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ABSTRACT

In this thesis, we prove unconditional lower bounds on resources needed to com-
pute explicit functions in the following three models of computation: coﬁstant-depth
boolean circuits., multivariate polynomials over commutative rings and the ‘Number
on the Forehead’ model of multiparty communication. Apart from using tools from
diverse areas, we exploit the rich interplay between these models to make progress
on questions arising in the study of each of them.

Boolean circuits are natural computing devices and are ubiquitous .in the mod-
ern electronic age. We study the limitation of this model when the depth of circuits
is fixed, independent of the length of the input. The power of such constant-depth
circuits using gates computing modular counting functions remains undetermined,
despite intensive efforts for nearly twenty years. We make progress on two fronts:
let m be a number having r distinct prime factors none of which divides £. We
first show that constant depth circuits employing AND/OR/MOD,, gates cannot
compute efficiently the MAJORITY and MOD, function on n bits if ‘few’ MODm
gates are allowed, i.e. they need size n®: (g™ if s MOD,,, gates are allowed in
the circuit. Second, we analyze circuits that comprise only MOD,,, gates. We show
that in sub-linear size (and arbitrary depth), they cannot compute AND of n bits.
Further, we establish that in that size they can only very poorly approximate MOD,.

Our first result on circuits is derived by introducing a novel notion of compu-
tation of boolean functions by polynomials. The study of degree as a resource in

polynomial representation of boolean functions is of much independent interest. Our



notion, called the weak generalized representation, generalizes all previously stud-
ied notions of computation by polynémials over finite commutative rings. We prove
that over the ring Z,,, polynomials need Q(logn)/"~1) degree to represent, in our
sense, simple functions like MAJORITY and MOD,. Using ideas from arguments
in communication complexity, we simplify and strengthen the breakthrough work of
Bourgain showing that functions computed by o(log n)-degree polynomials over Z,,
do not even correlate well with MOD,.

Finally, we study the ‘Number on the Forehead’ model of multiparty communi-
cation that was introduced by Chandra, Furst and Lipton {CFL83]. We obtain fresh
insight into this model by studying the class CCj of languages that have constant
k-party deterministic communication complexity under every possible partition of
input bits among parties. This study is motivated by Szegedy’s [Sze93| sufprising
result that languages in CC; can all be extremely efficiently recognized by very shal-
low boolean circuits. In contrast, we show that even CCs contains languages of
arbitrarily large circuit complexity. On the other hand, we show that the advan-
tage of multiple players over two players is significantly curtailed for computing two
simple classes of languages: languages that have a neutral letter and those that are
symmetric.

Extending the recent breakthrough works of Sherstov [She07, She08b] for two-
party communication, we prove strong lower bounds on multiparty communication
complexity of functions. First, we obtain a bound of n®®) on the k-party random-
ized communication complexity of a function that is computable by constant-depth

circuits using AND/OR gates, when k is a constant. The bound holds as long as
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protocols are required to have better than inverse exponential (i.e. 2“”°'(1)) advantage
over random guessing. This is strong enough to yield lower bounds on the size of
an important class of depth-three circuits: circuits having a MAJORITY gate at its
output, a middle layer of gates computing arbitrary symmetric functions and a base
layer of arbitrary gates of restricted fan-in.

Second, we obtain n®1) lower bounds on the k-party randomized (bounded er-
ror) communication complexity of the Disjointness function. This resolves a major .
open question in multiparty communication complexity with applications to proof
complexity. Our techniques in obtaining the last two bounds, exploit connections
between representation by polynomials over reals of a boolean function and commu-

nication complexity of a closely related function.

vii



ABREGE

Nous cherchons dans cette thése a établir des bornes inférieures sur la quantité
de ressources de calcul nécessaires au calcul de certaines fonctions explicites. Cette
étude est centrée sur trois modéles importants: les circuits booléens de profondeur
bornée, les polynémes multivariés dans des anneaux commutatifs et le modéle de
complexité de communication & plusieurs joueurs appelé “modéle de données sur le
front”. Pour avancer sur ces questions, nous utilisons une variété d’outils mathéma-
tiques mais exploitons aussi les riéhes interactions entre 1’étude de ces trois modéles.

Les circuits booléens sont des engins de calcul trés naturels et sont omniprésents
dans I’ére technologique. Nous étudions les limites de tels circuits lorsque leur pro-
fondeur est bornée par une constante ne dépendant pas de la longueur des données.
Malgré vingt ans de recherche sur le sujet, leur puissance dans ce cas est encore trés
mal comprise lorsque les portes composant les circuits calculent des sommes mod-
ulo un entier. Nous progressons sur deux fronts. Nous considérons d’abord que les
circuits de profondeur bornée employant des portes ET/OU/MOD,,. Nous montrons
qu’ils ne peuvent calculer efficacement les fonctions MAJORITE et MOD, (pour £ et m
co-premiers) lorsque le nombre de portes MOD,, est limité. D’autre part, nous con-
sidérons les circuits ne contenant que des portes MOD,, et prouvons qu’un tel circuit
ne peut calculer la fonction ET sur n bits lorsque sa taille est o(n) et ce, peut-importe
sa profondeur. Nous montrons méme que ces circuits ne peuvent calculer que des
approximations trés pauvres de la fonction MODy.

Notre premier résultat sur les circuits est basé sur une nouvelle notion de calcul
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d’une fonction par des polynémes. Dans ce type d’étude, -le degré des polynémes est
vu comme une ressource de calcul & minimiser. Notre notion de représentation faible
généralisée étend toutes les notions précédentes de représentations par des polyndmes
sur 'anneau commutatif Z,,. Nous montrons que, dans ce nouveau cadre, les fonc-
tions MAJORITE et MOD, ne peuvent étre représentées par des polynémes de petit
degré. Par ailleurs, nous utilisons des idées vénant de la complexité de commu-
nication pour simpliﬁer et renforcer les percées de Bourgain qui a montré que les
polynomes de Z,, de degré o(logn) n’ont qu’une faible corrélation avec la fonction
MOD;.

Finalement, nous étudions le modéle de communication multipartie “données
sur le front” proposé par Chandra, Furst et Lipton [CFL83]. Nous tentons de mieux
comprendre la nature du modéle en considérant la classe CCy, des langages de com-
plexité bornée dans le modéle déterministe et “pire partition” pour k joueurs. Ces
travaux sont motivés par les résultats surprenants de Szegedy [Sze93] qui montrent
en particulier que les langages de CC, peuvent tous étre reconnus efficacement par
des circuits booléens de trés petite profondeur. Nous montrons qu’a ’opposé, il existe
des langages de CC; qﬁi ont une complexité de circuit arbitraire. Cependant, nous
prouvons aussi que 1’avantage des joueurs multiples est grandement limité lorsque le
langage & reconnaitre est symmétriques ou muni d’une lettre neutre.

En généralisant les résultats récents et novateurs de Shershtov [She07, She08D)]
sur le modeéle & deux joueurs, nous obtenons de fortes bornes inférieures sur la com-
plexité de communication pour k joueurs de fonctions explicites. Pour toute con-

stante k, nous établissons d’abord une borne de n®*V) sur la complexité de protocoles
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randomisés pour k joueurs, calculant une fonction calculé par des circuits ET/OU
de taille polynomiale et de profondeur constante. Cette borne reste valide pour
tout protocole dont I'avantage par rapport & une réponse aléatoire est supérieure a
Vinverse d’une fonction exponentielle (i.e. 27""). Le résultat est suffisamment fort
pour obtenir des bornes inférieures sur la taille d’une classe importante de circuits,
soit ceux formés d’une porte MAJORITE en sortie, d’'un niveau intermédiaire formé
de portes calculant une fonction symmeétrique arbitraire et d’un niveau de base ou
Pentrance des portes utilisées est bornée.

De plus, nous obtenons une borne inférieure de n*® sur la complexité 4 k joueurs
b

Qa
des protocoles randomisés (avec erreur bornée) pour la fonction DISJOINTNESS. Cette
borne résoud une question trés importante qui a des applications nombreuses, en-
tre autre dans le domaine de la complexité des preuves. Nos résulats exploitent les

liens entre les représentations de fonctions booléennes par des polynémes réels et la

complexité de communication de fonctions qui leur sont intimement liées.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . .. .. . ... . ... .. . . ... ii
ABSTRACT . . . . e e v
ABREGE . . . . . . viii
LIST OF FIGURES . . . . . . . . . . . et Xiv
1 Imtroduction . . . . . . .. .. . . ... 1
1.1 Origins of the Theory of Computation. . . . . . ... ... .... 1

1.2 The Theory of Lower Bounds . . .. ... ............. 4

1.3 Boolean Circuits. . . . . . . . ... .. .. .. .. ... ... 6
1.3.1 Circuits of Constant Depth . . . . . ... .. e 10

1.4  Polynomialsover Rings . . . . ... ... ... .. ........ .. 14

1.5 ‘Number on the Forehead’ Model of Communication . . . . . . . . 15

1.6  Our Contributions. . . . . .. ... .. ... ... ......... 19

2 Background for Boolean Circuits . . . . .. ... ... .......... 25
2.1 Boolean Circuits. . . . . . . . . ... ... 25
2.1.1 Circuits of Constant Depth . . . . . ... .. ........ 28

2.1.2 Modular and Threshold Counting gates . . . ... ... .. 35

2.1.3 Polynomials and the Case of Prime Modulus . . . ... .. 38

2.1.4 The Weakness of a Single MAJ Gate. . . . . ... ... .. 48

3  Lower Bounds for Circuits with Modular Gates . . . ... ... .. ... 53
3.1  Circuits with Few Modular Gates . . . . . . B 57
3.1.1 Preliminaries of Polynomial Representation . . . . . .. .. 57

3.1.2 Weak Generalized Representation . . . .. ... ... ... 61

3.1.3 Application to Circuits . . . . ... ... ... ....... 71

3.2  Circuits with Only Modular Gates . . . . . ... ... ... .... 76
3.2.1 Fourier Analysis over Abelian Groups . . . . ... ... .. 79

xi



3.2.2 Davenport constant . . . . ... .. ... ... .. ..... 85

3.2.3 Towards large support . . . . . . . ... ... ... .. 87

3.24 Uniformity . . . ... ... .. ... ... ... .. ..., 89

3.2.5 Lower Bounds for CC® . . .. .. ... .. ......... 92

33 Conclusion . . . .. ... ... ... ... . e 95

Multiparty Communication with Input on the Forehead . . . . . . . . .. 97

41 TwoPlayer Games . . .. ... ... ... ... ... . ...... 97

4.1.1 Lower Bound Techniques for Deterministic Protocols . . . . 101

4.1.2 Lower Bounds for Randomized Protocols . . ... ... .. 103

4.2  Number/Input in the Forehead model . . . . . . . ... ... ... 108

4.3  Stars and Cylinders Intersections . . . . .. ... .. ... .... 114

4.3.1 Discrepancy of Cylinder Intersections . . . ... ... ... 118

4.4  Communication Complexity Classes . . . . . .. ... ... .... 119

Languages with Bounded Symmetric Multiparty Communication Com-

plexity . . . . . . L 121

5.1 Introduction . . . . .. ... ... ... ... 121
5.2 Functions with bounded multiparty complexity but high time/space

complexity . .. ... ... .. ....... e e e 123

5.3  Two Special Classes of Languages . . . . . ... ... ....... 128

5.3.1 A Primer on Ramsey Theory . . . . . ... ... ... ... 129

5.3.2 Communication Complexity of Partition. . . . . . . . . .. 132

5.3.3 Languages with a Neutral Letter . . . . . . ... ... ... 134

5.3.4 Symmetric Functions . . . ... ... ... ... ...... 136

5.4  Consequences and Conclusion . . . . ... .. .. ......... 142

Communication Complexity of Functionsin AC®. . . . . ... ... ... 144

6.0.1 Our Approach and Organization . . . . ... ... ... .. 147

6.1  Preliminaries . ... .. .. ... ... ... . . 150

6.1.1 Voting and Approximation Degree . . . . . ... . ... .. 150

6.1.2 Discrepancy under Product Distributions . . . . . . . ... 155

6.2  Generating functions with low discrepancy . . . ... .. ... .. 159

6.2.1 Masking Schemes . . . ... ... ... ... ... 159

6.2.2 Orthogonality and Discrepancy . . . . . . . ... ... ... 160

6.2.3 Proofsof Claims . . . . .. .. .. ... ... ........ 164

6.3  Masking functions of high voting degree . . . . . . . . ... .. .. 166

xii



6.4 Communication complexity of functions in AC® . .. .. ... .. 168

6.5 The Generalized Discrepancy Method . . . . . .. .. .. ... .. 170
6.5.1 Applications to Disjointness . . . . .. ... ... ..... 174

6.5.2 Other Symmetric Functions . . . . . .. ... ... ... .. 178

6.6  Lower Bounds by Block-Composition . ... ... ... ....... 181
6.6.1 Hardness Amplification . . . ... ... .. ... ...... 182

6.6.2 Application to Disjointness . . . . . .. ... ... ..... 188

6.7 Conclusion . . .. ... ... oo o oo 190

7 Some Consequences for Depth-Three Circuits . . . . .. ... ... ... 193
7.1  Simulating AC® by Depth-Three Circuits . . . . ... ... .... 197

7.2 From Communication to Circuits . . ... ... ... .. ..... 198

7.3  Polynomial Discrepancy . . . ... ... ... ........... 200

8 Conclusion. . . . .. ... . .. ... 208
References . . . . . .. .. e e e e e 214

xiii



LIST OF FIGURES
Figure page

1-1 A circuit of size 5 and depth 2 computing PARITY of 3 bits . . . . . 8

6-1 Illustration of the masking scheme x «— S;,S;. The parameters are
=3 m=3n=27. . . . . . e 160

xiv



CHAPTER 1
Introduction

1.1 Origins of the Theory of Computation

Every reasonable curriculum in elementary school is replete with tricks to “com-
pute’;. Starting with skills to perform arithmetic operations like addition, multipli-
cation, division in primary school, through taking square-roots of numbers (up to a
required precision) and solving quadratic equations in middle school, kids move on to
learn performing much more sophisticéted computational tasks like differentiating or
integrating whole functions. Indeed, many peéple like to measure a child’s progress
in school by testing how quickly he/she can perform such tasks. In light of this, it
may seem surprising that it took until the beginning of the last century for someone
to ask the right fmestion that made people realize that, something as fundamental
as computation had gone unformalized!

In 1900, David Hilbert posed the following problem! to the leading figures of
the period in mathematics : Is there a finitary procedure to determine if a given
multivariate polynomial with integral coeffcients has an integral solution? Hilbert,
as the legend goes, was expecting a positive answer. In retrospect now, one may

well say that ‘fortunately’ the answer was ‘no’. Had the answer been ‘yes’ and

! Tt featured as the tenth problem in Hilbert’s list of twenty three problems.



had someone discovered such a procedure, arguably that would have delayed the
beginning of the inevitable ‘Theory of Computation’.

Hilbert’s question led Turing, more than thirty five years later, to provide a
satisfactory model of corhputation now known as the Turing machine. The Turing
machine remains the universal model of computation as we understand today. Ev-
erything that can be done by a real computer or any other known devices? can be
‘reasonably efficiently’ performed on a Turing machine. A procedure running on a
Turing machine is called an algorithm. On the other hand, Turing’s work led to
such remarkable conclusions as that not every task has an algorithm that halts on
all inputs. Using this result about Turing machines, in 1972, Matiassevich resolved
Hilbert’s tenth problem in the negative, building upon the earlier breakthrough work
of Davis, Putnam and Robinson.

While Turing’s work and Hilbert’s problem were motivated from foundational
questions of mathematical logic, the notion of ‘efficient computation’ is easily moti-
vated from more mundane affairs. Many salesmen have wondered how to chalk out
an itinerary such that they touch upon every city precisely once and return to their
starting point. Modern network designers are routinely confronted with the problem
of determining an optimal cost network with a given redundancy. Secretaries have
a hard time scheduling a time table meeting everyone’s demands. Indeed, life would

have been much more pleasant if several such tasks from different spheres of activity

2 Strictly speaking, devices whose operations are limited by the classical laws of
physics.



had efficient algorithms. Unfortunately, all these tasks seem intractably difficult in
the sense that every known algorithm for them runs for very long before they output
a solution. In particular, the nufnber of steps that the algorithm executes before
giving the correct answer tends to grow exponentially with the size of the input,
measured in any reasonable sense.

One of the basic goals of computer science and the guiding theme of Com-
putational Complexity is to classify algorithmic problems into complezity classes
éccording to the amount of minimum resources needed to solve them in a given com-
putational model. The most powerful model or device that is considered for such
task is the Turing machine. The two resources that have classically been looked
at, éorresponding to the running time and memory requirements respectively of a
modern computer, are time and space measured with respect to the size of the in-
put. The usage of resources is defined by the behavior of the algorithm on the
worst-case input (as opposed to let us say its behavior on the average® input). Thé
universally accepted mathematical concept of efficient (and feasible) computation is
the notion of algorithms running in polynomial time. This gives rise to the widely
known class P that contains those decision problems that admit polynomial time
algorifhms. None of the problems mentioned in the last paragraph, when defined

formally as decision problems in a reasonable way, seem to be in P. However, there

3 Average-case complexity is an interesting growing sub-field of Computational
Complexity, surveyed by Bogdanov and Trevisan [BT06]| recently.



are no known arguments that show there does not exist polynomial time algorithms
for these problems.

On the other hand, these problems share the property that every guessed solu-
tion can be efficiently verified. For instance, given an itinerary a salesman can quite
easily verify if it satisfies the need of touching every city precisely once. Computa-
tion where guessing is allowed gives rise to the important notion of non-determinism.
The class of problems whose guessed solution can be verified in polynomial time by
a Turing machine is the celebrated class NP. The Holy Grail of computational com-
plexity theory, and an outstanding problem in modern mathematics, is to separate
(or collapse) these two classes.

1.2 The Theory of Lower Bounds

Proving impossibility results about computation is a formidable challenge. Much
of computer science is filled with various tricks on how to perform certain things
rather than to show the impossibility of the existence of tricks to achieve a task.

Indeed, powerful algorfthms exist drawing upon entirely counter-intuitive ideas from
various branches of classical mathematics. The tremendous rate of growth of such
tricks (see for example [LU97, AKS04, Rei05, CKSU05, AHT07]) strongly suggests
that we have barely scratched the surface of algorithmic techniques. In this light,
Turing’s theorem about the existence of non-computable tasks does seem quite im-
pressive. It is surprising that his result follows simply by employing the technique
invented by Cantor to prove the non-existence of a bijection from the set of reals

to the set of natural numbers. This powerful method is called diagonalization in



logic. Interesting and fundamental separation results like the time and space hier-
archy theorems have been discovered, also employing the method of diagonalization.
These results roughly say that the class of functions computable by a Turing machine
strictly grows if either-more time or more space is allowed.

Unfortunately, diagonalization has strong limitations. In particular, diagonal-
ization proofs relativize i.e. if two complexity classes A and B are separated ﬁsing
diagonalization, then for every language C, A with access to C for free (denoted by
AC) is different from B with similar access to C (denoted by B€). A very interesting
result of [BGS75] establishes that there exists languages C,D such that P¢ = NP€
and PP NPb. This result proves that P cannot be separated from NP using
a pure diagonalization argument. This made researchers look for non-relativizing
techniques. |

One way of developing new methods is to consider explicit functions and prove
lower bounds against them in other natural (and simpler) models of computation.
Interesting natural models bring out new facets of computation. The effort of under-
standing their limitations often forges links with other disciplines of mathematics.
More surprisingly, and perhaps a little discomfortingly, it highlights hbw little we
understand computation when we are unable to determine the complexity of a func-
tion in a éimple model. Arguably, this goes on to show that although the P vs. NP
question defined our field, it is by no means the onlyvquestion. While proving lower
bounds for explicit functions in natural models of computation is of fundamental

importance, the theory of lower bounds is just in its infancy.



We contribute to the further development of this theory by exploring three well-
known and important models of computation: boolean circuits of constant depth,
low degree multivariate, multilinear polynomials over rings and the ‘Number on the
Forehead’ (NOF) model of multiparty communication.

An important feature of the Turing machine is its uniformity, i.e. for every
task, one algorithm handles inputs of every possible length. This is an extreme
degree of uniformity. One could enforce a milder notion of uniformity by having
a family of algorithms, one for every input length and then have a relationship
between each such algorithm in the family. Vollmer [Vol99| provides an exposition of
this approach to circuit complexity. On the other hand, our approach with all three
v models is that we consider non-uniform versions as opposed to the Turing machine
model. In other words, we consider a family of algorithms (i.e a circuit or a protocol
or a polynomial as the case may be), one for each input length n and there does
not exist any a priori relationship among algorithms in the family. Disregarding
uniformity allows one to focus on the combinatorial weakness of a model. We believe
such investigations bring out deep combinatorial questions that are interesting in
their own right. Such questions then allow fruitful exchange with other areas of
mathematics, making available a wider tool-set to make progress.

1.3 Boolean Circuits

Although the Turing machine is the model employed by theoreticians to argue
about computation in general, it is fair to say that it is not used in practice as a
device. In contrast, circuits indeed are implemented by engineers and are ubiquitous

in modern life. The integrated circuit, abbreviated as IC, has revolutionized our



electronic age. They are the building blocks of not just modern computers, but
every sophisticated device. We describe this natural model of computation more
formally below. |
A circuit is a directed acyclic graph whose nodes are gates and edges are wires,
where each gate computes a boolean function of the wires feeding into it. In general,
circuits have multiple outputs. In this work, we focus on circuits computing a boolean
function. Hence, our circuits have a special node with out-degree 1 called the output
gate. The value it outputs on a particular input instance is the output of the circuit
on that input. As stated before, a circuit operates on inputs of a fixed length n. More
precisely, we consider a family of circuits {...,C,,...}, one for each input_ length.
Similarly, when we define a boolean function, we do so by defining one for each input
length. To keep our notation simple, we do not explicitly mention the input length
as in most cases it can be easily understood from the context. For example, we define
the THRESHOLD function as THRy(z) = 1 iff 3, z; > k, where k is a positive
integer. Here, k need not be fixed. In fact, THR[/2) is called the MAJORITY
function. Similarly, MOD,(z) = 0iff >_, z; = 0 (mod g), for any positive integer
g. The following figure shows a circuit having only AND and OR gates computing
the MOD, function (also known as PARITY) for the input length n = 3. It works
by exhaustively verifying if the input instance corresponds to any one of strings with
odd parity. |
The size of a circuit is the number of non-input gates used. The depth.of a

circuit is the maximum of all input node to output node distances. The fan-in of a






gate is its in-degree. The figure above, depicts a family of circuits whose size grows
exponentially in the input length n and whose depth remains a constant.

Size in circuits roughly corresponds to time in Turing machines. Indeed, it
is not hard to verify that any problem that can be solved in time T'(n) with a
Tﬁring machine can be solved by circuits comprising AND/OR gates of size (T'(n))?,
which follows from the proof of the famous Cook’s Theorem. In fact, circuits of
juét size O(T'(n)log T(n)), as shown by [PF77], can simulate an algorithm running
on the Turing machine for time T'(n). Proving strong lower bounds on the size
of circuits thus yields strong lower bounds on the running time of algorithms on
a Turing méchine. Several researchers in the eighties felt that circuits provide a
clean combinatorial handle on computation as one can avoid dealing with messy
features of Turing machines like moving heads and changing states. This feeling
received a big impetus from the celebrated work of Razborov [Raz86]. Using a
beautiful combinatorial argument, he showed that monotone circuits, i.e. circuits
having AND/OR gates'that do not access negated input variables, cannot compute
the CLIQUE function in polynomial size.

The restriction to monotone circuits does not appear serious because the target
function is itself monotone, i.e. if we add edges to our graph it does not destroy any
clique that was present in the original graph. Intuitively, one expects that mono-
tone functions have near-optimal circuits that are monotone. However, Razborov
showed that MATCHING does not have polynomial size monotone circuits. A fa-

mous algorithm due to Edmonds shows that MATCHING has a polynomial time



algorithm and hence poly-size non-monotone circuits? . This destroyed the intuition
about computing monotone functions. Indeed, the progress on general circuits has
been abysmally low. The best known lower bound on the size of unrestricted circuits
computing an explicit function is less than 4.5n [LRO1].

1.3.1 Circuits of Constant Depth

Depth in circuits corresponds to the notion of ‘parallel time’. Indeed, the delay
in propagating signal in digital devices is roughly proportional to the depth of the
underlying circuit (assuming that all gates involved have same latency). Investigating
depth needed for computing functions is thus a natural research direction. This
direction was quite fruitfully pursued in the eighties. It has yielded some of the most
beautiful results in the theory of lower bounds.

An obvious starting point here is to consider circuits of constant depth. It is
not hard to see that if gates of such circuits have bounded fan-in, then the function
computed can only depend on a constant number of input variables. On the other
hand, allowing AND/OR gates of unbounded fan-in with constant-depth results in
non-trivial computational power. Proving lower bounds against such circuits require
even more non-trivial insight into computation. A series of dramatic work by Ajtai
[Ajt83], Furst, Saxe and Sipser [FSS84], Yao [Yao85] and Hastad |Has86] established

the fundamental result that such circuits in sub-exponential size (i.e. 27" size)

4 Much more recently, there are indications that MATCHING may be doable effi-
ciently in parallel (see [AHTO07])
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cannot compute the parity of n boolean variables. More generally, the result shows
that modular counting using AND/OR gates is inherently difficult.

On the other hand, modular counters are very much part of the basic building
blocks in modern digital hardware design. A natural next step is to precisely deter-
mine what advantage is gained by allowing modular counting gates into our circuits.
For any integer m > 2, deﬁne-a MOD,, gatbe to be a boolean gate that outputs 1 if
the number of its input bits that are set to one is not divisible by m. Unfortunately,
the powerful techniques introduced in [Ajt83, FSS84, Yao85, Has86] fail to work well
in the presence of MOD,, gates. The best that one could say using this method was
worked out in [H&s86] where it was essentially shown that few PARITY gafes (fewer
than Q((logn)3/?)) does not help in significantly reducing (below 220°e™)*/*) the size
of a constant-depth circuit computing the MAJORITY function. »

‘MAJORITY has two crucial properties. It is a robust function whose value does
not get determined by revealing the assignment to any sublinear number of its input
bits. This is quite different from the AND and OR functions whose value gets fixed
if any of its input bit is fixed to 0 and 1 respectively. The crucial technical ingredient
of the works of [Ajt83, FSS84, Yao85, H4s86) showed that this weakness of AND and
OR gates are propagated in some sense to the whole circuit if it is of constant depth
and is entirely composed of these gates. The second property of the MAJORITY
function is that it is severely aperiodic. MOD,, gates are of course periodic with a
small period of m for any constant m. This makes MAJORITY a tempting target on

which to prove lower bounds for size of circuits comprising AND/OR/MOD,, gates.
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Developing a powerful machinery for approximating boolean functions by mul-
tivariate, multilinear polynomials of low degree over finite fields, Razborov [Raz87]
proved exponential size lower bounds on the size of circuits having AND/OR/PARITY
gates for computing MAJORITY. Building on this breakthrough work, Smolensky
[Smo87] generalized the argument by replacing the PARITY with MOD,: gates,
where p is any arbitrary fixed prime and k is a fixed positive integer. A special case
of Smolensky’s argument yields (with a slight degradation of parameters) a new proof
of the earlier exponential lower bounds on the size of constant depth circuits comput-
ing PARITY. After more than twenty years of its discovery, the Razborov-Smolensky
argument remains a true gem of theoretical computer science.

Yet, the seemingly innocuous extension to composite modular counting has re-
sisted attacks from a long list of several researchers (for example, see [BS95, BS99,
BST90, Gre04, Gro94b, Gro98, GT00, KW91, HM04, MPT91, Smo90, ST06]). No
non-trivial lower bounds are known for general constant depth circuits that employ
MOD,, gates when m has two distinct prime factors. While three gene‘rations of
algorithm designers have in frustration called N P-complete problems intractable, it
remains consistent with our current knowledge that circuits comprising only MODg
gates in depth three and linear size can compute these problems. Separating such
depth-three circuits from NP is indeed one of the current frontiers in the theory of
lower bounds.

Another direction, also very natural, is to consider constant depth circuits aug-
mented with gates computing MAJORITY. We call them MAJ gates. The influential

work of Minsky and Papert [MP88] considered a special case of such circuits called
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perceptrons. These are boolean gates that generalize a MAJ gate: every input to a
perceptron is weighted by some real number and the gate outputs one iff the weighted
sum of its inputs is positive and otherwise outputs -1. Artificial neural networks, us-
ing the perceptron as a building block, have been widely studied in the Artificial
Intelligence and Machine-Learning communities as a reasonable model of neural ac-
tivity in the human.brain. It is known that such constant depth neural networks can
be efficiently simulated by cifcuits comprising ordinary unweighted MAJ gates.

A series of results [ABFR94, BRS91b, Bei%4, BS94] in the early nineties es-
tablished strong lower bounds on constant-depth circuits augmented with few MAJ
gates. Speciﬁc;'a,lly, these series of results showed that circuits comprising AND,OR
and MAJ gates cannot compute® in sub-exponential size the MOD,, function as long
as the number of MAJ gates is restricted to n°®). On the other hand, it is known
that allowing more MAJ gates increases significantly the computational power of
such circuits. In linear size and depth-two, circuits comprising only MAJ gates
compute the MOD,,, function, for every m. More surprisingly, in depth-three and
quasi-polynomial size (i.e. n°°sm" for some constant d), circuits with only MAJ
gates compute every function that can be computed by circuits of quasi-polynomial
size and constant depth having AND/OR/MOD,, gates [Ya090, BT94].

This brings us to another frontier in the theory of lower bounds. Currently, we

cannot prove a superlinear lower bound on the size of depth-three circuits comprising

° In fact, Barrington and Straubing [BS94] show that such circuits cannot even
approximate well the MOD,,, function.

13



only MAJ gates computing any function in NP. In other words, for every intractable
problem, there may exist a shallow depth and small size neural network that solves
the problem.

1.4 Polynomials over Rings

Multivariate polynomials over rings are classical objects iﬁ mathematics that
have been studied in a wide variety of contexts since long. More recently, they
have aroused major interest in the computing community after a string of impressive
results in circuit complexity [Raz87, Smo87, ABFR94|, interactive proofs [LFKN92|,
communication complexity [She07|, learning theory [LMN93, Kli02] and quantum
computing |[AS04, BCW98, Raz03, She08b| have been obtained with polynomials
playing a central role.

Many of these results use polynomials as a tool to analyze a given problem.
A little differently, the Razborov-Smolensky argument for showing limitations of
constant-depth circuits having AND/OR/MOD, gates, implicitly views polynomials
as non-uniform models of computation. The work of Barrington, Beigel and Rudich
[BBR94] and Nisan and Szegedy [NS94]| initiated a systematic study of the power of
polynomials in representing/computing boolean functions.

More precisely, let a polynomial P over Z,, with n variables z1, ..., z, represent
the boolean function f : {0,1}" — {0, 1} if there exists an accepting set A C Z,, such
that f(z) = 1 iff P(z) € A, for each z € {0,1}". It is worth noting that since our
interest is on the behavior of P over the boolean hypercube where z? = x; for each
variable z;, we conveniently henceforth assume w.l.o.g that P is multilinear. The

resource that is of interest in this model is the degree of P. The basic question of
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the subject is “How much degree is needed by a polynomial to represent the boolean
function f over Z,,7” when m is fixed. This quantity is called the MOD,,-degree of
f.

The work of Razborov-Smolensky provides answers to such questions, when m
is a prime power. For instance, one can show that the OR function has Q(n) degree
if m is a prime power. But the method fails, as explained in detail by Barrington
[Bar92], as soon as m contains two distinct prime factors. Quite surprisingly, the
model of polynomials reveals a non-trivial computational advantage of composite
numbers over their primal counterparts. Barrington et.al. [BBR94] show that there
exists a polynomial of degree O(n'/") over Z,, computing the OR function when m
has r distinct prime factors. Similar advantages to represent the MOD, function,
for some special ¢ that are co-prime with m, have been subsequently discovered by
Hansen [HanO6b)].

Our lack of understanding of the computational power of modular counting is
best exemplified in the setting of low degree polynomials. Indeed, it is perplexing that
no function f € NP is known such that the MODg-degree of f is super-logarithmic
i.e. w(logn). A simple counting argument, on the other hand, reveals that most
functions have linear degree.

1.5 ‘Nulmber on the Forehead’ Model of Communication

A beautiful theory of communicating processes has been developed starting with
the seminal paper of Yao [Yao79]. In the model proposed by Yao, there are two
players, Alice and Bob, who wish to collaboratively éompute a boolean‘ function f.

The problem is that the set of input bits of the function is partitioned into two sets
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X4 and Xjpg. Alice has only access to the bits of X4 and Bob to those in Xg. They
decide, a priori, upon a protocol for communicating with each other with the goal
that both of them can determine the value of f on any assignment to its input bits.
Further, they want to minimize the amount of bits they need to exchange with each
other for achieving this goal. In order to entirely focus on bits communicated as a
resource, Alice and Bob are endowed with unlimited computational power in terms
of time and space. The simple question that is of intrinsic interest is “How many bits
do Alice and Bob need to communicate to compute f with the best protocol?”. The
amount of communication taking place is measured with respect to the size of the
set of input bits assigned to each player. Assuming that each player holds n-bits of
information, every function can be computed trivially by communicating n + 1 bits.

Exploration around this theme has uncovered a rich underlying structure of the
model. A thorough exposition of this theory, now known as Communication Com-
plexity, is given in the excellent book by Kushilevitz and Nisan [KN97]. Surprisingly,
an ever expansive set of diverse applications of this theory to other fields in theo-
retical computer science is being discovered. For instance, a powerful technique to
prove vlower bounds on the depth of monotone boolean circuits was developed using
a variant of this model by Karchmer and Wigderson [KW88| that was further de-
veloped in the work of [KRW95, RW92, RM97|. Very interesting trade-off results
between the resources of time and space have been derived using communication
complexity in the work of [BSSV00, BV02]. Connections with randomness extrac-

tion from imperfect random sources was established in the work of Vazirani [Vaz85|,

16



Chor and Goldreich [CG85]. Indeed, the list of applications goes on and on and Com-
munication Complexity has been fondly called the ‘Swiss-army Knife’ of complexity
theorists.

The two-party model of Yao extends to the multiparty model in more than‘ one
way. The first one is called the ‘Number in the Hand’ model where the set of input
bits is partitioned into k sets X1,..., X;. Player i gets X;. In this model, the more
players there are, the less information is directly accessible to each player (assuming
each player gets access to equal number of bits). This is known to weaken the power
of the two-player model, although it has been studied for applications in areas like
data-streams [CKS03, CCMO08].- Our concern here is with the other extension to
multiparty introduced by Chandra, Furst and Lipton [CFL83| called the ‘Number on
the Forehead’ (NOF) model. In this model, input bits of X; are held on the forehead
of Player i. In other words, each player has access to all input bits (written on the
foreheads of other players) e);cept those that are held on his own forehead.

There are several features that make the model quite powerful. In particular,
there is an overlap of information accessible to players which can be used to save com-
munication significantly even with three players. érolmusz [Gro94a| devised a clever
protocol exhibiting the surprising power of logn players, where n is the number of
bits written on the forehead of each player. Other non-obvious k-party protocols have
been discovered (see, for example, [Amb96, CFL83]). Proving both lower bounds and
upper bounds for this model is very challenging. On the other hand, many rewarding
applications of strong lower bounds on the multiparty communication complexity of

a function exist. They can be used to prove lower bounds on resources needed in
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various other important models like branching programs [CFL83|, constant-depth
circuits [HG91] and proof systems [BPS05]. In fact, many other such applications
are known, while proving the lower bounds themselves in the model have evaded
efforts [KN97].

One such application is of great interest for the research described in this the-
sis. Recall that no superlinear lower bounds exist on the size of depth-three circuits
comprising only MODg gates. It is however known from the work of Yao [Ya090]
and Beigel-Tarui [BT94], that super-polylogarithmic (i.e. (logn)“®)) lower bounds
on the k-party communication complexity of a function f for some very restricted
protocols is enough to show that constant-depth circuits having AND/OR/MOD,,
gates cannot compute f in quasipolynomial size, provided k = (logn)°"). The sem-
inal work of Babai, Nisan and Szegedy |BNS92| introduced® a powerful method,
called the Discrepancy Method, to obtain the first strong lower bounds on the mul-
tiparty communication complexity of functions. However, the technique in [BNS92]
stopped short of proving non-trivial bounds for log n players. It is now believed that
fundamentally new ideas are needed to sail past the log n players barrier.

On the other hand, there is evidence that we do not quite understand the model
even when fewer players are involved. There are several simple and natural functions

whose three-party communication complexity is not known. In fact, until recently,

6 The Discrepancy Method existed in mathematics before the work of [BNS92].
Here we mean that it was introduced to multiparty communication complexity by

[BNS92).
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no superlogarithmic (i.e. w(logn)) lower bound was known for three players for these
functions. A systematic study of the different aspects of this model is compelling in
its own right.

1.6 Our Contributions

Constant-depth circuits. In Chapter 3, we make progress towards under-
standing the computational power of circuits of constant depth comprising AND,OR
and MOD,,, gates, when m is an arbitrary fixed positive integer. We approach this
from two directions. In the first part of the chapter, we probe the limitations of such
circuits when the number of MOD,, gates allowed in the circuit is restricted. We
show that indeed computing MAJ ORIT Y and MOD, by such circuits requires super-
polynomial size when £ contains a prime factor that does not divide m. This result
is expressed formally in Theorem 3.1. The result first appeared in joint work with
Kristoffer Arnsfelt Hansen [CHO5] and at the time represented the best known lower
bounds on the size of such circuits (with few MOD,,, gates) computing MOD,. It still
remains the best known lower bound for computing MAJORITY. The main technical
novelty introduced in this part is a connection with a new notion of computation of
boolean functions by polynomials that we describe in the next section.

In the second part of Chapter 3, we shed light on the limitations of modular
counting by allowing only MOD,,, gates in our circuits. We show that (non-constant)
functions computed by such circuits of sublinear size (and arbitrary depth) should
have a large support set (see Theorem 3.4). Consequently they cannot compute AND
in sublinear size, as AND has a support set of size one. Such a result was first proved

by Thérien [Thé94], but our bounds are sharper and our techniques are different.
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The main technical ingredient used is a result about linear maps that is stated in
Theorem 3.19. We further show that such circuits in sublinear size cannot compute
MOD, when m and ¢ are co-prime. This result is a significant improvement over the
previous best lower bound of logn due to Smolensky [Smo90]. Smolensky’s result
said nothing about the approximability of MOD, by such circuits. On the other hand,
Theorem 3.5 shows that such circuits of sublinear size do not even approximate MOD,
well: a MAJORITY gate needs to seek votes from exponentially many such circuits
to correctly combute MODy. We derive this result by proving a Uniformity Lemma
(see Lemma 3.20) for every system of linéar polynomials. Uniformity Lemmas are
interesting in their own right and we prove ours using an exponential sum argument.
We believe that exponential sums will play a crucial role in developing new techniques
for circuit complexity. Results in this part are based on a joint work with Navin
Goyal, Pavel Pudlak and Denis Thérien [CGPTO06].

In Chapter 7, we prove lower bounds on the size of some depth-three circuits
that follow as a consequeﬁce of our work on Communication Complexity in Chap-
ter 6. Recall that we do not know if depth-three circuits comprising only MAJ gates
can compute every function in NP. On the other hand, Yao [Yao90] has shown that
such depth-three circuits in quasipolynomial size can simulate every function com-
putable by constant-depth circuits of quasipolynomial size and comprising AND,OR
and MOD,,, gates, even when the fan-in of the bottom gates are restricted to poly-
logarithmic. In contrast, we show that if the bottom fan-in is further restricted

to o(loglogn) then such circuits cannot compute much simpler functions efficiently.
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In particular, in quasipolynomial size they cannot compute a function that is com-
puted by a linear size depth-three circuit comprising only AND and OR gates (see
Theorem 7.1). This result first appeared in [Cha07b].

Polynomials over rings. In Chapter 3, we relax the notion of computation
by a polynomial over Z,, of a boolean function to a weak computation that allows
for errors. The polynomial is allowed to give false negative answers but no false
positives and it must output a positive answer on at least one input. This model
generalizes all models of computation by polynomials over finite rings considered so
far in the literature. We prove lower bounds on the degree needed by any polynomial
over Z, to represent the MAJORITY (Theorem 3.10) and MOD, (Theorem 3.11,
m, £ are co-prime) function in this generalized sense. Our argument for establishing
Theorem 3.11 makes a novel combination of a combinatorial argument due to Tardos
and Barrington [TB98] and a Fourier theoretic argument due to Green [Gre00]. As
we show, our bounds are strong enough to yield lower bounds on the size of circuits
with MOD,,, gates computing the same functions. These bounds are not known to
follow directly from either the work of [TB98] or [Gre00].

In Chapter 7, we simplify the breakthrough work of Bourgain [Bou05] that set-
tled a long line of research |[CGT96, Gre99, ABO1, Gre04| on the correlation of low
degree polynomials over Z,, and MOD, function. In this model, polynomials are
allowed to err on both positive (true) and negative (false) inputs of the boolean
function that they represent. However, unlike the previous model, we count fhe
number of errors that the polynomial makes. Bourgain’s work pfoves exponentially

'small upper bounds on the correlation between functions computed by low degree
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polynomials over Z,, and MOD,. We sharpen this result (see Lemma 7.7). Moreover,
we show a close correspondence between the proof technique of the seminal result
of Babai, Nisan and Szegedy [BNS92] for obtaining upper bounds on discrepancy in
the context of communication complexity and our argument to upper bound the cor-
relation of polynomials over Z,, with MOD,. In retrospect, the result on correlation
should have been obtained much earlier.

Communication complexity. One can naturally define the notion of proto-
cols deterministically, non-deterministically and randomly computing functions. Our
Work concerns all three models and their relationship to each other.

In Chapter 5, we obtain new insight into the multiparty model by considering
the class of functions that can be computed deterministically by k players in constant
cost (denoted by CCy), for some fixed k. A priori, there is no reason to suspect that
this class is related in some way to circuit complexity classes. Yet, Szegedy [Sze93]
obtained several beautiful algebraic and combinatorial characterizations for the class
CC,. Consequently, he was able to show that every function in CC, can be com-
puted by linear size shallow circuits comprising AND/OR/MOD,, gates. In contrast,
Corollary 5.6 shows, making use of specially crafted codes, that even three players
in constant cost can compute functions with exponentially large circuit complexity,
ruling out any simple characterization for CCy with k > 3. Our proof of this result
exploits the following two features of the model: a) Overlap of information, i.e. every
input bit is visible to two other players. b) Each player knows the precise position
of every input bit that it sees. While it was already known that removal of the first

feature renders the model weaker than the two player case, the significance of the

22



second feature had never been investigated before. We consider two simple classes
of functions in which intuitively one expects that the second feature does not afford
any advantage. Using Ramsey theoretic arguments we prove the following: a) Every
function f having a neutral letter that is in CCy, for some fixed k, is regular’ (see
Theorem 5.7). b) A symmetric function is in CCy, for some fixed k, iff it is in CC,
(Theorem 5.8). These results first appeared in a joint work with Andreas Krebs,
Michal Koucky, Mario Szegedy, Pascal Tesson and Denis Thérien [CKK*07].

In the first part of Chapter 6, we prove strong lower bounds for the multiparty
éommunication complexity of some simple functions that had‘ resisted attacks from
several researchers in the past. In particular, there was no known function computed
efficiently in constant depth by circuits comprising AND/OR gates that required
large three party communication. Extending the work of Sherstov [She07], we ex-
hibit such a simple function that requires large communication by even randomized
protocols that are required to perform better than random guessing by a very thin
margin (see Theorem 6.1). ‘The main technical component of this work, called the
Orthogonality-Discrepancy Lemma, is a new relationship between the property of a
boolean function being orthogonél to low degree polynomials and the discrepancy of

a closely related function (see Lemma 6.8). This allows passage from a well-known

” Function f has neutral letter e, if inserting or deleting e at any place in each
input word does not change the value of f on the word. Note that a boolean function
f induces a language Ly in an obvious way i.e. x € Ly iff f(z) = 1. Function f is
called regular precisely if Ly is regular.
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algebraic measure of complexity of boolean functions, called voting degree, to com-
munication complexity (see Corollary 6.12). Such a passage was first devised, in the
context of two—playér communication protocols, by Sherstov [She07]. Our‘ result first
appeared in [Cha07b].

In the second part of Chapter 6, we exhibit a function whose non-deterministic
communication complexity is small (logn) but requires large (n®*()) communication
by k-party randomized protocols achieving a bounded advantage over random guess-
ing (see Theorem 6.2). This settles a major open question in multiparty communi-
cation complexity (see |BPS, BPSW06, BDPW07, Cha07a, VW07b]). Determining
the relative power of determinism, non-determinism and randomization is a central
theme of theoretical computer science. The celebrated P vs. NP question is an ex-
ploration of this theme in the Turing machine model. Our result answers a question
on the same theme in the model of multiparty communication. Further, it proves
superpolynomial lower bounds on the length of proofs in an important class of proof
systems, called Lovasz-Schrijver proofs (see [BPS] for details). Our result appeared
as a joint work with Anil Ada [CA08]. A similar result has been independently ob-
tained by Lee and Shraibman |[LS08]. Finally, in Section 6.6, we extend the recent
work of Shi and Zhu [SZ07] to the multiparty model. It was not known if such an ex-
tension existed and was suggested as a direction of investigation in the recent survey
by Sherstov [She08a]. We, on the other hand, show that our extension is powerful
enough to also yield n¥!) lower bounds on the k-party communication complexity

of Disjointness. This provides a second proof of an important result.
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CHAPTER 2
Background for Boolean Circuits

In this chapter, we formally define the complexity classes for boolean circuits.
We also recall some of the known arguments for proving lower bounds for constant
depth circuits that serve as the starting point of our investigation. We further high-
light the difficulties that are faced when one tries to employ similar arguments for
more powerful circuits. In the process, we develop the Razborov-Smolensky theory
of polynomial representation of boolean functions.

We point out that while our review of complexity classes is brief and targeted
towards placing our work in the larger context, aﬁ interested reader can consult any
excellent textbook on Computational Complexity (for example [AB09, Pap94]) to
get a more thorough treatment of issues.

2.1 Boolean Circuits

We recall frbm Chapter 1 that the first key resource of the model of boolean
circuits is its size i.e. the total number of gates used in the circuit. Size, quite closely,
corresponds to running time in Turing machines. The class of boolean functions that
can be computed by boolean circuits of polynomial size is denoted by P/poly. This
corresponds to the non—uhiform version of the class P defined for the Turing machine.
Most proponents of the conjecture P # NP, in fact, have the stronger belief that the
class NP is not contained in even P/poly. This stronger statement is a more natural

target to aim for in the context of boolean circuits.
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As we said earlier, Razborov’s result [Raz86|, showing that monotone circuits
of polynomial size cannot decide if an input graph has a clique of prescribed size, is
the closest that we have come to proving this conjecture.

Unfortunately, Razborov himself |Raz89) showed that the method of approxima-
tions that he employed to obtain his results cannot yield super-linear lower bounds
on the size of non-monotone circuits. Subsequently, other obstacles in the form of
“natural préofs” |RR97] were identified. Recently, Aaronson and Wigderson [AW08|
pointed out an additional barrier called ‘algebrization’. The idea of these papers is to
show that most known lower bound proofs naturalize [RR97| and algebrize [AWO08].
Further, they show that, widely believed cryptographic assumptions get violated if
one finds such proofs (that algebrize or naturalize) showing that a function in NP is
not contained in P/poly. However, fresh hope emerges from the very recent work of
Chow [Cho08] that shows there are no known barriers to obtaining such a results by
‘slightly tweaking’ natural proofs. In any case, most of the the complexity classes
that we study in this work are not known to present any great barrier. Yet, progress
on them has been limited.

Our interest is to consider circuits of restricted depth. Besides being a nat-
ural restriction, such circuits also intuitively capture the notion of highly parallel
computation. For every integer i > 0, let NC' denote the class of circuits that

have polynomial size, O(log n)* depth and use binary AND and OR gates. Define
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NC = U;NC". The following sums up the known relationship (among non-uniform

classes)! :

NC° CNC'CLCNLCNC?2C ... CNCC P/poly (2.1) -

A fairly straightforward countihg argument shows that a random function, with
probability asymptotically tending to one, needs exponential size circuits to be com-
puted (even when depth is unrestricted). It however is a recurring theme of the
subject, that finding an explicit function that cannot be computed using limited re-
sources is very challenging even though one knows that most functions are hard for
the model. No explicit function in NP is known to be not in NC!. In fact, as we
shall see below, we cannot prove any such explicit function to be not contained in

‘ even some subclasses of NC! where circuits are further restricted to have constant
depth.

A word about our ‘abuse’ of notation for circuit complexity classes is in order.
Assume A is a circuit class. We use A with two different connotations. The first
refers to the class of functions that have polynomial size computations over circuits
of a certain type over which the complexity class A is defined. In the second use,

A means the underlying circuit model (as opposed to a class of functions). This

1 NC stands for “Nick’s class” as coined by Steve Cook to honor Nick Pippenger.
Pippenger reciprocated the gesture by coining “Steve’s class” (SC). We will not have
the occasion to consider the class SC in this work.
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is illustrated by the following two simple examples that respectively invoke these
connotations: The function MAJORITY is in NC!. The function PARITY can be
- computed by linear size NC! circuits. The particular sense in which we are referring
to a circuit complexity class is clear from the context.
2.1.1 Circuits of Constant Depth

Before we move on, let us fix some more terminology. Conventionally, theoretical
computer scientists have visualized the flow of information in a circuit upwards i.e.
the input variables are at the bottom and the output gate is at the top2. Henceforth,
we further assume that our circuits are layered in the following sense: Layer 0 consists
of input variables and their negations. Each gate in Layer i receives its inputs only
from gates in Layer ¢ — 1, for 7 > 1. Each gate in Layer 1 is called a bottom gate.
The maximum fan-in of a bottom gate is called the bottom fan-in of the circuit.
The fan-in of the output gate is called the top fan-in of the circuit. Let gates of
a circuit of depth k& have gates of type G; at Layer i. We denote such a circuit by
GroGi_10---0G;.

Note that NCP is the class of functions computable by circuits with constant
depth, polynomial size and binary fan-in AND/OR gates. Thus, such functions do

not even depend on all of the input bits. Consequently, this class is quite weak®:

2 It seems to us that depicting the flow of information from top to bottom is more
reasonable. To save confusion, we however follow convention.

3 Note that this class is interesting in other contexts. For instance, there is evidence
now that many cryptographic primitives can be computed in NC°® [AIK04].
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for instance, they do not contain the simple boolean AND and OR functions. This
motivates the introduction of the class AC® : functions computable by circuits having
unbounded fan-in AND/OR gates and constant depth. It is worthwhile to note that
such circuits in depth-2 and exponential size can compute every boolean function.
More interestingly, they can add two n-bit integers in depth five and cubic size.
In depth two and polynomial size, they can compute THR; fof any constant k by
an exhaustive verification. Much more surprisingly, in polynomial size they can
compute THR 154 e, for any coﬁstant c (see [FKPS85, WWY90, RW91]). There are
other quite non-trivial algorithms that can be executed by such circuits. One may
well expect* - that proving lower bounds on resources in a model that allows such
subtle computations to take place, will be a challenge!

A natural question to probe, is if the weakness of a bounded depth circuit is
closely related to the weakness of its constituent gates. The weakness of an AND
(OR) gate is that fixing any one of its input to 0 (1) fixes its output. This gives the

“hope that if an AC? circuit has not too many gates, then it should be possible to
fix the output of the circuit by just fixing a few input variables to zero and one. If
that were true, such circuits in small size would not compute a ‘robust’ function like
PARITY, which does not gét fixed even when all but one variable gets fixed. This

intuition first got formalized and verified by the work of Ajtai [Ajt83] followed by

4 It is worth noting that most of these positive results with AC® were obtained
after strong lower bounds had been shown.
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that of Furst, Saxe and Sipser |[FSS84]. Furst, Saxe and Sipser deliver a beautiful
probabilistic argument by introducing the powerful notion of a random restriction.

We sketch below the essence of the argument in [FSS84]. Let p = {0,1,*}™
define a restriction of the input variables, where an assignment of * to a variable
signifies that the restriction leaves it free (i.e. does not set it). Define a probability
distribution y on restrictions in the following way: Independently assign each variable
to * with probability 1/4/n and with equal probability, i.e. (1 —1/y/n)/2, assign it
to 1 and to 0. Define a gate wide if it has fan-in at least cInn and otherwise call it
narrow. It is not hard to verify then the following key observation:

Observation 2.1 A restriction p chosen randomly according to u satisfies the fol-
lowing:
o A wide AND/OR gate is not forced to 0/1 with probability o(n=/*).
e Each narrow gate has more than c inputs assigned to x with probability at most
o(n=c/*).

Additionally, we expect a random p to leave y/n input variables of the circuit
assigned to . Thus, with ¢ = 8k, a circuit of size n* when hit by a random restriction,
results in a ciréuit with at least y/n/2 variables left free and all of whose base gates
have fan-in at most c. As a final step, Furst, Saxe and Sipser analyze depth-2 circuits
whose base gates have small (constant) fan-in. With a more involved argurr;ent, they
show the following:

Lemma 2.2 For fized integers c,k > 0, there ezists a constant b, = 4k + 2*%b._;
satisfying the following: Every depth-2 circuit of size n*, all of whose base circuits of

depth 1 have fan-in at most ¢, when hit with a restriction chosen randomly according
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to u computes a function of at most b, input variables with probability at least 1 —

o(n*).

The power of the lemma above becomes evident by applying it repeatedly to
obtain a switching effect as following: applying Observation 2.1, we first ﬁnci a
restriction that leaves enough (at least \/n/2) variables free and decreases the bottom
fan-in to a constant c. Applying a second round of random restriction on the erstwhile
free variables, Lemma, 2.2 ensures that each depth-2 circuit computes a function of
a constant (i.e. b.) number of variables. Every such function can be written as both
‘a AND o OR and a OR o AND circuit of size at most 2% (which is a constant). This
allows us to switch from a circuit of type AND o OR to a circuit of type OR o AND
or vice-versa. Once the depth-2 circuits are appropriately switched, the second and
third layers can be merged decreasing the depth of our original circuit by one, i.e.
we move from depth d to d — 1. Meanwhile our bottom fan-in has changed from ¢
to b. (a double expoﬁential blow-up in k). The bootstrapping process is complete
and we go on applying successive random restrictions, each of which decreases the
depth of our circuit by one, increases its size by a constant factor and increases the
bottbm fan-in (that still remains a constant). At each step, we also decrease the size
of the set of free variables by about a quadratic factor. We do this a constant (d — 2)
number of times to reach a state where our restricted circuit is computing a function
of constant number of variables despite the fact that there are about Q(n!/2")
variables remaining free. The robustness of a function like PARITY finishes the

argument by supplying a contradiction. The restricted circuit has to compute either
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PARITY or its complement on the remaining variables which contradicts the fact
that it is computing a function of merely a constant number of variables.

Tracing the various blbw-ups carefully as one applied Lemma 2.2 to successive
restrictions, one concludes a lower bound of n°&™ on the .size of AC? circuits
computing PARITY. The key ingredient in the argument is the ability to switch
from a DNF to a CNF with small blow-up. A lemma like Lemma 2.2 that allows
one to do so is called a Switching Lemma in the literature. Switching Lemmas have
played a major role in obtaining lower bounds in various other models. In the context
of constant-depth circuits, after improvements made by Yao [Yao85], work on them
in the mid-eighties culminated in the powerful work of Hastad [H&s86]. Hastad’s
Switching Lemma also yields optimal (exponential) lower bounds on the size of AC®
circuits computing PARITY.

We state a version of the Switching Lemma that is due to Beame |Bea94] and is
convenient to use in our work. In order to do so, let us recall the well-known notion
of a decision tree. A decision tree is a rooted binary tree, each of whose internal
nodes are labeled by one of the n input variables. For every node, one of its outgoing
arc is labeled 0 and the other 1. The leaves of a decision tree are labeled 0 and 1
and along each path from the root td a leaf no label on a node is repeated. Given an
assignment of input variables, computation by a tree proceeds along a path in the
following way: starting from the root, each node queries the variable used to label it
and then follows the arc labeled with the answer to reach the next node. The process
is repeated with the next node until we hit a leaf at which point the tree outputs

the label of the leaf. It is easy to verify that the set of inputs that correspond to
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a computatioh along a given path in the tree is disjoint from the set of inputs that
correspond to computation along a different f)ath. This simple feature of a decision
tree makes it very handy for our applications.
| As with any other tree, the height of a decision tree is the length of the longest
path and it size is the number of internal nodes. It is straightforward to verify that
every boolean function has a decision tree of at most linear height and exponential
size. The resources in this model are the height and size of the tree. They are, of
course, not unrelated as for instance a tree of logarithmic depth can have at most
polynomial size.
Remark 2.3 A boolean function computed by a decision tree of height h has a DNF
(and a CNF) formula with each term of size at most h.
Armed with these notions, we are ready to e>;press the powerful effect of random
restrictions on constant depth circuits. Let RY be the set of all restrictions that
leave precisely ¢ of n variables free.
Lemma 2.4 (Beame’s Switching Lemma) Let f be a DNF (or CNF) formula
in n variables with terms of length at most r. Let £ = pn and pick p uniformly at
random from R.. Then the probability that f, cannot be computed by a decision tree
of height at most d is less than (Tpr)®.

Beame’s version of the Swifching Lemma, readily/yields an exponential lower
bound on size of constant-depth circuits computing PARITY.
Corollary 2.5 A circuit of depth d, using unbounded fan-in AND/OR gates cannot

1/d—1)

compute PARITY if it has size less than 29
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Proof-{adapted from Beame [Bea94|] Let the size of the circuit computing PARITY
be S. We successively apply random restrictions, one for each layer of the circuit.
Let py = 1/14 and p; = 1/(14logS) for i = 2,...,d — 1. W.Lo.g. assume that the
base layer is of OR gates. Each OR gate can be thought of as a DNF with term
size 1. We apply the Switching Lemma with p = p; = 1/14 and d = log S and
r = 1 to each OR gate in the first layer. Under a random restriction from RY "
each restricted gate fails to be computed by a decision tree of height at most log S
with probability less than 276 = S. Since there are at most S gates in the first
layer, there exists a restriction p; € RY™ that succeeds in restricting the height of
decision tree to log S for each OR gate at the base layer.

We show by induction of depth that there exists (d — 1) successive restrictions
P1, P2,- - P41 With p; € R where n; = p;n;_; and ng = n, such that after applying
pi the output of each gate at the ith layer is computed by a decision tree of height at
most log S. The base case of this induction has been established above for the base
layer, i.e. ¢ = 1. If the ¢ + 1th layer is that of AND (OR) gates, we compute the
corresponding CNF (DNF) formula for each restricted gate in the ith layer from its
decision tree as per Remark 2.3. Thus, the output of each gate in the i + 1th layer of
the restricted circuit can be again expressed as a CNF (DNF) formula. Then apply
the Switching Lemma to each such formula by choosing a random restriction from
Rnit'. Again, each formula fails to be restricted to a decision tree of height log S
with probability less than (1/2p;,1log S)'°8S = S. So, there exists a restriction that

does not fail for any formula. This completes the induction.
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Thus, after applying d — 1 restrictions, we have ny_; variables free and a depth-
2 circuit with bottom fan-in log S either computing PARITY or its complément on
these free variables. Hence, log S > ny_; = n/(14(141og S)¢-2), yielding the required
bound on S. |

- The above bound is not only an exponential lower bound for constaﬁt d but is
quite close to being optimal as the following fact shows: N
Fact 2.6 Let d > 0 be an even number. There is an AC® circuit of size 200*9) gnd
depth d that computes PARITY.

Proof: The circuit is built using a simple divide and conquer strategy. The circuit
has d/2 sections and the outputs of Section i are fed into the inputs of Section
i + 1. Each section has depth 2 and the total number of inputs in Section i is
n; = n/(n26-1/4) Further, n; is split into equal blocks of size n*<. In Section 4,
we compute in parallel the parity of each block. This is accomplished by using the
obvious depth-2 exponential size circuit for each block. Thus, the total number of
gates in a section is 27 x (n;/n?/?) < n2"*’*. As there are d/2 sections, we get a

total depth of d and total size less than nd2n*’®. | |

2.1.2 Modular and Threshold Counting gates
The previous circuit for PARITY can be easily modified to show that in logn

depth, one can compute PARITY in linear size using binary fan-in AND/OR gates® .

5 In fact, using the same divide and conquer strategy, every regular language can
be computed in linear size and logarithmic depth using bounded fan-in AND/OR
gates. The non-boolean letters of the alphabet may be encoded as boolean strings
in any reasonable way. '
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Thus, Parity witnesses a clean separation of AC® from NC'. This is one of the
rare unconditional explicit separations of complexity classes. Several other natural
functions are also not in AC? (as first observed in [FSS84]) because PARITY reduces
to them.

The notion of a reduction is a very standard one in complexity theory to express
the relative hardness of two problems. This is the notion that gives rise to the idea
of completeness of a problem in a complexity class (for instance NP-completeness).
In the context of circuits, we say a boolean function f ACP reduces to function g,
denoted by f <AC° ¢, if one can compute f in constant depth and polynomial size
using AND/OR gates and gates computing the function g.

Observation 2.7 Thr, <A® MAJORITY.
Proof: If t < n/2 (t > n/2), then by feeding (% — 1) constant ones (zeroes) to a MAJ

gate, we make it compute Thr;. |

Observation 2.8 (Furst, Saxe and Sipser [FSS84]) PARITY <A%® MAJORITY.
Proof: The basic intuition is that MAJORITY allows you to count precisely the
number of ones occurring in a boolean string. This is because the number of ones in

a n-bit string z is ¢ iff Thr;(z) = 1 and Thr,y;(z) = 0. Thus,
PAR,ITY(CE) = V0$2i§n (Thr21($) A ~\Thr2i+1(:c))

Observing that = Thri(z1,...,z,) = Thry_g41(—21, 2T, ..., ~z,) and using Obser-

vation 2.7, we are done. [ |

The argument above shows something slightly stronger. A boolean function is

called a symmetric function if its value depends just on the number of input bits set
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to 1. PARITY, MAJORITY, Thr; are all symmetric functions. The argument above
shows the following:
Fact 2.9 Let SYMM be an arbitrary symmetric function. Then, SYMM <4¢° MA-
JORITY. |

In the light of these observations, a series of natural questions emerge from
the separation of AC® from NC!: How does the computational power of the model
get changed, if we allow PARITY or other modular counting gates in addition to
AND/OR gates in our circuit? How is it altered, if we allow gates computing MA-
JORITY (denoted by MAJ) in our circuits? Define ACC’[m] to be the class of
functions computed by constant depth polynomial size circuits consisting of un-
bounded fan-in AND, OR and MOD,, gates. Barrington [Bar86| defined ACC® as
UmzzACCo[m]. Define TC? to be the class of functions that can be computed by
circuits using only MAJ gates in constant depth and polynomial size. Note that
by our previous observations, augmenting TC circuits with AND/OR/SYMM gates
does not give us additional power, where a SYMM gate computes an arbitrary sym-
metric function. In fact, Hajnal et.al. [HMP*93] observe that slightly modifying the
proof of Obsérvation 2.8 shows that every symmetric function can be compﬁted by
TC® circuits in depth-2 and linear size. Thus, the class of functions computable by
constant-depth circuits of polynomial size using gates computing arbitrary symmet-
ric functions is precisely TC®. A non-trivial fact is that MAJORITY of n bits can
be computed by a circuit of polynomial size and O(logn) depth that has only binary

fan-in AND/OR gates. To sum up, we have the following refined view:
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NC® ¢ AC® € ACC® € TC? € NC! C L/poly C NL/poly C P/poly

ACCP is the smallest naturally arising complexity class which cannot be sepa-
rated from NP. Yet, no function in ACC® is known whose computation makes ‘clever’
use of modular counting gates. In contrast, several interesting computations exist
with TC®. Modifying the argument of Observation 2.8, one can show that every
symmetric function can be computed in linear size by depth-2 MAJ o MAJ circuits.
With more care, one can sort 7 integers, -each n-bit long in TC®. One even can multi-
ply n integers (n-bits long) and divide® two such integers [BCH86, Rei87]. Although
most researchers believe that ACCP is a strict subclass of NC' (and even of TC), a
substantial number of researchers believe that TC® and NC! are the same (see, for
example, [AW93]). An interesting consequence of such a collapse is that TC® in that
case can be simulated by polynomial size threshold circuits of some fixed depth k.
2.1.3 Polynomials and the Case of Prime Modulus

Although we do not know the power of ACC®[m] in general, a beautiful argument
due to Smolensky [Smo87|, generalizing the earlier breakthrough work of Razborov
|Raz87], pins down the weakness of such circuits when m contains only one prime
factor, i.e. m = p* for some prime p. It shows that ACC®[p¥] circuits cannot compute

the MOD, function in sub-exponential size if p, q are two distinct primes.

6 More recently, in a breakthrough work [HABO2], it has been shown that division
can be done by an ‘extremely uniform’ version of TCP.
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Theorem 2.10 (Razborov-Smolensky) ACC°[p*] circuits of depth d cannot com-
pute the MOD, function using n**Y AND and OR gates.

The work in [Raz87, Smo87] introduced the powerful notion of approximating
boolean functions by polynomials over finite fields for proving Theorem 2.10. In this
thesis, the study of such polynomials plays an important role. VWe introduce this
machinery below. Although [Sm087] worked with polynomials over a finite field Z,
for a prime p, we work with the more general setting of polynomials over the ring Z,,
as in Barrington et.al.[BBR94], where m is an arbitrary but fixed positive composite
integer. _

Consider the space V,, of functions from {0,1}" — Z,,. For each w € {0,1}",
define the function é,, : {0,1}"* — Z,, as 6,(z) = 1 if w = z and otherwise é,,(z) = 0.
Consider the set of functions A = {0w|w € {0,1}"}. It is easy to see that every
function f € V,, can be uniquely expressed as a Z,, linear combination of such
functions. Indeed if m is a prime, then A forms a basis of the associated vector
space.

Another useful set that spans V,, is the set M of all n-variate multilinear mono-
mials, i.e. M = {xs = [Lics®:|S C [n]}, where [n] = {1,...,n}. To see that
M spans V,,, it is enough to show that each element of A can be expressed as a

Z.,-linear combination of the monomials. Indeed, this gets verified by observing that

du(z) = ( H ;) ( H (1 - )

tw;=1 tw;=0
and then expanding out the product as a sum over Z,,. On the other hand, there -

2

are precisely m?" possible linear combinations of such monomials. This is exactly
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the number of functions in V,,. Thus, every f € V,, can be uniquely expressed as
a sum of monomials. Any such linear combination of monomials is formally called
a multilinear polynomial over Z,,. Since in this thesis we exclusively deal with
multilinear polynomials, the term ‘multilinear’ is henceforth omitted but is always
implied. The degree of a polynomial is the cardinality of the largest subset S of [n]
such that the coefficient of xs is non-zero in the polynomial. The ezact or strong
MOD,,-degree of a boolean function is the degree of the unique polynomial over Z,,

expressing it. For example,
AND(z) = 2122 - Zp,

OR(z)=1-— ﬁ(l —z;)
i=1
showing that the strong MOD,,-degree of OR and AND is n, for each integer m > 2.
In order to express MOD, function, when p is prime we recall the following simple
but very useful fact:
Fact 2.11 (Fermat’s Little Theorem) For any prime p and any integer a #
0 mod p, a»~! =1 mod p.

Using this fact, we get for a prime p
MOD,(z) = (z1 + - + )" (mod p)

establishing that the strong MOD,-degree of the boolean function MOD, is a con-

stant, i.e. p — 1. It is interesting to verify the following identity:

MOD,x(z) = z (=1)i5-1 Hzi (mod p).

SC|n):|S|<pk-1 icS
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This implies that the strorig MOD,-degree of MOD, is p* — 1, for any k. A slightly
stronger statement is true. With each symmetric boolean function f, one naturally
associates its spectrum function f : {0,...,n} — {0,1}, such that f(z) = f(z; +
+++zn) for each z € {0,1}". A symmetric f is called periodic with period a precisely
if f(t) = f(t + a), for each 0 < t < n — a. Then, the following useful fact appears
implicitly in the work of Barrington et.al. [BBR94].

Lemma 2.12 For any prime p and any integer k > 1, every symmetric boolean
function f with period p* has strong MOD,-degree at most p* — 1. |

The exact/strong degree of a boolean function is a natural algebraic complexity
measure of a boolean function.

Based on the fact that OR and AND have very high degree (read complicated),
it is reasonable to guess that modular counting with prime modulus alone should
not help compute these high-degree functions. This notion gets verified by an ele-
gant argument below. Before we state the argument, we recall a useful property of
composition of polynomials.

Observation 2.13 Let P(y1,...,¥m) be a polynomial over Z,, of degree r and each
vi = Pi(z1,...,2,) be a polynomial of degree at most s. Then the composed poly-
nomial P(Py(z1,...,%0n),- s Pu(Z1,...,2,)) s a polynomial of degree at most rs in
x;’s.

Theorem 2.14 (implicit in [Smo87]) Constant-depth circuits using only MOD,:
counting gates cannot compute the AND and OR function if p is a fized prime and

k is a fized positive integer.
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Proof: The basic idea is to show that the function computed by a circuit of constant
depth having only MOD,, gates has constant MOD,-degree. The theorem then follows
immediately. We show by induction of depth that the function output by such a depth
d circuit has MOD,-degree at most (p* — 1)¢. The base case of d = 0 is obvious. Let
Y1,---,Ys be the inputs of the output MOD,x gate in a circuit of depth d. Treating
Y1, - - -, Ys a8 our input variables, we know that the output of the circuit is represented
by a polynomial P(yy,...,ys) of degree at most p* — 1. Since each y; is the output
of a depth d — 1 circuit, the inductive hypothesis yields that y; is represented by a

polynomial P; over Z, of degree at most (p—1)¢™*

in the input variables zy, . .., z, of
the circuit. Thus, using Observation 2.13, polynomial P has degree at most (p — 1)¢
inzy,...,Tn- |
Theorem 2.14 is a nice dual to the fact that AND/OR gates cannot compute the
MOD,, function in sub-exponential size and constant depth. The dual we have proven
happens to be much stronger as it is independent of the size of circuits. Circuits of
constant depth composed of prime mod-counting gates are not even universal, i.e.-
they cannot compute all functions even when no ’restriction is imposed on their size.

The key ingredient in the above argument was the fact that MOD,, function has
constant MOD,-degree when p is prime. We note this below:
Fact 2.15 The MOD,-degree of a function computed by a constant-depth circuit
having only MOD, gates is constant.

This fact is indeed very sensitive to the primality of p (or it being a prime

power). As soon as m has two distinct prime factors, the MOD,,-degree of the
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MOD,, functiqn shoots up to linear. As we see later, one cannot even approzrimate
the MOD,,, function well anymore by low degree polynomials.

Let us relax the notion of exact representation of boolean functions to approxi-
mation of them by polynomials. A polynomial P over Z,, approximates a function f
with error € if Pr,[P(z) # f(z)] < € where z is chosen at random, according to a given
distribution. Note that under the uniform distribution over inputs, the constant zero
polynomial is a good approximation of the OR function. On the other hand, tremen-
dous savings is made in terms of degree when one moves from exact to approximate
representations for any distribution over inputs as the following sequence of results
from [Raz87, Smo87] show:

Proposition 2.16 For every z € {0,1}", if we pick a random linear polynomial P
over Zp, then (P(z))” ~ is equal to OR(z) with probability at least a half.

Proof: Picking a random linear polynomial is the same as picking each of its n
coefficients ¢y, ..., cp indepéndently at random from Z, and then letting P(z) =
C1%y + -+ + CuZy. If x is the all zero input, then P(z) = 0 with probability one and
there is no error. Otherwise, there is some % for which z; = 1. For every choice of all
other coeflicients, there is exactly one choice of ¢; that is bad, i.e. makes P(z) = 0.
Thus with probability (1 — 1/p), polynomial (P(z))P~! evaluates to 1 and we are

done. ]

Lemma 2.17 For each 0 < € < 1 and for every circuit C in ACC°[p*] of depth d
and size s, there exists a distribution Ug over polyno%nials over Z, of degree at most
((p* - 1)(10g(s/e)))d , such that for each input x to C, Pr}NUC{P(x) # C(z)] <e.

Proof: For each gate G in the circuit, we do the following:
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If G is an OR gate, pick ¢ = log(s/e) random linear polynomials P, ..., P,
independently. Let y; = (P;(x))P~!. Let Pg be the polynomial that exactly computes
OR(yi,-..,¥:). Note that Pg is a random polynomial of degree at most (p — 1)t =
(p — 1) log(e/s). If G outputs zero, then Pg outputs zero with probability one. If
G outputs one, using Proposition 2.16, P; outputs zero with probability at most
1/(2") = ¢/s. Thus Pg disagrees with G with probability at most €/S.

If G is an AND gate we think of it as the complement of an OR gate using de
Morgan’s law. We choose a random polynomial Py, for this OR gate as prescribed
before and then set P; = 1 — P;. The same conclusions on the degree and error
probability as before for a polynomial corresponding to an OR gate holds for Fg.

If G is a MOD,x gate we replace it by the unique polynomial of degree at most
p* — 1 that exactly computes it.

We combine polynomials for all gates by composing them, layer by layer, to
obtain the polynomial P corresponding to circuit C. Using Observation 2.13, P has
degree at most (p* —1)%(log(s/¢))?. Using the union bound, Py errs with probability

at most ¢ and we are done. [ ]

Corollary 2.18 Let C be an ACC°[p*] circuit of depth d and size s. For each
distribution u on {0,1}" and 0 < € < 1, there ezists a polynomial P of degree at
most ((p* — 1)(log(s/e)))d such that Pr,.,[P(z) # C(z)] <e.

Proof: Follows directly from Lemma 2.17 using an obvious counting argument. B

Corollary 2.18 shows the remarkable savings in degree that approximations can

bring in.
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Remark 2.19 Even though the exact degree of an AND/OR gate is as high as it
can get, functions computed by ACC®[p*| circuits of quasi-polynomial size can be
approzimated with inverse-quasipolynomial error by polynomials over Z, that have
merely poly—logarithmic degree, if p is prime.

However, there are some natural functions that are even hard to approximate.
Based on the fact that modular counting over two different prime moduli are very
different from each other, it is tempting to guess that low degree polynomials over
Z,, do not approximate well the MOD, function when p, g are two distinct primes.
This was formally verified by Smolensky [Smo87]. We recall his neat argument.

-We assume that p, g are two primes such that the field Z, has a non-trivial g-th
root of unity g i.e. g € Z,, g # 1 and g? = 1 mod p (for instance p = 3 and ¢ = 2
form such a pair of primes as a = 2 is a square-root of unity in Z3). The case when
this is not satisfied can be handled like this case by using a simple algebraic trick
that we describe later.

Consider the linear transformation y; = (¢ — 1)z; + 1 for 1 < ¢ < n. This
maps 0,1 to 1, g respectively. Using this map, we naturally identify the space V,
of functions from {0,1}" — Z, with the space W, of functions from {1, g}" — Z,.

Note that

y—1
g—1
is well defined as g # 1 by assumption. Also, for z; € {0, 1},

T; =

g—l__ll (g — 1)+ 1. (2.2)

yl=( ' -Dz+1=
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Using these identities, one can go back and forth between every polynomial P, in the
variables z;’s representing a function f in V, and a polynonﬁal P, in y;’s representing
the function corresponding to f in W,. Further, it is simple to verify that the degrees
of P, and P, are identical. Let R € W, be the function given by [T, v:.

Lemma 2.20 Every polynomial P in variables yi,...,y, can be written as Py =

P, - R+ Py, such that each polynomial Py, P, has degree at most n/2.

| Proof: P, is the sum of all monomial terms of P; that have degree at most n/2.
The Lemma follows by showing that each monomial of degree more than n/2 can
be written as P - R, where P is a polynomial of degree at most n/2. Consider any
monomial M = ], ¢ %, where S C [n] and |S| > n/2. Then, using the definition of
R and (2.2), we see that

M=R(]]v™) =R[H(g-l_1(yi—1)+1)] =R-P

i¢S i¢S
and clearly P has degree less than n/2. |
For any 0 < s < g — 1, (abusing notation) define MOD; to be the function in V,
(W,) that outputs 1 if the number of input bits set to 1 (g) is congruent to s modulo
q and otherwise outputs zero. Then the following is obvious:
Observation 2.21 .
R= qz aM ODZ
i=0
We are ready to prove the main result of this section.
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Lemma 2.22 (Main Lemma, [Smo87]) Every polynomial over Z,, of degree d dis-
agrees with one of the boolean functions in {MOD;[O‘ < i < qg—1} in at least
2™ (1/2q — d/¥g+/n)) input points.
Proof: Recall that every polynomial in V), of degree d has a polynomial P of degree
d in W,. Thus, using Observation 2.21, it will be sufficient to show every such P
differs With R on at least 2"(1/2 — d/Q(+/n)) points.

Let A C {1,9}" be the set of points on which P and R_agree. Applying
Lemma 2.20, every function (Zp)A_is spanned by the set of monomials of degree
at most /24 d. The total number of such functions should therefore be at most the

total number of polynomials of degree at most n/2 + d. Hence,

Pl < pila™ (D)

yielding (using Stirling’s approximation)

n
|4 <21 + i)

NG
Our result follows readily. ' ]

Summarizing what we have seen so far will immediately yield Theorem 2.10
that claims an exponential lower bound on the size of ACC?[p*] circuits computing
MOD,, if p, g are distinct primés.
~ Proof:[of Theorem 2.10] Recall that Corollary 2.18 showed us that every function
computed by such a circuit of size s and depth d can be approximated by a polynomial
of degree O(log(s/€))? that errs at only ¢ fraction of inputs. Thus, if log s = o(n!/?4),

then this says that the approximating polynomial has degree o(y/n) and makes o(1)
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errors. Combining this with Lemma 2.22, we see that one of the MODfI functions
cannot be approximated this well and therefore needs circuits of size 2%"*). On
the other hand, observing that if circuits of size s and depth d can compute MOD,,
then in (almost) that size and depth they can compute MODf] for all ¢ gives us our

theorem. 1

The proof of Theorem 2.14 shows that MOD,x gates for a fixed prime p, are
not universal. On the other hand, MOD,, gates are universal, if m has two distinct
prime factors. In fact in depth-two, circuits comprising only such MOD,,, gates can
compute every function. However, it appears implausible that MOD,, gates, with
m having two or more distinct prime factors, should give us significant advantage
over the case when m has only a single prime factor in computing MOD,, if m, £ are
co-prime numberé. This motivated Smolensky to make the following outstanding
conjecture:

Conjecture 2.23 (Smolensky’s Conjecture [Smo87]) ACC’[m] circuits cannot

no(1)

compute the MOD, function in size 2™, if m, £ are relatively prime numbers.
This beautiful conjecture drives our work on constant-depth circuits having mod-
ular gates. Recalling MOD, <AC° MAJORITY for any fixed , it is simple to verify
that Smolensky’s conjecture implies that MAJORITY ¢ ACCP.
2.1.4 The Weakness of a Single MAJ Gate
Although we do not understand the computational power of even depth-three

TCP circuits, we describe one weakness of MAJ gates that does provide traction in

some interesting cases. Consider a circuit with a MAJ gate at the output computing
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a function f. Intuition suggests that at least one of the sub-circuits C; must ‘approx-
imate’ the function f well if the fan-in of the MAJ gate is small. The simple reason
to expect this is that a MAJ gate decides what the majority of its sub-circuits decide
on a given input. |

We make this formal as follows: Let A and B be subsets of inputs on which
f evaluates to 1 and O respectively i.e. A C f~!(1) and B C f~1(0). Let u be
a probability distribution with support A U B. Then, a function g is said to e-

discriminate f if the following holds:

Pr [g(x)=l|xeA]—31;[g(x)=1!:c€3] > €

T

This notion then highlights the weakness of a MAJ gate through the following
lemma of Hajnal et.al. [HMP*93]
Lemma 2.24 (Discriminator Lemma) Let f be a function computed by a MAJ
gate that gets its inputs from t sub-circuits Cy, ..., C;. Then, for every pair of subsets
A C f7Y(1) and B C f~1(0) and distribution p on inputs, there exists a sub-circuit
C; that 1/t-discriminates f.
Proof: Let pa (up) be the distribution induced on A (B) by u conditioned on event
z € A (z € B). Then, from the definition of a MAJ gate,

and



Subtracting the second inequality from the first, and using the triangle inequal-

ity, along with the linearity of expectation, we have

t
132
i=1

]E:c~uA [Ci(m)] - EZ’"’#B [C’t(x)]

PI;L [Ci(z) = 1|z € A] — Pr [Ci(z) = 1|z € B] ‘
z~ Trp

"2

i=1

Applying an averaging argument to the above yields the lemma. n

To illustrate the usefulness of the Discriminator Lemma, we show the following
simple fact:
Fact 2.25 Depth-two circuits with a MAJ gate at the output that is fed by AND
gates of fan-in at most n — 1 i.e. MAJo AND,,_; cannot compute the PARITY of n
bits.
Proof: Let A and B be set of inputs that have odd and even parity respectively. Let
1 be simply the uniform distribution. It is not hard to verify that the probability of
a given AND gate firing a 1 is unaffected by events x € A or z € B. Consequently,

each AND gate does not e-discriminate PARITY for any non-zero e. |

A combination of the Discriminator Lemma with Héstad’s Switching Lemma
results in a much more interesting fact that was first proved by Green [Gre91]:
Theorem 2.26 Consider a circuit having a single MAJ gate at the output that is
being fed by AC® sub-circuits of depth d, i.e. MAJo ACg. Any such circuit needs size
207 44 compute PARITY.

Proof: The idea of the proof is the following. We hit all AC® sub-circuits with

random restrictions simultaneously just as we did to prove that PARITY requires
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exponential size AC® circuits to compute (Corollary 2.5). We show the following: if
the size of the circuit is 20("1/d), then with non-zero probability, éach restricted AC°
sub-circuit can be replaced by a few AND gates of fan-in less than the number of free
variables. We choose one restriction that satisfies the above. Under this restriction, -
the restricted circuit still computes PARITY (or -PARITY) of the remaining free
variables. Fact 2.25 provides a contradiction finishing the proéf.

This idea is carried out by composing d random restrictions exactly like in the
proof of Corollary 2.5. Hence, if S is the sum of the sizes of all the AC? circuits,
there exists a restriction with the following property: the output of each restricted
sub-circuit C; has a decision tree T; of depth at most logS. The restriction leaves
ng = n/(14(14log S)¢-1) variables free.

We do the following surgery on each T;. For each path P that leads T; to output
1, we create an AND gate whose input variables are exactly the ones that 7} queries
along P. Let there be k; such paths in 7; which then results in k; AND gates being
created, each of fan-in at most log S. The key observation is that, for a given input
assignment, at most one of these k; AND gates outputs 1. Thus, if we feed (k; — 1)
constant 1’s in addition to the k; AND gates directly to the output MAJ gate, then
we compute fhe same function as the restricted circuit. As argued before, Fact 2.25
implies that the fan-in of one of these AND gates is the number of free variables.
Hence,

log S > ny = n/(14(141og S)4 1)

which provides the required bound on S, the size of the circuit. [ |

o1



It remains a very interesting open question to determine whether super-polynomial
lower bounds can be proven on the size of such circuits when the sub-circuits feeding
into the MAJ gate are augmented with MOD,,, gates for any odd m. This remains
open even for prime m. In Chapter 3 and Chapter 7, we consider restricted circuits

with MOD,, gates feeding into a MAJ gate and prove strong lower bounds for them.
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CHAPTER 3
Lower Bounds for Circuits with Modular Gates

In the last chapter, we saw that random restrictions provide a powerful combina-
torial tool for proving (optimal) lower bounds for ACP circuits. Unfortunately, there
does not seem to be any way to apply restrictions to fix a modular counting gate
without fixing almost all of its inputs. This renders the technique ineffective to deal
even with circuits that contain only modular gates. This difficulty was overcome by
the ingenious arguments of Razborov and Smolensky using the “polynomial method”.
The second part of Smolensky’s argument shows that low degree polynomials over
Z, cannot even approximate well the MOD, function, if p,q are distinct primes.
Ironically, this result itself spells doom for the Razborov-Smolensky approach when
modular gates involved have a modulus m that contains two such primes p, q. Iﬁ-
deed, it shows that the MOD,,, function cannot be well approximated by a low degree
polynomial over the ring Z,, when m = pq. This fails the first part of the Razborov-
Smolensky approach to approximate functions computed by ACC°[m] by low degree
polynomials.

No satisfactory method is yet known for general constant-depth circuits with
modular gates of composite modulus. In this chapter, we make progress, continuing a
long line of intensive research ( see for example {BS95, BS99, BST90, Gre04, Gro94b,
Gro98, GT00, HM04, KW91, MPT91, Smo90, ST06, Thé94]). Our strategy is two-

pronged. First we view ACCP circuits as AC® circuits augmented with modular
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gates. Besides being a natural point of view, this is inspired by a similar point of
view on TC being AC® circuits augmented with MAJ gates. This led to a series of
interesting results [ABFR@I, BRS91b, Bei%4, BS94|. A natural question, with this
point of view, then is the following: Can lower bounds be proved if we limit the
amount of MOD,,, gates used? We pursue this theme in Section 3.1 and prove that
few MOD,, gates do not aid an AC° circuit significantly in computing MAJORITY
and MOD,. More precisely, we show the following:

Theorem 3.1 Let m be a positive integer with r > 2 distinct prime factors. Any
ACP circuit augmented with s MOD,, gates requires size ng(il"g’_h") tb compute MAJ
or MOD,, if £ has a prime factor not dividing m.

To get a feel for the meaning of this theorem, note that it implies that AC? cir-
cuits augmented with o(logn) MODg gates, cannot compute MODs or MAJORITY
in polynomial size. It is interesting to note that our Theorem 3.1 complements the
result obtained by [BS94] which shows that AC® augmented with polylogarithmic
number of MAJ gates cannot compute MOD, efficiently. They deal with polylog-
arithmic number of MAJ gates using the result of Beigel |Bei94] which shows that
every circuit with polylogarithmic number of MAJ gates can be simulated by one
with a single MAJ gate, increasing the size of the original circuit by at most a
quasipolynomial factor. No analogous simulation of circuits with a few MOD,,, gates
by a circuit with a single MOD,,, gate is known.

We extend the machinery of polynomials over rings, introducing a new notion
of polynomial representation of boolean functions. Our lower bounds on degrees of

such representations in Section 3.1.1 are of independent interest. These bounds are
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then combined with random restrictions on AND/OR gates to yield Theorem 3.1.
Results contained in this part appeared in joint work with K. A. Hansen in [CHO5].

In the second part, we aim to understand the class of functions computable by
circuits of poiynomial size, comprising only MOD,,, gates and having constant depth.
We denote this class by CC°lm]. Define CC® = U;,52CC%m|. While developing
techniques to prove lower bounds on the size of CCP circuits is a significant step
towards understanding ACC?, Caussinus [Cau96] points out that it is not even known
if in depth-two and linear size CCP circuits can compute SATISFIABILITY when
the modular gates are allowed to be generalized. A generalized MODm gate, denoted
by MODi, has an associated accepting set S C Z,, and outputs 1 iff the sum of the
input bits modulo m is an element of S..

Let the support set of a boolean function f be the set of inputs at which f is
non-zero. Slightly abusing terminology, we call the size of the support set of f as
support. One weakness of a MOD,, gate is that the size of its support set is large i.e.
roughly 2" /m. It is tempting to postulate that constant-depth circuits of small size
cannot quite overcome the weakness of its constituent gates. This intuition leads to
the following conjecture:

Conjecture 3.2 (McKenzie, Peladeau and Thérien [MPT91]) The AND ofn
bits cannot be computed in constant depth and polynomial size by circuits comprising
only MOD,, gates , for any fized modulus m, i.e. AND ¢ CC°.

Observe that this conjecture is the dual of the classical result that MOD,,, cannot
be computed efficiently in constant depth using only AND and OR gates. The AND

function has the smallest support that any non-constant function can have. On the
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other hand, it is not even known if a function with a sub-exponential size support is
in CC°. We dare conjecture the following:

Conjecture 3.3 (Small Support Set) There ezists a function h : N — N, such
that any non-constant function computed by a CC° circuit of size s and depth d has
a support set of size at least W

Recall that Fact 2.15 in Chapter 2 states that the MOD,-degree of functions
computed by CC°[p*] circuits of arbitrary size is a constant. It can be shown that
functions represented by constant degree polynomials over Z, have a support set! of
exponential size. Thus, the Small Support Set Conjecture holds in a very strong
sense for CC°[p*].

In Section 3.2, we make small but non-trivial progress on this conjecture. Specif-
ically, we prove the following: let CC[m] denote the class of functions computable
by polynomial size circuits having only MOD,, gates but arbitrary depth. Then,
Theorem 3.4 For every positive integer m, there exists a positive constant ¢ such
that every non-constant boolean function with support size less than 2"™/c* cannot be
computed by any CC[m] circuit whose Layer 1 has size less than s.

Thérien [Thé94] gives a similar but weaker result that functions with support

a(m)

set of size less than (755

)"Q(T require CC[m] circuits of size s, where a(m) is
a growing function of m. In particular, such results imply that AND cannot be

computed by sublinear size CC[m| circuits. In contrast to Thérien’s technique of

! The result of Péladeau and Thérien [PT88] shows that this continues to hold
even for polynomials over Z,, when m is an arbitrary composite number.
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using Fourier Analysis over finite fields, we combine analysis over complex numbers
with notions from additive number theory. As Smolensky [Smo87] remarked, analysis
over characteristic zero may lead to further techniques being developed by making
usev of metric inequalities.

In the first part of this chapter, Theorem 3.1 makes progress towards Smolen-
sky’s Conjecture. In Section 3.2, we make progress on it from a different direction.
Smolensky’s conjecture implies that CCO[m] circuits require exponential size to com-
pute MOD, when m, £ are co-prime. Proving this will constitute significant advance-
ment in our understanding of the limitations of modular counting. We report the
following progress on this front: let CC,,)[m] denote the class of circuits, comprising
only MOD,,, gates, having sublinear size and arbitrary depth.

Theorem 3.5 Any circuit of type MAJ o CC,, [m] computing MOD‘e requires the
output gate to have fan-in 2™ if m, ¢ are co-prime.

This result considerably improves the previous best lower bound due to Smolen-
sky [Smo90] who showed an Q(logn) lower bound on the number of gates needed
by CCP[m] circuits to compute the MOD, function. We obtain Theorem 3.5, on the

other hand, by showing that functions in CC,,,[m] have exponentially small corre-

o(n)
lation with MOD,. Results in this section appeared in the joint work with N. Goyal,
P. Pudlak and D. Thérien [CGPTO06].
3.1 Circuits with Few Modular Gates
3.1.1 Preliminaries of Polynomial Representation

Recall that Razborov and Smolensky [Raz87, Smo87] introduced polynomials

over finite fields mainly as a tool to analyze circuits with modular gates. Their
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work was closely followed up by a number of other works (see for éxample [A1i89,
Ya090, BRS91a, ABFR94, BT94]), where polynomials (over finite fields, finite rings
and fields of characteristic zero) played a key role in obtaining strong lower bounds
on various circuits. There is a nice (though somewhat outdated) survey of these
works by Beigel [Bei93]. While these early works looked at polynomials mainly as a
tool for obtaining lower bounds, the work of Barrington, Beigel and Rudich [BBR94]
and that of Nisan and Szegedy [NS94] treat polynomials as an independent model
of computation with degree being the most important resource. In this chapter, we
focus on polynomials over the finite commutative ring Z,,, for a fixed integer m.
Interestingly, polynomials over reals show up as an invaluable tool in Chapter 6 to
analyze the communication complexity of boolean functions.

A polynomial P over a ring is a strong representation of a boolean function f
if f(z) = P(z) for all x € {0,1}". Note that this makes sense because rings, by
definition, have 0 and 1 elements. Razborov and Smolensky, for instance, use the
strong representation by polynomials over the special field Z,, where p is prime. As
we saw in the last chapter, each boolean function has a unique strong representation
" by a polynomial over Z,, for any integer m > 2. In order to make use of the full
power of the underlying ring Z,,, this notion can be naturally relaxed in more than
one way:

e P is a one-sided representation of f if f(z) =0<« P(z) =0 (mod m) for all
z € {0,1}".

e P is a weak representation of f if P(z) # 0 (mod m) for some z € {0,1}", and
P(z) 20 (mod m) = f(z) =1for all z € {0,1}™

58



e Pis a generalized? representation of f if there is an accepting set S C Z,, such
that f(z) =1& P(z) € S.

The minimal degree of a polynomial satisfying the above properties is called the
strong, one-sided, weak and generalized ‘MODm-degree, respectively. Note that a
strong representation is also a one-sided representation. A one-sided representation
is also a weak representation as well as a generalized representation (with accepting.
set Zn, — {0}).

Tardos and Barrington [TB98] obtained the following lower bound on the gen-
eralized degree of the OR function.

Theorem 3.6 ([TB98]) Let m be a positive integer with r > 2 distinct prime fac-
tors, and let q be the smallest mazximal prime power divisor of m. The generalized
MOD,,-degree of the OR function on n variables is at least ((qu1 - 0(1)) log n) Fi_l.

Incidentally, this is the best lower bound on the generalized MOD,,-degree of
the OR function for a compbsite m. The best upper bound is due to Barrington,
Beigel and Rudich [BBR94]. They showed that there is a symmetric polynomial over
Z, of degree O(n/") that one-sidedly represents the OR. function, when m has r
distinct prime factors. This is one of a few results that shows that composites have
non-trivial advantage over primes in a reasonable model of computation. It is not

known if the advantage in this case is exponential, but that is certainly not expected.

2 This notion was actually called weak representation in [TB98|, but we prefer to
reserve this name for the representation introduced by Green [Gre00], which is anal-
ogous to the weak degree of a voting polynomial defined by Aspnes et al [ABFR94].
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Improving the lower bound of Tardos and Barrington remains an outstanding open
problem in the field of polynomial representation of boolean functions.

. Although proving strong lower bounds on the generalized MOD,,,-degree of ex-
plicit boolean functions has been hard, the situation is much better when one deals
with one-sided and weak degree. Linear lower bounds on one-sided MOD,,,-degree of
the MOD, function is known when m, £ are relatively prime. This was first proved by
Barrington et.al.[BBR94| and Tsai [Tsa96]. Finally these results were subsumed by
the stronger result of Green [Gre00] on the weak MOD,,,-degree of MOD,. Green’s
bound does not even require m to be fixed or a slowly growing number as needed by
[BBR94, Tsa96]. We point out to the interested reader that Green’s proof-method
is also of independent interest as it uses novel algebraic arguments that could be of
further use for proving degree lower bounds.

Theorem 3.7 (Green [Gre00]) Let m and Eﬂ be positive relatively prime integers.
The weak MOD,,-degree of the MOD, and ~MOD, functions on n variables is at
least Lmﬂ:ﬁJ

Finally, we need a technical Lemma that allows us to move from a polynomial
over Zyx t? a polynomial over Z, with a small blow-up of degree, provided p is prime.
This Lemma is derived from Lemma 2.12 in the last chapter that said that every
periodic symmetric function of period p* has strong MOD,-degree at most p* — 1. .
Lemma 3.8 (Tardos and Barrington [TB98]) Let P be a polynomial of degree
d in n variables over Z, and let S C Zyx be any set. Then there exists another
polynomial P’ of degree at most (p* — 1)d in n variables over Z, such that P(z) €
S= P(x)=1and P(z) ¢ S= P'(z) =0 for all z € {0,1}".
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~ We include a proof for completeness, using ideas from [BBR94].
Proof: Let P have t monomials enumerated in some way. Let y; be a boolean variable
that takes the same value as the ith monomial of P. Despite the fact that the y;’s
are not independent of each other, the boolean function represented by P naturally
deﬁnes a partial function on {0,1}" that is symmetric and pieriodic3 with period p*.
Applying Lemma 2.12, there exists a polynomial P’ in variables y, . .. ,y; over Z, of
degree at most p* — 1 that strongly represents the function represented by P with
accepting set S. As each y; is of degree at most d, composing P’ with the monomials

representing y; results in degree at most (p* — 1)d. |

Remark 3.9 For a prime p, the strong MODp—degree of a boolean function f is at
most (pF — 1) times the generalized MOD,x-degree of f.
3.1.2 Weak Generalized Representation

We introduce a new representation of bpolean functions over polynomials that
is necessary to obtain our lower bounds on the size of circuits. We say P is a weak
generalized representation of f if there is an accepting set S C Z,, and an Z € {0,1}"
such that P(Z) € S and that for all z € {0,1}" we have P(z) € S = f(z) = 1. The
minimal degree of a polynomial satisfying the above property w.r.t. a function f, is

called the weak generalized MOD,,,-degree of f.

-3 Symmetricity in this context simply means that if z and y are two inputs of iden-
tical Hamming weight on which the function is defined, then the function evaluates
identically on them. The notion of periodicity can be likewise extended to partial
functions.
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Observe that all three representations that we discussed in the last section are
special cases of this new notion. Further, for a weak generalized representation we
can assume that |S| = 1. In fact, if P is a weak generalized representation there
exists a € Z, such that P — a is a weak generalized representation with accepting
set {0} of the same boolean function.

We first show a simple consequence of the lower bound on the generalized degree
of the OR function for the weak generalized degree of the MAJ and -MAJ functions.
Theorem 3.10 Let m be a positive integer with v > 2 distinct prime factors, and

let q be the smallest mazimal prime power divisor of m. The weak generalized MOD,, -
1

degree of the MAJ and —MAJ functions on n variables is at least ((5%—1- — 0(1)) log n) T—l.

Proof: We first observe that MAJ and “MAJ have almost the same degree. This is
obvious from the following fact: ifn is odd, MAJ(z) = - MAJ(1—z1,1-2,,...,1—2,)
and otherwise MAJ(zy,...,Zp 1) = —nMAJ(i —z1,...,1—x,_1,0).

We now prove the lower bound on the degree of "M AJ by deriving a generalized
representation of the OR function from a weak generalized representation of ~MAJ.
Let P be a polynomial over Z,, of degree d that is a weak generalized representation
of “MAJ with accepting set S. Let y € {0, 1}" be an input with maximal Hamming
weight such that P(y) € S. Let J C [n] be the set of indices where y has a 1. Clearly,
|J| < n/2. For every i € J set z; = 1 in P. Let P’ be the resulting polynomial
on variables having indices in [n] — J. Then, it is simple to verify that P’ w.r.t
accepting set Z,, — S is a generalized representation of the OR function over at least

n/2 variables. The lower bound on d follows from Theorem 3.6. n
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We combine techniques introducéd in [TB98] and Green’s lower bound on the
weak MOD,,-degree of MOD,. This new combination proves the following result on
the weak generalized MOD,,-degree of MOD,,.

Theorem 3.11 Let m be a positive integer with r > 2 distinct prime factors, let
p* be the smallest mazimal prime power factor of m. Let q be a prime not dividing
m. For all a € Z,, the weak generalized MOD,,-degree of the MOD; and ~MOD;

1
. . . 1 r—1
functions on n variables is at least ((m - 0(1)) log n) .

. The general idea of proving this theorem is to sﬁccessively convert a given rep-
resentation over modulus m to another representation of a similar function of fewer
variables over a new modulus m’, where m’ has one less prime factor than m. Ap-
plying this procedure a constant number of times, we are left with a representation
over a modulus that has just one prime factor. At this point, we apply the following
fact that follows from Theorem 3.7 and Lemma 3.8.

Fact 3.12 The weak generalized MOD,-degree of the MOD, and ~MOD, functions
on n variables is at least le__l) I»Z(qn——l) |, if p is a prime that does not divide q.

The scheme to move down from a given modulus to another simpler one without
losing too many variables was first designed in [TB98] with respect to the OR func-
tion. We suitably modify this to work in our context. The main trick is the following:
let m = p*m’ for some prime p. Then any polynomial over Z,, can be decomposed,
using Chinese Remaindering, into a polynomial over Z,: and a polynomial over Z,,.

We switch off the contribution of the first polynomial towards the representation of

the MOD, function in the following way: identify disjoint sets of variables S?, ..., S?
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such that the polynomial over Z, is reduced to a constant polynomial if variables
in a given set S° are restricted to take the same value. In this case, collapsing vari-
ables in each set S° to a single variable y;, forces the other polynomial over Z,, to
represent, the MOD, function of the new auxiliary variables y1,...,y;. This allows
the induction step of our procedure to be carried out.

With the general idea of the argument described, let us state formally our result
that allows us to switch off a polynomial over a modulus that is a pfime power. For a
subset S C {1,...,n}, let x(S) € {0, 1}" denote its characteristic vector. Conversely
for z € {0,1}™, let o(z) C {1,...,n} be the set of indices where z; = 1.

Lemma 3.13 Let P be a polynomial of degree d in n wvariables over Zy for a
prime p, and let £ be a positive integer not divisible by p. Let t satisfy the con-
dition n > 2(£ — 1) (t PP - d+1- ’L)(:)) Then, there exists pairwise
disjoint non-empty sets S,..., St C {1,...,n} such that for every y € {0,1}* we
have P(3"F_, uix(S%)) = P(0) (mod p*) and furthermore we have |S’| £ 0 (mod £)
for all 1.

Proof: Assume without loss of generality that P(0) = 0. We will find sets S* re-
cursively with |S¢| < s;, where s; = 2(¢ — 1) (1 +(pF-1) Y0, (5)(d - j)) First
pick a set S of s; = 2(I — 1)(d(p* — 1) + 1) variables. Consider the polynomial
obtained from P by substituting 0 for all variables not in S. Since the degree of
this new polynomial is at most d, Fact 3.12 implies that it is not a weak generalized
representation of -MOD, with respect to the set {0}. Thus there is a subset S* C S

such that P(x(S')) = 0 = P(0) and =MOD,(x(S*)) = 0. Hence, |S*| # 0 (mod ¢).
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In the general case, assume that for i < t we have found sets S?,..., S, where
|S7] < s; and |S%] £ 0 (mod £) for all j < i, such that P(Z;1 y;x(S7)) = 0= P(0)
for all y € {0,1}*. Pick a set S of size s;; from the remaining variables. For any
y € {0,1}%, let P, be the polynomial obtained from P by substituting y; for all
variables in S7 for all j, and further substituting 0 for all remaining variables not in
s. |

We show below that f‘here exists a subset S’ of S such that P,(x(S")) = 0
(mod p*) for all y and |S’| Z 0 (mod £). This finishes the argument as we set
Sitl — g,

Let P; be the polyﬁomial over Z,, obtained using Lemma 3.8, that is a stfong
representation of the boolean function of which P, is a generalized representation with
respect to {0}. That is P;(:c) =0 (mod.p) & Py(z) # 0 (mod p*) and Pj(z) = 1
(mod p) & P,(z) =0 (mod p*).

Let R=]], (01} Py Note that R only takes values in {0, 1} modulo p, and that
R(z) = 1 (mod p) iff P)(z) = 1 (mod p) for all y, that is, iff P,(z) = 0 (mod p*)
for all y. Further, by construction R(0") = 1 (mod p). Hence, showing that R is
not a weak representation of -MOD, for variables in S is sufficient for finding our
desired set S’ C S such that R(S’) = R(0") =1 (mod p). However, the degree of R
is 2¢(p* — 1)d. This is unfortunately too big (when i >> d) compared to the size of
S (that needs to be at most s;4;, which grows roughly at the rate of i, to complete
our induction). We overcome this problem below by using an idea of Tardos and

Barrington [TB98|.
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We use inclusion-exclusion sums of P,’s to construct a set of new polynomials
whose degrees are slightly less than that of P,’s, but have identical common zeroes
as the P,’s. More precisely, for z,y € {0,1} say z <y if z; < y; foreach 1 < j <.
For any y € {0, 1}, define polynomial Q, with variables in S over Z,: as follows:

Qy = Z(—1)|z|Pz.

2y

The following claim is simple to verify.
Claim 3.14 Any z € {0,1}%+, is a common zero of polynomials Q,’s (over Zy)
iff it is a common zero of polynomials P,’s (over Zyx).
We prove that the high-degree monomial terms of P vanish in Q).
Claim 3.15 The degree of QQ, is at most d — |y|.
Proof:Jadapted from [TB98|] Consider any monomial M in P. Let y; be 1 and assume
that M does not depend on any variable in S7. Consider 2,2, € {0,1}* such that
they differ only in their jth bit. Clearly, the contribution of M to @, for z; and 2,
cancel each other out. Pairing up points below y in this fashion, it is not difﬁcﬁlt
to see that the total contribution of M to ), zeroes out. Thus, a monomial M has
non-zero contribution to @, only if it contains a variable from each S7 such that
y; = 1. Hence, every monomial term of degree d in P is restricted to a polynomial

of degree at most d — |y| in @, n

As before, using Lemma 3.8, we replace Q) over Z, by @ over Z, such that
Qy(2) = 0 (mod p*) iff @;(z) = 1 (mod p) and @ is 0/1 valued over Z,. We

construct R as before replacing P, by @, ie. R = Hye (0.1} Q- Claim 3.15 yields
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the following bound on the degree of R:

d—1 i
des®) < 64~ Y (}) @i

.

From Fact 3.12 and the choice of s;;; we have that R is not a weak representation
of -MOD,. We can thus find $7*! C S such that R(x(S**!)) # 0 (mod p) and
- ~MOD,(x(S7*1)) = 0. It follows that P,(x(S**!)) = 0 for all y and |S*™!| £ 0
(mod £). To allow the induction to go through, we need that n > Y "7_, s;. Using the
~ combinatorial identity 3¢ (;) = (jfrl), we see that the relationship between n and
t is precisely what we need. n
We are ready to prove our bound of Q((log n)'r“i_l) on the weak generalized MOD,,,-
degree of MOD,, where m is a number having r distinct prime factors none of which
is the prime gq.

Proof:[of Theorem 3.11] Let us recall the idea of the proof: successively use Lemma 3.13
to convert a given representation into another representation on fewer (auxiliary)
variables over a modulus that contains less prime factors. Finally use Fact 3.12
when there is just one prime factor left in the modulus.

Let n = n(m,d) denote the maximal number of variables, for which there is

a weak generalized representation over Z,, of degree d, for any of the MOD[E“} and

—xMODé“} functions. We need to prove that
logn(m,d) < (2(g — 1)*(* — 1) +o(1))d""".

Let m = p'flml where p’fl is a maximal prime power divisor of m different from p*.
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Assume that P is a polynomial in n variables of degree d over Z,, which is a
weak generalized representation of f with respect to {0}, where f is either MODéa}
or —ﬂMODg“} for some a € Z,. In order to apply Lemma 3.13, we need to have
P(0) = 0 which may not be the case. But this is simple to deal with. By definition
there exists Z € {0, 1}" such that P(Z) = 0 (mod m) and f(Z) = 1. If |o(Z)| < §
let P’ be the polynomial obtained from P by setting the variables indexed by o(Z)
to 1. Otherwise, if |0(Z)| > % we can let P’ be the polynomial where variable z; is
substituted with 1 — z; if 1 € 0(Z) and otherwise set to 0.In either case, the number
n' of unset variables in P’ is at least % and P'(0) =0 (mod m).

For a given integer ¢, let t' = (p — 1)t and assume that the following holds:

d ’
n' >2(g—-1) (t’—l—(p’l“l — I)Z(d-i-l——i)(i)) .

Then using Lemma 3.13 we can find pairwise disjoint nonempty sets S,..., 8% C
{1,...,n'} such that for every y € {0,1}* we have P'(Xt_,yix(S") = P'(0) = 0
(mod p*) and furthermore we have |S| % 0 (mod q) for all i. Choosing the most
occurring residue b € Z, \ {0} among |S"| modulo ¢ and extending the sets to
{1,...,n}, we have pairwise disjoint nonempty sets S*,...,S* C {1,...,n} such
that P(Z + Si_,y;x(S9)) = P(Z) = 0 (mod p¥*) for every y € {0,1}%, and |S?| = b
(mod gq) for all <.

If fis —nMODg“}, then P(Z + Zt_,yix(S%)) = 0 (mod m) implies that |o(Z)| +
S 4ilS?| # a (mod q). This further implies Yi_, y; # b~ (a — |o(%)|) (mod g).
On the other hand, if f is MOD(E“}, then P(Z + Zt_;4:x(S%)) = 0 (mod m) implies

that |o(Z)|+ 3., %|S*| = a (mod g). In this case, |o(Z)| = a (mod q) by definition.
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Hence, Y y; = 0 (mod g). By our choice of sets S*, ..., S*, P(Z+Z{_;y:x(S%)) =0
(mod m,) iff P(Z + X%_,3;x(5)) = 0 (mod m). Let @ be the polynomial obtained
from P by setting variables in 0(Z) to 1 and replacing every occurrence of a variable
in the set S* by the auxiliary variable 3;. Combining our observations, we conclude
that Q is a weak generalized representation over Zp,, of either MODéb—l(“"I”(i)l)} or
—vMODgo} on the auxiliary variables, w.r.t. the accepting set {0}.

Thus, setting ¢ = n(ms,d) + 1 (and recall ¢ = (g — 1)t) we have the following
recursion:
)

i=1

n(m,d)/2 <n' <2(g—1) (t’ + (p* - 1) Zd:(d+ 1—1) (t,)> . (3.1)
If r = 2, then m; = p* and from Fact 3.12 we have that |
n(my,d) <2(g—1) (P* - 1)d + bl) :
But (3.1) implies that n(m,d) < O (d2(q‘1)"(m1'd)). Hence,

logn(m,d) < O(logd) + (g — 1)n(my,d) < (2(g - 1)*(p* — 1) + o(1)) d,

proving our result for r = 2.

If » > 2, we have by induction that
log (n(m1,d)) < (2(q — 1)*(0" - 1) + o(1))d" 2.

On the other hand, (3.1) yields that n(m,d) < O ((g — 1)%n(my,d)?). Taking loga-

rithms on both sides,

logn(m,d) < O(1) + d (log(g — 1) + log(n(m4,d)) .
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Plugging in our inductive estimate of log(n(m,, d)) from above, we get
log (n(m, d)) < (2(g — 1)*(* — 1) +0o(1))d" ™,

completing the induction. |

As said before, weak generalized representations are interesting in their own right.
We show that lower bounds on the degree of such representations have interesting
applications for boolean circuits. For ease in describing such applications, we consider
the representation of a boolean function by more than one polynomial. Let f be as
before and let P, ..., P; be polynomials in n variables over Z,,. We say P, ..., Ps
is a simultaneous weak MOD, -representation of f if there exits a y € {0,1}" such
that for each ¢, Pi(y) # 0 (mod m) and if it holds that whenever P,(z) # 0 (mod m)
for all 4, we have that f(z) = 1. The degree of a simultaneous weak representation
is simply the maximal degree of P, ..., P;. The s-simultaneous weak MOD,,,-degree
of f is the degree of the simultaneous weak representation of f that has minimal
degree. |
The following lemma shows, that s-simultaneous weak degree and weak gener-
alized degree are essentially the same, when s is a constant.
Lemma 3.16 Let m be a positive integer and let m = gy - - - q; be the factorization
into prime powers with g; = pf Further, let m' = p;---p; and let f be a boolean
function. The weak generalized MOD,, -degree of f is at most s(q — 1) times the
s-simultaneous weak MOD,,-degree of f, where q is the largest prime power factor of

m.
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On the other hand, the (m — 1)-simultaneous weak MOD,,-degree of f is at most
as large as the weak generalized MOD,, degree of f.
Proof: Let the s-simulfaneous weak degree of f be d. Then, there exists a simultane-
ous weak representation of f by polynomials P, ..., P, over Z,,, where deg(P;) < d
for each i. Let y € {0,1}" be such that P,(y) # 0 (mod m) for all <.

Using Chinese Remaindering, each P; splits into t components P}, ..., Pf where
P! is over Z,; and deg(P?) < deg(P,) < d. From the definition of simultaneous
representation, for each 3, there exists an ¢; such that Pf’ (y) 0 (mod g;;). Applying
Lemma 3.8, let Q;; be the polynomial over Zpi,. of degree at most (g;, — 1)d such
that P¥(z) # 0 (mod g;;) iff Q;; # 0 (mod p;;). For each 1 < k < ¢, consider the
following polynomial over Z,,

Qk =def H Qy;
i =k

Let P’ denote the polynomial over m’' = p; - - - p, that is obtained by combining, via
Chinese Remaindering, the polynomials Qq,...,Q;. Clearly, the degree of P’ is at
most s(g— 1)d. Viewing each element of Z,, to be a t-tuple with the ith co-ordinate
being an element of Z,,, define S = {(a1,...,a:) : a; € Zy, ,a; # 0} C Zpy. Recalling
that each p; is prime, it is not hard to verify that P’ w.r.t. accepting set S is a weak

generalized representation of f. ' [ |

3.1.3 Application to Circuits
In this section, we combine machinery from the previous section with the Switch-

ing Lemma to derive lower bounds on AC? circuits augmented with few MOD,, gates.
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To illustrate how they may be combined, we consider the case of an AC® circuit feed-
ing into a single MOD,,, gate at the output.

Theorem 3.17 (Hansen and Miltersen [HMO04]) An AC° circuit of depth d aug-
mented with a single MOD,, gate at the output, i.e. a circuit of type MOD,, o ACS
needs size 271" tg compute MOD,, for some constant ¢ = c¢(m,{) provided m, ¥
are relatively prime.

Proof: The idea is to hit the AC? part with random restrictions just as we did in
Chapter 2 to prove that AC® circuits cannot compute Parity. Let ‘the size of the AC®
part be S. As in the proof of Corollary 2.5, we choose a random restriction p that is
a composition of d random restrictions p;, ..., ps. Each p; is chosen randomly from
the space of all restrictions, denoted by Rpi , on n;_; variables that leave exactly
n; free. Here, n; = p;n;_, where p; is the probability with which each variable is
left free and ng = n. Setting py = 1/14, p; = 1/(14log§) for i = 2,...,d, and
using Beame’s Switching Lemma, one observes that after applying p1 o ppo---p;
the output of each gate at the ith layer is computed by a decision tree of height at
most log.S. Thus, the output of each sub-circuit feeding into the MOD,, gate can
be computed by a decision tree of height log S under the effect of p. At this point,
Hansen and Miltersen |HM04] make the following crucial observation, showing the
utility of decision trees in this context:

Observation 3.18 A function computed by a decision tree of height at most h has
an ezact/strong representation over Zn, of degree at most h, for every integer m > 2.
Proof: The idea is quite simple. Consider a path in the tree that leads to a leaf

labeled one. Let S be the set of indices of the variables queried along the path. Let
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1 € S. If the path follows the edge labeled 0 coming out of node labeled z; then
set y; = 1 — z;, otherwise set y; = z;. Then, the polynomial [], . y; evaluates to 1
(0) precisely if this path is followed (not followed) by the decision tree on a given
assignmént. Taking the sum of such terms over all paths in the decision tree that

lead to a leaf labeled one, yields the desired polynomial of degree at most h. [ |

Applying Observation 3.18, with positive probability the restricted circuit has
the following property: one can express exactly the output of each gate feeding into
the single MOD,,, gate by a 0/1 valued polynomial of degree at most log S over Z,.
Summing up these polynomials yields‘a one-sided representation (of degree at most
log S) over Z,, of the restricted function on the remaining n/(14(14log S)4~1) free
variables. Setting at most an additional (£/— 1) variables to 1, the restricted function
becomes the MOD, function. Finally, applying Green’s bound (Theorem 3.7).on the
weak MOD,,,-degree of MOD,, we get

log 5 2 [2(41— 1) (14(14l:g5)d‘1 —i 1)J

whence the desired bound on S follows. . ]

The ‘reader may have noticed that usingv Green’s lower bound on the weak
MOD,,-degree is not strictly needed for the above argument. Indeed, it is sufficient
to use lower bounds of [BBR94, Tsa96] on the one-sided MODm-degrgee of MOD;,.
However, Green’s bound has its own advantage. Using it, Hansen and Miltersen
[HMO04] showed exponential lower bounds on the size of such circuits with a single
MOD,, gate that is allowed to appear anywhere in the circuit. Our Theorem 3.1,

significantly extends their result. For instance, it follows from Theorem 3.1 that
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super-polynomial size is still needed to compute the MOD, function even if we allow

o(logn)¥/r1

many MOD,, gates, when m is a fixed composite number having at
most r distinct prime factors. The key to this improvement is the use of our notion
of weak generalized representation of boolean functions.
Proof:|of Theorem 3.1] We first assume that £ is a prime. The case of a composite £
is handled easily at the end by invoking the case of a prime /.

Let C be a depth d ACP circuit of size nibgr%” containing s MOD,, gates
91, -.,9s computing a function f. Assume there is no path from the output of g; to
g; if i < j. For each a € {0,1}* let C® be the MOD,, o AC® subcircuit of C with
g; as output, where every g; for j < ¢ is replaced by the constant «;. Similarly, let
C® be the ACP circuit obtained from C by replacing every g; with ;. We choose a
random restriction p € RY™. We show that for every § > 0, there exists an € > 0
sufficiently small such that with high probability, for every a there are polynomials
pY and ¢°, of degree at most glogr{‘ln, such that C7 (z) = 1 iff pf(z) # 0 (mod m)
and C5(z) = ¢%(z), for all z and for each 1 <7 < s.

Pick such a restriction p. We construct a simultaneous weak representation,
- using s + 1 polynomials, of either f, or —f, as shown next: Pick a mazrimal set
G of the MOD,, gates that are 1 at the same time for some assignment z to the
free variables of the restriction. Define a such that o; = 1 iff g; € G. If there
exists £ € {0,1}¥™ such that all gates in G evaluate to 1 on z and C,(z) = 1,
then {p? | g; € G} U {g*} is a simultaneous weak representation of f,. Otherwise,

{p? | 9; € G} is a simultaneous weak representation of - f),.
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Note that if f is MODy, then f, is MODZZ"‘_{"} for somea € {0,...,£—1}. If f
is MAJ and the number of 0 and 1 assigned by p differ by at most 1 (which happens
with probability Q(n‘%)), we fix at most one extra variable such that f, computes
MAJ. In both cases, we pick ¢ sufficiently small and obtain a contradiction to the
degree lower bounds in Theorem 3.10 and Theorem 3.11, using Lemma 3.16.

It only remains to show that under the effect of p, with high probability, for each
a one can find the polynomials p? for every i < s and ¢®. To show this, we analyze

the effect of p simultaneously on at most 2°(s + 1) different AC? circuits of depth d

1
and size S’ = ns 167" ® obtained by varying o and ¢. This analysis is carried out like
in the proof of Theorem 3.17. We apply a series of random restrictions pq, ..., pqg,

where p; € R

Mi—17

ng; = PNi—1 and ng = n. Set p; = n~ Y24, Let us say that p fails if
there is a MOD,,, gate ¢ such thaf the function computed by one of the subcircuits
feeding into g does not have a decision tree of height g(log n)Y=1) under p. Then,
using Beame’s Switching Lemma, as in the proof of Theorem 3.17, one concludes the

following:

1

1 1 0 %(logn)r_lf
Pr(p fails] < 2°(s + 1)ns0oe™ ™" x (7n-m—(1ogn)m> .
S

This further simplifies, under the assumption s = o(logn)™1, to the following:

r 1 log 1
Pr|p fails| g'e'xp< —In 2(logn)ml [_5_ _ s+logs+O(log ogn)D

— E r
s|2d (logn)=1

S

- ‘exp< ~ In2(logn) 55+ [5(‘5;1‘ T "(I)D'
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4Picking €< % and recalling s = o(log n)r‘i‘l, the probability above vanishes to zero,
as 0 is a constant. We fix the constant § by combining Lemma 3.16 with either
Theorem 3.10 or Theorem 3.11 depending on whether f is MAJ or MOD,.

Finally, we handle the case of a non-prime ¢. Let p be a prime dividing £. It
is sufficient to show that a circuit C' computing MOD, of n variables directly yields
a circuit computing MOD,, of |np/¢| variables. This is done as follows: fix at most
— 1 variables to zero so that the number of remaining variables is a multiple of

Form disjoint clusters of the unfixed variables, each of size ¢/p. Consider only

Wlts WYlts

assignments in which every variable in a cluster is assigned the same way. Circuit C

acting over such clustered assignments is precisely the circuit we need. |

3.2 Circuits with Only Modular Gates

In Section 3.1.1, we noted a connection between s-simultaneous weak represen-
tations and weak generalized representations of boolean functions via Lemma 3.16.
Coupling this with our lower bounds of Q(logn)¥("1 on the weak generalized
MOD,,-degree of MOD,, one concludes that Q(logn)¥/~1 polynomials of con-
stant degree d over Z,, are needed to form a simultaneous weak representation of
MOD,. A similar argument, combining the lower bound for the weak generalized
degree! of NOR and Lemma 3.16, yields identical conclusion about the simultaneous

weak representability of NOR. These conclusions do not rule out the possibility of

4 Tardos and Barrington prove a lower bound on the generalized degree of

OR/AND (Theorem 3.6). The lower bounds translate to the NOR function as well.
Note that for NOR/AND, the generalized degree and the weak generalized degree
are identical.
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AND/OR/MOD, having (logn)Y—1-simultaneous weak degree of one. Our first
technical resx_llt, in this section, rules this out for the case of AND/OR by showing
that o(n)-simultaneous weak degree of OR/AND is more than one.

More precisely, let £ = {6y, ...,0;} be a set of s n-variate linear forms over Z,,.
Such a set forms a linear map L : Z? — Z2,. Conversely, given such a linear map,
there exists a corresponding set of linear forms. For v € Z¢ , let K*(v) represent the
set of points in {0,1}", that satisfy 6; = v; for all 1 < i < s. Then, we show the
following:

Theorem 3.19 For every positive integer m, there exists a positive constant ¢ such
that the following holds. Let L : Z} — Z:, be a linear map. For any v € Z3,, if
K*(v) is non-empty, then
KE)] > 2. 32
PrEE

A simple averaging argument shows that for every £ : Z?, — Z2 , there exists
a v € Z&, such that K%(v) has size at least 2"/m°. Theorem 3.19 is a kind of
~ concentration result in the sense that it shows thaf every K*(v) is of size close to the
average size if it is non-empty. We note that the results in [Thé94], based on methods
introduced in .[BST90], imply a lower bound of (z25)"- 2 on the size of K*(v) when
it is non-empty, and «a is an increasing function of m. This is still exponentially
smaller than the average size.

We next rule out the possibility that o(n)-many linear polynomials over Z, form

a weak simultaneous representation of MOD,. For any b € {0,...,q — 1}, define the
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bth MOD,-residue class of {0,1}" by
My e(b) = {z = (1,...,22) € {0,1}"| Y @i =b (mod &)}
' i=1

Lemma 3.20 (Linear Uniformity Lemma) For all positive co-prime integersm, ¢,
there exists a positive constant v = y(m,£) < 1 such that for all n and linear map-

pings L : 28 — Z3,,

[KE(0) N My o(B)] ~ | K2)] /2] < (29)" (33)

for each b€ {0,...,£—1} and v € Zs,.

The Linear Uniformity Lemma shows that if | K< (v)] is large compared to (2)",
then every MOD; residue class occurs with roughly the same frequency in K*(v).
In other words, intuitively speaking, K t(’u) looks random® to a MOD, counter. A
combination of the Linear Uniformity Lemma and Theorem 3.19 yields the following:
Corollary 3.21 There does not ezist a set of linear polynomials over Z,, of size
o(n) that forms a simultaneous weak representation of the MOD, function over n

vartables, if m, £ are relatively prime to each other.

3 It is worthwhile to note that a set ‘looking random’ to a machine is an important
notion in computational complexity. The machine considered here is weak: just a
MOD, counter. However it is conjectured that ‘efficient construction’ of sets ‘looking
random’ to polynomial size circuits, is possible. If true, such a conjecture has far
reaching implications on derandomization of algorithms.
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Proof: Assume that such a set £L = {f1,...,6,} exists, with s = o(n). By the
definition of weak simultaneous representation, there exists € {0,1}" such that
L(z) = v € Z¢, and v # 0°. Applying Theorem 3.19, | K*(v)] is at least 2" /c® for some
constant c. The Linear Uniformity Lemma then implies that at least Z:(1 — o(1))
elements of M, ,(b) are in K*(v), for each b. As s is sublinear, choosing b = 0 yields

a contradiction to the fact that £ is a simultaneous weak representation of MOD,. i

3.2.1 Fourier Analysis over Abelian Gfoups

Let G be a finite abelian group. We analyze the vector space of functions from G
to the set of complex numbers C, denoted by C%. As the boolean cube is the n-fold
direct product of the two-element cyclic group Zs, a.nalyéis of boolean functions is a
speciai case of this analysis. Of course, it is not necessary to view boolean functions
sitting inside a vector space with an underlying field of characteristic zero. One can
think of them sitting inside a space with the underlying field being finite (as done by
Razborov-Smolensky and several authors later, for instance [BST90, ST06]) or even
sitting inside a module, with fields replaced by commutative rings, as initiated by
[BBR94] and further worked on in the ﬁrsf part of this chapter. In this section, we
use complex numbers as it facilitates the powerful use of metric inequalities. With
the seminal work of Kahn, Kalai and Linial [KKL88|, complex Fourier analysis over
the boolean cube has found numerous applications in computer science and discrete
mathematics. An important difference between these works and Wh;at we do here is

that our G in general will not be the boolean cube, but an m-ary cube i.e. Z,.
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We equip C¢ with the following inner product: let Z denote the complex conju-

gate of z € C. For every f,g € C%, define

(1.9) = g 2 T@a)
e

Below, we find an interesting orthonormal basis for C€, called the Fourier basis.
Let C* represent the multiplicative group of complex numbers, i.e. C — {0}. As
G is abelian, we denote the group operation in G additively. A character x of G
is a homomorphism x : G — C*, i.e. x(a +b) = x(a)x(b), for every a,b € G.
Then, it is easy to verify that x maps the identity of GG, denoted by 0, to the
identity of C*, denoted by 1. Further, if G has order m, then for any a € G,
x(a)™ = x(ma) = x(0) = 1. Thus, x(a) is an mth root of unity, for each a € G.
This immediately shows that the set of characters of G, denoted by G, is a finite set
as G is finite.

Define the product of two characters x1, x2 € G as the following: x; o x2(z) =
x1(z)x2(x). It is easy to verify that x; o xo is indeed a character. The trivial
character, denoted by xo, that maps every element of G to 1 is called the principal
character of G. Further, for each x € G, define the homomorphism x~! by imposing
x"Yz) = x(x)~!. Then, clearly x o x™* = xo. Thus, G with the operation o forms
a finite abelian group with X, serving as the identity. We state two basic properties
of characters: |
Proposition 3.22 The following is true for any abelian group G:

1. Y .cc x() is equal to zero if x # Xo, otherwise is equal to |G]|.
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2. Dually, if x is a non-zero element of G, then eré x(x) is zero, otherwise it

is |G|
Proof: We prove the second property and the first can be proved analogously. For
any = # 0, we claim that there exists a ¥’ € G such that X'(z) # 1. Modulo this

claim, we establish our property. Let S = eré x(z). Then,

! ar)S:Z(x'ox)(:c) =S.

x€G

The last identity holds because the action of x' is just a permutation of G. Thus,
S(1—x'(z)) =0. Thisvimplies S =0 as x'(z) # 0. It remains to prove that indeed
such a x' exists. |

Let the order of z in G be £. Define x/(z) to be any primitive ‘ﬁth root of unity.
This naturally defines a homomorphism from the cyclic subgroup generated by =z,
denoted by G, to (C* This is extended to whole of GG as follows. Let G.a; for
i=1,. .,k = |G| /¢ be the cosets of G,. Set x'(a;) = 1 for all i. This extends X

naturally to all of G. [ |

For any z € G, let §, be the function that maps z to 1 and every other element
of G to 0. Clearly, A = {d,|r € G} forms a basis for C®. Using the second property

in Proposition 3.22, one verifies that the following holds:

0y = —
1G] 7 X~

xGG

This immediately yields the following essential fact:
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Fact 3.23 The set of characters of a finite abelian group G spans the vector space
Ce.
Further,

Lemma 3.24 The set of characters forms an orthonormal basis for the vector space
CC, i.e. the following holds:

1. Any two distinct characters x1, X2 are orthogonal to each other, i.e. (x1,x2) =

0.

2. (x,x) =1 forall x € G.

Proof:
(X1, X2) = ZXl(x X2(z).

zEG

Observe that x;(z) lies on the unit circle. Hence, x;(z) = x7'(x). Thus,
(X1, X2) | G| Z (33)
z€G

Observe that x; # X2 iff 7' o X2 is non-principal. Hence, applying the first property
of Proposition 3.22, we are done. [ |

Combining Fact 3.23 and Lemma 3.24, we obtain the following fact that forms
the basis of Fourier analysis:
Theorem 3.25 If G is a finite abelian group, then every function f € C¢ can be
uniquely ezpressed as a linear combination of the characters i.e. for every z € G,

= flx)x(=) (3.4)

pe;
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where, for every x € G the following holds:
. 1 _—
Flx) =hx) == > F@x(=). (35)
|G| z€G

In particular, this means that G and G have the same order. A more careful
analysis shows that G and G are isomorphic to each other. Hence, (3.5) defines
a linear invertible operator on CC, called the Fourier transform. The values f (X)
are called Fourier coefficients. Interesting information about a function is revealed
by inspecting its Fourier coefficients. The following very useful fact shows that the
Euclidean norm of a function can be easily evaluated from its Fourier coefficients:
Theorem 3.26 (Parseval’s Identity) If G is an abelian group, the following holds
for any f € CC:

E|f@)| = > |fol” (3.6)

xeG

Proof: Using (3.4), one writes

Bl =E| (3 Fuhata)) (X Foaa@ )]

X1€é xzeé

This simplifies to the following:

Elf@= 3 f6a)f0a)ta xe)-

X1,x2€é
Finally, (3.6) is established from the above by making use of the orthonormality of

thé set of characters as stated in Lemma 3.24. [ ]
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We recall below a beautiful and well-known trade-off, commonly referred to as
the Uncertainty Principle, between the size of support set of a function and the size of
the support set of its Fourier transform. Let the support set of a function f, denoted
by supp(f), be the set of points at which the function evaluates to a non-zero value.
Theorem 3.27 (Uncertainty Principle) For any f € C€ that is not identically

zero, the following holds:

|supp(f)| - |supp(f)| > |G|.

Proof: Let || f]leo = max{|f(z)| : z € G}. Then,

_ [supp(£)]
N

Using the Fourier expansion of f given by (3.4), recalling that | x(x)| < 1 for

E,|f(z)]" < | £11%-

any x € G, z € G and using the triangle inequality gives us the following:

112, < (Zlf(x)|)2 =

x€CG

where ||f|] is the ¢ norm of f. Combining things we get

[supp (/)|
|G|

E.|f(z)|" <

A (3.7)
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On the other hand, applying successively Parseval’s identity and the Cauchy-Schwartz

inequality yields the following:

1

E| @) = [F00I 2 —lIFI}- (38)
el = S 00F =
A combination of (3.7) and (3.8) easily proves the uncertainty principle.. |

3.2.2 Davenport constant

We draw on a notion from combinatorial group theory. Consider a fixed finite
abelian group G. The Davenport constant of G, denoted by s(G), is the smallest
integer k such that every sequence of elements of G of length at least k, has a non-
empty Subsequence that sums to zero. The pigeon-hole-principle shows that s(G) is
finite if G is finite. This is because if we have a sequence of length larger than |G|?,
then some element a of G is repeated at least |G| times. The sub-sequence formed
by the first |G| instances of a indeed sums to zero as the order of every element
in G divides |G|. Thus, s(G) < |G|?, which gives a quadratic upper bound on the
Davenporf constant w.r.t. the size of the group.

For specific groups, one can show much better bounds. For instance, if the
group is Z,, then one can show, using the polynomial method, that s(Z,) is p.
Clearly, the lower bound follows by considering the sequence of (p — 1) occurrences
of the identity element. Such a sequence has no non-empty subsequence summing to
zero. The upper bound can be established as follows: Let ay,...,a, be a sequence
of elements from Z,. Assume that no zero-sum subsequence of it exists. In other
words, the polynomial a;z; +- - - +a,z, over Z, evaluates to zero only at one point in

the boolean cube {0, 1}*, which is the all zero point. Thus, applying Fermat’s Little
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Theorem, the polynomial P = 1 — (a;z; + -+ + a,2,)P"", strongly represents the
OR function of p boolean variables over Z,. However, recall that in the last chapter
we showed that the strong MOD,,-degree of OR is p. Hence, P of degree p — 1 is a
contradiction of the above and we are done.

Olson [Ols69a] showed a more general statement: Let G be an abelian p-group
of the form Zyx, @ Zy, ® -+ ® Zysr, where @ denotes direct sum. Olson shows
that s(G) = 1+ Y;_, (p* — 1) in this case. We show below that s(Zr,) is at most
c(m)r, where c(m) is a constant that just depends on m. Before doing that, we recall
another result by Olson [Ols69b] that connects s(G) with the set of boolean solutions
to the equation g;z; + ... + gz, = 0, denoted by K (G, n), where each g; € G.
Theorem 3.28 (Olson’s Theorem) |K(G,n)| > max{1,27+!1-s(C)},
Proof:ladapted from [Ols69b]] We prove this by induction of n. For n < s(GQ) — 1,
the theorem is vacuously true. Assuming it is true for n, we prove it for n + 1.
Let the equation be g7, + - - + gn41%Tn+1 = 0. By the definition of s(G), there is
a subsequence of gy, ..., gs) that has a subsequence that sums to zero. W.l.o.g.,
assume this subsequence to be ¢, ..., g;. Then consider the equation (—g2)za+-- -+
(—g:)xs + gt41%t41 + -+ + gnt1Znt1 = 0. By our hypothesis, this equation on n
variables has at least 2"+1=5(%) solutions. For each such solution point u, we obtain
a solution to the original equation over n + 1 variables in which the value of z; is
set to 1 in the following way: z; = 1, for 2 <7 < ¢, z; is set to the value that is the
complement of its value in u, and for t < ¢ < n + 1, z; is set to its corresponding

value in u. Finally, extend the solutions of gox2 + - - - + gn+1Zn+1 = 0 to our original
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equation by simply fixing z; = 0 to obtain at least another 215 solutions. Thus,

we have at least 2"+2-5(%) golutions in total, proving the theorem. [

3.2.3 Towards large suppqrt

The usefulness of Olson’s Theorem for our purpose is evident from its following
immediate corollary®:
Corollary 3.29 Let L : Z, — Z:, be a linear map. Then, for all v € Z¢, such that
K*(v) is non-empty, we have |K~(v)| > 2n+1-5@m).,
Proof: Let £ = {#,...,0,} be the underlying linear forms, where 6; = a; 12, + - - +
Qi nTn- As KX(v) is non-empty, there exists b € {0, 1} such that ;(b) = v;. Consider
0; = a;1%T1 + + -+ + a; Ty, Where a;; = —a;; if b; = 1 and otherwise a; ; = a;;, for
each 1 <j<nand1l<i<s. Define £'={6,...,0,}. Then, it is straight-forward
to vefify that sets K“(v) and K*'(0°) are in one-to-one correspondence with each
other. The result follows by observing that Olson’s Theorem implies K (0°) has size

at least 2nt1-s(Z5), [

In view of Corollary 3.29, it is sufficient to establish an O(r) upper bound on
s(Zr7.) for proving Theorem 3.19. This is where Fourier analysis over groups of the
form ZZ, comes into play. Let e,,(t) denote the tth primitive m-th root of unity, i.e.

en(t) = exp(%)

6 We have overloaded the symbol s in the statement of Corollary 3.29, but its
meaning is clear from the context.
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where ¢ is the pure imaginary number, i.e. complex square-root of —1. Then, note
that for each s-variate linear form” 6(z) = a;z1 +- - -+ a,z, (with constants a; € Z,
and variable z; taking value in Z,), e, (0(z)) : Z5, — C* is a character of Z5 . Hence,
using the second property of characters from Proposition 3.22, we get®
Fact 3.30 Let S(y) = % Y7, "en(jy). Then, S(y) = 0 if y # 0 (mod m) and
S(y) = 1 otherwise.
We are prepared to establish an upper bound on the Davenport constant of Z7,
that is linear in .
Theorem 3.31 If m is even, s(Z!) < cr, where ¢ = bg—ml_"f);’(’——m—_l) is a constant.
Proof: Let £ = {6,...,0,} be a linear map from Z, to Z , such that K<(0") is
a singleton set, i.e. contains only the point 0°. Let s : Z$, — {0,1} denote the
characteristic function for any set .S C Z;,. Then, using Fact 3.30, one writes
s pm-1
Moy (@) = = H [Z ez, Z n(otei1)| = o T | 3 (ren(-a)enaz;)|
=1 L a=0 j=1 L a=0
Let m = 2¢. Then clearly for a = ¢, we have (1 + e, (a)) = 1 + en(m) = 0 using
a basic trigonometric identity. Thus, noting that |supp(7§)| < |supp(f)| - |supp(d)|,

we see that |supp()g;) < (m — 1)%. Further,

Aceon(x) = [H (% e (ao,.(x)))] Aoy (2).

j=1 a=0

" There are precisely m® such linear forms which is also the size of the group Z .

8 This has a direct proof using identities for summing geometric progressions.
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Thus, one concludes

—_

supp()\Kc(Or)) <m’ supp()\{o,l}s) <m’(m—1)°.

Applying the Uncertainty Principle, we get
m(m - 1)* > |25, = m*

whence the result follows. |

The case of an odd m can be dealt with by the following simple trick. Multiply
each linear form 6; by 2. Viewing each modified linear form to be over Z,,, (instead
of over Z.), we obtain a new map L' : Z5, — Zj,.. It is easily verified that
sets K*(0") and K*(0") are in one-to-one correspondence with each other. Hence,
applying Theorem 3.31 to K (0") yields bounds on K~(0") as well, though with a

very slight worsening of the constant c.

log(2m)

Corollary 3.32 For every m, s(Z!,) < cr, where ¢ = Tog@m)—log (Gr=T)

18 a constant

that just depends on m.
Combining Corollary 3.29 with bounds on s(Z’ ) as given above, we immediately

derive Theorem 3.19 which states that the size of each non-empty K*(v) is at least

2"L

cs”

3.2.4 Uniformity

Our proof of the Uniformity Lemma uses an exponential sum argument. Use of
exponential sums in circuit complexity was, as far as we know, introduced by Cai,
Green and Thierauf [CGT96] and further pursued by Green [Gre99, Gre04]. Green’s

estimates were improved in a breakthrough work by Bourgain [Bou05] and further

89



refined by Green, Roy and Straubing [GRS05]. The focus of these works is to show
that the output of a restricted circuit with a single MOD,,, gate at its output, is
poorly correlated with the function MOD,, when m,{ are co-prime. The idea of
using exponential sums to analyze the output of a circuit comprising several MOD,,
gates is novel to our work.

Proof:|of the Linear Uniformity Lemma] We first write |K*(v) N M, ,(b)| as an expo-
nential sum and then estimate this exponenﬁial sum by grouping the terms appro-
priately. The key to writing this out is the use of the basic identity from Fact 3.30,
that we crucially used also while estimating the Davenport constant of Z], in the

proof of Theorem 3.31.

-1 n s m—1
KON MO = 3 (3T e o )| | TT (& X enli@) — )]
z€{0,1}» c=0 k=1 i=1 j=0

(3.9)

Separating out the ¢ = 0 case, we rewrite the right hand side (RHS) of (3.9) as

s m—1

> %H(%Zem(j(&(w)—w)))
ee{01}n ~ i=1 = j=0
1< i S e
+ Z {Z ez(a(Zxk —-b))} [H—'rr—z Zem(](&(x) —v)) |
ze{0,} V7 a=1 k=1 i=1"" j=0

The first term in the RHS is easily identified to be |K*(v)|/£. Hence we get
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IIK‘(v)ﬂMne(b)l—lKﬁ(v /¢

> { Zee(a Za:k—b)HH Zem (6:(x) —-v,))] | (3.10)

z€{0,1}" a=1

We now estimate the RHS of (3.10). To do this, let us multiply out the terms in the
sum.mand inside the absolute value and then sum the resulting terms. We obtain .
m®(£— 1) terms after multiplying out the terms in the summand, each of which gives
rise to a sum of the form
eﬂ—‘—%ﬂ%"—@ > [em(jlel(x) + . Jsbs(x))ee( sz)} (3.11)
: ze{0,1}n

where (j1,...,7s) € {0,...,m—;1}s,j=j1v1+--~+jsvs and ce {1,...,£~1}.
Bounding the absolute value of the expression in the previous equation is stan-
dard. We include it here for making our proof self-contained. Let the sum j;6;(z) +
.+ 7s0s(x) gi;/e rise to a linear form that is denoted by a;z1 +. ..+ a,z,. Using the
trigonometric identity 1+ exp(i2p) = 2exp(ip) cos(p), and taking absolute values, we

have

n

(B1)] = =TT+ em(@leel)

=1

(3.12)

on ﬁ ( (ai n c))
= cos (m(—+-))|.
mol - m ¢
Let v = MaXq,ez,,; cez,| €08 ((% +£)|. Since, m and £ are co-prime and ¢ # 0, it can

be verified that v < 1. Hence,

2n,yn
msl

1(3.12)] < (3.13)

91



Using the triangle inequality in the RHS of (3.10) and plugging in the bound of
(3.13), we get

|| K5 () N My o(b)] = | KX (0)]/€] < m®(€ - 1)%. (3.14)

3.2.5 Lower Bounds for CC°

In this section, we show that our results on linear forms directly translate into
lower bounds on the number of MOD,,, gates in a CC[m] circuit computing the AND
(or MOD,) function.

Consider a CC[m]| circuit C having s MOD,, gates g1,...,9s. For each gate
gi, we define the linear form 6; = 37, ¢;;z;, where c;; is the number (modulo m)
of copies of input bit z; feeding into g;. We thus get at most s non-trivial linear
forms that give rise to the linear map 6 : {0,1}" — Z7,. One can easily verify that
if 8(z) = 6(y) for z,y € {0,1}", then each gate of C outputs the same value on z
and y. Consequently, C' cannot distinguish x and y. Let V C Z?  be the set of those
_vectors which correspond to C outputting 1, i.e. for every y in V, 8(z) = y implies
that C(z) = 1. If C is computing a non-constant function, then indeed there is a
y € V such that K%(y) is non-empty. Applying Theorem 3.19, we immediately get
KoW)] = 2/
Theorem 3.33 (restatement of Theorem 3.4) The support of a non-constant
function computed by a CClm] circuit of size s has size at least 2"/c®, where c is

a constant for fixzed m.
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Combining Theorem 3.4 with the Uniformity Lemma allows us to conclude that
the support of C is almost equidistributed among the various residue classes of a
MOD; counter. More precisely, one gets that for each b € {0,...,£ — 1},

n n

1C1(1) N Moa(8)] i—su — ey = 21 = o(1)).

e
This already shows that C cannot be computing the MODg function. In fact,
we show that C is very far from computing MOD, in a sense that is made precise
below.
The first step in that direction is the following:
Lemma 3.34 Consider any positive integers £, m that are co-prime to each other
and numbers a,b € {0,...,£—1}. Then, for every CC[m] circuit C of size o(n), we

have

lzr[C(:c) = 1|z € My (a)] — l?cr[C(a:) = 1|z € My, ,(b)]| < 27", (3.15)

Proof: Let C have s gates. As before, we obtain a linear map 6 : {0,1}" — Z¢_ from
C. Recall that V is the set of points in Z$, such that C outputs 1 on input z iff

8(z) € V. Thus, we obtain the following:

| Pr(C(s) = 1Az € Moy(a)] - Pr{C(z) = 1A @ € Mae(B)]]

> [Prl6(z) = y Az € Mae(a)] ~ Prff(z) =y Az € My ()], (3.16)

yev
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Using (3.3) from the Linear Uniformity Lemma and the triangle inequality, one
can easily show that the summand in the RHS of (3.16), for every y € V' is at most
2v", where the constant + is defined in the Uniformity Lemma. Combining this with

the fact that |V| < m® and s = o(n), we obtain
(3.16) < [V]- 29" < m® - 29" = 27U, (3.17)
Since MODy is an almost balanced function, i.e.
|P:cr[a: € M, 4(a)] — er[x € M, ,(b)]| < 279%™,

(3.17) implies Lemma 3.34. [

Recall, from Section 2.1.4 in Chapter 2, that Discrifninator lemma of Haj-
nal et. al. states that if a circuit with a MAJ gate at the output computes a function f
and the fan-in of the output MAJ gate is s, then for every A C f~!(1) and B C f~1(0)
at least one of the sub-circuits feeding into the output gate (1/s)-discriminates f.
Lemma 3.34 above implies that CC[m] circuits of sublinear size do not discrimi-
nate well the MOD, function. In particular, choose A = M, 4(1) C MOD;l(l) and
B = M,4(0) C MOD,*(0). Then it is easy to verify that Lemma 3.34 along with
the Discriminator Lemma yields the following:
Theorem 3.35 (restatement of Theorem 3.5) Any circuit of type MAJoCC,,,\[m]
computing MOD, requires the output gate to have fan-in 2°X™ if (m,f) = 1.
Thus, unless we take the majority vote of exponentially many CC,,,\[m] circuits, we
cannot compute MOD,. This is the sense in which CC,,[m] circuits are far from

computing MOD,.
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3.3 Conclusion

In the first part of this chapter, we have demonstrated a new connection between
the degree-complexity of a boolean function in a natural notion of representation
by polynomials and its size-complexity in constant-depth boolean circuits with few
MOD,, gates. Moreover, we have proved new lower bounds on the degree-complexity
of MAJORITY and MOD;,. These lower bounds on the degree-complexity are of in-
dependent interest, in addition to making progress on Smolensky’s Conjecture via
Theorem 3.1. Improving the lower bounds on the degree-complexity of OR is long
overdue. Our work makes it an even more compelling research direction. For in-
stance, a polylogarithmic lower-bound on the generalized MOD,,,-degree of OR will
result in a superpolynomial lower bound on the weak-generalized MOD,,-degree of
MAJORITY (recall proof of Theorem 3.10). This will show that AC® circuits aug-
mented with a polylogarithmic number of MOD,, gates, require superpolynomial
size for computing MAJORITY (proof of Theorem 3.1).. No such lower bounds are
known:

In the second part of the chapter, we made progress towards Smolensky’s Con-
jecture from another direction by considering circuits comprising only MOD,, gates.
We proved that in sublinear size they cannot compute the AND and MOD, func-
tion if m and ¢ are co-prime. This involved the development of new techniques by
novel combinations of Fourier analysis over complex numbers, exponential sums and
additive number theory. We believe that these ingredients will be useful in making

“further progress. In particular, it is interesting to find out if these techniques can be
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combined to yield superlinear lower bounds on the size of depth-two circuits com-
prising only MOD,, gates. No such bound is known for any explicit function in NP
if the output gate is a generalized gate.

Finally, we point out the following: subsequent to our work, Hansen [Han06a]
has recently improved Theorem 3.1 w.r.t. computing MOD,. Hansen uses the break-
through work of Bourgain [Bou05] on estimating the correlation between functions
computed by low-degree polynomials over Z,, and MOD,. We remark that in the

second part of Chapter 7, we simplify and improve Bourgain’s work.
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CHAPTER 4
Multiparty Communication with Input on the Forehead

Here, we fdrmally define the model of computation that will occupy us in the
next two chapters. Yao [Yao79] introduced the two party model of communication
to investigate the mathematical structure and inherent complexity theoretic issues of
distributed computing. He endowed his players with unlimited computational power
in terms of time and space, in order to entirely focus on the communication needed
among players as a resource. This model has inspired great research and too many
beautiful results to cite. Indeed, the book by Kushilevitz and Nisan [KN97] provides
an excellent exposition of this subject now known as Communication Complexity
and surveys some of the diverse applications of this theory.

Our object of interest lieé in a generalization of Yao’s two player game to multiple
players that was first defined by Chandra, Furst and Lipton in [CFL83]. In order
to appreciate the subtleties of the multiparty model and its key differences from the
two player version, we begin with the latter.

4.1 Two Player Games

In the basic model, there are two players often called Alice and Bob with unlim-

ited computational power, who want to compute a certain function f : ¥* — {0, 1}.

The n input letters are partitioned into two sets' X4 and Xp that are respectively
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assigned to Alice and Bob. The.objective is that players devise a procedure before-
hand so that given an arbitrary assignment to input letters, each player collabora-
tively determines the output of the function on the given assignment. They do so
by communicating with each other according to a mutually agreed upon protocol.
The protocol proceeds by players taking turns, as specified by the protocol, in com-
municating with each other. We assume that the players communicate with each
other using the binary alphabet {0,1}! . The cost of a protocol is the number of
bits that the players communicate on the worst assignment of input letters. The
communication complexity of a function f with respect to the above partition is the
cost of the best protocol for computing it.

Notions of determinism, randomization and non-determinism manifest naturally
in this setting. In a deterministic protocol IT, what Alice (Bob) communicates gets
uniquely determined by the assignment to letters in X4 (Xp) and what has been
communicated thus far by both players, called the communication history. The
output of II on any assignment is completely determined by the communication
history at termination of II. We say II computes f precisely if f(z,y) = H(z,y) for

each z € ¥X4 and y € 5.

! This is w.l.o.g. as a protocol utilizing a fixed finite alphabet can be easily simu-
lated by one with a binary alphabet with the cost blowing up by at most a constant
factor.
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In a randomized protocol, players are allowed to toss coins. In other words,
players jointly select a random string r at the beginning and then follow a determin-
istic protocol that proceeds assuming Alice has input (z, ) and Bob has (y, ), where
z,y are the original input assignments of Alice and Bob respectively. A randomized
protocol is further allowed to err. Such a protocol II computes f with advantage € if
Pr[f(z,y) = II{z, y)] > 1/2+ ¢ for every z,y, where the probability is taken over the
random coin tosses r of II. This is called the public coin model as the random string
is accessible to each player without communication. In the private coin model, each
player selects a random string that is not shared with the other play’er.. As shown by
Newman [New91], any protocol with public coin tosses can be simulated by a private
coin protocol where the cost blows up by essentially an additive factor of at most
O(logn). In this work, unless otherwise mentioned, protncols are assumed to toss
coins publicly. |

In a non-deterministic protocol, the prover, called ‘God’, furnishes a proof string
s claiming that f(z,y) = 1. There is a deterministic verification protocol, denoted
by II, that players then use to verify the proof. More precisely, a non-deterministic
protocol computes f if for every' z,y such that f(z,y) = 1, there exists a proof string
s such that II(z,y,s) = 1. Further, if f(z,y) = 0, then II(z,y,s) = 0 for all s .
The cost of the protocol now includes the length of the proof string and the bits
communicated by players to verify the proof.

Let D(f), R(f) and N(f) denote respectively the deterministic, randomized
with advantage € and non-deterministic communication complexity of the function

f. Then, trivially for every f : L*4 x £X2, its deterministic, non-deterministic and
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randomized communication complexity is at most min{|X4|, | X |} log(X)+ 1 as the
player‘ with the minimum number of input letters communicates his/her input to
the other, who just outputs the value of the function. Further, from the definitions
above, we see that N(f) < D(f) and R(f) < D(f) for any f and e. The example
below shows that both non-determinism and randomization can offer huge savings
in the cost of a protocol for computing some functions when compared with their
deterministic counterparts.

Example. Define the Equality function EQ : {0,1}" x {0,1}* — {0,1} as
EQ(z,y) = 1 iff z = y. The complement? of the equality function, called non-
equality, is denoted by NEQ. It is not hard to verify that the best determinis-
tic protocol essentially forces one player to communicate all its bits to the other
ie. D(EQ) = D(NEQ) > n+ 1. On the other hand, the following simple non-
deterministic protocol to compute N EQ provides exponential advantage in terms of
cost: Let ‘God’ provide a logn bit string indicating an index 7 such that z; # y,.
Alice just communicates the value of the bit x; to Bob who can now verify if z; and
y; are different. The cost incurred is logn + 2, whence N(NEQ) = O(logn).

Randomization offers more dramatic cost savings for NEQ. Alice and Bob
jointly choose a random n bit string r. Alice sends the bit representing the inner
product modulo 2 of her input and the random string, i.e. {(z,7)s, and Bob simply

verifies if (z,7)2 # (y,7)2. The cost of this protocol is just two bits. Its correctness

2 It is trivial to verify that the deterministic and randomized communication com-
plexity of a function and its complement are the same.
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follows from the fact that if z and y are different, then with probability exactly
a half Alice and Bob detect it, i.e. Pr.[(z,7)s # (y,7)s] = 1/2 for each z # y.
Note that this pfotocol errs only on one side, i.e. if z = y, then Alice and Bob
give the right answer with probability one. Further, the protocol can be repeated
a constant number of times to reduce the error to any desired constant. Thus,
R(NEQ) = R(EQ) = O(1) for any fixed e.

Before we move on further, let us make formal the last step of repeatihg a
protocol enough number of times to boost its probability of success. |
Observation 4.1 Let Il be a randomized protocol that achieves adbantage € to com-
pute a boolean function f. Then, the protocol II' that runs c.log(2/4) independent
instances of II and outputs the majority answer, achieves an advantage of at least 0
to compute f.

This implies that the cost of aéhieving any fixed advantage fdr computing a
function is within a constant factor of the cost of achieving any other fixed advantage
for computing the same function.

4.1.1 Lower Bound Techniques for Deterministic Protocols

A very convenient object for understanding the complexity of a function f is
its communication matriz M;. This is a boolean matrix that has |3|¥4l many
rows, one for each possible assignment to letters in X4 (the input letters of Alice),
and |Z|X8l many columns, one for each possible assignment to Bob’s assignment.
Mylz,y] = f(z,y). |

For a deterministic protocol II, we say that an input pair (ml,_ 1) is indistinguish-

able from the input pair (z,,y2) if II. generates the same communication history for
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both pairs. The basic weakness of deterministic protocols stems from the following
simple observation on indistinguishability of input pairs.

Observation 4.2 If a deterministic protocol Il does not distinguish (z1,y1) from
(Z9,y2), then in fact it finds the following four pairs indistinguishable from each
other: (x1,1), (%2, Y2), (Z1,y2) and (z2,31).

This motivates the following definition: a set R C £X4 x ©X# is called a rectangle
if for any two pairs (z1,¥1), (z2,y2) € R we have that each of the four pairs (z;,y;)
isin R for ¢,7 € {1,2}. Further, a rectangle R is called monochromatic (w.r.t. a
function f) if f evaluates to the same value at each element of R. Noting that a
protocol of cost ¢ can generate at most 2° communication histories, Observation 4.2
immediately yields the following nice combinatorial fact: |
Fact 4.3 A deterministic protocol Il for f of cost c partitions the communication
matriz My into at most 2° many monochromatic rectangles.

One convenient way of utilizing the above fact to prove lower bounds lies in the
following idea: For obtaining a lower bound of ¢ on the deterministic communication
complexity of a target function f, we exhibit a set of input pairs of cardinality 2¢
such that no two element from the set can lie in the same monochromatic rectangle.
If they do, the protocol gets fooled to output a wrong answer on some input. Such a
set is called a fooling set. The above method is called the fooling set method to prove
lower bounds on the deterministic communication complexity of a function. The
method is best illustrated by two text-book examples from [KN97]. For simplicity,

let us assume that we have the binary alphabet i.e. ¥ = {0,1}.
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Example 1. We show that the equality function E() is hard for deterministic
protocols by an application of the Fooling Set Method. Choose the set of pairs of
equal strings along the diagonal of the matrix Mgg. In any partition of Mgqg into
monochromatic rectangles, no two such pairs can lie in the same rectangle. Thus, we
need at least 2" rectangles to partition Mgq, one for each element of its diagonél.
Additionally, we need at least one more rectangle to cover the zeroes of Mg, whence
D(EQ) =n+1.

Example 2. Define the function DISJ by saying DISJ(z,y) = 1 iff there is
no co;ordinate i such that both z,y have their ith bit set to 1. This is called the
Disjointness function as one may view z,y to be characteristic vectors of subsets of
{1,...,n}. DISJ then evaluates to 1 precisely if the two subsets are disjoint. It
is a simple exercise to show that the set of pairs of the form (z,z¢) form a fooling
set, where z° is the characteristic vector corresponding the complement of the set
represented by x. As the size of this set is 2" and we additionally need at least one
rectangle to cover the zeroes of Mprsy, the Fooling Set Method yields D(DISJ) =
n+1. /

4.1.2 Lower Boundé for Randomized Protocols

So far we have assumed that deterministic protocols are forced to give always
the correct answer in contrast to their randomized counterparts that are allowed to
err. Introducing errors of a different nature, this condition can be relaxed to allow
error in deterministic protocols giving rise to the important notion of distributional
communication complezity of a function. Given a probability distribution x on the

set of inputs YX4 x ¥XB 3 deterministic protocol II computes f with advantage €
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with respect to p if Pri; .. f(2,y) = H(z,y)] > 1/2 + €. The (e, p)-distributional
complexity of f, denoted by D*#, is then the cost of the best deterministic protocol
computing f with advantage ¢ under distribution u.
It turns out that the two notions of randomized and distributional communica-

tion complexity are not unrelated.
‘Fact 4.4 For every distribution p on X4 x ©X2 and for every ¢ > 0, we have
Dek(f) < Re(f).

Proof: Consider a randomized protocol I of cost ¢ computing f with advantage
€. Notice that for each possible choice of its internal random string r, Il induces a

deterministic protocol II,, where II,.(z,y) = II(z,y,r). Now by the definition of II,

D_Prr]- Pr [ (,y) = f(z,y)] 2 1/2+e

This immediately yields that there exists at least one r for which II, has advantage

at least ¢ and we are done. [ ]

In fact, the relationship between randomized and distributional complexity of a

function is more tight, as shown by Yao? [Yao83:

Re(f) = max{D*¥(f) | u is a distribution}.

3 Yao shows that such a relationship between the randomized and distributional
complexity of a function holds much more generally and is not specific to the model
of computation considered here. In particular, it is easy to verify that the proof of
Fact 4.4 is a simple counting argument, not using any specifics of the model.
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Fact 4.4 turns out to be quite helpful for proving lower bounds. The basic idea is that
we find a convenient distribution x and argue that all deterministic protocols with
low cost will fail to attain the required advantage against our target function. Since
we have to argue against deterministic protocols that are allowed to err, we deﬁne
the following measure called discrepancy: 'given a rectangle R C xXaxXs .deﬁne its
discrepancy under p w.r.t. a function f, denoted by discff (f), to be the absolute
value of the difference between the probability mass of inputs in R where f evaluates
to 1 and the probability mass of inputs in R where f evaluates to 0. We recall the
familiar algebraic trick? of mapping the boolean set {0,1} to the set {1, —1}. Under

this mapping, discrepancy has the following nice expression:

() = | 3w BCEY

(z,y)eR

Hence, 0 < discy(f) < u(R). Discrepancy thus measures how far a rectangle
is from being monochromatic in the following sense: It attains the value of the
probability mass p(R) of the rectangle itself when R is monochromatic or completely
unbalanced and is zero when the rectangle is perfectly mixed or balanced. The
discrepancy of f under y is simply the maximum over discrepancies of all rectangles,

i.e. max{disc}(f)|R is a rectangle}. The reason we are interested in this quantity

4 A more general form of this trick was used in the Razborov-Smolensky polyno-
mial method described in Section 2.1.3.
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is the following probabilistic variant of the fooling set method, widely known as the
Discrepancy Method.
Lemma 4.5 (The Discrepancy Method) For every distribution u and any func-

tion f,

R(f) > D*(f) > log ( d2( f)). - (42)

Proof: Consider any deterministic protocol I that computes f with advantage at
least € and cost c. Let R be the set of rectangles into which II partitions Mjy.

Clearly |R| < 2°. Assume, w.l.o.g, f and II evaluate to 1/-1.

2¢ <

> fa,y)(z, y)u(, y)

(=,y)

<)

ReR

> fe 9z, y)u(z,y)|-

(z,y)ER
Noting that II is constant-valued over every R € R and recalling the definition of

discrepancy in (4.1), we are done by the following:

2 < Y disci(f) < 2°disc,(f). (4.3)

RER
]
The Discrepancy Method thus boils down to finding a convenient distribution
p such that that the discrépancy of the target function f is indeed very small. This
yields good lower bounds on the communication complexity of f, using (4.2). Chor
and Goldreich |CG85| used this method to obtain optimal lower bounds on the

Inner Product (IP) function that is defined on the boolean alphabet as follows:
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IP(z,y) = Y} ziy; (mod 2). They showed that the discrepancy of IP was at
most 1/2" under the uniform distribution. This estimate along with (4.2) yields
the following strong bound: any randomized protocol computing I P must have cost
Q(n) even if the advantage ¢ is an inverse sub-exponential function i.e. ¢ = 1/2°.

However, the discrepancy method does not yield strong lower bounds (better
than poly-logarithmic) for several natural functions including Disjointness. Razborov
[Raz90], simplifying the earlier work of Kalyanasundaram and Schnitzer [KS92], de-
velbped a method proving linear lower bounds on the communication cost of protocols
computing the Disjointness function with a constant advantage. Razborov’s subtle
calculations roughly show that under an appropriate distribution u, every rectangle
that assigns large weight to its set of disjoint points must also assign large weight to
its set of non-disjoint points. As y assigns constant weight to the set of all disjoiht
points, an averaging argument yields the desired bound.

Another interesting method based on tools from information theory was de-
veloped in Bar-Yossef et.al.[BYJKS04] that refined the earlier work of Chakrabarti
et.al. [CSWYO01]. This technique introduces a new measure called the information
cost of a protocol. The idea is to measure the information that the communica—
tion history of a protocol reveals about inputs given to the player. Variants of this
method have found more applications in both classical and quantum communication
complexity (see for example [JKS03, JRS03]). We, however, do not delve more into

Razborov’s method or the information theoretic method as no generalization of them
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are yet known®

that extend to the multiparty NOF model of communication which
is our chief interest here. Extending either of these techniques to the NOF model
remains an exciting challenge.

4.2 Number/Input in the Forehead model

One natural extension of Yao’s two player model to k players is to partition
the set of input letters into k sets and associate each such set with a player with
every player having precisely one set. This results in the weakening of the model as
k grows. For instance, in a partition where the size of each such set is equal, every
player has no information about (k—1)/k fraction of the input. However, this model,
called the ‘Number in the Hand’ model, has important applications to other areas
like data streams (see for example [CCMO08, CKS03]).

On the other hand, we consider a model, introduced by Chandra, Furst and
Lipton [CFL83], that is a significant strengthening of the two-player model. This is
achieved by assigning inputs to the foreheads of players instead of assigning them to
their hands. More precisely, let the sets X7, ..., Xi form a k-wise partition of the in-
put letters as before. Player i’s forehead is assigned X; and i sees every other forehead
except his own. Just as in the last section on two players, k-player communication
protocols can be defined for computing functions f : £%1 x --- x ¥* — {0,1}. The
cost of a protocol, as before, is the worst case cost. Generalizing the notions from the

last section, we denote by Di(f), Nx(f), R.(f), and Dy*(f) respectively the k-party

5 Information theoretic techniques have had some success for restricted multiparty
protocols (see for example [Cha0O7a, GP08]).
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deterministic, non-deterministic, randomized and distributional (with advantage €)
communication complexity of f.

In order to illustrate the power of the new model, we consider the following:

Example. Recall the Equality function EQ from the last section. We gen-
eralize it: Let EQi(z1,...,zx) = 1 precisely if all the k strings are equal i.e.
Ty = 23 = -+ = . While FQ,; was shown to be hard for two players, it is
easy for k players to compute EQy i.e. Dy(EQg) = 2 for any k > 3. To see this,
note that if two strings z; and z; differ, then Player k, for each k # 1,7, spots this
difference without communicating with others. Thus, the protocol simply boils down
to the following: Player 1 announces if he/she spots any difference followed by Player
2 doing the same.

Remark 4.6 The key feature of the ‘Input on the Forehead’ model that gets used in
the protocol for k-wise Equality is that every (k — 1)-tuple of input bits is accessible
to some player.

The multiparty model differs from the two party one in another key feature: the
information available to two players overlap a lot. The following example illustrates
the fact that this feature provides substantial computational power to multiparty
protocols as opposed to two-player ones where there is no overlap of information.

Example. Generalize the Disjointness function deﬁngd earlier to k-wise Dis-
jointness, denoted by DISJy : ({0, 1}")’c — {0,1}, in the following way: consider
the k£ x n boolean matrix A formed from the k input strings z,, ...,z in the argu-
ment 6f DISJy by placing z; in the ith row of A. Thus, Ai,j] = z;[j]for 1 <i <k

and 1 < j < n. Then DISJy(x1,...,xr) =qer 1 iff there does not exist a j such
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that Afi,j] = 1for all 1 <4 < kie. A does not contain an all-one column. Recall
that we showed, by a simple application of the Fooling Set Method, DISJ, requires
2(n) bits to be communicated by two players employing the best deterministic pro-
tocol. Grolmusz [Gro94a] found a surprisingly powerful protocol for k-players that
implies the complexity of DISJ, decreases exponentially with £. We describe this
remarkable phenomenon using an elegant protocol due to Pudlak [Pud06].

Each boolean string that can appear in a column of A is called a pattern. Hence,
the set of all patterns is the boolean cube {0, 1}*. Given an instance of A, we assign
weights to the vertices (patterns) and edges of the cube in the following way: a
pattern’s weight is the number of times it occurs in the columns of A. The weight
of an edge e connecting patterns u,v is the sum of the weights of « and v. Edge e
is in the ith direction if patterns u, v differ only in their ith bit. Hence, the value of
the bit held by the ith player of a column is irrelevant for determining if the column
contributes to the weight of an edge in the ith direction. Thus, the following holds.
Observation 4.7 The weight of each edge in the ith direction can be determined
precisely by the ith player without any communication.

Lemma 4.8 Given the wez’ght of pattern u, there is a deterministic k-player protocol,
denoted by I1,,,, of cost O(klogn) that outputs the weight of pattern v.

Proof: Fix a path P = ejey---¢; of length ¢ < k in the cube from w to v. Let the
sequence of patterns visited along this path be vgv; - - - v; with u = vg and v = v;. The
players compute the weight of v by successively computing weights of vy, v, ..., v
along P in the following way: assume the weight of v; is known. Let the edge e going

out of v; be along the jth direction in the cube. Then, by Observation 4.7, Player j
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knows the weight of e and thus can compute the following: weight(v;,;) = weight(e)—
weight(v;). As weight(v;;) < n, he can announce this weight by communicating logn
bits. Repeating this step ¢ times,. once for every vertex in the path P, we determine

the weight of pattern v. |

Note that protocol II,, exploits one of the key features of the k-party model:
every (k—1)-tuple of inputs is accessible to some player. Recall that the same feature
was used by the constant cost protocol for EQ). |

Lemma 4.8 shows that if players can somehow determine the weight of some
pattern in low cost, then‘ they can find the weight of the all-one pattern with little
additional cost yielding a protocol to compute Disjointness efficiently. In order to do
so, let us note the following:

Observation 4.9 For any assignment of inputs, there is always one pattern whose
weight is at most n/2.

Observation 4.9 is utilized to yield a protocol that finds a pattern and its weight.
Lemma 4.10 There is a deterministic protocol, denoted by Ilgem, of cost at most
O(n/2F + k + logn), involving just the first two players, that for every assignment
outputs a pattern and its weight.

Proof: Both Player 1 and Player 2 see foreheads of other players that make up the
sub-matrix of A, obtained by deleting the two rows occupied by the foreheads of
Player 1 and 2, of size (k - 2) x n. Denote this sub-.métrix by A’. Players 1 and

2 choose (without communicating among themselves) the pattern in A’ with least
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weight® . Denote this pattern by u. Applying Observation 4.9 to A’, we conclude
that weight(u) < n/2%-2. Player 1 communicates the bits held on the forehead of
Player 2 at positions that correspond to the columns at which pattern u occurs in A’.
This requires weight(u) many bits of communication. Player 2, reading the forehead
of Player 1, then determines the weight of the four patterns 00u, 0lu, 10u and 11u.
‘He chooses one of these patterns and communicates both his choice and its weight

using at most (logn + k) bits. n

Remark 4.11 The overlap in information accessible to Player 1 and Player 2 is
 playing a key role in the protocol e

The protocol for computing DISJ, is easily derived by running I, followed
by II,1», where u is the pattern whose weight is determined by Igtart. This yields
Dy(DISJy) = O(n/2* + klogn). Thus, logn players can compute Disjointness
communicating only O(log”n) bits!

In fact, noting that the above protocol is easily modified to count the number
of occurrences of any pattern in the input matrix A, one concludes the following
slightly more general fact: Any function that just depends on the number of occur-
rences of a certain pattern in its input can be computed efficiently by logn players.
More formally, let D : {0,.- -+ ,n} — {0,1} be any predicate. For any pattern u of
length k, define GP™ : ({0,1}")* — {0,1} by insisting GY"*(z1, ..., 2x) be equal to

D(weight(u)), where weight(u) is the number of columns containing the pattern u

6 In case of a tie, they resolve it according to a predetermined, mutually agreed-
upon preference rule.
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in the matrix A of size k x n induced from the k binary strings zi, ...,z as before.
Then, Di(GP™) = O(n/2* + klogn).

The Generalized Inner Product function, which is the k-party analogue df Inner
Product, is obtained by setting D as the parity predicate. The result of Babai, Nisan
and Szegedy [BNSQ2] shows that the above upper bound on GkD "“ is nearly tight for
the Generalized Inner Product (more generally for any mod-counting predicate D as
shown by Grolmusz [Gro92]) by providing almost matching lower bounds of 2(n/4%).
Techniques introduced in Chapter 6, provide alternative proofs of such lower bounds
in addition to deriving lower bounds for predicates D for which earlier methods did
not work.

The lower bounds cited above degrade exponehtially fast with the number of
players k. It is of significant interest to find bounds that do not degrade that fast.
This is wide open and no explicit function is known for which we can prove non-trivial
lower bounds for more than logn players. The difficulty of obtaining such bounds
may be partly explained by the following surprising connection with‘ACCO. Building
upon the work of Yao [Yao90], Beigel and Tarui [BT94] showed the following strong
result:

Theorem 4.12 ([BT94]) For every function f computable by ACC® circuits of
quasipolynomial size, there ezists a multivariate polynomial P of degree at most poly-
logarithmic in n, over the ring of integers, that satisfies the following:

e There exists a cbnstant c such that the absolute value of the coefficient of every

monomial of P is at most 20€™°,
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o There erists a symmetric function SYMM, such that for every x € {0,1}",
f(z) = SYMM (P(x)).

The relevance of the above characterization of ACC? for multiparty communi-
cation complexity is evident from its following consequence:
Theorem 4.13 For each function f in ACC®, there ezists a constant ¢ such that f
can be computed in polylogarz'thmic_ cost by (logn)® players, under every partition of
input bits, using a deterministic protocol.
Proof: Consider the polynomial P over integers that computes f in the sense de-
scribed in Theorem 4.12. Let d be the degree of P. Assume there are d + 1 players.
Then, for any partition of input bits, every monomial of P can be computed by some
player without communicating with others. The players accordingly divide the mono-
mials into d+1 classes so that Player ¢ can compute every monomial in Class ;. Each
player announces the sum of the contribution made by monomials in his/her class,
weighted by their coeffcients in P. Observe that there at most 24! many monomials
in a class and recall that each coefficient in P has absolute value at most 2(1°8™)°
Thus, each player communicates at most log(29+120%6™)°) = (d + 1) + (logn)° bits.
Hence, in total, d (d + 1 + (logn)®) bits of communication suffice. As d = (logn)
and both ¢, c are constants independent of n, the cost of the protocol is merely
polylogarithmic. |
4.3 Stars and Cylinders Intersections

The first thing to note is that the notion of a two-dimensional communication
matrix from the two-party model naturally generalizes to a k dimensional array or

tensor in the k-player model. More precisely, given f : XXt x --- x &% — {0, 1}, M;
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is the boolean communication tensor, where My{z1, ..., zg] is simply f(z1,...,Zk),
where z; € £%i.

We say that a set of k elements of X1%*Xk forms a star if it is of the form:

(Z1, @2, -+, Zk), (T2, Thy o+ 3 The)y - -+ (T1, T2, -+ o, T

where the z; are values for the input letters in X; for each i with x; # z}. In that
case, we call (z1,z2,..., ;) the center of this star. Further a set S is called star-
closed if for every star in S, the center of the star is also in S. Then, the following
observation, first made in [CFL83], explains the importance of star-closed sets for
multiparty communication complexity.

Observation 4.14 For any deterministic protocol 11, the set of inputs that lead I1
io follow a given communication history is star-closed.

Proof: Observe the following fact about deterministic communication protocol II: at
any point in the protocol, player 7 cannot distinguish between inputs (z1, ..., Z;, ..., Zk)
and (xy,...,x;,...,2;) conditioned on the fact that the communication history gen-

7

erated by both inputs until that point in the protocol is the same. Thus, if the k

- ! ! !

inputs (1,22, ..., k), .-, (1, -, &iy ooy Th)s - -+, (X1, - - ., Tk—1, Z;) Share the same
communication history 7, then II communicates 7 on the input (zi,...,zx) as well.
| |

An immediate but useful corollary of the above is the following generalization

of Fact 4.3:
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Corollary 4.15 A deterministic k-party protocol 11 computing a function f parti-
tions the communication tensor M; into at most 2° f-monochromatic star-closed
sets.

However, unlike Fact 4.3 of two party protocols, Corollary 4.15 is much harder
to use in practice. In particular, there are no known super-polylogarithmic bound
(i.e. bounds of the form (logn)“®) for any explicit function using Corollary 4.15
directly, even for three players. Chandra et.al.[CFL83|, introducing the method,
used it in conjunction with Ramsey” Theory, to obtain a super-constant bound on
the ‘exactly-N’ function, denoted by E%. Let E% (z1,...,zx) be 1 iff Zle z; =N,
where each z; is a n-bit integer from the set {1,...,N}. Chandra et.al. char-
acterized the deterministic k-party communication complexity of E¥ in terms of
a combinatorial number xi (N) defined as follows: xj (N) is the smallest num-
ber of colours needed to colour the set {1,..., N}*~! such that for each point
(21,...,z¢) and each integer A # 0 the following property holds: the k points
(@1, Th1), (T + A T2y - Trs1), (T, T2+ Ao Zhm1)y ey (T1, Xy - Tp1 + A)
do not receive the same colour if they all lie in {1, ..., N}*~1. While [CFL83] showed
that Dy (E%) = © (log xx(N)), determining good upper and lower bounds for x (N)
remain open problems. However, one knows that xx (V) = w(1), whence the super-

constant lower bound on E% follows.

7 See the book by Graham et.al. [GRS90] for an excellent introduction to Ramsey
Theory.
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Before moving on, we note that we make further use of Ramsey Theory and
Corollary 4.15 in the next chapter.

In the following discussion, we view star-closed sets in a different way. This point
of view was introduced in the seminal work of Babai, Nisan and Szegedy [BNS92] and
very effectively used along with the discrepancy method to obtain the first strong
lower bounds on multiparty communication complexity of an explicit function.

A subset S; of £X1%*Xk is a cylinder in the ith dimension if membership in
S; is independent of the ith coordinate, i.e. if for all z1,z2,...,2, and any z; we
have (z1,...,%i,...,2) € S; iff (z1,...,2},...,2k) € S;. We say that S is a cylinder
intersection if S = ﬂ S; where S; is a cylinder in the ith dimension. A cylinder in-
tersection is called }S-z:zkonochrorriatic if the function f evaluates to the same value on
every input instance in the intersection. The following lemma shows the equivalence
of cylinder intersections and star-closed sets:

Lemma 4.16 A set S C XX %*Xx s g cylinder intersection iff it is star-closed.
Proof: Tt is not hard to verify that every cylinder intersection is star-closed. Let us

establish the other direction. Given a star-closed set S, define
¢t ={(z1,..., i, ..., zp) € EX Xk | 3z, (T, Ty, Tk) € S}.

Then, one verifies that ¢% is a cylinder in the sth direction. Further, every element in
S is in ¢% for each 1 <4 < k. Consider any (z, ..., ;) that lies in the intersection
of all these cylinders. For each i, the definition of ¢% gives a point (z1,...,Z;, ..., T¢)

in S. The center of k such points is precisely (z,... ,ack) that must be in S as it is

star-closed. Thus, we have established S = N¥_; ¢%. n
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Remark 4.17 We can restate Corollary 4.15 in terms of cylinder intersections in
the following manner: Let f : XXXk — {0, 1} be a function of k-inputs. Any
k-party communication protocol of cost ¢ computing f partitions the input space into
at most 2¢ f-monochromatic cylinder intersections.
4.3.1 Discrepancy of Cylinder Intersections

The notion of discrepancy over rectangles generalizes to discrepancy over cylin-
der intersections in an obvious way: for a distribution p over LX1**Xk the discrep-
ancy of function f over a cylinder intersection C, denoted by discf (f), as before is
1/-1 valued. If ¢ is the 0-1 valued characteristic function of C then we can factorize it
as Hf=1 ¢*, where ¢' is the characteristic function of the cylinder in the ith direction.

- It is straightforward to verify that one can rewrite things as follows:

disc 1 (f) = |Eonnf (2)9 (2) - -~ ¢"(2)), (4.4)

where z is a random k-tuple chosen according to x from XX1*~*Xk  This way of
expressing the discrepancy of a cylinder intersection is very convenient for the ma-
nipulations done to estimate discrepancy of concrete functions in Chapter 6.
Maximizing discik( f) over all cylinder intersections C' yields the discrepancy of
f over the distribution . An argument, identical to the two player case, immediately

gives rise to the Discrepancy Method for multiple players:
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Lemma 4.18 (The Multiparty Discrepancy Method) For every function f and

every distribution p and every integer k > 2,

R(f) = DE(f) > log (a‘s‘fem) (45)

4.4 Communicatidn Complexity Classes

Communication complexity is like a mini-world, existing independently inside
the bigger world of Acomputational complexity. Indeed, for each major complexity
class, one can define its corresponding communication complexity analogue. This
was first done by. Babai, Frankl and Simon {BFS86] for the two-player model. This
can be naturally extended to the k-player model. We define directly the multiparty
‘complexity classes below. |

The ﬁrst‘thing to do is to fix our notion of “efficient” protocols. Noting that
every function has communication complexity at most n, conventionally protocols of
poly-logarithmic cost have been viewed as efficient. This naturally gives rise to the
classes P, NP;® and BPP;® as the class of those boolean functions that have effi-
cient k-party deterministic, non-deterministic and randomized (bounded advantage)
protocols respectively. The class coNP}’ is the class of functions whose complement
have efficient non-deterministic protocols. While other complexity classes can be
defined in the same spiriﬁ, we focus on these classes in this work.

We summarize some of the results stated earlier in terms of these complexity
classes. The communication complexity of the function non-equality shows that P5°

is strictly contained in NP5’. The same function also witnesses the separation of P5°
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from BPP5. Further, Equality separates BPP5® from NP5° by showing that the for-
mer is not a subset of the latter. On the other hand, the communication complexity
of non-Disjointness (through the results of [BFS86, KS92, Raz90]) complements this
by showing that NP5 is not a subset of BPP".

While for two players we have nice explicit separations of complexity classes, such
separations, until recently, were not known for three or more players. In Chapter 6,

we obtain explicit separation between BPP}® and NP’, for every k = o(loglogn).
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CHAPTER 5
Languages with Bounded Symmetric Multiparty Communication
Complexity

5.1 Introduction

In the previous chapter, we discussed the communication complexity of a func-
tion with respect to a fixed partition of its input letters. In this chapter, we look ét
variable partitions of the input and restrict ourselves to deterministic protocols' . The
k-party symmetric communication complezity of a function f, denoted by DP™(f),
is defined to be fhe deterministic communication complexity of f with respect to the
worst partition of its input. Variable partition models are mainly motivated from
their applicability in proving lower bounds in other models of computation with no
explicit mention of communication. Typically, such applications proceed by deriving
an eﬂicieﬁt communication protocol for f, with respect to every partition of its input
letters, from the efficient algorithm for computing f in the given model. Efficient al-
gorithms for f in the model are then ruled oﬁt by showing that f has large symmetric
communication complexity. '

We obtain new insight into the multiparty model By focusing on functions that

have bounded k-party symmetric complexity, where k > 3 is an arbitrary constant.

! In this chapter, every protocol is deterministic unless stated explicitly otherwise.
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A priori, there is no reason to guess that the communication complexity of a func-
tion has any bearing on its time-space complexity. Yet Szegedy [Sze93] shows that
languages with two party bounded symmetric communication complexity can be
computed economically by very shallow ACC® circuits. This surprising result is a
consequence of the many beautiful characterizations of the class of such functions
obtained in [Sze93]. A natural direction to pursue is to generalize these character-
izations to the k-party model. Such an effort was initiated in the work of Tesson
[ Tes03].

We however show in Section 5.2 that there are languages with arbitrarily large
uniform circuit complexity whose three-party communication complexity is bounded
by a constant even for the worst-case partition of the input instances among the
players. An analogous result for non-uniform circuit complexity is also derived. These
languages are constructed using specially crafted error-correcting codes. Because of
these results, we cannot expect to obtain characterizations of languages of bounded
symmetric multiparty complexity that are as nice as those for the two-player case.

As remarked and exemplified in the previous chapter, the following key features
of the multiparty model can be used to devise clever protocols: first, every input bit
is seen by several players, second, every (k — 1)-tuple of input positions is seen by at
least one of the k players, and third, all players know the partitioning of the input,
i.e., they know which positions they actually see. In the next section we show that
this combination of features gives three-party protocols enough power to compute
functions of arbitrarily high circuit-complexity in constant communication for every

possible partition. If we remove the first two properties then we obtain essentially
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the multiparty “input in the hand” model which is computationally even weaker than
the two-party communication model. To understand how crucial the last property
is, we consider two restricted classes of languages/functions in which this advantage
is in some sense taken away.

First, we consider in Section 5.3.3 languages with a neutral letter [BS95, BIL*05],
i.e. a letter which can be inserted or deleted at will in an input word without affecting
its membership in the language. We show that every such language having bounded
k-party communication complexity for some fixed k is regular. On the other hand,
it is worth noting that the class of regular languages with a neutral letter that have
constant k-party communication complexity has been nicely vcharacterized by Tesson
[Tes03] in terms of algebraic properties of their minimal automaton. Our results
indicate that the presence of a neutral letter is a severe handicap in the multiparty
game and suggests that it might be easier to prove communication complexity lower
bounds under this assumption.

Finally, in Section 6.5.2, we use the Generalized Van der Warden Theorem to
prove that for any fixed k > 3 the symmetric functions that can be computed in
bounded k-party communication complexity by k-players are exactly the symmetric
functions that have bounded 2-party complexity.

5.2 Functions with bounded multiparty complexity but high time/space
complexity : .

In this section, we exhibit languages of arbitrarily large circuit complexity but
with bounded multiparty communication complexity. For a language L and an en-
coding C : {0,1}* — {0,1}*, we denote by C(L) the set {C(z); = € L}. We prove

that for a suitably chosen error-correcting code C, any language L is such that its
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encoding C(L) has bounded multiparty communication complexity. We will choose
C such that the corresponding encoding and decoding function are efficiently com-
putable and hence the time/space/circuit complexities of L and C(L) will be closely
related.

As a warm-up, we start with the unary encoding Cy defined as follows: for
z € {0,1}*, Cy(z) = 0°10%" =1, where n is the length of z and z is interpreted
as an integer between 0 and 2" — 1. Hence, Cy encodes bit strings of length n into
strings of length 2™ having a single 1 in a one-to-one way.
Lemma 5.1 For any language L and integer k > 3, D;*"(Cy(L)) < 3.
Proof: Without loss of generality £ = 3. On an input w that is split among the
three parties, the players need to verify two things: 1) whether w is a valid encoding
of some string z, and 2) whether the corresponding string z is in L. To verify the
first property, the players only need to check whether at least one of them sees a
1 and whether none of them sees two or more 1s. They can communicate their
observations regarding this using six bits in total. Next, one of the players who sees
| the one, determines the unique string z with Cy(z) = w. He can do this solely based
on the position of the one since he knows how w is partitioned. This player can also
determine whether z € L and hence w € Cy(L). He communicates his conclusion to
the other parties by sending one more bit. Hence in total players exchange at most
seven bits. The protocol can be optimized so that each player simultaneously sends

one bit of information for the total of three bits. n

The disadvantage of the unary encoding is its inefficiency: because codewords

are exponentially longer than the words they encode, we cannot provide eflicient
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reductions between L and C(L). A better encoding can be obtained by concatenating
Reed-Solomon codes with the unary encoding. In the 3-party scenario at least one
of the parties has on its forehead at least a (1/3)-fraction of the input. Hence, if
the chosen encoding has the property that from an arbitrary (1/3)-fraction of the
input the whole word can be reconstructed (assuming the input is an encoding of
some word, i.e., assuming that the input is a codeword) the other two parties can
reconstruct the whole input and verify whether the parts on remaining foreheads are
consistent with such an input. With the proper choice of parameters Reed-Solomon
codes have this property.

Let n be a large enough integer, m = flog,3n] and d = n/m. Any string
z € {0,1}" can be interpreted as a sequence of d elements from GF[2™]. Define
Py to be the degree d — 1 polynomial over GF[2™] whose coefficients are given by
z. Define the Reed-Solomon encoding by Crs(z) = pz(90)pz(91) - - - Pz(g3d~1), where
GF[2™ = {90, 91, - - - ,g2m—1}, and we will encode each g; as a binary string in {0,1}™.
Furthermore, define the concatenation of the Reed-Solomon encoding with the unary
encoding by Crsou(z) = Cu(pz(90)) - - - Cu(Pz(934—1)). Codewords thus consist of 3d
blocks of 2™ bits (corresponding to the 3d symbols of the Reed-Solomon encoding)
with each block containing exactly one 1. Thus, Crs.y encodes strings of length n
into strings of length O(nz); Furthermore, Crsoy can be encoded and decoded in
polynomial time and so the languages L and Cgrsoy(L) are polynomial-time equiv-
-alent. Note that the decoding task at hand does not require us to perform error

correction in the usual sense: we simply want to identify if an 'mpﬁt is a codeword
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(since we reject all words that are not codewords) and we only care about decoding
true codewords.

Lemma 5.2 For any language L and any k > 3, DY (Crsou(L)) < 6.

Proof: Without loss of generality £ = 3 as all but the first two players can pretend
they are the same party. Let m = [log,3n] and d = n/m. To check if an input
is a codeword, the players can easily check that there are never two 1s in a single
block of input bits. They cannot, however, verify at constant cost that each of the 3d
blocks contains at least one 1 since this task is essentially the partition problem whose
complexity we lower bound as superconstant through Lemma 5.11 in Section 5.3.2.
We proceed differently: an input w of length 3d - 2™ can only be a codeword if at
least one player (say Player 1) has on its forehead at least d 1’s and this player can
be identified with three bits of communication. These d 1’s determine d eleménts of
GF[2™] hence players 2 and 3 can each privately reconstruct from them the unique
degree d — 1 polynomial p that coincides with these elements. Players 2 and 3 now
know that if the input is a codeword then it must be the one corresponding to
p and player 2 can check that the bits on player 3’s forehead are consistent with
that hypothesis while player 3 can similarly cross-check the input bits on player 2’s
forehead. If this cross-checking procedure is successful, player 2 can determine the
unique z such that p, = p, verify x € L and send the result to all parties. Overall,

only six bits of communication suffice to decide if the input is from Crsoy(L). n

As an immediate corollary to this lemma and the fact that the complexity of

Crsou(L) is polynomially related to the complexity of L we obtain:
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Corollary 5.3 The class of languages with bounded multi-party communication com-

plexity contains langudges with arbitrarily large uniform time and space complezxity.
In order to obtain also languages with essentially the largest possible non-

uniform circuit complexity we ,need codes that map n bits into O(n) bits. We can

obtain such codes by concatenating codes provided by the following lemma with the

unary code Cy.

Lemma 5.4 For any integer n > 1, there ezists a linear map Cg : {0,1}" —

GF [8]39" such that every w € Cs({0,1}") is uniquely determined by any one-third of

its coordinates.

.Proof.'

To prove the existence of our code we only need to prove the following claim.
Claim 5.5 For c > 37, with high probability a random matriz over GF(8] of dimen-
sion n X cn has the property that each sub-matriz of dimension n x cn/3 has rank
n.

For any n’ < n, n’ vectors over GF [8] of length cn/3 span less than 8" different
vectors. Thus the probability that a new random vector of length cn/3 falls into
the space spanned by these vectors is at most 8”~<*/3. Hence, the probability that a
random matrix over GF'[8] of dimension n by cn/3 is of rank less than n is at most
n.gn-en/3, (We pick the vectors step by step and at each step we fail to pick a linearly
independent vector with probability at most 8"~*/3.) Thus the expected number of
singular n by cn/3 sub-matrices of a random matrix of dimension n by cn is at most

n-8n—en/3. (;:;S) Since (;;73) < 2H(1/3)en if ¢ > 37 then 3—c+H(1/3)c < 0 and the
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expected number of singular sub-matrices is 27" for some ¢ > 0. The claim follows.

Consider the concatenation of the code Cg and the unary code and denote it
by Csoy. Recall the argument that showed that the three-party communication
complexity of the language Crsouy(L) is constant, for every language L. Replacing
Reed-Solomon codes in this argument by Cs shows that Csoy(L) has constant three-
party communication complexity for any L. Further, notice that Cs is over the fixed
alphabet GF[8]. Thus, Cs.u(L) maps n bits to O(n) bits. As a consequence, we
obtain the following:

Corollary 5.6 For any k > 3, the class of languages with bounded k-party commu-
nication complezity contains languages with 2™ circuit complezity.
5.3 Two Special Classes of Languages

We consider two natural classes of functions for which the coding trick of the
previous section fails. A letter e € ¥ is said to be neutral with respect to a language
L if for each word the addition or deletion of the letter e does not affect its mem-
bership in L i.e. for all u,v € ¥* we have uwv € L iff uev € L. The neutral letter
hypothesis was helpful in obtaining length lower bounds on bounded-width branch-
ing programs [BS95], was central to the Crane-Beach Conjecture [BIL*05, LTTO06],
and the recent work of Roy and Straubing [RS07].

L is called a symmetric language if for each word w permuting its letters does not
affect its membership in L i.e. the membership of w in L is completely determined

by the count of the occurrences of each letter of the alphabet in w.
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If a language is symmetric or has a neutral letter, then membership in L cannot
depend, as in Lemma 5.1, on having specific value on a specific input position.
Intuitively, the feature of the model 2 that each player knows the exact position in
the input word of every letter that he sees, should not help deciding languages haviﬁg
a neutral letter and symmetric languages.

The rest of this section is devoted to proving the following two theorems that
corroborate the above intuition:

Theorem 5.7 If f is a function with a neutral letter such that D™ f) = O(1) for
some fized k, then f is regular. |
Theorem 5.8 If f : 3" — {0, 1} is symmetric and has bounded k-party symmetric
communication complezity for some fized k, then in fact f has bounded two-party
symmetric communication complexity.

Both proofs use notions from Ramsey theory that we quickly review.

5.3.1 A Primer on Ramsey Theory

“In any collection of six people, either three Qf them mutually know each other
or three of them mutually do not know each other”.

These are the opening lines of the excellent book by Graham, Rothschild and
Spencer [GRS90] on Ramsey theory which is a classical branch of extremal combina-
torics. These lines highlight the fact that there cannot be perfect chaos. Whenever
a system ‘is large enough, interesting structure emerges. Perhaps a little surpris-

ingly, this conceptually simple principle has found powerful applications in diverse

2 This feature is also present in the two-party model.
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areas of mathematics like number theory, algebra and geometry and of course, com-
putational complexity. The first application of Ramsey theory to communication
complexity was made in the work of Chandra et. al. |[CFL83] that introduced the
very model of ‘Number in the Forehead’.

Let C}* denote the n-dimensional cube over ¢ elements, i.e.
CT =def {(.’L‘l,. . .,.Z't) |l‘i € {0, . .,t - 1}}

Such cubes are fundamental objects appearing in many different contexts. We how-
ever want to view cubes purely combinatorially. The ¢ points v',...,v* € [t|" are
said to form a combinatorial line in CP* if the v¥’s are distinct and for each 1 < i.<n

either all the v’ agree on co-ordinate ¢ (i.e. v] = vf/ foralll1 < j <j <t)orwe
have vf = j for all 1 < j <t. As an example, points 00,01, 02 form a line in CZ and
points 020, 121,222 form a line in C§. Every function x : C* — {1,...,c} is called a
c-colouring of C} as each point of the cube receives one of ¢ colours. A set of points
P is rendered monochromatic by x if every point in P is coloured the same by x.
The following result shows that any colouring of a sufficiently large dimensional cube
has an interesting monochromatic set of points.

Theorem 5.9 (Hales-Jewett [GRS90|) For any integers c,t there exists an in-
teger n = HJ(c,t) such that every c-colouring of Cr generates a monochromatic
combinatorial line whenever n’ > n.

The Hales-Jewett Theorem is a central result of Ramsey theory from which

several other results in the subject follow. It is not too difficult to derive from it
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the famous Van der Waerden’s theorem? that says every finite colouring of the set
of positive integers generates monochromatic arithmetic progressions of arbitrarily
large length. Let £, > 0 be any number such that we want to find a monochromatic
arithmetic progression of length ¢ when the positive integers are r-coloured. Map
the first " integers bijectively into C;* where n = HJ(r,t) by writing each integer
in base t. Any r-colouring of the first ¢t numbers thus induces a r-colouring of C7.
By the Hales-Jewett theorem there exists a monochromatic line. Van der Wareden’s
theorem follows by merely observing that any line in C?, in our mapping, corresponds
to an arithmetic progression of length . |

What we need is the following generalization of Van der Waerden’s theorem to
highef dimensions, whose short proof also follows from the Hales-Jewett theorem.
Theorem 5.10 (Generalized Van der Warden) For any integers c,k,m > 0,
there is an integer R = GVW (c, k, m) such that for each c-coloring of {0, ..., R}*,
there exist 29,...,79 < Rand 1 < d < R such that all points of the set P =
{(z1,. 7)) : x =20 +dy;,0 < oy < m} have the same color and P C
{0,..., R}-. | |
Proof: Let V = [m]* = {(v1,.--,¥)]0 <y < m}. Order the elements of V in some
arbitrary way so that V = vy, v,,..., v with t = mF. Let N = HJ(c,t) and let
R = m". Consider the map v : CN — [R]* given by 9¥(zy,...,Zn) = Zf_’__l mN iz,

where z; is viewed as a vector in V. Note that v is bijective. Thus a c-colouring

3 Note that Van der Waerden's theorem is the starting pdint of such deep theorems
as Szemeredi’s theorem that has stimulated strong research recently.
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of [R]* induces a c-colouring of C¥. Applying the Hales-Jewett Theorem 5.9, we
see that a monochromatic line exists in the c-colouring of C}V. It is not difficult to
verify that the image of this line under ¢ is the monochromatic set P that we need

to establish Theorem 5.10. |

5.3.2 Communication Complexity of Partition

We define the k-wise partition problem, denoted by Part,. It takes as input a
k x n Boolean matrix A and we think of the i*" row of A as representing a subset
z; of [n] = {1,...n}. We define Part,(A) =1 iff each column of A contains exactly
one 1 (i.e. the z; form a partition of [n]). It is clear that for the k-party game the
worst in;;ut partition for Party is the one where player P; holds the bits of row 7 on
his forehead.

Below, we recall a super-constant lower bound, obtained by Pudldk and Tesson
[Tes03], on the k-party communication complexity of Party using the Hales-Jewett
Theorem. This is interesting in its own right and useful for our analysis. We recall
the argument below, that is reminiscent of the argument employed by Chandra et.al.
to obtain super-constant lower bounds on the ‘exactly-N’ function (see Section 4.3
of Chapter 4).

Lemma 5.11 ([Tes03}) For all k, Dy(Party) = w(1).

Proof: We identify a set of k-wise partitions of [n] that form a star. Additionally,
the communication history is the same on each of these partitions. Observation 4.14
from Chapter 4 then implies that the ﬁrotocol generates the same communication
history on the center of this star. The argument is finished by observing that the

center point is not a partition of [n].
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For identifying the star, we use the Hales-Jewett Theorem. More precisely,
consider the set of valid k-wise partitions of [n]. This set is in one-to-one correspon- |
dence with the cube C? in the following way: we map a partition {Si,..., Sk} to
(x1,...,%n), where z; = j if i € S; for each 1 <4 < n. This is a correct map because
each ¢ € [n] lies precisely in one S; as the sets form a partition. Hence, a protocol of
cost ¢ for Part? induces a 2¢ colouring of C}, where each point of the cube is coloured
by the communication history of the protocol on the corresponding partition. Set
n > HJ(2% k). Then, Theorem 5.9 guaranteés the existence of a monochromatic line
in C7.

It is not hard to verify that a line in C} corresponds to a set of k partitions of the
following type: {S1UT,S,,..., Sk}, {S1,S2UT,..., S}, ..., {S1,S2,...,S, UT} for
some non-empty T’ C [n]. This forms a star. The fact that the line is monochromatic
further means that the protocol generates the same communication history on each
of these partitions. So it generates the same history on the center {3, ..., Sk} which

is not a star as T is non-empty. Hence, the protocol is incorrect. [

The proof of Lemma 5.11 only considers those instances of Part;, in which any
two subsets held by the k& players are disjoint. Further, it is easily verified that
the input instance (the center of the star) on which the players are forced to make
an error, also has this disjointness property. These observations yield the following
slightly stronger result : define the problem RPart} to be Part,, with the restriction
that the k& sets given to players are pairwise disjoint and are subsets of [n].
Corollary 5.12 For each k, RPart} cannot be solved using c bits of communication

whenever n > HJ(2°, k).

133



Note that a & x n matrix A belongs to Party iff none of its columns contains two
1 and the total number of 1 entries in A is n. If k¥ > 3 then k players can check the
first condition using k bits of communication since any pair of input bits is accessible
to at least one player. They are then left with verifying that the sum of the input
bits is n which can, surprisingly, be achieved with a communication cost much less
than the trivial O(logn) [CFL83, GGKO08§].

5.3.3 Languages with a Neutral Letter

In this section, we show that languages with a neutral letter that have bounded
k-party complexity for some fixed £ are all regular. In order to prove this, we
introduce a convenient notion of reduction among problems for the 'Number on the
Forehead’ model.

A k-rectangular reduction r from L C {0,1}"** to K C {0, 1}}(™*¥ is a k-tuple
of functions (r1,...,7) with each r; : {0,1}" — {0, 1}!® such that (zi,.. .., Tr) €L
iff (r1(z1),...,me(zk)) € K. We call [ the length of the reduction. The fact that in a
k-player game, each 7; can be computed by every player individually except the ith,
gives rise to the following useful observation:

Observation 5.13 Let L C {0,1}™** and K C {0, 1}*™*k be languages such that
there exists a rectangular reduction from L to K of length I. Then, Di(L)(n) <
Du(K)(U(n)).

Let C' > 0 be an integer and let G be a family of functions over ¥* with finite
range R. We say that inputs with weight at most C' determine the functions of G if
every function g : £¥S¢ — R has at most one extension to X* in G. Now, let C; . be

the family of functions with a neutral letter and k-party communication complexity
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at most c¢. In order to show that every function f in Cy . is regular, we first prove
the following strong property of f:

Lemma 5.14 Functions of Cx . are determined by inputs of weight at most C =
HJ(k,2%), a constant.

We obtain the above lemma as a consequence of the following one:

Lemma 5.15 For any C > 0, if the functions of Cy. are not determined by inputs
of size C then there ezists a n > C such that RPart} can be solved by k parties
corﬁniunicating at most 2c¢ bits.

Observe that Lemma 5.15 and Corollary 5.12 together imply Lemma 5.14 immedi-
ately.

Proof:(Lemma 5.15) For any word w € £*, we shall denote by w, the word obtained
from w by deleting all occurrences of e in w. The ith letter of w will be denoted by
wt. Also, for k words wy, ..., wy, each of length £, let w = w,{ ... wy denote the
word obtained by interleaving the k£ words in the following way : |w| = ¢k and for
all 1 <@ <k, w' =w]ifi=(m—1)k+j with0 < j < k+1. Let us assume
that f and g are in Ci., such that they are not identical, but the minimal string
v € {Z — e}* such that f(v) # g(v) has length at least C. We show below a k party
protocol that solves RPartL"l by communicating at most 2¢ bits.

Our protocol will work using a k-rectangular reduction r to language H C ylvixk '
where (yl,A. .yk) € H iff v = (330 - Oyk)e: Consider an instance of RPart}f' in
which vpla,yer i’s forehead holds a |v| bit vector representing set I;. Then, ;N I; =0
if i # 7. We define r,-.as follows : let y; = 7;([;). Then, yf = v/ if j € I;, otherwise

yf =e. Let u= (10 - Oyx).. The simple observation that is key to our argument,
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is that w is v if US_;I; = [|v|] and otherwise |u| < |v|. This shows that r is indeed a
reduction from RPart!" to H.

The observation above and the property of v (i.e.. f(u) = g(u), whenever |u| <
|v|) imply the following : y = 110 ... Oyx is in H iff f(y) # g(y). The condition
f(y) # g(y) can be checked with 2¢ bits of communication by running the c-bit
protocol on f and g separately. Thus, 2¢ bits of communication are enough to solve

H and hence RPartt’l. [ ]

Remark 5.16 It follows immediately that the number of languages in Cy . over any
fized alphabet ¥ is finite for a fived k, c i.e. there are at most 20%1-1° such languages
where C = HJ(k,2%).

The first main theorem of the section is easily established below.

Proof: (Theorem 5.7) Let f : £¥* — {0,1} be a function in Cy.: For a word w € £*,
we define the function f,, : ¥* — {0,1} by f,(2) = f(wz). It is easy to verify that for
each w, f,, is also in Ci . Define the equivalence relation ~; on ¥* by insisting u ~¢ v
iff f(uz) = f(vz) forall z € £*i.e. f, and f, are identical. Remark 5.16 ensures that
~ has finite index. The classical Myhill-Nerode Theorem (see for example [HUT79])

guarantees that if ~; has finite index then f is regular and we are done. . [ |

5.3.4 Symmetric Functions

For w € £*, we denote as |w|, the number of occurrences of a in w. The value
of a symmetric function f : ¥* — {0,1} on w thus is entirely determined by the
values |w|, for each a € . We remind the reader of the intuition that k > 3 parties
computing a symmetric function only get limited benefits from the features of the

multiparty model since their protocol cannot significantly rely on the precise set of
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input positions accessible to each player. or on the fact that any (k — 1)-tuple of bits
is seen by one party. This intuition is formalized by Theorem 5.8 and in this section
we prove this theorem.

For simplicity, we first deal with functions with boolean inputs. To any symmet-
ric function f : {0,1}™ — {0, 1}, we naturally associate the function f : {0,...,n} —
{0, 1} such that f(z) = f(|z|,) for every z € {0,1}". We say that f is (£, , p)—periodic
if f(a) = fla+p)forf<a<n-—r.

We first observe that one can assume the protocol to be non-interactive in the
following sense: a protocol is called simultaneous if each player sends a single mes-
sage to an extra party, usually called the referee, who then computes the answer
solely based on the messages he received. In particular, the message sent by a party
does not depend on messages sent by other parties. It is easy to verify that a k-
party protocol of communication cost ¢ can be simulated by a k-party simultaneous
protocol with cost at most ck2¢. This is done by making each player communicate
all the eventualities (that he foresees) to the referee. Thus functions of bounded
complexity in the simultaneous model are precisely those with bounded complexity ‘
in the standard model. This point of view turns out to be useful for the analysis.
Lemrﬁa 5.17 For any constants k,c with k > 1 there exists an integer Ny, 3 =
N(k +1,c) such that every symmetric boolean function f : {0,1}" — {0,1} that has
a k + 1-party simultaneous protocol of complexity c for the input partition in which

| players X3, ..., Xi each get Ni.1 bits and player Xk+1 gets the remaining n — kNjp,1

bits is (£,r,p)-periodic for some £,r < kNi.1 and some p < Npy1.
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Theorem 5.8 then follows by observing that an (¢, r, p)-periodic function has 2-
party simultaneous communication complexity roughly 2- [log(£+r+p)]. The proof
of Lemma 5.17 proceeds by induction on k. Our induction step uses a non-trivial
“player elimination” technique. More precisely, we use the generalization of Van-der
Waerden’s theorem as given by Theorem 5.10 to show that if f has a (k + 1)-party
protocol of bounded cost then there exists a large set of inputs P for the foreheads of
the first k players on which player Py, always sends the same communication. This
renders the (k + 1)st player irrelevant if the input lies in P. The special structure of
P allows the use of the induction hypothesis.

We define N(k,c) inductively. The base case of two players was first proved
by Szegedy [Sze93]. We include the proof of this case below for the sake of self-
containment.

Claim 5.18 N(2,¢) = 2.

Proof: Consider the partition where the first player’s forehead gets the first 2¢ bits
and the second player receives the remaining n — 2¢ bits. Consider the following
2¢ + 1 possible assignments: Player 1’s forehead is assigned the string 1¢0%~¢ for
0 <1< 2° As Player 2 sends out at most 2¢ different messages, there are at least
two such assignments to Player 1’s forehead, for which Player 2 sends out the same
message. Let these two assignments correspond to ¢ being ¢, and ¢, respectively, with
i1 < is. We prove the claim by showing that f(j) = f(j + ia — 41), whenever 4; <
j<n—-2°41; ie. fis (¢, p)-periodic with £ =14; < 2°= N(2,¢), r = N(2,¢) — 44

and p=1y — i3 < N(2,¢).
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Let j be in the required range. Fix the assignment 1771Q"~2°=3+%1 t0 the forehead
of Player 2. The claim gets established by observing that the protocol outputs the

same value for f when Player 1’s forehead is assigned 140%°~% or 1%20%°~%, ]

Using the above as the base case, we prove our main lemma.
Proof: (Lemma 5.17) We show that N(k + 1,¢) = GVW(2% k, N(k,c)! + (k —
1)N(k,c)) for k > 2, where GVW is the Generalized Van der Waerden number.
The main idea is the following: given a constant cost (k + 1)-party protocol for the
symmetric function f, we use the Generalized Van-der-Waerden’s Theorem to ‘elim-
inate’ the (k + 1)st player by restricting f to a set of inputs on which that player’s
message is always the same. This enables us to construct a bounded cost k-party
symmetric function f’ closely related to f. Oﬁr inductive hypothesis applies to f’
and we show that the periodicity of f’ implies the periodicity of f.

Let II be a simultaneous (k + 1)-player protocol of cost ¢ that computes f under
a partition of the following form. Players 1,...,k each have N, bits assigned
on his/her forehead, and Player k + 1 gets the remaining n — kNj1 bits. Colour
each point (z;, . ,Zk) € {0,..., Nxy1}* by the message communicated by Player
k + 1 when 1%:0Nk+17% is on the forehead of Player i for i < k. By Generalized
Van der Waerden’s Theorem, there is a set P of points in {0,. .., Ny;1}¥, such that
Player k + 1 sends the same message for every assignment to the first k — 1 foreheads
that corresponds to a point in P = {(z1,...,zx) @ = ) +dy;,0 < y; <
Ni!'+ (k — 1) Ny}, for some d < Niy1.
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Let £ = d(k — 1)Ny + 32F 29, r = kNpyy — £, and p = d - Ni!. Clearly, they
satisfy required bounds required by Lemma 5.17. We prove below the claim that f
is (¢, r, p)-periodic.

For any positive integer a, define the spectrum function ?; {0, ., N +
2(k — 1)Ni} — {0,1} by fo(u) = fla+ S22 + du). This spectrum corresponds
to a symmetric boolean function f) on Ni!+ 2(k — 1) N, bits. We verify that the
function f) has a c bit k-party communication protocol for the partition where the
first k — 1 players get Ny bits on their foreheads and the remaining Ni!+ (k — 1) N;
bits are on Player k’s forehead. The reason is that when players 1 through &k have
on their foreheads strings of weights y; through y,, they can simulate II by doing
the following: For 1 <7 < k, Player ¢’s forehead is replaced by any string of weight
z9 + dy;, and each of these k players assume that Player k + 1 has a string of weight
a on its forehead. They then communicate according to II and the referee, knowing
the constant message sent out by Player k£ + 1, computes the correct answer.

The induction hypothesis implies the following Observation:
Observation 5.19 For each o < n — kNgy1, there exists €',7" < (k — 1)Ny and
P < Ni such that f. is (¢',r',p')-periodic i.e. ?;(u)= 7;(u +p) for & <u<
Nl +2(k — 1)N, — 7.

Let z > £. Note that f(z) = fo(u) with @ = z'— £ and u = (k — 1)N;.
Applying Observation 5.19, T, (u) = f.(u + Ni!) as p' divides Ni! and u + Ni! <
N +2(k — 1)Ny — 7. Thus f(z) = f(z +d- Ny!), when £ < 2z < n— kNpy +¢

establishing the (¢, r, p)-periodicity of f. |
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We extend our result to any general finite alphabet ¥ = {as,...,a;}, where
t > 2. Consider three t-dimensional vectors £ = (¢;,...,4), T = (ry,...,7:) and
P = (p1,...,p:) where £;, r; and p; are positive integers. Define an equivalence relation

~i7p Over " by setting z ~;. y precisely if for each 4, either |z],, = |ylo; OR

AR
£; < |xlay, |yla; £ n—r; and 24, = |ylo, mod(p;). We call a function f: X" — {0, 1}
to be (,7,p)-periodic if f(z) = f(y) whenever z ~, - y. We show the following:
Lemma 5.20 If a symmetric function f : X" — {0,1} has bounded k-party sym-
metric communication complezity then f is (¢,7,p)-periodic with bGi=r; = (k—1)Ng
and p; = Ni! for each © < t, where t is the size of the alphabet ¥.

Proof: Let & = {ay,...,a:}. For any &y C ¥ and any word w in (X — %)%, We define
a symmetric function fZ0 . vl by Jetting fE(x) = f(wz). We now argue by -
induction of the cardinality ¢ of X. It gets easily verified that our base case of ¢t = 2
is guaranteed by Lemma 5.17. Let ¢t > 3. Consider two string z,y with z ~3;; y.
If for each i |z|s, = |yla;, then trivially f(z) = f(y). Otherwise, pick i # j such
that |z}o, < |yle; and |z|s; > |ylo;- Assume w.lo.g that ||z]o, — yla,] < |lzla; — 1Ylayl-
Let s; = |z]o; and s; = |z]s;. Consider string u = (a;)*(a;)* and a string o €
(£\{ai, a;})™ %% that is obtained from z by deleting all the occurrences of letters a;
and a;. Clearly, f(z) = fa(w). The function fi*%} has constant k-party symmetric
complexity over the binary alphabet {a;,a;}. Applying the base case of our induction
to this function, f, is periodic and there exists a string v Nﬁyp;u with |v|a; = |Y]a,
and fo(v) = fo(u) = f(z). Notice that av ~;.5 y and |awle, = |yls, = (say) 7.

Finally, let 8 = (a;)". Then f(z) = fg(u') where v’ € (¥ \ {a;})"" is obtained by
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deleting all occurrences of letter a; from av. Applying the induction hypothesis on
X\ {a:}, we conclude that there exists a v’ in (X — {a;})*"" such that |v'|a,. = |¥]an
for each m # i and f(z) = fy(u) = f5(v/) = f(y).
|

Theorem 5.8 now follows from Lemma 5.20 as two players can compute the count
of each letter in ¥ up to a constant threshold and a constant modulus in constant
communication.
5.4 Consequences and Conclusion

There are interesting consequences of these results for low degree polynomials
and constant depth circuits. For instance, it is already known by results of [PT88,
TB98] that constant degree multivariate polynomials over a fixed modulus* m cannot
compute MAJORITY by a generalized representation. Our results on the multiparty
communication complexity of symmetric functions yields a new proof of this result as
follows: consider any polynomial P over Z,, of degree d with accepting set A C Z,,.
It gets readily verified that the function f represented by P has constant (d + 1)-
party symmetric communication complexity as in any partition, each monomial of
P can be evaluated by some player without communicating with others. Thus, the
monomials of P are partitioned into at most d + 1 classes with each player assigned
one class. Given an assignment, each player computes a log m bit answer that is the
sum of all the monomials of P in the player’s class. Knowing all the answers (and

the accepting set A) the referee can compute the value of f. Applying Lemma 5.20,

4 The modulus m is not necessarily a prime power.
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we know that f must be (¢, p)-periodic, for constants ¢,r,p, and hence f cannot
be MAJORITY.

We next describe an application of our result to constant-depth circuits. Al-
though in this thesis we have focussed on models of computation that are non-
uniform, it is known that uniformity conditions can ease the task of proving lower
bounds. For instance, Allender and Gore [AG94] have shown that uniform ACC’® |
circuits cannot compute the Permanent function efﬁciiently5 . Our results on the
communication complexity of languages with neutral letters suggests that adding
a neutral letter to functions might be a simple but effective way of containing the
power of non-uniformity not only in the multiparty mbdel, but also in the model of
constant-depth circuits.

Corollary 5.21 Every language with a neutral letter that can be computed by CC°[p’]
circuits of arbitrary size is reqular, if p is a fired prime and r > 1 is a fized integer.
Proof: Recall that the output of each gate of such a circuit can be exactly repre-
sented as a polynomial of degree at most p” — 1 over Z,in the input variables of the
gate. Thus, the output of the entire circuit is eicactly represented by a polynomial
of degree at most k = (p" — 1)? in the input variables of the circuit over Z,. We con-
clude that the function computed has constant k+ 1-party symmetric communication

complexity. Applying Theorem 5.7, we are done. |

5 We cannot separate non-uniform ACC® from NEXP.
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CHAPTER 6
Communication Complexity of Functions in AC’

In the last chapter, our focus was on understanding the structure of the class of
problems that admit constant communication protocols under every possible parti-
tion of the input letters. This investigation brought out further differences between
the characteristics of the multiparty model and the two player model. In particular,
we established that three players can compute functions of arbitrarily large circuit
complexity in constant cost under the worst possible partition of input letters. In the
first part of this chapter, we explore the multiparty model from the other direction.
We want to answer the following question: “What is the lowest circuit complexity
class which contains a function of very large! k-party communication complexity?”.
We explore this question by restricting ourselves to the binary alphabet. Further,
for each function that we consider, the input bits are partitioned among players in
some fixed way, unlike in the last chapter.

It is trivial to observe that if f lies in NC?, then it has constant cost deterministic
protocols for two players. This is because f depends on a constant number of letters

and Alice can communicate to Bob the relevant letters from her partition in constant

! By ‘very large’, we typically mean n¥V) complexity. We say that a function

has ‘large’ complexity if it is superpolylogarithmic, i.e. it does not have efficient
protocols.
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cost. While it is well known that for k = 2 there are functions in shallow AC® (like
Equality and Disjointness) that have linear deterministic complexity, no function in
AC® was known, until recently, that had superlogarithmic three party deterministic
communication complexity. The best that one could say was that ACC® contains
functions of very large k-party complexity for every k < dlogn, where the input
size is kn and ¢ is a cbnstant. This followed from the work of Babai, Nisan and
Szegedy [BNS92] who showed that the natural k-wise generalization of the Inner
Product function, called Generalized Inner Product, has large k-party randomized
complexity, for k < dlogn. This work introduced the powerful discrepancy method
that has been the backbone of almost? all subsequent strong lower bound results (for
example [Gro92, RazOO, FGO05]) in the multiparty model. Unfortunately, it was not
known if this method coﬁld be applied to a function in AC® even for two players.
Recently, Sherstov [She07] provided the first successful application of the dis-
crepancy method for a function in AC? for two players. We extend this technique to
multiple players yielding the following (first published in [ChaQ7b]):
Theorem 6.1 For each k, there exists a function FMFP computable by depth-three
AC circuits of linear size that has the following randomized k-party communication

complezity:
1
n 2k+1

(22’=/(2k+1)26(k _ 1))

RL(F}P) = Q< g e).

2 In the few cases, like in [Cha07a, BPSW06, VW07a], where non-discrepancy
based techniques have been applied, they are only known to apply to restricted
communication protocols.
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Consequently, for £ = o(loglogn) there exist functions in linear depth-three
AC? that have no efficient (i.e polylogarithmic cost) randomized k-party protocols
computing them with an advantage e that is better than any inverse-quasipolynomial
function. This is in contrast to the easily verifiable fact that every function having
polynomial size depth-two circuits has an efficient two-player randomized protocol
computing it with advantage that is at least an inverse polynomial function of the
length of its input. What happens if we demand more from our randomized protocols,
i.e. we require them to have a fixed advantage over random guessing? Could we still
compute every function in depth-two AC? efficiently?

It is not difficult to see that every function that is computable by a depth-two
AC? circuit of size s has either O(log s) non-deterministic or co-non-deterministic
communication complexity. As we point out later, the Discrepanéy Method yields
poor lower bounds on functions that have efficient non-deterministic or co-non-
deterministic protocols. This makes the method unsuitable to work well for functions
computable efficiently by depth-two circuits. A specific instance is the Disjointness
function for which no superlogarithmic lower bounds were known for three or more
players until recently. Fueled by two very recent and independent breakthroughs,
made by Sherstov [She08b] and Shi and Zhu [SZ07| respectively in the context of
quantum c_ommunication lower bounds for two players, we develop the Generalized
Discrepancy Method for multiparty classical communication. This leads us to obtain

the following strong bound on the communication complexity of Disjointness:
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Theorem 6.2 For any constant € > 0,

€ nﬁi |
R (DISJ) = Q(m—k—_—l—)

A similar result was also obtained by Lee and Shraibman [L.S08] independently.
6.0.1 Our Approach and Organization

Recall the k-wise generalization of the Inner Product function, called GIP;
from Section 4.2 in Chapter 4. There, we viewed functions like GIP; and k-wise
Disjointness to be generated by an underlying (base) symmetric predicate. We view -
things slightly more generally herebby generating a function, to be computed by
k-players, from a base function that is not necessarily symmetric.

Let y,...,y*! be (k—1) binary strings, each of length n. Define the (k—1) xn
boolean matrix A obtained by placing ¥ in the ith row of A. For z € {0,1}", let
T <y}, ...,y*! be the n-bit string z;, z;, . . . 7;,0" ", where 4y, ..., i, are the indices
of the all-one columns of A. Further, let g : {0,1}" — {—1,1} be any function.
We déﬁne QY ({0,1}M)* — {-1,1} by Gi(z,4",...,v* ) == glz < ¥',...,¥*1).
We call g the base function of GJ. Observe that GEARITY js the Generalized Inner
Product function and GY°R is the Disjointness function. While both the above
examples use a symmetric base function, we use crucially a non-symmetric one to
prove Theorem 6.1 in Section 6.4.

It is reasonable to expect that the communication complexity of a function is
related to some intrinsic property of its base function. The result of Babai, Nisan

and Szegedy can be interpreted as follows: if the base function is PARITY, then

the generated function has low discrepancy under the uniform distribution. In this
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light, a natural question that emerges is “what happens if our base function is close
to PARITY in an appropriately defined sense?”. Fourier analysis over Z} provides a
spontaneous measure of closeness to PARITY. Recall that this analysis decomposes
every function as a linear combination of characters. It is easy to verify that each
character of Z3 corresponds to the PARITY function defined over a subset of the set
of n variables. The size of the subset is called the order of the parity. The function
PARITY is orthogonal to every parity whose order is less than n. In this light, we
say that a function is close to PARITY, if it can be expressed as a sum of high order
parities or equivalently, is orthogonal to low order parities.

Our main technical ingredient, called the Orthogonality-Discrepancy Lemma,
extending the Degree/Discrepancy Theorem of Sherstov [She07], generalizes the re-
sult of [BNS92]. Babai et.al. prove that GEARITY has small discrepancy under the
uniform distribution. For technical reasons, we look at a function F{, generated by g
employing another masking scheme, that is closely related to Gj. Roughly speaking,
the Orthogonality-Discrepancy Lemma states that if g is orthogonal to low-order
parities , then function F} has low discrepancy under an appropriate probability
distribution. The discrepancy method implies that F} has large randomized com-
munication complexity. As the communication tensor of F} is a sub-tensor of the
one for GY, it follows that G} has large communication complexity as well.

We prove Theorem 6.1 by finding a base function in AC? that has such nice
orthogonality property. The key to finding it is to use the well-known notion of

voting representation of boolean functions as introduced by Aspnes et.al. |[ABFR94|
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(see Section 6.1.1). The use of a well-known duality principle, described in Sec-
tion 6.3, allows passage from functions of high voting degree to functions with the
above orthogonality property. This passage was invented in the context of two—player
communication in the elegant work of Sherstov [She07]. Like Sherstov, we use the
Minsky-Papert function, introduced in [MP88] and reviewed in Section 6.4 of this
chapter, as our base function of high vo'ting degree that can be computed by simplé
depth-two ACP circuits.

The base function generating k-wise Disjointness is the NOR function. Its vot-
ing degree is merely one and hence the Orthogonality-Discrepancy Lemma cannot
be directly used for functions generated by NOR. However, the breakthrough work
of Razborov [Raz03] and the earlier work of Buhrman et.al.[BCW98] established
a tight relationship between the two-party quantum communication complexity of
G and a well studied property of the symmetric function g. This property is the
‘approximate degree of boolean functions, whose study was begun systematically in
the work of Nisan and Szegedy [NS94]. In particular, they show that NOR has
high approximation degree. While Razborov’s lower boﬁnd, employing the “multidi-
mensional discrepancy method”, only worked for symmetric functions, the notion of
approximate degree extends to all boolean functions.

Recently, Sherstov [She08b] and independently Shi and Zhu [SZ07] showed the
following: a function g of high approximation degree (say d) correlates well with a
function f under a distribution y, where f has zero correlation with low-order parities
(order less than d) under p. Thus, the Orthogonality-Discrepancy Lemma, applied

to f, shows that the function generated by f has high communication complexity. In
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order to reason about the communication complexity of G, an additional ingredient
comes into play. This is an ingenioﬁs modification of the Discrepancy Method that
originated in the work of Klauck [Kla0l| and got further generalized by Razborov
|Raz03]. This method, that we call the Generalized Discrepancy Method, is used to
conclude that G} has large (bounded error) randomized communication complexity
based on the fact that g and f correlate well. We use this idea to prove Theorem 6.2
in Section 6.5.1. More generally, this leads us to obtaining lower bounds on the
k-party communication complexity of every function of the form GJ, where g is
a non-constant symmetric function (Corollary 6.22 in Section 6.5.2). Finally, we
extend to the multiparty setting the work of [SZ07] in Section 6.6 for block-composed
functions. Both these extensions yield exponential improvements for lower bounds on
the k-party complexity of Disjointness. They also provide bounds on other interesting
classes of functions.
6.1 Preliminaries
6.1.1 Voting and Approximation Degree

Recall that we reviewed Fourier analysis over abelian groups in Section 3.2.1
of Chapter 3. There, we specifically looked at the vector space of complex-valued
functions over the group Z7 . Here, we restrict ourselves to the space of real valued
functions over the boolean cube Z3. The set of characters of the.cube is given by
75 = {(~1)Zies® | S C [n]}. In this chapter, we map the cube {0, 1} bijectively to
{1, —1}" by mapping the ith co-ordinate of a point as follows: z; — (—1)®. Under

this transformation, the set of characters becomes the familiar set of multilinear
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monomials® M = {xs = [[;cs%:|S C [n]}. Let us specialize the standard inner
product, defined in Section 3.2.1, to the space of real-valued functions on the cube,

i.e. for two functions f,g: {1,-1}" — R,

(f,9) =Ecf(z)g(x).

Then, a basic fact of Foﬁrier analysis is M forms an orthonormal basis w.r.t to
the standard inner product. Thus, every boolean function? f : {1,-1}" — {1,~1}
is uniquely represented by a real linear combination of monomials from M, i.e.
a polynomial with real coefficients. The ezact degree of f is the degree of this
polynomial. However, in this section, we define two different representations.
Define sign(z) to be —1if z < 0 and 1 if z > 0, for every non-zero z € R. A
polynomial P = ng[n] asXs, with ag € R, is a voting representation of a boolean
function f if f(z) = sign(P(z)) for each z € {1,—1}". Note that this requires P
not to evaluate to zero at any point of the cube. For example, polynomials P;(z) =
z1+- - +2,~—0.5 and Pa(z) =[]}, z; are voting representations of MAJORITY and
PARITY respectively. It is not hard.to verify that every boolean function f has a
voting representation. In particular, the polynomial that exactly represents f is also

a.voting representation of f. However, it is not necessarily the most economical one

3 Recall that a very similar basis set was used by Razborov and Smolensky to
analyze the vector space of functions from the cube to a finite field (see Section 2.1.3
in Chapter 2).

4 Note that we have changed the range of f from {0,1} to {1, —1}. Recall that
we have encountered this change many times before.
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in terms of degree. For instance, the exact degree of MAJORITY is Q(n) whereas
our representation uses a linear polynomial.

The degree of a voting representation is simply the degree of the polynomial P
involved. Thus, in our example before, the representation of PARITY uses degree n.
The voting degree of a function f, denoted by deg(f), is the minimum degree over
all possible voting representations of f.

Fact 6.3 (from [ABFR94]) The voting degree of PARITY is n.

Proof: Let P be any polynomial that is a voting representation of PARITY. Then, by
definition P(z)PARITY (z) > 0, for each z. In other words, E;P(z) ([, z:) > 0.
But if the degree of P is less than n, then by the orthonormality of monomials,
E,P(z) ([Ti., z:) = 0 and we get a contradiction. n
In fact, using Fourier analysis over the cube Z},, one can, more generally, show that
MOD,, has voting degree Q(n), for any fixed integer m > 2 (see Barrington and
Straubing [BS94)).

Is there any function in AC? that has high voting degree? It is easily verified that
AND and OR have voting degree 1. On the other hand, a simple function in depth-
two has high voting degree. Minsky and Papert [MP88] considered such a function
that we call the Minsky-Papert function and denote by MP. For any ¢, we define MP
over m = 4¢3 variables as follows: MP(z) = V!_; /\;‘-f_fl z; ;. There is a simple voting
representation of MP having degree t. This is because of the following observation:
rewrite MP as an AND of OR’s by distributing the outer OR over the inner ANDs
using basic boolean algebra. Each OR is over t variables and can be represented

eractly by a degree t polynomial that has range {1,—1}. We are left to represent
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the AND of such t4° polynomials, each of degree t. Treating each polynomial as a
boolean variable and using the degree-one voting representation of AND, we get our
desired representation of degree ¢t of MP. Minsky and Papert showed that the degree
of this representation is optimal.

Theorem 6.4 (from [MP88]) The Minsky-Papert function defined on m = 4t
variables has voting degree t.

Proof: We only need to show the lower bound of t for the voting degree. An im-
portant technique, called symmetrization, was introduced and used by [MP88] in
the argument. It goes this way: let the clauses of MP be numbered 1,...,¢, each
having its own set of 4¢? variables disjoint from the others. Let S; represent the set
of permutations of the variables of the ith clause. Consider a set of ¢ permutations
o1,...,0t, with 0; € ;. For any polynomial P, let P,, ., be the polynomial ob-
tained from P by letting o; permute its variables from the ith clause. Then, observe
that if P is a polynomial of minimal degree d that is a voting representation of MP,

then so is P,, _,,. Hence,

/
P def E Pa'l,...,at

0;€S;

is a voting representation of degree ¢t of MP. By construction, P’ is symmetric w.r.t.
variables in the same clause of MP. This passage from an arbitrary polynomial to a
symmetric (w.r.t. clauses) polynomial is called symmetrization.

Let u; represent the number of variables in Clause i of MP, set to 1. There
exists a polynomial Q) of vdegree d (same as that of P’) on t variables uy, ..., u;, with

u; € {0,...,4¢%}, such that @ outputs a negative number if at least one u; is set
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to 4% and otherwise is positive. Obtain a univariate polynomial R(v) from @, by
replacing the u; in @ by (4t? — (27 — v)?). Clearly, the degree of R is at most twice
the degree of (), i.e. at most 2d. On the other hand, consider the behavior of R on
the set {0,...,2t}. It is easily verified that for odd values in this set R is positive
and for even values it is negative. Thus, R has at least 2t zeroes and hence must

have degree at least 2t. Hence, d > t. ' B

We point out that the work of JABFR94, OS03] are good sources for familiarizing
oneself with further interesting properties of voting representations.

A voting polynomial just maintains the sign of the function. In principle, it could
be very far from the value of the function at a given point of the cube. One could
naturally tighten up this notion by demanding that a polynomial evaluate close to
the value of the function represented, at each point of the cube. A polynomial P that
is always within d of the function f is a -approximation of f, i.e. |f(z) — P(z)| < 6
for each z € {1,—1}" and § > 0. The d-approximation degree of f, denoted by
deg;s(f), is the minimal degree such that there exists a polynomial of that degree
which is a d-approximation of f. Note that for any 6 < 1, a d-approximation of a
boolean function is a special voting representation of the function.

| It follows that deg(f) < degs(f) for any § < 1. The gap, between the two
degrees, can be quite large. Nisan and Szegedy® [NS94| show that every boolean

function that depends on each variable has §-approximation degree 2(logn). Further,

5 Nisan and Szegedy also related the approximation degree of a boolean function
with its complexity in the model of decision trees.
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they show that the AND and OR functions, each having voting degree 1, have (1/3)-

approximation degree ©(y/n). The work of [NS94] was followed by the work of Paturi

[Pat92] who characterized the approximation degree of every symmetric function.
Paturi’s characterization is quite helpful for our investigation and let us state

his result. For any predicate D : {0,1,...,n} — {1,—1}, define
%(D) € {0,1,..., n/2]}

6(D) e {0,1,...,[n/2]}

such that D is constant over the interval [£y(D),n — £,(D)] and 45(D) and ¢;(D) are
the smallest bossible values for which this happens. A symmetric function f induces
a predicate Dy in the following natural way: f(z) = D¢(z1+---+z,). For example,
for the OR function £o(Dor) = 1 and ¢1(Dogr) = 0.

Paturi’s théorem provides bounds on the approximate degree of symmetric func-
tions in terms of the properties of its underlying predicate.
Theorem 6.5 ([Pat92]) Let f: {0,1}" — {1,—1} be any symmetric function in-
ducing the predicate Dy : {0,...,n} — {1,—1}. Then,

degs o(f) = ©(y/n(bo(Dy) + &:(Dy))). (6.1)

In particular, the (1/3)-approximate degree of NOR is ©(y/n).
6.1.2 Discrepancy under Product Distributions

We recall a trick of repeatedly applying Cauchy-Schwartz to get an expression
that uppér bounds the cylindrical discrepancy of a function under product distri-

butions. This trick to simplify the calculation of discrepancy appeared originally in
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the work of Babai et.al.|BNS92]. The explicit and convenient form in which we use
it here is attributable to Raz [Raz00]. Our presentation below seems to be slightly
simpler and more direct than Raz’s. v

Let p®, ul, -+, u*1 be probability distributions over finite sets X,Y?,...,Y*!
respectively. Let p = p® x ! x - - - x 4*~! be the product distribution generated and
fF{XxYlx...xYk1} - {—1,1} be any boolean function.
Lemma 6.6 (Raz [Raz00]) For 1 <i <k~ 1 and j € {0,1} let y} be a random
variable distributed according to u* and let x be distributed according to u®. Then,

2k~1

(disckaﬂ(f)) < Eyé,y%,..,,yg_l,yf_l

E, H f(z,yil,...,yﬁ;_ll). (6.2)

ue{0,1}k-1
Proof: We prove (6.2) by induction of k. Thus, our Induction Hypothesis is that
(6.2) is true for every function when k = k — 1. Recall that for an arbitrary cylinder

intersection ¢,

disci,p,(f) = ]E(ac,y1 ..... yk_l)'vuf<x7 y17 v 7yk—l)¢(x7 yla s ayk_l) .

Let us factor the characteristic function ¢ in terms of the characteristic functions of

the cylinders intersecting.

¢(m’y1""7yk)_ Hqszxy""’y 17"‘7yk_1)
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where ¢” is the cylinder in the direction of X and ¢' is in the direction of Y. Then,

using the triangle inequality, one gets

| discf,ﬂ(f) ol PR T Lot /3 TERR Vo P

k-2

]Eyk-lf(xa yla R ’yk—1)¢z (yl, SR yk_l) H ¢z($’ yl; s ,yi_la yi+1) ceey yk—l) .

i=1

Noting that characteristic functions are 0-1 valued, we further simplify:

disc] W) <

Em,yl,...,yk"2 Eyk—lf(xayla"-) )¢m H¢1 Z, y 7""y y 1,"'>yk_1) .

Squaring both sides and using the consequence (Ez)? < Ez2? of Cauchy-Schwartz,

one gets
(disc? ,(£))* <Er ps Gy 457Y) (6.3)
where
Gyt 'yt =
]Ea:,yl,...,y""‘1 H f(xa yla"',yk_2)yu )¢w y e ayu H¢1 z, y yeen Y 2ayﬁ_2)'

ue{0;1}
In order to apply our Inductive Hypothesis, we make the following definitions for

every fixed ¥~ and y*?
g(z,y', .. D) =2 f(ayt, Ly (R (6.4)

v (y', R T (T T 7 o (TR L Vi
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and for 1 <i< k-2,

71: (x7y1a s 7yi_17yi+1: v 7?Jk_2)

e N T T T L (VAN Vi T SR o Vi B
For each y5~! y%~! let v denote the (k — 1)-fold cylinder intersection formed by

the cylinders v*,~,...,7*2. Further, let v be the (k — 1)-fold product distribution

p® x pl x -~ x p*=2. Then,

’G(yg‘l,yf‘l) = discy_, ,(g)- (6.5)

Noting that repeatedly applying Cauchy-Schwartz m times yields (Ez)?" < Ez?" for
any integer m > 0, plugging (6.5) into (6.3) yields,

k—1 ok—2

(discf ) < (disc]_y,(9)) (6.6)

Applying the Inductive Hypothesis to the RHS of (6.6) further gives

ok—1

(disc‘,f,u(f)) <E k-1 k1E k=2 k=2

yo vyl yo 1y% -'-1yo 7y1

E, H g(x’y}tl""’y'l’jk——i) )
ue{0,1}k-2

Substituting the definition of g given in terms of f by (6.4), the above expression
yields easily the RHS of (6.2). As ¢ is an arbitrary cylinder intersection, we are

done. 5
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6.2 Generating functions with low discrepancy
6.2.1 Masking Schemes

We have already defined one masking scheme through the notation x < yy, ..., yx.
This allowed us to define Gj for a base function g. Well-known functions such as
GIP, and DISJ , are representable in this notation by GFARTY and GYOR respec-
tively. We now define a second masking scheme which plays a crucial role in lower
bounding the communication complexity of G§. This masking scheme is obtained by
ﬁrsf slightly simplifying the pattern matrices in [ShéOSb] and then generalizing the
simplified matrices to higher dimensions for dealing with multiple players.

Let S1,...5%1  []™ for some positive £ and m. Let z € {0,1}" where n =
£5~1m. Here it is convenient to think of z to be divided into m equal blocks where
each block is a (k — 1)-dimensional array with each dimension having size £. The
array corresponding to the ith block of z is denoted by z[i]. Further, each S* is
a vector of length m with each co-ordinate being an element from {1,...,¢}. The
(k—1) vectors S, ..., S*~! jointly unmask m bits of z, denoted by z « S?,... Sk

precisely one from each block of z, i.e.
z(1][S*[1], S*[1), ..., S*M[1]), ..., z[m][S*[m], S*[m], ..., S*}[m]].

See Figure 6-1 for an illustration of this masking scheme.
For a given base function f:{0,1}™ — {~1,1}, we define F/ : {0,1}" x
([g™F1! - {~1,1} as F,f(x,Sl,...,S’“‘l)‘= flx « St,...,S8%1), where n =

FE1m,
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101 110 110
T = 000 010 111
110 000 010
Sl $<—51,S2=001

Figure 6-1: Illustration of the masking scheme z «— S;,S55. The parameters are
£=3,m=3n=27.

Lemma 6.7 Let n = &*~'m. If f: {0,1}™ — {-1,1} and f': {0,1}" — {-1,1}
are related by f(z) = f'(20"™), then

R(F{) < Ry(G]). (6.7)

Proof:{Proof Sketch] Observe that there are functions T; : [¢]™ — {0,1}" such that
Fl(z,S',...,8% ") = Gil(x, [1(SY), ..., T 1(S* 1)) for all 2, S?,...,S*"1. There-
fore the players can privately convert their inputs and apply the protocol for Gf.

Note that the proof shows that (6.7) holds not just for randomized but any model
of communication.
6.2.2 Orthogonality and Discrepancy

Here, we prove that if the base function f in our masking scheme has a certain
nice property, then the masked function F,f has small discrepancy. To describe this

property, let us define the following: for a distribution g on inputs, equip the space
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with the biased inner product (-),, where for two functions f, g,

(f9)u =2 Bonpuf (2)g(2).

We say that f is (u,d)-orthogonal if it is orthogonél, w.r.t. the above u-biased inner
product, to every parity/character of order less than d , i.e. (f,xs), = 0, for all
|S| < d.

Lemma 6.8 (Orthogonality-Discrepancy Lemma) Let f: {-1,1}™ — {—1,1}
be any (i, d)-orthogonal function for some distribution p on {—- 1, 1}™ and some in-
teger d > 0. Derive the probability distribution A on {—1,1}" x ([Z]m)k_l from p as
follows: Mz, SY,...,Sk"1) = @SS - ppopn

gm(k—1)on—m

(o) SE(CEY e

j=d

k
Hence, for £ —1 > 22('“# and d > 2,

. 1 '
dZSCk,)\(F,;f) S 2—11/72;_—1- . (69)

Proof: The starting point is the expression for discrepancy w.r.t. an arbitrary cylin-

der intersection ¢,

disc?(F)) =

> Fl(z,5,....8 NS, N, S, SFTY).
z,S51,...,8k-1

(6.10)
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This changes to the more convenient expected value notation as follows:

disct (F{) = 2™ (B, 51, o1 F{ (2, 8%, ..., 85 ) x ¢(z,S%,..., 8" Nu(z « §*,...,51)

(6.11)

where, (z,5%,...,5%) is now uniformly distributed over {0, 1367 m ([é]m)k—l.

Thus, defining Gf as G{(z, S, ..., 5%1) =% Ff(z, 51, ..., S5 Vu(z « S1,..., S5 1),
we have

discy »(F) = 2™discrp(GY)

where U is the uniform distribution.

Application of Equation (6.2) of Lemma 6.6 to the function G£ easily yields

2k—1

(diSCk,)‘(Flg))zk—l = Zmzk_l (diSCkM (G‘,:))

ok—1

<2 Eg g Sg_lwslk_,H,{(Sg,S},...,Sg—l,sf“l) (6.12)

.....

where,

H] (S, 511_, .., Skt S

= Bcompe-m 11 <F,f(x,5&l,...,51’f;_ll)u(x<—S&l,...,SS;}l))‘. (6.13)

ue{0,1}k-1
We look at a fixed S§, St, fori=1,...,k— 1. Let r; = |Sé N SH and r =), r; for

1 <1<k —1. We make two claims below.
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Claim 6.9

f ) 2(2"‘1—1)7'
Hi(SS, St ..., S671, 881 < T (6.14)
Claim 6.10 Let r < d. Then,
Hi(S3,S3,...,Sk1, 851 =0. - (6.15)

We prove these claims in the next section. Claim 6.9 simply follows from the fact
that p is a probability distribution and f is 1/-1 valued while Claim 6.10 uses the
(i, d)-orthogonality of f. We now continue with the proof of the Orthogonality-

Discrepancy Lemma assuming these claims. Applying them, we obtain

(discd(F))*™

(k—1)m
< Y 2@ N Prim=giA Ao = i) (6.16)
j=d it tie-1=)
Since the random variables 7y, ... ,rg_l are independent, Prir; = 5 A+  Arg_y =
Jk-1] = Pr[ry = 1]+ -Prlrg-1 = jg-1]- Noting that Prr; = j;] = (;r:) (Z—IZ,:"_“, we
further obtain: v
(disc(F)))*
(’“Z”m w3 (m) (m )(g_l)m—jl...(g_l)m—jk_l
< 2 —1) e .
= g ; ; (k—1)m
j=d it Agn=i Jk=1 ¢
(6.17)
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The following simple combinatorial identity is well known:
GG - ()
i =\ Je-1) J '
Plugging this identity into (6.17) immediately yiélds (6.8) of the Orthogonality-
Discrepancy Lemma. Recalling ((’“”jl)m) < (Pik:]M)’ , and choosing £ — 1 > 22" (k —

l)em/d, we get (6.9).

6.2.3 Proofs of Claims

We identify the set of all assignments to boolean variables in X = {z;,...,z,}
with the n-ary boolean cube {0,1}". For any u € {0,1}*71, let Z, represent the
set of m variables indexed jointly by S} ,...,Sk"1 . There is precisely one variable
chosen from each block of X. Denote by Z,[c] the unique variable in Z, that is in
the ath block of X, for each 1 < o < m. Let Z = U,Z,. Abusing notation, we
use Z, in the context of expected value calculations to also mean a uniformly chosen

random assignment to the variables in the set Z,,.

Proof:|Proof of Claim 6.10]

HI(S},8),..., S8, 58°)

= By f(Zo)u(Z) Ex—zp ., [ F(Z)1(Z)

ue{0,1}k-1
u#0

. (6.18)

Observe that for any block o and any u # 0¥, Z,la] = Zy-1]a] iff for each 4

such that u; = 1, Si[a] = Si[a]. Recall that r; is the number of indices o such that

Sila] = Si[a]. Therefore, there are at most 7 = 5.~ r; many indices « such that

1=
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Zula] = Zge-1[a] for some u # 0%~!. This means the inner expectation in (6.18) is
a function that depends on at most r variables. Since f is orthogonal under p with

every polynomial of degree less than d and r < d, we get the desired result. |

Proof:|Proof of Claim 6.9] Observe that since F,f is 1/-1 valued, we get the following:

.., 8k

H{(S3, 8., 85,88 ) <E, [ nlz«SL,....857
ue{0,1}k~1
=Ex_z Ez H 1(Zy)
u€e{0,1}+-1

1 .
=Ex-z5m D, II wz. (6.19)
2€{0,1}}2! ue{0,1}k—1
2k—1

<Ex_z % Z H w(y) (6.20)

gttt =l

e{0,1}™
where the last inequality holds because every product in the inner sum of (6.19)
appears in the inner sum of (6.20). Using the fact that p is a probability distribution,
we get:

ok—1

RHS of (6.20) = Ex_z % I > we)

=1 yie{o,l}'rn

1
=Ex_z o7
_ 1
T o9lz)”

We find a lower bound on |Z|. Let ¢, denote the Hamming weight of the string

uw and {J1, ..., } denote the set of indices in [k — 1] at which u has a 1. Define
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Y, = {Z,[e] | S[a] # SPla); 1< s <ty; 1 <a<m}. (6.21)

The following follow from the above definition.

o Y| =mand |Yo| >m =3, 75, >m—r for all u#0F".

e Y,NY, =0, for u # v. This follows from the following argument: W.lL.o.g.
assume there is an index  where u has a one but v has a zero. Consider any
block a such that Z,[a] is in Y,. It must be true that S{[a] # SP[a]. This
means that Z,[a] # Z,[a]. Therefore Z,[a] is not in Y, and we are done.

o Y = Uyeqot-1Yy = Z. This is because if Z,[a] is not in Y, then there are
indices jy, . . ., js where u contains a one and SJ:[a] = S7*[a]. Let v be the string
that contains a zero at positions 7i,...,js and at other positions, corresponds
to u. Then by definition, Z,[a] = Z,[a] € Y,.

Thus, |Z| = Y| =3, |Yu| >m+ 3 o(m—71) =25""m — (2¥71 — 1)r and the
result follows. (]
6.3 Masking functions of high voting degree

The theorem below shows that (u, d)-orthogonality of a function f, that is key
to using the Orthogonality-Discrepancy Lemma, follows from the fact that the voting
degree of f is more than d.

Theorem 6.11 (see [She07]) For any boolean function f : {—1,1}"* — {-1,1},
precisely one of the following holds:

o deg(f) < d.
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o there exists a distribution p over {—1,1}", such that f is (1, d)-orthogonal, i.e.
for all |S] < d, (f(z), xs(x))u = 0.
In particular, this means that if deg(f) > d, then for any function g that depends
on at most d — 1 variables, (f(z), g(z)), =0. |
As an immediate consequence of Theorem 6.11 and the Orthogonality-Discrepancy

Lemma, we obtain the following:
Corollary 6.12 (Multiparty Degree-Discrepancy Lemma) Let f : {—1,1}™ —
{-1,1} have voting polynomial degreeid. Then for any k > 2, there ezists a proba-

bility distribution X such that for £ > m,

(dis% (Fg)) — sz: ((k - 1)m> (QZk_111>J

Hence, for£—1>wl— and d > 2,

. 1
discy, z (F,f) < QAT

The above lemma, using a slightly different masking function and with a quadratic
‘dependence bf 2 on m (instead of the linear dependence above), appeared in our work
[Cha07b] as an extension of the two player Degree/Discrepancy Theorem of Sherstov
[She07].

Combining Corollary 6.12 with the Discrepancy Method (i.e. Lemma 4.18)
directly yields a method to obtain lower bounds on a masked function whose base

function has high voting degree.
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Theorem 6.13 Let f, defined on inputs of length m, have voting degree d. For any
k
k > 2, define F as before on inputs of length n = me*~1, where £ > ﬂ%l)—e"—z and

d > 2. Then,

d
Ri(F)) = Qs +loge). (6.22)

6.4 Communication complexity of functions in AC°

Given Theorem 6.13, the natural question is “how difficult is it to find a func-
tion of high voting degree?”. We recall from Section 6.1.1 that the Minsky-Papert
function, MP(z) = V¢_; /\3*51 Z;;, is in depth-two AC® and has a high voting degree
of t.
Corollary 6.14 Consider the Minsky-Papert function M P on m variables. Let d =

Q(m1/?) denote its voting degree. If n = mé*~' and € = 22" (k — 1)em/d, then

n2k+1

(22k/(2k+1)26(k — 1))

R;(F,f’m) =Q< P +loge).

Proof: The result follows by a short and straightforward calculation, starting from

Theorem 6.13. We include it for the sake of completeness. Noting that m = d3

n=mf1 = (22k(k — l)e)k_ld2k+1.

Hence,
n2k1+1
B (22k/(2k+1)e(k — 1))’“_1'
Application of (6.22) to the above completes the calculation. 1
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This shows that there exists simple base functions computable by small depth-
two ACP circuits that give rise to masked functions of large randomized communica-
tion complexity. The following observation shows that our masking scheme does not
signiﬁcantly increase the circuit complexity of the base function.

Observation 6.15 Let f: {0,1}™ — {0,1} be any boolean function and F,f be the
corresponding masked function on n = me*~1 bits. If f can be computed by a circuit
C of size s(m) and depth d(m), then F,{ can be computed by a circuit Co ANDo OR
of size n + s(m) and depth d(m) + 2.

Proof: We view the domain of F as {0,1}™" " x (({O, 1}1°gf)m> k_l, encoding each
index/pointer by (log /) bits.

Consider the decoding function U : {0,1}¢" x {0,1}*~Dke¢ that on input
(o, B) interprets 5 to be a set of k — 1 indices from [¢] and then outputs the bit of
the block o (of size £~1) corresponding to this set of indices. It is not hard to verify
that U is computed by a depth-two ORo AND circuit of size £°~1. It also gets easily
verified that if we replace each bit of the block a by its complement in the ORo AND
circuit for U, we compute the complement of U; ie -U. Applying de Morgan’s
law to this circuit for —U (i.e. negating the circuit and propagating the negations
using de Morgan’s laws to the bottom) yields the required AND o OR circuit of size
&1 for U. Thus, F{(z,S',...,58% 1) = f(U(z[1],1), ..., U(z[m],ym)), where x[3]
is the ith block of z and each y; is the binary string of length (k — 1) log £ obtained

~ by concatenating the encodings of the ith co-ordinate of each vector S?,..., Sk 1.

169



Thus, computing each of the m instances of U by a corresponding AND o OR circuit

of size £*~! and f by the circuit C' we derive the observation. |

Fact 6.16 (follows from [She07]) The function FMF has a linear size depth-three
AC® circuit.
Proof: One derives a depth-four circuit for FMP by applying Observation 6.15 and
the fact that MP on m variables can be computed by a depth-two AND o OR circuit.
Note that the two middle layers of this circuit consist only of AND gates and can
thus be collapsed into a single layer. This yields the required depth-three circuit for
FMFP, |

The above fact and the lower bound on the randomized communication com-
plexity of F'F shows that there are functions that can be computed very efficiently
by depth-three AC? circuits that have no efficient multiparty randomized proto-
cols as long as the number of players is o(loglogn), even when a mere inverse-
quasipolynomial advantage over random guessing is required. This, in some sense,
complements the result from the last chapter where we saw that just three play-
ers can compute deterministically functions of arbitrarily large circuit complexity in
constant cost. |
6.5 The Generalized Discrepancy Method

At the heart of the technique introduced in the last section is the Discrepancy
Method (Lemma 4.18). Unfortunately, its applicability is limited to those functions
that have small discrepancy. However, there are several important and simple func-
tions that have large cylindrical discrepancy. Disjointness is a classical example of

such a function.
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Lemma 6.17 (Folklore) Under every distribution p over the inputs,

1 1
] P ——
discy,(DISJy) > 5~ o2

Proof: Let X* and X~ be the set of disjoint and non-disjoint inpufs respectively.
The first thing to observe is that if |u(X*) — u(X™)| > (1/n), then we are done
immediately by considering the discrepancy over the intersection corresponding to
the entire set of inputs. Hence, we may assume |u(X*) — u(X )| < (1/n). Thus,
p(X~) > 1/2 — (1/2n). However, X~ can be covered by the following n monochro-
matic cylinder intersections: let C; be the set of inputs in which the ith column is
an all-one column. Then X~ = U ,C;. By averaging, there exists an ¢ such that
w(C;) = 1/2n — (1/2n?). Taking the discrepancy of this C;, Wei are done. |
It is therefore impossible to obtain better than Q(logn) bounds on the com-
munication complexity of Disjointness by a direct application of the discrepancy
method. In fact, the above argument shows that this method fails to give better
than polylogarithmic lower bounds for any function that is in NP or co-NP%. In
other words, the Discrepancy Method is too strong, i.e. not only does it yield bounds
for the randomized model, but it also yields bounds on non-deterministic communi-
cation complexity. This makes it unsuitable as a method for separating the power of
randomness from non-determinism, i.e. classes BPP® and NP4 ( or co-NP$©).
Fortunately, there is a simple generalization of the Discrepancy Method that
is somewhat surprisingly effective for dealing with several functions that have large

discrepancy. Curiously, this method grew out of research on quantum communication
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complexity. To the best of our knowledge, it remained unknown among several
researchers whose primary focus was on classical communication.

The origins of the idea of generalizing the discrepancy method can be found in
the work of Klauck |K1a01|® . Klauck considered, in the setting of two players, func-
tions of the form f(z,y) = g(xAy) where the A operation is naturally applied bitwise
to the bits of z and y. He observed that if g correlates well with a parity function
on some large subset S of {1,...,n} under the uniform distribution” , then f corre-
lates well with the inner-product function of the columns indexed by elements of S,
denoted by IPg, under a simple product distribution x. The ingenuity in Klauck’s
argument is that he shows IPg having small discrepancy under y implies that f has
large distributional complexity under p. This, as he correctly adds, follows despite
the possibility that f itself has large discrepancy. Indeed, Klauck proves that IP
has very small rectangular discrepancy under u. Klauck goes on to show that this
“generalized form of the discrepancy method” can be used to obtain a lower bound of
(n/logn) on the quantum (and hence classical randomizéd) communication com-
plexity of MAJ(x A y) despite the fact that it has large discrepancy.

The main idea in Klauck’s work can be abstracted in following terms: A function
f may have high discrepancy and still correlate well under some distribution p with
a function A that has small discrepancy under p. Exhibiting such a h, yields lower

bounds on the bounded-error communication complexity of f.

8 The full version of Klauck’s work appears in |Kla07].

" In other words, g has a large high-order Fourier coefficient, i.e. f (S) is large.
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This principle was re-expressed, in a more general fashion, in matrix theoretic
terms for the two player quantum communication model by Razborov [Raz03], where
he called it the “Discrepancy Method”. One may dare say, that this matrix theoretic
formulation may have hindered the recognition of the wider applicability of the un-
derlying principle. Sherstov [She08b, Sec. 2.4] provides a nice reinterpretation of
Razborov’s formulation of the Discrepancy method and points out the fact that the
general principie at play is independent of the precise communication model for two
~ players. Based on this observation by Sherstov, we specialize the Klauck-Razborov
Principle to the multi-party model in [CA08] as follows:

Lemma 6.18 (Generalized Discrepancy Method) Denote X = Y; x ... x Y;.
Let f : X = {-=1,1} and g : X — {—1,1} be such that under some distribution p
we have Corr,(f,g) > 6. Then |

M) (6.23)

Ri(f) > bog (G
‘Proof: Let P be a k-party randomized protocol that computes f with advantage ¢
and cost c¢. Then for every distribution p over the inputs, we can derive a deter-
ministic k-player protocol P’ for f that errs only on at most a (1/2 — €) fraction
of the inputs (w.r.t. p) and has cost c. Take p to be a distribution satisfying the

correlation inequality. We know that P’ partitions the input space into at most 2¢

monochromatic (w.r.t. P') cylinder intersections. Let C denote this set of cylinder
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intersections. Then,

§ < |Eounf(z)g(z)|
= | f@)g(z)u)
< D) Plagle z)|+|2 (z) - P'(@))g(x)u(z)|-

Since P’ is a constant over every cylinder intersection S in C, we have

§ < Z[ZP(m Jg(@)u(z |+Z|gm)! — P'(z)|u(z)

SeC zeS

Z|Zg($)ﬂfﬂ |+Z|f(x - x)l,u(a:

SeC zeS
< 2%isc,,(9) +2(1/2 —€).

IN

This gives us immediately (6.23). n

Observe that when f = g, i.e. Corr,(f, g) =1, we recover the classical discrep-
ancy method (Lemma 4.18).
6.5.1 Applications to Disjointness

Although the “generalized form of the discrepancy method” was known to re-
searchers in quantum communication complexity since the work of Klauck [Kla01],
it was not known if this method could be applied to Disjointness. In fact, Razborov
[Raz03] remarks that even this generalized principle is not applicable to the Disjoint-
ness function. Sherstov [She08b] disproves this remark by designing a novel strategy
that allows the application of this Generalized Discrepancy Method to yield strong

lower bounds on the 2-party bounded-error quantum communication complexity -of

174



Disjointness. A key ingredient in this strategy is a beautiful duality between approx-
imability and orthogonality. The intuition is that if a function is at a large distance
from the linear space spanned by characters of degree less than d, then its projec-
tion on the dual space spanned by characters of degree at least d is large. More
precisely, recall froﬁ Section 6.1.1 that the é-approximation degree of a boolean
function f, denoted by deg;(f), is the degree of the smallest degree real polynomial
that approximates f point-wise within .
Lemma 6.19 (Sherétov [She08b], Shi and Zhu [SZ07}) Let f: {-1,1}" - R
be given with degs(f) = d > 1. Then there exists g : {—1,1}™ — {-1,1} and a
distribution p on {—1,1}™ such that g is (u,d)-orthogonal and Corru( fig) > 6.
This Approximation/Orthogonality Principle is a classical result in functional
analysis. It has been of ihterest to researchers in computational complexity before® in
other contexts. But to the best of our knowledge, its use in communication com-
plexity first appears in the independent works of Sherstov [She08b] and Shi and Zhu
[SZ07]. We do not prove this lemma but the interested reader can look up its short
proof in [She08b, SZ07, Spa08] which is based on an application of linear program-
ming duality. In this section, we extend Sherstov’s strategy to the multiparty setting

using the Orthogonality-Discrepancy Lemma.

8 For instance, in his work [Spa08] Spalek credits Buhrman and Szegedy to have
discovered this principle independently.
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Theorem 6.20 Let f : {0,1}"™ — {—1,1} have §-approzimate degree d. Let n >
k
(2—2—(%11—)5)k_1mk, and f':{0,1}™ — {—1,1} be such that f(z) = f'(20"™). Then

) d
RG> o7 +log(6+2¢ - 1). (6.24)

Proof: Applying Lemma 6.19 we obtain a function g and a distribution g such
that Corr,(f,g) > ¢ and g is (i, d)-orthogonal. Thus, applying the Orthogonality-

Discrepancy Lemma 6.8, we get

diSCk,)\ (Flg) < L

where ) is precisely obtained from p as stated in Lemma 6.8 and ¢ > 22°(k—1)em/d.
k
Since n = £¥~!m, (6.25) holds for n > (Lﬂ)k_lmk.
It can be easily verified that Corr ,\(F,f , FY) = Corr,(f,g) > 6. Thus, by plugging

the value of discy,»(F¥) in (6.23) of the Generalized Discrepancy Method, we get

d
Ry(F)) > o +log(d+2¢ — 1),

We observe that the communication matrix of F embeds as a submatrix in the
communication matrix of Gf. The proof is finished by noting that a protocol for
solving Gil yields one for GY. n

In particular, strong lower bounds on the bounded-error randomized multiparty
communication complexity of Disjointness follows readily from Theorem 6.20. This
significantly improves the best earlier lower bound of 2(logn) due to Tesson |Tes03]

and Beame et.al. [BPSWO06] for three or more players.
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Corollary 6.21

Ry (DISJ,) = Q2 ———k}rl
il ) <22'°(k - 1)2"‘1)
for any constant € > 0.

Proof: Let f = NOR,, and f' = NOR,. We know deg,s(NOR,,) = ©(y/m) by

22" (k—1)e

m)k—lmk, and writing (6.24) in terms of n

Theorem 6.5. Setting n = (
gives the result for any constant € > 1/6. The bound can be made to work for every

constant € by a standard boosting argument. [

Recall that there is a simple non-deterministic protocol of cost O(logn) com-
puting non-Disjointness, i.e. GP®. Thus, Corollary 6.21 provides an explicit sepa-
ration of the class of functions having efficient randomized protocols with bounded
error from the class of functions having efficient non-deterministic protocols, i.e.
NP§* € BPPY for k < loglogn — logloglogn. Such a separation first appeared in
the joint work with A. Ada [CA08] and independently in the work of Lee and Shraib-
man [LS08]. David, Pitassi and Viola [DPV08] have recently pushed 6ur argument
further, making elegant use of the probabilistic method, to show that such a separa-
tion continues to exist for § logn players for every constant § < 1. They also prbvide

an explicit function witnessing their separation by derandomizing their argument.
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6.5.2 Other Symmetric Functions

Theorem 6.20 does not immediately provide strong bounds on the communica-
tion complexity of G£ for every symmetric f. For instance, if f is the MAJORITY
function then one has to work a little more to derive strong lower bounds®.

In this section, using Theorem 6.20 and Paturi’s Theorem (Theorem 6.5), we
obtain a lower bound on the communication complexity of G{: for each non-trivial
symmetric f. Let f : {0,1}™ — {1,—1} be the symmetric function induced from
a predicate D : {0,1,...,n} — {1,—1}. We denote by GP the function Gf. For
t € {0,1,...,n — 1}, define D, : {0,1,...,n —t} — {1,—1} by D,(z) = D(i + t).
Observe that the communication complexity of Gf is at least the communication
complexity of GkD £
Corollary 6.22 Let D : {0,1,...,n} — {1,—1} be any prediéate with the (1/3)-
approzimate degree of D, denoted by deg;/3(D), equal to d. Let £y = £o(D) and
¢y = 4,(D). Define T :N — N by

aj-

Tle) = ((22% —Z>e/d>k—1) |

Then for any constant € > 0,

ry(GE) = wita) + 2 )

% Lower bounds for GMA can be obtained in another way. It is not too difficult
to see that a k-party protocol for GMAJ can be used to derive a protocol for GEARITY
with a small blow-up in cost. Thus, G}AJ is as hard as GIP.
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where,

VTl Tn—t) L

U(lp) = min{ 1 e

Proof: The first thing to note is that the relationship between T(n) and n is exactly
the relationship between m and n in Theorem 6.20. This is not accidental. Indeed,
the general idea of our proof is to show that the predicate D ‘embeds’ another
predicate D] with the following property: Dj is defined over the set {0,...,n;}
and there is a predicate D; defined over {0,...,7(n;)}. Further, we show that
T(n1),n; and deg;/5(D;) can be made to correspond to m,n and d of Theroem 6.20
respectively. Here, D; plays the role of D in Theorem 6.20 and D] that of D’. This
allows us to conclude that the communication complexity of G’lel is high. Thus, GP
has high communication complexity as well.

We implement the above idea by considering the following three cases. In each
case, let £y = £o(D) and £, = £,(D). Further, let ¢ = log(1/3 + 2¢ — 1). W.Lo.g., we
assume!? that ¢ > 1/3, so that c is a well defined constant.

Case 1: Suppose £o < T'(n)/2. In this case D} is thesame as D. Let D1 : {0,1,...,T(n)} —
{1,-1} bé such that for any z € {0,1}7™, we have D;(|z|) = Dj(|2|). By Theo-

rem 6.20, the complexity of GY is 2(d/2"') where d = deg, 3(D;). By Paturi’s
Theorem, degy/3(D1) = /T (n)(D1) = v/T(n)é and so

] T(n)¢
RY(GP) > RGP = Yo o ¢

10 We can always apply boosting later to lift our bounds to any constant €, using
Observation 4.1 in Chapter 4.
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Case 2: Suppose T'(n)/2 < £y < n/2. In this case D is D, where t = £o—T(n—4p)/2.
Let D; : {0,1,...,T(n — £)} — {1,—1} be such that D;(|z|) = Dj(]z|). So by
Theorem 6.20, the complexity of Gfg is Q(d/2*') where d is the approximation

degree of D;. We know
Dy(T(n—£4)/2) = Dy(T(n—4)/2)

= D(T(n—4)/2)

D(T(n =€) /2 + £o — T(n — £)/2)

D(4o)

7é D(EO - 1) by defn. of EO

Dy(T(n - &)/2 - 1).

Hence, £o(D1) = T(n—£o)/2. Thus by Paturi’s Theorem, deg; /5(D1) > +/T(n — £)?/2.

This implies, as before,
T(’I’L - éo)

k-1 + c.

Ri(GY) =
Case 3: Suppose ¢p = 0 and ¢; # 0. Unlike in the first two cases, we bound the
approximate degree of D; by estimating ¢;(D;) in terms of ¢;. The rest of the
argument is similar to the one for Case 2. Consider D] = D; where t = n — {; —
T(¢1)/2. Let Dy : {0,1,...,T(¢;)} — {1,—1} be such that D;(]z]) = Di(|z]) =
D;(|z]). As in Case 2, one verifies that Dy(T(£1)/2) # Di(T(¢:1)/2 + 1). Thus
6(Dy) = T(41)/2. So, degij3(D1) > +/T(£1)2/2. Therefore,

T(4)
2k—1

R (GP) = +c.
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Combining these three casés, we get the desired result. | |
6.6 Lower Boﬁnds by Block-Composition

In this section, we develop a new lower bound technique extending the recent
work of Shi and Zhu [SZ07]. We call this the multiparty block-composition method.
It also yields strong lowervbounds of n®1) on the k-party communication complexity
of Disjointness, when k is a constant. But the new bound decays much faster with k
and therefore provides considerably weaker bounds for non-constant k as compared
to the one derived earlier, in Section 6.5.1. The reason we present thié technique is
two-fold. First, it is of independent interest as it yields a new proof of strong bounds
on the Disjointness result. In particular, recently Sherstov [She08a] remarked that it
is not clear how to extend the method of Shi and Zhu to the multiparty setting. Our
extension shows that indeed their method can be modified and extended for multiple
parties in a simple fashion. Second, the technique also appears slightly more general
than the one presented earlier. It is not clear whether in some context, the second
technique may be more convenient to apply.

Both techniqqes make use of the same duality between the notions of approxima-
bility and orthogonality (Lemma 6.19) and the Generalized Discrepancy Method. In
fact, they are closely related and we further discuss this relationship in Section 6.6.2.

We start with the formal descri.ption of the block-composition method. Consider
a real valued function h : {1,—1}™ — R and a boolean function ¢ : ({1, —1}*)F! —
{1,-1}. We ﬁaturally view the input space of q as a two dimensional block with
(k+1) rows and s columns and we call g the block function in the ensuing discussion.

Consider a boolean matrix A of dimension (k+1) x (ms) that we view as made up of m
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contiguous blocks, each of dimension (k+1) xs. We define a function (hOgq) over such
boolean matrices that evaluates on its input in the following way: it first applies g to
each of the m blocks of the matrix to obtain an m-bit boolean string and then applies
h to this string tov output its value, ie. (hOg)(z1,...,2m) = h(gq(z1),---,q(zm)),
with each z € {1,—1}**Ds In this language, functions like GIP and Disjointness
are rewritten as (PARITYOAND) and (NOROAND) respectively, where the inner
function AND acts on blocks of dimension (k + 1) x 1.

Equivalently, in the context of the k-party communication problem of evaluating
(hOq), we partition the input matrix A in the obvious way: the (k + 1) rows of the
matrix are denoted by z, ', ...,y respectively and Player 1 gets x on the forehead,
and for 1 <14 < k, Player (i + 1) gets * on the forehead.

We are interested in the question “For a boolean h, what properties of h and q are
sufficient to make (h{Jq) have large communication complexity?”. This question, in
the context of two-player quantum communication, was introduced and investigated
in the recent work of Shi and Zhu [SZ07]. They derive tight lower bounds on the
two-party quantum communication complexity by using the sophisticated machinery
of Hahn polynomials and spectral analysis. However, we do not use these tools in
extending the method to the multiparty setting.

6.6.1 Hardness Amplification

Let vy, v, ...,V be probability distributions over sets I, I, ..., [ C {1, —1}".
Let v be the product of these ciistributions and consider a boolean function ¢q defined
over blocks of dimension (k + 1) x s. Then, define the (k + 1)-dimensional cube

measure of ¢ w.r.t. v, denoted by &, +1(q), as follows:
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]ExNL/,;( H Q(fc,y}“, e ayzlik)> I

u€{0,1}*

Evpr1(0) Zdet Eyg yinn,

- We say that ¢ is balanced under v if

Before we proceed further, let us derive a probability distribution A over the
inputs of a.block-composed function (h(Jg), given any distribution for inputs of A
and a distribution v that leaves ¢ balanced.

Proposition 6.23 Let u be any distribution over {0,1}™. Let g : {1,—1}(+Ds
{1, -1} be a block function that is balanced by a distribution v over its inputs. Then,

the function

m

Mz, - yZm) = 2™ X ((ul___lq)(zl, . ,zm)) X Hu(zi)

i=1 '
is a probability distribution over the set of (k + 1) x (ms) boolean matrices, where
each z; is a block of dimension (k + 1) X s.

Proof: This is true because ¢ is balanced under v. More precisely,

m

Z M2y 2m) = Z 27 x ((u0q) (21, - - - Zm)) XH v(z).

zi€{l,—1}k+Dsi<m zi€{1,-1}(k+D)s:5<m 1=1
This can be re-written in the following manner. For any = € {1, —1}™, let z; denote

its 7th coordinate.
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Z 2m Z N(xla‘--vmm).l:!’/(zi)

ze{l,~1}m ZiE{l,—l}(k+1)“:q(zi)=xi

= > [p(xl,...,xm)Qmﬁ< > I/(zi))]. (6.26)

ze{l,—1}m z€{1,-1}kFDs:g(z;)=a;

Since ¢ is balanced under v, for each i and z, we have
Z v(z) = —;—
z€{1,—1}(:+D)sq(2;)=2x;
Substituting this in (6.26), and recalling that u is a distribution on {1, —1}™, we get
Z Az, ooy 2m) = Z p(zy, ..., zm) =1
2€{1,—1}(k+Dsi<m ze{1,—1}m
|
Let h be (u,d)-orthogonal for some distribution p and integer d > 0. Further,
let ¢ be balanced under a distribution v such that the cube measure of ¢ w.r.t v is
not too large. The following lemma shows that the discrepancy of (hq) is exponen-
tially small w.r.t. the distribution A that is generated out of i and v according to
Proposition 6.23.
Lemma 6.24 (Discrepancy Amplification) Let h : {1, -1} — {1,-1} be a

(1, d)-orthogonal function and q : {1, —1}%+Vs — {1 —1} be a block function that is

balanced under a product distribution v. If (S,,,kﬂ(q))l/zk < g%, then
. 1
discy g+1(h0g) < 5 (6.27)
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where, A is the probability distribution defined in the following manner:

Azt -y 2m) = 2™ % ((pOg) (21, . ., 2Zm) ) X H u(z). (6.28)

Here, eachbzi is a block of dimension (k+1) x s.
Proof: Recall from Section 6.1.1 that every real valued-function over {1, —1}™ can
be decomposed, via the Fourier transform, in terms of the monomials xg, with
S C'[m]. The main idea in the proof is the following: Define hu(z,...,2m) =
Ih(zl,...,zm)u(zl,...,zm). Use the Fourier expansion of the function Ay to de-
compose the function (Aulq) in terms of functions of the form (xsOg). Use this
decomposition to upper bound the discrepancy of (hg), w.r.t. A, as the sum of
discrepancies of each (xsUg), w.r.t. to the distribution that is an m-fold product of
v. Finally, using the cube measure, we show that the discrepancy of each (xsOq)
decays rapidly with the size of the set S.

Forthwith are the details. Let 7 be the characteristic function of any (k+1)-wise

cylinder intersection. Then, using the definition of A and discrepancy one gets

m

> ((wDg) () [[ v(=)

2=(21,-..,2m ) i=1

discy,r (hOq) = 2™

Applying the (u, d)-orthogonality of h and the triangle inequality, the RHS above

simplifies to

o Y huS) Y (xsOo)(2)r(2) [[ vz <
|S[>d:SC[m] » z=(21,...y2m) i=1

2™ N |hu(S)]

|S|>d

Z (xsOq) (2)7(2) H v(z;)
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It is not hard to verify that, as h is boolean valued and p is a probability

distribution, @(S ) < 1/2™ for any S. Using this, the above further simplifies to

discy - (th) < Z
|S|zd

IEz,;M/ (XSDQ) (Z)T(Z) :

As 7 is an arbitrary cylinder intersection,
discy (hOg) < Z discy (xs0q), (6.29)
1S|=d
where 7 is simply the m-fold product‘ of v. This completes the first part of the
proof. For the second part, we readily estimate the discrepancy of (xsOgq) below in
terms of &, x+1(q). Henceforth, we abuse notation and overload S to also mean the
characteristic vector of the set S.

Proposition 6.25 For any S € {0,1}™,

|S|/2*

diSCg’k_H (XSD(]) S (5,,,]94_1((])) (630)

Proof: Before we plunge into the calculations, we set some notation. Recall that
z,y},...,y* represent the (k + 1) rows of the input matrix of (hOgq). Let z[i] and
y'[i], ..., y*[i] represent respectively the portion of these rows that belongs to the ith
block z; of the input matrix, for 1 <4 < m. In other words, denoting the jth row of
the ith block naturally by z[j], z[f] = z[1] and y?[i] = z[j + 1], for 1 < i < m and
1<j <k

Recall the upper bound on discrepancy provided by the cube measure through

Lemma 6.6 in Section 6.1.2. Using the definition of v and 7, and applying equation

186



(6.2), we proceed as follows:

Eon(ye)m H (xsOq) (z, s, -- - 95 )

u€{0,1}*

2k
(discv,kﬂ (XSDQ)) < Eyg,ygfu(ui)mzlgisk

= Eyi yimviich H Ezb‘]wz[ H Q(x[j],yil[j],---,yﬁk[j])]l
J:85=1 ue{0,1}*
=By |1 Emm%[ 11 q(z[j],yil[j},...,y::,c[j])}‘

§i85=1 we{0,1}+

= H Eyam,yi[ﬂw:lﬁs'c
3:85=1

Bagess| [1 aelilabihoabii)]| G2

u€e{0,1}*
Applying the definition of &, 41 to eQuation (6.31) immediately yields equation
(6.30). |

Below, we combine Proposition 6.25 and Equation (6.29). Further we drop the

subscript of k + 1 from &, 1 to avoid clutter.

discy, (th) < Z (T) (8,,(q))j/2k.

j=d

Substituting the identity ( ) < (Tm)J , we get

mMMmSi(]quﬂ

i=d

whence equation (6.27) readily follows under the condition (Eu(q)) 12" < &

— imposed

by Lemma 6.24. |
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6.6.2 Application to Disjointness

We show that the masking scheme that we created in Section 6.2.1 can be viewed
as a special case of Block Composition. Consider the following k-wise indexing
function: IN; : X x Y1 x --- x Y* — {1,—-1} where X = {1,—-1}*" is the space
of k-dimensional boolean arrays with each dimension of size £ i.e. an instance of
X contains £* boolean elements. Each Y* = [€] is the space of pointers in the ith
dimension of X. On a given input instance (z,y!,...,y*), IN; outputs the value of
the element of x jointly indexed by the k pointer variables. The starting point is to
observe that the communication tensor of (NOROINy) is embedded as a sub-tensor
of the (k + 1)-wise Disjointness function. Thus, lower bounding the communication
complexity of (NOROIN,) is sufficient for our application. Here, we show that the
Discrepancy Amplification Lemma yields interesting lower bounds for (NOROIN)
by choosing the right block size.

As before, we use the Generalized Discrepancy Method. From Paturi’s Theorem,
we recall that deg, ;(NOR) = 6(,/m). We use the Approximation/Orthogonality
Principle of Lemma 6.19 to derive a function g and a distribution p such that g is
(u, d)-orthogonal. Further, Corr,(OR, g) is at least 1/3. The Generalized Discrep-
ancy Method prescribes us to upper bound the discrepancy of (901 Ny) to lower
bound the communication complexity of (NOROIN,). To that effect, let & be the
uniform distribution over the space of inputs to IN,. Define A just as given by
equation (6.28) in the Discrepancy Amplification Lemma with v = Y. Note that

U renders IN; balanced. In order to apply our Amplification Lemma, we estimate
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Eup+1 (INg).

Eurs1(IN) =E

y(i))yi'\‘“‘i

Ez( H INk(xayil) T yﬁk)> I

u€e{0,1}¢
It is not hard to verify that the inner expectation over z is one whenever y§ = y¢ for

some ¢ and is zero otherwise. Thus, applying the union bound,

k
Eup+1(INg) < 7

Observe that the parameter s, which is the length of a block in the Amplification
Lemma, is set to £* for IN;. Substituting s = £, one gets & x41(IN) = . In order

to apply the Discrepancy Amplification Lemma, we require

kN 4
L <2
(s”’“) ~ 8em’

where d is the approximation degree of the outer function g. The above is satisfied

by setting

Plugging in d = 8(y/m) for g and noting that (gCJIN;) in this case is over n = sm

columns, gives us the bound below:

diSC)\,k_H (gDINk) =0 (2—n

1
Ic2’5+2 )

It can be easily verified that Corry(NOROIN, ¢OIN) = Corr,(NOR,g) > 1/3.

Hence, equation (6.23) of the Generalized Discrepancy Method finally yields:

R (D183) 2 R (OROIN) = 0(wes ) 632

189



Note that for constant k, we obtain a bound of n®(!)| that is exponentially better
than the logn bound that was the best known bound for Disjointness until very
recently. However, it is much weaker than the bound obtained earlier applying the
Orthogonality-Discrepancy Lemma. This is despite the fact that in both cases we
use identical indexing function over blocks. The reason for it is that in establishing
the Discrepancy Amplification Lemma, we are heavily using the triangle inequality
without assuming anything about our inside function on blocks. The calculation in
Orthogonality-Discrepancy Lemma, on the other hand, proceeds much more carefully
taking into account the very special structure of the indexing function.
6.7 Conclusion

We have shown that depth-three AC® circuits contain functions that are hard
for k-player randomized protocols in a very strong sense. They need to communicate
superpolylogarithmic number of bits even when they are required to gain a mere
inverse-quasipolynomial advantage over random guessing and k = o(loglogn). This
result, building on the work of Sherstov [She07}, exploits a connection between voting
degree of a boolean function f and the discrepancy of another function F,f that masks
f. In the next chapter, we derive important applications of this result to circuit
complexity.

Further, we have shown that multiparty randomized protocols cannot compute
efficiently functions in depth-two AC®, when they are required to achieve bounded
advantage over random guessing. This has settled a major open question by showing

that Disjointness has n!) k-party complexity in the bounded error model, if k is a
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constant. We prove this result in two ways. The first is by extending the pattern-
matrix method of Sherstov [She08b] for two-player quantum protocols. The second is
by extending the block-composition method of Shi and Zhu [SZ07], also designed for
two-player quantum protocols. Both our extensions use the beautiful duality between
the notion of approxirhability of boolean functions by polynomials over reals and the
notion of a polynomial being orthogonal to low-order parities. This duality was
introduced in the settingbof communication complexity by [She08b, SZ07]. Finally,
we remark that our extension of the block-composition method to the multiparty
setting, answers a recent question raised by Sherstov [She08a].

Beame, Pitassi and Segerlind [BPS05] have shown that strong lower bounds on
the randomized multiparty communication complexity of Disjointness results in new
separation of p_roof systems. In this regard, our bounds yield such separations that
are not yet known to follow from other techniques. Our bounds on Disjointness also
results in the first explicit separation of communication complexity classes BPP;’
and NP’ for £ = o(loglogn). This separation has been recently improved by David,
Pitassi and Viola [DPV08], building upon our work.

An interesting direction for future research is to answer the following two ques-
tions: (a)Can we find a function in AC® that has no efficient protocol of bounded
advantage for § logn players for some constant §? (b)Can we find such a function if
we require only inverse-quasipolynomial advantage from protocols? The last question
if answered in the positive will have ifnportant consequences for depth-three circuits
as the discussion in the next chapter shows. Very recently, Beame and Huynh-Ngoc

[BHNO8] have made progress towards answering the first question. They show a
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function in ACP that has no efficient randomized bounded-error protocols for §+/logn

players, where 0 is a constant less than 1.
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CHAPTER 7
Some Consequences for Depth-Three Circuits

In this chapter, we derive some results on depth-three circuits that follow either
directly from results in the last chapter on mulﬁparty communication or use very
similar ideas.

We recall that understanding the computational power of depth-three circuits
made of MAJORITY and MOD counting gates remains open. In particular, we do
not know if linear size depth-three circuits comprising only MOD,,, gates or compris-
ing only MAJ gates can compute every function in NP. Indeed, proving superlinear
lower bounds on the size of such circuits for computing any explicit function is one
of the frontiers in the theory of lower bounds. Given this situation, it is pertinent to
ask what functions are computable by depth-three circuits in a non-trivial way.

A classical result of Allender [Al189] shows that all functions computable by
quasipolynomial size ACP circuits can be computed by circuits of depth-three and
quasipolynomial size and of the following kind: MAJ o MAJ o MAJogn)0(1), i-e.
circuits of depth three having only MAJORITY gates in which the gates at the
base layer are restricted to have polylogarithmic fan-in. This result follows almoét :

directly! from the result, by Razborov and Smolensky, on the approximability of

! Allender showed a uniform version of this theorem, i.e. every uniform AC? circuit
of quasipolynomial size can be simulated by a uniform depth-three circuit with MAJ
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AC? circuits by low degree polynomials over finite fields. More surprisingly, the
work of Yao [Yao90] and Beigel-Tarui [BT94], making use of ideas in the proof of
Toda’s Theorem |Tod91], show that such circuits are powerful enough to simulate the
strictly bigger class gqACC?, i.e. the class of functions that are computable by circuits
of constant depth and quasipolynomial size that use MOD,,, gates in addition to AND
and OR gates, for some fixed integer m > 1. The following is intriguing: although
the simulation requires these bottom fan-in restricted circuits to be quasipolynomial
size, we cannot rule out the much stronger (and stranger) possibility that linear size
suffices to simulate the whole of NP.

- Hastad and Goldmann |[HG91] showed that if such depth three circuits were fur-
ther restricted to have sub-logarithmic fan-in at the bottom layer, then they cannot
simulate ACC® in sub-exponential size. This left open the question whether such
restricted circuits, even when they have constant fan-in at the bottom, could simu-
late AC? in quasi-polynomial size. In fact until very recently, no super-polynomial
lower bounds were known on the size of depth-two circuits of type MAJ o MAJ for
simulating AC®. Sherstov [She07] recently resolved the depth two question in the
negative by analyzing the two-party randomized communication complexity of an
appropriately chosen function in AC®. Hastad and Goldman, on the other hand,

invoked the result of Babai, Nisan and Szegedy |BNS92| for the stronger multiparty

‘gates of quasipolynomial size. This uniform version is not known to follow from the
Razborov-Smolensky argument. Allender used ideas from Toda’s theorem to obtain
his result.
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model to show their lower bound on the size of depth three circuits computing the
generalizéd inner pfoduct function. |

We extended Sherstov’s [She07] work in the last chapter to the multiparty model.

As a simple consequence of that extension, we prove the following result in this
chapter:
Theorem 7.1 Clircuits having a MAJ gate at the output, a middle layer of gates
computing arbitrary symmetrz’c. functions and a base layer of gates computing any
functions of k input variables, i.e. of type MAJo SYMM o ANY}, need size at least
erp <Q (%)) to simulate depth-three ACP of linear size. Specifically, if k is a
constant (resp. o(log logn)) then such circuits cannot simulate AC° if the top fan-in
is subezponential (resp. quasipolynomial).

In particular, the above shows that Allender’s classic construction to simulate
AC? is reasonably close to being optimal. In fact, Allender’s original »construction
shows that qpoly size circuits of type MAJ o MOD,, o AND jognyoy can simulate
ACC[p"] (i.e. circuits with MOD,- gates in addition to AND/OR gates), for every
prime p that divides m and any fixed . A long line of research (see for example |
[CGT96, Gre99, Gre04, ABO1]) seeks to show that such depth-three circuits cannot
simulate ACC? in quasipoly size. On the other hand, it is commonly believed that
such circui_ts cannot even computé MODy, if m, ¢ are co—prime.

Recall, from Section 2.1.4, that the Discriminator Lemma implies that obtaining
an exponentially small upper bound on the correlation between a function f and any
boolean function that is represented by a polynomial of poly-logarithmic degree over

Zp,, is enough to prove that f cannot be computed in subexponential size by such
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depth-three circuits. It is widely conjectured that MOD, has smallA correlation with
functions represented by low degree polynomials over Z,,, if m and ¢ are co-prime.
However for a long time, no good estimates were available even for the correlation
between general quadratic polynomials over Z,, and MOD,,. This state of affairs has
been significantly improved by the breakthrough work of Bourgain [Bou05] and Green
et.al. |GRSO05], although the original problem of separating the class of functions
computed by circuits MAJ o MODy, 0 AND o, o)) of polynomial size from ACC?
remains wide open. Note that this is unresolved even when m is a prime and the
depth-three circuits are of linear size.

In the second part of this chapter, we simplify Bourgain’s method |Bou05,
GRS05] of estimating the correlation between polynomials of degree d over Z,, and
MOD, when (m, q) = 1. We argue that the notion of discrepancy, suitably modified,
can be used conveniently to obtain this estimate. This approach also points out the
similarities between the techniques used for estimating cylindrical discrepancy in the
communication setting and the techniques used for obtaining bounds on correlation.
Additionally, our estimates for correlation are slightly better than previous estimates
of [Bou05, GRS05].

Applying the Discriminator Lemma from Section 2.1.4, we obtain the following:
Theorem 7.2 Any depth-three circuit of type MAJ o MOD,, o ANY, requires size
ezp(Qn/(m2™"1)4)) to compute MOD, function, if m,q are co-prime.

For the special case of m = 2, this matches the recent bounds obtained by Viola
and Wigderson [VW07a]. It is not known if techniques of [VWO07a), based on Gowers

norm, can be extended to all m.
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7.1 Simulating AC® by Depth-Three Circuits

Razborov and Smolensky showed that ACC®[p¥] circuits can be well-approximated

by low degree polynomials over Z,x. Let us recall, from Section 2.1.3, their charac-
terization of these circuits:
Lemma 7.3 (Restatement of Theorem 2.17) Let p be any fized prime. For
each 0 < € < 1 and for every circuit C in ACC [p*] of depth d and size s, there exists
a distribution Uc over polynomials over Z, of degree at most ((p* — 1)(log(s/ e)))d ,
such that for each input x to C, Prpy,[P(z) # C(z)] < e.

Fix € in the above characterization to be sufficiently smaller than 1/2. If we
pick ¢ polynomials independently and according to distribution U, then we expect
et of them to evaluate differently than the circuit C on any fixed input = € {0, 1}
The probability that the number of such erring polynomialé exceeds %t (in this cése
they deviate by a lot from the expected number) is very small if the number of
polynomials ¢ is suitably large. Indeed, it is not hard to verify, using the Chernoff
bound, that there exists a constant c. depending on ¢ alone such that if we pick
t = cen polynomials at random, then for any given x the probability that more
than half of them err on a fixed input is less that 27". Taking a union bound, the
probability that they err on at least one input is less than one. Noting that every
polynomial of degree d over Z, can be evaluated by a depth-two circuit of type
MOD,, o AND;; of size O(n?), the probabilistic method implies the following:
Theorem 7.4 A function computed by any ACC°[p¥| circuit of size s and depth d
can be also computed by a depth-three circuit MAJ o MOD, o AND; of size O(n't1),

where t = O((log s)%). The top fan-in of such a depth-three circuit is merely linear.
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Note that, by contrast, Theorem 7.1 says that if the bottom fan-in is restricted
to o(loglogn), then the top fan-in of depth-three circuits itself needs to be super-
quasipolynomial to simulate ACP.

7.2 From Communication to Circuits

In this section, we derive Theorem 7.1 from our results on multiparty commu-
nication in the last chapter. In order to do so, we recall an established connection
between randomized communication complexity of a function f and the size of depth-
three circuits needed to compute f.

Fact 7.5 (see [HG91]) If f is computed by a circuit of type MAJo SYMMo ANY,
of size s, then R,iff(f) < klogs.

Proof: Let Cy,...,C, t < s, be the subcircuits feeding into the output MAJ gate
in the circuit C for computing f. The (k + 1)-player protocol first flips a set of
coins to randomly select ¢ € {1,...,s}. Then it outputs the value of C; on the
input instance. By the definition of a MAJ gate, it is easy to verify that the error
probability is bounded by (1/2 — 1/2s).

The proof is completed by showing that each C; can be evaluated by commu-
nicating at most k.logs bits. The key thing to note is that every ANY; gate at
the base of C; can be evaluated by at least one of the k + 1 players with no com-
munication. The players agree beforehand on the set of base gates that each player
evaluates. Since the output gate of C; computes a symmetric function, the (k+1)-th

player can determine the value of Cj, once the remaining players send the number
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of base gates that they respectively see evaluating to 1. This clearly takes at most

klog s bits of communication?. |

Armed with this observation, we are ready to prove our main theorem showing
that AC® does not have efficient simulation by depth-three circuits with restricted
bottom fan-in. For this, recall the Minsky-Papert function, denoted by MP, defined
as MP(z) = Vi_, /\?t:1 z; ;. This is easily seen to be computable by linear depth-two
AC’. Using the masking scheme defined in Section 6.2.1, we consider the (k + 1)-
wise masked Minsky-Papert function Fpt5. This masked function, using Fact 6.16,
can be computed in depth-three and linear size by AC® circuits. On the other
hand, Corollary 6.14 (which is a corollary to the Multiparty Degree-Discrepancy
Lemma), says that i‘p has large randomized communication complexity even when
the advantage over random guessing is small. We have recalled all the necessary facts
to finish off the short formal argument proving our main theorem below.

Proof:|Of Theorem 7.1] Let s be the size of any depth-three circuit of bottom fan-in

k computing F,?f;. Then applying Fact 7.5 and Corollary 6.14, we get

1

b1 . ) 1
> 1/2s MP > n 2k+3 2
k log §Z Rk+l (Fk+1) = Q (22k+1/(2k+3)26k)k + log 23

This immediately yields our theorem. » |

2 It is worthwhile to note that this protocol is simultaneous.
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7.3 Polynomial Discrepancy

In this section, we show that boolean functions represented by low degree poly-
nomials over Z,, do not correlate well with MODy, if m, ¢ are co-prime. For this, we
define the notion of polynomial discrepancy of a function.

Let P be any multilinear polynomial of degree d over Z,, in n variables. Let
L, be the linear polynomial z; + - - + z, evaluated over Z,. Recall that. e, (k)
denotes exp(2mik/q), where ¢ is the square-root of —1. Further, let f : {0,1}" — Z,.
Consider a distribution y such that f is almost balanced under y, i.e. Pr;[f(z) =
b] = 1/q+27%"). For example, L, is almost balanced under the uniform distribution
for every g. Let 1p(;)=, denote the characteristic vector of the set of those points of
the cube where polynomial P evaluates to a in Z,,. We define the mod-m polynomial
discrepancy of f w.r.t. Pand a € Zy,, b € Z,—{0} under y, denoted by Pdiscf,’f,;b( )

to be the following:

Pdiscf:f,;b(f) = |Epupneq(b£(2)) - 1p@)=al- (7.1)

Note that if f has zero discrepancy, then f evaluates to each element of Z, with equal
probability over the set of points where P evaluates to a. Intuitively, the higher the
discrepancy of f, the more skewed is the behavior of f over the set 1p(;)=,-

It is interesting to compare the above notion of polynomial discrepancy and
discrepancy of cylinder intersections as defined by (4.4) in Chapter 4. Note that in
(4.4) f is assumed to be 1/ — 1 valued. Noting this, we remark that the two notions

are extremely similar and this similarity becomes even clearer if we assume ¢ = 2 in
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(7.1). In this regard, the degree d of the polynomial has the same role as that of the
parameter k in a k-wise cylinder intersection. Further, the role played by polynomial
discrepancy in bounding thé correlation of a polynomial with a boolean function is
very similar to the role played by discrepancy of cylinder intersections in bounding
the distributional communication complexity of a boolean function.

The Mod-m, degree-d Polynomial Discrepancy of f under y, denoted by Pdiscy ,, m(f),
is simply max{Pdisci;‘,;b( f)ldeg(P) =d,a €Zmbe Z4}. In thié chapter, the default
distribution is uniform. Henceforth, we drop the subscript denoting the distribution
explicitly. _

Our main technical lemma, in this section, "is the following :

Lemma 7.6 (Polynomial Discrepancy Lemma) Let m,q > 1 be integers that

are co-prime and d > 1. Then, there exists a constant a = a(m,q) , such that the

following holds:

Pdiscgm(L,) < exp( - Gn;“TZ—F). (7.2)

In words, (7.2) shows that P~!(a), for each a, looks uniform to a MOD, counter
ie. every L7'(b) is almost equaily represented in the set, provided the size of the
set is large compared to the size of the cube. We identify the similarities befween
the calculation of polynomial discrepancy of the L, function and the method used
by [BNS92] to estimate the cylindrical discrepancy for the generalized inner product
function. In both estimates, the key technical ingredient is to raise the sum in

question to its appropriate power.
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This easily leads to an upper bound of exp(—Q(n/(m2™ 1)¢)) on correlation
between the MOD, function and functions represented by polynomials of degree d
over Z,. In particular, this implies the bound of exp(—(n/4%)) for the special
case of m = 2 that was first reported in the recent work of [VWO07a]. Recall the
elementary identity for roots of unity: ZZ:OI em(ay) = 1 if y is a multiple of m and
is zero otherwise. We start by re-writing, using complex roots of unity, the quantity

Pdiscf:;fl’b(Lq) for any polynomial P over Z,, and for any a € Zn,,b € Z, as follows:

Pdisc2**(L,) = |E, [ (% Tg} em(a(P(z) — a)))eq(b(:c1 4 xn))} ‘ (7.3)
Let,
S a,b, P)=E, [em(aP(x)) eq(blzi+ -+ xn))} . (7.4)
Then,
PdiscP*?(L,) < % S [579(a,b, P)| (7.5)
a€[m]

It is simple to verify that the Polynomial Discrepancy Lemma gets established
by the bound on |S™4(c, b, P)| provided below.
Lemma 7.7 For each pair of co-prime integers m,q > 1 there exists a constant

B = B(q) such that for every polynomial P of degree d > 0 over Z,, and numbers
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a € [m], b € [q] — {0}, the followiﬁg holds :

1S9, b, P)| < e:?p< - m—zen%) | (7.6)

Before we begin our formal calculations, we remind the reader that a slightly weaker
estimate of |S7™9(a, b, P)| was first obtained in [Bou05, GRS05]. The case when P
is é linear polynomial was essentially dealt with in [CGT96].

Observe that the quantity S™¢, defined in (7.4), looks very similar to the sum
that was obtained in Babai, Nisan and Szegedy [BNS92| to calculate the discrepancy
of GIP. There, they were interested in bounding discrepancy of GIP w.r.t. k-cylinder
intersections. Here, we are interested in bounding the discrepancy of L, w.r.t. to
a set that is the image of a polynomial. The key idea, introduced in [BNS92], is
that squaring the sﬁm is effective in dealing with cylinder intersections. This is
something that we adapted to our préof of the Degree-Discrepancy Lemma in the
previous chapter. Here, the analogue of the BNS trick will be to raise the sum in
(7.4) to its mth power.

In order to further efcplain the intuition behind our proof of Lemma, 7.7, we
introduce some definitions and notations. Let f : {0,1}" — Z,, be any function.
Consider any set I C [n]. Note that each binary vector v of length |I| can be
thought of as a partial assignment to the input variables of f by assigning v to the
variables in I in a natural way. Let f!(*) be the subfunction of f on variables not
indexed in I induced by the partial assignment v to variables indexed in I. For
any sequence Y = {y1,...,y:} having t boolean vectors from {0,1}", let fy be the

function defined by fy(z) = f(z) + S.i, f(z ® y;), where the sum is taken in Z,,.
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Let I[Y] C [n] be the set of those indices on which every vector in Y is zero and J[Y]
be just the complement of I[Y]. Then, the following observation will be very useful
in our calculation :

Observation 7.8 Let P be a polynomial of degree d in n variables over Z,, for
any m > 1. Then, for each sequence Y of (m — 1) boolean vectors in {0,1}", the

polynomial P}‘,I i)

is a polynomial of degree (d — 1) in variables from I[Y], for each
vector v € {0, 1}/

A point worth mentioning is that, Py behaves almost like a discrete derivative of the
polynomial® P.

Proof Sketch:[of Lemma 7.7] We drop the superscript from S7? to avoid clutter in
the following discussion. We induce on the degree d of the polynomial. Our Inductive
Hypothesis is that there exists a positive real constant py_; < 1 such that for all
polynomials R of degree at most d—1 and for alln > 0 we have |S,(a, b, R)| < 2"uj ;.
The base case of d = 0 is essentially dealt with in Chapter 3, Section 3.2.4. Note
that po depends only on ¢. Our inductive step yields a relationship between pg_;
and py that also gives us our desired explicit bound of (7.6). As in [Bou05, GRS05),

we raise S, to its mth power. Our point of departure from the earlier techniques, is

to write (S,)™ in a different way.

3 In the case of m = 2, the notion of a discrete derivative appears in several works
(see for example [GT05, Sam07]).
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(Sn)™ =By, ym-1Bo {em <P (z) + mgj Pzoy ))

| xeq<§;zi+7§§n_:(xi @_yf)ﬂ (7.7)

k=1 i=1
Let Y be the sequence of length m—1 formed by a given set of vectors 3!, ...,y™ L.
We denote by u and v respectively the projection of z to /Y] and J[Y]. Let n; and

ns be the cardinality of I[Y] and J[Y] (note that n;+n; = n) . Then, one can verify

(7.7) = By, ym1Ey [em QYY" (v) ) eg () Euem (P ) (u))e, (mzlui)]

i=1

(7.8)

m—1

where le""'ym—l is some polynomial that is determined by ¥*,...,y and polyno-
mial P.

The key thing to note is that Observation 7.8 implies that P,{[Y] ®isa polynomial
of degree at most d—1 over u for every sequence Y = y!,... y™ ! and every vector v.
Hence, the inside sum of (7.8) over the variable u can be estimated using our inductive
hypothesis. Note that raising to the mth power in (7.7) has achieved a degree
reduction of the poiynomial in a manner that is very reminiscent of how [BNS92]
does dimension reduction of cylinder intersections in the proof of their Lemma 2.5.

The rest of the calculation proceeds exactly as in Green et. al. [GRS05], which
again is very similar to the series of final steps in the proof of Lemma 2.5 in [BNS92).

We repeat them for the sake of self-containment.
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Using the triangle inequality, the binomial theorem and noting that the number

of sequences Y for which |Iy| = k is exactly (}) (2™ — 1)"*, we get

m m— n—kon— nm 1_ﬂd— "
EXN <Z()2 T q)nkon-kokyk =2 <1~—2m—_11). (7.9)

Taking the mth root of both sides of (7.9), using the inequality (1 — z)¥/™ <

1—z/mif 0 <z <1and m > 1 after rearranging, we obtain

_ (7.10)

Substituting 8 = 1 — ug, one gets pg < exp( - W—,QT)G,) This immediately
yields (7.6) in Lemma 7.7. |
Consider A = L (1) and B = L;*(0). For any a € Z,, and any polynomial P
over Zn, let P7}(a) be the subset of the cube where P evaluates to a. Then using
the estimate on the mod-m polynomial discrepancy of L,, the following uniformity
Lemma gets easily established.
Lemma 7.9 (Polynomial Uniformity Lemma) For any polynomial P of degree

d over Zp, a € Ly, and b € {0,...,q — 1}, the following holds:

IZr [P(:l:) =aAx € Mn,q(b)] - %l;r [P(a:) = a]’ < q_q‘le_z'p<— (—75—2@"?_——1)7)

Proof:

Pr[P(a) = ahz € Myy(b)] =E. [(1 qi ey(Bl@r + -+ 2n b))) - 1P(E)Ea} .



Expanding the sum inside the first multiplicand and treating the case of § =0

separately, the RHS above simplifies to the following:

1
E 1P(m) =a ZGQ( ﬁb eq ﬁL ) 1P(z)§a]-
q 70

Identifying the first term above as just %Prz [P(z) = a], we get the following

Pr[P(z) =aAz € Mypy(b)] — = Pr [P(z) = d]

T

Z PdlSCP a ﬂ

20

Plugging in the estimate from the Polynomial Discrepancy Lemma finishes the proof.

Choose A = L7*(1) and B = L;'(0). The proof of Theorem 7.2 follows quite
easily now using the Discriminator Lemma and the Polynomial Uniformity Lemma
in exactly the same fashion as we derived Theorem 3.5 from the Linear Uniformity

Lemma in Section 3.2.5 of Chapter 3.
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CHAPTER 8
Conclusion

We have explored the models of constant-depth boolean circuits, ‘Number on
the Forehead’ multiparty communication protocols and representation of boolean
functions by multivariate polynomials over commutative rings. While each of them
is fascinating in its own right, the three models are not unrelated. Indeed, it has been
known for more than fifteen years that there are deep connections between them. In
this thesis, we unravel fresh connections that we exploit crucially to make pfogress on
questions that naturally arise in each model. For instance, in Chapter 3, our bounds
on the size of ACCP circuits directly results from bounds on degree in a new model of
polynomial representation of boolean functions. In Chapter 6, we utilize the notion of
threshold and approximation degree of boolean functions to make significant progress
in multiparty communication complexity. Finally in Chapter 7, we find a new kind
of interplay between polynomials and communication: ideas (as opposed to concrete
results) used in analyzing the communication complexity of a function are re-usable
for obtaining lower bounds on the degree needed by polynomials to approximate
boolean functions.

The depth and richness of these models are further suégested by the diversity of
the mathematical tools employed to analyze them. For example, Chapter 3 makes
heavy use of ideas from algebraic combinatorics, probabilistic method, Fourier anal-

ysis and exponential sums. Chapter 5 uses tools from error-correcting codes and
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Ramsey theory. Chapter 6 draws on approximation theory and linear programming
duality. Dually, the computational view on classical objects like polynomials raises
new questions that are of independent mathematical interest: “hovs} much degree is
needed to represent a simple function like AND/MAJORITY/MOD; in a natural
model of representation by polynomials?”. Such questions are fundamental and the
fact that polynomials have been under investigation for a long time, makes one feel
that they ought to have been answered. Yet, not only have they not been answered,
making progress on them have required sophisticated arguments. In the first part of
Chapter 3, we explored this theme. We defined a notion of representation by poiy—
nomials that generalizes earlier notions described in the literature. Proving lower
bounds on the degree of such representations entailed a combination of arguments
from the combinatorial work of Tardos and Barrington [TB98] and the more alge-
braic work of Green [Gre00]. Further strong progress about these questions is very
likely to result in progress in mainstream mathematics.

In this context, it is worthwhile to note that a new theory of low degree polyno-
mials over finite fields is being developed, among others, by mathematicians Gowers
[Gow01], Green! and Tao [GT05, GT07]. It is quite interesting to study the rela-
tionship between the point of view on polynomials used in this thesis and the above
works which draw motivation from additive combinatorics. There already has been

exchange of ideas among the two points of view. For instanée, Lovett, Meshulam

! Earlier, we referred to works by the computer scientist Fred Green |Gre00,
Gre99]. The Green referred to here, is the combinatorial number theorist Ben Green.
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and Samorodnitsky [LMS08| and independently Green and Tao |GTO07], disproved
recently an important conjecture in additive combinatorics, called the Gowers In-
verse Conjecture, using ideas from the work of Alon and Beigel [AB01]. The work of
Alon and Beigel, on the other hand, was motivated by the question of determining
the correlation between low degree polynomials over Z,, and MOD,. Recall that this
question is explored in our work (in continuation of a long line of research) in the
second part of Chapter 7. Indeed, the interaction between the theory of computation
and pure mathematics is truly a two-way process. The theory of low degree polyno-
mials is a key area where further meaningful exchange between the two disciplines is
very likely to continue.

While reaching the goal of proving strong lower bounds in the model of constant-
depth circuits with modular gates is still distant, our work suggests some intermediate
steps that should be attainable more easily. Let us outline a few such steps. Ana-
lyzing a single layer of MOD,, gates is an obvious direction to pursue. In Chapter 3,
we proved that a sublinear number of them at the base is too weak to compute the
MODy, or AND function. This weakness is essentially information theoretic. In other
words, C' o MOD,,, cannot compute such functions, no matter how powerful the cir-
cuit C is, if the MOD,, layer is sublinear in size. What bounds on the size of MOD,,
layer can be proved if we limit the power of C? If C is a single AND,OR or MAJ
gate, then our results (this is also known from the work of [KP94, Gre99]) imply that
the MOD,,, layer must have exponential size for the circuit to compute MOD,. On
the other hand, if C is a generalized MOD,, gate or an AC® circuit of polynomial

size, no non-linear lower bounds are known on the size of the MOD,,, layer. Making
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progress on this frontief should be within reach and is likely to shed new light on
how to approach more general circuits. We believe that the use of exponential sums
in analyzing circuits should be of further use here. While we have used exponential
sums on their own, an interesting direction to pursue is to see if they can be combined
with existing tools to approximate AC? circuits, for proving new lower bounds.
Several areas in theoretical computer science, the theory of constant-depth cir-‘
cuits in particular, have immensely benefitted from the study of the ‘Number on the
Forehead’ model of multiparty communication. Starting with the work of Hastad
and Goldmann [HG91|, other works like [Gro92, RW93] have used the strong lower
bounds of Babai, Nisan and Szegedy [BNS92| on the multiparty communication com-
plexity of a function to make progresé in circuit complexity. The technique of Babai
et.al. was the only known method for proving such strong lower bounds. Before our
work, it only yielded lower bounds for those functions whose computation involved
modular counting in one form or the other. Consequently, it could not be directly
applied to yield bounds for a function in ACP. Building on the work of Sherstov
[She07], we have rectified this problem in Chapter 6 to yield strong lower bounds
on the communication complexity of functions in AC®. This has resulted in a new
application to circuit complexity: depth-three circuits comprising MAJ gates with
small bottom fan-in cannot efficiently éompute even functions in AC®. This makes
important progress in understanding the limitations of a natural subclass of TCP.
The most powerful known application of the multiparty model to circuit com-

plexity comes from proving lower bounds in the presence of a polylogarithmic number
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of players. Although this seems a distant goal, it is worth noting that analyzing si-
multaneous protocols is enough for this application. Our work suggests that new
structure can be discovered even analyzing such protocols for constant number of
players. We initiated such a study in Chapter 5 and discovered a surprising phe-
nomenon. The presence of a neutral letter in a language takes away a lot of the
power of the multiparty model if the players are allowed to communicate constant
number of bits. This has been crucially used further in the work of Lautemann,
Tesson and Thérien |[LTTO06]. Does a similar phenomenon still occur when more
communication is allowed? What can be said about the structure of languages that
can be recognized by randomized protocols in constant communication? Investiga-
tions of such questions are likely to yield further insight into the model.

In the second part of Chapter 6, we made substantial progress in understanding
the communication complexity of the Disjointness function for a constant number of
players. Apart from its application to other areas, this generated an important new
technique for the multiparty model: the Generalized Discrepancy Method. Our tech-
nique has been improved very recently by the interesting work of Beame and Huynh-
Ngoc [BHNO08]. However, even their improvement, does not yield better bounds for
Disjointness for constant number of players. Our bound for Disjointness is not known
to be tight even for three players. It remains interesting to determine if linear lower
bounds continue to hold for Disjointness with a constant number of players. On a
different note, Disjointness is an example of a function with low non-deterministic

communication complexity but high randomized communication complexity. Can we
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exhibit an explicit function that has the reverse property? | This is a natural ques-
tion regarding the relationship between randomness and non-determinism. Further,
making progress on the question, almost surely, will generate new techniques as all
known ones for the multiparty model end up proving lower bounds for randomized

protocols.
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