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Abstract—The purpose of this contribution is to introduce a
dual-primal finite element tearing and interconnecting (DP-FETI)
method for the time domain simulation of large electromagnetic
problems. The most distinctive feature of the proposed method is
that the continuity of the first time derivative of the electric field
intensity is enforced across the interfaces, unlike the existing
formulations in electromagnetics. A theoretical proof is pro-
vided to demonstrate that this transmission condition guarantees
unconditional stability and energy preservation of the method.
Since the condition number of the global interface problem is
greatly reduced compared to the standard finite-element time-
domain (FETD) method, an iterative solver converges in far fewer
iterations. This significantly reduces simulation time, particularly
when implemented on parallel computers. It is numerically
shown that the method is scalable with respect to the number
of subdomains and the time-step size. Numerical results for
simulation of a cavity and bandgap devices are presented to
demonstrate capability, accuracy, and efficiency of the proposed
time-domain DP-FETI (TD-DP-FETI).

Index Terms—Domain decomposition method, finite-element
tearing and interconnecting (FETI), finite-element time-domain
(FETD) method.

I. INTRODUCTION

THE finite element tearing and interconnecting (FETI)
method is one of the most powerful domain decomposi-

tion methods for simulation of large-scale problems and has 
successfully been applied to a wide range of applications in 
science and engineering, especially in the frequency domain. 
It first tears the problem into several non-overlapping subdo-
mains and interconnects them together by solving a reduced 
global interface problem. Then, the solution is served as a 
boundary condition to compute the electric field inside each 
subdoamin. Breaking the initial problem into smaller sub-
problems not only decreases the computational cost but also 
makes the method amenable to parallel computing to gain 
further speedup. It was initially propsoed by Farhat and Roux 
in computational mechanics for elliptic equations [1]. The 
method was later improved by introducing the dula-primal 
(DP) FETI method [2]. The idea behind the method is to 
directly enforce the continuity condition for some degrees of 
freedom (DoFs) between the subdomains and employ a set of
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Lagrange multipliers (dual variables) to impose the continuity
between the other DoFs across the subdomain interfaces.
It was successfully applied to the Helmholtz equation in
computational acoustics [3]. Different variations of the FETI
have been extended to the second-order vector wave equation
(VWE) in computational electromagnetics in the frequency
domain [4]–[9]. It is shown that the DP-FETI is scalable with
respect to the mesh size, the wavenumber and, importantly,
the number of subdomains when the Dirichlet preconditioner
is used to solve the global interface problem [3], [7]. However,
further numerical studies revealed that the method does not
exhibit satifactory numerical scalability when subdomains are
larger than half of a wavelength. The reason was found to be
the eigenspectrum of the left-hand side (LHS) matrix, which
becomes indefinite for large subdomains [7]. A considerable
improvement is observed when a Robin transmission condition
is employed [8].

In contrast to the frequency-domain formulations, the time-
domain (TD) counterparts have witnessed much less attention.
The first TD-FETI methods were developed by Farhat [10],
[11] and then adapted for electromagnetic problems based
on the VWE equation [12]. However, it did not employ
the dual-primal concept and no theoretical stability analysis
has been performed. The TD-FETI has also been applied
to multiphysics problems to couple electrical equations with
other phenomena, such as thermal and mechanical; however,
a simple current continuity equation was considered in the
electrical part rather than Maxwell’s equations. Moreover, the
stability has not been studied theoretically [13], [14].

A large amount of work has been done on the TD-FETI
methods for solving the equation of motion (a scalar wave-
like equation) in structural dynamics [15]–[21]. The main
focus has been on the development of stable and energy-
preserving multi-time-step FETI algorithms in which each
subdomain marches in time in its own time-step size. Hence,
the time-step in each subdomain can be chosen such that
it satisfies the accuracy and stability requirements of that
subdomain. Gravouil [16] showed that imposing the first time
derivative of the main variable (i.e. velocity) as the continuity
condition guarantees stability and energy conservation of the
method. The idea was used to develop a non-overlapping and
stable hybrid finite-element-finite-differece formulation in the
time domain [22]. Karimi [20] extended [16] to the multi-
subdomain case by the aid of [17] without using the dual-
primal concept. Subber [21] developed a formulation for non-
matching grids. These formulations provide a controllable
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TD-FETI framework to efficiently and accurately capture the 
spatial and temporal scales of interest.

In this paper, we combine the DP-FETI method, extended to 
Maxwell’s equations in the frequency domain in [7], with the 
advances that have been achieved in time-domain simulation of 
structural dynamics to develop a stable and energy-preserving 
DP-FETI method for transient modelling of large-scale elec-
tromagnetic problems (referred to as TD-DP-FETI). This for-
mulation has the scalability properties of the DP-FETI method, 
converges much faster in comparison with the standard FETD 
when an iterative solver is applied, remains unconditionally 
stable, and preserves the total electromagnetic energy during 
time-stepping at the same time. The unconditional stability 
permits the user to choose the time-step size regardless of 
the stability issues. This property is of especial interest when 
the stability condition is very limiting, for example in low-
frequency applications or when fine details are located on 
large structures [23]. The energy conservation property ensures 
that the total electromagnetic energy stored in the problem 
remains constant during simulation—obviously, in the absence 
of dissipative materials and boundary conditions and when 
impressed sources are off. This is important in applications 
that require high accuracy and energy conservation over long 
periods of time integration. Note that these two temporal 
properties are consequences of using the Newmark-β method 
with β = 1/4 and exist in the standard FETD. However, 
we demonstrate that they are retained when the TD-DP-FETI 
is applied, unlike the previous works in the electromagnetics 
community such as [12].

A Dirichlet transmission condition is preferred to a Robin 
transmission condition in this paper, as it guarantees positive 
definiteness of the global interface matrix for any problem. 
A Robin transmission condition would most likely yield a 
similar characteristic; however, the formulation and imple-
mentation become more complex and expensive. Moreover, 
unconditional stability and energy conservation properties of 
the method may not be preserved in that case.

The paper is organized as follows. The DP-FETI formula-
tion and a few remarks on the implementation are given in 
Section II. Section III provides a detailed stability analysis. 
Finally, numerical results which demonstrate the validity, ac-
curacy, and applicability of the proposed method are presented 
in Section IV.

II. FORMULATION

Let us consider a bounded computational space occupying
domain Ω in R3 with boundary ∂Ω satisfying the Lipschitz
condition. Moreover, let ∂ΩPEC , ∂ΩPMC , and ∂ΩABC re-
spectively denote portions of the boundary on which perfect
electrically conducting (PEC), perfect magnetically conducting
(PMC), and absorbing boundary condition (ABC) boundary
conditions are imposed (∂ΩPEC ∩ ∂ΩPMC ∩ ∂ΩABC = ∅).
The transient behaviour of the electric field intensity E(r, t) :
Ω × [0, Tf ] → R3, Tf > 0 is governed by the VWE together

with the boundary and initial conditions:

∇×
(
µ−1∇×E(r, t)

)
+ εË(r, t) = −J̇imp(r, t)

in Ω× [0, Tf ]

n̂×E(r, t) = 0 on ∂ΩPEC × [0, Tf ]

n̂×∇×E(r, t) = 0 on ∂ΩPMC × [0, Tf ]

n̂× c∇×E(r, t) + n̂× n̂× Ė(r, t) = 0

on ∂ΩABC × [0, Tf ]

E(r, 0) = E0 in Ω,

Ė(r, 0) = Ė0 in Ω, (1)

where ε, µ, and c represent permittivity, permeability, and the
speed of light in the medium, respectively; and Jimp(r, t)
denotes an electric impressed current. A dot over a variable
indicates a derivative taken with respect to time, which means
ẏ ≡ dy/dt and ÿ ≡ d2y/dt2.

In order to apply the FETI method, the computational
domain Ω is partitioned into Ns non-overlapping subdomains
Ωk; k = 1, · · · , Ns (Ω = ∪Ns

k=1Ωk, ∩Ns

k=1 Ωk = ∅) .
Γk represents all the interfaces between subdomain k and
its neighboring subdomains bk. Among different continuity
conditions that exist, the tangential continuity of the first
time derivative of the electric field intensity across Γk is en-
forced here, as it guarantees unconditional stability and energy
conservation of the method [16]. Note that the E-continuity
method has been discussed in the literature to be prone to
instabilities [24], [25]. A drawback of the Ë-continuity method
is that there can be significant irrecoverable drift in E without
employing constraint stabilization or projection methods [20].
The objective is to find the solution to (1) in every subdomain
such that the given continuity condition is also satisfied.
This constrained problem can be solved using the method
of Lagrange multipliers. Let us first write the corresponding
functional in each subdomain as [21], [26]

Fk =
1

2

∫
Ωk

µ−1 (∇×E) · (∇×E) dV

+
εc

2

∫
∂Ωk

ABC

(n̂×E) ·
(
n̂× Ė

)
dS

+
1

2

∫
Ωk

εĖ · ĖdV +

∫
Ωk

E · J̇impdV . (2)

The weak form can be obtained by minimizing
∑Ns

k=1 Fk
subject to∫

Γk

(
Ėk − Ėbk

)
dS = 0 ; k = 1, 2, ..., Ns. (3)

This condition implies that the continuity of Ė is enforced
across all subdomain interfaces. Note that as we are dealing
with conformal meshes in this paper, there is a one-to-one
correspondence between unknowns residing on either side of
Γk. Therefore, this constraint can be simplified to a boolean
operation as will be discussed later. The Lagrangian for this
minimization problem can be written as

Λ =

Ns∑
k=1

(
Fk +

∫
Γk

λ ·
(
Ėk − Ėbk

)
dS

)
(4)
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where λ is the Lagrange multiplier used to enforce the 
constraint. Taking the first variation of Λ, applying integration 
by parts, and then performing simplifications, we obtain∫

Ωk

µ−1 (∇×E) · (∇×E) dV +

∫
Ωk

εE · ËdV

+ εc

∫
∂Ωk

ABC

(n̂×E) ·
(
n̂× Ė

)
dS =

−
∫

Ωk

E · J̇impdV −
∫

Γk

λ · ĖkdS (5a)∫
Γk

(
Ėk − Ėbk

)
dS = 0 ; k = 1, 2, ..., Ns. (5b)

Expanding E in vector edge basis functions gives the follow-
ing solution to the boundary value problem at t = n∆t

[Sk]{ek}n + [Rk]{ėk}n + [Mk]{ëk}n = {fk}n − [Ck? ]{λ}n
(6a)

Ns∑
k=1

[Ck? ]T {ėk}n = {0} (6b)

where {ek} = [ek1 , e
k
2 , ..., e

k
Nk

ed

]T , [Ck? ] is a signed Boolean
matrix to extract the unknowns residing on the interface in
subdomain k, and

Mk
ij =

∫
Ωk

εNi ·NjdV (7a)

Rkij =

∫
∂Ωk

ABC

Y (n̂×Ni) · (n̂×Nj) dS (7b)

Skij =

∫
Ωk

µ−1∇×Ni · ∇ ×NjdV (7c)

fki (t) = −
∫

Ωk

Ni · J̇ imp(t)dV (7d)

in which Y = εc is the intrinsic admittance of the medium and
N denotes the vector edge basis functions. Lossy materials can
be simply included by adding the extra term

∫
Ωk σNi ·NjdV

to (7b). It should be noted that (6b) enforces continuity of the
tangential component of Ė across the interface, because E
is expanded in terms of the edge basis functions. These basis
functions guarantee tangential continuity of the electric field
intensity [26].

In order to discretize (6a) in time, Newmark-β is the most
commonly-used method, which involves [27]

{ek}n+1 − {ek}n = ∆t{ėk}n + β∆t2{ëk}n+1

+ ∆t2
(

1

2
− β

)
{ëk}n (8a)

1

∆t

(
{ėk}n+1 − {ėk}n

)
=

1

2

(
{ëk}n+1 + {ëk}n

)
(8b)

where 0 ≤ 2β ≤ 1. Note that β = 1/4 is the only value
which yields second-order accuracy and unconditional stability
simultaneously.

Equations (6a) and (8) can be combined together in a matrix

form as [Mk] [Rk] [Sk]
−∆t

2 [I] [I] [0]
−β∆t2[I] [0] [I]

{ëk}{ėk}
{ek}

n+1

+

[Ck? ]
[0]
[0]

 {λ}n+1 =

 {fk}n+1

{ėk}n + ∆t
2 {ë

k}n
{ek}n + ∆t{ėk}n + ∆t2

(
1
2 − β

)
{ëk}n


(9)

or compactly:

[Hk]{Uk}n+1 + [Ck]{λ}n+1 = {bk}n. (10)

Solving (10) together with the continuity condition (6b) gives
the solution to every subdomain.

The formulation explained above can treat multiple subdo-
mains as long as the interfaces between the subdomains (Γk’s)
do not cross each other. In order to relax this restriction, we
first partition the unknown vector in each subdomain {ek} into
two parts such that

{ek} = { {ekr}T {ekc}T }T (11)

where {ekc} represents the corner unknowns, those shared
among more than two subdomains, and {ekr} contains the
remainder. Applying this partitioning scheme, (10) can be
written as[

[Hk
rr] [Hk

rc]
[Hk

cr] [Hk
cc]

] [
{Ukr }
{Ukc }

]n+1

+

[
[Ckr ]
[0]

]
{λ}n+1 =

[
{bkr}
{bkc}

]n
(12)

in which [Ckr ]T = [[Ck?r]
T [0] [0]]T . It is worth mentioning that

[Ck?r] contains all the information of [Ck? ], as we assumed there
are no cross-points, thus no corner edges, in the derivation of
[Ck? ]. As can be seen from (12), no Lagrange multipliers are
defined for corner DoFs, because the continuity is enforced in
the same way as the internal unknowns. All corner DoFs across
the computational domain are merged and defined through the
global vector {ec}. This is achieved by introducing another
signed Boolean matrix in every subdomain, denoted by [Bkc ],
which relates local to global corner unknowns by {ekc} =
[Bkc ]{ec}. Now, the global system becomes

[H1
rr] · · · [0] [H1

rc][B̂
1
c ] [C1

r ]
...

. . .
...

...
...

[0] · · · [HNs
rr ] [HNs

rc ][B̂Ns
c ] [CNs

r ]

[B̂1
c ]T [H1

cr] · · · [B̂Ns
c ]T [Hk

rc] [Hcc] [0]
[B1
r ] · · · [BNs

r ] [0] [0]



{U1

r }
...

{UNs
r }
{Uc}
{λ}


n+1

=


{b1r}

...
{bNs
r }
{bc}
{0}


n

(13)

where [Bkr ] = [ [0] [Ck?r]
T [0] ], [B̂kc ] =

diag([Bkc ], [Bkc ], [Bkc ]), {bc} =
Ns∑
k=1

[B̂kc ]T {bkc}, and
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[Hcc] =
∑Ns

k=1 [B̂kc ]T [Hk
cc][B̂

k
c ]. Solving (13) for {λ},

yields

[Rλ]{λ}n+1 = {dr}n − [Frc][K̃cc]−1{f̃c}n (14)

in which

[Rλ] = [Frr] + [Frc][K̃cc]−1[Fcr] (15)

[Frr] =

Ns∑
k=1

[Bkr ][Hk
rr]

−1[Ckr ] (16)

[Frc] =

Ns∑
k=1

[Bkr ][Hk
rr]

−1[Hk
rc][B̂

k
c ] (17)

[Fcr] =

Ns∑
k=1

[B̂kc ]T [Hk
cr][H

k
rr]

−1[Ckr ] (18)

{f̃c}n = {bc}n −
Ns∑
k=1

[B̂kc ]T [Hk
cr][H

k
rr]

−1{bkr}n (19)

{dr}n =

Ns∑
k=1

[Bkr ][Hk
rr]

−1{bkr}n (20)

[K̃cc] = [Hcc]−
Ns∑
k=1

[B̂kc ]T [Hk
cr][H

k
rr]

−1[Hk
rc][B̂

k
c ]. (21)

Once the Lagrange multiplier is computed, the solution to the
global corner unknowns can be computed by

[K̃cc]{Uc}n+1 = {f̃c}n + [Fcr]{λ}n+1. (22)

Finally, solving (12) gives the electric field intensity at t =
(n+1)∆t in every subdomain. This process has to be repeated
until the end of the simulation.

This approach reduces the cost of solving the original
system of equations arising from the standard FETD to that of
a series of smaller systems the most cumbersome of which is
(14). As the global interface problem is 2-D by nature, it has
far fewer unknowns compared to the original 3-D system of
equations. Moreover, it converges much faster than the FETD,
because it has a better condition number.

Before moving on to the stability analysis, a few remarks
on the formulation and implementation should be pointed out:
• A block matrix notation is followed in the derivation for

the sake of brevity. However, this should be avoided in the
implementation. Because this not only triples the size of the
matrices but also destroys their symmetry. The above equations
should be further expanded and simplified.
• Each time step involves solving three major systems of

equations, namely (14), (22), and (12)—the last one has to be
solved for each and every subdomain. As the LHS matrices are
time-independent and the solving process has to be repeated
every time step, it would be more efficient to employ a direct
solver as long as the matrices are not very large in size,
which is often the case. A direct solver factorizes the LHS
matrix [A] once before the time-stepping loop. Then, solving
[A][X] = [B] during time-stepping involves only forward-
backward substitution, which is a very low-cost operation. This
is usually feasible for (12) and (22), but not for (14). Because

[Rλ] is a dense matrix. In order to further study this, let us
first expand the LHS matrix of (14), which gives

[Rλ] =
∆t

2
[Frr] +

∆t

2
[F̂rc]

(
Ns∑
k=1

[Bkc ]T [Sk][Bkc ]

)
[F̂rc]T

(23)

where [Frr] =
Ns∑
k=1

[Ck?r]
T [Qkrr]−1[Ck?r], [Qk] = [Mk] +

∆t
2 [Rk]+β∆t2[Sk], and [F̂rc] =

Ns∑
k=1

[Ck?r]
T [Qkrr]−1[Qkrc][Bkc ].

[Sk] = [Qkcc]− [Qkcr][Qkrr]−1[Qkrc] is the Schur complement of
[Qkrr] in [Qk]. Factorization of [Rλ] requires a large amount of
memory for not very large 3-D problems. The common remedy
is to load the matrix in memory part-by-part, but this slows
down the operation considerably. Therefore, an iterative solver
may often be employed. As [Mk] is positive definite (PD) and
[Rk] and [Sk] are positive semi-definite, [Qk] is PD. It is also
well-known that for a 2×2 block matrix with square diagonal
blocks, e.g. [Qk], its Schur complements and both diagonal
blocks are PD if and only if the matrix itself is PD. Therefore,
[Qkrr], [Qkcc], and [Sk] are all PD. Hence, it can be concluded
that [Rλ] is PD and symmetric—because all submatrices
are symmetric. The conjugate gradient (CG) method is thus
a suitable candidate to solve such systems iteratively [28].
Although it is well-known that the covergence of the CG
method for PD matrices is guaranteed [28], a preconditioner is
often employed to accelerate its convergence. The optimal one
for the DP-FETI is the Dirichlet preconditioner [29], which
can be written as

[FDrr]−1 =

Ns∑
k=1

[Ck?r]
T

[
[0] [0]
[0] [SkII ]

]
[Ck?r] (24)

where [SkII ] = [QkII ] − [QkIV ][QkV V ]−1[QkV I ]. The subscripts
I and V refer to the interface (dual unknowns) and Volume
(non-interface) DoFs. It can be shown that [FDrr]−1 is a good
approximation of [Frr]−1 [29].
• The FETI consumes more memory than the standard

finite element method, as it involves computation of extra
matrices. This statement holds for the proposed TD-DP-FETI
as well. However, following some simple tips can keep the
extra memory usage at a minimum. The memory usage is
also dominated by solving the three aforementioned systems
of equations. The FETI is known to be especially efficient
for periodic structures such as antenna arrays and bandgap
devices. For such problems, solving the subdomain problem
(12) requires storing matrices for only several subdomains
with unique characteristics. The number of these subdomains
is almost independent of the array size. The corresponding
LHS matrices can be factorized in the preprocessing step to
improve efficiency. The size of the global corner matrix [K̃cc]
remains fairly small for a medium-sized array and, hence, it
can be also factorized to solve the corner problem (22) at low
cost. For very large problems, this matrix is still orders of
magnitude smaller than the total number of unknowns. Due to
high memory usage, [Rλ] cannot even be fully assembled and
the global interface problem (14) is usually solved iteratively
by the CG method. The matrix-vector multiplications in each
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iteration mainly require the unique matrices already stored in 
memory. [Rλ] can be constructed on the fly during the CG 
method, thereby evading the storage requirements for it.

• Due to tremendous memory usage, explicit inversion of
matrices must be avoided at all cost. For example, in order
to compute [Y ] = [B][A]−1[B], one should first compute
[X] by solving [A][X] = [B] system. Then [Y ] is given by
[B][X]. Since [A] belongs to subdomains and it is usually
prefactorized, computing [Y ] would be very cheap. If [B] is
the product of several matrices, the order of operations has to
be chosen such that the computation cost is minimized.

III. STABILITY ANALYSIS

In this section, stability of the proposed TD-DP-FETI
formulation is studied for β = 1/4. It is shown that the
method retains the fundamental properties of the standard
FETD formulation discretized using the Newmark-β method,
i.e., unconditionally stability and energy conservation. This
means that the interface condition does not deteriorate the
stability condition. The stability analysis is performed based
on the energy method, which is a powerful technique that has
been used in different engineering disciplines for a long time
[30]. Let us first define the following operators

JxnK = xn+1 − xn (25a)

txny = xn+1 + xn. (25b)

The Newmark-β relations (8) can be rewritten in an alternative
form, given by

u{ėk}nz =
2

∆t

q
{ek}n

y
+ ∆t(0.5− 2β)

q
{ëk}n

y
(26a)

u{ëk}nz =
2

∆t

q
{ėk}n

y
. (26b)

It is well-known that for any symmetric matrix [A], the
following identity holds

txnyT [A] JxnK = JxnKT [A]txny =
q
(xn)T [A]xn

y
. (27)

Summing (6a) over two consecutive time steps and premulti-
plying it by u{ėk}nzT yields

u{ėk}nzT [Sk]u{ek}nz + u{ėk}nzT [Rk]u{ėk}nz+

u{ėk}nzT [Mk]u{ëk}nz = −u{ėk}nzT
[
[Ck?r]
[0]

]
t{λ}ny

(28)

in which the source term has been removed, as it does
not affect the stability analysis. Note that the matrices and
unknown vectors in (28) are partitioned in the same way as
in (12). Moreover, as [Rk] is positive semi-definite, rnk =

u{ėk}nzT [Rk]u{ėk}nz ≥ 0. Replacing the second time
derivative terms in (28) by (26b) and the first {ėk} term by

(26a), (28) becomes

q
E n
ek

y
+

q
E n
mk

y

+ 0.25∆t2(0.5− 2βk)
q
{ëk}n

yT
[Sk]u{ek}nz

+ (0.25∆t)rnk = −0.25∆tu{ėk}nzT
[
[Ck?r]
[0]

]
t{λ}ny (29)

where

E n
ek

=
1

2

(
{ėk}n

)T
[Mk]{ėk}n (30a)

E n
mk

=
1

2

(
{ek}n

)T
[Sk]{ek}n (30b)

are defined as the energy stored in subdomain k due to the
electric field and magnetic field at t = n∆t, respectively. The
summation of (29) over all subdomains causes the right-hand
side to vanish due to the continuity condition (6b). As rnk ≥ 0,
it can be immediately seen that

E n+1
et + E n+1

mt
≤ E n

et + E n
mt

(31)

where the subscript “t” implies the total energy stored in all
subdomains. This shows that the total stored electromagnetic
energy decreases during time-stepping for any ∆t, which
proves unconditional stability of the method. In the absence
of [Rk], rkn vanishes and the inequality in (31) changes
to equality. This demonstrates that the method not only is
unconditionally stable but also preserves the total energy. This
will be numerically verified in Section IV-A.

IV. NUMERICAL STUDIES

In this section, four numerical examples are presented to
show the validity and effectiveness of the proposed method.
Each example is designed such that some important charac-
teristics of the method are also demonstrated.

Linear basis functions and β = 1/4 are used in all
simulations, unless otherwise mentioned. The electric field
distributions are visualized by ParaView [31]. Simulations are
performed on a PC equipped with an Intel Core i7-4790K CPU
and 32 GB of memory. The CG method with stopping criterion
of 10−12 is employed to solve the global interface problem
except for the first example (the cavity problem) in which a
direct solver is used. The initial guess vector is assumed to be
zero in every time step for the CG method.

A. Brick-Shaped Cavity

A 2cm×2cm×1cm brick-shaped cavity is divided into four
1cm×1cm×1cm cubic subdomains. A PEC boundary condi-
tion is enforced on all exterior walls. The domain is first
discretized by cubic elements with edge length h = 1mm;
then, each cube is divided into 6 tetrahedra. The time-step
size is set to the upper bound of the stability condition of the
Newmark-β method for β = 0. This condition can be obtained
by rewriting the corresponding discretized VWE in the form
{e}n+1 = [A]{e}n. [A], known as the amplification matrix,
shows the growth of the solution over one step. For a stable
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Fig. 1. Ez in the center of the cavity recorded over 5 periods for three
different values of ∆t = ∆tCFL, 3∆tCFL, 6∆tCFL. The time shifts are
due to the insufficient resolution, which has led to numerical dispersion error.

solution, eigenvalues of [A] must be within the unit circle, i.e.
|λA| ≤ 1. Applying this condition gives

∆tCFL =
2√

ρ ([M]−1[S])
' 8.182× 10−13 s (32)

where ρ(·) is the spectral radius of (·). This approach ensures
that the chosen time-step size is small enough to accurately
capture field variations—this criterion is only applicable to
small problems due to the computation cost of (32). The
electric field distribution at the dominant mode (TMz

110) with
unit amplitude is projected on the mesh and used as the initial
condition of the problem.

Fig. 1 shows the z component of the electric field intensity
in the center of the cavity recorded over 5 periods for three
different values of ∆t = ∆tCFL, 3∆tCFL, 6∆tCFL. The
results are completely stable and match with the theoretical
solution (i.e., sinusoidal). Larger ∆t’s are also tested, but no
sign of instability is observed. It should be noted that the time
shifts between the curves are due to the numerical dispersion
error. This problem worsens as the time-step size increases.

Variations of the total discrete electromagnetic energy
(E n
emt

= E n
et + E n

mt
) stored in the cavity over the same

time window for similar time steps are plotted in Fig. 2. It
shows that the proposed method exactly preserves the discrete
electromagnetic energy of the problem, as proved before.
The results are normalized to the solution for ∆tCFL. Small
changes in the energy levels are due to the variations in {e}
and {ė} because of the temporal discretization error. This
phenomenon can also be observed in Fig. 1 where electric field
amplitude slowly diminishes as the time-step size increases.

Fig. 3 shows the eigenspectra of the global interface ma-
trix. The system possesses only real positive eigenvalues for
different ∆t’s, which verifies positive definiteness of [Rλ].

Finally, the electric field distribution at the last time step is
depicted in Fig. 4 which closely resembles the TMz

110 mode
field pattern.

Fig. 2. Total discrete electromagnetic energy stored in the cavity computed
for three different values of ∆t = ∆tCFL, 3∆tCFL, 6∆tCFL. The discrete
energy is perfectly preserved during time-stepping. The results are normalized
with respect to the ∆tCFL case.

Fig. 3. Eigenspectra of the global interface matrix of the cavity problem for
three different values of ∆t = ∆tCFL, 3∆tCFL, 6∆tCFL.

B. Photonic Crystal Cavity

Metamaterials are engineered materials having unique elec-
tromagnetic properties not observed in bulk materials. These
properties are derived from their periodic structures rather
than characteristics of the base materials. They are divided
into different classes depending on the properties they exhibit.
One important class is bandgap structures such as electromag-
netic bandgap (EBG) and photonic crystals. Propagation of
electromagnetic waves over certain frequency bands, known
as bandgaps, is prohibited through these structures. Another
interesting feature is that introducing a defect, for example
by removing a unit cell, in an otherwise perfect crystal could
create a cavity within its bandgap from which the light cannot
escape, if the cavity has proper size to support the mode. In
the next two examples, the performance of the proposed TD-
DP-FETI method by simulating these structures is studied.

As shown in Fig. 5, a square lattice photonic crystal
structure composed of 11 × 11 dielectric rods residing on
an infinite ground plane is considered for this example [32].
The lattice constant (spatial period) is denoted as a in both
directions. The rods are 1.6a in height, 0.18a in radius, and
have a relative permittivity of 11.56. A defect is made by
replacing the central rod by a monopole antenna fed by an
air-filled coaxial port. The monopole has a radius of 0.1a and
height of 0.8a. The inner and outer radii of the coaxial port
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Fig. 4. Distribution of |E| of the cavity problem at the last time step. The
cavity is cut open for better visibility.

are 0.1a and 0.23a, respectively. The monopole is excited by a
modulated Blackman-Harris window with a central frequency
of fm = 11 GHz and half bandwidth of 5 GHz. The time-
step size is set to one-300th of the window width to provide
a smooth discrete signal. a = 0.01 m is chosen so the crystal
exhibits the same behaviour in microwave frequencies. Each
unit cell is considered as a subdomain in the TD-DP-FETI
implementation. Mesh generation produced 44,712 unknowns
per subdomain, 2000 corner, and 130,600 dual unknowns
in total. The reference solution is obtained by solving the
problem using the standard FETD formulation on the same
mesh (with more than 5.27M unknowns). The CG method
solved the global interface problem in 23 iterations while it
converged after 228 iterations in the standard FETD (without
preconditioning).

A comparison between the transient reflected voltage
recorded at the coaxial port computed by the proposed TD-DP-
FETI and the standard FETD, as the reference, has been drawn
in Fig. 6. The absolute error between these two is plotted as an
inset. The error is very small, almost on the order of machine
precision of the computational hardware.

The magnitude of the reflection coefficient is plotted in
Fig. 7 versus frequency. There is clearly a bandgap around
10.5 GHz. In order to further study the phenomenon, the
simulation is repeated twice. The Gaussian pulse is replaced
by 10.5 GHz and 15.15 GHz sinusoidal waveforms, lying
inside and outside the bandgap, respectively. Fig. 8 shows the
distribution of Ez-field on the ground (PEC) plane at these
two frequencies. The field is confined to the vicinity of the
cavity at 10.5 GHz while propagates through the structure at
15.15 GHz.

C. EBG Structure

This example involves simulation of an EBG structure,
which is a modified version of what is proposed in [33]. The
EBG is made of circular-section Alumina rods of radius 2 mm
and εr = 9.4 oriented along the z-axis (see Fig. 9 for a unit
cell). The rods form an mx ×my rectangular lattice with the
lattice constant equal to 7 mm and are 3 cm in height. A PEC
boundary condition is imposed on the top and bottom planes
(parallel to the xy-plane) while the remaining four side walls
are terminated by a first-order ABC. A z-polarized plane-
wave with unit amplitude travelling in the +x direction is

𝑎 

𝑎 

0.36𝑎 

11𝑎 

11𝑎 

Fig. 5. The photonic crystal structure is made of 11 × 11 dielectric rods
residing on an infinite ground plane (shown in light blue). The lattice constant
is equal to a in both directions. The cavity is created and excited by replacing
the central rod by a monopole antenna.

Fig. 6. Time-domain reflected voltages recorded at the excitation port
computed by the proposed TD-DP-FETI method and the conventional FETD
on the same mesh. The inset shows the absolute error between the results.

incident on the structure. It has a sinusoidal waveform with
f0 = 12 GHz. Each unit cell, considered as a subdomain in
the TD-DP-FETI implementation, is discretized by tetrahedral
elements with maximum edge length of 1 mm yielding 17,066
unknowns.

The scalability of the DP-FETI has been studied multiple
times in the frequency domain [3], [7], [8]. It is shown that
the method is scalable with respect to the mesh size, the
subdomain size, the number of subdomains, and the wavenum-
ber when equipped with the Dirichlet preconditioner. This is
especially true when the ratio of the subdomain length to the
wavelength is smaller than one half. As for the proposed TD-
DP-FETI, although a simple Dirichlet transmission condition
is used to couple the subdomains, a better scalability is
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TABLE I
AVERAGE NUMBER OF THE CG ITERATIONS AND AVERAGE ELAPSED TIME PER CG ITERATION REQUIRED TO SOLVE THE GLOBAL INTERFACE

PROBLEM FOR DIFFERENT EBG SIZES (STOPPING CRITERION = 10−12). THE SIMULATION IS PERFORMED FOR TWO DIFFERENT TIME-STEP SIZES.

Time-step size Preconditioning EBG size
5×5 10×10 15×15 20×20 25×25 30×30

A
ve

ra
ge

N
o.

of
C

G
ite

ra
tio

ns ∆t0 = T0/30
7 31 30 30 30 30 30
3 7 7 7 7 7 7

∆t1 = 5∆t0
7 128 128 128 128 128 128
3 15 15 15 15 15 15

Average elapsed time per
CG iteration (s)

7 0.23 0.86 1.96 3.44 5.38 7.49
3 0.30 1.20 2.74 4.79 7.48 10.73

Total number of unknowns 426,650 1,706,600 3,839,850 6,826,400 10,666,250 15,359,400
Total number of dual unknowns 24,760 110,340 256,620 463,600 731,280 1,059,660

Total number of corner unknowns 480 2,430 5,880 10,830 17,280 25,230

Fig. 7. The magnitude of the reflection coefficient of the photonic crystal
cavity as a function of frequency plotted over 6-16 GHz. 10.5 GHz and
15.15 GHz frequencies lie inside and outside the bandgap, respectively.

expected compared to a frequency-domain DP-FETI as [Rλ]
is always PD. Hence, we only investigate the effect of the
two most important parameters, e.g. number of subdomains
and time-step size, on the scalability. The time-step in the
TD-DP-FETI plays a similar role to the wavenumber in the
frequency-domain DP-FETI in shifting the eigenvalues of the
system. However, the former shifts them to the right and keeps
it always PD while the latter shifts them to the left and might
make it indefinite.

In order to assess the scalability of the proposed method,
we assumed the lattice to be square (mx = my). One empty
cell is considered immediately next to the ABC, so the total
number of rods in the problem is (mx−2)2. The simulation is
performed for two time-step sizes ∆t0 = T0/30 (T0 = 1/f0)
and ∆t1 = 5∆t0. The size of the EBG is then progressively
increased and the average number of the CG iterations and
the average time taken to complete one CG iteration to solve
the global interface problem is recorded during time-stepping.
Since the computational cost of time-stepping is dominated by
the solution of the interface problem, iteration count is a good
measure to evaluate efficiency of the method. The average
elapsed time for different ∆t’s are very close together and
therefore only one of them is reported. The simulation statis-

tics are tabulated in Table I. The proposed method exhibits
an excellent numerical scalability property with respect to the
EBG size ranging from 5× 5 to 30× 30 for a given ∆t, even
when the preconditioning is not applied. However, scalability
of the method with respect to the time-step size is not as ideal.
As the time-step size increases from ∆t0 to ∆t1, a rise in the
CG iteration count from 30 to 128 is observed in the absence
of preconditioning. Applying the Dirichlet preconditioner not
only significantly accelerates the CG convergence rate (to
7 and 15 iterations for ∆t0 and ∆t1 respectively) but also
dramatically improves the scalability of the TD-DP-FETI with
respect to ∆t. Regarding the computation time, although
applying the Dirichlet preconditioner makes each CG iteration
longer, it decreases the total CPU time by decreasing the
number of CG iterations.

Another noteworthy observation is that the scalability of
the proposed TD-DP-FETI with respect to the subdomain size
is quite similar to its scalability with respect to ∆t−1. For
example, if the lattice constant and the time-step size are set
to 0.2a and ∆t0, respectively, similar results to those reported
in Table I for ∆t1 will be obtained. This is due to the fact
that varying the frequency of the source, which changes the
subdomain size relative to the wavelength, does not directly
affect the LHS matrix in FETD and the global interface
problem in TD-DP-FETI. However, the time-step size must be
accordingly modified to provide sufficient temporal resolution.
Our numerical studies have confirmed this phenomenon but are
not reported here.

In order to validate the solution, we consider a 20×8 array
around which four empty unit cells are added to keep the ABC
far from the rods to improve its performance (28× 16 cells in
total) [33]. The problem yields 519,684 dual, 12,150 corner,
and 7,645,568 total unknowns. The simulation is continued
until t = 1350∆t0 when it reaches steady state. Fig. 10
shows distribution of the electric field amplitude |E| over
the plane passing trough the middle of the rods. The EBG
does not allow the plane-wave to pass through, as f0 falls in
the structure bandgap. The convergence history for solving
the global interface problem at the last time step, i.e. at
t = 1350∆t0, for both time steps is plotted in Fig. 11. The CG
converged at exactly the same number of iterations as those
reported in Table I. Each CG iteration took 5.75 s and 3.98 s to
complete in the preconditioned and non-preconditioned cases,
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   (a)   (b) 

Fig. 8. Ez-field distribution on the PEC plane of the photonic crystal cavity at two different frequencies: (a) 10.5 GHz; and (b) 15.15 GHz. The field is
confined to the vicinity of the cavity at 10.5 GHz while propagates through the structure at 15.15 GHz.

7 mm 

3
0

 m
m

 

4 mm 

PEC  
Planes  

Fig. 9. A unit cell of the EBG structure.

respectively.

D. Periodic Array of Double-Cones

The last example is considered to measure the performance
of the proposed TD-DP-FETI against the standard FETD. The
problem is a periodic structure similar to the previous example.
However, the unit cell height is reduced to 10 mm and the rods
are replaced by dielectric double-cones (see Fig. 12). They are
8 mm in height and 4 mm in width. They are placed in the
center of the unit cells and have εr = 10. Each unit cell
is discretized by 11,760 tetrahedra yielding 14,783 unknowns.
Sharp tips of the double-cone require a very fine discretization
of the mesh to adequately resolve the singularities. The ratio of
the longest edge to the shortest edge in the mesh is around 150.
The excitation is similar to the previous example. Simulations
are carried out for 10×10, 20×20, and 30×30 arrays and time-
step size is ∆t0. To make a fair comparison, preconditioning
is not applied.

𝑥 

𝑧 𝑦 

Fig. 10. Electric field distribution across the 8×20 EBG structure surrounded
by 4 layers of empty cells after reaching steady state. The plane-wave cannot
propagate through the lattice when its frequency lies in the EBG bandgap.

The computational statistics of the standard FETD and TD-
DP-FETI for various array sizes are given in Table II. The
results show that both methods have very good scalability with
respect to the array size. This is due to the positive definiteness
of their LHS matrices. Hence, as shown before, the TD-DP-
FETI has been able to retain this desirable property of the
original FETD method. Another observation is that the TD-
DP-FETI occupies more memory than the FETD, as it involves
calculation of extra matrices. However, it should be noted
that the memory consumed by a program depends on many
different factors, including programming skills. Moreover,
the codes are implemented in MATLAB which has many
limitations. Therefore, the numbers reported in the table do
not show the true memory that the FETD and TD-DP-FETI
really need. Finally, it can be also observed that the TD-DP-
FETI converges in only 78 CG iterations while the FETD
requires more than 1100 iterations. This is a consequence of
the improved condition number of the TD-DP-FETI compared
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Fig. 11. The convergence history of the CG method pertaining to the global
interface problem of the 16 × 28 EBG structure at t = 1350∆t0 for two
different time steps.

Fig. 12. A dielectric double-cone is placed in the center of a unit cell.

to the FETD. Fast convergence of the TD-DP-FETI leads to
a shorter simulation time. The required time to complete one
time-step is reduced by around 50%. It should be emphasized
that a distinguishing feature of the FETI is its strong amenabil-
ity to parallel computing. In [12], the parallel efficiency of a
TD-FETI is carefully studied. It is shown that the parallel
FETD performs even better than the parallel TD-FETI when
implemented on small number of processors. However, as the
number of processors is increased, the performance of the TD-
FETI algorithm increases dramatically. Due to the similarities
between the TD-FETI in [12] and the proposed TD-DP-FETI,
a similar behaviour is expected. The speedup reported in
Table II is because of parallel computation of matrix-vector
operations by MATLAB, which does not reveal the true power
of parallel TD-DP-FETI. Finally, increasing the time-step size
leads to a similar increase in the CG iteration count of the
FETD and TD-DP-FETI; hence, they are not reported here.

V. CONCLUSION AND FUTURE WORK

The paper has presented a TD-DP-FETI domain decompo-
sition method to efficiently solve large-scale transient elec-
tromagnetic problems. The method can be considered as an
extension of the DP-FETI with a Dirichlet-type transmission

condition to the time domain in which the continuity of
{ė} is enforced, instead of {e}, across the interfaces. It has
been proven that this guarantees unconditional stability and
preserves the total discrete electromagnetic energy stored in
the problem during time-marching. The improved condition
number of the global interface problem compared to the
standard FETD results in a faster converges of the iterative
solver. The formulation is especially suitable for parallel
computing through which a remarkable speedup can be gained.
In particular, the subdomain problems are independent and,
thus, embarrassingly parallelizable. Efficient parallel imple-
mentation of the method on many-core architectures is an
interesting avenue for future work.

Four numerical examples were considered to show correct-
ness and efficiency of the method. The first two were mainly
designed to study accuracy and fundamental properties of
the method. Their numerical results have matched perfectly
the reference solutions and confirmed stability and energy
conservation of the method. The last two examples have shown
that the proposed TD-DP-FETI retains numerical scalability
properties of the standard FETD. This is due to the fact
that both of these formulations have symmetric and PD LHS
matrices. However, the TD-DP-FETD converges much faster.

In order to increase the accuracy, higher order basis func-
tions can be employed. Moreover, the first order ABC imple-
mented here can be easily replaced with more accurate ABCs
without changing the overall framework of the formulation.
An example of combining [8] with a second-order ABC is
given in [34].

This formulation is so flexible, in its ultimate form, that
not only does it allow using different time-step sizes in each
subdomain (known as multi-time-step or subcycling) but also
its stability condition can be independently adjusted in each
subdomain through the variable β [20]. This is a very im-
portant property, as, depending on the mesh size and material
properties in each subdomain, the time-step size determined
by the stability condition may vary significantly from one
subdomain to another and choosing one single time-step for
the whole problem can considerably slow down the simulation
(see [16], [23] for more in-depth discussions). Sometimes
this restriction is so harsh that the user may prefer to use
an unconditionally stable scheme (i.e. setting β to 1/4 just
like the proposed method), at least, in some subdomains. This
paper has focused on the synchronous case (a unified ∆t for
all subdomains) and assumed β = 1/4 everywhere. Future
work will investigate applications of multi-time-step, multi-
β, and non-matching grids techniques to the TD-DP-FETI in
electromagnetics.

It should be noted that the scalability of the proposed
method is only investigated by 2-D extended arrays. It may
deteriorate for 3-D extended arrays with lossless materials, as
it is the case for frequency-domain DP-FETIs. However, we
believe that deterioration would be slight in the TD-DP-FETI
because [Rλ] is proven to remain PD under any condition.

As a final note, there exist some other preconditioning
techniques introduced for the DP-FETI—see [3], [35] and the
references cited therein. They may not converge as quickly as
the Dirichlet preconditioner in terms of the number of itera-
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TABLE II
COMPUTATIONAL STATISTICS OF THE FETD AND TD-DP-FETI METHODS FOR VARIOUS DOUBLE-CONE ARRAY SIMULATIONS.

Method Array size
10×10 20×20 30×30

Average number of
CG iterations

FETD 1102 1103 1103
TD-DP-FETI 78 78 78

Average elapsed time per
time-step (s)

FETD 98.03 396.06 962.32
TD-DP-FETI 51.46 203.43 486.09

Memory used (MB) FETD 448 969 1,836
TD-DP-FETI 1,094 2,268 4,309

Total number of unknowns 1,478,300 5,913,200 13,304,700
Total number of dual unknowns 111,690 470,820 1,077,350

Total number of corner unknowns 810 3,610 8,410

tions; however, they may decrease total cost of a simulation
with a moderate increase in the iteration count.
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Montréal, Canada in 2016.

His research interests include computational elec-
tromagnetics, especially transient differential-based
techniques.

Vahid Mohtashami received the B.Sc. degree (with
highest distinction) in electrical engineering from
Ferdowsi University of Mashhad, Iran, in 2006 and
the M.Sc. and Ph.D. degrees in electrical engineering
from Sharif University of Technology, Iran in 2008
and 2013 respectively. Since 2013, he has joined
the Electrical Engineering Department of Ferdowsi
University of Mashhad as an assistant professor.
His research interests include wave propagation
modelling, high-frequency scattering and numerical
electromagnetics.

Dennis D. Giannacopoulos received the B.Eng.
(’92) and Ph.D. (’99) degrees in electrical engi-
neering from McGill University, Montréal, Canada.
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