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Abstract

We investigate a particular type of geometfry, namely median metric spaces. This
encompasses median graphs, as well as simple combinatorial structures known as spaces
with walls.

The group-theoretic applications are towards the Kazhdan property and the Haagerup

property.

Résumé

On s’intéresse a un type particulier de géometrie, les espaces métriques medians. Ceci
comprend les graphes medians, ainsi que des structures combinatoires connues sous le
nom d’espaces a murs.

Du point de vue de la théorie des groupes, les principales applications sont envers la
propriété de Kazhdan et la propriété de Haagerup.
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1 Kazhdan vs. Haagerup

The two properties of groups we focus on are Kazhdan’s property T and its nemesis,
alternatively known as a-T-menability by group theorists and Haagerup’s property by
analysts. The former term, due to M. Gromov, has a mnemonic quality to it, as it
suggests the negation of property T and the relation to amenability. We prefer the latter
term. _

We define these properties in terms of isometric actions on (real) Hilbert spaces. We
often use “Kazhdan group” as a shorthand for “group with the Kazhdan property”, and
“Haagerup group” as a shorthand for “group with the Haagerup property”. Two related
group properties, amenability and property FA, are also briefly reviewed. In the later
sections, we will revisit and explain certain examples from this section.

All our groups are discrete and countable. For all practical purposes, the reader may
assume that the groups are finitely-generated.

1.1 Amenable groups

Among the myriad ways of defining amenability, two are especially significant.

Definition 1.1. A group G is amenable if there is a G-invariant, finitely-additive mea-
sure 4 on P(G) with p(G) = 1.

Theorem 1.2 (Fglner’s Criterion). A group G is amenable if and only if there is a
sequence (F,),>1 of finite subsets of G such that for every g € G we have

,QFI’LAFnl
| Fol

Finite groups and abelian groups are primary examples of amenable groups. On the
other hand, free nonabelian groups are not amenable.

Proposition 1.3. The family of amenable groups is closed under taking subgroups, quo-
tients, extensions and ascending countable unions.

For the purposes of this section only, by a class we mean a family of groups having the
closure properties listed in the previous proposition. Amenable groups form a class, but
there are two more classes we would like to mention.

The smallest class containing the finite groups and the abelian groups is termed the
class of elementary groups. Elementary groups are amenable, but not every amenable
group is elementary.

Amenable groups do not have Fy as a subgroup. The family of groups without Fs
as a subgroup forms a class. There are groups without Fy as a subgroup that are not
amenable, e.g., Burnside groups of large exponent. We may sumiarize these ideas in
the following chain of strict inclusions:

EG ¢ AG C NF



Example 1.4 (Subexponential growth). The growth of a finitely-generated group is
the rate at which new elements appear as one takes larger and larger balls around the
origin in a Cayley graph. There are three ranges of growth:

l<n=<n?<n®=<... ... <e"<... <
~ N~~~
polynomial intermediate exponential

The following important result is a nice application of Felner’s criterion:
Theorem 1.5. Groups of subexponential growth are amenable.

An outstanding theorem of M. Gromov equates polynomial growth with virtual nilpo-
tency. A result of C. Chou says that elementary groups have either polynomial or ex-
ponential growth. Thus elementary groups that are not virtually nilpotent are examples
of amenable groups with exponential growth. As free nonabelian groups have exponen-
tial growth, we see that both amenable and non-amenable groups can have exponential
growth.

Subexponential
Growth

Elementary

Amenable

Groups of intermediate growth are amenable but not elementary. Currently known
groups of intermediate growth, from R. Grigorchuk’s first examples to more recent varia-
tions, are groups acting on regular trees 7,,. Grigorchuk’s groups have another interesting
feature: they are infinite torsion groups.

Notes. Amenable groups were introduced by von Neumann in connection to the Banach-
Tarski paradox; see S. Wagon’s beautiful book The Banach-Tarski paradoz.

1.2 The Kazhdan property

The Kazhdan property, often called property T, is a form of rigidity.

An isometric action of a group GG on a metric space (X, d) is said to be bounded if
the orbit of some (every) point in X is bounded. For metric spaces in which bounded
sets have unique circumcenters, the boundedness of an isometric action is equivalent to
the existence of a fixed point.

Definition 1.6 (Kazhdan group). A group G has the Kazhdan property if every
isometric action of G on a Hilbert space has a fixed point.



Example 1.7 (Amenable groups). Infinite amenable groups are not Kazhdan. This
is immediate if one uses alternate definitions of Kazhdan's property and amenability.
Instead, we explicitly describe an action on a Hilbert space that is not bounded.

Let G = {g1,¢2, ...} be an infinite amenable group. We start by gaining asymptotic
control over the Folner sequence (F),),>1: by passing to a subsequence if necessary, we
may assume that for all 1 <7 < n we have:

lngnAFn’ o
| F| 73

For each n, modify the usual linear isometric action of G on ¢3(G) into an affine one

g*n¢ g¢+“}F|( gF,lAXFn)

and wrap all these actions into a single action on €, ¢2(G) by defining:

* (an)nZl = (g *n d)n)'nzl

The action is well-defined since for each g = g; we have:

[ N 2
Z H IF I(XgiFn - XFn> = Z HXgan - XFn“2 Z , ling AE)I
n=1 " n>1 n

n>1

2 | F 2 | Fl
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For each N, the translate gFy meets Fy for finitely many g € G. Thus for all other g
we have:

n 2 n N
lg Ol = Z “\/ m(XgF,,, - Xpn)l‘ = Z I““F:—IISJFnAFnI > TFJ—V—'IQFNAFM =2N
n>1 n n>1 "

We conclude that, for every N, the set {g € G : ||g = 0f} < V2N} is finite. In particular,
the action is not bounded.

Proposition 1.8. The collection of Kazhdan groups is closed under taking finite-index
subgroups, quotients, and extensions.

Definition 1.9 (Relative Kazhdan). A group G has the Kazhdan property relative to
a subgroup H if every isometric action of GG on a Hilbert space has a point fixed by H.

Obviously, we are only interested in the Kazhdan property relative to an infinite sub-
group. For example, Z? x SLy(Z) is Kazhdan relative to Z=2.



1.2.1 Property FA

There is an important connection between Kazhdan groups and the Bass-Serre theory
of groups acting on trees.

Definition 1.10. A group G has property FA if every action of G on a tree fixes a vertex
or an edge.

Theorem 1.11. A group G has property FA if and only if the following are satisfied:
1) G is finitely generated with finite abelianization
2) G 1s not a nontrivial free product with amalgamation

For a finitely-generated group, having finite abelianization is equivalent to having no
infinite cyclic quotient. The amalgamations H xg G and G *¢ H are considered trivial.

The following important result says in particular that Kazhdan groups are finitely-
generated.

Proposition 1.12. Kazhdan groups have property FA.

Example 1.13 (Torsion groups). Finitely-generated torsion groups have property
FA, as they satisfy the algebraic criterion described in Theorem 1.11. This observation
is valuable for infinite torsion groups only, whose construction is rather delicate. Grig-
orchuk’s groups are examples of infinite finitely-generated torsion groups. They therefore
have property FA without being Kazhdan.

Proposition 1.12 is often used for proving that a given finitely-generated group is not
Kazhdan. Algebraically, we may prove that the group has infinite abelianization; this
method is surprisingly useful. Geometrically, we may actually point out an action of
the group on a tree that fixes no vertex or edge; this is certainly more pleasant but it
happens less frequently.

Example 1.14 (Deficient groups). A group that has a finite presentation with more
generators than relators is not Kazhdan, since it has infinite abelianization. Examples
include:

e nontrivial free groups: note that they obviously act freely on trees

e infinite 1-relator groups: these include the Baumslag-Solitar groups and the surface
groups, with the exception of 7,(S?) = 1 in the orientable case, and 7,(RP?) = Z,
in the nonorientable case.

Likewise for braid groups:
By = {x1,. .., Ty 1| T3 = Tipximiyy for 1 <i<n—2, [z;,z5] =1for |i — j| >2)

The presentation is not deficient, but the abelianization of B, is the same as that of the
following deficient presentation:

(T1, . Ty TiTip1 T = T Biigy for 1 <i <n —2)



Example 1.15 (SL,(Z)). The group SLy(Z) is not Kazhdan. as it is virtually F,. Move-
over, SLy(7Z) doesn’t have property FA. Algebraically, SL,(7) is finitely-generated with
finite abelianization Zis, but SLy(Z) = Zy %z, Zs. Geometrically, SLy(Z) acts on 7;.

On the other hand, SL,,(Z) is Kazhdan for n > 3.

Notes. For property T, the Old Testament is [dIHV89]. The New Testament is [BAIHV03].
What we defined as KKazhdan’s property is actually Serve’s property FH; for countable
discrete groups they are equivalent. The relative Kazhdan property was introduced by
G. Margulis.
The reference for property FA and the theory of groups acting on trees is [Ser80].

1.3 The Haagerup property

The Haagerup property can be described as a weak form of amenability, or as a strong
negation of Kazhdan’s property T, hence the alternate name “a-T-menability”.

An isometric action of a group G on a metric space (X, d) is said to be proper if one
of the following equivalent conditions holds:

a) for some x € X, the set {g € G : d(z, gx) < R} is finite for each R > 0,

b) for all x € X, the set {g € G : d(z, gz) < R} is finite for each R > 0,

c) the set {g € G : gB N B # (} is finite for each bounded B C X.

Definition 1.16 (Haagerup group). A group has the Haagerup property if it admits
a proper isometric action on a Hilbert space.

Amenable groups have the Haagerup property, as we showed in Fxample 1.7. An impor-
tant observation is the following:

Proposition 1.17 (Kazhdan vs. Haagerup). A group that is both Kazhdan and
Haagerup, is finite. More generally, a group that is Kazhdan relative to an infinite
subgroup cannot be Haagerup.

For example, Z2 x SLy(7Z) is not a Haagerup group. However, both Z? and S1.,(Z) are
Haagerup groups, so the family of Haagerup groups is not closed under extensions. Note
that Z? x SLy(Z) is not Kazhdan either; in fact, it doesn’t even have property (FA). So
there are groups that are neither Kazhdan nor Haagerup.

Problem 1.18. Suppose that GG is not Kazhdan relative to any infinite subgroup. Does
it follow that G has the Haagerup property?

Proposition 1.19. The collection of Haagerup groups is closed under taking subgroups,
extensions with amenable quotients, and ascending countable unions.

A simmple technique for establishing the Haagerup property is to use group actions on
discrete spaces with walls. Some groups that lend themselves to this viewpoint are:
Coxeter groups, groups acting on trees, groups acting on cubings.

Problem 1.20. The following families are known not to contain any infinite Kazhdan
group: braid groups, 3-manifold groups, 1-relator groups. Are these Haagerup famnilies?

8
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Notes. The definition of the Haagerup property is essentially the one from M. Gromov’s
epic essay Asymptotic invariants of infinite groups. The chief reference on the Haagerup
property is [CCJ*01].

See K. Fujiwara’s paper 3-manifold groups and property T of Kazhdan for a proof of
the fact that infinite 3-manifold groups are not Kazhdan, provided that the 3-manifold
satisfies Thurston’s Geometrization Conjecture.

1.4 The framework

One way of distinguishing two groups is to show that they have different isometric actions
on a suitably chosen family of metric spaces. Conversely, one may take a well-understood
family of metric spaces and use this family as a test-ground for isometric actions. Our
formulation of the archetype reads as follows.

Let X be a family of metric spaces, understood as a type of geometry. The following
definitions express the rigidity, respectively the flexibility, of a group with respect to the
geometry in question. One may argue that these are properties of actions rather than of
oroups themselves.

Definition 1.21 (Property FX). A group has property FX if each isometric action on
a member of X is bounded.

Definition 1.22 (Property PX). A group has property PX if it admits a proper iso-
metric action on a member of X.

Notice the vestigial “F”, which is only justified for certain metric spaces, e.g., CAT(0)
metric spaces. The better known avatars of property FX are: property FA, when we
consider the family of simplicial trees; property FRA, when we consider the family of
R-trees; property FH, when we consider the family of Hilbert spaces. As far as we
know, property PX has only been investigated for Hilbert spaces. We will consider both



properties with respect to the family of median metric spaces. Other families worthy of
investigation in this light are L,-spaces for p # 2, ultrametric spaces, etc.

Property FX and property PX are opposite in the sense that a group enjoying both
properties is finite. Moreover, every homomorphism from an FX group to a PX group
has finite image. This is because property FX is inherited by quotients, while property
PX is inherited by subgroups. On the other hand, note that finite groups have both
properties.

Typically, there exist groups that are neither X nor PX. A simple trick for creating
such groups is to consider extensions 1 — F — G — P — 1 where F' is an infinite FX
group and P is an infinite PX group.

One expects a certain duality between property FX and property PX, in the sense
that each FX statement has a corresponding PX statement, and vice versa.

Two problems arise, the structure problem and the relationship problem. We only
formulate them for property FX, but they apply to property PX as well.

The structure problem asks for an algebraic characterization of property FX. We
have seen such a characterization for property FA.

The relationship problem is the following: given two families X and Y, does property
FX imply property FY 7 Is property FX equivalent to property FY ? Such relationships,
typically established at the metric level between members of X and members of Y, allow
for group-theoretic insights. For example, we have exploited the fact that property FH
implies property FA.

When considering isometric actions of countable groups on the family of Hilbert
spaces, we are actually looking at one space: £y, or R®. More precisely, property FH is
equivalent to requiring that every isometric action on ¢ is bounded, whereas property
PH is equivalent to the existence of a proper isometric action on #5.

This suggests another possible definition for property FX and property PX, when a
single space is taken into account. Our point of view is that property FX and property
PX should capture the incompatibility, respectively the compatibility, with a geometry
rather than with a particular space. If an intrinsic rigidity of the geometry in question
elects a single representative, let it be so.

10



2 Median spaces

We briefly describe median algebras, which are interval structures that enjoy a tripod-like
condition. Then we investigate median spaces, which are metric spaces whose geodesic
intervals turn the spaces into median algebras.

2.1 Median algebras

Definition 2.1 (Median algebra). A median algebra is a set X with an assignment
(x,y) — [z,y], mapping pairs of points in X to subsets of X, so that for any z,y,z € X
the following are satisfied:

o r,2] = {z}

o if 2 € [z,y] then [z, 2] C [z, ]

e [1,9], [, 2], [z, 2] have a unique common point, called the median of z,y, z and

denoted by m(z,y, z)

A morphism of median algebras is a map f : X — X’ between median algebras that is
“hetweenness preserving”, in the sense that f([z,y]) C [f(z), f(y)] for all z,y € X.

Definition 2.2 (Halfspace). A subset A C X is convez if [x,y] C A for all 2,y € A.
A subset A C X is a halfspace if both A and A° are convex.

A crucial feature of halfspaces in a median algebra is the following separation property:

Theorem 2.3. Let X be a median algebra and Cy, Cy be disjoint convex sets. Then there
is a halfspace A separating Cy and Cs, i.e., C; € A and Cy C A°.

Example 2.4 (Boolean median algebra). Any power set P(X) is a median algebra
under the interval assignment

(A,B) — [A,B]={C:ANBCCC AUB}

The boolean median of A, B, C'is (ANB)U(BNCYU(CNA) = (AUB)N(BUC)N(CUA).
The nonempty halfspaces not containing the empty set are precisely the ultrafilters on
X. Recall that p is an wltrafilter on X if :

1) 0 ¢ p.

2) A,B € pimplies AN B € p,

3) for all A C X, either A € por A° € p.

The significance of the previous example is that any median algebra is isoinorphic to a
subalgebra of a boolean median algebra. Indeed, let X be a median algebra, let ‘H be the
collection of halfspaces of X, and denote by o, the collection of halfspaces containing
x € X. We obtain a map o : X —— P(H) that is easily checked to be a median
embedding, i.e., an injective median morphism.

We thus have a “boolean method” for proving (non-existential) stateinents about
median algebras. The following result is-an illustration of this method.

Lemma 2.5. In d median algebra, the median closure of a finite set is finite.

11



Given a median algebra X and a subset A C X, the median closure of A is the smallest
subset of X containing A that is stable under taking medians.

- Proof. Enough to prove for boolean median algebras. For a finite A C P(X) we define:
e | J A is the collection of arbitrary unions of sets from A
e (] .A is the collection of arbitrary intersections of sets from A

The collection {A) := | J.A = A is the sublattice of (P(X),U,N) generated by A.

In particular, (A) is median stable. Clearly (A) is finite, of size at most 22 O

The following proposition gives alternate definitions of median morphisms. Particularly
important for later sections is the last characterization, via haltspaces.

Proposition 2.6. Let f : X — X' be a map, where X and X' are median algebras.
The following are equivalent:
1) f([z,y]) C [f(x), f(y)] for all x,y € X, i.e., [ is a morphism of median algebras
2) f(m(z,y, z)) = m(f(:r:), fy), f(z)) for all z,y,z € X, i.c., [ preserves medians
3) [7HA") is a halfspace in X whenever A’ is a halfspace in X'

Proof. 3) = 2): If f(m(x,y,2)) # m(f(z), f(y), f(z)) for some x,y,2z € X, then there
is a halfspace A’ in X’ so that f(m(z,y,2)) € A" and m(f(x), f(y), f(z)) € X'\ A" The
latter implies, by the convexity of A’, that at least two of {f(xz), f(v), f(2)}, say f(z)
and f(y), arein X'\ A, ie., z,y € f7Y X'\ A"). Then m(z,y,z) € f~H(X'\ A) as well,
which is a contradiction.

2) = 1): Let 2z € [z,y], i.e., m(z,y,2) = z. Then m(f(z), f(y), f(z)) = f(m(z,y,2)) =
f(z) which means that f(z) € [f(z), f(y)].

1) = 3): Note that f~}(C") is convex in X whenever C” is convex in X’. Apply this
observation to both A" and X'\ A'. O

Notes. We learned about median algebras from [Rol98], which contains the clearest
proof of Theorem 2.3 that we know of.

2.2 Median spaces

Let (X,d) be a metric space. The geodesic segment determined by z,y € X is defined
as [z, ylg = {t € X 1 d(z,¢) + d(t,y) = d(z,y)}.

Definition 2.7 (Median space). A metric space (X, d) is median if, for each triple
z,y, 2 € X, the geodesic seginents [z, yl4, [y, 24, [2, 2]a have a unique common point.

If (X,dx) and (Y,dy) are median spaces, then X x Y is a median space under the
metric (l((ml,yl), (w2, yz)) = dx(x,x2) + dy(y1,y2). The completion of a median space
is median.

Trees and R-trees are median spaces. For any measure pu, the space L;{u) of real-
valued integrable functions is median.

12



2.3 Constructing a Hilbert space. 1

In this section, we show how to obtain a group action on a Hilbert space out of an action
on a median space.

Let X be a median space. Recall that o, stands for the collection of halfspaces
containing a point z. Thus 0,0, consists of all the halfspaces separating = from 3.
Recall also that x, denotes the characteristic function of a set A.

Define x(z,v) = Xopro, = [Xow — Xayl» 50 X(z,¥) is & map from the collection of
all halfspaces of X to {0,1}. The following relations are casily checked by halfspace
reasoning:

o x(r,y) = x(y, 2)

e 2 € [z,y]y if and only if x(z,v) = x(z,2) + x(z,v)

o x(z,9) - x(z,2) = x(z,m(z,y, 2))

el —x(r,y) = (1~X(z, :1;)) (1—)((2.,1/)), Le., x(z,y) = x(z,2)+x(z,v) —2x(2,2) - x(2,v)

Lemma 2.8. If ayx(v,x1) + ...+ anx(v,z,) > 0 then ard(v, z1) +. ..+ and(v,z,) > 0.

Proof. Say that xyzt is a rectangle if z,t € [y,z]q and y,2z € [z,t]s. In a rectangle,
opposite sides have equal length.

The median closure of a finite set being finite, we may assume that Xo = {v,z1,..., 2z, }
is median stable. We proceed by induction. Let C' C Xy be a maximal proper convex
subset containing v. In particular, C' is median stable.

For x € X\ C let ¢, be a point in C closest to . For ¢ € ' the median m(c, ¢;, x) is
in C and closer to « unless m(c,¢,, x) = ¢,. Thus ¢, € [z,¢]y for all ¢ € C| in particular
¢, is unique. One thinks of ¢, as the gate of x to C.

For all z,y € X\ C, zcyycy, is a rectangle. Clearly, ¢, € [z, ¢,]q and ¢, € [y, cela. I
y ¢ [z, ¢yla, let H be a halfspace with z,¢, € H and y ¢ . Then C € H and hence
Xo = co(CU{zx}) C H, contradicting y ¢ H. Therefore y € [r,¢,q, and z € [y, ¢;]a by
symunetry.

It follows that a halfspace separating some z € Xy \ C from C actually separates
every z € Xy \ C from C. Let us call such halfspaces significant. We have:

> oix(v, @) = Z aix(v, ;) + Z aix (v, ¢z,) Z aix(Cz, i) 20

z;€C ;,¢C z,¢C

~

P @
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On significant halfspaces, I” vanishes and hence ) = 5 gc @i = 0. On insignificant halt-
spaces, () vanishes hence [ > (). Thus P > 0 throughout, and the induction hypothesis

applied to C gives
Z ad(v, z;) + Z ad(v,e,)) 20
@, e z; ¢C

and using the fact that d(c,, x) is independent of x ¢ C'. we obtain:
Zaid(v,xi) = Z a;d(v, ;) Z a;d(v, ) Z id(cg;, i) > 0
z,eC z; ¢C z,¢C

0

Let V' be the vector space generated by {x(z,y) : =,y € X}. Note that V is an algebra.
For v € X, A, = {x(v,z) : = € X} spans V and Lemma 2.8 allows us to define a
positive linear functional I, : V — R such that:

L(x(v,2)) = d(v, z)
Observe:
Lix(z,y) = I, (X(v, z) + x(v,y) — 2x(v, m(v, z, y))
= d(v,z)+ d(v,y) — 2d(v,m(v,z,y)) = d(z,y)

In particular, I, doesn’t depend on v, and we henceforth denote it simply by 1.
We turn V into an inner product space by defining

(D1, o) = I(¢1 - b2)

and hence [l6l] = /T(@), e.g. x(z,y)ll = /(@ 1),
An isometric action of G on X induces an isometric linear action ¢ — g¢ on V

defined by go(H) = ¢(g *H). For the action to be isometric, it suffices to check that it
preserves the inner product on a generating set A,:

(ox(v,2), 9x(v.y)) = (x(gv,9%),x(9v, gy)) = l(x(ov g9z) - x(9v, 9y))
= ](X(gv m(gv, gz, gy) ) I(gv, m(gv, gz, gy)
= (l(U,TTL('U,.TL,'!/)) - <X( 7")7/‘(.(7}7.1/»

For a fixed v € X, we define an affine isometric action on V:
(1= 29 8) = (1 — 2x(v, g0))(1 — 206), i.c., g ¢ = (1 = 2x(v, g0)) 96 + x(v, gv)
Indeed, observing that 1 — 2x{v, gv) = +1, we have:
g @1 =g dall = (1 — 2x(v, gv)) (g1 — gp2)|| = [lgd1 ~ 9ol = [|1 — @2l

Compare the two actions. In the affine action, g * x(v, ) = x(v, gz), and hence A, is
invariant under the affine action. The affine action based at v realizes the G-action on
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X within the frame A,. In the linear action, gx(v,z) = x(gv, gx), therefore the linear
action translates A, to A, .. The linear action realizes the G-action on X among the
frames (Ay)pex-

By completing V and extending the action if necessary, we may assuine that V7 is a

Hilbert space. Since ||g * 0|| = ||x(v, gv)|| = /d(v, gv), we obtain:

Proposition 2.9. Fvery achion of a Kazhdan group on a median space is bounded.

Proposition 2.10. A group that admits a proper action on a median space has the
Haagerup property.

For example, groups acting properly on R-trees are Haagerup groups.

Conjecture 2.11. The converses of Proposition 2.9 and Proposition 2.10 are true.

2.4 Constructing a Hilbert space. II

The relation d(z,y) = ||x(v, ) — x(v,y)||? suggests a second construction, perhaps simn-
pler than the previous one.

Definition 2.12. A metric space (X,d) is negative definite if ) oyoyd(z;, z;) < 0 for
all z1,...,2, € X and oy, ..., a, € R with Y a; =0.

The following observation is sometimes referred to as the GNS construction.

If a metric space (X, d) has the property that there is an inner product space V' and
amap v: X — V with d(z,y) = ||v(z) — v(y)||* for all z,y € X, then X is negative
definite since Y oyajd(@;, z;) = =2|| X" cpy(z)|| <0 for 3" a; = 0.

Conversely, let (X, d) be negative definite. Let V(X) be the vector space on X,
and Vp(X) consist of the vectors in V(X)) with zero coefficient sum. On Vo(X) define
the inner product (3 oyzi, > Biy;) = —3 > aifid(zi, y;). Then d(z,y) = |lz — yl|.
Curiously, (x — z,y — 2) =< x,y >,, where the right-hand side is the inner product in
X.

Lemma 2.13. Median spaces are negative definite.

Proof. We proceed along the same line as in the proof of Lemma 2.8. Let z1,...,z, € X,
which we may assume to form a median stable set Xy. Let C be a maximal proper convex
subset of X,. There is a retraction ¢ : Xy — C, associating to each x; the point in
¢y, € C that is closest to ;. For z,y ¢ C, zc,yc, is a rectangle. Since opposite sides are
equal, we conclude that d(x,c,) =6 for z ¢ C. Expand )" a;a;d(z;, ;) as follows:

E aeid(xi, )+ E a;ed(z;, i)+ g a;e;d(zy, ;) + g a;ogd(x;, xy)
;e Y de z, gCx,cC 2, CCa;¢C

In the first and second sum, replace d(z;, z;) by d(cq,, ¢r;). In the third and the fourth
suin, replace d(z;, x;) by d(c,,, c,;) + 6. We obtain:

Za,—ajd(:ci,xj) = Za.iajd(cw“cx]) + 6 Z a0+ 0 Z o .

z;¢Cx;eC z;€Cx¢C
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Thus > ayod(z;, x,) < 0 since the first sum on the right is non-positive by induction,

and the last two sumns give =20(3°, _..0;)*. O
Remark 2.14. A mwetric space (X,d) is hypermetric if > t;t;d(z;, z;) < 0 for all
Ty, ...,y € X and integers ty, ...ty with > ¢; = 1. One easily shows that hvper-

metric spaces are negative definite. An obvious adaptation of the previous proof shows
that median spaces are in fact hypermetric. v

We now interpret Propositions 2.9 and 2.10 from this point of view. Let G act by
isometries on a median space X and consider the inner product space Vo(X). The
obvious linear action ¢ + g¢ of G on Vp(X) is isometric, and for a fixed v € X we
“affinize”:

g*¢ =g+ (gv—v)

By completing V4 (X) and extending the action if necessary, we may assume that V4 (X) is
a Hilbert space. Finally, since ||g*0|| = ||gv—v|| = \/d(gv, v), we obtain Propositions 2.9
and 2.10.
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3 Median graphs

Graphs, which we assune connected and without loops or multiple edges. come equipped
with a path metric. One may thus consider median graphs.

Trees are clementary examples of median graphs. The 1-skeleton of the square tiling
of the planc is median whereas the 1-skeletons of the hexagonal and triangular tilings
are not. The l-skeleton of an n-dimensional cube is median. Note that wicdian graphs
are bipartite and do not have K33 as a subgraph.

One of the motivating facts about median graphs is the close relationship with
CAT(0) cube complexes, or cubings for short. Cubings are simply-connected complexes
of nonpositive curvature made out of standard euclidean cubes. Every gluing of a cube
is an isometry on each face of the cube. The nonpositive curvature condition can be
expressed as follows: [no bigons| no two 2-cubes share adjacent edges, and [no triangle]
if three (n -+ 2)-cubes share an n-cube and pairwise share (n + 1)-cubes, then they are
faces of an (n + 3)-cube.

For example, a cubing made out of 1-cubes, i.e. segments, is a tree. A cubing made
out of 2-cubes, i.e. squares, can be described as a simply-connected square complex with
at least 4 squares around each vertex.

Theorem 3.1. The 1-skeleton of a cubing s a median graph. Conversely. every median
graph s the 1-skeleton of a cubing.

Roughly speaking, one obtains a cubing from a median graph by “filling in” isometric
copies of euclidean cubes, that is by inductively adding an (n + 1)-dimensional cube
whenever its n-skeleton is present.

Notes. CAT(0) cube complexes were introduced in M. Gromov’s landmark paper Hy-
perbolic groups.
Theorem 3.1 is proved in [Rol98], [Che00], [Ger98].

3.1 Spaces with walls

Definition 3.2 (Space with walls). Let X be a set. A wall in X is a partition of X
into 2 subsets called halfspaces. We say that X is a space with walls if X is endowed
with a collection of walls, containing the trivial wall {#}, X}, and so that any two distinct
‘points are separated by a finite, non-zero nunber of walls. Note that a wall separates
two distinct points z,y € X if x belongs to one of the halfspaces determined by the wall,
while ¢ belongs to the other halfspace.

A morphism of spaces with walls is a map f : X — X' between spaces with walls
with the property that f~1(A4’) is a halfspace of X for each halfspace A’ of X’

For a given z € X, we let o, denote the collection of halfspaces containing :z. Note that
the number of walls separating z,y € X is 3o, Aoy

Definition 3.3 (Wall metric). The wall metric d,, on a space with walls X is defined
by du(x,y) = §loaloy].
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A group acts on a space with walls X by permuting the walls. Consequently, it acts by
isometries on (X, dy,).

Median graphs are the main examples of spaces with walls. As we will show in
Section 3.2, they are “universal spaces with walls”, in the sense that every space with
walls adimits a canonical embedding in a median graph in such a way that the wall
structure is preserved.

The proper halfspaces in a median graph X have a simple description:

H,,={z€ X :d(z,z) <d(z,v)}
where zy is an edge. Therefore, the path metric and the wall metric coincide.

Notes. The notion of a space with walls is due to F. Haglund and F. Paulin [HP98]. Our
definition differs from the original one in that we insist on the presence of the trivial wall.
This minor modification is needed for a morphism of spaces with walls to be well-defined.
Moreover, the trivial wall is present in median algebras.

3.1.1 Application: Kazhdan property and Haagerup property

Suppose G acts on a space with walls X. Let H denote the collection of halfspaces of
X. Then G acts linearly isometrically on fy(H) via g¢p(H) = ¢(g 1 H).
Fix a basepoint v € X and consider the affine action:

g*ﬁb = g¢+ (XUg'u - XO"U)

Then [lg * 01> = |Xoge — Xoul|* = loguioy| = 2d,,(gv, v). We conclude:

Proposition 3.4. Every action of a Kazhdan group on a space with walls is bounded.
In particular, Kazhdan groups have property FA.

Proposition 3.5. A group that admits a proper action on a space with walls has the
Haagerup property.

In particular, groups that admit proper actions on trees, e.g. free groups, are therefore
Haagerup groups.

Finitely-generated Coxeter groups act properly on spaces with walls. There are at
least three ways of interpreting their wall structure; see [NRO3]. On the other hand, they
have property FA provided that their defining matrix (m;;) has finite entries only.

The usefulness of Proposition 3.4 and Proposition 3.5 resides in the fact that spaces
with walls can be read off in many geometric contexts.

Problem 3.6. Give examples of non-Kazhdan groups with the property that every
action on a space with walls is bounded.
Note that such groups have property FA.

Problem 3.7. Give examples of Haagerup groups that do not admit proper actions on
spaces with walls.
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3.2 From spaces with walls to median graphs

A common way of euriching a space X is by devising a notion of ultrafilter, which is
roughly a collection of objects related to X, so that to each point in X corresponds a
unique ultrafilter. The ultrafilters tagged by points of X are called principal ultrafilters,
and so X embeds in a larger set of ultrafilters. Such a procedure provides a completion
or a compactification of a space. In owr case, it provides a cubulation.

Definition 3.8 (Ultrafilter). An ultrafiller on a space with walls X is a nonempty
collection w of halfspaces that satisfies:

e Acwand AC Bimply Bew

e cither A € w or A° € w but not both.

This notion is different from the notion of ultrafilter mentioned in Example 2.4. Intu-
itively, an ultrafilter is a coherent orientation of the walls. Note that every ultrafilter
contains X.

For every x € X, the collection o, of halfspaces containing z is an ultrafilter, called
the principal ultrafilter at z. In addition, we consider the almost principal ultrafilters,
that is ultrafilters w with w/Ao, finite for some (every) principal ultrafilter o,.

Let C*(X) be the graph whose vertices are the almost principal ultrafilters on X, and
whose edges are defined by: w; is adjacent to ws if %.wl Awgl = 1. _

If w1, wy are almost principal ultrafilters, then elements of w;Aw, come in pairs
{A, A%}, so we may think of them as being walls, more specifically walls on which w;
and wy have opposite orientation. Thus two ultrafilters are adjacent in C!'(X) if there is
exactly one wall on which they have different orientation.

Lemma 3.9. In CY(X), the distance between wy and wy 18 %|w1Aw2|.

Proof. it wy=01,...,0p41 =wyisa path connecting wy to wsy, then
1 1 1
Slordws| = SO A0)A . A0 A )| < 1QZ<m—2-|9iaei+1; =m

Conversely, let wiAws = {Ay,..., Ay, AS, ..., AS} with A; € wy \ we and Af € wy \ wy.
Assume each A; minimal in {4;,..., A,} and define 0; = wy, 041 = ,0{A;, A} for
i <m. Then 0,1 = wiA{Ay,..., Ap, A, ... AS ) = wo.

We claim that each 6; is an ultrafilter. Since 6, is obtained from 8; by exchanging
A; for Af, and since exchanging a minimal halfspace in an ultrafilter for its complement

results in an ultrafilter, we are left with showing that A; is minimal in 6;. Suppose there
is Bef;,, BC A;. Then B ¢ wy because A; ¢ wy. As

0, = (Wl \ {Ala . ,Ai—l}) U {A(l cee 7A1¢A1}

we necessarily have B € wy \ {A41,..., 4; 1}. We obtain B € {4,,..., A,} which contra-
dicts the fact that A; is minimal in {A4;,..., 4,}. O

Lemma 3.10. In C'(X), w € [wi,ws] © w) Nws C w & w C wy Uws.
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Proof. We have w € wy,wa| < iwlﬁw] + lwAwQ’ = ‘wlﬁwzk S w Nwe Cw Cwy Uws.
The equivalence wy Nwy € w € w C wy U wy holds for arbitrary ultrafilters. tl

Proposition 3.11. C*(X) is a connected median graph.

Proof. Since geodesic intervals in C'(X) are of boolean type, the median in C'(X) of a
triple of vertices wy, wy, ws, has to be the boolean median

’77’L(u)1, u}g,u)g) = (Cdl n UJQ) U (CUQ N (x);;) U (Cu'g M u}l)
One casily checks that m(w;,ws,ws) is indeed a vertex in C'(X). O

Proposition 3.12. There is a bijective correspondence between the halfspaces of X and
the halfspaces of C1(X) given by A Hp = {w € CH(X): A € w}.

Proof. Each H, is convex: if w),wy € Ha and w € [wy, ws]. then A € wy Nwy C w hence
w € H,. The complement of H, in C'(X) is Hpe. Therefore H, is a halfspace in C!(X)
for every halfspace A in X.

The mapping is injective: o, € Hy, if and only if z € A, i.e., 07 (Hy) = A.

The mapping is surjective. Let H be a halfspace in C}(X). Assume that H is proper,
as Hy = ) and Hx = C*(X). Then H cuts some edge 6,6,: 0, € H and 0, ¢ H. Suppose
the edge 616, is obtained by exchanging A € 6, for A° € 6,. We claim that H = H,. If
w€ Hy, ie. A€ w,thend; C 0,Uw and the convexity of C'(X)\ H impliesw € H. Thus
H, C H. Similarly Hye € CY(X)\ H, which by complementation becomes H C Hs. O

As C'(X) is median, the wall metric and the path metric coincide. Proposition 3.12
provides another explanation. The path metric counts the walls {A, A°} in w;Aw,. The
wall metric counts the walls { H4, H 4} separating wy, wy in C'(X), and a wall { Ha, H 4}
separates wy, wy if and only if {A, A} is in wyAws.

Proposition 3.13. The map 0 : X — CY(X) given by x — o, is an injective morphism
of spaces with walls and an isometric embedding when X 1s equipped with the wall metric.

Proof. o is a morphism of spaces with walls as ™' (H,) = A, and d(z,y) = %‘%Aayl,
the right-hand side being the distance between o, and o, in C'(X).

Proposition 3.14. C1(X) is the median closure of {0, : x € X}.

Proof. Let M C CY(X) be the median closure of {0, : x € X}. We proceed by contam-
ination, assuming that w € M and ww’ is an edge in C'(X), and proving that w' € M.
Suppose the edge ww' is obtained by exchanging A€ € w for A € W'. Let ( € M N H, be
closest to w. Sec figure 1.

We claim that ¢ = «’. Note that ¢ € [w,0,] for all z € A (hint: m(w,(,0,)) and
W' € w, (] (hint: bipartite), hence ¢ € [w', 04], ie., ( Cw' Uo, for all z € A. If there
is Be (\w then B € o, forall z € A, so A C B and hence B € ', which is a
contradiction. Thus ( C W/, so ( = W' O
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Figure 1: The principal ultrafilters span.

In particular, if X is a median graph then o : X — CY(X) is a median isomorphismn.
One checks that m(am,ay, 0,) = Tmizy,z), 1-€, 0 is a median morphism. Therefore all
vertices in C'(X) are principal ultrafilters, in other words o is surjective. Note that a
median isomorphism between median graphs is a graph isomorphism as well.

Proposition 3.15. For every morphism of spaces with walls f : X — X', there is a
unique median morphism f, : C'(X) — C'(X') making the following diagram commute:

x 4. x

ol
CH(X) —— CH(X)
Proof. Define f,(w) = {A’ C X' halfspace : f~1(A") € w}. Then f.(w) is an ultrafilter

on X’ whenever w is an ultrafilter on X. Moreover, f,(wi)A fi{ws) is finite whenever
wiAw, is finite, since the halfspace equation f~1(A4’') = A, where A C X, has finitely
many solutions (for x € A and y € A€, any solution A’ will separate f(z) from f(y)).
Thus f, is well-defined.

That f, is a median morphism can be seen either by checking that it is a morphism
of spaces with walls, or by checking that f. is median preserving. Finally, f.(02) = 0p().
In general, f, need not be a graph morphism. This happens if the halfspace equation
JHA") = A, where A C X, has more than one solution.

Uniqueness: f, is determined on {0, : z € X}, which generate C'(X). O

It follows from Proposition 3.15 that a group action on a space with walls X extends
uniquely to a group action on its 1-cubulation C!(X). Since the embedding X — C'(X)
is isometric, the action on X is bounded, respectively proper, if and only if the extended
action on C'(X) is bounded, respectively proper.

Example 3.16 (3D Hex). Let us cubulate the 1-skeleton of the hexagonal tiling of the
plane. See figure 2.

The choice of halfspaces is independent along the three directions X, Y, Z. But this
is also the case for the 1-skeleton of the usual tiling of R? by 3-dimensional cubes. Since
this is already a median graph, we conclude that it is the 1-cubulation of the hexagonal
tiling of the plane.



Y-walls X-walls

Figure 2: Cubulating the hexagonal tiling

Notes. This procedure, implicit in [Sag95], was made explicit in [Nic] and independently
in [CNO3]. We learned the term “cubulation” from Dani Wise.

3.2.1 Application: Ends of pairs of groups

The number of ends, much like the growth function, is an asymptotic invariant of groups
defined in terms of their Cayley graphs. In what follows, it is convenient to consider
finitely-generated groups.
Ends of graphs. Let X be a locally finite connected graph. The number of ends of X
is the supremum of the number of infinite components one obtains by excising arbitrary
finite sets from X. By local finiteness, excising arbitrary finite sets is equivalent to
excising arbitrary bounded sets, which is equivalent to excising larger and larger balls
around some basepoint.

The boundary A of a set A C X is the set of edges connecting A to A°. Observe
that X has more than 1 end iff there is A C X with A, A¢ infinite and JA(= 0A®) finite.

Ends of groups. The number of ends of a group G is the number of ends of a Cayley
graph of ;. For example, the trivial group has 0 ends, Z? has 1 end, Z has 2 ends and
F5 has infinitely many ends. In fact, these are the only possibilities: the nmumnber of ends
of any finitcly-generated group is onc of 0, 1, 2, co.

A group has 0 ends if and only if it is virtually trivial, i.e. finite, and it has 2 ends
if and only if it is virtually Z. A theorem of J. Stallings characterizes the groups with
more than 1 end as being those that split over a finite subgroup, which leaves the groups
with 1 end as the generic case.

Ends of pairs of groups. One is lead to a notion of relative ends by the desire to have
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an invariant that encodes splittings over arbitrary subgroups. As Stallings’ theorem
sugecsts, one does not expect a splitting, but rather a virtual splitting. After all, the
number of ends is a coarse notion so it is only natural that we have to settle for coarse
splittings. Here is the notion of relative ends that has gained preeminence. We stress
the fact that the finite-generation assumption applies to the ambicnt group only.

Given a group GG and a subgroup [, the number e(G, K') of ends of G relative to K
is the nunber of ends of a coset graph T'\ K, the quotient by K of a Cayley graph T of
G. For example, a cuspified n-gon suitably decorated to provide a covering of the wedge
of two circles shows that the number of relative ends may take any value in N U ooc.

The numnber of relative ends partially fulfills its purpose: if G virtually splits over K
then ¢(G, K) > 1, but the converse fails in general.

At the core of Bass-Serre theory stands the fact that a group splits if and only if it
acts on a tree without bounded orbits. Combining with Stallings’ theorem, we deduce
that a group with more than 1 end has an action on a tree without bounded orbits. This
time, there is a satisfactory relative analogue.

Theorem 3.17. For a finitely generated group G, the following are equivalent:
1) G has more than 1 end relative to a subgroup
2) G acts on a median graph without bounded orbits.

Here is an outline of the proof. Start by translating the fact that ¢(G, K) > 1 into the
existence of certain subsets of G called K-sets. Provided that G acts without bounded
orbits on a median graph, focus on the wall structure of the graph and choose a suitable
halfspace H that will become a Gy-set, where GGy is the stabilizer of H, and thus G
will have more than 1 end relative to Gg. Conversely, if e(G, K) > 1 then consider a
space with walls whose underlying set is G and whose walls are translates of a K-set.
Now consider a median graph corresponding to this space with walls as described in
Section 3.2.

An instantaneous consequence of Theorem 3.17 is that Kazhdan groups have no
codimension-1 subgroups. To ask whether the converse holds amouuts to Problem 3.6.

We have gathered enough evidence in order to assert that median graphs are a mean-
ingful generalization of trees. Let us summarize.

Groups acting on trees were among the first examples of Kazhdan groups or Haagerup
groups, depending on the flavor of the action. We have extended these ideas to median
graphs in two ways: via spaces with walls, and as a particular instance of actions on
median spaces.

The interplay between finite splittings, multiple ends and actions on trees are key
ideas in the Bass-Serre theory. The corresponding triumvirate consists of arbitrary split-
tings, multiple relative ends and actions on median graphs.

Finally, the nonpositive curvature and the simple-connectivity of trees is present in
cubings.

On the downside, a serious casualty is the algebraic criterion for bounded actions
provided by Theorem 1.11.

Notes. Theorem 3.17 is a version of a theorem due to M. Sageev [Sag95]. Sageev’s result
is further explored in [Ger98], [Rol98].
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