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The 'v.al1dl,ty o~ the tlTe'orie~' 6f quah'b'um' .co:rr.ec tions, ta t~fi 
1 .. 1 1 01:', 1,. ~ 

, , 

" , 

.. 
electr1cal ~onductlvlty., namely weak 19ca11Zat1çn and enhanced 

• ' • " v • , '_J 1 ~7 • 

electronoelectron 1,..nterac't1on, ,bas ·been' ~es.r~d :q\lallU tat1vely)~ 'vel~ 

character1z~d, free·electron-like Mg·Cu .and 'Mg:,Zn metall~c gl~sses. ' . 
• ' ,,~ • , 1 

contaln~ng var~ous amounts of Ag and ).u~ through measuremen,t èif the.· . 

" 

11 1:1' • # f 

• l ' ... I!..-. \ • " l, ,. 

electrieal res1stivl ty between 1.5K and 20K, Ùi"magnetic .fl-elds ,ùp t'o, , 
.v 1 ro," \ ~.. • ~ ~ 

"S'.6T. It b found tbat, ~he theories giv...e an excel,l~R't .éiescrfptlQn of the . ',-

magnetore~1stance' at lov fields, Ih both" the weak anp' stropg spin-orbi t 

. sca~t'er1ng li~lt but thât ~~ higher, fields, they b~eak do~. The' • 
, , 

.electron sp!~orblt scatterlng and dephas1ng rates have Qeen deduced. 
~ c , _ , (1 

Above 4K th,è 'dephasing raté is cont.rolle'd by InelastiJ,ç 'electron-phonon 
1 ~ " ~ 

"scattering, belov 4K it saturat~s ta a yalue consistent' vith". nev moqel 

of dephàs1~g off th~ qyantum back sé'attering Interference by' io~ic' zero

point motion. ,The flrst dlrect·.measurement 6'f ~,thl1J affect: of , 

supercondu~tivity on the magnetoresi~'tance i9 bulk amorp~ous me'tals ls 

also presented. The temperatur~ depentIence of the',reslstivity betveen -' 

1.5 and 6K ls ~n qualit~t1ve but not quantitative agreement vith the 

quantum cOfrection th~orles. 
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La ~alidité des:tbéories de corr,ctions quantiques.à la 
conductivité électrique .. c'est·à·~~re la localisati9n faible et 

l'interaction électron-électron renfo~céet a été vérifiée 

't 

,;y, quanti tativement (lans des' vert:,ès métalliques bien caraetérisés du type' 

o ' 

. . 
électron~ libres, à bdse de Hg-CU et,~e Hg-Zn et contenant diverl 

) " 

niveaux de Ag et de Au par .e~~re de la résistivité. électrique entre 

~ 1.5K et 20K dans de~ champs magnétiques allant jusqu'à 5.6T. Il a été. 
trouvé que les théories fournisse~t une excellente description de la 

magnétorésist".nce à de faibles champs, à la fofs dans les limites d. 

fa;hlf! et de forte diflfusion spi~-orbitale mais qu'à des, champs plus 

él~~é, elles, ne stappUquent' plus •. Les taUx Jde diffusion spin.oz:~itale 
et les ~aux de déphasage ont été déduits. Au·dessus de 4K ~e taux dé . " 
déphasage est contrôlé par la diffusion inélas~iqu~ électron-phonon, 

~rs qu'en desso~s de 4K il sature à une valeur qùi est en ,àccord avec 
un douveau modèle de déphasage de l'interférepce,de la rétrodiffusion 

, ... 
.. quantique par mouvement ionique de point zéro. La première ~est1re . 

, t ~J. Q:> 

directe de l'effet de la sup~conductivité sur la magnétorésistance 
dans les métaux amorphes _ tridill,nsionnels est également présentée .:La 
dépendance de la résistivité sur la température entre 1.5K et 6K est en 

accord qualitatif .. is,non quantitatif avec les théories de ~orrection8 

quan tiques. 
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1. Introduction 

Amorphous metals are metals whose at~ms do not show long range 

structural order. They vere f~rst produced in bulk in 1959 by Duvez 1 and 
" 

his coworkers at the CalJfornia In~titute of Technology, using a 
• '1, 

technique of rapid quenching of the l1quid. Since tha"t' Ume, and in 

particular sinee 1970, the unique properties of amorphous metals have 

lnsplred mucft researeh and have also lead to several industrial 
appli~ations. \ 

The absence of structural order"'is illustra'ted jm Fig.l.l, vhere 

the atomic structure factor of an amorphous sol1d ls compared vi th that 

of a liquid and a crystal. 

CRYSTAL 
1---- ------ --------

q 

0' 

Figure 1.1 Schematic ~iagram of the structu~eofactors of a l1quld; 

an amorphous (glassy) so11d and a crystaillne solld 

(for specifie examples see referenees 2 and 3). 
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It 1s cleai'~hat the atomic arrang~ent ls more llke a llquid and 1t is 

th1s comb1natlon of the atomic disorder of a liquid w4th the mechanical 
"\.. 

.integrltyof a solid which gives amorphous metals Many of their uniquè 

properties, examples of which are hlgh tensile strength, low magnetlc 

hysteresis energy losses and strong corrosion resistance. 
"" To date amorphous metals have been produced usl~g a varlet y of - , 

techniques such as vapor phase co~densation, ehemica~deposition, ion-
beam mlxing, solld state reàction and continuous rapid cooling trom the 

melt4~ The group of amorphous metals produced by melt-quenching, the 
Jc~ 

last of the above techniques, is often referred to as metallic glasses, , 
though the distinction may be lartely semantic. 

The underlying principle in all of the methods is to form the . 
metastable amorphous phase at a rate faster than its trapsformation to 

the ener~etically more favorable crys~alline phase. In the~ç~se of the 

melt-quenching method (which is the only one used for the research in 

this thesis) this is best demonstrated by a Time-Temperature~ 

Transform~tion (TTT) diagram, as displayed in,Fig.I.2. 

LIQUID [ ., 
" Tm 

\ 
\ 
\ 
\ 

~ 
\ 
\ f CRYSTAL Tn 
\ 
\ 
\ 
\ 
\ 
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T~ 
\ 

\ 
\ GLASS 

tn 
log (Time) 

Figure 1.2 Schematic Time-Temperature-Transformation.diagram. The 

dashed cu~ve describes the melt-quenching cooling path 

(for more details see reference 5). 
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This diagram shows the time taken by an undercooled liquld to 
crystaillze, as • function of temperature. It la charaet.rized by th, 
interplJY between thermodynamic driving force and atomie kinetics. iben 

a liquid i8 cooled below the Ideal melting temperature, T , the free 
, . 

energy of the crystal phase becomea less than the free energy Qf the 
\ 

liquid phase causing, ini tially, a decrease in c'rys ta1l1za tion Ume. But 
lowering the temperature also reduces ,the atomic mobility, and 

eventually the point is reached when the crystalltzation time atartl to 
• increase leading to the "nose" at T ,t in the TTT-diagram. At some 

n> n .. 
temperature T the atomic mobility is so small (this point i8 usually 

g - 12 ... 
defined by a viscosi ty exce~ding 10 poiserthat the atomic 
rearrangement necessary for crystallization becomes impossible on 
labo~atory t1me scares, leaving the undercooled liquid frozen in a 

sinite configuration called an amorphous solide Because of the non· 
directional nature of the meta~ic bonding (in contrast to the 

directional covalent bonding in silicates and borates) the cooling rates 

necessary to bypass the "nose" are relatively high. In the case of 

elemental metals T is so low (typically 40K) that the cooling ratea 
g 13 

necessary hav~ been estimated to be of the order 10 ~/sec, which ia 

inaccessible by any practical melt·quenching device. Doweyer, in many' 
, V 

alloys particularly those close to a deep eutectic the melting . 

temperature Tm an~ the glass transition temptrature Tg maYe be quite 
close (e.g Tg/Tm> 0.45) and a metallic glass can be produced relatively 

easily by rapid quenching from the melt (see Chaptér 3 for more details) 

using cooling rates of about 2·106K/sec. 

So far research on amorphous metals has been directed ~owards 

applications. Dowever there has been a substantial body of work on 
1 

fundamen~al properties, work whose aim h~been to examine how the 

properties are influenced by the absence of long range periodiclty. In 

particular the electrical resistivity has been the subject of intense 
1 

rese~rch for about 20 years, and It is one aspect of thls whlch la the 
, ~ 

't~pie of the present thesis. 
At first sight the electrical resistivity in amorpho~8 metals 1. 

much simpler than in crystalline metals. An ideal perfeet cryltal offer. 

\ ) 

/ 

j 
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no resistance to electron flow, and the resist~e of a real crystalline 

metal reflects deviations from ideality as a tesult of defects, , 

impurities and thermal vibrati~s. Hence the resist1v1ty of a 

crystalllne metal is very temperature dependent, system dependent (e.g 

~ compare Cu and Fe) and, at low temp~ratures, sample dependent. By 

contrast the gross atom1c d1sorder tends to constra1n the resist1v1ty of 

~ amorphous metals to a certain uniform1ty. The mean free path_ oi the ~ 
electrons 1s of the order of a few 1nteratom1c spacings wh1ch leads to a 

reslst1vity of about 100~m, and 1ndeed almost aIl amorphous metals 
have resist1v1ties in the range 40 to 300~m. Furtherm~re the influence , ~ 

of thermal vibrat10ns on the already s~vere'structural disorder 1s 

almost negligible s~that the resistivlty of amorphous metals has a 
comparatively small temperature dependence. The contrast between the 

behavlor of crystalline and amorphous metal is illustrated in Fig.1.3 • 

.. 
1S0----------------~-------, 

_100 
~ , 
c: 
:1.. 

... -
50 

crys tall1ne ~ 

100 200 '300 

T (K) 

Figure 1.3 The resistiv1ty temperature dependence of crystallin~ 
, 

aluminum and amorphous Kg70cu30 (from reference 6 and 9). 
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On deeper ex •• ination, hove~er, aaorphous .e~lS prove to be le •• 
simple: 

i) The room te.perature reslstivity, p, and the rOQs te.per.ture 

re~ist1v1ty tell!pera~ure coefficient, Cl - :(rrlRT' .re correlat.d. They 
fall into either of tvo groups, as shown ln '1 •• 1.4, dependlnr on 
whether he current is predominantly carrled by s,p· or d-electron •• 
This ls known as the Hooij correlation after the perlon who flr.t 
poin it out in sputtered transition metal fllmsS. 
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Figure 1.4 The Hoolj corre1at)on between the re818tlvity, ,p, and 

the resistivlty temperature coeffieient at roo. 
1 d .. , 

temperature Cl - ;(H)RT" The 'data for siaple .etals 
fall onto a different band than those for transltion 
Metal .110Y8 (fro. reference 6). 
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fi) At low temperatures the re3istivity of aIl disordered metals G 

has· a negative temperature_coefficient, provided the metals are not 

close to a superconductiQg transition. Typieally below 15K the 
1 • '-

resistivity shows a slow negative temperature variation regardless or 

. ~he specifie high temperature'behavior. In addition, one observes in 

. this temperature regime a very large magnetoreslstivity whieh is 

d1fficult to explain by the usual Lorentz-force·der1ved effeets seen 
erystalline metais. Some representative graphs of these unusual low' 

temperature resist1vity propert1es are shown in Fig.l.5a,b. 

" 

I( T L ~ ~ 
" . .p(0) , 

-

o 10 
T (K) 

15 

l 

20 

Figure 1.5 a) The resist1vity temperature dependenee of three • 

amorphous metals below 20K '(from referenee 6). 

\ 
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Figure 1.5 b) The magnetoresistance of amorphous Mg70Cu30 (ref. 9) 

amorphous Ni 50Zr 50 (r'ef • 10). 

\ 

The temper~ture dependence of the electrical res1stivity at higher 

temperaturesf i.e above 20K, has been discussed and studied by many 
7 

work~rs and ls not the toplc of thls thesis. 

'The studies on the slow temperature dependence of the resistlvlty 

at low,temperatures have a long history. At first, since the behav10r 

could be reg~rded as roughly logarlthmic, most authors assumed 1t was 

caused by the Kondo effect in which electrons scat ter off magnetic 

impurHles. The fact that aIl early amorphous metals contalned some 

magnetic eleménts lent credence to this idea, but it was shown in 1975 
11 by Cochrane and covorkers tha t the effect also ex1sted in systems 

wlthout magnetic impurities and vas of about the same magnitude. These 

) 
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authors preferred an explanation of structural origin and proppsèd that 

the eff,ect vas caysed by electrons scattering off a vibrational degree 

of freedom (rather than magnetic as for the Kondo effect), a so-called 

<.. "tvo-Ievel system". The progress on this controversial subject up to 
, 12 

1980 is revieved by Harris and Strom-Olsen vho point out that neither 

of the tvo moâels should be considered as satisfactory as they do not , 
explain eonsistently thè observed temperature dependenée of the 

resistivity and fail altogether to account for the'very large 
'\ 
magnetoresistance mentioned in point ii) above. 

The discussion over the true nature of the lov' temperature 

resistivity 'took a nev direction vith the p~~lication of articles by 

Abrahams, Anderson, Licciardello and Ramakrishnan13 and Altshuler and 

Aronov14 on the role of disorder in the behavior of the electrical 
r 15 conductivity. Folloving ideas of Thouless , ~brahams et al. presented 

a scaling theory of electron localization. They identified the first 

perturbation correction to the conductivity due to disorder to arise 
, n 

fro~ coherent backscattering processes first discussed by Langer and 

Nea116 • Shortly after, Anderson and covorkers 17 associated the slov 

temperaturé dependence of the resistivity observed in thin disordered 

metal vires vith this correetion. Altshuler and Aronov14 on the other 

hand, shoved that in disordered metals (these include thin metallic .. 
films, strongly doped semicond~ctors and amorph~us.metals) the intense 

elastic scattering in~~rferes vith the electron-electron interaction and 

causes ,a corre:tion to the density of states. As a consequence a slov 

temperature depend~t correction to the resistivity arises; in three 
• 

dimensional conductors it varies as -~. 

The w~rk by Abrahams et al. and Altshuler ~nd Aronov triggered an 

avalanche of theor~tical investigations into'the nature of the 

conductivity of disordered conductors vhich resulted into the 

formulation of theories known today as quantum corrections to the 

conductivity. All'of these theories are based on the i~ea that th~ 
eleçtron motion through a disorder,ed c~nductor). such as an amo~ph~us 

'1 " 
metal - is diffusive rather than ballistic as in ~rystalline conductors. 

Th~d1ffuSive nature of the-e~~ctron motion leads to, t~o additional 
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effects on the conductivity at lov temperatures by causing a quantum 

Interference of backscattered electrons, vhich i9 refered to as the weak 
localization effect18 ,19, and by decreasing the dynàmical electronic 
screening and thus enhancing the electron-electron interactlon2Q ,21,22. 

The theoretical studies on the quantum corrections to the 
l!l conductivity vere accompanied by numerous experimental investigations. 

Much of the early york concentrated on the vide field strongly doped 

semiconductors (th~ reader is referred to revievs in r ference 23). 

Bergmann24 vas the first to study systematically the ~ ak localization 

effect in amorphous th in films. He reported an excell nt agreement. 
The success of the quantum correction theories in three dimensional 

amorphous metals is less clear. Bieri and covorkers25 vere tbe first to 
Cl 

carry put measurements of the magnetoresistance in a bulk metallic glass 

~cu57Zr43) to study the quantum 'correction theories. Ev~ though they 
f'ind good agreement betveen data and theory at small magneUc fields 

some serious devfations are apparent at larger fields vhich become more 
<> 

pronounced at lover temperatures. Studies on the magnetoresistance by 
1 26 

Poon et al. in cu60zr40 and Y75A125 folloved. They too report 
significant discrepancies betveen theory and measurement. Olivier and 

27 Q covorkers find that the magnetoresistance in amorphous Y-Al rlbbons , , ...... 
cannot be fitted consistently to the theory over the entire field and 
temperature regime. Only Hovson et al. 28 reporj: semi-quantitative 

success of the theories in Cu -Ti me tall1c glasses. Hovever., aIl the 

experiments carried out to date on bulk amorphous metals have suffered 

from a number of serious dravbacks: The electrical transport properties 
vere complicated by one or more of d-band conduction25 ,26,27,28,c 

superconductivity28,29, magnetlc ordering30 or a signif~cant level of 

magnetlc impurities31 ,32. These complications introduce sufficient 
~ 

uncertainties into the analysis that they do not allov an unamblguous 

assessment of the success of quantum correction theories. Furthermore, 
1 

it should be noted that some vorkers have treated some'of the 

parameters f ) entering the formulae beyondovhat is physically reasonable; 

such as large, resistivity prefactors32 and variable superconducting 
25 fluctuation parameters • 

• 

t) The slgniflcance ot these parameters and the importance'~f theIr 

proper bandl!ng is expla1ned in detai1 1n Chapters 2 and 4. 
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The objective of this thesis 19 to investlgate the quantum 

"corrections to the cqnductlvlty·in the most slmple'bul~ amorphous metals 

available and to provide a strlngèn't and unambiguous test of the 
" 

existing theories. One of the simplest, metals which can be cast vithout 
\ 

) much effort into an amorphous solid by quenchi~g from,the melt, is 

Mg70Cu30 • ~orphous Mg70CÙ30 has beèn been vell characterized as a 

simple free-electron syste~, vith electrlcal transport.character~stics '. 

above the low tèmperature resistivity anomaly which are well,understood 
within the Faber-Ziman theory33,34,35. 'In this sP-Q~d amorph~us alloy 

-1 " l ' , 

the expansion parameter, (~1) , of the qua~tum correction theories, is 

weIl defined and smatl en~ugh (i.e O~06) that higher·order contributions 

are negligible. Parameter~ that enter the quantum correction-theories, 

such as resi~tivity, Fermi wave vector, density of st~t~s, electron 

diffusivity and electron screening factor, are either known from 
. -

experiment or can be 'calc"lated vi th sufficient confidence 'from free 

elect~o~ theory~3,34,35. The alloy is neither superco~ducti~g nor does 

it exfi1bit any magneti~ ordering; in lact it is diamagnetic. Also, it 

ca~ be lDanufactured ,vi th a magnetic impuri ty level of the orde1\ p~rts 
per million. Th~s leaves only two main parameters of the theories of 

quantum corrections to the conductivity undetermined. These a~e the the 

sPin:orbit and inelast1c' electron scattering ~ates which control both 

the magnitude and sign~of the corrections. Measuring the quantum 
" 

corrections to the magnetoresistance at different' temperatures allows us 

to resolve the temperature dependent inelastic scattering rate. Also, 
~ 

the spin-orbit scattering rate viII be,studied systematical1f: The Mg-Cu 

system allows progres~ive increase of the spin-orbit scattering rate by 

substitution·of up to half of the' Cu by the heavier metals Ag and-Au. 

Other electrical ~ransport ~roperties viII not change significantly, 

since Cu, Ag, Au are. elements with t~e same valence and almost identical 

covalent radii. It is expected f~om quantum correction tpeo~ies that the 

magnetoresistance éhanges sign from negative to positive when g6ing from ' 

weak to stro~ spin-orbit scattering. 

The advan\,ges of Mg based alloys are not yet exhausted. O~ can 

replace aIl of the Cu by Zn. Though being remarkably similar 

.. ~ 

J 
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,- 36 • 
otherwise , the two alloys Hg10Pu30 and H~70zn3~ d1ffer in on._~ery 
fundamental aspect; Hg70Zn30 i9 & supereonductor 7 with a trans1~ion 

, temperature of O.12K whereas Hg70CU30 1s not supercondu~ting. This 
implies thas the sigu of the electron·electron SQupllng c~nstant 18 
changed and thus offers a unlque-chance to resolve the effect of 

enhanced electron·electron interactions and supetconducting fluctuations 
() 

on the electrlcal transport ln amorphous metals. 

,. Through_deliberate doping of the high puri ty Hg "based alloys vith 

Manganese and Gadolinium it is demonstrated in this thesis how the weak . " 

locallzation quantum Interference ls suppressed by magnetlc impur!ty 
, 

scatterlng. 

In thè following ch~pte~ the theories of quantum correction~ to the 
conductlvity will be brlefly'revlewed to give the discussion ofl the 

l 

experimental data in Chàpter 4 a proper tbe~retical footing. The \ 
expetimental methods empl~yed ln this york are descrlbed in detail in 

Chapter 3. The conclusions of th!s research are drawn in Chapter 5. 

Some numerieal recipes and analysis techn~que~ are presented in the 
appendices. 

-' p 
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2. TBBORY or QtwmJK COlUllCTIORS TO TIIK CONJ;)OC'(lvITt 

2.1 General Jleaarks 
" ~ 1 

! , 

'. 

Followlng the·work of AbPahams and coworkers13 , and Altshuler and 
14 • 

AroDOV a large number of theoretlcal~tudles of the quantum 

corrections to the conductlvity ln dlsordered conductors has been 

publ1shed during the last 8 years. 'This chapter gives a reviev of those 

aspects of the quantum correction theorles whlch are relevant to the 

understanding of the resistivity meas~rements on the Kg-based metalllc, 

glasses studied in thls thesis. "t' 

A rigor6us mathematical derivation of the theories is far beyond 

the scope of the thesis. It Is merely Intended to make the quantum -', 

,correction theories plausible to, the reader, and to provide a physical 

picture of electrical conduc~ion in~orp~us metals. 

o Prior to any discussion it is necessary to define what is meant by 

disorder~d \conductors. An ordered, cOllductor ls one in which, le' the 

average distance betveen lattice defects and Impurities or the extent of 

strict tran~lational symmetry, is larger than the length, l~, over vhich 

the conduction electron wav~.function maintains phase coherence. In 

such conductors correlations between scattering events at different 

lattice defects or impurity sites are unimportant since the electron 

keeps no memory of its phase. Any conductor which does not· obey.thls 

restriction is considered disordered. Examples of the latter group are: 

aIl amorphous metals, -ManY fine polycrystalline conductors, icosahedral 

and quasicrystalline metals, strongly 'doped semiconductors (metallic 

regime), chemically disordered (or random substitutional) alloy~ and 

conductors vith a hlgh density 0 ects (such as ion-irradiated 

metals). In these materials the elastic scattering length can vary 

between one and several hundred interatomic spacings. The phase 

coherence length depends cri tic lly on the temperature and lies also in 

the above range. 

In ordered conductors the motion of the charge carriers is 

essentially ballistic, i.e between scatterings the electron propagates. 

undisturbed over many interatomic distances. A non· zero resistivity ~ 
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arises from the fact t~at electrons scat ter off the occasional lattice 
defect, Impurlty atom or thermal,~attiee vibration (phonon). UsIna 

38 ' ~ 
simple kinetic theory, as tirst shown by Qrude ln 1900, the 
reslstivlty can.be written as 

m 
'p =-2 e nT 

(2.1) .. 
where m is the current ca~rier mass, e the carrier charge and n the 

carrier volume density. The characteri~tic inverse time lIT is the total 

éffective scattering rate due to the dlfferent scattering mechanisms 

listed above. This result can also be obtained mo~e rigorously uslng 

linear response theory39. Hatthiessen's rule38 states that independent 

scattering rates,are additive and thus one can vr1te the resis~lty of 
""" 

a Metal as 

p, = Po + peT) • (2.2) 

Po ts the resi~l resistivity arising from lattlce defects Impurlties 

etc., and Is temperature independent, and p(T) is generally due to 

dynamic disorder such as electron-phonon scattering. Ideally if ~o 

correlation effects betveen single scattering events are present, p(T) 

.reduces to zero at T-O and one the~ speaks of Po as the residual 

reslstivity (see for example measurements on potassium ln reference 

40,4ï). , 
In disordered conductors the picture of baillstic motion of 

electrons breaks down. Vith .1ncreasing dlsorder the spatial separation 

of independent elastlc scatterlng events eventually becomes smaller than 
the coherence length and co~relation effects ~rlse. Nalvely speaking one 

can-say that for suffic!ent disorder the'conduction electrons undergo 

numerous random eiastlc scatterings before they lose phase memory, i.e 

le «l~. In th~s li~it the electron path can-be viewed as a random 
walk. Consequently it ls ~ppropr1at~ to define an electron dlffusivitY,D 

from the veloelty-velocity correlation funetion as 

(2.4) 

where v is the velocity of electron~_~nd the a~eraglng ls carried out 

both over the ensemble of electrons at the Fermi surface and over time. 

... 
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For a system where the relaxation 
1 

.. , .. 0 -tif 
<v(~)>t,OH - v( ) e 

·14· 
, 0 , 

(f 18 the momentum relaxation time), one can calculate D as 

1 2 
D - 'J"vp f~ (2.5) 

V, 18 the Permi velocity, and the factor of 1/3 arises from a spherical 

average of the velocity vector product 1n eq.2.4. Given the expression 

for D, it 1s possible to çewrite the Drude expression, eq.2.1, for the 

resistivity as 

p - 2 
L e ON(t p) 

1 
(2.6) 

where N(t p) is the density of states at the Permi l~vel. Eq.2.6 is 

usually referred to as the Einstein relation. To be more precise one 

should write 0 as O(tF) to indieate that an average over the Fermi 

surface vas taken 1n oalculating o. Though derived here for the free 

electron model, the Einstein relation for the resistivity is valid for 
" " aIl disordered eonductors regardless of the detailed eleetronic 

structure45 • 
The change of the resistlvity due to ân applied magnetic field is 

42 Identieally zero in the free-electron, single band model . In real 

single crystal simple metals, a longitudinal ma~etoresistance may 

appear from the Lorentz force on the electrons because of a non-
43 spherical shape of the Fermi surface . It usually incr~es linearly 

or quadratically in Cal T, Ca) is the cyclotron frequencyiand saturates 
c c 42 44 

eventually vhen Cal T is of the order 10 (see Kohler's r le ' ). In c 
strongly disordered conductors such as metallic glasses hovever, the 

elastic scattering time and hence the product Ca) f is so small, of the 
-5 c 

order 10 , that torentz-force driven magnetoresistance is negligible. 

It viII not be discussed any further (in the Hg-based glasses studied 

here, it is four five orders of magnitude smaller than the observed 

magnetoresistance, even at fields of several Tesla). 

It is important- to reaii!e that eq.2.6 does not take account of 

correlation effects. Str1ctly speaking It vas only assumed"that the 
"-

elastic scatteri~ length is shorter than the coherence length. The 
L /\ 

'. 
(,-r-t 
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conduction electrons vere still assumed to be a non-interacting Fermi 

gas v1thout any Interference betveen the 1ndividual scattering events. 
13 . 

Abrahams, Anderson, Llcc1ardello and Ramakrishnan ,and Althuler and 
14 -Aronov Investigated the changes of the conduct1vity w~ich arise when 

these assumptlons are dropped. Followlng the work of Abrahams et al., 
17 Anderson ~d coworkers showed that a temperature dependent correction 

to the C~~ductivit~ arises in disordered conduct~rs from th~ depha~ing 
of coherent electron backscattering by inelastic electron-phonon 

scattering. Later It vas shown by Kawabata46 that~a magnetic field also 

has a strong.effect on the coherent backscatterlng conductlvlty ~ 

correction. Altshuler and Aronov15 , on the other Rand, argued that 

electron-electron interactions in disordered conductors are stroDJlly 

enhancetd by intense, correlated scattering vhich leads to y~t o~her 
signific corrections to the conductlvlty expression (eq.2.6) whlch 

depend on both, temperature and magnetlc field. 

In the followlng section the effect of Interference between elasti~ 
o r 

scattering eve~ts is dlscussed and in section 2.3 the combined effect of . 
electron-electron interactions and disorder ls considered. The 

1# 

expressions for the ~gnetoresistivity glven in the following sectlons 

Involve some weakly convergent series and rather intractable integrals. 

The formulae us~d for the numerlcal evaluation for these expressions are 

given in appendix A. The r~,der should note that aIl expressions for 

the quantum corrections to ~rhe conductivi ty are wri tten" in terms of api p 

aa - -4 and not 1n terms of &al a as in the original articles. Sinct! - < 10 
a 

~ne can identify 8p/p :0: - 6a/fT. This notation was chosen to facilitate 

the comparlson of theory and experlment and to emphasize on the small 

size of the signal. 

.. 
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2.2 lleaJt Local1zation 

In the previous section it vas argued that in a disordered 
2 -conductor the resistivity can be wr1 tten as p ... Ile D(cF)N(cp)' l In the 

following heuristic picture it is shown thàt, quantum Interference 

effects lead to corrections to this expr~ion. 

Consider an electron moving from A to B along the'paths 1,2,3 shown 

in Pig.2.la. 
/ . 

A A 8 

C~· 
a) b) 

Figure 2.1 Non-intersecting a), and intersecting b), electron 
diffusion paths. 

The total probability of the electron transferring fror A to B,is given 

by the modul~s of the sum of the probablli ty wave ampl~es Ai' i.e. ' 

P(A,B) a 1 ~Al = L IAI12 + YA1A; " L IAII~ -A
2 

(2.7) 
i i ~ i 

The first term in eq.2.7 is the simple sum of the independent 

probabilities of the individual paths, i, leading to a resistivity as in 

eq.2.6. The mixed term cancels to zero as the paths have different 

lengtbs and the product AiA; averages to zero over thè ensemble of 
possible paths. Por a diffusing electron it is however possible that 

" ,J some of the p~ths\cont a loop as shown.for path 2 in Fig2.lb. If only 

elastic scatteri Ume-reversal and rotation - Is 

... 
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considered, the electron has an equa~ probability of movlng clockvlse or 

counterclockwise through the loop, so that path 2 conststs of tvo 
. separate paths of identlcal lengtn. The mixed term for the.8 two paths 

does not vanish and leads to an enhanced probabl11ty of findin, the 

electron at thé point O. Therefore the resistivity of the cond~ctor i8 

increased20 • One can investigate the Interference at point 0 further.by 
::--.. .. 

si19ply letting AJ and B tend to 0 as shown ln Flg.2.2.~ 
,-.~ 

')' 

Figure 2.2 CYosed Jectron diffusion paths (loops). 

. 
Each loop represents two complementary paths the electron can traverse 

wlth equal probability. The probability of the electron returnlng to its 

origin ls therefore 

P(O,O) ==·21 2: Ai ,,2 =< 2 ~ IAl12 - 2A~ 
i i 

(2.8) 

In other words, because of the Interference of the probabll1ty vave 
amplitudes at U, there 15 an enhanced probabl1lty for the electron to 

return to its initial position. it ls weakly localized t ). 

~ 

t) This phenomenon is not restr~cted to dlffuslng electrons. It 15 

common to aIl diffusive vave propagations. It has been observed for the 

zero angle backscatterlng of laser 11ght47 and it was observed (b~~ot 
understood then) ln radar echoes durlng second vorld war •. 

-



• 

C, 
~ , 

One ean est1mate the relative magnitude of the eonductlvity correction 
2 by esttmaUng the probabl11 ty that an electron ray of vo~ume dV- vp). dt 

20 . intersects ttself , i.e. ~ 
• T 

~ :: -J d~ 
o T 

e 

(2.9) 

Bere ). is the electron wavelength, 'vp the Permi velocity, D the electron 

d~ffusivity, d the effective dimension and a 'the transverse size o~a 

film or a wire (a«l~). Te and ~ve the same meaning as in the 
previous section. Evalua~ing the Integral gives \ 

2 .J' 

&7::::: 
e in 3D and (2.10) 1\ 1 + c:ons t • 
~ .-
2 e in 2D &7 :::::- "li""' ln(l~/le) 

1 
where l~ = ~ DT~ is the distance over which the électron diffuses 
coheren tly • f 

The temperature dependence of the weak localization conductivity 

correction is a consequence of the temperature dependence of l~. In the 
presence~of a magnetic field the electron ~quires a phase shift when it 

moves around a loop. The sign of the phase shlft depends on the 

direction. Therefore the two complementary electrons return to the 

origin with a relative phase shift of â~ = (2e/h )~, where ~ is the 

magneUc flux th~ough the l,ooP' Vhen the phase shfft Is of the order 1, 

the two complementary electron waves are out o~hase and the 
Interference r~ suppressed. This will happen if the electrons take ........ , 
longer than the time Ta to traverse the loop. This magnetic dephasing 

time Is usually deflned by 

4~ - 4~DB Ta :::: 1 or 

Bere, 2BDTB is the average magnetic flux thr~ugh the loop. In the Hg
-13 based metals studied here Ta ls of the order 10 sec at a field of IT. 

If TB ls shorter than aIl other dephaslng time sCJles Involved, e.g the 
'h dephaslng time T i

e- p due to eleetron-phonon scatterlng, then the cut 

~ff T~ in eq~2.9 is identical vith TB-and a magnetoconductance arises • 
} 
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Further insight-into the weak localization problem ~an be gained by 

looking at the two complementary paths (F1g.2.2) inothe equivalent 

~ K-space representation. These are the the maximally crossed diagrams 
~ . 

(also called fan diagrams) in F1g.2.3a flrst studled by Langer and 

Neal16 • Fig.2.3b shows the more physica~ Interpretation of Fig.2.3a by 
Bergmann19. 

Iê 
> 

( 

1 
1 
X 
1 

1 , 

K' 
> 

+ 

" Kt 

k 
..... .. 
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..... /' 
..... x, 

,,-
" " K 

k' K K'a 
.... > > 

./ 
.; ..... "" ..... 1 ...... 

+ ~x + ". ... 
". 1 ...... 

" ~ .... , ~ " l , .... 

K' K k' 

Figure 2.3 a) The fan diagram for particle-hole propagators. The solid 

lines stand for electron (» and hole «) propagators and 

the dashed lines indicate sca~tering by impurities (x). 

Figure 2.3 b) Interpretation of a) 
\9 

by Bergman~ • 

An electron~in an initial state K undergoes a sequenc~ of scatterings 

K ~ K ' • • • ~ K ' - -k into the final stàte -K. The momentum transfera 1 n 

., 

" 

~ 
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in this sequen~e are il, i2, •• • in-l' in' The complementary 
scatterlng sequence K ~ Kt" ••. • Kn" - -K results from the above 

momen tum transfers in revetse order, 1. e. in' in-l' • • " il' If .the 
individual scatterings are time-reversible and symmetric (i.e. no 

Inelastle, magnetlc or spln.orb~t scattering) the products of the 
"-scatteripg transfer matrices for the complementary paths will be 

IdenUcal, 1.e. 

fi TCSi)'~ fi TCSi ) 
i-l i=n 

and thus the a~plltudes and phases of the final states of the 

complementary scattering sequences are equal which leads to constructive 

Interference. USing Green's function t'echniques and the Kubo linear 
response theory19,39 it is possible to calculate' the exact contribution 

to the conductivity of the veak localization effect from the maximally 
crossed diagrams in Fig.2.3 as will be shown in the following 

paragraphs. 

The simplest Kubo diagram that contributes to the conductivity ls 
shown in Pig.2.4 •• 

« ,It 

1 

Figure 2.4 a) The simplest Kubo conductivity diagram. 

l-bw,K c-b'(J),K' 4 

- + + + •••• 

« ,It « ,K', 

Figure 2.4 b) SUII of Kubo diagrams with maximally crossed 
1mpur1ty scattering. 
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It yields a conductivity 

( ... f dcf (<<-1\w> - f(<<) f dI( 
a'ij (&)} 211' W (2'11')3 . 

x L vi (K)Vj(k)G
R

( e ,k)G
A

( c-"hw,K) 
$ ~ s 

Bere Vi(K} - ;EJ:> is the electron velocity at the energy E(K). 
i 

(2.11) 

1 are the impuri ty averaged retarded and advanced Green's functlons whlch 

are suitable to describe the propagation of an electron of spin s in a 
disordered conductor4B ,20. Evaluating the expression for a leads to the 

weIl known Drude formula for ~ condu
2
ctivtty 

( ) 
ne T/m 

a' =!;~ a'l,j:.x(w) = ~ 8ij 1 _ 1(&)T (2.12) .... 

which reduces to eq.2.1 at w=O. The additional effects of the coherent 
backscattering can be incorporated into the Kubo formalism by slmply 

inserting the maximally crossed dlagrams into 

all possible fans. This Is shown in Fig.2.4b. 

Flg.2.4a and summlng over 

The resulting conductivity 
correction !an be written as ) 

(2.13) 
, 

R A R~ A ' 
x Gs (<< ,k)Gs(e-"hCll,k) H ,(K,K';_ ,CIl) G (\ ,K' ) Gs(·· .. t\(.1), k' ) s,s s 

M ,(K,K';e,(&) is the mathematlcal equlvaleDt of the maximally crossed 
s,s 

diagrams in Fig.2.4b. To facilitate the calculation of the Integral in 

eq.2.13 one can rearrange the terms in a way which is equivalent to 

"twisting" around the lover hole propagator 11nes of the maxlmally 

crossed diagrams in Fig.2.3a. This yields the so-called ladder diagrams 

in the partlcle·particle channel shown in Fig.2.5a. 

.. 

J 
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f i' i K' i i' 
> > ) i ) > 

1 • 1 1 1 
• 1 1 ~ 1 f 

• le )( + x + x )( + •••• 
• • 1 • 1 , 
1 • • 

~ 1 ~ • il- 1 1 > 1 > 1 

K' K x' k K' K 

Figure 2.5 a) Ladder d1agrams in the particle-p,article channel. 

K k' k k' ft K' 

}[ 
) ) ... ... , ' 

1 1 
C • )( + )( 

1 

) ) ~ 

, .... 

K' k 1(' 1( 1( , ft 

Figure 2.5 b) Dyson equation for ladder diagrams. 

The order of the scattering sequence remains unchanged_ The Infinite 

series of the ladder diagrams can be summed easily giving a Dys~n 

equation whieh is shown in Flg.2.5b. It follows ~ the conduetlvity 

that 

(2.14) 

vith 

this yields 
2 q8 , 

e J g-4\a«(&).....o - ---r2D dq 2 
2".,.. 0 Dq - iCI) 

(2.15) 

The quant1ty C(q,~) in above equatlon and in rig.2.5b (the particle

partiel. diffusion propagat~r) 18 often referred to in the literature as 
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the Cooperon as it has a pole (the diffusion pole) at small total 
d 

mamentum q - ft + lt' analogou~ ta the Cooper pair propagator in 
supereonductivity theory. 

-1/2 The upper Integration limit, qo - (OTe) ,~in the above equation 

re~leets the faet that the coherent backscattering sequence lasts longer 
, ~ 

than the time, T , whieh elapses betveen two elastic scatterings. 
1/2 e 

(OTe) eorresponds to the length of the smallest diffusion step, i.e 

th~ distance the eleetron travels between two elastic scatteringr. The 

tempera ture dependence of the above weak localiza tion conduc tl vi ty is, 
. 17 

as Anderson,Abrahams and Ramakrlshnan have pointed out, a consequence 

of the fact that the coherent backscaftering sequence can not last 

longer than the diffusing electron wave packet maintalns phase 

coherence, i.e. T~. The eut off at T~ is achieved by replacing -iw with 
19 48 

b/T~ in the Cooperon • Some authors prefer to add b/T~ to the 

denominator of the Cooperon and take the limit w-O later; the result 

remains the same. Calculatlng the conductlvity vlth the eut off, T~, 

yields for three dimensional conductors49 
. 

.2 
&r = _ e 1 (2.16) 

21f~~ DT et» 

The dephasing tlme T~ Is, among other effects, due to inelastic 
electron-phonon or eleetron-electron scattering vith a characteristic 

-"1-

temperature dependence Tet» G T-P, p>O. 

In a magnetic field, the Greèn's functlons in eq.2.11 acquire an 

additional phase factor. In real space representatlon 'the Green's 
function can be written a839 ,19 

r' 
.. - .. - (ie f" .. d-) G(r,r') ... GB=o(r,r')'exp b .. A}(S) S 

r 
vhere A ls the magnetic veetor potential. This phase-factor 18 

Into the Cooperon by replaclng q2 in eq.2.14 by the generallzed 

(2.17) 

ab80rbed 

momentum 
.. - 2 (q + 2eA/c) • Substituting the generalized momentum by its quantum 

mechanieal eigenvalue (for the motion perpendlcular to ft only) 

4eBIh(n+1/2)., the Integration over dq becomes a summation .over aIl 

Landau levels; n, plus an Integration ove~ the q-component parallel to 

.. 



c 
-24-

the applled magoetic field. A magnetoconductlvlty follovs then from 

eq.2.15 ,(which 18 given Iater in eq.2.23 and 2.24). 
In addition to the spin conserving inelastic dephasing and the 

, 
dephasing due'to a magnetic field, scattering mechanisms that change the 
spin state of the backscattered electrons have to be considered. Th~ 

quite obvlous slnce the interference at point 0 in Fig.2.2 involves t~~i 
total wave function and not just its spatial part. The Interference viII 
not be ~onstructive if the electron spin has been changed along one of 

the tvo cpmplementary-paths. There are two important mechan1sms vhlch , 
change the electron spin state. The electron spin can inter~ct vith a 

(l 
localized magnetlc moment (lmpurity spin) or vith the electron's angular 

moment vhen it ls seattered by ~on (spin-orbit seattering). Bach 

process leads to a eharaeteristic dephasing time, T
S 

and T
SO 

respectively. The related Hamiltonians of elther process have a symmetry 
different from the orthogonal symmetry of the previously diseussed 

processes. Hagnetic impurity seattering is descfibed by a unitary 

Hamll tatl'!'in and spin· orbit sea ttering by a sympltkti c .B4m1l tonlan. They 
'-0 

causé' the vertex C in eq.2.14 (the Cooperon) to have a more eomplex 

structure. Hikaml and collaborators50 shoved that the vertex shoul~be. 
1 

C - 1 21ï -2:::----
1
--:-4 ----:2=- - î 2 

2'1rr(c p )"e Oq - iCal +~ -j,..ç- Dq-

sa s .' 

(2.18) 

The factors 3/2 and 1/2 are a consequence of the~ltiplieity of the 

sp?triPlet and singlet statest ). In the absence of magnetie impurity 
scat ering- (liT - 0) and for vealt spln-orbj.t ·scattering (T 0 large) the ' s s _ 
ve ex C reduees to the expression given in e~.2.14. If the opposite 

limit is assumed for spin-orbit se~ttering (T
SO 

very small) the triplet 

term in eq.2.18 vanishes, vhll~ the singlet term remains unehanged. 
, Q- . 

J) Isotropie sçattering ois assumed here, Le. 
1 l ,1 -1 

- - - ... -- • -- and slmilarly for liT EVen though T ' 
X Y Z 3T s, sa 

~ T so ,T SC) T so s~ 

and Ta are not isotropic'in general, .this.simplific~tion .. makes 
, ' 

a negl1gible / dUference in ~ulk. metâllic glasses. \.. 

\ 

_ \ -'- r .. 
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The~efore the vertex C reduces to that in eq-.2.14. but vith an 
. . 

additional'factor of ·1/2. This Implles that in changing froa veak to .. 
str~ng spin-orbit scattering the silO of the veak localization quantum' 

• ". ~ • .. l.:: .. ~ • • .: :. 

in~erference effect reverses and its magnitude-ls halved. If magnetic 

impuri~y scattering is present in the conductor (finite lIT ) the 
" s 

triple:. and s,inglet part of C are both reduced. The quantum Interference 
dlsappears entlrely ln the concentrated magnetic ~mpurity limite 

The varlous dephaslng times introduced above have been calculated 

by several authors. Takayama51 derived the inelastic scattering rate for 

electron-phonon scatterlng at lov temperatures as 

(2.19) 

u e-ph 11 -1 where À=O(l) and thus llT i is of the order l><l.Qsec at 10K. This 

. " 

ls tvo orders of magnitude larger than the Bloch-Grüneisen inelastic \ 

scattering rate, which falls off as T5. Chakravartry and Schmid45 have 

presented another calculation of the inelastic electron·phonon 
scatterlng rate. They find that ,1t can vary anywhere betveen T2 and T4 . ' 

depending on the partlcular phonon modes and their res~ective velocity 

of sound. The magnitudes are comparable vith the above result. 

The electron-electron scattering rate for three dimensional 

conductors has been calculated by Schmid52
• It can be vritten 8s24 

(k T)2 1 (~_T)3/2 
1 1f B + 1 (!...) 2 -'"B 
e-e == ah cp 6tl 5iDJ "-";~1""/2"'-

Ti .p 
(2.20) 

yieldlng a rate I/T i
e-e of approximately l08sec-l at lOK whlch ls 

negllgible compared to the inelastic electron-phonon scatterlng rate in 

eq.2.19. 

:t e-ph t ls important to note that the ~nelastlc scattering times Ti 
e .. e 2 1 and Ti which follov from eq.2.19 and eq.2. 0 are not necessari y 

identical vith the dephasing time due to the respective inelastic • • 
proeess; The 'effectiveness, 1.e the size of the energy transfer in the 

scattering proeess, has to be accounted for. However, Altshuler and! 
20 45· \ Aronov and also Chakravartry and Schmid have P?inted out that large 
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eaerBY transfers dom1nate in three dimensional disordered metals and the 
o " 

di.tinction is therefore unnecessary. Por scattering mechanisms vhich 

cause a change of the electronic spin state the scattering time ,is 

identical with the dephas1ng time • 
• 

The spin-orbft scattering rate has been jerived by Verthamer and 
coworkers53 ,54 as 

(2.21) 

where <Mso> is the spin-orbit scattering' matrix element. The second 

equali ty is valid for superconduc tors only. Vit. A. = 0(1) one finds for 
Il :n ' so 

Kg70Zn30 that I/Ts~~ 10 sec~l, which is of the same order a~ 
e-ph ' . 

11Ti • This is about the best estimate one can give since <Kso> is 
not known for Kg-Cu and Mg-Zn glasses. One do es h~wever expect a strong 

dependence of T on the concentration of heavy elements in the a110y. ,so 8 
It has been shown that liT should vary as Z in meta1s if the single 

soc 55 
conduction elec~rontwawe function is approximated by atomic qrbita1s 

The magnetic spin scattering rate can be determined from Permits 

Golden Rule, which gi ves b . . '" 
1 2'11' 2 
;- - c li"" N(,p>O J -S( +1 (2.22) 

a . -- . c ia the magnetic impurity concentration, n the atomic volume, J tQe 

spin exchange Integral (scattering matrix) and S(8+1) the degenera'cy"~ 

the magrietic spin S. In amorphous Kg-Cu and Kg-Zn a110ys on1y manganese 
holds a ma~etie moment. Vith S::;: 2.2 and J=: -0.25eV 56,57 one finds 

9 ~l . 
lITS to be of the order of 2xlO ~ec per ppm of manganese. 

Va have seen above that the scattering time~ due to inelastic 

.lectro~-phonon, magnetic spin and spln-or?it scattering have comparàb1e 
• magnitudes. Consequently ve expect the weak loca1ization conductlvlty 

correction ta be sensitive ta variations of anyof the above time 

scales, i.e to temperature, ta the-ca~centratian of metals with large Z 

and ta magnetic impurities. 

\ 

/-
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• All the majo~ aspects of the veak locallzatlon quantum Interference 
, ~ .. , 

effect have -now been sketched out. It only rl!_ins to calculate the 

temperature and field dependence acéordi-. to eq.~.14, vith th.'varioua 
'scatterlng mechanisms !ncluded. Unfortunately this i8 a rather ' 
complicated and long calculation, the details of which do not contribute 
to any addltional 1nsight into the phenomenon. For th!! reas~n only the 
results of such calculatlon~ are p~esented and the reader ls referred to 

the.;f~,iginal art,lcles for 4~h~ exact treatment. 
Fukuyama and Boshino have calculated the field and temperature 

~ . 
dependence of the weak localization resistivity for three dimensional 
dlsordered conductors in the p~esence of lnelastic and spin-orbit 
scattering 1n the limlt T «T ,T~. They flnd: . e 50, 't" , 

(7)YL = p 2:~ ~ ~ L~{f3(:J -<f3[:J} - f3(:21 
( 

The parameters are definedcas 

[
3g* BL2 , 

vi th l" 8eD~o 
* . g is the effective g-factor and has a 

value of 2 in metals; and 

2Bso( . ..-:-l 
B ~ .. B1 + --y- l~" l-'YJ 

\ 

Bi -and Bsct3 a7e usually referred to as the inelastic and spin-orbit 
fields. They are related to the dephasing times discussed earlier 

r 

(2.23) 
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(similarly to TH and B) by 
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B 1\ 
x = 4eOT 

x 

f3 is an infini te series résulting from the evaluation of the Integral 

in eq.2.14 for aIl Landau levels n. rts properties are discussed on page 

36~ The expression in eq.2.23 includes the effect of the spin-up.and 

spin-dovn band splitting (Zeeman effect) in the presence of spin-orbit 

scattering. In a magnetic field th~ energies of the two bands are split 

by 2~B which alters the admixture of spin-up ari~ spin-dovn states due 
o 58 

to spin-orbit (or magnetic spin) scattering. Trudeau and Cochrane , 
pointed out only recently tha.t in systems with a considerable 

paramagnetic enhancement, the g-factor should be multiplied by the 

Stoner factor 1/(1-x/x ) = 1/(1-Ï) to reflect the fact that the ban~ 
p . 

splitting is increased by strong electron correlations. In systems with 

no paramagnetic enhancement and a large electron diffusivity, the Zeeman 

contr.ibution is negligible and eq.2.23 reduces the following expression 

which Altshuler and Aronov20 have derived based on calculations by 

Kawabata46 and Hikami et al. 50: 

(2.24 ) 

and B
n 

B +~B +~B 
3 = i 3 s 3 sa 

Bi and Bso have been defined above. The dephasing effect due to magnetic 

spin scattering has been included in thls expression through the spin 
< 

scatterlng field B , vhich is related ta the magnetic spin scatterlng s 
r$te, given ln eq.2.22, by Bs='h/4eDTs • A similar extension of eq.2.23 

to fIni te magnetlc spin scattering has not yet been presented ln the 
, ' 18 

nterature. However, Maekawa and Fukuyama have calculated the 
, 

c~rresponding magnetoresistance in tvo dimensional conductors including 

. the additional magnetic spin scattering effects. In a simple 

calculation one can take their '~alculatlon of the vertex C (which has no 

dimensional dependence) and carry out a lov Impurity concentration 

expansion (BS small, i.e Bs«Bso). One finds that B± and B2 in eq.2.23 
1 
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should be replaced by 
~ 

2(B -B ) 
B = Bi + 2B + s~: (I ± ~) :t s , 

To~est the-valigity of this extension one needs only to consider the 

* llmit of zero Zeeman spl1tting (i.e g ..0) and one f1nds that eq.2.23 

still reduces to eq.2.24 as required. 

Ins- the high puri ty Hg- Cu and Hg -Zn glasses 

smaller than B so that one can write so 

~ 2B ( ) 
B:t = Bq, + 3

s0 
1 ± \fi'=';' 

u ../ 

4 
B2 = Bq,+ 3Bso = B3 

studied here, B is much s 

The magnetoresistance is thus convenlent1y defined by dnly four 

parameters, the known resistlv1ty p and diffuslvlty D and the unknown 

spin-orbit scattering field Bso and the (as ve calI 1t) dephaslng field 

B~. Bq, combines the dep~aslng effects of, to first order temperature 

Independen t, magnetic Impurity sea ttering and tempera ture dependen t, 

Inelastic e1eetron-phonon and eleetron-e1ectron seattering. As we shal1 

see in Chapter 4 this definition a1lows us to ~nalyse the 

magnetoresistance measurements with a minimal number of adjustable 

parameters. The error the above definltion of B2 Introduces into B , so 
ls, in the materials studied in this thesis, always 1ess than 2% and 

r- therefore negl!gib1e (see Chapter4). , 
Representative plots of eq.2.23 and eq.2.24 ire shown in Flg.2.6a·d 

for dlfferent sets ~f scattering fields BI' Bso' and Bs' A comparls6n 
between eq.2.23 and eq.2.24 ls plotted in Fig.2.6e vith a value for the 

electron diffusivity D of O.2cm2/see, typical for amorphous d-band 

metals, and 6cm2/sec, typiea~/for amorphous sp-band metals such as Mg·Cu 
~ 

or Mg·Zn. qe find that ~or !he al10ys studied here the Zeeman sp1lttlng 

has no effect on the magnetoresistlvlty ln the field range under 

/ 

1 
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consideration. The effect of D on the magnetoresistance cao ~made more 

transparent by the following argument: the dephasing effectiveness of 

the applied magnetic field fs proportional to the flux through the area 

of the self-interaecting loops (Flg.2.2) and hence proportional to 

(l~)2 - DT~ (the diffusion length l~ vas defined in eq.2.10). In 

contrast, the dephaslng due to the Zeeman splitting in the presence of 

spin-orbit scattering depends on the number of spin-orblt scatterers 

along the loop and ls ,therefore propor~ional to the length of the Ioop 

VFT~. It follows that for small 0 the Zeeman dephasing is more effective 

than the magnetic field dephasing, whereas for l~ge 0 the reverse is 
true. 

, 
/ . 
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Pigure 2.6 a) Noraallzed veak locallzatlon aagnetoreslstance (eq.2.23) 

for varying dephaslng fields, Bt' at constant, ;eak 
spin· orbi t scat tering • p - 5O..,o::a and D - 6ca / •• c. 
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Flgure 2.6 b) Noraallzèd weak localizatlon magnetoreslstance (eq.2.23) 

for varying dephasing fields, _B~, at c:on~~ant, ;trong . ( 

sp1n·orbit sc:atterlng. p - 50JAlkm and D - 6ea Isec. 
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Figure 2.6 c) Normallzed veak locallzatlon aagnetoreslstance (eq.2.23) 
for several sp1n-orbit scatter1ng field., B , at 

.0 2 
constant dephaslng field B •• p - 5O,...o:a and D - 6c. I.ec. 
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Pigure 2.6 e) Noraallled veak localllatlon'..,netoreliltance (eq.2.23) 
for small and large dlffuslvltles.. 1 

Eq.2.24 glves Identlcal results for D ~6ca2/sec. 
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• 46 The functlonal fora of fJ(X) was flrst derlved by Kawabata as: 

00 

f.,(x) - ~ a (x) 
~ n-o n 

(2.25) 

The tunctlon Is plotted out ln Flg.2.7. Detalls of the algorlthm used 

to calculate thls curve are glven in Appendlx A. The asymptotlc forms 

of fJ are 

f _ x
3/2(1 '7x

2 
+ ••• ) 

3 - 48 - 64 

2 
f3 ::: 0.6049 - -

\fi 

for x« 1 and 

for x» 1 • 

One can therefore expect the magnetores1stance to vary at low fields as 

+B2. Specifically, for B « B.t.. «B 'Î' 0 
'1' so 

(!.e) e2 le 1 B
2 

p VL = P 21r~ ~ b B4»312 96 p.26) 

and for large fields (B » BcjI' Bso) the magnetoresistivity should vary 
as 

(!l!) = - pL J eB x 0.6049 
p VL 21r2r."il 

(2.27) 

. 
~his means that as long as the disordered conductor has a finite spin-

orbit scattering strength B , the low field magnetoresistivity will so 

always be proportional to +.82 with a slope depending on the dephasing 

field B~. In contrast, the high field magnetoresistance has a universal 

-~ field dependence. Vhether the low or high field asymptotic regimes 

can be resolved experimentally depends critically on the size of BcjI and 

B • 
so 18 

Maekawa and Fukuyama have also derived the temperature dependence 

of the weak localization correction to the conductivity three 
, 

\ 

l 



o 

o 

-

-37-

dimensional eonductors: 

+ -L) 3T so 

(2.28) 

1/2] 

Fig.2.12 shows this correction compared with other temperature dependent 

conductivity eorrections (to generate the plot the values given in 

section 4.2.4 were used for Ti and T ). so 
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Z.3 Bnhanèed Blectron-Ilectron Interactions 

. In the previous sect'on the direct effect of quantum, Interference 

on the resistivlty vas discussed.~n this section two indirect quantum 
Interference effec,ts viII be discus d briefly. 

The diagrams ln Flg.2.8 shov e lovest order electron-electron 
interactlon processes 1n the absence Impurtty scattering. 

a) b) 

2.8 a) The simplest Bartree electron-electron interaction dlagram in 
the absence of Impurity scattering. The closed line May be an 
ele~tron or hole propagator. The thln vavy l1ne denotes the 
bare Coulomb interaction. 
b) The simplest exchange (or Fock) electron-electron intera~~lon 
diagram in the absence of impurity scatterlng. 

The Bartree term in Fig.2.8a symbolizes the interaction of an Electron 

~ vith a fluçtuat!on of the vacuum. It can be vieved as the basië 

interaction of-an electron vith the Mean field of the surroupding 

electron gas and leads (in connection vith higher order. terms) "to the 

screen1ng of the electron charge (it is discussed in more detail by 

Aseroft and Hermin38 and Hahan39). The exchange term in Fig.2.8b is the 

simplest correction to the Electron self-energy due to electron-electron 

seattering. It is similar to the self-energy correction due to virtual . -
phonon exchange (vhere the e~e interaction line is replaced vith a 

phonon 11ne) vhich has to be considered in more detailed density of 
- If!. 

states calculatioDh In disordered conductors, the intense inelastic 

scattering interferes vith the ele~tron-electron interactions, leading 

to scatte~ing processes vhich are represented by the diagrams in 

Fig2.9a-f. The bare e·e interaction (thin vavy linet~ig.2.8a,b) ls 

-----------------~- -- ---~_.- -----
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replaced by a renormalized e-e coupling ~ and a coherent impurity 

scatterlng sequence D or C is added. The Cooperon, C, vas defined in 

F1~.2.5. The d1fiuson, D, ia similar to the Cooperon, a,summation of 

ladder diagrams in the particle-hole channel as 1s ~emonstrated 

graphically in Fig.2.10a,b. The renormalized electron-electron coupl1ng 

in the p'article-hole (diffusion) channel, ~D' and in the partiele

paTticle (Cooper) channel, ~c' are defined ln Flg.2.10c,d. In the 
I1terature, the processes ln Flg.2.9a-f are usually referred to as the 

Hartree and ex change (FOck) terms in the Cooper and dlf~ channel. 

1 
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a) h) 
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c) d) 

• 
" '- ... ,.. -"-x-

e) , f) 

Figure 2.9 Hartree and exchange diagrams in the particle-hole (p-h) 

and particle-particle channel (p-p). ~ 
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Figure 2.10 a) The diffuson. 
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Figure 2.10 b) The Cooperon. 
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Figure 2.10 c) The "dress'ed" electron coupling ia.. the diffusion 
channel (thlck wavy line). The thln wavy 11ne 15 
the bare coulombic electlon interact~on. 
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Figure 2.10 d) The "dressed" electron co~pllng in the Cooper channel. 
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Physically, the Hartree terms in Fig.2.9a,c,e lead to a decrease of 

the electronlc screenlng and therefore to an enhanced electron-electron 

interaction. This is because the intense elastic scattering in a 

disordered conductor prevents the "sluggish" electron screening-cloud 

from following a scattered eleé1tron as perfectly as it does in an 

ordered conductor. The ex change terms in Fig.2.9b,d,f should be 

considered as higher order corrections to the electron self-energy in 

the presence of static impurity and electron-electron scattering. For 
20 this reason Altshuler and Aronov refer to them as the density of 

states corrections. 

A different picture of the enhanced electron-electron interaction 

has been proposed recently by Bergmann59 • He has argued that the Hartree 

term (and similarly the ex change term) should be understopd as an 

Interference effect similar to the weak localization effect. In 

Bergmann's view the effect comes about from an eleçtron scattering 

around a loop exactly as Fig.2.2. Vhen the electron wave returns to its 

start-ing point 1t Interferes vith the local charge distribution. The 

in terference crea tes a charge modula Ùon which con tains aIl phase 

information of the scattering events alonb the loop path,-mucn-like a 

hologram but with éharge flow replacing light flow. A second electron 

scattering around the loop from a different starting point will be 

scattered by this "charge hologram" and return to its star~ing point. 

Because the hologram con tains aIl phase information of the loop, the 

phase change of the second electron exactly cancels wh en it returnsto 

its starting point. It therefore Interferes constructively vith the 

local charge distribution at i ts s"tarting point. This leads to a change 

in the resistance similar to that discu~sed' in section 2.2 for the veak 

localization effect, and should therefore, as Bergmann argues, be 

sensitive to magnetic fields, inelastic, spin-orbit and magnetic spin 

scattering in mu ch th~ same manqer. 

Some insight into the magnetoresistance can be gained from the 

diagrams in Fig.2.9. The ex change processes in Fig2.9b,d,f can not ~~ad 

to a Zeeman type magnetoresistance as the spin is conserved in these 

processes. Also, the processes in the particle-hole channel in 

f 
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Fig.2.9a,c,e (with small momentum difference, i.e k' - ~+ q vith 

Iql«lkl) can not give rise to an orbital magnetoresistance. A 

magnetoresistance can, however, arise from the Zeeman band splitting of 

the Hartree particle·hole diagram because the two propagators May have a 

different spin state. lt is usually referred to as the diffusion channel 

magnetoresistance. Beeause the size of the total momentum ls not 

restricted, one has to average. the screened Coulomb potential over the 
-total momentum. This leads to a size factor F of the magnetoresistivity 

.......... 0-

which depends on the d~tails of the electron screening and ~~!,F.ermi 

surface of the conductor under consideration. The functional form of the 

diffusion channel magnetoresistance has been derived by Lee and 
Ramakrishnan60 ,21 as 

vhere 

fdn V(q= 2kpsln( &'2) 
F = fdn V(q=- 0) 

ao 2 
g3(x) == fdw (~[Cd N(Cd)l)(\J CIl +x + \tICd - xl - 2'f;:) 

o dCd 

N(Cd) = [eCil 
_ 1]-1 

(2.29) 

V(q) is the Pourier transform ofothe static screened Coulomb potential, 

and F is the electron·electron interaction-at the Permi energy averaged 

over the soUd angle Cl. For the simple metals studied here one can 
> 

calculate F quite easily, by treatlng them as free-electron metals and 

using the Thomas-Fermi screening theory~n transition metals F Is 
more difficult to evaluate sinee the elect onic structure is more 

, 
complex and the Thomas·Fermi theory noes n t apply. 

\ 
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'For tbe simple Mg-based a11018 studied here we find 

k 2 !2k 2 1 
F - (2k:J ln (k:J + 1 ::: 0_5 

f 

2 

k2 4me kF 
- 2 o 11'1'1 

is the Thomas Fermi screening vector 

The numerica1 evaluation of g3(X) is given in the appen~A.2. Lee and 

Ramakrishnan point out that the above equation is calcu1ated under the 

assumption that the Zeeman splitting of the spin-up and spin-down bands 
.' 

1 

is so'large that no significant admixture of the two bands by spin-orbit 

or magnetic spin scattering occurs as thïs wou1d suppress the 

magnetoresistivity. Bence the fo110wing restriction app1ies to eq.2.29 . 

g~B 
4eD » Bso' Bs 

In the Mg-Cu and Hg-Zn alloys under consideration here, eq.2.29 is 

therefore on1y val1d in the weak spin-orbi t scatt'ering a110ys. 

Fortunate!y, the size of the Diffusion channel magnetor~istivity is so 

9ma!1 in these a1loys that the above limitations are not significant. 

Recent1y Trudeau and Cochrane58 have shown experimental1y that the band 

splitting in the diffusion channel magnetoresistance is, like the weak 

localization magnetoresistance, enhanced by the Stoner factor 1/1-1. A 

plot of the diffusion channel magnetoresistivity is shown in Fig.2.ll. 

/ 
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Figure 2.11 Normalized magnetoresistance due to enhanced electron 

-electron interaction, superconducting fluctuations 

and magnetic 1mpurit1es at 4.2K. 
2 

p == 50~m, D = 6cm sec, B4» - ImT, Ds· 0, • 

(1) H~i-Thompson, eq .2.35, vi th Tc - 0.12K 

(2). Cooper channel, eq. 2 .32, vi th T - TF - 85000K 
o .. 

(3) diffusion channel, eq.2.29, vith P - 0.5 
. a 

( 4) Cooper channel, eq. 2 • 31, vith T 0 - O. 12K 

( 4) Cooper channel, eq • 2 • 32, vi th T 0 - O. l2K, 

and eq. 2.30 vith a-l/1l' 

(6) negative KR due to 25ppm of Hn (eq.2.39) 

(7) Cooper channel, eq.2.30, vith CI-l 
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An orbital magnetoresistance arises from processes in the 

particle-particle (Cooper) channel shown in Fig.2.9c,d,t,e (with small 

total momentum, i.e Ip+ p'I=lql«lpl). The Hartree processes in the 

particle-particle chann~also give rise to a Zeeman type 
61 magnetoresistance which i however negligible . Several authors have 

calculated this contribution, but their results are not consistent and 

there has been some controversy in the literature as to which should be 
considered correct. The individual results are therefore discussed ln 

some detail here in order to determlne whlch should be used for the 

analysis in thls thesis. Under the assumption electron pair-interaction 

constant, g, does not depend on the resultlng (small) total momentum, 
61 Althuler and Aronov find for Cooper channel magnetoresistance 

~ 2 

(~)cc .. ap 2:2rt J ;B g(T,B) ~3(~~) (2.30) 

00 

1/2 f t 1l2 1 xt 
~3(x) = (2"!.) dt ( ) 

il 0 sinh2t - sinh(xt) 
where / 

4k. 
In superconducting metals the coupling constant g(B,T) ls written as 

* -ln(iJ 

f where T* = max(T, 4k 
" B 

In non-superconducting It has a different form, I.e 

g -l(B,T) =.1 + In('YTFJ 
.À .,{f,* 

In('Y)-C-o.577 and À ls the dimensionless electron-phonon coupling 

constant which 18 approximately 0.1 in Mg-Cu glasses (this is an upper 

bound given by the McMillan fomu~23 for T =0). Ve note that the 
. c 

Cooper channel magnetoresistance is negative in superconductors and 

positive in non-superconductors because of the sign of g(B,T). In 

calculating the above magnetoresistance, the authors have neglected 

térms of the order of BIT in the expression of g(B,T). In how far these 

higher order terms become important in the field and temperature regime 
\ 

, 
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considered in this ~hesis is not known and still subject of ongolng 

resëarcht >. Altshuler and Aronov argue in refere~ce 61. that the factor 

a 1s 1 ln the l1mit Gf weak spln-orbit scatterlng and 1/4 in the limlt 
of strong spln-orblt scattering because the Kubo formulat of the 

d1agrams in F1g.2.9 which lead to eq.2.30 Involve the square of the 

Cooperon (eq.2.18). It was discussed earlier for the weak localization 

effect that and strong spin-orbit scatterlng suppresses the triplet part 

of the Cooperon and halves its size. However, Isawa and Fukuyama22 have 

pointed out that there ls an exact cancellat10n of the Cooper channel 

exchange terms vith the paraI leI spin part of the Cooper channel Rartree 

term and only the singlet Cooper channel Bartree term contrlbutes. The 

. factor a should therefore be 1/4 in either spin-orblt scattering 
limlt tt ). In a later publicatlon20 Altshuler and Aronov present a 

~ d1fferent expression for the Cooper channel magnetoresistivity where 

they also Include the Zeeman sp11tting and magnetic impurity scatterlng 

effec ts: 

1 

(!e) _ L (~TJ2 g(T,B) F (2eDB gJA.:aB bITS) 
"1 Il CC - Il 211"~ bD 2 -1 ~T' 11kBT' 11kBT 

(2.31) 

The function F_1 is deflned as (after 20 64 an analytlcal continuation ' ): 
QI) 112 f dt t (1 

= a sinh2 t 

Xl ~' -x3t 
- Slnh(x

1
t} cos(x2t) e 

1 Ye note that the prefactor in the above equatlon differs by -- from that 
(l1l' 

in eq.2.30. As both equations have been calculated from the same Feynman 

diagrams in Fig.2.9 su ch a dlfference should not occur and ve conclude 

that the above results should not be used. 

t) KcLean and Tsuzuk162 have suggested that g(B,T) should be extended 

as 

-1 

g(B,T) = (ln(Tc/T) + 'I{~ -1! ~ 2~:T)) 
Bovever Lopes Dos ,Santos and Abrahams63 have polnted out that thls 18 

unphysical. 

tt) This is underlined by the fact that for a-1 the Cooper channel 

magnetoresistance ls too large coœpared to the 81ze of the .. 
aagnetoreslstance meaaured ln the Mg-Cu and Mg-Zn gla •• e. her •• 
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The Cooper channel magnetoresistivity has also been calculated by 

Isawa and Fukuyama22 for repulsive electron-electron interaction (non

superconductors). The authors explicitly conslder the cancellation of 

the exchange terms with the parallel spln p~rt of the Hartree term 

mentloned above and find 

& e2 fëB 3'fr2( ~T) 2 
(~)CC - p-r \lb ""2 4ei5ii g(T,B) ~(B,T) (2.32) 

2'fr-n 

where ~ 1 5 1 k+ 2 h 312] ~(B, T) = - '" k t (2'2 +~) - "j(k; 'Y) 
k=O 

2eDBi 
'Y - 1IksT ' h ... BIBi 

'~ ,- generalized Riemann ,-function 

1 
g(T,B) = 

2 (1. 13TF) 
F + ln T* ~ 

The other parameters have been defined earlier. The expression Is 

derlved from perturbation theory to flrst order in the disorder 
-1 parameter, (kple) ,and to Infinite order in the electron-electron 

interaction. As the disorde~ parameter is small in the Kg-based glass es 

studied here, i.e. (K-l )-1=0.06, the above expansion should be valid -lF e . 
vithout restriction. The expression for the coup11ng g(B,T), hovever, 1s 

not exact. Similar to the expression by Altshuler and Aronov, it is 

correct only to lowest order in BIT. Ve note that thé tvo expressions 

have a very similar fo~m (for non-superconductor~), they differ by only 

about 20%. Although Isava and Fukuyama have derived the Cooper channel 

magnetoresistance for the mutual electron repulsion only, It should be 

valld for the attractive case (superconductor) as vell, because the 

underlying Feynman d1agrams are the same and only the sign of the 

coupling g(B, T) differs. One can therefore uS,e eq.2.32 for 

* superconducting metals as weIl vi th g(B, T) = -1Iln(T IT ) for the 
.~ c 

electron·electron coupling. The dephasing effect of inelastlc 

, 
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~ 

electron·p~onon scatter1ng on the COQper channel magnetoresistance has 

been included in eq.2.32 through the 1nelast1c scatter1ng field Bi. In 
" 'the range of temperatures and fields studied here it 1s however very 

small. Not included in the der1vation of eq.2.32 vere the Zeeman-band , 
splitting and magnetic impurity scattering effects which decrease the 

Cooper channel magnetoresistance. Judging by the corresponding factor 

(
g'""sB J (bITs J 

cos ~T t exp ~BT t 

in eq.2.3l they are n large diffusivity 

glass es studied here. For typical values ôf D, Bi' and lITs and, using 
the same coupling g( B, T) w Und tha t eq. 2.32 and 2.31 are very s 1mllar 

as is shown in Fig.2.ll. On t escale of this figure the two expressions 
< are 1dentical for B<3T an~ fer by only 10% for B.6T. Ve also find , 

that eq.2.30 falls onto the curve of eq.2.32 if the factor a is set to 
:-

-l/~. Ve therefore conclude that eq.2.32,eq.2.31 and eq.2.30 (vith 

«=1/~) give consistent descriptions of the Cooper channel 

magnetoresistance. For the analysis of the data eq.2.32 1s used as it 

includes the dephasing due to inelastic electron-phonon scattering. 

To complete the discussion on enhan~d electron-electron 

interactions, the temperature dependence ~f the d1ffus10n and Cooper 

channel res1stivity correction 1s given in the follow1ng equation20 ,21: 
v 

(!e) (T,B=O) _ (!l)DC (T,B=O) + (~)CC (T,B..Q) 
p e-e p e-e p e-e (2.33) 

2 (k~~ 1 e -15"2 2 3- -1 
- -p- - [- - -F - g ])( 0.915 

2 ~ bD 3 4 a 
11' 0 

The quantities F and g-1 were introduced in eq.2.29 and 2.30. It is 
a W 

not clear from the discussion by Altshuler and Aronov whether the 

Cooper channel part in eq.2.34 also applies to·the repuls1ve electron 

interaction case. Plots of eq.2.34 for typicai values l~~g.based 

glasses are shown in Fig.2.12. 
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T (K) 

Norma11zed quantua corrections to the resistlvity. 

p - 50,...ckm, 0 - 6cm
2
/sec. 

The abreviations have the follovin meaning: 

DC • diffusion channel vith F = 0.5 
CT 

CC sIc. Cooper channel with T = T = O.12K o c 
CC non-sIc - Cooper channel vith To = Tp= 85000K 

VL • weak ·local1za tion vi th B· - 1 T, 
so ~ 

for B. see eq.4.2 

MT • Maki-Thompson vith Tc - 0.12K 
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2.4 Superconducting Fluctuations 

In addition to the resistivity corrections dlscussed in the 
previous sections, a temperature and magnetic field dependent 

p 

resistivity arises in disordered superconductors from superconducting 

fluctuations above th~ transition temperature. In contrast to ordered 

superconductors, superconducting fluctuations, i.e Cooper pairs with a 

small correlation length and a short ll~etime, can exist in disordered 
• r 

superconductors far above the transition t~perature (T = 50T). One 

distinguishes betveen two types of contrftiutions to the resis~lvity: one 

from the current carried by the superconducting f~uctuations, whlch ls 
65 referred.to as the Aslamasov-Larkin term ,and one from the scatterlng 

of normal electrons by the superconducting fluctuations, which Is 

referred to as the M~i-Thompson term65 . 

Ami and Maki65 have investigated both the Aslamasov-Larkln and 

Maki-Thompson terms in great detail. ~-find tha t the Aslamasov: Larkln 

contribution decreases rapidly e the transition temperature. This is 

in agreement with experiment l results by Johnson and collaborators66 , 

who reported that it is negl~gible above 1.3Tc • In contrast, the Maki

Thompson term persists to vell above T • Ami and Maki show that It c 
consists of two parts: one vith a large magnetic field and small 

temperature dependence, and a second vith a small field and drastic 

temperature dependence. The latter term decays vith temperature as 

exp(-'Y\I"t) (t Is the reduced tempe~a e t= T-T IT and .., ... 0(1» as was 
, 66 c c 

shown exp~entally by Johnson et 1. in type II amorphous 
superconductors. In Chapter 4 it 1s shown that such a decay is a1so 

observed in the Hg-Zn glasses studied here. Unfortunately, the 

expressions Ami and Maki give for the Kaki-Thompson resistivity 

temperature and field dependence are long and extremely complex and are 
67 therefore not reproduced here. Altshuler, Varlamov and Reiser , however • • 

have given a simpler expression for the temperature dependence ln the 

absence of a magnetic field as 

1 

(~) e2 (Ita'rlï 2 KT(T) .. P-y- "hDJ g (T)x 6.8 
p 2'11'"""'Tl 

(2.34) 

( 

/ 
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and " Larkin68 has ca1culated the magnetoresistance as 

/ (2.35)1e 

g(T) is theJbare electron coupling introduced in eq.2.30, and f3 and B~ 

were defined in eq.2.24. The coupling constant ~ is related to 

g(T) - -1/1n(T/Tc) t y 

2 co co 

~(T) =: ~ (-1)mrc1ml ) - ~ r"(2n+ 1) 
m"" -co na: 0 

(2.36) 

where t ) r( 1 ml) "" [-g -1 + 'II( 1/2 +1 ml) - 'II( l /2) ] -1 

and '" is the digamma function. 

The magnitude of the two expressions above reduces only logarithmically 

with increasing temperature above T • Ve therefore expect the Maki-
. c 

Thompso~ term to contribut~ significantly to the magnetoresistance in 
the Mg-Zn glasses even at temperatures as high as 10K. It-was-poin-ted-

, 20 out by Altshuler and Aronov that only a singlet term contributes to 

the Maki·Thompson magnetoresistance in eq.2.36 and it is therefore not 

limited by the strength of spin-orbit scattering in the a1loy. 

According to Larkin68 however the validity of eq.2.36 is limited to 

small all~lied fields and small 

. B ,Bi « ~:ln(T/Tc) 
inelastic el~tron-Phonon scattering, 1.e 

At larger applied fields, as was mentioned by Lopes Dos Santos'~nd 

Abrahams 63 , the Maki-Thompson magnetoresistivlty (which increases 

monotonically according to the a~ove equation)' is expected to satura te; 

the magnetlc field can only destroy that extra finite conductivity which 

i$ due to superconducting fluctuations. Close to this saturation the 

magnetoresistance should vary as lIB • 

t) There is a typographical error in Larkin's paper. The first digamma 

function carries a minus sfgn in his article which causes an unphysical 
• 63 d~vergence of r for certain values of T. Lo~es Dos Santos and Abrahams 

have corrected this; however their expression for r is in èrror by a 

factor of 2 in the argument the digamma function69 • 

l 
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Strictly speaking, the coupling constant ~ has to be field dependent 

since the bare ebupling g-l is field dependent. Vithin the above field 

limitations this can however be neglected. Also, it is not known hoy 

sensitive ~ is to the strong pair-breaking which is believed to exist in 

amorphous superconductors66 • Values for ~ were tabulated by Larkin69 . As 
a precaution the table was recalculated using the method described in 

the appendix A.4. Surprisingly the obtained values vere 30% larger than 

.Larkin's. Presumably Larkin made an error either in the remainder 

approximation (which is essential to the calculation because of the slow 

convergence of the series) or he was not aware of round·off errors 

intrinsic to some computers. The difference t ) between Larkin's and our 

result for ~ is shown in Fig.2.13. A plot of the Kaki-Thompson 

magnetoresistance is shown in Fig.2.11 in comparison with other 

magnetocesistance contributions discussed in the previous section. The 

temperature dependence superconducting fluctuation resistance-of eq.2.34 

is included in Fig.2.12. 

d 

t) The calculatlon in appendix A.4 agrees with results by 

Richter,Baxter and Trudeau64 who used a different estimation of the 

remainder of the series in eq.2.36. ~ 

J 
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o.~~ 10 0.15 0.20 e 0.25 0.30 0.35 0.40 0.45 

Figure 2.13 

1/log(T/Tc ) 

~
The ~·function. The upper 11ne. (points) vas 

culated as explained in appendix A.4, the 
ower line (squares) 1s Larkln's68 result. 
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2.5 Hagnetic Iapurity Scattering 

In section 2.2 and 2.3 it was shawn that magnetic impurity 

scattering causes a dephasing of the coh~rent backscattering and 

therefore decreases the quantum corrections ta the resistivity. This 
not-the only effect magnetic impurities have on the temperature and 

field dependence of the resistivity. 5cattering of the conduction 

electro~s by dilute localized magnetic moments gives rise to a 
2 resistivity Pmag= mIe nTs ' lITs ls the magnetlc scattering rate 

introduced ln section 2.2. Taking the temperature dependence of lIT 
into account leads to the weIl known Kondo resistivity70,7l. It ls : 

third order effect ln the conductlon·electron local·m~ment exchange 
Integral, J, and ls wrltten as 

(!e) (T)_=~ 31f~mO[v2 +J2S(5+1)(1 +ll! In(ItaT))} 
p Mag p 2he2«p ep 2e p 

(2.37) 

V is the direct Coulomb interaction potential. J consists of tvo parts, 

i.e J-Ja-IVm1"2/âE • Ja ls a direct ferromagnetic exchange term and the 

second _par.t, is an indirect antiferromagnetic admixture terme For ~i1ute 

3d transition elements such as Mn the antiferromagnetlc termndominates 
/ . 

because the energy difference, 41, between the localized d·states and 
the Fermi energy ls small; J iB then negative. Por dilute rare earths 

the f·shell configuration is ve~table. AB ls therefore large and the 

overall exchange J is small. In some rare earths such as Gd aB 1s so 

large that J Is in fact posltive7~. In the hlgh·purlty metals studled 

here this Kondo resistivity ls pegligible. 0 

- 56 BeaI-Monod and Veiner have carried out a detailed s~udy of the 

field dependence of lITs' Vith Increasing field the magnetic impurlty 

spins are progressively aligned which gives rise to a negatlve 

magnetoreslstance72 • Assuming that the direct Coulomb potential V lB 
! 

much larger than the Indireét spin-exchange potentlal J the two authors 

1 

" 
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flnd to second order ln J: 

'\ 

(!1?) ... K i A( a) 
p mag 

vhere K 
C 3'f1" mO 

=- 2 
p 2he ~F 

A( a) ::: 4<S >2 + <S > (cothol2 _ 0/2 ) 
Z Z slnh2a/2 

H 

(2.39) 

and <Sz> = g~N/V = S BS(Sa) 

.BS 10 the Brllloul~tlon. H the magnetlzatlon. S moment of the 

impurlty spin and c the impurity concentration. The important point to 

notice ls that AI> /p as vell as B = 'h /4eD'r both depend on the product 
2 4 mss 

cJ so that the above negative magnetoreslstivity can not be neglected 

at low temperatures (T<6K) if B ls of the order 3mT or larger. A plot s 
of the impurlty magnetoresistance ~ /p is included in Fig.2.II. 

m 
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2.6 Application to AIIorphous Hg·Cu and Mg-Zn 

The bulk Mg-Cu and Hg-Zn glasses studied in this tbesis are simple 

metals. Ve cao therefore calculate the expansion parameter (kple)-l of 

the theories of the quantum corre~tions to the conduct1vity from the 

measured resistivity and free electron theory, i.e 

-1 1'1 2 
(kFle> - 3m p e N(t F> 

Ve find that it ranges from 0.05 to 0.07 and ls therefore small enough 

in aIl alloys that higher order terms of the perturbation expansion ~eed 

not be considered t ). 

Our knowledge of the above alloys is such that III parameters 

appearing in the various expression in the previous sections, vith the 

exception of the dephasing field B~ and the spin-orbit scattering field 

Bso' are known. Specifically we know the resistivity, diffusivity, 

Fermi temperature, superconducting transition temperature of Mg
70

Zn
30 

and therefore the Maki-Thompson para~eter ~, and the electron scree~ing 
~ 

parameter F. The relevant parameters are listed in Table 2.1. 
0' 

This allovs us to make the following predictions for the 

magnetor~sistance arising from the quantum corrections. The weak 

localization magnetoresistance is expected to positive at small fields 

(B<O.5T) in aIl high~purity Mg-based alloys studied here because off 

finite spin-orbit scattering. !ts ,total magnitude at 6T 15 of the order 
-4 2 

Ap/p:::: 10 • Since the electron diffusivity is.large (D=5-8cm /sec) the 

Zeeman band-splitting effect on the veak localization magnetoresistance 

(eq.2.23) is negligible. For the same reason the diffusion channel 

magnetoresistance (eq.2.29) is small, i.e less than 5% of the veak 
~ 

localization magnetoresistance. Neither of these tvo terms Is enhanced 

by the Stoner factor since Mg-Cu and Mg-Zn glasses are only very veakly 

paramagnetic and or ev en diamagnetic. The Cooper channel 

magnetoresistance is positive in Mg-Cu glasses. At 6K its magnitude at 

-1 ' 
t) The size of these contributions for larger <kp1e) 18 still the 

subject of current research. From theoretlcal c~nsideratlon8 80ae 

authors claia that they are zero. 
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~ 
a field of 6T 18 about 15% of the veak localization magnetoresistance • 

. In ",-Zn 1t i8 negative and. about 30% larger th4Ul in Hg-Cu. The 

additional magnetor,tistance contribution from superconducting 

fluctuations in Hg-Zn increases the positive magnetoresistance at small 

fields by about 10-30% compared to the corresponding Hg-Cu a110ys. The 

very 10w concentration of aagnetlc illpurities in aIl al10ys (see Table 

3.4) precludes magnetic effects on the electrlcal transport. 

Table 2.1 

-AUoy p ~ D F TF a 
." 

Hg70Cu30 44.0 1.38 '6.9 0.50 84000 

"'70Cu27Ag3 45.7 1.38 6.6 0.50 84000 
Hg70Cu24Ag6 46.4 1.38 ' 6.5 0.50 84000 

"'70Ç~15AgI5 51.8 1.38 5.8 0.50 84000 

Hg70Cu29 • 9AuO • 1 48.4 1.38 6.1 0.50 84000 

"'70Cu28.5AuY.5 49.0 1.39 6.1 0.50 86000 
() 

"'70Cu27Au3 50.4 1.39 5.9 0.50 86000 

~70Cu21Au9 55.8 1.39 5.3 0.50 86000 

"'70Zn30 45.1 1.43 6.0 0.49 0.12t) 

"'70Zn2~3 49.8 1.43 5.3 0.49 0.04t ) 

"'70Zn27Au3 50.4 1;43 5.3 0.49 9.04t) 

"'70Zn29Gdl 45.6 1.43 5.9 0.49 90000 

"'70Cu30(170ppII Mn) 45.0 1.38 6.7 0.50 84000 .. 

8 -1 2 Units: p ~ ,..n:a, kp in 10 Cil ,0 in cm Is, TF in K 

'Brror 1 p; :1:5%, 0: :tlO%. 

t) : T ln K 
,~ 
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3. SAKPLB PRKPARATIOR AND IXPBlUKIRTAL IŒTBODS 

3.1 Preparation of Saaples 

The preparation of glassy HgG~~ and Mg-Cu samples is described 1n 

detall in the folloving sections .• In the preparation of the s$lIlples 

particular attention is paid to their quality and purity. The quaUty 

of the glass, i.e the levei of crystalline prec1pitates, and the level 

of magnetic impurities both strongly influence electric transport 

measurements. In particular, a small number of crystal11ne grains in the 

amorphous matrix can stgnificantly alter electrical transport properties 

(see reference 73 and 74 and Fig.!.3). Also, as 15 shown later in 

section 4.2.4, ,as little as 10ppm of Hanganese impurities in the glasses 

studied here would prevent an unambiguous analysis of their 

magnetoresistlvlty by the theories of quantum corrections to the 

conductivity. 

3.1.1 Rav Materiais 

The starting metais for the 8110ys were purchased from the 

following suppliers with the quoted specifications: 

Mg: Alfa Products (Thioko1/Ventron Products) 

Danvers, HA 01923, USA 

Purity: 1Il99.95%, 
specifically 40ppm Hn, 20ppm Fe, 10ppm Ni accord!ng 

to the batch aqalysis suplied by Alfa Products 

Zn: American Cominco 

Spokane, Vashington, USA 

Purity: 99.9999% 

Cu: ASARCO Ltd., Nev York, USA 
Purity: 99.999%, less than lppm transition Metal impuritles 

1 
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Ag: Johnson Hatthey Chemicals Ltd. ) 

London, U .K. 
Purity: Specpure (registered trademark), 

specifically 3ppm Fe, Ippm Cu, <1ppm of Bi,Cd,Mg 

Au: Alfa products (Thiokol/Ventron Products) 

Danvers, HA 01923, USA 

Puri ty: m99. 9999% 

Mn: Mackay Inc. 
"-

New York, N.Y. 10038, USA 

Puri ty: 99.99% 

Gd: Alfa Products (.Thiokol/\tentron Products) 

Danve~s, MA 01923, USA 

Purity: m99.9%, main impurities are rare earth oxides 

3.1.~ Distillation of Kagnesiua 

It is evident from the previous section that th~purity level of 

the Magnesium as purcha~d is far from be1ng acceptabl:9 even though 1t 

is the purest commercially available at the present time. Specifically, 

40ppm of Manganese is a high enoqgh magnetic impurity concentration to 

destroy most of the weak localization magnetoresistance (see Chapter 

4.2.5). For this reason a vacuum distillation technique, developed by 

Revel and coworkers~5, was used to refine the "dirty" Magnesium. A 

sketch of the Magnesium still - a simplified version of the one used by 

.,.Revel et al. • is shown in Fig.3.!. It consists of. a 60cm long stainless 

steel tube of 25mm diameter which is inserted into a vertical furnace 
" 

and evacuated by a rotary pump. The stainless steel tube encloses a 6cm 

long and 2Zmm'in diameter high·purity carbon crucible at its bdttom. The 

carbon crucible is closed with a carbon lid, a small orifice (lmm 

diameter) 1n the lid allows the Kg vapor to escape. An open,-ended 

quartz tube, 50 cm long and 19mm in diameter, rests on the carbon 

crucible. The stainless steel tube was positioned in the furnace so 

that its end (and hence the graphite crucible) was in the hottest area 

of the furnace. The quartz tubing was long enough to reach the co Id 
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area above the furnace. Prior to the di~tillation the carbon crucible 

and the quartz tubing vere thoroughly etched in a solution of lalal 
, 

BCl,HN03,B20 to remove metallic contaminants o(f its surface, and dried 

in th, evacuated steel tube at IOOOK for severai hours. Pieces of ~I 

rod vere placed into the graphite crucible and the still vas assembled 

as shown in Fig.3.1. Upon heating the centet of the furnace to 1000K • 

1S0K above the meiting point of Mg . Magn~ium evaporatesl its vapor 

pressure is approximately lOmbar at this temperature'6. The Mg vapor 

passes throu!:7.the s~ll orifice in the lid of the carbon crucible and 
ascends until on~es on the co Id quartz substrate at the top of . , 

the still. the Magnesium had evaporated and the still had cooled 

down, the quartz tube vas removed and cut open vith a diamond say to 

recover the purified Magnesium. The majority of the Magnesium deposited 

at a temperature of betveen 800K and 600K. The vertical temperature 

profile vas measured vith a Cromel thermocouple. Only th!s material vas 

used; it contains according to Revel and covorkers th least transition 

Metal impurities. Before further processing, the Magn 

thorou~ etch~d in acid vith the composition given 

Magnesium distil1ate 'is essentiaVy transÙion metal 

Mg vapor pressure at 1000K (as shown in Fig.3.2) is at 

The 

the 

magnitude larger than the vap'or pressure of transition metals, 

specifically that of manganese, nickel, chromium and irone Therefore 

primarily Mg and in addition some more volatile elements such as Zn, Na, 

Cd evaporate from the liquid and condense on the quartz substrate. 

Bovever, the latter elements do not have a signiflcant effect on our 

measurements. 

A major advantage of the purification method described above lies 

" in its simplicity. Small variations of the resldual gas pressure in th~ 

still (here about lO-2mbar ), the temperature of the Mg liquid (as long 

as it is above 970K) or the condensation temperature have only little 

effect on the purity of the distillate vhich allows go~d results without 

technical sophistication. The magnetic im~urity concentration of the 

distillate vas determined by magnetic susceptibility and neutron 

activation measurements as described in section 3.2.4 and 3.2.5 of th1. 

chapter and vas found to be (O.4± O.2)ppa of Mn and (3± 3)pp. of r •• 

\ 
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Figure 3.1 Schematic diagram of the Magnesium still. 

1) furnace_ 

2) stainless steel crucible 

3)'carbon crucible 

4) carbon lid with orifice 

5) liquid magnesium 

6) quartz tube 

7) condensed Magnesium 

8) vacuum connection 

9) v'alve 

10) rotary vacuum pump 
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Figure 3.2 EquilibriuA vapor press~s of pure elements (po) 

normalized by the Magnesium vapor pressure (pOMg) 

(from reference 75). 
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3.1.3 Induction Kelt1ng 

Magnesium Is extremely difflcult to ~elt by arc·meating. Once 

struck by the electric discharge an oxide layer forms on the surface (Mg 

is an effective getter) and thls layer impedes the alloying. To avoid 

these d1fficulties it vas necessary t~ alloy Magnesium vith other 

metals by induction melting. A sketch of the induction melting station 

built for this purpose is shown in Fig.3.3. lt consists of a quartz 

vessel suspended in a radio frequency induction coil (povered by a 30kY 

LEPEL RF generator) and connected to a vacuum pumping system. The quartz 

vessel holds a high purity (less than 5ppm Fe) ditbon crucible as shown 

1n Fig.3.3a (the carbon vas purchased from SPEER CANADA Ltd.). The 

crucible is 8cm long and 1.8cm in diam~ter. lts separate bottom piece 

allovs easy removal of the alloyed Metal pellet. The carbon lid on the 

'crucible has a small orifice to prevent pressu're build·up during the 

~lloying. Both, quartz and carbon èrucible vere cleaned. in a solution of 

1:1:1 BCl,BN03,B20 and dried at 1200K under, va~uum prior to each 

me1ting. The stacking order of the constituent metals vas found to be 

important. Best results vere obtained vith the Mg pieces (~2·4g) at the 

bot tom of the crueib1e and the other materia1s on top as 1ndicated in 

the figure. After placing the materials into the carbon crueib1e the 

quartz vesse1 vas pumped down to a pressure of <lO-Smbar and f1ushed 

severa1 times vith purified Argon to remove Oxygene Prior to me1ting, 
, , 

the quartz vesse1 vas fi1led vith lbar of purified Argon. Thi~~, inett 
{ , 

atmosphere of approximate1y lbar pressure is important to avoid 

evaporatlon of large quantitles of Magnesium and Zinc. IThe carbon 

crueib1e and tqe metals it eontained vere then heated to betveen lOOOK 

and 1100K vithin 10 to 30s~. The temperature vas monitored vith a 

Minolta·Land CYCLOPS 52 infrared pyrometer. Shaking the quartz vessel 

for one to tvo minutes vas enough to ensure a sufficiently homogeneous 
'- . 

mixing of the al10y; no phase separation vas visible vhen the solidified 

a110y was ,eut', polished and inspeeted vi th a ,metallurgieal microscope. 

After thé a110y had solidlfied, the quartz vesse1 vas evacuated; the 

a110y was removed vhen it had coo1ed down to room temperature. The 

veight 10ss of the samp1e vas 2% to 7% and we attribute It to the 

, " 
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evaporation of Kg and Zn as weIl as to some residue stuck to the walls 

of the carbon crucible. The alloy p~let vas then eut vith a diamond saw 
into pieces of appropria te size for~melt-spinning. polished with 400 or 

600grit sandpaper and eleaned in an ultra-sonie aleohol bath to remove 

silicon-carbide eontaminants due to the sandpaper. 

a) 

=:JX1::=+- 6 

3 

o 
o 1 ".,,.,.,.21 

o 
o 
o 

2 

Figure 3.3 a) Schematic diagram of the induction melter. 

1) high puri,ty carbon crucible 

2) RF heater coU 

3) quartz crucible 

4) vacuum connection 

5) valves 

6) argon inlet 

7) pressure gauges 

8) rotary and diffusion vacuum pumps 

b) Induction melter cruclble. 

1) quartz crucible 

2) carbon lid 

3) carbon tube 

4) carboa bot tom piece 

5) magnesiUJll , 

6) e.g Zn or Cu" 

b) 
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3.1.4 Helt-Splnning 

Of many amorphisation techniques - such as e_g. sputtering, cryo

condensation or solid-state reaction - melt-spinning is the Most . 
suitrable for producing large quantlties of bulk amorphous metals. The 

working principle t ) ls demonstrated in Fig.3.4. An a110y samp1e of O.5g 

to 19 i8 p1aced 1n a quartz crucible. It is me1ted by induction heating 

and ejected through a small orifice at the bottom of the crucib1e onto 

the rim of a rotating copper whee1. The jet of molten al10y rapid1y 

solidifies on the cold (300K) copper surface and forms a iong amorphous 

ribbon. It vas found empirically that the best ribbon quality vas 

achieved with an orific~ of 0.4mm diameter and a tangential wheel speed 

of 65m/s. The coo1ing rate of thls technique can be estimated to be of 
6 ) 

the order 1-2'10 K/sec and ls sufficient to produce glassy Mg-Cu and 

Mg-Zn alloys in the composltion range of ±10at% Mg around the eutectics 

at Mg70Cu30 and Mg70Zn30 (see phase diagrams in reference 77). To'avoid 

oxidation of the sample, the melt-spinning vas carried out in a Helium 

atmosphere at O.35bar pressure, and the liquid alloy vas ejected from 

the quartz crucible using high pur1ty Argon at O.5bar. The resulting 

glassy Mg-Zn and ~g-Cu ribbons were typ~cally lm long, O.8-2mm vide and 

15-30~ thick. Again it should be noted that the quartz crucible and 

the copper wheel were cleatted with 1.: 1 HN03 ,820 and alcohol before the 
~, 

spinning. Immediately after me1t-spinning the samples vere stored in 
, 78 

liquid nitrogen to avoid oxidation and crystal1ization • 

t) For a more detailed description of the melt-spinning technique the 

reader is referred to references 4 and 79. 

,.. 
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Figure 3.4 Schematic diagram of the melt-spinning apparatus. _ 
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3.2 Quallty Control and Saaple Cbaraeterlzatlon 

(\ 

The melt·spun ribbons vere subjected to detailed tèsts to ensure 

their amorphicity, homogeneity and,purity and to establish their 

material characteristics. AS,mentloned before, intensive quality control 

and material characterlzation has been proven to be of extreme 

importance since for example electrical transport propertiés depend 

crucially on the material characterlstics. A meaningful comparlson 

between results on samples used in this thesis, and those by other 

vorkers, i8 only possible if the samples have ~n carefully 

characterized. 

3.2.1 X·Ray Diffraction 

The amorphicity of the as-spun ribbons vas confirmed by X·ray 

diffraction using Cu-K radiation (~=O.I54I8nm). A schematic picture of 
a , 

the computerized NICOLET LI1 diffractomet~r vith a STOE goniometer and 

Cu-tube is shown in F~. This diffractometer has a resolution better ' 

than 0.05degree and {s capaàle of detecting crystalline contaminants in 

the glass exceeding a concentration of about 2%. X-ray scans vere taken 

in the range 28 - 30 to 50degrees. This scanning range brackets the 

entire amorphous reflection band. Some typical examples are shown in 

Fig.3.6. Sampl~s vhich shoved peaks in addition to the amorphous halo, 

as is the case for the scan 'of one Hg70cu30 sample in Fig.3.6, 'vere 

rejected. More than BO% of the ribbons melt··spun vere found to be 

amorphous vithin the resolution of the diffractometer. 

1 

1 .', 
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Figure 3.5 Schematic diagram of th~ X-ray diffractomete~ 

(taken from referenee 80). 
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3.2.2 Differential Scanning caloriaetry (DSe) 

DSC data such as crystailization temperature, crystaillzation 

enthalpy and activation energy are important characteristics of a glass. 

It has been shown that they depend on melt 4 spinnlng parameters81 •5 , 
73 oxygen contamination and in some cases crystalline traces in the 

amorphous matrix. They can therefore be considered as a calibration of 

the ?uality of the metallic glass. 

Samples of aIl the alloys investigated in thls the~is were 

subjected to isochronal ose scans with heating rates of 10,20,40.80 

K/min using a Perkin 4 Elmer ose 2e calorimeter.' The workiQg principle of 

such a Dse 1s best demonstra,ted by Fig.3.7. Approximately 5 to 15mg of 

sample contained in an aluminum pan is placed in a platinum sample 

holder~ Sample, Al pan and sample holder are heated at constant hea~ing 

rate by a smail heater in the sample holder to a preset maximum 

temperature (here 600K). A resistive thermometer measures the 

temperature. The energy required to heat the sample at constant heating 

rate, ~, ls'.çompared to that requ1red to heat an identical platinum 

sample holder with an -empty ÂI pan inslde. The difference, 1.e, 

(âEs - AEr) _ dE 
~ àt - dT 

AH fs equiva~ent to the e~thalpy change, àT = cp' of the sample. Changes in 

the atomic or magnetic structure (such as crystallizat10n or magnetic 

.ordering). resul t 1n a change of enthalpy. A microcomputer serves as a 

data acquisition system and allows convenient analysis of the resulting 

c against temperature curves. Some representative DSC scans are shovn 
p " 

in Fig.3.a. The transformation temperature ls taken to be the 'peak 

temperature (rather than tKe onset tempera~ure whlch Is not alvays weIl 

defined). -The crystallization enthalpy was calculated by Integratlng the 

curves in Fig. 3.8 over the tempera ture and normaliz Ing the resul t by the 
J- ' sample mass. The activation energies of the transformations vere deduced 

, ~ h using Kissinger's method . Results from t e OSC measurements are 

combined ln Table 3. 1. They in good agreemen t vi th those found by 

Altounian et a1. 83 and M1zutanl et al. 34. The transformations caùslng 

.. 

.. 



( 

c 

\ 
-72-

the various exotherms in Pi,.3.8 vere identified by X-ray diffraction 

analysi8 (the X-ray diffraction patterns vere compared to those listed 

in the JCPDS fi1es84). 
In case of the Mg70Cu30-based al10ys, vith the exception of 

Mg70Cu1SAglS and Mg70Cu21Au9' the crystallization characteristics are 
1 very simple. At the temperature :x the a1loys crysta1l1ze into the 

stable phase Mg2eu. Vhether there are small amounts of Mg present in 
4 

the matrix in addition to Mg2Cu or vhether Mg2Cu vas formed s11ghtly off 

stochiometry cou1d not be resolved by X-ray diffraction as 7at% of Hg 
o 

gives a>minute X-ray signal compared to that of Mg2c~, and ,the 

systematlcs of the shifts diffraction lines could not be investJgated 

because of their large width. It vas not possible to discover the 
,.. 

or1gin of the strong asymmetric form of the crysta11ization exotherm 

typical for a11 of the abo,,-;,~o mentioned Mg-Cu alloys,; 1t, may be éaused by 

~ small Avrami number of the reaction kinetics characteristic for 

surface crystaillzation. The crystall1zation of Mg2Cu ls folloved by a 

grovth of the crysta1lites of this phase at temperatures from SOOK to 

600K causing a very sma11 exothermal DSe peak. No further transformation 
, 

vas observed before the alloys mel~. The crystalliz~ilon characterlstlcs 

of the Mg70culSAglS and Mg70Cu21Au9 are different from those discussed 
above. This is not surprising since the amount of Ag and Au in the tvo 

samp1es~ so large that not aIl Ag and Au can substitute - ~ 
stochiome~iCally for Cd in th~ ~g2Cu ~ompound: One expects a Mg-Ag and 

Mg-Au phase to precipitate in addition to Mg2eu from the amorphous 

matrix. This is in fact observed. The primary exothermal peak in 

Mg70Cu21Au9 was identifiedoto be due to the èrystallization of the Mg3Au 

phase, the folloving peaK doublet being caused by the crystallization 

and growth of Mg2eu. Mg70CU1SAglS crystallizes first into the Mg3Ag 

phase which grovs out of the amorphous matrix in the secondary DSC 

exotherm and partially decomposes into Mg2Cu until a phase equilibrium 
(,' - 1 

is reached. Judging by the values for T and for the activation energy . x 
B of the primary peak found in the Kg-Cu glasses, it seems that a 
-Hg70Cu30 becomes theraally more stable on the addition of a third 

element. Ag or Au. Bventually, for large Au and Ag concentrations, the 
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stability must decrease howe~er, as Mg-Ag and Mg-AU a110ys, judging by 
~ . 

the shallowness of their eutectics, can not.be made amorphous by the 

melt-spinnlng vith a quench rate of l06K/ sec or less. In fact, 
34 Hizutani has shown that the limil of the glass formlng range 15' 

reached ln Mg70Cu30 if half of the Cu is replaced by Ag. 

In case of the Mg70Zn30 -based a1loys the first exothermal peak at 

temperature T! correlaP nd to the nuc1eationtof small crystallites of the 
stable phase MgsiZn2 The secondary, somewhat larger, peak at 
temperature T2 corres onds to the transformation of the entire amorphous x 
matrix into this phase. The third peak, at temperature T3, is caused by , x 
the transformation of MgSIZn20 into Mg + MgZn. No further transformation 

takes place until the alloys melt. The crystallization temperatures Tl, 
x 

activation energies Ea are comparable tô those of the Mg70Cu30·based 

glasses, the crystallization enthalpy however is on1y half ,as large. 

The DSe measurements above have shown that the crysta11ization 

ch~cterist1cs of the Mg-based glasses studied here are consistent 

internally and vith the corresponding phase diagrams and agree with 
previous results83 ,34. Ve can therefore conclude that the samples 

. studied here are of equally good quality. 
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Figure 3.7 Schematic diagram of a Per~in-Elmer ose 2e 

differential scanning calorimeter. 

1) sample holder 

2) reference holder 

3) resistance thermometer 
4) heater 

5) Argon inlet 

6) Argon outlet 

7) Aluminum heat sink 

8) th~rmometer for sample and reference 

9) power supply for sample and reference heater 
~ 

10) sample enclosed in Al-pan 

Il) empty reference Al-pan 
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Figure 3.8 ose scans for some Hg- based 'alloysi. The alloy 

composition and the scale ~f the e~othermal heat 
flow are given in the figure. The transformation 

temperatures T~ are expl~ined in the texte 
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Table 3.1 

Results from differential scanning calorimetry at 40K/min. 
Ti is the transformation peak temperature, ~ the 

x i x 
transformation enthalpy and E its activation energy. a 

Alloy 

Mg70Zn30 0) 

Mg70Zn30 
Mg70Zn27Ag3 

Mg70Zn27Au3 

Alloy 

Mg70Cu30 
Mg70Cu27Ag3 

g70Cu24Ag6 
g70CU1SAglS 

M 

M 

M 

H 

H 

g70Cu29.9AUO.1 

'70eu28.SAUl.S 
g70Cu27Au3 
g Cu Au M 70 21 9 

Tl 
x 

380 

385 
392 

399 

T 1 
x 

426 
415 

425 

430 

408 

422 

427 

466 

T2 âH*) El 
x x a 

391 1.67 1.90, ~.l 

401 1.34 1.88 ~.17 

412 1.77 1.98 ~.ll 

442 1.S4 2.37 ~.27 

1 
âHx E a 

3.82 1.68 ~.13 

3.42 1.64 ~.04 

3.48 1.81 ~.06 

3.38 2.6S ~.10 

4.32 1.36 ~.20 
~ 

4.50 1.40 ~.03 

3.79 1.68 ~.03 
4.87 3.19 ~.18 

Units: Tx in K,"âHx in kJ/mol, Ea in eV 

Error: Tx : = 2K, ~x: = 10%. 

0) values by Altounian et ai. 83 

E2 
a 

1.40 ~.1 

1.49 ~.09 

1.47 ~.07 

2.06 ~.08 

il", \~ 

*) ~x Is the combined enthalpy change of first and"second 

crystallization exothermal.DSé peak 

.. r 
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3.2.3 Blect~n-Beaa Kicroprobe 

Electro~beam m1croprobe ls a conven1ènt tool for the analys1s of 

sample composition and homoge~eity, as It ls fast to carry out and 
accurate (the analysis vas carried out by Dr. Rod Packvood at CANHET 

Labs, Ottawa). Similar to an X·ray cathode, the sample one wishes to 

analyse Is lrradlated vith an electron beam of approprlate energy (here 
20keV). The incident electrons excite electrons on the inner atomic 

shells. The excitations decay emitting X-rays of characteristic 

wavelengths (there is some Bremsstrablung as we1l which 19 flltered 

out). The intensity of the emitted X-rays is proportiona1 to the 

abundance of the correspQnding e1ement in the sample. Table 3.2 glves 
results for the compQsition of the a1loys used in this thesis. No 
compositional inhomogene1tles vere detected on scales larger than of the 

electron beam diameter (l~). The silicon traces detected in the samp1es 
originate from silicon present in the elemental starting materla1s as 

weIl as from the qu~tz crucible used for the melt-spinnlng. The 

electrical transport properties are not affècted by these small Sllicon 
, . ' 

concentrations. The reader shou1d note that the nominal rather than the 

measured compositions viII be used in the following :n order ,to &vold 

unnecessary long alloy formulae. For detai1ed calculations of for 

example, the average atomic mass or the charge density, the measured 

compositions vere used. 

1 

• 

\ 
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Table 3.2 

Electron-beam microprobe results 

nominal compos~tion detected composition 

Mg Cu Zn Ag Au Si 

" Mg70Cu30 69.89 29.88 0.616 

Mg70Cu27Ag3 71.11 25.92 "2.91 0.0 
- '"';:;- .. 

Mg70Cu24Ag6 70.46 24.11 5.40 0.0 

Mg70CU15Ag15 69.26 15.69 15.03 

~g70Cu29.9AuO.1 70.61 29.26 0.11 

, MB70cu29.5AuO.5 69.43 30.04 0.51 0.001 

MB70cu28.5A~1.5 69.70 28~88 1.37 0.076 

MB70Cu2T'u3 71 .. 20 25.87 2.90 0.019 

Mg70Cu21Au9 72.06 19.39 8.49 0.109 
" 

MB70Zn30 72.74 27.25 0.019 

Mg70Zn27Ag3 72.97 24.23 2.77 0.042 

Mi70Zn27Au3 74.12 22.95 2.91 0.013 

Mg70Zn29Gdl 73.12 26.12 Gd - 0.758 0.008 

~-f' 

~ Units: aIl concentrations are in atomic percent 
~ Errorz 0.5%. " ) l' 

~'1, 
Ililij ... " ..... _--------------~--~~~-~ 
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3.2.4 Hagnet1c Susceptibl1ity , 
1 

The magnetic susceptiblllties of the dlstl1led Mg, aIl Hg.~ and 

three Hg-Cu samples were measure~at 300K and 5K using a lab-~~it 
alternating force magnetometer. \ 

The worklng prlnclple of the alternatlng force magnetometer 19 the 

Faraday method, whlch relies on the fact th~t a magnetlc moment placed in 
a non-uniform magnetic field experlences a force, i.e. 

F z = m (x - :0 Xo). Bx [aa:X] 

"z 

where Hx is a horizontally applied magn~t1c field, 
aHx/az the field gradient in the vertical z-dlrection, 

x,xo the specifie susceptibillties per unit mass 

of the sample and the surrounding medium, 
d, do the respective densitles, 

(3.1 ) 

m the sample mass and.Pz the resulting vertical force. 

In our case the susceptibillty Xo of the surrounding medium - He at 
70mbar - is negl1gible. ·Compared to a conventional magnetometer with 

speeially shaped pole faces to produce a vertical field gradient 

(Faraday balance85) an alternating force magnetometer, see Flg.3.9, has 

the advantage that the vertical field gradient is generated,by tvo Lewis 

coils86 independent of the uniform horizontal fl~ld. Switchlng the sign 

A of the field gradient and hence the direction of the force on the sample 

is simply achieved by reversing the current through the Lewis colIs at 

constant horizontal field, and allovs the elimination of signal driits 

, to first order. The suspende~ sample holder inside i5 kept ln position 

by an electrical servo·mechanism. The nulling current of the servo 

system is proportional to the force on t~e sample holder~and sampl~ and 

was calibrated with'99.9999% pure polycrystalline Zn and Al (supplied by 
87 -9 Alfa Products). The system sensit~vity was found to be 1.2'10 emu. 

The applied horizontal field (Bmax • 16.5kOe) vas measured vith a 
calibrated Hall probe. The BalI voltage, nulling current, appli~d field 
and field gradient vere measured and controlled by an., IBM persona1 

computer through a lab-built analog-to-digital/digltal-to-analog 

. . 

.. 
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interface. 11g.3.9 shows the entire alternatlng forc balance includ1n~ 
the cryogenic system whlch allows measurements down to 4.3K. The 

temperature 1s controlled by a flow of cold (4.2K) He gas (evap6rated 
with a heat~'r at the gas nozzle) around the sample holder chamber. The 

carbon-gla~s thermometers were calibrated w1th a callbrated Ge-diode 

suspended in place of the sample holder. At 5K the temperature was 
stable wi(.,t1'tin 0.02K. ' 

The measured room temperature susceptibillties are tabulated 1n 

Table 3.3. They are compared to the free electron'val~e, 

"val ::a j ( r:"i:o) 10-
6 emul ccm (3 • 2) 

w1th the dlamagnetic atomic core-susceptlbllltles llsted in reference 88 

taken into acc~unt. Consldering the size of the susceptibillties tqe 

agreement ls exceilent, vh1ch und ers cores aga!n the fact that "g-Cu and 

Mg-Zn alloys are good free-electron metals. The magnetizatlon of three 

Mg-Zn alloys as a functlon of ap~lled fleld at room temperature and SK 

ls compared ln Flg.3.10 (points). Also shown ln the figure is the 

add1tional magnetization one expects at 5K and 17kOe from 4ppm of 

Manganese diluted ln the a110ys (at room temperature 

is neg1iglble). It is calcu1ated according t089 

Ng~S (g~SHJ 
M(H) - vLan i . H = V BS lLT 

1\, gev n OlS 

their magnetlzatlon 

(3.3) 

where g-2 , S= 2.2 and BS 18 the Brl~louln function. Judging by the 

difference of the measured magnetlzations at 5K and room temperature ve 

conclude that the samples contain at Most 4ppm of Mn. The accuracy of 

the alternating force magnetometer does not allow us to set a more 

precise limit on the impurity level. 

1 
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Figure 3.10 Hagnetization against applied fiela (points)_ 

The alloy compositions and temperatures are 

given in the figure. The horizontal bar 

indicates by how much the magnet~zation would 

change between 300R and 5K if 4ppm of Mn vere 

dissolved in (he alloys. 
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\ 
lTable 3.3 

Measured and calculated magnet1~ suscept1b111ty 

Alloy 

Mg (crystal11ne) 

"' Mg70Cu30 
Mg70Cu28.5Aul.5 
Mg70Cu27Au3 
Mg70Zn30 
Mg70Zn27Ag~ 
Mg70Zn27Au3 

. -7 
Un1ts: 10 emu/g 

"exp 

5.2.5 :tO.14 
- 0 • 50 j:{) __ 40 

0.16 :tO. 20 

0.21 :tO.20 

1.06 :tO.14 

0.71 :t " 

0.63 :t"" 

-'" 
"cale 

2..64 

0.10 

.:· ... 0.10 
• 

-0.16 
0.86 

0.63 

0.53 

~ 

Note: THe CRC Handbook76' gives S.39·10-7emu/g for Mg. 

, 
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3.2.5 Neutron Activation 1 

, 

JL Neutron activation measurements are be~ter suited to me as ure traces 

of Mn or Fe impurities in Mg-Cu and Mg-Zn gl~sses than susceptibility 
measur,ments. Such measurements vere carried o~t on aIl samples by Dr. 

~reg Kennedy at the SLOVPOKE scientific nuclear reactor of the École 

Polytechnique, Montreal, Canada. Neutron act~vation analysis exploits 
the fact that almost aIl stable elements capture a neutron and transform 

into an uns table isotope vhen exposed to a flux of slow ne~trons90. 
These isotopes<'decay vith a characteristic half-life and emit a o 
characteristic 'V-ray spectrum. One can detect the 'Y-ray emission of a , 
sample exposed to neutrons with a Germanium solid-st~te 'V-ray counter. 

The number of detected 'V-rays at a particular energy - vith the half-
, 

life and neutron capture cross-section of the corresponding isotope 

accounted for - is, proportional to the relative conce~tratioft of the 

respect~e elements in the sample. The most important impurity level to 

meas~is that of manganese as it carries a magnetic moment in 

, amorphous Mg70Cu30 and Hg70Zn30 • Fê and Ni are ~only of secondary 

importance ,since nèlther holds a magnetlc moment in amorphous Hg70Cu30, 

and Hg70Zn30 (see section 4.~.4b). The Fe level vas measured • 

nevertheless in the distilled high purity Mg to find oUt how much it cah 

be reduced by the distil~ation described ih section 3.1.2. The ~eftsured 

manganese concentrations are ~isted in Table 3.4. The Hn level in the 

Mg-Zn alloys is in fact so low that it could not have been resolved by 

the magnetic susceptibility measurements described in the previous 

section. Because of the weak activity of Fe5.7 it takes a long time to 

,et a·rellable value for the Fe concentration in any of the samples. 

First one has to irradiate the ~ample with a several times larger 

neutron doses and ~hen one has to vait for a week to let· the sign~l of 

the di~integrating Hg (and even more so of Cu and Zn) decay to a level 

which does not Interfere with th~ Fe signal. The Fe level detected in . 
purified Mg vas 3 :t ~PPID. :J 

.. 
..... ,:,..~ .

"', . . 
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Table 3.4 . 
" . 

Results of neutron activation analysis (' 

Alloy Mn Il 

Mg, distilled 0.4 
Mg70Cu30 2.6 

Mg70Cu27Ag3 1'.7 

Mg70Cu24Ag6 0.3 

Mg70Cu1SAg15 1.1 

Kg70Cu29.9AuO.l 0.1 -
Hg70~~28.5AUl:5 "2.2 

Hg70Cu27Au3 0.1 -

). Hg70Cu21AU9 0.3 , 
Hg70Zn30 0.3 

Mg70Zn27Ag3 2.3 0 

./ 

Mg70Zn27Au3 0.8 ",,--
Mg70Cu30(170ppm. Mn) t 166 ( 

Q , 

Units: parts per million (ppm) 

Error: .Approximately 10% or O.2ppp 

wh1chever is greater • 
. ". 

? 



."' 

, . , 
" t;z J -\' i 

. , 

To eOllplete the section, values" for the rooll tellperature 
\ . ' 

reslstivlty and density are tabulated ln Table 3.5. The denslty of both, 

amorphous rlbbons and crystalline ingots, vas measured by Archimedes' 

princ1pl,~ vith Toluene as 'a vorking- fluid (d tol- 0:866(9)g/~cm at 2'93K). 

It turned out that the error on the densitles of the amorphous ribbbns 

v~s r~ther large, i.e. 10%, as the low alloy density made it dlfficult 

to aceommodate more than 50mg of sample rlbbon ln the buoyancy bala~ce. 
< 

This restriction does not apply to the crystalline ingots whose denslty 

vas measured to a precision of 1% ~r better. Th~refore we h~ve usec( as 
densltyof the'amorphous material the denslty of the crystalline ingots 

, '92 -
reduced by 2% to account for thelr volume difference·. the value$ ln 
Table 3.5 can therefore be considered as accurate to within 3%. T"e 

'" . 
resisUvi ty of the amorphous alloys was determined by measuring .'the 

resistancé R of the sample ribbons (using a,four ter~inal te~hnique), 
th~ir lengths 1, and ,mass m. The ~esistivity can then be calculated by 

R'm R'A 
p - l2'd = -.1 (3.4) 

The main error on the resultlng res~stjvity is due to a non-unlform 

cross-section A, i.e ribbon thickness and width vary over th~ length . " 

(lO-SOcm) of the r1bbon measured. Therefore the values for p given in 

( 

·1 

r 

Table 3.5 are'an upper boun~ for the resistivity,vi1h a possible erro~ , 

of S%. Vithin these errors they are in good agreement vith t~ose 
, . 33 36 91 '. 

reported by Mizu'tani and coworkers - , .' 

\ I:t 

. 
" 

o 

, .. (." 

" 
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Units: d in g/em3 , p in ~m 
Error: d: ::d%, p: :t5% 
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~.3 Resistance and ~eto~i8tanee Probes 
, .. \, v 

The longitudinal magnetoresisfance, 1.e. ! Il J Il 1, ,of aIl 

samples was measured in fields up to 5.6T and at temperatures ranging 
1 4 

from 1.4K to 20K in a stand~rd He eryostat. The resistivity temperature 

dèpendenee of thé samples.w~s a1so measured in the aame temperature 

range ~nd in case"of ~g7oz~jb and' Mg70Zn27Au3 down to lROmK in a· 
dilution refrigerator. Pictures of the magnetoresistance cryostat, 

resistance bridge, power sUPP,ly an~data acquisiUon system are sqown 
Pig.3.11. In the fo110wing sectl09s the "individual components of this 

system are described. A brief description of the dilution refrigerator 
i8 given in section 3;3.6. 

Plgute 3.11 Plcturès of thè aagnetoresistan~e cryostat, 

reslstance bridge, p~wer supply and ~ata 
aqulsition systea. 
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3.3.1 Cryogenies and lIagDet 
, >6 

A sk~tch of the Boffmann{Airco) dewar syst~m vith tpe Nb·Ti 
superconduc~ing magnet (Type No.aOOO/5511) is shown in Fig.3,12 

(purchased from Ferranti-Packard Electric Ltd., TorQntQ, Canada), The 
\ 

~~tup is conventional. The 1 inéh bore superconducting magnet 18 kept at 
J 1 

4 ~,2K ln a stainless steel 'âewar f11led vi th liqu!d BeIlùm: The He bt th 
itself is thermally shielded by liquid nitrogen. ,The levei of Iiquld He 

is measured at severaI places above...ànd Along the magnet with a 

care(~lly, balanced 1/8Vatt 500 Vheatstone bridge. The bore of the magnet 
con tains a thin·wall sta1nless-steel dewar containing the sample holder. 

For measurements at ~.2K or belov the sample chamber ls fl1led vith 

.liquid Helium and evacuated. Temperatures as lovas 1.4K can be reached 
~ . 

thisrvay. A system of valves, gauges and heaters allovs one to keep the 
"" • 'c. .n \ 

.temperature stable withln less than 1%. For measurements Aboye 4.2K the,'".., . . 
sample holder and the sample are coupled thermally to the liquid Be bath 

of the magnet by pressurising the sampIe,chamber and the sample hoider 

de~ar vith Be gas (thè pressures vere typically O.lmbar and lO-4mbar 

" ,respectively). A stable temperature was achievétl by heating the sa~ple 

holder ta the particular temperature with the reslstlve heater vound 

non-lnductively onto the sample holder (see ,1g.3.13). The heater 

current vas adjusted to the appropriate levei by an ana~ag feedbaek 

/mechanism. The stray field of the heater ia less than 3~T • .. 
For high field measurements the magnét was powered~by a HP Harrison 

6260A OC Power Supply through a diode protection stack. The DC power 
... ,l, tI \ 

supply itself vas ~ontrolled manually with a discrete Kelthley 
l , 

Instruments K2601 nan~yolt source. Accordlng to the manufactures 

speciflca~ions the superconductlng solenolds field factor 1_ "~ 

B/I.O.1226T/Amp and the f1eld 1s un1form (%1 ln 105) over 9 all of the 

~ sample. ~he magnet ls fu~ly reverslble and wlthout a dete~table 
hysteresis. The magnet current (1 -45Amp) Is sensed acros_ a 0.50 

1 • max ' . 
standard resistor vith 'a Keithley Instruments Model 175 dig1ta~ . . , 
mul t ime ter • 

. In two cases continuous·sveep low-field (B < SOmT) 

~agnetores1stance measurements were carrled out. For this purpo_e'a HP 

'" ' 

) 
, - , 
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Figur~3.12 Schematic diagram of the magnetoresistance cryostat. 

--1) Cu sample hol(Jer 
2) stainless steel tubes 
3) terminal lead box 
4) superconductini'magnet solenoid 
5) liquid Helium dewar .-
6) liquid Nitrogen dewar . . 
7) sample-holder dewar 
8) 11~u1d Helium level deteçtors 
9) valves 

- 10) small diame'ter valve 
Il) rotary vacuum pump 
12) diffusion pump , 
13) O-ring 
14) Helium gas inlet" 
15) liquid Helium trandfer tube 

16) Helium gas" outlet 
17) vacuum gauges 
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. \-
6824A bipolar OC pover supply driven vith a trlangular vave fre9uency 
generator vas used to power the superconducting magnet. Its current was , , 

sensed across a O.ln standard resistor. The sweep time.from full field 
,t~ reversed'fulf field vas about lOOsee, in order to keep the magnetlc 

field syn~hronised vith the power supply and resi~tance brid~e signal • 
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3. j'. 2 Saple Bolder. 

A sketçh of the 4-point-resistance probe is shown in~ig.3.13. The 

cop~er sample hoider block, is he Id in position by four thin wal~ 
, t,' 

stainless steel tubes vhich also contain the 40gauge (O.08mm d~ameter) 

~opper leads for the a_co bridge contacts, carbon-glass thermometer, 

heate~~nd He level detectors. The carbon-glass resistor is placed 
tnsid. theOcapper black, r~ght under the sample, to ensure good ther~l . 

contact. Tvo samples can be mounted (one on each side) by simply 

sticking them with vacuum grease onto the' thin film of mylar which 

serves as electrical insulator betveen samplé and copper sample holder. 

Beloy 4.2K ,the sample an~ sample holder were in direct contact vith the 

liquld Helium bath and above 4.2K in direct contact with He gas at 

O.lbar to prevent the~~l gFadients between sample and resistor or along 

the sample. No hysteresis or self-heating effects vere detected for 

temperatures as low as 1.4K. Voltage and current contacts vere glued 

vith conducting silver paint directly onto the sample (it vas found that 

s1lver paint contacts are much less noisy than pressureocontacts, if 

handled properly). 

3.3.3 ~eraolletry 

~ ·A carbon-glass resistor.(CGR) manufactured by Lakeshore Cryotronics 

Inc. (Vesterville, Ohio, USA)'was used to measure the temperature in 

aIl experiments carried out at temperatures above 1.4K. The carbon-glass 

ther~istor was chosen because of !ts very good reproducib'ility, 

sensitivity, and small magnetoconduetivity. Its conductance was measured 

vith a SHE Inc. (now Biomagnetic Technologies Inc~, San Diego, 

California, USA) Model PCB 4-terminal a.c. potentiometric conductance 

bridge and was calibrated against Lakeshore Cryotronics Ine. calibrated 

Platinum (T>40K) and Ge (T<40) resistors. The conductance bridge can 

measure conductances from 20microMho to 200mHho to an accuracy better 

than 0.1% at a pover dissipation of less than 18pVatt whieh prevents any 

self-heating of the thermistor. The accuracy of the temperatureOreading 

ia only limited by the small magnetoresistance of the carbon-glass 

thermis tor whi ch cause's a misreading of less than 2 _ 5% a t T ... 4. 2K and 
8-6T. A differential analog voltage output of the PCB served as a driver 

to control the sample holder heater ~rrent described in section 3.3.1. 
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Figurè 3. 13 Diagram of the r~sis tance probe sample ~older (to sçale). -' 

\ 

1) thin-wall stainless steel tubes contalning-
the sensor and heater leads 

2) sample hold~r copper block 
. 
\ 

3) sensor and'heater leads \ 
\ ,. 

4), solder-on termin~l for sensor and heater leads 
5) sensing current and voltage leada 
6) sample 
7) resistive heater , 
8) carbon-glass thermometer embedded in the copper block 
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3.3.4 A.C. Resistance Bridge 

The theories discussed in Chapter 2 predict that the 

magnetoresistance in Mg-Cu and Hg-Zn metalliç glasses is at 6Tesla of 

the order of AR/R ~ 10-4 vhich is quite small~ For this reason a 
o 

sensitive 4-termlnal a.c. reslstance bridge designed by Cochrane, 
" 93 Kastner and Huir vas used to measure the resistance changes. A 

circuit diagram 15 given in Flg.3.14a. The important feature of this 

ci~cuit ls that sample and reference loop are drlven by ~wo Identical 

driving transformers, Tl' T2 , powered by the same pover supply, and 
- 93 

coupled by the two transformers T3• As pointed out by the authors 

this ensures that the curtent ln the sample loop vith respect to the 

current in the refelence loop is stable against sample resistance 

changes. The circuit can easily detect changes of 5.10-60 in a ln 

resistor, however the absolu te accuraey is somevhat less. Using an Ortec 

Brookdeal Ortholoc-SC 9505 two phase lock-in amplifier the in-phase and 

quadrature part of the signal, which is the difference between the 

voltage aeross the sample and the voltage aeross the Dekatran DT72A 

(ESI, Portland, Oregon, USA) inductive voltage divlder, vere measured 

simultaneously • The quadrature signal was - if necessary - adjusted to' 

zero vith a quadrature in je ct or '(V in Fig.3.14a). The output voltage of 

the lock-in amplifier was calibrated by changing the reference voltage 

aeross the indue ti ve vol,tage di vider which ls proportional to a 

ealibrated resistance change (see Fig.3.14a) ~ and readlng the 

resulting output voltage change ÂV, i.e. 

Mt 
Rsample - Rref + ÂV·Vloek-ln -1 

V 

(3.5) 

The calibration was found to be llnear over the ent1re sensltivity range 

of the loek·in amplifier. The noise on the output voltage of the bridge 

was redueed by using a time constant of 1 to 3 seconds. The stability of 

the Gutput voltage was mainly determined by temp~rature fluet~ation in 

the laboratory (air conditioning). On the time seale of a typical 

magnetoresistance measurement (20min) the resistance reading varied by 

3xlO-6n for a ln sample. Fig.3.14b shows a block diagram of the entire 

system. 

D 
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Figure 3.14 a) Circuit diagram of the a.c. resistance bridge 

(taken fram reference 93). 

S - sample 
" R ~ lead resistance 

T - transformer 

Rs • standard resistor 

l • variable inductance 

V • quadrature in je ct or 

SUPERCONDUCTING 
/SOLBNOID "" 

OSCILL. ~~A.C. RESISTANCB ~~~~Fïl 
HP 3310A 1- BRIDGB 

LOCK.IN AMPLIFIER 
ORTBOLOC·SC 9505 

PCB 

DVM DVH 

APPLE Ile 
COMPUTER 

HAGNET 
POVER 
SUPPLY 

Figure 3.14 b) Schematic diagram of the a.c res1stance bridge and 

data aquisition system. 
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3.3.5 Data Acquisition' 

AlI signal voltages • PCB analog output voltage, voltage acrQss 

standard resistor (proportional to the applied magnetic field), and a.c. 

resistance bridge output voltage· vere sensed vith Keithley Instruments 

Hodel 175 autoranging digital multimeter (DVM) as is shown 

schematically in Fig.3.14b. An Apple 2e personal computer read the 
'" voltages on aIl 3 digital voltmeters through 1EEE-488 standard 

interfaces. The time lapse between the readings of the individual 

multimeters vas about O.7sec which is smaller than the time constant of 

1 to 3sec used on the PCB and the a.c. resistance bridge and hence 

,hegl1gible_. From the Apple 2e pers~nal computer the data were 

transferred to a SUN computer for further processing. 

3.3.6 Dilution Refrigerator 

Resistance measurements from 10K to 80mK were carried out on the 

s~perconducting Hg·Zn samples in a SHE mini dilution refrigerator. The 

actual experiment, a copper block vith calibrated Ge (I-IOK) and SPEER 

carbon (O.06·1K) resistive thermometers and sample holder screwed onto 

the block tightly, is attached tô the bottom of the refrigeration stage, 

see Fig.J.IS. The refrigeration stage is 'contained in an evacuated can 
4 ' , 

vhich is immersed in a He bath. The top part of the refrigeration stage 

has a chamber vhich dravs and evaporates 4He from the bath and is thus 

kept at lK. The cooling of. the sample is achieved by continuously 
3 4 ' 

(endothermally) diluting He in a He rich liqufd in the mixing chamber. 
94 ,!or further details refer to Lounasmaa . A major problem in measuring 

the resistance at lov temperatures is to avoid self :heating effe'cts of 

the sample. Self·heating comes about when the energy dissipated in the 

sample by the sensing current of the resistance bridge can not be 

conducted at the same rate into the sample holder (mixing chamber) 

because of poor thermal conductivity at lov. temperatures (rhe decou~11ng 

of the electron gas in the metal from its atomic matrix is comparatively 

of minor importance ~r T ~ lOmK). Because the Mg-Zn and particularly 

Kg·Cu samples are m~h more brittle than for example Y·AI alloys 1t vas 

not possible to glue them onto the sample holder using only a very thin 
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, 
GE-varnish ~ayer. Instead the samples vere stuck vith a very th1n layer 
of vacuum grease onto a thin electrically insulating mylar sheet which 

itself was glued to the sample holder vith a thln layer of GE-varnish. 
Obviously, this vay of mounting the samples reduces the thermal 

conductance between sample and holder so that the a.c. bridge power 

dissipation had to"be kept belov 70pVatt vnich caused an unfortunate 

reductlon of,sensitivity. Even vith th!s method there vas too much 

stra!n on aIl of the Mg-Cu samples and the Mg70Zn27Ag3 sample so that 
they broke upon cooling from room temperature to 4.2K. (Note: for the 

measurements of the magnetoreslstance above l.SR it vas not necessary to ~ 

mount the samples as tightly as they vere either immersed directIy in 

the liquid He or in direci:--contact vith the exchange gas). Self-heating 

effects of the thermometers vere avoided by using the 5HZ potentiometric 
l' '3-

conductance bridge described in section 3.3.3. 
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'F1~re 3.15 Schematic diagr811 of. the dilution refrigerator. 
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The temperatur~ and magnetic field dependence of the resistivity of 

hlgh-purity Mg-Cu and Mg-Zn metallic g1asses containing up to 15 atomic 

percent of Ag and Au was measured between 1.5K and 20K and in fields of 

up to 5.6T. In two cases, Mg70Zn30 and Mg70Zn27Au3' the resistivity was 
measured down to O.lK and O.OaK respectively. Vhereas the temperature 

dependence of the resistivity shows only very little variation from 

a110y to a110y, the magnetoresistance exhibitsna wide range of behavior. 

The magnetoresistance measurements, which are to be considered the 

main topic of the thesis, are presented and discussed in section 4.2. 

For the sake of c1arity, the section is divided into ~eral parts. 

First, aIl the magnetoresistance data are presented, and commented on 

qualitatively, in 4.2.1. This allows the reader to follow the detai1ed 

and quantitative discussion of the results on the non-superconducting 

Mg-Cu glasses in section 4.2.2 and the superconducting Mg-Zn glasses in 

section 4.2.3. The discussion of the dephasing field B~ and the spin

orbit scattering field B resulting from the quantitative comparison of so 
the theories of quantum corrections to the conduètivity and measured 

• magnetoresistance follo~s in section 4.2.4. Section 4.2 also contains 

some comments on magnetoresistance in icosahedral Mg-Zn-Al a110ys 

(section 4.2.6) and in samp1es doped ~ith ma~etic impurities, i.e 

Hg70zn29Gdl and Mg70CU30(170ppm Mn) -(s~ction 4~~). ,The chapOter ,is 

c~mpleted by a section (4.3) on the tem~eràture dependence of the 

resistivity belov 20K in Mg·based meta11ic glasses. 

• 1 

1 , 
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4.2 Hagnetores1stanee 

4.2.1 Experi.entaI Data 

The main experimental results of thls thesls, the measurements of 
~\ 

the magnetoresistanee up to 5.6T in eleven Hg'OCu30 and Mi'OZn30 
metalllc glasses vi th Cu and Zn partially substi tut'ed by Ag and Au, are 

shown ln Fig.4.1a-k. Rach set of measurements vas takep at 9 different . ... 
temperatures ranging between 1.5K and 20K, with the exce'ption of 

Mg,OCu29.9AUO.lnand Mg70Cu24Ag6' for vhich no measurements vere taken 
below 4.2K. 

eThe figures exhibit several prominent charac'tedstics • First the 

absolute size of the IIJ!.gnetoresistance, i.e Ap/p :::: 10-4 , vhich 18 Many 

orders of magnitude larger than the normal, orbitàl magnetoreslstance 

resultlng from the Lorentz force on electrons. 

The size of the ~agnetoresistance decays vith increasing 

temperature ln aIl alloY8 studied. This is consistent vith the , 
progressive de~truction of quantum interference by the increase of 

inelastic eleetron-phonon (and to lesser extent electron-electron) . 
scattering vith temperature. Comparison of Fig.4.1a-k ~ith Fig.2.6 shows 

that the measured magnetoresistanee curves are qualitatlvely the same as 

the theoretical veak localization magnetores1stance. An approxima te 

value of the dephasing field B ct» (def1n~d ln eq. 2.24) may be found by 

direct, comparison of the low fiéld (\.:S O.4T) behavior of the data in 
, 

Fig.4.1 and the theoretica1 curves ln Fig.2.6a (specifica1ly compare 

Fig.4.1a,b vith Flg.2.6a and Fig.4.1g,h vith Fig.2.6b).' 

The s~gn and slze of the magnetoresistance curves in Flg.4.1a-k 
- .;l 

depend strongly on the Ag or ~u concentration ln the alloy. The 
o • 

magnetoresistance b~~omes mo~e positive as the heavy me~al c~neentratlon 
is inereased. This ls shown more clearly in Flg.4.2, vhere the 

magnetoresistance of s~vera1 ~iff~rent'al~oys at one\Femperat~re (6K) is 

plotted. As expected from the discussion of veak localization in Chapter 

2.2, the magnetoresistance is positive in aIl alloys at small fields 

(B ::::: 0.4T). This ls due to a finite spin-orbit scattering even 'in those 

a1loys wi thout Ag and Au. An flPprox'imate value for Dso 'may be found by 
1 
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direct co~parison of Flg4.2 vith Fig.2.6c. In the alloys vith weak 

spin-orblt s~attering the magnetoresistance eventually changes sign at .. 
larger fields, e.g. at O.ST for Mg70Cu30 as shown in Fig.4.2, and 

approaches an approximately -~ high field asymptotic behavior, as vas . 
anticipated from the discussion of the form of f3 at large fields 

(eq.2.27 in Chapter 2.2). The asymptotic regime is not reached in 

stronger spin-orbit scattering alloys in the accessible field range. 

Vith increasing Ag ~d Au content, the size of the magnetoresistance 
. b li' maximum observRd at a out 0.4T in Mg70Cu30 and Mg70Zn30 increases, and 

its position shifts to larger fields, again reflecting the increase of 

sPin-~rbit scatteringf ). 

,At first sight the magnetoresistance of Mg-Zn glass es looks very 
, 

similar to the magnetoresistance obse~ved in Mg-Cu glasses. Hovever, as . . 
will be shown later, there are in fact significant differences between 

, the two, resul ting from superconduc ti vit y • 

Having seen from Fig.4.1 and Flg.4.2 that the characteristics of 

the. measured magnetoresistance agree qualitatively with the predictions 

for weak ~ocalization, we caO now fompare th~ory and experiment 

quanti tatively. Ve Qegin by analysing the data from Mg-Cu based glasses 

because they are not superconducting. 

• 32 
t) Bieri et al. .measure a magnetoresistance maximum in MgaoCu2o a 

factor of 20 smaller than observed in,Mg70Cu30 here. Ve attribute this 

(see section 4.2.5) to magnetic impurities, whlch underscores the 

importance of using high pu~ity materials. 

, 

. ~ 

,. _ ~ r" , ~ 

',,1;:. ~'r.t..,_".~~} .. - .... - "" ~.:":t.1 • __ J.':' 

, ,~ 



o 

o 

o 

\. 

-100-

... ~ Mg70CU30 .... ...--... :--.,.' 
..... ' ' •• -;-. ...... 10-4 
-.~ ...... ..... ~ ..... ..... ~ .-........ . '. ~ . -;--:--...... 
~ . ...... . ........ . 
~. .;--....... . . ......... 

~........ • ........ " ..... ,.. 1.5 ..... . .............. ~ 

1 

~~ ....... :f. " .............. ,.... . ..... . ............ 
~ . ;--...... .. ......... 

~........ .;--........ 2. .... . ....... -- ............ ,........ . ~ ........ 

2 

....... ............... . .......... 
• ';...... • • ......... • .3.0 ........ . _ ..... ...... . ..... .. ..... 
'--. - .;--- ....... . . ...... ... 

.,.,.~ _ .............. • 3. 
~ ........ . """ ....... 

3 

B (T) 

.... '" • ....._l 
"'..... •• 4.2 

-- ... 

4 

.... -t.. • .t...,!I6.0 

....... 
... 4-,'.10 

15 

20 

5 6 

Figure 4.1 a) Normallzed maguetoresistanee of Mg70Cu30 • 

The seale and the temperatures (in Kelvin) are 
indieatea in the figure. The (solid and dashed) 
lines are the best fits to the veak loealization 
theory as explained in the texte 
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Normalized magnetoresistance of Hg70Cu2~3. 
The scale and the temperatures (in Kelvin)- are 

indicated in the figure. The (solid'and dashed) 

lines are the best fits to the weak localization 
theory as explalned in the text. 
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Figure 4.1 c) Normalized magnetoresistance of Mg70Cu24Ag6' 
The scate and the temperatures (in Kelvin) are 
indicated in the figure, The (so11d and dashed) 
lines are the best fits to ,he veak localizatlon 

theory as explalned in the text. 
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Figure 4.1 d) N~rmalized magnetoresistance of Kg70Cu15Ag15' 
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- The scale and the températures (in Kelvin) are 
Indlcated in the figu~e, The (solid and dashed) 

.' lines are the best fits to the weak localization . 
theory as explained' in the texte 
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~igure 4.1 g) Normalized magnetoresistance of Kg70CU27Au3' 
The 'scale and the temperatures '(in Kelvin) are . 
indlcated in the figure. The (solid and dashed)-
lines are the best fits to the weak localizat1on 
theory as explained in the text. 
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ligure 4.1 h) Norma11zed magnetores1stance of Hg70Cu21Au9' 

The scale and the temperatures (in Kelvin) are 

1ndicated in the figure. The (solid and dashed) 

l1nes are the best fits to the weak localization 

theory as explained in the texte 
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Figure 4.1 j) Normalized magneto~esistance.of Mg70Zn
27

Ag3 

fitted to the weak localization theory (line) • . ' 
The Rcale and the temperatures (in Kelvin) are 
indicated in the figure. 
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4.2.2 Mg-Cu Hetallie Glasses 

(a) Lov Field Range 

Ve begin the discussion' of the magnetoresistance by restricting the 

analysis to the low field behavior. Low field h,re means BIT sO.4TK-1• 
In this range the contribution to the magnetoresistance from enhanced 

electron-electron interactions is very small as May be seen from 

Fig.2.11 (less than Ap/p ~ 2'10-5) so that, in Kg-Cu, the experimental 

magnetoresistance may be analysed by considering ~ the contribution 

from weak localization. This simplification allows us to test the 

validity of the weak localization theory separately from complicating 

contributions of enhanced electron-electron interactions t >. 
The fitting procedure is as follovs: First the data are fitted by a 

least-squares method, with both Bso and Bef» treated as the ~ 
ad~ustable parameters (aIl other parameterS are kOown, as vas discussed 

ear.lier in Chapter 2.6). The resulting values for the temperature 

independent spin-orbit scattering field B had a scatter of less than so 
10% in the weak and less than 20% in the strong spin-orbit scattering 

system over the 9 measured temperatures. The average of B is 11sted so 
in Table 4.1. Since the spin-orbit scattering is known to be 

tem~erature Independent, we then carried out a second least-squares fit, 

fixing B at the average of the values obtained in the first fits and so 
, allowing on1y Bef» to vary with temperature. Thus, in thls second fit Bef» 

is the only adjustable parameter. The resulting values for B~ and B 
~ so ' 

will be discussed in section 4.2.4. 

t) A similar approach has been taken by Bergmann to examine the 

validity of the wSak localization theory in two dimensional thin 
Kg,Cu,Ag,Au fIlms 24,95,122. In fact Bergmann restricted the field range 

2 -2 at lower temperatures even more severely, using a limit BIT s O.OOBTK 

(which is equivalent in those systems to BIBI s const). This restriction 

Is too severe in bùlk Hg-Cu glassesJ it would prevent a meaningful fit 

since the oyerall magnetoreslstance 19 too small to alloy a precise 

determinatlon of the parameters Bef» and B80' 

, 
, > , , 
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Th1s fitt1ng procedure vas adopted because it eliminates small 

correlation effects betveen the tvo parameters B~ a~d Bsof) 
The f1ts resulting from the least-squares .analysis described above 

are shown as solid l1nes 1n Fig.4.1a-k (the extrapolation of the curves 
beyond the fitted field reg1me, BIT $O.4TK-l , is shown as dashed 

" 11nes). For clearer demonstration of the qual1ty of the fits, some 

representative graphs are plotted ag~in in Fig.4.3a-c vhere the ordinate 
has been changed to BIT. Generally the theoretical solid l1ne agrees 

very vell vith the measured data in the fitted regime. At higher 

temperatures, T ~ 10K, especially in aHoys vith larger spin-orbi t 

scattering, the fit slightly overestimates the data at lov fields 

(B ::::: IT) and underestimates it at higher fields (B ::::: ST). This is partly 

due to the neglect of the electron-electron interactio ects and May 

be partially removed if the Cooper and diffusion 
-

included. At lover temperatures, T $ 6K,the fit falls ight onto the 

data for the fitted regime (solid line). 

Ve conclude that the veak localization theory describ s the 

magnetoresistance in Kg-Cu based glasses very vell in the egime vhere 
it al one contr1butes (BIT ~ O.4TK-1). Bieri and coworker 2 reported a 

similar agreement in CU50YSO ; however their resul valid since 

they had to assume a value for the resistiv1ty prefactor (see eq.2.23 

and eq.2.24) 50% larger than the measured resistivity. It has to be 
~ 

stressed that the analysis here employed essentially only one adjustable 

parameter (B~) and only the measured value of p v1thout anY scale 

factors. Our york 1s therefor~ the first r1gorous tes~ of the valldity 

of the veak local1zation theory in bulk metallic glasses. 

f) Our method of determining Bso is different from Bergmann's24,9S,122. 

In ~he bulk Hg-Cu glasses studled ~ere, the relat~ve sizes of B~ and Bso 
are such that his method is not appropriate for aIl alloys. 

j 
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Figure 4.3 a) Normalized magnetoresistance of Hg70Cu30 
against BIT fitted to the weak localization 

theory (line). The scale and the temperatures 

(in Kelvin) are indicated in the figure. 
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Figure 4.3 b) Normalized magnetoresistance of Mg70Cu15Ag15 

against BIT fitted to the weak localization 

theory (line). The scale and the temperatures 
(in Kelvin) are indicated in the figure. 
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(b) Full Field lange 

Ve now turn our attention to the magnetoresistance data over the 

full field range. Sinee the tvo unknown parameters, B~ and B ,vere 
- '1' so 

uniquely determlned by the lov field flt discussed above (section 

4.2.2a), we can u,se them to extrapolate the magnetoresistance 

contribution of the veak localization effect beyond the field limit 

B/T.O.4TK-1• The extrapolations are shown as dashed lines in the 

figures F1g.4.1â-k, Flg.4.2 and F1g.4.3a-c. One can see at once that the 

veak localization theory overestimates the measured data below 6K and 

that the difference Increases as the temperature decreases. (Small 

temperatüre variations due to the small magnetoresistance of the 

carbon-glass thermometer cannot be the cause of this difference; the 

resistivity temperature dependence is so small that they cause a 

variation of the magnetoresistance signal smaller than the noise level 

of the 'resistance bridge.) At first glance it might be supp6sed that 

this difference could be made up by including the contributions from 

enhanced electron-electron interactions. That thi$ is n2! the case 

hovever is shown by the ~act that these contributions are aIl positive 

ln Mg-Cu a1loys (seeY eq.2.29 and eq.2.32). Vith a total contribution of 

4p/p~4'10-5 at full field and 1.5K (about 30% of the total 

magnetoresistance) , they vould significantly increase the deviation 

between theory and experimental data. 

If, as an alte~ative procedure, we fit the data over the entire 

measured f.1eld range simultaneously to ali quantum corrections to the 

magnetoresistance, one finds that the high flèld deviation is reduced 

but that tnis reduction is achieved at the expense of a poor fit at lov 

fields. An example of such a fit is shown in, Fig.4.4 for Mg70Cu30• , 

Again, the dots-are the measured data and th~ solid line the calculated 

fit. Though reproducing the data above T-6K equally vell as the previous , 
method (as expected), the fit completely misses the lov field 

experlmental data at temperatures belov 6K, and this discrepancy is 

outslde the acceptable range. 
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It should also be stressed that the deviations cannot be explained 

by 1ncludlng magnetic impurity effects. Taki~g a conduction-e1ectron 
local-moment exchange of J- _O.25eV56 ,57 the concentration of Hn" in the 

" a110ys 18 too 8ma1l to make a slgniflcant contribution to the 
magnetoreslstance (eq.2.39), although such a combination wou1d be" of the 

right signe 

Ve therefore conclude that, even in the simplest bulk amorphous 

alloys, the observed magnetoresistance can not be accounted for 

quantltatively over the entire field' and temperature range by current 

theorles of quantum corrections to the conductivity. 

Observatlons simi1ar to ours have been reported by other workers 
, 27 

for more complicated amorphous al10ys;, Olivier et al. for Y-Al a1loys, 
32 11 29 Bieri et al. in Cu50YSO and other a110ys, and Schulte in the system 

Cu-Zr. Although the4e authors cannot definitive1y ascribe the . ~ 

discrepancies to a failure of the quantum correction theories, their 

observations lend support to this conc1usion f ). 
, 

Exactly where the theories of quantum corrections to the 

conductlvity fail is not c1ear but one important poânt tô consider is 

that at very large magnetic field~, where the magnetic dephasing time TH 

(see Chapter 2.2) becomes comparable to the elastic ~catterlng time 

/ 

(B ~ 400T) , the quantum correction magnetoresistances must saturate, 

because the the constructive quantum interference is then destroyedft ). \~ 

t) Deviations between the weak localization and the'measured 

magnetôresistance have also been 'found in a 2D system; in one report on 
, 24 '~ 

thin Cu films Bergmann shows fit and data outside the restricted field 
2 -2 ' 

regime, BIT s O.OOSTK , 'and sq,me discrepancies are apparent. It is 

not clear if they can be exp1alned by the enhanced electron-electron 

interactlon contributions to the magnetoresistance and the author does 

not eomment on thls aspect. 
20 1-

tt) The Aronov-Bohm effect has shown that quantum corrections to the 

eonduetivity cause an osci11atory'magnetoresistance in thin meta1 rlngs. 

In bu1k amorphous metals one" averages however over Many such rings 

(Flg.2.2) so that the magnetoresistance assumes a\mean value. None of 

the expressions given in Chapter 2 reflect this constraint, but we do 

not knov whether the influence of this saturation shou1d be felt in 'the 
l ' 

~ 
marnetie field range used here. 
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A furtber potnt, made by Isava96 , ls that at lar,e fields the veak 

locallzation~magnetoreslstance ls overestlmated by eq.2.23 and 2.24 

because the diffusion ~ut·off, qo' vas 'set, to inflnlty to faci11tata 

their derivatlon. Bowever, on examlnlng Isava's calculation in detail, 
" ~ 

generalising it to f~hite spln·orbit scatterlng, ve find only a 

negligible difference in the weak localization magnetoresistance «0.1%) 

bet7a~the two extreme cases q - 00 and q - 1/- ro,:-. o 0 ~-'e 

\Som ,of the discrepancles at large fields May be caused by 
expre~~ eq.2.32, for t~e Cooper channel magnetoresistance. It was ~ 

f-h - ..---,-

m~tioned ln Chapter 2.3 that the exact magnetic field dependence of the 
electron coupling, g(B,T), is not known ex~c~ly. The expression glven 
for g(B,T) in Chapter 2.-3 is only, what Altshuler and Aronov calI, 

nlogarithmica~ly correct n20 ; higher order terms in BIT have been 

.neglected. It is not known io vhst extent they siter the Cooper channel 
magnetoresistance in the field and temperature range considered here. 

Unfortunately the Cooper channel-magnetoresistance cannot be 

experimentally 'lsolated to reveal any possible Inaccuracies. 

The diffusion channel magnetoreslstance ls an unllkely source of 
~ "<fi!! ( 
the discrepancies observed at large fields. It vas shown recently by 

Trudeau and Cochrane58 that the diffusion channel and weak 10calization 

expressions (eq.2.29 and eq.2.23) give an excellent description of the 
magnetoresistance (for B < ST and 4K <T <77K) in the paramagnetic 

composition range of amorphous Fe·Zr al10ys where their contrib~tion~, 

are unusually large due to the Stoner enhancement of the Zeeman 
- -1 . splitting (i.e 2.3 < (l-I) < 9.1. The Cooper channel magnetoresistance 

is negligible in these alloYS;C:lt ntributes less than 5%). There~ore, 

the diffusion channel magnetores stance is presumably also weIl 
• 

described by eq.2.29 in the present Mg·based al10ys ,where It Is not 
- -1 enhanced «1-1') =,0). Vhether this 18 also true at temperatures 

4.2K is not known, but ve note that even at 1.5K its contrlbution i8 
c -5' 

below 

very 8mall (according to eq.2.29 IIp/p :::: 2xlO ). 
Vhether tbe quantum correction expressions given in Cbapter 2'have 

~I!f 
limitations other than those discussed above, 19 beyona our present 

1 
~ 

knowledge. 
<;} • 
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4.2.3 Hg-Zn HetaIIie Glasses 

\ 
(a~resistanee due to Supercondueting FIuet,uation 

The fai1ure of the theories of quant~'~orr~ctions to the 

conducttvity in Hg-Cu complicates the Interpretation of the ( 

magnetoresistance of Hg-Zn, where there are the adâitional contributions 

due to superconductivity. Ve therefore agopt a different approach to 

these data ,and begin by isolating the inf1uenc~: of superconductivi ty. 

Ve do this ~ analysing the diff~rence between the al10ys Hg70~u30 

and Hg70Zn30 , Hg70Cu27Ag3 and Hg70Zn27Ag3' and Hg70Cu27Au3 and 
Hgll~27Au3' Ve assume, and later justify (see section 4.2.~ and 

Table 4.1), that the dephasing field, B~, and the spin-orbit 

scattering field, B ,have the s~e bèhavior in the two alloy systems so 1 

Hg-Cu and Hg-Zn. Therefore, the difference in the magnetoresistance 

between the respective alloys r~flects on1y contributions from the 

Cooper channel and the Maki-Thompson superconducting fluctuation 

magnetoresistance (eq.2.34). The weak Iocalization and diffusion channel 
~ 

magnetoresistance cancels. Symbolically this ~an be written as 

(~) _ (!e.) = (.!e) H-T + (~) cc _ (!e.) cc 
p !1g-Zn p Hg"'Cu', p Hg-Zn p Hg-Zn p Hg-Cu (4.1 ) 

~e differences are plotted in Fig.4.5a-c. The data show immediately 
/ 
.that there are indeed contributions from both superconducting 

fluctuations an? the Cooper channel. At low temperatures and at low -fields (B < 0.5), where the.Cooper cQannel contributions vanish, there 

is still a substantial positive difference in the magnetoresistance, 

which we attrib~te to the positive magnetoresistance due to 

. supercondu~ting fluctuations. At higher field's the slope of the 

magnétoresistance changes sign (see Fi,.4.5a). This cannot result from 
_ 1 c_ 

supe'rconducting fluctuations but i5 consistent with contributiom of the 

Cooper channel whose difference we exp~ct, from the stronger attractive 

electron coupling (g(B,T) in eq.2.30) in Hg-Zn, to be negative. Ve 

therefore fi t the data in Fig.4.5a-c to contribptions, from the Cooper 
J 
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channel (eq.2.32) and superconducting fluctuations (eq.2.3S). To 
• 

calculate the latter contribution we use (i) the values of B~ tound 

earliér for Mg-Cu alloys (see eq.4.2 in section 4.2.4) and (ii) values 

for the Maki-Thompson parameter, ~, given in the appendix A.4 (see also 

Fig.2.l3). The fits are shown as solid lines in Fig.4.5a·c in the 
-1 regime of validity of eq.2.35, i.e B s (kBT/4eD)ln(T/Tc ) ::: O.2TK , and 

as dashed lines beyond. For clearer demonstration of the superconducting 
, ' 

fluctuation magnetoresistance we have subtracted in Fig.4.6a-c the 

~alculated Cooper channel part from the difference curves ln Flg.4.5a-c 

and compare~ it directly to eq.2.35. Considering the fact that nQ 
'\ adjustable parameters vere used to generate the theoretical curves and 

considering the limited range of validity of eq.2.35, i.e BIT - O.2T/K 

the figures Fig.4.5 and Fig.4.6 demonstrate a remarkable agreement 

betw~n experiment and theory. 

Ve thus conclude ~hat Larkin's expressidh for the Maki-Thompson 

superconducting fluctuation magnetoresistance in eq.2.35 is correct -
, -1 

vithin its quoted limits, Le B,B~ s (~T/4eD)ln(T/Tc) ::: O.2TK • 

Beyond this limit ve can only say that the negative slope of the 
. - ~ 

difference curves at 1.SK and B > 3T in Fig.4.5a,b indicates that the 

Cooper channel is indeed negative in Hg-Zn and positive in Hg-Cu 

provided that there are no additional magnetoresistance contibutions 

other than considered here. Unless the limitation on the superconducting 

fluctuatio~magne~esistance expression is removed no further definite 

conclusions on the the validity of the Cooper channel expression in 

eq.2.~2 can be made. The origin of the discrepancies between theory and 

experiment observed in Hg-Cu glasses still remains unsolved. 
r 

J 
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Figure 4.5 b) Difference of the aagnetoresistance in M'70Zn30 

and Kg70CU30' 
The scale and the temperatures (in Kelvin) are .. 
Indicated in the figure. The aeanln, of the .olld 
line ls explalned in the text (see eq.4.1). 
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The superconducting fluctuation magnetores1stance 

in Mg 70Zn 'l 7Au3 • 
,The scale and the temperatures (in Kelvin) are 

indicated in the figure. The solid line 18 caleulated 

according to eq.2.35. 
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Figure 4.6 b) The superconducting fluctuation magnetoresistance 

in Kg70Zn~O. 
The scale and the temperatures (in Kelvin) are 

indicated in the figure. The solid line 1s calculated 
according to eq.2.35. 
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Figure 4.6 c) The superçonducting fluctuation magnetoresistance 

\ 

in Mg70Zn27A.i3. 
The scale and the temperatures (in Kelvin) are 

indicated in the figure. The solid line 1s calculated 
according to eq.2.35. 
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(b) Law Field Bange 

Vith the validlty of the Maki-Thompson magnetoreslstance in eq.2.35 

established at low ~ld, we can now analyse the magnetoresistance data 
of the Mg-Zn alloys~~ the same way as in the Mg-Cu alloys. The result 

is shown in Fig.4.7a-c~the ordinate has been changed to JIT for better 
comparison of theoryand experiment). Over the fitted ralge, 

-1 BIT $O.2TK , the agreement is excellent, with the possible exception 

of the measurements at 20K in Mg70Zn27Au3' The values of B~ and Bso 
found for Mg-Zn glasses will be discussed with those obtained for Hg-Cu 

in the following section 4.2.4. Beyond the field range, considered, the 

experimental data are severely overestimated by the weak localization 

and Maki-Thomson terms. The negative Cooper channel magnetoresistance 

cannot account for the gap. Thus, once again, we find that at high 

fields the quantum correction theories break down. 

There is another aspect of the magnetoresiatance in~Hg·Cu and Hg-Zn 

glass es worth noting. On the scale of the figures Fig.4.1a-k the low 

field (B «B~) B2 regime is not resolved. To investigate this regime 

we have carried out very high reso~jon measurements on one alloy, 

Hg70Zn27Ag3' at 1.5K and 4.2K up to 40mT only. The results are shown in 

Fig.4.8a,b. Also shown in the figures are the corresponding data and . . 
fits from Fig.4.7b. They compare weIl. The value of B~ is indicated in 

the Flg.4.8a,b and we conclude that the experimental resolution is not 

high enough to resolve B2 variation at temperatures this low. 
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Figure 4.7 a) The normalized magnetoresistance in Hg70Zn30 
against BIT, f1tted to the weak localization 

and superconducting fluctuation theory (line). 
The scale and temperatures (in Kelvin) are 

indicated in the figure. 
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and superconducting fluctuation theory (line). 

Th~ scale and temperatures (in Kelvin) are 

indicated in the figure. 
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against BIT, fi tted to the weak localization 

and superconducting fluctuation theory (11ne). 

The scale and temperatures (in Kelvin) are 
indicated in the figure. 
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Figure 4.8 b) The low field magnetoresistance in Kg70Zn27Ag3 (0) 
~ 

\ 

at 1.5K. The scale 18 indicated in thé figure. 

The solid line ls the best fit to eq.2.23 and 

eq.2.35 as explained in the text. The closed 
circles ,.) are the data of Fig.4.7b. 
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4.2.4 The Spln-Orbit,Scatter1ng Field Bso 

and tbe Depbaslng Field B cj) 

In the previous two sections it was shown that for BIT :s O.4TK-1 

the weak localization quantum Interference theory (and, to the extent 

they contribute, the enhanced el~ctron-electron interaction theory) give 

an excellent description of the experimental magnetoresistance in the 

Mg'Cu metallic glasses and also in Hg-Zn metal1ic glasses if the 

superconducting fluctuation magnetoresistance {s included. Ve now turn 

our attention to the two parameters, the spin-orbit scattering field B so 
and the dephasing field Bcj) which resulted from the analysis in the 

previous tvo sections. 

(a) The Spin-Orbit Scattering Field B so 

~he values for B which resulted from the analysis in the previous so 
two sections are listed in Table 4.1. As vas expected the spin-orbit 

s~attering fields ln correspondlng Hg-Cu and Hg-Zn alloys are Identlcal 

wlthln the Quoted errors (10% in the v~ak and 20% in the strong spin

orbl~ scattering regime). This relnforce~ the consistency of our 

anal ys is . One can also see f rom Ta :,le 4.1 tha t B Increases wi th so 
increasing Ag and Au content, and that the rate of incr'ease vith Au ls 

much greater than for Ag, as expected. 

In Fig.4.9 spin-orbit scattering rate, liT = 4eOB th, is so so 
plotted against Au and Ag concentration. The background spin-orbit 

12 -1\ scattering rate of the Hg70cu30 matrix (0.32><10 sec l has been 

subtracted. The solid line is a guide to the eye. Fro~ the linear , 
dependence of the spin-orbit scattering Hamiltonian in Z, Z being the 

,a 
atomlc number, we expect liT to scale as Z If atomic orbital wave 

97 55 so 
functions are assumed ' • Bovever the slopes of the lines connectlng 

the points in Fig.4.9 differ by a factor of 19 for small concentrations 
6 6 which ls close to Z , Le (ZAu/ZAg) = 23. \le have no explanation for 

thls weaker dependence on Z, except to say that it probably reflects the 

screenlng of the Ionie charge. Shown ln the 10sert of Fig.4.9 are 

results for lIT obtained by Bergmann95 on thin Hg films covered with so 



o 

·136-

Table 4.1 

Alloy B T
SO Lso T le so e 

Mg70Cu30 77 3.1 46 0.81 1.3 

Hg70Cu27Ag3 166 1.5 32 0.81 1.3 

Hg70Cu24Ag6 242 1.1 26 0.77 l'.2 

Hg70Cu1SAglS 409 0.69 20 0.69 1.1 

Hg70Cu29 • 9AuO.1 145 1.8 34 0.71 1.2 

Hg 70Cu28 . 5Au 1 .5 851 0.32 14 0.81 1.1 

Hg70Cu27Au3 1190 0.23 12 0.69 1.1 

Hg 70Cu21 AU9 1710 0.18 10 0.62 1.0 

Hg 70Zn30 75 3.7 47 0.65 1.1 

Hg 70Zn27Ag3 151 2.0 33 0.58 1.0 

Hg 70Zn2 7Au3 1030 0.30 13 0.57 1.0 

Hg70Zn29Gdl 110 2.7 39 0.61 1.0 

Hg40Al30Zn30 110 

Hg Al Zn 40 18 42 170 

Note : T
SO 

= 11 /4eDB ,L = ro;-, l .., vFT .. 
SO so ~ -'so e e 

Units: B in mT, T in 10-12sec, L in lO-9m 
so -15 so -9 so 

T in 10 sec, l in 10 m e e 

Error: follovs trom those quoted for Band p 1n the text so 

The dephasing fields, times~nd lengths can be calculated for 

aIl amorphous Hg·based alloys by eq.4.2 vith the coefficients 

given 1n the texte For Hg70Cu30 this yields at 4.2K: 

-12 BcjI= (4:t 2)mT, Tcf>= (75:t 35)x10 sec and Lcf>- (0.21:t O.01)pm. 
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fractiona1 layers of Au. For the purpose of comparison the Au layer 

fractions have been converted into atomic concentrations assuming 

perfect dense packing of the Hg hosto The value of 1/T
so 

for the a110y 

Hg70Cu29.9AuO.l is with~n the quoted error margins of Bergmann's data 
once the background spin-orblt scattering rate of the Hg-Cu matrlx is 

subtracted. 
Ve can also see in Fig.4.9 that 1/T

so
(x) deviates at larger 

concentrations from the linear dependence observed for small 

concentrations; the values fall below the~lnear extrapolation. The .. 
cause of this deviatlon is not clear but the behavior is consistent with 

observations of Peters and coworkers98 who quote a spin-orbit scattering 

rate of 1. 2 ><10 13sec -1 (B al 1.4T) for thin pure Au films, which implies so 
that the strictly linear dependence of lIT in Au covered Hg films so 
(shown in the Insert of Fig.4.9) would have to show the same deviations 

as the present Hg-Cu-Au system at hlgher concentrations 
12 -1 • 

lIT in the insert Is 2.6><10 sec per atomic percent so 

(the slope of 

Au). Also, in 

the derlvation of the weak loca1ization magnetoreslstance for three 
, 49-

dimenslona1 conductors, 'Fukuyama and Hoshino explicitly assume that 

the characterlstic spin-orbit scattering time, TSO ' is much longer than 

the elastic scatterlng time, T • Even though this condition is e 
fulfilled, T ::: (SIx) x10-13sec (x i~ the Au concentration in atomic 

so -16 
percent) and Te::: 710 sec, 1t is not clear where the perturbation 

expansion in Te/T~breakS down. In the Hg70Cu21Au9 samp~e there Is an 
Au atom in essentially every second nearest neighbor shell and 

correlations between the spin-orblt scatterlngs cannot be ruled ~ut. As 

a consequence of the non-llnearlty of I/TSO(X) one has to be very 

careful when one compares specific spin-orbit scattering rates of a 

particular elements since the spin-orbit scattering rate at large 

concentrations is an effective scattering rate whlch can no longertbe 

normalized by the concentration. Thus, comparisons between specifie 

spln·or~lt scattering rates of e1ements are only meaningful if they are 

measured at the sam~ dilution in a weak spin-orbit scattering matrlx. 
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Figure 4.9 
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The spin-orbit scattering rate in Mg70Cu30_xYx' 
y - Ag, Au, as a function of concentration x. 

The so11d llnes are guides to the eye. 

The insert compares data 1n Mg70Cu29.9AuO.l (e) 

and in Au covered Mg films (0) by Bergmann95 • 
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(b) The dephas1ng strength B~ 

Fig.4.10 shows the values of B~ for Mg70Cu30 , Hg70Cu27Ag3 and 

Kg70Cu27AU3' and Kg70Zn30 as representat1ves for the Mg-Cu and Mg-Zn 
glasses. Other samples show essentially the same behavior but for 

clarity are not included in the figure. Their magnitudes agree within 

the scatter of the data and demonstrate again the internaI consistency 

6f the analys1s. 
The scatter of the data is a result of small variations in the a.c. 

~ 

resistance bridge gain and signal (due to e.g temperature changes in ~e 

electronics' 3nd the error on the absolute sample resistivity at 4.2K! 

They cause a mismatch between the true magnetoresistance signal and the 
~ 

resistivity prefactor p (common to aIl expressions of quantum 

corrections to the conductivity) of up to 7%. In the least-squares fits 

the mismatch is compensated by changes in B~ which become larger with 

decreasing temperature where the weak localization magnetoresistance 

expression is less sensitive (see Fig.2.6a,b). In two dimensional 

systems or transition metal alloy~ the curves of B~ against Tare 
usually much smoother because the size of the measured magnetoresistance 

signal is at least a factor 3, and in some cases two orders of 

magnitude, larger (see Fig.1.Sb). 

For ~ll alloys B~ decreases sharply with temperature between 20K 

and 4.2K but then satura tes at lower temperatures. The data of Fig.4.10 

are weIl «escribed t ) by an expression of the form 

(4.2) 

where o 
B~ - (2. 7± O.4)mT, n- (3± 0.5) and ln(A)= (-11.3± 1.3) 

t) "To ~rovide equal weight to aIl the fitted points, their logarithm 

was fitted by the logarithm of the above equation. These values were 

used in section 4.2.3 when the superconducting fluctuation 

magnetoresistance vas compared to the magnetoresistance difference in 

Hg-Cu and Hg-Zn alloys. 
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Figure 4.10 The dephasing field, B~ against temperature. 

The solid l1ne 18 the best fit to eq.4.2. 
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The strong dependence of B~ on temperature is in essential 

agreement with previous studies, although the exponent nz 3, however, is 
19 somewhat larger. Bergmann finds n.2 for Hg thin films , as do Abraham 

and Rosenbaum99 in thin Cu films, and Olivier et al. 27 in Y-AL glasses. 
25,32 2 Bieri et al. find a T variation in CUSOYSO and CUS7Zr~3' in 

3 100 3 Cu50Lu50 however they report T • Also Hickey and coworkers find a T 

law in Cu-Ti-Au g~asses above 8K over a wide range of composition. 
" 101 Schulte and Fritsch point out that the exponent can vary between 2 

and 3 in Cu-Ti glasses depending on the value of Bso assumed in the fit. 

Theoretically there is also some confusion about the correct value of n. 

Takayama5l has calculated that the 'dephasing rate due to inelastic 

electron-phonon scattering should vary as T2 (eq.2.l9). Chakravartry 

and Schmid45 recently presented another detailed calculation on the 

electron-phonon dephasing rate and find that the power law can range 

between T2 and T4 , depending on the transverse and longitudinal velocity 

of sound and the electron Mean free path. In fact, using their 

expression and values estimated by Bafner102 for the velocity of sound 

for Mg70Zn30 , one calcula tes dephasing rates of the right order of 

magnitude. Unfortunately, exact measurements of the velocity of sound in 

Mg-Cu and Mg-Zn alloys'have not been made so that a more precise 

comparison is not possible. The temperature dependence of the dephasing 

rate due to electron·electron scattering is predicted to be T2 or weaker 

(see eq.2.20), its magnitude is however two orders of magnitude smaller 

than the rates we find here. Vè can conclude that in the glasses 

studied here the dephasing of the quantum Interference effects above 

4.2K is presumably caused by inelastic electron-phonon scattering (as 

has been genera11y assumed). 

On the other hand, the saturation of B~ at lower temperatures is 

unexpected. Though such a saturation has been observed in many other . 
system~, authors have invariably ascribed it to extraneous causes such 
, 103 
as scattering by residual magnetic impurities , decoup1ing of-the 

e1ectron gas from the thermal bathl04 , or scattering by paramagnetiç 

surface states105 • In our al10ys none of these explanations is va1id. 

It was a1ready menti9ned before that the inclusion of magne tic ~ 
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impurities into the analysis leaves the quality of the fit unaltered. Ve 

know fro. measurements by Bergmann106 that the spin scatter1na rate liT 

of Fe impuri tles buried in bulk amorphous Mg Is approxlmately 6xl07 sec-f 

per ppm. The dephaslng field B:- 2Bs (see eq.2.24) due to the 3ppm of 

Fe our alloys may contaln (see Chapter 3.2.5) ls therefore expected not 

to exceed 0.12mT whlch ls 20 times smaller than observed saturation 

value of B~. Possible Fe impurities on the surface are of little 

importance since the thickness of the samples is severaI times the 

inelastic diffusion lengths. AIso, from the measured Mn impurity 

concentration in our samples (see Table 3.4) one would expect' 

dephasing field of 2.2mT in the dirtiest sample but only of 0.08mT in 

the cleanest sample which is more than an order of magnitude smaller 

than what is observed (a value of J= -0.2SeV vas assumed for the spin 

exchange Integral, see Chapter 2.5 and references 56,57). 

Thermal decoupling of the electron gas from the thermal bath 

(lattice or sample holder) at temperatures higher than I.SR has to be 
107 ruled out as vell. Bergmann has shown that the electron gas can only 

be overheated in Au films vhen the current densities exceed 1.7xl0 i9A/m2 

at 4.2K. In the present measurements of the magnetoreslstance above 1.SR 
+5 2 the current densi ties vere always smaUer than 2. SxlO A/m, besides, 

the samples vere immersed directly in the liquid Be for measurements 

below 4.2K. AIso, any scattering by paramagnetic surface states can be 

ruled out; it is difficult to imagine that surface effects in samples 

several inelastic diffusion lengths thick (see Table 4.1 and Chapter 

3.1) can influence the bulk transport properties so drastically. Ve . 

conclude that\the saturation of B~ observed in Hg-Cu and Hg-Zn glasses 

here iR intrlrlsic. 

A universal explanatlon for the low temperature saturation of the 

dephaslng was proposed recently by Kumar, Baxter, Richter and Strom-

01sen108 • It is based on the idea that vlrtual phonon exchange could 

1ead to dephaslng by Independently changlng the phase of the two 

complementary electron paths (see Fig.2.2) even though the final energy 

of the electrons ls unchanged. Using a seml-classical picture a, 
108 qualitative estimate for the effect vas given • 

( 
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The point of the argument is as follows: weak localization arises 

from two electrons traversing the diffusion loop in Fig.2.2 (redrawn in 
", 

Fig.4.11a) in opposite directions and interfering in the region of the 
point o. 

• 

Figure 4.11 a) Coherent backscatterinK from a pair of time-reversed 

complementary paths, shown as Boltzmannian trajectories. 

Rach scatterer is assumed to be executing zero-point 

motion leading to posit~onal dispersion as indicated 
at one site in the figure. 

Figure 4.11 b) Path length d'ifference due to motion of one of the 

scatterers in Fig.4.11a. 
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", It vas commonly ass~d that a dephasing of the lnterference can only be 

achieved by thermal vibrations of the ions and subsequent Inelastie 

electron·phonon scattering (or by magnetic impurlty scattering). 

Hovever, even at T~O, the 10ns vlbrate about thelr equl1ibrium 

positions. The oscillation rate at T.O, if approximated by the Debye 

.. ~-... .... .r- ....... __ 

13 -1 frequency, ~= 4.10 sec ,is comparable in size to othfr relevant time 

scales in the solld, i.e. l/Ti' l/T
SO 

etc. (see Table 4~1). Sinee the 

tvo electrons visit a given ionie seattering site at different ~lmes, 

they will find the ion at different, effectiv~random, positions. 

This is demonstrated in Fig.4.11b where one of t~e scattering sites is 

drawn enlarged. The path length betveen complementary scatterings 

therefore differs by small random amounts vhich lead to an aceumulated-'~ - -

phase difference at the Interference point O. oIt is possible to quant1fy 

thls phase difference uslng the Feynman path Integral approach developed 
45 by Chakravartry and Schmid • This semi·classical approach Is rigorous 

to the extent that all of the results of the strict quantum mechanieal 

derivations (given in Chapter 2.2) maYVe~'Uced. 
The argument starts vith the ~ition 

l<{rf,ri,tf,t i ) = ~ A(rt ] e~l~s(rt]) (4.3) 

/.,-r~ rt 

as the (probability) amplitude of electron vave propagating from ri to 

r f during the time t i to tf (in principle thls applies to any klnd of 

vave ~ropagation). The points r 1 and rf correspond to e.g. A and B in 

Flg.2.1. The summation is taken over all possible paths eonnecting the 

tvo end points with a suitable weight factor A[rt ). The action S Is 

defined as 

tf 

S [ r t] = f dt L ( ; t' r t) 
t i 

where the Lagrangian L can be vrltten as 

V is the random impurlty potential vhich is here the 

/ 

(4.5) 

potential of ~he 

( 
)~ 

, 
\ 
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randomly positioned ions in the amorphous metal. The ionic displacements 

due to the quantum oscillations and thermal lattice vibrations 18 " 

considered by the displacement field ü. Li is a Lagrangian describing 

time symmetry breaking processes such as the magnetic field dependence 

of the Lagrangian or magnetic spin-scattering and e~ is the deformation 

potential due to the displacement ü • In the present discussion these 

last tvo terms are ignored. Using eq.4.3 the probability V=K2 that an 

elect;on is found at point r f and time tf' vhich had started to 

propagate from point ri a time TcfJ= (tf - t i ) earl1er, is: 

(4.6) 

Agaln the summations are carrled out over aIl possible paths rt and r t ,. 

The &-functions ensure that the electrons propagate"with the Fermi 

velocity. Unless the paths rt and r t ' are equal, the phase factor in 
eq.4.6 viII average to zero over the length of the paths. For the paths 

rt m r t ' it follows that 

(4.7) 

-Simi.larly one can define a quasi- probablli ty, V, which describes the 

Interference probability of tvo electrons traversing the paths from ri 

t~ r f in opp~site directions durlng.tlme TcfJ' V can' be deduced from V ln 
eq.4.6 by reverslng the time index on the second path vectorl 1.e. 

r ,~ r ' Again aIl terms in the double summatlon but those with t -t 
rt - r_ t ' vanish so that 

~)(4.8) 
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where 

(4.8) 

(The weight factor A does not depend on the direction of propagation.) 

Here, vhere we are discuss1ng the propagation of electrons, the end· 

points of the paths have to be less than' an electronic wave length apart 

(see Fig.4.11a), and 1~ is the time over wh1ch phase cohere~ce ln the 

Interference reglon of the path end-points is maintained. If tne 

displacement field ü were ~ro, only the time-reversaI symmetry-breaklng 

part of the Lagrangian, Li' vould lead to a finite phase difference A~ 
at the path end-points_ To calculate the phase difference due to a ' 

finite displacement field consider the first tvo terms of the Lagrangian 
in eq.4.5. Transforming r~ r - ~ and uslng 

dr .. dr + aü + (dr. ~ ) .. 
dt dt at dt r u 

gives to first order in the displa ement Ü that L transforms to 

d" - d.... 
L ~ L- + Dl(-!l . (au) + m(-EL .~ )ü 

u=O dt} at dt) d r (4.9) 

L.. 0 is the time-reversal symmetric part of the Lagranglan, which does u= 
not yield a phase difference A~ • The last term on the rlght-hand-side 

in eq.4.9 bas been calculated by Chakravartry and Schm1d45 and shown to 

lead to dephasing by inelastic electron-phonon 8catter1ng dephasing. 

The second term on the r1ght-hand-slde, vhich deals vith the 

uncorrelated zero-point motion of the 1098, vas neglected by 

Chakravartry and Schmld. It leads to a phase dlfference 

(4.10) 

The precise general evaluatlon of thls Integral 18 quite difflcult, if 
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not impossible,· Ijut one can find an appro~imate solution if one assumes 
that the ions oscillate in an uncorrelated manner and fast enough for 

the p~ase shifts due to the single ions to beja culated individually. 

In this case 

(4.11) 

• where 

Assuming that the change of momentum at the scattering site «i is 

instantaneous, gives 

" Â~i - (K - K') '&fi = 2kp&Ri sin(8/2) (4.12) 

Bere, 8 is the scattering angle between the incident and outgoing wave 

vectors K and K' as indicated in Pig.4.11b, and 

• +r 4/2 
&Ii - J dt 

- ctl2 
(

a.ü_ t ) 
adt 

Since there are T~/~O scattering events along the 

time between collisions, the mean-squared average 

shift ~etween the two electron trajectories at the 

Fig.4.lla is 

(Â~2> - (~c{T 0) 8kp 2<&R2><sin2
(812» 

loop, where TO ,1s the 

accumulated phase 
/ interferen,ce' point in 

(4.13) 

A factor of two arises bècause there are two complementary trajectories. 
, b 

The collision time and the geometrical factor may be combined to the ~. 

elastic scattering transport time T (the momentum relaxation time), i.e " 
2 e 

Te-To/(sin (8/2». In the case of isolated and 10cal1zed ionic 

scattering, as May be expected to hold for transition Metal alloys, the , 

t:,/, ~ . .-'.:,:;~~~~~k._,: 
!!:"'" ~'*7IlFE7V777"\!h ~ 

, 
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zero-point displacement ali can be written in terms of its normal modes 

(4.14 ) 
iq·t( 

~ "'" ~- i 8Ai = .fi a(q) e 
q 

If one replaces the phonon spectrum by ~ a-functlon at the Debye 

frequency, ~, it follovs that the mean-squared average displacement of 
thé oseillating ions of mass M ls given by 

(4.15) 

The assumption of isolated and localized ionic scattering does not 

neeessarily hold in every metal. In the weak seattering simple Hg-based 
, " 

al10ys studied here, the electron momentum decays over Many ionie 
, 1 

scattering events. Consequently the electron wave function and the 

ionie oscillations will be correlated over a distance E, which is the 

lesser of the ~ho~on coherence length and the Debye length ~O/~, the 

distance electrons diffuse during one oscillation of the ion. To aecount 

for the correlation over the distance E, which attenuates the dephaslng 

due to the !bnic zero-point motion, one has to replace <&R2> by a 
, 

eoarse-grain averaged displacement, i.e one has to introduce an 

attenuati~n factor 
f) 

f(q) =~ J dr 
411'E r<E 

(4.16) 

in the normal mode expansion O~l. Evaluatlng f(q) at the Debye vave 

vector, qo' whlch Is approximated by ~/a, a ls the average 1nteratomlc 
spacing, gi ves 

<h 

<3R
i 

2> 3h 1 f 1 2 31\ 9 ( a ) 4 
cga = 2H~ (qO> :::: 2H~ ï ,11' E (4.17) 

where qoE » 1 vas assumed. Collecting.the terms glves for the mean

( squared phase dlfference 

(~ 
.,.<.; .. · ... v • 
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The coherence betveen the tvo complementary trajeetories at the 

Interference point 0 i9 destroyed vhen their total phase difference is 

of the order 1. Provided that aIl other dephasing time scales are 

longer a~d thus lrrelevant, this defines a saturation dephasing eut-off, 

':' due to ionic zero-point motion as , 
4 

T: ~ [~) G:l [:~ [~Fl [~) (4.18) 

where the elastlc sea~tering time, T , vas expre~&ed in terms of the e 
electron diffusivity, D, and D =1\/m. Using the relation o 

BO = _1\_ 
1"'- cJ! 0 ( 4eD, cl> 

equation eq_4.18 defines a lower bound on the dephasing strength BcJ!- It 

is stressed that this dephasing does not involve any inelastic 

procesus t) • 
, 5-3 

Por a typical metal, H/m
e

:: 10 , 9n/Tp :: 3xl0 , E p ::::: 8eV, eq.4.18 
o -Iz predicts a saturation, ' ... , of O.5xl0 see in the strong scattering 

2 ~ -12 • Hmi t (D ::::: 0 .1em /sec and ~ la= 1) and up to 50xl0 sec in the weak 

scattering limit. This range encloses aIl observed values. In the case 

of Hg·Cu and Hg-Zn glasses we. Und wi th E
F

= 7 .3eV, H/m = 6. 7xl04 , 
2 e 

TF~5000k, D= 6.5cm /sec, a= 3.1À and 9
D 

= 315K that eq. 4 .18 reproquces 

our measured value of T: (90psec) if we assume for ~ a value of 16À. 

This length corresponds to 5 interatomic spacings. It is much shorter 

t) A small temperature dependence,arises though from exeitatio~s of the 

ionie oscillators. It is identical to the temperature dependence of the 
42-./i.e Debye-Valler factor, V, calculated by Ziman ~: 

022 
Bp(T) = <&R >T = V(T} = 1 + 2'fr2( :'1 (4.19-) 

BO(T=<» <&R2> V(T=O) 3 901 
ct> T=O 

This correeUon is less than 0.2% at T.4.2K and thus negl'igible. It 
-becomes important only at T > 8D/2. 
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than the Debye length (~ Dhn= 40À) but consistent with the phonon 

coherence length on expects in metallic glasses. Theoretical 
109 calculations by von Heimendahl and inelastic neutron scatterlng 

110 measurements by Suck et al. have shown that the dynamical structure 

factor in Hg70Zn30 has a large spread in (q,w)-space. Their results 

~ndicate that phonons are very localized excitations in Mg70Zn30 
(probably Most metallic glasses) and decay over -distances. of about 2 to 

10 interatomic .spacings. c Por Y60A140 one finds, using t. p - SeV, 
5 2 Â M/me= 1.2><10 , Tp = 91000K, 0= lem /sec, a= 3.2 , 9

D
,,",300K and again 

vith ç= 161 (which coincides here with .1 D/~= 15.8A), that T~" 18psec 
~ 27 ~ ~ 0 

compared to the measured value of 26psec. The larger valu' of T~ ln 

YSOA120 is consistent vith eq.4.18 but inconsistent vith magn~tlc 

impurities. Y is the part of the alloy which contains almost aIl of the 

magnetic, mostly rare'earth oxide, impurities. Ve theref~re expect T: to 

decrease vith increased Y concentration if its saturation vere caused by 

magnetic impurities. 

Ve can extend the ab ove model to tvo dimenslonal §ystems to 

investigate saturations of B~ observed in thin Metal films and 

semiconductors. In metallic thin films the bulk electrical resistivity 

is dominated by the resistivity arising from surface scattering as i9 

reflected by the strong dependence of the sheet reslstance on the film 

thickness99 ,111. One can take account of the surface scatterlng in the 

zero-point motion dephaslng calculation by poting that there are 

approximately vp/d surface scatterings per unit tlme (d ls the 

thickness of the film). In the time T: these give an additional mean-

,squared phase shift of (T:Vp/d)(2kp8R)2, where the scatter1ng angle, 9, 

has been set to -ire It has to be added to the phase shift due to bulk 

scattering calculated above, and hence one finds for two dimensional 

conductors 

(4.20) 

This relation predict;; that lIT: and equivalently . B:/p should vary as 

I/d in th in metallic films. This i8 exactly what was observed by Abraham 
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anq Rosenbaum99 in thin Cu-films as is shown in Fig.4.12. This behavior 

is not consistent with the constant, or at least thickness independent, 

magnetic impurity concentrations in the samples. In fact the value of 

B:/p is the smallest in the sample which contains the most impurit~es 
according to the authors. 

8~-------------------------------------' 

... -t.---... 

6 

2 

Figure 4.12 

() 

1 2 3 

1/d (10-4 Âi 
o 

Dependence of the dephasing sat~ration time T~ on 

4 

the thickness of thin Cu films. Data are taken from 

reference 99. The soUd line is a guide to the eye. 

, 98 
Peters and coworkers observe a saturation of B~ even in very high 

purity « 1ppm Fe) Au films for which they give no explanation. 

Unfortunately, the authors did not study samples of equal purity and 
<' 0 

varying thickness so that the scaling of l/T~)as l/d can Dot be 

\-
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ëonfirmed here. However, we shall take their observation as another 

confirmation that a saturation of B~ can not always be linked to 

extraneous causes. Bishop and coworkers 104 studied the saturation of 

the dephasing field at low temperatures in Si KOSFETSj They find that It 

depends ln both low and high mobility samples on the applied gate 

voltage. Th~y oargue that the saturation is a consequence of decoupling 

of the electron gas from the lattice (phonons) wh1ch occurs when the 

inelastic diffusion length, ~, becomes comparable to the sample 

size. Vith eq.4.18 and eq.4.20 we can give a different explanation: The 

gate voltage, Vg' changes the carrier density but not, to first order, 

the dens1ty of states. Therefore D varies linerly w1th V . g 
Consequently, since D Is the only quantlty ln eq.4.18 which depends on 

the gate voltage, T: should increase vith ~,VhiCh is exactly what 

Bishop et al. observed in both, high and lov mobillty samples. 

Furthermore, the absolute value of T: ls larger in the hlgh mobility 

sample which Is also consistent with eq.4.18. The reader should also 
, 

note that the temperature at which the saturation of T~ beglns ln the 

MOSFETs i5 approximately independent of the gate voltage which it should 

not be according to the explanation by Bishop and covorkers. 

To end this discussion of the saturation of B~ we conclude: The 

saturation of B~ ln Mg-Cu based alloys ls not due to external 

c1rcumstances. Spec1f1cally, 1t ls not induced by thermal decoupling of 

the electron gas from the thermal bath, it i9 not caused by finlte size 

effects as the sample dimensions are much larger than aIl relevant 

electron transport length scales (see Table 4.1), and It 19 inconsistent, 

with the measured magnetic impurity concentrations. A new temperature 

independent dephasing mechanism of the weak localization effeet due to 

ionie zero-point motion is presented. It is Intrinslc to Jll eonductors 

and capable of explaining many of the dephas1ng field saturation 

phenomena reported in the literature. For Mg-Cu and Hg-Zn metallic 

glasses the model gives a correct value for the observed saturatIon 

field B: if a short phonon coherence length ls assumed. A suitable 

system and experiment to specifically study the zero-point motion' 

dephasing èffect has yet to be dev1sed. 
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4.2.5 Kagnetlc Iapurltles 

In Chapter 2 it was pOlnted out that magnetic impurities destroy 

the quantum coherence effects. To underl~ne the importance of using high 

purity materials for studies of the quantum correction theories, 

magnetores1stance measurements were carried out on a Hg70Cu30 sample 

> containlng (170± 10)~f Mn and a Mg70Zn30 sample containing 

(7600± 200)ppm of Gd. Both Gd and Mn carry a moment in the these a11oys. , 

Gd has a moment of 7~ which is independent of the parficular 
8 bandstructure of the host Metal as its S7/2 ground state configuration 

ls extremely stable. The spin-exchangi Integral is Most likely quite 

small, Cochrane et al. 71 have reported J= O.057eV for Gd in Lu. The Gd 

concentration (7600ppm) is sufficient to quench superconductivityl12 in 

Mg70Zn30 andcthe alloy sh~ld thus be comparable to Hg70Cu30 containing 

Mn as a magnetlc impurlty. Mn holds a moment of about 4.5~ in Many 

metals. The spin-exchange Integral however is negative and larger than 

that of Gd. Values of J= -0.2SeV have been reportedS6 ,57. Fig.4.l3 

shows the magnetoresistance at 4.2K of both magnetic impurity samples in 

comparison to high purity Hg70Cu30 (same data as in Fig.4.1a). One can 

clearly see that the Most striklng characteristic of the weak 

localization effect at finite spin-orbit scattering, the positive 

magnetoresistance at small magnetic fields, is suppressed by the 

magnetic impurlty scattering. Similarly, the lacge negatlve 

magnetoresistance at hlgher fields, typical of the high purity Mg70Cu30 
and Mg70Zn30 samples, should be suppressed as vell because the damping 

lITs enters both p~~s of the Cooperon in eg.2.IS. Comparing the data 

in Fig.4.13 one flnds that the magnetoresistance at 3T in 

Mg70Cu30(170ppm Hn) and Mg70Zn29Gdl ls actually larger than in hlgh 

purity Mg70Cu30 • This demonstrates the importance of the negative 

magnetoresistance term due to magnetic impurities discussed in Chapter 2 

(eq.2.39). Included in Fig.4.13 is a measurement by Bieri and 
32 covorkers on amorphous MgSOCu20 • Even though this alloy is expected to 

have a lover spin-orbit scattering rate than our Mg-Cu alloys because 

the Cu~con~ent is 30% smaller, the magnetoresistance should be positive 

at lov fields as weIl. The dashed line in Fig.4.13 is an estimate of the 
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magnetoresistance Bieri et al. ,should have observed, had they used high 

purity materials (it i9 calculated vith B - O.052T, I.e 2/3 of the so , 
value in Mg70Cu30 , and B~ according to eq.4.2). Ve conclude that their 

alloy contained a very high level of magnetic impuritles. This explains 

,why the authors had to scale the veak localization ~agnetoresistance in 

eq.2.24 by a factor of 1.23 to fit the data. It also underlines the 

importance of the minimal adjustable paraGeter analysis ve have carried 

out. 
, 

The magnetoresistance in Mg70Zn30 (7600ppm Gd) was a1so measured at 

other temperatures. Fig.4.14 shovs the resulting data, whlch turned out 

to be quite dlfficult to analyse. Even though the superconductlvity 

observed in Mg70Zn30 , as vell as the,diffusion channel magnetoresistance 

will be quenched to zero, it Is not quite clear what sign and size the 

coupling constant, g, of the Cooper channel should have. Also, in this 

regime of strong magnetic impurity scattering, the expression in eq.2.22 

for the scattering~hasing time, T
S

' should be modified to take into 

account its field and temperature dependence. The dephasing due to 

magnetic scattering is expected to be smaller at large magnetlc flelds. 

Nevertheless bearing these complications ln mind, we attempted to fit 

the data to the weak locallzatlon and magnetic impurity 

magnetoresistance (eq.2.24 and eq.2.3B). The sol id curves ln Fig.4.14 

were calculated vith B - O.llT, J=O.035eV and B. accordlng to eq.4.2. so ~ 

Consider1ng the crudeness of th1s approach the agreement 19 qulte 

acceptable. 

1 

- 1 

1 
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Figure 4.13 

• • 

Comparison of the magnetoresistance at 4.2K"in 

several Kg-based glasses contalning magnetic 

'impurities. The compositions are indicated in 

the figure. The data for HgaoCu2o are taken 

from reference 32. The sol id 11ne is an estimate 

of the magnetores1stance in high parity HgaoCu2o 
as explained in the texte The sc~le is indi~ated 
in the figure. 
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1.5 

2.0 

4.2 

• ·20 
2 3 

B (Tl 

Normalized magnetoresistance i~ Mg70Zn29Gdl' 
The scale and temperatures (in Kelvin) are 

indicated in the figure. Thë solid l1ne 1s 

a best fit to eq.2.24 and eq.2.39. 

6 
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4.2.6 Us1ng Veak Loeal1zat1oD to Measure Res1stivlty 

T'bere i~ one important detail of the analysis of the 

magnetoresistance in simple metallic glasses that has not yet been 

pointed out. One can use magnetoresistance measurements to determine the 

resistivity of disordered simple Metal samples, whose irregu1ar geometry 

does not a1low a meaningful determination of the cross-section area (see 

section 3.2.6). This is simply dane by fittlng the measured 

magnetoresistance data to the weak 10ca1ization expression in eq.2.23 or 

eq.2.24 with p as an additional adjustab1e parameter (here too, on1y in 

the field regime BIT s 0.4TK- l ). In a few tests on the weak spin-orbit 

scattering glasses Hg70Cu30 and Hg70cu27Ag3 it vas found that one does 

in,fact recover the correct estimate of the resistivity to better than 

10%. A reasonable estimate for p is also found in Mg70Zn30 , even if the 

Maki-Thompson superconducting fluctuation magnetoresistance is neg1ected 

(/3 - 0). In a least-squares fit, the positive fluctuation 

magnetoresistance is compensated by a slight1y underestimated ~alue of 

B~. In strong spin-orbit scattering a110ys, hovever, the correlation 

betveen p and B~ is large enough to lead to a considerable 

underestlmation of the resistivlty (about 40%). The measured and 

normalized magnetoresistance signal, AR/R= Ap/p, is independent of the 

-geometry of the samp1e, i.e it does not depend on variations of the 

thickness or vidth. The reason vhy this method vorks is that that the 

abso1ute size of the veak localization effect is a material constant and 

can not be disputed. It is the consequence of a quantum interference 

effect and'the correction it contributes to transport properties is 

exclusivelyt) determined by the resistivity p and coherence cut-offs, 

(" i • eTe' T~, T sand T so. 

t) - The small error vhich vas probably introduced into th~ expression .-
for the weak localizatlon magnetoresistance,' eq.2.23 and eq.2.24, by 

setting Te to zerô, see section 4.2.2 and reference 96, can be neg1ected 

for the purpose of the present discussion. 
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The above method vas appl1ed113 tQ measure the resistlvlty ln 

icosahedral Hg40A130Zn30 and Mg40Al18Zn42' These icosahedral al10Y9 can 
be produced by melt-splnning. The resulting rlbbons are usually very 

short « 5mm long), extremely bri~, have rough edges and a very 

irregular surface. The measured ~gnetoreslstance data are shawn in 

Fig_4.15a,b; they have the same characteristics as those in Flg.4.1. The 

resulting values for the reslstivi ty were (70:!: 7)~m in Mg40Al30Zn30 

and (105:t lO}~m in Hg40Al18Zn42 vith spin-orbit scattering fields of 
B .... (O.10:t O.Ol)T and (O.1/7r.r. O.02}T, respectivelyt). The resistivit1es .so .. 
are larger than in Hg70Zn36' but the spin-orbit fields are are 
comparable ta those in Mg70Zn30 and Hg70Cu30 , see Table 4.1 and ~~~ 

Table 3.5. Vithin the error the values of B~ are the same as in 

Fig.4.l0. The magnetoresistance curves in Fig.4.15a,b show very clearly , 
that icosahedral Hg-AI-Zn alloys are disordered conductors from an 

electron transport point of view ev en though their atomic structure 

exhibits a five-fold rotational symmetry with long range order as has 

been shown by X-ray and electron diffraction experlments113 • This subtle 

difference, which is not investigated further in this_thesis, should be 
/) 

investigated in more detail. 

''., 

t) The ~alues given by Baxter, Richter and Strom-Olsenl13 are 8l1ghtly 

d1fferent because the data vere f1tted over the en1re field range. 
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Figure 4.15 a) Normalized magnetoresistance in iCOSahedral'Mg40Al30zn3~ 
The scale and the temperatures (in Kelvin) a~e indicated 

in the figure. The so1id 1ine is the best fit to the . 
weak 1oca1ization theory as explained in the text • 
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Figure 4.15 b) Normalized magnetoresistance in icosahedral Mg40A130Zn30' 
The scale and the temperatures (in Kelvin) are indicated 

1n the figure. The solid line is the best fit to the 

weak localization theory as explained in the text. 
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4.3 T.be Res1st1v1ty Teaperature Dependenee 

Heasurements of the resistivity down to O.OaK vere carried out on 

several samples in a dilution refrigerator. The measurements are 

complicated by problems vith the brittleness of the samples, the thermal 

contact to the sample holder and the small slze of the signal. To 
/ -5 

resolve resistance changes of the order 5xlO 0 in an approximately 10 

sample requires, vith the a.c. resistance bridge used here, a 

considerable sensing current vhich can cause self-heat~ng effects of the 

electron gas. For the tvo alloys Hg70zn30 a~Mg70Zn27Au3 it vas 
possible to circumvent these difficulties. The data are shown in 

Fig.4.16. Hg70Zn30 has a superconducting transition at O.12K with a 

vidth of 6mK which is in goad agreement with the value of O.IIR reported 

by Van den Berg et al. 37 • The difference is not significant as the 

absolu te value of T is very sensitive to small concentrations of 
c .. 112 

magnetic impurltles in the alloy. Kastner and Vassermann reported 

that Tc decreases by about O.04Tc per 1 ppm Mn. The materials Van den , 

Berg et al. used, ve~tilled Mg but only 99.999% pure Zn. This 
easily explains thefslightiy lover transition temperature. The 

Mg70Zn27Au3 sample vas èooledoto the l~mit of the refrigerators abillty, 
O.08K,~ but a superconducting transition was not reached.Howeve~ Fig.4.16 

shows a substantial decrease of the resistance due to superconductlng 

fluctuations6~, the precursers of a superconducting transition at lower 

temperaturéS. Rather than fitting the data on Mg70Zn27Au3 to any 

theoretical expression of the resistivity one can use an easier method - ' 

to ~stimate Tc in this alloy. Mg70Zn30 and Mg70Zn27Au3' differ in the1r 
fluctuation induced conductivity beeause of their different transi~ion 

temperatures. Johnson et al. 66 found in amorphous La75A~15cu15 and 
M030R.70 that this fluctuation conductivity decays as exp(- l~} for 

T > O.4Tc ' t- (T- Tc}/Tc is the reduced temperature (~ is the order 
parameter of the superconducting transition and le1s a measure of the 

fre. energy difference between the normal and superconducting state). A 

plot of ln(Aafl/ao} against ~ as shown in the Insert of Flg.4.17 

yields a straight line. 

1 
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T (K) 

The normalized resistivity change in,Kg70Zn30 and 

Kg70Zn27Au3 from O.O~K to 6K. The scala 15 

Indicated ln the figure. 
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The (negat1ve) normalized superconducting fluctuation. 
r 

conductivity in Mg70Zn30 and Mg70Zn27Au3 against the ~ 

square root of the reduced temperature. The scale is 

indicated in the figure. 
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r , 65 ~ 
Ami and Maki shoved that thls decaying conductlvity can be 

attributed to the Maki-Thompson type contribution to the conductivity. 

The As1amasov-Larkln type contribution Is important ,on1y very close to 

the transition temperature, i.e. t<O.05. They cause the deviatlons from 

linearity close to T seen in Fig.4.17. The important fact Johnson and c 
coworkers report 1s that the quantity ~ is constant in aIl of thelr 

samp1es studled (1.e y= 4.5). This should also be true for the two very 

sim11ar a1loys Mg70Zn30 and Mg70Zn27Au3' One can iso1ate the 
superconducting fluctuation re1ated conductivity of the two Mg-Zn a110Y8 -by fitting the curves in Fig.4.16 far ab ove T (T> lOT") to a background c c 
function, AR(T)/Ro == a\IT+ const. , extrapo1ating thls background to 

lower temperatures and subtracting it from the measured reslstance 

change. Fig.4.17 shows the resulting curves and we find that in Mg-Zn 

gla~ses too the superconducting fluctuation conductivity decays 

accordlng to the above functlon. For Mg70Zn30 the decay constant y ls 

0.76. Vit~a Tc of (40~ 15)mK the same value res~lts for Mg70Zn27Au3' 
This estima~e of T was used in section 4.2.3 for the analysis of the c 
magnetoresistance in' Mg70Zn27Au3 and 'Mg70Zn27Ag3'. 

The resistivity change in the four amorph~us a110ys Hg70Cu30 , 

Mg70Cu27Au3' Mg70Zn30 , Mg70Zn29Gdl between 1.5K and 6K ls compared in 
-Pig.4.1a. For better comparison it is p10tted as the negative 

conductivity change against the square root of temperature. Between 

these four a110ys some of the Most important parameters of the theories 

of quantum corrections to the conductivity are altered. It was shown in , 
the previous section 4.1 that the magnetoreslstance in these four al10Y8 

is distirtct1y different. This is not the case for the resistivity 

temperature dependence. !n aIl a110Y8 Investigated the resistlvity 

changes as f:.p/p2 == -a'fT between 1.5K and 6K wi th 
a= (135:t 25)xlO-5(0nK2)-1/2. Vith1n its error a ls not corre1a'ted vith 

the spin-orbit scattering strength or any other property. Icosahed~a1 

Mg40A130Zn30 also shows a similar temperature dependence. One comes 
therefore to the fo110wing conclusions: As predicted, the weak 

localization effect contributes on1y very I1tt1e to the overall 
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Figure 4.18 Comparison of the (negat1ve) conductivlty temperature 

~dependence in severa1 Mg-based g1asses. The a110y 

composition and sca1e are indicated in the figure. 

The solid 1ine i8 the diffusion channel contribution 
according to eq.2.33. 
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. 
resistivity between 1.5K and 6K. Similar1y, the Cooper channel 

contribution to the resistivity temperature dependence is very small as 

no significant difference in a is observed b~tween Kg-Cu and Hg-Zn 

glasses. Eq.2.34 describlng the temperature dependence of the'Hakl· 

Thompson sùperconducting fluctuation resistivity correction must be 

incorrect; in conjunction vith the other contributions (weak 

locallzation, Cooper ana diffusion channel) it pr~dicts a maximum of the 

resistivityat around 2K for~g70Zn30 whlch is not observed. This 
conclusion ls supported by t~e analysis of the fluctuation conductivity 

earlier in this section. The residual fluctuation conductivity at 1.5K, 

as ~hown in Fig.4.17, is negligib1e. The only quantum correction to the 
resistivity which ls supposed to be the same in aIl a1loys studied here, 

is the diffusion channel contribution given in eq.2.34 (ta what extent 

it is altered by strong spin-orbit scattering or by the magnetic 

scattering due to 7600ppm of Gd is not kpovn). It depends on1yon the 

~ctron screening parame ter F vhich ls 0.5 ln aIl of the a110ys a 
studied here (see Tab.2.1). Comparing the magnitude of the diffusion 

channel term, the solid 1ine in Fig.4.18, vith the mea~ured data, one 

Unds that it is about a factor of 2 too smal1 t). The data can only be 

fitted to the quantum correction theories if F ls a110wed to assume 
a 

unphyslcal negative values ranging between -0.1 and -0.6. Simllar 

observations have been reported by Poon et al. 114 and Bickey et al. 100 , 

At the moment we do not know how to Interpret these resu1ts. It Is 

surprlsing that the magnetoresistance is so weIl descrlbed at 10v fields 

by the quantum correction theorles but not the tempera~ure dependence of 

the reslstance. Ve note however that our analysls'of the 

magnetoresistance has only proven the valldity of the veak locallzatlon 

effect and the expression for the ~ 

t) Newson and coworkers l15 bave reported recent1y that the ratio 

between the temperature coefficients of the Hall effeét coefficient and 

the reslstivit~ some doped three dimenslonal GaAs HBSPET~ 1s a factor 
20 . 

of two smaller than predicted by Altshu1er and Aronov • 
~, 

, J. 

-. 
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superconducting fluctuation magnetoresistance (at lov fields). This 

does not allov'us to make any statement about the va~ity of the 

expressions describing the resistivity temperature dependence due to 

enhanced electron-electron interaction (eq.2.33). The above results 

shall therefore be taken as an indication that the expressions 

describing the ~emperature dependence of the quantum cor~ections to the/n 

conductivity need to be improved. 
Above 6K, the resistivity of aIl Hg-based glasses studied has a ~ 

positive T2 temperature dep~ndence. This is demonstrated in Fig.4.19 

vhere the resistivity change in Hg70Cu30 , norm~lized in the same vay as 
2 ~ 

in Fig.4.18, is plotted against T • According to Hatsuda, Hizutani and 
Yoshino34 ,36,116, who studied the resistivity. temperature dependence 

, , 

above 6K of simple metallie glasses ln great detail, thi~ regime extends 

up to T = 40K and the resistivity decreases vith increasing 
mu 2 

temperature roughly as -T above Tma • This behavior ls in agreement 
x 117 

vith the generalized Faber-Z!man theorys describing the uncorrelated 

intense scattering contributions to the resistivity; it is not of 

Interest in the present context. 

, 
, ' 
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Mg70Cu30 

100 

100(Om)-1 

200 300 400 SOC) 

The (negative) conductivity temperature dependence 

in Kg70Cu30 • The scale Is indi~ated in the figure. 
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5. CORCWSIOHS 

Prom the results presented in this thesis we are able 

following conclusions: 

w the 

At low fields, where enhanced electron-electron interactions are 

negligi~le, the weak localization theory gives an excellent description 

of the magnetoresistance in amorphous Hg-Cu, both in the tow and high 

spin-orbit scattering regime. AD equally good description of the 

magnetpresistance in amorphous Hg-Zn is achieved if the additional 
\ 

contribution from superconducting fluctuations is included. In 

particular the size of the effect is ~tiven accurately by the theoretical 

expression by Fukuyama and Boshino, without the need for an arbitrary 

scaling factor, as has been used by other authors. 
" 

At high fields, the theories of quantum corrections to the 

conductivity do not account for the measured magnetoresistance. In the 

superconducting Hg-~n alloys s~me of the discrepancies between theory 

and experiment are caused by an incomplete evaluatlon of the 

superconducting fluctuation magn~toresistance. Ve specu~ate that further 

dlscrepancies are caused,by an incorrect description of, the high field 

weak localization magnetoresistance by the theory of Fukuyama and 

Boshino. 

From the comparison of the experimental magnetoresistance with the 

quantum corrections theories' at low fields the dephasing and spin-orbit 

scatteting tates are deduced. 
~ 3 . Above 4K the .dephasin~ rate varies approximately as T , which is 

consistent with the dephasing of the quantum Interference by inelastic 

electron-phonon scattering, but below 4K i t' saturates to a common value 

in aIl samples. The saturation cannot be attributed co~sistently to 

residual magnetic impurity sc~ttering or other extraneous cause~'. To 

explain the saturation o( the dephasing rate a model has been proposed. 

It is based on the dephasing of the quantum backscattering Interference 

by ionic zero-point motion. For the Hg-based metallic glasses studled 

here, the model g1ves a consistent value for the dephasing saturation 

rate if a phonon coherence length ff five interatomic spacings is 

assumed. Bqually applicable to othfr disordered conductors, the model Is 
4 1 • 
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capable of explaining many of the dephaslng rate saturation systematlcs 
observed by other workers_ 

The spin-orbit scattering rate increases in Hg-Cu and Hg-Zn glasses 

when Cu and Zn are replaced by the heavier elements Ag or Au. As 

expected, the increase is linear in concentration, x, but only if 

x < 3at%. In this regime the"increase on adding Au is much stronger 
'than on adding Ag which 1s expected from the dependence olf the spin

orbit scattering Hamiltonian on Z. At larger concentrations the 

increase of the spin-orbit scattering rate is weaker; for Au it falls 
1 • 

drastically below the linear' extràpolation. This May re~lect the 
limitation of the expansion in T /T used e so 
localization magnetoresistance expression. 

weIl to those found by other authors. 

in the derivation of~e weak 

The values of lIT compare so 

The dlfference between the magnetoresistance ln Hg-Cu and Hg-Zn is 

explained quantitatively (with no adjustable parameters) by a 

combination of the Cooper Channel interaction and Maki-Thompson 

superconductlng fluctuation magnetoresistance. At low'fields vhere the 

Coope~ channel is negligible, this difference ls the first direct 

measurement of ~he superconducting fluctuation magnetoresistance in bulk 

metallic glasses. It is weIl described by the theory of Larkin. 

As a consequence of its quantitative accurac~ at lov fields, the 

) weak localization magnetoresistance May be used to measure directIy the 

resistlvity oL bulk disordered metais. The method was applled to 

~cosahedral Hg-AI-Zn al10ys whose irregular geometry precluded 

reslstivity measurements by conventional means. 

By deliberate doping of two Mg-Cu and Hg-Zn alloys with 8mall 

amounts of Mn and Gd we have a1so demonstrated the extreme importance of 

us1ng samples free of 'magnetic impur!ties if reliable values of the 

dephasing and spin-orbit scattering râtes are to be deduced. 

In the absence ~f a magnetic field the reslstiv1ty varies 

approximately.as -a~ between 1.5K and 6K as expected from the quantum 

correction theories. The value of a ls approxlmately the same in ail 

Mg-Cu and Mg-Zn glasses. Its magnitude is not consistent with the 
, > ',~ 

predictions oi tbe quantum correction theories. Ve have no explaqation 
'6 

/ 
"1," 
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for this observation. Above 6K the resistivity changes with temperattlre 

as predicted by the Paber-Ziman theory. The superconducting fluctuation 

conductlvity in Mg70Zn30 and Mg70Zn27Au3 Is isolated. It decays as 
exp{-l~) with the reduced temperature t = (T-T )/T which Is in c c 
agreement with the theory of Ami and Maki. 

To complete this chapter the following suggestions for further 

research on quantum corrections to the conductivlty are made: 

To understand the high field magnetoresistance in jon.

superconducting amorphous metals it is necessary to in~stigate the 

limitations of the weak localization theory and to improve it for large 

fields. Also, a more precise expression f~r the Cooper channel 

magnetoresistance vith a better than approxima te expression tor' the 

electron coupling g(B,T) is needed. Once the magnetoresistance is fully 
understood in non-superconductors, Larkin's expression for the Maki

Thompson superconductlng fluctuation magnetoresistance has to be 

improved to give a correct description at aIl accessible magnetic 

fields~ 

Given that ,the weak localization theory is successful 1n simple 
-1 -

weak scattering metallic glasses ( (~l) «1), Its valid1ty should be 
-l? e -1 

tested ln systems at the strong scattering limit ( (~-l) ~ 1). A 
-l? e -1 

possible system fpr such a study ls Ca70Mg30_xAlx' where (~le) varies 
between,0.05 and 0.4 (for x-O and 30 respectively) while other material 

characteristics remain unchanged. 

The non-linear behavior of the spin-orbit scattering rate at larger 

concentrations of spin-orbit sc~ttering centers deserves further 

attention. In particular the point at which the spin-orbit scatterlng 

rate devlates from linear dependence in concentration should be examined 

in detail, in particular its dependence on the atomlc number. 
The proposed model for the dephasing of the weak localizatlon 

quantum Interference by Ionie zero-point motion has to be put o~to a 

solid theoretiçal footing. A more precise evaluation __ of the dephasing 

effectiveness is needed. ~urthermore, experiments have to be devised'to. 

give a strict quantitative proof of the existence of the zero-point 

,motion dephasing effect. The magnetoresistance m~asuremehts on the 
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simple metallic glasses prèsented in this thesis cannot be considered as 

such, as the total signal is very small. The experiments by Abraham and 
Rosenbaum on Cu. films vith varying thickness, and by Bishop and 

coworkers on Si HOSFETs could be repeated ln more detal1 to concentrate 
specifically on the saturation asp~ct. ) 
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APPBNDICBS 

The expressions given in Chapter 2 for the temperature dependence 

of the quantum corrections to the resistivity in the absence of an 

applied field are quite easy to evaluate numerically. They involve only " 

logarithms or square roots. This is not true of the expre~sions 

describing the magnetoresistance; they are presented in terms of either 

d1ff1cult infini te series or complicated integrals. For the sake of 

clearity their numerical evaluation was left out of Chapter 2 and will 

follow in ap~endix A. The development of efficient numer1cal algorithms 

is an important part of this thesis since there vere approximately 120 
, 

data curves to analyze and some calculations had to be carried out Many 

times with varying pa~ameters. The calculation t1mes involved are quite 

long (days) even with the fast SUN Microsystems vorkstation available. 

The numerical evaluation of Larkin's ~-function is also g1ven in 

appendix A. In appendix B the least squares fitting algorithm employed 

for the fitting is presented. The detailed listing of the program is 

omitted because it vould just fill another 50 or more pages. In appendix 

C the kernel program conta~ing the magnetoresistance equations is shown 

as a subrou~ine which is called by the least squares fitting program. 

It could in principle be used by any other fitting algorithm if details 

of the, calling sequence are adjusted. 

!-
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Appendix A: Rullerical Recipes 

A.l The f 3-functioD 

The veak localization magnetoresistance expression eq.2.23 by 

Fukuyama and Bosh1no49 and eq.2.24 by Altshuler and Aronov20 as well as 
68 1 eq.2.35 by Larkin describing the Maki-Thompson magnetoresistanèe due 

to superconduct1ng fluctuations involve the function f 3(x) 
CIO 

f 3 (x) = ~a (x) 
n=O n 

( .h 1/2 vhere an(x) = 2 n+ 1+ il 

For large x this series converges onlyas (1/n)3/2. This is so slow that 

one would have to sum more than 105 terms to ach1eve an accuracy better 

than 1%. Ousset and covorkers1l8 have presented an approximation that 

can be derived by truncating the Euler-Maclaurin asymptotic expansion of 
this series. Although many times faster than direct summation it 1s 

still quite cumbersome and a f~ster form vould be handy.since f3 ls 

likely to be called several times in some data flts.(The reader should 

note that the expression glven by Ousset con tains a typographical error, 

the exponent -3/2 on their last term should be -1/2.) A faster form for 

f3 can be found64 by expllcltly summlng the first two terms which gives 

f
3

(x) == 2 [ (2+ ~ 1/2 _ (~1/2] _ [(!+ ~ -1/2 + (~+ ~ -1/2] + R(x) (A.l.1) 

" vith the remainder as 

where 

The remainder can be expanded in terms of 1/2y in a Taylor series 

yielding 

R(x) 
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Converting the summation into an 1ntegral and dlsregarding h1gher order 

terms gives 
... 

(2.5 + 1/X)-3/2 (2.5 + 1/xf7/2 • 
R(x) :::: 48 + 1024 + (A.1.2) 

An accuracy of better than 0.1% 1s ach1eved 1f only the f1rst term of 

R(x) 18 retained and the value of 2.5 1n thl's term ls replaced by 2.015 
'" to give the p~oper asymptotl~ behavior, 1.e f 3(x ~ ~)= 0.6049 •• 

In the parameter range considered it 18 possible for 1 1n eq.2.23 
-'4,. 

to beco!De larger than 1.. for large fields B. This does not impose a 

serious problem. Examlnlng the Integral expression'from which Maekawa 

and Fukuyama18 have calculated the conductivlty in two dimensional 

conductors and which - Fukuyama and Hoshlno49 have extended for'bulk 

conductors in eq.2.23, one finds that it ls weIl deflned for aIl applied 

fields. It ~s therefore legitimate to analytically continue equation 
" 

eq.2.23. The imaginary terms cancel out. To do this one has to 

interchange analytical continuation w1~h the series summation of the 

function f 3 , which can,still be ~pproximated with the ~bove expression 

A.I.l and A.l.2. Exploiting the fact that B+ and t+ are the complex 
conjugates of B_ and t_ respectively, eq.2.23 turns into a lengthy 

ex~ression involving terms of the form 

~ 1 [(a + ib)P - (a - ib)P] 
2i " 1- i 

(A.1.3) 

such as 
21'J ~- i hr: - {t:] 

- 1 [(t- 1/2) + i" 1- 1) 1/2 - '(t- 1/2) - i\l 1- 1)1/2] 
2i\1 1- ) \ -

which cao be revritten as 

1 [2 2] ~ 
:;:::;:; a + b sioi 
~ 1':' i 

where Œ • arctan(~ 
The exact details of this analytical continuation can be found in the 

. proaraa kernel'rf1t.c listed in append1x C. The calculation is eas1ly 

cheeked; for large values of D eq.2.23 falls onto eq.2.24 given by 

Altshuler and Aronov20 and no discontinuity vas observed at 1-1. 



o 

,0 

A.2 T.h~g3-fUDct1on 
. ",' 

The diffusion channel,magnetoresistance e~presslon in e~.2.29 
21 " derived by Lee & Ramakr1sbnan con~a1ns the Integral 

= 2 " 
g3(x) == J dCl) [ ~(CI)CI) } 1 [\1 CI)+ x +" 1er xl - 2\f";] 

o dCl) e - 1 
(A.2.1) 

, 118" -
Ousset and coworkers presented a'very useful approximation for '3(X). 
v~ich vas used for the data analysis ln· thls thesis. It has an "aecuracy 

of better than 0.25%. For small x one can expand the square roots ln . . ~ , 

eq.A.2.1 vhich yields a series 

The coefficients ap are determined by the Integral. 04sset et al. have 

evaluated the function g3 numerically in the range, x < 3, and fitted 

the result to a series of the above f9rm. This ,ives 

g3(x) ::::: 5.6464xlO-2x2 ,. 

- 1.4759x10-3x4 + 4;~747x10-5x6 

'- 1.5351 x10-6xS + 6x10-BxlO 

".' .~ 
~-< 

(A.2.2) 

Similarly they expiilded the roots for large x in. terJlls of tJJIx. 

Evaluating the resulting series of integr~l they flnd that, g3(x) can be 

approxima ted for x ii!: 8 by 
2-

'3(X) =x1
/
2 

- 1.2942 - ~3/2 
12x 

5'fr6 4 'fr 
32xl~/2 

. (A.2.3) 

J ~ .~~~ _: 

In Ü.a intermetfiate range, 3 :s h _:s '8 -vi th u - h - 4, the authors" 

fi tted the numerically iI:1teg ated ftmction .g3 to a polynomial in u 

, 

1 

) 
, , 

l 
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which gives " 
, 

. -4 2 
g3 (x) :::: 0.64548 + O',235u - 7 .~45 xIO u (A.2.4) , 

2.94xlO-3u3 ' + 6.32xIO-4u4 

-5 5 - 5.22><10 u 

As a test ,we have integrated the func;ion g3 numerically at a fev points 

using the in.tegration routipe "varint()" listed in appendix C. Ve found 

agreement with the above approximations by Ousset and covorkers wi thin 

the quoted accuracy. 

A.3 The ~3 and ~F functions 

There are three different forms for the Coôper channel 
, 61 

magneto,esistance. The expression gi~~n by Altshuler and Aronov 

involves 'the Integral ,>" 

4>3 (x) = bill12 j dt t l/~ 
o \ sinh t 

1.. 

( xt) 
1 - sinh(xt) (A.3.l) 

For x « 1 one can exploi t the fact that the asymptotic fo~m of the 

integrand is governed by the t 1/ 2/sinh2 t term ànd hence expand the 

bracket in terms of xt. CalculaUng the f:Lut few terms of the 'resulting 
th series of integrals exactly and adjusting the 4 order term Ousset and 

coworkers 118 Und for x < 0.7 

4>3(x) :::: 0.3295 x3/ 2 ~- 0.11894 i/2 (A.3.2) 

+ 0.10753 xll / 2 _ 0.0636 x6•63 

, 

A similar analysis for the l1m! t x »'1 yields fOI; x > 2.4 

~(x) :::: 1.900344 - 249·392x- l12 (A.3.J) 

+ 1.2266h-2 - O.826h-3 •5 

, 
, In the in termedia te range, 'le ~ :!Ii X S 2.4, 

4'l3(x) ::: - 0.03043 + 0.22616 x + 0.14104 x
2 

- 0.10293 x3 + 0.02759 x4 - 0.0028 x5 

Accordlng ta Ousset et al. the accuracy of 

better than 0.025%. The reader sMuId note 

the above approximation. i. . , .-

that in thelr article the 
o 

last coefficient i8 8istyped as 0.00028. 

\ , .,. 
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Tlie~ second Cooper channel magnetoresistanc..e expression in eq.2.3l 
, 

involves an Integral '_1 (xl ,x2,x3)· This Integral differs from <1>3 given 

above essentially only by a factor 

(g~B) (4eDB ) 
cos ~T·t exp - ~Ts.t 

which accounts for the Zeeman bandsplitting and the attenuation ~f1fhe 

- magnetores~stance due to magnetic sp.in scatt~ring. In this case it"'"ts 
not po~iblè to use the approxiùtions for ~3 glven above since the 

integrand is now à three parame ter Integral. Instead one has to 

integrate F_I numerically for every set of parameters B, B~, T. 

individually. Because the term l/s1nh 0 in the integrand causes a 

numerical Integration to faI1, the Integral in eq.2.31 has to be spli t 
• 

~-1.nt-o uo parts 

00 e 1.0 QO 

Jdt fl~ , B s ' T , t) ;,. fdt f(B,B ,T,t) + f dt' t( B , B , T , t) (A.3.S) s < s , , 
0 ,0 • 

Tlle first Integral on the right hand side can be calculated explicitly 

for « « l, 1.e . 

+ •• 

(A.3. 6) 

and the second Integral is calculated by the routine "varint()" given in 
, -

appendlx C. For more details of ,the calculation the J:"ead'er is refered to .. 
the relevant program parts ln appendlx C. It 1s found that the 

exponetial term describing magnetic impuri ty scattering effects is not 

important for magnetic 'impuri ty levels of less than 3ppm Mn and 'can 

. tharefore be neglected in ~ur samples. Similarly it 1s found that the 

Zëeman spl1 t ting term 1s small (see Fig'.2. 11)' 1 f the elec tr<tn 

dlffusivity ls as ~arge as in the Mg-based metallic glasses studied . 

here •. The' above approximation for ~ given by Ousset et al. is 

therefore good enough for our purposes (if the missing factor of 1/11' in 

eq • 2.30 1$ taken in to accoun t) • 

. \ 

• 

.. 
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Isawa and ~ukuyama22 have derived yet another form of the Cooper 

channel magnetoresistance (eq.2.32). It i8 expressed in terms of the . \ 
series 0 

~F' (B,Bi,T) =-~ k[' (~;I+ Ii:!:t) _ ~(..l!!..)3/2] 
k=l 2 2 lh 3 k+'Y 

. ~ (A.J.7) 

2DeBi .., = cl and 
~T 

mère 

t (s ,z) stànds for' the generalized Riemann Zeta·f\lnction, 
• • ft 

i.e. . t(S',z-) = ! ( n+ z )-s 
). n=O 41 

• 
Again, as the fl·~ctlon, ~ ls a very s+.owly converging series. At 
first glpnce one is tempted to .acc~erate ,lts convergence by usln~ the 

Euler-Maclaurin su~ation formula: 
1) 

n N-1 

-. 

F(n) == k f (k.) == L f"(k) + R(N ,1)) 
k=O > k=Q : '. 

n . 

(A.3.B) • 

1 J '~j +1 Bj +1 m 
R(N,n) := ïf(n) + f(N+t)dt + C + ..kJ (-1) (j+l"" f (N+n) 

o j=1 l'. 

where C == Hm 1 
~ (-l)jB 
'2.J 3+1 f(j) (N) + If(N) 
ja1 (j+l)! 2 

00 

+ ,(_l)m Jdt B (t-[t» f(m+l)(t)] 
(m+l)! m+1 o ", 

Bn ~re the Bernoulli numbers. Up to the 4th arder one can express the 

Euler-MacLaurin expansion as 

F(n) , . 

/ 

=~ f(k) 
k= 0 
n 

== f d1t f(k) - !lf(N)+ f(O)] 

./ .. 

o 
+ [f'(N)- f'(O)] - 7io[f'''(N)- f"'(O)] + ••• . 

• 1 1 ~ 



....... -----~-----_._- .. 
. ..... _._~._ .... 

, l , , .. .. 

• 

r 

-180-

J 

It~turn~-out' that the Euler·Ha~Laurin expan&~on cannot be applied 

di~ectly. to ~ b~cause the Integral of the second term in the brack~ts 
of eq.A.3.7 diverges. One can avoid this bothersome problem if one· 

applies the Euler-MacLaurin expans1o~_first to the t-function. This 
gives .. 

,(s,z) + l '7" 1 
$-1 s (A.3.9) 

(s-1 )(N+z: ,1) ~ 2(N+z-' 1) . 

~2 s B4 s(s+1)(s+2) 
+ + 

(N+z-l )s+1 2(N+,z-1 )s+3 

"" 
For s- 5/2 w1t~ N= 10 the accuracy 1s better than one in 107• Using tq1s 
expression for the-, -function one can rewri te ~ as 

00 

~ -~ f(k) 
k= 1. 

(A.3.10) 

, N-l 

- k [~ (tt 
n=O 

with f(k) 

.1 

~î[(N-l +î +~ +~-3/2 _ (~,+ ~~-3/2] . 
1 

\ . 

21( - 32 N-l 

Ve carry out thi. sumaation explicltly, to the Mth term and expand 

remalning sum over k in an Euler-MacLaurin series up ~o the third 

deriv8tive 1n f(K): Tbe 1ntegration<of the term of power -3/2 in the 

second rov 1s nov well defined. Instead of expIi~itly present1ng the 
, 

results here, which would fill another three or four pages, the reader . . . 
is-r,fèrred for deta1ls to' the Souree code of ~he pr~giam kernel Iisted 

:;:>-

, 

, , 

, , 

• 

" . .. 

\ 

, 1 

i 
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in appe~dix C. It v.s found that the an aecuraey of better th~n O.I~ , 
vi th good speed is achieved vi th 'N:alQ-1!mtl-l4~ 

The consistency of the various merical valuations of the Coope~ 

channel 'magne~o~esistance 19 best demo trated by the fa~t th~t they" o' 

give the same results for B<3T (if the same electroh eoupling g(B,T) is 
used and a= l/~ in eq.Z.30). 

A.4 Larkin's ~-function 

i~rkin's ~-function68 descrlbing the tempe~ature dependence of the 
coupling between superconduct1ng fluctuatio&s and normal ~lectrons, 18 

def1rned -as " 

""4
2 ~ 00 J3(T) = - 2J (_l)m r(lml) - ~r"(2m+l) 
m=-oo m-O 

(A. 4.1)' 

2200 00 
=- 1L r(O) + ~ ~ [ r(2m) - r(2.:'!)] - ~ r" (2m+l) 

4 2 m-l m-O 

vith r(m) ... [signe (w,m+1/2) ~ ~(1/2)1 +' ln(T/TC>]-l 

~ i8 the digamma function. In Larkin'~ paper68 the sign in the 

definition of the function r is'hegatlve (sign--l). Sinee In(T/T ) 1s r' .c 
positive this implies an unphysical s~ngularlty at certain values of 

- 63 
T/T > 1. Lopes Dos Santos and Abrahams have rederived the ~·function 

c > 

and in their definition r ls vritten vith a positive sign (in this 

definition m'carries factor of 1/2 ln the.argumen~ of ~ whlch 18 hovever 
a ml~take69>. To check the table of values that Larkin published for the 

, . 
J3-function ~e have calculated J3(T/T ) uslng the follovlng simple 

'Oc 
approximation. The first M-I terms of the first series in eq.A.4.1 are 
added up explicitlr:- Using the EUler-Maclaurin expansion to flrst order, 

~ne remainder, RI' of.the first series is estimated as . 

(, 

RI(M) ::; fdm(r(2m)-r(2K-I») - !(r(2M)-r(2H-l)) + ••• 
H 

\ - --

(A.4.2) 

r 
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The aec'uracy of the remainder d~pends cri tical:ly on the size of 2M since 
only tije~first order asymptotie form of the digamma'function (i.e. 

ljI(m»l) - ln(m» vas used tOirevaluate the Integral iri ~êi\A.4.2. This 1s 
1 -

the a crucial. part of the approximation. Similarly ~~e can sum the 
o 

first M· ~ terflls of the second series in eq.A.4.1 and esUmaté the ' 
remainder, R2 , as 

R (H) _ . < (2M+l) + 1/2 
2 - 2[(.2~+1)(ln(2M+l) - 1/1(1/2») -,1/2]2 

(A.4.3) 

The sect>nd series has essenUally converged for' M=2000. To, test the 
r 

very bad convergence of the first series in eq,A.4.'1 and the very~ 
approxima te evaluation of ,the remainder ~ vas calculated for sever~l 
values of H (M-I-IOP-l, p-4, 5, 6). Sinee'the eonvergence vas still 
very poor, a Shank's transformation in p was used to compute' the final 
result, Le 

_ l!<p=4) '!Hp=6) - p2(p=5) 
P - P(p-4) , + P(p-6) - 2p(p=5) (A.4 ·4) 

~ 
The r~sults are the same within 3% as those ealeulated by an explicit 
~~umerieal Integration of the remainder64 with the routine "~arint()" 
listed in the' appendix C: A'plot of our results compared to Larkln's68 

18 shown in Flg.2.13. They differ by about ,,30%. The' source code beta.c 
- . 

for our calculation of the p-function 1s giv~n ln 'appendix C. Our 

calculation a1so includes the effects of inelastic eleetron·phonon 
scattering on ~ aceording to cons~erations by Lopes Dos Santos and 
Abrahams63 (they are hovever negligible for the a110ys discussed here) •. 
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Appendiz Ba Ron-Linear' ~t-Squarea Pittina -
- , 

; 
For the compa~1son of the experimenta~magnetorell.tance data 

presented. in Chapter 4;1 vith the theoretical expressions of the quantum 

cojrecUons to .the conductivity in Chapter 2 a non-Hnear least·squares 
fitting algorithm'vas used. The algorithm follows closely the ~rocedurel 

o d' 119 -develope by Marquardt Some of 1ts ~etails are discûsseij in the . 
following sectlon, for further information the reader is referred to 

. 120 ' 
Bevington • 

Suppose (X1 'Yi) 1s a ~et of experimental data (e.g. (B,Âp/p» and 
y=f(x,â) i~ model functipn dependlng on a set of unknown parameters 
8=(a1, ••• ,an). For a certain ~et of parameters the model functlon la 

supposed to reproduce the average data functlon ~Y1(xi»' As the. 
" , 

parameters a (e.g. (B~,Bs~» are not known one has to adjust (fit) them 
until an Optimal èorrespondence between data and mod~l ls tound. One can 
defln~ a measure for the quality of the fit (giv~ng the method fts name) 

as , 1 

v
2 (a") "'" 1 ( f .. ») 2 " = ~"2 Y1- (X1'~ 

1 ai 0 

l, 2 
An· optimal fit 1~'reached for a set of paramete~ at vhich X 19 

minimized, I.e • . 
- '* 2 .. v X (a) = 0 ,a 

(8.2) 

The mlnimization problem can be visualized by notlng that eq.B.l de.fines 

a hypersurface in' the '(l,a) space and., eq:B. 2 a l~ca.l minimum '(maximum) 
on the surface. There are three fundamental problems with non·1inear 

least-squares flts: (1) The optimized parameters are meaningless if a 
~ 

model function ls used that 15 in prlnclple.not capable of descrlb~ng 
,0 ~ 

, the full set of data because, for example, 1 t neglects an. essenUal part 

of the phys1cal reality of the system Investlgated. The only cure for , . , 

th!s problem ls to optlmize. the Iloc;iel funcUon or t.p truncate the data 
to the reg.lme vbere the sodel function 18 in principle corr.ct. (11) Th, 

x2 surface May ~ell have~ore than one .i~i.um~ and the absolute .1ni.~ 
, 

" 

.. 
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~y not necessarlly correapon~to a physlcally .eanipgfu~'set of 
1 parametera. This problem ls usuaÏ1y solved by constr,.l~ihg the 

~ 0 J " 

parameter~gime one con,iders physically meanlngftil and which . 

contalns only one mlni~um" Adm~ttedly thls introduces some'tias. In the 
\. :' 

present case of fltting the ma~etoresistance this problem fortunately 
2 ' \1 

do es not app,r as the x surfa~e 18 weIl beha.ved. ~iU) ~ oU me .'~ 

efficient search algori thm must ,be constructed which leads iteratively 
from ,,an Ini Ual point ln paramet~r ,space, âo (the nedu~à\ed guess~)'. to 'fi 

~ 2 ' the point a at whi·ch X has Its minimum. There are several ,powerful 

algorithms listed ln the liter.ature. 
... 

... 
The very eff1c~ient algorithm prDpos'ed by Karquard t combines the 

. 120', 
gradient search and linear expansion techniques • It starts at an 

- 2 
initial set of parameters io and decreàses x by incrementing the 
parameters by 

.. -1 if 8a =: B 'p (B.3) / 

where B = A - lA. with A. > 0 (B.4) 

l i8 th~ unit (ldentlty) matrix. The matrix'A (known as 'the curvature 
t • 

matrix) is deflned as (with f (xi)=f(xi,i .» , 0 QO . 
, a2·i(i) 

"A _ 1 0 " 
Ij 2 aaiaa j , 

. , 

, 1 

_ 2: -L-lafo(Xt)afo(Xi ) _ 

i u2
1 

aa j a~ 

(B.5) 

The ve~tor ~ whlch,points ~h the direction of steepest descend of the x2 
<> ' 

hypersurface is defined as 
2 ~ 

1 a)( (ao ) 

~ - -'2 aak 
(B.6) 

- ~ 1 af(xi,â ) 
- .ttJ::J ~(~i-f(Xl'âo») aa. 0 

1 ~. K , 

. 
The lihear equation in eq.B.3 can be solv'ed using numerical matrix 

1 
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>6 " 
inversion techn,iques l1st'ed in reference 121. To simplify ancJ ac:celerate 
'the computation of the matr1x elèDÎents Ajk, one can make use of the fact 

th~ t t,he parameters, a j' ar~ uncorrela ted to a large :egree so tha t the 
1 second order ~erivatives i~ eq.B.6 are negligible"i:e 

Po 

(B.7) 

The partial derivatives of the model f~nction, f(xi,a), are computed by 
1 , 

af(xpa) _ f(x i ~aj+L\aj) - f(x i ,aj- Aa j > 

aa j - 2Aa j 
(B.8) 

The step sizes Aa j are c~osên so t~at the value for the partial 
derivative does not change by more then 10% i,f the step Bize 15 reduced 

by a factor of 10 and the numerator on the r1ght hand side 1s larger' 

than 0.01% of the value of f (Xi)' , 0 

" For large À, the diagonal terms of the matrv B in èq.B.4 tare. 
dominant and the components of the increment vector &a in eq.B.3 are - , 

therefore very close to 

~j 
(B.9) 

In th!s case the parameters are incremented Along the steapest descent 

of x2, which is the directio~ a ~r~die~tsearch routine would tak~'. This 

path direction on the x2 surface i8 particularly efficient far away trom 
-- . 2 ' 

the minimum of X , it is ~t optimal close to the minimum. For small À 
".. .. cc· -

the increment vector calculated vith eq.~.3 does not point along the the 
1 

di~ection of steepest descent 80y longer. In fact 1t points ln a 
\ 

,direetion almost orthogonal to it. In this case the path direction on 
the x2 surface is the same as would be predicted by a lln~r exp,nsion) 

" , 2 
type algorithme It is partteularly efficient close to the x minimum. 
The obvious p~blem, the choice of the size of, À, is circumvented by 

) 
o 



) 

4'F, 
'-.J' 

... 

( 

'-, 

~ , t , 

• 
·186·. 

adopting tbe ,Iterative searcb procedure Karquardt proposed: 

i) calculate x2 at tbé starting point 8 first, set ~ = 0.001, , 0 

i~) calcula te the inverse matrix B-~ in terms of x, 38 
2.. .. and x (aô+3a), 

11i) if X
2(8

0 
+3&)· > x2(&0) 

multiply X by 10 and repeat i1), 
'2.. .. ,2 .. 

if x .(ao+8a) < x (ao) ~ 

divide x by a factor of 10, define 8=8
0

+68 

'. as the new starting point and repeat 11). 

~ this algorith~ ~ will always have the appropriate size, it will be 

large far away from the x2 m1ni~~ anq small close to 1t. Even if the 

choice of X and thus- 38 is nqt optimal at one particular ~t~ration step, 
2 . 1 • 

the x will decrease and the algori~hm will compensate for it in the 

ne2Çt step and keep no further memory. The. Iteration t'o~a~ds the i~ 
minimum is sFopped if , 

(B.lO) 

c is usually chosen between 1% -and 0.001%. 
, 1 

t. 
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