
INFORMATION Ta USERS

This manuscript has been reproduced from the microfilm master. UMI films the

text direetly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while athers may be fram any type of

computer printer.

The qu.lity of thi. reproduction is dependent upon the quallty of the copy

submitted. Broken or indistinct print. colored or poor quality illustrations and

photographs1 print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. AllO, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning

the original, beginning al the upper left-hand corner and continuing tram left to

right in equal sections with small overtaps.

Photographs inducted in the original manuscript have been reproduced

xerographically in this capy. Higher quality 8- x 9- black and white photographie

prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contad UMI directly te oraer.

Bell &Howell Information and Leaming
300 North Zeeb Road, Ann Arbor. MI 48106-1346 USA

UMI
S

800-521-0800





Stability Analysis of the Spine Pertaining

to Idiopathie Scoliosis

by

Micheline Reimbold

Department of Civil Engineering and Applied Mechanics

McGilI University, Montreal, Quebec, Canada

June, 1992

A Thesis submitted to the Facu1ty of Graduale Studies and Research

in panial fulfilment of the requirements of the degree of

Master of Engineering.

o Micheline Reimbold, 1992



1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON Kl A ON4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
Canada

Our Ne Notre l.telfHICS

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author' s
pemussion.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fonne de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-441024

Canadi



Dedicated 10 thase suffering

Crom idiopathie scoUosis



Abstract

A three.dimensionaI structural analysis model ofthe human thoracolumbar spine and db cage

bas been developed in order to investigate its stabillty in relation to adolescent idiopathie scoliosis.

Idiopathie scoliosis is one of the Most puzzling deformities of the spine, due to the Cact that there is

no known initiating cause. From the viewpoint that it can be explained in a purely biomechanical

manner, one panicular hypothesis as to its etiology is investigated in this thesis. The hypothesis is

that a lordosis-inducing growth of the thoracic spine [34,100,115] in conjunetion with spinal

asymmetries in the laterai or horizontal plane [34] is the primary cause of the deformity.

Analyses are performed on the constructed model using the MSC/NASTRAN finite element

program. The model consists primarily of interconnected beam elements to represent a realistie

geometry of the spine and rib cage. The various stiCfness properties needed in the madel were

obtained fram the published literature. Simulations of analyses and experiments perfarmed by other

researchers produced comparable results, thereby validaling the present model, which is lhen used ta

investigate the above hypothesis.

Lordosis-inducing grawth, in which the anteriors of the thoracie venebrae grow Caster than

the posteriors, is simulated in a geometrie nonlinear analysis by differential thermalloading of these

parts. Results show that under such loading, the model of the normal spine with its natural

asymmetries of the thoracie region, gradually deforms into a shape with displacements and rotations

typical of thoracie idiopathie scoliosis. These results therefore constitute a validation of the stated

hypothesis, and indicate that a lordosis·inducing growth or the thoracic vertebrae is a likely cause oC

thoracic idiopathie scoIiosis.
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Résumé

Un modèle d'analyse structurale tridimensionnelle de la colonne venébrale dorso~lombaire

et de la cage thoradque a été developpé dans le but d'étudier sa stabilité en relation avec la scoliose

idiopathique chez l'adolescenL La scoliose idiopathique est une déformation de la colonne venébrale

qui est des plus énigmatiques: sa cause demeure inconnue. En tenant compte du fait que cette

déformation peut être expliquée d'une façon purement biomécanique, cette thèse explore une

hypothèse étiologique paniculière. Selon cette hypothèse, la cause primaire de la déformation

consiste en la conjonction de la croissance de la colonne dorsale, responsable d'une lordose

[34,100,115], et d'asymétries venébrales dans les plans latéral ou horizontal [34].

Des analyses on été effectuées sur le modèle en utilisant le logiciel d'analyse avec éléments

finis MSCINASTRAN. Le modèle est constitué essentiellement d'éléments de poutre interconnectés

qui représentent une géométrie réaliste de la colonne venébrale et de la cage thoracique. Les

différentes rigidités nécessaires à la construction du modèle ont été trouvées dans la littérature

existante. Des simulations d'analyses et d'expériences faites par d'autres chercheurs ont produit des

résultats comparables, validant par conséquent le modèle proposé. Ce modèle a alors été utilisé pour

étudier l'hypothèse mentionnée ci~essus.

La croissance provoquant la lordose, pendant laquelle la panie antérieure des vertèbres

dorsales croit plus rapidement que leur panie postérieure, est simulée dans une analyse

géométriquement non-linéaire par un chargement thermique différentiel. Les résultats ont démontré

que sous un tel chargement, le modèle normal de la colonne venébrale avec ses asymétries naturelles

de la région dorsale, se déforme graduellement jusqu'à une forme ayant des déplacements et des

rotations typiques de la scoliose dorsale idiopathique. Par conséquent, ces résultats constituent une

validation de l'hypothèse énnonœe ci-dessus; de même, ils indiquent que la croissance provoquant la

lordose des venèbres dorsales est une cause probable de la scoliose dorsale idiopatique.
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sectional plane are mutually perpendicular.

area product of inenia

area moments of inenia about axis x, y, z respeetively

polar moment of inenia of cross-section about the shear center 0

torsional constant

shear area factors for planes 1 and 2 respectively, where planes 1, 2, and the cross-sectional
plane are mutually perpendicular.

length, height (of venebrae, dise, CIC.)

critical buckling moment

critical buckling load

radius of curvature

thickness

internai strain energy

potential energy of external loads

represent displacements of a point in x,y;z axes directions respeetively

axial rotation about the longitudinal axis, i.e. horizontal plane rotation

effective length or equivaJent length of Euler column

Poisson's ratio

-x-



Chapter 1

Introduction

1.1 The Cllnical Problem

Scoliosis has been found to he the Most common spinal defarmity in Nonh Amerlcan children

and adolescents [96,134). It is defined as an abnormal lateraI curvature of the spine [96].

Approximately eighty percent of the reported cases are what is known as idiopathie scoliosis

[41,61,94,96,99]. The name idiopathie derives from the fact that these curves have no known cause

or etiology [61,94,96,99). In other words, the deCormity is round ta develop in otherwise healthy

, ehildren and adolescents with no apparent spinal abnonnalities or assodated musculoskeletal

conditions [29,34].

Idiopathie scoliosis May be ciassified according to the age of onset or of detection of the

de(ormity. The majority of the cases of idiopathie scoliosis, particularly in North America (75% in

Many elinics [99]), oœur and progress during the adolescent growth spurt, and bence they are termed

adolescent idiopathie seolions (abbreviated as AIS) [34,94,96,135]. The rates of incidence as weIl as

the distnDution of the type of idiopathie sooliosis, e.g. the age of onset, are found ta vary among

counmes. The variance in incidence is compounded by the faet that different detection techniques

witb varyïng sensitivity (e.g. visual db bump test or radiograph), different populations ofchildren, and

different definitions ofscoliosis (i.e. the degree or the severity ofcurve) are used in the clinical studies

of scoliosis [70). Generally, AIS is reponed la have an incidence of 1.4 to 4.1 per 1000 persons, and

it is predominantly found in girls over boys by a ratio of9:1 [19,53,55]. It is estimated mat about 15%

of the adolescent population has idiopathie scoüosis to some degree [33,104].

Of the cases diagnosed, approximately 20% have curves that eventually progress or worsen

[66,71]. The progressive cases lead to a poorer quality of liCe, fiUed wim emotional and psychological

anguish, as well as physical pain. Severe cases, panicuIarly those of early onset, may lead 10 serious

cardio-pulmonary disorders and even early death [41,66,99].1

The development of surgical procedures bas outpaœd the understanding of scoliosis [41].

Modem surgical techniques, sucb as the implantation of the HarriDgton rad, and the COuel-

Lrbcse earIy~nsel casa, often dasaificd u iDCaDtilc lCDIioIiI, are quite rare iD North America. HeM'Cftr. they appear
frequcndy iD Europe. FOrtllDalely,. Jarae pen:allilc of tbac inCaDliIc QICI comct thClDlC1Ycland oaJy l~ bave the
polenliallo propaa 10 such le\'CI'C forlla [41.66,99].



Dubousset and Zielke instrumentations, are available to treat the severe curves [52). However, mey

are only panially successful in that a oorrec:tion ofup to 50% of the IateraI deformity May he achieved

[66]. Together with bracing devices like the Milwaukee brace, approximately 80% of curves treated

show improvement (61]. Since the chances of oorrection are improved by carly detection [41],

screening programs have been instituted in schools for detection of the curves in their carly stages.

As a result, a larger number of curves are now found, but of less severity [94].

The problem lies not so much in the detection of curves but in the prediction of their

progression, i.e. in detennining which ones are going to progresse Ooly the progressive curves require

extensive treatment. However, the factors causing progression are not entirely understood This

uncenainty of prognosis renders the current approach ta treatment a conservative one. In one study

[77], il was found mat only 1 out of every 4 curves braced was progressive. In arder to eliminate

UDDecessaIy treatments, since only a small percentage of the cases diagnosed progress, an

understanding of the etiology of AIS is DecessaIy [41,94].

Knowledge of the etiology will help determine the factors responsible for curve progression.

Patients May then be evaluated properlyand prescribed the most appropriate treatment with greater

confidence. ~ a result, significant costs and acute discomCons, due to these unneœssary treatments,

may be minimized [94). In addition, the understanding of the primary lesion will help in the

development of the Most effective methods of bracing and surgery. Clinically, it is Celt that the

correction of the primary deforming mecbanism, if possible, is the best approach for treatment

because secondary effects, responsible for grass deCormity, are likely to correct themselves as a result

[24,34,35,41,1(0). Patients with progressivecases may tben he effectively treated, and bener conective

results May be attained.

Before one can hope to understand the etiology of AIS, a thorough understanding of the

three-dimensional deformity is neœssary (26,66). In addition, a knowledge of the anatomy of the

normal spine is helpful to bener understand the abnormal one. The anatomy of the spine, which may

he unfamiliar 10 the reader, is explained extensively in Cbapter 2. Definitions of terms denoled with

an asterisk (.) may be found in the g1ossary, Appendix A

The lateral curve is the most obvious reature of the deformity. The frontal· view ofa normal

spine is basic:a1ly straight, whereas the same view of a scoUoûc spine reveals the lateral curve. The

region of the spine in wbich the abnormallateral curve is localed, and the side ta which it deviates

defines the CUlVe pattern. Various c:urve patterns exisL For example, common curve patterns are the

single thoracie· curve (curve in tharaac region, convex to the rigbt. i.e. away from hean), and the

right thorade - left lumbar· double c:urve [4,61.70]. The severity of the deformity is c1assified

·2.



according la the degree ofCUIVature of the laIerai aarve whicll is commonly measured by Cobb angle.

Cobb angle is defined as the angle, on the radiograph of the spine, between the lines drawn on the

endplates of the vertebrae at the inOectiOD points of the curve [96].

ne majority of the AIS cases are round ta be tight thorad~ Curves in the tboncie region

produœ the most signifiamt visual deformities, and are the most dangerous. The n"bs, whieh are

connected 10 the thoraae venebral column, defonn in accordance with the rotation and lateral

deviation of the vertebrae. As a result, a nb hump protrudes posteriorly on the convex side ofcurve;

a no valley appears anleriorly on the concave side; and more imponantly, the space Cor vital organs

is reduced [32,41]. The typica1 deCormity of thorade scoliosis fs shawn in Fig. 1.1. Due ta the Cact

that thoracie curves are both a comman and serious fonn of the deCormity, they are addressed

specifically in this sludy.

AIl idiopathie curves are classified as structural curves.! The lerm structural implies that

there is a significant rotation of vertebrae about their longitudinal axes associated with the lateral

curve such that the anterior* aspect of a venebra rOlates towards the convexity of the lateral curve

and the posterior· side towards the concavity [23,34,96,135].% From now on, following the

terminology used in the literature, the direction of the axial rotation will be described with respect

to the anterior aspect of the vertebrae. For example, the rotation round in idiopathie scoliosis will

he denoted convex-sided rotation since the anterion of vertebrae go towards the convexity of the

curve. This convex-sided rotation is found in ail cases of idiopathie scoliosis, regardless of the curve

pattern. This type of rotation, illustrated in Fig. 1.2(b), is opposite ta the usual type of rotation

accompanying lateral bending of the normal spine, shawn in Fig. 1.2(a) [72,129).

The magnitude of the convex-sided rotation is found ta reach a maximum at the apex of the

lateraI curve, Le. the point most Iaterally devialed point (rom the venica1 axis. 80th the direction and

magnitude of the rotation are illusttatecl in Figs. 1.3 (a) and (h). which show posterior views of a

thoracic scoliosis. In both figures, it is obvious lhat the spinaus proœsses localed on the posterior

of the venebrae, denoted wim lines on radiograph in Fig.l.3(a), rotate lowards the concavity of the

lslrUd1ll'll curveI are dillfDpiabcd rrom Olbcr lateral curva lmowD U COIDpeualOlyaad ruaclloaaI CUIWL Compcnsatoly
CUMS bne Utlle or DO mcalion c:ompued la lll'Udural curva lDd arise la maÎIllaill \'atkaJ a1ipmcn1 oC the .pinc, and as IUeIl.
they bave ntlle cbaace oCpr'OIftIIioD [66,96]. FUDCIioaaI cuna bave. rocatioG wbidl ia in the oppoIÎlc diredioa tg that wtùdl
is round ÙlIlrUCblrlJ cana (23]. TbeIe curws arise •• n:ault oCtaorm ca... lUCb u • tillai pdviI or uncqual1ee IealthL
1bia rouliotl type illbc ..... lIIal KCDIDpmayiDa laIaal beDdiJII al the aormaI apiDe.

tin CJIIÏDccrina tcnDI CUIÙIIlbe ri&b1-baDd ruIc), tbillDCIDI thal die lIial rotalioll \'CdOr is diœded dormwards aloDe the
vatebra Cor the ri&bl~ c:urva. and dira:IaI upnrdl for the Ieft aJIlVCl curwL



(b)

Concave
Side

(a)

Splnous process
devlated to
concave slde
~

~'l
Vertebral body
dlstorted toward
convex slde

\

Convex
Side

Fig. 1.1 An example of advanced dght thoracic seoliosis. (a) View of the patient from behind
showîng the charaeteristic no hump. (b) View of a horizontal section from below indicating
key cbaraeteristia. After Keim [61].
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Direction of Lateral Bendlng

(a) (b)

3 2 1

Fig. 1.2 Posterior views of the spine illustrating the ooupling of Iateral bending and axial rotation.
In normallateral bending (a), the spinous process rotate towards the oonvexity oC the lateral
curve and the anterior ofvenebrae retate towards the ooncavity, i.e. concave-sided rotation.
ln the scoliotic deformity (b), the spinous process rotate towards the concavïty of the lateral
curve and the anterior of venebrae rotate towards the convexity, Le. convex-sided rotation.
After White and Panjabi [130].

lateral curve. The coïncidence oC the maximum lateral deviation and axial rotation is indicated by the

closeness of the posterior elements to the inside of the lateral curve at the apex oC the curve. The

venebra most rotated and Most deviated ûom the venical is often reCerred to as the apical venebra.

The nature oC these rotations seem to give the CUNes their progression potential [66], and hence they

are of great concem cUnically.

Implied by the above described combination oC lateraI curve and convex-sided rotation is

another Ceature of the scoliotic deformity: a lordosis·, i.e. a longer anterior length than posterior

length oC spine. Since the rotation in idiopathie scoliosis is always as descnbed above, with the

anterior aspect oCspine rotating towards the outside of lateral CUNe and posterior aspect towards the

inside, particularly al the apex, geometrically, the anterior length must he longer than the posterior

in the section with the lateral curve, in order to obtain such a rOlation. A longer anterior than

posterior spine length implies a CUNe convex towards the anterior of the spine which by definition

is known as a lordosis. Thus, regardless of the location of the curve, there is always a lordosis in the

apical region of the lateral curve.

-5-



(a) (b)

Fig. 1.3 Posterior view of right thoracic scoüosis illustrating convex-sided rotation. (a) Radiograpb
of the deformity with markings indicating the spinous proœss line. (b) Computer graphies
drawing of the deformity. After Herzenberg et aL [52].

The rotational component of the deformity gives the impression mat the sooliotic patient bas

a severe kyphosis· or buncbbadt rather than a lordosis. However, close examination of the deformity,

taking into aceount the large amount of axial rotation, does revea1 that there is in tact a lordosis at

the apex of the lateral curve [34]. This lordotic tendenc:.y of the spine at the apex of tboracic sooliotic

curves was first noted by Adams in 1865 [Il. Adams described sc:oliosis as a produet of rotation and

lordosis. Thus, a lateraI curve, convex-sided venebral axial rotation, and a lordosis oombined with an

unexplained etiology to their development charaeterize idiopathie scoliosis.

As mentioned belote, the factors of progression are not enlitely knawn. CUrrently. the rist

factors of progression are coasidered 10 be skeletal immaturity, young c1tronologica1 age, female



gender, curve magnitude, curve pattern. fami1y bistory, and noticeable thoncie lordosis [41,70,96].

Skeletal immaturity and young chronological age at the lime of detection, both present risks for

progression since they imply a large amoUDt ofgrowth remaining1 for potential progression. Curves

have the ability to progress signilicantly during growth [32]. Generally, the eartier is the onset, the

worse is the prognosis [34,96,99]. Female gender is an obvious risk since the defonnity predominantly

occurs in girls, as mentioned earlier. Curve magnitude and curve pattern are factors which must be

taken into consideration. A study condueted by Lonstein and Carlson [71] reveaIs that patients whose

initial curvatures are greater tban 20 degrees by Cobb angle- measuremenl, or who bave double or

thoradc curves, have greater probability of progression. Family history bealmes an imponant factor

in the face oC the evidence indicating that scoliosis is hereditary [135]. The last factor, thoracic

lordosis, is a risk because, as explained above, il is a fcature which is notOO in patients with thoracic

scoliosis and is not typical of the normal thoracic region.

Although the presence of the thoracie lordosis at the apex of the scoliotie curve has been

known for some lime [1], il was only later emphasized by Somerville in 1952 [115], Roaf in 1966 [100],

and more reœntly brought into prominence by Dickson et al in 1986 [34]. Somerville, Roaf, and

Dickson et al aU formulated hypotheses conceming the etiology oC AIS based on the development

of a primary lordosis in the thoracie region of the spine. Semerville [115] and Leatherman and

Diclcson [66] referred lO the deformity, perhaps more appropriately, as rotational lordosis and

lordoscoliosis, respectively. Dickson et al (34] expanded upon the hypothesis bystating that a lordosis

coupled with another asymmetry in cither the lateraI or horizontal plane, which he termed biplantlT

spinal asymmeoy, superimposed during growth produces scoliosis.

These related theories appear promising sinee a lordosis must cdst in arder to obtain the

lateral deviation and axial rotation of the kind noted in idiopathie scoliosis. l'hus, either the thoracic

lordosis results from, or is a factor causing the development of the spinal lateral displacement and

rotation. In addition, the lordosis hypothesis bas explanatioDS Cor Many of the clinical findings of

scoliosis. As sucb, this Cactor must not be overlooked and il, in faet, becomes the focus of this study.

For simplicity, the bypothesis investigated will be refened to as the lordosis bypothesis. This and

other etiologica1 theories and correlaÛDg clinic:al investigations penainiDg to idiopathie scoUosis are

discussed in Chapter 3.

lspiDal powtIl is suspecced to cooliDue until Ippralimaldy lbe IF oC 25 yan [S6J.
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1.2 Biomecbanical Approaeh to Idiopathie Scoliosis

The mechanics of the spine bas been a chaUenging topie in the field of biomechanics, for

some lime DOW. Understanding the initiating factor of idiopathie scoliosis has been the panicular aim

of many studies. It is one of the most sought-after problems.

The spine may be idealized as a column. It is the main load-bearïng structure in the human

body, analogous to the column in a building structure. However, il is a very complex column. It is

composed of discrete elements, i.e. discs and venebrae, with very different linear and nonlinear

material properties; has complex kinematics and interactions between clements due to the presence

of facet joints and ligaments; is subjected to growth (material and geometrie changes) and large

defonnations; and has complex ob cage and muscle interaction forces.

The fact that scoliosis is a defonnity, whereby a once stlaight spine (basically straight when

viewed in the frontal plane) deviates ïnto a curved configuration, leads one to suspect that scoliosis

is a buckling or structural instability phenomenon (48). The initial curve present in the sagittal· plane,

and the deformalions involving lateral displacement and axial rotation suggest more panicularly,

torsional-flexural buck/mg of the spine. From this viewpoint, factors decreasing its stability would

increase the rate oC progression of scoliosis [26.31]. Results of a buckling analysis would throw light

on the subject of scoliotic progression.

Il is well known [123] that the stability of a circular CUNed column of thin reetangular cross­

section subjected ta a pure moment about the strong axis of bending is dependent on the direction

and the amount of curvature, with respect to the direction of the moment loading. The curved

column is more stable, Le. it can be subjected ta a greater moment prior to buckling, if the moment

is applied in the sense 10 increase the curvature than to decrease iL The kind of loading is analogaus

to the thorade spine subjected to flexion-, Le. forward bending. In this bending, the thoracic spine

can be expected 10 be more stable with a kyphosis than with a lordosis. This observation lends

support to the conjecture that a thoracie lordosis renders the spine less stable and hence more

suscepuële to (scoliosis) buckling.

Due to the complex nature of the spine structure, modelling is very difficult and requires

many approximations. Lucas and Brester (73) investigaled the stability of the Iigamentous

thoracolumbar· spine. Theoretically, they analyzed the spine as a homogeneous column with stiffness

effectively equivalent ta the stiffness of thewbole non-bomogeneous column. Their theoretical results



•

••

were in good agreement with their experimental results.1 Belytschko et al. [10] simuIated the

experiment condueted by Lucas and Bresler using a finite element model of the spine and made

correlations between the buekled spine and the scoüosis deformity. Andriacchi et al [4] condueted

a simiIar study, including the no cage in their madel These and other spinal modelling and analyses,

performed for the purpose of understanding the mechanical factors influencing sooliosis, are discussed

in detail in Chapter 3.

1.3 Focus of the PreseDt Study

ln this study, a structural analysis model of the thoracolumbar spine and no cage is

construeted, and is then used ta investigate the lordosis hypothesis conœrning the etiolagy of thoracie

AIS. As mentioned earlier, the basis of the hypothesis was farmulated by Somerville [115] and later

refined by Dickson et al. [34]. Ta reiterate, the hypathesis is that during adolescent growth, a tharacie

lordosis coupled with an asymmetry in a plane other than the sagittal· plane praduœs scoliosis [34].

The hypothesis is simulated in [wo different ways using the geometric nonlinear analysis

program capability of the MSC/NASTRAN finite-element analysis package. In the first approach, a

slight lordosis is impaned ta the spine prior ta the nanlinear analysis, in which its respanse ta

increasing gravity-type load is studied. ln the second approaeh, the grawth of the thoracie spine inta

a slight lordasis is modeUed as part of the nonlinear analysis. In this latter approach, the initiai spinal

shape is normal, and the respanse under incrementalloading arising due to lordosis-inducing growth

of the tharacic venebrae and body weight forces is analyzed. The study is limited to auempting ta

develap a right thoracic sooliosis with an apex at the 1'8-19 level, because this fonn of AIS has been

round to be the Most common [34,83]. Thus, the objecüves of the present study can be summarized

as follows:

(1) Development of a strUctural analysis model of the human thoracolumbar spine and rib

cage representing overall geometry, and linear approximations of nonlinear stiffness properties of the

typical normal spine. A1though the anatomy is simplified, care is taken ta include the pertinent

elements neœssary to conduet a sufficiently accurate analysis of the overall spinal behaviour. In the

first instance the spine and nb cage are considered to be symmetrie with respect ta the sagittal plane.

(2) Validation of the construeted model by comparison of its predictions with the results

obtained by previous researchers. Comparison is made of the critical buelding loads and the buckling

Ineir experimenlal RSuJts arc oC significance becalLlC mey arc only ODeI tbat are based on an cxperimenlal sludy oC a
complete thoracolumbar spine specimen.
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mode sbapes of the symmetric spine model under compressive loading.

(3) Construction of a symmetric model with a slight lordosis in the thoracic spine. Based

on the data of a rea1 scoliotic spine, the anlerior and posterior heights of the thoracic vertebrae in

the normal spine are increased and decreased, respectively, such that the resulting thoracic spine has

a slight lordosis with an apex at 1'8-'N, which is the usuallocation of the scoliosis apex.

(4) Comparison of the buck1ing loads and mode shapes of the symmetric models with the

normal and the lordotic spines under compressive loading. Results of the linear bifurcation analyses

shoufd indicate whieh configuration is more stable, and provide insight regarding the hypothesis

conceming lordosis as a possible etiology.

(5) Comparison of the deformed shapes of the madels resulting from the geometric nonlinear

imperfection growth analyses with a scoliotic spine, in the hope of validating the lordosis hypothesis,

using:

(a) the lordolie Madel, wim analomica1 horizontal and frontal plane asymmetries (Le.

imperfections) incorporated, under increasing load proponional to gravity up to the vicinity

of the structure's approximate bifurcation buckling load, and

(b) the normal model, again with asymmetries incorporaled, under compressive loading

modelling body weigbt and a deCormation foading simulating accelerated anterior growth and

constrained posterior growth of the thoracic venebrae.

·10-



Cbapter 2

Anatomy and Kinematics of the Normal Spine and Rib Cage

In arder ta understand and address the clinical problem of adolesœnt idiopathie scoliosis, a

knowledge of the components comprising the spinal structure and their Idnematics is neœssary. The

purpose of this chapter is to Camillarize the reader with the relevant anatomy and kinematics of the

normal spine and no cage.

2.1 Spinal ColulDD

The spinal column provides the intrinsic suppon to the human body, Fig. 21. It is basically

composed of3 element types: venebrae, intervenebral dises, and ligaments. Together, they constitute

wbat is known as the ligamentous spine, which is the spine without muscles and the no cage. The

venebrae and dises are in altemating order in the column. The venebrae are bard bony elements

while the dises are made up of soft tissue. l'hus, dises are the deformable elements whicb give

mobility and flexibility ta the spine. The heights of the vertebrae are substantially larger tban those

of the dises and in all, the vertebrae comprise approximately 3/4 of the total length of the spine

[44,105]. The sile of bath elements increase caudaUy·.l This bas biomecbanical significance since

the loads aIso increase in descending over the vertebral column [44]. The ligaments interconneet

adjacent vertebrae. Their resistance to sttetching provides additional stiffness to the spine by limiting

its motion. The participation of the individualligaments is dependent on their location with respect

ta the venebra and the type of motion the intervenebral joint undergoes.

The normal spinal column may be sub-divided into S regions as shawn in Figs. 21 and 2.2­

The 7 superior venebrae (Cl..C7) round in the neck make up the cervical region. The ColloWÏDg 12

venebrae (Tl..T12) have attacbments Cor the nOs and thereCore make up what is called the thoracic

region. The next 5 venebrae (Ll.LS) make up the lumbar region. The Courth and 6fth regions are

the sacral and coa:ygea1 regions. They consist of fused venebrae, 5 in the saaal region and 4 in the

cocqtgeal region. These two regions are unlike the other tbree because their venebrae cannot move

relative to one another (there are no intervenebral dises betweeD these venebrae). In this study, only

the thorade and the lumbar regions, known as the thoracolumbar spine, will be considered sinœ

scoliosis oa:urs predominanl1y in tbese repoDS.

·11·
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Fig. 2.1 Right laIerai view of spinal column in relation to body outline. Mer Jacob et aL [57].
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Fig.2.2 Venebral oolumn (a) anterior (frontal plane) view and, (h)
right lateral (sagittal plane) view. After Grant [43].
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In the frontal plane, Fig. 22(a). the normal spine is relatively straight exœpt for a slight

physiological right thoracie auvature which may be due ta the position of the aona [117] or right­

handedness [28,39,46]. The sagittal plane bas 4 curves, each associated with a particular region of the

spine as shown in Fig. 2.2(b). In both the cervical and lumbar regioDS, there is a sagittal curvature

wim a posterior ooncavity known as lordosis. Inversely, in the thoracie and sacral regioflt there is a

curvature with a posterior convexity known as kyphosis. The degree of curvature varies from one

individual to the next and a1so with respect ta age and sex. As previously mentioned, the degree of

curvature may be measured by Cobb angle-, which is expressed in degrees. A nonnal range of

thoracie curvature (kyphosis) is between 20-500 [S,I~I301 with an average of 370 (116). The thoracic

curvature is primarily due to smaUer anterior vertebral body heights than posterior ones. The degree

of curvature is found ta ÎDcrease with age. The thorade curve tends to he straighter (with Jess

curvature) in females than in males below the age of 40. However, the difference becomes negligible

after age 40 when ihe thoracic curve of females becomes as curved as males [130]. The average

normallumbar curvature is 500 (lordotic) [116] with an accepted normal range oC 20-60" [12]. This

curvature is found to be slightly more pronounced in females [130]. This curvature is mainly due to

the inclination of the sacrum (approximately 40"), the wedge..shaped lumbosacral intervenebral dise

(13°), and the 5th lumbar venebra, 1.5 (SO) [15,60,116].

Although the spinal oolumn is the major load-bearing strUcture, it cannat withstand the

extemal forces it is subjected to alonc. Lucas and Bresler [73] round that the ligamentous spine

cannet even suppen the weight of the head (> 2 kg) without buckling. The spinal oolumn requires

addiûonal supponing structures. lbese structures providing the extrinsic suppon include muscles,

fascial envelopes, abdominal and thoracic cavity pressures and db cage (40]. Arnong these, no cage

is the most important pan of the spinal skeleton and is induded in the present investigation. 115

major raies are to protect the vital organs and increase spinal stability. Andriacchi et al. [4] have

shawn that the introduction of the no cage increases the load carrying capacity of the ligamentous

spine in compression approximately 3-fold (see Fig. 3.1).

2.2 Components 01 SpiDe (15,43,60.130]

2.2.1 Vertebrae

The venebrae are bony structures which give rigidity to the spinal column. Each venebra bas

many parts, but essentially there are two main parts. They are the venebral body and the venebral

arch [60], sec Fig. 23, page 16.



The vertebral body is the main load-bearing component of the vertebrae carrying

approximately 80% of its compressive load. The aetual percentage is dependent on the position of

the spine during the lime of loading. The vertebral body is composed of spongy, cancellous bone

surrounded by a thin, conical bone sbeIL The density and elastic modulus of the cortical bone are

much higber than those of the canœllous bone. However, both carry significant loads, with the

relative share of the load varying with age. In the young adolescent, the cancellous bone is found to

carry 55% of the load; this percentage decreases on average to 35% by the age of 40 [130]. Cortical

bone, surrounding the perimeter of the body, gives high bending and torsional suength to the

venebrae.

CanceUous bone is bath advantageous and necessary. Aside trom helping support the load,

il decreases the weight of the vertebrae, sinœ it is not saUd bone. Itts sponge..like openings enable

nutrients to seep through to the cortical bone. Secondly, il aets as an energy absorber. Il gives

resilience to the vertebrae and allows il to be subjected ta sudden forces without damage to its

constituents (15.61,130].

The vertebral arch attaches to the posterior side of the vertebral body. Il is composed of IWO

pedicles and two laminae. The pedicles are at the anterior emls of the arch and join the vertebral

arch to the vertebral body. The laminae comprise the posterior section of the arch. From the

vertebral arch, seven proœsses emerge, as shown in Fig. 23.

A spine..like process, appropriately named spinous proccss. projeets posteriorly and slighUy

inferiorly· trom the point where the twO laminae merge. From the junction of the lamina and the

pedicles on each side of the arch, project a superior anicular proœss upward, an inferior anicular

proœss downward, and a transverse process laterally and sUghtly posteriorly.

When the venebrae are stacked as in the venebral column, the vertebral body, its posterior

bony Ceatures and the connecting ligaments completely enclose a spaœ known as the vertebral canal,

tbrough which the spinal cord passes. Thus, these elements provide the spinal cord wim neœssuy

protection.

Aside (rom aeating bony protedive arch for the spinal cord, the proœsses inaease the

stiftiless of the intervettebral joint, bath by direct and indirect means. The proœsses aet indireet1y

by providing auacbments for the ligaments which adjoin adjacent vertebrae. They are advantageous

in that tbey provide the ligaments wim longer moment anus to mûe tbem aet more effidently, and

with various orientations 50 that they can partidpate in restrieting various types of motions.
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Splnou. proceu(a)

(b)

Tranaver.. proceu

Tr.nsv.,.. proceu---~p;:..

Splnou. proceu--;-,..-

_---- lamina

Parts of
vertebral
arch

Fig. 2.3 Typica1 venebra: venebral body and venebral arch with its 7 bony
processes (a) top view, and (b) right lateral view. ACter Grant [43].

The processes themselves restriet panicular motions due to impingement. For example,

extension is limited by the impingement of the inferior articular processes on the laminae of the

venebrae below and the spinous processes on one another. Likewise, the ipsilateral* anicular

processes limit lateraI bending. However, their contribution is highly nonlinear; only having a

stiffening effect on intervertebral joint motion upon impingement or contact.

The inferiorarticular proœsses and thesuperior articular processes of the underlying venebra

Conn a joint between the venebrae. The join~ shown in Fig. 2.4, is called a zygapophyseal join~

commonly reeerred to as facet joinL These joints carry the remaining 20% of the compressive load
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appliOO to the venebra. Of great importance is the orientation of the facet joint (cartilaginous face

of the joint) which determine the type of motion permitted between the vertebrae [15,60).

The different spinal regions have different ranges of motion. This is panly due to the

variations in sile, shape, and orientation of the above menlioned features of the venebra found in the

various regions of the spine. In addition to these variations, venebrae from each region of the spine,

e.g. thoracic or lumbar, have distinguishing features [43,60,130].

~) ~)

Fig. 24 Zygapophyseal (racet) joint (a) right lateral view, and (b)
posterior view. ACter Bogdule and Twomey [1S].

The thoracic venebrae, shown in Fig. 25, are differentiated from the other vertebrae due ta

their articular racets located on the vertebral body and on the transverse proœsses for the attachment

of the head and the tuberc1e of the nbs, respectively (sec Fig. 2.12). They have wOOge-shaped

vertebral bodies, having larger posterior heighlS, giving thoracic kyphosis. In cross-section, the

thoracic venebrae are hean-sbaped and generally have uansverse and anteroposterior diameters of

approximalely equal dimensions. Many oC the thoracic vertebrae are known as transition vertebrae

because the 5uperior ones resemble the cervical venebrae, while the inferiorones resemble the lumbar

venebrae, in both structure and funetion.

The orientation of the racelS of the articular processes of the thoracie venebrae, Fig.2.6(a),

is 5uch that il permilS axial rotation. The superior articu1ar racets face posteriorly (slightly superiorly

and laterally) and the inferior anicular racelS face anteriorly (slightly inferiorly and medially). As a
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result, axial rotation is the predominant motion in the tharaac region [44,65,130].

~~.;......~-F.c.t for
h••d of rlb

Facet for
tubercle of rlb--~'-

(a) (b)

Fig. 25 Typical thoracic venebra (a) top view, and (b) right lateral view. After Grant [43}.

(a)

(b)

Fig.2.6 Orientation of the facet joints in the (a) thoracie, and (h) lumbar
regions of the spine. ACter White and Panjabi [130].

Mammary processes and accessory proœsses are distinctive of the lumbar venebrae, see Fig.

27. In comparison to thoraac venebrae, the spinous proœss are shoner and more oblong (ie. less

spine-like) and the transverse process are thinner and oriented more laterally. In cross-section, the
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vertebral bodies are kidney-shaped with a transverse diameter which is approximately 50% larger than

the anteroposterior one. In addition, the venebral bodies are larger in size and mass in this region,

as shown earlier in Fig. 22 The aoss-sectional area is found ta increase caudally throughout spine

to accommodate the inaeasing compressive load.

As shawn in Figs. 26(b) and 27. the faœts of the superior anicular processes are orientated

rnedially· and posteriorly and have a concave shape. The inferior anicular facets face laterally and

anteriorly. This configuration with vertical orientation in the sagittal plane aUows flexion* and

extension* but does not permit much axial rotation. Comparatively little flexibility in axial rotation

exists in the lumbar region. It is mainly the thorade region which accommodates Most of the axial

rotation in the thoracolumbar spine [60,65).

Proces...:
mammlllary----

acceslOry---~

transverse

(a) (b)

Fig. 2.7 Typicallumbar venebra (a) top view, and (b) right lateral view. After Grant [43}.

For the reasons explained above, the posterior elements oC the venebrae contribute to the

stiffness of the intervenebral joinL This is confirmed by the faet that in in-vitro studies, removal of

the posterior elements indicates an increase in the flexibility of the vertebral joint [11,75,113]. By

Iimiting the range of motion of adjacent vertebrae, hence the spine, the posterior elements aet as a

saCety mechanism protecting intervertebral dise (annulus) from uodue stress and deformation as weil

as other body parts from damage due to hyperextension and hyperflexion (42).

2.%.2 Intervertebral Dises

The intervertebral dises are the -highlY' deformable components between adjacent vertebral

bodies (Fig. 2.4). Their chief raie is to provide fiœbility and load transCer between vertebral bodies.

The intervenebral dises are best suited to resist compressive loads, as reOeeted in their suess-strain

curves. Their imponance is iUustrated by the Caet tbat they must provide the competing attributes

of bath flexibility and stability [0 the spine. The dise are composee! of strong, soft tissue. the
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properties oC which, effectively determine the stiffness oC the whole spine.

The dises have visco-elastie properties, meaning the amount oC deConnation is dependent on

the rate oCloading (stress or strain rate). In addition, oontinued defonnation is round to oœur during

sustained loading, and permanent deformation upon unloading. These represent two well known

phenomena associated with visco..elastie materials1 namely creep and hysteresis [61,126).

The intervenebral dise is composed of two main parts, Fig. 2.8. They are the nucleus

pulposus and the annulus fibrosus. The nucleus pulposus makes up the center portion of the dise and

is composed of a semi-fiuid ground substance with sorne collagen fibers and a few caniIage cells

dispersed within. The annulus fibrosus surrounds the periphery of the nucleus, althougb there is no

clear boundary between the two panions.

Nucleus PUlP08US

Fig. 28 Intervenebral dise. After White and Panjabi [130].

The inner ponion of the annulus attaches to the cartiJaginous venebral end-plates which

separate the disc from the adjacent venebrae, Fig. 29(a). The end plates do not extend over the

complete dise. The outer portion of the annulus libers attach directly to the venebral body, providing

a suong connection between venebrae and dise.

The annulus is composed of concentrie laminated bands of collagen fibers, Fig. 2.9(b). The

orientation of these fibers is the same in alternate bands and opposite in adjacent bands. But. both

are approximately 300 to the horizontal such that {Wo adjacent bands have a 120 degree angle between

the orientation of their fibers. The orientation of the libers has mechanical significance. Since the

annulus is only stfong in tension along the direction oC the fibers, this altemation in orientations

allows the annulus to resist ail types oC loading, even Ü only balf the layers are working such as in

torsion [15]. With this knowledge, it is not surprising to find that torsional forces often injure

annulus [38,130].



• The annulus is capable of carrying loads by itself due to its densely packed bands, while the

nucleus, with ilS tluid·like propenies cannot. However together, they provide a system capable of

supponing loads that would otherwise have buclded the annulus aJone, and aIso a system capable of

absorbing and storing energy. i.e. cushioning impact type loads. Thus, the nuc1eus-annulus structure

is mechanically advantageous, especially in compression [15,60].

The sile of the intervenebral dises is aIso found to inaease caudaUy (as do the venebrae) as

shown in Figs. 21 and 210. The larger cross·sectional area in the lumbar region bears the large

compressive loads while their increased height maintaÏDS tlexibility [15,61,130].

venebral end-pfat. Vert...

Annulua tlbrOlUS

(a) (h)

Fig. 2.9 Annulus fibrosus. (a) Section through the dise, illustrating connection of annulus to adjacent
venebra. Mer Bogduk and Twomey [15]. (h) Fib..:r orientation of concentric bands of
annulus. ACter White and Panjabi [130].
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Fig.210 Graphical representation of intervenebral dise heights [44,124].
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2.2.3 Spinal Ugaments

The spinal ligaments, as shown in Fig. 2.11, connect adjacent vertebrae in the vertebral

column. They are strong uDiaxial soft tissue structures, which resisl tensüe forces but buckle onder

compressive loads. Hence, tbey increase stiffness of the intervenebral joint by limiting ilS motion in

directions depending on tbeir location of attaclunent bet9t'eeD venebrae. Lib the intervertebral dise,

theu material is visco.elastiC; thus theu deformadoDS are time-œpendent (126).

There are seveD major spinal ligaments [15,44,60,130]. The anterior and posterior

longitudinal Ugaments, as their names indicate, run the fuU length of the spine along the anterior and

posterior portions of the venebral bodies, respectively. The former is oomposed of long ooUagen

fibers, running the fulliength of the ligament, and shon libers, attaching to anterior side ofvenebral

body and intervenebral dise.. The laner is oomposed of only shon fibers which iDsen into the

posterior aspect of the dise and span over the posterior surface of venebral body. They limit

extension and flexion respectively. They are stretched due to the separation of the venebrae as well

as the bulging of the intervenebral disa [42].

The remainder of the spinal ligaments are segmental, meaning they are made up of shon

fibers and run between adjacent venebrae (venebral arches & proœsses).

Intertransverse
Ilglment

Polt.rlor
longitudinal
IIglment

Anterlor
longitudinal
ligament

Uglmentum navum

Intersplnou8
ligament

Supra.plnoul
ligament

•
Fig. 2.11 Ugaments of the spine. ACter White and Panjabi [130]•
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The ligamentum Oavum is a very thick yellow ligament which connects laminae of adjacent

vertebrae. It extends the full length of the laminae and fully encloses the venebral canal. Due 10 its

anatomical position, it mainly limits flexion and to some degree lateraI bending.

The interspinous and supraspinous ligaments connect the spinous proœsses of adjacent

vertebrae. The interspinous ligament extends the fulliength of the spinous proce5S, from tip to rOOl,

while the supraspinous ronnects the posterior ends. Howevu, they bath provide stiffness in flexion

10 the joint.

The intertransverse ligament connects transverse proœsses on the same side and limits lateral

bending. The capsular ligament are very shan and connect anicular processes (superior ta inferior).

They limit the amount of flexion and lateral bending.

Additionalligaments which connect the nos la the vertebrae will be discussed in the following

section on the no cage.

2.3 Rib Cage

The rib cage, shown in Fig. 2.12, provides additionaJ stiffness ta the thomdc region of the

spinal column. The main components are the nos, the sternum, the costal canilage, the intercostal

tissue, and the costavertebral and costatransverse joints.

The sternum is located anterior to the spinal column. It is a hard bone, of composition

similar to the vertebral body. lt provides an anterior attachment for the nbs on bath sides af the

body. The nos are curved hoUow bones with an elliptical cross-section. The posterior end of the

rib is known as the head. The adjacent section is called the neck or tubercle. The anterior ponian

aniculates WÎth costal canilage. Costal canilage is the soft tissue connector for anterior attachment

of the ribs.

Humans have 12 pairs of ribs approximately symmetric with respect ta the sagittal plane. The

anterior seven pairs arc known as true nbs. They attach anteriorly, via the costal canilage, directly

to the sternum. The next five pairs do not aUach directly to the sternum and are known as false ribs

[44]. The filst three pairs attach to the costal canilage of the no above it by means of ilS costal

canilage. The last two pairs have no antenor anachment hence are known as floating ribs.

Posteriarly, nos arc attached ta the spine by costovertebral and costotral1S\-erse joints, as

shown in Fig. 2.13. Articu1ar lacets are found on the inferior and superior barders of the lateral·

posterior surfaces of the vertebral body and on the transverse processes as well as on the head and
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tubercle of the ob. Ugaments of the costovenebral joint, i.e. radiate and intraarticular ligaments,

connect the head of the no ta the spinal column. Radiate ligaments connect the head of the no ta

(wo adjacent vertebral bodies, Le. the superior racet of the corresponding venebra and the inferior

facet of superior vertebra, with the exception of the lst, IOth, Ilth and 12th nbs which are only

connected to their corresponding vertebra. Intraarticular ligament connects the head to the

intervenebral joinL The costotransverse ligaments connect the tubercle of the no to the transVerse

process, except for nos Il and 12, which have no oostotransVerse joint [65]. In addition, there are soft

tissues which run in between adjacent nos in the intercostal spaces.

coaatal cartll.g.

Stemum

(a) (h)

.............."." Tubercfe

Sternum

(c)

Fig.212 Rib cage structure illustrating (a) anterior view, (h) right lateral view,
and (c) view of a typica1 ob from the inside. ACter Paosky [92].
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Costovertebral ligament.
(radIlle • Intr.artlcular)

Fig.2.13 Ugaments connecting nos to the spine (a) right lateral
view, and (b) top view. After White and Panjabi [130).
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These strong ligaments are the only connections between the rib cage and the spinal column.

The costal cartilage joins the nos ta the sternum making the cage continuous. Therefore. the

stiffening effeet of the no cage on the thoracic spine depends entirely on the strength of these soft

tissue elements; the chain is only as suong as its weakest link. Any movement that occurs between

the thoracic vertebrae must a1so oceur between the nOs of corresponding venebrae. Deformations

occur primarily in the costal cartilage, and lcss pronounced in the no [60]. As a resultt the no cage

meehanism limits the range of motion in bending and twisting in the tharade spine. This range oC

motion decreases with age as costal cartilage ossifies [61].

Although individual components oC the no cage are flexible, the rib caget as a whole is found

la have a stiffening effect on the spine. This increase in stiffness is attributed ta the additional

sliffness provided by the ligaments of the coslovenebral and costatransverse joints, and more

importantly to the increased eross-sectional dimensions oC the thoracie spine provided by the rib cage,

as illustrated in Fig. 2.14. The increased dimensions provide thoracic spine with a larger moment of

inenia and torsional constant to resist bending and torsion. As a result, the rib cage contributes

approximately 40% of the bending strength and stability of the thoracie spine [5,61,130]. Based on

a finite element model study (4]. inclusion of the nb cage increases the stiffness of the normal thoracic

spine in all four physiological motions (lateral bending, torsion. flexion, and especially extension) as

shawn (ater in Fig 3.5. In addition, as mentioned earlier and as shown subsequently in Table 3.1, the

slability of the spine is found ta increase 3-fold with the inclusion of the rib cage [4).

Cross-8ectlonal area
of spinal column

1
CrOIS-sections. area '" 1

of splne and thorax '1..1

Fig. 2.14 Schematic diagram showing increase in transverse (horizontal) plane
dimensions of tharacic spine by vinue of no cage. ACter Apuzzo et al. [5].
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2.4 CoupliDg* iD a Normal Spine

Significant coupling is round between lateral bending and axial rotation in the normal spine.

This type ofcoupling means the venebrae rotate axially when the spine is subjected to lateral bending,

and vice versa. Coupling is an important pan of the kinematics of the normal spine and as sucb needs

to be discussed. Il is particu1arly interesting in this sludy because idiopathie scoliosis consislS of a

lateral curve with convex-sided rotation. A study oC normal coupling can help understand the type

typiC31 of scoliosÎS.

Coupling is innuenœd by Many factors involving different aspects of the spine anatomy. As

a result, it is a very complex phenomenon, and consequently there are contlicting in vivo resullS.

White (129) round concave-sided rotation in motion segments of the thoracic spine when subjeeted

to lateral bending. see Fig. 1.2(a). Significant coupling was found in the upper thoracic and cervical

regions of the spine. In the middle and lower thoracic regions, the coupling was round to be less

significant and sometimes in the opposite direction Le. convex-sided [129]. Observations of convex­

sided rotation have aIso been reported in the lumbar spine [61].

Lovelt [72] studied the rotation of the spine assodated with lateral bending using cadaver and

live specimens. He round that the ereet spine rotates predominantly with concave-sided rotation

during lateral bending. However, he found the charaeteristic direction of the rotation varied with

respect ta the region of the spine. Arkin [7), on the other hand, round the living spine to rotate in

convex-sided rotation when subjected to lateral bending. However, both agreed that the direction of

axial rotation is dependent on the amount of flexion or extension. Flexion during laterai bending

produced convex·sided rotation, and conversely, extension produced concave-sided rotation. Arldn

[7] explaîned this bebaviour by stating that structures under greater tension will assume the straigbter

line, i.e. the inside of a lateral curve.

Despite the different results, these findings together with the resullS of a biomechanical

analysis by Veldhuizen and Scholten [125] indicate that bath the direction and the strength of the

coupling are infiuenœd by:

(1) sagittal inclination of the spine in the sagittal plane [125],

(2) facet joint orientation (the inclination in the sagittal plane, as illustrated in Fig. 26) [125],

(3) amount of Oexion and extension forces in the spine [7,72].

An additional consideration is the centers of rotation orshear centers of the motion segments

[84]. ~ illustrated in Fig. 2.15, the centers of rotation vary Cor the different regions of the spine due
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to the various facet orientations and they do not coincide with the œntroid [47.60]. The location of

the centers of rotations could possibly inOuence ooupling effect. Factors which are found ta influence

convex-sided rotation May he possible links to idiopathie scoliosis. Possible etiological factors are

discussed in Chapter 3.
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(a) Cb)

Fig. 2.15 centers of rotation of the (a) thoracie, and Cb) lumbar vertebrae. Alter Kapandji [60].
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Cbapter 3

Literature Review

The purpose of this chapter is to bring the reader up-to-date on the present 5tatUS of

knowledge and modeUing of the 5pine pertaining to sooliosis. It first includes a brief discussion of

the etiologica1 theories of AIS. Particular attention is focused on the lordosis hypothesis [34].

Secondly, it descn"bes the development ofspine models aimed al achieving an understanding ofspinal

stability and mec:hanics with relations ta scoliosis.

3.1 Etiological Theories of Adolescent Idiopathie: Sc:oliosis

For many years, the etiology of AIS has been soughL Theories of biocbemica1, genetie,

neuromuscular, and hormonal ongins bave been formulated, bUI have been unsucœssful in pin·

painting the cause. Il is now suspected to be a combination of many factors [26]. However, whatever

the cause, the deformation must be explainable biomechanically [49,98].

l'wo factors known ta play a raie in the pathogenesis and progression of scoliosis are growth

and genetics. A survey condueted in the 1960'5 by Wynne·Davies [135] on patients from the

Edinburgh SColiosis Cinie, Scotland, ïndicates peak incidence of idiopathie scoUosis during infan"l

and adolescence. These LWO periods coïncide witb the IWO growth spurts experienœd during one's life;

the first foUowing birth, the second during puberty. In addition, progression of existing lateral

(scoliotie) curves bas been noted to acœlerate and become clinicaUy significant during the adolescent

growth spun [94,106]. Some suspect growth ta be the primary cause of scoliosis with gravity and

susœpUbility ofskeletal tissue ta the Heuter·VoUanann effect (increased pressure leads ta decreased

growth) acting as secondary factors [8,17]. Whatever the case. the simultaneous occurrence ofgrowth

and onset or progression is considered too bigh ta be coinddental and, therefore, it folloM mat

growth must be linked to etiology of the disease

In the same study (135], the ntes of incidence of idiopathie sœHosis among Ill, 20l1, and 3n1

degree relatives of 114 patients from the Edinburgh c1inic were reœrded and compared with the

incidence in the general population. determined by screening 11,087 Edinburgh children. ne results

showed that the inddente of scoliosis is much higber among the relatives of the index patients than

in the generaI population. It was particuIarly bigh among lit degree relativès (parents, siblings,

cbildren) of the adolescent girl patients (6.9% oompared 10 population incidence of0.1%). The study

found thal the higbest incidence (12%) was among femaIe relatives of adolescent girl patients. 'IWo
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important points were drawn out of this study. Fust, the families were found to have bath infantile

and adolescent scoliosis, which suggests they bath bave the same etiology. second, the strong familial

trend of the disease found in this study suggests idiopathie scoliosis is hereditary, i.e. affected by

genetics related factors [135].

Aside !rom expIaining ilS correlation with growth and genetics, the etiology oC AIS must be

able ta explain other charaeteristics of the disease, e.g. its predominant occurrence in girls compared

ta boys, and of course, the peculiar charaeter of the deConnity (laterai curve with spinal rotation).

From the biomechanical point ofview, progression of the laleral curve with rotation May be likened

to torsional-Oexural (lateral) buckling of a column curved in one plane, as discussed in greater detai!

in Chapter 4. For the lime heing, knowledge oC the theory pertaining to the buckling of a simple

Euler column1 is sufficient. The formula giving the buckling load oC an Euler column is

where Pa is the critical buckling load, E is the Young's modulus of the column malena!, I is the weak­

axis moment of inenia of the column cross-section, and À is the effective length% of the Euler column.

Il is clear from the above equation, that buckling occurs if the column becomes tao slenderl

(that is, "A21I too large), tao flexible (value oC E tao small), or is subjected ta loads (gravity loads,

muscle action Carces) wbich are tao large [49]. With these general conclusions as their basïs, many

researchers have investigated these slability factors as possible explanations for the progression oC the

scoliotic curve. Results of the clinica1 studies condueted ta substantiate these hypotheses are as

follows.

Skndemess

In one study [132], scoUotic girls were round ta he significantly taller than structurally normal

girls oC the same ages. In another study [112], girls were Cound ta have spines significantly s!enderer

than those of boys. However, when slendemess was compared between scoliotic and normal girls.

lEu1ercolumn here represeallill ida1iud coIWDIl wbich Ïllttaipt, homogencoua, and bas a CODStant Cl'QIHCCtion. Abo,

it assumes smaIl deCormalioD lhcory ad liDear eIaIdc materfal bebaviour.

%Effective 1cnsm. as aplaincd iD OIpla'., ÏI dependcnl on column lenllh and end support (boundaly) conditions..

JSlenderncu is mcasURd br sIcadcrDcsI ratio, wbich may be ddined u tbe ratio oC colUlDll lCDJÜl to a Cl'OSI-scctional
dimension (Col- radius) oC tbe coIumn.
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there were some differences. but they were Dot consistent [112]. The evidence that the scoliotic girls

are taller man normal girls mates the buckling theory plausible since column length is one of the

infiuential parameters in column stability. IfaU other variables were tept constant, taller would Mean

more slender. However. the slendemess study [112] found no consistent differences. In light of these

findings. the excessive slendemess would explain the dominant occurrence in girls but it does not

justify conclusively why sorne girls are more suscepuble ta scoliosis than others.

Flaibilily

Flexibility of the spine is dependent on the nexibility of the soft tissue constituents (primarily

the dises). Spines wim abnormallaleral bending fiexibility are more susceptible to buckling, henec,

possibly ta scoliosis. With respect la studies investigating lateraI bending OCXlbility of the spine.

motion segments- of the female were round ta be generally more flexible than those of the male

[48,78,81]. while scoliotic girls were found ta have significantly lcss flexibility than strueturally normal

girls [76]. Similar ta slendemess, Oex:ibility hypotheses may explain progression prevalence in girls.

However, the finding that scoliotic girls have stiffer spines in lateral bending than those of normal

girls seems 10 go against the hypothesis and makes the excessive fiexibility an unlikely cause.

Abnormal Loads

Biomechanically, abnonnal sets offorees and moments could increase the likelihood of laIerai

buclding of the spine. The abnormalload of concem in scoliosis is an unbalanced laIeraI moment

since compressive forces alone do nol produce significant amount of lateral bending of motion

segments [11]. The possibility of unilateral weakness or abnonnalities of trunk muscles were

investigated in 93 scoliotic and 109 strueturally normal adolescent girls [97]. Measurements of the

maximum voluntary uunk suengtbs indicate that Ibere is no consistent difference in mean muscle

strengths between scoliotic girls and normal girls. Based on these results, AIS is not likelya result

oC gross weaknesses or imbalances in the major muscles of the trunIt.

Sînce trunk muscles of $COllotie girls prove CIlJHlbie of producing normal suength Carces,

another study was condueted by Reuber et al [98] to investigate the possibility of lateral asymmetric

trunk muscle conuaction forces as a cause of curve progression. Myoelecuic activities1 of trunk

muscles were measured in adolescent girls, 20 scoliotic and 12 strueturally normal, during various

Irrbe Dave transmitl • aipaJ dlat ltillluJalel • IIIU1C1e co coalnCL ne IDI&DÏtudc 0( the sipal, known as the myodectric
aetivil)'. dClermincs the streDllh oC lhc mUldc coaU'ldiOll (a.c. the mUlClc coatraeliOD Con:c) [98}.
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exercises to determine the muscle oontraetion forces. Muscle force asymmetries signilicantly different

(rom normal girls were round only in patients with severe cases ofdouble curves, with one Cobb angle

larger than 250
• The faet tbat the Jarger trunk muscle forces were consistently found on the convex

side of the severe Iateral curves indicated that the lateral muscle force asymmetries are a result of

scoliosis, developed to balance the lateral moment created by lateral offset,1 rather than its cause.

This conclusion of the study then suggested that scoliosis may be a result ofa lact of force asymmetty

in the spine whicb bas a sUght lateraI OffseL To this end, IWO other hypotheses have been proposed

[98].

These bypotheses for the progression ofscoliosis involve a maIfunction in the neural network

responsible for maintaining upright postures of the trunk. This malfunetion, as suggested by Reuber

et al. [98], includes the inability ta detect an unbalanced lateral moment or ta direct the necessary

asymmetrical response in trunk muscles ta counteract momenL In the first hypothesis, as a result of

conuaction forces in the trunk muscles being too symmetric, the soft tissues of the motion segments,

paniculariy the intervertebral dises, in the curve region must provide resistance ta most of the

unbalanced momenL Hence, dises deform, motion segments rotate (i.e. tilt) further, and the lateraI

curve increases. This bebaviour is said to be a necessary condition for cuIVe progression but not a

sufficient one [98]. The second hypothesis explains the curve progression. It pertains ta possible

long-teem bebaviour of dises to unbalanced laIerai moments resulting from motor control defects.

[t hypothesîzes that if the tilts continue to increase and in lime become more or less permanent under

sustained lateral moment, then an irreversible progression would occur. A1though experiments

conducted with animais support the hypothesis, it requïres long-teem testing of buman dises, involving

the monitoring of creep and hysteresîs effects (98).

Astudywas perfonned on spine modeIs [49], to investigale the possible sources ofunbalanœd

lateraI bending moments that could lead to cuIVe progression, suppon clinical findings concerning

muscle forces previously discussed, and substantiate the neural conuol defect bypothesis. The effedS

of possible abnonnal trunk muscle forces and righting mecbanisms, resulting from neuromuscular

system malfunctions, on laIerai curves were examined in this study. Results indicate tbat if

progression of the scoliotic curve is due to trunk neuromusc:ular failure, then it is Most bltely in the

malfunetion of the neural œnuol system, wbich senses imbaJances and stimuIates responses, rather

than in the funetional capabilities of the muscles to respond to appropriate signais. However,

l.rbe latenl olliel crcates lateral 1D000CDlI iD the spiDe due 10 (1) the wà&bl 0( body IqIDCDts .bave the apex oC the cune

and (2) the lbortcniDl and IcqtJlcniDlof die IIIOIDCIIt anD, OD. the axrw:rand concavesida~. lbroup wbicb lJ'UDt
muscles let (98].



neural control defect seems a plausible cause, it too faiIs to correlate growth and female gender bias

to the disease.

Another hypothesis, pertaining to asymmctrical growth of spinal components, was proposed

by Lindahl and Raeder [68]. Using a straight column theoretica1 Madel, they found that the type of

extemaI forces necessary to produce the laIeraI displacement and rotation, typica1 ofscoüosis. would

be vertical restricting forces acting on the spine, located in the quadrant lateraI and posterior ta the

affected venebral bodies, see Fig. 3.1. Possible sources of restricting force in this quadrant would be

the restriction of the venica1 growth of some or aIl the elements present in the quadrant i.e.

transverse process, posterior section of ribs, and long dorsal muscles.

----+---:::~-H~-----x

y

Fig.3.1 Quadrant X 0 Y. The binding forces must be located in this quadrant in
arder to produce a laierai displacement and a convex-sided rotation similar
ta the type found in scoliosis. After Lindahl and Raeder [68].

The theory is based on the idea that since the anlerîor section of the spinal column,

composed of stacked venebral bodies, provides the majority of the stiffness of the spinal column, the

deformed configuration oC the spine is such thal the antenor of the column will undergo the lcast

amount of deformation in the column. He suggested that the muscles and ligaments interconnecting

the transverse process on one side grow al a slawer rate than the rest of structure. As a result, tbey

would produce restraining forces between the transverse proœss on one 5ide, i.e. in the quadrant, and

cause lateral deviation and convex-sided rotation oC the column 50 that the venebral bodies experienœ

a minimal bending defonnatian. Il was conjectured that, if the ends of the spine were restrained in

rotation, a defonnatian typical of scoliosis, with maximum rotation al the apex oC the lateral curve,

would result [68].

An attempt was made ta clinicaUy test the hypotbesis by removing the transverse process on



the concave side of 13 idiopathie patients and determining whether or not the progression would stop

[67]. However, due ta the unpredietable nature of scoliosis, whether il will progress or be stationary

at any point in time, the effects of the treatment were difficu1t to establish (there was no conclusive

proofoC reduetion in the scoliosis angle). Evidence of scoliosis developing in patients with unilateral

paresis of the intercostal muscles located in the quadrant [58] and in patients following the surgical

removai of the uansverse proœsses (convex towards the side ofthe resection) [127,128], gives promise

to the theory. Although this hypothesis explains the occurrence of disease during growtb, it fails to

explain the high frequency in females.

Lastly, abnarmallties in the coUagenaus matrix of inlervertebral discs, thought to cause a

decrease in the resistance of the passive tissue companent, were investigaled as a possible factor in

curve progression. Harrington [50] and Ponsetti et aL [95] bave suggested that a collagen defect in

the invenebrai disc is the principal factor. CoUagen content, extractability and distribution across disc

were studied in both normal and scolioticspines. Collagen abnormalities were found in scoliotic dises.

However. results are conflicting as to wbetber they are primary or secondary effects1 [18].

3.1.1 Lordosis Hypotbesls and -Blplanar Spinal Asymmetr)'" [341

The lordosis at the apex oC the laterai curve in thoracic scoliosis has been noted as carly as

1865 by Adams [1]. Although researcbers such as Somerville [115] and Roaf [100] feh that scoliosÎS

could not accur without the initial development oC a lordosis, this aspect oC scoliosis has been largely

overlooked [66]. Il is only over the recent years that the sagittal curvature of the spine in scoliotic

patients has been receiving inaeasing interest [83], particularly by Dickson et al. [6,30,34].

The deformity is often misunderstood, because severe cases of thoraac scollosis give the

appearance of a severe kyphosîs Le. hunchbactl. Hawever, this is misleading due ta the large axial

rotation accompanying the defarmity. As shown in the graphs and radiograpbs in Fig. 3.2 trom

Deacon et al. [30] of a specimen witb severe thoracic scoliosis, the degree and direction oC curvature

varies according to the angle ofview. Figure 3.2(a) indicates the variation oC the curvature according

ta the angle of rotation of the spedmen. Figure 3.2(b) shows the usual A·P view of the specimen,

while Fig. 3.2(c) illustrates the truc A·P view of the deCormity. The -truc- A·P is the view orientated

1Abnormalilics iD the coUap coalat of lbc KOIiolic diIcs wcrc round 10 he depcndent OD curve location. 1bcse n:sults
suge5t lbal abnormality ia of • lCCiOIldaly aalurc. HCJIIIIWU'. CODlraIlinC rcsults Crom pepsin extraetabüity lests indicale
abnormalilics ÎD allscoliotic disc:I [18].

1rms dcformity is often dc:scribc:d u • kypbOlCOlioIÏI by many IUlJeGDS and pbysicians [100}. implying mistakenlYt lbal il

coDSislS of an exœssive kyphOlis u weil u • lateral cunc.



with respect 10 the apical vertebrae, which gives the maximum view of the IaleraI deformity. The

lateraI curvature is generally of a magnitude 41% greater in the true view of the deformity man that

in the A..P view of the specimen [30]. Figure 3.2(d) shows the usual lateral view of the specimen

which indicates a faIse kyphosis. Il is ooly in the -true- Iateral view, Fig. 3.2(e), that the aetual

lordosis becomes evidenL This true lateraI view is perpendicular ta the truc A..P view.

Studies by Ohlen et aL [83] and Wil1ner (131) showed tbat scoliotie patients have significantly

smaller thoracie kyphosis than normal persans. Statistically, a radiographie study by Dickson et al

[34], of over 70 patients with idiopathie thorade scoliosis showed a truc lordosis al the apex of their

lateral curves in 75% of the cases, wim the remaining ones having significanUy reduced or absent

kyphosis. The Mean was a 3° lordosis at the apex. Results are contradietory at this point in lime

regarding whether or not there exists a correlation between the degree of lordosis and the degree of

scoliosis (Le. lateral curve) [30,34,83].

The results indicating the presence of lordosis are not surprising, for as mentioned before,

geometrically, the convex-sided rotation, charaeteriStie of scoliosis, requires a longer anterior length

of spine than posterior Le. true lordosis, throughout the Iateral curve. In morphometric analyses

conducted by Deacon et al. (30) and Reaf [100), il was found that the Mean anterior length of the

spine was longer than its posterior length. The vertebrae in the affected region were Cound to he

lordotic, implying asymmetric vertebral growth [30,34]. Thus, it seems that the spine, even in regions

typically kyphotic, ie. thoracie region, must be lordotie to sorne degree in order to obtain scoliotic

rotation [29].

The above geometrica1 evidence and its interprelation constitutes the basis of the lardosis

hypothesis as 10 the etiology of tboncie scoliosis. Somerville [115], RooC [100], and more reœntly

Dickson et al [34] bave been the Most prominent proponents of tIùs hypothesis. Somerville [115]

wu one of the tirst to propose, on the basis of bis physical model and experimental studies, tbat the

relative Caster growth of the anterior ponion of the spine Corces il into a configuration with lordosis,

rotation and lateraI deviation. Roaf [1(0) supponed the hypothesis by stating tbat there are two

possible results from relative anterior overgrowth of the spine. They are: (1) a severe lordosis, or

(2) a sideways deviation of the longer anterior ponion, i.e. scoliosis. He suggested that the severe

lordosis is prevented by the sternum and abdominal muscles and thus the scoliotic-type defonnations

accommodate the asymmetrical growth. Dickson et aL [34] extended the hypothesis by pointing out

that in addition to the thonde lordosis, Ibere must be some sort ofspinal asymmeuy in a plane other

tban the sagittal plane, i.e. the horizontal or frontal plane, for AIS to develop. Without the

asymmeuy, onder symmetrica11oading, the spine would remain in the sagittal plane untü the point
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Fig. 3.2 Variation of the degree of eumature (Cobb angle) with respect to the view of the thoradc
scoliotic deformity. (a) Graph of the Cobb angle measured versus the angle of rotation from
the frontal view of the scoliotic specimen. Radiograpbs of the specimen taken al 4 views.
(b) A·P view of the specimen indicatiDg a 1atera1 curvature of87'. (c) 7l'w A-P view of the
deformity revealing a true laterai curve of ur. (d) Lateral view of the specimen giving an
impression of a kypllosis of 61°. (e) nw lateral view of the deformity revealing a true 14°
lonlosis al the 318 of the IateraI curve. 1bis view is 9(f 10 the plane of maximum lateraI
deformity. AIl figures are from Deaœn et al [30].
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of excessive laading. Therefore according to Dickson et al [34], the combinatian of the thoracic

lordosis and the additional asymmeuy, which they termed "iplanar spinal asymmetry", fs the crucial

factor giving instability to the spine. They suspect that its presence during growth is the primary

cause; while the lateral curvalure and rotation of the AIS spine are secondary efl'ects.

ExperimeIlÛlI and Biomec1uUlictJl SUI'JIO"

Results ofexperimentai and biomechanical model studies suppon the hypothesis. Somerville

[115] produced progressive idiopathie thoracie scoUosis in 3 young rabbits by surgically creating a

lordosis over a shon segment of their spine. Considerable amount of rotation, in the scoliotic

direction, was developed in animais in which the disease is unknown and in which gravity can have

no effect. Dickson [34] performed a biamechanica1 study in which a model with a shon-segmented

biplanar asymmetty (lordosis and slight frontal curve) was created using spines of rabbits. Upan

forward flexion, these spines deformed in a manner similar to scoliosis. The normal rabbit spine,

when subjected to flexion, did Dot rotate. Conclusions drawn from the experiments were that a

significantly reduced kyphosis and an asymmetry in the horizontal or the frontal plane are necessary

for scoliosis. Since Somerville was unaware of the necessity of such an asymmetry and attempts by

ather investigatars to repeat bis experiment were unsuccessful, Dickson et al. [34] suggests that

Sameml1e must have accidentally aeated a slight frontal plane asymmetryl in bis experimenL

It May aIso be recalled that in the wark dealing with the restricting forces [68], the analysis

detennined the position of binding forces, neœssary to achieve scoliotie deformity, ta be lateral and

posterior ta the venebral bodies of the hypothetical suaight column. The posterior positioning oC

the load creates a lordosis and the lateral offset of the load ceeates a lateral asymmeuy. ThereCore,

il seems that this theoretical analysis obtains scoUotïc-type rotations by effectively imposing biplanar

spinal asymmeuy due to the location of the loading.

Two ather related studies were performed ta investigate the lordosis hypathesis. Jarvis et al

[59} condueted an cxpcriment on human and calf spines ta study the eff'ect of a lacalized lardosis or

tethering of the posterior elemencs of the spme on the behaviour of the normal spine. Ugamentous

spines. with and withoul posterior tether. were loaded by axial displacemenL Slight asymmetry in the

mounting gave spines a tendeDt,y to deOect laterally in a certain direction. Upon loading, signifiant

lateral curves were produœd, convex to the side determined by the asymmetry. A fixed length tether

was placed posteriorly of the spiDe and slightly lateraUy to the convex side of the of this lateral curve,

lCtiIdreD, un1ike animais. baw iDbcrenl Croalll and borizoalll plue asymmeuics [34].
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in the lower thoracic region of the spine. The tether was found to increase the convex-sided rotation.

Without the tether, the rotation was round 10 be non.existent or in the opposite direction (concave­

sided). Geometrically, coDvex·sided rotation in which the tether moves towards the inside of the

lateral curve, accommodates the -inextensible- tether. Thus, acoording to Jarvis, the posterier tether

explains the rotation charaeteristic of sc:oliosis, but the cause of the tether is uncertain.

Stokes and Gardner-Morse [118] simulated the experiment perfonned by Jarvis et al. [59]

using a simple homogeneous finite element model of the ligamenlous thoracolumbar spine. Under

loads contracting the postero-Iateral tether in the thoracic region 3% and a compressive force of 250

N applied al the top, lateral displacements and convex-sided rotations resulted. However, the axial

rotation was very small, with a relative magnitude al the apex of O.Q90/mm of lateral deflectian.

Tethering in the lumbar region produced poor resullS with rotations of a kind opposite ta scoliosis.

ExpltuuUion 01 Clinical Bvidenœ

The lordosis hypothesis [34] a150 bas explaoations for the clinicat findings. Logically,

regardless oC the initiating factor, scoliosis requires growth. It is only during growth periads, that such

large defonnations or changes may develop. Since according to the hypothesis the lordosis arises from

asymmetrical anterior-posterior venebral growth in the hypothesis, il is oot surprising tO find high

incidence of AIS during the adolescent growth spurt. Il is during the periods of peak growth, that

asymmetrical growth rates would alter spine configuration most drastically, and consequently, ilS

effeclS would become obvious al this lime.

Lateral spinal profiles (sagittal cuMtures) are determined genetically [116]. This is

demonstrated by the tact that seme familles have a tendeocy to have Oat backs whiIe athers have

round backs. Thus, the strong familial trend notOO in AIS [135] may be expIained by the faet that the

essentiallesion ofAIS according to the bypothesis, namelya reduced thorade kyphosis, is an inherited

reature [6,34].

Ni round by Willner (131), during the normal growth process, the thoraac kypbasis reduces

in magnitude between the ages of 8 and 12 and becOmes a minimum al about the age of 10. This

period of reduœd curvalure coinddes with the adolescent growth spun of girls, as shown in Fig.

33(a). Boys, on the other band, Fig. 3.3(b), bave their peak growth velodty, on average, 2 yem later

than girls when spine bas maximum kyphotic curvature. Based on the fact thal girls have a reduced

kyphosis while boys have a maximum kypbosis during period of peak growth (Le period when AIS

develops), the hypothesis explains the susœpubillty of girls to the deformity [34].
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Fig. 3.3 Graphs illustrating the correlation betweeD growth rates and the degree of thoracic kyphosis
in (a) girls and (b) boys, ages 8 - 16 yean old [131]. Figures are from Leatherman and
Diekson [66].

A kyphosis on the small side of the normal range produces a straighter henœ taller spine.

lbus, the reduced monde kyphosis resulting from asymmetrical venebral growth explains the finding

that scoliotic girls (wim müd cases) are taller on average than normal girls, in the absence of any

adolescent growth abnonnalities [6]. Biomecbanically, a reduetion in the curve amplitude of the spine

increases its length without a change of ilS cross-sectional properties and therefore produces a less

stable configuration ofspine. The effea of the magnitude ofcurvature or CUNe amplitude on column

stability will be discussed in Chapter 4.

To illustrate the precarious balance of the sagittal profile of the spine in Iate ch11dhood, the

middle thoracie venebrae need ooly change their curvature by about 3° eath, for the thoracic spine

10 beoome lordotic [31J. ln addition, the morade region is also the site of the natural frontal and

transverse plane asymmetries due 10 the presence of the aorta on the leCt side. In the frontal plane,

the thorade spine has a slight right curve and in the borizontal plane, the thoracic venebrae T4 to

1'9 bave an asymmetrica1 cross-section, as shawn in Fig. 3.4. Anatomically, the Oatter the mondc

kyphosis, the greater the effect of the aona on the venebrae [45].

•

The 1'9 venebra is one of the moradc venebrae (with oonsiderabe rotational freedom) whicll

is located close to point of inOection between kyphosis and lordosis. Recalling tbat the crucial radors

of AIS, aa::ording to the "biplanar spinal asymmetry" bypotbais, are lordosis plus a frontal or

horizontal asymmetJy, the hypltbesis explains wby 19 is a frequent apex of the deformity [83]•



Sagittal curvature varies substantially from persan to persan. An average IateraI profile is

very difficult ta construet as was round during modelling. However, since thoracic scoliotic patients

have in common a lardatic tendency in their thoraac curvature [66], it is important ta investigate its

effect carefully. In light of the experimental and biomecbanical model studies offering support of the

lordosis hypothesis as weIl as the clinical evidenœ explainable by the hypothesis, il foUaws that this

hypothesis as expounded by Somerville [115], Roaf (100), and Dickson et al [34] must be capable of

explaining the scoliotic deformity on a rational basis.

Fig.3.4 Top view of transverse or horizontal plane asymmeuy of middle thoracic venebrae due to
pulsation of the descending aorta of the left side of spinal column. Mer Leatherman and
Dickson [66].

3.2 Spinal ModeUiDg

A vast variety and number of studies have been condueted to understand the biomechanics

of the spine. Significantly relevant to the present work were the studies which:

(1) experimentally determined stiffness propenies of the various components of the spine.

(2) determined the geometry of spine and nô cage by direct measurement from human

specimens,

(3) involved experimental and/or clinical procedures to evaluate possible causes of AIS,

(4) developed (malhematical) structural analysis models of the complete thoracolumbar spine.

To avoid repetition, the first (wO categories are discussed in detaü in Chapter S. The third

one bas already been discussed in the previous section. Discussion of the last (fourth) category is

limited to those models wbicb were concemed specifically with the study of scoliosis and/or spinal

stability. In particular, no reCerence is made to the numerous model studies on dynamic analysis.

AIso, some of the discussion in this category overlaps wim that in the section on possible etiology of

AIS, since many studies involved testing hypotheses using appropriate structural analysis models.



•

•

Mathematical madeIs are aCten used ta simulate oomplex systems such as bialagical systems,

which are difficult ta study using standard experimental techniques [110]. Spine structural analysis

madels have long been used ta gain an understanding afspinal behaviaUf, in panîcular, scoliasis. The

chief advantage of mathematicaI models over pbysicaI models [7.20,101,115], is the case of cbanging

various parameters (Le. size and shape ofvenebrae, soft tissue prapenies, sagittal curvature) in arder

ta prediet the effects of sueh changes [10]. Hawever, due ta the complexity of the structure, and the

lack of bard data on the living (in-vivo) spine,l unavoidable assumptians must be made in order to

construet a feasible and useful model [42].

3.2.1 Continuum Models

Continuum models are the simplest way to represent the spine. In these models, the spine

is idealized as a continuous beam.

Lucas and Bresler [73), determined the stability of the ligamentous spine bath theoretically

and experimentally. In their study, the spine was conceptualized to behave like an elastic beam with

constant sectional properties along the length. For tbis purpase, the average lateral bending

flexibilites ofeaeh elastic segment, k =(J /M, were determined experimentally from lateralload studies

on three ligamentaus spines. The effective lateral fiexibiIity, ~ of the entire spine (of Iength L) was

then calculated as K = Ik/L. Using this value of K, the theareticai critical loads for various end

support conditions were calculated according to the Euler buckling formula for straight elastic

columns.

Next, the upright spine, constrained from displacement in the sagittal plane at the mid­

thorade and mid·lumbar levels to prevent A-P bending and securely fixed al the sacrum, was Ioaded

vertically at the top until laterai buclding occurred. Buckling loads were determined for the

conditions in which Tl was free and aIso when Tl was constrained from lateral and anterior·posterior

displacements and axial (horizontal plane) rotation.

Comparisons were made between the theoretical criticalloads and experimental criticalloads

for the same constraint conditions, sec Table 3.1. Results were in close agreement, and indicated that

the ligamentous spine behaves similarly ta an elastic beam. The criticalloads for the spine length of

47.9 cm, were found to be 2 kg and 17 kg for the Tl-free and Tl-constrained (as described above)

lOata on buman spine found in liteIëllUre are obtained (rom in-vitro .pine. Propenic:s etc. may very wc11 bc: different in­
vivo. ln-viw pmpcrtics would be difficult il Dol impossible 10 mcasure. Tbc:n:rore, pn:scnl sludy is bascd aD in-Yilm
mc:asuremc:nts and doc:s Dot accounl for poslmonc:m effc:cL

-41-



conditions, respectively.

The work of Lucas and Bresler is significant in the field of stability of spine, since they were

the only ones ta have coodueted an experimental stabüùy study 00 a human spine. Theil results

provide researchers a basis for comparison.

Worles by Hjalmars [54] and Undbeck [69] indicale mal in some circumstances a

mathematically simple continuum mo<lel May be suffident for the analysis of the mechanicaJ response

of the spine al an overaU leveL Hjalmars [54] developed an anisotropie beam model for the lateral

bending oC the human spine. Undbeck [69] used this model te reproduœ the charaaeristic form of

a spine with funetional scoliosis1 by means of a buclding analysis. However, in view of the highly

idealized assumptions necessary ta anive al a continuum model, they can provide al best, only a

qualitative pieture of the real behaviour.

3.2.2 Dlserete-Pommeler Models

More realistic and complex models were developed as computer lechnology improved [42}.

Representation of the spine in three~imensionsis required in order to study very basic problems in

orthopaedies such as scoliosis and effcets of instability [87]. The discrete-parameter structural analysis

model1 is composed oC discrete elements representing various anatomical elements of spine (dises,

ligaments, venebrae, etc.) cach assigned its own sectional and malerial properties. Generally, the

venebrae, nDs, and sternum are idea1ized as rigid bodies, while the dises, ligaments, and cartilage are

modelled as deformable elements.

Comparatively complex computations make these models less easy ta work wim than

continuum models Cor the purpose of drawing general conclusions (e.g. eCfcet of curvature) on the

mechanical responses of the spine [54]. However, continuum models are tao unlike the real spine

structure because of their inability ta account Cor important anatomical Ceatures (e.g. differences in

properties of dises and vertebrae, presence of nb cage on thorade vertebrae) [87]. Local effeets and

deformations are important in the present study, benœ the model cbosen for the present study is a

discrete·parameter madeL A discussion of past three-dimensÎonal thoncolumbar spine models

relating la the study of sœliosis now follows.

IDcfined u a laierai CUlWlure oC &he .piDc caUlCd by tilt oC pc:Ma.

2nus is not a F.E.M. mode!, iD wbich Cor aample, dises and wnebrac an: modclcd iD detail by 3-d finite dement mesbcs.
The inlerat ben: ÎI iD the bebaviour oC cadi diIIiDct ....tamical dcmCllt wbich müa up .pme rathcr Iben in the strcll fields
oC eacb demc:nL Thus. distinc:l eJemcnta are lDOdcIcd IlliDe beam elemCDIL
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Schultz and Galante [110] construded a three-dimensional mathematical model ofthe human

venebral column ta study the geomeuy of the motions of the spine in flexion, extension, lateral

bending, and axial rotation. This work is important because it describes motion in three-dimensions.

The model used in the study was striet1y a geometrie one. Although Corce-defonnation relationships

are important in the mechanics of the spine, only geometrica1 compauDility was enforced in their

study. The 24 vertebrae comprising the fun mobile spine (Cl to S1) were modeled using rigid bodies,

and the intervenebral dises and connecting ligaments were represented with fixed length elements

whieh were attached ta coordinates defined on the rigid bodies (Le. venebrae). Motion was simulated

by altering the lengths of the fixed length elements. Resulting deCormations were within reasonable

anatomical values and they compared weU with those Crom previous in vivo studies, indicating that

the model was a good representation of the real spine. The Most important conclusion from this

study [110) was that within the restrictions imposed, the spine showed its ability to assume Many

different geometrie configurations from a wriety of different ways, not belonging to any one pattern

of motion.

More peninent to the present study is the application made of the above model to determine

the geometrie changes required to alter normal spine into a configuration typical of idiopathie

scoliosis. Using 5 different models, SChultz et al [Ill) studied the effect oC the changes in the lengths

oC the various intervertebral connecting elements as weIl as in the position of (rigid) body coordinates

defining their attachment (Le. simulatîng change in vertebral geometry), on the geometric

configuration of the models. The resulting configurations were then compared to radiographs oC

patients with idiopathie scoliosis. Il was round [111] mat -no single set of kinematie changes resulted

in aU of the geometrie cbaraderistic:s oC the scoliotic derormity. The length cbanges are complex and

suggest that they are secondary. However, it was concluded that regardless of the etiology of the

disease, the posterior structures may have an important raie in reaehing the geometry of idiopathie

scoliosis.-

Panjabi and White [91] also developed a mathematical method to analyze three-dimensional

motion oC the spine. The method is based on roentgenogramsl reOecting incremental motion of

autopsy specimens ofspine segments subjec:ted to the three prindpal rotations (Le. in sagittal. frontal,

and horizontal planes). The method desaibes the motion about its "helica1 axis of motion-, wbich

according to these authors allows the comparison of the motion of2 or more rigid bodies regardless

of their sbape or positions of their measuring points [91]. White [129] used the same method to

analyze bis experimental data based on two and three dimensional testing of motion segments of the

l~ are ddincd as pbolOlflPbs made with x-rays (122].
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normal thoradc spine. Their researcb 00 the Idnematics of the normal thorade spine is inc1uded in

this review because of the foUowing correlation made by them between the results and the etiology

of scoliosis.

Significant coupling was found to exist belWeen lateral bending and axial rotation. In Most

instances, the thoradc venebrae were observed ta experiente concave-sided rotation, that is, the

anterior aspect ofvertebral body [Otates towards the concavity of the lateral curve. However, in some

cases, the middle thorade vertebrae were observed to rotate in the opposite direction (i.e. convex­

sided rotation, in which the anterior of the venebraI body rotates in the coovexity of the lateraI

curve), which is characteristic of scoUosis.

With respect to this tinding, the study suggested that the direction in which the middle

thoracie venebrae have a tendency to rotate may be a critical factor in the development of AIS. As

stated by White [129], -any slight disturbances in the delicate balance of the normal thoracie motion

May cause middle venebrae wbieh tend ta rotate towards the convexity, ta ratate tao much. This

rotation wauld lead to asymmetric loading on epiphysea1 plates, muscle and ligament imbalances, and

eventually scoliosis. Possible factors responsible for upsetting the balance could he malaligned racets,

traumatic event, chemica1 hormonal change, and over-dominanœ of left or right handedness-. The

faets that (1) the mid-marade region is a frequent site ofscoliosis and, (2) there is a slight anatamical

lateral curve already present in this regian, give promise to the theory.

Also of relevance to the present work is the study bya group of researchers [10,107] in which

a three-dimensional model was developed for the purpose of condueting nonlinear (geomelric)

analysis of forces acting on the spine. This study wu the fiIst ta report such a model. Analyses

predieted the response of the spine to lateralload, the stability of the spine under compressive load,

and the effect of tractive load on a scoliotic spine (madel construeted of a scoUatie spine for this

analysis). Both the construction of the madel and the resuIts of the stabillty analysis are imponant

to the current wark, and they will be referenced often in Chapter 5 and Chapter 6.

The modelling proœdure and the results of the study were reponed by Belytschko et aL [10].

The complete thoracolumbar spine was modeled with rigid bodies to represent venebrae and

deformable elements ta represenl soft tissue intervenebral elements. Beant elements were used to

represent intervertebral dises wim its longiludinalligamenrst and spring elements to Madel eaeh of

the major ligaments connec:ting posterior elemenrs of venebrae and the tacet joints. This



•

•

representation distinguished the model from previous ones such as the one by Roberts and Chen

[103]1 in which the overall stiffness of the intervenebral joint was lumped in one element. Geometrie

nonlinearities were accounted for by using the incremental linearization technique of nonlinear

analysis. This enabled them ta analyze the normal motions of the spine, accompanied by large

deformations.

SChultz et al. [107] descnoed the construction of the mode!. This included the detai1s of the

geometry and force-deformation propenies aIong the spine. The geometry was based on cadaver

measurements [64,124]. Similar ta the madel constructed by Schultz and Galante [110), the geometry

of the spine was defined using the local coordinates on vertebrae (rigid body) giving points of

attachment for the intervenebral elements and using the lengtbs of the various intervenebral

elements. Bearn elements representing intervenebral dises and longitudinal ligaments were assigned

bending, axial, shear, and torsional stiffnesses. Spring elements representing ligaments conneeting

posterior elements were assigned a tension stiffness, and those modelling facet joints were assigned

both compression and tension stiffnesses. Ali the deformable elements were assigned Iinear isotropie

elastic propenies.2 Stiffnesses assigned ta these elements were ehosen to simulate the behaviour

found for cadaver motion segments, as best as possible.

Only the results from the lateralload and stability analysis are mentioned here, due to their

relevance to the present study. ln these (wo analysis, the conditions were set ta simulate the

experiments by Lucas and Bresler [73}. Frontal plane rotations resulting from a 0.5 kg laterallaad,

and lateral buckling Ioads for 3 different footy conditions at the top i.e. (1) Tl free, (2) Tl flXed in

horizontal displacements and rotation, and (3) Tl fixed against all degrees of freedom except for

venical displacement (see Table 3.1) were in good agreement with the results of Lucas and Bresler.

In addition, the buckled configurations were scaled sa that the resulting average laterai displacement

would be the same as those of the scoliotic spine. Comparison of the buckied configuration ta the

scoliotic spine revealed similar lateral displacements and frontal rotations but very different azial

rotations. The SCOliOlic spine used as reference was found to have a maximum axial convex-sided

rotation of 25° while the buckled spine showed hardly any axial rotation. Based on these results,

Belytschko et al. [ID) suggested the investigation of the effect of the posterior muscles and rib cage

l Roberts and Chen [103} cooduetcd a dynamic analysis and lhereCore lheir work is oot indudcd in th.is rcvï.ew. However.
their modcl is very imponantlo the current study as explaincd in Chaptcr S.

2UpmCUl clements ere assignc:d eilhcr a zero or non·zero axial stiffness depcnding if thcy were cxpcacd lo cxpcricna:
compraaion or tcusion. [1 wu round in the study lbat in cooConDily wiUlthe UJumptiOD, mer ather ClpCrienccd tcusion or
compression throughout the range of various types of loading [107}•
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on the axial rotations during buckling Cor future studies.

In their next attempt, the same group of researchers added a no cage ta their previous

thoracolumbar spine modeL The primary purpose this time was ta study the mecbanics of the human

skeletal thorax [4]. Of panicular înleresl is the results showïng the stabilizing effect of the nD cage

on the thoracolumbar spine.

Table 3.1 Lateral Buckling Laads Under Compressive Laads (N)*

Tl constraint Ugamentous Spine with nb
spine cage intact

Tl Cree 19.13 (E)
20.50 (T)
20.60 (C) 78.48 (C)

Tl fixed in horizontal 166.77 (E)
displacements and 167.75 (T)

rotation 196.20 (C) 608.22 (C)

Tl fixed in ail but
venical displaœment 327.65 (T)

313.92 (C) 990.81 (C)

·Spinc is constniDed Crom displaœmcnts in the sapltal plane al the mid·thoracic and
mid·lwnbar leveJs 10 preYall anlcrior·paalerlor bending and sacrum is fixc:d.

E - erperimental valua obtaiDed by Lucas and Bresler [73]. spme lenath - 47.9 cm.
T - thcoretical values oblained by Lucas and Bresler [73]. spinc leneth - 41.9 cm.
C • computaI values by

• BeIyUcbko et. aL [10) foc buc:klial or the lipmenlOua spme, .pme Iengtb • 49 cm.
• ADdriaccbi et. aL [4] rOI" buc:kliD1 oC the spine with nb cage. Ipine lenath • 49 aD.

Andriacchi et al [4] used thirty-nine rigid bodies to represent the skeletal thorax, Le. nôs and

sternum, in the Madel DeCormable elements were modeled using eitherspring or beam elements and

were assumed to possess quasi-linear1 properties. These elements include costal cartilage, intercostal

ligaments, and costovenebral joint The analysis was capable of having bath geometric and material

nonlinearities. Geometries of the elemenu were determined trom cadaver measurements [108,109],

and put in correct anatomical position with respect to spinal œlumn with the aid oC published

anthropometric data [22,2S]. Properties Cor deCormable elements were detennined by performing

computer simulation oC cadaver experimenrs [109]. SïmDar to the method used in assigning values

lwear stUrnas. aJthoup 1CCOUIllÜll Cor clif(cn:atllimlClla iIllClllioll aad compraaioD [4].



for elements in the ligamentous spine model, stiffnesses were adjusted until reasonable agreement WÏth

experimentaI results was obtained.

The response of the spine and rib cage model was compared with available experimental

results to determine if model was representative of the rea1 structure. Results showed good

agreemenL Then using the validated madel, the effeet of the nD cage in bending and on the stability

of the spine was investigated. Also, the model was modified into two different scoliotie configurations

in arder ta study the etreet of no cage on scoliosis.

Once again, only the results of the bending and stability anaIysis are mentioned due to their

reJevance ta the cunent study. Fust, the no cage was found to increase the resistance of the spine

to ail modes of bending in the thorade region, as shawn in Fig. 3.5. As can be expected, remaval of

the sternum rendered the nb cage totally ineffective. Second, the experiments of Lucas and Bresler

were again simulated, this lime with the rib cage intact in arder ta demonstrate the effect of rib cage.

For ail three previously mentioned Tl consuaint conditions, the no cage was round ta increase the

buckling Joad of ligamentous spine 3 to 4 limes l (see Table 3.1). These results alaog with thase of

the ligamentaus spine, discussed previously, are shawn in greater detail in Chapter 6, wbere they are

use<! for comparisan with the results from the present study.

_~232

Flexion

Extension

Lateral Bendlng

Axial Rotation

o 50 100 150 200
Percentage, ..

250 300

_ Splne only

o Wlth rlb.,no .ternum

• Wlth rlb cage

Fig.3.5 Relative stiffening etrea of the no cage on the spine and the importance of no cage
continuity, i.e. sternum (4,130].

tne crilicalloads round in the Itudy are Itm weU below the in·viYo buck1in,loads. This is due ta the other slabilizing
campements wbich are DOl acmunted Cor in the mode!. e.1. muscles [4].
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Haderspeck and Schultz [49] investigated the effect of various trunk muscle forces and

suppon mechanisms, responsible for righting of the trunk, on the lateral curve of model spines using

computer simulation. The study was condueted with the purpose ofdetermining possible mechanisms

that could produce abnormal loads (unbalanc:ed moment) capable of lateral c:urve progression.

Ta this end, models of the spine, 5 with struetura1ly normal configurations and 13 witb

scoliotic configurations, were used in the study [49]. The models were similar to those construeted

by Belytschko [10], with the addition of trunk muscles. These muscles, capable of producing significant

forces, were modeled using 68 individual model muscle slips. The muscles were assumed ta behave

linearly, and conttaet at a rather high intensity of40 Nfcm2• Contraction was simulated by application

of equal and opposite forces along muscle llne ofaction. Actions of muscle groups (21 unilateral and

12 bilateral), i.e. erector spinae, were simulated by simultaneous contraction of combinations of

individual muscle slips.

ResuUs of the above analyses, as discussed in the previous section. indicated that if reason

Cor the occurrence of abnormal forces is a defect in the neuromuscular system. then the malfunction

is most likely ta occur in the neural conuol, responsible Cor stimulating and sensing muscle actions

to relain balance, man in aetual muscle capabilities. This is evident by results showîng that possible

malfunctions intrinsic ta muscles (excessive bilateral symmeUYt unilateral weakness, and side-to-side

muscle action asyrnmetry). under reasonable set of circumstances, cannat praduce curves typical of

scoliosis [49].



Cbapter 4

Theoretical Considerations

This chapter provides an introduction to the general stability (ar buckling) theary ofcolumns

[9,14,21,123] in the context ofcurved spine-like, albeit bomogeneous. columns. The tapies dealt with

are: bifurcation buckling laads of Euler column. growth of the sagittal-plane curve of spine-like

columns under increasing axial load, torsional-Oexural stability of such columns. and effeet of

curvature on buckling loads.

In the analysis dealing with the torsional-Oexural buckling, an approximate analytical solution

is obtaincd far the tarsianal-Oexural bifurcation buckling of a spine-like simply-supported column.

This solution is then used ta check the capabillty of the MSC/NASTRAN finite element program ta

solve torsional-Oexural buckling problems numerically.

4.1 Flexural Buckling of Columns (21)

Like aIl slender structures. spinal columns can be expected ta be susceptible ta unstable

(buckling) behaviour. To understand the theory involved in the stability of the curved, spine-like

column, it is impartant ta begin with the theory of the simple Euler column.

4.1.1 -Euler Column-

The Euler column. shown in Fig. 4.1(a), is a very idea1ized case. It may be used to

demonstrate, in simple terms, the bebaviour ofa real column in axial compression. The Euler column

is a straight, homogeneous (one material) column with constant cross-sectioD. Ils ends are simply­

supported (i.e. hinged) and il is laaded axially along its cenuoidalline along the x-axis. It is assumed

that the column material is linear elastic and the defonnatioDS are 5mall. The column is restricted

to defonn in the x-y plane. Effect of gravity is neglected.

The critical compressive axial load, Pt of the column is defined as the load for which

equilibrium in the slightly bent configuration, as shown in Fig. 4.1(b), is possible (21). Ta find this

load. let v = vez) he the equilibrium deftection of the bent column axis in the ydirection. According

ta Bernoulli-Euler theory, the internai resisting moment at any section a distance.r from the origin,

Fig. 4.1(c), is defined as
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Fig. 4.1 Euler Column, (a) straight pre.buckllng configuration, (b) buckled
configuration, (c) Cree-body diagram (buckled column).

M ;; -El v": :t
[4.1]

where v" =tfv/~ and El, is the Dexural or bending stiffness of the column in the x·y plane.1 The

moment equilibrium of the Cree·body column of length x requires that Mz =Pv which, by substitution

of Eq. (4.1), leads to

El v" + Pv :: 0
~

[4.2]

Introducing
[4.3]

the differential equation of equilibrium may be written as

The general solution of this equation is

[4.4]

v :: A siDh + B cash [4.5]

lActually, the correct expression is M, - -EI/R wbcn: lIR - CWV8tUn: - v·/(l+(V IYYI2. Howevcr. for small

dc(ormation. (vIf « l and (hus lIR = v· is a pennissible approximation.
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where A and B are arbitrary CODStants to he evaluated by imposing the boundary conditions of the

ends being restrained against displacements:

v(O) :1 O. v(l):I 0
[4.6]

The first condition renders B=O; the second one demands that A sin Id =0, which can be

satisfied by taking either A=O (no buckling), or by takîngA,.o (buckling) but requiring

sinkl • 0 - il:l IIK
[4.7]

where ft = 1,2,3,.•. is an integer. Recalling that ~ = PIEI~ , Eq. (4.3), the above condition is

expressible as
[4.8]

Hence, at the axialloads given by Eq. (4.8), the column can assume defleeted equilibrium shapes,

Ji • Il1r.rV:l SUl--
1

[4.9]

in which A, the amplitude of the sinusoïdal buckling mode, is arbitrary, i.e. non-unique. This non­

uniqueness is termed as bifurcation of equïlibrium, and the loads at which this is possible are called

bifurcation loads. The critical buckling load is the smallest load at which bifurcation of equilibrium

is possible. Here it is obtained by setting n=l in Eq. (4.8). Thus the Cormula for detennining the

critical load of a simply-supponed Euler column is

[4.10]

which shows that the critical load is intluenced by the length of column and its bending stiffness.

Physically, al the critical load, the column tan be in a defieeted equilibrium shape oC arbitrary

(although small) amplitude (-f<Â<+€) without the presence of any laIeraI force. This behaviour

ofbending under zero laierai force is termed uDStable, and hence the criticalload is the smallesl load

al which this 1055 of stability OCCUlS.

The Euler formula MaY he generalized, for determining the criticalloads for columns with

different end-conditions, provided the length of the equivalent Euler column, .>., is used. The

expression for the generalized formula is



Tt1ElP =__1

a l~

[4.11]

wherein the equivalent Iength, À, is detennined by the end-oonstraints on the column. These lengths

determined by analyses simiIar to the one just described, are given in Fig. 4.2. From this figure it can

he seen that, as expected, the greater is the degree of constraints, the smaller is the effective length t

and thus the greater is the criticalload. Thus Eq. (4.11) incorporates the intluence of an additional

parameter, the boundary conditions, on the criticalload or stability of columns.

Hinged Fixed Hinged Filed
hinged filed fixed ftee

t + •
Effective IVJ, T]- 1 -1

-l
length !: t 1 11 1 ~;: 2' 1 >"=.21>.. 1: l 1 1 +! 1 _

1 >"==071 1t
-....., ~

t --+

Fig. 4.2 Effective lengths for various boundary conditions. After Chajes [211.

4.1.1 Behaviour or InitiaUy CUn'ed Columns in Compression

In the case of the spine, the column is Dot straight The curve present in the sagittal plane

suggests the study ofcurved columns. For the moment, the out.of-plane movement is restrainedt and

only the sagittal plane behaviour is considered. Since there is alreadya curve present, the question

af in-plane bifurcation tram a straight configuration does not arise. Rather, there will he a growtht

with increasing axiallaad, of the curve already presenL For simplicity in solution, the column is given

the same end conditions and assumptions as the simply-supported Euler column. The only difference

is that the cenuoidal axis is curved. For the purpose of obtaining a useful solution and detennining

the effect of initial curvature on the spine, the shape of the sagittal curve of the spine-like column t

shawn in Fig 4.3, is approximated by

. 21tx
va =Do sm-­

1

where ao is the amplitude of the initial curve i.e. corresponding to P=O.
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Fig.4.3 [nitially curved column under axialload.

Following the procedure outlined for the Euler column, the moment equilibrium ofa ponion

of the column under an axial load Pt Fig. 4.3(c), yields the following differential equation

[4.13]

where v is the additional deflection or the growth of the column curve in the sagittal (x-y) plane.

Using the notation defined in Eq. (4.3), Eq. (4.13) can he rewriuen as

[4.14]

The general solution of the nonhomogeneous differential equation, Eq. (4.14), consislS of a

complementary solution, Vc , plus a particular solution, vp • The complementary solution is the

solution of the homogeneous equation, already obtained as Eq. (4.5). A particular solution for the

"0 given by Eq. (4.12), can be easily round as

lZo • 2K%
V a_~-SUl--

, _4~_2 _ 1 1

t212

(4.15]

Hencc, the general solution, v = Vc + v, , is
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• 11t%SID--
1 [4.16]

As in the Euler column case, boundary conditions determine the arbitrary constants, A and

B. The end condition \1(0) =0 requires B=O, and v(l) = 0 requires A sin Id =O. Again, ifk=n1t'll.

i.e. ifP = rrZ-rrJEIJP,A can be taken as non-zero and arbitrary. However ifP" nJ~EIJP thenA must

be zero. The lowest loads at which A can be arbitrary, signalling unstable behaviour, is

[4.17]

Assuming P < p~ , hence takingA=O. and using the previously defined notation for k and relationship

for PZ' the growth of the column curve may be expressed as the following function of P

[4.181

The total column deflection from the vertical, v, • is therefore

[4.191

As P is increased the growth or displacement in the sagittal plane, v, , and its rate, dvIda, both

increase in a nonlinear manner.

4.2 Torsional-Flexural Bifurcation Buckling or a Curved Column Under Axial Load

If the spine-like column of Section 4.1.2 with perfect symmetry about the sagittal plane is

aUowed the freedom to displaœ out-of-plane (i.e. in the lateraI or x-z plane), then once again the

question of bifurcation of equilibrium arises. Al suffidently low axialloads, there is only the growth

of the sagittal c:urve. However, al some bigher load P, it MaY be possible for the column to bifurcate

inlo an out-of.plane equilibrium shape. Such bifurcation will in general entaîl both twisting and

lateral bending of the column in addition to the pre-budding sagittal plane bending. This type of

buckling is of common concem in the analysis and design of columns with thin-walled open-sections

which are deemed lO have low torsional stiffness.
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The differential equations of equihërium governing torsional-Oexural buckling are quite

cumbersome to derive from the tirst prindples. in the manner of the previous sections. Here. il is

more convenient to opt for the approach based on energy considerations [14].

It May be noted tirst of all that for bifurcation analysis. it is necessary to assume perfect

symmetry about the sagittal plane. This renders the sagittal plane as one principal plane of bending.

Secondly, for simplicity, it is assumed that the shear center of the column section coincides with the

centroid of the cross-section. Thirdly, although the column is curved in the sagittal plane, integration

or differentiation is performed with respect to.r, the axial coordinate, rather than with respect to s,

the length coordinate. In other words, the curvature effect on length is neglected and the analysis is

restricted to cases where (dV/dt)l « 1, so that ils CIl dx along the œntroidalline.

The strain energy of deformation due ta an out-of-plane buckling displacement of the

centroidal axis w =w(x), and axial rotation ~ = f3(x) tan be expressed as [14]

u =t ~' [El(w''f + GJ(~'f + EC.,(p'12
] dz [4.20)

where El, = lateral (x-z plane) bending stiffness. GI =torsional stiffness, Cw =warping constant of

the cross-section, and primes denote differentiation with respect to x. For circular cross-sections

C.=O. and Cor Many other types of sections, the contn"bution of this lerm is small [14}. Accordingly,

in the further analysis. it will be assumed that Cw=O. w and {j are positive in the positive directions

oC the coordinate axes.

The loss in the potential cnergy of the axial load due ta lateral buckling can be expressed as

y la - r' f (J' E d.4 lbJo A ,g .II
[4.21]

whereA is the crass-sectional area, a." = (PIA) • (M/11) is the pre-buck1ing axial compressive stress,

and Eg = {(w' +{j' y)212} + {({j' x)212} is the axial shonening strain due to buckling.1 The

expressions for u." and (.lit wben substituted in Eq. (4.21), give

y. - [ ! l' p (w1 tU + ! r' Pl. (151 d% - ri M w'p' tb 1 [4.22)
:1 0 :1 Jo Â Jo l

where 1. is the cenuoidal polar moment of inertia of the cross-section. The tirst lerm in the square

1~. is oblaincd by CDnsidcriDc me pomeuy oC dcCormatlon due ta bucJdinl wberc~ y arc coordiutes oC a liber with
respect to the cenllDïd.
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brackets is the work of axial force due [0 axial displacement of enefs, the second lerm is the work of

axial stresses when the column twists, and the third lerm is the work of the pre-buckling bending

moment in the sagittal plane. In the present case M% arises due to ecœntricity of P with respect to

the centroid of column, and thereCore M~ =Pv,. The moment Mz is positive if it produces tension

in the fibres with positive y coordinate.

The total potential energy due ta torsianal-Oexural buckling May therefore be expressed as

D =U+ V =! ri [El (w'1 - p (w1 ... OJ (p'f - PI. (p'f ... 2M w'p,] dx [4.23]
2 Jo A l

Now. if the buckling configuration is to be an equilibrium one, the first.order variation oC II

must vanish (i.e. an =0) Cor arbitrary variation of w and ~ about the equilibrium configuration.

Applying the standard calculus oC variation procedure, the above condition can be shawn to be

equivalent to the following differential equations

(El., W")" + (Pw')' - (Mzp')' =0 [4.24]

[4.25]

and a choice ofallowable natura! and geometrical boundary conditions, which iC needed can be derived

by following the standard procedure.

With reCerence 10 the idealized spine-like column oC the previous section, the variation of the

bending moment aIang the length of the column due ta the eccentriclty of load P, is Mz =P V" which

by vinue of the eccentricity defined in Eq. {4.19} is expressible as

where

M =11.
0

sin 2x%
l 1

[4.26]

[4.27]

Hence, the torsionaI-fiexural buckling energy expression and the differential equatioDS ofequilibrium

for the spine-like column of constant sectianal propenies and axial load P cao be weitten as
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where

n • U + y • l r' [El (w''r - p(z./~ + GJ(P')2 + 2Mo siIl
2u W'p,] dz2 Jo ., 1

( 2U)'EJ,wlV + Pw" - Jlo p' .-,- • 0

- Plo
GJ a GJ -­

A

[4.28]

[4.29]

[4.30]

[4.31]

4.1.1 Closed Fona Solution ror a Simple Case

A solution of the abave differential equatians subjected to appropriate baundary conditions

will yield the axial laad P al whicb bifurcation of equilibrium of the column form the curved

configuration in the sagittal plane to a curved tbree-dimensional oonfiguration is possible. In general,

the exact solution of these equations will be difficult or impossible ta obtain because of (a) the

presence of the variable coefficients, and (b) the nature of the boundary conditions. The purpose here

is not ta attempl an analysis for a realistic case, but ramer to obtain a solution for an idealized simple

case which can men he used to check the capabillty of the 6nite element program in solving such

problems numericaUy. With this objective in mind, the boundary conditions chosen for a verification

analysis are as foUows:

p (0) • P (l) • 0
w (0) • W (1) • 0
",,1/(0) =wl/(I} =0

[4.32]

which correspond to fixity against axial roaatioll, fixity against lateral displacement, and absence of

ratational restraints in the lateral plane, al the lWO enels.

However, evenwith these simplified boundaryconditions, the exactsolution of the differential

equations is not a straight farward matter. Henœ, a funber approximation is made. Instead of

solving the differential equations, the PQtential energy expression is made stationary with resPeCt to

a suitably chosen mode shape of the buckled columa. 'Ibis is the cIassical Rayleigh-Ritz method of

approximate analysis of buckling problems [14,123].

Let the mode shape for the laleral displacement of the spine-Uke column he chosen as

-57-



[4.33]

where C, is an arbitrary parameter. This mode shape is consistent with the chosen boundary

conditions on w, and may be considered as a -good- approximation of the unknown aetual mode

shape. Now, instead of arbitrarily choosing the mode shape for (J, il is detennined by solving Eq.

(4.30) by substituting the above choice for w in that equation. The solution is

[4.34)

The (wo integration constants ~ and C; are determined from the boundary conditions on ~t Eq.

(4.32), and the solution is expressible as

MoCI [ 'l% 3X% 8 % ]P • -- 3 cos- + cos- + - - 46Gï 1 1 1
[4.35]

Using Eq. (4.33) and Eq. (4.35) for w and fJ in the expression for the potential energy, Eq. (4.28), and

performing the integration yields:

n la U + y ~ C~Tr2 [ El.,"': _ p _ M; ( ! _ 32 )]
4l 12 Gl 2 9~:

[4.36]

The potential energy here is a function of the single parameter C,. The condition 6II ::: 0 is

equivalent to dnldC, ::: 0 for arbitrary C" which requires that the lerm in the square bracket of Eq.

(4.36) must vanish. The bifurcation buckling load (consistent with the assumed mode shape) is

therefore given by

[4.37]

RecaIling the definitions of GJ, Mo. and Pz , Eqs. (4.31), (4.27), and (4.17) respectively, and

introdudng

[4.38]
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• the abave equatian can be expressed as

where it May be recaUed that P<Pz has been assumed.

agA
= 0.1397­

10

[4.39]

•

This equatian gives a critical torsional..Oexural buckling load which according to Rayleigh's

principle [14] is an upper bound on the true aiticalload associated with the exact mode shape. It

can be expected that an assumed mode shape which is close to the trUe mode shape will yield an

upper hound which is close to the true buckling load.

4.2.2 Verification or NASTRAN analysis

Now, in arder to check the capability of the NASTRAN finite element program, and

conversely the goodness af the above analysis, the büurcatian buckling analysis was performed on a

computer model of the spîne-like curved column of constant cross-section and homogeneous

prapenies. The model consisted oC approximately 23 straight beam elements ta represent the sine­

curved column. The amplitude af the CUNe was taken as aJL =0.0359, where L is the curved length

af the column. Using the discrete property values of the ligamentous spine as faund in the literature

and as discussed in Chapter S, effective homogeneous bending and torsional properties were calculated

according ta the method used by Lucas and Bresler [73], and assigned ta the elements of this column

madel. The bifurcation buekling laad from NASTRAN was round ta be 47.44 uoits of force whiJe

that abtained from the abave analysis was 48.87 uoits. This means that lhe analytical result was 3.0%

higher than the computer result. The mode shapes for w and p were alsa found to be in good

agreement with their chosen funetions Eq. (4.33) and (4.35) respeetively. Hence il is coneluded that

the NASTRAN program is capable of handling torsianal-fiexural buckling prablems correetly and

conversely, the funetions ehosen for w and f3 are acceptable, and thus the abave approximate analysis

is a vaUd one.

4.2.3 ElTect or the CUn'e Amplitude

Sînce a strong hypothesis as 10 the cause of AiS relates to the sagittal plane curvature of the

spine, the charaeteristic equation resulting from the above analysis is now used to investigate the effect

of the magnitude oC the curve amplitude on the buckling load. A higher or lower buck1ing load would

signify higher or lower stability.
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• If L is the curved length of the spine·like column, then the dependence of the axiallength

1on the curve amplitude 00 May be expressed approximately by

[4.40)

provided ( 11'00 1L) < < 1. Therefore the buckling laad P, corresponding ta pure Iaterai buckling of

straight column of length l, Eq. {4.38} May he expressed as

1t
2
El] [ ( 1t Do )2] [( 1t aQ )1

P, = 7 1 + T = P10 1 + T [4.41]

where P10 = ~EI/L2 is the lateral buckling load of the column when ao =O. Similarly, Pz' Eq. (4.17)

May be expressed as

2 [ ( ]2] [( )2]1tE~ 1tDo 1t~
P~ = 7 1 + T = P~ 1 + T [4.42]

where P:Il =.,rEljL~. As ao decreases, the column becomes straighter and Pr and Pz decrease. The

smallest values of Pr and Pz are of course P10 and P:IJ respectively.

With these values ofPr and pz. the characteristic equation determining the torsional-tlexural

buckling load Cln be written as

l -
1 Ji [4.43]

0.1397~
10

•

Since the right side of the above equation is positive, il follows that the smallest buckling load

Pcr is (ess than both P~ or Pr . If P, is much smaller than PjIG (i.e. a column weaker in torsion), then

it can be inferred that Pcr will only be slightly smaller than P, ' and virtually unaffected by the

magnitude of aJL. On the other hand, if PlO is much smaller than PIJ (Le. a column weaker in lateral

bending), then Pcr will be slightly smaller than Pr =Pya (1+~al/L 2) with aJL playing a significant

role. However. Ü PI c:s P10 • then there is a stronger interaction between torsional and lateral bending

effects and Pcr is significantly different from PI or P,. Figure 4.4 illustrates these results by showing

variation of Pc/Pyi) as a funetion of aiL (or variaus PIPy(J ~ 1 ratias for a spine-like homogeneous

column with El/Ely = 2 and GJ/Ely =1.6.
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Fig. 4.4 Ratio ofPJP10 as a funetion a,jL for a simply-supponed spine-Iike column with fixed length,
L, and initial sagittal curve,y=aosin 2u/l. L = fixed curved length of column, Qo = variable
amplitude of curve, 1=variable axiallength oC the column, Pcr =aetual critical laad, P~ =
GJA/lo=pure torsional buckling load, PJO =-riE/iLZ =Oexural buclding load of the straight
column in the lateral plane (i.e. with 0,=0).
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• The qualitative significance of the above analysis in the context of the lordosis hypothesis is

that a reduction in the tharaac kyphasis of a real spine (with PJPyO > > 1) will reduce its buckling

load (thus making it less stable) and that the amaunt of reduction will he greater Cor spines with

greater P,JPJO ratios.1

4.3 Ef1'ect of the Curvature and its Direction on Torsional-Flexural Buclding

In the above analyses, no account was taken of the curvature direction. 5uth an analysis

would bave required using the curved beam formulas and would have been complicated. However.

the effect of curvature direction with regard ta buckling may be understood by examining a simple

case as conows.

Timoshenko [123] has analyzed the torsional-fiexurat buclding of a circular curved column

of thin rectangular cross-section of radius of curvature Rand curved length L. subjected to in-plane

moment Ml or M2 as shawn in Fig. 4.5. Again, El, represents the lateral (out-of-plane) Daura!

bending stiffness, and G1 the torsional stiffness. The arc length is approximated by L =Ra for small

a i.e. large R. The critical moment at which buckling occurs [123] is then

El ... GI 1r
M = z + - JEl GI

CTI 2R L 'J
[4.44]

if the applied moment is in the same direction as the curvature (causing it to increase), Fig. 4.5(a),

and is
El + GJ

M = - 'J + ~ JEl GJ
crt 2R L '1

[4.45]

•

when it is applied in the opposite direction, Fig. 4.5(b). Thus, the stability is reduced when the

applied moment acts to decrease the cUJVature. The reduetion May be understood by noting that in

the latter case, it is the longer fibres of the curved column which are subjeet to compression. 513tOO

another way, in the former case, an increase in the curvature UR) increases stability ct Ma')' while

in the latter, an increase in the curvature (~ R) tends lo decrease it (. Med).

Wilh reference ta the real spine, the typical gravity loading is in the sense of Corward flexion.

Thus, according to the above formulas, lhe spine would be become less stable (i.e. more prone lO

buckling) as the thoradc kyphosis is reduced. This latter observation Cavours the lordosis hypothesis

of AIS since il entails a reduetion in the kyphotic curvature in the thoracic region of the spine.

tAa:ordiDg to effective bomogeneous prcpenics oC the spme. caJc:ulated as dcscribed in Section 4.2.2. P~Je • 441.
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Fig. 4.5 Lateral buclding of a circular curved column subjected ta pure moments.

4.4 Computer Simulation of Structural Behaviour of the Spine

One of the purposes of the Coregoing analysis oCsimplified theoretical models was to present

sorne basic concepts related ta behaviour of slender structures under compressive loading. The real

spine is too complex a structure ta resemble the homogeneous theoretical column models. Therefore,

no reUable quantitative information can be derived from the above type of analysis, although

qualitativelYt insight into the stability behaviour is gained from the expUdt relations derived among

the parameters oC the models. A computer-aided numerical analysis of a suitable theoretical model

is the only avenue available for a non-experimental quantitative investigation of the structural

behaviour of the buman spine.

The tirst requirement for any reUable biomechanical analysis ofspine behaviour is that it must

be based on a realistic modelling of the actual geometry and structural properties of the spine.

However for a manageable model, a balanœ must be struck (depending on the purpose at band)

between which detaiIs ta account for and which ta ignore. In the present woele, as will be

subsequently seen, the spine with n1> cage is modelled as a three-dirnensional structure composed

primarily of 5maU straight beam elements of appropriate stiffness properties.

Structural stability analyses on me constructed models are performed using the

MSCINASTRAN fmite element program. In the first instance, the model assumes the spine together

with the loading ta be perfectIy symmetrica1 about the sagittal plane. The question is then asked at

what load magnitude the spine will biturcate into an out-of.plane (torsional-Dexural) buckling mode.

The answer 10 tbis question requires the program to perform the linear eigenvalue analysis, simiIar

in principle to that done analytically in the preceding section for the homogeneous curved column.



The above bifurcation analysis indicates the laad neat which a realistic (slightly unsymmetric)

spine would begin ta experience Iateral instabillty, and the made shape in which initial buckling

displacements and ratations would occur. A1thaugh helpful in establishing this load and the associate

mode shape, mis analysis provides no information on the aetual amaunts of displacements and

rotations which the spine would experience as a funetion of the load.

To determine the buckling displacement and rotation magnitudes, one must perform the sa­

called post-buclding analysis. This is a geometric nonlinear analysis, and the simplest way to perfarm

it is via an imperfection growth analysis. The spine madel is assumed ta be imperfect in that there

is present, ab initio, a small geometrical asymmetry with respect to the sagittal plane, and is loaded

in smallioad increments, taking into account the accumulated geometry changes at every incremenL

This type of analysis is similar in principle to that conducted for the imperfect (sine-shape) Euler

column, Section 4.1.2. For smallioads the effect of imperfection is small, meaning that the out-of­

plane deformations remain small (and hence, in a sense, stable). However, as the laad inaeases, the

eerect begins ta graw in an acœlerated nonlinear manner. Buckling is indicated when substantial (out­

of-plane) geometry changes have oceurred.

Nonlinear growth analyses performed on the models of this thesis are descn"bed in Chapters

5 and 6.



Cbapter 5

Structural ModelUng and Input Data

5.1 Description oC Analyses

Stability analyses are perfonned on three..<fimensional discrete parameter models of the

human thoracolumbar spine and no cage ta determine if the hypothesis of the spinal lordosis as an

initiating factor of the etiology of AIS is a vaUd one. The finite element analysis program

MSCINASTRAN (version 65C) is used to carry out the analyses. NASTRAN is run on the IBMJ9OOQ­

230 mainframe computer al MCOm University, using the MVSIXA operating system. Basically, two

types of analyses are considered necessary for this study: linear buckling analyses and geometric

nonlinear analyses.

Unear buckling analyses are performed ta determine the bifurcation1 (torsional·nexural)

buckling laads of the symmetric spinal models under (a) compressive loading distnouted along the

column length, proportionately with the body weight distnbution, and (h) a loading proportional ta

the resultant body weight acting at the center of gravity effectively lumped al the top of the spine (i.e.

foree and moment). Analyses are condueted on a model representing the typical normal spine, and

also on one which has a slightly altered sagittal configuration by vinue of the introduction of a

thoracic lordosis apical at 1'8. Bifurcation loads and corresponding mode shapes are compared in the

hope of shedding some light on the lordosis hypothesis. This pan of the investigation determines

whether the lordotic spine madel has a lower bifurcation load than the normal spine, i.e. less stable,

as well as a mode shape similar ta a scoliotic deformed configuration (convex·sided rotation),z to

ultimately determine whethera lordotic configuration is more susœpb"ble ta scoliosis. AIthough mode

shape defonuations are indeterminate as ta tbeir amounlS, tbey indicate the manner in which the

spine deforms near the buckling load.

The second type of analyses, the geometric nonlinear analyses. comprise the heart of the

sludy. They take mto a<munt large deformations3, a category under which the scoliosis deformity

ZRecaU mal the rocatioll is dac:ribed in tenDI of the IDlcrior penion ofvenebrac. Conva-sided rotation implics anterior
portion ofvenebrae rocate towardllbe coJM:lily of the laierai CUI\'C.

'Dy accoUDlinl ollaqe dcCormalioal il IDeIJIl dlc lCCWIluJatcd dfCCII orthe dlanlfnl acome:by oC lbe modd on ics currenl
bebaviour.



faUs. Here, they are used to simulate a possible instability of the spine, resuIting in large

deformations, by determining the growth of its initial geometry under increasing loading. Two distinct

nonlinear growth analyses are carried out to test the lordosis hypothesis, which to reiterate, was stated

by Dickson et al. [34] as a lordosis in combinalion with an asymmetry in another plane.

In the filst growth analysis, the initial geomeuy is that of a spine which bas the frontal and

horizontal plane asymmetries (Le. imperfections) of a normal spine, but which aIso has a lordosis in

the thoracie regian, in accordance with the hypotbesis. Loading propanional ta the resultant body

weight acting at the center of gravity is appUed as an equivalent force and moment al the top venebra

Tl. As the load is increased incrementally, the spine changes its geomeuy, and it May be expeeted

that as the total load nears the bifurcation buckling load of the Linear analysis. the lateral

imperfections would begin to grow significantly. The growth of the deformations achieved under the

"full-load" are compared with a scoUotic configuration in order to test the hypothesis.

In the second growth analysis, the initial geomeuy is purely that of a normal spine, with the

normal frontal and horizontal plane asymmetries, and the normal thorade kyphosis and lumbar

lordosis present However, the laading consists of simulating the lordalie growth of the thoradc

venebra in addition to the body weight lumped at TI. The asymmeuical growth is simulated by

thermalloading of the venebra, by heating the elements positioned anterior to the tharadc vertebrae

and by simultaneously cooUng those positianed posterior ta these venebrae. The loading is increased

uDlil length changes in these elements correspond to those found in the thoradc venebrae of a

scoliotic patient, and gravity load equals a realistie value that restriets spine from elangation. The

configuration of the graduaUy defonned spine under sueh loading is compared with that of a scoliatic

spine.

5.2 Description of the Constructed Model

Discrete beam clements are used to construet the three-dimensianal structural analysis model

of the human tboracolumbar spine and DO cage. A large ponion of lime of this study was spent in

rnodelling the geometry and structural propenies. The aim is to OJostruet a model representative of

the normal spine and DO cage with panicular attention focused on the sagittal curvature of the spine.

With an alteration of this curvature being the basis of the hypothesis investigated in the present study,

an accurate representation of a normal curvature is very importanL Appendix C gives a fun

description of the Madel

The complete thorade: and lumbar spine is modeled (from TI to the top of the sacrum,



inclusive). The spinal coluDlD, as mentioned earlier, is Dot uniform, and thus is modeUed with 17 rigid

elements representingvertebrae T1-LS, and 17 deformable elements representing intervenebral joints

(composed of intervertebral disa, connecting ligaments, and posterior elements, e.g. racet joints)

between Tl and sacrum.

The 10 superior pairs of nos (nos 1-10) are inc1uded in the model. The last 2 pairs, the

fioating nos, are not modeled sincc they bave virtuaUy no structural relevance. Each no is

represented by 4 rigid elements for a total of 80 elements. The five nodes segmenting the rib, from

the posterior ta the anterior end, denote the head, tubercle, angle, midaxillary line junction, and

costochondral joint of the no [103,120). At the costochondral joint, the no attaches to costal canilage

(CC) represented by 1 or more elastic elements (36 elements in total) which attaches ta the sternum

represented by 18 rigid elements. Costovertebral joints (CV) and costotransverse joints (Cl), which

anlch the pasterior end of the nès to the venebral column, are included in the mode1. Defarmable

elements are used ta represent the constraints imposed by the joints as weU as the resistance ta

defarmatian provided by the connecting ligaments [4]. For each of the lypical nos, 2-9, 2 CV

elements are used to model the connections betweeo the head of the nb and the venebra of its own

oumber and the one above iL For nès 1 and 10, ooly 1 CV element is used to model the

costovertebral joint since they are ooly connected to their corresponding venebra. In addition, for

each nb, 1 cr element is used ta represent the joint between its tubercle and the transverse process

of the vertebra of the same number. There are 20 CT elements and 36 CVelements total. Ta

provide points of attachment for the joints on the vertebrae, rigid elements stemming from the

vertebral elements are modelled. Twenty rigid elements are used to model the transverse processes

on venebrae T1-TIO for articulation with the crelements and 36 rigid elements are used to represent

racets on posterior, lateraI aspect ofvenebral bodies TI-TIO for articulation with the CV elements.

Midaxillary nodes on the n"bs provide attachment points for the 18 le elements representing the

intercostal tissue which ruos in between adjacent nos.

AlI the clements in the model are represented with beam elements except the sternum, which

is composed of 12 rigid quadriJateral plate clements along with 6 beam elements (included for

programming compauoility between adjacent coplanar plate elements). As beam clements. they

exlubit axial, shear, bending, and torsional stiffnesses with the exception of the le and CV elements,

which possess only axial stiffness.

The complete model is composed of224 nodes. 288 beam elements. and 12 quadrilateral plate

elements. An additional 26 beam elements and 22 nodes are required Cor applying laads al the

centers ofgravity ofvarious body segments and sUces about the inferior central node of the vertebrae



(sec Section S.5). These loading elements are aIso useful in showing visually (by their displacement)

the direc:tions of axial rotation of venebrae.

Doring grapbical alnstrumon of the spinal column's sagittal curvature, il is helpful to use

mean dimensions of the anterior, posterior, and central heights as well as the sagittal diameters of the

vertebral bodies and disa. This results in a model representing eam vertebra and each intervertebral

joint with 3 elements; reOectïng the anterior surface, the centerline, and the posterior surface of cath

vertebral body and eam dise in the midsagittal plane. Rigid elements are~ to conneet the 3

elements uansverselyand provide them witb continuity. Anatomica1ly, these rigid clements represent

the endplates found at the interface between the vertebra and intervertebral dise. This model wim

the 3-element representation, referred ta as the 3-element model, represents the spinal column with

172 beam elements and an additiona170 nodes in comparison ta the l-element model, which uses 34

beam elements to represent the spine with central elements ooly.

Most of the analyses in this study are performed 00 the l-element modeL However, in

addition to aiding in the construction of the sagittal curvature of the spine, the 3-element model is

neœssary to create the Jordotic model from the normal one by increasing and decreasing the lengtbs

on the anterior and posterior sides of the vertebrae, T4-TI2, respectively. Likewise, the position of

the anterior and posterior elements of venebrae T4-TI2 and the conesponding endplates are used

in the nonlinear analysis for simulating Jordotie growth of the spine.

Since there are 3-elements representing cach vertebra and intervenebral joint, properties are

assigned to the 3-eJements such mat togetber they have the equivalent stiffness of the element which

they model Equivalent sedional propenies for the anterior and posterior elements and the central

clements are calaalated acœrding 10 the formulas in Appendix B. 'Ibus, theoretically, the 3-element

model and the l-element model are equivalent structures.

Although the geomeuy of the normal spine is almost symmetrical about the sagittal plane,

it is neœssary ta model the complete three-dimensional structure for the buclding and geometric

nonlinear analyses. A righl-banded rectangular œordinate system. shown in Fig. 5.1, is chosen 10

globaUydefine the structure 5uch !bat the x-z plane deflnes the midsagittal plane, the x-y plane defines

the transVerse or horiwntal plane, and the y·z plane defines the frontal plane.

5.3 RepreseDtatîoD of Spine aDd Rib Cale Geometly

Construe:tiDg a model to represent a typic:al1lOmltll human thoracolumbar spine and no cage

is Dot an easy tast. When dealing with the human body, mode1liDg beaJmes very complex. Each



structure is unique and there is tremendous variance of dimensions and properties Crom person to

person. Anatomical studies related to the human spine reveal a large seaner of results making

defmition of normal very vague. Hence, normal charaeteristics can best he expressed using a range

oC values.

x

z

(a) ~)

Fig. 5.1 Global coordinate system (a) left lateral view. and
(b) anterior view. After Roberts and Chen [103].

The sagittal curvature, the a'Ïtical parameter in the present investigation, can be descnbed

by the degree of kypbosîs and lordosis and more accurately by the segmental sagittal angulations of

the vertebrae1 [12] and the redprocal angulations% [16]. segmental sagittal angulatioDS and

reciprocal angulations are important measurements because they reflect the interrnediate changes in

the curve. 'IWo vastly different curves may have the same degree of kyphosis and lordosis [130]. The

Cobb angle· measurement determines the angle between the endpoints or inflection points of the

curve and does not determine the changes in the curve itself.

lsqmcncaJ IIIÎlcaJ anplatioDi an: acta mcuured belvt'eeD Unes dnwD paraUd 10 the poItcrior aspect oC the vertebral
bodies (12}.

2Rec:iprocal angulatioDS are ulla measured between Un~ dI2WIl puaUd la the endplales. The angulation betwc:en t'NO

venc:brae is measured bclWCal the inCcriorendplaie or the inCc:riorvenebra and the superior endplale or the supc:riorvenebra.
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Normal range of lumbar lordosis is accepted ta he 200-6QO when measuring from the inferior

face ofTIZ to the inferior face of L5 using the Cobb angle method. Normal tharade kyphosis is 200­

500 when measuring trom the top of 1'3 ta the bottom of TI2. It must be remembered that when

specifying the degree of curvalure. il is imponant ta inc1ude the level and method of measurement

to make valid comparisons [12].

Acomplete set ofglobal coordinates describing the geometry of the thoracolumbar spine and

rib cage was formulated and made available by Roberts and Chen [103]. However, no attempt was

made by these authors la represent the typïcal or normal geometry. The data were obtained from

direct measurement of a skeleton with a small frame. This faet makes the data seem advantageous;

not only are the data consistent since they are obtained !rom the same persan but they are based on

a small frame, which is representative of the targeted population of AIS, the adolescent female.

However, careful examination of the spinal column geomeuy reveals that the sagittal curvature is just

outside the accepted -normal- range desaibed above; a kyphosis of 52° is measured from the top of

1'3 to the bottom of TIl. AIso, the sagittal curvature does not reOcct the spine found in anatomy

books and other literature, which bave Many common cbaraeteristics among them. ln addition,

anterior and posterior dise and venebrae heights, needed ta alter the thoraée curvature, are not given.

It was felt that this spine model could not be acceptable for the purposes of this study and that a new

model must be CODStrueted.

5~.1 NonnalGeomeny

A new model, MOa coDSidered to be representative of the normal spinal column and no
cage is therefore developed by the present author. The spinal column is construeted graphically on

the basis of anatomical data available in literature [15,60,107,116,119,124] and anatomical drawings

[43,44,45,57].

Spinal ModeUJn,

The Mean measuremenlS f'rom an anthropometrie study by Lanier [64], on the presacral

venebrae of 101 American white adult males, ages 40-50 years, are used to describe venebrae

geome~. The Mean venebnl body anterior and posterior heights and superior and inferior sagittal

diameters are used to draw the spinal sagittal configuration. Central heights are taken to he the

average of the anterior and posterior hcights. Intervenebral joint central heights are obtained from

Schultz et al. [107) and the anterior heights, 10 some extent, trom Todd and Pyle (124). Venebral

height data presented by Todd and Pyle are used ta check Lanier's values and makesmall adjustments



when necessary. Comparison of the chosen data and the values used in the model are shawn in Table

5.1. Discrepandes are due to strict adherenœ to the guidelines mentioned tater.

Data on female venebral dimensions were found in one study [114), but il did not contain

a complete set of venebra. Other studics [3,16,113] aIso giving an incomplete set of data were

consulted and compared but were not used as guidelines. It was decided to use sources which

provided a complete set of average vertebral data in the interest of reducing errors due to

inconsistendes resulting from difl'erenl measuring techniques, and trom mixing data !rom difCerent

sample groups. Lanier's data (64), based OD a large sample group (N =101) and referenced by many

researchers, for example SChultz el aL (107), were lhereCore chosen as the source Cor venebral data.

The following criteria, found in the literature, appear ta geometrically define the normal

sagittal curvature of the spine. They were chosen to serve as guidellnes in the construction of the

spinal column model in the midsagittal plane:

(1) Mean segmental sagittal angulations of the normal thoracie and lumbar curves given
by Bernhardt and Bridwell [12]. As mentioned before, these angulations are
imponanl parameters in descnbing a curve accurately.

(2) LI as the intermediate vertebral body (IVB). i.e. the venebra whicb is most tilted
trom the horizontal. Stagnara et al. [116] found one..third of all the cases studied to
have LI as the IVB.

(3) Apex oC the kypbosis al T6-1ï dise. Apex of the lordosis al L3..{A dise [12].

(4) Posterior aspect of T6 as approximately vertical [43,44,45.57].

(5) LI as positioned directly venica1 over the sacrum [1S].

(6) Superior surface of the saaum al 410 to the horizontal [116]. (Also round 10 be the
averaged value from other sources [15,60]).

(7) AngulatioDS of panicu1ar dise œnterlines from the vertical [107] as:

TI-n 16.50 Oexed
TI2..Ll 15.00 extended
LS..sI 325° Oexed

(8) Normal kyphosis:

3()D..SOO with an average of 37" (top T4 .. bottom lVB) [116].
2()0..S(7 with an average of J60 (top 1'3 - bouom TI2) [12].

Normallordosis:

45°-700 with an average of 500 (bouom IVB -saaum) (116).
2f1'.fH (female) wim an average of 44° (bottom TI2 - bonom L5)
[12).

(9) Redprocal angulatioDS of thoracic and vertebral endplates according to Slagnara et
aL (116).

-71-



Table 5.1 Comparison of Anatomica1 Measurements of Venebrae and Dises with Model Values

Element: Anterior height central height Posterior height Avg. sage radius, b
Altemating (cm) (cm) (cm) (cm)
Venebra &

Dise UL MOE UL MOE LiL MOE UL MOE

Tl 1.62 1.63 1.68 1.68 1.73 1.73 0.854 0.853
Dise 0.44 0.44 0.45 0.45 0.46 0.866 0.887
1'2 1.77 1.79 1.79 1.79 1.80 1.80 0.934 0.937

0.31 0.32 0.31 0.31 0.31 0.987 0.994
TI 1.84 1.84 1.85 1.85 1.86 1.86 1.046 1.050

0.27 0.27 0.27 0.27 0.27 1.104 1.106
T4 1.86 v 1.87 1.90 1.91 1.94 v 1.94 1.151 1.154

0.21 0.21 0.22 0.22 0.24 1.197 1.200
T5 1.90 1.90 1.96 1.96 202 202 1.244 1.244

0.25 0.23 0.26 0.25 0.27 1.291 1.289
T6 1.90 1.90 1.99 1.99 208 209 1.333 1.330

0.30 0.30 0.32 0.32 0.34 1.376 1.376
TI 1.92 v 1.90 202 202 211 v 2.14 1.416 1.417

0.38 0.38 0.40 0.40 0.42 1.452 1.454
1'8 1.97 1.98 2.07 207 2.18 2.17 1.489 1.490

0.43 0.43 0.45 0.44 0.45 1.518 1.516
1'9 206 207 214 2.13 223 220 1.529 1.527

0.45 0.45 0.47 0.47 0.49 1.537 1.540
TtO 223 224 2.30 2.30 2.37 2.37 1.554 1.554

0.49 0.50 0.51 0.51 0.51 1.572 1.573
Til 2.29 230 243 2.43 2.56 2.56 1.589 1.593

0.66 d 0.72 0.68 0.68 0.65 1.611 1.611
T12 2.43 2.44 2.57 2.57 271 271 1.614 1.615

0.92 d 0.93 0.84 0.84 0.76 1.624 1.630
LI 264 v 264 272 272 2.80 v 280 1.647 1.655

0.97 1.18 1.00 1.01 0.83 1.668 1.676
U 2.77 v 277 279 2.79 2.81 v 281 1.684 1.690

1.13 1.41 1.14 1.15 0.88 1.708 1.710
L3 28Sv 285 280 280 275 v 275 1.725 1.729

1.52 d 1.51 1.22 1.22 0.93 1.736 1.742
LA 281 282 274 2.75 268 268 1.766 1.766

1.48 1.79 1.40 1.40 1.02 1.781 1.778
L5 2.89 2.90 265 265 2.41 241 1.757 1.756

1.87 d 200 1.57 1.57 1.14 1.734 1.733

• Vertebral heiBhts are (rom Lanier [64). CcntraJ heipll (107) are takcn to be the average of antmor and posterior heiBhts.
v ~ adjustments made usine daca from Todd 4; Pyle (124).

- Anterior dise beigbts are taken Crom Todd 4; Pyle [124]. d =adjustments made usine segmental sagittal anguJation data [12J.
Central dise beights are from Schultz et al [101], wbidl are bascd on Todd" Pyle (124) values.

- Sagittal radius oC venc:bra =average or superior and inCerior vertebra sagittal radii [64]•
• Sagittal radius oC dise .. average oC infcriocsalittal radiUl oCIUperior~Cbra and superior sagittal radius oC inCcnor vmcbra

[64}.
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In an elfon ta keep within the set guidelines, MûE satisfies criteria 2-6 above and its

comparison with the other criteria is as follows:

- Segmental sagittal angulations of MûE are in good agreement with the established means~

as shown in Fig. 5.2-

- Reciprocal angulations of the present model spine, shown in Table S.2, are round ta be close
to the means established by Stagnara et al [116]. Additionally, lumbar curvature is within
the range for females establisbed by Sullivan and Miles [119].

- Angulations of the particular dises trem the venical are as renows:

Tl-Tl 16.SO fiexed (0.30 diff.)
TI2-LI 18.00 extended (3.00 diff.)
LS-Sl 32SO Oexed (0.30 diff.)

1.07 (1)

1.33 (3)

3.2 (3.5)

4.1 (5)

5.03 (5)

5.21 (5)

4.41 (5)

4.11 (4)

Fig. 5.2 Mean segmental sagittal angulations of MûE compared wim normal values
[12] shawn in parentbeses.
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Table 5.2 Reciprocal Angulations of MûE in Comparison to Means (Degrees)

S LS LA L3 L2 LI TI2 TIl TIO 1'9 1'8 17 T6 T5 T4

S 0
(0)

U -22 -8
(-21) (-8)

lA -37 -23 -2
(36) (-23) (-1)

1.3 -48 -34 -13 -2
(-47) (-33) (-12) (1)

L2 -56 -42 -21 -10 1
(-S4) (-40) (-19) (-6) (2)·

LI -60 -46 -25 -14 -3 3
(-56) (-42) (-21) (-8) (0) (4)·

TI2 -58 -44 -23 -12 -1 5 S
(-55) (-41) (-20) (-7) (1) (S) (S)

Tll -55 -41 -20 -9 2 8 8 S
(-53) (-39) (-18) (-S) (3) (7) (7) (4)·

TlO -53 -39 -18 -7 4 10 10 7 2
(-SI) (-31) (-16) (-3) (S) (9) (9) (6) (3)

1'9 ....9 -35 -14 -3 8 14 14 11 6 3
(-48) (-35) (-13) (0) (8) (12) (11) (9) (6) (4)

TB ....5 -31 -10 1 12 18 18 15 10 1 ..
(-44) (-31) (-9) (4) (12) (16) (IS) (13) (10) (8) (4)

TI -40 -u -S 6 11 23 23 20 1S 12 9 S
(-39) (-26)· (-4) (9) (11) (21) (21) (18) (IS) (13) (9)· (S)

T6 ·3S -21 0 11 22 28 28 2S 20 11 14 10 4
(-33) (-20) (2) (15) (23) (21) (26) (24) (21) (19) (IS) (11) (4)

TS -31 -17 4 15 26 32 32 29 14 21 18 14 8 3
(-28) (-lS)· (1) (20) (28) (32) (32) (29) (26) (14) (21) (16) (9)· (4)

T4 -29 -lS 6 17 28 34 34 31 26 23 20 16 10 S 3
(-23) (-10) (12) (15) (33) (31) (36) (34) (31) (29) (25) (21) (14) (9) (4)

Values in parenthescs are means based on observation of 100 adulas 1116). Posilive values indicale kyphosis, negalive values indicale:
lordas!s. An aSlcrisk indicales adju5lme:nt of one degree bclic:ved 10 bc duc 10 typographie eITOr in the data of (116).
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- A thoracie kyphosis of 350 is measured using bath levels of measurement mentioned above
in criteria #8. This constitutes a 5% difference from the Mean calculated by Stagnara et al.
[116] and only a 28% difference from the mean calculated by Bernhardt and Bridwell [12).

- A lumbar lordosis of 63° is measured from the bottom of IVB to SI. This is a 26%
difference from the Mean calculated by Stagnara et al. [116]. A lordosis of 4go is measured
from the bottom of TI2 to the bottom of LS, only an 11% difference from the results from
Bernhardt and Bridwell (12).

Therefore, in conclusion, the spinal column represented by MOE is acceptable as normal.

Rib Cage Modellinr

The main purpose of ineluding the no cage is to model the stiffness it contnoutes to the

thoracic spine. Results from past modelling [4] show that the no cage increases the stability of the

spine by 300% on average (Table 3.1). Rather limited information is available on rib cage geameuy

[27,85,102,108,133]. An attempt was made ta construet the no cage using the data on nb geometry

from Schultz et al [108] and Grant's Atlas of Anatomy [43] for no orientation and positianing. The

result was unsatisfaetory, and as a solution, the no cage (ribs, costal cartilage, and sternum) geomeuy

measured by Roberts and Chen (103) is attached to the construeted spine of model Maa This is

considered acceptable because although the dimensions are taken from a person with a smaller than

average height, the spinal column of MOE is only 7.9% larger than the Roberts and Chen [103]

column. The column of MOE is straighter as indicated in Table 5.3, and for this reason gives the

appearance of being taller or larger. Thus, il seems reasonable ta attach the no cage of RobertS and

Chen la the MOE spine madel.

Table 5.3 Comparison of Column Lengths

Roberts '" Chen Present % Difference
model [103] modelMOE

Axiallength, 1(cm) 42.67 48.21 13

Curved length Le. sum of 46.27 49.93 7!J
central heights, L (an)

In addition, Roberts and Chen's nb cage compares well with the Mean dimensions from the

average population [22], and those round in Grant's Method of Anatomy [44], as shawn in Table 5.4.

Examination of the author's own x-rays (chest depth RIb 7 to 19 =13.97 cm) further instills the belief

that Roberts and Chen have a goad representation of the nb cage. The nb cage dimensions of MOE
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are aIso included in the table. Any discrepandes between the nb cage dimensions of MOE and Û'om

Roberts and Chen model are due to adjustments neœssuy for achieving compan"bility between the

rib cage Û'om Roberts and Chen and the spine of MOE.

The position of the nOOes representing the racets on the tranSVerse proœsses, which connect

to the tubercles of the nos by means of costotransverse joints (CIj, are taken from Schultz et al.

[109]. The tubercle of the nb js detennined by the position of the facet on the transVerse process,

as shawn in Fig. 5.3. For case in computer input and in calcuIations, cr elements are chosen to be

0.1 cm in length. The position of the Dode representing the tubercle is defined 0.1 cm lateral to the

node on the transverse process. This constitutes a good anatomical representation.

Table 5.4 Comparison of RIb cage Dimensions of Models with Mean Measurements

Item Mean measurements Dimensions Dimensions of
(cm) and their source of Roberts and MOE. (cm)

Chen model
(103], (cm)

Chest depth: (clear distance)
Sternum @ Rib 1 to TI 5 [44] 9.45 8.20
Sternum @ Rib 2 to T5 =10 (g) [44] 11.30 10.15
Sternum @ Rib 7 to T9 21.59 cft 13 (g). [44] 13.70 13.30

Largest rib cage depth 21.06 [22] 21.08 20.73
Largest rib cage breadth 29.99 [22] 24.79 24.79

Sternum body length:
Ribl-Rib2 Sb [44] 3.42 3.40
Rib2-Rib7 10+ (44) 11.45 11.43
Full height 20.33 [22] 13.g'7C 13.95C

g - graphicaUy mcasun:d from (44)
a = discrcpanc:y betwecn graphIcaUy measURd and printed values (44)
b =measurement includcs section of sternum abaYe Rib 1. Dot ICCOUDled Cor in MOE, with 1 lCDglb dClcrmincd

graphica1ly • 2.7 cm CJ)
c: = mcasurement doc:s nol indudc xiphoid procaa (sccdon oC sternum bclow Rib 7) and section above Rib 1 againt wilh

If3phic adjustment • 19.87 CI)

The head of the typical nb is defined by the position of the racets on the venebral bodies.

~ mentioned in Chapler 2 (Section 2.3), the superior racet on the vertebra corresPQnding to the ob

of its own number, and the inferior lacet on the superior venebra aniculate with the head of the nb

by means of costovertebral joints (CV). As shown in Fig. 5.4, for cach nb, the 2 nedes representing

the venebral racets whicb attach to the nb, are positioned in the y-direction (lateral) at the maximum

inferior transverse radius of the superior venebra, which is taJcen Û'om Lanier [64]. In the x-direction



(anterior-poSlerior), the ooordinate of the venebral racet is taken to he the average of the x­

coordinates of the superior posterior node of the venebra correspooding to its rib number and of the

inferior posterior Dode of the superior vertebra. In the z-direction (venical), their position is taken

ta be the average of the z-coordinates of the same 2 nodes %0.1 cm. Thus, the bead of the nb may

be positioned in between the 2 nodes representing the venebral body racers, which are given the same

x and y coordinates as descnDed above, 50 that aIl CV elements also have lengths of 0.1 cm.

y

(a) (h)

Fig. 5.3 Costotransverse joint: connedian of the transverse process (venebra) 10 the tubercle of the
no (a) top view, and (b) right lateral view. Values orX, Yt and z for venebrae Tl - TIO are
obtained from Schultz el aL [109]. The node and element represenœtion is as rollows:

Nodel Representation
Element

A superior, posterior oode of venebra in sagittal plane
B superior, central node of venebra in sagittal plane
C superiort anterior node of venebra in sagittal plane
D racet on transVerse process
E tubercle of no
F head of no

AB posterior balf of superior endpfate of venebra
BC anterior halC of superior endplate of venebra
BD transverse proœss
DE cr joint
EF no (tubercle 10 head)
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Fig. 5.4 Costovertebral joint: connection of the vertebral bodies to the head of the rib (a) top view.
and (b) right lateral view. Values of y are equal to the maximum inferior transverse radü
of the superior vertebra of nb attachment obtained by Lanier [64], x and ï =average x- and
z- coordinates of nodes A and L The node and element representation is as follows:

Node! Representation
Element

A superior, posterior node of venebra in sagittal plane
B superior, central node of venebra in sagittal plane
C superior, antericr node of venebra in sagittal plane
E tubercle of nb
F head ofnb
G Cacet on vertebra oorresponding to nb
H Cacet on superior vertebra
1 infericr, posterior node of superior venebra in sagittal plane
J inferior, central node of superior venebra in sagittal plane

AB posterior balf of superiar endplate of venebra
Be anterior half of superior endplate of vertebra
BG vertebrae (superior central node to facet)
EF rib (tubercle to bead)
FG CV joint (attach no to corresponding venebrae)
FH ev joint (attach nb 10 superior vertebrae)
HJ superior vertebrae (inferior central node ta raret)
U posterior half of inferior endplate of superiar vertebra
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The model. MOE, representing the normal spine and no cage is shawn in Fig. 5.5. The

global nodal coordinates defining its geometry are tabulated in Table 5.5. Appendix C offers a

complete description of the model with ail node and element numbers illustrated.

(a) (h)

Fig. 5.5 Present three-dimensional Madel of a
normal spine and no cage, MOE: (a)
left lateral view, (b) anterior view, and
(c) top view.
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Table 5.5 Global Nodal Coordinates of Normal Spine and Rib cage Model: MOE

Node Coordinales Node Coordinates Node Coordinates
no. no. no.

X y Z X y Z X y Z

1 -0.42 0.00 4736 56 0.04 0.00 24.86 111 -3,23 1.55 41.73
2 -0.93 0.00 4S.76 57 0.72 0.00 22.66 112 -3.23 loSS 41.53
3 -1.06 0.00 4S.D 58 0.94 0.00 21.98 113 -3.79 1.52 39.61
4 -1.56 0.00 43.61 59 1.68 0.00 19.66 114 -3.79 1.52 39.41
5 -1.64 0.00 43.31 60 2.00 0.00 18.79 115 -4.17 1.55 37.37
6 -2.12 0.00 41.53 61 2.91 0.00 16.31 116 -4.17 1.55 37.17
7 -2.18 0.00 41.26 62 3.32 0.00 15.20 117 -4.38 1.59 34.98
8 -2.59 0.00 39.40 63 4.07 0.00 12.53 118 -4.38 1.59 34.78
9 -2.62 0.00 39.18 64 4.45 0.00 Il.17 119 -4.38 1.67 3246

10 -2.88 0.00 37.24 6S 4.87 0.00 8.3S 120 -t38 1.67 3226
11 -2.90 0.00 36.99 66 4.96 0.00 6.84 121 -4.17 1.76 29.87
12 -3.00 0.00 35.00 67 4.79 0.00 4.03 122 -4.17 1.76 29.67
13 -3.01 0.00 34.68 68 4.27 0.00 2.32 123 ·3.67 1.87 26.89
14 -2.94 0.00 3266 69 3.01 0.00 -0.29 124 -1.21 -1.45 47.59
15 -2.92 0.00 3226 70 1.92 0.00 -1.97 115 -1.86 -1.58 45.84
16 -2.69 0.00 30.20 71 -1.21 0.00 47.59 126 -1.86 -1.58 45.64
17 -2.65 0.00 29.76 72 -1.79 0.00 4S.96 127 -2.57 -1.61 43.78
18 -2.27 0.00 7:1.66 73 -1.93 0.00 4S.52 128 -2.57 -1.61 43.58
19 -2.16 0.00 7:1.20 74 .2.52 0.00 43.82 129 -3.23 -1.55 41.73
20 -1.62 0.00 24.96 75 -2.62 0.00 43.53 130 -3.23 -1.55 41.53
21 -1.49 0.00 24.47 76 -3.19 0.00 41.76 131 -3.79 -1.52 39.61
22 -0.80 0.00 22.14 77 -3.2:1 0.00 41.50 132 -3.79 -1.52 39.41
23 -0.60 0.00 21.49 78 -3.76 0.00 39.62 133 -4.17 -1.55 37.37
24 0.19 0.00 19.04 79 -3.81 0.00 39.39 134 -4.17 -1.55 37.17
15 0.45 0.00 18.24 80 -4.15 0.00 37.40 135 -4.38 ·1.59 34.98
26 1.37 0.00 IS.68 81 -4.19 0.00 37.13 136 -4.38 -1.59 34.78
rr 1.70 0.00 14.73 82 -4.36 0.00 35.05 137 -4.38 -1.67 3246
28 2.45 0.00 12.04 83 -4.40 0.00 34.71 138 -4.38 ·1.67 32.26
29 2.74 0.00 10.93 84 1 -4.38 0.00 3257 139 -4.17 -1.76 29.87
30 3.15 0.00 8.16 as -4.38 0.00 32.15 140 -4.17 -1.76 29.67
31 3.21 0.00 6.94 86 -4.19 0.00 29.99 141 ·3.67 -1.87 26.89
32 3.02 0.00 4.20 87 ".lS 0.00 29.54 142 -1.38 4.00 47.90
33 2.58 0.00 2.87 88 -3.78 0.00 2737 143 -3.39 3.81 46.14
34 1.45 0.00 0.47 89 -3.67 0.00 26.89 144 -4.40 3.00 44.15
3S 0.60 0.00 .0.85 90 -3.14 0.00 24.58 14S -5.44 3.01 42.13
36 0.37 0.00 47.13 91 -3.02 0.00 24.08 146 -6.00 3.30 39.98
37 -0.07 0.00 45.56 92 -2,32 0.00 21.62 147 -4.50 3.33 37.57
38 .0.19 0.00 4S.14 93 -2.14 0.00 21.00 148 -4.50 3.30 34.95
39 -0.60 0.00 43.40 94 -1.30 0.00 18.42 149 ~.B3 3.02 3220
40 .0.66 0.00 43.09 95 -1.10 0.00 17.69 ISO -6.40 2.80 29.40
41 ·1.05 0.00 41.29 96 .0.17 0.00 15.05 151 ·S.7S 2.53 26.70
42 -1.09 0.00 41.02 97 0.08 0.00 14.26 152 -1.38 -4.00 47.90
43 -1.42 0.00 39.18 98 0.83 0.00 11.55 153 -3.39 -3.81 46.14
44 -1.43 0.00 J8.97 99 1.03 0.00 10.69 154 -4.40 -3.00 44.15
45 -1.61 0.00 37.08 100 1.43 0.00 791 15S -5.44 -3.01 42.13
46 -1.61 0.00 36.85 101 1.46 0.00 7.04 156 -6.00 -3.30 39.98
47 -1.64 0.00 34.95 102 1.25 0.00 4.37 157 450 -3.33 37.57
48 -1.62 0.00 34.65 103 0.89 0.00 3.42 158 -6.50 -3.30 34.95
49 -1.50 0.00 32.75 104 .0.11 0.00 1.23 159 -6.83 -3.02 32.20
SO -1.46 0.00 32.37 lOS -0.72 0.00 0.27 160 -6.40 .2.80 29.40
51 -1.19 0.00 JO.41 106 -1.21 1.45 47.59 161 -5.75 -2.53 26.70
S2 -1.15 0.00 29.98 107 -1.86 1.58 4S.84 162 -1.21 I.5S 47.59
53 -0.76 0.00 7:1!J5 lOS -1.86 1.58 45.64 163 -1.38 4.10 47.90
54 -0.65 0.00 27.51 109 -2.57 1.61 43.78 164 -1.50 5.08 47.67

SS -G.I0 0.00 25.34 110 -2.57 1.61 43.58 165 3.00 7.62 44.23
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Table 5.5 Global Nodal Coordinates Cont'd

Node CoordinalC:S Node Coordinatcs Node Coordinates

no. no. no.
X y Z X y Z X y Z

166 6.00 5.08 42.45 221 11.88 0.00 31.03 7:16 3.00 11.43 20.40
167 7.50 229 42.45 222 11.88 ·1.65 31.03 m a10 10.16 17.84
168 7.50 0.00 42.45 223 10.56 -5.72 30.67 118 11.95 7.62 20.85
169 7.50 -229 42.45 224 9.00 -8.89 30.27 279 11.95 -7.62 20.85
170 6.00 -5.08 42.45 22S 3.00 -12.40 34.03 280 8.10 -10.16 17.84
171 3.00 -7.62 44.23 226 -7.12 ·9.53 39.58 281 3.00 -11.43 20.40
L72 -1.50 -5.08 47.67 227 ~OO -3.40 39.98 282 -7.76 -8.89 UJ.97

173 -1.38 ~UO 47.90 228 -3.79 -1.52 39.51 283 ~.4O -2.90 29.40
174 -1.21 -1.55 47.59 229 ....17 l-SS 37Z1 284 -4.17 -1.76 29.n
17S -1.86 1..58 45.74 230 -6.50 3.43 37.57 28S -3.67 1.97 ~9

176 -339 3.91 46.14 231 -7!J2 8..89 36.45 286 -5.75 2.63 26.70
ln -3.40 5.72 46.10 232 3.00 12.07 30.48 '1B7 -8.20 8.89 24.20
178 3.00 8.89 41.75 233 8.83 9.53 27.24 2S8 3.00 11.43 16.65
179 7.60 5.72 39.90 234 9.30 6.99 7:1.64 289 8.20 7.62 13.42
ISO 8.73 1.14 39.28 23S 10.60 4.45 28.64 290 8.20 -7.62 13.42
181 8.73 0.00 39.28 236 1200 1.14 29.22 291 3.00 -11.43 16.65
182 8.73 -1.14 39.28 237 1200 0.00 29.22 292 -8.20 -8.89 24.2û
183 7.60 -5.72 39.90 238 1200 -1.14 29.22 293 -5.75 -2.63 26.70
184 3.00 -8.89 41.75 239 10.60 -4.45 28.64 294 -3.67 -1.97 26.89
lBS -3.40 -5.72 46.10 240 9.30 ~.99 27.64 500 -3.23 0.00 50.26
186 -339 ·3.91 46.14 241 8.83 -9.53 27.24 501 -244 0.00 46.56
187 -1.86 ·1.58 45.74 242 3.00 -12.07 30.48 502 -202 0.00 44.69
188 -2.57 1.61 43.68 243 -7!J1. -8.89 36.45 503 -1.06 0.00 4257
189 -4.40 3.10 44.15 244 -6.50 ·3.43 37.57 504 .os 0.00 40.46
190 -5.00 7.24 43.78 245 ....17 ·1.55 37:1.7 SOS ~.40 0.00 38.32
191 3.00 10.80 39.00 246 ....38 1.59 34.88 506 0.59 0.00 36.12
192 8.05 6.35 37.34 247 450 3.40 34.95 507 1.08 0.00 33.83
193 9.95 1.40 36.12 248 ~ 8.89 34.00 sos 1.50 0.00 31.43
194 9.95 0.00 36.12 249 3.00 11.43 7:1.88 509 206 0.00 '28.93
195 9.95 -1.40 36.12 250 8.SO 9.53 23.37 510 3.29 0.00 2631
196 8.05 -6.35 37.34 251 10.65 6.35 25.30 511 4.42 0.00 23.sS
197 3.00 ·10.80 39.00 252 12.53 0.89 28.50 512 5.2S 0.00 20.59
198 -5.00 -7.2A 43.78 253 1253 0.00 28.50 513 6.28 0.00 17.36
199 -4.40 -3.10 44.15 2S4 12.53 -0.89 28.50 514 6.88 0.00 13.86
200 -257 -1.61 43.68 2SS 10.65 ~.3S 25.30 SIS 7.12 0.00 10.10
201 -3.23 1.55 41.63 256 8.80 ·9.53 23.37 516 6.60 0.00 6.18
202 -S.44 3.11 42.13 257 3.00 -n.43 27.88 517 4.91 0.00 2.34
203 4).00 8.26 42.08 2S8 -8.30 -8.89 34.00 518 4.25 0.00 -0.19
204 3.00 1207 36.75 259 -6.50 -3.40 34.95 519 1.95 0.00 63.54
20S 8.45 7.62 33.00 260

__.38
-1.59 34.88 S20 0.71 17.18 15.76

206 11.30 1.91 32.36 261
__.38

1.67 32.36 521 0.71 -17.18 15.76
207 11.30 0.00 32.36 262 -6.83 3.12 32.20
208 11.30 -1.91 32.36 263 -8.44 8.89 30.52 -
209 8.45 -7.62 33.00 264 3.00 11.43 24.44
210 3.00 -12.07 36.15 265 8.60 9.53 20.83
211 ~.OO -8.26 42.08 266 11.95 6.73 23.88
212 -S.44 -3.11 42.13 2117 11.95 -6.73 23.88
213 -3.23 -1.55 41.63 268 8.60 -9.53 20.83
214 -3.79 1.52 39.51 269 3.00 -11.43 24.44
215 ~.OO 3.40 39.98 270 -8.44 -8.89 30.52
216 -7.12 9.53 39.58 271 -4.83 -3.12 32.20
217 3.00 12.40 34.03 zn ....38 -1.67 32.36
218 9.00 8.89 30.27 273 ....17 1.76 29.77
219 10.56 s.n 30.67 274 -6.40 2.90 29.40
220 11.88 1.6.5 31.03 275 -7.76 8.89 '1A97
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5.3.1 Lordotic: Geometry

The lordolie model, LARRY, is created Crom MOE by altering its sagittal curvature. Using

the strUcturally equivalent 3-element model, the central elements are tept of the same length while

the anterior and posterior elements of the vertebrae T4-T12 are elongated and shortened respeetively

as indicated in Table 5.6, such that vertebrae T6 thraugh no become lordolie. The amount of

elongation and shortening is based on the measurements of lordotic venebrae from a rcal scoliotic

spine [30]. The ratios of the anterior and posterior lengths of the scoliotie venebrae T4-TI2 are used

to calcuIate these lengths for the lordolie venebrae of the present model, relative to their center

lengths whieh are considered to remain unchanged and whieh are the averages oC the anterior and

posterior lengths. The procedure is accomplished by runnmg a statie structural analysis oCMOE using

the DEFORM1 command available in NASTRAN. This command allows elements to be deformed

axial1y. Constraints are placed on the structure so that the sagittal curvature is the main parameter

altered. The analysis yields a structure with a lordosis in the thoracic region of the spine with an apex

al TS, as shawn in Fig. 5.6. This region is chosen specifically because, as mentioned previously, a very

common form of AIS has an apex al the 1'8-1'9 level, wilh lordasis present at the apex and al one or

(wo levels abave and below the apex [24,34]. The lordolie model thus created is used ta study the

effeet of thoracie lordosis on subsequent spinal stability.

Table 5.6 Changes in Anteriar and Posterior Lengths oC Venebrae

Vert. Scoliotic Normallengths Lordotic Change in length t

specimen (cm) lengths (cm)
[30) (cm)

AnL/POSL POSL Central AnL Post AnL Post AnL Average
(±cm)

T4 0.966 1.943 1.905 1.869 1.938 1.872 -0.005 0.003 0.004
T5 0.989 2.019 1.957 1.899 1.968 1.946 -0.051 0.047 0.049
T6 1.103 2.087 1.993 1.900 1.895 2.090 -0.192 0.190 0.191
17 1.480 2.140 2.021 1.904 1.630 2.412 -0.510 O.5as 0.509
1'8 1.304 2.168 2.073 1.979 1.800 2.347 -0.368 0.368 0.368
~ 1.443 2.201 2.134 2.067 1.747 2.521 -0.454 0.454 0.454
TI0 1.227 2.370 2.304 2.239 2069 2.539 -0.301 0.300 0.300
TIl 0.959 2558 2.430 2.303 2.481 2379 .(j.077 0.076 0.077
TI2 0.912 2713 2574 2.435 2.693 2456 -0.020 0.021 0.021

'nede!orm CCUDllumd may bc UICd 10 load a lUUCture byenfora:d spcdficduiaI dcformatiOD orone-dimensioDal clements
wilhin a structure. The onJy COIlCUllt at thiI pmat ia Ibc Iludy, il the DCW pmeCly, without intCRSl iD the (on:es thus
dcveloped. This simple lDClhod achiew:I the daiRd pomcuycbaqa Ül c:œrormitywith the requircd leomcuic: compaûbility.
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Fig. 5.6 Lordotic 3-element model of spine and rib cage, LARRY. Note the change in the thoradc
curvature wben compared to MûE in Fig. 5.5.

The desired anterior and posterior length changes of the venebrae are aiso used in the

calculation of temperature changes (A1') in these elements requited as input in the nonlinear analysis

which simulates lordotic growth of the spine by thermal loading the normal 5pine. Again. considering

the center lengtbs to remain constant, relative (aster anterior growth is simulated by heating the

anterioe elements and cooling the posterior clements. As shown in Table 5.7, usÎDg the desired length

changes calculated above, the sagittal radü. and A-P bending stiffnesses of the designated venebrae,

the necessary forces in the anterior and posterior elements, to achieve 5uch length changes (in an

unrestrained system), may be determined. Ta obtain the axial force P, the elements may be thermally

loaded by AT. The values oC AT are dependent on the values of Younrs modulus E, the area~ and

the coefficient of expansion cr, arbitrarily chosen for the axial elements. In arder ta facilitate
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calculatians and ta ensure that the anteriar and posterior elements do nOl contnôute ta the stiffness

af the vertebrae, a value af EA=1,000 N, small compared ta the praperties of the vertebrae, and an

cr=1 were chasen.

Table 5.7 Temperature Changes Required ta Simulate Asymmetrical Vertebral Growth

Vert. Element Owlge Average A-P A-P Moment, AxW Change in
No. inlenglb. sagittal rotation, beoding M=E1~L forteS, temp"

.L radius, b e=MJb stiflncss, (N-an) P=M/2b .T=P/EAa
Ant Post Ant+ (cm) (rad) EIiL Ant-C (± deg.)

Post- (N-emJrad) POIt-T
(aD) (N)

T4 41 75 .004 1.1535 0.0035 985.123 3,448 1.494.58 1.49
TS 43 77 .049 1.244 0.0394 1.232,632 48,566 19.520.10 19.52
T6 45 79 .191 1.3295 0.1437 1,532.338 220.197 82,811.96 82.81
17 47 81 .509 1.4165 0.3593 1.899.970 682,659 240,966.82 240.97
TB 49 83 .368 1.489=i 0.2471 2,268,683 560,592 188,181.27 188.18
T9 51 as .454 1.527 0.2973 2.533,974 753)50 246.676.49 246.68
no 53 87 .300 1.554 0.1931 2,692.127 519.850 167.261.90 167.26
ni 55 89 .077 1.592S 0.0484 2,982,337 144)45 45.320.25 45.32
TI2 57 91 .021 1.615 0.0130 3.126,414 40,643 12.582.91 12.58

EA::: 1000
«=1

C = compression
T = tension

A-P ::: antcrior-posterior
NOle: Bending stiffncss propcrties c:xplaincd in following section.

•

5.4 Representation of StitTness Properties

As mentioned previausly, discrete beam clements are chasen ta make up the model. In

realily, seetianal and material prapenies vary throughaut the spinal column and rib cage structure.

Adding ta this difficulty of nan-hamageneity of properties within the same structure is the fact that

properties vary tremendously !ram persan ta persan_ Ta keep the computer model simple yet

adequate, new beam elements are introduced in the model only to represent a change in the geometry

af the structure, e.g. a curve, and to account for a change in material, e.g. bone to ligament. It is

assumed that the sectianal and material properties are constant along the length of each individual

element, but naturally, they are allawed ta vary !rom element ta element. For individual elements,

sectional prapenies are assigned the averages of values along the length. Matenal praperties are

assumed linear. elastic and isotropie. Obtaining these praperties ta represent a typical normal spine

and rib cage is a task in itself and will be discussed briefiy.

Input for the program is in the form of sectional and material properties. The importance,

is nal facused on detennining actual sectianal and material propenies but rather, on representing

realistic sùffnesses, which are proportional la the produet of the above two prapenies and which are

usually the quantities reponed in literature. Stiffnesses far the urigid" or bony elements are based
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on the malenal propenies of compact bone determined experimentally [103,120] and the aClual

sectional propenies [64,103], when available in literature. Stiffnesses for the mare deformable

elements (intervertebral joints, ligaments, and canilage) are based on results reported in literature

from experiments on spinal motion segments [11,73,74,75,86,88,90,107,113] and soft tissue [4,109].

5.4.1 Rigld or Bone Elements

SecliolUll Properties

As mentioned abov~ the exact sectional properties of the rigid elements are not crucial for

representing the aetual behaviour of the spine and nb cage since they have comparatively large

Young's moduli and shear moduli. When available in literature, true propenies are generally assigned

ta the rigid elements, however assignments of equivalent sectional properties are made when

appropriate ta simplify input. In addition, approximations of properties are made when such data are

not available.

Sectional properties of the rigid vertebral elements are calculated according ta the data trom

Lanier [64]. For each venebra, Tl • LS, the sagittal diameter was laken la be the average of the Mean

superior and the Mean inferior sagittal diameters. The transverse diameter was taken to be the Mean

inferior transverse diameter. The cross·sectional area, moments of inertia, and torsional constants [51)

are calculated according to the assumptions that (a) the venebra is elliptical in shape, anti (b) 100%

of the crass·seetianal area is effective. These properties are tabulated in Table 5.8. Element

coordinate system far the venebra and intervertebrai joint elements is shown in Fig. 5.7.

Notations referred to in this chapter are as ro11ows: A represents the cross·sectionai area,

[1 and [2 represent the area moment af inema in the (Wa perpendicular planes 1 and 2 (principal

planes when cross-section is symmetrical) which are onhogonal to the crass·seetionai planet J

represents the tarsional constant, Kt and ~ represent shear area factors in planes 1and 2 respectively,

and lu represents area product of inenia. l AlI symbols are defined in the List of Symbols. As noted

in Table 5.8 and in Fig. 5.7., planes 1 and 2 are the principal planes. Plane 1 represents the laterai

plane of the element and plane 2 corresponds ta the A-P plane.

Since 3 elements are also used to represent 1 vertebra, equivalent sectianal propenies are

calculated using the formulas derived in Appendîx B. These equivaient values, used in the input data

Inc DomcncJatun: for incrtia propcrties Ùllerms oC planes land 2 il" in lcaJfdanœ with lbat oC NASTRAN. This is
mercrenl (rom the axis-bascd convenlion normally used.
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of the 3-element model, are shown in Table 5.8(a) and 5.8(b).

Table 5.8 Sectional Properties of Venebrae*

Venebra E G A Il 11 J K1J{2

(N/cm~ (N/cm~ (cm~ (CDl~ (cm~ (cm~

Tl 1030000 431000 4.24 2651 O.n3 2395 1
Tl 1030000 431000 4.72 3.061 1.030 3.083 1
T3 1030000 431000 5.08 3.036 1.390 3.813 1
T4 1030000 431000 5.50 3.181 1.822 4.633 1
T5 1030000 431000 6.05 3.631 2342 5.695 1
T6 1030000 431000 6.68 4.240 2.965 6.980 1
TI 1030000 431000 7.44 5.198 3.728 8.685 1
1'8 1030000 431000 8.23 6.386 4.566 10.650 1
T9 1030000 431000 8.98 7.853 5.250 12.586 1
T10 1030000 431000 9.97 10.407 6.022 15.258 1
TIl 1030000 431000 11.15 13.896 7.036 18.684 1
TI2 1030000 431000 1200 16.789 7.813 21.327 1
LI 1030000 431000 1281 19.659 8.692 24.108 1
U 1030000 431000 13.57 22346 9.624 26.908 1
L3 1030000 431000 14.58 26.430 10.853 30.774 1
U 1030000 431000 IS.2S 28.846 II.896 33.690 1
LS 1030000 431000 14.73 26.207 11.366 31.710 1

• Values are based on the dimensions from Lanier [64].

z z

z

Intervertebral Joint Vert.bra

x
Effective cross-8ectlon

Fig. 5.7 Element coordinate system for venebra and intervenebral joint elements. In this figure, the
local y-axis coinddes with the global Y-axis such that x-y plane defines element's lateral plane
denoted by 1, and x-z plane defines the A-P plane denoted by 2 Cross-section is from
bottom vîew.



Table 5.Ba Equivalent Sectional Propenies for central Venebral Elements (KI=1.00)

Verterba A Il 12 J KI
(cm~ (cm~ (cm4

) (cm4
)

Tl 3.222 2.015 0.025 1.755 -0.089
1'2 3.587 2.326 0.027 2235 -0.075
1'3 3.861 2.307 0.035 2.692 ·()'085

T4 4.18 2.418 0.05 3.192 -0.108
TS 4.598 2.76 0.072 3.857 -0.14
T6 5.077 3.222 0.1 4.654 .a.174
li 5.654 3.95 0.11 5.709 .a.166
T8 6.25S 4.853 0.14 6.977 .a.IS4
1'9 6.825 5.968 0.171 8.333 -0.197
TI0 7.577 7.909 0.185 10.35 -0.159
TIl 8.474 10.561 0.19 12.86 .a.127
TI2 9.12 1276 0.229 14.88 ·0.127
LI 9.736 14.941 0.21 16.903 .a.094
U 10.313 16.983 0.249 18.93 -0.101
L3 Il.081 20.087 0.303 21.689 ·0.116
L4 11.59 21.923 0.371 23.675 -0.145
LS Il.195 19.917 0.353 22.131 -0.155

Table 5.8b Equivalent Sectional Propenies for AnteriorlPosterior Vertebral Elements
(Kt= 1.00. J=0.(0)

Venebra A Il 12 K2
(<:mZ

) (cm·) (cm·)

TI 0.509 0.318 0.004 -0.089
Tl 0.566 0.367 0.004 -0.075
13 0.61 0.364 0.005 .o.08S
T4 0.66 0.382 0.008 -O.lOS
T5 0.726 0.436 0.011 .0.14
T6 0.802 0.509 0.016 .0.174
TI 0.893 0.624 0.017 .0.166
1'8 0.988 0.766 0.022 .0.184
1"9 1.078 0.942 0.027 .0.197
TlO 1.196 1.249 0.029 -0.159
Til 1.338 1.668 0.03 .0.127
Tl2 1.44 2.015 0.036 .0.127
LI 1.537 2.359 0.033 -0.094
L2 1.628 2682 0.039 .0.101
U 1.75 3.172 0.048 -0.116
LA 1.83 3.462 0.059 -0.145
L5 1.768 3.145 0.056 -0.155
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Vertebral endplates, when included in model, are aIl given the same large (arbitrarily selected)

sectional propenies based on a circular cross-section, since they are modeled simply to provide rigid

links between the 3 elements. The values selected are A =35.45 cm2
, Il = Il = 100.0 cm4

, and J =
200.0 cm4

•

For each nb, the sectional properties measured by Roberts and Chen [103] were averaged and

assigned to ail 4 segments of the nb. The propenies were calculated on the assumption that the

cross-sections have an elliptical shape but are only 50% effective (considering the compact bone

contribution), and thereCore are represented byan elliptical ring [103]. The propenies are tabulated

in Table 5.9, and the element coordinate system is illustrated in Fig. 5.8.

Table 5.9 Average Sectional Properties oC Ribs [103]

Rib Element ?ropeny A Il Il J
No. No. No. (cm) (cm4

) (cm") (cm4
)

1 285-292 153 0.4058 0.0267 0.0697 0.0519
2 293-300 154 0.2348 0.0084 0.0245 0.0199
3 301-308 155 0.3150 0.0127 0.0474 0-0337
4 309-316 156 0.3523 0.0150 0.0664 0.0392
5 317-324 157 0.2881 0.0128 0.0352 0.0297
6 325..332 15S 0.3481 0.0204 0.0392 0.0434
7 333-340 159 0.4034 0.(11.77 0.0590 0.0591
S 341-348 160 0.4674 0.0225 0.0699 0.0551
9 349..356 161 0.3703 0.0264 0.0562 O.OSSO
10 357..364 162 0.3370 0.0181 0.0545 0.0426

x
-----~ .....~r

z

y

z

Fig. 5.S RIb element c:oordinate S)'Stem. The x-y plane coincides with the plane
formed by the global Y-axis and the local x-axis. Here, the x-y plane defines
plane 1, and the x-z plane, plane 2.



Simîlar to the endplates, the sternum beam clements are all given the same arbitrary propeny

values, large enough to render them rigid. The sternum quadrilateral clements are assigned an

average realistic thiclmess of 0.9 cm (103).

Sectional properties for elements representing the transverse processes and rigid posterior­

laIerai extensions ofvenebral bodies needed to define positions offacets for articulation with the nbs

by means of the CT and CV clements respectively, are arbitrarily selected to be the same for aIl

similar element types in order to simpliCy input data. The assumption is appropriate since these

elements are rigid links, providing anatomical positioning of the ligaments with respect 10 the

venebrae centers. The values, sbown below, are chosen to reOcct the true geometry and are based

on the assumption of a circular c:ross·section.

Transve~e:

process

MaleTÛlI Properties

A = 1.0 cm1

Il =12 = 0.08 cm4

J =0.16 cm4

Elements defining:
vertebral body
facets

A = 3.545 cml

Il = Il = 1.0 cm
4

J = 2.0 cm4

A lot of work bas been donc concerning properties of compact bone by Yamada [136] and

Evans [36]. Based on their resuUs, Sundaram and Feng [120] and Roberts and Chen [103] derived

property values for particular types of compact bone as shown below in Table 5.10. These malerial

constants were used for the bone clements of the present model, as indicated. The propenies assume

the matenal is isotropic and homogeneous, and as such the shear modulus G is related ta Young's

modulus E and Poissan's ratio v by the relation G = E/2(I+v).

Table 5.10 Matena! Propenies Cor Bone Elements

Element type and Young's modulus, E Shear modulus, G Poisson's ration, Il

source (N/cm~ (N/cm~

Venebrae and elements
defining faccts OD 1.03 x 10' 4.31 x lOS 0.20

vertebral body [120]

Ribs, sternum, and 1.21 x 10' 5.03 x 10' 0.20
endplate [103,120]

Transverse process [62] 3.50 x u1 1.40 x u1 0.25



5.4.2 DeCormable Elements

'Ibe deformable elements in the model acc:ount for an the nexibility in the spinal structure.

Therefore, in order to prediet rea1istie behaviour, il is important ta represent their true stiffnesses as

accuratelyas possible. These deformable elements include the intervertebral joints, the ligaments, and

the cartilage in the spine and DO age. Stiffnesses are based on the best linear elastic approximation

of the nonlinear, anisotropie, visco-elastic maleriaL Wbenever possible, aetual sectional and material

properties are used as the input data. However, due to the anisotropie nature of the material, Many

times the use of rea1 stiffnesses and rcal cross-sectional areas A, and modellengths L, results in the

calculation oC other sectional (1 and J values) and material properties CE and G values), far from reaL

TItus, the propeny values are treated simply as the appropriate quantities required for input in the

program; il is the stiffness that must be realistic.

Stiffnesses of the costovertebral joints (CV), costotransverse joints (CT), intercostal tissue

(le), and costal cartilage (cq attached ta no 6 are shown in Table 5.11. These stiffness values were

obtained by simulaûng an experiment condueted on the nos [109]. Stiffnesses were adjusted until the

computed displacements agreed with the experimental results [4]. As notOO in the table, and as

menlioned earlier, the cr and CC elements exhibil axial, bending, torsional, and shear stüfnesses

while the CV and le clements only provide axial stiffness. Stiffness of the CV, cr, le, and CC

elements in the model are based on the stiffness values of lhese elements attached to no 6.

Table 5.11 Stiffness Values for Defonnable Elements Attached to Rib 6-

Element Axial, EAIL Bending, EIIL Torsional, GJ/L Shear, GAIL
type (N/cm) (N-anlrad) (N-cmlrad) (N/cm)

ten. camp.

CV 49 490 0 0 0
cr 49 490 685 980 1225
le 195 195 0 0 0
CC 735 735 245 980 80

• Values taken from Andriacchi et al [4].

Typically, Young's modulllS is 20 limes higher in compression than in tension. Maleria!

property values for cartilage were determined by Yamada [136] to have eIasûe moduli in compression

and tension respectively, of Ec=2,400 N/an1 and 1;=48,000 N/an1 and a POÎSSonis ratio of 0.1.

Sundaram and Feng [120] determined an equivalent beam modulus for cartilage, Eeq =6450 N/cm1
,
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using the tension and oompression moduli. This equivalent modulus is used in determining sectional

propenies Cor the le, cr, and CV elements.

The axial stiffness of 195 N/cm Cor the IC clement attached to no 6 is assumed Cor all other

le elements since no data aD effective cross.sectional area were found. The cross-sectional area is

therefore ca1culated using the equiva1ent modulus E.. and the length of the element determined

directIy from the model Properties of the le elements are shown in Table 5.12.

Table 5.12 Cross-Sectional Area of Intercostal TlSSue (IC elements)

RIo Member Property EAIL, Axial l;q Length Area
no. no. no. stiffness [4] [120] (cm) (cm2)

(N/cm) (N/cm~

1-2 421,430 62 195 6450 2786 0.0842
2-3 422,431 63 195 6450 3.345 0.1011
3-4 423,432 64 195 6450 2584 0.0781
4-5 424,433 6S 195 6450 2740 0.0828
5-6 425,434 66 195 6450 3565 0.1078
6-7 426,435 67 195 6450 2676 0.0809
7-8 427,436 68 195 6450 3.440 0.1040
8-9 428,437 69 195 6450 4.040 0.1221

9-10 429,438 70 195 6450 3.750 0.1134

Calculation oC the cr and CV sectional propenies is a bit more complex because their

compressive axial stiffness is la limes their tensile axial stiffness as seen in Table 5.11. However, the

Iinearity of the program aIlows the input of ooly one (equal) stiffness. InCormation on the sectional

propenies of the ligaments al each rib level is unavailable. Thus, the stiffness values Cor these

elements are assumed to be the same as the stiffness for the cr and CV elements of no 6. The

assumption is justified because the malerial is similar for the same element types and the same shon

length of 0.1 cm is chosen for cach of these elements.

The procedure adopted to arrive at an equivalent axial stiffness, somewhere in between the

value of the compressive and tensile stiffnesses is as follows. Multiplying the compressive stiffness

and the tensile stiffness by their lengtbs 1., and dividing by Ec and Eu respectively, compressive and

tensile areas are determined. The average of lhese IWO areas, 0.0015 cm2, is used as the equivalent

area. Then, a new equivalent axial stiffness of 96.75 N/cm is calculated based on the equivalent

modulus ~, the equivalenl area, and the true lengtb. Based on these values, the remaining
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praperties far the cr elements, l, G, and J, are determined from the bending, tarsional, and shear

stiffnesses respectively. The calculated properties are:

Il = 12 = 0.0106 cm"
J = 0.0012 cm"
G = 81,666 N/cm2

A Paissan's ratio of 0.1 is assigned to the elements [120,136]. The material is obviously not isotropie,

however the realistic stiffness is modeled.

More information is found in literature concerning the costal canilage. Roberts and Chen

[103] give the sectional properties for the costal cartilage of all 10 nos on the assumption they are

elliptical and 100% effective. However, stiffnesses, which again are the imponant quantities to model,

are unknown for the costal canilage corresponding ta nos other than rib 6. Therefore, assuming ail

CC elements have the same Young's and shear moduli, stiffnesses for each CC element in the model

are calculated by factoring the stiffness values determined for the cartilage ofno 6 (Table 5.11). The

factor used is the ratio between the truc seetional propenies and the length (determined from model)

of the CC element in question, and those of the canilage of no 6 (i.e. true sectional properties of the

costal cartilage of rib 6 and the full length ~ of the CC element attached ta rib 6).

Although the calculation of the sectional propenies of the costal cartilage is based on the

assumption that they are elliptical, only one bending stiffness is given in [103]. Assuming it ta be for

bending about the weak axis, strong axis bending stiffness may be calculated in a manner similar ta

tne abave procedure, by factoring the weak axis stiffness using the true inertia abaut the strong axis

of the cartilage in question (Iv and the true inenia about the weak axis of the canilage oC no 6 (11)

along with the length factor. The formulas used ta calculate the stiffnesses Cor each CC element are

as shawn on the following page. The factors are represented bya,À,'Y,and e. The subscript 6 denotes

quantities belonging to the costal cartilage attached to rib 6. The subscript k denotes quantities

belonging to a CC element in the model.

The E and G values used for aU CC elements are 10,155 N/cm2 and 1,105 N/crol
, respectively.

They are ca1culated using the axial and shear stiffnesses, and the true crass-sectianal area

correspanding ta the cartilage anached to no 6, as well as the full modellength (~=9.271 cm) of the

CC element attached ta rib 6. The remaining sectional propenies far all CC clements (Il' lb J),

tabulated in the last three columns in Table 5.13, are calculated using the corresponding faetored

stiffnesses, the lengtbs from the model, and the above E and G values. Figure 5.9 illustrates the

element coordinate system.
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Fig. 5.9 Element coordinate system for CC clements. The x-y plane coincides with the plane fonned
by the global Y-axis and the local x-axis. Here, the x-y plane defines plane 1, and the x-z
plane defines plane 2.

The elements representing the intervenebral joints, in belWeen the elements representing

venebrae, pravide Oexlbility la the spinal CO[UIIUL The OeDbllity of these elements is dependent on

(1) the sile and shape of the cross..sectiODS, the lengtbs (beights), and the malerial prapenies (moduhl

of the ïntervenebrai dises, (2) the action of the ligaments interconnecting the vertebrae, and (3) the

shape of the articulating faccts [73]. Sîncc these variables differ al the various inlervenebral joint

levels, it cannot be assumed that the Oexibilities are mnstant throughout the spine. Stiffnesses

assigned to these elements have a great bearing on the results. Therefore, a tborough study of the

prior worles ooncerning lesting of motion segments of the thoracic and lumbar spine is necessary.
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Table 5.13 Sectional Properties of Costal cartilage (CC elemen15)

e

~

Rib Elemenl Prop. Lcnglh Real seclional propcnies (103) Faetorcd Itirtness calculatcd bascd on Iliffncssc:s of Modd lCdionai propertiea;
no. no. no. (cm) elementl attac:hed to rib 6 (4) real area uaed Cor aU CC clementi

Ara 1. 12 J BAIL EI.IL BIlL GNL OJIL l, 12 J
(cm!) (cm~ (cm~ (cm~ (N/cm) (N-an (N-an (N/cm) (N-an (cm~ (an~ (cm4

)

trad) /rad) /rad)

1 365,383 71 3.171 0.7458 0.0158 0.1169 0.0566 2388.46 725.49 5367.68 259.91 3088.97 0.2265 1.6761 8.8644
2 366,384 72 4.7.50 0.4129 0.005" 0.0373 0.0186 882.76 165.53 1143.36 96.08 677.66 0.0774 0.5348 2.9130
3 367,385 73 5.443 0.5419 0.0080 0.0706 0.0287 1011.05 214.00 1888.58 110.0S 912.51 0.1147 1.0123 4.4948
4 368,386 74 6.418 0.6710 0.0110 0.1177 0.0549 1061.13 249.55 2670.21 115.56 .480.35 0.1571 1.6816 8.5981
5 369;381 15 3.560 0.5458 0.0101 0.0.516 0.0343 1556.95 413.08 2355.81 169.46 1661.39 0.1448 0.8259 5.3119

" 310,388 16 4.288 0.5913 0.0124 0.0614 0.0421 1400.31 421.05 2084.88 152.42 1699.11 0.1178 0.8804 6.593.5
6 371.389 77 2.395 0.6110 0.0156 0.0822 0.0525 2845.17 948.39 4997.29 309.68 3793.56 0.2237 1.1786 8.2222

" 372.390 18 2.614 0.6710 0.0156 0.0822 0.0525 2Ii06.80 868.93 4518.62 283.73 3475.74 0.2237 1.1786 8.2222

" 313,391 19 3.024 0.6710 0.0156 0.0822 0.0525 2253.31 751.12 3951.84 245.26 3004.49 0.2237 1.1786 8.2222

" 374,392 80 3.633 0.67]0 0.0156 0.0822 0.0525 1875.64 625.21 3294.39 204.15 2S00.ss 0.2237 1.1786 8.2222

" 375,393 81 'l..775 0.67]0 0.0156 0.0822 0.0525 24".56 818.52 4312.98 '1fJ7.27 3274.08 0.2237 1.1786 8.2222
7 376,394 82 4.15t 0.8264 0.0250 0.1011 0.080.S 2021.76 876.91 3546.23 220.05 3356.11 0.3S84 1.4496 12.6074

" 377,395 83 6.603 0.8264 0.0250 0.1011 0.080.5 1270.98 551.27 2229.35 138.34 2109.83 0.3584 1.4496 12.6074
8 378.396 84 1.963 0.8310 0.0230 0.1007 0.0809 4299.05 1705.99 7469.25 467.92 7132.17 0.3298 1.4438 12.6701

" 379;397 85 5.323 O~93S 0.0114 0.0110 0.0404 1132.28 311.83 1942.09 123.24 1313.46 0.1635 1.0180 6.3272
9 380,398 86 3.158 0.5290 0.0114 0.0422 0.0368 1701.12 525.61 1945.67 185.16 2016.64 0.1635 0.6051 5.7634

" 381,399 87 5.5OS 0.5290 0.0114 0.0422 0.0368 975.33 301.36 1115.54 106.16 1156.24 0.1635 0.6051 5.7634
10 382.400 88 8.323 0.4129 0.0066 0.0287 0.0217 503.80 115.46 502.08 54.84 451.206 0.0946 0.4115 3.3985

Nole: E IOI IO,lS5 Nlcm2 1...-9.211 cm (elementl372·374 or 390-392)
0&1,10S N/cm2



A motion segment is defined as oonsisting of an intervenebral dise and its two adjacent

vertebrae with aIl connecting ligaments intact. It is important that the posterior elements of the

vertebrae, in particular the tacet joints, and the ligaments are included in the motion segment testing.

They restriet movement between adjacent venebrae, and hence contnbute to the stiffness of the

intervenebral joint Their partidpation is evident because upon their removal, experiments

[74,7S,!13} indicate significantly increased OeXJbllity. Any deformation between the two venebrae can

be assumed solely due to the intervertebral joinL

illustrated in Fig. 5.10 are the 12 prindpal directions in which the loads are applied and the

deformations are measured when testing a motion segment For the purpose of the stability analysis,

motion segment testing may he reduced to loading in 8 physiological directions. They are axial

compression; antenor, posterior and lateraI shear; antenor, posterior, and laterai bending; and torsion.

Due to the symmeUy of the structure, lateraI shear and bending, as weU as torsion need to be tested

in only one direction [121]. In addition, tensile stiffness is not important in compressive stability

analyses [121]. By loading motion segments T1-T2 through LS-S1 in these 8 directions and measuring

the displacements in those directions, the compressive, lateraI, antenor and posterior shear, lateraI,

anterioe (flexion), and posterior (extension) bending, and torsional flexlbilities of the intervenebral

joint at each level may he detennined.

Load

} Displac:ement

(::::::=J Force

~ Moment

~ Transla110n

U Rota1ron

~\~
'y

Fig. 5.10 nlustration of the prindpal directions of load application and defonnation measurements in
typical motion segment testing. ACter White and Panjabi [130].



Experimental delermination of the appropriale stiffnesses is diflicult due la the raets lhat:

(1) The post·monem effect is not aa:ounled Cor in the stiffness propenies. Allthe teslS are

performed on in·viuo specimens. This type of testing is not possible on in-vivo specimens. However,

the preserwtion technique seems la be quite effective.

(2) The material is human biologica1 tissue. Fmtly, it is highly nonlinear and visco-elastic.

Ils deformation is dependent bath on the load and lime. Il becomes stiffer as the loads are increased.

It is suspected to experienœ permanent deformation under sustained loads, although more testing is

neœssary. secondly, in line with the cbaraeteristics of biological material, it is Cound lO have a large

variance of propenies among specimens [88).

(3) Different experimental oonditions and designs, Le. testing procedures and displacement

measuring deviœs, used by various researchers increase the large variation in results and makes

comparison among them difficult (88). Different procedures produce different experimental error.

Te add to the difficulty, some results are based 00 experîmeots which for example, take inte account

preload and coupling effects whlle others do nOL

(4) It is difficult ta conduet stiffness tests on the intervenebral joinL It is much casier ta

perform OexJbility tests, in which the load is applied and resulting displacemeots are measured. The

stiffnesses of the main motions1 are approximated by invening the main motion fiexibilities. The

approximation is acceptable as long as the coupled motions are small (negligible). Accurate stiffness

values are reached by invening the complete nexibility matrix, taking into account the coupled motion.

Panjabi et al. r89) show a 10% error in oegIecting the coupling effect. Sînce a larger variation is

round among subjects, the above error is acceptable.

Experiments to determine the stiflness or OCX1bDity ofmotion segments have been performed

on a large scale. The large compilation of data is reduced by taking into aa:ount only those results

which were obtained from experiments wbicb tested many motion segments, individually, and in the

principal directions [11,73,74,75,86,88,90,107,113). Table 5.14 summarizes the motion segment

experiments performed byvarious researchers which were used in determining the intervenebral joint

stiffnesses used in this madeL The reason for this is simply 10 limit unneœssary variance due 10

different procedures and to achieve some son of consisten«.y. In addition, empbasis is put on those

IM_1fIOIÏDft [88] is defiDcd • the IIIOÙOD produœd iD the laIDe direcIioD • Ihc applied Iœd.
Couplai moriGft il the lDOtioD produœd iD 0Iber dira:IioIa otber tbIa Ille dincIiaD oC IllliDlDOlioa. It il ddiDcd [88] u

1 rault oCcoupIÎDI wbicIl il die pbcnomcnoa iD whicb IIIOIioalloaa 01"aboutIR ail ÏI œuialeutly.-ociatal with IDOtion 110111
or about 1R0Cber aiL
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Table 5.14 Summary of ln Vitro Motion Segment Flexibility Testing Studies used in determining Intervertebral (I.V.) Joint Stiffnesses

e

~,

Experimenler(15), Mollon aegmenta Conditions of Sxperimenl ReauJ.. and commen~

dalc, ref. no. lealcd

Lucas" Brc:aler, -TIm lhmueh -1 lieamenloUA spine of 32 yr old maJe lubjcct 10 lalcral loadioe ·fk:xibilitiea only delermincd (rom 1 lpecimen.
(1961),173) UlSl, laierai from 0 - 2500 1 al incrcmenla of 150 1. -Stiffneu ln goOO agreemenl wilb SchuJtz (107) al 'l'8m and L31L4

bendinl ltianeu -fora: applicd lalcrally at n, momcul M at diJc lad le\'dI.
onJy delermincd by tbe fora: timea distancc from TI. Hmce. -Flaibililiea of Ipioe delcrmJned at Ioad b'ela of ~OO, 1000, and
-llpcdmen moment incn:ued caudalty whicb il a l'CaUstie repraenlalion. 1500 g. Any rotation bctwcen vertebree aDumcd to &akc plaoc al t.v.

-Rotation e meaaural between adjacent vatebrae. Joint and Ocxibiliay at cach Ievel c:alculatcd u f-e/M. FlcxibiUty al
-TIme allowcd for crccp, and meaaurcmenll allo made upon cacb b'ellaken u aw:raF of 3 OcàbWtie:L
unloadinl; wbicb indlallcd no lipificant byllerc:ais. oSuffneu al cach I.v. joinl levcl appruldmalcd by IIf...

Markol', (1970 " -17(f'8 througb -Talinl jll allowed unc:onfincd motion. Meaauremenll only -l..oad-dilplaocmcnt CUM:a for main motio....
1972), (74,7S) l..3/I..A made in prindpaJ dlrcctiool. -Bendina and tonlon: no CYidcnœ of CRCp al momenl leYdl talcd.

-17 apcdmena -Allowancc: for ac:cp; rcadlnp aftcr 1-2 mina. Non-Uncar dcformatlona wilb lli«nc:u lncrcuinl • moment il
(21-~~ yn old) -Bendin. and tanion telb with anicular laceta and lipmenta inaeascd. Stlaer in CXlcnsiOft tban Bedon «(or aU rqiooa). Lumbar

intact, tben n:pealcd witb Ihem remOYCd. Pure moment rqion more flexible for aU bcndln.. Lowat Ihorade and lumbar t.v.
appUed. joint mucb auff" in tonion (due 10 f.acet orientation).
-Axial and abar tellI: pœtcrior Itructura remOYCd. -8bc:ar. no cn:cp, UttJe dilplaccmcnt (Itift) hence Ioaela appUed arc
Lumbar ICIIDCDt œIy for abcac test. Segment conaiated of 3 amaU to IMlld damage. Initial atlffDaa - 1050 -5100 N/an.
\Utebrae and 2 dilca. Fora: applicd al cent" of middlc -Axial: Oblcrvcd b)'ltCJail and DOn-Unear lliffenJna wilb increascd
\Utebrae. witb cod ~brae flXCd IUc:b lhal "pure" -bcar dcfJcction. finalslitrnesa uaed for c:ompuiloo. l1nœ spine lubjccted
cxiIta. lnatron machine UIed ror alal tata. Max. load 1400 - to coDltant compressfvc preload duc to body wd&bL Stiffnc:a range
2200 N, loadinl rate of 2.5 mm/min. from ..:ZOO - 10700 N/aD wilb average of 8690 N/aD.
-No preJoad) -POIlerior Itnaetures have gealell adffCIÙDI dfect in c:ItenIion (in

lhorade and lumbar reglon) and in tonton (ln lumbar rqion).

Schul~ -Simulated -Conditions Iimulaled: -Law 10l'5ionalatiffncss compared to olhcr cadava' material rcsuhl.
BelyUcbko, cxperimenll uling - no prcload -Good agreemcnt wilh nonnal mOlion rangea found in put.
Andriacchi, T8/I9 and l...3/L4 • uncoDllraincd mOlion -flexion found Itiffer tban extension, altributcd to ligaments that
(1973), (107) model motion - loadcd in aU prindpal directions at &COmclric cenler of work ln Oaion but not ln extension, oontraly tO MartoIf who round

ICgments inferior lurfaa: of supcrior vertebrae extension to be limited by lmpingCIDCDI of f.acetl.
-detcnnincd diJc - loading: forces - 100 ka for tcnaion and abcar, 300 kg for -Determincd lsolated diJc Itlffncu in comprcuionltcnsion, Ihcar,
Itlffncsa for compression; momen" - ISO kg-aD in thoracic and 200 q-cm bendine, and torsion at aU IcvdJ of lboraoolumbar Ipine. Sliffncss at
thoracolumbar in lumbar for bcnding, 300 kg-an for lwisllng. modd levcls adjUilcd untU n:sultl in acn:cment witb cadaver n::sulll.
resion Stitrnesa al other levels basc:d on relative varialioDl in leometry.

'Compressive preload of 400 N lives good representation of averale b'ldy welghl aboYe l.3.
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Table 5.14 Summary of ln Vitro Motion Segment Flexibility Testing Cont'd

•

~

f..xpcrimenler(5), Motion 5cgmenl5 Condilions of cxpcriment Rc:aul15 and commenta
dale, ref. no. tested

Panjabi, Brand, -n{f'2through -No prcload. ·No trend in Ihoracle naibilitiea, possibly due la tClling proccdurcj
& While, (1976), T11m2 -Coupling accounlcd (or; (arec appUcd in 12 principal only 1 segmenl lesled per level and segments obtaincd from different
(88,891 -flcxibilily al each directions, displacemenls measured in 3 directions (1 main and specimens. A1lowa no distinction bel\WJen interlevel and intersubject

level based on 1 2 coupled), assuming symmeuy aboui sagillal plane. variation.
aample motion -Loading: Forces - initiai 10 N, inaements of 30 N, up to max ·Leut nexible in axial direction. Lesa nexible in compression than
aegment of 160 N. Moments - initial 100 or ISO N-cm, increments of tension, in extension than Oexion. Equally flexible in A-P and laIeraI
(segmen15 100 or ISO N-cm, ta a max. o( 600 or 750 N-cm. Ihear, in torsional and lateral bending.
obtained from S -36 load-displacement curves for main and coupled molions -Main motion always found to be greBteat, exocpt duong axial
different given for nom1 only. compression which reaultcd in lignlficant horizontal displacemenl.
lpeclmens) -Main and coupled Oc:xibililY coefficienls determined al cach -181] Ih(M'l errer (10%) in oblaining main stifTneu coefficients by

level for principalloads of 100 N or SN-m. jnvening main Oexibility coefficients iOltcad of Invenlng complele
-Measuremena arler 4 mins. (approxîmalely 97% deronned). nexibiJIay malm (main and ooupled coefficients).

Panjabi & White, -LllL2 through -Compressive preloads of 0,400, and 1000 N applied during -72Ioad-displacemenl curvcs Cor UllA segment (dcscribes Cull
(1977), (90); 1..3/1..4 physiological loading. malion)

.Ioad-disp. curvc:s -12loads applied, 6 disp. measured al 0 load and 3 load -ResullS show effecl of compressive preload on aegmenl behaviour
Krag, (1975), given for L31L4 Incremenls. Max force ISO N, max moment 10 N-m. Reading - mon: Oexible when lubjectcd ta (orea dircctcd laterally and
(63) segment of 58 yr. analyzed for 3rd load cycle only (repeatable phase). anteriorly or to moments produclng latenl bending and flexion

old man ·3 min. aUowed ror crcep. - lcas flexible when subjected ta axial tCOllon and tonion
·Posterior clements inlacl. • no effcet when lubjected to axial CIOmpreaion, pasterior shear, or

extension.

Schul~Warwick, -Ll/L2 through -Prcload of 400 N applied during ph)'liologicalloading -Load-displacement curvca of main motion reOcct average rcaponsc to
Berkson, & LAILS -Loading: appUed in 3 or more Increments, maximum of 20.5 l08ding of ail segmenta Icsted; hence. no Indicalion of intcr-Ie\'el
Nachem50n, -42 segmenta N-m for bending and lorsion, 205 N for shear or motion variation and coupling.
(1979), Ill3); from 24 cadavers limiled to 8 deg. or 2 mm maximum. -Stirrc:st in lonion, l00lJ& lcas in atenaion, 4OO9fIieu in Ocxion and

(mean age lA 43), ·Unconfined motion segment testing. lateral bending
Berkson, wilh and without -Oisplacement rccordcd in each of 6 directions for each of the ·POIterior clements have grealcst effccl in extension and lorsion
Nachem50n, & poslerior 6 physiologicalloads applic:d, hence main and couplcd motions -Slrong CIOupling notcd between bending and Ihcar (ClOUId be the resull
Schull~ (1979), elementa intact. accountcd for. of point of application of shear force caus!ng moment on disc)j no
(11] -Aceounled (or crccpi rcadinp after 15 5ee. consistau CIOupling found belwccn torsion and lateral bending whlch is

-Nonrepelilive lIalie Joading. beUC\'ed to cdst.

Tencer, Ahmed, -L2/L3 and LAILS -8 of 12 principal load5 appliod (due 10 symmeuy w.r.l. uginal -Resulta in Ihe form of load-disp. curves, main and rouplcd/main
Il Burke, (1972), -14 segments plane) in 3 Joad sleps. Max. loads: shear 90 N, comp. 823 N, flClibility coefficients, and ncdbility ooeffident ralios for preload.
(121] (rom 8 lubjccts flex.-ext. 11.2 N-m, laI. bend. 14.7 N-m, axial torque 129 N-m. -Anlcrior Ihar most Oexible, posterior Ihcar 5M6 and laterallhear

·AlIowance for creep: 1 min at bt and 2nd stcp, 2 min at 300. 33% as Oc:xible. Compressive preload docrcucd Ihcar Oexibility 61 %,
-Unconslrained mOlion tcsling. anteriorfy and 73lJ& poIleriorly 739&. Contrary ta Panjabi (90) but
-Posterior elements inlact and then removcd. consistent with othen.
-46 yariations of combination 'oadin! performed. Prcloaded -Most Oc:xible in Oexionj in extension 6OlJ& and ln torsion less than
with 1 or principal loads applied al max., then other principal 30% as flexible. laIeraI bending nexibility approximately Ihe average
loads applied in 3 Iteps with the exception of principal loads of Oexion and extension. flcxibility of axial torque dccreaIcd by SO%
whose magnitudes are increased by the preload. with compressive prcload (good agreement with Panjabi (90».



experiments which tested many motion segments (rom the same specimen. Again, this is done mainly

to achieve consistenq' or a trend among various levels. If each motion segment tested is from a

different specimen, it cannat be determined whether variance is an inter-Ievel variation or a variation

among different specimens, and c:onsistenq' cannot be acl1ieved (88).

An important factor in obtaining realistie stiffnesses is the application ofcompressivepreload

(90]. The spine is CODStantly subjectc:d to compressive gravity loads due to body posture and

5uperimposed body weight when it is under any other physiologica1 load or load causing motioD.

Hence, results obtained wben a preload is included as part of the testing environment are favoured.

Obviously, preload is a more imponant factor for lumbar motion segments since they are subjeeted

ta more weighL

There is a differenœ ofopinion whether compressive preload sbould be used in conjunction

with lateraI bending, Oexion, and extension. The offset of the compressive preload May increase the

effects of moments making the motion segment appear more Oexable (121]. Testing by Panjabi et al.

[90] indicates asignificant increase in the fiœbWty of the segment in lateral bending and Oexion when

a compressive preload is applied. This inCfease may be due to the additional moment or the effeet

oC compression in the elemenL

The assumptions made and criteria used to best approximate the stiffnesses used in this model

are as follows:

(1) Linear approximation: Unear stiffness values for compression, and anterior-posterior

bending and sheart are approximated from Donlinear load-displaeementcurves by determining stiffness

al a point corresponding to the stalie load in tbat panicular segment of the structure (determined

approximately by a preliminary analysis) assuming a compressive buckling load, Pcr=600 N, from

Andriacchi et aL [4]. Renee, more empbasis is put on studies which present results in tenns of load­

displacement curves rather than in tenus of Oexabilities al pamcular loads. For lateral bending.

torsional, and lateral shear stiffness values, due to the geomeuy of the spine and the nature of the

loading (i.e. axial compression and flexion moment), initial statie stiffnesses are used sincc there is

no deCormation or loading in these directions prior to buckling. In addition, due to the linear

property restriction, the same sûffDesses bad ta be assigned Cor Dexfon and extension as weil as Cor

anterior and posterior shear, a1though thestiffnesses are sometimes Cound to besignificandydifferenL

(2) Atultomical rutrainU: UmitatioDS on the motion in the different repons oC the spine

imposed by the respective vertebral geometty are kept in mind during the modelling of the propenies.

Recalling anatomic:al restrictions and freedoms, significant axial rotation is permitted in the thoracic

.gg.



region. In the lumbar region, axial rotation is restrieted wbile lateral bending is quite free. Both

flexion and extension are aUowed in cath region.

(3) Effeet ofpreIODd: In order to make a comparison of results, adjustments are made to the

results which were obtained in experiments not induding preload (when appropriate). The effect of

the preload was determined for the L3..LA motion segment by Panjabi et aL [90). Assuming the effect

varies linearly with respect to the weight on the segment, the effec:t of the preload at the other

segments is interpolated.

The stiffness properties used for the intervertebral joints in the model are given in Table 5.15.

They are based on the studies described in Table 5.14. Using the rea1 cross-sectïonal areas, effective

shear areas1, and œntrallengths of the elements in oombination with the axial and shear stiffnesses,

the E and G values are determined respec:tively. Moments of inertia and torsional constant values

are then ca1culated using the bending and lorsional stiffnesses, rea1 lengtbs, and E and G values

previously ca1cu1ated. This procedure enables proper modeUïng of the joint stiffness in quantities

necessary for computer input. Sectional and material properties calcuIated Cor the intervertebral joint

are given in Table 5.16. Equivalent sectional properties for the 3 element representation of the

intervenebral joint are calculated using the Cormulas in Appendix B, and are given in Table s.l6a and

5.16b. The element coordinate system is shawn in Fig. S.7.

s.s LoadiDl and Boundary Conditions

The method of simuIating the weight of upper body segments acting on the spine is adopted

from Haderspeck and SChultz [49]. Horizontal sUces of the trunk are made al the base of each

vertebra. The weigbt of each slice is applied al the œnuoid of the slice, which is rigidly attached to

the bottom center Dode of the venebra.

The weight of each slice is calculated acalrding to the volume of eadi sUce and a constant

density of 1019 kglm3 (spedfic weigbt .,=0.0099964 N/c:m3
) [49]. The volume of cadi sUce is

calculated usina the average area and thidmess of the sUce obtained from sc:aIed sec:tional anatomica1

drawings [37]. Cross-sectional areas are measured from the drawings of mious horizontal sec:tiODS

of the human body usina a planimeter. The positions of the cross-sections do Dot correspond with

the 10cadoDS of the sUces chosen (Le. boltom of vertebrae). 1berefore, with the aid of the sectional

drawings indicatiDg the venical positions of the borimntai sections along the spine, the areas of the

tne efrceti\'e abcar ara il caJcuJalcd QG the __pIioD dlat 0DIy the lDDulUl lDd Ioqitudinallipmenll R:SÎII sbear,
bendiDl aad lOllÏOlL 'Ibe ara racaor for Ibar il takeD • 0.4375 (38.80,107].

-100-



Table 5.15 Intervertebral Joint Stiffnesses

Superior Axial TonioDal Latc:ra1 A-P Lateral A-P Truc Central

vcrtcbra (N/cm) (N-aD/rId) bcDdiD& bcndiD& ahear sbcar arca lcogth
(N-aD/rId) (N-aD/nd) (N/cm) (N/cm) (cm~ (cm)

TI 9090 2135 1710 4000 S886 S886 4.39 0.449
1'2 11770 3305 3270 7000 10791 10791 4.98 0.310
1"3 14715 ~ 4710 10000 13734 l3734 5.36 0.272
T4 20600 692S 78S0 11460 18639 18639 5.71 0.222
TS 18640 7005 7550 11910 16677 16677 6.28 0.2S1
T6 17660 7090 7550 12590 15696 1S696 6.89 0.320
17 12285 7180 7730 7500 13734 13734 7.61 0.400
1'8 14715 8S95 8050 12000 12753 12753 8.38 0.442

1'9 15385 l06SS 798S 9200 13734 13734 9.02 0.473
no 15430 1403S 11245 16500 13734 13734 10.09 0.507
ni 15300 23S45 9220 12500 10791 10791 11.30 0.680
n2 15215 76660 9415 17315 9810 9810 12.07 0.841
LI 13455 53115 6400 16380 8829 8S29 12.98 1.006
U 12000 SS290 4870 22165 7848 7848 13.78 1.147
L3 14715 61305 4965 23420 7848 7848 14.66 1.221
LA 13735 4868S S78S 15000 6867 6867 15.38 1.401
LS 10790 39835 11505 11000 S886 S886 14.55 1.570

Table 5.16 5ec:tional Properties Cor Intervenebral Joint

Superior E G A Il 12 J K1.Kz
venebra (N/cm~ (N/CDl~ (an~ (an4

) (cm4
) (cm4

)

Tl m9.7 1376.0 4.39 0.826 1.932 0.697 0.438
TI 732.7 1535.4 4.98 1.384 2.962 0.667 0.438
TI 746.7 1593.0 5.36 1.716 3.643 0.779 0.438
T4 800.9 1656.4 5.71 2.176 3.177 0.928 0.438
T5 745.0 1523.5 6.28 2.S44 4.013 1.154 0.438
T6 820.2 1666.3 6.89 2.946 4.912 1.362 0.438
TI 645.7 1650.0 7.61 4.788 4.646 1.741 0.438
T8 776.1 1537.5 8.38 4.584 6.834 2.471 0.438
1'9 806.8 1646.2 9.02 4.681 5.394 3.062 0.438
TIO 775.3 1577.4 10.09 7.353 10.790 4.511 0.438
TIl 920.7 1484.3 Il.30 6.810 9.232 10.787 0.438
T12 1060.1 1562.4 12.07 7.469 13.736 41.265 0.438
LI 10428 1564.1 12.98 6.174 15.802 34.163 0.438
1..2 998.8 1493.1 13.78 5.592 25.453 42473 0.438
1.3 1225.6 1494.0 14.66 4.946 23.332 50.101 0.438
U 1251.2 1429.8 15.38 6.478 16.7fJ7 47.705 0.438
LS 1164.3 1451.7 14.55 15.514 14.833 43.081 0.438

-101-



Table S.l6a Equivalent Sectional Propenies for Central Intervenebral Joint Elements (K1=O.4375)

Superior A Il 1: J Kz
venebra (cm~ (cm<4) (cm·) (cm4

)

TI 3.336 0.628 0.838 0.354 0.446
Tl 3.785 1.052 1.354 0.164 0.441
T3 4.074 1.304 1.572 0.103 0.44
T4 4.34 1.654 0.916 0.074 0.442
T5 4.m 1.933 1.146 0.071 0.443
T6 5.236 2.239 1.355 0.017 0.446
TI 5.784 3.639 0.598 0.092 0.497
TB 6.369 3.484 1.683 0.501 0.454
1'9 6.855 3.558 0.2 0.887 0.957
no 7.668 5.589 3.646 1.957 0.447
Til 8.588 5.175 1.667 7.84 0.49
T12 9.173 5.676 4.594 38.095 0.457
LI 9.865 4.692 S.363 30.736 0.464
L2 10.473 4.25 Il.999 38.88 0.448
L3 11.142 3.759 9.623 46.199 0.453
LA 11.689 4.923 3.902 43.432 0.527
1.5 11.058 11.791 3.303 38.929 0.595

Table 5.16b Equivalent 5ectional Properties for Anterior/Posterior IntervenebraJ Joint Elements
(Kt=0.4375, J=0.(0)

Superior A Il Il K1
venebra (cm~ (cm4

) (cm4
)

TI 0.527 0.099 0.132 0.446
1'2 0.598 0.166 0.214 0.441
1'3 0.643 0.206 0.248 0.44
T4 0.685 0.261 0.145 0.442
T5 0.754 0.305 0.181 0.443
T6 0.827 0.353 0.214 0.446
TI 0.913 0.575 0.094 0.497
1'8 1.006 0.55 0.266 0.454
19 1.082 0.562 0.032 0.957
TIO 1.211 0.882 0.576 0.447
TIl 1.356 0.817 0.263 0.49
TI2 1.448 0.896 0.725 0.457
LI 1.558 0.741 0.847 0.464
I2 1.654 0.671 1.895 0.448
L3 1.759 0.594 1.519 0.453
lA 1.846 0.777 0.616 0.527
1.5 1.746 1.862 0.521 0.595
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top and bottom surfaces ofeach body slice are linearly interpolated using the calculated section areas,

and the distances (thicknesses) between the horizontal sections and between the body sUces made at

vertebrae bases, measured directly from the drawings. The average area of each body slice is

calculaled, assuming linear variation ofarea between sections. The cenrroid of the sUce is delermined

similarly by approximating the cenuoid of the area on the sectional drawings. AIl dimensions

measured from the drawings (37) are increased linearly by 5% according 10 the suggestion by

Haderspeck and Schultz [49]. They found the dimensions to he small when oompared to a more

recent and extensive study [22].

The weights of the upper extremities are applied al their centers of gravity and rigidly

attached to the bottom center node oC venebrae Tl, 1'3, and T4 [49]. Similarly. the weight of the

head and neck are linked ta Tl [22,49]. The weights assigned are adopted from Dempster sited in

[25] with slight modifications based on adjustments of the percentage body weighl of the segments

[22]. The position of their center ofgravity is based on data on the center of gravity of body segments

[221 and scaled anatomy drawings [37].

Based on these calculations, the resultant weight on the sacrum is 376 N and the coordinates

of its center of gravity (C.G.) is Xe=2.56 cm, Yc=O cm, and Zc=27.78 cm. The results are in good

agreement with Haderspeck and Schultz (49], who round the resultant weight to he 380 N and wilh

Granes Anatomy [44), wbich states tbat c.G. passes just in front of the sacrum. In addition, there

is satisfactory agreement with the results found in literature [25,79] conceming weight supponed by

each venebra level.

The weights of the upper body segments and sUces. and their points of application are used

to obtain a realistic loading condition proponional ta the distnoution of body weight along the spine

length. For the purpose of the buckling analysis. the laads applied are expressed as a percentage of

the total load applied ta the structure. These laads are calculated in Table 5.17 and are applied to

the structure as described above. It is Celt that in the buckling analysis, distributed loading might

produce more realistic results than loading with a lumped force al the top of the spine.

However, for the nonIinear post-buckling analysis. it was found mat in NASTRAN the

distnouted loads could not be applied. The loaded nodes move and rotate with the structure and

deviate far from the center of gravity. Hence. il was opled ta apply the resultant body weight lumped

al the c.G. by rigidly connecting the C.O. to the superior node of Tl. As discussed below, the

constraints on Tl are such that the weight 5tays in the center. Effectively, the loading is equivalent

10 a compressive force and a Corward flexion moment (2.98 limes the force) applied at Tl.
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Table 5.17 Body Weight Distnbution al Various LeveIs

Slicele\'d Averqe Meuured Real SUce Sodyftipl Measural Rea!
calcuJated thickDeII. volume. Ve'ef&bl, diacribulfoo moment moment arm in
an:a. (cm~ (aD) (cm') (N) (CJr» arm ïns- x-diredion.

Â 1 din:ctioll, (cm)
Y-(SHr w- W4W (aD)

scak=4/S· scllk-21S (S/2)Al l.OS'V, me~dannx

scale=2/S S/4 x 1.0S

170.730 LOS 700.260 8.103 0.021558 -1.750 -2.2969

TI 275.181 1.19 1279.162 14.803 0.039379 -1.150 -1.5094

1'2 338.881 0.82 1085.478 12.561 0.033417 .o.03S .o.D461

1'3 370.501 0.68 984.143 11.389 0.030297 0.B06 1.0579

T4 388.662 0.73 1108.294 12.82S 0.034119 1.292 1.6958

T5 357.191 0.62 865.072 10.011 0.026631 1.888 2.4780

T6 345.145 0.70 943.756 10.921 0.029054 2.737 3.5923

17 351.458 0.65 892374 10.327 0.027472 3.063 4.0202

1'8 352.993 0.56 172.172 8.936 0.023771 3.191 4.1882

1'9 359.677 0.74 1039.691 12031 0.032007 3.299 4.3299

no 361.756 1.00 1413.109 16.353 0.043503 3.740 4.9088

TIl 358.633 0.94 1316.856 15.239 0.040540 3.977 5.2198

n2 359.333 1.16 1628.228 18.842 0.050125 3.875 5.0859

LI 356.939 1.22 1701.037 19.685 0.052367 3.744 4.9140

L2 336.705 1.33 1749.288 20.243 0.053852 3.376 4.4310

1..3 313.249 1.26 1535.654 17.771 0.047275 3.026 3.9711

U 298.077 1.52 1769..832 20.481 0.054484 2.730 3.5831

LS 291.018 1.62 1841.598 21.311 0.056694 2.638 3.4624

Dise 299.290 0.68 794.989 9.200 0.024474 2.779 3.6474

Trunk 23420.99 271.030 0.721018

Head 46.369 0.1234 2.B88
z-17.m5

(from TI base)

Upper 29.250 0.0778 1.640
extreIDities y=±17.718

29.250 0.0778 z·-30.005
(fmm TI base)

1 Sum
1

375.899 1.0000

• ScaJe means the lCale oC the ....toaùca1 drawiDp.
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Boundary conditions are chosen, in aexordance with the literature, to retlect the anatomical

CODStrainlS of an upright human spine. When possible in the anai)'Sis, the end·suppon condiûon at

the top of the spine model (Le. superior center node of TI) is chosen to be fixed in the X, Yt S., S'J'

and SI directions. constraining lateral and anterior-posterior clisplacemenl5 and rotations respectively.

but allowing vertical dfsplaœmenL In reality. the constraint al TI is somewbere in between fixed as

described above. and 6xed only in horizontal displacemenrs and rotation (with bending rotations

released) [48]. This constraint is provided by the various mechanisms (Le. muscles) involved in the

righting reOex oC the body [73]. The sacrum, al the base oC the column, is fixed in all 6 degrees of

freedom (i.e. completely fixed suppon). This constraint is provided anatomicaIly by the Ievel pelvis

[48,73]. The remaining nodes in the model are generally given complete degrees oC freedom. The

boundaty conditions are discussed more thoroughly in Chapter 6.
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Chapter li

Results and Discussion

This cbapter presents results of the structural analysis performed on the spine anc:l nb cage

model construeted in Chapter S. Il consists of three main parts. The filst part presents results of

analyses condueted to estabUsh the validity of the construeted Madel 'Ibis is accompUshed by

comparing the present results for some cases investigated by previous researcbers. The second and

third parts are original to this thesis. They present results of analyses performed ta test the lordosis

hypothesis corresponding ta the author's (wo interpretations of iL

6.1 Model VaUdatioD

Since the present model, which is the basis of ail the results, is construeted solely from

literature data, il is important that the computed results compare reasonably weU with those obtained

from other validated spinal model studies and in vitro experimental studies. Unfonunately, tbere

exists only a small Bumber of studies on the behaviour of the complete thoracolumbar spine with nb

cage which may be used for comparison. Three studies, discussed in Chapter 3, will be used in

panicular.

The tirst is the experimental investigations of Lucas and Bresler (73]. Much emphasize is put

on these results sinœ they are the ontYones based on an aetual human thoracolumbar spine. One

shoncoming of these results is tbat they are limited to the Ugamentous spine (devoid of the no cage

etc.). The other two studies are the structural analyses of discrete parameter models (as opposed to

the gross continuum models) of the spine. Bely1SCbko et al [10] reponed the results for the

ligameotous spine, whereas Andriaa::hi et al. [4] performed the analysis 00 the same model but with

the no cage added.

6.1.1 Uaamentoui SplDe

To asœnain the COrrectDess or the adopted stiffness properties of the motion segments, and

of the geometry of the spine, the studics coodue:ted 00 the isolated ligamentous spine by Lucas and

Bresler [73] and Bc1ytschko et al [10] arc simulated using the isolated ligamentous spine of the

present modeL In accordance with these referenœ5, perfec:t symmetry about the A-P plane is

assumed.
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The simulations are carried out usïng the MSCINASTRAN finite element program. The

computed results are comparecl with thase reported in the above references. Items of comparison

inciude (a) deformation response due ta Iateralloads, and bending and twisting moments applied at

the top, and (2) the Iateral buckling loads and associated mode sbapes under a concentrated

compressive load.

In the tirst simulation, the spine is considered like a cantilever. It is fixed at the base (i.e.

sacrum) and is subjected ta a O.S kg concentrated load in the Iateral plane. applied at the top of the

spine (al the bouom ofTl). The response gives an indication of the effective laleral bending stiffness.

As shown in Fig. 6.1(a), the computed structural response of the presentligamentous spine madel in

terms of nontal plane rOlations, compares weU with the results of Lucas and Bresler (73), and of

Belytschko et al [10]. Slight discrepancies between the rotations obtained by Lucas and Bresler [73]

and in the present study may he allnouted to the approximation of the intervenebral joint sliffnesses

as being constants (independent of load or derormatïon) made in the present study. The rotations

in the present study appear slightly larger in the lower spine, and slightly smaller in the upper spine

in comparison to thase round by Lucas and Bresler [73]. The resulting bending moments are smaller

al the top and larger at the bouom. Thus. il appears thal the linear approximation of motion segment

behaviour slightly overestimates the stiffnesses at low loads, and slightly underestimates them at high

lands. This point is highlighted when comparison is made between the responses at 25 kg tateral

lond. As shawn in Fig. 6.1(b), a total frontal rotation of 64.43° at the T31evel abtained by the present

model compares ta a 41.gs rotation reponed by Lucas and Bresler [73}. This discrepancy al the T3

level is again due to significantly larger rotations occurring in the lower spine under large loads in the

present madel Thus. the linear approximations used in the present model appears ta make the spine

a bit tao flexible in lateral bending al relatively large loads.

Next, effective bending and twisting stiffnesses1 are compared with those repaned by

Andriacchi et al. [4] for the spine without the nb cagc. Fig 6.2 As shawn in the figure, the present

model does not differentiate between flexion and extension behaviours sincc properties are assumed

ta be linear elastic. The overalliower bending stiffness of the present model is prabably due ta the

use of somewhat lower stiflilesses of the motion segments. Il may be recaUed from Chapter S. that

these propenies were obtainecl from tests condueted with a compressive prelaad. The presence of

such preload <:an malte these segmeDIS appear more ftexible man they rcaUy are in lateral bending,

lEffc:ctM: stiffncsa oC the apiDc is UIC!d &0 dacribc the overa11lliffDaa oC the whole spiRe. For instance. iD this case. the
spine fixed at lbc bue is lubjceted 10 bcadiDl and lWÏItiDlIDOIDCDCI applied al the &op oC the fRe end Ipme. 'The momcnlS
divided by the respedÏ't'e colal rotation aperiau:ed by the Iop oC the spiDe pc Ihc ctrcetive bcndinl and twisting stiffncsses
oC the spme.
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flexion and extension [121J. The etTect is more likely to oa:ur in the lumbar region, where

(a)

o

-Lucas " Bresler

• Belytlchko et al.

D Pre••nt

1 1 1 1 1 1

2 4 8 8 10 12 14 18 18

Degrees

(b)

Vertebra level

1

o 10

_ Lucas & Bresler

Cl Pr•••nt

1 1 1 1 , 1

20 30 40 50 80 70 80
Degrees

Fig.6.1 Frontal plane rotations ofvenebrae in the isolated Iigamentous spine due to (a) 0.5 kg lateral
load, and (b) 2S kg lateraI (oad. Sacrum is oonsidered tixed and application of the load is
al the base of Tl. Resulrs for levels above Tl are not included because there are too Many
inaccuracies in the measuring of the small rotations in the in vitro study (73).
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kg-cm/deg2,-----------------------------,•
1.88

• Andrlacchl et al. • Pre••nt model

1.5

0.5

o
FI.xlon Exten.lon Lateral Bendlng AXIal Rotation

Fig. 6.2 Effective or overaIl bending and twisting stiffnesses of the ligamentous spine. Bending and
twisting moments are applied at Tl, while sacrum is flXed.

compressive load is larger and hence the simulated preload has a more significant effect on

experimental results. Several lumbar motion segments with reduced lateral bending and Oexion·

extension stiffnesses would tend to result in low overall lateral bending and flexion-extension

stiffnesses. This May be another reasan why the frontal plane rotations, Fig 6.1(a), in the lower spine

are on the larger side.

FinaIly, the torsional-tlexural bifurcation buckling loads of the spine model under compressive

load al Tt, for three different constraint conditions al Tl, are determined. At the buckling (oad, the

perfectly symmetrical spine, can assume an asymmetrïcal configuration involving lateral bending and

twisting. The buckling mode gives sorne scaled magnitudes of the buckling deCormations, but not their

true or absolute magnitudes. (It May be recalled from Chapler 4, that this type of buckling analysis

constitutes a linear eigenvalue problem).

•

The analysis considers the spine ta be fIXed at the sacrum and constrained in the mid-thoradc

(node 13) and mid-Iumbar (node 31) regions in the sagittal plane to simu[ate conditions of the

experiments oC Lucas and Bresler [73J. Using the globaJ coordinate system defined in Fig. 5.1, the

results Cor Tl Cree, Tl fixed in horizontal displacements and rotation (.1; y, 9J, and Tl fixed in aIl
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•

degrees of freedom except the vertical displacement (z) are shown in Table 6.1. Results are in good

agreement. However, once agaïn, it is apparent that the model tends to overestimate the stiffnesses

at low loads, and underestimate them al high loads.

Table 6.1 Lateral Bifurcation l.A>ads of Ugamentous Spine Under a Compressive Load (N)

Constraints at Tl Lucas and Bresler [73] Belytschko Present

Exp. Theor.•
et al. [10] Study

Tl free 19.13 20.50 20.60 24.06

TI fixed in X, y, 8z 166.77 167.75 196.20 168.55

Tl fixed in ail but . 327.65 313.92 297.90
z displacement
d.o.!.

• Theoretical results of Lucas and Bresler [73] are based on pure lateral buckling.

ln the study by Belytschko et al. [ID], the buckling mode shapes, resulting from the bifurcation

analysis with Tl fIXed in aU but z displacement, were scale<! by a factor such that the average lateral

displacement would be the same as what is observed in a patient with thoracic idiopathie scoliosis in

the study by Schultz et al. [IllJ. Since the main interest of this work lies in understanding scoliosis,

t11e buckled mode shapes of the present ligamentous spine model corresponding to Tl constrained

in all degrees of freedom but z displacement, denoted by condition l, are similarly factored and

compared to the factared mode shaPeS of Belytschko et al [10] and the scoliotic patient. The faetored

frontal plane rotations and tateral displacements are shown in Figs. 6.3 and 6.4. It is evident that the

presently computed results are similar to the results of Belytschko el. (10). For the most pan, the

agreement is quite goad for the frontal plane rotations, Fig. 6.3, except at the vertebrallevel TI and

TI. On the other hand, the lateral displacements, Fig. 6.4, are predieted to be significantly larger than

in [ID) especially in the lumbar region. These diCferences again confirm the Caet that the present

model is a bit tao flexible in the lumbar region. ln comparison ta the scolialie shape, the results

differ in that the displacements and rotations are graduaUy increasing from zera from the end supports

towards the middle.

Sînce the goal of the bifurcatian analysis was to obtain scoliotie deformations, the

accompanying axial rotation must he investigated. Belytschko et al. [10] report axial rotations,

obtained by factoring axial rotation mode shape by the same factor used for other mode shapes, of

negligible magnitudes compared to an apical axial rotation of 25° noted in the scoliotic patient [10}•
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The scaled mode shape of the axial rotation of the venebrae in their model [10] is not given, nor is

the data on the axial rotation of the vettebrae of the scoliotic patient. In the present study, the scaled

axial rotations were noted to be ooncave-sided, Le opposite to the rotation typical of scoliosis.

According to the sign convention chosen, lateral displaœments and horizontal (axial) rotations of the

opposite sign indicate concave-sided rotation, while those of the same sign indicate convex-sided

rotation.

However, the sagittal constraints at the mid-thoracic and mid-Iumbar levels of the spine are

anificial in comparison to the rcal spine. Thus, an analysis with Tl fixed in ail but z displaœment,

without these constraints was performed. The results of this analysis, denoted as condition 2 in Figs.

6.3 - 6.S, are also compared with the scoliotic configuration. Release of the mid-sagittal constraints

gives a slightly lower bifurcation load (289 N) and almost the same lateral displaœment and frontal

rotation mode shape as previously. Fig. 6.3 and 6.4. However, when the scaled axial rotations

obtained from this latter analysis are compared with those in the case with the sagittal constraints

(condition 1), the results are quite different, Fig. 6.5. The condition 2 scaled axial rotations are

predieted to occur in the same direction as round in the scoliotic patient, with the maximum rotation

coinciding with the maximum lateral displaœmenL However, the faet remains that these values are

much smaller in comparison ta the maximum rotation of 25° measured in the scoliotic patient [10].

In reality, the constraints at Tl are suspected ta be somewhere between fixed in a11 directions

except verncal displacement and fixed only in horizontal displaœments and rotation [48]. Il was found

that the buckled spine achieved a lateraI shape more similar ta scoüosis when bending rotations al

Tl were consuained than when they were aUowed. For this rcason, the bending constraints at Tl are

imposed whenever possible in the present sludy. However, il is apparent that the buckling

deronnations are still not localized enough, and axial rotations are not large enough ta correspond

ta deformations lypical of idiopathie scoliosis.

It may be concluded thal firsdy, the above spinal model compares reasonably well with the

results !rom previous researchers, indicating chosen stiffDess properties and geometry of ligamentous

spine are acceptable. Seœndly, similar to previous findings. il appears tbat the bifurcation buckling

of the normal spine cannat completely explain the localized deformatioDS found in scoliosis.
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Fig. 6.3 Scaled mode sbapes of frontal plane rotations of venebrae in buckled ligamentous spine
under compressive load al TI compared with rotation of scoliotic patienL Tl is fixed in all
but vertical (z) displacement, and sacrum is fixed. Condition 1 corresponds to additional
sagittal plane constraints al the mid-tborade and mid-Iumbar leveIs. Condition 2corresponds
to no sueh additional constraints.
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Fig.6.4 Scaled mode sbapes of IateraI (frontal plane) displaœments of venebrae in buckled
ügamentous spine under compressive load al TI compared with displacements of scoliotic
patienL
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Fig. 6.5 Scaled mode shapes of axial (horizontal plane) rotations oCvenebrae in buckled ligamentous
spine under compressive load al Tl.

6.1.2 Splne witb Rib Cage Intact

Similar to the above analyses, experiments and analyses previously perfarmed on the spine

and no cage structure are simulated and compared, in arder to validate the propenies and geomeuy

of the no cage used in the present werle. Along wilh the study by Andriacchi et al. [4], which was

used ta compare the effective bending and twisting stiffnesses and the stability of the structure, (WO

additional studies were used to validate the nexibility of the rib cage in the present modeJ.

Agostani el al. [2] subjeeted the relaxed no cage of live subjects ta a lateral squeezing force

and measured resulting cbanges in the lateral and anterior-posterior diameters of the no cage.. The

procedure is shown schematicaUy in Fig 6.6. In the NASIRAN simulation of the procedure, the load

was applied al the mid-axillary (IC) line, evenly distnouted among the 5 lower nos (nos 6-10). Lateral

displacements of the diameter are computed al the le ÜDe of the Middle nos, i.e.. rib 8 on bath sides

(nodes 264 & 269). Detailed description of the Madel with identification of nodes is given in

Appendix C. The A-P displacements of the diameter are computed al the inferior end of sternum

(node 253) and the Most poslerior points of no 10 (node 273 & 284). With the sacrum fixed and 1'9

(node 17 & 18) constrained in the sagittal plane, the results are shawn in Fig. 6.7. The A-P behaviour

is apparenûy very similar to that observed in the reaJ nb cage.. However, the lateral deformatian
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appears to he slightly sznaa indicating stiffer behaviour in this direction.

~3
1
~

j

i

~4

Fig. 6.6 Schematïc diagram of the experimental set-up used by Agostoni et al (2). 1,2 = Lateral
displacement transducer; 3,4 =A-P displacement traDSducer; 5 = Force uansducer. Changes
in the lateral and A-P diameters of no cage are measured as functions of the applied lateral
force.

Nat, the sternum was loaded by horizontal forces directed posteriorly to simulate the

experimental studies by Nahum et al [82] and Patrick et al (93). Loads 0-12 kg in 4 kg increments

were applied, hait at the top of the sternum (node 168), hal! at the bottom (node 253) with Tl and

1'9 fixed in the A-P direction. Average posterior displacements of the sternum indicating A-P

flexibility of the nb cage are shown and compared with the values from the above references and

Andriacchi et al. [4] in Fig. 6.S. The figure shows the large seatter ofexperimental results. Both, Figs

6.7 and 6.8, revea1 tbat the ob cage of the present model exlubits a generaUy stiffer behaviour than

that ofAndriaœhi et al [4] exœpt in the A..P direction. However, in comparison to the experimental

values and their scatter, the nô cage of the present spine model is similar to the Andriacchi et al.

madel (4) in tbat the model stiffness is between thase obtained for the fresh and embalmed specimens_
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Fig.6.7 Changes in A-P and IateraI diameters of the ob cage resulting from lateralloading of rib
cage. eNodes used to determine changes in the diameters in present model are: 264 & 269
for laleral change, 253 & 273 or 284 for A·P change.
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Fig. 6.8 Deflection of the sternum resulting from transVerse loading of sternum in the posterior
direction.
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The effective bending and twisting stiffnesses of the spine with rib cage intact are illustrated

in Fig. 6.9. The relative stiffening effeet of the Db cage is shawn in Fig. 6.10. The percentage in the

figure represents the relative amount by which the effective stiffness of the spine with rib cage madel

is higher than the stiffness of the respective ligamentous spine model It is apparent that the nb cage

in the present model bas a greater stiffening effect on the spine in lateral bendïng and especially in

axial rotation than the one in the model by Andriacchi et al (4). Since the stiffnesses in flexion and

extension must he the same in the present model, it is interesting to note tbat the nb cage stiffening

effeet of 172% compares very well with the average ofsuch stiffening effects in flexion and extension

(179%) in Andriacchi's madel. Thus, it appears that the ligamentous spine of the present Madel

(which is more flexible than the Belytschka et al. model [la)) and the rib cage of the present madel

(which is stiffer than the rib cage ofAndriacchi et al [4]) combine themselves la produce a total spine

and Db cage model which May he considered quite realistic, and not too different trom the previous

model [4].

The torsional-flexural bifurcation buckling loads under compressive load (a) concentrated at

Tl, and (b) distributed alang the spine length proponional ta weight distribution (Section 5.5) are

shown in Table 6.2. Again the sagittal plane is anificially constrained from motion in the sagittal

plane al the mid-thoracic and mid-lumbar levels so that a comparison with the results of Andriacchi

et al. [4] can he made.

Table 6.2 Lateral Bifurcation Loads of Spine with Rib Cage Under a Compressive Load (N)

Tl Constraints Andriacchi Present sludy
et al. [4]

CoRe. Dist.

Tl free 78.48 27.19 58.25
(65)· (26)

Tl fIXed in ~y,el 608.22 307.75 543.35
(49) (11)

Tl fixed in a11 990.81 453.94 764.27
d.o.f but z (54) (23)
displacement

• The values in the parentheses give the percent difference trom
Andriacchi et al. [4].
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Fig. 6.9 Effective (Le. overall) bending and twisting stiffnesses of the spine wim nD cage.
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Fig. 6.10 Relative stiffening effect of ob cage on the ligamentous spinet in percentage.
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It is apparent that in eath case the buckling load is smaller than that obtained by Andriacchi

et al [4]. The discrepan<.y is Jarger for the lumped load case than for the distnbuted one. Possible

explanations for large discrepancy between the results of the present model and that of Andriacchi

et al. [4]. may he the small size of the nb cage of the present model. an underestimate of the

stiffnesses ofsoft tissue connections. and the linearapproximations ofstiffnesses. Unfonunately. there

are no results from real specimens. whicb could be used for comparison. However. Andriacchi et al.

[4] do state that based 00 the experimental studies on nb cage used for comparison. their model

appears ta be representative ofspine and nb cage; altbough they do feel tbat more data on nb cage

are necessary in arder ta fully validate iL Considering the large variation between subjects and the

difficulty ofdefining -normal-. it is felt that present model is an acceptable representation of the spine

and nD cage structure. It is this structure on which structural analyses are perfonned in this thesis.

With respect to the resulting mode shapes, it can be seen that the imposition of bending

constraints al Tl slightly lowers the apex of the laleral buckling curve but. as mentioned before,

results in an overall shape doser to the scoliotic shape. The distnDuted loading lowers the apex most

appreciably in comparison to that due to the concenuated loading. The reason is quite obvious, sinœ

in the former case less loading is applied al the top, and it inaeases gradually with descent aIoog the

spine. Apart from the lowered apex of the lateral curve and sUgbt differences in direction of the axial

rotation, the mode shapes between the conœntrated and disuibuted cases are quite similar. Finally.

in comparison ta the ligamentous spine, the inclusion of the no cage also effeetively lowers the apex

of the buckled lateral curve by one venebrallevel.

6.2 ElTect or Thoracic Lordosis on Spine StabiUty and ScoUosis

The results of this section are concerned with the testing ofone interpretation of the lordosis

hypothesis. The premise is that a spine with lordosis in the tboracic regioo is less stable than the

normal spine (with the usualltyphosis in this region). The inference !rom reading the literature [34]

is that a precondition to the subsequent development of scoliosis is mat a spine has a lordosis along

with a horizontal or frontal plane asymmetry in the thoracic region. It is conjectured that this lordosis

bas the polential to tum into a scoliotic spine. If truc. this finding will have the diagnostic value in

that adolescents wim lordosis in the thorade region would be classified as baving higb potential of

developing scoUotie spines, and could be recommended for a corrective ueatmenL

The finite element simulation of the abave interpretation of the hypothesis is performed in

the following way. Fust, as previously mentioned, a so-c:al1ed lordolie spine model is aeated by

lengthening the anterior and shonening the posterior heights or lengths of the thorade vertebrae of
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the normal spine and nb cage model, whUe maintaining strict symmetry about the sagittal plane.

Second, this lordotic model and the normal model are loaded with distnbuted and lumped gravity

loads ta find and compare their torsional-Oemral bifurcation buckling loads in an attempt ta show

that the spine with the lordosis in the thorade region is Jess stable than the normal one. In addition,

the results from the analysis on the lordotie model are used ta detennine the approximate load near

which relatively large deCormatioDS would begin ta accur in the imperfection growth analysis, and the

expected mode in whicb they would grow. The third step is ta subject the lordotie model, which bas

lateral and horizontal plane spinal asymmetries impaned, ta a nonlinear imperfections growth analysis

by increasing the gravity-like load in small increments starting from zero.

6.2.1 Creation or Lordotle Model

As discussed in Chapter S, a spine and nD cage model with a thorade lordosis is created for

the use in the bifurcation analysis and in the imperfection growth analysis. This is accomplished, as

May he recalled, by subjecting the normal spine to lordosis inducing changes in the dimensions of the

thoracie vertebrae.. The resulting, strueturally deCormed, configuration is adopted as the initial

(unloaded) geomeuy of the lordolie model, Le. with a spine with a lordosis in the thoraac region.

As explained in Section 5.3.2, the creation of the lordotie model by the above procedure requires the

3-element normal model, which to reiterate, represents each vertebra and intervenebral joint element

with 3 beam elements representing their anteriort central, and posterior pans in the sagittal plane.

The lordotic geometry is obtained by loading the normal 3-element model with appropriate [30]

shonening of the posterior and lengthening of the anterior beam elements of the thoracie venebrae

T4-Tl2. The formulas used for determining the equivalent propenies of the anterior, posterior and

central Intervertebral joint and venebra elements in the 3-element model, shown in Appendix Bt use

the approximation that the 3 clement lenp are equaL

The structuraI equivalenœ of the 3-element model is checked by comparing the analysis

results with the conesponding l-element model for the cases of the ligameDtous spine, and the spine

with nb cage. Items usecl for comparison are (1) the critica1 buckling loads and the buckled mode

sbapes of the models, and (2) the efl'ec:tive bcnding and twisting stiffnesses. For the bifurcation

buclding analysis, the spine is constrained in an degrees of freedom al TI except the venfca1

displacement, fixed al the sacrum, and œnstrained against displacement al the mid-thoradc and mid­

lumbar levels in sagittal plane. For the UgameDtous spme, compressive loading is conœntrated at Tl,

and Cor the spine wim nb cage, the loading is distnbuted. The oomparison is shown in Table 6.3. In

the case of the ligameDtous spine, the buckling loads differ by 0.3" and for the spine with nb cage,

0.59'0. The buekled mode sbapes of the l-eIemeDt and 3-eIement models are praetica1ly identica1 for
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bath cases. Similarly, the effective stiffnesscs are in agreement. This agreement then demonstrates

tbat the ).clement representation is equivalent to the l-element representation, and hence the 3­

element spine and db cage model may be used 10 construet the lordotic Madel, Le. spine and nb cage

model wim lordosis in thoracie region.

Table 6.3 Comparison of 3-element models 10 l-element models

Spine madel Criticalload, Effective stiffness (kg<mldeg.)
p.<Nl

Flex.-exten. Lat bend. Axial rOL

Ugamentous spine
l..element ZCJ7.9 1.126 0.609 0.851
3..element 297.0 1.126 0.609 0.855

Spine with nb cage
l-element 764.3 1.934 1.155 2.281
3-element 760.4 1.934 1.163 2.281

The lordoûe spine and no cage model 50 created is named LARRY, and is shown in Fig. 5.6.

The new verticallength of the spine is 49.44 cm compared to the previous length of 48.21 cm of the

normal spine. The elongation of 1.23 cm is mainly due to the straightening errect of the spine since

the change in the curved length is only 0.67 cm. Dy representing the resulting 3-element lordoûe

spine with center vertebra and intervenebral joint clements only and assigning them the full stiffness

of the vertebra and intervenebral joint elements, the l-element lordolie model used in subsequent

analyses is obtained.

6.2.2 Comparative lJoear Blfuratlon Analysa

Bifurcation analyses are performed on the (l..element) normal and lordotie models. As

previously mention~ they are carried out for twO purposes: (1) 10 compare bifurcation bucIding of

normal and lordolie models, and (2) to determine the approximate load Dear wbich the spinal

imperfections in the lordotie Madel would begin ta grow.

Ni pan of the ana1ysis. the buckJiDg mode sbapes are sca1ed. as previouslydescribed in section

6.1.1 and compared wim scoliotic shape. Although data on the lateral displaœmenlS and frontal

rotations of the venebrae ofa scoliolic patient were given by Be1ytsdlko et al (la], data on the axial

rotation of the vertebrae wcre not. Belytsdlko et al stated that the scoUotic patient had an apical

(maximum) rotation of 25°. ne data from tb& one patient with tborac:ic scoliosis were again used



for comparison in these analyses. Two loading cases are oonsidered in the bifurcation analyses. One

is the distnDuted loading which wu considered in validating the Madel The other is a lumped

compressive load al the center of gravity of the body weigbt above the sacrum; the center of gravity

is rigidly connected ta the top venebra Tl. In bath cases, the mid-sagittal plane is free from all

artificial constraints.

DistribUlal Lotuling OISe

The spine is considered fixed al the sacrum, and fixed in a1l but vertical directions at Tl. This

loading case with these constraints is felt ta be the most rea1istic (or reasons mentioned previously.

For the normal spine, the lowest bifurcation buckling load is a sum of 762 N. Once agam, the mode

shapes scaled by a factor which gives lateral displacements comparable to scoliotie shape, are

compared ta scoliosis shape, Fig. 6.11 - 6.13. It appears that the deformations are not localïzed

enough and axial rotations are Dot significant enough to be scoliotic. However, it should be noted

that the directions of the axial rotations and their pattern (Le. location of their maximum at the apex

of the lateral curve) are simiIar to scoliosis below the T6 leveL

In comparison, the lordotic spine is approximately 2.5% less stable in the sense that its critical

bifurcation load is a sum of 743 N. This is not a significanl decrease !rom the normal spine load and

May he explained as primarily due ta the lengthened spinal column without significant influence of

the reduced curvature. Likewise, the mode shapes from the normal and lordolie model are quite

similar as indicated in Figs. 6.11 - 6.13 except that the axial rotations of the scoliosis kind (Fig. 6.12)

oœur through the full length of the spine in the lordalie model.
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Fig. 6.11 Scaled mode shapes of laIerai displacements of venebrae of buckled spine with rib cage in
normal and lordalie models under distn"buted loading compared with displacements of
scoliotic patient The models are considered fixed al TI in an but venical displacemen~ and
completely fixed al the sacrum.
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Fig. 6.12 Sca1ed mode shapes of axial (horizontal plane) rotations of venebrae of buckled spine with
no cage in normal and lordatie models under distn"buted loading. TI is fixed in ail but
vertic:al displaœment, and sacrum is completely fixed.
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Fig. 6.13 Scaled mode shapes of frontal plane rotations of vertebrae of buckJed spine with rib cage in
normal and lordatic models under dismbuted loading compared with rotations of scoliotic
patienL The models are coDSidered fixed al TI in al1 but vertical displacement, and
completely fixed al the sacrum.

Coller of Gravity (L1unp«I) LotulÙl' Que

ln reality, the spine is loaded by the distributed body weigbt which is eccentric relative to the

spine. Simïlar to the laading previausly seen, a realistic modelling would therefore require that the

spine be loaded at each venebrallevel bya s1iœ of body weight acting ecœntrically at Us center of

gravity. However, as noted previously, in scoliosis this eccentricity varies with the deformation by

virtue of the faet mat while the spine displaces and rotates relative to the body. the weight distnDution

continues to maintain its position relative ta the body. This stationary gravily loading is imponant

in attaining scoliotic defarmation. The upper body weigbt remaining in the sagittal plane causes

lateral bending moments in existing IateraI curves, which subsequentiy causes continuai growth of

lateral deformity. In the nonlinear analysis procedure of NASTRAN, the loads applied to the

strUcture move with the structure. Henœ il appears that NASTRAN cannot be used to model the

distributed gravily loading in the DonIinear analysis of the spine attempting to simulate scoliotic

deformatioD.

Sïnce one objective ofthe present bifurcation analysis is ta find the approximate load al which

imperfections would begin to grow significantly in a nonlinear imperfection growth analysis, the



bifurcation analysis (wbich is a lineal analysis) should be carried out for the same type of loading as

permitted and used in the growtb analysis. Hence as a compromise with the limitations of

NASTRAN, the distn"buted load is replaced byan equivalent concentrated foree and moment al the

top (vertebra TI) of the spine. Il may be recalled from Cbapter 5 that the ea:entridty of the weight

acting on the spme warts out to be 298 cm anterior ta TI. Henœ the appUed load for bifurcation

analysis, as weU as the subsequent growth analysis, is an axial compressive force P (N) and a flexion

moment M =2.98 P (N-an). This approximation is Dot a bad one sinee a significant percentage of

weight is in the upper region by virtue of the weigbt of the head and upper extremities.

With Tl fixed against horizontal (~y) c1isplacements and horizontal ('J rotation1, the critical

bifurcation load corresponding to torsional-Oexural buckling of the normal model is 278 N axial force

and 827 N-cm flexion moment compared to 261 N and 779 N-an for the lordotic modeL Thus, in tbis

case, the lordotic madel tums out to be 5.8% less stable in torsional-Oexura1 buckling. This resull

is in support of the lordosis hypothesis according to which a lordotic spine is more suscepuole ta

scoliosis. As discussed in Chapter 4, the reduced stability in the lordotic model may be explained by

the decreased curvature in the thorade spine in the direction of the applied forward flexion moment

[123) in addition to a longer effective lengtb. Although the loading, sinec it is lumped al Tl, is not

very realistic Cor the human body, it is used here Cor relative comparison. The scaled buckling mode

shapes of the models with normal and slightly lordotie spines, shown in Fig. 6.14 .6..16, are practically

identical with the exception of the axial rotations. ne axial rotations of the lordotie spme although

of a similar pattern as that of the normal spme are predieted to be smaller by approximately 25% at

the T9-TlO levels, Fig. 6.15. In comparison with the sœUotic shape, the spines in bath models lack

locaUzation ofdeformity and relative magnitudes oC axial rotation. Neverthelcss, the rotational mode

shapes are scoliotic-Uke, i.e. convex-sided rotations with the maximum rotation oa:urring at the apex

oC the IateraI curve.

lnc lWO beDdiDl dqrca of fra:doIII Ile râaIat Iln. Sqillal bcadiDI il reIaIcd beclUIC IDOIIlCIIl ra IppUed al TI;
moment would baw: DO cffect 0Il Ibe c:oIUIIUI ifn were liRd. 8eDdiD& iD IalCnl plue ÎI rra: bccaUIC analOlllical CODitraint
ia IIIIIC iD bath pIaDa.~ bchR:CD fiIaIlDd fnc bcadiDI dcp'ca ofCnedaal [48). la Ibc DOIIJincarIllll)'lil, apater
rolalionaf CIOIIIIniDt iD tbe laIenI plane IDI)' caille pmknigDt lftMIb 10 oa:ur iD die A-P pIaae.
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Fig. 6.14 Scaled mode sbapes of lateral displacements of venebrae of buckled spine wim rib cage in
normal and lordotic models under lumped force and moment loading al TI compared with
dispIacements of scoliotic patient The modeIs are considered fixed al Tl in horizontal
displacements and rotation, and complelely fixed al sacrum.
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Fig. 6.15 Sca1ed mode sbapes ofaxial (horizontal) rotations ofvenebrae of buclded spine with no cage
in normal and lordotic models under lumped force and moment laading at TI. The models
are considered fixed al TI in horizontal displaœments and rotation. and completely fixed al

saaum.
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Fig. 6.16 Sca1ed mode shapes of frontal plane rotations of vertebrae of buck1ed spine with rib cage in
normal and lordolie models under lumped force and moment Joading at Tl compared with
rotations of scoliotic patienL The models are considered fixed at Tl in horizontal
displacements and rotation, and completely fixed al sacrum.

l'bus, based on these bifurcation results, it appears lhat although the presence of the thoracic

lordosis bas some effect on lowering the aitical bifurcation Joad, il bas little effect on the resulting

mode shapes. In both loading cases, the mode sbapes of the normal and lordotie madels are very

similar, wim the maximum IaleraI displacement oœurring al the same level as the maximum convex­

sided rotation. Thus, lordasis bas little infiuence on creating deformations more similar ta scoliosis

than those produced in the absence of il ln ra~ the magnitudes of the convex-sided rotations are

of a smaller magnitude relative ta the lateral displacements in the model with the lordolic spine in

bath distnèuted and lumped loading cases. In addition, although relalively large axial rotations were

found al the L3 and U levels (whieb are not neac the apex of the laterai curve) for bath normal and

lordolic models uoder bath loadings, these rotations in the lordotic model tend ta he significantJy

closer to the maximum magnitudes than those in the normal model, especially under lumped loading

condition. It was also noted !hat the lordosis bad a greater effect in reducing the critical load when

the loading was comprised of the compressive force and forward (flexion) moment, although this

loading produced less axial rotation relative ta the lateral deviatian in bath models.

Conclusions drawn from the above bifurcation analyses are similar to those derived from the
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analysis of the ligamentous spine. The Most important one is that buekling due to compressive

(gravity-type) loading cannot explain scoliosis. ResuUs give very diffused buckled mode shapes and,

it appears that the introduction ofa lordosis in the initial geomeUy has no influence on localizing the

deformations or increasing the magnitudes of the axial relations (in fact, it reduces them). On the

other hand, deformatioDS of the type revea1ed by the buckling analyses (lateral deviation and convex­

sided axial rotation) are the same as those found in a localized manner in scoUosis. Thus, it appears

that although scoliosis is related to the buckling phenomenon, it is not a result of buelding under

compressive loading of the type considered above.

6.2.3 Imperfection Growth Analysis

The bifurcation buckling analyses of the preœding section predieted the critica110ad at which

a perfectly symmetrical nanr.al or lordatie spine wauld buckle laterally. It also predieted the mode

shapes ofensuing infinilesimal buckling deformations. However, il does not provide any information

on the aetual amount of buckling deformations as funetions of load. To obtain 5uch information, a

nonlinear past-buckling analysis is called for.

As already bas been indicated, the usual way ta obtain 5uch information is to abandon the

approach of bifurcation analysis of a perfect system, and instead perfarm a nonlinear growth analysis

of a system whicb is initially slightly imperfect. The imperfections begin ta grow with the increase of

the load from zero. However, generally speaking, the rate of growth remains small, until the load

approaches (!rom below) a value close ta the critica1 bifurcation load. ~ the bifurcation load is

approached the rate of imperfection growth increases and the aa:umulaled imperfections begin to

impan the column an inaeasingly buckled configuration. An example of such approach has been

present in Chapter 4 wben the growth of an inîtially curve4 column was sludied.

The advantage ofa growth analysis is obviously the faet that the aclual deformations may DOW

be determined uniquely as funetions of load. However, there is no precise value for a buckling load;

il can be taken as any load al which imperfections are deemed to have become exœssive. The major

disadvantage is that an c:xpensivc, Iterative, nonlincar analysis is required in which load is appUed

incrementally, and the spine geomeuy is updated al cadi inaement of the load consistent with the

equihorium of the StrUdure in ilS defonncd SUie. As is usual in nonlinear problems, convergence

problems MaY arise, eitber because the Joad încrement is tao large, or because the maximum load the

system is capable ofsustaîning is reacbcd. In this wort convergence problems were averted by keeping

the load increments sufficientlysmall, and by keeping within only moderately large deformations. The

convergence criteria used in the geometric nonlinear anaIysis in this study are the load equüibrium



errar test and the work error test with errar ratio talerances of 5xl0-J and 5xl0-7 respectively. This

means that convergence is considered to be achieved when the ratios of the unbaJanced load error and

the unbalanced work error ta the increment of the Joad or the work in the laad step are smaller than

the tolerances.

In this pan of the investigation, grawth analysis was perfarmed an the lordolie Madel The

initial spinal imperfectians impaned ta the model correspond ta asymmetries with respect to the

sagittal plane, of two kinds: (1) a slight right laterai curve in the tharaae regian of the spine in the

frontal plane, and (2) slight asymmetrica1 orientation of the cross-sections of thorade venebrae in the

horizontal plane. As mentioned previausly, bath imperfections can be considered naturally present

ta sorne degree in aIl spines due ta the position of the aana [3134,117].

The right lateraI curve considered in the present madel is tabulated in Table 6.4, and shawn

graphically in Fig. 6.17. It can be seen that the imperfection is taken to extend from venebrae leveIs

T4 - TIO, with a maximum amplitude of8 mm (in comparison to the length of the spine 48.2 cm) at

the TB level. The cross-sections of venebrae T4 - TI0 themselves are aIso distorted due to the

presence of the aorta on the left side. This asymmetry is such that one of the principal planes no

longer coincides with the sagittal plane. In the absence ofany guiding data, the transformed principal

axes are taken to be maximum of H)" from symmetrical principal axes, again at the 1'8 level in view

of the fact that the vertebrae most affected by the aorta will have maximum lateral as weil as

horizontal plane distortions. Figure 6.18 ilIustrates the ~ottom view of the asymmetry of a typical

venebra. Keeping consistent with local coordinate system defined carlier for symmetrica1

vertebrae/intervenebral joints in Fig. 5.7, where local x-y plane defines plane 1 and local x-z plane

defines plane 2 which coincides with the A-P or sagittal plane, the distorted cross-section requires

specifications of transCormed moments of inenia in the those same planes (now denoted l'and 2' ).

It ' and I{ as weIl as the produet of inertia Ill' . The venebrae being rigid are strueturally unafCeeted

by this small rotation. However, the intervertebral joints, which are greatly affeeted by the posterior

elements and connecting ligaments of the vertebrae, effectively have new principal axes. These

quantities calculated for the superiar and inferior emls of the intervertebral joint are listed in Table

6.5.
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Table 6.4 Initial Frontal Plane Asymmetries: Lateral Curvc of Spine (Y-coordinates, cm)

(a) Y-Coordinates of Spinc: Normal and LordolÏc Models

Spine Caltralliae Anterioc liDe- POIlcr1or Une-
Elemenl

Node No. Y,CID NodcNo. Y,an Node No. Y,an

T4 1 0 42 -.03 77 0
8 -.lS 43 -.18 78 -.13

TS 9 -.18 44 -.20 79 -.15
10 -.31 45 -.38 80 -.36

T6 11 -.«» 46 -.42 81 -,38

12 -.60 47 -.60 82 -.60
11 13 -.63 48 -.63 83 -.62

14 -.80 49 -.80 84 -.80
1'8 15 -.80 SO -.80 as -.80

16 -.72 SI -.74 86 -.70
1'9 17 -.65 52 -.70 87 -.60

18 -.20 53 -.26 88 -.14
no 19 -.12 54 -.16 89 -.08

• Necessary (or nonlinear anaIyIia in wbich lordcail-inducinl powth i1limuJaled, Section 3~

(b) Y-Coordinates of Costovenebral Joint on Vertebrae Side and Rib Side: Normal Model

Rib No. cv 011 leCt venebrae cv on richt ~ebrae CV on Idt db CV on righl rib

Node no. Y,cm Node no. Y,cm Node no. Y,cm Node no. Y,cm

S 113.114 1.38 131,132 -1.66 214 1.38 228 -1.66
6 115.116 1.18 133,134 -1.92 229 1.18 24S -1.92
1 117.118 .98 13.S,I36 -2.20 246 .98 260 -2.20
8 119.120 n 137,138 ·2.47 261 .87 zn -2.47
9 121,122 1.11 139.140 ·2.41 273 1.11 284 -2.41
10 123 1.19 141 -1.95 :z&5 1.89 294 -2.0S

(c) Y-Coordinates of Costovenebral Joint on Rib Side: Lordotic Model-

Rib No. cv Da Ic!l vcrtcbne CV CIl ri&bt wnebrae CV aD Ieft rib CV on ripl rib

Node no. V,cm Nodeao. Y,CID Node DO. V,cm Node no. Y,cm

5 lU114 1.38 131,132 -1.66 214 1.386 228 -1.666
6 115,116 1.18 133,134 ·1.92 229 1.236 245 ·1.976
7 117,118 .98 l3S,136 .2.21) 246 UJ23 260 -2.243
8 119,120 .B7 137,138 -2.47 261 0.906 m -2.516
9 121,122 1.11 139,140 -2.41 273 1.085 284 .2.385
10 123 1.19 141 -1.95 285 lAn 294 -2.011

• y -œordinales oC CV OD vatebnl aide~ the ume u la the normaimodcL.



SACRUM

Fig.6.17 Anterior view of iniliallateral curve of spine used in the Donlinear growth analyses. The
heavy line shows the laterai curve inuoduced.
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Table 6.5 Initial Horizontal Plane Asymmetries: Transformed 5ectional Properties of
Intervenebral Joints

Superior Il 12 Nades, S I{ I{ 112'
Vert. of LV. (an4

) (cm4
) sup. degree (cm") (cm4

) (cm·)
Joint inL

1'3 1.716 3.643 5 a 1.716 3.643 0
6 2 1.718 3.641 -.067

T4 2.176 3.177 7 2 2.177 3.176 -.035
8 4 2181 3.172 -.070

T5 2.544 4.013 9 4 2.551 4.006 -.102
la 6 2.560 3.m -.153

T6 2.946 4.912 Il 6 2.967 4.891 -.204
12 8 2.984 4.874 -.271

TI 4.788 4.646 13 8 4.785 4.649 .020
14 la 4.784 4.650 .024

1'8 4.584 6.834 IS 10 4.652 6.766 -.385
16 10 4.652 6.766 -.385

19 4.681 5.394 17 10 4.702 5.373 -.122
18 4 4.684 5.391 -.050

no 7.353 10.790 19 4 7.370 10.773 -.239
20 a 7.353 10.790 0

z

~,...-... y

(a)

Ant_lor

Post.rlor

z z'

(b)

Fig.6.18 Bottom view of effective cross-section of inlervertebral joint in horizontal plane (a)
symmetric, and (b) asymmetric.
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Growth analysis wu performed on the lordotie model under lumped loading. As mentioned

previously, limitations of the NASTRAN program, made it neœssary to model the load as a lumped

Corce P (N) and a flexion moment 298 P (N~) appUed at the top vertebra TI. In the tirst instance,

the constraints were chosen to be the same as thase Cor the bifurcation analysis. In particular,

movement in the sagittal plane was allowed. Although the mode shapes {rom the bÜUfc:ation analysis

indic:ated rather diffused lateral displacements and relatively small oonvex-sided rotations, il is

interesting to study the growth of a Jocalized imperfection on the behaviour oC the spine near the

bifurcation Joad.

The load was incremented slowly in small steps (AP=O.s N, âM=l.5 N-an). However,

instability in the form ofooDvergence breakdown was encountered (at 68.5 N, 204.1 N-cm) weil beCore

the bifurcation load Cor lateral buckling (261 N, 779 N-cm) could be reached. The reason for this

instability was that the displacements in the sagittal plane had become excessive and there was a loss

ofstitIness for bending in the sagittal plane. Although the convergent solution indicated scoliosis-like

displacements and rotations, they had not sufficiently developed due to the load being rather far !rom

the bifurcation load.

Therefore, in view of the abave, anotherattempt was made by performing an analysis in which

displacements in the sagittal plane along tbe endre spine length were constrained. In this case, using

initialload steps of SN and 1S N-an and much smaller ones as bifurcation load neared, the lateral

bifurcation load could be reached without encountering any solution instabilities. The lateral

imperfections grew as the load was increased. At a load (P=261.75 N, M=780.06 N-an) near the

bifurcation load previously determined, significant lateraI displaœments were obtained, with a

maximum lotallateral displaœment ofS.s cm oa:urring at the T8 leveL Fig. 6.19 shows the resulûng

lateraI deformation of the venebrae in almparison to those of the scoUotic patienL Fig. 6.20

illusttates the growth of the Iateral imperfection. However, axial rotations, Fig. 6.21, a1though in the

scoliotic direction were found to be small, being a maximum of 259' al the lA level, and l.SO at the

apex of the lateraI CUlVe at the TB leveL Thus, the maximum axial rotation did not coincide with the

maximum IateraI displaœment, and aIso the pattern of de(ormaüon was Dot localized enough, whicb

are bath cbaracteristi(S of scoUosis. As a reminder, data on venebral axial rotation of the scoUotic

patient other tbaD a maximum rotation at the apex of~ were unawilable for comparison.

Anal)'Sis was aIso performed without the horizontal plane asymmetries. Results of eventual

grOWlh were practfcally idendcal « S% differenl) 10 those obtainecl with this asymmetry present,

indicating tbat the horizontal plane asymmetty bas titlle eff'ec:t on the results. On the other band, the

effec:t of the Iateral asymmeuy is evideDt in the sbape of the Iateral displaœments i.e. maximum al
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the T8leveL

In conclusion, il appears the filst interpretation of the lordosis hypothesis, requiring

simulations of the buckling behaviour of a spine and nb cage with a slight lordosis in the thoracic

region of the spine CaiJs to expIain defonnation typical of thoradc idiopathie smliosis. The

imperfection growth analysis basically confirms wbat wu indicated by the mode sbapes in the

bifurcation anal)'Sis, namely that (1) lateral displacements and oonvex-sided rotations would he

produced but not localized enough as seen in smliosis. (2) uial rotations would be of a relatively

sman magnitude in oomparison to the lateraI dîsplacements and in oomparison to those found in

scoliosis, and (3) greatest axial rotations would oœur near the TIl and the U-1.5 levels, which are

nol consistent with the site of the apex of the laterai curve in the nonlinear analysis.
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_ SeoUolle PaUent

_ Pre.ent Model

Vertebra Level

T1
T2
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T4
T5
Te
T1
T8
T8

T10
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L1
L2
L3
L4
L5

Fig.6.19 Lateral deformations of venebrae in lordotie model onder lumped loading predieted by
imperfection growth anaI)'Sis and their comparison with displacements observed in a scoliotic
patienL The models are considered fixed al Tl in horizontal displacemeDts and rotation,
completely fixed at sacrum, and constrained tram displacement in the sagittal plane along the
eodre length of spine.
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Fig. 6.20 Growth of initiallateral imperfection of spine under lumped loading.
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Fig. 6.21 Axial (horizontal plane) rotations of venebrae in lordatie model onder lumped loading
prediaed by imperfection growth analysis. The models are considered fixed al TI in
horizontal displacemen1S and rotation, oompletely fixed al saaum, and oonstrained (rom
displacement in the sagittal plane a10ng the come length of spine.
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• 6.3 Lordosis-Inducing Growth Stndy

This section is concemed with the testing ofanother interpretation oC the lordosis hypothesis.

The basic premise here is mat the spine is liable to assume a scoliotic configuration during (not aCter)

the lordosis inducing asymmetrical growth of the thoraclc vertebrae while full gravity loading keeps

acting on the spine. Il is assumed that while the venebrae undergo almost a natural (stress-Cree)

dimension change the dises do DOL Therefore, strueturally spealdng, the spine dises are being loaded

by virtue of presenting deformable obstacles to the stress-free growth of venebrae. As mentioned in

Chapter 5, the above loading is simulated in the present work by the device ofsubjeeting the venebrae

ta temperature changes.

The nonlinear groWlh analysis is performed on the normal spine and ob cage model in which

all spine elements are represented with 1 element with the exception of thoradc venebrae T4-TIl,

which are represented by 3-elements. In contrast to the previous structurally equivalent 3-element

madel, the anterior and posteriar elements of the 3-element representatian used here have small axial

stiffnesses only. Their purpose is ta impose self-equilibrating loads on the venebra 10 which they

belong ta sïmulate growth, withaut contnbuting ta the stiffness of the spine. Therefare, the central

element of [bis 3-element madelling retain the latal stiffness or the vertebrae. As in the previaus

representatians, the end plates of these vertebrae are modelied by stiff beam elements conneeting the

central element to the anterior and posteriar elements.

The lardasis-inducing grawth of the tharacic venebrae is madelled by lengthening (i.e.

heating) the anterioe elements and shonening (i.e. cooling) the posterior elements. The temperature

changes, and hence the length changes, are taken la be such that the lengtbs of the central elements

are unchanged. This ensures that the central curved length of the spine remains almost unaltered by

the venebral growth. The amouots of temperature changes in the anterior (+llT) and posterior

(-6T) elements have been given in Table 5.7. Il May be realled that these temperature changes were

calculated on the basis of A-P stiffnesses of venebrae and the measurements from a specimen with

thoracic scoliasis [3D).

The lateraI imperfections required for the growth anaJysis consisted, as previously, oC the

frontal asymmetry in the foern of a lateral curve, and of the horizontal asymmetry in the form of

asymmetrical orientation of the intervenebral joints with respect ta the sagittal plane. The structure

is considered completely fixed al the sacrum, and panially fixed at Tl in that frontal plane rotation

(8y) and vertical displacement (z) are allowed. The gravity laading is modelled by a single verticaUy
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downward force acting at Tl {wim no accompanying sagittal moment).1 The incremental loading

program employed for the analysis is shawn Table 6.6. A total of 196 load steps were required to

reach complete subcase 8.

The same convergence c:riteria as used in the prec:eding imperfection growth analysis, Section

6.2, were employed in this nonlinear anal)'Sis.. It may be noted tbat as deformation progressed, smaller

load steps became neœssary for obtaining convergence. However, no convergence could be achieved

for the temperature laading ofsubc:ase 9, even after employing 100 load steps. This subcase required

subjecting the TI and 1"9 venebrae to an additional temperature change !rom 188.20 (of subcase 8)

ta respectively 2410 and 247'. Constraints of time and money prevented an analysis for this subcase

with still smaller load steps.

Table 6.6 Loading Program Used in the Incrementai Nonlinear Growth Analysis

Subcase Increments of temperature Increments No. of
of force laad

Temperature Venebrae, Compressive
steps

change AT, antenors +AT force at Tl,
degrees posteriors -AT N

1 1.5 T4-TI2 0 1

2 18.0, T5-Tll, 0 10
Il.1 TI2

3 0 - 100 2S

4 25.8 T6-T11 0 15

5 0 . 50 2S

6 37.5 T6-nO 0 20

7 105.4, TI-1'9, 50 50
84.5 no

8 a - 50 50

9- 58.S, TT, 0 100
52.8 19

• No coDVaJalllOlulioo (wida 100 Ioad ltepl) could be round for the 1oad1n& in IUbcase 9.

lnu: reaIOll foc Dot condUClÛll an ...,.with forwanI DCliOil IDOIDCIll praeIll (ta lÙDuJale appücalion oCwei&ht Il the
center oC pwfly) wu maiDJy the coDlUaillt of lime.



Under the conditions and loadingdesaibed above, the nonlinear imperfection growth analysis

yielded results, at the final loading slep of subcase S. shown in Figs. 6.22-6.24. This load step

corresponds to a total compressive Joad al TI of 250 N (= 65% of the body weight above sacrum)

and a total temperature cbaDge of ±Isar, or an average enforced anteriorlposterior length change

of venebrae 1ï-1'9 of :0.37 cm (- 20% of the vertebral Iengtbs).

Fig. 6.22 shows the predieted Iateral deformation of the vertebrae and their comparison with

those observed in a smliotic patienL Il can be seen that predictions match quite well with the

scoliotic displacements for TI-TIl venebrae. The differences lie in the Caet that whereas the aetual

scoliotic deformations are quite localized, the predieted curve is of a graduai type. This difference in

detail is due, without much doubt, to the changes in stiffness which takes place by vinue of Cacet

interaction between the vertebral bodies. These stiffnesses are modeUed here rather grossly by

considering the inlervenebral joint sûffnesses ta remain CODStanL

The variance of the axial rotation aœompanying the laleraI deCormations is shawn in Fig. 6.23.

Although the variation in venebral rotations of the scoliolic patient is not available, as mentioned

previously, the resulting rotations in this analysis are convex-sided rotations whicb is charaeteristic of

scoliosis. The maximum convex-sided rotation compares well with the maximum rotation of 25°,

known for the moracie scoliotic patient [10). Moreover, the rotations display a localization typical

oC tbis type of scoliosis.

The important finding, evident !rom Figs. 6.22 and 6.23, is the convex-sided axial rotations

of significant magnitudes and the correct pattern. with the site of maximum rotation coinciding with

the apex of the lateraI curve.. At the apex, which is al the T8 level, the axial rotation attains a

ma:dmum value of 20.15°, and Ukewise the total laleral displacement attains a maximum value of 4.07

cm. Expressed in relative terms, this defonnation equals an apical vertebral rotation of 0.5° per mm

or lateral displacemenL

Naturally, the direction of the eventuallateral displacements is determined by the direction

of the initiallateral curve. Fig. 6.24 shows the amount of growth experienced by the lateral curve in

the present case of analysis. In alDtrast, the direction of the axial rotation is not neœssarily

delermined by the direction of horizontal plane asymmetries. It was found that a total absence of

these asymmetries, or even asymmelrics of the opposite kincl, did not bave any significant qualitative

or quantitative effec:t on the eYentual axial rotation. In other weRIs, the analysis r~ults indicate that

the scoliotic rotations are rather iDsensitive ta the asymmetrica1 or rotaled aoss·~.ections oCvenebrae

in the presence of a laIerai curve asymmelly. ONen the IateraI asymmeuy, :asymmetrical venebral

growth indudng Iordosis produccs convex-sided rotations regardIess of small horizontal asymmetry.
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Fig. 6.22 Lateral defonnations ofvenebrae of normal spine with nb cage under asymmeuica1 venebral
growth and gravity loading (end of subcase 8, Table 6.6) predieted by imperfection growth
analysis and their comparison wilh deformatfon observed in a scoliotic patienL The model
is considered Cree in axial displacemenl and frODIal plane rotation aln, and completely fixed
al sacrum.
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Fig. 6.23 Axial (horizontal plane) rotations of venebrae of normal spine with db cage onder
asymmetrica1 venebral growth and gravity loading (end orsubcase 8, Table 6.6) predicted by
imperfection growlh analysis. The madel is considered free in axial displaœment and frontal
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Fig. 6.24 Growth of initial lateraI imperfection of spine under asymmetrical growth.

Figure 6.25 shows the plot of undeformed geometry of the spine with nô cage used in the

analysis, in (eft lateral and A-P views. Figure 6.26 gives the deformed geometries al the end of load

subcase 8. Comparing Fig. 6.26(a) with 6.25(a), il caB he seen that the defonned spine has become

straighter as a result of the venebral growth. Figure 6.26(b) shows the convex-sided rotation typical

of scoliosis; dearly the anlerior venebral bodies rotate inlO the convaity of the lateraI c:urve.

The true lateral and frontal views of the deformity are obtained when it is viewed in and

perpendicular to the plane obtained by rotaling the sagittal plane by the amount of the apical

rotation. Tbese views are shown in Fig. 6.26(c) and 6.26(d). In the true lateral view, Fig. 6.26(c), il

is found that the thoradc spine bas lost ilS kyphosis and bas become slightly lordotie. The venebra

T5-T8 now have longer anterlor lengths than posterior lengths. The true A-P view, Fig. 6.26(d) shows

the scoliotic deformaûon in ilS maximUOL Referring back 10 Fig. 3.2, these charaeteristics are typical

of thoracic scoliosis.
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(a)

SACRUM

(h)

Fig. 6.25 UndeCormed model of normal spine and nb cage used in the nonlinear analysis simuJatinl
lordosis..inducing growth of the thoraac vertebrae. (a) left lateral vicw, and (b) A..P vïew.

Similar analyses were performed in which thermal loading simulating the asymmetricaI

venebral growth wu considered alone, without the gravity loading, and under various constrainl

conditions al Tl. When Tl was considere4 Ô'ee in venical displacement and frontal rotation,

significant axial rotations resuited similar 10 lhose Cound in the above analysis in which the gravity

load was superïmposed. However, lateraI displacements were extremely small in comparison. Next,

an analysis with an additional consuaint fixing venical displaœment was performed. Il was found mal
in the latter case, axial rotations were slightly smaller, but the lateraI displaœments were larger than

in the former. However, laierai displaœmenrs were still small in comparison to those found in the

analysis wim gravity lood and those found in scoliosis. The smalliaterai displacements are attnDuted

naturally to the Cact that in bath cases no appredable lateraI bending could take place since the spine

did nOl or could not shorten. Another analysis was performed wim Tl completely fixed. The

resulting axial rotations were basically unatJected by the addition of the frontal rotation consmint.

The lateraI displacemenlS, on the otherband, although they appeared more localized, had significanUy
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~
(a)

(c)

(b)

(d)

Fig. 6.26 OeCormed configuration ofspine and nb cage model alter 250 N graYity compressive
Corce and lordosis-induang growth ofthe thoracic venebrae. (a) left lateraI view. (b)
A..P view. (c) truc laierai view of the deformatioD. (d) true A-P view of the
deConnation. True views are obtained at oblique angles to A-P and laieraI views
equivalent to the rotation of the apical venebra~ here by -2er.
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reduced (negligible) magnitudes.

Therefore,3n imponant conclusion arising !rom the results ofthese additional analyses is that

the axial rotation of the scoliosis type is mainly due to the asymmetrical growth of the vertebrae; the

compressive gravity loading bas little intluence on the axial rotation. However, the author suspects

that the CODStraint in sagittal plane rotation (8y) at Tl is crucial to the success of the analysis.

although analysis was Dot attempted without iL This constraint is not artificial because the reaction

moment is found ta he a flexion moment appraximately 1.5 limes the gravity force which may be

interpreted as being due to an anterior offset of the center of gravity from Tl.

However, the significant laterai displacements resulting in analysis are due ta gravity forces.

As noted in analyses withaut gravity force, resulting lateral displacements were smaU. The structure

must shonen in order ta obtain lateral displacements of the magnitude seen in scoliasis. On the other

hand. the effeet of the asymmetrical growth was found ta lengthen the column, Le. straighten il, since

central vertebral lengths were basicaJly unchanged. The fact that gravity loads praduce significant

lateral displacements has aIsa been demonstrated earlier in Section 6.2 by the nonlinear growth

analysis on the lordotie model. Gravity forces are present in reality and in terms oC the analysis are

needed to counteraet lengthening (straightening) effect of asymmetrical growth on spine. Thus,

simultaneous presence af both asymmetrical vertebral growth and gravity loading is necessary to

obtain lateral displacements and axial (convex.sided) rotations of magnitudes round in scoliosis.

As a measure oC caution, il shouId be pointed out that the analysis results depend upon the

loading path chosen between the staning and final values of loads. Analysis with different

temperature and gravity loading paths produce quite different results. This means, Cor example, that

one may not be able to obtain the same results by perfonning analyses witb the following (wo

sequences of loadings: (1) first loading the spine \Vith only the gravitYloading, and then loading it

by temperature changes while keeping the gravity loads constant, and (2) by reversing the above

sequence. A plausible reason for possibly different results is that in a nanlinear elastic system there

May exist for the same load more than one deformed configurations; in other words, a uniqueness of

Ioading does not guarantee the uniqueness of the displacement field.

Another Ceature of nonlinear analysis is that although convergence criteria May be satisfied

within the selected tolerances at each load step, the accumulated unbalanced Joad errors May not yield

a perfect equilibrium between applied forces and reactions in the deformed configuration. In the

present analysis, these unbalanced forces remained small relative to the applied loads.

ln conclusion, based on the nonlinear growth analysis of tbis section which yields the lateral
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displacemenlS and axial rotations of essentially the same charader and magnitude as observed in

thoraac idiopathie scoliosis, it seems fair to say tbat the lordosis hypothesis in its second

interpretation bas DOW beenvaIidated. A particu1ar pattern ofasymmetricallordosis-induclng growth

of thoracievenebrae CUl indeed deform the spine ÎDlo a shape of thoracic idiopathie scoliosis. Il also

foUows tbat an already present laIerai cwve of a more than normal magnitude will haslen the

development of scoliotic defonnation under such a venebral growth.
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Cbapter 7

Summary and Conclusions

7.1 Summary of ADalysis and Results

This study tests the lordosis hypothesis concerning the etiology of the development of

adolescent idiopathie thorade sooliosis. 1Wo simulations, oorresponding ta (wo interpretations of the

hypothesis, are modeled to investigate the hypothesis. The first modeUing, oorresponding to the tirst

interpretation, conduets the nonlinear imperfection growth anaIysis of a lordotic spùte (i.e. a spme

which already bas a thoracie lordosis) with the normaUy present anatomica1 asymmetries (i.e.

imperfections) in the lateraI and horizontal planes. The loading is by gravity loads alone, increasing

incrementally trom zero to near the expec:ted bifurcation buddng load of the symmetric spine. The

second modelling, corresponding to the second interpretation of the lordosis hypothesis, studies the

nonllnear etr= of asymmetrical growth of morade venebrae (aa:elerated anterior and constrieted

posterior growth) [liS] in a normal spine, with no pre-existing lordosis but again wim the normal

lateraI and horizontal plane imperfections present (34).

Simulations are carried out using a lumped parameter struautal analysis model of the human

thoracolumbar spine and nb cage. MSCINASTRAN finite element program wu used ta perform the

analyses. Trunk and abdominal muscles, which are known to aet on the spine, are omitted Crom the

Madel This omission greatly simplifies the modelling. On the other hand, this simplification perhaps

exaggerates to some extent, the response of the spine ta appUed loads and asymmetrical growt1L

Due to the limitation on resources and the complexityofthe structure, manyassumptions had

to be made in alDStrueting the analysis Madel The data for the model were obtaincd solely from

available literature. Maleria! properties are assumed ta be liDearelastic. However, nonlinearities due

10 relatively large displaœments are fully accounted for iD the analyses. Best linear elastic

approximations ofstiffness properties are made ta represent the experimenta1lydetermined behaviour

of the various elements in the spiDe and db Clge structUre (e.g. inteMnebral joints). End oonsuainu

are choseD ta simuJate the anatomical C:ODStraints which maintain head in alignmeDt with the pelvis.

The top of the spin~ venebrae n, is always constraiDed againsl displaœments and rotations in the

horizontal plane, and the sacrum is aIways considered oompletely fixed. The imposition of bending

constraints al the top is included or exc:luded as deemed appropriate. for the real anatomical

constraInt is supposed to be somewbere between completely fi'ee and completely fixed bending degrees

oCfreedom.
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The analysis results !rom the presently construeted model are found to compare reasonably

weil with the resuIts of previous researchers for cases investigated by them. In addition. as shawn in

Chapter 4, the ability of MSC/NASTRAN ta perform torsionaI·Oexural buckling analysis was verified

by the faet that results obtained were in good agreement with the theoretical solution derived for this

type of buckling for an idea1 curved column of a sine wave shape. Similarly, the capabilities for

geometric nonlinear analysis were veritied by analysing simple nonlinear problems (e.g. bending of a

beam under a pure end moment). 'lbus. the adequaq' of bath the structural model, and the method

of analysis, implied by using MSCINASTRAN, were validated.

Resu/ls 01 lM Fini Appt'Olldl

ln the tirst approach, in which the effect of an existing lordosis in the thoradc region on

spinal stability was studied, the results failed to suppon this interpretation of the lordosis hypothesis.

It was apparent from the results ofOOm the linear bifurcation analysis and the nonlinear imperfection

growth analysis that a lordotic spine, by the way of pure torsional·Oexural buckling, could not produce

deformations, panicuIarly the axial rotations, of magnitudes round in patients of idiopathie scoliosÎS.

As discussed in Chapter 4, the spine·like structures with lower stiffness in lateral bending than in A·P

bending are subject to torsional·Oexura1 buekling. However. sinee the spine and no cage model is

apparently much stiffer in torsion than in lateral bending (Fig. 6.2 and 6.9), it follows that the

buckling behaviour will be predominantly in the lateral bending mode. In other words, lateraI

deflections (or their growth) will dominate over the axial rotations. 'This is ilIustrated by the mode

shapes obtained from the bifurcation analyses and by the imperfection growth obtained from the

nonlinear analyses. 80th show significant lateral displacements but comparatively small axial

rotations.

Viewed in its own rigbt without linkage to the lordosis hypothesis, it appears that a reduction

in the kyphosis of the thoracie spine, or even a slipt lordosis, has Iittle effeet on the stability of the

spine. Buckling loads are lowered only slightly, and the mode shapes remain basically unaltered. This

is also supported by the resu115 of the theoretic:al study on the eff'ect ofspme curvature on its stability

in Chapter 4. It wu conc:ludcd therc tbat a sUgbt deaease in the amplitude of the sagittal curve

resulted in slightly lowered buckling loads primarily due to the consequently increased spine length.

In the second approac:h, simulation of the lordosis-indudng (asymmetrical) growth of the

thoracie venebrae produc:ed deformatioDS in normal spines simllar to those round in tharade
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idiopathie scoliosis. The results therefore suppon this second interpretatlon of the lordosis

hypothesis. Success of this approach c:an be attributed ta the modelling of the asymmetrical growth

of the thoracie spme, and Us eventual transformation Into a [ordotie configuration, as a loading in the

nonlineat imperfection growth analysis. The stresses induced in the dises due to elongation of the

anterior elements and sbottening of the posterior elements of venebrae T4-TI2 seem ta be

responsible for the large axial rotations obtained. In a somewbal constrained system, the elongation

of the antenaIS ofvertebrae produces additianal compressive stresses in the anterialS of the dise, and

likewise, a shonenîng of the posteriors ofvertebrae produœs tensile stresses in the posteriors of the

dises. The presence of the initial lateral curve which grows with încreasing compressive laads,

accommodates the growth by letûng the spinal elements rotate in a convex-sided manner to avoid

unnecessary stressing.

7.2 ConclusioDs

In this thesis, lordosis-inducing asymmetrie growth of the thoradc venebrae bas bœn shawn

to produce thoradc scoliosis. To the author's knowledge, this is the tirst lime that a structural

analysis ofa spine model with nb cage has sua:essfully yielded deformations of the kind and amount

found in scoliotie patients. The wart therefore validates the lordosis-hypothesis, in ilS above

interpretation, as berng a possible etïology of adolescent idiopathie thoradc scoUosis.

To further substantiate the theory validating the hypothesis, il bas been observed clinically

that forward bending, which produces forces (anterior compression and POSterior tension) similar to

those produced as a result of lordosis-indudng venebral growth, has a tenden(.)' 10 increase the no

bump, i.e. convex-sided rotation of thorade spine, of scoliotie patients. In tact, forward bending is

the test used to screen adolescents in order to detect cases of idiopathie scoliosis al an early stage.

Even normal persons wim sUgbt rigbt lateral morade curve are found to experience convex-sided

rotation of thoracie venebrae upon forward bending. In addition, it may be recalled that bath Lovell

[12] and Artin [7] found tbat lateral bending produced convex-sided rotations in the nonnal spine

when the spine was Oexed forward. An imperfection growth analysis under a forward Dexion moment

and a compressive force (as was done in section 6.2 to simulate the tenter of gravity application of

the body weigbt) in rombinatioD with the thermalloading cu be expected to produce scoliotic

deformatioDS of even larger magnitudes than round here.

The future research would undoubtedly improve the manyapproximations made in the spine

models of tbis thesis. These approximations were neœssary for the progress of the present warlc.

However, the autbor feeJs lhat a significant advanœ bas been made iD demonstratiDg the lordosis-



•

•

inducing asymmetricai grawth as the key ta abtaining scoliatic deformations. Axial rotations of

significant magnitude raund in this work are what had been lacking in the results of previous

researchers conceming scoliosis [10, 118].

The salient conclusions MaY be reiterated as foUows:

(1) Pure structural type torsional-flexural buckling of the spine and rib cage under

increasing gravity-type loads cannot produce significant axial rotations due ta the

large effective torsional stiffness of the spine in comparison ta its lateral bending

stiffness.

(2) An existing lordosis in the thoracic region has minor etrect on the subsequent

stability characteristics of spine and rib cage.

(3) Forces developed due to lordosis-inducing (asymmetrical) growth of thoracic

vertebrae are necessary ta produce the convex-sided rotations with a maximum at the

apex of the laterai curve as round in scoliotic patients.

(4) As suggested by Dickson et al. [34}, the natura! lateraI asymmetry, present in ail

spines ta sorne degree [31It is neccssary for attaining correct scoliotic deformations.

According ta the present analysis, the lateral curve determines the direction of the

deformity.

7.3 Suggestions for Further Researcb

For future, an interesting study would be to examine the effect of lordosis-inducing vertebral

growths on the lumbar spine, and aIso on the complete thoracolumbar spine to determine whetber

or not other curve patterns (e.g. lumber and double curve) would develop. Additional suggestions

for future research include (1) modelling of the nonlinear stiffness properties of spine elementst

particularly of the motion segments, and (2) modelling of realistic gravity forces and muscle action

forces.

A much more elaborate nonlinear finite element model. accounting correctJy the geometric

details of the spine, subjected to an imperfection growth analysis under the action of lordosis-inducing

vertebral growth would provide very realistic answers to various questions conceming scoliosis.
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AppendixA

Glossary of Anatomical & Biomechanical Terms Related to Spine

1. Planes: [44] (see Fig. Al)

median (midsagittal) plane • plane which <livides body into a right and left balf

sagittal plane • any venical anteroposterior plane para1lel to the Median plane

coronal (rrontal) plane • any venica1 plane at right angles to the sagittal plane

transverse (horizontal) plane • any plane at right angles to bath the sagittal and coronal plane

Horizontal lplane
or ~

Transverse

Sagittal plane

t

Fig. Al Fundamental planes in body. Alter Grant [44].

2. Tenus of RelatioDsbip: (44)

anterior • nearer the front surface of the body
posterior • nearer the baet surface of the body

superior • nearer the aown of the head
inCerior • nearer the soles of the feet

media! • nearer the Median plane of the body
latenl • ranher from the median plane of the body

craniaI • superior end
caudal • inferior end

ipsilateral • reCers to the sante side of the body
contralatera1 • rerers to opposite sides of the body
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3. MisœUaneous Terms Relatecl to Spine:

Intervertebral Joint • joint inbetween adjacent venebra in spinal column comprised of intervenebral
dise, ligaments, and lacet joint

motion seplent • usually coDSists of two venebrae and the intervenebral joint inbetween. Used in
particuIarly for testing OexibWty or stitIness of intervenebral joint

Dalon - in reference to the spine, forward or anterior bending in sagittal plane

extension - in reference to the spine, backward or posteriar bending in sagittal plane

lateral bending - in reference to the spine, bending in frontal plane ta the nght or left

lordosis • curvature of the spine in the sagittal plane with its convexity anterior, i.e. longer anterior
length than posterior length of spine

kyphosls • curvature of the spine in the sagittal plane with its convexity posterior, Le. longer posterior
length than anterior length of spine

IIgamentous splne • spine with its no cage and muscles removed

thoracolumbar • pertaining to thoracic and lumbac regions of the spine

couplina- phenomenon in whicb motion along or about an axis is consistently associated with motion
aIong or about another axis [88]

main motion • motion produced in same direction as applied load [88]

coupled motion - motion produced in direction(s) other than direction of applied load
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Appendix B

Formula used to calculate equivalent sectional properties
for 3·element model based on the approximation

of 3 equal length elements

1. Notation usecl ln rormulas: 1 denotes lateral plane
Z denotes anterior.posterior (sagittal) plane
eq denotes equivalent property
1 denotes loslde segment le. central
o denotes outslde segment le. anterior and posterior
fJ denotes" or ruu element to mslde element
cr denotes" or ron element to outslde elements

such tbat Zcr + fJ =1
property dellnftlons are round ln Ust or Symbols

%. Figures dellDing addltlonaJ Dotation and lIUIIdng correspondence between the 1-element and
equlvalent J.element representatlons.

Ao• 1'0' 120, Jo. ~~--+--~ A.. 1,1' 121J JI'

A,o=K,A. --+-I--A,.=K,A.
~=~o AzJ=~1

pl.ne 2 1
~---

Iplane 1
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3. Properties or the 3-eleJDent equlY81ent Dlodelln tenDs or the l-eleDlent model. cr and fJ are
cbosen approprlately ln a partlcular Instance.

Â1ft-Post SM" Me":

Torsiolltll CoIIS'IGIIt:
2b2[ l 1J,-I--
G LJ 1

12Etzl1 + GtzÂ1
1. ~ 0
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4. Tables for the properties of the l-e1ement moclel used iD calculating equivalent 3-element
properties. ,. Is cbosen such tbat I~ Is • positive value. ThIs ls a restric:tion on input data
requlred in NASTRAN. In thls eue, cr choosen to Ile O.U (i.e. {J=O.16).

Table B.1 Values Used to Calc:ulate Equivalent Properties for 3-Element Venebra

Vertcbra E G A l, ~ J Ks.ICt AYI. AVI. sai.
(N/cml) (N/cml) (cml) (cm~ (an~ (cm" (ccnlra1) ndius, b

length, L (cm)
(an)

TI 1030000 431000 4.24 2.6.51 0.773 2.395 1 1.679 0.853
1'2 1030000 431000 4.72 3.061 1.030 3.083 1 1.791 0.937
1'3 1030000 431000 5.08 3.036 1.390 3.813 1 1.848 1.05
T4 1030000 431000 5.50 3.181 1.822 4.633 1 1.905 1.153S
TS 1030000 431000 6.05 3.631 2.342 5.695 1 1.957 1.244
T6 1030000 431000 6.68 4.240 2.96S 6.980 1 1.993 1.3295
li 1030000 431000 7.44 5.198 3.728 8.685 1 2.021 1.4165
1'8 1030000 431000 8.23 6.386 4.566 10.650 1 2.073 1.4895
1'9 1030000 431000 8.98 7.853 S.2S0 12.586 1 2.134 1.521
no 1030000 431000 9!J7 10.407 6.022 15.258 1 2.304 1.554
nI 1030000 431000 11.15 13.896 7.036 18.684 1 2.43 1.592S
TI2 1030000 431000 12.00 16.789 7.813 21.327 1 2.574 1.615
LI 1030000 431000 1281 19.659 8.692 24.108 1 2.72 1.6545
L2 1030000 431000 13.57 22.346 9.624 26.908 1 2.793 1.6895
13 1030000 431000 14.58 26.430 10.853 JO.774 1 2.8 1.7285
U 1030000 431000 15.2S 28.846 11.896 33.690 1 2.747 1.7655
LS 1030000 431000 14.73 26.2JY1 11.366 31.710 1 2.653 1.756

Table B.2 Values Used to C31culate Equivalent Propenies for 3-Element Intervenebral Joint

Superior E 0 A Il Il J Kt,ICz Avg. Avg. sage
Vcnc:bra (N/cm~ (N/cm~ (cm~ (cm~ (cm~ (cm~ (central) ndius, b

Ic:ngth, L (cm)
(cm)

TI cm.7 1376.0 4.39 0.826 1.932 0.691 0.4375 0.449 0.887
1'2 732.7 1535.4 4.98 1.384 2.962 0.667 0.4375 0.31 0.9935
1'3 746.7 1593.0 S.36 1.716 3.643 0.779 0.4375 0.212 1.106
T4 800.9 1~.4 s.n 2.176 3.177 0.928 0.4375 0.222 1.1995
rs 745.0 1.523.5 6.28 2.544 4.013 1.154 0.4375 0.251 1.289
T6 820.2 1666.3 6.89 2.946 4.912 1.362 0.4375 0.32 1.3755
li 645.7 1650.0 7.61 4.788 4.646 1.741 0.4375 0.4 1.4535
TB 776.1 1537.5 8.38 4.584 6.834 2.471 0.4375 0.442 1.5155
19 806.B 1646.2 9.œ 4.681 5.394 3.062 0.4375 0.473 1.5395
no 775.3 1$77•• 10m 7.353 10.~ 4.5U 0.4375 00507 1.573
TIl 'l'JJJ.7 1484.3 11.30 6.110 9.232 10.787 0.437S 0.68 1.611
TIZ 1060.1 1S62A 12.0'7 7.469 13.'736 41.265 0.437S 0.841 1.629S
LI 1042.8 lS64.1 1238 6.174 15.802 34.163 0.4375 1.006 1.6155
L2 99U 1493.1 13.78 So592 15.453 42.473 0.437S 1.147 1.7095
L3 1225.6 1494.0 14-'6 4.946 23.332 50.101 0.437S 1.221 1.7415
tA 1251.2 1429.8 15.38 6.418 16.797 47..7OS 0.4375 1.401 l.mS
LS 1164.3 1451.7 14.55 15.st4 14.833 43.081 0.4375 1.57 1.733
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Appendix C

Model of Normal Spine and Rib Cage: MOE
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Fig. Cl Oblique view of the 3-dimensional model (MOE) of the normal spine and no cage.
Nades are denoted wim an x.
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Fig. C2 Top view of madel.
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Table C.l Legend for Spine and Rib Cage Model

Element no. Description of clement Element type Property no.

1-33 odd centerline of venebrae beam 101-117
2-34 even centerline of Lv. joint 1-17

35-67 odd Anterior face of venebrae beam 118-134
36-68 even Anterior race of Lv. joint 18-34

69-101odd Posterior face of venebrae beam 118-134
70-102 even Posterior face of Lv. joint 18-34

103-137 Endplates on anterior side beam 100 (rigid)
138-172 Endplates on posterior side

173-190 leCt venebrae links to racets beam 150
191-208 Right vertebrae links ta facets

209-218 leCt uansverse proœsses beam 151
219-228 Right transverse pracesses

229-246 Left CV joints beam 60
247-264 Right CV joints (axial anly)

265-274 Left CT joints beam 61
275-284 Right cr joints

285-364 Ribs (10 pairs • beam 153-162
4 clements ea.) (Rtb 1-10)

365-382 leCt CC beam 71-88
383-400 Right CC

401-412 Sternum (quad. elements) quad 152
413-418 Sternum (beam elements) beam 100 (rigid)

421-429 leCt le beam 62-70
430-438 Right le (axial only)

500-525 Loading arms (from bottom beam 100 (rigid)
center ofvenebra to C.O.)
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Costal
cartUlltjle, CC -.
(lyplC:III)

L.egend:
1'\0. = Nodes
;;;. =Elements

Rib (typ/CIII)

2 Intervertebral joint (typlcall

Sacrum

Fig. C.J Ldl latcr:t1 vicw \If mnt.lcllllustr;lllfl!! lI11llc~ and dcmcnls llf Ihe spmt:
;tnU Jeft siùe uf (symmctril":II) rih l":Igc:.
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Legend:
no. = Nod..
'îë. = Elements

Lv

Venebr. (lyplCIII)

Inlervenebr.llolnt (typICIIl)

Fig. CA Antcnur (lmnl) VIt.OW ut mue.kt ,lIusrr:ltll1g nlllles anLl c1t:m~nts ltf the
spinc =,"u rih c:lgc. Sternum rcmllvc:d ln sirnplify ligure:.
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Fig. C.6 Anterior view of model illustrating nodes and clements of the sternum.
Q- "'0. =quadrilateral elements, &- (10. =beam clements, MD. = nodes.
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IT10

Une of _ .....ry-z..F

(a) (b)

Fig. C.7 Transverse proœss clements and elements positioning venebral body racelS shawn
in (a) anteriorview, and (b) left laIerai view. These clements define the location on
the venebrae where ribs are attached. no. = elements. r1O. =nodes.
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Une of .ymmetry

(a) (b)

Fig. C.s Costovenebral (CV) and costotraDSVerse (CT) clements shown in (a) anterior view,
and (b) lcft lateral view. These clements provide connections between venebrae and
nos. CV connects head of nb to venebral body, and cr connects tubercle of nb ta
uansverse proœss. M. =elements, no. = nodes.
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Fig. C.9

Ji&-_-'l:"""- 5iô.ni
J~~---"'C

----:;I~~-~. ,7:3
~--~-:i~ m

Left lateral view of model illustlating nedes and elements used for dismouted-type
loading. ffô. =clements, ~o. =nedes.
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