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The validity of the theories 'of quanﬁum corrections to thé ¢|~{
electrical conductivity, namely weak localization and enhanced
electron-electron interaction, has been tesfed quantitatively in vel%
characterized free electron-like Mg-Cu and Mg- -Zn metallic glasses
containing various amounts of Ag and Au. through measurement of the
electrical resistivity betwveen 1. 5K and ZOK i magnetic fields .ap te
5.6T. It is found that . the theories give an excellent description of the
magnetoresistance at low fields, in both the veak and str0ng spin-orbit

'scattering limit but that at higher fields . they break down. The’
,electron spin»brbit scattering and dephasihg rates have been dedueedv

- Above 4K the dephasing rate is controlled b& inelasqibielectron phonon

x,scattering, below 4K 1t saturates to a value consistent’ with: a nev model

[

of dephasing ofﬂthe quantum back scattering interference by ionic zero-
point motion. The first direct measurement of ‘the effect of
superconductivity on the magnetoresistance in bulk amorphous metals is
also presented The temperature depenhence of the.resistivity between
1.5 and 6K is in qualitative but not quantitative agreement with the

quantum correction theories.
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La ‘'validité des ‘théories de corrgetions quantiques & la .

conductivité électrique, c’est-i-df¥te la localisation faible et

1l’interaction électron-électron renforcée, a eté verifiée
quantitativement dans des’ verres métalliques bien caractérisés du type
électrong libres, a bdse de Mg-Cu et Ade Hg -Zn et contenant divers
niveaux de Ag et de Au par nesure de la resist:lv:lte électrique entre
1.5k et 20K dans des champs magnétiques allant jusqu’a 5.6T. Il a été
trouvé que les théories fournissent une excellente description de la
magnétorésistance a de faibles champs, & la fois dans les limites de
fajble et de forte diffusion spi;x orbitale mais qu’a des champs plus
el[:e, elles ne s 'appliquent plus. Les taux de diffusion spin- orbitale
et les )taux de déphasage ont ete deéduits. Au dessus de 4K le taux de
déphasage est controlé par la diffusion inélastique électron-phonon,
gﬁr}s qu’en dessogs de 4K i1 sa“ture a4 une valeur qui eét en accord avec
un nouveau modéle de déphasage de 1’interférence de la rétrodiffusion
ngpt:lque pér Tnouvgment ionique de point zéro. La premiére mesure .

\dirggtg de 1’effet de la supgrconductivité sur la magnétorésistance

dans les métaux amorphes tridimensionnels est également présentée._’ﬁa
dépendance de la résistivité sur la température entre 1.5K et 6K est en
accord qualitatif mais ‘ﬁon quantitatif avec les théories de corrections

quantiques.
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0 1. Introduction

Amorphous metals are metals whose atoms do not show long range

structural order. They were first produced in bulk in 1959 by Duwez1 and
| his coworkers at the Caljfornia Institute of Technology, using a
| technique of rapid quencﬁing og the liquid. Since that time, ard in
particular since 1970, the unique properties of amorphous metals have
inspired muck research and have also lead to several industrial
j applications. ' : b
- The absence of structural order®is illustrated tn Fig.l.1l, where
the atomic structure factor of an amorphous solid is compared with that
of a 1liquid and a crystal.

—=
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Figure 1.1 Schematic diagram of the structure factors of a liquid?
an amorphous (glassy) solid and a crystalline solid
0 ’ (for specific examples see references 2 and 3).
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It is cleaf that the atomic arrangement ﬁs more like a liquid and it is
this combination of the atomic disorder of a liquid Q{Fh the mechanical

.integrity of a solid which gives amorphous metals many of their unique

properties, examples of which are high tensile strength, low magnetic
hysteresis energy losses and strong corrosion resistance. ,

To date amorphous metals have been produced using a variety of
techniques such as vapor phase condensation, chemical!deposition, ion-
beam mixing, solid state reaction and continuous rapid cooling from the
meltal The group of amorphous metaliiproduced by melt-quenching, the
last of the above techniques, is often referred to as metallic glasses,
though the distinction may be largely semantic. ‘

The underlying principle in all of the methods is to form the
metastable amorphous phase at a rate faster than its transformation to
the energetically more favorable cryS&alline phase. In the case of the
melt-quenching method (which is the only one used for the research in
this thesis) this is best demonstrated by a Time-Temperature:
Transformation (TTT) diagram, as displayed in Fig.l1.2.

. ‘ LIQuID [
Tm —\ﬁ? ——— %
N 0\\
\
\ K
\\
Lo CRYSTAL /
n \ .
\
Ts “ ’ s
\ GLASS
L .
n
log (Time)

Figure 1.2 Schematic Time-Temperature-Transformation.diagram. The
dashed curve describes the melt-quenching cooling path
(for more details see reference 5).




"topic of the present thesis. _

This diagram shows the time taken by ah undercooled liquid to
crystallizé, as & function of temperature. It is characterized by the
interplgy between thermodynamic driving force and atomic kinetics. Vhen
a liquid is cooled belov the ideal melting temperature, ’1‘ y the free
energy of the crystal phase becomes less than the free energy of the
liquid phase causing, initially, a decrease in crystallization time. But
lowvering the temperature also reduces the atomic mobility, and
eventually the point is reached when the crystallization time starts to
increase leading to the "nose" at ’1‘ ,t in the TTT. diagram. At some
temperature '1‘g the atomic mobility :ls so small (this point 1s usually
defined by a viscosity excegding 10 poise}fthat the atomic
rearrangement necessary for crystallization becomes impossible on
laboratory time scales, leaving the undercooled liquid frozen in a
sin@.e configuration called an amorphous solid. Because of the non-
directional nature of the metaflic bonding (in contrast to the
directional covalent bonding in silicates and borates) the cooling rates
necessary to bypass the "nose" are relatively high. In the case of
elemental metals Tg is so low (typically 40K) that ige cooling rates
necessary hav_e been estimated to be of the order 10 "K/sec, which is
inaccessible by any practical melt-quenching device. However, in many,
alloys particularly those close to a deep eutectic thé meltingy
temperature Tm anil the glass transition tempgrature '1'8 may_ be quite . 0
close (e.g 'rg/'r > 0.45) and a metallic glass can be produced relatively
easily by rapid quenching from the melt (see Chapter 3 for more details)
using cooling rates of about 2- 106K/sec. . :

So far research on amorphous metals has been directed towvards
applicatiox}s. However there has been a substantial body of work on
fundamental properties, work whose aim has- been to examine hov the s
properties are influenced by the absence of long range periodicity. In
particular the electrical resistivity has been the subject of intense
‘rese‘arch for about 20 gears‘, and it is one aspect of this which is the

At first sight the electrical resistivity in amorphous metals is
much simpler than in crystalline metals. An ideal perfect crystal offers

J &
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no resistance to electron flow, and the resistaﬁ‘ce of a real crystalline
metal reflects deviations from ideality as a result of defects, .
impurities and thermal vibrations. Hence the resistivity of a
crystalline metal is very temperature dependent, system dependent (e.g
compare Cu and Fe) and, at low temperatures, sample dependent. By

" contrast the gross atomic disorder tends to constrain the resistivity of

amorphous metals to a certain uniformity. The mean free path of the =
electrons is of the order of a few interatomic spacings vhich leads to a
resistivity of about 100 ufiem, and indeed almost all amorphous metals
have resistivities in the range 40 to SOOuOcm.unrtherni‘are the influence
of thermal vibrations on the already sdvere’structural disorder is
almost negligible s}‘that the resistivity of amorphous metals has a
comparatively small temperature dependence. The contrast between the

behavior of crystalline and amorphous metal is illustrated in Fig.l.3.
' '

150
crystalline Al (x 200)
100
S ¢
2

m ~ —

S50 amorphous Mg408u4,

y N
0 ] I ’ ‘H‘
0 100 200 ‘300

T (K)

Figure 1.3 The resistivity temperature dependence of cx:ystalling
aluminum and amorphous Hnguéo (from reference 6 and 9).
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Ly
On deeper examination, howvever, amorphous lnells ;tove to be less
@ simple: \
’ i) The room temperature resistivity, p, and the room temperature
resistivity temperature coefficient, a -—(a-"-)m.. are correlated. They
fall into/either of two groups, as shown in Fig.l.4, depending on
vhether fhe current is predoininantly carried by s,p- or d-electrons.
This is/known as the Mooij correlation after the person vho first

0 100 200 300
L p (ulicm)

Smg

A

Figure 1.4 The Mooij correlation between the resistivity, p, and
the resistivity temperature coefficient at room
temperature a = ( d’r]R'r’ The data for sinple netals
fall onto a different band than those for transition
metal alloys (from reference 6). , ¢
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11) At‘lo‘w temperatures the registivity of all disordered metals -
has a negative temperature coefficient, provided the metals are not
glose to a superconducting transition. Typically below 15K the
i'esistivity showvs a slov negative telizperature variation regardless of

_ the specific higlf temperature behavior. In addition, one observes in
.this temperature regime a very large magnetoresistivity which is
difficult to explain by the usual Lorentz-force-derived effects seen
crystalline metals. Some representative graphs of these unusual lov*
temperature resistivity properties are shown in Fig.l.Sa,b.‘

~
’

PO}
.
1 1 1
0 5 ' 10 . 15 20
T (K) ‘
Figure 1.5 a) The resistivity temperature dependence of three .

amorphous metals below 20K (from reference 6).
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The temperature dependence of the electrical \resistivity at higher
temperatures; i.e above ZOK, has been discussed and studied by many
work\g.rs7 and is not the topic of this thesis.

/The studies on the slow temperature dependence of the resisiivity
at lov,temperatures have a long history. At first, since the behavior /)
could be regarded as roughly logarithmic, most authors assumed it was
caused by the Kondo effect in which electrons scatter off magnetic .
impuritiesw. The fact that all early amorphous metals contained some
magnetic elemeénts lent credence to this idea, but it was shown in 1975 ”
by Cochrane and coworke::s.11 that the effect also existed in systems
vithout magnetic impurities and was of about the same magnitude. These
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authors preferred an explanation of structural origin and proposéd that
the effect was caused by electrons scattering off a vibrational degree
of freedom (rather than magnetic as for the Kondo effect), a so-called
"two-level system". The progress on this controversial subject up to
1980 is reviewed by Harris and Strom-Oisen12 who point out that neither
of the two models should be considered as satisfactory as they do\not

explain consistently the observed temperature dependende of the

resistivity and fail altogether to account for the very large

magnetoresistance mentioned in point 1i) above.

The discussion over the true nature of the low temperature
resistivity ‘took a new direction with the publication of articles by
Abrahams, Anderson, Licciardello and Ramakrishnanl3 and Altshuler and
Aronov14 on the role of disorder in the behavior of the electrical -
conductivity. Following ideas of Thoulessls, Abrahams et al. presented
a scaling theory of electron localization. They identified the first
perturbation correction to the conductivity due to disorder to arise
from coherent backscattering processes first discussed by Langer and
Neall6. Shortly after, Anderson and coworkers17 associated the slow
temperature dependence of the resistivity observed in thin disordered
metal wires with this correction. Altshuler and Aronov14 on the other
hand, showed that in disordered metals (these include thin metallic
films, strongly doped semiconductors and amorphouswmetals) the intense
elastic scattering interferes vith the electron-electron interaction and
caUSes‘e correction to the density of states. As a consequence a slow
temperature dependént correction to the resistivity arises; in three
dimensional conductors it varies as -\ T. '

The work by Abrahams et al. and Altshuler -and Aronov triggered an
avalanche of theoretical investigations into’ the nature of the
conductivity of disordered conductors which resulted into the
formulation of theories known today as quantum corrections to the
conductivity. All of these theories are based on the idea that the
electron motion through a disordered conductor/- such as an amorphous
metal - is diffusive rather than ballistic as in crystalline conductors.
Tﬁe\diffusive nature of the electron motion leads to, two additional

D




effects on the conductivity at low temperatures by causing a quantum

interference of backscattered electrons, which is refered to as the weak

18,19

localization effect , and by decreasing the dynihical electronic

screening and thus enhancing the electron-electron interaction20 21, 22
The theoretical studies on the quantum corrections to the
conductivity were accompanied by numerous experimental investigations.CB
Much of the early work concentrated on the wide field strongly doped
semiconductors (the reader is referred to reviews in r¢ference 23).
Bergmarm24 vas the first to study systematically the weak localization
effect in amorphous thin films. He reported an excellént agreement,

The success of the quantum correction theories in three dimensional
amorphous metals is less clear. Bieri and cowoi‘kers25 wvere the first to
carry gut measurements of the magnetoresistance in‘; bulk metallic glass
gCu57Zr43) to study the quantum ‘correction theories. Even though they
find good agreement between data and theory at small magnetic fields
some serious deviations are apparent at larger fields which become more
pronounced at lower temperatures. Studies on the magnetoresista;ce by
Poon ét 31.26 in Cu6OZr:40 and Y75A125 followed. They too report
significant discrepancies between theory and measurement. 0livier and
coworker527 find that the magnetoresistance in amorphous Y-Al ribbons
cannot be fitted consistently to the theory over the entire field and
temperature regime. Only Howson et al.28 report semi-quantitative
success of the theories in Cu-Ti metallic glasses. However, all the
expeiiments carried out to date on bulk amorphous metals have suffered
from a number of serious drawbacks: The electrical trahsport properties

were complicated by one or more of d-band conduction25’26’27'28,L

8'29, magnetic ordering3o or a significant level of

magnetic 1mpur1tie531’32. These complications introduce sufficient

superconductivity2

uncertainties into the analysis that they do not allow an unambiguous
assessment of the success of quantum correction theories. Furthermore,
it should be notéd that some workers have treated some of the
parametersf) entering the formulae beyond -what is physically reasonable;
) such as large, resistivity prefactors32 and variable superconducting

fluctuation parameterszs.

t) The significance of’ these parameters and the importance of their
proper handling is explained in detail in Chapters 2 and 4.
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The objective of this thesis is to :lnv.estiga& the quantum ‘
«corrections to the conductivity.in the most simple bulk amorphous metals
available and to provide a stringent and unambiguous test of the
existing theories. One of the simplest metals wvhich can be cast without
much effort into an amorphous solid by quenching from the melt is
Mg70Cu30. Anornhous Mg7ocix3o has beén been well characten‘ized'as a
simple free-electron system, with electrical transport characteristics .
above the low te'mp'erature resistivity anomaly which are well understood
wvithin the Faber-Ziman theoryg3 134,35 4 thié sp-band amorpheus alloy
the exXpansion parameter, kpl) , of the quantum correction theories, is
vell defined and small enough (i.e 0.06) that higher order contributions
are negligible. Parameters that enter the quantum correction .theories,
such as resistivity, Fermi wave vector, density of states, electron
diffusivity and electron screening factor, are either known from
experiment or can be calcylated with sufficient confidence from free
electron theory 33,34, 35. The alloy is neither superconducting nor does
it ethZI;it any magnetic ordering; in fact it is diamagnetic. Alsc;, it
cant be manufactured with a magnetic impurity level of the ordem perts
per million. This leaves only tvo main parameters of the theories of
quantum corrections to the conductivity undetermined. These are the the
spin-orbit and inelastic electron scattering i'ates wvhich control both
the magnitude and signsof the corrections. Measuring the quantum
corrections to the magnetoresistance at different’ temperatures allovs us 7
to resolve the tempera!nre dependent inelastic scattering rate. Also,
the spin-orbit scattering rate will Be\studied systematically: The Mg-Cu
systeu; allovs progressive increase of the spin-orbit scattering rate by
substitution of up to half of the Cu by the heavier metals Ag and-Au.
Other electrical transport properties will not change significantly,
since Cu, Ag, Au are elements with the same valence and almost identical
covalent radii. It is expected from quantum correction theories that the
magnetoresistance changes sign from negative to positive when ghing frcm :
wveak to strong spin-orbit scattering. .

The advantages of Mg based alloys are not yet exhausted. Ome can
replace all of the Cu by 2n. Though being remarkably similar




temperature of 0.12K whereas H§700u30 is not superconducting. This

. Some numerical recipes and analysis techniques are presented in the

;o 11

otherwise 6, the two alloys Hg709u30 and Mg702n39 differiin one_very ,'
fundamental aspect; Hg702n30 is a supereconductor 7 with a tfansi;iou .

implies thay the sign of the electron-electron 39up11ng'c9nstant s
changed and thus offers a unique-chance to resolve the effect of
enhanced electron-electron interactions and superconducting fluctuations
on the electrical transport in amorphous me;als.

- Through deliberate doping of the high purity Mg ‘based alloys with

‘Manganese and Gadolinium it is demonstrated in this thesis hov the weak

localization quantum interference is suppressed by magnetic impurity
scattering. '

In the following chapter the theories of quantum corrections to the
conductivity will be briefIy'reviewed to give the discussion of the
experimental data in Chadpter 4 a proper theoretical footing. The
experimental methods employed in this vork are described in detail in
Chapter 3. The conclugions of this research are drawn in Chapter 5.

£

appendices.
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2. THEORY OF QUANTUM CORRECTIONS TO THE CONDUCTIVITY

k] 3

2.1 General Remarks , P
Y ]

Following the work of Abrahams and boworker§13, and Altshuler and
Aronovl4 a large number of theoretical<studies of the quantum
corrections to the conductivity in disordered conductors has been
published during the last 8 years. This chapter gives a review of those
aspects of the quantum correction theories which are relevant to the
understanding of the resistivity mehsqrements on the Mg-based metallic .
glasses studied in this thesis. o :

A rigoréus mathematical derivation of tﬁe theories is far beyondt
the scope of the thesis. It is merely intended to make the quantum
correction theories plausible to, the reader, and to provide a physical
picture of electrical conduction in amorphpus metals.

Prior to any discussion‘it is—;;cessarj to define what is meant by
disordergd\bonductors. An ordered,coﬁductor is one in which, le’ the
average distance between lattice defects and impurities or the extent of
strict translational symmetry, is larger than the length, 1¢, over which
the conduction electron wave-function maintains phase coherence. In
such conductors correlations between scattering events at different
lattice defects or impurity sites are unimportant since the electron
keeps no memory of its phase. Any conductor which does not' obey this
restriction is considered disordered. Examples of the latter group are:
all amorphous metals, -many fine polycrystalline conductors, icosahedral
and quasicrystalline metals, strongly doped semiconductors (metallic
regime), chemically disordered (or random substitutional) allo&é and
ects (such as ion-irradiated

conductors with a high density o
metals). In these materials thejelastic scattering length can vary
between one and several hundred [interatomic spacings. The phase
coherence length depends criticglly on the temperature and lies also in
the above range.
In ordered conductors the motion of the charge carriers is
essentially ballistic, i.e between scatterings the electron bropégatesc
undisturbed over many interatomic distances. A non-zero resistivity
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arises from the fact that electrons scatter off the occasional lattice
defect, impurity atom or thermaizlattice vibration (phonon). Using
simplé kinetic theory, as first shown by Drude38 in 1900, the

resistivity can.be written as
" 2\",_
‘o = 5? - - (2.1)
e nr J " —

vhere m is the current carrier mass, e the carrier charge and n the
carrier volume density. The characteristic inverse time 1/r is the total
effective scattering rate due to the different scattering mechanisms

. listed above. This result can also be obtained more rigorously using

linear response theory39. Matthiessen’s rule38 states that independent
scattering rates are additive and thus one can write the resistfvity of

a metal as o~

p=p, +p(T) ‘ ‘ (2.2)

Po is the reéidngl resistivity arising from lattice defects impurities
etc., and is temperature independent, and p(T) is generally due to
dynamic disorder such as electron-phonon scattering. Ideally 1if no
correlation effects between single scattering events afe present, p(T)
_reduces to zero'at T=0 and one then speaks of Py &8 the residual
resistivity (see for example measurements on potassium in reference
40,41).

In disordered conductors the picture of ballistic motion of)
electrons breaks down. With increasing disorder the spatial separation
of independent elastic scattering events eventually becomes smaller than
the coherence length and correlation effects arise. Naively speaking one
can-say that for sufficient disorder the conduction electrons undergo
numerous random elastic scatterings before they lose phase memory, i.e
1e << 1¢. In th}s limit the ele&tron path canbe viewved as a random
valk. Consequently it is appropriate to define an electron diffusivity D

from the velocity-velocity correlation function as

= <V(t)*V(0)> (2.4)

t,QM
where v is the velocity of electrons and the averaging is carried out
both over the ensemble of electrons at the FPermi surface and over time.
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Por a systeﬁ vhere the relaxatjon time approximati 8 is valid,
{
-, - -t/f
<V(9)>t,0H = v(0) e
(+ is the momentum relaxation time), one can calculate D as
1 2
D -3'VF T \' (205)

vp is the Fermi velocity, and the factor of 1/3 arises from a spherical
average of the velocity vector product in eq.2.4. Given the expression
for D, 1t is possible to rewrite the Drude expression, eq.2.1, for the
resistivity as

o ._2_.1_ (2.6)

- e DN((F)

vhere N('F) is the density of states at the Fermi level. Eq.2.6 is
usually referred to as the Einstein relation. To be more precise one
should write D as D(ep) to indicate that an average over the Fermi
surface vas taken in calculating D. Though derived here for the free
electron model, the Einstein relation for the resistivity is valid for
;11 disordered conductors regardless of the deta{ied electronic

structurel'S .

The change of the resistivity due to an applied magnetic field is
identically zero in the free-electron, single band modelaz. In real
single crystal simple metals, a longitudinal magnetoresistance may
appear from the Lorentz force on the electrons because of a non-
spherical shape of the Fermi surface43. It usually increases linearly
or quadratically in W,y @ is the cyclotron frequenciz/azg ziturates
eventually when w, is of the order 10 (see Kohler’s riile "' ). 1In
strongly disordered conductors such as metallic glasses however, the
elastic scattering time and hence the product w, T is so small, of the
order 10_5, that torentz-force driven magnetoresistance is negligible.
It will not be discussed any further (in the Mg-based glasses studied
here, 1t is four five orders of magnitude smaller than the observed
magnetoresistance, even at fields of several Tesla).

It is important: to realize that eq.2.6 does not take account of
correlation effects. Strictly spea?ing it vas only assumed that the

elastic scattering length is shorter than the coherence };pgth. The
5 i }

¢




conduction electrons vere still assumed to be a non-interacting Fermi

gés without any interference between the individual scattering events.
Abrahams, Anderson, Licciardello and Ramakrishnan13, and a{lthuler and
Aronov14 investigated the changes of the conductivity which arise wh;n
these assumptions are dropped. Following the work of Abrahams et al.,
Anderson and ::oworkers17 showed that a temperature dependent correction
to the conductivity arises in disordered conductdrs from the dephasing
of coherent electron backscattering by inelastic electron- phonon

scattering. Later it was shown by I(::wabata46

that -a magnetic field also
has a strong effect on the coherent backscattering conductivity 2
correction. Altshuler and Aronovls, on’ the other Hand, argued that
electron-electron interactions in disordered conductors are strongly
enhanced by intense, correlated scattering which leads to yet other
signific corrections to the conductivity expression (eq.2\.6) wvhich
depend (on both, temperature and magnetic field.

In\the following section the effect of interference between elast/iz
scatteringaever}ts is discussed and in section 2.3 the combined effect of
electron-electron 1nte'ractior}s and disorder is considered. The
expressions for the magnetoresistivity given in the following sections
involve some weakly convergent series and rather intractable integrals.
The formulae used for the numerical evaluation for these expressions are
given in appendix A. The re. der should note that all expressions for
the quantum corrections to t e conductivity are vritten in terms of bp/p "

and not in terms of 3a/¢ as in the original articles. Since _Bug < 10

f—~pne can identify 8p/p = - 80/0. This notation vas chosen to facilitate

the comparison of theory and experiment and to emphasize on the small
size of the signal. !
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2.2 Veak Localization .

In the previous section it vas argued that in a disordered
conductor the resistivity can be written as p = I/eZD(cg)N(ep).l In the
folloving heuristic picture it is shown that, quantum interference
effects lead to corrections to this expression.

Consider an electron moving from A to B along the'paths 1,2,3 shown
in Fig.2.la. )

» ' ' \'

a) b)

4

Figure 2.1 Non-intersecting a), and intersecting b), electron
diffusion paths. -

4

The total probability of the electron transferring frof A to B is given
by the modulus of the sum of the probability wave amplitudes Ai, i.e. -

2

The first term in eq.2.7 is the simple sum of the independent
probabilities of the individual paths, i, leading to a resistivity as in
eq.2.6. The mixed term cancels to zero as the paths have different
lengths and the product A1A§ averages to zero over the ensemble of
possible paths. g:r a diffusing elecggon it is however possible that

some of the paths'cont

a loop as shown:for path 2 in Fig2.lb. If only
- invariant under time-reversal and rotation - is

RI A

elastic scatteri
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considered, the electron has an equéi probability of moving clockwise or
counterclockwise through the loop, so that path 2 consists of two
separate paths of identical length. The mixed term for these two paths
does not vanish and leads to an enhanced probability of finding the
electron at the point 0. Therefore the resistivity of the conductor is

_ 1ncreased20. One can investigate the interference at point O further, by
simpply letting &’and B tend to O as shown in Fig.Z.Qquﬁ’ i

o

»

Figure 2.2 CYbsed‘ZEectron diffusion paths (loops). R

VAN

Bach loop represents two complementary paths the electron can traverse
vith equal probability. The probability of the electron returning to its
origin is therefore

* 2 .
P(0,0) = 2| ZAil‘ =2 12 |Ai|2 = 242 (2.8)
1

In other vords, because of the interference of the probability wave
amplitudes at 0, there is an enhanced probability for the electron to
return to its f{nitial position - it is weakly 1ocalized1). - -

{

' ’
t) This phenomenon is not restricted to diffusing electrons. It is

common to all diffusive wave probpagations. It has been observed for the
47 and it was observed (bqaﬁnot
understood then) in radar echoes during second world wvar.

zero angle backscattering of laser light
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One can estimate the relative magnitude of the conductivity correction

by estimating the probability that an electron ray of volume dV-vazdt_
intersects itself0, 1.e. \ ’
T 2
Vg
Ao f F 1
a7 .. dt - (2.9)
o, T (n:)d’2 a3 d

Here A is the electron wavelength, bF the Fermi velocity, D the electron
diffusivity, d the effective dimension and a the transverse size of/ a

film or a wire (a<<1¢). Te and 7 ve the same meaning as in the
previous section. Evaluating the integral gives \
2 >
Ao = S— + const. in 3D and (2.10)
hl :
. ¢ ‘t
e2
Ao = - 3 1n(1¢/1e) in 2D

vhere 1¢ = d Dr¢ is the distance over which the électron diffuses

coherently. g

The temperature dependence of the weak localization conductivity
correction 1s a consequence of the temperature dependence of 1¢. In the
presence‘of a magnetic field the electron quuires a phase shift vhen it
moves around a loop. The sign of the phase shift depends on the
direction. Therefore the two complementary electrons return to the
origin with a relative phase shift of A¢ = (2e/h)d, vhere & is the
magnetic flux through the loop. Vhen the phase shift is of the order 1,
the two complemehtary electron vaves are out oﬁygiase and the
interference fs suppressed. This will happen if the electrons take
longer than the time Ty to traverse the loop. This magne;;: dephasing
time is usually defined by -

4eDB h
A¢=—h—‘rﬂzl or "H = ZeDB

Here, 2BD~rH is the average magnetic flux through the loop. In the Mg-
based metals studied here H is of the order 10’13sec at a field of 1T.
If " is shorter than all other dephasing time scales involved, e.g the
dephasing time 7ie-ph due to electron-phonon scattering, then the cut

off " in eq.2.9 is identical with 1B?and a magnetoconductance arises.

’ . o \

8
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Further insight into the weak localization problem %an be gained by
looking at the two complementary paths (Fig.2.2) ingthe equivalent
. k-space representation. These are the the maximally crossed diagrams
(also called fan diagrams) in Fig.2.3a first studied by Lange; and

Neall6. Fig.2.3b shows the more physical interpretation of Fig.2.3a by
19

. Bergmann . ¢

K

Figure 2.3 a) The fan diagram for particle-hole propagators. The solid
lines stand for electron (>) and hole (<) propagators and
the dashed lines indicate scattering by impurities (x).

Figure 2.3 b) Interpretation of a) by Bergman 19.

P

An electronign an initial state k undergoes a sequence of scatterings
K - El’ I En’ = -k into the final stdate -K. The momentum transfers

-

e
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in this sequence are El, Ez, . .., En—l’ én' The complementary
scattering sequence K - El” I ﬁn” = -k results from the above
momentum transfers in reverse order, i.e. Eh, Eﬁ-l' o e ., El. If the
individual scatterings are time-reversible and symmetric (i.e. no
inelastic, magnetic or sﬁin-orb;t scattering) the products of the

scattering transfer matrices for the complementary p;ths will be
identical, i.e. ‘ )
g T(Ei) = il;I'I'(ﬁi) ’

and thus the amplitudes and phases of the final states of the
complementary scattering sequences are equal which leads to constructive
interference. Using Green’s function techniques and the Kubo linear
response theory19’39 it is possible to calculate the exact contribution
to the conductivity of the weak localization effect from the maximally
crossed diagrams in Fig.2.3 as will be shown in the following
paragrabhs. .

The simplest Kubo diagram that contributes to the conductivity 1is

shown in Fig.2.4a.
“'h (ﬂ,t

K

4

Figure 2.4 a) The simplest Kubo conductivity diagram.

«-h o,k ¢-‘h‘m,E’

5 D@D
e ) —

[

: éigure 2.4 b) Sum of Kubo diagrams with maximally crossed
impurity scattering.

K




It yields a conductivity

def(c—‘i‘lw) - f(e) dk
oy (@) =
. 1] 2x ® (2")3

x zvi(ﬁ)vj(ﬁ)cg(e,E)G:(c—hw,ﬁ)
s

(2.11)

Here vi(E) -=%§ﬁ§l is the electron velocity at the energy E(K).
i

1 [t
e = (ih/2v) - B(k)

GR/A(e &) =

s

;are the impurity averaged retarded and advanced Green’s functions which
¢ are suitable to describe the propagation of an electron of spin s in a
disordered conductor48’20. Evaluating the expression for o leads to the

vell known Drude formula fortégf conductivity

nezf/m

13T g (2.12)

o -infey o) -1ig s

wvhich reduces to eq.2.1 at w=0. The additional effects of the coherent
backscattering can be incorporated into the Kubo formalism by simply
inserting the maximally crossed diagrams into Fig.2.4a and summing over
all possible fans. This is shown in F1§£2.4b. The resulting conductivity
correction &an be written as

def(e-hw) -~ £(e) dR dk’
A, . ( =
13¢) 2w © zm?3 7 (2m3 sz:’

vi(E)vj(E') (2.13)

x Gl;((,E)Gg(z—hm,E) My o (RR e ,0) Gﬁ‘?&,ﬁ')c‘z(um,ﬁ')

Hs's,(E,E’;c,m) is the mathematical equivalent of the maximally crossed
diagrams in Fig.2.4b. To facilitate the calculation of the integral in
eq.2.13 one can rearrange the terms in a way vhich is equivalent to
"twisting" around the lower hole propagator lines of the maximally
crossed diagrams in Fig.2.3a. This yields the so-called ladder diagrams
in the particle-particle channel shown in Fig.2.5a.

3

S
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Figure 2.5 a) Ladder diagraﬁé in the particle-particle channel. R
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FPigure 2.5 b) Dyson equation for ladder diagrams. .

The order of the scattering sequence remains unchanged. The infinite
series of the ladder diagrams can be summed easily giving a Dyson
equation vhich is shown in Fig.2.5b. It follows for the conductivity
that

2mN(e )1-
Ao(w)‘;_.o = -—-—ﬁg—— f—;——q)— C(q;w) (2.14)
v
with C(g=kK+K'j0) = L 5 *21
ZﬂN(eF)ve D" -°iw . &
this yields
“’("’)»-o = ---—ZDf . (2.15)
- {e ,

The quantity C(q,w) in above equation and in Fig.2.5b (the particle-
particle diffusion propagator) is often referred to in the literature as

t. &
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Ehe Cooperon as it has a pole (the diffusion pole) at small total

momentum ¢ = K + K’ analogous to the Cooper pair propagator in

superconductivity theory. .
The uﬂper integration limit, q, = (Dve)_llz,,in the above equation

reflects the fact that the coherent backscattering sefuence lasts longer

‘than the time, Te? vhich elapses betveen t¥o elastic scatterings.

(Dve)l/2 corresponds to the length of the smallest diffusion step, i.e
the distance the electron travels between two elastic scatterings. The
temperature dependence of the above weak localization conductivity is,
as Anderson,Abrahams and Ramakrishnanl7 have pointed out, a consequence
of the fact that the coherent backscaftering sequence can not last
longer than the diffusing electron wave packet maintains phase

o ighe cut off at r¢4;s achieved by replacing -iw with
h/r, in the Cooperon ~. Some authors =~ prefer to add‘h/1¢ to the

¢
denominator of the Cooperon and take the limit -0 later; the result

coherence, i.e. 7

remains the same. Calculating the conductivity with the cut off, «

¢l
yields for three dimensional conductor349 ’
‘ e2 1
Ag = -—p———— . i (2.16)
21r2h D1'¢

The dephasing time r, is, among other effects, due to inelastic

¢
electron-phonon or electron-electron 5cattering with a characteristic
temperature dependence TH ® T p, p>0.

In a magnetic field, the Green’s functions in eq.2.1l1 acquire an

additional phase factor. In real space representation ‘the Green’s

function can be written as39 19 .
r’ o
- - - e d ie -y - '
G(r,r?) = GB=o(r,r')'exp[i— fﬁ(s)ds) (2.17)
E ¥

vhere A is the magnetic vector potential. This phase-factor is absorbed
into the Cooperon by replacing &2 in eq.2.14 by the generalized momen tum
(q + 2e§/c)2. Substituting the generalized momentum by its quantum
mechanical eigenvalue (for the motion perpendicular to H only)
4eB/h(n+1/2), the integration over dq becomes a summation .over all
Landau levels; n, plus an integration over the q-component parallel to

-~
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the applied magnetic field. A magnetoconductivity follows then from
eq.2.15 (vhich is given later in eq.2.23 and 2.24).

In addition to the spin conserving inelastic dephasing and the
dephasing due 'to a magnetic fileld, sca{tering mechanisms that change the
spin state of the backscattered electrons have to be considered. Thig is
quite obvious since the interference at point 0 in Fig.2.2 involves the
total wave function and not Just its spatial part. The interference will
not be constructive if the electron spin has béen changed along one of
the two cpmplementary paths. There are tvo important mechanisms which
change the electron spin state. The electron spin can interact with a
localized magnetic moment (iﬁburity spin) or with the electron’s angular
moment when it is scattered by an™on (spin-orbit scattering). Each
process leads to a characteristic dephasing time, s and so
respectively. The related Hamiltonians of either process have a symmetry
different from the orthogonal symmetry of the previously discussed
processes. Magnetic impurity scattering is described by a unitary
Hamiltom¥4n and spin-orbit scattering by a symplgclic~qggiltonian. They
cause the vertex C in eq.2.14 (the Cooperon) to have a more complex
structure. Hikami and collaboratorsso showed that the vertex should be

writtew\as /

e 1|3 : 11
212 2 4 2 2.2 2
2n QN(‘F)'e D™~ iw tagr vy Dq - ie + o

(2.18)

so s & ]
The factors 3/2 and 1/2 are a consequence of the-multiplicity of the
spin triplet and singlet statesf). In the absence of magnetic impurity
scat ering'(lhs = 0) and for weak spin-orbit scattering ('so large? the
verfex C reduces to the expression given in eg.2.14. If the opposite
limit is assumed for spin-orbit scattering (Tso very small) the triplet
term in eq.2.18 vanishes, whilée tgf singlet term remains unchanged.

4

D) Isotfopic scattering -is assumed here, i.e.

1 1 1 1 ’ \
N = N - 3780 and similarly fgr 1/18. Even thoug? Teo
g0 ' -so so v ,
and T, are not isotropic' in general,.thisosimplificatiop . makes

a négligible/difference in bulk metallic glasses. ~
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The;eforg the vertex C reduces to that in eq.2.14, but vith an
additional ‘factor of -1/2. This implies that in changing from veak to
strong spin- -orbif scattering the sign of the veak localization quanﬁum
interference effect reverses and its magnitude- is halved. If magnetic
1mpurity scattering is present in the conductor (finite 1/« ) the

) triplet and singlet part of C are both reduced. The quantum 1nter£erence

disappears entirely in the concentrated magnetic impurity limit.

" The various dephasing times introduced above have been calculated
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by several authors. Takayama™ derived the inelastic scatter{ng rate for

electron-phonon scattering at low temperatures as a

- (pTH?
1 Zw A SnXhlog_
(kT) «
. e-ph = 3Dm kBOD (3Dm) kB

i
¢ e-ph 11 -1
vhere A=0(1) and thus 1/1-i is of the order 1x10""sec = at 10K. This

is two orders of magnitude larger than the Bloch-Grineisen inelastic X
45

(2.19)

scattering rate, which falls off as T5. Chakravartry and Schmid ~ have

presented another calculation of the inelastic electron-phonon
scattering rate. They find that it can vary anywhere between T2 and '1‘4
depending on the particulaf phonon modes and their resppctive veiocity
of sound. The magnitudes are comparable with the above result.

The electron-electron scattering rate for three dimensional

52 24

conductors has been calculated by Schmid™ . It can be written as

2 3 372

1 = K8 1 n, 7 (gD - TN
—= T& e tahd 1 (2.200
T F ] (

i P
yielding a rate I/Tie-e of approximately loasec at 10K vhich is
negligible compared to the inelastic electron-phonon scattering rate in
eq.2.19.

It is important to note that the inelastic scattering times Ty
e-e

-1

e-ph

and Ty vhich follow from eq.2.19 and eq.2.20 are not necessarily

identical with the dephasing time due to the respective inelastic
process. The effectiveness, i.e the size of the energy transfer in the
scattering process, has to be accounted for. However, Altshuler and<; .

45

Aronov20 and also Chakravartry and Schmid = have pointed out that large

y
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energy transfers dominate in three dimensional disordered metals and the
distinction is therefore unnecessary. For scattering mechanisms which
cause & change of the electronic spin state the scattering time is

identical vith the dephasing time.

The spin-orbit scatterfng rate has beén‘§etived by Werthamer and
covorkers?>1>4 ag

. , 3nkBT A

1 8 2 c ' so
‘ ;—; =5 0y Np(ep) <M, >|° =— , (2.21)
vhere <Hso> is the spin-orbit scattering matrix element. The second
equality is valid for superconductors only. Withw . = 0(1) one finds for

o 11 : S0
Hg702n30 that llvsoz 10" "sec—1, which is of the same order as

I/Tie—ph. This is about the best estimate one can give sincel<Hso> is
not known for Mg-Cu and Mg-Zn glasses. One does however expect a strong
dependence of Tgo 00 the concentration of heavy elements in the alloy.
It has been shown that l/vso\should vary as 28 in metals if the single
conduction elecgron'wawe function is approximated by atomic qrbitalsss.

The magnetic spin scattering rate can be determined from Fermi's .

Golden Rule, which gives
1 2w
]

c 1is the ﬁ;;;;tic impurity concentration, O the atomic volume, J the
spin exchange integral (scattering matrix) and S(S+1) the degeneracy “of
the magnetic spin S. In amorphous Mg-Cu and Mg-Zn alloys only manganese
holds a magﬁetic moment. Vith $= 2.2 and J= -0.25eV 36,57
1/1s to be of the order of 2»&09§gc;1 per ppm of\manganese.
Ve have seen above that the scattering times due to inelastic

N(ep) 0 I35(54d (2.22)

one finds

_~ electromyphonon, magnetic spin and spin-orbit scattering have comparable

magni tudes. Consequehtly ve expect the weak localization conductivity
correction to be sensitive to variations of any of the above time
scales, i.e to temperature, to the concentration of metals with large 2

and to magnetic impurities.




&
All the majbg aspects of €he veak localization quantum interference

v efkect have mov been sketched out. It only remains to calculate the

temperature and field dependence acéording to eq.2.14, vith the various

‘scattering mechanisms included. Unfortunately this is a rather

complicated and long calculation; the details of which do not contribute

" to any additional insight into the phenomenon. For this reason only the

results of such calculations are presented and the reader is referred to
thngriginal articles for the exact treatment.
Fukuyama and Hoshin049 have calculated the field and temperature

~
. dependence of the weak localization resistivf&y for three dimensional

disordered conductors in the pkesence of inelastic and spin-orbit

scattering in the limit Te < Tgor Ty They find: -

e N

A\

¢

[Z kst @ v v

1-y
The parameters are defined-as

3B

t = L and t_ = t+-l(1£d l-y)
4B * 2
so \
[33* p.BB
8eDBso

g* is the effective g-factor and has a
value of 2 in metals, and

2B .
B, =B, + 3s°(1=\1 =) \ .

+ 4

B 3330 . - ,

=B

2 i

-and Bs are usually referred to as the inelastic and spin-orbit

B
i ot
fields. They are related to the dephasing times discussed earlier

I

oy
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2

(similarly to H and B) by

h

Bx = %eDr
X

f3 is an infinite series resulting from the evaluation of the integral

in eq.2.14 for all Landau levels n. Tts properties are discussed on page
36 The expression in eq.2.23 includes the effect of fhe spin-up. and ,
spin-down band splitting (Zeeman effect) in the presence of spin-orbit
scattering. In a magnetic field thg}ehergies of the two bands are split
by ZuBB which alters the admixture of spin-up and spin-down states due

to spi;-orbit (or magnetic spin) scattering. Trudeau and Cochrane58
pointed out only receﬁtly that in systems with a considerable

paramagnetic enhancement, the g-factor should be multiplied by the

" Stoner factor 1/(1—x/xp) = 1/(1-I) to reflect the fact that the bang

splitting is increased by strong electron correlations. In systems with
no paramagnetic enhancement and a large electron diffusivity, the Zeeman
contribution is negligible and eq.2.23 reduces the following expressién
vhich Altshuler and Aronov20 have derived based on calculations by

Kawabata46 and Hikami et al.soz
)
— (2.24)
3 [Ba]

¥
(28, ot J@[.l_f @) - 3
p VL 21r2‘h K273 B¢ 2
: 2 4

Here B, =B +ZBs and 83 = 31 +'§Bs +3

¢ i Bso

B1 and Bso have been defined above. The dephasing effect due to magnetic
spin scattering has been included in this expression through the spin
scattering‘field Bs’ vhich is related to the magnetic spin scattering
rate, given in eq.2.22, by Bs==h/4eDvs. A similar extension of eq.2.23
to finite magnetic spin scattering has not yet been presented in the
lltergture: However, Maekawa and Fukuyama18 have calculated the

corresponding magnetoresistance in two dimensional conductors including

 the additional magnetic spin scattering effects. In a simple

calculation one can take their ‘calculation of the vertex C (vhich has no
dimensional dependence) and carry out a low impurity concentration
expansion (gs small, i.e Bs<<Bso). One finds that B and 32 in eq.2.23




should be replaced by

4

Bi=Bi+ 2Bs +—-——§—v— 1+ l-y
_ 2 4 ®
By =By+ 3B+ 3B = By

To test the wvalidity of this extension one needs only to consider the
limit of zero Zeeman splitting (i.e g*-O) and one finds that eq.2.23 /
still reduces to eq.2.24 as required.

Insthe high purity Mg-Cu and Mg-2Zn glasses studied here, Bs is much
smaller than Bso so that one can write

2B
y %+ =Byt 380'(1: NTS) .o
- 9] g
v B, =B + 28 B
2 %7 350 T F3

The magnetoresistance is thus conveniently defined by dnly four
parameters, the known resistivity p and diffusivity D and the unknown
spin-orbit scattering field Bso and the (as we call 1it) dephasing field
B¢. B¢ combines the depyasing effects of, to first order temperature
independent, magnetic impurity scattering and temperature dependent,
inelastic electron-phonon and electron-electron scattering. As we shall
see in Chapter 4 this definition allows us to analyse the
magnetoresistance measurements with a minimal number of adjustable
parameters. The error the above definition of B2 introduces into Bso
is, in the materials studied in this thesis, alwvays less than 2% and
~therefore negligible (see Chapters).

Representative plots of eq.2.23 and eq.2.24 dre shown in Pig.2.6a-d
for different sets of scattering fields Bi' Bso' and Bs. A comparisén
between eq.2.23 and eq.2.24 is plotted in Fig.2.6e with a value for the
electron diffusivity D of 0.2cm2/sec, typical for amorphous d-band
metals, and 6cm2/sec, typical for amorphous sp-band metals such as Mg-Cu
or Mg-Zn. We find that io?~iﬂé alloys studied here the Zeeman splitting
has no effect on the magnetoresistivity in the field range gnder
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consideration. The effect of D on the magnetoresistance can he, made more
transparent by the following argument: the dephasing effectiveness of
the applied magnetic field {s proportional to the flux through the area
of the self-intersecting loops (Fig.2.2) and hence proportional to
(1¢)2 = D‘r¢ (the diffusion length 1¢ was defined in eq.2.10). In
contrast, the dephasing due to the Zeeman splitting in the presence of
spin-orbit scattering depends on the number of spin-orbit scatterers
along the loop and is therefore proporticnal to the length of the Ioop
VFT¢' It follows that for small D the Zeeman dephasing is more effective
than the magnetic field dephasing, whereas for quge D the reverse is

true.
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B(T)

Pigure 2.6 a) Normalized weak localization magnetoresistance (eq.2.23)
for varying dephasing fields, B o' at constant, veak
spin-orbit scattering. p =50u{xm and D = 6cl2/uc.
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Pigure 2.6 b) Normalizéd weak localization nagnetoresiséance (eq.2.23)
for varying aephasing fields, B¢, at constant, strong
spin-orbit scattering. p = 50uxm and D = 6cnz/sec.
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Figure 2.6 c) Normalized veak localization magnetoresistance (eq.2.23)
for several spin-orbit scattering fields, B.o. at

» constant dephasing field B )’ p =50ucmand D = 6cl2/uc.




Figure 2.6 d) Normalized weak localization magnetoresistance (eq.2.23)
for several spin-scattering fi'elds, B,S’ at constant
inelastic dephasing and spin-orbit scattering fields.

p = 50uficm and D = 6cn2/sec.
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Figure 2.6 e) Normalized veak loulintion‘ug'nctoruis%tu\co (eq.2.23)
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for small and large diffusivities.. ¥
Eq.2.24 gives identical results for D -v6cl2/sec.

p = 50uicm ang B¢ = 1mT.




«36-

The functional form of f3(x) was first derived by Kavabata46 as:
-] * A
£4(x) = zan(x) (2.25)
n=0
1,172 1,172 1. 1,-1/2
wvith a (x) = 2(n+ 1+ ;‘-) - 2(n+ 2 - (n+ -2-+§)

The function is plotted out in Fig.2.7. Details of the algorithm used
to calculate this curve are given in Appendix A. The asymptotic forms

of f3 are

x3/2 ~7x2 .
f3 =78 [l - Ch + o for x <<1 and

0.6049 - —— for x> 1 .

X

f3:::
One can therefore expect the magnetoresistance to vary at low fields as

+Bz. Specifically, for B <K B¢ <« Bso¢ 0

2 2
5 e e 1 B
(_pg]wl- PN \li 5 372 96 (2.26)
&

R Bso) the magnetoresistivity should vary

and for large fields (B >> B¢

as

2
) ., & |s§ '
(p)VL S b x 0.6049 ¢ 2 1))

This means that as long‘as the disordered conductor has a finite spin-
orbit scattering strength Bso’ the lov field magnetoresistivity will

alvays be proportional to +82 vith a slope depending on the dephasfng
field B,. In contrast, the high field magnetoresistance has a universal
~-\'B field dependence. Vhether the low or high field asymptotic regimes
can be resolved experimentally depends critically on the size of B¢ and

Bso'

Maekava and Fukuyama18 have also derived the temperature dependence
of the weak localization correction to the conductivity three

\ t

’




dimensional conductors:

2
8p o [ L
(p]VL(T) v \Iz.u (2.28)
1/2/ 172 "
Ay sy |
"1 s T1 s 1'so

Fig.2.12 shows this correction compared with other temperature dependent
conductivity corrections (to generate the plot the values given in

section 4.2.4 vere used for v, and +_ ).
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Figure 2.7 The f3-function by Kavabat346.
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Q .
2.3 Enhanced Electron-Rlectron Interactions ' .

. In the previous sectfon the direct effect of quantum interference
on the resistivity was discussed./In this section two indirect quantum -

interference effects will be discuszed briefly.

The diagrams in Fig.2.8 show the lowest order electron-electron
/

interaction processes in the absence impurity scattering. .

-
s P v

a) b) 3

N

Figure 2.8 a) The simplest Hartree electron-electron interaction diagram in
the absence of impurity scattering. The closed line may be an
electron or hole propagator. The thin vavy line denotes the

bare Coulomb interaction.
b) The simplest exchange (or Fock) electron- electron interacgtion

diagram in the absence of impurity scattering.

The Hartree term in Fig.2.8a symbolizes the interaction of an electron
vith a fluctuation of the vacuum. It can be vieved as the basic
interaction of-an electron with the mean field of the surrounding
electron gas and leads (in connection with higher order terms) ‘to the
screening of the electron charge (it is discussed in more detail by
Ascroft and Hermin38 and Mahansg). The exchange term in Fig.2.8b is the
simplest correction to the electron self-energy due to electron-electron
scattering. It is similar to the self-energy correction due to virtual
phonon exchange (where the e-e interaction line is replaced w{th a
phonon line) which has to be congédered in more detailed density of
states calculations In disordered conductors, the intense inelastic
scattering interferes with the electron-electron interactions, leading
to scattering processes which are represented by the diagrams in
Fig2.9a-f. The bare e-e interaction (thin wavy linet in in Fig.2.8a,b) 1s
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replaced by a renormalized e-e coupling A and a coherent impurity
scattering sequence D or C is added. The Cooperon, C, was defined in
Fig.2.5. The diff#uson, D, is similar to the Cooperon, a:summation of
ladder diagrams in the particle-hole channel as is demonstrated )
graphically in Fig.2.10a,b. The renormalized electron-electron coupling
in the particle-hole (diffusion) channel, Y and in the particle-
particle (Cooper) channel, Ao» are defined in Fig.2.10c,d. In the
literature, the processes in Fig.2.9a-f are usually referred to as the
Hartree and exchange (Fbck) terms in thé Cooper and diftﬁi channel.
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Hartree . Exchange
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Figure 2.9 Hartree and exchange diagraﬁs in the particle-hole (p-h)
and particle-particle channel (p-p).




Figure 2.10 b) The Cooperon.
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Figure 2.10 c¢) The "dressed" electron coupling ia. the diffusion
channel (thick vavy line). The thin wavy line is
the bare coulombic electron interaction.
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Figure 2.10 d) The "dressed" electron coupling in the Cooper channel
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Physically, the Hartree terms in Fig.2.9a,c,e lead to a decrease of
the electronic screening and therefore to an enhanced electron-electron
interaction. This is because the intense elastic scattering in a
disordered conductor prevents the "sluggish" electron screening-cloud
from following a scattered eleftron as perfectly as it does in an
ordered conductor. The exchange terms in Fig.2.9b,d,f should be
considered as higher order corrections to the electron self-energy in
the presence of static impurity and electron-electron scattering. For
this reason Altshuler and Aronov20 refer to them as the density of

states corrections.

A different picture of the enhanced electron-electron interaction
has been proposed recently by Bergmannsg. He has argued that the Hdttree
term (and similarly the exchange term) should be understood as an
interference effect similar to the weak localization effect. In
Bergmann’s view the effect comes about from an electron scattering
around a loop exactly as Fig.2.2. When the electron vave returns to its
starting point it interferes with the local charge distribution. The
interference creates a charge modulation which contains all phase
information of the scattering events along the loop path,'ﬁucﬁ-liké a
hologram but with charge flow replacing light flow. A second electron
scattering around the loop from a different starting point will be
scattered by this "charge hologram" and return to its starting point.
Because the hologram contains all phase information of the loop, the
phase change of the second electron exactly cancels when it returns to
its starting point. It therefore interferes constructively with the

local charge distribution at its starting point. This leads to a change

.in the resistance similar to that discussed in section 2.2 for the weak

localization effect, and should therefore, as Bergmann argues, be
sensitive to magnetic fields, inelastic, spin-orbit and magnetic spin
scattering in much the same manner.

Some insight into the magnetoresistance can be gained from the
diagrams in Fig.2.9. The exchange processes in Fig2.9b,d,f can not lead
to a Zeeman type magnetoresistance as the spin is conserved in these
processes. Also, the processes in the particle-hole channel in
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Fig.2.9a,c,e (with small momentum difference, 1.e K’= K+ g with
|q]<<|K|) can not give rise to an orbital magnetoresistance. A
magnetoresistance can, however, arise from the Zeeman band splitting of

the Hartree particle-hole diagram because the two propagators may have a

different spin state. It is usually referred to as the diffusion channel .
magnetoresistance. Because the size of the total momentum is not
restricted, one has to average. the screened Coulomb potential over the
total momentum. This leads to a sz\iAze factor 1—5'(r of the magnetoresistivity
vhich depends on the details of the electron screening and the Fermi
surface of the conductor under consideration. The functionai f;)rm of the

diffusion channel magnetoresistance has been derived by Lee and

Ramakrishnan60’21 as
. 2 B ﬂkBr—;- gugB -
e =»° \l%‘ - (ZDeB] 33[ 'r] . @29
p 202h N kg
i
~ 32 3F 3/2
vhere : Fa = - -3—F[1 + - (1+ F/2) ]
£40 V(q= 2k sin(&v2)
F =T V=0 :

p 2
g3(x) = fdw [-dg—-z-[m N(w)]] (\] o +x +\ o - x| - 2\]-:]
0 o ’

N(o) = [e¢ - 1]

V(q) 1is the Fourier transform ofcthe static screened Coulomb potential,
and F is the electron-electron interaction at the Fermi energy averaged
over the solid angle (. For the simple metals studied here one can
calculate F quite easily, by treating them as free-electror; metals and
using the Thomas-Fermi screening theory~ . In transition metals F is
more difficult to evaluate since the electronic structure is more
complex and tfxe Thomas-Fermi theory does nat apply.

Ty
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"Por the simple Mg-based alloys studied here we find
2 2 /
ko ZkF
F = [E-E;} 1n [k—] + 1| =~ 0.5
o

2 4me2kF
ki = 3 is the Thomas Fermi screening vector

mh

The nu@erical evaluation of gS(x) is given in the appendf;\A.Z. Lee and
Ramakrishnan point out that the above equation is calculated under the
assumption that the Zeeman splitting of the spin-up and spin-down bands
is so’large that no significant admixture of the two bands by spin-orbit
or magnetic spin scattering occurs as this would suppress the
magnetoresistivity. Hence the following restriction applies to eq.2.29°

gryh ,
: 4eD >> Bso’ Bs

In the Mg-Cu and Mg-Zn alloys under consideration here, eq.2.29 is
therefore only valid in the weak spin-orbit scattering alloys.
Fortunately, the si%e of the Diffusion channel magnetorgsistivity is so
small in these alloys that the above limitations are not significant.
Recently Trudeau and Cochrane58 have shown experimentally that the band
splitting in the diffusion channel magnetoresistance is, like the weak
localization magnetoresistance, enhanced by the Stoner factor 1/1-I. A
plot of the diffusion channel magnetoresistivity is shown in Fig.2.11.

f
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Figure 2.11 Normalized magnetoresistance due to enhanced electron
-electron interaction, superconducting fluctuations
and magnetic impurities at 4.2K.
p = S0ulcm, D = 6cm25ec, B¢ = 1mT, Bs- 0.
(1) Maki-Thompson, eq.2.35, with TC-O.IZK
(2). Cooper channel, eq.2.32, with To’~TF' 85000K
(3) diffusion~channel, eq.2.29, vith Fou 0.5
(4) Cooper channel, eq.2.31, with To- 0.12K
O (4) Cooper channel, eq.2.32, with To- 0.12K,
and eq.2.30 wvith a=l/n
(6) negative MR due to 25ppm of Mn (eq.2.39)
L (7) Cooper channel, eq.2.30, with a=l
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An orbital magnetoresistance arises from processes in the
particle-particle (Cooper) channel shown in Fig.2.9¢c,d,f,e (vith small
total momentum, i.e |p+ p’|=|q|<<|p|). The Hartree processes in the
particle-particle channel also give rise to a Zeeman type
magnetoresistance whichfiE?hovever negligib1e61. Several authors have
calculated this contribution, but their results are not consistent and
there has been some controversy in the literature as to which should be
considered correct. The 1nd1v1&ua1 results are therefore discussed in
some detail here in order to determine which should be used for the
analysis in this thesis. Under the assumption electron pair-interaction
constant, g, does not depend on the resulting (small) total momentum,

Althuler and Aronov61 find for Cooper channel magnetoresistance

-

('Bae)cc = zh \J-_S(T B) @ [ZDeB] (2.30)

172

172
vhere Q(X) = 2x] fdt sinhzt( - sinh(xt)]

k .
In superconducting metals the coupling constant g(B,T) is written as

In(y)=C=0.577 and A is the dimensionless electron-phonon coupling
constant vhich is approximately 0.1 in Mg-Cu glasses (this is an upper
bound given by the McMillan fomu].é'123 for Tc=0). Ve note that the
Cooper channel magnetorésistance is negative in superconductors and
positive in non-superconductors because of the sign of g(B,T). In
calculating the above magnetoresistance, the authors have neglected
terms of the order of B/T in the expression of g(B,T). In how far these

higher order terms become important in the field and temperature regime
\
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considered in this thesis is not known and still subject of ongoing
reséarch*). Altshuler and Aronov argue in reference 61 that the factor
a is 1 in the limit of weak spin-orbit scattering and 1/4 in the limit
of strong spin-orbit scattering because the Kubo formulaf'of the
diagrams in Fig.2.9 which lead to eq.2.30 involve the square of the
Cooperon (eq.2.18). It was discussed earlier for the weak localization
effect that and strong spin-orbit scattering suppresses the triplet part
of the Cooperon and halves its size. However, Isawa and Fukuyama22 have
pointed out that there i1s an exact cancellation of the Cooper channel
exchange terms with the parallel spin part of the Cooper channel Hartree
term and only the singlet Cooper channel Hartree term contributes. The

. factor a should therefore be 1/4 in either spin-orbit scattering
limitTT). In a later publication20 Altshuler and Aronov present a
different expression for the Cooper channel magnetoresistivity where
they also include thé Zeeman splitting and magnetic impurity scattering

effects:

2 kBT gp.BB h/v
3py _ e [ ] g(T;B) o [ZeDB' , s} (2.31)
1(p) S RS e L

The function F -1 is defined as (after an analytical continuation

1/2 X, , -x3t
F_1(X)0X91%3) = f dt ——5- siuhzt [1 " STnh(x ty) S09090) e

Ve note that the prefactor in the above equation differs by g%_ftom that

20,64):

in eq.2.30. As both equations have been calculated from the same Feynman
diagrams in Fig.2.9 such a difference should not occur and we conclude
that the above results should not be used.

t) McLean and Tsuzuk162 have suggested that g(B,T) should be extended
as '

'g(8,T) = [ln(Tc/T) +¥(3) - ‘v[% zzﬁs.r)]

63

Hovever Lopes Dos Santos and Abrahams ~ have pointed out that this is

unphysical.

t1) This is underlined by the fact that for a=l the Cooper channel
magnetoresistance is too large compared to the size of the
magnetoresistance measured in the Mg-Cu and Mg-Zn glasses here. .
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The Cooper channel magnetoresistivity has also been calculated by
Isawva and Fuk.uyama22 for repulsive electron-electron interaction (non-
superconductors). The authors explicitly consider the cancellation of
the exchange terms with the parallel spin pett of the Hartree term

mentioned above and find

2 kBT
3 e B 3w
(’},Elcc = 2 202 [4393) g(T,B) @ (B,T) (2.32)
h BT == k [ (B4 + EEY - 2(my>
wvhere QF( ’ ) = % §(2,2 Vh) 3 k+‘y
ZeDB
h =B/B
nkBT ! i
* { = generalized Riemann {-function
&tB) = —. 13'r
Fr ln[ ) \\

The other parameters have been defined earlier. The expression is
derived from perturbation theory to first order in the disorder
parameter, (kFle)—l , and to infinite order in the electron-electron
interaction. As the disorder, parameter is small in the Mg-based glasses
studied here, i.e. (kyle)—lz:0.0G, the above expansion should be valid
wvithout restriction. The expression for the coupling g(B,T), however, is
not exact. Similar to the expression by Altshuler and Aronov, it is
correct only to lowest order in B/T. Ve note that the two expressions
have a very similar folm (for non-superconductors), they differ by only
about 20%. Although Isawa and Fukuyama have derived the Cooper channel
magnetoresistance for the mutual electron repulsion only, it should be
valid for the attractive case (superconductor) as well, because the
underlying Feynman diagrams are the same and only the sign of the
coupling g(B,T) differs. One can therefore use eq.2. 32 for
superconducting metals as well with g(B,T) —-—1/1n(T /T ) for the
electron-electron coupling. The dephasing effect of inelastic
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3
é:]i electron-phonon scattering on the Cooper channel magnetoresistance has
been included in eq.2.32 through the inelastic scattering field B . In

‘the range of temperatures and fields studied here it is howvever very

small. Not included in the degivation of eq.2.32 were the Zeeman-band
splitting and magnetic impurity scattering effects which decrease the
Cooper channel magnetoresistance. Judging by the corresponding factor

gu B h/rs
COS[‘;*—('-:T t] exP[;ﬂ—(B_f t]

in eq.2.31 they are negligible in the high purity, large diffusivity
glasses studied here. For\typical values of D, Bi’ and 1/'5 and using
the same coupling g(B,T) we find that eq.2.32 and 2.31 are very gimilar
as is shown in PFig.2.11. On the scale of this figure the two expressions
are identical for B<3T and_differ by only 10X for B=6T. Ve also find
that eq.2.30 falls onto~the curve of eq.2.32 1f the factor a is set to
-1/mn. Ve therefore conclude that eq.2.32,;q.2.31 and eq.2.30 (with
a=l/w) give consistent descriptions of the Cooper channel
magnetoresistance. For the analysis of the data eq.2.32 1is used as it
includes the dephasing due to inelastic electron-phonon scattering.
To complete the discussion on enhané§d electron-electron

f the diffusion and Cooper
20,21

| interactions, the temperature dependence

| channel resistivity correction is given in the fol}oving equation
}

|

(%F]e-e(T’B=O) = (%f)zfe(T'B=o) * (75)00 (T,B=0) (2.33)

- —pzezn [hi] [3-3F - g']xo0.015

The quantities 50 and g—l were introduced in eq.2.29 ;gd 2.30. It is
not clear from the discussion by Altshuler and Aronov”  whether the
Cooper channel part in eq.2.34 also applies to the repulsive electron
interaction case. Plots of eq.2.34 for typical values i%§£g-based

o

glasses are shown in Fig.2.12.

-
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Pigure 2.12 Normalized quantum corrections to the resistivity.
p =50pm, D = 6cm2/sec.
The abreviations have the followin meaning:
DC = diffusion channel with §q= 0.5
CC s/c = Cooper channel with T°= Tc= 0.12K
CC non-s/c = Cooper channel with To= TF= 85000K
' VL = weak-localization with Bs'o' IT:

for B¢ see eq.4.2
MT = Maki-Thoapson with T,= 0.12K




2.4 Superconducting Fluctuations

In addition to the resistivity correciions discussed in the
previous sections, a temperature and magnetic field dependent
resistivity arises in disordered superconductof; from superconducting
fluctuations above ther transition temperature. In contrast to ordered
superconductors, superconducting fluctuations, i.e Cooper pairs with a
small correlation length and a short lifetime, can exist in disordered
superconductors far above the transitiony;fhperatdre (T ::SOTC). One
distinguishes between two types of contributions to the resistivity: one
from the current carried by the superconducting fluctuations, which is
referred -to as the Aslamasov-Larkin term65, and one from the scattering
of normal electrons by the superconducting fluctuations, which is

referred to as the Maki-Thompson termss.

Ami and Mak165 have investigated both the Aslamasov-Larkin and

Mak{i -Thompson terms in great detail. --find that the Aslamasov-Larkin

e the transition temperature. This is

in agreement with experimentgl-results by Johnson and collaborators66,

contribution decreases rapidly

who reported that it is negligible above 1'3Tc' In contrast, the Maki-
Thompson term persists to well above Tc. Ami and Maki show that it
consists of two parts: one with a large magnetic field and small
temperature dependence, and a second with a small field and drastic
temperature dependence. The latter term decays with temperature as

e t= T~TC/Tc and y=0(1)) as was

exp(-v\M T) (t is the reduced tempera
' 66

shown expé{*sgntally by Johnson et Al.
superconductors. In Chapter 4 it is shown that such a decay 1is also

in type II amorphous

observed in the Mg-Zn glasses studied here. Unfortunately, the
expressions Ami and Maki give for the Maki-Thompson resistivity
temperature and field dependence are long and extremely complex and are
therefore not reproduced here. Altshuler, Vgglamov and Reiser67t however
have given a simpler expression for the temperature dependence in the

absence of a magnetic field as

S e [——5 12 2.34
(T) = g2 (T)x 6.8 (2.34)
Chr P ruln \BD
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and Lark1n68 has calculated the magnetoresistance as

Cur® =055 P B(T) £ [ ] / (2.35)

g(T) is the Jbare electron coupling introduced in eq.2.30, and f3 and B¢
vere defined in eq.2.24. The coupling constant B is related to

g(Ty= -1/1n(1/1 ) By

-

@0

2 & ‘
BTy =% Z D Im|) - Ern(zm 1) (2.36)

m= —o . n=

wheref) I'(jm|]) = [-g_l + W1/2+|m|) - 111/2)]—1
and ¥ is the digamma function. -

The magnitude of the two expressions above reduces only logarithmically
vith increasing temperature above Tc. Ve therefore expect the Maki-
Thompson term to contribute significantly to the magnetoresistance in

the Mg-Zn glasses even at temperatures as high as 10K. It wvas pointed ~

20 that only a singlet term contributes to

out by Altshuler and Aronov
the Maki-Thompson magnetoresistance in eq.2.36 and it 1s therefore not
limited by the strength of spin-orbit scattering in the alloy.
According to Lark:ln68 hovever the validity of eq.2.36 is limited to ‘
small aprlied fields and small inelastic eldctron-phonon scattering, i.e
o \

- B ,Bi << z51n(T/T.)
At larger applied fields, as was mentioned by Lopes Dos Santos®and
Abrahams63, the Maki-Thompson magnetoresistivity (which increases
monotonically according to the above equation) is expected to saturate;
the magnetic field can only destroy that extra finite conductivity which
is due to superconducting fluctuations. Close to this saturation the

magnetoresistance should vary as 1/B.

t) There is a typographical error in Larkin's paper. The first digamma
function carries a minus sign in his article which causes an unphysical
divergence of I' for certain values of T. Lopes Dos Santos and Abr‘ahams63
have corrected this; however their expression for I is in error by a

factor of 2 in the argument the digamma %unctionGg.

)
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¢
Strictly speaking, the coupling constant B has to be field dependent
since the bare &upling g—l is field dependent. Within the above field
limitations this can however be neglected. Also, it is not known how
sensitive B is to the strong pair-breaking which is believed to exist in
amorphous superconductors66. Values for p were tabulated by Larkin68. As
a precaution the table was recalculated using the method described in

the appendix A.4. Surprisingly the obtained values were 30X larger than

Larkin’s. Presumably Larkin made an error either in the remainder

approximation (which is essential to the calculation because of the slow
convergence of the series) or he was not aware of round-off errors
intrinsic to some computers. The differencef) between Larkin’s and our
result for B is shown in Fig.2.13. A plot of the Maki-Thompson
magnetoresistance is shown in Fig.2.11 in comparison with other
magnetoresistance contributions discussed in the previous section. The
temperature dependence superconducting fluctuation resistance-of eq.2.34
is included in Fig.2.12.

t+) The calculation in appendix A.4 agrees with results by
Richter,Baxter and Trudeau64 vho used a different estimation of the
remainder of the series in eq.2.36. .
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Figure 2.13 The g-function. The upper line (points) was
(iaiLulated as explained in appendix A.4, the
over line (squares) is Larkin’s68 result.
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2.5 Magnetic Impurity Scattering

In section 2.2 and 2.3 it wvas shown that magnetic impurity
scattering causes a dephasing of the cohgrent backscattering and
therefore decreases the quantum corrections to the resistivity. This is

not- the only effect magnetic impurities have on the temperature and TR

field dependence of the resistivity. Scattering of the conduction
electrons by dilute localized magnetic moments gives rise to a
resistivity pmag==m/e2nfs. 1/rs is the magnetic scattering rate
introduced in section 2.2. Taking the temperature dependence of 1/«
into account leads to the well known Kondo resistivity7o’7l. It is :
third order effect in the conduction-electron local-moment exchange

integral, J, and is written as

3p & 3vmaf,2 3Jz -
(p]mag(T)*_ 3 Zhe2¢F v- +J S(S+l){1 + == ln ]” (2.37)

V is the direct Coulomb interaction potential. J consists of two parts,
i.e J==Ja—|Vth/AE. J, is a direct ferromagnetic exchange term and the
second parf is an indirect antiferromagnetic admixture term. For dilute
3d transition elements such as Mn the antiferromagnetic term dominates
because the energy difference, AE, between the localized d-states and
the Fermi energy is small; J is then negative. Por dilute rare earths
the f£-shell configuration is vequﬂfable. AE is therefore large and the
overall exchange J is small. In some rare earths such as Gd AE is so
large that J is in fact positive7}. In the high-purity metals studied
here this Kondo resistivity is negligible.

Beal- Honod and Veiner56 have carried out a detailed study of the
field dependence of 1/18. With increasing field the magnetic impurity
spins are progressively aligned which gives rise to a negative
magnetoresistance72. Assuming that the direct Coulomb potential V is
much larger than the indirect spin-exchange potential J the two auEhors



“.f

find to second order in J:

%) g g
(p]mg K J° ACa) (2.39)
vhere K =< —33—-2'!-&
P Zhe‘e
F &
A(a) = 4<sp? + <Sz>[cotha/2 - o2
sinha/2
guyB .
with a =i;r
B
and <S> S S S B.(Sa)
z ngN/V S

.B., 1s the Brillouiléu?ction, M the magnetization, S moment of the

S
impurity spin and ¢ the impurity concentration. The important point to
notice is that Ap /p as well as B —h/4eD'r both depend on the product

c:J2 so that the above negative magnetoresistivity can not be neglected

at lov temperatures (T<6K) if Bs is of the order 3mT or larger. A plot
of the impurity magnetoresistance Apm/p is included in Fig.2.11.

L]
]
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2.6 Application to Amorphous Mg-Cu and Mg-2n v

The bulk Mg-Cu and Mg-2Zn glasses studied in this thesis are simple
metals. Ve can therefore calculate the expansion parameter (kPle)-l of
the theories of the quantum correqtions to the conductivity from the

measured resistivity and free electron theory, i.e

(kgl) = 2 5 e¥N(ep)
We find that it ranges from 0.05 to 0.07 and is therefore small enough
in all alloys that higher order terms of the perturbation expansion need
not be consideredt).

Our knowledge of the above alloys is such that all parameters
appearing in the various expression in the previous sections, with the
exception of the dephasing field B¢ and the spin-orbit scattering field
Bso’ are known. Specifically we know the resistivity, diffusivity,
Ferml temperature, superconducting transition temperature of Hg702n30
and therefore the Maki-Thompson parameter B, and the electron screening
parameter ﬁa. The relevant parameters are listed in Table 2.1.

This allows us to make the following predictions for the
magnetoresistance arising from the quantum corrections. The weak
localization magnetoresistance is expected to positive at small fields
(BEO.ST) in all high-purity Mg-based alloys studied here because off
finite spin-orbit scattering. Its total magnitude at 6T is of the order
Ap/p = 10—4. Since the electron diffusivity is large (D==5-8cm2/sec) the
Zeeman band-splitting effect on the weak localization magnetoresistance
(eq.2.23) is negligible. For the same reason the diffusion channel
magnetoresistance (eq.2.29) is small, i.e less than 5% of the weak
localization magnetofésistance. Neither of these two terms is enhanced
by the Stoner factor since Mg-Cu and Mg-2Zn glasses are only very weakly
paramagnetic and or even diamagnetic. The Cooper channel

magnetoresistance is positive in Mg-Cu glasses. At 6K its magnitude at

t) The size of these contributions for larger (kyle)‘l is still the
subject of current research. From theoretical considerations some

authors claim that they are zero.
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( a field of 6T is about 152 of the weak localization magnetoresistance.
.In Mg-Zn it is negative and, K about 30X larger than in Mg-Cu. The
additional magnetor?{(istance contribution from superconducting
fluctuations in Mg-Zn increases the positive magnetoresistance at small
fields by about 10-302 compared to the corresponding Mg-Cu alloys. The
very low concentration of magnetic impurities in all alloys (see Table

3.4) precludes magnetic effects on the electrical transport.

Table 2.1

Alloy P kp D l;a TF
Mg, Ciy 44.0 1.38 ‘6.9 0.50 84000
Mg, Cu, A2, 45.7 1.38 6.6 0.50 84000
( Mg, CU, AL 46.4 1.38 ' 6.5 0.50 84000
Mg,,Cu, AG, 51.8 1.38 5.8 0.50 84000
Mg, oCu,g oAy 48.4 1.38 6.1 0.50 84000
Mg oCuyg Ay, 49.0 1.3 6.1 0.0 86000
. Mg, Cu, HAu, 50.4 ~ 1.39 5.9 0.50 86000
Mgy Cu, A 55.8 1.39 5.3 0.50 8600?
Mg,o2na0 45.1 1.43 6.0 0.49 o0.12"
3 T)
Mg,oZn, A8, 49.8 1.43 5.3 0.49 0.04”

Mgy 20, 7AU, 50.4 1.43 5.3 0.49 ©.04
Mg 20, Gd, 45.6 1.43 5.9 0.49 90000

Hg7OCu30(170ppn Mn) 45.0 1.38 6.7 0.50 84000

8 -1

Units: p n wiem, ky in 10%ea™!, D 1in ca?/s, T, in K
-4
‘Brrors p: =5%, D: =x10X.

t) :'l?cinx
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3. SAMPLE PREPARATION AND EXPERINENTAL METHODS

-

3.1 Preparation of Samples

The preparation of glassy Hg(;p and Mg-Cu samples is described in
detail in the folloving sections. In the preparation of the samplcs
particular attention is paid to their quality and purity. The quality
of the glass, i.e the level of crystalline precipitates, and the level
of magnetic impurities both strongly influence electric transport
measurements. In particular, a small number of crystalline graing in the
amorphous matrix can significantly alter electrical transport properties
(see reference 73 and 74 and Fig.l1.3). Also, as is shown later in
section 4.2.4, as little as 10ppm of Manganese impurities in the glasses
studied here would prevent an unambiguous analysis of their
magnetoresistivity by the theories of quantum correctioqs to the

conductivity.

3.1.1 Rawv Materials

The starting metals for the alloys vere purchased from the

folloving suppliers with the quoted specifications:

Mg: Alfa Products (Thiokol/Ventron Products)
Danvers, MA 01923, USA
Purity: m99.95%,
specifically 4Oppm Mn, 20ppm Fe, 10ppm Ni according
to the batch analysis suplied by Alfa Products

Zn: American Cominco
Spokane, Vashington, USA
Purity: 99.9999%

Cu: ASARCO Ltd., New York, USA
Purity: 99.999%, less than lppm transition metal impurities
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Ag: Johnson Matthey Chemicals Ltd. >
London, U.K.
Purity: Specpure (registered trademark),
specifically 3ppm Fe, lppm Cu, <lppm of Bi,Cd,Mg

Au: Alfa Products (Thiokol/Ventron Products)
Danvers, MA 01923, USA
Purity: m99.9999%

Mn: Mackay Inc.
New York, N.Y. 10038, USA
Purity: 99.99%

Gd: Alfa Products (Thiokol/WVentron Products)
Danvers, MA 01923, USA
Purity: m99.9%, main impurities are rare earth oxides

3.1.2 Distillation of Magnesium

It is evident from the previous section that the impurity level of
the Magnesium as purchas¥d is far from being acceptable; even though it
is the purest commercially available at the present time. Specifically,
40ppm of Manganese is a high enoygh magnetic impurity concentration to
destroy most of the weak localization magnetoresistance (see Chapter
4.2.5). For this reason a vacuum distillation technique, developed by
Revel and coworkers?s, vas used to refine the "dirty" magnesium. A
sketch of the Magnesium still - a simplified version of the one used by
-Revel et al. - is shown in Pig.3.1. It consists of a 60cm long stainless
steel tube of 25mm diameter which is inserted into a vertical furnace
and evacuated by a rotary pump. The stainless steel tube encloses a 6cm
lohg and 22mm’in diameter high-purity carbon crucible at its bottom. The
carbon crucible is closed ‘with a carbon 1lid, a small orifice (lmm '
diameter) in the 1lid allows the Mg vapt;r to escape. An open-ended
quartz tube, 50cm iong and 19mm in diameter, rests on the carbon
crucible. The stainless steel tube vas positioned in the furnace so
that its end (and hence the graphite crucible) was in the hottest area
of the furnace. The quartz tubing was long enough to reach the cold
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area above the furnace. Prior to the distillation the carbon crucible
and the quartz tubing wvere thoroughly etched in a solution of 1:1:1
BCl,HN03,320 to remove metallic contaminants off its surface, and dried
in thg\evacuated steel tube at 1000K for several hours. Pieces of ﬂg
rod vere placed into the graphite crucible and the still vas assembled
as shown in Fig.3.1. Upon heating the centet of the furnace to 1000K -
180K above the melting point of Mg - Magnésium evaporates; its vapor
pressure 1s approximately 1lOmbar at this temperature76. The Mg vapor
passes through the smgll orifice in the 1id of the carbon crucible and
ascends untig;:;;Zondgnses on the cold quartz substrate at the top of
the still.

down, the quartz tube was removed and cut open with a diamond sav to

the Magnesium had evaporated and the still had cooled

recover the purified Magnesium. The majority of the Magnesium deposited
at a temperature of between 800K and 600K. The vertical temperature
profile vas measured with a Cromel thermocouple. Only this material was
used; it contains according to Revel and cowvorkers tx least transition
metal impurities. Before further processing, the Magngsium was
thoroughlx etched in acid with the composition given bove. The
Magnesium distillate is essentially transition metal fr because the

Mg vapor pressure at 1000K (as shown in Fig.3.2) is at least
magnitude larger than the vapor pressure of transition metals,
specifically that of manganese, nickel, chromium and iron. Therefore
primarily Mg and in addition some more volatile elements such as 2n, Na,
Cd evaporate from the liquid and condense on the quartz substrate.
Howe&er, the latter elements do not have a significant effect on our
measurements. . o

A major advantage of the purification method described above lies
in its simplicity. Small variations of the residual g;s pressure in the
still (here about lo—zmbar), the temperature of the Mg liquid (as long
as it is above 970K) or the condensation temperature have only little
effect on the purity of the distillate which allovs goqd results without
technical sophistication. The magnetic impurity concentration of the
distillate was determined by magnetic susceptibility and neutron

_activation measurements as described in section 3.2.4 and 3.2.5 of this

chapter and vas found to be (0.4x 0.2)ppm of Mn and (3z 3)ppm of Fe.
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Schematic diagram of the magnesium still.

1) furnace.
2) stainless steel crucible
3) carbon crucible
4) carbon 1lid with orifice
5) liquid magnesium
6) quartz tube
7) condensed magnesium °
8) vacuum connection
9) valve

10) rotary vacuum pump
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Figure 3.2 Equilibrium vapor pressgsgs of pure elements (p )

normalized by the magnesium vapor pressure (p Mg)
(from reference 75).
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3.1.3 Induction Melting

Magnesium is extremely difficult to melt by arc-melting. Once
struck by the electric discharge an oxide layer forms on the surface (Mg
is an effective getter) and this layer impedes the alloying. To avoid
these difficulties it was necessary to alloy Magnesium with other
metals by induction melting. A sketch of the induction melting station
built for this purpose is shown in Fig.3.3. It consists of a quartz
vessel suspended in a radio frequency induction coil (powered by a 30kW
LEPEL RF generator) and connected to a vacuum pumping system. The quartz
vessel holds a high purity (less than 5ppm Fe) bon crucible as shown
in Pig.3.3a (the carbon was purchased from SPEER CANADA Ltd.). The
crucible is 8cm long and 1.8cm in diameter. Its separate bottom piece
allows easy removal of the alloyed metal pellet. The carbon 1lid on the

‘crucible has a small orifice to prevent pressure build-up during the

alloying. Both, quartz and carbon crucible were cleaned in a solution of
1:1:1 HC1 HNOB’HZO and dried at 1200K under vacuum prior to each
melting. The stacking order of the constituent metals was found to be
important. Best results were obtained with the Mg pieces (= 2-4g) at the
bottom of the crucible and the other materials on top as indicated in
the figure. After placing the materials into the carbon crucible the
quartz vessel vas pumped down to a pressure of Zlo_smbar and flushed
several times with purified Argon éo remove Oxygen. Prior to me}tiqg,
the quartz vessel was fi11led with lbar of purified Argon. Thisa;neft
atmosphere of hpproximately lbar pressure is important to avoid
evaporation of large quantities of Magnesium and Zinc. 1The carbon
crucible and the metals it contained were then heated to between 100K
and 1100K within 10 to 30seg. The temperature was monitored with a
Minolta-Land CYCLOPS 52 infrared pyrometer. Shaking the quartz vessel
for one to two minutes was enough to ensure a sufficiently homogeneous

-mixing of the alloy; no phase separation wads visible when the solidified

alloy vas cut, polisheh and inspected with a.metallurgical microscope.
After the alloy had solidified, the quartz vessel was evacuated; the
alloy was removed vhen\it had cooled down to room temperature. The
veight loss of the sample was 2% to 7% and ve attribute it to the

N

-
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evaporation of Mg and 2n as well as to some residue stuck to the walls
of the carbon crucible. The alloy ﬁ?llet vas then cut with a diamond saw
into pieces of appropriate size for’melt-spinning, polished with 400 or
600grit sandpaper and cleaned in an ultra-sonic alcohol bath to remove
silicon-carbide contaminants due to the sandpaper.

8 »
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Figure 3.3 a) Schematic diagram of the induction melter.

1) high purity carbon crucible

2) RF heater coil

3) quartz crucible

4) vacuum connection

5) valves

6) argon inlet

7) pressure gauges

8) rotary and diffusion vacuum pumps

b) Induction melter crucible.

1) quartz crucible

2) carbon 1id

3) carbon tube

4) carbon bottom piece
5) magnesium '
6) e.g Zn or Cu
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3.1.4 Melt-Spinning

0f many amorphisation techniques - such as e.g. sputtering, cryo-
condensation or solid-state reaction - melt-spinning is the most
suitable for producing large quantities Bf bulk amorphous metals. The
vorking principlef) is demonstrated in Fig.3.4. An alloy sample of 0.5g
to 1g is placed in a quartz crucible. It is melted by induction heating
and ejected through a small orifice at the bottom of the crucible onto
the rim of a rotating copper wheel. The jet of molten alloy rapidly
solidifies on the cold (300K) copper surface and forms a Jong amorphous
ribbon. It was found empirically that the best ribbon quality was
achieved with an orifice of 0.4mm diameter and a tangential wheel speed
of 65m/s. The cooling rate of this technique can be estimated to be of
the order 1—2-106K/sec and is sufficient to produce glassy Mg-Culénd
Mg-Zn alloys in the composition range of =+10at¥ Mg around the eutectics
at Mg7oCu30 and Mg7OZn30 (see phase diagrams in reference 77). To avoid
oxidation of the sample, the melt-spinning was carried out in a Helium
atmosphere at 0.35bar pressute,’and the liquid alloy was ejected from
the quartz crucible using high purity Argon at 0.5bar. The resulting
glassy Mg-Zn and Mg-Cu ribbons were typically Ilm long, 0.8-2mm wide and
15-30m thick. Again it should be noted that the quartz crucible and
the copper vheel wvere cleahed with 1l:l HN03,H20 and ?1cohol before the
spinning. Immediately after melt-spinning the samples were stored in

liquid nitrogen to avoid oxidation and crystallization78.

t+) For a more detailed description of the melt-spinning technique the

reader is referred to references 4 and 79.
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Figure 3.4 Schematic diagram of the melt-spinning apparatus. -
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3.2 Quality Control and Sample Characterization

The melt-spun ribbons vere subjected to detailed tésts to ensure
their amorphicity, homogeneity and purity and to establish their
material characteristics. As mentioned before, intensive quality control
and material characterization has been proven to be of extreme
importance since for example electrical transport properties depend
crucially on the material characteristics. A meaningful comparison
between results on samples used in this thesis, and those by other
workers, is only possible if the samples have bgen carefully

characterized.

3.2.1 X-Ray Diffraction

The amorphicity of the as-spun ribbons was confirmed by X-ray
diffraction using,Cu—Ka radiation (A=0.15418nm). A schematic picture of
the computerized NICOLET L1l diffractometér with a STOE goniometer and

Cu-tube is shown in :}g;g/ﬁg This diffractometer has a resolution better
than 0.05degree and i{s capable of detecting crystalline contaminants in

the glass exceeding a concentration of about 2XZ. X-ray scans were taken
in the range 26 = 30 to 50degrees. This scanning range brackets the
entire amorphous reflection band. Some typical examples are shown in
Fig.3.6. Samples which showed peaks in addition to the amorphous halo,
as is the case for the scan of one Hg7OCu30 sample in Fig.3.6, were
rejected. More than 80X of the ribbons melt-spun were found to be
amorphous vithin the resolution of the diffractometer.

-4
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3.2.2 Differential Scanning Calorimetry (DSC)

DSC data such as crystallization temperature, crystallization
enthalpy and activation energy are important characteristics of a glass.
It has been shown that they depend on melt-spinning parametersal’s,
oxygen contamination73 and in some cases crystalline traces in the
amorphous matrix. They can therefore be considered as a calibration of
the ?uality of the metallic glass.

Samples of all the alloys investigated in this thesis wvere
subjected to isochronal DSC scans with heating rates of 10,20,40,80
K/min using a Perkin-Elmer DSC 2C calorimeter. The working principle of
such a DSC is best demonstrated by Fig.3.7. Approximately 5 to 15mg of
sample contalned in an aluminum pan is placed in a platinum sample
holder: Sample, Al pan and sample holder are heated at constant heating
rate by a small heater in the sample holder to a preset maximum
temperature (here 600K). A resistive thermometer measures the
temperature. The energy required to heat the sampie at constant heating
rate, @, is\compared to that required to heat an identical platinum
sample holder with an -empty Al pan inside. The di‘f.ference, i.e

(25 - %) s

® At AT

is equivdlent to the enthalpy change, ﬁ—g = cp, of the sample. Changes in
the atomic or magnetic structure (such as crystallization or magnetic

.ordering) result in a change of enthalpy. A microcomputer serves as a

data acquisition system and allows convenient analysis of the Nresulting
¢ _ against temperature curves. Some representative DSC scans are shown
in Fig.3.8‘.. The transformation temperature is taken to be the peak
temperature (rather than the onset temperature wvhich is not alvay's vell
defined). The crystallization enthalpy was calculated by integrating the
curves in Fig.3.8 over the temperature and normalizing the result by the
sagple mass. The activation energie§ of the transformations were deduced
82. Results from the DSC measurements are
combined in Table 3.1. They in good agreement with those found by
Altounian et a1.83 and Mizutani et 31.3 4. The transformations causing
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the various exotherms in Fig.3.8 vere identified by X-ray diffraction
analysis (the X-ray diffraction patterns were compared to those listed
in the JCPDS f1les®%).

In case of the Hg7OCu30-based alloys, with the exception of
HngulsAg15 and Mg7OCUZIAu9, thelcrystallization characteristics are
very simple. At the temperature Tx the alloys crystallize into the
stable phase HgZCu. Vhether there are small amounts of Mg present in 1
the matrix in addition to HgZCu or vhether HgZCu vas formed slightly off ¢
stochiometry could not be resolved by X-ray diffraction as 7atX of Mg
gives a minute X-rayosignal compared to that of HgZCq, and -the
systematics of the shifts diffraction lines could not be investjigated
because of their large width. It was not possible to discover the
origin of the strong asymmetric form of the crystallization efbtherm
typical for all of the aboggamentioned Mg-Cu alloys; it may be c¢aused by
a small Avraml number of the reaction kinetics characteristic for
surface crystallization. The crystallization of HgZCu is followed by a
growth of the crystallites of this phase at temperatures from 500K to
600K causing a very small exothermal DSC peak. No further transformation
vas obse}ved before the alloys melt. The crystallization characteristics
of the Hg70Cu15A315 and Mg7oCu21Au9 are different from those discussed
above. This 1is not surprising since the amount of Ag and Au in the two
. samples so large that not all Ag and Au can substitute -
stochiometrically for Cy in the ﬂgZCu éompound: One expects a Mg-Ag and
Mg-Au phase to precipitate in addition to M32Cu from the amorphous
matrix. This is in fact observed. The primary exothermal peak in
Hg7OCu21Au9 vas identified. to be due to the crystallization of the HgSAu
phase, the following peak doublet being caused by the crystallization
and grovth of HgZCu. Hg70Cu15Ag15 crystallizes first into the HgBAg
phase vhich grows out of the amorphous matrix in the secondary DSC
exotherm and partially decomposes into HgZCu until a phase equilibrium
is reached. Judging by the JSiues for T; and for the activation energy
Ba of the primary peak found in the Mg-Cu glasses, it seems that
-ug7ocu3o becomes thermally more stable on the addition of a third
eleient, Ag or Au. Bventually, for large Au and Ag concentrations, the

&
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stability must decrease however, as Mg-Ag and Mg-Au alloys, judging by
the shallowness of their eutectics, can not .be made amorphous by the
melt-spinning with a quench rate of 106K/sec or less. In fact,
Mizutani34 has shown that the limit of the glass forming range is
reached in Mg7OCu3o if half of the Cu is replaced by Ag.

In case of the Hg7oZn30-based alloys the first exothermal peak at
telmperature 'I‘x correspond to the nucleationtof small crystallites of the
stable phase Mgsian The secondary, somewhat larger, peak at .
temperature Tx corresponds to the transformation of the egtire amorphous
matrix into this phase. The third peak, at‘temperature Tx’ is caused by
the transformation of HgSItho into Mg + MgZn. No further transformation
takes place until the alloys melt. The crystallization temperatures Ti,
activation energies Ea are comparable t6 those of the Hg70Cu30-based
glasses, the crystallization enthalpy however is only half as large.

The DSC measurements above have shown that the crystallization
ch;ricteristics of the Mg-based glasses studied here are consistent
internally and with the corresponding phase diagrams and agree with

previous result383’34. Ve can therefore conclude that the samples

- studied here are of equally good quality.
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Figure 3.7 Schematic diagram of a Perkin-Elmer DSC 2C
y differential scanning calorimeter.

1) sample holder

2) reference holder

3) resistance thermometer

4) heater : ‘ )

5) Argon inlet C%

6) Argon outlet

7) Aluminum heat sink {\
' 8) thermometer for sample and reference
9) power supply for sample and refere%ce heater

10) sample enclosed in Al-pan
11) empty reference Al-pan
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Figure 3.8 DSC scans for some Mg-based 'alloysf'. The alloy
composition and the scale of the e#cothermal heat
flov are given in the figure. The transformation
temperatures T  are explained in the text.
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Table 3.1

Results from differential scanning calorimetry at 40K/min.

Ti is the transformation peak temperature, AHx the

transformation enthalpy and E; its activation energy.

1 2 *) 1 2
Alloy T, | T, | AE, E, E]
Mg7OZn30 0) 380 | 391 | 1.67 | 1.90 0.1 1.40 0.1
Mg7OZn§0 385 | 401 | 1.34 | 1.88 #0.17 | 1.49 0.09
Mg7oZn27Ag3 392 | 412 | 1.77 | 1.98 #0.11 | 1.47 20.07
Hg7oZn27Au3 399 | 442 | 1.5 | 2.37 £0.27 | 2.06 +0.08
1 1
Alloy' Tx AHx Ea
Mg7oCu30 426 | 3.82 | 1.68 20.13
Mg7oCu27Ag3 415 | 3.42 | 1.64 0.04
Hg7oCu24Ag6 425 | 3.48 | 1.81 20.06
"37o°“15A315 430 | 3.38 | 2.65 0.10
“3700“29.9A“0.1 408 ?.32 1.36 #0.20
Hg70Cu28.5Au1.5 422 | 4.50 | 1.40 20.03
Hg7oCu27Au3 427 | 3.79 | 1.68 20.03
Hg700u21Au9 , 466 | 4.87 | 3.19 #0.18
Units: Tx in x,~anx in kJ/mol, Ea in eV
Error: sz = 2K, Aﬂx: = 10X.

o) values by Altounian et al.® . .

3 \5
*) Aﬂx is the combined enthalpy change of first and'second
crystallization exothermal.DSC peak

i o3
s
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n'\beam microprobe is a convenient tool for the analysis of

3.2.3 Electrg:-nean Microprobe

Electro
sample composition and homogeneity, as it is fast to carry out and
accurate (the analysis was carried out by Dr. Rod Packwood at CANMET
Labs, Ottawa). Similar to an X-ray cathode, the sample one wishes to
analyse is irradiated with an electron beam of appropriate energy (here
20keV). The incident electrons excite electrons on the inner atomic
shells. The excitations decay emitting X-rays of characteristic
wavelengths (there is some Bremsstrahlung as well which is filtered
out). The intensity of the emitted X-rays is proportional to the
abundance of the corresponding element in the sample. Table 3.2 gives
results for the composition of the alloys used in this thesis. No
compositional inhomogeneities were detected on scales larger than of the
electron beam diameter (lum). The silicon traces detected in the samples
originate from silicon present in the elemental starting materials as
vell as from the quartz crucible used for the melt-spinning. The
electrical transport properties are not affeécted by these small Silicon
concentrafions. The reader should note that the nominal rather than the
measured compositions will be used in the following }n orderkto avoid
unnecessary long alloy formulae. For detailed calculations of for
example, the average atomic mass or the charge density, the measured

compositions were used.



Table 3.2
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Electron-beam microprobe results

nominal composition

detected composition

Mg Cu Zn Ag Au Si
Mg,oCusg 69.89 | 29.88 0.616
Mg oCu,5Ags 71.11 | 25.92 2.91 0.0
Mg, oCu, AL, 70.46 | 24.11 5.40 0.0
Mg, oCu, 5A8; 5 69.26 | 15.69 15.03 .-
Mg,oClgg oAl | 70.61 | 29.26 0.11 | --
MgyoCusg sAuy s 69.43 3o§oa 0.51 | 0.001
Mg;oCusg sAU) s 69.70 | 28.88 1.37 | 0.076
Mg Cu, AUy 71.20 | 25.87 2.90 | 0.019
Mg oCg At 72.06 | 19.39 8.49 | 0.109
Mg, oZnq, 72.74 27.25 0.019
Mg, Zny A2 72.97 24.23 | 2.77 0.042
Mg oZny AU, 74.12 22.95 | 2.91 0.013
Mg oZnyqGd, 73.12 26.12 Gd = 0.758 | 0.008

- -F

Units: all concentrations are in atomic percent

Brror: 0.5%.

)
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3.2.4 Magnetic Susceptibility ;

The magnetic susceptibilities of the distilled Mg, all Mg- %ﬁ and
three Mg-Cu samples vere measuredvat 300K and 5K using a lab- hﬁﬁit
alternating force magnetometer.

The working principle of the alternating force magnetometer is the

AFaraday method which relies on the fact that a magnetic moment placed in

a non-uniform magnetic field experiences a force, i.e.

Fz=m(x~— [ ] (3.1)

vhere Hx is a horizontally applied magnetic field,
aHx/az the field gradient in the vertical z-direction,

Xs X the specific susceptibilities per unit mass

0
of the sample and the surrounding medium,

d, do the respective densities,
m the sample mass and,Fz the resulting vertical force.

In our case the susceptibility Xo of the surrounding medium - He at
70mbar - is negligible. ‘Compared to a conventional magnetometer with
specially shaped pole faces to produce a vertical field gradient _
(Faraday balancess) an alternating force magnetometer, see Fig.3.9, has
the agzantage that the vertical field gradient is generated. by two Lewis
coils

of the field gradient and hence the direction of the force on the sample

independent of the uniform horizontal field. Switching the sign

is simply achieved by reversing the current through the Lewis coils at
constant horizontal field, and allows the elimination of signal drifts

*to first order. The suspended sample holder inside is kept in position

by an electrical servo-mechanism. The nulling current of the servo
system is proportional to the force on the sample holder and sample and
was calibrated with 99.9999% pure polycrystalline 2n and Al (supplied by
Alfa Products). The system sensitivity wvas found87 to be 1.2-10'9emu.
The applied horizontal field (Hlnax = 16.5k0e) was measured with a
calibrated Hall probe. The Hall voltage, nulling current, applied field
and field gradient were measured and controlled by an, IBM personal '
computer through a lab-built analog-to-digital/digital-to-analog
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interface. Fig.3.9 shows the entire alternating force¢ balance including

‘the cryogenic system which allows measurements down to 4.3K. The

temperature is controlled by a flow of cold (4.2K) He gas (evaporated
wvith a heatgr at the gas nozzle) around the sample holder chamber. The
carbon- glasé thermometers were calibrated with a calibrated Ge-diode
uspended.in place of the sample holder. At 5K the temperature was
stable within 0.02K. ~
The measured room temperature susceptibilities are tabulated in
Table 3.3. They are compared to the free electron-value

Xyal = g(rz /59)10—6emu/cc:m ) ’ (3.2)
wvith the diamagnetic atomic core-susceptibilities listed in reference 88
taken into account. Considering the size of the susceptibilities the
agreement 1is excéilent, vhich underscores again the fact that Mg-Cu and
Mg-Zn alloys are good free-electron metals. The magnetization of three
Mg-Zn alloys as a function of applied field at room temperature and 5K
is compared in Fig.3.10 (points). Also shown in the figure is the
additional magnetization one expects at 5K and 17kOe from 4ppm of
Manganese diluted in the alloys (at room temperatﬁre their magnetization
is negligible). It is calculated according t089
Ngp,S SH :

e 03
where g=2 , S= 2.2 and BS is the Brillouin function. Judging by the
difference of the measured magnetizations at 5K and room temperature we
conclude that the samples contain at most 4ppd of Mn. The accuracy of
the alternating force magnetometer does not allow us to set a more

M(H) = ‘B =

xLangevin

precise limit on the impurity level.

5
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Figure 3.10 Magnetization against applied field (points).

The alloy compositions and temperatures are
given in the figure. The horizontal bar
indicates by how much the magnetization would
change betwveen 300K and 5K if 4ppm of Mn were
dissolved in the alloys.
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]Table 3.3

/

Measured and calculated magnetic susceptibility

Mloy ' Xexp Xcale
‘ Mg (crystalline) | 5.235 20.14 2.64
o Mg70Cu30 -0.50 20.40 0.10
Mg7oCu28.5Au1’5 0.16 20.20 {u=0.10
Mg7oCu27Au3 0.21 20.20 -0.16
Mg-nZn4, 1.06 0.14 0.86
ugmz‘n”Agé 0.7l =" 0.63 .
Hg7OZn27Au3 0.63 = ™ 0.53

b

Units: 10-7emu/g "
Note : THe CRC Handbook’® gives 5.39'10_7emu/g for Mg.

\
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3.2.5 Neutron Activation / i

3 Neutron activation measurements are be;ter suited to measure traces
of Mn or Fe impurities in Mg- Cu and Mg-Zn glasses than susceptibility
measurements. Such measurements were carried out on all samples by Dr.

Greg Kennedy at the SLOVPOKE scientific nuclear reactor of the Ecole

Polytechnique, Montreal, Canada. Neutron activation analysis exploits
the fact that almost all stable elements capture a neutron and transform
into an unstable isotope wvhen exposed to a flux of slow neutronsgo.
These isotopes<decay wigg a characteristic half-life and emit a
characteristic y-ray spectrum. One can detect the y-ray emission of a
sampie exposed to neutrons with a Germanium solid-state y-ray counter.

The number of detected y-rays at a particular energy - with the half-

. 11fe and neutron capture cross-section of the corresponding isotope

accounted for - is proportional to the relative concentration of the

measure’ is that of manganese as it carries a magnetic moment in
amorphous Hg7oCu30 and Hg702n30. Fe and Ni are only of secondary

reseei;;ye elements in the sample. The most important impurity level to

. importance since neither holds a magnetic moment in amorphous Hg7OCu3O

and Hg702n30 (see section 4.2.4b). The Fe level was measured
nevertheless in the distilled high purity Mg to find oGt how much it cah

. be reduced by the distillation described fn section 3.1.2. The measured

manganese concentrations are listed in Table 3.4. The Mn level in the
Mg-2Z2n alloys is in fact so low that it could not have been resolved by
the magnetic susceptibility measurements described in the previous
section. Because of the weak activity of Fes'7 it takes a long time to
get a.reliable value for the Fe concentration in any of the samples.
FPirst one has to irradiate the sample with a several times larger
neutron doses and then one has to vait for a week to let. the signal of
the disintegrating Mg (and even more so of Cu and Zn) decay to a level
vhich does not interfere with the Fe signal. The Fe level detected in
purified Mg was 3 = 3ppm. 3

. .
s -
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Units:
Error:

Table 3.4 '

Alloy Mn
Mg, distilled 0.4
Hg7OCu3o 2.6
Mg7OCu27Ag3 1.7
Hg7oCu24Ag6 0.3
Hg70Cu154815 1.1
Mg70Cus9.94%,1 0.1
Mg70Cus8, 5841 5 2.2
Mg7OCu27Au3 0.1
Hg7OCu21Au9 0.3
Hg7OZn30 0.3
Mg,Zny7A8; 2.3
Mg702n27Au3 0.8

Hg7OCu3o(170ppm.Mn)

166

parts per million (ppm)

wvhichever is greater.

i

Results of neutron activation analysis

9

Approximately 10%Z or 0.2ppp
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3.2.6 Density and Resistivity Measurements - , &

To conplete the section, values for the room temperature
resistivity and density are tabulated in Table 3. 5 The density of both,
amorphous ribbons and crystalline ingots, was measured by Archimedes’
principl,e with Toluene as a working fluid (dt ol™ 0. 866(9)g/§cm at 293K).
It turned out that the error on the densities of the amorphous ribbons
vas rather large, i.e. 102, as the lowv alloy density made it difficult
to accommodate more }han 50mg of sample ribbon in the buoyancy balance.
This restriction does not apply to the crystalline ingots vhose‘density
vas measured to a precision of 1X or better. Therefore we have uset{ as
density of the ‘amorphous material the density of the crystalline ingots
reduced by 2% to account for their volume differénceg-z. The vaflues in
Table 3.5 can therefore be considered as accurate to within 3X. THe
resistivity of the amorphpus alloys vas determined by measuring .the
resistance R of the sample ribbons (using a four terminal teéhnique),
their lengths 1, and mass m. The resistivity can then be calculated by

p =B _R-A : | (3.4)

124 -1

* The main error on the resulting resistiv:l ty is due to a non-uniform
cross-section A, i.e ribbon thickness and width _vary over the length
(10-50cm) of the ribbon measured. Therefore the ‘values for p given in
Table 3.5 are'an upper bound for the resistivity with a possible error
of 5Z. Vithin these errors they are in good agreement vith those

reported by Mizutani and covorkers3>-36:91 : | /




- Table s\

Density and room temperature resistivity

-

alloy d p

Mg, Cuq, 1 .11 44.0 )
Mnguz 7A33 : 3.16 45.7

Hg7oCu2 4A36 3.30 46.4 o v
"3700“15‘*315 3.75 51.8
Mg.mCu29 . 9Au0 1 3.19 48.4
; ‘ Mg7OCu29_5Auo.5 3.30 48.8
' "3700“28.5““1 .5 3.41 49.0
Mg,oCu,4Au, 3.48 50.4
Mg7oCu2 1Au9 4,12 55.8

Hg7°Zn30 2.92 45.1 .
Mg7bZn27Ag3 3.04 49.8
. Hg702n27Au3 3.23 50.4
v Hg702n29Gd1 2.97 45.6 )

Hg7OCu3o(l70ppm Mn) 3.10 45.0

Units: d in g/cms, p in uQem
Error: d: 3%, p: 25%
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3.3 Besistance and Hagnetoresistance Probes .
¥ The longitudinal magnetoresistance, i.e. B || J || B, ,of all
samples was measured in fields up to 5.6T and at temperatures ranging
. from 1.4K to 20K in a standerd 4He cryostat. The resistivity temperature
X dependence of the samples vas also measured in the same temperature
- range and in case of Hg702ngo and Hg7OZn27 3 dowvn to LQOmK in a:
dilution refrigerator. Pictures of the magnetoresistance cryostat, -
~ resistance bridge, pover supgly ané\data acquisition system are shown
,1ﬁf Fig.3.11. In the following sections the ‘individual components of this
system are described. A brief description of the dilution refrigerator

is given in section 3.3.6.

¢ .

t

’

@ - Figute 3.11 Pictures of thé magnetoresistante cryostat,
resistance bridge, ﬁ%ver supply and data
aquisition systenm.




ﬂ . 3.3.1 Cryogenics and Magnet ' .

A skgtéﬁ’of the Hoffmann(Alrco) dewar system with the Nb-Ti
superconducting magnet (Type No.8000/5511) is shown in Fig.3.12
(purchased from Ferranti-Packard Electric Ltd., Torqnto, Canada) The

-

setup is conventional. The 1 inch bore superconducting magnet is kept at
4. ZK in a stainless steel dewar filled with liqufd Helium. The He q§th
itself is thermally shielded by liquid nitrogen. The level of liquid He
i1s measured at several places above.and along the magnet with a
carefully balanced 1/8Watt 500 Wheatstone bridge. The bore of the magnet
céntalns a thin-wall stainless-steel dewar containing the sample holder.
For measurements at 4.2K or below the sample chamber is filled with
1liquid Helium and evacuated. Temperatures as low as 1.4K can be reached
this»way. A system of valves, gauges and heaters allows one to keep the
temperature stable within less than 1%. For measurements above 4.2K the s
sample holder and the sample are coupled thermally to the liquid He bath
of Fhe magnet by pressurising the sample,chamber and the sample holder

-4mbar

devar with He gas (thé pressures were typically O.lmbar and 10
. respectively). A stable temperature was achieved by heating gLe sample
v holder to the particulat temperature with the resistive heater wound

non-inductively onto the sample holder (see Fig.3.13). The heater

current wés adjusted to the appropriate level by an analgg feedback
“mechanism. The stray field of the heater is less than 3uT. °

%or high field measurements the magnét was povered by a HP Harrison
" 6260A DC Powver Supply through a diode protection stack. The DC pover
supply itself vas controlled manually with a discrete Keithley
Instruments K2601 nanqyolt source. According to the manufactures
specifications the superconducting solenoids field factor is A
B/1«0.1226T/Amp and the field is uniform (1 in 105) over-all of the
sample. The magnet is fully reversible and vithout a detedtable .
hysteresis. The magnet current (I =45Amp) is sensed across a 0.50
standard resistor vith a Keithley Instruments Model 175 digital
‘multimeter. - ,
.In tvo cases continuous-sveep low-field (B < 50mT)
magnetoresistance heasu?ements vere carried out. For this purpose a HP
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Figureﬁ3.12 Schematic diégram 6f £he magnetoresistance cr&ostat.

—1) Cu sample holder
2) stainless steel tubes
3) terminal lead box
4) superconducting ‘magnet solenoid
5) liquid Helium dewar

) 6; liquid Nitrogen dewar
7) sample holder devar
8) liquid Helium level detectors
9) valves :

- 10) small diameter valve -
11) rotary vacuum pump . .
12) diffusion pump -
13) 0-ring
14) Helium gas inlet”
15) liquid Helium transgfer tube
16) Helium gas outlet
17) vacuum gauges
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&




O . 6824A bipolar DC power suppl%r driven with a triangular vave fraquency
generator was used to pover the superconducting magnet. Its current vas

. sensed across a 0.10 standard resistor. The sweep time from full field

» .to reversed full field was about 100sec, in order to keep the magnetic
field synchronised with the power supply and resistance bridge‘ signal.
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3.3.2 Sample Holder -

A sketch of the 4-point .resistance probe is shown in-Fig.3.13. The
copper sample holder block is held in position by four thin wall —
stainless steel tubes vhich also contain the 40gauge (0.08mm diameter)
copper leads for the a.c. bridge contacts, carbon-glass thermometer,
heateryand He level detectors. The carbon-glass resistor is placed
inside the® copper block, right under the sample, to ensure good thermal -
contact. Two samples can be mounted (one on each side) by simply
sticking them with vacuum grease onto the’ thin film of mylar which
serves as electrical insulator between samplé and copper sample holder.
Below 4.2K the sample and sample holder were in direct contact with the
liquid Helium bath and above 4.2K in direct contact with He gas at
O.lbar to prevent thermal gradients between sample and resistor or along
the sample. No hysteresis or self-heating effects were detected for
temperatures as low as 1.4K. Voltage and current contacts were glued
with con&ucting silver paint directly onto the sample (it was found that
silver paint contacts are much less noisy than pressure-contacts, if
handled properly).

3.3.3 Thermometry \

‘A carbon-glass resistor (CGR) manufactured by Lakeshore Cryofronics
Inc. (ﬁésterville, Ohio, USA) was used to measure the temperature in
all experiments carried out at temperatures above 1.4K. The carbon-glass
thermistor was chosen because of its very good reproducibility, N
sengitivity, and small magnetoconductivity. Its conductance was measured
with a SHE Inc. (now Biomagnetic Technologies Inc., San Diego,
California, USA) Model PCB 4-terminal a.c. potentiometric conductance
bridge and was calibrated against Lakeshore Cryotronics Inc. calibrated
Platinum (T>40K) and Ge (T<40) resistors. The conductance bridge can
ﬁeasure conductances from 20microMho to 200mMho to an accuracy better
than 0.1X at a power dissipation of less than 18pWatt which prevents any
self-heating of the thermistor. The accuracy of the temperatureareading
is only limited by the small magnetoresistance of the carbon-glass

thermistor vhich causes a misreading of less than 2.5 at T=4.2K and
B=6T. A differential analog voltage output of the PCB served as a driver

to control the sample holder heater current described in section 3.3.1.
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Figur% 3.13 Diagraﬁ of the rgsistance probe sample holder (to sgale).~‘
1) thin-wall stainless steel tubes containing.

the sensor and heater leads .
2) sample holdkr copper block | — .
3) sensor and heater leads \
4). solder-on terminal for sensor and heﬁtér_leads
5) sensing current and voltage leads ,
6) sample — ' -2
7) resistive heater . © . . c
8) carbon-glass thermometer embedded in the copper block

\
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3.3.4 A.C. Resistance Bridge

The theories discussed in Chapter 2 pfedict that the
magnetoresistance in Mg-Cu and Mg-Zn metalli¢ glasses is at 6Tesla of
the order of AR/R = 107 vhich is quite small. For this reason a
sensitive 4-terminal a.c. resistance bridge designed by Cochrane,

3 vas used to measure the resistance changes. A

Kastner and Muir
circult diagram is given in Fig.3.14a. The important feature of this
circuit is that sample and reference loop are driven by two identical
driving transformers, Tl’ TZ’ povered by the same pover supply, and
coupled by the two transformers T3. As pointed out by the authors93
this ensures that the current in the sample loop with respect to the
current in the reference loop is stable against sample resistance
changes. The circuit can easily detect changes of 5-10-60 in a 10
resistor, however the absolute accuracy is somewhat less. Using an Ortec
Brookdeal Ortholoc-SC 9505 two phase lock-in amplifier the in-phase and
quadrature part of the signal, which is the difference between the
voltage across the sample and the voltage across the Dekatran DT72A
(BSI, Portland, Oregon, USA) inductive voltage divider, were measured
simultaneously . The quadrature signal was - if necessary - adjusted to:
zero vith a quadrature injector (V in Fig.3.l4a). The output voltage of
the lock-in amplifier was calibrated by changing the reference voltage
across the inductive voltage divider which is proportional to a
calibrated resistance change (see Fig.3.l4a) AR and reading the
resulting output voltage change AV, i.e. €

R R v g (3.5)

- + AR,
sample ref = AV "lock-in
The calibration was found to be linear over the entire sensitivity range
of the lock-in amplifier. The noise on the output voltage of the bridge
vas reduced by using a time constant of 1 to 3 seconds. The stability of
the cutput voltage was mainly determined by temperature fluctuation in
the laboratory (air conditioning). On the time scale of a typical
maghetoresistance measurement (20min) the resistance reading varied by

3x10_60 for a 1Q sample. Fig.3.14b shows a block diagram of the entire

system.
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Figure 3.14 a) Circuit diagram of the a.c. resistance bridge
(taken from reference 93).

S = sample Rs = standard resistor
R = lead resistance I = variable inductance
T = transformer V = quadrature injector
SUPERCONDUCTING
SOLENOID\\\\
ILL. A.C. RESISTANCE E
OSC3310A BRIDGR N
N
™
g
REP -‘-‘-—“—J T N Lﬁ
™ |2
: ™
LOCK-IN AMPLIFIER N 3
N
L“ ORTHOLOC-SC 9505 : \_U—
y L
PCB -
x| CARBON GLASS
THERMOMETER
DVUM DVM DVM R
- HAGNET
SUPPLY ‘
APPLE Ile .
COMPUTER

Figure 3.14 b) Schematic diagram of the a.c resistance bridge and
data aquisition system.
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3.3.5 Data Acquisition

All signal voltages - PCB analog output voltage, voltage across
standard resistor (proportional to the applied magnetic field), and a.c.
resistance bridge output voltage - were sensed with Keithley Instruments
Model 175 autoranging digital multimeter (DVM) as is shown
schematically in Fig.3.14b. An Apple 2e personal computer read the
voltages on all 3 digital voltmeters thfzugh IEEE- 488 standard
interfaces. The time lapse between the readings of the individual
multimeters was about O.7sec which is smaller than the time constant of
1 to 3sec used on the PCB and the a.c. resistance bridge and hence
_hegligible. From the Apple 2e personal computer the data were
transferred to a SUN computer for further processing.

3.3.6 Dilution Refrigerator

Resistance measurements from 10K to 80mK were carried out on the
superconducting Mg-Zn samples in a SHE mini dilution refrigerator. The
actual experiment, a copper block with calibrated Ge (1-10K) and SPEER
carbon (0.06-1K) resistive thermometers and sample holder screwed onto
the block tightly, is attached to the bottom of the refrigeration stage,
see Fig.3.15. The refrigeration stage is contained in an evacugted can
vhich is immersed in a 4He bath. The top part of the refrigeration stage
has a chamber which draws and evaporates 4He from the bath and is thus
kept at 1K. The cooling of. the sample is achieved by continuously

(endothermally) diluting 3He in a 4He rich 1iquid in the mixing chamber.

JFor further details refer to Lounasmaa94. A major problem in measuring
the resistance at low temperatures is to avoid self-heating effects of
the sample. Self-heating comes about when the energy dissipated in the
sample by the sensing current of the resistance bridge can not be
conducted at the same rate into the sample holder (mixing chamber)
because of poor thermal conductivity at low. temperatures (the decoupling
of the electron gas in the metal from its atomic matrix is comparatively
of minor importance for T = 10mK). Because the Mg-Zn and particularly
Mg-Cu samples are mqéi more brittle than for example Y-Al alloys it was

not possible to glue them onto the sample holder using only a very thin
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GEB-varnish layer. Instead the samples were stuck wiéh a very thin layer
of vacuum grease onto a thin electrically insulating mylar sheet which
jtself was glued to the sample holder with a thin layer of GE-varnish.
Obviously, this way of mounting the samples reduces the thermal
conductance between sample and holder so that the a.c. bridge power
dissipation had to be kept below 70pWatt which caused an unfortunate
reduction of . sensitivity. Even with this method there was too much
strain on all of the Mg-Cu samples and the Hg702n27Ag3 sample so that
they broke upon cooling from room temperature to 4.2K. (Note: for the
measurements of the magnetoresistance above 1.5K it was not necessary to |,
mount the samples as tightly as they were either immersed directly in
the liquid He or in direct contact with the exchange gas). Self-heating
effects of the thermometers were avoided by using the SHE potentiometric
conductance bridge desc?:ibefd in section 3.3.3.

5, vone |
4 | vacum punes 2
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THPEDANCE
STILL
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~ K" l.:
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' : . N
‘Pigure 3.15 Schematic diagram of the dilution refrigerator.
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4. Results and Analys

4.1 Introductory Remarks

The temperature and magnetic field dependence of the resistivity of
high-purity Mg-Cu and Mg-Zn metallic glasses containing up to 15 atomic
percent of Ag and Au vas measuredlbetween 1.5K and 20K and in fields of
up to 5.6T. In two cases, Mg702n30 and Mg7oZn27Au3, the resistivity wvas
measured down to Q,IK and 0.08K respectively. Whereas the temperature
dependence of the resistivity shows only very little variation from
alloy to alloy, the magnetoresistance exhibits.a wide range of behavior.

The magnetoresistance measurements, which are to be considered the
main topic of the thesis, are presented and discussed in section 4.2.
Por the sake of clarity, the section is divided into several parts.
First, all the magnetoresistance data are presented, and commented on
qualitatively, in 4.2.1. This allows the reader to follov the detailed
and quantitative discussion of the results on the non-superconducting
Mg-Cu glasses in section 4.2.2 and the superconducting Mg-Zn glasses in
section 4.2.3. The discussion of the dephasing field B¢ and the spin-
orbit scattering field Bso resulting from the quantitative comparison of
the theories of quantum corrections to the conduétivity and measured
magnetoresistance follows in section 4.2.4. Section 4.2 also contains
some comments on magnetoresistance in icosahedral Mg-Zn-Al alloys
(section 4.2.6) and in samples doped Qith magnetic 1mpur1ties, i.e
Mg702n29Gd1 and Hg7oCu30(17Oppm Mn) (section 4\5\5) .The chapter is
completed by a section (4.3) on the 5gmberature dependence of the
resistivity below 20K in Mg-based metallic glasses.

s

1
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4.2 Hagnet;resistance

4.2.1 Experimental Data

The main experimental results of this thesis, the measurements of -
the magnetoresistance up to 5.6T in eleven Hg7oCu30 and Mg702n30
metallic glasses with Cu and 2n partially substituted by Ag and Au, are
shown in Fig.4.la-k. Each set of measurements was taken at 9 different
temperatures ranging between 1.5K and 20K, with the excebt15n of
M87QC“29,9A“0.1 hand Hg7OCu24Ag6, for vhich no measurements were taken
below 4.2K. )

“The figures exhibit several prominent characteristics. First the

]

absolute size of the magnetoresistance, i.e 4p/p ::10~4, vhich is many
orders of magnitude larger than the normal, orbital magnetoresistance
resulting from the Lorentz force on electrons.

The size of the magnetoresistance decays with increasing
temperature in all alloys studied. This is consi,stent with the
progressive destruction of quantum interference by the increase of
inelastic electron-phonon (and to lesser extent electron-electron)
scattering vith temperature. Comparison of Fig.d.la-k' with Fig.2.6 shows
that the measured magnetoresistance curves are qualitatively the same as
the theoretical weak localization magnetoresistance. An approximate
value of the dephasing field B (defined in eq.2.24) may be found by
direct comparison of the low field (iso 4T) behavior of the data in
Fig.4.1 and the theoretical curves in Fig.2.6a (specifically compare
Pig.4.1a,b with Pig.2.6a and Fig.4.1g,h with Fig.2.6b).- "

The sjign and size of the magnetoresistance curves in Pig.4.la-k
depend strongly on the Ag or Au concentration in the alloy. The
magnetoresistance becomes more positive as the heavy metal concentration
is increased. This is shovn more clearly in Fig.4.2, vhere the
magnetoresistance of several different-alloys at one));emperature (6K) is
plotted. As expected from the discussion ;)f veak localization ~m Chapter
2.2, the magnetoresistance is positive in all alloys at small fields
(B‘ =~ 0.4T). This is d\;e to a finite spin-orbit scattering even in those

alloys without Ag and Au. An approximate value for Bso ‘may be found by
! . )

"
ks

A
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direct cohparison of Pig4.2 with Fig.2.6c. In the alloys with weak
spin-orbit scattering the magnetoresistance eventually changes sign at
larger fields, e.g.(at 0.8T for Hg7OCu3O as shown in Fig.4.2, and
ap.proaches an approximately -\'B high field asymptotic behavior, as was_

. anticipated from the discussion of the form of f3 at large fields

(eq.2.27 in Chapter 2.2). The asymptotic regime is not reached in

‘stronger spin-orbit scattering alloys in the accessible field range.

With increasing Ag and Au content, the size of the magnetoresistance
maximum observed at about OL‘ZT in Mngu30 and Mg7oZn3o increases, and
its position shifts to larger fields, again reflecting the increase of
spin-orbit scat tering” .

JAt first sight the magnetoresistance of Mg-Zn glasses looks very
similar to the magnetoresistance observed in Mg-Cu glasses. However, as
will be sfxovn la.ter, there are in fact significant differences between
the two,resulting from superconductivity.

Having seen from Fig.4.1 and Fig.4.2 that the characteristics of
the measured magnetoresistance agree qualitatively with the predictions
for weak localization, ve can now gompare theory and experiment .
quantitatively. Ve begin by analysing the data from Mg-Cu based glasses

because they are not superconducting.

L

32 measure a magnetoresistance maximum ih HgaoCuzo a

1) Bieri et al.
factor of 20 smaller than observed 1n,Hg7oCu3o here. We attribute this
(see section 4.2.5) to magnetic impurities, which underscores the

importance of using high purity materials.
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Figure 4.1 a) Normalized magnetoresistance of Hg7OCu30.
The scale and the temperatures (in Kelvin) are
indicated in the figure. The (solid and dashed)
lines are the best fits to the weak localization
theory as explained in the text.
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Figure 4.1 b) Normalized magnetoresistance of Hg7oCu27Aga.
The scale and the temperatures (in Kelvin) are
indicated in the figure. The (solid and dashed)
lines are the best fits to the weak localization
’ G e theory as explained in the text.
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Figure 4.1 c) Normalized magnetoresistance of HnguuAgG.
The scale and the temperatures (in Kelvin) are
indicated in the figure. The (solid and dashed)
lines are the best fits to ghe weak localization
theory as explained in the text.
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"\ ‘ Figure 4.1 d) Normalized magnetoresistance of Mg,,Cu,; 588 5
: - The scale and the temperatures (in Kelvin) are
indicated in the figure. The (solid and dashed)
: ‘ . & lines are the best fits to the weak localization
‘ O ‘ ) . tﬁeory as explained i{n the text.
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Figure 4.1, e) Normalized maggetoresistance of Hg70Cu29.9Auo.1.
The scale and the temperatures (in Kelvin) are
t indicated in the figure. The (solid and dashed)
linéi&?rg“the best £its to the weak localization:

thgy as explained in the text.
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Figure 4.1 f) Normalized magnetoresistance of H370¢u28.SA“1.5"
The scale and the temperatures (in Kelvin) are
indicated in the figure. The (solid and dashed)
A . ‘ lines are the best fits to the weak localization
theory as explained in the text.
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Figure 4.1 g) Normalized magnetoresistance of Hg7oCu27Au3

The scale and the temperatures (1n Kelvin) are

indicated in the figure. The (solid and dashed)
lines are the best fits to the weak localization
theory as explained in the text. “
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Figure 4.1 h) Normalized magnetoresistance of Mg7OCu21Au9.
The scale and the temperatures (in KRelvin) are

indicated in the figure. The (solid and dashed)

lines are the best fits to the weak localization

theory as explained in the text.




Figure 4.1 i) Normalized magnetoresistance of Mg702n30

“ fitted to the weak localization theory (line).

The scale and the temperatures (in Kelvin) are
indicated in the figure.

-

XV

Q)




AP/P

-109-

Figure 4.1 j) Normalized magnetoresistance .of Hg7oan7Ag3
fitted to the weak localigation theory (line).

The scale and the temperatures (in Kelvin) are
indicated in the figure.
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Figure 4.1 k) Normalized magnetoresistance of Hg702n27Au3
fitted to the weak localization theory (line).
The scale and the temperatures (in Kelvin) are
indicated in the figure.
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Figure 4.2 Normalized magnetoresistance of several Mg-Cu
based glasses at 6K. The scale and the alloy
compositions are indicated in the figure.

The (solid and dashed) lines are the best fits
to the weak localization theory as explained
in the text. *




4.2.2 Mg-Cu Metallic Glasses

(aj Lowv Field Range

Ve begin the discussion of the magnetoresistance by restricting the
analysis to the low field behavior. Low field hffe means B/T s:O.éTK-l.
In this range the contribution to the magnetoresistance from enhanced
electron-electron interactions is very small as may be seen from
Fig.2.11 (less than Ap/p = 2'10-5) so that, in Mg-Cu, the experimental
magnetoresistance may be analysed by considering only the contribution
from weak localization. This simplification allows us to test the
validity of the weak localization theory separately from complicating
contributions of enhanced eiectron-electron 1ntetactionst).

The fitting procedure 1is as follows: First the data are fitted by a
& treated as the only
adJustahle parameters (all other parameters are known, as was discussed

least-squares method, with both Bso and B

earlier in Chapter'2.6). The resulting values for the temperature
independent spin-orbit scattering field Bso had a scatter of less than
10% in the weak and less than 20% in the strong spin-orbit scattering
system over the 9 measured temperatures. The average of Bso is 1listed
in Table 4.1. Since the spin-orbit scattering is known to be
temperature independent, we then carrled out a second least-squares fit,
fixing Bso at the average of the values obtained in the first fits and

&

+

allowing only B¢ to vary wvith temperature. Thus, in this second fit B
is the only adjustable parameter. The resulting values for B¢ and Bso
will be discussed in section 4.2.4.

t) A similar approach has been taken by Bergmann to examine the
validity of the vgak localization theory in two dimensional thin
Mg,Cu,Ag,Au films 24'95’122. In fact Bergmann restricted the field range
at lover temperatures even more severely, using a limit B/T2 5:0.008'1'1("2
(vhich is equivalent in those systems to B/B1 =< const). This restriction
is too severe in bulk Mg-Cu glasses; it would prevent a meaningful fit
since the overall magnetoresistance is too small to allow a precise

determination of the parameters B¢ and Bso‘
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This fitting procedure was adopted because it eliminates small
correlation effects between the two parameters B¢ and Bsof)'

The fits resulting from the least-squares analysis described above
are shown as solid lines in Pig.4.la-k (the extrapolatioh of the curves
beyond the fitted field regime, B/T =:0.4TK_1, is shown as dashed
~ lines). PFor clearer demonstration of the quality of the fits, some
representative graphs are plotted again in Fig.4.3a-c vhere the ordinate
has been changed to B/T. Generally the theoretical solid line agrees
very well with the measured data in the fitted regime. At higher
temperatures, T = 10K, especially in alloys with larger spin-orbit
scattering, the fit slightly overestimates the data at low fields
(B = lT)'and underestimates it at higher fields (B =~ 5T). This is partly
due to the neglect of the electron-electron interactid ects and may
be partially removed if the Cooper and diffusion channel tgrms are
included. At lower temperatures, T = 6K,the fit falls xight onto the
data for the fitted regime (solid line).

Ve conclude that the weak localization theory describeés the
magnetoresistance in Mg-Cu based glasses very well in the regime where
it alone contributes (B/T s:O.ATK—l). Bieri and coworker 2 reported a
ngt valid since

similar agreement in cuSOYSO; howvever their resul
they had to assume a value for the resistivity prefactor (see eq.2.23
%Pd eq.2.24) 502 larger than the measured resistivity. It has to be
stressed that the analysis here employed essentially only one adjustable
parameter (B¢) and only the measured value of p without any scale
factors. Our vork is therefore the first rigorous test of the validity
of the weak localization theory in bulk metallic glasses.

t) Our method of determining Bso is different from Bergmann’s24’95’122.

In the bulk Mg-Cu glasses studied here, the relative sizes of B¢ and Bso )
are such that his method is not appropriate for all alloys.
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Figure 4.3 a) Normalized magnetoresistance of Hg7OCu30
against B/T fitted to the veak localization
theory (line). The scale and the temperatures

‘ (in Kelvin) are indicated in the figure.
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Figure 4.3 b) Normalized magnetoresistance of Mg70Cu15Ag15

against B/T fitted to the weak localization
theory (line). The scale and the temperatures
(in Kelvin) are indicated in the figure.
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(b) Full Field Range

Ve nov turn our attention to the magnetoresistance data over the
full field range. Since the two unknown/parameterg, B¢ and Bso’ wvere
uniquely determined by the low field fit discussed above (section
4.2.2a), ve can use them to extrapolate the magnetoresistance
contribution of the veak localization effect beyond the field limit
B/T = 0.4TK-1. The extrapolations are shown as dashed lines in the
figures Fig.4.14-k, Fig.4.2 and Fig.4.3a-c. One can see at once that the
weak localization theory overestimates the measured data below 6K and
that the difference increases as the temperature decreases. (Small
temperatire variations due to the small magnetoresistance of the
carbon-glass thermometer cannot be the cause of this difference; the
resistivity temperature dependence is so small that they cause a
variation of the magnetoresistance signal smaller than the noise level
of the resistance bridge.) At first glance it might be supposed that
this difference could be made up by including the contributions from
enhanced electron-electron interactions. That this is pnot the case
howvever is shown by the fact that these contributions are all positive
in Mg-Cu alloys (see eq.2.29 and eq.2.32). With a total contribution of
8p/px 4-107> at full field and 1.5K (about 30% of the total
magnetoresistance), they would significantly increase the deviation
between theory and experimental gata.

If, as an alternative procedure, we fit the data over the entire
measured field range simultaneously to all quantum corrections to the
magnetoresistance, one finds that the high field deviation is reduced
but that this reduction is achieved at the expense of a poor fit at low
fields. An example of such a fit is shown in Fig.4.4 for Mg7oCu30
Again, the dots -are the measured data and the solid line the calculated
fit. Though reproducing the data above T=6K equally well as the previous
method (as expected), the fit completely misses the low field )
experimental data at temperatures below 6K, and this discrepancy is

outside the acceptable range.
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Pigure 4.4

B (T)

Fit of the magnetoresistance of %370(:“30 to
the veak localization and enhanced electron-
electron interaction theory (solid line).
The scale and the temperatures are indicated
in the figure. ’
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It should also be stressed that the deviations cannot be explained
by including magnetic impurity effects. Taking a conduction-electron
local-moment exchange of J= -0.25eV56'57 the concentration of Mn-in the
alloys is too small to make a significant contribution to the

magnetoresistance (eq.2.39), although such a combination Qould be of the

. right sign.

Ve therefore conclude that, even in the simplest bulk amorphous
alloys, the observed magnetoresistance can not be accounted for
quantitatively over the entire field and temperature range by current
theories of quantum corrections to the conductivity.

Observations similar to ours have been reported by other workers

27 for Y-Al alloys,

fof more complicated amorphous alloys; Olivier et al.
29

Bieri et al.32 in CugoYso and other alloys, and Schulte
Cu-2r. Although thege authors cannot definitively ascribe the L
discrepancies to a failure of the quantum correction theories, their
observations lend support to this conclusionf).

BExactly where the theories of quantum correctioﬁs to the
conductivity fail is not clear but one important point té consider is
that at very large magnetic fields, where the magnetic dephasing time "
(see Chapter 2.2) becomes comparable to the elastic scattering time

(B =~ 400T), the quantum correction magnetoresistances must saturate,

in the system

because the the constructive quantum interference is then destroyedft).‘%

°

t) Deviations between the weak localization and the ‘measured
magnetoresistance have also been found in a 2D system; in oné repert on

thin Culf:llms24 Bergmann shows fit and data outside the restricted field

2

regime, B/T s:0.00BTK'z,»and some discrepancies are apparent. it is

not clear if they can be explained by the enhanced electron-electron

interaction contributions to the magnetoresistance and the author does

not comment on this aspect.

I

20 has shown that quantum corrections to the

tt) The Aronov-Bohm effect
conductivity cause an oscillatory magnetoresistance in thin metal rings.
In bulk amorphous metals one averages however over many such rings
(Fig.2.2) so that the magnetoresistance assumes aymean value. None of
the expressions given in Chapter 2 reflect this constraint, but we do
not know whether the influence of this saturation should be felt in ‘the
magnetic field range used here.

?

-
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@ A further point, made by Isawa96, is that at large fields the weak
localization ‘magnetoresistance is overestimated by eq.2.23 and 2.24
because the diffusion cut-off, q_, was set to infinity to facilitate
their derivation. Bowever, on examining Isawa’s calculation in detail,
\generalising it to fihite spin-orbit sszttering, we find only a
negligible difference in the weak localization magnetoresistance (<0.1X)
betyeen the two extreme cases q,= ® and q,= 1/ DTe.

Some of the discrepancies at large fields may be caused by -
eﬁprlgsie£+_$q.2.32, for the Cooper channel magnetoresistance. It was -
méhtioned in Chapter 2.3 that the exact magnetic field dependence of the
electron coupling, g(B,T), is not known exgctly. The expression given
for g(B,T) in Chapter 2.3 is only, what Altshuler and Aronov call, -
"logarithmically correet"zo; higher order terms in B/T have been
neglected. It is not known to vhat extent they aiter the Cooper channel
magnetoresistance in the field and temperature range considered here.

\ Unfortunately the Cooper channel magnetoresistance cannot be
experimentally isolated to reveal any possible inaccuracies.
’ . The diffusion channel magngtoresistance is ag?unlikely source oﬁ,
the discrepancies observed at large fields. It was shown recently by
Trudeau and Cochranes8 that the diffusion channel and weak localization
3 expressions (eq.2.29 and eq.2.23) give an excellent description of the
| <:f . magnetoresistance (for B < 5T and 4K <T <77K) in the paramagnetic
“ comﬁosition range of amorphous Fe-Zr alloys vhere their contributions
B are unusually large due to the Stoner enhancement of the Zeeman
splitting (i.e 2.3 < (1-.1.)-1 < 9.1. The Cooper channel magnetoresistance
is negligible in these alloys, it contributes less than 5X). Therefore,
the diffusion channel magnetoresfstance is presumably also well _
described by eq.2.29 in th; present Mg-based alloys where it is not
enhanced ((1~f)_l=\0). Vhether this is also true at temperatures below
4.2k is not known, but we note that even at 1.5K its contribution is
very small (according to eq.2.29 Ap/p ::2xao'5). ' b s
Vhether the quantum correction expressions given in Chapter 2 have
limitations other than those discussed above, is beyonf our present

Enowledge.

o 7
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4.2.3 Mg-Zn Metallic Glasses
\ -
(az/yaznefaiesistance due to Superconducting Fluctuation

. The failure of the theories of quantym -corrections to the
conducttvity in Mg-Cu complicates the interpretation of the
magnetoresistance of Mg-Zn, vhere there are the éaﬁitional contributions
due to superconductivity. Ve therefore adopt a Qifferent approach to
these data and begin by isolating the influencg:of superconductivity.

Ve do this Qy analysing the différence between the alloys Mg7dCu30
and Mg7OZn3o, Hg70Cu27Ag3 and Hg702n27Ag3, and Mg7oCu27Au3 and
nggzn27Au3. Ve assume, and later justify (see section 4.2.4 and

Table 4.1), that the dephasing field, B¢, and the spin-orbit
scattering field, Bso’ have the sape behavior in the two alloy systems
Mg-Cu and Mg-2n. Therefore, the difference in the magnetoresistance
between the respective alloys re@lects only contributions from the
Cooper channel and the Maki-Thompson superconducting fluctuation
magnetoresistance (eq.2.34). The weak localization and diffusion channel

2
magnetoresistance cancels. Symbolically this can be written as

cc cC
(%F)ﬁg-Zn - (%f)MgLCu2= ( ]Mg—Zn [%F]Mg—Zn - (22 Mg-Cu (4.1

re?

The differences are plotted in Pig.4.5a-c. The data show immediately

!
.that there are indeed contributions from both superconducting

fluctuations ang the Cooper channel. At lowv temperatures and at low
fields (B < 0.5), where the Cooper channel contributions vanish, there
is still a substantial positive difference in the magnetoresistance,
vhich we attribqte to the positive magnetoresistance due to
superéonducting fluctuations. At higher fields the slope of the
magnétoresistance changes sign (see Fig .4.5a). This cannot result from
superconducting fluctuations but is consistent with contributionsof the
Cooper channel whose difference we expect, from the stronger attractive

electron coupling (g(B,T) in eq.2.30) in Mg-Zn, to be negative. We

therefore fit the data in Fig.4.5a-c to contribptions from the Cooper

)

e
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channel (eq.2.32) and superconducting fluctuations (eq.2.35). To
calculate the latter coﬁtribution ve use (1) the values of B¢ found
earlier for Mg-Cu alloys (see eq.4.2 in section 4.2.4) and (ii) values
for the Maki-Thompson parameter, B, given in the appendix A.4 (see also
Fig.2.13). The fits are shown as solid lines in Fig.4.5a-c in the
regime of validity of eq.2.35, i.e B = (kgT/4eD)In(T/T ) =0.2TK '

as dashed lines beyond. For clearer demonstration of the superconducting

, and

fluctuation magnetoresistance we have subtracted in Fig.4.6a-c the
calculated Cooper channel part from the difference curves in Fig.4.5a-¢
and compared” it directly to eq.2.35. Considering the fact that no
adjustable parameters were used to generate the theoretical curves and
considering the limited range of validity of eq.2.35, i.e B/T = 0.2T/K
the figures Fig.4.5 and Fig.4.6 demonstrate a remarkable agreement
betwggn experiment and theory.

We thus conclude that Larkin’s expressioh for the Maki-Thompson
superconducting fluctuation magnetoresistance in eq.2.35 is correct °
within its quoted limits, 1.e B,B, = (kgT/4eD)In(T/T,) = 0.21x7 L,
Beyond this limit we can only say that the negative slope of the
difference curves at 1.5 and B > 3T in Fig.4.5a,b indicates that the
Cooper channel is indeed negative in Mg-Zn and positive in Mg-Cu
provided that there are no additional magnetoresistance contibutions
other than considered here. Unless the limitation on the superconducting
fluctuatioﬂ)magneggresistance expression is removed no further definite
conclusions on the the validity of the Cooper channel expression in
eq.2.32 can be made. The origin of the discrepancies between theory and
experiment observed in Mg-Cu glasses still remains unsolved.

. 1

-
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Figure 4.5 a) Difference of the magnetoresistance in Hg7oZn27Au3
and Hg,oCuyjAug.
The scale and the temperatures (in Kelvin) are
indicated in the figﬁre. The meaning of the solid
line is explained in the text (see eq.4.1).
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Figure 4.5 b) Difference of the magnetoresistance in Hg702n3o

and Hg7oCu3o.

The scale and tl§e temperatures (in Kelvin) are
indicated in the figure. The meaning of the solid
line is explained in the text (see eq.4.1).




-125-

L ] ¥ | 4

Mgy2n,y,A8, - Mgy,Cu,y g,

107 A : 1.5
X A ¢ (R AN } ‘.m_w___ —_—

cm————

3.6
+ ’
‘o
* ' ¢
¢ -
¢‘¢¢¢‘00 ‘_Q
¢ ¢ ¢ 4.2
o
. / |
0.0 5.2 0.% 0.6 ~0.8 1.0

\\3P13ure 4.5 ¢) Difference of the magnetoresistance in Hg7OZn27A33
A /
and Mg,,Cu,,Ag;- .
The scale and the temperatures (in Kelvin) are
indicated in the~figure. The meaning of the solid
line is explained in the text (see eq.4.1). '
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Figure 4.6 a) The superconducting fluctuation magnetoresistance
in Mg7OZn27Au3.
.The scale and the temperatures (in Kelvin) are
indicated in the figure. The solid line 1is calculated
according to eq.2.35.
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Figure 4.6 b) The superconducting fluctuation magnetoresistance
in Hg7oZn30.
The scale and the temperatures (in Kelvin) are
indicated in the figure. The solid line is calculated
according to eq.2.35.
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Figure 4.6 c¢) The superconducting fluctuation'magnetoresistance
in Hg702n27Ag3.
The scale and the temperatures (in Kelvin) are
indicated in the figure. The solid line is calculated
according to eq.2.35.
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(b) Low Field Range

Vith the validity of the Maki-Thompson magnetoresistance in eq.2.35
established at low 1d, we can nowv analyse the magnetoresistance data
of the Mg-Zn alloys the same way as in the Mg-Cu alloys. The result
1s shown in Pig.4.7a-c™the ordinate has beeﬂ changed to B/T for better
comparison of theory and experiment). Over the fitted ralze,

B/T s:O.ZTK—l, the agreement is excellent, with the possible exception
of the measurements at 20K in Mg7OZn27Au3. The values of B¢ and Bso
found for Mg-Zn glasses will be discussed with those obtained for Mg-Cu
in the following section 4.2.4, Beyond the field range. considered, the
experimental data are severely overestimated by the weak localization
and Maki-Thomson terms. The negative Cooper channel magnetoresistance
cannot account for the gap. Thus, once again, we find that at high
fields the quantum correction theories break down.

There is another aspect of the magnetoresiatance in-Mg-Cu and Mg-Zn
glasses worth noting. On the scale of the figures Fig.4.la-k the low
field (B <« B¢) B2 regime is not resolved. To investigate this regime
ve have carried out very high resokgﬁgon measurements on one alloy,
Hg702n27A33, at 1,5K and 4.2K up to 40mT only. The results are shown in
Fig.4.8a,b. Also shown in the figures are the corresponding data and
fits from Fig.4.7b. They compare well. The value of B¢ is indicated in
the Fig.4.8a,b and we conclude that the experimental resolution is not
high enough to resolve 82 variation at temperatures this low.
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Figure 4.7 a) The normalized magnetoresistance in Mg702n30
against B/T, fitted to the weak localization
and superconduclt:lng fluctuation theory (line).
The scale and temperatures (in Kelvin) are
indicated in the figure.
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Figure 4.7 b) The normalized magnetoresistance in Mg7OZn27A33
against B/T, fitted to the weak localization
and superconducting fluctuation theory (line).
The scale and temperatures (in Kelvin) are
indicated in the figure.
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Figure 4.7 c) The normalized magnetoresistance in Hg702n27Au3
against B/T, fitted to the wveak localization
and superconducting fluctuation theory (line).
The scale and temperatures (in Kelvin) are
indicated in the figure.
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Figure 4.8 a) The loy field magnetoresistance in Hg7OZn27Ag3 (o)
at 42K, The scale is indicated in the figure.
The solid line is the best fit to eq.2.23 and
eq.2.35 as explained in the text. The closed
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Figure 4.8 b) The lo:r field magnetoresistance in Mg7OZnZ7Ag3 (o)
at 1.5K. The scale is indicated in the figure.
The solid line is the best fit to eq.2.23 and
eq.2.35 as explained in the text. The closed

\\ éirclgs ¢e) are the data of Fig.4.7b.
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4.2.4 The Spin-Orbit Scattering Field Bso
and the Dephasing Field B¢

In the previous two sections it was shown that for B/T < 0.4TK |
the veak localization quantum interference theory (and, to the extent
they contribute, the enhanced eléctron-electron interaction theory) give
an excellent description of the experimental magnetoresistance in the
Mg-Cu metallic glasses and also in Mg-Zn metallic glasses 1f the
superconducting fluctuation magnetoresistance {s included. Ve'nov turn
our attention to the two parameters, the spin-orbit scattering field Bso

and the dephasing field B¢ wvhich resulted from the analysis in the

previous two sections.

(a) The Spin-Orbit Scattering Field Bso

The values for BSo vhich resulted from the analysis in the previous
two sections are listed in Table 4.1. As was expected the spin-orbit
stattering fields in corresponding Mg-Cu and Mg-Zn alloys are identical
within the quoted errors (10X in the vpak and 20% in the strong spin-
orbie scattering regime). This reinforces the consistency of our
analysis. One can glso see from Tahle 4.1 that BSO increases with
increasing Ag and Au content, and that the rate of increase vith Au is
> much greater than for Ag, as expected.

In Fig.4.9 spin-orbit scattering rate, 1/1So ==4eDBS°/h, is
plotted against Au and Ag concentration. The background spin-orbit
scattering rate of the Mg,,Cug, matrix (0.32x10125ec_1) has been
subtracted. The solid line is a guide to the eye. Fro@ the linear
dependence of the spin-orbit scattéring Hamiltonian in Z, Z being the
atomic number, we expect 1l/v to scale as 28 if atomic orbital wave

97’55. Howvever the slopes of the lines connecting

functions are assumed
the points in Fig.4.9 differ by a factor of 19 for small concentrations
which is close to 26, i.e (zAu/zAg)6 = 23. Ve have no explanation for
this veaker dependence on Z, except to say that it probably reflects the
screening of the ionic charge. Shown in the insert of Fig.4.9 are

results for l/rso obtained by Bergmann95 on thin Mg films covered with




-136-

J )
@ Table 4.1

Alloy Bso Tso Lso L 1e
Mg70Cu3o 77 | 3.1 46 | 0.81 | 1.3
Mg4,Cu, 548, 166 | 1.5 32 | 0.81 1.3
Hg70Cu24A36 242 | 1.1 26 | 0.77 1.2
MngulsAg15 409 | 0.69 20 1 0.69 | 1.1
Mg-Cuyg gAYy 4 145 } 1.8 34 | 0.71 | 1.2
Mg10Cuyg 5AY) 851 ] 0.32 14 | 0.81 1.1
Mg7OCu27Au3 1190 } 0.23 12 | 0.69 | 1.1
Mg70Cu21Au9 1710 } 0.18 10 } 0.62 § 1.0
Mg7OZn30 75 { 3.7 47 | 0.65 1.1
Hg7OZn27Ag3 151 | 2.0 33 1]0.58]1.0
Hg7OZn27Au3 1030 | 0.30 13 1] 0.57 | 1.0
Hg702n29Gd1 110 | 2.7 39 | 0.61 1.0
Hg4OA13OZn3O 110
"340A1182“42 170

Note : Teo ==h/4eDBso, LSo = D'so’ 1e = VpTe®
Units: B innT, v in 10—12sec, Ly, in 10"%n
1, in lo-lssec, 1, in 10 %n .

Error: follows from those quoted for Bso and p in the text

The dephasing fields, times and lengths can be calculated for
all amorphous Mg-based alloys by eq.4.2 with the coefficients
given in the text. For Hg70Cu30 this yields at 4.2K:

12

B,= (4= 2)mT, 1 = (75+ 35)x10 " “sec and Ly~ (0.21% 0.07)yum.
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fractional layers of Au. For the purpose of comparison the Au layer
fractions have been converted into atomic concentrations assuming
perfect dense packing of the Mg host. The value of llrso for the alloy
is vithin the quoted error margins of Bergmann's data

Mg70C829.9A%, 1
once the background spin-orbit scattering rate of the Mg-Cu matrix is

subtracted. o
Ve can also see in Fig.4.9 that l/Tso(X) deviates at larger

concentrations from the linear dependence observed for small

concentrations; the values fall belowv the dinear exErapolation. The

cause of this deviation 1is not clear but the behavior is consistent with

observations of Peters and covorker398 who quote a spin-orbit scattering

rate of 1.2><1013 ! (Bso= 1.4T) for thin pure Au films, which implies

that the strictly linear dependence of 1/1-so in Au covered Mg films

(shown in the insert of Fig.4.9) would have to show the same deviations

as the present Mg-Cu-Au system at higher concentrations (the slope of

1/1-8o in the insert is 2.6><10]‘zseo::_l per atomic percent Au). Also, in

the derivation of the weak localization magnetoresistance for three

dimensional conductors,:Fukuyama and Hoshinoag'explicitly assume that

the characteristic spin-orbit scattering time, Tso! is much longer than

the elastic scattering time, L Even though this condition is

fulfilled, +_ = (5/x)jc6)'13

percent) and Te™ 7X10 "“sec, it is not clear where the perturbation

expansion in re/r o breaks down. In the Mg7OCu21Au9 sample there is an

Au atom in essentially every second nearest neighbor shell and

correlations between the spin-orbit scatterings cannot be ruled out. As

a consequence of the non-linearity of 1/rso(x) one has to be very

careful vhen one compares specific spin-orbit scattering rates of a

particular elements since the spin-orbit scattering rate at large

concentrations is an effective scattering rate which can no longer (be

normalized by the concentration. Thus, comparisons between specific

spin-orpit scattering rates of elements are only meaningful if they are

sec

sec (x is the Au concentration in atomic

measured at the same\ dilution in a weak spin-orbit scattering matrix.
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(b) The dephasing strenéth B¢

Fig.4.10 showvs the values of B¢ for Hg7oCu30, Hg7oCu27Ag3 and
Hg7oCu27Au3, and Hg702n30 as representatives for the Mg-Cu and Mg-in
glasses. Other samples show essentially the same behavior but for
clarity are not included in the figure. Their magnitudes agree within
the scatter of the data and demonstrate again the internal consistency
6f the analysis.

The scagter of the data is a result of small variations in the a.c.
resistance bridge gain and signal (due to e.g temperature changes in ?he
electronics' and the error on the absolute sample resistivity at 4.2K.
They cause a mismatch between the true magnetoresistance signal and the
resistivity prefactor p (common to all expressions of quantum
corrections to the conductivity) of up to 7%. In the least-squares fits
the mismatch is compensated by changes in B¢ vhich become larger with
decreasing temperature wvhere the weak localization magnetoresistance
expression is less sensitive (see Fig.2.6a,b). In twvo dimensional
systems or transition metal alloyg the curves of B¢ against T are
usually much smoother because the size of the measured magnetoresistance
signal is at least a factor 3, and in some cases two orders of
magnitude, larger (see Fig.l.5b).

For gll alloys B¢ decreases sharply with temperature between 20K
and 4.2K but then saturates at lower temperatures. The data of Fig.4.10
are well dbscribedf) by an expression of the form

0 n
B, =By +AT ) (4.2)
vhere Bg- (2.7+ 0.4)mT, n= (3= 0.5) and 1n(A)= (-11.3x 1.3) .

t) To provide equal weight to all the fitted points, their loga;?Ehm
vas fitted by the logarithm of the above equation. These values were
used in section 4.2.3 when the superconducting fluctuation

magnetoresistance was compared to the magnetoresistance difference in

Mg-Cu and Mg-Zn alloys.




1 lllllj!

L Tlfllll

—
L 1e-2 - -
©- - :
m P -
i 1
- 4
* M
le-3k- %02 30 -
E + Mg70Cu27Ag3 ;
- -
: @  Mg;oCugqAug '
5 ( .
o -
\
le__ Il [} 1 1 4 1 . ] l 1 f 1 | § ) 1t
0 Tel Te2

T (K]

Figure 4.10 'The dephasing field\B¢ against temperature.
The solid line is the best fit to eq.4.2.
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The strong dependence of B¢ on temperature is in essential
agreement with previous studies, although the exponent n=3, however, is
somevhat larger. Bergmann finds n=2 for Mg thin filmsl9, as do Abraham
and Rosenbaum99 in thin Cu films, and Olivier et al.27 in Y-AL glasses.
Bieri et a1.25’32 find a T2 variation in CuSOY50 and Cu57Zr , in
CusoLu50 however they report T3. Also Hickey and coworkers183 find a T
law in Cu-Ti-Au glasses above 8K over a wide range of composition.
Schulte and Fritséhlo1 point out that the exponent can vary between 2
and 3 in Cu-Ti glasses depending on the value of Bso assumed in the fit.
Theoretically there is also some confusion about the correct value of n.
Takayama51 has calculated that the dephasing rate due to inelastic
electron-phonon scattering should vary as T2 (eq.2.19). Chakravartry
and Schmid45 recently presented another detailed calculation on the
electron-phonon dephasing rate and find that the power law can range

between T2 and T4, depending on the transverse and longitudinal velocity

3

of sound and the electron mean free path. In fact, using their
expression and values estimated by Hafnerlo2 for the velocity of sound
for Mg7OZn3o, one calculates dephasing rates of the right order of '
magnitude. Unfortunately, exact measurements of the velocity of sound in
Mg-Cu and Mg-Zn alloys-have not been made so that a more precise
comparison is not possible. The temperature dependence of the dephasing
rate due to electron-electron scattering is predicted to be T” or weaker
(see eq.2.20), its magnitude is however two orders of magnitude smaller
than the rates we find here. Ve can conclude that in the glasses
studied here the dephasing of the quantum interference effects above
4.2K is presumably caused by inelastic electron-phonon écattering (as
has been generally assumed).

On the other hand, the saturation of B¢ at lower temperatures is
unexpected. Though such a saturation has been observed in many other
sfstems, authors have invariably ascribed it to extraneocus causes such
;s scattering by residual magnetic impuritie8103, decoupling of-the

electron gas from the thermal bath104, or scattering by paramagneti¢

surface stateslos. In our alloys none of these explanations is valid.

It vas already mentigned before that the inclusion of magnetic s
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impurities into the analysis leaves the quality of the fit unaltered. Ve

106 that the spin scattering rate 1l/+
7

knov from measurements by Bergmann
of Pe impurities buried in bulk amorphous Mg is approximately 6x10‘sec
:n 2Bs (see eq.2.24) due to the 3ppm of

Fe our alloys may contain (see Chapter 3.2.5) is therefore expected not

per ppm. The dephasing field B

to exceed 0.12mT which is 20 times smaller than observed saturation
value of B¢. Possible Fe impurities on the surface are of little
importance since the thickness of the samples is several times the
inelastic diffusion lengths. Also, from the measured Mn impurity
concentration in our samples (see Table 3.4) one would expect @
dephasing field of 2.2mT in the dirtiest sample but only of 0.08mT in
the cleanest sample which is more than an order of magnitude smaller
than wvhat is observed (a value of J= -0.25eV vas assumed for the spin
exchange integral, see Chapter 2.5 and references 56,57).

Thermal decoupling of the electron gas from the thermal bath
(lattice or sample holder) at temperatures higher than 1.5k has to be
ruled out as well. Bergmannlo7 has shown that the electron gas ca:gonlg

A/m

at 4.2K. In the present measurements of the magnetoresistance above 1.5K

the current densities were always smaller than 2.5x10+5A/m2, besides,

be overheated in Au films when the current densities exceed 1.7x10

the samples were immersed directly in the liquid He for measurements
below 4.2K. Also, any scattering by paramagnetic surface states can be
ruled out; it is difficult to imagine that surface effects in samples
several inelastic diffusion lengths thick (see Table 4.1 and Chapter
3.1) can influence the bulk transport properties so drastically. Ve °
conclude thatﬁthe saturation of B¢ observed in Mg-Cu and Mg-Zn glasses
here i€ intri

A universal explanation for the low temperature saturation of the

sic.

dephasing was proposed recently by Kumar, Baxter, Richter and Strom-
Olsenlos. It is based on the idea that virtual phonon exchange could
lead to dephasing by independently changing the phase of the two
complementary electron paths (see Fig.2.2) even though the final energy
of the electrons is unchanged. Using a semi-classical picture a:

qualitative estimate for the effect vas 31Ven108.
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c The point of the argument is as follows: weak localization arises
from two electrons traversing the diffusion loop in Pig.2.2 (redrawn in
Pig.liﬂ.lla) in opposite directions and interfering in the region of the
point O.

°

Figure 4.1l a) Coherent backscattering from a pair of time-reversed
complementary paths, shown as Boltzmannian trajectories.
Bach scatterer is assumed to be executing zero-point
motion leading to positional dispers;lon as indicated

\ at one site in the figure.

1

R

2 i
( Figure 4.11 b) Path length difference due to motion of one of the
scatterers in Fig.4.lla.
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~-It was commonly assumpd that a dephasing of the interference can only be

achieved by thermal vibrations of the ions and subsequent inelastic
electron-phonon scattering (or by magnetic impurity scattering).
However, even at T=0, the lons vibrate about their equilibrium
positions. The oscillation rate at T=0, if approximated by the Debye
frequency, = 4.1013
scales in the solid, {i.e. 1/71, 1/1So etc. (see Table 4.1). Since the
two electrons visit a given ionic scattering site at different times,
they will find the ion at different, effectivéi?irandom, positions.

This is demonstrated in Fig.4.11b vhere one of the scattering sites is

sec—l, is comparable in size to Otﬁft relevant time

drawn enlarged. The path 1engtﬁ between complementary scatterings
therefore differs by small random amounts which lead to an accumulated -
phase difference at the interference point 0. It is possible to quantify
this phase difference using the Feynman path integral approach developed
by Chakravartry and Schmidas. This semi-classical approach 1s rigorous
to the extent that all of the results of the strict quantum mechanical
derivations (given in Chapter 2.2) may he eﬁzsaﬂced.
The argument starts with the z\ inition i

K(Eg By teity) = Z A[E,] expT%S[i-’t]] (4.3)

as the (probability) amplitude of electron wave propagating from Ei to
Ef during the time t, to tg (in principle this applies to any kind of

wave gropagation). The points Ei and ff correspond to e.g. A and B in

Pig.2.1. The summation is taken over all possible paths connecting the
two end points with a suitable weight factor A[Et]' The action S is

defined as
tf ‘
- LS - \
SIF,] =f dt L £, F) (4.3)
ty

vhere the Lagrangian L can be written as
m_o.ZQ - - - -
L = 7L, - Y(rt— u(rt,t)) - ed{rt,t) + Li (4.5)

V is the random impurity potential which is here the potential of/xhe

(

3

!
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randomly positioned ions in the amorphous metal. The ionic displacements
due to the quantum oscillations and thermal lattice vibrations is /
considered by the displacement field u. L1 is a Lagrangian describing
time symmetry breaking processes such as the magnetic field dependence
of the Lagrangian or magnetic spin-scattering and e® is the deformation
potential due to the displacement U . In the present discussion these
last tvo terms are ignored. Using eq.4.3 the probability V==K2 that an
electron is found at point Ef and time tf, which had started to
propagate from point Ei a time T (tg- ty) earlier, is:

W(EpEgm,) =2—N(17F—)- EZ ; A[E,) A"[E,"] (4.6)
t Tt

x {3('[’?:]‘ o) + a(e[ft']- ‘F]} x exp T%(S[Et] - S[i"t’])]

Again the summations are carried out over all possible paths Et and ft’.
The 3-functions ensure that the electrons propagate“with the Fermi
velocity. Unless the paths Et and Et' are equal, the phase factor in
eq.4.6 will average to zero over the length of the paths. For the paths

Eta Et’ it follows that

V(Ef,fi,7¢] --N—(%;s Z IA[Et]IZ 3(e[E,1- p) (4.7)
Tt
Similarly one can define a quasi-probability, ﬁ, wvhich describes the
interference probability of two electrons traversing the paths from Ei
tﬂ Ef in opposite directions during.time T V can be deduced from W in
eq.4.6 by reversing the time index on the second path vector, i.e.

Et’“ E_t’. Again all terms in the double summation but those with
£, =f_.' vanish so that
af=> = - 1 o 2
V(rf,ri,rdj g Z |ALZ, ]| /)(4.8)
r
t

X B(CIEt]—GF) X eXP(iAc’[i:t])




3

vhere
hA@[i"t] =S[Et] - S[f_t] (4.8)
/2 | .
= f dt [L(;t’ft) - L(?-t’;—t)]
-T¢/2 N

(The weight factor A does not depend on the direction of propagation.)
Here, where we are discussing the propagation of electrons, the end-
points of the paths have to be less than an electronic wave length apart
(see Fig.4.1la), and " is the time over which phase cohergpce in the
interference region of the path end-points is maintained. If the
displacement field u vere‘%\ro, only the time-reversal symmetry-breaking
part of the Lagrangian, Li’ would lead to a finite phase difference AD
at the path end-points. To calculate the phase difference due to a
finite displacement field consider the first two terms of the Lagrangian

-

in eq.4.5. Transforming f©- T - 1i_and using

df dr u dr -
R RS R AL

L-1g_ o +u(g) (D =G T (4-9)
Lﬁ==0 is the time-reversal symmetric part of the Lagrangian, which does
not yield a phase difference A® . The last term on the right-hand-side
in eq.4.9 has been calculated by Chakravartry and Schm1d45 and shown to
lead to dephasing by inelastic electron-phonon scattering dephasing.
The second term on the right-hand-side, which deals with the
uncorrelated zero-point motion of the iops, was neglected by
Chakravartry and Schmid. It leads to a phase difference m

+T é - -p |, =-- - -o’-o
. m /2 [drt au(rt,t) dr_t au(r_t,—t)]
ao(r.1 =g f L b T T T: (4.10)
-T/2

The precise general evaluation of this integral is quite difficult, if

¢ | ,,
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not impossible,-put one can find an approximate solution if one assumes
that the ions oscillate in an uncorrelated manner and fast enough for
the phase shifts due to the single ions to be caYculated individually.

In this case

+ . /2 "
4 [E aul, k . 3U t]
~ = —_— S P S
Ady(ry] f dt |3 3t ~ q@ e (4.11)
_T./2
n dr s
vhere K =& It
Assuming that the change of momentum at the scattering site ﬁi is
instantaneous, gives
a0, = (% - &) *3H, = 2k 3R, sin(0/2) N (4.12)

Here, 0 is the scattering angle between the incident and outgoing wave
vectors K and K’ as indicated in Fig.4.11b, and

.H
| ¢/2 o

t ,
sRi - vf dt [‘5?1?] Pl
o/ ,

Since there are r ¢h scattering events along the loop, where o .is the
time between collisions, the mean-squared average accumulated phase
shift hetveen the two electron trajectories at the interference- point in

Fig.4.1la is

2,20, . 2
<at?> = (x 4,/fo) 8k *<3R%><sin” (0/2)> (4.13)

A factor of two arises because there are two complementary trajectories.
The collision time and the geometrical factor may be combined to the - .
elastic scattering transport time Te (the momentum relaxation time), i -\
ve- T /<sin (8/2)>., In the case of isolated and localized ionic

scattering, as may be exp:ected to hold for transition metal alloys, the
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»

zero-point displacement Bﬁi can be written in terms of its normal modes

iq-K
3R, = D i@ e ! (4.14)

-

q

If one replaces the phonon spectrum by g 3-function at the Debye
frequency, @y it follows that the mean-squared average displacement of
thé oscillating ions of mass M is given by

2, __3n
<3R*> T (4.15)

The assumption of isolated and localized ionic scattering does not
necessaﬁily hold in every metal. In the veak scattering simple Mg-based
ailoys studied here, the electron momgntuh decays over many ionic
scattering events. Consequently the electron wave functfon and the
ionic oscillations will be correlated over a distance ¢, which is the
lesser of the thpon coherence length and the Debye length \r3755, the
distance electrons diffuse during one oscillation of the ion. To account
for the correlation over the distance ¢, which attenuates theée dephasing
due to the ibnic zero-point motion, one has to replace <BR2> by a
coarse-grain averaged displacement, i.e one has to introduce an

14

attenuation factor

(@) =—25 [af 1T ] (4.16)
4'“'5 l‘<&
in the normal mode expansion ofkﬂii. Evaluating £(q) at the Debye wave
vector, qp» vhich is approximated by n/a, a is the average interatomic

spacing, gives

2 3h 2 Sh 9 4
SR> " D |£(ap)|© = THas 7( ) , (4.17)

where qpé >> 1 was assumed. Collecting. the terms gives for the mean-

: squared phase difference

4
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The coherence between the two complementary trajectories at the
interference point 0 is destroyed when their total phase difference is
of the order 1. Prévided that all other dephasing time scales are
longer and thus irrelevant, this defines a saturation dephasing cut-off,

70, due to ionic zero-point motion as &

¢ 4
~EHREEE (.18
o = |=l=ll51l=lz .18)
) m TF D p)la E
vhere the elastic scattering time, Te! vas expressed in terms of the
electron diffusivity, D, and D°=fh/m. Using the relation
o h

BY =

¢ 4e01:

equation eq.4.18 defines a lower bound on the dephasing strength B¢. It
is stressed that this dephasing does not involve any inelastic
proces;gsf). -

Fér a typical metal, H/me~ 105, 9 /T = 3x10 3 €p= 8eV, eq.4.18
predicts a saturation, 13, of 0.5x10 -1 sec in the strong scattering
limit (D = 0.1cm2/sec and E/a==1) and up to 50x10_lzsec in the weak
scattering 1imit. This range encloses all observed values. In the case
of Mg-Cu and Mg-Zn glasses we, find with €p = 7.3eV, M/m = 6. 7x104

=Q59000k, D= 6. Scmz/sec, a=3.14 and 0 —-315K that eq 4.18 reproduces
our measured value of 7¢ (90psec) if we assume for ¢ a value of 16A.

This length corresponds to 5 interatomic spacings. It is much shorter

L)

t) A small temperature dependence arises though from excitations of the
ionic oscillators. It is identical to the temperature dependence of the
Debye-Waller factor, W, calculated by Zimanéziizlf.
0 2 27
By(T) <GR>, wn +_2L2[T
3

- — 4.19)
o ) = W(T=0) eD] , (
BQ(T=0)  <BR™>y

This correetion is less than 0.2% at T=4.2K and thus negligible. It
becomes important only at T > eD/Z.

s
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than the Debye length (,|D7mD==40X) but consistent with the phonon
coherence length on expects in metallic glasses. Theoretical

109 and inelastic neutron scattering

calculations by von Heimendahl
measurements by Suck et al.llo have shown that the dynamical structure
factor in Mg7OZn3O has a large spread in (q,w)-space. Their results
indicate that phonons are very localized excitations in Mg702n30
(probably most metallic glasses) and decay over distances of about 2 to
10 interatomic spacings. " For Y6OA140 one finds, using = 8eV,

M/m = 1.2X10°, Tg=91000K, D= len’/see, a=3.2§, o = 300K and again
vith £= 164 (which coincides here with \r57__-15 8&), that 1¢= 18psec
compared to the measured27 value of 26psec. The larger valué of +? in

¢
Y,.Al,. is consistent with eq.4.18 but inconsistent with magnetic

iggurigies. Y is the part of the alloy which contains algost all of the
magnetic, mostly rare earth oxide, impurities. Ve therefore expect 1: to
decrease with increased Y concentration if its saturation were caused by
magnetic impurities.

Ve can extend the above model to two dimensional systems to
investigate saturations of B¢ observed in thin metal films and
semiconductors. In metallic thin films the bulk electrical resistivity
is dominated by the resistivity arising from surface scattering as is
reflected by the étrong dependence of the sheet resistance on the film
thicknessgg’lll. One can take account of the surface scattering in the
zero-point motion dephasing calculation by noting that there are
approximately VF/d surface scatterings per unit time (d is the

thickness of the film). In the time T¢ these give an additional mean-

. squared phase shift of (r /d)(ZkFBR) y vhere the scattering angle, 8,

has been set to #. It has to be added to the phase shift due to bulk
scattering calculated above, and hence one finds for two dimensional -

conductors )

1 1
o e RIE
To) £1lm "¢l bulk .

This relation predictg that 1/1: and equivalently B:/p should vary as

1/d in thin metallic films. This is exactly what vas observed by Abraham

t
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9 in thin Cu-films as is shown in Fig.4.12. This behavior

is not consistent with the constant, or at least thickness independent,

and Rosenbaum

magnetic impurity concentrations in the samples. In fact the value of

B:/p is the smallest in the sample which contains the most impurities

according to the authors.

™~
]

T (10" sec™)

[and
L}

] N
0 1 2 3 4
1/d (10 A)

Figure 4.12 Dependence of the dephasing saturation time 'r; on
the thickness of thin Cu films. Data are taken from
reference 99. The solid line is a guide to the eye.

<

Peters and coworker398 observe a saturation of B & even in very high
purity (< lppm Fe) Au films for which they give no explanation.
Unfortunately, the authors did not study samples of equal purity and

varying thickness so that the scaling of 1/1° as 1/d can not be

(o]
¢,
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confirmed here. However, we shall take their observation as another

can not always be linked to
104

confirmation that a saturation of B¢
extraneous causes. Bishop and coworkers
the dephasing field at low temperatures in Si MOSFETsj They £ind that it

depends in both low and high mobility samples on the applied gate

studied the saturation of

voltage. They argue that the saturation is a consequence of decoupling
of the electron gas from the lattice (phonons) which occurs when the
inelastic diffusion length, \rﬁ:;, becomes comparable to the sample
size. Vith eq.4.18 and eq.4.20 ve can give a different explanation: The
gate voltage, Vg, chénges the carrier density but not, to first order,
the density of states. Therefore D varies linerly with Vg.
Consequently, since D is the only quantity in eq.4.18 which depends on
the gate voltage, 72 should increase wvith Y;thich is exactly what
Bishop et al. observed in both, high and low mobility samples.
Furthermore, the absolute value of v: is larger in the high mobility
sample which 1is also consistent with eq.4.18. The reader should also
note that tﬁe temperature at which the saturation of r¢ begins in the
MOSFETs is approximately independent of the gate voltage which it should
not be according to the explanation by Bishop and coworkers.

To end this discussion of the saturation of B¢ ve conclude: The
saturation of B¢ in Mg-Cu based alloys is not due to external
circumstances. Specifically, it is not induced by thermal decoupling of
the electron gas from the thermal bath, it is not caused by finite size
effects as the sample dimensions are much larger than all relevant
electron transport length scales (see Table 4.1), and it is inconsistent.
with the measured magnetic impurity concentrations. A new temperature
independent dephasing mechanism of the weak localization effect due to
ionic zero-point motion is presented. It is intrinsic to all conductors
and capable of explaining many of the dephasing field saturation
phenomena reported in the literature. Por Mg-Cu and Mg-Zn metallic
glasses the model gives a correct value for the observed saturation
field B; if a short phonon coherence length is assumed. A suitable
system and experiment to specifically study the zero-point motion’

dephasing effect has yet to be devised.
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4.2.5 Magnetic Impurities

* In Chapter 2 it was pointed out that magnetic impurities destroy
the quantum coherence effects. To underl{ne the importance of using high
purity materials for studies of the quantum correction theories,
magnetoresistance measurements were carried out on a Hg7oCu30 sample
, containing (1701:10)£;E\of Mn and a Hg7OZn3o sample containing
(7600+ 200)ppm of Gd. Both Gd and Mn carry a moment in the these alloys.
Gd has a moment of 7pB which is 1ndepengent of the particular
bandstructure of the host metal as its S7/2 ground state configuration
is extremely stable. The spin-exchange integral is most likely quite
small, Cochrane et al.71 have reported J= 0.057eV for Gd in Lu. The Gd
concentration (7600ppm) is sufficient to quench superconductivity112 in
Mg7oZn30 and.the alloy shoyld thus be‘comparable to Mg7oCu3o containing
Mn as a magnetic impurity. Mn holds a moment of about 4.5pB in many
metals. The spin-exchange integral however is negative and larger than
that of Gd. Values of J= -0.25eV have been reported56’57. Fig.4.13
" shows the magnetoresistance at 4.2K of both magnetic impurity samples in
comparison to high purity Hg7oCu3o (same data as in Fig.4.la). One can
clearly see that the most striking characteristic of the weak
localization effect at finite spin-orbit scattering, the positive
magnetoresistance at small magnetic fields, is suppressed by the
magnetic impurity scattering. Similarly, the laxge negative
magnetoresistance at higher fields, typical of the high purity Hg?OCUBO
and Hg7oZn30 samples, should be suppressed as well because the damping
1/1-s enters both parts of the Cooperon in eq.2.18. Comparing the data
in Fig.4.13 one finds that the magnetoresistance at 3T in
Hg7oCu30(170ppm Mn) and Mg702n29Gd1 is actually larger than in high
purity Hg7OCu30. This demonstrates the importance of the negative
magnetoresistance term due to magnetic impurities discussed in Chapter 2
(eq.2.39). Included in Fig.4.13 is a measurement by Bieri and
coworker532 on amorphous HgBOCuzo. EBven though this alloy is expected to
have a lower spin-orbit scattering rate than our Mg-Cu alloys because
the Cu'content is 30% smaller, the magnetoresistance should be positive
at lov fields as well. The dashed line in Fig.4.13 is an estimate of the
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magnetoresistance Bieri et al. should have observed, had they used high
purity materials (it is calculated with Bso' 0.052T, i.e 2/3 of the

value in Mg7OCu3o, and B, according to eq.4.2). Ve conclude that their

alloy contained a very hf&h level of magnetic impurities. This explains
why the authors had to scale the weak localization magnetoresistance in
eq.2.24 by a factor of 1.23 to fit the data. It also underlines the
importance of the minimal adjustable paraﬁ%ter analysis ve have carried
out.

The magnetoresistance in Mg702n30(7600ppm Gd) vas also measured at
other temperatures. Fig.4.14 shows the resulting data, which turned out
to be quite difficult to analyse. Even though the superconductivity
observed in Hg7OZn30, as well as the diffusion channel magnetoresistance
will be quenched to zero, it is not quite clear wvhat sign and size the
coupling constant, g, of the Cooper channel should have. Also, in this
regime of strong magnetic impurity scattering, the expression in eq.2.22
for the scattering.dephasing time, L should be modified to take into
account its field and temperature dependence. The dephasing due to
magnetic scattering is expected to be smaller at large magnetic fields.
Nevertheless bearing these complications in mind, we attempted to f£it
the data to the weak localization and magnetic impurity
magnetoresistance (eq.2.24 and eq.2.38). The solid curves in Fig.4.14
vere calculated with Bso= 0.11T7, J=0.035eV and B¢
Considering the crudeness of this approach the agreement is quite

according to eq.4.2.

acceptable.
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Comparison of the magnetoresistance at 4.2K in
several Mg-based glasses containing magnetic
‘impurities. The compositions are indicated in
the figure. The data for HgBOCuzo are taken

from reference 32. The solid line is an estimate
of the magnetoresistance in high purity HgBOCu20
as explained in the text. The scale is indidated
in the figure.
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Figure 4.14 Normalized magnetoresistance in Mngnngdl.
The scale and temperatures (in Kelvin) are 4
indicated in the figure. The solid line is :
a best fit to eq.2.24 and eq.2.39.
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4.2.6 Using Veak Localization to Measure Resistivity

There is one important detail of the analysis of the
magnetoresistance in simple metallic glasses that has not yet been
pointed out. One can use magnetoresistance measurements to determine the
resistivity of disordered simple metal samples, whose irregular geometry
doés not allow a meaningful determination of the cross-section area (see
section 3.2.6). This is simply done by fitting the measured
magnetoresistance data to the weak localization expression in eq.2.23 or
eq.2.24 with p as an additional adjustable parameter (here too, only in
the field regime B/T = 0.4TK_1). In a few tests on the weak spin-orbit
scattering glasses Hg7OCu3o and Hg7oCu27Ag3 it vas found that one does
in . fact recover the correct estimate of the resistivity to better than
10%. A reasonable estimate for p is also found in Mg7OZn3O, even if the
Maki-Thompson superconducting fluctuation magnetoresistance is neglected
(B =0). In a least-squares fit, the positive fluctuation
magnetoresistance is compensated by a slightly un&erestimated Value of
B¢. In strong spin-orbit scattering alloys, however, the correlation
between p apd B¢ i1s large enough to lead to a considerable
underestimation of the resistivity (about 40%). The measured and
normalized magnetoresistance signal, AR/R= Ap/p, is independent of the
-geometry of the sample, i.e it does not depend on variations of the
thickness or width. The reason why this method works is that that the
absolute size of the weak localization effect is a material constant and
can not be disputed. It is the conseqdence of a quantum interference
effect and the correction it contributes to transport properties 1is
exclusivelyt) determined by the resistivity p and cohérence cut-offs,

i.e Te! To' Ts and LI

t) - The small error vhich‘ggg probably introduced into the expression
for the weak localization magnetoresistance, eq.2.23 and eq.2.24, by
setting e to zero, see section 4.2.2 and reference 96, can be neglected
for the purpose of the present discussion.
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The above method was appliedl13

to measure the resistivity in
icosahedral Hg4oA1302n30 and H840A1182n42' These icosahedral alloys can

be produced by melt-spinning. The resulting ribbons are usually very

short (< 5mm long), extremely brigfls, have rough edges and a very
irregular surface. The measured ngnetoresistance data are shown in
Fig.4.15a,b; they have the same characteristics as those in Fig.4.1. The
resulting values for the resistivity were (70zx 7)u{km in H340A1302n30
and (105= 10)pem in Hg4oA1182n42 wvith spin-orbit scattering fields of
§S°==(Q:10: 0.01)T and (0.1}: 0.02)T, respectivelyt). The resistivities
are larger than in Hg702n3&, but the spin-orbit fields are are
comparable to those in Mg7oZn30 and Hg7OCu30, see Table 4.1 and (n.
Table 3.5. Within the error the values of B¢ are the same as in
FPig.4.10. The magnetoresistance curves in Fig.4.15a,b show very clearly
that icosahedral Mg-Al-2n alloys are disordered conductor; from an
electron transport point of view even though their atomic structure
exhibits a five-fold rotational symmetry with long range order as has
been shown by X-ray and electron diffraction experimentsll3. This subtle
difference, wvhich is not investigated further in thisﬁthesis, should be
investigated in more detail.

t) The values given by Baxter, Richter and Strom-Olsen
different because the data were fitted over the enire field range.

113 are slightly



-159-

>

£y
T Y T T T T T T T

icosahedral

- Mg,081302049 -

.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

B (T)

Figure 4.15 a) Normalized magnetoresistance in icosahedral‘H340A1302n30f
The scale and the temperatures (in Kelvin) are indicated

in the figure. The solid line is the best fit to the
veak localization theory as explained in the text.




i 1 LI 1 1 L 1 1 L

) icosahedral
5 Mg, AL, .Zn .
*_._\ 407718742 v
s % \ .
\.\ 1-5
——
.- e ’ !
*\is
—..
“~—~*}‘0

AP[P
f
= |

i
v

1 i 1 1

1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

B (T)

Figure 4.15 b) Normalized magnetoresistance in icosahedral Mg40A13OZn30.
The scale and the temperatures (in Kelvin) are indicated
in the figure. The solid line is the best fit to the
weak localization theory as explained in the text.
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4.3 The Resistivity Temperature Dependence

S

Measurements of the resistivity down to 0.08K were carried out on
several samples in a dilution refrigerator. The measurements are
complicated by problems with the brittleness of the samples, the thermal
contact to the sample holdér and the smﬁll size of the signal. To
resolve resistance changes of the order 5x10—50 in an approximately 10
sample requires, with the a.c. resistance bridge used here, a
considerable sensing current which can cause self-heating effects of the
electron gas. For the two alloys Mg7oZn3o ang,Hg7OZn27Au3 it was
possible to circumvent these difficulties. The data are shown in
FPig.4.16. Hg7oZn3o has a superconducting transition at 0.12K with a
width of 6mK which is in good agreement with the value of 0.11K reported
by Van den Berg et a1.37. The difference is not significant as the
absolute value of Tc is very sensitive to small concentrations of
magnetic impurities in the alloy. Kastner and Vassermann112
that Tc decreases by about 0.04‘1‘c per 1 ppm Mn. The materials Van den
Berg et al. used, were distilled Mg but only 99.999% pure Zn. This
easily explains the/;I;Ziéiy lover transitioﬁ temperature. The
Hg7oZn27Au3 sample was cooled.to the limit of the refrigerators ability,
0.08K,. but a superconducting transition was not reached. However, Pig.4.16
shovs a substantial decrease of the resistance due to superconducting
fluctuationsGsy the precursers of a superconducting transition at lower
temperaturés. Rather than fitting the data on Mg,o2Zn,,Au, to any
theoretical expression of the resistivity one can use an easier method
to qstimate Tc in this alloy. Hngn30 and Hg7bzn27An3, differ in their

fluctuation induced conductivity because of their different transition
66

reported

temperatures. Johnson et al.
Ho30Re7o that this fluctuation conductivity decays as exp(- y\V t) for
T)> O.ATC, t= (T- Tc)/'rc is the reduced temperature (V_F is the order
parameter of the superconducting transition and y.is a measure of the
free energy difference between the normal and superconducting state). A
plof of ln(A°f1/°b) against \'T as shown in the insert of Fig.4.17
ylelds a straight line.

found in amorphous La75Au150u15 and




o ay
o T

AP/P

)
i

++
Mg702n30 4
; v
+
L ;- .
+
N 4
+
T .
+
: 2x1074
*
_I -
" .
%+
_/’:"'
+ ]
* 1 1 o5 L 1 ‘
0 1 2 3 4 5
&f
Figure 4.16 The normalized resistivity change 1n/Hg702n3’0 and

+»
> *{ﬁn
* **NVM-H* +

% T T ST, |

LA SR Y

— &
HgZOan 7AU3 .

e

-

h

Mg,yZn,,Au, from 0.08K to 6K. The scale is -

indicated in the figure.

o



. em .3 PR

-163-

le-3p-
b .
] = lees
b 2
< -
le-5

¥ llllll[

\
Ly
1 L .1 L 1 '1s

L llllli

L

1 lllllll
2

[
"D .

‘Q\\

o

Figure 4.17

LA L T T

0.4

0.8 1.2 1.6 2.0 2

The (negative) normalized superconducting fluctuation,
conductivity in Mg702n30 and Mg7OZn27Au3 against the N
square root of the reduced temperature. The scale is
indicated in the figure.
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Ami and Hak165 showed that this decaying conductivity can be *

attributed to the Maki-Thompson type contribution to the conductivity.
The Aslamasov-Larkin type contribution is important only very close to
the transition temperature, 1.e. t<0.05. They cause the deviations from
linearity close to Te seen in Fig.4.17. The important fact Johnson and
covorkers report 1s that the quantity vy is constant in all of their
samples studied (i.e y=4.5). This should also be true for the two very
similar alloys Hg702n30 and Hg702n27Au3. One can isolate the
superconducting fluctuation related conductivity of the two Mg-Zn alloys
by fitting the curves in Fig.4.16 far above Tc (T; 10'1‘;) to a background
function, AR(T)/R = a\ T+ eonst. , extrapolating this background to
lover temperatures and subtracting it from the measured resistance
change. Fig.4.17 shows the resulting curves and ve find that in Mg-2n
glasses too the superconducting fluctuation conductivity decays
according to the above function. For Mg702n30 the decay constant v is
0.76. Vith\: Tc of (40+ 15)mK the same value resglts for Mg7OZn27Au3.
This estimate of 'l?c wvas used in section 4.2.3 for the analysis of the -
magnetoresistance in’ Mg,yZn,5Au, and M¥g. 70, Agy.

The résistivity change in the four amorphqus alloys Hg7OCu3o,
Hg7oCu27Au3, Mg702n30, Mngnngd1 between 1.5K and 6K is compared in
"Fig.4.18. For better comparison it is plotted as the negative
conductivity change against the square root of temperature. Between
these four alloys some of the most important parameters of the theories
of quantum corrections to the conductivity are altered. It was shown in
the previous section 4.1 that the magnetoresistance in these four alloys
is distifctly different. This is not the case for the resistivity
temperature dependence 9n all alloys investigated the resistivity
changes as Ap/p ~ -aN T betveen 1.5K and 6K with
a= (135=25)x10" (nnKZ) 1/2. Vithin its error a is not correlated with
the spin-orbit scattering strength or any other property. Icosahedral
Hg4oA13OZn30 also shows a similar temperature dependence. One comes
therefore to the following conclusions: As predicted, the weak
localization effect contributes only very little to the overall

L3
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according to eq.2.33. -
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resistivity between 1.5K and 6K. Similarly, the éooper channel
contribution to the resistivity temperature dependence is very small as
no significant difference in « is observed between Mg-Cu and Mg-Zn
glasses. Eq.2.34 describing the temperature dependence of the Maki-
Thompson superconducting fluctuation resigstivity correction must be
incorrect; in conjunction with the other contributions (wveak B
localization, Cooper and diffusion channel) it predicts a maximum of the
resistivity at around 2K for ngn30 which 1s not observed. This
conclusion is supported by the analysis of the fluctuation conductivity
earlier in this section. The residual fluctuation conductivity at 1.5K,
as ‘shown in Pig.4.17, 1s negligiblg. The only quantum correction to the
resistivity vhich is supposed to be the same in all alloys studied here,
is the diffusion channel contribution given in eq.2.34 (to what extent
it is altered by strong spin-orbit scattering or by the magnetic
scattering due to 7600ppm of Gd is not known). It depends only on the
eléctron screening parameter §c vhich 1s 0.5 in all of the alloys
studied here (see Tab.2.1). Comparing the magnitude of the diffusion
channel term, the solid line in Fig.4.18, vith the meaqured data, one
finds that it is about a factor of 2 too smalit). The data can only be
fitted to the quantum correction theories if fc is alloved to assume

unphysical negative values ranging between -0.1 and -0.6. Similar

114 100

observations have been reported by Poon et al. and Hickey et al. .
At the moment we do not know how to interpret these results. It is
surprising that the magnetoresistance 1s so well described at low fields
by the quantum correction theories but not the temperature dependence of
the resistance. Ve note however that our analysis of the
magnetoresistance has only proven the validity of the weak localization

effect and the expression for the -~

t) Newson and covorkers115 have reported recently that the ratio
between the temperature coefficients of the Hall effect coefficient and

the resistivig;’}h some doped three dimensional GaAs MESFETs is a'factor

of twvo smaller than predicted by Altshuler and Aronovzo.

Ay
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superconducting fluctuation magnetoresistance (at low fields). This
does not allow us to make any statement about the vakggity of the
expressions describing the resistivity temperature dependence due to
enhanced electron-electron interaction (eq.2.33). The above results
shall therefore be taken as an indication that the expressions
describing the temperature dependence of the quantum corrections to the;%
conductivity need to be improved.

Above 6K, the resistivity of all Mg-based glasses studied has a™
positive T2 temperature dependence. This is demonstrated in Fig.4.19
vhere the resistivity change in Hg7OCu30, normalized in the same way as
in Fig.4.18, is plotted against Tz. According to Hatsuda, Mizutani and
Yoshino34 36, 116, who studied the resistivity temperature dependence
above 6K of simple metallic glasses in great detail, this regime extend§
up to Tmax::40K and the resistivity decreases with increasing
temperature roughly as —T2 above Tmax' This behavior is in agreement
wvith the generalized Faber-Zjiman theorys117 describing the uncorrelated
intense scattering contributions to the resistivity; it 1s not of

interest in the present context.
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5. CONCLUSIONS

Prom the results presented in this thesis ve are able v the

following conclusions:
At lov fields, where enhanced electron-electron interactions are

negligible, the veak localization theory gives an excellent description
of the magnetoresistance in amorphous Mg-Cu, both in the Yow and high
spin-orbit scattering regime. An equally good description of the
magnetoresistance in amorphous Mé-Zn is achlieved if the additional
contribution from superconducting fluctuations is included. 'In
particular the size of the effect is given accurately by the theoretical
expression by Fukuyama and Hoshino, without the need for an arbitrary
scaling factor, as has been used by other authors.

At hiéh fields, the theories of quantum corrections to the
conductivity do not account for the measured magnetoresistance. In the
superconducting Mg-gn‘alloys some of the discrepancies between theory
and experiment are caused by an incomplete evaluation of the
superconducting fluctuation magnetoresistance. We speculate that further
discrepancies are causedoby an incorrect description of the high field
veak localization magnetoresistance by the theory of Fukuyama and
Hoshino.

From the comparison of the experimental magnetoresistance with the
quantum correcfions theories' at low fields the dephasing and spin-orbit
scattering rates are deduced.

Above 4K the.dephasiﬁg rate varies approximately as T3, vhich is
consistent with the dephasing of the quantum interference by inelastic
electron-phonon scattering, but below 4K it saturates to a common value
in all samples. The saturation cannot be attributed consistently to
residual magnetic impurity sc;ttering or other extraneous caused. To
explain the saturation of the dephasing rate a model has been proposed.
It is based on the dephasing of the quantum backscattering interference
by ionic zero-point motion. For the Mg-based metallic glasses studied
here, the model gives a consistent value for the dephasing saturation
rate if a phonon coherence length Lf five interatomic spacings is

assumed. Equally applicable to other disordered conductors, the model is
! .

g
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capable of explaining many of the dephasing rate saturation systematics

observed by other workers.
The spin-orbit scattering rate increases in Mg-Cu 4nd Mg-2n glasses

when Cu and Zn are replaced by the heavier elements Ag or Au. As
expected, the increase is linear in concentration, x, but only if

x < 3atX. In this regime the increase on adding Au 1is much stronger

‘than on adding Ag which is expected from the dependence of the spin- <i\
orbit scattering Hamiltonian on 2. At larger concentrations the

increase of the spin-orbit scattering rate is weaker; for Au it falls
drastically below the linear' extrapolation. This may Qeflect the

limitation of the expansion in Te/Tso used in the derivation of-ghe veak
localizat§on magnetoresistance expression. The values of llrso compare

well to those found by other authors.

The difference between the magnetoresistance in Mg-Cu and Mg-Zn is
explained quantitatively (with no adjustable parameters) by a
combination of the Cooper Channel interaction and Maki-Thompson
superconducting fluctuation magnetoresistance. At lov’%ields vhere the
Cooper channel is negligible, this difference is the firgt direct
measurement of the superconducting fluctuation magnetoresistance in bulk
metallic glasses. It is well described by the theory of Larkin.

As a consequence of its quantitative accuracy at lov fields, the
weak localization magnetoresistance may be used to measure directly the
resistivity of bulk disordered metals.vThe method was applied to
9 cosahedral Mg-Al-Zn alloys whose irregular geometry precluded
resistivity measurements by conventional means.

By deliberate doping of two Mg-Cu and Mg-Zn alloys with small
amounts of Mn and Gd we have also demonstrated the extreme importance of
using samples free of magnetic impurities if reliable values of the
dephasing and spin-orbit scattering rdates are to be deduced.

In the absence of a magnetic field the resistivity varies
approximately as -o\T betveen 1.5K and 6K as expected from the quantum
correction theories. The value of o is approximately the same in adl
Mg-Cu and Mg-Zn glasses. Its magnitude is not consistent with the
predictions og the quantum correction theories. Ve have no explanation

&, i
I
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for this obsefvation. Above 6K the resistivity changes vith temperature
as predicted by the Faber-Ziman theory. The superconducting fluctuation
conductivity in Hg7OZn30 and Hg7oZn27Au3 is isolated. It decays as

~ exp(-y\['t) vith the reduced temperature t = (T-T )/T, which is in
agreement wvith the theory of Ami and Maki.

To complete this chapter the following suggestions for further
. research on quantum corrections to the conductivity are made:

To understand the high field magnetoresistance in npon--
superconducting amorphous metals it is necessary to in&%stigate the
limitations of the weak localization theory and to improve it for large
fields. Also, a more precise expression for the Cooper channel
magnetoresistance with a better than approximate expression for the
electron coupling g(B,T) is needed. Once the magnetoresistance is fully
understood in noﬁ-superconductors, Larkin’s expression for the Maki-
Thompson superconducting fluctuation magnetoresistance has to be
improved to give a correct description at all accessible magnetic
fields.

Given that .the weak localization theory is successful in simple
. weak scattering metallic glasses ( (kFl ) << 1), its validity should be
tested in systems at the strong scattering limit ( (kFI ) ). A
possible system for such a study is Ca70M330_x Al_, where (kFI ) varies
between,0.0S and 0.4 (for x=0 and 30 respectively) vhile other material
characteristics remain unchanged.

The non-linear behavior of the spin-orbit scattering rate at larger
concentrations of spin-orbit scattering centers deserves further
attention. In particular the point at which the spin-orbit scattering
rate deviates from linear dependence in concentration should be examined
in detail, in particular its dependence on the atomic number.

The proposed model for the dephasing of the weak localization
quantum interference by ionic zero-point motion has to be put onto a
solid theoretical footing. A more precise evaluation of the dephasing
" effectiveness 1s needed. Furthermore, experiments have to be devised' to,
give a strict quantitative proof of the existence of the zero-point
.motion dephasinﬁ effect. The magnetoresistance measurements on the
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~
simple metallic glasses presented in this thesls cannot be considered as
such, as the total signal is very small. The experiments by Abraham and
Rosenbaum on Cu-films with varying thicknéés, and by Bishop and
coworkers on Si MOSFETs could be rspeated in more detail to concentrate
specifically on the satyration aspect.




-173-

APPENDICES

The expressions given in Chapter 2 for the temperature dependence
of the quantum corrections to the resistivity in the absence of an
applied field are quite easy to evaluate numerically. They involve only
logarithms or square roots. This is not true of the expressions
describing the magnetoresistance; they are presented in terms of either
difficult infinite series or complicated integrals. For the sake of
clearity their numerical evaluation was left out of Chapter 2 and will
follov in apfendix A. The development of efficient numerical algorithms
is an important part of this thesis since there were approximately 120
data curves to analyze and some calculations had to be carried out many
times with varying parameters. The calculation times involved are quite
long (days) even with the fast SUN Microsystems workstation available.
The numerical evaluation of Larkin’s p-function is also given in
appendix A. In appendix B the least squares fitting algorithm employed
for the fitting is presented. The detailed listing of the program is
omitted because it would just £ill another 50 or more pages. In appendix
C the kernel program contaig}ng the magnetoresistance equations is shown
as a subroutine which is ca;led by the least squares fitting progranm.

It could in principle be used by any other fitting algorithm if details
of the calling sequence are adjusted.

e
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Appendix A: Numerical Recipes

A.l1 The f3-function

The veak localization magnetoresistance expression eq.2.23 by
49 20

Fukuyama and Hoshino ~ and eq.2.24 by Altshuler and Aronov"™ as wvell as

eq.2.35 by Larkin®®
to superconducting fluctuations }nvolve the function f3(x)

describing the Maki-Thompson magnetoresistance due

f.(x) = a (x)
3 ;g% n

vhere a_(x) = 2(n+1+5)1/% - 2(n+ b2 _ (. %*.‘1,2]-1/2 "

2

For large x this serles converges only as (1/n)3/ . This is so slov that

" one would have to sum more than 105 terms to achieve an accuracy better

118

than 1X%. Ousset and coworkers have presented an approximation that

can be derived by truncating the Euler-MacLaurin asymptotic expansion of

9

this series. Although many times faster than direct summation it is
still quite cumbersome and a fgster form would be handy‘since f3 is
likely to be called several times in some data fits.(The reader should
note that the expression given by Ousset contains a typographical error,
the exponent -3/2 on their last term should be -1/2.) A faster form for
f3 can be found64 by explicitly summing the first two terms which gives

£4(x) =2[(2+,l‘]“2 - (;1‘-)1’2] - [(%4-%]'1/2 + B+ -,12]'“2] +R(X) (A.1.1)

with the remainder as

S 172 1.1/2 0 1.1/72) 1
R(x) =n22y {2[(1+2y) (1- ) ] y}

2

1
vhere y=n+§+§

The remainder can be expanded in terms of 1/2y in a Taylor series

yielding

‘- .
)
R(x) = 2 \r§ [Z\I 1+ 142y - 2NV 1+ 1/2y - 1/y]
N=2

2.
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Converting the summation into an integral and disregarding higher order

terms gives

(2.5 +1/xy">/2 Q. 5 + 1/x)"7/2

R(x) = %8 1024

+ 0. ~(A.1.2)

An accuracy of better than 0.12 is achieved 1f only the first term of
R(x) is retained and the value of 2.5 in this term is replaced by 2.015
to giv; the pFoper asymptotic behavior, i.e f3(x -~ ©)= 0,6049. .

In the parameter range considered it is possible for y in eq.2.23
to become larger than 1 for large f}élds B. This does not impose a
serious problem. Examining the integral expression from which Maekawa
and Fukuyama18 have calculated the conductivity in two dimensional
conductors and which ¢ Fukuyama and Hoshino have extended for:bulk
conductors in eq.2.23, one finds that it is well defined for all applied
fields. It 1s therefore legitimate to analytically continue equat%on
eq.2.23. The iméginary terms cancel out. To do this one has to
interchange analytical continuation with the series summation of the
function f3, vhich can. still be(gpproximated with the above expression
A.1.1 and A.1.2. Exploiting the fact that B+_and t_ are the complex
conjugates of B_ and t_ respectively, eq.2.23 turas into a lengthy

expression involving terms of the form

N _
L_[a +1b)P - (a - 1b)P] (A.1.3)

2iNy- 1
such a't’. —2—1—-—1-;——\1_!:; - \JT_-]

| 172 172
-—{(t- 1/2) +INF-T (t- 1/2) - N'— ]
v— 1 - )t

_vhich can be rewritten as

-

o 1 2 ..2]° ~
) —-:—[a +b ] sin% - | |
‘vhere a = a:ctan(g-]

The exact details of this analytical continuation can be found in the

' program kernel rfit.c listed in appendix C. The calculation is easily

checked; for large values of D eq.2.23 falls onto eq.2.24 given by
Altshuler and Aronov20 and no discontinuity vas observed at y=l.
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A.2 The gS-function . - . -
The diffusion channel magnetoresistance eﬁ%resgion in e¢.2.29"

derived by Lee & Ramakrishnan21 contains the integral

0 . — 0)
g4(%) =_!;dw -‘fi[ = ] ][\fm+x +\ o x| - z‘\r:;] (A.2.1)

do“le®- 1

Qusset and cowgrkers118 presented a very useful approximation for 83(%).

vhich vas used for the data analysis in- this thesis. It has an’accuracy
of better than 0.25X. For smﬁ}l x one can expand the square roots in
eq.A.2.1 vhich yields a series ‘ : '

g0 = a, x°P
p=1

The coefficients a, are determined by the integral. Oysset et al. have -
evaluated the function g, numerically in the range, x < 3, and fitted

the result to a series of the above form. This gives
-2x2

e

. “(A.2.2)

= 1.4759x10 %% + 4.2747x107x®

- 1.5351x10" %8 + 6x1078%10

g4(X) = 5.6464X10

Similarly they expanded the roots for large x in. terms of w/x. ‘
Evaluating the resulting series of integrgl they f£ind that 33(x) can be
approximated for x =8 by -

gy(0) =x'? - 1.2042 - ——1'2—/5 X L (A.2.3)
12x
N _ a5
16x’/2  32x!1/2

/ s

In tke intermeiiate range, 3 <h.s8 with u =h - 4, ttge authors*
fitted the numerically integrated function gy to a polynomial in u



“ o, ,‘,1' o
177- ‘-
‘ ®
which gives = N
g3(x) = 0. 64548 + 0. 2350 - 7.45X10 4 z (A.2.A)‘
- 2.96x10 33 4 6320744
- 5.22X0 7y’

As a test we have integrated the funcfion ) numerically at a few points
using the integration routipe "varint()" listed in appendix C. Ve found
agreement with the above approximations by Ousset and coworkers within
the quoted accuracy. ‘ )

A.3 The 415’3 and d)F functions — ' )\\—-'

There are three different forms for the Cooper channel
magnetoresistance. The expression given by Altshuler and Ax:on<)v6l

involves\the integral

A 172
1/2
d>3(x) - (51;_(] .[dt s:nhzt ( - sinh(xt)) (A.3.1)

{

For x <{ 1 one can exploit the fact that the asymptotic form of the

1/2/sinhzt term and hence expand the

integrand is goversded by the t
bracket in terms of xt. Calculating the first few terms of the resulting

series of inteérals exactly and adjusting the 4thorder term Ousset and

coworker5118 find for x < 0.7 ‘
o(x) =0.3295 ©*/2 $ 0.1189 2772 (A.3.2)
+0.10753 %172 _ 0.0636 x5°63

A similar analysis for the limit x »>°1 yields for x > 2.4

172 . $

By(x) = 1.900344 - 2.29392% (A.3.3)

+1.2266h™2 - 0.826h™> "3
In the intermediate range, Q.7 =x =2.4,

B(x) =- 0.03043 + 0.22616 x +0.14104 x% , (A.3.4) \

3 5

- 0.10293 x> +0.02759 x* - 0.0028 x .

According to Ousset et al. the accuracy of the above apprgximtions ia£
better than 0.025Z. The reader should note that in their article the
last coefficient is mistyped as 0.00028.
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( The' second Cooper channel magnetoresistance expression in eq.2.31
‘ involves an integral F 1(xl,xz,x3) This :lntegral differs from & 3 given

above essentially only by a factor

cos %-t! exp [-— ::;rs't]

vhich accounts for the Zeeman bandsplitting and the attenuation ofwthe

\

- magnetoresistance due to magnetic spin scattering. In this case it
not pogsible to use the approxilﬁations for d>3 given above since the
integrand is nov a three parameter integral. Instead one has to
integrate F -1 nunerically for every set of parameters B, B_ s’ T
individually. Because the term 1/sinh in the integrand causes a
numerical integration to fail, the integral in eq.2.31 has to be split

—-4into two parts ¢ '

) T e ¥ w \
fdt £¢8,8,,T, t) ;-fdt £(B,B,T,t) +fdt £(B,B_,T,t) (A.3.5)
0 .0 [ S

S

The first integral on the right hand side can be calculated explicitly
for « << 1, 1.e . s

3x 30(x —x2)- (7x +20) 10(3x2-x2 ) - (7x2+20)
Ak 2 X9 %3 1
1" 3 + 33:' 9 + o

(A.3.6)

A

and the second integral is calculated by the routine "varint()" given in
¥ appendix C. For more details of the calculation the reader is refered to
the relevant program parts in appendix C. It is found that the
exponetial term describing magnetic impurity scattering effects is not
important for magnetic ‘impurity levels of less than 3ppm Mn and 'can
‘therefore be neglected in aur samples. Similarly it is found that the
" Zeeman splitting term is small (see Fig.2.11) if the electraqn
diffusivity 1s as large as in the Mg-based metallic glasses studied
here. , The above aﬁproximation for ¢3 given by Ousset et al. is )
therefore good enough for our purposes (if the missing factor of 1/« in

C . eq.2.30 is taken into account).
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0 Isawva and E‘\.tkuyama22 have derived yet another form of the Cooper

channé& magnetoresistance (eq.2.32). It is expressed in terms of the
series ’ )

[ -
03,3, T) =2 Je@leey -y aa

ZDEBi 5 - . T

{(s,z) stands for’ the generalized Riemann Zeta-function,
. ‘ #

. i.e. {(s,2) = 2( n+ z ) -
; o ) n=0 @

vhere vy =

L 4

Again, as the f3 -function, @F :ls a very slowly converging series. At
first glance one is tempted to accé’lerate 1ts convergence by using the
“ . Euler-MacLaurin sumpation formula: *
2
N—l

F(n) = Z f£(k) = fh(k.) + RN, | ' (A.3.8)
k=0 » k=0 !

3

n - .
N hE,! /
R(N,n) = %f(n) + ff(N+t)dt +C + 121( 1)3*’1(:’?\+1 £C3) (N4n) '
0 = ' :

f {

— 14 (D, +-f(N)

vhere C = lim
m-oo

onls,
=1 (j+1)!
m - .
+ é-l(.%)-l)—’-{dt By (t-1tD) £ ) ()

Bn are the Bernoulli numbers. Up to the 4th order one can express the
Euler-MacLaurin expansion as

[ ” .
ORI G ‘ ©
f dk £(k) - JLEN)+ £(0) ]
o / + [£(N)- £7(0)] - 7pGlE" " (N)= £117(0)] + +=- -

o

i

:
. .
\
‘) )
- -
b .
n M "



}

It\bturng‘ outh that the Euler-Maclaurin expansion cannot be applied
directly to °F because the integral of the second term in the brackets
of eq.A.3.7 diverges. One can avoid this bothersome problem if one -
applies the Euler-MacLaurin expan'siop.first to the {-function. This

glves ’ s
‘ S, 1 1
{(8,2) = 2 <+ pes i = (A.3.9)
orn=-0(n+z)q (s-1)(N+z-1)". 2(N+z-1)
B, s . B, s(s+1)(s+2)
+ 2 + 4

s+l s+3

(N+2-1) o 2(N+z-1)

For s= 5/2°with N= 10 the accuracy is better than one in 107. Using this

expression for the {-function one can revrite QF as

2]

%(B,By,T) =;=1 £(k) (A.3.10)
N-1
wvith f(k) =k [na (p +.;_ +T11 _,_;l%]—s,éz .
Y * / (]
~ +-g-[(N—1 +—;- +% +;155]—3/2 - (%.+-$‘FJ'3/2] .

1 1 ky-5/2
(N—l +-2' +E +-';T\) .

1 ky-7/2

1
+12(N-1 +5 +% +7h']
- -Z-I-(N-l +-21-‘+-11; +;lgﬁ)-11/2]

h

Ve carry out this summation explicitly. to the M*® term and expand

- remaining sum over k in an Euler-MacLaurin series up to the third

derivative in f(k) . The integration<of the term of power -3/2 in the
second row is now well defined. Instead of explicitly presenting the
results here, which vould £ill another three or four pages, the reader
:ls‘“::'gfér‘red for details to the source code of the program kernel listed

G
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in appeg@ix_c. It vas found that the an\accuracy of better than 0.1% .
with good speed is achieved with N=l
) The consistency of the various mericgl valuations of the Cooper
channel magnetoresistance is best demohsgtrated by the fact that they.. ,
give the same results for B<3T (if the same electroh coupling g(B,T) is
used and a= 1/w in eq.2.30). ‘ )

A.4 Larkin’s g-function L]

Larkin’s B-function68 describing the temperature dependence of the
coupling between superconducting fluctuatioms and normal electrons, is -
defined -as ’

2
B(T) = i (- 1) l"(Iml) - ET”(ZNH) (Ab.1)
m=— ‘.
“zro +1'—2 (2 r(2m-1 ir"z 1
= - 1(0) 2mﬂl[<m>—(m—>]—m_0 (2m+1)

wvith T(m) = [sign-(4(n+1/2) {@(1/2)»} + 1n(r/'rc)]"1

¢ is the digamma function. In Larkin’s paper68 the sign in the

definition of the function T is negative (sign=-1). Since In(T/T,) 1s
positive this implies an unphysical singularity at certain values of
T/Tc > 1. Lopes Dos Santos and Abraham3635have rederived the p-function
and in their definition T is written with a positive sign (in this
definition m carries factor of 172 in\the,argumen; of ¢ vhich is hovever
a mistake69) To check the table of values that Larkin published for the
B-function we have calculated B(T/T ) using the following simple
approximation. The first M-1 terms of the first series in eq.A.4.1 are
added up explicitly. Using the Buler-MacLaurin expansion to first order,
the remainder, R, of.the first series is estimated as

. ~

R, (M) zfdm(I‘(Zm)-l‘(ZH-l)) - -%(r(zu,)—r(zu-n] +eee L (AG.2)
/ u

4

1 1 1
~- —|1-
& 2[¢(2u)-¢(112)+1n(fr/-rc)][ 214[.;.(214)-¢(%/2)+1ncw/rc)] :



p | - v,
< ' ~ .182' ?

The accuracy of the remainder depends critically on the size of 2M since
only tHe:first order asymptotic form of the digamma'function (1.e. ”
Y(m>>1) =1n(m)) was used tosevaluate the integral in eq A.4.2. This 1is
the a crucial part of the approximation. Similarly one can sum the
first M-] terms of the second series in eq.A.4.]1 and estimate Ehe

remainder, R2 , as

2[ (2M+1) + 1/2 - ‘ hb.3)
(2H+1)(1n(2H+1) - wW1/2)) - 1/2]

RZ(M) =

The second series has esyentially converged for’ M-ZOOO To test the
very bad convergence of the first series in eq:A.4.1 ?nd the verya
approximate evaluation of the remainder B was calculated for several
values of M (H—-lalop—l, p=4, 5, 6). Since the convergence was still ]
very poor, a Shank’s transformation in p was used to compute-the final

result, i.e . ‘ v

2
=4 =6 - =5 * (Ao4.4.)

P = g(p=d).+ B(p=6) - 28(p=5)
The results are the same within 3% as those calculated by an explicit
“numerical integration of the remainder“ with the routine ";rarint()"
listed in the appendix C. A plot of our results compared to Larkin’s
is shown in Fig.2.13. They differ by about 30Z. The source‘code beta.c
for our calculation of the g-function is given in :appendix C. Our
calculation also includes the effects of inelastic electron-phonon
scattering on B according to consi\e\tations by Lopes Dos Santos and
Abrahams63 (they are hovev:r negligible for the alloys discussed here). |
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Appendix B: Non-Linear !bast -Squares Fitting - .
'
1 For the comparison of the experimentaL magnetoresistance data

presented. in Chapter 4.1 vith the theoretical expressions of the quantum
co}'rections to the conductivity in Chapter 2 a non-Idnear least-squares
fitting algorithm vas used. The algorithm follovs closely the procedures
developed by Harquardtng. Some of its details are dischssed in the
folloving section, for further information the reader is referred to
Bevingtonlzo.
Suppose (xi,yi) is a set of experimental data (e.g. (B,Ap/p)) and

y=£(x,a) is\mmodel function depending on a set of unknown parameters
a= (al, ceerd ). For a certain set of parameters the model function 1is
supposed to reproduce the average data function <y1(x1)>. As the.

parameters a (e.g. (B )) are not known one has to adjust (fit) them

B
¢! so
until an optimal correspondence between data and model is found. One can

define a measure for the quality of the fit (giving the method its name)

as o
2, 1 .12 ‘
E@ = 25 (4 fxpd) | (8.1)
i oy ‘
J - WI-‘ ) z
An optimal fit is reached for a set of parametex@/a at vhich x° 1s
miqimized, i.e.
RAYORTN ) (B 2)

-

The minimization problem can be visualized by noting that eq. B 1 defines
a hypersurface in' the (x, ,a) space and .eq. B.2 a local minimum (maximun)
on the surface. There are three fundamental problems vith non-linear
leest-squares fits: (1) The optimized parameters are meaningless if a
model function 1is used that is in principlef not capable of describqi,ng

" the full set of data because, for example, it neglects an. essential part
of the physical reality of the system investigated. The only cure for
this problem is to optimize the model function or to truncate the data
to the regime vhere the model function is in principle correct. (i1) The

’ x2 surface may well have more than one linimm, and the absolute mininus

. ' ’ b
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may not necessarily corresponcl’l to a physically meanipgful set of
parameters. This problem is usuaﬁy solved by constrainiﬁg the
‘parameté)r a 2gime one congiders physically meanin&fu‘l and vhich -
contains only gne minil;xum.'Admf.Ftedly this introduces some bias. In the
present case of fitting the glagwetoresistance this problem fortunately
does not appear as the x2 surface is well behaved. (i11) A time o
efficient search algorithm must :bef constructed which leads 1"terativeiy
from an initial point in parametér Space, 50 (the "edudzted guess‘")', to 7
the point a at which x2 has its minimum. There are several powerful
algorithms listed in the literétuge. ‘ ¥
) The very efficient algorithm proposed by H@rqqafdt combines the
gradient search and linear expansion techniqueslzo. It starts at an
initial set of parameters 50 and decreases x2 by incrementing the

/

parameters by .

83 =B 1.3 . ‘ (B.3)
vhere © B =A-In with A >0 . . (B.4)

I is the unit (identity) matrix. The matrix-A (knbwn‘as’the curvature
matrix) is defined as (with f°5x1)=f(xi,§d)) o
D 2.2, 2
4y, =121 %) o C (B;)

1y 2 9a,9a 4 g ' B :

af (x,)of ’(x ) azf (x,)
- 2 1 [0t "1/ 0N ('y “F (x )) 2t i .
1 62 aaj aalg 1 o*71 aaja’ak _

i
}

The vector B vhich_pofints dn the direction of steepest descend of the x2

hypersurface is defined as
2,

ax (a,)

(B.6)
%8,

-l
2

[y

. 1 L of(x,,a )
-3 g\fxi-f<x1’aa>]"’3i}k'°—

The lihear equation in eq.B.3 can be solved using numerical matrix
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inversion techniques listed in reference 121. To simplify and accelerate
the computation of the matrix elements Ajk’ one can make use of the fact
that the parameters, a j? are uncorrelated to a large ‘gegree so that the

’second order derivatives in eq.B.6 are negligible, i.e

Po

(3.7)“

A, =~ 7

1 [af(xi,io) af(xi,io)]. .
Jk 4

2 da aa
i o 3 k

i

L]

The partial derivatives of the model function, f(x ,a), are computed by

af(xi,a) f(xi,aj+Aaj)

= 2Aa

f(xi,aj—Aa
3

The step sizes Aaj are choseén so that the value for the partial

;)

aaj (B.8)

derivative does not chanée by more then 10% if the step size is reduced
by a factor of 10 and the numerator on the right hand side is larger:
than 0.01% of the value of fo(xi)‘

For large A, the diagonal terms of the matrix B in eq.B.4 are.
dominant and the components of the increment vector 3a in eq.B.3 are
therefore very close to

B

13!

In this case the parameters are 1ncremented along the steépest descent
of xz, wvhich is the directiog a gradient ‘search routine vould take. This
path direction on the x2 surface 1s particularly efficient far away from
the minimum of xz, it is npt optimal close to the minimum. For small A
the incremefit vector calculated with eq.B.3 does not point alopg the the
direction of steepest descent any longer. In fact it points in a

zdirection\almost orthogonal to it. In this case the path direction on ,

the x2 surface is the same as would be pre@icted by a linear expansion
type algorithm. It is particularly efficient close to the x2 minimum.
The obvious problem, the choice of the size of. A, is circumvented by
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adopting the iterative search procedure Marquardt proposed:

i) calculate x2 at the starting point 50 first, set x» =0.001,

11) calculate the inverse matrix B"l, in terms of \, 33

and x2(5;+85) ,

-

1) 1£ F@E ) > PE) E
multiply A by 10 and repeat ii),
1 x3(@, +28) < %A@, \
divide ) by a factor of 10, define §=5°+65
‘- as the nev starting point and repeat 1i).

h this algorithm A will always have the appropriate size, it will be
large far awvay from the x2 mini\m;m and small close to it. Even if the
choice of X\ and thus. 3a is not optimal at one particular iteration step,
the x2 vill decrease and the algdtif,hm will compensét;e folr it in the
next step and keep no further memory. The iteration towards the XZ\\
min{imum is stopped if

N o
2 - 2 - @
X (af"%": x@ ¢ 4 .10y 1
x (a) ’ . 3 -
« is usually chosen between 1%-and 0.001%.
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