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Cavity optomechanics in a levitated helium drop
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We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically
levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes
would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation
of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system
in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale
and cm-scale drops of liquid He, evaporative cooling of He droplets in vacuum, and coupling to high-quality
optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could
result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors
attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to
study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal
fluid drop of 3He, we propose to exploit the coupling between the drop’s rotations and vibrations to perform
quantum nondemolition measurements of angular momentum.
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I. INTRODUCTION

Optomechanical systems [1] have been used to demonstrate
quantum effects in the harmonic motion of macroscopic
objects over a very broad range of physical regimes. For
example, quantum optomechanical effects have been observed
in the motion of objects formed from all three states of
matter (solid [2], gas [3], and liquid [4]), at temperatures
ranging from cryogenic to room temperature [5], with effective
mass as large as ∼100 nanograms [6], and with resonance
frequencies ranging from kHz to GHz. Despite rapid progress,
a number of important goals in this field remain outstanding,
for example, generating highly nonclassical states of motion
with negative quasiprobability distributions or which violate
a Bell-type inequality (even without postselection), efficiently
transferring quantum states between microwave and optical
frequencies, and observing quantum effects in the motion
of objects massive enough to constrain theories of quantum
gravity [7–9]. Access to these phenomena may be facilitated
by devices with reduced optical and mechanical loss, increased
optomechanical coupling, and increased mass, motivating
exploration of novel systems with capabilities complementary
to existing devices. In addition, new regimes and qualitatively
new forms of optomechanical coupling may be accessed
by developing systems in which the mechanical degrees of
freedom are not simply the harmonic oscillations of an elastic
body. In this work, we will show that a levitated drop of
superfluid helium will be a most promising platform that
combines many of these desired features and offers novel
possibilities.

To date, most optomechanical devices are realized by
using solid objects (e.g., mirrors, waveguides, or electrical
circuits) to confine modes of the electromagnetic field, and

ensuring that these confined modes couple to the harmonic
motion of a solid object. These devices’ performance is
determined in part by the properties of the solids from which
they are formed. For example, the material’s mechanical
and electromagnetic loss are important parameters, as is
the material’s compatibility with fabrication techniques. For
this reason, high-quality dielectrics are typically employed
in devices using optical fields, while superconductors are
typically employed in devices using microwave fields.

Most solid-based optomechanical devices must be placed
in direct contact with their solid surroundings, both to support
them against Earth’s gravity and to provide thermal anchoring.
This contact can negatively affect the device’s performance,
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FIG. 1. (a) Schematic illustration of a levitated helium drop
containing an optical whispering-gallery mode (WGM), whose
optical path length is modified by the surface vibrations. (b) Rotation
of the drop leads to an equatorial bulge, which also modifies the
WGM’s path length.
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as it represents a route for mechanical loss. It may also be
problematic if the contact is not able to provide effective
cooling (i.e., to counteract heating from electromagnetic
absorption in the device), as elevated temperatures tend to
obscure quantum effects.

If the mechanical element is a solid object that is levitated
in vacuum (e.g., using optical or magnetic forces) [10–17],
the absence of direct contact can result in very low loss for
some mechanical degrees of freedom (particularly the object’s
center of mass). However, the absence of direct contact also
precludes effective cooling of the element. This is particularly
important given the nonzero optical absorption of conventional
materials and the high optical powers typically required for
levitation and/or read out of the object’s motion. As a result,
solid objects levitated in vacuum have operated at elevated
bulk temperatures (although some degrees of freedom may
still be cooled to very low effective temperatures).

In contrast to solid objects, atomic gases may be levitated
and trapped in vacuum at very low temperatures. This is due
to two important features of atomic systems. First, the gas
is heated only via the atoms’ spontaneous emission (which
can be minimized by using laser fields that are far detuned
from the atomic transitions). Second, the atoms can all be
kept cold by laser cooling and evaporation. When a cloud
of ultracold atoms is trapped inside an optical cavity, its
center-of-mass motion (or some collective mode of the gas)
can detune the cavity, leading to an optomechanical interaction
[18,19]. This interaction may be quite strong, as the small
number of atoms can be compensated by the cloud’s large
zero point motion and by adjusting the detuning between
the atomic transition and the cavity. Ultracold atom-based
optomechanical devices have achieved optomechanical figures
of merit and demonstrated quantum optomechanical effects
that are competitive with state-of-the-art solid-based devices.
However, the effective mass of atom-based devices is likely
to remain several orders of magnitude lower than solid-
based devices, making them less promising for foundational
tests.

Recently, optomechanical devices that employ liquids have
been demonstrated. These can be realized by supporting
a drop of liquid [20] so that its free surface confines an
electromagnetic mode in the form of an optical whispering-
gallery mode (WGM). In this case, the drop serves as both the
optical cavity and the mechanical element, as the drop’s surface
oscillations tend to detune the drop’s optical WGMs. Devices
based on this approach have been demonstrated at room
temperature and with the drops mechanically anchored (rather
than levitating). However, the relatively high mechanical loss
in room-temperature fluids has precluded them from accessing
quantum optomechanical effects.

Liquid-based optomechanical devices can also be realized
by filling [21–24] or coating [25] a solid electromagnetic
cavity with a fluid. In this case only the mechanical degree
of freedom is provided by the fluid, for example, as a density
wave or surface wave that detunes the cavity by modulating the
overlap between the liquid and the cavity mode. This approach
has been used at cryogenic temperatures with superfluid 4He
serving as the liquid [22–26].

Liquid He has a number of properties that make it appealing
for optomechanical devices. Its large band gap (∼19 eV),

chemical purity, and lack of structural defects should provide
exceptionally low electromagnetic loss. In its pure superfluid
state, the viscosity that strongly damps other liquids is absent.
The mechanical loss arising from its nonlinear compressibility
varies with temperature T as T 4, and so is strongly suppressed
at low T . In addition, its thermal conductivity at cryogenic
temperatures is exceptionally large.

To date, optomechanical devices based on superfluid-filled
cavities have reaped some advantage from these features
(including the observation of quantum optomechanical effects
[4]). However, the need to confine the superfluid within a
solid vessel has undercut many of the advantages offered by
superfluid helium. This is because direct contact between the
superfluid and a solid object provides a channel for mechanical
losses (i.e., radiation of mechanical energy from the superfluid
into the solid) and heating (due to electromagnetic absorption
in the solid).

In this paper, we propose a type of optomechanical device
that is intended to combine advantages from each type of
device described above. Specifically, we consider a millimeter-
scale drop of superfluid He that is magnetically levitated in
vacuum (Fig. 1). Magnetic levitation would provide high-
quality optical WGMs and high-quality mechanical modes by
confining the optical and mechanical energy entirely within
the superfluid. Despite being levitated in vacuum, the drop
would be able to cool itself efficiently by evaporation, thereby
compensating for any residual heating.

In addition to offering these technical improvements, this
approach would provide access to qualitatively different forms
of optomechanical coupling. A levitated drop of 3He in its
normal state would retain the low optical loss and efficient
cooling of the superfluid drop, but would experience viscous
damping of its normal modes of oscillation. However, its rigid
body rotation (which is not directly damped by viscosity)
would couple to the drop’s optical WGMs. The coupling
arising in such an “optorotational” system is distinct from the
usual optomechanical coupling, with important consequences
for quantum effects.

Besides establishing an optomechanics platform, the pro-
posed system may also help address long-standing questions
regarding the physics of liquid helium. For example, a levitated
drop of 4He may contain a vortex line [27,28] which deforms
the drop shape and hence detunes the optical WGMs, providing
a probe of vortex dynamics. Alternately, optical measurements
of a levitated drop could probe the onset and decay of
turbulence in a system without walls.

Most of the essential features of the proposed device
have been demonstrated previously, albeit in disparate set-
tings. These include the magnetic levitation and trapping of
mm-scale and cm-scale drops of superfluid helium [29,30],
the characterization of these drops’ surface modes [31] for
T > 650 mK, the observation of evaporative cooling of He
drops [32] in vacuum, and the observation of high-finesse
optical WGMs in liquids such as ethanol [33–35] and water
[36] (at room temperature) and in liquid H2 [37,38] (at
T ∼ 15 K). This paper uses these prior results to estimate
the optomechanical properties of a levitated drop of liquid
He, including the possible coupling to rotational motion. The
discussion presented here is relevant for both 3He and 4He,
except where noted otherwise.
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FIG. 2. (a) Vibrational modes of a spherical drop, with radial
index n and angular index l; the surface modes n = 0 are separated
from the bulk continuum (n � 1). Points represent the discrete mode
frequencies and solid lines represent the analytical expressions for the
n = 0 and n = 1 mode frequencies. (b) Illustrations of the velocity
profiles for l = 2 surface modes of different azimuthal number m.

II. OPTOMECHANICAL COUPLING IN A HELIUM DROP

We begin by discussing the vibrational modes of the drop
and deriving their optomechanical coupling to the optical
WGMs. Note that WGMs in spherical (and near-spherical)
dielectrics are discussed extensively in the literature [39], so
we do not review their properties here.

A. Vibrational modes

The vibrational modes of a helium drop can be calculated
by solving the linearized hydrodynamic equations (Fig. 2).
The angular dependence of each mode is given by a spherical
harmonic Yl,m(θ,φ) (where l and m index the mode’s total
angular momentum and its projection on the z axis). The
radial dependence of each mode can be written in terms of
spherical Bessel functions jn(kr) (where k is the mode’s wave
number and n determines the number of radial nodes). The
physical nature of these modes falls into two classes.

(i) Low-frequency surface modes (ripplons), whose restor-
ing force is provided by surface tension. These have frequency
ωl =

√
l(l − 1)(l + 2)σ/(ρR3) [40] for the 2l + 1 degenerate

modes at any given angular mode number l = 2,3, . . ., where
R is the radius of the drop, ρ is its density, and σ is its
surface tension. For a 4He drop of radius R = 1 mm, the l = 2
mode whose optomechanical coupling we will analyze has a
frequency of ω2 = 2π × 23 Hz ≡ ωvib.

(ii) Sound modes, whose restoring force is provided by the
elastic modulus. The frequency of these modes depends on
the indices n and l [41,42]. These include “breathing” modes
and acoustic whispering-gallery modes, among others. Their
frequencies scale with vs/R, where vs is the speed of sound
in liquid He. For the example of a 4He drop with R = 1 mm,
the lowest-frequency compressional mode oscillates at 2π ×
120 kHz.

In the present work we focus on the surface modes, specif-
ically the lowest nontrivial modes (quadrupole deformations,
l = 2). These couple most strongly to the optical WGMs.

B. Optomechanical coupling to surface modes

The single-quantum optomechanical coupling can be found
from the optical WGM detuning produced by the surface

FIG. 3. Mechanical frequency ωvib for a l = 2 mode, the optical
decay rate κ , and the optomechanical coupling constant g0, all as
a function of drop radius (for T = 300 mK and λ = 1 μm). The
dashed curve shows optical loss due to scattering from thermal surface
fluctuations; the dotted curve shows radiative loss due to surface
curvature.

mode’s quantum zero-point fluctuation amplitude. To cal-
culate this amplitude, we note that the surface deflection
δR(θ,ϕ) can be decomposed in terms of the surface modes
as δR = ∑

l,m Xl,mYl,m(θ,ϕ), where Xl,−m = X∗
l,m are the

time-dependent mode amplitudes. The spherical harmonics
Yl,m are normalized such that

∫
d� |Yl,m|2 = 1.

The potential energy of the modes is determined by surface
tension σ . For the l = 2 modes of interest here, the increase
of surface area is given (to lowest order) by 2

∑
m |Xm|2. We

note that in order to obtain this result, care needs to be taken
to preserve the volume of the drop by adjusting the radius
(i.e., the l = 0 monopole contribution to δR) [43]. Focusing
on the l = 2,m = 0 mode, we then equate the average potential
energy 2σ 〈X2

0〉 to half of the zero-point energy h̄ωvib/4. From
this, we find the zero-point fluctuation amplitude of the m = 0
surface mode, as well as the change of radius at the drop’s
equator:

X0,ZPF =
√

h̄ωvib

8σ
, δRZPF =

√
5

16π
X0,ZPF. (1)

Again, for a drop of 4He with R = 1 mm, this is X0,ZPF =
2.2 fm.

Each optical WGM in the drop is specified by the indices l̃,
m̃, and ñ (which specify the WGM’s total angular momentum,
its projection along the z axis, and the number of radial nodes,
respectively). The WGM that lies closest to the drop’s equator
(i.e., with l̃ = m̃) has an optical path length that is proportional
to the drop’s equatorial circumference. As a consequence, we
find g0 = ωoptδRZPF/R for the bare optomechanical coupling
between an equatorial optical whispering-gallery mode and the
l = 2,m = 0 surface mode. For λ = 1 μm and R = 1 mm, this
amounts to g0 = 2π × 213 Hz (see Fig. 3).

We note that the optical frequency of the equatorial WGM
couples linearly only to the surface mode with m = 0. All m �=
0 vibrational surface modes will be restricted to (considerably
weaker) higher-order coupling.
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Optical WGMs with arbitrary (l̃, m̃) [44] also couple
linearly to the l = 2,m = 0 mechanical mode, with coupling
rates

g
(l̃,m̃)
0 = ωopt

δRZPF

R

1

2

[
3

m̃2

l̃(l̃ + 1)
− 1

]
. (2)

WGMs propagating near the equator (i.e., with large m̃) have
the usual sign of the coupling (a decrease of optical frequency
on expansion), while those with small m̃ have the opposite
sign. In a ray-optical picture, they travel along great circles
passing near the pole, and feel an overall reduction of path
length when the drop’s equator expands.

The preceding discussion applies strictly to a perfectly
spherical drop. In practice, the magnetic fields used to
counteract the pull of gravity tend to distort the drop’s shape
[45]. A rotating drop will also experience distortion due to
centrifugal forces. Such distortions break the degeneracy of
the optical WGMs. Equation (2), with δRZPF replaced by the
change of radius δR, can also be used to estimate the impact of
this distortion on the optical WGMs. A family of modes with
any given l̃ splits into l̃ + 1 distinct frequencies (as modes with
given |m̃| remain degenerate), with the frequency shift ∝m̃2.
In the case of modes with λ = 1 μm, R = 1 mm scenario and
a distortion δR/R ∼ 1%, the originally degenerate multiplet
would split into a band with ∼THz bandwidth, far larger than
the vibrational frequencies we consider. Indeed, the bandwidth
of frequencies produced from each l̃ manifold would exceed
the free spectral range of the WGMs by more than an order of
magnitude, meaning that optical modes with differing l̃ could
undergo avoided crossings for certain values of the distortion.

III. MECHANICAL AND OPTICAL QUALITY FACTORS

A. Damping of mechanical modes

As described in the Introduction, the combination of
superfluidity and magnetic levitation should strongly suppress
some sources of mechanical damping. Here we consider the
two mechanisms which are expected to dominate the energy
loss from the mechanical modes of a 4He drop. The first is due
to damping by the He gas surrounding the drop and the second
is the exchange of mechanical energy between the drop’s me-
chanical modes (i.e., mediated by its mechanical nonlinearity).
Both of these processes are strongly temperature dependent.

At sufficiently high temperatures, the vapor surrounding
the drop and the thermal excitations within the drop are dense
enough to be described as hydrodynamic fluids. Experiments
in this regime measured the quality factor Qmech of the l = 2
surface modes for a 4He drop of radius R = 2 mm for
0.65 K � T � 1.55 K [46]. The measured Qmech(T ) was in
good agreement with calculations based on a hydrodynamic
treatment of the three fluids (i.e., the superfluid, normal fluid,
and vapor) [47]. Within this temperature range, Qmech reached
a maximum value (∼1200) for T ∼ 1.2 K (see Fig. 4). At
higher T , the decrease in Qmech is due to the higher vapor
density. At lower T the decrease in Qmech is due to the
increasing dynamic viscosity of 4He.

The counterintuitive increase in viscosity with decreasing T

reflects the increasing mean free path  of the thermal phonons
within the drop. Since  is proportional to T −4 [48,49], at still
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FIG. 4. Qualitative sketch of the expected temperature depen-
dence for the mechanical quality factor Qmech of l = 2 surface modes
in a R = 1 mm 4He drop, with indication of different regimes. In the
regime of viscous damping, the viscosity of the normal component
drops with increasing temperature, which leads to nonmonotonic
behavior of the quality factor.

lower temperatures the drop will enter a new regime in which
 > R. In this regime the hydrodynamic description fails and
Qmech is expected to increase again. Some support for this
picture can be found in the measurements of Refs. [50,51]. For
a R = 1 mm drop, this regime should occur for T < 0.4 K.

At these low temperatures, the dominant loss mechanism
for the surface waves (ripplons) is ripplon-phonon-phonon
scattering, in which a thermally excited bulk phonon scatters
off the ripplon and is Doppler shifted, carrying away energy.
This effect has been studied experimentally and theoretically
in Ref. [52], with a resulting estimate for the Qmech of a surface
wave traveling on a plane surface:

1

Qmech
= π2

90

h̄k

ρω

(
kBT

h̄vs

)4

. (3)

Here ω is the surface mode frequency, k is its wave number, ρ

is the density, and vs is the sound velocity.
While our proposal focuses on mechanical modes of 4He

drops, for completeness we also note the mechanical losses of
3He drop surface modes. For a normal-fluid 3He drop, one can
apply Chandrasekhar’s result for the viscous damping [53], ac-
cording to which 1/Qmech = μ(l − 1)(2l + 1)/(ωR2ρ). Here
μ is the dynamic viscosity and ρ is the density. For T = 1
K, where μ = 30 μP, a 1 mm drop would have l = 2 surface
modes with Qmech ≈ 70, and the quality factor would decrease
approximately as Qmech ∝ T 2 at lower temperatures [54,55].
For T � 1 mK, a 3He drop would become superfluid; however,
this temperature range is not likely to be accessed via the
cooling methods considered here.

B. Damping of optical whispering-gallery modes

Light confined within a WGM may experience loss due to
radiation from the evanescent portion of the mode, scattering
from surface roughness or bulk defects, or absorption by the
host material or its impurities [39]. Here we consider the
contributions of each of these mechanisms to the quality factor
of the optical WGMs in a levitated drop of liquid helium.

Optical WGMs have been studied in drops of several
different types of liquid. Pioneering experiments by the Chang
group [33,35,56] focused on WGMs in freely falling drops
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of ethanol and water and found optical Qopt as high as 108.
Measurements of WGMs in suspended drops of oil show
Qopt = 1.7 × 108 [20]. Pendant drops of cryogenic liquid H2

[37,38] demonstrated Qopt = 4.2 × 109.
In comparison with these materials, liquid He should

offer reduced absorption. This is because He is monoatomic
(removing the possibility of inelastic light scattering from bond
stretching or other molecular degrees of freedom), has a large
gap for electronic excitations (∼19 eV), and is free of chemical
impurities and surface adsorbates.

Liquid He posesses an unusually low index of refraction
(n ∼ 1.028), which would lead to increased radiative loss
at fixed R and λ. However, radiative loss from a spherical
resonator decreases exponentially [39] with R/λ. As a result,
even with the small refractive index of He, radiative loss
becomes negligible in mm-scale drops (see Fig. 3).

Surfaces defined by surface tension are typically very
smooth. Nevertheless, thermally excited ripplons will re-
sult in an effective surface roughness. As described below,
we expect this will be the dominant loss mechanism. To ana-
lyze this mechanism we assume that the random thermal sur-
face deformation is essentially frozen during the lifetime of the
optical WGM. Furthermore, we only consider ripplon modes
with wavelengths small compared to R. In this case the Fourier
transform G̃(k) of the spatial correlation function of surface de-
flections can be approximated by the known result for a planar
surface, G̃(k) = 2πkBT /σ |k|, where σ is the surface tension.
Adapting an analysis for planar waveguides with a disordered
surface [57], the WGM loss rate (via outscattering) is

1

Qopt
≈ �(0)2(ε − 1)2 k2

0

8π

∫ π

0
G̃(k − k0 cos θ )dθ. (4)

Here k0 is the optical WGM’s vacuum wave number and ε =
1.057 is the dielectric constant of helium. �(y) is the normal-
ized transverse mode shape [

∫
�(y)2dy = 1], such that �(0)2,

evaluated at the surface, is roughly the inverse extent of the
mode. Following Ref. [58] and considering TE modes only, we
take �(0)2 ≈ 2ε/[R(ε − 1)] as an upper estimate, eventually
obtaining Qopt ≈ 2R/(πk0

√
ε − 1)(σ/kBT ) as a lower bound

for Qopt. Applying this approach to liquid 4He at T = 300 mK,
with σ = 3.75 × 10−4 N/m, and λ = 1 μm gives Qopt ∼
4 × 1010 for a drop with R = 1 mm. For 3He, the surface
tension and the resulting Q are both about 2.5 times lower.

At present there are no experiments on He drops with which
to compare this estimate. However, applying this analysis to
the liquid H2 drops of Refs. [37,38], gives Qopt ∼ 2 × 108, i.e.,
it underestimates Qopt by roughly an order of magnitude. This
may reflect the fact that the ripplon modes evolve during the
WGM lifetime, averaging out some of the effective roughness.

We estimate other scattering mechanisms to be significantly
less important: Brillouin scattering from thermal density
fluctuations inside the drop [59,60] should give Qopt > 1013

and Raman scattering from rotons should be even weaker
(following Ref. [61]).

C. Summary of parameters

Based on the estimates above, the most important optome-
chanical parameters for a drop of 4He with R = 1 mm are
summarized in Table I (assuming T = 300 mK).

TABLE I. Optomechanical parameters.

ωvib/2π Qmech Qopt g0/2π

23 Hz >103 >1010 213 Hz

Notably, this system enters the previously unexplored
regime where g0 > ωvib. While our estimate for Qopt gives
an optical linewidth that is only ∼40 times larger than the
optomechanical coupling rate, the same “frozen-deformation”
approximation underestimates the quality factor of hydrogen
drops by a factor of 20. Moreover, at lower temperatures,
Qopt ∝ 1/T increases yet further. The levitated helium drop
is thus likely to approach the single-photon strong-coupling
regime.

D. Evaporative cooling

The temperature of an optomechanical device is typically
set by the competition between optical absorption (which
leads to heating) and the device’s coupling to a thermal bath
(which allows this heat to be removed). For levitated solids,
the heat removal process is inefficient, as it occurs primarily
via blackbody radiation, resulting in elevated temperatures for
even moderate optical power. In contrast, a levitated liquid
may also cool itself via evaporation. As described below,
evaporation provides an effective means for maintaining the
drop temperature well below 1 K. However, evaporation also
couples the drop’s radius R to its temperature T . Since many
of the device’s relevant parameters (such as the resonance
frequencies and quality factors of the optical and mechanical
modes) depend on both R and T it is important to have a
quantitative model of the evaporation process.

Evaporative cooling of helium droplets has been studied
both experimentally and theoretically. Experiments to date
have used μm- and nm-scale droplets that are injected into
a vacuum chamber. In the ∼ms time before the droplets
collide with the end of the vacuum chamber they are found
[32] to reach T ∼ 370 mK (150 mK) for 4He (3He). This
cooling process can be understood by considering how energy
loss—given by the latent heat per atom [�E(T )] times
the evaporation rate �(N,T ) (atoms/s)—leads to cooling
according to the heat capacity C(N,T ) of the droplet: dT

dt
=

−�(N,T )�E(T ) 1
C(N,T ) , where the total number N of atoms in

the drop decreases as dN
dt

= −�(N,T ). Simultaneous solution
of the differential equations yields the cooling dynamics.
Theoretical models valid in the low-T , low-N limit have
successfully explained the experiments [62]. They used an
Arrhenius law for the evaporation rate � ∝ NT 2e−E0/kBT with
E0 = �E(0) = kB × 7.14 K (2.5 K) for 4He (3He), and con-
sidered only ripplon (for 4He) or free Fermi gas (for 3He)
contributions to the heat capacity of the drop.

To model the full range of temperatures attained during
cooling, and to account for phonon contributions to the
heat capacity (needed for large-N drops of 4He), we use
primarily measurement-based values [63] of latent heat �E,
vapor pressure P (which determines the evaporation rate
via � ≈ 4πR2P/

√
2πmkBT assuming unit accommodation

coefficient), and specific heat [64–67]. Figure 5(a) shows
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(a)

(b)

(c)

FIG. 5. Evaporative cooling of the helium drop. (a) Evolution of
temperature as a function of time for drops with an initial radius
R = 1 mm (which decreases by about 10% during cooling). Note
the logarithmic time scale; the physically relevant times are those
above 1 s; lower times depend on the detailed experimental protocol.
(b) Rate of change of the whispering-gallery mode resonance
frequency, due to the decrease of radius by continuous evaporation, for
a λ = 1 μm mode of a R = 1 mm drop. (c) Cooling power �E �,
displayed as a function of temperature, for R = 1 mm. Blue: 4He;
dashed orange: 3He.

the expected temperature T (t) for 4He and 3He drops with
an initial radius of 1 mm, cooled from 4.0 K and 2.5 K,
respectively. Because 3He has a higher vapor pressure, it cools
more effectively: for 4He (3He), the drop temperature reaches

∼350 mK (∼200 mK) after ∼1 s evaporation time and slowly
cools to ∼290 mK (∼150 mK) after ∼1 min. The complete
cooling process shrinks the radius of both types of drops by
about 10%.

In the absence of any heat load [as assumed for the
simulation shown in Fig. 5(a)], T will continue to decrease,
although over impractically long time scales. In an actual
experiment we expect a finite heat load on the drop, which
will result in T asymptoting to a finite value. The asymptotic
value of T will determine the quality factor of the optical and
mechanical modes (as described above). It will also set the
(constant) rate at which R will drift during any experiment.
This drift in R will not result in any appreciable change in the
mechanical mode frequencies; however, the drift in the optical
mode frequency will need to be tracked, e.g., by standard
laser-locking techniques [see Figs. 5(b) and 5(c)].

For a 4He drop with R = 1 mm, the optical drift rate is
∼1016 Hz/s per watt of dissipated power (and is ∼4× larger
for 3He because of the lower binding energy and density of
3He). To estimate the likely heatload on the drop, we note that
Brillouin scattering in the optical WGM [29] should result
in absorption of <10−10 of the incident laser power (for λ =
1 μm). Assuming an input power ∼μW, this would result in
an optical drift rate of only ∼Hz/s.

IV. ROTATIONS

A. Towards quantum nondemolition measurements of rotation

One of the unique characteristics of fluid drops, as opposed
to solid dielectric spheres, is the possibility to optically mea-
sure and possibly even control rotations, via the deformation of
the rotating drop. Rotational motion represents a low-energy
excitation that is not equivalent to a harmonic oscillator, and
so offers access to quantum phenomena that are qualitatively
distinct from those typically studied in cavity optomechanics.
The rotational motion of a levitated liquid differs from that of a
levitated solid (described in Refs. [68–75]) in several important
respects. These include the liquid’s electromagnetic and
mechanical isotropy (which should more closely approximate
free rotation),the independence between the liquid’s external
shape and its rotation, and, in the case of superfluid 4He,
dissipationless nonrigid body rotational motion.

The rotational motion of 4He is qualitatively different from
that of 3He. For the temperatures relevant here (∼300 mK),
4He is a pure superfluid and so its rotation is determined by
the presence of vortices, each with quantized circulation. The
angular momentum associated with each vortex is Nh̄ (where
N is the number of atoms in the drop); thus the drop’s angular
momentum can only change in relatively large discrete steps. In
practice, this will ensure that the number of vortices is constant
at low temperatures. Nevertheless, a drop with a fixed number
of vortices will still possess nontrivial dynamics owing to the
vortex lines’ motion.

In contrast, 3He is a normal fluid at these temperatures and
so may undergo rigid-body rotation. Its angular momentum
can change in very small steps of h̄, allowing the drop’s total
angular momentum to be a dynamical variable. Although 3He
is highly viscous at these temperatures, viscosity does not
directly damp rigid body rotation.
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For both 4He and 3He, the drop’s rotational motion is
expected to interact with the optical WGMs primarily because
the flow field associated with the rotation will deform the
drop shape, and thereby detune the WGMs. This coupling
would allow optical measurements (i.e., of the WGM) to
provide information about the drop’s rotational motion. In
order to consider the quantum limits of such a measurement,
we note that the angular momentum Lz = I�z is connected to
the angular frequency �z via the drop’s moment of inertia
I = (8π/15)ρR5 (here we assume that the drop is nearly
spherical). In principle, �z can be inferred from the WGM
detuning caused by the equatorial bulge (which is produced
by the centrifugal acceleration �2

zR). The radius at the equator
increases by an amount δR ∝ �2

z . As described above,
the resulting shift of an optical WGM at the equator is
δωopt = ωoptδR/R. We thus obtain an optorotational coupling
Hamiltonian of the form

ĤQND = h̄gL

(
L̂z

h̄

)2

â†â . (5)

The form of this Hamiltonian allows for a QND measurement
of L̂2

z .
The Hamiltonian of Eq. (5) is a simplified version of

the real coupling, as will be explained in the next section.
However, it is sufficient for understanding the basic physics of
the optootational coupling, and to estimate the feasibility of
angular momentum QND measurements.

The frequency shift gL in Eq. (5) is given by gL =
ωopt(δR/R)(h̄/Lz)2, where Lz is the (classical) mean value
of the drop’s angular momentum and δR is the bulge produced
by Lz. By balancing pressure, centrifugal force, and surface
tension we find

δR = (ρ/σ )R4�2
z/24. (6)

Thus smaller drops deform less for a given angular frequency,
due to the smaller centrifugal force. However, in terms of
gL this is overcompensated by the rapidly increasing ratio
�z/Lz = 1/I . Altogether, the WGM detuning has a strong
dependence on the drop radius:

gL = ωopt
h̄2

ρσR7

1

24

(
15

8π

)2

. (7)

Nevertheless, it should be stressed that for typical parameters
this constant is exceedingly small. For a 3He drop with R =
1 mm, ρ ∼ 81 kg/m3, and σ = 1.52 × 10−4 N/m, we have
gL = ωopt × 1.3 × 10−47. Fortunately, in most situations the
detuning can be much larger than that. This is because the
WGM detuning scales with L̂2

z , meaning that changing Lz by
h̄ results in a detuning 2gL(Lz/h̄) and so can be substantially
enhanced for large values of Lz/h̄.

In order to detect a given deviation in angular momentum
δLz, a phase shift ∼δωopt/κ has to be resolved by the
number of photons Nphot sent through the drop’s WGM
during the time of the measurement. This implies that the
minimum detectable phase must be sufficiently small, δθ =
1/(2

√
Nphot) < δωopt/κ = Qoptδωopt/ωopt. More formally, the

resolution is set by δL2
z = t−1

measSL, where we have introduced
the spectral density SL for the angular momentum imprecision

noise. The spectral density is defined in the usual way [76],
with SL = ∫ 〈δLz(t)δLz(0)〉dt , where δLz(t) represents the
instantaneous fluctuations of the angular momentum deduced
from the observed phase shift. Taking into account the phase-
shift fluctuations produced by the shot noise of the laser beam,
as estimated above, we find

SL ≡ h̄2

(
ωopt

2gL

)2(
h̄

Lz

)2(
4Q2

optṄphot
)−1

. (8)

We briefly discuss a numerical example to illustrate the
possible experimental measurement precision. A normal 3He
drop spinning at �z/2π = 1 Hz (well below the hydro-
dynamic instability) will have Lz/h̄ = I�z/h̄ = 8 × 1021.
For ωopt/2π = 300 THz (λ = 1 μm), this yields an optical
frequency shift of 2gL(Lz/h̄) ≈ 2π × 6 × 10−11 Hz per h̄ of
additional angular momentum. Therefore, we find

√
SL ≈

2 × 1024h̄/(Qopt

√
Ṅphot). For 10 μW of input power and for

Qopt = 1010, one would thus have an angular momentum
resolution of

√
SL ≈ 3 × 107h̄/

√
Hz.

These numbers indicate that it will be impossible to resolve
a change of angular momentum by a single quantum h̄.
However, one should be able to measure Lz (or Lx or Ly)
with a precision better than

√
h̄L. This is the spread of Lx

and Ly in a situation with maximum Lz = L, according to
Heisenberg’s uncertainty relation. Indeed, for the example
given above,

√
h̄L ∼ 1011h̄, which, according to the estimated

noise power SL, can be resolved in tmeas ∼ 0.1 μs. Moreover,
in the case of a superfluid 4He drop under identical conditions,
the sensitivity

√
SL ≈ 1.4 × 108h̄/

√
Hz is easily sufficient to

carefully monitor a single vortex line, which would carry an
angular momentum of ∼1020h̄.

There are three potential noise sources that may interfere
with the QND measurement of angular momentum: fluctua-
tions in the number of evaporating atoms leading to stochastic
changes of the drop radius, random angular momentum kicks
due to evaporating atoms, and angular momentum transfer by
randomly outscattered photons. We have estimated all these
effects (see Appendix A), and found them to be smaller than
the measurement uncertainty attained in the example given
above.

Lastly, we note that in addition to the centrifugal coupling
considered above there is also the Fizeau effect, which
produces a WGM detuning ∝L̂z (with a different sign for
clockwise and counterclockwise WGM modes). We estimate
the single quantum coupling rate for the effect to be gF ≈
2π × 10−20 Hz for R = 1 mm. Since the Fizeau effect does
not increase with |Lz|, we expect the centrifugal coupling to
dominate.

B. Coupling between vibrations and rotations

The coupling in Eq. (5) is idealized in two ways. First, it
assumes that the drop strictly rotates only around the z axis
and that L̂x, L̂y are not involved in the dynamics. Second,
we have written down a direct coupling between rotation and
optical frequency. In reality, the rotation will first lead to a
deformation, i.e., a displacement of one of the surface modes,
and this deformation will then couple to the optical WGM.
Conversely, the laser’s shot noise will lead to a fluctuating
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Lz

Lx

rotation

surface modes

optical mode

(a) (b)

FIG. 6. (a) Nonlinear interactions connect rotational motion to
optical frequency shifts via the surface modes. (b) A measurement
of the WGM detuning reveals information about L2

z − (L2
x + L2

y)/3.
Contours of this function are shown in the Lx,Lz plane. A given
measurement result (within some uncertainty interval) maps to a
narrow region (dark blue areas), whose intersection with the state’s
initial uncertainty (white ellipse) determines the state after the
measurement.

force acting on the surface modes, which then couple back to
the rotation. This represents the backaction associated with the
optical readout.

In the present QND case, the backaction leads to dephasing
between different eigenstates of the angular momentum
projection L̂z. Physically, fluctuations in the circulating photon
number couple to L̂2

z (via the deformation) which then
scramble L̂x and L̂y .

In summary, a more complete understanding of the optical
measurement of angular momentum will require a description
of the coupling between mechanical vibrations and the drop’s
rotations. This is also an interesting dynamical problem in
its own right, and it turns the liquid drop into a coupled
optomechanical-rotational system [Fig. 6(a)].

The interplay between rotations, deformations, and vibra-
tions in fluid spheres has been studied in nuclear physics
(for the liquid drop model of the nucleus [41]), geophysics
(for rotating planets), and hydrodynamics (for rotating drops
[77]). For small angular frequencies, the two most important
effects are (i) the slight deformation of the drop due to the
centrifugal force and (ii) a shift in the frequencies of the
surface modes. This frequency shift (sometimes known as
Bryan’s effect [78,79]) is due to the Coriolis force. It leads
to a rotation of the surface vibrations that is neither a simple
corotation with the rotating drop nor static in the laboratory
frame. For the l = 2 modes of interest here, the frequencies
in the rotating frame are shifted by −ωrotm/2, where m is the
mode index (|m| � 2).

Previous studies of the interplay of rotations and vibrations
have typically been limited to a fixed rotation axis or other
special cases [41,77]. To move beyond these assumptions,
we have derived the full Lagrangian of the system without
any such assumptions of symmetry, for the case where only
l = 2 surface modes are excited (extensions to larger l are
straightforward). To accomplish this, we note that the surface
deformation pattern δR(θ,ϕ,t) in the laboratory frame can
be decomposed into spherical harmonics. The five deflection
amplitudes Xm of the l = 2 surface modes, together with the

three Euler rotation angles, form the set of variables in the
Lagrangian (Appendix B).

The Lagrangian can be derived by (i) calculating the flow
field inside the drop enforced by the time-varying deformation
pattern of its surface, (ii) integrating the resulting kinetic
energy density over the volume of the drop, and (iii) adding
the potential energy from the surface tension. This assumes
an incompressible fluid whose flow field can be understood as
an irrotational flow pattern in the corotating frame, produced
by the surface deformation. The final result involves the
deformation variables Xm, the angular velocity vector �, and
the Euler angles that transform between the corotating frame
and the laboratory frame. We display the slightly involved
Lagrangian in the Appendixes and we will publish its full
derivation elsewhere.

The basic physics can be understood qualitatively by
considering the special case of a rotation around the z axis.
In particular, the kinetic energy in the Lagrangian contains the
following term, beyond the standard terms for the rigid-body
rotation of a sphere and the kinetic energies of the surface
modes:

I

4

√
5

π

X0

R
�2

z. (9)

This is the term that couples the bulge mode deflection X0

to the rotation around the z axis [with the moment of inertia
I = (8π/15)ρR5]. Physically, it can be read in two ways. First,
spinning up the drop creates a finite deflection proportional
to �2

z , which then leads to an optical shift, as discussed
previously. Conversely, a deflection increases the moment of
inertia and thereby the rotational energy for a given angular
frequency.

We note that for a rotating drop there also appears a set of
low-frequency modes, the so-called “inertial modes” [80,81].
Their frequencies scale with the rotation frequency, and they
are thus well separated from the vibrational modes we have
been discussing, as long as the rotation speed is sufficiently far
below the instability threshold for nonlinear drop deformation
and fission. As a result, we neglect them.

As for the effective coupling between the angular momen-
tum and the optical frequency, we have to point out another
interesting aspect that has been omitted in the simplified
model of Eq. (5). An optical whispering-gallery mode traveling
around the equator in the xy plane will be sensitive not only
to the bulge equatorial deformation that is generated by Lz;
its frequency will also be shifted by a rotation around the
x axis (or y axis), since this leads to an expansion of the
equator in the yz (or xz) plane. According to Eq. (2), this
frequency shift is 1/3 of that obtained for z rotations and has
the opposite sign. As a consequence, the operator that is really
measured is expected to be the combination L̂2

z − 1
3 (L̂2

x + L̂2
y).

The situation is displayed in Fig. 6(b).
In an experiment, angular momentum will be generated by

spinning up the drop (e.g., via the application of a rotating
electric field). Such an approach will not select a single energy
eigenstate with a definite L, but rather a coherent superposition
of various L (as well as of various Lz). The details will depend
on the exact procedure used for spinning up the drop, and in
practice there will be a thermal incoherent mixture because
the experiment is conducted at finite T with a large thermal
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population of vibrational and rotational levels. The QND
measurements described above would then be able to resolve
the angular momentum to some extent, thereby narrowing its
distribution via the measurement backaction.

In summary, the Lagrangian that we briefly discussed here
will form the general basis for discussions of the intricate
coupled nonlinear dynamics of vibrations and rotations in the
fluid drop. Among other things, this will enable a detailed
analysis of the measurement backaction in optical dispersive
measurements of the angular momentum components. How-
ever, exploring the rich nonlinear dynamics of this model is
beyond the scope of the present work and we leave these steps
to future research.

V. OUTLOOK

The levitated helium drop offers a large number of
unusual features that represent opportunities for unconven-
tional optomechanics and fundamental studies of superfluid
helium physics. Here we will briefly mention some of
those.

Due to the large energy of electronic transitions in helium,
the drop is expected to handle high circulating optical powers.
We estimate the optical spring effect in the drop to be ∼1 Hz
per photon, so it should be possible to increase the drop’s
mechanical frequencies by several orders of magnitude. It
would remain to be seen how the mechanical Q of a given
surface mode would evolve as its frequency is increased past
a large number of other mechanical modes. At the same
time, the static deflection can remain small (∼1 μm) even
for 108 circulating photons. Moreover, it would be rather
easy in this setup to reach the strong-coupling regime of
linearized optomechanics, g0Nphot > κ , for g0 ∼ 200 Hz and
a conservative estimate of κ ∼ 10 kHz. Thus, using the
tools of linear optomechanics [1], one could, e.g., transfer
nonclassical optical states into the surface vibrational modes.
Possibly, these could then be further transferred onto the
angular momentum state, generating optorotational control.
Alternatively, the dispersive measurement of angular mo-
mentum outlined above can be used to generate interesting
postselected states, including states of squeezed angular
momentum.

Beyond the conventional linear optomechanical coupling,
it should also be possible to realize quadratic coupling in this
setup. Indeed, according to Eq. (2), an optical whispering-
gallery mode whose plane is tilted at a particular angle will
have vanishing linear coupling to the equatorial bulge mode
(l = 2, m = 0), while the optical WGM in the equatorial plane
itself has no linear coupling to the m �= 0 mechanical modes.

In the present manuscript, we have entirely focused on the
lowest-order surface vibration modes at l = 2. However, one
can imagine generating interesting multimode optomechanics
when addressing the higher-order modes as well. The collec-
tive optical spring effect will be able to generate an effective
light-induced interaction between those modes, which can
get so strong as to form completely new normal modes.
Moreover, one can imagine exploiting transitions between
optical modes of different radial and angular momentum quan-
tum numbers. These transitions will then couple efficiently
to higher l mechanical modes, e.g., acoustic whispering-

gallery modes, leading to Brillouin-like optomechanical
interactions [82].

When a drop’s surface deformations or rotation rate become
sufficiently large, a variety of nonlinear effects are expected to
occur. It is known that a rotating drop can develop symmetry-
broken shapes [83], but many questions remain open. For
example, is it possible to obtain stable drops with nonzero
topological genus [84]?

Finally, the optical control and readout can serve as a means
to study the physics of superfluid helium in a setting that
is devoid of any complications arising from solid surfaces.
For example, at low temperatures, the damping of surface
waves (ripplons) is due to ripplon-phonon scattering. However,
due to the finite size of the drop, the bulk phonons inside
the drop constitute a bath with a very strongly frequency-
dependent force noise spectrum and strongly non-Markovian
properties. These might be studied quantitatively, especially
using the optical spring effect as a tool to vary the ripplons’
frequency.

Rotation in the superfluid drop is quantized and vortex
lines emerge as the drop is made to spin above a certain
rotation rate [28,85]. Below that rate, the drop’s angular
momentum must be contained either in surface modes or in the
normal fluid (phonons propagating in the bulk). The presence
and the motion of the vortex lines then affects the surface
deformation, and this will be readily measurable optically.
Even a single vortex line is not inert. It can wiggle, and
these vibrations of the stringlike vortex (known as Kelvin
modes) could also be read out via their effect on the optical
WGM, providing a means for measuring the mechanical
properties of an isolated vortex line [86,87]. Moreover, one
could investigate the interactions of many vortices as well as
quenches through phase transitions, e.g., observing Kibble-
Zurek type physics upon cooling a spinning drop. In general,
optomechanics in levitated helium drops may become a tool
enabling us to explore a whole range of physical phenomena
that are analogous to effects in high-energy physics and
cosmology [88].
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APPENDIX A: NOISE SOURCES FOR THE QND
MEASUREMENT OF ANGULAR MOMENTUM

There are three noise sources that may potentially interfere
with the QND measurement of the drop’s angular momentum.

The first is due to the fact that the evaporation of atoms is a
stochastic process. When N atoms evaporate on average during
a given time interval, that number actually fluctuates by

√
N ,

leading to corresponding fluctuations in the drop radius and
the optical resonance. The effect diminishes as the temperature
decreases and the evaporation rate slows. The relevant rates
can be extracted from Fig. 5. After 1000 s of evaporation, a
3He drop reaches T ≈ 0.13 K with ∼1 nW of cooling power.
This corresponds to 4 × 1013 atoms evaporating per second,
with a resulting deterministic drift of the optical resonance
of ∼60 MHz/s. In Sec. III A we considered a measurement
time of 0.1 μs, which is sufficiently long to resolve an angular
momentum spread of the order of the Heisenberg uncertainty,√

h̄L. During this time, the number of evaporated atoms
fluctuates only by about 103, leading to a negligible stochastic
optical shift of ∼10−3 Hz.

The second noise source is directly connected to the
same physics: the evaporating atoms will also carry away
angular momentum. For T = 0.1 K, a single atom flying
off with the mean thermal velocity can extract ∼106h̄ from
a droplet of radius R = 1 mm. Staying with the exam-
ple considered in the previous paragraph, in 0.1 μs this
results in a stochastic contribution to Lz of 109h̄, much
smaller than the 1011h̄ measurement resolution mentioned
above.

Finally, the third noise source is present even in the
absence of evaporation. It consists of changes in the drop’s
angular momentum due to the scattering of photons. Each
randomly scattered photon can carry away angular momen-
tum ∼Rh̄k, which amounts to about 6000h̄. Assuming an
input power of 10 μW and that 10% of the photons are
scattered stochastically in random directions (e.g., from the
thermal surface fluctuations), this process would result in a
stochastic angular momentum transfer (during a 0.1 μs mea-
surement time) of ∼4 × 106h̄, well below the measurement
uncertainty.

APPENDIX B: LAGRANGIAN FOR THE COUPLING OF
ROTATIONS TO THE l = 2 VIBRATIONS IN AN

INCOMPRESSIBLE FLUID DROP

The purpose of this Appendix is to display the full La-
grangian describing the coupling between arbitrary rotations
and the vibrational l = 2 surface modes of the drop. To
that end, we have to introduce a number of definitions. The
derivation of this Lagrangian will be discussed in a separate
publication (see also the thesis in Ref. [42]).

For brevity, it is convenient from now on to measure
lengths in units of the sphere radius (such that R = 1).
Appropriate dimensions can be reinstated later, if needed.
The surface deformation pattern in the laboratory frame is
given by

δRLab(r,t) =
2∑

m=−2

XLab
m (t)φm(r), (B1)

where r resides on the surface (|r| = 1). The φm(r) are based
on the l = 2 spherical harmonics, φm(r) ∼ r2Yl,m(θ,φ). They
have been extended to cover all of space, which will simplify
the notation further below. More precisely, we have defined
φ±2 = N2(x ± iy)2, φ±1 = N1(x ± iy)z, and φ0 = N0(x2 +
y2 − 2z2); where the constants are N2 = (32π/15)−1/2, N1 =
(8π/15)−1/2, and N0 = (16π/5)−1/2. The surface integrals are
normalized,

∫ |φm|2 sin θ dθ dϕ = 1 for |r|= 1.
To write down the Lagrangian, we need to convert between

the laboratory frame and the corotating frame (described by
a set of three Euler angles which we sometimes combine
into a three-vector �ϕ). We assume that the transformation is
effected by a suitable 5 × 5 matrix W , with XLab = WXRot,
or explicitly

XLab
m =

2∑
m=−2

Wmm′ ( �ϕ)XRot
m . (B2)

Upon rotation of the drop by the angular frequency vector �

(which is expressed in the laboratory frame), the matrix W

changes according to

d

dt
Wmm′ = −

3∑
s=1

2∑
k=−2

�sK
(s)
kmWkm′ , (B3)

or Ẇ = −∑
s �s(K (s))

t
W in matrix notation. This rela-

tion defines the generators K
(s)
km that describe infinites-

imal rotations. The generator K (3) for rotations around
the z axis is the simplest one, with K

(3)
km = imδk,m. Fi-

nally, we introduce the notation DRot
m = ẊRot

m and DLab =
WDRot. With these definitions, we are now in a position to
write down the full Lagrangian that couples vibrations and
rotation:

L = I

2
�2 + ρ

4
ẊRot∗

m ẊRot
m − I

2
δRLab(�)

+ρ

4
DLab

m �sK
(s)
mm′X

Lab∗
m′ − 2σXRot∗

m XRot
m . (B4)

Summation over repeated indices is implied. This Lagrangian
contains, in this order, (i) the rotational energy of the
unperturbed spherical drop, (ii) the kinetic energy of the
surface vibrations, (iii) the change in the rotational energy
due to the deformation (with the surface deformation field
δR evaluated at the angular momentum vector), (iv) the
term describing Bryan’s effect (from the Coriolis force), and
(v) the potential energy of the surface vibrations (due to the
surface tension). We note that all the deformation-related
quantities (XRot, XLab, and DLab) have to be expressed via
XRot for the purpose of deriving the equations of motion.
We also note that the XRot coefficients obey the constraint
XRot

−m = XRot∗
m due to the fact that the surface deformation

is real valued. In deriving the equations of motion, one can
either split XRot

m into real and imaginary parts (for m > 0) or,
more efficiently, formally treat XRot

m and XRot∗
m as independent

variables.
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