x0 − x̂0))(x0 − x̂0))
T ] (4.4)

The time update equations (predictor step) from time step k − 1 to step k are given by

x̂−
k = Ak−1x̂k−1 +Bk−1uk−1 (4.5)

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1 (4.6)

The measurement update equations are given by

Kk = P−
k HT

k (HkP
−
k HT

k +RK)
−1 (4.7)

x̂k = x̂−
k +Kk(zk −Hkx̂

−
k ) (4.8)

Pk = (I −KkHk)P
−
k (4.9)

Here, first the Kalman gain Kk is computed with the values from predictor equations. Fur-

ther, the measurement zk is obtained and a posteriori state estimate is generated. Eventually,

a posteriori error covariance estimate is generated.

After each predict and update step, the entire process is repeated with a previous a posteriori

estimates to predict a new a priori estimates. This recursive nature of Kalman filter makes

the practical implementation of the algorithm feasible. Figure 4.1 shows the high level

diagram of this algorithm along with the equations.
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Fig. 4.1 Operation of a Kalman filter - A summary[24]

4.3 Optimal smoothing

By incorporating a suitable smoothing algorithm, the Kalman Filter’s accuracy can be fur-

ther improved. Smoothing algorithms are divided into three categories, which are sum-

marised below[22, 26, 27].

Fixed-interval smoothers

Fixed-interval smoothers use all the measurements made at times tmeas over a fixed interval

tstart ≤ tmeas ≤ tend to produce an estimated state vector x̂(test) at time tstart ≤ test ≤ tend

in the same fixed interval.

Fixed-interval smoothing is usually performed after taking all the measurements prior. As

a result, it’s usually used for post-processing the data collected during a test procedure.

Fixed-interval smoothing is typically not a real-time process because the data processing

occurs after the end of the measurement.
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Fixed-lag smoothers

Fixed-lag smoothers use all measurements made over a time interval tstart ≤ tmeas ≤ test +

∆tlag for the estimate x̂(test) at time test. It means that the generated estimate at time t

is for the value of x at time t − ∆tlag, where ∆tlag is a fixed time. Fixed-lag smoothers

are commonly used in communications to improve signal estimation, however this method

introduces some signal delay.

Fixed-point smoothers

Fixed-point smoothers generate an estimate x̂(tfixed) of x at a fixed time tfixed based on all

measurements z(tmeas) up to the current time t, (tstart ≤ tmeas ≤ t). Fixed-point smoothers

function as a predictor when t < tfixed, as filters when t = tfixed and as smoothers when

t > tfixed.

Fixed-point smoothing is useful for estimation problems in which the system state is only of

interest at some specific event time tfixed, which is often the initial state.

4.3.1 Rauch-Tung-Striebel(RTS) smoother

Rauch-Tung-Striebel smoother [9, 21, 26, 27] is a fixed interval smoother, based on a two-filter

model

(1) A forward filter running forward in time. At each instant of time, the estimate from the

forward filter is based on all the measurements made up to that time, and the associated

estimation uncertainty covariance characterizes estimation uncertainty based on all

those measurements

(2) A backward filter running backward in time. At each instant of time, the estimate

from the backward filter based on all the measurements made after that time, and

the associated estimation uncertainty covariance characterizes estimation uncertainty

based on all those measurements.

At each time t, the forward filter generates the covariance matrix P[f ](t) representing the

mean-squared uncertainty in the estimate x̂[f ](t) using all measurements z(s) for s ≤ t.

Similarly, the backward filter generates the covariance matrix P[b](t) representing the mean-

squared uncertainty in the estimate x̂[b](t) using all measurements z(s) for s ≥ t. The optimal

smoother combines x̂[f ](t) and x̂[b](t), using P[f ](t) and P[b](t) in a Kalman filter to minimize
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the resulting covariance matrix P[s](t) of smoother uncertainty. P[s](t) will tell us how well

the smoother performs [26].

4.3.2 RTS Algorithm

The following section provides a quick summary of the Kalman algorithm in terms of the

equations used, without any of the derivations from [9, 21, 26, 27].

• Forward pass: Based on the equations given in the algorithm for Kalman filter, the

standard filtered quantities, i.e., the smoothed means and corresponding covariances

x̂k|k−1, x̂k|k, Pk|k−1, Pk|k for k = 0, ..., n are obtained and stored in memory

• Backward pass: To compute x̂k|n, the following equation is used

x̂k|n = x̂k|k + Ak

(
x̂k+1|n − x̂k+1|k

)
, k = n− 1, . . . , 0 (4.10)

where,

Ak = Pk|k−1F̄
T
k P

−1
k+1|k (4.11)

and

Pk+1|k = F̄kPk|k−1F̄
T
k (4.12)

The error covariance can be found by

Pk|n = Pk|k + Ak

(
Pk+1|n − Pk+1|k

)
AT

k (4.13)

In the above equations, Ak is the smoother gain matrix, n is the final time step, Pk|n is the

corresponding state error covariance matrix, F̄k is the state transition matrix and x̂k|n is the

smoothed state at time step k.
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4.3.3 Improvement over Kalman outputs [26]

Theoretical limits on the asymptotic improvement of smoothing over filtering were shown

in [28] for asymptotically exponentially stable dynamic systems. A factor of 2 in the mean-

squared estimation uncertainty was found to be the limit but there is a possibility of greater

improvement in unstable systems.

For multidimensional problems, if P[s] is the covariance matrix of smoothing uncertainty and

P[f ] is the covariance matrix of filtering uncertainty then for smoothing to be an improvement

over filtering

P[s] < P[f ], or[P[f ] − P[s] is positive - definite ] (4.14)

Practically, this is done by comparing the covariance matrices after the implementation of

both the filter and smoother algorithms.
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4.4 State estimation algorithm

The pseudo-code for leveraging Kalman filter + RTS smoother is described below in Algo-

rithm 1. This algorithm works under the assumption that the signal to be filtered YM of

known order n is induced with Additive Gaussian White Noise (AWGN). Also, this algorithm

utilizes the system parameters estimated in Chapter 3 using RLS algorithm.

Algorithm 1 State estimation using Kalman + RTS

1: Initialize: a0 = akn where akn are the parameters of the system of order n

2: Initialize: xinitial = [y0; y
(1)
0 ; y

(2)
0 ; ...; y

(n)
0 ]

3: Procedure Kalman Filter
4: Initialize: Ak, Pinitial, Q,R and H matrices
5: Compute the state transition matrix F = eAkt

6: for k = 0, 1, ..., N do
7: while Ymk

∈ Ym do
8: Predict I: xf

k = Fk−1xk−1 {State Extrapolation [f for forecast]}
9: Predict II: P f

k = Fk−1Pk−1F
T
k−1 +Q {Covariance Extrapolation}

10: Set zk = Ymk

11: Update I: Kk = P f
k H

T (HP f
k H

T +R−1
k ) {Kalman Gain}

12: Update II: xk = xf
n +Kk(zk −Hxk) {State Update}

13: Update III: Pk = (I −KnH)P f
k {Covariance Update}

14: return xk, Pk

15: end while
16: end for
17: Append xk to X and Pk to P {Stored as a batch}
18: Procedure Rauch-Tung-Striebel {Fixed Interval Smoothing}
19: Initialize ˆxk|n = X[−1] and Pk|n = P [−1] {Backward filter}
20: for k = N − 1, ..., 1, 0 do
21: while xk ∈ X do
22: Calculate Ak = Pk|k−1F̄

T
k P

−1
k+1|k {Smoother gain matrix}

23: Calculate Pk+1|k = F̄kPk|k−1F̄
T
k using 4.13 {Error covariance}

24: Update: x̂k|n = x̂k|k + Ak

(
x̂k+1|n − x̂k+1|k

)
25: return xk

26: end while
27: end for
28: Append xk to xE
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4.5 Results

4.5.1 Example 1 :

Let us consider the same fourth order system used as an example in Chapter 3. The LTI

system is given by

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −5 −5 0

x ; y = x1 ; x(0) = [0, 0, 0, 1] (4.15)

with its corresponding characteristic equation

y(4)(t) + 0y(3)(t) + 5y(2)(t) + 5y(1)(t) + 1y(t) = 0 (4.16)

The poles of this system are 0.4562±2.334i,−0.633,−0.279. This makes the system unstable.

The output of the system is superimposed with Additive White Gaussian Noise (AWGN)

with different Signal to Noise Ratio (SNR) and the accuracy of state estimation is compared.

The following graphs show the reconstruction of the actual signal and its derivatives using

parameters estimated from the techniques described in Chapter 2 and Chapter 3 and with

the help of noisy signal. It can be noted that kalman filter will converge to the true state

irrespective of the initial state condition. This is tested by assuming different initial condition

during the state estimation process.
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4.5.2 State estimation for various noise levels:

The estimated output signal and their derivatives are compared with the true signal.

Noise level σ = 0, SNR = 0dB

Fig. 4.2 Estimated Output y(t)

Fig. 4.3 Estimated Output y1(t)
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Fig. 4.4 Estimated Output y2(t)

Fig. 4.5 Estimated Output y3(t)
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Noise level σ = 0.5, SNR = -4.75dB

Fig. 4.6 Estimated Output y(t)

Fig. 4.7 Estimated Output y1(t)
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Fig. 4.8 Estimated Output y2(t)

Fig. 4.9 Estimated Output y3(t)
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Noise level σ = 1, SNR = -9.5dB

Fig. 4.10 Estimated Output y(t)

Fig. 4.11 Estimated Output y1(t)
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Fig. 4.12 Estimated Output y2(t)

Fig. 4.13 Estimated Output y3(t)
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Noise level σ = 3, SNR = -18.45dB

Fig. 4.14 Estimated Output y(t)

Fig. 4.15 Estimated Output y1(t)
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Fig. 4.16 Estimated Output y2(t)

Fig. 4.17 Estimated Output y3(t)
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Table 4.1: Calculated error metrics for the estimated

output and its derivatives for fourth-order LTI system us-

ing Kalman filter with Raunch-Tung-Striebel algorithm

Standard deviation (σ) SNR(dB) Output MAD RMSE MAE

0 0 y 2.36 ×10−5 1.14 ×10−5 9.74 ×10−6

y(1) 1.12 ×10−4 3.27 ×10−5 2.47 ×10−5

y(2) 1.17 ×10−4 6.80 ×10−5 5.88 ×10−5

y(3) 6.49 ×10−4 1.18 ×10−4 1.43 ×10−4

0.5 -4.75 y 0.013 0.007 0.006

y(1) 0.082 0.021 0.017

y(2) 0.467 0.105 0.072

y(3) 1.018 0.346 0.255

1 -9.5 y 0.017 0.007 0.005

y(1) 0.070 0.017 0.013

y(2) 0.149 0.060 0.042

y(3) 0.316 0.136 0.103

3 -18.45 y 0.061 0.025 0.022

y(1) 0.252 0.084 0.070

y(2) 0.510 0.221 0.189

y(3) 1.513 0.541 0.451
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4.5.3 Example 2 :

Let us consider another example. The LTI system is given by

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−150 −125 −31 −5

x ; y = x1 ; x(0) = [0, 0, 0, 1] (4.17)

with its corresponding characteristic equation

y(4)(t) + 5y(3)(t) + 31y(2)(t) + 125y(1)(t) + 150y(t) = 0 (4.18)

The poles of this system are −0.0194 ± 4.9744i,−2.7828,−2.1782. This makes the system

critically stable. The output of the system is superimposed with Additive White Gaus-

sian Noise (AWGN) with different Signal to Noise Ratio (SNR) and the accuracy of state

estimation is compared.
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4.5.4 State estimation for various noise levels:

The estimated output signal and their derivatives are compared with the true signal.

Noise level σ = 0, SNR = 0dB

Fig. 4.18 Estimated Output y(t)

Fig. 4.19 Estimated Output y1(t)
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Fig. 4.20 Estimated Output y2(t)

Fig. 4.21 Estimated Output y3(t)
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Noise level σ = 0.007, SNR = -4.5dB

Fig. 4.22 Estimated Output y(t)

Fig. 4.23 Estimated Output y1(t)
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Fig. 4.24 Estimated Output y2(t)

Fig. 4.25 Estimated Output y3(t)
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Noise level σ = 0.01, SNR = -7dB

Fig. 4.26 Estimated Output y(t)

Fig. 4.27 Estimated Output y1(t)
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Fig. 4.28 Estimated Output y2(t)

Fig. 4.29 Estimated Output y3(t)
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Noise level σ = 0.017, SNR = -11dB

Fig. 4.30 Estimated Output y(t)

Fig. 4.31 Estimated Output y1(t)
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Fig. 4.32 Estimated Output y2(t)

Fig. 4.33 Estimated Output y3(t)
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Table 4.2: Calculated error metrics for the estimated

output and its derivatives for fourth-order LTI system us-

ing Kalman filter with Raunch-Tung-Striebel algorithm

Standard deviation (σ) SNR(dB) Output MAD RMSE MAE

0 0 y 1.6 ×10−4 2.47 ×10−5 1.61 ×10−5

y(1) 1.4 ×10−3 1.78 ×10−4 8.16 ×10−5

y(2) 6.72 ×10−3 1.06 ×10−3 4.9 ×10−4

y(3) 0.019 0.004 0.002

0.007 -4.5 y 3.08 ×10−4 1.17 ×10−4 8.56 ×10−5

y(1) 3.19 ×10−3 5.08 ×10−4 3.94 ×10−4

y(2) 0.037 0.004 0.003

y(3) 0.229 0.35 0.018

0.01 -7 y 7.37 ×10−4 1.71 ×10−4 1.37 ×10−4

y(1) 8.32 ×10−4 1.25 ×10−4 7.57 ×10−4

y(2) 0.038 0.008 0.005

y(3) 0.101 0.033 0.024

0.017 -11 y 1.15 ×10−3 2.42 ×10−4 1.98 ×10−4

y(1) 1.26 ×10−2 1.48 ×10−3 8.30 ×10−4

y(2) 0.083 0.011 0.005

y(3) 0.306 0.060 0.030
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Chapter 5

Unscented Kalman Filter Method for

Joint Parameter and State Estimation

As discussed in chapter 4, for the Kalman filters to accurately estimate the states at any given

time, they must have complete knowledge of the underlying system dynamics. This chapter

indulges in one of the most prevalent and frequently used algorithms for the parameter and

the state estimation of the nonlinear systems - The Unscented Kalman Filter (UKF). This

chapter discusses a method that utilizes UKF to simultaneously estimate the parameters and

the states of the LTI system. The final section compares the results from the UKF algorithm

with the Kernel-based RRLS algorithm.

5.1 Unscented Kalman filter

The Kalman filter is an optimal tool for predicting and updating the future behaviour in a

linear system. When we gravitate toward nonlinear systems, it is necessary to address the

assumptions of the Kalman filter. The Kalman always works with linear systems. So, we use

the Taylor series to get a linear approximation of a nonlinear system. This approach is known

as Extended Kalman Filter (EKF). While the EKF is a standard technique employed widely

for estimation of the states and parameters of the system, there are some drawbacks to this

method. In EKF, the states of the system are approximated using a Gaussian Random Vari-

able (GRV) and propagated during the first-order Taylor series linearization of the nonlinear

systems. Since the EKF omits the higher-order terms during the linearization process, the

estimation accuracy suffers in highly nonlinear systems. Instead, Unscented Transformation
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(UT) is used as an alternative to the first-order linearization of the nonlinear systems used by

EKF. The Unscented Transformation method propagates mean and covariance information

through nonlinear transformations. It is more accurate, easier to implement, and uses the

same order of calculations as linearization[29].

The UT is founded on the intuition that it is easier to approximate a probability distribution

than it is to approximate an arbitrary nonlinear function or transformation. Instead of lin-

earizing at a single point, multitude points, known as sigma points are considered and when

the nonlinear function is applied to each point, it yields a cloud of transformed points. The

statistics of the transformed points can then be calculated to form an estimate of the nonlin-

early transformed mean and covariance[30]. This process is called the Unscented Transform

and the working of UKF is explained in the next section.

5.1.1 The UKF Algorithm [11, 31, 32]

Unscented Transform

1. Selection of sigma points

The state vector, xk (dimension of state space n) is propagated through the nonlinear

process model f(), having a mean x̄k and covariance Pk.

Let Mk be a matrix of 2n + 1 sigma vectors mi,k (with corresponding weights wm
i,k

(mean) and wc
i,k (covariance)). The subscript k is dropped for readability.

wm =
[
wm

0 wm
1 . . . wm

2n

]
(5.1)

wc =
[
wc

0 wc
1 . . . wc

2n

]
(5.2)

M =


m0,0 m0,1 . . . m0,n−1

m1,0 m1,1 . . . m1,n−1

...

m2n,0 m2n,1 . . . m2n,n−1

 (5.3)

2. Sigma point computation
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Let the first sigma point be the mean of the input, (m0). We have,

m0 = x̄k (5.4)

For notational convenience, we define λ = α2(n + κ) − n where λ is a scaling factor,

α determines the spread of the sigma points and κ is a secondary scaling parameter.

The remaining sigma points are computed as follows:

mi =

x̄k + [
√

(n+ λ)Pk]j, for j = 1, ..., n

x̄k − [
√

(n+ λ)Pk]j−n, for j = n+ 1, ..., 2n
(5.5)

The j subscript selects the jth row or column of the matrix, i.e. we scale the covariance

matrix by a constant, take its square rooted and ensure its symmetry by adding and

subtracting it from the mean.

3. Square root of matrix

The square root matrix of the posterior covariance matrix (Pk = SkS
T
k ) is needed to

construct a fresh set of sigma points. This definition is favored because Sk is computed

using the Cholesky decomposition. It decomposes a Hermitian, positive definite matrix

into a triangular matrix and its conjugate transpose.

4. Weight computation

The formulation uses one set of weights for the means and another set for the covari-

ances. The weight for the mean and covariance of m0 is

wm
0 =

λ

n+ λ
(5.6)

wc
0 =

λ

n+ λ
+ 1− α2 + β (5.7)

where β is used to incorporate prior knowledge of distribution and is set to 2 for

Gaussian distribution. The weights for the rest of the sigma points mi are the same

for the mean and covariance:

wm
i = wc

i =
1

2(n+ λ)
, for i = 1, ..., 2n (5.8)
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Now, consider the following nonlinear system, described by the difference equation and the

observation model with additive noise:

xk+1 = f(xk, uk) + wk (5.9)

yk = h(xk) + vk (5.10)

The initial state x0 is a random vector with known mean x̄0 = E[x0] and covariance P0 =

E[(x0 − x̄0)(x0 − x̄0)
T ].

Predict Step

The UKF’s predict step computes the prior using the process model f(), which is assumed

to be nonlinear. Sigma points Mk−1 and their corresponding weights wm, wc are generated

and each sigma point is passed through f(x,∆t). This projects the sigma points forward in

time according to the process model, forming the new prior, which is a set of sigma points.

For k ∈ [1,2,...,∞), the sigma points are:

Mk−1 = [x̄k−1 x̄k−1 ±
√

(n+ λ)Pk−1] (5.11)

Mk = f(Mk−1) (5.12)

The transformed points are used to compute the mean and covariance of the prior/forecast

value.

x̄−
k =

2n∑
i=0

wm
i mi,k (5.13)

P̄−
k =

2n∑
i=0

wc
i (mi,k − x̄−

k )(mi,k − x̄−
k )

T +Qk−1 (5.14)

Update Step

Kalman filters perform the update in the measurement space. So, we must convert the sigma

points of the prior into measurements using observation model:

yi,k−1 = h(mi,k−1) (5.15)
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With the resulted transformed observations, we compute the mean and covariances for these

points. The y subscript denotes that these are the mean and covariance of the measurement

sigma points.

¯yk−1 =
2n∑
i=0

wm
i yk−1 (5.16)

P̄−
yk−1

=
2n∑
i=0

wc
i (yi,k−1 − ȳ−k−1)(yi,k−1 − ȳ−k−1)

T +Rk (5.17)

To compute the Kalman gain, the cross covariance of the state and the measurements are

computed first:

Pxk,yk−1
=

2n∑
i=0

wc
i (mi,k − x̄−

k )(yi,k−1 − ȳ−k−1)
T (5.18)

Next, the residual and Kalman gain can be computed.

Kk = Pxk,yk−1
(P̄−

yk−1
)
−1

(5.19)

Eventually, the new state state estimate can be computed from the residual Kalman gain as

follows:

x̄k = x̄−
k +Kk(ȳk − ȳ−k−1) (5.20)

and the posterior covariance is computed as

Pk = P̄−
k −KkP̄

−
yk−1

KT
k (5.21)
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Fig. 5.1 Operation of an Unscented Kalman filter[33]

5.2 Joint parameter and state estimation [11]

The Unscented Kalman Filter(UKF) cannot be used directly for the state estimation when

knowledge of the system is not available a priori. To estimate the parameters and the states

of the system simultaneously, the parameters and the state vector of a nth order linear system

is augmented to form a new aggregated state vector. The general form of this state vector

is given by the following matrix equation:



ẋ1

ẋ2

ẋ3

ẋ4

ȧ0

ȧ1

ȧ2

ȧ3


=



x2

x3

x4

−a0x1 − a1x2 − a2x3 − a3x4

0

0

0

0


; y =



1

0

0

0

0

0

0

0



T 

x1

x2

x3

x4

a0

a1

a2

a3


(5.22)
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This augmented parameter and state matrix must be treated as an extended nth order

nonlinear system. To estimate the states of this augmented nonlinear system, we employ

UKF along with the RTS smoother, the Unscented RTS smoother(URTS)[34, 35]. Both

the states and the parameters of the original LTI system could be then extracted from the

output of the URTS algorithm.

The following section illustrates the results from the URTS algorithm.

5.3 Results

In this section, we will see the performance of the same fourth order linear system we used

in the chapter 3 and chapter 4.

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −5 −5 0

x ; y = x1 ; x(0) = [0, 0, 0, 1] (5.23)

with its corresponding characteristic equation

y(4)(t) + 0y(3)(t) + 5y(2)(t) + 5y(1)(t) + 1y(t) = 0 (5.24)

The poles of this system are 0.4562±2.334i,−0.633,−0.279. This makes the system unstable.

The output of the system is superimposed with Additive White Gaussian Noise (AWGN)

for different Signal to Noise Ratio (SNR) and the accuracy of state estimation is compared.
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5.3.1 Parameter estimation for various noise levels

The parameter estimation for various noise levels are compared with the results deduced

using RRLS algorithm and Unscented Kalman Filter. Three noise levels, 0dB, 4.75dB and

-9.5dB are considered. From this table, we could infer that the performance of parameter

estimation using the RRLS algorithm is superior to that of Unscented Kalman Filter.

STD (σ) SNR (dB) Method a0 a1 a2 a3

- - True Value 1 5 5 0

0 0.00
RRLS 1.00 4.99 5.00 0

UKF 1.36 7.04 4.73 0.42

0.5 -4.75
RRLS 1.02 4.42 5.02 0.08

UKF -4.11 16.44 2.18 1.52

1 -9.5
RRLS 0.62 5.17 5.05 0.05

UKF 6.48 5.63 6.04 0.61

Table 5.1: Comparison of the estimated parameter val-

ues values using Unscented Kalman Filter and RRLS al-

gorithm for various noise levels (5.23)

5.3.2 State estimation for various noise levels

The estimated output signal and their derivatives are compared with the true signal. From

the graphs, it could be inferred that the performance of Unscented Kalman Filter is on par

with that of the results obtained from the RRLS algorithm, when there is no noise involved.

But the true significance of the RRLS algorithm is clearly visible in the presence of noise.

From the graphs, it is evident that the states and their derivatives of the system fall astray

as the noise in the output signal increases.
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Noise level σ = 0, SNR = 0dB

Fig. 5.2 Estimated Output y(t)

Fig. 5.3 Estimated Output y1(t)
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Fig. 5.4 Estimated Output y2(t)

Fig. 5.5 Estimated Output y3(t)



Unscented Kalman Filter Method for Joint Parameter and State Estimation 79

Noise level σ = 0.5, SNR = -4.75dB

Fig. 5.6 Estimated Output y(t)

Fig. 5.7 Estimated Output y1(t)
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Fig. 5.8 Estimated Output y2(t)

Fig. 5.9 Estimated Output y3(t)
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Noise level σ = 1, SNR = -9.5dB

Fig. 5.10 Estimated Output y(t)

Fig. 5.11 Estimated Output y1(t)
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Fig. 5.12 Estimated Output y2(t)

Fig. 5.13 Estimated Output y3(t)
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Chapter 6

Kernel based Parameter and State

Estimation Toolkits

The significance of parameter and state estimation has been emphasized thoroughly in this

thesis. The kernel-based and the Kalman-based strategies for the system estimation are

discussed in fine detail from chapter 2 to chapter 5. As discussed in chapters 3 and 4,

the Kernel-based RRLS algorithm exhibit superior performance in parameter estimation,

when the output signal consists of a high Signal to Noise Ratio (SNR). The success of

this algorithm is a tribute to the years of conscientious research carried out by professor

Dr Hannah Michalska and the graduate students under her supervision. To propel the

research forward and also make this research useful for the general public, it is imperative to

standardize the algorithms. For this purpose, the implementation of these algorithms must

be cohesive and in a modular fashion. It ensures reproducibility, improvisation, and easy

understanding of the algorithms. The conception of the Python-based Estimation Toolkits

(PETs) library[36] is one such attempt by my research partner Nithilasaravanan Kuppan

and myself, with valuable insights from Dr Hannah Michalska. PETs is a library hosted

on GitHub, containing modules that execute these algorithms and provide a user-friendly

interface. The repository, in conjunction with this thesis, would prove to be an effective

way to understand the algorithm, the codes, the logic, and the implementation of a novel as

well as a traditional method of the parameter and the state estimation. This chapter was

co-authored by Nithilasaravanan Kuppan; see [14]

The following sections illustrate the organization of the library, the working of each module,

and the method for executing the algorithms. This library is thoroughly documented, with
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its implementation explained with an example.

6.1 Requirements and Assumptions

The following assumptions must be adhered to to ensure the proper function of this library.

• The parameter matrix of the system is assumed to be represented in a controllable

canonical form. It is an n×n square matrix with the last row containing the coefficients

of the characteristic equation of the homogeneous SISO LTI system.

• The noise present in the signal is assumed to be an Additive White Gaussian Noise

(AWGN).

In addition to the assumptions stated above, the following requirements must comply.

• This library requires both the noisy signal (which emulate the practical behaviour of

a measuring device) and the true signal, in order to compare the performance with

different algorithms and hyper-parameters and to plot all the graphs. The following

sections discuss the exact functions associated with these tasks in detail.

• This library is developed completely in python and a python version of 3.8 or above is

recommended for the proper function of all the modules and their dependent libraries.

All the dependent external libraries are completely open-source and readily available

for download. All the dependent external libraries is listed in the GitHub repository

under /PETS/requirements.txt which then could be installed using the console, using

the popular pip command

pip install requirements.txt
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6.2 Process flow

This section describes the process flow associated with this library. It provides the complete

information necessary for the successful execution of the library. A summary of this section

is illustrated in the image 6.1.

Fig. 6.1 Process flow for the PETs repository - Install, Prepare and Execute

Installation

After cloning the repository to the local system, it is necessary to ensure that all the support-

ing libraries mentioned in requirements.txt are installed. The packages like Pandas, Numpy,

Matplotlib, Sklearn, and Scipy provide useful tools to run user-friendly and efficient code.

After installation, based on how the user decides to run the library, it is necessary to add the

environment variables for python, and the dependent packages to the working environment.

Input preparation

The library requires two primary inputs from the user. One is the measured output of a

system, a potential noisy signal which is used to estimate the parameters and state of the

system. The information must be provided to the function noisy signal which will return a 1-

dimensional array containing the data. For research purposes, like testing a new algorithm,

the user can simulate noisy data from within the function. Otherwise, the data can be

imported from a file. In addition to this, the user must provide the clean (True) signal,

which will be used to calculate the error metrics and plot comparison graphs. It is assumed

that both the information are returned as a 1-dimensional NumPy array. This file is located

at

/PETS/src/pets/noisy_input.py
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The second file which needs user attention is the configuration file for the intended algorithm.

Each algorithm consists of several hyper-parameters that must be tuned depending on the

signals used and intended results. This consolidated information is in a config file in JSON

format. It makes the configuration user friendly, and the user could directly open the file in

a text editor and make the intended changes. This file is located at

/PETS/configs/config_<algorithm>.json

Fig. 6.2 An example for a config file

The above image depicts what a typical config file looks like. Every key in this JSON

dictionary represents a hyper-parameter that can be configured by the user. Every algorithm

will have one such key associated with it.

Algorithm selection

After the input preparation is complete, the user is ready to run the library with one of

the supported algorithms. The list of algorithms supported is four while writing this thesis.

The list of algorithms supported can be retrieved using the following command from the

Command Line Interface (CLI).

python3 /PETS/scripts/run_estimation.py -h

This command will list all the algorithms supported with that particular version of the
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downloaded library. The developer is expected to update the list while including a new

algorithm or modifying an already existing one.

The desired algorithm can be executed using the command

python3 PETS/scripts/run_estimation.py -m <algorithm>

This command executes the script and invokes the relevant modules based on the selected

algorithm. The duration of execution depends on the algorithm and configured hyper-

parameters.

Algorithm execution

A brief summary of the supported algorithms is provided below.

kernel projection: This algorithm utilizes the forward-backward double-sided kernels and

the RRLS algorithm for estimating the parameters of SISO LTI systems to estimate the

system parameters and uses the projection method to reconstruct the system states and

their derivatives.

kernel kalman: This algorithm also utilizes the forward-backward double-sided kernels and

the RRLS algorithm for estimating the parameters of SISO LTI systems and the Kalman

filter with the RTS smoother for reconstructing the state and its derivatives.

kalman statesonly: This algorithm is used when the parameters of the system are al-

ready available. This algorithm utilizes the Kalman filter with RTS smoother to estimate

the system states and their derivatives. The parameters of the system is taken from the

config_kalman_statesonly.json file.

kalman ukf: This algorithm utilizes Unscented Kalman Filter (UKF) with RTS smoother

to estimate both the system parameters and the states (along with its derivatives) of SISO

LTI systems.
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The primary script run_estimation.py can be found under the PETS/scripts/ folder. All

the source files necessary to run the algorithm are present in PETS/src/pets folder. The

folder structure for the PETS library is illustrated in the figure 6.3.

Fig. 6.3 Folder structure - PETs repository

Output generation

Output for the parameter and the state estimation algorithms is generated automatically

when the run_estimation.py script is executed. The reconstructed states are generated as

a graph, superimposed on the true signal for comparison. In addition, the script generates

three default error metrics, Root Mean Squared Error(RMSE), Mean Absolute Error(MAE),

and Mean Absolute Difference(MAD). The location where these results must be saved is a

configurable parameter, present in the config file of that particular algorithm.

The following are the default output generated by the library.

1. *_rmse_mad.txt This file contains the Root Mean Squared Error (RMSE), Mean Ab-

solute Error (MAE) and the Maximum Absolute Difference (MAD) that compares the

true states and the estimated states and their derivatives.

2. *.png These are multiple images containing the graphs, comparing the true and the
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estimated states and their derivatives.

3. state_estimates.tsv This file contains the log of the complete values of the estimated

states and their derivatives. It could be used for further analysis and processing.

4. parameter_estimates.tsv It is an output file generated for algorithms that estimate

the parameters with the states. The coefficients of the system characteristic equation

are present in this file as a 1-dimensional array.

In addition to this, the desired output can be manipulated from the obtained results using

the gen_results.py script present in /PETS/scripts/ folder.

6.3 Estimation algorithms

While the previous chapters explained the analytical aspects and results of the algorithms,

this section focuses on the way these algorithms are embedded in the library. A summary

of the implementation and functioning of the estimation algorithms kernel_kalman and

kernel_projection is given below. The remainder of the two algorithms were developed

and implemented by my research partner Nithilasaravanan Kuppan and their detailed ex-

planation can be found in [14].

6.3.1 Augmented Kalman and Kernel for parameter and state estimation

python run_estimation.py -m kernel_kalman

This algorithm utilizes forward-backward double-sided kernels and the RRLS algorithm to

compute the parameters of a SISO LTI system of orders up to 4. Ideally, the algorithm

could support a linear system of any finite order. But the time restrictions and com-

putational complexity of a typical commercial computer limit the order to 4. The algo-

rithm fetches the information necessary for estimation from config_kernel_kalman.json

and executes the algorithm. The source code for the estimation algorithm is present in

PETS/src/pets/kernels.py. Followed by the estimation of parameters, the states of the

system are reconstructed using the Kalman filter with an option to include RTS smoother.

The hyper-parameters for this filter could be configured in the same configuration file

config_kernel_kalman.json. The estimated parameters are stored in *parameter_estimates.txt

file and the reconstructed states, with their derivatives, are stored in *state_estimates.tsv

file. In addition to this, these states are plotted as a graph superimposed on the actual states.

These graphs are stored as image files.
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A summary of the configuration parameters are given below.

knots - This parameter specifies the knots (data-points) upto which the forward and back-

ward integration happens.

S_type - Covariance mattix algorithm. full and diagonal are the supported algorithms

right now.

tolerance - This parameter allows the user to assign the tolerance for the convergence of

system parameters.

w_delta - Initial weight factor for measurement in prediction vs measurement trade-off.

a,b,points - a and b represent the boundaries of the finite time interval within which the

estimation takes place. points represents the total number of samples within the finite time

interval.

order - The order of the SISO LTI system.

q_var,p_var,r_var - Process noise variance, Covariance multiple(scalar number multiplied

with the identity matrix of specified order) and Measurement noise variance.

init_cond - Initial state values for Kalman filter.

res_dir - Destination folder to save all the results.

6.3.2 Kernel and projection based parameter and state estimation

python run_estimation.py -m kernel_projection

This algorithm utilizes the same forward-backward double-sided kernel to compute the pa-

rameters of a SISO LTI system. This algorithm fetches the information necessary for es-

timation from config_kernel_projection.json and executes the algorithm. The source

code for the estimation algorithm can be found in PETS/src/pets/kernels.py file. Instead

of the popularly available Kalman filter, this algorithm uses a projection to reconstruct

the state and their derivatives. The output from this algorithm is similar to the previous

one, where the estimated parameters are stored in *_parameter_estimate.txt file and the

reconstructed states and their derivatives are stored in *_state_estimate.tsv file. The

graphs containing the estimated states and the actual states are stored as images.

This algorithm has the same configuration parameters listed in Augmented Kernel and

Kalman filter algorithm. The users can refer to 6.3.1 for the information regarding each

configuration parameter. The state estimation is carried out by directly projecting the noisy

signal onto the finite-dimensional subspace of RKHS spanned by the fundamental solutions

of the characteristic equation of the system. Hence, there are no additional parameters in-
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volved in state estimation. Once the states are reconstructed, the output derivatives are

reconstructed using 3.61.

6.4 Application and further improvements

The architecture for this library is designed in such a way to ensure versatility. This library

can be used for research purposes where the performance of various algorithms is compared

against a benchmark system for analysis purposes. Also, this library could serve as a precur-

sor to a control problem since the noise-free realization of the system is pivotal to ensuring

efficient control. In addition to these applications, the library allows easy integration of ad-

ditional algorithms. For instance, this library can be extended to support non-homogeneous

systems and non-linear systems in future. By adding the implementation of these algorithms

to PETS/src/pets/ and modifying PETS/scripts/run_estimation.py, this library can be

expanded without affecting any of the existing functionality. Further, this estimation library

can be extended to support control frameworks like PID controller, MPC controller, and

LQR controller. This controller could be developed separately and invoked using a script

run_control.py file. This control implementation could leverage the suitable estimation

algorithms depending on the application.

All the supporting documents and previous works which helped develop this library are

provided in the PETS/resources/ folder for reference purposes.
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Chapter 7

Future works with state estimation in

infinite horizon

The parameter and state estimation techniques for finite horizon SISO LTI systems are

discussed extensively in the thesis. Chapter 6 focused on the development of the PETs

library, which focused on building a foundation to aid further research and analysis. This

chapter addresses one such possible extension for the current library. The finite horizon state

estimation and filtering of LTI systems are extended to handle the evolution of a system in the

infinite horizon. To control a system, the parameter and the state estimation algorithms must

be extended to handle non-homogeneous systems, as the system is subjected to a control

input. Further, the state estimation algorithms for a stationary signal are inadequate as

estimation should take place online, where there is a continuous stream of measured output

signal that has to be filtered. The derivation of kernels and regression equations for non-

homogeneous systems, although possible, is beyond the scope of this thesis. This chapter is

dedicated to real-time state estimation of linear homogeneous systems by continuous filtering

of the system states evolving through an infinite horizon without the influence of control

input. Another assumption is that an adequate number of samples are available throughout

the horizon.

7.1 Moving window estimation for SISO LTI systems

To perform real-time state estimation and filtering, the state estimation algorithm must be

modified to accommodate a continuous stream of the measured output signal. The algorithm
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must continuously filter the states at discrete windows that move forward in time. The

filtering must occur in this window with minimal latency, yield the state values, and the

window must move on to the next available set of input samples. It ensures that real-time

states are available to further control applications. In addition, it accounts for any sudden

perturbations of the system or subjecting the system to a control input.

Let us assume a fixed moving window of length WL is shifted forward in time. At any

window n, the measured signal Yn in the window is filtered by the Kalman Filter and the

RTS smoother.

Then, the complete output signal of the system 2.6 is given by

YM =
∞∑
n=0

Yn (7.1)

where Yn is the output signal in a single window n and the output signal is assimilated into

YM such that,

YM = [Y0, Y1, Y2, . . . , Y∞]

Fig. 7.1 Windows breakdown for moving window state estimation of yM
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The following algorithm illustrates the working of moving window state estimation of LTI

systems over infinite horizon.

Algorithm 2 Moving window estimation of states in infinite horizon

1: Initialize: a0 = akn where akn are the parameters of the system of order n

2: Initialize: xinitial = [y0; y
(1)
0 ; y

(2)
0 ; ...; y

(n)
0 ]

3: Procedure Moving Window Kalman Filter + RTS
4: Initialize: Ak, Pinitial, Q,R and H matrices
5: Compute the state transition matrix F = eAkt

6: for n = 0, 1, 2, 3, ..., do
7: for k = 0, 1, ..., N do
8: while Ynk

∈ Yn do
9: Predict I: xf

k = Fk−1xk−1 {State Extrapolation [f for forecast]}
10: Predict II: P f

k = Fk−1Pk−1F
T
k−1 +Q {Covariance Extrapolation}

11: Set zk = Ynk

12: Update I: Kk = P f
k H

T (HP f
k H

T +R−1
k ) {Kalman Gain}

13: Update II: xk = xf
n +Kk(zk −Hxk) {State Update}

14: Update III: Pk = (I −KnH)P f
k {Covariance Update}

15: return xk, Pk

16: end while
17: end for
18: Append xk to X and Pk to P {Stored as a batch}
19: Procedure Rauch-Tung-Striebel {Fixed Interval Smoothing}
20: Initialize ˆxk|n = X[−1] and Pk|n = P [−1] {Backward filter}
21: for k = N − 1, ..., 1, 0 do
22: while xk ∈ X do
23: Calculate Ak = Pk|k−1F̄

T
k P

−1
k+1|k {Smoother gain matrix}

24: Calculate Pk+1|k = F̄kPk|k−1F̄
T
k using 4.13 {Error covariance}

25: Update: x̂k|n = x̂k|k + Ak

(
x̂k+1|n − x̂k+1|k

)
26: return xk

27: end while
28: end for
29: Append xk to xE

30: end for
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7.2 Results

In this section, we will see the performance of the same fourth order linear system used in

chapter 3 - 5.

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −5 −5 0

x ; y = x1 ; x(0) = [0, 0, 0, 1] (7.2)

with its corresponding characteristic equation

y(4)(t) + 0y(3)(t) + 5y(2)(t) + 5y(1)(t) + 1y(t) = 0 (7.3)

Here, the complete information about the output is not available as a stationary signal.

Instead, the output is divided into discrete windows of size 100ms and 2000 samples are

available in each window. The windows of the output signal arrive sequentially as we move

forward in time. In addition, we assume that the complete parameters of the systems are

known beforehand. Hence, only the states of the system are estimated using the Kalman

filter and RTS smoother.
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State estimation for various noise levels

Noise level σ = 0, SNR = 0dB

Fig. 7.2 Estimated Output y(t)

Fig. 7.3 Estimated Output y1(t)
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Fig. 7.4 Estimated Output y2(t)

Fig. 7.5 Estimated Output y3(t)
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Noise level σ = 0.5, SNR = -4.75dB

Fig. 7.6 Estimated Output y(t)

Fig. 7.7 Estimated Output y1(t)
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Fig. 7.8 Estimated Output y2(t)

Fig. 7.9 Estimated Output y3(t)
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Noise level σ = 1, SNR = -9.5dB

Fig. 7.10 Estimated Output y(t)

Fig. 7.11 Estimated Output y1(t)
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Fig. 7.12 Estimated Output y2(t)

Fig. 7.13 Estimated Output y3(t)
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Inference

From the results, it is evident that the performance of the Kalman filter and RTS smoother for

state estimation and filtering in the infinite horizon takes a longer time to converge to its true

signal. The deviation becomes prominent as the noise in the signal increases. This behaviour

is understandable because the filtering algorithm works with a limited window initially,

having no information about the future evolution of the system. Also, since the system

works under the assumption that the system parameters are accurately known beforehand,

we could see a satisfactory performance in filtering. If the estimated parameters deviate

from the true parameters in a real-world system, it induces additional errors in estimated

states. In future works on online state estimation and filtering, we must ensure to mitigate

the error due to inaccurately estimated parameters.
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Conclusion

1. The research on the parameter and the state estimation of the SISO LTI system has

remained relevant in control theory for a long time. With the recent advancements in

the computing technology allowing us to work with data-intensive applications, kernel-

based parameter and state estimation algorithms have a huge potential.

2. The construction of the PETs library leverages the research work pursued by Professor

Dr Hannah Michalska and the team. This library provides a foundation to progress

the research. The library being open-sourced, it is available for the general public to

aid numerous applications like analyzing a system or building a control system.

3. The advantage of the kernel-based RRLS algorithm is its robustness to high noise

levels in the measured output. From the results shown in this thesis, it is evident that

the performance of the RRLS algorithm is superior to the conventional UKF based

parameter estimation and filtering for high noise levels.

4. The major drawback of this method is the assumption that infinite samples of measured

outputs are available. In the real world, this might not be possible due to the quality

of the sensors, economics and logistics. We should address the compensation for the

RRLS algorithm to work with fewer samples and missing windows in future works.

5. Another drawback is that the kernels expect the parameters of the characteristic equa-

tion in controllable canonical form. It is relevant while the objective is to control the

systems. But there are systems for which the objective of the parameter and state

estimation is not always to control the system, but just to study and analyze the sys-

tems. And it is not possible to represent all systems in their controllable and observable

canonical form.



104

References

[1] Hebertt Sira-Ramı́rez. Algebraic Identification and Estimation Methods in Feedback
Control Systems. John Wiley & Sons, 2014.

[2] Carl Friedrich Gauss and Charles Henry Davis. Theory of the Motion of the Heavenly
Bodies Moving about the Sun in Conic Sections: A Translation of Gauss’s Theoria
Motus with an Appendix. Little, Brown, 1857.

[3] John Aldrich. R.A. Fisher and the making of maximum likelihood 1912-1922. Statistical
Science, 12(3):162 – 176, 1997.

[4] N. Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time Series with
Engineering Application. MIT Press: Cambridge, MA, USA,, 1964.

[5] A.N. Kolmogorov. Interpolation and extrapolation of stationary sequences. Ser Math,
5:3–14, 1940.

[6] Debarshi Patanjali Ghoshal. Finite-interval estimation using double-sided kernels and
differential invariants. PhD thesis, McGill University, 2021.

[7] David G Luenberger. Observing the state of a linear system. IEEE transactions on
military electronics, 8(2):74–80, 1964.

[8] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[9] Herbert E Rauch, F Tung, and Charlotte T Striebel. Maximum likelihood estimates of
linear dynamic systems. AIAA journal, 3(8):1445–1450, 1965.

[10] Guido van Rossum. Python programming language. https://www.python.org/, 2001.

[11] Shantanil Bagchi. Finite-time identification and estimation of non-linear system dy-
namics using kernel-based sliding window. Master’s thesis, McGill University, 2021.

[12] Nikhil Jayam. Moving-horizon and kernel-based extended kalman filter for non-linear
estimation. Master’s thesis, McGill University, 2021.

https://www.python.org/


REFERENCES 105

[13] Adharsh Mahesh Kumaar. Comparison of different online kernel and kalman filter based
estimation and filtering methods for siso and mimo non-linear systems. Master’s thesis,
McGill University, 2021.

[14] Nithilasaravanan Kuppan. A python toolkit for kernel estimation for siso linear systems.
Master’s thesis, McGill University, 2022.

[15] Anju John. Estimation for siso lti systems using differential invariance. Master’s thesis,
McGill University, 2019.
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