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Abstract 24 

A long-standing question is to what degree genetic drift and selection drive the divergence in 25 

rare accessory gene content between closely related bacteria. Rare genes, including singletons, 26 

make up a large proportion of pangenomes (all genes in a set of genomes), but it remains unclear 27 

how many such genes are adaptive, deleterious, or neutral to their host genome. Estimates of 28 

species’ effective population sizes (Ne) are positively associated with pangenome size and 29 

fluidity, which has independently been interpreted as evidence for both neutral and adaptive 30 

pangenome models. We hypothesised that pseudogenes, used as a neutral reference, could be 31 
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 2 

used to distinguish these models. We find that most functional categories are depleted for rare 32 

pseudogenes when a genome encodes only a single intact copy of a gene family. In contrast, 33 

transposons are enriched in pseudogenes, suggesting they are mostly neutral or deleterious to the 34 

host genome. Thus, even if individual rare accessory genes vary in their effects on host fitness, 35 

we can confidently reject a model of entirely neutral or deleterious rare genes. We also define the 36 

ratio of singleton intact genes to singleton pseudogenes (si/sp) within a pangenome, compare this 37 

measure across 668 prokaryotic species, and detect a signal consistent with the adaptive value of 38 

many rare accessory genes. Taken together, our work demonstrates that comparing to 39 

pseudogenes can improve inferences of the evolutionary forces driving pangenome variation. 40 

 41 

Main text 42 

Introduction 43 

Bacterial strains within the same species often encode substantially different genes. This has 44 

been established through genome analyses where the entire set of ubiquitous (‘core’) and 45 

variably present (‘accessory’) genes across strains are taken to encompass a single ‘pangenome’. 46 

Based on such analyses, the percentage of accessory genes within pangenomes varies from 40-47 

80% across prokaryotic species1. Many individual accessory genes have been shown to be 48 

adaptive, but it remains controversial whether genetic drift or natural selection are responsible 49 

for driving overall pangenome variation across species.  50 

This has been investigated by comparing species pangenome diversity to measures of 51 

effective population size (Ne). Ne represents the population size under idealized conditions and is 52 

the key parameter determining the efficacy of selection vs. genetic drift. Several methods can be 53 

used to estimate, or be used as proxies for, Ne. One common proxy is the ratio of non-54 

synonymous to synonymous substitution rates (dN/dS) in core genes. Assuming stronger 55 

purifying selection against non-synonymous mutations relative to synonymous mutations in core 56 

genes, a lower dN/dS ratio indicates higher selection efficacy and thus a higher Ne. Lower dN/dS 57 

ratios are associated with higher pangenome diversity across prokaryotic species2,3, which has 58 

been interpreted as evidence for higher selection efficacy to retain slightly adaptive accessory 59 

genes, resulting in larger pangenomes3,4. If there was strong selection acting on most accessory 60 

genes, then they would be retained regardless of species Ne (except perhaps for those with very 61 

low Ne). 62 
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One issue with this adaptive explanation is that neutral genetic variation is also higher in 63 

species with higher Ne due to weaker genetic drift5 (e.g., fewer population bottlenecks). Indeed, 64 

nucleotide diversity at neutral sites is the standard method for calculating Ne, assuming equal 65 

mutation rates across species. Pangenome diversity is also positively associated with Ne based on 66 

this approach6. Accordingly, neutral and adaptive explanations for pangenome diversity cannot 67 

be distinguished based on associations with Ne alone, especially for rare accessory genes that 68 

could represent segregating neutral variation. Others have remarked that this remains an issue as 69 

it is unclear how to partition genes into categories expected to experience distinct selective 70 

pressures7. 71 

We hypothesised that pseudogenes – genes degenerating through the introduction of 72 

mutations such as premature stop codons, insertions, and deletions – could be used as an 73 

approximately neutral reference for detecting selection on rare intact accessory genes. 74 

Pseudogenes can arise when genetic drift overcomes purifying selection to retain a gene8, or 75 

through positive selection to eliminate a deleterious gene9. We reasoned that accessory gene 76 

families that tend to remain intact are likely under stronger purifying selection than those that 77 

tend to be pseudogenized. This insight is particularly relevant for rare accessory genes, which 78 

make up the largest fraction of pangenomes10, and for which the evolutionary forces are most 79 

controversial. We investigated this idea by first comparing the functional categories of rare intact 80 

genes and pseudogenes across ten well-sampled bacterial species. We then conducted a broader 81 

assessment of intact genes and pseudogenes in the pangenomes of nearly 700 different 82 

prokaryotic species. 83 

 84 

Results 85 

Functions of rare elements across well-sampled species 86 

If rare accessory genes were effectively neutral to host fitness, then we would expect no 87 

difference in the functional annotations between intact genes and pseudogenes within a species. 88 

In contrast, differences in functional annotations between these rare element types could suggest 89 

functions that tend to be beneficial in a genome. 90 

We conducted a comparison of the functional annotations of rare intact genes and 91 

pseudogenes in a dataset of 10 bacteria species with a relatively high number of sequenced 92 

genomes (135-6,845 genomes per species), including highly sampled human pathogens and 93 
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bacteria with other lifestyles: Agrobacterium tumefaciens, Enterococcus faecalis, Escherichia 94 

coli, Lactococcus lactis, Pseudomonas aeruginosa, Sinorhizobium meliloti, Staphylococcus 95 

epidermidis, Streptococcus pneumoniae, Wolbachia pipientis, and Xanthomonas oryzae. We 96 

performed joint clustering of intact genes and pseudogenes, to ensure that differences in how 97 

sequence clusters are defined did not influence the results. These 10 species varied widely in 98 

genome content and characteristics (Extended Data Table 1); for example, Wolbachia pipientis 99 

genomes encoded a mean of 897.0 intact genes (SD: 25.1) and 55.4 pseudogenes (SD: 20.8), 100 

while Sinorhizobium meliloti encoded a mean of 6032.8 intact genes (SD: 205.7) and 489.7 101 

pseudogenes (SD: 53.4).  102 

We separated gene/pseudogene clusters into three pangenome partitions, based on their 103 

frequency within a species: cloud (<=15%), shell (>15% and <95%), and soft-core (>=95%). We 104 

also further partitioned cloud clusters into ultra-rare, including clusters found in only one or two 105 

genomes (singletons and doubletons), and other-rare, referring to higher-frequency cloud 106 

clusters. Most pseudogene clusters were within the cloud partitions: mean of 95.46% (SD: 107 

3.78%) vs. a mean of 84.01% (SD: 8.34%) for intact genes (Extended Data Figure 1a). This 108 

would be expected under the common assumption that pseudogenes are under relaxed purifying 109 

selection, such that they rapidly accumulate mutations which cause them to be split into separate 110 

sequence clusters. Some pseudogene clusters were in the soft-core partition (mean: 0.54%, SD: 111 

0.66%), which often could not be annotated with Clusters of Orthologous Genes11 (COG) 112 

identifiers (Extended Data Figure 1b). For subsequent analyses we proceeded with COG-113 

annotated clusters only (Figure 1). 114 

 We applied generalized linear mixed models, for each pangenome partition separately 115 

(excluding soft-core elements), to investigate which factors best explain whether a genetic 116 

element is an intact gene or a pseudogene. These models included 213,912, 3,650,010, and 117 

12,234,597 elements for the ultra-rare, other-rare, and shell partitions, respectively. The fixed 118 

effects included each element’s COG functional category and whether the element was 119 

redundant with an intact gene with the same COG ID in the same genome. We included this 120 

'redundancy' effect because adaptive genes might neutrally degenerate only if they are 121 

complemented by an intact copy of the same gene family in the genome. The interaction between 122 

COG category and functional redundancy was also included as a fixed effect. Last, we also 123 

included species names, the interaction between COG category and species, and the interaction 124 
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between functional redundancy and species random effects. All variables added significant 125 

information to the models, but there were some slight differences in their relative contributions. 126 

For instance, species identity and functional redundancy were particularly informative in the 127 

ultra-rare model compared to the more frequent categories of genes (Extended Data Figure 2), 128 

and certain species displayed different associations with pseudogenization by pangenome 129 

partition (Extended Data Figure 3).  130 

 We identified significant coefficients in the ultra-rare model (Figure 2), which provided 131 

insight into what factors were most associated with pseudogene status (P < 0.05). These 132 

coefficients represent decreased log-odds (logit) probabilities of an element being a pseudogene. 133 

Five COG categories were positively associated with pseudogenization: ‘energy production and 134 

conversion’ (C), ‘nucleotide transport and metabolism’ (F), ‘translation, ribosomal structure and 135 

biogenesis’ (J), ‘function unknown’ (S), and – most strongly – ‘mobilome: prophages, 136 

transposons’ (X). In contrast, ‘Cell cycle control, cell division, chromosome partitioning’ (D), 137 

was the sole COG category specifically associated with decreased pseudogenization. However, 138 

non-redundant elements were highly associated with decreased pseudogenization, over most 139 

COG categories. Non-redundant elements were also depleted for pseudogenes in the other-rare 140 

and shell models, but different COG categories were associated with pseudogenization overall 141 

(Extended Data Figure 4). The exception was an enrichment of pseudogenes in mobilome-142 

associated elements in the other-rare partition. 143 

 In the study of pangenome evolution, a key question is what proportion of rare genes are 144 

under selection or subject to genetic drift. This question is challenging to answer precisely; yet 145 

our models yield estimates of the percentage of genes found in functional categories depleted for 146 

pseudogenes, providing a lower bound for the percentage of adaptive genes. For instance, genes 147 

in COG category D and non-redundant genes in COG category E are two such pseudogene-148 

depleted groupings. Based on these definitions, a mean of 19.41% (SD: 5.27%), 20.32% (SD: 149 

6.84%), and 26.02% (SD: 7.05%) of intact genes are found in pseudogene-depleted groupings 150 

across the ultra-rare, other-rare, and shell partitions, respectively. The increasing percentage of 151 

genes classified as pseudogene-depleted as gene frequency increases from ultra-rare to shell is 152 

consistent with more frequent genes being more likely adaptive to their host. Nevertheless, an 153 

appreciable percentage (>19%) of ultra-rare genes are likely adaptive according to this estimate. 154 

Although non-redundancy was strongly and negatively associated with pseudogenization, only 155 
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24.39% of elements were non-redundant, which explains why only a minority of intact genes 156 

were categorized into pseudogene-depleted groupings. Conversely, 18.68% (SD: 5.62%), 157 

13.29% (SD: 7.69%), and 3.65% (SD: 0.74%) of intact genes are found in groupings enriched for 158 

pseudogenes across these three partitions. The decreasing percentages as gene frequency 159 

increases is consistent with rarer genes being more likely deleterious to their host. Therefore, 160 

although rare accessory genes may on average be adaptive to their host genomes, a substantial 161 

fraction may also be deleterious. Most intact genes do not fall cleanly into either the pseudogene-162 

enriched or -depleted category, meaning that these estimates represent rough lower bounds of 163 

how many genes are likely adaptive or deleterious.  164 

 Several COG categories were significantly enriched or depleted in pseudogenes, but these 165 

are broad functional groupings that can be difficult to biologically interpret. We investigated 166 

which individual COG IDs within significant COG categories were driving the overall signals in 167 

the ultra-rare model (see Online Methods). The clearest signal was of transposase-associated 168 

COGs being highly enriched among pseudogenes (mean of significant odds ratios: 5.10, SD: 169 

6.86), which contrasted with other mobilome-associated COGs (Extended Data Fig. 5). We also 170 

identified several COGs highly associated with pseudogenization in specific species. For 171 

instance, anaerobic selenocysteine-containing dehydrogenases (COG0243, category C), were 172 

highly enriched for pseudogenes across multiple species, particularly in Agrobacterium 173 

tumefaciens (odds ratio: 103.6, P < 0.001). In addition, several COGs in category D involved in 174 

cell division and chromosome segregation were significantly depleted for pseudogenes, 175 

including BcsQ (COG1192), a ParA-like ATPase, which was significantly depleted for 176 

pseudogenes in six species (false discovery rate < 0.05). 177 

 This in-depth analysis of 10 species highlighted several functional categories enriched 178 

within rare pseudogenes, particularly for mobilome-related genes. Conversely, we identified a 179 

clear depletion of pseudogenes among non-redundant elements, which strongly suggests that 180 

even very rare accessory genes are often under selection to maintain a working copy in the 181 

genome. Taken together, these comparisons serve as a proof-of-concept that comparing 182 

extremely rare intact genes and pseudogenes can be useful for disentangling the action of 183 

evolutionary forces.  184 

 185 

Comparisons of pangenome diversity and Ne 186 
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We next investigated whether the inclusion of pseudogenes can help resolve the prior conflicting 187 

interpretations of the association between pangenome diversity and Ne. To this end, we analysed 188 

668 named prokaryotic species represented by at least nine genomes in the Genome Taxonomy 189 

Database12. 190 

We first summarized pangenome diversity across these species. Species’ pangenome size 191 

and complexity have been characterised previously based on different metrics, including the 192 

mean number of genes per genome2 and genomic fluidity6,13. We computed these metrics for all 193 

species based on both intact genes and pseudogenes. In addition, as we were especially interested 194 

in rare elements, we computed the percentages of singleton genes and pseudogenes per species 195 

(i.e. those present in a single genome per species), based on repeated subsampling to nine 196 

genomes. Larger genomes tend to encode more singletons, both in mean number and percentage 197 

(Extended Data Fig. 6a,b). In addition, the percentage of intact singletons is highly correlated 198 

with genomic fluidity, but the traditional fluidity metric is sensitive to intermediate frequency 199 

accessory genes (Extended Data Fig. 6c,d), which can be driven by inconsistent species 200 

definitions or population structure within species. We therefore focused on the percentage of 201 

intact (si) and pseudogene (sp) singletons for most analyses. All metrics ranged substantially 202 

across species for both intact genes (fluidity: 0.00-0.246; mean number: 836.4-8692.7; si: 0.00-203 

10.83%) and pseudogenes (fluidity: 0.014-0.513; mean number: 8.1-922.5; sp: 0.78-72.97%). 204 

Values of si and sp were positively correlated (Spearman’s ρ=0.57; P < 0.001), with 205 

deviations suggesting species-specific differences in selection on rare accessory genes (Figure 206 

3a). For example, Escherichia coli has a relatively higher si value, consistent with selection to 207 

retain rare accessory genes, while the obligate intracellular bacteria Chlamydia trachomatis and 208 

Rickettsia prowazekii have lower values, suggesting less selective constraint on their rare genes. 209 

To summarize the si and sp values per species, we focused on the si/sp ratio as a metric 210 

encompassing both intact gene and pseudogene pangenome diversity. 211 

For each species, we computed two proxies for Ne: dN/dS and dS. These metrics were 212 

negatively correlated (Figure 3b), which could be due to the expected impact of Ne on each 213 

metric, and of course their direct dependence since dS is the denominator of dN/dS. However, 214 

the dependence structure may be more complex because recently diverged strains are biased 215 

towards higher dN/dS ratios due to insufficient time for purifying selection to purge deleterious 216 

non-synonymous mutations14,15. More generally, interpreting dS as Ne is questionable if there is 217 
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widespread population substructure and uneven sampling of sequenced strains (although this has 218 

been debated: see Discussion). For this reason, we focused on dN/dS as an inversely related 219 

proxy for Ne, and we considered dS as a measure of the divergence between the subset of 220 

analysed genomes per species, but not necessarily as representative of species-wide Ne. Under 221 

this interpretation, the observed positive correlation between dS and both si and sp (Figure 3c 222 

and 3d) is expected simply because these are all measures of genome divergence. 223 

We next recapitulated the previously observed association between dN/dS and standard 224 

measures of pangenome diversity2,3, and then explored whether dN/dS is also associated with 225 

si/sp. We found that the mean number of genes per species was not significantly associated with 226 

dN/dS (Figure 4a), but both genomic fluidity, and si were significantly negatively correlated 227 

(Figure 4b and c; Spearman correlations, P < 0.05). Although the mean number of genes has 228 

been considered in this context previously, it is a measure of overall pangenome size, and is not a 229 

direct measure of gene content diversity, which could explain why we did not observe a 230 

significant relationship. In contrast, the latter two observations agree with past work2,3, but, as 231 

discussed above, the biological interpretation of these associations is unclear. Notably, we also 232 

found si/sp to be negatively associated with dN/dS (Spearman’s ρ=-0.22; P < 0.001; Figure 4d), 233 

although less strongly than si alone (Spearman’s ρ=-0.54; P < 0.001). These results were 234 

qualitatively robust to the number of genomes subset when computing si and sp (Extended Data 235 

Figure 7). In addition, although dS was significantly associated with si (Figure 3c), it was not 236 

significantly associated with si/sp (Spearman ρ=0.07; P=0.08). Taken together, these results 237 

highlight that si remains associated with dN/dS even after normalization by sp, but that the 238 

association with dS is lost after this normalization. If pseudogene presence/absence diversity is 239 

assumed to be a proxy for neutral gene content diversity, this finding suggests that intact 240 

singleton gene prevalence is particularly associated with selection efficacy (dN/dS), and not 241 

simply with strain divergence. These results are consistent with si/sp behaving somewhat 242 

analogously to dN/dS as a measure of the efficacy of selection. As a higher fraction of rare genes 243 

(relative to pseudogenes) are retained when selection is more effective, this is consistent with 244 

many singleton genes conferring adaptive benefits, and/or some singleton pseudogenes being 245 

slightly deleterious. 246 

 There are certain species included in our analyses that are outliers with low values of dS 247 

and/or high values of dN/dS (Figure 3b), which could potentially impact these correlations. In 248 
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addition, within-species dN/dS systematically varies with dS, which could also impact our 249 

conclusions. To address these issues, we re-ran our analysis with outliers removed and using 250 

partial Spearman correlations that control for dS (Figure 5). With minor exceptions, the results 251 

remained qualitatively unchanged, which demonstrates that these factors are not driving the 252 

signal. 253 

 254 

Another potential issue is that the species included in our analyses, although they span 255 

substantial prokaryotic diversity, were biased towards specific groups, particularly 256 

Gammaproteobacteria (286 species) and Bacilli (161 species). As there is substantial variation in 257 

pangenome diversity and evolutionary metrics at the class level for the species we considered 258 

(Extended Data Figure 8), taxonomic biases could potentially be driving the correlations with 259 

si/sp we observed. To account for this, we conducted a linear modelling analysis, where a 260 

separate model was generated with each of the four pangenome diversity measures as the 261 

response, and dS, dN/dS, and taxonomic class as predictors. All models were highly significant 262 

(P<0.001; Extended Data Figure 9) and ranged in adjusted R2 values from 0.197 to 0.420 for 263 

the si/sp and si models, respectively. All but one class (Bacilli) were significant predictors in at 264 

least one model, and the classes Clostridia, Bacteroidia, and Chlamydiia were significant 265 

predictors across all four models. Similarly, dS was a significant predictor of all pangenome 266 

diversity metrics except for si/sp. In contrast, dN/dS was a significant predictor for all pangenome 267 

diversity metrics except for the mean number of genes. This analysis demonstrated that, despite 268 

class-specific differences in pangenome diversity, our overall inferences are robust to taxonomic 269 

class as a confounder. 270 

 271 

 A final caveat of these analyses is that higher si/sp values could be explained by selection 272 

to preserve rare intact genes or to purge rare pseudogenes. If there were selection for pseudogene 273 

loss, then the pseudogene content per genome would be expected to be lower in species with 274 

higher selection efficacy. Contrary to this prediction, the mean percent of species’ genomes 275 

covered by pseudogenes was not significantly associated with dN/dS (Spearman’s ρ = 0.063; P = 276 

0.104; Figure 6a), which is inconsistent with a model of widespread slightly deleterious 277 

pseudogenes that are purged only in species with sufficiently high Ne. However, pseudogene 278 

coverage is negatively but weakly associated with dS (Spearman’s ρ = -0.090; P = 0.020; Figure 279 
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6b), which highlights that this interpretation is dependent on the assumption that dN/dS is a more 280 

appropriate proxy than dS for Ne across these genomes (see Discussion). Together, the lack of 281 

association between pseudogene content and dN/dS, and the weak association with dS, argue 282 

against adaptive purging of rare pseudogenes as a major driver of variation in si/sp. 283 

 284 

Discussion 285 

The ability to distinguish neutral and adaptive models of pangenome evolution has been hindered 286 

by a lack of tools to test for selection acting on gene content. This contrasts with an established 287 

toolkit of tests for selection at the nucleotide and protein levels, including dN/dS and its 288 

extensions. Here we propose pseudogenes as a reference for distinguishing neutral and adaptive 289 

forces acting on pangenomes – particularly rare genes. We show that the association between 290 

pangenome diversity and synonymous-site variation disappears after correcting for pseudogene 291 

diversity with the si/sp metric, while the association with dN/dS is maintained. This indicates that 292 

a higher proportion of intact singleton genes (relative to singleton pseudogenes) are present when 293 

selection is more effective. This is consistent with many rare intact genes, but not all, conferring 294 

host-adaptive functions. These genes are more likely to be retained when selection is efficient3 295 

(such as in E. coli), and more likely to degenerate neutrally and become pseudogenes in species 296 

with lower Ne (such as obligate intracellular bacteria). Our results could also be explained by 297 

widespread slightly deleterious rare pseudogenes, which can be purged only in species with high 298 

Ne, but we did not detect a significant association between dN/dS and pseudogene content (and 299 

only a weak association with dS), making this less likely. 300 

A common explanation for widespread selection on rare accessory genes is adaptation to 301 

highly specialized niches16–18. While genes recently acquired through horizontal gene transfer are 302 

often hypothesised to confer niche-specific adaptations4, it is challenging to make high-303 

confidence inferences without knowing the background of all recently transferred genes that 304 

were not retained – and are thus, by definition, unobservable. By focusing on pseudogenes, 305 

which are observable but likely to evolve mostly by drift, we can establish a (nearly) neutral 306 

background against which to discern potentially niche-specific adaptations. 307 

We relied on the assumption that any selection pressures acting upon pseudogenes tend to 308 

be of much lower magnitude compared to intact genes. In other words, we assumed that, overall, 309 

the pseudogene instances we identified do not reflect adaptive gene loss19 (which is unlikely to 310 
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substantially increase with selection efficacy, as described above), nor do they contain beneficial 311 

regulatory sequences for modulating gene expression levels20. This second possibility would be 312 

inconsistent with the positive association we observed between si/sp and selection efficacy. 313 

Instead, our results are consistent with rare pseudogenes evolving under a regime closer to 314 

neutrality relative to rare intact genes. 315 

Our enrichment test results highlight that a significant proportion of rare accessory genes 316 

are under selection to be retained. Notably, 19% of ultra-rare intact genes are in COG categories 317 

significantly depleted for pseudogenes. We stress that this is a rough approximation and does not 318 

imply that precisely 19% of ultra-rare intact genes have adaptive value. We hypothesise that 319 

many such genes are under effective purifying selection, while relaxed purifying selection could 320 

account for the observed enrichment of transposons among pseudogenes. Similarly, the 321 

enrichment of selenocysteine-containing dehydrogenases among pseudogenes could similarly 322 

reflect relaxed or sporadic purifying selection on these elements, which is interesting as 323 

selenium, selenocysteine’s defining component, is sporadically used across the prokaryotic 324 

tree21. 325 

 Gene-level selection could also account for certain observations. For instance, the DNA 326 

partitioning protein highly enriched in intact ultra-rare genes, COG1192, is a known plasmid-327 

encoded element predicted to be involved in plasmid partitioning22. There could be an 328 

ascertainment bias toward identifying such genes as intact, because were they pseudogenized or 329 

lost the entire plasmid might not be transferred to daughter cells. Similar biases could also 330 

account for why prophage and plasmid-associated elements in the mobilome more generally are 331 

depleted among pseudogenes, although these elements are also more likely to be adaptive to the 332 

host genome23,24. 333 

Pseudogene diversity can be influenced by many factors, including life history. For 334 

instance, obligate intracellular bacteria are characterized by widespread degeneration of their 335 

genome, followed by streamlining25. Depending on a species’ stage in this evolutionary process, 336 

its genome could be enriched or depleted for pseudogenes relative to other bacteria. This likely 337 

accounts for certain si/sp outliers, such as the obligate intracellular bacteria Rickettsia prowazekii, 338 

which had the lowest si/sp ratio. Accordingly, our framework could be improved by incorporating 339 

per-species parameters of pseudogene gain and loss dynamics. 340 
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Last, an important assumption underlying these results is that dN/dS is an accurate proxy 341 

for selection efficacy, and thus Ne, while dS does not represent species Ne. This is 342 

counterintuitive, as nucleotide diversity at neutral sites is the standard metric for calculating Ne. 343 

However, the validity of this metric in prokaryotes has been debated26,27. The estimated dS 344 

values would only be generalizable to the overall species (i.e., including all unsampled genomes) 345 

if this sampling is representative of the actual diversity in nature. For instance, if sequenced 346 

genomes are more likely to represent strains adapted to distinct local environments, and be 347 

depleted for near-identical strains from the same environment, then this would not be 348 

representative. It is highly unlikely, particularly given the low numbers of genomes considered, 349 

for the strains considered in these analyses to accurately reflect the strain diversity and 350 

population substructure across species. Instead, we believe dS is more appropriately considered a 351 

measure of divergence time among the subset of genomes analysed, but not generalizable across 352 

the entire species. In contrast, dN/dS across core genes is more appropriate to generalize across a 353 

species when calculated based on a subset of genomes, as this is expected to be similar for all 354 

pairwise strain comparisons (albeit with variation depending on strain divergence time), 355 

regardless of whether the genomes are representative of the overall species’ strain diversity. 356 

However, dN/dS is also an imperfect measure, particularly because synonymous sites do not 357 

evolve completely neutrally28. Regardless, it is uncontroversial to assume that selection acting on 358 

synonymous sites is, on average, much weaker compared to on non-synonymous sites. 359 

Accordingly, although dN/dS may be inappropriate to use for explicitly calculating Ne, the 360 

species’ relative ranks for this measure will correspond inversely to their relative Ne rank, all else 361 

being equal. 362 

 Despite these caveats, our work highlights the value of using pseudogene diversity as a 363 

neutral null29 for evaluating the evolutionary forces acting upon intact accessory genes. 364 

Establishing true neutrality in microbial genomes is challenging30, but the clear association we 365 

identified between dN/dS and si/sp suggests that pseudogene presence/absence diversity can 366 

provide insight into how rare accessory genes evolve. Crucially, rare genes in nearly all 367 

functional categories are less likely to be pseudogenes when there is no redundant gene copy in 368 

the same genome, indicating that even very rare accessory genes are commonly under selection 369 

to maintain an intact copy in the genome. Using this pseudogene-based comparative approach, 370 

we show that a neutral pangenome model can be rejected and identify which types of rare genes, 371 
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based on their functional annotation and which species encode them, are more likely to be 372 

retained. 373 

 374 

Methods 375 

Dataset processing – In-depth pangenome analysis 376 

We conducted an analysis of 10 bacterial species with a relatively high number of genomes 377 

(ranging from 135-6,916). We selected these species from the set identified for the broad 378 

pangenome analysis (see below), but that were also represented by > 100 genomes that were not 379 

phylogenetically redundant. For these data, we clustered both intact genes and pseudogenes with 380 

cd-hit31 version 4.8.1 with an identity cut-off of 95% over at least 90% of both compared 381 

sequences. This clustering was performed on all genes and pseudogenes across all ten species. 382 

We assigned clusters to pangenome partitions as described in the main text. Note that we defined 383 

the ultra-rare partition to include doubletons, and not only singletons, to account for cases where 384 

two highly similar strains are present with the same ultra-rare gene. As there were > 100 385 

genomes considered for each species within this analysis, doubletons also correspond to highly 386 

rare genes.  387 

We functionally annotated each resulting cluster with COG IDs and categories11 using 388 

eggNOG-mapper32 version 2.1.6 (based on eggNOG orthology data33 version 5.0.2) with 389 

DIAMOND34 version 2.0.14 and these parameter options: --score 60, --pident 40, --query_cover 390 

20, --subject_cover 20, --tax_scope auto, and --target_orthologs all. This was performed for 391 

individual elements separately (i.e. the original sequences rather than the cluster representatives), 392 

and for database sequence matches to pseudogene hits. We focused on the database sequence 393 

matches for pseudogene hits, as eggNOG-mapper annotates protein sequences, which is 394 

problematic for most pseudogenes as the protein-coding information is generally lost. 395 

Accordingly, annotating the corresponding database hits per pseudogene is a more reliable way 396 

of assigning putative function. We used majority rule of all member sequences per cluster to 397 

assign individual COG IDs and categories, and the same approach for assigning functions to 398 

individual pseudogene sequences based on database sequence annotations. We assigned COG 399 

categories based on a mapping of COG IDs from the COG 2020 database release. This was 400 

performed as the raw output COG categories were based on an earlier version of the database 401 

that did not include mobilome (category X) annotations. 402 
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 403 

Generalized linear mixed models 404 

Generalized linear mixed models were fit in R using the glmmTMB35 package v1.1.5, one for the 405 

ultra-rare, other-rare, and shell pangenome partitions, respectively. Only COG-annotated 406 

elements were included in these models, excluding those annotated by the (rare) A, B, Y, and Z 407 

COG categories only. We used the binomial family and nlminb optimization algorithm with 408 

1000 set for both iter.max and eval.max. The full R-style formula for each model was:  409 

 410 

pseudogene ~ COG-category + non-redundant-status + COG-category: non-redundant-status + (1 411 

| species) + (1 | COG-category: species) + (1 | non-redundant-status:species) 412 

 413 

In this formula, random effects are specified as those in parentheses including “1|” and 414 

interaction terms are indicated with “:”. The response was a Boolean variable indicating whether 415 

each element is a pseudogene. The COG-category variable is categorical indicating the one-letter 416 

COG category code that each element belongs to. In cases where elements were members of 417 

multiple categories, duplicate rows were created for each category. The Transcription category 418 

(K) was selected as the first level, to be used for the intercept, as it was the most consistently 419 

abundant COG category across all three partitions (third in the other-rare and shell, and fourth in 420 

ultra-rare). The non-redundant-status variable was a Boolean variable indicating whether each 421 

element was not redundant with another intact element of the same COG ID (gene family, not 422 

category) in the same genome. This negative formulation of redundancy (i.e. whether an element 423 

is not redundant, rather than whether it is redundant) was chosen as most elements were 424 

redundant, and so we decided to set the default level in each model (False) to be more 425 

representative. The species variable corresponded to the name of the species encoding each 426 

element. 427 

We also fit simpler models with subsets of these variables and computed Akaike 428 

Information Criterion (AIC) values for each model, that allowed us to compare across models 429 

and investigate whether more complex models provide significantly more information. We 430 

visualized the AICs per model based on normalized scores that transformed the minimum model 431 

AIC per partition to be 0 and the maximum model AIC per partition to be 1. 432 
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To estimate the rough percentage of intact genes in pseudogene-depleted vs. pseudogene-433 

enriched categories, we classified all intact genes by whether they were included in a tested 434 

category (such as genes within a certain COG category that were non-redundant) that was 435 

significant in each GLMM. We then tallied the numbers of genes categorized as significantly 436 

pseudogene-depleted vs. pseudogene-enriched relative to the total number of genes tested. Note 437 

that genes found across multiple COG categories were duplicated in the input table for each 438 

COG category, and so would contribute multiple times to the tally of total genes. 439 

Finally, for each significant COG category in the ultra-rare generalized linear model 440 

(excluding those interacting with non-redundancy), we systematically tested whether individual 441 

COG IDs were enriched for pseudogenes based on Fisher’s exact tests comparing the number of 442 

pseudogene and intact genes within each COG ID (and with the same redundancy status and in 443 

the same species) compared to the background of all other elements with the same redundancy 444 

status in the same species. 445 

 446 

Dataset processing – broad pangenome analysis 447 

We downloaded all genomes used in this study from the Genome Taxonomy Database12 release 448 

202. We identified all species in this database with at least ten high quality genomes, based on 449 

these criteria: (1) marked as passing the minimum information about a metagenome-assembled 450 

genome36 check; (2) CheckM37 completeness > 98% and contamination < 1%; (3) fewer than 451 

1000 contigs; (4) contig N50 > 5000; (6) fewer than 100,000 ambiguous bases. We also 452 

restricted our analyses to genomes in RefSeq (rather than those in GenBank only), except for 453 

Wolbachia pipientis genomes, which were numerous but primarily limited to GenBank. For 454 

species with more than twenty genomes, we randomly sampled down to twenty genomes. We 455 

identified 670 species that fit these criteria and downloaded the corresponding genomes. Certain 456 

genomes had been relabelled or removed from NCBI since the release of Genome Taxonomy 457 

Database release 202, which resulted in a minimum of nine genomes per species (we eliminated 458 

two species with fewer than nine genomes). We annotated all genomes with Prokka38 version 459 

1.14.5 with the –kingdom, --compliant, and –rfam options. We also specified the —metagenome 460 

flag for all genomes with 50 or more contigs. We ran Panaroo39 version 1.3.0 on all output GFFs, 461 

with the –remove-invalid-genes and --clean-mode strict options. We then ran Pseudofinder40 462 

v1.1.0 on the Prokka-output GenBank files to identify all putative pseudogenes, using protein 463 
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sequences from the UniRef90 database41 (UniProt KB release 2022_01) as a reference database. 464 

We restricted the output to intergenic pseudogenes specifically, as the other pseudogene types 465 

identified by Pseudofinder correspond to divergent intact coding sequences (in length or 466 

modularity), which are difficult to interpret as truly degenerating sequences, and could simply 467 

represent functionally divergent proteins. We performed three filtering steps on the output 468 

intergenic pseudogenes. Specifically, we excluded all (1) pseudogene calls within 500 bp of 469 

contig ends, (2) pseudogenes of called length < 100 bp or > 5000 bp, and (3) pseudogenes that 470 

substantially differed from the mean size of all matching database hits (mean database size – 471 

pseudogene size was inclusively required to be between -500 bp and 2000 bp). Pseudogenes 472 

were clustered with cd-hit using the same settings as described above. Where possible, these 473 

commands were parallelized with GNU Parallel42 version 20161222. 474 

 475 

Pangenome metric computation 476 

The mean numbers of singletons (whether of intact genes or pseudogenes) per species were 477 

identified after repeated subsampling to nine strains per species and then comparing the 478 

overlapping genes/pseudogenes. This procedure was repeated for up to 100 replicates (or until 479 

the maximum number of strain combinations was reached) and the number of singletons per 480 

genome was computed across all replicates. Note that for a supplementary analysis this 481 

subsampling was also conducted for subsamples of three and 20 genomes. 482 

 the estimated number of singleton genes for a given species, given a number of 483 

subsampled genomes k, 𝑈𝑘 , is defined as: 𝑈𝑘 =  

∑ (
∑ 𝑢𝑗𝑚

𝑘
𝑚=1

𝑘
)𝑟

𝑗=1

𝑟
, where r is the total number of 484 

subsampled replicates and 𝑢𝑗𝑚 is the number of genome-specific genes found in genome m 485 

(based on genomes subsampled in replicate j). If there are N genomes in total for a given species, 486 

then 𝑟 = min(100, (𝑁
2

)). The mean percentage of intact gene singletons per species can then be 487 

calculated as: 𝑠𝑖 = 100 ∗ 
𝑈𝑘

𝐺
, where G is the mean number of genes per genome (across all N 488 

genomes). This same procedure was repeated for pseudogenes, except that the numbers of 489 

singleton pseudogenes were computed per subsample replicate, and the mean percentage of 490 

pseudogenes per species (sp) was calculated based on the average number of pseudogenes per 491 

genome. To be clear, this formulation means that the si/sp metric corresponds to a comparison of 492 
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the percentage of singleton intact and pseudogene calls overall per species, rather than of calls 493 

within each individual genome. 494 

 495 

Evolutionary metric computation 496 

We performed codon-aware multiple-sequence alignment of all ubiquitous and single-copy genes 497 

sequences per-species with muscle43 version 3.8.1551, based on the HyPhy44 version 2.5.36 498 

codon-aware workflow (https://github.com/veg/hyphy-analyses/tree/master/codon-msa). We then 499 

concatenated the core gene alignments per species with a Python script 500 

(cat_core_genome_msa.py) and computed pairwise dN/dS and dS for each combination of strain 501 

pairs per species with an additional script (mean_pairwise_dnds.py). Both scripts, and the bash 502 

commands for running the codon-aware alignments, are available in v1.1.0 of this repository: 503 

https://github.com/gavinmdouglas/handy_pop_gen. The latter script identifies potential non-504 

synonymous and synonymous mutation sites between each sequence pair using the NG86 505 

approach45. We computed the mean values across all pairwise strain comparisons, resulting in a 506 

single measure of dN/dS and dS per species.  507 

 508 

Linear models 509 

We built linear models using the lm function in R to predict pangenome diversity, based on (per 510 

species) either the mean number of genes, the genomic fluidity, si, or si/sp. The predictors 511 

included dS, dN/dS, and taxonomic class. Classes with <= 5 member species were collapsed into 512 

the “Other” category, which was set as the intercept for the models. One species, Rickettsia 513 

prowazekii, was excluded from this analysis due to values of zero for si and si/sp. We transformed 514 

all continuous variables to be normally distributed, except for the mean number of genes, which 515 

was already normally distributed. We performed a square-root transformation of the genomic 516 

fluidity, si, si/sp , and dS values. The dN/dS values were especially right skewed and required a 517 

negative inverse transformation (-1 * 1/x, where x is each dN/dS value) to be normalized. We 518 

then converted each continuous variable to standardized units, by mean-centring and dividing by 519 

the standard deviation. This step means that the model outputs refer to units of standard deviation 520 

per variable, which makes it possible to compare the magnitude of coefficients across models 521 

with different response variables. 522 

 523 

https://github.com/veg/hyphy-analyses/tree/master/codon-msa
https://github.com/gavinmdouglas/handy_pop_gen
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General analyses 524 

No tests for statistical power were conducted to determine the sample sizes required for this 525 

study, but we used genomes from all available species in the Genome Taxonomy Database of 526 

sufficient quality. All statistical analyses were conducted in R v4.2.2. Figures were generated 527 

with ggplot246 v3.4.0, with the exception of the heatmaps, which were created with the 528 

ComplexHeatmap47 package v2.14.0. 529 

 530 

Data Availability 531 

Key data files are openly available on Zenodo48 (https://doi.org/10.5281/zenodo.7942836). All 532 

analysed genomes are publicly available as part of NCBI RefSeq/GenBank (with accession IDs 533 

listed in the Zenodo repository). Additional databases used in this study include the eggNOG 5 534 

database for eggNOG-mapper (http://eggnog5.embl.de) and UniProt KB release 2022_01 535 

(https://www.uniprot.org/release-notes/2022-02-23-release). 536 

 537 

Code Availability 538 

The code used for the analyses in this manuscript is openly available GitHub at 539 

https://github.com/gavinmdouglas/pangenome_pseudogene_null. 540 

 541 

Acknowledgements 542 

We would like to thank Ford Doolittle for providing motivating ideas, and for advice and 543 

feedback throughout this project. We would also like to thank Louis-Marie Bobay for reading a 544 

draft of this manuscript and providing feedback, and Adam Eyre-Walker for providing 545 

constructive comments. GMD was supported by a Natural Sciences and Engineering Research 546 

Council of Canada (NSERC) Postdoctoral Fellowship and BJS is supported by an NSERC 547 

Discovery Grant. 548 

 549 

Author Contributions Statement 550 

Both GMD and BJS designed the study and wrote the manuscript. GMD conducted all analyses. 551 

 552 

Competing Interests Statement 553 

The authors declare that they have no competing interests related to the content of this article. 554 

https://doi.org/10.5281/zenodo.7942836
http://eggnog5.embl.de/
https://www.uniprot.org/release-notes/2022-02-23-release
https://github.com/gavinmdouglas/pangenome_pseudogene_null


 19 

 555 
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 558 

Figure Legends/Captions 559 

Figure 1: Distributions of gene or pseudogene sequence clusters by species and frequency in the 560 

pangenome, restricted to clusters that could be COG-annotated. Mixed elements are sequence 561 

clusters that include both pseudogenes and intact genes in the same cluster. Percentages 562 

correspond to the breakdown per species within a given element type (i.e. intact, mixed, or 563 

pseudogene) and raw counts are shown in parentheses. 564 

 565 

Figure 2: Summary of significant coefficients (P < 0.05) in generalized linear mixed model with 566 

singleton and doubleton (ultra-rare) element state (intact or pseudogene) as the response. This 567 

model was based on 213,912 separate elements. The predictors were each element’s annotated 568 

COG category, whether the element is redundant with an intact gene of the same COG ID (i.e. 569 

gene family, not COG category) in the same genome, and the interaction between these 570 

variables. The non-redundant coefficients represent the sum of the overall non-redundant 571 

coefficient and the interaction of non-redundancy and each COG category. Bars represent the 572 

estimated logit (log-odds) coefficient values: estimates > 0 indicate an increased probability of 573 

an element being classified as a pseudogene. Error bars represent one standard error, which is a 574 

point estimate per coefficient (rather than reflecting a distribution of coefficients). 575 

 576 

Figure 3: Distributions of singleton-based pangenome diversity and molecular evolution metrics. 577 

(a) Mean percentage of intact genes and pseudogenes that are singletons (i.e. genome-specific) 578 

per species. The mean percent singletons (for both intact genes and pseudogenes) per species 579 

was based on repeated subsampling to nine genomes (for up to 100 replicates). Possible (but 580 

non-exhaustive) drivers of higher or lower si/sp ratios are indicated alongside coloured arrows. 581 

Species mentioned in the main text are indicated. (b) Relationship between synonymous 582 

substitution rates (dS), a measure of strain divergence, and the ratio of the non-synonymous to 583 

synonymous substitution rates (dN/dS), coloured by si/sp. Relationship between dS and (c) the 584 

mean percent intact singletons and (d) the mean percent pseudogene singletons, shaded by 585 
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dN/dS. Across all panels, each point represents one of 668 prokaryotic species (>= 9 genomes 586 

each). Two-tailed Spearman correlation coefficients and P-values are indicated on panels b-d, 587 

and correspond to the comparison of the variables shown on the x and y axes. The more exact P-588 

values for panels b-d are all P < 2.2 x 10-16. 589 

 590 

Figure 4: Associations between pangenome diversity metrics and estimated efficacy of selection 591 

(dN/dS). Each panel presents the association between the ratio of non-synonymous to 592 

synonymous substitution rates (dN/dS; across each species’ core genome), plotted on a log10 593 

scale, and one of the following measures: (a) the mean number of genes per genome, (b) 594 

genomic fluidity, (c) the mean percent of intact singletons, and the percentage of singleton intact 595 

genes normalized by the percentage of singleton pseudogenes per species. Each point is one of 596 

668 prokaryotic species. The two-tailed Spearman correlation coefficients and P-values are 597 

indicated. The more exact P-values output for panels b-d are P < 2.2 x 10-16, P < 2.2 x 10-16, and 598 

P=5.484 x 10-9, respectively. 599 

 600 

Figure 5: Spearman’s correlations between molecular evolution and pangenome diversity 601 

metrics. Each cell represents the correlation coefficient for a pairwise comparison of variables. 602 

Coloured cells are significant (P < 0.05), and non-significant cells are dark grey. The left plot 603 

includes all species while the right plot provides the results based on a subset of species, with 604 

outliers for dS and dN/dS removed. The column dN/dS (dS partial) corresponds to two-tailed 605 

partial Spearman correlations between dN/dS and each variable, controlling for dS. 606 

 607 

Figure 6: Weak relationships between the mean percent of each species’ genome covered by 608 

pseudogenes and the (a) within-species ratio of the non-synonymous to synonymous substitution 609 

rates (dN/dS) and (b) the within-species synonymous substitution rate (dS). Each point 610 

corresponds to one of 668 species. Values of si/sp are overlaid on a log10 scale on both panels. The 611 

result of two-tailed Spearman correlation tests between the variables plotted on the x and y are 612 

indicated (including the two-tailed partial Spearman correlation controlling for dS in panel a). 613 

 614 
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