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Abstract

For a notion to be perceived as pivotal in the history of human thought, it ought to appear

and reappear in a multitude of human endeavors — from physics to metaphysics, arts to

natural sciences, etc. Any truly fundamental notion leaves its trace on many domains of

knowledge; it only evolves through time yet never disappears. The notion of minimality

(which can be replaced, via relaxation, by sufficiency) is of such nature. It is only natural

then to ask where minimality meets cognition.

This dissertation explores, mainly at Marr’s computational and algorithmic levels of anal-

ysis, the fundamental role the notion of minimality plays in human cognition in the contexts

of probabilistic reasoning, causal reasoning, action, control, learning, and imagination. The

work comprises seven chapters, the content of each is briefly discussed next.

Chapter 1 provides an introduction to the dissertation. Chapter 2 addresses, for the first

time in the literature, how the notion of minimality can be applied to probabilistic reasoning

under partial knowledge. To this end, drawing on the notion of bounded rationality mani-

fested in a reasoner’s limited attention span and scope, Chapter 2 presents a novel graphical

model, termed the Multi-Context Model (MCM), to represent the reasoner’s state of par-

tial knowledge of a domain. MCM occupies a middle ground between Probabilistic Logic,

Bayesian Logic, and Probabilistic Graphical Models. Also, drawing on the quintessence of

Bayesian networks (BNs), i.e., the concept of conditioning, MCM generalizes BN to the

realm of partial knowledge. Importantly, MCM also serves as the first normative, probabilis-

tic, representational-level account of an important developmental shift in infant information

processing, between four and ten months of age.

Inspired by Simon’s bounded rationality and drawing on the notion of minimality, Chap-

ter 3 provides a novel algorithmic perspective to the causal variant of the frame problem

(CFP), a deep puzzle in philosophy of mind and epistemology. Chapter 3 begins by intro-

ducing a notion called Potential Level (PL). PL generalizes the graph-theoretic concept of

topological sorting, and extends the fundamental notion of Lamport’s logical clock to causal

Bayesian networks (CBNs). Drawing on the psychological literature on causal judgment,

Chapter 3 substantiates the claim that PL may bear on how time is encoded in the mind.

Using PL, Chapter 3 then proposes an inference framework, called the PL-based Inference

Framework (PLIF), permitting a boundedly-rational approach to the CFP, formally artic-

ulated at Marr’s algorithmic level of analysis. PLIF is also shown to be consistent with a
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wide range of findings in the causal judgment literature. Interestingly, the ideas explored

in Chapters 2 and 3 demonstrate how the old concept of imprecise probabilities naturally

emerges out of Simon’s bounded rationality.

Chapter 4 pursues the notion of minimality in the key context of action and control.

Chapter 4 studies, for the first time in the literature, the problem of probabilistic control-

lability in CBNs. Probabilistic controllability extends the fundamental concept of control-

lability in control theory to probabilistic CBNs. More specifically, the aim of Chapter 4 is

two-fold: (i) to introduce and formalize the problem of probabilistic structural controllability

in CBNs, and (ii) to identify a sufficient set of driver variables for the purpose of probabilis-

tic structural controllability of a generic CBN. Furthermore, Chapter 4 elaborates on the

nature of minimality that the identified set of driver variables satisfies. The results of Chap-

ter 4 have important implications for a line of work in developmental psychology concerning

causal learning by young children in pedagogical settings. Also, the formalism developed in

Chapter 4 establishes, for the first time in the literature, a rational, algorithmic-level account

of a curious behavior demonstrated by young children called overimitation, generally taken

as evidence for children’s irrationality. Chapter 4 concludes by exploring the computational

complexity of the problem under study and presenting NP-hardness results for it.

Chapter 5 revisits the fundamental notion of conditional probabilistic independence as the

core concept which gives rise to minimality in probabilistic settings. Chapter 5, for the first

time in the literature, proposes an asynchronous, distributed, message-passing algorithm—

akin, in spirit, to Pearl’s Belief Propagation scheme—so as to implement Pearl’s key notion

of d-separation. Also, through the introduction of a key graph-theoretic notion, termed

minimal refutation-module, Chapter 5 shows how the notion of minimality manifests itself

in a distributed, message-passing implementation of d-separation. The proposed algorithm

exhibits intriguing properties which position it as a plausible candidate for the implemen-

tation of d-separation at Marr’s algorithmic level of analysis. Furthermore, the proposed

algorithm outperforms all the previously proposed algorithms in the literature in terms of

worst-case running time, and serves as the first rational, distributed, process-level account of

how humans handle probabilistic independence.

Chapter 6 explores the notion of minimality in the context of learning and imagina-

tion. Chapter 6, for the first time in the literature, proposes a neurally-plausible and

computationally-efficient framework which allows to transform any deterministic, discrimi-

native neural network (e.g., deep convolutional neural networks and multilayer perceptron)
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into a probabilistic, generative model. Using this framework, cascade-correlation neural

networks (CCNNs)—a class of self-organized, deterministic, discriminative models which

have been successful in accounting for a variety of psychological phenomena—are converted

into probabilistic generative models, thereby enabling CCNNs to probabilistically generate

samples from a category of interest. Importantly, the proposed framework: (1) suggests

a modular account of human imagination which is supported by studies on learning and

imaginative abilities of hippocampal amnesic patients as well as a growing body of brain

imaging studies showing that perception and imagery share neural representation, (2) gives

rise to self-organized generative models, (3) strongly suggests that, contrary to a widely-held

view, the boundary between discriminative and generative models is blurry, (4) bridges com-

putational, algorithmic, and implementational levels of analysis, and finally, (5) connects

two dominant schools of thought in cognitive sciences, namely, connectionism and Bayesian

cognition.

Taken together, the ideas explored in this dissertation suggest that pursuing the notion of

minimality is a fruitful endeavor for understanding cognition at the computational and algo-

rithmic levels, and equally importantly, demonstrate how pursuing the notion of minimality

allows for developing new computational problems as well as introducing novel algorithms,

data structures, and several algorithmic concepts. Inspired by this, Chapter 7 concludes the

dissertation by proposing a new mode of enquiry, termed the Rational Minimalist Program,

outlining a principled, rational methodology for studying cognition at the algorithmic level

of analysis.
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Résumé

Pour qu’une notion soit perçue comme essentielle dans l’histoire de la pensée humaine, elle

devrait apparâıtre et réapparâıtre dans une multitude d’efforts humains - de la physique à

la métaphysique, des arts aux sciences naturelles, etc. Toute notion qui est vraiment fonda-

mentale laisse sa trace sur de nombreux domaines de connaissances; elle ne disparâıt jamais

mais seulement évolue dans le temps. La notion de minimalité (qui peut être remplacée, par

relaxation, par suffisance) jouit d’une telle nature. Il est naturel alors de demander où la

minimalité rencontre la cognition.

Cette thèse explore, principalement aux niveaux d’analyse computationnelle et algorith-

mique de Marr, le rôle fondamental que joue la notion de minimalité dans la cognition hu-

maine dans les contextes du raisonnement probabiliste, du raisonnement causal, de l’action,

du contrôle, de l’apprentissage et de l’imagination. Cet ouvrage comprend sept chapitres

dont le contenu est brièvement présenté dans la suite.

Le 1er chapitre introduit la thèse. Le 2ème chapitre traite, pour la première fois dans la

littérature, comment la notion de minimalité peut être appliquée au raisonnement proba-

biliste à base de connaissance partielle. À cette fin, en s’appuyant sur la notion de rationalité

limitée qui se présente dans la portée et l’étendue de l’attention limitée d’un raisonneur, le

2ème chapitre présente un nouveau modèle graphique, appelé le modèle multi-contexte (MCM

pour “Multi-Context Model” en anglais), pour représenter l’état de connaissance partielle du

domaine d’un raisonneur. Le MCM occupe une position intermédiaire entre la logique proba-

biliste, la logique bayésienne et les modèles graphiques probabilistes. De plus, en s’appuyant

sur la quintessence des réseaux bayésiens (BN pour “Bayesian Networks” en anglais), c’est-

à-dire le concept de conditionnement, MCM généralise BN dans le domaine de connaissance

partielle. Il est important de noter que MCM est également le premier compte-rendu nor-

matif, probabiliste et de niveau représentatif d’un important changement de développement

dans le traitement d’information chez les nourrissons entre quatre et dix mois.

Inspiré par la rationalité limitée de Simon et en s’appuyant sur la notion de mini-

malité, le chapitre 3 offre une nouvelle perspective algorithmique à la variante causale du

problème de frame (CFP) comme étant un puzzle profond dans la philosophie de l’esprit et de

l’épistémologie. Le 3ème chapitre commence par introduire une notion appelée niveau poten-

tiel (PL pour “Potential Logic” en anglais). PL généralise le concept de théorie graphique du

tri topologique et étend la notion fondamentale de l’horloge logique de Lamport aux CBNs.
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En s’appuyant sur la littérature psychologique sur le jugement causal, le 3ème chapitre justi-

fie l’affirmation selon laquelle PL pourrait expliquer comment le temps est représenté dans

l’esprit. À l’aide de PL, le 3ème chapitre propose une structure d’inférence basée sur PL

appelée PLIF (PLIF pour “PL-based Inference Framework” en anglais), permettant une

approche à base de rationalité limitée pour traiter le CFP, auparavant articulé au niveau

algorithmique d’analyse de Marr. La PLIF est également compatible avec une large gamme

de résultats dans la littérature sur le jugement causal. Fait intéressant, les idées explorées

dans le 2ème et 3ème chapitre démontrent comment l’ancien concept de probabilités imprécises

surgit naturellement de la rationalité limitée de Simon.

Le 4ème chapitre poursuit la notion de minimalité dans le contexte clé d’action et de

contrôle. Le chapitre 4 étudie, pour la première fois dans la littérature, le problème de la

contrôlabilité probabiliste dans les réseaux bayésiens causaux (CBN). La contrôlabilité prob-

abiliste étend le concept fondamental de contrôlabilité rencontré dans la théorie du contrôle

aux CBN probabilistes. Plus précisément, l’objectif du 4ème chapitre est double: (i) intro-

duire et formaliser le problème de la contrôlabilité structurelle probabiliste dans les CBN,

et (ii) identifier un ensemble suffisant de variables pilote dans le but de la contrôlabilité

structurelle probabiliste d’un CBN générique. En outre, le 4ème chapitre élabore sur la na-

ture de la minimalité que l’ensemble identifié de variables pilote satisfait. Les résultats du

4ème chapitre ont des implications importantes pour une ligne de travail en psychologie du

développement concernant l’apprentissage causal chez les jeunes enfants dans les milieux

pédagogiques. En outre, le formalisme développé dans ce chapitre établit, pour la première

fois dans la littérature, un compte-rendu rationnel et algorithmique d’un comportement

curieux démontré par les jeunes enfants, appelé la sur-imitation, généralement considéré

comme preuve pour l’irrationalité des enfants. Le 4ème chapitre conclut en explorant la com-

plexité computationnelle du problème considéré et en présentant les résultats correspondants

de NP-difficulté.

Le 5ème chapitre revisite la notion fondamentale de l’indépendance probabiliste condi-

tionnelle en tant que concept central qui donne lieu à une minimalité dans les contextes

probabilistes. Le 5ème chapitre, pour la première fois dans la littérature, propose un algo-

rithme asynchrone, distribué, de transmission de message - semblable, en esprit, au schéma

de propagation de croyance de Pearl - afin d’implémenter la notion clé de d-séparation de

Pearl. En outre, grâce à l’introduction d’une notion clé de théorie graphique, appelée mod-

ule de réfutation minimale, le 5ème chapitre montre comment la notion de minimalité se
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manifeste dans une implémentation distribuée et transmise par message de la d-séparation.

L’algorithme proposé présente des propriétés intrigantes qui le positionnent comme un can-

didat plausible pour la mise en œuvre de la notion de d-séparation au niveau algorith-

mique d’analyse de Marr. En outre, l’algorithme proposé surpasse tous les algorithmes

précédemment proposés dans la littérature en temps d’exécution dans le pire des cas et sert

de premier compte-rendu rationnel, distribué, de niveau du processus, de la façon dont les

humains doivent gérer l’indépendance probabiliste.

Le 6ème chapitre explore la notion de minimalité dans le contexte de l’apprentissage et

de l’imagination. Le chapitre, pour la première fois dans la littérature, propose un cadre

plausible au niveau neural et efficace en terme de calculs qui permet de transformer tout

réseau neuronal déterministe et discriminatif (par ex., réseaux neuronaux convolutionnels

profonds et perceptron multicouches) en un modèle probabiliste et génératif. À l’aide de ce

cadre, les réseaux neuronaux en cascade-corrélation (CCNN pour “cascade-correlation neural

networks” en anglais) - une classe de modèles auto-organisés, déterministes et discriminatifs

qui ont réussi à expliquer une variété de phénomènes psychologiques - sont transformés

en modèles génératifs probabilistes, permettant ainsi aux CCNN de générer (de manière

probabiliste) des échantillons d’une catégorie d’intérêt. Il est important de souligner que

le cadre proposé: (1) offre un compte-rendu modulaire de l’imagination humaine, soutenu

par des études sur l’apprentissage et les capacités imaginatives des patients amnésiques de

l’hippocampe ainsi que par un nombre croissant d’études d’imagerie cérébrale suggérant que

la perception et l’imagerie partagent une représentation neurale ( 2) donne lieu à des modèles

génératifs auto-organisés, (3) suggère fortement que, contrairement à une vue largement

répandue, la limite entre les modèles discriminatifs et génératifs est floue, (4) rapproche les

niveaux d’analyse informatique, algorithmique et d’implémentation, et enfin, (5) relie deux

écoles de pensée dominantes dans les sciences cognitives, c’est-à-dire le connexisme et la

cognition bayésienne.

Ensemble, les idées explorées dans cette thèse suggèrent que la poursuite de la notion de

minimalité est un effort fructueux pour comprendre la cognition aux niveaux informatique et

algorithmique et, tout aussi important, démontrent comment la notion de minimalité permet

de développer de nouveaux problèmes de calcul ainsi qu’introduire de nouveaux algorithmes,

structures de données et plusieurs concepts algorithmiques. Inspiré par cela, le chapitre 7

conclut la thèse en proposant un nouveau mode d’enquête, appelé le programme rationnel

minimaliste, décrivant une méthodologie rationnelle et fondée sur des principes pour étudier
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la cognition au niveau des processus.
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Chapter 1

Introduction

“Truth is ever to be found in the simplicity,

and not in the multiplicity and confusion of things.”

— Isaac Newton, Treatise on Revelation

• What are the minimal set of conditions a planet must possess for life to emerge? (The

central question in Biophysics.)

• What are the minimal set of physical laws that ought to be invoked to explain our

universe? (The elusive unified theory yet to be discovered.)

• What is the minimal set of properties a Boolean formula must possess so that its

satisfiability can be decided in polynomial time by a deterministic Turing machine?

(Answering this question settles the famous P versus NP debate in computational

complexity.)

• What is the minimal amount of innate knowledge a child must be equipped with to

find their way to adult-level intelligence? (The famous Empiricism vs. Innatism debate

in psychology and philosophy of mind.)

• What is the minimal set of syntactic rules/operations generative grammar should posit

to account for the syntax of all human language? (In their recent book, Berwick and

Chomsky (2015) argue that only one suffices, namely, Merge.)
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The above questions, prima facie, seem to be as detached as one could possibly imagine—

at the very least, each is the business of a whole field of its own. However, upon a closer

look, an intricate commonality, echoing through the word minimal, starts to coalesce. And

yet, the story goes the same for all profound notions in the history of human thought. In

a heroic act, they come to rescue us from a world of disparity to a world of harmony, from

a world of individuality to a world of unity. The notion of minimality is of such nature. A

glance at the list outlined above, which is far from being exhaustive, attests to this claim.

Occam’s razor, Kolmogorov’s complexity, the minimum description length principle, the

principle of least effort, Chomsky’s Minimalist Program in linguistics, the notion of necessary-

and-sufficient condition in logic, the principles of least time and least action in physics, the

notion of minimal sufficiency in statistics, and finally the statement “everything should

be made as simple as possible, but not simpler” (often attributed to Albert Einstein) all

essentially bear on the notion of minimality. In arts, a school of thought named Minimalism

adheres to the maxim of “reducing everything to its bare essentials” and “stripping away

any redundancies.”

There indeed lies a deep sense of perfectionism at the heart of minimality. In this vein,

the notion of sufficiency is invoked as a mere relaxation of this elusive notion, allowing one

to aim at a potentially more attainable goal. Let us characterize the notions of minimality

and sufficiency as follows.

Def 1.1. Set S is sufficient for task T iff using the members of S (i.e., the information

contained in S), T can be accomplished.

Def 1.2. Set S is minimal for task T iff (i) S is sufficient for T, and (ii) any proper

subset of S is not sufficient for T.

The above characterization is broad and, admittedly, open to a variety of interpretations.

However, it provides the reader with a sense—albeit imprecise—of the notions under discus-

sion.1 In what follows, we safely focus our discussion on minimality rather than sufficiency

with this key understanding in mind that the latter can be invoked as a mere relaxation of

the former at will.

1The line of work pursued in this dissertation lends itself to the provided characterization. However, by
the time the reader will finish his/her journey through the dissertation, we hope that he/she will have reached
the verdict that the notion of minimality is even deeper and more elusive than the provided characterization,
begging for a yet broader and perhaps more elegant characterization.
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1.1 Minimality in Cognition, Philosophy, and Philosophy of Mind

In philosophy of mind, the notion of minimality is well captured, arguably, in the quest for

understanding the essence of an entity—the truly essential features (aka attributes) of an

entity without which it would simply lose its identity. The above ideas can be restated in the

context of the classical view of concept in epistemology and cognitive psychology as follows:

Let an entity e, possessing a set of features F , belong to the category (or concept) C. The

notion of essence concerns the following questions: What subset of F is responsible for e

being categorized as a member of C, the removal of which would render e to be no longer a

member of C?2 To clarify, let us consider the following example. Let x be a member of the

concept ‘tree.’ Now could x have no leaves and still be a tree or is having leaves essential

for an entity to be categorized as a tree? Could knowing the shape, color, or texture affect

x being categorized as a tree? All these questions bear on the notion of essence.

But, perhaps, nothing better than the notion of simplicity captures what is really at

the core of the notion of minimality. The history of philosophy (and that of science, alike)

is filled with remarks on the privileged status of simplicity, elevating it to a theoretical

virtue in and of itself. It is present in Aristotle’s writings when he writes in his Posterior

Analytics “We may assume the superiority centeris paribus [other things being equal] of the

demonstration which derives from fewer postulates or hypothesis;” and its connection to

minimality explicitly manifests itself in Thomas Aquinas’s writings when he writes:

“If a thing can be done adequately by means of one, it is superfluous to do it by

means of several; for we observe that nature does not employ two instruments

when one suffices” (Aquinas, 1945).

In the same vein, Immanuel Kant (1781), in Critiques of Pure Reason, advocates the dictum

that “rudiments or principles must not be unnecessarily multiplied.” Issac Newton (1687),

in Principia Mathematica, remarks that “Nature is pleased with simplicity, and affects not

the pomp of superfluous causes;” and Galilei (1632) writes “Nature does not multiply things

unnecessarily; that she makes use of the easiest and simplest means for producing her effects;

that she does nothing in vain and the like.” In sciences, simplicity is often evoked by appealing

to Occam’s razor principle, which goes as follows: “Entities are not to be multiplied without

necessity.” A large body of work in philosophy, and, particularly, philosophy of science, has

2In computational complexity theory, one is only concerned with the hardness of deciding whether an
instance x is a member of set (aka language) C, and not with the notion of essence.
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investigated possible rational grounds for simplicity as a guiding principle in theorizing about

nature (see, e.g., Baker, 2016, for a review of such arguments).

Now, a fundamental question presents itself: “Are simplicity and minimality essentially

the same?” Although we admit that this question certainly deserves much contemplation,3

for the purpose of this dissertation, we view minimality as a formal way to operationalize

simplicity, in our attempt to develop a formal, principled, rational methodology for studying

cognition at the algorithmic level of analysis, which we outline in the epilogue chapter to this

dissertation (Chapter 7); also, it is worth noting that the line of work pursued in Chapters 2

to 6 can all be viewed as instantiations of that methodology.

1.1.1 On the Connection to Bounded Rationality

There is a deep connection between the notion of minimality and Simon’s (1957) bounded

rationality. According to bounded rationality, a reasoner is inevitably bounded in time and

computational resources and has to accomplish a task of interest T subject to this constraint.

The boundedly-rational reasoner then has to strive to only attend to the information (either

already at her disposal or receiving it in real time through sensory organs) which is deemed

relevant to the task T, and ignore possibly all4 that is irrelevant to T. In this vein, the notion

of attention and that of executive functions—as a set of mechanisms responsible for guiding

attention—bear on the interplay between minimality and bounded rationality. For example,

in the case of visual attention, a boundedly-rational reasoner strives to attend only to the

parts of visual stimuli deemed relevant to the task of interest (say, a face recognition task).

The realization of the fact that the reasoner is inevitably boundedly-rational signifies

the role that minimality plays in cognition. Indeed, had the reasoner possessed unbounded

time and computational resources, the notion of minimality would be of no significance for

cognition.

1.1.2 On the Connection to the Frame Problem

The frame problem is a puzzle in philosophy of mind and epistemology which, in its most

generality, is characterized by the Stanford Encyclopedia of Philosophy as follows: “How do

3Nonetheless, the observation that simplicity is very often expressed by appealing to minimality strongly
suggests that the latter is more fundamental than the former.

4Depending on the task of interest, this may sound too demanding for the reasoner. The notion of
sufficiency then comes into play, as we discussed earlier, to relax it.
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we account for our apparent ability to make decisions on the basis only of what is relevant to

an ongoing situation without having explicitly to consider all that is not relevant?” The frame

problem, at its core, is essentially concerned with minimality. This understanding becomes

more evident if we characterize the notion of minimality (and, by extension, sufficiency) in

terms of the notions of relevance and irrelevance as follows.

Def. 1.3. Set S is sufficient for task T iff S contains all that is relevant to T.

Def. 1.4. Set S is minimal for task T iff (i) S is sufficient for T, and (ii) S contains

nothing that is irrelevant to T (hence, no redundancy in S).

It is worth emphasizing that, akin to the notion of minimality, the frame problem is of

any significance for cognition insofar as the reasoner is presumed to be boundedly-rational.

That is, it is the very self-awareness of a cognitive system of its bounded rationality that

leads the system to act in the manner portrayed by the characterization of the frame problem

given above.

1.2 When Minimality Meets other Key Notions

As we go through this dissertation and investigate the notion of minimality (and its relax-

ation, sufficiency) in different settings, we will encounter other key notions, e.g., symmetry,

invariance, scale-invariance (aka self-similarity), locality, maximal-informativeness, anytime

algorithms, and nestedness. We will also encounter asynchronous distributed algorithms as

mechanisms requiring no coordination between computing agents.5 We will revisit these

notions and highlight their significance in Chapter 7 where we conclude the dissertation. In

the mean time, we would like to ask the reader to attend to these notions and their interplay

as he/she walks through the dissertation.

1.3 Dissertation Outline

This dissertation is comprised of four main parts. Part I explores the notion of minimality in

the contexts of probabilistic reasoning and causal reasoning. Part II explores how the notion

of minimality emerges in the context of action and control. Part III revisits the key notion of

(probabilistic) conditional independence—as the core concept which gives rise to minimality

5Asynchronous, distributed algorithms grant the least level of control to be exercised throughout an
execution, as computing agents autonomously engage in message-passing. We will see more on this in
Chapter 5.
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in probabilistic settings—and particularly, Pearl’s graph-theoretic notion of d-separation, as

a fundamental concept for verifying independence statements. Finally, Part VI explores the

notion of minimality in the contexts of learning and imagination. The content of each part

is explicated in more detail next.

Part I: On Minimality in Reasoning

Part I is comprised of Chapters 2 and 3, the contents of which are discussed below.

Chapter 2 addresses, for the first time in the literature, how the notion of minimality can

be applied to probabilistic reasoning under partial knowledge. To this end, drawing on the

notion of bounded rationality manifested in a reasoner’s limited attention span and scope,

Chapter 2 puts forth a novel graphical model, termed the Multi-Context Model (MCM),

to represent the reasoner’s state of partial knowledge of a domain. MCM occupies a mid-

dle ground between Probabilistic Logic, Bayesian Logic, and Probabilistic Graphical Models.

Also, drawing on the quintessence of Bayesian networks (BNs), i.e., the concept of condition-

ing, MCM generalizes BN to the realm of partial knowledge. Importantly, MCM serves as

the first rational, probabilistic, representational-level account of an important developmental

shift from features in isolation to correlations between those features, in infants between four

and ten months of age.

Inspired by Simon’s bounded rationality and drawing on the notion of minimality, Chap-

ter 3 provides a novel algorithmic perspective to the causal variant of the frame problem

(CFP), a deep puzzle in philosophy of mind and epistemology. Chapter 3 begins by intro-

ducing a notion called potential level (PL). PL generalizes the graph-theoretic concept of

topological sorting, and extends the fundamental notion of Lamport’s logical clock to causal

Bayesian networks (CBNs). Drawing on the psychological literature on causal judgment,

Chapter 3 substantiates the claim that PL may bear on how time is encoded in the mind.

Using PL, Chapter 3 then proposes an inference framework, called the PL-based inference

framework (PLIF), permitting a boundedly-rational approach to the CFP, formally artic-

ulated at Marr’s algorithmic level of analysis. PLIF is also shown to be consistent with a

wide range of findings in the causal judgment literature. To our knowledge, PLIF is also

the first inference framework that capitalized on time to constrain the scope of causal rea-

soning over CBNs, and importantly, can handle any inference mechanism. Interestingly, the

ideas explored in Chapter 2 and 3 demonstrate how the old concept of imprecise probabilities

naturally emerges out of Simon’s bounded rationality.
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Part II: On Minimality in Action

Part II is comprised of Chapter 4, the content of which is discussed below.

Chapter 4 pursues the notion of minimality in the key context of action and control.

Chapter 4 studies, for the first time in the literature, the problem of probabilistic control-

lability in CBNs. Probabilistic controllability extends the fundamental concept of control-

lability in control theory to probabilistic CBNs. More specifically, the aim of Chapter 4 is

two-fold: (i) to introduce and formalize the problem of probabilistic structural controllability

in CBNs, and (ii) to identify a sufficient set of driver variables for the purpose of probabilis-

tic structural controllability of a generic CBN. Furthermore, Chapter 4 elaborates on the

nature of minimality that the identified set of driver variables satisfies. The results of Chap-

ter 4 have important implications for a line of work in developmental psychology concerning

causal learning by young children in pedagogical settings. Also, the formalism developed in

Chapter 4 establishes, for the first time in the literature, a rational, algorithmic-level account

of a curious behavior demonstrated by young children called overimitation, generally taken

as evidence for children’s irrationality. Chapter 4 concludes by exploring the computational

complexity of the problem under study and presenting NP-hardness results for it.

Part III: Conditional Independence, d-separation, and Minimality

Part III is comprised of Chapter 5, the content of which is discussed below.

Chapter 5 revisits the fundamental notion of conditional probabilistic independence as the

core concept which gives rise to minimality in probabilistic settings. Chapter 5, for the first

time in the literature, proposes an asynchronous, distributed, message-passing algorithm—

akin, in spirit, to Pearl’s Belief Propagation scheme—so as to implement Pearl’s key notion

of d-separation. Also, through the introduction of a key graph-theoretic notion, termed

minimal refutation-module, Chapter 5 shows how the notion of minimality manifest itself

in a distributed, message-passing implementation of d-separation. The proposed algorithm

exhibits intriguing properties which position it as a plausible candidate for the implemen-

tation of d-separation at Marr’s algorithmic level of analysis. Furthermore, the proposed

algorithm outperforms all the previously proposed algorithms in the literature in terms of

worst-case running time, and serves as the first rational, distributed, process-level account of

how humans handle probabilistic independence.
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Part IV: On Minimality in Learning and Imagination

Part IV is comprised of Chapter 6, the content of which is discussed below.

Humans are not only adept in recognizing what class an input instance belongs to (i.e.,

classification task), but perhaps more remarkably, they can imagine (i.e., generate) plausible

instances of a desired class with ease, when prompted. Inspired by this, Chapter 6 explores

the notion of minimality in the contexts of learning and imagination. Chapter 6, for the first

time in the literature, proposes a neurally-plausible and computationally-efficient framework,

allowing to transform any deterministic, discriminative neural network (e.g., deep convolu-

tional neural networks and multilayer perceptron) into a probabilistic, generative model. The

proposed framework is based on a Markov chain Monte Carlo (MCMC) method, called the

Metropolis-adjusted Langevin (MAL) algorithm, which capitalizes on the gradient informa-

tion of the target distribution to direct its explorations towards regions of high probability,

thereby achieving good mixing properties. (It is crucial to note that our proposed frame-

work can accommodate any gradient-based MCMC method in order to achieve good mixing

and convergence properties.) Using this framework, cascade-correlation neural networks

(CCNNs)—a class of deterministic, discriminative neural networks which construct their

topology in a minimal fashion and have been successful in accounting for a variety of psy-

chological phenomena—are converted into probabilistic generative models, thereby enabling

CCNNs to probabilistically generate samples from a category of interest. Importantly, the

proposed framework: (1) suggests a modular account of human imagination which is sup-

ported by studies on learning and imaginative abilities of hippocampal amnesic patients

as well as a growing body of brain imaging studies showing that perception and imagery

share neural representation, (2) gives rise to self-organized generative models, (3) strongly

suggests that, contrary to a widely-held view, the boundary between discriminative and gen-

erative models is blurry, (4) bridges computational, algorithmic, and implementational levels

of analysis, and finally, (5) connects two dominant schools of thought in cognitive sciences,

namely, connectionism and Bayesian cognition.

Finally, inspired by the results of Chapters 2 to 6, Chapter 7 concludes the work by

proposing a new mode of enquiry, termed the Rational Minimalist Program, which integrates

Anderson’s rational analysis methodology and the key notion of minimality. Concretely, Ra-

tional Minimalist Program outlines a principled, rational methodology for studying cognition

at Marr’s algorithmic level of analysis.
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1.4 Contributions & Publications

The work presented in this dissertation is an original contribution of the author, and parts

of it have appeared in a number of publications, the list of which is given below.

• A. S. Nobandegani & I. N. Psaromiligkos; Multi-Context Models for Reasoning

under Partial Knowledge: Generative Process and Inference Grammar, In Proc. of the

31st Conference on Uncertainty in Artificial Intelligence (UAI), 2015.

• A. S. Nobandegani & I. N. Psaromiligkos; The Causal Frame Problem: An Algo-

rithmic Perspective, In Proc. of the 39th Annual Conference of the Cognitive Science

Society (CogSci), 2017.

• A. S. Nobandegani & T. R. Shultz; Converting Cascade-Correlation Neural Nets

into Probabilistic Generative Models, In Proc. of the 39th Annual Conference of the

Cognitive Science Society (CogSci), 2017.

Throughout, the line of work presented in this dissertation simultaneously follows two

persistent themes: (1) How ideas and observed effects in cognitive psychology can be used to

develop cognitively-inspired algorithms, machine leaning concepts, and human-like artificial

intelligence, and equally importantly, (2) How theoretical computer science (TCS) mindset

(often advocated by echoing the term algorithmic lens, and mainly concerned with rigorous

definitions, formalization, axiomatization, design and analysis of algorithms, data structures,

and computational complexity theory) allows for developing formal, mathematically-rigorous

foundations for ideas and observed effects in cognitive psychology, thereby enriching our

understanding of their computational underpinnings. Hence, this dissertation is an instan-

tiation of a research program which aims to bridge TCS and cognitive psychology, allowing

these two fields to communicate, to benefit from each other’s history as well as advances, and

importantly, to engender new advances in each other through synergistic interactions. (It is

worth noting that contemporary computational cognitive science borrows its mathematical

tools predominantly from statistical machine learning and computational statistics, and rel-

atively rarely makes contact with the ideas in TCS alluded to above.) I will return to the

idea of bridging TCS and cognitive psychology in the epilogue chapter to this dissertation

(Chapter 7), where I formally articulate a new mode of enquiry, called Rational Minimalist

Program, as a principled, rational methodology for studying cognition at Marr’s algorithmic

level of analysis.
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Finally, in the following two subsections, I outline the main contributions of the disser-

tation to theoretical computer science, artificial intelligence, and machine learning, on the

one hand, and to cognitive psychology, neuroscience, and computational cognitive science,

on the other.

1.4.1 Main Contributions to Theoretical Computer Science, Artificial

Intelligence, and Machine Learning

In the following, the main contributions of each chapter pertaining to theoretical computer

science (TCS), artificial intelligence, and machine learning are outlined.

� Chapter 2: Chapter 2, for the first time in the literature, explores how the notion

of minimality can be applied to probabilistic reasoning under partial knowledge. Con-

cretely, the main contributions of Chapter 2 are as follows:

• Formally presenting the first graphical model specifically tailored toward captur-

ing the state of partial knowledge in probabilistic settings, called multi-contex

model (MCM). MCM occupies a middle ground between Probabilistic Logic,

Bayesian Logic, and Probabilistic Graphical Models, and generalizes Bayesian

networks (BNs) to the realm of partial knowledge.

• Formally presenting a generative process allowing to form partial beliefs over a

domain, in a gradual, contradiction-free manner.

• Introducing and formalizing tow key concept of nestedness and transformation in

the context of MCM, allowing for computationally efficient inference in MCM.

• Presenting a computationally-efficient algorithm for handling evidential inference

in MCM, outputting optimal bounds to any given query of interest.

• Introducing the key notions of scale-invariance in the context of MCM, allowing

for efficient, lifted inference in MCM.

� Chapter 3: Chapter 3 formally presents a novel algorithmic perspective to the causal

variant of the frame problem, a deep puzzle in epistemology and philosophy of mind.

Concretely, the main contributions of Chapter 3 are as follows:
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• Formally introducing potential level (PL), a generalization of the two important

concepts of topological sorting and Lamport’s logic clock to causal Bayesian net-

works (CBNs).

• Endowing CBNs with PL, thereby introducing a new data structure which al-

lows for efficient submodel selection over CBNs (which, in turn, permits efficient,

targeted, inference over CBNs).

• Formally introducing the key notion of maximally-informativeness, a broadly ap-

plicable information-theoretic performance guarantee for anytime algorithms.

• Formally presenting a novel, anytime, algorithmic approach to the causal frame

problem, which satisfies the maximally-informativeness property.

� Chapter 4: Chapter 4, for the first time in the literature, studies the problem of

probabilistic structural controllability in CBNs. Concretely, the main contributions of

Chapter 4 are as follows:

• Introducing and formalizing the problem of probabilistic structural controllability

in CBNs.

• Identifying a set of driver variables for the purpose of probabilistic structural

controllability of a generic CBN, which is shown to be both minimal and optimal.

• Presented a linear-time algorithm C∗ for identifying the aforesaid set of driver

nodes, which easily lends itself to an asynchronous message-passing implementa-

tion. Surprisingly, C∗ is among the rare cases of correct, greedy algorithms (i.e.,

involving no approximations).

• Formally introducing the notions of i-subsumability and i-domination, broadly ap-

plicable for problems involving strategic planning and policy making using CBNs.

• Formally introducing two important structural notions of minimality, namely,

local structural minimality and uniform structural minimality, broadly applicable

for problems involving strategic planning and policy making using CBNs.

• Characterizing the computational complexity of the task under study, and pre-

senting NP-harness results for it. Interestingly, the NP-hardness results are

established using a special class of (degenerate) CBNs for which any Exact Infer-

ence or Maximum A-Posterior (MAP) query can be answered in poly-time (hence,

tractable).



12 Introduction

� Chapter 5: Chapter 5 revisits the fundamental notion of conditional probabilistic in-

dependence as the core concept which gives rise to minimality in probabilistic settings.

Concretely, the main contributions of Chapter 5 are as follows:

• Proposing, for the first time in the literature, an asynchronous, distributed,

message-passing algorithm for implementing Pearl’s key notion of d-separation.

• Importantly, the proposed algorithm outperforms all past algorithms in the liter-

ature in terms of worst-case running time.

• Formally showing how the notion of minimality manifests itself in a distributed,

message-passing implementation of d-separation, through the introduction of a

key graph-theoretic notion, called minimal refutation-module.

• Showing the fruitfulness of separately studying the runtime of an algorithm on

no-instances and yes-instances, even for polynomially-solvable problems (i.e.,

problems in the complexity class P).

• Showing how the graph-theoretic notion of minimal refutation-module can be used

as a natural parameter for studying d-separation in the context of parameterized

complexity.

• Formally demonstrating how pursuing the notion of minimality makes contact

with the key notion of shortest disproof (shortest proof) for the complexity class

coNP (NP ) in automated theorem-proving.

� Chapter 6: Chapter 6 explores the notion of minimality in the context of learning

and imagination. Concretely, the main contributions of Chapter 6 are as follows:

• Presenting, for the first time in the literature, a neurally-plausible and computa-

tionally efficient framework which allows to transform any deterministic, discrim-

inative neural network (e.g., deep convolutional neural networks and multilayer

perceptron) into a probabilistic, generative model.

• Given that the hierarchical structure of deterministic, discriminative neural net-

works permits efficient computation of gradient and higher-order derivatives, we

showed how gradient-based MCMCs and deterministic, discriminative neural net-

works can be naturally paired up for computationally-efficient handling of example

generation tasks.
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• Given that learning probabilistic models (e.g., Restricted Boltzman Machines and

Deep Boltzman Machines) is computationally intractable in general, our frame-

work offers a much more computationally efficient way of obtaining probabilistic

models.

� Chapter 7: Chapter 7 articulates a new mode of enquiry, called Rational Minimalist

Program (RMP), as a principled, rational methodology for studying cognition at Marr’s

algorithmic level of analysis. Concretely, the main contributions of Chapter 7 are as

follows:

• RMP permits bridging between TCS and cognitive psychology, allowing for de-

veloping cognitively-inspired algorithms and human-like artificial intelligence.

• RMP makes contact with a broad range of topics in TCS, most notably: de-

sign and analysis of algorithms, exact and approximation algorithms, parame-

terized complexity, fixed-parameter tractability, inapproximability, shortest proof

and shortest disproof for complexity classes NP and coNP .

1.4.2 Main Contributions to Cognitive Psychology, Neuroscience, and

Computational Cognitive Science

In the following, the main contributions that each chapter makes with regard to cognitive

psychology, neuroscience, and computational cognitive science are outlined.

� Chapter 2: Drawing on the notion of bounded rationality manifested in a reasoner’s

limited attention span and scope, Chapter 2 presents a novel graphical model, termed

MCM, to represent the reasoner’s state of partial knowledge of a domain, where the

term partial signifies a reasoner’s complete lack of knowledge as to parts of the un-

derlying dependency structure of the domain. Concretely, the main contributions of

Chapter 2 are as follows:

• Given the prominent role of BN in Bayesian models of cognition (Gopnik et al.,

2004, inter alia), our proposed model generalizes BN to the realm of partial

knowledge.

• To our knowledge, MCM is the first normative, parsimonious, representational-

level model for capturing the state of partial knowledge.
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• The proposed algorithm, I∗, can be viewed as a rational process model (Griffiths

et al., 2012) for inference under partial knowledge, in a domain modeled by MCM.

• MCM serves as the first normative, probabilistic, representational-level account of

an important developmental shift in infant information processing, between four

and ten months of age.

� Chapter 3: Chapter 3 proposes an inference framework, called the PL-based infer-

ence framework (PLIF), permitting a boundedly-rational approach to the causal frame

problem, formally articulated at Marr’s algorithmic level of analysis. Concretely, the

main contributions of Chapter 3 are as follows:

• Substantiating the claim that PL may bear on how time is encoded in the mind.

• Showing that PLIF is consistent with a wide rage of findings in the literature.

• Demonstrating how the old concept of imprecise probabilities naturally emerges

out of Simon’s (1957) bounded rationality.

• PLIF is not from a “god’s eye” point of view, and can handle any inference al-

gorithm, including sample-based inference methods widely advocated in Bayesian

models of cognition.

• Consistent with a growing acknowledgment in the literature that, not only time

and causality are intimately linked, but that they mutually constrain each other

in human cognition (see Buehner, 2014), PLIF formally shows how time can guide

and constrain causal reasoning.

� Chapter 4: Chapter 4 pursues the notion of minimality in the key context of action

and control. Concretely, the main contributions of Chapter 4 are as follows:

• Proposing an algorithm C∗ which serves as the first rational, process-level account

of how human adults devise their intervention strategies (by selecting on which

intervenable variables to intervene) to control the state of a target node.

• The main prediction of C∗, termed the proximity principle, is supported by exper-

imental findings.

• C∗’s output,X ∗, serves as a distinctive pedagogical cue helping young children, not

yet having developed elaborate intuitive theories, learn about the causal structure

of their environment.
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• C∗ is the first rational, process-level account of a curious behavior demonstrated

by young children called overimitation, generally taken as evidence for children’s

irrationality.

� Chapter 5: Chapter 5 revisits the fundamental notion of conditional probabilistic in-

dependence as the core concept which gives rise to minimality in probabilistic settings.

Concretely, the main contributions of Chapter 5 are as follows:

• The proposed algorithm D∗ serves as the first rational, distributed, process-level

account of how humans handle probabilistic independence.

• D∗ permits the implementation of d-separation in an asynchronous, distributed,

message-passing fashion—a property consistent with the brain’s computational

machinery (see McClelland, 1989; Chater et al., 2006, inter alia) and fully in the

spirit of the celebrated parallel-distributed-processing (PDP) research program in

brain and cognitive sciences.

• D∗’s use of BN links as a medium for inference is supported by recent work in

neuroscience investigating possible implementation of BNs at the neural level.

• D∗ demonstrates a peculiar tendency toward quick detection of no-instance d-

separation queries, which can be normatively-justified.

� Chapter 6: Chapter 6, for the first time in the literature, proposes a neurally-plausible

and computationally-efficient framework which allows to transform any deterministic,

discriminative neural network (e.g., deep convolutional neural networks and multilayer

perceptron) into a probabilistic, generative model. Concretely, the main contributions

of Chapter 6 are as follows:

• Converting cascade-correlation neural networks (CCNNs)—a class of self-organized,

deterministic, discriminative models which have been successful in accounting

for a variety of psychological phenomena—into probabilistic generative models,

thereby enabling CCNNs to probabilistically generate exemplars from a category

of interest.

• Our proposed framework gives rise to self-organized generative models: generative

models possessing the self-constructive property of CCNNs. Such self-organized

generative models could provide a wealth of developmental hypotheses as to how
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the imaginative capacities of children change over development, and models with

quantitative predictions to compare against.

• In accord with the maxim of Occam’s razor, the proposed framework suggests

that, in order to account for human generative abilities, one need not adhere to

an encoder-decoder-type architecture (involving a forward model (encoder) and a

fully separate inverse model (decoder)), but a single forward model, upon which

MCMC operates, might suffice—a more parsimonious design.

• Importantly, the proposed framework: (1) suggests a modular account of human

imagination which is supported by studies on learning and imaginative abilities of

hippocampal amnesic patients as well as a growing body of brain imaging stud-

ies showing that perception and imagery share neural representation, (2) bridges

computational, algorithmic, and implementational levels of analysis, (3) strongly

suggests that, contrary to a widely-held view, the boundary between discrimi-

native and generative models is blurry, and finally, (4) connects two dominant

schools of thought in cognitive sciences, namely, connectionism and Bayesian cog-

nition.

� Chapter 7: Chapter 7 formally articulate a new mode of enquiry, called Rational

Minimalist Program (RMP), as a principled, rational methodology for studying cog-

nition at Marr’s algorithmic level of analysis. Importantly, Chapter 7 shows that the

line of work pursued in Chapters 2 to 6 can all be viewed as instantiations of this

methodology. RMP aims to bridge TCS and cognitive psychology, allowing these two

fields to communicate, to benefit from each other’s history as well as advances, and

importantly, to engender new advances in each other through synergistic interactions.
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Part I: On Minimality in Reasoning

Part I:

On Minimality in Reasoning

Preface. In Part I, the key role that the notion of minimality plays in the context of proba-

bilistic reasoning under partial knowledge (Chapter 2) as well as causal reasoning (Chapter 3)

is explored. Drawing on the fundamental understanding that a reasoner’s attention span/s-

cope is inevitably limited—as a manifestation of Simon’s bounded rationality—Chapter 2

explores the question of how the reasoner whose probabilistic knowledge of a domain is

acquired under such constraints can go about answering a probability of interest (called

query) by merely entertaining those pieces of knowledge deemed relevant to the said task.

In this light, the line of work pursued in Chapter 2 can be perceived as an adaptation of the

well-known frame problem (FP)—a deep epistemological puzzle—to the realm of reasoning

under partial knowledge. Chapter 3 explores the causal variant of the FP, the causal frame

problem (CFP). Intriguingly, the line of work explored in Chapter 3 suggests that a satis-

fying algorithmic-level account of the CFP is intimately linked to another equally puzzling

question: How time is encoded in the mind? Chapter 3 introduces a notion called potential

level (PL) which bears on the aforesaid link.
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Chapter 2

Multi-Context Models for Reasoning

under Partial Knowledge∗

“Partial Knowledge is more triumphant than complete knowledge;

it takes things to be simpler than they are, and so makes its

theory more popular and convincing.”

— Friedrich Nietzsche, Human, All Too Human

2.1 Introduction

At an abstract level, an individual (also referred to as a reasoner) is faced with a domain

where by “domain” we simply mean a collection of propositions or concepts which are math-

ematically encoded as random variables (RVs). Arriving at the complete probabilistic knowl-

edge of the domain, i.e., to learn how all RVs in the domain probabilistically interact with

one another, is indeed a demanding task, a task inevitably hindered by an individual’s

bounded rationality (Simon, 1957). In reality, a reasoner is often faced with a domain of

which she merely possesses partial knowledge, that is, she only knows how some (not all)

RVs in the domain interact. To make the setting under study more tangible, consider the

following case. Suppose that the probabilistic knowledge of a domain is represented by a

∗The material presented in Chapter 2 is partly based on “A. S. Nobandegani & I. N. Psaromiligkos; Multi-
Context Models for Reasoning under Partial Knowledge: Generative Process and Inference
Grammar, In Proceedings of Conference on Uncertainty in Artificial Intelligence (UAI), 2015.”
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probabilistic graphical model (PGM) B, e.g., a Bayesian network (BN). Then the reasoner

comes across a new RV, say ψ, and would like to incorporate it into B so as to achieve the

complete probabilistic knowledge of the new domain (which now also includes ψ). However,

incorporation of ψ into B would require knowledge of how ψ is probabilistically related to

all the RVs already present in B, a knowledge which may be, quite plausibly, unavailable to

the reasoner. An interesting question that immediately arises is how to handle situations

where only partial knowledge as to how ψ is probabilistically related to B is available. An

example would be when the reasoner merely knows how ψ interacts probabilistically with

only one RV, say φ, in B.
In this chapter, a novel graphical model, namely, the multi-context model (MCM) is put

forward to represent the setting in which only partial probabilistic knowledge of a domain is

available to the reasoner. More specifically, MCM is a graphical language to represent set-

tings in which the joint probability distribution (JPD) over all RVs is not available, but what

is available instead is the JPDs over a collection of subsets of RVs of the domain (referred

to as sub-domains or contexts). These contexts are potentially overlapping, i.e., they could

share some RVs. As pointed out elegantly by Pearl (1990), “this state of partial knowledge

is more common, because we often begin thinking about a problem through isolated frames,

paying no attention to interdependencies.” Along the same line of thought, it is plausible to

assume that the probabilistic knowledge of the domain at the early primitive stage consists

of a collection of disjoint contexts and as the reasoner acquires more knowledge as to how the

variables in the model are related to one another and thus probabilistically interact, contexts

gradually go through a process very much like an evolution: contexts start to share some

variables, overlaps begin to emerge and, once enough knowledge is obtained, a number of

contexts could merge thereby giving rise to bigger contexts. This naturally raises the follow-

ing fundamental question: How could a collection of consistent, probabilistically sound, and

potentially overlapping contexts emerge gradually over the course of time? In an attempt

to answer this question we present a generative process of constructing a contradiction-free

MCM. Finally, we would like to note that the special case where the whole domain is mod-

eled as a single context corresponds to the conventional way of modeling the probabilistic

knowledge of a domain using a single PGM, e.g., by some BN.

Another yet crucial question which we address in this chapter—which is another motiva-

tion behind the development of the MCM—is how the task of inference (i.e., the evaluation

of some probability of interest which is hereafter referred to as query) should be carried out
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in a domain which is modeled according to some MCM. A query does not necessarily belong

to any one of the contexts in particular and, in fact, may involve RVs from different contexts.

The chapter is structured as follows. After introducing the notation in Sec. 2.2, we define

in Sec. 2.3 the MCM and, drawing on the notion of probabilistic conditioning, a generative

process of constructing a contradiction-free MCM is discussed. Then, in Sec. 2.4 we elaborate

on the problem of inference in a multi-context setting, i.e., in a domain whose probabilistic

knowledge is encoded as an MCM. In Sec. 2.5 we discuss the relevant past work, comment on

the proposed model, and discuss the implications of the proposed formalism for psychology.

Finally, Sec. 2.7 concludes the chapter.

2.2 Terminology and Notation

In this section we present the mathematical notation and the terminology employed in this

chapter. Random quantities are denoted by bold-faced letters; their realizations are denoted

by the same letter but non-bold. More specifically, RVs are denoted by lower-case bold-faced

letters, e.g., x, while random vectors are denoted by upper-case bold letters, e.g., X. Val(·)
denotes the set of values a random quantity can take, e.g., Val(x) is the set of all possible

realizations of the RV x. In this chapter, we assume that all random quantities are discrete.

The JPD over the RVs x1, . . . ,xn is denoted by P(x1, . . . ,xn); when x1, . . . ,xn comprise

a vector X then P(X) := P(x1, . . . ,xn). We will use the notation x1:n to denote the sequence

of n RVs x1, . . . ,xn. To simplify presentation and to prevent our expressions from becoming

cumbersome, we incur the following abuse of notation: We denote the probability P(x = x)

by P(x) for some RV x and its realization x ∈ Val(x). Also, P(x̄) := P(x �= x) = 1 − P(x)

for some x ∈ Val(x), i.e., P(x̄) is the probability that x takes on any value other than x.

For conditional probabilities we will use the notation P(x|y) instead of P(x = x|y = y).

Similar notations will be used for the case of random vectors, i.e., P(X) := P(X = X),

P(X̄) := P(X �= X) = 1− P(X = X) = 1− P(X), and P(X|Y ) := P(X = X|Y = Y ).

The subscript ↓ on a probability, e.g., P(x|y)↓, denotes the minimum value the proba-

bility can take subject to the constraints induced by the available probabilistic knowledge.

Likewise, the subscript ↑ on a probability denotes the maximum value the probability can

take. Finally, the operator [·]+ gives the positive part of its argument, i.e., [a]+ := max{0, a}
for any real-valued a.
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2.3 Multi-Context Model

As explained earlier, a domain is simply the set of all random variables (RVs) at hand. A

context comprises a collection of RVs for which their JPD is precisely known, see Fig. 2.1(a).

In general, two contexts could be disjoint (Fig. 2.1(b)) or overlapping (Fig. 2.1(c)).

a

b
X a

b

Y
t

X

t
Yz

k

(a) (b) (c)

Fig. 2.1 Graphical representation of contexts: (a) Context associated to
P(a,b,X). (b) Two disjoint contexts associated to P(a,b) and P(Y, t). (c)
Two overlapping contexts associated to P(X,Y, t) and P(Y, z,k). The random
vector Y is referred to as the induced part in Sec. 2.3.

A multi-context model (MCM) encodes the probabilistic knowledge of a domain as a

collection of possibly overlapping contexts. This enables the handling of situations in which

comprehensive knowledge of a domain is not available, but partial information is, in the

form of JPDs of some subsets of the domain. Let us first motivate the proposed MCM by

entertaining a simple yet enlightening example.

2.3.1 Motivating Example

Consider a domain consisting of the RVs y, z in addition to a set of n RVs, x1:n. A reasoner

has formed a partial belief as to the probabilistic connections between the variables of the

domain. More specifically, the reasoner knows precisely the JPDs P(y, z) and P(x1:n) but

not the JPD P(y, z,x1:n). This setting is described by an MCM that consists of two disjoint

contexts, one associated to RVs y, z and the other to x1:n, as shown in Fig. 2.2.

x1:n y
z

Fig. 2.2 Problem statement as an MCM.

Assume that the following query is posed: Given the available information, what could

be said about P(y|xi) for some i = 1, · · · , n? The RVs y and xi belong to different contexts,
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therefore, the JPD of y and xi, P(xi,y), is not available. The best one can hope for is

to derive the range within which P(y|xi) varies, namely, [P(y|xi)↓,P(y|xi)↑]. Let us for the

moment assume the objective is to find P(y|xi)↓. Based on the conventional methodology,

i.e., the approach adopted by past work (see Andersen and Hooker, 1990, 1994; Hansen et al.,

1995, and references therein) one has to write down all the information as a list of linear

equations and solve it as a linear program (LP). The main drawback of the conventional

approach is that it cannot distinguish between what information is relevant and what is

irrelevant for the posed query, and hence what needs to and what need not be considered in

answering the query. The price for this is that the number of parameters required to merely

formulate the query as an LP is exponential in n.

The key point, however, is that what information is relevant (or irrelevant) depends

directly on the posed query, i.e., it is query-dependent. The main advantage of the proposed

MCM over previous approaches is that it enables answering a query in a computationally

efficient manner by distinguishing the relevant information from the irrelevant for the given

query. This is realized thorough adopting the notion of inference grammar, a concept which

will be systematically defined later. For our example, following the inference rule we will

provide in Sec. 2.4.2, one can easily get P(y|xi)↓ = [P(y)−P(x̄i)
P(xi)

]+.

The task of inference in an MCM is carried out on two different levels, which makes the

task more computationally efficient:

(i) High-Level Reasoning: At this level, through the use of inference grammar, the relevant

quantities are identified (e.g., P(y) and P(x̄i) in the case of our example).

(ii) Low-Level Reasoning: The relevant quantities, identified in (i), can be then computed

by employing inference algorithms which take advantage of the potentially rich inde-

pendence structure governing the contexts. For example, it could very well be the case

that for the JPD associated to x1:n a large number of conditional independence rela-

tions hold. In that case, stating the derivation of P(x̄i) (i.e., 1−P(xi)) as an LP would

be computationally inefficient1 but unnecessary. Indeed, the task of finding P(x̄i) could

be accomplished in a computationally efficient way using one of the many inference

methods developed for probabilistic graphical models, a key point that the previous

approaches do not take advantage of.

1The number of parameters required just to state the problem as an LP is exponential in n.
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As a final step, in order to derive the lower/upper bound to the posed query, the quantities

identified in (i) and subsequently calculated in (ii) are stated and solved as an LP.

The idea behind “high-level reasoning” will be explained and clarified further in Sec. 2.4.2

and 2.4.3, while the concept of “low-level reasoning” will be discussed in Sec. 2.4.1.

2.3.2 Generative Process of Contradiction-Free MCMs

The objective of the generative process we describe in this section is to provide a way to

consistently2 construct contexts, in a sequential manner, over a set of RVs. The act of

constructing a context, i.e., of assigning a JPD to a subset of RVs, corresponds to forming

a subjective3 belief over those RVs. In this light, the act of constructing multiple contexts

corresponds to gradually forming subjective beliefs over a number of subsets of variables in

the domain; hence every context symbolizes an established belief over the RVs involved in

that context.

We introduce this problem by considering a simple case shown in Fig. 2.3(a). Suppose

x

yz

x

yz

(a) (b)

P(y,z)

P
(x
,y
)

P(y,z)

P(
x,
z)

P
(x
,y
)

Fig. 2.3 Generative process for contradiction-free Multi-Context Model. The
dash-dotted contexts cannot be freely assigned.

there are three RVs, namely, x,y, and z, present in the domain and let us consider the

following question: Could one assign P(x,y) and P(y, z), freely and gradually in a consistent

manner, over the three variables without introducing any sort of contradiction? It is easy to

verify that the answer is positive. Indeed, one could start off by assigning P(x,y). This as-

signment would, of course, induce the marginal P(y) and one can write P(y, z) = P(y)P(z|y).
2That is, without introducing any form of contradictory result with respect to any probability assignment.
3One must not interpret the subjectivity of belief as “total disconnectivity from the reality.” Thus, we

adopt the Bayesian interpretation of probability in this section. The avid reader is referred to Chalmers
(2013). An adherent to the frequentist interpretation of probability could think of contexts as being em-
pirically constructed from a collection of data and thus skip Sec. 2.3.2 and proceed directly to the next
section.
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Then, to complete this task, one would just need to proceed with assigning P(z|y). This

process could be referred to as a generative process of the assignment of P(x,y) and P(y, z)

over x,y, and z without introducing any inconsistencies, in a gradual manner. Indeed, free-

assignment refers to the act of freely assigning the non-induced, e.g., P (z|y), part of the

to-be-formed belief, e.g., P (y, z). In other words, free-assignment signifies the observation

that the already-formed belief does not impose any constraints on the non-induced part of

the to-be-formed belief.

Let us now consider the case shown in Fig. 2.3(b). Could one assign P(x,y),P(y, z),

and P(x, z) freely and gradually in a consistent manner over the three variables without

introducing any sort of contradiction? After some investigation, one can see that the answer

is negative (Pearl, 1985). Not surprisingly, the reason for this has to do with the existence

of a loop in the model: Once P(x,y) and P(y, z) = P(y)P(z|y) are assigned,4 then P(x, z)

cannot be assigned freely. This is due to the fact that P(x, z) has to satisfy some non-trivial

conditions imposed by the already assigned contexts P(x,y) and P(y, z) (Pearl, 1985).

In summary, whenever it comes to generating a new context, the JPD associated to that

context has to be separated into two parts: (i) the part induced by the already existing

contexts, and (ii) the part containing new variables which have never been so far associated

to any context (i.e., non-induced part). The key point in the generation of contradiction-free

MCMs is that the former part has to be induced by some context which, itself, is already

present in the domain. That is, all the induced parts have to be already contained within

some context. Otherwise, to include the induced parts—each constrained by the context

it is already in—in a new context, the newly created context would have to satisfy some

nontrivial constraints and therefore could not be freely assigned.

a

b
c

d e

P(a,b,c)

P(b,d)
P(b,c,e)

Fig. 2.4 MCM for P(a,b, c),P(b,d), and P(b, c, e).

Let us discuss one final case to further clarify the process. Consider the multi-context

4P(y) is induced by the assignment of P(x,y).
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model in Fig. 2.4. Could this model be constructed freely and gradually in a probabilisti-

cally consistent manner? The answer is positive. We first assign P(a,b, c), then we assign

P(b, c, e) = P(b, c)P(e|b, c) where P(b, c) is induced by our first assignment of P(a,b, c).

Finally, we assign P(b,d) = P(b)P(d|b) where P(b) is induced by our first assignment of

P(a,b, c). A closer look reveals that this is not the only way we can gradually construct a

contradiction-free model in this case; we could have performed the assignments in a different

order.5 Of course, the only thing which would have been different would be the induced prob-

abilities. That is, if one does the assignment in the following order: (1) P(b,d), (2) P(a,b, c),

(3) P(b, c, e) then the first assignment of P(b,d) will induce P(b) for the second assignment

of P(a,b, c) = P(b)P(a, c|b) and the second assignment will induce P(b, c) for the third

assignment P(b, c, e) = P(b, c)P(e|b, c).

2.4 Inference in MCMs

In this section we consider evidential inference problems in multi-context settings. The

objective is to evaluate (to the extent possible) a probability of the form P(O = O|E = E),

called a query, where O and E are two mutually exclusive sets of RVs. The set E is the set

of evidence variables and O is the set of RVs for which we are interested in knowing with

what probability they take on the value O, upon the observation of E = E. In multi-context

settings, inference problems can be categorized into two broad classes:

• Intra-Contextual Inference Problems: For which the sets E and O both belong to the

same context.

• Inter-Contextual Inference Problems: For which the sets E and O do not belong to

a single context and, therefore, more than one context is involved in the inference

problem.

In what follows, we will elaborate on these two cases.

5Yet, this is not always the case: suppose there are four RVs in the domain, namely, a,b, c and
d and we would like to assign P(a,b),P(b, c), and P(c,d). Performing the assignments in the order
(1) P(a,b), (2) P(b, c), (3) P(c,d) would not introduce any inconsistencies, in contrast to using the order
(1) P(a,b), (2) P(c,d), (3) P(b, c).
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2.4.1 Intra-Contextual Inference Problem

One advantage of MCMs is that, once an inference problem is found to be an intra-contextual

inference problem, one can take advantage of the rich independence structure potentially

governing the context to accomplish the task of inference in a computationally efficient way.

For instance, if the probabilistic knowledge of a context is presented in a form of a BN, then

one can benefit from a variety of exact or approximate methods already developed for BNs.

For a comprehensive study of such methods, the reader is referred to (Koller and Friedman,

2009). Hence, it is of great interest to have contexts whose probabilistic knowledge can

be represented in some form of a PGM with sufficiently rich independence structure for

which inference problems can be solved in a computationally efficient way. For example, if

the probabilistic knowledge of a context is to be modeled according to some BN, we would

like that BN to be as sparsely connected as possible and enjoy low tree-width to ensure

computational efficiency for the task of inference (Chandrasekaran et al., 2012).

2.4.2 Inter-Contextual Inference Problem: Inference Grammar

In this section, we turn our attention to the task of inter-contextual inference. The RVs

involved in the query for the inter-contextual inference problem do not belong to a single

context. For this reason, the answer to the query is inevitably in the form of an interval

indicating a lower and upper bound for the query. Since P(E|O) + P(Ē|O) = 1 we have

P(E|O)↑ = 1−P(Ē|O)↓. Therefore, we can focus our attention on the minimization problem

(i.e., identifying a lower bound to the probability of interest) realizing that any maximization

problem (i.e., identifying an upper bound to the probability of interest) could be cast as a

minimization problem and vice versa.

First, we are going to consider some simple queries which are posed to some example

MCMs. These MCMs are depicted in Fig. 2.5(a-c). The goal here is to develop some insight

as to which variables are indeed relevant and which are deemed irrelevant for a given query

and the corresponding MCM.

We begin by considering a simple case: the disjoint MCM shown in Fig. 2.5(a). The

rule to evaluate P(X|Y )↓ is also given in Fig. 2.5(a). Interestingly enough, the expression

only requires the intra-contextual quantities P(X) and P(Y ) and it does not depend on

any other RV present in the domain. In other words, as far as P(X|Y )↓ is concerned, the

MCM shown in Fig. 2.5(a) is equivalent to a much simpler MCM: the one corresponding to
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P(X|Y, Z, t)↓ = [
P(X|Z, t)− P(Ȳ |Z, t)

P(Y |Z, t) ]+
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P(X|Y, Z, t = t)↓ P(t = t|Y, Z)
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Fig. 2.5 Sample inference rules given for some inter-contextual inference prob-
lems. The RVs involved in the query are shown in blue.

having only two disjoint contexts described by P(X) and P(Y). Next, we take the MCM

given in Fig. 2.5(b) where there is an overlap between the context containing X and the one

containing Y. The overlapping part consists of the random vector Z. The rule to evaluate

P(X|Y, Z)↓ is given in Fig. 2.5(b). Now, consider the MCM shown in Fig. 2.5(c) where we

have the same setting we had in previous case but a new random variable t is added in the

overlapping region. Notice that the expression for P(X|Y, Z, t)↓ given in Fig. 2.5(c) is the

same expression given for P(X|Y, Z)↓ in Fig. 2.5(b) with the substitution of Z, t instead of

Z. That is, Z in Fig. 2.5(b) and Z, t in Fig. 2.5(c) are representing the same thing, namely,

“all the variables in the overlapping region,” and in that respect, they are ultimately the

same. The rules are very much like sentences in predicate logic for which variables merely

serve as place-holders.

The derivation of the rules given in Fig. 2.5(a-c) is not presented here. However, using

the proof presented in Sec. A-II of Appendix A (to identify the relevant variables) and

subsequently following the methodology outlined in Sec. A-III of Appendix A (to visualize

the partitions and reason out the extent they overlap) it should be straightforward to derive

the presented rules.

The sample set of rules presented is by no means exhaustive, nonetheless, due to the idea

of context transformation that will be discussed in Sec. 2.4.3, they can be applied to a wide
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range of interesting inter-contextual inference problems. We would like to clarify that our

ultimate objective is not to compute and provide the complete set of rules that can answer

all possible queries and for all possible MCMs, since simply, the set is infinite in size. What

we need, therefore, is an algorithm, let us call it I∗, that can provide the answer to the

posed query being given an MCM as an input. The presented rules provide insights, and

hints to the nature of I∗ which needs to be devised to ideally handle any arbitrary query

posed to any6 MCM. In a sense, we can get a glimpse of the nature of I∗ through analyzing

the presented rules. In other words, the derived rules serve as a lens through which one

can study I∗. The reader is referred to Appendix A wherein the algorithm I∗ (for handling

arbitrary MCMs) is outlined.

The motivation behind giving this sample set of rules can now be summarized in the

following.

1. To shed light on the general nature of a rule (which reflects on the nature of I∗).

More specifically, to illustrate that a rule enjoys two key properties, namely: (i) scale-

invariance, (ii) resemblance to sentences in predicate logic, in that in both cases, vari-

ables are mere place-holders. For this resemblance, we refer to I∗ as inference grammar.

2. To demonstrate that a rule is telling us which intra-contextual quantities are essential

and which are irrelevant for a particular inter-contextual query.

3. To emphasize the key property that a rule derived under a specific MCM remains valid

for and can be applied to infinitely many other MCMs all of which are linked through

the notions of nestedness and transformation; hence generalization is achieved.

4. To lay down the foundation of transformation and nestedness which both play crucial

roles in understanding the underlying machinery behind I∗.

Next, we discuss another key property of the inference rules, namely, that of scale-invariance.

Consider once again the case in Fig. 2.2. Now let us derive P(xi|y)↓, and P(X|y)↓ where

X � x1:n. Using the rule given in Fig. 2.5(a), one arrives at the following results: P(xi|y)↓ =
[P(xi)−P(ȳ)

P(y) ]+, and P(X|y)↓ = [P(X)−P(ȳ)
P(y) ]+. In other words, the expressions remain the same,

regardless of the dimension of the quantity of interest, i.e., be it a single RV or be it a

6Although we believe that the MCMs generated through the generative process outlined in Sec. 2.3.2 are
more cognitively plausible, nonetheless, from a pure mathematical point of view, it would be of interest to
find an algorithm which could handle any MCM.
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random vector comprised of many RVs. In this respect, once again, the inference rules

resemble expressions in predicate logic. The intuition on the scale invariance is provided in

Sec. A-III of Appendix A.

It is worth noting that I∗ formulates the inter-contextual inference problem as a linear

programming (LP) optimization (see Sec. A-I of Appendix A). The key issues to consider are:

(i) what RVs have to be included in the LP, and (ii) the abstraction level I∗ should choose to

encode the RVs identified in step (i) for the LP, i.e., the parameterization of RVs identified

in step (i) for the LP. In what follows, the concepts of nestedness and transformation are put

forth. Once the two are introduced, one could apply a single rule (e.g., one in Fig. 2.5(a))

to a much larger number of MCMs; in fact to infinitely many MCMs.

2.4.3 Inter-Contextual Inference Problem: Nestedness and Transformation
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{P(x,y)} |= P(x) ∧ P(y)
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{P(x,y,z)} |= P(x) ∧ P(y) ∧ P(z)

Fig. 2.6 Inter-Contextual Inference Problem: Transformation and hierarchi-
cal construct. As one proceeds from the left to the right, a more comprehensive
knowledge of domain is assumed to be available, of course hypothetically.

The nested property, or nestedness, refers to the fact that every MCM can be consid-

ered as an element of a family of MCMs. That family contains all MCMs which through

marginalization can produce the original MCM. In such a case we simply say that the nested

property holds between the original MCM and the family. The process of going from the orig-

inal MCM to one of the members of the family is referred to as transformation. For example,

the MCM containing three contexts {x}, {y}, and {z} shown in Fig. 2.6(a) is a member of a

family of MCMs containing two contexts {x,y} and {z}, shown in Fig. 2.6(b), one of which

is associated to a family of JPDs over x and y (the dash-dotted circle in Fig. 2.6(b)) which,

if marginalized, produces the same P(x) and P(y) in the original MCM (left-most MCM).

Mathematically, the set of all JPDs over RVs x and y which, if marginalized, produce specific

marginal probability distributions P(x) and P(y) is denoted by {P(x,y)} |= P(x) ∧ P(y).

The notion of the nested property enables us to look at one MCM as a subset of another
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larger MCM. The nested property, furthermore, enables one to sort MCMs in a hierarchical

construct as illustrated in Fig. 2.6 where moving from the left to the right corresponds to

moving from lower levels of hierarchy to higher levels.
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Fig. 2.7 Transformation: Sample case.

To convey the idea, consider the case illustrated in Fig. 2.7. Suppose the query of interest

is P(x|y, R)↓. Then, one can first transform the original (left-most) MCM into the MCM

shown in the middle, and subsequently into the right-most MCM. Hence, using the right-

most MCM and the rule given in Fig. 2.5(b), one can write P(x|y, R)↓ = [P(x|R)−P(ȳ|R)
P(y|R)

]+ =

[P(x|R)−1+P(y|R)
P(y|R)

]+. If we had the knowledge of P(y|R) then the expression given above would

have been sufficient to derive P(x|y, R)↓. However, since P(y|R) is not known, we need to go

through one more step. This is precisely due to, and emphasizes, the fact that by working on

the right-most MCM we implicitly presumed that we were equipped with more knowledge

than we really had. Using the middle MCM and the rule given in Fig. 2.5(a), one can conclude

P(y|R)↓ = [P(y)−P(R̄)
P(R)

]+. Altogether,7 P(x|y, R)↓ =
(
[P(x|R)−1+P(y|R)

P(y|R)
]+
)
↓ = [

P(x|R)−1+P(y|R)↓
P(y|R)↓

]+.

It is worth noting that the same rule would apply if instead of the random vector R we were

dealing with the random variable a, i.e., to find P(x|y, a)↓ one could use the same expression

given for P(x|y, R)↓ by substituting a in place of R in all the expressions. Arguments of

this kind are made possible due to the idea of transformation which enables us to analyze

the transformed MCM (e.g., the middle one in Fig. 2.7) rather than the original MCM (the

left-most one in Fig. 2.7). Furthermore, the concept of transformation highlights a key idea:

If a piece of information (i.e., an intra-contextual quantity) is irrelevant in the transformed

MCM for the posed query, it must have been irrelevant in the original MCM in the first place.

This statement, once again, sheds light on what intra-contextual quantities are relevant or

irrelevant to derive a posed inter-contextual query on a given MCM.

7This is due to the observation that for function f(y) = (k+y
y ) when k < 0, min1≥y≥t>0 f(y) = (k+t

t ).
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2.5 Discussion

We will now discuss related work so as to build a connection between ours and previous

attempts to incorporate partial probabilistic knowledge of a domain in the task of inference.

Attempting to combine Probabilistic Logic and BNs, Andersen and Hooker (1990, 1994)

formulate the inference problem as an optimization problem subject to non-linear constraints

so as to incorporate the conditional independence relations embedded in the BN. However,

in our proposed framework, the issue of dealing with conditional independence relations

does not arise at all, because these relations are dealt with during the derivation process of

intra-contextual probabilities.

Hansen et al. (1995) point out that one could avoid non-linear optimization when the

value for a conditional probability is at least imprecisely known. For example, the constraint

P(a|b) = P(a), if the value for P(a) is known either precisely or imprecisely within some

interval [α, β], can be written as

P(a, b)
P(b)

= P(a) ∈ [α, β] ⇔
{

P(a, b)− αP(b) > 0,

P(a, b)− βP(b) < 0.

Hence, the independence P(a|b) = P(a) can be formulated as a number of linear constraints.

However, the main drawback of this approach is that encoding a conditional independence

relation such as P(x|y, a1, · · · , an) = P(x|y) requires a number of linear equations that is

exponential in n to be introduced into the optimization problem (Andersen and Hooker,

1994).

Drawing on the idea of context-specific independence (CSI) (Boutilier et al., 1996), Geiger

and Heckerman (1991) propose the Bayesian multinet model which aims at taking advantage

of the existing CSIs to perform inference, by modeling a single BN as multiple context-specific

BNs. Translated into our multi-context setting, the Bayesian multinet model corresponds

to the case where the whole domain is modeled as a single BN, i.e., a single-context MCM,

that can be decomposed into multiple BNs each being valid for a specific instantiation of

some RVs in the domain.

Thöne et al. (1992) point out the same concerns which led us to propose MCM, namely:

(i) If unverified (in)dependencies are imposed between the variables in the domain then im-

plausible results may arise; (ii) PGMs require one to have complete probabilistic knowledge

of a domain which may not be available. Motivated by these, Thöne et al. (1992) give a



2.5 Discussion 33

collection of rules to carry out inference in a domain. Very broadly speaking, this work is

similar to ours in spirit with the main distinction being the level of abstraction chosen to per-

form inference. In Thöne et al. (1992), inference is performed in a very local and rule-based

fashion and conditional independence relations are dealt with directly which complicates

the task at hand, a task which is futile when it comes to dealing with domains of many

variables. In our case, by introducing the notion of context and encoding conditional in-

dependence relations within contexts, we avoid having to contemplate the intra-contextual

inference problem and leave this task for the corresponding context. This way, we can take

advantage of the possibly rich independence structure governing the context and carry out

the intra-contextual inference problem in a computationally efficient manner.

Finally, let us discuss some interesting aspects of the proposed model.

The degree of belief is encoded mathematically in the form of a probability distribution

over the variables contained within the context. Furthermore, in the process of partial belief

formation (which leads to the formation of contexts) the reasoner is ignorant as to how

various contexts probabilistically interact (are related), except that, some contexts may in

fact share a number of variables in between and hence overlap. Later on, in the process of the

derivation of the query posed to the reasoner, this ignorance manifests in the uncertainty

region represented by the min/max values for the inter-contextual query of interest. In

other words, if the reasoner incurs ignorance as to the (in)dependency structure governing

the variables present in the domain, then later on, in the process of derivation of the posed

query, the reasoner has to pay the price by merely arriving at a probability interval rather

than a point probability as an answer to the query of interest. Yet, the knowledge of

the underlying dependency structure is a fundamental knowledge whose availability to the

reasoner should not be postulated as an inevitability, but as an advantaged position.

The evolutionary process of MCM does not enforce a specific gradual expansion path,

for the claim of MCM is merely that any partial belief formation as to the domain can be

modeled in the framework depicted by MCM. That is, the reasoner may arrive at different

MCMs, depending on the order in which the reasoner encounters different concepts and also

depending on her background knowledge as to the nature of the potential connections be-

tween a collection of variables. Simply put, the order according to which the reasoner comes

about knowing the concepts or propositions of the domain does matter (see the discussion

on the order of belief formation in Sec. 2.3.2).

MCM enables one to carry out inference without having to commit to any unjustified
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independence assumptions. In light of this, contexts symbolize the regions of the domain

over which an (in)dependence structure is presumed and hence, the growth and merging of

contexts indicates the formation of new (in)dependence structures over some parts of the

domain which previously were unstructured. In short, MCM is meant to be invoked in

circumstances where the observations and the a priori knowledge combined are not sufficient

for the reasoner to form the full JPD over all of the domain variables and yet, quite crucially,

the reasoner is reluctant to submit to any unjustified assumptions to compensate for such

inadequacy of knowledge.

2.6 On the Implications of Multi-Context Model for Cognitive

and Developmental Psychology

Attention is a well-explored subject in human psychology and neurophysiology (e.g., Broad-

bent, 1965; Kastner and Ungerleider, 2000; Pashler et al., 2001; Treue, 2001). Causes and

effects of limited attention in humans as well as non-human animals are also investigated in

the literature (e.g., Dukas and Kamil, 2001; Desimone and Duncan, 1995; Clark and Dukas,

2003; Pashler et al., 2001; Treue, 2001; Moran and Desimone, 1985), highlighting the signifi-

cance of what a reasoner directs her attention toward, when faced with a task. Drawing on a

reasoner’s limited attention span and scope, which is yet another manifestations of Simon’s

(1957) bounded rationality, we put forth a novel graphical model, MCM, to formally repre-

sent a reasoner’s state of partial knowledge of a domain. Furthermore, given the prominent

role of BN in Bayesian models of cognition (Gopnik et al., 2004, inter alia), our proposed

model generalizes BN to the realm of partial knowledge, where the term ‘partial’ signifies a

reasoner’s complete lack of knowledge as to parts of the underlying dependency structure of

the domain. In particular, this generalization is achieved by drawing on the quintessence of

BNs, i.e., the concept of conditioning (see Sec. 2.3).

Importantly, MCM could also significantly contribute to an influential line of work in

developmental psychology concerning the computational modeling of one of the Younger

and Cohen’s key discoveries in infant information processing: the developmental shift from

learning about visual stimulus features to learning about correlations between these features,

in infants between four and ten months of age (see Oakes et al., 2011, for a review of

psychological evidence). Concretely, MCM allows to: (1) computationally model a state

of knowledge consisting of isolated features, without capturing the correlations between
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them (4-month olds, see Fig. 2.8(a)), and (2) computationally model a state of knowledge

capturing features as well as their correlations (10-month olds, see Fig. 2.8(c)). Furthermore,

MCM allows to computationally model a set of intermediate stages in infant’s knowledge

representation (see Fig. 2.8(b)). An intriguing line of future work could be to investigate

whether any of the intermediate stages shown in Fig. 2.8(b) can be experimentally confirmed,

or that the transition from the representation invoked by 4-month olds to that of 10-month

olds tends to be rather abrupt, leaving no room for any intermediate stages.
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Fig. 2.8 Computational modeling of the transition in infant’s knowledge rep-
resentation (Younger and Cohen, 1983, 1986), starting from a state of knowledge
consisting of isolated features (a), en route to attaining the state of complete
knowledge capturing the correlations among those features (c). MCM, fur-
thermore, allows to formally capture possible intermediate stages in infant’s
knowledge representation (b). Future work should investigate whether any
of the intermediate stages shown in (b) can be experimentally confirmed, or
that the transition from (a) to (c) tends to be rather developmentally abrupt,
leaving no room for any intermediate stages.

MCM serves as a normative, representational-level model, with the normativity claim

following from two statements: (1) MCM adheres to the maxim that the state of knowledge

ought to progress from partial to complete. According to this maxim, a reasoner should
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strive for minimizing his ignorance, aiming for achieving the state of knowledge with least

uncertainty, or, more formally, with least entropy.8 (2) MCM respects the maxim that, for

reasoning, a reasoner should only consider what he knows, and plausibly, should make no

informed assumptions about propositions of which he utterly knows nothing and has no

prior knowledge of.

Before concluding this chapter, we would like to sketch the main predictions that fol-

low from MCM modeling. It is worth reiterating that, in a domain modeled by MCM,

intra-contextual queries result in probability intervals rather than precise probability values.

Assuming that [α, β] denotes the probability interval implied by MCM for a posed evidential

query, two main predictions follow. (1) Subjects’ estimates for the posed query should tend

to be close to the midpoint of the probability interval, α+β
2
, under the plausible assumption

of the subjects’ lack of preference for any particular value within that probability interval

(computationally, the said lack of preference amounts to assigning an uninformative, uni-

form distribution over that probability interval). (2) For two queries with the same midpoint

value, subjects’ confidence ratings for the query with wider probability interval should be

lower, under the plausible assumption that a wider probability interval should be construed

by the subjects as indications for the existence of more fuzziness as to the query value, hence

implying lower confidence ratings. Future work should investigate if these predictions are

borne out by behavior data, empirically characterizing the extent to which human proba-

bilistic judgment is rational under the state of partial knowledge captured by MCM (as a

normative representational-level model).

2.7 Conclusion

In an attempt to establish a middle ground between Bayesian Logic and Probabilistic Logic

(Andersen and Hooker, 1990, 1994), on one side, and PGMs9 on the other, we proposed

the Multi-Context Model to represent the state of partial knowledge regarding a domain.

The generative process for a gradual construction of contradiction-free MCMs was discussed.

The task of Inference for MCM was studied and, along the path, the notions of inference

grammar, nestedness, and transformation were introduced. Finally, we elaborated on the

implications of our proposed model for psychology, and discussed how it could significantly

8To a familiar reader, this should sound analogous to Karl Friston’s minimum free energy principle.
9For instance, Bayesian Networks (Pearl, 1986), Markov Networks (Koller and Friedman, 2009), and

Chain Graphs (Buntine, 1995).
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contribute to the area of developmental psychology concerning infant information processing.

To our knowledge, MCM is the first normative, parsimonious, representational-level model

for capturing the state of partial knowledge, where the term partial signifies a reasoner’s

complete lack of knowledge as to parts of the underlying dependency structure of the domain.

Last but not least, the algorithm I∗ can be viewed as a rational process model (Griffiths et

al., 2012) for inference under partial knowledge, in a domain modeled by an MCM.
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Chapter 3

The Causal Frame Problem: An

Algorithmic Perspective∗

“The frame problem goes very deep; it goes

as deep as the analysis of rationality.”

Jerry Fodor (1987)

3.1 Introduction

At the core of any decision-making or reasoning task, resides an innocent-looking yet chal-

lenging question: Given an inconceivably large body of knowledge available to the reasoner,

what constitutes the relevant for the task and what the irrelevant? The question, as it is

posed, echoes the well-known frame problem (FP) in epistemology and philosophy of mind,

articulated by Glymour (1987) as follows: “Given an enormous amount of stuff, and some

task to be done using some of the stuff, what is the relevant stuff for the task?”

The question posed above perfectly captures what is really at the core of the FP, yet, it

may suggest an unsatisfying approach to the FP at the algorithmic level of analysis (Marr,

1982). Indeed, the question may suggest the following two-step methodology: In the first

step, out of all the body of knowledge available to the reasoner (termed, the model), she

∗The material presented in Chapter 3 is partly based on “A. S. Nobandegani & I. N. Psaromiligkos; The
Causal Frame Problem: An Algorithmic Perspective, In Proceedings of the 39th Annual Conference
of the Cognitive Science Society (CogSci), 2017.”
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has to identify what is relevant to the task (termed, the relevant submodel); it is only

then that she advances to the second step by performing reasoning or inference on the

identified submodel. There is something fundamentally wrong with this methodology (which

we term, sequential approach to reasoning) which bears on the following understanding: The

relevant submodel, i.e., the portion of the reasoner’s knowledge deemed relevant to the task,

oftentimes is so enormous (or even infinitely large) that the reasoner—inevitably bounded in

time and computational resources—would never get to the second step, had she adhered to

such a methodology. In other words, in line with the notion of bounded rationality (Simon,

1957), a boundedly-rational reasoner must have the option, if need be, to merely consult a

fraction of the potentially large—if not infinitely so—relevant submodel.

Icard and Goodman (2015) elegantly promote this insight when they write: “Somehow

the mind must focus in on some ‘submodel’ of the ‘full’ model (including all possibly relevant

variables) that suffices for the task at hand and is not too costly to use.”1 They then ask

the following question: “what kind of simpler model should a reasoner consult for a given

task?” This is an inspiring question, hinting to an interesting line of inquiry as to how to

formally articulate a boundedly-rational approach to the FP, at Marr’s (1982) algorithmic

level of analysis.

In this chapter, we focus on the causal variant of the FP, the causal frame problem

(CFP), stated as follows: Upon being presented with a causal query, how does the reasoner

manage to attend to her causal knowledge relevant to the derivation of the query while

rightfully dismissing the irrelevant? We adopt causal Bayesian networks (CBNs) (Pearl,

1988; Gopnik et al., 2004, inter alia) as a normative model to represent how the reasoner’s

internal causal model of the world is structured (i.e., reasoner’s mental model). First, we

introduce the notion of potential level (PL). PL, in essence, encodes the relative position

of a node (representing a propositional variable or a concept) with respect to its neighbors

in a CBN. Drawing on the psychological literature on causal judgment, we substantiate the

claim that PL may bear on how time is encoded in the mind. Equipped with PL, we embark

on investigating the CFP at Marr’s algorithmic level of analysis. We propose an inference

framework, termed PL-based inference framework (PLIF), which aims at empowering the

boundedly-rational reasoner to consult (or retrieve2) parts of the underlying CBN deemed

1In an informative example on Hidden Markov Models (HMMs), Icard and Goodman (2015) present a
setting wherein the relevant submodel is infinitely large—an example which highlights what is wrong with
the sequential approach stated earlier.

2The terms “consult” and “retrieve” will be used interchangeably. We elaborate on the rationale behind
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relevant for the derivation of the posed query (the relevant submodel) in a local, bottom-up

fashion until the submodel is fully retrieved. PLIF allows the reasoner to carry out inference

at intermediate stages of the retrieval process over the thus-far retrieved parts, thereby

obtaining lower and upper bounds on the posed causal query. We show, in the Discussion

section, that our proposed framework, PLIF, is consistent with a wide range of findings in

the causal judgment literature, and that PL and PLIF make a number of predictions, some

of which are already supported by the findings in the psychology literature.

In their work, Icard and Goodman (2015) articulate a boundedly-rational approach to

the CFP at Marr’s computational level of analysis, which, as they point out, is from a

“god’s eye” point of view. In sharp contrast, our proposed framework PLIF is not from

a “god’s eye” point of view and hence could be regarded, potentially, as a psychologically

plausible proposal at Marr’s algorithmic level of analysis as to how the mind both retrieves

and, at the same time, carries out inference over the retrieved submodel to derive bounds

on a causal query. We term this concurrent approach to reasoning, as opposed to the flawed

sequential approach stated earlier.3 The retrieval process progresses in a local, bottom-up

fashion, hence the submodel is retrieved incrementally, in a nested manner.4 Our analysis

(Sec. 3.4.3) confirms Icard and Goodman’s (2015) insight that even in the extreme case of

having an infinitely large relevant submodel, the portion of which the reasoner has to consult

so as to obtain a “sufficiently good” answer to a query could indeed be very small.

3.2 Potential Level and Time

Before proceeding further, let us introduce some preliminary notations. Random variables

(RVs) are denoted by lower-case bold-faced letters, e.g., x, and their realizations by non-

bold lower-case letters, e.g., x. Likewise, sets of RVs are denoted by upper-case bold-faced

letters, e.g., X, and their corresponding realizations by upper-case non-bold letters, e.g., X.

Val(·) denotes the set of possible values a random quantity can take on. Random quantities

are assumed to be discrete unless stated otherwise. The joint probability distribution over

x1, · · · ,xn is denoted by P(x1, · · · ,xn). We will use the notation x1:n to denote the sequence

of n RVs x1, · · · ,xn, hence P(x1, · · · ,xn) = P(x1:n). The terms “node” and “variable” will

that in Sec. 3.5, where we connect our work to Long Term Memory and Working Memory.
3We elaborate more on this in the Discussion section.
4The term “nested” implies that the thus-far retrieved submodel is subsumed by every later submodel

(provided that the reasoner proceeds with the retrieval process).
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be used interchangeably. To simplify presentation, we adopt the following notation: We

denote the probability P(x = x) by P(x) for some RV x and its realization x ∈ Val(x).

For conditional probabilities, we will use the notation P(x|y) instead of P(x = x|y = y).

Likewise, P(X|Y ) = P(X = X|Y = Y ) for X ∈ Val(X) and Y ∈ Val(Y). A generic con-

ditional independence relationship is denoted by (A ⊥⊥ B|C) where A,B, and C represent

three mutually disjoint sets of variables belonging to a CBN. Furthermore, throughout this

chapter, we assume that ε is some negligibly small positive real-valued quantity. Whenever

we subtract ε from a quantity, we simply imply a quantity less than but arbitrarily close to

the original quantity. The rationale behind adopting such a notation will become clearer in

Sec. 3.4.

Before formally introducing the notion of PL, we articulate in simple terms what the

idea behind PL is. PL simply induces a chronological order on the nodes of a CBN, allowing

the reasoner to encode the timing between cause and effect.5 As we will see, PL plays an

important role in guiding the retrieval process used in our proposed framework. Next, PL is

formally defined, followed by two clarifying examples.

Def. 3.1. (Potential Level (PL)) Let par(x) and child(x) denote, respectively, the

sets of parents (i.e., immediate causes) and children (i.e., immediate effects) of x. Also let

T0 ∈ R ∪ {−∞}. The PL of x, denoted by pl(x), is defined as follows: (i) If par(x) = ∅,

pl(x) = T0, and (ii) If par(x) �= ∅, pl(x) is a real-valued quantity selected from the interval

(maxy∈par(x) pl(y),minz∈child(x) pl(z)) such that pl(x)−maxy∈par(x) pl(y) indicates the amount

of time which elapses between intervening simultaneously on all the RVs in par(x) (i.e.,

do(par(x) = parx)) and x taking its value x in accord with the distribution P(x|parx). If

child(x) = ∅, substitute the upper bound of the given interval by +∞. �
Parameter T0 symbolizes the origin of time, as perceived by the reasoner. T0 = 0 is a

natural choice, unless the reasoner believes that time continues unboundedly into the past,

in which case T0 = −∞. The next two examples further clarify the idea behind PL. In both

examples we assume T0 = 0.

For the first example, let us consider the CBN depicted in Fig. 3.1(a) containing the RVs

x,y, and z with pl(x) = 4, pl(y) = 4.7, and pl(z) = 5. According to Def. 3.1, the given PLs

can be construed in terms of the relative time between the occurrence of cause and effect as

articulated next. Upon intervening on x (i.e., do(x = x)), after the elapse of pl(y)− pl(x) =

5More precisely, PL induces a topological order on the nodes of a CBN, with temporal interpretations
suggested in Def. 3.1.
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Fig. 3.1 The relation between PL and time. Three hollow dots signify that
the depicted CBNs extend into the past and future.

0.7 units of time, the RV y takes its value y in accord with the distribution P(y|x). Likewise,
upon intervening on y (i.e., do(y = y)), after the elapse of pl(z)− pl(y) = 0.3 units of time,

z takes its value z according to P(z|y).
For the second example, consider the CBN depicted in Fig. 3.1(b) containing the RVs

x,y, z, and t with pl(x) = 4, pl(y) = 4.7, pl(z) = 5, and pl(t) = 5.6. Upon intervening on x

(i.e., do(x = x)) the following happens: (i) after the elapse of pl(y) − pl(x) = 0.7 units of

time, y takes its value y according to P(y|x), and (ii) after the elapse of pl(z) − pl(x) = 1

unit of time, z takes its value z according to P(z|x). Also, upon intervening simultaneously

on RVs y, z (i.e., do(y = y, z = z)), after the elapse of pl(t)−maxr∈par(t) pl(r) = 0.6 units of

time, t takes its value t according to P(t|y, z).
In sum, the notion of PL bears on the underlying time-grid upon which a CBN is con-

structed, and adheres to Hume’s principle of temporal precedence of cause to effect (Hume,

1975). A growing body of work in psychology literature corroborates Hume’s centuries-old

insight, suggesting that the timing and temporal order between events strongly influences

how humans induce causal structure over them (Bramley et al., 2014; Lagnado and Sloman,

2006). The introduced notion of PL is based on the following hypothesis: When learning

the underlying causal structure of a domain, humans may as well encode the temporal pat-

terns (or some estimates thereof) on which they rely to infer the causal structure. This

hypothesis is supported by recent findings suggesting that people have expectations about

the delay length between cause and effect (Greville and Buehner, 2010; Buehner and May,

2004; Schlottmann, 1999). It is worth noting that we could have defined PL in terms of

relative expected time between cause and effect, rather than relative absolute time. Under
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such an interpretation, the time which elapses between the intervention on a cause and the

occurrence of its effect would be modeled by a probability distribution, and PL would be

defined in terms of the expected value of that distribution. Our proposed framework, PLIF,

is indifferent as to whether PL should be construed in terms of absolute or expected time.

Greville and Buehner (2010) show that causal relations with fixed temporal intervals are

consistently judged as stronger compared to those with variable temporal intervals. This

finding, therefore, seems to suggest that people expect, to a greater extent, fixed temporal

intervals between cause and effect, rather than variable ones—an interpretation which, at

least to a first approximation, favors construing PL in terms of relative absolute time (see

Def. 3.1).6

3.3 Informative Example

To develop our intuition, and before formally articulating our proposed framework, let us

present a simple yet informative example which demonstrates: (i) how the retrieval process

can be carried out in a local, bottom-up fashion, allowing for retrieving the relevant submodel

incrementally, and (ii) how adopting PL allows the reasoner to obtain bounds on a given

causal query at intermediate stages of the retrieval process.

Let us assume that the posed causal query is P(x|y) where x,y are two RVs in the CBN

depicted in Fig. 3.2(a) with PLs pl(x), pl(y), and let pl(x) > pl(y). The relevant information

for the derivation of the posed query (i.e., the relevant submodel) is depicted in Fig. 3.2(e).

Starting from the target RV x in the original CBN (Fig. 3.2(a)) and moving one step

backwards,7 t1 is reached (Fig. 3.2(b)). Since pl(y) < pl(t1), y must be a non-descendant

of t1, and therefore, of x. Hence, conditioning on t1 d-separates x from y (Pearl, 1988),

yielding (x ⊥⊥ y|t1). Thus P(x|y) =
∑

t1∈Val(t1)
P(x|y, t1)P(t1|y) =

∑
t1∈Val(t1)

P(x|t1)P(t1|y)
implying: mint1∈V al(t1) P(x|t1) ≤ P(x|y) ≤ maxt1∈V al(t1) P(x|t1). It is crucial to note that the

given bounds can be computed using the information thus-far retrieved, i.e., the information

encoded in the submodel shown in Fig. 3.2(b). Taking a step backwards from t1, t2 is

reached (Fig. 3.2(c)). Using a similar line of reasoning to the one presented for t1, having

pl(y) < pl(t2) ensures (x ⊥⊥ y|t2). Therefore, the following bounds on the posed query

6There are cases, however, that, despite the precedence of cause to effect, quantifying the amount of time
between their occurrences may bear no meaning, e.g., when dealing with hypothetical constructs. In such
cases, PL should be simply construed as a topological ordering. From a purely computational perspective,
PL is a generalization of topological sorting in computer science.

7Taking one step backwards from variable q amounts to retrieving all the parents of q.
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Fig. 3.2 Example. Query variables are shown in orange.

can be derived, which, crucially, can be computed using the information thus-far retrieved:

mint2∈V al(t2) P(x|t2) ≤ P(x|y) ≤ maxt2∈V al(t2) P(x|t2). It is straightforward to show that the

bounds derived in terms of t2 are equally tight or tighter than the bounds derived in terms

of t1. Finally, taking one step backward from t2, y is reached (Fig. 3.2(d)) and the exact

value for P(x|y) can be derived, again using the submodel thus-far retrieved (Fig. 3.2(d)).

We are now well-positioned to present our proposed framework.

3.4 PL-based Inference Framework (PLIF)

In this section, we intend to elaborate on how, equipped with the notion of PL, a generic

causal query of the form8 P(O = O|E = E) can be derived where O and E denote, respec-

tively, the disjoint sets of target (or objective) and observed (or evidence) variables. In other

words, we intend to formalize how inference over a CBN whose nodes are endowed with PL

as an attribute should be carried out. Before we present the main result, a few definitions

are in order.

Def. 3.2. (Critical Potential Level (CPL)) The target variable with the least PL is

denoted by o∗ and its PL is referred to as the CPL. More formally, p∗l :� mino∈O pl(o) and

o∗ :� argmino∈O pl(o). E.g., for the setting given in Fig. 3.2(a), o∗ = x, and p∗l = pl(x).

8We do not consider interventions in this work. However, with some modifications, the presented analy-
sis/results can be extended to handle a generic causal query of the form P(O = O|E = E, do(Z = Z)) where
Z denotes the set of intervened variables.
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Viewed through the lens of time, o∗ is the furthest target variable into the past, with PL p∗l .

There are two possibilities: (a) p∗l > T0, or (b) p∗l = T0, with T0 denoting the origin of

time (cf. Sec. 3.2). In the sequel, we assume that (a) holds.9

Def. 3.3. (Inference Threshold (IT) and IT Root Set (IT-RS)) To any real-valued

quantity, T , corresponds a unique set, RT , obtained as follows: Start at every variable

x ∈ O ∪ E with PL ≥ T and backtrack along all paths terminating at x. Backtracking

along each path stops as soon as a node with PL less than T is encountered. Such nodes,

together, compose the set RT . It follows that: maxt∈RT pl(t) < T . T and RT are termed,

respectively, inference threshold (IT) and the IT root set (IT-RS) for T .

For example, the set of variables circled at the stages depicted in Figs. 3.2(b-d) are the

IT-RSs for T = pl(x)− ε, T = pl(t1)− ε, and T = pl(t2)− ε, respectively. Note that instead

of saying T = pl(x)− ε we could have said: for any T ∈ (pl(t1), pl(x)). However, expressing

ITs in terms of ε liberates us from having to express them in terms of intervals, thereby

simplifying the exposition. We would like to emphasize that the adopted notation should

not be construed as implying that the assignment of values to ITs is such a sensitive task that

everything would have collapsed, had IT not been chosen in such a fine-tuned manner. To

recap, in simple terms, T bears on how far into the past a reasoner is consulting her mental

model in the process of answering a query, and RT characterizes the furthest-into-the-past

concepts entertained by the reasoner in that process.

Next, we formally present the main idea behind PLIF, followed by its interpretation in

simple terms.

Proposition 3.1. Let P(O|E) denote the posed causal query, with O and E denoting,

respectively, the disjoint sets of target and observed variables. For any chosen IT T < p∗l
and its corresponding RT , define S :� RT \E. Then the following holds:

min
S∈V al(S)

P(O|S,E) ≤ P(O|E) ≤ max
S∈V al(S)

P(O|S,E). (3.1)

Crucially, the provided bounds can be computed using the information encoded in the submodel

retrieved in the very process of obtaining the RT . �
The message of Proposition 3.1 is simple: For any chosen inference threshold T which is

further into the past than o∗, Proposition 3.1 ensures that the reasoner can condition on S

and obtain the reported lower and upper bounds on the query by using only the information

9Under Case (b), to derive P(O|E), the set of all the ancestors of variables in O ∪E should be retrieved
and then inference should be carried out on the retrieved submodel.
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encoded in the retrieved submodel.

It is natural to ask under what conditions the exact value to the posed query can be

derived using the thus-far retrieved submodel, i.e., the submodel obtained during the iden-

tification of RT . The following remark bears on that.

Remark 1. If for IT T , RT satisfies either: (i)RT ⊆ E, or (ii) for all r ∈ RT , pl(r) = T0,

and mine∈E pl(e) > T , or (iii) the lower and upper bound given in Proposition 3.1 are

identical, then the exact value of the posed query can be derived using the submodel retrieved

in the process of obtaining RT . Fig. 3.2(d) shows a setting wherein (i) and (iii) are both

met.

Rationale behind Remark 1. Case (i) and Case (iii) immediately follow from Proposi-

tion 3.1. Case (ii) implies that all the ancestors of variables in O∪E are retrieved, hence the

sufficiency of the retrieved submodel for the exact derivation of the query; see also footnote 9.

3.4.1 Proof of Proposition 3.1

In this section, formal proof of Proposition 3.1 is presented.

Simple use of the total probability lemma yields:

P(O|E) =
∑

S∈V al(S)

P(O|S,E)P(S|E). (3.2)

Equation (3.2) immediately reveals a simple fact, namely, that P(O|E) is a linear combination

of the members of the set {P(O|S,E)}S∈V al(S), an observation which grants the validity of

the expression given in (3.1).

The key point which is left to be shown is the following: (Q.1) Why can the bounds

given in (3.1) be computed using the submodel retrieved in the process of obtaining the

corresponding RT for the adopted IT T < p∗l ? This is where the notion of PL comes into

play. To articulate the intended line of reasoning, let us introduce some notations first.

According to Def. 3.3, any chosen IT T induces an IT-RS RT . Let us partition the set of

evidence variables E into three mutually disjoint sets E+
T ,ET , and E−

T , where ET denotes

the set of variables in E which belong to the IT-RS RT (i.e., ET :� E ∩RT ), E
+
T denotes

the set of variables in E with PLs ≥ T , and finally, E−
T denotes the set of variables in E

which are neither in ET nor in E+
T (i.e., E−

T :� E \ (ET ∪ E+
T )). Note that, by construction,

the PLs of the variables in E−
T are less than the adopted IT T , hence the adopted notation.

For example, for the setting depicted in Fig. 3.2(b) (corresponding to the IT T = pl(x)− ε),
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ET = ∅,E+
T = ∅, and E−

T = {y}. Also, for the setting depicted in Fig. 3.2(d) (corresponding

to the IT T = pl(t2) − ε), ET = {y},E+
T = ∅, and E−

T = ∅. Next, we present a key result

as a lemma.

Lemma 3.1. Let P(O|E) denote the posed causal query. For any chosen IT T < p∗l and

its corresponding IT-RS RT , the following conditional independence relation holds:

(O ⊥⊥ E−
T |RT ∪ E+

T ). (3.3)

Proof. The relations between the PLs of the variables involved in the statement (3.3)

ensures that, according to d-separation criterion (Pearl, 1988), conditioning on the variables

in RT ∪ E+
T blocks all the paths between the variables in O and E−

T , hence follows (3.3).

The following two-part argument responds to the question posed in (Q.1) in the affirma-

tive. First, notice that:

P(O|S,E) = P(O|S,ET , E
−
T , E

+
T )

= P(O|RT , E
−
T , E

+
T )

(3.3)
= P(O|RT , E

+
T ). (3.4)

Second, note that the process of obtaining RT , namely, moving backwards from the

variables in O∪E+
T until RT is reached, ensures that the submodel retrieved in this process

suffices for the derivations of P(O|RT , E
+
T ). Using the approach introduced in (Geiger et al.,

1989) for identifying the relevant information for the derivation of a query in a Bayesian

network, this follows from the following fact: Conditioned on RT ∪ E+
T , the set O is d-

separated from all the nodes in the set An(O∪E)\RT whose PLs are less than the adopted

IT T . Note that An(O ∪ E) denotes the ancestral graph for the nodes in O ∪ E. This

completes the proof. �

3.4.2 How Tight the Bounds Given in Proposition 3.1 Really Are? On

Maximally-Informative Bounds

Proposition 3.1 grants the validity of the following two statements: (1) A given query P(O|E)
is guaranteed to fall within the interval provided in (3.1), and (2) The upper and lower bounds

provided in (3.1), can be exactly computed from the retrieved submodel the construction

of which is delineated in Proposition 3.1. Now, an important question immediately present
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itself: How tight the bounds provided in (3.1) really are? Put differently, could one drive

bounds tighter than the ones given in (3.1), using the information encoded in the retrieved

submodel the construction of which is delineated in Proposition 3.1? In what follows, we

show that the bounds given in (3.1) are the “best” one can hope for to derive, using the

information encoded in the retrieved submodel the construction of which is formally articu-

lated in Proposition 3.1. We formally characterize this property of the bounds given in (3.1),

under a notion which we term maximally-informativeness, defined as follows.

Def. 3.4. (Maximally-Informativeness) Let P(O|E) denote the posed causal query,

with O and E denoting, respectively, the disjoint sets of target and observed variables. A

probability interval [α, β] is called maximally-informative with respect to a submodel M
iff the tightest probability interval which can be derived for P(O|E) using the information

encoded in M is [α, β].

The following result then holds.

Proposition 3.2. The probability interval provided in Proposition 3.1 is maximally-

informative w.r.t. the submodel the construction of which is delineated in Proposition 3.1.

Proof. We present a constructive proof. We adopt the same notation used in Propo-

sition 3.1. Let T † denote a chosen IT. Let us assume that the submodel which would be

retrieved in the process of obtaining the corresponding RT † (for the adopted IT T †) is

constructed; the construction procedure is formally given in Def. 3.3. According to Proposi-

tion 3.1, the following holds: P(O|E) ∈ I :� [minS∈V al(S) P(O|S,E),maxS∈V al(S) P(O|S,E)].

To prove the claim of Proposition 3.2, it suffices to show that, for any x ∈ I, there ex-

ists a CBN Bx (consistent with the submodel already retrieved) for which P(O|E) = x.

It, therefore, suffices to formally delineate the procedure for the construction of Bx. To

construct Bx, one simply needs to add to the already constructed submodel, a single bi-

nary common-cause node, c†, for variables in S (see Proposition 3.1 for the definition of S).

Without loss of generality, heretofore we assume that all the variables in S are binary, with

all-one assignment (for S) yielding maxS∈V al(S) P(O|S,E) and all-zero assignment yielding

minS∈V al(S) P(O|S,E). The binary variable c0 has no parents, and its prior is defined as

follows: P(c† = 1) :=
x−minS∈V al(S) P(O|S,E)

maxS∈V al(S) P(O|S,E)−minS∈V al(S) P(O|S,E)
. For each variable s ∈ S, the con-

ditional P(s|c†) is parameterized as follows: P(s = 1|c† = 1) = 1 and P(s = 0|c† = 0) = 1.

In Bx, variables in E which fall into the set RT † (i.e., E ∩ RT †) are assumed to have no

parents, and they a priori take on E with probability one. This completes the construction

of Bx. It is easy to show that, in Bx, P(O|E) = x. This concludes the proof. �
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3.4.3 Case Study

Next, we intend to cast the hidden Markov model (HMM) studied in (Icard & Goodman,

2015, p. 2) into our framework. The setting is shown in Fig. 3.3(left). We adhere to the
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Fig. 3.3 Left: The infinite-sized HMM discussed in (Icard & Goodman,
2015) with parameterization: P(xt+1|xt) = P(x̄t+1|x̄t) = 0.9, and P(yt|xt) =
P(ȳt|x̄t) = 0.8. Right: Applying PLIF on the HMM shown in left. Vertical and
horizontal axes denote, respectively, the value of the posed query P(xt+1|y−∞:t)
and the adopted IT T . The vertical bars depict the intervals within which
the query lies due to Proposition 3.1. The dotted curves—which connect the
lower and upper bounds of the intervals—show how the intervals shrink as IT
T decreases.

same parameterization and query adopted therein. All RVs in this section are binary, taking

on values from the set {0, 1}; x = x indicates the event wherein x takes the value 1, and

x = x̄ implies the event wherein x takes the value 0. We assume pl(xt+i) = i − 2.10 We

should note that the assignment of the PLs for the variables in {yt−i}+∞
i=0 does not affect

the presented results in any way. The query of interest is P(xt+1|y−∞:t). Notice that after

performing three steps of the sort discussed in the example presented in Sec. 3.3 (for the IT

10Note that the trend of the upper- and lower-bound curves as well as the size of the intervals shown in
Fig. 3.3(right) are insensitive with regard to the choice of PLs for variables {xt−i}+∞

i=−1.
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T = −3 − ε), the lower bound on the posed query exceeds 0.5 (shown by the red dashed

line in Fig. 3.3(right)). This observation has the following intriguing implication. Assume,

for the sake of argument, that we were presented with the following Maximum A-Posterior

(MAP) inference problem: Upon observing all the variables in {yt−i}+∞
i=0 taking on the value

1, what would be the most likely state for the variable xt+1? Interestingly, we would be able

to answer this MAP inference problem simply after three backward moves (corresponding

to the IT T = −3 − ε). In Fig. 3.3(right), the intervals within which the posed query falls

(due to Proposition 3.1) in terms of the adopted IT T are depicted.

Our analysis confirms Icard and Goodman’s (2015) insight that even in the extreme case

of having infinite-sized relevant submodel (Fig. 3.3(left)), the portion of which the reasoner

has to consult so as to obtain a “sufficiently good” answer to the posed query could happen

to be very small (Fig. 3.3(right)).

3.5 General Discussion

To our knowledge, PLIF is the first inference framework that capitalizes on time to con-

strain the scope of causal reasoning over CBNs, where the term scope refers to the portion

of a CBN on which inference is carried out. PLIF does not restrict itself to any particular

inference scheme. The claim of PLIF is that inference should be confined within and carried

out over retrieved submodels of the kind suggested by Proposition 3.1 so as to obtain the re-

ported bounds therein. In this light, PLIF can accommodate any inference scheme, including

Belief Propagation (BP), and sample-based inference methods using Markov chain Monte

Carlo (MCMC), as two prominent classes of inference schemes. MCMC-based methods have

been successful in simulating important aspects of a wide range of cognitive phenomena

and accounting for many cognitive biases (see Sanborn and Chater, 2016). Also, work in

theoretical neuroscience has suggested mechanisms for how BP and MCMC-based methods

could be realized in neural circuits (see Gershman and Beck, 2017; Lochmann and Deneve,

2011). For example, to cast BP into PLIF amounts to restricting BP’s message-passing

within submodels of the kind suggested by Proposition 3.1. In other words, assuming that

BP is to be adopted as the inference scheme, upon being presented with a causal query, an

IT according to Proposition 3.1 will be selected—at the meta-level—by the reasoner and

the corresponding submodel, as suggested by Proposition 3.1, will be retrieved, over which

inference will be carried out using BP. This will lead to obtaining lower and upper bounds
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on the query, as reported in Proposition 3.1. If time permits, the reasoner builds up incre-

mentally on the thus-far retrieved submodel so as to obtain tighter bounds on the query.11

MCMC-based inference methods can be cast into PLIF in a similar fashion.

A growing body of work suggests that, for computational efficiency, humans flexibly

reuse past inferences when faced with new but related queries, a strategy called amortized

inference (Dasgupta et al., 2017; Stuhlmüller et al., 2013; Gershman and Goodman, 2014).

Since PLIF’s retrieval process progresses in a local, bottom-up fashion with the submodel

being retrieved in an incremental, nested manner, PLIF naturally lends itself to this strategy.

For instance, in the example discussed in Sec. 3.3, each member of the set {P(x|t2)}t2∈Val(t2)

(maximum and minimum of which specify the bounds derived in terms of t2) can be efficiently

computed in terms of the members of the set {P(x|t1)}t1∈Val(t1) (maximum and minimum of

which specify the bounds derived in terms of t1) computed at an earlier stage of inference,

since the following holds:

P(x|t2) =
∑

t1∈Val(t1)

P(x|t1, t2)P(t1|t2)
(x⊥⊥t2|t1)

=
∑

t1∈Val(t1)

P(x|t1)P(t1|t2).

The problem of what parts of a CBN are relevant and what are irrelevant for a given

query, according to Geiger, Verma, and Pearl (1989), was first addressed by Shachter (1988).

The approaches proposed for identifying the relevant submodel for a given query fall into

two broad categories (cf. Mahoney & Laskey, 1998, and references therein): (i) top-down ap-

proaches, and (ii) bottom-up approaches. Top-down approaches start with the full knowledge

of the underlying CBN and, depending on the posed query, gradually prune the irrelevant

parts of the CBN. In this respect, top-down approaches are inevitably from “god’s eye”

point of view—a characteristic which undermines their cognitive-plausibility. Bottom-up

approaches, on the other hand, incrementally construct a submodel (by moving backwards

from the query variables), using which the posed query can be computed. It is crucial to note

that bottom-up approaches cannot stop at intermediate steps during the backward move and

run inference on the thus-far constructed submodel without running the risk of compromising

some of the (in)dependence relations structurally encoded in the CBN, which would yield

erroneous inferences. This observation is due to the fact that there exists no local signal

revealing how the thus-far retrieved nodes are positioned relative to each other and to the

11The very property that the submodel gets constructed incrementally in a nested fashion guarantees that
the obtained lower and upper bounds get tighter as the reasoner adopts smaller ITs; see Fig. 3.3(left).
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to-be-retrieved nodes—a shortcoming circumvented in the case of PLIF by introducing PL.

It is worth reiterating again that PLIF subscribes to what we call the concurrent approach

to reasoning (as opposed to the flawed sequential approach mentioned earlier), whereby re-

trieval and inference take place in tandem. The HMM example analyzed in Sec. 3.4.3, with

infinitely large relevant submodel, stresses the importance and shows the efficacy of the

concurrent approach.

Work on causal judgment provides support for the so-called alternative neglect, according

to which subjects tend to neglect alternative causes to a much greater extent in predictive

reasoning than in diagnostic reasoning (Fernbach and Rehder, 2013; Fernbach et al., 2011).

Alternative neglect, therefore, implies that subjects would tend to ignore parts of the relevant

submodel while constructing it. Recent findings, however, seem to cast doubt on alterna-

tive neglect (Cummins, 2014; Meder et al., 2014). Meder et al.’s (2014), Experiment 1

demonstrates that subjects appropriately take into account alternative causes in predictive

reasoning. Also, Cummins (2014) substantiates a two-part explanation of alternative ne-

glect according to which: (i) subjects interpret predictive queries as requests to estimate the

probability of the effect when only the focal cause is present, an interpretation which renders

alternative causes irrelevant, and (ii) the influence of inhabitory causes (i.e., disablers) on

predictive judgment is underestimated, and this underestimation is incorrectly interpreted as

neglecting of alternative causes. Cummins’ (2014) Experiment 2 shows that when predictive

inference is queried in a manner that more accurately expresses the meaning of noisy-OR

Bayes net (i.e., the normative model adopted by Fernbach et al. (2011)) likelihood estimates

approached normative estimates. Cummins’ (2014) Experiment 4 shows that the impact of

disablers on predictive judgments is far greater than that of alternative causes, while having

little impact on diagnostic judgments. PLIF commits to the retrieval of enablers as well as

disablers. As mentioned earlier, PLIF abstracts away from the inference scheme operating

on the retrieved submodel, and, hence, leaves it to the inference scheme to decide how the

retrieved enablers and disablers should be weighted and subsequently integrated. In this

light, PLIF is consistent with the results of Experiment 4 in Cummins (2014).

In an attempt to explain violations of screening-off reported in the literature, Park and

Sloman (2013) find strong support for the contradiction hypothesis followed by the mediating

mechanism hypothesis, and finally conclude that people do conform to screening-off once

the causal structure they are using is correctly specified. PLIF is consistent with these

accounts, as it adheres to the assumption that reasoners carry out inference on their internal
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causal model (including all possible mediating variables and disablers), not the potentially

incomplete one presented in the cover story (see also Rehder and Waldmann, 2017; Sloman

and Lagnado, 2015).

Experiment 5 in Cummins (2014), consistent with Fernbach and Rehder (2013), shows

that causal judgments are strongly influenced by memory retrieval/activation processes, and

that both number of disablers and order of disabler retrieval matter in causal judgments.

These findings suggest that the CFP and memory retrieval/activation are intimately linked.

In that light, next, we intend to elaborate on the rationale behind adopting the term “re-

trieve” and using it interchangeably with the term “consult” throughout this chapter; this is

where we relate PLIF to the concepts of Long Term Memory (LTM) and Working Memory

(WM) in psychology and neurophysiology. Next, we elaborate on how PLIF could be inter-

preted through the lenses of two influential models of WM, namely, Baddeley and Hitch’s

(1974) Multi-component model of WM (M-WM) and Ericsson and Kintsch’s (1995) Long-

term Working Memory (LTWM) model. The M-WM postulates that “long-term information

is downloaded into a separate temporary store, rather than simply activated in LTM,” a

mechanism which permits WM to “manipulate and create new representations, rather than

simply activating old memories” (Baddeley, 2003). Interpreting PLIF through the lens of

the M-WM model amounts to the value for IT being chosen (and, if time permits, updated

so as to obtain tighter bounds) by the central executive in the M-WM and the submodel

being incrementally “retrieved” from LTM into M-WM’s episodic buffer. Interpreting PLIF

through the lens of the LTWM model amounts to having no retrieval from LTM into WM

and the submodel suggested by Proposition 3.1 being merely “activated in LTM” and, in

that sense, being simply “consulted” in LTM. In sum, PLIF is compatible with both of the

narratives provided by the M-WM and LTWM models.

A number of predictions follow from PL and PLIF. For instance, PLIF makes the follow-

ing prediction: Prompted with a predictive or a diagnostic query (i.e., P(e|c) and P(c|e),
respectively), subjects should not retrieve any of the effects of e. Introspectively, this pre-

diction seems plausible, and can be tested, using a similar approach to (Cummins, 2014;

De Neys et al., 2003), by asking subjects to “think aloud” while engaged in predictive or

diagnostic reasoning. Also, PL yields the following prediction: Upon intervening on cause c,

subjects should be sensitive to when effect e will occur, even in settings where they are not

particularly instructed to attend to such temporal patterns. Recent findings suggesting that

people have expectations about the delay length between cause and effect already provide
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some supporting evidence for this prediction (Greville and Buehner, 2010; Buehner and May,

2004).

There is a growing acknowledgment in the literature that, not only time and causality

are intimately linked, but that they mutually constrain each other in human cognition (see

Buehner, 2014). In line with this view, we see our work also as an attempt to formally

articulate how time could guide and constrain causal reasoning. While many questions

remain open, we hope to have made some progress towards better understanding of the CFP

at the algorithmic level of analysis.
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Part II: On Minimality in Action

Part II:

On Minimality in Action

Preface. Our daily experience suggests that we humans are both efficient and, perhaps,

more intriguingly, thrifty in devising our interventions to achieve our desired goals. Among

potentially enumerable variables of the environment amenable to intervention, we magically

zero in on few pivotal variables to exercise our interventions on; but how? Formalization

of this curious phenomenon is the aim of Part II. The results of Part II have important

implications for a line of work in developmental psychology concerning causal learning by

young children in pedagogical settings. Furthermore, the formalism developed in Part II

establishes, for the first time in the literature, a rational, algorithmic-level account of a

peculiar behavior demonstrated by young children in pedagogical settings (and generally

taken as evidence for children’s irrationality), namely, overimitation: children’s persistently

reproducing the adult’s unnecessary actions.
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Chapter 4

Probabilistic Structural

Controllability in Causal Bayesian

Networks

“In the mind there is no absolute or free will; but the

mind is determined to wish this or that by a cause,

which has also been determined by another cause,

and this last by another cause, and so on to infinity.”

— Baruch Spinoza, Ethics

4.1 Introduction

The aptitude to perceive causation plays a central role in human cognition, and intervention

is the sole means of actively (in contrast with the passive mode of being a mere observer)

interacting with a world governed by causal structures. Among possible intentions behind

exerting intervention, the notion of “control” is a notable one—that is, informally speaking,

to manipulate some variables1 (also called driver variables) of a system to, either directly or

indirectly, “guide” or “control” variables of the system which are of interest.

In this chapter, the problem of targeted probabilistic structural controllability (TPS-

controllability) in the context of causal Bayesian networks (CBNs) is introduced and for-

1The terms “node” and “variable” will be used interchangeably throughout.
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malized. The term “structural” signifies the condition wherein the agent is equipped merely

with the causal structure of the domain under study. The term “targeted,” on the other

hand, emphasizes that the agent is interested in controlling the behavior of a specific subset

(or all) of variables in the domain called target variables. Finally, the term “probabilistic”

highlights the probabilistic nature of the problem under study.

At a high level, we define the problem of probabilistic controllability in the context of

CBNs as follows: How an agent, provided with the knowledge of the set of intervenable vari-

ables, should devise her intervention, i.e., (Q.1) “which” variables to intervene on, and (Q.2)

“how” to intervene on those, so as to “control” the behavior of some particular variable(s)

of interest in the domain (represented by a CBN), that is, to maximize or minimize the

probability of the occurrence of a state of interest for a set of target variables.

The problem of probabilistic structural controllability in the context of CBNs is then

accordingly defined as that of probabilistic controllability—as stated above—with one crucial

additional constraint on the agent’s part: The agent is solely equipped with the knowledge of

the underlying causal structure of the domain (i.e., the CBN’s topology) and is uninformed

of the parameterization thereof. In this work, we aim at identifying the minimal set of

intervenable variables sufficient for TPS-controllability of an arbitrary CBN. Particularly,

we devise an algorithm, C∗, which identifies a sufficient set of intervenable variables for

the purpose of TPS-controllability of a generic CBN. We also elaborate on the nature of

minimality that the identified set satisfies.

The question of interest to this chapter has significant ramifications for studies on strate-

gic planning and policy making. Equally importantly, the problem under study has notable

connections to how humans, at the computational level of analysis (Marr, 1982) and in line

with the rational analysis approach (Anderson, 1990), should devise their interventions to

increase the odds of attaining their desired goals while faced with their uncertain environ-

ment. We will extensively elaborate on the implications of the work presented in this chapter

for cognitive psychology and development psychology in Sec. 4.9.

4.2 Notation and Terminology

In this section, we present some preliminary notations and terminologies which will be

adopted in this chapter. Random quantities are denoted by bold-faced letters; their re-

alizations are denoted by the same letter but non-bold. More specifically, random variables
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(RVs) are denoted by bold-faced lower-case letters, e.g., x, and their realizations by non-

bold lower-case letters, e.g., x. Likewise, sets of RVs are denoted by bold-faced calligraphic

letters, e.g., X , and their corresponding realizations by non-bold calligraphic letters, e.g.,

X . Val(·) denotes the set of possible values a random quantity can take on. To simplify

presentation, we incur the following abuse of notation: We denote the probability P(x = x)

by P(x) for some RV x and its realization x ∈ Val(x). For conditional probabilities, we will

use the notation P(x|y) instead of P(x = x|y = y). Likewise, P(X|Y) := P(X = X|Y = Y)

for X ∈ Val(X ) and Y ∈ Val(Y). Random quantities are assumed to be discrete unless

stated otherwise.

Throughout this chaper, the directed acyclic graph (DAG) G = (V,E) characterizes the

non-intervened causal structure of the domain where V denotes the set of nodes/variables and

E denotes the set of edges. We adopt Pearl’s notation do(x) := do(x = x) to denote an atomic

intervention on x so as to force it to take on the value x. Also, ip(x) denotes the intervention

policy to be adopted for x the meaning of which will be clarified in the subsequent section;

informally intervention policy refers to how the agent decides to manipulate the intervened

variable (see Pearl, 2000, Sec. 4.2). Intervention policy may or may not functionally depend

on other variables of the domain. As we will see later, intervention policy in its most generic

form is nothing but a conditional probability distribution (CPD). Also, backward chaining

(BC) on a variable refers to the simple process of identifying its parents (i.e., immediate

causes) and the parents of the parents and so forth until the boundaries of the CBN are

reached. Finally, δ(·) denotes the Kronecker delta function.

Before proceeding further, let us formally define two key notions, namely, subsumability

and domination.

Def. 4.1 (Subsumability): DAG G1 = (V1, E1) subsumes DAG G2 = (V2, E2), denoted

in short by G1 ⊇ G2, iff V1 = V2 and E2 ⊆ E1. We refer to the set E1 \E2, as the surplus of

G1 with respect to G2.

Def. 4.2 (Domination): DAG G1 = (V1, E1) dominates DAG G2 = (V2, E2), denoted

by G1 � G2, iff there exists a parameterization of G1 which yields a result for the objective

of interest that is no worse than what is achievable by any parameterization of G2. For

instance, if the objective of interest is to maximize the probability of some event of interest,

say r = r for some r ∈ Val(r), then we write G1 � G2 iff there exists a parameterization

of G1 which yields some value for the probability of interest, P(r), which is greater than or

equal to what is achievable by any parameterization of G2.
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Lemma 4.1. (Domination vs Subsumability): Let G1, G2 be DAGs. Then, G1 ⊇
G2 ⇒ G1 � G2.

Proof. The proof is straightforward once we realize that one can very well take advantage

of the extra edges of G1 with respect to G2 (i.e., the surplus of G1 with respect to G2) which

gives one more “degrees of freedom” to entertain and hence to achieve a result which is

equally good or better than what is achievable by any parameterization of G2 in terms of

the objective of interest. �
In subsequent sections where we introduce our objectives of interest, the above statements

will become clearer.

4.3 Motivating Examples

To develop some intuition as to the problem under study, we present in this section a series

of informative examples.
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Fig. 4.1 Motivating example.

Let us first consider the CBN depicted in Fig. 4.1(a). Variables y1,y2 are amenable to

intervention (or, in short, intervenable). The objective is to make the occurrence of the event

o = o ∈ Val(o) as likely as possible through intervening on a subset of variables {y1,y2}
(or to choose not to intervene at all which corresponds to choosing the empty set). The key

question is how, by mere investigation of the structure of the CBN depicted in Fig. 4.1(a),

to decide: (i) on which (intervenable) variables to intervene, and (ii) how the intervention

should be exercised (a notion referred to as intervention policy (IP)). It is easy to come to the

conclusion that, to make the occurrence of o = o as likely as possible, one needs to just inter-

vene on y1 and force it into the state y1 = y∗1 where y∗1 is the realization for y1 conditioned

on which the probability of event o = o is maximum, i.e., y∗1 = argmaxy1∈Val(y1) P(o|y1).
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It is crucial to realize that, due to the structure of the CBN depicted in Fig. 4.1(a), and

regardless of its parameterization, it suffices for the agent to solely intervene on y1 for the

purpose of TPS-controllability of o = o (the answer to (i)). Furthermore, since the agent

is assumed to be equipped merely with the structure of the underlying CBN and not the

parameterization thereof, based on the above argument on y1’s IP, the agent can just arrive

at the conclusion that y1’s IP has the functional (or structural) form of2 P(y1)—that is,

merely the non-parametric form of the IP (the answer to (ii)). Altogether, a solution to the

problem of TPS-controllability of o = o is {y1} (which is a sufficient set of variables to be

intervened) along with P(y1) which is the functional form of y1’s IP. Following the same

line of reasoning for the CBNs depicted in Figs. 1(b-d), it is straightforward to argue that

{y1} is a sufficient set for TPS-controllability of the target variable o, and y1’s IP has the

functional form of P(y1) akin to what we had for Fig. 4.1(a).

x

y

o

Fig. 4.2 Motivating example.

Let us consider another example that highlights a key idea, namely, that we may need to

broaden our understanding of the notion of intervention (see Pearl, 2000, Sec. 4.2). Consider

the CBN depicted in Fig. 4.2. This time, only y is intervenable. Assume that (only for

this particular example), all the variables are binary-valued; the prior probability on x is

P(x) (which is assumed to be non-degenerate), y := ¬x, and o := x ⊕ y where ¬ and ⊕
denote the logical connectives not and xor, respectively. It is easy to verify that the event

o = 1 occurs with probability one, regardless of the choice of P(x). For the problem of TPS-

controllability of o = 1, the agent has to decide whether or not to intervene on y. Imagine

an intervention were to be exercised on y. Whether the agent would set y = 0, or y = 1,

the objective event of o = 1 would become less likely to happen compared to that of the

(non-intervened) original model. At first glance, the fact that exercising intervention makes

2In fact, the agent can reason out one step further and come to the conclusion that y1’s IP must have
the functional form of P(y1) = δ(y1 = y∗), however, the agent cannot identify/specify the value of y∗—due
to the lack of knowledge about the parameterization of the CBN.
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the situation worse in terms of the objective of interest seems rather counter-intuitive. How

could it be that having the freedom to manipulate variable y (which even happens to be one

of the parents of the objective node) whatever way we like does not allow us to outperform

the (non-intervened) original model? The answer lies in developing a better understanding

of the term “whatever way we like.” For that purpose, we need to broaden our conception

of the notion of intervention and go beyond practicing merely a primitive atomic form of

intervention denoted by do(y = y) in the literature. A more advanced form of intervention

is to pick the state to which we want to force the intervened variable as a function of the

states of some other variables of the domain. That is, IP may depend functionally on a

collection of other variables in the domain. In this example, choosing y’s IP, denoted by

ip(y), to functionally depend on x ensures that, the outcome achieved by exerting such

intervention, is equally good or better (i.e., no worse) than that of the (non-intervened)

original model. In such a setting, we simply adopt the following terminology/notation: The

intervention pair (y, ip(y) := P(y|x)) (comprising, in order, the set of intervened variables

and their corresponding IPs) is equally good or better than both: (i) the intervention pair

(y, ip(y) := P(y) = δ(y = y)) corresponding to the simplistic atomic form of intervention on

y discussed above which does not depend on the state of x and, likewise, (ii) the intervention

pair (∅,∅) corresponding to the original model (without intervention).

The last example shows how our commonsense about the TPS-controllability problem

is, at best, only partially correct: (†) Commonsense suggests that we should intervene on

the intervenable ancestors of target variable(s) that are somewhat “closest” to the target

variable(s). However, it might remain silent or, even worse, might mislead us in decid-

ing about what functional form the IPs should possess (e.g., deciding between exercising

(y, ip(y) := δ(y = y)) or (y, ip(y) := P(y|x)) in the given example). In this light, the aim

of this chapter is to formally articulate the TPS-controllability problem, to formalize our

intuition about it, and importantly, to shed light on non-trivial aspects of the problem.

4.4 Intervention Policy

The notion of IP delineates how an intervened variable should be “manipulated.” More

specifically, IP indicates whether other variables play any role or not (and if so, how) in

devising how the manipulation on a to-be-intervened variable is to be practiced. It is intuitive

that the more variables we are allowed to functionally depend on while devising the IP of a
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to-be-intervened variable, the more “degrees of freedom” we have in controlling the behavior

of the to-be-intervened variable. In what follows, we will present a graphical representation

for IP which is an adaptation of Tian’s manipulated graph to our context (Tian, 2008). As

we will see, this graphical representation, along with the idea of subsumability, allows us

to formalize the above intuition. By allowing a larger number of variables for the IP of an

intervened variable to functionally depend on, we also show that IPs can be organized in a

hierarchical construct wherein moving up in the hierarchy amounts to empowering the agent

to exercise more sophisticated forms of intervention.

4.4.1 Hierarchical Construct

Before proceeding further let us make a definition: The scope of an IP is the set of variables,

with the exception of the intervened variable itself, that the IP functionally depends on.

For instance, for ip(y) := P(y|s), the scope is comprised of the variable s. In short, the

idea of organizing IPs into a hierarchical construct is inspired by the simple realization that,

by delimiting the set of variables the agent is allowed to incorporate into the scope of the

intervened variable’s IP (functionally represented by a conditional probability distribution),

we impose a constraint on the expressive power of the IP.

The following notation henceforth will be employed to refer to different IP classes:

• IP class-0: This class refers to the set of IPs where the scope of each is the empty set,

i.e., a setting wherein the IP(s) of the intervened variable(s) is not allowed to incorporate

any variables into its scope. That is, if variable x is decided to be intervened and the agent

is only permitted to adopt class-0 IPs, then, the agent is just allowed to place IP of the

functional form P(x) on x to exercise her intervention. It is crucial to note that the agent is

allowed to parameterize P(x) as she wishes, yet, the functional form of the IP is constrained.

• IP class-j, ∀j ≥ 1: This class refers to the set of IPs where the scope of each is the

ancestors of the corresponding intervened variable up to ith level. For instance, for the case of

IP class-2, IP(s) of the intervened variable(s) is solely allowed to take into account the state

of (i) the immediate causes, and (2) the immediate causes of the variables in (i), thereby,

altogether functionally depending on all the ancestors up to the 2nd level.

• IP class-∞: This class refers to the set of IPs where the scope of each is all the

ancestors of the corresponding intervened variable. Note that the complete set of ancestors

of a variable x can be found by instantiating BC on x.

Finally, it is crucial to notice the following. For an IP to be in a particular class amounts
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to imposing a constraint solely on the functional form of the IP; the agent is free to choose

any parameterization for the IP as she may wish. Therefore, ip(x) ∈ class-i simply means

that the functional form of ip(x) is constrained in accord with the definition of IP class-i

given above, yet, it could be arbitrarily parameterized. Also, assuming that X = {xi}mi=1,

the notation ip(X ) ∈ class-j will be adopted as a shorthand for the following: ip(xi) ∈
class-j, ∀i = 1, . . . ,m.

4.4.2 Graphical Representation

In this section, we discuss a way of visualizing IPs which is an adaptation of Tian’s ma-

nipulated graph to our context (Tian, 2008). If the IP of a to-be-intervened variable x

functionally depends on y, then we show this by a directed dash-dotted arrow emanating

from y and pointing towards x.3 To ensure that any practice of intervention is fully expressed

by such edges we introduce the following convention: For DAG G = (V,E), a clamped vari-

able C is added to V .4 Then, intervening on a variable a which has no parents and exerting

ip(a) = P(a) will be illustrated graphically by a dash-dotted edge emanating from C towards

a. In general, upon y taking on the state y, the agent may decide to set the value of x to a

fixed value x (deterministic IP), or to set the value of x probabilistically (stochastic IPs), i.e.,

x takes on values from Val(x) according to some conditional probability distribution P(x|y).
In both cases, ip(x) is said to be functionally dependent on y. Simply put, in devising the

intervention policy of x, namely, ip(x), the state of y is taken into account. The notion of

probabilistic IP is discussed in (Pearl, 2000, pp. 113-114) under the title of stochastic policy.

Let us first give some definitions which will prove useful in the subsequent sections. For

the given definitions, DAG G = (V,E) represents the (non-intervened) causal structure of

the domain.

Def. 4.3 (Intervention Pair): A set of intervened variablesK ⊆ V along with their cor-

responding IPs comprise a pair, called an intervention pair, which is denoted by (K, ip(K)).

Def. 4.4 (Intervention DAG (i -DAG)): Every intervention pair (K, ip(K)) for K ⊆
V uniquely specifies a DAG (as described above) which we refer to as the i -DAG associated

to that intervention pair. The i -DAG associated to (K, ip(K)) is denoted by (K, ip(K))G.

3Notice that according to Pearl (2000), upon intervening on x, all the (pre-intervention) incoming edges
into x should first be removed.

4It is implicitly assumed throughout this paper that the variable C has been added to DAG G a priori.
Also, we will not depict C in figures unless needed.
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Fig. 4.3 Sample case. (a): Original CBN. Variable y is to be intervened
according to ip(y) := P(y|u). (b): The graphical representation of intervening
on y with ip(y) := P(y|u). The figure simply illustrates the fact that the state
of y gets decided (potentially probabilistically) according to the state of u.

Def. 4.5 (i -Subsumability): For X ,Y ⊆ V , i -DAG (X , ip(X ))G i -subsumes i -

DAG (Y , ip(Y))G, denoted in short by (X , ip(X ))G ⊇i (Y , ip(Y))G, iff (i) (X , ip(X ))G ⊇
(Y , ip(Y))G, (ii) the set of the dash-dotted edges in (Y , ip(Y))G is a subset of the set of

the dash-dotted edges in (X , ip(X ))G, and (iii) the surplus of (X , ip(X ))G with respect to

(Y , ip(Y))G is solely comprised of dash-dotted edges.

Def. 4.6 (i -Domination): For X ,Y ⊆ V , i -DAG (X , ip(X ))G i -dominates i -DAG

(Y , ip(Y))G, denoted by (X , ip(X ))G �i (Y , ip(Y))G for short, iff there exist a parameteri-

zation for the dash-dotted edges (see Fig. 4.3) in (X , ip(X ))G which yields a result for the

objective of interest that is no worse than what is achievable by any parameterization of the

dash-dotted edges in i -DAG (Y , ip(Y))G.

Lemma 4.2. (i -Domination vs i -Subsumability): Let DAG G = (V,E) character-

ize the causal structure of the domain. Let (X , ip(X ))G and (Y , ip(Y))G be two i-DAGs for

some X ,Y ⊆ V . Then, the following holds: (X , ip(X ))G ⊇i (Y , ip(Y))G ⇒ (X , ip(X ))G �i

(Y , ip(Y))G.

Proof. The rationale is similar to the one presented for Lemma 4.1. �
The following corollary immediately follows from Lemma 4.2.

Corollary 4.1. For G = (V,E) and ∀K ⊆ V , the following holds true: ∀j ≥ m,

(K, ip(K) ∈ class-j)G �i (K, ip(K) ∈ class-m)G.

4.5 TPS-Controllability of CBNs: Formalization

Let DAGG = (V,E) characterize the causal structure of the domain. Let V = Vi∪V̄i where Vi

denotes the set of nodes/variables amenable to intervention (or, in short, intervenable), and



68 Probabilistic Structural Controllability in Causal Bayesian Networks

V̄i be the complement of Vi, i.e., V̄i = V \ Vi. The probability of interest, in its generic form

takes the form5 P(O = O|do[X ; ip(X ) = ip(X )]), or in short P(O|do[X ; ip(X )]), where O
denotes the set of target variables, O denotes the realization of interest, X denotes the set of

intervened variables, ip(X ) denotes the functional form (i.e., non-parametric representation)

of the to-be-adopted intervention policy, and ip(X ) denotes a specific parameterization6 of

ip(X ). Also, do[X ; ip(X )] denotes the setting wherein variables X are intervened according

to ip(X ) (functional form) and, likewise, do[X ; ip(X )] denotes the setting wherein variables

X are intervened according to ip(X ) = ip(X ). One can write, O = Oi ∪ Ōi where Oi ⊆ Vi

and Ōi ⊆ V̄i. Objectives of interest could have any of the following forms:

max
X⊆Vi

(
max

ip(X )∈class-∞
P(O|do[X ; ip(X )])

)
, (4.1)

min
X⊆Vi

(
min

ip(X )∈class-∞
P(O|do[X ; ip(X )])

)
, (4.2)

and,

max
X⊆Vi

(
min

ip(X )∈class-∞
P(O|do[X ; ip(X )])

)
, (4.3)

min
X⊆Vi

(
max

ip(X )∈class-∞
P(O|do[X ; ip(X )])

)
. (4.4)

In the sequel, we focus on objectives (4.1) and (4.2).7 Therefore, whenever we use the

statement “objective of interest” we are specifically referring to both of objectives (4.1) and

(4.2) unless stated otherwise.

Next, we devise an algorithm, C∗, for the problem of TPS-controllability of CBNs. C∗

outputs a set of intervenable variables,X ∗, which is “optimal” with respect to objectives (4.1)

and (4.2). In other words, X ∗ is a sufficient choice of variables to intervene on (according to

IP class-∞) to satisfy objectives (4.1) and (4.2). Formally put, for X ∗ the following holds:

5The connection to Pearl’s notation for do-calculus is as follows (see Pearl, 2000, p. 114): P(y)|P∗(x|z) =
P(y|do[x;P∗(x|z)]).

6Which is equivalent to a specific parameterization of the dash-dotted edges representing the intervention
policy exercised on variables X in the corresponding i-DAG (see Fig. 4.3).

7The solution to both objectives (4.3) and (4.4) is the empty set, i.e., to intervene on none of the
intervenable variables at all. In fact, a more general result can be established for minimax and maximin
objectives: Subject to the constraint that the IPs of the to-be-intervened variables have to belong to IP
class-j, the solution to both minimax and maximin objectives is the empty set, for all j ≥ 1. For details,
the reader is referred to Sec. B-I of Appendix B.
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∀Y ⊆ Vi,

(X ∗, ip(X ∗) ∈ class-∞)G �i (Y , ip(Y) ∈ class-∞)G.

For the proof, the reader is referred to Sec. B-II of Appendix B.

o

t1 t2t3

t5 t4

Fig. 4.4 Sample Case: Variable o (depicted in red) is the target variable. The
intervenable variables (i.e., members of Vi) are circled. BC execution paths are
colored in blue and illustrated by dash-dotted lines. Upon initiating BC at the
target variable o, we arrive at t1 (depicted in purple) located at the junction.
Next, we arrive at t2 and t3. Since t3 ∈ Vi, BC terminates at t3. On the
other hand, since t2 �∈ Vi, BC continues. Having performed BC on t2, we
arrive at t4 and t5. Since t4 ∈ Vi, BC terminates on t4. At the end, since
t5 (depicted in grey) has no parents (immediate causes), BC terminates at t5
as well. Therefore, by mere investigation of the structure, C∗ outputs the set
X ∗ = {t3, t4} as a solution to the objectives (4.1) and (4.2) for this particular
setting.

4.5.1 Algorithm C∗

Let us explain simply how C∗ works. BC has to be initiated on nodes in O. Upon reaching

any node in Vi, the BC execution path terminates at that node. This procedure continues

until, for all of the BC execution paths, either: (i) The BC execution path gets terminated at

some node belonging to Vi, or (ii) a node with no parents is reached. The set of intervenable

variables at which BC terminates constitute C∗’s output denoted by X ∗. Algorithm C∗ nicely

captures our commonsense with respect to the TPS-Controllability problem, as alluded to

in (†) in the last paragraph of Sec. 4.3. Fig. 4.4 depicts a sample execution of C∗. The

worst-case running time of C∗ is O(|E| + |V |), i.e., linear in the size of G.8 It is crucial to

8For more on this, the reader is referred to Sec. B-V of Appendix B.
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note that despite the simplicity of C∗, the proof of its correctness is far from trivial. For the

proof, the reader is referred to Sec. B-II of Appendix B.

4.6 Reducing the Scope of IPs: Toward Minimal Scopes

So far we have shown that (X ∗, ip(X ∗) ∈ class-∞)G �i (Y , ip(Y) ∈ class-∞)G, ∀Y ⊆ Vi.

From Lemma 4.2, it immediately follows that (X ∗, ip(X ∗) ∈ class-∞)G �i (Y , ip(Y) ∈
class-j)G, ∀Y ⊆ Vi, ∀j ∈ N ∪ {0,∞}, where N denotes the set of natural numbers. A key

question now arises: Could the condition of class-∞ be relaxed for X ∗ without jeopardiz-

ing its optimality? That is, are all the ancestors of X ∗, as dictated by class-∞, always

necessary? Formally put, are there any settings for which we can replace class-∞ in the

expression (X ∗, ip(X ∗) ∈ class-∞)G �i (Y , ip(Y) ∈ class-j)G, ∀Y ⊆ Vi, ∀j ∈ N ∪ {0,∞}
with something less demanding and yet preserve the validity of the expression? In what

follows we will show, through a series of examples, that there indeed exist settings for which

the class-∞ condition can be safely relaxed. In this respect, the examples serve as a “proof-

of-concept” in the hope that they provide some intuition as to the question being posed. We

will conclude this section by presenting a lemma and a conjecture; the validity or falsity of

the conjecture is left to be shown in future work. The conjecture has hitherto defied a proof,

yet all our attempts to refute it has thus-far been futile.

4.6.1 Motivating Examples

Recall that the term “objective of interest” refers to objectives (1) and (2).

Let us consider the CBN depicted in Fig. 4.5(a). Notice the resemblance of the CBN

shown in Fig. 4.5(a) and the one presented in Fig. 4.1(a). Variable y is the only variable

in the system which is intervenable and the target variable is o. Execution of C∗ results in

X ∗ = {y}. To exercise an IP class-∞ on y amounts to having ip(y) = P(y|x). However,

it is easy to come to the conclusion that simply exerting an atomic intervention on y (i.e.,

IP class-0) suffices for achieving the objective of interest and x need not be incorporated

into the scope of y’s IP; see footnote 2. The same line of reasoning holds true for the CBN

depicted in Figs. 4.5(b).

Now let us consider the CBN shown in Fig. 4.5(c) which is one of the CBNs explicated in

Sec. 4.3. As was the case in Sec. 4.3, y is the only variable in the system which is intervenable

and the target variable is o. Execution of C∗ results in X ∗ = {y}. As discussed in Sec. 4.3,
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Fig. 4.5 Motivating example.

depending on the parameterization of the CBN, x may need to be incorporated into the

scope of y’s IP. In Sec. 4.3 we provided a parameterization which indeed necessitated the

incorporation of x into the scope of y’s IP in order to achieve the objective of interest. A

comparison between the CBNs shown in Fig. 4.5(a) and Fig. 4.5(c) reveals the following:

For the CBN shown in Fig. 4.5(a), exercising atomic intervention on y renders x d-separated

from o, whereas, for the CBN depicted in Fig. 4.5(c), exercising atomic intervention on y

does not render x d-separated from o. We will return to this observation at the end of this

section.

Consider now the CBN depicted in Fig. 4.6(a). Variables y1,y2 are intervenable and the

target variable is o. Execution of C∗ results in X ∗ = {y1,y2}. Exercising IP class-∞ on

y1 and y2 amounts to having ip(y1) = P(y1|x) and ip(y2) = P(y2|x). It is straightforward

to show that simply exercising atomic interventions on y1 and y2 suffices for achieving the

objective of interest and x need not be incorporated into the scopes of y1 and y2’s IPs,

hence IP class-0 for y1 and y2 suffices. More specifically, y1 and y2 must be forced to take,

respectively, the values y∗1 and y∗2 where (y∗1, y
∗
2) = argmax(y1,y2)∈Val(y1)×Val(y2) P(o|y1, y2)

and (y∗1, y
∗
2) = argmin(y1,y2)∈Val(y1)×Val(y2) P(o|y1, y2) to satisfy the maximax and minimin

objectives, respectively. Notice once again that exercising atomic interventions on {y1,y2}
renders x d-separated from o. We will revisit this observation at the end of this section.

Finally, let us consider the CBN depicted in Fig. 4.7(a). Variables y is the only variable

in the system which is intervenable and the target variable is o. Execution of C∗ results in

X ∗ = {y}. Exercising IP class-∞ on y amounts to having ip(y) = P(y|x, z). Nonetheless,

simple calculations, as presented below, reveal that the mere incorporation of z into the

scope of ip(y) suffices for achieving the objective of interest and x need not be incorporated

into the scope of ip(y). As we will see, the aforesaid result is an immediate implication of
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ip(y1) = P(y1) ip(y2) = P(y2)

(a) (b)

Fig. 4.6 (a) Executing C∗ yieldsX ∗ = {y1,y2}. (b)Graphical representation
of ip(yi) = P(yi) for i = 1, 2.

Rule 1 of Pearl’s do-calculus in our context: In DAG Gy, conditioning on x d-separates z

from the target variable o. Let P∗(y|x, z) denote the optimal class-∞ IP which should be

exercised on y so as to achieve the objective of interest.

y

o

x

z

y

o

x

z

(a) (b)

ip(y) := P∗∗(y|x)

Fig. 4.7 (a) Executing C∗ yields X ∗ = {y}. (b) Graphical representation of
ip(y) = P∗∗(y|x).

Through simple calculations, we show that the aforesaid IP can be “replaced” with an

IP, P∗∗(y|x), into the scope of which z need not be incorporated, thereby “relaxing” the IP

class-∞ condition. P(o|do[y,P∗(y|x, z)]) can be expressed as follows.9

P(o|do[y,P∗(y|x, z)])
9Stochastic policies can be expressed in terms of atomic interventions as explained in (Pearl, 2000, pp. 113-

114) and (Pearl, 1995, p. 684).
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=
∑
x,y,z

P(x)P(z|x)P∗(y|x, z)P(o|do(y), x, z)

R.1
=

∑
x,y,z

P(x)P(z|x)P∗(y|x, z)P(o|do(y), x)

=
∑
x,y

P(x)P(o|do(y), x)
∑
z

P(z|x)P∗(y|x, z)

=
∑
x,y

P(x)P(o|do(y), x)
(
P∗∗(y|x)

)
.

Rule 1 of do-calculus is applied at the second step denoted by R.1 and simple marginal-

ization is carried at the third step whose result is written between parenthesis in the final

expression.

If the reader follows the approach adopted for the last example also for the examples

depicted in Fig. 4.5(a) and Fig. 4.6(a), she will realize that indeed Rule 1 of do-calculus

plays a critical role in deciding what variables suffice to be included into the scopes of the

intervened variables in those cases as well. In fact, the observations we made earlier in this

section grant the applicability of Rule 1 of do-calculus in examples given in Fig. 4.5(a) and

Fig. 4.6(a). In conclusion, it appears that Rule 1 of Pearl’s do-calculus plays an important

role in relaxing IP class-∞ requirement; future work will hopefully shed light on this matter.

Next we formally state our results as a lemma, followed by a conjecture.

Lemma 4.3. Let DAG G = (V,E) characterize the causal structure of the domain. To

preserve optimality with respect to the objectives given in (1) and (2), the following variables

need not be incorporated into the scope of ip(x), ∀x ∈ X ∗: Any y ∈ Vi \ X ∗ which is an

ancestor of x.

Conjecture 4.1. Let DAG G = (V,E) characterize the causal structure of the domain,

x ∈ X ∗ be a to-be-intervened variable. Let ip-scope(x) denote the scope of ip(x) which is

selected according to the following procedure:

Assume that all the ancestors of x are intervenable in addition to the variables in the

set Vi. Run the algorithm C∗. Let W∗ denote the set of variables that C∗ outputs. Set

ip-scope(x) := W∗ \X ∗.

Let ip(X ∗|S∗) denote the set of IPs to be exercised on X ∗ whose scopes (i.e., elements of S∗)

are selected according to the above procedure. Then, the following holds: (X ∗; ip(X ∗|S∗))G �i

(X ∗; ip(X ∗) ∈ class-∞)G.
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4.7 On the Minimality of C∗’s Output

Let us present two definitions and two propositions which bear on the minimality of C∗’s

output X ∗.

Def. 4.7 (Locally Structurally Minimal (LSM)): C∗’s output, X ∗, is LSM with re-

spect to (the input) DAG G iff there exists a parameterization of G such that no proper sub-

set of X ∗, namely, X ∗∗, exists for which the following holds: (X ∗∗, ip(X ∗∗) ∈ class-∞)G �i

(X ∗, ip(X ∗) ∈ class-∞)G.

Def. 4.8 (Uniformly Structurally Minimal (USM)): C∗ is called USM iff, for any

(input) DAG G, C∗’s output, X ∗, is LSM with respect to that DAG G.

Proposition 4.1. C∗ is USM for the maximax objective given in (4.1).

Proof. The proof is constructive. The objective of interest is maximax given in (4.1). Let

us assume, without loss of generality, that all the RVs are binary-valued and the desired state

is for all the target variables to take on value one. Our goal is to parameterize an arbitrary

G in such a way that: (i) the desired state happens with probability one if variables X ∗

are all set to one through exerting atomic interventions, and (ii) the desired state happens

with probability zero otherwise. Start at X ∗. Parameterize the CPD of each x∗ ∈ X ∗ such

that it always takes on the value zero. Moving along the BC execution paths terminated

at X ∗, proceed towards the target variables which are descendants10 of X ∗. Along the way,

parameterize the CPD associated to any variable k such that, conditioned on k’s parents

which are descendants of X ∗ (denoted by parX ∗(k)), k takes on value one iff all parX ∗(k)

take value one.11 In other words, intermediate variables like k work as an and logical gate.

Proceed in the aforementioned manner until all the target variables (which are descendants

of X ∗) are reached. It is easy to verify that indeed the desired state happens with probability

one iff all the variables X ∗ are set to one and, furthermore, intervening on any proper subset

of X ∗ in any way does not yield such an outcome. This concludes the proof. �
Proposition 4.2. C∗ is USM for the minimin objective given in (4.2) when the set of

target variables O is a singleton.

Proof. The proof is constructive. Let us assume, without loss of generality, that all the

RVs are binary-valued and the undesired state for the target variable (i.e., the state whose

10For any target variable q which is not a descendant of X ∗, parameterize P(q|par(q)) such that q takes
the value 1 with probability one.

11In other words, the CPD of P(k|par(k)) is parameterized in such a manner that the parents of k which
are not descendants of X ∗ are rendered ineffective.
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probability is to be minimized) is the zero state. Our goal is to parameterize an arbitrary G

in such a way that: (i) the target variable takes the zero state with probability one unless all

the variables in X ∗ are set to one, and (ii) once all the variables in X ∗ are intervened to take

the value one, the target variable takes the value zero with probability zero. Start at X ∗.

Parameterize the CPD of each x∗ ∈ X ∗ such that it always takes on the value zero. Moving

along the BC execution paths terminated at X ∗, proceed towards the target variable. Along

the way, parameterize the CPD associated to any variable k such that, conditioned on k’s

parents which are descendants of X ∗ (denoted by parX ∗(k)), k takes on value one iff all

parX ∗(k) take the value one.12 In other words, intermediate variables like k serve as an and

logical gate. Proceed in the aforesaid manner until the target variable is reached. It is easy

to verify that indeed the undesired state for the target variable occurs with probability zero

iff all the variables in X ∗ are set to one. This concludes the proof. �
It is intriguing to see that the output of C∗ (with C∗ formally capturing our intuition

with respect to the TPS-Controllability problem) satisfies the said non-trivial minimality

property.

4.8 Optimal Intervention Policy: Computational Complexity

In what follows, we elaborate on the computational complexity of finding the Optimal In-

tervention Policy (OIP) to be exercised on X ∗. Let us formally define the problems the

complexity of which are of concern, namely, oip-maxmax-fp and oip-minmin-fp.

Def. 4.9 (oip-maxmax-fp): Given a CBN B with causal structure G, parameterized

by distribution P (which factorizes over G), and the corresponding set X ∗, output the OIP

to be exercised on X ∗, that is the IP which is optimal with respect to maximax objective

given in (4.1), i.e., argmaxip(X ∗)∈class-∞ P(O|do[X ∗; ip(X ∗)]).

Def. 4.10 (oip-minmin-fp): Given a CBN B with causal structure G, parameterized by

distribution P (which factorizes over G), and the corresponding set X ∗, output the OIP to

be exercised on X ∗, that is the IP which is optimal with respect to minimin objective given

in (4.2), i.e., argminip(X ∗)∈class-∞ P(O|do[X ∗; ip(X ∗)]).

Proposition 4.3. oip-maxmax-fp and oip-minmin-fp are both NP-hard.

The reader is referred to Sec. B-IV of Appendix B for the proof of Proposition 4.3.

12In other words, the CPD of P(k|par(k)) is paremeterized in such a manner that the parents of k which
are not descendants of X ∗ are rendered ineffective.
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Interestingly, the NP-hardness results for oip-maxmax-fp and oip-minmin-fp are estab-

lished using a special class of (degenerate) CBNs for which any Exact Inference or Maximum

A-Posterior (MAP) query can be answered in poly-time (hence, tractable).

4.9 On the Connections to Cognitive Psychology

A defining characteristic of Algorithm C∗ is its strong tendency to select the closest interven-

able nodes to target node(s) for intervention.13 That is, Algorithm C∗ endorses the following

dictum: “The closer a to-be-intervened node is to the target node(s), the better,” which

we refer to as the proximity principle. It is worth nothing that the proclaimed proximity

principle follows from the machinery of C∗ (i.e., by C∗’s starting at target nodes and moving

backwards toward intervenable nodes). Interestingly, the said proximity principle is a direct

implication of White’s “dissipation effect” in causal settings (White, 1997, 2000; Edwards

et al., 2015). Concretely, Edwards et al. (2015) suggest that, in settings wherein causal

relations are probabilistic rather than deterministic, human subjects are more inclined to

intervene on immediate causes of the target variable. Through a series of experiments, Ed-

wards et al. (2015) provide support for a general preference of human subjects to intervene

on immediate causes rather than intermediate ones (see Edwards et al., 2015, p. 1921), fully

consistent with the proximity principle entailed by C∗. In that light, Algorithm C∗ serves as

the first rational, process-level account of how subjects devise their intervention strategies

(by selecting on which intervenable variables to intervene) to “control” the state of a target

node.

Edwards et al.’s (2015) experiments also provide support for a tendency to intervene on

root-causes when subjects were asked to decide where they would prefer to intervene so as

to bring about long-term goals (as opposed to short-term goals). The concepts of long-term

and short-term goals inevitably involve the notion of time, and particularly, how long it

may take for the effect of an intervention to “reach” the target variable(s). In that light,

subjects being presented with such tasks will be essentially concerned with the following two

criteria together: (i) maximizing/minimizing the probability of the desired/undesired state

for the target variable, and (ii) the amount of time it takes for the effect of an intervention

to reach target variable(s). The existence of the second criterion inevitably makes the task

lie outside the scope of the problem addressed in this chapter. In Chapter 3, we formally

13The extreme case being to intervene right on the target node(s) and set it to the desired value.
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articulated how time can be integrated into the formalism of CBNs, by introducing the

notion of potential level (PL). Future work should investigate how PL and the formalism of

probabilistic structural controllability can be brought together to account for psychological

findings concerning attaining long-term vs. short-term goals such as Edwards et al.’s (2015).

4.9.1 Implications for Developmental Psychology: Overimitation and

Causal Learning

Imitation is an effective learning strategy, allowing for sophisticated forms of cultural trans-

mission (Tomasello, 2009; Whiten et al., 2011; Nielsen, 2012). Children are surprisingly

prolific imitators, but there are also times when their copying of others’ actions appears to

be obviously irrational, inducing major errors in reasoning (Lyons et al., 2007; Whiten et al.,

1996). The terms overimitation particularly refers to this children’s persistently reproducing

the adult’s unnecessary actions. Several studies have documented this behavior, suggesting

that it is most likely uniquely human (Horner and Whiten, 2005), that it exists across vari-

ous cultures (Nielsen and Tomaselli, 2010), that it emerges in early ages and increases with

age (McGuigan et al., 2007; Nielsen and Tomaselli, 2010; McGuigan and Whiten, 2009),

and that it occurs despite children’s ability to distinguish relevant actions from irrelevant

actions (Nielsen and Tomaselli, 2010). Surprisingly, children have been observed to engage

in overimitation in various contexts (Call et al., 2005; Carpenter et al., 2002; Horner and

Whiten, 2005; McGuigan et al., 2007; Nagell et al., 1993; Want and Harris, 2002; Whiten

et al., 1996), even in settings where chimpanzees correctly ignore the unnecessary, irrelevant

steps (Horner and Whiten, 2005; Nagell et al., 1993; Want and Harris, 2002; Whiten et al.,

1996).

In a series of studies, Lyons et al. (2007) provide evidence for children having a strong

tendency to encode all of an adult’s purposeful actions as causally necessary, automatically

revising their causal beliefs about the object accordingly. Lyons et al. (2007) show that

children are frequently unable to avoid reproducing the adult’s irrelevant actions despite

countervailing task demands, time pressure, and even direct warnings, thereby providing

strong evidence for their automatic causal encoding (ACE) account. The resulting distor-

tions in children’s causal beliefs, as Lyons et al. (2007) show, are the actual cause of the

overimitation, not implicit social demands (Horner and Whiten, 2005; Nielsen, 2006; Uzgiris,

1981) or imitative habit (McGuigan et al., 2007; Whiten et al., 1996) as previously believed.

Drawing on the fact that learning the casual structure of a domain is indeed computationally
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hard, Lyons et al. (2007) argue that adults and children alike rely on the intentional manip-

ulations/interventions of knowledgeable people to learn causally important operations, with

adults doing it deliberately whereas children automatically (which leads them to overimi-

tate). Fully consistent with this view, our proposed algorithm C∗ formally shows, having

observed an adult’s purposeful actions, how children should revise their (mental) causal

model, represented by a CBN. As prescribed by C∗, the revised causal model (of a child)

should be such that C∗’s run on the revised model outputs the adult’s purposeful set of

actions (i.e., X ∗). The aforesaid condition severely constraints how children should go about

revising their causal model and considerably limits the set of causal models they possibly

need to entertain, thereby reducing the computational complexity of the task—in line with

Lyons et al.’s (2007) view. Hence, X ∗ serves as a distinctive pedagogical cue helping young

children, not yet having developed elaborate intuitive theories, learn about the causal struc-

ture of their environment. Furthermore, consistent with Lyons et al.’s (2007) ACE account

of overimitation, our proposed algorithm C∗ suggests that X ∗—which simultaneously satis-

fies optimality and minimality criteria—is indeed a rational choice for children to imitate, a

behavior which will be perceived by an external observer (i.e., the experimenter) as an in-

stance of over imitation. (The observation that in Lyons et al.’s (2007) experiments children

frequently copied all the actions demonstrated by the experimenter suggests that children

deemed unnecessary to add extra actions to and/or remove any action from the set of actions

presented by the experimenter, with the former strongly supporting the sufficiency of the

set and the latter the minimality of the set.) In this light, our proposed algorithm C∗ serves

as a rational, algorithmic-level account of overimitation under single-demonstration condi-

tion (i.e., where children are presented with a single demonstration of how to generate the

outcome by the experimenter). To our knowledge, C∗ is the first rational, algorithmic-level

account of this curious behavior.14

On Asynchronous Distributed Implementation of C∗

We would like to elaborate on an asynchronous distributed implementation of C∗ which

is of interest for Marr’s algorithmic level of analysis (Marr, 1982). Let us assume that

14Here, we are particularly focusing on single-demonstration condition, aka one-shot learning setting (e.g.,
Lyons, Young, & Keil, 2007; Whiten, Custance, Gomez, Teixidor, & Bard, 1996). Some recent studies have
focused on repeated -demonstration condition which inevitably requires children to combine various statistical
information and perform statistical inference (e.g., Buchsbaum, Gopnik, Griffiths, & Shafto, 2011). In that
light, Repeated-demonstration condition falls outside the scope of our work.
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nodes symbolize computational units which can communicate with their immediate neighbors

(i.e., their children and parents) through the edges of the underlying DAG—symbolizing

communication channels. The distributed algorithm begins by each node in Oi sending

tokens to its parents.15 Node x, upon receiving a token from any of its children proceeds as

follows: (i) if x is not intervenable (i.e., x �∈ Vi), upon receipt of the first token, it propagates

the token to all its parents, and simply ignores all subsequent tokens received from any of

its children.16 (ii) if x is intervenable (i.e., x ∈ Vi) then it absorbs the token and does not

communicate any tokens to their parents. Upon termination of the distributed algorithm,

the set of all absorbing nodes, together, form the set X ∗. Time-complexity of the above

distributed algorithm is O(ld) where ld denotes the length of the longest directed path in the

underlying DAG.

Bounded Rationality and C∗

In this section, we elaborate on how C∗ should be construed within the context of bounded

rationality (Simon, 1957). The reasoner—inevitably bounded in time and computational

resources—executes C∗ within the time frame available to her. The set of nodes/variables

that, within the available time frame, she gets the chance to identify should be understood

as a boundedly-rational approximation to X ∗.

4.10 Related Work and Conclusion

Finally, we give an overview of the ideas explored in the literature which are, in spirit, related

to the problem under study in this work. The idea of Structure Control Theory (SCT)

proposed by Lin (1974) in the context of Linear Time-Invariant (LTI) systems governed

by first-order differential equations (a.k.a. state equations) perhaps comes closest to our

problem. In such domains, all variables are deterministic and the states of variables change

in time according to the dynamics represented by state equations.

Liu et al. (2011), drawing on the idea of SCT proposed by Lin (1974), aimed at identifying

the minimal set of variables which are sufficient for the purpose of structural controllability

of a generic large-scale LTI system.17 In a subsequent work, Gao et al. (2014), relaxed the

15Variables in Ōi absorb their tokens immediately and do not send any tokens to their parents.
16In this light, informally speaking, a non-intervenable variable x remains ‘invisible’ to the flow of tokens.
17Note that, intervening on Vi (according to IP class-∞) is the trivial solution to the TPS-controllability

problem. Similar, in spirit, to the contribution of (Liu et al., 2011), using the sole topology of G, the proposed
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objective of structural controllability of the system in whole, to merely that of a particular

set of desired variables called target variables. This line of thought was motivated by the

understanding that in large-scale systems, it may neither be attainable nor required to

control the full system but, rather, to merely control a subset of the variables of the system

(analogous to target variables in our problem) which are deemed pivotal for the realization

of the task at hand. In that light, Gao et al. (2014) were concerned with the same question

underlying our work, yet, perused it in a radically different setting. In (Liu et al., 2011;

Gao et al., 2014), both variables and their inter-connections are deterministic in nature

whereas, in our case, both have probabilistic natures, a point of departure which leads to a

substantially different line of work—both semantically and syntactically.

It is crucial to note that the line of work investigated in this chapter does not lend itself to

influence diagram (ID) modeling, for the following important feature of IDs: In IDs, the set of

nodes on which intervention should be exercised is pre-specified at the outset, leaving no room

for the agent to decide upon which of intervenable nodes intervention should be exercised. A

defining property of TPS-controllability problem is that the agent gets to decide, out of 2|Vi|

possible choices, on which subset of intervenable nodes intervention should be applied (recall

(Q1) from Sec. 4.1, as a defining feature of probabilistic controllability problem). Also, it is

easy to show that the very choice of intervenable nodes for intervention modulates the IP

class which is optimal for exercising on them. These features make the line of work pursued

in this chapter radically distinct from, and fall outside the scope of ID formalism.

To conclude, the problem of TPS-controllability in the context of CBNs was introduced

and formalized in this work. A linear-time algorithm, C∗, was devised to identify a sufficient

set of intervenable variables for the purpose of TPS-controllability of a generic CBN; the

minimality of C∗’s output was also characterized. We also elaborated on the computational

complexity of the task and presented a lemma as well as a conjecture on reducing the scope

of IPs. The implications of this work for psychology were also extensively investigated. Con-

cretely, we highlighted the implications of our results for a line of work in developmental

psychology concerning causal learning by young children in pedagogical settings, and estab-

lished, for the first time in the literature, a rational, algorithmic-level account of a curious

behavior demonstrated by young children called overimitation, generally taken as evidence

for children’s irrationality. The provided results are also of importance to studies on strate-

linear-time algorithm C∗ outputs—among 2|Vi| potential subsets—a non-trivial solution to the problem, X ∗,
which is both minimal (see Sec. 4.7) and optimal with respect to the objectives given in (4.1) and (4.2).
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gic planning and policy making concerned with efficient practice of intervention in order to

maximize (minimize) the odds of desired (undesired) outcomes.
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Part III: Conditional Independence,

d-Separation, and MinimalityPart III:

Conditional Independence,

d-Separation, and Minimality

Preface. It was Judea Pearl’s great moment of insight when he recognized the fundamental

role of (conditional) probabilistic independence in how human’s probabilistic/causal knowl-

edge is structured. Baffled with how humans oftentimes judge probabilistic independence

with “clarity, conviction and consistency” in spite of their incompetence in giving estimates

of the probabilities involved, Pearl put forth an elegant graph-theoretic notion, called d-

separation, for the purpose of judging independencies by merely entertaining the topology of

the BN representing how the knowledge of the reasoner is structured. Motivated by human

cognition and particularly the distributed machinery of the brain, in his seminal work in

1986, Pearl put forth an asynchronous, distributed, message-passing algorithm called Belief

Propagation (BP) to address how inference could be efficiently carried out on BNs.1 Despite

recognizing the fundamental role that the notion of d-separation plays in human cognition,

Pearl left one question unanswered: How could d-separation be implemented in an asyn-

chronous, distributed, message-passing manner akin, in spirit, to the BP scheme? Part III

puts forward such an algorithm for implementing d-separation. Furthermore, through the

introduction of a key graph-theoretic notion, termed minimal-refutation module, Part III

shows how the notion of minimality manifest itself in a distributed, message-passing imple-

mentation of d-separation.

1BP went on to become not only an extremely prominent inference algorithm for PGMs, but also it turned
out to be unreasonably successful for a series of problems which, on the face of it, had nothing to do with
the original motivation behind proposing BP, namely, decoding the low-density parity-check (LDPC) codes
as well as Turbo codes, and solving the Boolean satisfiability problem.
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Chapter 5

Asynchronous, Distributed Algorithm

for d-Separation: Towards

Cognitively Plausible

Implementations

5.1 Introduction

In his 1986 paper, Pearl put forth a graph-theoretic notion called d-separation, allowing for

reading off probabilistic independence relations from the mere structure of a Bayesian net-

work (BN) (Pearl, 1986).1 Ever since its inception, d-separation has proved fundamental in a

variety of domains, e.g., probabilistic reasoning (Pearl, 1988), causal reasoning (Pearl, 2000),

decision making (Shachter, 1998; Koller and Friedman, 2009), and has played important roles

in a broad range of areas, e.g., handling missing data (Mohan and Pearl, 2014), extrapola-

tion across populations (Pearl and Bareinboim, 2014), and deep learning (Goodfellow et al.,

2016).

In this chapter, we put forth the Three-Color Algorithm, denoted by D∗, which permits

implementing Pearl’s d-separation criterion. That is, D∗ allows to decide, based on the sole

topology of a BN, if an arbitrary conditional independence relation holds in that BN. The

algorithm D∗ is distributed and asynchronous, and outperforms previously proposed algo-

1The edges of a BN may have causal semantics, in which case the formalism of causal BN should be
invoked. The graph-theoretic notion of d-separation remains valid regardless of whether the edges enjoy
causal interpretations or not.
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rithms for implementing d-separation in terms of worst-case running time. We provide a

comprehensive analysis of the computational properties of D∗, along with several refined

time-complexity bounds. A detailed comparison between D∗ and previously proposed algo-

rithms is provided in the Discussion section, later in this chapter. We will also elaborate on

the implications of the work presented in this chapter for neuroscience and psychology in

Sec. 5.6.

5.2 Preliminaries and Notations

Let us introduce the notation adopted in this chapter. Lower bold-faced letters (e.g., x)

denote random variables and upper bold-faced letters (e.g., X) represent sets of random

variables. A generic d-separation relation is denoted by (A ⊥⊥ B|C)G with A,B, and C

representing three mutually disjoint sets of variables belonging to the DAG G where G

represents the topology of the underlying BN. Read (A ⊥⊥ B|C)G as follows: C d-separates

A from B in DAG G. Similarly, (A �⊥⊥ B|C)G denotes that C does not d-separate A from B

in DAG G. For ease of notation, we use (A ⊥⊥ B|C)G to denote both a d-separation relation

(i.e., C d-separates A from B in DAG G) and to denote a d-separation query (i.e., does C

d-separate A from B in DAG G?); the distinction should be clear from the context. Let also

GAn(K) denote the ancestral graph for the variables in set K belonging to the underlying

DAG G (Lauritzen et al., 1990), i.e., the set of nodes for GAn(K) comprises the nodes in K

and all the ancestors of the nodes in K (hence, GAn(K) is a subgraph of the underlying DAG

G).

Next, a notion called refutation-module is introduced; this will be used later in our formal

analysis of the propose algorithm.
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Fig. 5.1 Examples for refutation modules. (a) The underlying DAG G is de-
picted, for which (x �⊥⊥ y|z)G. (b,c) Two refutation-modules for the d-separation
query (x ⊥⊥ y|z)G are depicted.
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Definition 5.1. (Refutation-Module) Let X,Y,Z be three mutually disjoint sets

belonging to a DAG G. Let also (X �⊥⊥ Y|Z)G. A connected subgraph of G, M(X 
⊥⊥Y|Z)G ,

serves as a refutation-module for the d-separation query (X ⊥⊥ Y|Z)G, iffM(X 
⊥⊥Y|Z)G satisfies

the following two conditions: (1) M(X 
⊥⊥Y|Z)G contains an active path P between a node

x ∈ X and a node y ∈ Y, and (2) for every head-to-head node v on P , M(X 
⊥⊥Y|Z)G contains

a directed path between v and a node c ∈ C. See Fig. 5.1 for examples on refutation-module.

Lemma 1. Let X,Y,Z be three mutually disjoint sets belonging to a DAG G. Let

also (X �⊥⊥ Y|Z)G. The following two statements hold: (1) G must contain at least one

refutation-module for the d-separation query (X ⊥⊥ Y|Z)G, (2) G may contain more than

one refutation-module for the d-separation query (X ⊥⊥ Y|Z)G, hence the non-uniqueness of

the refutation-module.

Proof. Claim (1) immediately follows from the definition of d-separation; see (Pearl,

1986). Claim (2) follows from the examples depicted in Fig. 5.1.

Definition 5.2. (Minimal Refutation-Module) Let A,B,C be three disjoint sets of

nodes belonging to a DAG G. Also, let (X �⊥⊥ Y|Z)G. Let M∗
(X 
⊥⊥Y|Z)G denote the refutation-

module for the d-separation query (X ⊥⊥ Y|Z)G which possesses the smallest number of

edges. We refer to M∗
(X 
⊥⊥Y|Z)G as the minimal refutation-module in G for the d-separation

query (X ⊥⊥ Y|Z)G.
It is easy to prove by construction that the minimal refutation-module M∗

(X 
⊥⊥Y|Z)G need

not be unique.

5.3 The Three-Color Algorithm D∗

In this section, we show how the proposed algorithm D∗ allows to decide if a generic d-

separation query of the form (A ⊥⊥ B|C)G holds in a DAG G; D∗ is an asynchronous,

distributed, message-passing algorithm. More specifically, in D∗, nodes of the underlying

DAG G—symbolizing computational units—autonomously engage in communicating mes-

sages to their immediate neighbors via the edges of the DAG G—symbolizing communication

channels. We assume that communication channels are reliable, bidirectional, and first-in

first-out (FIFO) (Lynch, 1996).

The proposed algorithm D∗ is outlined next. Throughout an execution of D∗, variables in

C ignore any message received from any of their children, and also do not send any message

to any of their children. The variables in the sets A, B, and C initially activate in the states
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represented by colors (•), red (•), and white (◦), respectively. Following the prescriptions of

the original Belief Propagation algorithm (Pearl, 1986, Sections 1.3 and 2.2.3), we assume

that the variables in the sets A,B,C acquire their initial states in a self-activated manner.2

D∗ begins with nodes in A,B, and C sending their colors as messages to their parents.3

Node x, upon receiving a message, follows two simple steps in the following order:

(i) If x’s current color differs from that of the received message, x replies by sending back

its own color as a message to the transmitter node. If x is in the state of having no

color (denoted by ∅) prior to the receipt of the message, it does not send back any

message to the transmitter node.

(ii) x updates its color in accord with the following primitive rules, altogether composing

the Color Update Grammar (CUG):

(∅, •) → •, (∅, •) → •, (∅, ◦) → ◦,
(•, •) → •, (•, •) → •, (◦, ◦) → ◦,
(◦, •) → •, (◦, •) → •,
(•, ◦) → •, (•, ◦) → •,
(•, •) → clash, (•, •) → clash,

where the syntax is: (x’s current color, received message) → x’s new color. If x’s new

color turns out to be different from its old color, with the exception of the transmitter

node in (i), x sends its new color as a message to (a) all its parents, and (b) only those

children of x with which x has communicated before.

The rules given in the first row of the CUG correspond to white-, green-, and red-colored

nodes sending their colors to their yet-unvisited parents. Rules in the second row ensure

that the colors of white-, green-, and red-colored nodes persist upon interacting with nodes

of the same color. Rules stated in the third row bear on the key understanding that the

white color functions as a mere place-holder getting “replaced” by interacting with green-,

2Alternatively, we provide an asynchronous, distributed, O(l)-time message-passing algorithm in Sec.
S-VI of Appendix C, which permits a predesignated source node to disseminate information regarding the
initial states of the nodes through the graph G, where l denotes the length of the longest undirected path in
G.

3This very act will initiate the propagation of colors in a backwards manner throughout the network.
This becomes clearer when we present an example in Sec. 5.4.
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or red-colored nodes. Rules in the fourth row, guarantee the persistence of colors green and

red upon interacting with white. Finally, rules given in the last row correspond to the clash

event the implication of which is discussed in Remark 1.

Remark 1: A clash between colors green (•) and red (•) at a node, anytime throughout

an execution of D∗, signals the falsity of the input d-separation query, upon which D∗ decides

that (A �⊥⊥ B|C)G. Note that “clash” is a termination state for a node.

Note that asynchrony of D∗ stems from the fact that there exists no global clock for

the system and hence any node, upon receiving a message, follows Steps (i) and (ii) au-

tonomously, i.e., informally, without having to attend to what computations other nodes in

G are performing.4

Some of the computational properties of the proposed algorithm D∗ are formally articu-

lated in Proposition 5.1 below.

Proposition 5.1. The following statements hold for D∗.

(1) For a given d-separation query (A ⊥⊥ B|C)G and DAG G,

“C does not d-separate A from B in G” ⇐⇒ “Clash takes place during D∗’s execution”.

(2) D∗’s message-passing is confined within the ancestral graph GAn(A∪B∪C).

(3) During D∗’s execution, either a clash between colors red (•) and green (•) takes place

(see Remark 1) upon which D∗ decides that (A �⊥⊥ B|C), or a state of equilibrium will

be reached in O(lAn(A∪B∪C)) time where lAn(A∪B∪C) denotes the length of the longest

undirected path in the ancestral graph GAn(A∪B∪C).

(4) Message-passing terminates in O(1) time after reaching the state of equilibrium, thereby

guaranteeing the termination of D∗.

(5) Message-complexity of D∗ is O(|EAn(A∪B∪C)|) where EAn(A∪B∪C) is the set of the edges

of the ancestral graph GAn(A∪B∪C).

(6) Communication-complexity of D∗ is O(|EAn(A∪B∪C)|) bits where EAn(A∪B∪C) is the set

of the edges of the ancestral graph GAn(A∪B∪C).

The reader is referred to Sec. C-VI of Appendix C for the proof of Proposition 5.1.

4That is, using the formalism of state transition systems, without having to attend to the states other
nodes in the distributed system are in.
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5.3.1 High-Level Understanding of D∗

D∗ has a simple machinery as we informally discuss here. Upon variables inA∪B∪C sending

their colors to their parents, colors white (◦), green (•), and red (•) begin to propagate in a

backwards manner throughout the network. In the midst of this process, white-color nodes

which have a node colored either red (•) or green (•) in their neighborhood, change their

color to that of their neighbors, and if ever a clash occurs between colors red and green, D∗

decides that the input d-separation query is false (i.e., a no-instance d-separation query).

The proof of correctness for D∗ is presented in Sec. S-I of Appendix C.

5.3.2 A Note On The Termination of D∗

According to Proposition 5.1, if the input d-separation query presented to D∗ is true (i.e., a

yes-instance d-separation query), the system reaches a state of equilibrium in O(lAn(A∪B∪C))

time and message-passing is guaranteed to terminate in O(1) time after that. However, due

to its local view, a node cannot know if such a global state has been reached. This is a fairly

standard situation for an asynchronous distributed algorithm to find itself in (Mattern, 1987;

Tel, 2000), leading to the introduction of the fundamental concept of Termination-Detection

(DT) in distributed systems literature; see (Tel, 2000, Ch. 8). There exist a variety of DT-

algorithms in the literature (e.g., Dijkstra et al., 1983; Mattern, 1987; Mittal et al., 2004,

2007).5

5.4 D∗ in Action: A Case Study

In this section, we present an example to illustrate an execution and highlight the simplicity

of D∗. Let us consider the BN depicted in Fig. 5.2(a). Let the posed d-separation query be

(X ⊥⊥ Y|Z)G where X = {x1,x2}, Y = {y1,y2}, and Z = {z}. According to d-separation

criterion (Pearl, 1988), observation of z activates the path x1 ← t1 ← t2 ← t3 → t4 ← t5 →
t6 → t7 → y1, thereby yielding the falsity of the d-separation query (X ⊥⊥ Y|Z)G (hence,

the input is a no-instance query); see Fig. 5.2(a). An execution of D∗ is illustrated using

successive snapshots shown in Figs. 5.2(b-f) with each figure depicting the global state of

5For example, Mittal et al. (2004) propose two DT-algorithms, each having detection latency of O(D)
where D is the diameter of the underlying graph G, and G is allowed to have an arbitrary topology.



5.5 Discussion 91

the system (i.e., nodes’ colors) at some instance in global time (aka system’s configuration).6

As depicted in Fig. 5.2(b), variables in sets X,Y, and Z initially self-activate in the states

represented by colors green (•), red (•), and white (◦), respectively. Also recall that, as

explicated in Sec. 5.3, variables in Z ignore any message received from any of their children,

and also do not send any message to any of their children—depicting the downlinks of

the variables in Z in a dash-dotted format simply illustrates this statement pictorially in

Fig. 5.2(b). The colors green (•), red (•), and white (◦) propagate in a backwards manner

(Figs. 5.2(c-d)) and white gets replaced by green or red once it becomes a neighbor of a node

with such colors (Figs. 5.2(d-f)). Eventually, in the configuration depicted in Fig. 5.2(f), a

clash takes place between colors green and red at a node (circled node in Fig. 5.2(f)), upon

which D∗ decides that (X �⊥⊥ Y|Z)G.7

Notice that, since w is unobserved (Fig. 5.2(a)), the path x2 → w ← y2 indeed remains

blocked; this is nicely captured by the machinery of D∗. Algorithm D∗ prevents x2 and

y2 from sending their colors in the forward direction (i.e., along the edges pointing to w),

thereby guaranteeing the occurrence of no clash along the blocked path x2 → w ← y2. Also

notice that, since z is observed (Fig. 5.2(a)), the path x2 ← z → y2 is blocked as well. Once

again the machinery of D∗, due to z refraining from engaging in message-exchange with its

children, ensures that no clash takes place due to the blocked path x2 ← z → y2.

5.5 Discussion

A number of algorithms for the implementation of d-separation are proposed in the literature;

see (Geiger et al., 1989; Lauritzen et al., 1990; Shachter, 1998; Koller and Friedman, 2009;

Butz et al., 2016). Assuming |E| ≥ |V |, to decide if (A ⊥⊥ B|C)G holds in G, the worst-case

running time of Geiger et al.’s, Koller and Friedman’s, Shachter’s, and Butz et al.’s is O(|E|)
and that of Lauritzen et al.’s algorithm8 is O(|V |2) where |V | and |E| denote the number of

the nodes and the edges of the underling DAG G, respectively. Note that, since for any DAG

6Cast into Lamport’s space-time diagram (Lamport, 1978), each figure depicts the global state of the
system which corresponds to a vertical time-cut positioned at a global time (see (Mattern, 1987)) and the
time-cuts corresponding to Figs. 5.2(b-f) are successively ordered.

7The order according to which the circled node receives the incoming red- and green-colored massages in
the configuration depicted in Fig. 5.2(f) is irrelevant; either way a clash will take place. This property can
be formalized in a wider sense under the notion of order-invariance which will be discussed in Sec. 5.5.

8The reader is referred to (Geiger et al., 1989) for a detailed analysis of the running-time of Lauritzen et
al.’s algorithm.
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Fig. 5.2 Illustrative example. The underlying DAG G is shown in (a). The
initial configuration of the system is portrayed in (b), wherein variables in sets
X,Y, Z self-activate in the states represented by colored green (•), red (•), and
white (◦), respectively. Depicting the downlinks of the variables in Z in a dash-
dotted format simply symbolizes that the variables in Z ignore any message
received from any of their children, and also do not send any message to any of
their children. D∗ begins by nodes in X,Y, Z sending their colors as messages
to their parents and proceeds as shown in (c-f) with each figure depicting a
snapshot of the global state of the system (i.e., nodes’ colors) at some instance
in global time. Eventually, upon occurrence of a clash between colors green and
red (at the circled node in (f)), D∗ decides that (X �⊥⊥ Y|Z)G.

G, |E| ≤ |V |2, an O(|E|)-time algorithm (e.g., Geiger et al.’s) outperforms an O(|V |2)-time

algorithm (e.g., Lauritzen et al.’s) in terms of worst-case runtime9 (see Geiger et al., 1989, for

more discussions on this). According to Proposition 5.1, the time-complexity of the proposed

algorithm D∗ is O(lAn(A∪B∪C)) where lAn(A∪B∪C) denotes the length of the longest undirected

path in the ancestral graph GAn(A∪B∪C).
10 Since, for any DAG G, lAn(A∪B∪C) ≤ |E| ≤ |V |2,

the proposed algorithm D∗ outperforms all the previously proposed algorithms in terms of

the worst-case running time.11 Particularly, the gain is significant in dense DAGs. Note that,

9The gain in particularly significant in sparse graphs, where |E| = O(|V |).
10The reader is referred to Sec. C-II of Appendix C where the time-complexity analysis of D∗ is presented.
11According to Proposition 5.1, a no-instance d-separation query can be decided by D∗ in time

O(lAn(A∪B∪C)); see also Lemma A.1 in Sec. A-I of the Appendix. The upper-bound O(lAn(A∪B∪C)) is an
improvement over the worst-case runtime of all the previously proposed algorithms. Also note that, adopting
a DT-algorithm with detection latency of O(D) (see (Mittal et al., 2004, 2007) for such DT-algorithms), a
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in the limit as the underlying DAG G gets denser, the worst-case runtime performances of

the previously proposed algorithms become identical, i.e., O(|V |2).
The proposed algorithm D∗ restricts its exploration solely in the ancestral graph

GAn(A∪B∪C), as formalized by Statement (2) of Proposition 5.1. The idea of exploring the

ancestral graph is at the core of Lauritzen et al.’s algorithm for d-separation (Lauritzen et al.,

1990). However, in sharp contrast to Lauritzen et al.’s algorithm, the proposed algorithm

D∗ need not moralize the ancestral graph GAn(A∪B∪C). As Geiger et al. (1989) point out,

the moralization step of Lauritzen et al.’s algorithm requires O(|V |2) time in the worst-case.

Another noteworthy property of D∗ is that it is tailored towards quick detection of false d-

separation queries (i.e., no-instance queries), manifested in an occurrence of a clash according

to Remark 1. For a no-instance d-separation query, Proposition 5.2, below, gives a more

refined upper-bound on the time required for an occurrence of a clash, thereby formalizing the

said claim. The reader is referred to Sec. C-III of Appendix C for the proof of Proposition 5.2.

Proposition 5.2. Let A = {ai}i, B = {bj}j, C = {ck}k be three disjoint sets of nodes

belonging to a DAG G. Let ldAn(A∪B∪C) denote the length of the longest directed path in the

ancestral graph GAn(A∪B∪C), and lijAn(A∪B∪C) the length of the shortest unblocked path between

the nodes ai and bj in GAn(A∪B∪C). As a convention, if all paths between ai and bj are

blocked, lijAn(A∪B∪C) = ∞. If (A �⊥⊥ B|C)G (hence, a no-instance d-separation query) then

a clash between colors green (•) and red (•) occurs in time O
(
ldAn(A∪B∪C) +min

i,j
lijAn(A∪B∪C)

)
,

upon which D∗ decides that (A �⊥⊥ B|C)G.

In Sec. 5.2, we formally defined a notion called refutation-module (see Definition 5.1).

In the language of computational complexity and theorem-proving, a refutation-module

M(X 
⊥⊥Y|Z)G can serve as a certificate (or witness) for disproving a d-separation query (X ⊥⊥
Y|Z)G. This interpretation is related to the verifier-based definition of the complexity class

coNP. Next, in Proposition 5.3, we provide an even more refined upper-bound on the time

required for an occurrence of a clash, thereby strengthening our claim as to D∗ being tailored

toward quick detection of false d-separation queries. The reader is referred to Sec. C-IV of

Appendix C for the proof of Proposition 5.3.

Proposition 5.3. Let X,Y,Z be three disjoint sets of nodes belonging to a DAG

G. Also, let (X �⊥⊥ Y|Z)G (hence, a no-instance d-separation query). Let M(X 
⊥⊥Y|Z)G

yes-instance d-separation query can be decided by D∗ in time O(lAn(A∪B∪C) +D) where D is the diameter
of G. Once again, since lAn(A∪B∪C) ≤ |E|, D ≤ |E|, |E| ≤ |V |2, the upper-bound O(lAn(A∪B∪C) +D) is an
improvement over the worst-case runtime of all the previously proposed algorithms. (Notice that, for any
DAG G, 1

2 (lAn(A∪B∪C) +D) ≤ |E|, hence follows |E| = Ω(lAn(A∪B∪C) +D).)
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denote a refutation-module for the query (X ⊥⊥ Y|Z)G with ldM and |PM| denoting the

length of the longest directed path and the shortest unblocked path in M(X 
⊥⊥Y|Z)G, respec-

tively. Finally, let M∗
(X 
⊥⊥Y|Z)G denote the minimal refutation-module for the query (X ⊥

⊥ Y|Z)G, with EM∗
(X �⊥⊥Y|Z)G

denoting the set of the edges of M∗
(X 
⊥⊥Y|Z)G. Then the follow-

ing statement holds true: A clash between colors green (•) and red (•) occurs in time

O(minM(X �⊥⊥Y|Z)G
{ldM + |PM|}) ≤ O(|EM∗

(X �⊥⊥Y|Z)G
|), upon which D∗ decides that (X �⊥⊥ Y|Z)G.

To further highlight the significance of Proposition 5.3, let us consider the following

nondeterministic algorithm A. Algorithm A takes as input a DAG G along with a d-

separation query (X ⊥⊥ Y|Z)G, and outputs yes or no depending on whether the input

query is a yes-instance or a no-instance query, respectively.

(i) Nondeterministically guess (1) the minimal refutation-module M∗
(X 
⊥⊥Y|Z)G in G for

the d-separation query (X ⊥⊥ Y|Z)G (by definition, M∗
(X 
⊥⊥Y|Z)G contains an active

path, P ∗, between a node x∗ ∈ X and a node y∗ ∈ Y, and also contains a set of

observed variables Z∗ ⊆ Z)12, and (2) the corresponding nodes x∗,y∗,Z∗ belonging to

M∗
(X 
⊥⊥Y|Z)G .

(ii) Verify that (1) x∗ ∈ X, y∗ ∈ Y, and Z∗ ⊆ Z (this can be straightforwardly verified in

O(|X|+|Y|+|Z∗||Z|) time), (2) M∗
(X 
⊥⊥Y|Z)G is a subgraph of G (this can be straightfor-

wardly verified in O(|EM∗
(X �⊥⊥Y|Z)G

|) time), and (3) d-separation relation (x∗ ⊥⊥ y∗|Z∗)

does not hold in DAG M∗
(X 
⊥⊥Y|Z)G (this can be verified in O(|EM∗

(X �⊥⊥Y|Z)G
|) time, using

Geiger et al.’s algorithm (Geiger et al., 1989)). If all the verification steps (1)-(3) pass,

output no; otherwise, output yes.

Altogether, presented with a no-instance d-separation query (X ⊥⊥ Y|Z)G, algorithm A
outputs no in O(|EM∗

(X �⊥⊥Y|Z)G
| + |X| + |Y| + |Z∗||Z|) nondeterministic time. Interestingly

according to Proposition 5.3, presented with a no-instance d-separation query (X ⊥⊥ Y|Z)G,
the machinery of D∗ ensures that a clash between colors green (•) and red (•) occurs within
at most O(|EM∗

(X �⊥⊥Y|Z)G
|) time, upon which D∗ decides that (X �⊥⊥ Y|Z)G. It is crucial to

note that the presented argument solely concerns no-instance d-separation queries.

Proposition 5.4, given below, further strengthens the claim of Proposition 5.3. The reader

is referred to Sec. C-V of Appendix C for the proof of Proposition 5.4.

Proposition 5.4. The upper-bound O(minM(X �⊥⊥Y|Z)G
{ldM+|PM|}) given in Proposition 5.3

is tighter than the one given in Proposition 5.2.

12Note that if P ∗ does not contain any head-to-head node, then Z∗ = ∅
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Finally, we would like to point out an interesting property of the CUG, referred to as

order-invariance, which is characterized informally as follows: The order according to which

nodes in the network receive their messages is irrelevant. More formally, the order-invariance

property can be stated as follows: Assume that a node x is at state Sx
i and upon receiving

the sequence of messages M1,M2, · · · ,Mn ends up in state Sx
f . Then the following holds

true for the node x. For any permutation π defined on the set {1, 2, · · · , n}, the node x,

starting at state Sx
i , would end up in the state Sx

f upon receiving the sequence of messages

Mπ(1),Mπ(2), · · · ,Mπ(n). The reader is referred to Sec. C-VIII of Appendix C for a formal

treatment of the order-invariance property and its proof.

5.6 On the Implications for Psychology and Neuroscience

It is inconceivable how chaotic the world would seem to humans, faced with innumerable

decisions a day to be made under uncertainty, had they been lacking the very capacity to

distinguish the relevant from the irrelevant—a capacity which, computationally, amounts to

handling probabilistic independence relations efficiently. As Pearl (1986) elegantly puts it:

“Whereas a person may show reluctance to giving a numerical estimate for a conditional

probability P (xi|xj), that person can usually state with ease whether xi and xj are depen-

dent or independent, namely, whether or not knowing the truth of xi will alter the belief

in xj.” He then continues: “Likewise, people tend to judge the three-place relationships of

conditional dependency (i.e., xi influences xj given xk) with clarity, conviction, and consis-

tency. This suggests that the notions of dependence and conditional dependence are more

basic to human reasoning than are the numerical values attached to probability judgments.”

Some literature in cognitive psychology, however, does not fully embrace the statement “with

clarity, conviction, and consistency” as Pearl put it. For example, the experimental work

done by Rehder (2014) suggests that adults exhibit deviations from the Markov condition.

In contrast, drawing on the experimental studies of Park and Sloman (2013), Sloman and

Lagnado (2015) conclude that people indeed uphold the Markov condition and the reason

behind the observed deviations is that, under experimental conditions, people may not solely

adhere to the information provided by the experimenter and may bring their own background

knowledge into the experiment (see also Rehder and Waldmann, 2017). Specifically, Park

and Sloman (2013) found strong support for their contradiction hypothesis followed by the

mediating mechanism hypothesis, and finally concluded that people do conform to Markov
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condition once the causal structure people are using is correctly specified (i.e., people’s men-

tal causal models).

All the algorithms proposed in the literature for the implementation of d-separation

(Geiger et al., 1989; Lauritzen et al., 1990; Shachter, 1998; Koller and Friedman, 2009; Butz

et al., 2016) have been so far sequential, i.e., coordinated and executed by a supervisory unit,

without any concurrency or parallelism in computation—a characteristic which undermines

their cognitive plausibility. The proposed algorithm D∗ permits the implementation of d-

separation in an asynchronous, distributed, message-passing fashion—a property consistent

with the brain’s computational machinery (see McClelland, 1989; Chater et al., 2006) and

fully in the spirit of the celebrated parallel-distributed-processing (PDP) research program

in brain and cognitive sciences.

The Algorithm D∗, in the spirit of Pearl’s Belief Propagation scheme, employs the edges

of the underlying BN as the medium through which message-passing between nodes takes

place. The latter echos Pearl’s insight (1986) when he advocated the idea that a BN must

not be viewed “merely as a passive parsimonious code for storing factual knowledge but also

as a computational architecture for reasoning about that knowledge.” D∗ adheres to this

idea. Recent literature in neuroscience investigating possible implementation of BNs at the

neural level supports Pearl’s idea (see Lochmann and Deneve, 2011; Gershman and Beck,

2017). Lochmann and Deneve (2011) advocate the idea that a BN’s node can be represented

at the neural level by a single (Deneve, 2008a,b) or a population of neurons (Ma et al., 2006)

with the neural network resembling a “mirror image” of the BN it implements—though

sometimes not a ‘perfect’ mirror—and the links of the neural network providing the medium

for inference to be carried out—either in a form of Belief Propagation or Sample-based

methods like Gibbs sampling.13

Interestingly, the peculiar tendency of D∗ toward quick detection of no-instance d-

separation queries is consistent with our pre-theoretical intuition that humans tend to detect

possible dependencies between concepts and propositions rather swiftly, once such dependen-

cies do exist. The following two questions then immediately present themselves: (Q1) Why

should people have such a tendency in the first place? (Q2) Could this tendency be sup-

ported based on any rational grounds? Despite its form, (Q1) may not merit any real answer:

Assuming that the mind is implementing d-separation by a process akin to D∗, the existence

13For more on how probability distributions can be encoded at the neural level, the reader is referred to
Lochmann and Deneve (2011).
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of the said tendency is merely a logical implication of the very process by which the mind is

implementing d-separation (i.e., it emerges out of the very machinery of the underlying psy-

chological processes at work).14 In that light, D∗ can be viewed as a rational, process-level

account of the said tendency. Question (Q2), however, is more subtle and indeed demands

a real answer. In what follows we provide two arguments supporting the rationality of the

foregoing tendency. The first argument is based on the assumption that propositions/con-

cepts are dependent more often than not, i.e., the majority of the d-separation instances that

the mind encounters are no-instances—an assumption which a priori appears to be neither

plausible nor implausible, and therefore requires empirical investigations. It then follows that

the foregoing tendency is simply a consequence of the mind acting as a rational optimizer,

trying to attain good performance in terms of expected runtime (i.e., average-case analysis).

The second argument relies on the assumption that, abstractly speaking, the mind incurs a

higher rate of loss (defined as incurred cost per unit of time) for discovering a dependency

when one does exist, compared to the condition wherein one does not exist and the mind

recognizes that. Once again, the aforesaid tendency simply follows from the mind acting as

a rational optimizer, attempting to minimize the total cumulative loss. But why should the

rate of loss under the condition wherein a dependency does exist be higher? That is, infor-

mally put, why should the mind be so hasty in detecting dependencies under that condition?

One possible explanation is that it is crucial for the mind to swiftly detect dependencies

under that condition, with the rationale being that delay in detecting those dependencies

could be harmful to the reasoner and potentially jeopardize her life, hence important from

an evolutionary standpoint. Furthermore, given the prominent role that explanation and in-

ference play in human cognition (see Lombrozo, 2016), it is crucial for the mind to promptly

detect those factors deemed (probabilistically) relevant to the task faced by the reasoner.

Let us more formally characterize the condition (which was alluded to above) under

which the aforesaid tendency can be given rational basis. Let TA denote the runtime of an

algorithm A implementing d-separation criterion, πyes and πno denote the prior probability

of the input being a yes-instance and no-instance d-separation query, respectively. Let

also Tyes
A and Tno

A denote the worst-case runtime of A on yes-instance and no-instance d-

separation queries, respectively. Finally, let Lyes ∈ R>0 and Lno ∈ R>0 denote the cost per

14Question (Q1) is somewhat analogous to asking “why” Fermat’s Last Theorem is true? As Edward
Witten points out, aside from proving the correctness of Fermat’s Last Theorem, this question does not
mean much since Fermat’s Last Theorem is after all an inevitable consequence of natural numbers, i.e.,
natural numbers, by virtue of their existence, naturally give rise to Fermat’s Last Theorem.
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unit of time incurred by A for delay in detecting a yes-instance and no-instance d-separation

query, respectively. Then, for any underlying DAG G, the following holds true:

E[TA] ≤
Lyes

Lyes + Lno

Tyes
A πyes +

Lno

Lyes + Lno

Tno
A πno,

where the expectation E[·] is taken with respect to the (unknown) distribution on the set of

all d-separation queries. Then, under the condition

Lnoπno ≥ Lyesπyes, (5.1)

it is rational for the mind to demonstrate the aforementioned tendency toward quick detec-

tion of no-instance d-separation queries. The two arguments presented above in support of

the rationality of the said tendency are just special cases of Condition (5.1): The first argu-

ment corresponds to Condition (5.1) subject to the assumptions πno ≥ πyes and Lno = Lyes.

The second argument corresponds to Condition (5.1) subject to the assumptions πno = πyes

and Lno ≥ Lyes.

From among the arguments presented above, unless the validity of πno ≥ πyes is em-

pirically confirmed, our second argument appears to provide the firmest rational basis for

the foregoing tendency. Future work should investigate if humans demonstrate the forgoing

(apparently) normatively-justified tendency in probabilistic independence judgment tasks,

or that, on the contrary, they systematically deviate from this behavior.

5.7 Conclusion

We presented a new algorithm, D∗, for implementing d-separation, which outperforms previ-

ously proposed algorithms in terms of worst-case runtime; the gain is particularly significant

in the case of dense graphs. A detailed analysis of the proposed algorithm, including its

message- and communication-complexity, along with several refined time-complexity bounds

were presented. The introduction of a new graph-theoretic concept, refutation module, per-

mitted a formal characterization of the curious tendency of the proposed algorithm towards

quick detection of no-instance d-separation queries. Along the way, important connections

were made to the verifier-based definition of the complexity class coNP. The work presented

in this chapter enhances our understanding of the computational properties of d-separation,

and crucially, highlights subtle, previously unknown algorithmic properties of d-separation
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in an unexplored territory: the distributed computing setting. In addition to theoretical

contributions, current work might have important implications for how d-separation can be

implemented in neural circuits. Being similar, in spirit, to Pearl’s Belief Propagation (which

has played important roles in the theoretical neuroscience literature (see e.g., Gershman and

Beck, 2017; George and Hawkins, 2009; Litvak and Ullman, 2009; Rao, 2004; Lochmann and

Deneve, 2011)), the asynchronous, distributed nature of the proposed algorithm positions it

as a plausible candidate, at Marr’s (1982) algorithmic level of analysis—contrary to all the

previously proposed algorithms whose sequential nature severely undermines their cognitive

plausibility. In that light, D∗ can be then viewed as the first rational, distributed, process-

level account of how humans handle probabilistic independence (see Griffiths et al., 2009,

2012). Last but not least, the simplicity of D∗ potentially makes it a good candidate for

pedagogical purposes.
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Part IV: On Minimality in Learning

and Imagination

Part IV:

On Minimality in Learning and

Imagination

Preface. Capitalizing on the notion of minimality in the context of learning, Fahlman and

Lebiere (1989) proposed an influential class of self-organized neural network called cascade-

correlation neural networks (CCNNs), which recruited hidden units one at a time as needed,

thereby constructing an architecture sufficient for capturing the regularities in the training

set, with good generalization performances. However, CCNNs, by virtue of recruiting only

new hidden units during the course of learning, dismissed a crucial aspect of human learn-

ing, i.e., relying on the knowledge acquired in the past to unravel new learning tasks as they

come about. To address this shortcoming of CCNNs, Shultz and Rivest (2001) introduced a

new type of CCNNs called knowledge-based cascade-correlation (KBCC), which was allowed

to recruit previously learned neural networks as well as single hidden units during learning.

In that light, CCNNs and KBCC both capitalized on the notion of minimality in learning,

with the former ignoring past knowledge while the latter exploiting it. Humans are not only

adept in recognizing what class an input instance belongs to (i.e., classification task), but

perhaps more remarkably, they can imagine (i.e., generate) plausible instances of a desired

class with ease, when prompted. In computational terms, the notion of generating examples

from a desired class can be formalized in terms of sampling from some underlying probabil-

ity distribution. Despite their appeal from a learning perspective as well as their success in

accounting for a variety of psychological phenomena, it remained an open question if CC-

NNs and/or KBCC could be enabled to probabilistically generate samples, mimicking human

imaginative capacity. Addressing this open problem is the topic of Chapter 6. Chapter 6, for

the first time in the literature, proposes a neurally-plausible and computationally-efficient

framework, allowing to transform any deterministic, discriminative neural network (e.g.,

deep convolutional neural networks and multilayer perceptron) into a probabilistic, genera-

tive model. Using this framework, Chapter 6 shows, as a proof-of-concept, how CCNNs (and

KBCC alike) can be converted into probabilistic generative models, thereby enabling CCNNs
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to probabilistically generate samples from a category of interest. Concretely, the proposed

framework: (1) suggests a modular account of human imagination which is supported by

studies on learning and imaginative abilities of hippocampal amnesic patients as well as a

growing body of brain imaging studies showing that perception and imagery share neural

representation, (2) gives rise to self-organized generative models, (3) strongly suggests that,

contrary to a widely-held view, the boundary between discriminative and generative models

is blurry, (4) bridges computational, algorithmic, and implementational levels of analysis,

and finally, (5) connects two dominant schools of thought in cognitive sciences, namely,

connectionism and Bayesian cognition. The framework presented in Chapter 6 views imag-

ination as a collaborative effort of two separate modules, with one responsible for sampling

from a distribution induced on the input-output mapping learned by the other module, sug-

gesting that a two-module architecture is sufficient to account for human imaginative ability

manifested in generating new samples from a desired class. In accord with the maxim of

Occam’s razor, the proposed framework suggests that, in order to account for human gen-

erative abilities, one need not adhere to an encoder-decoder-type architecture (involving a

forward model (encoder) and a fully separate inverse model (decoder)), but a single forward

model, upon which MCMC operates, might suffice—a more parsimonious design.
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Chapter 6

Converting Deterministic,

Discriminative Neural Networks into

Probabilistic, Generative Models: A

Case Study of Cascade-Correlation

Neural Nets∗

“Everything you can imagine is real.” — Pablo Picasso

A green-striped elephant! Probably no one has seen such a thing—no surprise. But what

is a surprise is our ability to easily imagine one. Humans are not only adept in recognizing

what class an input instance belongs to (i.e., classification task), but more remarkably,

they can imagine (i.e., generate) plausible instances of a desired class, when prompted.

In fact, humans can generate instances of a desired class, say, elephant, that they have

never encountered before, like, a green-striped elephant.1 In this sense, humans’ generative

∗The material presented in Chapter 6 is partly based on “A. S. Nobandegani & T. R. Shultz ; Converting
Cascade-Correlation Neural Nets into Probabilistic Generative Models, In Proceedings of the 39th

Annual Conference of the Cognitive Science Society (CogSci), 2017.”
1In counterfactual terms: Had a human seen a green-striped elephant, s/he would have yet recognized it
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capacity goes beyond merely retrieving from memory. In computational terms, the notion of

generating examples from a desired class can be formalized in terms of sampling from some

underlying probability distribution, and has been extensively studied in machine learning

under the rubric of probabilistic generative models.

Cascade-Correlation Neural Networks (CCNNs) (Fahlman and Lebiere, 1989) are a well-

known class of discriminative (as opposed to generative) models that have been successful

in simulating a variety of phenomena in the developmental literature, e.g., infant learning

of word-stress patterns in artificial languages (Shultz and Bale, 2006), syllable boundaries

(Shultz and Bale, 2006), visual concepts (Shultz, 2006), and have also been successful in cap-

turing important developmental regularities in a variety of tasks, e.g., the balance-scale task

(Shultz et al., 1994; Shultz and Takane, 2007), transitivity (Shultz and Vogel, 2004), con-

servation (Shultz, 1998), and seriation (Mareschal and Shultz, 1999). Also, CCNNs exhibit

several similarities with known brain functions: distributed representation, self-organization

of network topology, layered hierarchical topologies, both cascaded and direct pathways, an

S-shaped activation function, activation modulation via integration of neural inputs, long-

term potentiation, growth at the newer end of the network via synaptogenesis or neurogene-

sis, pruning, and weight freezing (Westermann et al., 2006). Nonetheless, in virtue of being

deterministic and discriminative, CCNNs have so far lacked the capacity to probabilistically

generate examples from a category of interest.

In this work, we propose a framework which allows transforming CCNNs into probabilis-

tic generative models, thereby enabling CCNNs to generate samples from a category. Our

proposed framework is based on a Markov Chain Monte Carlo (MCMC) method, called the

Metropolis-Adjusted Langevin (MAL) algorithm, which employs the gradient of the target

distribution to guide its explorations towards regions of high probability, thereby signifi-

cantly reducing the undesirable random walk often observed at the beginning of an MCMC

run (a.k.a. the burn-in period). MCMC methods are a family of algorithms for sampling

from a desired probability distribution, and have been successful in simulating important

aspects of a wide range of cognitive phenomena, e.g., temporal dynamics of multistable

perception (Gershman et al., 2012; Moreno-Bote et al., 2011), developmental changes in cog-

nition (Bonawitz et al., 2014b), category learning (Sanborn et al., 2010), causal reasoning in

children (Bonawitz et al., 2014a), and accounting for many cognitive biases (Dasgupta et al.,

2016).

as an elephant. Geoffrey Hinton once told a similar story about a pink elephant!
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Furthermore, work in theoretical neuroscience has shed light on possible mechanisms

according to which MCMC methods could be realized in generic cortical circuits (Buesing

et al., 2011; Moreno-Bote et al., 2011; Pecevski et al., 2011; Gershman and Beck, 2017). In

particular, Moreno-Bote et al. (2011) showed how an attractor neural network implementing

MAL can account for multistable perception of drifting gratings, and Savin and Deneve

(2014) showed how a network of leaky integrate-and-fire neurons can implement MAL in a

biologically-realistic manner.

6.1 Cascade-Correlation Neural Networks

CCNNs are a special class of deterministic artificial neural networks, which construct their

topology in an autonomous fashion—an appealing property simulating developmental phe-

nomena (Westermann et al., 2006) and other cases where networks need to be constructed.

CCNN training starts with a two-layer network (i.e., the input and the output layer) with

no hidden units, and proceeds by recruiting hidden units one at a time, as needed. Each

new hidden unit is trained to maximally correlate with residual error in the network built

so far, and is recruited into a hidden layer of its own, giving rise to a deep network with as

many hidden layers as the number of recruited hidden units. CCNNs use sum-of-squared er-

ror as an objective function, and typically use symmetric sigmoidal activation functions with

range −0.5 to +0.5 for hidden and output units.2 Some variants have been proposed: Sibling-

Descendant Cascade-Correlation (SDCC) (Baluja and Fahlman, 1994) and Knowledge-Based

Cascade-Correlation (KBCC) (Shultz and Rivest, 2001). Although in this chapter we focus

on standard CCNNs, our proposed framework can handle SDCC and KBCC as well.

6.2 The Metropolis-Adjusted Langevin Algorithm

MAL (Roberts and Tweedie, 1996) is a special type of MCMC method, which employs the

gradient of the target distribution to guide its explorations towards regions of high probabil-

ity, thereby reducing the burn-in period. More specifically, MAL combines the two concepts

of Langevin dynamics (a random walk guided by the gradient of the target distribution), and

the Metropolis-Hastings algorithm (an accept/reject mechanism for generating a sequence

of samples the distribution of which asymptotically converges to the target distribution).

2Fahlman and Lebiere (1989) also suggest linear, Gaussian, and asymmetric sigmoidal (with range 0
to +1) activation functions as alternatives. Our proposed framework can be straightforwardly adapted to
handle all such activation functions.
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Algorithm 1 The Metropolis-Adjusted Langevin Algorithm

Input: Target distribution π(X), parameter τ ∈ R+, number of samples N .
Output: Samples X(0), . . . ,X(N−1).

1: Pick X(0) arbitrarily.
2: for i = 0, . . . , N − 1 do
3: Sample u ∼ Uniform[0,1]
4: Sample X∗ ∼ q(X∗|X(i)) = N (X(i) + τ∇ log π(X(i)), 2τI)

5: if u < min{1, π(X∗)q(X(i)|X∗)

π(X(i))q(X∗|X(i))
} then

6: X(i+1) ← X∗

7: else
8: X(i+1) ← X(i)

9: end if
10: end for
11: return X(0), . . . ,X(N−1)

We denote random variables with small bold-faced letters, random vectors by capital

bold-faced letters, and their corresponding realizations by non-bold-faced letter. The MAL

algorithm is outlined in Algorithm 1 wherein π(X) denotes the target probability distri-

bution, τ is a positive real-valued parameter specifying the time-step used in the Euler-

Maruyama approximation of the underlying Langevin dynamics, N denotes the number of

samples generated by the MAL algorithm, q denotes the proposal distribution (a.k.a. tran-

sition kernel), N (μ,Σ) denotes the multivariate normal distribution with mean vector μ

and covariance matrix Σ, and I denotes the identity matrix. The sequence of samples gen-

erated by the MAL algorithm, X(0),X(1), . . ., is guaranteed to converge in distribution to

π(X) (Robert and Casella, 2013). It is worth noting that work in theoretical neuroscience

has shown that MAL, outlined in Algorithm 1, can be implemented in a neurally-plausible

manner (Savin and Deneve, 2014; Moreno-Bote et al., 2011).3 In the following section, we

propose a target distribution π(X), allowing CCNNs to generate samples from a category of

interest.

3More precisely, it has been shown how the continuous-time version of MAL, Langevin dynamics, can be
implemented in a neurally-plausible manner. But note that MAL amounts to sampling from the underlying
Langevin dynamics.
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6.3 The Proposed Framework

In what follows, we propose a framework which transforms CCNNs into probabilistic gener-

ative models, thereby enabling them to generate samples from a category of interest. The

proposed framework is based on the MAL algorithm given in Sec. 6.2. Let f(X;W ∗) de-

note the input-output mapping learned by a CCNN, and W ∗ denote the set of weights for

a CCNN after training.4 Upon termination of training, presented with input X, a CCNN

outputs f(X;W ∗). Note that, in case a CCNN possesses multiple output units, f(X;W ∗)

will be a vector rather than a scalar. To convert a CCNN into a probabilistic generative

model, we use the MAL algorithm with its target distribution π(X) being set as follows:

π̃(X) � p(X|Y = Lj)

=
1

Z
exp(−β||Lj − f(X;W ∗)||22), (6.1)

where || · ||2 denotes the l2-norm, β ∈ R+ is a damping factor, Z is the normalizing constant,

and Lj is a vector whose element corresponding to the desired class is +0.5 (i.e., its jth

element) and the rest of its elements are −0.5s. The intuition behind Eq. (6.1) can be

articulated as follows: For an input instance X = X belonging to the desired class j,5 the

output of the network f(X;W ∗) is expected to be close to Lj in l2-norm sense. In this light,

Eq. (6.1) is adjusting the likelihood of input instance X to be inversely proportional to the

(base-e) exponentiation of the said l2 distance.

For a reader familiar with probabilistic graphical models, the expression in Eq. (6.1) looks

similar to the expression for the joint probability distribution of Markov random fields and

probabilistic energy-based models, e.g., Restricted Boltzman Machines and Deep Boltzman

Machines. However, there is a crucial distinction: The normalizing constant Z, the compu-

tation of which is intractable in general, renders learning in those models computationally

intractable.6 The appropriate way to interpret Eq. (6.1) is to see it as a Gibbs distribution

for a non-probabilistic energy-based model whose energy is defined as the square of the pre-

diction error (LeCun et al., 2006). Section 1.3 of LeCun et al. (2006) discusses the topic of

4Formally, f(·;W ∗) :
∏n

i=1 Di →
∏m

j=1 Rj where Di and Rj denote the set of values that input unit i
and output unit j can take on, respectively.

5In counterfactual terms, this is equivalent to saying: Had input instanceX been presented to the network,
it would have classified X in class j.

6More specifically, Z renders the computation of the gradient of the log-likelihood for those models
intractable.
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Gibbs distribution for non-probabilistic energy-based models in the context of discriminitive

learning, computationally modeled by p(Y|X) (i.e., to predict a class given an input), and

raises the same issue that we highlighted above regarding the intractability of computing the

normalizing constant Z in general. In sharp contrast to LeCun et al. (2006), our framework

is proposed for the purpose of generating examples from a desired class, as evidenced by

Eq. (6.1) being defined in terms of p(X|Y). Also crucially, the intractability of computing

Z raises no issue for our proposed framework due to an intriguing property of the MAL

algorithm according to which the normalizing constant Z need not be computed at all.7

Due to Line 4 of Algorithm 1, MAL’s proposal distribution q requires the computation of

∇ log π̃(X(i)), which essentially involves computing ∇f(X(i);W ∗) (note that the gradient is

operating on X(i), and W ∗ is treated as a set of fixed parameters). The multi-layer structure

of CCNN ensures that ∇f(X(i);W ∗) can be efficiently computed using Backpropagation.

Alternatively, in settings where CCNNs recruit a small number of input units (hence, the

cardinality of X(i) is small), ∇f(X(i);W ∗) can be obtained by introducing negligible pertur-

bation to a component of input signal X(i), dividing the resulting change in the network’s

outputs by the introduced perturbation, and repeating this process for all components of

input signal X(i). It is worth noting that although the idea of computing gradients through

introducing small perturbations would lead to a computationally inefficient approach for

learning CCNNs, it leads to a computationally efficient approach for generation, as the

number of input units are typically much fewer than the number of weights in CCNNs (and

artificial neural networks in general). It is crucial to note that the normalizing constant Z

plays no role in the computation of ∇ log π̃(X(i)).

It is worth noting that the target distribution given in Eq. (6.1) is applicable to any

deterministic, discriminative NN (whose input-output mapping is denoted by f(X(i);W ∗)),

with CCNNs being simply a particular class of such models. In other word, the target dis-

tribution given in Eq. (6.1) is not concerned with what class of deterministic, discriminative

NN is responsible for the implementation of the input-output mapping f(X(i);W ∗). In that

light, the proposed framework allows to transform any deterministic, discriminative NN into

a probabilistic, generative model.8

7The MAL algorithm inherits this property from the Metropolis-Hasting algorithm, which it uses as a
subroutine.

8We should note that the vector Lj in Eq. (6.1) needs to be adapted to the deterministic, discriminative
NN which is to be converted to a probabilistic, generative model. For example, if the components of the
output vector fall within zero and one (as is most often the case due to adopting a softmax unit), Lj should
be set as follows: the element of Lj corresponding to the desired class should be set to 1 (i.e., the jth element
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6.4 Simulations

In this section we demonstrate the efficacy of our proposed framework through simulations.

We particularly focus on learning which can be accomplished by two input and one output

units. This permits visualization of the input-output space, which lies in R3. Note that our

proposed framework can handle arbitrary number of input and output units; this restriction

is solely for ease of visualization.

6.4.1 Continuous-XOR Problem

In this section, we show how our proposed framework allows a CCNN, trained on the

continuous-XOR classification task, to generate examples from a category of interest. The

output unit has a symmetric sigmoidal activation function with range −0.5 and +0.5. The

training set consists of 100 samples in the unit-square [0, 1]2, paired with their corresponding

labels. More specifically, the training set is comprised of all the ordered-pairs starting from

(0.1, 0.1) and going up to (1, 1) with equal steps of size 0.1, paired with their correspond-

ing labels (i.e., +0.5 for positive samples and −0.5 for negative samples); see Fig. 6.1(a).

After training, a CCNN with 6 hidden layers is obtained whose input-output mapping,

f(x1, x2;W
∗), is shown in Fig. 6.1(b).9

Fig. 6.2 shows the efficacy of our proposed framework in enabling CCNNs to generate

samples from a category of interest, under various choices for MAL parameter τ (see Al-

gorithm 1) and damping factor β (see Eq. (6.1)); generated samples are depicted by red

dots. For the results shown in Fig. 6.2, the category of interest is the category of positive

examples, i.e., the category of input patterns which, upon being presented to the (learned)

network, would be classified as positive by the network. Because τ controls the amount

of jump between consecutive proposals made by MAL, the following behavior is expected:

For small τ (Fig. 6.2(a)) consecutive proposals are very close to one another, leading to

a slow exploration of the input domain. As τ increases, bigger jumps are made by MAL

(Fig. 6.2(b)).10 Parameter β controls how severely deviations from the desired class label

of Lj) and the rest of the elements of Lj should be set to 0.
9Due to the inherent randomness in CCNN construction, training could lead to networks with different

structures. However, since in this chapter we are solely concerned with generating examples using CCNNs
rather than how well CCNNs could learn a given discriminitive task, we arbitrarily pick a learned network.
Note that our proposed framework can handle CCNNs with arbitrary structures; in that light, the choice of
network is without loss of generality.

10Yet, too large a β is not good either, leading to a sparse and coarse-grained exploration of the input
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Fig. 6.1 A CCNN trained on the continuous-XOR classification task. (a)
Training patterns. All the patterns in the gray quadrants are negative exam-
ples with label −0.5, and all the patterns in the white quadrants are positive
examples with label +0.5. Red dotted lines depict the boundaries. (b) The
input-output mapping, f(x1, x2;W

∗), learned by a CCNN, along with a color-
bar. (c) The top-down view of the curve depicted in (b), along with a colorbar.

(here, +0.5) are penalized. The larger the parameter β, the more severely such deviations

are penalized and the less likely MAL moves toward such regions of input space. Accep-

tance Rate (AR), defined as the number of accepted moves divided by the total number of

suggested moves, is also presented for the results shown in Fig. 6.2. Fig. 6.2(c) shows that

for τ = 5× 10−3 and β = 10, our proposed framework demonstrates desirable performance:

virtually all of the generated samples fall within the desired input regions (i.e., the regions

associated with hot colors, signaling the closeness of network’s output to +0.5 in those re-

space. Some measures have been proposed in computational statistics for properly choosing τ (see Roberts
and Rosenthal, 1998).



6.4 Simulations 111

x1

x
2

β = 1, τ = 5× 10
−5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) N = 2000, AR = 99.55%

x1

x
2

β = 1, τ = 5× 10
−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) N = 2000, AR = 75.25%

x1

x
2

β = 10, τ = 5× 10
−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) N = 2000, AR = 57.85%

Fig. 6.2 Generating example for the positive category, under various choices
for MAL parameter τ and damping factor β. Contour-plot of the learned map-
ping, f(x1, x2;W

∗), along with its corresponding colorbar is shown in each
sub-figure. Generated samples are depicted by red dots. N denotes the total
number of samples generated by MAL, and AR denotes the corresponding ac-
ceptance rate. (a) τ = 5 × 10−5 leads to a very slow exploration of the input
space. (b) τ = 5 × 10−3 leads to an adequate exploration of the input space,
however, β = 1 is not penalizing undesirable input regions severely enough. (c)
A desirable performance is achieved by τ = 5× 10−3 and β = 10.

gions; see Fig. 6.1(c)) and the desired regions are adequately explored (i.e., all hot-colored

input regions being visited and almost evenly explored).

Fig. 6.2 depicts all the first N = 2000 samples generated by MAL, without excluding the

so-called burn-in period. In that light, the result shown in Fig. 6.2(c) nicely demonstrates

how MAL—by directing its suggestions toward the direction of gradient and therefore moving

toward regions with high likelihood—could alleviate the need for discarding a (potentially

large) number of samples generated at the beginning of an MCMC which are assumed to

be unrepresentative of equilibrium state, a.k.a. the burn-in period. Fig. 6.3 shows the per-

formance of our framework in enabling the learned CCNN to generate from the category of

negative examples, with τ = 5× 10−3 and β = 10.

6.4.2 Two-Spirals Problem

Next, we show how our proposed framework allows a CCNN, trained on the famously difficult

two-spirals classification task (Fig. 6.4), to generate examples from a category of interest.

The output unit has a symmetric sigmoidal activation function with range −0.5 and +0.5.

The training set consists of 194 samples (97 samples per spiral), in the square [−6.5, 6.5]2,

paired with their corresponding labels (+0.5 and −0.5 for positive and negative samples,
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Fig. 6.3 Generating example for the negative category, with τ = 5×10−3, β =
10. Generated samples are shown by blue dots. Total number of samples
generated is N = 2000, with AR = 65.13%.

respectively). The training patterns are shown in Fig. 6.4(a) (see Chalup and Wiklendt,

2007, for details). After training, a CCNN with 14 hidden layers is obtained whose input-

output mapping, f(x1, x2;W
∗), is depicted in Fig. 6.4(b).

Fig. 6.5(left) and Fig. 6.5(right) show the efficacy of our proposed framework in enabling

CCNNs to generate samples from the positive and negative categories, respectively. Although

similar patterns of behavior observed in Sec. 6.4.1 due to increasing/decreasing β and τ are

observed here as well, due to the lack of space such results are omitted. The results in Fig. 6.5

depict all the first N = 15000 samples generated by MAL, without excluding the burn-in

period. In that light, these results again demonstrate the efficacy of MAL in alleviating the

need for discarding a (potentially large) number samples generated at the beginning of an

MCMC run.

Interestingly, our proposed framework also allows CCNNs to generate samples subject to

some forms of constraints. For example, Fig. 6.6 demonstrates how our proposed framework

enables a CCNN, trained on the continuous-XOR classification task (see Sec. 6.4.1), to

generate examples from the positive category, under the following constraint: Generated

samples must lie on the curve x2 = 0.25 sin(8πx1)+0.5. To generate samples from the positive

category while satisfying this constraint, MAL adopts our proposed target distribution given

in Eq. (6.1), and treats x1 as an independent and x2 as a dependent variable.
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Fig. 6.4 A CCNN trained on the two-spirals classification task. (a) Training
patterns. Positive patterns (associated with label +0.5) are shown by hollow
circles, and negative patterns (associated with label −0.5) by black circles.
Positive spiral is depicted by a dashed line, and negative spiral by a dotted line.
(b) The input-output mapping, f(x1, x2;W

∗), learned by a CCNN, along with
a colorbar. (c) The top-down view of the curve depicted in (b), along with a
colorbar.

6.5 General Discussion

Although we focused on CCNNs as a case study, our proposed framework allows to transform

any deterministic, discriminative neural network (e.g., multilayer perceptron and deep con-

volutional neural networks) into a probabilistic, generative model. Importantly, our frame-

work is both neurally-plausible and computationally-efficient. The neural-plausibility of our

framework stems from the fact that MAL can be implemented in a neurally-plausible man-

ner (Savin and Deneve, 2014; Moreno-Bote et al., 2011). Furthermore, the computational-

efficiency of our framework follows from the following three statements: (1) our framework
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Fig. 6.5 Generating example for the positive and negative categories, with
β = 20 and τ = 0.7. Contour-plot of the learned mapping, f(x1, x2;W

∗), along
with its corresponding colorbar is shown in each sub-figure. N denotes the
total number of samples generated by MAL, and AR denotes the corresponding
acceptance rate. Left: Generated example for the positive category, with N =
15000 and AR = 40.69%; generated samples are depicted by red dots. Right:
Generated example for the negative category, with N = 15000 and AR =
40.28%; generated samples are depicted by blue dots.

leverages the gradient of the target distribution (Eq. 6.1) to guide its search through the

input space, (2) the gradient of the target distribution can be efficiently computed using

backpropagation (see Sec. 6.3), and finally (3) our framework does not require that the nor-

malizing constant of the target distribution (Eq. 6.1) be computed at all.11 Furthermore, our

11Recently, Jern and Kemp (2013) advocated a two-step account of exemplar generation: (1) using the
training set, a joint probability distribution P(X,Y) should be learned over input-output pair (X,Y), (2)
generating exemplars then amounts to drawing samples from P(X|Y) = P(X,Y)/P(X). Our proposed frame-
work is fully consistent with Jern and Kemp’s account. Aside from the fact that our framework focuses on
neural networks while Jern and Kemp’s account is mainly directed toward learning probability distributions,
a distinctive feature of our framework is that it substitutes the computationally intractable Step (1) of Jern
and Kemp’s account (which involves learning a joint distribution, possibly consisting of hidden variables)
with a step which can be carried out in a much more computationally efficient manner, namely, learning
a discriminative, deterministic NN; our framework subsequently induces (instead of learning) a probability
distribution on the input-output mapping leaned by the discriminative, deterministic NN (see Eq. 6.1). Also,
in multiple occasions, Jern and Kemp (2013) advocate the idea that a purely trial-and-error-style approach
to exemplar generation could be very inadequate (particularly, for their randomly-sample-and-score account,
which builds on discriminative models of classification, and as Jern and Kemp point out, seems to be psycho-
logically implausible), implicitly suggesting that more informed mechanisms for exemplar generation might
be needed. Crucially, our framework leverages the gradient of the target distribution to inform its search
through the input space. We believe that gradient-based MCMCs (e.g., MAL) may be good candidates
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Fig. 6.6 Generating examples for the positive category, under constraint x2 =
0.25 sin(8πx1) + 0.5 (dash-dotted curve), with N = 5000 and AR = 39.82%.
Contour-plot of the learned mapping, f(x1, x2;W

∗), along with its correspond-
ing colorbar is depicted. Generated samples are shown by red dots, which
appear mainly as solid red curves due to high density.

proposed framework, together with recent work in theoretical neuroscience showing possible

neurally-plausible implementations of MAL (Savin and Deneve, 2014; Moreno-Bote et al.,

2011), suggests an intriguing modular hypothesis according to which generation could result

from two separate modules interacting with each other (in our case, a CCNN and a neural

network implementing MAL). This hypothesis yields the following prediction: There should

be some brain impairments which lead to a marked decline in a subject’s performance in

generative tasks (i.e., tasks involving imagery, or imaginative tasks in general) but leave

for addressing the sensible concern alluded to by Jern and Kemp. Also, the recent surge of interest in
computational statistics on gradient-based MCMCs for dealing with high-dimensional distributions (Barp,
Briol, Kennedy, & Girolami, 2017) lends further credibility to this idea. It is worth noting that according to
Jern and Kemp (2013), their sample-by-parts account (as an instantiation of their sampling account) cannot
handle cases wherein exemplars comprise correlated parts, while our framework in principle can. (This is
due to the fact that possible correlations between different parts of an input X = X is expected to be
captured by a discriminative neural network, though training. For example, when a convolutional neural
net is trained on a face recognition task, the correlation between various constituent parts of a face, e.g.,
eyes, ears, nose, lip, etc. will be captured by the trained network.) Furthermore, it is easy to formally show
that our proposed target distribution (Eq. 6.1) nicely captures the idea that some exemplars of a category
are more likely than others, a property that people are sensitive to when generating exemplars (Jern and
Kemp, 2013). Finally, since consecutive samples generated by MCMCs tend to be correlated (see Sanborn
and Chater, 2016), our framework can potentially explain the violations of independence effect documented
by Jern and Kemp (2013).
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the subject’s learning abilities (nearly) intact. Studies on learning and imaginative abilities

of hippocampal amnesic patients already provide some supporting evidence for this idea

(Hassabis et al., 2007; Spiers et al., 2001; Brooks and Baddeley, 1976).

According to Line 4 of Algorithm 1, to generate the ith sample, MAL requires access to

a fine-tuned, Gaussian noise with mean X(i) + τ∇ log π(X(i)) for its proposal distribution q.

Recently Savin and Deneve (2014) showed how a network of leaky integrate-and-fire neurons

can implement MAL in a neurally-plausible manner. However, as Gershman and Beck (2017)

point out, Savin and Deneve leave unanswered what the source of that fine-tuned Gaussian

noise could be. Our proposed framework may provide an explanation, not for the source of

Gaussian noise, but for its fine-tuned mean value. According to our modular account, the

main component of the mean value, which is ∇ log π(X(i)), may come from another module

(in our case, a CCNN) which has learned some input-output mapping f(X;W ∗), based on

which the target distribution π(X(i)) is defined (see Eq. (1)).

In accord with the maxim of Occam’s razor, the proposed framework suggests that, in

order to account for human generative abilities, one need not adhere to an encoder-decoder-

type architecture (involving a forward model (encoder), and a fully separate inverse model

(decoder)), but a single forward model, upon which MCMC operates, might suffice—a more

parsimonious design. Next, we articulate three propositions which cast doubt on the plausi-

bility of an encoder-decoder-type architectures as an account of human imaginative abilities.

Firstly, encoder-decoder-type architectures predict that the time-complexity of discrimina-

tion and generation should be predominately comparable. However, our daily experience

strongly suggests to the contrary, with generation often appearing to be more effortful (see

Jern and Kemp, 2013). Secondly, encoder-decoder-type architectures predict that discrimi-

native and generative abilities are fully dissociated, with one functionality being completely

independent of the other. According to our modular account, however, discriminative abili-

ties can be preserved while generative abilities are impaired, but no the other way around.

This follows from the fact that our modular account posits that generation piggybacks on

discrimination, but not vice-versa. The fact that there have been no reports of any subjects

with impaired discriminative abilities but spared imaginative abilities calls into question the

validity of the encoder-decoder-type architectures prediction mentioned above. A growing

body of work in brain imaging suggests that perception and imagery share neural represen-

tations, corroborating the view that the phenomenological similarity between imagery and

perception is mirrored in similar neural representations (e.g., O’Craven and Kanwisher, 2000;
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Cichy et al., 2012; Ishai et al., 2000; Grill-Spector and Malach, 2004; Reddy and Kanwisher,

2007; De Beeck et al., 2008). For example, in a recent study using a combination of func-

tional magnetic resonance imaging (fMRI) and multivariate pattern classification, Cichy et

al. (2012) provide evidence supporting the view that perception and imagery systematically

share representations of both content (i.e., the category of object seen by a subject) and

location (i.e., where the object is seen to be) in ventral visual cortex. These findings lend

further support to our modular account, and, at the same time, cast considerable doubt on

encoder-decoder-type architectures as an account of human imagery, as they maintain the

view that perception and imagery operate on fully dissociated neural circuits. Finally, having

separate modules for discrimination and generation, as maintained by encoder-decoder-type

architectures, ensues some nontrivial problems as to how one module should be updated in

light of the other’s update. For example, suppose after the training of an encoder-decoder

architecture, the discriminative module (i.e., the encoder) is presented with more data, and

in order to accommodate the new data which have come to light, the discriminative mod-

ule has to go through an update (i.e., further training). The question that immediately

arises is how the decoder should be modified in response to the newly introduced update to

the encoder—a computationally nontrivial question. However, in the case of our modular

account, this key question simply never arises in the fist place.

The idea of sample generation under constraints could be an interesting line of future

work. Humans clearly have the capacity to engage in imaginative tasks under a variety

of constraints, e.g., when given incomplete sentences or fragments of a picture people can

generate possible completions (Sanborn and Chater, 2016). Also, our proposed framework

can be used to let a CCNN generate samples from a category of interest at any stage during

CCNN construction. In that light, our proposed framework, along with a neurally-plausible

implementation of MAL, gives rise to a self-organized generative model : a generative model

possessing the self-constructive property of CCNNs. Such self-organized generative models

could provide a wealth of developmental hypotheses as to how the imaginative capacities

of children change over development, and models with quantitative predictions to compare

against. We see our work as a step towards such models. Last but not least, our framework

strongly suggests that, contrary to a widely-held view, the boundary between discriminative

and generative models is blurry—perhaps they are just two sides of the same coin!
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Chapter 7

Epilogue

“Nature does nothing in vain, and more is in vain when less will serve;

for Nature is pleased with simplicity...”

— Isaac Newton, Pricipia Mathematica

7.1 Paying Attention to Signs

In our attempt to uncover—arguably a glimpse of—how minimality and sufficiency play out

in the contexts of learning, reasoning, action, and imagination, we encounter key notions and

principles: symmetry, invariance, scale-invariance (aka self-similarity), nestedness, locality,

maximal-informativeness, anytime algorithms, and, finally, the notion of asynchronous, dis-

tributed mechanism. Another intriguing property of fundamental notions like minimality

is that their investigations oftentimes invoke other fundamental notions—birds of a feather

flock together.

The central argument that we would like to make is the following: In the quest for

articulating a plausible, algorithmic-level account of cognition, the aforesaid notions—and

arguably many others that we either did not touch on or are simply not known awaiting to be

discovered—ought to be actively sought for, as guiding principles. That is, it is not merely

enough for them to incidentally manifest themselves in our algorithmic-level accounts; but

we are to force them, consciously, into the very fabrics of the formulation of the problem

under study as well as its solution.

The next section, perhaps, sheds some light on the subject matter.
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7.1.1 A Quick Lesson from Physics

According to Feynman1, it was Poincaré who first realized the significant role symmetry

plays in the characteristics of physical laws, inviting physicists to pay attention to it. Steven

Weinberg2 points out that, at the time of his graduate studies, having no idea of the nature

of the forces, all that an elementary-particle physicist could possibly do was to work out the

symmetries the fundamental forces acting on the particles would have to satisfy. It turned

out, ultimately, that the nature of the forces were in fact dictated by those symmetries—

satisfying those symmetries, serving as a set of constraints, would simply leave no room for

the forces to take any other forms. Weinberg goes on to point out that a story of the same

kind also holds for Einstein’s general relativity.

7.2 Minimality as a Guiding Principle

The ideas explored in this dissertation suggest that pursuing the key notion of minimality—

and sufficiency as a relaxation of it—is a fruitful endeavor for understanding cognition at

the computational and algorithmic levels. Inspired by this, next, we put forward a mode of

enquiry, termed the Rational Minimalist Program (RMP), which brings together Anderson’s

(1990) rational analysis methodology and the key notion of minimality. In RMP, the term

“rational”—echoing Anderson’s rational analysis approach—emphasizes the adaptive nature

of a cognitive system as well as its purposive attitude of striving for optimality,3 and the

term “minimalist” captures the cognitive system’s very attempt toward attaining optimality,

in the thriftiest manner possible (i.e., with the least redundancy in terms of resources).

7.2.1 A Formalization of the Notion of Minimality

Before articulating the RMP, let us present a formal characterization of the notion of min-

imality. Depending on the nature of the resource with respect to which the notion of min-

imality is invoked, minimality can be formalized in two ways, with the second way being a

generalization of the first. The first way applies to resources such as time, space, exchanged

1The Character of Physical Laws: Symmetry in Physical Law, The messenger lectures, Cornell University,
1964.

2Of Beauty and Consolation: Episode 6
3According to Anderson’s rational analysis methodology, human performance on task T is successful

insofar as it approximates the optimal solution to task T, assuming no computational limitations on the
reasoner’s mental faculties (Chater and Oaksford, 1999).



7.2 Minimality as a Guiding Principle 121

messages/bits, and samples, which we refer to as non-set-theoretic resources.4 The second

way, applies to resources such as knowledge-base and its elements, and neural modules with

specific functionalities, which we refer to as set-theoretic resources. Like before, we use the

notion of sufficiency as a proxy (and a relaxation) for the notion of minimality.

Def 7.1 (sufficiency, non-set-theoretic resources) For a non-set-theoretic re-

source R, a tR ∈ R≥0 amount of R is said to be sufficient for task T iff T can be

accomplished by tR amount of resource R.

Def 7.2 (minimality, non-set-theoretic) For a non-set-theoretic resource R, a

tR ∈ R≥0 amount of R is said to be minimal for task T iff (1) tR amount of R is sufficient

for task T, and (2) � t′R < tR s.t. t′R amount of R is sufficient for task T.

Def 7.3 (sufficiency, set-theoretic resources) Set S is said to be sufficient for

task T iff using the members of S, T can be accomplished.

Def 7.3 (minimality, set-theoretic resources) Set S is said to be minimal for

task T iff (1) S is sufficient for task T, and (2) � S ′ � S s.t. S ′ is sufficient for task T.

7.2.2 Rational Minimalist Program: Pursuing Rationality at the Algorithmic

Level of Analysis

As mentioned earlier, RMP is a methodology which integrates the notion of minimality (as

formalized in Sec. 7.2.1) and Anderson’s (1990) rational analysis approach. RMP outlines a

principled way to studying cognition at the algorithmic level. Concretely, by drawing on the

concept of minimality in addition to that of optimality (with the latter being characteristic

of Anderson’s rational analysis), RMP outlines a principled, algorithmic-level methodology,

paralleling Anderson’s rational analysis approach which was devised for systematic investi-

gation of cognition at the computational level. Crucially, RMP adds a new dimension to

rationality, namely, that of minimality. In Anderson’s rational analysis approach, rationality

is characterized solely based on the concept of optimality, hence having only one dimension.

In RMP, rationality has two dimensions: optimality and minimality. That is, according to

4In algorithmics and statistical learning theory, the implications of the aforesaid resources are character-
ized in terms of time-complexity, space-complexity, communication-complexity, and sample-complexity.
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RMP, a cognitive system is rational (1) to the extent that it attains optimality, and (2) to

the extent that it satisfies minimality while achieving (1). Simply put, in Anderson’s rational

analysis approach (which is a computational-level methodology) a cognitive system strives

for optimality, while, in RMP (which is an algorithmic-level methodology) a cognitive system

strives for minimalist-optimality—to attain optimality with the least resources required for

doing so, or, formally, to attain optimality while satisfying minimality criterion (as formal-

ized in Sec. 7.2.1). Hence, the term “minimalist” conveys the following message: with the

least redundancy in terms of resources, highlighting the thrifty attitude of a cognitive system

in striving for optimality. Informally speaking, RMP holds the view that the mind tends to

just put in the bare minimum (of resources) to attain optimality—the stingy mind!

We are now well-positioned to delineate RMP in five steps, outlined below.

Rational Minimalist Program

1. Formally articulate the objective of the cognitive system, T.

2. Formally specify the cognitive system’s mental model of its environment. (data

structure)

3. Except for resource R, postulate no constraints on the cognitive system’s compu-

tational/cognitive resources.

4. Given (1)-(3) and a performance guarantee on T, devise an algorithm A which

attains minimalist-optimality (with optimality referring to fully satisfying the

performance guarantee on T, and minimality being invoked w.r.t. resource R).

5. See if predictions of A are borne out empirically. If not, revise and re-evaluate.

In the following section, we elaborate on how various steps in RMP can be relaxed by

acknowledging Simon’s (1957) principle of bounded rationality, mimicking the natural move

from perfect rationality/optimality toward bounded optimality (Russell, 1997).
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7.2.3 Relaxing Rational Minimalist Program (RMP): From (Perfect) RMP to

Bounded RMP

Analogous to dropping the unrealistic assumption of “unlimited cognitive/computational

resources” made in Anderson’s (1990) rational analysis approach (which counts as a move

from perfect optimality to bounded optimality in Russell’s (1997) terms), the restrictive role

of various cognitive resources can be increasingly introduced into RMP, thereby increasingly

incorporating Simon’s (1957) principle of bounded rationality into the methodology of RMP.

For example, Step 3 of RMP can be relaxed, straightforwardly, by imposing restrictions on

other cognitive resources except R and/or by imposing limits on the amount of computation

which can be carried out by the cognitive system in a unit of time. Also, Step 4 of RMP can

be relaxed in various ways. The said performance guarantee can be construed as attaining

the optimal solution OPT (as is the case for exact algorithms), or as attaining merely an

approximation to OPT (as is the case for approximation algorithms). We refer to such

relaxations of RMP as bounded RMP. Therefore, RMP and its relaxed variant bounded RMP,

together, form a mode of enquiry—which is parallel to Anderson’s rational analysis approach

and its relaxation bounded optimality (with the latter considering cognitive/computational

limitations), which were introduced for studying cognition at the computational level5—

outlining a rational approach to studying cognition at the algorithmic level of analysis (see

Fig. 7.1).

7.2.4 Rational Minimalist Program’s Implications

By focusing on a particular resource R (see RMP’s Step 3), RMP aims to formally char-

acterize the computational significance of resources R for cognition. That is, RMP aims

to precisely characterize what a restriction imposed on resources R implies for a cognitive

system. For example, it could be that a certain constraint on resources R renders the objec-

tive of the cognitive system outright unattainable, echoing the notions of impossibility and

inapproximability results in theoretical computer science (TCS). The formulation of RMP,

therefore, is very appealing from the vantage point of TCS, and makes contact with a wide

5However, we should note that Russel’s (1997) formulation of bounded optimality in terms of value of
computation (VOC) (Horvitz, 1990) allows for a principled, process-level methodology, targeted at prob-
lems which can be cast as a reinforcement learning problem (see Griffiths et al., 2015). Broadly speaking,
nonetheless, Russel’s (1997) bounded optimality paradigm is an optimization-based methodology, focusing on
optimizing the VOC, whereas RMP (and, by extension, bounded RMP) is an algorithm-design methodology,
which is after devising minimalist-optimal algorithms.
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Fig. 7.1 Rational minimalist program (RMP) and its relaxation bounded
RMP, together, form a rational mode of inquiry for studying cognition at the
algorithmic level, serving as a parallel research program to Anderson’s (1990) ra-
tional analysis approach and its relaxation bounded optimality (with the latter
considering cognitive/computational limitations) which were devised for study-
ing cognition at the computational level of analysis.

range of topics in TCS: exact and/or approximation algorithms, parameterized complexity,

fixed-parameter tractability (with the restriction imposed on R serving as a natural param-

eter), and developing inapproximability results. When the task of the cognitive system is a

decision problem, pursuing RMP naturally makes contact with the notions of shortest proof

(for NP) and shortest disproof (for coNP) (for an example on this, see Sec. 5.2 where we

introduce the notion of minimal refutation-module).

7.2.5 A Dual Interpretation of Rational Minimalist Program: D-RMP

In what follows, we develop a dual interpretation of RMP, termed D-RMP. Our objective

for such a development is that, despite the mathematical equivalence of RMP and D-RMP,

some problems/tasks lend themselves more naturally to D-RMP than RMP.6 Under the

assumption that having access to more of resource R allows a cognitive system to attain a

strictly better performance guarantee on a task T of interest (which is equivalent to assuming

that the quality of the cognitive system’s performance on T is strictly increasing in the size

of R), the algorithmic solution to the following two problems is the same: (This claim can

6For the reader familiar with representational systems, this should come as no surprise. Given two equiv-
alent representational systems (i.e., if statement e can be represented in one system, it can be represented in
the other as well, for all e), one representational system may allow for a simpler, more parsimonious repre-
sentation of a proposition than the other; e.g., the tabular representation of a joint probability distribution
vs. its representation by a Bayesian network.



7.2 Minimality as a Guiding Principle 125

be straightforwardly established using proof by contradiction.)

rational minimalist program (RMP) vs. its dual (D-RMP)

(P1) For a given performance guarantee on T, which algorithm uses the least amount of

resource R to attain that? (RMP version)

(P2) For a given amount of resource R, which algorithm yields the best performance

guarantee on T? (D-RMP version)

Let us clarify the above equivalence by giving a concrete example. Assuming that the

error incurred on a task T is strictly decreasing in the amount of time spent by a cognitive

system on T, the following algorithmic problems have the same solution:

(1a) Which algorithm uses the least amount of time to attain a given error rate on T?

(1b) For a given amount of time, which algorithm yields the least error rate on T?

Or, reiterating the above example when the resource of interest is the number of random

samples used by the cognitive system (a setting which is of great interest to sample-based

accounts, widely entertained in Bayesian models of cognition), the following equivalence

follows:

(2a) Which algorithm uses the least number of samples to attain a given error rate on T?

(2b) For a given number of samples available to a cognitive system, which algorithm yields

the least error rate on T?

Intriguingly, the well-known speed-accuracy trade-off, a very ubiquitous effect in the literature

on judgment and decision-making, arises naturally out of the established duality between

RMP and D-RAMP. Arguably, the fact that such an important effect naturally arose from

this duality under extremely minimal assumptions about the nature of the decision-task

faced by the cognitive system, elevates the credibility of RMP (and D-RMP, by duality) as

a methodology, and highlights its robustness under a wide range of decision-making tasks’

parameterizations.
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7.2.6 On the Connection between RMP and Chomsky’s Minimalist Program in

Linguistics

A reader familiar with Chomsky’s Minimalist Program (MP) in linguistics may rightfully

wonder if there is any connection between MP and the proposed methodology RMP; after all,

their names strongly suggest that they should have a great deal in common (otherwise, call-

ing it ‘Rational Minimalist Program’ would have been a bad choice). Indeed, they do have a

great deal in common. Simply put, RMP is, in essence, an extension of MP (which is solely

concerned with the human language faculty, a.k.a. Universal Grammar) to studying human

cognition, as a whole, at the algorithmic level of analysis. This understanding is eminent in

the following characterization of MP:7 “The minimalist program for linguistic theory adopts

as its working hypothesis the idea that Universal Grammar is ‘perfectly’ designed, that is, it

contains nothing more than what follows from our best guesses regarding conceptual, biolog-

ical, physical necessity” (Boeckx, 2006, emphasis added). That is, using the terminology of

RMP, MP in linguistics seeks to show that the human language faculty is minimalist-optimal;

in the above quote from Boeckx (2006), the terms ‘perfectly’ and ‘no more than’ correspond

to optimality and minimality criteria, respectively. In that light, broadly speaking, linguis-

tic MP can be construed as an instantiation of the proposed methodology RMP within the

context of the human language faculty. This understanding has significant implications for

RMP: Successes of linguistic MP count as successes of RMP, and, likewise, failures of MP

count as that of RMP. There is substantial literature on linguistic MP which we do not get

into; for a great exposition of MP and its historical, philosophical, biological, and empirical

grounds see Boeckx (2006).

The two concepts of economy and virtual conceptual necessity, that occupy center stage

in linguistic MP (Boeckx, 2006), eminently highlight two key features of RMP.8 Economy,

as a manifestation of least effort principle, chiefly echoes the minimalist aspect of the RMP’s

minimalist-optimality objective (RMP, Step 4), and virtual conceptual necessity captures the

limitations, constraints, and conditions imposed by the mind’s computational and cognitive

7Likewise, the following characterization of linguistic MP attests to the claim that MP and RMP share
the same core concept: “Minimalism is animated by the belief that the old adage ‘Least is best’ is not
only methodologically desirable but also true of the design of the language faculty” (Boeckx, 2006) (Boeckx,
2006).

8In Boeckx’s (2006) view, the concept of symmetry also represent the third pillar of linguistic MP. Similar
to economy, symmetry also bears on the the minimalist aspect of the RMP’s minimalist-optimality objective
(RMP, Step 4). Our emphasis on pursuing the notions of symmetry, self-symmetry, and invariance in Sec. 7.1
clearly echoes this point.
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apparatus (RMP, Step 3).

In light of the said connections between MP and RMP, it is worth noting Chomsky’s

(2000) view on MP:

”The minimalist goal of discovering how perfect/well-designed language is will in-

evitably meet with obstacles. Language seems to be full of imperfections, properties

that do not seem to follow from economy, virtual conceptual necessity, or symmetry.

When faced with some apparent property P of language, the way to proceed is to find

out whether:

(i) P is real, and an imperfection (i.e., a real problem for minimalism)

(ii) P is not real, contrary to what had been supposed

(iii) P is real, but not an imperfection; [once scrutinized, P can be shown to be] part

of a best way to meet design specification.”

By the same logic, RMP, too, will inevitably meet with obstacles; and the way to proceed

is what Chomsky (2000) suggests above. In short, what RMP seeks to understand is how

much of human cognition meets the principle of minimalist-optimality. And we might be

surprised that a large portion of human behaviors documented in the literature as evidence

for human irrationality would ultimately turn out to be accounted for by appealing to RMP’s

minimalist-optimality criterion.

As Boeckx (2006) notes “[Linguistic] minimalism is worth pursuing because, to the extent

that one can reach explanations by following minimalist guidelines, such explanations will

have a deep and pleasing character;” the same obviously holds for any explanation provided

by pursuing RMP, making the pursuit of RMP a pleasing endeavor.

Next, we show that the pursuit of RMP has already helped us develop a deeper under-

standing of important aspects of human cognition.

7.2.7 Instantiations of Rational Minimalist Program

In this section, we elaborate on how the line of work pursued in Chapters 2 to 6 can all be

viewed as instantiations of RMP methodology.

In Chapter 2, inspired primarily by the reasoner’s limited attention span and scope (as

a manifestation of Simon’s bounded rationality), we introduced a new graphical model,

MCM, to represent the reasoner’s partial knowledge of a domain. Concretely, MCM served
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as a normative, probabilistic, representational-level model for capturing the state of partial

knowledge of a domain. Due to the state of knowledge being partial, the best one could

hope for was to derive optimal bounds given the available partial knowledge to the reasoner

represented by an MCM. Hence, the task T was finding lower and upper bounds on a posed

query, and the performance guarantee became those upper and lower bounds being optimal,

given the reasoner’s state of partial knowledge represented by an MCM. We then proposed

a computationally-efficient algorithm which could identify a sufficient set of variables for

the aforementioned task, and output optimal lower and upper bound on the posed query.

Also, MCM served as the first normative, probabilistic, representational-level account of

an important developmental shift from features in isolation to correlations between those

features, in infants between four an ten months of age. In that light, the line of work

investigated in Chapter 2 is an instantiation of RMP with its Step 4 being relaxed (due to

settling for sufficiency instead of minimality)—hence an instantiation of bounded RMP.

In our investigation of the causal frame problem in Chapter 3, inspired by Simon’s

bounded rationality, we substantiated the concurrence approach to reasoning. Guided (in

retrospect) by the key notions of locality and nestedness, the task T was deriving lower

and upper bounds on a posed query given a retrieved submodel, requiring the retrieved

submodel to be sufficient for the derivation of the proposed bounds on the posed query.

We also formally showed that the reported lower and upper bounds on the query were the

“best” one could possibly hope for, through the introduction of the key notion of maximally-

informativeness—hence “maximally-informativeness” served as the performance guarantee.

Furthermore, we showed that our proposed framework were consistent with a wide range of

findings in the literature, and substantiated the claim that the introduced graph-theoretic

notion of potential level (PL) might bear on how time is encoded in the mind. In that light,

the line of work explored in Chapter 3 is an instantiation of RMP with its Step 4 being

relaxed (due to settling for a sufficient submodel rather than the minimal submodel)—hence

an instantiation of bounded RMP.9

The line of work investigated in Chapter 4 is an instantiation of RMP without any relax-

9Following Russell’s (1997) bounded optimality methodology (which is, broadly, equivalent to the
resource-rational methodology proposed by Griffiths et al. (2015)), Icard and Goodman (2015) presented
a boundedly-rational approach to the CFP, formally articulated at Marr’s computational level of analysis,
but left unanswered how the CFP can be addressed at Marr’s algorithmic level. However, pursuing bounded
RMP allowed us to present a formal, boundedly-rational, algorithmic-level approach to the CFP. This ap-
parently suggests that RMP (and, by extension, bounded RMP and D-RMP) is a more fruitful methodology
for investigating cognition at the algorithmic level.
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ations, with the task T being TPS-controllability of a CBN formally captured by maximax,

minimin, maximin, and minimax objectives, and the performance guarantee being to be

optimal w.r.t. the said objectives (hence, no approximations). We proposed a linear-time

algorithm which outputted a minimal set of intervenable nodes X ∗ for the maximax and

minimin objectives.10 Also, the formalism developed in Chapter 4 established the first ratio-

nal, algorithmic-level account of a curious behavior demonstrated by young children called

overimitation, generally taken as evidence for children’s irrationality.

The fundamental idea of asynchronous, distributed mechanisms came into play in Chapter

5, where we revisited Pearl’s key notion of d-separation. The task T was deciding if a posed

d-separation query held in a BN, with the performance guarantee being that the output

of the proposed algorithm be correct for every input instance (hence, no approximations).

Through the introduction of the graph-theoretic notion of minimal refutation-module, we

formally characterized how the proposed algorithm D∗ explores the smallest subgraph of

the BN, to disprove a given no-instance d-separation query. Consistent with the brain’s

computational machinery (see McClelland, 1989; Chater et al., 2006, inter alia) and fully in

the spirit of the celebrated parallel-distributed-processing (PDP) research program in brain

and cognitive sciences, D∗ permitted the implementation of d-separation in an asynchronous,

distributed, message-passing fashion. Also, recent work in neuroscience investigating possible

implementation of BNs at the neural level supports D∗’s use of BN links as a medium for

inference, and we also provided normative grounds for D∗’s tendency toward quick detection

of no-instance d-separation queries. In that light, the line of work explored in Chapter 5 is

an instantiation of RMP.

In Chapter 6, we proposed a neurally-plausible and computationally-efficient framework,

allowing to transform any deterministic, discriminative neural network (e.g., deep convo-

lutional neural networks and multilayer perceptron) into a probabilistic, generative model.

The resource of interest in this chapter was the number of neural modules/units required

for performing the tasks of learning and exemplar generation, thereby RMP making contact

with the implementational level of analysis. The line of work investigated in Chapter 6,

prima facie, seems to be detached from RMP. However, as we argue next, it indeed follows

the spirit of RMP, which is a cognitive system striving for minimality. As far as learning was

concerned, cascade-correlation neural network (CCNN), would strive for recruiting the least

number of hidden units required for learning the underlying task—in line with the maxim

10We showed that the solution to maximin and minimax objectives is, in both case, the empty set.
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of a cognitive system having to strive for minimality, according to RMP—with the task T

being to minimize the sum-of-squared error (objective function), and the performance guar-

antee being to be optimal w.r.t. the said objective function (or to stop the learning process

altogether, if no improvement is achieved after certain number of epochs). As far as exem-

plar generation was concerned, The task T was to draw samples from a target distribution

induced on the input-output mapping leaned by a deterministic, discriminative NN (par-

ticularly, a CCNN), with the performance guarantee being the distribution of the sequence

of generated samples converging to the target distribution asymptotically. In accord with

the maxim of Occam’s razor, the proposed framework suggested that, in order to account

for human generative abilities, one need not adhere to an encoder-decoder-type architecture

(which involves a forward model (encoder) and a fully separate inverse model (decoder)), but

a single forward model, upon which MCMC operates, might suffice—a more parsimonious

design.

7.2.8 A Principled, Rational Approach to Studying Cognition at the

Algorithmic Level: What to Expect? What to Gain?

The mode of enquiry which was pursued, instantiated, advocated, and finally systematically

outlined in this dissertation, i.e., RMP, portrays a perspective on understanding cognition

at the process level that is strikingly different from the way in which cognitive psychologies

predominantly have studied psychological processes to date, which involves devising ad hoc

processes to account for experimental data. These ad hoc processes are often entertained with

a deliberate disregard for, or little appeal to, rational grounds, i.e., what makes them norma-

tively justified. But two fundamental questions immediately present themselves: (Q1) Why

should we pay any attention to normative principles in going about uncovering psychological

processes? (Q2) Isn’t accounting for data all that matters? Let us first address Question

(Q1). Appealing to normative principles, evidently, is not a necessity in any attempts to-

ward discovering a psychological process; it perfectly suffices if you simply guess one which

accounts for the data. But two key points should not be dismissed here. Firstly, the data al-

most never sufficiently constrain the problem of devising psychological processes. That is, as

far as empirical data are concerned, the problem of devising psychological processes is highly

under-constrained (the concept of overfitting should come to mind). Therefore, guiding prin-

ciples like rationality, should be sought for in order to simply regularize this combinatorial

search in the space of psychological processes. The point we just made is analogous to the
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“poverty of stimuli” argument entertained in linguistics, and, more broadly, in philosophy

of mind. Secondly, if one adheres to the view that a thorough understanding of the mind

involves not only “what cognitive processes are carried out in the mind,” but also, “why

those processes are any good, and, why they make us ‘smarter’ than many other species,

across various tasks and domains,” then the answer to Question (Q1) should appear to be

obvious. The “why” questions, therefore, is at least as important as the “what” questions—

if not more! Hence, in short, adopting a principled, rational approach toward studying the

mind at the process level, simultaneously serves two key purposes: alleviating the complexity

of the combinatorial search problem in the space of cognitive processes, while guaranteeing

that the outcome of the search, which is an algorithm, is “good,” in a reasonable sense (in

the case of RMP, the output is good in the sensible manner that it is minimalist-optimal).

Addressing Question (Q2) is the subject of the next section.

7.3 Why Do We Need Guiding Principles?

In 1905, when Einstein put forward his theory of Special Relativity, there were experiments

which were at odds with its predictions. In Murray Gell-Mann’s11 words, once Einstein was

asked if he was worried about the fact that some experiments were disproving his newly pro-

posed theory; “[t]he theory is so beautiful, it must be right,” Gell-Mann quoting Einstein—

implying that all those experiments must be wrong. Some decades later, Murray Gell-Mann

and colleagues put forward a theory predicting the Weak Force despite knowing that seven

important experiments were in disagreement with their proposal. Gell-Mann12 reflecting

on that memory, says that “the theory was so beautiful that it could not be wrong... it

turned out that all seven experiments were wrong—every single one of them.” How could

a scientist be so sure of his/her proposed theory while, at the very same time, there exists

a good number of experiments disproving it? In the case of Einstein or Gell-Mann, how

did they know that it was the experiments, not their ideas, that were wrong? Evidently,

it is far more feasible to perform well-controlled experiments in sciences like physics than

in behavioral and social sciences. This understanding further highlights the crucial role of

guiding principles in our attempts to formally investigate the inner-workings of the human

11Beauty and Elegance in Physics, The 2009 Harry Mullin Memorial Lecture.
12Beauty and Elegance in Physics, The 2009 Harry Mullin Memorial Lecture.
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mind, with all its insurmountable perplexity.13 They might well turn out to be our ultimate

winning cards in our game against nature! The hide-and-seek game of uncovering the nature

of the human mind!

13This echoes Chomsky’s argument in favor of the Galilean style; for a thorough exposition, the reader is
referred to Boeckx (2006).
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Appendix A

Appendix A is structured as follows. Sec. A-I presents a short version of I∗, called I∗
non−scale,

which ignores the scale-invariance property discussed in Sec. 2.4.2 and solely aims to identify

a sufficient set of RVs for inclusion into the LP. The correctness proof for I∗
non−scale is pre-

sented in Sec. A-II. Sec. A-III provides a proof for the example on scale-invariance property

given in Sec. 2.4.2 and also introduces an intriguing way of visualizing the scale-invariance

property. Finally, Sec. A-III (a) delves more deeply into the scale-invariance property and

the intuition behind it, (b) highlights a key concept called orthogonality which is essential

for understanding the scale-invariance property, and (c) presents the algorithm I∗
scale (which

is the algorithm I∗ alluded to above) as a variant of I∗
non−scale, which strives to fully embrace

the scale-invariance property.

A-I I∗
non−scale: A short version of I∗ without scale-invariance

property

I∗ aims at minimally parameterizing the information contained in an MCM so that the

posed inter-contextual query can be stated as an LP with the fewest number of parameters.

As pointed out earlier in Sec. 2.4.2, I∗ has to decide on the following: (i) what RVs have

to be included in the LP, and (ii) the abstraction level required to efficiently encode the

information on the RVs identified in step (i) for the LP, in our case, the parameterization of

the identified RVs.

In what follows, a simple algorithm, I∗
non−scale, is sketched which only performs (i) and

ignores (ii). In other words, I∗
non−scale identifies the relevant RVs needed to derive the exact

lower/upper bound for the inter-contextual query, however, it does not aim at minimally

encoding them into the LP. In Sec. A-III, we provide the intuition behind the scale-invariance

property presented in Sec. 2.4.2 and, ultimately, we present the algorithm I∗
scale as a variant
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of I∗
non−scale which aims to accomplish (i) as well as (ii). I∗

non−scale consists of three steps:

(1) Identify all the RVs involved in the posed query (e.g., in P (X|Y, z) these are the random
vector X, random vector Y and RV z).

(2a) If any two of the already identified RVs belong to two overlapping contexts, identify

all the overlapping RVs between these two contexts (e.g., in Fig. 5(b) and for the

query P (X|Y ) for which step (1) would identify X and Y , random vector Z in the

overlapping region must be identified as well).

(2b) If any two of the already identified RVs belong to two contexts connected through a

chain of overlapping contexts: identify all the RVs contained in all the overlapping

regions of the chain of contexts.

(3) Parameterize only the identified RVs in steps (1), (2a), and (2b) (remove all the other

RVs from the MCM—there is no need to encode the information on any other RVs not

identified in steps (1), (2a), and (2b)).

�

It should be noted that whether the posed query involves minimization or maximization

does not affect which RVs need to be identified by I∗
non−scale. Finally, It is worth noting

that with a minor modification to step (3) of I∗
non−scale, the scale-invariance property could

be achieved. The modification has to do with the question of how to minimally encode the

information on each RV identified in steps (1), (2a), and (2b) of I∗
non−scale.

To demonstrate the operation of I∗
non−scale on a more complicated MCM that involves

loops, consider the following example sketched in Fig. 7.2(a). The query of interest is

P(X|Y )↓.

Next, we are going to sketch the proof for I∗
non−scale. Let us first state the claim formally

and then provide the proof.

A-II Proof for I∗
non−scale:

Lemma: Given a posed query and an MCM, if all the information on the RVs identified in

steps (1) to (2b) of I∗
non−scale is stated and then solved as an LP, the exact solution (i.e., a

min or max) can be derived for the posed query; all the remaining information available in

the MCM is deemed irrelevant to the derivation of the query, hence the sufficiency.
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Fig. 7.2 (a) Sample MCM. The RVs involved in the posed query are depicted
in blue. (b) In Step (1) X and Y are identified; in step (2b) the RVs b, d as
well as a, c, and e are identified. According to step (3) of I∗

non−scale all of the
information as to the RVs X, Y, b, d, a, c, and e has to be stated as an LP to
derive the query.

Proof: Our proof is constructive. In the proof we entertain two ideas, namely (i) the

idea of generative process and, particularly, that of conditioning also used in Sec. 2.3.2, and

(ii) the notion we refer to as the locality of information. Suppose that all the RVs discussed

in steps (1) to (2b) of I∗
non−scale are identified. The key insight is that the information on how

the remaining RVs probabilistically interact with each other is completely local in nature

and, therefore, irrelevant to the derivation of the posed query. To see this, one can start off

with the identified RVs and then in a gradual fashion add on1 the rest of the RVs (through

the idea of conditioning discussed in Sec. 2.3.2). Quite crucially, this very process of adding

the non-identified RVs to the model can be done completely in a local fashion, i.e., without

imposing any constraints on how the identified RVs probabilistically interact. The mere fact

that those RVs can be added into the model: (i) subsequent to the identified ones, and (ii)

without inducing any sort of constraints on the identified ones, deems them irrelevant to the

derivation of the query. �
1This is based on the fundamental property that a JPD can be expanded using the chain rule of probability

in an arbitrary order.



136 Appendix A

A-III Scale-Invariance Property: Intuition

Here, we will provide a proof for the example on scale-invariance property given in Sec. 2.4.2.

Although the proof is provided for a special query, the methodology used in the proof provides

an insightful way of visualizing an inference problem. The idea behind the proof is very

simple and related to visualizing the connection of a RV to the underlying sample space

using Venn diagrams. Without loss of generality, we assume that all the RVs present in the

domain are binary2. Random vector X = x1:n partitions the sample space Ω into 2n disjoint

regions each of which corresponds to a realization of X. If each realization of the random

vector x1:n corresponds to a binary number (i.e., binary-coding the realizations), then one

can conclude Val(X) = {0, 1, · · · , 2n−1}. Let us index the partitions by their corresponding

realization of X. An illustrative example of an induced partitioning of the sample space Ω

due to random vector X = x1:n is depicted in Fig. 7.3(a), and a partitioning induced by RVs

y and z is sketched in Fig. 7.3(b). We note that the mere knowledge of the distribution

function of a random quantity does not provide one with the knowledge of the underlying

partitions. For this particular example, since the JPD over X,y, z is not available, the

knowledge of how the partitions induced by y, z (Fig. 7.3(b)) and the ones induced by X

(Fig. 7.3(a)) interact, i.e., to what extent they overlap, remains unspecified. Therefore, since

P(X|y) = P(X,y)
P(y) , to minimize (maximize) P(X|y), the quantity P(X, y) has to be minimized

(maximized). Pictorially, the minimization (maximization) of P(X, y) corresponds to the

minimization (maximization) of the overlap between the partitions corresponding to the

events {X = X} and {y = y}; hence, very simply, P(X, y)↓ = [P(X) + P(y) − 1]+ and

P(X, y)↑ = min{P(X),P(y)}. The key point, which yields the scale-invariance property, is

that to derive the minimum (maximum) overlap between the partitions corresponding to the

events {X = X} and {y = y} the information as to how the other partitions—corresponding

to the other realizations of the present RVs in the model—interact with one another neither

needs to be known nor to be encoded into the LP ; a fact which results in not requiring to

encode the information as to the other realizations. Hence the only pieces of information

that are required to be encoded and then solved as an LP are P(X) and P(y). The same

line of reasoning could be adopted for P(xi|y). The idea of scale-invariance, therefore, aims

to avoid the encoding of the information as to the partitions induced on Ω which are yet

deemed to be irrelevant to the derivation of the posed query; hence one needs to encode

2The generalization of the argument to non-binary RVs is straightforward.
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solely the relevant ones into the LP.
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Fig. 7.3 Sample Space: (a) Partitioning induced on Ω due to X = x1:n. The
blue region corresponds to the partition associated to the event {xi = 0} and
the red one to that of {X = i} where i ∈ Val(X). (b) Partitioning induced on
Ω due to RVs y and z. The blue region corresponds to the partition associated
to the event {y = 0}.

A-IV More on Scale-Invariance Property & Algorithm I∗
scale

In what follows, drawing on the visualization methodology discussed in Sec. A-III, we present

a series of examples to provide further intuition as to the scale-invariance property. As we

well see in the following, the scale-invariance property is rooted in a key notion which we

refer to as orthogonality. Finally, we present a variant of I∗
non−scale, called I∗

scale, which aims

at minimally encoding the RVs identified by I∗
non−scale into the LP. As we will see, I∗

scale will

use I∗
non−scale as a subroutine.

As our first example, Let us consider the MCM depicted in Fig. 7.4(a). The P(X, Y, Z)↓

be the query of interest. Notice that RVs X,Y and Z will be identified by steps (1) to

(2b) of I∗
non−scale for the aforesaid query. Adopting the same visualization method discussed

in Sec. 7.3 (see Figs 7.4(b-c)), deriving P(X, Y, Z)↓ amounts to minimizing the extent the

two partitions {X = X,Z = Z} and {Y = Y,Z = Z} overlap. We refer to the aforesaid

overlap as the solution region. Thus, P(X, Y, Z)↓ = [P(Z)− (P(X,Z)+P(Y, Z))]+.3 The key

understanding is that for the derivation of P(X, Y, Z)↓ (and P(X, Y, Z)↑), all the variables

X,Y, and Z can be treated as bi-valued variables where each either takes the value appearing

in the posed query (e.g., X = X) or the complement of it (e.g., X �= X also denoted by

3Following the same line of reasoning, for P(X,Y, Z)↑ one would get P(X,Y, Z)↑ = min{P(X,Z),P(Y, Z)}.
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X = X̄) thereby clumping all the other realizations together. It is crucial to notice that the

solution region for P(X, Y, Z)↓ has no intersection with any of the partitions corresponding to

the aforesaid complements. We refer to this phenomenon as orthogonality defined as follows:

a partition is orthogonal to the solution region iff it has zero intersection with the solution

region. Knowing that the partitions associated to the aforesaid complements are orthogonal

to the solution region for P(X, Y, Z)↓ (and likewise P(X, Y, Z)↑) allows us to safely encode

X,Y, and Z as bi-valued variables in stating the problem as an LP.

Ω

{Z = Z̄}

{Z = Z}

{X = X,Z = Z}

{X = X̄,Z = Z}

Ω

{Z = Z̄}

{Z = Z}

{Y = Y,Z = Z}

{Y = Ȳ ,Z = Z}

(b) (c)

X Z Y

(a)

Fig. 7.4 Sample Space: (a) MCM representing two overlapping contexts
P(X,Z) and P(Y,Z). (b) Partitioning induced on Ω due to RVs X and Z.
(c) Partitioning induced on Ω due to RVs X and Z. The orange region corre-
sponds to the partition associated to the event {Z = Z}.

Let us once again consider the MCM depicted in Fig. 7.4(a) but this time let P(X, Y )↓

be the query of interest. Note that the only difference between the query under study

here and that of the previous example is the omission of Z. Notice that, similar to the

previous example, RVs X,Y and Z will be identified by steps (1) to (2b) of I∗
non−scale for

the query of interest. To answer P(X, Y )↓, in every partition corresponding to a realization

of Z, we need to carry out the same line of reasoning adopted in the previous example. In

other words, for every Z ∈ Val(Z) and the partition thereof, the extent to which the two

partitions {X = X,Z = Z} and {Y = Y,Z = Z} overlap needs to be minimized. Thus,

P(X, Y )↓ =
∑

Z∈Val(Z) P(X, Y, Z)↓ =
∑

Z∈Val(Z)[P(Z) − (P(X,Z) + P(Y, Z))]+.4 The key

understanding which follows form this result is the following. To derive P(X, Y )↓, similar to

the previous example, variables X and Y can be treated as bi-valued. However, in contrast

to the previous example, variable Z can no longer be treated as bi-valued; that is, in stating

4Following the same line of reasoning, for P(X,Y )↑ one would get P(X,Y )↑ =∑
Z∈Val(Z) min{P(X,Z),P(Y, Z)}.
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the problem as an LP, we cannot clump any of the realizations of Z together. This key

understanding manifests itself in the very act of summing over all the realizations of Z in the

expression given for P(X, Y )↓ above. This should come as no surprise noticing that none of

the partitions {Z = Z}, ∀Z ∈ Val(Z), is orthogonal to the solution region for P(X, Y )↓ (and,

likewise, for P(X, Y )↑). Yet, notice that the partitions {X = X̄} as well as {Y = Ȳ } are

orthogonal to the solution region for P(X, Y )↓ (and, likewise, P(X, Y )↑), allowing us—akin

to the previous example—to safely encode X,Y as bi-valued variables in stating the problem

as an LP.

{Z = Z}

{t = t̄,Z = Z}

{t = t,Z = Z}

{X = X, t = t,Z = Z}

{X = X̄, t = t,Z = Z}

{t = t̄,Z = Z}

{Y = Y, t = t,Z = Z}

{Y = Ȳ , t = t,Z = Z}

(b) (c)(a)

X
Z

Y
t

{Z = Z} {t = t,Z = Z}

Fig. 7.5 Sample Space: (a) MCM representing two overlapping contexts
P(X,Z, t) and P(Y,Z, t). (b) Partitioning induced on {Z = Z} due to RVs X
and t. (c) Partitioning induced on {Z = Z} due to RVs Y and t. The orange
region corresponds to the partition associated to the event {t = t,Z = Z}.

As our final example, let us consider the MCM depicted in Fig. 7.5(a) and let P(X, Y, Z)↓

be the query of interest. Note that the only difference between the MCM under study here

and that of the previous example is the addition of RV t in the overlapping region between

the two contexts. Notice also that RVs X,Y,Z and t will be all identified by steps (1)

to (2b) of I∗
non−scale for the aforesaid query. Following the same line of reasoning adopted

in the previous example yields: P(X, Y, Z)↓ =
∑

t∈Val(t) P(X, Y, Z, t)↓ =
∑

t∈Val(t)[P(Z, t) −
(P(X,Z, t) + P(Y, Z, t))]+.5 The key understanding which follows form this result is the

following. To derive P(X, Y, Z)↓, similar to the first example, RVs X,Y and Z (despite

being in the overlapping region) can be treated as bi-valued, however, RV t cannot be

treated as bi-valued in stating the problem as an LP. Indeed this understanding complies

with the following key observation that all the partitions {X = X̄}, {Y = Ȳ }, and {Z = Z̄}
5Following the same line of reasoning, for P(X,Y, Z)↑ one would get P(X,Y, Z)↑ =∑
t∈Val(t) P(X,Y, Z, t)↑ =

∑
t∈Val(t) min{P(X,Z, t),P(Y, Z, t)}.
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are orthogonal to the solution region whilst the partition {t = t̄} does not meet this criterion.

We are now ready to present the algorithm I∗
scale as a variant of I∗

non−scale which enjoys

the scale-invariance property. Before we proceed further, let us introduce the following

notations: id(P(P |Q)) denotes the set of RVs which would be identified by steps (1) to (2b)

of I∗
non−scale, had the query been P(P |Q). For query P(O|E), I∗

scale consists of two simple

steps. The purpose the first step, drawing on the key notion of orthogonality, is to identify

which RVs can be treated as bi-valued and which cannot in stating the problem as an LP,

which takes place is step (2). I∗
scale is sketched bellow.

(1) Form the following sets:

(1a) Expand1 := id(P(O,E)) \ (O ∪ E).

(1b) Expand2 := id(P(E)) \ E.
(1c) Expandtotal := Expand1 ∪ Expand2.

(1d) orttotal := id(P(O|E)) \Expandtotal.

(2) In stating the problem as an LP, parameterize RVs in id(P(O|E)) in the following

manner: Parameterize RVs in orttotal as bi-valued and parameterize the rest of the

identified RVs, Expandtotal, as they are along with all their realizations—that is,

without clumping any of their realizations together.

The justification for I∗
scale is elaborated next. Knowing that P(O|E) = P(O,E)

P(E)
, step (1a)

identifies the RVs, Expand1, which cannot be treated as bi-valued in stating the problem

as an LP for the query P(O,E), and step (1b) identifies the RVs, Expand2, which cannot

be treated as bi-valued in stating the problem as an LP for the query P(E). Step (1c), by

combining the identified variables in steps (1a) and (1b), identifies the RVs, Expandtotal,

which cannot be treated as bi-valued in stating the problem as an LP for the main query

P(O|E). The rationale behind step (1c) is the following: If an RV, L, is identifies in either

step (1a) or (1b) as one which is not allowed to be treated as bi-valued, then L cannot be

treated as bi-valued in stating the problem as an LP for the main query P(O|E). Finally,

based on the result of step (1c) and the notion of orthogonality, step (1d) identifies the RVs,

orttotal, which can be treated as bi-valued in stating the problem as an LP for the main

query P(O|E).

Remark A.1. Let P(O|E) denote the posed query. If P(E) happens to be an intra-

contextual quantity, then, since P(O|E) = P(O,E)
P(E)

, deriving the minimum (maximum) for
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P(O|E) amounts to finding the minimum (maximum) for P(O,E) and subsequently dividing

it by the quantity P(E).



142



143

Appendix B

B-I On Minimax and Maximin Objectives

In this section we claim that, subject to the constraint that the IP’s of the to-be-intervened

variables has to belong to IP class-j, the solution to both minimax and maximin problem

is the empty set, for all j ≥ 1. Let us present a lemma using which it is easy to justify the

claim made above.

Lemma B.1. Let DAG G = (V,E) represent the causal structure of the domain. ∀j ≥ 1

and ∀X ⊆ Vi, the following inequalities hold:

min
ip(X )∈class-j

P(O|do[X ; ip(X )]) ≤ P(O),

P(O) ≤ max
ip(X )∈class-j

P(O|do[X ; ip(X )]).

Proof. The proof for Lemma B.1 is straightforward due to the realization that, ∀j ≥ 1,

(X , ip(X ) ∈ class-j)G i -subsumes the original CBN, thus (X , ip(X ) ∈ class-j)G �i (∅,∅)G,

∀j ≥ 1. �
Using Lemma B.1, the next inequalities follow: ∀j ≥ 1,

max
X⊆Vi

(
min

ip(X )∈class-j
P(O|do[X ; ip(X )])

)
≤ P(O),

P(O) ≤ min
X⊆Vi

(
max

ip(X )∈class-j
P(O|do[X ; ip(X )])

)
.

One can readily conclude from the above inequalities the claim made in the paper as to the

solution to the minimax and maximin problems; the solution to both is the empty set.
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B-II Algorithm C∗: Proof

On the Sufficiency of X ∗: Next, we present the proof for sufficiency of X ∗ where by

sufficiency we mean the following: Intervening (according to IP class-∞) on any variables

in addition to X ∗ does not yield any improvement upon what is achievable through merely

intervening (according to IP class-∞) on X ∗. Let Vi = V BC
i ∪ V̄ BC

i where V BC
i is the set

of intervenable variables which belong to the subgraph generated by executing BC on the

target nodes O. It is obvious that intervening on any variable in V̄ BC
i is pointless due to

the following argument1: (	) variables in V̄ BC
i have no direct or indirect causal effect on any

of the target nodes. Now, what is left to be shown is why, among all variables in V BC
i , it

suffices to intervene on X ∗ (according to IP class-∞) or, differently put, why intervening

on any additional variables does not improve upon what is achievable through intervening

merely on X ∗ (according to IP class-∞). Formally, the question is why the following holds:

∀Y ⊆ V BC
i

(X ∗, ip(X ∗) ∈ class-∞)G �i (Y , ip(Y) ∈ class-∞)G.

Notice that, the extension to the case of ∀Y ⊆ Vi immediately follows from argument (	).

The realization of the fact that variable y ∈ V BC
i was not selected (for intervention) by

C∗ implies that y’s causal effect on the target variables which are descendants2 of y must

have been mediated through some of the nodes selected by C∗ say Y† ⊆ X ∗ (otherwise, y

would have been selected). The claim as to the redundancy of further intervening on y in

addition to exerting intervention (according to IP class-∞) on Y† is supported as follows.

Let G = (V,E) be the DAG associated to the (non-intervened) underlying causal structure

of the domain. First, notice that evaluating P(O|do[X ; ip(X )]) amounts to simply deriving

P(O) in the i-DAG the dash-dotted edges of which are parameterized in accord with the IP

ip(X ); cf. (Tian, 2008), (Pearl, 2000, pp. 113-114) and (Pearl, 1995, p. 684). Our goal is

to show the following: (i) There exits a setting (characterized by an i-DAG) wherein y is

not intervened but every variable y† ∈ Y† is intervened according to an IP into the scope

of which neither y nor the set of y’s descendants which lie on a (directed) path from y

to y† (denoted by the set M(y,y†)) is included, and (ii) the i-DAG in (i) i-dominates an

i-DAG in which variables in y∪Y† are intervened according to an arbitrarily-parameterized

1This statement immediately follows from Rule 3 of Pearl’s do-calculus (cf. Pearl, 2000, p. 95).
2Intervening on y, obviously, could only influence y’s descendants.
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IP class-∞. The fact that the above line of reasoning can be carried out for any such y

and its corresponding set Y† grants the sufficiency of X ∗. In the argument presented next,

we make use of the following result whose proof is provided in Sec. B-III: (		) Among all

optimal IPs which can be exercised on intervenable variable x, there exists one which is of

deterministic nature. Next, we present the ideas allowing us to arrive at the setting discussed

above. Let us assume—hypothetically of course—that, in addition to Vi, all the variables in

∪y†∈Y†M(y,y†) are also intervenable; we will return to the rationale behind this assumption

(referred to by (A.1)) shortly. Using the result stated in (		), it then follows that, ∀y† ∈ Y†,

there exists an optimal IP to be exercised on y† (which is deterministic) into the scope of

which neither y nor any of the variables in M(y,y†) is included—these exclusions are made

possible due to the determinism of the IP.3 Once the aforesaid IPs are exercised on variables

in Y†, intervention (according to IP class-∞) on any variable in (∪y†∈Y†M(y,y†))∪y yields

no effect on any target variables—in the i-DAG characterizing the very setting under study,

none of the variables in (∪y†∈Y†M(y,y†))∪y has any direct or indirect causal effect on any

of the target variables. Hence, we can intervene on the variables in (∪y†∈Y†M(y,y†)) ∪ y

in any way we may wish. Let us intervene on variables in (∪y†∈Y†M(y,y†)) ∪ y in such

a manner that the IP exerted on each is identical to the corresponding CPD in the (non-

intervened) CBN—hence returning to the state of exerting no interventions on variables in

(∪y†∈Y†M(y,y†)) ∪ y from the point of view of the original (non-intervened) CBN. At this

moment the setting discussed in (ii) is achieved. This concludes the proof once we realize that

the assumption (A.1) amounts to having an i-DAG which, due to Lemma 4.2, i-dominates

the i-DAG which corresponds to having only the variables in Vi to be intervenable. �

B-III On Deterministic vs Stochastic Intervention Policies

Let x be an intervenable variable, ip(x) be the IP to be exercised on x, and set Sx denote

the scope of ip(x). For the case of a deterministic IP, given a realization of the variables

involved in the scope, say Sx = Sx, the state of x becomes fully determined (i.e., with

probability one). Hence, for the case of exerting a deterministic IP on x, the following holds:

ip(x) = g(Sx) where g(·) denotes the corresponding deterministic function; see (Pearl, 2000,

p. 113). On the other hand, for the case of exercising an stochastic IP on x, given a realization

of the variables involved in the scope, say Sx = Sx, the state of x is specified probabilistically

3For more elaboration on this, the reader is referred to the last paragraph of Sec. B-III.
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according to P(x|Sx = Sx).

Although deterministic IPs are a “special case” of stochastic IPs, as we will see in the

next lemmas, for maximax and minimin objectives, adopting stochastic IPs does not yield

any advantage over using only deterministic IPs. More formally, among all optimal IPs

which can be exercised on intervenable variable x, there exists one which is of deterministic

nature.4

Lemma B.2. Let G = (V,E) denote the causal structure of the domain. Let x be an

intervenable variable. Let P(x|Sx) denote the IP to be exercised on x where Sx denote the

scope of x’s IP which is a subset of x’s ancestors. Then, among all possible parameterizations

of P(x|Sx) which are optimal with respect to maximax objective, there exists one of determin-

istic nature. That is, given a realization of Sx = Sx, the state of x becomes fully determined

with probability one. Hence, x := g(Sx) where g(·) is some deterministic function.

Proof. First, notice that the effect of stochastic policies can be expressed in terms of

atomic interventions as explained in (Pearl, 2000, pp. 113-114) and (Pearl, 1995, p. 684).

The lemma then follows from a simple understanding that the query P(O|do[x;P(x|Sx)]) is

a linear function of the parameters involved in the CPD P(x|Sx). For more elaborations on

the aforesaid linear functional dependence, the reader is referred to Chan (2005) where this

idea is discussed under the topic of “sensitivity analysis of Bayesian networks” (see Chan

and Darwiche, 2001; Castillo et al., 1997; Russell et al., 1995). �
Similar result can be established for the minimin objective given in (2) as presented in

the next lemma.

Lemma B.3. Let G = (V,E) denote the causal structure of the domain. Let x be an

intervenable variable. Let P(x|Sx) denote the IP to be exercised on x where Sx denote the

scope of x’s IP which is a subset of x’s ancestors. Then, among all possible parameterizations

of P(x|Sx) which are optimal with respect to minimin objective, there exists one of determin-

istic nature. That is, given a realization of Sx = Sx, the state of x becomes fully determined

with probability one. Hence, x := h(Sx) where h(·) is some deterministic function.

Proof. The same line of reasoning provided for the proof of Lemma B.2 applies here as

well. �
The understanding captured in Lemmas B.2 and B.3 plays an important role in the

argument provided on the sufficiency of X ∗ in Sec. B-II. Using the notation adopted therein,

4For the reader familiar with game theory, there is an interesting analogy between the aforesaid statement
and the following result in game theory (Polak, 2007): “If a mixed strategy is a best response then each of
the pure strategies involved in the mix must itself be a best response.”
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there exists an optimal intervention (according to IP class-∞) to be exercised on y ∈ V BC
i —

which was not selected by C∗—which amounts to having y := f(anc(y)) where anc(y)

denotes the set of ancestors of y and f(·) denote some deterministic function. Simply put,

such optimal intervention on y makes y a deterministic function of its ancestors. Following

the same line of reasoning, there exists an optimal intervention (according to IP class-∞) to

be exercised on each y† ∈ Y† which makes y† a deterministic function of its ancestors. Notice

that y is an ancestor for any variable in Y†. Hence follows: ∀y† ∈ Y†, anc(y) ⊂ anc(y†).

The latter immediately implies that the inclusion of y into the scope of IP of each variable

y† ∈ Y† is pointless and hence y can be safely removed from the scope of any y†’s IP.

B-IV Optimal Intervention Policy: Computational Complexity

In what follows, we elaborate on the computational complexity of the problem of finding

the Optimal Intervention Policy (OIP) for the purpose of probabilistic controllability (P-

controllability) of CBNs. More specifically, we show that, under both maximax and minimin

objectives the aforesaid problem is NP-hard. This is accomplished by showing that OIP

contains a subproblem that is NP-complete under both maximax and minimin objectives.

This subproblem is constructed by selecting a special class of CBNs which will be denoted

by BG0 . This proof technique is known as proof by restriction.

Let us formally define the function problems the complexity of which we are interested

in investigating, namely, oip-maxmax-fp and oip-minmin-fp.

Def. B.1. (oip-maxmax-fp): Given a CBN B with causal structure G, parameterized

by distribution P (which factorizes over G), and the corresponding set X ∗, output the OIP

to be exercised on X ∗, that is the IP which is optimal with respect to maximax objective

given in (1) in the paper, i.e., argmaxip(X ∗)∈class-∞ P(O|do[X ∗; ip(X ∗)]).

Def. B.2. (oip-minmin-fp): Given a CBN B with causal structure G, parameterized by

distribution P (which factorizes over G), and the corresponding set X ∗, output the OIP to

be exercised on X ∗, that is the IP which is optimal with respect to minimin objective given

in (2) in the paper, i.e., argminip(X ∗)∈class-∞ P(O|do[X ∗; ip(X ∗)]).

In what follows, we restrict our attention to a class of CBNs denoted by BG0 which we

finally use to prove NP-hardness results for both oip-maxmax-fp and oip-minmin-fp.

BG0 is formally defined next.

Def. B.3. (Class BG0): Let BG0 be a class of CBNs defined over binary variables {X =
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x1:n,y} with causal structure G0 and parameterized by a set of degenerate prior distributions

on input variables xi’s such that ∀i, P(xi = 0) = 1, and a Boolean formula φ with size m

where φ(X) = P(y = 1|do(X = X)). Hence, P(X, y) = [1 − φ(X)](1−y)[φ(X)]y1(X ∈ {0}n)
where 1(·) is the indicator function. The DAG G0 enjoys the n-to-1 topology depicted in

Fig. 7.6(a). Every input variable xi ∈ X is intervenable. Variable y (also called the output

variable) is not intervenable. A generic member of BG0 is depicted in Fig. 7.6(b).

x1 x2 xn−1 xn

y

1 2 n− 1 n

(a) (b)

Fig. 7.6 (a) DAG G0 enjoys the n-to-1 topology as depicted where n denotes
the number of input variables xi’s. (b) A generic member of the class BG0 .
Circled variables are intervenable.

Note that every member of BG0 , denoted by (G0, φ) ∈ BG0 , is uniquely characterized by

its corresponding Boolean formula φ. Also note that, for any (G0, φ) ∈ BG0 , algorithm C∗

outputs the corresponding input variables X over which the CBN (G0, φ) is defined; hence,

X ∗ = X.

B-IV.I P-Controllability for BG0

In what follows, we elaborate on the problem of P-controllability under maximax and min-

imin objectives for the class BG0 .

B-IV.I.I P-Controllability under Maximax Objective for BG0

The problem of P-controllability under the maximax objective for a CBN (G0, φ) ∈ BG0 can

be cast as follows:

max
X∈{0,1}n

P(y = 1|do(X = X)) = max
X∈{0,1}n

φ(X).

Thus, the OIP under maximax objective for a CBN (G0, φ) ∈ BG0 can be stated as

follows:

argmax
X∈{0,1}n

P(y = 1|do(X = X)) = argmax
X∈{0,1}n

φ(X).
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Next, we elaborate on the complexity of finding the OIP when the objective of interest is

maximax. Let us formally define the corresponding decision problem, oip-maxmax-dpG0 ,

as follows.

Def. B.4. Given a CBN (G0, φ) ∈ BG0 , decide whether there exists an atomic IP,

do(X = X∗), such that P(y = 1|do(X = X∗)) = 1. Hence, let

oip-maxmax-dpG0 = {(G0, φ) | ∃X∗ s.t. P(y = 1|do(X = X∗)) = 1}.

Let sat = {φ | φ is a satisfiable Boolean formula}. Lemma B.4 then follows.

Lemma B.4. oip-maxmax-dpG0 is polynomial-time equivalent to sat.

Proof. Recall that for any (G0, φ) ∈ BG0 holds P(y = 1|do(X = X∗)) = φ(X∗). Hence,

oip-maxmax-dpG0 = {(G0, φ) | ∃X∗ s.t. φ(X∗) = 1}
= {(G0, φ) | φ is a satisfiable Boolean formula}.

Note that given the n-to-1 topology of G0 with n denoting the size of the input variables,

any instance φ ∈ sat with size m can be transformed into its corresponding instance,

(G0, φ) ∈ BG0 , in O(n+m) time. The transformation of an instance (G0, φ) ∈ BG0 into its

corresponding instance, φ ∈ sat, can be accomplished in a straightforward manner in O(m)

time where m denotes the size of the Boolean formula φ. �
Corollary B.1. From Lemma B.4 and NP-completeness of SAT immediately follows

that oip-maxmax-dpG0 is NP-complete.

Let us state the main result on the complexity of oip-maxmax-fp as follows.

Lemma B.5. oip-maxmax-fp is NP-hard.

Proof. The proof follows from Colloraly B.1 and the reduction of oip-maxmax-dpG0

to oip-maxmax-fp due the simple understanding that the class of CBNs, BG0 , is a subset

of the set of instances for which oip-maxmax-fp is defined. �

B-IV.I.II P-Controllability under Minimin Objective for BG0

Likewise, the problem of P-controllability under minimin objective for (G0, φ) can be cast

as follows:

min
X∈{0,1}n

P(y = 1|do(X = X)) = min
X∈{0,1}n

φ(X).
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Thus, the OIP under minmin objective for (G0, φ) can be stated as follows:

argmin
X∈{0,1}n

P(y = 1|do(X = X)) = argmin
X∈{0,1}n

φ(X).

Next, we elaborate on the complexity of finding an OIP when the objective of interest is

minimin. Let us formally define the corresponding decision problem, oip-minmin-dpG0 , as

follows.

Def. B.5. Given a CBN (G0, φ) ∈ BG0 , decide whether there exists an atomic interven-

tion policy do(X = X∗) such that P(y = 0|do(X = X∗)) = 1. Hence let

oip-minmin-dpG0 =

{(G0, φ) | ∃X∗ s.t. P(y = 1|do(X = X∗)) = 0}.

Also let us define the tautology decision problem, in its language representation, as

follows.

Def. B.6. Let tautology = {φ | φ is always true}. Hence,

tautology = {φ | ∃X∗ s.t. ¬φ(X∗) = 1},

where L denotes the complement of the language L.

Lemma B.6. oip-minmin-dpG0 is polynomial-time equivalent to tautology.

Proof. Recall that for any (G0, φ) ∈ BG0 holds P(y = 1|do(X = X∗)) = φ(X∗). Hence,

oip-minmin-dpG0 = {(G0, φ) | ∃X∗ s.t. P(y = 1|do(X = X∗)) = 0}
= {φ | ∃X∗ s.t. φ(X∗) = 0}
= {φ | ∃X∗ s.t. ¬φ(X∗) = 1}.

The same argument provided in Lemma B.4 can be made as to the transformation of an

instance of oip-minmin-dpG0 to that of tautology and vice versa. �
Corollary B.2. From Lemma B.6 and NP-completeness5 of tautology, follows that

oip-minmin-dpG0 is NP-complete.

Let us state the main result on the complexity of oip-minmin-fp as follows.

Lemma B.7. oip-minmin-fp is NP-hard.

5Note that tautology is coNP-complete (see Arora and Barak, 2009).
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Proof. The proof follows from Colloraly B.2 and the reduction of oip-minmin-dpG0 to

oip-minmin-fp due the simple understanding that the class of CBNs, BG0 , is a subset of

the set of instances for which oip-minmin-fp is defined. �

B-V Running-Time Analysis of C∗

It is straightforward to implement C∗ using the well-known Breadth First Search (BFS) algo-

rithm: Simply scan the underlying DAG in a BFS fashion and, upon hitting an intervenable

node v ∈ Vi, identify it and do not scan the parents of v. Finally, return the set of identified

nodes as X ∗. Hence, the worst-case running time of C∗ is O(|E| + |V |) where |E| and |V |
denote, respectively, the number of edges and vertices of the underlying DAG (see Cormen

et al., 2001).
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Appendix C

Throughout Appendix C, let (A ⊥⊥ B|C)G denote the posed d-separation query with DAG

G representing the topology of the underlying BN. Throughout the proofs and arguments

to follow, it is assumed that communication channels are reliable, bidirectional, and first-in

first-out (FIFO) (Lynch, 1996). For the time-complexity analysis of D∗, we adhere to the

same assumptions adopted in (Lynch, 1996). More specifically, we assume: (ASM-1) an

upper-bound of α for a process to perform Steps (i) and (ii) upon receipt of a message, and

(ASM-2) an upper-bound of β on the delivery time for each message in a channel. Note that

the parameters α and β are arbitrary but finite constants. Also note that, as the number

of messages exchanged by D∗ on an edge is O(1) (see Statement (5) of Proposition 5.1 in

the main text), the effect of pileups (aka congestion) on a channel has been considered in

Assumptions (ASM-1) and (ASM-2).1

C-I D∗: Proof of Correctness

In what follows, we prove three statements which, taken together, grant the correctness of

D∗. The three statements are given below.

(I) For a given d-separation query (A ⊥⊥ B|C)G and DAG G,

“C does not d-separate A from B in G” ⇐⇒ “Clash takes place during D∗’s execution”.

(II) During D∗’s execution, either a clash between colors red (•) and green (•) takes place
(cf. Remark 5.1 in the main text) upon which D∗ decides that (A �⊥ B|C), or a state

of equilibrium will be eventually reached.

1Since the number of messages exchanged by D∗ on an edge is O(1), the following holds: (a) the number
of messages in any channel queue is at most O(1), and (b) the number of messages awaiting in a process’s
send buffer is at most O(1).
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(III) Message-passing terminates inO(1) time after reaching the state of equilibrium, thereby

guaranteeing the termination of D∗.

The proofs of Statements (I) to (III) are presented next.

C-I.I Proof of Statement (I)

Next, the proof of Statement (I) is presented. First, the proof of the forward direction is

outlined (Sec. C-I.I.I), followed by the proof of the backward direction (Sec. C-I.I.II).

C-I.I.I Proof of Statement (I): Forward Direction

We prove the forward direction of Statement (I) next. This is accomplished by proving the

following: Conditioned on the set C, if there exists an unblocked path between a ∈ A and

b ∈ B (for any a,b), a clash of the kind stated in Remark 1 is unavoidable during D∗’s

execution. A path l is said to be unblocked (Pearl, 1988) if and only if (a) for every collider

node n on l, either n or some of n’s descendants are in C, and (b) for every non-collider

node m, m �∈ C. The proof rests on a simple understanding that a generic unblocked path

can be decomposed into v-structured and non-v-structured modules as illustrated in Fig. 7.7.

Neighboring modules share a common vertex which we refer to as joint vertex (e.g., the nodes

j1, j2 in Fig. 7.7(a)). The end-point vertex of a non-v-structured subpath which is not a joint

vertex is termed source vertex ; see Fig. 7.7(b1) and Fig. 7.7(b3). In principle, an unblocked

path may have multiple v-structured modules. For ease of exposition, the unblocked path

p depicted in Fig. 7.7(a) possesses only one v-structured module. Note that the proof that

follows does not make this restrictive assumption.

Next, we prove the inevitability of a clash for unblocked paths possessing non-v-structured

as well as v-structured modules.2 The proof comprises two parts. In Part I, we show the

inevitability of a clash over such an unblocked path, l∗, provided that no message is destined

from a node outside l∗ to a node belonging to l∗. Using the arguments provided in Part I, in

Part II we show that regardless of the messages destined from nodes outside l∗ to the nodes

belonging to l∗, the occurrence of a clash on l∗ is inevitable (i.e., eventually happens).

Proof of Part I: Rules (∅, •) → •, and (∅, •) → • sketched in Step (ii) of D∗, along with

D∗’s initialization phase wherein all the nodes in the sets A,B, and C propagate their colors

2The adaptation of the argument for the other two cases where the unblocked path is solely comprised
of either non-v-structured modules or v-structured modules is straightforward.
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s1 s2v

j1 j2

(a)

s1

j1

v

j1 j2

s2

j2

(b1) (b2) (b3)

Fig. 7.7 Decomposition of a generic unblocked path into v-structured and
non-v-structured modules. (a) A generic unblocked path p comprised of v-
structured as well as non-v-structured modules. The nodes s1 and s2 are source
vertices. The nodes j1 and j2 are joint vertices. The node v is a collider.
Without loss of generality, s1, s2, and v are assumed to be initialized with
colors green, red and white, respectively. (b1) A non-v-structured module of
the unblocked path p with the source vertex s1. (b2) The v-structured module
of the unblocked path p. (b3) A non-v-structured module of the unblocked
path p with the source vertex s2.

to their parents, ensure that all non-v-structured modules are fully explored and, by the end

of exploration, all the nodes within each non-v-structured module will be homogeneously

colored consistent with that of the respective source vertex, except for the joint vertex which

requires more careful consideration (†). The propagation of white (◦) through the DAG G

in a backward manner ensures that v-structured modules are fully explored and, by the end

of exploration, all the nodes within each v-structured module will be homogeneously colored

in white (◦), except for the joint vertices which require more careful consideration (‡). The
consideration advised in (†) and (‡) is explicated next.3 The joint vertex connecting a non-

v-structured module to a v-structured module may first become white (◦) or whatever the
color of the source vertex of the non-v-structured module is, depending on whether the joint

vertex first receives a message from the non-v-structured module or the v-structured module,

respectively. However, and quite importantly, its color eventually becomes that of the source

vertex of the non-v-structured module and, according to Step (ii) of D∗, it sends its color

down the v-structured module. In short, any joint vertex j will eventually serve as a relay

3The analysis of the case for the joint vertex between two adjacent v-structured modules does not require
special consideration since it will become white (◦) first and thereafter, according to the CUG, will function
as a relay, transferring the color of one branch to the other.



156 Appendix C

transferring the color of one side to the other in one of the following two ways: (1) either j

becomes white and then, upon receiving a red- or green-colored message from a neighbor on

one side, j changes it color and sends its new color down the other side, or (2) j first becomes

green or red (due to receiving, respectively, a green or red message from a neighbor on one

side) and then receives a white-colored message (◦) from a neighbor w residing on the other

side, upon which—in an act analogous to handshaking in communication networks—j sends

back its color to w which, in turn, initiates a chain reaction thereby w and its white-colored

neighbors alter their color to that of j and so do their white-colored neighbors and so forth.

This key understanding that joint vertices, as just explained, essentially serve as a relay

transferring the color of one module to the other neighboring module, in addition to the fact

that the color of the two source vertices are different, together, grants the conclusion that a

clash between the colors green and red along the unblocked path l∗ eventually takes place.

This concludes the proof of Part I.

Proof of Part II: As stated earlier, Part II concerns with showing the following: A

message received by a node belonging to an unblocked path l∗ which is sent from a node

lying outside l∗ cannot prevent the clash from happening on l∗. That is, informally, the

occurrence of a clash cannot be prevented by any message coming from a node residing

outside l∗ to a one belonging to l∗, say nin. We consider all the possible scenarios (i.e.,

scenarios (c1) to (c6) listed below) and show that indeed the claim of Part II holds true.

Before we proceed further, let us introduce a notation. Let 〈α, β〉 denote the following: nin’s

current color is α and the color of the message (coming from a node residing outside l∗)

destined to nin is β. For example, 〈◦, •〉 implies that nin’s current color is white and the

incoming message is red.

(c1) For 〈◦, ◦〉, 〈•, •〉, 〈•, •〉: According to the CUG, if nin receives a message whose color

is identical to its current color, nin’s current color persists. Hence, the claim of Part II

remains true under such circumstances.

(c2) For 〈•, •〉, 〈•, •〉: According to the CUG, these cases immediately lead to the occurrence

of a clash. Hence, the claim of Part II remains valid under such circumstances.

(c3) For 〈•, ◦〉, 〈•, ◦〉: According to the CUG, if nin’s current color is green or red, it

preserves its color upon receiving a white-colored message. Hence, the claim of Part II

holds true under such circumstances.
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(c4) For 〈∅, •〉, 〈◦, •〉: According to the CUG, if nin’s current color is white or nin does not

currently have any color, upon receiving a green-colored message, nin’s color becomes

green and thereafter it acts as a green-colored source vertex for l∗.4 This can only

expedite the occurrence of a clash on l∗.

(c5) For 〈∅, •〉, 〈◦, •〉: The line of reasoning is similar to the one given for (c4).

(c6) For 〈∅, ◦〉: According to the CUG, this interaction changes nin’s color to white. How-

ever, due to the machinery of D∗, color white merely acts as a placeholder awaiting

to be replaced by green or red upon interacting with one of the kind. In this light,

altering the state of nin from ∅ to white cannot prevent a clash from happening on l∗.

This concludes the proof of Part II and, together with Part I, concludes the proof of the

forward direction of Statement (I). �

C-I.I.II Proof of Statement (I): Backward Direction

We prove the backward direction of Statement (I) next, using proof by contraposition. That

is, we prove: For a given d-separation query (A ⊥⊥ B|C)G and DAG G,

“C d-separates A from B in G” ⇒ “Clash does not take place during D∗’s execution”.

According to (Pearl, 1988), the statement “C d-separates A from B in G” is equivalent to

the following: Every path between any a ∈ A and any b ∈ B is blocked. According to

(Pearl, 1988), a path l is said to be blocked if and only if at least one of the two statements

holds: (a2) There exists a collider node n on l where neither n nor any of n’s descendants

is in C, (b2) There exists a non-collider node m on l where m ∈ C. Therefore, altogether,

the statement “C d-separates A from B in G” is equivalent to the statement that every

path connecting a ∈ A and b ∈ B has to at least contain a subpath of the type specified

in (a2) and (b2). Hence, for a clash to take place on path l, one of the colors green or red

has to pass through l’s corresponding subpath and collide with the other color. In what

follows, we consider all such subpaths and show that, the very existence of such subpaths

on every path connecting a ∈ A and b ∈ B, grants the impossibility of an occurrence of

4More specifically, once nin becomes green it acts as a green-colored source vertex for the two subpaths
of l∗ which lie at the two sides of nin and share nin as their common node. For example, for the path
v1 ← v2 ← v3 → nin → v4 ← v5, the two subpaths are v1 ← v2 ← v3 → nin and nin → v4 ← v5.



158 Appendix C

a clash during D∗’s execution. These subpaths can be of three types: (1) the green node

and the red node are separated by a head-to-tail node which is observed (Fig. 7.8(a)), (2)

the green node and the red node are separated by a common cause (aka confounder) which

is observed (Fig. 7.8(b)), and finally (3) the green node and the red node are separated by

a common effect (aka collider) which is neither itself nor any of its descendants is observed

(Fig. 7.8(c)).

(a)

c

(b) (c)

v

c

Fig. 7.8 The three types of subpaths. Depicting the downlinks of a variable
c ∈ C in a dash-dotted format simply symbolizes a crucial property of D∗

according to which c ignores any message received from any of its children, and
also does not send any message to any of its children. (a) The green node and
the red node are separated by a head-to-tail variable c ∈ C. (b) The green
node and the red node are separated by a confounder c ∈ C. (c) The green
node and the red node are separated by a collider v where neither v nor any of
v’s descendants is in the set C.

Next, we consider each case at a time and prove that D∗’s machinery prevents the oc-

currence of a clash along any of the aforesaid subpaths depicted in Figs 7.8(a-c). The proof

for (1) and (2) immediately follows form the following crucial property of D∗: Variables in

C ignore any message received from any of their children, and also do not send any message

to any of their children (depicting the outgoing edges from c in Figs 7.8(a-b) simply sym-

bolizes this property). Case (3) requires more careful consideration. The only way for color

green/red (on the one side) to reach color red/green (on the other side)—thereby generating

a clash—was for the collider to be white-colored so that, by being replaced by either green

or red, it would allow colors green and red to meet and hence a clash would occur. However,

since (i) neither the collider nor any of its descendants is observed (and hence none of them

are white), and also (ii) D∗’s machinery dictates the propagation of the color white in a back-

wards manner through the corresponding ancestors of the white-colored nodes, altogether,

the collider cannot become white during an execution of D∗. This concludes the proof. �
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C-I.II Proof of Statement (II)

The state transition diagram for D∗ is given in Fig. 7.9. The states represent a node’s color

and the edges represent transitions due to receiving messages whose colors are depicted on

the edges.

∅

Clash

Clash

/

/

Fig. 7.9 State transition diagram. The message which ought to be received
for a transition to take place is depicted on the corresponding edge. In case
multiple messages engender the same transition, they are all detailed on the
corresponding edge separated by slashes.

A simple inspection of the diagram reveals that a node’s color cannot alternate between

any two states. This is due to the fact that the diagram has no cycles of length two or

greater. This observation implies that either a clash takes place upon which D∗ decides that

the input d-separation query is false, or a state of equilibrium will eventually be reached. By

definition, equilibrium is a global state of a network G according to which none of the nodes

in G alters its state (i.e., its color) once that state is reached. This concludes the proof of

Statement (II).

C-I.III Proof of Statement (III)

In the analysis to follow, we adhere to Assumptions (ASM-1) and (ASM-2) presented in

the first paragraph of Appendix C. We analyze all potential post-equilibrium, in-transit

messages.5 An in-transit message can be of three colors: (a1) green, (b1) red, or (c1) white.

5Cast into Lamport’s space-time diagram (Lamport, 1978), these are the messages that cross a vertical
time-cut positioned at a (global) time which is after the occurrence of the state of equilibrium; see (Mattern,
1987).



160 Appendix C

We consider each possibility next. Case (a1): If the state of equilibrium has indeed been

reached, a green-colored in-transit message must be destined to a green-colored node. Indeed,

if the green-colored in-transit message were destined to a red-, white-, or ∅-colored node,

it would lead, respectively, to a clash, a change in the color of the destination node, and

once again, a change in the color of the destination node—all of which are in contradiction

with the assumption that the state of equilibrium has already been reached. According

to D∗, therefore, a green-colored in-transit message will be absorbed by the corresponding

destination node (which is of the same color) in time at most β leading to the generation of

no new messages. The same line of reasoning can be adopted to conclude the following (Case

(b1)): A red-colored in-transit message will be absorbed by the corresponding destination

node (which is of the same color) in time at most β leading to the generation of no new

messages. Next, we consider the possibility of an in-transit message being white. A white-

colored in-transit message could be destined to: (a2) a white-colored node, (b2) a green-

colored node, or (c2) a red-colored node. (A white-colored in-transit cannot be destined

to an ∅-colored node, as it would lead to a change in the color of the destination node—

contradicting with the equilibrium assumption.) We consider each possibility in order. Case

(a2): A white-colored in-transit message which is destined to a white-colored node reaches

its destination in time at most β and, according to D∗, will be absorbed upon reception

leading to the generation of no new messages. Case (b2): A white-colored in-transit message

from node x to a green-colored node g reaches its destination, g, in time at most β and,

according to Step (i) of D∗, g replies, in time at most α, by sending a green-colored message

to x which, according to Case (a1), will be absorbed by x without generating any further

new messages. (Note that, according to the CUG, the receipt of a white-colored message

by a green-colored node does not lead to any color update, and hence g does not generate

any messages due to Step (ii) of D∗.) Case (c2) can be handled in the same manner as Case

(b2). �
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C-II Time-Complexity Analysis of D∗

We present the results in the form of two lemmas as follows.

Lemma C.1. For a given DAG G and disjoint sets A,B, and C, if (A �⊥ B|C)G (hence,

a no-instance d-separation query), then D∗’s execution grants that a clash of the kind stated

in Remark 1 occurs in O(lAn(A∪B∪C)) time where lAn(A∪B∪C) denotes the length of the longest

undirected path in the ancestral graph GAn(A∪B∪C).

Proof. The proof relies on the high-level understanding of D∗’s machinery as discussed

in Sec. 5.3.1, and Statements (1) and (2) of Proposition 5.1 (see Sec. C-VI of Appendix C

for the proof). To obtain an upper bound on the time it takes for the clash to happen, we

perform the propagation of colors through the DAG G in two phases as follows. Phase-I:

Starting at the nodes in C, color white (◦) propagates backwards through the DAG G.

Phase-I ensures that all the nodes in G which could potentially become white in the absence

of colors red and green in the graph, indeed become white. Adopting (ASM-1) and (ASM-

2) and the notation introduced therein, Phase-I is completed by time (α + β)ldAn(A∪B∪C)

where ldAn(A∪B∪C) denotes the longest directed path in GAn(A∪B∪C). Hence, Phase-I takes

O(ldAn(A∪B∪C)) time. Phase-II: colors green (•) and red (•) (corresponding to the nodes in

A and B, respectively) will be introduced back into G and begin to propagate through G

as dictated by the machinery of D∗ until along some path between a node in A and a node

in B a clash takes place.6 Adopting (ASM-1) and (ASM-2) and the notation introduced

therein, after the completion of Phase-I, within time (α + β)lAn(A∪B∪C) a clash takes place

on a path between a node in A and a node in B where lAn(A∪B∪C) denote the length of the

longest undirected path in GAn(A∪B∪C). Hence, putting Phase-I and Phase-II together, by

time (α+ β)(ldAn(A∪B∪C) + lAn(A∪B∪C)) a clash takes place. Note that the parameters α and

β are arbitrary but finite constants. Since for any DAG G, lAn(A∪B∪C) ≥ ldAn(A∪B∪C), the

claimed upper bound O(lAn(A∪B∪C)) follows. �
Using the above line of reasoning, we can prove the following lemma.

Lemma C.2. For a given DAG G and disjoint sets A,B, and C, if (A ⊥⊥ B|C)G

6Introducing colors green (•) and red (•) back into the DAG G should be interpreted as follows: Through
exerting external signals, the colors of the nodes in A and B are altered to green and red, respectively. The
provided interpretation is equivalent to endowing each node n ∈ A∪B with a dummy child next and having
next colored (instead of n) green (if n ∈ A) or red (if n ∈ B) in the initialization phase of D∗, thereby
making any node in n ∈ A ∪B inherit its red/green color from its newly introduced dummy child instead
of being initialized by the corresponding color in the initialization phase of D∗. By this construction, we
purposefully delay the occurrence of a clash.
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(hence, a yes-instance query), then D∗’s execution grants that a state of equilibrium will be

reached in O(lAn(A∪B∪C)) time where lAn(A∪B∪C) denotes the length of the longest undirected

path in ancestral graph GAn(A∪B∪C).

Note that, in the context of Lemma C.2, the inevitability of equilibrium state follows

from Statement (1) of Proposition 5.1 and Statement II given in Sec. C-I of Appendix C.
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C-III Proof of Proposition 5.2

The analysis presented next follows the same line of reasoning presented in the proof of

Lemma C.1 in Sec. C-II of Appendix C. For the time-complexity analysis presented blow we

adhere to Assumptions (ASM-1) and (ASM-2) outlined in the first paragraph of Appendix

C.7 Note that both the parameters α and β are arbitrary but finite constants. The claimed

upper-bound O
(
ldAn(A∪B∪C) + min

i,j
lijAn(A∪B∪C)

)
follows from the following two statements:

(s1) By time (α + β)ldAn(A∪B∪C), all the nodes in G which could potentially become white

in the absence of colors red and green in the graph, become white, and (s2) After the

completion of (s1), a clash takes place on the shortest unblocked path between ai and bj in

the ancestral graph GAn(A∪B∪C), within time (α + β)lijAn(A∪B∪C), ∀i, j (note that, according

to the proof of Statement (1) of Proposition 1, on any unblocked path between ai and bj

a clash eventually takes place). Hence, by time (α + β)(ldAn(A∪B∪C) + lijAn(A∪B∪C)) a clash

will have occurred. Note that (s2) holds for all i, j : 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|. Also note

that (s1) and (s2) correspond, respectively, to Phase-I and Phase-II presented in the proof of

Lemma C.1 in Sec. C-II of Appendix C. From (s1) and (s2) follows the claimed upper-bound

O
(
ldAn(A∪B∪C) +min

i,j
lijAn(A∪B∪C)

)
in Proposition 5.2. �

7Note that, as the number of messages exchanged by D∗ on an edge is O(1) (see Statement (5) of
Proposition 1), the effect of pileups (aka congestion) on a channel has been considered in Assumptions
(ASM-1) and (ASM-2).
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C-IV Proof of Proposition 5.3

The analysis presented next follows the same line of reasoning presented in the proof of

Proposition 5.2 (see Sec. C-III for the proof). For the time-complexity analysis presented

blow we adhere to Assumptions (ASM-1) and (ASM-2) outlined in the first paragraph of Ap-

pendix C; see also footnote 7. Let M(X 
⊥⊥Y|Z)G denote a refutation-module for (X ⊥⊥ Y|Z)G,
with EM(X �⊥⊥Y|Z)G

denoting the set of the edges of M(X 
⊥⊥Y|Z)G . Let ldM and |PM| denote,
respectively, the length of the longest directed path and the shortest unblocked path in

M(X 
⊥⊥Y|Z)G . (Recall that, according to Lemma 5.1 in the main text, DAG G must contain

at least one refutation-module for (X ⊥⊥ Y|Z)G, and, due to Definition 5.1 in the main

text, M(X 
⊥⊥Y|Z)G must contain at least one unblocked path between a node in X and a node

in Y.) Also, let M∗
(X 
⊥⊥Y|Z)G denote the minimal refutation-module for (X ⊥⊥ Y|Z)G, with

EM∗
(X �⊥⊥Y|Z)G

denoting the set of the edges of M∗
(X 
⊥⊥Y|Z)G , and ldM∗ and |PM∗ | denoting the

length of the longest directed path and the shortest unblocked path in M∗
(X 
⊥⊥Y|Z)G , respec-

tively. The claimed upper-bound O(minM(X �⊥⊥Y|Z)G
{ldM + |PM|}) follows from the following

two statements: (s1) By time (α + β)ldM, all the nodes in M(X 
⊥⊥Y|Z)G which could poten-

tially become white in the absence of colors red and green in the graph, become white, and

(s2) After the completion of (s1), a clash takes place along the shortest unblocked path PM

in M(X 
⊥⊥Y|Z)G within (α + β)|PM|. (Note that (s1) and (s2) correspond, respectively, to

Phase-I and Phase-II presented in the proof of Lemma C.1 in Sec. C-II of Appendix C.)

Hence, taken together, a clash will have occurred along PM by time (α + β)(ldM + |PM|).
Since the above argument holds for any arbitrary refutation-module M(X 
⊥⊥Y|Z)G , it fol-

lows that a clash will have occurred by time (α + β)minM(X �⊥⊥Y|Z)G
{ldM + |PM|}, hence

the claimed upper-bound O(minM(X �⊥⊥Y|Z)G
{ldM + |PM|}) in Proposition 5.3. Finally, since

minM(X �⊥⊥Y|Z)G
(ldM + |PM|) ≤ ldM∗ + |PM∗ |, ldM∗ ≤ |EM∗

(X �⊥⊥Y|Z)G
|, and |PM∗ | ≤ |EM∗

(X �⊥⊥Y|Z)G
|, it

follows that minM(X �⊥⊥Y|Z)G
{ldM + |PM|} ≤ O(|EM∗

(X �⊥⊥Y|Z)G
|), hence the claimed upper-bound

O(|EM∗
(X �⊥⊥Y|Z)G

|) on the time for the occurrence of a clash. This concludes the proof. �
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C-V Proof of Proposition 5.4

Consider any refutation-module M†
(X 
⊥⊥Y|Z)G satisfying the following condition: M†

(X 
⊥⊥Y|Z)G
contains the unblocked path mini,j l

ij
An(X∪Y∪Z). By definition, it immediately follows that

|PM† | ≤ mini,j l
ij
An(X∪Y∪Z) and ldM† ≤ ldAn(X∪Y∪Z); for the notation, see Propositions 5.2

and 5.3 in the main text. Hence, ldM† + |PM† | ≤ ldAn(X∪Y∪Z) + mini,j l
ij
An(X∪Y∪Z). Since

minM(X �⊥⊥Y|Z)G
{ldM + |PM|} ≤ ldM† + |PM† |, the claim of Proposition 5.4 follows. �
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C-VI Proof of Proposition 5.1

Proof of Statement (1)

The reader is referred to Sec. C-I.I of Appendix C for the proof.

Proof of Statement (2)

Let IT denote the set of all nodes i in G which have ever sent a message up to a (global) time

T . Then, the validity of Statement (2) follows from the following recursion. If (†) Prior to

applying Steps (i) and (ii) on the corresponding recipients of i’s messages, i ∈ IT , the set IT

satisfies the following two conditions: (	) Any node in the set belongs to GAn(A∪B∪C), and

(		) Any node to which a member of the set has ever sent a message belongs to GAn(A∪B∪C),

then (‡) After applying Steps (i) and (ii) on the corresponding recipients of i’s messages

(denoted by the set recp(i)) for all i ∈ IT , the set (∪i∈IT recp(i))∪ IT indeed satisfies (	) and

(		). Note that at the initial configuration of D∗, nodes inA∪B∪C send their corresponding

colors to their parents. Hence, Statement (†) holds at the initial configuration. Let us now

assume that Statement (†) holds for the set of all nodes i in G that have ever sent a message

up to a (global) time T , i.e., i ∈ IT . According to Step (i) of D∗, a node x which is the

recipient of a message from i replies back by sending its own color to the sender. Note that,

according to Statement (†), the sender must adhere to (	) and (		). According to Step (ii)

of D∗, the node x sends its updated color to (a) all its parents, and (b) those children of x

with which x has communicated before. Based on the argument provided above regarding

Step (i), x sending messages to its parents guarantees that the set (∪i∈IT recp(i))∪ IT indeed

satisfies (	) and (		). Also, due to the constraints “with which x has communicated before”

in (b) and Statement (		), x sending messages to the nodes prescribed in (b) guarantees that

the set (∪i∈IT recp(i))∪ IT indeed satisfies (	) and (		). The above argument establishes the

validity of the recursion. The recursion given above, together with the fact that Statement (†)
holds at the initial configuration of D∗, grants the validity of Statement (2). This concludes

the proof. �

Proof of Statement (3)

Statement (3) follows from Statement (I) (see Sec. C-I.I of Appendix C), Lemma C.1 and

Lemma C.2 (see Sec. C-II of Appendix C).
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Proof of Statement (4)

The reader is referred to Sec. C-I.III of Appendix C for the proof.

Proof of Statement (5)

In what follows we prove that the number of messages exchanged on an edge is bounded

above by a constant which is independent of the size of the graph. Based on Step (ii) of

D∗, a node sends out a message upon updating its color and discovering that its new color

is different from its pre− updateT color. According to the state transition diagram depicted

in Fig. 7.9, throughout an execution of D∗ a node could pass through at most five states

{∅, ◦, •, •, clash}, and once a node changes its state it cannot go back to that state ever

again (due to the nonexistence of any loop of the length at least two in the state transition

diagram, see Fig. 7.9). Hence, Step (ii) of D∗ results in O(1) messages to be exchanged per

channel. There are
(
5
2

)
= 10 possible ways of pairing nodes of different colors together. By

inspection, Step (i) of D∗ results in having the highest number of messages exchanged on the

edge between a white-colored node and a green-colored node, which, as we show, results in

O(1) messages to be exchanged on that edge. When a (newly) white-colored node p sends

a white-colored message to its green-colored neighbor q the following exchange of messages

takes place due to Step (i): white-colored message (sent by the white-colored initiator node

p) will be received by the green-colored node q; q will send back a green-colored message

(due to Step (i)). Upon receipt of the green-colored message by p, p will send a new white-

colored message to q (due to Step (i)) and also will updates its color to green based on

the CUG. Upon receipt of the new white-colored message, q will send back a green-colored

message (due to Step (i)) to p. However, since p’s color has been updated to green (hence,

identical to that of the received message), this time p does not send any message to q due

to Step (i). This completes the proof. �

Proof of Statement (6)

Throughout an execution of D∗ there exist three types of messages which can be exchanged

between nodes, namely, a white-, a green-, or a red-colored message. Therefore, to encode

the said three types two bits are required. Statement (6) then follows from Statement (5)

and the argument provided above. �
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C-VII Alternative, Centralized Initialization of D∗

Below, we explain how the initialization phase of D∗ can be accomplished, in a distributed

manner, in O(l) time, where l denotes the length of the longest undirected path in G.

First, using a combination of broadcast and convergecast, a pre-assigned initiator node,

s, sends the initialization message 〈INITIALIZE〉 (containing the list of nodes in sets A, B,

and C) to all the other nodes in G, and receives an acknowledgement that all nodes have

received 〈INITIALIZE〉. Using the AsynchSpanningTree algorithm in (Lynch, 1996), this can

be done in time O(l); cf. (Lynch, 1996, p. 499, 2nd paragraph).

Then, s broadcasts the control message, 〈STARTD∗〉, to all the nodes in G. Using the

AsynchSpanningTree algorithm, this can be done in time O(D), where D denotes the diam-

eter of G. Upon receipt of 〈STARTD∗〉 by a node in A∪B∪C, it sends its color to its parents,

as prescribed in the initialization phase of D∗ outlined in Sec. 5.3 in the main text.
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C-VIII On the Order-Invariance Property

Before we state the result in a form of a lemma, let us introduce the following notation.

We adopt the expression Sx
i

M1,··· ,Mn
� Sx

f to state the following: Starting at the state Sx
i ,

node x transits to the state Sx
f upon receiving the sequence of messages M1, · · · ,Mn where

M1, · · · ,Mn ∈ {◦, •, •} and Sx
i , S

x
f ∈ {∅, ◦, •, •, clash} . Let us now formally state the result

as a lemma.

Lemma C.3. Let x be a node in the network. Then, the following holds:

(Sx
i

M1,M2
� Sx

f ) ⇒ (Sx
i

M2,M1
� Sx

f ).

Proof. The proof can be straightforwardly accomplished by examining all the possible

cases and showing that the statement holds true for all of them. To provide a sample case,

consider ◦ ◦,•
� •. Using the CUG given in Sec. 5.3, it is straightforward to check that ◦ •,◦

� •
holds true. �

The order-invariance property is captured in the following lemma.

Lemma C.4 Let x be a node in the network and let π be an arbitrary permutation defined

on the set {1, 2, · · · , n}. Then, the following holds:

(Sx
i

M1,··· ,Mn
� Sx

f ) ⇒ (Sx
i

Mπ(1),··· ,Mπ(n)
� Sx

f )

Proof. The proof follows from Lemma C.3 and the understanding that the sequence

Mπ(1), · · · ,Mπ(n) (for an arbitrary permutation π) can be constructed from the original

sequence M1, · · · ,Mn through a series of pairwise permutations.8 �
It is worth noting that the order-invariance property formalized above is analogous to

the key notion of exchangeability in probability theory.

8This is essentially the idea behind the well-known sorting algorithm, Insertion Sort.
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