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Abstract

In a preprint, Ian Leary inquires whether two hyperbolic finitely presented groups are

residually finite. We answer in the affirmative by showing that these groups belong

to a class of groups, which we call the polygonal VH or PVH groups. To prove that

a group is PVH we introduce a systematic tiling method for the standard 2-complex

of the group, and deduce from the work of Daniel Wise that hyperbolic PVH groups

are residually finite.
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Résumé

Dans un prépublication, Ian Leary se demande si deux groupes finitement hyper-

boliques et de présentation finie sont résiduellement finis. Nous donnons une réponse

positive en montrant que ces groupes appartiennent à une classe de groupes que nous

appelons les groupes polygonale VH ou groupes PVH. Pour démontrer qu’un groupe

est PVH, nous introduisons une méthode systématique pour couvrir d’un pavage le

2-complexe standard du groupe, et déduisons des travaux de Daniel Wise les groupes

PVH hyperboliques sont résiduellement finis.
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vexity works by using the Švarc-Milnor lemma. I also thank Jan Feys for additional

help with the French abstract, and Dr. Henri Darmon for his review.

I also wish to thank Greg LeBaron, the systems administrator at McGill, for

providing me with one of the department’s obsolete computers after my laptop ceased

to function. I typed my entire thesis on this archaic but usable device. Also thanks

goes to the Department of Mathematics at McGill for its warm and intellectually

encouraging atmosphere.

I am indebted to my grandmother, Dr. Alenka Paquet. Without her, I probably

would not have discovered mathematics and science as a child.

4



Contents

Abstract 2

Résumé 3
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Jason Polák

1 Notation

If X is a cellular complex then Xn denotes its n-skeleton. We refer to the cells of X

as n-cells, and the cells of the link of a vertex as edges and vertices. A polygon P is a

single 2-cell whose boundary is a subdivided circle. The sides of P are the 1-cells of

this circle. Sides will always refer to these 1-cells, whereas an edge may be any 1-cell

in some subdivision of the sides. If a side E is subdivided into n 1-cells, then we use

write |E| = n. The length of a word w is denoted by |w|.
If G is a group then H ≤ G means H is a subgroup of G. Finally, the notation

A−B for sets A and B means set difference.

2 Introduction

Ian Leary in [Lea10] introduces two finitely-presented groups, and inquires about

their residual finiteness, which is subtly hinted at by their construction. We prove

that these groups are residually finite via splitting them using geometric techniques.

We start in this section by introducing presented groups and the word problem.

The residual finiteness property for groups and its relation to the word problem are

introduced in Section 2.3. At the end of the introduction we give a short account of

our results.

Section 3 is technical and gives most of the details needed to understand the main

result. In particular, we explain how graphs of spaces represent splittings of a group,

and how we can obtain such splittings using so-called VH complexes. We say how

residual finiteness is implied by certain special splittings with a few other conditions.

The main result is contained Section 4. Here we give an algorithm inducing a VH
structure on the standard 2-complex of any finitely presented group satisfying certain

conditions. This structure gives a splitting that may be used with hyperbolicity to

prove residual finiteness via the observations in Section 3.
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2.1 Presentations and the Word Problem Jason Polák

2.1 Presentations and the Word Problem

A presentation is denoted by 〈S | R〉 where S is a nonempty set of symbols called

generators, and R is a set of words called relators, formed from letters x ∈ S and x−1

where x ∈ S. Thus if S = {a, b, c} then ab−1cc is an example of a valid relator. For

brevity we write xn for the string of n copies of x and x−n for n copies of x−1, so that

our example would be written ab−1c2.

The group given by such a presentation is the free group on S modulo the normal

closure of the subgroup generated by the relators. A presented group is one given by

a presentation. If the presentation requires only a finite number of generators and

relators, then we call G finitely presented.

One can define such a group directly without reference to the free group construc-

tion on a set, and such details are available in the classic text [MKS76], in which the

authors develop extensively the purely combinatorial theory of groups.

Every group G has some presentation, the most obvious but unwieldy one being

the multiplication table of G; that is, G is the set of generators and the relations are

every relation in the multiplication table. Two simple examples are the finite cyclic

groups Z/nZ for some natural number n given by the presentation 〈x | xn〉 and the

free product Z/2 ∗ Z/2 given by 〈x, y | x2, y2〉.
Simply-stated questions about presented groups often turn out to have fiendish

solutions, or even no solution at all if one does not have some other purely algebraic

description of the corresponding group. One such question that has come to the

minds of combinatorial group theorists is the word problem: Given a word w in

the generators S, does w represent the identity element? We say that a group G

has solvable word problem if there is some algorithm that will decide in finite time

whether any given word represents the identity. Otherwise we say G has unsolvable

word problem.

Free groups, fundamental groups of closed, orientable surfaces, and C ′(1
6
) groups

all have solvable word problems [MKS76]. On the other hand, there are some groups

with unsolvable word problems, and some of these are even finitely presented. Collins

gives a relatively small example of such a group with ten generators and twenty-seven
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Jason Polák 2.2 Topological Interpretation of Presentations

relators in [Col86] using methods developed by Borisov [Bor69].

2.2 Topological Interpretation of Presentations

Although many interesting and nontrivial results on presented groups have been de-

rived using purely combinatorial means, there is a natural topological interpretation

called the standard 2-complex which is often worthwhile to consider, and it is through

topological means which we achieve our results.

Given a presented group G, the standard 2-complex is a CW complex X with

π1(X) ∼= G. It is given by a single 0-cell, a 1-cell for each generator, and a 2-cell

for each relator whose attaching map to X1 is given by the relator. More details are

available in Section 3.3.

Example 2.2.1. Consider the group presented by 〈s, t | sts−1t−1〉. The single 2-

cell corresponding to sts−1t−1 is a square that has its opposite sides identified in an

orientation-preserving manner, which results in the familiar genus 1 orientable surface,

the torus. The fundamental group of the torus is Z× Z which can be deduced from

the presentation.

It is important to note that although groups given by presentations seem algebraic

at first, they are more naturally interpreted as geometric objects, and thus conditions

on the presentation naturally correspond to conditions on the corresponding complex.

A common theme that will recur is a tiling of such a complex, which is a sub-

division of the cells of the standard 2-complex into smaller cells, often satisfying

conditions that allow for some homotopy deformation, which in turn yields a splitting

of the group. Sometimes in the literature a tiling of a complex by squares is also

called a squaring.

Since we are only concerned with finite-dimensional CW complexes, the topology

will just be the quotient topology, although in the infinite-dimensional case there are

subtleties, and the interested reader may consult the appendix of [Hat02] for a gentle

introduction to CW complexes or [LW69] for thorough education. Presentations

in topology also arise naturally in the descriptions of the fundamental groups for

topological manifolds, one example being 3-manifolds that are knot-complements.
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2.3 Residually Finite Groups Jason Polák

2.3 Residually Finite Groups

In geometric group theory one is often interested in presented groups with no obvious

algebraic interpretation of any kind, and it is with these groups that the word problem

is most difficult. It seems reasonable then to consider classes of groups with additional

properties that may ameliorate our troubles with the word problem. One such class

is the residually finite groups.

Definition 2.3.1. Let G be a group. We say that G is residually finite if for each

nontrivial g ∈ G, there exists a finite group F and a homomorphism ϕ : G→ F such

that ϕ(g) 6= 1.

Succinctly put, a group is residually finite if every nontrivial element survives

in some finite quotient. The reader may be familiar with another commonly used

definition: a group is residually finite if the intersection of all finite-index normal

subgroups is trivial. The two definitions are clearly equivalent. A dynamical systems

definition can be found in Ceccherini-Silberstein and Coornaert’s book [CSC10]. We

shall now give a few examples and some classical results.

Example 2.3.2. Aside from finite groups, perhaps the easiest example of a residually

finite group is Z, for if n ∈ Z is nonzero then the image of n in the finite quotient

Z/(n+1)Z will be nontrivial. Products of residually finite groups are clearly residually

finite. Hence Zn is residually finite.

A classical result proved by Baumslag is the following:

Theorem 2.3.3 ([Bau63]). The automorphism group of a finitely generated residually

finite group is residually finite.

Example 2.3.4. Since Zn is finitely generated we get from Baumslag’s result that

GLn(Z) is residually finite.

Example 2.3.5. A class of residually finite groups given by presentations in given

by Baumslag in [Bau67] (communicated by M. Suzuki):

〈a, b | (a−1blabm)t = 1〉
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Jason Polák 2.4 Motivation and a Brief Outline

where l,m, t ∈ Z, l,m 6∈ {0,±1}, t > 1, and t, l,m are pairwise relatively prime.

These last two examples are interesting because of the brevity of their corre-

sponding proofs, which use only combinatorial methods. Despite these interesting

curiosities, few methods are available to determine whether an arbitrary presented

group is residually finite.

Example 2.3.6. For an example of groups that are not residually finite, we turn to

the divisible abelian groups. Recall that an abelian group D is divisible if for each

x ∈ D and nonzero integer n there is a y ∈ D such that ny = d; succinctly, we

can divide by nonzero integers. Nontrivial divisible abelian groups are not residually

finite.

Indeed, suppose that D
ϕ−→ F is a group homomorphism with D divisible and F

finite. If x ∈ D, then for any nonzero integer n we have ϕ(x) = ϕ(ny) = nϕ(y) for

some y ∈ D. But then if we take n = |F |, we get that ϕ(x) = 0. Thus ϕ is the trivial

homomorphism, so D has no finite quotients. Since D is infinite, it thus cannot be

residually finite. Thus the additive groups Q and R are not residually finite.

The most interesting property for us is that finitely presented residually finite

groups have solvable word problem [Dys64], and thus we come to the main theme of

this thesis; that is, how can we show whether a group is residually finite?

Remark 2.3.7. One might wonder if finitely generated residually finite groups have

solvable word problem. This is not true! Meskin in [Mes74] produces a finitely gener-

ated center-by-metabelian residually finite group that has unsolvable word problem.

2.4 Motivation and a Brief Outline

We briefly describe the results, contents, and motivation of this thesis. Most formal

definitions are postponed until later.

Recall that if G is a finitely presented group, a fixed presentation of G corresponds

to a 2-dimensional cellular complex C called the standard 2-complex. It has the

property that π1(C) ∼= G. The main result of this thesis is a systematic method that

gives under certain conditions, a so-called VH-structure on a standard 2-complex C,
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2.4 Motivation and a Brief Outline Jason Polák

which is a particularly nice subdivision C. This subdivision induces a splitting of

π1(C), which implies residual finiteness.

The genesis of this thesis is a preprint of Leary [Lea10], who inquires about

the residual finiteness of some groups arising out of a construction using certain

2-complexes. One group he gives is the presented group

〈a, b, c, d, e, f | abcdef, ab−1c2f−1e2d−1, a2fc2bed

ad−2cb−2ef−1, ad2cf 2eb2, af−2cd−1eb−2〉.
(1)

Leary gives a tiling of the standard 2-complex of this group by squares, which suggests

a method to show residual finiteness for this and many other groups.

We start with a finitely presented group and give a systematic tiling method which

works for many groups, including the ones given by Leary. The resulting complexes

are VH complexes and are briefly introduced in Section 3.5. The main purpose of

this tiling method is to give a practical method to show that a given group actually

has a VH structure.

If the standard 2-complex has a VH structure, is nonpositively curved, and is

also hyperbolic, residual finiteness follows from the results in [Wis, HW08]. We shall

survey these results in Section 3.7.

In order to fix a class of groups of study, in Definition 4.2.8 we called any group

which is the fundamental group a complex built out of VH polygons a polygonal VH
group. Further, if the corresponding VH structure is nonpositively curved, then we

call such a group a nonpositively curved PVH group. Thus a hyperbolic nonpositively

curved PVH group is residually finite.
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3 Background and Observations

3.1 A Short Note on Hyperbolicity

We briefly explain an easily-verified condition implying hyperbolicity, since all of our

results assume that our group is hyperbolic. But first, we shall briefly recall hyper-

bolicity for convenience. In [Gro87], M. Gromov gave three equivalent definitions for

a finitely presented group to be hyperbolic, and we shall give the second.

For a finitely presented group G, we fix some presentation 〈S | R〉. We use the

standard notation |g| to be the shortest representative of the element g ∈ G with

respect to the given presentation. Then we define a map on G×G→ R by

(g, h) =
1

2
(|g|+ |h| − |g−1h|).

Definition 3.1.1. We say that a finitely presented group G together with a fixed

presentation for G is hyperbolic if there is some δ ≥ 0 such that for every g, h, k ∈ G,

(g, h) ≥ min{(g, k), (h, k)} − δ.

Although the condition of hyperbolicity is an important hypothesis in our main

results, it is not central in the sense that none of the new developments here make

direct use of it. In fact, below we shall see an easily-verified condition for hyperbolicity

for the groups in which we have an interest.

Definition 3.1.2. Let G be a group presented by 〈S | R〉. We say that r ∈ R is

cyclically reduced if for each a ∈ S there is no string of the form aa−1 in any cyclic

permutation of r. We say that r is freely reduced just if there is no substring of the

form aa−1 in r.

Let G be a group presented by 〈S | R〉 whose relators are cyclically reduced. A

piece with respect to this presentation is a freely reduced subword that occurs in two

distinct relators. Here we make the convention that a subword of a relator r is any

substring of any cyclic permutation of r.
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3.2 Graphs of Groups and of Spaces Jason Polák

Definition 3.1.3. We say that a presentation 〈S | R〉 satisfies the C ′(λ) (small

cancellation) condition if the length of any piece is less than or equal to λ|r| for each

r ∈ R that contains the piece.

For instance, suppose that G is presented by 〈 a, b, c | aaabc, aba8743c 〉. The

longest piece in this presentation is ab. Since the length of the first word is 5, this

group satisfies the C ′(2
5
) condition.

The C ′(λ) condition is the start of small cancellation theory, which analyzes the

properties of groups with C ′(λ) conditions for various values of λ, but we shall only

need the following well-known result that allows us to deduce hyperbolicity from a

presentation (for some details see [Gro87, LS77]).

Theorem 3.1.4. If G has a finite C ′(1
6
) presentation then G is hyperbolic.

We deduce that Leary’s group in Equation (1) is hyperbolic from using this con-

dition: each relator has length six, and any word of length two occurs at most once,

and so the longest piece must have length one. For longer presentations, the C ′(1
6
)

could easily be checked by a computer program.

Remark 3.1.5. Whether every C ′(1
6
) group (hence hyperbolic) is residually finite is

an open problem. If this is true, hopefully the proof will only be published after this

thesis is submitted!

3.2 Graphs of Groups and of Spaces

Before starting with the main subject matter, we shall describe graphs of groups,

and an associated construction, a graph of spaces. A graph of groups is given by the

following data:

1. A connected graph Γ.

2. A group Xv for each vertex v ∈ V (Γ).

3. A group Xe for each edge e ∈ E(Γ).

13



Jason Polák 3.3 Groups and Complexes

4. Corresponding to each edge e ∈ E(Γ), there are two monomorphisms ı : Xe →
Xv and τ : Xe → Xw where v = ı(e) and w = τ(e) are the initial and terminal

vertices of e respectively.

A graph of spaces corresponding to this graph of groups is the same construc-

tion, except with each group G being replaced by XG with π1(XG) ∼= G, and the

monomorphisms inducing the monomorphisms for groups.

A graph of groups, and correspondingly the graph of spaces X with π1(X) ∼= G

gives a splitting of G in the obvious way, where the vertex groups are amalgamated

along the edge groups. The association between the vertex groups and the edge

groups is given by repeated application of the Seifert-van Kampen theorem [Hat02].

3.3 Groups and Complexes

A standard tool to treat groups geometrically will be the correspondence between a

presentation and its standard 2-complex, which was introduced more informally in

the introduction.

Definition 3.3.1. Let G = 〈 S | R 〉. The standard 2-complex of G is the cell

complex consisting of a single 0-cell, exactly one oriented 1-cell for each s ∈ S, and

exactly one 2-cell for each r ∈ R. The attaching maps of the 1-cells are the only

possible maps. Let D be a 2-cell and r be the relator associated to D. The attaching

map of D is given by dividing the boundary ∂D of D into a graph with |r| edges, and

orienting each edge with the corresponding letter of r. The attaching map is then

giving by mapping each edge homeomorphically onto the associated 1-cell preserving

orientation.

If C is the standard 2-complex associated to G, then π1(C) ∼= G. The 1-skeleton

C1 has as a fundamental group the free group on S and attaching 2-cells corresponds

to taking quotients by successive normal closures of each relator. There is a very nice

correspondence between subgroups of G and the covering spaces of C. Subgroups

H ≤ G correspond to path-connected covering spaces of C whose fundamental group

14



3.4 Square Complexes and Nonpositive Curvature Jason Polák

is H, and we can use topological methods to understand the structure of G via these

covering spaces.

Definition 3.3.2. A square tiling of C is a subdivision of the 2-cells of C into squares.

We shall be interested in exploiting the combinatorial nature of certain tilings to

give us a homotopy deformation into a graph of spaces.

3.4 Square Complexes and Nonpositive Curvature

We say a cellular complex X is a combinatorial square complex if the attaching map

of each two-cell corresponds to a cycle in X1 of length four, and X is two-dimensional.

A square complex is thus a quotient of a disjoint union of copies of [0, 1]2, with the

attaching maps corresponding to isometries between an edge and one or more edges.

Given a square S, a dual curve to a square is a smoothly embedded interval in S

whose endpoints are 0-cells resulting from a barycentric subdivision of opposite sides.

A dual curve looks like a line down the middle of the square.

Notable examples of square complexes are the nonpositively curved square com-

plexes, which we shall define in terms of the link.

Definition 3.4.1. Let v ∈ X0. The link of v denoted link(v) is a one-dimensional cell

complex specified as follows. The 0-cells are in bijection with the 1-cells attached to

v. For u, v ∈ X0, we declare that (u, v) ∈ X1 if and only if the one-cell corresponding

to u and the one-cell corresponding to v are in some attaching map of a two-cell.

We may also say more concisely that two 0-cells of the link are connected by a

1-cell if and only if the corresponding once-cells in X are part of the same square.

Please see Figure 1 for an example.

Definition 3.4.2. A cellular square complex X is nonpositively curved if for each

x ∈ X0, the complex link(x) does not contain any cycles of length strictly less than

four. We call any link that does not satisfy this property bad.

The tiling of R2 induced by the Z2 lattice is an example of a nonpositively curved

square complex. The 2-skeleton of a cube is not nonpositively curved. Indeed, the

15



Jason Polák 3.5 VH Complexes

Figure 1: On the left, we wish to calculate the link of the large 0-cell in the middle of the
complex. The link consists of one vertex for each 1-cell, and we connect vertices if they
correspond to the same square. The result is the graph on the right.

link of any vertex is a three-cycle. Intuitively, positive curvature as in the 2-skeleton

of the cube is a local phenomenon that cramps the complex to close in on itself.

We shall henceforth work with nonpositively curved square complexes. Actually,

the notion link and nonpositive curvature may be generalized to a category of higher

dimensional complexes known as cube complexes (see [Wis]), and in fact the results

of this thesis depend on some results from the theory of cube complexes.

3.5 VH Complexes

Suppose that X is a cellular complex with a partition of of the one-cells X1 = H ∪V .

We shall call cells in H horizontal, and cells in V vertical. We say that a square

complex X is a VH complex if the attaching map of each 2-cell has either the form

vhv′h′ or hvh′v′ for h, h′ ∈ H and v, v′ ∈ V . In this case it follows immediately that

a VH complex is nonpositively curved if there are no cycles of length two in any link,

since around any 0-cell the incoming edges alternate between horizontal and vertical.

The first key ingredient in understanding a group whose standard 2-complex has

a VH structure is a result in [Wis06], which for our purposes can be stated as:

Lemma 3.5.1. If X is a nonpositively curved VH-complex then X splits as a graph

of spaces in two ways. Furthermore, each splitting as a graph of spaces corresponds

to a splitting of π1(X) as a graph of free groups.

The sketch of the construction goes as follows. Suppose X has a VH structure

16



3.6 Quasiconvex Hierarchies Jason Polák

as above. A vertical leaf of a vertex is a maximally path-connected subspace of

vertical 1-cells. The leaves of the complex then correspond to the vertices of the

graph of spaces, with each vertex space being the leaf itself. The edge spaces are

more complicated. Two vertex spaces in the graph of spaces are connected by an

edge if there is a horizontal edge in the complex X that intersects the two leaves that

correspond to these spaces. The edge space itself is taken by choosing a vertex on

this horizontal edge, and taking the dual curve D intersecting this vertex. The edge

space is then D× [0, 1], and the attaching map is the obvious one. Please see Figure

2.

Figure 2: Locally, this is how the graph of spaces is constructed from a VH complex.
The bold horizontal lines are parts of vertical leaves, and they become the vertex spaces
represented by large ragged dots. The dotted line in the middle is another leaf that is a
hyperplane and becomes the edge space after being crossed by an interval.

3.6 Quasiconvex Hierarchies

The class QCH, or groups with quasiconvex hierarchies, is the class of groups that

can be constructed from free groups via amalgamations and HNN extensions along

quasi-isometrically embedded subgroups.

We shall just need a few basic properties of this class for the rest of the thesis,

but first we shall define amalgamations and HNN extensions.

Definition 3.6.1. Let A,B be groups and i : C ↪→ A and j : C ↪→ B be monomor-

phisms. We define the amalgamated free product A ∗C B to be the free product

(A ∗B)/N where N is the normal closure of the subgroup generated by the relations

i(c) = j(c) for each c ∈ C.

17



Jason Polák 3.6 Quasiconvex Hierarchies

In a graph of spaces, the amalgamated free product corresponds to a graph with

two vertices and one edge with the edge corresponding to the subgroup and the vertex

groups corresponding to A and to B.

Definition 3.6.2. Let A be a group, and let B,C ≤ A be subgroups with ϕ : B →
C an isomorphism. The HNN extension A∗ϕ is the group presented by taking a

presentation for A, and adding a new symbol t together with relators tbt−1 = ϕ(b)

for each b ∈ B.

Before defining groups with a quasiconvex hierarchy, we first define the notion of

a quasiconvex subgroup. Quasiconvexity is ubiquitous in geometric theory, and some

further information can be found for example in [Gro87, BH99]. We will now turn to

the Cayley graph.

Definition 3.6.3 (Cayley Graph). Let G be a finitely generated group and let A ⊆ G

be a finite generating set. The Cayley graph Γ = Γ(G,A) of G with respect to A is

a graph Γ with vertex set V (Γ) = G. We declare that (g, h) ∈ E(Γ) is an edge of Γ

if and only if there is an a ∈ A such that g = ah.

The Cayley graph of a group has a graph has a metric d on it, known as the word

metric. For each x, y ∈ G, d(x, y) is the infimum over all lengths of paths from x to

y. This is a well defined nonnegative integer since S is a generating set, so there is

some path from x to y. That d is a metric on G is trivial to verify. Furthermore, we

can even extend this metric to the entire Cayley graph by considering edges to be

copies of [0, 1].

Definition 3.6.4 (Quasiconvex Subgroup). We call a subgroup H ≤ G quasiconvex

if there is an integer K > 0 such that for each x, y ∈ H, the geodesic connecting x

and y is in the neighbourhood

NK(H) = {g ∈ G : d(g, h) < K for some h ∈ H}.

We now state the definition of groups having quasiconvex hierarchy as in [Wis],

which is the smallest class of groups satisfying

18



3.7 From VH-Complex To Residually Finite Jason Polák

1. {e} ∈ QCH

2. QCH is closed under amalgamated free products by quasi-isometrically embed-

ded finitely generated subgroups.

3. QCH is closed under HNN extensions by quasi-isometrically embedded finitely

generated subgroups.

If A is a group, then taking an HNN extension along the trivial group gives the free

product A ∗ Z, so that in particular finitely generated free groups belong to QCH.

3.7 From VH-Complex To Residually Finite

Given a finitely presented group G whose 2-complex X has a nonpositively-curved

VH-structure, we can apply Lemma 3.5.1 to split G as a graph of free groups. We

then split each free group trivially, which shows that G has a length-2 hierarchy.

We require the edge groups to be finitely generated whenever we are almagamating

or taking an HNN extension along a quasiconvex subgroup. Recall that the edge

groups are just the product of a finite graph with an interval, so they are finitely

generated whenever the graph is finite. These edge graphs will always be finite when

our complex is compact. Note that this argument also applies to the vertex groups,

which are also finitely generated, as they are just the fundamental group of compact

graphs.

We still need that the edge groups are quasiconvex, so that the free groups will be

amalgamated along finitely generated quasiconvex subgroups. We give the details in

the next few paragraphs, assuming some basic covering space theory from algebraic

topology, as can be found in [Hat02]. In order to do this, we start with the well-known

Švarc-Milnor lemma, a fairly detailed proof of which can be found in [ECH+92].

Lemma 3.7.1 (Švarc-Milnor Lemma). If G acts properly and cocompactly by isome-

tries on a proper geodesic metric space X, then G is finitely generated and for each

x ∈ X, the map f : G→ X given by f(g) = gx is a quasi-isometry.
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Recall that a proper metric space is one whose finite closed balls are compact.

Given a nonpositively curved square complex, its universal covering space admits a

metric, the CAT(0) metric [Wis], in which each cube has the induced metric from

Euclidean space.

If we now consider the edge space, we can consider a loop H that generates

it, which will be a hyperplane or dual curve. Sageev showed in [Sag95] that this

hyperplane will be convex in the universal cover X̂ of X. This universal cover is a

proper metric space, so if we want to apply Švarc-Milnor to show that G is quasi-

isometric to X, we need to prove that it acts properly and cocompactly. That the

action is proper follows from standard covering space theory. Cocompact means that

X̂/G is compact. Since X̂/G ∼= X and X is compact, cocompactness also follows.

Thus G is quasi-isometric to X̂. It should be fairly clear that here we consider

G as a metric space as it is identified with its Cayley graph. Note that we never

mentioned an explicit generating set for the Cayley graph, but it turn out that a

quasi-isometric embedding is independent of the generating set chosen [BH99].

Furthermore, we have a quasi-isometry G→ X̂ for each x ∈ X given by the map

g 7→ gx, so we can choose x = h ∈ H. Now our edge group GH is just the stabilizer

of H in X̂, and we can restrict the map G → X̂ to GH → H because GH stabilizes

H. We have a commutative square of metric spaces:

H // X

GH
//

OO

G

OO

We will be done if we can show that the map GH → H is a quasi-isometry. By

Švarc-Milnor lemma, it suffices to show that GH acts properly and cocompactly on

H. The action is cocompact because the original hyperplane is compact in X and

the action is proper, since its just the restriction of the action of G on X̂, which is

proper. Thus GH → H is a quasi-isometric embedding. Thus the edge groups are

quasiconvex in the vertex groups.

We now use the following two theorems (see also [Wis09] for a summary).
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Theorem 3.7.2 ([Wis]). If G is hyperbolic with a quasiconvex hierarchy, then G is the

fundamental group of a compact virtually special nonpositively curved cube complex.

Theorem 3.7.3 ([HW08]). Let B be a compact connected cube complex. If B is

virtually special, then π1(B) is linear.

Recall that a group H is linear if there is a monomorphism H ↪→ GLn(k) for some

integer n ≥ 1 and some field k. By a classical theorem of Mal’cev [Mal40], every

finitely generated linear group is residually finite.

Remark 3.7.4. As previously mentioned, cube complex is just the natural analogue

of the square complex in higher dimensions. We shall very briefly sketch a few of

the ideas behind these two theorems which were prove by Haglund and Wise in

[HW08]. Special cube complexes were found to have the unexpected property that

their fundamental groups embed into right angled Artin groups or right angled Coxeter

groups. Actually Haglund and Wise define two types of special cube complexes,

corresponding to each case.

If B is virtually special and compact, we can find a finite cover B′ whose funda-

mental group is a subgroup of a right-angled Coxeter group, which is known to be

linear since B is compact. Finally, since B′ is a finite cover, π1(B
′) has finite index

in π1(B), so that π1(B) is also linear.

Hence we have the corollary that completes our investigation.

Corollary 3.7.5. If G is a finitely presented hyperbolic group whose standard 2-

complex has a nonpositively curved VH-structure then G is residually finite.

Theorem 3.1.4 tells us that we need only check the C ′(1
6
) condition to check

hyperbolicity, which is what we shall use in practice.
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4 Results: From Group to VH Complex to Resid-

ually Finite

4.1 Some Discussion

In Section 3, we have observed that if a finitely presented group G has a nonpositively

curved VH structure and G is hyperbolic, then G is residually finite. That is, each

nonpositively curved hyperbolic PVH is residually finite. Given a finitely presented

group without any additional data, we still need to find a VH structure on it. In

other words, in order to apply the observations of the previous section, we need to

prove that G is actually in PVH. In Section 4.2 we give a constructive procedure to

give a VH structure on a 2-complex satisfying the so-called triangle inequality, and

finally in Section 4.3 we show with a few figures how these methods work for the

groups introduced by Leary in his preprint [Lea10].

4.2 Main Result: Conditions for a Tiling

In an arbitrary square complex S, each square has two associated dual curves. These

are the 1-cells that connect the two 0-cells resulting from the barycentric subdivision

of opposite sides of a square. A hyperplane is an immersion h : [0, n] → S for some

n such that consecutive 0-cells are mapped to barycentric vertices on opposite sides

of the same square and two consecutive images (n − 1, n) and (n, n + 1) lie in the

interiors different squares.

By abuse of language, we shall refer to the hyperplane in S as the map h, so

that h will denote the map and the set h([0, n]). Under mild assumptions that we

shall describe below, a maximal hyperplane will be such that S − h consists of two

connected components. In such cases, it is natural to introduce a wallspace.

Definition 4.2.1. Let S be a set. A wallspace on S is a collection of pairs {(Pi, Qi)}i∈I

of subsets of S for some index set I such that each pair is a partition of S. We call

the pairs walls.
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A relevant example is a wallspace on D = [0, 1]2 with each wall (Pi, Qi) being

defined by a smooth 1-cell h connecting two distinct 0-cells on the boundary ∂D.

In this case, S − h consists of two connected components C1 and C2, and we set

Pi = C1 and Qi = C2∪h. We shall call such wallspaces smooth. Usually when drawn,

a wallspace is represented by such lines, although the general definition admits all

sorts of bizarre examples which we shall happily dismiss. In this case, we shall refer

to the wall by abuse of language as h itself and we say two walls intersect if their

corresponding curves intersect.

In such smooth examples, the curves defining our wallspace naturally give a 2-

complex, and for our purposes we will only consider examples in which the wallspace

gives us a square complex.

Definition 4.2.2. Let S be a 2-complex. The dual complex to S, denoted by S∗, is

the complex defined as follows. S∗ has exactly one 0-cell for each 2-cell of S. Two

0-cells of S∗ are connected if and only if their corresponding squares in S are adjacent.

Finally, any 1-skeleton of a square in S∗ bounds a 2-cell.

Remark 4.2.3. Although we shall consider only 2-complexes S such that S∗ is a

square complex, S itself may not be a square complex. For instance, the large 2-

cell in Figure 3 is a hexagon. Our application of the dual complex construction will

be to a 2-complex, some of whose cells represent walls. We introduce the concept

of a wallspace because it has a natural generalisation to higher dimensional cube

complexes, and in this setting the dual complex is known as Sageev’s construction

[Sag95].

Let C be a 2-cell. We can obtain VH-structure of C by constructing dual curves

or a wallspace that corresponds to the VH complex. If our wallspace satisfies certain

axioms which will be listed later, then the dual complex with be a VH-complex.

Please see Figure 3 for an example of this, which also illustrates the dual complex

construction.

We shall now describe explicitly which conditions we need on a wallspace in order

for the dual construction to give us a VH-complex.
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Figure 3: From wallspace to VH-complex. In the left hexagon, a dual square is shown by
the larger dotted line. On the right, the dual VH-complex has been constructed.

Proposition 4.2.4. Suppose that P is a polygon with sides S1, . . . , Sk and that each

side Sk is subdivided p(k) times. Suppose that the sides are classified as either hor-

izontal or vertical, and that there is a wallspace whose lines pair either horizontal

edges or vertical edges, in which case we call the walls horizontal or vertical respec-

tively. If no two walls of the same type intersect and no side contains the endpoints

of the same wall, then the dual complex P ∗ is a VH-complex.

Proof. Consider a vertex x ∈ P ∗. It corresponds to a 2-cell in P , whose boundary

in P consists of alternating horizontal and vertical 1-cells. If these 1-cells were not

alternating, then we would have two walls of the same type intersecting, which is

excluded by hypothesis.

Furthermore, each vertex in P is the intersection of at most two walls, for otherwise

we would again have walls of the same type intersecting. Hence any 1-cell starting

at x is the side of a square, so P ∗ is a square complex. Furthermore, since the walls

are already divided into horizontal and vertical types, and the only intersections are

between horizontal and vertical walls, P ∗ is also a VH complex. �

Recall that we would like to give a VH-structure for the standard 2-complex of a

finitely-presented group. Thus we would like to give each 2-cell corresponding to a
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relator a VH-structure. Thus we consider each 2-cell a polygon P and we subdivide

the sides in order to construct a wallspace on P . Finally we use the dual construction

to obtain the dual P ∗, which will be a VH structure. Notice that P ∗ will still clearly

correspond to the original P whose sides have been subdivided.

Here, the sides of P will correspond to subwords of the relator and each side of P

will be classified as either horizontal or vertical. Finally, we subdivide the sides of P

into edges so that we can match edges of the same class by walls.

For the second step, we are thus led to a matching problem. In the sequel a

polygon is a one-dimensional simplicial complex homeomorphic to a circle, and a

edge of such a polygon is any 1-simplex.

Definition 4.2.5. Let P be a polygon and let E1, . . . , Ek be distinct sides of P .

Suppose each edge Ei is subdivided into ni edges. An admissible pairing of these is

an equivalence relation ∼ on the subdivided edges such that:

1. If u ∼ v, u ∈ Ei and v ∈ Ej then i 6= j.

2. If u ∼ v and w ∼ x, then w and x lie in the same connected component of

P − u ∪ v.

3. Each equivalence class has two members.

Suppose the sides of a polygon are divided into two classes H1, . . . , Hm and

V1, . . . , Vn, which we shall call horizontal and vertical respectively, and there is a

subdivision of these edges so that there is an admissible pairing of the horizontals

and an admissible pairing of the verticals. If we construct the dual complex to both

pairings considered together, then by Proposition 4.2.4 we get a VH-structure on this

polygon.

Theorem 4.2.6. Suppose that E1, . . . , Ek are sides of a polygon, and |Ei| = ni. If∑
ni is even, then there exists an admissible pairing of these vertices if and only if

for each i, we have the triangle inequality

ni ≤
∑
j 6=i

nj. (2)
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Proof. Suppose that E1, . . . , Ek are ordered clockwise around the polygon.

We construct the admissible pairing via steps, each step pairing two edges. Each

step will consist of choosing Ei with |Ei| maximal, and take an unpaired v ∈ Ei such

that v is closest to another Ej with i 6= j. We then pair v with the nearest edge not

in Ei. We continue until all edges can be paired, and we contend that if the triangle

inequality holds, then all edges will be paired. Please see Figure 4 for an example of

the first three steps of such a procedure.

E1 E2

E3

Figure 4: A hexagon, with three sides E1, E2 and E3 chosen for pairing. The sides are
subdivided, and the number of edges in each side satisfies the triangle inequality. The
procedure for pairing is shown, with the dotted line showing the current pairing.

By convexity considerations, if we manage a pairing that satisfies (1) and (3), it

will also be admissible. Suppose we represent the number of unpaired edges in each

step of this pairing by an ordered vector so that before any edges are paired, our

vector is (n1, . . . , nk). Using our pairing strategy, each step will consist of subtracting

1 from two components, one component being maximal. We shorten the vector by

dropping zero entries whenever they appear.

It thus suffices to prove that any vector (n1, . . . , nk) can be completely reduced to

the zero vector if and only if the triangle inequality in Equation (2) holds. Suppose

that there is an admissible pairing. If the triangle inequality does not hold, then

there exists an i such that ni >
∑

j 6=i nj. But each vertex in Vi must be paired with a

vertex outside of Vi, and this is obviously impossible with this violation of the triangle

inequality.

Now suppose the triangle inequality holds. If ni = 1 for all i, then there is an

admissible pairing since
∑
ni is even.
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Otherwise, choose an i such that ni ≥ nj for each j. Subtract one from ni and an

adjacent component. We claim that the triangle inequality holds on the new vector,

and for simplicity we write this new vector as (n1, . . . , ni−1 − 1, ni − 1, . . . , np).

Indeed, if ni > nj for each j 6= i then the triangle inequality holds. If there is

more than one maximum then ni = nj for some j. In this case, we cannot have just

ni − 1 and nj left in the new vector, for otherwise before applying the reduction we

would have an odd number of edges left unpaired. So the only possibilities are ni− 1

and nj − 1 left in the vector, or ni − 1, nj and some other nonzero entry, in which

case the triangle inequality still holds.

Since the triangle inequality holds after each step, there are always sufficiently

many edges to be paired, and so there is an admissible pairing. �

Remark 4.2.7. An admissible pairing of a polygon with sides E1, . . . , Ek correspond

naturally to a tree considered as a disc diagram. Given such a subdivision of each

edge Ei of P into ni edges, if the triangle inequality holds then there is a tree T with

∂T corresponding to the polygon. The length of the side of T corresponding to Ei is

|Ei|.

Suppose now that each 2-cell corresponding to a relator is given such a VH-

structure. Of course, the subdivisions for each 2-cell should be consistent so that the

quotient map is combinatorial. We still do not necessarily have a nonpositively curved

VH-structure on our 2-complex, even though each 2-cell does have a nonpositively

curved VH-structure. It may happen that in the gluing process, some vertices will

have a small link.

This can only happen with the 0-cells on the boundary of each 2-cell. Consider

each 2-cell as a polygon P . If some 0-cell is on the interior of a side of the polygon,

then it cannot have a bad link, since it already has two squares sharing the same

1-cell in P . But since the subdivisions were consistent across 2-cells, the same 0-cell

in the quotient will have this same property in any other 2-cell, showing that a bad

link can not occur at this 0-cell.

Thus the only possibility for a bad link are links of 0-cells on the corner of two

meeting sides. In this case, a bad link will occur if such a corner is paired with another
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corner in the gluing. In other words, our VH-complex will be nonpositively curved if

and only if there are no repeated corners. Since our complex only has finitely many

corners, we can verify easily whether such a complex is nonpositively curved. This

prompts the following definition.

Definition 4.2.8 (Polygonal VH). We call a group G a polygonal VH group or

PVH group if G is the fundamental group of a complex X made up of polygons

glued together, each with a VH structure. Furthermore, if E1, . . . , En are the sides of

any one of these polygons, then |Ei| ≤
∑

j 6=i |Ej|. If X is nonpositively curved, then

we call G a nonpositively curved PVH group.

Any PVH group is finitely presented since there are a finite number of polygons

and a finite number of sides on each polygon. In this terminology, Corollary 3.7.5

can be rephrased by saying that any hyperbolic nonpositively curved PVH group

is residually finite. Given a VH complex constructed out of polygons, the C ′(1
6
)

condition can easily be verified by writing down the associated presentation, which

can in turn be easily derived by ignoring the VH structure and considering each

polygon as a 2-cell.

4.3 Examples and Explicit Calculations

There are two examples from Leary’s paper [Lea10] that we shall consider. The first

example is the group

〈a, b, c, d, e, f | abcdef, ab−1c2f−1e2d−1, a2fc2bed

ad−2cb−2ef−1, ad2cf 2eb2, af−2cd−1eb−2〉.

Leary proved that this group is nontrivial, torsion free, and acyclic, and asked whether

it is also residually finite.

If we consider each relator to be a polygon whose sides are given by powers of

generators, then this presentation satisfies the triangle inequality, so we can apply

Lemma 4.2.6 and obtain a VH-structure on this complex. Checking that there are no

repeated corners, we get nonpositive curvature. Furthermore, this group is obviously
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C ′(1
6
), for any piece in the above relators is at most one generator. Hence this group

is hyperbolic, and so we can apply Corollary 3.7.5 and deduce that this group is

residually finite.

We shall now illustrate the algorithm as described in the proof of Lemma 4.2.6

on one of the relators of this group. We first need to arbitrarily decide which of the

generators will be horizontal and which will be vertical. Here we shall decide that the

vertical generators will be V = {a, c, e} and the horizontal ones will be H = {b, d, f}.
Each relator now corresponds to a polygon whose sides are maximal adjacent

vertical sets of generators or maximal adjacent horizontal sets. Consider the second

relator ab−1c2f−1e2d−1 for instance. One vertical side of its polygon is c2. As in the

terminology of the Lemma 4.2.6, we would like to pair edges of the sides according

the rules we have defined. As it stands, the pairing is not possible, so we need to

subdivide the sides of the polygon. If we subdivide each 1-cell corresponding to a

generator once, we get a polygon as in Figure 5.

a
b

c

c

f
e

e
d

a
b

c

c

f

e
d

subdivision
e

vertical wall

horizontal wall

dual 0-cell

subdivision cell

Figure 5: The first few steps to tiling the second relator in Leary’s example. Consider the
polygon on the left. As in the legend, the annuli represent one subdivision of each 1-cell
corresponding to a relator. The polygon on the right is the wallspace constructed from
the algorithm in Lemma 4.2.6. The stars represented the dual 0-cells that will be the new
0-cells of the VH-structure on our relator.

Note that the subdivision should be made in reference to the generators once

and for all, so that the subdivisions are consistent across relators. We are, after all,

attempting to add a VH-structure to the entire 2-complex. We now have side lengths
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for the vertical sides to be 2, 4 and 4, and for the horizontal, 2, 2 and 2. These satisfy

the triangle inequality, so the algorithm will work.

The next step is to use the matching algorithm to match horizontal edges with

other horizontal edges not on the same side, and the same with vertical edges. This

is also shown in the figure. We then apply the dual complex construction as in Figure

6 to get the desired VH-structure.

a
b

c

c

f

e
d

e

a
b

c

c

f

e
d

e

Figure 6: We now connect the dual 0-cells (the stars) by an edge if and only if their
corresponding 2-cells in the original polygon are adjacent. We get a new polygon on the
right, which happens to be a tiling of the old one!

The second example with which Leary is concerned is a group defined as follows.

We let n = 4, and for each i ∈ Z/nZ we define the two words Ai = aiai+2a
−2
i a−1

i+2ai

and Bi = bibi+2b
−2
i b−1

i+2bi and the eight words given by aiAiBiAi+1BiAi+2BiAi+3Bi

and biBiA
−1
i BiA

−1
i+1BiA

−1
i+2BiAi+3. Again, by inspection this group is C ′(1

6
) and these

relators also satisfy the triangle inequality by grouping the relators with a has hor-

izontals for instance. It takes a bit longer, but by looking at this presentation for

repeated corners shows that there are none.

Remark 4.3.1. Some care must be used in selecting the horizontal and vertical gener-

ators. Since not all possibilities will give the triangle inequality condition, regardless

of the number of subdivisions on each side. However, since this technique only applies
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to finitely presented groups, one only has to check a finite number of cases to find

the good cases, if any.
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5 Concluding Remarks

We shall briefly indicate possible future directions of this type of work with a minimum

of technical detail.

In Section 3.7 we stated Theorem 3.7.2 from [Wis] that allowed us to eventually

deduce the residual finiteness of a hyperbolic nonpositively curved PVH group. Al-

though Theorem 3.7.2 is impressive, it relies on hundreds of pages of heavy machinery.

It would be nice to have an alternative proof of this without relying on Theorem 3.7.2.

Another interesting idea is suggested in [Wis03], which gives the following theo-

rem.

Theorem 5.0.2. Suppose G splits as a finite graph of finitely generated free groups.

If each edge group incident at each vertex group is malnormal, then G is residually

finite.

A subgroup H ≤ G is called malnormal if for each g 6∈ H, we have gHg−1 ∩H =

{1}—sort of an opposite condition to normality. According to [Wis01], one can verify

malnormality by examining the attaching map f : E → V where E is an edge space

and V is a vertex space—in this case by abuse of notation we consider E as the graph

before taking its product with [0, 1]. We then take the inverse limit of the diagram

E → V ← E, which in concrete terms is the graph fiber product.

This inverse limit can be described as a graph whose vertices are pairs (e1, e2) ∈ E2

such that f(e1) = f(e2), and such that (e1, e2) and (d1, d2) are connected by an edge

if and only if f(e1) and f(d1) are connected in V . One can verify that this fiber

product with the obvious maps has the usual universal mapping property.

The diagonal component of the fiber product are pairs (e, e) for all e ∈ E, and

all such edges incident to these vertices. It turns out that the subgroup given by the

edge space is malnormal with respect to an incident vertex space if the fiber product

without the diagonal component is a disjoint union of trees, also known as a forest.

If Leary’s groups had turned out to have this property once tiled, then this would

be a nice lighter alternative to our approach here. I wrote a small computer program

to calculate this fiber product, but the result for Leary’s first group, at least under

one tiling, was not a forest.
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It would be interesting to determine conditions on a presentation, or a tiling,

which would indicate malnormality.
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