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Abstract

Reverse engineering is fundamental for understanding the inner workings of new malware, explor-
ing new vulnerabilities in existing systems, and identifying patent infringements in the distributed
executables. It is the process of getting an in-depth understanding of a given binary executable
without its corresponding source code. Reverse engineering is a manually intensive and time-
consuming process that relies on a thorough understanding of the full development stack from
hardware to applications. It requires a much steeper learning curve than programming. Given the
unprecedentedly vast amount of data to be analyzed and the significance of reverse engineering, the
overall question that drives the studies in this thesis is how can data mining and machine learning
technologies make cybersecurity practitioners more productive to uncover the provenance, under-
stand the intention, and discover the issues behind the data in a scalable way. In this thesis, I
focus on two data-driven solutions to help reverse engineers analyzing binary data: assembly clone
search and behavioral summarization.

Assembly code clone search is emerging as an Information Retrieval (IR) technique that helps
address security problems. It has been used for differing binaries to locate the changed parts, iden-
tifying known library functions such as encryption, searching for known programming bugs or
zero-day vulnerabilities in existing software or Internet of Things (IoT) devices firmware, as well
as detecting software plagiarism or GNU license infringements when the source code is unavail-
able. However, designing an effective search engine is difficult, due to varieties of compiler opti-
mization and obfuscation techniques that make logically similar assembly functions appear to be
dramatically different. By working closely with reverse engineers, I identify three different sce-
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narios of reverse engineering and develop novel data mining and machine learning models for
assembly clone search to address the respective challenges. By developing an intelligent assembly
clone search platform, I optimize the process of reverse engineering by addressing the information
needs of reverse engineers. Experimental results suggest that Kam1n0 is accurate, efficient, and
scalable for handling a large volume of data.

The second part of the thesis goes beyond optimizing an information retrieval process for re-
verse engineering. I propose to automatically and statically characterize the behaviors of a given
binary executable. Behavioral indicators denote those potentially high-risk malicious behaviors
exhibited by malware, such as unintended network communications, file encryption, keystroke
logging, abnormal registry modifications, sandbox evasion, and camera manipulation. I design a
novel neural network architecture that models the different aspects of an executable. It is able to
predict over 139 suspicious and malicious behavioral indicators, without running the executable.
The resulting system can be used as an additional binary analytic layer to mitigate the issues of
polymorphism, metamorphism, and evasive techniques. It also provides another behavioral ab-
straction of malware to security analysts and reverse engineers. Therefore, it can reduce the data to
be manually analyzed, and the reverse engineers can focus on the binaries that are of their interest.

In summary, this thesis presents four original research projects that not only advance the knowl-
edge in reverse engineering and data mining, but also contribute to the overall safety of our cyber
world by providing open-source award-winning binary analysis systems that empower cybersecu-
rity practitioners.
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Résumé

Lingénierie inverse est essentielle pour comprendre le fonctionnement interne des nouveaux logi-
ciels malveillants, explorer des nouvelles vulnérabilités dans les systèmes existants et identifier les
violations de brevets dans les exécutables distribués. C’est le processus d’obtenir une compréhen-
sion approfondie d’un exécutable binaire donné sans le code source. L’ingénierie inverse est un
processus intensif manuellement et long qui compte sur une compréhension approfondie de la pile
de développement complète. Cela nécessite une courbe d’apprentissage beaucoup plus raide que
la programmation. Compte tenu de la quantité sans précédent de données à analyser, la question
générale promeut les travaux de cette thèse est de savoir comment les technologies d’exploration de
données et dapprentissage machine peuvent rendre les praticiens de la cybersécurité plus produc-
tifs pour découvrir la provenance et découvrez les problèmes liés aux données. Dans cette thèse, je
me concentre sur deux solutions basées sur les données pour aider les ingénieurs inverse à analyser
des données binaires: la recherche de clone d’assemblage et la synthèse comportementale.

La recherche de clones de code d’assemblage est émergent comme une technique de récupéra-
tion d’informations (IR) qui aide à résoudre les problèmes de sécurité. Il a été utilisé par différents
binaires pour localiser les pièces modifiées, identifiant des fonctions de bibliothèque connues telles
que le cryptage, la recherche de bogues de programmation connus ou de vulnérabilités zero-day
dans les logiciels existants ou les appareils de firmware d’internet des objets (IoT), ainsi que la dé-
tection de plagiat logiciel ou dinfractions de licence GNU lorsque le code source est indisponible.
Cependant, concevoir un moteur de recherche efficace est difficile, en raison de la diversité dob-
scurcissement du compilateur et les techniques qui rendent les fonctions dassemblage logiquement
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similaires semblent être radicalement différentes. En travaillant en étroite collaboration avec les
ingénieurs inverse, j’identifie trois scénarios différents d’ingénierie inverse et développé de nou-
veaux modèles d’exploration de données et dapprentissage machine pour la recherche de clones
d’assemblage afin de relever les défis respectifs. En développant une plate-forme de recherche de
clones d’assemblage intelligente, j’optimise le processus dingénierie inverse en s’adressant aux
besoins des informations pour lingénieurs inverse.

La deuxième partie de la thèse va au-delà de loptimisation dun processus de récupération din-
formation pour lingénierie inverse. Je propose de caractériser automatiquement et statiquement
les comportements dun exécutable binaire donné. Les indicateurs comportementaux indiquent
les comportements malveillants potentiellement à risque élevé par des logiciels malveillants, tels
que les communications réseau non intentionnelles, le cryptage des fichiers, lenregistrement des
frappes clavier, les modifications de registre anormales, lenvironnement de test (Sandbox), et la
manipulation de la caméra. Je conçois une nouvelle architecture de réseau neuronal qui modélise
les différents aspects dun exécutable. Il est capable de prédire plus de 139 indicateurs de comporte-
ment suspects et malveillants, sans exécuter l’exécutable. Le système résultant peut être utilisé
comme une couche analytique binaire supplémentaire pour atténuer les problèmes de polymor-
phisme, de métamorphisme et des techniques évasives. Il fournit également une autre abstraction
comportementale des logiciels malveillants aux analystes de la sécurité.

En résumé, cette thèse présente quatre projets de recherche originaux qui non seulement avance
les connaissances dingénierie inverse et d’exploration de données, mais aussi contribuent à la sécu-
rité globale de notre monde cybernétique en fournissant des systèmes danalyse binaire primés à la
source ouverte qui responsabilisent les praticiens de la cybersécurité.

iv



Contributions

This section summarizes the main contributions of four research papers that primarily constitute
this thesis. The complete list of contributions can be found in each corresponding section. These
four papers are my own work. However, all of them benefited tremendously from the guidance,
feedback, advice, review, and proofreading from my supervisor Dr. Benjamin C. M. Fung, our
research collaborator Mr. Philippe Charland, and my supervision committees: Dr. Charles-Antoine
Julien and Dr. Shane McIntosh.

Kam1n0 [30]: It is the first clone search engine that can efficiently and accurately identify the
given query assembly function’s subgraph clones from a repository of millions of candidates. It
contributes to the data mining domain by proposing a new adaptive locality sensitive hashing al-
gorithm and a new map-reduce based subgraph clone search algorithm. Extensive experimental
results suggest that Kam1n0 is accurate, efficient, and scalable for handling a large volume of
assembly code.

Sym1n0 [28]: Kam1n0 is designed for subgraph clone search within a single processor architecture
such as x86 or ARM. However, in some reverse engineering scenarios, such as firmware analysis,
one will need to find clones among assembly codes of different processor families. This paper
proposes the first scalable subgraph clone search engine that supports cross-architecture search.
I design a novel tree-based index for symbolic expressions using their differential I/O behavior
and combine it with a MapReduce-based subgraph search algorithm. The index can find seman-
tically similar expressions with sub-linear complexity. This work is currently under review in an
international journal.
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Asm2Vec [29]: There exist various compiler optimization and code obfuscation techniques that
make logically similar assembly functions appear to be very different. To address this problem, I
propose a novel neural network to jointly learn the lexical semantic relationships and the vector
representation of assembly functions based on assembly code. It can find and incorporate rich
semantic relationships among tokens. The experiment shows that the learned representation is
more robust and significantly outperforms existing methods against the changes introduced by
obfuscation and optimizations.

RAVEN [27]: Behavioral indicators provide a high-level understanding of the malware’s dynamic
functionalities for security analysts and are used to characterize previously unknown malware fam-
ilies. I propose and implement the first new neural network-based static scanner, RAVEN, that can
characterize the malicious behaviors of a given executable. The goal is to statistically predict 139
suspicious and malicious behavioral indicators, without running the executable. We design a novel
neural network architecture that models the different aspects of an executable. Relying on pattern
recognition, it tries to find any generalizable information and does not require unpacking. The
experimental result shows that it performs better than existing static approaches with a low false
positives rate. This work is currently under review in an international conference.

The resulting systems are not only published in top data mining and security forums but also
won an international award and are being used in public sectors and private sectors.
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1
Introduction

Reverse engineering is the process of getting an in-depth understanding of a given binary exe-
cutable without its corresponding source code. First, the binary executable is translated byte-by-
byte into a human-understandable format of machine instructions, namely, assembly code. Then
the reverse engineer abstracts the assembly code into a series of logical flow to determine its func-
tionality. This analytic process is called assembly code analysis. Reverse engineering is critical for
mitigating the increasing threats from malicious software. Even without the corresponding source
code, one can still get a thorough understanding of their inner workings. Reverse engineering is
also a common practice for detecting and justifying the plagiarism and the patent infringements of
software.

In 2013, on average 82,000 new strains of malware were generated per day. In 2014, this
number rose up to 230,000 per day, according to the Panda Security Annual reports [99], [100].
Malware refers to any software that exhibits malicious behaviors, such as viruses, Trojan horses,
worms, and ransomware. Most malware was not created from scratch. It was developed or mu-
tated from previous software. Code reuse is a common but uncontrolled issue in software engi-
neering [63]. More than 50% of files were reused in more than one open source project [91].
The survey [124] indicates that more than 50% of the developers modified the components they
reused. Such massively uncontrolled reuse of source code does not only introduce legal issues such
as GNU violations [68], [137], but also implies security concerns [19], as the source code and the
vulnerabilities were shared between projects. Moreover, malware becomes increasingly intelligent,
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1.1 Assembly Clone Search

obfuscated, and sophisticatedly encrypted. It is challenging for a reverse engineer to analyze.

Addressing all these issues requires effort from reverse engineers, which is a manually inten-
sive and time-consuming process, even for an experienced reverse engineer. Moreover, the learning
curve to master reverse engineering is much steeper than for programming [19]. There is a consid-
erably increased number of executables to be analyzed by reverse engineers. However, there are
limited scalable techniques and tools that can reduce the burden of this task. Given that code reuse
is prevalent in software development, there is a pressing need to develop new data mining and ma-
chine learning techniques that can leverage the knowledge of those existing software or malware
that has been analyzed before. Given the executable under study, these techniques can help reverse
engineers avoid components that have been analyzed before and focus only on the new part. In-
telligent models can be further trained to profile the behaviors and analyze the provenance of the
given executable.

The overall question that drives the research agenda of this thesis is how technologies, specif-

ically data mining and machine learning, can help reverse engineers analyze and uncover the

provenance, understand the intention, and discover issues in a scalable way, given the exponen-

tially increasing amount of data and threats.

In this study, it is assumed that reverse engineers have a large repository of binary files from
previous analyses. This repository can contain assembly code that has been previously annotated
or assembly code from some well-known libraries and open-source projects. Alternatively, it can
contain a database of well-understood malware samples. The objective of this research is to develop
new data mining techniques and machine learning models that can turn the overwhelming amount
of data into reusable knowledge and facilitate the reverse engineering process. The proposed study
addresses four different real-life challenges from two different aspects:

1.1 Assembly Clone Search

Assembly code clone search is emerging as an Information Retrieval (IR) technique that helps
address security-related problems. It has been used for differing binaries in locating the changed
parts [14], identifying known library functions such as encryption [105], searching for known
programming bugs or zero-day vulnerabilities in existing software or Internet of Things (IoT)
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devices firmware [34], [39], as well as detecting software plagiarism or GNU license infringements
when the source code is unavailable [69], [85]. According to the needs of the reverse engineering
task in different analytic scenarios, the proposed research focuses on three retrieval problems:

• Subgraph Clone Search Focuses on scalable and efficient clone search that supports sub-
graph retrieval. Supports clone search within a single assembly instruction family such as
x86. It is applicable for retrieving similar vulnerabilities across the software repository or
comparing different versions or variants of a binary. For example, it enables the comparison
between different browsers such as Opera, Chrome, and Chromium that are built on the same
rendering engine Blink.

• Cross Architecture Clone Search Enables subgraph clone search across different assem-
bly instruction families. For example, searching the x86 code as a query against the reposi-
tory of arm code. It enables large-scale retrieval of variants of vulnerability across different
firmware and drivers.

• Robust Clone Search The same source code can result in very different assembly code given
different compilers and optimization techniques. Moreover, nowadays malware is mostly
obfuscated, and can look different, even when they belong to the same family [64], [139]. A
robust clone search engine that neutralizes the semantic variants can help reverse engineering
retrieve the highly obfuscated clones.

1.2 Assembly Code Behavioral Analysis

In addition to helping reverse engineers understand low-level semantic details of a binary file
through clone search, the proposed study also automates high-level behavioral analyses for reverse
engineering purposes. The goal is to statically predict an executable’s potential malicious behaviors
without actually running or simulating it. Simulation is also time-consuming and computationally-
expensive. Malicious behaviors denote those user-unaware or damaging behaviors that are prac-
ticed by an executable, such as unintended network communications, file encryption, keystroke
logging, abnormal registry modifications, sandbox evasion, and camera manipulation. Generally,
they are referred to as behavioral indicators.
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Behavioral indicators provide a high-level understanding of a malware’s dynamic function-
alities for security analysts and are used to characterize previously unknown malware families.
Behavioral indicators have been widely used as the output of sandbox-based malware analyses.
However, the complexity of modern malware has considerably increased. Malware is becoming
sandbox-aware by incorporating modern evasive techniques. They can detect the sandbox environ-
ment and then skip unpacking, decrypting, or executing the critical malicious payload.

To address these issues, we propose a new neural network-based static scanner, RAVEN, that
can scan a binary file and characterize the malicious behaviors of a given executable. The model
should be able to neutralize the effect of different packers and obfuscators in modern malware to
fulfill the prediction tasks. Modern malware can skip executing malicious payload if a simulation
run-time environment is detected. Simulation-based behavior analysis techniques fail in such a
situation. However, a neural network as a static scanner does not suffer from this problem. It
completes modern sandbox-based simulation analysis.

1.3 Research Outcome and Thesis Organization

The outcome of the proposed research mainly consists of the following components:

• Academic publications in the area of data mining, software engineering, and software se-
curity that fill existing specific research gaps in state-of-the-art static binary or assembly
analysis techniques.

• Publicly available new datasets for future research under similar directions, to facilitate the
reproducibility and transferability of the research outcome.

• An open-source unified binary management and analysis platform that incorporates all the
proposed techniques. It can be seamlessly integrated into the day-to-day workflow of reverse
engineers.

The resulting system has been presented at SOPHOS Vancouver, ESET Montreal, Above Se-
curity Montreal, and Google Montreal. It won the best poster award at the Smart Cybersecurity
Network Canada (SERENE-RISC) workshop. It also won the Hex-Rays international plug-in con-
test award. Hex-Rays develops the most widely used and most capable disassembler for reverse
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engineering. It is now used in Defence Research and Development Canada (DRDC) and has been
integrated into the malware signature generation process in Cisco. See chapter 6.2 for more details.

This thesis is organized as follows. Chapter 2 presents our subgraph clone search engine
Kam1n0 and its detailed contribution to the domain of binary analysis and data mining. Chap-
ter 3 presents our cross-architecture subgraph clone search engine Sym1n0 and describes how it
contributes to symbolic expression retrieval literature. Chapter 4 presents our machine learning
model that learns interesting or unique patterns from the assembly code and reports how it miti-
gates the effects of optimization and obfuscation. Chapter 5 presents our machine learning model
that models different aspects of an executable and is able to accurately predict its behaviors. While
Chapter 2, 3, 4, and 5 each contain their own conclusions given the context of different related
literature, Chapter 6 summarizes the contributions and envisions the future directions.

5



2
Assembly Subgraph Clone Search

Given the fact that code reuse is prevalent in software development, there is a pressing need to
develop an efficient and effective assembly clone search engine for reverse engineers. Assembly
clone search addresses the information need of reverse engineers: the assembly code fragment un-
der analysis is a duplicate of an existing known one. This assumption is valid due to the prevalence
of code reuse on the source level. Previous clone search approaches only focus on the search accu-
racy. However, designing a practical useful clone search engine is a non-trivial task that involves
multiple factors to be considered. By closely collaborating with reverse engineers and Defence Re-

search and Development Canada (DRDC), we outline the deployment challenges and requirements
as follows:

Interpretability and usability: An assembly function can be represented as a control flow
graph consisting of connected basic blocks. Given an assembly function as query, all of the pre-
vious assembly code clone search approaches [24], [36], [69], [114] only provide the top-listed
candidate assembly functions. They are useful when there exists a function in the repository that
shares a high degree of similarity with the query. However, due to the unpredictable effects of dif-
ferent compilers, compiler optimization, and obfuscation techniques, given an unknown function
it is less probable to have a very similar function in the repository. Returning a list of clones with
a low degree of similarity values is not useful. As per our discussions with DRDC, a practical
search engine should be able to decompose the given query assembly function to different known
subgraph clones, which can help reverse engineers better understand the function’s composition.
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We define a subgraph clone as one of its subgraphs that can be found in the other function. Refer
to the example in Figure 2.1. The previous clone search approaches cannot address this challenge.

Efficiency and scalability: An efficient engine can help reverse engineers retrieve clone search
results on-the-fly when they are conducting an analysis. Instant feedback tells the reverse engineer
the composition of a given function that is under investigation. Scalability is a critical factor as
the number of assembly functions in the repository needs to scale up to millions. The degradation
of search performance against the repository size has to be considered. Previous approaches [24],
[36] that trade efficiency and scalability for better accuracy have a high latency for queries and are
thus not practically applicable.

Incremental updates: The clone search engine should support incremental updates to the
repository without re-indexing existing assembly functions. BinClone [36] requires median statis-
tics to index each vector, and the model for fine-grain clone detection [114] requires data-dependent
settings for its index, so neither satisfies this requirement.

Clone search quality: Practically, clones among assembly functions are one-to-many map-
pings, i.e., a function has multiple cloned functions with different degrees of similarity. However,
previous approaches [24], [36], [69], [114] assume that clones are one-to-one mappings in the ex-
periment. This is due to the difficulty of acquiring such a one-to-many labeled dataset. Moreover,
they use different evaluation metrics. Therefore, it is difficult to have a direct comparison among
them with respect to the search quality. We need to develop a one-to-many labeled dataset and a
unified evaluation framework to quantify the clone search quality.

To address the above requirements and challenges we propose a new variant of the Locality

Sensitive Hashing (LSH) scheme and incorporate it with a graph matching technique. We also
develop and deploy a new assembly clone search engine called Kam1n0. Our main contributions
can be summarized as follows:

• Solution to a challenging problem for the reverse engineering community: Kam1n0 is
the first assembly code clone search engine that supports subgraph clone search. Refer to
the example in Figure 2.1. It promotes interpretability and usability by providing subgraph
clones as results, which helps reverse engineers analyzing new and unknown assembly func-
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 push  ebp
 mov  ebp, esp
 push  ecx

 mov  [ebp+key], 1A9Ch
 mov  eax, [ebp+msg]
 push  eax
 push  offset Format
 call  ds:printf
 add  esp, 8
 mov  [ebp+msg], 1
 cmp  [ebp+msg], 0
 jz  short loc_40103E

mov  ecx, [ebp+key]
push  ecx
push  offset aTheKeyIsD
call  ds:printf
add  esp, 8
jmp  short loc_401050

loc_40103E:
 mov  edx, [ebp+arg_0]
 push  edx
 push  offset aInvMsg
 call  ds:printf
 add  esp, 8

loc_401050:
xor  eax, eax
mov  esp, ebp
pop  ebp
retn

 push  ebp
 mov  ebp, esp
 push  ecx
 

 mov  [ebp+var_4], 1A9Ch
 mov  eax, [ebp+arg_0]
 push  eax
 push  offset aD       
 call  ds:printf
 add  esp, 8
 mov  [ebp+arg_0], 1
 cmp  [ebp+arg_0], 0
 jz  short loc_4010BC

mov  ecx, [ebp+var_4]
push  ecx
push  offset aTheKeyIsD_0
call  ds:printf
add  esp, 8
jmp  short loc_4010D5

 loc_4010C3:
 mov  eax, [ebp+arg_0]
 push  eax
 push  offset aInvMsg
 call  ds:printf
 add  esp, 8

loc_4010D5:
xor  eax, eax
mov  esp, ebp
pop  ebp
retn

mov  edx, [ebp+var_4]
imul  edx, [ebp+arg_0]
push  edx
push  offset 
aTheKeyIsD_1
call  ds:printf
add  esp, 8
jmp  short loc_4010D5

loc_40109E:
mov  [ebp+arg_0], 2
cmp  [ebp+arg_0], 0
jz  short loc_4010C3
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Type III
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 Clone
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arg_0
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aTheKeyIsD_0

loc_401100:
mov  eax, 1
mov  esp, ebp
pop  ebp
retn

+cmp  [ebp+msg], 0
+Jz  short loc_401100

Clone: Repository Function

A basic block

A block to block clone pair

A jump link between two 
basic blocks of the same 
function

An explanation label

Figure 2.1: An example of the clone search problem. Basic blocks with a white background form a
subgraph clone between two functions. Three types of code clones are considered in this chapter:
Type I: literally identical; Type II: syntactically equivalent; and Type III: minor modifications.
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tions. Kam1n0 won the second prize at the 2015 Hex-Rays plugin Contest1, and its code is
publicly accessible on GitHub.2

• Efficient inexact assembly code search: The assembly code vector space is highly skewed.
Small blocks tend to be similar to each other, and large blocks tend to be sparsely distributed
in the space. Original hyperplane hashing with a banding technique equally partitions the
space and does not handle the unevenly distributed data well. We propose a new adaptive

locality sensitive hashing (ALSH) scheme to approximate the cosine similarity. To the best of
our knowledge, ALSH is the first incremental locality sensitive hashing scheme that solves
this issue specifically for cosine space with theoretical guarantee. It retrieves fewer points
for dense areas and more points for sparse ones in the cosine space. It is therefore efficient
in searching nearest neighbors.

• Scalable sub-linear subgraph search: We propose a MapReduce subgraph search algo-
rithm based on the Apache Spark computational framework without an additional index. Un-
like the existing subgraph isomorphism search problem in data mining, we need to retrieve
subgraphs that are both isomorphic to the query and the repository functions as graphs. Thus,
existing algorithms are not directly applicable. Algorithmically, our approach is bounded by
polynomial complexity. However, our experiment suggests that it is sub-linear in practice.

• Accurate and robust function clone search: Kam1n0 is the first approach that integrates
both inexact assembly code and subgraph search. Previous solutions do not consider both
of them together. Our experiments suggest that Kam1n0 boosts the clone search quality and
yields stable results across different datasets and metrics.

• Development of a labeled dataset and benchmark state-of-the-art assembly code clone
solutions. We carefully construct a new labeled one-to-many assembly code clone dataset
that is available to the research community by linking the source code and assembly function
level clones. We benchmark and report the performance of twelve existing state-of-the-art
solutions with Kam1n0 on the dataset using several metrics. We also set up a mini-cluster to
evaluate the scalability of Kam1n0.

The remainder of this paper is organized as follows. Section 2.1 situates our study within the
1https://hex-rays.com/contests/2015/
2https://github.com/McGill-DMaS/Kam1n0-Plugin-IDA-Pro
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2.1 Related Work

literature of three different research problems. Section 2.2 formally defines the studied problem.
Section 2.3 provides an overview of our solution and system design. Section 2.4 presents the pre-
processing steps and the chosen vector space. Section 2.5 introduces our proposed locality sensitive
hashing scheme. Section 2.6 presents our graph search algorithm. Section 2.7 presents our bench-
mark experiments. Section 2.8 concludes this chapter.

2.1 Related Work

Locality sensitive hashing. Locality sensitive hashing (LSH) has been studied for decades to solve
the ϵ-approximated Nearest Neighbor (ϵNN) problem because exact nearest neighbor does not
scale to high dimensional data. One of the prevalent problems of LSH is the uneven data distribu-

tion issue, as LSH equally partitions the data space. To mitigate this issue, several approaches have
been proposed including LSH-Forest [9], LSB-Forest [129], C2LSH [42], and SK-LSH [84]. It has
been shown that the cosine vector space is robust to different compiler settings [69] in assembly
code clone search. Especially, for the loop unrolling code optimization, cosine similarity remains
the same for the unrolled and repeated assembly fragments. However, LSH-Forest, C2LSH, and
SK-LSH are designed for the p-stable distribution, which does not fit the cosine space. LSB-Forest
dynamically and unequally partitions the data space. As pointed out by other studies [130], it re-
quires the hash family to possess the (ϵ, f(ϵ)) property. However, to our best knowledge, such a
family in cosine space is still unknown. There are other learning-based approaches [44] that do
not meet our incremental requirement. Wang et al. [136] provide a more comprehensive survey on
LSH. To satisfy our requirements, we propose the ALSH scheme specifically for the cosine space.
Different to the LSH-Forest, ALSH takes more than one bit when going down the tree structure
and does not require the (ϵ, f(ϵ)) property for the LSH family to have theoretical guarantee. Unlike
LSB-Forest [9], we dynamically construct the buckets to adapt to different data distributions.

Subgraph isomorphism. Ullmann [133] proposed the first practical subgraph isomorphism
algorithm for small graphs. Several approaches were proposed afterwards for large scale graph
data, such as TurboISO [53] and STwig [128]. It has been shown that they can solve the subgraph
isomorphism problem in a reasonable time. However, they do not completely meet our problem
settings. The subgraph isomorphism problem needs to retrieve subgraphs that are isomorphic to
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the graphs in the repository and identical to the query. However, we need to retrieve subgraphs
that are isomorphic to the graphs in the repository and isomorphic to the graph of the query, which
significantly increases the complexity. More details will be discussed in Section 2.6. Such a differ-
ence requires us to propose a specialized search algorithm. Lee et al. [80] provide a comprehensive
survey and performance benchmark on subgraph isomorphism.

Assembly code clone search. The studies on the assembly code clone search problem are
recent. Only a few approaches exist [24], [36], [69], [114]. They all rely on the inexact text search
techniques of data mining. BinClone [36] models assembly code into a Euclidean space based
on frequency values of selected features. It is inefficient and not scalable due to the exponential 2-
combination of features that approximates the 2-norm distance. LSH-S [114] models assembly code
into a cosine space based on token frequency and approximates the distance by hyperplane hashing
and banding scheme. It equally partitions the space and suffers from the uneven data distribution
problem. Graphlet [69] models assembly code into a cosine space based on extracted signatures
from assembly code. However, it cannot detect any subgraph clones smaller than the graphlet size.
Tracelet [24] models assembly code according to string editing distance. It compares functions
one by one, which requires a quadratic complexity and is not scalable. Kam1n0 is fundamentally
different to the previous approaches. It is an integration of inexact assembly code search and the
subgraph search. It enables clone subgraph search of any size.

2.2 Problem Statement

Reverse engineering starts from a binary file. After being unpacked and disassembled, it becomes
a list of assembly functions. In this chapter, function represents an assembly function; block rep-
resents a basic block; source function represents the actual function written in source code, such
as C++; repository function stands for the assembly function that is indexed inside the repository;
target function denotes the assembly function that is given as a query; and correspondingly, repos-

itory blocks and target blocks refer to their respective basic blocks. Each function f is represented
as a control flow graph denoted by (B,E), where B indicates its basic blocks and E indicates the
edges that connect the blocks. Let B(RP) be the complete set of basic blocks in the repository
and F (RP) be the complete set of functions in the repository. Given an assembly function, our
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Figure 2.2: The overall solution stack of the Kam1n0 engine.

goal is to search all of its subgraph clones inside the repository RP. We formally define the search
problem as follows:

Definition 1 (Assembly function subgraph clone search) Given a target function ft and its control

flow graph (Bt, Et), the search problem is to retrieve all the repository functions fs ∈ RP that

share at least one subgraph clone with ft. The shared list of subgraph clones between fs and ft is

denoted by sgs[1 : a], where sgs[a] represents one of them. A subgraph clone is a set of basic block

clone pairs sgs[a] = {⟨bt, bs⟩ , . . . } between fs and ft, where bt ∈ Bt, bs ∈ Bs, and ⟨bt, bs⟩ is a

type I, type II, or type III clone (see Figure 2.1). Formally, given ft, the problem is to retrieve all

{fs|fs ∈ RP and |sgs| > 0}. □

12



2.3 Overall Architecture

Input formats

Binary file

Assembly file

Assembly code processing utilities

Assembly 
function 
parser

Assembly 
code 

normalizer

Subgraph search

Mappers

Reducer 
(self-merge)

Reducer

Adaptive LSH module

Index

Cosine space
Extract 

features

Adaptive LSH forest

Produce a binary surrogate 

Find exact/inexact clones of 
assembly blocks

Pairs of basic 
block

clones

Cloned 
subgraphs of 
each function

Clone search
results

Disassembly 

factory

IDA Pro

Steven Ding, DMaS, McGill University 11

Data flow

Construct 
vector

Figure 2.3: Assembly clone search data flow.

2.3 Overall Architecture

The Kam1n0 engine is designed for general key-value storage and builds upon the Apache Spark3

computational framework. Its solution stack, as shown in Figure 2.2, consists of three layers. The
data storage layer is concerned with how the data is stored and indexed. The distributed/local
execution layer manages and executes the jobs submitted by the Kam1n0 engine. The Kam1n0
engine splits a search query into multiple jobs and coordinates their execution flow. It also provides
the RESTful APIs. We have implemented a web-based user interface and an Hex-Rays IDA Pro

plugin4 as clients. IDA Pro is a popular interactive disassembler that is used by reverse engineers.

Figure 2.3 depicts the data flow of the clone search process. It consists of the following steps.
Preprocessing: After parsing the input (either a binary file or assembly functions) into control
flow graphs, this step normalizes assembly code into a general form, which will be elaborated in
Section 2.4. Find basic blocks clone pairs: Given a list of assembly basic blocks from the previous

3Apache Spark, available at: http://spark.apache.org/
4IDA Pro, available at: http://www.hex-rays.com/
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2.4 Preprocessing and Vector Space

step, it finds all the clone pairs of blocks using ALSH. Search the subgraph clones: Given the list
of clone block pairs, the MapReduce module merges and constructs the subgraph clones. Note that
this clone search process does not require any source code.

2.4 Preprocessing and Vector Space

We choose the cosine vector space to characterize the semantic similarity of assembly code. It has
been shown that the cosine vector space is robust to different compiler settings [69]. It can mitigate
the linear transformation of assembly code. For example, to optimize the program for speed, the
compiler may unroll and flatten a loop structure in assembly code by repeating the code inside the
loop multiple times. In this case, the cosine similarity between the unrolled and original loop is
still high due to the fact that the cosine distance only considers the included angle between two
vectors. The features selected in Kam1n0 include mnemonics, combinations of mnemonics and
operands, as well as mnemonics n-gram, which are typically used in assembly code analysis [36],
[114]. The equivalent assembly code fragments can be represented in different forms. To mitigate
this issue, we normalize the operands in assembly code during the preprocessing. We extend the
normalization tree used in BinClone [36] with more types. There are three normalization levels:
root, type, and specific. Each of them corresponds to a different generalization level of assembly
code. More details can be found in the appendix.

2.5 Locality Sensitive Hashing

In this section, we introduce an Adaptive Locality Sensitive Hashing (ALSH) scheme for searching
the block-level semantic clones. As discussed in Section 2.1, exact nearest neighbor search is not
scalable. Thus, we start from the reduction of the ϵ-approximated k-NN problem:

Definition 2 (ϵ-approximated NN search problem) Given a dataset D ⊂ Rd (R denotes real num-

bers) and a query point q, let r denote the distance between the query point q and its nearest

neighbor o∗. This problem is to find an approximated data point within the distance ϵ × r where

ϵ > 1. □

The ϵ-approximated k-NN search problem can be reduced to the ϵNN problem by finding the
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k data points where each is an ϵ-approximated point of the exact k-NN of q [42]. The locality
sensitive hashing approaches do not solve the ϵNN problem directly. ϵNN is further reduced into
another problem: (ϵ, r)-approximated ball cover problem [4], [54].

Definition 3 ((ϵ, r)-approximated ball cover problem) Given a dataset D ⊂ Rd and a query point

q, let B(q, r) denote a ball with center q and radius r. The query q returns the results as follows:

• if there exists a point o∗ ∈ B(q, R), then return a data point from B(q, ϵR)

• if B(q, ϵR) does not contain any data object in D, then return nothing. □

One can solve the (ϵ, r) ball cover problem by using the Locality Sensitive Hashing (LSH)
families. A locality sensitive hashing family consists of hashing functions that can preserve the
distance between points.

Definition 4 (Locality Sensitive Hashing Family) Given a distance r under a specific metric space,

an approximation ratio ϵ, and two probabilities p1 > p2, a hash function family H → {h : Rd →
U} is (r, ϵr, p1, p2)-sensitive such that:

• if o ∈ B(q, r), then PrH[h(q) = h(o)] ⩾ p1

• if o /∈ B(q, ϵr), then PrH[h(q) = h(o)] ⩽ p2 □

LSH families are available for many metric spaces such as cosine similarity [18], hamming
distance [54], Jaccard coefficient, and p-stable distributions [21]. Based on our chosen cosine vec-
tor space, we adopt the random hyperplane hash [18] family, where sign(·) outputs the sign of the
input.

h(o⃗) = sign(o⃗ · a⃗) (2.1)

By substituting the random vector a⃗ we can obtain different hash functions in the family. The
collision probability of two data points o⃗1 and o⃗2 on Equation 2.1 can be formulated as:

P [h(o⃗1) = h(o⃗2)] = 1− θo⃗1,o⃗2
π

(2.2)

θo⃗1,o⃗2 is the included angle between o⃗1 and o⃗2. The probability that two vectors have the same
projected direction on a random hyperplane is high when their included angle is small.
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Theorem 1 The random hyperplane hash function is a (r, ϵr, 1− r/π, 1− ϵr/π) sensitive hashing

family. □

Proof 1 According to Definition 4 and Equation 2.2: p1 = 1− r/π and p2 = 1− ϵr/π

To use the locality sensitive hashing families to solve the ball cover problem, it needs a hash-
ing scheme to meet the quality requirement. The E2LSH [54] and the extended one [21]. It con-
catenates k different hash functions [h1, . . . , hk] from a given LSH family H into a function
g(o) = (h1(o), . . . , hk(o)), and adopts l such functions. The parameters k and l are chosen to
ensure the following two properties are satisfied:

Property 1 (P1): if there exists p∗ ∈ B(q, r), then gj(p
∗) = gj(q) from some j = 1 . . . l. □

Property 2 (P2): the total number of points /∈ B(q, ϵr) that collides with q is less than 2l. □

It is proven that if the above two properties hold with constant probability, the algorithm can
correctly solve the (ϵ, r)-approximated ball cover problem [54]. For E2LSH, by picking k =

logp2(1/n) and l = nρ where ρ = ln1/p1
ln1/p2

, both Properties 1 and 2 hold with constant probabil-
ity.

However, the ball cover problem is a strong reduction to the NN problem since it adopts the
same radius r for all points. Real-life data cannot always be evenly distributed. Therefore, it is
difficult to pick an appropriate r. We denote this as the uneven data distribution issue. A magic rm
is adopted heuristically [47]. But as pointed out by a studey [129], such a magic radius may not
exist. A weaker reduction [54] is proposed, where the NN problem is reduced to multiple (r, ϵ)-
NN ball cover problems with varying r = {1, ϵ2, ϵ3, . . . }. The intuition is that points in different
density areas can find a suitable r. However, such a reduction requires a large space consumption
and longer response time. Other indexing structures have been proposed to solve this issue. Per our
discussion in Section 2.1, existing techniques do not meet our requirement. Thus, we customize
the LSH-forest approach and propose the ALSH structure.
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2.5.1 Adaptive LSH Structure

We found that the limitation of the expanding sequence of r in the previous section is too strong.
It is unnecessary to exactly follow the sequence r = {1, ϵ2, ϵ3, . . . }, as long as r is increasing in a
similar manner to rt+1 = rt × ϵ. Thus, we customize the ϵ-approximated NN problem as follows:

Definition 5 (f(r)-approximated NN search problem) Given a dataset D ⊂ Rd and a query point

q, let r denote the distance between the query point q and its nearest neighbor o∗. The problem is

to find an approximated data point within the distance f(r), where f(r)/r > 1 □

Instead of using a fix approximation ratio, we approximate the search by using a function on
r. We issue a different sequence of expanding r. The expanding sequence of r is formulated as
r0, r1, . . . , rt, rt+1, . . . , rm, where rt < rt+1. Similar to the E2LSH approach, we concatenate mul-
tiple hash functions from the random hyperplane hash familyH into one. However, we concatenate
a different number of hash functions for different values of r. This number is denoted by kt for rt,
and the sequence of k is denoted by k0, k1, . . . , kt, kt+1, . . . , km, where kt > kt+1. Recall that the
concatenated function is denoted by g. Consequently, there will be a different function g at position
t, which is denoted by gt. Yet, function gt and function g(t+1) can share kt+1 hash functions. With
pm to be specified later, we set the r value at position t as follows:

rt = π × (1− p(1/kt)m ) (2.3)

This allows us to have the effect of increasing the r value by decreasing the k value. We calculate
the value of k at position t as follows:

kt = c× kt+1,where c > 1 (2.4)

By getting tt+1 from Equation 2.3, substituting kt using Equation 2.4, and substituting pm using
Equation 2.3, we have:

rt+1 = π ×
(
1− (1− rt

π
)c
)
= fc(rt) fc(rt)/rt > 1 (2.5)

By setting c equals to 2, we can get an approximately similar curve of r sequence to the original
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push ebp
mov ebp, esp
push ecx
mov [ebp+key], 1A9Ch
mov eax, [ebp+message]
push eax
push offset Format
call ds:__imp__printf
add esp, 8
mov [ebp+message], 1
cmp [ebp+message], 0
jz short loc_40103E

mov ecx, [ebp+key]
push ecx
push offset aTheKeyIsD
call ds:__imp__printf
add esp, 8
jmp short loc_401050

loc_40103E:
mov edx, [ebp+arg_0]
push edx
push offset aInvalidMessage
call ds:printf
add esp, 8

loc_401050:
xor eax, eax
mov esp, ebp
pop ebp
retn

push ebp
mov ebp, esp
push ecx
mov [ebp+key], 1A9Ch
mov eax, [ebp+message]
push eax
push offset aD  
call ds:__imp__printf
add esp, 8
mov [ebp+message], 1
cmp [ebp+message], 0
jz short loc_40109E

mov ecx, [ebp+var_4]
push ecx
push offset aTheKeyIsD_0
call ds:printf
add esp, 8
jmp short loc_4010D5

loc_4010C3:
mov eax, [ebp+arg_0]
push eax
push offset aInvalidMessa_0
call ds:printf
add esp, 8

loc_401050:
xor eax, eax
mov esp, ebp
pop ebp
retn

mov edx, [ebp+var_4]
imul edx, [ebp+arg_0]
push edx
push offset aTheKeyIsD_1
call ds:printf
add esp, 8
jmp short loc_4010D5

loc_40109E:
mov [ebp+arg_0], 2
cmp [ebp+arg_0], 0
jz short loc_4010C3

rm

rm-1

rt+1

rt

......

km

km-1 = ckm

kt+1 = ckt+2

kt = ckt+1

k0 r0

k decreases r increases

Level m

Level m-1

Level t+1

Level t

Level 0

............

......

......

Figure 2.4: The index structure for the Adaptive Locality Sensitive Hashing (ALSH). There are
m + 1 levels on this tree. Moving from level t to level t + 1 is equivalent to increasing the search
radius from rt to rt+1.

sequence rt+1 = rt × ϵ where ϵ equals to 2. Following the aforementioned logic, we construct an
Adaptive Locality Sensitive Hashing (ALSH) index in the form of prefix trees.

As shown in Figure 2.4, the index structure is a prefix tree of the signature values calculated
by G = {gm, gm−1, . . . , g0}. Level t corresponds to the position t in the r expanding sequence. By
introducing different values of kt, each level represents a different radius rt. Each level denotes a
different gt function, and the gt function is a concatenation of kt hash functions. Moving up from
a node at level t to its parent at level t + 1 indicates that it requires a shorter matched prefix. The
nodes that have the same parent at level t share the same prefix that is generated by gt.
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2.5 Locality Sensitive Hashing

To locate the leaf for a given data point q ∈ Rd, ALSH dynamically constructs the hash func-
tions by trying gt ∈ G in sequence. The signature of gt can be generated by padding additional hash
values to gt+1 since kt = c × kt+1. Following previous studies [54], [129], with l to be specified
later, we adopt l such prefix trees as the ALSH’s index. Given a query point q, we first locate the
corresponding leaves in all prefix trees. With l to be specified later, we collect the first 2l points
from all the leaf buckets. To index a point, we locate its corresponding leaf in each tree and insert
it into the leaf bucket. Suppose a leaf is on level tt+1. If the number of points in that leaf is more
than 2l, we split all the data points of that leaf into the next level t by using gt. All the trees are
dynamically constructed based on the incoming points to be indexed in sequence. Therefore, they
can be incrementally maintained. Unlike the learning-based LSH [44], Kam1n0 does not require
the whole repository to estimate the hash functions to build the index.

It can be easily proved that gt is a (rt, rt+1, pm, p
c
m)-sensitive hash family, and gt can correctly

solve the (rt+1/rt, rt)-approximated ball cover problem by setting pcm = 1/n and l = n1/c. The
proof follows the previous study [54]. Details and implementation on key-value data store can be
found in our implementation details. Another parameter rm controls the starting km value at the
root value. It indicates the maximum distance that two points can be considered as valid neighbors.
For sparse points far away from each other, they are not considered as neighbors unless their
distance is within rm.

For a single ALSH tree, the depth in the worst case is k0, and all the leaves are at level 0. In
this case, the tree is equivalent to the E2LSH with k = k0. Therefore, the space consumption for
l = n1/c ALSH trees is bounded by O(dn + n1+1/c), where O(dn) is the data points in a dataset
and O(n1+1/c) is the space of indexes for the trees. The query time for a single ALSH prefix tree
is bounded by its height. Given the maximum k value k0 and the minimum k value km, its depth
in the worst case is logc(k0/km) + 1. Thus, the query time for l = n1/c prefix trees is bounded by
O(logc(k0/km) × n1/c). The ALSH index needs to build n1/c prefix trees for the full theoretical
quality to be guaranteed. Based on our observation, setting l to 1 and 2 is already sufficient for
providing good quality assembly code clones.
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Mapper

Reducer

A block-to-block
clone pair

A cloned subgraph

Cloned subgraphs 
of a function

Figure 2.5: The MapReduce-based subgraph clone construction process.
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2.6 Subgraph Clone Search

Subgraph isomorphism is NP-hard in theory [80], [122], and many algorithms have been proposed
to solve it in a reasonable time. Formally, the subgraph isomorphism algorithm solved by most of
these systems [53], [80], [128] is defined as:

Definition 6 (Subgraph Isomorphism Search) A graph is denoted by a triplet (V,E, L) where

V represents the set of vertices, E represents the set of edges, and L represents the labels for

each vertex. Given a query graph q = (V,E, L) and a data graph g = (V ′, E ′, L′), a subgraph

isomorphism (also known as embedding) is an injective function M : V → V ′ such that the

following conditions hold: (1) ∀u ∈ V, L(u) ∈ L′(M(u)), (2) ∀(ui, uj) ∈ E, (M(ui),M(uj)) ∈
E ′, and (3) L(ui, uj) = L′(M(ui),M(uj)). The search problem is to find all distinct embeddings

of q in g. □

The difference between this problem and ours in Definition 1 is two-fold. First, our problem is
to retrieve all the subgraph clones of the target function ft’s control flow graph from the repository.
In contrast, this problem only needs to retrieve the exact matches of query graph q within g. Refer
to Conditions 1, 2, and 3 in Definition 6, or the termination condition of the procedure on Line
1 of subroutine SubgraphSearch in [80]. Our problem is more challenging and can be reduced
to the problem in Definition 6 by issuing all the subgraphs of ft as queries, which introduces a
higher algorithmic complexity. Second, there is no such L data label attribute in our problem, but
two types of edges: the control flow graph that links the basic blocks and the semantic relationship
between basic blocks that is evaluated at the querying phase. Existing algorithms for subgraph
isomorphism are not directly applicable. Assembly code control graphs are sparser than other
graph data as there are fewer links between vertices, and, typically, basic blocks are only linked
to each other within the same function. Given such properties, we can efficiently construct the
subgraph clones respectively for each repository function fs if it has more than one clone block in
the previous step.
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Algorithm 1 Kam1n0 Mapper
Input A basic block clone pair ⟨bt, bs⟩
Output A pair consisting of ⟨fs, sgs⟩

1: fs ← getFunctionId(bs)
2: sgs ← [ ] ▷ create an empty list of subgraph clones
3: cloneGraph← {⟨bt, bs⟩} ▷ create a subgraph clone with one clone pair
4: sgs[0]← cloneGraph ▷ list of subgraph clones, but at this moment

it has only one.
5: return ⟨fs, sgs⟩ with fs as key index

2.6.1 MapReduce Subgraph Search

We adopt two functions in the Apache Spark MapReduce execution framework, namely the map

function and the reduce-by-key function. In our case, the map function transforms the clone pairs
generated by ALSH (refer to the data flow in Figure 2.3) and the reduce-by-key function constructs
subgraph clone respectively for each unique repository function fs. Figure 2.5 shows the overview
of our subgraph clone search approach.

The signature for the map function (Algorithm 1) is ⟨bt, bs⟩ → ⟨fs, sgs[1 : a]⟩. Each exe-
cution of the map function takes a clone pair ⟨bt, bs⟩ produced by ALSH and transforms it to
⟨fs, sgs[1 : a]⟩, which is a pair of repository function id fs and its list of subgraph clones sgs in
Definition 1. The map functions are independent of each other.

The outputs of the map functions correspond to the first row in Figure 2.5. A red circle rep-
resents a target basic block bs, and a green triangle represents a source basic block bt. The link
between them indicates that they are a block-to-block clone pair ⟨bt, bs⟩, which is produced in the
previous step. A white rectangle represents a list of subgraph clones, and the colored rectangle in-
side it represents a subgraph clone. Algorithm 1 maps each clone pair into a list of subgraph clones
that contains only one subgraph clone. Each subgraph clone is initialized with only one clone pair.

After the map transformation functions, the reduce-by-key function reduces the produced lists
of subgraph clones. The reducer merges a pair of lists sg1s and sg2s into a single one by considering
their subgraph clones’ connectivity. The reduce process is executed for the links from the second
row to the last row in Figure 2.5. Only the lists of subgraph clones with the same fs will be merged.
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As indicated by the links between the first and second row in Figure 2.5, only rectangles with the
same orange background can be reduced together. Rectangles with other background colors are
reduced with their own group.

Algorithm 2 shows the reduce function in detail. Given two lists of subgraph clones under the
same repository function fs, the reduce function compares their subgraph clones (Lines 1 and 2)
and checks if two graphs can be connected (Lines 4 to 13) by referring to the control flow graph
edges Es and Et . If the two subgraph clones can be connected by one clone pair, then they can be
merged into a single one (Lines 6 and 7). If a subgraph clone from sg2s cannot be merged into any
of the subgraph clones in sg2s , it will be appended to the list sg1s (Lines 20 and 21). At the end of
the graph search algorithm, we solve the problem in Definition 1. In order to obtain a ranked list of
repository functions for fs, we calculate the similarity value by checking how much its subgraphs
sgs cover the graph of the query ft: sims = (|uniqueEdges(sgs)| + |uniqueNodes(sgs)|)/(|Bt| +
|Et|).

Compared to other join-based or graph-exploration-based search approach, our MapReduce-
based search procedure avoids recursive search and is bounded by polynomial complexity. Let
ms be the number of clone pairs for a target function ft. There are at most O(m2

s) connectivity
checks between the clone pairs (no merge can be found), and the map function requires O(ms)

executions. ms corresponds to the number of rectangles in the second row of Figure 2.5. Refer
from the second row to the last one. The reduce function is bounded by O(m2

s) comparisons.
ms is bounded by O(|Bt| × |Bs|), which implies that each basic block of ft is a clone with all
the basic blocks of fs. However, this extreme case rarely happens. Given the nature of assembly
functions and search scenarios, ms is sufficiently bounded by O(max(|Bt|, |Bs|)). According to
the descriptive statistics of our experiment, 99% of them have less than 200 basic blocks.

2.7 Experiments

This section presents comprehensive experimental results for the task of assembly code clone
search. First, we explain how to construct a labeled dataset that can be used for benchmarking
in future research. Then, we evaluate the effect of assembly code normalization. Although normal-
ization has been extensively used in previous work, its effects have not been thoroughly studied yet.
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Algorithm 2 Kam1n0 Reducer
Input subgraph lists of same fs: sg1s [1 : a1] and sg2s [1 : a2]
Output a single subgraph list sg1s [1 : a]

1: for a1 → |sg1s | do
2: for a2 → |sg2s | do
3: canMerge← false
4: for each ⟨ba1t , ba1s ⟩ ∈ sg1s [a1] do
5: for each ⟨ba2t , ba2s ⟩ ∈ sg2s [a2] do
6: if Et(b

a1
t , ba2t ) exists then

7: if Es(b
a1
s , ba2s ) exists then

8: canMerge← true
9: goto Line 14.

10: end if
11: end if
12: end for
13: end for
14: if canMerge is true then
15: sg1s [a1]← sg1s [a1]

∪
sg2s [a2]

16: sg2s ← sg2s − sg2s [a2]
17: end if
18: end for
19: end for
20: if sg2s is not ∅ then ▷ for graphs in sg2s that cannot be merged, append them to

the list
21: sg1s ← sg1s

∪
sg2s

22: end if
23: return sg1s

Next, we present the benchmark results that compares Kam1n0 with state-of-the-art clone search
approaches in terms of clone search quality. Finally, we demonstrate the scalability and capacity
of the Kam1n0 engine by presenting the experimental results from a mini-cluster.

2.7.1 Labeled Dataset Generation

One of the challenging problems for assembly code clone search is the lack of a labeled (ground
truth) dataset, since the most effective labeled dataset requires intensive manual identification of
assembly code clones [36]. To facilitate future studies on assembly clone search, we have devel-
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Library
Name

Branch
Count

Function
Count

Block
Count

Clone Pair
Count

bzip2 5 590 15,181 1,329
curl 16 9,468 176,174 49,317
expat 3 2,025 35,801 14,054
jsoncpp 14 11,779 43,734 204,701
libpng 9 4,605 82,257 18,946
libtiff 13 7,276 124,974 51,925
openssl 9 13,732 200,415 29,767
sqlite 12 9,437 202,777 23,674
tinyxml 7 3,286 30,401 22,798
zlib 8 1,741 30,585 6,854
total 96 63,939 942,299 423,365

Table 2.1: The assembly code clone dataset summary.

oped a tool to systematically generate the assembly function clones based on source code clones.
The tool performs four steps: Step 1: Parse all the source code functions from different branches
or versions of a project and identify all the function-to-function clones using CCFINDERX [65],
which estimates source code similarity based on the sequence of normalized tokens. Step 2: Com-
pile the given branches or versions of a project with an additional debug flag to enable the compiler
output debug symbols. Step 3: Link the source code functions to the assembly code functions using
the compiler output debug symbols, where such information is available. Step 4: For each pair of
source code clones, generate a pair of assembly function clones and transfer the similarity to the
new pair.

The intuition is that the source code function-level clones indicate the functional clones be-
tween their corresponding assembly code. In [36], [91], the source code and assembly code are
manually linked with an injected identifier in the form of variable declarations. However, after the
automation of such process, we find that the link rate is very low due to the impact of compiler
optimizations. The generated assembly code clone is in fact the combined result of source code
patches and compiler optimizations. The source code evolves from version to version, and differ-
ent versions may have different default compiler settings. Thus, the labeled dataset simulates the
evaluation of assembly clone in a real-word setting. This tool is applicable only if the source code
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M Approach Bzip2 Curl Expat Jsoncpp Libpng Libtiff Openssl Sqlite Tinyxml Zlib Avg.

A
U
R
O
C

BinClone .985 Ø Ø Ø Ø Ø Ø Ø Ø *.894 .188
Composite .857 .766 .693 .725 .814 .772 .688 .726 .688 .729 .746

Constant .769 .759 .723 .665 .829 .764 .689 .776 .683 .768 .743
Graphlet .775 .688 .673 .563 .714 .653 .682 .746 .676 .685 .685

Graphlet-C .743 .761 .705 .604 .764 .729 .731 .748 .677 .668 .713
Graphlet-E .523 .526 .505 .516 .519 .521 .512 .513 .524 .514 .517
MixGram .900 .840 .728 .726 .830 .808 .809 .765 .707 .732 .785
MixGraph .769 .733 .706 .587 .755 .692 .713 .765 .674 .708 .710
N -gram .950 .860 .727 .713 .843 .809 .819 .789 .714 .766 .799
N -perm .886 .847 .731 .729 .834 .813 .811 .769 .709 .736 .787
Tracelet .830 Ø Ø Ø Ø Ø Ø Ø Ø .799 .163
LSH-S .965 .901 .794 .854 .894 .922 .882 .845 .768 .758 .858

Kam1n0 *.992 *.989 *.843 *.890 *.944 *.967 *.891 *.895 *.864 .830 *.911

A
U
P
R

BinClone .294 Ø Ø Ø Ø Ø Ø Ø Ø .091 .038
Composite .645 .495 .375 .353 *.541 .482 .288 .405 .261 .409 .425

Constant .247 .280 .301 .158 .311 .349 .072 .157 .142 .240 .226
Graphlet .162 .133 .138 .051 .115 .103 .041 .108 .150 .106 .111

Graphlet-C .455 .482 .296 .176 .413 .369 .366 .437 .245 .338 .358
Graphlet-E .022 .024 .013 .020 .012 .015 .004 .010 .020 .026 .017
MixGram .727 .598 .363 .337 .513 .512 *.464 .471 .286 .383 .465
MixGraph .247 .242 .228 .098 .196 .184 .078 .180 .163 .175 .179
N -gram .638 .491 .297 .275 .408 .428 .301 .417 .264 .314 .383
N -perm .613 .589 .360 .344 .523 *.515 .438 .465 .288 .370 .450
Tracelet .057 Ø Ø Ø Ø Ø Ø Ø Ø .027 .008
LSH-S .227 .014 .095 .049 .035 .038 .012 .018 .079 .041 .061

Kam1n0 *.780 *.633 *.473 *.504 .477 .387 .411 *.610 *.413 *.465 *.515

M
A
P
@
10

BinClone .495 Ø Ø Ø Ø Ø Ø Ø Ø .398 .089
Composite .505 .525 .489 .190 .493 .536 .238 .382 .303 .472 .413

Constant .354 .459 .539 .132 .473 .502 .199 .379 .229 .495 .376
Graphlet .274 .309 .408 .030 .264 .276 .154 .303 .233 .302 .255

Graphlet-C .339 .499 .586 .084 .412 .449 .284 .416 .272 .361 .370
Graphlet-E .021 .053 .010 .011 .024 .040 .012 .019 .039 .028 .026
MixGram .559 .641 .625 .191 .511 .589 .392 .445 .321 .474 .475
MixGraph .334 .407 .572 .064 .345 .351 .211 .387 .244 .371 .329
N -gram .620 .636 .615 .176 .512 .567 .398 .481 .310 .506 .482
N -perm .532 .653 .628 .191 .516 .597 .394 .452 .317 .483 .476
Tracelet .228 Ø Ø Ø Ø Ø Ø Ø Ø .265 .049
LSH-S .322 .069 .198 .032 .145 .078 .086 .111 .130 .101 .127

Kam1n0 *.672 *.680 *.690 *.196 *.548 *.587 *.434 *.605 *.375 *.573 *.536

Table 2.2: Benchmark results of different assembly code clone search approaches. We employed
three evaluation metrics: the Area Under the Receiver Operating Characteristic Curve (AUROC),
the Area Under the Precision-Recall Curve (AUPR), and the Mean Average Precision at Position
10 (MAP@10). Ø denotes that the method is not scalable and we cannot obtain a result for this
dataset within 24 hours.
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is available.

Refer to Table 2.1 for some popular open source libraries with different versions. We applied
the aforementioned tool on them to generate the labeled dataset for the experiments. There are
63,939 assembly functions that successfully link to the source code functions. The labeled dataset
is a list of one-to-multiple assembly function clones with the transferred similarity from their
source code clones.

See Figure 2.6c and Figure 2.6d. The assembly function basic block count follows a long-tail
distribution. Most of them have between 0 and 5 assembly basic blocks, and 99% of them are
bounded by 200. We find that this is the typical distribution of assembly function block count. This
distribution facilitates our graph search because the worst case is bounded by O(|Bt| × |Bs|) and
P [|Bs| < 200] > 0.99. Figure 2.6b shows the cosine similarity distribution of each basic block’s
20th-nearest neighbor. It reflects variations of density in the vector space and calls for an adaptive
LSH.

74% of the source code clones given by CCFINDERX are exact clones (see Figure 2.6a).
However, by applying a strong hash on their assembly code, we find that only 30% of them are
exact clones (Type I clones). Thus, the total percentage of inexact clones is 70%× 74% + 26% =

77.8%. CCFINDERX classifies tokens in source code into different types before clone detection.
If two source code fragments are identified as clones with a low similarity, there is a higher chance
that the underlying assembly code is indeed not a clone due to the normalization of the source
code. To mitigate this issue, we heuristically set a 0.4 threshold for clones to be included in our
dataset. Thus, we have 66.8% of inexact clones.

2.7.2 Normalization Level

None Root Specific
Root < 2e−16 - -
Specific < 2e−16 1 -
Type < 2e−16 1 1

Table 2.3: Paired t-test on the normalization level.

Assembly code normalization is used in previous studies [36], [115]. However, its effects were
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not formally studied. In this section, we present the results of the statistical test on the effects of
the normalization level. Details on normalization can be found in our implementation details. We
start by using a strong hash clone search with different normalization levels on each of the gener-
ated datasets. Then, we collect the corresponding precision value to the given normalization level
as samples and test the relationship between precision and the chosen normalization level. Nor-
malization can increase the recall, but we want to evaluate the trade-off between the precision and
different normalization levels. According to the ANOVA test (p < 2e−16), the difference of apply-
ing normalization or not is statistically significant. Consider Table 2.3. However, the difference of
applying different levels, namely Root, Type, or Specific, is not statistically significant.

2.7.3 Clone Search Approach Benchmark

In this section, we benchmark twelve assembly code clone search approaches: BinClone [37], [73],
Graphlets [68], [69], LSH-S [124], and Tracelet [24]. [69] includes several approaches: mnemonic
n-grams (denoted as n-gram), mnemonic n-perms (denoted as n-perm), Graphlets (denoted as
Graphlet), Extended Graphlets (denoted as Graphlet-E), Colored Graphlets (denoted as Graphlet-
C), Mixed Graphlets (denoted as MixGraph), Mixed n-grams/perms (denoted as MixGram), Con-
stants, and the Composite of n-grams/perms and Graphlets (denoted as Composite). The idea of
using Graphlet is originally proposed by Kruegel, Kirda, Mutz, et al. [75]. We re-implemented
all these approaches under a unified evaluation framework and all parameters were configured
according to the papers. We did not include the re-write engine [24] because it is not scalable.

Several metrics are used in previous research to evaluate the clone search quality, but there is
no common agreement on what should be used. Precision, recall, and F1 are used in BinClone [36],
while Welte [137] maintains that a F2 measure is more appropriate. However, these two values will
change as the search similarity threshold value changes. To evaluate the trade-off between recall
and precision, we use three typical information retrieval metrics, namely Area Under the Receiver

Operating Characteristic Curve (AUROC), Area Under the Precision-Recall Curve (AUPR), and
Mean Average Precision at Position 10 (MAP@10). These three metrics favor different information
retrieval scenarios. Therefore, we employ all of them. AUROC and AUPR can test a classifier by
issuing different threshold values consecutively [38], [87], [125], while MAP@10 can evaluate the
quality of the top-ranked list simulating the real user experience [86].
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2.7 Experiments

Table 2.2 presents the benchmark results. The highest score of each evaluation metric is high-
lighted for each dataset. Also, the micro-average of all the results for each approach is given in the
Avg column. Kam1n0 outperforms the other approaches in most cases for all evaluation metrics.
Kam1n0 also achieves the best averaged AUROC, AUPRC, and MAP@10 scores. The overall
performance also suggests that it is the most stable one. Each approach is given a 24-hour time
frame to finish the clone search, and it is limited to a single-thread pool for fair comparison. Some
results for BinClone and Tracelet are empty, which indicates that they are not scalable enough to
obtain the search result within the given time frame. Also, we notice that BinClone consumes more
memory than the others for building the index, due to its combination of features that enlarges the
feature space. We notice that the experimental results are limited within the context of CCFinder. In
the future, we will investigate other source code clone detection techniques to generate the ground
truth data.

2.7.4 Scalability Study

In this section, we evaluate Kam1n0’s scalability on a large repository of assembly functions.
We set up a mini-cluster on Google Cloud with four computational nodes. Each of them is a n1-

highmem-4 machine with 2 virtual cores and 13 GB of RAM. We only use regular persistent disks
rather than solid state drives. Each machine is given 500 GB of disk storage. All the machines run
on CentOS. Three machines run the Spark Computation Framework and the Apache Cassandra

Database, and the other runs our Kam1n0 engine. To conduct the experiment, we prepare a large
collection of binary files. All these files are either open source libraries or applications, such as
Chromium. In total, there are more than 2,310,000 assembly functions and 27,666,692 basic blocks.
Altogether, there are more than 8 GB of assembly code. We gradually index this collection of
binaries in random order and query the zlib binary file of version 2.7.0 on Kam1n0 at every 10,000
assembly function indexing interval. As zlib is a widely used library, it is expected that it has a
large number of clones in the repository. We collect the average indexing time for each function to
be indexed, as well as the average time it takes to respond to a function query. Figure 2.7 depicts
the average indexing and query response time for each function. The two diagrams suggest that
Kam1n0 has a good scalability with respect to the repository size. Even as the number of functions
in the repository increases from 10,000 to 2,310,000, the impact on the response time is negligible.
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2.8 Conclusion and Lesson Learned

There is a spike at 910,000 due to the regular compaction routine in Cassandra, which increases
I/O contention in the database.

2.8 Conclusion and Lesson Learned

Through the collaboration with Defence Research and Development Canada (DRDC), we learned
that scalability, which was not considered in previous studies, is a critical issue for deploying a suc-
cessful assembly clone search engine. To address this, we present the first assembly search engine
that combines LSH and subgraph search. Existing off-the-shelf LSH nearest neighbor algorithms
and subgraph isomorphism search techniques do not fit our problem setting. Therefore, we propose
new variants of the LSH scheme and incorporate them with graph search to address the challenges.
Experimental results suggest that our proposed MapReduce-based system, Kam1n0, is accurate,
efficient, and scalable. Currently, Kam1n0 can only identify clones for x86/amd64 processor. In
the future, we will extend it to the other processors and investigate approaches that can find clones
between different processors. Kam1n0 provides a practical solution of assembly clone search for
both DRDC and the reverse engineering community.
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Figure 2.7: Scalability study. (a): Average Indexing Time vs. Number of Functions in the Reposi-
tory. (b): Average Query Response Time vs. Number of Functions in the Repository. The red line
represents the plotted time and the blue line represents the smoothed polynomial approximation.
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3
Cross-Architecture Subgraph Clone Search

Most of the existing state-of-the-art assembly clone search techniques, such as LSH-S [114], n-
gram [69], n-perm [69], BinClone [36], Kam1n0 [30], and Tracelet [24], support a particular fam-
ily of assembly language. Only few recent studies support cross-architecture clone search. Based
on the employed features, they can be categorized into static or dynamic approaches. Dynamic
approaches model the semantic similarity by dynamically analyzing the I/O behavior of assembly
code [17], [22], [33], [103]. Static approaches model the similarity between assembly code by
looking for their static differences with respect to the syntax or descriptive statistics [34], [39].
Static approaches are more scalable and provide better coverage than the dynamic approaches.
Dynamic approaches are more robust against changes in syntax. Designing a practical and useful
clone search engine is a non-trivial task, which involves several factors to be considered. Based
on discussions with industrial reverse engineers, we identify the problems that these approaches
failed to consider.

P1: Efficiency and scalability: An efficient search engine can provide instant search results
for reverse engineers when they are conducting an analysis. The cost for getting results should be
minimized to seconds even if the engine is given millions of candidates. One needs to consider
the degradation of search performance against the increase in the repository size. All the existing
dynamic approaches rely on a pairwise comparison to fulfill a search request. Blex [33], ESH [22],
Multi-MH [103], and Gitz [23] all require linear time for querying (see Table 3.2). BinGo [17]
is better as it uses a filter. However, the filter is still based on a pairwise comparison with linear
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Cross-Architecture Subgraph Clone Search

push  rbp
mov  rbp, rsp
push  rbx
sub  rsp, 138h
mov  rax, fs:28h
mov  [rbp+var_18], rax
xor  eax, eax
mov  [rbp+i], 0
mov  [rbp+hash], 1505h
lea  rax, [rbp+string]
mov  [rbp+str], rax
mov  [rbp+i], 0
jmp  short loc_40065D

loc_40065D:
mov  eax, [rbp+i]
movsxd  rbx, eax
lea   rax, [rbp+string]
mov   rdi, rax   
call  _strlen
cmp   rbx, rax
jb  short loc_400620

PUSH  {R7,LR}
SUB  SP, SP, #0x110
ADD  R7, SP, #0
MOV  R3, #0x21030
LDR  R3, [R3]
STR.W  R3, [R7,#0x110+var_4]
MOV  R3, R7
MOVS  R2, #0
STR  R2, [R3]
ADDS  R3, R7, #4
MOVW  R2, #0x1505
STR  R2, [R3]
ADD.W  R3, R7, #8
ADD.W  R2, R7, #0xC
STR  R2, [R3]
MOV  R3, R7
MOVS  R2, #0
STR  R2, [R3]
B  loc_1052A

loc_10500
ADDS  R3, R7, #4
LDR  R3, [R3]
LSLS  R2, R3, #5
ADDS  R3, R7, #4
LDR  R3, [R3]
ADD  R2, R3
ADD.W  R1, R7, #0xC
MOV  R3, R7
LDR  R3, [R3]
ADD  R3, R1
LDRB  R3, [R3]
MOV  R1, R3
ADDS  R3, R7, #4
ADD  R2, R1
STR  R2, [R3]
MOV  R3, R7
MOV  R2, R7
LDR  R2, [R2]
ADDS  R2, #1
STR  R2, [R3]

ADDS  R3, R7, #4
LDR  R1, [R3]
MOV  R0, #unk_105BC 
BLX  printf
MOV  R3, #0x21030
LDR.W  R2, [R7,var_4]
LDR  R3, [R3]
CMP  R2, R3
BEQ  loc_10566

B548E5

Query: Target Function (Compiled for x86)

shl  [rbp+hash], 5
add  [rbp+hash], 1234h
cmp  [rbp+hash], 0
jz  short loc_4006B0

Clone: Repository Function (Compiled for ARM)

A basic block
Block to block clone pair

Jump link between two 
basic blocks of the same 
function

Explanation label

loc_1052A
ADD.W  R3, R7, #0xC
MOV  R0, R3  ; s
BLX  strlen
MOV  R2, R0
MOV  R3, R7
LDR  R3, [R3]
CMP  R2, R3
BHI  loc_10500

loc_400620:
mov  rax, [rbp+hash]
shl  rax, 5
mov  rdx, rax
mov  rax, [rbp+hash]
add  rdx, rax
mov  eax, [rbp+i]
cdqe
movzx   eax, 
[rbp+rax+string]
movsx  rax, al
add  rax, rdx
mov  [rbp+hash], rax
add  [rbp+i], 1

loc_4006C5:
add  rsp, 138h
pop  rbx
pop  rbp
retn
main endp

Source code:
int i =0;

char string[] = "hello";
unsigned long hash = 5381;

Source code:
char *str = &string[0];

for(i = 0; i < strlen(string); ++i)

Source code:
hash = ((hash << 5) + hash) + string[i];

Basic block 
clone pair

Basic block 
clone pair

Basic block 
clone pair

Figure 3.1: An example of a subgraph clone between two assembly functions. The code on the
left is compiled for the x86 processor. The code on the right is compiled for the ARM processor.
Basic blocks with a white background form a subgraph clone. The source code is unavailable when
conducting a clone search.
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Cross-Architecture Subgraph Clone Search

complexity.

P2: Input value sampling: Existing dynamic approaches, such as Blex [33], Multi-MH [103],
and BinGo [17], use random sampling to specify the input values for dynamic testing. Random
sampling may not correctly discriminate two logics. Consider that one expression outputs 1 if
v! = 100; otherwise, 0. Another expression outputs 1 if v! = 20; otherwise, 0. Given a widely
used sampling range [−1000, 1000] for value v, they have a high chance of being equivalent. A
specialized sampling method is thus needed.

P3: Clone search granularity: An assembly function can be represented as a control flow
graph consisting of connected basic blocks (see Figure 3.1). Given an assembly function as a query,
most of the previous approaches only support searching at the function level. They are useful when
there exists a function in the repository that shares a high degree of similarity with the query. How-
ever, due to the unpredictable effects of different obfuscation techniques or compilers’ inlining
behavior, one function may contain a copy of the other, or their basic blocks can be remixed. A
search engine should be able to decompose the query into different known subgraphs in the repos-
itory. Refer to a subgraph clone example in Figure 3.1. Multi-MH [103] employs graph matching
at the function level. Genius [39] encodes each function into a feature vector. Discovre [34] also
computes structural similarity at the function level. However, none of them support partial clone
search.

P4: External knowledge and incremental updates: Static approaches that support cross-
architecture clone search include Discovre [34] and Genius [39]. They are scalable but require
external ground-truth data to measure the weight for each feature. The experiment by Feng, Zhou,
Xu, et al. [39] shows that the size of the external data has a significant impact on the clone search
quality. The reported weights by Eschweiler, Yakdan, and Gerhards-Padilla [34] do not perform
well in the experiment presented by Feng, Zhou, Xu, et al. [39], which also shows the importance
of external data. As the repository size grows, one will need to learn new weights using more
external data and re-index all existing data periodically. However, there are no clear guidelines for
choosing external data.

To address the above problems, we proposed and implemented a new open source assembly
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Function S-expression
deflate_stored (32to64 (Add (64to32 r_rbp_v0) m_0_v0))
flush_pending(Add m_1_v0 (Or r_v0_v0 c_0:0x0))
longest_match
(ARM)

(Sub (Add m_10_v0 (Add m_11_v0 0x102)) 0x102)

longest_match
(MIPS)

(Add (Add r_v0_v0 (Add r_t5_v0 0x102)) 0xfffffefe)

Table 3.1: Similar symbolic expressions retrieved by our index structure. They all add two variables
but in different forms. The word to indicates a type conversion operation.

Category Partial Clones Query Index External Data Architectures
Sym1n0 dynamic subgraphs O(log(n)) O(n × log(n)) No 8+

BinGo [17] dynamic N/A n N/A No 3
Multi-MH [103] dynamic N/A n O(800 × n) No 3

Blex [33] dynamic N/A n N/A No 2
ESH [22] dynamic N/A n N/A No 2

Discovre [34] static N/A O(log(n)) O(n × log(n)) Yes 3
Genius [39] static N/A O(log(n)) O(n × log(n)) Yes 3

Gitz [23] static N/A n N/A Yes 8+

Table 3.2: State-of-the-art binary clone search techniques that support multiple processor architec-
tures. n denotes the repository size.

clone search engine1 based on symbolic expression retrieval. The whole engine is implemented
using a distributed framework. Our major contributions can be summarized as follows:

• A practical solution for cross-architecture subgraph clone search: We propose a new
cross-architecture search engine based on symbolic expression retrieval. It addresses the
aforementioned issues of the existing works. It is the first search engine that supports cross-
architecture subgraph clone search. It is efficient and scalable to millions of assembly func-
tions. It does not rely on any external data and supports incremental updates. Table 3.2
summarizes its features.

1Sym1n0 is part of the Kam1n0 open source project:
https://github.com/McGill-DMaS/Kam1n0-Plugin-IDA-Pro.
On-line Demonstration:
http://dmas.lab.mcgill.ca/projects/kam1n0.htm. User name: jedi Password: starwarz
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Cross-Architecture Subgraph Clone Search

• Scalable tree-based index for retrieving semantically similar symbolic expressions: We
propose a novel tree-based indexing structure for symbolic expressions retrieval. The tree
structure explores the differential I/O behavior of symbolic expressions and is able to effi-
ciently retrieve the top-K semantically similar expressions. Table 3.1 shows examples. The
similarity is defined as the approximated overlapping space with respect to their I/O behav-
ior. The tree structure is scalable and can be incrementally updated.

• A fast input sampling algorithm to support efficient index node splitting: We use random
I/O testing to model the similarity between different symbolic expressions. Instead of doing
a complete random input sampling, we propose a new algorithm to utilize the information
of the symbolic expressions to restrain the sampling space, which speeds up the process of
finding a good split for the tree nodes at the indexing stage.

• Efficient semantic subgraph search: To support subgraph clone search, we incorporate our
symbolic expression retrieval index with a MapReduce-based subgraph search algorithm to
support subgraph clone detection. The original algorithm proposed in [30] uses a locality
sensitive hashing (LSH) index to find syntactic subgraph clones with sub-linear complexity
in practice. We replace this with our own symbolic expression index and customize the scor-
ing functions for the reducing phase in order to support semantic subgraph clone search. By
combining the semantic and subgraph search, we boost the cross-architecture clone search
accuracy.

The remainder of this chapter is organized as follows. Section 3.1 positions our study within the
literature of two related research problems. Section 3.2 formally defines the clone search problem.
Section 3.3 provides an overview of our solution and system design. Section 3.4 presents the pre-
processing steps to construct the symbolic expressions, namely S-expressions, from the assembly
language. Section 3.5 introduces the proposed tree-based symbolic expression retrieval index and
sampling algorithm. Section 3.6 describes how we incorporate the S-expression retrieval with sub-
graph search algorithm to solve the assembly subgraph clone search problem. Section 3.7 presents
our benchmark experiments. Section 3.8 discusses Sym1n0’s limitations. Section 3.9 concludes
this paper.
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3.1 Related Work

3.1 Related Work

Static approaches such as k-gram [94], LSH-S [114], n-gram [69], BinClone [36], and Kam1n0 [30]
model assembly code as independent operations and categorized operands. They represent an as-
sembly function as descriptive statistics over the selected tokens. BinSequence [56] and Tracelet [24]
model assembly code as the editing distance between instruction sequences. TEDEM [104] stati-
cally compares basic blocks by their expression trees. These approaches are oblivious to instruction
changes in a cross-architecture setting. BinDiff [31] and BinSlayer [12] rely on control flow graph
(CFG) matching. However, the CFG of a function between two architectures can be different.
ILine [59], Discovre [34], Genius [39], BinSign [97], and BinShape [123] construct descriptive
statistic features such as the ratio of arithmetic assembly instructions, the ratio of transfer instruc-
tions, the number of basic blocks, and the number of function calls, among others. Most of these
features are architecture-agnostic. All these techniques support a particular family of assembly
language, except Discovre [34] and Genius [39]. Discovre and Genius approach the clone search
problem as vector nearest neighbor search. They are scalable to millions of assembly functions.
However, both of them rely on a good selection of external data to learn feature weights. The
external data consists of known assembly clone pairs. They also do not support partial clones.
Moreover, Genius uses locality sensitive hashing (LSH) with random hyperplane hashing to pro-
mote its scalability. The adopted algorithm requires the size of the repository to determine the
number of hyperplanes in order to guarantee the induced false positives. Therefore, it cannot be
incrementally updated. Both Discovre and Genius support ARM, MIPS, and x86. Gitz [23] is an-
other static approach that works on the normalized IR level. It is based on VEX and supports more
than 8 architectures. However, it relies on a pairwise comparison for searching, which requires a
linear search time and is not scalable.

Dynamic methods measure semantic similarity by dynamically analyzing the behavior of the
target assembly code. BinHunt [43], iBinHunt [90], and ESH [22] use a theorem prover to verify
whether two basic blocks or strands are equivalent. Conducting a pair-wise symbolic verification
over the whole repository is not feasible in practice, given that the size of the repository can ex-
ceeds millions. It requires at least a linear scan. Jiang et al. [62], Blex [33], Multi-MH [103], and
BinGo [17] use randomly sampled input values to compare I/O values. As mentioned in the be-
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3.2 Problem Statement

ginning of this chapter, random sampling cannot discriminate between the semantics of condition-
related symbolic expressions. ESH supports x86 and AMD64. BinGo relies on some architecture-
agnostic knowledge to construct a filter. It currently supports x86, AMD64, and ARM. Multi-MH

supports x86, ARM, and MIPS. Multi-MH relies on a pair-wise comparison searching process.
BinGo’s filter also requires a linear scan over the repository. Both of them are not scalable as the
repository size grows. Sym1n0 is a dynamic approach. Instead of using random sampling, it nar-
rows down the input search space to discriminate between symbolic expressions. The searching
process corresponds to an incrementally constructed tree structure that provides a sub-linear query
complexity. It supports more than 8 architectures.

Source code clone search is another related area. CCFINDERX [65] and CP-Miner [83] use
lexical tokens as a feature to find source code clones. Baxter et al. [10] and Deckard [61] leverage
abstract syntax tree for clone detection. ReDebug [58] is another large-scale source code clone
search engine. Recently, deep learning has been applied to this problem [138]. These techniques
are not applicable when the source code is unavailable. Sym1n0 focuses on assembly code clone
search.

This paper is also broadly related to the Mathematical Information Retrieval (MIR) literature
because it depends on efficient and accurate symbolic expressions retrieval. In the MIR related
problems, math notations and symbols are usually recognized from either a piece of text or an
image. After, the math notations and symbols are aligned into a Symbol Layout Tree. Then, they
are interpreted as an Operator Tree [146], which is similar to a symbolic expression. Finally, the
query is processed by using fuzzy matching on the tree structure and symbol names. Our retrieval
problem is related but different from the MIR retrieval problem. We have no information about
the correct mapping of input symbols between symbolic expressions because we do not know the
symbol’s correct name or other text-based keywords by Schubotz, Grigorev, Leich, et al. [119].

3.2 Problem Statement

As mentioned earlier, reverse engineers mostly work with binary files. After being unpacked and
disassembled, a binary file becomes a list of assembly functions in a given assembly language.
There are various families of assembly language depending on the processor architecture.
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Figure 3.2: The overall solution stack of the Sym1n0 search engine.

In this chapter, we use the following notions: function denotes an assembly function; block rep-
resents a basic block; source function represents the original function written in source code, such
as C++; repository function stands for the assembly function that is indexed inside the repository;
target function denotes the assembly function that is given as a query; and correspondingly, reposi-

tory blocks and target blocks refer to their respective basic blocks. We adopt the problem definition
used in [30]. Each function f is represented as a control flow graph denoted by (B,E), where B

indicates its basic blocks and E, the edges that connect the blocks. Let B(RP) be the complete set
of basic blocks in the repository and F (RP), the complete set of functions in the repository. Given
an assembly function, our goal is to search all its subgraph clones inside the repository RP. We
formally define the search problem as follows:

Definition 7 (Assembly function subgraph clone search) Given a target function ft and its control

flow graph (Bt, Et), the search problem is to retrieve all the repository functions fs ∈ RP that

share at least one subgraph clone with ft. The shared list of subgraph clones between fs and

ft is denoted by sgs[1 : a], where sgs[a] represents one of them. A subgraph clone is a set of
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basic block clone pairs sgs[a] = {⟨bt, bs⟩ , . . . } between fs and ft, where bt ∈ Bt, bs ∈ Bs, and

⟨bt, bs⟩ is a semantic clone (see Figure 3.1). Formally, given ft, the problem is to retrieve the top-K

{fs|fs ∈ RP and |sgs| > 0} with respect to a given similarity measure. □

Additionally, we define that a basic block b can be represented as a list of symbolic expressions,
denoted by SE(b) = se[1 : n], where sen represents one of them. A symbolic expression can have
multiple inputs IN(se) = in[1 : m] but only one output OUT (se). The expression itself is a
function se : R|IN(se)| → R. Therefore, a basic block has |SE(b)| unique outputs and |SE(b)|
symbolic expressions. A basic block’s symbolic expressions may or may not share the same set of
input variables. For each expression se, we trace back from its output variable OUT (se) and only
include the involved input variables in IN(se) A basic block should have at least one symbolic
expression |SE(b)| > 0.

3.3 Overall Architecture

Our implementation of the proposed engine is built upon the open source clone search framework
proposed by Ding, Fung, and Charland [30]. It uses the distributed column family database Apache

Cassandra2 as the storage and the distributed computational framework Apache Spark3 as the
computational layer. Figure 3.2 shows the solution stack. Our choice of the column-family database
will be further justified in Section 3.7. On top of these two layers is our proposed engine. It mainly
contains four modules. Above the search engine, we build a RESTful API, a web interface, and a
Hex-Rays IDA Pro plugin4 as clients. IDA Pro is a popular interactive disassembler used by reverse
engineers.

Figure 3.3 describes the data flow of the proposed clone search process. It is similar to the
one proposed by Ding, Fung, and Charland [30]. The original process only handles a single type
of assembly language, but the present one operates at the symbolic expression level, which is
architecture-agnostic. This process consists of four stages.

The search process starts with a binary file. We first extract the target assembly functions either

2Apache Cassandra Database: http://cassandra.apache.org/
3Apache Spark: http://spark.apache.org/
4IDA Pro: http://www.hex-rays.com/
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3.4 Constructing the Syntax Tree

by disassembling the binary file or parsing the raw assembly code from the query. After having
obtained a list of target assembly functions and their corresponding bytes, we translate each of
their basic blocks into the Vex Intermediate Representation (IR) using the Valgrind instrumentation
framework [96]. We created our own Java interpreter for the Vex IR.

An intermediate representation captures the complete semantics of the assembly code and is
architecture-agnostic. Figure 3.3 shows a translation example. One assembly instruction is trans-
lated into multiple Vex IR expressions. It contains many temporary values that assist with the
translation. We thus need to construct a syntax tree according to the Vex IR and simplify the tree
structure before the symbolic expression construction. Performing clone search directly on the
IR expressions cannot solve the cross-architecture clone search problem. The IR expressions are
generated by translating the assembly instructions one by one. Given two instructions of differ-
ent families of assembly language that have similar logic, the generated IR expressions are still
very different due to the fact that different processors have different registers, flag bits, and flag
calculation logics. Therefore, we need to conduct clone search at the symbolic expression level.

After having obtained the symbolic expressions of a target block, we retrieve the top-K most
similar S-expressions in the repository according to their corresponding location in the index tree.
We collect their corresponding basic blocks and combine them with the target block to generate
a list of basic block clone pairs. Similarity values are calculated based on the overlaps of the
symbolic expressions. More details are provided in Section 3.5. In the last stage, we feed the list of
basic block clone pairs to a MapReduce-based subgraph search algorithm and collect the subgraph
clones from the repository.

3.4 Constructing the Syntax Tree

In this section, we discuss on how we construct the syntax graph generated from the Vex IR ex-
pressions. The generated Vex IR statements are still noisy. For example, some register variables
output a specific address of the binary file for the purpose of flow control or calling a function. We
need to preprocess the syntax tree before constructing the symbolic expressions.

Abstract all of the memory reference variables. First, we abstract all of the memory refer-
ence variables. A memory location in assembly language is identified by its address. However, the
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3.5 S-Expression Retrieval

address is usually not a constant but rather a relative variable. Figure 3.3 shows an example. The
first two IR expressions load a value from a memory location that is relative to the runtime value
of the register r32. In order to track the relationship between memory variables, we keep track of
each memory location access and construct the symbolic expression for its address. If two memory
locations have the same symbolic expression as address, we consider them to be the same variable.

Control the versions of each register and memory variable. A register or a memory variable
may have been accessed multiple times in the IR expressions, as shown in Figure 3.3. Register r9 is
initially written with a memory variable. Later, it is rewritten with the result of a shift left operation.
We found that the register has been written or read before. Therefore, we create a new version of
this register (r9_1 in the figure). Only the latest version of the variable will be used in subsequent
reads.

Select the output nodes. To construct symbolic expressions for a basic block, we need to
select the set of output nodes. We follow three rules to include variables in the syntax tree as
output nodes. Rule 1: Any constant node that is not an address. Rule 2: Any memory variable node
that has no children. Rule 3: Any latest version of the general registers, floating point registers,
stack registers, and instruction pointer register. We construct symbolic expressions for all of these
nodes. At the time of I/O testing, when a symbolic expression outputs an address value and the
value is the address of the next sequential basic block address, we change it to a constant NEXT ,
otherwise to the constant SKIP .

3.5 S-Expression Retrieval

In this section, we introduce our proposed symbolic expression indexing tree structure and retrieval
algorithm. This section corresponds to Stage 3 in Figure 3.3. The task is to index and retrieve
semantically similar symbolic expressions. Table 3.1 shows some of the expressions found by
our proposed tree-based index in the experiments. They are visually and syntactically different,
but semantically equivalent. Retrieving these S-expressions is challenging since all of the visually
related information is unavailable and they use a different set of operations. We seek for a dynamic
analysis approach to solve this problem.

Conducting dynamic analysis to measure semantic similarity of symbolic expressions is not
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3.5 S-Expression Retrieval

new. Pewny, Garmany, Gawlik, et al. [103] proposed to do a pair-wise comparison by randomly
selecting inputs from a specific range to model their semantic similarity. However, as discussed
in Section 3.1, their approach failed to correctly model the semantic similarity, due to the uni-
form sampling distribution. They assume that the semantic similarity is captured by the number of
overlapping outputs when given a uniform sampling space. This assumption usually does not hold
for assembly language because there are many different Boolean expressions, such as i < 2 and
i < 1, which tend to be very similar to each other. David, Partush, and Yahav [22] estimated the
similarity between different S-expressions using a constraint solver. It tries all the permutations of
input mapping and asserts that the output values are equivalent. It is based on the assumption that
semantic similarity is captured by the percentage of inputs that can find a correct mapping in the
outputs. This assumption may not hold since some of the input variables do not contribute to the
output. For example, (x ∗ (x + 1)%2) always results in zero. Moreover, using a constraint solver
with full input/output permutation does not scale well. It requires a pairwise comparison.

Based on the aforementioned related studies and our observations, we find it intrinsically hard
to define what would be the perfect definition of semantic similarity for assembly code. Even
mathematically inequivalent expressions can be a correct match in assembly code clone search.
One example can be to search clones between 64-bit and 32-bit assembly instructions, where many
variables do not have the same bit length.

Instead of defining the similarity metric and checking to what degree two symbolic expressions
are similar to each other, we find it more practical to differentiate them against what is inside the
repository, since the goal is to retrieve clones but not to prove clones. We start with the assumption
that all the expressions in the repository are completely equivalent. By taking this assumption, the
expressions should follow several properties. We try to separate them by gradually tightening up
the rules on these properties to see if they are still satisfied. We start by defining our Top-K S-
expression retrieval problem. As mentioned earlier, a symbolic expression is denoted as se. It has
only one output OUT (se) and one or more inputs IN(se) = in[1 : m], where in[m] is one of
them.

Definition 8 (Symbolic Expression Retrieval) Given a query symbolic expression seq, the task is

to retrieve at most the top-K symbolic expressions in the repository SRP that satisfy a specific set
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3.5 S-Expression Retrieval

of properties P.

Our goal is not to retrieve all the equations that are guaranteed to be equivalent, but rather to
retrieve the top-K equations that are potentially similar with respect to the set of properties P. We
consider the following two properties as our own P to capture semantic information:

Number of unique input values. Since we start with the assumption that all the expressions
in the repository are equivalent, they should have the same I/O testing result irrespective of how
many input values are the same. For example, given two expressions se0 = IN(se0)→ OUT (se0)

and se1 = IN(se1) → OUT (se1), at the beginning they should produce the same output value
with respect to a random value v such that ∀in ∈ IN(se0) ∪ IN(se1) : in = v ,OUT (se0) =

OUT (se1). We assume that all the input values are the same. In other words, there is only one
unique value as the input. If we find that there are too many expressions that satisfy this prop-
erty, we can constraint it further by increasing the number of unique input values. By increasing
the number of unique input values, we take a stronger requirement that two expressions need to
have some input value mapping in order to be equivalent. We denote this number as µ. When
|IN(se0)| = µ, we arrive at the state where se0 needs to be at a specific input permutation in order
to be considered equal to other symbolic expressions at this level. This is because at this stage, we
assume that all input values need to be different.

I/O test results sequence with narrowing input space. The other property is the specific
sequence of I/O testing. We begin with the assumption that all the expressions are equivalent.
Therefore, all the expressions should have the same output value even if they are tested only once.
If we find too many expressions having the same output value after the first I/O test, we narrow
down the input space and move to test the next input value. We try to split them according to
their different output behaviors. As we narrow the input space and take one additional test, the
probability that two inequivalent expressions are producing the same output decreases.

3.5.1 A Scalable Tree-based Index

In this section, we describe our tree-based index for symbolic expression retrieval. Our indexing
structure consists of multiple levels of nodes. Each node in the tree can have multiple children,
but they can have only one parent. It starts with a root node, assuming that all the expressions are
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Algorithm 3 Locate Expression Bucket
1: function LOCATESTART(Symbolic Expression se)
2: buckets← []
3: newInputs← [0...] ∈ R|IN(se)|

▷ Initialize a zero vector.
4: newOutput← se(newInputs)

▷ Evaluate the output of the se
5: child← CHroot(newOutput)
6: if child exists then
7: INc(se, child)← newInputs

▷ Prepare input vectors for child
8: OUTc(se, child)← newOutput
9: buckets← buckets ∪ Locate(se, child)

▷ Lookup in the child bucket.
10: end if
11: return buckets
12: end function
13:
14: function LOCATE(Symbolic Expression se, Bucket eb)
15: if |CHeb| < 0 then

▷ This bucket has no children. We return this leaf node.
16: return eb
17: end if
18: buckets← []
19: oldInputs← INc(se, eb)

▷ Collect the old inputs used in parent bucket.
20: for i→ |oldInputs| do

▷ For each value in the old inputs.
21: if oldInputs[i] = OldV al(eb) then
22: newInputs← Copy(oldInputs)

▷ Replace one of the matched value.
23: newInputs[i]← NewV al(eb)

▷ Generate a new input.
24: newOutput← se(newInputs)
25: child← CHeb(newOutput)

▷ Check if there is a child bucket.
26: if child exists then
27: INc(se, child)← newInputs
28: OUTc(se, child)← newOutput
29: buckets← buckets ∪ Locate(se, child)

▷ Lookup in the child bucket.
30: else
31: end if
32: end if
33: end for
34: return buckets

▷ Return a list of leaf buckets that returned by its children.
35: end function
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equivalent. We name the nodes in this tree as Expression Bucket. An expression bucket contains a
list of symbolic expressions and specific information about the aforementioned two properties, in
order to further differentiate S-expressions.

Definition 9 (Expression Bucket) An expression bucket, denoted as eb, contains a set of symbolic

expressions SEb(eb). To arrive at this bucket, each symbolic expression needs to have concrete in-

put values and a concrete output value. The concrete input value for an expression se on this bucket

is INc(se, eb) = inc[1 : m], where inc[m] ∈ R, and its concrete output value is OUTc(se, eb) ∈
R. At the root node, all the concrete values are initialized to zero. One can obtain two values ac-

cording to the symbolic expressions in this bucket: NewV al(eb) ∈ R and OldV al(eb) ∈ R. It is

also a function that maps a real value to one of its children: CHeb : R→ ExpressionBucket.

In general, the tree structure contains multiple levels and each level contains multiple expres-
sion buckets, as shown in Figure 3.4. Each expression bucket defines what will be the I/O testing
output for the symbolic expressions arriving in this bucket with the specific inputs used in the par-
ent node. Given a symbolic expression seq, in order to query or index it against the index structure,
we need to first locate its corresponding buckets in the tree. Algorithm 3 describes how we locate
an expression starting from the root node. Figure 3.4 also shows an example.

Given a symbolic expression, its input vector is first initialized with zeros or other constants.
After evaluating the output of the symbolic expression, se finds the child node’s location and
continues the lookup from that expression bucket. Each expression bucket defines two values. One
is the old value to be replaced for the old input that was used in the parent bucket. The other is a
new value to be replaced with the old value. Take expression bucket eb4 in Figure 3.4, for example.
It defines an old value of 0 and a new value of 4. The symbolic expression se arrives at this bucket
with input [0, 1, 2], and the old value 0 is replaced with a new value 4 to produce a new input vector
[4, 1, 2]. The new input is later evaluated to look up the child expression buckets at the next level. If
the current expression bucket does not contain any children, then the query arrives at a leaf node in
the tree index and the corresponding bucket will be returned. At the end of the search, we find a list
of leaf buckets for each symbolic expression query. The old value in each bucket is determined by
the majority values of the input vectors that resided in this bucket before splitting. The new value is
determined by randomly sampling from a narrowing input space. These two values are generated
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INc(se,eb0)=[0,0,0]
OUTc(se,eb0)=0

se: r0 = r3 + r1 – r2

INc(se,eb1)=[1,0,0]
OUTc(se,eb1)=1

Inc(se,eb1) = [0,1,0]
OUTc(se,eb1) = 1

INc(se, eb2)=[0,0,1]
OUTc(se, eb2)=-1

eb2: 
-1

eb1: 
1

eb3: 
3

Inc(se,eb3) = [2,1,0]
OUTc(se,eb3) = 3

Inc(se,eb4) = [0,1,2]
OUTc(se,eb4) = 0

eb4: 
-1

eb5: 
3

Inc(se,eb5) = [4,1,2]
OUTc(se,eb5) = 3

eb0: 
0

OldVal(eb0) = 0
NewVal(eb0) = 1

OldVal(eb1) = 0
NewVal(eb1) = 2

OldVal(eb4) = 0
NewVal(eb4) = 4

Figure 3.4: An example of locating the buckets for a symbolic expression. The S-expression is se.
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at the time of indexing. After obtaining the expressions buckets, we retrieve all their symbolic
expressions and rank them by the inverse number of expressions that are in the same bucket.

This tree-based index is scalable. It avoids a full pairwise comparison to retrieve symbolic ex-
pressions. Unlike the methods proposed by David, Partush, and Yahav [22] and Pewny, Garmany,
Gawlik, et al. [103] that both require a full input permutation to compare every pair of symbolic ex-
pressions, this tree takes in the worst case only one full permutation. In the subsequent I/O testing,
only a specific input value is replaced with a new value. Thus, it does not require a full permutation
anymore in subsequent testing. For example, for any expressions with 3 input variables arriving at
bucket eb4, we already find a correct mapping between their inputs, since we assume their inputs
need to be all different. Thus, in the next bucket, we do not need to permute the input anymore. We
only need to replace an old value with a new value. In this way, it takes less samples for I/O testing
by reducing the number of permutations.

3.5.2 Input Range Sampling

To index new symbolic expressions, we first locate their corresponding leaf expression buckets
in the tree. If the tree is empty, the returned bucket will be the root node. After, we add each
new symbolic expression into its corresponding buckets. We track all of the affected buckets and
split the ones that have more than K symbolic expressions. Remember that our problem is to
retrieve the top-K similar expressions from the repository. If the tree structure is empty, all of the
symbolic expressions are added to the root node and the bucket splitting process will start from
there. Algorithm 4 shows the general procedure that recursively splits the bucket. The algorithm
retrieves all of the symbolic expressions of that bucket and starts splitting these expressions by
sampling an old value and a new value mentioned above.

The old value is determined by the majority of old input values from all of the involved sym-
bolic expressions. By doing this, we try to maximize the impact of changing one of the input values
to a new one. If we do not know the S-expressions’ right mapping of inputs, the majority value will
be the one that assumes some of the inputs are the same. For example, the bucket eb0 in Figure 3.4
has a majority value of 0, thus we pick 0 as the old value to be replaced. This way, we increase the
number of unique input values by 1. Choosing a majority value will guarantee a good coverage.
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Algorithm 4 Split Expression Bucket
1: function SPLIT(Expression Bucket eb)
2: NewV al(eb)← SampleNewV al(SEb(eb))

▷ Sample a new value.
3: OldV al(eb)← SampleOldV al(SEb(eb))

▷ Sample an old value.
4: for each se ∈ SEb(eb) do
5: oldInputs← INc(se, eb)
6: for i→∈ R|IN(se)| do
7: if oldInputs[i] = OldV al(eb) then
8: newInputs← Copy(oldInputs)

▷ Generate new input vector.
9: newInputs[i]← NewV al(eb)

10: newOutput← se(newInputs)
▷ Evaluate the output of expression.

11: child← CHeb(newOutput)
▷ Check if we already created a child node.

12: if child not exists then
13: child← CreateNewBucket()
14: CHeb ← CHeb ∪ child
15: end if
16: INc(se, child)← newInputs
17: OUTc(se, child)← newOutput
18: SEb(child)← SEb(child) ∪ se

▷ Pass this expression to child node.
19: end if
20: end for
21: end for
22: SEb(eb)← []

▷ Clear the expression of this node.
23: for each child ∈ CHeb do
24: if |SEb(child)| > K then
25: Split(child)

▷ Recursive split.
26: end if
27: end for
28: end function
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Instead of directly looking for the counts of each input vector, we concatenate all of the input vec-
tors and generate a random number as an array index to sample the old value. The probability that
an old number is chosen is thus proportional to its normalized counts. This approach prevents us
from always sampling the majority value. Sometimes, the majority value does not affect the output
values or is not able to split the bucket.

Algorithm 5 Sampling New Values
1: function SPLIT(Expression Bucket eb)
2: values← []
3: for each se ∈ SEb(eb) do
4: for each constant ∈ se do

▷ Extract condition-related constants.
5: if constant is-parent-of Conditions then
6: values← values ∪ constant
7: end if
8: end for
9: end for

10: rand← Uniform(0, |values|)
▷ Random number of range [0, |values|).

11: value← values[rand]
12: candidates← [1− value, !value, 0− value, value]
13: rand← Uniform(0, 3)
14: return candidates[rand]

▷ Return one of the candidates based on even distribution.
15: end function

In fact, the bucket splitting algorithm does not always get an old and new value that can split
the bucket. We repeatedly call the Algorithm 4 for 10 times until it finds a split point. We find
that the majority value usually works well for the old value. The problem mostly comes from the
sampled new value. It is the same issue that Pewny, Garmany, Gawlik, et al. [103] suffers from:
The sampling range is not good to distinguish the symbolic expressions. To handle this issue,
we propose to use the available information in the symbolic expressions to determine the new
value. The sampling method is presented in Algorithm 5. It looks for condition-related constants
and samples them according to their normalized frequency. Getting the value is not enough; in
order to cover all the condition operations including Greater Than, Greater or Equal, Lower Than,
Lower Than or Equal, and Not. We further transform the sampled value to different forms and
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resample them again. We found that this approach can greatly reduce the number of bucket split
trials. It reduces the average number of trials from 20 to approximately 3. If by repeating a fixed
number of times Algorithm 4 still cannot find a split point, we ask the solver to check if such a
new value exists that can make the output different by using the equation below with assertion
sum ∈ (0, |SEb(eb)|). Since it only involves one unknown variable, the solver can quickly return
an answer. J·K denotes an identity function that outputs 1 if the expression is true; otherwise, 0.

sum =

|SEb(eb)|∑
se

r
se(newValSymbol)! = OUTc(se, eb)

z
(3.1)

Sampling new values locally based on what is inside the bucket is essentially narrowing down
the search space. As the tree goes deeper, the number of symbolic expressions that pass through
a bucket is also decreasing. Sampling locally for each expression bucket can help the splitting
algorithm find locally good splitting points. The index structure, as well as the index procedure
itself, are incremental. We start with an index tree that only has a root node. We update the index by
splitting the large expression bucket. Therefore, this index structure can be incrementally updated.

3.5.3 Implementation Details and Complexity Analysis

The tree structure in its nature resembles the column-family database schema. In a column-family
database, each row is indexed with a primary key. One can add multiple secondary keys and cor-
responding values within each single row. We implement the tree structure as a column-family
table. Each expression bucket of the index tree corresponds to a single row in the column-family
database. Each row stores the primary keys for its children and other associated information as
secondary keys.. Table 3.5 shows the basic schema of the implemented index tree.

For a symbolic expression se with |IN(se)| number of inputs, the number of located leave
buckets is bounded by O(!|IN(se)|), which is the worst case where we need the full permutation of
the input values. However, this case rarely happens as we only split a bucket when its size exceeds
a pre-specified threshold K. On the first several levels, only a few permutations can be further
developed into the deeper levels of the tree. Further permutations under a given permutation are
only needed when we split a bucket. Moreover, |IN(se)| is mostly bounded by 5 for a basic block,
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Bucket ID: -1 (root)

0x26 0xFFFF 0x1 … 0xac2

NA NA 0 NA

NA NA 1 NA

[expressions] [expressions] [expressions]

Children

Old Value

New Value

Bucket ID: 0xa56c

0x34 0x0 … 0xac2

NA NA NA

NA NA NA

[expressions] [expressions] [expressions]

Children

Old Value

New Value

[link]

… …

Primary key Secondary key

Figure 3.5: The symbolic index tree implemented with a column-family model. The index tree
does not require slice query support. Column-family model is preferred over other disk-based tree
index since each parent node can have a large number of children.
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and its majority is between 2 and 3. Thus, we can afford to replace O(!|IN(se)|) with a small
constant upper bound O(d). It is noted that previous methods by Pewny, Garmany, Gawlik, et al.

[103] and David, Partush, and Yahav [22] both require full permutations.

Given N symbolic expressions in an index tree, the total number of their corresponding loca-
tions is bounded by O(Nd). With a maximum of K symbolic expressions in a bucket, the total
number of leaf nodes is bounded by O(Nd/K). The index tree does not limit the number of chil-
dren, which is reasonable in a column-family database like Cassandra, where one can have billions
of columns for a single row. In the best case, all of the leaf nodes are on the same level under the
root node. We only need O(log(Nd/K)) to look up the expression bucket in a single row. In the
worse case, one parent node only has two children and the resulting tree resembles a binary tree.
This binary tree has a depth of O(log(Nd/K) · ⌈log(2)⌉) on average and O((Nd/K)/2 · ⌈log(2)⌉)
in the worst case. The worst case rarely happens and a binary split of a bucket almost only occurs
in the last several levels of the tree. Since d and K are in the similar scale in [500, 100] and can
cancel each other, it is feasible to omit them in the complexity. Therefore, the complexity of locat-
ing the bucket for either insertion or querying is sublinear on average, approximately O(log(N)).
The other overheads for insertion and querying are constant and negligible when compared to the
process of locating buckets. In Section 3.7.3, we empirically study the system’s scalability with
more than 200 million symbolic expressions. It shows that the indexing and querying complexity
is sublinear in practice.

3.6 Subgraph Clone Search

In order to support assembly subgraph clone search, we incorporate the symbolic retrieval index
with the MapReduce-based subgraph search algorithm by Ding, Fung, and Charland [30]. This
step corresponds to Stage 4 in Figure 3.3. The original algorithm by Ding, Fung, and Charland
[30] consists of two phases (see Figure 3.6). The Mapping Phase: The algorithm generates basic
block clone pairs by using Locality Sensitive Hashing (LSH). An adaptive LSH hashing algorithm
for cosine space was proposed in variant to the LSB-Forest [129] and SK-LSH [84]. The Reducing

Phase: It takes the generated basic block clone pairs in the mapping phase and tries to reduce the
clone pairs to subgraphs by considering their connectivity. The second phase uses a customized
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Mapper

Reducer

A block-to-block
clone pair

A cloned subgraph

Cloned subgraphs 
of a function

Figure 3.6: The MapReduce-based subgraph clone construction process for Sym1n0.

MapReduce-based algorithm instead of the typical exploration-based search algorithms such as
TurboISO [53] and STwig [128]. We replace the original mapping phase by Ding, Fung, and Char-
land [30] with our own map algorithm to generate the basic block clone pairs. This way, we support
semantic subgraph clone search. In our mapping phase, we derive the basic block clone pairs ac-
cording to the symbolic retrieval results. The similarity between two basic blocks is modeled as
the cumulative similarity values of the overlapped symbolic expressions:

similarity(bt, bs) =
SE(bs)∩SE(bt)∑

set

1

bucketSize(set)
(3.2)

The function bucketSize(·) indicates the number of symbolic expressions that are co-located
with set in the expressions buckets. This step takes the global repository information as a normal-
izer. Common S-expressions tend to have a higher number of co-located expressions and complex
logics, such as encryption, and very few co-located expressions. Given a target function and its
corresponding basic blocks, we retrieve their top-K similar repository basic blocks with similarity
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3.6 Subgraph Clone Search

BusyBox

Index x86 64-bit ARM x86 64-bit ARM x86 32-bit x86 32-bit
Query x86 32-bit x86 32-bit ARM x86 64-bit x86 64-bit ARM Avg. p

BinGo† Ø Ø Ø Ø Ø Ø 0.324 Ø
BinGo-SL† 0.454 0.282 0.319 0.451 0.447 0.440 0.399 H#
Multi-MH† Ø Ø Ø Ø Ø 0.324 0.324 Ø

Constant 0.158 0.000 0.000 0.000 0.150 0.000 0.051  
n-gram 0.032 0.000 0.000 0.000 0.056 0.000 0.015  
n-perm 0.014 0.000 0.000 0.000 0.016 0.000 0.005  

Graphlet 0.363 0.329 0.290 0.339 0.371 0.290 0.330  
Graphlet-E 0.046 0.040 0.037 0.038 0.047 0.037 0.041  
Graphlet-C 0.044 0.000 0.000 0.000 0.044 0.000 0.015  

Sym1n0* 0.434 0.598 0.386 0.490 0.518 0.536 0.494 #

Coreutils

Index x86 64-bit ARM x86 64-bit ARM x86 32-bit x86 32-bit
Query x86 32-bit x86 32-bit ARM x86 64-bit x86 64-bit ARM Avg. p

BinGo† 0.359 0.105 0.065 0.105 0.360 0.067 0.177 H#
BinGo-SL† 0.548 0.186 0.395 0.217 0.457 0.313 0.353 H#
Multi-MH† Ø Ø Ø Ø Ø Ø Ø Ø

Constant 0.141 0.001 0.001 0.001 0.092 0.001 0.039  
n-gram 0.083 0.000 0.000 0.000 0.079 0.000 0.027  
n-perm 0.795 0.005 0.000 0.000 0.534 0.000 0.222  

Graphlet 0.216 0.167 0.178 0.161 0.174 0.155 0.175  
Graphlet-E 0.058 0.054 0.069 0.059 0.055 0.047 0.057  
Graphlet-C 0.085 0.000 0.000 0.000 0.080 0.000 0.028  

Sym1n0* 0.723 0.831 0.561 0.598 0.723 0.672 0.685 #
Table 3.3: Testing cross-architecture clone search on the general utility dataset. The ground truth
data is a one to one assembly function mapping. The clone search results are evaluated using the
Precision@1 metric, which in this case captures the ratio of assembly functions that are correctly
matched at position 1. Entries with †are cited performance. #, H#, and  respectively indicate
p > 0.05, p ≤ 0.05 and p ≤ 0.01. Ø indicates unavailable data or test samples insufficient for a
statistical test. *Sym1n0 is our proposed method.

value calculated using the above equation. At this point, we finish the mapping phase with a list of
clone pairs available to the reducing phase. The original mapping phase assumes that every clone
pair has an equal weight of 1. However, we have a similarity value generated by matching basic
blocks’ symbolic expressions. We modify the original subgraph scoring functions to incorporate
this similarity measure as:

simn =

∑Bt

bt
MaxMatched(bt, sgs)

|Et|
+
|uniqueEdges(sgs)|

|Bt|
. (3.3)

The MaxMatched function finds the highest score between bt and bs ∈ sgs. After the reducing
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phase, we collect a list of subgraph clones. To measure the similarity between functions, we take
the subgraph coverage and aggregate their similarity value as the score.

3.7 Experiments

This section presents the experimental results for cross-architecture assembly clone search. We
benchmark the performance of our proposed solutions with existing available ones that can be
used for assembly clone search. The experiment consists of three parts. First, we use two open
source utility libraries as our clone search dataset. Utility libraries are widely used in the firmware
image for embedded devices such as routers. BusyBox and Coreutils have been used in recent re-
search [17], [103] and we can thus directly compare our results with others. We also implement and
include several applicable baselines by Khoo, Mycroft, and Anderson [69]. Second, we conduct
cross-architecture clone search for 7 widely used libraries that are related to numeric calculation.
Assembly code that involves numeric calculations such as encryption is the most difficult part
to reverse engineer. We evaluate our proposed approach and the applicable baseline methods us-
ing several metrics used in information retrieval to cover most assembly clone search scenarios.
Finally, we study the scalability and capacity of the proposed engine by presenting experimental
results using a dataset that has millions of assembly functions and hundreds of millions of symbolic
expressions.

3.7.1 Assembly Clone Search on Utility Libraries

In this experiment, we evaluate the proposed assembly clone search engine based on BusyBox

(1.21.1) and coreutils utility libraries, which are widely used in firmwares. There were approxi-
mately 2,800 assembly functions extracted from the BusyBox binary file and around 2,700 in core-
utils, depending on the target architecture. We follow the same experimental setup used by Chan-
dramohan, Xue, Xu, et al. [17] and Pewny, Garmany, Gawlik, et al. [103]. In this section, we
focus only on searching clones among the 2-combinations of the following assembly languages:
x86 32-bit, x86 64-bit, and ARM 32-bit, since only these results are commonly reported by Chan-
dramohan, Xue, Xu, et al. [17] and Pewny, Garmany, Gawlik, et al. [103]. We evaluate additional
architectures in the following section.
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Metric Approach lib-gmp imagemagick libcurl libtomcrypt openssl lib-sqlite zlib Avg. p

Precision@1

Graphlet-C 0.120 0.048 0.118 0.057 0.054 0.190 0.202 0.113  
Graphlet-E 0.337 0.243 0.328 0.265 0.248 0.369 0.450 0.320  

N -perm 0.118 0.037 0.094 0.060 0.047 0.228 0.228 0.116  
N -gram 0.096 0.031 0.066 0.061 0.038 0.176 0.188 0.094  
Constant 0.026 0.233 0.175 0.107 0.117 0.110 0.152 0.131  
Graphlet 0.230 0.203 0.285 0.237 0.177 0.358 0.448 0.277  

BinClone 0.178 0.047 0.121 0.072 Ø 0.152 0.218 0.131 H#
Tracelet 0.068 Ø 0.045 0.085 Ø 0.069 0.152 0.084  

*Sym1n0 0.356 0.240 0.408 0.324 0.197 0.461 0.474 0.349 #

Recall@10

Graphlet-C 0.048 0.022 0.042 0.030 0.022 0.054 0.063 0.040  
Graphlet-E 0.266 0.194 0.231 0.253 0.180 0.262 0.372 0.251  

N -perm 0.055 0.014 0.039 0.035 0.022 0.072 0.081 0.045  
N -gram 0.049 0.011 0.031 0.031 0.018 0.060 0.069 0.039  
Constant 0.012 0.063 0.051 0.038 0.036 0.035 0.068 0.043  
Graphlet 0.243 0.203 0.268 0.267 0.186 0.341 0.444 0.279  

BinClone 0.078 0.027 0.063 0.046 Ø 0.067 0.105 0.064 H#
Tracelet 0.044 Ø 0.046 0.058 Ø 0.060 0.098 0.061 H#

*Sym1n0 0.464 0.394 0.601 0.550 0.400 0.554 0.704 0.524 #

MAP@10

Graphlet-C 0.019 0.013 0.033 0.018 0.016 0.049 0.052 0.029  
Graphlet-E 0.092 0.120 0.160 0.141 0.121 0.183 0.261 0.154  

N -perm 0.019 0.009 0.026 0.020 0.014 0.061 0.061 0.030  
N -gram 0.016 0.007 0.020 0.020 0.011 0.048 0.051 0.025  
Constant 0.004 0.057 0.046 0.029 0.031 0.030 0.043 0.034  
Graphlet 0.072 0.120 0.183 0.146 0.117 0.233 0.300 0.167  

BinClone 0.028 0.014 0.036 0.024 Ø 0.045 0.064 0.035 H#
Tracelet 0.012 Ø 0.018 0.029 Ø 0.025 0.056 0.028 H#

*Sym1n0 0.140 0.167 0.341 0.239 0.144 0.328 0.372 0.247 #

Table 3.4: Benchmark results of different assembly code clone search approaches. We employed
three evaluation metrics: The Precision at Position 1 (Precision@1), Recall at Position 10 (R@10),
and the Mean Average Precision at Position 10 (MAP@10). The ground-truth data is a one to four
mapping. #, H#, and  respectively indicate p > 0.05, p ≤ 0.05 and p ≤ 0.01. Ø indicates
unavailable data or test samples insufficient for a statistical test. *Sym1n0 is our proposed method.
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The experiment is conducted as follows. We first compile a selected library file using the GCC
compiler for three different target architectures, which correspond to three different assembly lan-
guage families. We link the assembly functions by using the compiler-output debug symbols and
generate a one-to-one clone mapping between assembly functions. This mapping is used as the
ground-truth data. It is noted that Ding, Fung, and Charland [30] match assembly functions by us-
ing the clones detected at the source code level, which is more practical. However, in this case, we
follow the same setup as in [17] and [103] for comparison purposes. After obtaining the ground-
truth mapping, we search a binary file compiled for one architecture against the one that is compiled
for another architecture.

As mentioned in Section 3.1, there exist only a few techniques that support cross-architecture
clone search [17], [34], [103], and [39], but none of their implementations are available for evalua-
tion. To conduct a benchmark comparison, we seek to conduct experiments in a similar way. How-
ever, the experiments in [39] and [34] involve random sampling to generate the experiment dataset,
which prevents us from reproducing it. Thus, we only consider the BinGo proposed by Chandramo-
han, Xue, Xu, et al. [17] and the Multi-MH proposed by Pewny, Garmany, Gawlik, et al. [103].
We also evaluate our implementation against other baseline methods proposed in [69] including
n-gram, n-perm, Graphlet, Graphlet-Extended, and Graphlet-Colored. Some of these baselines
depend on architecture-invariant features and should be able to handle cross-architecture clone
search.

Table 3.3 shows the experimental results. It demonstrates that our proposed clone search engine
in almost every case outperforms the others. The only exception is in the first case where it achieves
a slightly lower performance than BinGo. On average for the BusyBox dataset, we can rank 50%
of the functions at position one against more than 2,000 candidates, even if their assembly code
appears to be very different. For the coreutils dataset, this value is 68%. It is noted that some of the
results are unavailable as these cases were not covered in the corresponding paper. As expected,
the architecture-agnostic approaches, such as n-gram and n-perm, do not perform well in cross-
architecture detection. However, Graphlet, which is based on subgraph structure, achieves results
comparable to BinGo for the BusyBox dataset. This experiment shows the robustness and quality
of our proposed clone search engine.
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3.7.2 Assembly Clone Search on Numeric Calculation Libraries

In this experiment, we cover a wider range of processor architectures. We include x86 32-bit, x86
64-bit, ARM 32-bit, MIPS 32-bit, and PowerPC 32-bit. We conduct experiments on several popular
numeric calculation libraries, since numeric operations are the most complex and time-consuming
ones for a reverse engineer. In this experiment, we select 7 open source numeric calculation li-
braries including lib-gmp, imagemagick, libcurl, libtomcrypt, opessl, and zlib. They cover utility
functions for image processing, floating-point calculations, numeric manipulations, encryption,
networking, and compression. Figure 3.7 shows the empirical distribution over the assembly func-
tions. They are different with respect to function length. Especially, the MIPS architecture tends
to have assembly functions that are longer than the others. This unbalance poses a challenge for a
clone search engine.

x86 64-bit ARM MIPS PowerPC x86 32-bit
lib-gmp 1,106 1,088 763 2,343 1,085

imagemagick 3,623 3,649 2,755 10,936 3,619
libcurl 957 987 932 1,388 968

libtomcrypt 1,015 1,035 673 1,972 1,021
openssl 5,765 5,780 5,857 6,224 5,772

sqlite 1,631 1,679 1,639 1,47 1,635
zlib 220 233 196 255 221

Table 3.5: Number of functions for binaries compiled for different architectures.

We respectively compile these libraries for each selected processor architecture. There are 35
binary files in total that represent 80,449 assembly functions. We link these assembly functions
using the compiler-output debug symbols and generate the ground-truth data. It is noted that us-
ing source code information would be much better because there are internal clones within each
library. However, for simplicity we assume that we only want to retrieve assembly functions that
have the same debug symbol. This is a common practice used in the literature such as [34], [39],
and [17]. After linking, we have a one-to-four assembly function clone mapping. We use this link-
ing information as the ground-truth data to evaluate the robustness and search quality of our search
engine.
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Average indexing time (ms) Average query response time (ms)
BinClone 65.166 5,627.395
Tracelet 0 55,616.406
Graphlet-Extended 165.766 896.832
Sym1n0 15.368 605.247

Table 3.6: Average indexing time and query response time per assembly function for different
baselines.

Given a library, we index binaries of all architectures and search each binary against the repos-
itory. Thus, the search repository contains not only the assembly code that is in other families of
assembly language, but also in the same. This poses a challenge to the search process. The search
engine may return false results that may be simply syntactically similar to the query. Three typical
information retrieval metrics are chosen to evaluate the experiment: The Precision at Position 1

(Precision@1), Recall at Position 10 (Recall@10), and the Mean Average Precision at Position 10

(MAP@10). These three metrics can evaluate the quality of the top-ranked list simulating a real
user experience [86].

Since the other cross-architecture clone search approaches are not available to us for evaluation,
we compare our proposed approach with BinClone [36], Tracelet [24], and the methods presented
in [69]. Each method is limited to use a single core and 48 hours to find the clones. Ø indicates that
the corresponding method cannot finish within the allotted time. We include the N -gram, N -perm,
and constant approaches with a vector space model in the experiment. These numeric calculation
libraries may include special constants or string literals that are useful for cross-architecture clone
detection.

Table 3.4 shows the clone search results. Our proposed approach achieves the best results
across different binaries. We notice that the Precision@1 measure reported in this experiment is
not as good as in the previous one. We look into the false negatives and find that there are in
fact many internal clones within the library itself. For example, the deflateStateCheck function
appears to be very similar to the inflateStateCheck function in the zlib library, as well as to the
BIO_asn1_get_prefix and BIO_asn1_get_suffix functions in OpenSSL. The clone search engine
actually returns all of them, but they are considered as false negatives by the ground-truth mapping.
We also notice that the other baseline methods achieve reasonably good Precision@1 measure, but
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Figure 3.8: Scalability study. (a): Average Indexing Time vs. Number of Functions in the Reposi-
tory. (b): Average Query Response Time vs. Number of Functions in the Repository. The red line
represents the plotted time and the blue line represents the smoothed polynomial approximation.
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have a much lower value for the Recall@10 metric. We found that they are good at detecting
clones between the x86 32-bit and x86 64-bit architecture, as they share similar instruction sets
and syntax. Thus, they always return the clones from the x86 architecture family, but miss all the
results for the other architectures, which leads to low Recall@10 values.

Additionally, we compare Sym1n0 with other baselines with respect to the indexing and query
response time in Table 3.6. It is noted that all the methods use memory-based data structures as data
store. Therefore, the reported value for Sym1n0 in Table 3.6 is smaller than the value plotted in
Figure 3.8. We include BinClone, Tracelet, and Graphlet-Extended in the table. Graphlet-Extended

has the best clone search performance among the baselines in the previous experiment. However, it
takes more time for indexing and searching, due to the process for Graphlet signature generation.
BinClone is fast for indexing. However, for searching it requires a two-combination of all feature
values, which leads to a high runtime. Tracelet does not require the indexing step. It relies on a
pairwise comparison process to find clones, and this process also will incur a high runtime for
searching. Other token-based baselines complete indexing and searching within 2 milliseconds
per function but do not yield reasonable good performance. In general, Sym1n0 achieves a more
balanced runtime with respect to indexing and searching.

3.7.3 Scalability Study

In this experiment, we evaluate the scalability of our proposed engine on a large collection of
assembly functions. We conduct our experiment on a single workstation with an i7-4190 processor,
32 GB memory, and a 7200rmp non-SSD hard disk. The workstation runs on a Windows Server

2012 operating system. The clone search engine runs on top of an embedded Spark Computation

Framework and Apache Cassandra Database.

We prepare a large collection of binary files. All files are either open source libraries or appli-
cations, such as Chromium and Opera. The resulting uncompressed assembly code is more than 7
GB. In total, there are 1,417,710 assembly functions, 15,912,098 basic blocks, and more than 200
million symbolic expressions. On the workstation, we gradually index this collection of assembly
functions in a random order and query the zlib version 1.2.7 binary file at every 20,000 assembly
function indexing interval. As zlib is a widely used library in open source software, it is expected
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that it has a large number of clones in the repository. We collect the average indexing time for each
function, as well as the average time it takes to respond to a function clone search query. Figure 3.8
depicts the average indexing time and query response time for each assembly function.

On average, it takes 21 milliseconds to index a function, including the time to do a full recursive
split of all the affected S-expression buckets. It takes 1,006 milliseconds to search a target assem-
bly function against the repository. The indexing time is bounded by 52 milliseconds and the query
response time by 1,100 milliseconds. After indexing more than 1 million assembly functions, the
average query response time only increases from 957 milliseconds to 1,041 milliseconds, and the
average indexing time remains almost the same. The small increase of the average querying and in-
dexing time shows that the search engine is scalable. Figure 3.8 also includes the interpolated lines
using polynomial approximation with an order of 5. The lines show that the increased complexity
resembles a log-shape curve. There are spike-ups, due to the compaction routine in Cassandra, that
increase I/O contention in the database. Our results are comparable to the experiments conducted
by Ding, Fung, and Charland [30]. However, we use only one workstation, while Ding, Fung, and
Charland [30] use a small cluster with 4 machines and does not support cross-architecture subgraph
clone search.

3.8 Limitations

Sym1n0, at this moment, only simulates library function calls that are implemented as simplified
symbolic graphs. It cannot simulate other internal or external function calls as it only simulates
basic blocks but not the whole function. It also assumes basic block integrity, which can be at-
tacked by code obfuscation techniques. Additionally, it is based on the correction identification
of assembly function boundaries and CFG. However, our subgraph search algorithm can mitigate
this issue to some degree. A function that is split into multiple functions can still be recovered as
multiple subgraphs from the repository. An in-lined function can still be retrieved as a subgraph of
the query.
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3.9 Conclusion

3.9 Conclusion

In this study, we propose a robust, accurate, and cross-architecture assembly clone search engine.
It supports cross-architecture search against various families of processors including, but not lim-
ited to, x86 32-bit, x86 64-bit, ARM32, ARM64, MIPS 32-bit, MIPS 64-bit, PowerPC 32-bit, and
PowerPC 64-bit. We propose and implement a scalable tree-based symbolic expression index that
is able to efficiently differentiate symbolic expressions’ I/O behavior. The tree index can be incre-
mentally updated. We incorporate the symbolic expression search index with a MapReduce-based
subgraph search algorithm by replacing the original mapper phase with our new one. Our exper-
iment demonstrates that our search engine performs better than the state-of-the-art clone search
methods on average. In the future, we plan to improve the current tree-based index by optimizing
the bucket split point and producing a more balanced tree structure to further improve efficiency.
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4
Robust Clone Search

Developing a clone search solution requires a robust vector representation of assembly code, by
which one can measure the similarity between a query and the indexed functions. Based on man-
ually engineered features, relevant studies can be categorized into static or dynamic approaches.
Dynamic approaches model the semantic similarity by dynamically analyzing the I/O behavior of
assembly code [17], [33], [55], [103]. Static approaches model the similarity between assembly
code by looking for their static differences with respect to the syntax or descriptive statistics [22],
[24], [30], [34], [36], [39], [69], [114]. Static approaches are more scalable and provide better
coverage than the dynamic approaches. Dynamic approaches are more robust against changes in
syntax but less scalable. We identify two problems that can be mitigated to boost the semantic
richness and robustness of static features. We show that by considering these two factors, a static
approach can even achieve better performance than the state-of-the-art dynamic approaches.

P1: Existing state-of-the-art static approaches fail to consider the relationships among features.
LSH-S [114], n-gram [69], n-perm [69], BinClone [36], and Kam1n0 [30] model assembly code
fragments as frequency values of operations and categorized operands. Tracelet [24] models as-
sembly code as the editing distance between instruction sequences. Discovre [34] and Genius [39]
construct descriptive features such as the ratio of arithmetic assembly instructions, the number of
transfer instructions, and the number of basic blocks, among others. All these approaches assume
each feature or category is an independent dimension. However, an xmm0 Streaming SIMD Ex-
tensions (SSE) register is related to SSE operations such as movaps. A fclose libc function call is
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related to other file-related libc calls such as fopen. A strcpy libc call can be replaced with mem-

cpy. These relationships provide more semantic information than individual tokens or descriptive
statistics.

To address this problem, we propose to incorporate lexical semantic relationship into the fea-
ture engineering process. Manually specifying all of the potential relationships from prior knowl-
edge of assembly language is time-consuming and infeasible in practice. Instead, we propose
to learn these relationships directly from assembly code. Asm2Vec explores co-occurrence rela-
tionships among tokens and discovers rich lexical semantic relationships among tokens (see Fig-
ure 4.2). For example, memcpy, strcpy, memncpy, and mempcpy appear to be semantically similar
to each other. SSE registers relate to SSE operands. Asm2Vec does not require any prior knowledge
in the training process.

P2: The existing static approaches assume that features are equally important [24], [30], [36],
[114] or require a mapping of equivalent assembly functions to learn the weights [34], [39]. The
chosen weights may not capture the important patterns and diversity that distinguish one assembly
function from another. An experienced reverse engineer does not identify a known function by
equally looking through the whole content or logic, but rather pinpoints critical spots and important
patterns that identify a specific function based on past experience in binary analysis. One also does
not need mappings of equivalent assembly code.

To solve this problem, we find that it is possible to simulate the way in which an experienced
reverse engineer works. Inspired by recent development in representation learning [78], [79], we
propose to train a neural network model to read a large sample of assembly code data and let the
model identify the best representation that distinguishes one function from the rest. In this chapter,
we make the following contributions:

• We propose a novel approach for assembly clone detection. It is the first work that employs
representation learning to construct a feature vector for assembly code as a way to mitigate
problems P1 and P2 in current hand-crafted features. All previous research on assembly clone
search requires a manual feature engineering process. The clone search engine is part of an open
source platform.1

1https://github.com/McGill-DMaS/Kam1n0-Plugin-IDA-Pro
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4.1 Problem Definition

• We develop a representation learning model, namely Asm2Vec, for assembly code syntax and
control flow graph. The model learns latent lexical semantics between tokens and represents
an assembly function as an internally weighted mixture of collective semantics. The learning
process does not require any prior knowledge about assembly code, such as compiler optimiza-
tion settings or the correct mapping between assembly functions. It only needs assembly code
functions as inputs.
• We show that Asm2Vec is more resilient to code obfuscation and compiler optimizations than

state-of-the-art static features and dynamic approaches. Our experiment covers different config-
urations of compilers and a strong obfuscator that substitutes instructions, splits basic blocks,
adds bogus logic, and destroys the original control flow graph. We also conduct a vulnerability
search case study on a publicly available vulnerability dataset, where Asm2Vec achieves zero
false positives and 100% recalls. It outperforms a dynamic state-of-the-art vulnerability search
method.

Asm2Vec as a static approach cannot completely defeat code obfuscation. However, it is more
resilient to code obfuscation than state-of-the-art static features. This chapter is organized as fol-
lows: Section 4.1 formally defines the search problem. Section 4.2 systematically integrates repre-
sentation learning into a clone search process. Section 4.3 describes the model. Section 4.4 presents
our experiment. Section 4.5 discusses the literature. Section 4.6 discusses the limitations and con-
cludes the chapter.

4.1 Problem Definition

In the assembly clone search literature, there are four types of clones [30], [36], [114]: Type I: lit-
erally identical; Type II: syntactically equivalent; Type III: slightly modified; and Type IV: seman-
tically similar. We focus on Type IV clones, where assembly functions may appear syntactically
different but share similar functional logic in their source code. For example, the same source code
with and without obfuscation, or a patched source code between different releases. We use the
following notions: function denotes an assembly function; source function represents the original
function written in source code, such as C++; repository function stands for the assembly func-
tion that is indexed inside the repository; and target function denotes the assembly function query.
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4.2 Overall Workflow

Repository

Repository Function f0

Repository Function f1

Repository Function f2

Representation 
Learning Model

1. Training Query Function ft

Vector for f0
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Vector for f2

2. Produce

Vector for ft
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4. Compare

Figure 4.3: The overall work flow of Asm2Vec.

Given an assembly function, our goal is to search for its semantic clones from the repository RP.
We formally define the search problem as follows:

Definition 10 (Assembly function clone search) Given a target function ft, the search problem is

to retrieve the top-k repository functions fs ∈ RP, ranked by their semantic similarity, so they can

be considered as Type IV clones.

4.2 Overall Workflow

Figure 4.3 shows the overall workflow. There are four steps: Step 1: Given a repository of assembly
functions, we first build a neural network model for these functions. We only need their assembly
code as training data without any prior knowledge. Step 2: After the training phase, the model
produces a vector representation for each repository function. Step 3: Given a target function ft

that was not trained with this model, we use the model to estimate its vector representation. Step 4:

We compare the vector of ft against the other vectors in the repository by using cosine similarity
to retrieve the top-k ranked candidates as results.

The training process is a one-time effort and is efficient to learn representation for queries.
If a new assembly function is added to the repository, we follow the same procedure in Step 3 to
estimate its vector representation. The model can be retrained periodically to guarantee the vectors’
quality.
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4.3 Assembly Code Representation Learning

4.3 Assembly Code Representation Learning

In this section, we propose a representation learning model for assembly code. Specifically, our de-
sign is based on the PV-DM model [78]. The PV-DM model learns document representation based
on the tokens in the document. However, a document is sequentially laid out, which is different
than assembly code, as the latter can be represented as a graph and has a specific syntax. First,
we describe the original PV-DM neural network, which learns a vector representation for each text
paragraph. Then, we formulate our Asm2Vec model and describe how it is trained on instruction
sequences for a given function. After, we elaborate how to model a control flow graph as multiple
sequences.

4.3.1 Preliminaries

The PV-DM model is designed for text data. It is an extension of the original word2vec model.
It can jointly learn vector representations for each word and each paragraph. Figure 4.4 shows its
architecture.
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sat

Average

the cat on

Vector Vector VectorVector

Paragraph 
ID

Vector

Uh(x)
sigmoid

Multi-class
Prediction

ID-based 
Vector

 Lookup

The cat sat on a mat

a

Vector

Figure 4.4: The PV-DM model.

Given a text paragraph that contains multiple sentences, PV-DM applies a sliding window over
each sentence. The sliding window starts from the beginning of the sentence and moves forward
a single word at each step. For example, in Figure 4.4, the sliding window has a size of 5. In the
first step, the sliding window contains the five words ‘the’, ‘cat’, ‘sat’, ‘on’, and ‘a’. The word ‘sat’
in the middle is treated as the target and the surrounding words are treated as the context. In the
second step, the window moves forward a single word and contains ‘cat’, ‘sat’, ‘on’, ‘a’, and ‘mat’,
where the word ‘on’ is the target.

At each step, the PV-DM model performs a multi-class prediction task (see Figure 4.4). It maps
the current paragraph into a vector based on the paragraph ID and maps each word in the context
into a vector based on the word ID. The model averages these vectors and predicts the target word
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4.3 Assembly Code Representation Learning

from the vocabulary through a softmax classification. The back-propagated classification error will
be used to update these vectors. Formally, given a text corpus T that contains a list of paragraphs
p ∈ T, each paragraph p contains a list of sentences s ∈ p, and each sentence is a sequence of |s|
words wt ∈ s. PV-DM maximizes the log probability:

T∑
p

p∑
s

|s|−k∑
t=k

log P(wt|p, wt−k, ..., wt+k) (4.1)

The sliding window size is 2k + 1. The paragraph vector captures the information that is missing
from the context to predict the target. It is interpreted as topics [78]. PV-DM is designed for text
data that is sequentially laid out. However, assembly code carries richer syntax than plaintext. It
contains operations, operands, and control flow that are structurally different than plaintext. These
differences require a different model architecture design that cannot be addressed by PV-DM. Next,
we present a representation learning model that integrates the syntax of assembly code.

4.3.2 The Asm2Vec Model

An assembly function can be represented as a control flow graph (CFG). We propose to model
the control flow graph as multiple sequences. Each sequence corresponds to a potential execution
trace that contains linearly laid-out assembly instructions. Given a binary file, we use the IDA Pro2

disassembler to extract a list of assembly functions, their basic blocks, and control flow graphs.

This section corresponds to Step 1 and 2 in Figure 4.2. In these steps, we train a representation
model and produce a numeric vector for each repository function fs ∈ RP. Figure 4.5 shows the
neural network structure of the model. It is different than the original PV-DM model.

First, we map each repository function fs to a vector θ⃗fs ∈ R2×d. θ⃗fs is the vector representation
of function fs to be learned in training. d is a user chosen parameter. Similarly, we collect all the
unique tokens in the repository RP. We treat operands and operations in assembly code as tokens.
We map each token t into a numeric vector v⃗t ∈ Rd and another numeric vector v⃗′t ∈ R2×d. v⃗t
is the vector representations of token t. After training, it represents a token’s lexical semantics.
v⃗t vectors are used in Figure 4.2 to visualize the relationship among tokens. v⃗′t is used for token

2IDA Pro, available at: http://www.hex-rays.com/
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4.3 Assembly Code Representation Learning

prediction. All θ⃗fs and v⃗t are initialized to small random values around zero. All v⃗′t are initialized
to zeros. We use 2 × d for fs because we concatenate the vectors for operation and operands to
represent an instruction.

We treat each repository function fs ∈ RP as multiple sequences S(fs) = seq[1 : i], where seqi
is one of them. We assume that the order of sequences is randomized. A sequence is represented as
a list of instructions I(seqi) = in[1 : j], where inj is one of them. An instruction inj contains a list
of operands A(inj) and one operation P(inj). Their concatenation is denoted as its list of tokens
T (inj) = P(inj) || A(inj), where || denotes concatenation. Constants tokens are normalized into
their hexadecimal form.

For each sequence seqi in function fs, the neural network walks through the instructions from
its beginning. We collect the current instruction inj , its previous instruction inj−1, and its next
instruction inj+1. We ignore the instructions that are out-of-boundary. The proposed model tries to
maximize the following log probability across the repository RP:

RP∑
fs

S(fs)∑
seqi

I(seqi)∑
inj

T (inj)∑
tc

log P(tc|fs, inj−1, inj+1) (4.2)

It maximizes the log probability of seeing a token tc at the current instruction, given the current
assembly function fs and neighbor instructions. The intuition is to use the current function’s vector
and the context provided by the neighbor instructions to predict the current instruction. The vectors
provided by neighbor instructions capture the lexical semantic relationship. The function’s vector
remembers what cannot be predicted given the context. It models the instructions that distinguish
the current function from the others.

For a given function fs, we first look up its vector representation θ⃗fs through the previously
built dictionary. To model a neighbor instruction in as CT (in) ∈ R2×d, we average the vector
representations of its operands (∈ Rd) and concatenate the averaged vector (∈ Rd) with the vector
representation of the operation. It can be formulated as:

CT (in) = v⃗P(in)||
1

|A(in)|

A(in)∑
t

v⃗tb (4.3)
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4.3 Assembly Code Representation Learning

Recall that P(∗) denotes an operation, and it is a single token. By averaging fs with CT (inj − 1)

and CT (inj + 1), δ(in, fs) models the joint memory of neighbor instructions:

δ(inj, fs) =
1

3
(θ⃗fs + CT (inj−1) + CT (inj+1)) (4.4)

Example 1 Consider a simple assembly code function fs and one of its sequences in Figure 4.5.
Take the third instruction where j = 3 for example. T (in3) = {’push’, ’rbx’}. A(in3−1) = {’rbp’,
’rsp’}. P(in3−1) = {’mov’}. We collect their respective vectors v⃗rbp, v⃗rsp, v⃗mov and calculate
CT (in3−1) = v⃗mov||(v⃗rbp + v⃗rsp)/2. Following the same procedure, we calculate CT (in3+1). With
Equation 4.4 and θ⃗fs we have δ(in3, fs). ■

Given δ(in, fs), the probability term in Equation 4.2 can be rewritten as follows:

P(tc|fs, inj−1, inj+1) = P(tc|δ(inj, fs)) (4.5)

Recall that we map each token into two vectors v⃗ and v⃗′. For each target token tc ∈ T (inj), which
belongs to the current instruction, we look up its output vector v⃗′tc . The probability in Equation 4.5
can be modeled as a softmax multi-class regression problem:

P(tc|δ(inj, fs)) = P(v⃗′tc|δ(inj, fs))

=
f(v⃗′tc , δ(inj, fs))∑D
d f(v⃗′td , δ(inj, fs))

f(v⃗′tc , δ(inj, fs)) = Uh((v⃗′tc)
T × δ(inj, fs))

D denotes the whole vocabulary constructed upon the repository RP. Uh(·) denotes a sigmoid
function applied to each value of a vector. The total number of parameters to be estimated is
(|D| + 1) × 2 × d for each pass of the softmax layout. The term |D| is too large for the softmax
classification. Following Le and Mikolov [78] and Mikolov, Sutskever, Chen, et al. [89], we use
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the k negative sampling approach to approximate the log probability as:

log P(tc|δ(inj, fs)) ≈ log f(v⃗′tc |δ(inj, fs))

+
k∑

i=1

Etd∽Pn(tc)

(Jtd ̸= tcKlog f(−1× v⃗′td , δ(inj, fs))
) (4.6)

J·K is an identity function. If the expression inside this function is evaluated to be true, then it
outputs 1; otherwise 0. For example, J1 + 2 = 3K = 1 and J1 + 1 = 3K = 0. The negative
sampling algorithm distinguishes the correct guess tc with k randomly selected negative samples
{td|td ̸= tc} using k+1 logistic regressions. Etd∽Pn(tc) is a sampling function that samples a token
td from the vocabulary D according to the noise distribution Pn(tc) constructed from D. By taking
derivatives, respectively on v⃗′t and θ⃗fs , we can calculate the gradients as follows:

∂

∂θ⃗fs
J(θ) =

1

3

k∑
i

Etb∽Pn(tc)

(Jtb = tcK− f(v⃗′t, δ(inj, fs))
)

× v⃗′t

∂

∂v⃗′t
J(θ) = Jt = tcK− f(v⃗′t, δ(inj, fs))× δ(inj, fs)

(4.7)

By taking derivatives, respectively on v⃗P(inj+1) and {v⃗tb|tb ∈ A(inj+1)}, we can calculate their
gradients as follows. It will be the same equation for the previous instruction inj−1, by replacing
inj+1 with inj−1.

∂

∂v⃗P(inj+1)

J(θ) =
( ∂

∂θ⃗fs
J(θ)

)
[0 : d− 1]

∂

∂v⃗tb
J(θ) =

1

|A(inj+1)|
×
( ∂

∂θ⃗fs
J(θ)

)
[d : 2d− 1]

tb ∈ A(inj+1)

(4.8)
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After, we use back propagation to update the values of the involved vectors. Specifically, we
update θ⃗fs , all the involved v⃗t, and involved v⃗′t according to their gradients, with a learning rate.

Example 2 Continuing from Example 1, where the target token tc is ’push’. We calculate P(v⃗′push|δ(inj, fs))

using negative sampling (Equation 4.6). Next, we calculate the gradients using Equation 4.7 and 4.8.
We update all the involved vectors in these two examples, according to their respective gradient,
with a learning rate. ■

4.3.3 Modeling Assembly Functions

In this section, we model an assembly function into multiple sequences. Formally, we treat each
repository function fs ∈ RP as multiple sequences S(fs) = seq[1 : i]. The original linear layout
of control flow graph covers some invalid execution paths. We cannot directly use it as a training
sequence. Instead, we model the control flow graph as edge coverage sequences and random walks.

Selective Callee Expansion

Function inlining is a compiler optimization technique that replaces a function call instruction
with the body of the called function. It extends the original assembly function and improves its
performance by removing call overheads. It significantly modifies the control flow graph and is a
major challenge in assembly clone search [17], [55].

BinGo [17] proposes to selectively inline callee functions into the caller function in the dy-
namic analysis process. We adopt this technique for static analysis. Function call instructions are
selectively expanded with the body of the callee function. BinGo inlines all the standard library
calls for the purpose of semantic correctness. We do not inline any library calls because the lexical
semantics among library call tokens have been well captured by the model (see the visualization in
Figure 4.2). BinGo recursively inlines callee, but we only expand the first-order callees in the call
graph. Expanding callee functions recursively will include too many callees’ bodies into the caller,
which makes the caller function statically more similar to the callee.

The decoupling metric used by BinGo captures the ratio of in-degree and out-degree of each
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callee function fc:

α(fc) = outdegree(fc)/(outdegree(fc) + indegree(fc)) (4.9)

We adopt the same equation, as well as the same threshold value 0.01, to select a callee for expan-
sion. Additionally, we find that if the callee function is longer than or has a comparable length to
the caller, the callee will occupy too large of a portion of the caller. The expanded function appears
similar to the callee. Thus, we add an additional metric to filter out lengthy callees:

δ(fs, fc) = length(fc)/length(fs) (4.10)

We expand a callee if δ is less than 0.6 or fs is shorter than 10 lines of instructions. The second
condition is to accommodate wrapper functions.

Edge Coverage

To generate multiple sequences for an assembly function, we randomly sample all of the edges
from the callee-expanded control flow graph until all the edges in the original graph are covered.
For each sampled edge, we concatenate their assembly code to form a new sequence. This way, we
ensure that the control flow graph is fully covered. The model can still produce similar sequences,
even if the basic blocks in the control flow graph are split or merged.

Random Walk

CACompare [55] uses a random input sequence to analyze the I/O behavior of an assembly func-
tion. A random input simulates a random walk on the valid execution flow. Inspired by this method,
we extend the assembly sequences for an assembly function by adding multiple random walks on
the expanded control flow graph. This way, the generated sequence is much longer than the edge
sampling.

Dominator is a widely used concept in control flow analysis and compiler optimizations. A
basic block dominates another if one has to pass this block in order to reach the other. Multiple
random walks will put a higher probability to cover the basic blocks that dominate others. These
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Algorithm 6 Training the Asm2Vec model for one epoch
1: function TRAIN(Repository RP)
2: shuffle(RP)
3: for each fs ∈ RP do
4: for each seqi ∈ S(fs) do
5: for j = 1→ (|seqi| − 1) do

▷ Going through each instruction.
6: lookup fs’s representation θ⃗fs
7: calculate CT (inj−1) by Equ. 4.3
8: calculate CT (inj+1) by Equ. 4.3
9: calculate δ(inj , fs) by Equ. 4.4

10: for each tkn ∈ inj do
▷ Going through each token

11: targets← Etb∽Pn(tkn) ∪ {tkn}
▷ Sample tokens from Pn(tkn)

12: calculate and cumulate gradient for θ⃗fs (Equ. 4.7)
13: calculate gradient for v⃗′t (Equ. 4.7)
14: update v⃗′t
15: calculate and cumulate gradient for inj−1 (Equ. 4.8)
16: calculate and cumulate gradient for inj+1 (Equ. 4.8)
17: end for
18: update vectors for tokens of inj−1

19: update vectors for tokens of inj+1

20: update θ⃗fs
21: end for
22: end for
23: end for
24: end function
25:
26: function S(Function fs)
27: graph← CFG(fs)
28: graph← ExpandSellectiveCallee(graph)
29: sequences← {}
30: for each edg ∈ SampleEdge(graph) do
31: seq ← source(edg) || target(edg)

▷ Concatenate the source and the target blocks
32: sequences← sequences ∪ {seq}
33: end for
34: for i← numRandomWalk do
35: seq ← RandomWalk(graph)
36: sequences← sequences ∪ {seq}
37: end for
38:
39: return sequences
40: end function
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popular blocks can be the indicator of loop structures or cover important branching conditions.
Using random walks can be considered as a natural way to prioritize basic blocks that dominate
others.

4.3.4 Training, Estimating, and Searching

The training procedure corresponds to Algorithm 6. For each function in the repository, it generates
sequences by edging sampling and random walks. For each sequence, it goes through each instruc-
tion and applies the Asm2Vec to update the vectors (Line 10 to 19). As shown in Algorithm 6, the
training procedure does not require a ground-truth mapping between equivalent assembly func-
tions.

The estimation step corresponds to Step 3 in Figure 4.3. For an unseen assembly function ft

as query ft /∈ RP that does not belong to the set of training assembly functions, we first associate
it with a vector θ⃗ft ∈ R2×d, which is initialized to a sequence of small values close to zero. Then,
we follow the same procedure in the training process, where the neural network goes through each
sequence of ft and each instruction of the sequence. In every prediction step, we fix all v⃗t and v⃗′t

in the trained model and only propagate errors to θ⃗ft . At the end, we have θ⃗ft , while the vectors for
all fs ∈ RP and {v⃗t, v⃗′t|t ∈ D} remain the same. To search for a match, vectors are flattened and
compared using cosine similarity. Cosine similarity is a widely-used metric for embedding vectors.

Algorithm 7 Estimating a vector representation for a query
1: function ESTIMATE(Query Function ft)
2: initialize ft’s representation θ⃗ft
3: for each seqi ∈ S(ft) do
4: for j = 1→ (|seqi| − 1) do
5: calculate CT (inj−1) by Equ. 4.3
6: calculate CT (inj+1) by Equ. 4.3
7: calculate δ(inj , ft) by Equ. 4.4
8: for each tkn ∈ inj do
9: targets← Etb∽Pn(tkn) ∪ {tkn}

10: calculate gradient for θ⃗ft (Equ. 4.7)
11: update θ⃗ft
12: end for
13: end for
14: end for
15: end function
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Scalability is critical for binary clone search, as there may be millions of assembly functions
inside a repository. It is practical to train Asm2Vec on a large-scale of assembly code. A similar
model on text has been shown to be scalable to billions of text samples for training [89]. In this
study, we only use pair-wise similarity for nearest neighbor searching. Pair-wise searching among
low-dimensional fixed-length vectors can be fast. In our experiment in Section 4.4.3, there are
139,936 functions. The average training time for each function is 49 milliseconds. The average
query response time is less than 300 milliseconds.

4.4 Experiments

We compare Asm2Vec with existing available state-of-the-art dynamic and static assembly clone
search approaches. All the experiments are conducted with an Intel Xeon 6 core 3.60GHz CPU
with 32G memory. To simulate a similar environment in related studies, we limit the JVM to only
8 threads. There are four experiments. First, we benchmark the baselines against different compiler
optimizations with GCC. Second, we evaluate clone search quality against different heavy code
obfuscations with CLANG and O-LLVM. Third, we use all the binaries of the previous two. In the
last one, we apply Asm2Vec on a publicly available vulnerability search dataset. All binary files are
stripped before clone search. In all of the experiments, we choose d = 200, 25 negative samples, 10
random walks, and a decaying learning rate 0.025 for Asm2Vec. 200 corresponds to the suggested
dimensionality (2d) used in [78].

4.4.1 Searching with Different Compiler Optimization Levels

In this experiment, we benchmark the clone search performance against different optimization lev-
els with the GCC compiler version 5.4.0. We evaluate Asm2Vec based on 10 widely used utility
and numeric calculation libraries in Table 4.1. They are chosen according to an internal statistic of
the prevalence of FOSS libraries. We first compile a selected library using the GCC compiler with
four different compiler optimization settings, which results in four different binaries. Then, we test
every combination of two of them, which corresponds to two different optimization levels. Given
two binaries from the same library but with different optimization levels, we link their assembly
functions using the compiler-output debug symbols and generate a clone mapping between func-

85



4.4 Experiments

av
g=

0.
34

6

av
g=

0.
26

4

0.
00

0.
25

0.
50

0.
75

1.
00

0
1

2
3

R
el

at
iv

e 
A

bs
ol

ut
e 

D
iff

er
en

ce
 b

et
w

ee
n 

a 
C

lo
ne

 P
ai

r

Percentage (P)

O
pt

io
ns

O
0 

vs
. O

3 
p(

0)
=

 0

O
2 

vs
. O

3 
p(

0)
=

 0

a)
E

m
pi

ric
al

 D
is

tr
ib

ut
io

n 
of

 S
tr

in
g 

E
di

tin
g 

D
is

ta
nc

e

av
g=

0.
82

7

av
g=

0.
40

4

0.
00

0.
25

0.
50

0.
75

1.
00

0
1

2
3

R
el

at
iv

e 
A

bs
ol

ut
e 

D
iff

er
en

ce
 b

et
w

ee
n 

a 
C

lo
ne

 P
ai

r

Percentage (P)

O
pt

io
ns

O
0 

vs
. O

3 
p(

0)
=

 0
.1

7

O
2 

vs
. O

3 
p(

0)
=

 0
.6

5

b)
 E

m
pi

ric
al

 D
is

tr
ib

ut
io

n 
of

 C
ou

nt
 o

f V
er

te
x+

E
dg

e

Fi
gu

re
4.

6:
T

he
di

ff
er

en
ce

be
tw

ee
n

th
e

O
0/

O
2

op
tim

iz
ed

an
d

th
e

O
3

op
tim

iz
ed

fu
nc

tio
n.

a)
R

el
at

iv
e

st
ri

ng
ed

iti
ng

di
st

an
ce

.0
.2

64
in

di
ca

te
s

th
at

ar
ou

nd
26

.4
%

pe
rc

en
to

f
by

te
s

ar
e

di
ff

er
en

tb
et

w
ee

n
tw

o
op

tio
ns

fo
r

th
e

sa
m

e
so

ur
ce

co
de

fu
nc

tio
n.

b)
R

el
at

iv
e

ab
so

lu
te

di
ff

er
en

ce
in

th
e

co
un

to
fv

er
tic

es
an

d
ed

ge
s.

0.
40

4%
in

di
ca

te
s

th
at

on
e

fu
nc

tio
n

ha
s

40
.4

%
m

or
e

ve
rt

ic
es

an
d

ed
ge

s
th

an
th

e
ot

he
r.

86



4.4 Experiments

C
om

pi
le

ro
pt

im
iz

at
io

n
O

2
an

d
O

3
B

as
el

in
es

B
us

yB
ox

C
or

eU
til

s
L

ib
gm

p
Im

ag
eM

ag
ic

k
L

ib
cu

rl
L

ib
To

m
C

ry
pt

O
pe

nS
SL

SQ
L

ite
zl

ib
Pu

T
T

Y
ge

n
A

vg
.

p
d

B
in

G
o†

Ø
.4

90
Ø

Ø
Ø

Ø
Ø

Ø
Ø

Ø
.4

90
#

N
A

C
om

po
si

te
.7

89
.6

43
.9

10
.7

87
.8

42
.6

46
.7

83
.7

77
.8

13
.8

IH
I3

8
.7

83
#

-0
.9

7
C

on
st

an
t

.4
37

.3
38

.2
02

.7
11

.5
22

.4
40

.3
65

.3
68

.5
49

.5
71

.4
50

 
-1

.0
0

G
ra

ph
le

t
.3

09
.2

68
.3

55
.2

62
.3

21
.2

97
.2

12
.3

13
.4

06
.1

48
.2

89
 

-1
.0

0
G

ra
ph

le
t-

C
.6

62
.5

81
.6

80
.6

78
.6

89
.5

59
.5

86
.6

87
.7

30
.7

95
.6

65
 

-1
.0

0
G

ra
ph

le
t-

E
.2

78
.2

25
.3

62
.2

70
.2

71
.2

19
.1

99
.2

80
.3

99
.3

55
.2

86
 

-1
.0

0
M

ix
ed

G
ra

m
.8

11
.6

63
.9

06
.7

92
.8

48
.6

52
.7

89
.8

04
.8

58
.8

65
.7

98
 

-0
.9

7
M

ix
ed

G
ra

ph
.4

45
.4

13
.4

36
.4

27
.4

86
.3

79
.3

50
.4

58
.5

64
.5

33
.4

49
 

-1
.0

0
n

-g
ra

m
.7

74
.6

44
.8

74
.7

39
.8

14
.5

93
.7

48
.7

60
.8

12
.7

81
.7

54
 

-1
.0

0
n

-p
er

m
.8

03
.6

54
.9

12
.7

88
.8

48
.6

46
.7

85
.7

99
.8

50
.8

55
.7

93
 

-0
.9

7
Fu

nc
Si

m
Se

ar
ch

.1
57

.1
69

.8
48

.5
14

.6
63

.6
98

.7
26

.5
33

.4
88

.3
63

.5
16

 
-1

.0
0

PV
(D

M
/D

B
O

W
)

.8
95

.8
99

.9
59

.9
52

.9
27

.9
45

.9
19

.8
98

.8
73

.8
23

.9
09

 
-0

.4
3

A
sm

2V
ec

*
.9

54
.9

29
.9

73
.9

71
.9

51
.9

91
.9

31
.9

26
.8

85
.8

91
.9

40
#

0.
00

C
om

pi
le

ro
pt

im
iz

at
io

n
O

0
an

d
O

3
B

as
el

in
es

B
us

yB
ox

C
or

eU
til

s
L

ib
gm

p
Im

ag
eM

ag
ic

k
L

ib
cu

rl
L

ib
To

m
C

ry
pt

O
pe

nS
SL

SQ
L

ite
zl

ib
Pu

T
T

Y
ge

n
A

vg
.

p
d

B
in

G
o†

Ø
.3

17
Ø

Ø
Ø

Ø
Ø

Ø
Ø

Ø
.3

17
#

N
A

C
A

C
om

pa
re
†

.8
44

Ø
Ø

.8
93

.7
94

Ø
.7

95
Ø

Ø
.7

17
.8

08
#

N
A

C
om

po
si

te
.0

13
.0

31
.0

19
.0

17
.0

04
.0

05
.0

07
.0

04
.0

36
.1

27
.0

26
 

-1
.0

0
C

on
st

an
t

.2
39

.1
28

.1
01

.6
10

.3
69

.2
58

.2
70

.1
82

.3
60

.4
39

.2
96

 
-1

.0
0

G
ra

ph
le

t
.0

17
.0

08
.0

49
.0

10
.0

23
.0

11
.0

09
.0

14
.0

29
.0

16
.0

19
 

-1
.0

0
G

ra
ph

le
t-

C
.0

18
.0

20
.0

12
.0

22
.0

27
.0

01
.0

34
.0

12
.0

65
.1

02
.0

31
 

-1
.0

0
G

ra
ph

le
t-

E
.0

21
.0

11
.0

75
.0

19
.0

17
.0

03
.0

18
.0

19
.0

51
.0

58
.0

29
 

-1
.0

0
M

ix
ed

G
ra

m
.0

16
.0

33
.0

19
.0

18
.0

11
.0

05
.0

07
.0

06
.0

36
.1

16
.0

28
 

-1
.0

0
M

ix
ed

G
ra

ph
.0

34
.0

28
.0

62
.0

24
.0

39
.0

15
.0

23
.0

30
.0

64
.0

97
.0

42
 

-1
.0

0
n

-g
ra

m
.0

11
.0

29
.0

12
.0

21
.0

11
.0

10
.0

05
.0

03
.0

36
.1

29
.0

27
 

-1
.0

0
n

-p
er

m
.0

17
.0

29
.0

21
.0

21
.0

11
.0

06
.0

07
.0

05
.0

36
.1

29
.0

28
 

-1
.0

0
Fu

nc
Si

m
Se

ar
ch

.0
08

.0
19

.3
23

.0
39

.0
36

.0
30

.2
20

.0
11

.0
54

.0
40

.0
78

 
-1

.0
0

PV
(D

M
/D

B
O

W
)

.7
45

.6
77

.7
60

.8
02

.7
92

.8
21

.7
59

.7
58

.7
13

.6
15

.7
44

 
-0

.6
1

A
sm

2V
ec

*
.8

56
.7

81
.7

63
.8

37
.8

50
.9

21
.7

92
.7

76
.7

22
.7

88
.8

09
#

0.
00

Ta
bl

e
4.

1:
C

lo
ne

se
ar

ch
be

tw
ee

n
di

ff
er

en
t

co
m

pi
le

r
op

tim
iz

at
io

n
op

tio
ns

us
in

g
th

e
P

re
ci

si
on

at
Po

si
tio

n
1

(P
re

ci
-

si
on

@
1)

m
et

ri
c.

It
ca

pt
ur

es
th

e
ra

tio
of

as
se

m
bl

y
fu

nc
tio

ns
th

at
ar

e
co

rr
ec

tly
m

at
ch

ed
at

po
si

tio
n

1.
In

th
is

ca
se

,i
t

eq
ua

ls
R

ec
al

l
at

Po
si

tio
n

1.
A

sm
2V

ec
is

ou
r

pr
op

os
ed

m
et

ho
d.
†d

en
ot

es
ci

te
d

pe
rf

or
m

an
ce

.#
an

d
 r

es
pe

ct
iv

el
y

in
di

ca
te

p
>

0.
05

an
d
p
≤

0.
01

fo
r

W
ilc

ox
on

si
gn

ed
-r

an
k

te
st

be
tw

ee
n

A
sm

2V
ec

an
d

ea
ch

ba
se

lin
e.
d

de
no

te
s

th
e

C
lif

f’
s

D
el

ta
va

lu
e.

H
ol

m
-B

on
fe

rr
on

i’s
Fa

m
ily

-W
is

e
E

rr
or

R
at

e
(F

W
E

R
)<

0.
05

.

87



4.4 Experiments

tions. This mapping is used as the ground-truth data for evaluation only. We search the first against
the second in RP, and after we search for the second against the first in RP. Only the binary in the
repository is used for training. We take the average of the two.

A higher optimization level contains all optimization strategies from the lower level. The com-
parison between O2 and O3 is the easiest one (Figure 4.6). On average, 26% bytes of a function are
modified and none of the functions are identical. 40% of a control flow graph is modified and 65%

function pairs share similar graph complexity. It can be considered as the best situation where the
optimization strategies used in two binaries are similar. The comparison between O0 and O3 is the
most difficult one. It can be considered as the worst situation where there exists a large difference
in the optimization strategies (Figure 4.6). On average, 34% bytes of a function are modified and
none of the functions are identical. 82% of a control flow graph is modified, and 17% function
pairs share similar graph complexity. Table 4.1 presents the results in these two situations. Due to
the large number of cases, we only list the results for these two cases to demonstrate the best and
worst situations. The results of other cases lie between these two and follow the same ranking.

Andriesse et al. [5] point out that using supervised machine learning may risk having invalid
experiment results. For example, splitting coreutils binaries into training set and testing set may
lead to an artificially inflated result because these binaries share a very similar code base. This issue
is not applicable to our experiment. First, we follow the unsupervised learning paradigm, where
the true clone mapping is only used for evaluation. Second, our training data is very different from
the testing data, as shown in Figure 4.6 and Figure 4.7. For example, the coreutils library comes
with many binaries but we statically linked them into a single binary. We train the O0-optimized
binary and match the O3-optimized binary. These two binaries are very different.

We use the Precision at Position 1 (Precision@1) metric. For every query, if a baseline returns
no answer, we count the precision as zero. Therefore, Precision@1 captures the ratio of assembly
functions that are correctly matched, which is equal to Recall at Position 1. We benchmark nine fea-
ture representations proposed by Khoo, Mycroft, and Anderson [69]: mnemonic n-grams (denoted
as n-gram), mnemonic n-perms (denoted as n-perm), Graphlets (denoted as Graphlet), Extended
Graphlets (denoted as Graphlet-E), Colored Graphlets (denoted as Graphlet-C), Mixed Graphlets
(denoted as MixGraph), Mixed n-grams/perms (denoted as MixGram), Constants, and the Com-
posite of n-grams/perms and Graphlets (denoted as Composite). The idea of using Graphlet orig-
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4.4 Experiments

inated from Kruegel, Kirda, Mutz, et al. [75]. These baseline methods cover a wide range of pop-
ular features from token to graph substructure. These baselines are configured according to the
reported best settings in the paper. We also include the original PV-DM model and PV-DBOW

model as a baseline where each assembly function is treated as a document. We pick the best re-
sults and denote it as PV-(DM/DBOW). We only tune the configurations for PV-(DM/DBOW) as
well as Asm2Vec on the zlib dataset. FuncSimSearch is an open source assembly clone static search
toolkit recently released by Google3. It has a default training dataset that contains a ground-truth
mapping of equivalent assembly functions. The state-of-the-art dynamic approach BinGo [17] and
CACompare [55] are unavailable for evaluation. However, we conduct the experiment in the same
way using the same metric. Their reported results are included in Table 4.1. We also include the
Wilcoxon signed-rank test across different binaries to see if the difference in performance is statis-
tically significant.

As shown in Table 4.1, Asm2Vec significantly outperforms static features in both the best and
worse situation. It also outperforms BinGo, a recent semantic clone search approach that involves
dynamic features. It shows that Asm2Vec is robust against heavy syntax modifications and inten-
sive inlining introduced by the compiler. Even in the worse case, the learned representation can
still correctly match more than 75% of assembly functions at position 1. It even achieves compet-
itive performance against the state-of-the-art dynamic approach CACompare for semantic clone
detection. The difference is not statistically different, due to the small sample size. Asm2Vec per-
forms stably across different libraries and is able to find clones with high precision. On average,
it achieves more than 93% precision in detecting clones among compiler optimization options O1,
O2, and O3. As the difference between two optimization levels increases, the performance of the
Asm2Vec decreases. Nevertheless, it is much less sensitive than the other static features, which
demonstrates its robustness.

Discovre and Genius are two recent static approaches that use descriptive statistics and graph
matching. Neither of them are available for evaluation. CACompare has been shown to outperform
Discovre [34], Genius [39], and Blanket [33]. Our approach achieves comparable performance to
CACompare, which indirectly compares Asm2Vec’s performance to Discovre and Genius.

3Available at https://github.com/google/functionsimsearch
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In the best situation where we compare between optimization level O2 and O3, the baseline
static features’ performance is inline with the result reported in the original paper, which shows the
correctness of our implementation. In the worse case, we notice that the Constant model outper-
forms the other static features based on assembly instructions and graph structures. The reason is
that constant tokens do not suffer from changes in assembly instructions and subgraph structures.
We also notice that BinGo, in the worst case, outperforms static features. However, in the best case,
its performance is not as good as static features, such as Graphlet-C and n-grams, because the noise
at the symbolic logic level is higher than at the assembly code level. Logical expressions promote
recall and can find clones when the syntax is very different. However, assembly instructions can
provide more precise information for matching.

The largest binary, OpenSSL, has more than 5,000 functions. Asm2Vec takes on average 153
ms to train an assembly function and 20 ms to process a query. For OpenSSL, CACompare takes
on average 12 seconds to fulfill a query.

4.4.2 Searching with Code Obfuscation

Obfuscator-LLVM (O-LLVM) [64] is built upon the LLVM framework and the CLANG compiler
toolchain. It operates at the intermediate language level and modifies a program’s logics before the
binary file is generated. It increases the complexity of the binary code. O-LLVM uses three different
techniques and their combination: Bogus Control Flow Graph (BCF), Control Flow Flattening

(FLA), and Instruction Substitution (SUB). Figure 4.7 shows the statistics on differences.

• BCF modifies the control flow graph by adding a large number of irrelevant random basic blocks
and branches. It will also split, merge, and reorder the original basic blocks. BCF breaks CFG
and basic block integrity (on average 149% vertices/edges are added).
• FLA reorganizes the original CFG using a complex hierarchy of new conditions as switches (see

an example in Figure 4.1). The original instructions are heavily modified to accommodate the
new entering conditions and variables. The linear layout has been completely modified (on av-
erage 376% vertices and edges are added). Graph-based features are oblivious to this technique.
It is also unscalable for a dynamic approach to fully cover the CFG.
• SUB substitutes fragments of assembly code to its equivalent forms by going one pass over the
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function logic using predefined rules. This technique modifies the contents of basic blocks and
adds new constants. For example, additions are transformed to a = b − (−c). Subtractions are
transformed to r = rand(); a = b− r; a = a− c; a = a+ r. And operations are transformed to
a = (b∧ ∽ c)&b. SUB does not change much of the graph structure (91% of functions keep the
same number of vertices and edges).
• BCF+FLA+SUB uses all the obfuscation options above.

O-LLVM heavily modifies the original assembly code. It breaks the CFG and the basic blocks
integrity. By design, most of the static features are oblivious to the obfuscation. By using the
CLANG compiler with O-LLVM, we successfully compile four libraries used in the last experiment
and evaluate Asm2Vec using them. There were compilation errors when compiling the other bi-
naries with the CLANG+O-LLVM toolchain. The errors are caused by the obfuscation tool itself.
According to Figure 4.7, there is a significant difference between the original and the ones obfus-
cated with BCF and FLA. BCF doubles the number of vertices and edges. FLA almost doubles the
latter. With SUB, the number of assembly instructions significantly increases. We use the same set
of baselines and configurations from the previous experiment except for BinGo and CACompare;
they are unavailable for evaluation and the original papers do not include such an experiment.

We first compile a selected library without any obfuscation techniques applied. After, we com-
pile the library again with a chosen obfuscation technique to have an original and an obfuscated
binary. We link their assembly functions by using debug symbols and generate a one-to-one clone
mapping between assembly functions. This mapping is used for evaluation purposes only. After
stripping binaries, we search the original against the obfuscated. Then, we search for the obfus-
cated against the original. We report the average. We use the Precision@1 as our evaluation mea-
sure. In this case, Precision@1 equals Recall@1 because we treat ‘no-answer’ for a query as a zero
precision.

Table 4.2 shows the results for O-LLVM. We find that instructions substitution can significantly
reduce the performance of n-gram. SUB breaks the sequence by adding instructions in between.
n-perm performs better than n-gram, since it ignores the order of tokens. Graph-based features
can still recover more than 60% of clones as the graph structure is not heavily modified. Asm2Vec

can achieve more than 96% precision against assembly instruction substitution. Instructions are re-
placed with their equivalent form, which in fact still shares similar lexical semantic to the original.
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4.4 Experiments

This information is well captured by Asm2Vec.

After applying BCF obfuscation, Asm2Vec can still achieve more than 88% precision, where the
control flow graph already looks very different from the original. It shows that Asm2Vec is resilient
to the inserted junk code and faked basic blocks. The FLA obfuscation destroys all the subgraph
structures. This is also reflected from the degraded performance of graph sub-structure features.
Most of them have a precision value around zero. Even in such situations, Asm2Vec can still cor-
rectly match 84% of assembly function clones. It shows that Asm2Vec is resilient to sub-structure
changes and linear layout changes. After applying all the obfuscation techniques, Asm2Vec can
still recover around 81% of assembly functions.

Asm2Vec can correctly pinpoint and identify critical patterns from noise. Inserted junk basic
blocks or noise instructions follow the general syntax of random assembly code, which can be eas-
ily predicted by neighbor instructions. The function representation in Asm2Vec captures the missing
information that cannot be provided by neighbor instructions. It also weights this information to
best distinguish one function from another.

4.4.3 Searching against All Binaries

In this experiment, we use all the binaries in the previous two experiments. We evaluate whether
Asm2Vec can distinguish different assembly functions when the candidate set is large. We also
evaluate its performance with varying retrieval thresholds to inspect whether true positives are
ranked at the top. Specifically, there are in total 60 binaries that are a mixture of libraries compiled
for different compiler options (O0-O3), different compilers (GCC and CLANG), and different O-

LLVM obfuscation configurations. Following the experiment in Genius [39] and Discovre [34], we
consider assembly functions that have at least 5 basic blocks. However, we do not use sampling.
We use all of them. In total, there are 139,936 assembly functions. For each of them, we search
against the rest to find clones. We sort the returned results and evaluate each in sequence. We use
the same set of baselines and configuration from the last experiment except for FuncSimSearch,
since it throws segmentation fault when indexing all the binaries.

We collect recall and precision at different top-k positions. We plot recall against k in Fig-
ure 4.8(a). We remove Graphlet from the figure, it does not perform any better than Graphlet-
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ESH [22] Asm2Vec
Vulnerability CVE FP ROC CROC FP ROC CROC

Heartbleed 2014-0160 0 1 1 0 1 1
Shellshock 2014-6271 3 0.999 0.996 0 1 1

Venom 2015-3456 0 1 1 0 1 1
Clobberin’ Time 2014-9295 19 0.993 0.956 0 1 1

Shellshock #2 2014-7169 0 1 1 0 1 1
ws-snmp 2011-0444 1 1 0.997 0 1 1

wget 2014-4877 0 1 1 0 1 1
ffmpeg 2015-6826 0 1 1 0 1 1

Table 4.3: Evaluating Asm2Vec on the vulnerability dataset [22] using the False Positives (FP),
Receiver Operating Characteristic (ROC), and Concentrated ROC (CROC) metrics. For all the
cases, Asm2Vec retrieves all results without any false positives.

Extended. Even with a large size of assembly functions, Asm2Vec can still achieve a recall of
70% for the top 20 results. It significantly outperforms other traditional token-based and graph-
based features. Moreover, we observe that token-based approaches in general perform better than
subgraph-based approaches.

We plot precision against recall for each baseline in Figure 4.8(b). This curve evaluates a clone
search engine with respect to the trade-off between precision and recall, when varying the num-
ber of retrieved results. As shown in the plot, Asm2Vec outperforms traditional representations of
assembly code. It achieves 82% precision for the returned top clone search result where k = 1.
The false positives on average have 33 basic blocks (σ = 231). On the other hand, all the func-
tions in the dataset on average have 47 basic blocks (σ = 110) as a prior. By using a one-sided
Kolmogorov-Smirnov test, we can conclude that false positives have a smaller number of basic
blocks than the overall population (p < 2.2e−16). We conduct a sensitivity test based on top-200
results to evaluate different choices of vector size. Vector size is the dominant factor for the number
of parameters and thus the model’s complexity. Figure 4.8 (c) shows that with difference vector
size, Asm2Vec is stable for both efficacy and efficiency. We tried to incorporate more neighbor
instructions. However, this increases the possible patterns to be learned and requires more data. In
our experiment, we did not find such design effective.
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4.4.4 Searching Vulnerability Functions

In the above experiments, we evaluate Asm2Vec’s overall performance on matching general assem-
bly functions. In this case study, we apply Asm2Vec on a publicly available vulnerability dataset4

presented in [22] to evaluate its performance in actually recovering the reuse of the vulnerabilities
in functions. Vulnerability retrieval is a typical use case for assembly clone search. The dataset
contains 3,015 assembly functions. For each of the 8 given vulnerabilities, the task is to retrieve its
variants from the dataset. The variants are either from different source code versions or generated
by different versions of GCC, ICC, and CLANG compilers. This dataset is closely related to the
real-life scenario.

Figure 4.9 shows an example of using Asm2Vec to search for the Heartbleed vulnerability in
the dataset. The query is a function containing the Heartbleed vulnerability in OpenSSL version
1.0.1f, compiled with Clang 3.5. There are total 15 different functions containing this vulnerability.
The pie chart in each ranked entry indicates the similarity. Each ranked entry contains the assembly
function name and its corresponding binary file. As shown in the ranked list, Asm2Vec successfully
retrieves all 15 candidates in the top 15 results. Therefore, it has a precision and recall of 1 for this
query. The first entry corresponds to the same function as the query. However, it does not have a
similarity of 1 since the query’s representation is estimated, but the one in repository is trained.
However, it is still ranked first.

We implement Asm2Vec as an open source vulnerability search engine and follow the same
experimental protocol to compare its performance with the state-of-the-art vulnerability search
solution in [22]. Table 4.3 shows the results. We use the same performance metrics as [22]: False
Positives (FP), Receiver Operating Characteristic (ROC), and Concentrated ROC (CROC). For all
the vulnerabilities, Asm2Vec has zero false positives and 100% recall. Therefore, it achieves a ROC
and a CROC of 1. It outperforms [22].

Tigress [8] is another advanced obfuscator. It transforms the C Intermediate Language (CIL)
using virtualization and Just-In-Time (JIT) execution. Tigress failed to obfuscate a complete library
binary due to compilation errors. Therefore we were unable to evaluate Asm2Vec against Tigress in
the same way as against O-LLVM in Section 4.4.2. We increase the difficulty on the vulnerability

4Available at https://github.com/nimrodpar/esh-dataset-1523
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4.5 Related Work

search by using the Tigress obfuscator. In this experiment, for each of the 8 different vulnerabilities,
we obfuscate the query function with literals encoded, virtualization, and Just-In-Time execution.
Then, we try to recover their original variants from the dataset. Encode Literals: Literal integers are
replaced with opaque expressions. Literal strings are replaced with a function that generates them
at runtime. Virtualization: This transformation turns a function into an interpreter with specialized
byte code translation. By design, it is difficult for a static approach to detect clones protected
by this technique. JIT: It transforms the function to generate its code at runtime. Almost every
instruction is replaced with a function call. By design, a static approach can hardly recover any
variants. Our result shows that Asm2Vec is still able to recover 97.2% with literals encoded, 35%
with virualization, and 45% with JIT execution (see Table 4.4). We inspect the result and find
that Asm2Vec tries to match any similar information neglected by the obfuscator. However, after
applying three obfuscation techniques at the same time, Asm2Vec can no longer recover any clone.

4.5 Related Work

Static approaches such as k-gram [94], LSH-S [114], n-gram [69], BinClone [36], ILine [59], and
Kam1n0 [30] rely on operations or categorized operands as static features. BinSequence [56] and
Tracelet [24] model assembly code as the editing distance between instruction sequences. All
these features failed to leverage the semantic relationship between operations or categories. TE-

DEM [104] compares basic blocks by their expression trees. However, even semantically similar
instructions result in different expressions and side effects, which make them sensitive to instruc-
tion changes. ILine [59], Discovre [34], Genius [39], BinSign [97], and BinShape [123] construct
descriptive statistic features, such as ratio of arithmetic assembly instructions, ratio of transfer
instructions, number of basic blocks, and number of function calls, among others. Instruction-
based features failed to consider the relationships between instructions and are affected by instruc-
tion substitutions. In NLP tasks one usually penalizes frequent words by filtering, subsampling,
or generalization. For assembly language we find that frequent words improve the robustness of
the representation. Graph-based features are oblivious to CFG manipulations. BinDiff [31] and
BinSlayer [12] rely on CFG matching, which is susceptible to CFG changes such as flattening.
Gitz [23] is another static approach used at the IR level. However, it operates at the boundary of
a basic block and assumes basic block integrity, which is vulnerable to splitting. [140] proposes a
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Clone Graph Double click the nodes to show clone candidates.
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Figure 4.9: Searching the Heartbleed vulnerable function in the vulnerability dataset.
The binary name indicates the compiler, library name, and library version. For example,
clang.3.5_openssl.1.0.1f indicates that the binary is library OpenSSL version 1.0.1f compiled with
clang version 3.5.
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graph convolution approach. It might be able to mitigate graph manipulation. However, it relies on
supervised learning and requires a ground-truth mapping of equivalent assembly functions to be
trained. Asm2Vec enriches static features by considering the lexical semantic relationships between
tokens appearing in assembly code. It also avoids direct use of the graph-based features and is more
robust against CFG manipulations. However, the CFG is useful in some malware analysis scenar-
ios, especially for matching template-generated and marco-generated functions that share similar
CFG structure. One direction is to combine Asm2Vec and Tracelet [24] or subgraph search [30].

Dynamic methods measure semantic similarity by dynamically analyzing the behavior of the
target assembly code. BinHunt [43], iBinHunt [90], and ESH [22] use a theorem prover to verify
whether two basic blocks or strands are equivalent. BinHunt and iBinHunt assume basic blocks
integrity. ESH assumes strand integrity. They are vulnerable to block splitting. Jiang et al. [62],
Blex [33], Multi-MH [103], and BinGo [17] use randomly-sampled values to compare I/O values.
Random sampling may not correctly discriminate two logics. Consider that one expression out-
puts 1 if v! = 100; otherwise, 0. Another expression outputs 1 if v! = 20, otherwise, 0. Given a
widely-used sampling range [−1000, 1000], they have a high chance of being equivalent. CACom-

pare follows the similar idea used in [60], [147], [149]. In addition to I/O values, it records all
intermediate execution results and library function calls for matching. Using similar experiments
to match assembly functions, CACompare achieves the best performance among the binary clone
search literature at the time of writing this paper. However, it depends on a single input value and
only covers one execution path. As stated by the authors, it is vulnerable to CFG changes. Asm2Vec

leverages the lexical semantic rather than the symbolic relationship which is more scalable and less
vulnerable to added noisy logics. As a static approach, Asm2Vec achieves competitive performance
compared to CACompare. CryptoHunt is a recent dynamic approach for matching cryptographic
functions. It can detect wrapped cryptographic API calls. Asm2Vec focuses on assembly code sim-
ilarity, which is different to CryptoHunt.

Source code clone is another related area. CCFINDERX [65] and CP-Miner [83] use lexical
tokens as features to find code clones. Baxter et al. [10] and Deckard [61] leverage abstract syntax
trees for clone detection. ReDebug [58] is another scalable source code search engine. Recently,
deep learning has been applied on this problem [138].
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4.6 Limitations and Conclusion

Asm2Vec suffers from several limitations. First, it is designed for a single assembly code language
and the clone search engine is architecture-agnostic. At this stage, it is not directly applicable
for semantic clones across architectures. In the future, we will align the lexical semantic space
between two different assembly languages by considering their shared tokens, such as constants
and libc calls. Second, the current selective callee expansion mechanism cannot determine the
dynamic jumps, such as jump table. Third, as a black box static approach, Asm2Vec cannot explain
or justify the returned results by showing the cloned subgraphs or proving symbolic equivalence.
It has limited interpretability.

In this chapter, we propose a robust and accurate assembly clone search approach named
Asm2Vec that learns a vector representation of an assembly function by discriminating it from
the others. Asm2Vec does not require any prior knowledge such as the correct mapping between
assembly functions or the compiler optimization level used. It learns lexical semantic relation-
ships of tokens appearing in assembly code and represents an assembly function as an internally
weighted mixture of latent semantics. Besides assembly functions, it can be applied on different
granularities of assembly sequences, such as binaries, fragments, basic blocks, or functions. We
conduct extensive experiments on assembly code clone search, using different compiler optimiza-
tion options and obfuscation techniques. Our results suggest that Asm2Vec is accurate and robust
against severe changes in the assembly instructions and control flow graph.
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5
Going beyond Information Retrieval: Behavior

Characterization

In 2013, approximately 82,000 new strains of malware were generated per day. In 2017, this num-
ber rose to 285,000 per day, according to the Panda Security Annual Report and the AV-Test Mal-
ware Statistics [6], [99], [101]. Out of 15 million new malware collected by Panda Security in 2017,
less than 1% occurred more than once [101]. The reason behind this vast amount of new malware
is polymorphism and metamorphism, by which malware change themselves constantly after every
infection, even though they exhibit the same forms of behaviors [81], [101], [106], [113].

The polymorphism and metamorphism characteristics of modern malware cause static signature-
based malware analyses to be ineffective, especially for the packed or obfuscated binaries. In con-
trast, behavior-based analysis, as a dynamic approach, executes the target binary file in an isolated
environment and observes its behaviors. Since the modified binaries still exhibit similar malicious
behaviors, behavior-based analysis addresses the issue of packing, obfuscation, polymorphism,
and metamorphism. Behavior-based analysis includes an analytic environment. It can be a vir-
tual machine or an emulator. Popular sandbox includes Cuckoo [49], FireEye [131], Falcon [26],
VMRay [57], and Joe [120].

Sandboxes log low-level instructions, system calls, and contextual data associated with each
event. However, a high-level malicious behavior is a chain of events. Moreover, the same behavior
can be triggered by different events. In order to obtain a high-level understanding of the malware’s
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Behavior IndicatorsSandbox Signature Matching

Execution Event Logs

RAVEN

Disassembling

Dynamic 
Binning

Multi-head Attentive 
Prediction

Behavior Indicators (with confidence)

exe

exe

• Read-write-execute memory (usually to unpack itself)
• Installs itself for autorun at Windows startup
• Attempts to modify Internet Explorer's start page
• Creates a slightly modified copy of itself

0.96 Read-write-execute memory (usually to unpack itself)
0.93 Installs itself for autorun at Windows startup
0.85 Attempts to modify Internet Explorer's start page
0.79 Creates a slightly modified copy of itself

Asm2Vec
Learning

Figure 5.1: Malware behavioral indicator detection process. The sandbox-based analysis typically
follows the first pipeline. RAVEN follows the second pipeline.

behavior from the collected logs, most sandboxes develop a signature database to match the low-
level events to high level behavioral indicators. For example, the Cuckoo sandbox comes with a
community-powered signature database1. Some sandboxes, such as VMRay, refer behavioral indi-
cators as threat indicators or risk indicators. Figure 5.1 shows the general process and an example.
Behavioral indicators give a global view of the malware’s functionalities to security analysts and
reverse engineers. It is used to characterize the malware of an unknown family. Behavioral indica-
tors can also be the input to other components in the automated malware analysis pipeline. FireEye
uses behavioral indicators to classify malware, in an attempt to reduce false positives [1].

However, malware have become more sophisticated and incorporate anti-sandbox techniques [40].
Sandbox environments can be detected by checking the presence of various signs: remote debug-
ger, injected system hook, amount of memory, disk space, human interaction, special registry val-
ues, virtualized device driver, kernel debugger, CPUID, user name, directory name, and suspicious
processes. Modularized design and available open source malware generation tools push malware
development forward. Pafish2 and Al-Khaser3 are two popular toolkits for sandbox detection. One
can easily wrap malicious payload behind the provided environment checker. Some sandboxes,
such as Falcon4, are publicly available as a free service. The malware developers can directly test
their malware against the sandbox [48]. After the sandbox environment has been detected, a mal-

1https://github.com/cuckoosandbox/community
2https://github.com/a0rtega/pafish
3https://github.com/LordNoteworthy/al-khaser
4https://www.hybrid-analysis.com/

104

https://github.com/cuckoosandbox/community
https://github.com/a0rtega/pafish
https://github.com/LordNoteworthy/al-khaser
https://www.hybrid-analysis.com/


Going beyond Information Retrieval: Behavior Characterization

ware can cloak and avoid to unpack, decrypt, or execute itself. The malware can even crash the
sandbox host. It is thus very challenging to build a bullet-proof sandbox environment. Building a
perfect sandbox resembles the Turing test problem: fooling the malware that a human is using the
presented environment.

Anti-evasion techniques have been systematically studied for years. Evasive and anti-evasive
techniques on sandbox design ultimately formulate a ‘cat-and-mouse’ game [15]. Hardware emula-
tion or full OS emulation gives the sandbox full control over program state and can force execution
of malicious payloads [92], [143]. However, emulation-based systems are susceptible to timing at-
tacks. Hypervisor-based sandboxes provide minimal overhead but can still be detected. Bare metal
architecture is very difficult to detect, but still shows a different power consumption profile [93].
These techniques are complex and require attentive design. They take a significant amount of com-
putational resources and are not scalable to millions of malware. The malware may simply execute
stalling code and delay the malicious behaviors [72], [74], [98].

Alternatively, we develop a novel machine learning model, called RAVEN, that directly pre-
dicts the malicious behavioral indicators without using a sandbox. As an additional analysis layer,
the output of this model can be directly used by security analysts or as the input to other malware
analytic pipelines. It requires fewer hardware resources at inference time than using a sandbox. Sig-
nature matching can also apply to this problem. However, as we mentioned at the beginning, they
become less effective due to packing, polymorphism, and metamorphism. A machine learning-
based solution is less susceptible to these issues. If enough data is provided, the model can just
learn from the packed byte sequences to find generalizable patterns [16], [107], [109].

In malware classification, each malware only belongs to one family. However, a malicious pro-
gram could have multiple purposes and, therefore, multiple labels [25]. [126] and [127] also call
for a multi-class behavior abstraction to characterize malware. By predicting the behavioral indi-
cators, RAVEN is able to statically provide multiple high-level behavior descriptions. Compared
to the existing malware classification problem, it is more challenging in two aspects:

C1 - Sparsity: The number of classes in the literature of malware classification and detection
is limited. Most studies only consider fewer than 10 classes [107], [113]. However, the number
of malware indicators can easily go beyond a hundred. The distribution is also very sparse. Some
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behavioral indicators may only have tens of training samples.

C2 - Open-set Recognition: Most existing studies formulate malware classification as a closed-
set classification problem, where a malware always belongs to only one family in the candidate set.
Our problem is an open-set recognition problem, which is more difficult. The malware behaviors
are either present or absent, and they are not exclusive. It requires verifying instead of classifying

the behaviors.

Static features and models have been widely used to analyze malware [35], [45], [107], [113],
[141], [144]. Considering the challenges above, we also aim to address the following problems in
existing models:

P1 - Context: Existing byte-based models treat the binary file as a raw byte sequence. However,
the same byte will have a different meaning when given a different context. In the text section, it
indicates assembly instructions. In the ‘rdata’ section, it indicates a string character or a constant
number. In the ‘idata‘ section, it indicates imported symbols. We argue that modeling binaries as
simply byte sequence does not provide sufficient semantic information.

P2 - Feature Engineering: The majority of machine learning models for malware analysis
relies on the feature engineering process where security analysts create a set of static and dynamic
features according to their expertise. This process represents a binary as a compressed view of the
original input space. The representation may miss critical patterns for the target malware under
study.

P3 - Memory Footprint: Memory footprint is one of the major challenges for modeling a
binary file for an end-to-end learning solution. An executable can have more than one million lines
of assembly instructions. Using them as the training samples for a neural network can lead to large
intermediate tensors cached for gradient calculation.

To address the above challenges, we design a novel neural network to characterize malware
behaviors. Our contributions can be summarized as follows:

• We are among the first to characterize malware behaviors with a machine learning approach.
Typically, the behaviors are observed by using the sandbox-based dynamic analyses or matched
using signatures. We formulate it as an open-set generation problem (C2).
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5.1 Problem Definition

• We propose a novel neural network architecture that separately models four aspects of a binary
file: basic blocks, string constants, imported symbols, and data segments. The neural network
addresses P1 by taking a richer contextual information than raw byte sequence. Also, we did not
manually engineer features. Instead, this model solves the problem end-to-end (P2).
• We propose a two-level truncated attention architecture. The first level is a self-attention se-

lective mechanism. It builds a compressed shared context representation for all the behaviors.
Therefore, behavioral indicators that have only a few training samples can benefit from the oth-
ers and mitigate the issue of C1. Moreover, this layer greatly reduces the memory footprint of
training (P3).
• We introduce sequence fusing and a resettable gate to the recurrent neural network. Combining

it with a greedy binning algorithm, we significantly improve the training speed and reduce the
memory footprint (P3).
• We collected 45,126 malware and created a malware behavior dataset that will be publicly avail-

able to facilitate the research in this area. We benchmark the performance of RAVEN. It shows
that RAVEN is accurate and achieves a more than 98% AUROC score. We conducted a case
study to investigate its effectiveness.

This paper is organized as follows. Section 5.1 formally formulates the behavioral indicator
recognition problem. Section 5.2 describes and justifies our design of the neural network model.
Section 5.3 shows our experimental setups and results. Section 5.5 discusses relevant studies. Sec-
tion 5.6 reflects on the limitations and concludes this paper.

5.1 Problem Definition

In this section, we define the open-set behavioral indicator prediction problem. As mentioned in
P2, it is formulated as an open-set recognition problem.

Definition 11 (Open-set Binary Behavior Indicator Recognition) Given a target malware binary

file λ and a set of known malicious behaviors M observed from a collection of training binaries Λ,

the problem is to verify if the given malware λ under analysis will exhibit any malicious behavior

m ∈ M by giving a confidence value c
(λ)
m . A confidence value of 0 indicates that the malware is

unlikely to exhibit the corresponding behavior, while a value of 1 indicates a high likelihood.
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5.2 Neural Network Architecture

The open-set recognition problem is more challenging than the typical closed-set classification
problem used in the malware detection and classification literature. We also note that the behavior
verification problem can also be treated as a generation problem typically used in the text sum-
marization literature. The behavior descriptions, such as ‘modify the browser homepage’, can be
used as a target summary to be generated by the model. However, we find that behavioral indicator
descriptions are not highly semantically related. Each of them stands out very distinctively to the
others regarding their words. Therefore, the descriptions are less generalizable to each other and it
is more appropriate to approach it as a recognition problem. In this work, we only focus on Win-
dows x86 or AMD64 PE binaries. However, the proposed neural network can be applied to other
binary formats such as ELF.

5.2 Neural Network Architecture

In this section, we formulate our proposed neural network architecture, RAVEN, and describe our
idea behind the choice of designs. Figure 5.2 shows the high-level architecture of the neural net-
work. In general, it consists of six components: assembly code modeling, string constant modeling,
import function modeling, data segment modeling, pre-selection by self-attention, and behavior-
conditioned attention for the final behavioral indicator recognition. We assume that the given binary
file λ may contain: code segment b, data segment d, import symbols r, and string constants s; all
information can be extracted using a disassembler. We use the IDA Pro 7.1 disassembler5.

5.2.1 Modeling the Code Segment

We formulate the code segment b as a list of basic blocks, and bi is one of them. A basic block bi is a
sequence of non-branching assembly instructions l(i), and l

(i)
j is one of them. Assembly instruction

consists of an operation, such as ‘mov’ or ‘add’, and several operands such as registers or memory
reference. They can be all considered as tokens. We refer an instruction l

(i)
j as a list of assembly

tokens t(i,j), and t
(i,j)
k is one of them, where j denotes the corresponding instruction and i indicates

the corresponding basic block.

We propose to model each basic block using a share-weight recurrent neural network. Fig-

5https://hex-rays.com/
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Figure 5.2: The neural network architecture in RAVEN. The input is multiple types of information
extracted from a binary.

ure 5.2 (c) corresponds to this component. The general idea is that we first turn each token into a
vector by using an assembly code representation learning algorithm Asm2Vec [29]. We then repre-
sent an instruction as the sum of the vectors of its token. Finally, we model the list of instructions
in a basic block with the Quasi-Recurrent Neural Network [13].

Embedding Learning with Customized Asm2Vec

We start from the elements that have the smallest granularity: assembly tokens. Assembly tokens,
similar to the word tokens in text data, are discrete and cannot be directly used as the input to the
neural network. One needs to encode each unique token as a vector. One typical choice is the one-
hot encoding, where each discrete token is represented as a zero-filled vector and only the value at
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the index of its ID is one. One-hot encoding assumes that these discrete tokens are independent of
each other. However, in assembly code, ‘add’ will be semantically similar to ‘addc’. This issue can
be mitigated by using an embedding layer.

In an embedding layer, an assembly token t
(i,j)
k is mapped into a context vector by using an

embedding matrix T ∈ RV×d0 . d0 is a scalar hyperparameter chosen by the user, and V is the
number of unique assembly tokens. One can retrieve a specific token’s vector by looking for the
row in T that corresponds to the token’s integer ID. The relationship between two different tokens
can be evaluated by using a distance function on their respective context vectors. T can be treated
as the model parameter to be learned from the training data.

However, considering that the number of unique tokens in the assembly code can be large if
we factor in all constants, the embedding matrix T can also be very large. A large trainable T

introduces a high degree of freedom to the neural network model. With a large input sample that
has over 10,000 time stamps, the neural network can easily overfit the training data. This results in
a perfect performance on the training dataset and low accuracy on the future unknown data from
the very beginning.

Typically, in natural language processing one can use a word embedding learning model, such
as word2vec [88], or Glove [102], to pre-train the embedding layer. These models are designed
specifically for text data. We adopt Asm2Vec, proposed in [29]. It is designed specifically for
assembly language. We learn T by pre-training an Asm2Vec model on the training data. The
original model is designed to jointly learn the vector representations of assembly tokens and the
vector representations of the assembly functions. In our problem, we are only interested in the
assembly token vectors. Therefore, we change the original model to fit our need by removing the
feed-forward paths for assembly function. Figure 5.3 shows the updated model. In general, this
model goes through assembly instructions sequence using a sliding window of three instructions.
It tries to reconstruct the middle instruction by using its surrounding instructions and maximizes:

log P(l
(i)
j |l

(i)
j−1, l

(i)
j+1) (5.1)

Specifically, it predicts the tokens in the middle instruction by using the aggregated vectors of
the two neighbor instructions in the sliding window. Formally, it maximizes the following log
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Figure 5.3: The customized Asm2Vec model. We remove all the feed-forward links for assembly
functions representation since we only use the tokens representation in this problem.

probability by adjusting T :

argmax
b∑
bi

l(i)∑
l
(i)
j

t(i,j)∑
t
(i,j)
k

P(t
(i,j)
k |f(t(i,j−1)) + f(t(i,j+1))))

f(t) = Tt0
⌢

|t|∑
j=1

Ttj

Function f takes an assembly instruction, which is a list of assembly tokens t, as input. We
first look up the operation t0’s vector and concatenate ( ⌢ ) it with the sum of the operands’
vectors. Given a sliding window of three instructions, the objective is to predict each token in the
middle instruction given the sum of two neighbor instructions with function f applied. The sliding
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windows are generated by looping through all the basic blocks. We also use control flow graph
random walks in [29] to generate sliding windows. The resulting contextual vectors for assembly
token capture the semantic information among tokens based on how they are used together. For
example, vector operations and SSE registers tend to be similar to each other. Function call strcmp

is similar to memcpy.

After obtaining T , we are able to map each unique assembly token in the code segment into a
numeric vector. We model an instruction as a d0-D vector by summing up the vectors of its tokens.

l
(i)
j =

t(i,j)∑
t
(i,j)
k

T
t
(i,j)
k

Lij = l
(i)
j (5.2)

Given |b| basic blocks in a binary file and each basic block having at most η instructions, we can
arrange the instruction vectors into a rank-3 tensor L ∈ R|b|×η×d0 . If a basic block has fewer than η

vectors, we pad it with d0-D zero vectors. Figure 5.4 (a) shows an example of tensor L.

Recurrent Neural Network on Assembly Instructions

The complete code segment can be treated as a sequence of assembly instructions. The semantic
of an assembly instruction depends on the context created by its preceeding instructions. To model
the code segment, a naive solution is to apply a recurrent neural network that can capture the
sequential dependencies. However, for most binaries there are hundreds of thousands of assembly
instructions. It is difficult to learn a recurrent neural network on such a long sequence due to the
gradient vanishing issue: The gradient becomes smaller and smaller as we travel backward on the
sequence for back propagation. Moreover, the original linear layout of assembly instructions on
the code segment covers some invalid execution paths; it ignores the boundary of basic blocks.

Instead, we propose to model each basic block separately using the same recurrent neural
network. Long Short Term Memory Unit (LSTM) network [46] and Gated Recurrent Unit (GRU)
network are two popular choices for modeling sequential data [82]. However, their computation
on each time stamp j completely depends on the previous time stamp j − 1, which limits the
parallelism and is slow for long sequences. Instead, we employ the Quasi-RNN [13], which pre-
calculates the state update and recurrent gates using a convolutional network. Recall that a basic
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block bi consists of a list of assembly instructions l(i), and by using Asm2Vec, we can represent its
jth instruction as a numeric vector Lij . We also refer to the instruction index j as a time step and
η, the maximum number of instructions, as the maximum time stamp. The recurrent network can
be formulated as:

Zi = tanh(Conv1d(Wz, Li))

Fi = σ(Conv1d(Wf , Li))

Hij = Fij ⊙ Hi,j−1 + (1− Fij)⊙ Zij

(5.3)

Here, Z ∈ R|b|×η×d1 is the matrix of the proposed new state, where Zij is the new proposed state
for the basic block i time stamp j. d1 is another user chosen model parameter. F has the same
shape as Z. It is the matrix of forget gate, controlling how much the previous state should be kept.
Fij is the forget gate vector for the basic block i time stamp j. These two matrices are calculated
using a 1-D convolution function [79], denoted as Conv1d, on the input L(i). Wz ∈ Rd0×d1 and
Wf ∈ Rd0×d1 are their respective kernels to be learned. tanh denotes an element-wise hyperbolic
tangent function, and σ denotes an element-wise sigmoid function.

H has the same shape as Z. It denotes the new state vectors of all time stamps. At time stamp
j of basic block bi, the network calculates the new state Hij by combining the previous state Hij

and the proposed new state Zij using the corresponding forget gate Hij .⊙ denotes an element-wise
multiplication.

Sequence Binning and Resettable Recurrent Gate

Modeling each basic block as a separate sequence reduces the gradient vanishing problem and
avoids invalid execution paths of the executable. Recall that Lij denotes the vector for the j-th
instruction in basic block i. For basic blocks that have instructions fewer than η, we pad them with
zeros. By adopting the tensor notation, we are able to apply the above recurrent neural network
in one run for all the sequences. This way, the calculation of different sequences is parallelized.
Figure 5.4 (a) shows an example of L.

Basic blocks have different numbers of instructions, ranging from 1 to more than 10,000.
Padding a basic block of length from 1 to 10,000 results in a large amount of unnecessary memory
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Figure 5.4: The basic block tensor L before dynamic binning (a) and after binning L′ (b).

space and calculations. The distribution of block length is highly skewed. Especially for obfus-
cated codes, the maximum number of instructions in a basic block can significantly increase. One
can use a sparse matrix to solve this problem. However, it is intrinsically difficult to implement a
convolutional layer for sparse matrices.

To address this problem, we introduce a new dynamic binning approach that groups sequences
into several bins and reduces the padding space. We use a new hard reset gate to separate the cal-
culations between different sequences. Figure 5.4 (b) shows an example of the binned sequences.
It retains a specific number of rows and maintains parallelism for the recurrent neural network. It
reduces 87% of padding space compared to the original approach.

The binning approach starts from a fixed number of bins. We choose this value to be 64 by
considering the level of parallelism for the recurrent neural network. We then follow a greedy
approach to place the basic blocks into these 64 bins. First, we sort the basic blocks according to
their respective number of instructions in descending order. We sort the basic blocks in a queue.
We pull the first basic block from the queue and place it in the bin that has the least number of
instructions. We repeat this process until the queue is empty. By using this simple strategy, the
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training time has been reduced by more than five times.

We concatenate the basic blocks in a given bin as a single sequence. We denote the bin index as
o and the binned L as L′. The proposed new state and the forget gate can be calculated by replacing
i with o in Equation 5.3:

Z′
o = tanh(Conv1d(Wz, L′

o))

F′
o = σ(Conv1d(Wf , L′

o))
(5.4)

They are the same as Equation 5.3 except that the first dimension of Z′ and F′ is now 64 instead of
|b|. The new state can be calculated by:

H′
oj = F′

oj ⊙ Ho,j−1 ⊙G+ (1− F′
oj)⊙ Z′

oj

Goj =

0 if j is the beginning of a basic block

1 otherwise

(5.5)

G is our hard reset gate. If the current time stamp j on bin n denotes the beginning of a basic
block, its value is zero, which forces the network to forget the previous state. The last state of a
basic block encodes the sequence of its instructions. We extract the last states of each basic block
in H′, by which each basic block is represented as a vector. We stack their vectors together as a
matrix B ∈ R|b|×b1 . To this end, we have finished modeling the code segments in a binary as the
matrix B.

5.2.2 Modeling Strings and Import Symbols

String patterns extracted from the binary can provide useful hints on some malicious behaviors
such as sandbox and debugger detection. They have been widely used as rules in signature match-
ing tools such as YARA6. Imported library functions can also provide explicit hints on the involved
behaviors. For example, some malware use Windows API to modify the registry in order to add
themselves to the start-up applications. Some combinations of the import functions, such as Load-

Library and GetProcAddress, also signal possible unpacking behavior. Moreover, some malware

6https://virustotal.github.io/yara/
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use Windows API for encryption and decryption [139].

The one-hot encoding and its variants such as hashing can model the string constants and im-
port functions. This approach has been used in malware detection and classification. It assumes that
all string constants and import functions are independent of each other. However, different string
constants may share a very similar semantic meaning. For example, ‘password’ and ‘pass_word’
may actually be used for the same intention. Some import functions are used interchangeably
as well. For instance, ‘RegKeyOpen’ can be replaced by ‘RegKeyOpenEx’. A better approach
is to model them as character n-gram vectors. We extract all unique character n-grams where
n ∈ {2, 3, 4}. ‘ex’ is an example of a character 2-gram. Each string constant or import function
is modeled as a frequency vector on the n-grams. Therefore, the vector of ‘RegKeyOpen’ will be
very similar to the one of ‘RegKeyOpenEx’.

Given the set of binary files for training, let S denote the set of all unique strings and R, denote
the set of all unique import symbols. First, we build two character n-gram vocabularies, V S and
V R, for each of them. Then, we convert S and R into two sparse matrices S ∈ R|S|×|V S| and
R ∈ R|R|×|V R|. A row in S represents an n-gram frequency vector for a string constant. A row in
R denotes a n-gram frequency vector for an import symbol.

By using the character n-gram as feature vectors, we model the relationship between two string
constants or two import functions by considering how similar they are. However, the relationship
between two assembly tokens in Section 5.2.1 is modeled by how similar the context they have
been used for is. For example, the library function call ‘exp’ is similar to ‘pow’. Even though they
do not resemble each other, they are used in a similar context.

The number of unique character n-grams is large. Directly using them as the input to the
model is infeasible. We seek to use the truncated Single Value Decomposition (SVD) [32] for
dimensionality reduction. We choose SVD over the Principle Component Analysis (PCA), since it
can be applied efficiently on the sparse matrix [32]. S can be approximated as:

S ≈ Ud0Σ
S
d0
D⊺

d0
(5.6)

d0 is the number of components. We set it to the same value as the embedding dimension used in
Section 5.2.1. By solving the above equation, we can obtain a matrix Ud0 ∈ R|S|×d0 with orthogo-
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nal columns, a diagonal matrix Σd0 ∈ Rd0×d0 , and another matrix D
(s)
d0
∈ R|V S|×d0 with orthogonal

columns.

Given a target binary, we can extract all its string constants, denoted as s, and convert each
of them into a character n-gram vector s. We respectively apply the equation below to obtain a
dimensionality-reduced d0-D vector s′:

s′ = sD
(s)
d0

(5.7)

We then adopt a linear transformation for s′:

s′′ = s′Ws + bs (5.8)

Ws ∈ Rd0×d1 and bs ∈ Rd1 are the model parameters to be learned. By stacking all the s′′ ∈ Rd1

vectors of the binary file, we can obtain a matrix S ∈ R|s|×d1 .

After extracting all the import symbols r from the target binary and following the same proce-
dure of SVD, we can obtain another matrix R ∈ R|r|×d1 . To this end, given a binary file, we can
model its string constants as S and its import symbols as R.

5.2.3 Modeling Data Segments

Data segments contain important information about the packed code. Generally, it is modeled as
a single entropy value or an entropy histogram. Byte n-grams have been found to be effective
in analyzing malware as well. We propose to model each data segment as a byte sequence and
apply a 1-D convolutional layer. The convolutional layer acts as a scanner over regions of the byte
sequence to find any interesting patterns.

Let d denote the data segment and da ∈ [0, 255] indicate one of them. First, we map each byte
into a vector representation by using an embedding matrix T (d) ∈ R256×d0 . The byte da’s vector
representation is T

(d)
da

. T (d) is another variable to be learned. By using an embedding matrix, we
can take the relationship between bytes into consideration. We map each da ∈ d by using T (d) and
stack them together to obtain D ∈ R|d|×256, where |d| is the sequence length. After, we feed D
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into a 1-D convolutional layer:

D = Conv1d(D, nk, ns) (5.9)

This convolutional function has three configurable properties: kernel size nk, stride size ns,
and filter size d1. The convolutional function applies a sliding window over the byte sequence. The
kernel size controls the width of each scanned window. The stride size controls the number of time
stamps to skip when moving the window forward. By choosing a stride of size ns, this function
generates ⌈|d|/ns⌉ windows and each has a shape of [nk, d0]. Then, the convolution function ap-
plies a tensor-dot transformation over each window with a weight tensor Wd ∈ Rnk×d0×d1 . Now,
each window has been transformed into a vector of dimension d1. After applying an element-wise
non-linear ReLu function and stacking all the windows’ vectors together, we obtain the matrix
D ∈ R⌈|d|/ns⌉×d1 . To this end, we have modeled the data segment of a binary file as the matrix D.
As recommended in [107], we use a fixed kernel size of 500 and a stride of 500.

5.2.4 Pre-selection and Shared Representation

After modeling individual types of information, we now have the following four matrices for the
target binary λ:

• B ∈ R|b|×d1 : A matrix for the code segment. |b| denotes the number of basic blocks.

• S ∈ R|s|×d1 : A matrix for string constants. |s| denotes the number of string constants.

• R ∈ R|r|×d1: A matrix for import symbols. |r| denotes the number of import symbols.

• D ∈ R⌈|d|/ns⌉×d1: A matrix for the data segment. Its first dimension corresponds to the
number of sliding windows.

By concatenating them along the second dimension, we have a unified matrix:

u = |b|+ |s|+ |r|+ ⌈|d|/ns⌉ (5.10)

U ∈ Ru×d1 (5.11)
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Each row of the matrix represents a specific piece of information extracted from the binary. Next,
we reduce this gigantic matrix into a single vector for the final prediction.

There are several available options. We can apply a convolutional layer or an attention layer to
combine them into a single d1 vector. Recurrent neural networks can achieve this as well, but there
is no sequential relationship shown along the first dimension. We tried all of these solutions, but
each generated a massive memory footprint during training due to the large input matrix. We con-
sider all the binaries that are less than 6 MB, which is significantly larger than the binary files used
in recent machine learning studies [107]. None of these options can only use a single GPU, even
for only the forward pass on all our binaries. Having a small memory footprint enables massive
distributed deployment for inference. It also facilitates the training speed across multiple GPUs by
using data parallelization. Therefore, we seek to develop a specialized two-level attention mecha-
nism that fits into our design. The attention layer provides a weighted average over a sequence of
vector and the weights automatically learned based on the training dataset.

On the first level of the attention layer, we only select the top-k1 rows before conducting any
further analysis on a specific malicious behavioral indicator. We base our design on the following
observation. For any malicious behavior that one tries to predict, there are some irrelevant patterns
that can always be skipped by looking at the binary file. In a real-life malware analysis task, a
large block of zeros, large blocks of 0xff, regular program entry point patterns, harmless imported
symbols, or nop sleds are of less interest for the analyst. The same applies for a machine learning
model. Most patterns from the input binary are not useful regarding all the malicious behaviors to
be analyzed. By selecting the top-k1 rows from U , we essentially are asking the model to identify
the most useful patterns by just looking at the currently presented information. We set k1 as 4096.
This layer is backed by a self-attention mechanism [135]:

g = (UWc + bc) · v

pq =
egq∑u
k e

gk
U ′ = top(p, k1,U · p)

U is our concatenated matrices of different segments. Wc ∈ Rd1×d2 , b ∈ Rd2 , and v ∈ Rd2 are the
parameters to be learned. · denotes a broadcasted dot product. g is of size u. d2 is another config-
urable parameter of our model. After getting g, we apply a soft-max function to get a probability
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distribution. The resulting vector p ∈ Ru represents the weights for reference. It sums up to 1.
Then, we apply a function to extract the row vectors from U that are ranked in top-k1 according to
their respective weights in p. The extracted matrix U ′ ∈ Rk1×d1 will be used for further analysis.
By using such a filtering mechanism we significantly reduce the memory footprint. It allows the
calculations presented in the next section to not grow with the size of the binary. We name U ′ as a
shared representation for all behaviors.

5.2.5 Behavior-Conditioned Attention Mechanism

In this section, we predict each individual malicious behavioral indicator m ∈ M. Given a pre-
selected shared representation for binary λ, our goal is to predict a confidence value c(λ)m to indicate
the possibility of observing a specific behavior m. Different behaviors may focus on different
patterns. In this layer, we also include an attention mechanism to select another top-k2 vector from
U ′ where k2 < k1:

g(m) = (U ′Wm + bm) ∗ vm

p(m)
q =

egq∑u
k e

gk
U ′

m = top(p(m), k2,U
′ · p(m))

The selection mechanism is the same as the previous one. However, we use the behavior-specific
weights Wm, bm, and vm. They are the parameters to be learned. This way, we provide flexibility
for the model to learn a behavior-specific attention. Then, we simply apply a max-pooling layer
and a logistic layer for the final prediction:

c(λ)m = sigmoid(reduce_max(U ′
m, 1) · vwm + b) (5.12)

The reduce_max function selects the maximum value along each column and results in a vector of
dimension k2. Vector wm ∈ Rk2 and scalar b are two other behavior-specific weights to be learned.
Here · denotes the vector dot product. Finally, the sigmoid function re-scales the output to [0, 1]. By
following the same attention mechanism, we obtain all the predicted confidence values for binary
λ: {c(λ)m |m ∈M}.

Let Λ denote the training dataset and y
(λ)
m denote the ground-truth label for binary λ behavior
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Figure 5.5: The empirical distribution of the size of binary files and the number of behavior indi-
cators per-binary.

m. The final training objective is to minimize the logistic loss over all malicious behaviors:

argmin
Λ∑
λ

M∑
m

−y(λ)m log(c(λ)m )− (1− y(λ)m )log(1− cm)

This objective function is optimized by using the stochastic gradient descend algorithm with the
Adam [70] optimizer. Without the loss of generality, the formations in this section are based on a
single behavioral indicator. Under the hood, we use the tensor notation to parallelize the calculation
of all the behavioral indicators in one pass. We implemented RAVEN by using the TensorFlow7

auto-gradient framework. RAVEN is open source8.

5.3 Experiments

The experiments consist of two parts. In the first part we develop two labeled datasets for the
behavioral indicator recognition problem and evaluate RAVEN against 6 state-of-the-art binary
modeling approaches. In the second part we collect an additional known family of malware and
conduct a case study with a RAVEN model trained with the Cuckoo dataset. The experiments are
all carried out on a Windows server equipped with two Xeon E5-2697 CPUs (36 cores), 384 GB
memory, and four Nvidia Titan XP GPU cards. Each card has 12 GB memory. RAVEN requires
only one GPU to be trained, consuming less than 11G memory even with a binary file larger than
6 MB.

7http://www.tensorflow.org
8Available at [URL is temporally hidden according to the double-blind submission policy].
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Family Files Family Files Family Files
fareit 5585 loadmoney 272 somoto 110

installmonster 4177 autoit 270 prepscram 109
razy 3648 mikey 253 upatre 105
zusy 2237 gamarue 225 mywebsearch 104

gandcrab 829 firseria 224 safebytes 103
outbrowse 799 imali 212 virut 94
installerex 777 zbot 161 delf 92

startsurf 669 tinyloader 160 nakoctb 91
downloadadmin 583 softpulse 145 midie 90

multiplug 499 hotbar 139 wannacry 87
soft32downloader 472 speedingupmypc 139 istartsurf 87

installcore 324 dlhelper 122 noon 85
bundlore 304 downloadguide 115

emotet 303 vittalia 110

Table 5.1: Top-40 malware families in the Cuckoo dataset. There are total 1091 unique families.

5.3.1 Dataset Development

To the best of our knowledge, we present the first work that tries to understand malware behavior
using a machine learning model instead of a sandbox. There is no available dataset for benchmark.
We curate and release two labeled datasets for this problem to facilitate future studies in this area9.
As defined in Section 5.1, the problem involves a collection of binaries Λ with their known be-
haviors as the basis of knowledge to predict the behaviors of an unknown binary λ. To develop a
model and solve this problem we need to build a large collection of malware samples annotated
with their malware behaviors.

It is very challenging to find a data source that can provide reasonably accurate behavior de-
scriptions. At first, we looked into the malware encyclopedia for detailed descriptions of malware
families. Given a collected known malware sample, we can first look up its malware family. Then,
we search for the corresponding malware description against the malware encyclopedia. To imple-
ment this solution, we build our own malware encyclopedia by combining all the available ones
online from Kapersky, ESET, Sophos, Symantec, and Microsoft. Given a malware family, it can

9Dataset available at [URL temporarily hidden according to the double-blind review policy].
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output a description of the malware’s high-level behaviors. However, this approach turns out to
be infeasible. We find that less than 10% of the malware families in our collected dataset have a
detailed analysis report. Most of them are generated using generic templates and do not include
specific behaviors. Instead, we decide to characterize the malware behavior by ourselves using
sandbox environments. We use two different sandboxes and curate two different datasets.

The Cuckoo Dataset

For this dataset, we retrieve the malware’s behavioral indicators using our own in-house Cuckoo-
based sandbox cluster. We first gather a collection of binaries from MalShare and VirusShare be-
tween January and May 2018. We only consider files that are smaller than 6 MB, which already
account for more than 95% of the binaries that we observe. It is noted that, in typical malware
detection or malware classification studies, the maximum file size is less than 4 MB [77], [107],
[113]. Figure 5.5 characterizes the file size distribution. We filter out the benign binaries using
the binaries’ corresponding VirusTotal online reports. VirusTotal scans a binary file using multiple
anti-virus engines. We include the binaries that are identified as malicious by more than 5% percent
of the anti-virus engines. This way, the binary files in the dataset have a good chance to show sev-
eral malicious behaviors. The resulting 36,730 binaries are fed into the sandbox environment for
analysis. We denote this dataset as the Cuckoo dataset. Table 5.1 lists the top-40 malware families
in it. There are 1,091 unique families. It’s size is 349 GB, including all the extracted information.

Our mini Cuckoo-cluster consists of 5 virtual machines (VMs) connected through a virtualized
network. Each has a varying amount of memory and processing cores. The host machine of the
virtualized environment dispatches malware samples to the virtual machines for analysis. Cuckoo
is an open source sandbox software that relies on a hood-based analytic environment. It uses sys-
tem hooks to observe the malware’s behaviors. After logging all the low-level activities, it uses a
community-powered signature database to generate a list of high-level behavioral indicators. Fig-
ure 5.1 shows several examples. Given the fact modern malware mostly include evasive techniques,
we apply the following steps to minimize the chance of a successful evasion.

• We use the Pafish10 and the Al-Khaser11 toolkits to analyze our virtualized environment. We fix

10https://github.com/a0rtega/pafish
11https://github.com/LordNoteworthy/al-khaser
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Type # of binaries Specific technique, target, or resource.

antivm 28893
vbox, network, virtualpc, disk, queries, shared, vmware,

generic, sandboxie, firmware, vpc, memory
packer 18792 polymorphic, entropy, vm_protect, upx
peid 6361 peid detected_packer (static)

antisandbox 9015
idle_time, restart, file, threat_track, sunbelt, unhook,

foreground_windows, sleep, mouse, cuckoo, joe
antiemu 3807 wine
antidbg 339 devices, windows
antiav 395 detect_reg, avast, service_stop, detect_file bitdefender

antianalysis 40 detect_file

Table 5.2: Statistics of the grouped evasive behavioral indicators observed in the Cuckoo dataset.
See Appendix D for the full description of each indicator.

Category # of binaries Technique, target, or resource.
allocates 29984 rwx, execute remote process
network 21887 wscript, bind, icmp, tor
injection 20274 create remote thread, run pe, modifies memory, write memory
exe 18626 drop exe

stealth 14855
hiddenfile, hidden icons, hidden extension, hide notifications, window,

system procname

modifies 13101
desktop wallpaper, boot config, proxy autoconfig, security center

warnings, proxy wpad, zoneid, certificates
dumped 11254 buffer2, buffer
suspicious 9246 powershell, process, write exe, command_tools
recon 9222 fingerprint, beacon, systeminfo, programs
persistence 8857 registry powershell, registry javascript, autorun, registry exe, ads
infostealer 8812 ftp, mail, keylogger, im, bitcoin, browser
console 8087 output
deletes 7462 executed files
browser 6666 startpage, security
queries 6385 programs
banker 3483 bancos, zeus p2p, spyeye mutexes
locates 2524 sniffer, browser
privilege 2427 luid check

disables 2056
windowsupdate, system restore, app launch, browser warn, spdy ie,

proxy, security
creates 1771 largekey, shortcut, service, doc, hidden file

Table 5.3: Top-20 groups of dynamic malicious behavior indicator in the Cuckoo dataset. We
group behavior indicators into categories and rank by their frequency. See Appendix D for the full
description of each descriptor.
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the detected flags if possible. However, not all the flags are fixable, as they are limited by the
Cuckoo sandbox itself. For example, we cannot remove its API hood. Moreover, we are not able
to introduce any human interaction.
• We create each virtual machine using a recent copy of a personal computer’s file system. The

folder naming and structure resemble a workstation used by an actual human. Also, the last
modified time stamp for the user files are recent. We even include faked links in the user’s recent
file folder.
• Malware can check the active running processes to detect the VM environment. Therefore, we

run multiple random programs and services in the virtual machine before each analytic task.
• Malware can detect the VM environment by checking the amount of assigned hardware re-

sources, since VM typically is assigned less memory and storage than an actual workstation. We
mitigate this issue by assigning the VM different resources. The smallest VM has only 2 core,
1G RAM, and 10G storage. The biggest VM, in contrast, has 4 core, 8 GB RAM, and 128G
storage. We conduct the analysis in several rounds. If a malware only exhibits few behaviors in
a VM, we move it to the queue of the others.
• Malware can also sleep and wait for a specific period of time for evasion because most analytic

VMs are given only 1 to 5 minutes of execution time. Instead, we conduct the analysis in multiple
rounds, from 1 minute to 1 hour.

This sandbox environment is not 100% bulletproof. However, the resulting analytic reports
show that our setups are good enough to detect a variety of malicious activities and evasive tech-
niques. We only consider the behavioral indicators that have more than 20 samples. There are a
total of 139 unique malicious behavioral indicators. Table 5.3 lists the top-20 types of dynamic
behaviors detected by the Cuckoo sandbox. Table 5.2 summarizes all the evasive techniques. The
malware in this dataset exhibits a significant amount of evasive techniques. 80.1% of the bina-
ries demonstrate at least one evasive technique. 4,617 binaries create a modified copy of itself, as
indicated by the polymorphic behavioral indicator. Figure 5.5 characterizes the distribution of per-
sample behavioral indicators. Refer to Appendix D for a full list of included behavioral indicators.

We further conduct analyses to guarantee that the majority of the annotated behaviors are de-
tected based on dynamic activity logs rather than other static features. We assume that we have
an ideal evasive technique that can detect any kind of sandbox. We equip all the malware in our
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Family Files Family Files Family Files
fareit 324 icloader 25 tiggre 14

emotet 117 mywebsearch 25 xtrat 13
gamarue 100 darkkomet 24 nymaim 13

autoit 55 genkryptik 23 trickbot 12
zusy 51 noon 23 gamehack 12
razy 46 zlob 22 farfli 11

gandcrab 43 swrort 21 dimnie 11
installcore 39 vobfus 18 ekstak 11

khalesi 37 nakoctb 17 occamy 10
ursnif 34 dealply 15 icedid 10

delf 34 banload 15 crysis 10
zbot 30 chapak 14 screenmate 10
ursu 30 driverpack 14

yakes 29 upatre 14

Table 5.4: Top-40 malware families in the Falcon dataset.

dataset with this technique. They will refuse to execute if they detect our sandbox. Instead of work-
ing out a wrapper for the malware, we simulate this ideal technique by modifying the sandbox: the
sandbox will skip the dynamic execution step in the analysis. We collect all the reports after the
modification. From these reports, we can recover less than 10% of the originally annotated behav-
iors, such as the packers reported by static analysis tool PEiD 12 and the patterns matched by Yara
rules.

The Falcon Dataset

Following the same idea, we developed the second dataset using a different sandbox called Falcon,
which is an industrial sandbox that has been hardened for years against evasive techniques. Unlike
the Cuckoo sandbox’s hook-based logging approach, Falcon observes the malware’s behavior from
the kernel space. It is more difficult to detect. We assume that the identified malware behavior is
more accurate. Hybrid Analysis is an online binary analytic platform that is powered by the Falcon
sandbox. It directly comes with the behavioral indicator reports generated by the Falcon sandbox.
By using its online RESTful API, we are able to retrieve recent binary samples and analytic reports.

12https://www.aldeid.com/wiki/PEiD
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Category # of binaries Technique, target, or resource.

fingerprint 5902
privilege, IDE drive, IP, installation date, username, scsi, language,

GUID
remote 5618 listen, registry, internet-related hooks, steal password, RDT

persistence 4461
schedule, inject, startup, auto execute, startup repair, restore, take

ownership, firewall
network 4290 traffic

evasive 2153
API, forensic tools, vm, timeout, machine name, decompressor,

antivirus, sleep, security services, regsvnum
spyware 3045 keyboard, clipboard, input devices, post files

spreading 1833
mountpointmananger, drive letters, network ARP, workgroup share,

browser
stealer 665 mail, tfp, IM
credential 486 password, browser
ransomware 166 ransomware, snapshots, tor, wallpaper, globeimposter
adware 44 start page, anti-adware tools
exploit 12 escaped byte string, shell code
banking 2 web certificate

Table 5.5: Statistics of the grouped dynamic malicious behavior sindicator in the Falcon dataset.
We group behavior indicators into categories. See Appendix E for the full description of each
individual behavioral indicator.

We only collect online samples that are flagged as malicious. In total, we gather 8,405 binaries
and their reports. We denote this dataset as the Falcon dataset. Its size is 81 GB, including all
the extracted information. It is much smaller than the Cuckoo dataset, since we are limited by
the access rate. With far less training samples, it is more difficult to statically predict malicious
behaviors in this dataset. Figure 5.5 compares the file size distribution. On average, the binary size
of the Falcon dataset is smaller than that of the Cuckoo dataset.

Table 5.4 lists the top-40 malware families in the Falcon dataset. It shares some families with
the Cuckoo dataset but with different rankings. The Falcon analytic reports contain a section named
risk assessment that lists several malicious behaviors exhibited by the malware. We use them as the
label for the dataset. We summarize all the malicious behaviors in Table 5.5. We group them into
the available behavior categories in the report. Figure 5.5 also compares the behaviors per-sample
count against the Cuckoo dataset. On average, less malicious behaviors are reported. In the Falcon
dataset, 25% of malware exhibit evasive techniques, which is also lower than the Cuckoo dataset.
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The Cuckoo Dataset
Validation Set Testing Set

Baselines FPR Precision Recall Brier F1 AUROC FPR Precision Recall Brier F1 AUROC
Byte n-gram .008 .617 .441 .034 .514 .857 .008 .597 .431 .034 .501 .849

Opcode n-gram .009 .665 .385 .025 .488 .917 .009 .625 .386 .026 .477 .914
Opcode n-gram+s .009 .601 .356 .026 .447 .914 .009 .598 .361 .027 .450 .912

Opcode n-gram+s+r .009 .604 .361 .026 .452 .914 .009 .607 .370 .027 .460 .911
DNN2dim .020 .110 .084 .057 .095 .645 .025 .084 .079 .063 .081 .587

GIST .000 .670 .512 .021 .581 .793 .000 .642 .518 .021 .573 .802
RAVEN* .008 .914 .852 .017 .882 .989 .009 .910 .846 .017 .877 .988

The Falcon Dataset
Validation Set Testing Set

Baselines FPR Precision Recall Brier F1 AUROC FPR Precision Recall Brier F1 AUROC
Byte n-gram .020 .357 .195 .071 .253 .659 .022 .249 .133 .074 .174 .632

Opcode n-gram .017 .203 .068 .057 .101 .606 .016 .229 .066 .057 .102 .599
Opcode n-gram+s .017 .236 .073 .057 .112 .621 .016 .244 .073 .056 .112 .606

Opcode n-gram+s+r .017 .236 .073 .057 .112 .621 .016 .244 .073 .056 .112 .606
DNN2dim .019 .071 .051 .061 .059 .507 .025 .113 .065 .060 .082 .532

GIST .000 .273 .132 .062 .178 .614 .000 .251 .118 .064 .161 .598
RAVEN* .020 .697 .460 .052 .554 .910 .019 .717 .470 .050 .568 .910

Table 5.6: Behavior recognition benchmark. Evaluated using False Positive Rate (FPR), Precision,
Recall, Brier Score (Brier), F-measure (F1), and the Area Under the Receiver Operating Charac-
teristic Curve (AUROC) metric. RAVEN is our proposed model. We reported the performance on
both the validation set and testing set.

5.3.2 Quantitative Benchmark

With the aforementioned datasets, we benchmark the performance of RAVEN against several state-
of-the-art approaches for binary modeling. For each dataset we use stratified sampling to split it into
three parts: the training set (80%), the validation set (10%), and the testing set(10%). The training
set is used to train a given model. The validation set is used to fine-tune different configurations of
a given model. The testing set is solely used for evaluation. For all the baselines, we report both
the performance on the validation and testing set.

As mentioned in the introduction and the problem definition, the problem is formulated as a
multi-label recognition problem. The model should give a confidence value ∈ [0, 1] for each mali-
cious behavior. Even though the baselines below are originally designed for malware classification
or malware detection, in general they can be applied on this problem. We include a diverse set of
static features.

• Byte n-gram. Byte n-gram is a simple but effective choice for binary modeling. This method
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treats a binary file as a byte sequence and counts the frequency of any possible unique combina-
tion of n consecutive bytes. It has been used in malware classification [16], [117], [145]. [109],
[145] find that 6-grams converge faster and perform the best. We fine-tune n using our validation
set and reach a similar observation in the experiment. Following [109], we select the top 200,000
byte 6-grams ranked by frequency as features and apply a logistic model for recognition. These
grams are ranked using a database. We build a logistic model for each indicator. We tune the C

regularization strength on the validation set for better generalizablity.
• GIST. A binary file as byte sequence can be modeled as a gray scale image. Studies have applied

this approach for malware triage [71] and malware classification [95]. We use the model in these
two studies as a baseline. We determine the image width according to the byte sequence length
and model a binary file as a gray scale image. Then, we extract the GIST image descriptor from
the gray scale images. A k-Nearest-Neighbor model is used for final recognition. We choose
k by tuning the model’s performance on the validation set. We use a different model for each
behavioral indicator.
• Opcode n-gram. Opcode denotes the operation of a single instruction. n-grams have been widely

used in malware detection [116], [121] and classification [3], [142], [148]. It is shown to be the
predictor against polymorphism and metamorphism [11]. We select top-k opcodes ranking by
their frequency and use logistic regression for the final recognition. We tune k and the regular-
ization strength C on the validation set.
• Opcode n-gram+s. The same as the last one, except we add another top-k string constant into

the feature set. We tune k and the regularization strength C on the validation set.
• Opcode n-gram+s+m. The same as the last one, except we add another top-k import symbols

into the feature set. We tune k and the regularization strength C on the validation set.
• DNN2dim. [118] is another neural network-based approach for malware detection. It models

different segments of a binary file into a single vector by feature engineering. It includes static
features extracted from the PE header, import symbols, string constants, and byte sequence by
using hashing and histograms. We use the validation to control the training termination criteria
with an adaptive learning rate.

For RAVEN, we fix d0 and d1 to 128, which is a typical choice of the number of hidden units in
a neural network model layer. We use the validation set as the stopping criteria for training and use
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Figure 5.6: The loss values across RAVEN’s training epochs. The orange area indicates a training
set overfit.

an adaptive learning rate. It is a widely used training practice for neural networks [79]. We do not
tune any other settings. Table 5.6 shows the benchmark results. We evaluate each model using False

Positive Rate (FPR), Precision, Recall, Brier Score (Brier), F-measure (F1), and the Area Under

the Receiver Operating Characteristic Curve (AUROC) metric. These are typical metrics used in
recognition tasks [79]. False positives rate and Precision both measure the accuracy of the positive
predictions. We prefer a low FPR and a high precision value. Recall measures the percentage
of the true positive labels, in our case the true behavioral indicators, that can be recovered. The
Brier score is the mean square difference between the predicted probability and the actual label.
AUROC measures the overall trade-off between true positive and false positive when one changes
the threshold on the predicted probability.

In general, RAVEN achieves the best performance. It achieves .98 AUROC on the Cuckoo
dataset and .91 AUROC on the Cuckoo testing dataset. It is able to retrieve more than 87% of
dynamic behaviors with only a 0.09 false positive rate and .91 precision on the Cuckoo dataset. On
the Falcon dataset it does not perform as well as on the Cuckoo dataset. It recalls 47% of behavioral
indicators with a false positive rate of 0.02. Nevertheless, it still performs better than the baselines,
achieving the best recall, precision, brier score, and AUROC score.

Consider the AUROC metric, which measures the overall performance. Byte n-gram ranks sec-
ond in the Falcon dataset and Opcode-based methods rank second in the Cuckoo dataset. These
results are consistent with the observation that opcode is a good predictor for polymorphism and
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metamorphism [11]. However, byte n-gram tends to focus more on capturing string patterns than
instructions [109], and the Cuckoo dataset contains more evasive behaviors than the Falcon sand-
box. RAVEN combines information from both sources. GIST does not perform well but achieves
the lowest false positive, less than 0.001. It should be noted that GIST does have false positives
since the precision is not one. DNN2dim does not perform as well as the others. Its feature repre-
sentation compresses too much information.

Overall, in the Falcon dataset all the baselines perform worse than they do in the Cuckoo
dataset. We suspect that it is due to a smaller dataset size and a smaller behavior-per-sample ratio.
The number of positive samples is small, but an input contains massive information. All the models
tend to overfit the training dataset at the very beginning. Take RAVEN, for example. It starts to
overfit the training dataset and stops generalizing the validation and testing set from the fourth
epoch (see Figure 5.6).

5.4 Case Studies

We collect three variants of the GandCrab malware family for a case study. GandCrab is a family
of ransomware widely spread in 2018. It is distributed through multiple spreading vectors such
as spam emails, exploit kits, and malicious websites. These three variants are packed with a cus-
tomized packer used in the GandCrab family. They also contain sandbox evasion techniques. They
try to delay executing its malicious payload by calling Windows APIs in a loop. This simple ap-
proach is effective against sandboxes because they have limited computational resources, and the
loop calculation is slow. Its string constants have also been obfuscated. This case study evaluates
RAVEN’s robustness against custom-packed binaries.

These malware samples are not used to train our model. We reuse the trained RAVEN model on
the previous Cuckoo dataset. We build a web-based analytic service on top of the trained RAVEN
model. We feed these three samples into RAVEN for analysis. Figure 5.7 shows the predicted
behaviors in three radar charts, respectively for each sample. The blue area represents the observed
behaviors in a sandbox, and the orange area represents the predicted behaviors. The red circle
denotes the decision boundary of a 0.5 confidence. Outside the red circle, the area covered with
blue but not orange represents a false negative. The area covered with orange but not blue indicates
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a false positive.

According to the chart, RAVEN is able to detect all these three samples generated crypto-
graphic keys using related Windows API, as indicated by the ‘generates_crypto’ indicator. It also
detects that these three samples exhibit an unpacking behavior by allocating read-write-execute
memory (denoted by the ‘allocate_rwx’ indicator). RAVEN detects that samples (b) and (c) try to
delay the analysis task (denoted by the ‘antisandbox_sleep’). According to the reports generated by
the sandbox, sample (a) does not delay the analysis task, and RAVEN does not report a false posi-
tive as well. RAVEN also detects that these three samples check various environment flags such as
memory, disk size, and CPU name. RAVEN also correctly predicts that these three samples modify
network proxy for traffic interception.

There are two false predictions. RAVEN fails to predict the auto-run functionality of sample (a).
It also predicts that sample (b) generates some ICMP traffic, which is not shown in the sandbox
logs. Except for these two false positives, RAVEN’s prediction is accurate, even though these
samples are packed and obfuscated.

5.5 Related Works

Behavioral Analysis Dynamically generated behavior events have been widely used for malware
analysis. On the malware family classification problem, [110] proposes to use API 4-grams. [111]
uses a bag-of-words model on event logs. [112] proposes malware instruction set MIST and uses
n-gram modeling. On the malware detection problem, [2] models API as a spatial-temporal tran-
sit matrix. [132] employs one-hot encoding of API sequence. [41] models behavior report as a
term dictionary. [20] uses API n-grams. These methods classify malware into existing categories.
However, as discussed in [25], malware could have more than one purpose and should thus have
more than one label. [126] and [127] also call for a multi-class behavior abstraction to characterize
malware. RAVEN follows a similar direction to study malware behavior. Instead of predicting the
malware families, it tries to predict the high-level behaviors.

Static Analysis Various static features have been developed on malware for triage, detection, or
classification. There are three typical models: byte sequence, opcode sequence, and image. [16],
[117], [145] model binary as byte n-grams. [71], [95] model binary as image and extract the GIST
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image descriptor. [50] treats the image as an entropy graph. [51], [52] model opcode sequence as
images. [121], [148] use opcode n-grams. [142] models opcode sequence as bag-of-word. [116]
combines dynamically generated opcodes and static opcodes. [107] models binary as a byte se-
quence. [108] models the header information as byte sequence. [118] models a binary by com-
pressing the information from different sources into a single vector using hashing and histograms.
RAVEN studies a different problem and models different parts of a binary file by considering their
contexts.

Anti-Evasive Techniques The research on malware evasive techniques and anti-evasive tech-
niques has a long history. [15] provides a comprehensive survey on related techniques and their
trade-offs. Generally, there are two problems: evasion detection and evasion mitigation. Evasion
detection methods identify anti-analysis techniques by static analysis [67] or dynamic analysis [7],
[66], [76]. Evasion mitigation techniques directly interact with the binary by modification [134],
path exploration [92], state modification [66], etc. More detailed models are discussed in [15].
RAVEN can be applied to the evasion detection problem. As an additional analytic layer, it can
detect dynamic behaviors related to evasive techniques.

5.6 Limitations and Conclusion

RAVEN still suffers from several issues. First, the inherited design limits its application to the
PE or ELF executables. It cannot directly handle other formats such as scripts, Word documents,
PDF documents, and web pages. Second, it requires a large amount of labeled data, and its capa-
bility is limited to the behavioral indicators identified in the training data. Transfer-learning and
domain-adaptation models that can leverage unlabeled data and cross-domain data will be our
future directions.

In this paper, we propose to predict a malware’s dynamic behavioral indicators using a static
machine learning approach. We design a new lightweight neural network architecture that models
different information from a binary executable by considering their context. We develop two bench-
mark datasets and evaluate RAVEN with other binary modeling methods. It shows that RAVEN is
accurate and outperforms the state-of-the-art static models on this problem. RAVEN can be used
as an additional binary analytic layer to mitigate the issues of polymorphism, metamorphism, and
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evasive techniques. It also provides another behavioral abstraction of malware to security analysts.
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6
Final Conclusion & Future Work

6.1 Final Conclusion

This thesis presents four original research projects that bridge the area of data mining, machine
learning, and reverse engineering. By developing novel data mining and machine learning models
and integrating them seamlessly into the reverse engineer’s daily routine, these systems can intelli-
gently leverage the knowledge derived from the vast amount of data and use it to reduce the manual
analytic effort and cognitive load for reverse engineers. This thesis presents four individual sys-
tems: Kam1n0, Sym1n0, Asm2Vec, and RAVEN. Kam1n0, Sym1n0, and Asm2Vec are designed
for assembly clone search. They focus on different scenarios. RAVEN focuses on behavioral anal-
ysis that provides an additional abstraction layer of malware analysis and can reduce the number of
malware to be manually analyzed or simulated. Each system’s merits and contributions have been
extensively discussed in their corresponding chapters. Next, I briefly summarize each system’s use
cases, advantages, and limitations. In this chapter, features are denoted by +, and limitations are
denoted by -.

Kam1n0 tries to solve the efficient subgraph search problem (i.e., graph isomorphism problem)
for assembly functions. It takes only 1.3s on average for query and less than 30ms on average to
index time, even when the repository has more than 2.3M functions. Given a target function, it can
identify the cloned subgraphs among other functions in the repository.
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• + Currently support Meta-PC, ARM, PowerPC, and TMS320c6 (experimental).

• + Support subgraph clone search within a certain assembly code family.

• + Interpretability of the result: explanation by showing subgraph clones.

• + Accurate for searching within the given code family.

• + Good for differing various patches or versions for big binaries.

• - Relatively more sensitive to instruction set changes, optimizations, and obfuscation.

• - Need to pre-define the syntax of the assembly code language.

• - Need to have assembly code of the same chosen family in the repository.

Sym1n0 enables semantic subgraph clone search by differentiated fuzz testing and constraint
solving. It is efficient and scalable with a dynamic-static hybrid approach. It takes less than 1s on
average for query and less than 100ms on average to index, even when the repository contains more
than 1.5M functions. Given a target function, it can identify the cloned subgraphs among other
functions of a different processor family in the repository. It also supports syntax visualization and
intermediate representation visualization in the system.

• + Clone search by both symbolic execution and concrete execution.

• + Differentiation of functions based on their different I/O behavior.

• + Clone search conducted on the abstract syntax graph constructed from Vex IR (powered
by LibVex).

• + Clone search across different assembly code families. For example, indexed x86 binaries
but the query is ARM code.

• + Subgraph clone search.

• + Support of a wide range of families through LibVex. x86, AMD64, MIPS32, MIPS64,
PowerPC32, PowerPC64, ARM32, and ARM64.

• + Efficient dynamic-static hybrid approach.

• + Analysis of firmware compiled for different processors.

• - Sensitive to heavy graph manipulation (such as a full flattening).

• - Sensitive to large-scale breakdown of basic block integrity.
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Asm2Vec leverages representation learning. It understands the lexical semantic relationship of
assembly code. For example, xmm registers are semantically related to vector operations such as
addps. memcpy is similar to strcpy. Asm2Vec also tries to capture interesting patterns that cannot
be generalized across all the data samples.

• + Leverage representation learning.

• + Understand the lexical semantic relationship of assembly code.

• + State-of-the-art for clone search against heavy code obfuscation techniques. (>0.8 accuracy
for all options applied in O-LLVM, multiple iterations).

• + State-of-the-art for clone search against code optimization. (>0.8 accuracy between O0
and O3, >0.94 accuracy between O2 and O3).

• + Even better result than the most recent dynamic approach.

• + Much more efficient than recent dynamic approaches.

• + No need to define the architecture. It self-learns by reading a large volume of code.

• + Static approach: efficient and scalable.

• - No subgraphs.

• - Assume the assembly code comes from the same processor family.

• - Static approach: cannot recognize jump table, etc.

RAVEN is a neural network that scans a binary executable statically for malicious behavior
indicators. It models different aspects of a binary executable using different mechanisms in ma-
chine learning. It does not require unpacking. Relying upon pattern recognition, it tries to find any
generalizable pattern driven by the data.

• + Statically characterizes malware behaviors, therefore scalable and efficient.

• + Saves computational resources.

• + Reduces manual effort and assists manual analysis.

• - Relies on data to be trained.

• - Limited to the predefined labels presented in the dataset.
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• - Black-box approach, unable to explain the decision-making process.

6.2 Future Directions

Data mining and machine learning provide theoretical building blocks to design efficient and effec-
tive data-driven solutions addressing the information needs and challenges in cybersecurity. They
open the possibilities to those questions that we were not previously able to answer. Taking the pre-
sented four systems in this thesis as the starting point, the following topics extend both the depth
and width of research in this direction in the future.

Binary Clone Search. The goal is to build a large-scale publicly available binary repository
with a clone search engine. It will benefit the security analysts and researchers by reducing the
cognitive workload in analyzing any integrated 3rd party libraries. It also benefits the software en-
gineering community by providing the first scalable platform to study the chronological or genetic
relationship among a large number of binary applications. My previous works propose different
indexes for different use cases. However, this goal calls for a unified self-adaptive index mixture
that automatically adjusts the index types and settings according to the characteristics of different
indexed subsets. Second, to assist the user’s exploration process, it needs to efficiently retrieve and
visualize aggregative or clustering clone search results over a selected subset of the binaries, which
has not been studied yet.

Malware Analysis. Studying malware behaviors using a data mining and machine learning
approach provides an additional binary analytic layer to mitigate the issues of polymorphism,
metamorphism, and other evasive techniques. It also provides another behavioral abstraction of
malware to security analysts to characterize zero-day malware in real time. The neural network
model developed in my previous work follows a black box approach to characterize the dynamic
behaviors of malware. However, the prediction result is not interpretable. Given a predicted be-
havior, it will be more practical to also locate the specific pattern in the malware that correlates to
the behavior. In this way the security analysis can develop a deeper understanding of the malware.
Moreover, the behavior characterization problem can be formulated as a text generation process. In
this way the model can leverage the information in the description and find generalizable patterns
across different behavior descriptions. It also enables prediction of behavior description that does
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not exist in the training data.

Provenance Analysis. Binary provenance denotes the ‘characteristics of a program that de-
rives from its path from source code to executable form’. Binary provenance is important in the
domain of binary forensic and performance analysis. It provides an important evidential trial for
cybersecurity investigators to track down the hackers behind the security incidences. For exam-
ple, the Lazarus group is linked to the Wannacry incidence by code similarity. I mainly focus on
two critical aspects: toolchain recovery and authorship analysis. Given a binary file, the task is
to verify the compiler family, optimization techniques, obfuscation techniques, and authorship. A
binary file contains text and non-text (i.e., binary) information, both carry the writing style of the
programmers. I will study both of them.

Vulnerability Analysis. Machine learning-powered vulnerability detection models have been
studied for different scenarios. However, the output of the vulnerability detection models is too
simple to be useful. Given an identified vulnerability, the security analyst still needs to manually
understand the pinpointed assembly functions for verification purposes, since it is a critical step to
fix the vulnerability. However, the number of assembly functions to be verified could be large, and
the manual verification process is time-consuming. I propose to develop vulnerability detection
and classification models that can also assist this manual analytic process by locating the specific
pattern of assembly code. In this way, the security analysis can better understand the model’s
decision-making process, and the vulnerability can be easily understood.
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At the time of writing, we have finished/published the following publications:

• Assembly Subgraph Clone Search (Chapter 2)

S. H. H. Ding, B. C. M. Fung, and P. Charland, “Kam1n0: Mapreduce-based assembly
clone search for reverse engineering,” in Proceedings of the 22nd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (SIGKDD), San Francisco,
CA: ACM Press, Aug. 2016, 10 pages.

[acceptance ratio: 142/784 = 18%]

• Assembly Clone Search Against Obfuscation and Optimization (Chapter 4)

S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2Vec: Boosting Static Representation
Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization,”
in Proceedings of the 40th International Symposium on Security and Privacy (S&P), San
Francisco, CA: IEEE Computer Society, May 2019, pp. 38–55.

[new paper acceptance ratio: 46/545 = 8.4%]

• Cross Architecture Clone Search (Chapter 3, under review)

S. H. H. Ding, B. C. M. Fung, and P. Charland, “Sym1n0: Large-scale Symbolic Expression
Retrieval for Cross-architecture Assembly Clone Search,” IEEE Transactions on Software

Engineering, 2018.

• Neural Malware Behavior Characterization (Chapter 5, under review)

S. H. H. Ding, B. C. M. Fung, S. McIntosh, S. M, and P. Charland, “Raven: Neural mal-
ware behavior characterization without sandbox,” in USENIX Security Symposium (USENIX

Security), 2019, 18 pages.

In addition to academic publications, the implemented open-source binary analysis platform,
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Kam1n01, has won the following awards:

• Kam1n0 won 2nd place in the 2015 Hex-Rays International Plug-in Contest2. Hex-Rays
delivers the most widely used binary analysis software, IDA Pro, for reverse engineering.

• Kam1n0 won the Best Poster Award in the 2016 research showcase of The Smart Cyberse-
curity Network (SERENE-RISC).

• Kam1n0 has been presented at Google Montreal, EBTIC Research Centre established by
British Telecommunications, Above Security Montreal, ESET Montreal, and Sophos Van-
couver.

• Kam1n0 is now integrated by Cisco to generate malware signatures3.

• Kam1n0 has been chosen by Tourism Montreal to be one of the five technological innova-
tions from Montreal4.

1https://github.com/McGill-DMaS/Kam1n0-Community
2https://hex-rays.com/contests/2015/
3https://www.talosintelligence.com/bass
4https://blog.mtl.org/en/5-technological-innovations-you-didnt-know-came-montreal
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A
Kam1n0 Implementation Details

This appendix provides more technical details on the assembly clone search engine Kam1n0. Sec-
tion A.1 elaborates details on the assembly code normalization scheme. Section A.2.1 provides the-
oretical analysis of the Adaptive Locality Sensitive Hashing (ALSH) index scheme. Section A.2.2
introduces how we implement the ALSH on top of the key-value based column store, which by
default does not support a prefix tree.

A.1 Assembly code normalization

The equivalent assembly code fragments can be represented in different forms. In order to mitigate
this issue we normalize the operands in assembly code during the preprocessing. We extend the
normalization tree used in BinClone [36]. Each level of the tree represents a normalization level and
there are three of them: root, type, and specific. Moreover, we determine how many bits are actually
used given its modifier keyword such as short, dword, qword, etc. For example, given the
assembly line movq xmm0, qword ptr [eax+30h], operand xmm0 is a 128-bit register.
However, due to the qword modifier, only the lower 64 bits are used.

A.2 Adaptive Locality Sensitive Hashing

This section provides theoretical analysis of the ALSH scheme, followed by details of its imple-
mentation on Cassandra-like key-value column store.
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A.2 Adaptive Locality Sensitive Hashing

A.2.1 Theoretical Analysis

In this section, we present our theoretical analysis on the ALSH index scheme. Following the
Theorem 1, we have the following observation:

Observation 1 gt is a (rt, rt+1, pm, p
c
m)-sensitive hash function. □

Proof 2 At position t, the r value is rt, and the approximated r value is rt+1. kt hash functions are

concatenated to form gi. According to Equation 2.2 and Definition 4, we have:

p1 = (1− rt
π
)kt (A.1)

= (1− π × (1− p
(1/kt)
m )

π
)kt = pm (A.2)

p2 = (1− rt+1

π
)kt (A.3)

= (1− π × (1− p
(1/kt+1)
m )

π
)kt = pkt/kt+1

m = pcm (A.4)

Thus, gt is a (rt, rt+1, pm, p
c
m)-sensitive hash function.

Following Observation 1, we have two different hash functions, gt and gt+1, by moving from
position t to t+1. gt is (rt, rt+1, pm, p

c
m)-sensitive and gt+1 is (rt+1, rt+2, pm, p

c
m)-sensitive. In other

words, by increasing the distance r, we still achieve the same p1 and p2 for the locality sensitive
hashing function. It is the same rationale as described in LSB-Tree [130] and C2LSH [42]. By
moving up the ALSH prefix tree we have the same effect of using different gt with decreasing kt

and increasing r, and vice versa. At the same time, we guarantee the same p1 and p2.

In order to have gt correctly working for the (rt+1/rt, rt)-approximated ball cover problem,
gt also needs to satisfy both Property 1 and Property 2 with constant probability. Following [54],
[129], we adopt l ASLH prefix trees to ensure the quality. The proof follows [54].

Proposition 1 Given the (rt, rt+1, pm, p
c
m)-sensitive hash function family G, there exists an algo-

rithm for (rt+1/rt, rt)-NN ball cover problem under cosine similarity measure. □

Proof 3 Let P1 be the probability that Property 1 holds, P2 be the probability that Property 2
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A.2 Adaptive Locality Sensitive Hashing

holds, and q be the query point. It suffices to ensure that both P1 and P2 are strictly greater than

half [54].

By setting pcm = 1/n, the probability that P [gt(p) = gt(q)] for p /∈ ball B(q, rt+1) is 1/n.

Thus, the expected number of collided points that /∈ B(q, rt+1) is at most n× 1/n = 1 for gt for a

single ALSH tree. By getting points from l such trees, the expected number of such collisions is at

most l (1 for each tree), so the probability that this number exceeds 2l is less than 1/2 by Markov

inequality. In other words, Property 2 holds with P2 > 1/2.

The following proof shows that P1 > 1/2. P [gt(p) = gt(q)] for p ∈ ball B(q, rt+1) is bounded

from below by pm = (1/n)1/c = n−1/c. The probability that all the l indexes miss the point p is

(1−n−1/c)l. Thus, P1 = 1− (1−n−1/c)l. By setting l = n1/c, we have P1 > 1− 1/e > 1/2. Thus,

the proposition holds.

Another parameter for the ALSH index is rm, which controls the starting km value at the root
value. It indicates the minimum distance that two points can be considered as valid neighbors.
Really sparse points far away from each other are not considered as neighbors unless their distance
is within rm.

rm = (1− pkmm )

km =
ln(1− rm)

ln(pm)
=

ln(1− rm)

ln(n−1/c)
= −cln(1− rm)

ln(n)

(A.5)

We also set a maximum depth for the tree, i.e., the maximum k value k0 at the level 0.

A.2.2 Implementation on the Key-value Database

Key-value databases, such as Apache Cassandra, are intrinsically difficult to accommodate prefix
tree structures. The randomized data partitioner plays a critical role on load balancing across nodes,
and it provides better read-write performance than a sorted-key based partitioner. Nonetheless,
partitioning the data by randomly projecting the original key space to another one disables efficient
prefix search. In this section, we present our design of a data module that fits the ALSH index to
the Cassandra key-value storage.
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A.2 Adaptive Locality Sensitive Hashing

Refer to Figure A.2. All the trees of an ALSH index are stored in a single column family.
Basically, a column family consists of rows of records. Each row has a partition key and several
clustering keys. A partition key is used to partition the rows into different cluster nodes in the
database, and the clustering key can be sorted according to the key value. We maintain a row for
each node in an ALSH tree. Suppose a node is at level tt+1, and it has children at level t. Its partition
key is a combination of the tree ID and the signature generated by gt+1. A row has two fields: Hids

and Cids. Hids is a set of unique ID that links to the data points of this node. If Hids is empty, it
means that this node has more than 2l points and has been split. Another field, Cids, is a clustering
key that contains the children of this node. The Cid for each child is the signature generated by
the function gt. Since they share the same prefix generated by gt+1, we only store the distinct part.
Correspondingly, for each child there is a Hids field link to data points. If we need to split a child
we empty its Hids and create a new row accordingly.

Algorithm 8 Basic Block Semantic Search (BBSS)
Input the basic blocks Bt of the target function ft
Output basic block clone pairs {⟨bt, bs⟩ , . . . }

1: result← {}
2: for each bt in Bt do
3: bt← preprocess(bt)
4: q⃗← contructVector(bt)
5: points← ALSH_Query(q⃗)
6: for each p⃗ in points do
7: bs ← getSourceBlock(p⃗)
8: result = result

∪
⟨bt, bs⟩

9: end for
10: end for
11: return result

For example, in Figure A.2, the first row represents a node from tree of ID “0001”. Its signature
generated by gt is “58”. Its empty Hids implies that it has been split. It has a list of children and
each of them is distinguished by Cid. Suppose we have to split its child “A0” at level t to level
t − 1. We first create a new row using its tree ID and signature “58A0” that is generated by gt.
Then we generate signatures for data points in cell “0001-58:A0” using gt−1, and put them in the
newly created row. To fulfill the query, we first locate the leaf cell as described in Section 2.5. In
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A.2 Adaptive Locality Sensitive Hashing

ALSH we only index the unique data points. We also maintain another column family where data
points are indexed by a strong hash signature on the feature vector. To index a new data point, we
check whether it exists in the database by hashing.

By adopting the ALSH scheme, we can efficiently retrieve all the basic block clones by con-
sidering their semantic similarity revealed from their assembly code instructions. Since we use the
cosine similarity, a clone between a short basic block and a long basic block can be detected. Recall
that our input to the clone search engine is a target function ft with its target blocks Bt and edges
of the control flow graph Et. Algorithm 8 provides the interface for the graph search algorithm in
Section 2.6.

162



A.2 Adaptive Locality Sensitive Hashing

Normalization 
Level: Specific

Normalization 
Level: Type

Normalization 
Level: Root

Unidentifiable 
operand

Unidentified 

Constant

Memory 
Reference

Register

Segment 
Register

General 
Register

Register 128b

Register 64b

Register 32b

Register 16b

Register 08b

Index/Pointer 
Register

Pointer 
Register

Index Register

Flag Register

Figure A.1: The hierarchy used to normalize the operands. Each level of the tree represents a
normalization level.
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0001-58
Hids:

[Empty]

Cids:

36 47 A0 … CF

Hids Hids [Empty] Hids

0001-58A0
Hids:

[Empty]

Cids:

673A 8670 A100 … FC13

Hids Hids [Empty] Hids

……

Figure A.2: The data module for ALSH.
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B
Extended Formulation of Asm2Vec

This appendix extends the original description and the formulation of the Asm2Vec model training.
Recall that at the beginning of Section 4.3 we define fs as an assembly function in the repository.
The Asm2Vec model tries to learn the following parameters:

θ⃗fs ∈ R2×d The vector representation of the function fs.
v⃗t ∈ Rd The vector representation of a token t.
v⃗′t ∈ Rd Another vector of token t, used for prediction.

Table B.1: Parameters to be estimated in training.

All θ⃗fs and v⃗t are initialized to small random values around zero. All v⃗′t are initialized to zeros.
We use 2× d for fs because we concatenate the vector for operation and operands to represent an
instruction. We also define the following symbols according to the syntax of assembly language:
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S(fs) = seq[1 : i] Multiple sequences generated from fs.
I(seqi) = in[1 : j] Instructions of a sequence seqi.
inj The jth instruction in a sequence.
A(inj) Operands of instruction inj .
P(inj) The operation of instruction inj .
T (inj) Represent the tokens of inj .
CT (inj) ∈ R2×d Vector representation of an instruction inj .
CT (inj−1) ∈ R2×d Vector representation of inj’s previous instruction.
CT (inj+1) ∈ R2×d Vector representation of an instruction inj’s next instruc-

tion.
δ(inj, fs) Vector representation of the joint memory of function fs and

inj’s neighbor instructions.

Table B.2: Intermediate symbols used in training.

For an instruction inj , we treat the concatenation of its operation and operands as its tokens
T (inj): T (inj) = P(inj) || A(inj), where || denotes concatenation. CT (in) denotes the vector
representation of an instruction in.

CT (in) = v⃗P(in)||
1

|A(in)|

A(in)∑
t

v⃗tb

The representation is calculated by averaging the vector representations of its operandsA(in). The
averaged vector is then concatenated to the vector representation v⃗P(in) of its operation P(in).

As presented in Algorithm 6, the training procedure goes through each assembly function fs

in the repository and generates multiple sequences by calling S(fs). For each sequence seqi of
function fs, the neural network walks through the instructions from its beginning. We collect the
current instruction inj , its previous instruction inj−1, and its next instruction inj+1. We ignore
the instructions that are out-of-boundary. We calculate T (inj−1) and T (inj+11) using the previous
equation. By averaging fs’s vector representation θ⃗fs with CT (inj − 1) and CT (inj +1), δ(in, fs)
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Extended Formulation of Asm2Vec

models the joint memory of neighbor instructions:

δ(inj, fs) =
1

3
(θ⃗fs + CT (inj−1) + CT (inj+1))

For the current instruction inj , the proposed model maximizes the following log probability:

argmax

T (inj)∑
tc

log P(tc|fs, inj−1, inj+1)

It predicts each token in the current instruction inj based on the joint memory of its corresponding
function vector and its neighbor instruction vectors, as illustrated in Figure 4.5.

To model the above prediction one can use a typical softmax multi-class classification layer
and maximize the following log probability:

P(tc|δ(inj, fs)) = P(v⃗′tc|δ(inj, fs))

=
f(v⃗′tc , δ(inj, fs))∑D
d f(v⃗′td , δ(inj, fs))

f(v⃗′tc , δ(inj, fs)) = Uh((v⃗′tc)
T × δ(inj, fs))

D denotes the whole vocabulary constructed upon the repository RP. Uh(·) denotes a sigmoid
function applied to each value of a vector. The total number of parameters to be estimated is
(|D|+ 1)× 2× d for each pass of the softmax layout. The term |D| is too large to be efficient for
the softmax classification.

Therefore we use the k negative sampling approach [78], [89] to approximate the log probabil-
ity:

log P(tc|δ(inj, fs)) ≈ log f(v⃗′tc |δ(inj, fs))

+
k∑

i=1

Etd∽Pn(tc)

(Jtd ̸= tcKlog f(−1× v⃗′td , δ(inj, fs))
)

By manipulating the value of the parameters listed in Table B.1 we can maximize the sum of the
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above log-probability for all the instruction inj .

We follow the parallel stochastic gradient decent algorithm. In a single training step we only
consider a single token tc of the current instruction inj . We calculate the above log probability
and its gradients with respect to the parameters that we are trying to manipulate. The gradients
define the direction in which we should manipulate the parameters in order to maximize the log
probability. The gradients are calculated by taking the derivatives with respect to each parameter
defined in Table B.1. The table below defines the symbol of the gradients:

∂

∂θ⃗fs
J(θ) The gradient for current function fs’s θ⃗fs .

∂

∂v⃗′t
J(θ) The gradient for the token tc of current instruction inj .
∂

∂v⃗P(inj+1)
The gradient for the operation of instruction inj+1.

∂
∂v⃗P(inj−1)

The gradient for the operation of instruction inj−1.
∂

∂v⃗tb
J(θ) The gradient for each operation of instruction inj+1 and

inj−1.

Table B.3: Gradients to be calculated in a training step.

The equations below calculate the gradients defined above.

∂

∂θ⃗fs
J(θ) =

1

3

k∑
i

Etb∽Pn(tc)

(Jtb = tcK− f(v⃗′t, δ(inj, fs))
)

× v⃗′t

∂

∂v⃗′t
J(θ) = Jt = tcK− f(v⃗′t, δ(inj, fs))× δ(inj, fs)

It will be the same equation for the previous instruction inj−1, by replacing inj+1 with inj−1.
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∂

∂v⃗P(inj+1)

J(θ) =
( ∂

∂θ⃗fs
J(θ)

)
[0 : d− 1]

∂

∂v⃗tb
J(θ) =

1

|A(inj+1)|
×
( ∂

∂θ⃗fs
J(θ)

)
[d : 2d− 1]

tb ∈ A(inj+1)

After, we use back propagation to update the values of all the involved parameters according to
their gradients in Table B.3, with a learning rate.

169



C
Extended Descriptive Statistics of the Dataset

This appendix provides additional descriptive statistics on the experimental dataset used in Sec-
tion 4.4.1, Section 4.4.2, and Section 4.4.3.

In the compiler optimization experiment (Section 4.4.1, ImageMagick) generally has the largest
number of assembly basic blocks, while zlib has the least. By adopting different compiler optimiza-
tion options, the generated number of basic blocks greatly varies. Specifically, O0 is very different
from the other optimization levels. O1 and O2 appear to share a similar number. O3 has the largest
number of basic blocks, which is generated by intensive inlining. Figure C.2 shows the empiri-
cal distribution of the assembly functions length under different optimization levels. O3 tends to
produce assembly functions that are much longer than O0, O1, and O2. O1 and O2 share similar
distributions on function length.

In the O-LLVM obfuscation experiment (Section 4.4.2), we evaluate the clone search methods
before and after obfuscation. O-LLVM significantly increases the complexity of the binary code.
Table C.2 shows how the number of basic blocks have been changed across different obfuscation
levels. Figure C.3 shows the empirical distribution of the assembly functions length under different
obfuscation options. There are three different techniques and their combination:

• BCF modifies the control flow graph by adding a large number of irrelevant random basic blocks
and branches. It will also split, merge, and reorder the original basic blocks. It almost doubles
the number of basic blocks after obfuscation (see Table C.2).
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GCC O0 GCC O1 GCC O2 GCC O3
BusyBox 52,118 46,519 47,272 62,069
CoreUtils 38,176 36,168 35,117 41,421

Libgmp 12,919 15,534 14,602 16,234
ImageMagick 85,191 88,342 84,395 93,421

Libcurl 17,969 14,097 13,483 15,371
LibTomCrypt 12,021 10,135 10,258 13,451

OpenSSL 52,063 44,527 44,642 50,043
SQLite 27,621 24,978 29,332 38,699

zlib 2,898 2,747 2,668 3,706
PuTTYgen 5,495 4,957 5,065 7, 231

Total 306,471 288,004 286,834 341,646

Table C.1: Number of basic blocks for each selected library compiled using different optimization
options.

Original BCF FLA SUB All
Libgmp 20,168 54,738 103,258 20,168 55,007

ImageMagick 83,704 218,315 434,599 83,702 216,904
LibTomCrypt 10,044 19,534 35,608 10,115 62,895

OpenSSL 46,298 100,315 160,265 46,278 289,657
Total 160,214 392,902 733,730 160,263 624,463

Table C.2: Number of basic blocks for each selected library under different code obfuscation op-
tions.
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• FLA reorganizes the original CFG using a complex hierarchy of new conditions as switches (see
an example in Figure 4.1). Only the penultimate level of the CFG contains the modified original
logics. It completely destroys the original CFG graph. The obfuscated binary on average contains
4 times more basic blocks than the original.

movzx  ecx, byte ptr [rbp+1]
shl  ecx, 8
or  ecx, eax
movzx  eax, byte ptr [rbp+2]

movzx  ecx, byte ptr [r13+1]
shl  ecx, 8
mov  edx, ecx
not  edx
mov  esi, eax
not  esi
and  edx, 8D8113F6h
and  ecx, 0EC00h
and  esi, 8D8113F6h
and  eax, 9
or  ecx, edx
or  eax, esi
xor  eax, ecx
movzx  edx, byte ptr [r13+2]

Figure C.1: An assembly fragment obfuscated by O-LLVM Instruction Substitution. Left: the orig-
inal fragment. Right: the obfuscated fragment.

• SUB substitutes fragments of assembly code to its equivalent form by going one pass over the
function logic using predefined rules. This technique modifies the contents of basic blocks and
adds new constants. SUB does not change much of the graph structure. Figure C.1 shows an
example. Figure C.3 shows that it increases the length of the original assembly function.
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D
Cuckoo Behavioral Indicators

Table D.1: Description of each behavioral descriptor.

Indicator Files Description
allocates execute
remote process

8919
allocates execute permission to another process
indicative of possible code injection

allocates rwx 23789
allocates read-write-execute memory (usually to
unpack itself)

antianalysis detectfile 31
attempts to identify installed analysis tools by a
known file location

antiav avast libs 71
detects avast antivirus through the presence of a
library

antiav detectreg 129
attempts to identify installed av products by registry
key

antiav servicestop 104 attempts to stop active services

antidbg devices 154
checks for the presence of known devices from
debuggers and forensic tools

antidbg windows 241
checks for the presence of known windows from
debuggers and forensic tools

antiemu wine 3071 detects the presence of wine emulator
antisandbox cuckoo
files

31
attempts to detect cuckoo sandbox through the
presence of a file
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Cuckoo Behavioral Indicators

Continued from the preceding table.

Indicator Files Description

antisandbox
foregroundwindows

1494

checks whether any human activity is being
performed by constantly checking whether the
foreground window changed

antisandbox idletime 104
looks for the windows idle time to determine the
uptime

antisandbox mouse
hook

4259
installs a hook procedure to monitor for mouse
events

antisandbox sleep 1639 a process attempted to delay the analysis task

antisandbox unhook 24
tries to unhook windows functions monitored by
cuckoo

antivm disk size 4905

queries the disk size, which could be used to detect
virtual machine with small fixed size or dynamic
allocation

antivm generic bios 273 checks the version of bios

antivm generic cpu 909 checks the cpu name from registry

antivm generic disk 196 queries information on disks

antivm generic scsi 2929
detects virtualization software with scsi disk
identifier trick(s)

antivm generic services 24 enumerates services
antivm memory
available

19684 checks amount of memory in system

antivm network
adapters

13470
checks adapter addresses that can be used to detect
virtual network interfaces

antivm queries
computername

11850 queries for the computername

antivm sandboxie 24 tries to detect sandboxie

antivm vbox devices 41 detects virtualbox through the presence of a device

antivm vbox files 151 detects virtualbox through the presence of a file

175



Cuckoo Behavioral Indicators

Continued from the preceding table.

Indicator Files Description

antivm vbox keys 3110
detects virtualbox through the presence of a registry
key

antivm vmware files 124 detects vmware through the presence of various files
antivm vmware in
instruction

3090 detects vmware through the in instruction feature

antivm vmware keys 28
detects vmware through the presence of a registry
key

av detect china key 62 checks for known Chinese av software registry keys

banker bancos 2782 creates known bancos banking Trojan files

banker zeus p2p 22 zeus p2p (banking trojan)

browser security 120 attempts to modify browser security settings

browser startpage 5205 attempts to modify internet explorer’s start page

bypass firewall 171 operates on local firewall’s policies and settings

checks debugger 4461 checks if process is being debugged by a debugger

console output 6459 command line console output was observed

creates doc 59 creates (office) documents on the filesystem

creates hidden file 227 creates hidden or system file

creates largekey 28 creates or sets a registry key to a long series of bytes

creates service 621 creates a service

creates shortcut 626 creates a shortcut to an executable file
credential dumping
lsass

94
locates and dumps memory from the lsass.exe
process indicative of credential dumping

cryptomining stratum
command

41
a stratum cryptocurrency mining command was
executed

dead host 109

connects to ip addresses that are no longer
responding to requests (legitimate services will
remain up-and-running usually)
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Cuckoo Behavioral Indicators

Continued from the preceding table.

Indicator Files Description
deletes executed files 5967 deletes executed files from disk

detect putty 310 putty files

disables app launch 35
modifies system policies to prevent the launching of
specific applications or executables

disables proxy 1417 disables proxy possibly for traffic interception

disables security 173 disables windows security features

disables system restore 71 attempts to disable system restore

dropper 1270 drops a binary and executes it

dumped buffer 9037
one or more potentially interesting buffers were
extracted

dumped buffer2 5186
one or more of the buffers contains an embedded pe
file

dyreza 39 creates known dyreza banking Trojan files

exe appdata 14876 drops an executable to the user appdata folder

generates crypto key 1026 uses windows apis to generate a cryptographic key

has pdb 2039 this executable has a pdb path

has wmi 1618 executes one or more wmi queries

infostealer bitcoin 26 attempts to access bitcoin/altcoin wallets

infostealer browser 2118
steals private information from local internet
browsers

infostealer ftp 589 harvests credentials from local ftp client softwares

infostealer im 364
harvests information related to installed instant
messenger clients

infostealer keylogger 4958
creates a windows hook that monitors keyboard input
(keylogger)

infostealer mail 628 harvests credentials from local email clients
injection
createremotethread

262
creates a thread using createremotethread in a
non-child process indicative of process injection
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Cuckoo Behavioral Indicators

Continued from the preceding table.

Indicator Files Description
injection modifies
memory

436
manipulates memory of a non-child process
indicative of process injection

injection network
traffic

22
network communications indicative of possible code
injection originated from the process explorer.exe

injection
ntsetcontextthread

8793
used ntsetcontextthread to modify a thread in a
remote process indicative of process injection

injection process
search

1820
searches running processes potentially to identify
processes for sandbox evasion

injection resumethread 15498
resumed a suspended thread in a remote process
potentially indicative of process injection

injection runpe 8948 executed a process and injected code into it

injection write memory 8385
potential code injection by writing to the memory of
another process

injection write memory
exe

3449
code injection by writing an executable or dll to the
memory of another process

installs bho 84
installs a browser helper object to thwart the users
browsing experience

locates browser 1899 tries to locate where the browsers are installed

locates sniffer 96 tries to locate whether any sniffers are installed

locker taskmgr 27 disables windows’ task manager
malicious document
urls

171 potentially malicious url found in document

memdump urls 1347
potentially malicious urls were found in the process
memory dump

modifies certificates 173 attempts to create or modify system certificates

modifies proxy wpad 10200
sets or modifies wpad proxy autoconfiguration file
for traffic interception
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Cuckoo Behavioral Indicators

Continued from the preceding table.

Indicator Files Description
modifies security
center warnings

128 modifies security center warnings

modify uac prompt 24 attempts to modify uac prompt behavior

moves self 492 moves the original executable to a new location

multiple useragents 5594
network activity contains more than one unique
useragent

network bind 40 starts servers listening

network document file 171

network communications indicative of a potential
document or script payload download was initiated
by the process wscript.exe

network icmp 17491 generates some icmp traffic
network wscript
downloader

171
wscript.exe initiated network communications
indicative of a script based payload download

origin langid 1239 foreign language identified in pe resource

packer entropy 10526
the binary likely contains encrypted or compressed
data indicative of a packer

packer polymorphic 4617 creates a slightly modified copy of itself

packer upx 3673 the executable is compressed using upx

packer vmprotect 95 the executable is likely packed with vmprotect

pe features 13867
the executable contains unknown pe section names
indicative of a packer (could be a false positive)

pe unknown resource
name

11715
the file contains an unknown pe resource name
possibly indicative of a packer

peid packer 5103 the executable uses a known packer

persistence ads 139 creates an alternate data stream (ads)

persistence autorun 7065 installs itself for autorun at windows startup

privilege luid check 1900
checks for the locally unique identifier on the system
for a suspicious privilege
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Cuckoo Behavioral Indicators

Continued from the preceding table.

Indicator Files Description
process interest 587 expresses interest in specific running processes

process martian 139 one or more martian processes was created

process needed 457 repeatedly searches for a not-found process

protection rx 6611

changes read-write memory protection to
read-execute (probably to avoid detection when
setting all rwx flags at the same time)

queries programs 5120 queries for potentially installed applications

raises exception 11804 one or more processes crashed
ransomware appends
extensions

57
appends a new file extension or content to 71 files
indicative of a ransomware file encryption process

ransomware dropped
files

51
drops 835 unknown file mime types indicative of
ransomware writing encrypted files back to disk

ransomware extensions 72
appends a known multi-family ransomware file
extension to files that have been encrypted

ransomware file moves 60
performs 71 file moves indicative of a ransomware
file encryption process

ransomware mass file
delete

70
deletes a large number of files from the system
indicative of ransomware

ransomware message 36 writes a potential ransom message to disk
ransomware
shadowcopy 41

removes the shadow copy to avoid recovery of the
system

rat fynloski 91 creates known fynloski/darkcomet files
rat xtreme 27 creates known xtremerat files

reads user agent 186
reads the systems user agent and subsequently
performs requests

recon beacon 67

a process performed obfuscation on information
about the computer or sent it to a remote location
indicative of cnc traffic/preparations
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Cuckoo Behavioral Indicators

Continued from the preceding table.

Indicator Files Description

recon fingerprint 3103
collects information to fingerprint the system
(machineguid)

recon programs 4175 collects information about installed applications

removes zoneid ads 415
attempts to remove evidence of file being
downloaded from the internet

self delete bat 65
creates and runs a batch file to remove the original
binary

spreading autoruninf 84 creates an autorun.inf file
stealth hidden
extension

115
attempts to modify explorer settings to prevent file
extensions from being displayed

stealth hiddenfile 627
attempts to modify explorer settings to prevent
hidden files from being displayed

stealth hide
notifications

28 attempts to modify user notification settings

stealth system
procname

4638
created a process named as a common system
process

stealth window 7107 a process created a hidden window

stops service 66 stops windows services
suspicious command
tools

116
uses suspicious command line tools or windows
utilities

suspicious powershell 27 creates a suspicious powershell process

suspicious process 7149 creates a suspicious process

suspicious write exe 319
the process wscript.exe wrote an executable file to
disk, which it then attempted to execute

sysinternals tools usage 91
uses sysinternals tools in order to add additional
command line functionality

terminates remote
process

269 terminates another process
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Cuckoo Behavioral Indicators

Continued from the preceding table.

Indicator Files Description

uses windows utilities 10598
uses windows utilities for basic windows
functionality

wmi antivm 1020
executes one or more wmi queries that can be used to
identify virtual machines
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E
Falcon Behavioral Indicators

Table E.1: Description of each behavioral descriptor.

Indicator Files Description

adware_0 38
possibly checks for the presence of an adware
detecting tool

credential_stealer_0 390 scans for artifacts that may help identify the target

evasive_0 66
possibly checks for the presence of a
forensicsmonitoring tool

evasive_1 29
executes wmi queries known to be used for vm
detection

evasive_11 452
possibly tries to evade analysis by sleeping many
times

evasive_14 107 references security related windows services

evasive_17 177 reads the windows product ID

evasive_18 513
possibly checks for the presence of an antivirus
engine

evasive_19 107
reads the keyboard layout followed by a significant
code branch decision

evasive_3 40 may try to detect deepfreeze frozen state
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Falcon Behavioral Indicators

Continued from the preceding table.

Indicator Files Description
evasive_5 24 reads the registry for vmware specific artifacts

evasive_6 231 reads the systemvideo bios version

evasive_7 41
queries firmware table information may be used to
fingerprintevade

evasive_8 371 tries to sleep for a long time more than two minutes

fingerprint_13 4615 reads the active computer name

fingerprint_3 27
contains ability to look up the windows account
name

fingerprint_4 255 tries to identify its external ip address

fingerprint_6 2573 reads the cryptographic machine guid

fingerprint_8 196
found a dropped file containing the windows
username possible fingerprint attempt

fingerprint_9 216 reads the windows installation date

network 3398 contact hosts or domains

persistence_0 716 spawns a lot of processes

persistence_1 34
persists itself using autoexecute at a hidden registry
location

persistence_13 78
schedules a task to be executed at a specific time and
date

persistence_14 3016 writes data to a remote process

persistence_15 36 modifies firewall settings

persistence_16 235 injects into explorer

persistence_18 83 modifies system certificates settings

persistence_2 54 creates a fake system process

persistence_3 939
modifies autoexecute functionality by settingcreating
a value in the registry

persistence_4 248 injects into remote processes
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Falcon Behavioral Indicators

Continued from the preceding table.

Indicator Files Description
persistence_6 288 interacts with the primary disk partition drnum

ransomware_0 31 deletes volume snapshots often used by ransomware

ransomware_1 48 detected indicator that file is ransomware

ransomware_5 33 contains ability to createswitch the desktop

ransomware_7 50 the analysis extracted a known ransomware file

remote_access_0 344 contains ability to listen for incoming connections

remote_access_1 354 contains a remote desktop related string

remote_access_6 3925 reads terminal service related keys often rdp related

remote_access_7 734 uses network protocols on unusual ports

spreading_1 204 tries to access unusual system drive letters

spreading_2 29
detected a large number of arp broadcast requests
network device lookup

spreading_3 1292
opens the mountpointmanager often used to detect
additional infection locations

spyware/leak_0 720 contains ability to retrieve keyboard strokes

spyware/leak_1 859 posts files to a webserver

spyware/leak_3 720 contains ability to open the clipboard

spyware_2 34 sets a global windows hook to intercept keystrokes

spyware_5 884
accesses potentially sensitive information from local
browsers

stealer/phishing_2 445 tries to steal ftp credentials

stealer/phishing_4 111 touched instant messenger related registry keys
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