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AB5TRACT

Abstract

A new approach for computing qualitative part-based descriptions of 3D objects from

single- and multi-view range data is presented. This research is motivated by both a theory

of human image understanding (Recognition-by-Comr.onents) and t.he need for qualitative

recognition by an autonomous robot in order for il. 1.0 efficiently int.eract with its environ­

ment.

Object descriptions are obtained in two consecutive steps: (1) object segmentation into

parts and (2) part modei identification. Segmentation is achieved by first computing the

simulated electrical charge density distribution on a tessellated triangular mesh of the object

surface. The algorithm then detects the object part boundaries where the the charge density

achieves a local minimum. The charge density distribution can simultaneously provide an

indication of the gross and fine object structures. Parametric geons are introduced as the

part models, which indicate both qualitative shape and quantitative attribute information.

Model recovery is achieved by fitting all parametric geons 1.0 a part and then selecting

the best model based on the minimum fitting residual. A new objective function used

for model recovery is optimised by a global optimisation technique (Very Fast Simulated

Re-Annealing).

The advantages of this approach are demonstrated through experimentation. By using

a physical analogy 1.0 the well known transversality principle, part segmentation does not

require an assumption of surface smoothness or the choice of a particular scale 1.0 corn·

pute local surface features. The formulation for parametric geons provides a global shape

constraint, which ensures reliable part model recovery even when the part shape is not

an exact instance of a parametric geon. By directly comparing do part with ail candidate

models, this approach explicitly verifies the shape of the resultant part descriptions. The

computed part-based descriptions are well suited for the object recognition task carried out

by an autonomous robot.
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Résumé

Ce travail présente une approche pour le ,,,.Ieul qualitatif de la de:;criptiou en partie:; d·oh.Ï<'ts

3D, perçus à partir d'une ou de plusieurs vues de distance. Cette recherche e:;t motiv.:'·

à la fois par la théorie de compréhension des images de l'être humain (recouuais..<:ulce par

composantes) et le besoin d'une reconnaissance qualitative permettant" un robot autouome

d'interagir efficacement avec SOn environnement.

Les descriptions d'objets sont obtenues en deux étapes: (1) la segmentation d'objet

en parties et (2) l'identification de ces parties. La segmentation est accomplie en calculant

tout d'abord la simulation de distribution de densité de charge sur tes..<elation triangu­

laire de la surface de l'objet. L'algorithme détecte alors les frontières de:; comp"'<antes de

l'objet, dont la densité de charge atteint un minimum local. La distribution de densité

de charge peut également fournir une indication sur les structure:; fines et gros..<ières de

l'objet. Les Géons paramétriques seront le modèle des parties d'objet, et indiqueront il la

fois une information qualitative de forme et une information quantitative. La sélection du

modèle d'une partie est obtenue par la mise en correspondance des mesures et des Géons

paramétriques et en sélectionnant le modèle qui obtient l'erreur résiduelle minimale. Une

nouvelle fonction objectif utilisé pour la reconnaissauce de modèle est optimisée par une

technique d'optimisation globale (Recuit simulé très rapide).

Les avantages de cette approche sont démontrés par l'expérimentation. En utilisant

l'analogie physique bien connue du principe de transversalité, la segmentation en partie ne

nécessite pas d'hypothèse de surface lisse ou le choix d'une échelle particulière pour cal­

culer les caractéristiques locales de la surface. La formulation des Géons paramétriques

fournie une contrainte globale de forme qui assure une identification fiable du modèle d'une

partie même lorsque la forme de cette dernière n'est pas une instance exacte d'un Géon

paramétrique. Par une comparaison directe d'une partie avec tous les modèles candidats,

cette approche vérifie explicitement la forme des descriptions en partie résultantes. Les de­

scription en parties ainsi calculées s'avèrent bien adaptées pour les tâches de reconnaissance

d'objet requises par tout robot autonome.
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CHAPTER 1. I:>TRODUCTIO:>

CHAPTER 1

Introduction

To interact with the environment, an autonomous robot must identify targets and avoid

obst.acles in its environment. More specifically, the robot must often recognise and localise

objects by interpreting scnsor data in terms of previously existing knowledge about the ob­

jects. This task rcquires image data, object models in a database, an object representation

proccss that computes a description of the object from image data and an object recogni­

tion proccss that matches the description against object models. Sensor data usually only

provide point-by-point measurements such as the distances from the sensor to objects in

the viewed scene. However, these numerous and unstructured data are not appropriate to

represent the environment for a mobile robot e.'(ecuting complicated roles in, say, an office

or factory milieu. Such a robot must make use of symbolic models which are concise and

organised descriptions about the structure of the world. Thus the object representation

proccss is important because it transforms sensor data to symbolic descriptions which are

consistent with the models in a database and support efficient model matching. This signal­

to-symbol mapping is, thus, at the heart of any functioning autonomous robot carrying out

complex tasks.

In this thesis, we present a new approach to three-dimensional (3D) shape representa­

tion of objects based on parts. The input to our system is a single range image or multiple

range images. Our task is twofold. The first is to segment the object into individual parts.

The second is to select a particular part model from a few predefined model candidates

which describes the best shape approximation of each segmented object part. Our approach

first computes a novel physics-based surface property, the simulated charge density distri.

bution over the object surface and decomposes the object into parts at the part boundary

where the charge density achieves a local minimum. We then employa new top-down strat­

egy to recover modeL~ for each segmented part by directly comparing the part shape with

l
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FIGURE 1.1. Part·~ dOlCription of Do 3~ object. (A) Th(! rnngc imn.j;c of Ml obj«t. Th~

t'hading il' addccl artific:iaUy to cnhMce the 30 nature of the object. (b) The dnl" in (ZL) ure
interpreted by our "yt'otem to c:on8i8t of two pzu't8. Each part il' n.pproximn.led by M idcwl,y-:olll\pm
volumetrie model. In thi8 case. the top part i8 Do tape~ cylinder ~Uld the bottol11 ptU't if' l'"

elli~id.

the shapes of known part models. The segmentation method efficiently deals with certain

problems in traditional approaches, such as unrealistic assumptions about surface slllooth­

ness and instability in the computation of the surface feature. The mode! recovery lllethod

obtains part models more robustly and accurately than previous work.

Consider a. simple example of a 3D object that could be imaged by a laser rangefinder

mounted on a mobile robot. Figure 1.1 (a) shows the range image of a bowling pin. Berc

the value at each pixel indicates the distance from a position on a regularly spaced grid

in the sensor image plane to a point on the object surface in the scene. Our approach

produces an object model, which simply consists of two generic shapes, an ellipsoid and

a tapered cylinder, as shown in Figure 1.1 (b). This model is a coarsc description of

the object. It reveals that the object consists of two intuitive parts described by idcal

shape symbols or models. The part models are also associated with certain parameters

which describe their size, position and orientation, as weil as the tapering rates for the top

part. This kind of description reftects the object structure at a scale that is similar to our

intuitive notion of a part [93]. It encodes symbolic shape information for object parts at

the qualitative leveJ. Ali part model shapes are ideal and distinctive; the numhcr of shape

types of part models is finite. The descriptions also include size, deformation and pose

information at the quantitative leveJ. Restrictions on an object's shape are applied solely to

parts. Although their number is indeed limited, the composition of these part models using

various simple spatial relations can represent many objects [15]. Sucb an object description

2
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1. BACKGROU:-:O

can su~port symbolic reasoning fc.r an autonomous robot which needs to recognise objects

in iL"i e:lvironrncnt.

1. Background

ln order to recognise an object from a range image, a computer vision system must

convert the image data into a symbolic description or model of the object shape which is

somehow consistent with the actual object shape. Two major questions need to be addressed

in this regard. First, at what level of description should object shapes be represented?

This issue is related to the domain of perceptual psychology [60, 136, 15, !l3]. The

description must reflect structural information in nature and permit efficient matching to

models. Secondly, how can one derive such a description robustly? This question is of

primary interest to the field of computational vision [82, 6, 143]. The answers to these

questions serve as the constraints for and motivate the development of computer vision

algorithms.

The significance of object descriptions at the part level is weil understood [82, 72,

60, 136, 80]. Many objects consist of parts or components which can be distinguished

perceptually, geometrically or functionally from each other. Object parts have perceptual

salience and reflect the natural structure in the world [6]. Building object part-based

descriptions for various tasks has been a major strategy for many years [87, 82, 94, 6, 95,

46, 133, 41, 65, 13]. The primary reason for this is that part-based descriptions help to

bridge the gap between image features and symbolic descriptions of objects [96]. Therefore

they can be more robustly and efficiently indexed into a database than sorne other features,

such as edges or surfaces. Parts are also advantageous for representing non-rigid objects [60].

Moreover, part descriptions also support function-based object recognition [129, 130]. ln

this case, objects are specifically identified by a certain functionality, which is most Iikely

associated with the object's parts rather than its edges or surface patches.

It is a common observation of nature that a variety of objects can be constructed

from a few simple primitive prototypes. ln the art of sculpture, a few volumetric shapes

are regarded as fundamental units for constructing sculptures [154]. Three basic colours

suffice to make different pointillistic paintings [75]. Twenty-six letters make up the list of

all English characters. We need only 44 phonemes to code all of the words in the English

language [15]. ln an analogous fashion to the phonemes in speech, Biederman has proposcd

a theory of human image understanding for the early identification of objects, the so-caIled

Recognition-By-Components (RBC) [15]. He has proposcd 36 distinct volumetric shapes,

3
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FIGURE 1.2. Objectlo degcribed by ft. rew geonK.

called geons (geometrical ions) as descriptions for object parts. The shapes of grons, such

as a block or a cylinder, are generie in the sense that they are delined qualitatively and

ean be combined to describe many different objects. Line drawings of several examples are

given in Figure 1.2. Biederman postulated that if an arrangement of a few grons could be

recovered from line drawings of an object such as one of those shown in Figure 1.2, the

object could be recognised quiekly, even when occluded, novel, rotated or degraded. He

and his colleagues have eondueted psyehophysical studies [15, 18, 19, 20, 33, 21] and

ereated artilicial neural network simulations [65] to support gron-based recognition. The

RBC proposai that an object's part-based representation can be construeted using a linite

set of generie shape prototypes is the essential motivation behind our research. In this

thesis, we focus on several important issues regarding the computational aspects related to

this theory.

2. Statement of the Problem

The specifie problem we consider in this thesis is to segment an isolated 3D object into

its parts and describe the shape of each part in terms of a few generic part models. The

objects are compose<! of multiple parts. It is important to note that the object surfaces
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nccd not be smooth and the shapes of object parts ncccl not fully conform to the shapes of

the part modcIs.

RBC hypothesises that Hne drawings of objects extractcd from intensity images by an

cdge detection operation [30] are uscd to derive geon-bascd descriptions [IS]. However,

cdges and Hne drawings are significantly different. Edges reveal image information which

reflects the rapid changes in image intensity. But line drawings generally convey information

about object surface discontinuities in orientation and depth. In practice, ~clean" line

drawings can rarely be obtaincd from cdge maps due to the colour and texture of object

surfaces or complex illumination configurations. Ali studies bascd on line drawing analysis

have assumcd that complete line drawings can be extractcd and that the objects of interest

are composcd of instances of complete geons. Unfortunately, it is not clear how to derive

geons from imperfect line drawings of objects which consist of non-ideally shapcd parts.

As an alternative we use range rather than intensity images. We believe that the depth

information providcd by range images can facilitate the extraction of geons from objects

which consist of imperfect geon-like parts. In many situations, an autonomous mobile

robot is equippcd with a laser rangefinder. It is therefore important to study how to derive

symbolic descriptions :lf objects using range information. These could then be uscd as the

basis for object. recognition.

A range image is defincd as a set of M discrete samples of a scalar function f: z2 -+ 'R.

Zi = f(Ui)

where U; E I2 is the index of the 20 image grid, Zi E 'R. and i = 1, .••, M. A range image

gives the distances hetween the image plane ar.d the points on the surface of objects in

the scene. By consulting a lookup table that indicates the relationship between the image

coordinate system and the rangefinder coordinate system, a range image can he further

convertcd to range data. These are defincd as a set of M discrete samples of a vector

function f: z2 -+ 'R.3

di = f(Ui)

where di E 'R.3 and i = 1, ..., M. Range data provide explicit 3D coordinates in the

rangefinder coordinate system. Our system starts with range data and applies the RBC

theory to the range data rather than to Une drawings as in the original proposa] [IS]. In

RBC, geons are defincd by qualitatively speclfying the 3D properties of generaliscd cyUn­

ders [22] which are para.meteriscd volumetrie models. This concept is clearly not restrictcd

just to Une drawings of objects and cao he applicd to range data.. However, the technique
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for actually deriving part-bascd descriptions from range data L, very different from Bi,'<Il'r­

man's computational hypothesis. More importantl).. sorne difficult problems whirh <'xist iu

the approaches bascd on line drawing analysis can be efficiently dealt with by using raug"

data. This will be elaboratcd in the next few paragraphs and emphasiscd iu Clmpter :1.
Sorne terminology uscd in this thesis is worth explaining at this point. :\ plzysical surfur,·

is the boundary between the space occupicd by an object and frcc space. The positions

on the ohject physical surface are encodcd as surface data point.. in range images or range

data. By a physical part, we mean a portion of the object surface which can be distinguished

meaningfully 1 from the rest of the object. In the conte:.:t of part segmentation, a part is a

set of surface data poir,ts on a physical part.

RBC proposes that a part-bascd description includes part mode!s, geons, and spatial

relations between parts [15]. Both geons and the spatial relations are dcscribcd in pure

qualitative terms. Our part-bascd description of an object is composcd of the number of

parts and the descriptions of part mode!s. Each part mode! includes its shape type, its

pose, its size, the tapering rates if it is a tapercd shape and the a,xis curvature if it is a

curvcd shape. As an ,,-xample, Tab!e 1.1 shows the part-bascd description of the bowling pin

shown in Figure 1.1. The shape type for each part mode! is given in qualitative terms and

other features are describcd quantitative!y. In our case, the spatial re!ationship betwccn

parts is encoded in the pose information, which can be convertcd into a qualitative relation.

To obtain such a description, one needs to know: (1) Which are the parts? and (2) What

is the model for each of the parts? The former is the issue of part localisation (objeet

segmentation), while the latter deals with part identification (mode! reeovery).

The prob!em of object segmentation can be stated as follows: given a set of surface

points of an object, classify these data points into meaningful subsets, each of wlticlt ï.. on

a single physical part of the objeet. Figure 1.1 (a) is an examp!e of a range image which

needs to be segmented into parts. Since range data are only a set of discrete data, they do

not provide any explicit part information. To segment the object into parts, one must first

specify a definition of meaningful parts. Then based on this definition one may conceive of

a segmentation a!gorithm. Such algorithms for part segmentation have becn traditionally

bascd upon the geometrical properties of objects. For example, objects can be defincd

in terms of part boundaries where object surfaces are sharply concave [60]. In general,

algorithms employ the surface principal curvature to locate the deep concavity [49, 47]. As

IThis is not defincd exactly and mUlt draw upon psychoph)'!Jica. Oe6nitioM of part" are diKUMe<f in [12, GO.
80. 1181•
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number of parts 2

part index 1 2

shape type ellipsoid tapered cylinder

lx =-0.9i4 tx =2.643

translation ty =15.9lï t y = -43.104

t: =0.090 t: = -0.6iO

rx =-89.312i r= =90.6i38

rotation r y =-3.5ïl99 r y =3.49i84

r: =-li9.45 r: =-lï2.i21

a= =21.503 a= =8.ïl95i6

size ay =21.98i 4y =8.6i5i4i

a: =38.048 a: =20.695i5

tapering rate k= =0.0000 k= =0.33i9

ky =0.0000 ky =0.3515

curvature of a:'Cis 0.0000 0.0000

TABLE 1.1. The part.bued dOlCription of the bowling pin shown in Figure 1.1. Here the shape
typctl of the part model" are givcn in qualitative terms and the r"C't of the features are dCl.'oCribed
quantitatively. The details of the latter will he explaîned later. Qualitative abject recognition c:an
he performed by matehing the number of parts and the shape types. of parts to the abject modcls
in a. databue. The other quantitative information ill ul'Cd only if they are ncede<!.

an alternative approach, we use a surface physical property, the simulated electrical charge

density distribution, to perform 3D object segmentation into parts [149, 148]. There exists

an analogy between a discontinuity of surface tangents and the singularity of the eler.trical

charge density over the object surface. It is well known that for a charged conductor,

the charge is only distributed over the outer surface of the object, tends to accumulate

at a sharp convexity, and vanishes at a sharp concavity. In this thesis we propose that

object part boundaries, which are usually denoted by a sharp surface concavity [60], can be

detected by locating surface points which uhibit local charge density ".inima. This physical

definition a1lows us to develop an efficient a1gorithm which does not suifer from some of the

traditional problems, such as unrealistic assumptions about surface smoothness, instability

oflocaI surface feature computations, and the need to select crucial user-defined parameters.

The problem of part identification cau he stated as follows: Given a set of data points

on a particular part and ail candidate part models, find a model which is the best description

of that part. This is illustrated in Figure 1.3. A single-part object is shown at the left and
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~"..abject shape !>est mode.

moddshapes

FIGtJRE 1.3. An example of part identification. A !lingle-part obj«!CL il' Khown At the left "nl!
1hree potltIoiblc part modela are pre8Cnted in the middle. The qUe!ltion to be aml.were<1 j",: Which
.nodel is the bot d~riptionof the object?

•

three possible part models are presented. The question to be answered is: Which model

is the best description of the object? It is important to stress at this juncture that the

shapes of object parts are usual!y not exact instances of the part models. Therefore the

model recovery algorithm must be able to approximate a part shape by a mode! shape.

However, in ail previous work with geons, qualitative part models w'>re rccovered without

any ezplicit shape verification. They either did not verify the overall shape of the resultant

model, or verified it in the model parameter domain but not by shape. In this thesis, we

propose a top-down strategy to compute the qualitative shape models of parts robustly and

accurately from data representing parts whose shapes are not fully consistent with their

models. We introduce parametric geons as object part models in the form of implicit cqua­

tions of restricted deformed supereIlipsoiJs [8, 123]. Parametric geons are 'evenqualitative

shapes associated with pose and attribute parameters which control the mode! size, tapcr­

ing rate, and axis curvature [145]. Parametric geons provide cxplicit global constraints

on the qualitative shape of part modcIs. This constraint allows the algorithm to directly

compare the modcI shapes with a part shape. In the literature, bottom-up approaches are
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uscd [41, 65, 88, 13, 101] which do not employ such a global constraint. In thcse cita­

tions, c.omputed geons are matchcd 1.0 local featurcs only. Similarly, in the only previous

work whieh used parametric models [100], shape verification is performed by comparing

the Euclidean distances in paramet~r spacc of superellipsoid parameters z. However, the

Euclidean distances of model parameters do not exactly measure the shape similaritics of

su perelli psoids. For example, one superellipsoid shape may be dcscribed by two different

seL< of parameters. ln contrast 1.0 previous work, we pcrform qualitative model rccovenJ by

comparing ail paramctric gcon modcls to a part and scleeting a model of that part based on

the similarity between the part shape and eaeh candidate model [146, 14;]. The paramet­

rie gcons and model recovery strategy provide a mechanism for explicit shape verification,

thereby achieving more reliable shape approximation.

The part-bascd descriptions produced by our approach have wide potential applica­

tion. In many situations objects can be easily distinguished by their parts. More exact

information about objects is only secondary. For an autonomous robot navigating in an

office environment, its task is 1,0 avoid obstacles and identify possible targets. Obstacle

shapcs are usually very different from target shapes. Descriptions of objects bascd on para­

metrie gcons are often sufficient for an autonomous agent 1,0 perform those tasks. Another

example rcrtains 1,0 automated manufacturing where an assembly machine may need 1,0

quiekly c1assify and select industrial parts on a conveyor belt. This could be done on the

basis of coarse shape descriptions. Parametric geon-bascd descriptions are very useful for

this purpose.

3. Thesis Overview

In Chapter 2, we begin with a review of the previously related research on object

segmentation into parts, volumetrie primitives and part model recovery. Segmentation can

be appr':lached in two different ways: by searching for differences or similarities [155]. The

technique for searching for differences is boundary-based; il, locates part boundaries and

dccomposes the object into parti'at these boundaries. The search for similarities is shape

(or rcgion or primitive)-based and directly find parts based on their shapes. We categorise

volumetrie primitives as quantitative and qualitative according 1,0 whether the definition of

shape relies on a continuous metric or qualitative terms. We aIso discuss two major model

rccovery schemes, bottom-up and top-down, used in the pasto The bottom-up approaches

2 Although Il major upect of thi" work is to recover the auperellipsoid modela. the ultimate goal is to derive a.
qualitative shape mode1 from the 8uperellip80id parametcrs. Thus. thcre is a difference betwecn thi8 work and othcrs
dealing with lIuperelliPl'Oid model recovery [94. 27. 123].
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FIGURE 1.4. A ~implified flow diagrn.m for infornmLion prm:~inK'

infer part models by collecting and grouping local featllrcs. In top-dowlI approaehes, glohal

shape eonstraints of part models are used to guide model seareh.

In Chapter 3, we present the motivation for and methodology of this thesis. Wc first.

summarise the RBC theory and its computational hypothcses. We then discllss some dif­

ficult issues in previous work on geon recovery, such as, inability of perfcct line drawing

extraction, nonuniqueness of geon definitions, instability of part segmentation, l:tek of ex­

plicit shape verification and insufficiency of using singlc-view data. We also dcserihe our

alternatives for dealing with these problems. General assumptions abolit objcct slmpes,

part shapes, part models and preproeessing for our approach are proposed and used ns

eonstraints for developing algorithms. A general framework in terms of:J. eonstrained opti­

misation is presented to solve the problem dealt with in this thcsis. We also make a C0I1I­

parison between our work and previous research in part segmentation, qualitative sh'LI>e

approximation, volumetrie models and part model rccovery.

Chapters 4 and 5 describe the details of our approach. A flow diagram of the pertinent

information processing is given in Figure 1.4. Singlc-view or multiview range data are

obtained by a laser rangefinder. Multiview range data are further rcgistered and intcgrated
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into a world coordinate system. Redundant data which are contained in more than one

view are rcmoved.

ln Chapter 4, we propose a new approach to 3D object segmentation into parts based

on a simulated electrical charge density distribution. In order to compute the distribution

numerically, we tessellate the object surface using a c10sed triangular me.<h and then apply

a finite e1ement method. A direct eonneetion graph based on the spatial relations betw""n

triangles in the triangular mesh is then constructed as a convenient coordinate system on

the object surface. Employing this graph, we detect triangles on part boundaries where the

charge densities achieve local minima. These triangles are deleted from the graph which are

then divided into a few subgraphs. ln this way. the object is broken into parts. Triangles

belonging to the same physical part are easily obtained by a connected component labelling

process.

In Chapter 5, we introduce a new approach to part model identification. We define

parametrie geons as object part models and compare them with Biederman's geons. We

perform the modeI recovery using an optimisation procedure and introduce a new objective

function for this purpose. We also discuss the characteristics of the objective function and

the optimisation technique.

In Chapter 6, we examine the systematic e.'l:perimentation we performed. 80th synthetic

and real data obta.ined from single and multiple viewpoints are used. We describe the

data acquisition system and specify ail user-defined parameters in our algorithms. For

part segmentation, we investigate the characteristics of charge density distributions over

2D contours and surfaces of 3D solid objects. Then we segment objects into parts. For

part identification, we obta.in parametric geon-based descriptions of muIti-part objects. We

also examine the efliciency of the objective function for modeI fitting, the discriminative

properties of parametric geons, the effect of object shape imperfection and the saIience of

muItiview data for shape approximation.

ln the Iast chapter, we summarise the thesis, discuss the contributions and limitations,

and point out sorne directions for future work.

4. Claims of Originality

This research explores computational strategies for qualitative shape representation of

a 3D object sensed by a laser rangefinder. Our approach computes a coarse object shape

description by (1) segmenting an object into parts based on physics, and (2) representing
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each part by a qualitative shape type and its quantitative size. po&' aul! deformatinu iufnr­

mation. This kind of description supports efficient object recog~itiou whieh woull! h,' uspful

for an autonomous agent carrying out complex tasks.

The contribution of this thesis is a new paradigm for qualitative volumetrie shap,,­

based representation of 3D objects in range images. The major coutribution this rl'St'ard,

makes to knowledge in the field of computer vision is a physics-based approach 1,0 ohj,oet

segmentation into parts. It is based on an analysis of the simulatcd clectriral cilarge de/lsity

distribution on tile object. To our knowledge. this is the first time such au analogy has l",en

used to characterise an object's shape and segment it into parts. This approach provid,,,, a

superior alternative to traditional geometry-based approaches and creates a new dircoction

for object shape representation.

The main contributions of our research are as follows:

• Shape Characterisation We propose a novel physical property. tilc simulatcd cll'r­

trical charge den..<ity distribution, to characterise three-dimensional object shapes.

• Part Segmentation We segment an object into parts at the part boundary poinL~.

which are characterised by the local minima of the simulated electrical charge den­

sities.

• Model Recovery We define the part models, parametric geons, by explicitly speci­

fying the qualitative shapes of part modeJs and recover the models by a (fircet .-Iw/Je

comparison.

• Implementation and Evaluation We successfully obtain parametric geon-ba.~

descriptions of objects. We a1so examine properties of charge density distributions

over 2D contours and 3D surfaces, and investigate the quality of mode) recovery

affected by different objective functions, shape imperfections and amount of input

data.

To summarise, this thesis explores computational strategies for obtaining a qualitative

shape representation of a 3D object sensed by a laser rangefinder. We propose a new ap­

proach to object segmentation into parts and part model recovery. The charge density-bas<.'<!

segmentation is a novel computational paradigm for part segmentation and overcomes sorne

of the difficult issues which are characteristic of traditional approaches. Our approach to
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mode! rccovery performs explicit shape verification by taking advantage of the global shape

constraints provided by parametric geons, thereby achieving reliable shape approximation.

These will be described in detail throughout this thesis.
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CHAPTER 2

Related Work

ln this chapter, we will first survey previous rescarch on part-base<! object represcntation.

We particularly focus on three topies: (1) part segmentation, (2) volumetrie part models.

and (3) part model recovery. We do not intend to describe in detail the individual contribu­

tions on these topies, but prefer to classify different approaches into categories and evaluate

the methodology in each one. The related work on charge density computation and surface

triangulation is briefly reviewed in Chapter 4. A comparison between our work and the

previous research discussed in this chapter is made in the ne.'l:t chapter.

Before reviewing the previous work, we specify certain terminology relate<! to the con­

cept of dimension as used in this thesis. GeneraIly speaking, the dimensionaIity of an entity

is referred to as the domain of that entity. Accordingly, 3D data are a collection of discrete

samples, d; E Jél, i = 1, ..., M, which define certain positions on the object surface. 2D

data are indexed by a pair of variables and lie in a plane. Range data are a set of 3D data

which are obtained from range images and which can be aIso indexed by a 2D integer grid

of the range image. An object surface is represented by a set of 3D data. A 3D object is a

connected, bounded space enclosed by its surface. A 2D object is strietly defined in a 2D

domain, such as a planar closed contour.

1. Part Segmentation

The problem of 3D object segmentation into parts is to decompose the complete object

surface into different meaningful regions. A more formai definition of image region segmen·

tation is given as follows [64, 79]: Let X be the sampling lattiee, the domain of the image

data, I(i,j). A logical predicate P(.) is defined on the subsets Sk of X.

DEFINITION 2.1. A segmentation of X is a partition of X into subsets or regions Sk. k =
1, .., N for sorne N such that
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.'J. P(Sk) =TRUE

4. P(SkUStl =FALSE
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every pixel (i, j) must he in a region

regions must not overlap for ail k # 1

P is the evalualion of the region property for each k

adjacent regions must have different properties for ail k # 1

the shape of the partial surface is similar to a part model

this surface is not similar to other part models for ail k

global shape verification

•

This definition was originally proposed for the problem of 20 image segmentation. In

this case, the predicate P(·) was defined for image intensities. W,. believe that it can also

he applied to other segmentation problems if the domain of the image data and the logic

predicate are generalised. For example, if we use an appropriate domain for 3D data and

apply P(.) to the object surface, the definition will apply to 3D object segmentation.

Various part segmentation strategies differ fundamentally by how they utilise different

predicates P(·). Thus in our discussion ofprevious research, we will consider the underlying

data domains and the evaluation of part properties. Note that we only discuss segmentation

of 3D objects into parts. Reviews for 20 objects can he found in [114, 117).

1.1. Shape-based Approaches Shape-based approaches 1 decompose objects into

parts according to the similarity hetween the shapes of part models and object parts. Let S

he a set of data points representing the surface of an object. Let M = {Mi, i = 1, ..., Nm } be

the set of part models, which are known before segmentation; here Nm is the number of part

models. M' is defined as a collection of individual Mi'S which, when combined, constitute

the complete object. Let Y be a measure of the similarity between Mi and Sj C S, where

j =1, ..., N•. Let f3 he a tolerance threshold associated with the shape similarity measure

Y. A logical predicate P(·) is defined on the S and M':

DEFINITION 2.2. A shape-based segmentation ofSis a replacement ofS with M', such

that

J. for some i,j, Y (Sj, Mi) < {3

2. for ail k # i, Y(Sj, Mk) > {3

3. for M', P(M',S) =TRUE

We assume that M' is the result of segmentation and the spatial relationships between

parts are implicitly contained in M'. An important aspect of this kind of approach is that

part segmentation and part identification are performed simultaneously. An example is

presented in Figure 2.1. Before segmentation, it is assumed that object parts are defined

by model shapes in the set M, such as a cylinder, a cuboid and a cone. Since the shape of

1Thel'C are a1t'O rerefftd to in Iiterature as primitive-based or region-baaed approac:hcs.
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FIGURE 2.1. Shape-bued lICgmentation. The object Ï1l t'Cgmented into two PArt"- the cylindrr
ahown shaded and the cuboid "hown lU' Do line drawingtt.. The "haJ)O' of th~ p:uU lLtC eon"ÎMtrnt
with prcdcfined part modcls.

a subset of the object surface (the shaded portion) is the same as a cylinder, the unshadcd

portion is the same as a cuboid, and the combination of the two with the appropriate spatial

relation is similar to the shape of the entire object, we can say that this object has bccn

segmented into two parts, a cylinder on the top of a cuboid.

Several shape-based approaches have becn propoged which use hypothcsis-and-verification

strategies [90, 84, 94, 92, 34, 42, 51, 62, 124, 31, 11]. They first generate a hypothcsis

of a configuration of an object compoged of part models, assuming that the shape of each

part is the same as that of a mode!. Secondly, they evaluate a measure of the similarity

between the hypothesis and the rlal object shape. If the measure is worsc than a presclectcd

threshold, another hypothesis is generated and evaluated until the similarity measure is less

than the prese1ected threshold. The last hypothesis is then adopted as the dcsircd object

segmentation.

This kind of approach performs object segmentation into parts directly using part

shapes as constraints. It is particularly advantageous when part boundaries arc locally am­

biguous, for example, the "elbow problem" given in [60] (sec Figure 2.2). In this case, part

shape plays a crucial role for decomposition because the results of any segmentation arc

ultimately verified by the part mode!s [1]. Sorne researchers argue that when image data

are incomplete and imperfect, object shape itsclf is necessary to achieve good segmenta­

tion [109, 102]. That is, scene segmentation and shape represcntation are interdependent.

However, from a practical point ofview, this approach is more complex than boundary-bascd

approaches (sec Section 1.2). This is because one must determine not only the locations

of parts but also their shapes. In contrast, boundary-based methods first determine the

locations of the parts and leave part identification ta the following stage. Another problem
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FIGURE 2.2. The elbow problem. On the front flat "urfa.c:e or the abject, there ill no lOCAl
indication Mhowing how the MUrfllA:C can he lW!gmented into parU. The duhed linet& indicate three
poMible options.

with thcse techniques is the possible non-uniqueness of the decomposition. This is because

the model shape information only provides the necessary condition for segmentation. For

example, in Figure 2.1, it is true that one part is a cylinder. However, two cylinders with

the same diameter (one on the top of the other) can aIso make up the same part. If the

model shape was not very similar to the actuai part shape, the problem of nonuniqueness

would he worse. Additionai constraints and further corrections are then required (62, 124].

Another type of shape-based segmentation uses an aspect hierarchy of part shapes (41,

39, 101]. Thcse methods aIso commonly employa finite set of distinctive part models.

Each model exhibits a restricted numher of configurations of surface patches in ail possible

views. Thus, for ail models, the number of surface configurations in ail possible views is aIso

limited. The procedure is to first identify surface patches using region growing (61] or edge

detection (30] and then group surface patches into a potentiai part according to possible

surface configurations. For "clean" image data and perfect object shapes, this approach

would he efficient. However, if image data contain noise and object part shapes are not

exactly the same as that of the models, errors in surface patch segmentation and actuai

surface combinations will cause incorrect part segmentation. This kind of approach cannot

deai with the elbow problem shown in Figure 2.2 because the front surface which belongs

to different parts will he treated by this approach as the surface on one abject part.

1.2. Boundary-based Approaches This approach uses a predicate P(·) ta find

abject part boundaries instead of part shapes. The predicate defines the part boundary,

permitting us ta extract the boundary points and divide the surface data into different sets,

each of which corresponds to one part. Let S be the set of data representing the surface of

li



•
parabolic lines

1. PART SEG~IEj\;TATtOj\;

'--_- line of negative principal
curvature extrema

FIGURE 2.3. Pambolic lino and nega.tivc curva.ture extremL PMlLbolic linCM dh'ide the object
into two partI' and a connecting region. The negative cunrature extrema ~pAmte the object inlo
two part!. which are eonsi~tent with human intuition.

an object and Si C S, i = 1, ..., N be a part, a subset of the object surface. Let Sb C S be

the set of data points on the part boundaries. A predicate P(.) is defincd for part boundary

points:

boundaries

eva/uation of boundary points

Sj is any subset of object surface be/onging ta a part,

surface points on parts do not be/ong to boundaries

difJerent subsets of abject surface be/ong ta different parts

data points on part boundaries and on parts do not over/ap

every data point must be either on part... or on part

./. P(Sb)=TRUE

5. P(S - Uf:t,i;<j Si)=FALSE,

DEFINITION 2.3. A boundary-based segmentation of S i.. a partition of S into Si, i =
1, ..., N, such that

1. SinSj=O

2. SinSb = 0

3. (uf:t Si) USb = S

•

In the literature, there are two theories to define part boundaries. Koenderink and Van

Doorn (72) have proposed parabolic lines as part boundaries. At the parabolic line, one of

the principal curvatures (89) of the surface changes from con"''''' to concave. That is, the

Gaussian curvature (89) at the parabolic line is zero as shown in Figure 2.3. Such parabolic

lines possess several attractive properties. For example, parabolic lines do not intersect and

are always c10sed curves (72), which outline elliptic surfaces. However, parabolic lines may

not always indicate boundaries of actual parts [105). An example is given in Figure 2.4.

The parabolic line (the dashed black line) is contained in a single-part object and does

not lie between two perceptua.lly intuitive parts. Hoffman and Richards have also shown
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FIGURE 2.4. Th~ parabolic !ine t'hown by the bl3Ck dashed line is not li. boundary or two intuitive pArtl'l..

that Gaussian curvature cannot indicate part boundaries on cylindrical surfaces [60]. Also,

since this method is based on the classification of positive and negative Gaussian curvature

regions, it is not clear how to apply it to objects containing planar surfaces. Moreover, it

sometimes produces results which are not consistent with human visual perception of volu­

metric parts. For example, in Figure 2.3 the object will be segmented by this approach into

two parts, corresponding to two elliptical regions, and a connecting surface corresponding

to the hyperbolic region between the two parts. These three surfaces are separated by two

dashed lines. The theory does not indicate how to deal with the separating surface. Readers

are referred te> Rom and Medioni [105] who have performed part decomposition based on

this theory using range data as inp~t.

Hoffman and Richards [60] have proposed another criterion for defining part bound­

aries. They claimed that the mental concept of a part is based upon a particular regularity

in nature - transversality [56]. This theory states that when two arbitrarily shaped surfaces

are made to interpenetrate, they a1ways meet at a contour of concave discontinuity of their

tangent planes, as shown in Figure 2.5. Here two ellipsoids interpenetrate and their surfaces

meet at a contour of concave discontinuity of the tangent planes.

In fact, many objects actually contain parts which are joined smoothly as shown in

Figure 2.3. This can he viewed as a smoothed transversal intersection where the surface is

observed to have greatest negative curvature 2. Accordingly, the rule of part segmentation

has becn proposed as follows [60]:

DEFINITION 2.4. Minimum ruIe. Divide a surface into parts at loci of negative minima

of each principal curvature along its associated family of lines of curvature.

Figure 2.3 shows an example of loci of local minima of negative curvature by a dashed­

dotted line. According to the minimum rule, this object cao he segmented into two parts,

separated by this line of negative curvature minima..

21n 1989. Bennett. and HoH'man proved that Dcar the intersection contour, there a.re points oC arbitrarily large
ncgative cun'ature on the alightly-amoothcd aurface [11].
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contour of concave discontinuity
of tangent planes

FIGURE 2.5. Trantwe~ity.Two c11ipgoidlljoineci togcthcrcl'CD.tc n. contour of COnCIl\"C dif'con.
tinuity al thcir intenw:ction.

This part definition has been use<! for segmenting range images (49, 47, 134] 'Uld

2D [12], 3D [88]line drawings. The advantage of this approach when comparcd to tho.'iC

base<! on shape is that it is independent of the number and shape of the parts. The

transversality assumption implies that a part boundary is explicitly demarcated by surface

concavities. In other words, a part boundary must be a close<! contour of the principal

curvature minima. In this way, each individual part is completely separatcd by the part

boundary. Note that if a concavity does not exist where two parts meet, as in the "elbow"

problem shown in Figure 2.2, the segmentation algorithm will not he able to find the

boundary between these two parts. Therefore it could not separate them. In the case where

the part boundary is slightly broken, Lejeune and Ferrie [76] have use<! as putative parts,

regions which have positive principal curvature to interpolate the part boundary.

Ail boundary-base<! approaches are base<! on surface curvature which measures the

changing rate of the surface tangent plane in a neighbourhood. Its computation involves

the first and second partial derivatives of the surface. Thus, an assumption on smoothness

of the object surface is mandatory [14]. Since curvature computation uses local data and

the surface is represente<! by discrete data, the results are often very sensitive to noise and

data sampling errors. A smoothing operation on the range data is usually rcquircd [135].

Therefore, it would be desirable to develop a new computationaJ approach which does not

rcquire smoothing and is not very sensitive to noise and sampling errors. Moreover, all part

segmentation algorithms work on partially-viewe<! objects that cao he easily indexe<! by a
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20 image grid. However, if complete shape information has been obtained [128], a one­

to-one mapping from a 20 grid to surface points is rarcly obtained. Thus, a segmentation

algorithm whieh does not rely on a 20 grid is rcquired.

2. Part Models

By part models, we mean volumetrie primitives whieh describe shapes of object parts.

The models embody information about the spatial distribution of a shape [82] and repre­

sent the most intuitive decomposition of an object into parts. The volumetrie primitives

developed in previous research can be categorised as qualitative or quantitative (parametric)

models.

2.1. Qualitative Models Qualitative models do not rely on a fine metrie and pro­

vide distinctive shape characteristics whieh are useful for symbolic object recognition. Thcse

qualitative models differ mainly by the types of shapes and the specification of their at­

tributes. Ferrie and Levine [49] used ellipsoids and cylinders as coarse descriptions of object

parts. The axis lengths, position and orientation of parts were also provided by the part

models. Since only two shape types were used for the part models, this approach produced

only very coarse object descriptions. Shapiro et al. [115] have proposed stieks, plates and

blobs as 3D part models. Stieks are long, thin parts that have only one significant dimension.

Plates are flattish, wide parts with two nearly fiat surfaces connected by a thin edge between

them. They have two significant dimensions. Blobs are parts that have all three significant

dimensions. A few simple parameters, such as centre of mass, length, area and volume, are

also associated with each shape type. Thcse shape models are distinctive perceptually and

capture certain salient features of volumetrie primitives. This model emphasises volumetrie

information and contains no intuitive shape information.

Biederman [15] has proposed geons as qualitative part models. Geons are thirty-six

volumetrie component shapes3 , whieh are described in terms of four qualitative attributes

of generalised cylinders [22] as shown in Figure 2.6. It is claimed that thcse properties

can he readily detected by an analysis of relatively perfect 2D line drawings. Furthermore,

the geons can he differentiated in a 2D image on the basis of perceptual attributes that

are largely independent of viewing position and degradation. Psychological experimenta­

tion [18, 19) and computational frameworks [13, 41, 85] have provided support for the

descriptive power of such geon-based descriptions.

3Bicdennan later changed the number to twenty.four by merging two asymmctrical attributea [17]•
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FIGURE 2.6. Biederman·ll Geont'. The geonK are dellned in terrntl of three I"ttribut~ of their
crou-sections and one attribute of thcir axo.

The selection of the actual number of primitives is an open question. ln general,

the larger the number of primitives a system uses, the greater the descriptive power it

has. However, complexity also increases with a larger number. Clearly, there is also a

tradeoff between the descriptive and discriminative power of volumetrie primitives. There

are other systems which use subsets of Biederman's geons. Dickinson et al. [41] have

defined ten qualitative primitives as part models. They explicitly specified the properties of

the volumetrie primitives, for example, rectangular or elliptic instead of straight or curved

cross-sectional shape. The property of the asymmetrical cross section was not included

in their models. Raja and Jaïn [lOI] have employed 12 primitives by eliminating the

asymmetrical property in Biederman's geons.

•

2.2. Quantitative Models ln contrast to qualitative models, quantitative models

provide metrics or parameters to control model shapes and attributes on a continaous

scale. Binford [22] first proposed generalised cylinders as object part models. A generalised

cylinder is the volume swept out according to a rule by an arbitrary planar shape (the

cress-section) moving along a 3D curve (the axis). The axis, the cross section and the

sweeping rule are parameterised individually. This formalism has been accepted as a useful

volumetrie primitive for a wide variety of shapes [3, 87, 125, 121]. However, generalised
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cylinder,; are not unique. There exists a large number of descriptions corrcsponding to one

volumetric shape, depending on how the ;;xis and cross sections are selectcd. Thus the usage

of generaliscd cylinders has becn rcstrictcd to certain su bsets of the model, for example.

straight and homogencous generalisc<i cylinders (SHGC) [113]. Accordingly, the shapcs

of object parts are often aS5U1t'cd to be consistent with the shapcs of the more rcstrietcd

SHGC.

Pentland [93] has proposed the use of superellipsoids4, whieh are a parameterised family

of closed surfac'!S [51, 8]. Superellipsoids and their normals are defined parametrically as

follows [8]:

(2.1)
[

x('1,w) ]
x('1,w) = Y('1,w)

=('1,w)
[

alcos" '1COS"W ]
= a2cos(J 7/Sin(.2w

a3sin" '1

(2.2)

'Ir 1i
-- < '1 < - - r. _< w _< r..2 - - 2

Here '1 is a north-south parameter, like latitude, and w is an east-west parameter, like longi­

tude. El is the "squareness" parameter in the north-south direction; E2 is the "squareness"

parameter in the east-west direction. ab a2, a3 are scale parameters along the x, y, =axes,

respectively. Superellipsoids can be also expressed in the form of an implicit equation as

follows [8]:

(2.3) fi X 1

2/
" 1 y 1

2/
") ',l'. 1=1

2/
" -

\
- + - + - -1
al a2 a3

•

The atIvantage of adopting the superellipsoid model is that by using only two more param­

eters than ellipsoids, it can describe a large variety of volumetrie shapes.

Hyperquadrics [74] and fourth order polynomials [70] employ parametric equations and

can also be used to describe a large number of volumetric shapes. However, the parameters

obtained are not intuitively related to the object shapes. The number of degrees of freedom

associated with these two models weakens their uniqueness in describing individual object

classes.

4Supcrellipl'Oidl are a tlut.et of the claN of "upcrquadriea [8] and are also referred to as lIuperquadriea in the
litcrature.
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Terzopoulos et al. [132) have proposcd the .<ymmclry-.<ccki71g dcfor1llnblc "ICK!rI whkh is

constructcd from generaliscd splines. This physics-bascd modd is net il" in t.h<, s<'ns<' t.Il:lt. thp

model continuously reacts to external forces prodnced by the imag<' data. ~Iodl'i n'cm'pry

is performcd by applying forces to modcls in space so that the shape of it.s proj<'ct.ion ont.o

the image plane is consistent with an object of interest. This mod<'l is a pow<'rful Il\<'ans of

describing the fine details of irregular objects. However, the solution dep<'nds on th<, init.ial

estimation and does not provide unique information about the volnmetric shape. Following

this work, Meta:I:asand Terzopoulos [133) have further devclopcd adeformable sllperqlladric

mode! which provides both global and local deformation information. AIso, the rcslliting

models are not unique with respect to object shapes since dilferent combillations of local

and global deformations can describe the same shape.

Pentland [96) has proposcd an alternative physically-bascd model inspire<i by 1Il",!al

analysis. The modal representation yields mode parameters which do posscss intnit.ive

interpretations of object shapes. However, without the higher modes and special care t.aken

with respect to the correspondence betwecn data points and nodes, it is difficnlt to represent

objects with surfaces of high curvature.

No previous work has used part models that provide both qualitative symbolic shape

types and a quantitative formulation for each shape type. This kind of modcl can take

advantage of the merits of both qualitative and quantitative models. The parametric geOils

proposed in this thesis have this property.

3. Model Recovery

As discussed in Section 1.1, part segmentation and model recovery may be accomplishcd

simultaneously if the model shape is consistent with the part shape. This type of approach

has already becn reviewed in that section. Here we only consider approaches to model

recovery in which part segmentation has becn previously done. More prccisely, the problem

can be stated as:

PROBLEM 2.1. Given a set of image data of an object part, V = {d;, i = l, ..., N} C n3
, a

set ofpart modeis, M = {Mj,j = l, ..,' Nm } and a difference measure Y betwcen V and Mj,

part model recovery is the problem offinding a particular mode! Mj e M that minimi.<cs

Y(V, Mj).

Almast all techniques for part model recovery can be categorise<! as either bottom-up

or totHiown approaches. Bottom-up approaches take advantage of the small set of local

shape features of ideal models. They infer a model for a part by collccting and grouping
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(b)
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FIGURE 2.ï. Some impcrfect geon-like parU.

local evidence. These features can he shapes of !ine segments [13, 88) and regions [41),

curvature of surface patches [101), and the relationships hetween !ine segments and surface

patches. However, when there are variations in the part shapes, these approaches will fall

short. Figure 2.7 shows some examples of imperfect geon-!ike parts. Geon models cannot

he uniquely determined from these part shapes. ln (a) the cross section boundary contains

both straight and curved portions; in (b) the axis is actually straight but a curved axis

would he inferred based on information obtained from the object silhouette; in (c) the

part can have either a constant or non-constant cross section depending on how the a:as is

selected. Since none of these shapes satisfies an exact geon definition, it is very difficult for

a bottom-up approach to determine an appropriate geon label.

ln toIK!own schemes, part models are derived by fitting models to ail data points [123,

153, 70, 74, 96, 133, 100). ln this case, parametric models of parts are e.xp!icitly defined

hefore model recovery. These models provide global shape constraints for model recovery.

An optimisation problem is formulated to minimise the difference hetween a part mode!

and part data. The advantage of such an approach is that it does not critically rely on

local support. Also, the imposed global shape constraint helps to reduce the influence of
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missing data. image noise and minor variations in object shape. In this way. approximaIt'

shape descriptions of objects can be obtained efficiently. thereby bypa.<sing some of th..

cornmon error-prone processing steps such as building point-by-point descriptions of lin""

and surfaces.

An appropriate objective function is important for optimisation prorednr"". Solina and

Bajcsy defined an objective function based on the relatÎ\'e position of a data point respt'Ct

to the inside or outside of the model surface [123]. Gross and Boult propo..<ed an objecti\"('

function based on the mean distance between each data point and the corresponding point

on the surface of the model along a line connecting the data point with the centre of the

model [55]. After carefully studying four kinds of objective functions, they pointed out that

their objective function has significant advantages over the others in terms of convergence

and accuracy. Yokoya et al. have introduced a two-term objective function [153]. The first

term is the sum of the squared distance between the data point and the model surface.

The second term is a measure of the squared difference between the normals of the object

surface and the model surface. The solution of the resulting nonlinear optimisation problem

is stabilised by introducing the second term. This is because the surface normal is invariant

to scale.

Due to the complex shapes of object parts, the objective function for model fitting

usually contains many local minima. A straightforward gradient decent method for func­

tion optimisation will often fail to converge to the global minimum. 1'0 counteract this,

some researchers have used a nonlinear least squares minimisation (Levenberg-Marquardt)

method, adding random walks to escape local minima [55,123,131]. In sorne ca.o;es, where

the properties of the objective function are known or an initial parameter estimation close

to the global minimum in a nearly convex region can he obtained, this approach will usually

take much less time than general global optimisation methods. However, with an inappro­

priate initial guess, the algorithm may get stuck at a local minimum. This is because global

convergence cannot be assured. Yokoya et al. [153] employed a global optimisation tech­

nique, simulated annealing, whü8e global convergence has been proven theoretically [52].

However it requires a long computational time to find the optimal solution.

Geons can be also derived from quantitative models. Raja and Jain [100] have explored

the recovery of 12 geons from single-view range images by classifying the actual parameters

of globally-deformed supere1lipsoids. They obtained good results using synthetic data and

rcal objects with smooth surfaces. However, they also found that the estimated parameters

were extremely sensitive to viewpoint, noise and objects with coarse surfaces. One of
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the reasons for their poor results in these latter circumstances is that superellipsoids are

nonunique and cause uncertainties in the estimated mode! parameters. especially when

representin); noisy and partially-viewed data [140]. Certain parameters in globally-deformed

superellipsoids tend to interact with each other in ways that make the model difficult to

control.

An interesting addendum to superellipsoid parameter classification is provided by Arbel

et al. They have proposed a method for recognisi<l9 typical superellipsoid shapes from mul­

tiview range images [4]. A conditional probability density function is derived by combining

model information with a priori context-dependent information, the parameter estimated

for the unknown object, and the uncertainties of the parameters. They showed that recog­

nition performance is nearly perfect when complete object surface information is available

to the algorithm, and that it falls off when only partial information is known. Since they

used objects that were regular superellipsoids, they did not deal with tapered and curved

shapes and also did not investigate the issue of qualitative shape approximation ofimperfect

objects.

4. Chapter Summary

This chapter has reviewed previous work on part-based 3D object representation. We

have concentrated on threc subjects: (1) object segmentation, (2) part models and (3) model

recovery. Object segmentation has becn accomplished using both shape- and boundary­

based approaches. We have seen that ail boundary-hased segmentation approaches have

used a particular geometrica1 feature, the surface curvature. However, surface curvature

computation is known to be extremely unstable. Part models are categorised as being

qualitative and quantitative. Qualitative models are defined in terms of a finite number

of distinctive shape types. Quantitative models are defined in terms of numerical metrics.

A stratcgy for part recovery usually depends on how the part model is defined. Most ap­

proaches for recovering qualitative models follow a bottom-up strategy, which have shown

disadvantages in handling imperfect shapes. The techniques for quantitative shape re­

covery have sorne useful properties. A computation of qualitative shape primitives from

quantitative models has indeed been implemented by classifying superellipsoid parameters.

However, the approach did not work well for noisy and coarse-surfaced objects. In the next

chapter, we describe the motivation and methodology for our research, and in the following

two chapters, present our techniques in detaiI.
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CHAPTER 3

Motivation and Methodology

We begin this chapter with a summary of the Recognition-By-Components (RBC) theory.

Then we discuss certain limitations of this theory, as weB as previous computational im­

plementations, and describe the methodology proposcd in this thesis. Thcsc i&~lIcs inclllde

the difliculty of line drawing extraction, ambiguous definition of geon shapcs, scnsitivity

of model recovery to the amount of input data and robustncss of part segmentation. Wc

also elaborate the general assumptions made in our rcsearch and present the general frame­

work of this thesis. Finally we make comparisons of our rcsearch with previous work on

part-based, especially geon-based, representat;..ms of 3D objects.

1. Overview of RBC Theory

Starting with range data, our objective is to compute part-based descriptions of :lD

objects in terms of a finite number of volumetrie primitives. This is motivated by a theory

of human image understanding, Recognition-by-Components [15]. Inspired by speech per­

ception, a process mediated by the identification of individual clements, phonemcs, from a

relatively small set of primitives, this theory is meant to account for what can he called

primaI access: the first contact of perceptual input from an isolated, unanticipated object

to a representation in memory. With support from psychophysieal experimentation, RBC

posits that:

(i) Objects can be efliciently represented by a set of natural components, the parts;

(ii) Detection of these components from 20 object line drawings is relatively invariant

over viewpoints, object size and line drawing degradations;

(iii) If the components in their specified arrangement can he re'ldily identified, object

recognition will he fast and accurate.

In addition, this theory hypothesises that:

(i) Parts are segmented at points of deep surface concavities;
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(ii) Thirty-six geons are derivcd qualitatively using four attributes of generaliscd cylin­

ders. The features can be detectcd from 2D line drawings bascd on live non­

accidentaI and detectable properties of cdges in images [81];

(iii) The geon description includes shape labels, relative size and aspect ratio of each

geon, as weil as the spatial relationships between geons.

RBC's central contribution is its proposai for a particular vocabulary of components de­

rivcd from perceptual mechanisms and how it accounts for rapid object recognition using

an arrangement of these components. Since RBC was introduccd to the computer vision

community, it has motivated considerable research [13, 68, 41, 38, 44, 65, 88, 101, 116,

139, 145]. However, it is realized that there exist certain limitations on both the theory [75]

and its computational implementation [36]. In the next few sections, we discuss sorne of

these issues and descrihe the methodology adopted in this thesis.

2. From Line Drawings to Range Data

RBC assumes that the line drawings of an object can he obtained by applying an

edge detection technique to the intensity image of the object. However, line drawings and

edges are not exactly the same in computational vision. Edge detection e.'Ctracts curves

in the image where rapid changes occur in intensity [63]. The detected edges may be

due to the changes in surface orientation and reflectance properties, colour, texture, object

occlusions, shadows and noise. On the other hand, line drawings convey information about

object surface discontinuities in orientation and depth. In practice, "c1ean" line drawings

are rarely obtained from edge maps because of insufficient constraints for extracting line

drawings. Only with carefully selected objects and weIl controlled lighting conditions can

perfect line drawings he produced. This is equivalent to imposing a constraint on the image

acquisition process for the extraction of the desired properties of the objects. This can he

readilyaccomplished in machine vision by using an alternative sensing device, such as a laser

rangelinder [69]. With such a range sensor, the explicit 3D information about an object

surface can be directly obtained while other effects due to colour, texture and shadows are

inhibited. An edge-junction graph containing the surface discontinuity information can he

e.'Ctracted relatively easily from range images [54) and geon-based descriptions can be built

from the graph [88]. From a practical point of view, raw range data provide 3D surface

information and can he directly used for object segmentation and model recovery. Since

geons are volumetrie shape models derived from generalised cylinders [22], it should not

matter whether the input data are from intensity or range images. Renee, our approach
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FIGURE 3.1. Ambiguou~sean 8hftpe!lo. Two viflua!ly diffe~nt 8htl.~ in (no) Md (b) hn:"'e the
lUUIle sean definition.

employs a laser rangefinder and uses surface information to derive part-bascd descriptions of

objects. Other researchers have also used range data for gcon recovery [101, 88, 100, 39).

However, their techniques differ from ours (sec Section 9).

3. Unambiguous Definition

There are shapes that are quite different in appearance but which have the same shape

type in terms of the RBC's geon definitions. Figure 3.1 shows two tubular shapcs having

square and hexagonal cross sections, respectively. Although they arc perceptually dilferent

in shape, they have the same geon definition -namely straight a.xes, straight cross section

edges, symmetrical cross sections and constant cross section sizes. This is causcd by the

ambiguity of the geon definitions in the RBC thcory. Becausc the gcon definitions arc im­

portant constraints for designing the gcon recovery systems in sorne cases [13, 88, 101),

this ambiguity makes the design of such systems extremely diflicult. ln practice, ail com­

putational implementations have regarded the shape in Figure 3.1 (a) as the default shape

of this type of geon. In addition, geons are a subsct of generalised cylinders [22), whosc

description is usually nonunique (sec discussion in Chapter 2). Thus, strictly speaking, the

geon definition of Biederman is insuflicient for developing gcon recovery algorithms and

more constraints are required. Our approach is to make cxplicit the specifications for the

qualitative shapes of models, thereby ensuring unambiguity in model recovery. Wc note

that the qualitative part models used by Dickinson et al. [41) were defined in terms of

explicit specifications of the attributes of volumetric shapes.

4. Shape Approximation

Nearly all of the work inspired by RBC has focused on the recovery of gcon models

from objects consisting of perleet geon-like parts. In these cases, the input was the edge map
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FIGURE 3.2. Pcrfect and imperfect geon Khnpe. (a) A block who8e Khapc iK D. perfect geon.
(h) A block with minor l'lhape virationtlo depicting an imperfect geon·likc t'hape. Note that h11 geon
propertiO' of the block in (a) do not cxiMt for thiM. "hape.

or line drawings. The geon shapes were defined in terms of attributes. The computation

of thcse attributes was constrained by local evidence. As such, part descriptions were

determined in a bottom-up fashion, inferring global properties by aggregating local features.

This type of approach cannot succeed when object features do not fully satisfy the e.'i:act

definitions of the geons. This is illustrated in Figure 3.2. The shape of a perfect block

conforms weIl to the definition of the geon, which is specified by a symmetrical cross­

section, straight cross-sectional edges, a constant cross-sectional size and a straight a,'i:is.

If minor shape variations are introduced to the block as shown in Figure 3.2 (b), aIl of

the geon properties the block possessed do not exist for this shape. It is clear that object

shapes in the real world vary in many ways and that image data are often contaminated by

noise. However, the number of geons is finite and can never completely depict ail possible

shape variations of parts. Thus, the process of finding geons for imperfect data of a non­

ideally shaped object must focus on shape approximation, that is, deriving a simplified and

compressed description in terms of perfect models. According to RBC [15], "the memory

of a slight(sic) irregular form would be coded as the cIosest regularised neighbour of that

form". In order to accomplish this, we define our models in terms of implicit functions, fit

these models to data of objects having imperfect geon-like parts, and then select the model

for the data based on the minimum fitting residual. In this way, we actually impose global

shape constraints during the model recovery procedure 50 that the result must be one of

the predefined shapes. In this way, the purpose of the shape approximation of imperfect

geon-like parts by perfect models is achieved.
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5. Amount of Information

RBC hypothesises that any gcon is rapidly identifiable and invariant o\w vil'wpoints.

This assumption is reasonable in many sitnations where a fair amount of shapl' information

about the object and certain constraints on object shape are availab1<'. Ilowevl'r. for ~enl'ral

single-view data, complete shape information of a part will never be available due to sl'If­

occlusion. Palmer et al. [91] studied the perceptibility of various object.~ presented in many

views. They showed that their subjects clearly preferred a three-quarters frontal view oVl'r

ail others for recognition. This study revealed that the amount of information present for

recognition varies in different views. RBC also concurs with this view that object.~ l'an bl'

more readily identified from certain orientations than others [15].

A few research results have pointed out the effect of the amOllllt of data on Sl'nsitivity

when fitting quantitative models. Boult and Gross [27] concluded that single-view r:Ln~e

data may not be sufficient for reconstruction of superellipsoids without additional a.~snmp­

tions and multiview data yield much better results. In the study of the discriminative ability

of superellipsoid parameters, Raja and Jain found that estimates of mode! parameters are

highly dependent on the viewpoint [101]. More extensive studies carried out by Whaite

and Ferrie have demonstrated the nonuniqueness of fitting superellipsoids to single-view

range data [140]. They have shown, by an example, that the lack (lf a unique fit l'an be

attributed to the e."<tra degree of freedom allowed by a superellipsoid shape parameter. Thus

many models can be fit to data resulting in almost the same fitting residuals. Since there

is generally no a priori knowledge of which view should be taken, the authors suggested

two basic alternatives for dealing with the ambiguity ofinterpretation: (1) impose further

constraints on the superellipsoid models or (2) seek additional data by minimising sorne

measurement of uncertainty in the model. In accordance with their suggestions, we have

postulated the parametric geon model by restricting the superellipsoid shape parameters.

We also investigate the uniqueness of parametric geon recovery with both single-view and

multiview data when the shape of ohject parts is not fully consistent with any parametric

geon.

6. Part Segmentation

RBC proposes that objects he segmented into parts at dcep surface concavities. This

boundary-based segmentation scheme was originally propose<! by Hoffman and Richards [60].

The reason for this approach is that it conforms weil with human intuition about parts,

exploits a property of nature - transversality, and does not require a priori knowledge of
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part shapcs - even in the case of a nonsense object [15]. il. common tactie in this kind of

segmentation is to compute surface featurcs whieh contrast boundary and non-boundary

points and decompose the object into parts at boundary points. The key issue here is how to

rcliably locate the part boundarics. To our knowledge, the only r"ature used in ail previous

boundary-based segmentation approaches [49, 47, 76, 105] is surface curvature, whieh is

defined in terms of differential geometry [89]. However, surface curvature computation has

proven to be unreliable [134]. Contrasted with this strategy, we present a new paradigm for

part segmentation whieh employs a simulated electrical charge density as a surface feature.

We regard an object as a physics-based model rather than a geometrieal one and compute

a physical feature which readily indieates the part boundary points. The advantage of this

approach is that the computation of the charge density does not require an assumption on

surface smoothness and is robust to noise. Therefore, object part boundaries can be reliably

located.

7. General Assumptions

Several assumptions are made in this thesis. These provide the constraints necessary

for developing the algorithms and the basis for comparison with other related work.

Objects: We use isolated objects composed ofeither one or multiple parts. Ail objects

are simply connected. Object surfaces need not be smooth. For multi-part objects,

parts must be completely separated by relatively sharp surface concavities whieh

delineate part boundaries. Each part boundary must be a closed 3D curve on the

object surface.

Part Models: The set of part models consists of seven volumetrie primitives whose

shapes are distinctive and are explicitly represented by restricted deformed superel­

lipsoids.

Part Shapes: The shapes of object parts and single-part objects may vary from per­

fect geon shapEs. These variations should be moderate and a human should definitely

be capable of categorising their qualitative shape.

Input Data: The input data are obtained by a laser rangefinder which scans objects

supported by a turntable. Multiview (four views) data and single-view data are

collected. No smoothing operation is applied to the range data. Segmentation of

the object from its background should be simple. A triangular mesh which tessellates

the object surface must be readily computed from bath multiview and single-view

data for charge density computations.
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Evaluation: The performance of the algorithms is evaluated through systematk l'X­

perimentation on both synthetic data and real data. Comparisons with both 1.1"'0­

retical results and subjective criteria arc made.

8. General Framework

ln this section, we provide a formai description of the task performed in this thesis. Ll't.

xe R!3 be a set of input data of a multi-part object. The index i =1, ..., N, represents tlll'

shape types associated with a part model, where N, = ï is the totalnumber of shape types.

Let "" E {O, 1, ...} be the number of recovered part mode!s with shape type i, where j(i) is

the index of "'" Thus, the total number Np of parts or recovercd modcls for the object is

N,

Np = LOI•.
i=l

Let g. be the measurement of the difference betwccn Xj(') C x, a subset of input data., and

/3j(')' the j(i)th part mode!. Xb C x is a set of points on the associatcd part boundaries.

A predieate P(.) is defined on part boundary points. The task of parametric gcon-basc<1

representation l'an be stated as:

PROBLEM 3.1. Given x, g., N, and P(·), find a partieular set of Xb, Xj(')' "'. and /3j(') whieh

minimises a junetion

(3.1)

subjeet to:

Nt 0,
F(xj(,), "'" /3j('» = L L g. (Xj(')' /3j(')'

'=l j(')=l

(i)

(ii)

(iii)

(iv)

(v)

(Uf::l Uj{')=l Xj(.») U Xb = x,

Xj(') n x,,(m) = 0,

Xj(') n Xb = 0,

P(Yb)=TRUE,

P(Yp) = FALSE,

V: i 'ft m or j(i) 'ft n(m),

V: j(i),

V: Yb EXb,

V: Yp E Xb·

•

The eonstraint (i) ensures that input data must be either belong 1.0 a part region or a part

boundary. The eonstraint (ii) says that part regions must not overlap. The eonstraint

(iii) means that there is no over!ap between part boundary regions and part regions. Con­

straints (iv) and (v) are l'valuations for data points on boundaries and parts, respectively.

The funetion given in Equation (3.1) measures the differenee between the objeet model, a

eombination of al! part models, and the object data, in which a particu!ar data set Xj(') for

a part mode! /3j(') satisfies the eonstraints from (i) to (v)•
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By solving the above optimisation problem, we can obtain the total number of parts.

NT" the shape types i for each part, j(i). and their mode! parameters, ;3j(i)' ln the actual

implementation, we split the procedure into two consecutive stages: (1) object segmentation

(solving for Xb, Xj(i) and Np) and (2) part identification (solving for /3j(i»)'

9. Comparison with Previous Work

This thesis differs from previous research in the following ways.

9.1. Physical Model Our part segmentation strategy is consistent with boundary­

based approaches [60]. However, unlike previous work, we employa physieal property, the

simulated charge density distribution over an object surface, to find part boundaries. Other

work on part segmentation [49, 43, 76, lOS) uses geometrieal properties.

Our approach has sorne distinguishing characteristics and advantages. Briefly speak­

ing, object segmentation into parts is a partitioning of the object surface based on surface

features. Surface feature detection has been traditionally dominated by curvature-based

approaches [14) because curvature directly reveals geometrical properties of surfaces. Since

the curvature computation is a differential operation, surface smoothness must be assumed.

This Iimits the power of the curvature-based approaches. However, a charge density com­

putation, which is based on integration, is applicable in general cases where smoothness of

the object surface is not required.

Another advantageous aspect of the charge density computation is its preference for

characterising surface properties of complete 3D objects. Curvature estimation for an object

surface embedded in a 3D Eudidean space requires a voxel-based coordinate system. Sinee

the latt...: involves a large amount of memory, a coarse resolution and an integer grid are

usually preferred. Because of the inherent noise in images and the quantisation of the coor­

dinate grid, curvature computations based on differentiation have proven unreliable [135].
They often need to be corrected by sophisticated analysis [110]. Alternatively, a larger

area or scale, may he employed to reduce noise effects. However, selecting a suitable scale is

in general a diflicult problem. Furthermore, a larger scale will increase the computational

lime. ln conlrast, our approach uses an integral equation rather than performing surface

curvature computations. Since the charge density computation uses ail data and these are

weighled by a distance factor, the influence of noise is reduced. Scale is not an issue in this

regard. The only scale that must he selected is the one associated with the size of the trian­

gles when pcrforming triangular mesh construction. The influence of this scale on the result

is much less than that of scale in the curvature computation. This is because the charge
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density computation is bascd on an integration m'N the global surfar" whi!" th" curmtue<'

computation is based on diffcrentiating loca! discret" data. Morco\'Cr, if laq~N sral,,:, 'Hl'

chosen for surface triangulation, I",,~ romputational tim" is r<'quir"d for th" dlarg" d,'nsity

computation. This is consistent with human pNception. That is, a human ,'an I"'rrpi,,,' tl",

coarse structure of an object much more rapidly than its fin" structur",

It is important to note that the charge density distribution is not <'qui"a!l'nt to t.11l'

surface curvature. Local minima of the charge density distribution pro"ill" only an ap­

proximation to the local minima of principal curvature for the objcct shapcs. Th" dlar~e

density distribution l'an only provide a measure of the contrast betwccn sllrfar" conea"it.y

and convexity while curvature actually determines absolute gcometrical information.

An alternate strategy for obtaining surface features is isotropie diffusion [151). Workin!;

in 3D Euclidean space, this approach simulates the propagation of a spccific numher of

l'articles among object voxels. At a certain intermcdiate stage of the diffnsion proe''S.~,

l'article accumulations at sharp surface concavities and convexities bccome significant. Thus

diffusion must be stoppcd before reaching the equilibrium state. This stoppin!; time is very

crucial and difficult to determine. If the diffusion process reaches equilibrium, the l'article

density is uniform everywhere within the objcct and therefore cannot indicate any specifie

property of the object surface. Another difliculty is that the stopping condition varies for

different object shapes. We note that, if diffusion is stoppcd at an inappropriate time,

the distinction between l'article densities at concave and convex surface points will not be

strong. In contrast, our approach evaluatcs the electrieal equilibrium, where charge densities

at concave and convex surface points are very distinct. In addition, the diffusion-b.'1sc<1

approach, whieh essentially solves a partial differential <'quation in 3D Euclidean space,

must work in a voxel-based coordinate frame. However, wc consider only the surface of the

object and do not need to perform computations within its interior, as shown in Figure :l.:I.

This produces a significant reduction in dimensionality and requires the manipulation of

many fewer unknowns.

Two papers [1, 2] on 2D shape analysis whieh intended to use the electrieal potential

have come to our attention, Unfortunately, they arbitrarily specified an <'quipotential line

as the initial condition of their algorithm, either on the image border whieh is far from

the conductor [1], or on the contour of a uniformly charged 2D object, whieh cannot be

in equilibrium [2]. However, in general the potential difference is dependent on the charge

density distribution. Only in the particular case of c1ectrostatic equilibrium can one state
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charge distribution space

particle diffusion space

FIGURE 3.3. Compari~n between the particle diffusion l'pace (the outer tlurfacc Md the inte.
Mor) and the charge distribution IJpace (the outer surface) for a ~lid ellip!K)id(~tion removed for
iIIU1'tmtion PUrpo8CIl. only).

that the 2D object contour is an equipotential !ine without knowing the charge density dis­

tribution. By fai!ing to determine the equipotential !ine based on the actual charge density

distribution, the resulting algorithms employed a nonphysical initial condition. Thus, their

method was physically incorrect. Nevcrtheless the results were quite reasonable but very

slow to compute. This is because the mechanism underlying their algorithm is similar to

the 2D diffusion-based approach [120].

9.2. Qualitative Shape Approximation Another interesting aspect of our system

is the ability to achieve qualitative shape approximation. This is a prerequisite for efficient

symbo!ic object recognition. This ability is a direct result of using global shape constraints

for models, an idea borrowed from the quantitative approaches. Such constraints are defined

in terms of implicit functions and restrict the models to a particular shape family no matter

how the input data vary. This significantly assists the process of shape approximation.

Most previous work using qualitative models cannot tolerate shape variations outside their

model classes [13, 41, 88, 65]. This is because they have creat'!d their part descriptions

in a bottom-up fashion, inferring global properties by aggregating local features. This

type of methodology is not robust when object features do not fully satisfy the original

definition of the geon features. It is a fact that geons are simple and regular volumes, but

objects in the world actually appear in a variety of shapes. Clearly, any computer vision

system which successfully recovers qualitative descriptions must address the problem of

shape approximation.

3i



•

•

~, CO~IPAHISO:-': WI111 l'HE\'IOI'S WOH"

We note that the only previously reportro attempt to perform qualitative shar" ap­

proximation is duc to Raja and Jain [100]. Theyexplorro the recO\wy of 12 ~''Ons from

single-view range images by cla..<.sifying the actual parameters of ~lobally-deformedsup"r"l­

lipsoids, base<! on the distance in Euclidean space. Although they obtainro 89% accur'\('y

for smooth-surfaced objects. they found that estimates may be very poor for parL< with noi,,'

or ~rough" surfaces. They also notiero some "strange effccL<" in that thcir major cla.<.<ili­

cation errors were due to misclassification of straight and curvro geon cros.<-s"ct.ions [101J.
We believe that this drawback is mainly causcd by the Euclidean distance m"a.<ure th"y

used for classifying part shapes. This can be easily ilIustrated in the 2D ca.<e wl"'ft, th"

gcon cross-section is a planar curve. Figure 3.4 shows a series of superellipscs. The shap"

parameter changes uniformly from 0.1 to 1. Accordingly, the shape changes gradually (row

by row) from a square to a circle. The number under each figure indieates the \':th,,, of t.he

associated shape parameter. If these shapes were to be classifie<! into two groups ba.«'d on

the Euclidean distance of the shape parameter, the top thrcc rows would be cla.<.<ified int.o

one group and the rest into the other. However, we c1early observe that the shapes in at

least the first four rows are more similar to the square than the circle. Thus, if the Euclidean

classification is applied to squared shapes Iike those in the fourth row, miscla.<.sificatiou will

occur. This example indieates that there is a significant difference in shape discrimination

between an Euclidean distance-base<! method and human perception.

Another reasan is the ambiguity between superellipsoid shapes and their a.<.<üciated

parameters, as noted by Solina and Bajcy [123]. For example, different parameter sets can

correspond to the identieal superellipsoid shapes. Therefore, extreme care must he taken

when using superellipsoid parameters for qualitative shape identification. In contra.<t, with

our method, we directly compare the difference between the shapes of the models and the

object part, and select the part model whose shape is mast similar to the objcct. Therefore,

our approach obtains shape approximations whieh are closer to the human intuition.

9.3. Parametric Geon Models We use a new set of volumetrie primitives whieh

have qualitative shapes and are quantitatively deformable in size, tapering rate and bending

curvature. This set of pararnetric gcons consists of a finite number of different shape types,

but their deformation property makes their shapes appear in many forms. Previous work

has becn restricted to either purely quantitative models - such as superellipsoids [123],

fourth-order polynomials [70] or hyperquadrics [74], or purely qualitative models, such as
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DDDDD
0.10 0.13 0.16 0.19 0.22

UDDDD
0.26 0.29 0.32 0.35 0.38

OOOOC
0.41 0.44 0.47 0.50 0.53

00000
0.51 0.60 0.63 0.66 0.69

00000
0.72 0.75 0.78 0.81 0.84

00000
0.88 0.91 0.94 0.97 1.00

FIGURE 3.4. CIBNlification of CfOII,8 aection» of objects. A l'Crie-. of shapol of a lIuperellip&e i5
givcn row by row. The ahape patameter of the 8upcrellip&e changes (rom 0.1 to 1 and con.~uently

iu ahape ~anga& (rom a t1quare: to a circle. The number under each figure indieatea the value of
the llhape parameter. The tuk il' to clutüfy thesc shape-. int:> two group.aquare-like tlhapcs and
circle-like t&hapa. If the cluaifieation wet"C' bued upon the shape parameter. the ahapell in the
fir'l't thrcc 1'0" would be claMified into t1quare-like shape&. However. human perception seems to
dUlÙe)" more alut.pct. into t'quare--like shape!'.
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geons 1. Parametric geons are defined in terms of implicit equations of globally d"form,,,1

superellipsoids. This formulation yields a global constraint which facilitat<'S mod,,1 r"cowry

from imperfect geon-like object parts. Shape constraints have also b.'Cn provided by olh<'r

quantitative models such as. superellipsoids. hyperquadrics and fourth-ord"r polynomials.

However. thcse constraints do not directly rcsult in qualitative shapcs. In order to conwrl

them into symbolic descriptions. further classification is needed.

9.4. Part Model Recovery Strategy We use a new stratcg,v to recover volumetrie

primitives. A fitting schcme is used to minimise an objective function which mea.~ur<'S a

property difference between an object and a mode!. This strategy for recovering parametric

geons is similar to that for other parametric primitives [94, 123, 74). However, there is

an additional requirement for parametric geon recovery. The proccss must also produce

discriminative information such that the resulting metric data can be use<! to postulate a

qualitative or symbolic descliption. Therefore, we combine model fitting and selection in

the model recovery procedure.

A new objective function has been defined which measures: (i) the spatial distance

between data points and the model surface, and (U) the squared difference between the

normal vectors of the mod~1 and object. This is different from another two-term objective

function [153), in which the first term is a squared distance. Our modification changes the

behaviour of the objective function, thereby enabling an efficient model fitting procednre.

Model litting is performed by minimising the objective function using a stochastic

global optimisation approach, Very Fast Simulated Re-annealing (VFSR), which statistically

guarantees linding the global minimum. Yokoyaet al. (153) employed the c1assical simulated

annealing technique to perform superellipsoid litting. However, the a1gorithm wc use is much

faster than theirs. This is because VFSR permits the 'temperature', a control parameter, to

decrease exponentially white the c1assicaJ simulated annealing can only decrease temperature

logarithmically in order to stochastically guarantee a global convergence.

The selection of the model which best lits the data is bascd on the fitting residuals,

rather than on the model parameters. Thus, using parametric geons and the proposed

mode! recovery scheme, we can robustly obtain qualitative shape descriptions from object

data even though object shapes do not exactly conform to the shape of parametric geons.

Dickinson et al. (39) have proposed a method for recovering volumetric primitives by

integrating qualitative and quantitative techniques. Using a range image containing perlcet

1A)though geon model. contain inronnation pcrtaining:o the _peel ratio and the r":lative Bize. they are d~ribr.d
in qualitative teI'ms. auch as ""much amaIlcr". 04approximatelyequa! to" and "much longer" (lS] .
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geon-like objects as input, they first recovered a qualitative geon-base<! mode! and then

fit a deformable superquadric to range data. Their geon models and syste:n output are

very similar to ours. However, the major difference betwœn their wor\: and ours is that

they compute qualitative and quantitative information in two consecutive step?, while we

derive both kinds of information simultaneously. They use model shape information derived

from the first step in the following fitting procedure. This shape information imposes

constraints on sorne model shape parameters such that model fitting can be performed

efliciently. However, such part shape information is not available in our case. Thus, global

optimisation for finding model parameters is necessary. In addition, their qualitative shape

recovery, which is a bottom-up approach [41], is problematic when an object containing

imperfect geon-like parts is analyse<!. In our approach, shape approximation can be achieved

and parametric geon-base<! descriptions can he computed from imperfect geon objects.

Dickinson et al. have also applied a similar strategy to the more diflicult case of intensity

images [38]. The difliculty with this approach is that in the case of perspective projection,

many objects in 3D space can yield similar projections in a 20 image. Thus, they cannot

obtain the actual quantitative information from an object's 20 projection. In order to deal

with this problem, they use<! two images as input inspired from stereo vision.

10. Chapter Summary

Our research is motivated by a theory ofhuman image understanding. The Recognition­

By-Components (RBC) Theory [15] postulates that if an arrangement of a few geons can

he recovered from line drawings, then objects can he quickly identified, eve". when they

are occ1uded, rotated in depth and degraded. We have addressOO certain issues from the

computational point-of-view and have propose<! an alternJ.tive approach to qualitative vol­

umetrie primitive-based representation. The features of our system inc1ude t.he use of range

data as input, a physics-based part segmentation, parametric geons, a shape approximation

strategy and a qualitative model recovery procedure. We have listOO the g;meral assump­

tions made in our system and presentOO the general framework of this research. Finally,

comparisons hetween our research and previous work were highlightOO.

2Th~ lÙl&O performed part tcegmentation in the fint. t'tep. Heroe we Cocus on a comparison oC Khemea for part
model identification.
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CHAPTER 4

Object Segmentation into Parts

In this chapter, we propose a new approach to the segmentation of 3D objects into parL~.

The input is either range data or a list of 3D data obtained by multiview range data

integration. Our method segments an object at deep surface concavitics, rcsulting in several

sets of 3D data. Each set contains object data that bclong to the same physical object part.

Motivated by physics, we employ the simulated electrical charge density distribution OVl'r

the object surface as the surface feature, which differentiatcs surface concave and convex

points. In order to compute the charge density distribution numerically, a finite element

model in the form of a c10sed triangular mcsh is created over the object snrface. A direct

connection graph is then constructed based on the spatial relations bctwccn triangles in the

triangular mesh as a coordinate system over the object surface. Triangles on part boundaries

where the charge densitics approach local minima are detected and removl'd. Thns, the

triangulated object surface is decomposed into several parts. The triangles belonging to the

same physical part are obtained by a connected component labelling proccss.

Section 1 describes an analogy between the concave and convex discontinuity and the

singularity in the electrical charge density distribution. Section 2 makcs assumptions abont

the object shapcs used in this research. Section 3 and 4 present the mathematical formn­

lation and the numerical solution to the computation of the charge density distribution

over the object surface, respectively. Section 6 describcs the issue of surface triangulation.

Section 5 discusses the characte.istics of the charge density distribution. Section ï intro­

duces the direct connection graph and describcs the object decomposition algorithm which

is based on this graph. A summary is given in the last section.

1. Physics

Following the strategy of boundary-based approaches, we segment an object into parts

by extracting object part boundaries. Since the object data are unstructured and do not
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FIGUR.E 4.1. The charge di~tribution on a c~~ion (!iheded area) of A charge<! c:onductor.
The cl~trieal charge indieated by ..+.. tend8 to accumulMc llot the convex celgo and comertl and
VMish At the concave ono. Thus. the object pvt boundary. defined by deep SUrf3Ce conc:avities.
an bc indicated by signifiant locJ c:luuse minima..

provide explicit information about part boundaries, we must seek a principle for locating

part boundary points. According to Hoffman and Richards [60], the mental category 'part'

of shapes is based upon a regularity of nature - transversality - as defined as follows:

DEFINITION 4.1. Transversality regularity. When two arbitrarily shaped surfaces are

made to interpenetrate, they always meet in a contour of concave discontinuity of their

tangent planes.

lt has been proved that smoothing of such concave discontinuities gives rise to contours of

negative minima of a principal curvature [11]. Thus, it has been proposed that an object

surface can be partitioned into parts along contours of surface concave discontinuity or

negative extrema of a principal curvature. lnspired by this principle, we develop a new

computational approach to segment an object into parts.

Our algorithm for locating the part boundaries is derived from an analogy between the

curvature discontinuity and the electrical charge density distribution over the object surface.

When acharged conductor is in electrical equilibrium1 , a.ll charge on a conductor must reside

only on its outer surface [29]. Electromagnetic theories [67, 24] and physical experiments

have shown a singular behaviour of charge density distributions (see Figure 4.1). That is,

the charge density is very high at the sharp convex edges and corners on the object surface

and close to 0 at sharp concavities.

t When there ÙL no net motion of charge within the conductor. it is in electl'Oltatlc: equilibrium.
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FIGURE 4.2. Exampletl of cdgetl and come~.

It is important for shape analysis to know the mathematical nature of charge density

distributions. Electrical charge densities at sharp cdges and corners have bccn carefnlly

studied by Jackson [67] and Van Bladel [24]. Here we give a brief description of their

findings. Details can he found in two books [67, 24]. By cdgcs and corners, they mean

orientation (Cl) discontinuities of the object surface. Thcse are physical entities, which

are different from those defined in image processing. An cdge is an intersection of two

smooth surfaces, forming a Hne or curve segment in 3D space. A corner is an intersection of

surfaces, tapering into a point in 3D space. Figure 4.2 depicts examples ofcdgcs and corners.

By ignoring secondary global effects, the authors have derived the following approximate

relationship governing the charge density pat an edge formed by two conaucting planes, m.

shown in Figure 4.3 (a):

(4.1)

•

Here {3 is the angle between two planes defining the edge. 1J is the distance from the cdge

to a point P, where the charge density is measured. al is a constant determined by the

approximation used for deriving (4.1). Figure 4.3 (b) shows p as a function of {3 and 1/.

This relation indicates that the larger {3 and the smaller 1/, the greater the charge density.

We observe that ail sections are monotonie for constant 1/. Note that the power of 1/ i<; a

nonlinear function of {3. The theoretical singular behaviour of the charge density at cdges
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FIGURE 4.3. Ch...". den.i'i... a' cdS"". (a) an edge formed by two plan... with an angle 13. (b)
The charge denllity Ilt. P(".IJ).

(for '1/ =0) can be stated as follows:

o

00

constant(4.2)
p=1

if ,"'>r.

if {3~r.

if {3<r.

•

This means that the charge density is infinite, constant and zero when the angle defined

by two planes is convcx, fiat and concave, respectively. The singular behaviour of charge

density at corners similar to these edges has also been studied [67, 24].

Wc have observed that at slightly smoothed edges and corners, the positions of local

e.\:trema of charge densities are not changed. Gonsequently, by assuming that a multi­

part object is a charged conductor, wc cau locate the part boundaries at surface points

45



•

•

;\. CO~II'l !TATIO:\

where charge densitics reach significant local minima. It is noted that thl' char~l' dl·nsity

distribution is not equivalent to the surface eurvature. Wc will lllake a ck'ar distinl·tion

between thcse two surface properties in Section 5.

2. Assumptions about Object Shapes

In order to perform boundary-bascd part segmentation using the sillluiatl'd cil'ctri<-a!

charge density distribution. wc must make a..'.;sulllptions about the object shapes. Olwiously.

certain assumptions arc required by any boundary-bascd segmentation approaeh. \Vl' not!'

that unlike curvature-bascd approaches, our method does not assume that the Objl'Ct surfal'l'

has to be smooth, that is, the second partial derivativcs of the surface arc continuous [14).

The assumptions we make arc as follows:

(i) A part boundary mu.,t be explicitly indieated by decp surface concavitics and dosed

for a complete object. As a counter example, an ~clbow~ (sec Figure 2.2) dOl'"

not satisfy this assumption becausc the surface concavity points constitute an open

curve. Additional constraints arc rcquircd to segment such an object.

(ii) Objects to be segmented must be simply-connected. That is, the object has no holcs2 •

(iii) We assume a multi-part object. That is, at least one part boundary satisfying As­

sumption (i) must exist. Our method locates a part boundary at the local charge

density minima. Since all values of charge density arc positive, it can only reveal the

relative information about concavities or convexities but cannot indicate absolute in­

formation. For example, a minimum of the charge density distribution on a convex

object will not indicate a surface concavity. This assumption on multi-part objects

ensures that at least one dcep surface concavity. Curvature-bascd approachcs do not

require this assumption.

In the following two sections, we will describe the mathematical formulation of and the

numerical solution to the charge density distribution.

3. Computation

Our physical model is the charge density distribution on a chargcd conductor in 3D frec

space, where there is no other charge or conductor. To begin with, wc list threc physical

facts which can be derived from physicallaws and which we will use to develop the algorithm

for the charge density computation.

2 Although a hole ma)' be viewed as an indented or negative part. we onl)' conlÙder protru"Îve part" in thi. theJl,i".
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• ob~:l.tion point
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n:(c:n::nce point

point ch:lrge
q

r'

•

FIGURE 4.4. Configuration of A point charg~. r ill the vector poMition wherc the c1cctriw
potentilÙ i~ ObRCrvrd. r' il' the vector po1'ition of the tKturce point charge. ra i1'l th~ vector pOllition
of the potentiai rcfercnce point.

FACT 4.1. In electrical equilibrium. any charge on an isolated conductor must reside entirely

on ils outer surface [112].

This means that there is no charge inside the conductor. The structure within the

object docs not affect the charge density distribution. This fact shows that in this case, the

charge density distribution is a surface property.

FACT 4.2. The surface of any charged conductor in electrical equilibrium is an equipotential

surface [112].

FACT 4.3. Conservation of Charge: Charge cannat be created or destroyed, for the algebraic

sum of the positive and negative charges in a closed or isolated system does not change under

any circumstances [78].

These facts provide us with the conditions needed to establish mathematical equations

with charge densities as their variables.

Consider the electrical potential at the vector position r E Hl, produced by a point

charge q, located at the vector position r' E Hl, as shown in Figure 4.4. The corresponding

electrical field at r cao he calculated by an application of Gauss's law. Thus,

(4.3) e(r) = q r - ri
4r.Eo Ir - r'13

Here EO is a constant, known as the permitivity of free space.

The electrical potential ,p(r) at r cao he derived byan integration of (4.3) along the

dashed line from ro E Hl, the vector position of the reference point, to r (sec Figure 4.4):

(4.4) ,p(r) - ,p(ro) = 4;EO Cr ~ r'i - Iro ~ r'1)

47



•
.1. Fl:>ITE EI.EME:>T SOl.lITIO:>

o

FIGURE 4.5. Configuration of charge dil'ltribution ovcr the l'Iurfl\Cc. 0 il'l the ori~in uf tht'
coordintLte "Y'ltem.

ln physics, it is customary to choosc the reference potential to be zero at Irol =00.

Accordingly, <p(ro) = 0 and Equation (4.4) becomes:

(45) "'(r)= q 1
. '" 4r.co Ir - r'i

Secondly, consider that the charge is continuously distributcd over the object surface

S (sce Figure 4.5). Thus the electrical potential at r is contributcd by alltlle ellarge on S

and satisfies the principle of superposition. It can be exprcsscd as follows:

(4.6) <b(r) = _1_ ( p(r') dS'
. 4r.co Js Ir - r'i

Here q = p(r')dS', p(r') is the charge density at r', and S' is the area over S.

Thirdly, according to Fact 4.2 that ail points on a chargcd conductor in electrical

equilibrium are at the same electrical potential, if we restrict r in Equation (4.6) to the

conductor surface, <p(r) is constant. Thus, (4.6) may be rewritten as follows:

(4.i) v = ( p(r') dS'
Jslr-r'j

•

Here V = 4r.co<p(r) is a constant. In the next section, we will introduce a numerical

algorithm for computing the charge density based on Equation (4.i).

4. Finite Element Solution

Our objective is to compute the charge d"nsity distribution over the outer surface of

an object with an irregular shape. Since S in (4.i) is an arbitrary surface, it is impossible

to express the charge density analytically. However, we can obtain an approximate solution

to the charge density by using a finite element method [119]. The idea is to approximate

the 3D object by a polyhedron, each face of which is a planar triangle which possesses a

constant charge density. Then the problem of integration over the complete surface (sec

Equation (4.i)) cao he converted into a summation of integrations over each triangle. Since
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r'

FIGURE 4.6. Polyhedral approximation of an cllipsoid. Whcn r' is on T,Ct fit =I;Ji = O(i:;é k).

the latter can be solve<! ana.lytica.lly, the charge density on each triangle can be easily

compute<!.

The finite element solution is obtained as follows. We tessellate the object surface Ilsing

a triangular mesh which has N planar triangles, Tk, k =1, ..., N. Bach triangle is assumed

to have a constant charge density, Pk, as shown in Figure 4.6. A set of basis functions

fk, k =1, ..., N is defined on this triangular mesh as follows:

(4.8) /k(r') = {1 if r' E Tk

o otherwise

Thus the basis function, fk, is nonzero only when r' is on the triangle Tk, as shown in

Figure 4.6. Therefore, the charge density p(r') can be approximated by a piecewise constant

charge density function as follows:

(4.9)
N

p(r') :::::: L:Pkfk(r')
/0=1

(4.10)

•

Substituting (4.9) into Equation (4.ï), we have

N r 1
V=EPk lT. Ir- r'l d5'

Since the charge density is assumed to he constant on each Tk, we may take ri as the

observation point on each Ti and rewrite Equation (4.10) as:

N

(4.11) V= L:Pk r 1 ':r'ld5'; i=l, .....•,N.
/0=1 lT. r •
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According to Fart 4.3, the SUffi of the charges on eac;, triangle cquals t.he t.ot.al rharp:"

on the surface of the contour. Let Q be the total charge on the contour and Sk be the area

of Tk. Then we have

N

Q = r. p(r)dS' '" 2.: PkSk
Js k=l

Assuming Q is known, and given (4.11) and (4.12), we obtain a set of \incar cqnations \Vith

N + 1 unknowns, Pl> •.. ,PN and V, as follows:

(4.13)

Here

(4.14)

and

(4.15)

Ap =4>

PI 0

P2 0

p= 4>=

PN 0

V Q

Ali A 12 AIN -1

A21 A22 A2N -1

A=

ANI AN2 ANN -1

SI S2 SN 0

•

where

(4.16) Aik= ~.lri~r'ldS', i,j= 1,2, ...,N.

Since the integral in (4.16) can be evaluated analytically [142], as shown in Appendix A,

the charge density distribution Pk and the constant V can he obtained by solving the set

of !inear equations given in (4.13). Since the potential on a particular triangle is actually

contributed by the charge on all of the other triangles, the matrix A is dense. In the actual

computation, the observation point ri on each triangular patch is selected al. its centroid.

The set of !inear equations is solved by a conjugate gradient squared method [10]•
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5. Characteristics of Charge Density Distribution

Computing the simulated charge density distribution is an intermediate step in the

procedure for segmenting an object into parts. In the literature. severa! rcsearchers have

proposcd criteria for deriving shape dcscriptions[82, 23, 28, 143]. Thcse include acccssi­

bility. uniquencss. stability. scope and sensitivity. In the following. we explain the criteria

and examine how weil the charge density computation satisfies them.

Uniqueness: It has becn proven that the charge density distribution on a charged

conductor in electrostatic equilibrium is uniquely determined [122]. Thus given a

specifie shape of an object. our method produces a unique description of the surface

property, and in turn, obtains a uniq~e segmentation result based on this surface

property.

Invariance: An object description which is invariant to object rotation and translation

is important. For example, when an autonomous robot looks at an object from

dilferent viewpoints, it must recognisc the object as the same entity. Since the

charge density distribution depends completely upon the total charge, as weil as

the shape and size of an object, it is independent of the coordinate system chosen

for the computation (sec Equation (4.11) and (4.12)). Also the relative position

of the extrema in the charge density distribution will not change with object size.

Therefore, our part segmentation method is invariant to object scale, translation

and rotation.

Versatility: The charge density computation, which is based on integral equations,

does not require an assumption on smoothness of object surfaces. However, the

surface curvature computation, which is based on differentiation, needs a smooth

surface, namely, the continuous second partial derivatives of the object surface [86].

Notc that thc method based on particle diffusion [151] also does not need this

assumption. However, it suffers from another severe problem, as will be described

in the next paragraph.

Computability: The algorithm for the charge density distribution is based upon thrcc

physical facts and Gauss' law. There are no crucial user-defined parameters required.

Aftcr surface triangulation, the total computation only involves analytical function

evaluations and a set of linear equations. This approach deals with the electrical

equilibrium, which produces distinctive charge densities at concave and convex sur­

face points. However, in the particle diffusion-based approach [151], one has to set a
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threshold. the maximum number of iterations of th" diffusion pron"". This 1"""IIl­
l'ter is dependent on object size and shap". It is \"('ry diflirult. to dl'll'rmiul' !>1·C"USt·

shape information is generally not available befor"hand. If diffusion is stopp.,,1 "1 au

inappropriate time. the distinction bC't\\'{'('n partirlC' dC'nsit.Îps Olt. rom·a\'p and nHl­

vex surface points will not be strong. "'·lor"O\·er. to comput" the surf".·l' prop.'rly

of a complete 3D object. both curvatnre-b""ed [110] and diffusion-!>".""j [151J "1'­

proaches require a voxel-based coordinate system. which is an "xplicit :11) roordin"lt'

system. By contrast, the charge density-based approach r<'StricL, its ,·aria!>I.", only

to the outer surface of the object. Therefore, the amount of compntation is reducl"!.

Scope and sensitivity: It is often required that an object description n'pn",ent sh;1})1'

at different scales. Descriptions at coarse scales relate to tll<' gros., shape fl'at.nn",.

Details at finer scales include features that are more local. TIl<' charg., d.'nsit.y

distribution carries information about scales in a different way from th" mor.' com­

mon curvature-based approach [l'1. This is because a strict relationship hetw.,,'n tlll'

charge density distribution and th~ curvature does not exist [98]. The Il<'nristic that.

the charge density on object slirfaces changes monotonically with curvature Sl,,'ms

to be quite acceptable. However, we note that .Jackson's theoretical r<'Snlt. [6ï] (Sl'"

Section 1) holds only locallyat a surface with Cl discontinuity. But the surf;le" al.

part boundaries may be Cl continuous or smooth. Curvature is completely deter­

mined by local data. But the charge density distribution is affcete<1 by ail of the

points on the object surface. Note that these points do not contribute e<I,aally 1.0

the potential at a particular observation point. Instead, their influence is weighte<1

by the reciprocal of the distance between the observation and source poinL, (see

Equation (4.ï)). Thus, a charge density computation possesses both "quasi-globalfl

and "quasi-Iocalfl properties.

The "quasi-globalfl property helps redure noise effcets. In curv-dture-based al>­

proaches, the second partial derivatives of the object surface mnst be computed in

,\ local neighbourhood. Because of the inherent noise in the input data and the fact

that differentiation is required, this kind of approach has proven unreliable [135].

However, since the charge density computation uses weïghted global shape infor­

mation, it reduces the sensitivity to noise and produces a more robust result. The

"quasi-global" property produces information that can also reveal the signific....nce

of the protrusion and indentation of parts.
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Th.. "quasi-local· property helps isolate fine local featurcs. Because of this

property. the charge density segmentation approach can handle situations of object

self-occlnsion. When only singlc-view range data arc providcd. shape information

on the ~invisible <urface· is not availab!e. The surface triangulation of the "invisible

surface· could be rather arbitrary. Neverthelcss. it turns out that the local distri­

bution of charge is almost not atrectcd by selecting a ditrercnt "invisible surface".

Therefore. the position of the local minima of charge density remains csscntially the

same. The property will be jnstificd by experiments in Appendix C.

These properties will he demonstratcd by experiments in Chapter 6. Using cur­

vature, thcsc gross and fine features may be detectcd at different scales by smoothing

with different window sizcs. It is notcd that the selection of an appropriate scale

is very difficult. However, our approach produces both features simultaneously and

without intervention.

Relative and absolute surface information: For the diffusion-based method and

the charge density-bascd method, since the number of the l'articles and th~ charge

density arc positive values, they can only determine the relative contrast betwccn

convexities and concavities. However, curvature-bascd approaches do compute p0s­

itive and negative surface curvature, namely the absolute COllcaVe and conve.x infor­

mation. If an object is a single-part object, which does not have negative curvature,

a curvaturc-bascd method will detect this and not conduct any further segmentation;

both the diffusion-bascd and charge density-based approaches will not be able to do

this.

Thcsc characterisations will he demonstrated through experiments which will be dis­

cussed in Chapter 6.

6. Surface Triangulation

ln Section 4, we described the computation of the charge density distribution over an

object surface, which wc represcnted in terms of a triangular mesh. Since the image data

consist of a set of discrete points in 3D space, it was found neccssary to use triangular mesh

tcsscllation. This technique, which is called surface triangulation [53], has been widely

uscd for reconstructing object shapes [26, 45, 32, 128]. A triangular mesh alse specifies a

data indexing system for the object surfaces, which are represcnted by a set of discrete 3D

points. Thus, triangulation establishes a specific spatial relationship between thesc points

and facilitates the e.xtraction of part boundaries. In this section, we will describe the surface
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FIGURE 4.;. Sinsl~...iew rnnge d~,ta. of:Ul object. (a.) Front:ll view. (b) Sille view. Due lu
l'C'lf-ocdullion. ~urfACe information on the othf"1'" l'Oide Chnnot he ~n b)' tilt' In....rr rlm~..lil\(l..r.

triangulation using either single-view Or multiview range data. The det.ail,; of t.h~ algoriLhlll

are given in Appendix C. The problem of part decolllposition will be addr"""ed in Sc'Ction ;.

6.1. Constructing a Triangular Mesh for Single-View Data The singl~·\'i~w

range data shown in Figure 4.; indicate objcct shape information on \'i,;ihle ,;urfac"". Th"

data points di = {Xi, Yi, =i} E 1?.3 are specificd by a vector fllnction f of the range illlag('

grid, Ui. as follows:

d; = f(u;), i = 1. ..., N,

Here {Ui, i = 1, ..., N} C U and U C z2 is the range ima{;e domain. Thlls, not. ail

pixels contain data points. Surface triangulation of the single-view data can he pcrformcd

in the 2D i'llage domain using the explicit neighbourhood relation specificd by the image

grid (126). Triangles are constructcd within individual 2 x 2 pixel regions. The triangle

vertices are range data points. If the region contains threc or four data poinL~, Olle or

two triangles respectively are formcd. This local triangulation permits us to cstablish a

triangular mesh for the visible object surfaces. Since this approach is bascd on using the

actual data points, it requires dense data to obtain a connectcd mcsh.

To compute the charge density, a closed triangular mcsh is requircd. Since the data

points on the invisible surface are not available, as shown in Figure 4.;, it is impossible to

directly tesseUate the invisible surface using the above method. In practicc, We llrtijicil.Lly

construct a mesh on the invisible side in order to make up a closcd triangular mcsh. As

discusscd in Section 5, the actual shape of the invisible surface only affects the absolute

value of the charge density on the visible surfaces. The position of the extrema of the

charge density distribution remains almost the same. Thus, it makcs sense to construct an

artificial mesh on the invisible surface. For the sake of simplicity, we construct the closcd

mesh using three patches, as shown in Figure 4.8. The first, calle<! the top patch, is obtaincd

by triangulating the range data on the visible surfac.... The second, caUcd the bottom patcl~

is planar, and is actually the (spatial) projection of the top patch onto an arbitrary plane
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(a)

(b)

(c)

FIGURE 4.8. Triangulation of the range data in Figure 4.i. (a) shows the top (real
data) and bottom patches of the closed triangular mesh. (b) shows the side patch.
(c) is the c10sed triangular mesh obtained by merging (a) and (b).

perpendicular to the Z axis. These two patches arc iIlustratcd in Figure 4.8 (a). The third

one , caUcd the side patch, fills the gap betwccn the top and bottom patches, as shown

in (b). The complete c10scd triangular mesh in Figure 4.8 (c) is obtaincd by merging the

patches in (a) and (b). A similar strategy has bccn proposcd for generating a c10scd surface

in 3D space for diffusion-bascd shape analysis [152].

6.2. Constructing a Triangular Mesh for Multiview Data Multiview data are

obtaincd by transforming multiple single-view range data. into a common coordinate system
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(c)
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FIGURE 4.9. Surface triangul:ltion u~ing muith·iew range dn.ta. Cm)· dob Me dn.tn. poinb and
the triangulAI' moh i. in blAck. (a.) The initial modrl. (b) The intermwia.te modd. (e) Th~ finn.1
triangulAI' moh.

(see Appendix B). They contain more complete information about the objcct shape and

are expressed a; a sequence of discrete 3D points. But multiview data cannot be uniqndy

indexed by a pa-ticular range image grid, and their neighbourhood relations on the objcct

surface cannot be explicitly specified. They are often referred LO as unorganised or unordered

data. The method used for tessellating single-view data is not applicable for uno.'ganised

data.. Other approaches have been proposed (137, 83,32, 73, 35].

In this thesis, an approach based on mesh blending [3S] is used for s'Irface triangula­

tion 3, Figure 4.9 illust,'ates the procedure of model construction. For a given set of data

points on the object surface, a triangular mesh representing a spherical shape is initialised.

During the model reconstruction, the sphere is deformed towards the shape of the objcct

and residuals between the model and data points are computed. At a certain stage, if rcsid­

uals between a subset of data and a corresponding local region on the model surface are not

reduced no matter how the model is deformed 4, both data points and the mcsh model are

divided into two sets, having large and small residuals, respcctively. A new triangnlar mesh

model is created to represent the subsurface of the old model where large residuals have bccn

measured. This new model is continuously deformed to lit the subset of data which have

caused the large residuals. The old model remains and represents the rest of data points.

These two models are blended at their intersection by carefully pairing vertices of tri:>ngles

between models. New models ca.., be further generated to represent liner subsurfaces until

the maximum residual is smaller than a predt'fined threshold. The resultant model is a

3The surface triangulation was actually performed. by Douglaa DcCarlo and Demitri Metaxu at the Univcrwity
of Pennsylvania. We sent them rangefinder data and they produced the triangular meahea.

4Sinc:e the lltifl'neu of the mode1l1urface i••pecified beforehand••he modclllurface cannot he deformed by an
ar!>,trary degree•
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doscd triangular mcsh tcssellatcd on the complpte abject surface. This approach ;>erforms

surface triangulation without the requirement of dense and uniformly-distributed data. This

makes it possibl" ta extrapolate the abject surface based on the mcdel shape, even when

there arc no data avaBable due tv abject self-occlusion. However, for a complicated abject.

the algorithm may not be able ta perform the biending operation proper1y and, therefore.

cannat produce a valid triangular mcsh [35].

7. Part Decomposition

This section des<;ribcs the technique for decomposing a whole abject into parts, given

the charge density distribution over the abject surface. After obtaining the simulated charge

densitics on the object surface, we segment an object into parts by detecting and then

deleting points on the part boundarics where the charge densitics achieve local minima.

For a triangular mesh of multiview data, we decompose the complete mesh. For a single­

view range image, only the top patch which represents the visible surface of the object

is dC'.:omposed. Each resultant part forms a connected triangular mesh whieh is a subset

of the c",",ed triangular mesh. This method is based on a so-called Direct Connection

Graph (DCG), which serves as a specifie coordinate system defined on the triangular mesh.

We will first introduce the concept of DCG and then describe t.he a1gorithm for object

decomposition.

7.1. Direct Connection Graph We first give the definition of direct neighbours as

follows:

DEFINITION 4.2. Two triangles are direct neighbours in a triangulaI' mesh if and only

if they share a common side or two vertices.

Then we define a Direct Connection Graph (DCG):

DEFINITION 4.3. A Direct Connection Graph is a graph defined on a triangular mes".

Ils nodes represent the triangles and ils branches represent the connections between anode

and il.., direct neighbours.

Figure 4.10 shows a triangle mesh in (a) and its DCG in (b).

The a1gorithm for DCG construction is described in Appendix D. Since the DCG

provides an e:'Cplicit neighbourhood reiationship between individual triangles on the surface

of the object, it is a convenient coordinate system over the object surface. It permits the

tracirg of the part boundaries on the triangular mesh without employing a voxel-based
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FIGURE 4.10. Direct Conn~tionCmph (DCG). (n.) A trianl;uhu' m~h. For' ~xn.mple. trin.nKIe­
1 and Z are dir«t neighbou~while 2 and 3 are not. (b) DCC of the trilUll;uhu' m~h in (n.). (c)
Suhgraph!lo of (b) a!ter bou:ltiary node ddl:'tion. Here trianguhU' p.'\tch~ 1. 2. 3 and S ure t~"lImrtl

to he lOCD.tcd on the pArt boundlU)'.

coordinate system. This significantly reduces the rcquired memory space for dcscribing th"

object and increascs the computational specd.

7.2. Finding Parts As described in Chapter 2, the transversality principle statl'S

that when two objects interpenetrate, they intersect transversally with probability on,,[11].

This means that the tangent planes to the two intersccting surfaccs arc of dilferent ori­

entations at ail points where the surfaccs mect (sec Figure 2.5). Following this, wc have

assumed that a part boundary is e."plicitly defined by decp surface concavitics. For a com­

plete object, the part boundary is a closed contour. This ensures that the decomposition

algorithm will be a.ble to segment a part from the rest of the object. The assumption also

provides a stopping criterion for the boundary tracing procedure. Since the part bOllndary

is located at local charge density minima, it can be traced along the "valley~ of the charge

density distribution. We note that for single-view data, the top patch of triangular ,"csh

is not closed and therefore, the part boundary may not he a close<! contour. In this case,

when the tracing process reaches the mesh boundary, which has only two direct neighbollrs,

it stops.

The algorithm examines the charge density on ail triangles to fina an initial triangle

for tracing each boundary. An initial triangle must satisfy the following conditions:

(i) It must he a concave extremum; that is, its charge density must he a local minimum.

(H) It must he located at a deep concavity. Thus the charge density on the triangle must

be lower than a preselected thresholds.

(Hi) It and its neighbours must not have becn visited before. This ensures that the same

boundary will not be traced again.
----

SThis threshold detcrmines whcn an object .hould Dot be decompotw:d any rurther. Ir the charge denAity ILt An

initial triangle il greater chan this thrahold. we auume chat aU boundary point!' have been round. The ..r.lection or
the thres.hold depends on a priori knowledge or the audace concavity and there Ül no univenual rule ror ..r.lecting it.
Obvioua1y. the higher the thretlhold. the more 8CgInented parts will he round. Cum:ntly wech~ 120% or the IOwr.Mt
charge density on the object .urface u the threshold.
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Beginning at the initial triangle, the alg(.rithm proceeds to the neighbour with the lowest

charge density. During the tracing procedure, ail triangles detected on the boundary are

marked. The marked ones will not be checked again and eventually will be deleted from

the DCG. For the mesh constructed from mu/tiview data, the process continues until it

returns to the initial triangle. As a result of the assumption stated at the beginning of

this section, this means that ail triangles on this part boundary have been visited. For the

mesh constructed from single-view data as ilIustrated in Figure 4.10, the process continues

until it reaches a triangle(face 3 in Figure 4.10) on the boundary of the mesh. If the initial

triangle(face 2 in Figure 4.10) possesse:; three direct neighbours, the procedure will move in

the other direction until reaching a triangle(face 8 in Figure 4.10) on the boundary of the

mesh. Thus ail triangles on the part boundary have been visited. Next the algorithm finds

a new initial triangle and traces another boundary. It repeats the same tracing procedure,

and finally stops when the charge density at an initial triangle is higher than the preselected

threshold. After ail triangles on part boundaries have been found, the nodes of the DCG

representing these triangles are deleted. Thus the original DCG is now divided into a set of

disconnected subgraphs, as shown in Figure 4.10 (c). Physically the object has been broken

into parts. Each object part can be obtained by applying a component labe1ling algorithm

to a subgraph of the DCG. The result of this algorithm is several lists of triangles. Each

list contains the triangles which belong to the same object part. These triangle lists are

then ready for part model identification. The algorithms for tracing part boundaries and

finding individual parts are elaborated in Appendix D.

8. Chapter Summary

In this chapter, we have introduced a novel approach to object segmentation into parts.

Following the boundary-based segmentation strategy, we obtain object parts without using

part shape information. Rather than geometrical properties, we compute part boundaries

using a physical property of object surfaces - the simulated electrical charge density dis­

tribution. Assuming that the object considered is a perfect conductor, we computed the

charge density distribution over its surface, which has been tesse1lated by a triangular mesh.

The charge density distribution indicates the contrast produced by surface concavities or

convexities. We then detect part boundaries at deep concave surface points where the charge

density is a local minimum. Finally we decompose the object into parts at the boundary

points.
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S. CIIAPTEH Stl~1MAHY

Our approach is unique for a particu!ar shape and invariant 1.0 objl'Ct -"cale. rotation

and translation. Il. works weIl on both single-view range data and 3D data integrated from

multiple views. There is no crucial parameter that needs 1.0 be selected and no assnmption is

made about the smoothness of object surfaces. Our approach restricts its nnknowns 1.0 thl'

object's surface instead of the entire 3D space. Il. does not compute the interior of objects.

Unlike previous diffusion-based approaches. this method computes local snrface information

without the frustration of having to choose a crucial stopping condition. Triangle tessellation

of the object surface provides an effective coordinate system over the object surface for part

boundary tracing and part labeIling. The charge density is determined by global data

weighteà by the distance to the point where the charge density is being considered. This

mechanism permits a more stable solution than pure local feature-based approaches.

We wiII iIlustrate the experimental results pertaining to object segmentation in Chap­

ter 6. The next step is to derive part models from segmented parts. This wiiI be present",1

in the following chapter.
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CHAPTER 5

Part Identification

Wc describe an approach to part model identification, in this chapter. abject segmentation

produces a few sets of 3D data. In each set, all data belong to the same object part. The

ncxt task is to generate a symbolic object description for each part. To do this, we nm

to answer the following questions: (1) What kind of part models will he used to represent

the object parts? (2) What strategy and technique will be employed to recover the part

models? Following the shape approximation scheme discussed in Chapter 3, we propose to

use parametric geons as object part models. We formulate model recovery as an optimisation

problem. Ali parametric geon models are fitted to an object part by minimising a function of

the difference between the shape and size of a part and the models; the best model for that

part is selected based on the minimum fitting residuals. Global optimisation - Very Fast

Simulated Annealing - is used for minimisation. The part model, the objective function for

optimisation and the optimisation algorithm are described in the following sections.

1. Parametric Geons

1.1. Shape Types Similar to Biederman's geons, the class of parametric geons con­

sists of a finite set of distinct shapes. We believe that these shapes should rellect the

essential geometry of objects in the real world. The shapes of the part models are prima.rily

motivated by the art of sculpture, perhaps the most traditional framework for 3D object

representation. One of the most obvious features of sculptured objects is that they consist

of a configuration of solids of diffe.'ent shapes and sizes which are joined together but which

can he perceived as distinct units. The individual volume is the fundamental unit in our

perception of sculptural form, as indeed it is in our perception of fully 3D solid form in

general [104). Figure 5.1 shows some shape primitives described by sculptors, and objects

composed of these primitives. The first column indicates a few 3D shape primitives, The
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FIGURE 5.1. Shape primitives described by sculptors and abjects composcd by
these primitives. (From W. Zorach, "Zorach Explains Sculpture: What It Means
and How It Is Made", Tudor Publishing Company, 1960)

•
second shows a description of a human body composed of rectangular and triangular prim­

itives. The third column is a representation of the human body in terms of 3D priMitives.
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The last column in<licates the human body and its articulate parts. From a sculptors point

of view, ail sculptures are composed of variations of live basic forms: the cube, the sphere,

the cone, the pyramid and the cylinder [99, 154]. Another important belief in the world of

sculpture is that each form originates either as a straight line or a curVe [154]. Straightness

and curvature are significant for characterising the main axis of elongated objects and were

employed in defining the original geon properties [15]. By generalising the live primitive

shapes used in sculpture and adding two curved primitives, IVe arrive at the following seven

shapes for parametric geons: the ellipsoid, the cylinderl , the cuboid, the tapered cylinder,

the tapered cuboid, the curved cylinder and the curved cuboid.

1.2. Formulation We choose parametric forms to describe these seven shapes. Their

formulations are derived from the superellipsoid equations (2.3) by (i) specifying the shape

parameters, II and l2 and (ii) applying tapering and bending deformations.

1.2.1. Implicit Equations for the Three Basic Shapes Since II and l2 in (2.3) control

the degree of "roundness" or "squareness" of superellipsoids in two orthogonal directions,

respectively, three of the parametric geons can be derived as follows:

• Given II = l2 = l, the equation of an ellipsoid is
".

(5.1)

(5.2)

(5.3)

• Given II = 0.1 2 and l2 =l, the equation of a cylinder is given by

((:J 2

+(:J 2

) 10 +(:J 20

= 1.

• Given II = l2 = 0.1, the equation of a cuboid is

( X)20 (y)20 (=)20- + - + - =1.
al a2 a3

•

In the following, we will call these three shapes regular primitives and other shapes

deformed primitives.

1.2.2. Implicit Equations for Tapered Shapes Two assumptions are made regarding

the tapering formulation: (i) tapering deformation is performed along the =axis; (ii) the

tapering rate is Iinear with respect to =. Although this Iinearity assumption is sometimes

1Aetually this can be a cylindrical shape with an eltiptical croa-sec:tion.
2SupereUpt&Oidahapechangeaamoothlywith Cl and (2- WechooseCl = 0.1 roracylinder. buedon computational

robUlitnea and the pe:rceptual aceeptanc:e of ita shape. The Ame reuoning applics to the cuboïd.
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(h)

FIGUR.E 5.2. Tapcring deformation (a) Oownward tApcring; (bl InwJ.id tAperingdefoml"tion.

violated for real objects, our model is only designed to approximate the shape of tapered

object parts. Thus, tapering deformation is given by

(5.4) {
X = (~.:+l)x

y = (&.:+ l)y••
where X and Y are the transformed coordinates of the primitives after tapering has becn

applied to the coordinates x and y. Kr, Ky are tapering parameters in the x and y coordi­

nates. The equation of inverse tapering is given by:

(5.5)
{

X =
y =

x

(.§:=+ll

To permit downward tapering only in the formulation and avoid invalid tapering (sec Figure

5.2), we impose the constralnts 0 :S Kr :S 1 and O:S Ky :S 1.

By substituting (5.4) into (5.2) and (5.3), respectively, we obtain implicit equations for

a tapered cylinder and cuboid, respectively, as follows:

(5.6)

•
(5.i)
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Ille' - Xo

~\
Xo 0

X

Ille

FIGURE 5.3. Bending defonnation in the r: plane. Axis '!J is perp~:ldiculnr to this plane.
projecting into the paper. The sh:u::lcd Mello dclimits the original primitive. The thick lines depict
the curvcd primitive. 0 il' the centre of bcnding curvn.ture and 8 iM the bcnding angle. Point
(ro.::o) iM tmnMformcd into the coordinate (Xo.Zo) by the bendingopemtion.

1.2.3. lmp/icit Equations for Curved Shapes We use a simple bending operation which

corresponds to a circular section, as shown in Figure 5.3. This bending feature is described

by only one parameter, i.e. the curvature K of the circular section. Although many curved

object parts do not have constant curvature, we can still amply approximate curved object

parts using this qualitative shape mode!. The bending operation is applied along the =a..'l:is

in the positive x direction. The operation transforms vectors (x, y, =) into vectors (X, Y, Z).

The equations describing the bending deformation are given by (see FIgure 5.3):

(5.8) lx = K-1 - COS6(K-1 - x)

y = y

Z = (K-1-x)sin6

Here 6 =K= is the bending angle. The inverse transformation is given by

•
(5.9)

K-1 _ ..jP +(K-1 _ X)2

y

K-16 = K-1 arctan zIC-i_x
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BENDING.~
(2) • V (61

1&':=0.1

TAPERING • BENDING

(5) (3)

tapcred cuboid cuboid:c"o.1 t •• O.1 curved cuboid

FIGURE 5.4. The ~vcn panunetric:geonll. The numberg in the bmcketf'n.L the boUmn "Kht or
each 8hape: rep~nt the index or panunetrie geon "hlLpe typoo, l-cUipKOid. 2-cylind'!r, 3-cuhuÎ<I,
4..tapcred <:ylinder. S-tapcred cuboid, 6-curved cylinder. 7'..curved cuboid.

The equations for curved cylinders and cuboids, as given in (5.10) and (5.11), can he

obta.ined by substituting (5.9) into (5.2) and (5.3):

(5.10)

•

(5.11) (,,-1 - ..)p~ (,,-1 _ X)2) 20 + (:) 20 + (,,-1 arc~: <-b) 20 =1

The seven typical shapes orthe parametric geons are illustr~.ted in Figure 5.4. Although

these seven shape types are defined qualitatively, their variations can represent a variety of

different shapes. Other examples of parametric geon shapes are shown in Figure 5.5.

1.2.4. Normal Equations A normal vector at .. point on the surface of the parametric

geons can be computed from their implicit equations given in (5.1), (5.2), (5.3), (5.6), (S.i),
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FIGURE 5.5. Some variAtion" or pa.r.Lmdric: ~n KhD.J)e'. The: number betiidc: c:ft.C:h Khtlope
indicatal ibl. gcon type definc:d in Figure 5.4.

(5.10) and (5.11). Let an implicit equation of a parametric geon be defined as g(x, a) = 0,

where x = {x, g, z}T is the point on the moè;.1 surface and a is a parameter vector. A

normal vector on the surface of parametric geons is given as follows:

DEFINITION 5.1. The normal vector 10 a paramelric geon al a poinl X is given bg Ihe

gradienl veclor

(5.12)
_ {ag(X, a) ag(x, a) ag(x, a)}

nm - ax' ag , az .

An alternative and simpler approach to computing normals for deformed primitives is

to apply a transformation to the normal vectors of the three regular shapes. Let tapering

or bcnding be expressed by the equation

(5.13) X= F(x)

where X is the transformed point of x. The normal vectors on the surface of deformed

parametric geons are given as follows:

DEFI!'<ITION 5.2. A normal veclor for deformed paramelric geons is given by

(5.14) ~ = Bn::.

•
where B = (deIJ)J-T is the inverse transpose of the Jacobian matrix of the deformation

function and J denotes the Jacobian matrix [9] whose ith column is obtained by the partial
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derivative of F(x) with respect to ith compon<'nt in x as follow,,;• (5.15) J(x) = {8F(X) 8F(x) 8F(X)}
8x . Dy . 8:

(5.16)

The determinant of J can be ignorcd· because only the dircction of th" normals is important.

The normal transformation matrix for tapercd primitivt'S can b" obtailll,<1 by apply-

ing (5.15) to (5.4) as follows:

(

~:+ 1 0.,
J-T = 0 !:.t.:+ 1.,

-(~: + l)!:.t. x _(!:.t.: + l)~y
C3 c., Q3 Q"

The normal transformation matrix for curvcd primitives can be obtaincd by applying (5.1")

to (5.8) as follows:

(5.1i)
(

k(k-I - x) cos 8

_k(k-1 ~ x) sin 8

o
k(k- 1 - x)

o

•

Given the normal vectors for the regular primitives obtaincd from (5.12), one can Illultiply

them by either (5.16) or (5.li) to obtain the normal Vl!Ctors for tapere<1 and curvcd primi­

tives, respectively. A more detailed discussion of th~ global deformation of solid shapt'S can

be found in [9, 123].

2. Comparison with Original Geons

The major distinction between parametrie gcons and the conventional gcons of Bic­

derman is that the latter are defincd in terms of certain specific attributes of volullletrie

shapes, which do not provide global shape constraints. In contrast, parametrie gcons arc

defined in terms of analytieal equations, whieh do provide such constraints. In addition,

geons are described in strictly qualitative terms. However, parametric gcon descriptions

simultaneously supply bath qualitative and quantitative characterisations of object parts.

The geometrical differences between these two sets of primitives are given in Table 5.1.

Certain qualitative properties of the parametric gcons arc simplificd in comparison with

the original geons of Biederman. For example, an asymmetrical cross section is not uscd

in defining any of the parametrie geons becausc of the symmetrical nature of supcrellipsoid

shapes. Biederman has also stated [16]:
Given that a convex volume is parsed from matching adjacent concavitics, it

may not be necessary to assume gcons with asymmctrical cross-section.• ...

To my knowledge, there are no C"-"cs where basic level cla:.oification requircs
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ATTRIBUTES 1 PARAMETRIC GEONS 1

cross scctional shape symmetrical symmetrical, asymmetrical

cross sectional sizc constant,expanding constant, expanding,

expanding &: contracting

combination either l.apering bcth tapering

of properties or bending and bending

•
TAULE 5.1. Difference in qualitative propcrtics betwccn parame!.rie gcons and
Bicderman's original gcons.

the pre.<enee of an a.<ymmetrieal cross-section. This doe.< not mean that a

componpnt of an exemp/ar could not have an a.<ymmetrical cro,,<-section, but

that primai access need not depend on the preservation of this a.<ymmetr;" in

the image.

The assumption that ail parametric gcons are symmetrical with respect to their major

axes is also consistent with the well-known human perceptual tendency toward phenomeno­

logical simplicity and regularity [59J. Symmetrical primitives have also becn employed in

alternatives to the original gcons discussed by other researchers [100, 40J.

3. The Objective Function

The strategy for rccovering parametric geons bears sorne resemblance to that for other

parametric primitives. That is, a fitting scheme ;s used to minimise an objective function

which measures sorne property difference betwecn an object and a model [55, 74, 94, 123,

153J. The procedure for fitting parametric gcons is formulated as a functional optimisation

(minimisation) problem as follows:

PROBLEM 5.1. Civen an objective functior.

&(a) : 'Rn ~'R

having a E 'Rn a..< a model parameter set, find a particular set of model parameters a' E 'Rn

for which

&(a') ~ &(a), for ail a#a·.

•
Besides model fitting, there is an additional requirement for parametric gcon recovery.

The process must also produce discriminative information such that the resultant metric

69



•
3. TIIE OBJECTIVE FI':"CI"IO:"

data can be converted 1.0 a qualitati\"{' description. The objective function~ ~tudi(,<! pr<~

viously by several researchers were neither intended nor u~ for thi~ purpo~e. 1I0w(·ver.

the magnitude of fitting residua!s has b('('n used 1.0 guide volumetrie segnl<'ntation [57]. 1'0

identify individual qualitative shapes based on fitting residuals. wc requin' that the \'"IIl<':'

of the objective function correctly re~ect the difference in size and shape betwe('n 1.11<' o1>j('Ct

data and tllC parametric mode!s. When a model and an object arc close to being the "'Ul<'

shape. the objec~ive function should produce a small resiriua! value. When a modcl is fit.t<'d

to another class of objects, this same objective function should give a large residual v"lu('.

Our objective function cons!sts of two terms expressed as follows:

(S.18)

The first term, t lo measures the distance betw('('n object data points and the model surfan';

the second term, t2' measures ~he squared difference betw('('n the object and mo<lel normals.

>. and 1 are parameters which controls the contribution of t2 made to the objective function.

When the model and object pose are the same, the intuitive inter:>retation of thesc twu

terms corresponds 1.0 size and shape similarity. respectively. This is a modified version of

the objective function proposed in [153]. We change the first term from "n L2 norm to an

LI norm in order to conduct an efficient search (sec Section 3.3). In addition, we employ

a different weighting coefficient for the second term to he able to discriminate the different

objective function values.

3.1. The Distance Measure The first term of the objective fUllction is given by

(S.19)

•

Here N is the number of data points, {di e fé3, i = 1, ..., N} is the set of data points

described in terms of the model coordinate system, and a is the vector of model parameters.

For the three regular primitives (ellipsoid, cylinder and cuboid), c(di,a) is defined as

the Euclidean distance from a data point to the mode! 5urface along a line passing through

the origin 0 of the modeI and the data point [55, 140] (sec Figure S.6). Let x. = Idi wh"re

1is a scalar and x. is the model surface point on the line joining di and O. A is the distancc

from di ta O. Substituting x. into Equations (S.l), (S.2) and (S.3), wc obtain

(S.20) e(di,a) = A (1 - ~(di,la)]I/P)
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FIGURE 5.6. Defining the objective lunetion. nm and n,1 Me the model and dAtn KUrfa.ce
nonnzal., ~pectively. 0 iK the origin of the model. A illo the di!ltancc between Do pa.rticular data.
point and the centre of the model. r. i" A point on the modelllurface. Bi h.. the angle betwecn Do

mode1and abject IIUrfacC nonnal",.

where

{
2 for the ellipsoid,

p = 20 for the cylinder and cuboid,

For tapered and curved primitives, the computation of e(d;, a) can be formulated as

follows. Let e(d;, a) = 0 and let

(5.21) g(x.,a) =0

•

be the implicit equation of the model. We can also write (sec Figure 5.6)

A-o
(5.22) x. = ~di'

Substituting Equation (5.22) into Equation (5.21) we get

A-o
(5.23) g(~d;,a) = 0

The problem is as follows: find the minimum value 1 of 0 ~ 0, such that Equation (5.23) is

satisfied. Since tapering or bending significantly complicates the implicit equations of the

deformed primitives, we cannot obtaln a closed-form solution for 0 or e(di, a), as was done in

Equation (5.20). Thus an iterative method would be indicated. Rowever, objective function

evaluation is the largest computational component of the mode! recovery procedure. Renee,

for the sake of simplicity, we compute an approximate distance measure for the tapered and

lThcre are al. leut two intcfl'CCtionliof the mode18urCacc and the linejoining 0 and dojo 6 ÎlCo the distance (rom
d, to the cI~t intcnection.
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I,-omputed "hl>t:ln\ ~ 0
("(d:.aJ

x.

'0
computtddil
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•

FIGURE 5.";. The cylindcnaon the right in (a) and (bl ~obt.ainrdby lI.rplyillgin'\"e~ U\~ring

and bcnding trarl1lfonnationMo to the leCt tapcred and curvcd cylindcr. ~pectivdy. r.(d:.A) i,. thr.
Euc1idcan di8tanc:e along a line Od: in the invcDe tranMo(ormed eue.

curve<! models. No iteration is required. First, we apply an inverse tapering (sec (5.5)) or

bending transformation (sec (5.9)) to both the data and the model in order to obtain the

transforme<! data d: as shown in Figures 5.i; this gives either a rcgular cuboid or regular

cyliI.der. Second, we use (5.20) to compute the distance from the transformcd data point

d: to the transforme<! model surface along a !ine passing through d: and the model origin

O. We interpret e(d:,a) as the approximation of the distance along a !ine from di to the

model surface. Although this approximation creates a small error in the distance measure,

it tremendously speeds up. computation. Another advant:lge of this approximation is that

one cao still use the saIne Equation (5.20) in the case oi regular primitives and replace the
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FJCiURE 5.8. Sincc d:l.ta on the boUom l'lurface il'l not ",....ailable duc to ocdul'lion. two modcll'l
• the befl,t mode! and the overotimu.ted modc1 - could ~ fit to the data equaJl)' weil without
cmploying "Y. Ir.., itlo u~. the unàe~timatcdmodel aw~ both terml'l in the objective function
to ~ large. whilc the overotimated mode! ClI.U~ the ~ond term to he large. The ~t mode!
I"eftUltM in the 8mallot ~iduA1 'Io'l7Jue of the objective function.

function g[di, a) with that of deformed primitives. We note that the objective function used

in (123) does not have this problem; however, it is not a true distance measure [55).

3.2. The Normal Measure We define the second term (t2) of the objective function

by measuring a squared difference hetween the surface normal vectors nd of objects and the

surface normal vectors nm of models at each corresponding potition, defined in the same

way as in the first term (sec Figure 5.6):

1 N
(5.24) t2 = N :~::>n (i)

i=l

Here N is the number of data points and

(5.25)

•

The nd are computed from range image data and n m are computed base<! on methods

described in Section 1.2.

ln (5.18), -y = (a" + a~ + a=)/3, which makes the second term adapt to the size of the

parametric geons, and a",~ and a= are model size parameters. The units for the first term

of the objective function is millimetres but t2 is the average of differences of unit normals.

When multipiied by -y, -yt2 has the same units as the first term. This factor also forces the

selection of a model with a smaller size if object data are fit equally weil by a model with

different parameter sets. This can occur when the data on the bottom surface of an object

cannot he obtained. Figure 5.8 demonstrates that the overestimated model and the best

model can produce the same residual value of t2. By multiplying -y, the model having the

smaller -y gives a smaller residual than the overestimated model. However, the size of the
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model is prevented from being arbitrarily 5mall 5ince the value of the obj,'Ctive fun,"!ion

increases if the the model size is smaller than the object size. This featnrt' is similar 1.0 th,,!

of the volume factor used in superellipsoid recovery [123, 153].

In (5.18), the weighting constant .\, controls the contribution of the St'cond term tv th"

objective function. It is very difficnlt to determine this parameter on the ba"is of sp''''ifil'<!

principles. If it is chosen too small, the second term, t~, will almost not make il" contribntion

to the objective function. If it is chosen too large. t~ will dominate the objective fnncti,)n.

In this case, the fitting procedure cannot obtain accu rate sizc parametcrs bl'C;u,s,' t~ is

independent of the model size. Yokoya et al. arbitrarily chosc .\ = 1 for their two-h'rm

objective function [153]. We would Iike the value selected for .\ to permit the model fitting

procedure to produce the most discriminative residuals. Since the objecL~ may Jl0s.,,'S.~

arbitrary shapes, there seems to be no general rule for sclecting .\. Based on the ideal shape

comparisions between certain models, we use .\ =5 [144].

3.3. Biasing the Objective Function with Different Norms We have snggested

an LI norm in (5.19) and L~ norm in (5.25) to measure differences in distance and orient.a­

tion, respectively. It is known [58] that the sensitivity ofan L~ norm gr:ulually increa>:es. In

other words, this norm is insensitive to small values of the objective function and becomes

sensitive to outliers. On the other hand, the sensitivity of an LI norm i5 the same for

all residual values. When the shape types or the pose of the objects and models are very

dilferent, the data which are far from the model surface can he viewed as outliers. Thu5,

the first term with its LI norm makes a much smaller contribution to the objective function

than it would an L2 norm. In this case, the second term, in the form of the L2 norm, is

very large and dominates the objective function. With the objective function defined in

this way, we can achiev. efficient model recovery which will be discussed in Section 5.

4. Minimising the Objective Function

4.1. Optimisation Technique The procedure for fitting parametric gcons is ascarch

for a particular set of parameters ii, which minimises the objective function in (.'i.l8). This

function has a few deep and many shallow local minima indicated in Figure 5.9. The

deep local minima are caus" . an inappropriate tapering, bending or rotation paraml~

ters of the model. The shallow minima are caused by noise and minor changes in object

shape. In order to obtain the best fit of a model to an object, we nced to find model

parameters corresponding to the global minimum of the objective function. 1'0 accomplish

this, we employ a stochastic optimisation technique, Very Fast Simulated Re-annealing
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FIGURE 5.9. The logMithm of the objective function in tcrnuc oftwo rotAtion pararnctel'l'. The
n.ctual panunctct Kpace iK in (rom nine to elevcn dimensions.

(VFSR) [66]. Moti"".ted by an analogy to the statistical mechanics of annealing in solids,

the simulated annealing technique uses a "temperature cooling" operation for non-physical

optimisation problems, thereby transforming a poor solution into a highly optimised, de­

sirable solution[71]. The salient feature of this approach is that it statistically finds a

global optimal solution. VFSR use. n annealing schedule which decreases exponentially,

making it much faster than traditional (Boltzmann) annealing ~1], where the annealing

schedule decreases logarithmly. The re-annealing property permits adaptation to changing

sensitivities in the multidimensional parameter space. Using VFSR, we can reliably and

efliciently obtain parameters which describe the best fit between models and data based on

our objl'Ctive function.

Sorne researchers have used a nonlinear least squares minimisation (Levenberg- Mar­

quardt) method, adding random walks to escape local minima [55, 123, 131]. This is

similar to simulated annealing but with an extremely fast annealing schedale. In sorne

cases, \Vhere the properties of the objective functions are known or a good initial param­

eter estimation can he obtained, this approach will usually take much less time than the

general global optimisation methods. However, using an inappropriate initial guess \Vith

an extremely fast annealing schedule may trap the algorithm at a local minimum. This is

because global convergence cannot he assured. \Vith VFSR, only a coarse range is needed

for each parameter. In addition, methods which require a good initial estimate must also
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parameter lower bound upper bouml

a r 1/2 L/2

av 1/2 L/2

a= 1/2 L/2

Ir Cr - d Cr +d

Iv Cv - d Cv +d

1= C= - d C= +d

rr -r. ..
rv -ii ..
r= -Ii r.

kr 0 1

k 0 1y

1< 0 2/h

TABLE 5.2. PMNndt!rconl'trnintl',

assume that bending and tapering deformation takes place along only the lougest side [123].

This assumption restricts the object shapcs to be recovercd. By using a global opt.imis:l.­

tion method, we do not necessarily ncccl to impose this constraint. Therefore, volumet.ric

primitive models can be recovered from more shapcs.

A classical simulated annealing a1gorithm [71] has bL'!!n uscd for parametric modcl

fitting [153]. However, this a1gorithm is too slow bccausc it dccreascs temperatnrc logo.­

rithmically. The a1gorithm VFSR we used decreases temperature exponentially and is much

faster than the classical simulated annealing.

4.2. Determining the Parameter Spnce For any optimisation problem, the range

of the parameters defining the objective function must he known beforehand. ConstrainLs

for a total of 12 parameters are specificd as shown in Table 5.2. In order deterrnine the

range of the size parameters, ar, ay, a.. we have calculated a rcctangular region in aD space

bounded by maximum and minimum :E, y,:: coordinatcs { ...Ymaz, Xmin, }~a%' Ymifl' Zmaz,

Zmin} of range data shown in Figure 5.10. The maximum dimension in this space is

(5.26)

•
1> 0 is the minimum possible length of objects. The centroid (cr,cy,c.) of the data set

is calculated to estimate the translation parameters, tr> t y , 1:. d is the deviation from the
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FIGURE 5.10. A cylindricaJ part enclo~ by a ~tAngula.r region in 3D M~e which iM uMed
Cor otimating the range oC the 8ize paTametenl.

centroid. 1and d are free parameters set according to a priori knowledge. Since the upper

bound of the bending curvature ,; can be set to the inverse of th,~ minimum possible radius,

wc select h =min(Xm= - Xmin, Ym= - Ymin,Zm= - Zmin) as the minimum diameter of

the bent sector. Thus h/2 is the minimum possible radius. Rotation parameters, r", r y and

r. are set te:> the range of [0, 2rr). Tapering parameters, k", ky , are set to their valid range

(sec Section 1.2.2).

4.3. Stopping Conditions A practical issue in using simulated annealing is to select

an appropriate condition for stopping the process. The parameter search procedure, done

with VFSR, stops when any of the foIlowing conditions is reached.

(i) SmaIlest temperature value.

(ii) Minimum value of the objective function.

(Hi) Ma.'<imum number of times sampling the same point.

(iv) Ma.'<imum number of times of state acceptance.

(v) Ma.'<imum number of evaluations of the objective function.

(vi) Approximate relative difference between '\VO objective function values.

AIl parameter values are given in Chapter 6.

5. Discussion

•
In Section 3.2, we defined the objective function as a sum of a distance measure (t, )

and a normal measure (t2) in terms of L: and L2 norms, respectively. In Section 3.3, we
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indicated that the L, norm is less sensitive to outliers than the L" norlll. Il. is also knowu

that the absolu te size of a modcl is independent of the mea.~urelllent of the diffl'rt'nl'l's

between normals. These properties can be used to consl.rucl. an l'ffirienl paranll'I.N Sl'an'h

during model fitting. Effectively, the procedure automatically endeavonrs to COlllput" tll<'

correct remit in what amounts to two successive 'stages'. ln the first 'stag"', whl'n thl' fit.t.ing

procedure begins, the models and objects arc not weil aligned, so most c.f the data "an 1",

viewed as outliers. Thus the second term is much larger than the first, thereby dOlllinal.ing

the search. Obviously the exact size of t~e modcl has little effect on the second t.erlll. IIl'n,·l'.

the actual search space mainly involves transformation and deformation parameters. a.~ Wl'Il

as the ratio of the size parameters. Clearly, this search space will be small..r than t.ll<' l'nl.in'

parameter space. As the fitting procedure progresses, the position, oriClLation and shape

of the model will approach that of the object. Now the contribution of the second tl'rlll

gradually decreases and the first term bccomes progressively 'larger. Whe" the vaInc of th"

!irst term is similar to that of the second, the search enters the second 'sta€;e' in which both

terms will contribute equally to the objective function, and the search sp.,ce becolllt'S the

full parameter space. Thus a search in full parameter space without good initial estin".tions

is effectively achieved by a 'subspace' scareh followed by a full-space search with good initial

estimates of transformation parameters, as shown in Figure 5.11.

Yokoya ct al. have propose<! a different two-term objective function [153], in which the

first term is an L2 norm. Accordingly, this term will contribnte significantly to the objective

function right from the beginning of the parameter "earch. Sin"e this term depends on ail

of the model parameters, this method conducts a full-space search throughout the whole

procedure. Therefore, their objective function is less efficient than ours.

6. Chapter Summary

This chapter describes an approach to qualitative volumetric shape representation by

approximating object parts with minor shape variations by a finite sct of primitives. Wc have

propose<! a new set of volumetric primitives, parametric gcons, founded on the basic forms

of sculpture and globally.deformed superellipsoids. Parametric gcons provide distinctive

qualitative shape classes as weil as quantitative size and deformation information rcquired

for object recognition. The models impose constraints which facilitate shape approximation

in the qualitative shape recovery process.

We have propose<! an approach to recover parametric gcon models from range data.

An objective function involving a measure of distance and normal differences, and global
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FIGURE 5.11. VlLIuOlo of di!'lt4nce mCMUrel (tl) lUld normal rnca..",ul"etIo (>'''')'t1) w numbcr of
drcrementtl. in the objective function. The curves 8how the convergence of the distance mea..'l.ure
II Md the normal measure .\,.t2 as they change during the JU:an:h. The tlOlid line indic:at~ v:UUeg

of the di8tance rncuure. The dotted line givo valUe!' for the normal rncaaure. The duhed line
p~nt8 the valuet' of the complete objective function. Th~ curvo were obt.a.ined whcn li. cun,oed
cylindcr model wu fit to data. From the tW1\C type of object.

optimisation (VFSR) are ail use<! to fit models to the data. The combination of the LI

and L2 norms in the objective function permits an efficient and hierarchical search of the

model parameters resulting in more discriminative fitting residuals. The best model is

selected based on the minimum fitting residual. The VFSR works very efficiently byallowing

temperature decrease exponentially while the classical simulated annealing can only decrease

temperature logarithmically to ensure the statistic global convergence. The experimental

results will be reported in the next chapter.
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CHAPTER 6

Experiments

ln previous chapters we presented the motivation and techniqnes for compnting part.-ha.,,·d

representations of 3D Obj;lCts. ln this chapter, we will provide experimental resnll.s 1.0

demonstrate the various aspects of the algorithms.

Section 1 describes the experimental setup. induding the I;u;er rangefinder, data acqni­

sition and computer facilities. Section 2 ('xplains the user-defined parameters rcqnircd for

our algorithms. Section 3 presents the results of the charge density compntation. In order

to iIIustrate sorne characteristics of the charge density distribution dearly, we also show

its distribution over a 2D contour. Section" presents the results of object segmentation.

Section 5 gives the experimental results of part identification. Different aspects of modcl

recovery are investi/?ated in this section. A chapter summary is providcd in the last section.

1. Data Acquisition

Multiview and single-view range data were uscd throughout ail of the experiments.

Acquisition of the range images was accomplished using a NRC/McGiII laser rangefinder

which scanned objects supported by a turntable. The objccts were placcd from 30cm to

GOcm from the rangefinder. Simple thresholding was used to remove the background data.

This threshold was determined off-Iine by a calibration of the 3D workspace. For multiview

range data, four views were obtained for each objcct. View transformation parameters were

initially computed base<! on a calibration between the rangefinder coordinate system, and

the turntable coordinate system and then refincd by a method describcd in [25]. With

these parameters, our method transformed the range data in each rangefinder coordinate

system into a world coordinate system and redundant data which could be seen from more

than one view were removed. The approach uscd for data ~ransformation and redundant

data delction is described in Ap~ndix B. Figure G.l sh.:>ws the rang" images obtained from
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FIGURE 6.1. Multivicw intcgration. (a) Four imago of Il curved wooden cuboid taken (rom
dilfcrcnt vicwpoints. (h) Range data. in cach vicw aIter redundlU\t data. Are removed. (c) Range
data vicwed in the four' din:ctiotltl around Il horizontal axi.~ mtcr- merging the four data ~tM in (h).

four viewpoints, the range data after most redundant data are removed, and the range data

integrated into the world coordinate system.

Objects used in e.xperiments include machine-made wooden objects, carved stone ob­

jects, toy bowling pins and bananas. Beside the data we acquired in our laboratory, sorne

data were also obtained from the GRASP Lab at the University Pennsylvania, the PRIP Lab

at Michigan State University, and lnnovMetric Software lnc.. Ali programs were written in

C or C++ and were run on SPARC-lO or SGl R4000 and RSOOO workstations.

•

2. Parameter Specifications

In this section, we list all user-defined parameters, sorne of which are data dependent

and may not work in all circumstances.

(i) Total charge Q: Q =1000. This parameter sets the total charge on a conducting

object in Equation (4.12). Since we are interested in the simulated charge density,

this parameter is data-independent.
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(H) Separation between top and bottom patches: 20% of the maximum range of

d;,.t;,. in the Z direction. This parameter, which is defincd in Equation (C.2). sets

the position of the bottom patch of a triangular mesh when triangulating singlc-view

r;,.nge data. The larger its value, the mor~ triangles are creatcd and the longer the

charge density computation will be. Although changing the parameter affects the

charge distribution on the visible surface, it has little effect on the ultim:tte position

of the extrema of the charge density. Therefore. the segmentation results are not

sensitive to this parameter.

(iii) The charge density for determining a part boundary, Pt: 120% of the min­

imum charg~ density over the object surface. This parameter, which is uscd in

AIgorithm 4.3, determines when an object should not be decomposed any further.

Its selection depends on a priori knowlcdge of the surface concavity.

(iv) Weighting factor À in the objective function: À = S. This parameter, which

occurs in Equation (S.lS), sets the contribution of the second term to the objective

function. It depends on the similarities between the parametric geon shapes.

(v) Maximum number of objective function evaluations in VFSR: 10,000. This

parameter sets the ma.ximum number of objective function evaluations performed

by the global optimisation algorithm, VFSR. The higher this number, the longer the

aIgorithm runs and the more accu rate the model parameters.

(vi) Relative difference between two objective function values: 0.003. This

parameter is one of the stopping conditions for VFSR (see Section 4.3). It is defined

as

ObjectiveFunction(i - STEP) - ObjectiveFunction(i)
ObjectiveFunction(i - STEP)

Here i is the decrement index of the objective function. STEP is the number of

times an objective function value is Iower than ail previous values, as shown in

Figure 6.2. We set STEP = 10. This parameter reflects the coarse sIope of the

objective function. The larger its value, the Iess time the fitting procedure wiII take,

the less accurate the model parameters.

3. Charge Density Distribution

The results of the charge density distribution are presented in this section. In arder to

explain the behaviour of charge density distributions in a convenient way we first discuss

the algorithm by computing the charge density distribution for 2D abjects.
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3.1. 2D Case

3.1.1. Method The algorithm for a 2D shape is slightly different frorn the :m C:l."<'.

The physical model we have used is the charge density distribution on a 2D contour. 1'0 do

this, we examine an infinitely long charged conductor having this 2D contour as a COIl~tlmt

cross-section, as shown in Figure 6.3. Since the cross-sections have constant size and are

parallel to each other, the charge density distribution is the same at any plane along the

infinitely long conductor. The charge on the contour is treated as line of charge, that is, a

uniformly charged infinitely long line perpendicular to the cross section. We have developed

the algorithm for computing the 2D charge density distribution [150].

Since a contour in an image is composed of a sequence of pixel points, a polygonal

approximation can be formed automatically by linking ail consecutive pixels on the contour

by line segments. This is different from the 3D case where a triangular mesh is constructed.

The middle point of each segment is selected as the observation point. The actual charge

density on each contour pixel is computed by taking the average of the charge densities at

the observation points, on each side of this pixel along the contour.

3.1.2. Using Synthetie Data First, we tested our algorithm using a perfect ellipse to

verify its correctness:

(6.1)
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constant
cross section

line of charge-l---

Î
infinitely long conductor

FIGURE 6.3. Confisurntion oC c:hargro 20 contounI-. The 20 charge dcn",ity distribution is
computl:!d nJong b. Cf'O!'l,." ~tion oC the infinite!)" Jong conductor. The thin \'crticallinc indic:lt~

the line of chnrge.

Bere d is the ratio of the major to minor a.'l:CS of the ellipse. The discrete data are generated

by sampling the variable 9 E [0,2::-) at N points. Here N = 360. We compared the result to

the analytical expression. for the charge density a10ng an ellipse, known to be proportional

to [111):

(
cos29+ d2 sin2 9) 1/2

>'(9) = 29 d4 ' 29 (2::-)-1
cos + sm

Figure 6.4 contrasts the computed (solid curve) and theoretical charge density distri­

butions (dashed curve). It can be seen that the two curves are very similar. We a1so note

that there e.'l:ist two other algorithms in the physics literature for 2D charge density com­

putation [108, 111). Since both have ignored the potential produced at the observation

point, we have found them not to be as accurate as the method proposed here. In addition,

we speed up the computation by evaluating the line integral1 analytically while they do this

numerically.

Next we show results from two other contours of analytical functions, the hypocycloid

and the generalised epicycloid, containing either sharp convexities or concavities. Figure 6.5

shows that the charge density is very high at the sharp convexities and is close to 0 at

the sharp concavities. Figure 6.5 also reveais that the charge density curve is sharper at

conve.'l:ities than concavities. This suggests that the charge density is more sensitive to the

conve.'l:Ïties than concavities.

lin the 2D eue. the integration damain i& a line lW:gmeftt rather tban a planar triangle.
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3.1.3. Using Real Data For data obtained from a real image, the actual contour is

distorted by the image sampling process. Therefore, the high frequency noise contamllmtes

the contour (sec Figure 6.6 (a)) and also the computed charge density èistrioution (sec

Figure 6.6 (b)). However, we note that the noise affects the computation of the charge

density distribution much less than it would a curvature computation.

Let us examine this hypothesis. In a similar fashion to computing the incremental

curvature [50], we approximate the curvature of a contour based on the changing rate of

the discrete tangent at a point on the contour. The increment is 1. A comparison of noise

sensitivity between the charge density and the curvature for the object contour in Figure 6.6

(a) is given in Figure 6.7. We show the charge density distribution in the left column and the

curvature distribution in the right column. Without any smoothing operation, ail corners

on the contour cao be indicated by the charge density distribution (sec Figure 6.7 (a)) but

the concave 'corners are poorly indicated by the curvature distribution (sec Figure 6.7 (f)).

Ne..xt we applied :",wpass filtering to the discrete Fourier transform of the polygon data to

remove the high frequency components. The amount of smoothing was increased from 1%

to 4% energy from the largest component. The results are shown in the rest of figures. It is

c1early secn that the charge density computation is more robust to noise than the curvature

computation.

85



3, CHARGE DE"SITY DISTRIBt;TIO"

• ". ,

i
'" 1

> •
j

-"
j

-".
-'''' -". -" • " ". '"x

...00•

,
•
•,
•,
•
•
•..
•

•
•
•

•
•

•

(a)

'"

"
> •

."
.,"

.,., .," • '"x

FIGURE 6.5. The charge dcnaity distribution along analytica1 contours. The arc: length ia
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FIGURE 6.6. Effeet of a noisy contour. (a.) The 14mooth contour in an i",ag~ il'l di!'ltorte<! by
the image Mmpling proc:eNl. (b) The charge dcn!'ity ditltribution Nong the contour given in (n.).

In distinction to a local shape computation, such as curvature, the significance of the

charge density distribution is its ability to reveal both fine and gross shape information. We

demonstrate this with the following two examples. Figure 6.8 (a) iIIustrates a dumbbell­

like object with wiggles superimposed. The gray levels indicate charge densities, which

are normalised to the range between 20 (darkest intensity) and 255 (white). The object

contains two kinds of structures. They are: (1) the fine structure, which is represented by

small wiggles and (2) the gross structure, which is delineated by the two major components

of the dumbbell. Figure 6.8 (b) shows the charge density distribution along the arc length

of this object. This curve simultaneously indicates the fine and gross structures of the

contour. The dashed line depicts the two gross components defined by the envelop of the

charge dens' ty distribution. However, the incrementa! curvature of the contour only denotes

the fine structure, as shown in Figure 6.8 (c) .
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componentll of the contour by removing from 190 to 490 of the cnerg)" in the largest Fourier
component. At each level of smoothing. the charge denaity computation ia more robust to high
fn:qucncy noilte chAn the curvature computation.
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FIGURE 6.8. Fine and Sf'Ot'l' featurea. (a) The chargedeftllity for a. dumbbell object with wiggleM
l'uperimpœed. The brightest and darkest intensities indicate the maximum and minimum chlU'KC'
denaities. respectively. (b) The charge denl'ity di!&tribution over the contour in (a). The M'C length
il' referenc:ed at the highest pixel on the contour and goetl counterclockwi!iC'. The frequent ~w
indicate amall wigg1es on the contour. The two peaka of the envelope (the duhed line) of the curve
denote the two major parts of the dumLbeli. (c) The incrernentA1 curvn.ture di!&tribution Along the
contour in (a.). In this computation, the IImoothing factor wu chO!&Cn to be ~% and ..ne increment
for the curvature computation wu cqual 10 1.

•

In another e.'(ample, Figure 6.9 shows (a) the charge density {'n the object contour and

(b) the charge density distribution along the arc length. Wc observe that the peaks and

valleys in the charge density distribution can indicate not only the convexity and concavity

of the contour shape but also the significance of protrusive parts. r,'or example, the higher

the charge density, the larger the part protrusion. We note that thcse arc consistent with

human intuitior.. However, the incremental curvature is not able to do so, as shown in

Figure 6.9 (c).

To summarise, we have demonstrated in the 2D case that the charge density compu­

tation is less sensitive to high frequency noise than the curvature computation. Thererore,

89



•
3. CHARGE DE"SITY DISTRIBUTIO"

(
f.

\ ~ * ~ ~ _ _ * a _ _--
(b)

(a)...,
.,
...

i ~,

r"
1 •
.."..,
-0.1'0

(c)

•

FIGURE 6.9. The charge den8ity distribution on an image contour. (a) an abject contour
_uperimpotled by the charge dentÜty distribution. (h) The charge density distribution a10ng the
arclcngth of the contour. The hcight of peaks indicate the aïgnificances of abject parts. (c) The
ineremcntal curvature a10ng the contour. In the computation. the amoothing fACtor is 2% and the
incremcnt for the curvatUl"e computation is 1.

dctcction of part boundaries using the charge density distribution is more robust than us­

ing curvature. Moreover, the charge density can reveal shape information at both fine and

gross scales. It can aIso indicate the significance of parts. These ri!atures have not been

demonstrated by any previous approach.

3.2. 3D Case In this section, we will show experimental results of the charge density

computation for surfaces of 3D objects. The first object is a vase, consisting of sphere and

a cylinder. The raw range image (sphere+cylinder.Zj originated from the PRIP Lab at
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(b)

•

FIGURE 6.10. Chnrge den~ity for:L vt\."Ie. (a) The tria.nguh\l"me-h t~"IeIln.tion; (hl th(" c01U!"utetl
charge den~ity di~tribution.

Michigan State University. The mesh data for the objcct. shown in Figure 6.10 (a), were

obtained by a deformable model fitting algorithm developcd by D. Dccarlo and D. Metaxas

at the University of Pennsylvania [35). Figure 6.10 (b) givcs the computcd charge density

distribution over the object surface. The gray levels indicate charge densitics, which are

normalised to the range between 0 (darkest intensity) and 250 (white). It can be c1early

seen that the lowest charge densities are located at surface concavitics, which are at the

intersection of the spherical and cylindrical portions of the objcct. Conversely, since the

edge on the top of the object is sharply convex, the charge density at thcse points reachcs

a ma.'l:imum.

The second 3D object is a toy bowling pin. The range data were obtaincd by multiview

integration, as described in Appendix B. The triangular mesh of the objcct in Figure 6.11

(a) was computed in the same way as the previous object. Figure 6.11 (b) shows the

simulated charge density distribution. Again the charge density easily distinguishcs betwecn

the locations of the deep surface concavities and convexities.

The third 3D object is a toy elephant. Multiview data were obtained from InnovMetric

Software Inc. who also computed the tessellation [128), shown in Figure 6.12 (a). Fig­

ure 6.12 (b) shows the computed charge density distribution. Although the shape of the

elephant is very complex, our method successfully indicates, by the bright gray levels, the

protrusions caused by the legs, nose, cars and teeth of the elephant. The charge density also

reveals the concave portions around the neck and between the legs (as dark gray levels).

So far we have ilIustrated the charge density distributions using triangular meshes,

which model the complete 3D shape of the objects. Next we will show experimental results
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(b)
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FIGURE 6.11. Charg~ den~ity for the bowling pin. (a) The triangular m~h t~lIa.tion. (b)
The compute<! chArge den!iity di~tribution.

obtained from single-view range data. In this case, since only partial shape information is

available, we construct a c10sed triangular mesh for the purpose of computation.

Figure 6.13 (a) shows the triangular mesh of the visible surface of a carvPd stone owl

and (b) shows the computed charge density distribution over its surface. Figure 6.14 (a)

iIIustrates the triangular mesh of the visible surface of a c10ck with two ringers on the top

and (b) shows the computed charge density distribution over this surface. In both examples,

dark and bright regions indicate surface concavity and convexity, respectively. Although

only partial shape information of the complete objects are available in these experiments

and the construction of the c10sed triangular meshes is rather arbitrary, our algorithm can

still produce the desired results for the visible surfaces. The shape of the invisible portions

of the object do actually affect the absolute values of the charge density distribution on the

visible surfaces. However, the relative values of the high and low charge densities almost

remain the same. We note that the size of triangles is not crucial to the charge density

computation. During the experiments, we observed that even with a ratio of ma.'Cimum to

m:nimum triangle areas of about 200, our algorithm still produced satisfactory results.

For the bowling pin, which consists of 864 triangles, the charge density computation

takes 80 seconds on a SGI-RSOOO workstation. The complexity of this computation of is

O(N2
). N is the number of triangles in the triangular mesh.

4. Object Decomposition

Give"' that the charge density distributions shown in Section 3.2, our algorithm de­

compose;. an object into parts by locating and then deleting triangles on part boundaries.

Examples are given in Figure 6.15. The bowling pin and the vase are segmented into two

92



•

•

.1. OHJEC'!' IlECO:'\t1'O~ITIO;\:

(a)

(b)

FIGURE 6.12. A toye1ephant. (a) The triangular t~lIation. (b) The charge dent'lity dil'tribution.

parts. The owl and the dock were segmented into three parts. Thesc results are consistent

with our intuition of object parts.

We note two issues regarding part segmentation. The first concerns the criterion for part

decomposition. We have daimed that low charge density indicates part boundary points.

The question is: How low should the charge density be to indicate a part boundary? ln

fact, it appears that, for human beings, there is no universa! criterion for determining parts.

It always depends on personal experience and preferences. Thus, it is also reasonable for

users to set a threshold for the value of the low charge density. In order to determine a
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(a) (b)

FIGURE 6.13. An owl8en~ in IL ~ingle ,,·iew. (a) The triangular tetlSellD.tion on the visible
tlurfacc. (b) The charge denllity di~tribution.

(a) (b)

•

FIGURE 6.14. An alAm\ dock with two bel" on top aeftt'ed in a single Crontal ""iew. (a) The
triangular tClll&Cl1ation Cor the vÙlible llUrflt.Ce. (b) The charge density distribution.

thrœhold, one must know the absolute or relative depth of a eoncavity that forms a part

boundary. We know that the eharge density is not a pure local shape measure and therefore

cannot provide absolute information. Renee, this threshold must he determined by relative

information, originating from a priori knowledge of the surface eoncavity.

The second issue is related to the assumption about object shape. Although the

transversality principle states that when two objects interpenetrate they intersect transver­

sally with probability one [11), a surface eoncavity does not always appear for ail objects.
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(b)

(d)

•

FIGURE 6.15. Resulta of part ocgmentation. (a) and (b) show the ocgmented part. of obj....
tesscllated by a model littingtechnique. which U1M:Il multiviewdata. (c) and (d) show theaegmented
parts of objects tessellated by a local triangulation technique. which takCl' Kingle-view mnge datA.

We stated in Chapter 3 that the part boundaries of objects segmented by this method must

be delimited by a c10sed contour of surface concave points. This ensures that a part can

be completely separated from the rest of the object. Here we show an example where the

part segmentation assumption is violated. Figure 6.16 (a) illustrates the segmentation of

the elephant. Although one can see sorne intuitive parts, such as nose, four legs and ears,

etc., only the left front leg is separated from the object by our segmentation method. This

occurs because that the part boundaries are not delineated by a c10sed contour of deep

surface concave points.

Nevertheless, using a different decomposition strategy may produce a better segmen­

tation. Figure 6.16 (b) shows the result obtained by simple thresholding. This method
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(a)

•

(b)

FIGURE 6.16. Thesegmented result for the elephant. (a) shows the segmentationobtaincd by
the part boundary tracing method. (b) .hOW8 the segmentation obtained by thresholding.

extracts these triangles that are located on protrusive parts. The charge density values

on these triangles are greater th,m the selected threshold. We can see that all protrusive

parts have been found, although they are not complete. This example again shows that the

charge density is a good indicator for protrusive parts.

5. Part Identification

ln the previous section, we presented the experimental results for object segmentation

into parts. The ne.~ stage of our system derives a parametric geon model for the seg­

mented part. The task is performed by fitting al! models to the part data and selecting
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the best model base<! on the minimum fitting re:;idual. ln this :;cetion. wc will discus.< "Olll'­

experimental results and investigate the following issue:;:

(i) The efliciency of the objective function for model fitting

(ii) The discriminative properties of parametric gcon"

(iii) The effect of object shape imr>erfection

(iv) The importance of multiview data for shape approximation

We are i1te-ested in examining the residu,,1 (1,i!erences for ail of the modcls. e:;pecially whcu

object data contain noise and object shapes do not exactly conform to the par~llletricgcOU".

The inputs in the experiments are single-view and multiview 3D data of singlc-part ohjc'Cts

and segmented parts. Part model recovery rcquires the data points and surface normals.

Since each segmented part is represented in terms of a set of triangles, we use the centroi<b

and orientations of all triangles as the data points and normals, respectivcly.

The execution time V"...ried according to the data, models and stopping conditions. The

approximate average time taken for obtaining acceptable fitting results was around 3 min­

utes on an SGI(Personaliris) R4000 workstation. However, to achieve very accu rate model

parameters, the computation could require about two hours for most complex parametric

geon shapes, i.e. tapered and curved models. The relative error of the objective function

residuals produced is less than 5%.

5.1. Using Range Data of Geon-like Objects ln this experiment, we matched

each parametric geon model to multiview range data ofseven machinc-made wooden objecL<

and examined the fitting residuals. Since they are single-part objects, no segmentation is

nceded. The shape of each object was similar to one of the parametric gcons. Four views

were used to collect the range images. Surface normals were computed by a least squares

fitting method. After multiview Integration, these dense 3D data were subsampled at a

50 : 1 sampling rate for parametric geon recovery.

Table 6.1 shows that the residuals obtained by fitting models to their own object type

are much smaller than those obtained by fitting to other object types. Thus the seVen

selected parametric geons are seen to he very discriminative. The types of objects uscd

are listed in the first column. The bold figures on the diagonal are the resid uals given by

fitting a mode! to its own type of data. The underlined figures are residuals produced by

fitting tapered and curved models to a cylinder or a cuboid. When this is done, k"" k., or

" take values which are very close to O. Thus, the data from the deformed models can he

very nice!y characterised by the non-deformed models (regular cylinder or cuboid). If two

residuals are very close and much smaller than the others, the algorithm arbitrarily selects
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-6--i~~
1 1.206 12.0i5 19.368 16.511 26.449 14.512 24.162-
2 22.535 0.7968 12.9i6 0.S64 12.834 O.Sil 14.432

3 36.156 li.819 1.313 28.iOi 1.32i 1i.80i 1.33S

4 li.993 20.;40 2;.190 2.339 15.203 lï.625 25.;40

.5 34.2;6 28.241 14.256 20.156 1.667 28.228 14.242

6 24.153 21.986 22.148 21.19i 4;.98i 3.300 22.19i

i 34.209 29.88i 23.213 25.130 16.291 14.341 2.949

Il Il MODELS
~ OBJECTS ~i-l---2- -3---=-1 4 1 5•

TABLE 6.1. Fitting modelft to range data of geon-like objecb. Items in ea.c:h row are the
roùduaJs (rom 6tting difTerent mod('ls to the data of a p:t.rtieulu object. as li:lted in the fi~t

column. The numbe", (rom 1 to j denote cllipsoid. cylindcr-. cuboid. tapcred c:ylindcr. tapcred
cuboid, curved c:ylindcr and eurved cuboid. ~pectively. The bold figul"el denotc the residuals
(rom fitting Il model to it& own abject type. The undcrlined figures are the retlidual." (rom fitting
tapcred or curved modcl!lo to a regular cylinder or cuboid.

the simplest of the two shapes. Figure 6.1; shows the results offitting the seven parametric

gcons to the range data of a curved cuboid. The lighter shaded volumes are the models

obtaincd by the fitting procedure and the darker sparse spots indicate the input data.. (a)

through (g) illustrate models of the ellipsoid, the cylinder, the cuboid, the tapered cylinder,

the tapered cuboid, the curved cylinder and the curved cuboid superimposed on the 3D

data, respectively. We indicate the residuals at the top left corner in each image. The

aIgorithm selected the curved cuboid shown in (g) as the best model for the wooden object.

This result is consistent with our expectations.

•

5.2. Using Range Data of Imperfect Geon-like Objects The purpose of this

experiment was to examine the uniqueness ofshape approximations using parametric geons

when given multiview data of a set of single-part objects whose shapes varied. In this case,

eleven real bananas were taken as the objects. Figure 6.18 shows four of the bananas used

in the experiments. Their shapes cannot he exactly depicted by any of the parametric

geons. The apparently noisy surfaces of the bananas shown in the figure were due to the

rangefinder's sampling error. This \Vas because the bananas had to he placed reIatively far

from the rangefinder in order for them to fit within its scanning fie!d-of-view.

Figure 6.19 shows the results of fitting the seven parametric geons to the 3D data of

a particular banana.. The aIgorithm selected the curved cylinder shown in (f) as the best

mode!. The numbers at the top left corner in each image indicate the fitting residuals.
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(b)

(c) (d) (e)

(f) (g)

•

FIGURE 6.17. Fitted modcls superimpoaed on range data of a curved cuboid. As expect.ed
the curved cuboid in (g) yiclded the minimum fitting residual. The values of fitting rniduat. are
indie:at.cd at the top lert corner in each image.

Clearly this result is consistent with our intuition of the banana's actual shape. Table 6.2

gives the average, maximum and minimum fitting residuals for all of the bananas. 5ince

these are ail of different size, we cannot make an absolute comparison of the fitting resid­

uals. Thus, each residual was normalised by the minimum residual among those obtained

for the same banana. The results show that the best model for all of the bananas is the

curved cylinder, which gives the smallest average residual value. The results of parametric
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FIGURE 6.18. Fourbananuusedinthecxperimcnbl.

LiJ-ï~
~ MODELS
~-1-'---2- --3-1 4 1 5

Mean

residual 3.255 2.889 3.851 3.324 3.611 1.000 2.98ï

Maximum

residual 4.001 3.489 4.ïlï 5.018 4.328 1.000 3.802

Minimum

residual 2.656 2.458 3.102 2.464 3.0ï3 1.000 2.385

TABLE 6.2. Resulta or fitting difTerent modela to range data. of cleven bananu. The modcls
are numbered in the Mme way as Table 6.1.

geon fitting can be also appreciated from Figure 6.20. The circles Iinked by dotted Iines

correspond to residua.ls from one particular set of data.. In order to show the differences

in the residuals c1early, they were normalise<! by the minimum residua.ls obtained for ea.ch

banana. One can see that ail minimum residua.ls are significa.ntly lower than others. There­

fore, the parametric geon mode1s and recovery procedure demonstrate robust behaviour and

uniquely represent the different banana shapes.

•
S.S. Comparing Different Objective Functions In this experiment, we recov­

ered pa.ra.metric geons from the sa.me e1even bananas using just tl (see Equation (5.19) in

Chapter 5) as the objective function for fitting. This objective function measures the sum of
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(b)

(c) (d) (e)

(t) (g)

•

FIGURE 6.19. Fitted modela auperimpœed on the range dataobtained (rom a banana..

the spatial distances from the data points to the model surface along a line passing through

a datum and the mode! centre. It has been shown to have a significant advantage over sorne

others as an objective function for superellipsoid fitting [55]. Although our 3D data were

obta.ined from multiple views, the data at the bottom of the bananas were still missing, a
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FIGURE 6.20. Fitting l"e!liduaJs obtained utling c1even œnanas. The horizont:t.1 axis represcnts
cach individual pau-ametric geon mode! (l-ellipsoid. 2-eylinder-. 3-cuboid. 4-tApered eylindcr. s-.
tAperecf cuboid. 6-curved cylinder. 7-eurved cuboid). Circlo connecte<! bJo' li. dotted line corTeJpond
to roidulÙs obwned (rom one set of data. Allresiduals an: nonnttJi~ by the minimum residuttJs.
The objective function in Equation{S.lS) was ulled.
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FIGURE 6.21. Fitting residuals obtained. using a difl'erent objective function with eleven ha..
nanax. AU n:aiduala are normaJised by the minimum residuala. In the objective function, only
weightcd tl Îa used.

situation which would cause the mode! size to be underconstrained. Thus we multiply t 1

by a size factor -y. The effect is same as that of -y presented in Section 3.2, Chapter 5.
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Figure 6.21 shows the fitting residuals obtained using the weighted Il with e!,'\'en

bananas. Although this simplified objective function actually produces the corr",·t shap"

type, the minimum residuals are not significantl~ lower than the others. In addition. lor

sorne data sets the algorithm required many more evaluations to find the global minilllnlll

than the objective function proposed i~ this paper. The latter shows snperior perforlllanc"

because the component duc to the normal measure makes the global minimum dœper, a.<

indicated in Figure 6.20). This facilitates global optimisation and makes the fitting residuals

more discriminating.

5.4. Comparing Single-view and Multiview Data This experiment exalllin",1

the quality of fitting when using single-view data of the same cleven bananas. Fignre 6.22

sho·.vs the normalised fitting residuals. The algorithm again selected the curvcd cylind,'r

as the model for all of the bananas. This is consistent with the rcsults for multiview data.

However, compared w:'h Figure 6.20. the fitting results are now much more diverse, and the

differences between the minimum residuals and the others arc significantly rcduccd. Bccause

the banana shape was not regular, the model estimatcd from single-view data was biascd

by the partial shape information in the data, as shown in Figure 6.23 (a) and (b). Using

active vision, uncertainty associated with these model parameters could bc analyscd further

to guide the collection of more data from other views [140, 141]. When multiview data arc

used, the algorithm obtains much more accu rate models, as demonstratcd in Figure 6.23

(c) and (d).

5.5. Comparing Perfeet and Imperfect Geon-like Objects Here wc compare

the parameter dispersion obtained by fitting parametric geons to singlc-view data of perfect

and imperfect geon-Iike objects. We obtained four sets of data by scanning a curvcd plastic

tube whose shape resembled a perfect curved cylinder. The data of imperfect geon-Iike

objects consisted of 44 sets of single-view data of the eleven bananas, each of which was

scanned from four different views. Three scale parameters along the X, Y, Z axes and

the bending curvature parameter were exarnined. We cannot compare the transformation

pararneters because the two types of objects are represented in terms of their individual

views. Because of differences in size and axis curvature, we used the coefficient of variation,

defined as the ratio of the standard deviation and the mean, as the measure of relative

dispersion of each estimated pararneter.

Figure 6.24 shows that the parameter dispersion is much larger for the bananas than the

plastic tube. This is because the shape variations of imperfect objects in sorne views may
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FIGURE 6.22. Fitting roidual~ obtained (rom single-vicw data of the eleven bananu.

(a)

(c)

(b)

(d)

•

FIGURE 6.23. Fitting a mode. to single-view (a) and multiview data (h) of a bananza.. The leCt
column shows the aetual range data and the right column shows the model auperimposed on the
nulge data.

be more than in other views, and data from perfect geon-like objects in single views contain

more consistent information. Thus, the imperfection in shape makes it much more difficult

to obtain unique quantitative information using single-view data. This aIso suggests that

employing multiview data is very important in parametric mode! recovery, especially when

the object shapes are not highly consistent with the mode! shapes.
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FIGURE 6.24. Comparing bananu nnd plutic tubO'. The lighter bar dcnotCl' the C'udIicient of
v:a.riation of four otimateci pammetenl for the plœtic tube. The darker hM indicn.t~the codIicient
of variation of four panunetCl"l' 4vcrage4 olier eleven bananM. The horizontAl axil'l indicl\t~ the
pararnctcrs. 1. 2. 3 are the modcl tlizc parnrnctcrs nlong the X. Y, Z AXO', l'e'I~tivdy.Mld ·1 il'l
the bcnding CUI'-ature.

5.6. Using Multi-part Objects We have a1so conductcd experiments with mlllti­

part objects, which have lleen segmented into parts by the method describcd in Chapter 4.

Figure 6.25 (a) is the side view of range data of an object and (b) is its parametric geon

model consisting of a cylinder and an ellipsoid. Figure 6.25 (-:) is the range image of a

toy bowling pin and (d) is its model consisting of a tapered cylinder and an ellipsoid.

Figure 6.25 (e) is the range image of a carved stone owl and (f) is its mode!. The head and

torso are identified as two curved cylinders and the mode! of the feet is a tapercd cylinder.

These results again indicate that (1) our method works best when an object is composcd

of perfect geon-like parts and complete shape information is avai!able (see (a) and (b));

(2) When complete shape information is available but the object is composcd of imperfect

geon-like parts, our method can a1so obtain a good result (see (c) and (d)); (3) when only

partial shape information is available and the object is not composcd of perfect geon-Iike

parts, our method CalI still obtain the satisfactory qualitative results (see (e) and (f)).

6. Chapter Summary

•
We have conducted systematic experiments using multiview and single-view range data

to test our part segmentation and identification methods. Experimenta! results demonstrate

that charge density distributions possess both fine and gross shape information and can he

computed efliciently and robustly. Part segmentation using the charge density distribution
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G. CHAPTER SU~l~lARY

(b)

(d)

(f)

•
FIGURE 6.25. Part--bued detaiptions of objecta. Range data. or three objects are shown in
the I~rt column. The part-bued descriptions oC these three objects are presentec:l in the right

column.
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as a surface fcature indicator Îs successful if the abject sha.pl' satisfi('s our S(.'~I1H·lItatioll

assumption.

We have also demonstrated the strong performance of our approach to sl,,'1'" approxi­

mation of object parts by parametric gcons. \Vhen using singl,~view data of obj",·ts which

do not consist of gcon-Iike parts, we can uniquely oblain qualitati\'C shapl' information.

Ho\Vever the quantitative information of parametric gcons is often di\'l'cse and unrl'iiab!,'.

When multiview data of the same objects are uscd, wc can robustly rerovN thl' par:""l't­

ric geon models \Vith much more consistent quantitative information. Th" lIl'wly d,'IÏI,,~1

objective function \Vith both tl and f2 terms produces much more discriminativ,' liuin)';

residuals than that \Vith only the term fI. Our fitling tcchnique using global optimisation

can reliably produce unique shape types of object parts. By directly comparing the part

shape \Vith model shapes, \Ve accomplish explicit shape verification of the Cl'Sultant part

models.
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CHAPTER 7

CONCLUSIONS

ln the previous chapters. we have presente<! a new approach to qualitative volumetric shape­

base<! representation of 3D objects sense<! by a laser rangefinder. Here we summarise the

thesis and consider: (1) the contributions made to knowle<!ge in the field ofcomputer vision.

(2) the limitations of the current system, and (3) potential improvements.

1. Thesis Summary

A prercquisite for an autonomous robot to explore its environment is its ability to

recognisc objects perceive<! by a visual sensor. In general, image data acquire<! by a laser

rangefinder only provide the distances from the sensor to object surfaces in the scene. Thus,

range images alone cannot be directly use<! for identifying individual objects. Efficient object

recognition by machine requires a symbolic description derive<! from image data of the object

which can he matche<! to e:"isting models in a database. To compute such descriptions, it

is necessary to impose meaningful constraints derive<! from human vision studies. Object

descriptions must he able to characterise a variety of the sense<! objects and be insensitive

to sensor noise and minor object shape variations. Moreover, the object representation

process must he able to verify the resultant shape descriptions with the object shapes.

From nature we observe that many objects consist of parts. Consider the theory of

human image understanding, Recognition-By-Components (RBC) [15], which addresses the

L'<Sue of part-based recognition. To represent object parts, the RBC theory derives a finite

set of generic volumetric primitives, calle<! geons. It also postulates that if an arrangement

of a few geons can he recovere<! from the image, objects can be recognised quickly even when

they are occlude<!, rotate<! in depth or degrade<!. Inspire<! by RBC, considerable research

has becn carrie<! out on geon-based object representation and recognition. However, nearly

all of this work has focused on the recovery of geon models from complete e<!ge maps or

idealline drawings depicting objects whose parts are instances ofgeon models. The problem
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of recovering a part description in terms of perfect models from a non-ideally shape<l part

has not becn considered. This thesis addresses this challenging issue. Specificall~·. a nov<'l

physics-based approach is proposed for part segmentation and a new top-down strate~' is

introduced for recovering geon models from imperfect geon-like parts.

Object segmentation decomposes an object into parts at the part boundaries. In Chap­

ter 4. we introduced a physics-based property. the simulated dec/rieal charge de71sity di.•lri­

bution, to characterise the object shape, and segment the object into parL~ at deep surface

concavities where the charge density achieves a local minimum. This method is motivated

by the analogy between the singularity in surface tangents and the singularity in the chargl'

density distribution over object surfaces. The simulated charge density dilfers significantly

from surface curvature, a commonly-use<! surface property. The former is computed by solv­

ing a set of integral equations which does not require smooth surfaces. However. surface

curvature is derived from second derivatives which does require surface smoothness. Cnr­

vature computations depend on local data [14] while the charge density computation uses

global data. Local computations base<! on differentiation are very sensitive to sensor noise,

and a local scale must be specified for the computation. It is usually diflicult to choose such

a scale since it depends on the object structure which is not explicitly provided by range

data. By contrast, the global electrical charge computation reduces the local noise elfects

and does not require that a particular scale he selected. In addition, the charge density can

reveal the object's fine and gross structures simultaneously and indicate the significance of

part protrusions. Although the charge density computation requires a complete triangula­

tion of object surfaces, it does not work in a voxel-base<! coordinate system and furthermore

does not perform computations in object interiors. Thus, it requires much less parameter

selection and works more efficiently than a partiele diffusion-base<! approach [151], which

must compute the interior of objects in a voxel-base<! coordinate system.

Part model identification obtains shape approximations using parametric geon... In

Chapter 5, we have defined parametric geons as seven qualitative shapes inspired by the

volumetric primitives commonly use<! in sculpture. Each parametric geon is formulated by

an implicit equation of restricted deformed superellipsoids. The attributes of the parametric

geons such as pose, size, tapering rates and curvature of the axis are specified by parameters.

We fit all of the parametric geons to an object part and select the best model based on

the minimum fitting residual. The formulation of the models provides explicit global shape

constraints, which restricts the resultant part descriptions to predefined models. Thus, this

approach cao recover part models even when objects consist of imperfect geon-like parts.
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More importantly, since we directly examine the similarity between part and the model

shapes, an <'xplicit shape verification of the resulting descriptions can be accomplished. This

is in contrast to all previous work on geon-based representations, which did not perform

explicit shape verification. The new objective function and the use of global optimisation

technique (Very Fast Simulated Re-annealing) have made the part model recovery more

robust.

Chapter 6 examined our approach through systematic experimentation using both

single- and multiple-view range data. We showed that the charge density computation

is more robust to high frequency noise than the curvature computation. The charge den­

sity distribution can provide bath gross and fine shape information and can indicate the

significance of part protrusions. We successfully performed object segmentation into parts.

We demonstrated that our approach can recover models from object parts, whose shapes

were not consistent with the model shapes. Experimental results aIso revealed that (1)

the newly-defined objective function produced more distinctive fitting resi.:!uals for shape

discrimination than that used in previous work [55]; (2) for single-view data, the model

fitting results were more stable when using perfect geon-like parts than imperfect geon-like

ones; (3) for imperfect parts, the model fitting procedure using multiview data produced

much more robust results than using single-view data.

2. Thesis Contributions

We have introduced a new paradigm for qualitative volumetrie shape-based represen­

tation of 3D objects found in range data. The major contribution that this research makes

to knowledge in the field of computer vision is the physics-based approach to object seg­

mentation into parts. It is based on an analysis of the simulated electrical charge density

di..<tribution on the object surface. To our knowledge, this is the first time such an analogy

has been used to characterise an object's shape and segment an object into parts. This

approach provides a superior alternative to the traditional geometry-based approaches and

creates a new direction for object shape representation. The novel aspects of our research

are described as follows:

Shape Characterisation: We propose a physica1 property, the simulated electrical

charge density distribution, to characterise object shapes. The charge density ex­

hibits the relative contrast of concavity and convexity of object shapes. It is com­

puted by using global data but clearly manifests local features. The computation of
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charge densities is unique for a given shape, invariant to translation and rotation,

robust to sensor noise and not sensitive to surface triangulation,

Part Segmentation: We segment an object into parts at the part bonndaries whirh

are characterised by the local minima of the simulated charge densities, This ap­

proach is motivated by an analogy between the singularity of surface tangent planes

and the singularity of the charge density distribution on the surface of a perfect

conductor, Ail traditional approaches have employed geometrieal properties, such

as curvature or volumetrie shape models, for part segmentation,

Model Recovery: We introduce parametrie geons as the part models by explicitly

specifying the qualitative shapes of deformed superellipsoids, Parametrie geons con­

vey qualitative shape and quantitative pose and deformation information, We di­

rectly compare the part shape with all parametrie geons and select the model whose

shape is most similar to the part shape. ln this way, we can achieve an explicit

shape verification of the resultant descriptions of parts. Ail previous approaches on

geon recovery do not perform explicit shape verification. A new objective function

defined in terms of mixed LI and L2 norms and a fast global optimisation technique

(Very Fast Simulated Re-Annealing) are employed to obtain models robustly.

Experimentation: We have developed a software system for achieving above and

successfully obtained parametric geon descriptions of multi-part objects. We have

also studied the properties of charge density distributions on :'<0 contours and 3D

surfaces and compared the characteristics of the charge density and curvature. ln ad­

dition, we have investigated the performance of model recovery affccted by different

objective functions, shape imperfection and the amount of input data.

3. Limitations

3D object representation is obviously a complex problem, and this rcsearch has at­

tempted to address only certain issues. Those omitted must be dealt with in future rc­

search in order to produce a usable object recognition system. We elaborate on sorne of the

problems in the following:

• We have assumed that the segmentation of an object from its background could he

easily performed. In practice, we achieved this figure-ground separation by using

a priori information of 3D space obtained from an off-line calibration proccss. If
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a robot navigates in an unknown environment, this calibration would not be avail­

able. Other context frcc approaches are required to segment the object from its

background.

• We have assumed that the part boundary on the object surface must be explicitly

indicated by deep surface concavities. This is the requirement for all boundary­

based approaches which follow the principle 0' transversality regularity [60, 56].

However, in practical situations, many objects do have obvious parts, which are

not completely separated by deep surface concavities. Examples are the "elbown in

Figure 2.2 and the elephant in Figure 6.12. A different part segmentation theory is

needed for segmenting these kinds of objects.

• We have assumed that the object of interest consists of multiple parts. This is

because the charge density alone is insufficient to distinguish between multi-part

and single-part objects. The charge density only indicates the contrast between

concavity and convexity and cannot measure the absolute convexity and concavity.

In practice, an approach to object representation should lirst e.'Camine whether a

sensed object is composed of multiple parts. If it is, then part segmentation is

needed.

• In order to compute the charge density distribution, a triangular mesh tessellation

on the object surface is required. In the case of multiview data whose local spatial

relations are not e.'Cplicitly specilied, it is still difficult to do surface tessellation

automatically for complex shapes. In the case of single-view range data whose local

spatial relations are specilied by the range image grid, surface tessellation can be

done easily. However, since this operation is ba.sed on local data., dense range data

is required.

By taking these limitations into consideration, a more powerfuI object representation

system can he developed.

4. Future Work

To improve the current system and extend our resea.rch, we suggest the following:

• An investigation can he ca.rried out for a pa.rt-ba.sed object recognition system us­

ing para.metric geons. Matching the object descriptions computed from range data

aga.inst para.metric geon modeis in a databa.se ca.n he conducted in the following way.

Qualitative shape and the numher parts should he exa.mined lirst. If these are not

enough to identify the object, quantitative attributes, such as pose, size, tapering
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rates and curvature of the a.xis should be consultcd. Such a recognition system also

possesses another feature. Although the number of parametric gcons totals only

seven, various spatial arrangements of thcsc primitives can make up a large number

of object models. Therefore, such a system will be able to recognisc many object,;

efficiently [15].

• More research can be carried out on the application..< of simulatcd chargc dCfl.<ity. In

this thesis, we only use the simulated charge density distribution to extract surface

concavity. In a similar fashion, surface convexity could also be detectcd. Since

the simulated charge density distribution contains both gross and fine object shape

information, it is very useful for characterising shape. In addition, the significance

of parts, which is revealed in the simulated charge density distribution, can also be

used to characterise object parts. Moreover, local feature detections bascd on other

similar integration mechanisms would be worth studying.

• Our approach provides a useful tool to derive higher-Ievel descriptions of objccts

from triangulation models. We note that research on object shape reconstruction

has extensively used such triangular mesh descriptions. However, there is almest no

work which directly uses the triangular meshes as the model for recognition tasks.

This is because surface triangulation models lack uniqueness with respect to scale

and viewpoints. The number and positions of triangles will vary when an object is

sensed from different directions and distances. Thus, triangulation modcls do not

appear particularly weil for defining object classes. By simulating charge density

distributions on the complete mesh, the object shape could he characterised and

higher-Ievel shape descriptions could be derived.

• Another important future research direction is the integration of different sources of

information to perform figure-ground separation. Range images contain only depth

information, which may sometimes he insuflicient for the extraction of an object

from its background. Consider a cup on the top of a table and a laser rangefinder

scanning the scene from a 45 degree angle. The distances from data points on the

table top to the sensor may be larger, or equal to or smaller than the distances from

the cup to the sensor. In this case, the cup cannot he completely separatcd from the

table top based only on depth information. Thus, other sources of information, such

as colour or gray leveI intensity, may provide superior contrast for the object and its

background and, therefore, he useful for figure-ground separation. Of course, this

requires a video camera and a calibration hetween range and intensity images.
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• Future rcscarch can he extendc<! to decrcase the computational time rcquired. The

most timc-consuming stage in the charge density computation is the construction of

the coefficient matrix A in Equation (4.13). Since the computation of each matrix

clement is independent of others, paralleI computation could be usc<!. Similarly, the

most timc-consuming stage in the mode! fitting procedure is the evaluation of the

complex objective function in Equation (5.18). Again the evaluation at each data

point is independent of the others. Thus, parallel computation cou Id be useful here

as weil.

ln conclusion, this thesis presents a new approach to qualitative part-base<! representa­

tions of 3D objects sense<! by a laser rangefinder. The research is a theoretical investigation

of a generic object recognition system rather than being limited to a single application. We

focus on the issues of part segmentation and part model identification. The experimental

results demonstrate that our approach can recover qualitative part-base<! descriptions even

when objects consist of imperfect geon-like parts. This research provides a basis for future

study in qualitative shape recognition and autonomous robot task performance.
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APPENDIX A

Integral Evaluation

In order to solve the set of linear equations given in Equation (4.13) in Chapter 4, we must

first compute the integral in (4.16), which is referred to as the potential integral [142]. It

is an integration of a 3D function over a polygonal domain. The problem can be stated

formally as:

PROBLEM A.l. Given a function F = l/lr - r'i : Jé3 -t Rand three vertices (Vi E Jé3, i =
1,2,3) of a triangle T, compute the integration of F over T.

Fortunately, the analytical expression of the potential integral has been obtained [142].

This significantly improves the accuracy and efliciency of the numerical computation. For

the sake of completeness, we present the integral evaluation here. The derivation of this

expression can be found in [103].

Figure A.1 shows the geometrical quantities used in the computation. The notation is

similar to that used in [142]. The darker shaded triangle is the integration domain, T. The

quantities used for computation are listed below:

P: a plane shown by a lighter shaded region containing the triangle, T

n: the normal of P and T

i: the index of the sides of T

Ii: the vcctor containing the ith side (thick solid line) of T

Ui: the normal vcctor of 1; in P

r: the vcctor position of the observation point

p: the vcctor position of the orthogonal projection of the observation point onto P

R: the vcctor from the observation point to a point on T

P?: a vcctor perpendicular to the ith side of T and passing through the point at p

R?: the distance from the observation point to the vcctor 1;

Rf: distances from the observation point to two endpoints of the ith side of T
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o

n

...>- 1

p

FIGURE A.I. The triangle patch of the charge l«)urce. Vector quantitie!i IUld !\CN.M qUMtitiCM
ArC denoted by t'Oiid Iine40 with an'OWS Md duhed line!i. ~pectively. ThiK iK lUl MI\ptntion of
Figure 2 ;0 [142J.

d: the distance from the observation point to P

pt: distances from a point at p to two endpoints of the ith side of T

if: vector positions of two endpoints of the ith side of T

Ir: distances from two endpoints of the ith side to the projection of the point at p Ollto li

pr: vectors from the projection of the origin onto P to two endpoints of the ith side.

Let

(VI - V3) X (V2 - V3)pi = v\, pt = V2, n = ;;'--'---";--;--:'---'f;
I(vi - V3) X (V2 - v3)1

The evaluation of the integral in Equation (4.16) is given as follows [142]:

r d5'
JT Ir-ri =

(A.l)

where

•

+ -r· -r·
1; -' •- + 'Iri - ril

p = r - n(n· r),

I±=(pr-p)·l,

o (pr - p) -I±l
Pi = po ,

ui=l;xn,

Ef = I(pr - p) •ui!,

d = n· (r - r±),

Il? =J(Efj2 +d2.

pr = if - n(n •rr),

Pi± = Ipr - pl,

Rr = J(Pi±)2+d2,
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Note that in (A.!), the firstterm within the square brackets is cqualto zero if either R;+1;
or ft; +li is equal to O. This is bccause PI' cquals zero. With the analytical evaluation of

the integral in (A.I), we can compute the charge density distribution over a 3D surface by

solving the set of linear cquations in Equation (.1.13) .
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APPENDIX B

Multiview Integration

Our approach to parametric gcon-bascd shape representation starL~ with either singl,~ or

multi-view range data. Construction of multiview data of 3D objects is described in this

section. Multiview data are produced by a thrœ-step procedure. called multiple vi,'w iu­

tegration [48, 127, 97, 138, 31,25]. In the first step - data acqlli..itiort - the rotnge data

from different views are collected as viewer-centred data descriptions specined in ..ach cam­

era coordinate system. In the second step - vicw n:gi..tmtion - a transformation betwccn a

camera coordinate system and the world coordinate system is calculated. In the last step

- view integmlion - range data in each camera coordinate system are transforme<1 iuto the

world coordinate system and usually the rcdundant data secn in more than one view arc

removed. Here we present a simple and straightforward method for view intcgration.

Acquisition of multiview range images was accomplished with a laser range finder which

scans objects supported by a turntable. The registration among images taken from dirrerent

views was obtained by a method developed in our laboratory [25]. View integration was

performed by using the view transformation, surface normals and residuals of the normal

cornputation as follows:

ALGORITHM B.l.

(i) Input images of view m= 1,2,•..M.

(ii) For each view, compute the normals and the angles between normaL_ and visuallines.

(iii) FOR each view m,

FOR: each data point D(i,j) in the image,

FOR: each successive view, n = m+l, m+2, , M,

(a) Tmnsform D(i,j) onto this view n.
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view3

view1

-0,,,,,,,

•

FIGURE B.l. Point A on the 8haded abject ~urCacc carl bc projeeted onto vietul. view2 and
view3 f'Olulting in data points DJoD:z and D3 • ropeetivcly. Only Dl and D2 depict the 8ame
point(A) and are trell.te<! azl redundant 1.!a.tA. D3 il' not redundant with DI and D:: l'ince point A
CAnnot ftppcar in view3 due to objeet 8e1fa occ:lullion. The duhed lines are the projection lines.

(b) IF the data D(i,j) is redundan! wi!h data in !his view, THEN

mark !his D(i,j) and the corresponding data wi!h RD (ReDundan!).

EL5E Mark !his data NR (No! Redundan!).

END: for each successive view.

IF: data are redundan!, THEN select the bes! data in a specifie view ac­

cording !o its normal and visual angle. Then mark !his bes! data wi!h

NR.

END: for each data.

END for each view.

(iv) Conver! data marked wi!h NR in aIl views on!o a common world coordina!e system.

•

The principle of selecting the best data is shown in Figure B.!. Point A generating

a data point Dion the image plane in viewl can be ma!hemalically projected on image

planes in both view2 and view3 giving data points D2 and D3. If there exist data points at

D2 and D3 on the original image planes, we can compute the world coordinates for these

two points based on camera calibration. If the position of a point in the world coordinate

system is spatially overlappedl by point A, we mark this data point in its image plane as

a redundant one. In Figure B.l, D2 is redundant with Dl. However, D3 is not redundant

1Due to etrOr8 in the etatimated transformation parametcn.. multi-view data. for the aame point in 3D do not
exactl)' overlap. Hcre a threshold in dÛltance ia employed.
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with Dl and D2 because point A cannot be optically projcctcd onto th" imag" plan" in

view3 due to object self-occlusion. The world coordinate:; for Da is at point B which is

not overlapped with point A in 3D space. Civen rcdundant data Dl and D2• the angles. "

and {3, between the surface normal N at point A and scan line:; are examincd. In g"n"ral.

if a surface point faces the rangefinder, and the angle betwccn its normal and the scan lin"

is small, the rangefinder obtains good rellcction of the laser beams from the snrface. and

the quality of the image data is good. Thus, Dio which give:; a larger angle - or a small"r

cosine value of {3 - is removed. If the cosine values of angle:; associatcd with a f"w data

are very close, we keep the data point with the smallest re:;idnal resulting from the normal

computation. In a few cases, both the cosine values and the residuals are very close; in

this case we choose data collected at an earlier stage. The integratcd data is expresscd as

a sequence of 3D points and used for 3D part-based representatioll.
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APPENDIX C

Surface Triangulation

Surfa<:e triangulation is required by the charge density computation presented in Chapter 4.

ln this section, we describe in detail the surfa<:e triangulation of single-view range data. The

charge density computation requires a triangular mesh to be tessellated on the complete

surfa<:e of the object. However, the range data obtained from a particular view only reflect

the visible surfaces, as shown in Figure 4.;. Thus it is impossible to perform the mesh

tessellation base<! on the actuai shape of the invisible parts of the object. In practice, we

artificially construct a mesh on the invisible side in order to make up a closed triangular

mesh. This permits us to compute the charge density. We note that the a<:tual shape of the

invisible surfa<:e only affects the absolute value of the charge density on the visible surfa<:es.

The position of the e:\:trema of the charge density distribution remains almost the same and

thus it makes sense to construct an artificial mesh on the invisible surfa<:e. This argument

is later justified by e:'Cperiments.

Single-view range data are defined as a collection of M discrete samples ofan underlying

function f: z2 ~ "R.3

(C.l) d; = f(u;)

•

where Uj E z2 is the index of the 20 image grid, d; = {x;, y;, z;} E "R.3 is the 3D coordinate

of a data point, i = l, ..., M is the index of the data and M is the total number of pixels in

a range image. The object of interest can he segmented from its background by a simple

thresholding operation. It is represented by data d;, i = l, ..., N, N < M, as shown in

Figure 4.;. It is noted that not ail image pixels contain data since the object size is smaller

than the image size. The closed triangular mesh for the object is composed of three patches

of triangular meshes, as shown in Figure 4.8. The first, called the top patch, is obtained by

triangulating t.he range data on the visible surface. The second, called the bottom patch,

is planar, and is actually the (spatial) projection of the top patch onto an arbitrary plane
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FIGUR.E C.I. Pix..l rclation!'i in a 2 X 2 window.

perpendicular to the Z a.'(is. These two patchcs are iIlustrated in Figure '1.8 (a). The third

one, ca1led the side patch, fiUs the gap between the top and the bottom patches, as shown

in (b). The complete c10sed triangular mesh in Figure 4.8 (c) is obtained by merging the

patches in (a) and (b).

1. Top and Bottom Patch Construction

We construct top and bottom patches based on the range image grid. Since the image

grid is rectangular, the number oflocal spatial relations among data points il' limited. Thus,

we can enumerate all possible relations and derive a rule-based algorithm to tcsscUatc thcse

two patches. Consider a 2 X 2 window in a range image grid. Wc specify the left top pixel as

the currently-considered pixel. For this pixel, there are four possible spatial configurations 1

for making triangles, asshown in Figure C.l. They are in Windows 1,2,4 and 5. In addition,

there may be no data point at the top left pixel but cxits one at the top right, as indicated

in Window 3. This configuration is also considered. Triangles can he constructed for each

configuration. We use these live arrangements to tcsseUate the top and bottom surfaces

by detecting the specific data configuration and making the appropriate triangles. The

algorithm, where the boarder effects are not considered, is as foUows:

ALGORITHM C.l.

lThe number of pixels in the window must he cither three or four in order to make Il triangle. The da....
con6gurationa in Windowa 6 and 7' in Figure C.l are invalid and no triangle will he Cormed•
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1. TOP A:-;D BOTTO~l PATCH CO:-;STRl:CTIO:-;

(i) Slari from f( 1.1}.

(ii) Scan Ihe image f(i.jJ. i.j = I .....S. and considcr a 2 X 2 Irindolr posilioncd al (i.j).

(iii) If f (i.j) i- O.

If: f(i+J.j}. f(i.j-I}. f(i+I.j+I} ar<: nol equallo :ero=. make lira lriangles using

{f(i.j}. f(i+l.j}. f(i.j+I}} and {f(i.j+l). f(i+I.j+l). f(i.j+I)}. r<:spcctire/y:

Else: if f(i+I.j). f(i.j+I) arc nol cqual la :ero. make a lriangle using {f(i.j).

f(i+I.j). f(i.j+l)}.

Else: if f(i.j+f). f(i+f.j+l) are nol equallo :ero. make a lriangle using {f(i.j).

f(i.j+f). f(i+l.j+l)}.

Else: if f(i+l.iJ. f(i+l.j+f) ar<: nol equal ta :ero. make a triangle uBing {f(i.j).

f(i+l.j). f(i+l.j+l)}.

Else if f(i + Lj), f(i.j + 1). f(i + Lj + 1) ar<: not equal ta =ero. make a lriangle

using {f(i+l.iJ. f(i.j+l). f(i+l.j+l)}.

(iv) If f(N.N) has been ~·isited. stop; else goto (ii).

When constructing the bottom patch, we must specify the separation hetween the top

and bottom patches. Note that the distance hetween these two patches does not crucially

affect the position of the extrema of the charge density distribution on the visible surface.

To ilIustrate this, we define a parameter t/J as follows:

(C.2) -"=p:::'.:::n~._-_=..:;m::=::.1/1=-
=maz - =min

•

As demonstrated in Figure C.2, t/J is the ratio of the distance from the data point having

the largest Z value to the bottom planar patch and the spatial range of all data points in

the Z direction. Figure C.3 shows the computed charge density distributions on the visible

surface of an object when (a} t/J = 10%, (b) t/J = 50% and (c) t/J = 100%. The gray levels

indicate charge densities, which are normalised in the range hetween 0 (darkest intensity)

and 255 (white). lt can he seen that the minima of the charge density distributions are not

changed in these cases. In other words, the artificially constructed mesh on the invisible

surface does not seem to affect the charge density extrema on the visible surface. A similar

strategy has been proposed for generating a closed surface in 3D space for a diffusion-based

shape analysis [151].

2ln range imago.. i! there are no data poinb at I(i.j). it is customary te ~t I(i.j) =o.
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FIGURE C.2. Configura.tion or the top and the hottom pAtchOi.

(a) (b) (c)

•

FIGURE C 3~_ Charge demit)" œtributionson vwblc 8Urf'accl. The charge dcntloity iM nom,ali~

beL.-ecn gray lew.!& 0 and 255. The brightC't and darkot intcmlÎtio indicate :hc highe-t nd lowot
charge dcnsiti... ""'p<ctively. Whcn (..) oJ, =101>. (b) oJ, =501> Md (c) oJ, =1001>. thc pooition.
of the cxt~maof the charge detUÜty diKtribution on the v~iblc IIUrfac:e are almOMt not afl'ected.

2. 5ide Patch Construction

The cha.ra.cteristic of the side surface is that it is a cylindrical surface, which can he

developed into a plane. Thus, this surface can he aIso triangulatcd in a planar domain.

We first generate points of triangle vertices on the plane and then create the corresponding

triangles.

Let the length of a triangle side aIong the boarder of the top patch (sec Figurr. CA) he

Si, i = 1, .••, K. In order to ensure that the triangles on aIl patches have more or (ess the
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2. SIDE PATCH CO:-;STRl:CTIO:-;

FIGURE CA. TriMgl~on the boundary of the top pAtch Me ~hMled. The length of ~ side on
the bound:u-y il' 3 ..

l
. . .. . .

L•........ ......._..r-.....·----e----e

Boundary 01 boltom palch
(b)

•

•

....

••••

•

•

••

•

Boundary 01 top patch

~ ...L. ... ,
,," ....... . ...

,
........ .. .....

(a)

FIGURE C.S. The lÙdc pAtch of triangula.ted ran~ db.ta. (a) VerticaL of trianglc!!' on the ~idc

patch. which hu bcen dcvcloped in a pilUle. The di!\tane:e bctween rows of data hl get ta L::.
The vcrticoo linked by the dashed.lines are on the boundariCllof the to!, or bottom patchao. (b)
TrianglCl'lon the "ide patch.

same size, we choose the average of triangle side lengths on the top patch as the length of

a triangle side on the side patch in the direction of Z as follows:

K

L. = 2. '" s'. KL'
1

•
That is, the interval between two data points along the Z direction is L.. as shown in

Figure C.5. Next we determine the actual locations of triangle vertices on the side patch.

Along the straight lines counecting the nodes on the bottom and top patches, we position

vertices every L= in a bottom-to-top order, as shown in Figure C.5.
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" SIDE PATCH CO:-;STIll'CTIO:-;

IZI
<a) (b) IC)

•

FIGURE C.G. Configurntion of triangle ",crticaoon the ",ide ~,tch. (l') A COInl1lun ,ounliKurali.m

having four "·crtico. (b) 3nd (c) Are !'Ipc:cilÙ ca.~ occurring al the top of II. 1'Ioidt" Jll1.lt.°hMlo. The"
cirdoo and the d~..hed lino indicate the p~ible "'crtico And triangle:-.

In a similar fashion to the top and bottom patch triangulation. all possiblt- local conlip;­

urations of triangle vertices on the side patch are nsed for side patch triangnlation. Thl'n'

are only three types of configurations of vertices of triangles as shown in Figure C.6. (a)

represents the most common relation appearing at the bottom and middle portions of the

side patch. Here there are four vertices, two on each column. (b) and (c) in<1icate tll<'

cases occurring at the top of the side patch. There is one vertex in one colnmn and more

than one vertex on the other. When (a) appears, two triangles are made. When (b) or (c)

appear, the number of triangles is determined according to the number of vertices on the

column containing more than one vertex. Figure 4.8 gives a complete example of a snrface

triangulation for the single-view range image in Figure 4.7.
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1. DCC CO"STRUCTION

APPENDIX D

Part Decomposition

This sectIon describes a technique, in deta;', for decomposing a whole object into parts.

Since the object surface is represented by a closed triangular mesh, part segmentation is

actually accomplished by decomposing the mesh into several components based on the

simulated charge density distribution. Each component is a connected triangular mesh

which is a subset of the closed triangular mesh of the whole object. For a single-view range

image, only that portion of the triangular mesh which represents the visible surface of the

object is considered. This method is based on a so-called Direct Connection Graph (DCG),

which serves as a specific coordinate system defined on the triangular mesh. We will first

describe the method of DCG construction and then give the part decomposition algorithm.

1. DCG Construction

As defined in Chapter 4, Direct Connection Graph is one kind of representation of the

triangular mesh. Its nodes represent the triangles and its branches represent the connections

between a node and its direct neighbours. Figure D.l (a) shows a triangle mesh and (b)

shows its DCG.

We denote an array of triangles by Ti = {Vï;,j = 1,2, 3}, i = l, •.., N. Here i is the

index of triangles and j is the index of triangle vertices. Vij is the jth vertex of the ith

triangle. N is the number of triangles. We represent the DCG of a triangular mesh by an

2D array D[i,j], where i = l, ..., N;j = l, ..., 5. D[i, 1] stores ail triangles, Ti, i = l, ..., Nin

the mesh. D[i, 2], D[i, 3], D[i, 4] consist of a list of direct neighbours of the triangle given in

D[i,l]. D[i, 5] indicates the total number of the direct neighbours of D[i, 1]. For a closed

mesh, D[i, 5] = 3; and for an open mesh, D[i, 5] could be either 2 or 3. An example of an

open triangular mesh and the process ofits construction is given in Figure D.l1• Since the

mesh in (a) is not closed, the triangles at the boundary have only two direct neighbours.

1Here WC' only show the DCG or the first six triangles. The complete DCG for thia mcsh contains 12 triangles.
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(.)

TI T3 1

T2
T3 TI 1

T.
Ts
T6

(c)

TI T3 T. 2
T2 T3 1
T3 TI T2 2
T. TI 1
Ts
T6

(cl

TI T3 T. 2

T2 T3 Ts T6 3
T3 TI T2 2
T. TI 1
Ts T2 1
T6 T2 1

(g)

1. DCC CO:-:STHtlCTION

(bl

TI T3 T. 2
T2
T3 TI 1

T. Tt 1

Ts
T6

(d)

TI T3 T. 2

T2 T3 Ts 2

T3 TI T2 2
T. TI 1

Ts T2 1

T6

<0

TI T3 T. 2
T2 T3 Ts T6 3
T3 TI T2 TID 3
T. TI Ts 2

Ts T2 Ts TI2 3
T6 T2 T. Til 3

(h)

•

FIGURE 0.1. Constructionofthe Direct Connection Graph (OCG). (al A triangularm..h. (b)
The finit stcp. Column 1 &how the list of triangle. in the meah. Column 2 to column 4 "how
the fint to the third ncighbour. retlpectively, of the triangle given in the fiI"Kt column. The IMt
column shows the number of direct neighboul'llMO rar. (c) to (f) indicatc "ucCCMive "t,Cptl of DCG
construction. (7) shows the final re8ult for Tt to Ta.

For a.n example, in the case of Th D[I, 5] = 2. The algorithm for constructing this array is

described as follows:

ALGORITHM D.l.

(i) Load ail triangles in the mesh into D[i, 1] and set D[i, 5] =O•
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2. FINDING PART BOUNDARIES

(ii) Start with Tl, for each Ti,

(a) Search downward in the first column for a direct neighbour of Ti, based on

Definition 1.3. When a direct neighbour Ti of Ti is found,

(i) Put Ti in the neighbour list ofTi,

(ii) Put Ti in the neighbour list ofTi'

(iii) [ncrease both D(i, 5) and DU,5) by [.

(b) From Ti, repeat the search procedure in (a) until T,v is reached.

(iii) End for each i.

Since the DCG provides an explicit relationship between individual triangles on the

surface of the object, it serves as a convenient coordinate system over the object surface.

It permits the tracing of the part boundaries on the triangular mesh without employing a

voxel-based coordinate system. This significantly reduces the required memory space for

describing the object and increascs the computational speed.

2. Finding Part Boundaries

The transversality principle statE'5 that when two surfaces intersect, they intersect

transversally with probability one[ll]. This means that the tangent planes to the two

intersecting surfaces are of different orientations at aIl points where the surfaces intersect

(see Figure 2.5). Following this, we have assumed that a part boundary is explicitly defined

by deep surface concavities. For a complete object, the part boundary is a cIosed surface.

This ensures that the decomposition algorithm will be able to segment a part from the rest

of the object. The assumption al50 provides a stopping criterion for the boundary tracing

procedure. Since the part boundary is located at local charge density minima, it cab be

traced along the 'valley' of the charge density distribution. We note that the tracing algo­

rithm applied to a c10sed mesh is slightly different from that applied to an open mesh. The

latter is constructed for representing single-view range data. Since the part boundary on

an open mesh is not c1osed, the stop criterion for tracing on the c10sed mesh is modified.

The new criterion is that when the tracing algorithm reaches a triangle on the boundary

of the open mesh, it stops. The triangle on the mesh boundary is defined as the one with

only two direct neighbours. Since two algorithms are very simiIar, in the following, we only

descrihe the algorithm for tracing the c10sed triangular meshes.

The algorithm examines the charge density on all triangles to find a starting triangle

for tracing each boundary. A starting triangle must satisfy the following conditions:

(i) It must he a concave extremum; that is, its charge density must he a local minimum•
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'2. FIN DING PAHT ROUNDAHlES

(ii) It must he located at a deep concavity. Thus the charge density 011 the triangle IlllIst

be lower than a preselected thresholdz.

(iii) It and its neighbours must not have becn visited before. This ensures that thl' ';;lllll'

boundary will not be traced again.

Beginning at the starting triangle, the algorithm procccds to the neighbour with the 10wl"'l.

charge density. During the tracing procedure, ail triangles detected on the bOllndary an'

marked. The marked ones will not be checked again and eventllally will be deleted frolll

the DCG. The process continues until it returns to the starting triangle. As a result of tlll'

assumption stated at the beginning of this section, this means that ail triangles on this part

boundary have becn visited. Ne.-.:t the algorithm finds a new starting triangle and tracl'"

another boundary. It repeats the same tracing procedure, and fina11y stops when the charge

density at a starting triangle is higher than the preselected threshold. Arter ail triangles

on part boundaries have becn found, the nodes of the DCG reprcscnting these triangles arc

deleted. Thus the original DCG is now divided into a set of disconnccted subgraphs, as

shown in Figure 4.10 (c). Physically the object has becn broken into parts. Each object

part can he obtained by applying a component labelling algorithm to a subgraph of the

DCG. The resultant part is ready for part model recovery.

ln the fo11owing, we describe the boundary tracing algorithm in detail. The variables

used in the algorithm are defined as follows:

Pmi": the lowest charge density over all triangular patches, i.e., triangles.

pU): the charge density of the jth patch

Pt: the threshold for a starting patch

Bi: A set of triangles that belong to boundaries of parts, where i is the number of

boundaries.

T.t4rt : A set of triangles with which the boundary tracing procedure starts.

N ewPatch: A f1ag indicating whether a new patch on the part boundary is found

(~rewPatch = 1) or not (NewPatch = 0).

PmmiCharge: the minimum charge density of a direct neighbour patch.

MiniCharge: the charge density for T.t4rt •

During the tracing, we label all patches as fo11ows:

Po: the patches belong to Bi

2Thia threshold detennines when an object should not be dccompœed any rurther. If the charge det1AÎl.y al. Il

starting triangJe ia greater than this threahold. we uaume that ail boundaty poilltll have been round. The rtelectÎon
of .:,e threshold depends on a priori knowlcdge of the surface concavity and there Ül no univenuù rule for l'electing
it. Obvioualy. the higher the threshold. the more aegDh;:::~ parti. will be round. Currently we chOOlM: 120% of the
lowest charge density on the object surface aa the threahold.
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3. CLASSIFYI:-;C PATCIIES I:-;TO PARTS

l',: th,' patch<'S have becll visited

I.J..:: the ll<'ÎJ!;hbours of 1:.rar't \\.'hich have bccn visitcd

I~,: the patches that have ilOt. becll visited

The bOlllldary tmcillg algorithm is described as follo,,"s:

AI.GOltlTml D.2.

(i) Mark alltriangular ]JUtchco< ao< Pa.

(ii) Loop for wch ]Hlrt boundary contour i

(a) Inilially .<cl MiniChargc =p,.

(b) Loop for j

(i) Find a ]Hltch Tj at a local chargc den..<ity minimum.

(ii) If pU) < J1t1iniCharge, a.<sign pU) ta MiniCharge and mark Tj a..<

(c) end of loop

(d) if MiniCharge < Pt

(i) set ail neighbours of T.tart to P2•

(ii) Loop for k, each ncighbour ofT.tart

(A) If N Bk is a Pa, assign the charge deMity of N Bk to PminiCahrge,

sel NewPatch =l, mark this patch as Tn and escape the loop for

k.
(iii) end of loop for k.

(iv) if NewPatch =l, mark Tn as Pl'

(v) Loop for k

(A) IfT(k) is a Pa, mark it a..< Pl'

(B) If p(k) < PminiCharge, assign p(k) to PminiCharge.

(vi) End of Loop for k

(vii) Mark T(k) a..< Po.

(viii) If T(k) is a neighbour of T.tart or a neighbour of Bi, stop traeing the

contour i.

(iii) End of loop for i

3. Classifying Patches into Parts

ln this section, we describe a component labeIling algorithm for a triangular mesh. We

would like to obtain all triangular patches in a particular subgraph of the DCG, which
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(a)

patch ncighbors

TI T, T~

T2 T, T, T,
T, TI T, Til,
T., TI T,
1'< T~ T, T"
T

6
. T~ T. T"

T7 T. Til,
TA' T~ T,
T,,: T6 T7
T,n T, T,
T" T6 T"
T'7 Tc T"

•

(b)

T, T, T, TI
T~ T~ T~

~ T4 ~ T4 ~ T~

T,n TIn
T7

(c)

FIGURE 0.2. Component labelling. (a) a DCC contnininga part boundlU")".M indicnted by the
shaded patches. (b) A DCC 1UTIlY. (c) the Updated PART array from left to righl. The indeXeR
in the rightmoat array indicate patcho that belons to the KD.me pnrt.

represents one object part. The existing component labelling algorithms [107, 106] are

mainly for 20 binary images, in which each pixel has four direct neighbours. The diffcrellce

between a 20 image and a triangular mesh is that the latter is dcscribcd as a 1D array with

three explicitly specified neighbours. An example of this algorithm is shown in Figure D.2.

The algorithm finds each part in sequence and is iIIustrated as rollows:

ALGORITHM 0.3.

(i) Loop for each object part i
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3. CLASSIFYING PATCHES INTO PARTS

(a) Open a temporory space, callcd PART, to store the triangle index for the ith

part and initialise a counter for the number of triangles on each part.

(b) Starting with the first triangle in the DCC arroy, find the first unchecked tri­

angle which i.< not on a part boundary. Add it to PA RT and mark it in the

DCC arroy as a checked triangle. Specify a pointer in the DCC arroy, pointing

to this triangle.

(e) ln the DCC arroy, add the neighbours of this triangle, which (1) are not on a

part boundary and (2) have not already been in PART, into PART.

(d) ln the DCC arroy, move the pointer down one element. Repeat step (c) until

no more triangles can be either checked or are on boundaries.

(e) Mark the triangles in PART a..< being on the same part i. Thus triangles

belonging to part i have been found.

(ii) End of Loop for i

(iii) Repeat fram step (a) until ail triangles have bP.en checked.

The rcsult of this algorithm is severallists of triangles. Each list contains triangles which

bclong ta the same abject part. These triangle lists are used for part model identification.
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