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Abstract 
We investigate il pmticnlal' type of geometry, namcly median met rie spact's. This 

cncompasses mcdiall graphs, R.S weIl as simple combinatorial structures knowll (1;'; SpêH'CS 

with walls. 
The group-theorctic npplications are towards tht' Kazhdan property and t.he HêWgCntp 

property. 

Résumé 
On s'intéresse à un type particulier de géometrie, les espaces métriques mcdialls. Ceci 

comprend les graphes mcdians, ainsi que des st.ructures combinatoires commes sous le 
nom d'espaces à murs. 

Du point de vue de la théorie des groupes, les principales applicat.ions sont envcrs la 
propriété de Kazhdan et la. propriété de Haagerup. 
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1 Kazhdan vs. Haagerup 

The two pl'Op(~rties of groups wc t'ocus on are Kazhdan's prolwrt.y T alld its nemesis, 
alternatiVC'h' known as a-T-menability by group theorists and Haagcnlp's property by 
analysts. The former term, due to M. Gromov, has a mnemollic quality to it, as it 
suggests the negation of property T a.nd the relation to amenability. \V(' prcfer the latter 
tenIl. 

We define these properties in terms of isometric actions on (l'cal) Hilbert spaces. We 
often use "Kazhdan group" as a shorthand for "group with the Kazhdclll property" , and 
"Haagerup group" as a shorthand for "group with the Haagerup property". Two related 
group properties, amenability and property FA, are also briefty revicwed. In the later 
sections, wc will revisit and explain certain examples from this sectiOll. 

AIl our groups are discrete and countable. For aIl practical purposes, the reader may 
assume that the groups are finitely-generated. 

1.1 Amenable groups 

Among the myriad ways of defining amenability, two are especially significant. 

Definition 1.1. A group G is amenable if there is aG-invariant, finitcly-additive mea­
sure fJ on P( G) with fJ( G) = l. 

Theorem 1.2 (F01ner's Criterion). A gmup G is amenable if and only if there is a 
sequence (Fn)n>l of finite subsets of G s1Lch th,at for every 9 E G we have 

Finite groups and abelian groups are primary examples of amenRblt~ groups. On the 
other hand, free nonabelian groups are Ilot amenable. 

Proposition 1.3. The family of amenable gmups is closed under taking subgmups; quo­
tients; el;tcnS'{ons and ascending countable unions. 

For the pur poses of this section only, by a class we mean a family of groups having the 
closure properties listed in the previous proposition. Amenable groups form a dass, but 
there are two more classes we would like to mention. 

The smallest class containing the fillite groups and the abelian groups is termed the 
class of elemenia:ry gmups. Elementary groups are amenable, but not every amenable 
group is elementary. 

Amenable groups do not have F 2 as a subgroup. The family of groups without F 2 

as a subgroup fonns a class. There are grollpS without F 2 as a subgroup that are not 
amenable, e.g.) Burnside groups of large exponent. We may summarize these ideas in 
the following chain of strict inclusions: 

EG c AG c NF 
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Example 1.4 (Subexponential growth). The growth of H fütitely-generated group is 
the rate at which new elements appear as one takes lal',f2,n and larger balls arouud tllP 
origin in a Cayley graph. There are three ranges of growth: 

1 --< n --< n 2 --< T/
3 --< . .. . .. --< c fi --< .. . 

\.. V ,1 \.. v---..... -
polynomial intermediate explmential 

The following important result is a nice application of F01ner's criterion: 

Theorem 1.5. Groups of subexponential growth aTC amcnable. 

An outstanding theorem of M. Gromov equates polynomial growth with virtual nilpo­
tcncy. A result of C. Chou says that elementary groups have either polynomial or ex­
ponential growth. Thus elementary groups that are not virtnally nilpotent are examples 
of amen able groups with exponential growth. As free 1l0lwhelian groups have exp onen­
tial growth, we see that both amenable and non-amenable groups can have exponential 
growth. 

--
--

Subexpon entiol 
G rowth 

Elementary 
Ame noble 

-~ 

Groups of intermediate growth are amenable but not elementary. Currently known 
groups of intermediate growth, from R. Grigorchuk's first examples to more recent varia­
tions, are groups acting on regular trees 'En. Grigorchuk's groups have another interesting 
fcature: they are infinite torsion groups. 

Notes. Amenable groups were introduced by von Neumann in eonneetion to the Banaeh­
Tarski paradox; see S. Wagon's beautiful book The Banach- TaTski pamdox. 

1.2 The Kazhdan property 

The Kazhdan property, often ealled property T, is a forrn of rigidity. 
An isometrie action of a group G on a met rie space (X, cl) is said to be b01lnded if 

the orbit of some (every) point in X is bounded. For met rie spact's in which bounded 
sets have unique cireumcenters, the bonndedness of an isornetric action is cquivalent to 
the existence of a fixed point. 

Definition 1.6 (Kazhdan group). A group G has the Kazhdan lJ'ropeTty if every 
isometric action of G on a Hilbert space has a fixed point. 
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Example 1.7 (Amenable groups). Infinite 8Jncmlhlc groups are not Ka~hclnll. This 
in immediate if one uses alternate definitions of Ka~hclall:s property and ameJl(-l bility. 
Instead, wc explicitly dcscribe an action on a Hilbert spacc that is llOt boulldcd. 

Let G = {91, (J:2, ... } be an infinite amenable group. \\le start by gaining ê1sympt otic 
control over the F 0lner Scqnence (Fn )n2:1: by passing to Cl subsequenc:e if lW("('ssary, wc 
may assume that for aU 1 :S i :S n we have: 

For each n, modify the usua1 1inear isometric action of G on g2 (G) into an affille Olle 

and wrap aIl these actions into a single action on EBn g2( G) by defining: 

The action is well-defined since for each 9 = gi we have: 

For each N, the translate gFN meets FN for finite1y many 9 E G. Thus for aIl other (J 

we have: 

vVe conclude that, for every N, the set {g E G : Iig * 011 < V2N} is finite. In particular, 
the action is not boundecl. 

Proposition 1.8. The collection of Kazhdan groups is closed v:nder taking fin'lte-indp:;; 
SUbqTOUpS, quotients,and extensions. 

Definition 1.9 (Relative Kazhdan). A group G has the Kazhdan property 'relative to 
a s'/Lbgroup H if every isometric action of G on a Hilbert space has a point fixed by H. 

Obviously, we are only interested in the Kazhdan property relative to an infinitc suh­
group. For example, Z2 )<j SL2 (Z) is Kazhdan relative to Z2. 
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1.2.1 Property FA 

The1"(, is an important connectioll )WLWC('l1 Kazhdan groups alld the Dass~St~lT(' Llleory 
of groups acting on trees. 

Definition 1.10. A group G has pTO]Jerty FA. if every action of G on Cl trce fixes a vertex 
or an edge. 

Theorem 1.11. A group G has pmpcTty FA if and only if the following are satisfied: 
1) G is finitely generated with .finite abelianization 
2) G is not a nontrivial free pTOduct with amalgamation 

For a finitely~generated group, having fillite abelianization is equivalent to having no 
infinite cyclic quotient. The amalganwtions H * H Gand G *c H are considered trivial. 

The following important result says in particular that Kazhdan groups are finitely~ 
generated. 

Proposition 1.12. Kazhdan gTOUpS have property FA. 

Example 1.13 (Torsion groups). Finitely~generated torsion groups have property 
FA, as they satisfy the algebraic criterion described in Theorem 1.11. This observation 
is valu able for infinite torsion groups only, whose construction is rather delicate. Grig~ 

orchuk's groups are examples of infinite finitely~generated torsion groups. They therefore 
have property FA without being Kazhdan. 

Proposition 1.12 is often used for proving that a given finitely~generated group is not 
Kazhdan. Algebraically, we may prove that the group has infinite abelianization; this 
method is surprisingly useful. Geometrieally, we may actually point out an action of 
the group on a tree that fixes no vertex or edge; this is certainly more pleasant but it 
happens less frequently. 

Example 1.14 (Deficient groups). A group that has a finite presentation with more 
gcnerators than relators is not Kazhdan, since it has infinite abelianization. Examples 
include: 

• nontrivial free groups: note that they obviously aet freely on trces 

• infinite l~relator groups: these include the Baumslag~Solitar groups and the surface 
groups, with the exception of 111 (§2) = 1 in the orientable case, and 7ft (lRP2) = Z2 
in the nonorientable case. 

Likewise for braid groups: 

En = ,Xl, ... , xn~ll XiXi+IXi = Xi+1XiXi+] for 1 ::::; i ::::; n - 2, [Xi, Xj] = 1 for li -.il:::: 2) 

The presentation is Hot deficient, but the abelianization of Bn is the same <cîS thnt of the 
following deficient presentation: 
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Example 1.15 (8Ln (Z». The group 8L2(1:.) is not Kazhclc\ll. ilS it is virtually F2. Morc­
OveT, 8L2 (1:.) doesn't have llroperty FA. Algebraically, SL:2(Z) is finitely-generated with 
fiuilC' ahelianization Z12, but SL:z(Z) = Z4 *Z2 Z6' Geollldriulllv, SL2(Z) acts on T",. 

Ou the other hand, SLII(Z) is Ka.zhdan for n 2 3. 

Notes. For property T, the 01d Testament is [dlRV89]. The New Testament is [BdlHV03]. 
What we defined as Kazhdan's property is actually Serre's property FR; for coulltable 

discrctc groups they are equivalcnt. The relative Kazhdan property was introduced by 
G. lVlargulis. 

The reference for property FA and the theory of groups acting on trees is [Ser80]. 

1.3 The Haagerup property 

The Haagerup property can be described as a weak fonn of amenability, or as a strong 
ncgation of Kazhdan's property T, hence the a1ternate narne "a-T-menability". 

An isornetric action of a group G on a metric space (X, d) is said to be proper if one 
of the following equivalent conditions holds: 

a) for sorne x E X, the set {g E G : d(x, gx) :::; R} is finite for each R 2 0, 
b) for aH x E X, the set {g E G : d(x, gx) :::; R} is finite for each R 2 0, 
c) the set {g E G : gB n B i- 0} is finite for each bounded J3 ç X. 

Definition 1.16 (Haagerup group). A group has the H aagerup property if it admits 
a proper isometric action on a Hilbert space. 

Amenable groups have the Haagerup property, as we showed in Example 1.7. An impor­
tant observation is the following: 

Proposition 1.17 (Kazhdan vs. Haagerup). A group that is both K azhdan and 
Haagerup, is finite. More generally, a group that is Kazhdan relative to an infini te 
subgroup cannot be Haagerup. 

For example, Z2 )<J SL2(Z) is not a Haagerup group. However, both Z2 and SL2(2) are 
Haagerup groups, so the family of Haagerup groups is not closed under extensions. Note 
that Z2 )<J SL2 (Z) is not Kazhdan either; in fact, it doesn't evell have property (FA). 80 
there a.re groups that are neither Kazhdan nor Haagerup. 

Problem 1.18. Suppose that G is not Kazhdan relative to any infini te subgroup. Does 
it follow that G has the Haagerup property? 

Proposition 1.19. The collection of Haagerup groups is closed un der taking subgroups, 
extensions with amenable quotients, and ascending countable unions. 

A simple technique for establishing the Haagerup property is to use group actions on 
discrete spaces with walls. Some groups that lend themselves to this viewpoint are: 
Coxctcr groups, groups acting on trecf:i, groups acting on cubings. 

Problem 1.20. The following families are kllown Ilot to contain any infillite Kazhdan 
group: braid groups, 3-manifold groups, l-relator groups. Are these Haagerup families? 
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Hoogerup 

Amenoble 

Property FA 
1 Grigorchuk 1 

Finite 

Kozhdon 

Notes. The definition of the Haagerup property is essentially the one from M. Gromov's 
epic essay Asymptotic invariants of infinite groups. The chief reference on the Haagerup 
property is [CCJ+Ol]. 

See K. Fujiwara's paper 3-manifold groups and property T of Kazhdan for a pro of of 
the fact that infinite 3-manifold groups are not Kazhdan, provided that the 3-manifold 
satisfies Thurston's Geometrization Conjecture. 

1.4 The framework 

One way of distinguishing two groups is to show that they have different isometric actions 
on a suitably chosen family of metric spaces. Conversely, one may take a well-understood 
family of metric spaces and use this family as a test-ground for isometric actions. Our 
formulation of the archetype reads as follows. 

Let X be a family of metric spaces, understood as a type of geomctry. The following 
dcfinitions express the rigidity, respectively the fiexibility, of a group with respect to the 
geometry in question. One may argue that these are properties of actions rather than of 
groups themselves. 

Definition 1.21 (Property FX). A group has property FX if each isometric action on 
a rnember of X is bounded. 

Definition 1.22 (Property PX). A group has property PX if it a,dmits a proper iso­
metric action on a member of X. 

Notice the vcstigial "F", which is only justified for certain met rie spaces, (',g., CAT(O) 
metric spa,ces. The better knowll avatars of property FX are: property FA, when we 
cOllsider the family of simplicial trees; property FIRA, when we consider the family of 
IR-trees; pTOperty FH, when we cOllsicler the family of Hilbert spaces. As far as we 
know, property PX has only been investigated for Hilbert spaces. Wc will cOllsider both 
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propcrties with respect to the falllily of median metric SPé\CCS. Other families wOlthy of 
inve:::;tigation in thi:::; light eue Lp-spa.ces for p -# 2, ult.nîlllctric spaces, etc. 

Propcrty FX and property PX are opposite in the SCIlSP t hat a group enjoying bot.h 
properties is finite. Moreover, every homomorphism From au FX group t.o Cl PX group 
has finite image. This is because property FX is inheritecl. hy quotient.s, while propcrt.y 
PX is inherit.ed by sllbgroups. On the other hand, note that. finite groups have bOUl 
propert.ies. 

Typically, t.here exist groups that are neither FX nm PX. A simple trick for creatillg 
such groups is to consider extensions 1 --+ F --+ G --+ P --+ 1 where F is an infinite FX 
group and P is an infillite PX group. 

One expects a certain dllality between property FX and property PX, in the sense 
that cach FX statement has a corresponding PX statemcnt, and vice versa. 

Two problems arise, the structure problem and the rdationship problem. We only 
fonnulate them for property FX, but they apply to property PX as weIl. 

The structure problem asks for an algebraic characterization of property FX. We 
have seen su ch a characterization for property FA. 

The relationship problem is the following: given two families X and Y, do es property 
FX imply property FY ? ls property FX equivalent to pro pert y FY ? Such relationships, 
typically established at the metric level between members of X and members of Y, allow 
for group-theoretic insights. For example, we have exploited the fact that property FH 
implies property FA. 

When considering isometric actions of countable groups on the family of Hilbert 
spaces, we are actually looking at one space: f!2, or ]Roo. More precisely, property FHis 
equivalent to requiring that every isometric action on f!2 is bounded, whereas property 
PH is equivalent to the existence of a proper isometric action on f!2' 

This suggests another possible definition for property FX and property PX, whell a 
single space is taken into account. Our point of view is that property FX and property 
PX should capture the incompatibility, respectively the compatibility, with a geometry 
rather than with a particular space. If an intrinsic rigidity of the geometry in question 
elC'cts a single representative, let. it be so. 
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2 Median spaces 

\Vc briefiy describe median algcbras, which are interval strnctmcs that enjoy a tripod-like 
condition. Then we investigate median spaces, which are lllctric spaces whose geodesic: 
intcl"vals turn the spaces into median a1gebras. 

2.1 Median algebras 

Definition 2.1 (Median algebra). A rnedian algebra is H set X with an assignment 
(:c, y) 1-+ [x, y], mapping pairs of points in X to subsets of X, so that for any x, y, z E X 
the fo11owing are satisfied: 

• [x,x]={x} 
• if z E [x, y] then [x, z] ç [x, y] 
• [x, y], [y, z], [z, x] have a unique common point, called the rnedian of x, y, z and 

denoted by m(x, y, z) 
A rno'rphisrn of rnedian algebras is a map f : X ------> X' between median algebras that is 
"hetweenness preserving", in the sense that f([.T,yJ) ç [.t(x),f(y)] for a11 x,y E X. 

Definition 2.2 (Halfspace). A subset A ç X is convex if [x, y] ç A for all x, y E A. 
A subset A ç X is a halfspace if both A and AC are convex. 

A crucial feature of halfspaces in a median algebra is the following separation property: 

Theorem 2.3. Let X be a rnedian algebra and Cl, C2 be disjoint convex sets. Then theTe 
is a halfspace A separating Cl and C2 , i. e.) Cl ç A and C2 ç AC. 

Example 2.4 (Boolean median algebra). Any power set P(X) is a median algebra 
under the interval assignment 

(A, B) 1-+ [A, Bl = {C : An B ç C ç Au B} 

The boolcan rnedian of A, B, 0 is (AnB)U(BnC)U(CnA) = (AUB)n(BUC)n(CUA). 
The llonempty halfspaces not containing the empty set are precisely the ultrafilters on 
X. Reca11 that J-L is an ultrafiltc'r on X if : 

1)0~J-L, 
2) A, B E J-L implies An B E ~i, 
3) for a11 A ç X, either A E !L or AC E J-L. 

The significance of the previous example is that any mediall algebra is isolIlorphic to a 
suhalgcbra of a boolean median algebra. Indeed, let X be a median algebra, let H be the 
collection of halfspaces of X, and denote by (J" x the collection of halfspaces containing 
1-' EX. We obtain a map (J" : X ------> P(H) that is easily checked to be a median 
embedding, i.e., an injective median morphism. 

'vVe thus have a "boolean method" for proving (non-existelltial) statements about 
median algebras. The fo11owing result is an illustration of this mcthod. 

Lemma 2.5. In à rnr;dian algebra, the rnr;dian clos1L're of a .[inde set is finite. 
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Given a median algebrCl X and a subset A ç X, the mediHll dosure of A is the smallcst 
~mhsct of X containing A that is stable under taking llledimls. 

Pro of. Enough to praye for boolean median algebras. Fm a finite A ç P(X) we ddinc: 
• UA is the collection of arbitrary unions of sets hom A 
• nAis the collection of arbitrary intersections of set.s from A 

The collection (A) := un A = nUA is the sublatticc of (P(X), u, n) generated by A. 
lu particular, (A) is median stable. Clearly (A) is finÏte, of sil::e at most 221A1

. 0 

The following proposition gives alternate definitions of meclian rnorphisms. Particularly 
important for later sections is the last characterization, Viè\. hêdfspaces. 

Proposition 2.6. Let f : X -------t X' be a map, wheTe X and X' aTe median algebms. 
The following are equivalent: 

1) f([x, y]) ç [.f(x) , f(y)] for all x, y E X, i.e., f is a m.OTphism of median algebms 
2) f(m(x, y, z)) = m(.t(:r) , f(y), f(z)) for all x, y, z E X, i.e., f preserves medians 
3) f-l(A') is a halfspace in X whenever A' is a halfspace in X' 

Proof. 3):::} 2): If f(m(x,y,z)) of. m(.t(x),f(y),f(z)) for some x,y,z E X, then there 
is a halfspace A' in X' so that f(m(x, y, z)) E A' and m(.t(x), f(y), f(z)) E X'\A'. The 
latter implies, by the convexity of A', that at least two of {f(x), f(y), f(z)}, say f(x) 
and f(y), are in X'\A', i.e., x,y E f-1(X'\A'). Then m(x,y,z) E f-1(X'\A') as weIl, 
which is a contradiction. 
2):::} 1): Let z E [x,y], i.e., m(x,y,z) = z. Then m(.t(x),f(y),f(z)) = f(m(x,y,z)) = 
f(z) which means that f(z) E [f(x), f(y)]· 
1) :::} 3): Note that f-1(C') is convex in X whenever C' is convex in X'. Apply this 
observation to both A' and X' \ A'. 0 

Notes. We learned about median algebras from [Ro198], which contains the clearest 
pro of of Theorem 2.3 that we know of. 

2.2 Median spaces 

Let (X, d) be a metric space. The geodesic segment determined by x, y E X is defined 
as [x, y]d = {t EX: d(.T, t) + d(t, y) = d(x, y)}. 

Definition 2.7 (Median space). A metric space (X, d) is median if, for each triple 
x, y, z E X, the geodesic segments [x, Y]d, [y, Z]d) [z, X]d have a unique cornmon point. 

If (X, dx ) and (Y, dy ) are median spaces, then X x Y is a median space under the 
mctric d((Xl' yd, (X2' Y2)) = dX(Xl' X2) + dY(Yl' Y2)' The complction of a llledian spacc 
is median. 

Trees and IR?-trees are median spaccs. For any measure Il, the space LJ (Il) of real­
valued integrable functions is median. 
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2.3 Constructing a Hilbert space. 1 

In tllis section, we show how to obtaill Cl group action on a Hilbert space out of an actiol! 
Oll a Ul(~dian space. 

Let X be a median space. Becall that Œx stands for the collection of halfspac('s 
cOlltaining a point x. Thus Œ:rD,(J,/ consists of aIl the halfspaccs separating x from y. 
Breall also that XA denotes the cllal'élcteristic function of a set A. 

Define X(x,y) := Xo-x,6,o-y = IX<T., ~ X<Tyl, so X(x,y) is a rnap from the collection of 
aIl halfspaces of X to {D, l}. The following relations are casily checked by halfspace 
reasonillg: 

• x(:r, y) = X(y, x) 
• z E [x, Y]d if and only if X(x, y) = X(7;, z) + X(z, y) 
• X(x, y) . X(x, z) = X(x, m(x, y, z)) 
.l~x(:r,y) = (l~X(z,x))(l~X(z,y)), i.e., X(x,y) = X(z,:r)+X(z,y)~2X(z,x)·X(z,y) 

Lemma 2.8. If ŒIX(V, xd + ... + C\:nX(v, xn) 2': D then Œld(v, Xl) + ... + Œnd(V, xn) 2': D. 

Pro of. Say that xyzt is a rectangle if x, t E [y, Z]d and y, z E [x, tk In a rectangle, 
opposite sides have equal length. 

x 
y 

xr-___ ~y 
.. ~ . ... . 

' .. ' .. 
' .. ' .. ' .. ' .. ' .. ' .. ' .. 

z c 

The median closure of a finite set being finite, we may assume that X o = {v, Xl, ... ,xn } 

is median stable. We proceed by induction. Let C ç X o be a maximal proper convex 
subset containing v. In particular, C is median stable. 

For :r E X o \ Clet Cx be a point in C close st to x. For c E C, the median m(c, cx, x) is 
in C and doser to x unless m(c,cx,x) = cx. Thus Cx E [X,C]d for all cE C, in particular 
Cl is unique. One thinks of Cx as the gate of x to C. 

For aIl x, y E X o \ C, xCxycy is a rectangle. Clearly, Cx E [:r, CyJd and cy E [y, cxk If 
y tJ- [x, cylel, let H be a halfspace with x, cy E H and y tJ- H. Then C ç H and hence 
X o = co(C U {x}) ç H, contradicting y tJ- H. Therefore y E [T, cyld, and x E [y, cxld by 
syrllllletl'y. 

It follows that a halfspace separating sorne x E X o \ C from C actually separates 

every x E X o \ C from C. Let us call sncll halfspaces significant. \Vc have: 

L ŒiXCV, ;Ei) + L ŒiX(V, cxJ + 
~EC ~~C :r,~C 

-~----------~v~----------~ '----v---~; 
p Q 
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On significant halfspaces. P vnnishes and hence q = Lr,<j1C' (li 2 o. On insiguific3nt lmlf­
spaces, q vanishes hencc P 2 D. Tlms P 2 0 throughont, and the induction hypol hesis 
applied to C gives 

:1', E(' Xi<j1G 

and using the fact that cl( ex, :r) is independent of T ~ C. wc obtain: 

D 

Let V be the vector space generated by {X(x, y): T, y E X}. Note that V is an algebra. 
For v E X, Av = {X(v, x): TEX} spans V and Lemma 2.8 allows us to defillC' H 

positive linear functional Iv : V --------> IR. such that: 

Iv(X(v, x)) = cl(v, x) 

Observe: 

Iv(X(v,x) + X(v,y) - 2x(v,nc(v,x,y)) 

cl(v, x) + d(v, y) - 2d(v, m(v, x, y)) = d(x, y) 

In particular, Iv doesn't de pend on v, and we henceforth denote it simply by I. 
We turn V into an inner product space by defining 

(c/Jl, c/J2J = I( c/Jl . c/J2) 

and hence Ilc/JII = JI(c/J2) , ('.g. Ilx(x, y)11 = Jd(x, y). 
An isometric action of G OH X induces an isometric linear action c/J ~ gc/J on V 

defined by gc/J(H) = c/J(g-l H). For the action to be isometric, it suffices to check that il 
preserves the inner product Oll a generating set Av: 

(gx(v, x), 9X(v, Y)J (x(gv,gx),x(gv,gy)) = I(X(gv,gx). X(gv,gy)) 

I(X(gv, m(gv, gx, gy))) = d(gv, m(gv, gx, gy) 

d(v, m(v, x, y)) = (X(v, T), X(v, y)) 

For a fixed v EX, we define an affine isometric action on V: 

(1 - 2g * cp) = (1 - 2X(v, gv))(1 - 2gcp) , i.e., 9 * Cf'; = (1 - 2X(v, gu) )gcp + X(lJ, gv) 

Illdeed, observing that 1 - 2X(v, gv) = ±1, we have: 

Compare the two actions. In the affine action, 9 * X(v,:r·) = X(v,gx), and hence Av is 
invariant under the affine actiOll. The affine action based at v realizes the G-actioll on 
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X within the frame AI!' III the linear action, .9X(v, x) = X(gv,9:1;), therefore the 1i11C<-1r 
action translates Ali to Ai}'" The linear action realizes the G-action on X aTr/.onq t[w 

frames (Av)vEx, 
By comp1eting V 3])(l extendillg the action if necessary, wc lllay assume that ·V 18 H 

Hilbert space. Sillce 119 * (lll = Ilx(v,gv)11 = Jd(v,g'u), we obtain: 

Proposition 2.9. Every achon of a Kazhdan group on a rnedian space is bmmrlcd. 

Proposition 2.10. A grovp that admits a proper act'lon on a rnedian space has the 
Haagerup property. 

For example, groups acting properly on IR-trees are Haagerup groups. 

Conjecture 2.11. Thc converses of Proposition 2.9 and Proposition 2.10 CLre tT7LC. 

2.4 Constructing a Hilbert space. II 

The relation d(x, y) = Ilx(v, .:r) - X(v, y)112 suggests a second construction, perhaps SiIll­
pler than the previous one. 

Definition 2.12. A met rie space (X, d) is negative definite if L CtiCtjd(Xi, Xj) ::; 0 for 
all Xl, ... ,Xn E X and Ctl, ... , Ctn E IR with L Cti = O. 

The following observation is sometimes referred to as the GNS construction. 
If a metric space (X, d) has the property that there is an inner product space V and 

a map , : X -----t V with d(x, y) = lIJ(x) _,(y)112 for all X, y E X, then X is negative 
definite since LCtiCtjd(Xi,Xj) = -211 LCti/(Xi)112 ::; 0 for LCti = O. 

Conversely, let (X, d) he negative definite. Let V(X) be the vector space on X, 
and Vo(X) consist of the vcctors in V(X) with zero coefficient sumo On Vo(X) define 
the inner product (L CtiX" L (3jYj) = -~ L Cti(3jd(Xi, Yj)· Then d(x, y) = Ilx - ;1111 2

. 

Curiously, (x - z, y - z) =< :r, y >z, where the right-hand side is the inner product in 
X. 

Lemma 2.13. Median spaccs ar'e negative definite. 

Proof. We proceed along the same hne as in the pro of of Lemma 2.8. Let Xl, ... ,Xn EX, 
which we may assume to form a median stable set X o. Let C be a maximal proper convex 
subset of X o. There is a retraction c : X o -----t C, associating to each Xi the point in 
Cri E C that is closest to Xi. For X, y t/: C, xCxycy is a rectangle. Since opposite sides are 
equal, we conclllde that d(T, cx) = (j for x t/: C. Expand L CtiCtjd(Xi, Xj) as follows: 

L CtiCtjd(Xi,Xj)+ L Cticl:jd(Xi,Xj)+ L ctiCl:jd(Xi,Xj)+ L CtiCtjd(Xi,Tj) 
x,<:/.C,xJCéC 

III the first and second sum, replace d( xi, T j) by d( CXi , CXj ). In the third and the fourth 
sum, replace d(Xi, Xj) by d(c

X" 
CXj ) + 6. We obtain: 

L Cl:iüjd(Xi, Xj) = L üiCl:jd(c:Ci' cx]) + (j L CtiCtj + 15 L CtiCtj. 
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Thus Laiajd(xj,::r;J) =:; 0 Sillet' the first sum on the right is non-positive by illdlldim!' 

and the last two smWi give-2Ô(Lx,EC ai? 0 

Remark 2.14. A llll'tric space (X, d) is hypeT'Tnctric if L titjd(Xi, Xj) 'S () for al! 
Xl, ... , X n E X and illt{'g(~lS t 1: ... , tn with L t i = 1. One easily shows tlwt ltvIHT­

metric spaces are llcgat ive dcfinite. An obvious adaptation of the previous proof shows 
that median spaces art' ill fclct hypermetric. 

We now interpret PropositiOllS 2.9 and 2.10 from this point of view. Let Ci (tct by 
isometries on a mediau space X and consider the illner product space ~\I(J(X). 'l'Il(' 
obvious linear action (/J 1---+ gç~ of Ci on Vo(X) is isometric, and for a fixed v E X wc 
"affinize" : 

9 * cP = gcP + (gv - 'Ii) 

By completing Vo(X) êînd extcnding the action if necessary, we may assume that l~)(X) is 
a Hilbert space. Finally, since Ilg*OII = Ilgv-vll = Vd(gv, v), we obtain ProPOSitiOlls 2.9 
and 2.10. 
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3 Median graphs 

Graphs, wbich we assume connected and without loops or multiple eclgcs, COll le <'quipped 
with a path ll1ctric. One may thus consiclcr mcclian graphs. 

Trees are clCIllPlltary examples of median graphs. The 1-skelcton of t be sq llmc tiling 
of the plane is l!ledia.n whereas the 1-skeletons of the hexagonal and t riallglllaT tilings 
are not. The l-skeleton of an 71-dimensional cube is median. Note that llH'<!üm graphs 
are bipartite and do not have K 2,3 as a subgraph. 

One of the lIlotivating facts about median graphs is the close relfit j011ship with 
CAT(O) cube cOlllplexes, or cubi71gs for short. Cubings are simply-cOlllH'dcd complexes 
of nonpositive cmvature made out of standard euclidean cubes. Every gilling of a cube 
is an isometry 011 cach face of the cube. The nonpositive curvature condition can be 
expressed as follows: [no bigons] no two 2-cubes share adjacent edges, alld. [no triangle] 
if three (71 + 2)-cubes share an 71-cube and pairwise share (71 + 1)-cubes, t.hCll they are 
faces of an (71 + 3)-cube. 

For example, a cubing made out of 1-cubcs, i.e. segments, is a tree. A cllbing made 
out of 2-cubes, i.e. squares, can be described as a simply-connected square complex with 
at least 4 squares around each vertex. 

Theorem 3.1. The 1-skeleton of a cubing is a median graph. Conver-sely. eveTy median 
graph is the 1-skeleton of a cubing. 

Roughly speaking, one obtains a cubing from a median graph by "filling in" isometric 
copies of euclidean cubes, that is by inductively adding an (n + 1 )-dimeusional cube 
whenever its 71-skelcton is present. 

Notes. CAT(O) cube complexes were introduced in M. Gromov's land mark paper Hy­
perbolic gTOUpS. 

Theorem 3.1 is proved in [Ro198], [CheOO], [Ger98]. 

3.1 Spaces with walls 

Definition 3.2 (Space with walls). Let X be a set. A wall in X is a partition of X 
into 2 subsets callcd halfspaces. Wc say that X is a space with walls if X is cnclowed 
with a collection of walls, containing the trivial wall {0, X}, and so that any two distinct 

. points are separated by a finite, non-zero IHunber of walls. Note that a wall sepamtes 
two distinct points x, y E X if x belongs to one of the halfspaces determinecl hy the wall, 
while y belongs to the other halfspace. 

A mOTphisTn of spaccs wüh walls is a map f : X -----7 x' betweell spaccs with walls 
with the property tlmt f-l(A' ) is a halfspace of X for each halfspace A' of X'. 

For a givcn .1: EX, we let (J x denote the collection of halfspaces containing :c. Note tllat 
the number ofwalls separating x,y E X is ~1(}xD(JYI. 

Definition 3.3 (Wall metric). The wall rnetr"ic: dw on a space with walls X is defined 
by dw(x, y) = ~1(JxD(}YI. 
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A gronp nets on a space with walls X hy permuting the walls. Consequently, it aets by 
iSOlIlctrirs on (X, (Lw). 

lVIedian graphs are the main eXHlllples of spaces with walls. As we will show in 
Section 3.2, they are "universal spaces with walls", in the sense t11at every space with 
walls a.dmits a canonical embeclcling in a median gra.ph in sucb a way that the wall 
structure is preserved. 

The proper halfspaces in a llledian graph X have a simple description: 

H xy = {z EX: d (z, x) < d ( z, y)} 

where xy is an edge. Therefore, the path llletric and the wall metric coincide. 

Notes. The notion of a space with walls is due to F. Haglund and F. Paulin [HP98]. Om 
definition differs from the original one in that we insist on the presence of the trivial wall. 
This minor modification is needed for a morphism of spaces with walls to be well-defined. 
lVloreover, the trivial wall is present in median algebras. 

3.1.1 Application: Kazhdan property and Haagerup property 

Suppose G acts on a space with walls X. Let H denote the collection of halfspaces of 
X. Then G acts linearly isometrieally on fdH) via gcp( H) = cp(g-l H). 

Fix a basepoint v E X and con si der the affine action: 

9 * cp = gcp + (XagV - XaJ 

Then Iig * 011 2 = IIXagv - Xav 11 2 = 1 O"g?JDO"?J 1 = 2dw (gv, v). We conclude: 

Proposition 3.4. Every action of a Kazhdan group on a space with walls is bounded. 

In particular, Kazhdan groups have property FA. 

Proposition 3.5. A group that admits a proper action on a space with walls has thr 
Haagerup property. 

In particular, groups that admit proper actions on trees, e.g. fl'ee groups, are therefore 
Haagerup groups. 

Finitely-generated Coxeter groups act properly on spaces with walls. There are at 
least three ways of intel'preting their wall structure; see [NR03]. Ou the other hand, they 
have property FA provided that their defining matl'ix (mij) has finite entries only. 

The usefulness of Proposition 3.4 and Proposition 3.5 l'esides in the fact that spaces 
with walls can be l'ead off in many geomctric eontexts. 

Problem 3.6. Cive examples of non-Kazhdan groups with the property that every 
action on kt space with walls is bounded. 

Note that s11eh groups have property FA. 

Problem 3.7. Cive examples of Haagerup groups that do not admit propcr actions on 
spaces with walls. 
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3.2 From spaces with walls to median graphs 

A common way of enriching a spa ce X is by devising a notion of ul trafil ter, w hich is 
roughly a collection of objects rc!ated to X, so that to each point in X COlTcsponds a 
unique ultrafilter. The ultrafilters tagged by points of X are called principal llitrafiiters, 
and so X embeds in a larger set of ultrafilters. Such a procedure l'l'ovides cl cOlllpletion 
or a compadification of a space. In om case, it provides a cubulation. 

Definition 3.8 (Ultrafilter). An ultrafilter on a space with walls X IS (\ nOllempty 
collection W of halfspaces that satisfies: 

• A E W and A ç B imply B E W 

• either A E W or AC E W but not both. 

This notion is different from the notion of ultrafilter mentioned in Example 2.4. Intu­
itively, an ultrafiltel' is a coherent orientation of the walls. Note that evcry ultrafilter 
contains X. 

For evel'y x EX, the collection (J'x of halfspaces containing x is an ultl'afilter, called 
the principal ultrafilter at x. In addition, we consider the almost principal ultrafilters, 
that is ultrafilters w with w 6.(J' x finite for sorne (every) principal ultrafilter (J'x. 

Let Cl (X) be the graph whose vel'tices arc the almost principal ultrafilters on X, and 
whose edges are defined by: Wl is adjacent to W2 if ~ IWl6.W21 = 1. 

If Wl, W2 are almost principal ultrafilters, then elements of Wl6.W2 corne in pairs 
{A, AC}, so we may think of them as being walls, more specifically walls on which Wl 
and W2 have opposite orientation. Thus two ultrafilters are adjacent in Cl (X) if there is 
exactly one wall on which they have diffel'ent orientation. 

Lemma 3.9. InCl(X), the distance betweenwl andw2 is ~IWl6.W21. 

Praof. If Wl = el, ... ,em +1 = W2 is a path connecting Wl to W2, then 

111 
'2IWl6.W21 = '2 1(el6.e2)6. .. . 6.(em 6.em +dl S L '2lei6.eHll = rH 

l'Si'Sm 

Conversely, let Wl6.W2 = {Al, .. " An' A~, ... , A~,} with A E Wl \ W2 and Af E W2 \ Wl· 
Assume each Ai minimal in {A, ... , An} and define el = Wl, eHl = ei6.{A i , An for 
i S n. Then en+1 = Wl6.{A1l ... ,Anl AL ... ,A~} = W2· 

We daim that each ei is an ultrafilter. Since eH-1 is obtained from ei by exchanging 
Ai for AL and since exchanging a minimal halfspace in an ultrafilter for its complement 
results in an ultrafilter , we are left with showing that Ai is minimal in 8i . Suppose therc 
is B E eil B ç Ai' Thell B t/:. W2 because Ai t/:. W2. As 

wc nccessarily have B E Wl \ {AIl'" 1 Ai-d. Wc obtain B E {Ail' .. , An} which contra­
dicts the fad that Ai is minimal in {Ai, ... , An}. 0 
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p7(Jof. \Ve have cu E [wJ, W2] {::} IWJ Dwi + IWDW21 = IWI DU)21 {::} W] n W2 ç W ç W1 U W2· 

The cqllivnlcnce Wl n W2 ç W {::} W ç Wl U W2 holds for arhit rarv nltrafilters. 0 

Proposition 3.11. C1(X) is a connected median gmph. 

Proof. Sincc geodesic intervals in Cl (X) are of boolean typc, the median in Cl (X) of a 
tripk of verticcs Wl, W2, W;), has to be the boolean median 

One casily checks that m (w] , W:z, W3) is indeed a vertex in Cl (X) . o 

Proposition 3.12. There zs a büective correspondence betwœn the halfspaces of X and 
flUe halfspaces of Cl (X) given by A f---+ HA = {w E Cl (X) : A E uJ}. 

Pmof. Each HAis convex: if W l, W2 E HA and W E [Wl' W2], thcn A E Wl n W2 ç W hence 
W E HA. The complement of HA in C1(X) is HAc. Thcrefore HA is a halfspace in Cl(X) 
for every halfspace A in X. 

The mapping is injective: (Jx E HA if and only if x E A, i.e., (J-l (HA) = A. 
The mapping is surjective. Let H be a halfspace in C1(X). Assume that H is proper, 

as H0 = 0 and Hx = Cl(X). Then H cuts sorne edge 8182 : 8l E H and 82 ~ H. Suppose 
the edge 8182 is obtained by exchanging A E 81 for AC E 82, We claim that H = HA. If 
W E Hll, i.e. A E w, then 81 ç 82Uw and the convexity ofCl(X)\H implies W E H. Thus 
HA ç H. Similarly HN ç C1(X) \ H, which by complementation becomes H ç HA. 0 

As C1(X) is median, the wall metric and the path metric coincide. Proposition 3.12 
provides another explanation. The path metric counts the waIls {A, AC} in WIDW2. The 
wall metric counts the walls {HA, HN} separating Wl, W2 in C1(X), and a wall {HA, HN} 
separates Wl, W2 if and only if {A,AC} is in WIDW2' 

Proposition 3.13. The map (J : X ---+ C1(X) given by x f---+ (Jx is an injective morphism 
of spaces with walls and an isornetric embedding when X is equipped with the wall metric. 

Proof. (J is a morphism ofspaces with walls as (J-l(HA) = A, and dw(x,y) = ~1(JxD(JYI, 
the right-hand side being the distance between (Jx and (Jy in Cl (X). 0 

Proposition 3.14. Cl(X) is the median closure of {(Jx : x EX}. 

Pmof. Let NI ç C1 (X) be the median closure of {(Jx : x EX}. We proceed by contam­
ination, assuming that W E !vI and WW' is an edge in Cl (X), and proving that w' ENI. 
Suppose the edge WW' is obtained by exchanging AC E W for A E w'. Let ( E 1\'{ n HA he 
closcst to w. Sec figure 1. 

\I\Te daim that ( = w'. Note that ( E [w, (Jx] for all x E A (hint: m(w, (, (Jx)) and 
w' E [w,(] (hint: bipartite), hence (E [w',(Jx], i.e., (Ç w' U (Jx for aIl x E A. If there 
is B E ( \ w' then B E (J,r for aIl x E A, so A ç Band hence B E w', which is a 
contradiction. Thus ( ç w', so ( = w'. 0 
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Figure 1: The principal ultrafilters span. 

Cf, 

In particular, if X is a median graph then a : X --------t C1(X) is a median isomorphism. 
One checks that m(ax , ay , az ) = (Jm(:r,y,z) , i.e., a is a median morphism. Therefore aIl 
vertices in C1(X) are principal ultrafilters, in other words a is surjective. Note that a 
median isomorphism between rnedian graphs is a graph isomorphism as weIl. 

Proposition 3.15. For every morphism of spaces with walls f : X --------t X', there is a 
unique median morphism f* : Cl (X) --------t Cl (X') making the following diagram commute: 

X ~ X' 

C1(X) ~ C1(X' ) 

Proof. Define f*(w) = {A' ç X' halfspace : f-l(A') E w}. Then f*(w) is an ultrafilter 
on X' whenever w is an ultrafilter on X. lVIoreover, f*(Wl)Df*(W2) is finite whenever 
WIDW2 is finite, since the halfspace equation f-l(A') = A, where A ç X, has finitely 
many solutions (for x E A and y E AC, any solution A' will separate f(x) from f(y)). 
Thus f* is well-defined. 

That f* is a median morphism cau be seen either by checking that it is a morphism 
of spaces with walls, or by checking that f* is median preserving. Finally, f*(a x ) = (Jf(x). 

In general, f* need not be a graph morphism. This happens if the halfspace equation 
f-l(A' ) = A, where A ç X, has more than one solution. 

Uniqueness: f* is determined on {al: : X EX}, which generate Cl(X). 0 

It follows from Proposition 3.15 that a group action on a space with walls X cxtends 
uniqucly to a group action on its 1-cubulation C1(X). Since the elllbedding X L....7 C1(X) 
is isolllctric, the action on X is boundcd, respectively proper, if and only if the extended 
action cm Cl (X) is bounded, respectively proper. 

Example 3.16 (3D Rex). Let us cuuulate the I-skcletull of the hexagollal tiEllg of the 
plane. Sec figure 2. 

The choice of halfspaces is independent along the three directions X, Y, Z. But this 
is also the case for the 1-skeleton of the usual tiling of ]R3 by 3-dilllensional cubes. Since 
this is already a llledian graph, we conclude that it is the l-cubulation of the hexagonal 
tiling of the plane. 
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Figure 2: Cubulating the hexagonal tiling 

Notes. This procedure, implicit in [Sag95], was made explicit in [Nic] and independently 
in [CN03]. We learned the terrn "cubulation" from Dani Wise. 

3.2.1 Application: Ends of pairs of groups 

The number of ends, much like the growth function, is an asymptotic invariant of groups 
defined in terms of their Cayley graphs. In what follows, it is convenient to consider 
finitely-gcnerated groups. 

Ends of graphs. Let X be a locally finite connected graph. The nv,mber of ends of X 
is the supremum of the number of infinite components one obtains by excising arbitrary 
finite sets from X. By local fini teness, excising arbitrary finite sets is equivalent to 
excising arbitrary bounded sets, which is equivalent to excising larger and larger balls 
around some basepoint. 

The bOllnelary DA of a set A ç X is the set of edges connecting A to iF. Observe 
that X 1m3 more than 1 end iff there is A ç X with A, AC infinite and DA( = DAC) finite. 

Ends of groups. The nv,mber of ends of a group G is the number of enels of a Cayley 
graph of G. For example, the trivial group has 0 ends, 71} has 1 end, Z has 2 ends and 
F 2 has infinitcly many ends. In fact, thcsc are the only possibilities: the Humber of ends 
of any finitcly-genoratcd group is one of 0, l, 2, CXJ. 

A group has 0 ends if and only if it is virtually trivial, i.e. fini te, and it has 2 ends 
if and only if it is virtually Z. A theorem of .J. Stallings characterizes the groups with 
more than 1 end as being those that split over a finite subgroup, which leaves the groups 
with 1 end as the generic case. 

Ends of pairs of groups. One is lead to a notion of relative ends by the desire to have 
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all invariallt that encodes splittings over arbitrary subgronps. As Stallings' theorem 
Sllggcsts, Olle does not expect a splitting, hllt rather a virt1lal splitting. After a11, the 
H1llllber of cnds is a coarse notion so it is only natural that we ltn\'(' to settle for coarse 
splittillgS. Hcre is the notion of relative enels that has gailled preelllillence. We stress 
the hlCt that the finite-generation assumption applies to the Hmhicllt group only. 

GiVCll a group C and a SUbgrollP K, the number e( C, K) of mds of C relative to K 
is the lHuuber of ends of a coset graph r\K) the quotient hy K of a Cayley graph r of 
C. For cxamplc, a cuspified n-gon suitably decorated to providf' Cl covering of the wedge 
of two circles shows that the number of relative cnds may takp any value in NU 00. 

The number of relative ends partially fulfills its pllrpose: if C virtllally splits over K 
then c( C, K) > l, but the converse fails in general. 

At the core of Bass-Serre theory stands the fact that a group splits if and only if it 
aets on Ct tree without bounded orbits. Combining with Stallings' theorern, we deduce 
that a group with more than 1 end has an action on a tree without bOllncled orbits. This 
timc, there is a satisfactory relative analogue. 

Theorem 3.17. For a finitely generated group C, the following aTC equivalent: 
1) Chas mOTe than 1 end relative to a subgroup 
2) C acts on a median graph without bounded or'bits. 

Here is an outline of the pro of. Start by translating the fact that e( C, K) > 1 into the 
existence of certain subsets of C called K -sets. Provided that C acts without bounded 
orbits on a median graph, focus on the wall structure of the graph and choose a suit able 
halfspace H that will become a CH-set, where CH is the stabilizer of H, and thus C 
will have more than 1 end relative to CH. Conversely, if e(C, K) > 1 then consider a 
space with walls whose underlying set is C and whose walls are translates of a K-set. 
Now consider a median graph corresponding to this space with walls as described in 
Section 3.2. 

An instantaneous consequence of Theorem 3.17 is that Kazhdan groups have no 
codirnension-1 subgroups. To ask whethcr the converse holds amOll11ts to Problem 3.6. 

We have gathered enough evidence in order to assert that median graphs are a mean­
ingful generalization of trees. Let us summarize. 

Groups acting on trees were among the first ex amples of Kazhdan groups or Haagerup 
groups, depending on the flavor of the action. We have extended these icleas to median 
graphs in two ways: via spaces with walls, and as a particular instance of actions on 
median spaces. 

The interplay between finite splittings, multiple ends and actions on trees are key 
ideas in the Bass-Serre theory. The corresponding triumvirate consists of arbitrary split­
tings, multiple relative ends and actions on mediall graphs. 

Finally, the nonpositive curvature and the simple-connectivity of trE~es is pn.'sent in 

cubings. 
On the downside, a serious casualty is the algebraic criterion for bOll11decl actions 

provided by Theorem 1.11. 

Notes. Theorem 3.17 is a version of a theorem duc to M. Sageev [Sag95J. SHgecV'S rcsult 
is further explored in [Ger98], [RoI98J. 

23 



References 
[BdIHV03! B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's PlVpcrtlj T. pI('print, 2003. 

[CC.J+ Dl] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valctt.c, (;/()/J,ps with the Haagerv.]J 
property (Gromov 's a- 1'-menability), Progress in Mathcmêl tics, 11 irkh~i liser, 2001. 

[Chd)O] 

[C~(r)] 

[dIHV8U] 

[GerU8] 

[HP98] 

[Nic] 

[NR03] 

[RoI98] 

[Sag95] 

[Ser80] 

[Ver93] 

V. Chepoi, Gmphs of .sorne CA1'(O) complexe.s, Advances Appl. 1\Iath. 24 (2000), 125-179. 

I.L. Clmtterji and G.A. Niblo, From wall .space.s to CA1'(O) cl/bp mmple:res, preprint (2003). 

P. de la Harpe and A. Valette, La propriété (1') de KazhdaI! pour les groupe.s localement 
compact.s, Astérisque 175 (1989). 

V. Gerasimov, Fixed-point-free actions on cubing.s, Siberian Adv. Math. 8 (1998), no. 3, 
36-58. 

F. Haglund and F. Paulin, Simplicité de groupe.s d'automO'lphismcs d'espaces à eourbw'e 
négative, Geom. Topol. Monogr. l, The Epstein birthday schrift (1998), 181-248. 

B. Nica, Cubulating .space.s with wall.s, to appear in Alg. Geolll. Top. 

G.A. Niblo and L.D. Reeves, Coxeter groups aet on CA1'(O) cube complexe.s, J. Group Theory 
6 (2003), no. 3, 399-413. 

NI. Roller, Poc-.set.s, median algebm.s and group action.s. An extended study of Dunwoody's 
con.str71etion and Sageev's theorem, preprint (1998). 

M. Sageev, End.s of group pair.s and non-po.sitively curved cu,be complexe.s, Proc. London 
Math. Soc. 71 (1995), 585-617. 

J.-P. Serre, 1'ree.s, Springer, 1980. 

E.R. Verheul, Multimedian.s in metric and normed .space.s, CWI tract 91, Centrum voor 
vViskunde en Informatika, Amsterdam, Netherlands, 1993. 

24 


