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ABSTRACT 

Sleep apnea is a condition where breathing unexpectedly stops during sleep. This condition is a 

common medical problem affecting infants that can result in serious complications if left untreated. 

Anesthesia can increase episodes of post-operative sleep apnea in infants. Therefore, the monitoring 

of infants after surgery is of utmost importance. The standard for diagnosing apnea events remains 

the visu al scoring of cardiorespiratory data by trained personnel. This process is time consuming 

and prone to human error. In this thesis, we present automated off-line algorithms for the detection 

of pauses, asynchrony and movement artifact in cardiorespiratory data. These algorithms were 

implemented in a new tool intended to replace the visual scoring process. The automated algorithms' 

effectiveness relative to visual scoring is presented. This comparison was achieved using a new 

visual scoring tool. Results presented in this thesis demonstrate that the developed methods are 

comparable to visu al scoring, work with uncalibrated respiratory signaIs and provide quick, reliable 

and standardized analysis. 
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ABRÉGÉ 

L'apnée du sommeil est un problème médical commun pour les enfants qui peut avoir de 

sérieuses conséquences si non traîté. L'anesthésie peut accroitre le risque d'apnée du sommeil chez 

les enfants. Donc, il est très important de surveiller les enfants après une chirurgie. Le standard 

de diagnostique de ces évènements reste l'analyse visuelle des enregistrements cardiorespiratoires 

effectuée par un personnel qualifié. Ce processus est sous le joug de l'erreur humaine et prend 

beaucoup de temps. Dans ce rapport, on présente des algorithmes automatiques pour la détection 

d'évènements cardiorespiratoires. Ces algorithmes sont appliqués dans un nouveau outil prévu 

pour remplacer l'analyse visuelle. L'efficacité des algorithmes par rapport à l'analyse visuelle est 

présentée. Cette comparaison est accomplie avec l'aide d'un nouvel outil dévellopé pour l'analyse 

visuelle. Les résultats présentés dans ce rapport démontrent que les algorithmes sont comparables 

à l'analyse visuelle, et fournissent une analyse rapide, fiable et standardisée. 

IV 



CONTRIBUTIONS OF AUTHORS 

The work in the manuscript presented in this thesis (chapter 5) is largely my own. Dr. Kearney, 

Dr. Galiana, Dr. Brown and Dr. Motto provided me with suggestions and substantial feedback that 

led to the complet ion of the work. Dr. Brown provided the clinical expertise in visuaIly scoring aIl 

patient data presented in the manuscript. Dr. Motto helped in the algorithm conception. 1 wrote 

the manuscript, 1 implemented the algorithm and 1 conducted the analysis for the validation of the 

methods. 

v 



LIST OF SYMBOLS 

TTC Threshold for on-line pause detection in the ribcage RIP signal. 

T ab Threshold for on-line pause detection in the abdominal RIP signal. 

Tl Threshold for on-line movement artifact detection. 

T2 Threshold for on-line asynchrony detection. 

E'jc Test statistic used for on-line pause detection in the ribcage RIP signal. 

Efb Test statistic used for on-line pause detection in the abdominal RIP signal. 

M TC Test statistic used for on-line movement artifact detection in the ribcage RIP signal. 

M ab Test statistic used for on-line movement artifact detection in the abdominal RIP signal. 

rPi Test statistic used for on-line asynchrony detection. 

c5(P) Logic signal for on-line pause detection (set to 1 if pause is detected and 0 otherwise). 

c5(rPi) Logic signal for on-li ne asynchrony detection (set to 1 if asynchrony is detected and Oother­

wise). 

c5(M) Logic signal for on-line movement artifact detection (set to 1 if movement is detected and 0 

otherwise) . 

HÔ Hypothesis, pause absent (on-line algorithm). 

Hf Hypothesis, pause present (on-line algorithm). 

H~ Hypothesis, movement artifact absent (on-line algorithm). 

H~ Hypothesis, movement artifact present (on-line algorithm). 

H~ Hypothesis, asynchrony absent (on-line algorithm). 

Ht Hypothesis, asynchrony present (on-line algorithm). 

,TC Threshold for off-line movement artifact detection in the ribcage RIP signal. 

,ab Threshold for off-line movement artifact detection in the abdominal RIP signal. 

,'jc Threshold for off-line pause detection in the ribcage RIP signal. 

,fb Threshold for off-line pause detection in the abdominal RIP signal. 

,2 Threshold for off-line asynchrony detection. 

E'3c Test statistic used for off-line pause detection in the ribcage RIP signal. 

Vi 



E3'b Test statistic used for off-line pause detection in the abdominal RIP signal. 

T rc Test statistic used for off-Hne movement artifact detection in the ribcage RIP signal. 

T ab Test statistic used for off-line movement artifact detection in the abdominal RIP signal. 

cp] Test statistic used for off-line asynchrony detection. 

P Logic signal for off-line pause detection (set to 1 if pause is detected and 0 otherwise). 

8 (cp]) Logic signal for off-line asynchrony detection (set to 1 if asynchrony is detected and 0 other­

wise). 

8(T) Logic signal for off-Hne movement artifact detection (set to 1 if movement is detected and 0 

otherwise) . 

'Hg Hypothesis, pause absent (off-Hne algorithm). 

'Hf Hypothesis, pause present (off-Hne algorithm). 

'HO' Hypothesis, movement artifact absent (off-line algorithm). 

'Hf' Hypothesis, movement artifact present (off-line algorithm). 

'Ho Hypothesis, asynchrony absent (off-Hne algorithm). 

'Hï Hypothesis, asynchrony present (off-line algorithm). 

'Ho Hypothesis, obstructive apnea absent. 

'H'r Hypothesis, obstructive apnea present. 

vii 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT 

ABRÉGÉ .. 

CONTRIBUTIONS OF AUTHORS 

LIST OF SYMBOLS . 

LIST OF TABLES . 

LIST OF FIGURES 

1 

2 

3 

Introduction. 

Background . 

2.1 
2.2 

2.3 

2.4 

2.5 

2.6 

Physiology of Respiration 
What is Apnea? ..... . 
2.2.1 Central Sleep Apnea 
2.2.2 Obstructive Sleep Apnea 
2.2.3 Postoperative Apnea .. 
Cardiorespiratory Monitoring . 
2.3.1 Respiratory Inductance Plethysmography (RIP) 
2.3.2 RIP Feasibility for Respiratory Analysis .. . . 
Methods for automated Cardiorespiratory Monitoring 
On-Line Automated Cardiorespiratory Event Detection 

Developed at McGill University ............ . 
2.5.1 On-Line Pause Detection Aigorithm ....... . 
2.5.2 On-Line Movement Artifact Detection Aigorithm 
2.5.3 On-Line Phase Estimation Aigorithm . 
Thesis Objectives ............... . 

Tools for Visual Scoring and 
Automated Scoring of Cardiorespiratory Events 

3.1 

3.2 

Off-line Cardiorespiratory Visual Scoring .. 
3.1.1 The ApneaScore Graphical User Interface 
3.1.2 Cardiorespiratory Events Considered .. . 
3.1.3 Scored Data Storage ........... . 
Off-line Cardiorespiratory Event Detection Tooi . 

viii 

ii 

lU 

iv 

v 

vi 

Xl 

XII 

1 

3 

3 
6 
6 
7 
7 
8 
8 

10 
11 

12 
13 
15 
16 
19 

20 

20 
21 
24 
25 
26 



4 

5 

6 

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 

Power-Based Segmentation and Breathing Frequency Estimation 
of Respiratory SignaIs Using Forward-Backward Bank Filtering . 

4.1 
4.2 

4.3 

4.4 

4.5 

4.6 

Introduction . . . . . . . . . . . . . . . . . 
Algorithm Description . . . . . . . . . . . 
4.2.1 High Pass Filter (Trend Removal) . 
4.2.2 UR Filter Bank . . . . . . . 
4.2.3 Average Power ...... . 
4.2.4 Segmentation Test Statistic 
4.2.5 Decision Rule 
4.2.6 Selector .......... . 
Simulated Data . . . . . . . . . . . 
4.3.1 Simulated Data for the Frequency Estimation Analysis 
4.3.2 Simulated Data for the Segmentation Analysis . . . . . 
Simulated Data Results .................... . 
4.4.1 Representative Results for the Frequency Estimation Analysis 
4.4.2 Representative Results for the Segmentation Analysis . 
Infant Data Results. . . . . . . . . . . . . . . . 
4.5.1 Breathing Frequency Estimate Examples 
4.5.2 Segmentation Examples 
Conclusion. . . . . . . . . . . . . . . . . . . . . 

Automated Off-Line Cardiorespiratory Event Detection 

5.1 
5.2 
5.3 

5.4 

5.5 

Abstract ... 
Introduction . 
Methods ... 
5.3.1 Movement Artifact Detection and Breathing Frequency Estimation 
5.3.2 Pause Detection . . . . . . . . . . . . . . . . . . . . . . . 
5.3.3 Phase Estimation Algorithm and Asynchrony Detection 
5.3.4 Combining the Detectors . . . . . . . . . 
Method Validation: Application to Infant Data 
5.4.1 Description of Infant Data ... 
5.4.2 Analysis of Infant Data. . . . . 
5.4.3 Automated Threshold Selection 
Concluding Remarks 

Summary and Future Work 

6.1 Future Work .... 

Appendix A: ApneaScore GUI User Manual 

Appendix B: Omine GUI User Manual ... 

ix 

28 

29 

30 
31 
32 
32 
33 
34 
35 
35 
35 
36 
37 
38 
38 
38 
41 
41 
43 
43 

46 

47 
47 
49 
49 
52 
53 
55 
55 
55 
56 
64 
66 

71 

75 

76 

89 



Appendix C: Conference Paper 99 

C-1 Abstract ... 99 
C-2 Introduction . 99 
C-3 Methods ... 100 

C-3.1 High Pass Filter . 101 
C-3.2 UR Filter Bank 101 
C-3.3 Average Power 102 
C-3.4 Test Statistic 102 
C-3.5 Decision Rule 103 
C-3.6 Selector .... 103 

C-4 Application to Simulated Data 103 
C-4.1 Description of Simulated Data . 103 
C-4.2 Analysis of Simulated signaIs 104 

C-5 Application to Infant Data .... 105 
C-5.1 Description of Data . . . . 105 
C-5.2 Analysis of Infants' Data. 105 

C-6 Concluding Remarks 108 

Appendix D: Extended Results . 109 

6.7 ROC Curves for the Off-Line Movement Artifact Detector 109 
6.8 ROC Curves for the Off-Line Pause Detector ... 109 
6.9 ROC Curves for the Off-Line Asynchrony Detector 109 
6.10 Number of Events Versus Duration 109 

REFERENCES .................. 120 

x 



LIST OF TABLES 
Table 

4-1 Design specification of UR filters . 

5-1 Design specification of UR filters . 

5-2 Patient Files Used in Database . 

5-3 Database Content . . . . . . . . 

5-4 Automated Pause Threshold Selection for the Abdominal RIP Signal 

5-5 Automated Pause and Movement Detection Performance for Each Patient 

5-6 Automated Asynchrony Detection Performance for Each Patient . . . . . 

6-} Performance of On-line and Off-line Detectors Relative to Visual Scoring 

C-1 Design specification of BR filters ...................... . 

xi 

page 

34 

51 

67 

67 

68 

69 

70 

73 

102 



LIST OF FIGURES 
Figure page 

2-1 The hum an respiratory tract (Modified from [1]). . . . . . . . . . . . 4 

2-2 Gas exchange at the alveolar capillary interface (Modified from [2]). 4 

2-3 Breathing Mechanics (Modified from [3]). ............. 5 

2-4 The respiratory control centers of the brain (Modified from [4]). . 6 

2-5 Illustration of RIP bands on a patient. . . . . . . . . . . . . . . . 9 

2-6 The magnitude frequency response of the LPFIR bandpass filter used to increase the 
signal-to-noise ratio of the RIP signaIs. ........................ 13 

2-7 Block diagram of phase estimation algorithm as described in [5] and the movement 
artifact detection described in [6]. The improved phase estimate <Pi is used to 
choose the hypotheses H~ (asynchrony absent) or Hf (asynchrony present) [6]. . 17 

3-1 Overall structure for the ApneaScore GUI. The application notifies the user of the 
last epoch that was scored if the user had previously started scoring the data 
record. The user can then select the epoch at which to start visual scoring and 
start the analysis in the main window. . . . . . . . . . . . . . . . . . . . . . . .. 22 

3-2 Main window for ApneaScore visu al scoring tool. The user can scroll through the 
data, identify events, and store data in Microsoft Excel or Matlab format. . . .. 23 

3-3 Events in the VS and STAT structures. The events in the STAT structure are used to 
determine the automated algorithms effectiveness while, the VS structure contains 
aIl remaining events normally visually scored at the MCH. ............. 25 

3-4 Overall structure for the Offtine GUI. The application allows the user to manually 
set the threshold for analysis or set them automaticaIly. The analysis results as 
weIl as the thresholds used for the analysis are presented to the user in the main 
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 

3-5 Main window for Offtine GUI tool. The example presented in this figure shows a 
pause detection in the time interval 1O-15s. . . . . . . . . . . . . . . . . . . . .. 27 

4-1 A representative segment of infant ribcage and abdominal excursions measured by 
RIP. The data shown in this figure was obtained from the Montreal Children's 
Hospital (MCH), from the study identification SHIF [7]. . . . . . . . . . . . . .. 31 

xii 



4-2 Simplified diagram of proposed method for respiratory data segmentation. The figure 
depicts the process for the abdominal RIP signal (ab1[n]). The same process is 
also applied to the ribcage RIP signal. . . . . . . . . . . . . . . . . . . . . . . . .. 32 

4-3 The magnitude frequency response of aIl thirteen filters found in the UR filter bank 
with the design specifications enumerated in Table 4-1. . . . . . . . . . . . . .. 33 

4-4 Analysis of a 80s simulated segment of infant abdominal RIP signal modeled as 
a piece-wise linear frequency modulated sinusoidal signal derived from equation 
(4.6). The signal is corrupted by additive noise with a signal-to-noise ratio = 
22.5 dB. The dotted verticallines indicate the transition points where frequencies 
changed. As expected, the frequency indices obtained were accurate (the expected 
imax values for each segment in order is: {1, 5, 12, 8, 2, 6, 7,4,9, 10, 11, 3, 13}).. 39 

4-5 Segmentation analysis of a 60s simulated segment of infant RIP signal. Note that for 
the simulated RIP signal a 0.7 Hz noise corrupted signal was used for the first 15s 
and a 0.5 Hz noise corrupted signal was used for time 30s to 45s. Time 15s to 30s 
and the last 15s of the simulated signal was predominantly composed of simulated 
movement artifact. (a) is the original signal, (b) is the high pass filtered signal, 
(c) is a plot of the frequency estimate imax, (d) is a plot of the movement artifact 
detector test statistic TY (dashed line: 'Y = 0), and (e) is the decision indicating if 
movement artifact is present t5(TY). As expected, the method detects the artifact 
corrupted segments (t5(TY) = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

4-6 Analysis of a lOs segment of ribcage (rc[n]) and abdominal (ab[n]) breathing 
excursions measured by inductance plethysmography of an infant (47 weeks old 
weighing 4.8 kg, study identification: ARC). Note that for both the RIP signaIs a 
quasi-sinusoidal breathing signal is observed. As expected, the imax values ((c) and 
(d)) obtained with the method correctly estimated frequency, visually estimated 
at 0.6 Hz (}max = 4 =} [0.45, 0.65]H z). Note that this figure was generated with a 
filtering window of 251 samples and 'Y = O. .................... 42 

4-7 Analysis of a lOs segment of ribcage (re[n]) and abdominal (ab[n]) breathing 
excursions measured by inductance plethysmography of an infant (42 weeks old 
weighing 3.9 kg, study identification: SHIF). Note that for both the RIP signaIs 
a quasi-sinusoidal breathing signal with a trend is observed. As expected, the 
imax values ((c) and (d)) obtained with the method correctly estimated frequency, 
visually estimated as 0.8 Hz and 1 Hz for the early and later segments respectively 
(}max = 6 =} [0.75,0.95]Hz, imax = 7 =} [0.9,1.1]Hz). Note that this figure was 
generated with a filtering window of 251 samples and 'Y = O.. . . . . . . . . . . .. 42 

xiii 



4-8 Segmentation analysis of a 31s segment of abdominal (abt[n]) breathing excursions 
measured by inductance plethysmography of an infant (42 weeks old weighing 3.9 
kg). Note that a quasi-sinusoidal breathing signal is observed for the first 20s 
followed by Ils of artifact corruption. (a) is the original RIP signal, (b) is the high 
pass filtered signal, (c) is a plot of of the frequency estimate Îmax, (d) is a plot 
of the test statistic used to detect movement artifact T ab (dashed line: '"Y = 0), 
and (e) is the movement artifact decision c5(Tab ) (set to 1 if movement artifact is 
detected). Note that for the interval 577.5s to 582s the signal is composed of both, 
low frequency artifact and quiet breathing; since the power of the low frequency 
component is higher (Tab < 0), the method labeled this segment as having artifact 
corruption. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44 

4-9 Segmentation analysis of a 20s segment of abdominal (ab} ln]) breathing excursions 
measured by inductance plethysmography of an infant (42 weeks old weighing 3.9 
kg). Note that artifact corruption is observed for the first 7.5s followed by 12.5s a 
quasi-sinusoidal breathing signal with a trend. (a) is the original RIP signal, (b) is 
the high pass filtered signal, (c) is a plot of the frequency estimate Îmax, (d) is a 
plot of the test statistic used to detect movement artifact T ab (dashed line: '"Y = 0), 
and (e) is the movement artifact decision c5(Tab) (set to 1 if movement artifact is 
detected). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 

5-1 Procedure for the automated detection of asynchrony, pauses and movement artifact 
in RIP data. The outputs c5(<PI), c5(T) and P[n] are the decisions used to 
automatically detect asynchrony, movement artifact and pauses respectively. In 
addition Îmax yields an estimate of the breathing frequency up to a narrow band. 
Note that the procedure was implemented using the Signal Processing Toolbox of 
Matlab [8] (refer to [9] for more detail on the movement artifact components). 50 

5-2 Example segments of an RIP signal obtained from a 47 weeks old infant weighing 
4.8 kg. (a) is the original RIP signal, (b) is the same RIP signal filtered with the 
filter described in [5], and (c) is the adaptively filtered version of the RIP signal 
obtained with the new method. The adaptively filtered version of the signal clearly 
has the highest signal-to-noise ratio. . . . . . . . . . . . . . . . . . . . . . . . . .. 53 

5-3 Example segments from the visual scoring of infant data. The examples shown are 
from a 49 weeks old infant (postconceptional age), weighing 5.9 kg. (a) Quiet 
Breathing segment, (b) Asynchronous breathing segment, (c) Pause Segment, 
(d) Obstructive apnea segment and (e) Movement artifact segment. Note that 
the ribcage (RC) and abdominal (AB) RIP signaIs were obtained by Respitrace 
(NIMS™, Respitrace Plus, North Bay Village, Florida); the blood oxygen satu-
ration (Sa02) and pulse rate (Pleth) signaIs were obtained with the Nellcor N-200 
(Nellcor Inc., Hayward, CA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57 

5-4 Pdf of the movement artifact detector test statistic (Tab) for aIl 21 data files under the 
hypotheses Ho (movement artifact absent) and H,,!, (movement artifact present). 
The Tab values were calculated using a window size of N = 251 samples (i.e. 5 
seconds at 50 Hz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59 

XlV 



5-5 Receiver operating characteristic for the movement artifact detection in aU 21 infant 
data sets. The circle indicates the probabilities for "/ = o. . . . . . . . . . . . .. 60 

5-6 Pdf of the asynchrony detector test statistic (cp) for aIl 21 data files under the 
hypotheses ?-lg (asynchrony absent) and ?-lî (asynchrony present). The cp values 
were calculated using a window size of N = 251 samples (i.e. 5 seconds at 50 Hz). 61 

5-7 Receiver operating characteristic for asynchrony detection in aU 21 infant data sets. 
The circle indicates the probabilities for "/2 = 0.3 (54 degrees). ........... 61 

5-8 Receiver operating characteristic for pause detection for each of the 21 infant data 
sets. The test statistic used was E~b[n, Nd with a window size NI = 51 samples.. 62 

5-9 Pdf of the asynchrony detector test statistic (cp) for aIl 21 data files. The two density 
functions shown are for events visuaUy identified as obstructive apnea (?-l'la) and 
events visuaUy identified as pauses (?-lf). Note that pauses within obstructive 
apnea events were excluded from ?-lf. 63 

A-l Matlab set path window. . . . . . . . . . 83 

A-2 Example of adding the file 'C: GULApneaScore' in the Matlab set path window. 84 

A-3 Opening window of ApneaScore. 84 

A-4 Labdat file selection example. . . 85 

A-5 First-time window of ApneaScore. . 85 

A-6 LastEpoch window of ApneaScore. 86 

A-7 SelectEpoch window of ApneaScore. 86 

A-8 Main Cardiorespiratory data window 87 

A-9 Message for previously visited epoch. 87 

A-lO Example of a user selected segment in ApneaScore. 88 

B-l Matlab set path window. . . . . . . . . . . . . . . . 93 

B-2 Example of ad ding the file 'C: GULOmine' in the Matlab set path window. 94 

B-3 Opening window of the Omine GUI. 94 

B-4 Labdat file selection example. . . . . 95 

B-5 Threshold selection decision window. 95 

B-6 Manual threshold selection window. . 96 

B-7 Main Omine GUI window . . . . . . 97 

B-8 Jumpto window of the Omine GUI. . 97 

xv 



B-9 Example frequency estimation for the OfHine GUI. . . . . . . . . . . . . . . . . . .. 98 

C-1 Simplified diagram of proposed method for respiratory data segmentation. The figure 
depicts the process for the abdominal RIP signal (abl ln]). The same process is 
also applied to the ribcage RIP signal. . . . . . . . . . . . . . . . . . . . . . . . . . 101 

C-2 Segmentation analysis of a 60s simulated segment of infant RIP signal. Note that for 
the simulated RIP signal a 0.7 Hz noise corrupted signal was used for the first 15s 
and a 0.5 Hz noise corrupted signal was used for time 30s to 45s. Time 15s to 30s 
and the last 15s of the simulated signal was predominantly composed of simulated 
movement artifact. (a) is the original signal, (b) is the high pass filtered signal, 
(c) is a plot of Îmax, (d) is a plot of the test statistic TY (dashed line: 'Y = 0), and 
(e) is the decision c5(TY). As expected, the method detect the artifact corrupted 
segments (J(TY) = 1) ................................... 104 

C-3 Segmentation analysis of a 31s segment of abdominal (abJ ln]) breathing excursions 
measured by inductance plethysmography of an infant (42 weeks old weighing 3.9 
kg). Note that a quasi-sinusoidal breathing signal is observed for the first 20s 
followed by Ils of artifact corruption. (a) is the original RIP signal, (b) is the 
high pass filtered signal, (c) is a plot of Î max, (d) is a plot of the test statistic T ab 

(dashed line: 'Y = 0), and (e) is the decision J(Tab). Note that for the time interval 
577.5s to 582s the signal is composed of both, low frequency artifact and quiet 
breathingj since the power of the low frequency component is higher (Tab < 0), 
the method labeled this segment as having artifact corruption. . . . . . . . . . . . 106 

C-4 Sample distributions of the test statistic T ab for aIl 8 data files that have been 
visually scored by Dr. K. A. Brown. The plot shown was generated with N =251 
(i.e. 5 seconds at 50 Hz), under the hypotheses Ho (movement artifact absent) 
and Hl (movement artifact present) ........................... 107 

C-5 Receiver operating characteristic for aIl 8 infants visually scored by Dr. K. A. Brown. 
The test statistic used was Tab with N = 251 samples or 5 seconds. The circle 
indicates the probabilities for 'Y = o. . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

D-1aROC curves for Movement detection in the abdominal and ribcage RIP signais of 
eight infant patient data records (Montreal Childrens Hospital Study ID: (a) MUR, 
(b) SHIF, (c) ARC, (d) LACR3, (e) LAMP, (f) MICH, (g) MAR2 and (g) MOSS) 111 

D-1bROC curves for Movement detection in the abdominal and ribcage RIP signais 
of eight infant patient data records (Montreal Childrens Hospital Study ID: (a) 
BJUT, (b) CALEB, (c) MAX, (d) BAL2, (e) CLEM, (f) GPEL2, (g) LAL3 and 
(h) LOT2) ........................................ 112 

D-1c ROC curves for Movement detection in the abdominal and ribcage RIP signaIs of six 
infant patient data records (Montreal Childrens Hospital Study ID: (a) DIAB, (b) 
GAB2, (c) GAB, (d) PETR, and (e) MART3) .................... 113 

xvi 



D-2a ROC curves for Pause detection in the abdominal and ribcage RIP signaIs of eight 
infant patient data records (Montreal Childrens Hospital Study ID: (a) MUR, (b) 
SHIF, (c) ARC, (d) LACR3, (e) LAMP, (f) MICH, (g) MAR2 and (g) MOSS) .. 114 

D-2bROC curves for Pause detection in the abdominal and ribcage RIP signaIs of eight 
infant patient data records (Montreal Childrens Hospital Study ID: (a) BJUT, (b) 
CALEB, (c) MAX, (d) BAL2, (e) CLEM, (f) GPEL2, (g) LAL3 and (h) LOT2) . 115 

D-2c ROC curves for Pause detection in the abdominal and ribcage RIP signaIs of six 
infant patient data records (Montreal Childrens Hospital Study ID: (a) DIAB, (b) 
GAB2, (c) GAB, (d) PETR, and (e) MART3) .................... 116 

D-3a ROC curves for Asynchrony detection in eight infant patient data records (Montreal 
Childrens Hospital Study ID: (a) ARC, (b) BJUT, (c) LACR3, (d) LAMP, (e) 
MOSS, (f) MUR, (g) SHIF and (h) MAX) ...................... 117 

D-3b ROC curves for Asynchrony detection in eight infant patient data records (Montreal 
Childrens Hospital Study ID: (a) BAL2, (b) MICH, (c) GPEL2, (d) LAL3, (e) 
LOT2, (f) MAR2, (g) GAB2 and (h) MART3) . . . . . . . . . . . . . . . . . .. 118 

D-4 Distribution of movement events versus their respective lengths, as scored by the 
clinician, and as determined by the automated method for aH 21 infant files. .. 119 

D-5 Distribution of pause events versus their respective lengths, as scored by the clinician, 
and as determined by the automated method for aH 21 infant files. . . . . . . . . . 119 

XVll 



CHAPTER 1 
Introduction 

First described in 1965, sleep apnea is a condition in which there is an interruption or complete 

cessation of breathing during sleep. In fact, apnea is a Greek word literally meaning 'without 

breathing'. Apnea is classified into three categories depending on whether respiratory movement 

is present or not. If no respiratory movement is present, then the episode is classified as central 

apnea; if respiratory movement is present with obstruction of the airway the episode is classified 

as obstructive apnea; and if a combinat ion of both central and obstructive apnea is observed, the 

episode is termed mixed apnea. Irrespective of the difference in the root cause of each, in aIl 

three, a cessation of functional breathing is observed. Apnea can be life threatening and affects 

adults,· children and infants alike. To diagnose and treat apnea-related disorders, it is important to 

distinguish among the three types of apnea. 

Polysomnography (PSG) is normally used to diagnose, assess and monitor apnea-related disor­

ders [10,11]. PSG is the simultaneous recording of brain activity, eye movement, blood oxygen levels, 

respiration, and muscle activity [12]; these variables are recorded via electroencephalogram (EEG), 

electrooculogram (EOG), electrocardiogram (ECG), electromyogram (EMG), nasal airflow (NAF), 

abdomen and thoracic movement, and blood oxygen saturation. PSG monitoring requires contin­

uous supervision of the patient by trained personnel because of the complexity of the recording. 

Thus, due to the numerous signais and equipment required in PSG monitoring, cardiorespiratory 

monitoring is more practical for use in the recovery room or at home [13]. Cardiorespiratory mon-

itoring records a subset of the PSG signaIs (respiratory movement and pulse oximetry) and so 

requires fewer connections to the patient. 

Cardiorespiratory monitoring is robust and allows for the determination of a patient's car­

diorespiratory state by manual review of the data [14-16]. Although manual review of the data 

1 



CHAPTER 1 
Automated Off-Line Cardiorespiratory 

Event Detection and Validation 

classifies apnea events for diagnosis and treatment, it is time consuming and prone to human er-

ror. Consequently, the development of automated procedures for the detection of cardiorespiratory 

events would be advantageous. 

Automated on-line methods for the detection of cardiorespiratory events were developed by 

A. L. Motto at McGill University in [5) and [6). These on-line methods were modified for off-line 

use in this thesis. These methods detect the lack of breathing effort, asynchronous breathing and 

movement artifact in respiratory inductance plethysmography data. This thesis will present these 

new procedures and demonstrate their effectiveness when applied to real data acquired from infants 

post-operatively in the recovery room at the Montreal Children's Hospital (MCH). 

To vaHdate the methods, it was important to acquire precise visual coding of off-Hne infant 

data records. Thus, a graphical tool was developed to visually score data. A second graphical tool 

was also developed to run and present the autornated off-line analysis. Both tools were developed 

to be user friendly for the clinician. A full description of these tools is presented in this thesis and 

its appendices. 

This thesis is organized as follows: Chapter 2 presents sorne background information on res-

piratory physiology and apnea, as weIl as a surnrnary of the automated on-line methods developed 

by A. L. Motto; Chapter 3 presents the graphical tools used for visual scoring and automated 

off-Hne cardiorespiratory event detection; Chapter 4 presents the automated off-line segmentation 

method and provides sorne results based on simulated and real infant data; Chapter 5 presents the 

overall method and the results obtained for the autornated off-Hne detection of pause, asynchrony 

and movement artifact; Chapter 6 presents possible future work and sorne concluding remarks. 

The manuals for the graphical tools, a conference paper, and extended results can be found in the 

appendices. 
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CHAPTER 2 
Background 

According to the National Institutes of Health (NIH), sleep apnea, which is characterized by an 

unexpected absence of breathing during sleep, is a common and serious disorder affecting 12 million 

Americans. Moreover, other studies have shown that this disorder also affects between 1%-3% of 

children [17-20J. A better understanding of apnea would lead to advancements in the treatment and 

prevention of Obstructive Sleep Apnea Syndrome (OSAS), Sudden Infant Death Syndrome (SmS), 

Postoperative Apnea (POA) and Apnea of Pre-maturity. 

2.1 Physiology of Respiration 

The primary function of the human respiratory system is continuous gas exchange, supplying 

oxygen (02) to the blood and removing carbon dioxide (C02). This process is efficient, reliable 

and essential for survival. Oxygen is acquired from the external environment via the respiratory 

tract, an airway that extends from the nasal cavity to the trachea, the bronchioles, and finally the 

alveoli as shown in Fig. 2-1. Gas exchange between the air and the blood is achieved by simple 

diffusion at the alveolar capillary interface; a thin gas-blood barrier between the alveolar space and 

the pulmonary capillaries allowing for rapid gas exchange (depicted in Fig. 2-2). 

During breathing, the lungs expand and contract allowing air to enter and leave the lungs. 

This active process of inhalation and exhalation requires the contraction of skeletal muscles [3J. 

The primary respiratory muscles for inspiration are the diaphragm and the external intercostal 

muscles [3J. As shown in Fig. 2-3, the contraction of the diaphragm and the external intercostal 

muscles causes an increase in the dimension of the thoracic cavity which reduces the pressure in 

the lungs causing air to ftow into the lungs [3J. Similarly, when the diaphragm and the external 

intercostal muscles relax, the ribs and sternum return to resting position resulting in increased lung 

pressure which causes air to ftow out of the lungs [3J. 
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Figure 2-1: The hum an respiratory tract (Modified from [1]). 

Figure 2-2: Gas exchange at the alveolar capillary interface (Modified from [2]). 
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Figure 2-3: Breathing Mechanics (Modified from [3]). 

Respiratory rate is important for adequate oxygen supply to the body. Respiratory rate is 

controlled automatically by the rhythmicity center of the medulla oblongata or voluntarily during 

consciousness [3]. Spontaneous breathing is generated by the firing of 1 and E neurons located 

in the lower part of the brain and in the neck [3]. 1 neurons excite respiratory muscles during 

inspiration while E neurons inhibit 1 neurons during expiration [3]. These neurons are stimulated 

by the apneustic and the pneumotaxic centers located in the pons (refer to Fig. 2-4). In addition, 

chemoreceptors located in the aorta, carotid arteries and medulla help regulate respiratory rates 

[3]. If blood CO2 level increases or 02 level decreases, these chemoreceptors stimulate the brain 

respiratory center to increase the respiratory rate and return 02 and C02 levels back to normal [3]. 

This automatic pro cess is most important during sleep when a subject is unconscious. 

A better understanding of respiratory physiology is crucial for patient safety after surgery 

since anesthesia can compromise regular respiratory function [21]. In particular, infants have highly 

irregular breathing patterns during sleep which can be disrupted further after anesthesia [22,23]. 
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Figure 2-4: The respiratory control centers of the brain (Modified from [4]). 

2.2 What is Apnea? 

Apnea is a word with Greek etymology meaning temporary absence or cessation of breathing. 

This Greek word is a clinical term referring to a period of time when respiratory airflow unexpectedly 

stops. There are three types of apnea: central apnea, obstructive apnea and mixed apnea. 

2.2.1 Central Sleep Apnea 

Central sleep apnea (CSA) is characterized by an extended period of time with no thoracic or 

abdominal respiratory movements. The duration of the respiratory pause is used to define CSA. 

However, this duration is still controversial but is typically greater than 5 s long. Thus, respiratory 

movement signais can be used to detect CSA events by sim ply identifying periods when there is no 

respiratory abdominal and ribcage movement of adequate duration. 

The lack of respiratory effort during CSA is due to a lack of respiratory muscle activity, caused 

by reduced communication between the respiratory centers of the brain and the respiratory mus­

cles [24]. CSA occurs often in children and has been shown to increase with the use of anesthesia [22]. 

Thus, it is important to monitor children after surgery for the detection and prevention of CSA 

events. 

6 



CHAPTER2 

2.2.2 Obstructive Sleep Apnea 

Automated Off-Line Cardiorespiratory 
Event Detection and Validation 

Obstructive Sleep Apnea (OSA) is a disorder characterized by an extended period of upper 

airway obstruction during sleep. When an individual is awake, muscles keep the upper airway open, 

once asleep these muscles relax and the airway becomes narrower. During OSA, these muscles relax 

so much that complete or partial obstruction of the airway occurs, impeding airflow [25]. Some 

morbidities that can increase the risk of OSA are: neuromuscular disease, craniofacial abnormalities, 

Down's syndrome, and premature birth [19,26,27]. 

Research has shown that OSA causes growth delays in children, aggressiveness, poor school per­

formance, hyperactivity, tiredness and neurocognitive deficits [26,28,29]. Therefore, the diagnosis, 

detection, and monitoring of OSA in children is extremely important. 

One of the most common symptoms of OSA is snoring, and OSA is unlikely to be present 

without snoring. However, OSA cannot be adequately diagnosed based on snoring alone [30-34]. 

Moreover, adenotonsillar hypertrophy occurs most frequently between 4 and 8 years of age when the 

hypertrophy relative to the upper-airway is at peak size [12,28]. During this time, enlarged tonsils 

or adenoids can be a direct cause of OSA. Even so, research has shown that the size of tonsils 

and adenoids are not related to the presence or severity of OSA [35,36]. Despite these results, 

adenotonsillectomy is the treatment of choice in children with OSA [37-40]. 

Many studies have linked asynchrony between the ribcage and abdomen to airway obstruction 

in infants [41-43]. Obstruction of the airway causes increased airway resistance and breathing 

effort, resulting in asynchronous abdominal and thoracic movements [44]. During complete airway 

obstruction the abdominal and ribcage movements are completely out of phase since lung volume is 

maintained. As a result, asynchrony between the ribcage and abdomen is commonly used to detect 

and assess OSA severity. 

2.2.3 Postoperative Apnea 

Infants that have had anesthesia during surgery are at increased risk of having apnea episodes. 

Some studies have shown than between 11% and 13% of infants 2 months of age or younger have 

noticeable apnea episodes after surgery [45,46]. Moreover, children with severe OSA and children 

younger than 3 years of age are at an increased risk of perioperative problems [26,47]. Therefore, it 
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is important to closely monitor postoperative children for apnea [48]. Episodes of apnea that occur 

in the postoperative period are termed postoperative apnea (POA). The pathophysiology of POA 

is still unknown. 

2.3 Cardiorespiratory Monitoring 

Cardiorespiratory monitoring is used at the MCH for the study of POA. The cardiorespiratory 

monitoring acquired at the MCH consists of four recordings: abdomen and thoracic movement from 

Respiratory Inductance Plethysmography (RIP), pulse oximetry, and finger plethysmography. This 

thesis will deal with algorithms that are applied to the acquired RIP signaIs. (Note that in this 

thesis, manu al review of the data or manual scoring will be used interchangeably with the term 

visual scoring). 

2.3.1 Respiratory Inductance Plethysmography (RIP) 

Many different noninvasive respiratory monitors are currently used in medical care. These 

devices detect respiratory movement, gas volume exchange, and air flow. One technique used for 

respiratory monitoring is Respiratory Inductance Plethysmography (RIP). RIP was introduced in 

1977 and detects thoracic and abdominal movement noninvasively. RIP is ideal for use in the 

recovery room or at home since it quantifies changes in thoracic and abdominal cross section al area 

with the help of two non invasive inductive bands placed around the infant 's abdomen and ribcage 

with no connection at the patient's airway (refer to Fig. 2-5). 

The inductive bands are composed of elastic bands containing Teflon-coated wires placed in a 

sinusoidal or zigzag pattern. These bands are connected to an oscillator that oscillates at approx-

imately 300kHz with small amplitude (approximately 20mV). Changes in the band circumference 

from respiratory movement, changes the self inductance of the bands which is used to quantify cross 

section al area changes of the abdomen and chest. 

RIP quantifies changes in the cross sectional area of the abdomen and chest with the help an 

electromagnetic method proposed by Goldberg and Goldberg [49]. This method has been devel­

oped as inductance plethysmography. To understand how inductance plethysmography is useful for 

determining small variations in area such as during quiet breathing, Martinot-Lagarde et al. [50] 

considered the formulae for self-inductance of a coil of rectangular or circular shape without zigzag 

8 



CHAPTER2 
Automated Off-Line Cardiorespiratory 

Event Detection and Validation 

Figure 2~5: Illustration of RIP bands on a patient. 

or wavy patterns. These shapes were considered since, as reported in [50], human cross sections 

are between ellipses and smoothed rectangles. Moreover, more complex shapes with zigzag patterns 

such as those used in RIP devices use the same concepts. 

The self-inductance of a circular loop of radius R with a wire of radius r, is given by [50]: 

L = /LoR[ln(SR/r) - 7/4] if R» r (2.1) 

Where /-lo is the permeability of the medium. 

Equation (2.1) can be rewritten in terms of the area A (A = 7fR2
) as follows [50]: 

(2.2) 

Similarly, for a rectangular loop with sides of length a, width b and diagonal d, the self­

inductance equation is given by [50]: 

L = /-lo/7f[a In(2ab/r(a + d)) + b In(2ab/r(b + d)) + 2d - 7/ 4(a + b)] (2.3) 
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Equation (2.3) can be rewritten in terms of the area A (A = ab) and the ratio p = a/b as [50J: 

L = JLo/nVA[(v'P + 1/ v'P) In(2VA/r) - v'Pln(v'P + ) p + 1/ p) 

-1/ v'Pln{l/ v'P + ) p + 1/ p) + 2) p + 1/ p - 7/4{v'P + 1/ v'P)J (2.4) 

As seen in the equations above, it is possible to determine the area of given coil shape from its 

self-inductance. The relationship between area and self-inductance is almost linear with a shape-

dependant sensitivity [50J. Thus, as noted by Goldberg and Goldberg [49J these methods only 

approximate the area changes. The simple rectangular and circular forms presented above can be 

extended for more complex shapes and coils such as those present in RIP bands. 

2.3.2 RIP Feasibility for Respiratory Analysis 

In [51], the accuracy of RIP for the analysis of respiratory waveforms was examined. RIP was 

compared to body plethysmography and pneumotachography. Measurements of respiratory move­

ment obtained by RIP were comparable to both body plethysmography and pneumotachography; 

frequency responses were comparable for aIl three techniques. Thus, Carry et al. [51J concluded 

that RIP is accurate for analysis of respiratory waveforms. Moreover, Watson et al. [52J showed 

that RIP accurately reflects changes in cross sectional area and confirmed the baseline stability of 

RIP for physiological shapes. Therefore, it can be concluded that RIP performs weIl in situations 

where continuous noninvasive respiratory monitoring is required. 

Since both obstructive apneas and central apneas occur during sleep in infants [53], the comfort 

of the infants being monitored is important. Folke et al [54J stated that a clinically relevant monitor 

must allow for natural movement and breathing through the nose and mouth. Since RIP is noninva-

sive and does not hinder infant movement or breathing, it has numerous potential applications for 

infants, including postoperative respiratory monitoring. In fact, RIP is the most widely accepted 

method for qualitative and quantitative respiratory measurements [50J. 

RIP is not only tolerable for the patient but also permits estimation of both respiratory rate 

and tidal volume. Many studies have examined the accuracy of RIP in lung volume estimation, 

for example in a newborn animal model [55J. The study showed a good correlation between lung 

volumes measured with RIP and injected gas volumes [55J. 
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To accurately assess lung volume, RIP must be calibrated. Many different methods for cali-

bration have been used, including the isovolume manoeuvre presented by Konno et al. [56] in 1967, 

the least squares method proposed by Chadha et al. [57] in 1982, and the Qualitative Diagnostic 

Calibration (QDC), introduced by Sackner et al. [58] in 1989. The choice of the calibration method 

depends on experimental and clinical conditions [59]. However, Brown et al. [60] showed that the 

QDC method used to estimate tidal volume in anaesthetized infants was inaccurate if measurement 

conditions or the pattern of breathing changed. Thus, it would be advantageous to use uncali-

brated RIP signaIs since this would eliminate the need for calibration which has been shown to be 

inaccurate during real recordings. 

RIP is commonly used in cardiorespiratory monitors. The current standard for diagnosis using 

cardiorespiratory monitoring is the manual scoring of records by trained personnel. However, man-

ual scoring of numerous cardiorespiratory records is time consuming and costly. In addition, the 

possibility of human error is high and the results are subjective [61]. Reliable automated monitor­

ing systems would require less time for analysis, and provide consistent and standardized analysis. 

Therefore, fully automated monitoring systems would be ideal but clinicians are still cautious about 

their use in a clinical environment. 

2.4 Methods for automated Cardiorespiratory Monitoring 

As reported in [62], RIP can be used to determine the phase relationship between the thoracic 

and abdomen signal and thus, can be used to distinguish between central and obstructive apnea. 

Therefore, RIP can be used for the detection of obstructive breathing episodes which have been 

associated with life-threatening events such as SIDS [53,63,64]. 

In [44], an automated method to determine thoracoabdominal asynchrony was used to examine 

obstructive apnea episodes in ten full-term infants. Results showed that 79.3% of obstructive apnea 

events had thoracoabdominal asynchrony while only 10.9% of the events scored as obstructive 

apneas were true obstructive apneas [44]. De Groote et al. [44] determined thoracoabdominal 

asynchrony using a 'mirror index' method. The 'mirror index' was calculated for each respiratory 

periodj a respiratory period was defined as the data between two successive maxima or minima. A 
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normalized sum (8) of the thorax and abdominal signaIs was calculated as follows, 

8 = ab+ TC 

AB+RC 
(2.5) 

where ab and TC are the abdominal and ribcage RIP signaIs respectively, and where AB and RC 

are the maximum amplitude of each RIP signal in a respiratory period. 

Next, the area under the sum curve was determined. This area is large when the two signaIs 

are in phase and small when the two signaIs are out of phase (asynchronous). Finally, a 'mirror 

index' between 1 and 0 was obtained by dividing the area by the length of the respiratory period. 

Phase opposition, or obstructive apnea events were defined by a 'mirror index' below a threshold 

of 0.15 reftecting significant increase in asynchrony during the apnea [44]. Although the method is 

robust, many false alarms were observed perhaps because De Groote et al. [44] did not eliminate 

movement artifact or noisy signaIs from the phase analysis. De Groote et al. [44] also obtained 

similar results using an artificial neural network method. 

Many other automated methods for detecting apnea have been presented in the literature. 

Including: hidden Markov models [65], artificial neural networks [44,66], recursive least squares [7], 

fuzzy logic systems [67] , and many other techniques [? ,68~70]. These automated, off-line techniques 

function well under controlled circumstances but generate large numbers of false alarms when applied 

to clinical data where movement artifact is present. Thus, alternative automated techniques are 

needed to overcome these ftaws. 

2.5 On-Line Automated Cardiorespiratory Event Detection 
Developed at McGill University 

As previously mentioned many methods have been developed to allow for automated cardiores-

piratory event detection. Sorne of these new methods have been developed by Motto et al. at Mc Gill 

University to directly detect pauses, asynchrony, and movement artifact. These on-line methods 

form the basis from which the automated off-line methods presented in thesis were developed. 

Pauses and asynchronies are detected since central and obstructive apnea events are characterized 

by these signal attributes. Moreover, movement artifact is detected to improve the performance of 

the detectors as described in the following sections. 
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Figure 2-6: The magnitude frequency response of the LPFIR bandpass filter used to increase the 
signal-to-noise ratio of the RIP signaIs. 

2.5.1 On-Line Pause Detection Aigorithm 

Motto et al. developed a pause detection algorithm to detect periods without respiratory 

movement in uncalibrated RIP data. The presence of a pause (a constant 'fiat' period) in both RIP 

signaIs indicates that the abdomen and ribcage areas were constant for a period in time. Thus, a 

pause in both RIP signaIs indicates a lack of breathing effort which is associated with central apnea. 

The algorithm used to detect pauses is described next. 

In the first step of the pause detection algorithm, a linear-phase, finite-duration, impulse re-

sponse (LPFIR) band-pass filter is used to increase the signal-to-noise ratio of the thoracic and 

abdominal signaIs. This filter was designed by Motto et al. [5J on the basis of the Fourier analysis 

of quiet breathing segments in 22 infants, previously reported by Brown et al. [7J. This analysis 

showed that for frequencies outside [0.4, 2.0J Hz the power-spectral densities of quiet breathing were 

small. This led to the hypothesis that thoracoabdominal movement signaIs during quiet breathing 

are bandpass signals within [0.4, 2.0J Hz. The LPFIR band-pass filter frequency response is shown 

in Fig. 2-6 [5J. 
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Next, the root mean square (RMS) of the filtered RIP signaIs over a window of length NI 

centered at each sample n is computed as: 

1 n+NIJ2 

NI L ab}[k] 
k=n-NIJ2+I 

(2.6a) 

(2.6b) 

where, ab! and rc! are the bandpass-filtered abdominal and ribcage signaIs respectively. 

The outputs of the energy functions (Eïb[n, NI] and ErC[n, Nd) are then compared to a thresh-

old value T to determine if a pause is present for each RIP signal. These comparators are defined 

by: 

po,[n] ~ {: 

fi<,[n] ~ {: 

ifEab[n N] > T ab 
1 , 1 -

(2.7) 

ifErc [n N ] > T rc 
1 , I -

(2.8) 

The values Pab[n] and Prc[n] are the abdominal and ribcage decision flags that indicate wether or 

not a pause is present in each RIP signal. 

To determine if a pause is present in both the ribcage and abdomen signals, the outputs of the 

comparators (Pab[n] and Prc[n]) are fed to a NOR-gate. The output of the NOR-gate (8(P[n])) is 1 

if both the abdominal and ribcage signaIs have pauses and 0 otherwise. 

,(Pin]) ~ {: , if Pab[n] = 0 and Prc[n] = 0 
(2.9) 

,otherwise 

Thus, 8(P[n]) reflects the following hypotheses: 

Hô: Pause absent (8(P[n]) = 0) 

vs. (2.10) 

Hf: Pause present (8(P[n]) = 1) 
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2.5.2 On-Line Movement Artifact Detection Aigorithm 

Movernent artifact is cornrnon in infant RIP data. This artifact arises when an infant moves 

or is being moved. It is assumed that apnea episodes are very unlikely during movement. In fact, 

it is routine for a nurse to move an infant during an apnea episode to stop it. Thus, the ability to 

automatically detect movement artifact in RIP is advantageous since movement artifact segments 

could be rejected for autornated apnea detection analysis, thereby reducing the rate of false apnea 

detection. 

An on-line segmentation algorithm was developed to segment cardiorespiratory data into re­

gions with and without movement artifact [6]. This method uses linear filters, an energy function, 

and a comparator to deterrnine if an artifact is present. Since it was determined that movement 

artifacts had high energy and were predominantly of Iow bandwidth ([D, O.4]Hz), the test statistic 

used to detect artifact is defined as the energy ratio: 

(2.11a) 

(2.11b) 

where, Efb and Erc are defined as in equation (2.6), and where E ab and ETC are defined as: 

(2.12a) 

(2.12b) 

where, ab and TC are the raw abdominal and ribcage signaIs respectively, and N 2 is the window 

length. The energy values Efb and Erc are the RMS values of the bandpass filtered ([0.4, 2]Hz) 

RIP signaIs, while E ab and ETC are the RMS values of the raw RIP signaIs. 
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These ratios are compared to a threshold (Tl) to determine if an artifact is present. The 

comparator used is defined by: 

8(Mln]) ~ { : (2.13) 
otherwise 

Thus, 8 (M [n]) = 1 if both the RIP signaIs have most of their energy at lower frequencies, indicating 

that movement artifact is present. Conversely, 8(M[n]) = 0 if at least one of the RIP signaIs has 

most of its energy at frequencies in the expected breathing range, indicating movement artifact is 

absent. Thus, 8(T[n]) reflects the following hypotheses: 

'Hi!: Movement artifact absent (8(M[n]) = 0) 

vs. (2.14) 

'H1f: Movement artifact present (8(M[n]) = 1) 

2.5.3 On-Line Phase Estimation Algorithm 

The ability to automatically detect asynchronous breathing in RIP data is important since 

asynchrony between thoracic and abdominal movement is associated with obstructive apnea. Thus, 

Motto et al. [5] developed an automated algorithm to estimate the phase between thoracic and 

abdominal RIP signaIs. The algorithm uses linear filters, binary converters, and an XOR-gate as 

depicted in Fig. 2-7. The algorithm works as follows: 

Step 1: The LPFIR band-pass filter described in section 2.5.1 is used to increase the signal-to­

noise ratio of the thoracic and abdominal signaIs without distorting their phase relationship. 

Step 2: The filtered signaIs are passed through a binary converter rendering the abdominal 

and ribcage signaIs amplitude independent. The binary conversion is done as follows for both the 

ribcage and abdomen signaIs [5]: 

{

1 ifs[n]20 
s[n] = 

o ifs[n] < 0 

This conversion allows the method to use uncalibrated RIP signaIs. 

16 

(2.15) 



CHAPTER2 
Automated Off-Line Cardiorespiratory 

Event Detection and Validation 

Unearphase 
Bandpass 

Filter 

s,,[n] Binary 

rc[nJ } 
ab[nJ RIP Signais 

Unearphase s,..,[n] 
Bandpass 

Filter 

Energy 
Function 

M[nJ 

Conversion 

saI,[n] 

Binary 
Conversion 

LowPass 
Filter 

o(M[nJ) 
Comparator I--~~~~-+--' 

Movement Artifact Detection 

Figure 2-7: Block diagram of phase estimation aigorithm as described in [5] and the movement 
artifact detection described in [6J. The improved phase estimate 4>i is used to choose the hypotheses 
H~ (asynchrony absent) or Ht (asynchrony present) [6]. 

Step 3: The binary outputs (s[n]) for the ribcage and abdomen signaIs are fed into an XOR-gate 

which outputs u[n] = 1 when the signaIs are different and u[nJ = 0 when the signaIs are the same. 

The XOR output is then used to determine the phase between the two signaIs. Assuming that the 

signaIs have a constant phase difference over a given window, the phase can be estimated by the 

amount of time the signals are different over the window length. Since the phase and frequency of 

spontaneous breathing are in generai time-varying, the phase between the thoracoabdominal signaIs 

can only be estimated. This estimate of the phase is given by [5]: 

" T 
4> -­

T 
(2.16) 

where T is the amount of time the signaIs are different (u[n] = 1) and T is the time period. The 

choice of time period T must satisfy: T > > 1/0.4 = 2.5 seconds, since as previously mentioned, the 

respiration of infants was found to be in the range of [0.4, 2.0] Hz. Therefore, 2.5 seconds was chosen 

since it is the largest expected respiration period. The ratio in equation (2.16), which estimates the 

phase, is computed by low-pass filtering the output of the XOR-gate over a window of length N 

(the number of samples in T). This is equivalent to taking the average amount of time (sampIes) 
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the output of the XOR-gate is lover a window of length N. The result is a value between 1 and 

o representing an estimate of the phase, where 1 is 'Tf radians out of phase and 0 means in phase. 

The phase difference is given by [5]: 

(2.17) 

This phase estimate is then improved following Motto et al. in [6] by using the movement artifact 

detector described in section 2.5.2. The majority of apnea misclassifications were due to movement 

artifact [6], so the ability to detect them will improve the performance of phase estimation algorithms 

used for apnea detection. 

Step 4: The phase estimate <PN is improved by multiplying it with 8(M[n]) as [6] 

<pdn] = <PN[n](l - 8(M[n])) (2.18) 

Remember that 8(M[n]) = 1 if movement artifact is present and 8(M[n]) = 0 if movement artifact 

is absent. The product sets the phase estimate to zero if movement artifact is detected. Thus, using 

<Pi to estimate the degree of asynchrony between the RIP signaIs avoids problems with movement 

artifact. 

Step 5: In the final step, a comparator chooses between the hypotheses asynchrony present 

(1it) or asynchrony absent (1i~). This is done by comparing the phase estimate <Pi to a threshold 

value (T2); if the phase is sm aller or equal to the threshold, the signaIs are labeled as in phase (1i~), 

and if the phase is larger than the threshold, the signaIs are labeled as asynchronous (1it). This 

can be written as 

If <pdn] ::; T2 =} 'H~ 

If <pdn] > T2 =} 'Ht 

The comparator step is very important, sinee in clinical terms, the threshold value T2 determines 

whether asynchrony is present or not, and in turn, determine if obstructive apnea is present. 

The method developed by Motto et al. [5] is more advantageous than other methods such 

as [7], [?] and [71] since it is easily implemented, works with uncalibrated RIP signaIs, does not 

require breath detection, and provides quantitative phase estimates. 
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Visual scoring of cardiorespiratory data is time consuming, costly, and susceptible to human 

error [61]. Despite these drawbacks, visual scoring is the method of choice for the evaluation of 

a patient's cardiorespiratory state. Moreover, visual scoring is necessary for the evaluation of the 

automated procedures that are intended to replace it. The development of reliable automated 

methods to replace visual scoring for cardiorespiratory event detection would permit for rapid, 

standardized and repeatable analysis. These methods would permit the analysis of a large number 

of files, and so lead to a better understanding of the pathophysiology of respiratory events such as 

postoperative apnea. 

The first objective of this thesis was to develop reliable off-line methods for cardiorespiratory 

event detection to replace the visual scoring pro cess. Thus, the on-line algorithms used for pause, 

asynchrony and movement artifact detection were modified and improved for off-line use. Off-line 

detection can be expected to provide better detection performance than on-line detection since the 

methods are not limited to real time algorithms. The new off-line methods are intended to be 

integrated into the off-line option of the cardiorespiratory monitor reported in [72]. 

To assess the off-line methods' performance relative to visual scoring, it was necessary to acquire 

precise visual scoring data. The visual scoring previously obtained at the Montreal Children's 

Hospital only stored the epoch (lOs segment) at which an event was identified. This was inadequate 

sin ce the exact startjend time of each event was not stored. Improved precision was necessary to 

correctly compare the automated method results to the visually scored equivalent. Thus, the second 

objective of this thesis was to develop a tool to allow for precise visual scoring of cardiorespiratory 

data. The tool was used on data acquired in the recovery room of the Montreal Children's Hospital 

and permits for exact start and end time storage. 

The third objective of this thesis was to compare the effectiveness of the off-line methods 

relative to visual scoring with the visual scoring tool developed as part of this thesis. 

The ·final objective of this thesis was to develop a fully automated tool capable of analyzing 

and presenting the off-line cardiorespiratory event detection. 

19 



CHAPTER 3 
Tools for Visual Scoring and 

Automated Scoring of Cardiorespiratory Events 

The following steps were required to complete the thesis objectives: 

1. Develop automated off-line algorithms for cardiorespiratory event detection 

2. Develop a new visual scoring tool to obtain precise visu al scoring of the infant database 

acquired at the MCH 

3. Compare the off-line algorithms performance relative to visual scoring 

4. Develop a tool to display and automatically analyze cardiorespiratory data using the new 

automated off-line algorithms 

This chapter will present the two tools used for off-line cardiorespiratory visual scoring and au­

tomated off-line cardiorespiratory event detection; that is the tools used to attain points 2 and 4 

above. A description of the new automated off-line algorithms (point 1) and their effectiveness 

relative to visu al scoring (point 3) is presented in chapter 4, chapter 5, and Appendix D. 

3.1 Off-line Cardiorespiratory Visual Scoring 

Visual scoring is the annotation of off-line cardiorespiratory data by trained personnel to iden­

tif Y cardiorespiratory events and respiratory problems for diagnosis and treatment. The automated 

methods presented in this thesis were developed to automate the visual scoring process. These 

methods are validated in comparison to visu al scoring in chapter 5 and Appendix D, since there is 

no consensus on the definitions of the cardiorespiratory events being detected [73,74]. The precise 

visual scoring of data files was a prerequisite to assess the methods' effectiveness. 

Visu al scoring is normally performed at the MCH by analyzing data records in lOs segments 

(epochs). Each epoch is examined visually by a trained scorer and categorized as to its cardiorespi­

ratory event. Each visually scored event is stored with the epoch where it occurred, the exact start 

and end times of events are not stored. This lack of precision motivated the development of a new 
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tool to acquire precise visual scoring. This new tool is named ApneaScore and can be used on any 

PC-compatible computer with a basic Matlab 7.0 (The Mathworks, Inc, Natick, MA) installation. 

The ApneaScore tool was developed using Matlab's GUIDE (Graphical User Interface Development 

Environment) and provides an interactive graphical user interface (GUI). 

3.1.1 The ApneaScore Graphical User Interface 

The ApneaScore application was designed to be a simple, user-friendly tool for the visual 

identification of events. Fig. 3-1 shows the overall structure of the ApneaScore tool, as presented 

to the user through the interface. The tool supports analysis of off-line cardiorespiratory data 

stored in the Labdat format (RHT-InfoDat, Montreal) used at the MCH. Visual scoring of events 

is performed in the main window of the application (Figure 3-2). This window permits: 

1. The display of the cardiorespiratory data 

2. The selection and classification of the events 

3. Data Storage 

Cardiorespiratory data displayed in the main window includes: ribcage, abdominal, finger 

plethysmography and oxygen saturation signaIs. These data are presented to the scorer in 30s 

epochs. The tool permits the user to store the type and exact timing of an event with three mouse 

clicks. To score an event, the user positions two cursors on the data to select the event start and 

end times respectively. AlI data in the selected time interval are then highlighted, allowing the 

scorer to visualize the selection. If satisfied with the selection, the user then clicks the appropriate 

event button in the main window. The exact timing and type of the event is then stored. For more 

information refer to Appendix A. 

The visually scored data is stored in a Matlab file (* .mat format) by default but can also be 

saved as an excel file (* .xls format). Data storage and the cardiorespiratory events considered in 

the tool are discussed next. 
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Figure 3-1: Overall structure for the ApneaScore GUI. The application notifies the user of the last 
epoch that was scored if the user had previously started scoring the data record. The user can then 
select the epoch at which to start visual scoring and start the analysis in the main window. 
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Figure 3-2: Main window for ApneaScore visual scoring tool. The user can scroIl through the data, 
identify events, and store data in Microsoft Excel or Matlab format. 
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The cardiorespiratory events for visual scoring in the GUI are enumerated below (these events 

are the exact events found in the button group of Figure 3-2): 

1. Asynchrony: Periods when abdomen and ribcage signaIs are asynchronous. 

2. Pause: Periods when the ribcage or abdomen signaIs are deemed 'fiat'. 

3. Movement: Periods corrupted by movement artifact. 

4. Norm Breath: Periods of normal breathing (sinusoidallike signaIs). 

5. Glitch: Sudden shift in the baseline of either the ribcage or abdomen signaIs. 

6. Odd: Non-sinusoidal breathing pattern. 

7. Poor: Poor quality signal in either the ribcage or abdomen signaIs. 

8. None: Presently not being used. 

9. Break: Non-sinusoidal breathing pattern, characterized by slow exhalation. 

10. Tech: Technical problems. (broken leads, leads off, filter off etc.) 

11. Sigh: Large tidal breaths, sigh. 

12. OA: Obstructive apnea episodes. 

13. OH (OA): Obstructive Hypopneas. 

14. Sat (OA): Decrease in 5% or more of oxygen saturation. 

15. Mixed Apnea: Mixed apnea episodes. 

16. CA: Central apnea episodes. 

17. PSA: Post sigh apnea episodes. 

18. Other: Anything not specified by the rest of the buttons. 

Note that the events numbered 5 to 18 above are mutually exclusive, while events 1 to 4 are not 

sinee they can occur during other events. For example, pause and asynchrony occur together during 

obstructive apnea. 

These eighteen events enumerated are distinguished by a trained clinician. Four events are 

most important: pauses, asynchrony, normal breathing and movement artifact sinee our automated 

algorithms were developed to determine these events specifically. Moreover, these events are the 

constituents of apnea events to be determined. 
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Figure 3-3: Events in the VS and STAT structures. The events in the STAT structure are used 
to determine the automated algorithms effectiveness while, the VS structure contains all remaining 
events normally visually scored at the MCH. 

The data considered in this thesis was visually scored by K. A. Brown (MD, Anesthesiol­

ogist), Anesthesia Department, Montreal Childrens Hospital/ McGill University Health Center 

(MCH/MUHC), Montreal, QC, Canada. Visual scoring was obtained using ApneaScore to allow for 

accurate segment annotation. The event definitions given above are general and were determined 

by Dr. Brown in accordance with standard practice at the Montreal Children's Hospital. 

3.1.3 Scored Data Storage 

The visually scored data is stored in a MATLAB file (*.mat format) as two structures: VS and 

STAT (representing the two but ton groups on the GUI). Each structure contains an array for each 

scored respiratory event. Fig. 3-3 shows the events stored in each structure. 

In both structures, each event is stored in an array format. The array for each event contains 

the st art and end times. A maximum of 6 occurrences for each event is stored per 30s epoch since 

it is assumed that the same event cannot occur more that 6 separate times in a single epoch. The 

scored data is stored by sample number, allowing for precise storage. 
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Figure 3-4: Overall structure for the Offiine GUI. The application allows the user to manually set 
the threshold for analysis or set them automatically. The analysis results as weIl as the thresholds 
used for the analysis are presented to the user in the main window. 

The application is also capable of saving the data in an excel file. The excel file contains the 

type of event, start and end times, the initiaIs of the visual scorer and the date the visual scoring 

was completed (For more detail refer to Appendix A). The next section will present a new tool 

developed to perform automated off-line cardiorespiratory event detection. 

3.2 Off-Hne Cardiorespiratory Event Detection Tool 

A graphical tool was developed to carry out and present the automated off-line cardiorespiratory 

event detection of infant data. This tool is named Offiine. Offiine was developed using Matlab's 

GUIDE and provides an interactive GUI. 

Fig. 3-4 shows the overall structure of the Omine tool, as presented to the user through 

the interface. The tool supports off-line analysis of cardiorespiratory data acquired at the MCR 
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Figure 3-5: Main window for Offline GUI tool. The example presented in this figure shows a pause 
detection in the time interval 1O-15s. 

stored in the Labdat data format (RHT-InfoDat, Montreal). The GUI was developed to permit the 

automated detection of pauses, asynchronous breathing and movement artifact segments, as weIl 

as to estimate breathing frequency using the automated off-line methods discussed in Chapters 4 

and 5. The program displays the automated analysis and the corresponding cardiorespiratory data 

in 30s epochs. Fig. 3-5 shows the main window of the Offline GUI. The data presented in the 

main window is ordered from top to bot tom as foIlows: ribcage, abdominal, finger plethysmography, 

oxygen saturation, movement artifact detection, asynchrony detection and pause detection signaIs. 

The last three signaIs are logical signaIs which are set to one if the event is detected and set to zero 

otherwise. 

The off-Hne analysis imbedded in the application detects pauses, asynchrony, movement artifact 

and permits the user to estimate breathing frequency for a data segment. This analysis can be run in 
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a fully automated manner using the automatic threshold selection techniques described in Chapter 

5. Alternatively, the user can manually set thresholds for the analysis if required. 

Dr. K. A. Brown used the tool and provided feedback to ensure that the GUI was clinician 

friendly and simple to use. The analysis of off-line data requires a few minutes compared to the 

hours required for visu al scoring. The tool can be run on any PC-compatible machine with a basic 

Matlab 7.0 (The Mathworks, Inc, Natick, MA) installation. Once analyzed, the analysis performed 

by the user can be stored in a MATLAB file (*.mat format). The stored data file contains the 

thresholds used for the analysis and the three detection signaIs used to identify pause, asynchrony 

and movement artifact segments. For more detail, refer to the Offline GUI user manual presented 

in Appendix B. 

3.3 Conclusions 

The ApneaScore application was developed to provide data to assess the accuracy of the au-

tomated off-line algorithms relative to visual scoring. The Offline application was developed to 

implement the off-line algorithms and provide clinicians with a tool for automated off-line analysis. 

In comparison to previous visu al scoring used at the MCH, ApneaScore requires less time and stores 

data with greater precision. However, the time required to score an entire data record with the 

ApneaScore tool can still take several hours. This pro cess is time consuming since a single data 

record cau consist of more than 800 epochs, highlighting the need for automated cardiorespiratory 

event detectors such as the ones used in the Offline too!. Subsequent chapters of this thesis present 

the new automated off-line algorithms and their effectiveness relative to visual scoring. 
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Power-Based Segmentation and Breathing Frequency Estimation 
of Respiratory SignaIs Using Forward-Backward Bank Filtering 

This chapter presents the automated off-line algorithm used to detect movement artifact and 

estimate breathing frequency in RIP data. The introduction, method description and sorne of the 

results presented in this chapter were taken from the conference paper entitled: Power-Based 

Segmentation of Respiratory SignaIs Using Forward-Backward Bank Filtering, accepted 

by the 2sth Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBS) held from the August 30 to September 3, 2006 in New York City, USA. Authors: 

Ahmed A. Aoude, Alexis L. Motto, Henrietta L. Galiana, Karen A. Brown, and Robert E. Kearney. 

A copy of the conference paper can be found in Appendix C. 
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Signal processing procedures that mark the st art and end times of "useful data segments" from 

a record of respiratory and sleep data, or a subset thereof, have an important role in the diagnosis 

of clinically significant abnormalities. The term "useful data segment" is used here to designate any 

time interval of respiratory inductance plethysmography (RIP) signaIs that has a sufficiently high 

signal-to-noise ratio. A low signal-to-noise ratio arises when either or both ribcage and abdominal 

channels are corrupted by non-respiratory-induced movements, occurring, for example, when the 

subject is moving or being moved. For illustration, Fig. 4-1 provides a representative segment of 

respiratory excursion signaIs measured by RIP in the recovery room of the Montreal Children's 

Hospital (MCH) [7]. The first 20s period shows no apparent artifact whereas the following Ils 

period is corrupted by artifact. This chapter presents a signal processing procedure for the off-line, 

automated partitioning of RIP signaIs into segments either with or without artifacts. 

The need for the automated segmentation of cardiorespiratory signaIs has been weIl recognized. 

Weese-Mayer et al. [75] reported that the performance of automated cardiorespiratory monitoring 

procedures could be significantly improved if signal segments corrupted with artifacts could be 

systematically identified. In [5], an automated procedure was proposed to estimate the phase 

relation between thoracic and abdominal excursions measured by noninvasive RIP. It was noted that 

the performance of the phase estimator could be improved if it was combined with an automated 

procedure for partitioning RIP signaIs into periods with and without artifact corruption. Such an 

automated signal segmentation procedure would also be useful in the analysis of long off-line records 

of respiration and sleep data. Furthermore, since RIP signaIs corrupted by movement artifact can 

not be used to identify apnea events and, since a large number of apnea misclassification is due to 

movement artifact [75,76], the hypothesis "apnea present" was rejected during detected movement 

in RIP data; thereby improving the performance of automated apnea detectors. 

In [6], it was shown that a Neyman-Pearson energy-based detector could be used for the au­

tomated detection of artifacts. Reference [6] was mainly concerned with the on-line detection of 
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Figure 4-1: A representative segment of infant ribcage and abdominal excursions measured by RIP. 
The data shown in this figure was obtained from the Montreal Children's Hospital (MCH), from 
the study identification SHIF [7]. 

artifacts whereas this chapter is concerned with the off-line detection and, therefore, uses forward-

backward IIR (infinite impulse response) filters, producing an array of zero-phase filters with nar­

rower pass bands and smaller transition bands. As a by-product, we obtain an estimate of the 

fundamental frequency of breathing within the narrow band of the filters. 

4.2 Algorithm Description 

The proposed method was developed to automatically segment thoracic and abdominal signaIs 

into periods with artifact present and periods with artifact absent. From our previous study [5], it 

was observed that: 

1. Quiet breathing signaIs are band limited within [0.4, 2] Hz 

2. The energy of sensor noise is negligible compared to quiet breathing components. 

3. The energy of movement artifact is generally greater than that of quiet breathing and sensor 

noise with predominance at lower frequencies ([0, 0.4] Hz). 

Using the above observations, we developed a method that uses a bank of IIR filters and average 

power to automatically segment respiratory data into quiet breathing and movement artifact, and 

obtain a breathing frequency estimate. In brief, the method uses the frequency content of the RIP 
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Figure 4-2: Simplified diagram of proposed method for respiratory data segmentation. The figure 
depicts the pro cess for the abdominal RIP signal (abdn]). The same pro cess is also applied to the 
ribcage RIP signal. 

signaIs to segment the respiratory data; if more than half of the signal power is found in the range 

[0, 0.4] Hz, the signal is labeled as movement artifact present; otherwise, if more than half of the 

signal power is found in the range [0.4, 2] Hz, the signal is labeled as quiet breathing. Fig. 4-2 

shows a block diagram of the proposed method. Next, we describe the main components of the 

method. 

4.2.1 High Pass Filter (Trend Removal) 

A high pass filter with a eut-off frequency equal to 0.05 Hz was used to remove offsets and 

decays (from AC-coupling) observed in infant data acquired at the MCH. In Fig. 4-2 the original 

RIP signal is denoted ab1 , and the high pass filtered signal is denoted ab. 

4.2.2 UR Filter Bank 

The filter bank used in the method is considered to evaluate the frequency content of the RIP 

signaIs and estimate their fundamental frequency. This filter bank consists of 13 filters selected to 

minimize overlap between adjacent filter passband widths over [0, 2.0] Hz. The 0-2 Hz bandwidth 

was chosen for two main reasons. Firstly, it covers the range of fundamental frequencies of infant 
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The Frequency Response of IIR Filter Bank 
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Figure 4-3: The magnitude frequency response of all thirteen filters found in the UR filter bank 
with the design specifications enumerated in Table 4-1. 

quiet breathing (0.4-2 Hz), as reported in [5]. Secondly, it covers low-frequencies (0-0.4 Hz) that 

are predominant in RIP artifacts. 

The filters were designed with a pass-band width of 0.2 Hz as weIl as specified pass-band 

and stop-band ripples (refer to Table 4-1). Forward-backward filtering using UR filters is used to 

perform zero-phase digital filtering to prevent distorting the phase relationship between the thoracic 

and abdominal signaIs. The UR filters were chosen to be Cauer (elliptic) digital filters to obtain 

sharper roll offs and precise filter designs [77]. The optimal filter order was chosen using the elliptic 

low-pass filter order prediction formula described in [77, p.241] with the Signal Processing Toolbox 

of Matlab [8]. 

Table 4-1 enumerates the filters used and the specifications used to design them. 

Fig. 4-3 shows the frequency responses of aIl thirteen filters; they aIl had sharp roll-offs with a 

passband gain equal to one as specified in Table 4-1. 

4.2.3 Average Power 

The average power of the filtered RIP signaIs over a window length 2L + 1 was used to segment 

the signaIs. Let rib[n, N] denote the average power value of the filtered abdominal signaIs over a 
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Table 4-1: Design specification of UR filters1 

Filter number (i) fz (Hz) !h (Hz) n wp (dB) W s (dB) 
1 0 0.2 7 0.01 50 
2 0.15 0.35 3 0.1 30 
3 0.3 0.5 4 0.01 40 
4 0.45 0.65 4 0.01 40 
5 0.6 0.8 4 0.01 50 
6 0.75 0.95 4 0.01 50 
7 0.9 1.1 4 0.01 50 
8 1.05 1.25 4 0.01 50 
9 1.2 1.4 4 0.01 50 
10 1.35 1.55 4 0.01 50 
11 1.5 1.7 4 0.01 50 
12 1.65 1.85 4 0.01 50 
13 1.8 2.0 4 0.01 50 

1 fi denotes the filters' low cut off frequency; fh denotes the 
filters' high cut off frequency; n denotes the filter order; wp 

denotes the maximum pass-band ripple level; W s denotes the 
minimum stop-band ripple attenuation level. 

window N = 2L + 1, then 

1 n+L 

pib[n, N] = N L abJi[k], for i = 1,2, ... 13 
k=n-L 

(4.1) 

Where abjdn] represents the i th filtered abdominal signal from the filter bank (refer to Fig. 4-2). 

The ribcage power, piC [n, N] is similarly defined. 

4.2.4 Segmentation Test Statistic 

It is assumed that infant quiet breathing is between [0.4, 2] Hz and that artifacts are at lower 

frequencies. Let I and J denote the index sets of the UR bandpass filters covering the quiet 

breathing and artifact frequency ranges, respectively; that is I = {3, 4, ... , 13} and J = {1,2}. 

Then, we can define the test statistic for the abdomen, T ab as 

(4.2) 

where we use the convention 8 = 1. The test statistic for the ribcage, TTC can be similarly defined. 
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The test statistic T ab can then be used, together with a Neyman-Pearson threshold 'Y [78], for 

deciding 

(4.3) 

This decision rule states that the hypothesis H(f is chosen if Tab :::; 'Y and the hypothesis H''{' is 

chosen if T ab > 'Y. Where the hypotheses are: 

H(f: Artifact Absent 

vs. ( 4.4) 

Hl: Artifact Present 

4.2.6 Selector 

The select or in Fig. 4-2 yields an estimate of the breathing frequency to within 0.2 Hz, Îmax: 

Îmax[n] = 8[n] min{ argmax pfb[nJ}. 
zEI 

(4.5) 

Equation (4.5) states that Îmax[n] = 0 if there is artifact present; otherwise, Îmax[n] is the index of 

a filter whose average power is maximum among the relevant filters (I = 3-13). The operation min 

ensures that Îmax[n] is a singleton if multiple filters have similar average power. 

In other words, when we decide artifact absent, the output Îmax of Fig. 4-2 is an integer value 

representing a filter number of Table 4-1. Thus, the Îmax value is representative of the respiratory 

frequency in the band [fi, fh] Hz, where fi and fh are the low and high cut off frequencies of filter 

number Îmax. 

4.3 Simulated Data 

Simulated data was considered first since the correct result is known and can be used to test 

the new method directly. Simulated data was used to verify that the frequency estimation and data 

segmentation methods were valid, given the underlying assumptions of Section 4.2 are correct. 
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4.3.1 Simulated Data for the Frequency Estimation Analysis 

Piecewise-linear frequency modulated signaIs where used to simulate normal breathing RIP 

signaIs. Simulated ribcage (Sl(t)), and abdominal (S2(t)) signaIs, were used to test the frequency 

estimates obtained with the method. These signaIs were defined as, 

Al cos(21fir(t)t) + e-0.02t 

A 2 cos(27ra(t)t + 4>0) + e-0.
02t 

where, 

Al = 1, A 2 = 2,4>0 E [0,7r] 

0.1, if t ::; 8s 

0.7, if 8s < t ::; 14s 

1.75, if 14s < t ::; 20s 

1.15, if 20s < t ::; 26s 

0.3, if 26s < t ::; 32s 

0.85, if 32s < t ::; 38s 

a(t) = 1.0, if 38s < t ::; 44s 

0.55, if 44s < t ::; 50s 

1.3, if 50s < t ::; 56s 

1.45, if 56s < t ::; 62s 

1.6, if 62s < t ::; 68s 

0.4, if 68s < t ::; 76s 

1.9, if 76s < t ::; 80s 

(4.6a) 

(4.6b) 

(4.6c) 

(4.6d) 

Note that 4>0 was set to zero for the simulated analysis and that e-0.02t was used to model decaying 

trends observed in real RIP data. 
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An accurate representation of real RIP signaIs must account for electronic and sensor noise as 

well as movement artifact. These noise processes are nondeterministic and must be modeled with 

stochastic processes. It was assumed that these noise processes were additive and that electronic or 

sensor noise can be modeled as additive Gaussian white processes. The noise pro cesses are similar 

to ones used in [5]. To first demonstrate the effectiveness of the method in estimating breathing 

frequencies in quiet breathing, movement artifacts were omitted (quiet breathing signaIs are defined 

to be movement artifact free). Thus, the virtual breathing signaIs were predominantly corrupted 

by white Gaussian additive noise denoted nI(t), n2(t), respectively. 

AlI random numbers were generated using the pseudonormally distributed random number 

generator in Matlab 7.0 (Mathworks Inc., Natick, MA). The state of the random generator was set 

to 5 and 2 for nI (t), n2(t), respectively. 

The simulated thoracic and abdominal RIP signaIs with noise were defined as follows. 

where Pn, PI2, P2I, P22 E [-1,1]. Fig. 4-4 shows a plot of the signal Y2· 

4.3.2 Simulated Data for the Segmentation Analysis 

(4.7) 

(4.8) 

Simulated data was also used to test the method for cardiorespiratory data segmentation. 

Here the simulated process used to model RIP signaIs for segmentation purposes had to include 

a process with prominent low frequency components representing movement corruption. This was 

modeled with a stochastic diffusion process, called mean reverting Itô processes (e.q.,see [79]) [5]. 

In brief, mean reverting Itô processes can be generated by the stochastic differential equation: 

dii(t) = J1.(ii, t)dt + adW(t) where, W(t) is a standard Wiener process, and J1.(ii, t) = ë(ji, - ii(t)) for 

real constant ji, and positive constant ë [5]. For more detail, the main concepts and derivations of 

the simulated breathing and additive noise signaIs used for the segmentation analysis can be found 

in [5, pp.617-618]. 
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4.4.1 Representative Results for the Frequency Estimation Analysis 

To assess the effectiveness of estimating breathing frequencies, the method was applied to 

simulated ribcage and abdominal RIP signaIs (section 4.3.1). Recall that the Îmax values obtained 

for artifact free segments indicate the breathing frequency estimates obtained (refer to section 4.2.6). 

Fig.4-4 shows that our method correctly estimates the breathing frequency in the simulated 

data. For clarity, Fig.4-4 only shows the results for the simulated abdominal signal, the results for 

the simulated ribcage signal were similar. In fact, the simulated abdominal signal is labeled with 

the correct Îmax values; the expected Îmax values for each segment in order is {1, 5, 12, 8, 2, 6, 

7,4, 9 , 10, 11, 3, 13} (refer to equation (4.6) and table 4-1). The delays in the change of sorne 

Îmax values can be attributed to the use of non-ideal filters which are not exact shifted replicas of 

one another; causing sorne filters to have slightly higher average power. These delays « 2.5 s) are 

acceptable since real RlP data is assumed to have constant breathing frequencies for long periods 

in time, making the slight delays negligible in comparison. 

4.4.2 Representative Results for the Segmentation Analysis 

To assess the effectiveness of the segmentation method, a simulated RlP signal was generated. 

This signal was composed of four segments: the first and third segments were predominantly com-

posed of normal breathing (simulated breathing + slight movement) while, the second and fourth 

segments were predominantly composed of movement (simulated movement + slight breathing) as 

per section 4.3.2. AlI segments also had additive electronic noise. Note that the first and third 

segments were simulated with a 17.72 dB signal-to-noise ratio (one forth of the noise pro cess was 

movement and the rest was electronic noise); while, the second and fourth segments were simulated 

with a -26.29 dB signal-to-noise ratio (one seventh of the noise process was electronic noise and the 

rest was movement). 

Fig. 4-5 shows that our method correctly distinguished the artifact corrupted and normal 

breathing segments. The normal breathing segments were labeled with Îmax values equal to 5 and 

4, which are the correct values sin ce they correspond to breathing frequencies in the ranges [0.6, 

0.8] Hz and [0.45, 0.65] Hz (the simulated frequencies were 0.7 Hz and 0.5 Hz respectively). 
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Figure 4-4: Analysis of a 80s simulated segment of infant abdominal RIP signal modeled as a 
piece-wise linear frequency modulated sinusoidal signal derived from equation (4.6). The signal is 
corrupted by additive noise with a signal-to-noise ratio = 22.5 dB. The dotted verticallines indicate 
the transition points where frequencies changed. As expected, the frequency indices obtained were 
accurate (the expected fmax values for each segment in order is: {l, 5, 12, 8, 2, 6, 7, 4, 9, 10, 11, 3, 
l3} ). 
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(a) Simulated RIP signal 

(b) High Pass Filtered Simulated Signal 

(c)Frequency Estimate 

J :\ : : i : :·:1 : : ,: : : 1 
(d) TY 

( e) Artifact Detectioll 

5 10 15 20 25 30 35 40 45 50 55 60 
Time (s) 

Figure 4-5: Segmentation analysis of a 60s simulated segment of infant RIP signal. Note that for 
the simulated RIP signal a 0.7 Hz noise corrupted signal was used for the first 15s and a 0.5 Hz noise 
corrupted signal was used for time 30s to 45s. Time 15s to 30s and the last 15s of the simulated 
signal was predominantly composed of simulated movement artifact. (a) is the original signal, (b) 
is the high pass filtered signal, (c) is a plot of the frequency estimate Îmax, (d) is a plot of the 
movement artifact detector test statistic TY (dashed line: "1 = 0), and (e) is the decision indicating 
if movement artifact is present 8(TY). As expected, the method detects the artifact corrupted 
segments (8(TY) = 1). 
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To demonstrate the method on infant data, segments of cardiorespiratory data acquired at 

the MCH were considered. This data was previously reported by Brown et al. [7] as part of an­

other study with appropriate ethics approval. The continuous-time ribcage and abdominal signaIs 

(NIMS™, Respitrace Plus, North Bay Village, Florida), were amplified and filtered with 15Hz 8-

pole Bessel filters (Frequency Deviees, Haverhill, MA), and sampled at 50 Hz with a 12-bit analog-

to-digital converter (Data Translation, Marlborough, MA). This data was stored on a computer 

using LABDAT™ data acquisition software (RHT-InfoDat, Montreal). No attempt was made to 

calibrate the signaIs in absolute terms. 

4.5.1 Breathing Frequency Estimate Examples 

The frequency estimation method was evaluated with real data segments from infant data 

acquired at the MCH by comparing the breathing frequencies obtained with the automated method 

to those obtained with a manual analysis (peak detection or cycles/second). Fig. 4-6 shows that the 

method correctly determined the breathing frequency of a quiet breathing segment within a narrow 

band (0.2 Hz). The breathing frequency of the segment was approximately 0.6 Hz (6 breaths in 

lOs), therefore the imax value of 4 is correct sinee it indicates a breathing frequency between 0.45 

and 0.65 Hz. 

Fig. 4-7 shows that the method also correctly estimated breathing frequencies in a quiet breath-

ing segment with a decaying trend. Here peak detection provided a visual estimate of breathing 

frequency of 0.8 Hz and 1 Hz respectively, for the first and second half of Fig. 4-7. The automated 

method estimated the corresponding breathing frequencies of imax = 6 and 7 which correspond to 

[0.75,0.95] Hz and [0.9, 1.1] Hz. 
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Figure 4-6: Analysis of a lOs segment of ribcage (rc[n]) and abdominal (ab[n]) breathing excursions 
measured by inductance plethysmography of an infant (47 weeks old weighing 4.8 kg, study identi­
fication: ARC). Note that for both the RIP signaIs a quasi-sinusoidal breathing signal is observed. 
As expected, the imax values ((c) and (d)) obtained with the method correctly estimated frequency, 
visually estimated at 0.6 Hz (Îmax = 4 =} [0.45, 0.65]H z). Note that this figure was generated with 
a filtering window of 251 samples and "( = o. 
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Figure 4-7: Analysis of a lOs segment of ribcage (rc[n]) and abdominal (ab[n]) breathing excur­
sions measured by inductance plethysmography of an infant (42 weeks old weighing 3.9 kg, study 
identification: SHIF). Note that for both the RIP signaIs a quasi-sinusoidal breathing signal with 
a trend is observed. As expected, the imax values ((c) and (d)) obtained with the method correctly 
estirnated frequency, visually estimated as 0.8 Hz and 1 Hz for the early and later segments respec­
tively (Îmax = 6 =} [0.75,O.95]Hz, imax = 7 =} [0.9,1.1]Hz). Note that this figure was generated 
with a filtering window of 251 samples and "( = o. 
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The segmentation obtained with the method was demonstrated using two signal segments 

representative of normal breathing and artifact corruption in post-operative infants. Fig. 4-8 shows 

a segment of infant data consisting of normal breathing followed by artifact corruption. Fig. 4-9 

shows a segment of infant data but consisting of artifact corruption followed by quasi-sinusoidal 

breathing with a time-varying trend. In both examples, the test statistic T ab was close to one for 

the breathing segments and close to negative one for the movement corrupted segments. Thus, 

c5(Tab) was equal to 1 for the artifact corrupted segments in both figures, while for the breathing 

segments c5(Tab) was O. It is evident that the choice of 'Y is important for correct segmentation; 

'Y = 0 was used in this ex ample sinee it is the mid-point of test statistic Tab. Thus, any T ab value 

above zero indicates that the majority of the signal power is in the expected breathing band, while 

any T ab value below zero indicates that the majority of the signal power power is in the expected 

movement artifact band. Note that Fig. 4-8 and Fig. 4-9 were generated using a window length 

(N) equal to 251 samples or 5 seconds. 

4.6 Conclusion 

The segments included in figures 4-6 to 4-9 are intended to demonstrate the results obtained 

with the method on real data segments. The methods' effectiveness on infant data was also consid-

ered relative to visual scoring obtained with the ApneaScore too!. The conference paper in appendix 

C presents the results obtained for 8 infant data records relative to visual scoring. These results are 

not present in this chapter sinee Chapter 5 presents similar results for the entire infant database 

acquired at the MCR (21 infant data records). The next chapter also presents the automated off-

line methods developed for pause and asynchrony detection. A comparison between aIl automated 

methods and visual scoring is included. 
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Figure 4-8: Segmentation analysis of a 31s segment of abdominal (ab l ln]) breathing excursions 
measured by inductance plethysmography of an infant (42 weeks old weighing 3.9 kg). Note that a 
quasi-sinusoidal breathing signal is observed for the first 20s followed by Ils of artifact corruption. 
(a) is the original RIP signal, (b) is the high pass filtered signal, (c) is a plot of of the frequency 
estimate Îmax, (d) is a plot of the test statistic used to detect movement artifact T ab (dashed line: 
Î = 0), and (e) is the movement artifact decision o(Tab) (set to 1 if movement artifact is detected). 
Note that for the interval 577.5s to 582s the signal is composed of both, low frequency artifact and 
quiet breathing; since the power of the low frequency component is higher (Tab < 0), the method 
labeled this segment as having artifact corruption. 
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Figure 4-9: Segmentation analysis of a 20s segment of abdominal (abJ[n]) breathing excursions 
measured by inductance plethysmography of an infant (42 weeks old weighing 3.9 kg). Note that 
artifact corruption is observed for the first 7.5s followed by 12.5s a quasi-sinusoidal breathing signal 
with a trend. (a) is the original RIP signal, (b) is the high pass filtered signal, (c) is a plot of the 
frequency estimate Jmax, (d) is a plot of the test statistic used to detect movement artifact Tab 

(dashed line: 'Y = 0), and (e) is the movement artifact decision c5(Tab ) (set to 1 ifmovement artifact 
is detected). 
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This chapter presents the overaIl automated off-li ne event detection process used to identify 

pause, asynchrony and movement artifact segments in RIP data. The effectiveness of the meth-

ods relative to Dr. K. A. Brown's visual scoring for aIl infant data acquired at the MCH is also 

presented. This chapter is in the format of a journal paper submitted to IEEE Transactions on 

Biomedical Engineering. 

Automated Off-Line Cardiorespiratory Event Detection 

Ahmed A. Aoude, Alexis 1. Motto, Henrietta L. Galiana, Karen A. Brown, and Robert E. Kearney 

To be submitted to: IEEE Transactions on Biomedical Engineering 
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In [5] and [9] we presented methods for automated phase estimation and movement artifact de­

tection in respiratory inductance plethysmography (RIP) signaIs. In the present paper, we combine 

and improve these methods to develop a method for the automated off-line detection of asynchrony, 

pauses and movement artifacts. Examples of applications include home and sleep laboratory studies 

of cardiorespiratory data. The new procedure was successfully applied to cardiorespiratory signaIs 

acquired post-operatively from infants in the recovery room. A comparison between event detection 

obtained with the automated method and visual scoring is presented. The method provides the 

following advantages: 1) fully automated; 2) less time consuming than visual scoring; 3) repeatable 

and standardized analysis; and 4) applicable to uncalibrated RIP signaIs. It is also amenable to 

on-line detection once statistics on large databases become available. 

5.2 Introduction 

Respiratory inductive plethysmography (RIP) is the most widely accepted method for qualita­

tive and quantitative respiratory measurements [50,80]. In fact, RIP is a common cardiorespiratory 

monitor used in sleep laboratories and in the home [81]. These monitors are noninvasive, robust, 

weIl tolerated by patients and recommended for diagnostic testing. Therefore, we suggest that 

cardiorespiratory monitors can be used to study respiration in infants at risk of postoperative ap­

nea (POA). Infants are at increased risk of developing respiratory problems such as POA after 

receiving anesthesia and so require monitoring after surgery [82]. Consequently, we have applied 

cardiorespiratory monitoring for the study of POA. 

Visual scoring of cardiorespiratory data is commonly used to identify cardiorespiratory events 

because, to date, no reliable automated method has been presented [14-16]. Episodes of central 

and obstructive apnea are identified as part of this visual scoring. Although visual scoring is the 

standard for determining respiratory disorders, the likelihood of human error in visual co ding is 

high and the results may be subjective [61]. Thus, the development of a reliable automated method 

to detect respiratory events would allow for a more systematic and less time consuming pro cess 

when compared to visual scoring. Automated methods for the analysis of cardiorespiratory data 

exist. Sorne of these methods include: hidden Markov models [65], artificial neural networks [44,66], 
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recursive least squares [7], fuzzy logic systems [67] , and others. Although these methods perform 

weIl on simulated data, they encounter difficulties when applied to clinical data sets where movement 

artifact is prominent. 

The need for the automated segmentation of cardiorespiratory signaIs has been weIl recognized. 

Weese-Mayer et al. [75] reported that the performance of automated cardiorespiratory monitoring 

procedures could be significantly improved if signal segments corrupted with artifacts could be 

systematically identified. Such automated signal segmentation procedures would also be useful 

in the analysis of long records of off-line respiratory data acquired during sleep. Moreover, since 

RIP signaIs corrupted by movement artifact can not be used to identify apnea events and, since a 

large number of apnea misclassification is due to movement artifact [75,76], the hypothesis "apnea 

present" was rejected during detected movement in RIP data; thereby improving the performance 

of automated apnea detectors. 

A comprehensive automated method must be comparable to visual scoring in detecting obstruc-

tive and central apnea events as weIl as movement artifacts which occur during sleep in infants. 

Obstructive sleep apnea (OSA) is characterized by reduced or absent airflow with some degree of 

asynchrony (or paradoxical motion) between the thorax and abdomen; central sleep apnea (CSA) 

is characterized by an extended period with no thoracic or abdominal respiratory effort. Our ap­

proach distinguishes between central and obstructive events by analyzing RIP signaIs for pauses 

and asynchrony. 

We previously presented methods for phase estimation in [5] and movement artifact detection 

in [6]. The segmentation method was modified and improved for off-li ne use in [9]. In the present 

paper, we propose a comprehensive off-line method to detect pauses, estimate the phase between the 

RIP signaIs, and detect movement artifact corrupted segments. The combination of these methods 

can also be used to determine central and obstructive apnea events. 

The remaining sections are organized as follows. Section 5.3 describes the methods developed 

for automated detection of pauses, movement artifact corruption and phase estimation. Section 5.4 

gives sorne quantitative results based on the application of the new methods to infant respiration 

signaIs. Section 5.5 provides sorne concluding remarks. 
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5.3 Methods 

Fig. 5-1 shows a block diagram of the proposed method, with it's main components: pause, 

asynchrony and movement artifact detection. The sections below provide more details. 

5.3.1 Movement Artifact Detection and Breathing Frequency Estimation 

Movement Artifact Detection 

The off-line method used to detect data segments corrupted by movement artifact is described 

in [9). In brief, the method uses a bank of infinite impulse response (UR) filters, a power function, 

a test statistic, and a comparator to decide if the artifact is present or not. Table 0-1 presents the 

UR filters used. 

It was determined that infant quiet breathing is between [0.4, 2.0] Hz while movement artifacts 

are at lower frequencies [5]. Thus, we defined the test statistic, Tab as 

(5.1) 

where I and :J denote the index sets of the UR bandpass filters covering the quiet breathing and 

artifact frequency ranges, respectively; that is I = {3, 4, ... , 13} and :J = {1,2}. p,!:b, the average 

power over a window N = 2L + 1 is defined as, 

n+L 

p,!:b[n, N) =~ L ab}i[kj, for i = 1,2, ... 13 
k=n-L 

(5.2) 

Where abli represents the ith filtered abdominal signal from the filter bank; that is abli is the 

abdominal RIP signal filtered by filter number i of Table 0-1. Note that TTC is similarly defined for 

the ribcage signal. 

The test statistic Tab is then used, together with the threshold "tab, to decide 

{ 

1, if Tab ::; "tab 

8(Tab ) = 

0, if T ab > "tab 

49 

(5.3) 



CHAPTER 5 

ab,!n) 

re[n] 

Filter Bank 

re,ln] 

1 
1 

• • 

Automated Off-Line Cardiorespiratory 
Event Detection and Validation 

r------r------------~j_ 

ab!u!") • Muffiplexer Phase Estimation 

abln] 

reIn] 

re "In] 

• 
rcmln) : 

Mutiplexer 

& 
Asynchrony Detection 

o (~J) 

1 ______ -----------------------------------

Movement Artifact 
Detection 

ô(T") 

o (T) 

--------------------------------------------------------------------~ i------------------------------------------------------------
1 
1 

: 
:ab,!n) 
1 
1 

: Pin] 

: re,ln] 
1 
1 

~-------------------------------_ ..... _ .... ~~~~~~~~~~ ..... . 

Figure 5-1: Procedure for the automated detection of asynchrony, pauses and movement artifact 
in RIP data. The outputs 8(4)1), 8(T) and P[n] are the decisions used to automatically detect 
asynchrony, movement artifact and pauses respectively. In addition Îmax yields an estimate of 
the breathing frequency up to a narrow band. Note that the procedure was implemented using 
the Signal Processing Toolbox of Matlab [8] (refer to [9] for more detail on the movement artifact 
components) . 
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Table 5-1: Design specification of IIR filters1 

Filter number (i) fI (Hz) th (Hz) n wp (dB) W s (dB) 
1 0.00 0.20 7 0.01 50 
2 0.15 0.35 3 0.10 30 
3 0.30 0.50 4 0.01 40 
4 0.45 0.65 4 0.01 40 
5 0.60 0.80 4 0.01 50 
6 0.75 0.95 4 0.01 50 
7 0.90 1.10 4 0.01 50 
8 1.05 1.25 4 0.01 50 
9 1.20 1.40 4 0.01 50 
10 1.35 1.55 4 0.01 50 
11 1.50 1.70 4 0.01 50 
12 1.65 1.85 4 0.01 50 
13 1.80 2.00 4 0.01 50 

1 fI denotes the filters' low cut off frequency; th denotes the 
filters' high cut off frequency; n denotes the filter order; wp 

denotes the maximum pass-band ripple level; W s denotes the 
minimum stop-band ripple attenuation level. 

The comparator in equation (5.3) selects the hypothesis Hi if T ab ::::; "f or the hypothesis Ho if 

Tab > "f. Where the hypotheses are: 

Ho: Artifact Absent 

vs. (5.4) 

Hi: Artifact Present 

Thus, the test statistic and comparator of equation (5.3) detect movement artifact if more than 

half of the signal power is at lower frequencies, or detect quiet breathing if more than half of the 

signal power is in the quiet breathing frequency range. 

Breathing Frequency Estimation 

A breathing frequency estimate, Jmax, is obtained as a by-product of the method. This estimate 

is obtained with the selector in Fig. 5-1 which estimates the breathing rate up to a narrow band 

(0.2 Hz) as, 

(5.5) 
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The output Îmax of Fig. 5-1 is an integer value representing one of the 13 filter numbers of Table 

C-1. Thus, the Îmax value is representative of a breathing frequency estimate in the band [fi, fh] 

Hz, where ft and fh are the low and high cut off frequencies of filter number Îmax of Table C-1. 

Îmax is also used to generate an adaptively filtered version of the RIP signaIs used in the phase 

estimation algorithm of Section 5.3.3. 

5.3.2 Pause Detection 

We developed an automated pause detection algorithm to identify periods without respiratory 

movements in RIP data. In the first step of the pause detection algorithm, the RIP signaIs are 

bandpass filtered ([0.4, 2.0]Hz) using an IIR bandpass filter to increase their signal-to-noise ratio. 

Next, the root mean square (RMS) of signaIs over a window of length NI is computed. The RMS 

value of the abdominal signal is given by: 

1 n+Nt/2 

NI L ab}[k] 
k=n-Nt/2+I 

(5.6) 

where, ab! is the bandpass filtered abdominal signal. Note that E?jc, is similarly defined. 

The test statistic E3b is then used, together with the threshold "ffb, to decide 

(5.7) 

The comparator output (Pab) is 0 when a pause is detected and 1 otherwise. Thus, we choose 'Hf if 

E!t < "ffb and we choose 'Hf; if E3b 2: "ffb. Where hypotheses are: 

'Hf;: Pause absent 

vs. (5.8) 

'Hf: Pause present 
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Figure 5-2: Example segments of an RIP signal obtained from a 47 weeks old infant weighing 4.8 
kg. (a) is the original RIP signal, (b) is the same RIP signal filtered with the filter described in [5], 
and (c) is the adaptively filtered version of the RIP signal obtained with the new method. The 
adaptively filtered version of the signal clearly has the highest signal-to-noise ratio. 

5.3.3 Phase Estimation Algorithm and Asynchrony Detection 

Phase Estimation Algorithm 

A prerequisite for the automated detection of obstructive apnea using RIP is a robust procedure 

for estimating the phase difference between thoracic and abdominal signaIs. This phase estimate 

can be used to determine if asynchrony is present and, in turn, determine if an obstructive event 

is present. Thus, we developed an automated phase estimation algorithm in [5]. This phase esti­

mation method has the advantage of working with uncalibrated RIP measurements and providing 

a quantitative phase estimate (cP) in the 0 to 180 degree range. 

The method presented in [5] is used in this paper with a slight modification. In the first step of 

the algorithm, an adaptively filtered version of the RIP signaIs replaces the band-pass filtered RIP 

signaIs. The adaptively filtered signaIs are used because they have a higher signal-to-noise ratio 

when compared to the band-pass filtered RIP signaIs used in [5] (the adaptively filtered signals were 

filtered with narrower band-pass filters which increased their signal-to-noise ratio, Fig. 5-2 shows 

an example). A description of the adaptive filtered signaIs is given below. 
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In the remaining steps of the algorithm, a binary converter, alogie gate and a low pass filter 

(used to take the average value over a window of size N) are used to generate a phase estimate in 

the ° to 180 degree range (refer to [5] for more detail). 

Asynchrony Detection 

Following [5], an improved phase estimate <pI[n] is obtained by correlating <p[n] with the move-

ment detector output 8(T); this correlation can be written as, 

<pI[n] = <p[n](l - 8(T)) (5.9) 

Equation (5.9) states that any phase estimate is set to zero, and not considered, if movement artifact 

is detected (8(T) = 1). Onee the phase estimate <pI[n] is obtained it is used to determine if the RIP 

signaIs are asynchronous. Henee, <pI[n] and the threshold "{2, are used to decide 

{

l,if <PI> "(2 
8(<p) = 

0, if <PI :::; "{2 

(5.10) 

The comparator of equation (5.10) chooses the hypothesis 'HÏ if <pI[n] > "{2 or the hypothesis 'Hg if 

<pI[n] :::; "{2· Where the hypotheses are: 

'Hg: Asynchrony Absent 

vs. (5.11) 

'HÏ: Asynchrony Present 

Adaptive Filtering 

The multiplexer in Fig. 5~ 1 is used to adaptively filter the RIP signaIs as follows: the n th sam pIe 

of Bab is generated by selecting the nth sample of abfi' where i is chosen according to the Îmax value 

at the nth sample. If the Îmax value is zero at a given sample, indicating artifact presence, then the 

high passed RIP signal ab is used to generate Bab. 

{

ab[n], if Îmax[n] = ° 
Bab[n] = 

abfdn], if Îmax[n] -1- 0, where i = Îmax[n] 
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Thus, at each sample, imax (the breathing frequency estimate) determines which filter output to 

select to generate the signaIs src[n) and sab[n], the adaptively filtered versions of the ribcage and 

abdominal signaIs respectively. Note that to remove offsets and exponential decays observed in real 

infant data, a high pass filter with a eut-off frequency equal to 0.05 Hz was used to generate ab 

(refer to Fig. 5-1). 

5.3.4 Combining the Detectors 

Fig. 5-1 shows the overaIl block diagram including aIl three detectors. The outputs 8(4JI), 8(T), 

and P[nJ are the decisions used to automaticaIly detect asynchrony, movement artifact and pauses 

respectively. 

Note that 8(T) is set to one (i.e. true) if both the ribcage and abdomen signaIs have artifact 

present (achieved by using an AND-gate on the decisions 8(Tab) and 8(Trc )); similarly, the pause 

output P[nJ is true if both the ribcage and abdomen signaIs are deemed to be 'fiat' (achieved by 

using a NOR-gate on the decisions Pab[nJ and Prc[nJ). 

5.4 Method Validation: Application to Infant Data 

5.4.1 Description of Infant Data 

We now consider segments in breathing periods from 19 infants (21 data files) aged 44 ± 

5 weeks (postconceptional age), weighing 4.0 ± 1.5 Kg (refer to Table 5-2). These data were 

previously reported by Brown et al. [7J. The infants had undergone elective hernioraphy with 

general and/or caudal anesthesia. Data were obtained following written informed parental consent 

and appropriate Institutional Ethics Review Board approval. Nineteen data sets were obtained from 

infants immediately after surgery, and two data sets were obtained from 2 infants less than 24 hours 

after surgery. The measured continuous-time ribcage and abdominal signaIs (l\IMS™, Respitrace 

Plus, North Bay Village, Florida), were amplified, low-pass filtered at 15Hz with 8-pole Bessel filters 

(Frequency Deviees, Haverhill, MA), and sampled at 50 Hz with a 12-bit analog-to-digital converter 

(Data Translation, Marlborough, MA). Data were stored on a computer using LABDAT™ data 

acquisition software (RHT-InfoDat, Montreal). No attempt was made to calibrate the signaIs in 

absolute terms. 
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The visual scoring of the 21 infant data sets was considered to determine the methods' effec-

tiveness on clinical data. Note that the asynchrony and movement artifact detectors were tested 

on simulated data in [5] and [9]; the studies showed that the detectors correctly flag artifacts and 

asynchronies. 

The data were visually scored by K. A. Brown (MD). Respiratory events were defined as: 

1. Pauses: Periods with little or no respiratory movement in both the ribcage and abdominal 

signaIs. 

2. Quiet Breathing: Periods with quasi-sinusoidal breathing patterns in both the ribcage and 

abdominal signaIs. 

3. Asynchronous Breathing: Periods with asynchronous movement between the ribcage and 

abdominal signaIs. 

4. Movement Artifact Corruption: Periods with non-sinusoidal like signaIs typical of movement 

corruption. 

5. Obstructive Apnea: Periods with at least one breath of asynchronous breathing followed 

and/or proceeded by a pause. 

Fig. 5-3 shows representative segments of each of these events. The definitions enumerated above 

are general, the events are ultimately defined by the visual scorer in accordance to regular clinical 

practice. 

Visual scoring of the data sets was achieved as follows. Four signaIs were recorded for each 

subject, namely, the ribcage and abdomen signaIs by Respitrace (NIMS™, Respitrace Plus, North 

Bay Village, Florida), blood oxygen saturation and pulse rate signaIs by Nellcor N-200 (Nellcor Inc., 

Hayward, CA). The data were examined using a visual scoring tool that allowed the investigator to 

mark the start and end times of pauses, asynehronous breathing, movement, quiet breathing and 

obstructive apnea segments. The visual seoring tool was developed using Matlab 7.0 (The Math-

works, Ine, Natick, MA) to provide a eonvenient graphieal user interface to faeilitate the marking 

of event type and timing. Event start and end times were seleeted by the seorer by positioning 2 

eursors. Once this selection was eompleted, the data within the selection was highlighted, allowing 
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Figure 5-3: Example segments from the visual scoring of infant data. The examples shown are 
from a 49 weeks old infant (postconceptional age), weighing 5.9 kg. (a) Quiet Breathing segment, 
(b) Asynchronous breathing segment, (c) Pause Segment, (d) Obstructive apnea segment and (e) 
Movement artifact segment. Note that the ribcage (RC) and abdominal (AB) RIP signaIs were 
obtained by Respitrace (NIMS™, Respitrace Plus, North Bay Village, Florida); the blood oxygen 
saturation (Sa02) and pulse rate (Pleth) signaIs were obtained with the Nellcor N-200 (Nellcor Inc., 
Hayward, CA). 
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the scorer to visualize the selection. If satisfied with the selection, the scorer associated the selection 

with a respiratory event which automatically stored the event start and end times with 0.02 second 

precision. The data were scored in 30 second windows (epochs); any visual marking that spanned 

more than one epoch was concatenated into a single event. 

Database Content 

The number of visually scored segments in the database is given in Table 5-3. 

Breathing Frequency Estimation Accuracy 

To determine the effectiveness of the breathing frequency estimate fmax, 429 quiet breathing 

segments were analyzed using ANADAT version 5.2 (RHT-InfoDat, Montreal, 1995) and ABREATH 

(RHT-InfoDat, Montreal, 1994). These segments were obtained from a previous analysis preformed 

at MCH. The analysis was conducted as follows: 429 segments were isolated with ANADAT and 

then inputted as volume signaIs in the ABREATH software, which identified the inspiratory and 

expiratory times of each breath in the segments. This breath identification was visually examined 

by the scorer; if the breath identification was adequate, the average breathing frequency for each 

segment was stored. 

Next, the average breathing frequency obtained using the ABREATH analysis was compared 

to the average breathing frequency estimate (Îmax) obtained with our method for each of the 429 

segments. 90.0% of the segments were in agreement for both methods; that is, for each segment, 

the frequency estimate obtained with the ABREATH analysis was within the frequency range 

fmax for 90.0% of the segments. The remaining 10.0% of the segments were slightly different 

(just out of the frequency range fmax). This demonstrates that the fmax values can be used to 

determine the breathing frequency of infant quiet breathing segments. The new methods permits 

for fully automated, less time consuming, objective, and repeatable analysis when compared to the 

ABREATH method and visual scoring. 

Comparison to Visual Scoring 

Movement Artifact Detection: We now present the probability density functions (pdf) of the 

test statistic used in the segmentation of cardiorespiratory data relative to visual scoring. The 

segmentation test statistic (Tab ) is normalized and denotes the same power ratio for all data; that 
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Figure 5~4: Pdf of the movement artifact detector test statistic (Tab ) for aH 21 data files under the 
hypotheses HO' (movement artifact absent) and Hl (movement artifact present). The T ab values 
were calculated using a window size of N = 251 samples (i.e. 5 seconds at 50 Hz). 

is, T ab is always a value in the range [-1, 1 J representing the amount of signal power in the expected 

movement artifact range relative to the amount of the signal power in the expected breathing 

frequency range. 

Fig. 5~4 shows the pdf of T ab over segments visuaHy identified as quiet breathing and gross 

body movement for aB 21 data files; that is under HO' and 11.1', respectively. We derived the 

hypotheses HO' and 11.1' from the visual scoring done by K. A. Brown. The figure shows that the 

pdf is fairly spread out with little overlap, indicating that the test statistics T ab can be used reliably 

to identify movement artifact in real infant data. 

The performance of the proposed artifact detector, compared to visual scoring, is summarized 

in the receiver operating characteristic (ROC) for the test statistics Tab. The ROC plot is presented 

in Fig. 5~5. 

Note that PF A denotes the probability of false alarm, and PD denotes the probability of detec­

tion. From the pdf of Tab shown in Fig. 5~4, PD and PF A for a given threshold "Y can be found by 

solving, 

(5.13) 
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Figure 5-5: Receiver operating characteristic for the movement artifact detection in aIl 21 infant 
data sets. The circle indicates the probabilities for "( = o. 

Each PD and PF A pair in the ROC plot is obtained for a unique threshold value. Thus, the choice 

of threshold determines the trade off between PD and PF A. 

Asynchronous Breathing Detection: Similar to the movement artifact detector test statistic, 

the test statistic used to detect asynchronous breathing (<p) is normalized and denotes the same 

phase estimate for aIl data; that is, <p is always a value in the range [0, 1] representing the degree 

of asynchrony between the ribcage and abdominal signais. 

Fig. 5-6 shows the pdf of <p over segments visually identified as quiet breathing and asynchrony 

for aIl 21 data files; that is under HS and HÏ, respeetively. 

Note that the pdf of the asynehrony deteetor did not show as mueh separation as obtained for 

the movement artifact detector. This ean be attributed to the fact that the phase estimate obtained 

with the automated method is more precise, less biased and more consistent than a phase estimate 

obtained with the 'eyebalI' approaeh used in visu al seoring. 

The performance of the proposed asynchrony detector, compared to visual seoring, is summa-

rized in the receiver operating characteristic (ROC) for the test statistics <p shown in Fig. 5-7. 
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Figure 5-6: Pdf of the asynchrony detector test statistic (cp) for aH 21 data files under the hypotheses 
Ho (asynchrony absent) and H~ (asynchrony present). The cp values were calculated using a window 
size of N = 251 samples (i.e. 5 seconds at 50 Hz). 
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Figure 5-7: Receiver operating characteristic for asynchrony detection in aH 21 infant data sets. 
The circle indicates the probabilities for 12 = 0.3 (54 degrees). 
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Figure 5-8: Receiver operating characteristic for pause detection for each of the 21 infant data sets. 
The test statistic used was E~b[n, NIl with a window size NI = 51 samples. 

Similar to equation (5.13), the PD and PFA pairs plotted in Fig. 5-7 for a given threshold 'Y2 

can be found by solving, 

PD = 11 dF(qy, Hf), PFA = 11 dF(qy, Ho) 
"12 "12 

(5.14) 

Pause Detection: The test statistic used for pause detection (E~b) is not normalizedj that is, 

the pdf of the RMS energy for each patient differs. Thus, we must consider the ROC plots of each 

data file separately. Fig. 5-8 shows the performance of the pause detector for the 21 data files. The 

ROC curves differ for each file due to the quality of the signaIs in each recording and visu al scoring 

inconsistencies. 

Note that for Fig. 5-8, PD and PF A for a given threshold 'YI can be found by solving 

(5.15) 

where dF(E~b, Hf) and dF(E'3b, Hb) are the pdfs for the test statistic E'3b under the hypotheses Hi 
(pause present) and Hb (pause absent) respectively. 
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Figure 5-9: Pdf of the asynchrony detector test statistic (cp) for aIl 21 data files. The two density 
functions shown are for events visually identified as obstructive apnea (HIa) and events visually 
identified as pauses (Hf). Note that pauses within obstructive apnea events were excluded from 

Hf· 

Distinguishing between Obstructive and Central Apnea Events: The test statistic cp which 

is used to detect asynchronous breathing can also be used to discriminate between central and 

obstructive apnea events. Fig. 5-9 shows the pdf of cp for obstructive apnea and central pause 

events (2054 central pause segments and 355 obstructive apnea segments). Although the figure has 

some overlap, the figure shows that in general, obstructive events have high cp values, while the 

central events have lower cp values; indicating that it is possible to use cp to distinguish between 

obstructive and central apnea events. 

Note that the high values of cp in the pdf of central events cau be attributed to visual scoring 

inconsistencies, as weIl as, trends and decays observed in the RIP data that affected the phase 

estimate obtained. On the same note, the lower cp values for obstructive events can be attributed to 

the visual identification of the start and end of theses events. These events consisted of asynchronous 

breaths foIlowed by or containing pauses; the consideration of pauses in obstructive events lead to 

lower phase value estimates. 
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The ROC plots above show that it is of great importance to select the appropriate threshold for 

each detector. This threshold selection can be time consuming and difficult if no prior knowledge of 

event distributions is known before analysis. Thus, we developed an automated threshold selection 

technique to provide the user with an estimate of the threshold to use for pause, asynchrony and 

movement artifact detection. 

The threshoIds for asynchrony and movement artifact detection can be set to a specifie value for 

aIl infant data since they are normaIized. We are able to obtain a phase estimate using our method, 

thus to detect asynchrony, we automatically set the asynchrony threshoId (-Y2) to 0.3. Using "12 = 0.3 

is equivalent to deciding asynchrony present if a phase estimate of 54 degrees or greater between the 

RIP signaIs is obtained. We choose to use this value from the phase estimate pdf of asynchronous 

and quiet breathing events (Fig. 5-6). A simiIar phase value was used to detect asynchrony in [83]. 

To determine if movement artifact is present, we automatically set the movement artifact 

threshold ("1) to O. This 0 value was chosen since it is equivalent to deciding artifact present if 

most of the signal power is in the expected artifact frequency range; otherwise, if most of the signal 

power is in the expected breathing frequency range we decide artifact absent. In addition, Fig. 5-5 

shows that "1 = 0 provides a good trade off between PD and P F A. 

It is more difficuIt to automatically select a threshoId "Il for pause detection since the test 

statistic used in the pause detector is not normalized. Hence, each file requires a unique threshold. 

We will consider the threshold selection for the abdominal RIP signal (an identical process applies 

for the ribcage signal). To automatically select "Irb, we first found optimal thresholds for each of the 

21 data sets. These optimal thresholds were chosen using the Neyman-Pearson detection criterion 

with ct :::; 0.2 [78], where the criterion is 

(5.16) 

and ct is a bound on the false alarm probability. Equation (5.16) states that we find the threshold 

"Irb that maximizes PD while preserving PF A to less than or equal to ct (in our case we use ct = 0.2 
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or 20%); these values were obtained by finding the threshold that resulted in a FFA = 0.2 on the 

ROC curve for each of the patient files. 

To investigate the possibility of setting 'Yrb using the statistical properties of the test statistic 

E!3b
, a least squares fit between the optimal thresholds and the statistical properties of E!3b was 

performed. The mean (f.L), standard deviation (0-), maximum value (max) and median (me) of E!3b 

for each patient file were used as inputs; the corresponding optimal thresholds were used as desired 

outputs. This least squares fit provided the following equation to automatically set the threshold 

'Yrb for each file, 

'Yfb -0.005 - 0.6902f.L + 0.0l48max 

+0.12840- + 1.1686me (5.17) 

The percent variance account for (%VAF) between the optimal thresholds and the automatically set 

thresholds was found to be 98.62%. Thus, we are able to automaticaIly set 'Yrb for each patient file 

using the statistical properties of E!3b• Table 5-4 presents the optimal thresholds for each patient 

file and the corresponding thresholds obtained using equation (5.17) (second column). 

To test the effectiveness of this automated pause threshold selection on new data, a leave one 

out validation was used. The automated thresholds obtained in the leave one out validation are 

presented in the third column of Table 5-4. Table 5-4 shows that the thresholds obtained for the 

leave one out validation and the thresholds obtained using equation (5.17) were similar. The %VAF 

between the optimal thresholds and the leave one out thresholds was found to be 95.34%. Thus, 

we can reliably say that equation (5.17) can be used to estimate the pause threshold for new data. 

Effectiveness of Automated Threshold Selection 

The automated threshold selection technique presented above was applied to ail 21 data files to 

detect pauses, asynchrony and movement artifact segments. We obtained the following probabilities 

of segment detection (Pb) and false alarm (PFA ) relative to visu al scoring: 

• Artifact detection: Pb = 80% and PFA = 19.7% . 

• Pause detection: Pb = 82.1% and PFA = 5.6% . 

• Asynchrony detection: Pb = 78.8% and PFA = 20.1%. 
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The probabilities given above are the mean values for the entire data set; the probabilities of 

detection and false alarm for each patient file is given in Table 5-5 and Table 5-6. 

The results suggest that it could prove useful to use the three detectors along with the threshold 

selection technique to detect pauses, asynchrony and movement artifact in real infant data. However, 

in certain cases, such as files with very noisy data, human intervention may be required to adjust 

thresholds accordingly. 

Note that the probabilities of segment detection (Pb) and false alarm (PpA) were obtained 

as follows. As a general rule, the probabilities were determined on a segment by segment basis; a 

detection was considered if the method detected a segment at least half as long and encapsulated 

by the visually scored equivalent segment. 

5.5 Concluding Remarks 

The methods for asynchrony, movement and pause detection perform weIl for aIl the infant 

data studied. These methods provided results that were comparable to the visual scoring, with 80% 

agreement between the automated method results and visual scoring. The main advantages of these 

methods are: 1) full automation and simple implementation; 2) less time consuming than visual 

scoring; 3) repeatable and standardized analysis; and 4) applicable to uncalibrated RIP signaIs. 

This last point is of great importance since the Qualitative Diagnostic Calibration method for RIP 

has been shown to be limited by changes in measurement conditions and breathing patterns [60]. 

In summary, we have presented a method to allow for the detection of the lack of breathing 

effort, paradoxical respiratory movement and movement artifact corruption in infant RIP data. The 

method also generates a breathing frequency estimate and is weIl suited for the off-line study of 

long data records such as studies of sleep disordered breathing. 

Furthermore, since there is no consensus on the definition of both OSA and CSA for infants 

[73,74], the presented methods are meant to provide the user with the ability to detect these events 

relative to their preferred definition. Thus, CSA events can be defined as pauses of a given length, 

while OSA events can be defined as periods with some degree of asynchrony between the RIP signaIs 

for a given amount oftime. Future studies will explore the methods' effectiveness in detecting apneas 

of specific definitions and lengths. 
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Table 5-2: Patient Files Used in Database 

Study ID Weight (kg) PCAl (weeks) File Length (hrs) Gender 
ARC 4.8 47 7.48 
SHIF 3.9 42 7.87 
BJUT 5.7 48 10.55 

LACR3 3.6 41 8.08 
LAMP 4.3 45 3.94 
MOSS 5.4 45 5.04 
MUR 5.5 45 4.25 
CLEM 3.5 48 11.90 
DIAB 3.8 45 5.22 
MAX 3.8 44 5.11 
PETR 2.5 42 12.71 
BAL2 4.8 48 6.32 
MICH 5.9 49 3.24 

CALEB 3.2 45 3.76 
GAB 3.0 41 23.20 

GEPL2 4.3 39 11.30 
LAL3 4.3 44 2.98 
LOT2 4.5 46 4.88 
MAR2 2.5 42 2.46 
GAB2 3.0 41 23.20 

MART3 2.5 42 2.46 

1 PCA is the postconceptional age. 

Table 5-3: Database Content 

Event N umber of Segments 
Pauses 2399 

Quiet Breathing 4554 
Asynchronous Breathing 1156 

Movement Artifact Corruption 2760 
Obstructive Apnea 355 

1 The number of segments presented in this table was 
obtained from visu al scoring. 
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Table 5-4: Automated Pause Threshold Selection for the Abdominal 
RIP Signal 

File Optimal 21 File Regression 20 File Regression 
Number Threshold ('l'ïb) Threshold bïb

) 1 Threshold ('l'ïb) 2 

1 0.04 0.0603 0.0621 
2 0.08 0.0613 0.0510 
3 0.14 0.1424 0.1426 
4 0.36 0.3438 0.3216 
5 0.04 0.0432 0.0435 
6 0.19 0.1982 0.1997 
7 0.11 0.1156 0.1156 
8 0.05 0.0472 0.0469 
9 0.08 0.0948 0.2216 
10 0.06 0.0975 0.1217 
11 0.28 0.2962 0.3033 
12 0.25 0.2452 0.2396 
13 0.04 0.0342 0.0333 
14 0.03 0.0240 0.0232 
15 0.04 0.0352 0.0346 
16 0.15 0.1628 0.1652 
17 0.07 0.0797 0.0807 
18 0.23 0.1980 0.1773 
19 0.09 0.0976 0.0982 
20 0.03 0.0263 0.0259 
21 0.10 0.0566 0.0501 

1 Threshold obtained using aH 21 files in the least squares fit 
2 Threshold obtained using the other 20 files in the least squares fit 
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Table 5-5: Automated Pause and Movement Detection Performance for Each Patient 

File Pause Pause Movement Movement 
Number Detection (Pb) False Alarm (P}A) Detection (Pb) False Alarm (P} A) 

1 68.75 7.0 53.0 16.4 
2 70.9 2.6 81.25 20.0 
3 89.6 4.2 92.9 11.2 
4 81.5 3.3 73.1 8.0 
5 82.5 9.6 81.2 14.3 
6 90.0 5.2 89.8 8.3 
7 92.6 4.2 87.2 18.5 
8 55.5 2.2 77.4 29.5 
9 85.7 6.2 75.8 20.8 
10 92.4 33.8 80 21.1 
11 92.2 4.6 81.7 19.8 
12 82.2 5.5 85.3 18.0 
13 65.1 1.7 89.6 3.6 
14 51.4 0.9 84.3 35.2 
15 100.0 0.0 85.7 47.1 
16 96.7 10.4 88.7 23.7 
17 86.8 2.1 88.3 10.9 
18 90.5 4.0 90.0 27.3 
19 83.8 5.9 45.5 6.0 
20 91.4 3.6 89.7 23.5 
21 75.0 1.3 60.0 31.4 
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Table 5-6: Automated Asynchrony Detection Per­
formance for Each Patient 

File Asynchrony Asynchrony 
Number Detection (PD) False Alarm (Pf A) 

1 83.6 36.3 
2 84 38.8 
3 88.4 46.7 
4 61.5 3.4 
5 78.1 21.2 
6 71.7 7.5 
7 73.5 10.1 
9 66.7 31.25 
10 70.3 11.9 
12 83.3 16.9 
13 93.8 46.1 
16 97.7 6.4 
17 100.0 17.4 
18 63.6 10.4 
19 62.3 40.3 
20 84.4 30.5 
21 76.5 34.3 

1 Note that not aIl patients had asynchronous 
breathing episodes. 
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CHAPTER 6 
Summary and Future Work 

The aim of this thesis was t~: 

1. develop automated off-line methods for the detection of pauses, asynchronies and movement 

artifacts in cardiorespiratory data 

2. develop a tool to facilitate precise visual scoring of cardiorespiratory data 

3. validate the off-line methods by comparing them to visual scoring 

4. develop a tool for a fully automated off-line analysis of cardiorespiratory data using the off-line 

algorithms 

These aims were met with the complet ion of this thesis. We presented new automated off-line 

methods that focus on the analysis of the frequency content of RIP signaIs to detect pauses, asyn-

chronies and movement artifacts (aim 1). These methods were integrated into a new tool named 

Offiine developed to permit fully automated and rapid off-line analysis of cardiorespiratory data 

(aim 4). We also developed a new tool named ApneaScore which acquires precise visual scoring 

of cardiorespiratory data; this tool was used by Dr. Brown at the MCH to annotate the infant 

database used (aim 2). The data obtained with ApneaScore were then used to assess the new 

methods effectiveness relative to visual scoring (aim 3). 

Method Effectiveness 

The new off-line methods were applied to infant data acquired postoperatively at the MCH. 

A comparison between the detection obtained with the automated methods and visual scoring 

was presented. This comparison was presented in a point by point evaluation in the ROC curves 

(Chapter 5 and Appendix D). An overlapping segment comparison was also presented and provided 

the probabilities of agreement (PAgr) and disagreement (PDis ) between visu al scoring and automated 

detection presented in Table 6-1. 
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The probabilities presented in Table 6-1 were obtained for the entire MCR infant database. 

Performance varied from file to file as shown in Appendix D. The differences may be attributed 

to the natural differenees in the breathing patterns of eaeh infant, and most importantly, to the 

quality of the reeorded RIP signaIs. 

The results show that there is 80% agreement between the automated method and visual 

seoring. We suggest that this amount of agreement is comparable to that between visual seorers. In 

fact, a eomparison between the visual seoring of PSG reeordings from OSA patients in 16 different 

sleep laboratories [84] determined that moderate inter-seorer agreement existed for the detection 

of arousals during sleep, and relatively low inter-seorer agreement existed for apnea deteetion. 

The average inter-seorer agreement was 71.8%. Danker-Ropfe et al. [85] also showed that overall 

inter-seorer agreement was 76.8%. We believe that earlier studies [86-88] that reported as mueh 

as 87-95% agreement between seorers were impreeise beeause inter-seorer agreement was assessed 

based on seoring of single epoehs. Thus, we conclu de that the amount of agreement between visual 

seoring and the new automated method is comparable to inter-seorer agreement, whieh suggests 

that the new automated method ean be reliably used in the clinieal or home environment. 

The results also showed that there was approximately 20% disagreement between visual seoring 

and automated deteetion of movement artifaets and asynehronies. The disagreement rate was lower 

(5.6%) for pause detection. The disagreement between visu al seoring and automated deteetion ean 

be explained by: 

• Errors in visual seoring; for example, an asynehrony segment with a phase differenee only 

slightly above the asynehrony threshold ean be missed by the seorer but deteeted by the 

method. 

• Errors in the automated seoring; for example, quiet breathing signaIs with very low energy 

ean be detected as pauses by the method. 

• Visual seoring ineonsisteneies; for example, segments with the same phase differenee ean be 

labeled differently by the seorer. 

Irrespeetive of the cause, most of the disagreement between the method and visual seoring oeeurred 

in segments that were not signifieant respiratory events. Perhaps a topie for future work, would 
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Table 6-1: Performance of On-line and Off-line Detectors Relative to Visu al 
Scoring 

Probability of Probabilityof 
Agreement (PAgr) Disagreement (PDis) 

On-Line Artifact Detector 89.4% 45.3% 
Off-Line Artifact Detector 80.0% 19.7% 
On-Line Pause Detector 80.3% 5.7% 
Off-Line Pause Detector 82.1% 5.6% 

On-Line Asynchrony Detector 81.8% 35.5% 
Off-Line Asynchrony Detector 78.8% 20.1% 

be to evaluate the method relative to significant respira tory events alone (long pauses, significant 

asynchronies, etc.). This should lead to higher agreement and lower disagreement between visual 

scoring and automated detection. 

Comparison to On-Li ne Methods Developed at McGill 

A comparison between the off-line methods presented in this thesis and the on-line methods 

previously developed at McGill were also conducted. In summary, the performance of the off-

line asynchrony and pause detectors were similar to their on-line equivalents; the on-Hne pause 

detector had slightly lower detection rates while, the on-line asynchrony detector had slightly higher 

false alarm rates. On the other hand, the new off-line artifact detector provided slightly lower 

detection performance but significantly reduced the rate of false alarms in comparison to its on-line 

equivalent. The probabilities of agreement (PAgr) and disagreement (PDis) between visual scoring 

and automated on-line detection are presented in Table 6-1. The new off-line methods provide 

better trade-off between detection and false alarms. 

Comparison to Other Methods 

A literature review of home diagnosis of sleep apnea conducted by the American Academy of 

Sleep Medicine, the American College of Chest Physicians, and the American Thoracic Society was 

presented in [89]. The review reported a total of 49 studies, 16 of which used 7 to 4 channels of 

PSG recordings (including airflow measurements), and 33 of which used 4 or less signaIs without 

airflow measurement. These studies were reported to have sensitivities that ranged from 31-100% 

and specificities that ranged from 18-100%. Out of aIl methods, only one used RIP as a secondary 
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signal and had a sensitivity of 80%. This is similar to the detection agreement between our method 

and visu al scoring which uses the RIP signaIs alone. This demonstrates that our method obtains 

results comparable to ones obtained with more complex devices. 

Another method using RIP was presented in [44]. The method was most comparable to ours 

because it used RIP signaIs from infants to detect obstructive apnea. Results showed that 79.3% of 

obstructive apnea events were detected but only 10.9% of the detected events were true apneas [44]. 

Our method is advantageous since it generates similar detection without the high rate of false 

alarms. 

Furthermore, It is important to note that other methods are often used commercially without 

adequate validation or publication; In [90], only ni ne out of more than thirty monitoring systems 

used to detect apnea were found to have published studies in peer-reviewed journals. In addition, 

a comparison to other methods is not always straight forward because other methods often use 

a different number of signaIs and respiratory sensors, and are often validated with adult data. 

However, we believe that our method is advantageous over others because: it is simple to implement, 

it is comfortable for the patient (works with RIP signaIs alone; requires less connection to the 

patient), it was meticulously vaIidated, and it provides comparable results to those presented in the 

literature. 

Off-Line Method Advantages 

We believe that we have presented a novel approach that has been thoroughly vaIidated and 

shown to be a plausible alternative to visu al scoring. The method has the following advantages: 

• It automatically detects pauses, asynchronies and movement artifacts 

• It uses uncalibrated RIP signaIs 

• It requires less time than visual scoring 

• It can distinguish between obstructive and central apnea 

• It generates a breathing frequency estimate 

• It provides standardized and repeatable analysis 
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The off-line algorithms presented in this thesis were developed for use with infant cardiorespi­

ratory data. These algorithms can also be used for the analysis of cardiorespiratory data acquired 

from children. For use with children, the methods must be modified since children, and infants 

breathe at different rates; i.e. their quiet breathing frequency ranges differ. This would only require 

adjusting the algorithm filters and bandwidths to operate around the average expected breathing 

frequency of children. Conceptually the method remains unchanged. The application of the algo-

rithms on adult data may be more complex since adults breath at much slower rates th an infants. 

Thus, further studies are required to determine if the algorithms can be used on data obtained from 

adults. 

The visual scoring of more than one scorer should be used to validate the method. U sing 

segments commonly scored by more than one visual scorer will help distinguish between correct 

and erroneous scoring, which will allow for a better assessment of the method performance. 

The integration of the automated off-line methods into the off-line option of the on-line portable 

monitor developed in [72] should be completed. A comparison between visual scoring and the 

automated methods on data acquired with the monitor should be performed. It is likely that the 

automated monitor will acquire data with fewer trends and decays (better AC-coupling than MCH 

monitor) w hich will improve results. 

Furthermore, the analysis of the finger plethysmographic heart rate and the %8a02 signaIs 

should be included to determine if they can be used to improve event detection. A 5% drop in 

%8a02 is often used to detect apnea events in the Iiterature. Although it is a delayed expression, it 

cou Id be used as an additional factor in confirming potentiaI apnea episodes. In addition, the finger 

plethysmographic heart rate signaI seems to have a corrupted pattern during movement which can 

be used to confirm movement artifact segments. 

There still exists no consensus on the definition of apnea events in chiIdren and infants. Reliable 

automated cardiorespiratory event detectors would be ideal to standardize cardiorespiratory event 

detection in children and infants. These methods can help reduce the diagnosis time for patients 

and allow for a better understanding of the pathophysiology of apnea. 
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Appendix A: ApneaScore GUI User Manual 

Motivation 

ApneaScore User Manual 

Ahmed Aoude 

Department of Biomedical Engineering 

Mc Gill University 

ApneaScore is a graphical user interface (GUI) developed to facilitate precise visu al scoring 

of cardiovascular data. The program permits the visual scoring of cardiorespiratory data by a 

trained technician. It was developed to acquire the data needed to validate and assess the accuracy 

of automated algorithms developed by Motto et al. [5,6] for apnea detection. The lack of precise 

visual coding of cardiorespiratory data motivated the development of this tool for storage of visually 

scored data. This tool is used omine and helps generate accurate event statistics of clinically relevant 

events. The application was developed to allow for easy and accurate scoring of cardiorespiratory 

data. The application is user friendly with emphasis on the visual identification of events. Once 

analyzed, the visually scored data is stored in a MATLAB file (*.mat format), a format chosen for 

future use in MATLAB functions. The user also has the option of storing the data in Microsoft 

office excel format (*.xls format). 

Installation 

ApneaScore requires a computer with a basic MATLAB 7.0 R14 suit installation. To use 

ApneaScore the following steps have to be completed before its first use. 

The user must make sure that aIl the files required for ApneaScore are installed on the computer 

that will be using the GUI. These files should be saved in a known location under a foIder named 

'GULApneaScore' . 

The required files are: 

1. ApneaScore.m 

2. CardiorespData.m 

3. CardiorespData.fig 
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4. DataSetup.m 

5. DataSetup.fig 

6. fisttime.m 

7. fisttime.fig 

8. lastEpoch.m 

9. lastEpoch.fig 

10. Scorerlnitials.m 

Il. ScorerInitials.fig 

12. Start.m 

13. Start.fig 

14. ExcelSave.m 

15. readlabdat.m 

16. SortScored.m 

Once these files have been saved on the local machine, it is important to add the 'GULApneaScore' 

folder to the MATLAB path. This is done by opening MATLAB and choosing: File->Set Path. 

Once selected the window in Fig A-l will appear. 

Select Add Folder, then browse to the folder 'GULApneaScore' and click OK. Once the OK 

but ton is clicked, the path should be added to the MATLAB search path list in Fig A-l. 

For example, if you had saved the ApneaScore files under : 'C: GULApneaScore' this path 

would be present in the list as shown in Fig A-2. 

Once the path is in the list, select Save. 

After completing these steps you are ready to launch the ApneaScore application. 

How to Use ApneaScore 

To st art the application type ApneaScore in the MATLAB command window and the appli­

cation willioad automatically. A window will open, as is shown in Fig A-3 

Click Start, after which another window will open. Browse to the file containing the Labdat 

data. In that file, select the Labdat file to open (* .dat format) and click Open. This will load the 

cardiorespiratory data of that file. An example is shown in the Fig A-4. 
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If it is the first time you open the file the window in Fig A-5 will appear. Click OK to continue. 

If it is not your first time opening the file, the window shown in Fig A-6 will appear. This is 

just a reminder of the last Epoch the user saved. 

Click OK to continue. 

Next, a window will open asking the user at which Epoch (30s segment of data) to start the 

display of the data. This allows users to continue from a previous save point or start from the 

beginning of the file. This window is depicted in Fig A-7. 

Enter an Epoch integer in the text field to st art the reviewing. An error message will appear 

if the user tries to enter an incorrect value in the Epoch field. 

It is important to note that after selecting the starting epoch, the scored information for that 

epoch will be deleted. Renee re-scoring the first epoch is always neeessary. This does not affect any 

other epochs. 

Click Done to continue and start visual coding. 

Next, the main window for scoring appears. This window displays the cardiorespiratory data, 

allows for the selection of the start and end time of the events, allows for event classification and 

allows for scrolling through the data in 30s segments. 

To scroll through the data the Next and Previous buttons are used (shown in a red box in 

Fig A-8). 

Next scrolls to the next 30s of data and, Previous scrolls to the previous 30s of data. An 

error message will appear if the user tries to scroll beyond the file length. 

It is important to note that the message shown in Fig A-9 will appear if an epoch has already 

been seen but not necessarily scored 

The user must click Yes if hejshe would like to re-score the epoch, or if hejshe believes the 

epoch has not been scored, click No or Cancel otherwise. 

Referring to Fig A-8, the but ton on the top right (Choose Start and End Times) is very 

important (located in the blue square of Fig A-8 above). Once clicked, this but ton allows for a 

cursor to be positioned unto the start time. Once positioned on the start time, the user must make 

one mouse click to select the start time. Next, the user must position the cursor for the end time 
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and click once. This will display the values of the start and end times in the yellow box of Fig A-8. 

Moreover, the corresponding plotted data will become red for the selection. If the user is unhappy 

with the selection, the user can simply re-click the Choose Start and End Times but ton and 

repeat the same steps until he/she is satisfied with the selection. 

Fig A-lO shows an example of a user selected segment. 

As shown in Fig A-lO, the selection is now in red to help the user visualize his/her selection, 

and the values for start and end times are displayed in the text fields under the Choose Start and 

End Times button. If the user selects points outside the time axis an error message will advise 

him/her of the error. 

Next to select the event that has been defined by the start and end times the user must click 

on the appropriate events present in the purple box of Fig A-8. Clicking any of the buttons stores 

the start and end times as the event specified by the but ton name. The user can choose multiple 

events for the same start and end time selection. 

Users must be aware that clicking any but ton incorrectly will falsify the scoring. Caution has 

to be taken when selecting the event buttons. 

If the user makes an error the Delete button (in the brown box of Fig A-8) can be selected. 

Clicking the Delete button, will delete aIl the scored data for the given epoch (30s segment). 

Hence, if the user decides to delete the information he / she would have to restart the scoring process 

for that epoch (30s segment). Once the user selects the Delete but ton a message asking the user 

if he/she is sure about deleting the information is shown. Clicking Yes will delete the information, 

clicking Cancel or No will not. 

Once the user has finished scoring the file, or if the user would like to save the information and 

exit to continue later on, the user has to select the Save(Done) but ton (located in brown box of 

Fig A-8). Once selected a message asking the user if he/she is sure he/she wants to save and exit 

will appear. Clicking Yes will save the information, clicking Cancel or No will not. 

Determining Epoch Location 

The green box of Fig A-8 is used to determine the Epoch of current viewing. 
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Alternatively, to determine the current Epoch, just go to the MATLAB command prompt and 

the current Epoch will be the last epoch displayed in the command window. 

Visually Scored Data St orage 

The data visually scored by the clinician are stored in a * .mat format under the directory: 

S:\Biomed\REKLAB\Projects\Apnea\Sharing\MCH\DrBrownScoredFiles. 

The data is scored and saved using the GUI tool named ApneaScore. 

Scored data is saved with the name scoredNAME.mat, where scored is always appended to 

the beginning to indicate that the file contains the scored information. The NAME portion of the 

filename is identical to the patient identification that is used to identify the LABDAT file containing 

the cardiorespiratory data (the *.DAT filename). An example is: For the ARC.DAT file, the file 

containing the scored data is named scoredARC.mat. 

The visually scored data is stored into two MATLAB structures: VS and STAT (representing 

the two but ton groups on the GUI). Each structure contains an array for each scored respiratory 

event. 

The VS structure contains the events: Glitch, Odd, Poor, None, Break, Tech, Sigh, OA, OH 

(OA), Sat (OA), Mixed Apnea, CA and PSA. 

The STAT structure contains the events: Asynchrony, Pause, Movement, Norm Breath and 

Other. 

Each event has its own array with n rows and 12 columns. The n rows are the n epochs (30s 

segments) of a file. Thus, the n th row contains the data for the n th epoch. There are 12 columns 

that represent the st art and end times for a maximum of 6 occurrences for the same event type 

in a single epoch. Thus the odd columns (columns 1, 3, 5, 7, 9 and 11), represent the start times 

of the events and the even columns (columns 2, 4, 6, 8, 10 and 12) represent the end times of the 

events. The start and end times of a given event are stored in a pair of consecutive columns. Thus, 

columns 1 and 2 represent the st art time and end time respectively for the first event in the epoch, 

columns 3 and 4 represent the start time and end time respectively for the second event, etc. The 

start and end times are stored in sample numbers (reminder: sampling frequency is 50Hz). 
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To view this data in MATLAB simply use the load command and view your workspace. In your 

workspace there will be two structures STAT and VS as weIl as a variable called Index_previous. 

Ignore the variable Index_previous as it is used by the developed GUI for other purposes. Once 

loaded the structures contain aU the relevant data stored as described previously. 

Excel Save 

Once the user saves his/her data using the ApneaScore tool and finishes, a window will pop-up 

asking the user if he/she would like to save the data in excel format. If yes is selected a window 

asking for the scorer's initiaIs then appears. The user enters his/her initiaIs and then the save 

completes. The excel file is stored under the name: NAME..EVENTS.xls; where _EVENTS is 

always appended to the file name indicating that the file is the excel file containing the scored 

information, the N AME portion of the file name is identical to the patient identification that is 

used to identify the LABDAT file containing the cardiorespiratory data (the *.DAT filename). The 

data is store in sheet 1 of the excel file where each column is clearly labeled. 

The nomenclature of the data file StudyID..EVENTS.XLS was created by A. 1. Motto and 

is presented next. Each row corresponds to an event either scored visuaUy or by means of an 

automated procedure. 

RFILE raw data file associated with event 

DATE event date 

HH hour( event clock time) 

MM minute (event clock time) 

SS second (event clock time) 

BTIME time elapsed from beginning of recording to beginning of scored event (msec) 

ETIME time elapsed from beginning of recording to end of scored event (msec) 

TYPE event type: FL-false apnea caused by low amplitude signal; FM-false event caused by 

movement; FO-false event caused by unspecified factor; GLITCH-sudden shift in the baseline 

of either the ribcage or abdomen signaIs; ODD-non-sinusoidal breathing pattern; POOR-poor 

quality signal in either the ribcage or abdomen signaIs; MVT- period of movement; BREAK­

braking type pattern; TECH-technical problems (that is; broken leads, leads off, filter off 
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etc.); SIGH-Iarge tidal breaths; OA-obstructive apnea episode; HA-hypopneas; SAT-decrease 

in 5% or more of oxygen saturation; MA- mixed apnea episode; CA-central apnea episode; 

PSA-post sign apnea episode; 

SCORER scorer initiaIs 

POSITION sleep position: SUP-supine; LAT-Iateral; PRO-prone; UNK-unknown 

RS SP-sigh precedes event; SS-sigh succeeds event 

RG quality of respiratory signal: G-good; PM-poor signal due to movement; PA-poor signal due 

to low amplitude; PO-poor signal due to other cause 

RSSH NOSIN-non-sinusoidal or non-quasi-sinusoidal breathing 

SQ quality of Sa02 signal: G-good; PM-poor signal due to movement; PA-poor signal due to low 

amplitude; PO-poor signal due to other cause 

SCR_DATE date of scoring 

SCR_COMMENT comments, if any 
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C:\MATLAB7\toolbox\matlab\lang 
:,"CC""ii:AAjitD;;;;iŒz)C:\MÀ TLAB7\toolbox\matlab\elmat 

ea C:\MATIA87\toolbox\maflab\elfun 
C:\MÀTLAB7\toolbox\matlab\specfun 

C:\MATLAS7\toolbox\maflab\matfun 
~ C:\MATLAB7\toolbox\matlab\datafun 

';',),;i"",:tè'i:"';;07'f'",!,:n;",;(;,Il.i:3' C:\MA TLAB7\t oolb ox\matiab\pol yfun 
ea C:\IîÀATLAB7\toolbox\matlab\fùnfun 

!il C:\MATLAB7\toolbox\matlab\sparfun 
Œz)'C:\MATLAB7\toolbox\matlab\scribe 

IiI'C:\MATLAB7\toolbox\maflab\graph2d 
Œz) C:\MA TLA87\toolbox\matlab\graph3d 

C:\MATtAB7\toolbox\matlab\specgraph 

Figure A-l: Matlab set path window. 
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MoveUp 

MoveDown 

C:\MATLAB7\toolbox\matlab\genera/ 
C:\MATLAB7\too/box\matlab\qps 

C:\MATLAB7\too/box\matlab\/ang 

C:\MA TLAB7\toolbox\matlab\elmat 

C: \MA TLAB7\too/box\m Olt /ab\e/fUn . ..' . 

C:\MATLAB7\toolbox\matlab\specfun 

C: \MA TLAB7\too/bo x\mat lab\matfun 

C:\MATLAB7\toolbox\mat/ab\datafun 

C:\MA TLAB7\toolbox\mat/ab\po/yfun 

cm C:\MA TLAB7\toolbox\matlab\funfun 

ŒJ C:\MA TLAB7\toolbox\mat/ab\sparfun 

C:\MATLAB7\toolbox\mat/ab\scribe 

ŒJ C:\MA TLAB7\toolbox\mat/ab\graph2d 

~ C:\MA TLAB7\toolbox\matfab\graph3d 

Figure A-2: Example of adding the file 'C: GULApneaScore' in the Matlab set path window. 

Figure A-3: Opening window of ApneaScore. 
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Figure A-4: Labdat file selection example. 

Figure A-5: First-time window of ApneaScore. 
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Figure A-6: LastEpoch window of ApneaScore. 

Figure A-7: SelectEpoch window of ApneaScore. 
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Figure A-8: Main Cardiorespiratory data window 

Figure A-9: Message for previously visited epoch. 
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Figure A-lO: Example of a user selected segment in ApneaScore. 
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Motivation 

OfHine User Manual 

Ahmed Aoude 

Department of Biomedical Engineering 

McGill University 

OfHine is a graphical user interface (GUI) developed for the automated detection of pauses, 

asynchronous breathing and movement artifact segments using the off-line methods developed at 

McGill University. The program displays the analysis and corresponding cardiorespiratory data in 

30 second epochs. The GUI is user friendly and allows the user to scroIl through the data as many 

times as required. Once analyzed, the analysis is stored in a MATLAB file (*.mat format), this 

format was chosen for future use in MATLAB functions. 

Installation 

OfHine requires a computer with a basic MATLAB 7.0 R14 installation. To use OfHine the 

following steps have to be completed before its first use. 

Make sure that aIl the files required for OfHine are installed on the computer that will run the 

GUI. These files should be saved in a know location under a folder named 'GULOfHine'. 

The required files are: 

1. AdaptiveFilter.m 

2. AutoThres.m 

3. J umpToEpoch.m 

4. MultiIIR_T3GUI.m 

5. OfHine.m 

6. OffLineGUI.m 

7. SelectThres.m 

8. CaEnergy.m 

9. readlabdat.m 
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10. OflLineGUI.fig 

11. SelectThres.fig 

12. J umpToEpoch.fig 

13. AutoThres.fig 

Once you have these file saved on your local machine, it is important to add the 'GULOffiine' 

folder to the MATLAB path. This is accomplished by opening MATLAB and choosing: File->Set 

Path. 

Once selected the window shown in Fig A-lwill appear. 

Select Add Folder, then browse to the folder 'GULOffiine' and click OK. Once you clicked 

OK the path should be added to the MATLAB search path list. 

For example if you had saved the Omine files under : 'C:\GULOffiine' this path would be 

present in the list as shown in Fig B-2. 

Once the path is in the list select Save. 

After completing these steps you are ready to launch the Omine application. 

How to Use Offiine 

To start the application type Offiine in the MATLAB command window and the application 

willioad automatically. A window will open. Fig A-3 shows a screen shot of this window. 

Click Start then another window will open. Browse to the file containing the Labdat data. 

In that file, select the Labdat file to open (* .dat format) and click Open. This will load the 

cardiorespiratory data of that file to analyze. An example is shown in Fig B-4. 

Be Patient and the window shown in Fig B-5 will appear. 

This allows the user to set the thresholds for pause asynchrony and movement artifact detection 

or let the program select them automatically. It is recommended that the user let the program select 

the threshold automatically if it is the first time hejshe is analyzing the file. This will give the user 

an initial estimate of the threshold to use for correct detection. The user must click Yes to let the 

program automatically select the threshold, and click No to enter the thresholds manually. 

If the user selects Yes, the analysis will commence automatically. This may take several minutes 

so patience is required. 
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If the user selects No, the window shown in Fig B-6 will appear. 

This window allows the user to input the desired threshold for each of the detectors. Note 

that the asynchrony threshold should be a value in the range (0,1], the pause threshold should be 

in the range (O,inf] and the movement threshold should be in the range (-1,1]. If the user enters a 

value outside these ranges an error message will pop-up asking the user to re-enter a correct value. 

Once the user enters the thresholds he/she must click Analyze to start the analysis. This may 

take several minutes so patience is required. 

Next, the main window will appear. This widow displays the cardiorespiratory data, allows 

for scrolling through the data in 30s segments, allows the user to jump to a desired epoch, displays 

the thresholds used in the analysis (blue box in Fig B-7) and allows the user to view the frequency 

estimate obtained for a given segment of data within the current epoch (purple box in Fig B-7). 

To scroll through the data the Next and Previous buttons are used (shown in the red box of 

Fig B-7). 

Next scrolls to the next 30s of data and, Previous scrolls to the previous 30s of data. An 

error message will appear if the user tries to scroll beyond the file length. 

Referring to Fig B-7, the button on the top right (Jump To Epoch) allows the user to jump 

to the desired epoch he/she wishes to view (located in the green square of Fig B-7). Once clicked, 

the window in Fig B-8 will appear. 

The user has to simply enter the epoch he would like to get to and click OK. Once OK is 

clicked the data displayed in the main window will jump to the entered epoch value. Note that an 

error message will appear if an incorrect epoch number is entered. The epoch corresponding to the 

displayed data is always indicated in the green box of Fig B-7. 

To view the frequency estimate of a segment within the current epoch, the user may click on 

the pull down window of the frequency estimate for the abdominal or ribcage signaIs (shown in the 

purple box of Fig B-7). The user must then select the time interval he/she desires in the pull down 

window. Once selected, the frequency estimate for that interval will be displayed under the pull 

down window. An example of the frequency estimate for the interval 0-5s for the abdominal signal 

and 1O-20s for the ribcage signal is shown in Fig B-9. 
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Finally, once the user has finished using the tool he/she may save the analysis by clicking the 

Save Analysis but ton (brown box in Fig B-7). 

Analyzed Data St orage 

The analysis completed by a user is stored in a * .mat format (only if the user decides to save 

the data). Scored data is saved with the name offiineNAME.mat, where offiine is always appended 

to the beginning to indicate that the file contains the analysis information. The NAME portion 

of the filename is identical to the patient identification that is used to identify the LABDAT file 

containing the cardiorespiratory data (the *.DAT filename). An example is: For the ARC.DAT file, 

the file containing the scored data is named offiineARC.mat. 

The visually scored data is stored into five MATLAB variables and three arrays: AsynchDe­

tect, PauseDetect, MvtDetect, ThresPauseRC, ThresPauseAB, ThresAsynch, ThresMvtRC and 

ThresMvtAB. ThresPauseRC, ThresPauseAB, ThresAsynch, ThresMvtRC and ThresMvtAB are 

the thresholds used for each of the detectors in the analysis. While, AsynchDetect, PauseDetect 

and MvtDetect are logic arrays that are either 1 or 0 for each sample of the data. When any element 

of the arrays is one it indicates that the given detector (pause, asynchrony or movement) detected 

the event at the given sample. 
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C:\MATLA87\toolbox\matlâb\ops 
C:\MATLAB7\toolbox\maflab\l<ing 
C:\MATLAB7\toolbox\matl<ib\elmat 

C:\MATLAB7\toôlbox\matlab\elfim· 
C:\MA TLAB7\toolbox\matiab\spedun 

eJ C: \MA TLAB7\toolbox\mafiab \maff~n 

C:\MA TLAB7\toolbox\matlab\datafun 

C:\MATLAB7\toolbox\mafJ<ib\pôlyful1 

.. C:\MATLAB7\toolbox\matlab\fùnfun 
eJ C:\MA TLAB7\toolbox\mafJab\sparfùn 
GO C:\MA TLAB7\toolbox\matlab\scribe 
t!11 C:\MATLAB7\toolbox\maflab\graph2d 

GO C:\MATLAB7\toolbox\matlab\graph3d 

eJ C: \MATLAB7\toolbox\maflab\specgraph 

Figure B-l: Matlab set path window. 
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,,;( Move to BClltom 

C:\MATlAB,7\toolbox\n'lFltlab~I:â.ng. 

~ C:\MATlA87\toolbox\matlab\elmat 
. tii C:\MA TlA87\tQolbo:it\rriatrab\élfun 

tii C:\MATlAB7'\toolbox\matlab\specfun 
tii C:\MATLAB7\toolbox\matlab\n'latfun 
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!.ilJ C:\MA TlAB7\toolbox\matlab\fuMun 

tii C:\MATLAB7\toolbox\n'latlab\spaffun 
,!.ilJ C:\MATLAB7\toolbox\matlab\scfibe 

C:\MATLAS7\toolbo)(\mFltlab\graph2d 
!.ilJ C: \MA TlAB7\toolbox\matlab\graph3d 

Figure B-2: Example of adding the file 'C: GULOffiine' in the Matlab set path window. 

Figure B-3: Opening window of the Offiine GUI. 
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Figure B-4: Labdat file selection example. 

Figure B-5: Threshold selection decision window. 
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Figure B-6: Manual threshold selection window. 
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Figure B-7: Main OfHine GUI window 

./ Jump To Epoch LJL:: 1111 
:~teseEnter the i ..... . 

·::'t: o·/·~(;:;~·~~e~~J~~~i~d··. 
/. andptess OK 

Figure B-8: Jumpto window of the OfHine GUI. 
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ABFREQ.ESTIMATE-_ 

Figure B-9: Example frequency estimation for the OfHine GUI. 
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Appendix C: Conference Paper 

Power-Based Segmentation of Respiratory SignaIs Using Forward-Backward Bank 

Filtering 

A. A. Aoude, A. L. Motto, H. L. Galiana, K. A. Brown and R. E. Kearney 

C-l Abstract 

We present an automated method for the segmentation of ribcage and abdominal signaIs 

measured by noninvasive respiratory inductance plethysmography (RlP) into quiet breathing and 

artifact-corrupted segments. This procedure, which involves forward-backward filtering, is applica­

ble to the automated off-line analysis of long records of respiratory signals. Examples of applications 

include home and sleep laboratory studies of cardiorespiratory data. The new procedure was suc­

cessfully applied to the segmentation of cardiorespiratory signaIs acquired post-operatively from 

infants in the recovery room of the Montreal Children's Hospital (MCH). 

C-2 Introduction 

Signal processing procedures for marking the st art and end times of "useful data segments" 

from a given record of respiratory and sleep data, or a subset thereof, have an important role 

in the diagnosis of clinically significant abnormalities. The term "useful data segment" is used 

here to designate any time interval of respiratory inductance plethysmography (RIP) signaIs that 

has a sufficiently high signal-to-noise ratio. A low signal-to-noise ratio arises when either or both 

ribcage and abdominal channels are corrupted by non-respiratory-induced movements, occurring, 

for example, when the subject is moving or being moved. For illustration, Fig. C-3a provides a 

representative segment of an abdominal excursion signal measured by RIP in the recovery room 

of the Montreal Children's Hospital (MCH) [7]. The first 20-second period shows no apparent 

artifact whereas the following Il-second period is corrupted by artifact. This paper presents a 

signal processing procedure for the off-line, automated partitioning of RIP signaIs into segments 

either with or without artifacts. 

The need for the automated segmentation of cardiorespiratory signaIs has been weIl recognized. 

Weese-Mayer et al. [75] reported that the performance of automated cardiorespiratory monitoring 
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procedures could be significantly improved if signal segments corrupted with artifacts could be sys­

tematically identified. In [5], we proposed an automated procedure for estimating the phase relation 

between thoracic and abdominal excursions measured by noninvasive RIP. We noted that the per­

formance of the phase estimator could be improved if it was combined with an automated procedure 

for partitioning a realization of RIP signaIs into periods with and without artifact corruption. Such 

automated signal segmentation procedures would also be useful in the analysis of long records of 

off-line respiration and sleep data. Furthermore, assuming that the probability of apnea occurring 

while a subject is moving or being moved is negligibly small, this procedure could be used to reject 

the hypothesis "apnea present" , thereby improving the detection performance of automated apnea 

detectors. 

In [6], we showed that a Neyman-Pearson energy-based detector could be used for the au­

tomated detection of artifacts. Reference [6J was mainly concerned with the on-line detection of 

artifacts whereas the present paper is concerned with the off-line detection and, therefore, uses 

forward-backward BR (infinite impulse response) filters, producing an array of zero-phase filters 

with narrower pass bands and sm aller transition bands. As a by-product, we obtain an estimate 

of the fundamental frequency of breathing up to a narrow band. The new method is aimed to be 

integrated into the cardio-respiratory monitor reported in [72J. 

C-3 Methods 

We have developed a new method to allow for the automated segmentation of thoracic and 

abdominal signaIs into periods with artifact present and periods with artifact absent. From our 

previous study [5J, it was observed that: 

1. Quiet breathing signaIs are band limited with a given frequency. 

2. The energy of sensor noise is negligible compared to quiet breathing components. 

3. The energy of movement artifact is generally greater than that of quiet breathing and sensor 

noise with predominance at lower frequencies. 

Using the above observations, we developed a method that uses a bank of IIR filters and average 

power to automatically segment respiratory data. 
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Figure C-1: Simplified diagram of proposed method for respiratory data segmentation. The figure 
depicts the process for the abdominal RIP signal (abt[n]). The same pro cess is also applied to the 
ribcage RIP signal. 

Fig. C-1 shows a block diagram of the proposed method. Next, we describe the main compo­

nents of the method. 

C-3.1 High Pass Filter 

To remove offsets and exponential decays observed in real infant data, a high pass filter with 

cut off frequency equal to 0.05Hz was used. As shown in Fig. C-1, the original RIP signal is denoted 

abl [nJ and the high pass filtered signal is denoted ab[nJ. 

C-3.2 IIR Filter Bank 

To estimate the fundamental frequency of the RIP signaIs, 13 filters were used to achieve little 

overlap between adjacent filter passband widths over [0, 2.0JHz. The filters were chosen to span 

frequencies between 0 Hz and 2.0 Hz for two main reasons. Firstly, this range covers the range of 

fundamental frequencies of infant quiet breathing, as reported in [5J. Secondly, this range covers 

the low-frequency artifacts that are predominant in RIP signal corruption. 

These filters were designed with a pass-band width of 0.2 Hz as weIl as specified pass-band 

and stop-band ripples (refer to Table 1). Forward-backward filtering using UR filters is used in the 

filter bank to perform zero-phase digital filtering and therefore not distort the phase between the 

thoracic and abdominal signaIs. The IIR filters were chosen to be elliptic or Cauer digital filters to 

obtain sharper roll offs and precise filter designs [77J. The optimal filter order was chosen using the 
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Table C-1: Design specification of lIR filters1 

Filter number (i) fi (Hz) fh (Hz) n wp (dB) Ws (dB) 
1 0 0.2 7 0.01 50 
2 0.15 0.35 3 0.1 30 
3 0.3 0.5 4 0.01 40 
4 0.45 0.65 4 0.01 40 
5 0.6 0.8 4 0.01 50 
6 0.75 0.95 4 0.01 50 
7 0.9 1.1 4 0.01 50 
8 1.05 1.25 4 0.01 50 
9 1.2 1.4 4 0.01 50 
10 1.35 1.55 4 0.01 50 
11 1.5 1.7 4 0.01 50 
12 1.65 1.85 4 0.01 50 
13 1.8 2.0 4 0.01 50 

1 ft denotes the filters' low cut off frequency; fh denotes the 
filters' high cut off frequency; n denotes the filter order; wp 

denotes the maximum pass-band ripple level; W s denotes the 
minimum stop-band ripple attenuation level. 

elliptic low-pass filter order prediction formula described in [77, p.241] with the Signal Processing 

Toolbox of Matlab [8]. 

Table 1 enumerates the filters used and the specifications used to design them. 

C-3.3 Average Power 

The average power of the filtered RIP signaIs over a window length 2L + 1 was used to segment 

the signaIs. Let pfb[n, N] denote the average power value of the filtered abdominal signaIs over a 

window N = 2L + 1, then 

1 n+L 

pfb[n, N] = N L abJi [k], for i = 1,2, ... 13 (6.1) 
k=n-L 

Where abfifn] represents the i th filtered abdominal signal from the filter bank (refer to Fig. C-1). 

Note that the ribcage power, piC [n, N] is similarly defined. 

C-3.4 Test Statistic 

Since it is assumed that infant quiet breathing is between [0.4, 2]Hz and that artifacts are at 

lower frequencies, let l and .:J denote the index sets of the IIR bandpass filters covering the the 

quiet breathing and artifact frequency ranges, respectively; that is l = {3, 4, ... , 13} and .:J = {l, 2}. 
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Then, we can define the test statistic, T ab as 

where we use the convention R = l. 

C-3.5 Decision Rule 

(6.2) 

The test statistic T ab can then be used, together with a Neyman-Pearson threshold "1 [78], for 

deciding 

(6.3) 

The decision rule above states that we choose the hypothesis Ho if Tab :::; "1 and we choose the 

hypothesis Hl if T ab > "1. Where the hypotheses are: Ho: Artifact Absent and, Hl: Artifact 

Present. 

C-3.6 Selector 

The selector in Fig. C-1 yields an estimate of the breathing rate up to a narrow band, i max: 

(6.4) 

Equation (6.4) states that imax[n] = 0 ifwe decide artifact present; otherwise, imax[n] is the index 

of a filter whose average power is maximum. The operation min ensures that imax[n] is a singleton 

if more th an one filter produces maximum average power. 

C-4 Application to Simulated Data 

C-4.1 Description of Simulated Data 

The main concepts and derivations of the simulated breathing and additive noise signaIs used 

for this paper can be found in [5, pp.617 -618]. In brief, these signaIs were composed of piecewise-

Iinear frequency-modulated sinusoidal signaIs to model quiet breathing, white Gaussian noise to 

model sensor or electronic noises, and a stochastic diffusion process to model movement artifacts. 
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(a) Simulated RIP signal 

(b) High Pass Filtered Simulated Signal 

~-~~ 
(c)Frequency Estimate 

J :1 : 1: :, 
(d) TY 

(e) Artifact Detection 

~ o~ I=f ===~----,-__ ....!====!..........--,-_-J 
10 20 30 

Tim€ (s) 
40 50 60 

Figure C-2: Segmentation analysis of a 60s simulated segment of infant RIP signal. Note that for 
the simulated RIP signal a 0.7 Hz noise corrupted signal was used for the first 15s and a 0.5 Hz noise 
corrupted signal was used for time 30s to 45s. Time 15s to 30s and the last 15s of the simulated 
signal was predominantly composed of simulated movement artifact. (a) is the original signal, (b) 
is the high pass filtered signal, (c) is a plot of Îmax, (d) is a plot of the test statistic TY (dashed 
line: "Y = 0), and (e) is the decision 8(TY). As expected, the method detect the artifact corrupted 
segments (8(TY) = 1). 

C-4.2 Analysis of Simulated signaIs 

To assess the effectiveness of our method, a simulated RIP signal was generated. This signal 

was composed of four segments. The first and third segments were normal breathing while, the 

second and fourth segments were predominantly composed of movement. AIl segments also had 

additive electronic noise. 

Fig. C-2 shows that our method correctly detects the artifact corrupted segments as weIl as 

the normal breathing segments in data with uncorrelated noise. In fact, the breathing segments 

are labeled with Îmax values equal to 5 and 4 which are the expected values since they correspond 

to breathing frequencies anywhere in [0.6, 0.8JHz and [0.45, 0.65JHz respectively (the simulated 

frequencies were 0.7Hz and 0.5Hz respectively). 
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C-5 Application to Infant Data 

C-5.1 Description of Data 

We now consider segmentation in breathing periods from 8 infants aged 44 ± 5 weeks, weighing 

4.9±1 kilograms. This data was previously reported by Brown et al. [7] as part of another study with 

appropriate ethics approval. This provided a convenient initial database for the validation of the 

proposed method. The observed continuous-time ribcage and abdominal signaIs (NIMS™, Respi­

trace Plus, North Bay Village, Florida), were amplified and filtered with 15Hz 8-pole Bessel filters 

(Frequency Deviees, Haverhill, MA), and sampled at 50 Hz with a 12-bit analog-to-digital converter 

(Data Translation, Marlborough, MA). This data was stored on a computer using LABDAT™ data 

acquisition software (RHT-InfoDat, Montreal). No attempt was made to calibrate the signaIs in 

absolute terms. 

C-5.2 Analysis of Infants' Data 

Since there do es not exist a widely accepted and exact mathematical definition of normal 

breathing and artifact corrupted segments, the visual scoring of 8 infant data sets consisting of 

over 46 hours of data was considered. Thus, to asses the effectiveness of the method in segmenting 

the off-line data, the data acquired in [7] was visually scored by K. A. Brown (MD) in accordance 

to approved practice at the MCH. A comparison between the segmentation obtained using the 

automated method and the segmentation by visual scoring was used to determine the accuracy of 

the method. 

Signal Segment Illustration 

To illustrate the effectiveness of the method, Fig. C-3 shows a segment of real infant data 

consisting of normal breathing followed by artifact corruption. As expected the artifact corrupted 

segment had 8(Tab) values (e) equal to 1, while the breathing segment had 8(Tab) values equal to 

o. 
Note that Fig. C-2 and Fig. C-3 were generated using the threshold 'Y = 0 for illustration 

purposes and using a window length (N) equal to 251 samples or 5s. 
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(a) Original AB signal 

(b) High Pass Filtered AB signal 
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(c) AB Frequency Estimate 

J :E : 1: :1 
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Figure C-3: Segmentation analysis of a 31s segment of abdominal (ab} ln]) breathing excursions 
measured by inductance plethysmography of an infant (42 weeks old weighing 3.9 kg). Note that a 
quasi-sinusoidal breathing signal is observed for the first 20s followed by Ils of artifact corruption. 
(a) is the original RIP signal, (b) is the high pass filtered signal, (c) is a plot of Îmax, (d) is a 
plot of the test statistic T ab (dashed line: "1 = 0), and (e) is the decision 8(Tab). Note that for 
the time interval 577.5s to 582s the signal is composed of both, low frequency artifact and quiet 
breathing; since the power of the low frequency component is higher (Tab < 0), the method labeled 
this segment as having artifact corruption. 
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Figure C-4: Sample distributions of the test statistic T ab for aIl 8 data files that have been visually 
scored by Dr. K. A. Brown. The plot shown was generated with N =251 (i.e. 5 seconds at 50 Hz), 
under the hypotheses Ho (movement artifact absent) and Hl (movement artifact present). 

Comparison to Visual Scoring 

Fig. C-4 shows the distribution of T ab over periods of quiet breathing and gross body movement 

for aIl 8 infant files in the data base used; that is under Ho and Hl, respectively. We derived Tab 

from the visu al scoring done by K. A. Brown. 

The performance of the proposed off-line detector, based on the visual scoring, is summarized in 

the receiver operating characteristic (ROC) for the test statistic T ab of equation (6.2). The ROC plot 

is presented in Fig. C-5, where PF A denotes the probability of false alarm; that is, the probability 

of deciding artifact present when there is no artifacts and, where PD denotes the probability of 

detection; that is, the probability of deciding artifact present when artifact is almost surely present. 

Note that from the distribution shown in Fig. C-4, PD and PFA for a given threshold 1 can be 

found by solving 

PD = [~ dF(Tab, Hl), PFA = [~ dF(Tab , Ho) (6.5) 

The segmentation presented above could be improved by further processing o(Tab). This pro-

cessing removes any detection segments that are smaller than 5s and, combines any two consecutive 

detection segments separated by a gap sm aller than 5s. For example, using the threshold of 1 equal 

0, we obtained the following probabilities of detection and false alarm for aIl 8 infants, PD = 80% 
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Figure C-5: Receiver operating characteristic for aIl 8 infants visually scored by Dr. K. A. Brown. 
The test statistic used was T ab with N = 251 samples or 5 seconds. The circle indicates the 
probabilities for "1 = o. 

and PF A = 15%. In comparison, after processing we obtained the following probabilities of detec-

tion and false alarm for aIl 8 infants, PD = 86% and PFA = 11.25%. The results showed that it 

could prove useful to use T ab as a decision criterion to segment real infant data. 

C-6 Concluding Remarks 

We have presented a new method to segment respiratory data into periods with or without 

movement artifact based on the frequency and energy content of RIP signaIs. The method is 

automated and used off-line to allow for segmentation of respiratory data. In addition, the method 

allows for repeatable analysis which is advantageous when compared to the inconsistencies of visual 

scoring. 

Current studies are exploring the integration of the new procedure in the automated classifi-

cation and detection of events such as obstructive and central apnea. The proposed procedure is 

fully automated and used off-line which will allow for less costly and more efficient analysis when 

compared to visual scoring. 
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Appendix D: Extended Results 

The results for the three off-Hne detectors presented in chapter 5 are presented in this appendix 

on a file by file basis. For each patient file, an ROC curve representing each detector's effectiveness 

relative to Dr. K. A. Brown's visu al scoring is presented. The distribution of the number segments 

and their respective length as scored by Dr. K. A. Brown and as obtained with the automated 

methods are also presented. 

6.7 ROC Curves for the Off-Line Movement Artifact Detector 

Figures D-Ia to D-Ic show the results for the off-Hne movement artifact detection method for 

each patient file. The plots shown were generated using N = 251 sample (i.e. 5 s at 50Hz). 

6.8 ROC Curves for the Off-Line Pause Detector 

Figures D-2a to D-2c show the results for the off-Hne pause detection method for each patient 

file. The plots shown were generated using NI = 51 sample (i.e. 1 s at 50Hz). 

6.9 ROC Curves for the Off-Line Asynchrony Detector 

Figures D-3a and D-3b show the results for the off-Hne asynchrony detection method for each 

patient file. The plots shown were generated using N = 251 sample (i.e. 5 s at 50Hz). Note that 

only 16 out of the 21 infants had asynchronous breathing episodes which explains the fewer number 

of plots in Figures D-3a to D-3b. 

6.10 Number of Events Versus Duration 

Figures D-4 and D-5 show the results for the automated off-line pause and movement detection 

methods. The figures show the distribution of the number of segments versus their respective length 

as obtained with the automated method and as scored by the Dr. K. A. Brown. For the movement 

detector, a value of Î = 0 and N = 251 samples or 5 s was used. For the pause detector, the 

thresholds were chosen using the automated threshold selection technique described in chapter 5 

and using NI = 51 samples or 1 s. The distribution for asynchronous breathing is omitted since 

it is assumed that the automated phase estimation technique presented in this thesis is less biased 

than asynchrony detection by visual scoring. 
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The following number of segments were obtained for each method, considering segments of all 

lengths: 

Movement: 2760 segments (Visual scoring) and 2945 segments (Automated method) 

Pause: 2399 segments (Visual scoring) and 3256 segments (Automated method) 

In comparison, the following number of segments were obtained for each method, considering 

segments greater than 4 seconds long: 

Movement: 2668 segments (Visual scoring) and 2945 segments (Automated method) 

Pause: 1602 segments (Visual scoring) and 1847 segments (Automated method) 

From the results presented in this appendix and the chapters of this thesis, we can conclude 

that the automated pro cesses for asynchrony, movement artifact and pause detection produce results 

that are comparable to visual scoring. 

Recall that the visually scored data obtained with the ApneaScore tool was scored in 30 s epochs 

and then processed to combine events that spanned more than one epoch. This concatenation 

considered events that had gaps smaller that 2 s between consecutive epochs. Therefore, the peaks 

for the visual scoring at 30 s, 60 sand 90 s in Fig. D-4 can be attributed to the effect of this 

processing as weIl as visual scoring inconsistencies. 
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Figure D-1a: ROC curves for Movement detection in the abdominal and ribcage RIP signaIs of 
eight infant patient data records (Montreal Childrens Hospital Study ID: (a) MUR, (b) SHIF, (c) 
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Figure D-3a: ROC curves for Asynchrony detection in eight infant patient data records (Montreal 
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Figure D-3b: ROC curves for Asynchrony detection in eight infant patient data records (Montreal 
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