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§ 1. INTRODUCTION. 

1.1. A rational function f(x1 ,x2, ••• ,xn) having real 

coefficients is positive definite if its values are non

negative for ali real values of x1 ,x2, .•• ,xn. Hilbert 

conjectured that such a function can be written as a sum of 

squares of rational functions with real co~fficients, and 

this appears as the seventeenth in his çelebrated list of 

prob1ems. [ 1] . 

The problem was solved by Artin in 1927, [2], 

using the typical non-constructive machinery of modern 

algebra, and in 1955 Artin asked Kreisel if the proof could 

be made constructive. Kreise1 asserted that this was 

possible, and published indications of his method in two 

places, [3] and [4]. Although [3] gives more detail than 

[4], both papers are rather cryptic, neither giving a 

complete connected account: moreover, for the logical part 

of the argument, Kreisel uses the Hilbert-Bernays &-theorems. 

Here, using a direct application of the Herbrand 

theorem, we give a constructive proof of the following :

If f(y
1

,y
2

, ... ,yk) is a posit~ve definite rational 

function with rational coefficients, then it may be 

written as a sum of squares of ratioRal functions 

with rational coefficients. 

This result is then extended to the case where 

f(y ,y , ••. ,y) has real coefficients~ 
1 2 k 
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1.2. The proof follows the plan indicated in this 

section. We first outline a formai system of the predicate 

calculus, and a set of axioms for real closed fields. In 

this formalism we construct a formula F whose intuitive 

interpretation is 

(Axioms of a real closed field)~ (f(y
1

,y
2

, ... ,yk) is 

positive definite). 

Since the axioms are complete [S]
1

a proof of F exists 

within the predicate calculus. 

In his thesis of 1928, Herbrand has shown that 

since a derivation ofF exists, a sequence of quantifier-

free formulae may be constructed such that at sorne point in 

the sequence a formula RF is obtained which is truth

functionally valid. The terms occurring in RF may be 

interpreted as elements of fields obtained by successive 

algebraic extensions of a field F, namely the field of 

rational functions of y1 ,y2, ... ,yk, having rational 

coefficients, and the form of RF gives immediate 

representations of f(y
1

,y
2

, ... ,yk) as sums of squares in 

these fields. 

We show the construction of these various fields, 

and then describe how the steps may be re-traced back to 

the ground field F, reducing the representations of 

f(y
1

,y
2

, ... ,yk) as sums of squares exhibited in RF to the 

required representation in F itself. 

Finally we extend this to the case where the 

coefficients of f(y
1

,y
2

," .. ,yk) are real. 
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§ 2. DESCRIPTION OF THE FORMAL SYSTEM. 

2.1 We use the symbols 'x', 'y', and 'z' as forma! 

variables, 'fn' (or 'f') as an n-place function symbol, and 

•pnr (or 'P') as an n-place predicate symbol. 't' will 

denote a term, 'F', 'G', and 'H' will denote formulae, and 

'a', 'b', and 'c' will denote constants. These symbols will 

be extended where necessary by inserting appropriate 

subscripts, or by other suitable means. 

For negation, conjunction, disjunction, 

implication and equivalence we use '-', '&', 'v', 1 + 1
, and 

'++' respectively, and for universal and existential 

quantification we use 'A' and 'E' respectively. 

In constructing terms and formulae following the 

usual rules, we use parentheses economically, omitting them 

whenever no ambiguity arises. Commas are treated equally 

parsimoniously, omitting them from terms constructed from 

function symbols, and from predicates constructed from 

predicate symbols. 

The symbol '=' will be used as a name for a two

place predicate symbol, '+' and 1 
o

1 as names for distinct 

binary operation symbols, '-' and ,-!, as names for 

distinct unary function symbols, and '0' and 'l' as names 

for distinct constants. All of these may be interpreted 

naively to have their customary meanings, and where they 

occur we shall follow normal usage: in particular, using 

the usual rules of precedence, we omit parentheses 

wherever possible. In keeping with this, 'r' will denote 



- 4 -

the negation of'=' 'tn' will mean 't•t• ... ·t' (n times), 

'n•t' will mean 't+t+ ... +t' (n times), and 't1-t2 ' will mean 

2.2 The formulae below named by the symbol 'A' with 

subscripts as shown, are taken as the axioms of a real closed 

field. 

Al Ax x = x 

Az AxAyAz x'fy v zY.y v x = z 

A3 AxAyAz x Y. y v x+z = y+z 

A4 AxAy xY.y v (-x) = (-y) 

As AxAyAz x'fy V X•Z = y•z 

A6 AxAy xY.y v x-1. y-1 

A7 AxAyAz (x+y) +z = x+(y+z) 

AB AxAy x+y • y+x 

Ag Ax O+x = x 

A10 A x x+(-x) = 0 

All AxAyAz (x•y) •z = x• (y•z) 

A12 AxAy x•y = y•x 

A13 A x l•x = x 

A14 A x x=O v x• cx- 1) = 1 

AIS 1-fO 

A16 AxAyAz x· (y+z) = x•y+x•z 

A17 AxEy y2=x v y2 = (-x) 

A18 1 Ax1Ax 2Ax3Ey y3+xl·y2+xz·y+x3 = 0 , 
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A A Ax E 2n+l+ Zn+ + 0 xl xz··· 2n+l Y Y x1·Y ·•• x2n+l = 

In dealing with any particular case a finite 

number of axioms of the form A18 i are required exactly 
' 

which are needed is determined by the nature of the given 

function f(y 1 ,y2 , ••• ,yk). We will assume that the formula 

A18 , 1 & A18 , 2 & ... & AlB,n' denoted by 'A 18 

contains among its conjuncts those axioms required for the 

case on hand. The fact that the value of n may change from 

case to case is not important. 

We will denote the formula 

Al & A2 & ••• & A16 by 1 s' 

and Al & Az & ••• & Al9 by 'K' 

§ 3. ALGEBRAIC PRELIMINARIES. 

The following results are required for the main 

proof. Although their proofs can be formalised easily, they 

are treated informally for clarity. 

3.1 In a field in which K holds, any representation 

of zero as a sum of squares is trivial. 

The proof is by induction . 
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xz = ••• 

holds for rn = 1,2,3. 

Now suppose that it holds for rn= 1,2,3, ... ,s. 

and that 
s+l 
L x.2 = 0 

1 
i=l 

Then from A17 we have for sorne y, 

s-1 
either L xi 2 = y 2 or 

i=l 

In the former case, 

In the latter case, x 2+x 2+ +x 2 +y2 = 0 
1 2 ··· s-1 

Since these are sums of 3 and s squares respectively, the 

required result follows easily from the inductive 

assumption. 

3.2. In a field in which S holds, if y
1 

and y
2 

can be 

expressed as sums of squares, then so also can 

and 

The proofs of (i) and (ii) are trivial, and for (iii) we have 

rn -1 
( L x.2) 

. 1 1 1= 
= 

rn 
2 L u. , 

. 1 1 1= 
where 

rn 2 -1 
( L xj J 
j=l 
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Corollary: In a field in which S holds, if x1 ·x = x 2 where 

x1 and x 2 can be represented (non-trivially) as sums of squares, 

then either 

(1) 0 can be expressed as a non-trivial sum of squares, 

or (2) x can be expressed as a sum of squares. 

(for if x1= 0 (1) holds, and if x1 ; O, then from (ii) and 

(iii) above, (2) holds.) 

3.3 To clarify the next two sections we define (for 

sections 3.3 and 3.4 only) a representation in a field K to be 

an equation of the form 

u • 
n 
Ï a.2 

. 1 1 1= 

where ai & K (i = 1, Z, ... ,n), and where 'u' denotes either 

a prescribed element of K (denoted by 'f'), or else O. The 

lemma of this section may now be stated thus :-

If f and t are elements of a field K in which S holds, then 

from a representation in K(lf) and in K(~) we can find a 

representation in the ground field K. 

Proof: 

and 

Let the given representations be 

rn 
u1 = L (a. + b··lf) 2 

i=l 1 1 

n \ ,- 2 u 2 = L (c. + dJ.•vt) 
j=l J 

where a.&K b.tK 
1 1 

(i=l,Z, ... ,m) 

where cj&K djtK , 

(j=l,Z, ... ,n) 

It may be that on squaring out and collecting terms, we find 
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that in one of these the coefficient of lf or of r-t do es 

not vanish. 

u = 
1 

Suppose for definiteness that 

m 2 r al + 2 c r 
i<j i=l 

and that 

m 

m m r a.b.)·lf + t. r b. 
j=l 1 J . 1 1 1= 

I 
i<j 

m 
I a.b. ;: O. 

j=l 1 J 

2 

Then u1 = I (a. +b
1
-·c)2 exhibits the required representation 

. 1 1 1= 

where c = If = 
m 2 m 2 m 1 

cu1 - I a· - t· I b 1· J.cz I I a.·b·J-
. 1 1 

. 1 . . J" =1 1 J 1= 1= 1<) 

and hence ce:K. 

Alternatively the coefficients of If and ~ 

both vanish, and we have 

and u = 2 

m r a.2 
. 1 1 1= 

n 2 I c. 
j=l J 

+ 
m 

t· l: b.2 
i=l 1 

n 
t· I d.2 

j=l J 

If one of the coefficients of t vanishes, this gives a 

representation of 0 as a sum of squares, and otherwise we can 

eliminate t, obtaining 

n 2 m 2 
Ul· L d. + u2 ° r b. 

j=l J i=l 1 = 
m 
L a.2 

. 1 1 1= 

n r d.2 • 
j =1 J 

m n 2 r b. 2 • r C· 
i=l 1 j =1 J 

We may now replace u1 and u 2 by their values. If u1 = u2 = o, 
then from (i) and (ii) of 3.2 we have 0 expressed as a sum of 

squares. If u1 = 0, u 2 = f, or if u1 = f, u 2 = 0 we solve 

for f and obtain from 3.2 a representation of f as a sum of 

squares. Finally if u1 = u 2 = f, then either Edj2 + Ibi 2 = 0, 
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giving 0 as a sum of squares, or else we again solve for f, 

and from 3.2 ob~ain f as a sum of squares. 
"( 

3.4 If K is a field in which S holds, f a fixed element of 

K, and p(x) a polynomial of odd degree in K[x], then from a 

representation in K(a) (where p(a) = 0) we can find a represent

ation in the ground field K • 
.. $' 

Remark. We wish to apply this result to fields as defined in 

section 7.5, and so we anticipate the construction described 

therein, consequently making the following assumptions in the 

proof: 

(i) In obtaining the initial representation we obtain a poly

nomial q(x) (corresponding to Pn+l(x) of section 7.5), of 

odd degree, which is a divisor of p(x). The adjoined root 

a is<a ioot of q(x). 

(ii) The initial representation holds true no matter which root 

of q(x) is adjoined. In particular, if q*(x) is any odd

degree factor of q(x), then the representation holds if 

we take a as a root of q*(x). 

(iii) Each element in the representation can be reduced to a 

polynomial in a, so that we may assume that we are given 

u = ( hi(x)eK[x], i=l,2, ..• ,m) 

(iv) If a representation as in (iii) is found to hold when a is 

replaced by S, a root of sorne other odd-degree polynomial 

in K[x], then the corresponding field K(S) can be 

constructed. 
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Proof: Using the above notation, we have 

m 
u - L [hi(x)] 2 = 0 (mod.q(x)) 

i•l 

I. It may be that q(x) is a diviser of the left side, and 

that the degree of q(x) is greater than 1. Then we have 

m 
u- L [h. (x)] 2 • r(x)·q(x) 

. 1 1 1= 

We may assume that each hi(x) has been reduced to a polynomial 

of degree less than that of q(x) by taking the remainder on 

division by q(x) in the usual way. Then if deg.q(x) = 2n + 1, 

the left side has even degree ! 4n, and hence r(x) has odd 

degree less than 2n + 1. We may therefore put 

rn 
u= }:[h.(S)] 2 

i=l 1 

where Sis a root of r(x), and from remark (iv), the construct

ion of K(S) can be carried out, and the process repeated, 

starting with m 
u- }: [hi(x)] 2 - 0 (mod.r(x)), 

i•l 

where deg.r(x) < deg.q(x). 

II. Alternatively, it may be that u- E[hi(x)] 2 is identically 

zero. In this case, either 'x' does not occur in any of the hi(x), 

so that hi(x) • cieK (i=1,2, ... ,m) and we have the representation 

rn 
u = I c.2 ' . 1 1 1= 

or else the coefficient of x 25 vanishes (where s is the highest 

powe, of x occurring among the terms of the hi(x) ) 

exhibiting zero as a sum of squares. 

th us 
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III. If I and II do not arise, then it may be that q(x) is 

1inear, say q(x) = ax + b , a ~ O. In this case, 

m 
u = r [hi((-b)·(a-1))]2 

i=1 

gives-the required representation. 

IV. Finally, if cases I, II, and III do not apply, we have 

m 2 
(mod.q(x)) u - r [h. (x)] = 0 

i=l 1 

where the 1eft side is not identica11y zero, q(x) is not a 

di vi sor of the le ft side, and q(x) has odd degree grea ter 

than 1. In this case the 1eft side and q(x) must have a 

common factor which(since 1 does not arise) is a proper 

divisor of q(x). We can find this (greatest) common diviser, 

say g(x), and then define 

h(x) = g(x) (if deg.g(x) is odd) 

and h(x) = q(x)/g(x) (if deg.g(x) is even). 

C1early h(x) is an odd-degree factor of q(x) and hence from 

remark (ii) we have 

m 
u- r [hi(x)] 2 - 0 (mod.h(x)) 

i=l 

where deg.h(x) < deg.q(x), 

and the process may be repeated starting with this equation. 

Since these cases are exhaustive, either the process 

terminates with II or III, or we obtain a representation where 

the degree of the (odd-degree) 'definmg polynomial' has been 

reduced. Hence if II does not arise, after a finite number of 

steps the defining polynomial is reduced to a linear one, and 

the process terminates with III. 
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§4. THE HERBRAND METHOD, 

4.1 The Herbrand method provides a formal procedure which 

ref1ects the intuitive 'indirect' method of proof. Since the 

main theorem is not well known, it is described here in sorne 

detail, and sorne idea of the motives underlying the various steps 

is provided. In this section a simple example is discussed, 

entire1y at the intuitive 1evel. 

Consider the formula G: 

Ay1Ex1 Px1y1 v Ex 2Ay 2 -Py 2x 2 .••.•.•.•... (1) 

To 'prove' this indirect1y, intuitive1y, we wou1d assume the 

satisfiabi1ity of its negation, (-G): 

Ey1Ax1 -Px1y1 & Ax 2Ey 2 Py2x 2 ••c••••······(2) 

and search for a contradiction. Now the meaning of (2) can be 

conveyed by the formula 

Ax1 -Px1y 1 & Ax 2 Py 2 (x2)x2 ....•....... (3) 

where 'y1 • denotes a term whose existence is asserted by the 'EY1' 

of (2), and 'yz(x2)' denotes a term functiona1ly dependent on x 2 , 

and whose existence is asserted by the 'Ey 2 ' of (2). 

The satisfiabi1ity of (-G) is equivalent to the 

va1idity of (3), in which the ro1es of the symbols 'YI' and 'Yz' 

have changed. Clearly, then, the satisfiability of (-G) is 

equivalent to the invalidity of the negation of (3), namely 

Ex
1 

Px
1
y

1 
v Ex

2 
-Py

2
(x

2
)x

2 
•.....•••..•• (4) 

(This formulais a functionaL form of G, denoted by 'fn.(G)') 

If x1 and x 2 are replaced by terms in (4), and the 

existential quantifiers are removed, we have a substitution 

instance of fn.(G). 
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For example, if t 1 and t 2 are terms, then 

Pt1y1 v -Py2 Ct 2)t2 ............• (5) 

is such an instance. The invalidity of (4) means that every 

such substitution instance is 'false', and indeed any fini te 

disjunction of substitution instances is 'false'. (If Dis any 

finite set of terms, then the disjunction of all possible 

substitution instances of fn.(G) using terms of Dis a 

Herbrand Expansion of G over D , denoted by ' R(D,G) '.) 

Summarising the discussion so far, we have 

obtained from Ga formula fn.(G), intuitively equivalent to G 

when the functional terms it contains are appropriately inter

preted. Now fn. (G) is valid if we can exhibit a disjunction of 

substitution instances which is 'true'. 

This is done by constructing a finite set of 

terms D, and showing that R(D,G) is 'true'. Since R(D,G) is a 

disjunction of substitution instances, at least one substitution 

instance is 'true', and thus Gis 'proved'. 

In this case y1 is a term, and y2(t) is a 

term where t is a term. We may therefore construct a sequence of 

terms 

Taking D as the set {yl, yz(y1)}, we find R(D,G) to be 

(PYlYI v -Pyz(Yl)yl) v (Pylyl v -Pyz(Yz(YI))yz(YI) ) 

v (Pyz(Yl)yl v -Pyz(Yl)yl) v (Pyz(YI)yl v -Pyz(Yz(Yl))Yz(Yl)) 

The underlined disjuncts show that R(D,F) is truth-functionally 

valid, as required • 
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Interpreted intuitively, as illustrated above, the 

Herbrand method consists of attempting to construct a 

counter-example to a given formula, making the 'best' (in 

sorne sense) effort to do so, and exhibiting a contradiction. 

The process exemplified above is described in 

detail following the statement of the Herbrand Theorem :-

4.2 Given any formula F of the predicate calculus, we 

can effectively construci a finite set of terms D and thence 

a quantifier-free formula R(D,F) such that R(D,F) is truth

functionally valid if and only if a proof of F exists within 

the predicate calculus. 

4.3 Construction of fn(F) 

The given formula F is first reatified by 

arranging that the quantified variables are pairwise 

distinct, and that no variable occurs both free and bound. 

In a notation designed specifically to accommodate the 

Herbrand Theorem this can be done by including in the 

ordinary inductive definition of formulation the clauses 

'If G1 and G2 are formulae, then (G 1 & G2) and 

(G1 v G2) are formulae iff no variable occurring in G1 
is bound in G2 and no variable occurring in G2 is bound 

. G ' 1n 1 . , 

and, 'If F is a formula, then(.AzF) and(EzF) are formulae 

iff z does not occur bound in F.', and then arranging 

that all connectives are written in terms of '&', 'v' 

and '-' 
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Clearly alphabetic changes can easily be made to 

bring a formula into rectified form. For example, if F is 

(AxAyEzPxyz) ~ - (AxEyAzEt(Qxctv-Rxzy)) 

where P, Q, and R are three-place predicate symbols, and c 

is a constant or a free variable, then a rectified form of 

F is 

-(Ax1Ax2Ey1Px1x2y1) v -(Ax3Ey 2Ax4Ey3 (Qx3cy3 v -Rx3x4y4)) 

Next, we rationalise F by writing an equivalent 

formula which has negation signs 'pushed in' until they 

occur only immediately preceding predicate symbols, and 

then removing 'double' negation signs. 

of the forms -AyF, -ExP, -(F & G), 

Formally, formulae 

-(FvG), and --F, 

are replaced by Ey-F, Ax-F, -Fv-G, -F&-G, and F, 

respectively. 

In our example above, this form, denoted by 

'rat. (F) ' is 

(Ex1Ex 2Ay1-Px1x 2y1) v (Ex3Ay 2Ex4Ay3 (-Qx3cy3 & Rx3x4yz)) 

In this example we have arranged that existentially and 

universally quantified variables are denoted by 'x' and 

'y' respectively, and we employ this convention throughout. 

From rat•(F) we construct fn(F) as follows :

(1) If no universal quantifiers occur in rat·(F), 

then fn(F) is rat·(F). Otherwise, 

(2.) If 'Ayi' occurs for sorne i, and is not in the 

scope of any existential quantifier, then the symbols 

'Ayi' are deleted, and other occurrences of Yi left unchanged. 
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If 'Ay.' occurs for sorne i, and is within the 
1 

scopes of Ex. ,Ex. , •.. ,Ex. in left to right order, then 
11 1z lk 

the symbols 'Ayi' are deleted, and each remaining occurrence 

of 'Yi' is replaced by the function symbol 

'y. (x. x. . .• x. ) ' . 
1 1 1 1 2 lk 

When all occurrences of universal quantifiers 

have been deleted by repeated application of (2) and {3), 

the remaining formulais fn(F). 

In our example, fn(F) is 

(Ex1Ex 2-Px1x 2y1 (x1x2)) v (Ex3Ex4 (-Qx3cy3(x3x4) & Rx 3x4y2(x3)) 

4.4. Construction of R(DI ,F) 

To obtain a Herbrand expansion of F over a given 

non-empty finite set of terms D1 , we note first that if 

fn(F) is quantifier free, then R(D1 ,F) is simply fn(F). 

Otherwise, suppose all the quantifiers occurring 

in fn(F) are Ex1 ,Ex2, ... Exn in left to right order. 

Let tl,tz, .•. ,tn) be any ordered n-tuple of 

terms (not necessarily distinct) of n'. Deleting each 

occurrence of the symbols Ex1 ,Ex2, ... Exn from fn(F) (and 

parentheses in accordance with the rules of formulation) 

and replacing each remaining occurrence of xi by ti 

(i = 1,2J•••,n) gives a substitution instance of fn(F). 
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The disjunction of all possible substitution instances using 

terms from D1 is R (D1 , F). In our example, if o1· = { c}, 

then R(D!F) would be the single substitution instance 

(-Pccy1 (cc)) v (-Qccy 3 (cc) & Rccy 2(c)) 

4.4. Construction of {Di} 

We now define a sequence of sets of terms 

inductively, thus :-

o1 consists of all free variables (not functional 

symbols) and constants occurring in fn(F). If this 

is null, then o1 consists of the single symbol 'l' 

Di+l consists of all terms of Di together with all terms 

occurring in R(Di,F). 

(Hence Di+l consists of all terms of Di together 

with new terms formed by substituting terms of Di into the 

functional variables occurring in fn(F)). 

In our example, fn(F) contained an occurrence of 'c' 

(unbound), and functional variables y1 (x1x2),y2 (x3), and 

Hence D1 is {c}, Dz is {c, Yl(cc), yz(é), y3(cc)} 

D3 consists of 37 terms in all. (e.g. y1 (y1 (cc)y2(c)), 

y 2 Cy2(c)), etc ) 

According to the Herbrand Theorem, if a derivation 

of F is possible in the predicate calculus, then for sorne 

finite integer p>O, R(Dp,F) is truth-functionally valid . 
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In this paper no specifie use will be made of the 

sequence {Di}, and it will be sufficient for our purpose to 

assert that we can construct a finite set of terms D (i.e. 

any finite set containing Dp) such that R(D)F) is truth

functionally valid. 

An alternative description of the above 

constructions is given in [6], pp.700-702. 

§ S. COMPLETENESS OF K 

In the problem in hand we are concerned with the 

formula H: 

where f(y 1y2 ... yk) is the name in our formalism for a given 

rational function f(y1 ,y 2, ... ,yk) with rational coefficients, 

and with the formula F: K + H. 

The crux of our proof will be that a finite set 

of terms D can be effectively constructed such that R(D 1F) 

is truth-functionally valid, by the Herbrand theorem. 

However this in turn depends upon the existence of a proof 

of F, as stipulated in the Herbrand theorem. We must show, 

therefore, that if f(y1 ,y2, ... ,yk) really is positive 

definite, then a derivation of F exists. 

Now Tarski has shown [5] that if G is any formula 

where '=' and '<' are the only predicate symbols and '+', 

'·' '-' and ,-1, the only operation symbols, then a 

formula U(G) in the same system can be found, quantifier-
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free, such that G +~ U(G) follows from the axioms of a 

complete ordered field. (i.e. from a set of axioms equivalent 

to K. see [5], p 49). In the present case, U(H) has no 

variables, and so is completely decidable. Since 

U(H) +~ H follows from K, K ~ H is thus completely decidable. 

This establishes that if f(yl,yz, ... ,yk) is a positive 

definite rational function with rational coefficients, then 

a derivation of F exists. 

(We return to Tarski's 'completeness' result in 

section 9 , when the main result is extended to the case 

where the given function nas real coefficients). 

§ 6. APPLICATION OF THE HERBRAND THEOREM 

TO THE CENTRAL PROBLEM. 

6.1. Suppose that a given rational function 

f(yl,yz, ... ,yk) with rational coefficients is positive 

definite. The algebraic representation of this function 

is of course a term of our formai system, and we denote it 

by 'f(ylYZ···Yk)~ 

From § 5, the formula H, namely 

Ay1Ay 2 .•. Ayk Ex f(y 1y 2 ... yk) = x2 

is provable from K. i.e. within the predicate calculus a 

proof exists for F, namely 

(Al & Az & ... & Al8 & Alg) ~ H. 

Hence, applying the Herbrand Theorem, a finite domain of 

terms D can be effectively constructed such that R(DJF) is 

truth-functionally valid. 
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6.2 Following the process in §4, we first rectify F. 

In doing this we will retain the symbols 

in the sub formula H, replace the 'y' of A17 by 'r' and that 

of A18 ,j by 'rzj+l' (j=l,Z, ••• ,n). Next, Fis written 

in rational form, and finally the universal quantifiers are 

deleted replacing occurrences of the universally quantified 

variables by function symbols where this is appropriate, 

as prescribed. In the interest of clarity, fn(F) thus 

obtained is shown below, using the symbol 'rzj+I' to 

denote the function symbol 'rz. l(x. 1 x. 2, ... ,x. z·+r)' 
J+ J, , J, J, J 

(j = 1,2, ..• ,n). 

(Ex 2 x2rx 2) v (Ex3Ex4Ex5 3 = x4 & x5 = x4 & x3rx 5) . 

v(Ex6Ex7Ex 8 x6 = x 7 & x6+x8rx 7+x 8) 

v (Ex9Ex10 x9 = x10 & (-xg)r(-xro)) 

v (Exl1Exl2Exl3 xli= xl2 & xll.xl37'xl2·xl3) 

( -1-' -1) v Ex14Ex15 x14 = xlS & x14 rXlS 

v (Exl6Exl7Exl8 (xl6+xl7) + xl8;xl6+(x17+xl8)) 

v (Ex19Ex 20 x19 + x20;x20 +x19 ) 

v (Ex 21 o + x 21rx21 ) v (Ex22 x22 + (-x 22 );o) 

v (Exz3E24 Ex2s Cxz3•xz4)·xzsl'xz3·Cxz4•xzsl) 

v (Exz6Exz7 xz6·xz7rxz7•xz6) 

v (Ex 28 lox 28rx 28 ) v (Ex 29 x29;o & x 29 ·cx29 - 1)rl) v (1 = O) 

v (Ex30Ex31Ex32 x3dCx31 + x3z)7'x3o·x31 + x3o·x3z) 

v (Ex33 r(x33)2 r x33 & r(x33)2 r (-x33)) 
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V (Ex Ex Ex r 3 + r 2 + x + x ~o) 1,1 1,2 1,3 3 x1,1· 3 1,2•r3 ~r 

v (Ex2 1Ex 2 2Ex 2 3Ex 2 4Ex 2 5 ' ' , , ' 
Fs5 + xz 1·rs4 + xz z·rs3 + xz 3·Fs2 + xz 4·Fs + xz s.;o) 

' ' ' ' ' 
v 

v (Ex lEx 2 ..• Ex 2 1 r2 12n+l+x l·rz 12n+ ... +x 2 l.;o) n, n, n, n+ n+ n, n+ n, n+ 

v (Ex34Ex35Ex36 x342 + x352 + x362 = 0 & (x34;o v x3S;o v x36r}O) 

v (Ex1 f(y1y2 ••. yk) = x1
2). 

The first sixteen disjuncts correspond to A1 to 

A16 and contain no universal quantifiers. The constants 0 

and 1 appear. The 17th to (17 + n)th disjuncts corresponding to 

AV and A18 , 1 to A18 ,n contain the only occurrences of 

functional terms, namely r(x33 ) and r 2j+l (xj, 2, .•• ,xj,Zj+l) 

(j = 1,2, ..• ,n). The last disjunct corresponding to H 

contains the free variables y1 Yz ... ,yk. 
' ' 

Following the process for obtaining D, the set,of 

terms for which R(D,F) is truth-functionally valid, we see 

that D consists of 

(ii) terms of the forms 

(iii) terms of the form r(t1) and rZj+l (t 1t 2 .•• t 2j+l) 

where t 1 ,t2, •.• ,t2j+l are terms of D. (j = 1,2, ••. ,n). 
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D provides the terms to be substituted in fn(F), 

the disjunction of the substitution instances constituting 

R(D,F). Terms will occur in R(D,F) which do not occur in 

D itself (e.g. if t e D, then r(t) occurs in a disjunct of 

R(D,F) corresponding to A17 , but r(t) need not be a term of 

D). We define D* to be the set of all terms occurring in 

R(D,F). 

6.3 Since D* is finite, it can be completely ordered, 

and we choose an ordering where the condition holds that if 

t 1 occurs in t 2 , then t 1 precedes t 2 in the ordering. 

(e.g. trivially t 1 precedes t 1 + t 2 , and importantly if 

or r 2J.+l (tk tk ... tk ), where for sorne 
l' 2' ' 2j+l 

i tk. is t 1 , then t 1 precedes t 2·) 
1 

Having established this ordering we now construct 

a sequence of infinite nested sets 

as follows :-

(1) D0 consists of 0,1, and all possible terms built 

up from these using 1 + 1 , 1 - 1 1 
• 1 and 1 -1,. 

(2) D1 consists of all terms of D0 together with 

y1 ,y 2, ... ,yk, and all terms built up from these using 

1 + 1 , 1 _ 1 , • 1 , and 1 - 1 1 • 

(3) Having obtained Di (i~l), we find ti+l• the first 

term in the ordering of D* which is not in Di. If no such 

term exists, then Di = Dq, and the sequence terminates. 

1' 
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Otherwise, Di+l consists of all terms of Di together with 

ti+l' and all terms built up from these using '+', 

and ,-1, 

t - t ' . ' 

Since D* is finite, it is obvious that the above 

process terminates giving D0 C: ... <:Dq, and that D*C: Dq. 

Each set Di+l in the sequence (i~l) is brought about by 

inserting exactly one new functional term into Di, and 

closing the resulting set under the rational operations. 

§ 7. CONSTRUCTION OF FIELDS. 

7.1 Truth Assignments. 

The only predicate symbol occurring in fn(F), 

and hence in R( D,F), is the dyadic symbol '=' If we 

have a rule for allocating truth values to formulae of 

the kind 'tl = tz' where t1 and tz are terms of D*, then 

the component disjuncts of R(D,F) may be evaluated. We 

call T a tPuth-aaaignment to D* where T is a function 

whose domain is the set of all formulae 'tl = tz', for 

all (t1 ,t2)€ D*xD* and which ranges over two values, say 

'true and 'false'. 

If T is such that it makes each instance of an 

axiom 'true', we shall say that T aatiafiea that axiom, 

(e.g. if D* is {t1,t 2,.o.,t }, and T makes 't. = t.' m 1 1 

'true' (i = 1,2 •.. ,m), then T satisfies At on D*). 
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We should note at this point that if T satisfies 

an axiom, A., on D*, then in R(D,F) it makes all disjuncts 
1 

corresponding to that axiom false. (Since A. appears in F 
1 

in the form .•. v-Aiv ..•• vH) Now the Herbrand Theorem 

states that R(D,F) is 'truth functionally valid'. In other 

words, no matter how T is constructed to D*, R(D,F) will 

have value 'true'. We are going to construct a multiplicity 

of truth-assignments T to D*, so as to satisfy the axioms 

A1 & A2 & ... & A18 - i.e. all these truth assignments 

make all the substitution instances of the disjuncts of 

R(D*,F) corresponding to these axioms 'false'. For every 

such T, since R(D*,F) cornes out 'true', there must be 

therefore at least one substitution instance corresponding 

to (-A 19 v H) which is 'true' and hence for each such T 

a 'true' representation of zero as a sum of squares, or of 

f as a sum of squares is thus exhibited. 

The remainder of this chapter is devoted to the 

constructions of truth-assignments to D* which satisfy S. 

We do this by defining truth-assignment T
0 

to D
0 

(as 

defined in 6.3) and then showing how to extend any 
' Il Ti to Di either to Ti+l on Di+l or to Ti+l and Ti+l on 

Di+l' depending on whether the functional term which , 
generates Di+l from Di is an 'odd-root' or 'square root' 

term, respectively. (l~i<q) . 
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7.2 Construction of T0 to D0 • 

We define functions P
0 

and Q
0 

whose domains are D
0

, 

and which range over the integers, below. The symbols used 

to denote operations and equality in the range are those of 

our formal system, of course, but are to be interpreted as 

operations among the integers. Intuitively, P0 and Q0 

indicate the numerator and denominator respectively of the 

rational numbers obtained when the symbols of our formalism 

are given their intuitive interpretation. 

To 

If 

has 

The 

1) P0 (0) = 0 and Q0 (0) = 1 

2) P0 (1) = 1 and Q
0

(1) = 1 

3) 

4) 

5) 

6) 

7) 

P
0

(-t) = -P
0
(t), and Q

0
(-t) = Q0 (t). 

If P
0

(t);o, then P
0

(t-1) = Q
0

(t) and Q
0

(t-l)=P
0

(t) 
-1 -1 

If P0 (t) = 0, then P0 (t ) = 0 and Q0 (t ) = 1 

Po(tl+tz) = Po(tl)•Qo(tz) + Po(tz)·Qo(tl) 

and Q0 (tl+tz) = Q0 (tl).Q0 (tz) 

P0 (t1.t2) = P0 (t1).P0 (tz) 

and Q0 (t~tz) = Q0 (tl).Q (tz). 

may now be defined thus : -
t 1 and t 2 are terms of Do, then the formula 'tl = tz' 

value 'true' un der To iff Po(tl)Qo(tz) = Po(tz)•Qo{tl). 

mapping t + 
P0 (t) makes each term where the 
Qo(t) 

denominator is non-zero correspond to a rational number, 

terms having zero denominator being mapped into O . 

(clause 5 above). Since the definition ensures that 
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Q
0

(t) can never be zero, it is now simple to prove that T
0 

satisfies the axioms S, and also A19 . We remark that in our 

formai system the terms of D
0 

are simply juxtapositions of 

symbols, and formulae of the kind 't1 = t 2 ' have no 'real' 

meaning: there is no reason why a specifie instance 

't = t' should not be assigned a value 'false', and in any 

case a statement of the kind 1 't = t ' is 'true' ' 1 2 wh ile 

not strictly nonsen~, is - if considered by itself - strictly 

meaningless. However, as soon as T0 is imposed, the system 

of terms D
0 

with T
0 

(interpreting 'true' naively) crystallizes 

immediately into a replica of the rational number field. 

Under each of the truth-assignments defined below, a 

corresponding field appears and in taking a step from Di to 

Di+l we will speak of 'extending' Di by the 'adjunction' of 

sorne term, though strictly speaking these words should not 

be used. The process belongs strictly to our formalism, 

the extension and adjunction taking place in the algebraic 

counterpart. 

We will use the notation 'Di:Ti' (o,i~q) 

where Ti is a truth assignment to Di satisfying the axioms S 

to indicate the corresponding field, and when the final 

branching array of fields has been constructed, each branch 

will be a sequence of fields (originating with the rational 

number field) each obtained from its predecessor by algebraic 

extension, except in the very first case where D0 :T0 is 

extended to D1:T1 by adjoining y1 ,y 2, ••• ,yk, where these 

are treated as transcendentals (independent) over D0 :T0 . 
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In this first case the interpretation of D0 and 

the predicate '=' as the rational number field is so marked 

that had it not been necessary to exhibit the effective 

construction of T0 , we might have defined it simply as the 

'natural' truth assignment to D0 (possibly with sorne 

suitable remark to rebut the accusation that the mapping 

of a term with zero denorninator into zero is unnatura1 !) 

7. Construction of T1 to D1 

As before, we construct functions P1 and Ql with 

demains D1 ranging over the ring of po1ynornials in 

Yl,yz, .•• ,yk, having coefficients in D0 :T0 , thus :-

1) If t f D0 , then P1(t) = t and Ql(t) = 1. 

2) P1 (yi) =Yi and Q1 (yi) = 1 (i = l,Z, ..• ,k) 

3) P1 (-t) = -P1 (t), and Q1 (-t) = Q1 (t) 

4) If P1 (t)F0, then P1 (t- 1) = Q1 (t) and Q1 (t- 1) = P1 (t) 

5) If P1 (t) = O, then P1(t- 1) = 0 and Q1 (t- 1) = 1. 

6) Pl(tl+tz) = Pl(t1).Ql(tz) + P1(tz)·Ql(tl) 

and Q1(tl+tz) = Ql(tl)·Q1(tz) 

7) P1 (t1 .t2) = P1 (t1).P1 (t 2) and 

Ql(tl.tz) = QICtl).QICtz)· 

We now define T1 as in the previous case :-

If t 1eD1 and t 2eD1 , then 'tl = tz' is 'true' under T1 

iff P1 Ct1)·Q1 (t 2) = P1 Ct 2)·Q1 Ct1). 

(We remark that the condition 

is equivalent to 
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'P1 Ct1).Q1 Ct 2) and P1 (t 2).Q1 (t1) have the equations of 

their corresponding coefficients 'true' under T ' 
0 

but since D
0

:T
0 

has already been established as a field, and 

the polynomials in (1) are elements of D
0

:T
0 

[y1 ,y2 , ••• ,yk], 

the truth value of (1) is decided by the ordinary operations 

among polynomials over D
0

:T
0

, and the definition of 'equality' 

of two polynomials.) 

As in the discussion of T , it now follows easily 
0 

that T1 to D1 satisfies A1 & A
2 

& ... & A16 , as well as A19 . 

The map t ~ P1(t) 

Ql(t) 
maps terms of D1 onto elements of the 

field D1 :T1 , namely the field of rational functions of 

y1 ,y 2, ... ,yk with rational coefficients, zero-denominator 

terms mapping into zero. 

7.4 

Remark: 

by the adjunction of a 'square root' 1 r(t)(l~i<q). 

There may be many truth-assignments to Di, 

(l<i<q) which satisfy S; the construction below 

applies to every such truth-assignment. 

t 
We define T. 1 to coïncide with T. on D., and also 

1+ 1 1 

to make the formula 'r(t) 2 • t' 'true', and from these 

conditions we establish a procedure for assigning values to 

any formula 't1 = t 2 ', tjEDi+l'(j = l,Z). 

First, we note that any formula of the kind 

'p + q.r(t) = 0' ••• (1) where p and q are in Di:Ti, is 
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immediately decided, for either q = 0 (in Di:Ti) and (1) 

is equivalent to 'p = 0' which is decidable in Di:Ti, or 

else q;o, and (1) is assigned the value 'true' iff 

t = p2.(q- 1) 2, which is decided in D.:T .. 
1 1 

Next, if in any term t1 of Di+l we replace 

'r(t)' in each occurrence by a variable 'z', then by 

definition of Di+l• t1 is a raUonal function of z with 

coefficients in Di:Ti• Regarding z as a transcendental 

element over Di:Ti, t1 is thus an element of the extension 

field Di:Ti(z). By the usual operations in this extension 

field, the representation can be further reduced to the 

quotient of two polynomials. An effective procedure for 

this can be obtained by following the pattern established 

in 8.3, thus :-

1) If tEDi:T1, then Pi+l (t) = t and Qi+l(t) = 1 

2) Pi+l(z) = z and Qi+l(z) = z 

3) Pi+l(-t) = -Pi+l(t) and Qi+l(-t) = Qi+l(t) 

4) If P1+1(t);o, then P1+1(t- 1) = Qi+l(t), 

and Qi+lct-1) = pi+l(t). 

5) If Pi+1 (t) = 0, then Pi+1 (t-1) = 0 and Qi+l(t-1) = 1 

6) Pï+1Ct1+t2) = Pi+ICt1)Qi+ICt2l + Pi+I(tz)•Qi+1Ct1) 

and Qi+l Ctl+tz) = Qi+l(~)·Qi+1(tz) 

7) Pi+l(tl.tz) = Pi+l(tl)·Pi+l(tz) 

and Qi+l(tl•tz) = Qi+l(tl)'Qi+l(tz)· 
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The map exhibits the reduction 

of t 1 to the quotient of two polynomials. 

We may now reduce both polynomials to the form 

'p + q. z 1 ' by taking the linear remainder on division by 

(z2 - t) in the usual way. To deal with a formula 

we put it in the form 't3 = 0 1 (where t3 is tl-tz 

and pursuing the above process, obtain a formula 

'Pl+ q1•Z 
= 0 

E 

'tl = 

Di+l) 

tz 1 , 

Replacing 'z' by 'r(t)', we have from (1) a method of 

determining whether •p1 + q1 ·r(t) = 0' or 'pz + q2·r(t) = 0' 

is'true' or 'false', and hence reach the definDive statement:

•t1 = t 2• is 'true' under Ti~l' iff t = p1
2.(q1 -

1) 2 or 

t = Pzz·(qz-1)2. 

The ab ove process mirrors precisely the adjunction 

of an element r (t) to the field Di:Ti, where r(t) is a root 

of the polynomial x2 - t, except that we have made no use 

of the reducibility or irreducibility of the polynomial 

x2 - t. It can be.proved without difficulty - the proof 

being modelled in rather an obvious way on the last 
1 

observation - that under Ti+l' the terms of Di+l forma 

' field which we shall denote as usual by 'Di+l:Ti+l'. 

Of course, either x 2 - t is reducible over Di:Ti, or it is 

. ' not. In the former case, the f1eld Di+l:Ti+l will be simply 
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a repetition of Di:Ti, though from our point of view, because 

of the new symbols involved, we will regard it as distinct: 

' in the latter case, Di+l:Ti+l will be a non-trivial 

algebraic extension of Di:Ti. 

Now in all of the above discussion, if we had 

replaced the pr~cription 'r(t)2 = t' 'true'' by the 

alternative 'r(t)2 = -t 'true'', the whole discussion could 

have been carried through on this basis, making the obvious 

changes required. This would lead to a field obtained by 

adjoining r(t) to Di:Ti, where r(t) is a root of the 
2 n polynomial x + t. If we cal! this D. 1;T. , then we obtain 

1+ 1+1 
1 fi 

two extension fields Di+l:Ti+l and Di+l:Ti+l' which is 

exactly what we would expect in adjoining a square root. 

7.5 Extension of Di:Ti to Di+l:Ti+l by the adjunction 

We assume Di+l to have been obtained from Di 

by including with Di a term r 2j+l(t1t 2vaotzj+l) and closing 

the set under the rational operations. We denote this new 

term by the symbol 'r', and the polynomial 

'rZj+l + t 1 .r2j + ... + tzj+l' by p(r), deg. p(r) = 2j+l =m. 

I. First we show how to define Ti+l for any given finite 

set of formulae of the form 'tk = 0', where each term 

tk is written as a polynomial hk(r) with coefficients 

in Di:Ti and where hk(r) has degree <m. 
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We construct a sequence of polynornials {pk(r)} thus:

(i) p1 (r) = p(r) 

(ii) Ps+l(r) =the g.c.d. (hs(r),ps(r)) 

or Ps(r) , whichever has odd degree 
(hs (r) ,ps (r)) 

and then define 

(iii) 'tk = 0' 'true' iff pk+l (r) is a factor 

of hk(r). 

(In this way the last in the sequence {Pk(r)} of 

odd-degree polynornials, say Pn+l(r), is a factor of 

each element of the sequence, and the decisions on the 

formulae 'tk = 0' (k = l,Z, ••. n) are exactly those which 

would be reached by considering algebraically the 

corresponding equation 'hk(a) = 0', where a is a root 

of Pn+l(x).) 

II. Next we show that the procedure in I can be extended 

to all formulae of the kind 't = 0', where t is 

a polynomial in r, coefficients in Di:Ti. 

Since D.:T. is an algebraic extension of the 
1 1 

field of rational functions in y1 ,y2 , ... yk with 

rational coefficients, it is denurnerable, and hence 

the set of all polynornials of degree <rn is denumerable. 

This set may therefore be completely ordered. We 

select some such ordering, and this ordering now 

rernains fixed for the rest of the discussion. 
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Now the given terrn t, being a polynomial in r, can be 

reduced to a polynomial of degree <rn, by taking the 

rernainder on division by p(r) in the usual way. This 

new polynomial must occur as sorne definite kth term in 

the fixed ordering chosen. In this way, we have satisfied 

the conditions of I, which now gives us a value for the 

formula 't = 0'. 

III. Next, for any general term t, the formula 't = 0' 

may be decided by II, if we can reduce t to a polynomial 

in r. From the well established pattern this becomes 

alrnost trivial, as follows :-

We define functions P. (t) and Q. 
1

(t) precisely 
1+1 1+ 

as in the previous section (though 'z' is used 

instead of 'r' in the definition of that section), and 

so obtain as usual a mapping t +Pi+l(t) 
Qi+l(t) 

Since Pi+l(t) and Qi+l(t) are polynomials in r, II 

provides values of the formula 'Qi+l(t) = 0'. We now 

de fine 

1) If Qi+l(t) = 0, th en pi+Î(t) = 0 and Qi+Î(t) = 1 

2) If Qi+l(t) ;. o, th en * pi+l(t) pi+l(t) = 

* and Qi+l(t) = Qi+l(t) 

Now we can define 't = 0' * 'true', iff Pi+l(t) = 0 

is'true', which is decidable from II • 
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IV. Finally, for the general formula 't1 = tz', we put•t1-t 2• 

for t and define •t1 = t 2 • 'true', iff 

't = 0' is 'true', which is established from III. 

Remarks. (1) In obtaining 'true' representations of 

0 or f(y 1y 2 .•. yk) as sums of squares in Di+l' a finite 

number of truth values of formulae of the kind •t1 = t 2' 

bas to be established - since the origin of these 

representations is R(D,F), which has only a finite number 

of such formulae as sub~formulae. In this way, the truth 

values required could be assigned by considering a finite 

number of polynomials (as in I), and thereby obtaining 

sorne Pn+l(r) which becomes the 'defining polynomial' of a 

where Di+l:Ti+l is simply Di:Ti(a). The representations 

will clearly remain true if a is regarded as a root of any 

factor of Pn+l(r). 

(2) Altering the ordering of polynomials of degree 

<rn will in general change the defining polynomial, but this 

is unimportant: exactly which root of p(x) is adjoined to 

Di:Ti does not affect the result, provided a is always a 

root of an odd-degree factor of p(x). This apparent 

uncertainty as to precisely which root of p(x) is adjoined 

to D1:ri exists only because the ordering of the polynomials 

of degree <m has not been specified: once this ordering is 

fixed, Ti+l is completely defined and the field Di+l:Ti+l 

established. 
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As a consequence of the 

* 
definition of Q~+l(t), 

pi+l(t) we find that the map t exhibits terms of Di+l 
* Qi+l(t) 

as rational functions of r with coefficients in Di:Ti. 

Moreover, Qi+1 (t) is relatively prime to Pn+l(t) for all 

tE Di+l' and so operating in the ring Di:Ti[r], we can 

* -1 ( ) find for each t a polynomial Qi+l t such that 

* * -1 Qi+l(t) • Qi+l (t) - 1 (mod Pn+l(r)) 

In this way, each element may be represented as a polynomial 

in r, coefficients in D. :T., by the map 
1 1 

t 

That Pn+l(r) has odd degree follows from I (i) 

and (ii), and from th~observation together with the 

mapping shown above of terms of Di+l onto polynomials of 

Di:Ti[r], the proof that Di+l:Ti+l really is a field with 

the required properties is now trivial. 

§8. SUMMARY OF THE MAIN PROOF. 

From any given positive definite function 

f{y1 ,y2, ..• yk), we construct the formula F, and from §5, a 

proof of F exists. 

From §6, we construct a finite set of terms D, 

and a quantifier free formula R(D,F) whose truth-functional 

validity is assured by the Herbrand Theorem. 

* From §6•3 we construct a finite set D, consisting 

of all terms occurring in R(D,F), and a sequence of sets 
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From §7, we show how to construct a truth-

assignment T1 to D1, so that n1:T1 is the field of rational 

functions in y1 ,y 2, ... yk, with rational coefficients. 

Also from §7, we show how to extend any field 
f Il 

Di:Ti in two ways, to fields Di+l:Ti+l and Di+l:Ti+l' 

by the adjunction of a 'square root', orto a single field 

1 ' Di+l:Ti+l' by the adjunction of an odd root. 

In this way, if D* contained rn distinct 'square root' terms, 

then the construction of §7 leaŒ to zm distinct fields of 

the form D :T . 
q q 

Now in each of these fields, D :T , from §7·1, = q q 
representations of f(y1 , ... ,yk) or of zero as sums of 

squares are obtained. 

' tf In the cases where Dq:Tq and Dq:Tq arose 

from the adjunction of a square root to sorne Dq_ 1 :Tq-l' 

§3·3 shows the construction of representations of 

f(y 1 ,y2, ••. yk) or of 0 as sums of squares in Dq_ 1 :Tq_ 1 . 

from those in D :T 'and D :T ". q q q q 

Alternatively, where Dq:Tq arose from sorne 

Dq_ 1 :Tq-l by the adjunction of an odd root, §3•4 shows the 

construction of a representation of f(y 1y 2 ••• yk) or of 0 

as a sum of squares in Dq_ 1:Tq-l' from a representatiun 

in Dq:Tq. 
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Applying this to every field Dq:Tq, we obtain then 

at !east one representation of f as a sum of squares in 

Repeating this process (q-1) times, we obtain 

ultimately a representation of f or of zero as a sum of 

squares in D1:T1 . However no non-trivial representation 

of zero as a sum of squares is possible in n1:T1 (since 

A19 holds, see 3•1), and hence we obtain as required, a 

representation of f(y1 ,y 2, ... ,yk) as a sum of squares in 

n1 :T1, the field of rational functions of y1 ,y 2, ... ,yk' 

with rational coefficients. This completes the main proof. 

§9. EXTENSION TO CASES WHERE f(y1,y2, •.. ,yk) 

HAS REAL COEFFICIENTS. 

9.1 Outline of the method. 

From the given function f(y1,y2, ••• ,yk), we 

find a formula G, namely. 

AylAYz···AYk Ex f(YtYz···Yk zlzz···zs) = xz 

where the function symbo1 f(y 1y2 ... yk z1z2 ... zs) denotes 

the formai representation of the given function f(y1 ,y2, .•. ,yk), 

and z1 ,z 2, ••• ,zs denote the given real coefficients. 

From G, we obtain a formula U'(G) of the form 

G1 v G2 v ••• v Gp 

such that U'(G) +~ G follows from K. We are interested 

in fact only in the particular implication U' (G) ~ G 
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Now each of the disjuncts of U'(G) essentially 

gives a condition for the positive definiteness of 

l!r!p)~ 

F is r 

(since clearly G ~ G follows from K, r 
We construct a set of p formulae {F }, where r 

K ~ (G ~ G) 
r 

For each r (l!r!p), we now apply the method employed in the 

main proof, where the coefficients were rational, and 

obtain in the 'final' fields D :T (which 'contain' D*) 
q q 

representations of 0 or of f as sums of squares, or 

counter-examples to Gr. It turns out that a counter-example 

to Gr in any field Dq:Tq is also a counter-example in n1 :T1 , 

so that if f really is positive definite, then for at 

least one valve of r, no such counter example to G exists. 
r 

In this case, exactly as in the main proof, R(D,Fr) provides 

representations of 0 or of f as sums of squares in each 

field Dq:Tq, and these are reduced as before to a single 

representation in D1 :T1 . 

9.2 Details of modified method. 

The main result of [5] is that if G is a formula 

of our formal system, then we can find a corresponding 

formula U(G) such that U(G) +~ G follows from the axioms 

of a real closed field. U(G) is quantifier-free, and has 

as variables exactly the free variables of G, and it is in 
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normal disjunctive form. The atomic sub formulae of U(G) 

have the form 'h = 0' or 'h > 0', where 'h' denotes a 

polynomial in the variables of U(G). 

Applying this to the present case, if the given 

function f(yl,yz, .•• ,yk) has ~real coefficients, we replace 

these in sorne order by the variables z1 ,z 2 , ••• ,zs, and 

denote the resulting expression by the symbol 

'f(y1y2 ..• ykz1z2 ••. zs)' of our formalism. We let G 

(as indicated in 9.1) be the formula. 

Ay1Ay 2 ••. Ayk Ex f(y1y 2 •.• ykz 1z2 •.• zs) = x2 

Then U(G) is a formula 

• • • v G , p where Gr (l~r~p) is 

g =0 & g =0 & r,l r,2 & g =0 & h 1>0 & h 2>0& ..• & h >0 r ,mr r, r, r, nr 

where each symbol 'g' and 'h' with subscripts denotes·a 

Obviously U(G) is not within our formaiism, since 

the predicate '>' is involved. However if we replace 

occurrences of '>' in Gr (l~r~p), denoting the resulting 

subformula~ by ' G'r ', according to the prescription 

' x>y ' is equivalent to ' Ez(z'O & x-y=z2) 1 

we get for G' (l~r~p) the formula r 

gr l(zl···zs) = 0 & ... & gr m (zl···zs) = 0 
' ' r 

& Ewr.,l(wr,l;o & hr,l(zl···zs)=wr,12) 

& Ewr z(wr z'O & hr,2(zl •.. zs)=wr,2
2

) 
' ' 

& • • • & Ewr n (wr n ;.o & hr n (zl · • • zs )=wr.·n 2) 
'r •r 'r 'r 
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Now each G' r, and their disjunction, say U'(G), 

are formulae within our system, equivalentto Gr and U(G) respect-

ively. The formula U'(G) ~ G follows from K, and hence 

the disjunction F1 v Fz v ••. v Fp is provable, where ~or 

l~r~w, we have for Fr the formula 

K ~ (G'r ~ G). 

which we interpret as 

Al & Az & ... & A18 ~ (-A 19 v- G'r v G) 

The process described in the main proof is now 

carried out, making the obvious necessary modifications. 

For example, D1 will now consist of rational functions of 

yl,yz,···Yk zl,Zz,···,zs, wr l' wr 2, ..• , wr n'and in 
' ' ' r 

defining T1 on D1 , we may prescribe that T1 satisfies G'r· 

(i.e. we stipulate that T1 makes 'g .(z1 ..• z) = 0' 'true' r ,J s 

(l~j~mr)' and 'h .(z1 .•• z) = w . 2 • 'true' (l~j~nr), r,J s r,J 

for each r,(l~r~p).) 

In this way, when we examine the Herbrand Expansions R(D,F ) 
r 

(l~r~p), we find that it exhibits 'true' representations of 

zero or of f as squares under ali truth-assignments constructed 

as prescribed. That this is so is clear from the fact that 

each 'final' field D :T has its truth-assignment T defined 
q q q 

as an extension of T1 , and hence each T satisfies G' , as 
q r 

weil as the axioms A1 ,A 2 , •.. A18 • This leaves in R(D,Fr) 

a disjunct corresponding to '-A 19 • orto 'G'r''true'. 
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The representations in each Dq:Tq are as before 

reduced to a single representation in D1 :T1 , as required. 

Finally, the p representations thus obtained 

(corresponding to each formula Fr) may be withdrawn from our 

formalism by replacing z1 ,z 2, .•• ,zs, and hence 

wr,l,wr,z, ••• ,wr,nr' by their given real values. If the 

given function really is positive definite, then U(G) is 

true, and sorne disjunct Gr is therefore true. The 

representation of f arising from the corresponding Fr 

then gives the 'correct' solution. 

Remark: It is interesting to note that the real coefficients 

occurring in the final representation either occur in f 

itself, or else they arise in the evaluation of 

w 1 ,w 2, .•. ,w , and hence these new real coefficients 
r, r, r,nr 

are square roots of polynomials in the given real 

coefficients. 

9.3. Illustrative example. 

Suppose the given function is 

f(yl) ~ a1Y1 2 + azyl + a3, 

where a1 ,a2,a3 are the real coefficients. 

Then we have f(y1z1zzzs) = z1•Y12 + Zz•Yl + z3 

G is then 

and U'(G) is found to be G1 ' v Gz', where 
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(z 1 = 0 & z2 • 0 & Ew1 (w1 ~ 0 & z3 = w12) 

(Ew2 (w2 ~o & z1=w22) & Ew3 (w3~o & -z 22+4z1 .z3=w32)) 

In dealing with P1 , the final representation in n1 :T1 

would be 

and in dealing with P2 it would be 

f(ylzlz2z3) = (wz·Yl+zz·(2wz)-1)2 + (w3·(2wz)-1)2 

Now replacing z1 ,z2 ,z3 , by the given coefficients 

a1 ,az,a3, respectively, and interpreting the result as indicated 

in 9.2, we have:-

If Gl is satisfied (i.e. if al • o, and az = o, and a 3 > 0) 

th en 
alyl2 + azY! (/a3)2 + a3 = 

and if Gz is satisfied (i.e. if a1 > 0 and 2 -a2 +4a1a 3 > 0 ) 

th en 

r-"z2 +4ala3 r a1Y1 2 f az )2 + azyl + a3 = /a-lyl+- + 
21a1 21a1 

Now if f(y1) really is positive definite, then either its 

coefficients satisfy G1 - in other words f(y1) is a positive 

constant - or else they satisfy G2, which we recognise as the 

familiar 'negative discriminant' condition for a definite 

quadratic function, and the appropriate corresponding 

representation of f(y1) holds. 



• 

- 43 -

§10 REFERENCES. 

1. D. HILBERT Mathematical prob1ems. 

Bulletin of the American Mathematical Society 8(1902) 437-479 

2. E. ARTIN Uber die Zerlegung Definiter Funktionen 

in Quadrate. 

Abhand1ungen aus dem mathematischen seminar der 

Hamburger Universitat. 

5(1927) 100-115 

3. G. KREISEL Sums of squares. 

Summaries of the summer institute for symbolic logic. 

Cornell University.(2nd Ed~(l960) 313-330 

4. G. KREISEL Mathematica1 significance of consistency 

proofs. 

Journal of Symbolic Logic. 23(1958) 155-182 

S. A. TARSKI 

6. B. DREBDEN 

A decision method for elementary 

algebra and geometry. 

2nd. (revised) Edition (1951) 

Fa1se Lemmas in Herbrand. 

Bulletin of the American Mathematical Society.69(1963) 699-706 


