INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

in the unlikely event that the author did not send UMI a compilete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materiais (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9° black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1348 USA

800-521-0600






Stability Analysis of the Spine Pertaining
to Idiopathic Scoliosis

by
Micheline Reimbold

Department of Civil Engineering and Applied Mechanics

McGill University, Montreal, Quebec, Canada
June, 1992

A Thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfilment of the requirements of the degree of
Master of Engineering.

© Micheline Reimbold, 1992



ivl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et )
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your hie Volre refersnca

Qur fle Noue relérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-441024

Canada



Dedicated to those suffering

from idiopathic scoliosis




Abstract

A three-dimensional structural analysis model of the human thoracolumbar spine and rib cage
has been developed in order to investigate its stability in relation to adolescent idiopathic scoliosis.
Idiopathic scoliosis is one of the most puzzling deformities of the spine, due to the fact that there is
no known initiating cause. From the viewpoint that it can be explained in a purely biomechanical
manner, one particular hypothesis as to its etiology is investigated in this thesis. The hypothesis is
that a lordosis-inducing growth of the thoracic spine [34,100,115] in conjunction with spinal
asymmetries in the lateral or horizontal plane [34] is the primary cause of the deformity.

Analyses are performed on the constructed model using the MSC/NASTRAN finite element
program. The model consists primarily of interconnected beam elements to represent a realistic
geometry of the spine and rib cage. The various stiffness properties needed in the model were
obtained from the published literature. Simulations of analyses and experiments performed by other
researchers produced comparable resuits, thereby validating the present model, which is then used to

investigate the above hypothesis.

Lordosis-inducing growth, in which the anteriors of the thoracic vertebrae grow faster than
the posteriors, is simulated in a geometric nonlinear analysis by differential thermal loading of these
parts. Results show that under such loading, the model of the normal spine with its natural
asymmetries of the thoracic region, gradually deforms into a shape with displacements and rotations
typical of thoracic idiopathic scoliosis. These results therefore constitute a validation of the stated
hypothesis, and indicate that a lordosis-inducing growth of the thoracic vertebrae is a likely cause of
thoracic idiopathic scoliosis.
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Résumé

Un modele d’analyse structurale tridimensionnelle de la colonne vertébrale dorso-lombaire
et de la cage thoracique a été developpé dans le but d’étudier sa stabilité en relation avec la scoliose
idiopathique chez I'adolescent. La scoliose idiopathique est une déformation de la colonne vertébrale
qui est des plus énigmatiques: sa cause demeure inconnue. En tenant compte du fait que cette
déformation peut étre expliquée d'une facon purement biomécanique, cette thése explore une
hypothése étiologique particuli¢re. Selon cette hypothése, la cause primaire de la déformation
consiste en la conjonction de la croissance de la colonne dorsale, responsable d’une lordose

[34,100,115], et d’asymétries vertébrales dans les plans latéral ou horizontal [34).

Des analyses on été effectuées sur le modele en utilisant le logiciel d’analyse avec éléments
finis MSC/NASTRAN. Le modele est constitué essentiellement d’éléments de poutre interconnectés
qui représentent une géométrie réaliste de la colonne vertébrale et de la cage thoracique. Les
différentes rigidités nécessaires 2 la construction du modéle ont é1€ trouvées dans la littérature
existante. Des simulations d’analyses et d’expériences faites par d’autres chercheurs ont produit des
résultats comparables, validant par conséquent le modele proposé. Ce modele 2 alors €1€ utilisé pour

¢tudier ’hypothése mentionnée ci-dessus.

La croissance provoquant la lordose, pendant laquelle la partie antérieure des veriébres
dorsales croit plus rapidement que leur partie postérieure, est simulée dans une analyse
géométriquement non-linéaire par un chargement thermique différentiel. Les résultats ont démontré
que sous un tel chargement, le modéle normal de la colonne vertébrale avec ses asymétries naturelles
de la région dorsale, se déforme graduellement jusqu'a une forme ayant des déplacements et des
rotations typiques de la scoliose dorsale idiopathique. Par conséquent, ces résultats constituent une
validation de I’hypothése énnoncée ci-dessus; de méme, ils indiquent que Ia croissance provoquant la

lordose des vertebres dorsales est une cause probable de la scoliose dorsale idiopatique.
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Chapter 1
Introduction

1.1 The Clinical Problem

Scoliosis has been found to be the most common spinal deformity in North American children
and adolescents [96,134). It is defined as an abnormal lateral curvature of the spine [96].
Approximately eighty percent of the reported cases are what is known as idiopathic scoliosis
[41,61,94,96,99]. The name idiopathic derives from the fact that these curves have no known cause
or etiology [61,94,96,99]. In other words, the deformity is found to develop in otherwise healthy
children and adolescents with no apparent spinal abnormalities or associated musculoskeletal
conditions [29,34].

Idiopathic scoliosis may be classified according to the age of onset or of detection of the
deformity. The majority of the cases of idiopathic scoliosis, particularly in North America (75% in
many clinics [99]), occur and progress during the adolescent growth spurt, and hence they are termed
adolescent idiopathic scoliosis (abbreviated as AIS) [34,94,96,135]. The rates of incidence as well as
the distribution of the type of idiopathic scoliosis, e.g. the age of onset, are found to vary among
countries. The variance in incidence is compounded by the fact that different detection techniques
with varying sensitivity (e.g. visual rib hump test or radiograph), different populations of children, and
different definitions of scoliosis (i.e. the degree or the severity of curve) are used in the clinical studies
of scoliosis [70]. Generally, AIS is reported to have an incidence of 1.4 to 4.1 per 1000 persons, and
it is predominantly found in girls over boys by a ratio of 9:1 [19,53,55). It is estimated that about 15%
of the adolescent population has idiopathic scoliosis to some degree [33,104].

Of the cases diagnosed, approximately 20% have curves that eventually progress or worsen
[66,71]. The progressive cases lead to a poorer quality of life, filled with emotional and psychological
anguish, as well as physical pain. Severe cases, particularly those of early onset, may lead to serious
cardio-pulmonary disorders and even early death [41,66,99).!

The development of surgical procedures has outpaced the understanding of scoliosis [41].
Modern surgical techniques, such as the implantation of the Harrington rod, and the Cotrel-

”mueudy-onulasa.oﬁendmiﬁdsmﬁnmemﬁmis.mquitemmmnhm However, they appear
frequently in Europe. Fortunately, a large percentage of these infantile cases correct themselves and only 10% have the
potential 1o progress to such severe forms [41,66,99].
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Dubousset and Zielke instrumentations, are available 10 treat the severe curves [52]. However, they
are only partially successful in that a correction of up to 50% of the lateral deformity may be achieved
[66]. Together with bracing devices like the Milwaukee brace, approximately 80% of curves treated
show improvement [61]. Since the chances of correction are improved by early detection [41],
screening programs have been instituted in schools for detection of the curves in their early stages.
As a result, a larger number of curves are now found, but of less severity [94].

The problem lies not so much in the detection of curves but in the prediction of their
progression, i.e. in determining which ones are going to progress. Only the progressive curves require
extensive treatment. However, the factors causing progression are not entirely understood. This
uncertainty of prognosis renders the current approach to treatment a conservative one. In one study
[77], it was found that only 1 out of every 4 curves braced was progressive. In order to eliminate
unnecessary treatments, since only a small percentage of the cases diagnosed progress, an
understanding of the etiology of AIS is necessary [41,94].

Knowledge of the etiology will help determine the factors responsible for curve progression.
Patients may then be evaluated properly and prescribed the most appropriate treatment with greater
confidence. As a result, significant costs and acute discomforts, due to these unnecessary treatments,
may be minimized [94]. In addition, the understanding of the primary lesion will help in the
development of the most effective methods of bracing and surgery. Clinically, it is felt that the
correction of the primary deforming mechanism, if possible, is the best approach for treatment
because secondary effects, responsible for gross deformity, are likely to correct themselves as a result
[24,34,35,41,100]. Patients with progressive cases may then be effectively treated, and better corrective
results may be attained.

Before one can hope to understand the etiology of AIS, a thorough understanding of the
three-dimensional deformity is necessary [26,66). In addition, a knowledge of the anatomy of the
normal spine is helpful to better understand the abnormal one. The anatomy of the spine, which may
be unfamiliar to the reader, is explained extensively in Chapter 2. Definitions of terms denoted with
an asterisk (*) may be found in the glossary, Appendix A.

The lateral curve is the most obvious feature of the deformity. The frontal® view of a normal
spine is basically straight, whereas the same view of a scoliotic spine reveals the lateral curve. The
region of the spine in which the abnormal lateral curve is located, and the side to which it deviates
defines the curve pattern. Various curve patterns exist. For example, common curve patterns are the
single thoracic® curve (curve in thoracic region, convex to the right, i.e. away from heart), and the
right thoracic - left lumbar* double curve [4,61,70]. The severity of the deformity is classified
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according to the degree of curvature of the lateral curve which is commonly measured by Cobb angle.
Cobb angle is defined as the angle, on the radiograph of the spine, between the lines drawn on the
endplates of the vertebrae at the inflection points of the curve [96].

The majority of the AIS cases are found to be right thoracic. Curves in the thoracic region
produce the most significant visual deformities, and are the most dangerous. The ribs, which are
connected to the thoracic vertebral column, deform in accordance with the rotation and lateral
deviation of the vertebrae. As a result, a rib hump protrudes posteriorly on the convex side of curve;
a rib valley appears anteriorly on the concave side; and more importantly, the space for vital organs
is reduced [32,41]. The typical deformity of thoracic scoliosis is shown in Fig. 1.1. Due to the fact
that thoracic curves are both a common and serious form of the deformity, they are addressed

specifically in this study.

All idiopathic curves are classified as structural curves.! The term structural implies that
there is a significant rotation of vertebrae about their longitudinal axes associated with the lateral
curve such that the anterior* aspect of a vertebra rotates towards the convexity of the lateral curve
and the posterior* side towards the concavity [23,34,96,135].2 From now on, following the
terminology used in the literature, the direction of the axial rotation will be described with respect
to the anterior aspect of the vertebrae. For example, the rotation found in idiopathic scoliosis will
be denoted convex-sided rotation since the anteriors of vertebrae go towards the convexity of the
curve. This convex-sided rotation is found in all cases of idiopathic scoliosis, regardless of the curve
pattern. This type of rotation, illustrated in Fig. 1.2(b), is opposite to the usual type of rotation
accompanying lateral bending of the normal spine, shown in Fig. 1.2(a) [72,129).

The magnitude of the convex-sided rotation is found to reach a maximum at the apex of the
lateral curve, i.e. the point most laterally deviated point from the vertical axis. Both the direction and
magnitude of the rotation are illustrated in Figs. 1.3 (a) and (b), which show posterior views of a
thoracic scoliosis. In both figures, it is obvious that the spinous processes located on the posterior
of the vertebrae, denoted with lines on radiograph in Fig. 1.3(a), rotate towards the concavity of the

‘Suuaun!mwumdkﬂn;uihed&ummwhwﬂmmmﬂmqummmmwm Compensatory
curves have little or no rotation compared (o structural curves and arise to maintain vertical alignment of the spine, and as such,
they have little chance of progression [66,96]. Functional curves have a rotation which is in the oppasite direction to that which
is found in structural curves {23]. These curves arise as a resuit of known causes such as a tilted pelvis or unequal leg lengths.
This rotation type is the same as that accompenying lateral bending of the normal spine.

zlnenp‘neeﬁnglm(usingmeﬁgm-hndmk),mkmuuma(theﬁﬂmmmorkdhweddmmalongme
vertebra for the right-convex curves, and directed upwards for the left convex curves.
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Fig. .1 An cgcample of advanced right thoracic scoliosis. (a) View of the patient from behind
showing the characteristic rib hump. (b) View of a horizoatal section from below indicating
key characteristics. After Keim [61].
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Fig. 1.2 Posterior views of the spine illustrating the coupling of lateral bending and axial rotation.
In normal lateral bending (a), the spinous process rotate towards the convexity of the lateral
curve and the anterior of vertebrae rotate towards the concavity, i.e. concave-sided rotation.
In the scoliotic deformity (b), the spinous process rotate towards the concavity of the lateral
curve and the anterior of vertebrae rotate towards the convexity, i.e. convex-sided rotation.
After White and Panjabi [130].

lateral curve. The coincidence of the maximum lateral deviation and axial rotation is indicated by the
closeness of the posterior elements to the inside of the lateral curve at the apex of the curve. The
vertebra most rotated and most deviated from the vertical is often referred to as the apical vertebra.
The nature of these rotations seem to give the curves their progression potential [66], and hence they

are of great concern clinically.

Implied by the above described combination of lateral curve and convex-sided rotation is
another feature of the scoliotic deformity: a lordosis®, i.e. a longer anterior length than posterior
length of spine. Since the rotation in idiopathic scoliosis is always as described above, with the
anterior aspect of spine rotating towards the outside of lateral curve and posterior aspect towards the
inside, particularly at the apex, geometrically, the anterior length must be longer than the posterior
in the section with the lateral curve, in order to obtain such a rotation. A longer anterior than
posterior spine length implies a curve convex towards the anterior of the spine which by definition
is known as a lordosis. Thus, regardless of the location of the curve, there is always a lordosis in the

apical region of the lateral curve.
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(a) (b)

Fig. 1.3 Posterior view of right thoracic scoliosis illustrating convex-sided rotation. (a) Radiograph
of the deformity with markings indicating the spinous process line. (b) Computer graphics
drawing of the deformity. After Herzenberg et al [S2].

The rotational component of the deformity gives the impression that the scoliotic patient has
a severe kyphosis*® or hunchback rather than a lordosis. However, close examination of the deformity,
taking into account the large amount of axial rotation, does reveal that there is in fact a lordosis at
the apex of the lateral curve [34). This lordotic tendency of the spine at the apex of thoracic scoliotic
curves was first noted by Adams in 1865 [1). Adams described scoliosis as a product of rotation and
lordosis. Thus, a lateral curve, convex-sided vertebral axial rotation, and a lordosis combined with an
unexplained etiology to their development characterize idiopathic scoliosis.

As mentioned before, the factors of progression are not entirely known. Currently, the risk
factors of progression are considered to be skeletal immaturity, young chronological age, female
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gender, curve magnitude, curve pattern, family history, and noticeable thoracic lordosis [41,70,96).
Skeletal immaturity and young chronological age at the time of detection, both present risks for
progression since they imply a large amount of growth remaining' for potential progression. Curves
have the ability to progress significantly during growth [32]. Generally, the earlier is the onset, the
worse is the prognosis [34,96,99]. Female gender is an obvious risk since the deformity predominantly
occurs in girls, as mentioned earlier. Curve magnitude and curve pattern are factors which must be
taken into consideration. A study conducted by Lonstein and Carison [71] reveals that patients whose
initial curvatures are greater than 20 degrees by Cobb angle* measurement, or who have double or
thoracic curves, have greater probability of progression. Family history becomes an important factor
in the face of the evidence indicating that scoliosis is hereditary {135]. The last factor, thoracic
lordosis, is a risk because, as explained above, it is a feature which is noted in patients with thoracic

scoliosis and is not fypical of the normal thoracic region.

Although the presence of the thoracic lordosis at the apex of the scoliotic curve has been
known for some time [1], it was only later emphasized by Somerville in 1952 {115], Roaf in 1966 [100],
and more recently brought into prominence by Dickson et al. in 1986 [34). Somerville, Roaf, and
Dickson et al. all formulated hypotheses concerning the etiology of AIS based on the development
of a primary lordosis in the thoracic region of the spine. Somerville [115] and Leatherman and
Dickson [66] referred to the deformity, perhaps more appropriately, as rotational lordosis and
lordoscoliosis, respectively. Dickson et al. [34] expanded upon the hypothesis by stating that a lordosis
coupled with another asymmetry in either the lateral or horizontal plane, which he termed biplanar
spinal asymmerry, superimposed during growth produces scoliosis.

These related theories appear promising since a lordosis must exist in order to obtain the
lateral deviation and axial rotation of the kind noted in idiopathic scoliosis. Thus, either the thoracic
lordosis results from, or is a factor causing the development of the spinal lateral displacement and
rotation. In addition, the lordosis hypothesis has explanations for many of the clinical findings of
scoliosis. As such, this factor must not be overlooked and i, in fact, becomes the focus of this study.
For simplicity, the hypothesis investigated will be referred to as the lordosis hypothesis. This and
other etiological theories and correlating clinical investigations pertaining to idiopathic scoliosis are
discussed in Chapter 3.

‘Spinalgrumhimpededtomﬁnuemtﬂapprmim&lylhemo(ﬁym[ﬁ].
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1.2 Biomechanical Approach to Idiopathic Scoliosis

The mechanics of the spine has been a challenging topic in the field of biomechanics, for
some time now. Understanding the initiating factor of idiopathic scoliosis has been the particular aim
of many studies. It is one of the most sought-after problems.

The spine may be idealized as a column. It is the main load-bearing structure in the human
body, analogous to the column in a building structure. However, it is a very complex column. It is
composed of discrete elements, i.e. discs and vertebrae, with very different linear and nonlinear
material properties; has complex kinematics and interactions between elements due to the presence
of facet joints and ligaments; is subjected to growth (material and geometric changes) and large

deformations; and has complex rib cage and muscle interaction forces.

The fact that scoliosis is a deformity, whereby a once straight spine (basically straight when
viewed in the frontal plane) deviates into a curved configuration, leads one to suspect that scoliosis
is a buckling or structural instability phenomenon [48]. The initial curve present in the sagittal® plane,
and the deformations involving lateral displacement and axial rotation suggest more particularly,
torsional-flexural buckling of the spine. From this viewpoint, factors decreasing its stability would
increase the rate of progression of scoliosis [26,31]. Results of a buckling analysis would throw light
on the subject of scoliotic progression.

It is well known [123] that the stability of a circular curved column of thin rectangular cross-
section subjected to a pure moment about the strong axis of bending is dependent on the direction
and the amount of curvature, with respect to the direction of the moment loading. The curved
column is more stable, i.e. it can be subjected to a greater moment prior to buckling, if the moment
is applied in the sense to increase the curvature than to decrease it. The kind of loading is analogous
to the thoracic spine subjected to flexion®, i.e. forward bending. In this bending, the thoracic spine
can be expected to be more stable with a kyphosis than with a lordosis. This observation lends
support to the conjecture that a thoracic lordosis renders the spine less stable and hence more
susceptible to (scoliosis) buckling.

Due to the complex nature of the spine structure, modelling is very difficult and requires
many approximations. Lucas and Bresler [73] investigated the stability of the ligamentous
thoracolumbar® spine. Theoretically, they analyzed the spine as a homogeneous column with stiffness
effectively equivalent to the stiffness of the whole non-homogeneous column. Their theoretical results



were in good agreement with their experimental results.! Belytschko et al. [10] simulated the
experiment conducted by Lucas and Bresler using a finite element model of the spine and made
correlations between the buckled spine and the scoliosis deformity. Andriacchi et al. [4] conducted
a similar study, including the rib cage in their model. These and other spinal modelling and analyses,
performed for the purpose of understanding the mechanical factors influencing scoliosis, are discussed
in detail in Chapter 3.

1.3 Focus of the Present Study

In this study, a structural analysis model of the thoracolumbar spine and rib cage is
constructed, and is then used to investigate the lordosis hypothesis concerning the etiology of thoracic
AIS. As mentioned earlier, the basis of the hypothesis was formulated by Somerville [115] and later
refined by Dickson et al. [34]. To reiterate, the hypothesis is that during adolescent growth, a thoracic
lordosis coupled with an asymmetry in a plane other than the sagittal® plane produces scoliosis [34).

The hypothesis is simulated in two different ways using the geometric nonlinear analysis
program capability of the MSC/NASTRAN firite-element analysis package. In the first approach, a
slight lordosis is imparted to the spine prior to the nonlinear analysis, in which its response to
increasing gravity-type load is studied. In the second approach, the growth of the thoracic spine into
aslight lordosis is modelled as part of the nonlinear analysis. In this latter approach, the initial spinal
shape is normal, and the response under incremental loading arising due to lordosis-inducing growth
of the thoracic vertebrae and body weight forces is analyzed. The study is limited to attempting to
develop a right thoracic scoliosis with an apex at the T8-T9 level, because this form of AIS has been
found to be the most common [34,83]. Thus, the objectives of the present study can be summarized

as follows:

(1) Development of a structural analysis model of the human thoracolumbar spine and rib
cage representing overall geometry, and linear approximations of nonlinear stiffness properties of the
typical normal spine. Although the anatomy is simplified, care is taken to include the pertinent
elements necessary to conduct a sufficiently accurate analysis of the overall spinal behaviour. In the

first instance the spine and rib cage are considered to be symmetric with respect to the sagittal plane.

(2) Validation of the constructed model by comparison of its predictions with the results
obtained by previous researchers. Comparison is made of the critical buckling loads and the buckling

“Their experimental results are of significance because they are only ones that are based on an experimental study of a
complete thoracolumbar spine specimen.
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mode shapes of the symmetric spine model under compressive loading.

(3) Construction of a symmetric model with a slight lordosis in the thoracic spine. Based
on the data of a real scoliotic spine, the anterior and posterior heights of the thoracic vertebrae in
the normal spine are increased and decreased, respectively, such that the resulting thoracic spine has
a slight lordosis with an apex at T8-T9, which is the usual location of the scoliosis apex.

(4) Comparison of the buckling loads and mode shapes of the symmetric models with the
normal and the lordotic spines under compressive loading. Results of the linear bifurcation analyses
should indicate which configuration is more stable, and provide insight regarding the hypothesis
concerning lordosis as a possible etiology.

(5) Comparison of the deformed shapes of the models resulting from the geometric nonlinear
imperfection growth analyses with a scoliotic spine, in the hope of validating the lordosis hypothesis,

using:

(a) the lordotic model, with anatomical horizontal and frontal plane asymmetries (i.e.
imperfections) incorporated, under increasing load proportional to gravity up to the vicinity
of the structure’s approximate bifurcation buckling load, and

(b) the normal model, again with asymmetries incorporated, under compressive loading
modelling body weight and a deformation loading simulating accelerated anterior growth and
constrained posterior growth of the thoracic vertebrae.

-10-



Chapter 2
Anatomy and Kinematics of the Normal Spine and Rib Cage

In order to understand and address the clinical problem of adolescent idiopathic scoliosis, a
knowledge of the components comprising the spinal structure and their kinematics is necessary. The
purpose of this chapter is to familiarize the reader with the relevant anatomy and kinematics of the

normal spine and rib cage.

2.1 Spinal Column

The spinal column provides the intrinsic support to the human body, Fig. 2.1. It is basically
composed of 3 element types: vertebrae, intervertebral discs, and ligaments. Together, they constitute
what is known as the ligamentous spine, which is the spine without muscles and the rib cage. The
vertebrae and discs are in alternating order in the column. The vertebrae are hard bony elements
while the discs are made up of soft tissue. Thus, discs are the deformable elements which give
mobility and flexibility to the spine. The heights of the vertebrae are substantially larger than those
of the discs and in all, the vertebrae comprise approximately 3/4 of the total length of the spine
(44,105]. The size of both elements increase caudally*.! This has biomechanical significance since
the loads also increase in descending over the vertebral column [44]. The ligaments interconnect
adjacent vertebrae. Their resistance to stretching provides additional stiffness to the spine by limiting
its motion. The participation of the individual ligaments is dependent on their location with respect
to the vertebra and the type of motion the intervertebral joint undergoes.

The normal spinal column may be sub-divided into S regions as shown in Figs. 2.1 and 2.2.
The 7 superior vertebrae (C1-C7) found in the neck make up the cervical region. The following 12
vertebrae (T1-T12) have attachments for the ribs and therefore make up what is called the thoracic
region. The next 5 vertebrae (L1-LS) make up the umbar region. The fourth and fifth regions are
the sacral and coccygeal regions. They consist of fused vertebrae, 5 in the sacral region and 4 in the
coccygeal region. These two regions are unlike the other three because their vertebrae cannot move
relative to one another (there are no intervertebral discs between these vertebrae). In this study, only
the thoracic and the lumbar regions, known as the thoracolumbar spine, will be considered since

scoliosis occurs predominantly in these regions.

“Terms indicated with an asterisk (*) are defined in the Glossary in Appendix A.
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Fig. 2.1 Right lateral view of spinal column in relation to body outline. After Jacob et al. [57).
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right lateral (sagittal plane) view. After Graat [43].
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In the frontal plane, Fig. 2.2(a), the normal spine is relatively straight except for a slight
physiological right thoracic curvature which may be due to the position of the aorta [117] or right-
handedness [28,39,46]. The sagittal plane has 4 curves, each associated with a particular region of the
spine as shown in Fig. 2.2(b). In both the cervical and lumbar regions, there is a sagittal curvature
with a posterior concavity known as lordosis. Inversely, in the thoracic and sacral region, there is a
curvature with a posterior convexity known as kyphosis. The degree of curvature varies from one
individual to the next and also with respect to age and sex. As previously mentioned, the degree of
curvature may be measured by Cobb angle®, which is expressed in degrees. A normal range of
thoracic curvature (kyphosis) is between 20-50° [5,12,130] with an average of 37° [116]. The thoracic
curvature is primarily due to smaller anterior vertebral body heights than posterior ones. The degree
of curvature is found to increase with age. The thoracic curve tends to be straighter (with less
curvature) in females than in males below the age of 40. However, the difference becomes negligible
after age 40 when ihe thoracic curve of females becomes as curved as males [130]. The average
normal lumbar curvature is 50° (lordotic) [116] with an accepted normal range of 20-60° [12]. This
curvature is found 1o be slightly more pronounced in females [130]. This curvature is mainly due to
the inclination of the sacrum (approximately 40°), the wedge-shaped lumbosacral intervertebral disc
(13°), and the Sth [umbar vertebra, LS (8°) [15,60,116].

Although the spinal column is the major load-bearing structure, it cannot withstand the
external forces it is subjected to alone. Lucas and Bresler [73] found that the ligamentous spine
cannot even support the weight of the head (> 2 kg) without buckling. The spinal column requires
additional supporting structures. These structures providing the extrinsic support include muscles,
fascial envelopes, abdominal and thoracic cavity pressures and rib cage {40}. Among these, rib cage
is the most important part of the spinal skeleton and is included in the present investigation. Its
major roles are to protect the vital organs and increase spinal stability. Andriacchi et al. [4] have
shown that the introduction of the rib cage increases the load carrying capacity of the ligamentous
spine in compression approximately 3-fold (see Fig. 3.1).

2.2 Components of Spine [15,43,60,130]

2.2.1 Vertebrae

The vertebrae are bony structures which give rigidity to the spinal column. Each vertebra has
many parts, but essentially there are two main parts. They are the vertebral body and the vertebral
arch [60), see Fig. 2.3, page 16.



The vertebral body is the main load-bearing componeat of the vertebrae carrying
approximately 80% of its compressive load. The actual percentage is dependent on the position of
the spine during the time of loading. The vertebral body is composed of spongy, cancellous bone
surrounded by a thin, cortical bone shell. The density and elastic modulus of the cortical bone are
much higher than those of the cancellous bone. However, both carry significant loads, with the
relative share of the load varying with age. In the young adolescent, the cancellous bone is found to
carry 55% of the load; this percentage decreases on average to 35% by the age of 40 [130]. Cortical
bone, surrounding the perimeter of the body, gives high bending and torsional strength to the

veriebrae.

Cancellous bone is both advantageous and necessary. Aside from helping support the load,
it decreases the weight of the vertebrae, since it is not solid bone. It's sponge-like openings enable
nutrients to seep through to the cortical bone. Secondly, it acts as an energy absorber. It gives
resilience to the vertebrae and allows it to be subjected to sudden forces without damage to its

constituents {15,61,130].

The vertebral arch attaches to the posterior side of the vertebral body. It is composed of two
pedicles and two laminae. The pedicles are at the anterior ends of the arch and join the vertebral
arch to the vertebral body. The laminae comprise the posterior section of the arch. From the
vertebral arch, seven processes emerge, as shown in Fig. 2.3,

A spine-like process, appropriately named spinous process, projects posteriorly and slightly
inferiorly* from the point where the two laminae merge. From the junction of the lamina and the
pedicles on each side of the arch, project a superior articular process upward, an inferior articular
process downward, and a transverse process laterally and slightly posteriorly.

When the vertebrae are stacked as in the vertebral column, the vertebral body, its posterior
bony features and the connecting ligaments completely enclose a space known as the vertebral canal,
through which the spinal cord passes. Thus, these elements provide the spinal cord with necessary
protection.

Aside from creating bony protective arch for the spinal cord, the processes increase the
stiffness of the intervertebral joint, both by direct and indirect means. The processes act indirectly
by providing attachments for the ligaments which adjoin adjacent vertebrae. They are advantageous
in that they provide the ligaments with longer moment arms to make them act more efficiently, and
with various orientations so that they can participate in restricting various types of motions.
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Fig. 23 Typical vertebra: vertebral body and vertebral arch with its 7 bony
processes (a) top view, and (b) right lateral view. After Grant [43].

The processes themselves restrict particular motions due to impingement. For example,
extension is limited by the impingement of the inferior articular processes on the laminae of the
vertebrae below and the spinous processes on one another. Likewise, the ipsilateral® articular
processes limit lateral bending. However, their contribution is highly nonlinear; only having a
stiffening effect on intervertebral joint motion upon impingement or contact.

The inferior articular processes and the superior articular processes of the underlying vertebra
form a joint between the vertebrae. The joint, shown in Fig. 2.4, is called a zygapophyseal joint,
commonly referred to as facet joint. These joints carry the remaining 20% of the compressive load
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applied to the vertebra. Of great importance is the orientation of the facet joint (cartilaginous face

of the joint) which determine the type of motion permitted between the vertebrae [15,60).

The different spinal regions have different ranges of motion. This is partly due to the
variations in size, shape, and orientation of the above mentioned features of the vertebra found in the
various regions of the spine. In addition to these variations, vertebrae from each region of the spine,

e.g- thoracic or lumbar, have distinguishing features [43,60,130].

Joint between Joint between
articular vertebral bodles
processes T

Joint between
articular
processes

articular
processes

(a) ®)

Fig. 24 Zygapophyseal (facet) joint (a) right lateral view, and (b)
posterior view. After Bogduk and Twomey [15].

The thoracic vertebrae, shown in Fig. 2.5, are differentiated from the other vertebrae due to
their articular facets located on the vertebral body and on the transverse processes for the attachment
of the head and the tubercle of the ribs, respectively (see Fig. 2.12). They have wedge-shaped
vertebral bodies, having larger posterior heights, giving thoracic kyphosis. In cross-section, the
thoracic vertebrae are heart-shaped and generally have transverse and anteroposterior diameters of
approximately equal dimensions. Many of the thoracic vertebrae are known as transition vertebrae
because the superior ones resemble the cervical vertebrae, while the inferior ones resemble the lumbar

vertebrae, in both structure and function.

The orientation of the facets of the articular processes of the thoracic vertebrae, Fig. 2.6(a),
is such that it permits axial rotation. The superior articular facets face posteriorly (slightly superiorly
and laterally) and the inferior articular facets face anteriorly (slightly inferiorly and medially). Asa
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result, axial rotation is the predominant motion in the thoracic region [44,65,130].
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Fig. 25 Typical thoracic vertebra (a) top view, and (b) right lateral view. After Grant [43].
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Fig. 2.6 Orientation of the facet joints in the (a) thoracic, and (b) lumbar
regions of the spine. After White and Panjabi [130].

Mammary processes and accessory processes are distinctive of the lumbar vertebrae, see Fig.
2.7. In comparison to thoracic vertebrae, the spinous process are shorter and more oblong (ie. less

spine-like) and the transverse process are thinner and oriented more laterally. In cross-section, the
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vertebral bodies are kidney-shaped with a transverse diameter which is approximately 50% larger than
the anteroposterior one. In addition, the vertebral bodies are larger in size and mass in this region,
as shown earlier in Fig. 2.2. The cross-sectional area is found to increase caudally throughout spine

to accommodate the increasing compressive load.

As shown in Figs. 2.6(b) and 2.7, the facets of the superior articular processes are orientated
medially* and posteriorly and have a concave shape. The inferior articular facets face laterally and
anteriorly. This configuration with vertical orientation in the sagittal plane allows flexion* and
extension® but does not permit much axial rotation. Comparatively little flexibility in axial rotation
exists in the lumbar region. It is mainly the thoracic region which accommodates most of the axial

rotation in the thoracolumbar spine [60,65).

Processes:
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Fig. 2.7 Typical lumbar vertebra (a) top view, and (b) right lateral view. After Grant [43].

For the reasons explained above, the posterior elements of the vertebrae contribute to the
stiffness of the intervertebrai joint. This is confirmed by the fact that in in-vitro studies, removal of
the posterior elements indicates an increase in the flexibility of the vertebral joint [11,75,113]. By
limiting the range of motion of adjacent vertebrae, hence the spine, the posterior elements act as a
safety mechanism protecting intervertebral disc (annulus) from undue stress and deformation as well

as other body parts from damage due to hyperextension and hyperflexion [42].

2.2.2 Intervertebral Discs

The intervertebral discs are the "highly" deformable components between adjacent vertebral
bodies (Fig. 2.4). Their chief role is to provide flexibility and load transfer between vertebral bodies.
The intervertebral discs are best suited to resist compressive loads, as reflected in their stress-strain
curves. Their importance is illustrated by the fact that they must provide the competing attributes
of both flexibility and stability to the spine. The disc are composed of strong, soft tissue, the
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properties of which, effectively determine the stiffness of the whole spine.

The discs have visco-elastic properties, meaning the amount of deformation is dependent on
the rate of loading (stress or strain rate). In addition, continued deformation is found to occur during
sustained loading, and permanent deformation upon unloading. These represent two well known
phenomena associated with visco-elastic materials, namely creep and hysteresis [61,126].

The intervertebral disc is composed of two main parts, Fig. 2.8. They are the nucleus
pulposus and the annulus fibrosus. The nucleus pulposus makes up the center portion of the disc and
is composed of a semi-fluid ground substance with some collagen fibers and a few cartilage cells
dispersed within. The annulus fibrosus surrounds the periphery of the nucleus, although there is no
clear boundary between the two portions.

Nucleus pulposus

Annulus fibrosus

Fig. 28 Intervertebral disc. After White and Panjabi [130].

The inner portion of the annulus attaches to the cartilaginous vertebral end-plates which
separate the disc from the adjacent vertebrae, Fig. 2.9(a). The end plates do not extend over the
complete disc. The outer portion of the annulus fibers attach directly to the vertebral body, providing
a strong connection between vertebrae and disc.

The annulus is composed of concentric laminated bands of collagen fibers, Fig. 2.9(b). The
orientation of these fibers is the same in alternate bands and opposite in adjacent bands. But, both
are approximately 30° to the horizontal such that two adjacent bands have a 120 degree angle between
the orientation of their fibers. The orientation of the fibers has mechanical significance. Since the
annulus is only strong in tension along the direction of the fibers, this alternation in orientations
allows the annulus to resist all types of loading, even if only half the layers are working such as in
torsion [15]. With this knowledge, it is not surprising to find that torsional forces often injure
annulus [38,130].
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The annulus is capable of carrying loads by itself due to its densely packed bands, while the
nucleus, with its fluid-like properties cannot. However together, they provide a system capable of
supporting loads that would otherwise have buckled the annulus alone, and also a system capable of
absorbing and storing energy, i.e. cushioning impact type loads. Thus, the nucleus-annulus structure
is mechanically advantageous, especially in compression [15,60].

The size of the intervertebral discs is also found to increase caudally (as do the vertebrae) as
shown in Figs. 2.1 and 2.10. The larger cross-sectional area in the lumbar region bears the large
compressive loads while their increased height maintains flexibility [15,61,130].
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Annuius fibrosus
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Fig. 29 Annulus fibrosus. (a) Section through the disc, illustrating connection of annulus to adjacent
vertebra. After Bogduk and Twomey [15]. (b) Fiber orientation of concentric bands of
annulus. After White and Panjabi [130].
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2.2.3 Spinal Ligaments

The spinal ligaments, as shown in Fig. 2.11, connect adjacent vertebrae in the vertebral
column. They are strong uniaxial soft tissue structures, which resist tensile forces but buckle under
compressive loads. Hence, they increase stiffness of the intervertebral joint by limiting its motion in
directions depending on their location of attachment between vertebrae. Like the intervertebral disc,
their material is visco-elastic; thus their deformations are time-dependent [126].

There are seven major spinal ligaments [15,44,60,130). The anterior and posterior
longitudinal ligaments, as their names indicate, run the full length of the spine along the anterior and
posterior portions of the vertebral bodies, respectively. The former is composed of long collagen
fibers, running the full length of the ligament, and short fibers, attaching to anterior side of vertebral
body and intervertebral disc. The latter is composed of only short fibers which insert into the
posterior aspect of the disc and span over the posterior surface of vertebral body. They limit
extension and flexion respectively. They are stretched due to the separation of the vertebrae as well
as the bulging of the intervertebral discs [42).

The remainder of the spinal ligaments are segmental, meaning they are made up of short
fibers and run between adjacent vertebrae (vertebral arches & processes).

Ligamentum flavum

Intertransverse
ligament

Posterior
longitudinal
ligament
Interspinous
ligament
Supraspinous
Anterior ligament
longitudinal

ligament

Fig. 2.11 Ligaments of the spine. After White and Panjabi [130].



The ligamentum flavum is a very thick yellow ligament which connects laminae of adjacent
vertebrae. It extends the full length of the laminae and fully encloses the vertebral canal. Due to its

anatomical position, it mainly limits flexion and to some degree lateral bending.

The interspinous and supraspinous ligaments connect the spinous processes of adjacent
vertebrae. The interspinous ligament extends the full length of the spinous process, from tip to root,
while the supraspinous connects the posterior ends. However, they both provide stiffness in flexion

to the joint.

The intertransverse ligament connects transverse processes on the same side and limits lateral
bending. The capsular ligament are very short and connect articular processes (superior 0 inferior).

They limit the amount of flexion and lateral bending.

Additional ligaments which connect the ribs to the vertebrae will be discussed in the following

section on the rib cage.

23 Rib Cage

The rib cage, shown in Fig. 2.12, provides additional stiffness to the thoracic region of the
spinal column. The main components are the ribs, the sternum, the costal cartilage, the intercostal
tissue, and the costovertebral and costotransverse joints.

The sternum is located anterior to the spinal column. It is a hard bone, of composition
similar to the vertebral body. It provides an anterior attachment for the ribs on both sides of the
body. The ribs are curved hollow bones with an elliptical cross-section. The posterior end of the
rib is known as the head. The adjacent section is called the neck or tubercle. The anterior portion
articulates with costal cartilage. Costal cartilage is the soft tissue connector for anterior attachment
of the ribs.

Humans have 12 pairs of ribs approximately symmetric with respect to the sagittal plane. The
anterior seven pairs are known as true ribs. They attach anteriorly, via the costal cartilage, directly
to the sternum. The next five pairs do not attach directly to the sternum and are known as false ribs
[44]. The first three pairs attach to the costal cartilage of the rib above it by means of its costal

cartilage. The last two pairs have no anterior attachment hence are known as floating ribs.

Posteriorly, ribs are attached to the spine by costovertebral and costotransverse joints, as
shown in Fig. 2.13. Articular facets are found on the inferior and superior borders of the lateral-

posterior surfaces of the vertebral body and on the transverse processes as well as on the head and
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tubercle of the rib. Ligaments of the costovertebral joint, i.e. radiate and intraarticular ligaments,
connect the head of the rib to the spinal column. Radiate ligaments connect the head of the rib to
two adjacent vertebral bodies, i.e. the superior facet of the corresponding vertebra and the inferior
facet of superior vertebra, with the exception of the 1st, 10th, 11th and 12th ribs which are only
connected to their corresponding vertebra. Intraarticular ligament connects the head to the
intervertebral joint. The costotransverse ligaments connect the tubercle of the rib to the transverse
process, except for ribs 11 and 12, which have no costotransverse joint [65]. In addition, there are soft

tissues which run in between adjacent ribs in the intercostal spaces.

Coastal carlliage

(©)

Fig. 2.12 Rib cage structure illustrating (a) anterior view, (b) right lateral view,
and (c) view of a typical rib from the inside. After Pansky [92).
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Fig. 2.13 Ligaments connecting ribs to the spine (a) right lateral
view, and (b) top view. After White and Panjabj [130].
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These strong ligaments are the only connections between the rib cage and the spinal column.
The costal cartilage joins the ribs to the stemum making the cage continuous. Therefore, the
stiffening effect of the rib cage on the thoracic spine depends entirely on the strength of these soft
tissue elements; the chain is only as strong as its weakest link. Any movement that occurs between
the thoracic vertebrae must also occur between the ribs of corresponding vertebrae. Deformations
occur primarily in the costal cartilage, and less pronounced in the rib [60]. As a result, the rib cage
mechanism limits the range of motion in bending and twisting in the thoracic spine. This range of
motion decreases with age as costal cartilage ossifies (61].

Although individual components of the rib cage are flexible, the rib cage, as a whole is found
to have a stiffening effect on the spine. This increase in stiffness is attributed to the additional
stiffness provided by the ligaments of the costovertebral and costotransverse joints, and more
importantly to the increased cross-sectional dimensions of the thoracic spine provided by the rib cage,
as illustrated in Fig. 2.14. The increased dimensions provide thoracic spine with a larger moment of
inertia and torsional constant to resist bending and torsion. As a result, the rib cage contributes
approximately 40% of the bending strength and stability of the thoracic spine [5,61,130]. Based on
a finite element model study {4], inclusion of the rib cage increases the stiffness of the normal thoracic
spine in all four physiological motions (lateral bending, torsion, flexion, and especially extension) as
shown later in Fig 3.5. In addition, as mentioned earlier and as shown subsequently in Table 3.1, the

stability of the spine is found to increase 3-fold with the inclusion of the rib cage [4].

Cross-sectional area
of spinal column

Cross-sectional area \
of spine and thorax

Fig. 2.14 Schematic diagram showing increase in transverse (horizontal) plane
dimensions of thoracic spine by virtue of rib cage. After Apuzzo et al. [5].



2.4 Coupling* in a Normal Spine

Significant coupling is found between lateral bending and axial rotation in the normal spine.
This type of coupling means the vertebrae rotate axially when the spine is subjected to lateral bending,
and vice versa. Coupling is an important part of the kinematics of the normal spine and as such needs
to be discussed. It is particularly interesting in this study because idiopathic scoliosis consists of a
lateral curve with convex-sided rotation. A study of normal coupling can help understand the type
typical of scoliosis.

Coupling is influenced by many factors involving different aspects of the spine anatomy. As
a result, it is a very complex phenomenon, and consequently there are conflicting in vivo results.
White [129] found concave-sided rotation in motion segments of the thoracic spine when subjected
to lateral bending, see Fig. 1.2(a). Significant coupling was found in the upper thoracic and cervical
regions of the spine. [n the middle and lower thoracic regions, the coupling was found to be less
significant and sometimes in the opposite direction i.e. convex-sided [129]. Observations of convex-
sided rotation have also been reported in the lumbar spine [61].

Lovett [72] studied the rotation of the spine associated with lateral bending using cadaver and
live specimens. He found that the erect spine rotates predominantly with concave-sided rotation
during lateral bending. However, he found the characteristic direction of the rotation varied with
respect to the region of the spine. Arkin (7], on the other hand, found the living spine to rotate in
convex-sided rotation when subjected to iateral bending. However, both agreed that the direction of
axial rotation is dependent on the amount of flexion or extension. Flexion during lateral bending
produced convex-sided rotation, and conversely, extension produced concave-sided rotation. Arkin
[7] explained this behaviour by stating that structures under greater tension will assume the straighter
line, i.e. the inside of a lateral curve.

Despite the different results, these findings together with the results of a bjomechanical
analysis by Veldhuizen and Scholten [125] indicate that both the direction and the strength of the
coupling are influenced by:

(1) sagittal inclination of the spine in the sagittal plane [125],
- (2) facet joint orientation (the inclination in the sagittal plane, as illustrated in Fig. 2.6) [125],
(3) amount of flexion and extension forces in the spine [7,72].

An additional consideration is the centers of rotation or shear centers of the motion segments
(84]. As illustrated in Fig. 2.15, the centers of rotation vary for the different regions of the spine due
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to the various facet orientations and they do not coincide with the centroid [47,60]. The location of
the centers of rotations could possibly influence coupling effect. Factors which are found to influence
convex-sided rotation may be possible links to idiopathic scoliosis. Possible etiological factors are
discussed in Chapter 3.

Center of
axial rotation

(@) ®)
Fig. 2.15 Centers of rotation of the (a) thoracic, and (b) lumbar vertebrae. After Kapandii [60].



Chapter 3
Literature Review

The purpose of this chapter is to bring the reader up-to-date on the present status of
knowledge and modelling of the spine pertaining to scoliosis. It first includes a brief discussion of
the etiological theories of AIS. Particular attention is focused on the lordosis hypothesis [34].
Secondly, it describes the development of spine models aimed at achieving an understanding of spinal
stability and mechanics with relations to scoliosis.

3.1 Etiological Theories of Adolescent Idiopathic Scoliosis

For many years, the etiology of AIS has been sought. Theories of biochemical, genetic,
neuromuscular, and hormonal origins have been formulated, but have been unsuccessful in pin-
pointing the cause. It is now suspected to be a combination of many factors [26]. However, whatever
the cause, the deformation must be explainable biomechanically [49,98].

Two factors known to play a role in the pathogenesis and progression of scoliosis are growth
and genetics. A survey conducted in the 1960°s by Wynne-Davies [135] on patients from the
Edinburgh Scoliosis Clinic, Scotland, indicates peak incidence of idiopathic scoliosis during infancy
and adolescence. These two periods coincide with the two growth spurts experienced during one's life;
the first following birth, the second during puberty. In addition, progression of existing lateral
(scoliotic) curves has been noted to accelerate and become clinically significant during the adolescent
growth spurt [94,106]. Some suspect growth to be the primary cause of scoliosis with gravity and
susceptibility of skeletal tissue to the Heuter-Volkmann effect (increased pressure leads to decreased
growth) acting as secondary factors (8,17]. Whatever the case, the simultaneous occurrence of growth
and onset or progression is considered too high to be coincidental and, therefore, it follows that
growth must be linked to etiology of the disease.

In the same study [135], the rates of incidence of idiopathic scoliosis among 1%, 2*, and 3
degree relatives of 114 patients from the Edinburgh clinic were recorded and compared with the
incidence in the general population, determined by screening 11,087 Edinburgh children. The results
showed that the incidence of scoliosis is much higher among the relatives of the index patients than
in the general population. It was particularly high among 1 degree relatives (parents, siblings,
children) of the adolescent girl patients (6.9% compared to population incidence of 0.1%). The study
found that the highest incidence (12%) was among female relatives of adolescent girl patients. Two
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important points were drawn out of this study. First, the families were found to have both infantile
and adolescent scoliosis, which suggests they both have the same etiology. Second, the strong familial
trend of the disease found in this study suggests idiopathic scoliosis is hereditary, i.e. affected by
genetics related factors [135].

Aside from explaining its correlation with growth and genetics, the etiology of AIS must be
able to explain other characteristics of the disease, e.g. its predominant occurrence in girls compared
to boys, and of course, the peculiar character of the deformity (lateral curve with spinal rotation).
From the biomechanical point of view, progression of the lateral curve with rotation may be likened
to torsional-flexural (lateral) buckling of a column curved in one plane, as discussed in greater detail
in Chapter 4. For the time being, knowledge of the theory pertaining to the buckling of a simple

Euler column' is sufficient. The formula giving the buckling load of an Euler column is

_ n%El
Pa s T

where P, is the critical buckling load, E is the Young's modulus of the column material, ] is the weak-

axis moment of inertia of the column cross-section, and A is the effective length? of the Euler column.

It is clear from the above equation, that buckling occurs if the column becomes (00 slender’
(that is, A%I 100 large), too flexible (value of E too small), or is subjected to loads (gravity loads,
muscle action forces) which are too large [49]. With these general conclusions as their basis, many
researchers have investigated these stability factors as possible explanations for the progression of the
scoliotic curve. Results of the clinical studies conducted to substantiate these hypotheses are as

follows.

Slenderness

In one study {132}, scoliotic girls were found to be significantly taller than structurally normal
girls of the same ages. In another study [112], girls were found to have spines significantly slenderer
than those of boys. However, when slenderness was compared between scoliotic and normal girls,

'Euler column here represents an idealized column which is straight, homogeneous, and has a constant cross-section. Also,
it assumes small deformation theory and linear elastic material behaviour.

2Effective length, as explained in Chapter 4, is dependent on column length and end support (boundary) conditions.

3Slenderness is measured by slenderness ratio, which may be defined as the ratio of column length to a cross-sectional
dimension (e.g. radius) of the columa.
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there were some differences, but they were not consistent [112]. The evidence that the scoliotic girls
are taller than normal girls makes the buckling theory plausible since column length is one of the
influential parameters in column stability. If all other variables were kept constant, taller would mean
more slender. However, the slenderness study [112] found no consistent differences. In light of these
findings, the excessive slenderness would explain the dominant occurrence in girls but it does not

justify conclusively why some girls are more susceptible to scoliosis than others.

Flexibility

Flexibility of the spine is dependent on the flexibility of the soft tissue constituents (primarily
the discs). Spines with abnormal lateral bending flexibility are more susceptible to buckling, hence,
possibly to scoliosis. With respect to studies investigating lateral bending flexibility of the spine,
motion segments® of the female were found to be generally more flexible than those of the male
(48,78,81], while scoliotic girls were found to have significantly less flexibility than structurally normal
girls [76]. Similar to slenderness, flexibility hypotheses may explain progression prevalence in girls.
However, the finding that scoliotic girls have stiffer spines in lateral bending than those of normal
girls seems to go against the hypothesis and makes the excessive flexibility an unlikely cause.

Abnormal Loads

Biomechanically, abnormal sets of forces and moments could increase the likelihood of lateral
buckling of the spine. The abnormal load of concern in scoliosis is an unbalanced lateral moment
since compressive forces alone do not produce significant amount of lateral bending of motion
segments [11]. The possibility of unilateral weakness or abnormalities of trunk muscles were
investigated in 93 scoliotic and 109 structurally normal adolescent girls (97]. Measurements of the
maximum voluntary trunk strengths indicate that there is no consistent difference in mean muscle
strengths between scoliotic girls and normal girls. Based on these results, AIS is not likely a result
of gross weaknesses or imbalances in the major muscles of the trunk.

Since trunk muscles of scoliotic girls prove capable of producing normal strength forces,
another study was conducted by Reuber et al. [98] to investigate the possibility of lateral asymmetric
trunk muscle contraction forces as a cause of curve progression. Myoelectric activities' of trunk
muscles were measured in adolescent girls, 20 scoliotic and 12 structurally normal, during various

"Ihenemmnsmiuuigml that stimulates a muscie to contract. The magnitude of the signal, known as the myoelectric
activity, determines the strength of the muscie contraction (i.e. the muscle contraction force) [98].
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exercises to determine the muscle contraction forces. Muscle force asymmetries significantly different
from normal girls were found only in patients with severe cases of double cutves, with one Cobb angle
larger than 25°. The fact that the larger trunk muscle forces were consistently found on the convex
side of the severe lateral curves indicated that the lateral muscle force asymmetries are a result of
scoliosis, developed to balance the lateral moment created by lateral offset,’ rather than its cause.
This conclusion of the study then suggested that scoliosis may be a result of a lack of force asymmetry
in the spine which has a slight lateral offset. To this end, two other hypotheses have been proposed
[98]).

These hypotheses for the progression of scoliosis involve a malfunction in the neural network
responsible for maintaining upright postures of the trunk. This malfunction, as suggested by Reuber
et al. [98], includes the inability to detect an unbalanced lateral moment or to direct the necessary
asymmetrical response in trunk muscles to counteract moment. In the first hypothesis, as a result of
contraction forces in the trunk muscles being too symmetric, the soft tissues of the motion segments,
particularly the intervertebral discs, in the curve region must provide resistance to most of the
unbalanced moment. Hence, discs deform, motion segments rotate (i.e. tilt) further, and the lateral
curve increases. This behaviour is said to be a necessary condition for curve progression but not a
sufficient one [98]. The second hypothesis explains the curve progression. It pertains to possible
long-term behaviour of discs to unbalanced lateral moments resulting from motor control defects.
It hypothesizes that if the tilts continue to increase and in time become more or less permanent under
sustained lateral moment, then an irreversible progression would occur. Although experiments
conducted with animals support the hypothesis, it requires long-term testing of human discs, involving
the monitoring of creep and hysteresis effects [98].

A study was performed on spine models [49], to investigate the possible sources of unbalanced
lateral bending moments that could lead to curve progression, support clinical findings concerning
muscle forces previously discussed, and substantiate the neural control defect hypothesis. The effects
of possible abnormal trunk muscle forces and righting mechanisms, resulting from neuromuscular
system malfunctions, on lateral curves were examined in this study. Results indicate that if
progression of the scoliotic curve is due to trunk neuromuscular failure, then it is most likely in the
malfunction of the neural control system, which senses imbalances and stimulates responses, rather
than in the functional capabilities of the muscles to respond to appropriate signals. However,

The lateral offsct creates lateral moments in the spine due to (1) the weight of body segments above the apex of the curve
and (2) the shortening and lengthening of the moment arm, on the convex and concave sides respectively, through which trunk
muscles act 98]
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neural control defect seems a plausible cause, it too fails to correlate growth and female gender bias
to the disease.

Another hypothesis, pertaining to asymmetrical growth of spinal components, was proposed
by Lindahl and Raeder [68]. Using a straight column theoretical model, they found that the type of
external forces necessary to produce the lateral displacement and rotation, typical of scoliosis, would
be vertical restricting forces acting on the spine, located in the quadrant lateral and posterior to the
affected vertebral bodies, see Fig. 3.1. Possible sources of restricting force in this quadrant would be
the restriction of the vertical growth of some or all the elements present in the quadrant ie.

transverse process, posterior section of ribs, and long dorsal muscles.
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Fig. 3.1 Quadrant X O Y. The binding forces must be located in this quadrant in
order to produce a lateral displacement and a convex-sided rotation similar
to the type found in scoliosis. After Lindahl and Raeder [68].

The theory is based on the idea that since the anterior section of the spinal column,
composed of stacked vertebral bodies, provides the majority of the stiffness of the spinal column, the
deformed configuration of the spine is such that the anterior of the column will undergo the least
amount of deformation in the column. He suggested that the muscles and ligaments interconnecting
the transverse process on one side grow at a slower rate than the rest of structure. As a result, they
would produce restraining forces between the transverse process on one side, i.e. in the quadrant, and
cause lateral deviation and convex-sided rotation of the column so that the vertebral bodies experience
a minimal bending deformation. It was conjectured that, if the ends of the spine were restrained in
rotation, a deformation typical of scoliosis, with maximum rotation at the apex of the lateral curve,
would result [68].

An attempt was made to clinically test the hypothesis by removing the transverse process on

-33-



the concave side of 13 idiopathic patients and determining whether or not the progression would stop
[67]. However, due to the unpredictable nature of scoliosis, whether it will progress or be stationary
at any point in time, the effects of the treatment were difficult to establish (there was no conclusive
proof of reduction in the scoliosis angle). Evidence of scoliosis developing in patients with unilateral
paresis of the intercostal muscles located in the quadrant [58] and in patients following the surgical
removal of the transverse processes (convex towards the side of the resection) [127,128], gives promise
to the theory. Although this hypothesis explains the occurrence of disease during growth, it fails to
explain the high frequency in females.

Lastly, abnormalities in the collagenous matrix of intervertebral discs, thought to cause a
decrease in the resistance of the passive tissue component, were investigated as a possible factor in
curve progression. Harrington [50] and Ponsetti et al. [95] have suggested that a collagen defect in
the invertebral disc is the principal factor. Collagen content, extractability and distribution across disc
were studied in both normal and scoliotic spines. Collagen abnormalities were found in scoliotic discs.
However, results are conflicting as to whether they are primary or secondary effects® [18].

3.1.1 Lordosis Hypothesis and “Biplanar Spinal Asymmetry” [34]

The lordosis at the apex of the lateral curve in thoracic scoliosis has been noted as early as
1865 by Adams [1). Although researchers such as Somerville [115] and Roaf [100] felt that scoliosis
could not occur without the initial development of a lordosis, this aspect of scoliosis has been largely
overlooked [66]. It is only over the recent years that the sagittal curvature of the spine in scoliotic
patients has been receiving increasing interest [83], particularly by Dickson et al. (6,30,34].

The deformity is often misunderstood, because severe cases of thoracic scoliosis give the
appearance of a severe kyphosis i.e. hunchback®. However, this is misleading due to the large axial
rotation accompanying the deformity. As shown in the graphs and radiographs in Fig. 3.2 from
Deacon et al. [30] of a specimen with severe thoracic scoliosis, the degree and direction of curvature
varies according to the angle of view. Figure 3.2(a) indicates the variation of the curvature according
to the angle of rotation of the specimen. Figure 3.2(b) shows the usual A-P view of the specimen,
while Fig. 3.2(c) illustrates the true A-P view of the deformity. The "true” A-P is the view orientated

!Abnormalities in the collagen coatent of the scoliotic discs were found to be dependent on curve location. These results
suggest that abnormality is of a secondary nature. However, contrasting results from pepsin extractability tests indicate
abnormalities in all scoliotic discs [18].

This deformity is often described as a kyphoscoliosis by many surgeons and physicians [100], implying mistakenly, that it
consists of an excessive kyphosis as well as a lateral curve.
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with respect to the apical vertebrae, which gives the maximum view of the lateral deformity. The
lateral curvature is generally of a magnitude 41% greater in the true view of the deformity than that
in the A-P view of the specimen [30]. Figure 3.2(d) shows the usual lateral view of the specimen
which indicates a false kyphosis. It is only in the "true" lateral view, Fig. 3.2(e), that the actual
lordosis becomes evident. This true lateral view is perpendicular to the true A-P view.

Studies by Ohlen et al. [83] and Willner [131] showed that scoliotic patients have significantly
smaller thoracic kyphosis than normal persons. Statistically, a radiographic study by Dickson et al.
[34], of over 70 patients with idiopathic thoracic scoliosis showed a true lordosis at the apex of their
lateral curves in 75% of the cases, with the remaining ones having significantly reduced or absent
kyphosis. The mean was a 3° lordosis at the apex. Results are contradictory at this point in time
regarding whether or not there exists a correlation between the degree of lordosis and the degree of
scoliosis (i.e. lateral curve) [30,34,83].

The results indicating the presence of lordosis are not surprising, for as mentioned before,
geometrically, the convex-sided rotation, characteristic of scoliosis, requires a longer anterior length
of spine than posterior i.e. true lordosis, throughout the lateral curve. In morphometric analyses
conducted by Deacon et al. [30] and Roaf [100], it was found that the mean anterior length of the
spine was longer than its posterior length. The vertebrae in the affected region were found to be
lordotic, implying asymmetric vertebral growth [30,34]. Thus, it seems that the spine, even in regions
typically kyphotic, ie. thoracic region, must be lordotic to some degree in order to obtain scoliotic
rotation [29].

The above geometrical evidence and its interpretation constitutes the basis of the lordosis
hypothesis as to the etiology of thoracic scoliosis. Somerville [115], Roaf [100], and more recently
Dickson et al. [34] have been the most prominent proponents of this hypothesis. Somerville [115]
was one of the first to propose, on the basis of his physical model and experimental studies, that the
relative faster growth of the anterior portion of the spine forces it into a configuration with lordosis,
rotation and lateral deviation. Roaf [100] supported the hypothesis by stating that there are two
possible results from relative anterior overgrowth of the spine. They are: (1) a severe lordosis, or
(2) a sideways deviation of the longer anterior portion, i.e. scoliosis. He suggested that the severe
lordosis is prevented by the sternum and abdominal muscles and thus the scoliotic-type deformations
accommodate the asymmetrical growth. Dickson et al. [34] extended the hypothesis by pointing out
that in addition to the thoracic lordosis, there must be some sort of spinal asymmetry in a plane other
than the sagittal plane, i.e. the horizontal or frontal plane, for AIS to develop. Without the
asymmetry, under symmetrical loading, the spine would remain in the sagittal plane until the point

.35-



s ) 1 L L } L .
9 20 40 60 80 100 120 140 160 180

Angle of rotation (degrees)

@)

Fig. 3.2 Variation of the degree of curvature (Cobb angie) with respect to the view of the thoracic
scoliotic deformity. (a) Graph of the Cobb angle measured versus the angle of rotation from
the frontal view of the scoliotic specimen. Radiographs of the specimen taken at 4 views.
(b) A-P view of the specimen indicating a lateral curvature of 87°. (c) True A-P view of the
deformity revealing a true lateral curve of 128°. (d) Lateral view of the specimen giving an
impression of a kyphosis of 61°. (¢) True lateral view of the deformity revealing a true 14°
lordosis at the apex of the lateral curve. This view is 90° to the plane of maximum lateral
deformity. All figures are from Deacon et al. [30].
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of excessive loading. Therefore according to Dickson et al. [34], the combination of the thoracic
lordosis and the additional asymmetry, which they termed “biplanar spinal asymmetry”, is the crucial
factor giving instability to the spine. They suspect that its presence during growth is the primary
cause; while the lateral cutvature and rotation of the AIS spine are secondary effects.

Experimental and Biomechanical Support

Results of experimental and biomechanical mode! studies support the hypothesis. Somerville
[115] produced progressive idiopathic thoracic scoliosis in 3 young rabbits by surgically creating a
lordosis over a short segment of their spine. Considerable amount of rotation, in the scoliotic
direction, was developed in animals in which the disease is unknown and in which gravity can have
no effect. Dickson [34] performed a biomechanical study in which a model with a short-segmented
biplanar asymmetry (lordosis and slight frontal curve) was created using spines of rabbits. Upon
forward flexion, these spines deformed in a manner similar to scoliosis. The normal rabbit spine,
when subjected to flexion, did not rotate. Conclusions drawn from the experiments were that a
significantly reduced kyphosis and an asymmetry in the horizontal or the frontal plane are necessary
for scoliosis. Since Somerville was unaware of the necessity of such an asymmetry and attempts by
other investigators to repeat his experiment were unsuccessful, Dickson et al. [34] suggests that
Somerville must have accidentally created a slight frontal plane asymmetry® in his experiment.

It may also be recalled that in the work dealing with the restricting forces [68], the analysis
determined the position of binding forces, necessary to achieve scoliotic deformity, to be lateral and
posterior to the vertebral bodies of the hypothetical straight column. The posterior positioning of
the load creates a lordosis and the lateral offset of the load creates a lateral asymmetry. Therefore,
it seems that this theoretical analysis obtains scoliotic-type rotations by effectively imposing biplanar
spinal asymmetry due to the location of the loading.

Two other related studies were performed to investigate the lordosis hypothesis. Jarvis et al.
[59] conducted an experiment on human and calf spines to study the effect of a localized lordosis or
tethering of the posterior elements of the spine on the behaviour of the normal spine. Ligamentous
spines, with and without posterior tether, were loaded by axial displacement. Slight asymmetry in the
mounting gave spines a tendency to deflect laterally in a certain direction. Upon loading, significant
lateral curves were produced, convex to the side determined by the asymmetry. A fixed length tether
was placed posteriorly of the spine and slightly laterally to the convex side of the of this lateral curve,

'Children, uniike animals, have inherent frontal and horizontal plane asymmetrics [34].
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in the lower thoracic region of the spine. The tether was found to increase the convex-sided rotation.
Without the tether, the rotation was found to be non-existent or in the opposite direction (concave-
sided). Geometrically, convex-sided rotation in which the tether moves towards the inside of the
lateral curve, accommodates the "inextensible” tether. Thus, according to Jarvis, the posterior tether
explains the rotation characteristic of scoliosis, but the cause of the tether is uncertain.

Stokes and Gardner-Morse [118] simulated the experiment performed by Jarvis et al. [59]
using a simple homogeneous finite element model of the ligamentous thoracolumbar spine. Under
loads contracting the postero-lateral tether in the thoracic region 3% and a compressive force of 250
N applied at the top, lateral displacements and convex-sided rotations resulted. However, the axial
rotation was very small, with a relative magnitude at the apex of 0.09°/’mm of lateral deflection.
Tethering in the lumbar region produced poor results with rotations of a kind opposite to scoliosis.

Explanation of Clinical Evidence

The lordosis hypothesis {34] also has explanations for the clinical findings. Logically,
regardless of the initiating factor, scoliosis requires growth. It is only during growth periods, that such
large deformations or changes may develop. Since according to the hypothesis the lordosis arises from
asymmetrical anterior-posterior vertebral growth in the hypothesis, it is not surprising to find high
incidence of AIS during the adolescent growth spurt. It is during the periods of peak growth, that
asymmetrical growth rates would alter spine configuration most drastically, and consequently, its
effects would become obvious at this time.

Lateral spinal profiles (sagittal curvatures) are determined genetically [116]). This is
demonstrated by the fact that some families have a tendency to have flat backs while others have
round backs. Thus, the strong familial trend noted in AIS [135] may be explained by the fact that the
essential lesion of AIS according to the hypothesis, namely a reduced thoracic kyphosis, is an inherited
feature [6,34].

As found by Willner [131], during the normal growth process, the thoracic kyphosis reduces
in magnitude between the ages of 8 and 12 and becomes a minimum at about the age of 10. This
period of reduced curvature coincides with the adolescent growth spurt of girls, as shown in Fig.
3.3(a). Boys, on the other hand, Fig. 3.3(b), have their peak growth velocity, on average, 2 years later
than girls when spine has maximum kyphotic curvature. Based on the fact that girls have a reduced
kyphosis while boys have a maximum kyphosis during period of peak growth (i.e period when AIS
develops), the hypothesis explains the susceptibility of girls to the deformity [34].
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Fig. 3.3 Graphs illustrating the correlation between growth rates and the degree of thoracic kyphosis
in (a) girls and (b) boys, ages 8 - 16 years old [131]). Figures are from Leatherman and
Dickson [66].

A kyphosis on the small side of the normal range produces a straighter hence taller spine.
Thus, the reduced thoracic kyphosis resulting from asymmetrical vertebral growth explains the finding
that scoliotic girls (with mild cases) are taller on average than normal girls, in the absence of any
adolescent growth abnormalities [6]. Biomechanically, a reduction in the curve amplitude of the spine
increases its length without a change of its cross-sectional properties and therefore produces a less
stable configuration of spine. The effect of the magnitude of curvature or curve amplitude on column
stability will be discussed in Chapter 4.

To illustrate the precarious balance of the sagittal profile of the spine in late childhood, the
middle thoracic vertebrae need only change their curvature by about 3° each, for the thoracic spine
to become lordotic [31]. In addition, the thoracic region is also the site of the natural frontal and
transverse plane asymmetries due to the presence of the aorta on the left side. In the frontal plane,
the thoracic spine has a slight right curve and in the horizontal plane, the thoracic vertebrae T4 to
T9 have an asymmetrical cross-section, as shown in Fig. 3.4. Anatomically, the flatter the thoracic
kyphosis, the greater the effect of the aorta on the vertebrae {45].

The T9 vertebra is one of the thoracic vertebrae (with considerabe rotational freedom) which
is located close to point of inflection between kyphosis and lordosis. Recalling that the crucial factors
of AIS, according to the "biplanar spinal asymmetry” hypothesis, are lordosis plus a frontal or
horizontal asymmetry, the hypothesis explains why T9 is a frequent apex of the deformity [83].
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Sagittal curvature varies substantially from person to person. An average lateral profile is
very difficult to construct as was found during modelling. However, since thoracic scoliotic patients
have in common a lordotic tendency in their thoracic curvature [66], it is important to investigate its
effect carefully. In light of the experimental and biomechanical model studies offering support of the
lordosis hypothesis as well as the clinical evidence explainable by the hypothesis, it follows that this
hypothesis as expounded by Somerville [115], Roaf [100], and Dickson et al. [34] must be capable of
explaining the scoliotic deformity on a rational basis.

Aorta

Fig. 3.4 Top view of transverse or horizontal plane asymmetry of middle thoracic vertebrae due to
pulsation of the descending aorta of the left side of spinal column. After Leatherman and
Dickson [66].

3.2 Spinal Modelling

A vast variety and number of studies have been conducted to understand the biomechanics
of the spine. Significantly relevant to the present work were the studies which:

(1) experimentally determined stiffness properties of the various components of the spine,

(2) determined the geometry of spine and rib cage by direct measurement from human

specimens,

(3) involved experimental and/or clinical procedures to evaluate possible causes of AlS,

(4) developed (mathematical) structural analysis models of the complete thoracolumbar spine.

To avoid repetition, the first two categories are discussed in detail in Chapter 5. The third
one has already been discussed in the previous section. Discussion of the last (fourth) category is
limited to those models which were concerned specifically with the study of scoliosis and/or spinal
stability. In particular, no reference is made to the numerous model studies on dynamic analysis.
Also, some of the discussion in this category overlaps with that in the section on possible etiology of
AIS, since many studies involved testing hypotheses using appropriate structural analysis models.



Mathematical models are often used to simulate complex systems such as biological systems,
which are difficuit to study using standard experimental techniques [110). Spine structural analysis
models have long been used to gain an understanding of spinal behaviour, in particular, scoliosis. The
chief advantage of mathematical models over physical models [7,20,101,115], is the ease of changing
various parameters (i.e. size and shape of vertebrae, soft tissue properties, sagittal curvature) in order
to predict the effects of such changes [10]. However, due to the complexity of the structure, and the
lack of hard data on the living (in-vivo) spine,' unavoidable assumptions must be made in order to

construct a feasible and useful model [42].

3.2.1 Continuum Models

Continuum models are the simplest way to represent the spine. [n these models, the spine

is idealized as a continuous beam.

Lucas and Bresler [73), determined the stability of the ligamentous spine both theoreticaily
and experimentally. In their study, the spine was conceptualized 10 behave like an elastic beam with
constant sectional properties along the length. For this purpose, the average lateral bending
flexibilites of each elastic segment, k = ¢/M, were determined experimentally from lateral load studies
on three ligamentous spines. The effective lateral flexibility, K, of the entire spine (of length L) was
then calculated as K = Zk/L. Using this value of K, the theoretical critical loads for various end
support conditions were calculated according to the Euler buckling formuia for straight elastic

columns.

Next, the upright spine, constrained from displacement in the sagittal plane at the mid-
thoracic and mid-lumbar levels 1o prevent A-P bending and securely fixed at the sacrum, was loaded
vertically at the top until lateral buckling occurred. Buckling loads were determined for the
conditions in which T1 was free and also when T1 was constrained from lateral and anterior-posterior

displacements and axial (horizonta!l plane) rotation.

Comparisons were made between the theoretical critical loads and experimental critical loads
for the same constraint conditions, see Table 3.1. Results were in close agreement, and indicated that
the ligamentous spine behaves similarly to an elastic beam. The critical loads for the spine length of
47.9 cm, were found to be 2 kg and 17 kg for the T1-free and T1-constrained (as described above)

'Data on human spine found in literature are obtained from in-vitro spine. Properties etc. may very well be different in-
vivo. In-vivo propertics would be difficult if not impossibic to measure. Therefore, present study is based on in-vitro
measurements and does not account for postmortem effect.
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conditions, respectively.

The work of Lucas and Bresler is significant in the field of stability of spine, since they were
the only ones to have conducted an experimental stability study on a human spine. Their results

provide researchers a basis for comparison.

Works by Hjalmars [54] and Lindbeck [69] indicate that in some circumstances a
mathematically simple continuum model may be sufficient for the analysis of the mechanical response
of the spine at an overall level. Hjalmars [54] developed an anisotropic beam model for the lateral
bending of the human spine. Lindbeck [69] used this model to reproduce the characteristic form of
a spine with functional scoliosis' by means of a buckling analysis. However, in view of the highly
idealized assumptions necessary to arrive at a continuum model, they can provide at best, only a

qualitative picture of the real behaviour.

3.2.2 Discrete-Parameter Models

More realistic and complex models were developed as computer technology improved [42].
Representation of the spine in three-dimensions is required in order to study very basic problems in
orthopaedics such as scoliosis and effects of instability [87). The discrete-parameter structural analysis
model® is composed of discrete elements representing various anatomical elements of spine (discs,
ligaments, vertebrae, etc.) each assigned its own sectional and material properties. Generally, the
vertebrae, ribs, and sternum are idealized as rigid bodies, while the discs, ligaments, and cartilage are

modelled as deformable elements.

Comparatively complex computations make these models less easy to work with than
continuum models for the purpose of drawing general conclusions (e.g. effect of curvature) on the
mechanical responses of the spine [54]. However, continuum models are too unlike the real spine
structure because of their inability to account for important anatomical features (e.g. differences in
properties of discs and vertebrae, presence of rib cage on thoracic vertebrae) [87]. Local effects and
deformations are important in the present study, hence the model chosen for the present study is a
discrete-parameter model. A discussion of past three-dimensional thoracolumbar spine models
relating to the study of scoliosis now follows.

'Defined as a lateral curvature of the spine caused by tilt of pelvis.

2This is not a FEM. model, in which for example, discs and vertebrae are modeled in detail by 3-d finite element meshes.
The interest here is in the behaviour of cach distinct anatomical element which makes up spine rather then in the stress fields
of each clement. Thus, distinct elements are modeled using beam elements.
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Schultz and Galante [110] constructed a three-dimensional mathematical model of the human
vertebral column to study the geométry of the motions of the spine in flexion, extension, lateral
bending, and axial rotation. This work is important because it describes motion in three-dimensions.
The model used in the study was strictly a geometric one. Although force-deformation relationships
are important in the mechanics of the spine, only geometrical compatibility was enforced in their
study. The 24 vertebrae comprising the full mobile spine (C1 to S1) were modeled using rigid bodies,
and the intervertebral discs and connecting ligaments were represented with fixed length elements
which were attached to coordinates defined on the rigid bodies (i.e. vertebrae). Motion was simulated
by altering the lengths of the fixed length elements. Resulting deformations were within reasonable
anatomical values and they compared well with those from previous in vivo studies, indicating that
the model was a good representation of the real spine. The most important conclusion from this
study [110] was that within the restrictions imposed, the spine showed its ability to assume many
different geometric configurations from a variety of different ways, not belonging to any one pattern

of motion.

More pertinent to the present study is the application made of the above model to determine
the geometric changes required to alter normal spine into a configuration typical of idiopathic
scoliosis. Using 5 different models, Schultz et al. [111] studied the effect of the changes in the lengths
of the various intervertebral connecting elements as well as in the position of (rigid) body coordinates
defining their attachment (i.e. simulating change in vertebral geometry), on the geometric
configuration of the models. The resulting configurations were then compared to radiographs of
patients with idiopathic scoliosis. It was found [111] that "no single set of kinematic changes resulted
in all of the geometric characteristics of the scoliotic deformity. The length changes are complex and
suggest that they are secondary. However, it was concluded that regardless of the etiology of the
disease, the posterior structures may have an important role in reaching the geometry of idiopathic

scoliosis.”

Panjabi and White [91] also developed a mathematical method to analyze three-dimensional
motion of the spine. The method is based on roentgenograms' reflecting incremental motion of
autopsy specimens of spine segments subjected to the three principal rotations (ie. in sagittal, frontal,
and horizontal planes). The method describes the motion about its "helical axis of motion®, which
according to these authors allows the comparison of the motion of 2 or more rigid bodies regardless
of their shape or positions of their measuring points [91]. White [129] used the same method to
analyze his experimental data based on two and three dimensional testing of motion segments of the

'Roengenograms are defined as photographs made with x-rays [122].
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normal thoracic spine. Their research on the kinematics of the normal thoracic spine is included in
this review because of the following correlation made by them between the results and the etiology

of scoliosis.

Significant coupling was found to exist between lateral bending and axial rotation. In most
instances, the thoracic vertebrae were observed to experience concave-sided rotation, that is, the
anterior aspect of vertebral body rotates towards the concavity of the lateral curve. However, in some
cases, the middle thoracic vertebrae were observed to rotate in the opposite direction (i.e. convex-
sided rotation, in which the anterior of the vertebral body rotates in the convexity of the lateral

curve), which is characteristic of scoliosis.

With respect to this finding, the study suggested that the direction in which the middle
thoracic vertebrae have a tendency to rotate may be a critical factor in the development of AIS. As
stated by White [129], "any slight disturbances in the delicate balance of the normal thoracic motion
may cause middle vertebrae which tend to rotate towards the convexity, to rotate too much. This
rotation would lead to asymmetric loading on epiphyseal plates, muscle and ligament imbalances, and
eventually scoliosis. Possible factors responsible for upsetting the balance could be malaligned facets,
traumatic event, chemical hormonal change, and over-dominance of left or right handedness®. The
facts that (1) the mid-thoracic region is a frequent site of scoliosis and, (2) there is a slight anatomical
lateral curve already present in this region, give promise to the theory.

Also of relevance to the present work is the study by a group of researchers [10,107] in which
a three-dimensional model was developed for the purpose of conducting nonlinear (geometric)
analysis of forces acting on the spine. This study was the first to report such a model. Analyses
predicted the response of the spine to lateral load, the stability of the spine under compressive load,
and the effect of tractive load on a scoliotic spine (model constructed of a scoliotic spine for this
analysis). Both the construction of the model and the results of the stability analysis are important
to the current work, and they will be referenced often in Chapter 5 and Chapter 6.

The modelling procedure and the results of the study were reported by Belytschko et al. [10}].
The complete thoracolumbar spine was modeled with rigid bodies to represent vertebrae and
deformable elements to represent soft tissue intervertebral elements. Beam elements were used to
represent intervertebral discs with its longitudinal ligaments, and spring elements to model each of
the major ligaments connecting posterior elements of vertebrae and the facet joints. This



representation distinguished the model from previous ones such as the one by Roberts and Chen
[103]! in which the overall stiffness of the intervertebral joint was lumped in one element. Geometric
nonlinearities were accounted for by using the incremental linearization technique of nonlinear
analysis. This enabled them to analyze the normal motions of the spine, accompanied by large

deformations.

Schultz et al. [107] described the construction of the mode!. This included the details of the
geometry and force-deformation properties along the spine. The geometry was based on cadaver
measurements {64,124]. Similar to the model constructed by Schultz and Galante [110], the geometry
of the spine was defined using the local coordinates on vertebrae (rigid body) giving points of
attachment for the intervertebral elements and using the lengths of the various interveriebral
elements. Beam elements representing intervertebral discs and longitudinal ligaments were assigned
bending, axial, shear, and torsional stiffnesses. Spring elements representing ligaments connecting
posterior elements were assigned a tension stiffness, and those modelling facet joints were assigned
both compression and tension stiffnesses. All the deformable elements were assigned linear isotropic
elastic properties.® Stiffnesses assigned to these elements were chosen to simulate the behaviour

found for cadaver motion segments, as best as possible.

Only the results from the lateral load and stability analysis are mentioned here, due to their
relevance to the present study. In these two analysis, the conditions were set to simulate the
experiments by Lucas and Bresler [73]. Frontal plane rotations resulting from a 0.5 kg lateral load,
and lateral buckling loads for 3 different fixity conditions at the top i.e. (1) T1 free, (2) T1 fixed in
horizontal displacements and rotation, and (3) T1 fixed against all degrees of freedom except for
vertical displacement (see Table 3.1) were in good agreement with the results of Lucas and Bresler.
In addition, the buckled configurations were scaled so that the resulting average lateral displacement
would be the same as those of the scoliotic spine. Comparison of the buckled configuration 10 the
scoliotic spine revealed similar lateral displacements and frontal rotations but very different axial
rotations. ‘The scoliotic spine used as reference was found to have a maximum axial convex-sided
rotation of 25° while the buckled spine showed hardly any axial rotation. Based on these results,

Belytschko et al. [10] suggested the investigation of the effect of the posterior muscles and rib cage

'Roberts and Chen [103] conducted a dynamic analysis and therefore their work is not included in this review. However,
their model is very important to the current study as explained in Chapter 5.

2Lignmcnt clements were assigned either a zero or non-zero axial stiffness depending if they were expected to experience
compression or tension. It was found in the study that in conformity with the assumption, they either experienced tension or
compression throughout the range of various types of loading [107].
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. on the axial rotations during buckling for future studies.

In their next attempt, the same group of researchers added a rib cage to their previous

thoracolumbar spine model. The primary purpose this time was to study the mechanics of the human
skeletal thorax {4]. Of particular interest is the results showing the stabilizing effect of the rib cage

on the thoracolumbar spine.

Table 3.1 Lateral Buckling Loads Under Compressive Loads (N)*

T1 constraint Ligamentous Spine with rib
spine cage intact
T1 free 19.13 (E)
20.50 (T)
20.60 (C) 78.48 (C)
T1 fixed in horizontal 166.77 (E)
displacements and 167.75 (T)
rotation 196.20 (C) 608.22 (C)
T1 fixed in all but
vertical displacement 327.65 (T)
313.92 (C) 990.81 (C)

*Spine is constrained from displacements in the sagittal plane at the mid-thoracic and
mid-lumbar leveis to prevent anterior-posterior bending and sacrum is fixed.

E = experimental values obtained by Lucas and Bresler {73}, spine length = 47.9 cm.

T = theoretical values oblained by Lucas and Bresler [73], spine length = 47.9 cm.

C = computed values by
- Belytschko et. al. [10] for buckling of the ligamentous spine, spine length « 49 cm.
- Andriacchi et. al. [4] for buckling of the spine with rib cage, spine length « 49 cm.

Andriacchi et al. [4] used thirty-nine rigid bodies to represent the skeletal thorax, i.e. ribs and
sternum, in the model. Deformable elements were modeled using either spring or beam elements and
were assumed to possess quasi-linear' properties. These elements include costal cartilage, intercostal
ligaments, and costovertebral joint. The analysis was capable of having both geometric and material
nonlinearities. Geometries of the elements were determined from cadaver measurements [108,109],
and put in correct anatomical position with respect to spinal column with the aid of published
anthropometric data [22,25]. Properties for deformable elements were determined by performing
computer simulation of cadaver experiments [109]. Similar to the method used in assigning values

. 'Linear stiffness, although accounting for different stiffnesses in tension and compression [4].
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for elements in the ligamentous spine model, stiffnesses were adjusted until reasonable agreement with
experimental results was obtained.

The response of the spine and rib cage model was compared with available experimental
results to determine if model was representative of the real structure. Results showed good
agreement. Then using the validated model, the effect of the rib cage in bending and on the stability
of the spine was investigated. Also, the model was modified into two different scoliotic configurations
in order to study the effect of rib cage on scoliosis.

Once again, only the results of the bending and stability analysis are mentioned due 1o their
relevance 1o the current study. First, the rib cage was found to increase the resistance of the spine
to all modes of bending in the thoracic regjon, as shown in Fig. 3.5. As can be expected, removal of
the sternum rendered the rib cage totally ineffective. Second, the experiments of Lucas and Bresler
were again simulated, this time with the rib cage intact in order to demonstrate the effect of rib cage.
For all three previously mentioned T1 constraint conditions, the rib cage was found to increase the
buckling load of ligamentous spine 3 to 4 times' (see Table 3.1). These results along with those of
the ligamentous spine, discussed previously, are shown in greater detail in Chapter 6, where they are
used for comparison with the results from the present study.
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Fig. 3.5 Relative stiffening effect of the rib cage on the spine and the importance of rib cage
continuity, i.e. sternum (4,130].

“The critical loads found in the study are still well below the in-vivo buckling loads. This is due to the other stabilizing
components which are not accounted for in the model, e.g. muscles {4].

47-



Haderspeck and Schultz [49] investigated the effect of various trunk muscle forces and
support mechanisms, responsible for righting of the trunk, on the lateral curve of model spines using
computer simulation. The study was conducted with the purpose of determining possible mechanisms
that could produce abnormal loads (unbalanced moment) capable of lateral curve progression.

To this end, models of the spine, § with structurally normal configurations and 13 with
scoliotic configurations, were used in the study [49]. The models were similar to those constructed
by Belytschko [10], with the addition of trunk muscles. These muscles, capable of producing significant
forces, were modeled using 68 individual model muscle slips. The muscles were assumed to behave
linearly, and contract at a rather high intensity of 40 N/cm®. Contraction was simulated by application
of equal and opposite forces along muscle line of action. Actions of muscle groups (21 unilateral and
12 bilateral), i.e. erector spinae, were simulated by simultaneous contraction of combinations of

individual muscle slips.

Results of the above analyses, as discussed in the previous section, indicated that if reason
for the occurrence of abnormal forces is a defect in the neuromuscular system, then the malfunction
is most likely to occur in the neural control, responsible for stimulating and sensing muscle actions
to retain balance, than in actual muscle capabilities. This is evident by results showing that possible
malfunctions intrinsic to muscles (excessive bilateral symmetry, unilateral weakness, and side-to-side
muscle action asymmetry), under reasonable set of circumstances, cannot produce curves typical of

scoliosis [49).



Chapter 4

Theoretical Considerations

This chapter provides an introduction to the general stability (or buckling) theory of columns
[9,14,21,123] in the context of curved spine-like, albeit homogeneous, columns. The topics dealt with
are: bifurcation buckling loads of Euler column, growth of the sagittal-plane curve of spine-like
columns under increasing axial load, torsional-flexural stability of such columns, and effect of

curvature on buckling loads.

In the analysis dealing with the torsional-flexural buckling, an approximate analytical solution
is obtained for the torsional-flexural bifurcation buckling of a spine-like simply-supported column.
This solution is then used to check the capability of the MSC/NASTRAN finite element program to
solve torsional-flexural buckling problems numerically.

4.1 Flexural Buckling of Columns [21]

Like all slender structures, spinal columns can be expected to be susceptible to unstable
(buckling) behaviour. To understand the theory involved in the stability of the curved, spine-like
column, it is important to begin with the theory of the simple Euler column.

4.1.1 "Euler Column"

The Euler column, shown in Fig. 4.1(a), is a very idealized case. It may be used to
demonstrate, in simple terms, the behaviour of a real column in axial compression. The Euler column
is a straight, homogeneous (one material) column with constant cross-section. Its ends are simply-
supported (i.e. hinged) and it is loaded axially along its centroidal line along the x-axis. It is assumed
that the column material is linear elastic and the deformations are small. The column is restricted
to deform in the x-y plane. Effect of gravity is neglected.

The critical compressive axial load, P, of the column is defined as the load for which
equilibrium in the slightly bent configuration, as shown in Fig. 4.1(b), is possible [21]. To find this
load, let v = v(x) be the equilibrium deflection of the bent column axis in the y direction. According
to Bernoulli-Euler theory, the internal resisting moment at any section a distance x from the origin,
Fig. 4.1(c), is defined as
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Fig. 4.1 [Euler Column, (a) straight pre-buckling configuration, (b) buckled
configuration, (¢) free-body diagram (buckled columny).

M, = -EI v" (4.1]

where v~ =d%/dx’ and EI, is the flexural or bending stiffness of the column in the x-y plane.'! The
moment equilibrium of the free-body column of length x requires that M, = Pv which, by substitution
of Eq. (4.1), leads to

EI. v + Pv =0 [4.2]

Introducing P
k==, [43]

El

the differential equation of equilibrium may be written as
v+ kv =0 [4.4]
The general solution of this equation is

v = A sinkx + B coskx [4.5]

lActually, the correct expression is M, = -EIJR where I/R = curvature = v%/(l+(v’P}'%. However, for small
deformation, (v} << I and thus I/R = v is a permissible approximation.

-50-



where A4 and B are arbitrary constants to be evaluated by imposing the boundary conditions of the

ends being restrained against displacements:

4.
v(0) =0, v(l)=0 sl

The first condition renders B=0, the second one demands that 4 sin kI = 0, which can be
satisfied by taking either A=0 (no buckling), or by taking 40 (buckling) but requiring

sinkl = 0 - u s IR [4.7]

where n = 1,2,3,.. is an integer. Recalling that k¥ = P/EI, , Eq. (4.3), the above condition is

expressible as 12

11

Hence, at the axial loads given by Eq. (4.8), the column can assume deflected equilibrium shapes,

v=Asint (491
in which A, the amplitude of the sinusoidal buckling mode, is arbitrary, i.e. non-unique. This non-
uniqueness is termed as bifurcation of equilibrium, and the loads at which this is possible are called
bifurcation loads. The critical buckling load is the smallest load at which bifurcation of equilibrium
is possible. Here it is obtained by setting n=1 in Eq. (4.8). Thus the formula for determining the
critical load of a simply-supported Euler column is

2
p = FEL (4.10)
(-4 lz

which shows that the critical load is influenced by the length of column and its bending stiffness.
Physically, at the critical load, the column can be in a deflected equilibrium shape of arbitrary
(although small) amplitude (-¢ <4<+ ¢} without the presence of any lateral force. This behaviour
of bending under zero lateral force is termed unstable, and hence the critical Joad is the smallest load
at which this loss of stability occurs.

The Euler formula may be generalized, for determining the critical loads for columns with
different end-conditions, provided the length of the equivalent Euler column, ), is used. The
expression for the generalized formula is
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[4.11]

wherein the equivalent length, ), is determined by the end-constraints on the column. These lengths
determined by analyses similar to the one just described, are given in Fig. 4.2. From this figure it can
be seen that, as expected, the greater is the degree of constraints, the smaller is the effective length,
and thus the greater is the critical load. Thus Eq. (4.11) incorporates the influence of an additional
parameter, the boundary conditions, on the critical load or stability of columns.
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Fig. 4.2 Effective lengths for various boundary conditions. After Chajes [21].

4.1.2 Behaviour of Initially Curved Columns in Compression

In the case of the spine, the column is not straight. The curve present in the sagittal plane
suggests the study of curved columns. For the moment, the out-of-plane movement is restrained, and
only the sagittal plane behaviour is considered. Since there is already a curve present, the question
of in-plane bifurcation from a straight configuration does not arise. Rather, there will be a growth,
with increasing axial load, of the curve already present. For simplicity in solution, the column is given
the same end conditions and assumptions as the simply-supported Euler column. The only difference
is that the centroidal axis is curved. For the purpose of obtaining a useful solution and determining

the effect of initial curvature on the spine, the shape of the sagittal curve of the spine-like column,
shown in Fig 4.3, is approximated by

v = a sm2_’;" [4.12]

where g, is the amplitude of the initial curve i.e. corresponding to P=0.
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Fig. 4.3 Initially curved column under axial load.
Following the procedure outlined for the Euler column, the moment equilibrium of a portion
of the column under an axial load P, Fig. 4.3(c), yields the following differential equation
EI: v’ . P(v + vo) =0 [4.13]

where v is the additional deflection or the growth of the column curve in the sagittal (x-y) plane.
Using the notation defined in Eq. (4.3), Eq. (4.13) can be rewritten as

v+ Ky = -kzvo (4.14)

The general solution of the nonhomogeneous differential equation, Eq. (4.14), consists of a
complementary solution, v, , plus a particular solution, v, . The complementary solution is the
solution of the homogeneous equation, already obtained as Eq. (4.5). A particular solution for the

v, given by Eq. (4.12), can be easily found as

- a, . 2nx
e (4.15]
k22

Hence, the general solution, v = v, + v, ,is
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- . a, . 2nx
v = A sinkx + B coskx + o sin 7 (4.16]

Br

As in the Euler column case, boundary conditions determine the arbitrary constants, 4 and

B. The end condition v(0) = 0 requires B=0, and v(I) = 0 requires A sin kI = 0. Again, if k=n=/l,

i.e. if P = n’v?EIJP, A can be taken as non-zero and arbitrary. However if P w n’?EJ /P then A must

be zero. The lowest loads at which 4 can be arbitrary, signalling unstable behaviour, is
_ ®*El,

4 lz

[4.17]

Assuming P < P,, hence taking A=0, and using the previously defined notation for &£ and relationship
for P, the growth of the column curve may be expressed as the following function of P

peBb  gp2nx [4.18]
4P-P 1

The total column deflection from the vertical, v, , is therefore

$% P, n2ms (4.19)
4P-P 1

V“V*’Voa

As P is increased the growth or displacement in the sagittal plane, v, , and its rate, dv/da, both
increase in a nonlinear manner.

4.2 Torsional-Flexural Bifurcation Buckling of a Curved Column Under Axial Load

If the spine-like column of Section 4.1.2 with perfect symmetry about the sagittal plane is
allowed the freedom to displace out-of-plane (i.e. in the lateral or x-z plane), then once again the
question of bifurcation of equilibrium arises. At sufficiently low axial loads, there is only the growth
of the sagittal curve. However, at some higher load P, it may be possible for the column to bifurcate
into an out-of-plane equilibrium shape. Such bifurcation will in general entail both twisting and
lateral bending of the column in addition to the pre-buckling sagitta! plane bending. This type of
buckling is of common concern in the analysis and design of columns with thin-walled open-sections
which are deemed to have low torsional stiffness.



The differential equations of equilibrium governing torsional-flexural buckling are quite
cumbersome to derive from the first principles, in the manner of the previous sections. Here, it is
more convenient to opt for the approach based on energy considerations [14].

It may be noted first of all that for bifurcation analysis, it is necessary to assume perfect
symmetry about the sagittal plane. This renders the sagittal plane as one principal plane of bending.
Secondly, for simplicity, it is assumed that the shear center of the column section coincides with the
centroid of the cross-section. Thirdly, although the column is curved in the sagittal plane, integration
or differentiation is performed with respect to x, the axial coordinate, rather than with respect to s,
the length coordinate. In other words, the curvature effect on length is neglected and the analysis is
restricted to cases where (dv,/dx)? << 1, so that ds = dx along the centroidal line.

The strain energy of deformation due to an out-of-plane buckling displacement of the
centroidal axis w = w(x), and axial rotation 8 = B(x} can be expressed as [14]

U=-= f [ Exw'} + GI(% + EC ("} | dx (4.20)

where EJ, = lateral (x-z plane) bending stiffness, GJ = torsional stiffness, C, = warping constant of
the cross-section, and primes denote differentiation with respect to x. For circular cross-sections
C.=0, and for many other types of sections, the contribution of this term is small [14]. Accordingly,
in the further analysis, it will be assumed that C,=0. w and B are positive in the positive directions

of the coordinate axes.

The loss in the potential energy of the axial load due to iateral buckling can be expressed as

=-('f & 421
14 L L Gy €, dA dx [4.21]
where A4 is the cross-sectional area, a,,” = (P/A) - (My/l)) is the pre-buckling axial compressive stress,

and ¢, = {(w’ +8'y)¥2} + {(B'x)’l2} is the axial shortening strain due to buckling.! The
expressions for o’ and ¢, when substituted in Eq. (4.21), give

V= fp(w')’dx 2[' Fl, ° (P dx - wa’B’dx} [4.22]

where /, is the centroidal polar moment of inertia of the cross-section. The first term in the square

'¢,. is obtained by considering the geometry of deformation due to buckling where x, y are coordinates of a fiber with

respect o the centroid.
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brackets is the work of axial force due to axial displacement of ends, the second term is the work of
axial stresses when the column twists, and the third term is the work of the pre-buckling bending
moment in the sagittal plane. In the present case M, arises due to eccentricity of P with respect to
the centroid of column, and therefore M, = Pv,. The moment M, is positive if it produces tension
in the fibres with positive y coordinate.

The total potential energy due to torsional-flexural buckling may therefore be expressed as

O=UsV-= % [ | ET(w"} - P (W} + GI(BF - %’z (B2 + 2Mw'B’ | dx [4.23]

Now, if the buckling configuration is to be an equilibrium one, the first-order variation of If
must vanish (i.e. 811 = 0) for arbitrary variation of w and 8 about the equilibrium configuration.
Applying ihe standard calculus of variation procedure, the above condition can be shown to be

equivalent to the foilowing differential equations

(EI, W”)” - (PWI), - (M!pl)l =0 [4.24]
Pl 425
(—;‘! - GJJ p'r - (MY =0 [4.25]

and a choice of allowable natural and geometrical boundary conditions, which if needed can be derived

by following the standard procedure,

With reference to the idealized spine-like column of the previous section, the variation of the
bending moment along the length of the column due to the eccentricity of load P, is M, =P v, which
by virtue of the eccentricity defined in Eq. (4.19) is expressible as

4.2
M, = My sin 22 (4361
where PP
My = — 0 [4.27)
4?_- P

Hence, the torsional-flexural buckling energy expression and the differential equations of equilibrium
for the spine-like column of constant sectional properties and axial load P can be written as

-56-



D=U+V=-= f [El,(w”)’ P(z'} + GI(p'} + 2M, sm— w/p/|d&x [4.28]

']
ELw™ + Pw' - M, (p' sinz?- =0 [4.29]
GTp" + M, (w m3-l"£) -0 [4.30]
where
T = GJ - -‘;ﬁ [431]

4.2.1 Closed Form Solution for a Simple Case

A solution of the above differential equations subjected to appropriate boundary conditions
will yield the axial load P at which bifurcation of equilibrium of the column form the curved
configuration in the sagittal plane to a curved three-dimensional configuration is possible. In general,
the exact solution of these equations will be difficult or impossible to obtain because of (a) the
presence of the variable coefficients, and (b) the nature of the boundary conditions. The purpose here
is not to attempt an analysis for a realistic case, but rather to obtain a solution for an idealized simple
case which can then be used to check the capability of the finite element program in solving such
problems numerically. With this objective in mind, the boundary conditions chosen for a verification
analysis are as follows:

BO)=p()=0
w@)=w()=0 [4.32]

w/(0) = w/(l) = 0

which correspond to fixity against axial rotation, fixity against lateral displacement, and absence of
rotational restraints in the lateral plane, at the two ends.

However, even with these simplified boundary conditions, the exact solution of the differential
equations is not a straight forward matter. Hence, a further approximation is made. Instead of
solving the differential equations, the potential energy expression is made stationary with respect to
a suitably chosen mode shape of the buckled column. This is the classical Rayleigh-Ritz method of
approximate analysis of buckling problems [14,123].

Let the mode shape for the lateral displacement of the spine-like column be chosen as
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w(x) = C, m—ﬂ;—x [4.33)

where C, is an arbitrary parameter. This mode shape is consistent with the chosen boundary
conditions on w, and may be considered as a "good" approximation of the unknown actual mode
shape. Now, instead of arbitrarily choosing the mode shape for B, it is determined by solving Eq.
(4.30) by substituting the above choice for w in that equation. The solution is

p-??j 3cos“lx <:¢.\s3—’ztE +C,x+C, [4.34]
GJ

The two integration constants C, and C, are determined from the boundary conditions on B, Eq.
(4.32), and the solution is expressible as

:Mof_l 3mn_x.+cm..3_n.‘£+.8_£-4] [4.35}
6 GJ l ! l

Using Eq. (4.33) and Eq. (4.35) for w and B in the expression for the potential energy, Eq. (4.28), and
performing the integration yields:

2.2 2 2
T=vep-SF [ EL _p M1 32 [4.36]
4l 2 GJ\2 9=?

The potential energy here is a function of the single parameter C,. The condition 6Il = 0 is
equivalent to d1/dC, = 0 for arbitrary C;, which requires that the term in the square bracket of Eq.
(4.36) must vanish. The bifurcation buckling load (consistent with the assumed mode shape) is
therefore given by

n’EI (1o3) e, (4.37]
2 g9

Recalling the definitions of GJ, M, , and P, , Egs. (4.31), (4.27), and (4.17) respectively, and
introducing

p - BEL
4 1 [4.38]
P, - GJA
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the above equation can be expressed as

2

2 A
1 -2 (ﬁ-l][ﬁ-1]=o.1397°° [4.39]
ap, |\ P P A

where it may be recalled that P<P, has been assumed.

This equation gives a critical torsional-flexural buckling load which according to Rayleigh’s
principle [14] is an upper bound on the true critical load associated with the exact mode shape. It
can be expected that an assumed mode shape which is close to the true mode shape will yield an
upper bound which is close to the true buckling load.

4.2.2 Verification of NASTRAN analysis

Now, in order to check the capability of the NASTRAN finite element program, and
conversely the goodness of the above analysis, the bifurcation buckling analysis was performed on a
computer model of the spine-like curved column of constant cross-section and homogeneous
properties. The model consisted of approximately 23 straight beam elements to represent the sine-
curved column. The amplitude of the curve was taken as a,/L = 0.0359, where L is the curved length
of the column. Using the discrete property values of the ligamentous spine as found in the literature
and as discussed in Chapter 3, effective homogeneous bending and torsional properties were calculated
according to the method used by Lucas and Bresler [73], and assigned to the elements of this column
model. The bifurcation buckling load from NASTRAN was found to be 47.44 units of force while
that obtained from the above analysis was 48.87 units. This means that the analytical result was 3.0%
higher than the computer result. The mode shapes for w and 8 were also found to be in good
agreement with their chosen functions Eq. (4.33) and (4.35) respectively. Hence it is concluded that
the NASTRAN program is capable of handling torsional-flexural buckling problems correctly and
conversely, the functions chosen for w and § are acceptable, and thus the above approximate analysis

is a valid one.

4.2.3 Effect of the Curve Amplitude

Since a strong hypothesis as to the cause of AIS relates to the sagittal plane curvature of the
spine, the characteristic equation resulting from the above analysis is now used to investigate the effect
of the magnitude of the curve amplitude on the buckling load. A higher or lower buckling load would
signify higher or lower stability.
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If L is the curved length of the spine-like column, then the dependence of the axial length

[ on the curve amplitude a, may be expressed approximately by

2

()
L
provided ( ma,/L ) << 1. Therefore the buckling load P, corresponding to pure lateral buckling of
straight column of length /, Eq. (4.38) may be expressed as
2
L ( %a, [4.41)
L

2
1*[——-]
L

where P, = -n-’EI,/L‘ is the lateral buckling load of the column when a, = 0. Similarly, P, , Eq. (4.17)

(2]

where P, = wEIJL’. As a, decreases, the column becomes straighter and P, and P, decrease. The

-1 [4.40]

2
. nEI,

y Lz

=P70

may be expressed as

2
n°El,
LZ

2
b - (22 ‘ a2
L

smallest values of P, and P, are of course P,, and P, respectively.

With these values of P, and P, , the characteristic equation determining the torsional-flexural

buckling load can be writien as

(2] (5]

4P, P

P

1 -

Since the right side of the above equation is positive, it {ollows that the smallest buckling load
P, is less than both P, or P, . If P, is much smaller than P_ (i.. a column weaker in torsion), then
it can be inferred that P, will only be slightly smaller than P, , and virtually unaffected by the
magnitude of a/L. On the other hand, if P, is much smaller than P, (i.e. a column weaker in lateral
bending), then P, will be slightly smaller than P, = P, (I+w’a//IL’) with a,/L playing a significant
role. However, if P; = P, , then there is a stronger interaction between torsional and lateral bending
effects and P,, is significantly different from P, or P, Figure 4.4 illustrates these results by showing
variation of P_/P, as a function of a,/L for various Py/P, = I ratios for a spine-like homogeneous
column with EIJEI, = 2 and GJ/EI = 1.6.
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Fig. 44 Ratio of P_/P_, as a function a,/L for a simply-supported spine-like column with fixed length,
L, and initial sagittal curve, y=a, sin 2mx/l. L = fixed curved length of column, a, = variable
amplitude of curve, [ = variable axial length of the column, P_ = actual critical load, P, =
GJA/I, = pure torsional buckling load, P,, = =’EI/L? = flexural buckling load of the straight
column in the lateral plane (i.e. with a,=0).
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The qualitative significance of the above analysis in the context of the lordosis hypothesis is
that a reduction in the thoracic kyphosis of a real spine (with P,/P, >> I) will reduce its buckling
load (thus making it less stable) and that the amount of reduction will be greater for spines with

greater Py/P, ratios.!

43 Effect of the Curvature and its Direction on Torsional-Flexural Buckling

In the above analyses, no account was taken of the curvature direction. Such an analysis
would have required using the curved beam formulas and would have been complicated. However,
the effect of curvature direction with regard to buckling may be understood by examining a simple

case as follows.

Timoshenko [123] has analyzed the torsional-flexural buckiing of a circular curved column
of thin rectangular cross-section of radius of curvature R and curved length L, subjected to in-plane
moment M, or M, as shown in Fig. 4.5. Again, EJ, represents the lateral (out-of-plane) flexural
bending stiffness, and GJ the torsional stiffness. The arc length is approximated by L = R« for small
« i.e. large R. The critical moment at which buckling occurs [123] is then

= M + % EIGJ (4.44]

e 2R

if the applied moment is in the same direction as the curvature (causing it to increase), Fig. 4.5(a),

and is EL + GJ
M =-—2——" X EIGJ [4.45]
Nt 2R L y

when it is applied in the opposite direction, Fig. 4.5(b). Thus, the stability is reduced when the
applied moment acts 10 decrease the curvature. The reduction may be understood by noting that in
the latter case, it is the longer fibres of the curved column which are subject to compression. Stated
another way, in the former case, an increase in the curvature (} R) increases stability (¢ M_,), while

in the latter, an increase in the curvature ({ R) tends to decrease it (} M_,).

With reference to the real spine, the typical gravity loading is in the sense of forward flexion.
Thus, according to the above formulas, the spine would be become less stable (i.e. more prone to
buckling) as the thoracic kyphosis is reduced. This latter observation favours the lordosis hypothesis
of AIS since it entails a reduction in the kyphotic curvature in the thoracic region of the spine.

1Amording to effective homogeneous properties of the spine, calculated as described in Section 4.2.2, PP, = 441.
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Fig. 4.5 Lateral buckling of a circular curved column subjected to pure moments.

4.4 Computer Simulation of Structural Behaviour of the Spine

One of the purposes of the foregoing analysis of simplified theoretical models was to present
some basic concepts related to behaviour of slender structures under compressive loading. The real
spine is too complex a structure to resemble the homogeneous theoretical column models. Therefore,
no reliable quantitative information can be derived from the above type of analysis, although
qualitatively, insight into the stability behaviour is gained from the explicit relations derived among
the parameters of the models. A computer-aided numerical analysis of a suitable theoretical model
is the only avenue available for a non-experimental quantitative investigation of the structural
behaviour of the human spine.

The first requirement for any reliable biomechanical analysis of spine behaviour is that it must
be based on a realistic modelling of the actual geometry and structural properties of the spine.
However for a manageable model, a balance must be struck (depending on the purpose at hand)
between which details to account for and which to ignore. In the present work, as will be
subsequently seen, the spine with rib cage is modelled as a three-dimensional structure composed
primarily of small straight beam elements of appropriate stiffness properties.

Structural stability analyses on the constructed models are performed using the
MSC/NASTRAN finite element program. In the first instance, the model assumes the spine together
with the loading to be perfectly symmetrical about the sagittal plane. The question is then asked at
what load magnitude the spine will bifurcate into an out-of-plane (torsional-flexural) buckling mode.
The answer 1o this question requires the program to perform the linear eigenvalue analysis, similar
in principle to that done analytically in the preceding section for the homogeneous curved column.



The above bifurcation analysis indicates the load near which a realistic (slightly unsymmetric)
spine would begin to experience lateral instability, and the mode shape in which initial buckling
displacements and rotations would occur. Although helpful in establishing this load and the associate
mode shape, this analysis provides no information on the actual amounts of displacements and
rotations which the spine would experience as a function of the load.

To determine the buckling displacement and rotation magnitudes, one must perform the so-
called post-buckling analysis. This is a geometric nonlinear analysis, and the simplest way to perform
it is via an imperfection growth analysis. The spine model is assumed to be imperfect in that there
is present, ab initio, a small geometrical asymmetry with respect to the sagittal plane, and is loaded
in small load increments, taking into account the accumulated geometry changes at every increment.
This type of analysis is similar in principle to that conducted for the imperfect (sine-shape) Euler
column, Section 4.1.2. For small loads the effect of imperfection is small, meaning that the out-of-
plane deformations remain small (and hence, in a sense, stable). However, as the load increases, the
effect begins to grow in an accelerated nonlinear manner. Buckling is indicated when substantial (out-

of-plane) geometry changes have occurred.

Nonlinear growth analyses performed on the models of this thesis are described in Chapters
5and 6.



Chapter §
Structural Modelling and Input Data

5.1 Description of Analyses

Stability analyses are performed on three-dimensional discrete parameter models of the
human thoracolumbar spine and rib cage to determine if the hypothesis of the spinal lordosis as an
initiating factor of the etiology of AIS is a valid one. The finite element analysis program
MSC/NASTRAN (version 65C) is used to carry out the analyses. NASTRAN is run on the [BM/9000-
230 mainframe computer at McGill University, using the MVS/XA operating system. Basically, two
types of analyses are considered necessary for this study: linear buckling analyses and geometric
nonlinear analyses.

Linear buckling analyses are performed to determine the bifurcation® (torsional-flexural)
buckling loads of the symmetric spinal models under (a) compressive loading distributed along the
column length, proportionately with the body weight distribution, and (b) a loading proportional to
the resultant body weight acting at the center of gravity effectively lumped at the top of the spine (i.e.
force and moment). Analyses are conducted on a model representing the typical normal spine, and
also on one which has a slightly altered sagittal configuration by virtue of the introduction of a
thoracic lordosis apical at T8. Bifurcation loads and corresponding mode shapes are compared in the
hope of shedding some light on the lordosis hypothesis. This part of the investigation determines
whether the lordotic spine model has a lower bifurcation load than the normal spine, i.e. less stable,
as well as a mode shape similar to a scoliotic deformed configuration (convex-sided rotation), to
ultimately determine whether a lordotic configuration is more susceptible to scoliosis. Although mode
shape deformations are indeterminate as to their amounts, they indicate the manner in which the
spine deforms near the buckling load.

The second type of analyses, the geometric nonlinear analyses, comprise the heart of the
study. They take into account large deformations®, a category under which the scoliosis deformity

'Bifurcation here consists of a linear cigenvalue problem.

*Recall that the rotation is described in terms of the anterior portion of vertebrae. Convex-sided rolation implies anterior
portion of vertebrae rotate towards the convexity of the lateral curve.

*By accounting of large deformations is meant the accumulated effects of the changing geometry of the mode! on its current
behaviour.
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falls. Here, they are used to simulate a possible instability of the spine, resulting in large
deformations, by determining the growth of its initial geometry under increasing loading. Two distinct
nonlinear growth analyses are carried out o test the lordosis hypothesis, which to reiterate, was stated
by Dickson et al. [34] as a lordosis in combination with an asymmetry in another plane.

In the first growth analysis, the initial geometry is that of a spine which has the frontal and
horizontal plane asymmetries (i.e. imperfections) of a normal spine, but which also has a lordosis in
the thoracic region, in accordance with the hypothesis. Loading proportional to the resultant body
weight acting at the center of gravity is applied as an equivalent force and moment at the top vertebra
T1. As the load is increased incrementally, the spine changes its geometry, and it may be expected
that as the total load nears the bifurcation buckling load of the linear analysis, the lateral
imperfections would begin to grow significantly. The growth of the deformations achieved under the
*full-load” are compared with a scoliotic configuration in order to test the hypothesis.

In the second growth analysis, the initial geometry is purely that of a normal spine, with the
normal frontal and horizontal plane asymmetries, and the normal thoracic kyphosis and lumbar
lordosis present. However, the loading consists of simulating the lordotic growth of the thoracic
vertebra in addition to the body weight lumped at T1. The asymmetrical growth is simulated by
thermal loading of the vertebra, by heating the elements positioned anterior to the thoracic vertebrae
and by simultaneously cooling those positioned posterior to these vertebrae. The loading is increased
until length changes in these elements correspond to those found in the thoracic vertebrae of a
scoliotic patient, and gravity load equals a realistic value that restricts spine from elongation. The
configuration of the gradually deformed spine under such loading is compared with that of a scoliotic

spine.

5.2 Description of the Constructed Model

Discrete beam elements are used 10 construct the three-dimensional structural analysis model
of the human thoracolumbar spine and rib cage. A large portion of time of this study was spent in
modelling the geometry and structural properties. The aim is to construct a model representative of
the normal spine and rib cage with particular attention focused on the sagittal curvature of the spine.
With an alteration of this curvature being the basis of the hypothesis investigated in the present study,
an accurate representation of a normal curvature is very important. Appendix C gives a full
description of the model.

The complete thoracic and lumbar spine is modeled (from T1 to the top of the sacrum,
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inclusive). The spinal column, as mentioned earlier, is not uniform, and thus is modelled with 17 rigid
elements representing vertebrae T1-L5, and 17 deformable elements representing intervertebral joints
(composed of intervertebral discs, connecting ligaments, and posterior elements, e.g. facet joints)

between T1 and sacrum.

The 10 superior pairs of ribs (ribs 1-10) are included in the model. The last 2 pairs, the
floating ribs, are not modeled since they have virtually no structural relevance. Each rib is
represented by 4 rigid elements for a total of 80 elements. The five nodes segmenting the rib, from
the posterior to the anterior end, denote the head, tubercle, angle, midaxillary line junction, and
costochondral joint of the rib [103,120]. At the costochondral joint, the rib attaches to costal cartilage
(CC) represented by 1 or more elastic elements (36 elements in total) which attaches to the sternum
represented by 18 rigid elements. Costovertebral joints (CV) and costotransverse joints (CT), which
attach the posterior end of the ribs to the vertebral column, are included in the model. Deformable
elements are used to represent the constraints imposed by the joints as well as the resistance to
deformation provided by the connecting ligaments [4]. For each of the typical ribs, 2-9, 2 CV
elements are used to model the connections between the head of the rib and the vertebra of its own
number and the one above it. For ribs 1 and 10, only 1 CV element is used to model the
costovertebral joint since they are only connected to their corresponding vertebra. In addition, for
each rib, 1 CT element is used to represent the joint between its tubercle and the transverse process
of the vertebra of the same number. There are 20 CT elements and 36 CV elements total. To
provide points of attachment for the joints on the vertebrae, rigid elements stemming from the
vertebral elements are modelled. Twenty rigid elements are used to model the transverse processes
on vertebrae T1-T10 for articulation with the CT elements and 36 rigid elements are used to represent
facets on posterior, lateral aspect of vertebral bodies T1-T10 for articulation with the CV elements.
Midaxillary nodes on the ribs provide attachment points for the 18 IC elements representing the
intercostal tissue which runs in between adjacent ribs.

All the elements in the model are represented with beam elements except the sternum, which
is composed of 12 rigid quadrilateral plate elements along with 6 beam elements (included for
programming compatibility between adjacent coplanar plate elements). As beam elements, they
exhibit axial, shear, bending, and torsional stiffnesses with the exception of the IC and CV elements,
which possess only axial stiffness.

The complete model is composed of 224 nodes, 288 beam elements, and 12 quadrilateral plate
clements. An additional 26 beam elements and 22 nodes are required for applying loads at the
centers of gravity of various body segments and slices about the inferior central node of the vertebrae
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(see Section 5.5). These loading elements are also useful in showing visually (by their displacement)
the directions of axial rotation of vertebrae.

During graphical construction of the spinal column’s sagittal curvature, it is helpful 10 use
mean dimensions of the anterior, posterior, and central heights as well as the sagittal diameters of the
vertebral bodies and discs. This results in a model representing each vertebra and each intervertebral
joint with 3 elements; reflecting the anterior surface, the centerline, and the posterior surface of each
vertebral body and each disc in the midsagittal plane. Rigid elements are used to connect the 3
elements transversely and provide them with continuity. Anatomically, these rigid elements represent
the endplates found at the interface between the vertebra and intervertebral disc. This model with
the 3-element representation, referred to as the 3-clement model, represents the spinal column with
172 beam elements and an additional 70 nodes in comparison to the 1-element model, which uses 34
beam elements to represent the spine with ceatral elements only.

Most of the analyses in this study are performed on the 1-element model. However, in
addition to aiding in the construction of the sagittal curvature of the spine, the 3-element model is
necessary to create the lordotic model from the normal one by increasing and decreasing the lengths
on the anterior and posterior sides of the vertebrae, T4-T12, respectively. Likewise, the position of
the anterior and posterior elements of vertebrae T4-T12 and the corresponding endplates are used
in the noalinear analysis for simulating lordotic growth of the spine.

Since there are 3-elements representing each vertebra and intervertebral joint, properties are
assigned to the 3-elements such that together they have the equivalent stiffness of the element which
they model. Equivalent sectional properties for the anterior and posterior elements and the central
clements are calculated according to the formulas in Appendix B. Thus, theoretically, the 3-element
model and the 1-element model are equivalent structures.

Although the geometry of the normal spine is almost symmetrical about the sagittal plane,
it is necessary to model the complete three-dimensional structure for the buckling and geometric
nonlinear analyses. A right-handed rectangular coordinate system, shown in Fig. 5.1, is chosen to
globally define the structure such that the x-z plane defines the midsagittal plane, the x-y plane defines
the transverse or horizontal plane, and the y-z plane defines the frontal plane.

53 Representation of Spine and Rib Cage Geometry

Constructing a model to represent a typical normal human thoracolumbar spine and rib cage
is not an easy task. When dealing with the human body, modelling becomes very complex. Each
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structure is unique and there is tremendous variance of dimensions and properties from person to
person. Anatomical studies related to the human spine reveal a large scatter of results making
definition of normal very vague. Hence, normal characteristics can best be expressed using a range

of values.

Fig. 5.1 Global coordinate system (a) left lateral view, and
(b) anterior view. After Roberts and Chen [103].

The sagittal curvature, the critical parameter in the present investigation, can be described
by the degree of kyphosis and lordosis and more accurately by the segmental sagittal angulations of
the vertebrae' [12] and the reciprocal angulations® [16]. Segmental sagittal angulations and
reciprocal angulations are important measurements because they reflect the intermediate changes in
the curve. Two vastly different curves may have the same degree of kyphosis and lordosis [130]. The
Cobb angle* measurement determines the angle between the endpoints or inflection points of the

curve and does not determine the changes in the curve itself.

'Segmenul sagittal angulations arc angles measured between lines drawn parallel 1o the posterior aspect of the vertebral
bodies [12].

2Redpml angulations are angies measured between lines drawn parallel to the endplates. The angulation between two
vertebrae is measured between the inferior endplate of the inferior vertebra and the superior endplate of the superior vertebra.

-69-



Normal range of lumbar lordosis is accepted to be 20°-60° when measuring from the inferior
face of T12 to the inferior face of LS using the Cobb angle method. Normal thoracic kyphosis is 20°-
50° when measuring from the top of T3 to the bottom of T12. It must be remembered that when
specifying the degree of curvature, it is important to include the level and method of measurement
to make valid comparisons [12].

A complete set of global coordinates describing the geometry of the thoracolumbar spine and
rib cage was formulated and made available by Roberts and Chen [103]. However, no attempt was
made by these authors to represent the &ypical or normal geometry. The data were obtained from
direct measurement of a skeleton with a small frame. This fact makes the data seem advantageous;
not only are the data consistent since they are obtained from the same person but they are based on
a small frame, which is representative of the targeted population of AIS, the adolescent female.
However, careful examination of the spinal column geometry reveals that the sagittal curvature is just
outside the accepted "normal® range described above; a kyphosis of 52° is measured from the top of
T3 to the bottom of T12. Also, the sagittal curvature does not reflect the spine found in 2natomy
books and other literature, which have many common characteristics among them. [n addition,
anterior and posterior disc and vertebrae heights, needed to alter the thoracic curvature, are not given.
It was felt that this spine model could not be acceptable for the purposes of this study and that a new

model must be constructed.

§.3.1 Normal Geometry

A new model, MOE, considered to be representative of the normal spinal column and rib
cage is therefore developed by the present author. The spinal column is constructed graphically on
the basis of anatomical data available in literature {15,60,107,116,119,124] and anatomical drawings
[43,44,45,57).

Spinal Modelling

The mean measurements from an anthropometric study by Lanier [64], on the presacral
vertebrae of 101 American white adult males, ages 40-50 years, are used to describe vertebrae
geometry. The mean vertebral body anterior and posterior heights and superior and inferior sagittal
diameters are used to draw the spinal sagittal configuration. Central heights are taken to be the
average of the anterior and posterior heights. Intervertebral joint central heights are obtained from
Schultz et al. [107] and the anterior heights, to some extent, from Todd and Pyle [124]. Vertebral
height data presented by Todd and Pyle are used to check Lanier’s values and make smail adjustments
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when necessary. Comparison of the chosen data and the values used in the model are shown in Table
5.1. Discrepancies are due to strict adherence to the guidelines mentioned later.

Data on female vertebral dimensions were found in one study [114], but it did not contain
a complete set of vertebra. Other studies [3,16,113] also giving an incomplete set of data were
consulted and compared but were not used as guidelines. It was decided to use sources which
provided a complete set of average vertebral data in the interest of reducing errors due to
inconsistencies resulting from different measuring techniques, and from mixing data from different
sample groups. Lanier’s data [64], based on a large sample group (N = 101) and referenced by many
researchers, for example Schultz et al. [107], were therefore chosen as the source for vertebral data.

The following criteria, found in the literature, appear 10 geometrically define the normal
sagittal curvature of the spine. They were chosen to serve as guidelines in the construction of the
spinal column model in the midsagittal plane:

1 Mean segmental sagittal angulations of the normal thoracic and lumbar curves given
by Bernhardt and Bridwell [12]. As mentioned before, these angulations are
important parameters in describing a curve accurately.

) L1 as the intermediate vertebral body (IVB), i.e. the vertebra which is most tilted
from the horizontal. Stagnara et al. [116] found one-third of all the cases studied to
have L1 as the [VB.

3 Apex of the kyphosis at T6-T7 disc. Apex of the lordosis at L3-L4 disc [12].
@) Posterior aspect of T6 as approximately vertical [43,44,45,57].
) L1 as positioned directly vertical over the sacrum [15].

©) Superior surface of the sacrum at 41° to the horizontal {116]. (Also found to be the
averaged value from other sources [15,60]).

M Angulations of particular disc centerlines from the vertical [107] as:

T1-T2 16.5° flexed
Ti12-L1 15.0° extended
LS-S1 325° flexed

8 Normal kyphosis:

30°-50° with an average of 37° (top T4 - bottom [VB) [116].
20°-50° with an average of 36° (top T3 - bottom T12) [12).

Normal lordosis:

45°-70° with an average of 50° (bottom IVB -sacrum) [116].
20°-60° (female) with an average of 44° (bottom T12 - bottom LS)
[12].

9 Reciprocal angulations of thoracic and vertebral endplates according to Stagnara et
al. [116).

-71-



Table 5.1 Comparison of Anatomical Measurements of Vertebrae and Discs with Model Values

3 —

v = adjustments made using data from Todd & Pyie [124].

Central disc heights are from Schultz et al. {107}, which are based on Todd & Pyle [124] values.

(64]-

-

- Sagittal radius of vertebra = average of superior and inferior vertebra sagittal radii [64].
- Sagittal radius of disc = average of inferior sagittal radjus of superior vertebra and superior sagittal radius of inferior vertebra

Element: Anterior height || Central height Posterior height || Avg. sag. radius, b
Alternating (cm) (cm) (cm)
Vertebra &

Disc Lit | MOE Lit. MOE Lit. MOE | Lit MOE

T1 1.62 1.63 1.68 1.68 1.73 173 0.854 0.853

Disc 044 | 044 || 045 | 04s | 046 || 0866 | 0887

T2 1.77 1.79 1.79 1.79 1.80 1.80 0.934 0.937

0.31 032 031 031 0.31 0.987 0.994

T3 1.84 1.84 1.85 1.85 1.86 1.86 1.046 1.050

0.27 0.27 0.27 0.27 0.27 1.104 1.106

T4 186v | 187 1.90 191 1.94 v 1.94 1.151 1.154

0.21 021 0.22 0.22 0.24 1.197 1.200

TS 1.90 1.90 1.96 1.96 2.02 2.02 1.244 1.244
0.25 023 0.26 0.25 0.27 1.291 1.289 "

T6 1.90 1.90 1.99 1.99 2.08 2.09 1.333 1.330

0.30 0.30 032 0.32 034 1.376 1.376

T7 192v | 190 202 2.02 211v 2.14 1416 1417

0.38 038 0.40 0.40 0.42 1.452 1.454

T8 1.97 1.98 2.07 2.07 2.18 217 1.489 1.490

043 043 045 0.44 0.45 1.518 1.516

T9 2.06 2.07 2.14 213 223 220 1.529 1.527

0.45 045 0.47 0.47 0.49 1.537 1.540

T10 223 224 230 2.30 237 237 1.554 1.554

0.49 0.50 0.51 0.51 051 1572 1.573

T11 229 230 243 243 2.56 2.56 1.589 1.593

066d | 072 0.68 0.68 0.65 1611 1.611

T12 243 2.4 257 2.57 271 2N 1.614 1.615

092d | 093 0.84 0.84 0.76 1.624 1.630

1.655

1.676

1.690

1.710

1.729

1.742

1.766

1.778

1.756

1.733

- Vertebral heights are from Lanier {64). Central heights [107] are taken to be the average of anterior and posterior heights.

- Anterior disc heights are taken (rom Todd & Pyle (124]. d = adjustments made using segmental sagittal angulation data (12].



In an effort to keep within the set guidelines, MOE satisfies criteria 2-6 above and its
comparison with the other criteria is as follows:

- Segmental sagittal angulations of MOE are in good agreement with the established means,
as shown in Fig. 5.2.

- Reciprocal angulations of the present model spine, shown in Table 5.2, are found to be close
to the means established by Stagnara et al. [116]. Additionally, lumbar curvature is within
the range for females established by Sullivan and Miles [119].

- Angulations of the particular discs from the vertical are as follows:

TI-T2 168° flexed  (0.3° diff)
T12-L1 18.0° extended (3.0° diff.)
LS-S1 328 flexed  (0.3° diff)

Fig. 5.2 Mean segmental sagittal angulations of MOE compared with normal values
[12] shown in parentheses.



Table 5.2 Reciprocal Angulations of MOE in Comparison to Means (Degrees)

S Ls LA L3 2 L T2 TN TIO T9 T8 T T6 T5 T4

s 0
)

LS 22 -8
(-21) -8
-37 -23 -2
(36) -23) ()
48 -34 -13 2
47 -33) (12 @
-56 42 -21 -10 1
(-54) (-40) 19) 6 @

L1 40 -46 -25 -14 -3 3
(-56) (-42) 2y B O @

T2 -58 44 -23 -12 -1 5 5
(-55) (41) 20) (7 DR O NN

™ -55 41 -20 9 2 8 8 ]

{ig (-53) (-39) () = » O O @

Ti0 -53 -39 -18 7 4 10 10 7 2
(2 (-37) (9 » ¢ O & © O
-49 -35 -14 -3 8 14 14 11 6 3
(-48) (-35) (3 O @ @ a)y ¢ © @
45 31 -10 1 12 18 18 15 10 7 4
(44) (31 -9 @ @@ @& a5 a3y @) @ @
-0 -26 -5 6 17 3 23 20 15 12 9 s
39  (20)° 4 ® an @ @ @) @) 0y @ 6

T6 s 21 0 11 2 28 28 25 20 17 14 10 4
(-33) (-20) @ 0 @ @ @ @ @) @) a5 aH @

TS -31 17 4 15 26 2 2 29 U 21 18 14 8 3
28)  (15)° M @) @) ¢ () @) @@ @& @) @9 9 O

T4 -29 -15 6 17 28 34 34 31 26 23 20 16 10 s 3
(-23) (-10) (12) (9 (3 @1 @6 @49 @y @) (25 @) (14 ) ()

Values in parentheses are means based on observation of 100 adults [116). Positive values indicale kyphosis, negative values indicate
lordosis. An asterisk indicates adjusiment of one degree believed to be duc to typographic crror in the data of [116),




- A thoracic kyphosis of 35° is measured using both levels of measurement mentioned above
in criteria #8. This constitutes a 5% difference from the mean calculated by Stagnara et al.
[116] and only a 2.8% difference from the mean calculated by Bernhardt and Bridwell [12].

- A lumbar lordosis of 63° is measured from the bottom of IVB to S1. This is a 26%
difference from the mean calculated by Stagnara et al. [116]. A lordosis of 49° is measured
from the bottom of T12 to the bottom of LS, only an 11% difference from the results from
Bernhardt and Bridwell [12].

Therefore, in conclusion, the spinal column represented by MOE is acceptable as normal.

Rib Cage Modelling

The main purpose of including the rib cage is to model the stiffness it contributes to the
thoracic spine. Results from past modelling [4] show that the rib cage increases the stability of the
spine by 300% on average (Table 3.1). Rather limited information is available on rib cage geometry
{27,85,102,108,133]. An attempt was made to construct the rib cage using the data on rib geometry
from Schultz et al. [108] and Grant’s Atlas of Anatomy {43] for rib orientation and positioning. The
result was unsatisfactory, and as a solution, the rib cage (ribs, costal cartilage, and sternum) geometry
measured by Roberts and Chen (103] is attached to the constructed spine of model MOE. This is
considered acceptable because although the dimensions are taken from a person with a smaller than
average height, the spinal column of MOE is only 7.9% larger than the Roberts and Chen [103]
column. The column of MOE is straighter as indicated in Table 5.3, and for this reason gives the
appearance of being taller or larger. Thus, it seems reasonable to attach the rib cage of Roberts and
Chen to the MOE spine model.

Table 5.3 Comparison of Column Lengths

Roberts & Chen Present % Difference
model [103] model MOE

|r Axial length, [ (cm) 42.67 48.21 13
Curved length i.e. sum of 46.27 49.93 79
central heights, L (cm)

In addition, Roberts and Chen’s rib cage compares well with the mean dimensions from the
average population [22], and those found in Grant’s Method of Anatomy [44], as shown in Table 5.4.
Examination of the author’s own x-rays (chest depth Rib 7 to T9 = 13.97 cm) further instills the belief
that Roberts and Chen have a good representation of the rib cage. The rib cage dimensions of MOE
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are also inctuded in the table. Any discrepancies between the rib cage dimensions of MOE and from
Roberts and Chen model are due to adjustments necessary for achieving compatibility between the
rib cage from Roberts and Chen and the spine of MOE.

The position of the nodes representing the facets on the transverse processes, which connect
to the tubercles of the ribs by means of costotransverse joints (CT), are taken from Schultz et al.
[109]. The tubercle of the rib is determined by the position of the facet on the transverse process,
as shown in Fig. 5.3. For ease in computer input and in calculations, CT elements are chosen to be
0.1 cm in length. The position of the node representing the tubercle is defined 0.1 cm lateral to the
node on the transverse process. This constitutes a good anatomical representation.

Table 5.4 Comparison of Rib Cage Dimensions of Models with Mean Measurements

Item Mean measurements Dimensions Dimensions of
(cm) and their source | of Roberts and MOE, (cm)
Chen model
{103], (cm)
Chest depth: (clear distance)
Sternum @ Rib 1 to T3 5 [44] 9.45 8.20
Sternum @ Rib 2 10 TS =10 (g) [44] 11.30 10.15
Sternum @ Rib 7 to T9 21.59 & 13 (g)* [44] 13.70 13.30
Largest rib cage depth 21.06 [22] 21.08 20.73
Largest rib cage breadth 29.99 [22] 24.79 24.79
Sternum body length:
Rib 1-Rib2 5° [44] 342 3.40
Rib 2 - Rib 7 10+ [44] 1145 1143
Full height 2033 [22] 13.97° 13.95°

g = graphically measured from [44]

a = discrepancy between graphically measured and printed values [44]

b = measurcment includes section of sternum above Rib 1, not accounted for in MOE, with a length determined
graphically « 2.7 cm (g)

¢ = measurement does not include xiphoid process (section of sternum below Rib 7) and section above Rib 1 again, with
graphic adjustment « 19.87 (g)

The head of the typical rib is defined by the position of the facets on the vertebral bodies.
As mentioned in Chapter 2 (Section 2.3), the superior facet on the vertebra corresponding to the rib
of its own number, and the inferior facet on the superior vertebra articulate with the head of the rib
by means of costovertebral joints (CV). As shown in Fig. 5.4, for each rib, the 2 nodes representing
the vertebral facets which attach to the rib, are positioned in the y-direction (lateral) at the maximum
inferior transverse radius of the superior vertebra, which is taken from Lanier [64]. In the x-direction
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(anterior-posterior), the coordinate of the vertebral facet is taken 1o be the average of the x-
coordinates of the superior posterior node of the vertebra corresponding to its rib number and of the
inferior posterior node of the superior vertebra. In the z-direction (vertical), their position is taken
to be the average of the z-coordinates of the same 2 nodes 0.1 cm. Thus, the head of the rib may
be positioned in between the 2 nodes representing the vertebral body facets, which are given the same
x and y coordinates as described above, so that all CV elements also have lengths of 0.1 cm.

( 0.1cm

7
9

(@) (b)

Fig. 5.3 Costotransverse joint: connection of the transverse process (vertebra) to the tubercle of the
rib (a) top view, and (b) right lateral view. Values of x, y, and z for vertebrae T1 - T10 are
obtained from Schultz et al. [109]. The node and element representation is as follows:

Node/ Representation
Element
A superior, posterior node of vertebra in sagittal plane
B superior, central node of vertebra in sagittal plane
C superior, anterior node of vertebra in sagittal plane
D facet on transverse process
E tubercle of rib
F head of rib
AB posterior half of superior endplate of vertebra
BC anterior half of superior endplate of vertebra
BD transverse process
DE CT joint
EF rib (tubercle to head)




Fig. 5.4

C
y l X,

(@) 0))

Costovertebral joint: connection of the vertebral bodies to the head of the rib (a) top view,
and (b) right lateral view. Values of y are equal to the maximum inferior transverse radii
of the superior vertebra of rib attachment obtained by Lanier [64], X and Z = average x- and
z- coordinates of nodes A and L. The node and element representation is as follows:

Node/ Representation
Element

A superior, posterior node of vertebra in sagittal plane
B superior, central node of vertebra in sagittal plane
C superior, anterior node of vertebra in sagittal plane
E tubercle of rib
F head of rib
G facet on vertebra corresponding to rib
H facet on superior vertebra
[ inferior, posterior node of superior vertebra in sagittal plane
J inferior, central node of superior vertebra in sagittal plane

AB posterior half of superior endplate of vertebra

BC anterior half of superior endplate of vertebra

BG vertebrae (superior central node to facet)

EF rib (tubercle to head)

FG CV joint (attach rib to corresponding vertebrae)

FH CV joint (attach rib to superior vertebrae)

HJ superior vertebrae (inferior central node to facet)

h) posterior half of inferior endplate of superior vertebra
w}



The model, MOE, representing the normal spine and rib cage is shown in Fig. 5.5. The
global nodal coordinates defining its geometry are tabulated in Table 5.5. Appendix C offers a

complete description of the model with all node and element numbers illustrated.

(a) (b) —_

Fig. 5.5 Present three-dimensional model of a
normal spine and rib cage, MOE: (a)
left lateral view, (b) anterior view, and
() top view.
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Table 5.5 Global Nodal Coordinates of Normal Spine and Rib Cage Model: MOE

m;_
Node Coordinates " Node Coordinates Node Coordinates
no. no. no.
X Y z X Y z X Y z
1 042 000 | 4736 s6 0.04 000 | 2486 || m1 | 33 | 155 |am
2| 09 000 | 4576 7 012 000 | 266 | 112 | 33| 155 | a1s3
3 -1.06 000 | 4533 8 094 000 | 2198 [| 13 | 379 | 152 | 3061
4 156 000 | 4361 59 168 000 | 1966 || 114 | 379 | 152 | 94
5 164 000 | 4331 0 200 000 | 1879 | 1s | <17 | 1ss | 373
6 212 000 | 4153 61 291 000 | 1631 | 16 | <17 | 1ss | 3717
7 218 000 | 4126 & 332 000 | 1520 | 117 | <38 | 159 | 3498
8 259 000 | 39.40 6 407 000 | 1253 || 118 | 438 | 159 | 3438
9 262 000 | 3918 64 445 000 | 1117 || 119 | <38 | 167 | 3246
10 .28 000 | 3724 65 487 000 | 835 || 120 | <38 | 167 {3226
1 290 000 | 3699 66 496 000 | 684 || 121 | 417 | 17 | 2087
12 3.00 000 | 3500 6 479 000 | 403 || 12| 417 | 176 | 2067
13 301 000 | 3468 8 427 000 | 232 | 13| 367 | 187 | 280
14 -2.94 000 | 3266 69 301 000 | 020 | 124 | 121 | 145 | 4759
15 29 000 | 3226 70 192 000 | -197 || 125 | 186 | -1s8 | 4584
16 269 000 | 3020 n 121 000 [ 4759 || 126 | 186 | -158 | 4564
17 -2.65 000 | 2976 n| 4w 000 |4s96 || 127 | 257 | 161 | 4378
18 227 000 | 2766 | a9m 000 |4ss2 || 128 | 257 | 161 | 4358
19 216 000 | 2720 % 252 000 | 4382 | 120 | 323 | ass |aum
2 162 000 | 2496 75 262 000 | 4353 | 130 | 323 | 55 | a1s3
21 -1.49 000 | 2447 6 | 319 000 | 4176 | 131 | 379 | 152 | 306
» 080 000 | 2214 7 a2 000 |a1s0 | 132 | 37 | 152 | 304
3 0.60 000 | 2149 8| 3% 000 | 3962 | 133 | <17 | 155 | 3737
% 0.19 000 | 19.04 79 381 000 | 3930 f| 134 | <17 | ass | 3717
25 0.45 000 | 1824 8 415 000 | 3740 | 135 | <438 | 159 [ 3498
26 137 000 | 1568 81 419 000 | 3703 || 136 | <38 | -159 | 3478
27 170 000 | 1473 82 | 436 000 | 3s0s | 137 | <438 | 167 | 3246
28 245 000 | 1204 8 4.40 000 | 371 [| 138 | <38 | -167 | 3226
2 274 000 | 1093 84 , 438 000 | 3257 || 139 | <417 | 176 | 2087
BT 315 000 | 816 8s 438 000 | 3215 | 140 | <17 | -176 | 2067
3 321 000 | 634 86 419 000 | 2009 || 141 | 367 | -187 | 2689
2 3.02 000 | 420 87 415 000 | 2954 | 142 | -138 | 400 | 4790
13 258 000 | 287 88 378 000 | 2237 || 143 | 339 | 381 | 4614
U 145 000 | 047 89 | 367 000 | 2689 || 144 | 440 | 300 | a4is
35 0.60 000 | 085 90 314 000 | 2458 || 145 | 44 | 301 | 4213
% 037 000 | 4713 91 a0 000 | 2408 || 146 | 600 | 330 | 398
37 007 000 | 4556 2 | 2312 000 | 2162 | 147 | 650 | 333 |78
8 019 000 | 4514 93 214 000 | 2100 | 148 | 650 | 330 | 3495
39 060 000 | 4340 94 130 000 | 1842 || 149 | 683 | 302 |3220
40 066 000 | 4309 95 -L10 000 | 1769 || 150 | 640 | 280 [ 2940
a1 105 000 | 4129 9% 017 000 | 1sos || 1s1 | s3s | 253 | 2670
a2 -1.09 000 | 4102 97 0.08 000 | 1426 f| 152 | 138 | 400 | 4790
3 142 000 | 3918 98 083 000 | 1155 f| 153 | 339 | 381 | 4614
4“ 143 000 | 3897 %9 1.03 000 | 1069 || 154 | 440 | 300 | 4415
as -161 000 | 3708 [ 100 143 000 | 797 || 155 | -544 | 301 | 4213
4 161 000 | 385 || 11 146 000 | 7.04 i 156 | 600 | -330 | 3998
47 -1.64 000 | 3495 | 102 128 000 | 437 || 157 | 650 | a3 | 3787
18 162 000 | 3465 [| 103 0.89 000 | 342 | 158 | 650 | 330 | 3495
49 -1.50 000 | 1275 f| 104 | om1 000 | 123 | 159 | €83 | 302 | 3220
50 146 000 | 3237 | 10s o 000 | 027 | 160 | 640 | 28 | 2040
51 119 000 | 3041 | 106 | a2 145 | 4759 | 161 | 535 | 253 | 2670
52 -L15 000 | 2998 || 107 186 158 | as8s || 162 [ 121 | 155 | 4759
53 076 000 | 2795 | 108 | -186 158 | ases | 163 | 138 | 410 | 4790
54 065 000 | 2751 || 109 257 161 | 4378 | 164 | 150 | 508 | 4767
55 .10 000 | 253¢ || 110 257 161 {4358 || 165 | 300 | 762 | 4
;___—_L_—__._——_‘_"——-—'—'————-_———-'_L_—'————_——'—————




Table 5.5 Global Nodal Coordinates Cont’d
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Node Coordinates Node Coardinates Node Coordinates
no. no. no.

X Y Z X Y z X Y z
166 6.00 508 | 4245 21 | 1188 000 | 31.03 276 3.00 11.43 20.40
167 750 229 | 4245 22 | 1188 165 | 3103 m 810 10.16 17.84
168 750 000 | 4245 23 | 1056 572 | 3067 2718 1195 162 20.85
169 750 229 | 4245 224 9.00 889 | 3027 279 1195 -7.62 20.85
170 6.00 508 | 4245 225 3.00 ‘1240 | 34.03 280 810 -10.16 1784
171 3.00 762 | 43 26 712 953 | 3958 281 3.00 -11.43 20.40
112 150 508 | 4167 27 £.00 340 | 3998 282 136 889 2697
173 -138 410 | 4790 28 379 ‘152 | 3951 283 £6.40 290 29.40
174 -121 155 | 47159 229 417 155 | 37127 284 417 -1.76 29.77
175 -1.86 158 | 45.74 20 £.50 343 | 3157 285 367 .97 26.89
176 339 391 | 4614 231 19 889 | 3645 286 5.5 263 26.70
177 -3.40 572 | 4610 232 3.00 1207 | 3048 287 820 8.89 2420
178 3.00 889 | 4175 23 8.83 953 | 27.24 288 3.00 1143 16.65
179 7.60 572 | 39.90 24 930 699 | 2764 289 820 762 13.42
180 8.73 .14 | 3928 25 10.60 445 | 2864 290 820 -1.62 1342
181 8.73 000 | 3928 236 | 1200 114 | 292 291 3.00 -11.43 16.65
182 8.73 114 | 3928 237 | 1200 000 | 2922 292 820 889 2420
183 7.60 572 | 3990 238 12.00 114 | .22 293 5.5 263 26.70
184 3.00 889 | 4175 239 | 1060 445 | 2864 294 3.67 -1.97 26.89
185 -3.40 572 | 46.10 240 930 €99 | 2764 500 323 0.00 50.26
186 339 391 | 46.14 241 883 953 | 27124 s01 244 0.00 46.56
187 -1.86 158 | 45.74 242 3.00 1207 | 3048 502 202 0.00 469
188 257 1.61 | 43.68 243 192 889 | 3645 503 -1.06 0.00 4257
189 4.40 310 | 4«48 244 £.50 343 | 3757 504 089 0.00 40.46
190 -5.00 124 | 4378 245 417 155 | 37127 505 040 0.00 3832
191 3.00 1080 | 39.00 246 438 1.59 | 34.88 506 059 0.00 36.12
192 8.05 635 | 3134 247 £.50 340 | 3495 507 1.08 0.00 3383
193 995 140 | 36.12 U8 830 889 | 34.00 508 150 0.00 3143
194 995 000 | 3612 249 3.00 1143 | 2788 509 2.06 0.00 2893
195 9.95 140 | 3612 250 850 953 | 1337 510 329 0.00 2631
196 8.05 635 | 37134 251 10.65 635 | 2530 51 442 0.00 2355
197 300 | -1080 | 39.00 252 | 1283 089 | 2850 512 528 0.00 2059
198 -5.00 224 | a8 253 | 1253 000 | 2850 513 628 0.00 1736
199 4.40 310 | 44.15 254 | 1253 089 | 2850 514 6.8 0.00 1386
200 257 161 | 4368 255 | 1065 635 | 2530 515 712 0.00 10.10
201 323 155 | 41.63 256 8.80 953 | 337 516 6.60 0.00 6.18
202 544 311 | 4213 257 3.00 1143 | 2788 517 491 0.00 234
203 £6.00 826 | 4208 258 430 889 | 34.00 518 425 0.00 019
204 3.00 1207 | 3675 259 £.50 340 | 3495 519 1.95 0.00 63.54
205 8.45 762 § 13.00 260 438 159 | 3488 520 071 17.18 15.76
206 11.30 191 | 3236 261 438 167 | 3236 521 0.71 -17.18 15.76
207 11.30 0.00 | 3236 262 483 312 | 3220
208 11.30 191 | 3236 263 844 889 | 3052 i
209 8.45 762 | 33.00 H 264 3.00 1143 | 2444 ,J
210 300 | -1207 | 3675 265 8.60 953 | 2083
211 £.00 82 | 4208 266 11.95 673 | 388
212 -5.44 311 | 4213 267 1195 473 | 7388
213 323 155 | a1.63 248 8.60 953 | 2083
24 319 152 | 3951 269 3.00 1143 | 2444
215 .00 340 | 3998 270 844 889 | 3052
216 712 953 | 3958 2n 483 312 | 3220
217 3.00 1240 | 34.03 M 438 167 | 3236
218 9.00 889 | 3027 pK] 417 176 | 29.17
219 10.56 572 | %067 274 £.40 290 | 2940
220 11.88 1.65 | 3103 275 -1.76 889 | 2697 |




. 5.3.2 Lordotic Geometry

The lordotic model, LARRY, is created from MOE by altering its sagittal curvature. Using
the structurally equivalent 3-element model, the central elements are kept of the same length while
the anterior and posterior elements of the vertebrae T4-T12 are elongated and shortened respectively
as indicated in Table 5.6, such that vertebrae T6 through T10 become lordotic. The amount of
elongation and shortening is based on the measurements of lordotic vertebrae from a real scoliotic
spine [30]. The ratios of the anterior and posterior lengths of the scoliotic vertebrae T4-T12 are used
to calculate these lengths for the lordotic vertebrae of the present model, relative to their center
lengths which are considered to remain unchanged and which are the averages of the anterior and
posterior lengths. The procedure is accomplished by running a static structural analysis of MOE using
the DEFORM' command available in NASTRAN. This command allows elements to be deformed
axially. Constraints are placed on the structure so that the sagittal curvature is the main parameter
altered. The analysis yields a structure with a lordosis in the thoracic region of the spine with an apex
at T8, as shown in Fig. 5.6. This region is chosen specifically because, as mentioned previously, a very
common form of AIS has an apex at the T8-T9 level, with lordosis present at the apex and at one or
two levels above and below the apex [24,34). The lordotic model thus created is used 10 study the

effect of thoracic lordosis on subsequent spinal stability.

Table 5.6 Changes in Anterior and Posterior Lengths of Vertebrae

Vert. | Scoliotic Normal lengths Lordotic Change in length,
specimen (cm) lengths (cm)
(30] (cm)
Ant./Post. | Post. | Central | Ant. | Post. | Ant. | Post Ant. || Average
(xcm)

T4 0.966 1943 | 1905 | 1.869 | 1.938 | 1.872 | -0.005 { 0.003 0.004
TS 0.989 2019 | 1.957 | 1.899 | 1.968 | 1.946 | -0.051 | 0.047 0.049
T6 1.103 2087 | 1993 | 1.900 | 1.895 | 2090 | -0.192 | 0.190 0.191

T7 1.480 2140 1 2.021 | 1904 | 1.630 | 2412 | -0.510 | 0.508 0.509
T8 1.304 2.168 | 2073 | 1979 | 1.800 | 2.347 | -0.368 | 0.368 0.368
9 1.443 2201 | 2134 | 2067 | 1.747 | 2521 | -0.454 | 0454 0.454

T10 1.227 2370 | 2304 | 2239 | 2.069 | 2539 | -0.301 | 0.300 0.300
Ti1 0.959 2558 | 2430 | 2303 | 2481 | 2379 | -0.077 | 0.076 0.077
0.912 2.574 2693 0.021

“The deform command may be used o load a structure by enforced specified axial deformation of one-dimensional elements
within a structure. The only concern, at this point in the study, is the new geometry, without interest in the forces thus
developed. This simple method achicves the desired geometry changes in conformity with the required geometric compatibility.
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Fig. 5.6 Lordotic 3-element model of spine and rib cage, LARRY. Note the change in the thoracic
curvature when compared to MOE in Fig. 5.5.

The desired anterior and posterior length changes of the vertebrae are also used in the
calculation of temperature changes (AT) in these elements required as input in the nonlinear analysis
which simulates lordotic growth of the spine by thermal loading the normal spine. Again, considering
the center lengths to remain constant, relative faster anterior growth is simulated by heating the
anterior elements and cooling the posterior elements. As shown in Table 5.7, using the desired length
changes calculated above, the sagittal radii, and A-P bending stiffnesses of the designated vertebrae,
the necessary forces in the anterior and posterior elements, to achieve such length changes (in an
unrestrained system), may be determined. To obtain the axial force P, the elements may be thermally
loaded by AT. The values of AT are dependent on the values of Young’s modulus E, the area A, and
the coefficient of expansion «, arbitrarily chosen for the axal elements. In order to facilitate
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calculations and to ensure that the anterior and posterior elements do not contribute to the stiffness
of the vertebrae, a value of EA=1,000 N, small compared to the properties of the vertebrae, and an

a=1 were chosen.

Table 5.7 Temperature Changes Required to Simulate Asymmetrical Vertebral Growth

Vert. Element Change Average A-P A-P Momeat, Axial Change in
No. in length, | sagittal rotation, bending M=EL&L forces, temp.,
al. radius,b | 8=4LM stiffness, (N-cm) P=M/2b | aT=P/EAa
Ant | Post | Ant+ (cm) (rad) ELL Ant-C (% deg)
Post - (N-cm/rad) Post-T
(cm) (N)
T4 41 75 004 1.1535 0.0035 985,123 3,448 1,494.58 149
TS5 43 K 049 1.244 0.0394 1,232,632 48,566 19,520.10 19.52
T6 45 79 191 1.3295 0.1437 1,532,338 220,197 82,811.96 8281
T7 47 81 509 1.4165 03593 1,899,970 682,659 |240,966.82 240.97
T8 49 83 368 1.4893 0247 2,268,683 560,592 ]188,181.27 188.18
T9 51 85 454 1.527 0.2973 2,533,974 753350 |246,676.49 246.68
T10 53 87 300 1.554 0.1931 2,692,127 519,850 |167,261.90 167.26
Tl L1 89 077 1.5925 0.0484 2,982,337 144,345 45,320.25 4532
Ti2 57 9 021 1.615 0.0130 3,126,414 40,643 12,582.97 12.58
S — — e ———————————— —
= 1000 C = compression A-P = anterior-posterior
a=1 T = tension Note: Bending stiffness properties explained in following section.

5.4 Representation of Stiffness Properties

As mentioned previously, discrete beam elements are chosen to make up the model. In
reality, sectional and material properties vary throughout the spinal column and rib cage structure.
Adding to this difficulty of non-homogeneity of properties within the same structure is the fact that
properties vary tremendously from person to person. To keep the computer model simple yet
adequate, new beam elements are introduced in the model only to represent a change in the geometry
of the structure, e.g. a curve, and to account for a change in material, e.g. bone to ligament. It is
assumed that the sectional and material properties are constant along the length of each individual
element, but naturally, they are allowed to vary from element to element. For individual elements,
sectional properties are assigned the averages of values along the length. Material properties are
assumed linear, elastic and isotropic. Obtaining these properties 10 represent a typical normal spine
and rib cage is a task in itself and will be discussed briefly.

Input for the program is in the form of sectional and material properties. The importance,
is not focused on determining actual sectional and material properties but rather, on representing
realistic stiffnesses, which are proportional to the product of the above two properties and which are
usually the quantities reported in literature. Stiffnesses for the “rigid” or bony elements are based
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on the material properties of compact bone determined experimentally {103,120] and the actual
sectional properties [64,103], when available in literature. Stiffnesses for the more deformable
elements (intervertebral joints, ligaments, and cartilage) are based on results reported in literature
from experiments on spinal motion segments [11,73,74,75,86,88,90,107,113] and soft tissue [4,109].

5.4.1 Rigid or Bone Elements

Sectional Properties

As mentioned above, the exact sectional properties of the rigid elements are not crucial for
representing the actual behaviour of the spine and rib cage since they have comparatively large
Young’s moduli and shear moduli. When available in literature, true properties are generally assigned
to the rigid elements, however assignments of equivalent sectional properties are made when
appropriate to simplify input. In addition, approximations of properties are made when such data are

not available.

Sectional properties of the rigid vertebral elements are calculated according to the data from
Lanier [64]. For each vertebra, T1 - LS, the sagittal diameter was t1aken to be the average of the mean
superior and the mean inferior sagittal diameters. The transverse diameter was taken to be the mean
inferior transverse diameter. The cross-sectional area, moments of inertia, and torsional constants {51]
are calculated according to the assumptions that (a) the vertebra is elliptical in shape, and (b) 100%
of the cross-sectional area is effective. These properties are tabulated in Table 5.8. Element

coordinate system for the vertebra and intervertebral joint elements is shown in Fig. 5.7.

Notations referred to in this chapter are as follows: A represents the cross-sectional area,
[, and [, represent the area moment of inertia in the two perpendicular planes 1 and 2 (principal
planes when cross-section is symmetrical) which are orthogonal to the cross-sectional plane, J
represents the torsional constant, K, and K, represent shear area factors in planes 1 and 2 respectively,
and I, represents area product of inertia.' All symbolis are defined in the List of Symbols. As noted
in Table 5.8 and in Fig. 5.7, planes 1 and 2 are the principal planes. Plane 1 represents the lateral
plane of the element and plane 2 corresponds to the A-P plane.

Since 3 elements are also used to represent 1 vertebra, equivalent sectional properties are

calculated using the formulas derived in Appendix B. These equivalent values, used in the input data

The nomenclature for inertia properties in lerms of planes 1 and 2 is in accordance with that of NASTRAN. This is
different from the axis-based convention normally used.
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of the 3-clement model, are shown in Table 5.8(a) and 5.8(b).

Table 5.8 Sectional Properties of Vertebrae*®

&
&
g
m“
~
ke

G
(Niew?) | (Niem?)
“ Tl 1030000 431000 424 2.651 0.773 2.395

A 1030000 | 431000 4.72 3.061 1.030 3.083
T3 1030000 | 431000 5.08 3.036 1390 3.813
T4 1030000 | 431000 5.50 3.181 1.822 4.633
TS 1030000 | 431000 6.05 3.631 2342 5.695
T6 1030000 | 431000 6.68 4.240 2.965 6.980
™ 1030000 | 431000 7.4 5.198 3.728 8.685
T8 1030000 | 431000 823 6.386 4.566 10.650
9 1030000 | 431000 8.98 7.853 5.250 12.586
T10 1030000 | 431000 997 | 10407 6.022 15.258
T11 1030000 | 431000 1115 | 13.896 7.036 18.684
T12 1030000 | 431000 1200 | 16.789 7.813 21.327
L1 1030000 | 431000 12.81 19.659 8.692 | 24.108
L2 1030000 | 431000 13.57 | 22346 9.624 | 26.908
L3 1030000 | 431000 1458 | 26430 | 10.853 | 30.774
4 1030000 | 431000 1525 | 28846 | 11.896 | 33.6%0
Ls 1030000 | 431000 1473 | 26.207 11366 | 31.710

Pk st ettt pmt (b fomd et Jumb et (et it pd fund b ek b

* Values are based on the dimensions from Lanier [64].

Intervertebral joint Vertebra

Effective cross-gection

Fig. 5.7 Element coordinate system for vertebra and intervertebral joint elements. In this figure, the
local y-axis coincides with the global Y-axis such that x-y plane defines element’s lateral plane
denoted by 1, and x-z plane defines the A-P plane denoted by 2. Cross-section is from
bottom view.
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Table S.8a Equivalent Sectional Properties for Central Vertebral Elements (K,=1.00)

Verterba A I L J K;
(cm?) (cm') (e (cm)
T1 3222 2015 0.025 1.755 -0.089
T2 3.587 2326 0.027 2.235 -0.075
T3 3.861 2.307 0.035 2.692 -0.085
T4 4.18 2418 0.05 3.192 -0.108
TS 4.598 2.76 0.072 3.857 0.14
T6 5.077 3222 0.1 4.654 -0.174
7 5.654 395 0.11 5.709 -0.166
T8 6.255 4.853 0.14 6.977 -0.184
9 6.825 5.968 0.171 8333 -0.197
T10 1577 7.909 0.185 1035 -0.159
T11 8474 10.561 0.19 12.86 -0.127
T12 9.12 12.76 0.229 14.88 -0.127
L1 9.736 14.941 0.21 16.903 -0.094
L2 10313 16.983 0.249 18.93 -0.101
3 11.081 20.087 0.303 21.689 -0.116
L4 11.59 21923 0371 23.675 -0.145
Ls 11.195 19.917 0.353 22.131 -0.155

Table 5.8b Equivalent Sectional Properties for Anterior/Posterior Vertebral Elements
(K,=1.00, J=0.00)

Vertebra A I, I K,
(cm’) (cm’) (cm*)
Tl 0.509 0318 0.004 -0.089
T2 0.566 0.367 0.004 -0.075
T3 0.61 0.364 0.005 -0.085
T4 0.66 0.382 0.008 -0.108
TS 0.726 0.436 0.011 0.14
T6 0.802 0.509 0.016 -0.174
T7 0.893 0.624 0.017 -0.166
T8 0.988 0.766 0.022 0.184
9 1.078 0.942 0.027 -0.197
T10 1.196 1.249 0.029 -0.159
Tl 1.338 1.668 0.03 -0.127
Ti2 1.4 2.015 0.036 -0.127
L1 1.537 2.359 0.033 -0.094
L2 1.628 2.682 0.039 -0.101
L3 175 3172 0.048 -0.116
L4 1.83 3.462 0.059 -0.145
LS 1.768 3.145 0.056 -0.155




Vertebral endplates, when included in model, are all given the same large (arbitrarily selected)
sectional properties based on a circular cross-section, since they are modeled simply to provide rigid
links between the 3 elements. The values selected are A = 3545 cm? [, = I, = 100.0 cm*, and ] =
200.0 cm*,

For each rib, the sectional properties measured by Roberts and Chen [103] were averaged and
assigned to all 4 segments of the rib. The properties were calculated on the assumption that the
cross-sections have an elliptical shape but are only 50% effective (considering the compact bone
contribution), and therefore are represented by an elliptical ring [103]. The properties are tabulated
in Table 5.9, and the element coordinate system is illustrated in Fig. 5.8.

Table 5.9 Average Sectional Properties of Ribs [103]

Fig. 5.8 Rib element coordinate system. The x-y plane coincides with the plane
formed by the global Y-axis and the local x-axis. Here, the x-y plane defines

plane 1, and the x-z plane, plane 2.
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Rib | Element Property A L I J

No. No. No. (cm) (cm*) (ecm*) (cm*)
1 285-292 153 0.4058 0.0267 0.0697 0.0519
2 293-300 154 0.2348 0.0084 0.0245 0.0199
3 301-308 155 0.3150 0.0127 0.0474 0.0337
4 309-316 156 0.3523 0.0150 0.0664 0.0392
5 317-324 157 0.2881 0.0128 0.0352 0.0297
6 325-332 158 0.3481 0.0204 0.0392 0.0434
7 333-340 159 0.4034 0.0277 0.0590 0.0591
8 341-348 160 0.4674 0.0225 0.0699 0.0551
9 349-356 161 0.3703 0.0264 0.0562 0.0580
10 357-364 162 0.3370 0.0181




Similar to the endplates, the sternum beam elements are all given the same arbitrary property
values, large enough to render them rigid. The sternum quadrilateral elements are assigned an
average realistic thickness of 0.9 cm [103].

Sectional properties for elements representing the transverse processes and rigid posterior-
lateral extensions of vertebral bodies needed to define positions of facets for articulation with the ribs
by means of the CT and CV elements respectively, are arbitrarily selected to be the same for all
similar element types in order to simplify input data. The assumption is appropriate since these
elements are rigid links, providing anatomical positioning of the ligaments with respect to the
vertebrae centers. The values, shown below, are chosen to reflect the true geometry and are based

on the assumption of a circular cross-section.

Transverse: A=10cm! Elements defining: A = 3545 cm?
process I, =1,=008cm! vertebral body [, =1 =10cm'
= 0.16 cm* facets J=20cm
Material Properties

A lot of work has been done concerning properties of compact bone by Yamada [136] and
Evans [36]. Based on their results, Sundaram and Feng [120] and Roberts and Chen [103] derived
property values for particular types of compact bone as shown below in Table 5.10. These material
constants were used for the bone elements of the present model, as indicated. The properties assume
the material is isotropic and homogeneous, and as such the shear modulus G is related to Young's
modulus E and Poisson’s ratio v by the relation G = E/ 2(1+v).

Table 5.10 Material Properties for Bone Elements

Element type and Young’s modulus, E | Shear modulus, G | Poisson’s ration, v

source (N/em?) (N/cm?)
Vertebrae and elements
defining facets on 1.03 x 10¢ 431x 10° 0.20
vertebral body [120]
Ribs, sternum, and 121x 10 5.03 x 10° 0.20
endplate [103,120]
Transverse process [62] 350x 10° 140x 10° 0.25
e ————




. 5.4.2 Deformable Elements

The deformable elements in the model account for all the flexibility in the spinal structure.
Therefore, in order to predict realistic behaviour, it is important to represent their true stiffnesses as
accurately as possible. These deformable elements include the intervertebral joints, the ligaments, and
the cartilage in the spine and rib cage. Stiffnesses are based on the best linear elastic approximation
of the nonlinear, anisotropic, visco-clastic material. Whenever possible, actual sectional and material
properties are used as the input data. However, due to the anisotropic nature of the material, many
times the use of real stiffnesses and real cross-sectional areas A, and model lengths L, results in the
calculation of other sectional (I and J values) and material properties (E and G values), far from real.
Thus, the property values are treated simply as the appropriate quantities required for input in the
program; it is the stiffness that must be realistic.

Stiffnesses of the costovertebral joints (CV), costotransverse joints (CT), intercostal tissue
(IC), and costal cartilage (CC) attached to rib 6 are shown in Table 5.11. These stiffness values were
obtained by simulating an experiment conducted on the ribs [109]. Stiffnesses were adjusted until the
computed displacements agreed with the experimental results [4]. As noted in the table, and as
mentioned earlier, the CT and CC elements exhibit axial, bending, torsional, and shear stiffnesses
while the CV and IC clements only provide axial stiffness. Stiffness of the CV, CT, IC, and CC
elements in the model are based on the stiffness values of these elements attached to rib 6.

Table 5.11 Stiffness Values for Deformable Elements Attached to Rib 6*

Bending, E/L | Torsional, GJ/L | Shear, GA/L
(N-cm/rad) (N-cm/rad) (N/cm)

* Values taken from Andriacchi et al. [4].

Typically, Young’s modulus is 20 times higher in compression than in tension. Material
property values for cartilage were determined by Yamada [136] to have elastic moduli in compression
and tension respectively, of E,=2,400 N/cm® and E,=48,000 N/cm? and a Poisson’s ratio of 0.1.
Sundaram and Feng [120] determined an equivalent beam modulus for cartilage, E,, = 6450 N/cm?,
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using the tension and compression moduli. This equivalent modulus is used in determining sectional
properties for the IC, CT, and CV e¢lements.

The axial stiffness of 195 N/cm for the IC element attached to rib 6 is assumed for all other
IC elements since no data on effective cross-sectional area were found. The cross-sectional area is
therefore calculated using the equivalent modulus E, and the length of the element determined
directly from the model. Properties of the IC elements are shown in Table 5.12.

Table 5.12 Cross-Sectional Area of Intercostal Tissue (IC elements)

— e ————
Rib | Member | Property | EA/L, Axial Eq. Length | Area
no. no. no. stiffness [4] (120} (cm) (cm?)
(N/cm) (N/cm?)

1-2 | 421,430 62 195 6450 2.786 | 0.0842 "
23 | 422431 63 195 6450 3345 | 0.1011
34 | 423,432 64 195 6450 2584 | 0.0781
4-5 | 424,433 65 195 6450 2740 | 0.0828
5-6 | 425,434 66 195 6450 3565 | 0.1078
6-7 | 426,435 67 195 6450 2676 | 0.0809
7-8 | 427,436 68 195 6450 3.440 | 0.1040
89 | 428437 69 195 6450 4040 | 0.1221
429,438 195 6450 3750 | 0.1134

Calculation of the CT and CV sectional properties is a bit more complex because their
compressive axial stiffness is 10 times their tensile axial stiffness as seen in Table 5.11. However, the
linearity of the program allows the input of only one (equal) stiffness. Information on the sectional
properties of the ligaments at each rib level is unavailable. Thus, the stiffness values for these
elements are assumed to be the same as the stiffness for the CT and CV elements of rib 6. The
assumption is justified because the material is similar for the same element types and the same short
length of 0.1 cm is chosen for each of these elements.

The procedure adopted to arrive at an equivalent axial stiffness, somewhere in between the
value of the compressive and tensile stiffnesses is as follows. Multiplying the compressive stiffness
and the tensile stiffness by their lengths L, and dividing by E, and E,, respectively, compressive and
tensile areas are determined. The average of these two areas, 0.0015 cm?, is used as the equivalent
area. Then, a new equivalent axial stiffness of 96.75 N/cm is calculated based on the equivalent
modulus E,, the equivalent area, and the true length. Based on these values, the remaining
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properties for the CT elements, I, G, and J, are determined from the bending, torsional, and shear
stiffnesses respectively. The calculated properties are:
I, =1, =00106 cm*

J =0.0012 cm*
G = 81,666 N/cm?

A Poisson’s ratio of 0.1 is assigned to the elements [120,136]. The material is obviously not isotropic,
however the realistic stiffness is modeled.

More information is found in literature concerning the costal cartilage. Roberts and Chen
[103] give the sectional properties for the costal cartilage of all 10 ribs on the assumption they are
elliptical and 100% effective. However, stiffnesses, which again are the important quantities to model,
are unknown for the costal cartilage corresponding to ribs other than rib 6. Therefore, assuming all
CC elements have the same Young's and shear moduli, stiffnesses for each CC element in the model
are calculated by factoring the stiffness values determined for the cartilage of rib 6 (Table 5.11). The
factor used is the ratio between the true sectional properties and the length (determined from model)
of the CC element in question, and those of the cartilage of rib 6 (i.e. true sectional properties of the

costal cartilage of rib 6 and the full length L, of the CC element attached to rib 6).

Although the calculation of the sectional properties of the costal cartilage is based on the
assumption that they are elliptical, only one bending stiffness is given in [103]. Assuming it to be for
bending about the weak axis, strong axis bending stiffness may be calculated in a manner similar to
the above procedure, by factoring the weak axis stiffness using the true inertia about the strong axis
of the cartilage in question (I;) and the true inertia about the weak axis of the cartilage of rib 6 (I,)
along with the length factor. The formulas used to calculate the stiffnesses for each CC element are
as shown on the following page. The factors are represented by a,),y,and §. The subscript 6 denotes
quantities belonging to the costal cartilage attached to rib 6. The subscript k denotes quantities

belonging to a CC element in the model.

The E and G values used for all CC elements are 10,155 N/cm? and 1,105 N/cm?, respectively.
They are calculated using the axial and shear stiffnesses, and the true cross-sectional area
corresponding to the cartilage attached to rib 6, as well as the full model length (Lg=9.271 cm) of the
CC element attached to rib 6. The remaining sectional properties for all CC elements (I,, I, J),
tabulated in the last three columns in Table 5.13, are calculated using the corresponding factored
stiffnesses, the lengths from the model, and the above E and G values. Figure 5.9 illustrates the

element coordinate system.



(2, - 1% =%
()55, -2
EI, v, (E L,
[T]. ) T(T]s "o,
(ﬁ] - v_u[E_'] vy = B
L), AL *o
% - 58

N
N

Fig. 59 Element coordinate system for CC elements. The x-y plane coincides with the plane formed
by the global Y-axis and the local x-axis. Here, the x-y plane defines plane 1, and the x-z
plane defines plane 2.

Intervertebral Joint Stiffness

The elements representing the intervertebral joints, in between the elements representing
vertebrae, provide flexibility to the spinal column. The flexibility of these elements is dependent on
(1) the size and shape of the cross-sections, the lengths (heights), and the material properties (moduli)
of the intervertebral discs, (2) the action of the ligaments interconnecting the vertebrae, and (3) the
shape of the articulating facets (73]. Since these variables differ at the various intervertebral joint
levels, it cannot be assumed that the flexibilities are constant throughout the spine. Stiffnesses
assigned to these elements have a great bearing on the results. Therefore, a thorough study of the

prior works concerning testing of motion segments of the thoracic and lumbar spine is necessary.
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Table 5.13 Sectional Properties of Costal Cartilage (CC elements)

Rib | Element | Prop. | Length Real sectional properties [103} Factored stiffness calculated based on stiffnesses of Model sectional properties;
no, no., no. {cm) elements attached to rib 6 [4] real area used for all CC clements
Area 1 1, J EA/L ELL El/L GA/L GI/L I L J
(@m) | @@ | (@) | (@) | Nem) | (Nem | (Nem | (Nem) | (Nem (cm") () | (cm')
frad) frad) frad)
1 365,383 n an 0.7458 | 00158 | 0.1169 | 0.0566 2388.46 725.49 536768 | 259.97 3088.97 0.2265 1.6761 8.8644
2 366,384 72 4.750 04129 | 0.0054 | 00373 | 0.0186 882.76 165.53 1143.36 96.08 677.66 0.0774 0.5348 29130
3 367,385 73 5.443 0.5419 { 0.0080 | 0.0706 | 0.0287 1011.05 214.00 1888.58 | 11005 91251 0.1147 1.0123 4.4948
4 368,386 74 6418 0.6710 | 00110 [ 01177 | 0.0549 1061,73 249.55 267021 | 115.56 1480.35 0.1577 1.6876 8.5981
L] 369,387 75 3.560 05458 | 0.0101 0.0576 | 0.0343 1556.95 413.08 235581 | 169.46 1667.39 0.1448 0.8259 5319
" 370,388 76 4,288 05913 | 00124 | 00614 | 0.0421 1400.37 421.05 208488 | 15242 1699.11 0.1778 0.8804 6.5935
6 371,389 T 2.395 0.6710 | 00156 | 0.0822 | 0.0525 2845.17 948.39 4991.29 | 309.68 3793.56 0.2237 1.1786 8.2222
" 372,3%0 78 2.614 0.6710 | 00156 } 00822 | 0.0525 2606.80 868.93 4578.62 ] 283.73 3475.74 0.2237 1.1786 82222
" 37330 ” 3.024 0.6710 | 0.0156 ] 0.0822 | 0.0525 225337 751.12 395784 | 24526 | 3004.49 0.2237 1.1786 82222
" 374,392 80 3633 06710 | 00156 | 00822 | 0.0525 1875.64 625.21 329439 | 204.15 2500.85 0.2237 1.1786 82222
" 375393 81 2775 06710 | 00156 | 0.0822 | 0.0525 2455.56 818.52 431298 | 267.27 | 3274.08 0.2237 1.1786 82222
7 376,394 82 4.151 0.8264 | 0.0250 | 0.1011 | 0.0805 2021.76 876.91 354623 | 220.05 3356.11 0.3584 1.4496 12.6074
" 377,395 83 6.603 08264 | 0.0250 | 0.1011 | 0.0805 1270.98 551.27 222935 | 13834 2109.83 0.3584 1.4496 12.6074
8 378,396 84 1.963 0.8310 | 00230 | 0.1007 | 0.0809 4299.05 170599 | 746925 | 46792 713217 0.3298 1.4438 126701
" 379397 85 5323 05935 | 00114 | 0.0710 | 0.0404 1132.28 311.83 194209 | 123.24 1313.46 0.1635 1.0180 6.3272
9 380,398 86 3158 05290 | 00114 | 00422 | 00368 1701.12 525.61 194567 | 18516 2016.64 0.1635 0.6051 5.7634
" 381,399 87 5.508 05290 | 00114 | 00422 | 0.0368 97533 301.36 111554 | 106.16 1156.24 0.1635 0.6051 5.7634
10 382,400 88 8323 04129 | 0.0066 | 0.0287 | 0.0217 503.80 115.46 502.08 54.84 451.206 0.0946 0.4115 3.3985
Note: E=10,155 N/cm2 14=9.271 cm (clements 372-374 or 390-392)

G=1,105 N/em2



A motion segment is defined as consisting of an intervertebral disc and its two adjacent
vertebrae with all connecting ligaments intact. It is important that the posterior elements of the
vertebrae, in particular the facet joints, and the ligaments are included in the motion segment testing.
They restrict movement between adjacent vertebrae, and hence contribute to the stiffness of the
intervertebral joint. Their participation is evident because upon their removal, experiments
[74,75,113] indicate significantly increased flexibility. Any deformation between the two vertebrae can

be assumed solely due to the intervertebral joint.

Dlustrated in Fig. 5.10 are the 12 principal directions in which the loads are applied and the
deformations are measured when testing a motion segment. For the purpose of the stability analysis,
motion segment testing may be reduced to loading in 8 physiological directions. They are axial
compression; anterior, posterior and lateral shear; anterior, posterior, and lateral bending; and torsion.
Due to the symmetry of the structure, lateral shear and bending, as well as torsion need to be tested
in only one direction [121]. In addition, tensile stiffness is not important in compressive stability
analyses [121]. By loading motion segments T1-T2 through L5-S1 in these 8 directions and measuring
the displacements in those directions, the compressive, lateral, anterior and posterior shear, lateral,
anterior (flexion), and posterior (extension) bending, and torsional flexibilities of the intervertebral

joint at each level may be determined.

’ <:] Force
3 Load
m Moment }
@: «—> Translation
Displacement
I Q Rotation

Fig. 5.10 Illustration of the principal directions of load application and deformation measurements in
typical motion segment testing. After White and Panjabi [130].
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Experimental determination of the appropriate stiffnesses is difficuit due to the facts that:

(1) The post-mortem effect is not accounted for in the stiffness properties. All the tests are
performed on in-vitro specimens. This type of testing is not possible on in-vivo specimens. However,
the preservation technique seems to be quite effective.

(2) The material is human biological tissue. Firstly, it is highly nonlinear and visco-elastic.
Its deformation is dependent both on the load and time. It becomes stiffer as the loads are increased.
It is suspected to experience permanent deformation under sustained loads, although more testing is
necessary. Secondly, in line with the characteristics of biological material, it is found to have a large
variance of properties among specimens [88].

(3) Different experimental conditions and designs, i.e. testing procedures and displacement
measuring devices, used by various researchers increase the large variation in results and makes
comparison among them difficult [88]. Different procedures produce different experimental error.
To add to the difficulty, some results are based on experiments which for example, take into account
preload and coupling effects while others do not.

(4) It is difficult to conduct stiffness tests on the intervertebral joint. It is much easier to
perform flexibility tests, in which the load is applied and resulting displacements are measured. The
stiffnesses of the main motions' are approximated by inverting the main motion flexibilities. The
approximation is acceptable as long as the coupled motions are small (negligible). Accurate stiffness
values are reached by inverting the complete flexibility matrix, taking into account the coupled motion.
Panjabi et al. [89] show a 10% error in neglecting the coupling effect. Since a larger variation is
found among subjects, the above error is acceptable.

Experiments to determine the stiffness or flexibility of motion segments have been performed
on a large scale. The large compilation of data is reduced by taking into account only those results
which were obtained from experiments which tested many motion segments, individually, and in the
principal directions [11,73,74,75,86,88,90,107,113]. Table 5.14 summarizes the motion segment
experiments performed by various researchers which were used in determining the intervertebral joint
stiffnesses used in this model. The reason for this is simply to limit unnecessary variance due to
different procedures and to achieve some sort of consistency. In addition, emphasis is put on those

'Main modon {88) is defined as the motion produced in the same direction as the applied load.

Coupled modion is the motion produced in other directions other than the direction of main motion. It is defined [88] as
a result of coupling which is the phenomenon in which motion along or about an axis is consistently associated with motion along
or about another axis.
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Table 5.14 Summary of In Vitro Motion Segment Flexibility Testing Studies used in determining Intervertebral (I.V.) Joint Stiffnesses

Experimenter(s), | Motion segments Conditions of Experiment Resulis and comments
date, ref. no, tested
Lucas & Bresler, | -T1/T2 through -1 ligamentous spine of 32 yr old male subject to lateral loading | -Flexibilities only determined from 1 specimen.
(1961), |73) L5/S1, lateral from 0 - 2500 g at increments of 250 g. -Stiffness in good agreement with Schultz {107] at T8/T9 and L3/14
bending stiffness -Force applicd laterally at T1, momeat M at disc level levels,
only delermined by the force times distance from T1. Hence, -Flexibilities of spine determined at load levels of 500, 1000, and
-1 specimen moment increased caudally which is a realistic representation. 1500 g. Any rotation between vertebrae assumed to take place at iv.
-Rotation @ measured between adjacent vertebrae, joint and flexibility at cach level calculated as f=0/M. Flexibility at
-Time allowed for creep, and measurements also made upon cach level taken as average of 3 fexibilities.
unloading; which indicated no significant hysteresis, -Stiffncss at cach iv. joint level approximated by 1A,
Markolf, (1970 & | -T7/T8 through -Testing jig aliowed unconfined motion. Mcasurements only -Load-displacement curves for main motions.
1972), [74,75) LA made in principal directions. -Bending and torsion: no evidence of creep at moment levels tested,
-17 specimens -Allowance for creep; readings after 1-2 mins, Non-lincar deformations with stiffncss increasing as moment is
(21-55 yrs oMd) -Bending and torsion tests with articular facets and ligaments increased. Stiffer in extension than flexion (for all regions). Lumbar
intact, then repeated with them removed. Pure moment region more flexible for all bending. Lowest thoracic and Jumbar iv.
applied. joint much stiffer in tomion (due to facet orientation).
-Axial and shear tests: posterior structures removed. -Shear: no creep, litte displacement (stiff) hence loads applied are
Lumbar segment oaly for shear test. Segment consisted of 3 smali to avoid damage. Initial stiffness = 1050 -5100 N/cm.
vertebrae and 2 discs. Force applied at center of middie -Axial: Observed hysteresis and non-lincar stiffening with increased
vertebrae, with end vertebrac fixed such that "pure® shear deflection. Final stiffness used for comparison, sinoe spine subjected
exists. Instron machine used for axial tests. Max. load 1400 - to constant compressive preload due 1o body weight. Stiffness range
2200 N, loading rate of 2.5 mm/min. from 4200 - 10700 N/cm with average of 8690 Nfcm.
-No preload.! -Posterior structures have greatest stiffening effect in extension (in
thoracic and lumbar region) and in torsion (in lumbar region).
Schultz, -Simulated -Conditions simulated: -Low torsional stiffness compared to other cadaver matcerial results,
Belytschko, experiments using - no preload -Good agreement with normal motion ranges found in past,
Andriacchi, T8/T9 and L3/14 - unconstrained motion -Flexion found stiffer than extension, attributed to ligaments that
(1973), [107)] model motion - loaded in all principal directions at geometric center of work in flexion but not in extension, contrary 1o Markolf who found
segments inferior surface of superior vertebrac extension to be limited by impingement of facets.
~determined disc - loading: forces - 100 kg for tension and shear, 300 kg for -Determined isolated disc stiffncss in compressionAension, shear,
stiffness for compression; moments - 150 kg-cm in thoracic and 200 kg-cm bending, and torsion at all levels of thoracolumbar spine. Stiffness at

thoracolumbar
region

in Jumbar for bending, 300 kg-cm (or twisting.

model levels adjusted until results in agreement with cadaver results,
Stiffness at other levels bascd on relative variations in geometry.

'Compressive preload of 400 N gives good representation of average bady weight above L3,




Table 5.14 Summary of In Vitro Motion Segment Flexibility Testing Cont'd

Experimenter(s),
date, ref. no.

Mation segments
tested

Conditions of experiment

Resulis and comments

Panjabj, Brand, -T1/T2 through -No preload. -No trend in thoracic Aexibilitics, possibly due to testing procedure;
& White, (1976), | T11/T12 -Coupling accounted for; force applied in 12 principal only 1 segment tested per level and segments obtained from different
(88,89] -flexibility at each | directions, displacements measured in 3 directions (1 main and | specimens. Allows no distinction between interlevel and intersubject
level based on 1 2 coupled), assuming symmelry about sagittal plane. variation,
sample motion -Loading: Forces - initial 10 N, increments of 30 N, up to max -Least fiexible in axial direction, Less flexible in compression than
scgment of 160 N, Moments - initial 100 or 150 N-cm, incremenis of tension, in extension than {lexion, Equally flexible in A-P and Iateral
(segments 100 or 150 N-cm, to a max. of 600 or 750 N-cm. shear, in torsional and lateral bending.
obtained from 5 -36 load-displacement curves for main and coupled motions -Main motion always found to be greatest, except during axial
different given for T10/T11 only. compression which resulted in significant horizontal displacement,
specimens) -Main and coupled flexibility coefficients determined at each -|81] shows error (10%) in obtaining main stiffness coefficients by
level for principal loads of 100 N or 5 N-m. inverting main flexibility coefficients instead of inverting complete
-Measurement after 4 mins. (approximately 97% deformed). flexibility matrix (main and coupled coefficients).
Panjabi & White, | -L1/L2 through -Compressive preloads of 0, 400, and 1000 N applied during -72 load-displacement curves for 1.3/LA4 scgment (describes full
(1977), [90); L31A physiological loading. mation)
+Joad-disp. curves -12 loads applied, 6 disp. measured at 0 load and 3 load -Results show effect of compressive preload on segment behaviour
Krag, (1975), given for L3/1.A increments. Max force 150 N, max moment 10 N-m. Reading - more flexible when subjected 1o forces directed laterally and
{63} segment of 58 yr, analyzed for 3rd load cycle only (repeatable phase). anteriorly or 1o moments producing lateral bending and flexion
old man -3 min. allowed for creep. - less flexible when subjected to axial tension and torsion
-Posterior clements intact. - no effect when subjected to axial compression, posterior shear, or
extension.
Schultz, Warwick, -L1/1.2 through -Preload of 400 N applied during physiological loading
Berkson, & LANS -Loading: applied in 3 or more increments, maximum of 20.5 loading of all segments tested; hence, no indication of inter-level
Nachemson, -42 segments N-m for bending and torsion, 205 N for shear or motion variation and coupling.

(1979), [113};

from 24 cadavers
{mean age = 43),

limited 10 8 deg. or 2 mm maximum.
-Unconfined motion segment testing.

-Stiffest in torsion, 100% less in extension, 400% less in flexion and

-Load-displacement curves of main motion reflect average response (0
lateral bending

Berkson, with and without -Displacement recorded in each of 6 directions for each of the -Posterior elements have greatest effect in extension and torsion

Nachemson, & posterior 6 physiological loads applied, hence main and coupled motions -Strong coupling noted between bending and shear (could be the result

Schultz, (1979), clements intact. accounted for. of point of application of shear force causing moment on disc); no

[11) -Accounted for crecp; readings after 15 sec. consisteru coupling found between torsion and lateral bending which is
-Nonrepetitive siatic loading. belicved 10 exist,

Tencer, Ahmed, -L2/1L.3 and LA/LS | -8 of 12 principal loads applied (duc to symmelry w.r.l, sagitial

& Burke, (1972), | -14 segments plane) in 3 load sieps. Max. loads: shear 90 N, comp. 823 N, flexibility coefficients, and flexibility coefficient ratios for preload.

(121)

from B subjects

flex.-ext, 11.2 N-m, lat. bend. 14.7 N-m, axial torque 12.9 N-m.
-Allowance for creep: 1 min at 1st and 2nd step, 2 min a1 3rd.
-Unconstrained motion testing.

-Posterior clements intact and then removed.

-46 variations of combination loading performed. Preloaded
with 1 of principal Joads applied at max., then other principal
loads applied in 3 steps with the exception of principal loads
whose magnitudes are increased by the preload.

-Anterior shear most flexible, posterior shear 50% and lateral shear
33% as flexible. Compressive preload decreased shear flexibility 61%,
anteriorly and 73% posteriorly 73%. Contraty to Panjabi [90] but
consistent with others.

-Most flexible in flexion; in extension 60% and in torsion less than
30% as flexible. Lateral bending flexibility approximately the average
of fiexion and extension. Flexibility of axial torque decreased by 50%

-Results in the form of load-disp. curves, main and coupled/main
with compressive preload (good agreement with Panjabi {90]).




experiments which tested many motion segments from the same specimen. Again, this is done mainly
to achieve consistency or a trend among various levels. If each motion segment tested is from a
different specimen, it cannot be determined whether variance is an inter-level variation or a variation

among different specimens, and consistency cannot be achieved [88].

An important factor in obtaining realistic stiffnesses is the application of compressive preload
[90]. The spine is constantly subjected to compressive gravity loads due to body posture and
superimposed body weight when it is under any other physiological load or load causing motion.
Hence, results obtained when a preload is included as part of the testing environment are favoured.
Obviously, preload is a more important factor for lumbar motion segments since they are subjected

to more weight.

There is a difference of opinion whether compressive preload should be used in conjunction
with lateral bending, flexion, and extension. The offset of the compressive preload may increase the
effects of moments making the motion segment appear more flexible [121]. Testing by Panjabi et al.
[90] indicates a significant increase in the flexibility of the segment in lateral bending and flexion when
a compressive preload is applied. This increase may be due to the additional moment or the effect

of compression in the element.

The assumptions made and criteria used to best approximate the stiffnesses used in this model
are as follows:

(1) Linear approximation: Linear stiffness values for compression, and anterior-posterior
bending and shear, are approximated from nonlinear load-displacement curves by determining stiffness
at a point corresponding to the static load in that particular segment of the structure (determined
approximately by a preliminary analysis) assuming a compressive buckling load, P,=600 N, from
Andriacchi et al. [4]. Hence, more emphasis is put on studies which present results in terms of load-
displacement curves rather than in terms of flexibilities at particular loads. For lateral bending,
torsional, and lateral shear stiffness values, due to the geometry of the spine and the nature of the
loading (i.e. axial compression and flexion moment), initial static stiffnesses are used since there is
no deformation or loading in these directions prior to buckling. In addition, due to the linear
property restriction, the same stiffnesses had to be assigned for flexion and extension as well as for
anterior and posterior shear, although the stiffnesses are sometimes found to be significantly different.

(2) Anatomical restraints: Limitations on the motion in the different regions of the spine
imposed by the respective vertebral geometry are kept in mind during the modelling of the properties.
Recalling anatomical restrictions and freedoms, significant axial rotation is permitted in the thoracic
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region. In the lumbar region, axial rotation is restricted while lateral bending is quite free. Both
flexion and extension are allowed in each region.

(3) Effect of preload: In order to make a comparison of results, adjustments are made to the
results which were obtained in experiments not including preload (when appropriate). The effect of
the preload was determined for the L3-L4 motion segment by Panjabi et al. [90]. Assuming the effect
varies linearly with respect to the weight on the segment, the effect of the preload at the other
segments is interpolated.

The stiffness properties used for the intervertebral joints in the model are given in Table 5.15.
They are based on the studies described in Table 5.14. Using the real cross-sectional areas, effective
shear areas', and central lengths of the elements in combination with the axial and shear stiffnesses,
the E and G values are determined respectively. Moments of inertia and torsional constant values
are then calculated using the bending and torsional stiffnesses, real lengths, and E and G values
previously calculated. This procedure enables proper modelling of the joint stiffness in quantities
necessary for computer input. Sectional and material properties calculated for the intervertebral joint
are given in Table 5.16. Equivalent sectional properties for the 3 element representation of the
intervertebral joint are calculated using the formulas in Appendix B, and are given in Table 5.16a and
5.16b. The element coordinate system is shown in Fig. 5.7.

5.5 Loading and Boundary Conditions

The method of simulating the weight of upper body segments acting on the spine is adopted
from Haderspeck and Schultz [49]. Horizontal slices of the trunk are made at the base of each
vertebra. The weight of each slice is applied at the centroid of the slice, which is rigidly attached to
the bottom center node of the vertebra.

The weight of each slice is caiculated according to the volume of each slice and a constant
density of 1019 kg/m® (specific weight y=0.0099964 N/cm’) [49]. The volume of each slice is
calculated using the average area and thickness of the slice obtained from scaled sectional anatomical
drawings [37). Cross-sectional areas are measured from the drawings of various horizontal sections
of the human body using a planimeter. The positions of the cross-sections do not correspond with
the locations of the slices chosen (i.e. bottom of vertebrae). Therefore, with the aid of the sectional
drawings indicating the vertical positions of the horizontal sections along the spine, the areas of the

The effective shear area is cakculated on the assumption that only the annulus and longitudinal ligaments resist shear,
bending and torsion. The area factor for shear is taken « 0.4375 [38,80,107).

-100-



Table 5.15 Intervertebral Joint Stiffnesses

. .
Superior Axial Torsional Lateral AP Lateral AP True Central
vertebra (N/cm) (N-cm/rad) bending bending shear shear area length

(Ncw/ad) | (N-cmiad) | (Niem) | (Nem) [ (em?) (cm)
T1 9090 213§ 1710 4000 5886 5886 439 0.449
T2 || umo 3305 3270 7000 10791 | 10791 498 | 0310
T3 || 14715 4565 40 10000 13734 | 13734 536 | 0z72
T4 || 20600 6925 7850 11460 18639 | 18639 s | o2
TS || 18640 7005 7550 11910 16677 | 16677 628 | 0251
T6 17660 7090 7550 12590 15696 15696 6.89 0320
™ 12285 7180 7730 7500 13734 | 13734 761 | 0.400
T8 14715 8595 8050 12000 12753 12753 838 0.442
Yy 15385 10655 7985 9200 13734 13734 9.02 0473
Ti0 15430 14035 11245 16500 13734 | 13734 1009 | 0507
Ti1 15300 2545 9220 12500 10791 | 10791 1130 | 0680
Ti2 15215 76660 9415 17315 9810 9810 || 1207 | 0841
L1 13455 s3115 6400 16380 8829 8829 || 1298 | 1.006
L2 12000 55290 4870 22165 7848 7848 || 1378 | 1147
L3 14715 61305 4965 23420 7848 7848 14.66 1221
4 13735 4868S 5785 15000 6867 6867 1538 | 1401
LS 10790 39835 11505 11000 5886 5886 14.55 1570

Table 5.16 Sectional Properties for Intervertebral Joint
=====-====#==|
Superior E G A I L J K.K,
vertebra | (Niem?) | (Niew?) | (am?) | (cm') | (cm%) | (em")

T1 929.7 1376.0 439 | 0826 1.932 0.697 | 0.438
7327 | 15354 498 | 134 2.962 0.667 | 0.438
746.7 1593.0 536 | 1716 3.643 0.779 | 0.438
8009 | 16564 ST | 2176 3.177 0.928 | 0438
745.0 1523.5 6.28 | 2544 4.013 1.154 | 0438
8202 | 16663 6.89 | 2946 4912 1362 | 0438
645.7 1650.0 761 | 4.788 4.646 1.741 | 0438
776.1 1537.5 838 | 4584 6.834 2471 | 0438
806.8 1646.2 9.02 | 4681 5.3%4 3.062 | 0438
7753 15774 | 1009 | 7353 10.790 4511 | 0438
920.7 14843 | 11.30 | 6.810 9.232 10.787 | 0.438

1060.1 15624 | 12.07 | 7.469 13.736 | 41.265 | 0.438

10428 1564.1 | 1298 | 6.174 15.802 | 34.163 | 0438
998.8 1493.1 13.78 | 5592 | 25453 | 42473 | 0438

1225.6 14940 | 1466 | 4946 | 23332 | 50.101 | 0438

12512 | 14298 | 1538 | 6.478 16.797 | 47.705 | 0438

1164.3 1451.7 | 1455 | 15514 | 14.833 | 43.081 | 0.438

CeoiEedd23dddad3dd
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Table 5.16a Equivalent Sectional Properties for Central Intervertebral Joint Elements (K;=0.4375)

——_# 1

Superior A I L J K,
vertebra (cm®) (cmY) (cm*) (cm*)
T1 3.336 0.628 0.838 0354 0.446
T2 3.785 1.052 1.354 0.164 0.441
T3 4.074 1.304 1.572 0.103 0.44
T4 434 1.654 0.916 0.074 0.442
TS 4.7713 1.933 1.146 0.071 0.443
T6 5.236 2239 1.355 0.017 0.446
T7 5.784 3.639 0.598 0.092 0.497
T8 6.369 3.484 1.683 0.501 0.454
T9 6.855 3.558 0.2 0.887 0.957
T10 7.668 5.589 3.646 1.957 0.447
T11 8.588 5175 1.667 784 0.49
T12 9.173 5.676 4.594 38.095 0.457
L1 9.865 4.692 5.363 30.736 0.464
L2 10.473 4.25 11.999 38.88 0.448
L3 11.142 3.759 9.623 46.199 0.453
L4 3.902 43.432 0.527
LS 3.303

Table 5.16b Equivalent Sectional Properties for Anterior/Posterior Intervertebral Joint Elements
(K,=0.4375, J=0.00)
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Superior A L L K,

vertebra (cm?) (cm) (cm*)
Tl 0.527 0.099 0.132 0.446 "
T2 0.598 0.166 0.214 0.441
T3 0.643 0.206 0.248 0.44
T4 0.685 0.261 0.145 0.442
TS 0.754 0.305 0.181 0.443
T6 0.827 0.353 0.214 0.446
) 0.913 0.575 0.094 0.497
T8 1.006 0.55 0.266 0.454
9 1.082 0.562 0.032 0.957
T10 1211 0.882 0.576 0.447
Tl 1356 0.817 0.263 049
Ti12 1.448 0.896 0.725 0.457
L1 1.558 0.741 0.847 0.464
L2 1.654 0.671 1.895 0.448
L3 1.759 0.594 1.519 0.453
4 1.846 0.777 0.616 0.527
LS 1.745 1.862 0521 0.595



top and bottom surfaces of each body slice are linearly interpolated using the calculated section areas,
and the distances (thicknesses) between the horizontal sections and between the body slices made at
vertebrae bases, measured directly from the drawings. The average area of each body slice is
calculated, assuming linear variation of area between sections. The centroid of the slice is determined
similarly by approximating the centroid of the area on the sectional drawings. All dimensions
measured from the drawings {37] are increased linearly by 5% according to the suggestion by
Haderspeck and Schultz [49]. They found the dimensions to be small when compared to a more

recent and extensive study [22].

The weights of the upper extremities are applied at their centers of gravity and rigidly
attached to the bottom center node of vertebrae T2, T3, and T4 [49]. Similarly, the weight of the
head and neck are linked to T1 [22,49]. The weights assigned are adopted from Dempster sited in
[25] with slight modifications based on adjustments of the percentage body weight of the segments
[22]. The position of their center of gravity is based on data on the center of gravity of body segments
[22] and scaled anatomy drawings [37).

Based on these calculations, the resultant weight on the sacrum is 376 N and the coordinates
of its center of gravity (C.G.) is x.=2.56 cm, y.=0 cm, and z,=27.78 cm. The results are in good
agreement with Haderspeck and Schultz {49], who found the resultant weight to be 380 N and with
Grant's Anatomy {44], which states that C.G. passes just in front of the sacrum. In addition, there
is satisfactory agreement with the results found in literature [25,79] concerning weight supported by

each vertebra level.

The weights of the upper body segments and slices, and their points of application are used
to obtain a realistic loading condition proportional to the distribution of body weight along the spine
length. For the purpose of the buckling analysis, the loads applied are expressed as a percentage of
the total load applied to the structure. These loads are calculated in Table 5.17 and are applied to
the structure as described above. It is felt that in the buckling analysis, distributed loading might

produce more realistic results than loading with a lumped force at the top of the spine.

However, for the nonlinear post-buckling analysis, it was found that in NASTRAN the
distributed loads couid not be applied. The loaded nodes move and rotate with the structure and
deviate far from the center of gravity. Hence, it was opted to apply the resultant body weight lumped
at the C.G. by rigidly connecting the C.G. to the superior node of T1. As discussed below, the
constraints on T1 are such that the weight stays in the center. Effectively, the loading is equivalent
to a compressive force and a forward flexion moment (2.98 times the force) applied at T1.
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Table 5.17 Body Weight Distribution at Various Levels

¢ Scale means the scale of the anatomical drawings.
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Slice level Average Measured Real Slice Body weight | Measured Real
calculated thickness, volume, weight, distribution moment moment arm in
area, (cm?) (cm) (cm®) ) (%) arm in x- x-direction,
A ¢ direction, (cm)
V=(54) W= wiEw (cm)
scale=4/5% | scale=2/5 {512)At 1.058°vy measured arm x
scale=2/5 5/4 x 1.05
170.730 1.05 700.260 8.103 0.021558 -1.750 -2.2969
T1 275.181 1.19 1279.162 14.803 0.039379 -1.150 -1.5094
T2 338.881 0.82 1085.478 12561 0.033417 -0.035 -0.0461
T3 370.501 0.68 984.143 11389 0.030297 0.806 1.0579
T4 388.662 0.73 1108.294 12825 0.034119 1.292 1.6958
Ts 357.191 0.62 865.072 10.011 0.026631 1.888 2.4780
Té 345.145 0.70 943.756 10921 0.029054 2737 35923
7 351.458 0.65 892374 10327 0.027472 3.063 4.0202
T8 352.993 0.56 772172 8936 0.023MM 3191 4.1882
9 359.677 0.74 1039.691 12031 0.032007 3299 4.3299
Ti0 361.756 1.00 1413.109 16353 0.043503 3.740 4.9088
Til 358.633 0.94 1316.856 15239 0.040540 39717 5.2198
Ti2 359333 1.16 1628.228 18.842 0.050125 3.875 5.0859
L1 356.939 122 1701.037 19.685 0.052367 3744 4.9140
L2 336.705 133 1749.288 20.243 0.053852 3376 4.4310
L3 313.249 1.26 1535.654 1777 0.047275 3.026 39711
LA 298.077 152 1769.832 20.481 0.054484 2.730 3.5831
LS 291.018 1.62 1841.598 21311 0.056694 2.638 3.4624
Disc 299.2%0 0.68 794.989 9.200 0.024474 27719 3.6474
Trunk 23420.99 271.030 0.721018
Head 46.369 0.1234 2.888
z=17.7775
(from T1 base)
Upper 29.250 0.0778 1.640
extremities y==x17.718
29250 0.0778 z=-30.005




Boundary conditions are chosen, in accordance with the literature, to reflect the anatomical
constraints of an upright human spine. When possible in the analysis, the end-support condition at
the top of the spine model (i.e. superior center node of T1) is chosen to be fixed in the x, y, 4,, 4,
and 4, directions, constraining lateral and anterior-posterior displacements and rotations respectively,
but allowing vertical displacement. In reality, the constraint at T1 is somewhere in between fixed as
described above, and fixed only in horizontal displacements and rotation (with bending rotations
released) [48]. This constraint is provided by the various mechanisms (i.e. muscles) involved in the
righting reflex of the body [73]. The sacrum, at the base of the column, is fixed in all 6 degrees of
freedom (ie. completely fixed support). This constraint is provided anatomically by the level pelvis
[48,73). The remaining nodes in the model are generally given complete degrees of freedom. The
boundary conditions are discussed more thoroughly in Chapter 6.
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Chapter 6

Results and Discussion

This chapter presents results of the structural analysis performed on the spine and rib cage
model constructed in Chapter 5. It consists of three main parts. The first part presents results of
analyses conducted to establish the validity of the constructed model. This is accomplished by
comparing the present results for some cases investigated by previous researchers. The second and
third parts are original to this thesis. They present results of analyses performed to test the lordosis
hypothesis corresponding to the author’s two interpretations of it.

6.1 Model Validation

Since the present model, which is the basis of all the results, is constructed solely from
literature data, it is important that the computed results compare reasonably well with those obtained
from other validated spinal model studies and in vitro experimental studies. Unfortunately, there
exists only a small number of studies on the behaviour of the complete thoracolumbar spine with rib
cage which may be used for comparison. Three studies, discussed in Chapter 3, will be used in
particular.

The first is the experimental investigations of Lucas and Bresler (73]. Much emphasize is put
on these results since they are the only ones based on an actual human thoracolumbar spine. One
shortcoming of these results is that they are limited to the ligamentous spine (devoid of the rib cage
etc.). The other two studies are the structural analyses of discrete parameter models (as opposed to
the gross continuum models) of the spine. Belytschko et al. [10] reported the results for the
ligamentous spine, whereas Andriacchi et al. [4] performed the analysis on the same model but with
the rib cage added.

6.1.1 Ligamentous Spine

To ascertain the correctness of the adopted stiffness properties of the motion segments, and
of the geometry of the spine, the studies conducted on the isolated ligamentous spine by Lucas and
Bresler [73] and Belytschko et al. [10] are simulated using the isolated ligamentous spine of the
present model. In accordance with these references, perfect symmetry about the A-P plane is

assumed.
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The simulations are carried out using the MSC/NASTRAN finite element program. The
computed results are compared with those reported in the above references. Items of comparison
include (a) deformation response due to lateral loads, and bending and twisting moments applied at
the top, and (2) the lateral buckling loads and associated mode shapes under a concentrated

compressive load.

In the first simulation, the spine is considered like a cantilever. It is fixed at the base (i.c.
sacrum) and is subjected to a 0.5 kg concentrated load in the lateral plane, applied at the top of the
spine (at the bottom of T1). The response gives an indication of the effective lateral bending stiffness.
As shown in Fig, 6.1(a), the computed structural response of the present ligamentous spine model in
terms of frontal plane rotations, compares well with the results of Lucas and Bresler [73}, and of
Belytschko et al. [10]. Slight discrepancies between the rotations obtained by Lucas and Bresler [73]
and in the present study may be attributed to the approximation of the intervertebral joint stiffnesses
as being constants (independent of load or deformation) made in the present study. The rotations
in the present study appear slightly larger in the lower spine, and slightly smaller in the upper spine
in comparison to those found by Lucas and Bresler [73]. The resulting bending moments are smaller
at the top and larger at the bottom. Thus, it appears that the linear approximation of motion segment
behaviour slightly overestimates the stiffnesses at low loads, and slightly underestimates them at high
loads. This point is highlighted when comparison is made between the responses at 2.5 kg lateral
load. As shown in Fig. 6.1(b), a total frontal rotation of 64.43° at the T3 level obtained by the present
model compares 10 a 41.9° rotation reported by Lucas and Bresler (73]. This discrepancy at the T3
level is again due to significantly larger rotations occurring in the lower spine under large loads in the
present model. Thus, the linear approximations used in the present model appears to make the spine
a bit too flexible in lateral bending at relatively large loads.

Next, effective bending and twisting stiffnesses' are compared with those reported by
Andriacchi et al. (4] for the spine without the rib cage, Fig 6.2. As shown in the figure, the present
model does not differentiate between flexion and extension behaviours since properties are assumed
to be linear elastic. The overall lower bending stiffness of the present model is probably due to the
use of somewhat lower stiffnesses of the motion segments. It may be recalled from Chapter S5, that
these properties were obtained from tests conducted with a compressive preload. The presence of
such preload can make these segments appear more flexible than they really are in lateral bending,

lmmwmmo(msﬁukmwmmcmﬂsﬁﬁnmdmcwholﬂpma For instance, in this case, the
spine fixed at the base is subjected to bending and twisting moments applied at the top of the free end spine. The moments
divided by the respective total rotation experienced by the top of the spine give the effective bending and wisting stiffnesses
of the spine.
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flexion and extension [121]. The effect is more likely to occur in the lumbar region, where
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Fig. 6.1 Frontal plane rotations of vertebrae in the isolated ligamentous spine due to (a) 0.5 kg lateral
load, and (b) 2.5 kg lateral load. Sacrum is considered fixed and application of the load is
at the base of T1. Results for levels above T3 are not included because there are too many
inaccuracies in the measuring of the small rotations in the in vitro study [73].
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Fig. 6.2 Effective or overall bending and twisting stiffnesses of the ligamentous spine. Bending and
twisting moments are applied at T1, while sacrum is fixed.

compressive load is larger and hence the simulated preload has a more significant effect on
experimental results. Several lumbar motion segments with reduced lateral bending and flexion-
extension stiffnesses would tend to result in low overall lateral bending and flexion-extension
stiffnesses. This may be another reason why the frontal plane rotations, Fig 6.1(a), in the lower spine

are on the larger side.

Finally, the torsional-flexural bifurcation buckling loads of the spine model under compressive
load at T1, for three different constraint conditions at T1, are determined. At the buckling load, the
perfectly symmetrical spine, can assume an asymmetrical configuration involving lateral bending and
twisting. The buckling mode gives some scaled magnitudes of the buckling deformations, but not their
true or absolute magnitudes. (It may be recalled from Chapter 4, that this type of buckling analysis

constitutes a linear eigenvalue problem).

The analysis considers the spine to be fixed at the sacrum and constrained in the mid-thoracic
(node 13) and mid-lumbar (node 31) regions in the sagittal plane to simulate conditions of the
experiments of Lucas and Bresler [73]. Using the global coordinate system defined in Fig. 5.1, the
results for T1 free, T1 fixed in horizontal displacements and rotation (x, y, 4.), and T1 fixed in all
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degrees of freedom except the vertical displacement (2) are shown in Table 6.1. Results are in good
agreement. However, once again, it is apparent that the model tends to overestimate the stiffnesses

at low loads, and underestimate them at high loads.

Table 6.1 Lateral Bifurcation Loads of Ligamentous Spine Under a Compressive Load (N)

Constraints at Tt | Lucas and Bresler [73] | Belytschko | Present

et al. [10] Study
Exp. Theor.*
T1 free 19.13 20.50 20.60 24.06
Tl fixed inx, y, 4, 166.77 167.75 196.20 168.55
T1 fixed in all but - 327.65 313.92 297.90
z displacement
do.f
— s |

* Theoretical results of Lucas and Bresler [73] are based on pure lateral buckling,

In the study by Belytschko et al. [10], the buckling mode shapes, resulting from the bifurcation
analysis with T1 fixed in all but z displacement, were scaled by a factor such that the average lateral
displacement would be the same as what is observed in a patient with thoracic idiopathic scoliosis in
the study by Schultz et al. [111]. Since the main interest of this work lies in understanding scoliosis,
tie buckled mode shapes of the present ligamentous spine model corresponding to T1 constrained
in all degrees of freedom but z displacement, denoted by condition 1, are similarly factored and
compared to the factored mode shapes of Belytschko et al. [10] and the scoliotic patient. The factored
frontal plane rotations and lateral displacements are shown in Figs. 6.3 and 6.4. It is evident that the
presently computed results are similar to the results of Belytschko el. [10]. For the most part, the
agreement is quite good for the frontal plane rotations, Fig. 6.3, except at the vertebral level T2 and
T3. On the other hand, the lateral displacements, Fig. 6.4, are predicted to be significantly larger than
in [10] especially in the lumbar region. These differences again confirm the fact that the present
model is a bit too flexible in the lumbar region. In comparison to the scoliotic shape, the results
differ in that the displacements and rotations are gradually increasing from zero from the end supports

towards the middle.

Since the goal of the bifurcation analysis was to obtain scoliotic deformations, the
accompanying axial rotation must be investigated. Belytschko et al. [10] report axial rotations,
obtained by factoring axial rotation mode shape by the same factor used for other mode shapes, of
negligible magnitudes compared to an apical axial rotation of 25° noted in the scoliotic patient [10].
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The scaled mode shape of the axial rotation of the vertebrae in their model [10] is not given, nor is
the data on the axial rotation of the vertebrae of the scoliotic patient. In the present study, the scaled
axial rotations were noted t0 be concave-sided, i.e opposite to the rotation typical of scoliosis.
According to the sign convention chosen, lateral displacements and horizontal (axial) rotations of the
opposite sign indicate concave-sided rotation, while those of the same sign indicate convex-sided

rotation.

However, the sagittal constraints at the mid-thoracic and mid-lumbar levels of the spine are
artificial in comparison to the real spine. Thus, an analysis with T1 fixed in all but z displacement,
without these constraints was performed. The results of this analysis, denoted as condition 2 in Figs.
6.3 - 6.5, are also compared with the scoliotic configuration. Release of the mid-sagittal constraints
gives a slightly lower bifurcation load (289 N) and almost the same lateral displacement and frontal
rotation mode shape as previously, Fig. 6.3 and 6.4. However, when the scaled axial rotations
obtained from this latter analysis are compared with those in the case with the sagittal constraints
(condition 1), the results are quite different, Fig. 6.5. The condition 2 scaled axial rotations are
predicted to occur in the same direction as found in the scoliotic patient, with the maximum rotation
coinciding with the maximum lateral displacement. However, the fact remains that these values are
much smaller in comparison to the maximum rotation of 25° measured in the scoliotic patient [10].

In reality, the constraints at T1 are suspected to be somewhere between fixed in all directions
except vertical displacement and fixed only in horizontal displacements and rotation [48). It was found
that the buckled spine achieved a lateral shape more similar to scoliosis when bending rotations at
T1 were constrained than when they were allowed. For this reason, the bending constraints at T1 are
imposed whenever possible in the present study. However, it is apparent that the buckling
deformations are still not localized enough, and axial rotations are not large enough to correspond
to deformations typical of idiopathic scoliosis.

It may be concluded that firstly, the above spinal mode! compares reasonably well with the
results from previous researchers, indicating chosen stiffness properties and geometry of ligamentous
spine are acceptable. Secondly, similar to previous findings, it appears that the bifurcation buckling
of the normal spine cannot completely explain the localized deformations found in scoliosis.
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Fig. 6.5 Scaled mode shapes of axial (horizontal plane) rotations of vertebrae in buckled ligamentous
spine under compressive load at T1.

6.1.2 Spine with Rib Cage Intact

Similar to the above analyses, experiments and analyses previously performed on the spine
and rib cage structure are simulated and compared, in order to validate the properties and geometry
of the rib cage used in the present work. Along with the study by Andriacchi et al. [4], which was
used to compare the effective bending and twisting stiffnesses and the stability of the structure, two
additional studies were used to validate the flexibility of the rib cage in the present model.

Agostoni et al. [2] subjected the relaxed rib cage of live subjects to a lateral squeezing force
and measured resulting changes in the lateral and anterior-posterior diameters of the rib cage. The
procedure is shown schematically in Fig 6.6. In the NASTRAN simulation of the procedure, the load
was applied at the mid-axillary (IC) line, evenly distributed among the 5 lower ribs (ribs 6-10). Lateral
displacements of the diameter are computed at the IC line of the middle ribs, i.e. rib 8 on both sides
(nodes 264 & 269). Detailed description of the model with identification of nodes is given in
Appendix C. The A-P displacements of the diameter are computed at the inferior end of sternum
(node 253) and the most posterior points of rib 10 (node 273 & 284). With the sacrum fixed and T9
(node 17 & 18) constrained in the sagittal plane, the results are shown in Fig. 6.7. The A-P behaviour
is apparently very similar to that observed in the real rib cage. However, the lateral deformation
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appears to be slightly small, indicating stiffer behaviour in this direction.

= — 1
'3

Fig. 6.6 Schematic diagram of the experimental set-up used by Agostoni et al. [2]. 1,2 = Lateral
displacement transducer; 3,4 = A-P displacement transducer; 5 = Force transducer. Changes
in the lateral and A-P diameters of rib cage are measured as functions of the applied lateral
force.

Next, the sternum was loaded by horizontal forces directed posteriorly to simulate the
experimental studies by Nahum et al. [82] and Patrick et al. [93]. Loads 0-12 kg in 4 kg increments
were applied, half at the top of the sternum (node 168), half at the bottom (node 253) with T1 and
T9 fixed in the A-P direction. Average posterior displacements of the sternum indicating A-P
flexibility of the rib cage are shown and compared with the values from the above references and
Andriacchi et al. [4] in Fig. 6.8. The figure shows the large scatter of experimental results. Both, Figs
6.7 and 6.8, reveal that the rib cage of the present model exhibits a generally stiffer behaviour than
that of Andriacchi et al. [4] except in the A-P direction. However, in comparison to the experimental
values and their scatter, the rib cage of the present spine model is similar to the Andriacchi et al.
model [4] in that the model stiffness is between those obtained for the fresh and embalmed specimens.
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Fig. 6.7 Changes in A-P and lateral diameters of the rib cage resulting from lateral loading of rib
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The effective bending and twisting stiffnesses of the spine with rib cage intact are illustrated
in Fig. 6.9. The relative stiffening effect of the rib cage is shown in Fig. 6.10. The percentage in the
figure represents the relative amount by which the effective stiffness of the spine with rib cage model
is higher than the stiffness of the respective ligamentous spine model. It is apparent that the rib cage
in the present model has a greater stiffening effect on the spine in lateral bending and especially in
axial rotation than the one in the model by Andriacchi et al. [4]. Since the stiffnesses in flexion and
extension must be the same in the present model, it is interesting to note that the rib cage stiffening
effect of 172% compares very well with the average of such stiffening effects in flexion and extension
(179%) in Andriacchi’s model. Thus, it appears that the ligamentous spine of the present model
(which is more flexible than the Belytschko et al. model [10]) and the rib cage of the present model
(which is stiffer than the rib cage of Andriacchi et al [4]) combine themselves to produce a total spine
and rib cage model which may be considered quite realistic, and not 1oo different from the previous
model [4].

The torsional-flexural bifurcation buckling loads under compressive load (a) concentrated at
T1, and (b) distributed along the spine length proportional to weight distribution (Section 5.5) are
shown in Table 6.2. Again the sagittal plane is artificially constrained from motion in the sagittal
plane at the mid-thoracic and mid-lumbar levels so that a comparison with the results of Andriacchi

et al. [4] can be made.

Table 6.2 Lateral Bifurcation Loads of Spine with Rib Cage Under a Compressive Load (N)

—_—
T1 Constraints Andriacchi Present study
et al. [4] -
Conc. Dist.
T1 free 78.48 27.19 58.25
65)* (26)
T1 fixed in x,y,6, 608.22 307.75 543.35
(49) (11)
T1 fixed in all 990.81 453.94 764.27
dofbutz (54) 23)
displacement

* The values in the parentheses give the percent difference from
Andriacchi et al. [4].
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It is apparent that in each case the buckling load is smaller than that obtained by Andriacchi
et al. [4]. The discrepancy is larger for the lumped load case than for the distributed one. Possible
explanations for large discrepancy between the results of the present model and that of Andriacchi
et al. [4], may be the small size of the rib cage of the present model, an underestimate of the
stiffnesses of soft tissue connections, and the linear approximations of stiffnesses. Unfortunately, there
are no results from real specimens, which could be used for comparison. However, Andriacchi et al.
[4] do state that based on the experimental studies on rib cage used for comparison, their model
appears to be representative of spine and rib cage; although they do feel that more data on rib cage
are necessary in order to fully validate it. Considering the large variation between subjects and the
difficulty of defining "normal”, it is felt that present model is an acceptable representation of the spine
and rib cage structure. It is this structure on which structural analyses are performed in this thesis.

With respect to the resulting mode shapes, it can be seen that the imposition of bending
constraints at T1 slightly lowers the apex of the lateral buckling curve but, as mentioned before,
results in an overall shape closer to the scoliotic shape. The distributed loading lowers the apex most
appreciably in comparison to that due to the concentrated loading. The reason is quite obvious, since
in the former case less loading is applied at the top, and it increases gradually with descent along the
spine. Apart from the lowered apex of the lateral curve and slight differences in direction of the axial
rotation, the mode shapes between the concentrated and distributed cases are quite similar. Finally,
in comparison to the ligamentous spine, the inclusion of the rib cage also effectively lowers the apex

of the buckled lateral curve by one vertebral level.

6.2 Effect of Thoracic Lordosis on Spine Stability and Scoliosis

The results of this section are concerned with the testing of one interpretation of the lordosis
hypothesis. The premise is that a spine with lordosis in the thoracic region is less stable than the
normal spine (with the usual kyphosis in this region). The inference from reading the literature [34]
is that a precondition to the subsequent development of scoliosis is that a spine has a lordosis along
with a horizontal or frontal plane asymmetry in the thoracic region. It is conjectured that this lordosis
has the potential to turn into a scoliotic spine. If true, this finding will have the diagnostic value in
that adolescents with lordosis in the thoracic region would be classified as having high potential of
developing scoliotic spines, and could be recommended for a corrective treatment.

The finite element simulation of the above interpretation of the hypothesis is performed in
the following way. First, as previously mentioned, a so-called lordotic spine model is created by
lengthening the anterior and shortening the posterior heights or lengths of the thoracic vertebrae of
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the normal spine and rib cage model, while maintaining strict symmetry about the sagittal plane.
Second, this lordotic model and the normal model are loaded with distributed and lumped gravity
loads to find and compare their torsional-flexural bifurcation buckling loads in an attempt to show
that the spine with the lordosis in the thoracic region is less stable than the normal one. In addition,
the results from the analysis on the lordotic model are used to determine the approximate load near
which relatively large deformations would begin to occur in the imperfection growth analysis, and the
expected mode in which they would grow. The third step is to subject the lordotic model, which has
lateral and horizontal plane spinal asymmetries imparted, to a nonlinear imperfections growth analysis
by increasing the gravity-like load in small increments starting from zero.

6.2.1 Creation of Lordotic Model

As discussed in Chapter 5, a spine and rib cage model with a thoracic lordosis is created for
the use in the bifurcation analysis and in the imperfection growth analysis. This is accomplished, as
may be recalled, by subjecting the normal spine to lordosis inducing changes in the dimensions of the
thoracic vertebrae. The resulting, structurally deformed, configuration is adopted as the initial
(unloaded) geometry of the lordotic model, i.e. with a spine with a lordosis in the thoracic region.
As explained in Section 5.3.2, the creation of the lordotic model by the above procedure requires the
3-element normal model, which to reiterate, represents each vertebra and intervertebral joint element
with 3 beam elements representing their anterior, central, and posterior parts in the sagittal plane.
The lordotic geometry is obtained by loading the normal 3-element model with appropriate [30]
shortening of the posterior and lengthening of the anterior beam elements of the thoracic vertebrae
T4-T12. The formulas used for determining the equivalent properties of the anterior, posterior and
central intervertebral joint and vertebra clements in the 3-element model, shown in Appendix B, use
the approximation that the 3 element lengths are equal.

The structural equivalence of the 3-element model is checked by comparing the analysis
results with the corresponding 1-element model for the cases of the ligamentous spine, and the spine
with rib cage. Items used for comparison are (1) the critical buckling loads and the buckled mode
shapes of the models, and (2) the effective bending and twisting stiffnesses. For the bifurcation
buckling analysis, the spine is constrained in all degrees of freedom at T1 except the vertical
displacement, fixed at the sacrum, and constrained against displacement at the mid-thoracic and mid-
lumbar levels in sagittal plane. For the ligamentous spine, compressive loading is concentrated at T1,
and for the spine with rib cage, the loading is distributed. The comparison is shown in Table 6.3. In
the case of the ligamentous spine, the buckling loads differ by 0.3% and for the spine with rib cage,
0.5%. The buckled mode shapes of the 1-element and 3-element models are practically identical for
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both cases. Similarly, the effective stiffnesses are in agreement. This agreement then demonstrates
that the 3-element representation is equivalent to the 1-element representation, and hence the 3-
element spine and rib cage model may be used to construct the lordotic model, i.e. spine and rib cage
model with lordosis in thoracic region.

Table 6.3 Comparison of 3-element models to 1-element models

Effective stiffness (kg-cm/deg.)
Flex-exten. | Lat. bend. | Axial rot. H
=
Ligamentous spine

1-element 2979 1.126 0.609 0.851
3-element 297.0 1.126 0.609 0.855

Spine model

Spine with rib cage
1-element
3-element

2.281
2.281

1.155
1.163

The lordotic spine and rib cage model so created is named LARRY, and is shown in Fig, 5.6.
The new vertical length of the spine is 49.44 cm compared to the previous length of 48.21 cm of the
normal spine. The elongation of 1.23 cm is mainly due to the straightening effect of the spine since
the change in the curved length is only 0.67 cm. By representing the resulting 3-element lordotic
spine with center vertebra and intervertebral joint elements only and assigning them the full stiffness
of the vertebra and intervertebral joint elements, the 1-element lordotic model used in subsequent
analyses is obtained.

6.2.2 Comparative Linear Bifurcation Analyses

Bifurcation analyses are performed on the (1-element) normal and lordotic models. As
previously mentioned, they are carried out for two purposes: (1) to compare bifurcation buckling of
normal and lordotic models, and (2) to determine the approximate load near which the spinal
imperfections in the lordotic model would begin to grow.

As part of the analysis, the buckling mode shapes are scaled as previously described in section
6.1.1 and compared with scoliotic shape. Although data on the lateral displacements and frontal
rotations of the vertebrae of a scoliotic patient were given by Belytschko et al. [10], data on the axial
rotation of the vertebrae were not. Belytschko et al. stated that the scoliotic patient had an apical
(maximum) rotation of 25°. The data from this one patient with thoracic scoliosis were again used
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for comparison in these analyses. Two loading cases are considered in the bifurcation analyses. One
is the distributed loading which was considered in validating the model. The other is a lumped
compressive load at the center of gravity of the body weight above the sacrum; the center of gravity
is rigidly connected to the top vertebra T1. In both cases, the mid-sagittal plane is free from all
artificial constraints.

Distributed Loading Case

The spine is considered fixed at the sacrum, and fixed in all but vertical directions at T1. This
loading case with these constraints is felt to be the most realistic for reasons mentioned previously.
For the normal spine, the lowest bifurcation buckling load is a sum of 762 N. Once again, the mode
shapes scaled by a factor which gives lateral displacements comparable to scoliotic shape, are
compared to scoliosis shape, Fig. 6.11 - 6.13. It appears that the deformations are not localized
enough and axial rotations are not significant enough to be scoliotic. However, it should be noted
that the directions of the axial rotations and their pattern (i.e. location of their maximum at the apex
of the lateral curve) are similar to scoliosis below the T6 level.

In comparison, the lordotic spine is approximately 2.5% less stable in the sense that its critical
bifurcation load is a sum of 743 N. This is not a significant decrease from the normal spine load and
may be explained as primarily due to the lengthened spinal column without significant influence of
the reduced curvature. Likewise, the mode shapes from the normal and lordotic model are quite
similar as indicated in Figs. 6.11 - 6.13 except that the axial rotations of the scoliosis kind (Fig. 6.12)
occur through the full length of the spine in the lordotic model.
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Fig. 6.11 Scaled mode shapes of lateral displacements of vertebrae of buckled spine with rib cage in
normal and lordotic models under distributed loading compared with displacements of
scoliotic patient. The models are considered fixed at T1 in all but vertical displacement, and
completely fixed at the sacrum.
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Fig. 6.13 Scaled mode shapes of frontal plane rotations of vertebrae of buckled spine with rib cage in

normal and lordotic models under distributed loading compared with rotations of scoliotic
patient. The models are considered fixed at T1 in all but vertical displacement, and
completely fixed at the sacrum.

Center of Gravity (Lumped) Loading Case

[n reality, the spine is loaded by the distributed body weight which is eccentric relative to the
spine. Similar to the loading previously seen, a realistic modelling would therefore require that the
spine be loaded at each vertebral level by a slice of body weight acting eccentrically at its center of
gravity. However, as noted previously, in scoliosis this eccentricity varies with the deformation by
virtue of the fact that while the spine displaces and rotates relative to the body, the weight distribution
continues 10 maintain its position relative to the body. This stationary gravity loading is important
in attaining scoliotic deformation. The upper body weight remaining in the sagittal plane causes
lateral bending moments in existing lateral curves, which subsequently causes continual growth of
lateral deformity. I[n the nonlinear analysis procedure of NASTRAN, the loads applied to the
structure move with the structure. Hence it appears that NASTRAN cannot be used to model the
distributed gravity loading in the nonlinear analysis of the spine attempting to simulate scoliotic

deformation.

Since one objective of the present bifurcation analysis is to find the approximate load at which
imperfections would begin t0 grow significantly in a nonlinear imperfection growth analysis, the
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bifurcation analysis (which is a linear analysis) should be carried out for the same type of loading as
permitted and used in the growth analysis. Hence as a compromise with the limitations of
NASTRAN, the distributed load is replaced by an equivalent concentrated force and moment at the
top (vertebra T1) of the spine. It may be recalled from Chapter 5 that the eccentricity of the weight
acting on the spine works out to be 2.98 cm anterior to T1. Hence the applied load for bifurcation
analysis, as well as the subsequent growth analysis, is an axial compressive force P (N) and a flexion
moment M = 2.98 P (N-cm). This approximation is not a bad one since a significant percentage of
weight is in the upper region by virtue of the weight of the head and upper extremities.

With T1 fixed against horizontal (x, y) displacements and horizontal (4,) rotation’, the critical
bifurcation load corresponding to torsional-flexural buckling of the normal model is 278 N axial force
and 827 N-cm flexion moment compared to 261 N and 779 N-cm for the lordotic model. Thus, in this
case, the lordotic model turns out to be 5.8% less stable in torsional-flexural buckling. This result
is in support of the lordosis hypothesis according to which a lordotic spine is more susceptible to
scoliosis. As discussed in Chapter 4, the reduced stability in the lordotic model may be explained by
the decreased curvature in the thoracic spine in the direction of the applied forward flexion moment
(123] in addition to a longer effective length. Although the loading, since it is lumped at T1, is not
very realistic for the human body, it is used here for relative comparison. The scaled buckling mode
shapes of the models with normal and slightly lordotic spines, shown in Fig. 6.14 - 6.16, are practically
identical with the exception of the axial rotations. The axial rotations of the lordotic spine although
of a similar pattern as that of the normal spine are predicted to be smaller by approximately 25% at
the T9-T10 levels, Fig. 6.15. In comparison with the scoliotic shape, the spines in both models lack
localization of deformity and relative magnitudes of axial rotation. Nevertheless, the rotational mode
shapes are scoliotic-like, i.e. convex-sided rotations with the maximum rotation occurring at the apex
of the lateral curve.

The two bending degrees of freedom are released at T1. Sagittal bending is released because moment is applied at T1;
moment would have no effect on the column if T1 were fixed. Bending in lateral plane is free because anatomical constraint
is same in both planes, somewhere between fixed and free bending degrees of (reedom [48]. In the nonlinear analysis, a greater
rotational constraint in the lateral plane may cause predominant growth to occur in the A-P plane.
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Fig. 6.16 Scaled mode shapes of frontal plane rotations of vertebrae of buckled spine with rib cage in
normal and lordotic models under lumped force and moment loading at T1 compared with
rotations of scoliotic patient. The models are considered fixed at T1 in horizontal
displacements and rotation, and completely fixed at sacrum.

Thus, based on these bifurcation results, it appears that although the presence of the thoracic
lordosis has some effect on lowering the critical bifurcation load, it has little effect on the resulting
mode shapes. In both loading cases, the mode shapes of the normal and lordotic models are very
similar, with the maximum lateral displacement occurring at the same level as the maximum convex-
sided rotation. Thus, lordosis has little influence on creating deformations more similar to scoliosis
than those produced in the absence of it. In fact, the magnitudes of the convex-sided rotations are
of a smaller magnitude relative to the lateral displacements in the model with the lordotic spine in
both distributed and lumped loading cases. In addition, although relatively large axial rotations were
found at the L3 and L4 levels (which are not near the apex of the lateral curve) for both normal and
lordotic models under both loadings, these rotations in the lordotic model tend to be significantly
closer to the maximum magnitudes than those in the normal model, especially under lumped loading
condition. It was also noted that the lordosis had a greater effect in reducing the critical load when
the loading was comprised of the compressive force and forward (flexion) moment, althcugh this
loading produced less axial rotation relative to the lateral deviation in both models.

Conclusions drawn from the above bifurcation analyses are similar to those derived from the
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analysis of the ligamentous spine. The most important one is that buckling due to compressive
(gravity-type) loading cannot explain scoliosis. Results give very diffused buckled mode shapes and,
it appears that the introduction of a lordosis in the initial geometry has no influence on localizing the
deformations or increasing the magnitudes of the axial rotations (in fact, it reduces them). On the
other hand, deformations of the type revealed by the buckling analyses (lateral deviation and convex-
sided axial rotation) are the same as those found in a localized manner in scoliosis. Thus, it appears
that although scoliosis is related to the buckling phenomenon, it is not a result of buckling under

compressive loading of the type considered above.

6.2.3 Imperfection Growth Analysis

The bifurcation buckling analyses of the preceding section predicted the critical load at which
a perfectly symmetrical normal or lordotic spine would buckle laterally. It also predicted the mode
shapes of ensuing infinitesimal buckling deformations. However, it does not provide any information
on the actual amount of buckling deformations as functions of load. To obtain such information, a
nonlinear post-buckling analysis is called for.

As already has been indicated, the usual way to obtain such information is to abandon the
approach of bifurcation analysis of a perfect system, and instead perform a nonlinear growth analysis
of a system which is initially slightly imperfect. The imperfections begin to grow with the increase of
the load from zero. However, generally speaking, the rate of growth remains small, until the load
approaches (from below) a value close to the critical bifurcation load. As the bifurcation load is
approached the rate of imperfection growth increases and the accumulated imperfections begin to
impart the column an increasingly buckled configuration. An example of such approach has been
present in Chapter 4 when the growth of an initially curved column was studied.

The advantage of a growth analysis is obviously the fact that the actual deformations may now
be determined uniquely as functions of load. However, there is no precise value for a buckling load;
it can be taken as any load at which imperfections are deemed to have become excessive. The major
disadvantage is that an expensive, iterative, nonlinear analysis is required in which load is applied
incrementally, and the spine geometry is updated at each increment of the load consistent with the
equilibrium of the structure in its deformed state. As is usual in nonlinear problems, convergence
problems may arise, either because the load increment is too large, or because the maximum load the
system is capable of sustaining is reached. In this work convergence problems were averted by keeping
the load increments sufficiently small, and by keeping within only moderately large deformations. The
convergence criteria used in the geometric nonlinear analysis in this study are the load equilibrium
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error test and the work error test with error ratio tolerances of 510 and 5x10~ respectively. This
means that convergence is considered 1o be achieved when the ratios of the unbalanced load error and
the unbalanced work error to the increment of the load or the work in the load step are smaller than

the tolerances.

In this part of the investigation, growth analysis was performed on the lordotic model. The
initial spinal imperfections imparted to the model correspond to asymmetries with respect to the
sagittal plane, of two kinds: (1) a slight right lateral curve in the thoracic region of the spine in the
frontal plane, and (2) slight asymmetrical orientation of the cross-sections of thoracic vertebrae in the
horizontal plane. As mentioned previously, both imperfections can be considered naturally present
to some degree in all spines due to the position of the aorta [31,34,117].

The right lateral curve considered in the present model is tabulated in Table 6.4, and shown
graphically in Fig. 6.17. It can be seen that the imperfection is taken to extend from vertebrae levels
T4 - T10, with a maximum amplitude of 8 mm (in comparison to the length of the spine 48.2 cm) at
the T8 level. The cross-sections of veriebrac T4 - T10 themselves are also distorted due to the
presence of the aorta on the left side. This asymmetry is such that one of the principal planes no
longer coincides with the sagittal plane. In the absence of any guiding data, the transformed principal
axes are taken to be maximum of 10° from symmetrical principal axes, again at the T8 level in view
of the fact that the vertebrae most affected by the aorta will have maximum lateral as well as
horizontal plane distortions. Figure 6.18 illustrates the bottom view of the asymmetry of a typical
vertebra.  Keeping consistent with local coordinate system defined earlier for symmetrical
vertebrae/intervertebral joints in Fig. 5.7, where local x-y plane defines plane 1 and local x-z plane
defines plane 2 which coincides with the A-P or sagittal plane, the distorted cross-section requires
specifications of transformed moments of inertia in the those same planes (now denoted 1’ and 2’ ),
I’ and [y as well as the product of inertia I,,*. The vertebrae being rigid are structurally unaffected
by this small rotation. However, the intervertebral joints, which are greatly affected by the posterior
elements and connecting ligaments of the vertebrae, effectively have new principal axes. These
quantities calculated for the superior and inferior ends of the intervertebral joint are listed in Table
6.5.
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Table 6.4 Initial Frontal Plane Asymmetries: Lateral Curve of Spine (Y-coordinates, cm)

(a) Y-Coordinates of Spine: Normal and Lordotic Models

Spine Central line Anterior line® Posterior line®
Element
Node No. Y, cm Node No. Y,cm Node No. Y, cm
T4 7 0 42 -03 77 0
8 -15 43 -18 78 -13
TS 9 -18 “ -20 i -15
10 -37 45 -38 80 -36
Té 1 -40 46 -42 81 -38
12 -.60 47 -.60 82 -60
Y 13 -63 48 -63 83 -62
14 -80 49 -80 84 -80
T8 15 -80 50 -80 85 -80
16 -1 51 -74 86 .70
T9 17 -.65 52 -70 87 -60
18 -20 53 -26 88 -14
T10 19 -12 54 -16 89 -08
— — — — — —— —— — — —  —  —— — —

* Necessary (or nonlinear analysis in which lordosis-inducing growth is simulated, Section 3.2,

(b) Y-Coordinates of Costovertebral Joint on Vertebrae Side and Rib Side: Normal Model

(c) Y-Coordinates of Costovertebral Joint on Rib Side: Lordotic Model*

Rib No. CV on left vertebrac CV on right vertebrae CV on left rib CV on right rib

Node no. Y, cm Node no. Y, cm Node no. Y, cm Node no. Y, cm
5 113,114 138 131,132 -1.66 214 138 228 -1.66
6 115,116 118 133,134 -1.92 229 118 245 -1.92
7 117,118 98 135,136 220 246 98 260 -220
8 119,120 87 137,138 -2.47 261 87 272 247
9 121,122 111 139,140 -2.41 273 111 284 241
10 13 179 141 -1.95 285 189 294 205

r—_—— - |

* Y-coordinates of CV on vertebral side are the same as in the normal model.
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Rib No. CV on left vertcbrae CV oa right vericbrae CV on left rib CV on right rib

Node no. Y, em Node no. Y, em Node no. Y, cm Node no. Y, cm
5 113,114 138 131,132 -1.66 214 1386 28 -1.666
6 115,116 118 133,134 -1.92 229 1.236 2458 -1.976
7 117,118 98 135,136 220 246 1.023 260 2243
8 119,120 87 137,138 247 81 0.906 n -2.516
9 121,12 111 139,140 241 n 1.085 284 -2385
10 13 1.7 141 -1.95 285 1851 294 -2011
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Fig. 6.17 Anterior view of initial lateral curve of spine used in the nonlinear growth analyses. The
heavy line shows the lateral curve introduced.



Table 6.5 Initial Horizontal Plane Asymmetries: Transformed Sectional Properties of

Intervertebral Joints

Superior I, I, Nodes, [ | g g |

Vert. of LV. (cm*) (cm*) sup. degree (cm*) (cm*) (cm)
Joint i

T3 1.716 3.643 5 0 1.716 3.643 0
6 2 1.718 3.641 -.067
T4 2176 3177 7 2 2177 3.176 -035
8 4 2.181 3.1 -070
TS 2544 4013 9 4 2.551 4.006 -102
10 6 2.560 3.997 -.153
T6 2.946 4912 11 6 2.967 4.891 -204
12 8 2.984 4.874 =271
T7 4.788 4.646 13 8 4,785 4.649 .020
14 10 4.784 4.650 024
T8 4.584 6.834 15 10 4.652 6.766 -.385
16 10 4.652 6.766 -.385
T9 4.681 5394 17 10 4.702 5373 -122
18 4 4.684 5.391 -.050
T10 7.353 10.790 19 4 7370 10.773 =239

20 0 7.353 10.790 0

Anterior
Z z 2
y
]
y Y
Posterior
®)

Fig. 6.18 Bottom view of effective cross-section of intervertebral joint in horizontal plane (a)
symmetric, and (b) asymmetric.
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Growth analysis was performed on the lordotic model under lumped loading. As mentioned
previously, limitations of the NASTRAN program, made it necessary to model the load as a lumped
force P (N) and a flexion moment 2.98 P (N-cm) applied at the top vertebra T1. In the first instance,
the constraints were chosen to be the same as those for the bifurcation analysis. In particular,
movement in the sagittal plane was allowed. Although the mode shapes from the bifurcation analysis
indicated rather diffused lateral displacements and relatively small convex-sided rotations, it is
interesting to study the growth of a localized imperfection on the behaviour of the spine near the
bifurcation load.

The load was incremented slowly in small steps (AP=0.5 N, AM=1.5 N-cm). However,
instability in the form of convergence breakdown was encountered (at 68.5 N, 204.1 N-cm) well before
the bifurcation load for lateral buckling (261 N, 779 N-cm) could be reached. The reason for this
instability was that the displacements in the sagittal plane had become excessive and there was a loss
of stiffness for bending in the sagittal plane. Although the convergent solution indicated scoliosis-like
displacements and rotations, they had not sufficiently developed due to the load being rather far from
the bifurcation load.

Therefore, in view of the above, another attempt was made by performing an analysis in which
displacements in the sagittal plane along the entire spine length were constrained. In this case, using
initial load steps of 5 N and 15 N-cm and much smaller ones as bifurcation load neared, the lateral
bifurcation load could be reached without encountering any solution instabilities. The lateral
imperfections grew as the load was increased. At a load (P=261.75 N, M=780.06 N-cm) near the
bifurcation load previously determined, significant lateral displacements were obtained, with a
maximum total lateral displacement of 5.5 cm occurring at the T8 level. Fig. 6.19 shows the resulting
lateral deformation of the vertebrae in comparison to those of the scoliotic patient. Fig. 6.20
illustrates the growth of the lateral imperfection. However, axial rotations, Fig. 6.21, although in the
scoliotic direction were found to be small, being a maximum of 2.59° at the LA level, and 1.8° at the
apex of the lateral curve at the T8 level. Thus, the maximum axial rotation did not coincide with the
maximum lateral displacement, and also the pattern of deformation was not localized enough, which
are both characteristics of scoliosis. As a reminder, data on vertebral axial rotation of the scoliotic
patient other than a maximum rotation at the apex of 25° were unavailable for comparison.

Analysis was also performed without the horizontal plane asymmetries. Results of eventual
growth were practically identical (< 5% different) to those obtained with this asymmetry present,
indicating that the horizontal plane asymmetry has little effect on the results. On the other hand, the
effect of the lateral asymmetry is evideat in the shape of the lateral displacements i.e. maximum at
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the T8 level.

In conclusion, it appears the first interpretation of the lordosis hypothesis, requiring
simulations of the buckling behaviour of a spine and rib cage with a slight lordosis in the thoracic
region of the spine fails to explain deformation typical of thoracic idiopathic scoliosis. The
imperfection growth analysis basically confirms what was indicated by the mode shapes in the
bifurcation analysis, namely that (1) lateral displacements and convex-sided rotations would be
produced but not localized enough as seen in scoliosis, (2) axial rotations would be of a relatively
small magnitude in comparison to the lateral displacements and in comparison to those found in
scoliosis, and (3) greatest axial rotations would occur near the T11 and the LA-LS levels, which are
not consistent with the site of the apex of the lateral curve in the nonlinear analysis.
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Fig. 6.19 Lateral deformations of vertebrae in lordotic model under lumped loading Predicte{l by
imperfection growth analysis and their comparison with displacements observed in a scohfmc
patient. The models are considered fixed at T1 in horizontal displacements and rotation,
completely fixed at sacrum, and constrained from displacement in the sagittal plane along the
entire length of spine.
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Fig. 620 Growth of initial lateral imperfection of spine under lumped loading.
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displacement in the sagittal plane along the entire length of spine.
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6.3 Lordosis-Inducing Growth Study

This section is concerned with the testing of another interpretation of the lordosis hypothesis.
The basic premise here is that the spine is liable to assume a scoliotic configuration during (not after)
the lordosis inducing asymmetrical growth of the thoracic vertebrae while full gravity loading keeps
acting on the spine. It is assumed that while the vertebrae undergo almost a natural (stress-free)
dimension change the discs do not. Therefore, structurally speaking, the spine discs are being loaded
by virtue of presenting deformable obstacles to the stress-free growth of vertebrae. As mentioned in
Chapter 5, the above loading is simulated in the present work by the device of subjecting the vertebrae

to temperature changes.

The nonlinear growth analysis is performed on the normal spine and rib cage model in which
all spine elements are represented with 1 element with the exception of thoracic vertebrae T4-T12,
which are represented by 3-elements. In contrast to the previous structurally equivalent 3-element
madel, the anterior and posterior elements of the 3-element representation used here have small axial
stiffnesses only. Their purpose is to impose self-equilibrating loads on the vertebra to which they
belong to simulate growth, without contributing to the stiffness of the spine. Therefore, the central
element of this 3-element modelling retain the total stiffness of the vertebrae. As in the previous
representations, the end plates of these vertebrae are modelled by stiff beam elements connecting the

central element to the anterior and posterior elements.

The lordosis-inducing growth of the thoracic vertebrae is modelled by lengthening (i.e.
heating) the anterior elements and shortening (i.e. cooling) the posterior elements. The temperature
changes, and hence the length changes, are taken to be such that the lengths of the central elements
are unchanged. This ensures that the central curved length of the spine remains almost unaltered by
the vertebral growth. The amounts of temperature changes in the anterior (+AT) and posterior
(-AT) elements have been given in Table 5.7. It may be recalled that these temperature changes were
calculated on the basis of A-P stiffnesses of vertebrae and the measurements from a specimen with

thoracic scoliosis [30].

The lateral imperfections required for the growth analysis consisted, as previously, of the
frontal asymmetry in the form of a lateral curve, and of the horizontal asymmetry in the form of
asymmetrical orientation of the intervertebral joints with respect to the sagittal plane. The structure
is considered completely fixed at the sacrum, and partially fixed at T1 in that frontal plane rotation

(8,) and vertical displacement (2) are allowed. The gravity loading is modelled by a single vertically
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downward force acting at T1 (with no accompanying sagittal moment).! The incremental loading
program employed for the analysis is shown Table 6.6. A total of 196 load steps were required to
reach complete subcase 8.

The same convergence criteria as used in the preceding imperfection growth analysis, Section
6.2, were employed in this nonlinear analysis. It may be noted that as deformation progressed, smaller
load steps became necessary for obtaining convergence. However, no convergence could be achieved
for the temperature loading of subcase 9, even after employing 100 load steps. This subcase required
subjecting the T7 and T9 vertebrae to an additional temperature change from 188.2° (of subcase 8)
1o respectively 241° and 247°. Constraints of time and money prevented an analysis for this subcase
with still smaller load steps.

Table 6.6 Loading Program Used in the Incremental Nonlinear Growth Analysis

Increments of temperature Increments
of force
Temperature Vertebrae, Compressive
change AT, anteriors +AT force at T1,
degrees posteriors -AT
T4-T12
2 18.0, T35-T1], 0 10
11.1 Ti2
3 0 - 100 25
4 258 T6-T11 0 15
]
6
7

* No convergent solution (with 100 load steps) could be found for the loading in subcase 9.

'The reason for not conducting an analysis with forward flexion moment present (to simulate application of weight at the
center of gravity) was mainly the constraint of time.
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Under the conditions and loading described above, the nonlinear imperfection growth analysis
yielded results, at the final loading step of subcase 8, shown in Figs. 6.22-6.24. This load step
corresponds 1o a total compressive load at T1 of 250 N (= 65% of the body weight above sacrum)
and a total temperature change of +188.2°, or an average enforced anterior/posterior length change
of vertebrae T7-T9 of £0.37 cm (= 20% of the vertebral lengths).

Fig. 6.22 shows the predicted lateral deformation of the vertebrae and their comparison with
those observed in a scoliotic patient. It can be seen that predictions match quite well with the
scoliotic displacements for T7-T11 vertebrae. The differences lie in the fact that whereas the actual
scoliotic deformations are quite localized, the predicted curve is of a gradual type. This difference in
detail is due, without much doubt, to the changes in stiffness which takes place by virtue of facet
interaction between the vertebral bodies. These stiffnesses are modelled here rather grossly by

considering the intervertebral joint stiffnesses to remain constant.

The variance of the axial rotation accompanying the lateral deformations is shown in Fig. 6.23.
Although the variation in vertebral rotations of the scoliotic patient is not available, as mentioned
previously, the resulting rotations in this analysis are convex-sided rotations which is characteristic of
scoliosis. The maximum convex-sided rotation compares well with the maximum rotation of 25°,
known for the thoracic scoliotic patient [10]. Moreover, the rotations display a localization typical
of this type of scoliosis.

The important finding, evident from Figs. 6.22 and 6.23, is the convex-sided axial rotations
of significant magnitudes and the correct pattern, with the site of maximum rotation coinciding with
the apex of the lateral curve. At the apex, which is at the T8 level, the axial rotation attains a
maximum value of 20.15°, and likewise the total lateral displacement attains a maximum value of 4.07
cm. Expressed in relative terms, this deformation equals an apical vertebral rotation of 0.5° per mm

of lateral displacement.

Naturally, the direction of the eventual lateral displacements is determined by the direction
of the initjal lateral curve. Fig. 6.24 shows the amount of growth experienced by the lateral curve in
the present case of analysis. In contrast, the direction of the axial rotation is not necessarily
determined by the direction of horizontal plane asymmetries. It was found that a total absence of
these asymmetries, or even asymmetries of the opposite kind, did not have any significant qualitative
or quantitative effect on the eventual axial rotation. In other words, the analysis rc<ults indicate that
the scoliotic rotations are rather insensitive to the asymmetrical or rotated cross-sections of vertebrae
in the presence of a lateral curve asymmetry. Given the lateral asymmetry, asymmetrical vertebral
growth inducing lordosis produces convex-sided rotations regardless of small horizontal asymmetry.

-137-



Vertebra Level

T1 A KYYYYY
T2 - AV
T3 A AR
T4 - AL AT R D
TS AT AT A
T8 - AT ML TLLTITL A BT TG
T? A ALLILBAATIE VAV T LA TALL AT TELTTARLTLAATLURA AR AR VAR VAR VLAY
T8 - ALLATIALLTHTL VLA AAEATH AT ATV ATU AT T TR W
T’ =1 AL AT AL T T T T RS TSRS DY
T‘o -1 ALLIL LS BATTALALLATAIA TR TATLTIALIVL TR T AL AR I T
Tt - LLLITLALIL LTI T TR SO s
T‘z -1 ATV AT AT T D DS
Lt - AL LA AR LALLM LA
Lz -1 - s co l lo ' lc P. t l. n' ATTILATLAATIAA LEIALT T AT A
L3 T A Y
\
Le - NN Present Model
L 5 -1 5
T T T T

-5 ~4 -3 -2 -1 0 1
cm

Fig. 6.22 Lateral deformations of vertebrae of normal spine with rib cage under asymmetrical vertebral
growth and gravity loading (end of subcase 8, Table 6.6) predicted by imperfection growth
analysis and their comparison with deformation observed in a scoliotic patient. The model
is considered free in axial displacement and fronta! plane rotation at T1, and completely fixed
at sacrum.

Vertebra Level

Tt 1
T2 A AVATLILW A VA AAMAL
T3 1 LALLM LAALIAATTAAA AR AL
T4 - Scoliotic Rotation Direction AT AU A A AR
TS - LLALLTIALALATAALATAAL AL LALAL VLA P ABU LAALIAAAY
?. -1 ALLALALL LI RARTIRL IR A BT LTI TIAT AL LA AT TR LY
T7 A ALAAMLALBALILATIEARTAALAAL A L ILLULARA TLATLL LA AATAT LA AR A LAAAMA A ALVEL AR LI AR ALY
Ta -1 A3IATATIALALLALALLATILTALAIARAALAATAL AT THLATAATA R LI ALATALTE SR LUARTUATA A TI VLRI LA LAV AL AR
T’ -1 ALTLRARIATLEA IR AL LA AATA A LT ARALERA LA LA AR LT A LA AL R LU L VLA L R A Y
T10 - ALLAALIAT I ALILAATB LA IATAT A LLLIAVA AR AMA LA LAY
T“ = AT LA TV IR T T T TG
T12 -1 ALLTURLALLLLALTIAL L LA MR VLA AR A ML
L1 A LTI LY
L2 AV
L3 - AL
L4 A AW
LS A e
T Lf T T

-25 -20 -15 =10 -5 )
Degrees

Fig. 623 Axial (horizontal plane) rotations of vertebrac of normal spine with rib cage under
asymmetrical vertebral growth and gravity loading (end of subcase 8, Table 6.6) predicted by
imperfection growth analysis. The model is considered free in axial displacement and frontal
plane rotation at T1, and completely fixed at sacrum.
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Fig. 6.24 Growth of initial lateral imperfection of spine under asymmetrical growth.

Figure 6.25 shows the plot of undeformed geometry of the spine with rib cage used in the
analysis, in left lateral and A-P views. Figure 6.26 gives the deformed geometries at the end of load
subcase 8. Comparing Fig. 6.26(a) with 6.25(a), it can be seen that the deformed spine has become
straighter as a result of the vertebral growth. Figure 6.26(b) shows the convex-sided rotation typical
of scoliosis; clearly the anterior vertebral bodies rotate into the convexity of the lateral curve.

The true lateral and frontal views of the deformity are obtained when it is viewed in and
perpendicular to the plane obtained by rotating the sagittal plane by the amount of the apical
rotation. These views are shown in Fig. 6.26(c) and 6.26(d). In the true lateral view, Fig. 6.26(c), it
is found that the thoracic spine has lost its kyphosis and has become slightly lordotic. The vertebra
TS-T8 now have longer anterior lengths than posterior lengths. The true A-P view, Fig. 6.26(d) shows
the scoliotic deformation in its maximum. Referring back to Fig. 3.2, these characteristics are typical

of thoracic scoliosis.
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Fig. 6.25 Undeformed model of normal spine and rib cage used in the nonlinear analysis simulating
lordosis-inducing growth of the thoracic vertebrae. (a) left lateral view, and (b) A-P view.

Similar analyses were performed in which thermal loading simulating the asymmetrical
vertebral growth was considered alone, without the gravity loading, and under various coastraint
conditions at Tl. When T1 was considered free in vertical displacement and frontal rotation,
significant axial rotations resulted similar to those found in the above analysis in which the gravity
load was superimposed. However, lateral displacements were extremely small in comparison. Next,
an analysis with an additional constraint fixing vertical displacement was performed. It was found that
in the latter case, axial rotations were slightly smaller, but the lateral displacements were larger than
in the former. However, lateral displacements were still small in comparison to those found in the
analysis with gravity load and those found in scoliosis. The small lateral displacements are attributed
naturally to the fact that in both cases no appreciable lateral bending could take place since the spine
did not or could not shorten. Another analysis was performed with T1 completely fixed. The
resulting axial rotations were basically unaffected by the addition of the frontal rotation constraint.
The lateral displacements, on the other hand, although they appeared more localized, had significantly
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Fig. 6.26 Deformed configuration of spine and rib cage model after 250 N gravity compressive
A-P view, (c) true lateral view of the deformation, (d) true A-P view of the

deformation. True views are obtained at oblique angles to A-P and lateral views

equivalent to the rotation of the apical vertebrae, here by -20°.

force and lordosis-inducing growth of the thoracic vertebrae. (a) left lateral view, (b)



reduced (negligible) magnitudes.

Therefore, an important conclusion arising from the results of these additional analyses is that
the axial rotation of the scoliosis type is mainly due to the asymmetrical growth of the vertebrae; the
compressive gravity loading has little influence on the axial rotation. However, the author suspects
that the constraint in sagittal plane rotation (4,) at T1 is crucial to the success of the analysis,
although analysis was not attempted without it. This constraint is not artificial because the reaction
moment is found to be a flexion moment approximately 1.5 times the gravity force which may be
interpreted as being due to an anterior offset of the center of gravity from T1.

However, the significant lateral displacements resulting in analysis are due to gravity forces.
As noted in analyses without gravity force, resuiting lateral displacements were small. The structure
must shorten in order to obtain lateral displacements of the magnitude seen in scoliosis. On the other
hand, the effect of the asymmetrical growth was found to lengthen the column, i.e. straighten it, since
central vertebral lengths were basically unchanged. The fact that gravity loads produce significant
lateral displacements has also been demonstrated earlier in Section 6.2 by the nonlinear growth
analysis on the lordotic model. Gravity forces are present in reality and in terms of the analysis are
needed to counteract lengthening (straightening) effect of asymmetrical growth on spine. Thus,
simultaneous presence of both asymmetrical vertebral growth and gravity loading is necessary to

obtain lateral displacements and axial (convex-sided) rotations of magnitudes found in scoliosis.

As a measure of caution, it should be pointed out that the analysis resuits depend upon the
loading path chosen between the starting and final values of loads. Analysis with different
temperature and gravity loading paths produce quite different results. This means, for example, that
one may not be able to obtain the same results by performing analyses with the following two
sequences of loadings: (1) first loading the spine with only the gravity loading, and then loading it
by temperature changes while keeping the gravity loads constant, and (2) by reversing the above
sequence. A plausible reason for possibly different results is that in a nonlinear elastic system there
may exist for the same load more than one deformed configurations; in other words, a uniqueness of

loading does not guarantee the uniqueness of the displacement field.

Another feature of nonlinear analysis is that although convergence criteria may be satisfied
within the selected tolerances at each load step, the accumulated unbalanced load errors may not yield
a perfect equilibrium between applied forces and reactions in the deformed configuration. In the

present analysis, these unbalanced forces remained small relative to the applied loads.

In conclusion, based on the nonlinear growth analysis of this section which yields the lateral
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displacements and axial rotations of essentially the same character and magnitude as observed in
thoracic idiopathic scoliosis, it seems fair to say that the lordosis hypothesis in its second
interpretation has now been validated. A particular pattern of asymmetrical lordosis-inducing growth
of thoracic vertebrae can indeed deform the spine into a shape of thoracic idiopathic scoliosis. It also
follows that an already present lateral curve of a more than normal magnitude will hasten the
development of scoliotic deformation under such a vertebral growth.
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Chapter 7

Summary and Conclusions

7.1 Summary of Analysis and Results

This study tests the lordosis hypothesis concerning the etiology of the development of
adolescent idiopathic thoracic scoliosis. Two simulations, corresponding to two interpretations of the
hypothesis, are modeled to investigate the hypothesis. The first modelling, corresponding to the first
interpretation, conducts the nonlinear imperfection growth analysis of a lordotic spine (i.e. a spine
which already has a thoracic lordosis) with the normally present anatomical asymmetries (i.e.
imperfections) in the lateral and horizontal planes. The loading is by gravity loads alone, increasing
incrementally from zero to near the expected bifurcation bucking load of the symmetric spine. The
second modelling, corresponding to the second interpretation of the lordosis hypothesis, studies the
nonlinear effect of asymmetrical growth of thoracic vertebrae (accelerated anterior and constricted
posterior growth) [115] in a normal spine, with no pre-existing lordosis but again with the normal
lateral and horizontal plane imperfections present {34].

Simulations are carried out using a lumped parameter structural analysis model of the human
thoracolumbar spine and rib cage. MSC/NASTRAN finite element program was used to perform the
analyses. Trunk and abdominal muscles, which are known to act on the spine, are omitted from the
model. This omission greatly simplifies the modelling. On the other hand, this simplification perhaps
exaggerates to some extent, the response of the spine to applied loads and asymmetrical growth.

Due to the limitation on resources and the complexity of the structure, many assumptions had
to be made in constructing the analysis model. The data for the model were obtained solely from
available literature. Material properties are assumed to be linear elastic. However, nonlinearities due
to relatively large displacements are fully accounted for in the analyses. Best linear elastic
approximations of stiffness properties are made to represent the experimentally determined behaviour
of the various elements in the spine and rib cage structure (e.g. intervertebral joints). End constraints
are chosen to simulate the anatomical constraints which maintain head in alignment with the pelvis.
The top of the spine, vertebrae T1, is always constrained against displacements and rotations in the
horizontal plane, and the sacrum is always considered completely fixed. The imposition of bending
constraints at the top is included or excluded as deemed appropriate, for the real anatomical
constraint is supposed to be somewhere between completely free and completely fixed bending degrees
of freedom.



The analysis results from the presently constructed model are found to compare reasonably
well with the results of previous researchers for cases investigated by them. In addition, as shown in
Chapter 4, the ability of MSC/NASTRAN to perform torsional-flexural buckling analysis was verified
by the fact that results obtained were in good agreement with the theoretical solution derived for this
type of buckling for an ideal curved column of a sine wave shape. Similarly, the capabilities for
geometric nonlinear analysis were verified by analysing simple nonlinear problems (e.g. bending of a
beam under a pure end moment). Thus, the adequacy of both the structural model, and the method
of analysis, implied by using MSC/NASTRAN, were validated.

Results of the First Approach

In the first approach, in which the effect of an existing lordosis in the thoracic region on
spinal stability was studied, the results failed to support this interpretation of the lordosis hypothesis.
It was apparent from the results of both the linear bifurcation analysis and the nonlinear imperfection
growth analysis that a lordotic spine, by the way of pure torsional-flexural buckling, could not produce
deformations, particularly the axial rotations, of magnitudes found in patients of idiopathic scoliosis.
As discussed in Chapter 4, the spine-like structures with lower stiffness in lateral bending than in A-P
bending are subject to torsional-flexural buckling. However, since the spine and rib cage model is
apparently much stiffer in torsion than in lateral bending (Fig. 6.2 and 6.9), it follows that the
buckling behaviour will be predominantly in the lateral bending mode. In other words, lateral
deflections (or their growth) will dominate over the axial rotations. This is illustrated by the mode
shapes obtained from the bifurcation analyses and by the imperfection growth obtained from the
nonlinear analyses. Both show significant lateral displacements but comparatively small axial
rotations.

Viewed in its own right without linkage to the lordosis hypothesis, it appears that a reduction
in the kyphosis of the thoracic spine, or even a slight lordosis, has little effect on the stability of the
spine. Buckling loads are lowered only slightly, and the mode shapes remain basically unaltered. This
is also supported by the results of the theoretical study on the effect of spine curvature on its stability
in Chapter 4. It was concluded there that a slight decrease in the amplitude of the sagittal curve
resulted in slightly lowered buckling loads primarily due to the consequently increased spine length.

Results of the Second Approach

In the second approach, simulation of the lordosis-inducing (asymmetrical) growth of the
thoracic vertebrae produced deformations in normal spines similar to those found in thoracic
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idiopathic scoliosis. The results therefore support this second interpretation of the lordosis
hypothesis. Success of this approach can be attributed to the modelling of the asymmetrical growth
of the thoracic spine, and its eventual transformation into a lordotic configuration, as a loading in the
nonlinear imperfection growth analysis. The stresses induced in the discs due to elongation of the
anterior elements and shortening of the posterior elements of vertebrac T4-T12 seem to be
responsible for the large axial rotations obtained. In a somewhat constrained system, the elongation
of the anteriors of vertebrae produces additional compressive stresses in the anteriors of the disc, and
likewise, a shortening of the posteriors of vertebrae produces tensile stresses in the posteriors of the
discs. The presence of the initial lateral curve which grows with increasing compressive loads,
accommodates the growth by letting the spinal elements rotate in a convex-sided manner to avoid

unnecessary stressing.

7.2 Conclusions

In this thesis, lordosis-inducing asymmetric growth of the thoracic vertebrae has been shown
to produce thoracic scoliosis. To the author’s knowledge, this is the first time that a structural
analysis of a spine model with rib cage has successfully yielded deformations of the kind and amount
found in scoliotic patients. The work therefore validates the lordosis-hypothesis, in its above
interpretation, as being a possible etiology of adolescent idiopathic thoracic scoliosis.

To further substantiate the theory validating the hypothesis, it has been observed clinically
that forward bending, which produces forces (anterior compression and posterior tension) similar to
those produced as a result of lordosis-inducing vertebral growth, has a tendency to increase the rib
hump, i.e. convex-sided rotation of thoracic spine, of scoliotic patients. In fact, forward bending is
the test used to screen adolescents in order to detect cases of idiopathic scoliosis at an early stage.
Even normal persons with slight right lateral thoracic curve are found to experience convex-sided
rotation of thoracic vertebrae upon forward bending. In addition, it may be recalled that both Lovett
[72] and Arkin (7] found that lateral bending produced coavex-sided rotations in the normal spine
when the spine was flexed forward. An imperfection growth analysis under a forward flexion moment
and a compressive force (as was done in Section 6.2 to simulate the center of gravity application of
the body weight) in combination with the thermal loading can be expected to produce scoliotic
deformations of even larger magnitudes than found here.

The future research would undoubtedly improve the many approximations made in the spine
models of this thesis. These approximations were necessary for the progress of the present work.
However, the author feels that a significant advance has been made in demonstrating the lordosis-
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inducing asymmetrical growth as the key to obtaining scoliotic deformations. Axial rotations of
' significant magnitude found in this work are what had been lacking in the results of previous

researchers concerning scoliosis 10, 118].

The salient conclusions may be reiterated as follows:

(1)

)

A)

“)

Pure structural type torsional-flexural buckling of the spine and rib cage under
increasing gravity-type loads cannot produce significant axial rotations due to the
large effective torsional stiffness of the spine in comparison to its lateral bending
stiffness.

An existing lordosis in the thoracic region has minor effect on the subsequent
stability characteristics of spine and rib cage.

Forces developed due to lordosis-inducing (asymmetrical) growth of thoracic
vertebrae are necessary to produce the convex-sided rotations with a maximum at the
apex of the lateral curve as found in scoliotic patients.

As suggested by Dickson et al. [34], the natural lateral asymmetry, preseat in all
spines to some degree [31], is necessary for attaining correct scoliotic deformations.
According to the present analysis, the lateral curve determines the direction of the

deformity.

73 Suggestions for Further Research

For future, an interesting study would be to examine the effect of lordosis-inducing vertebral

growths on the lumbar spine, and also on the complete thoracolumbar spine to determine whether

or not other curve patterns (e.g. lumber and double curve) would develop. Additional suggestions

for future research include (1) modelling of the nonlinear stiffness properties of spine elements,

particularly of the motion segments, and (2) modelling of realistic gravity forces and muscle action

forces.

A much more elaborate nonlinear finite element model, accounting correctly the geometric

details of the spine, subjected to an imperfection growth analysis under the action of lordosis-inducing

vertebral growth would provide very realistic answers to various questions concerning scoliosis.
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Appendix A

. Glossary of Anatomical & Biomechanical Terms Related to Spine

1. Planes: [44] (see Fig. Al)

median (midsagittal) plane - plane which divides body into a right and left half
sagittal plane - any vertical anteroposterior plane parallel to the median plane
coronal (frontal) plane - any vertical plane at right angles to the sagittal plane
transverse (horizontal) plane - any plane at right angies to both the sagittal and coronal plane

Median (sagittal) plane

Coronal plane Sagittal plane
or
Frontal

Horizontal |plane
or —_

Transverse

'{)
=
Zi
9.
Z
A

Fig. A1 Fundamental planes in body. After Grant [44].

2. Terms of Relationship: [44]
anterior - nearer the front surface of the body
posterior - nearer the back surface of the body

superior - nearer the crown of the head
inferior - nearer the soles of the feet

medial - nearer the median plane of the body
lateral - farther from the median plane of the body

cranial - superior end
caudal - inferior end

ipsilateral - refers to the same side of the body
contralateral - refers to opposite sides of the body

o 15



3. Miscellaneous Terms Related to Spine:
intervertebral joint - joint inbetween adjacent vertebra in spinal column comprised of intervertebral
disc, ligaments, and facet joint

motion segment - usually consists of two vertebrae and the intervertebral joint inbetween. Used in
particularly for testing flexibility or stiffness of intervertebral joint

flexion - in reference to the spine, forward or anterior bending in sagittal plane
extension - in reference to the spine, backward or posterior bending in sagittal plane
lateral bending - in reference to the spine, bending in frontal plane to the right or left

lordosis - curvature of the spine in the sagittal plane with its convexity anterior, i.e. longer anterior
length than posterior length of spine

kyphosis - curvature of the spine in the sagittal plane with its convexity posterior, i.e. longer posterior
length than anterior length of spine

ligamentous spine - spine with its rib cage and muscles removed
thoracolumbar - pertaining to thoracic and lumbar regions of the spine

coupling - phenomenon in which motion along or about an axis is consistently associated with motion
along or about another axis [88]

main motion - motion produced in same direction as applied load [88]

coupled motion - motion produced in direction(s) other than direction of applied load
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Appendix B

Formula used to calculate equivalent sectional properties
for 3-element model based on the approximation
of 3 equal length elements

1. Notation used in formulas: denotes lateral plane

denotes anterior-posterior (sagittal) plane

denotes equivalent property

denotes inside segment le. central

denotes outside segment ie. anterior and posterior

denotes % of full element to inside element

denotes % of full element to outside elements
suchthat2a + 8 =1

property definitions are found in List of Symbeols

Q'cno-_g ™~ -

2. Figures deflning additional notation and making correspondence between the 1-element and
equivalent 3-element representations.

gty

Am I1°! lzon Jel An 'm lzn Ju As 'u Iz’ Jl
A=K, A, C A=K A, L A=K/A,
Au=Kah, || A A=KA
plane 2 S plane 2 ®
plane 1 plane 1




3. Properties of the 3-element equivalent model in terms of the 1-element model. o and g are
chosen appropriately in a particular instance.

Axial Area: A, =ad
. L =85
Lateral Bending Inertia: I 1
1, * &
5, BA
A,'-ﬂA, xl'._z_‘._b_A!.. f
Lateral Shear Area: A'
1, aA
A,-‘A‘ K’.=T=-¢.zl.=xl

(]
Ans-Post Bending Inertia: L = pl,.'

4, = !
Y el L, bLlea L
3El, GA, 2EL I,  3H,

22
A,  BA, 4
Ant-Post Shear Area: %3 " P, K== F tF

AZ."AJ‘ Kzt—-'-s—JxJ

i
K’G-K’o— A
2
Torsional Constant: L + 1
12Eal; GaA,
J =0
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4, Tables for the properties of the 1l-element model used in calculating equivalent 3-element
properties. o is chosen such that I, is a positive value. This is a restriction on input data
required in NASTRAN. In this case, o choosen to be 0.12 (i.e. $=0.76).

Table B.1 Values Used to Calculate Equivalent Properties for 3-Element Vertebra

Vertebra E G A L L J KK, Avg. Avg. sag.
(Niew?) | (Niem?) | (em®) | (em®) (cm*®) (cm*) (central) radjus, b
length, L (cm)
(cm)

T1 1030000 431000 424 2651 0.773 2395 1 1.679 0.853
T2 1030000 431000 472 3.061 1.030 3.083 1 1.791 0.937
T3 1030000 431000 5.08 3.036 1390 3813 1 1.848 1.05

T4 1030000 431000 5.50 3181 1.822 4.633 1 1.905 1.1535
T5 1030000 431000 6.05 3631 2342 5.695 1 1.957 1.244
T6 1030000 431000 668 4.240 2965 6.980 1 1.993 1.3295
iyj 1030000 431000 7.44 5.198 3728 8.685 1 2.021 1.4165
T8 1030000 431000 823 6.386 4.566 10.650 1 2073 1.4895
9 1030000 431000 898 7853 5.250 12.586 1 2134 1.527
Tio 1030000 431000 9.97 10.407 6.022 15.258 1 2.304 1.554
Ti1 1030000 431000 1115 13.896 7.036 18.684 1 243 1.5925
Ti2 1030000 431000 12.00 16.789 7.813 21.327 1 2574 1.615
L1 1030000 431000 1281 19.659 8.692 24.108 1 272 1.6545
L2 1030000 431000 13.57 22.346 9.624 26.908 1 2793 1.6895
L3 1030000 431000 14.58 26.430 10.853 30.774 1 28 1.7285
L4 1030000 431000 1525 28.846 11.896 33.690 1 2.747 1.7655
LS 1030000 431000 14.73 26.207 11.366 31.710 i 2.653 1.756

Table B.2 Values Used to Calculate Equivalent Properties for 3-Element Intervertebral Joint

_—— ——  —__—_____— _— _ ____ _ _—— _— __— — _— _—_—— —— — — _ ——— — ]
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Superior E G A I L J KX, Avg. Avg, sag.
Vertebra (Niem®) | (N/ew?) | (em?®) | (cm®) (cm®) (em*) (central) | radius, b
length, L (em)
(cm)
Tl 929.7 1376.0 439 0.826 1932 0.697 04375 0.449 0.887
T2 732.7 15354 498 1384 2.962 0.667 04375 031 0.9935
T3 746.7 1593.0 536 1.716 3643 0.779 0.4375 0272 1.106
T4 8009 1656.4 n 2176 uan 0928 0.4375 0.222 11995 |
TS 745.0 15235 6.28 2544 4.013 1.154 04378 0.251 1.289
T6 8202 16663 6.89 2946 4912 1362 0.4375 032 1.3755
7 645.7 1650.0 161 4.788 4.646 1.741 04375 04 1.4535
T8 776.1 15378 838 4.584 6834 2471 0.4375 0.442 15158
19 806.8 16462 9.02 4.681 539 3.062 04375 0473 1.5395
T10 7753 15774 | 1009 7353 10.790 4511 04378 0.507 1573
Ti1 920.7 14843 | 1130 6.810 9.232 10.787 0.4375 0.68 1.611
T12 1060.1 15624 | 1207 7.469 13.736 41,265 0.4378 0.841 1.6295
L1 10428 1564.1 1298 6.174 15.802 3.163 04375 1.006 1.6755
L2 998.8 14931 | 1378 5592 | 25453 4247 04375 1.147 1.7095
3 1225.6 14940 | 14.66 4946 | 23332 50.101 04378 1.221 1.7415
L4 12512 14298 | 1538 6478 16.797 47.705 0.4375 1401 1.7775
Ls 1164.3 14517 | 1455 | 15514 | 14833 43.081 0.4375 1.57 1.733




Appendix C

Model of Normal Spine and Rib Cage: MOE
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Table C.1 Legend for Spine and Rib Cage Model

Element no. Description of element Element type Property no.
1-33 odd Centerline of vertebrae beam 101-117
2-34 even Centerline of iv. joint 1-17
35-67 odd Anterior face of vertebrae beam 118-134
36-68 even Anterior face of i.v. joint 18-34
69-101 odd Posterior face of vertebrae beam 118-134
70-102 even Posterior face of iv. joint 18-34
103-137 Endplates on anterior side beam 100 (rigid)
138-172 Endplates on posterior side
173-190 Left vertebrae links to facets beam 150
191-208 Right vertebrae links to facets
209-218 Left transverse processes beam 151
219-228 Right transverse processes
229-246 Left CV joints beam 60
247-264 Right CV joints (axial only)
265-274 Left CT joints beam 61
275-284 Right CT joints
285-364 Ribs (10 pairs - beam 153-162
4 elements ea.) (Rib 1-10)
365-382 Left CC beam 71-88
383-400 Right CC
401-412 Sternum (quad. elements) quad 152
413-418 Sternum (beam clements) beam 100 (rigid)
421-429 Left IC beam 62-70
430-438 Right IC (axial only)
500-525 Loading arms (from bottom beam 100 (rigid)
center of vertebra to C.G.)
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Lett lateral view of maded dlustrating nudes and elements o the spine
and left side of (symmetrical) rib cage.
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Fig. C4 Anterior (tfront) view of model dlustrating nudes and elements of the

spine and rib cage. Stermun removed to simplify ligure.
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Anterior Posterior

Vertebra (typical)

ol Legend:
e ng. = Nodes
: ¢ = Elements
»3
Zz
o
4 X
ol
Iy
-t
~
(1]
Sacrum
Fig. C.3 Left lateral) view ol the 3-clement model o the spime diustratmg nodes

and elements.  Rib cage (lett out 1o simplity tigure) s attached to
central elements as shown in f-element model, Fig, C3.
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Fig. C.7 Transverse process elements and elements positioning vertebral body facets shown

in (a) anterior view, and (b) left lateral view. These elements define the location on
the vertebrae where ribs are attached. no. = elements, no. = nodes.
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and (b) left lateral view. These elements provide connections between vertebrae and
ribs. CV connects head of rib to vertebral body, and CT connects tubercle of rib to
transverse process. 10. = elements, 0. = nodes.
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Fig. C9 Left lateral view of model illustrating nodes and elements used for distributed-type
loading. A0. = elements, no. = nodes.

-171-



