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Abstract

Infants who are born premature usually require breathing support through

invasive mechanical ventilators in the early weeks of life. The duration of ven-

tilation must be minimised in order to prevent the development of chronic lung

disease. However, weaning the baby (extubating) too early is also dangerous

and could lead to death. Presently, there are no objective protocols for physi-

cians to make this decision, as it is an extremely difficult problem. This has led

to high rates of extubation failures, up to 70% in some cases. This study lever-

aged methods of machine learning to explore predictors of extubation readiness

for premature infants. We first sought to understand the kind of breathing

transitions the infants undergo during a time of minimal support from the ven-

tilators. To explore this question, we employed a framework called Markov

chain modelling, which revealed interesting similarities and differences between

newborns who succeeded extubation and those who did not. We converted

this information into actionable knowledge through predictors built upon the

Markov chains and by using powerful discriminative models known as support

vector machines. Results showed that we could identify with high accuracy

infants who succeeded but not those who failed extubation. Secondly, using

richer data about heart and respiratory variability, we built a slightly more so-

phisticated model known as hidden Markov model and benchmarked it against

another discriminator - Random Forests. By making critical design changes to

default structure of these models and combining clinical variables (like infant

age and weight), we developed a predictor that could have identified 71% of

extubation failures ahead of time. The work presented in this thesis advances

our understanding of respiratory patterns of premature newborns, in general,

and in particular of those who may fail extubation; develops rigorous machine

learning methods for physiological time-series data; and effectively brings us

closer to developing accurate predictors of extubation readiness.
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Résumé

Les enfants qui sont nés prématuré souvent ont besoin de soutenir avec

ventilateur mécanique invasif dans les premières semaines de la vie. La durée

de ventilation doit être minimiser enfin de prévenir le développement de mal-

adie pulmonaire chronique. Cependant, sevrer le bébé (extubation) trop tôt est

également dangereux et pourrait entraîner la mort. Actuellement, les médecins

n’ont pas les protocoles objectifs à faire cette décision si difficile. Celui a conduit

à haut taux de échecs d’extubation, d’ici 70% dans quelques cas. Cette étude

a profité des methodes de apprentissage automatique pour explorer prédicteurs

de l’état de préparation à exubation chez les enfants prématuré. D’abord, nous

tentons de comprendre le manière de transition respiratoire que les enfants pren-

nent durant un temps de soutien minimale de les ventilateurs. À explorer cette

question, nous avons employé un cadre entitré "Markov chain modelling" qui a

révélé similitudes et différences intéressantes entre les nouveau-nés qui a reussi

extubation et les autres qui ne l’a pas fait. Nous transformons cette information

à connaisances exploitables par prédicteurs bâti sûr le "Markov chains" et en

utilissant les modeles discriminatifs puissants connu comme "support vector ma-

chines". Les résultats ont demonstré que nous pourrions identifer avec haut , les

enfants qui ont reussi mais pas celles qui ont échoué extubation. Deuxièmement,

en utilisant des données plus riches sur la variabilité cardiaque et respiratoire,

nous avons construit un modèle légèrement plus sophistiqué connu sous le nom

de "hidden Markov model" et l’avons comparé à un autre discriminateur - "Ran-

dom Forests". En modifiant de manière critique la structure par défaut de ces

modèles et en combinant des variables cliniques (comme l’âge et le poids du

nourrisson), nous avons développé un prédicteur qui aurait pu identifier 71%

des échecs d’extubation à l’avance. Le travail présenté dans cette thèse avance

notre compréhension des modèles respiratoires des nouveau-nés prématurés, en

général, et en particulier de ceux qui peuvent échouer à l’extubation; développe

des méthodes d’apprentissage machine rigoureuses pour les données de séries
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chronologiques physiologiques; et nous rapproche effectivement de l’élaboration

de prédicteurs précis de la préparation à l’extubation.
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1
Introduction

1.1 Scope of Clinical Problem

At birth, extremely preterm infants (gestational age ≤ 28 weeks) are usually at high

risk of respiratory failure due to lung immaturity [63]. Most require endotracheal

intubation and invasive mechanical ventilation (IMV) within the first days of life to

survive [63, 62]. IMV is breathing support mechanism which involves the insertion

of a tube (intubation) into the infant’s trachea while oxygen is provided at intervals

through a mechanical ventilator.

Physicians must minimize the duration of IMV because, even though it is a life-

saving procedure, it is an independent risk factor for short- and long-term morbidities

such as broncho-pulmonary dysplasia (BPD) - a chronic lung disease [63, 42]. On

the other hand, one must take care to not extubate the infant too soon as this may

ultimately result to the need for reintubation. Reintubation in such small infants is

technically challenging due to inflammation of the trachea, among other factors. As

such it could cause traumatic injury, infection to the upper airway, among other haz-

ards which could result to irreversible, long-term disability or death in this population

[2, 10, 23].

Unfortunately, there exists no standardized tests for determining extubation readi-

ness in preterm infants. The decision to extubate is a very subjective one, usually

1
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based on physician judgement and observation of bedside parameters such as blood

gases, oxygen needs, etc. There is significant practice variations across institutions

leading to high and inconsistent rates extubation failures from 10% to 70% (depending

on the time frame and criteria used to define failure) [23, 21].

Given these observations, it is critical to develop objective tools for determining

the optimal timing of extubation, in order to reduce extubation failure rates while

minimizing the duration of IMV. In this work, we apply machine learning to address

the task of predicting whether a patient is ready or not for extubation. We develop

predictive models that combine clinical and cardiorespiratory time-series data to de-

termine the readiness for extubation in extremely preterm newborns.

1.2 The APEX Study

The APEX study [59] is an ongoing multicenter, prospective, observational study

aimed at developing tools for Automated Prediction of EXtubation readiness (APEX)

in extremely preterm infants (clinicaltrials.gov identifier: NCT01909947). The project

envisions to "develop an automated predictor to help physicians determine when ex-

tremely preterm infants are ready for extubation, using the combination of clini-

cal tools along with novel and automated measures of cardiorespiratory variability".

APEX has 3 main objectives:

1. Generate a library of clinical data and cardiorespiratory signals in preterm in-

fants prior to extubation;

2. Develop a robust model for prediction of extubation readiness, i.e. referred to

as APEX (Automated prediction of extubation readiness);

3. Prospectively validate the clinical utility of this prediction model
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Work on objective 1 began in September 2013, with data being acquired from 5

tertiary-level NICUs in North America. The work presented in this thesis documents

progress on objective 2 of the APEX protocol [59].

1.3 Contributions and Outline of the

Thesis

This work provides several analyses using machine learning to predict extubation

readiness in extremely preterm infants. Previous studies [49, 22] had focused on

only one input modality (clinical variables or cardiorespiratory metrics), was based

on smaller patient populations and employed a single type of predictor. This work

developed generative and discriminative machine learning models for dealing with

time-series measures of breathing patterns and cardiorespiratory behaviour. In ad-

dition, we make the first known attempt at combining multiple modalities (clinical

covariates, breathing patterns, cardiorespiratory metrics) into a sophisticated, predic-

tive model. The results of this work increases our understanding of infant breathing

patterns, identifies useful features and presents a practical model for the prediction

of extubation readiness.

The rest of this thesis is organized as follows. Chapter 2 presents a background

on existing approaches to predicting extubation readiness, machine learning methods

developed for the broader technical problem of classification of physiological time-

series data, and how the current work builds upon these. Chapter 3 describes the

data acquisition and signal processing steps applied to the data as part of the APEX

project. Chapter 4 describes the models we developed and applied to predicting from

breathing patterns. Chapter 5 describes the models we developed and applied to

predicting from cardiorespiratory metrics as well as its combination with clinical co-

variates and breathing patterns. And finally, Chapter 6 provides a unifying discussion
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on the results, its implications and paths for future work.

The author of this thesis was fully responsible for the review of relevant literature

(chapter 2), the design of the machine learning analysis procedure and methodology,

the implementation of same, and the interpretation of results (chapters 4, 5, 6, and

7). Some of the work described in this thesis has been published by the author in

[47] and in co-authorship with Lara Kanbar in [46], [32]1. The co-investigators of the

APEX project - Prof. Doina Precup, Prof. Robert Kearney, Prof. Guilherme Mendes

Sant’Anna, Dr Karen Brown - and Wissam Shalish contributed through reviews,

feedback and advice. The author was responsible for writing all chapters of this

thesis.

1Paper has been accepted at the time of writing this thesis but pending publication.



2
Background

The respiratory management of extremely preterm infants (birth weight, BW ≤

1250g) is challenging as these infants are born with underdeveloped lungs and an

inability to maintain spontaneous breathing. Endotracheal intubation and invasive

mechanical ventilation (IMV) is a life-saving therapy in the first few days of life [63],

but when used for long periods could lead to morbidities [42]. Physicians must wean

as early as possible and prevent extubation failure since reintubation is technically

difficult and has been associated with adverse effects such as lung trauma, infection,

lung collapse, and death [10, 23]. Currently, there is no consensus on an objective

weaning protocol. As such decisions to extubate are based on clinician judgement

and observation of bedside parameters (such as blood gases, ventilator settings, etc),

leading to immense practice variation and reintubation rates (10% to 70%) depending

on the population studied and the time frame used to define extubation failure [23,

21].

In the following sections, we review the literature on the problem of predicting

extubation readiness motivating our focus on a machine learning approach. We then

summarise approaches that have been taken in employing machine learning for pre-

diction tasks involving physiological time-series data. Finally, we put this together,

highlighting the type of models we developed to predict extubation readiness based on

physiological time-series measures (heart rate and respiratory variability) and clinical

5
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variables.

2.1 Prediction of Extubation

Readiness

2.1.1 Spontaneous Breathing Trials and Analysis of Clinical

Variables

Spontaneous breathing trials (SBT) have been widely studied in the search for objec-

tive prediction tools for extubation readiness. Infants are put under period of no or

minimal ventilator support via endrotracheal tube-continuous positive airway pres-

sure (ETT-CPAP), while physicians observe a number of bedside measures including

changes in heart rate, oxygen saturation (SpO2) and/or oxygen requirements. The in-

fant is declared ready if certain criteria are met. In [28], an SBT failure was recorded if

the infant had either a bradycardia lasting longer than 15 s, defined as a drop in heart

rate below 100 beats per minute, and/or a fall in oxygen saturation below 85% despite

a 15% absolute increase in the fraction of inspired oxygen. SBTs have had limited

success. First, in late 1980s-1990, SBTs of 6 to 24 h were common practice. However,

evidence emerged that the trials’ prolonged length and low pressures increased the

risk of respiratory failure [17].

More recently, clinicians shifted towards the use of shorter 3 - 5 min SBTs [30,

14]. Kamlin, Davis, and Morley [30], studied the predictive ability of the SBT in low

birth weight (<1250g) preterms who all had respiratory distress at birth. The SBT

achieved a high sensitivity and specificity of 97% and 73% at predicting extubation

success, and was adopted as a standard of care in the institution. However subsequent

prospective audits found that the routine use of SBTs did not improve weaning times

or extubation success rates [31]. Chawla et al. [14] prospectively tested the usefulness
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of a 5-min SBT. This was found to have high sensitivity and positive predictive value

(PPV), but limited specificity and negative predictive value (NPV)1.

Beyond SBTs, the usefulness of several clinical variables as predictors of extu-

bation readiness has also been examined. Kamlin, Davis, and Morley [30] employed

statistical tests (student t and fisher test) to evaluate the significance of tidal volumes,

expired minute ventilation, and the ratio of minute ventilation between ETT-CPAP

and IMV. These variables showed potential in separating infants who failed and suc-

ceeded extubation but performed worse than the SBT. A recent secondary analysis

of data from a clinical trial was conducted by [13], who identified strong markers of

extubation success to include higher 5-minute Apgar score, and pH prior to extuba-

tion and lower peak fraction of inspired oxygen. The authors however developed no

prediction tool based on this information.

2.1.2 Analysis of Cardiorespiratory Variability

Clinical studies have pointed to the potential utility of measures of heart rate and

respiratory variability (HRV and RV), for predicting extubation readiness [18, 8, 60],

although most were conducted on adult patients. Our group was one of the first to

analyse HRV and RV in preterm infant populations.

Kaczmarek et al. [28] conducted a retrospective analysis of RV in the 44 infants

studied by [30]. The variability index (VI) was found to be significantly decreased in

infants who failed extubation. As a predictor of extubation readiness, RV indices gave

perfect sensitivity but limited specificities. By combining the VI with SBT criteria,

the best specificity of 75% was obtained. A later prospective observation study of 56

preterm infants (BW ≤ 1250 g) indicated that HRV as well was significantly lower in

infants who failed extubation [27]. HRV measures had perfect specificity and positive

predictive value, but limited sensitivity and negative predictive value in predicting
1We refer the reader to appendix 7.1 for definitions of the metrics - sensitivity, specificity, PPV,

NPV - introduced in this paragraph
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extubation readiness, indicating that perhaps HRV and RV contain complementary

information.

More robust analysis of RV measures was restrictive since at the time it required

manual breath-by-breath analysis (the most common method) of respiratory signals.

This motivated the development of AUREA - Automated Unsupervised Respiratory

Event Analysis [52]. AUREA automates the process of computing RV indices in

repeatable, standardized fashion that requires no human intervention. AUREA was

originally developed for older infants recovering from anaesthesia following surgery,

but then retuned and validated on the preterm infant population [53, 54].

Several important metrics of cardiorespiratory behaviour are computed by AU-

REA on a sample-by-sample basis, making it non-trivial to decide on metrics to use,

what time samples to consider and how to combine these into a predictor. This moti-

vated the first work that applied machine learning (ML) methods [9] to the problem

of predicting extubation readiness in preterm newborns. Precup et al. [49] developed

support vector machine (SVM) classifiers based on cardiorespiratory metrics com-

puted by AUREA at the middle minute of the ETT-CPAP. This classifier yielded a

sensitivity of 83% and specificity of 74% on a set of 53 (42 successes and 11 failures)

preterm infants.

Though these works highlight several useful variables and approaches for the pre-

diction of extubation readiness, the results are not to be considered conclusive since

they mostly involve single-center studies of very small, heterogeneous infant popula-

tions. In addition, the predictive ability of HRV and RV indices is far from being fully

explored.
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2.2 Machine Learning for

Classification of Physiological

Signals

Related to our goal of developing ML-based predictors of extubation readiness from

measures of heart and respiratory variability, is the body of work applying ML to

predict disease, clinical events, etc from physiological time-series signals. Physiolog-

ical signals (such as speech, electromyography, electroencephalography, respiratory

movement, etc) naturally come as sequence data in which the samples at each in-

stance in time are correlated. We group ML approaches that have been applied to

physiological sequence data in 2 based on the input representation: approaches based

on modelling complete time-series, time-agnostic models operating on (transformed)

scalar covariates or windows. We review research under both categories.

2.2.1 Sequence Data

One of the key challenges in modelling sequence data arise from the fact that permit-

ting long range dependencies in instances across time involves exponential blow up of

parameters [37]. Several sequence modelling approaches apply the Markov property

[39] to resolve this challenge. The Markov property states that a sample in time is

conditionally independent of its history before the immediately preceding observation,

conditioned on this observation. This is a simplifying assumption that has been found

to be effective in many problems especially those involving sequence data from biolog-

ical systems. Alinovi et al. [1] developed a Continuous-Time Markov Chain (CTMC)

model of breathing patterns in infants experiencing disorders such as apneas. They

demonstrated that the learned CTMC models accurately described respiratory rate

and simulated realistic sequences of respiration of normal and apnaeic infants.
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More sophisticated methods have been built on top of Markov chains such as hid-

den Markov models (HMM) [6], conditional random fields [34], maximum entropy

Markov models [41], etc. HMMs in particular have been very successful in the anal-

ysis of speech signals for speaker recognition. By carefully selecting features based

on mel-frequency ceptral coefficients (MFCC) or perceptual linear predictive coeffi-

cients, investigators developed highly accurate HMM-based speech recognisers[3, 4,

65], leading to its widespread use at industry scale. In [43] an HMM combined with a

Gaussian Mixture Model density estimator was used to classify motion from rectified

and filtered electromyograph signals with up to 91.25% accuracy.

Other methods that have been explored include similarity measures like dynamic

time warping (DTW) which has been used to analyse sensor data from an inertial

measurement unit (IMU) for gait recognition in healthy individuals[29] and for the

study of gait in patients with Parkinson’s disease [64].

One drawback to most of the classical methods above is that they require carefully,

hand-engineered features from domain experts in order to work well. Deep neural

networks (DNN) [35] which have gained widespread use in the last 5 years have the

ability to automatically extract rich feature representations from raw data [35]. In

additions, Recurrent Neural Networks such as those that use long-short term memory

(LSTM) cells can capture arbitrarily long-range dependencies in sequence data and

have surpassed the performance of HMMs in speech recognition [24].

For predicting surgical outcomes for cerebral palsy patients, [20] developed a novel

LSTM which models joint angles obtained during the subject’s gait cycle to surpass

some classical models by as much as 14%. [38] conducted the first empirical study

using LSTMs to predict multiple diagnoses given multivariate paediatric intensive care

unit (PICU) time series (including body temperature, heart rate, diastolic and systolic

blood pressure, and blood glucose, among others). The developed LSTM achieved a

micro and macro AUC of 85.60% and 80.75%, respectively in detecting conditions

such as diabetes mellitus, scoliosis and asthma. DNN approaches, however, have a
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key drawback. DNNs generally entail thousands of free parameters, and consequently

require at least as much labelled data for learning to be possible. Unfortunately in

many situations in the clinical domain (as in ours) only a few hundred examples may

be available.

2.2.2 Scalar Covariates

Overall, the ML methods described above which model sequence data directly, includ-

ing non-DNN methods, can be computationally expensive to run, require fair amount

of data, and are usually non-trivial to tune and train [35]. Hence approaches have

been developed which either completely ignores time as a factor or hand-engineers

new scalar features that summarise sequential data (e.g., using statistics, spectral

information, etc).

Support vector machines (SVM) [16] are a powerful and common choice for learn-

ing from such data. Indeed, Precup et al. developed an SVM classifier to validate the

hypothesis that extubation readiness can be predicted from measures of heart and

respiratory variability. Time-varying measures such as respiratory frequency, cardiac

frequency, etc were computed. Feature vector at each instant in time were used inde-

pendently to train the SVM. Predictions were then made by a majority vote of the in-

stance classifications. This system gave a sensitivity of 83.2% and specificity of 73.6%

on a dataset 53 patients. In [45], speech signals of newborns were computed as MFCC

then supplied as input to an SVM yielding sensitivity and specificity of 86% and 89%,

respectively in detecting newborn asphyxia. In [44] statistical, Hjorth, amplitude and

spectral measures, computed from patient electroencephalography records, were used

with an SVM to identify the presence of insomnia by an accuracy of 81%.

Random Forests (RF) [12], which builds ensembles of decision trees to make non-

linear, robust estimators have also been explored. Similar to [20], Schwartz et al.

attempted to predict surgical outcomes for cerebral palsy patients from gait data.
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They built RFs based on de-correlated feature vectors at each time instant. And as

in [49] predictions were made based on the fraction of votes assigned to a given class

in the sequence. The investigators demonstrated that this approach was strongly

predictive of good and poor pelvis-hip outcomes (82% sensitivity and 73% specificity)

for limbs undergoing surgery.

2.3 Developing Machine Learning

Predictor of Extubation Readiness

It has been established that several clinical features and cardiorespiratory metrics

contain predictive information about an infant’s readiness for extubation. However,

it is not clear how exactly these can be combined to develop accurate tests for ex-

tubation readiness. There appears to be complex interactions between the different

variables. Moreover, high heterogeneity in the characteristics of preterm infants, type

(and amount) of ventilatory support received, and other factors, make the derivation

of a simple rule for extubation readiness extremely difficult. In this work, we focus

on the use of ML methods, a range of tools which have been developed for turning

data into actionable knowledge through fitting of complex functions and models.

The use of ML tools for the prediction of extubation readiness was first studied

by our group leveraging cardiorespiratory metrics[49] and clinical variables [22] to

give promising results. These were on very small patients sets and explored only one

modality and a single ML method - SVM. As the patient database of APEX grew,

it became necessary to validate existing results, investigate other models especially

those tailored to time series modelling and combine several modalities into an accurate

predictor of extubation readiness in preterm infants.

In this work we develop models based on Markov chains, HMMs, SVMs, and

RFs, using a variety of inputs and input modalities including respiratory patterns,
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metrics of cardiorespiratory variability and clinical variables. We adopt techniques for

addressing practical issues such as class imbalance and feature selection. Through this

work, we developed an increased understanding of preterm infant breathing patterns

and transition behaviour. We demonstrate empirically that multi-modal classifiers

could help boost performance and reliability of predictors. This thesis details work

that has been recently published by the primary author in [46], [47] and [32]2, in

addition to new experiments and analyses.

2Paper has been accepted at the time of writing this thesis but pending publication.



3
Data Acquisition and Signal Processing

Data acquisition for the APEX study began in September 2013 and is ongoing at 5

tertiary-level Neonatal Intensive Care Units (NICU) in North America. The study

protocol for APEX has been published in [59]. In this chapter, we present the dif-

ferent modalities and types of data acquired, how they were acquired and the signal

processing applied to the data; with a focus on aspects relevant to the machine learing

phase described in subsequent chapters.

3.1 Data Acquisition

Data is acquired from five NICUs: the Royal Victoria Hospital, the Montreal Chil-

dren’s Hospital, the Jewish General Hospital (Montreal, Quebec, Canada); the De-

troit Medical Center (Detroit, Michigan, USA), and the Women and Infant’s Hospital

(Providence, Rhode Island, USA). Approval was obtained from the Ethics Review

Boards of each institution.

Infants were eligible if they had Birth Weight (BW) ≤ 1250g, receiving invasive

mechanical ventilation (IMV) at the time of enrollment and undergoing their first

extubation attempt. Infants were excluded if they had any major congenital anoma-

lies, or were receiving any vasopressor or sedative drugs at the time of extubation.

Written informed parental consent was obtained prior to enrollment. The attending

14
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clinician was responsible for determining extubation readiness, and data were collected

immediately prior to extubation.

3.1.1 Acquisition of cardiorespiratory data

The following cardiorespiratory signals were acquired from each infant:

1. Chest and abdominal movements using uncalibrated Respiratory Inductance

Plethysmography (RIP) recorded with Respitrace QDC system R© (Viasys R©

Healthcare, USA). One RIP band is placed around the infant’s ribcage (RCG)

at the level of the nipple line and the other band around the abdomen (ABD)

at 0.5cm above the umbilicus;

2. Electrocardiography (ECG) using 3 electrodes (Vermed, USA, c© 2010) placed

on infant’s chest or limbs;

3. Photoplethysmography (PPG) and oxygen saturation (SAT) signals recorded

with a pulse oximeter (Radical, Masimo Corp, Irvine, LA) placed on infant’s

hand or foot.

All signals were anti-alias filtered at 500Hz and sampled at 1000Hz using a portable

analog-digital data acquisition system (PowerLab version 7.3.8, ADInstruments, Dunedin,

New Zealand, c© 2009). Figure 3.1 shows a representative example of the cardiores-

piratory signals from one infant.

Upon the decision of the physician to extubate, these signals are acquired during

2 continuous recording periods, before extubation:

1. A 60-minute period while the infant receives any mode of conventional IMV.

2. A 5-minute period during which ventilation is switched to ETT-CPAP.
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Figure 3.1: Representative example of a cardiorespiratory recording from a preterm
infant. The signals displayed, from top to bottom, are: electrocardiogram, rib cage
movements, abdominal movements, sum of rib cage and abdominal movements, oxy-
gen saturation and photoplethysmography. Source: [59]

In this work, the cardiorespiratory signals recorded during the 5-minute ETT-

CPAP are the main focus of analysis since this period better reflects the infants’

ability for spontaneous breathing.

3.1.2 Acquisition of clinical data

Over 100 clinical variables are recorded during the infants stay in the NICU. These

are read off the nursing flow chart and blood gas records. They include maternal

characteristics, infant peri-extubation characteristics and extubation outcome mea-

sures 1. For this work, we considered only infants’ birth weight (BW) and gestational

age (GA).

3.1.3 Extubation failure

Different investigators have defined extubation failure by various criteria and time

windows. In the APEX study protocol, it is defined as the occurence of one or more
1The full list of clinical variables acquired can be found on Table 2 of the APEX protocol [59].
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of the following criteria within 72 h after extubation: (a) FiO2 > 0.5 to maintain SpO2

> 88% or PaO2 > 45 mmHg (for 2 consecutive hours); (b) PaCO2 > 55–60 mmHg with

a pH < 7.25, in two consecutive blood gases done at least 1 h apart; (c) one episode of

apnea requiring positive pressure ventilation with bag and mask; (d) Multiple episodes

of apnea (≥ 6 episodes/6 h). In this work we chose to explore another definition -

reintubation within 72 h - based on guidance from clinicians. That is, a patient is

considered to have failed extubation if the attending physician reintubates him/her

within 72 h after the first extubation attempt. This choice followed observations in the

data acquired so far of low correlation between the protocol definition of extubation

failure and actual reintubations. The latter is a simpler definition and may be more

inclined to predicting the possibility of reintubation which is an independent risk

factor for morbidity and mortality in this group of infants [56, 19]. This definition is

a common choice in the literature [28, 27, 30].

3.1.4 Database size

At the time of this work, the database contained 189 patients with BW 882 ± 201g

and GA 26.5±1.9 weeks. A total of 28 (14.8%) infants failed extubation, i.e., required

reintubation within 72hrs. Infants were extubated at 13.3±15.6 days post-birth when

deemed ‘ready’ by the attending physician.

3.2 Signal Processing

The raw signals acquired for each infant were further processed into cardiorespiratory

metrics and respiratory patterns which characterise heart and breathing behaviour of

the subject. The following subsections describes what these metrics and patterns are:



CHAPTER 3. DATA ACQUISITION AND SIGNAL PROCESSING 18

3.2.1 Cardiorespiratory Metrics

To obtain moving measurements of cardiorespiratory behavior, the signals were pro-

cessed at every time instant into sample-by-sample metrics (at 50Hz) of power, respi-

ratory frequency, cardiac frequency, and thoraco-abdominal synchrony, as described

in [49, 52]. The metrics computed for this study include:

• Pause power in the RCG (rprc) and ABD (rpab): the power in the 0-2Hz band in

a short sliding window relative to the median power in a preceding long window.

• Respiratory frequency (rfab): the frequency (in a sliding window) at which the

highest power occurs in the 0-2Hz band, using a bank of band-pass filters with

0.2Hz bandwidth.

• Cardiac frequency using the ECG (cf ec) or PPG (cfpp): the frequency with

the most power in the 1.5-3.5Hz band, using the Short Time Fourier Transform

(STFT).

• Root-mean-square (rms+): the sum of the RMS of the RCG and ABD in sliding

windows.

• Thoraco-abdominal phase (Φ): the phase difference between the RCG and ABD.

• Movement artifact power in the RCG (bmprc) and ABD (bmpab): the power in

the 0-0.4Hz movement artifact band relative to the 0.4-2Hz breathing band.

• Cross-Correlation coefficient between the cardiac frequency and respiratory fre-

quency (ρrf−cf
0 ), computed over a sliding window.

3.2.2 Respiratory Patterns

RIP signals sampled at 50Hz were analyzed using AUREA to extract the sequence of

respiratory patterns each infant went through during the 5-minute ETT-CPAP. The

5 patterns extracted by AUREA are:
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• Pause (PAU): cessation of breathing indicated by low RCG and ABD power in

the breathing band (0.4-2Hz).

• Movement Artifact (MVT): periods during which there is power in the move-

ment artifact band (0-0.4Hz) due to infant movement or nurse handling.

• Synchronous Breathing (SYB): periods during which RCG and ABD are in

synchrony.

• Asynchronous Breathing (ASB): periods during which RCG and ABD are out

of synchrony.

• Unknown (UNK): Ambiguous patterns not belonging to any other pattern cat-

egory.

The following patterns were directly computed from the ECG and PPG signals:

• Bradycardia (BDY): artifact-free periods during which and the heart rate was

below 100 beats/min.

• Desaturation (DST): artifact-free periods during which the oxygen saturation

was less than 85%. Moving artifact was detected using a PPG movement artifact

detector [14].

An example of RIP signals and corresponding patterns assigned by AUREA to

the different samples is shown in Fig. 3.2.

3.2.3 Statistical and Spectral Features

A number of statistical and spectral measures were computed on each cardiorespira-

tory metric and breathing pattern to summarise them. This resulted to a total of 77

scalar cardiorespiratory features:

• Median, IQR, Median power, IQR of power of all AUREA cardiorespiratory

metrics (rprc, rpab, rfab, cf ec, cfpp, rms+, Φ, bmprc, bmpab, ρrf−cf
0 ) - 40 features.
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Figure 3.2: Example of a RCG and ABD signal segment and the corresponding res-
piratory patterns computed by AUREA.

• Kurtosis, Skewness, Median power, IQR of power - of the oxygen saturation

(SAT) signal - 4 features.

• Standard deviation of the time interval between R-peaks (SDNN); the standard

deviation of successive differences in the interval between R-peaks (SDSD); and

the triangular index of the ECG signal - 3 features.

• Number of occurrences (NP ), total duration (T P
tot), maximum length (T P

max),

pattern density (DP ), pattern frequency (F P ) of the AUREA patterns (exclud-

ing UNK), and of the BDY, DST patterns - 30 features.

where pattern density is defined as the fraction of the ETT-CPAP time spent

in a pattern, and pattern frequency is defined as the number of pattern occurrences

divided by the total duration of ETT-CPAP.



4
Predicting from Patterns of Breathing

In this chapter, we cover methods developed to analyse the breathing patterns ex-

tracted by AUREA during the 5-minute ETT-CPAP. Our objective was to gain an

empirical understanding of the transitions that infants who succeed and fail extuba-

tion make, and to leverage this information to create accurate predictive models of

extubation readiness.

This chapter contributes the following: 1) we demonstrate empirically the more

robust modeling capability of semi-Markov over Markov chain models for discrete

time-series data, 2) we use semi-Markov chain models to understand transition struc-

ture of breathing patterns revealing key similarities and differences between infants

who succeed and fail extubation, 3) we show that, in addition to generative classifi-

cation via maximizing joint likelihood, the parameters of semi-Markov chains can be

exploited in discriminative classifiers to improve predictive performance.

In the following sections, we describe our formulation of the methods used, the

experimental setup and a discussion of results.

21
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4.1 Methods

4.1.1 Discrete-time Markov Chain

Consider a system, illustrated by the state transition diagrams in Figure 4.1, which

can generate sequences of two classes. Sequences classified as positive examples are

generated by the state machine on the left while negative examples are generated

by the one on the right. In both, a sequence can start from any state, lasts for

5 time steps and every time step results to a change of state (i.e., no dwell time).

The primary difference between the two state machines is that the probability of

transitioning to state C is 0.8 for positive examples and 0.2 for negative example.

Given this an example positive example could be: C -> A -> C -> B -> C while an

example negative example could be A -> B -> C -> B -> A.

Figure 4.1: State transition diagrams for a system which generates sequences of 5
time steps which may be of a positive or negative class

Sequences generated from such a system typifies a Markov chain - one in which

the next state is only dependent on the one preceding it, and independent of all

other previous states. Markov chain modeling provides a tractable framework for

characterizing time-series data. The values recorded at the each time step correspond

to the state of the underlying Markov chain.

In order to model infant breathing patterns, we adopt discrete-time Markov chains

(DTMC), in which at time t, the state xt takes a value from a finite set of states S

(in our case, the 5 respiratory patterns provided by AUREA).
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Modeling

Modeling time-series data as a Markov chain involves estimating 2 sets of parameters:

the probability distribution over initial states (a vector) π and the transition proba-

bilities between states (a matrix) A. Fitting or learning the model of a Markov chain

involves estimating these parameters from data. Their maximum likelihood estimates

are given by [5]:

πj = # of sequences starting in j

# of sequences
∀j ∈ S (4.1)

Ai,j = nij∑
j nij

∀ i, j ∈ S (4.2)

where nij is the number of time steps during which a transition from state i to j

occurred. Given a time-series of observations x1, x2, ..., xT , the joint likelihood of the

sequence according to the Markov chain is given by:

P (x) = P (x1)
T∏

t=2
P (xt|xt−1) = πx1

T∏
t=2

Axt−1,xt (4.3)

Note that in our data, the start state distribution π is unreliable due to infant and

device handling at the beginning of data collection episodes, so in fact we did not

include it in the model.

Prediction

In order to apply DTMC models for classification, separate transition models As, Af

were first fit to the data coming from the success and failure patients, respectively.

The classification for a new sequence x is done by computing its posterior likelihood

with respect to both models (using Eq.4.3), and selecting the class, c whose model

gives the higher likelihood:

arg max
c

L(x|Ac) (4.4)
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where

L(x|Ac) =
T∏

t=2
Ac

xt−1,xt
(4.5)

By this, we explore the hypothesis that the respiratory patterns of infants who succeed

extubation follows a different Markov chain from those who fail.

4.1.2 Discrete-time Semi-Markov Chain

A discrete-time semi-Markov chain (DTSC) model differs from the DTMC in how it

models the duration (number of time steps) spent in a state until a transition out of

the state occurs, also known as dwell or sojourn time. In a DTMC model, dwell time

is implicitly treated as a transition from a state to itself, whereas the DTSC model fits

individual probability distributions over the dwell times in each state. Consequently,

the transition matrix A of the DTSC model only represents cross-state transitions

with all the diagonal elements (A11, A22,..., A|S||S|) set to 0.

Modeling

Concretely the semi-Markov chain model is characterized by 3 parameters: a start

state distribution vector π; the transition matrix A, which stores only cross-state

transition probabilities (i.e., diagonal elements are 0); and a set of dwell or sojourn

time distributions F , which model the duration spent in each state, until a transition

out of that state occurs.

The joint likelihood of a sequence of observations under a semi-Markov chain is

given by:

P (x) = πx1

T∏
t=2

Axt−1,xtFxt(|xt|) (4.6)

where Fxt(|xt|) is the probability of sojourning in the state xt for the duration |xt|.

[50]

In modeling the infant respiratory pattern sequences as a semi-Markov chain, the

maximum likelihood estimates of π and A remain as before Eqs 4.1 and 4.2. To
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fit the dwell time distributions, all dwell times in a breathing pattern (e.g., PAU)

for one population (e.g. success patients) were obtained. Several known probability

distributions (see appendix 7.2 for list) were fit to this data. The distribution which

minimized the Bayesian Information Criterion (BIC) [58] was selected. This steps

were repeated for all states in both success and failure groups to obtain 10 separate

dwell time distributions.

Prediction

Classification of a new example sequence as success or failure was done as in previous

section Eq. 4.4 by selecting the class of larger posterior likelihood. However in DTSC

model the likelihood function is:

L(x|Ac) =
T∏

t=2
Ac

xt−1,xt
Fxt(|xt|) (4.7)

It should be noted, that the framework of DTSC was useful in our application for

several reasons. First, Markov chains implicitly model dwell times as an exponential

distribution [9] which could introduce bias into the model if underlying data is not

actually exponential. Secondly, in data characterized by very long dwell times, the

transition probabilities of cross-state transitions (off-diagonal elements) go to 0, mak-

ing it very difficult to get any useful information from the model. Finally, a Markov

chain is highly susceptible to changes in the sampling rate of the data. Semi-Markov

chains address all of these issues.

4.1.3 Support Vector Machine

Using the Markov model likelihood for classification can be sub-optimal if the model

structure or some of the model parameters are imprecise with respect to the underlying

mechanisms of the data. Discriminative models do not make probabilistic assumptions

about how the inputs were generated, but rather attempt to learn a (linear or non-
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linear) boundary between the groups. Support vector machines (SVMs), in particular,

learn a maximum margin decision boundary [16]. In order to compare our results

to the Markov and semi-Markov chain cases, we derived summary statistics from the

respiratory pattern sequence of each patient and used these as inputs to train an SVM.

In particular, a radial basis function (RBF) SVM was used. The key hyperparameters

of the RBF SVM - box constraint, C which penalizes the error function to manage

overfitting, and kernel scale γ, which controls the width of the Gaussian, were tuned

as described in section 4.2, the Experimental Setup.

4.2 Experimental Design

We developed an experimental framework to model the respiratory patterns as DTMC

and DTSC, and then to compare the predictive ability of these generative methods,

with a discriminatory one - SVM. The input to the Markov-based models were the

sequences of respiratory patterns, summarised in table 4.1. While the derived features

for the SVM are described in section 4.2.1.

Table 4.1: The 5 breathing patterns extracted by AUREA from respiratory inductive
plethysmography (RIP) signals in ribcage and abdomen

Pattern Name Code Description
Pause PAU A cessation of breathing
Synchronous Breathing ASB Ribcage and abdomen and ABD are in phase
Asynchronous Breathing MVT Ribcage and abdomen are out of phase
Movement Artifact SYB Associated with infant moving or nurse handling

Unknown UNK Ambiguous patterns not belonging to any other
pattern category

4.2.1 Feature Extraction for Discriminative Classification

The following features, motivated from the DTSC model, were extracted from each

subject.
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• Total dwell time in each respiratory pattern as a fraction of the total sequence

duration, (Dw-All) - 5 features

• Number of transitions from pattern i to pattern j (where i 6= j) as a fraction of

the total dwell time in pattern i, ∀i ∈ S, (Tr-All) - 20 features

• Number of occurrences of each respiratory pattern as a fraction of the number

of occurrences of all patterns, (Oc-All) - 5 features

4.2.2 Experimental Protocol

For hyperparameter tuning of the SVM, 10-fold cross validation was employed to

evaluate candidate models. The best model was selected as that which minimised the

loss on the validation set. The loss is defined as 1 - balanced classification accuracy

(BCA) (see appendix 7.1.5 for a motivation on the use of balanced classification

accuracy). The Markov-based models have no hyperparameters.

For evaluation of all 3 (DTMC, DTSC and SVM), leave-one-out cross validation

was used. In each case, the model is fit to the data on all but one example, the

validation example. The fitted model is then evaluated on the validation example.

This is repeated until every example has served as validation exactly once. The

evaluation metrics - sensitivity, specificity, and BCA - are then computed over the

predictions on the validation examples. Due to the small nature of the dataset, no

subset was left-out as a standalone test set.

Experiments were written in MATLAB [40].
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4.3 Markov-based Modelling and

Prediction

In this section, we present and discuss results obtained when using the Markov-based

approaches - DTMC and DTSC - to model infant respiratory patterns and make

predictions of extubation readiness.

4.3.1 Modelling Transitions

The transition probabilities were estimated from data via maximum likelihood. Given

one transition, say PAU-MVT, its number of occurrences in the data is counted and

divided by the number of occurences of the prior state (PAU) in that transition.

This is repeated for all combinations of state pairs to give a total of 25 transition

probabilities for each of the success and failure groups.

The Markov chain transition matrices for the success and failure populations are

shown in Tables 4.2 and 4.3, respectively. Each cell in the matrix represents the

probability of transitioning from the state labeled on the row to that on the column.

It can be seen that the probability of self transitions (diagonal elements) account for

nearly all of the transition probability on each row, leaving the probabilities of cross-

pattern transitions (off-diagonal elements) close to 0. This is a reflection of extremely

long dwell times relative to cross-state transitions in the data.

The symmetric KL divergence (DKLS) between the success and failure transition

distributions was close to zero 0.0019, indicating the distributions were almost iden-

tical.

The transition probabilities of the respiratory patterns were further estimated as

semi-Markov chains. The transition matrices for the success and failure populations

are shown in Tables 4.4 and 4.5. By collapsing self-transitions, it can be seen that

resolution was greatly increased in the off-diagonal elements of the matrices. This
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Table 4.2: Respiratory state transition probabilities for the Success population mod-
eled as a DTMC. Self-state transitions are in bold. They account for a very high
proportion of transitions, thereby reducing resolution in cross-transition probabili-
ties.

PAU ASB MVT SYB UNK
PAU 0.9936 0.0019 0.0004 0.0022 0.0018
ASB 0.0006 0.9953 0.0010 0.0013 0.0018
MVT 0.0012 0.0029 0.9931 0.0020 0.0007
SYB 0.0003 0.0005 0.0003 0.9977 0.0012
UNK 0.0015 0.0031 0.0003 0.0055 0.9895

Table 4.3: Respiratory State Transition probabilities for Failure population modeled
as a DTMC. Self-state transitions are in bold. They account for a very high propor-
tion of transitions, thereby reducing resolution in cross-transition probabilities.

PAU ASB MVT SYB UNK
PAU 0.9920 0.0022 0.0007 0.0020 0.0032
ASB 0.0005 0.9955 0.0007 0.0013 0.0020
MVT 0.0007 0.0021 0.9934 0.0028 0.0010
SYB 0.0001 0.0005 0.0003 0.9978 0.0012
UNK 0.0013 0.0027 0.0004 0.0056 0.9899

revealed interesting results. It was observed that the most probable transition from

the breathing patterns (SYB and ASB) and UNK pattern was the same in both infants

who succeeded and those who failed extubation (shown in bold, black font). Whereas

it differed for the non-breathing states (PAU and MVT) (shown in bold, red font).

Further, the symmetric KL divergence (DKLS) between the 2 transition matrices

for the semi-Markov model was 0.27. This increase from the DTMC case suggests

that the DTSC model resulted to the learning of more discriminating characteristics

between both groups of infants.

4.3.2 Modeling of Dwell/Sojourn Time Distributions

The dwell time distributions of the DTSC were estimated as described in section

4.1.2. The results are summarised in Table 4.6. It was observed that in each pattern,

the distribution type which best fit the dwell times in both populations were same,
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whereas the distribution parameter values differed. This suggests that the 2 groups

of infants do not differ in the manner in which they sojourn in a single state but in

the duration spent in that state before switching to a different one. This may also

be an indication of some underlying consistency in breathing behaviour of premature

infants in spite of extubation outcome.

It should also be noted that the dwell time was distributed exponentially only in

the Pause pattern. As discussed earlier, the use of a DTMC model implicitly assumes

an exponential distribution for all patterns. The DTSC framework has thus allowed

for a more expressive and accurate representation. Detailed plots of the probability

density functions (PDF) of sojourn times in all states are shown in Fig 4.2, as well as

the distributions of best fit based on the Bayesian information criterion (BIC).

4.3.3 Prediction

As described, leave-one-out cross validation was employed to estimate the predictive

capability of the models. The results using the DTSC model are summarised in Table

Table 4.4: Respiratory state transition probabilities for the Success population mod-
eled as a Semi-Markov chain

PAU ASB MVT SYB UNK
PAU 0 0.27 0.09 0.26 0.38
ASB 0.10 0 0.16 0.29 0.45
MVT 0.12 0.32 0 0.43 0.14
SYB 0.06 0.25 0.15 0 0.54
UNK 0.13 0.28 0.04 0.55 0

Table 4.5: Respiratory State Transition probabilities for Failure population modeled
as semi-Markov chain

PAU ASB MVT SYB UNK
PAU 0 0.28 0.06 0.39 0.28
ASB 0.12 0 0.21 0.28 0.40
MVT 0.17 0.41 0 0.32 0.09
SYB 0.14 0.21 0.14 0 0.52
UNK 0.15 0.30 0.03 0.52 0
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Figure 4.2: Probability Density Functions (PDF) of Dwell Time Distributions in all
5 respiratory patterns for success and failure patients
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Table 4.6: The type and parameters of the distributions of best fit to the dwell (or
sojourn) times in each respiratory pattern for success and failure patients.

Success Failure
Pause Exponential Exponential

µ = 2.51 µ = 2.94
Asynchrony GeneralizedExtremeValue GeneralizedExtremeValue

k=0.63, σ = 1.30, µ=1.85 k=0.65, σ = 1.36, µ=1.81
Movement GeneralizedPareto GeneralizedPareto

k=-0.22, σ = 3.62 k=-0.11, σ = 3.31
Synchrony InverseGaussian InverseGaussian

µ =8.61, λ = 3.61 µ =7.83, λ = 3.41
Unknown GeneralizedPareto GeneralizedPareto

k=-0.07, σ = 2.07 k=-0.10, σ = 2.05

4.7. Lk-ALL refers to the standard form of the likelihood function (Eq 4.7) in which

all patterns along the sequence are considered. Success patients were identified at a

rate (sensitivity) of 73% while specificity was 50%.

Further, we examined the predictive value of individual patterns/states. In partic-

ular, to compute the likelihood of a test sequence based on one pattern, the product

of cross-state transitions emanating from only that state are taken. As before, this

likelihood is computed with respect to the transition models for the 2 classes, and a

prediction is made by selecting the class whose model gave higher likelihood. Results

are shown accordingly in Table 4.8 where Lk-STATE represents prediction made using

likelihood of the "STATE" specified. The best performance was obtained by the Pause

pattern which gave the lowest misclassification loss of 0.37 and the highest specificity

of 68%.
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Table 4.7: Performance of Semi-Markov chain model. Lk-ALL or Lk-STATE refers to
classification using likelihood of chain considering all states or a specified "STATE".

Approach Sensitivity Specificity Loss
DTSC Model
Lk-ALL 0.73 0.50 0.38
Lk-PAU 0.58 0.68 0.37
Lk-ASB 0.48 0.63 0.45
Lk-MVT 0.50 0.68 0.41
Lk-SYB 0.53 0.68 0.40
Lk-UNK 0.44 0.61 0.48

4.4 Support Vector Machine

Prediction

In the section, we present and discuss results RBF SVM to predict extubation readi-

ness based on features extracted from respiratory patterns of infants.

4.4.1 Model Selection and Parameter Search

Different combinations of the feature set were evaluated. First all 30 features de-

scribed in 4.2.1 (Dr-Oc-Tr-ALL) from all patterns were used. Then, similar to the

generative case, the predictive value of each individual pattern/state was evaluated.

Concretely, for each state, the dwell time in that state, Dw-STATE (1 feature), the

cross-transitions, Tr-STATE (4 features) and the occurrence count, Oc-STATE (1

feature) were combined, Dw-Oc-Tr-STATE (6 features) to train the classifier.

10-fold cross-validation in a grid search to find the best pair of hyper-parameters

(box constraint C and kernel scale γ) values by optimising for the balanced misclassi-

fication loss. This grid search was repeated for each feature set since each would have

different optimal values of C and γ.
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Figure 4.3: Receiver-operating characteristic (ROC) curve for support vector machine
trained on summary features of all respiratory patterns (AUC=0.62) and on summary
features of only the Pause pattern (AUC=0.70)

4.4.2 Prediction

The optimal values for C and γ were then finally evaluated using leave-one-out cross

validation. The results are summarised in Table 4.8. The highest specificity of 84%

was obtained when using features of only the Pause pattern, which also gave the

lowest loss of 0.31. It could also be observed that whereas PAU and MVT patterns

gave higher specificities , SYB and ASB gave higher sensitivities . This is likely an

indication that the Pause and Movement patterns characterise better patients who

may fail extubation while the breathing patterns better characterise patients who

succeed.

In Fig. 4.3, we show the receiver-operating characteristic (ROC) curve for the best

model which uses only PAU features Dw-Oc-Tr-PAU compared with the model which

uses all pattern features Dw-Oc-Tr-ALL. The ROC curves were obtained by fixing C

at the optimal value and varying γ. It can be seen that the Dw-Oc-Tr-PAU provides

a more reliable predictive surface with a high area under the curve (AUC) of 0.70.
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Table 4.8: Performance of best support vector machine model. Dw, Oc, Tr refer to
features extracted based on dwell time, occurrence count and transitions in states.

Approach Sensitivity Specificity Loss
Discriminative (SVM)
Dw-Oc-Tr-ALL 0.63 0.64 0.37
Dw-Oc-Tr-PAU 0.54 0.84 0.31
Dw-Oc-Tr-ASB 0.75 0.38 0.44
Dw-Oc-Tr-MVT 0.58 0.60 0.41
Dw-Oc-Tr-SYB 0.81 0.26 0.46
Dw-Oc-Tr-UNK 0.43 0.62 0.48

4.5 Discussion

We demonstrated the practical application of semi-Markov chains for modeling and

classification of respiratory pattern behaviour of preterm infants in the period prior to

extubation. We showed that semi-Markov chain models provide more expressive and

robust details about the underlying time series compared to Markov chain models. In

terms of sojourn time behaviour, the model revealed consistency between the success

and failure groups in all respiratory states. Differences were highlighted primarily in

transition behaviour arising from the Pause and Movement Artifact patterns.

Prediction results confirmed that these 2 patterns provide more discriminating

information (especially for patients who failed extubation) than any other pattern.

That the Pause pattern is a strong indicator of infants not ready for extubation is

well aligned with existing clinical knowledge. However, it was interesting to observe

that the Movement Artifact pattern is also a good indicator, suggesting that infants

prone to fail are more restless and require more nurse handling.

The best performance obtained was specificity of 84% and sensitivity of 54% using

Pause features in a support vector machine (SVM) classifier. This shows a very good

failure detection rate but at a fairly high cost to prediction of success patients.

The use of automatically extracted respiratory patterns for prediction provides an

approach that unveils intuition and enhances interpretable models. We emphasize
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that all babies used in this study were deemed ready for extubation by an attending

clinician, so these results constitute an improvement in detecting problem cases over

current practice. The advantage of using an automated approach is that we can

provide a quantified measurement of the breathing patterns, which supports more

repeatable and precise clinical decisions.



5
Predicting from Metrics of Cardiorespiratory

Variability

In this chapter, we present models and experiments developed to leverage measures

of heart and respiratory variability in order to predict extubation readiness. These

time-series measures differ from the breathing patterns in that they are continuous-

valued and multivariate, and potentially entail more detailed observations of infants’

cardiorespiratory behaviour.

5.1 Methods

We developed classifiers based on Hidden Markov Models, a generative approach to

modelling sequence data, and Random Forests, a discriminative classifier. These meth-

ods and how they were applied to the problem of predicting extubation readiness are

described in the following sub-sections.

5.1.1 Gaussian Hidden Markov Model

Structure

Hidden Markov Models (HMM) were first introduced in late 60s by Baum et al. [6],

and gained popularity as a state-of-the-art model for automatic speech recognition

37
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[3, 25, 51, 7, 24] in subsequent decades. HMMs provide a framework for modelling

sequence data as a probabilistic process driven by latent or hidden states.

HMMs make 2 conditional independence assumptions. The sequence of hidden

states is assumed to be a Markov chain, i.e, a state is only dependent on the one

preceding it. And the probability of an observation at a given time step in a sequence

is dependent only on the hidden state at that time. Figure 5.1 illustrates the HMM

structure as a graphical model. These 2 conditional independence properties of the

HMM allow for data-efficient and tractable algorithms for inference on sequence data.

Figure 5.1: Graphical structure of a hidden Markov model (HMM)

Parameters

Formally, consider that we have a set of observations for T time steps O1, O2, ..., OT

denoted as O. The observations may be multi-variate such that each Ot is a vector of

continuous values of dimension D representing the number of features being observed.

We also have a corresponding sequence of hidden states Q1, Q2, ..., QT denoted Q.

Each Qt usually takes from one of K discrete state values. Given the structure of the

HMM (5.1), the joint probability distribution of the observations and hidden states

decomposes as:

P (O,Q) = P (Q1)
T−1∏
t=1

P (Qt+1|Qt)
T∏

t=1
P (Ot|Qt) (5.1)

The HMM is thus defined by a set of parameters θ which include:
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1. The distribution of start states, P (Q1)

π = {π1, π2, ...πK}

2. The transition probabilities from Qt to Qt+1, P (Qt+1|Qt)

A = {aij} where i, j ∈ [1, K]

3. The emission densities of Ot from Qt, P (Ot|Qt)

B = {bj(Ot)} where j ∈ [1, K]

Density Representation and HMM Variants

In our problem we assumed discrete hidden states, thus pi and A were represented

as discrete probability densities. The observed variables however are continuous-

valued vectors - the multivariate metrics of cardiorespiratory variability. We had to

apply some restriction on the form of the probability density function of the emission

densities to ensure that B can be estimated in a consistent way. As is common in the

literature [51, 36], we modelled B as a multivariate Gaussian distribution, hence the

term Gaussian density hidden Markov model (GHMM). The use of mixture models

such as Gaussian mixture model (GMM) has also been applied extensively [26] in cases

where it is suspected that the conditional distributions of observations over the hidden

states is a mixture distribution. The applicability of GMM was not investigated in

this study.

Other HMM variants exist based on the structure of the transition matrix A. Left-

to-right HMMs [9], for instance, enforce a transition model in which states are ordered

such that the state Qt+1 must either be same or of higher order than that at Qt. In

this work, We used an ergodic transition model, i.e., one in which every possible com-

bination of state transitions is allowed. Evidence from Markov chain modelling of the

underlying breathing patterns (chapter 4) suggested no special transition structure.
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Inference

Given a specific HMM, there are 3 main questions that one could seek to answer

[51]: how to estimate the model parameters θ given a set of observed sequences; how

to compute the likelihood of a sequence of observations given a model θ; and how to

obtain the state sequence which best explains an observed sequence. The experiments

carried out in this work were concerned primarily with the first and second, as it was

of interest to fit HMMs to our data and to also utilise the learned model for prediction

via maximising sequence likelihood.

The conditional independence structure in the HMM has allowed for the devel-

opment of efficient and well-studied algorithms to address these inference questions.

For the problem of parameter estimation (or model fitting), we employed the Baum-

Welch algorithm [6]. Baum-Welch is a special case of expectation-maximisation (EM)

algorithms which finds a maximum likelihood solution through iterative updates from

initial (random) guesses. For computing the likelihood of a sequence, the forward

procedure [51] was used.

Prediction with HMM

In order to use this framework for prediction, we fit an HMM each to the two pop-

ulations of infants - extubation successes θs and failures θf using the Baum-Welch

algorithm. Given a test sequence O, its likelihood or posterior probability with re-

spect to both models. The sequence is then predicted as the class of the model which

gave a higher likelihood, i.e., we assign sequences to the class it is more likely to have

come from under the specific HMM.

arg max
c

L(O|θc) (5.2)

where L(O|θc) is the likelihood of sequence O1, O2, ..., OT under the model θc,

computed efficiently using the forward procedure.
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5.1.2 Balanced Random Forest

For discriminative classification, we used Random Forest (RF) classifiers [12]. The

random forest classifier is a bagging machine learning method [11] which works by

training an ensemble of decision trees in parallel. Each tree is trained on a subset of

the examples and features in the dataset. This approach permits each decision tree to

learn something new and different about the dataset. During testing, each tree in the

forest makes an independent prediction on the new example. The predictions from

all trees are then averaged to obtain a single prediction for that example. Such bag-

ging methods help to reduce variance and the chances of overfitting to data. RF was

selected because it had been shown in previous work that linear classifiers are inade-

quate for this difficult problem of predicting extubation readiness [49]. By leveraging

multiple decision trees, RFs have the ability to learn complex, non-linear decision

boundaries. Additionally, because the number of correctly classified samples at each

leaf of the decision trees can be examined, feature importance ratios which indicate

a feature’s contribution to the classification output can be ultimately computed from

RFs. This information can inform feature selection [12].

The RF classifier, like many machine learning algorithms (such as logistic regres-

sion and support vector machines) encounters difficulty in making good predictions

when the number of examples in the different classes is imbalanced. In the case of

RFs, the skew in the dataset could be worsened in some or all of the subsets passed

to the trees, potentially leading to trees that are only good at predicting the majority

class. Our dataset has a high class imbalance with about 85% being data of infants

who succeeded extubation. We addressed the class imbalance challenge through ran-

dom undersampling of the majority group (success examples) before training each

decision tree. In particular, we ensured that the subsets passed to the decision trees

have equal number of success and failure examples. This type of random forest has

been presented in literature as a balanced random forest (BRF) [15].
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5.1.3 Incorporating Clinical Decision

Clinically, it is quite common that infants who are older and larger at birth tend to be

extubated successfully, and that the difficulty in deciding when to extubate lies pri-

marily in the younger and smaller infants. To analyze this empirically, we examined

the gestational age as a function of the birth weight of our infant population Figure

5.2. Of the 80 babies who were at least 27 weeks old or weighed above 1000g, 76 (95%)

were extubation successes. We applied a rule to encode this choice - all infants above

27 weeks or 1000g were automatically classified as success. Our predictors (GHMM

and BRF) were then trained on only the population of young and small infants. In

doing this, we encode the choice of the clinician to extubate the low-risk popula-

tion of older babies and to focus the efforts of the classifier on the difficult, younger

segment of the population. This classifier involves a 2-stage process – the clinical

decision/stratification rule, followed by a GHMM or BRF classifier (CD-GHMM or

CD-BRF), illustrated in Figure 5.3

Figure 5.2: Gestational Age (GA) vs Birth Weight (BW) of the patient population
showing decision threshold separating the older, larger patients. 95% of patients above
threshold were successfully extubated.
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Figure 5.3: Structure of CD-GHMM and CD-BRF classifiers which incorporate clinical
decision to exclude low-risk patients from training process.

5.2 Experimental Design

We setup an experimental framework to analyse and compare the predictive ability

of hidden Markov models and random forests for correctly determining extubation

readiness in extremely preterm infants. Two sets of experiments were conducted

evaluating a total of 5 methods. The first set evaluated the hidden Markov model

approaches of GHMM and CD-GHMM; while the second set evaluated random forest

classifiers: RF, BRF and CD-BRF.

5.2.1 Features

As features, we used the 12 metrics computed by AUREA during the 2nd minute 1 of

the 5-minute ETT-CPAP period. Each metric, sampled at 50Hz, represents a unique

measure of variability relating to either the cardiac or respiratory system. Table 5.1

summarises all metrics.

For training the GHMM, the data from each patient was a 12 x 300 dimension

signal. However for training the RF classifiers, it was necessary to summarise the

signals to a 12 x 1 vector since RFs treats each instance (vector of observed variables)
1Previous work [49] had found the 2nd minute to be the most predictive time period.
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Table 5.1: Time-series metrics of cardiorespiratory variability used in the hidden
Markov Models - GHMM and CD-GHMM

Metric Code Description
rprc & rpab Pause power in the RCG and ABD
rfab Respiratory frequency
cf ec & cfpp Cardiac frequency using ECG and PPG
rms+ Sum of the root mean-square of RCG and ABD
Φ Phase difference between RCG and ABD
bmprc & bmpab Movement artifact power in RCG and ABD

ρrf−cf
0

Cross-Correlation coefficient between the cardiac
frequency and respiratory frequency

in time as IID. Table 5.2 summarises the 77 scalar cardiorespiratory features that

were used to train the RFs.

Table 5.2: Scalar cardiorespiratory features used in random forest classifiers - RF,
BRF, CD-BRF

Computed features Count
Metrics
rprc, rpab, rfab, cf ec,
cfpp, rms+, Φ, bmprc,
bmpab, ρrf−cf

0

Median, IQR, Median power, IQR of power 40

SAT Kurtosis, Skewness, Median power, IQR of power 4
ECG
RR Intervals

SDNN, SDSD, triangular index 3

Patterns
PAU, MVT, ASB,
SYB, BDY, DST

NP , T P
tot, T P

max, DP , F P 30

5.2.2 Experimental Protocol

To use our relatively small dataset as efficiently as possible, we did not leave out

a fixed test set. Instead we employed 5-fold stratified cross-validation (SCV) for

model selection and evaluation. The dataset is split into 5 subsets (folds) of roughly

equal number of examples and which maintain approximately same success-failure
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proportion. To evaluate a given model, 4 folds are used to train while 1 fold is left for

testing. This is repeated until all folds have been used exactly once as a test fold. This

process enables the use of each example at least once for both training and testing.

For each model (i.e. hyperparameter setting) trained, we tracked 3 performance

metrics: sensitivity or the success detection rate, specificity or failure detection rate

and balanced accuracy , which is the average of the two. We selected the model that

gave the best balanced accuracy. The selected model was further investigated to gain

deeper understanding of how it makes correct and false predictions. For the HMMs,

this involved computing and visualising the predicted conditional likelihoods while for

the RFs we looked at the average predicted probabilities from all trees in the forest.

In addition, receiver operating characteristic (ROC) curve and the area under the

curve (AUC) were calculated for the optimal RF models to get a sense of reliability.

The AUC was generated by varying a threshold on the average predicted probability.

Performance metrics are always reported on the test set.

Model Selection - RF, BRF, CD-BRF

Model selection involves finding the settings of hyper-parameters which gives opti-

mal performance from a given model. In the random forest classifiers (RF, BRF and

CD-BRF), the hyper-parameters include settings that affect the underlying decision

trees – such as the number of features to randomly draw at each node of the tree,

the maximum depth before terminating the tree and minimum number of examples

required at a leaf node – as well as settings that govern the random forest itself – such

as the number of trees to train. These parameters generally control the bias-variance

tradeoff between fitting an overly complex model and an overly simplistic one [12].

We performed an exhaustive search of several combinations of these hyperparameters

using the 5-fold SCV procedure described above (The complete range of hyperparam-

eters explored is summarised in Appendix 7.4). The best hyperparameter setting was

chosen as that which gave the best balanced accuracy on the test set averaged over
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all folds.

Model Selection - GHMM, CD-GHMM

The HMMs have a number of hyperparameters namely the number of hidden states,

the covariance type for the emission densities, the initialisation for the HMM’s pa-

rameters (π, A and B) and the termination criterion for the Baum-Welch algorithm.

The number of hidden states and initialisation were fixed, while the optimal setting

for the others was found via hyperparameter search with 5-fold SCV. Concretely, the

number of hidden states was set to 5 corresponding to the number of known underly-

ing breathing states (from chapter 4). Considering that HMMs are very sensitive to

initialisation and prone to converging at local optima, the initial values of the HMM’s

parameters (π, A and B) must be set smartly [51]. We initialised π as a uniform

multinomial distribution and A and B as the transition matrix of the respiratory

pattern sequences and as the conditional densities of the observed data given each of

the 5 patterns, respectively. Using 5-fold SCV, all models were trained for a full 30

epochs2 of Baum-Welch. A range of 4 covariance types (Table 5.3) for the emission

density were explored controlling the bias-variance trade-off with "full" being the most

complex model. Performance was recorded at the end of every epoch. Learning curves

(plots of performance metrics as a function of number of epochs) were utilised to pick

the best model based on the test set.

All experiments were written in Python [55] with the scikit-learn library [48].
2Based on preliminary tests, 30 was chosen as a good upper limit for the termination criterion
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Table 5.3: Description of the 4 types of covariance matrices explored in GHMM and
CD-GHMM classifiers

Covariance type Description

Spherical Each hidden state uses a single variance value that
applies to all observation features

Diagonal Each state uses a diagonal covariance matrix

Full Each state uses a full (i.e. unrestricted) covariance
matrix

Tied All states use the same full covariance matrix

5.3 Hidden Markov Modelling and

Prediction

We present the results of experiments using the HMM-based classifiers - Gaussian

hidden Markov model (GHMM) and clinical decision with Gaussian hidden Markov

model (CD-GHMM).

In Table 5.4, we summarise the performance of the GHMM and CD-GHMM for

each covariance type. The best performing GHMM was based on a spherical covari-

ance matrix with sensitivity 69% and specificity 59%. On the other hand the best

performing CD-GHMM used a tied covariance matrix attained sensitivity 79% and

specificity 57% on the test set. Overall, the CD-GHMM performs 10% better than the

GHMM in detecting success patients, but at a 2% cost in detecting failure patients.

It was not possible to fit full covariance matrices for the CD-GHMM classifier as the

number of examples in each fold was greatly reduced due to the clinical stratification.

Learning curves for the best performing GHMM (spherical covariance) is shown

in Figure 5.4. It can be seen that the test accuracy peaks at epoch 8 and decreases

afterwards, even through the training accuracy continues to rise steadily up to the

final epoch. This is an instructive example of why model selection must not be based

on training set performance.

In Figure 5.5 we show the learning curves for the best performing CD-GHMM
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Table 5.4: Performance of Gaussian hidden Markov model (GHMM) and clinical
decision with Gaussian hidden Markov model (CD-GHMM) classifiers using different
covariance types

GHMM CD-GHMM
Cov. type Sensitivity Specificity Bal Acc Sensitivity Specificity Bal Acc
Spherical 0.69 0.59 0.64 0.91 0.21 0.56
Diagonal 0.92 0.19 0.55 0.91 0.14 0.53

Full 0.94 0.07 0.51 - - -
Tied 0.58 0.56 0.57 0.79 0.57 0.68

Figure 5.4: Learning curves for best GHMM (spherical covariance)

(tied covariance). The balanced accuracy on the test set increases slightly, peaks at

68% (14th epoch) before dropping to a flat value of 65%. The CD-GHMM also shows

clear signs of overfitting in its failure detection model (left plot on Fig. 5.5). This is

likely due the attempt to fit such an expressive generative model to the even reduced

number of failure examples resulting from clinical stratification. Learning curves for

other models tried are shown in Appendix 7.5.

To better understand the resulting hidden Markov models trained to predict suc-

cess and failure examples, we visualised the distribution of the likelihoods assigned

by the models to the examples at test time. Figure 5.6 shows this for the CD-GHMM

classifier - the left plot is the distribution of likelihoods assigned by success model to

all patients while the right plot is that assigned by the failure model. As expected, the
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Figure 5.5: Learning curves for best CD-GHMM (tied covariance)

number of success patients with high likelihoods on the success model is more than

the number of success patients with high likelihoods on the failure model. However,

the failure patients also appear to accumulate high likelihood scores on the success

model than on the failure model. This suggests that the problem of class imbalance

precluded the learning of a more robust failure prediction model. A similar trend in

seen in all likelihood distributions for the other models tried (see Appendix 7.6)

Figure 5.6: Distribution of likelihood scores of success and failure patients in the
test folds considering the Success (Left) and Failure (Right) models of the best
performing hidden Markov model - CD-GHMM (tied covariance).
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Table 5.5: Performance of random forest (RF), balanced random forest (BRF) and
clinical decision with balanced random forest (CD-BRF) classifiers

Sensitivity Specificity Balanced Accuracy AUC
RF 0.86 0.43 0.65 0.65
BRF 0.60 0.75 0.68 0.66

CD-BRF 0.78 0.71 0.75 0.74

5.4 Random Forests Estimation and

Prediction

Here we present the results using 3 variants of the random forest classifier - the

standard random forest (RF), balanced random forest (BRF), and clinical decision

with balanced random forest (CD-BRF) - to learn cardiorespiratory behaviour and

predict extubation readiness.

Table 5.5 details the performance of all 3 at the optimal hyperparameter setting.

First, it can be seen that the CD-BRF performs best, attaining the highest balanced

accuracy of 75% among all 3 classifiers. Second, whereas the standard random forest

classifier (RF) learns a skewed model with a high false positive rate (as seen in the

low 43% specificity), BRF and CD-BRF use random undersampling of the majority

class and attain a better balance between true positive and false positive rates (with

specificity of 75% and 71% respectively).

The receiver operating characteristic curves for each are shown in Figure 5.7. The

CD-BRF classifier also has the highest area under the curve (AUC) of 0.74 indicating

that it had the best performance over a wider range of values.

The importance weights assigned by the best classifier (CD-BRF) were examined

to understand what features contributed to prediction outcome. It was found that only

17 of the 77 cardiorespiratory variability features had non-zero weights, suggesting

that the remaining 60 features had no correlation with the outcome. These 17 features

and their corresponding weights are shown Figure 5.8. It was interesting to observe
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that among the top 6 features selected were the number and frequency of asynchrony

in breathing, and features of the ribcage (pause power and movement). These 5

features are important with the clinical understanding of the work of breathing.

5.5 Discussion

We presented an approach for predicting extubation readiness from automated, novel

cardiorespiratory variability features using expressive generative models based on hid-

den Markov models and non-linear, discriminative classifiers based on random forests.

This work extended upon the pilot work [49] published previously by incorporating

novel features sensitive to breathing patterns in a larger, multi-institutional popula-

tion.

Our best classifier combined clinical domain knowledge with a BRF to give a

success detection rate of 78% and failure detection rate of 71%. Whereas incorporating

clinical decision led to 7% improvement in the balanced classification accuracy for the

Figure 5.7: Receiver operating characteristic (ROC) curves for random forest (RF),
balanced random forest (BRF) and clinical decision with balanced random forest
(CD-BRF) classifiers. AUC – area under the curve
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random forests, the same was not observed for the hidden Markov model counterparts.

As seen in the predicted likelihood scores of the CD-GHMM, this is likely due to class

imbalance. In the balanced random forest (BRF), class imbalance was explicitly

accounted for by randomly undersampling the majority class in order to train each

decision tree with an equal number of success and failure examples. It may also be

possible to develop HMM-based predictors which handle class imbalance in a similar

way as balanced random forests. This is an area of current research interest for the

author.

As with most generative models, HMMs come with major assumptions about how

data was generated: independence of observations given hidden states, the represen-

tation of densities as Gaussians and the Markov property. These assumptions may

be too strong for the underlying generating process of the data. It may be useful to

explore other options such as the use of mixtures of Gaussians to model the emission

densities. In addition, other graphical models like conditional random fields (CRF)

even though theoretically respects the Markov property is very flexible to the incor-

Figure 5.8: Importance weights of features selected by the best CD-BRF classifier.
M. is Median, M. P. is Median Power. All other symbols are same as described in
section 3.2.3.
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poration of features across arbitrary time horizons.

Overall, performance in this work suggests that there were signs in the cardiores-

piratory behavior of these infants which, if considered by the physicians, could have

prevented 71% extubation failures. Previous work using cardiorespiratory variability

features achieved a failure detection rate of 83.2% and success detection rate of 73.6%

[49]. This was carried out on a much smaller sample size of 53 babies. The perfor-

mance observed in current work may be a more realistic measure given the increased

heterogeneity in the population. In this work, the best AUC of 0.75 compares with

that of [22] which used only clinical variables, and is better than results in [47] which

used only respiratory patterns. Overall, this highlights the difficulty of predicting

extubation readiness in such high-risk population.

There were a few limitations with this work. Only the 2nd minute of the ETT-

CPAP was considered for consistency and to allow direct comparison with previous

work. Given that only 17/77 features showed importance, it is crucial to explore new

features or longer ETT-CPAP periods. Future work will evaluate how these features

differ in the two groups of patients and determine what new, potentially useful features

can be developed to boost performance.

It is important to ultimately learn the clinical decision (CD) step from data.

This will guarantee the generalisability of the approach to future unseen patients.

Also, other clinical variables such as the birth weight and gestational age recorded

at extubation should be taken into account to improve the stratification in the CD-

GHMM and CD-BRF classifiers. Future work will examine these possibilities. Finally,

as the number of patients (especially failure cases) was quite small, it will be important

to test the models developed here on a held-out validation set. This is part of the

data acquisition protocol and will be tested in future work.



6
Conclusion

The goal of this work was to apply machine learning to develop predictors of extu-

bation readiness in extremely preterm infants based on cardiorespiratory behaviour.

To this end, we explored several input modalities and developed both generative and

discriminative predictive models.

The use of discrete-time Markov and semi-Markov chains (DTMC and DTSC)

in chapter 4 were well-suited to the univariate, discrete time-series of respiratory

patterns. The DTSC models helped view breathing patterns of preterm infants as

sequences of transitions that can be inspected for distinguishing characteristics. These

models revealed interesting similarities and differences between infants who succeeded

and those who failed extubation. Predictive models built on the DTSC indicated that

information in this signal may not be sufficient for accurately predicting extubation

readiness. Features inspired by the DTSC were further used discriminative support

vector machine (SVM) classifiers. Among the predictive models using the respiratory

patterns as input, this gave best results but showed limitation in detecting failure

patterns at a high rate, suggesting yet again that more information was needed from

other modalities.

In chapter 5, we further designed and developed models for learning from multi-

variate continuous metrics of cardiorespiratory variability. First, a Gaussian hidden

Markov model (GHMM) was designed which assumed 5 hidden states corresponding
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to the 5 respiratory patterns. This model performed better than the Markov chains

in predicting both success and failure patients. Discriminative classifiers based on

random forests (RF) were equally developed for transformed scalar representations

of the metrics. We selected RF due to its non-linearity and capability for embedded

feature selection. Class imbalance was accounted for via undersampling of majority

class in each DT, thus extending the standard RF into balanced random forest (BRF).

The BRF gave the best performance on this problem especially in correctly identify-

ing patients that failed extubation. Performance was further boosted when the BRF

was focused on the high risk population of younger and smaller infants who are of

clinical relevance. The best performing classifier was CD-BRF with sensitivity 78%

and specificity 71%. It is worth noting that the population of infants in this study

represents infants who were deemed ready for extubation. Thus our classifier repre-

sents the possibility of preventing the premature extubation of 71% of infants who

eventually required reintubation. This would come, though, at a cost to prolonging

IMV for some babies who were ready. The actual health and economic costs of this

trade-off is yet a matter for clinical debate.

Breathing patterns provide a clinically relevant representation of the respiratory

behaviour of preterm infants under IMV. However, results in this work suggest that,

used alone, it may have limited applicability as a predictor of extubation readiness. It

is possible that significant predictive information is lost in the process of converting

the multivariate, continuous time series of cardiorespiratory metrics into the univari-

ate, discrete time series of breathing patterns. In addition, the clinical validation of

AUREA showed that it has an overall agreement score of 0.75 in comparison with the

gold standard [52]. Even though this was shown to be better and more repeatable

than expert human scorers, it nevertheless indicates that a fair amount of noise is

introduced into the low-variance breathing patterns. It is also worth noting that no

method was applied to address class imbalance in the Markov chains, leaving open

the question as to whether it could have faired better. Given the empirical results
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obtained, the author of this thesis recommends a focus on the use of the rich car-

diorespiratory metrics to build predictive models of extubation readiness given its

success in this work. Such models should necessarily be augmented by clinical vari-

ables and measures of breathing patterns about the patients to boost performance

and generalisation.

The APEX database has taken almost 5 years to acquire and currently is one of

the largest databases of cardiorespiratory signals of preterm infants receiving IMV.

Yet, one of the key limitations of this study is the size of the database as it limits the

full applicability of machine learning and statistical tools. For this reason, it was not

practical to leave out a chunk of the data solely for testing. We applied k-fold stratified

cross validation to mitigate bias but further work on separate independent data will be

necessary to truly evaluate the generalising ability of the models developed. Indeed,

this is part of the APEX data acquisition protocol to obtain 50 patient examples that

would only be used to validate the models developed on the rest of the acquired data.

Another important issue is the lack of a universal definition of extubation readi-

ness. Across several studies different criteria and time windows (72hr, 5days, 7days)

have been used. In part this mirrors the significant practice variations in the care

and management of preterm infants across physicians and institutions. It is impor-

tant to continue to gather clinical and experimental evidence to come up with more

evidence-based protocols. This is important not only for effective, standardised de-

velopment and benchmarking of predictors, but also for to understand and mitigate

factors which could cause irreversible long term morbidities and the consequent socio-

economic burdens on patients and families.

As the APEX database continues to grow, it will be necessary to design and de-

velop improved predictors and smart approaches to convert such data into actionable

knowledge. This could involve building other kinds of machine learning models. For

example, deep neural networks (DNN) have shown strength in the design and formu-

lation of features that humans would not have considered. A viable application of
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DNN approach might be design an encoder framework which will leverage the huge

untapped 60 minutes worth of IMV to learn new feature extractors that characterise

preterm infant breathing. Such encoders when applied on the ETT-CPAP segment

of data may extract relevant intermediate features that can then be used in some of

the classical machine learning methods explored in this thesis.

In summary, this work has demonstrated empirically the design and development

of machine learning approaches to understand cardiorespiratory behaviour of preterm

infants and to develop accurate predictors of extubation readiness. It is the hope

of the author that this will set pace for more progress on prediction tools for these

delicate members of our population.



7
Appendix

7.1 Metrics of Predictor Performance

We define metrics used to evaluate predictors of extubation readiness in this work and

in the studies reported in the literature (chapter 2). Where p is the number of positive

examples (success patients) and n the number of negative examples (failure patients);

tp, tn, fp and fn are respectively the number of true positives, true negatives, false

positives and false negatives:

7.1.1 Sensitivity

Sensitivity = tp

tp+ fn
= tp

p
(7.1)

7.1.2 Specificity

Specificity = tn

tn+ fp
= tn

n
(7.2)

7.1.3 Positive predictive value (PPV)

PPV = tp

tp+ fp
(7.3)
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7.1.4 Negative predictive value (NPV)

NPV = tn

tn+ fn
(7.4)

7.1.5 Balanced Classification Accuracy and Misclassification

Loss

Accuracy is defined as:

acc = tp+ tn

tp+ fn+ tn+ fp
(7.5)

= tp+ tn

p+ n
= tp

p+ n
+ tn

p+ n
(7.6)

= tp

p

(
p

p+ n

)
+ tn

n

(
n

p+ n

)
(7.7)

= sensitivity

(
p

p+ n

)
+ specificity

(
n

p+ n

)
(7.8)

The balanced classification accuracymeasure, accb, corresponds to an equal weight-

ing of the sensitivity and specificity measures:

accb = sensitivity ∗ 0.5 + specificity ∗ 0.5 (7.9)

The balanced misclassification loss is:

lossb = 1− accb (7.10)

7.2 Probability Distributions for

Dwell Time

List of probability distributions considered when fitting sojourn time [61]

• Beta

• Birnbaum-Saunders



CHAPTER 7. APPENDIX 60

• Exponential

• Extreme value

• Gamma

• Generalized extreme value

• Generalized Pareto

• Inverse Gaussian

• Logistic

• Log-logistic

• Lognormal

• Nakagami

• Normal

• Rayleigh

• Rician

• t location-scale

• Weibull

7.3 Symmetric KL Divergence

The Kullback-Leibler (KL) divergence [33] is a measure of how well a distribution Q

is approximating another distribution P . It is defined as:

DKL(P ||Q) =
∑

n

Pn log Pn

Qn

(7.11)
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The KL-divergence is non-symmetric: DKL(P ||Q) 6= DKL(Q||P ), which is not de-

sirable in our application. Hence, we use symmetrized KL-divergence to compare

distributions over transitions between patterns:

DKLS(P ||Q) = DKL(P ||Q) +DKL(Q||P ) (7.12)

DKLS(P ||Q) =
∑

n

(Pn −Qn) log Pn

Qn

(7.13)

7.4 Ranges of Hyper-Parameters for

Random Forests

Table 7.1 shows the list of hyperparameters and the respective ranges searched for

the RF, BRF and CD-BRF classifiers.

Table 7.1: Hyperparameters and Ranges search for random forests. Range format:
[start value:increment:end value]

Hyperparameter Range
Number of estimators (decision trees) [1:1:30]

Fraction of features to consider when looking for best split [0.1:0.1:1]
Minimum fraction of samples required at leaf [0.1:0.05:0.5]

Maximum depth of tree [1:1:15]
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7.5 Learning curves for GHMM and

CD-GHMM

Below are learning curves for all of the GHMMs and CD-GHMMs given different

covariance matrix types.

Figure 7.1: Learning curves for best GHMM (diagonal covariance)

Figure 7.2: Learning curves for best GHMM (full covariance)
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Figure 7.3: Learning curves for best GHMM (tied covariance)

Figure 7.4: Learning curves for best CD-GHMM (spherical covariance)

Figure 7.5: Learning curves for best CD-GHMM (diagonal covariance)
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7.6 Distribution of Likelihood Scores

for GHMM and CD-GHMM

The figures below show the distribution of likelihood scores for the all of the GHMMs

and for the rest of the CD-GHHMs (excluding tied covariance shown earlier).

Figure 7.6: Distribution of likelihood scores of success and failure patients in the
test folds considering the Success (Left) and Failure (Right) models of the GHMM
(spherical covariance).

Figure 7.7: Distribution of likelihood scores of success and failure patients in the test
folds considering the Success (Left) and Failure (Right) models of GHMM (diagonal
covariance).
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Figure 7.8: Distribution of likelihood scores of success and failure patients in the
test folds considering the Success (Left) and Failure (Right) models of GHMM (full
covariance).

Figure 7.9: Distribution of likelihood scores of success and failure patients in the
test folds considering the Success (Left) and Failure (Right) models of GHMM (tied
covariance).
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Figure 7.10: Distribution of likelihood scores of success and failure patients in the
test folds considering the Success (Left) and Failure (Right) models of CD-GHMM
(spherical covariance).

Figure 7.11: Distribution of likelihood scores of success and failure patients in the
test folds considering the Success (Left) and Failure (Right) models of CD-GHMM
(diagonal covariance).
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